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Acronyms 
ATA  actual time of arrival 

AVI  automated vehicle identification 

AVL  automated vehicle location 

CDF  cumulative density, or distribution, function 

D2D  day-to-day (variations in travel times) 

DTA  desired time of arrival 

GPS  global positioning satellite 

ITS  intelligent transportation system 

mph  miles per hour 

O-D  origin-destination pair 

PDF  probability density function 

PeMS  performance measurement system 

PMF  probability mass function 

RMS  root mean square (of a set of values) 

SSD  semi-standard deviation 

TMC   transportation management center 

TTI  travel time index 

V2V  vehicle-to-vehicle (variations in travel times) 

V/C  ratio of volume (or, more appropriately, demand) to capacity 

VMT  vehicle-miles traveled  
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Terms 
buffer index: Computed as the difference between the 95th percentile travel time and the average 

travel time, normalized by the average travel time.  

 

distribution: The relative frequency with which a variable takes on specific values or lies within 

specific ranges of values. 

 

failure/on-time measure: Computed as the percent of trips with travel times less than a threshold 

(Calibrated Factor [e.g., 1.3] * Mean Travel Time). 

 

Harvey Balls: A technique for displaying information in which the variable’s value is 

characterized by the extent to which a circle is filled, as in . 

 

histogram: A graphical portrayal of the manner in which the values for a specific variable are 

distributed, typically on the basis of a set of bins (value ranges) into which the observations are 

placed. 

 

misery index: Computed as the difference between the average of the travel times for the 0.5‒5-

percent longest trips and the average travel time, normalized by the average travel time (useful 

primarily for rural conditions). 

 

nonrecurring event: An event that does not occur regularly during a typical time of day, 

including traffic incidents, work zones, weather, special events, traffic control devices, and 

fluctuations in demand. The effect of nonrecurring events can be magnified by inadequate base 

capacity. 

 

planning time index: Computed as the 95th percentile travel time index divided by the free-flow 

travel time. 

 

probability density function: a function that describes the relative likelihood that a continuous 

random variable will take on a given value. PDF values are not probabilities as such; a PDF must 

be integrated over an interval to yield a probability. 

 

probability mass function: a function that describes the relative likelihood that a discrete random 

variable is exactly equal to some value. 

 

regime: A specific condition under which a segment, route, or network is operating at a given 

point in time. It is effectively the “loading condition” for the system at that point in time. An 

example would be heavy congestion in conjunction with an incident. 

 

3
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root mean square delay: The square root of the mean of the squares of the delay values given 

some reference value that constitutes no delay. 

 

route: A sequence of segments. 

 

sample space: The set of raw data that pertain to each context for which a probability density 

function is being developed, such as those that pertain to a regime (e.g., congested conditions) or 

to another logical grouping (e.g., 7:00–9:00 a.m.) Also known as an observation set, observation 

time frame, or sample frame. 

 

segment: A path between two locations on a network, preferably between the midpoints of the 

links. 

 

semi-standard deviation: The square root of the sum of the deviations of observed values above 

(or below) a reference value. 

 

skew statistic: Computed as the ratio of (90th percentile travel time minus the median) divided 

by (the median minus the 10th percentile). 

 

travel rate: Travel time per unit distance. 

 

travel time: The amount of time spent traveling over a given segment or route. 

 

travel time index: A specific value of travel time divided by a reference value as in the free-flow 

travel time. 

 

trip time: The door-to-door time for a trip. 

 

user: People or package making a trip across the network. 
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Introduction 
 

Reliability is a topic of great interest today. With the impacts of congestion, incidents, and other 

unforeseen circumstances, people are concerned about being able to get to work on time, catch 

flights, get to doctor’s appointments, get children to and from day-care centers, and other events 

where being on time matters. Shippers are concerned that deliveries need to be on time, or 

penalties may be incurred and production processes may be disrupted. If the transportation 

system was 100% reliable, with the same travel times all the time, none of this would be an 

issue. But such is not the case.  

Reliability information is desired by various audiences in different ways. Those with an 

interest in information range from decision makers, operators, and developers of reliability 

monitoring systems, to road users and shippers. For example, travelers and shippers want to 

know when they need to leave, or when the truck has to depart, in order to make an on-time 

arrival. Both groups also want to know what paths they should use to minimize the likelihood of 

encountering unforeseeable delays. Managing agencies want to know where the problem spots 

lie; where the network segments are that make the travel times vary.  

This handbook offers numerous ideas on how to communicate reliability information in 

graphical and tabular form. It describes the display options listed in Table 1. The table shows the 

audiences to which they are likely to pertain. The display options fall into categories of maps, 

tables, and figures and graphs.  

The handbook is intended to be used both as a supplement to the L02 materials and as a 

stand-alone reference. In light of the stand-alone objective, some redundancy exists with the L02 

materials. Readers familiar with the L02 materials can skip over the redundant discussions; but 

for those who use this as a stand-alone reference, all of the material will be useful. 

 

Table 1. Display Options and Their Audiences  

 

Type of Display Users*

Decision-

Makers

Policy 

Analysts

Operations 

Managers

System 

Analysts

Maps

Graphic Icons (e.g., Harvey Balls) X X s s X

Color Coded Links X X s s X

Speed Contour Plots s X X

Tables

Reliability by Link s X X

Reliability by Regime X X X

Figures and Graphs

Cumulative Distribution Functions s X X X

Probability Density Functions s X X X

Pie Charts X X X X

* Motorists, shippers, drivers, etc. Key

X: very likely to use

s: will use sometimes

Audiences
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The text that follows offers numerous ideas on how to communicate reliability 

information in graphical and tabular form. It endeavors to meet the needs of all these audiences, 

ranging from novices to experts, from those for whom reliability is of cursory interest to those 

who want to understand all of the details and nuances. This means that some of the presentation 

ideas are very simple, while others are more complex. Each is intended to be clear about what 

reliability information is being presented and how it should be interpreted. 

Insofar as the map-based displays are concerned, graphic icons like Harvey Balls provide 

a way to communicate reliability information in the same way that people see ratings of 

restaurants, consumer products, and other items (see Wikipedia, 2014). Maps that use color-

coded links show the same information, but in a different format. Speed contour plots show 

variations in speeds by location and by time of day (through time-space diagrams or animations). 

The maps that use graphic icons and color coding will likely be used heavily by users and 

decision makers, because they present a high-level view in a succinct manner. The speed contour 

plots will be used by operations managers and system analysts, who can see patterns in 

performance by reviewing them. 

To show a simple map example, it is useful to draw on people’s prior experience with 

ratings displays used to depict the performance of consumer items, restaurants, and other items. 

Figure 1 uses graphic icons to indicate the reliability of links in the network. The more colored 

boxes there are, the poorer is the reliability. 

 

 
Figure 1. A simple reliability display. 

 

 <-Best

 <-Good

 <-Moderate

 <-Worse

 <- Worst

 

 

 

A

B

C

D

E

F

G

4

5

1

2

2

2

4

4

1

2

3

4

5

Handbook for Communicating Travel Time Reliability Through Graphics and Tables

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22400


 

6 
 

It is easy to see that the path from A to G via A-B-D-F-G is the most reliable. It has the 

most links with good reliability and one with the best. Path A-C-D-F-G is clearly not as good, 

although it is not as bad as A-C-E-F-G. To a traveler or a shipper, this might be enough 

information for making a path choice decision. And if the icons were reviewed over time, as in 

an animation, the display could help the user select a departure time as well. 

Tables of reliability information show metrics by link, network, or regime; that is, 

operating conditions. These displays are most likely to be used by operations managers, system 

analysts, and to a lesser extent by policy analysts. This information is most meaningful to 

individuals engaged in quantitative analyses. 

Without becoming engaged in the details, which will be presented later, an example table 

display is shown in Table 2. It gives a sense of how the system is operating. Bigger values for the 

frequency of occurrence means the condition exists more often. Bigger values for the root mean 

square (RMS) delay mean that reliability is worse. It is easy to see that a condition like 

(uncongested, normal) occurs a lot, and its reliability is good. On the other hand, a condition like 

(congested, weather) does not occur frequently, but when it occurs, its reliability is poor. 

 

Table 2. Table Portraying Reliability Information 

 
 

Figures and graphs present detailed information about the performance of individual 

segments or routes. They provide ways to study the reliability of facilities under different 

operating conditions and at different points in time. These displays are principally used by 

system operators and analysts, although decision makers and policy makers sometimes make use 

of them also. A good example of a figure can be seen in Figure 2.  

 

1 2 3 4 5 6 7 8 9 10 11

CongCond NRecCond nObs AvgRte SD(Rte) AvgInc RmsDly* SSD* SemiVar* Severity RelSev

High Demand 458 85.9 9.4 7.5 10.02 10.67 113.76 4588 14.0

High Incidents 447 88.0 17.1 12.0 17.51 21.70 470.81 7826 23.9

High Normal 10855 61.6 8.8 0.2 1.31 6.75 45.60 14211 43.4

High Special Events 95 83.1 16.7 8.9 15.56 22.61 511.38 1479 4.5

High Weather 149 95.2 27.8 19.9 31.06 38.10 1451.54 4627 14.1

Total 12004 n/a n/a n/a n/a n/a n/a 32730.99 100.0

* Note: 5-th percentile travel rate used for SSD = 80.0 sec/mi
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Figure 2. A graphic portrayal of reliability for various operating conditions.  

 

Again, without becoming involved with the details, which will be discussed later, the 

distribution of travel times is shown for a variety of operating conditions. In this instance, 

distributions that are farther to the left and more vertical are better. It is again easy to see that the 

reliability of (uncongested, normal) is quite good while the reliability of (congested, incidents) is 

much poorer. 

 

Travel Time Reliability 
When reliability engineers think in terms of unreliability, they think of the probability of failure, 

failure modes, failure analysis, the mean time between failures, and strategies to improve these 

metrics including preventative maintenance and redundancy.  

These ideas are not the sense of reliability being used in highway performance studies. Rather, 

highway system assessments tend to focus on the probability that specific travel times or travel 

rates can be achieved under specific operating conditions. 

Reliability was originally defined by Ebeling (1997) as “the probability that a component or 

system will perform a required function for a given period of time when used under stated 

operating conditions. It is the probability of a non-failure over time.” This is slightly different 

from the idea of consistency, which has to do with the absence of variability.  

Were Ebeling’s ideas to be applied in a transportation network context, the focus would be on 

individual trips and the system would be deemed reliable if each traveler or shipper experienced 

actual times of arrival (ATAs) that matched desired times of arrival (DTAs) within some 

window, as shown in Figure 3.  
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(a) DTAs and ATAs    (b) Disutility based on the ATA 

 

Figure 3. Highway reliability concepts consistent with reliability theory: desired times of 

arrival (DTAs), actual times of arrival (ATAs), and disutility.  

 

Consistent with Ebeling’s reliability theory, the “cost” of arriving within the DTA 

window would be 0, and it would be infinite outside that window (i.e., treated as a failure). 

Reliability would be measured in terms of the probability that the ATA was within the DTA 

window.  

Within the context of transportation, it would be possible to interpret this cost as the 

disutility of missing the DTA. A dead zone could exist where the disutility is 0 (e.g., between 10 

minutes early and 5 minutes late) and then there could be increases in disutility—linear or 

nonlinear—as the difference between the ATA and the DTA grows. Moreover, the disutility of 

being early could be different from that of being late.  

If vehicles equipped with automated vehicle location (AVL) were prevalent and DTA 

windows were recorded for trips, it would be possible to assess the system reliability on the basis 

of the percent of ATAs that fall within their DTA windows. This would be a useful metric both 

for the entities making the trips as well as the organizations providing the service (e.g., the 

transportation management center (TMC) or transit system operator). The aggregate disutility 

could also be computed by summing the disutility values for each trip.  

Obviously, this trip-level world of observability does not presently exist. What can be 

observed, at least for some vehicles, are travel times on segments and routes. Many urban areas 

can monitor toll tags or Bluetooth-equipped devices. Without either of these, agencies can 

estimate travel times from speeds observed at locations where field sensors (e.g., loops) are 

installed or obtain data from private vendors based on their subscribed fleets of instrumented 

vehicles. 

In a highway context, the most common way to think about travel time reliability is the 

absence of variability in the travel times. This is akin to but not the same as examining the 

variance or standard deviation. A system is reliable if long travel times occur infrequently. Such 
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assessments are most often done in the context of a system’s ability to provide reliable average 

travel times for a specific time of day and/or operating condition (e.g., the a.m. peak hour on 

weekdays). Notions of reliability can also be examined in the context of individual vehicle or trip 

travel times. But this is uncommon today. The first of these assessments is effectively focused on 

day-to-day (D2D) variability; the second addresses vehicle-to-vehicle (V2V) variability. And the 

second can be used to examine D2D variability. The L02 project studied all of these.  

 

Basic Displays 
Since highway reliability focuses on the variability in vehicle, person, or package travel times 

(and rates), the basic displays of reliability information involve histograms, cumulative 

histograms, probability density functions (PDFs), probability mass functions (PMFs), and 

cumulative distribution functions (CDFs). The term probability mass function pertains when the 

observations are discrete, and probability density function pertains when the distribution is 

continuous, as is the case for a normal distribution. For purposes of clarity in this document, 

probability mass function is used because all the distributions are discrete, along with the 

acronym PMF, even though PDF is the more common term. The observations have often been 

binned, so the distribution appears to be discrete rather than continuous. 

Figure 4 illustrates each of these basic ways to display reliability information. Assume 

there is a hypothetical freeway with a free-flow speed of 70 mph. This is equivalent to a free-

flow travel rate of about 50 sec/mi. Assume the travel rates across some segment have been 

observed within a peak hour for 200 vehicles, and the observations have been binned into 1-

sec/mi bins. The distributions being displayed are probability mass functions because the 

underlying observations have been placed into discrete bins. 

Part (a) shows the histogram for these data. Each bar indicates how many vehicles have 

been observed with a travel rate falling in a specific 1-sec/mi bin. As can be seen, most of the 

vehicles have travel rates between 50 and 65 sec/mi. 

Part (b) shows the cumulative histogram. Each bar indicates how many vehicles have 

observed travel rates equal to or less than a specific value. For example, 100 vehicles have been 

observed with travel rates less than or equal to 60 sec/mi; half of the total observations. All of the 

vehicles have travel rates less than or equal to about 100 sec/mi. 
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(a) Histogram of Travel Rates   (b) Cumulative Histogram 

  
(c) Probability Mass Function   (d) Cumulative Distribution Function 

 

Figure 4. Basic displays of reliability information. 

 

Part (c) shows the probability mass function for these same data. The significant change 

is that the total of the bar heights is equal to 1.0 (i.e., 100%). Each of the values shown in Part (a) 

has been divided by 200, the total number of vehicles observed, to compute the probability that a 

vehicle has a travel rate equal to a specific value. In this instance a probability mass function is 

involved, rather than a probability density function, because the binned data are discrete counts, 

being based on the binning shown in Part (a). The probabilities can be interpreted as percentages. 

For example, 0.1 implies 10% or a 10% probability of being that specific value. 

Part (d) presents the cumulative distribution function for the observed data. As with the 

probability mass function, all of the values shown in Part (b) are divided by 200. This makes the 

total percentage of observations reach a maximum of 1.0 (i.e., 100%).  

In reliability analyses, the histograms are very valuable when the focus is on the number 

of times a particular average travel rate is observed, depending on the operating condition. To 

illustrate, assume that a freeway operates in one of two regimes during the peak hour: recurring 
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congestion or nonrecurring congestion. Moreover, assume that on two out of every three days it 

operates in the recurring congestion regime and on the other day it is in the nonrecurring 

congestion regime. Now imagine that 300 peak-hour average travel time observations have been 

collected (perhaps for 300 consecutive peak hours) and that these travel times have been 

converted into rates (sec/mi). From what has been said above, 200 of these observations will fall 

into the recurring congestion category and the other 100 will be in the nonrecurring condition. 

Figure 5 presents a set of graphs that depict the travel rate performance of this freeway 

for the 300 peak hours. Compared with Figure 2, here the focus is on day-to-day variations in the 

average rates, not variations in the vehicle-to-vehicle rates. 

 

   
(a) Histogram for Travel Rates   (b) Cumulative Histogram 

  
(c) Probability Mass Function   (d) Cumulative Distribution Function 

 

Figure 5. Basic displays of reliability information for a multiregime situation. 

 

Part (a) shows the histogram of the travel rates for the two operating conditions. The data 

for the recurring condition are shown in red; the nonrecurring data are shown in blue. It is easy to 

see that the travel rates for the nonrecurring condition are greater than those for the recurring 
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condition. It is also easy to see, by the heights of the bars, that the recurring condition occurs 

more frequently than the nonrecurring condition.  

Part (b) shows the corresponding cumulative histograms. As with Part (a), this plot shows 

the distribution of the travel rates for the two conditions and the relative frequency with which 

the conditions occur (200 versus 100).  

Part (c) shows the probability mass functions for the two operating conditions. Notice 

how this graph is different from the one presented in Part (a). The data for each condition in Part 

(a) have been divided by the respective total observations (200 or 100). Because of this, 

probabilities have been computed indicating the likelihood that specific travel rates will occur 

under the two operating conditions. The information about the relative occurrence of these two 

conditions is not displayed. On the other hand, because they have been normalized, it is possible 

to compare the probability mass functions for the two operating regimes. 

Part (d) shows the cumulative distribution function for the individual operating 

conditions. The data from Part (b) have been divided by the respective total observations (200 or 

100) to compute cumulative probabilities that the travel rate will be less than or equal to a 

specific value. As with Part (c), the information about the relative frequency of occurrence for 

these two conditions is not displayed. But it is possible to compare the two cumulative 

distributions because they have been normalized to have a maximum value of 1.0. 

Four additional displays of this information are possible when stacked plots are 

employed. They are depicted in Figure 6.  

Part (a) shows a stacked-bar chart histogram. The observations of the nonrecurring 

congestion have been stacked on top of those for the recurring congestion condition so that the 

overall histogram can be seen (the cumulative heights of the bars) as well as the distribution of 

the values for the recurring and nonrecurring conditions. As with the Part (a) graph in Figure 3, it 

is possible to see that the travel rates for the recurring congestion condition are less than those 

for the nonrecurring condition, and in mid-range it is possible to see the relative occurrence of 

specific travel rates between the two regimes. 

Part (b) shows the cumulative histograms stacked one on top of the other. Here it is easy 

to see that the total reaches 300. It is also easy to see that the recurring congestion contributes 

most if not all of the observations up to about 70; the nonrecurring congestion condition 

contributes all of the observations above 100 sec/mi; and in between, both conditions contribute 

observations. 

Parts (c) and (d) show similar probability mass functions and cumulative distributions for 

the two regimes combined. In this case, the total of the probabilities for the two regimes 

combined totals to 1.0, so, unlike the graphs in Parts (c) and (d) of Figure 3, the relative 

contributions can be seen for the two regimes as they combine to form the overall PMF and 

CDF. As pointed out by Tu et al. (2008), these PMFs and CDFs represent sufficient information 

to answer the questions about measuring reliability. 
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(a) Histogram for Travel Rates   (b) Cumulative Histogram 

  
(c) Probability Mass Function   (d) Cumulative Distribution Function 

 

Figure 6. Other displays of reliability information for a multiregime situation. 

 

Single Value Reliability Measures 

It is very useful to have a simple metric that summarizes the reliability performance shown in the 

PMFs and CDFs. A statistician might immediately focus on the mean, the variance, and a 

specific percentile. Many reliability measures have been suggested. An important point to keep 

in mind is that all of these metrics are derived from the PMFs and CDFs described earlier.  

Some of the common reliability measures (see http://ops.fhwa.dot.gov/publications/tt_reliability/ 

for example) are 

 

 Buffer index: Computed as the difference between the 95th percentile travel time and the 

average travel time, normalized by the average travel time.  

 Planning time index: Computed as the 95th percentile travel time index divided by the 

free-flow travel time. 
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 Skew statistic: Computed as the ratio of (90th percentile travel time minus the median) 

divided by (the median minus the 10th percentile). 

 Misery index: Computed as the difference between the average of the travel times for the 

(0.5–5) percent longest trips and the average travel time, normalized by the average travel 

time (useful primarily for rural conditions). 

 Failure/on-time measure: Computed as the percent of trips with travel times less than a 

threshold (Calibrated Factor (e.g., 1.3) * mean travel time). 

 

The use of a metric called the semi-standard deviation (SSD) was suggested by L02. It is 

the square root of the semi-variance. Technically, the SSD  is the square root of the sum of 

the deviations of the observed travel times ti above a reference travel time (or in the case of 

rates, the deviations of the observed travel rates τi above a reference travel rate τr). The SSD is 

frequently used in risk analysis to assess the extent that risk exposure will exceed a given 

threshold.  

 

The SSD bases its value on the observations ti that are greater than or equal to (count = 

): 

 

      (1) 

 

A very closely related metric is the root mean square (RMS) delay . is based on the 

same reference value  as the SSD (or the RMS delay per mile  given a reference value τr) 

but includes a term for each of the observations, not just those above the reference value. And 

the delays for the travel times less than the reference value are set to 0. Hence, if the travel time 

observations are ti and the reference value is , then  is computed as follows: 

 

    (2)

 

 

If the RMS delays are measured per mile as in τi, the equation is the same, but the travel 

rates are used instead of the travel times: 
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Because and  use all of the observations, they are sensitive to the entire distribution of 

delays. 

  

To illustrate the computation of , assume that a specific facility has a free-flow travel 

time of 5 minutes. Further, assume that a reference travel time of 7 minutes (higher than the free-

flow travel time) is being used by the agency to assess travel time reliability. Given this 

reference value, all of the observations above 7 minutes represent unreliable operation, and those 

below do not, even though they are greater than or equal to the free-flow travel time. Now 

assume that the travel times observed for seven vehicles during a nonrecurring event are 6, 5, 6, 

7, 9, 10, and 11. In computing  for this condition, the first three observations (6, 5, and 6) are 

set to 0, because they have travel times less than the reference. would be computed as 

follows: 

 

   (4)

 
 

Numerically, the result is that = 2.04.  

 

To study this calculation a little more,  can be computed for each  

as shown above. These are the differences between the observed travel times and the reference 

value .  is the square root of the average of these  values. In contrast, the average 

delay is the arithmetic average of the  values. Numerically, = 1.29 = 1/7(0 + 0 + 0 + 0 

+ 2 + 3 + 4). Because  squares the differences before adding them and taking the square root, 

it places more emphasis on the larger deviations. 

Like the average delay or the traditional standard deviation σ,  can be compared in 

magnitude with the reference value or other metrics like the mean. Larger  values mean that 

the squares of the deviations are larger, so the performance can be seen as less reliable.  

In terms of setting values for (and/or ), three possibilities are logical. One 

possibility is the travel rate implied by the free-flow speed. The other two possibilities are the 

travel rates implied by the posted speed limit (as is being done in North Carolina), or a policy-

based acceptable speed (as in California). 

Another metric that has received recent consideration is the “travel time index,” or TTI. It is the 

ratio of a specific percentile travel time to the free-flow travel time. TTI values are often 
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computed for the 50th percentile travel time (the median), the 80th percentile travel time, and the 

95th percentile travel time. A display of these metrics and others is shown in Figure 7. 

Another measure, proposed by SHRP 2 Project C11 researchers, focuses on the cost of 

unreliability. That is, the dollar value of the delay caused by the difference in the 50th
 
and 80th

 

percentile TTI figures: 

 

(𝑉𝑇) = 𝑇𝑇𝐼50+𝛼 × (𝑇𝑇𝐼80−𝑇𝑇𝐼50)      (5) 

 

TTIe(VT) is the TTI equivalent on the segment and 𝛼 is the reliability ratio (the value of 

reliability divided by the value of time).  

 

 
Source: Adapted from Zegeer et al. (2014). 

Figure 7. A graphical illustration of reliability measures. 

 

Many recent studies of the value of reliability (especially those in Europe) define the 

reliability ratio in terms of a single standard deviation in travel time. This is roughly equivalent 

to the difference in the 50th
 
and 84th

 
percentile TTI (assuming a one-tailed normal distribution).  

 

Breakdowns by Regime 
When doing reliability analysis, it is important to study the data in the context of regimes or 

operating conditions. Differences in the operating conditions will have a major impact on 

performance. This is the essence of the report for FHWA developed by Cambridge Systematics 

and Texas A&M Transportation Institute (2005) that talks about the “seven sources of 

congestion.” That study grouped the causes of congestion and unreliable travel times into three 
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categories: (1) traffic influencing events (incidents, work zones, and weather), (2) traffic demand 

(fluctuations in normal traffic and special events), and (3) physical highway features (traffic 

control devices and bottlenecks). The point of that report was that congestion and system 

reliability are affected by the conditions under which the facility is operating. And seven 

categories seemed like a reasonable way to break down the operating conditions.  

A problem with the “seven sources of congestion” notion is that data analysis based on 

those categories can miss the fact that reliability performance is actually affected by 

combinations of the nonrecurring event taking place, including none, and the traffic flow 

condition, that is, the congestion level. The importance of this bivariate classification was clearly 

evident to the L02 research. When congestion is high, work zones will have a far greater effect 

on reliability than they will when it is low. The same is true for weather.  

This means it is important to think about reliability analysis in a two-dimensional way, 

with one dimension being the nonrecurring event taking place and the other being the level of 

congestion that would have been present if no nonrecurring event were taking place. In fact, a 

first cut of the data should be divided into normal and abnormal condition categories (i.e., normal 

and nonrecurring event categories), and then the data should be subdivided again on the basis of 

the level of congestion that would have been extant under normal conditions, effectively a 

reflection of the volume-to-capacity, V/C, ratio. In fact, the normal performance should be used 

as a benchmark against which to compare the nonrecurring event performance when endeavoring 

to measure or assess the impact of the nonrecurring events. 

In the context of data processing, this means labeling every observation in two ways, 

whether it is for an individual vehicle or some aggregate of the vehicles (e.g., from a loop 

sensor). Otherwise, analysis of the variability (i.e., the reliability analysis) will be confounded by 

the variation caused by different operating conditions rather than the impact of variations in the 

specific operating condition and traffic behavior.  

To re-emphasize, the first label should indicate the nonrecurring event that pertained at 

the time the observation was collected, including none. The second label should identify the 

nominal level of congestion (e.g., the V/C ratio) that would have pertained had there been no 

nonrecurring event (or the congestion level that did pertain if there were no nonrecurring event). 

L02 used a two-dimensional matrix of regimes. An example is shown in Table 3. Each 

regime consisted of a nominal congestion level and a nonrecurring event condition. One example 

would be nominally moderate congestion in combination with a weather event, that is, cell (3, 2) 

in the matrix. The data falling into each of these cells would be analyzed for reliability 

performance, and the performance of the facility under one condition would be compared with 

another. Also, mixed observations can be given these category labels, and then the differences in 

performance under each condition can be seen. 

The idea of a nominal level of congestion is perhaps uncommon, so an example helps. 

Imagine that a facility has been observed for some time and its operation under normal 

conditions has been documented. Consistent with standard traffic engineering practice, this 

results in an assessment of how the congestion level varies with the V/C ratio. That is, if 
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conditions are normal, including the capacity, different demand flow rates result in different 

levels of congestion. This is the nominal congestion condition. 

Consider an example. Imagine that a nonrecurring event has taken place. Labeling the 

observation based on the nonrecurring event should be the first step. It involves determining 

which nonrecurring event category pertains and adding that label. The second step is to 

determine what nominal congestion condition pertains. A way to do that is to take the arriving 

demand, say at flow rate V vehicles/hour, and compute a V/C ratio that would exist if no 

nonrecurring event were under way. A breakdown of these V/C ratios into levels of congestion 

allows a nominal congestion condition label to be assigned based on the V/C ratio that was 

computed. If the V/C ratio represents “moderate congestion,” then the correct regime for this 

condition is cell (3, 3) in Table 3. That is, moderate nominal congestion in combination with an 

incident.  

 

Table 3. Classifying and Labeling Reliability Data by Operating Regime 

 

Reliability Regimes 

Nominal 

Congestion 

Condition 

Nonrecurring Condition 

None 

Nonrecurring Events 

Weather Incident 

High 

Demand 

Special 

Event 

Work 

Zone 

Uncongested             

Low             

Moderate             

High             

 

As indicated before, the advantage to categorizing the data in this manner is that all of the 

observations within a given regime will reflect the facility’s performance under the same 

operating conditions. That is, statistically valid information can be developed that indicates how 

the facility performs when the variance being observed is not due to significant variations in 

either the nominal level of congestion or the type of nonrecurring event. Rather, the variations 

are due to differences in the severity of the nonrecurring event and driver behavior. 

To illustrate this process, assume that a set of travel time observations (or rates) have 

been placed in chronological order and that additional time-referenced databases exist for the 

traffic flow rates and nonrecurring event information. Assume these databases are synchronized 

in time. The labeling process can begin by finding a starting point where the operating condition 

is known. That condition is then labeled (e.g., uncongested with no nonrecurring event under 

way). The next step involves moving forward in time through the synchronized databases and 

adding the appropriate nonrecurring event label based on the event that was taking place, 

including “none.” It is important to recognize that there might be a need to look at data in the 

opposite direction (i.e., rubbernecking) and on adjacent facilities (e.g., backup caused by a 
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blocked exit ramp) to determine the correct nonrecurring event label. Then the appropriate 

congestion level label is added by looking at the traffic flow rate that was or would have been 

extant (under normal conditions) if no nonrecurring event were under way. This might be the 

traffic flow rate that would have normally existed at this point in time based on historical data 

and the traffic flow pattern leading up to this point in time. A very simple way to think about this 

is to use the common paradigm of a.m. peak, midday, p.m. peak, evening, late night, and early 

morning. These time-of-day labels track loosely to specific congestion levels. Of course, work 

days, day-of-the-week holidays, and so forth, are also important because these affect the nominal 

traffic flows as well. 

Once the data have been labeled in this manner, the reliability analysis can proceed. The 

labels serve to categorize the observations, to differentiate among them in plots and tables, and to 

create summaries that indicate the relative reliability performance under the different regimes. 

 

Displays that Highlight Regime Contrasts 
Contrasts between the reliability of different regimes are often of interest. Here is an example 

based on 5-minute average travel times in 2011 for I-5 in San Diego, California, from the I-5-I-

805 split south to 8th Street in National City. Each data point is a walk-the-matrix travel time for 

a 5-minute interval during the workdays. This totals to 72,000 observations.  

Figure 8 is a display that helps immensely with being able to see when reliability is an issue (in 

this case on weekdays), just from normal traffic variations and when, at other times across the 

year there were variations due to unexpected (nonrecurring) events. 

 

 
Figure 8. Variations in travel rates by time of day for weekdays, or workdays, in 2011. 
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To create the display, operating regime labels were added to the travel time (travel rate) 

observations. In this case, the original data were completely unlabeled. But it was clear that there 

had been nonrecurring events and that traffic volumes did have an impact even if no 

nonrecurring event was under way. The task was to determine what nonrecurring events did 

pertain to these observations and what the nominal congestion levels were, and then add the 

labels accordingly. For the nonrecurring events, historical databases were culled to look for 

evidence that events had occurred on specific days at specific times and locations. It proved 

important to look at data in both directions on the freeway and to search for evidence of events 

on intersecting freeways and major arterials. Fortunately, the network performance database, 

weather histories, and newspaper reports did make it possible to identify almost all of the 

nonrecurring events that had caused significant changes in travel times. For the nominal 

congestion levels, they were identified by looking at the variation in travel times by time of day 

that occurred on the normal days and then breaking the time of day down into different 

congestion levels. The breakpoints did not exactly line up with standard assumptions about when 

such time periods begin and end (e.g., the a.m. peak is from 7:00 to 9:00 a.m.). Rather, the data 

were used directly to determine these times of day. The nominal congestion level labeling is not 

explicitly shown in the figure, but the nominal congestion level labels were: uncongested 

conditions existed all day except from 14:15 to 18:50 when the condition was considered highly 

congested. 

That the nominal level of congestion has an impact on reliability is easy to see if the 

travel times are plotted against vehicle-miles traveled (VMT)/hour/mile, as has been done in 

Figure 9. 

 
Figure 9. Variations in travel rates by time of day across a year. 
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From this display it is easy to see that when the facility loading is light, the travel rate is 

very consistent unless a nonrecurring event takes place. But, as the facility loading increases, the 

travel rate increases in general, and the variation in the travel rate grows as well. This display 

also makes it easy to see that nonrecurring events can create large travel rates at times when the 

facility loading would otherwise not have had a significant impact. (An example is the large 

travel rates that occurred because of extra demand and incidents for flow rates near 60,000 

VMT/hour/mile.)  

A partial listing of the breakdown of the 72,000 average 5-minute travel rate observations 

is shown in Table 4. In this display, each cell indicates the number of times that a specific travel 

rate was observed for a specific condition (one of 10) on this I-5-based route across the 

weekdays in 2011. Only a portion of the total observations are shown. The travel rates reach as 

high as 157 sec/mi for one observation in the regime of high congestion with weather.  

This display makes it is easy to see that the uncongested/normal operating condition is 

the most common one. The cell values in the 50‒60-sec/mi bins total more than 53,000. They 

represent 77% of the 72,000 travel rate observations. The last row of the table lists the total 

observations by operating regime. The uncongested/normal condition is the most common, 

followed by high congestion/normal, and then uncongested/high demand. These data can form 

the basis for PMFs, CDFs, pie charts, tables, and other types of displays. 
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Table 4. Breakdown of 5-Minute Travel Rate Observations by Operating Regime on I-5 in 

San Diego in 2011  

 
 

To illustrate, Figure 10 shows the PMFs for these various operating conditions. The 

graph is somewhat hard to read because there are 10 PMFs displayed simultaneously. To help 

with this, three of the distributions have been highlighted: high congestion/special events, high 

congestion/extra demand, and uncongested/weather. 

This display makes it easy to see that the regime that contributes to the highest travel 

rates is uncongested/weather. The graphs motivate thoughts about mitigating actions that might 

TrvRate HghNor HghSpc HghDem HghInc HghWea UncNor UncSpc UncDem UncInc UncWea

45 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0

49 1 0 0 0 0 3 0 0 0 0

50 54 0 0 0 0 880 0 0 0 0

51 288 0 0 0 0 19335 4 0 4 9

52 1048 0 0 1 0 23485 31 150 39 83

53 1043 0 0 1 0 6867 30 350 65 224

54 1195 0 0 3 0 4369 33 379 68 141

55 1128 0 1 5 1 490 8 210 23 84

56 778 0 3 4 1 50 3 60 12 49

57 656 0 2 5 4 28 0 28 15 51

58 564 2 3 2 5 12 1 16 3 26

59 455 1 5 5 9 4 1 7 9 21

60 421 1 4 3 5 8 0 3 4 27

61 401 5 2 6 1 2 4 2 6 14

62 358 4 2 6 3 0 1 0 3 14

63 400 2 4 3 3 0 0 2 2 23

64 373 4 5 5 4 0 1 0 3 14

65 317 3 6 7 4 0 1 0 3 9

66 332 2 3 9 4 0 0 1 3 6

67 280 1 1 6 3 0 3 2 3 2

68 266 1 3 9 3 0 1 4 0 0

69 252 4 3 7 5 0 0 3 0 0

70 235 1 3 10 3 0 1 0 1 0

71 211 1 3 6 1 0 0 2 1 0

72 235 4 6 13 1 0 2 2 0 0

73 183 3 2 7 2 0 1 0 0 0

74 149 4 2 9 1 0 3 0 1 0

75 162 4 3 8 2 0 1 0 0 0

76 165 3 1 6 2 0 0 2 1 0

77 95 3 0 7 1 0 1 0 2 0

78 111 1 1 7 0 0 0 1 0 0

79 117 2 0 7 4 0 0 2 1 0

80 102 2 0 9 2 0 0 3 0 0

81 62 1 34 7 6 0 0 2 1 0

82 39 0 42 8 4 0 1 2 0 0

83 56 1 30 5 0 0 0 1 1 0

84 40 2 30 3 4 0 0 1 0 0

85 38 4 23 15 2 0 1 0 0 0

86 28 1 15 10 0 0 0 1 0 0

Total 12783 104 472 466 175 55533 135 1250 285 797
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be taken to improve reliability. The display also highlights the high congestion/extra demand 

regime. Possibly, better information about travel conditions might mitigate the extra demand, 

and better demand management might help. 

 

 
 

Figure 10. PMFs by regime for travel rates for weekdays on I-5 in San Diego in 2011. 

 

Figure 11 shows the CDFs for these same ten operating conditions. This display makes it 

much easier easy to see that for many of the operating conditions, the travel rates are very 

consistent. This means the facility’s operation can be deemed reliable under those conditions. 

But there are regimes for which this is not the case, like high congestion with incidents and high 

congestion with weather, which have been highlighted. 

 

Displays of Reliability Assessments 

This section focuses on displays that can be used to present the results of reliability assessments. 

The calculations are based on the ideas presented in the previous section. The displays primarily 

make use of the RMS delay. The displays would be similar if the other metrics were employed. 
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Figure 11. CDFs by regime for travel rates for weekdays on I-5 in San Diego in 2011. 

 

Table 5 shows an assessment of  for the ten operating conditions identified for I-5 in 

San Diego. The first two columns show the operating regime. Column 3 reports the number of 5-

minute travel rate observations classified as belonging to each regime. Column 4 shows the 

average travel rate (sec/mi), Column 5 presents the standard deviation for those rates, Column 6 

shows based on the reference value of 50.4 sec/mi (in this case the 5th percentile travel rate), 

Column 7 shows , Column 8 shows the SSD, and Column 9 presents the semi-variance on 

which the SSD is based. Column 10 is derived from the data in Columns 3 and 7. The number of 

observations for each regime have been multiplied by the SSD (like a vehicle-miles calculation) 

to create a metric that indicates in a sense the severity (significance) of each regime. Column 11 

normalizes Column 10 based on the total. 
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Table 5. Reliability Assessment by Operating Regime for I-5 in San Diego in 2011  

 

 
 

As can be seen from this display, any one of the metrics in Columns 4 through 8 could 

provide a sense of the variations in reliability among the regimes. For example, high congestion 

with a weather event always has the largest value. For the metric to be consistent with Figure 8, 

it should indicate that high congestion/weather is far more problematic than the next three 

conditions (high congestion/incident, high congestion/special, and high congestion/extra 

demand). The metrics for them should be very similar. The next most problematic condition 

should be high congestion/normal, and the next should be uncongested/incident, because of the 

long tail.  is consistent with the anticipated assessment, and so are the other metrics to varying 

degrees. 

The reader only has to look briefly at Table 5 to see that pie charts could be helpful in 

highlighting the contrasts in regime conditions. Figure 12 shows how frequently the various 

regimes occur and the reliability assessments associated with each.  

 

  
(a) All Regimes     (b) Nonrecurring Event Regimes 

 

Figure 12. Pie chart breakdowns of the operating regimes and reliability assessments for 

weekdays on I-5 in San Diego in 2011. 

 

0 1 2 3 4 5 6 7 8 9 10 11

Label CongCond NRecCond nObs AvgRate SD(Rate) AvgDly RmsDly* SSD* SemiVar* Severity RelSev

HghNor High Normal 12784 60.4 8.6 10.0 13.22 13.27 175.99 168957 53.6

HghDem High Demand 472 85.1 10.4 34.7 36.26 36.26 1314.51 17113 5.4

HghInc High Incidents 467 87.1 17.3 36.6 40.74 40.78 1663.14 19025 6.0

HghSpc High Special Events 105 81.7 16.8 31.2 35.99 36.17 1308.03 3779 1.2

HghWea High Weather 176 90.7 27.9 40.1 49.33 49.47 2447.31 8682 2.8

UncNor Uncon Normal 55534 51.5 1.0 1.1 1.44 1.48 2.20 79857 25.3

UncDem Uncon Demand 1251 54.4 5.0 4.0 6.83 6.83 46.68 8543 2.7

UncInc Uncon Incidents 286 56.9 9.9 6.5 12.28 12.30 151.36 3512 1.1

UncSpc Uncon Special Events 136 56.0 6.5 5.6 9.63 9.70 94.13 1310 0.4

UncWea Uncon Weather 798 54.8 2.7 4.5 5.58 5.59 31.21 4455 1.4

Total 72009 n/a n/a n/a n/a n/a n/a 315234 100.0

* Note: 5-th percentile travel rate used for SSD = 50.4 sec/mi
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Part (a) shows the percentage of time during the year when all of the various regimes 

arise. The labels show the reliability assessments. It is easy to see that uncongested/normal is the 

most common regime and that congested/normal is the next most common. The much smaller 

percentages belong to the nonrecurring event conditions. Part (b) shows the distribution of the 

nonrecurring regimes. The normal regimes have been zeroed out. The display makes it easy to 

see that uncongested/demand and uncongested/weather together are the two dominant regimes 

representing more than half of the 5-minute nonrecurring event condition observations.  

The graphs in Figure 12 would be even more useful if the heights of the pie slices could 

reflect the reliability performance. This is not a graphing option available in Excel, but it would 

be a useful one to develop as an add-in. Clearly, it is important to account for the significance of 

the unreliability in each of these conditions when evaluating mitigation strategies.  

For the benefit of the readers of this handbook, and not necessarily intended as a display 

suggestion, Figure 13 presents a relative comparison of the four deviation-related metrics.  

As can be seen, the metrics create different relative senses among the unreliability of the 

various regimes. The  again seems very consistent with the anticipated assessment. (The SSD 

values lie behind the values, as would be anticipated by looking back to Table 5.) 

 

 
 

Figure 13. Differences in the variability (unreliability) assessment provided by three 

metrics for 10 regimes on I-5 in San Diego for 2011. (* = 5
th

 percentile travel rate used for 

SSD = 50.4 sec/mi.) 

 

A useful display idea can be borrowed from the risk assessment. It plots the RMS delay 

 values against the frequency of occurrence. This display is shown in Figure 14.  
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Figure 14. Plot showing the RMS delay values for each regime along with the frequency of 

occurrence of the regime. 

 

The frequency of condition occurrence is plotted on the x axis and the RMS delay  

value is plotted on the y axis, both in logarithmic scale because of the major differences in the 

values involved.  

In this display, it is easy to see that the uncongested/normal condition is not a reliability 

problem. While that condition occurs frequently, its reliability is the highest among all the 

regimes. The display also shows that there are several conditions having high values of the  in 

combination with high frequencies of occurrence. One of these is high congestion/weather. It 

was noted earlier as possibly being important when the  values alone were being compared. 

Not only does this condition have a large  but it also occurs frequently. Two other conditions 

worthy of note are high congestion/extra demand and uncongested/weather. They both occur 

frequently and have high values. Not to be overlooked is the high congestion/normal 

condition which occurs very frequently and also has a high RMS delay. A case could be made 

that these are the operating conditions on which to focus reliability improvement initiatives. 

Pie charts are a possible way to display the reliability metric that is based on the 

values multiplied by the #Obs in Table 5, as shown in the “Severity” column. This calculation is 

intended to give a sense of the relative importance of the various regimes. It is akin to a vehicle-

miles or vehicle-hours measure. For example, the high congestion/normal condition occurs 

frequently, and it has a somewhat unreliable performance. Perhaps it is the most important. Were 

this the case, it would be followed by uncongested/normal and then high congestion/incidents.  

The pie chart created by this assessment is shown in Figure 15. 
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Figure 15. Pie chart showing the result from multiplying the  values for specific regimes 

by the frequency with which those regimes occur. 

 

The display, however, can be problematic compared with Figure 10, because the 

differences in unreliability are not obvious, since they have been multiplied by the frequency of 

occurrence. (It is not important whether the values were used or one of the other variation-

related metrics. The pie chart result would effectively be the same. Just the relative proportions 

would change.) 

 

Displays for a Specific Time Period 
The displays presented so far have been based on examining the performance of a system across 

its “duty cycle”: in this case, an entire year.  

Often, though, the focus is on the facility’s performance during a specific time period, 

such as the peak period. Agencies sometimes aim to have the highway network provide 

acceptable travel times during this time on all but one day per month (19 days out of the 20 

workdays per month), which leads to an emphasis on metrics like the 95th percentile travel time 

(19 out of 20 observations). 

To illustrate the displays presented above in the context of a peak period, consider the 

performance of the I-5 route between 15:00 and 19:00, effectively the hours under which I-5 is 

under heavy load (high congestion). In this case, there are 48 5-minute observations on each of 

the 250 days, resulting in 12,000 5-minute observations. 

The first display, presented in Table 6, shows a breakdown of the 5-minute time periods 

based on operating regimes. It is easy to see that high/congestion/normal is the most prevalent 

regime and that it has the lowest RMS delay value. In this case, the RMS delay assessments are 

based on a 5th percentile value of 51.5 sec/mi. It is also easy to see that the regime with the 

highest RMS delay is high congestion/weather, and that its reliability is substantially worse than 
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that of the other regimes. It is important to note, though, that this condition does not occur 

frequently. It arose in only 148 of the 12,000 5-minute time periods. The two abnormal 

conditions that arose four times as often were high congestion/demand and high 

congestion/incidents, 458 and 446 5-minute time periods respectively, and that, as a result, they 

are more substantial in their severity indicators than the weather regime. 

 

Table 6. Reliability Assessment by Regime on I-5 between 3:00–7:00 p.m. in San Diego in 

2011  

 
 

One way to display these data is presented in Figure 16. In it, the RMS delay values for 

each regime are plotted against the frequency with which the regimes arise during the 3:00–7:00 

p.m. peak. As can be seen, the normal condition occurs most often, but its SSD value is the 

lowest. Three regimes with substantial RMS delay values that occur more frequently are 

weather, incidents, and high demand. This can serve as the basis for (defense of) mitigating 

strategies that might be undertaken to improve reliability. 

 
Figure 16. Plot showing the RMS delay values for each regime along with the frequency of 

occurrence of the regime. 

0 1 2 3 4 5 6 7 8 9 10 11

Label CongCond NRecCond nObs AvgRte SD(Rte) AvgInc RmsDly* SSD* SemiVar* Severity RelSev

HghNor High Normal 10855 61.6 8.8 10.1 13.36 13.74 188.75 145065 76.1

HghDem High Demand 458 85.9 9.4 34.4 35.65 35.65 1271.01 16328 8.6

HghInc High Incidents 447 88.0 17.1 36.4 40.49 40.53 1642.75 18097 9.5

HghSpc High Special Events 95 83.1 16.7 31.5 36.25 36.44 1328.21 3444 1.8

HghWea High Weather 149 95.2 27.8 43.4 52.12 52.30 2735.15 7766 4.1

Total 12004 n/a n/a n/a n/a n/a n/a 190701 100.0

* Note: 5-th percentile travel rate used for SSD = 51.5 sec/mi
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Figure 17 plots this same information in the form of a pie chart. As was indicated earlier, 

it is important to annotate the chart with the reliability metrics. Part (a) does this for all of the 

regimes including normal operation. Part (b) does it for only the nonrecurring congestion 

conditions. The normal value has been zeroed out. 

 

  

 

Figure 17. Pie chart breakdowns of the p.m. peak operating regimes and reliability 

assessments for weekdays on I-5 in San Diego in 2011. 

 

Figure 18 displays the PMFs for the various regimes that are operative during the p.m. 

peak. As can be seen, the normal regime has the most low value travel rates. Special events and 

extra demand regimes have greater percentages of higher travel rates, incident regime conditions 

have even high travel rates, and weather has the highest values. But there is a lot of overlap 

among the PMFs so the contribution of the individual regimes is hard to see. 

  
Figure 18. PMFs for travel rates by regime for 3:00–7:00 p.m. on I-5 in San Diego in 2011 
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Figure 19 displays the same information as shown in Figure 18, only it uses a stacked PMF.  

 

 
 

Figure 19. Stacked PMF by regime for 3:00–7:00 p.m. on I-5 in San Diego in 2011. 

 

In this display, the relative contribution of the various regimes to the overall PMF can be 

seen. It is easy to notice that the normal regime is the most common and contributes most to the 

overall PMF. It dominates the others. Special events add a little, but very little to the overall 

distribution. Extra demand adds significantly to the total PMF for travel rates between about 80 

and 100 sec/mi. There is a significant difference in the cumulative PMF for normal and special 

events compared with normal, special events, and extra demand. Incident regimes add more to 

the overall PMF within this same range of travel rates, and then weather makes the significant 

contributions for travel rates at or above about 110 sec/mi. This is consistent with Figure 16. 

The CDFs for these operating regimes tell the same story, only perhaps in a clearer way, as 

shown in Figure 20. 
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Figure 20. CDFs for travel rates by regime for 3:00–7:00 p.m. on I-5 in San Diego in 2011. 

 

It is easy to see that the normal condition has the best reliability performance. Weather 

has the worst. The other three regimes—extra demand, special events, and incidents—are in 

between.  

Some agencies use reference travel speeds lower than the free-flow speed. For example, 

an agency might decide that during the peak hours, speeds above 45 mph are deemed acceptable. 

This would mean that travel rates less than 80 sec/mi would be acceptable. In this case, the 

values in Table 4 would change, because a new reference rate was being employed. Now the 

assessment would be as portrayed in Table 7. The high/normal condition has an RMS delay 

almost equal to zero, while the RMS delays are still large. The severity values are also very 

different, but, in spite of the significant change in the reference rate from about 50 sec/mi to 80 

sec/mi, the high frequency of occurrence for the normal condition produces a severity metric, 

which is still very large. So the severity index is still not providing particularly insightful 

guidance about what actions to take. 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160 180

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 V

al
u

e
 (%

)

Travel Rate (sec/mi)

Cumulative Distribution Functions by Regime for I-5 in San Diego 15:00-19:00* on Weekdays in 2011

HghNor

HghSpc

HghDem

HghInc

HghWea

Weather

Incidents

Demand

Special Events

Normal

*High Congestion

Handbook for Communicating Travel Time Reliability Through Graphics and Tables

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22400


 

33 
 

Table 7. Alternate Reliability Assessment on I-5 between 3:00-7:00 p.m. in San Diego in 

2011  

 

 
 

Figure 21 presents the revised RMS delay values from Table 5 for each regime plotted 

against the frequency with which the regimes arise during the 3:00–7:00 p.m. peak.  

 

 
Figure 21. Revised plot showing the RMS delay values for each regime along with the 

frequency of occurrence of the regime for a condition where the reference travel rate is 80 

sec/mi (45 mph). 

 

As can be seen, the normal condition occurs most often, but its RMS delay value is the 

lowest, nearly zero. The three regimes with substantial RMS delay values that occur frequently 

are weather, incidents, and high demand. This can serve as the basis for (defense of) mitigating 

strategies that might be undertaken to improve reliability. 

 

Displays Across Time 
As illustrated previously by Figure 6, reliability performance varies by time of day. An 

assessment of how it varies is important. Table 8 presents such an assessment for the I-5 route in 

0 1 2 3 4 5 6 7 8 9 10 11

Label CongCond NRecCond nObs AvgRte SD(Rte) AvgInc RmsDly* SSD* SemiVar* Severity RelSev

HghNor High Normal 10855 61.6 8.8 0.2 1.31 6.75 45.60 14211 43.4

HghDem High Demand 458 85.9 9.4 7.5 10.02 10.67 113.76 4588 14.0

HghInc High Incidents 447 88.0 17.1 12.0 17.51 21.70 470.81 7826 23.9

HghSpc High Special Events 95 83.1 16.7 8.9 15.56 22.61 511.38 1479 4.5

HghWea High Weather 149 95.2 27.8 19.9 31.06 38.10 1451.54 4627 14.1

Total 12004 n/a n/a n/a n/a n/a n/a 32731 100.0

* Note: 5-th percentile travel rate used for SSD = 80.0 sec/mi
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San Diego. The time periods are: Early morning (0:00–6:55), a.m. peak (7:00–8:55), midday 

(9:00–14:55), p.m. peak (15:00–18:55), and evening (19:00–11:55). Other breakdowns are 

possible. 

 

Table 8. Time-Period-Based Assessment on I-5 between 3:00–7:00 p.m. in San Diego in 

2011  

 
 

From the display, it is easy from the RMS details to see that the worst reliability is 

associated with weather events during the p.m. peak. The next worst is incidents during the p.m. 

peak, and then special events during the p.m. peak. This information, combined with the 

frequency of occurrence, can easily be used to identify and prioritize mitigation strategies. 

An interesting display option takes this same information and develops PMFs for short time 

slices across the day. Depicted in Figure 22 is a display of average travel time PMFs for two 

routes in the San Francisco Bay Area.  

 

 

1 2 3 4 5 6 7 8 9 10

Time Period CongCond NRecCond nObs AvgRate SD(Rate) AvgDly RmsDly* SSD* SemiVar* Severity

0-Early AM Uncon Demand 613 53.2 1.1 2.8 3.07 3.07 9.42 1882

0-Early AM Uncon Incidents 61 53.0 0.0 2.6 2.99 3.01 9.08 182

0-Early AM Uncon Normal 20079 51.3 0.6 1.0 1.19 1.23 1.51 23848

0-Early AM Uncon Weather 250 53.9 0.0 3.6 4.14 4.15 17.19 1035

1-AM Peak Uncon Demand 159 58.3 10.4 8.0 13.78 13.83 191.16 2191

1-AM Peak Uncon Incidents 36 52.9 0.0 2.3 2.53 2.56 6.57 91

1-AM Peak Uncon Normal 5760 51.5 0.6 1.1 1.47 1.49 2.23 8444

1-AM Peak Uncon Weather 49 61.8 0.0 11.4 11.80 11.92 142.15 578

2-Midday High Demand 17 59.3 0.0 8.2 9.43 9.72 94.51 160

2-Midday High Incidents 26 64.6 0.0 13.9 15.33 15.63 244.25 398

2-Midday High Normal 2165 53.4 1.2 3.0 3.52 3.53 12.48 7630

2-Midday High Special Events 15 66.2 0.0 15.6 18.18 18.82 354.24 273

2-Midday High Weather 32 65.1 0.0 14.2 16.35 16.61 275.78 523

2-Midday Uncon Demand 187 56.9 5.6 6.4 9.76 9.79 95.79 1825

2-Midday Uncon Incidents 93 56.6 0.0 6.2 7.20 7.24 52.43 670

2-Midday Uncon Normal 15327 52.0 1.0 1.7 1.98 2.00 4.00 30335

2-Midday Uncon Weather 147 58.2 0.0 7.9 8.46 8.49 72.01 1243

3-PM Peak High Demand 457 85.9 9.0 35.6 36.80 36.84 1357.31 16818

3-PM Peak High Incidents 442 88.3 16.9 37.9 41.71 41.76 1743.57 18435

3-PM Peak High Normal 10620 61.8 8.8 11.4 14.41 14.47 209.45 153064

3-PM Peak High Special Events 91 84.0 16.5 33.5 37.95 38.16 1456.40 3454

3-PM Peak High Weather 145 96.2 27.5 45.6 53.80 53.99 2914.79 7801

3-PM Peak Uncon Demand 3 75.5 0.0 9.9 12.80 15.68 245.93 38

3-PM Peak Uncon Incidents 6 64.7 0.0 10.1 19.47 21.33 455.12 117

3-PM Peak Uncon Normal 236 52.2 0.0 1.9 2.71 2.94 8.63 640

3-PM Peak Uncon Special Events 5 61.2 0.0 10.5 13.14 14.69 215.86 66

3-PM Peak Uncon Weather 5 59.6 0.0 7.1 8.27 9.24 85.42 41

4-Evening Uncon Demand 292 53.0 0.0 2.6 3.73 3.73 13.94 1088

4-Evening Uncon Incidents 94 60.9 15.3 10.5 19.37 19.47 379.17 1821

4-Evening Uncon Normal 14136 51.1 0.4 0.7 0.94 0.98 0.96 13218

4-Evening Uncon Special Events 132 55.7 6.4 5.4 9.43 9.51 90.38 1245

4-Evening Uncon Weather 351 53.0 0.0 2.6 2.88 2.89 8.33 1012
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Figure 22. Display of travel time PMFs by time of day. 

 

The PMFs are arrayed in chronological order in a radial fashion. Times of day are 

identified (with time progressing clockwise) so that it is possible to see how the PMFs vary by 

time of day. It is easy to see that the travel times during the off-peak time periods are far more 

reliable than during the peaks. During the off-peak time periods, all of the travel times are 

concentrated around a minimum value while, during the peak time periods, the distributions are 

widely distributed with very large travel times sometimes occurring. It is also easy to see that the 

performance of the first route is much worse than the second. That is to say that for the first 

route, the travel times during the peak hours increase substantially more, and there is more 

variation in the values. 

A variant on this plot is shown in Figure 23. Displayed are CDFs for individual vehicle 

travel times during specific half-hour time periods during the winter of 2012. From this display, 

it is easy to see that the distribution of travel times deteriorates as time progresses through the 

peak until the 17:00–17:30 half hour is reached. Then, the travel times begin to decrease. A 

display like this can be very useful, especially if it is animated, to see how the reliability varies 

by time of day, and to see how mitigation actions improve that performance. 
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Figure 23. Display of travel time CDFs during the p.m. peak on I-5 in Sacramento during 

the winter of 2011. 

 

A third variant on this set of display options is a time-based display of the way in which 

the percentiles of the travel times vary by time of day. This is shown in Figure 24. Each vertical 

set of symbols shows the locus of specific percentiles of the vehicle-to-vehicle travel time 

distribution at a specific point in time. It is easy to see that at about 11:00 a.m. on this particular 

day, there was an incident. All of the travel time percentiles increased. Some percentiles 

increased more than others. Operating conditions were back to normal by about 11:45. Then, at 

about 16:00, the p.m. peak commenced. The percentiles began to increase, especially the lower 

percentiles (the standard deviation actually decreased) and then all of the percentiles increased as 

the p.m. peak progressed. The highest percentile values occurred at about 18:00, and then the 

travel times began to decrease. By about 18:30, the percentiles were back to the values that were 

observed before the peak commenced. 
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Figure 24. Display of travel time CDFs during the p.m. peak on I-5 in Sacramento on 

March 1, 2011. 

 

Displays for Routes and Networks 
In some instances, a reliability assessment focuses on routes between specific origin-destination 

(O-D) pairs or interconnected segments in a network. In this case, the spatial relationship among 

the segments is important.  

A number of other display options are possible. These displays are typically map-based 

and present a network-level image of reliability. 

From a path choice perspective, reliability is one of a number of metrics involved in 

determining which route to select. Distance is one, cost is another, the percentage use of 

freeways (or arterials) might be a third, and the minimum possible travel time might be a fourth. 

The travelers want to make a tradeoff analysis among these metrics in determining which path to 

select. 

Two illustrations of this thought are shown in Figure 25. In the case of the illustration on 

the left, three routes are being suggested, and the travel times and distances for each are 

displayed. Not displayed are other attributes that the traveler might also apply in determining 

which route to select, such as reliability and tolls. In the illustration on the right, again three 

possible routes are being displayed, in this case between Fresno and Los Angeles. While the 

attribute values for the second and third routes are not explicitly displayed, it is easy to see that 

there would likely be differences in both travel time and distance and that the suggested route 

might be best. Again, the traveler might be aware of other differences like reliability and the 

types of facilities employed, which might influence the decision about which route to select. 

 

Successive CDFs plotting 

selected percentiles. The 

mean and standard deviation 

are also plotted.

CDFs of individual 

vehicle travel times
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Figure 25. Display of routing options. 

 

Reliability is an additional metric whose characteristics can be displayed in this manner. 

In the case of Figure 26, Harvey Balls are being used to present information about the reliability 

of the various segments. Solid white implies high reliability, and solid black implies poor 

reliability.  

If a traveler were to examine such a map in making route choice, determining which 

route choice based on reliability might be easy. The path A-B-D-F-G would have the best overall 

reliability and A-C-E-F-G the worst. The metric employed in shading the Harvey Balls could be 

the RMS delay used earlier or some other reliability-based metric. 

Not only can travelers use such a display for choosing among paths but network 

managers can also use such displays to prepare route guidance information for variable message 

signs, highway advisory radio, and route guidance apps. Such a display also helps them 

determine where the problematic segments are so they can determine what mitigating actions to 

take. In this instance, it appears that the most important segments on which to focus are CB, CE, 

and CF. 
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Figure 26. Using Harvey Balls to display reliability. 

 

Another option for displaying the reliability information presents both the mean travel 

time and the variability (variance) in the travel time. As shown in Figure 27, in this instance two 

colors are used to display the information for each segment. The wider dash is used to display the 

mean, and the narrower one is used to display the standard deviation. Green implies a low value, 

red implies a high value, and yellow is in between. It is immediately apparent that segment AB 

has the best performance. It has a low average travel time and a low standard deviation. 

Segments CD and CE are the worst, having high average travel times and high standard 

deviations.  

Since the mean and standard deviation are both being displayed, it is possible to see 

additional information about segments like AC and EF. In the first instance, the average travel 

time is low while the standard deviation is high. This segment is likely to be viewed as being 

unreliable. In contrast, segment EF has a high average travel time but its standard deviation is 

low. So its reliability might be viewed as being good in spite of the fact that the average travel 

time is high. The travel times are consistent.  

As was the case with the information displayed in Figure 26, path A-B-D-F-G would 

likely be the best from a reliability standpoint. Path A-C-D-F-G might be the worst. It has the 

worst combination of standard deviation values. Path A-C-E-F-G might have a longer average 
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travel time, but its standard deviation would likely be smaller, so it might be deemed more 

reliable than A-C-D-F-G.  

 

 
 

Figure 27. Displaying segment mean travel times and standard deviations. 

 

An alternate presentation of the exactly the same information is displayed in Figure 28. In 

this instance, Harvey Balls are being used to present the mean travel times and standard 

deviations instead of colors. As was the case before, a clear ball implies a low value, and a solid 

ball implies a high value. In this instance, since each ball can be partially shaded, finer 

gradations in the assessment can be displayed. For the graphic presented, four levels of 

differentiation are possible. Of course, with more sophisticated Harvey Balls, an infinite degree 

of variation can be displayed. 

As was the case with Figure 27, it is possible to see additional information about 

segments like AC and EF. It is again apparent that segment AC is likely to be perceived as being 

unreliable because its standard deviation is high. In contrast, segment EF is likely to be seen as 

being reliable. It has a low standard deviation. It depends on whether the high travel time is 

factored into the reliability assessment or not.  
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Also, as was the case with Figure 27, it is easy to compare and contrast the paths in terms 

of their mean travel times and travel time variability. Path A-B-D-F-G would likely be the best. 

Path A-C-D-F-G might be the worst. Path A-C-E-F-G might have a longer average travel time, 

but its standard deviation would likely be smaller, so it might be deemed more reliable than A-C-

D-F-G.  

 

 
 

Figure 28. Using Harvey Balls to display segment mean travel times and standard 

deviations. 

 

Additional Display Options 

Other display options have been used by traffic management centers nationwide. Color-coded 

maps are common, with the colors depicting speeds on individual highway segments, 

periodically updated. Incidents and construction areas are also almost always shown along with 

other significant landmarks, like airports.  

Maps are often used, supplemented by tables, as illustrated in Figures 29 and 30. This 

display depicts travel times, speeds, and distances for instrumented highways. In this case, the 

information includes current travel time, average travel time, distance, and current average 
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speed. The speeds and travel times currently come from point sensors. The level of congestion is 

also identified with a green, yellow, or red dot, except for the segments that are not instrumented. 

 

 
Source: www.travelmidwest.com; accessed 6/22/2009. 

Figure 29. Traffic speeds map for the Greater Chicago Metro Area. 
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Source: www.travelmidwest.com; accessed 6/22/2009. 

Figure 30. Current congestion and travel times for a freeway segment. 

 

For this Chicago website, drilling down into the average travel time field yields a more 

detailed picture, and one that is useful in terms of travel time reliability. Figure 31 shows that for 

this freeway segment and direction, the current travel time is 10.88 minutes, the average is 13.17, 

the difference is –2.29 minutes, and the average is based on 186 sample days. The time-of-day 

trend shows high travel times in the a.m. peak that start to rise about 5:00 a.m. and return to 

nominal night-time, free-flow conditions by about 3:00 p.m. On the day when the website was 

visited (7/28/2009), unlike most days, there was a major spike in travel time at 2:30 p.m., most 

likely caused by an incident. The yellow band shows the normal range of travel times (apparently 

plus or minus one standard deviation as evidenced by the reference to 68%) and the blue lines 

indicate travel times at free-flow speed (55 mph), medium traffic congestion (35 mph), and 

heavy congestion (15 mph).  
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Source: www.travelmidwest.com; accessed 7/28/2009. 

Figure 31. Travel time reliability trends for a freeway segment. 

 

A website that directly addresses travel time reliability (really, consistency) is the one 

used in Seattle. While the color-coded map of traffic conditions looks typical of most sites, as 

shown in Figure 32, there are lower levels that provide additional detail. 
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Source: www.wsdot.com/traffic/seattle/default.aspx; accessed 6/22/2009. 

Figure 32. Seattle Area traffic conditons map. 

 

Clicking the “Best time to leave” hotlink on the lefthand side leads in two clicks to the 

tool shown in Figure 33.  

 

 
Source: www.wsdot.com/traffic/seattle/default.aspx; accessed 6/22/2009. 

Figure 33. 95% reliable travel times calculator. 
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This display allows the traveler to specify an origin and a destination and receive an 

estimate of the time one needs to allow one to ensure that for 19 out of 20 trips (95% of the time) 

the destination will be reached on time. In the example window, a trip from Lynnwood to 

Bellevue is to be completed by 9:00 a.m. The website reports back that the traveler needs to 

leave Lynnwood at 8:08 a.m. and allow 52 minutes for the trip to ensure that the destination will 

be reached by 9:00 a.m. However, it should be noted that the resultant text shown in Figure 33 

can be confusing or misleading to the average driver. It states in the dialogue box, “Your 95% 

Reliable Travel Time is 52 minutes. 95% of the time you would need to leave at 8:08 AM to 

arrive by 9:00 AM.” The WSDOT text may be misinterpreted to mean that if you leave after 8:08 

a.m., then 95% of the time you will be late.  

Another display option is shown in Figure 34. It depicts directions and driving times for 

one or more routes, including the current level of delay. 

 

 
 

Source: www.traffic.com; accessed 6/22/2009. 

Figure 34. An example of conveying travel time trends. 

 

A display of speed trends is shown in Figure 35. The average from the current day 

(shown in red) is compared with the trailing 3-month average based on the day of the week 

(shown in green). In the case of the specific link queried, there was a significant drop in speed 

early in the morning that was strikingly different from the 3-month average. 
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Source: http://traffic.houstontranstar.org/speedcharts/; accessed 6/22/2009. 

Figure 35. A speed chart for a link in the Houston network. 

 

A final display that is often used to portray variations in facility performance across 

distance and time is a speed contour plot. An illustration of this is shown in Figure 36. Distance 

(location) is on the horizontal axis, time is on the vertical axis. Darker colors indicate lower 

speeds and higher congestion. These low speeds are also likely to be an indicator of low 

reliability. The lighter colors imply higher speeds, correspondingly lower congestion, and most 

likely, better reliability.  
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Figure 36. A speed contour plot. 

 

Summary and Conclusions 
This handbook has illustrated ways in which travel time reliability information can be portrayed. 

Various audiences want to receive reliability information in different ways. Travelers and 

shippers want to know when they need to leave, or when the truck has to depart, in order to make 

an on-time arrival. Both groups also want to know what paths they should use to minimize the 

likelihood of encountering unforeseeable delays. Managing agencies want to know where the 

problem spots lie; where the network segments are that make the travel times vary.  

The handbook endeavors to meet the needs of all these audiences ranging from novices to 

experts, from those for whom reliability is of cursory interest to those who want to understand all 

of the details and nuances. This means some of the presentation ideas are very simple, while 

others are more complex. Each is intended to be clear about what reliability information is being 

presented and how it should be interpreted. 

The handbook is intended to be used both as a supplement to the materials developed in 

SHRP 2 L02 and as a stand-alone document. In light of the stand-alone objective, some 

redundancy exists with the L02 materials. Readers familiar with those materials can skip over the 

redundant discussions; but for readers for whom this as a stand-alone document, all of the 

material will be useful. 

The displays that are presented have value because they can help agencies understand the 

reliability performance of their systems and monitor how reliability improves over time. It equips 

them to answer questions like the following: 

 

 What is the distribution of travel times in the system? 

 How is the distribution of travel times (or rates) affected by recurrent congestion and 

nonrecurring events? 
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 How are freeways and arterials performing relative to reliability performance targets set 

by the agency? 

 Are capacity investments and other operational actions helping to improve the reliability 

of the travel times? 

 Are operational improvement actions and capacity investments helping to improve the 

travel times and their reliability? 
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