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s one of the long-time international members of the Traffic Flow Theory and Characteristics
Committee and a long-time head of its German counterpart, I want to express my sincere
congratulations on 50 years of traffic flow theory.

I remember the ancestors of this committee—like Bob Herman, a former researcher at
GM, who started investigations of car-following behavior by distance measurements of a vehicle
in a platoon with a thread winded on a coil and connected with the preceding vehicle. Also
notable was the analysis of “Investigation of Traffic Dynamics by Aerial Photogrammetry
Techniques” by Joseph Treiterer and Jeffrey A. Myers from Ohio State University. All this
pioneering work of traffic flow description and traffic pattern formation was based on the ideas
of Bruce Greenshields, who first developed the terms “traffic density,” “traffic flow,” and
“(mean) speed;” their definitions; and the corresponding measuring instructions more than 80
years ago. It was therefore an utmost concern to celebrate Greenshields’s legacy, which the
committee honored with a midyear meeting in 2008, in Woods Hole, Massachusetts,
commemorating 75 years of Greenshields’s famous publication. The resounding success started a
series of meetings: the 2008 symposium at Woods Hole; “Does Traffic Data Support Traffic
Models?” in Annecy, France, in 2010; the Symposium on Innovations in Traffic Flow Theory
and Highway Capacity and Quality of Service in Fort Lauderdale, Florida, in 2012; and now, in
2014, the committee’s 50th anniversary celebration in Portland, Oregon.

The observation during my time working with the committee is the trend away from
macroscopic modeling and toward microscopic simulation because of the enormously increased
power capacity of computers. Another trend is based on the influence of modern communication
technology and driver-assistance systems on traffic pattern formation. The applications of short-
range communication technology connecting vehicles with each other and with infrastructure
facilities enables new traffic control possibilities and opens new challenges for traffic flow
description and modeling. Cooperative driving with data exchange governing braking actions,
crash sensor data, steering maneuvers, windscreen wiper positioning, and warning light positioning
will shape the traffic of the future and redesign the requirements of traffic flow theory. The airbag
sensor technology will provide us with high-quality approach data.

Does traffic flow theory offer answers to the way in which rapid and safe data transfer
has to be organized with prioritization of surrounding vehicles?

It is already clear that the active distance warning equipment will enhance the knowledge
of distance and speed and give support for measurements in the “vehicle-to-vehicle” context.

From “vehicle-to-infrastructure” communication, such as automatic tolling and roadside
warning systems, destination data can be derived (vehicle probe or floating car data). These data
find their way into traffic signal preemption and operating condition checks of computer-aided
operating control systems for transit, an alternative to floating car data via mobile telephone.
Traffic flow theory can help in the design of safe data transfer including vehicle classification
and identification, as well as for the design of displays showing hazardous conditions based on
multifactorial interpretation of actively transmitted vehicle data. The multifactorial analysis links
the data of the vehicle to infrastructure communication with wheel revolution counter and
odometer data.

One of the accomplishments of the committee is the initiation of the “Traffic Flow
Monograph,” edited by the Federal Highway Administration. This basic compendium is a terrific
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support for academia and practitioners, even in its present form, to answer questions about the
simulation of traffic systems, emissions reduction through better traffic management, empirical
evaluation based upon on-road measurements, and incident management in intelligent
transportation. It will be exciting to look forward to a new edition that addresses some of the
challenges explained above.

The stimulations to the Highway Capacity Manual are not to be underestimated. Sharing
the ideas with representatives of well-respected universities from the United States and Canada
always enriches the committee and so I wish the committee a bright future and many more years
of inspiring work—ad multos annos!

—Reinhart Kiihne, Germany

il
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FUNDAMENTAL DIAGRAM

Capacity Drop
A Comparison Between Stop-and-Go Wave
and Queue Congestion at Lane-Drop Bottleneck

KAI YUAN
VICTOR L. KNOOP
SERGE P. HOOGENDOORN
Delft University of Technology, the Netherlands

Lupovic LECLERCQ
Université de Lyon, France

n freeways, the maximum traffic flow through a bottleneck is usually higher than the outflow

of congestion there. This phenomenon is called the capacity drop. In literature, there are
considerable debates about the mechanism causing this phenomenon. This paper studies the
mechanism by analyzing real-life data of 2 different days. The traffic states downstream of a lane
drop are analyzed. It is observed that the outflow of a stop-and-go wave on the three-lane section
is lower than that of a standing queue upstream from the lane-drop bottleneck. A more detailed
analysis shows the phenomenon on lane level. Finally, data from 2 days show a common feature
on flow distribution over lanes. This finding shows that even in congestion states, the flow in
shoulder lane (slow lane) can be lower than that in other lanes in the three-lane section because
of lower density. Moreover, it is found that close to the bottleneck, a larger part of the flow is in
the median lane. After several hundred meters the lane flow distribution normalizes to
equilibrium, indicating much lane changing out of the median lane directly downstream of the
lane-drop bottleneck. At a four-lane section upstream from the bottleneck, a large number of lane
changes occur. The understanding of the mechanism behind the capacity drop, as well as the
sizes of the capacity drop, might lead to measures to reduce delay. Moreover, the flow
distribution can contribute to lane-changing models closely resembling reality.

INTRODUCTION

Generally congestion can be divided into two classes: stop-and-go waves, propagating parts of
congestion with two fronts moving upstream along a freeway, and standing queue, with its head
fixed at a bottleneck. An active bottleneck is a bottleneck with a free-flow situation downstream
and a traffic jam upstream. The activation of a bottleneck signals the onset of a standing queue.
Theoretically downstream of an active bottleneck the outflow of the standing queue should be
the maximum flow on the road, or capacity. However, the queue discharging rate of congestion
is often lower than the maximum flow on a road without congestion. This phenomenon is called
the bottleneck capacity drop.

Researchers have observed the capacity drop phenomenon for decades at bottlenecks.
Those observations point out that the range of capacity drop, the difference between the
bottleneck capacity and the queue discharging rate, can vary in a wide range. The capacity of the
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road and the queue discharging flow are essential for the total delay on the road. Hall and
Agyemang-Duah (/) report a drop of around 6% on empirical data analysis. Cassidy and Bertini
(2) place the drop ranging from 8% to 10%. Srivastava and Geroliminis (3) observe that the
capacity falls by approximately 15% at an on-ramp bottleneck. Chung et al. (4) present a few
empirical observations of capacity drop from 3% to 18% at three active bottlenecks. They show
at the same location the capacity drop can range from 8% to 18% (excluding the influences of
light rain). Cassidy and Rudjanakanoknad (5) observe capacity drop ranging from 8.3% to
14.7%. Oh and Yeo (6) collect empirical observations of capacity drop in nearly all previous
research before 2008. The drop ranges from 3% to 18%.

Even though a large amount of research effort has gone into the capacity drop, some
significant the macroscopic features on capacity drop are still unclear. For example, it is not clear
to what extent the capacity is reduced when different congestion occurs upstream. Moreover, the
amount of traffic on each lane (flow distribution over lanes) is unclear, especially at the
downstream of a bottleneck with compulsory merging behaviors upstream. Hence, this paper
tries to show more empirical observations to forward traffic research to reveal more empirical
features. These findings can contribute to a better understanding of the traffic processes, possibly
leading to control principles mitigating congestion. The paper also gives an indication of the lane
change behavior at the bottleneck locations.

This paper answers the following question: What are differences between traffic states
downstream of stop-and-go waves compared to downstream of standing queues at the same site?
In answering this question, researchers use the following four subquestions. First, to what extent
does the capacity reduce downstream of a stop-and-go wave? Most of the previous research
observes capacity drop phenomenon at active bottlenecks. Few of those studies (7) reveal
features of capacity drop downstream of a stop-and-go wave. This study presents empirical
observations of capacity drop in a stop-and-go wave. Second, to what extent does the outflow of
congestion (i.e., the capacity with congestion upstream) vary at the same road section without
other disturbances such as weather and road layouts? In short, this subquestion discusses the
stochasticity of the outflow of the queue. Previous research shows that discharging flows of
standing queues at one bottleneck only exhibit small deviations (2); but that research only targets
standing queue at an active bottleneck. In contrast to the standing queue, where traffic states are
limited in a narrow range because the road layout dictates the congested traffic state upstream,
different stop-and-go waves can result in different congestion states, including standing queues
and stop-and-go waves. The study of stop-and-go waves can enlarge the observation samples.
Third, what is the flow in each lane in queue discharge conditions? This might shed light on the
capacity drop as well. Fourth, what is the traffic flow distribution over lanes downstream of a
bottleneck with compulsory merging behaviors upstream, especially locations near bottlenecks?

To answer these four subquestions, this paper studies a traffic scenario where a standing
queue forms immediately after a stop-and-go wave passes. It seems that the standing queue is
induced by the stop-and-go wave. In this scenario, there can be at least two congestion states and
two outflow states observed at the same road section on the same day.

The remainder of the paper is set up as follows. Section 2 describes methodologies
applied in this paper. This section applies shockwave analysis to recognize those different
congestion. Section 3 shows the study site and the study data. In Section 4, empirical
observations are presented, including various traffic states and flow distribution in each lane.
Finally, Section 5 presents the conclusions.
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METHODOLOGY

This paper targets a homogeneous freeway section with a lane-drop bottleneck upstream. In the
expected scenario, a standing queue forms immediately after the passing of a stop-and-go wave.
It seems like the bottleneck is activated by the stop-and-go wave. In this way, researchers can
compare the outflows of congestion at that location, and possible location-specific influences are
excluded from the analysis.

Since the differences in the capacity drop (in standing queues) between any 2 days at the
same bottleneck are in a small range among days (2), it is difficult to observe standing queues in
distinctly different congestion states at the same bottleneck. However, the congestion level in a
stop-and-go wave is considerably different from the congestion in a standing queue. Congestion
level is represented by vehicle speed in the congestion and density. Previous research (4, §)
shows that the capacity drop is strongly related to the congestion level, hence, it is expected that
downstream of a stop-and-go wave traffic differs from downstream of a standing queue. This
way, by combining several state points at the same road stretch, can be observed empirically,
including free flow and congestion states. Shockwave analysis is applied to identify those
congestion states qualitatively.

By comparing the outflows downstream of congestion, this paper shows the capacity drop
corresponding to the two different congestion types: stop-and-go wave and standing queue. The
key to the traffic state analysis is to identify those traffic states. To avoid unnecessary deviations,
this paper applies slanted cumulative counts to calculate flow. Both of these two outflows are flow
detected downstream of the congestion. There are repetitive observations, for the duration of
congestion until the congestion is dissolved, and there are no other influences from downstream
apart from the stop-and-go wave. The outflow of a stop-and-go wave can be detected at some
location where the speed returns to the free-flow speed after the break down phenomenon, and the
discharging flow can be detected at each location downstream of an active bottleneck.

The states that occur are determined using shockwave analysis. shows the
resulting traffic states, including the regions in space-time where the outflows can be measured.
For the sake of simplicity, the authors chose triangular fundamental diagrams. Figure 1a shows
these fundamental diagrams, the smaller one for the three-lane section and the larger one for the
four-lane section. The outflow of a stop-and-go wave, shown as State 5, and discharging flow of
standing queue, shown as State 6, both lie in the free-flow branch, see Figure 1. The flow in both
of these two states is lower than the capacity shown as State 1 to represent the capacity drop. A
stop-and-go wave, State 2 in Figure 1, propagates upstream to the bottleneck, and this triggers a
standing queue, State 4. Figure 15 shows that once the bottleneck has been activated both of
States 5 and 6 can be observed in the downstream of the bottleneck. The further away from the
bottleneck, the longer time State 5 can be observed. Note that because States 5 and 6 are always
located in the free-flow branch, the shockwave between these two states is always a positive line
parallel to the free-flow branch. Therefore, in Figure 15 the shockwave between States 5 and 6 is
always the same in x — ¢ plot, no matter which state shows a higher flow.

Hence, for measuring the outflow observations at locations far away from the bottleneck
are preferred. In that case, the outflow of a stop-and-go wave can be measured for a long enough
time and compared clearly.

With the same methodology, different outflow features in different lanes are analyzed.
This shows the performance of each lane during the transition from outflow of stop-and-go wave
to queue discharging flow. This paper applies slanted cumulative counts to calculate the outflow
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—

Density

(a) (b)

FIGURE 1 Shockwave analysis on one traffic scenario at a lane-drop bottleneck:
(a) fundamental diagram and (b) X —t plot.

in each lane. Note that in the Netherlands the rule is “Keep Right Unless Overtaking.” This
asymmetric rule might lead to a different lane choice, for instance for slugs and rabbits (9), as
well as leading to different traffic operations.

DATA HANDLING

This paper reveals the flow distribution in each lane as a function of average density over lanes
in section 4.4. The density (p), which is estimated through dividing flow (g) by space-mean
speed vy, is necessary.

In the Netherlands, loop detector data is time mean speed (vr) and flow (g). Knoop et al.
(10) point out the substantial difference between the time—mean speed vyand space—mean speed
vs, especially when the speed is in congestion. Yuan et al. (//) present a correction algorithm
based on flow-density relations to calculate space—mean speed. This method requires that traffic
states should be on the linear congested branch of the fundamental diagram. However, this paper
considers acceleration states downstream a bottleneck, so the authors need another method.
Knoop et al. (/0) show an empirical relation between space—mean speed and time—mean speed
( ). The space—mean speed actually is estimated as harmonic speed. This relation is
applied to space—mean speed calculation in Ou (/2). This paper also applies the relation to
calculate the space—mean speed and the density.

DATA

The data analyzed are 1-min aggregated, collected around a lane-drop bottleneck on the freeway
A4 in the Netherlands. This paper considers the northbound direction just around Exit 8 (The
Hague) in A4, shown in . The layout of the study site is shown in the right part of Figure
3. The targeted bottleneck is a lane-drop bottleneck, which is circled in Figure 3. Downstream of
this bottleneck, there is another lane-drop bottleneck next to Exit 7. Drivers in the targeted road
section are driving from a four-lane section to a three-lane section (the upward direction in
Figure 3), so a lane-drop bottleneck occurs. The data are collected from 10 locations with
approximately 500-m spacing between them, giving a total length of around 5 km. There are two
detectors in the four-lane section, followed by eight in the three-lane section. This paper does not
consider detectors further downstream, because vehicles will change into the shoulder
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FIGURE 2 The impact of difference between time—mean speed and harmonic mean speed:
10-s aggregation (blue line), 60-s aggregation (black dashed line), and 900-s aggregation
(red line with circles). [From Knoop et al. (10)].
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FIGURE 3 Open-street figure of (a) targeted section in freeway A4 in the Netherlands
shown in red dots, and (b) the layout of the study site. The bottleneck is a lane-drop
bottleneck highlighted with a red circle. This paper only targets 10 locations. The total
distance from Location 1 to Location 10 in the freeway is approximately 4.5 km. The
bottleneck is around 6.5 km from the downstream off-ramp.

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

8 TR Circular E-C197: Celebrating 50 Years of Traffic Flow Theory

lane to leave the freeway through Exit 7, possibly leading to external disturbances, for instance
lane-changing near the off-ramp.

Data for analysis are collected on 2 days: Monday, May 18, 2009, and Thursday, May 28,
20009. shows the speed contour plots in the study section on 2 days. There are two
similar traffic situations on both days. The first event is a stop-and-go wave. On May 18 the
stop-and-go wave originated from the lane-drop bottleneck near Exit 7 at about 16:45. On May
28 the stop-and-go wave entered the selected stretch from further downstream at around 16:55.
At 17:40 and 17:50 (May 18 and 28, respectively), the next stop-and-go wave reached the lane-
drop bottleneck. Downstream of the second stop-and-go wave there is congestion. In order to
avoid influences of this congestion, this study ends the analysis before the entering of the second
stop-and-go wave when calculating the outflows. When analyzing the flow distribution, the data
from 16:00 to 19:00 are analyzed. During the targeted period, there is no other influence from
downstream (i.e., the bottleneck is active).
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FIGURE 4 Layout of the study site and data on two days for study: (8) speed contour on
May 18, 2009, and (b) speed contour on May 28, 2009. The lane-drop bottleneck located
between Detectors 8 and 9 is activated by a stop-and-go wave from downstream. The
numbers show locations of detectors. This study is restricted to 10 locations around the
targeted lane-drop bottleneck.
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RESULTS

This section first presents the different states and then the capacity estimates; subsequently, the
lane-specific features are discussed.

State Identification

This section describes empirical observations. Generally, the empirical observations are in line
with the expectations presented in Section 2. The outflow of the stop-and-go wave and the
discharging flow of the standing queue are clearly distinguishable. Figure 4 shows empirical
slanted cumulative counts across three lanes at eight locations downstream of the bottleneck on 2
study days. The arrow in each figure shows the shockwave, which propagates downstream from
the bottleneck. This means the traffic is in a free-flow state and not influenced by the off-ramp
downstream.

This shockwave separates the outflow of stop-and-go wave from the discharging flow of
standing queue. This shockwave has been expected in Section 2 (see Figure 15). At one location,
the authors first observe the outflow of the stop-and-go wave and then observe the discharging
flow of the standing queue. First, they find the outflow of the stop-and-go wave only directly
downstream of the stop-and-go wave. The wave travels upstream, from Location 1 to Location 8.
Once it reaches Location 8, the traffic state changes, with a wave propagating downstream,
which takes some time before it reaches Location 8. During that whole time at Location 1 the
outflow of the stop-and-go wave can be detected.

The discharging flows found for the 2 days are constant for each day, at 6,040 veh/h
(May 18) and 5,700 veh/h (May 28), see . Although they are different for both days, the
flows are remarkably constant over time. There is also a difference between the flows
downstream of the standing queues on May 18 and 28. This holds for all locations downstream
of the bottleneck, including the acceleration phase. The flow is different but constant for both
days. During the acceleration process, the density continuously decreases. Since the flows differ
for the 2 days, the speeds must differ for the 2 days for situations with an equal density. This

o Location 1 3
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FIGURE 5 Slanted cumulative counts across three lanes at eight locations downstream of
the bottleneck on 2 days: (a) May 18, 2009, and (b) May 28, 2009.
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means that drivers leave a larger gap than necessary in the day with the lower flow (May 28), since
apparently, given the speed—density relationship for the other day, they can drive with higher
speeds given the spacing.

Moreover, the downstream direction of the shockwave implies that the off-ramp (Exit 7 in
Figure 3) does not influence the discharging flow. Oh and Yeo (6) imply that the off-ramp at the
downstream location mitigates the capacity drop. At the study site, the off-ramp that is located far
away has no effects. The shockwaves propagating downstream imply no influence from
downstream.

Capacity Estimation

shows the capacities (with standing congestion upstream) that are the outflow of
congestion at a homogeneous three-lane freeway section. In Figure 6, all red dashed lines show the
slanted cumulative curves at the downstream locations, and the blue bold lines represent speed
evolution there. All parts in Figure 6 show firstly a decrease of flow (during the time the stop-and-
go wave is present), indicated by a cumulative flow line with a negative slope. Afterwards, at
Location 1 the flow is constant for about 20 minutes, at approximately 5,400 veh/h on May 18 and
5,220 veh/h on May 28. Figures 6¢ and d show the slanted cumulative curves for Location 8, just
downstream of the bottleneck. After the stop-and-go wave reaches Location 8, the jam soon
transforms into a standing queue, and the outflow increases up to 6,040 veh/h and 5,700 veh/h,
respectively. These two discharging flows propagate downstream from the bottleneck and reach
Location 1. The higher outflow (6,040 and 5,700 veh/h) is not temporary and remains for at least
15 min at each location. The solid black line in each of the figures indicates a flow to which the
slanted cumulative curve can be compared. In each figure, the increasing slope of black lines
shows that the outflow of stop-and-go wave is lower than the discharging flow of the standing
queue. Typically, it is found that the outflow of the stop-and-go wave lies in the range of 5,220 to
5,400 veh/h, and the outflow of the standing queue is in the range of 5,700 to 6,040 veh/h. All data
points are collected in . The number of states corresponds to those in Figure 1.

States 2, 4, 5, and 6 in Figure 1a are identified quantitively. States 2 and 4 stand for
congestion states. States 5 and 6 represent states of capacities. Thus, a correlation between the type
of congestion and its outflow is found. In fact, the outflow of a stop-and-go wave is lower than the
outflow of a standing queue at the same location.

Outflows in Each Lane

When congestion occurs each lane presents different features regarding to outflows. In ,
slanted cumulative counts and speed in each lane are presented, shown as a red dashed line and a
blue bold line, respectively. Slow vehicles and trucks usually drive in the shoulder lane because of
the Keep Right Unless Overtaking rule. Therefore, the flow and speed detected in each lane at the
same location differ from each other. In parts a and b of Figure 6, aggregated data over three lanes
show an increase of outflow at the moment the wave separating the outflow from the stop-and-go
wave and the outflow from the standing queue reaches the detector. In parts a and ¢ of Figure 7,
this increase of the outflow is observed in the median and center lane at Location 1 on May 18,
2009, but not in the shoulder lane. On May 28 this increase is found in all lanes. The lack of
change in flow in the shoulder lane is remarkable, giving the possibility that the difference in the
capacity drop is a result of the vehicle composition.
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May 28, 2009 (b and d).

TABLE 1 Speed and Flow in Different Traffic State Points

May 18, 2009 May 28, 2009

vr (km/h) q (veh/h) vt (km/h) q (veh/h)
State 2 13.44 2,182.50 6.34 885.00
State 5 98.73 5,400.00 98.52 5,220.00
State 4 30.80 6,040.00 29.18 5,700.00
State 6 98.32 6,040.00 98.24 5,700.00
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FIGURE 7 Speed and slanted cumulative count in each lane on May 18, 2009 (a, c, and €),
and May 28, 2009 (b, d, and f), at Location 1. Flows are shown next to the coinciding
slanted cumulative counts (bold black lines).
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The 2 days also show a difference: the outflow of the standing queue fluctuates more
with time on May 18 (see Figure 7¢) whereas on May 28 (see Figure 7f) the outflow of the
standing queue fluctuates strongly in the shoulder lane. At the moment is it unclear what could
be the reason for the fluctuation.

When the bottleneck has been active, there are several different traffic states in the
downstream of the bottleneck. Along the distance, the density decreases. Therefore, in the
targeted scenario, a large range of density can be detected, which can reveal the flow distribution
as a function of density across lanes. The flow distributions are shown in . Red lines
show the fast lane (median lane), black lines show the center lane, and blue lines show the slow
lane (shoulder lane). Three bold lines (see Figure 8a and 8b) represent average flow distribution
at three lanes based on all data. Circles and triangles are the empirical data collected in each lane
at location 1 (see Table 1 and Figure 7). Those circles and triangles stand for the state of the
outflow in each lane at Location 1 [i.e., State 5 and State 6, respectively (see Figure 1)]. The thin
lines (in Figure 8c and 8d) represent the flow distributions at each location. The lines with five-
point stars stand for the distribution at Location 8.

Figure 8 parts a and b show flow distributions on 2 different days. Both parts show a
common feature. When the density lies within the range of 22 to 60 veh/km, the flow in the
center lane is higher than that in both other lanes, although it keeps decreasing as density grows.
When the density is around 60 veh/km, the fraction of the flow at shoulder lane reaches the
minimum at around 23%. For the shoulder lane the decrease of the fraction of the flow was
sharp, but afterwards the increase is only marginal. Meanwhile from 60 veh/km the fraction of
the flow in median lane stops increasing with density and begins to stabilize at around 38%. Note
that the density of 60 veh/km corresponds to a typical critical density.

When the density exceeds 132 veh/km (May 18) and 95 veh/km (May 28), the fraction of
the flow in the median is almost equal to the fraction of the flow in the center lane, at around
35% for each, while the flow percentage at shoulder lane is around 30%. So even in states with a
very high density, flow in the shoulder lane is still lower than that in the other lanes. When
density reaches up to 220 veh/km, the flow begins to be distributed evenly over three lanes on
May 18, while the flow distribution is more unstable on May 28. It is not surprising because in
extremely high density situation standing vehicles can lead to some detection problems.

Figure 8 parts ¢ and d show the flow distribution at 8 locations. The flow distribution in
the median lane (red line) at Location 8 (marked as red five-point stars) is much higher than that
at the other locations (see Figure 8c and 8d). In contrast, the flow distributions in the center and
median lanes at Location 8 are the lowest. That is because vehicles merge into the median lane
when passing through the lane-drop bottleneck. In the downstream of Location 8, the flow
distribution in the median lane is lower than that at Location 8. For the other locations, the
distribution situations are similar to each other. The authors explain this by the following:
Vehicles force themselves into the traffic stream, and it takes some time and distance before
equilibrium distribution sets in again. Therefore, it is believed that a high percentage of vehicles
choose to leave the median lane by changing lanes between Location 8 and Location 7. This
situation is only visible when the density reaches up to 130 veh/km.

The authors assume that because of the Keep Right Unless Overtaking rule in the
Netherlands, the shoulder lane (slow lane) among three lanes is first choice for drivers when the
density is extremely low. As the density increases to around 20 veh/km, the occupation of the
center lane begins to be higher than that of the shoulder lane. The use of the median lane (fast
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FIGURE 8 Flow distributions at different densities at three-lane freeway section. Parts a
and b show average flow distributions over three lanes: median lane (red), center lane
(black), and shoulder lane (blue) on 2 days, May 18 (a and c) and May 28 (b and d). Circles
and triangles show the performance of each lane in State 5 and State 6, respectively,
corresponding to data in Figure 7. Parts c and d show flow distributions at each of the eight
locations. Each thin line shows a flow distribution at each location. Five-point stars
represent the flow distribution at Location 8.

lane) is the least at that time. As the density increases, in contrast to the shoulder lane where flow
fraction reduces considerably, the use of median lane grows sharply. Finally, the median lane
and center lane are highly made use of while the shoulder lane is being underused.

Flow Distribution Over Lanes
shows the speed in each lane at the same average density over three lanes. As a result of

the Keep Right Unless Overtaking rule, when the density is low the speed decreases from median
lane to shoulder lane. The median lane is the fastest lane. As the density increases, the speed
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becomes more equal among the lanes. When the flow distribution is equal for the median and
center lanes, the speed is equal for the three lanes. Because in congestion the speeds are equal in
all lanes, so the low flow in the shoulder lane must be because of a low density or large spacing.

That means that microscopically in congestion the spacing between successive vehicles in the
shoulder lane is the largest among three lanes.
shows the flow distributions in the four-lane freeway section upstream the
lane-drop bottleneck. Note that the outflow of the upstream four-lane freeway section is the
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FIGURE 9 Speed-density plot in each lane in the three-lane section on 2 study days: ()
May 18 and (b) May 28. The density is the average density over three lanes.
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FIGURE 10 Flow distributions at different densities at four-lane freeway section on
May 18 (a). The distribution on May 28 (b) is similar. The traffic flow is
moving from Location 10 (a) to Location 9 (b).
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inflow of the downstream three-lane freeway section. There are two locations for the data
collection: Location 9 and Location 10 in Figure 3. Traffic flow moves from Location 10 to
Location 9. The figure only shows the data for May 18; the data for May 28 are similar. In fact, the
authors can distinguish two pairs of lanes. First, Lane 1 and 2 are the median and shoulder lane of
one of the upstream branches of the road. The flow distributions in Lanes 3 and 4 are similar to that
of Lanes 1 and 2, respectively, also originating from a two-lane road upstream. The flow
distribution at two of the locations differs considerably. On one hand, in contrast to Location 10,
which is in the upstream of the Location 9, Location 9 shows a lower flow in the median lane,
especially for low densities. On the other hand, at Location 9 the flow in the shoulder lane is higher
for low densities.

The noncompensated number of lane changes can be estimated by the difference in flow
per lane between the two detectors for a certain density (e.g., one can see how much lower the flow
is). Compensation is possible by other vehicles making opposite movements (e.g., vehicles moving
into the lane). In Lane 3, the right center lane, the flow is higher at Location 9. Downstream of
Location 9, all vehicles in the median lane have to merge into Lane 2. Drivers in Lane 2 (the left
center lane) might anticipate this and make space for the drivers merging from the median lane.
These lane changes can be considered as an explanation for the changes in lane flow distribution
observed between Location 10 and Location 9. The relative flow in Lane 2 does not change as
much, because there is a similar amount of lane changing from the median lane to Lane 2; what is
observed is a decrease of the use of the median lane. The number of lane changing decreases as
the average density over lanes increases. The flow distribution at Lane 2 and Lane 4 is nearly
stable for both locations and study days. At Location 9 near the bottleneck, the flow in Lane 3 is
always the highest for both study days. Note that the demand in the two upstream two-lane freeway
sections could possibly greatly influence the flow distribution at Location 10.

CONCLUSIONS

This paper compares the downstream states of a stop-and-go wave with that of a standing queue.
The standing queue in this paper is induced at a lane-drop bottleneck by a stop-and-go wave.
Therefore, at one bottleneck there are two different congestion states observed. In the downstream
of the congestion there are free-flow states, which means the two outflows detected downstream of
congestion are the capacities of the road section. This paper applies shockwave analysis to find
those two outflows at the same road section, which is well traceable in the real data. The most
important finding is that the outflow of stop-and-go waves is much lower than that of a standing
queue. Therefore, the capacity with congestion upstream can vary in a rather wide range (e.g., from
5,220 to 6,040 veh/h at a three-lane road section). The various capacities could be related to
congestion states.

In the acceleration from stop-and-go waves, the detected flow grows as the speed increases.
In contrast, in the acceleration from standing queues, the flow remains a constant flow along
freeway. So during the acceleration from a standing queue, the density there is an inverse
proportional function of speed.

There are two other findings. First, different features of outflow from congestion in
different lanes can be found. Strong fluctuations occasionally can be observed in the shoulder lane,
which might even trigger stop-and-go waves later on, for instance near a next bottleneck. Second,
the flow distribution over three lanes is presented. This shows that particularly near the head of a
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standing queue more vehicles can merge into the lane adjacent to the ending lane, thereby locally
increasing the capacity of that lane. The capacity of the shoulder lane is markedly wasted when in
congestion. The reason for the low flow distribution in the shoulder lane is the large spacing
between successive vehicles.

Future research should show the mechanisms behind these features from a behavioral
perspective (whether people behave differently), from a vehicle perspective (what the influences of
different acceleration profiles are), or from a flow perspective (what for instance the influence of
voids is).
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FUNDAMENTAL DIAGRAM

An Overview of
“Revisiting the Empirical Fundamental Relationship”

BENJAMIN COIFMAN
The Ohio State University

his paper presents an extended overview of a new methodology for deriving an empirical

fundamental relationship from vehicle detector data. The new methodology seeks to address
several sources of noise present in conventional measures of the traffic state that arise from the
data aggregation process (e.g., averaging across all vehicles over a fixed time period). In the new
methodology vehicles are no longer taken successively in the order in which they arrived, and
there is no requirement to seek out stationary traffic conditions; rather, the traffic state is
measured over the headway for each individual vehicle passage, and the vehicles are grouped by
similar lengths and speeds before aggregation. Care is also taken to exclude measurements that
might be corrupted by detector errors. The result is a homogeneous set of vehicles and speeds in
each bin.

While conventional fixed time averages may have fewer than 10 vehicles in a sample, the
new binning process ensures a large number of vehicles in each bin before aggregation.
Researchers calculate the median flow and median occupancy for each combined length and
speed bin. Then they connect these median points across all of the speed bins for a given vehicle
length to derive the empirical fundamental relationship for that length. This use of the median is
also important; unlike conventional aggregation techniques that find the average, the median is
far less sensitive to outliers arising from uncommon driver behavior or occasional detector
errors.

INTRODUCTION

This paper presents an extended overview of Coifman (/), which develops a new methodology
for deriving an empirical fundamental relationship (FR) from vehicle detector data. This work is
important because much of traffic flow theory depends on the existence of an FR between flow
(9), density (k), and space—mean speed (v) either explicitly [e.g., Lighthill and Whitham (2), and
Richards (3) hydrodynamic model] or implicitly [e.g., car following models (4, 5)]. The FR is
commonly characterized in terms of a bivariate relationship between two of the three parameters
(in each case the third parameter can be calculated from the fundamental equation, repeated in
Equation 1). All of the empirically generated FRs use data that average conditions over time or
space, or both, to calculate the traffic state (g, &, v). It is difficult to measure & directly, so many
empirical FR studies use occupancy, occ, as a proxy for k, where occ is the percentage of the
sampling period, 7, that vehicles occupy the detector. As shown in Equation 2, in stationary
traffic occ is proportional to k by the average effective vehicle length, L. during 7; where a
given vehicle’s effective length is the sum of its physical length and the size of the detection
zone.

18
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q=k*v (1)
occ =k * Lesy ()

Most empirical FR studies use traffic state measurements from conventional detectors
that average vehicle measurements over fixed time sampling periods. a shows the
measured ¢ versus occ from one of the dual loop detectors in the Berkeley Highway Laboratory
(BHL) (6) on a single lane on a single day, using 7 = 30-s aggregation periods. The results are
typical of 30-s aggregation periods aside from the fact that this location experienced over 12 h of
recurring congestion on this day, as per the corresponding time series speed shown in Figure 1d.
The g versus occ plot shows considerable scatter, and it is hard to imagine any single curve that
would be representative of all of the observed data points. The scatter is commonly attributed to
combining nonstationary traffic states [e.g., Cassidy (7)], and debate continues as how best to
address the scatter.

The choice of T is an effort to balance between maximizing the number of vehicles in the
sample and minimizing the averaging across inhomogeneous traffic states. Often setting 7= 30 s
is considered to be a good balance between the two competing objectives, though the original use
of 7= 30 s appears to have been for the convenience of telecommunications (8). Figure 15
repeats the ¢ versus occ for the same vehicles from Figure la, only now using 7= 5 min. With
the longer sample period, each data point in Figure 15 is more likely to combine different
nonstationary traffic states, yet the scatter in this plot is diminished compared to 7= 30 s.
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FIGURE 1 Conventional g versus occ: () T=30s, (b) T =5 min. The corresponding time
series: (C) flow and (d) speed. For reference, a dashed line is shown at ¢, = 1,500 veh/h.
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Thus, the noise in the 7'= 30-s plot cannot strictly be due to averaging across nonstationary
traffic states. The 7'= 5-min plot also exhibits plateauing predicted by Hurdle and Datta (9) and
subsequently illustrated in Hsu and Banks (/0); whereby the ¢ versus occ within the queue is
truncated at g,, some maximum ¢ below the bottleneck capacity, due to traffic entering from on-
ramps between the detector location and the bottleneck. This downstream demand consumes a
portion of the bottleneck capacity, and in this case the resulting plateau in the detector data plot
falls around g, = 1,500 veh/h, as shown with a dashed line throughout Figure 1.

Conventional fixed time sampling is a crude methodology that was originally designed to
smooth out variability across vehicles in an era when computing power was expensive. While it
is true that successive vehicles will usually experience similar traffic conditions while traversing
the detector, the impacts of differing vehicle properties can far outweigh any benefits that might
come from arbitrarily grouping vehicles based on successive passages; for example, Coifman
(/1) and Coifman et al. (/2) show empirically that the range of feasible vehicle length
undermines conventional relationships between g and occ. Coifman (/3) uses hypothetical
microscopic models to revisit the process of generating empirical FR and uncovered several
commonly underappreciated factors that result in surprisingly large, nonlinear distortions of
empirical traffic state measurements.

Briefly reviewing Coifman (/3), in general for a fleet of homogeneous vehicles,
stationary traffic, in a sample with a large number of vehicles occ is related to & via Equation 2.
If one assumes a triangular flow-density FR (denoted gkFR), the curve is uniquely defined by
capacity, q,, free speed, v, and jam density, k;. Then, extending to the flow-occupancy FR
(goccFR), Equation 3 gives jam occupancy, occ;. The resulting goccFR is shown on the right-
hand side of Figure 2a for a hypothetical example with v/= 65 mph, g, = 2,400 veh/h, k; = 211
veh/min, and L¢gr = 20 ft, while the left-hand side shows the corresponding speed-flow
relationship (gvFR), transposed from the commonly used orientation to facilitate direct
comparisons between these two forms of the FR.

0cCj = Kj * Lege 3)

Even under strictly stationary traffic conditions with homogeneous vehicles, Coifman
(13) found that conventional aggregated ¢, occ, and v measurements should exhibit large scatter
in the queued regime arising from a combination of

Errors due to a non-integer number of vehicle headways in a given sample,
Averaging over a small number of vehicles during low ¢,

The inclusion of detector errors, and

The mixing of inhomogeneous vehicles within a sample.

el S

Generally the errors grow larger at lower v. Coifman (/3) also found that, unfortunately,
the g-occ plane is skewed such that the noisy low-speed samples cover a disproportionately large
area. The points in the gvFR on the left-hand side of a are plotted at 5-mph intervals, and
the corresponding states are shown in the goccFR by projecting horizontally to the curve on the
right-hand side of the figure. Proportionately the goccFR greatly distorts the relationship to v.
The dashed lines in Figure 2a show that when speed has dropped from v/ by 38% (v =40 mph)
flow has only dropped from ¢, by 10%, and when speed has dropped by 85% (v = 10 mph ) flow
has only dropped by 49%. In other words, the higher-speed data are compressed into a narrow
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sliver; for example, one can see that the highest speeds in the queued regime are compressed to a
small range of ¢ (or of occ), while the low-speed data (v = 10 mph)are spread over more than
half of the feasible range of ¢ or occ.

METHODOLOGY

Coifman (/) develops a new sampling methodology designed to address the above shortcomings
by specifically focusing on the sources of the distortions and minimizing their impacts. In this
approach vehicles are no longer taken successively, rather, they are sorted as follows:

e To eliminate the impacts of noninteger headways, individual vehicle headway, 4, is
measured instead of g. The associated detector on-time is measured and is used in conjunction
with 4 instead of occ. Here / is measured rear bumper to rear bumper to ensure the driver’s
chosen gap is combined with his or her vehicle’s on-time.

e Speed and vehicle length are measured for each individual vehicle.

e To minimize the impacts arising from a large range of vehicle lengths, the vehicles
are sorted into length bins that only span 5 or 10 ft.

e To minimize the impacts of different speeds, the vehicles are then sorted into speed
bins that only span 1 mph.

e To minimize the impacts of detector errors, any vehicle following an unmatched
pulse, involved in a suspected pulse breakup, or following a suspected pulse breakup is excluded,
because its measured 4 may be inaccurate.

¢ Finally, to ensure the largest possible number of vehicles per sample, the median
headway and median on-time are found for each bin from the subsection of Step 3 by Step 4
above, and converted to g and occ via Equations 4 and 5. This clustering approach groups
vehicles based on similar speed and length.

1
q= median(/%) (4)
median(on)

oce = median(/%) (5)

ANALYSIS AND DISCUSSION

The clean hypothetical FR curves in Figure 2a were derived from a homogeneous fleet of
vehicles with Leg = 20 ft under stationary conditions, over large sample periods. If the
homogeneous fleet has a different L, it yields a different curve. To extend the model from
Coifman (/3) to homogeneous vehicles with longer L., one must recognize that g, and &; are
functions of L. If one assumed that all vehicles came to a stop with a constant physical gap
between vehicles, the parameters of gkFR scale as a function of L. Using several different
values of L to recalculate the FR gives rise to a family of curves as shown in Figure 2b. The
greater L.y, the lower the curve is in this plot, with the top curve corresponding to Leg = 20 ft and
the bottom to Lesr = 73 ft.
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Coifman (/) applies the process outlined above in the Methodology section to 18
successive days of empirical detector data from one directional detector station in the BHL with
four lanes. Combining all of the individual vehicle actuations from all four lanes over 18 days at
the detector station, measured length is used to sort each vehicle into one of 10 different length
bins and individual vehicle speed to further sort these vehicles into one of 70 speed bins. After
sorting all vehicles in this manner, Equations 3 and 4 are applied for each one of these combined
length and speed bins. Finally, the goccFR is found by connecting the ¢ and occ values across
successive speed bins for a given length bin. The right-hand side of Figure 2¢ shows the resulting
curves by length bin subject to the following three exclusions:

1. To remove the impacts of the downstream inflow, all speeds in all length bins that
result in g above the threshold ¢, for the 18- to 22-ft length bin are suppressed (as per the
corresponding gvFR in the left-hand side of Figure 2c¢).

2. To remove the impacts of the measurement errors at low speeds, all speeds below 5
mph in all length bins are suppressed.

3. To remove the impacts of small sample sizes, all combined length and speed bins
with fewer than 100 vehicles are suppressed.

As a result of the third exclusion, only seven length bins remain with sufficient data. The
seven curves are distinctly visible in the ¢ — v plane on the left-hand side of Figure 2¢. The length
range increases from the top curve to the bottom curve in this plot. On the right-hand side the
two shortest length bins remain distinct, but the curves from the five longest bins overlap, in part
due to the vertical compression as L increases, evident in Figure 2b; in part due to smaller
sample sizes in these length bins; in part due to the fact that the speed measurement errors from
Exclusion 2 are greater for longer vehicles simply because they are over the detector for a longer
amount of time; and in part due to the fact that the actual speed-occupancy relationship appears
to exhibit a slight dependency on L. for these longer vehicles, leading to a small lateral shift in
the right-hand side of Figure 2¢. All of the curves exhibit trends consistent with the hypothetical
example in Figure 2b. Although the speed range on Figure 2c¢ is relatively small, 5 to 17 mph, the
occ range spans roughly a quarter of the observable values below jam occupancy.

The dotted curves in Figure 2d relax Exclusion 1, lifting the upper bound speed exclusion
to 50 mph and eliminates the lower bound speed, Exclusion 2, altogether (for reference, the
curves from Figure 2¢ are repeated in bold). In the right-hand side of Figure 2d the measured
goccFR curves for most of the length bins flatten out at higher ¢ (corresponding to higher v), in
other words, in the region above the threshold g, from the downstream inflow, shown with a
dashed line in these plots. For the shortest length bin (again, accounting for over two-thirds of
the vehicles) the curve now extends measurements down to 1 mph. The curve remains roughly
straight throughout this low-speed region, possibly indicating that with a sufficiently large
sample size the median is not very sensitive to the outliers arising from the dual loop detector
measurement limitations for these very low speeds. If so, the resulting occ range for speeds
between 1 and 4 mph covers an additional quarter of the feasible values of occ, with the
combined speed range from 1 mph to 17 mph covering more than half of the feasible occ values.
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The distortions of the g-occ plane discussed in the context of Figure 2a are readily

apparent in Figure 2 parts ¢ and d as follows. The speed range in Figure 2¢ spans roughly 18% of
the feasible speeds (5 mph < v < 17 mph), but these data span roughly 25% of the feasible ¢ and
occ. As shown in Figure 24, if one extends the range to 1 mph <v < 17 mph (roughly 26% of the
feasible speeds) the data now span more than 50% of the feasible g and occ measurements.

CLOSING

This paper provided an extended overview of Coifman (/). Greater details of the process and
discussion of the implications can be found in that paper.
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FUNDAMENTAL DIAGRAM
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ince the pioneering work of Greenshields the fundamental diagram is used to characterize

and describe the performance of traffic systems (/, 2). During the last years the discussion
and growing database revealed the influence of human factors, traffic types, or ways of
measurements on this relation (3, 4). The manifoldness of influences is important and relevant
for applications but moves the discussion away from the main feature characterizing the
transport properties of traffic systems. The authors focus again on the main feature by comparing
the fundamental diagram of cars, bicycles, and pedestrians moving in a row in a course with
periodic boundaries. The underlying data are collected by three experiments, performed under
well-controlled laboratory conditions (5—9). In all experiments the setup, in combination with
technical equipment or methods of computer vision, allowed the authors to determine the
trajectories with high precision. The trajectories visualized by space-time diagrams show three
different states of motion (free-flow state, jammed state, and stop-and-go waves) in all these
systems. Obviously the values of speed, density, and flow of these three systems cover different
ranges. However, after a simple rescaling of the velocity by the free speed and of the density by
the length of the agents, the fundamental diagrams conform regarding the position and height of
the capacity. This indicates that the similarities between the systems go deeper than expected and
offers the possibility of a universal model for heterogeneous traffic systems.

EXPERIMENTS

All three experiments were performed with similar setups, namely on circuits with closed
boundary conditions where only single-file motion was allowed. Series of runs were carried out
with a maximal number of participants Nmax= 70, 23, and 33 for the pedestrian, car, and bicycle
experiment, respectively. To adjust, the global density different runs were performed with different
numbers of participants N. In general, participants were asked to move normally without
overtaking. Details of the experiments could be found in Sugiyama et al. (5) and Tadaki et al. (6)

25
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for cars, in Andresen et al. (7) and Zhang et al. (8) for bicycles, and in Seyfried et al. (9, 10) for
pedestrian. Time-space diagrams are shown in the center of and 2. Similar plots for cars
can be found in Sugiyama et al. (5). In all three cases a transition from free flow to jammed flow
can be observed when the global density is increased. In the free-flow regime all agents can move
with their desired speed, whereas in the jammed regime stop-and-go waves are observed.

On the right of Figures 1 and 2 the density—flow relations are shown. Details of the
measurement method could be found in Zhang et al. (8). The fundamental diagram of pedestrians
shows three regimes p €[0,1.0] m ', [1.0,1.7]m ", and [1.7, 3.0] m"’ corresponding to three
states of pedestrian movement. At the free-flow regime (p < 1.0 m™") the flow increases
monotonically with the density. For the congested state (p > 1.0 m ™) the specific flow starts to
decrease with increasing density. For p > 1.7 m ' stop-and-go waves dominate the motion of the
pedestrians (9, 10). Similar results are observed in the bicycle system (7, §).
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FIGURE 1 (a) Snapshots of the pedestrian experiment at different densities. The red lines

show the trajectories determined automatically from video recordings; (D) trajectories in

space and time in the measurement area (of length 4 m) with N = 70; and (C) density—flow
relation. Colors indicate data for runs with different N.
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FIGURE 2 (a) Snapshots of the bicycle experiment; (b) trajectories in the measurement
area (of length 27 m) for the bicycle experiment with N = 33. The same structures can be
found in trajectories of vehicle systems (5, 6). (C) Density—flow relation. Colors indicate
data for runs with different N.
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RESULTS

Plotting the fundamental diagram of these three systems in one diagram shows that the data
points occupy different ranges of density as well as speeds and do not seem to be comparable to
each other (see ). To take into account the different scales of sizes and speeds of the
agents the authors rescale these quantities. For the length of the agents the authors use Lo(p) =
0.4 m for pedestrians, Lo(c) = 3.9 m for cars (6), and the mean value of Lo(b) = 1.73 m for
bicycles (7, 8). For scaling the speed the authors used the free-flow speed of each agent. From
measurements of the free-flow speed in special runs of the experiments it is known that they are
about 1.4 m/s for pedestrians and 5.5 m/s for bicycles. For cars the authors use 11.1 m/s (about
40 km/h) according to Tadaki et al. (6).

After rescaling it is found that the fundamental diagrams agree, and in all three cases the
free-flow regimes end at approximately p*Ly = 0.5 (see ). This implies that the transition
to the congested state occurs when nearly 50% of the available space is occupied. Moreover, the
capacity (i.e., the maximal flow) agrees for the three systems after the rescaling and amounts
0.25 to 0.30. In the congested regime the slopes of the fundamental diagram are again similar for
all three systems.

The transport properties in such systems could be approximated by the universal equation
U =1-9gwith? = v/vyand ¢ = gLy. The normalized maximal flow is then 0.25 at a relative
density of 0.5. This corresponds to the properties to the ASEP (71, 12), which for a long time has
been considered a minimal model for traffic flows. The main feature of this model is volume
exclusion. Also models for pedestrian dynamics (/3—15) show that these transport characteristics
could be reproduced by an appropriate consideration of a velocity-dependent volume exclusion,
which seems to be a universal characteristic of such systems. Considering this universality the
authors conclude that other properties of the agent, like acceleration or inertia, are less relevant
for the structure of the fundamental diagram in single-file traffic systems of different agent types.
In other words models without a proper consideration of the volume exclusion miss an important
aspect of traffic systems.
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FIGURE 3 Fundamental diagrams for cars, bicycles, and pedestrians.
Raw data of the density—speed relation.
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diagrams agree in the density range observed.
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FUNDAMENTAL DIAGRAM

Human Factors in the Fundamental Diagram
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ome observations are made on the fundamental diagram of freeway traffic, among which are

three influence regions, three types of transition around capacity, and capacity drop
phenomenon. This research aspires to interpret these observations from a human factors
perspective in traffic flow theory. Of particular interest are the following human factors: drivers’
choice of desired speeds, perceived effective vehicle lengths, perception—reaction times, and
aggressiveness. It appears that all four factors are involved in characterizing traffic flow, though
they play different roles in the fundamental diagram. Different combinations of these factors give
rise to the above-mentioned influence regions, transition around capacity, and capacity drop. Of
critical importance in determining the transition around capacity and capacity drop is drivers’
aggressiveness, a factor that has long been overlooked in the past. This paper provides a detailed
account of where it comes from and how it influences the fundamental diagram.

SOME FIELD OBSERVATIONS

illustrates an empirical fundamental diagram observed on Georgia 400, a toll road in
Atlanta, Georgia. Each point in the “cloud” represents a 5-min aggregation of the original 20-s
observations, and the diagram consists of 1 year’s worth of data.

Observation 1. Three Influence Regions

Strikingly in this diagram are the following regions. One is the area bounded by lines L; and L,
just like a beam of light emitting from the origin O; the other is the area bounded by lines L; and
L4 like another beam of light emitting from point D, which represents jam density k;. The area
Q1Q2Q3Q4 indicates a third region where the two beams of light interfere.

Obviously, area L;0OL; indicates free-flow conditions, where flow is dictated by free-flow
speed; area L3;DL4 consists of congested conditions, where flow is mainly constrained by drivers’
perception—reaction capabilities. Influenced by both free-flow and congested regions, area
Q:1Q2Q3Q4 constitutes a capacity region, since this is where the capacity is most likely to be
found.

30
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FIGURE 1 Fundamental diagram resulting from field observations.

It is intriguing to explore what factors are acting behind that drive the shaping of the diagram. Of
key interests here are capacity condition (magnitude and location), the transition of flow—density
relationship around capacity, and whether or not there is capacity drop phenomenon.

Observation 2. Three Types of Transition in Flow—Density Relationship

Observed in the field are the following three types of transition regarding flow—density
relationship around capacity:

e Skewed-parabola (e.g., Curve 1 in ),
e Triangular (e.g., Curve 2 in Figure 2), and
e Reverse-lambda (e.g., Curve 3 in Figure 2).

Where a reverse-lambda transition is most likely found in inner-lane traffic, a triangular
transition is often resulted in middle-lane traffic or by aggregating over all lanes, and a skewed-
parabola transition is typical in outer-lane traffic. These empirical observations have been
reported by Koshi et al. (7), Banks (2), and others.
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FIGURE 2 Flow—density relationships fitted to empirical data.

The authors have models that capture the skewed-parabola flow—density relationship as well as a
few other models that represent the triangular flow—density relationship. It is of great interest to
understand what gives rise to these types of flow—density relationships. In particular, what causes
the reverse-lambda transition and how to model it?

Observation 3. Capacity Drop

is another fundamental diagram generated from GA400, but this figure includes only 1
day’s worth of data on a weekday (see the “cloud” in the background). Consisting of
observations of flow and density in the field, each data point represents the operating condition
of traffic over this observation period. A time development of operating conditions is plotted on
top of the “cloud” with numbers indicating the temporal order of the observations of roughly 10
min apart. Note that the peak flow occurs at around 7:30 a.m., which is numbered 14 in the
figure.

Following the time development, the temporal evolution of traffic conditions around
capacity seems to suggest a pattern sketched on the right of the figure. First, there is a loading
process early in the morning as the road starts to empty and traffic demand increases over time.
This is sketched as Curve 1 in the figure where flow increases almost linearly with density all
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FIGURE 3 Time series plot of loading and unloading process.

the way up to the peak. As demand continues increasing beyond the peak, any disturbance may
result in traffic breakdown and hence congestion. This corresponds to Curve 2 in the figure. As
demand decreases, traffic begins to unload where density decreases, and flow increases as in the
first half of Curve 3. However, the peak of the unloading curve is much less than that of the
loading curve, and their difference constitutes a capacity drop phenomenon. With demand
continually decreasing, both flow and density drop, as depicted in the second half of Curve 3.
This concludes a cycle of traffic operation in a typical day. Similar findings of traffic loading,
unloading, and capacity drop have been reported in Banks (3), Saberi and Mahmassani (4), and
Chamberlayne et al. (5). Interested readers are motivated to investigate whether it is possible to
capture such a phenomenon in traffic flow modelling.

With these observations and questions, the objective of this paper is to explore factors
acting behind a fundamental diagram that give rise to these phenomena. The remainder of the
paper is organized as follows. First, the authors start with examining human factors in car
following and trace their way into macroscopic representation of traffic flow: the fundamental
diagram. Next, they analyze the roles that these human factors play in fundamental diagram, in
particular, which factor controls what part of the diagram. This is followed by revisiting
empirical data and checking if field observations agree with the above analysis. To facilitate
application of findings of this research, a method is formulated to roughly estimate human
factors parameters from traffic flow data without requiring vehicle trajectory data. Lastly,
findings are summarized and conclusions are drawn.
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RELATING HUMAN FACTORS TO THE FUNDAMENTAL DIAGRAM

In essence, traffic flow is the result of action and interaction of many vehicles in a driving
environment. The microscopic view of traffic flow is the result of human factors such as drivers’
speed choice, perception—reaction time, acceleration and deceleration, and safety rules. On the
other hand, the macroscopic view of traffic flow is typically reflected in a fundamental diagram
that is characterized by macroscopic measures such as capacity, free-flow speed, and jam
density. Micro-macro coupling is the key to unlocking fundamental diagram. In this paper, the
authors are particularly interested in how human factors are related to highway capacity and
traffic congestion and, in return, how the discovery would shed light on traffic flow modelling.

Microscopic View: Human Factors
Stopping Sight Distance

Traffic engineering books (6—8) have it as a standard that safe stopping sight distance (SSD) has
to be maintained at any point on a roadway. The SSD is the sum of distance traveled during
perception—reaction time T and braking distance:

2

v
SSD = v + —
T

where v is vehicle speed and b is deceleration rate.
Good Driving Rule

Similarly, Forbes and Simpson (9) and equivalently Pipes (/0) applied a “good driving rule”
(GDR) to car following and stipulated that the minimum spacing s* between a leading vehicle j
and a following vehicle i be

* .
Sij =TiX; + l]

Where [ is effective vehicle length (i.e., the actual vehicle length plus some buffer space at both
ends).

Safe Driving Rule

Gipps (/1) took it further by considering more dynamic and conservative situations between
vehicles with speeds x; and X; and deceleration rates b; and B; as follows. At any time, vehicle i
must leave enough spacing ahead such that, when vehicle j suddenly brakes, the spacing should
allow vehicle i to stop safely behind vehicle j after a perception—reaction process and a braking
process. A simplified expression of this “safe driving rule” (SDR) can be formulated as

Sij =2—bi—2—Bj+Tixi +l]
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If the vehicles travel at the same speed, x; = %;, the above equation reduces to the following
form (12, 13) (Chapter 4):

x .2 .
Sij =YiX; +Tl'xi + l]

where the coefficient of the nonlinear term y; is

C1(1 1
Yi=2\b, B

Unlike perception—reaction time 7, the physical meaning of y was not defined, but the coefficient
was generally regarded as positive. An empirical value for y would be 0.023 s*/ft (about 0.075

2
s°/m) (12).

Aggressive Driving Rule

A less conservative consideration of y; (/4) may be the result of choosing proper values for b;
and B;. For example, it is recognized that b; actually represents the deceleration rate at which
driver i believes that he or she is capable of applying in an emergency. Of particular interest is
the possibility that ; might be greater in magnitude than B;, which represents driver i’s estimate
of the emergency deceleration that is most likely to be applied by driver j. Consequently, y; may
take negative values:y; < 0, which gives rise to an “aggressive driving rule.” Rather than creating
an extra safety buffer as in the SDR, the negative driving rule even shortens the safe distance
stipulated by the GDR.

In sum, when y; = 0 as in the Forbes model, the GDR is resulted; when y; > 0 as in the
Gipps model, the SDR is resulted since the driver leaves extra room; when y; < 0, the aggressive
driving rule (ADR) is resulted in that the driver tends to follow dangerously close. Hence, it is
reasonable to associate y; to the driver’s aggressiveness, since it represents the driver’s
willingness to run risk in trade of speed gain.

Longitudinal Control Model

The ADR alone was not modeled. However, Ni (/5) recently incorporated the concept of
aggressiveness into the Longitudinal Control Model (LCM):

. S”
X -+

1—|—)—e U
L%

where v; is driver i’s desired speed and A4; is the maximum acceleration desired by driver i when
starting from standing still. Note that s;; = Vix? + % + l; and aggressiveness v; is allowed to
be positive, zero, and negative representing a spectrum of driving rules.

The discussion on traffic flow models thus far has involved a few human factors
parameters including aggressiveness y;, perception—reaction time t;, desired speed v;, and
effective vehicle length /.. It is interesting to examine how these parameters manifest themselves

Xt + 1) = 4
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in the fundamental diagram, where individual behaviors are aggregated to exhibit collective
properties of traffic flow.

Macroscopic View: The Fundamental Diagram

Characterizing the fundamental diagram are flow-speed-density relationships. Under steady-state
condition (i.e., traffic state does not change in time), the GDR gives rise to the following flow ¢
and density k relationship:

11,
q_T T

where 1 and / are perception—reaction time 1; and effective vehicle length /;, respectively,
aggregated over all vehicles. Similarly, the flow—density relationship implied by the SDR is
given in parametric form:

1

=k dk=——""—
1 v an yv2+wv+1

Where y and / are y; and [;, respectively, aggregated over all vehicles. The parametric flow—
density relationship of LCM is

1
(yv?+tw+D[1—-1In (1 — :—f)]

q=kv and k =

where free-flow speed vris desired speed v; aggregated over all vehicles.

INFLUENCE OF HUMAN FACTORS ON THE FUNDAMENTAL DIAGRAM
Desired Speed Vv

The foremost of the set of human factors parameters is desired speed v;. When traffic is light and

actual spacing s;; is greater than desired spacing s, drivers are insensitive to neighboring

vehicles and are free to choose their desired speed v;. This is what the SDR, GDR, and LCM
stipulate:

SDR: J.Cl' =7; when Sij > Si*j = ylxlz + TiQ'Ci + lJ

GDR: x; = v; when s;; > s/ = 7,%; + )

5ij

1—=
LCM: x; = v; <1 —e Sii) for all s;;, where xX; ~ v; when s;; > s7;.
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When aggregated over drivers, desired speed becomes free-flow speed: v; — vy.
Therefore, all three models agree that desired speed dictates free-flow speed which, in turn,
determines traffic conditions in the free-flow region of Figure 1. As Forbes (/6) pointed out,
flow q increases linearly with density k without being constrained by leading vehicles. This
effect is illustrated in the top left subplot of , which is generated using LCM. In this plot,
free-flow speed varies, while the other three parameters are held constant as indicated. Units are
in metric system.

The capacity condition of SDR is found at

1 \F l
= — v, = —_ k =
e Al Tyt fyl+ 2
Similarly, GDR yields

Uf 1
Uy = Vf ko

Im =va+l

- T'Uf +1
LCM does not yield a closed form of capacity but can be solved numerically.

It is interesting to note that, in SDR, capacity is irrelevant to free-flow speed, while both GDR

and LCM predict that capacity is a function of free-flow speed. The effect is also illustrated in

the top left subplot of Figure 4.
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FIGURE 4 Influence of human factors on the fundamental diagram.
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Effective Vehicle Length

Effective vehicle length [; is the the longitudinal space that a driver sees himself or herself
representing in the traffic. It is typically regarded as the physical vehicle length plus some buffer
spaces at both ends. It is also viewed as the bumber-to-bumber spacing when traffic is jammed.
When aggregated over vehicles, effective vehicle length is the reciprocal of jam density:
l; » 1 = 1/k;. Unlike free-flow speed, which is accurately visible in field data, jam density is
seldom revealed (see Figures 1 to 3). However, it can be deduced by following the trend of the
congested region or determined from a reasonable range, for example, 100 to 200 veh/km based
on an effective vehicle length of 5 to 10 m. The influence of [ is illustrated in the top right
subplot of Figure 4, where [ is varying while others parameters are held constant.

In stop-and-go traffic around jammed conditions, the stopping or moving of vehicles
propagates backward, progressively forming a kinematic wave at jam density o;. Since drivers
react strictly according to driving rules, the speed of the kinematic wave at jam density ; can be

determined as

d v2+Tv+l l
SDR: w; =31 =(v-22) =2
dk k=k; 2yv+t /-0 T
da l
GDR: w; = =2 =—-
dk k=kj T
dq l
LCM: w; = — =—
b arl—p. T+ /v

J

Apparently, effective vehicle length affects j, and the effect is also illustrated in the top right
subplot of Figure 4. Assume effective vehicle length of 6 m, perception—reaction time of 1 s, and
free-flow speed of 30 m/s (or 108 km/h), SDR and GDR suggest an ®; of —21.6 km/h, LCM results in
—18 km/h. These results are in agreement with field observations as well as with literature [e.g., —23
km/h in Lighthill and Whitham (/7) and —20 km/h in Del Castillo and Benitez (/8)].

As discussed previously, effective vehicle length also affects capacity condition: its

magnitude and location.

Perception—Reaction Time

Though free-flow speed appears insensitive to perception—reaction time t;, capacity is heavily
influenced by this parameter as confirmed by the capacity condition above. Since 7; represents how
fast a driver responds to stimuli (e.g., braking light of the front vehicle), it mainly takes effect in
relatively dense traffic, where drivers need to pay attention to surrounding vehicles, especially the
leading one. Therefore, the congested region is also heavily influenced by perception—reaction time.
A disturbance in traffic is almost sure to be picked up by following vehicles and gets propagated
upstream. Hence, backward wave speed u has a close relationship with 1;. As a boundary condition,
the speed of a backward wave at jam density ®; was given above. In general, the shorter the
perception—reaction time (i.e., T; 1), the greater the backward wave speed in magnitude (i.e., |u| T),
and hence the steeper (more negative) the congested branch of the corresponding flow—density
relationship. The effects are illustrated in the bottom left subplot of Figure 4.
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As the congested branch becomes steeper, it meets the free-flow branch at higher flow rates
suggesting greater capacities. However, it seems that perception—reaction time is not the only
parameter that dictates how the two branches meet and hence the underlying flow—density
relationship.

Aggressiveness

It turns out that aggressiveness y; plays an even more important role in the shaping of fundamental
diagram, more specifically, capacity condition (magnitude and location), the transition around
capacity, and whether or not there is capacity drop phenomenon.

In the SDR, aggressiveness assumes positive values y; > 0, which corresponds to timid
drivers who need extra room for increased safety. As drivers become more timid (i.e., y; T), they will
need longer safe distances, and hence less flow can be sustained. This relationship is reflected in the
capacity condition given above.

In addition, timid traffic (i.e., y; > 0) results in early termination of free-flow condition and
early onset of congested condition, because drivers tend to respond to leading vehicles at lower
density than there would be for normal (i.e., y = 0) or aggressive (i.e., y < 0) traffic. Meanwhile, the
transition is smooth (i.e., a skewed parabola flow—density curve is resulted around capacity
condition. See the bottom right subplot of Figure 4).

The GDR does not have an aggressiveness term, which can be viewed as y; = 0. Since
aggressiveness is zero here, it does not play a role in the formula of capacity condition. Meanwhile,
zero aggressiveness in the GDR always yields a triangular flow—density relationship, meaning
discontinuity is introduced at capacity condtion (g, k»,) where the free-flow condition (i.e., g = v/k)

e l
and congested condition (i.e., g = % - ;k) meet.

LCM does not pre-assume a value for y; which can be possitive, zero, or negative depending
on driver population. When traffic exhibits aggressive characteristics (i.e., y < 0), LCM predicts that
free-flow condition may sustain up to very high flow rates (e.g., over 3,000 veh/h) before giving in
to congested condition. In addition, such a transition can be a drastic one in that flow drops
significantly when the changeover takes place. It appears as though there were two capacities
here. One results when loading traffic onto an empty highway. Flow increases linearly with
density. As density continues increasing, flow keeps its momentum and rises up to levels that
normally require drivers to observe safe distance. At this point, traffic seems to be oversaturated.
Consequently, a little disturbance in traffic would result in fast deterioration in conditions. All of
the sudden, traffic becomes packed, with a significant drop in speed and flow. Another capacity
is typically resulted during an unloading process from congested condition. As traffic keeps
recovering toward the free-flow side, no capacity jump is observed around the pervious transition
point. Instead, the new transition takes place smoothly, as in Figure 3, which suggests another
capacity that is lower than the previous one (i.e., a capacity drop phenomenon). This results in a
reverse-lambda flow—density relationship that neither of the other two models captures, and the
effect is illustrated in the bottom right subplot of Figure 4.

The above discussion of influence of human factors parameters is summarized in
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WHAT DO EMPIRICAL DATA SAY?
Loading Processes at a Few Locations

Generated from highway data at a few locations worldwide, samples the temporal
development of the loading processes on these highways, including the Autobahn in Germany,
Amsterdam Ring Road, Highway 401 in Canada, I-4 in Orlando, and PeMs in California.

First of all, it is clear that free-flow condition is rather linear across the board, suggesting that drivers
are not sensitive to leading vehicles and are free to choose their desired speeds. Note that free-flow
speeds differ on different highways suggesting that drivers’ choice of desired speeds is location
specific.

Remarkable in the figure is when the curves peak as the loading process proceeds. For
instance, the free-flow curve of PeMs is only sustainable at a little over 1,000 veh/h, while those of
Amsterdam and Autobahn maintain up to about 2,500 veh/h. Though unknown without field
measurement, perception—reaction time can be roughly deduced from peak flow rates. For example,
according to the GDR, average headway / is perception—reaction time plus a little buffer, 2 =t + I/vy,
PeMs data suggest a perception—reaction time of a little less than 3.0 s, while that of Amsterdam is
roughly 1.4 s. Given that free-flow speed is about the same at the two locations, one would conclude
that drivers at the two locations have about the same taste of desired speed but in general take
differently time to react to leading vehicles.

Also striking in the figure is how the curves peak. More specifically, this concerns how free-
flow condition gives in to congested condition. For example, PeMs and Amsterdam data seem to
transition along a skewed parabola curve; I-4 data suggest a triangular changeover; Autobahn and
Highway 401 data appear to experience a capacity drop when the congested region takes over (i.e., a
reverse-lambda shape).

At the minimum, Figure 4 reveals that different locations give rise to different driver
characteristics, which, in turn, result in different traffic flow characteristics. For example, the five sets
of data suggest different free-flow speeds, different peak flow rates, different peak densities, and
different transition curves. This poses a great challenge to traffic flow modeling, which should not
only capture the underlying mechanism but also the wide ranges of variability.

TABLE 1 Influence of Human Factors on the Fundamental Diagram

Human Factor Parameters \' l; T Yi
Free-flow speed, vy Y N N N
Capacity: magnitude, ¢, NYY Y Y YNY
Capacity: location, k,, NYY Y Y YNY
Capacity: transition NNY N NNY Y
Capacity: drop NNY N NNY NNY
Backward wave speed at jam, o; N Y Y N
Jam density, &; N Y N N

NOTE: Y = has influence; N = no influence. A single letter denotes that the same comment applies to the three

models. Three letters (e.g., N N Y) means the comments of SDR, GDR, and LCM, respectively.
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FIGURE 5 Temporal development of flow—density relationship on selected highways.

Fitting Models to Empirical Data

As a measure of how close modelling matches field observations, illustrates the result of
fitting the three models to GA400 data with fitted parameters tabulated in

The figure shows that the three models perform almost the same when traffic is light and
severely congested. However, the difference is salient in the transition from free flow to congestion,
particularly around capacity condition.With similar settings except for aggressiveness, the safe
driving rule yields the lowest capacity, while LCM suggests the highest and also the closest to true
capacity. This result tends to support the significance of aggressiveness in traffic flow modeling.
Perhaps more prominent in the figure is the transition around capacity. The SDR with
y = 0.023 (meaning timid drivers) corresponds to a skewed parabola transition; GDR with y =0
(meaning normal drivers) introduces discontinuity that yields a triangular transition; LCM with
y =-0.041 produces a reverse-lambda transition suggesting a possible capacity drop.

In traffic flow modeling, it is important to faithfully reproduce free-flow, congested, and
jammed conditions. It is even more important to capture capacity condition. As evidenced above,
aggressiveness plays a differentiating role in capacity condition: magnitude, location, transition,
and capacity drop. In addition, it is attractive for a model to represent a spectrum of transition
around capacity such as skewed-parabola, triangular, and reverse-lambda, since they are all
observed in the field. Note that the SDR captures only the first type, the GDR always yields the
second type, and LCM is able to represent all three types (see Figure 4).
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FIGURE 6 Three models fitted to empirical data.
TABLE 2 Human Factors Parameters Fitted to Empirical Data
Model vy (m/s) T (5) [ (m) ¥ (s*/m)
SDR 29 1.5 6 0.023
GDR 29 1.5 6 0
LCM 29 1.3 6 —0.041

Though Figure 6 only reveals a likely reverse-lambda transition around capacity and a
possible capacity drop, these phenomena are confirmed in Figure 3 with temporal development

of loading and unloading processes illustrated. Combined, Figures 3 and 6 seem to alert us to the

possibility that loading and unloading processes may follow different speed—density
relationships. For example, the loading process may be a reverse-lambda type, while the
unloading is a skewed parabola or a triangle. If this is true, then two issues naturally follow.

First, this observation seems to suggest that driver characteristics may be different during loading
and unloading processes, and perhaps they may even be dynamic within a driving process. Such

an effect is typically not captured in conventional modelling approaches. For example,
perception—reaction time is normally treated as a constant in the authors’ models unless a

stochastic approach is taken. Second, this observation may imply different types of flow—density
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relationship for the same traffic during different processes. This requires that the underlying
model be flexible enough to capture all of them without having to resort to another model. LCM
is an example in case. Similarly, Chamberlayne et al. (5) produced the effect of capacity drop in
INTEGRATION by varying vehicle acceleration behavior without having to introducing a
discontinuous flow—density relationship.

ESTIMATION OF HUMAN FACTORS PARAMETERS

Involving measuring parameters, model calibration can be a time- and resource-consuming task,
especially when sampling and aggregating a large population becomes necessary. This section
intends to supplement such an endeavor with a quick, rough estimate by examining only traffic
flow data that are readily available in most intelligent transportation systems. Assume one starts
with an empirical diagram such as the clouds in Figures 1, 2, and 6, and somehow a flow—density
relationship is sketched, as Curve 1 in . Since field data typically show clear trend of
free-flow condition, free-flow speed vy can be found easily as the slope of the trend line in free-
flow region. In addition, field data may also reveal a trend of congested condition. Following the
trend, one may find jam density £; as the intersection of the trend line and the horizontal axis.

Estimation of the remaining two human factors parameters, namely perception—reaction
time 7 and aggressiveness Y, necessitates two known points, A and B, on the curve. Though in
the figure A appears to be the capacity and B possibly the reduced capacity, they don’t have to
be special in order to apply the estimation method. Since conditions at A(qy, k4, v4) and B(gs, ks,
vp) are known, their average microscopic characteristics A(hy, 54, v4) and B(hs, s, vs) can be
calculated. Sketched on the right of the figure are trajectories of imaginary vehicles operating at
conditions A and B. Using geometry of the trajectories and car-following rules, the following can
be established:

Spa =YV + T, +1
sp = yvi + tvg + 1
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FIGURE 7 Estimation of human factors parameters.
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Solving the above system of equations yields the following estimates:

( (savp —Spva) — L(vp —vu)
V= vivg — v,v3
AVB — UaUp

—(s4v5 — Spv4) + L(v§ — vf)

2 2

Unlike what is required by the SDR, the figure purposely shows that the headway of
condition A, /4, is shorter than perception—reaction time. This is to alert readers to the possibility
that aggressive drivers may follow the leader closer than that stipulated by the GDR (i.e., y <0).
Paradoxically, short headways are frequently observed in traffic, particularly in inner lanes, but
car-following accidents are few. Harris (/4) was probably right that this is so “not because the
separations which drivers allow are necessarily safe but because the emergencies that reveal the
danger are rare.”

CONCLUSIONS

This research examined the role of human factors such as aggressiveness, perception—reaction
time, desired speed, and effective vehicle length in microscopic car following and traced their
way into macroscopic traffic flow representation (i.e., fundamental diagram). Then, the influence
of these human factors on the diagram was analyzed with reference to empirical observations in
the field.

The findings of this research are summarized as follows. First, all four factors are actively
involved in characterizing traffic flow, though they play different roles in fundamental diagram.
More specifically, desired speed affects free-flow speed which, in turn, dictates free-flow
condition. Effective length dictates jam density and affects backward wave speed at jam density.
Perception—reaction time plays a significant role in virtually all aspects of fundamental diagram.
In particular, perception—reaction time is critical in determining capacity (magnitude and
location). No less than that of perception—reaction time, the role of aggressiveness has long been
overlooked. Contrary to what is commonly believed, empirical evidence shows that drivers will
follow at distances shorter than what is deemed as safe. Hence, aggressiveness is related to a
driver’s willingness to tailgate in pursuit of speed gain. This research reveals that aggressiveness
is the key to unlocking the mysteries in fundamental diagram such as reverse-lambda, flow-
density relationship, and capacity drop.

In addition, empirical observations seem to suggest that driver characteristics may be
different during loading and unloading processes, and perhaps they may even be dynamic within
a driving process. Such an effect is typically not captured in conventional modeling approaches.
For example, perception—reaction time is normally treated as a constant in the authors’ models
unless a stochastic approach is taken. Meanwhile, empirical observations may imply different
types flow—density relationship for the same traffic during different processes. This requires that
the underlying model be flexible enough to capture all of them without having to resort to
another model.

Moreover, this research provides a quick estimation method to roughly deduce human
factors parameters from macroscopic traffic flow data without resorting to microscopic vehicle
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trajectory data. However, this estimation method is intended as a supplement rather than a
replacement to field measurements.
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TRAFFIC FLOW MODELS

Congestion Scenario-Based Vehicle Classification Detection Models
Based on Traffic Flow Characteristics and Observed Event Da
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hile the existing applied length-based vehicle classification model has been to estimate

vehicle lengths accurately with dual-loop traffic monitoring station data under the free
traffic condition, it produces considerable errors against congested traffic. In this study, both
ground-truth vehicle trajectory and simultaneous loop event data are used to characterize the
impact of congested traffic on vehicle classification. Eight scenarios are synthesized to define the
vehicles’ stopping locations over two single loops of the dual-loop station. Under the
synchronized traffic flow, acceleration or deceleration is considered in the new developed
Vehicle Classification under Synchronized Traffic model (VC-Sync model) to reflect the speed
variation between loops. As a result, the error of the vehicle classification is reduced from 33.5%
to 6.7%, compared to the existing applied model. Under the stop-and-go traffic condition, a stop-
on-both-loops-only (SBL) was developed along with the VC-Sync model to simplify the
complexity of the congested traffic situation in vehicle length estimation. Using the SBL model
reduces the error from 235% to 17.1%, compared to the existing applied model. Capability of
identifying traffic phases is a critical prerequisite to applying the new vehicle classification
models under congestions. Therefore, an innovative method for identifying the traffic phases has
been proposed based on the existing traffic stream models along with the new findings of the
authors’ empirical data analysis. As a result, a heuristic traffic phase identification model has
been developed and successfully applied in the case study for evaluating the new length-based
vehicle classification models with dual-loop data.

INTRODUCTION

This paper presents a scenario-based vehicle classification modeling method to estimate vehicle
length via revealing possible scenarios of congested traffic impact on accuracy of vehicle length
detection at a dual-loop station. The modeling effort addresses two issues: (1) identifying a
sound solution to the problem of distinguishing congestion conditions that could be measured by
loop data based on traffic flow characteristics and new findings resulting from analysis of the
video-based vehicular event data, and (2) developing scenario-based models for improving
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vehicle length estimation under congested traffic flows with evaluation of its improved accuracy
by comparing the results with the existing applied model.

A dual-loop detector consists of two single-loop detectors placed with a fixed distance
between single loops (e.g., 20 ft or 6 m), as shown in . A vehicle can be detected by the
dual-loop detector as electrical pulses of current are deduced in the loops when the vehicle enters
and leaves the loop detection area. Each event of the electrical pulse is recorded as a timestamp.
Normally, four timestamps, ¢, t,, #3, and #4 are recorded when a vehicle is operating through the
loop detector area, as illustrated by Figure 1. This feature enables measuring traffic speed over
the detection area, which is one of the key factors in estimating the vehicle length. Vehicle types
are then identified in three or four “bins” based on the detected vehicle lengths.

In the existing applied vehicle classification model (which was then proven to be good
for free traffic flow), no variation of a vehicle’s speed on both single loops is assumed (7). The
existing model is described as follows:

speed 2? (1)
vehicle_length = speed X OnTp+ Onty -loop_length (2)
where

D = distance between two loops (ft);
t =HKL—1;
OonT, =t —-1;
OnT, =t4—t3;and
t1, 1, t3, and t, = time stamps when a vehicle enters or leaves the upstream loop (M loop) or
downstream loop (S loop) (Figure 1).

Under congested traffic, however, a vehicle’s speed changes frequently and even fiercely
as it is traveling through the loops. In order to improve the accuracy of the vehicle length
estimation against congested traffic, the authors extracted the ground-truth vehicle event data
from video by using the software VEVID (2), which was finally compiled into high-resolution
vehicular trajectory data. Meanwhile, simultaneous event data are derived from the dual-loop
data. The sampling dual-loop station is located in the freeway I-71/I-74 in Columbus, Ohio (3).
Both datasets were used to define scenarios of vehicles” maneuvers as traversing through the
loops and model the traffic conditions based on applied traffic stream characteristics and relevant
theories. Finally, new models suitable for congested flows were developed and evaluated with
the ground-truth data.

LITERATURE REVIEW

Greenshields (4) firstly proposed the traffic stream theory addressing the relationships among
flow rate, speed, and density, in which speed and density are assumed to be linearly correlated.
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FIGURE 1 Layout of a dual-loop detector on highway.

Greenberg (5) revised the model of the speed and density to fit a logarithmic curve, based
on a hydrodynamic analogy and assumption regarding the traffic flow as a perfect fluid and one-
dimensional compressible flow. Underwood (6) used exponential expression for such a model.
Researchers have disclosed the discontinuities of the relationships between traffic variables. Edie
(7) quantified the linear relationship between density and the logarithm of velocity above the
optimum velocity for uncongested traffic and velocity and the logarithm of spacing (the inverse of
density) for congested traffic. Multiple curves are often applied to depict the discontinuities. For
instance, Koshi (8) proposed a reverse lambda shape to describe the flow—density relationship.
May (9) developed the “two-regime” models to describe the relationship of flow and density. Hall
(10) proposed an inverted-V shape to represent the flow-occupancy relationship. Polus and
Pollatschek (/1) proposed three regimes of traffic flows (free, dense, and unstable flows), and
traffic breakdown was explained as the change from dense flow to unstable flow.

Kerner and Konhéuser (/2) and Kerner and Klenov (/3) defined traffic flows in three
categories: free flow, synchronized flow, and stop-and-go flow. The free flow has high travel
speed and low traffic volume and density. The congested traffic flow is further classified into
synchronized flow (S) and wide moving jam (J). The synchronized flow has relative low speed
and high volume and density. A wide moving jam is a moving jam that maintains the mean
velocity of the downstream front of the jam as the jam propagates. They also disclosed the
double Z-characteristic shape for relating speed and density. The empirical double Z-
characteristic shape is used to depict the phase transitions between two different phases. F—S
(free flow to synchronized flow) and S—1J (synchronized flow to jam flow) transitions can be
illustrated by a double Z shape (or termed Z-characteristic) for the F—»S—J (free to synchronized
to jam conditions) transitions. The double Z-characteristic consists of a Z-characteristic for an
F—S transition and a Z-characteristic for an S—J transition, as well as the phases associated
with the critical speeds required for the phase transitions. The synchronized traffic defined by
Kerner is also described as the traffic oscillation by other researchers (/4—18). Treiber and

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

52 TR Circular E-C197: Celebrating 50 Years of Traffic Flow Theory

Kesting (/9) studied the convective instability in congested traffic flow, and they classified
congested traffic flow into five classes according to the stability that lead to significantly
different sets of traffic patterns (20).

It is necessary to determine what traffic variables and thresholds of the selected traffic
variables will be used to describe the traffic phases and identify the transitions between them.
Habib-Mattar et al. (27) found out that the congestion would occur if the situation, where the
speed is less than 37 mph and the density is greater than 64 vpmpl, lasts at least 5 min. Chow et
al.’s study (22) indicates that if the speed drop is greater than 5 mph during a 5-min period, then
the traffic flow is at the congestion situation. Lorenz and Elefteriadou (23) defined a traffic
breakdown as the traffic condition in which the average speed of all lanes on a highway section
decreases to below 90 km/h for at least a 15-min period, and then Elefteriadou and
Lertworawanich (24) changed the speed threshold to below 80 km/h. On the other hand, other
studies indicated that speed alone is insufficient to ensure the identification of congestion.
Congestion may not be detected by the speed-based algorithm only, and “perhaps the optimal
speed thresholds are different above a certain occupancy threshold” (25). Zhang et al. (26) used
four features to characterize an oscillatory traffic pattern: the occurrence of oscillation, the offset
of the oscillation patterns different lanes, the oscillation period, and the oscillation amplitude in
flow levels. They set the extreme jam density of 240 vpmpl, flow speed of 50 mph, and wave
speed of 10 mph. Deng et al. (27) proposed a three-detector approach to identify traffic states
using multiple data sources, including loop detector counts, AVI Bluetooth travel time readings,
and GPS location samples. However, it is not always easy in practice to obtain the sensor data
from all three sources for the traffic flow on a certain highway segment.

Since the event dual-loop data record individual vehicles’ timestamps over the loops,
they are usually applied in traffic analysis to derive traveling features of the vehicles (/, 28—31).
The traffic parameters, such as traffic volume, speed, and occupancy or density can be extracted
or calculated from the event dual-loop detector datasets, which further enable calculating vehicle
lengths. The existing applied model of estimating vehicle lengths via dual-loop data (32) is based
on the assumption that vehicles drive across the dual-loop detection area at a constant speed. The
model has been validated well against light traffic. Under light traffic condition, vehicles operate
at a relatively high and stable speed, which can be considered at a constant speed. According to
Kerner’s Three Phases theory, during uncongested traffic flow it is reasonable that vehicle
speeds are regarded as constant. However, during congested traffic, especially stop-and-go
traffic, vehicle speeds become very unstable and are not constant. When the existing model is
used to estimate vehicle lengths, the accelerations and decelerations of vehicles will distort the
outputs of the model. Accuracy of vehicle classification drops greatly under very congested
traffic (33). It is reported that observed errors in truck misclassification ranged from 30% to 41%
for off-peak hours, and from 33% to 55% for peak hours (32). Li (34) developed a method of
Bayesian inference for vehicle speed and length estimation using dual-loop data. But the
congested traffic flow features were not addressed in the method, and it was only tested using the
traffic flow data with the average speed of 56 mph.
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DATA COLLECTION

The selected dual-loop detector station, numbered as V1002, is located in the interstate freeway
[-70/71 at West Mound Street downtown Columbus, and has six dual-loop detectors in both
directions of the highway. A video camera was placed on the top of the Franklin County Juvenile
Parking Garage that is close to the station to videotape the traffic flow on I-70/71 over the dual-
loop detector station, as shown by Figure 2.

Three-day traffic videotaping was conducted July 14—-16, 2009. A total of 26 h of traffic
video data were collected, including light traffic and congestion traffic flows. The concurrent
event dual-loop data were obtained from the traffic management center (TMC) at the Ohio
Department of Transportation (DOT). The event loop data is the raw data from the dual-loop
station, which records the timestamps of each vehicle as it enters and leaves each loop. The
scanning frequency of the loop is 60 Hz, that is, occupied status of a loop is automatically
updated 60 times per second.

The ground-truth data used in this study is the vehicle trajectory data extracted from the
collected traffic video footage. The software VEVID (2) was employed to extract the ground-
truth vehicle trajectory data from the video.

A QSTARZ BT-Q1200 Ultra GPS Travel Recorder was adopted as the data logger to
collect GPS data. The GPS travel data logger was equipped in a probe car running roundly along
freeway segments of the I-70/I-71, which cover the selected station. The data logger can collect
the probe vehicle’s speed and location information by second. Some parameters that represent
characteristics of very congested traffic can be derived from the statistical analysis of the
collected GPS data, which include range of acceleration or deceleration rate and average
minimum speed to maintain a vehicle’s moving.

DISTINGUISHING TRAFFIC FLOW STATES OR CONDITIONS

Traffic Flow Condition Determined by Phase Representative Variables

Flow rate has been conventionally used as one of the measurable variables to depict the
characteristics of the traffic flow in previous studies; however, application of the flow rate alone

may be problematic to identifying the traffic conditions (or phases) when the length-based
vehicle classification is practiced with dual-loop data. Firstly, any flow rate value may be

Dual-Loop Station Eg :.:\\ Videotaping Range @ =

e T

FIGURE 2 Video ata collection and loop station at stu.
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explained by two or more traffic phases (e.g., uncongested or congested traffic), which may
cause a wrong identification of traffic condition. Secondly, the flow rate is an aggregated
outcome from the dual-loop—based vehicle classification model and is supposed to be produced
after the traffic phase is identified. That leads to an illogic procedure in practice. Timestamps and
occupancies of a vehicle entering and leaving the loops are direct outputs of the loop data. Speed
and density can be estimated as a mathematical function of the timestamps and occupancies.
According to Kerner’s empirical double Z-characteristic shape (as shown in Figure 3), the speed
and density are two variables that can be used to determine the boundaries of each traffic flow
phase. The speed and density/occupancy are accordingly identified as the phase representative
variables in this study.

In Kerner’s study (/3) speed and density were applied to depict the empirical double Z-
characteristic shape for the phase transitions between two different phases. The original Z-
characteristic shape was enhanced and simplified in the study, as illustrated in Figure 3. It
conceptually provides a profile of all the possible phases of traffic flows that could be justified
by speed and density (or occupancy). Density can be estimated from the loop data by Equation 3
if the average vehicle length of the traffic flow for varying time of a day could be predetermined
based on the historical traffic data.

K. = 1000XO0¢¢ (3)
Ly+Lesy

where

K; = density of the traffic flow (vpkmpl) for time period i of a day,
O.. =loop occupancy measurement (%),

L, = average vehicle length (m), and

Ly = effective detector length (m).
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FIGURE 3 Classified traffic flow states (based on Kerner’s Z-curve and data in this study).
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To simplify the procedure of the traffic condition identification, the F—S transition was
merged into the free flow phase and S—1J transition into the synchronized phase. Equation 4 was
proposed to facilitate the development of a computing algorithm that will be used to determine
the traffic flow phase F(t;) of any time period i.

FF,IF [u >80 & k<28.1]ORIF [v(t) — v(t + 1) < Av & var(v) < v*]
SF,IF[32<u<80 & 11.2<k<49.71ORIF [(v(t) —v(t + 1) > Avorvar(v) = v*) &
(occ(t) —occ(t + 1) < Aocc) & (occ(t) < occ*)] @)

Flt)= TILIF[0<u<32&k>31.1]ORIF [(#(t) —v(t + 1) > Avorvar(v) = v*) &
(occ(t) — occ(t + 1) > Aocc) or (occ(t) > occ )]
SU, IF others
where

k = density (vpkmpl);
u = speek (km/h);
i =time period i;
FF = free-flow phase;
SF = synchronized flow phase;
TJ = traffic jam phase;
SU = special or unreasonable case;
t = ashort period of time (5 min in this study);
v(t) = the average speed in time interval ¢z, km/h;
v(t + 1) = the average speed in the successive time interval # + 1, km/h;
var(v) = the variation of all vehicles’ speed during time interval ;
Av = predefined threshold of spot speed difference in successive time intervals, km/h;
V= predefined threshold of the speed variation range in successive time intervals, km/h;
occ(t) = the average occupancy during time interval ¢, and occ(t + 1) = the average
occupancy in the successive time interval z + 1;
Aocc = the predefined occupancy bandwidth during the time interval ¢; and
occ* = the maximum average occupancy during the time interval ¢.

In this study, the percentage of types of vehicles and their average lengths are obtained
from the sample dual-loop data at the dual-loop station V1002. The sample size is 13,722. The
three-bin scheme standard adopted by Ohio DOT is used. The sample data indicates that the
percentages of small vehicle (length < 8.5 m), medium vehicle (8.5 m < length < 14.0 m), and
large vehicle (length > 14.0 m) are 86%, 4%, and 10%, respectively. Their mean lengths are
estimated as 5.0, 11.1, and 22.6 m, respectively. At V1002, Ls is 2.6 m, and then, L, = 0.86 x 5.0
+0.04 x 11.1 +0.10 x 22.6 = 7.0 m. The assumed phase representative variables are evaluated
against the real-world dual-loop data and the VEVID-based vehicular trajectory data. In light of
the statistical analysis performed on the collected ground-truth and loop data, the thresholds of
Av is determined as 16.1 km/h, and v" is determined as 127.7 km/h” (or the standard deviation is
11.3 km/h), Aocc is defined as 0.3, and occ is 0.35. To better understand the relationship
between each defined traffic phase and the associated level of service (LOS), the LOS is overlaid
in Figure 3 with corresponding density ranges as defined in the Highway Capacity Manual 2010
(35).
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MODELING SCENARIOS OF CONGESTED VEHICLE MANEUVERS OVER LOOPS

Under the synchronized traffic, vehicles speeds may change rapidly and frequently. In other
words, a vehicle may drive over the upstream and downstream loops at different speeds as it
increases or decreases its speed after leaving the upstream loop. Under this circumstance, the
vehicle’s acceleration or deceleration, which is not considered in the existing applied model,
should not be ignored and is assumed to affect measurement of the vehicle length in great part.
The characteristics of vehicle movement in the stop-and-go traffic flow are much different from
the free or synchronized flow traffic. Vehicles are operating at a high, relatively constant speed
under the free-flow traffic, and the free-flow traffic will transit to the synchronized traffic flow
when the traffic speed drops significantly. The synchronized traffic flow will change into stop-
and-go traffic when the traffic speed becomes very slow with more frequent acceleration or
deceleration involved, and from time to time vehicles have to experience one or more stops.
Under the stop-and-go traffic phase, a vehicle may stop within the dual-loop detection area for at
least one time. The existing applied vehicle classification model produced more errors under the
stop-and-go traffic, especially for large vehicles (see ), and the sample error even
reaches 235%. It is observed from the comparison of the video-based vehicular event data and
result from the existing applied model that the vehicle traveling features against stop-and-go
traffic, such as acceleration or deceleration, and situation of vehicle stopping on loops, actually
affect the estimation of vehicle lengths. An updated length-based vehicle classification model is
therefore developed to improve the accuracy of vehicle length estimation under the stop-and-go
traffic.

After careful analysis of synchronizing the ground-truth vehicular trajectory data and the
dual-loop data, eight possible scenarios were synthesized based on possible stopping locations of
the detected vehicles within the detection area, as illustrated by . Those eight scenarios
are briefly described as follows.

Scenario 1. The vehicle drives across the dual-loop detection area without a stop, which
is a typical synchronized flow feature.

Scenario 2. The vehicle stops merely on the M loop and then leaves the dual-loop
detection area without another stop.

Scenario 3. The vehicle runs across the M loop and stops only on the S loop.

Scenario 4. The vehicle comes into the dual-loop detection area and stops only on both
the M and S loops and then leaves the detection area without another stop.

Scenario 5. The vehicle stops on the M loop and then moves on and then stops on the S
loop and finally leaves the detection area without another stop.

Scenario 6. The vehicle stops first on the M loop and then stops on both the M and S
loops and finally leaves the detection area.

Scenario 7. The vehicle stops first on both of the M and S loops, and then stops only on S
loop.

Scenario 8. The vehicle stops first only on the M loop and then stops on both of the M
and S loop, and finally stops only on the S loop. Eventually the vehicle leaves the dual-loop
detection area without another stop.
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FIGURE 4 Vehicle length estimation of the existing applied
model under stop-and-go traffic.
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FIGURE 5 Scenarios of vehicle stopping on dual loops under congestion:
(a) vehicle stop locations when one stop happened on loops and
(b) vehicle stop locations when two or more stops happened on loops.
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Statistical analysis of the sample data indicates that Scenarios 1 through 4 happened
much more frequently than other scenarios ( and ). Scenarios 1 through 4 were
hence focused in the study, and other scenarios will be considered in the future once sufficient
sample data will be gained.

Under the stop-and-go traffic flow, a detected vehicle’s stopping status can be estimated
based on its corresponding dual-loop data (i.e., the time stamps). An algorithm, as illustrated by

, was developed using On-times and difference of On-times to determine the scenario
that the detected vehicle has fallen in. Based on the determined scenario, a suitable vehicle
classification model can be applied to estimate the vehicle length.

In this algorithm, timestamp ¢, ,, t3, t4, OnT}, and OnT; are adopted as the variables. £ is
defined as the threshold of On7; and On75, and ¢, is defined as the threshold of the differences
the timestamps. For a vehicle operating under the stop-and-go traffic condition:

1. Ifboth of OnT) and OnT; are less than ¢, it indicates that the vehicle did not make a
stop within the dual-loop detection area, which means this vehicle falls into Scenario 1.

2. IfOnT; is larger than ¢, and OnT; is less than ¢, it indicates that the vehicle spent
much longer time on the upstream loop, and this vehicle will be identified into Scenario 2.

3. IfOnT; is less than #;;, and On7T3 is larger than ¢, it indicates that the vehicle spent
much longer time on the downstream loop, and this vehicle will be identified into Scenario 3.

4. Ifboth of OnT} and OnT; are larger than ¢, and t3 — t; <ty and t4— t, <ty (11, t2, t3, and
14, are the same as defined previously), the vehicle can be identified as falling into Scenario 4.

5. In this study, in light of the statistical analysis on the dual-loop data under stop-and-
go traffic, the thresholds are determined as: #,; = 4.1 s, and ¢, = 3.0 s. A flow chart of the
scenario identification algorithm is illustrated by Figure 7.
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FIGURE 6 Percentage of vehicle stopping status in congested traffic.

TABLE 1 Vehicle Stopping Status Statistics

Scenario 1 2 3 4 5 6 7 8
Percentage | 67.3% 9.7% 12.1% 4.6% 4.2% 0.9% 0.7% 0.5%
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FIGURE 7 Scenario identification algorithm. (Note: t is the threshold of OnT; and OnT,,
and ty is the threshold of timestamp differences; ty, t2, {3, t4, OnTy, and OnT; are the same as
defined previously. In this study, ty and ty are determined as 4.1 and 3.0 s, respectively.)

LENGTH-BASED VEHICLE CLASSIFICATION MODELS UNDER CONGESTION
Vehicle Classification Model Under Synchronized Flow (Scenarios 1 Through 3)

Scenario 1 is a typical case of the synchronized traffic. Its flow density is higher than the free
flow, and the freedom of maneuvers is greatly restricted. The travel speed is lower than the free
flow, and higher than the stop-and-go flow. The VC-Sync model was proposed to estimate
vehicle lengths under the synchronized traffic flow. In this model, a vehicle is assumed to pass
the detection area at a constant acceleration rate a (a can be either positive or negative) without a
stop. The length of the vehicle passing over the dual-loop detection area can be calculated by the
equations as follows:

L, =v,-OnT, 4—%(1(0717’1)2 -L, (%)
D a-t

_D_at (6)

T

P 2-(OnT, - OnT,) (7)
¢ | (OnT,)* —(OnT)* +(OnT, +OnT,) -t

where
L, = length of the detected vehicle (ft);

L, = length of each single loop which makes up a dual-loop detector (ft);
v, = speed of the vehicle at the moment it is to enter the upstream loop (M loop) (ft/s);
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a = vehicle acceleration (ft/s*); and
D = distance between two loops (ft).

t=t:—1,0nT; =t —t;,and OnT, = t4 — t3, 11, 12, 13, and #4 are time stamps when a vehicle
enters or leaves the upstream loop (M loop) or downstream loop (S loop) (Figure 1).

Scenarios 2 and 3 can be viewed as special cases of Scenario 1. Scenario 2 is
approximately equivalent to the situation in which a vehicle stops merely at the front edge of the
upstream loop and then goes across the detection area without a further stop. This situation can
be explained that a vehicle under the synchronized traffic is traversing through the detection area
with acceleration and an initial speed of zero. Similarly, Scenario 3 is approximately equivalent
to the situation in which a vehicle goes across the detection area without a stop and only stops at
the end edge of the downstream loop. This situation can be interpreted that a vehicle under the
synchronized traffic is traversing through the detection area with deceleration and a final speed
of zero.

Vehicle Classification Model Under Stop-and-Go Flow (Scenario 4)

The stop-and-go traffic has much slower speeds, involving more frequent acceleration or
deceleration maneuvers. Under the stop-and-go condition, a vehicle may stop within the
detection area for at least once. Based on the ground-truth data, a statistical analysis was
conducted to identify the pattern of vehicle stopping locations. As a result, the SBL model was
developed to estimate the vehicle lengths under Scenario 4. For simplicity, it is assumed that the
detected vehicle stops right in the middle of the dual loop. After stopping for a period of time ¢,
the vehicle restarts to leave the dual-loop detection area at an acceleration rate a. The SBL model
is expressed by Equation 8:

1 1
Lv:J{l'tdec.D';-’-EJ(Z.a'taccz_Ls (8)

where

tiec t lace = Ol’lT] — I and Lk=h—13 _f3 * tzacc/vmin;
L, = length of vehicle (ft);
L, = length of each single loop (ft);
taec = time period as a vehicle enters the M loop until it stops (s);
tace = time period as a vehicle starts to move and leaves the M loop (s);
a = the average acceleration of vehicles as they start to move under
stop-and go traffic (ft/s’);
t; = time period for a vehicle to stop on both loops (s);
Vmin = average minimum speed remaining without stop (ft/s);
f1, /2, and f3 = adjusting factors for different vehicle types (in this study,
fi=f=f;=1); and

D, t, t, t3, OnT}, and OnT; = as the same as defined previously.

In order to make the SBL model applicable to estimating vehicle lengths in practice, the
vehicle’s acceleration rate (a) and average minimum non-stop speed (vmin) need to be
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predetermined. In reality, however, it’s extremely difficult to simply derive the acceleration rate
of a detected vehicle from its corresponding dual-loop raw data under the stop-and-go condition.
The GPS data collected by using GPS data loggers is therefore used to obtain a and vy,;,. Based
on the collected GPS data, the variables involved in the SBL model were eventually determined
as follows: the average acceleration rate is 2.5 ft/s* and the average minimum speed vy is 7 ft/s.

Finally, the simulated vehicle lengths from the new developed models were compared
with the results from the existing model while the ground-truth event data was used as a
benchmark. The relative error is reduced from 33.5% of the existing model to 6.7% of the VC-
Sync model under Scenarios 1 through 3 (see ). Under the stop-and-go traffic condition
as represented by Scenario 4, the relative error was reduced from 235% of the existing model to
17.1% of the SBL model ( and ).
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= 140 —x— Existing Model n
: 120 —4— V/C-Sync Model 1 TT “ )
e 100
E 80 ’f“v if i‘i | “‘“,
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FIGURE 8 Estimated vehicle lengths under synchronized traffic.
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FIGURE 9 Estimated vehicle lengths under stop-and-go traffic.
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TABLE 2 Relative Errors Produced by Classification Models

Traffic Flow Condition Vehicle Classification Model Error Produced
. VC-Sync Model 6.7%
Synchronized flow Existing Model 33.5%
Ston-and-o flow SBL Model 17.1%
p-and-g Existing Model 235%

CONCLUSION

The scenario-based vehicle classification models against both synchronized and stop-and-go
traffic flows were developed by fully considering the impact of congested traffic flows. On the
basis of watching synchronizing the ground-truth vehicular trajectory data and the dual-loop
data, eight possible scenarios were synthesized based on possible stopping locations of the
detected vehicles within the detection area. Those eight scenarios reflect the situations of vehicle
stopping over loops, which were observed to occur with high possibility in the dual-loop
detection area. This synthesized method simplifies the modeling of the vehicles” movements to
reveal the impact of traffic on the identification of vehicle lengths at the dual-loop station. Under
the synchronized traffic flow, acceleration or deceleration is considered in the VC-Sync model to
reflect the speed variation between both loops, which were not conventionally considered in the
existing applied models. As a result, the error of the vehicle length estimation is reduced from
33.5% by using the existing model to 6.7% by using the VC-Sync model. Under the stop-and-go
traffic condition, the stopping status was synthesized into typical scenarios in the SBL model,
which makes it easier to identify the variables involved in the associate vehicle length modeling.
As a result, the error is reduced by using the SBL. model from 235% to 17.1%, compared with
the existing applied model.

Capability of identifying traffic phases is a critical support to applying the length-based
vehicle classification models. This paper presents an innovative method for identifying the traffic
phases that was developed based on integrated analysis of the existing traffic stream models and
the new findings from the authors’ empirical data analysis and modeling efforts. As a result, a
heuristic traffic phase identification model has developed and successfully applied in the case
study for evaluating the new length-based vehicle classification models with dual-loop data.
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TRAFFIC FLOW MODELS

Optimal Velocity Model with
Dual Boundary Optimal Velocity Function

HAO WANG
Southeast University, China
University of California, Davis

his paper proposes a dual boundary optimal velocity model (DBOVM) by substituting a dual

boundary optimal velocity function (DBOVF) for the original one in the optimal velocity
model (OVM). The proposed DBOVM can describe the driving behavior of accepting a range of
satisfied conditions instead of an optimal one under steady traffic. The speed adjustment
mechanism is introduced into the DBOVM, by which traffic flow can reach the steady state
everywhere inside of the dual boundary steady region. Properties of traffic state transition in the
law of DBOVM are analyzed. The approximately linear path of state transition is found, and four
typical state transition patterns are presented. Besides, the stability of DBOVM is studied by
means of numerical simulations. It is found that the dual boundary steady region has the
hysteresis effect that is similar to the explicit time delay in the OVM. The speed adjustment
mechanism can restrain the hysteresis to some extent and improve the traffic stability. The dual
boundary steady region in the general DBOVM allows the traffic flow to reach some new steady
state slightly apart from the formal one under the effect of small perturbation, which does not
exist for models containing one-dimensional optimal velocity functions.

INTRODUCTION

Car-following models, as one of the most useful tools for describing traffic dynamics, have been
developed for more than six decades. There are two main objectives in the car-following process:
(1) reducing the speed difference and (2) maintaining an appropriate spacing between the
following vehicle and the leading vehicle. Most early models as represented by Gazis-Herman-
Rothery models were developed based on the first objective but failed to describe the second
one. Newell (/) proposed a different model, which successfully captures the characteristic of car-
following behaviors in maintaining an optimal spacing corresponding to the driving speed.
However, because of the speed expression of the Newell model, it is not convenient to be used in
traffic simulations. Thirty years later, OVM was developed (2, 3). Similar to the Newell model,
the OVM contains the optimal velocity function, which allows the following vehicle to adjust its
speed toward the optimal one, and consequently maintain the appropriate spacing. Moreover, the
OVM does not have a time delay in its model expression, which makes it convenient for
theoretical analysis. Because of these advantages, the OVM has drawn widespread attention
during the last 20 years (4, 5).

The optimal velocity function assumes that there is a one-to-one correspondence between
the spatial headway and the optimal driving speed in steady traffic state. However, such an
assumption may be too ideal from the driver’s perspective (6). Experience demonstrates that
drivers are satisfied with a range of conditions instead of an accurate optimal performance.

65
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Actually, this fact was also noticed in some early studies related to the psychophysical or action
point models (7). The action point models classify the driving conditions into several scenarios
separated by threshold boundaries in the “spacing-relative speed” diagram. Drivers will not
adopt acceleration or deceleration until the changes in conditions exceed the thresholds of
drivers’ perception. For instance, the Fritzsche model (8) and the Wiedemann model (9) have a
two-dimensional zone in the spacing—relative speed diagram, within which drivers are satisfied
with current conditions and maintain their speeds regardless of the performance of leading
vehicles. Though the fundamentals of the action point model are closer to real driving behaviors,
the complexity of model structure and the difficulty in calibration of thresholds restrict its
application in theoretical research areas.

Another question about the assumption of optimal velocity function in the OVM came
from the macroscopic observations of freeway traffic flow in recent years. Kerner and Rehborn
(10, 11) first reported the widely scattered data of congested traffic in the fundamental diagram.
Moreover, it was found that even the unstable data being removed, the remained steady traffic
data still scatter in a two-dimensional area in the flow—density plot. These empirical findings
indicate that there might be an acceptable range of spacing within which drivers are satisfied. In
order to model such phenomenon, several microscopic traffic flow models were developed in
recent years (/2—15). Though solutions of steady state in these models occupy two-dimensional
areas, the numbers of parameters are more than the OVM, which increases the complexity of
models and reduces the efficiency.

In this paper, a DBOVM is proposed with the original optimal velocity function replaced
by a DBOVF. The DBOVF is determined by two optimal velocity functions with different
parameter values, which provides a range for spacing choosing in steady state. By introducing
the DBOVF into the original OVM, the new model allows drivers to reach their steady states
within a wide region instead of a specific optimal solution. Besides, the DBOVM also shows
some interesting properties different from the original OVM, which are also worthy of attention.

The rest of the paper is organized as follows. First, the basic DBOVM and a simple
example of DBOVF are presented in Section 2, and then stability analysis based on numerical
simulation is conducted. In Section 3, a more general form of DBOVM is proposed, and some
related model properties are analyzed. Some results of comparison analysis between the
DBOVM and the original OVM are also provided through numerical simulations. Finally, the
possibility of model extension is discussed.

BASIC DBOVM
The Model

Considering the facts that drivers would like to accept a range of spacing instead of an optimal
one, it is assumed that the steady state occupies a two-dimensional area in the speed-spacing
diagram. As shown in , there are two boundaries in the steady state region. Each
boundary can be formulated by a certain type of optimal velocity function. The two boundaries
of the steady state divide the speed-spacing diagram into three regions. In Region I, the spacing
is too small for the driver to accept, and the driver will reduce the speed toward the optimal
speed indicated by the left boundary optimal velocity function. In Region III the spacing is too
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FIGURE 1 Illustration of DBOVF.

large, and the driver will accelerate toward the optimal speed indicated by the right boundary

67

optimal velocity function. In Region II the driver is satisfied with current conditions and will not

change the speed until the vehicle moves out of this steady region.
According to above assumptions, the basic DBOVM is expressed as follows.

KV, (4Ax,) =%, (0)}  if %, (1) >V, (4x,)

¥, (1)=40 if Vi(Ax,)<x,(t)<V, (4x,) (1)

k{Ve(Ax,) =%, (1)} if =%, (1) <V, (4x,)

where x,(7) denotes the position of the nth vehicle, « is the sensitivity parameter, V;(Ax,) and

Vr(Ax,) denote the optimal velocity functions of left boundary and right boundary respectively.

The space headway is noted as Ax,(f) = x, - 1(£) — x,(2).
Simple Example of DBOVF
Many types of optimal velocity functions were proposed during the history of traffic flow

studies. Among them there are three typical types that were used most widely by researchers,
namely, the convex type represented by the exponential function (/), the piecewise linear

function represented by triangle fundamental diagram model (/6), and the S-shape function (2).

In order to make comparison with the original OVM, Bando’s S-shape function is used as the
boundary function to build the DBOVF. Before modeling the DBOVF, two requirements are
considered as follows:

1. The range of spacing in the steady state increases with the speed increasing; and
2. For a given speed v,, the smallest and largest spacing in steady state are
Ax, =V " (v,) and Ax, =V,;"(v,), then the derivatives of the two boundary-optimal-velocity-

functions at Ax; and Axg should satisfy the following inequation: ¥, (4x, )2V, (4x,)-

The first requirement comes from the studies on psychophysical car-following models
(17, 18). These studies indicated that drivers perceive spacing changes through changes on a
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visual angle subtended by the vehicle ahead. Under such a concept, the range of spacing in
steady state may also be perceived through a change on a visual angle, which is supposed to be
nearly stable for various driving speeds. As the visual angle approximates to the ratio of the
vehicle width to the spacing and the spacing generally increases with the speed increasing, the
range of spacing is positively correlated to the driving speed.

The second requirement is from the consideration that the deceleration is usually stronger
than the acceleration at the margin of steady state. Suppose a vehicle moves a small distance ¢
away from the left boundary of steady state Ax;, with the speed remaining as v, = V;(Ax.). Then,
the deceleration age according to the DBOVM is

Adec — K[ VL(AXL) - 6) - Ve] (2)
Expanding Equation 2 at Ax; and ignoring the higher order terms results in
adec = _Ké‘VL, (AXL) (3)

When the vehicle moves a small distance § away from the right boundary of steady state
Axg, the acceleration aac. 1S

aacc = Ké‘VR, (AxR ) (4)

Therefore, the requirement of y, (Ax, ) 2V, (4x, ) ensures the asymmetry between the

acceleration and the deceleration, in other words,

aafec|2 aacc ‘

The S-shape optimal velocity function used in Bando’s work (3) is given as
V(Ax) = V) + Vatanh[C1Ax — C;] (%)

where all parameters, V1, V>, C;, C, are positive values. Based on the requirements discussed
above, a simple DBOVF follows:

V(Ax) = V; + Vytanh[C;Ax - C,], C; € [Cir, CiL] (6)
and the two boundary-optimal-velocity-functions are given by
Left boundary: v, (4x) =V, +V, tanh [C,, 4x - C, ] (6a)

Right boundary: 7, (Ax) =¥, + 7, tanh [C,,Ax  C, ] (6b)

The parameter C) in the original OVM is replaced by C;; and C g, which correspond to
the left boundary and the right boundary, respectively. The proposed DBOVF has a very simple
model structure and satisfies all the requirements listed above. In the following parts of this
section, the authors will use it together with Equation 1 as the basic DBOVM to explore the
properties of the model.
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Stability Features of the Basic DBOVM

As a multiphase car-following model, the DBOVM does not have a uniform model expression,
which makes it difficult for the analytical stability analysis. In view of this fact, numerical
simulations are used to study the stability features of the basic DBOVM.

Local Stability

Treiber and Kesting (/9) gave a detailed theoretical analysis on traffic stability in their recent
book. It is pointed out that all time-continuous car-following models with a negative derivative
of acceleration with respect to speed are unconditionally locally stable, if there are no explicit
reaction times in models. Recall the dual-boundary-optimal-velocity-function displayed in Figure
1, the basic DBOVM satisfies the criterion suggested by Treiber and Kesting when the local
traffic state is located outside of the dual boundary steady region. However, as the driver does
not perform any acceleration within the steady region, it delays the driver’s response to the
leading vehicle when the traffic state moves through the dual boundary region in the speed-
spacing phase diagram. Therefore, the basic DBOVM is analogous to the OVM with explicit
delay (3) in some extent. The simulation studies on the local stability of the basic DBOVM are as
follows.

In order to make a comparison study, we use the same parameters as the early literature
(3) used for the original OVM, namely, V; = 15.3 m/s, V> =16.8 m/s, C; =0.086 m ', C; =2.1,
and x = 2.9 s™'. For the basic DBOVM, C;; =0.088 mﬁl, Cir=0.076 mﬁl, and keep all the other
parameters the same as in the original OVM.

Three vehicles are considered in the local stability studies. All vehicles are in steady state at
the beginning of the simulation. For the studies on the basic DBOVM, the initial state of vehicles
should satisfy either the left or the right boundary optimal velocity function. Otherwise, the
following vehicles may not respond to the perturbation from the leading vehicle according to the
law of the basic DBOVM. Therefore, three simulations are conducted for three different scenarios
respectively, which are (1) initial state on the right boundary of steady region, (2) initial state on
the left boundary of steady region, and (3) initial state satisfying the optimal function in original
OVM. All three simulations begin with the driving speed of 10 m/s for all vehicles. Such a speed
ensures that the initial condition satisfies the string stability criterion of the original OVM (2).

Then a small perturbation is added on the leading vehicle by giving its position an instantaneous
change (either increasing by 1 m or reducing by 1m). The simulations are conducted with the time
step of 0.1 s, and results of the simulations are illustrated in .

Focus on the two subplots in the left side of Figure 2, which show the speed-headway
phase diagram and speed time series of the simulation for the first scenario. Data of the first
following vehicle and the second following vehicle are presented in red and blue, respectively.
The numbers of seconds counted from the beginning of the simulation are marked beside the
data points in the phase diagram. Two black curves represent the left boundary and the right
boundary of DBOVF, respectively. At the beginning (¢ = 0), both two following vehicles stay on
the right boundary of steady region. The perturbation is added onto the leading vehicle at the first
second. It is apparent that the state points spiral counterclockwise toward the initial steady state
around the left and right boundaries. After 30 s, the two following vehicles are still unable to
return to the initial steady state. Though the perturbation is quite small (less than 5% of the initial
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FIGURE 2 Phase diagram and speed time series of basic DBOVM.

spacing), it is slightly amplified during it propagating upstream. In the phase diagram the blue
state transition trajectory of the second vehicle is outside of the red trajectory of the first vehicle.

In the second scenario, both two following vehicles stay on the left boundary of the
steady region at the beginning. Similarly, the small perturbation is added onto the leading vehicle
at the first second. The results of the simulation are displayed in the two subplots in the middle
of Figure 2. There are similar dynamical properties as shown in the first scenario. The states of
the following vehicles move clockwise toward the initial steady state in a very slow manner.
Moreover, the amplification of perturbation is also observed during it propagates upstream.

The two subplots in the right-hand side of Figure 2 give the results of the simulation for
the third scenario. Under the law of the original OVM, the following vehicles return to the initial
steady state much faster through smaller spiral trajectories. Both two following vehicles are
found to recover to their initial steady state 6 s after the perturbation is added.

Since the driver does not perform any acceleration in the two-dimensional region of
steady state according to the basic DBOVM, it takes a long time to converge to the steady state.
Such property may not have remarkable influence on the local stability of the basic DBOVM,
whereas the slow convergence is likely to amplify the perturbation through the propagation. The
following gives the simulation result of the dynamics of the basic DBOVM in a long platoon.
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A Case of Perturbation Propagating Along Platoon

All parameters remained the same as in the local stability studies. The platoon on the open
boundary road involves 200 vehicles in the simulation. The initial speed and spacing are 5 m/s
and 18.2 m for all vehicles in the platoon, which satisfies the right boundary optimal velocity
function of the two-dimensional steady region. Then the perturbation is added 10 s after the
beginning of the simulation by giving the first vehicle’s position a sudden increment of 1 m. The
time step is 0.1 s. The initial conditions above ensure the string stability for both two-boundary
optimal velocity functions under the law of the original OVM [i.e., V' (Ax) < «/2)]. However,
simulation for the basic DBOVM shows that the platoon is string unstable, as illustrated in

A very slight acceleration wave can be found propagating upstream after the perturbation
occurs. Then a deceleration wave appears followed by another acceleration wave. After about
360 s from the beginning, the deceleration wave merges into the following acceleration wave,
which is again followed by a new deceleration wave. From Figure 3 it is apparent that the small
perturbation finally induces a stop-and-go wave during its propagation to the upstream of the
platoon.

The simulation above indicates that the string stable criterion of the original OVM for the
condition on boundary optimal velocity functions may not ensure the string stable of the basic
DBOVM. In other words, the two-dimensional steady region in the basic DBOVM reduces the
stability of traffic flow. The mechanism and some amendments about the model are given in the
following parts of the paper.

2000 |

1000 £ perturbation
att=10s

position (m)
=

-1000

2000 E ' '
0 100 200 300 400 500 600

time (s)

FIGURE 3 Propagation of small perturbation along the platoon in the basic DBOVM.
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GENERAL DBOVM
The Model

In order to overcome the flaw in the basic DBOVM, the speed adjustment mechanism was
introduced. In the new model, drivers are allowed to adjust their driving speeds toward the speed
of leading vehicles within the dual boundary steady region. The modified model is given below.

KV, (4x,)-x,(¢)}  if %, (1)>V, (4x,)
jé;z(t>: /I{xn—l(t)_xn (t)} l:f:VR (Axn)sxn (t)SVL (Axn) (7)
k{Ve(4x,)=x%, ()} if %, () <V, (Ax,)
where A is the sensitivity parameter of the speed difference between the leader and the follower.
The speed adjustment mechanism captures the fact that drivers try to duplicate the speed of the
vehicle ahead and maintain a stable spacing once they drive into their satisfied range of

conditions, namely, the dual boundary steady region. As the basic DBOVM can be regarded as a
special case of the new model (A = 0), the new model is called the general DBOVM.

Properties of State Transition

According to the general DBOVM, the dynamic properties of vehicles are just the same as under
the law of the original OVM, when the traffic state locates outside of the dual boundary steady
region in the speed-spacing diagram. In the following, the properties of state transition induced
by the speed adjustment mechanism inside of the dual boundary region are analyzed.

Path of State Transition

Suppose the state of the nth vehicle is located inside of the dual boundary steady region at time¢
as shown in a. The speeds of the nth vehicle and the vehicle ahead are %, (7)and

x,., (2) , respectively. According to the law of general DBOVM, the acceleration of the nth

vehicle at time¢ is given by

5, (1) = A%, (6) =%, (1)) (®)

Assume that the vehicle moves with constant acceleration during a very small time
interval T, then speeds of the nth vehicle and (n — 1)th vehicle at time ¢ + T can be expressed as

x, (t+7)=x, (¢)+7%, (1) (9a)
(9b)

xn—l (t +T) = xn—l (t) +Tj€n—l (t)

Then, the change of the spacing between the nth vehicle and (n — 1)th vehicle during the
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time interval T can be calculated as follows:

i, (12) = a5, () = 2l (0=, (O}, (05, (0] (10)

Therefore, the slope of the state transition path from time ¢ to # + 7 in the speed—spacing
phase diagram can be derived as

x, (1+7)—%

t
p=—" 1) (11)

By substituting Equations 8, 9a, 9b, and 10 into Equation 11, one gets the following

1

:1+f[5%(f)_1] (12)
A 2\ %,(1)

Equation 12 indicates that the slope B of the state transition path approximates to the
sensitivity parameter A in the general DBOVM when (1) the time step t in the numerical
calculation approaches zero, or (2) the following vehicle and the leading vehicle have similar
accelerations. Specifically, when the speed of the leading vehicle remains stable [i.e.,
¥, (¢) = 0], the slope of the state transition path is expressed as

B

(13)

Considering that the time step used in numerical simulation for car-following models is
usually quite small (e.g., T= 0.1 s), the slope of the state transition path can be approximately
expressed as A everywhere within the dual boundary steady region. As shown in Figure 45, the dual
boundary steady region involves numerous parallel linear paths of state transition, as represented by
the red lines in the figure. Once the traffic states reach the boundaries of the steady region, the traffic
states move along the state transition paths until converging at steady states. presents some
simple scenarios of traffic states transitions in the speed-spacing phase diagram.

Suppose the leading vehicle’s speed remains stable at x| (¢) during the traffic state

transition of the following vehicle. The numbers in the figure denote the traffic states in terms of
time series. The black solid dots represent the final steady states, which are always located at the
horizontal line with the speed equal to x, | (¢) . Figure 5a, b, and c display the paths of state

transitions from the start points (remarked by the number 1) to the final steady state (black solid
dots). Figure 5a shows that the traffic state can converge to the steady state directly, if the initial
state-transition-path along which the traffic state enters the dual boundary region has an
intersection point with the speed horizontal line of the leading vehicle. Otherwise, the traffic
state has to firstly move across the dual boundary region along the state-transition-path, and then
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spirals into the dual boundary region again to reach the final steady point (see Figure 5b and 5c¢).

For most cases, there is at least one critical point on the boundary where the derivative is
equal to the slope of the state transition path. Figure 5d illustrates a special case, in which four
critical points (points A, B, C, and D) exist on the two boundaries as represented by the blue
solid dots. Take the critical point A for example. When the speed of leading vehicle is lower than
that of the speed at point A, all the initial states that are located in the right-hand side of point A
cannot find paths within the dual boundary region for state transitions. Instead, the state
transition paths for such initial states go zigzag against the boundary until passing the critical
point A and then approach the final steady state along the state transition path. For the
neighborhoods around other critical points, similar properties of the state transitions can be
found, but it is not necessary to go into those details here.

0 0
(@) Ax (b) Ax

FIGURE 4 Paths of state transition within dual boundary steady region.

(©) (d)

FIGURE 5 State transitions in speed-spacing phase diagram.
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Convergence of Traffic State

After obtaining the state transition paths within the dual boundary steady region, another
interesting question is in what manner the traffic state moves along the state transition path.
Suppose the nth vehicle reaches the right boundary of the two-dimensional region at time ¢ in a
deceleration process. The speeds of the nth vehicle and the vehicle ahead are denoted as x, (7,)

andx,_ (¢,),and thusx (z,)> %, (¢,). For the sake of convenience, it is assumed that the
leading vehicle keeps the speed x, | (¢, ) stable. For a given time step 1, the speed of the nth

vehicle at time #) + T can be derived according to model Equation 7 as follows:
5, (+7) =15, (1) = A2, (1) =5, (1) (14)
Similarly, the speed of the nth vehicle at time ¢y + mt is
%, (t+m7) =, (t, +(m=1)7) - Ae{%, (t, +(m=1)7) - %,_, (t, +(m~1)7)} (15)
By recursive method, the solution to Equation 15 is
%, (4 +m7) =%, (6,) (1= 27)" = %, (1,){(1- A7) =1} (16)

Then, the speed difference between the nth vehicle and the vehicle ahead at time #, + mt
can be expressed as

A%, (t,+mr) =%, (1)) — %, (1, +mz) ={x,_, (1,) =%, (¢,)} (1= A7)" = A%, (1,) (1- A7)" (17)

Equation 17 indicates that the speed difference between the following vehicle and the
leading vehicle drops by (1 — A1) in every time step. Specifically, the speed difference drops by
(1 — ) per second, when the time step T equal to 1 s. If A =0.5 5", the speed difference drops by
half per second, which also means that the distance between the current state and the final steady
state along the state transition path is shortened by half every second as shown in . Then,
after 3 s, the speed difference drops to 1/8 times of the initial value, and the following vehicle is
approaching stable.

Recalling the basic DBOVM proposed in Section 2, as the slope of the state transition
path A = 0, the speed difference cannot get reduced during the state transition within the dual
boundary steady region. That’s why the basic DBOVM always takes an unreasonably long time
to approach the steady state. Moreover, the state transition paths in the basic DBOVM are
horizontally distributed within the steady region, which indicates that the traffic state cannot
reach the steady state theoretically. However, under the speed adjustment mechanism in general
DBOVM, the traffic state can converge to any spacing in between the dual boundary steady
region.
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FIGURE 6 Process of state transition with A = 0.5.

Stability Features of the General DBOVM
Local Stability

Using the same conditions as in the studies on the basic DBOVM, the sensitivity parameter A is set
asA=0.5s . Similar to the studies in Section 2, two simulations are conducted, one for the initial
state on right boundary and the other for left boundary. shows the simulation results of
both scenarios. The red data and the blue data represent the first following vehicle and the second
following vehicle, respectively, and the numbers denote the time series of the state points. It is
found that the slopes of all state transition paths are equal to 0.51, which is consistent with the
result computed by Equation 13. As the time step of 0.1 s is used in the simulation, the rate of
speed difference dropping per second can be computed by Equation 17 as (1 — 0.5 x 0.1)'° = 0.60.
Therefore, in every second the speed difference drops to 0.60 times of it 1 s before, which is also
consistent with the simulation results. After 6 s from the perturbation, the state of the first
following vehicle is very close to the steady state. At the tenth second, the state of vehicle
converges at some spacing between the two boundaries. Besides, it can be found that the final
steady spacing of the second following vehicle is closer to the boundary in both scenarios, which
proves that the effects of speed adjustment mechanism can allow the vehicle to reach any steady
state within the dual boundary steady region.

The general DBOVM shows a similarity in the convergence speed with that of the
original OVM, if one chooses an appropriate sensitivity parameter A. In order to have deep
insight of the dynamic features of the general DBOVM, numerical simulations on string stability
studies are conducted in following.

String Stability
The periodical ring road is used as the simulation condition for studies on string stability. The
platoon in the ring road involves 100 vehicles in total. Both the left boundary and the right

boundary are considered as the initial steady state of the platoon in the ring. A small perturbation
is added on the first vehicle by an instantaneous small jump (less than 5%) in position, and the
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FIGURE 7 Simulations on local stability of the general DBOVM.

time step is 0.1 s in all simulations. In order to make comparison, simulations are conducted for
all three models: the original OVM, the basic DBOVM (A = 0), and the general DBOVM (A =
0.5). All model parameters remained the same as in the local stability studies.

First the dynamics of the platoon under the unstable conditions are investigated. The
initial speed of the platoon is 16 m/s, which is string unstable for both the left boundary and the
right boundary under the law of OVM. gives the snapshots of the platoon’s dynamics at
the time # = 5,000 s from the time # = 0 at which the perturbation added. From the figure we can
see it is apparent that all three models produce the stop-and-go patterns after 5,000 s. The
hysteresis loop produced by the basic DBOVM is the largest in the phase diagram. With the
effect of speed adjustment mechanism, the hysteresis loop of the general DBOVM is smaller,
whereas the original OVM has the smallest one. Another important feature is the relation of the
hysteresis loops between the original OVM and the basic DBOVM. In the simulation beginning
from the left boundary of steady region, the left side of the hysteresis loop produced by the OVM
overlaps the same side of the DBOVM’s loop, while they overlap in the right side for the case
from the right boundary.

The simulation results indicate that the dual boundary steady region in the DBOVM has a
similar effect as the explicit delay for the original OVM (3), which can enlarge the hysteresis
loop in traffic dynamics. However, the speed adjustment mechanism in the general DBOVM
restrains such effect in some extent.

In the next step, the ring road simulation for every different initial steady state on the dual
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FIGURE 8 Snapshots of phase diagrams of three models at t = 5,000 s.

boundary (by the interval of 0.1 m/s in the initial speed) is repeated, and the total simulation time
to 100,000 s is added, in order to ensure that the perturbation has sufficient time for evaluation.

illustrates the resulting string unstable region for the general DBOVM and the basic
DBOVM.

The string unstable regions in the basic DBOVM (A =0) are wider than the original
OVM because of the hysteresis effect induced by the dual boundary region. However, the string
unstable regions for general DBOVM (A =0.5) are close to that of the original OVM, under the
effects of speed adjustment mechanism. Because only small perturbations are considered in the
simulations, the states of vehicles always move around the boundary where they get started, as
illustrated in Figure 5a. Therefore, the string unstable regions of speed are not the same on the
two boundaries but are related to the mathematical properties of the boundary optimal velocity
function. Moreover, as the derivative of left boundary optimal velocity function is larger than
that of the right boundary at the same speed, simulations starting from the left boundary are
likely to produce stronger acceleration (or deceleration) than the cases beginning from the right
boundary, which makes the left boundary less stable than the right one. Therefore, the unstable
region of DBOVM on the left boundary is wider than that in the right boundary.

Another interesting phenomenon that can be found is that the final steady states that the
platoon reaches after the perturbation are slightly different from the original ones where the
platoon gets started. Specifically, the speed of the final steady state is higher than the initial
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TABLE 1 String Unstable Regions in General DBOVM and Basic DBOVM

Left Boundary OVF Right Boundary OVF
V(Ax)=15.3 + 16.8 tanh [0.088 Ax — 2.1] V(Ax)=15.3 + 16.8 tanh [0.076 Ax — 2.1]

DBOVM Axe(17.9,31.7) Ax € (21.1,31.8)
A=0.5 ve(7.2,25.3) ve(7.6,20.5)

DBOVM Ax € (14.3,34.9) Ax € (15.4, 40.3)
A=0 ve(3.8,27.9) ve(3.0,27.8)

Ax € (16.5,31.2) Ax € (22.0,35.2)
OVM ve(5.7,24.9) ve(8.5,24.0)

steady state in the order of 0.1 m/s, when the platoon starts from the right boundary. For the
cases of starting from the left boundary, the final steady speed is found lower than the initial one
also in the order of 0.1 m/s. The two-dimensional-steady-region allows the platoon to transfer its
steady state under the perturbation. Similar shifts can be observed on the steady spacing of the
platoon, if the simulation is conducted in an open boundary road instead of the ring road.

DISCUSSION

The basic DBOVM substitute the two-dimensional-steady-region for the optimal velocity
function in OVM, which is reasonable for modeling the satisfaction range of steady state in car
following. However, the basic DBOVM cannot reach the steady state inside of the dual boundary
region during the dynamic process of traffic flow. Therefore, the amendment of the speed
adjustment mechanism is necessary in the general DBOVM. The effect of speed adjustment in
the proposed model is similar to the speed adaption concept in the literature (/2), while the latter
one is more complex in model structure. Besides, the general DBOVM has some similarities
with the FVDM (5), which also has a speed difference term in the model. The speed adjustment
effect in the general DBOVM only works within the dual boundary steady region, whereas the
FVDM does not contain a two-dimensional-steady-region, and the speed difference term always
contributes to the acceleration.

In this paper, only the S-shape function is considered for the expressions of the DBOVF.
The differences in the functions of DBOVF may change the stability conditions of the general
DBOVM, whereas the properties of traffic state transitions are the same as discussed in this
paper. Another point that should be mentioned is the paths of state transitions within the dual
boundary steady region are not strictly but approximately linear. However, one can still use the
sensitivity parameter A as the slope of the state transition path for roughly analysis.

SUMMARY

The main contribution of this paper is that the authors proposed a simple car-following model
called general DBOVM, which can describe the driving behavior of accepting a range of
satisfied conditions instead of an optimal one under steady traffic. The model is developed based
on the OVM, with only two additional parameters. Therefore, it is very convenient for analytical
and numerical analyses.
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A simple speed adjustment mechanism is introduced into the basic DBOVM, with which
the traffic state can converge to steady state everywhere inside of the two boundary steady
region. Under the effect of speed adjustment, traffic states are transferred along some specific
paths with an approximately constant slope equal to the sensitivity parameter of the speed
difference term in general DBOVM.

The dual boundary steady region in DBOVM has the hysteresis effect, which is similar to
the effect of explicit delay in OVM. The wider the dual boundary steady region is, the stronger
the hysteresis effect will be. In spite of the instability that results from the hysteresis of dual
boundary region, the speed adjustment effect in general DBOVM restrains the hysteresis and
improves the stability of traffic.

The dual boundary steady region in the general DBOVM allows the traffic flow to reach
a new steady state slightly apart from the formal one under the effect of small perturbation. This
property does not exist in models with one dimensional optimal velocity functions.

The authors present only the framework of general DBOVM, and such a dual boundary
steady region can also be introduced into other well-known car-following models. Moreover, the
parameters of the general DBOVM are required to be calibrated by real traffic flow data, and
applications of the proposed model will be studied in the next step.
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TRAFFIC FLOW MODELS

Data Fusion Solutions to Compute Performance
Measures for Urban Arterials

SERGE P. HOOGENDOORN
HANS VAN LINT
Delft University of Technology, the Netherlands

ROBERT L. BERTINI
California Polytechnic State University, San Luis Obispo

ne of the key problems faced by traffic management operators of large urban traffic

networks is the lack of sufficient data to compute performance indicators. These indicators,
such as travel time, queue length, loss hours, and total time spent, are useful for offline
evaluation purposes as well as online traffic control applications. In the latter case, such data are
particularly of use in coordination algorithms that require information on the number of vehicles
present or queuing in certain areas. This information in turn is used for example to assess the
amount of buffer space available to temporarily store or reroute vehicles from more densely used
parts of the network. Computing the amount of vehicles present or queuing in a certain area
requires counting the number of vehicles that enter or exit that area. In this extended abstract the
authors show how through fusing vehicle counts and travel times (measured by any means
available), the well-known drift-error can be reduced to virtually zero. In the complete paper the
authors show how this algorithm fits in a wider suite of data fusion tools to compute urban traffic
performance indicators on the basis of multiple sources of data.

CUMULATIVE DRIFT

Denote N (f) as the number of vehicles present on the road stretch at a certain time instant 7.

(top) illustrates that the number of vehicles on a simple hypothetical road stretch of 1 km can be
derived directly using cumulative inflow and outflow curves Q;(¢) and Q»(f). The horizontal
distance between these curves depicts the travel time of the nth vehicle entering this road stretch,
whereas the vertical distance depicts the number of vehicles N (7) = Qi1(¢) — Qa(?). It is straight-
forward to compute N(¢) numerically (the authors consider discrete time steps & of size Af):

N (k+1) =N (k) + Aqi(k) — q2(k)] (1)
Unfortunately, this approach is highly sensitive to counting errors. Suppose both

detectors make a 1% counting error that, for the sake of argument, is assumed normally
distributed around the actual number of vehicles passing both locations:

g (k) = qi(k) + n(k) )

with

82
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FIGURE 1 Cumulative inflow and outflow curves for a straight road stretch.

Nik)~N [0, 0.01 x gi(k)]

Substituting Equation 2 into Equation 1 results in Equation 3:
N (k+1)=N (k) + Afgqi(k) - ga(b)] + C(k) €)
with

C(k) = Arfni(k) - M2(K)]

which describes a so-called random walk (the sum of two independent error terms) that may result in
values anywhere between minus or plus infinity.

a and b (top) show the measured in- and outflows q,(k) and g»(k) on the same
hypothetical road stretch of 1 km, in which the errors of both 1% and 5% are hardly visible, whereas
Figure 2a and b (bottom) show the resulting error in the estimated number of vehicles N (k) using
Equation 1. Even in case of a small error of 1% the error is sizeable—eight vehicles per km may
make the difference between free-flowing traffic or oversaturated conditions.

FUSING FLOW OBSERVATIONS AND MEASURED TRAVEL TIMES

One approach to correct this so-called “drift” error is to use measured (realized) travel times 77 4s(7)
along the same road stretch. The underlying assumption is that travel time measurements are more
accurate than loop counts (see Endnote 1). Recall that the horizontal distance between the cumulative
curves allows researchers to estimate this travel time of the n#4 vehicle entering this road stretch.
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FIGURE 2 Cumulative drift: (2) measured in- and outflow flows (k)

and gy(Kk) for detectors with a 1% and 5% error rate, respectively;
(b) resulting errors in the estimated number of vehicles N(k).

illustrates the basic idea. Suppose at some time instant #, researchers obtain a “travel
time measurement” 77, VObS (t2). At that same time instant an estimate for the realized travel time
using the cumulative curves can also be computed:

T‘]—'rest (tz) = 12 - tl
The error in this travel time estimate can now be used
€rr (Zz) = TT,,ObS (fz) — TTreSt (tz)

to correct both cumulative curves. Researchers define n*as the factor with which to correct the
curves. It turns out this correction factor is proportional to the travel time error, that is, n* <.
This is true under the condition that outliers are properly removed before computing the
average (or median). An example of such an outlier removal technique is the following:
Remove all travel times observations in a certain time period further away from the median
travel time than o x 77" — TT*, where TT" represents the XXth travel time percentile. The

outlier removal procedure should be applied strictly for this purpose.
err(t)—details will be provided in the full paper. The rationale of course makes sense. If

the outflow () is overestimated, then the rate at which vehicles are able to depart from this
road stretch is overestimated, and the result is that the travel time these vehicles have incurred is
underestimated. The opposite occurs when the inflow (Q;) is overestimated; in that case the
number of vehicles accumulating on the road stretch is exaggerated, and as a result travel time is
overestimated. In Figure 3 the direction of this correction n* is indicated in case the observed
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travel time is larger than the estimated travel time [e77(#2) > 0]. It turns out that this approach
works remarkably well and is capable of eradicating the error in N(7) virtually completely, not
just in case of random errors but also in case of structural errors (bias).

gives an example of both 5% structural and random errors—again on the
hypothetical 1 km road stretch introduced earlier. Figure 4a shows a detail of the corrected
cumulative curves, the erroneous cumulative curves, and the ground-truth cumulative curves. In
absolute sense, the algorithm does correct the errors, but relative to one another the algorithm
does, which is demonstrated by time series of the erroneous versus the corrected number of
vehicles estimated in Figure 4b—the latter lies very close to the ground truth.
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FIGURE 3 Basic idea of using measured travel times to
correct for the cumulative errors that result from “drift.”
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FIGURE 4 Example of error correction algorithm in case of random errors and structural
errors: () a detail of the corrected cumulative curves, the erroneous cumulative curves, and
the ground-truth cumulative curves; (D) time series of the erroneous versus the corrected
number of vehicles estimated—the latter lies very close to the ground truth.
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FULL PAPER OUTLOOK

This data fusion algorithm appears to fix cumulative drift errors by combining counts with travel
times that may come from automatic vehicle identification systems, floating car data, Bluetooth
sniffers, or any type of sensors. In the full paper the authors will discuss the algorithm in depth
and demonstrate it on various real-life examples in the Netherlands and the United States.

ENDNOTE

1. This is true under the condition that outliers are properly removed before computing the average (or
median). An example of such an outlier removal technique is the following: remove all travel times
observations in a certain time period further away from the median travel time than o x 77" — TT>
where TT" represents the XXth travel time percentile. The outlier removal procedure should be
applied strictly for this purpose.
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Modeling Acceleration Behavior in a Connected Environment

ALIREZA TALEBPOUR
HANI S. MAHMASSANI
Northwestern University

onnected vehicles technology will provide drivers with information on the presence and

behavior of other drivers in their vicinity. This information is intended to help drivers
make safe and reliable decisions. It will also affect drivers’ strategic and operational decisions,
with the most impact on the operational decisions, including acceleration choice. From the
modeling standpoint, however, capturing the effects of this additional information on drivers’
decisions is a challenging task and requires a more thorough understanding of humans’
decision-making processes.

Acceleration behavior has been studied extensively in the literature, and several models
with varying levels of complexity have been introduced to capture the underlying processes.
Unfortunately, most of these models are designed to capture driving behavior in the absence of
communications. Their modeling capabilities are even more limited in a mixed environment
where only a portion of the vehicles are equipped with the essential communication tools. This
additional information motivates different behaviors in this mixed environment. The addition
of autonomous vehicles could further contribute to the complexity in this environment. This
paper is intended to introduce an acceleration framework to capture the impacts of this
additional information on driving behavior. Accordingly, different acceleration models with
different assumptions are used for regular, connected, and autonomous vehicles.

ACCELERATION FRAMEWORK

This section provides an overview of the acceleration framework with a brief description of the
acceleration models.

Modeling Vehicles with No Communication Capability

The drivers of these vehicles receive no information from other vehicles or from the traffic
management center (TMC). They only get information from road signs (variable message signs
and conventional signs). They also have a rough perception of other drivers’ behavior in their
vicinity. Moreover, their acceleration behavior has a probabilistic nature, and they are
uncertain about other drivers’ future behavior. This uncertainty may result in crash occurrence.
In general, drivers are seeking to travel at a desired speed while avoiding crashes.
Avoiding crashes is an extremely important factor in drivers’ decision making because of its
severe consequences. Hamdar et al. (/) presented an acceleration model that avoids (most)
crashes by specifying behavioral mechanism. An extension to this model was presented by
Talebpour et al. (2), who recognized that drivers have different perceptions under congested
versus uncongested regimes. Accordingly, they introduced two utility functions, one for
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modeling driver behavior in congested regimes and one for modeling driver behavior in
uncongested regimes. At each evaluation stage, based on drivers’ perception of their
surrounding traffic condition, drivers employ the corresponding value functions to evaluate the
gains from the chosen acceleration. They introduced a binary probabilistic regime selection
mechanism into the evaluation stage where drivers use the resulting utility to evaluate each
acceleration value. Note that this study adopted Talebpour et al.’s acceleration framework to
model car-following behavior in the absence of communication.

Modeling Communication-Ready Vehicles

These vehicles are expected to have the capability of sending and receiving information to and
from other vehicles and infrastructure-based equipment. Assuming reliable connectivity in the
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications networks, each
vehicle will receive information about other vehicles in this network. The driver also receives
real-time updates about the TMC decisions (e.g., real-time changes in speed limit). However,
this information may not be available at all times and locations, and drivers’ behavior may
change according to the amount of information they receive. Accordingly, four scenarios can
be defined: active and inactive V2V communications and active and inactive V21
communications.

Active Vehicle-to-Vehicle Communications

Considering the flow of information in this V2V-V2I communications network, drivers are
certain about other drivers’ behaviors. Moreover, they are aware of driving environment, road
condition, and weather condition downstream of their current location. Therefore, a
deterministic acceleration modeling framework is suitable for modeling this environment. This
paper uses the Intelligent Driver Model (IDM) (3) to model this connected environment. While
capturing different congestion dynamics, this model provides greater realism than most of the
deterministic acceleration modeling frameworks.

Inactive Vehicle-to-Vehicle Communications

In this driving environment, no active communication exists between vehicles. In case that V21
communications are unavailable, drivers’ only sources of information are road signs and their
perception of surrounding traffic condition. Drivers’ behavior in this case can be modeled
similarly to the case that vehicles have no communication capability. In the presence of V2I
communications, drivers directly receive information about the TMC decisions. Drivers’
behavior in this case can be modeled similarly to the case that vehicles have active V2I
communications.

Active Vehicle-to-Infrastructure Communications
From the TMC point of view, active V2I communications will provide a basis to detect
individual vehicle trajectories that can be used as high-precision input data to traffic control

algorithms. From the driver’s standpoint, V2I communications do not directly influence the
drivers’ acceleration choice. Therefore, the acceleration modeling approach under active V2I
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communications depends on the availability of V2V communications. However, active V21
communications will provide real-time information about the TMC decisions (e.g., speed limit
update in a speed harmonization system), which aim to improve safety and mobility.

Inactive Vehicle-to-Infrastructure Communications

In this driving environment, no direct communication exists between vehicles and the TMC.
Without V2V communications, drivers’ only sources of information are road signs and their
perception of surrounding traffic condition. Drivers’ behavior in this case can be modeled
similarly to the case that vehicles have no communication capability. In the presence of V2V
communications, drivers may receive information about the TMC decisions from other
vehicles (if at least one vehicle in the V2V communications network receives information from
the TMC). Drivers’ behavior in this case can be modeled similarly to the case that vehicles
have active V2I communications.

Modeling Autonomous Vehicles

Considering the ability of autonomous vehicles to constantly monitor other vehicles in their
vicinity, an autonomous vehicle is certain about other drivers’ behavior. Moreover, these
vehicles can react instantaneously to any changes in the driving environment. Therefore, a
deterministic acceleration modeling framework with reaction time set to zero is suitable for
modeling this environment. This paper uses IDM (3) to model autonomous vehicles.

PRELIMINARY RESULTS

The preliminary simulations targeted a four-lane highway on the eastbound direction of I-290
near Chicago, Illinois (see ). This 3.5-mi-long segment has four on-ramps and three
off-ramps, each with different characteristics and different merging length. An example of
simulation results are presented in . This figure reveals the impact of market
penetration rate on mobility. In this figure, it is assumed that reaction time of drivers will
decrease by 50% in the presence of V2V communications. Note that V21 communications are
inactive in this example. Based on this figure, higher penetration rate of connected vehicles
results in higher breakdown flow (compare 2,000 veh/h at 0% penetration rate to 2,500 veh/h
at 50% penetration rate) and density (compare 28 veh/km at 0% penetration rate to 38 veh/km
at 50% penetration rate). Moreover, the scatter in the fundamental diagram decreases as the
number of connected vehicles increases and at 100% penetration rate, the breakdown is
completely eliminated. Therefore, it can be concluded that the efficiency of the highway
increases as the number of connected vehicles increases.
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FIGURE 1 Characterization of the selected segment in Chicago, Illinois.
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TRAFFIC CONTROL

Traffic Flow Theory Milestones in Developing the
TEXAS Model for Intersection Traffic in the Early 1970s

THOMAS W. (Tom) Rioux
Rioux Engineering

he Traffic EXperimental and Analytical Simulation Model for Intersection Traffic (TEXAS

Model) was developed by the Center for Transportation Research at the University of Texas
at Austin beginning in the late 1960s under the leadership of Clyde E. Lee. Thomas W. Rioux
was leader of the team of graduate students that developed the TEXAS Model and has been
upgrading the TEXAS Model since its initial development. The TEXAS Model is being
enhanced to include connected vehicle messages by Harmonia Holdings Group and Rioux to be a
test bed for connected vehicle applications. The TEXAS Model source code is available for use
by the public under the GNU General Public License as published by the Free Software
Foundation. The TEXAS Model source code for the standard version may be downloaded from
http://groups.yahoo.com/neo/groups/TEXAS Model, while the version with connected vehicle
applications may be downloaded from http://www.etexascode.org. This paper chronicles the
evolution of the TEXAS Model from the early 1970s through 2008 and the early traffic flow
theory concepts of triangular acceleration, triangular deceleration, equations of motion, car
following, intersection conflict checking, intersection conflict avoidance, sight distance
restriction checking, lane changing, and crashes.

INTRODUCTION

Microscopic traffic simulation involves defining the movement of individual driver—vehicle units
through a roadway system in response to driver desires and control, other driver—vehicle units in
the system, and the absence or presence of traffic control. A driver—vehicle unit is a vehicle with
specified characteristics (such as type of vehicle, length, maximum acceleration, and maximum
speed) controlled by a driver with specified characteristics (such as driver type, reaction time,
and desired speed) that has an intersection origin leg and lane and a destination leg. Every
driver—vehicle unit in the system is processed every small time-step increment (generally 1 s or
less), wherein each individual driver makes many decisions (e.g., change lanes, slow down,
speed up, stop, turn, avoid crash), vehicle detectors and signal controllers are simulated, and
many measures of effectiveness (MOESs) are gathered and reported.

Clyde E. Lee was the faculty member who, in the late 1960s, conceived the idea of
applying the University of Texas at Austin’s (UT) new Control Data Corporation (CDC) 1604
mainframe digital computer for simulating traffic flow through an intersection. He initiated the
first development efforts and supervised several ensuing research projects that culminated in the
TEXAS Model being released in 1977. Lee continued supervising research projects that
enhanced or used the TEXAS Model until his retirement from UT in 1999. The TEXAS Model
was developed by the Center for Highway Research and later the Center for Transportation
Research (CTR) at UT using FORTRAN and mainframe computers. Initial funding for the
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development efforts was provided by the Texas Department of Transportation (TxDOT) in
cooperation with FHWA with later funding by FHWA and the UT College of Engineering.

The original TEXAS Model simulated a single intersection with no control, yield-sign
control, less-than-all-way-stop-sign control, all-way-stop-sign control, pretimed-signal control,
semi-actuated-signal control, or full-actuated-signal control using time-step increments between
0.5 and 1.5 s, inclusive, for a total of 4,500 s (1.25 h). The geometry included up to 6 legs with
up to 6 inbound and 6 outbound lanes per leg; up to 1,000 ft straight lanes that could be blocked
at the near end, at the far end, or in the middle; specification of movements allowed to be made
from each inbound lane; specification of movements allowed to be accepted for each outbound
lane; sight distance restrictions; detailed intersection path geometry using arcs of a circle and
tangent sections; and the calculation of potential points of geometric conflicts between
intersection paths. The traffic stream was stochastically generated using constant, Erlang,
Gamma, lognormal, negative exponential, shifted negative exponential, and uniform
distributions for headways with user-specified parameters; the normal distribution for desired
speeds; and discrete percentages for turn movements, lane assignments, and other percentage-
based parameters. For each inbound leg, the user specified the hourly volume, the headway
distribution name and any parameters, the mean and 85th percentile speed, and the percentage of
each vehicle class in the traffic stream. For each vehicle class (10 provided with a maximum of
15), the user specified the percentage of each driver class (three provided with a maximum of
five).

The model included intersection conflict checking; sight distance restriction checking;
cooperative lane changing using a cosine curve for the lateral position; car following using the
Gazis-Herman-Rothery model (7, 2) with user-specified values for lambda (power for relative
position), mu (power for speed), and alpha (constant); jerk-rate-driven equations of motion;
triangular acceleration; triangular deceleration; and crashes with the driver—vehicle unit in front.
MOEs included total delay (actual travel time minus the time to travel the same distance at the
time-averaged desired speed), queue delay (time from initially joining the end of the queue of
driver—vehicle units at the stop line until crossing the stop line), stopped delay (time stopped
from initially joining the end of the queue of driver—vehicle units at the stop line until crossing
the stop line), delay below a user-specified speed such as 10 mph, vehicle-miles of travel, travel
time, volume, time and space mean speed, turn percentages, maximum and average queue length
in 20-ft vehicles, and number of crashes. The MOEs could be printed per driver—vehicle unit and
were summarized per lane or movement, per inbound leg, and for the entire intersection.

Initial model development effort began in 1968. Many students, faculty, and staff at UT
have been involved in the development and use of the TEXAS Model:

e James W. Thomas, a graduate student in civil engineering at the time, began defining
the concepts and techniques for modeling traffic flow through an intersection.

e Roger S. Walker, a graduate student in electrical engineering at the time, wrote some
of the earliest CDC 1604 computer code for the TEXAS Model. His work included the
development of the COordinated Logic Entity Attribute Simulation Environment program, which
provided extremely efficient storage of model data and implemented an efficient means for
processing logical binary networks. He was assisted by Dennis Banks.

e Thomas W. “Tom” Rioux, a graduate student in civil engineering at the time, started
work on the project in 1971, followed up on Dr. Walker’s initial work, and became the leader of
the team that developed the TEXAS Model into a viable tool for practical use in traffic
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engineering and research using the CDC 6600 computer system until the TEXAS Model was
released in 1977 (3—11). Rioux was the primary person who developed the field data analog-to-
digital processing software that was used for model validation, DISFIT, GEOPRO, SIMPRO, the
CDC 250 Display System version of DISPRO, SIMSTA, REMOVEC, REPLACEC, and
gdvsim. He also participated in the development of DVPRO, the Intergraph UNIX X Windows
version of DISPRO, the Java version of geoplot, and the Java version of dispro. In 1973, Rioux
developed an animation on the CDC 250 Display System that was used during initial
development efforts. Field measurements of queue delay using specifically designed recording
devices were used to calibrate and validate the TEXAS Model at a 4-leg intersection with
pretimed signal control in Austin, Texas.

e Charlie R. Copeland, Jr., an undergraduate and then a graduate student in civil
engineering at the time, was part of the original development team and was the primary person
who developed DVPRO and EMPRO. He also participated in the development of the field data
analog-to-digital processing software, DISFIT, GDVDATA, GDVCONYV, SIMDATA,
SIMCONYV, and SIMPRO.

e Robert F. “Bobby” Inman, an undergraduate student in mechanical engineering at the
time, was part of the original development team and was the primary person who developed the
field data collection hardware, GDVDATA, GDVCONYV, SIMDATA, SIMCONYV, DISPRE, and
the DOS version of DISPRO. He also led the development effort of the Texas Diamond and
National Electrical Manufacturers Association (NEMA) traffic signal controller simulators
within SIMPRO. Harold Dalrymple assisted him in the development of the field data collection
hardware.

e [Ivar Fett, a graduate student in civil engineering at the time, was the person who
collected and analyzed the field data and developed the original lane-changing geometry and
decision models, developed the initial all-way-stop sign control logic, and developed the initial
pretimed signal control logic for SIMPRO. He participated in the development of the car-
following logic for SIMPRO.

e William P. Bulloch, a graduate student in civil engineering at the time, developed the
initial acceleration, deceleration, and car-following models for SIMPRO.

e Elia King Jordan, a graduate student in civil engineering at the time, developed the
initial version of DVPRO.

e Glenn E. Grayson, a graduate student in civil engineering at the time, assisted in the
development of the actuated signal control logic for SIMPRO and supervised the field data
collection and analysis, which was used to validate the TEXAS Model.

e Vivek S. Savur, a graduate student in civil engineering at the time, assisted in the
field data collection and analysis and assisted in the development of GEOPRO.

e Scott Carter, a graduate student in civil engineering at the time, was the primary
person who developed the Intergraph UNIX X Windows version of DISPRO.

e Moboluwaji “Bolu” Sanu, a graduate student in electrical and computing engineering
at the time, was the primary person who developed the Java versions of geoplot and DISPRO. He
later participated in the Small Business Innovative Research Projects performed by Rioux
Engineering (12, 13).

e Zhonghui Ning participated in the development of gdvsim in the Small Business
Innovative Research Projects performed by Rioux Engineering (12, 13).

Many research projects have used the TEXAS Model, and their results are documented
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elsewhere. The original software programs proved to be a very robust and logically sound
platform on which numerous evolutionary enhancements, revisions, and new features were
subsequently added through additional projects at CTR and Rioux Engineering as the TEXAS
Model migrated from batch mode on a mainframe computer to interactive mode on modern
microcomputers:

e 1977/12/01 V1.00, initial release;

e 1983/08/01 V2.00, emissions processor added (/4);

e 1985/11/01 V2.50, converted to run on the DOS operating system on a
microcomputer using 16-Bit FORTRAN compilers, user-friendly interface added, and DOS
animation added (/5);

e 1989/01/01 V3.00, diamond interchange geometry and TxDOT Figure 3, 4, 6, and 7
dual- ring actuated diamond signal controller added (/6);

e 1992/01/31 V3.10, replicate runs added, wide or narrow output selection added, left-
turn pull-out option added, hesitation factor added, maximum number of loop detectors per lane
increased from 3 to 6, blocked lane processing modified, intersection conflict avoidance added,
and driver—vehicle unit delay for unsignalized lanes modified;

e 1992/03/25 V3.11, intersection conflict avoidance error fixed, lane change errors
fixed, and look ahead algorithms modified;

e 1992/12/15 V3.12, converted to run on the Unix operating system on a workstation,
headway distribution fitting processor added, geometry plotting processor added, simulation
statistics processor added, UNIX X Window animation added, free U-turns at diamond
interchange added, Dallas diamond signal controller phase numbering added, NEMA TS 1-1989
signal controller with volume—density operation added, replicate runs for specified number of
runs added, replicate runs to specified statistical tolerance added, spreadsheet macros developed,
car following modified, and many small enhancements to numerous algorithms (/7);
1993/11/23 V3.20, car following modified and NEMA controller errors fixed;
1994/05/10 V3.21, lane change error fixed;

1994/06/07 V3.22, NEMA and Texas diamond controller errors fixed;
1996/02/28 V3.23, car-following logic modified;

1998/09/21 V3.24, utility programs from80d.exe and to80d.exe added and Y2K-
compliant modifications made;

e 2000/08/03 V3.25, Java animation added;

e 2003/08/29 V4.00, compiled using 32-bit FORTRAN compilers and initial vehicle
messages added;

e 2005/08/12 V5.00, Java user interface added; geometry plotting processor converted
to Java; source code released under GNU general public license as published by the Free
Software Foundation; increased number of driver types to nine; increased number of vehicle
types to 99; classify detector added; modified logical binary networks to use type LOGICAL
variables; added Vehicle Message System (VMS) messages for special driver—vehicle units: (1)
forced go time and duration, (2) forced stop location and duration, (3) forced run red signal time
and duration; changed minimum time-step increment to 0.01 s; converted all real variables to
double precision; added VMS message types: (1) Driver DMS, (2) Driver IVDMS, and (3)
Vehicle IVDMS; added VMS messages: (1) accelerate or decelerate to speed x using normal
acceleration or deceleration, (2) accelerate or decelerate to speed x using maximum vehicle
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acceleration or deceleration, (3) stop at the intersection stop line, (4) stop at location x, (5) stop
immediately using maximum vehicle deceleration, (6) stop immediately using crash deceleration,
(7) change lanes to the left, (8) change lanes to the right, (9) forced go, and (10) forced run the
red signal; added VMS messages: (1) start time, (2) active time, (3) location (lane or intersection
path and beginning and ending positions), (4) driver—vehicle unit number (0 = all), and (5)
reaction time distributions and parameters; Surrogate Safety Assessment Methodology (SSAM)
file support added; Linux version developed (12, 18);

e 2008/07/31 V6.00, all user interface software made Section 508 compliant; built-in
help and tool tips added; displaying the sight distance restrictions added; displaying the detector
geometry and activity added; Java application developed to automate the running of the TEXAS
Model; total simulation time extended to 9999.99 s (2.777775 h); lane length extended to 4000
ft; Java application to display statistics from 1 run or replicate runs developed; stop on crash
using crash deceleration and remain stopped option added; crashes between driver—vehicle units
on different intersection paths added; automated the running of SSAM; attach and display
orthorectified image file added; updated the NEMA traffic signal controller simulator to NEMA
TS 2-2003; pedestrians added as they affect the operation and timing of the NEMA and
hardware-in-the-loop traffic signal controllers; pedestrian signal operation added to animation;
caused other driver—vehicle units to react to a crash; dilemma zone statistics added; time-varying
traffic for two or more periods added; hardware-in-the-loop traffic signal controller added;
additional vehicle attributes added to articulate vehicles; distracted driver VMS message added;
an optional lane change before or after the intersection to move from behind a slower driver—
vehicle unit added; and simulation of bicycles, emergency driver—vehicle units, and rail driver—
vehicle units added (73);

e 2010, Small Business Innovative Research (SBIR) project topic 10.1-FH3,
“Simulating Signal Phase and Timing with an Intersection Collision Avoidance Traffic Model,”
adding Society of Automotive Engineers J2735 Basic Safety Message, Signal Phase and Timing
Message (SPAT), and Map Data Message (MAP) awarded to Harmonia Holdings Group, LLC,
Blacksburg, Virginia; Phase I completed; Phase II in progress; and

e 2011, SBIR project Topic 11.1-FH2, “Augmenting Inductive Loop Vehicle Sensor
Data with SPAT and GrID (MAP) via Data Fusion,” adding National Transportation
Communications for ITS Protocol 1202 vehicle detector, traffic signal controller parameter, and
traffic signal display messages awarded to Harmonia Holdings Group, LLC, Blacksburg,
Virginia; Phase I completed; Phase II in progress.

TEXAS MODEL TRAFFIC FLOW THEORY

The TEXAS Model defines the perception, identification, judgment, and reaction time (PIJR) as
a user-specified parameter for each driver class in seconds. Typical values are 0.5 for aggressive
drivers, 1.0 for average drivers, and 1.5 for slow drivers. Throughout the remainder of this
document, several functions and constants are used as follows:

ABS(A) = absolute value A,
ACOS(A) = arccosine of A,
COS(A) = cosine of A,
DT = time step increment in seconds,
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max(A,B) = maximum value of A and B, and
PI = value for PI.

TRIANGULAR ACCELERATION

An investigation of existing acceleration models was undertaken in the early 1970s by Lee and
Rioux, and it was found that the uniform acceleration model did not match observed behavior
accurately when considered on a microscopic scale. Using a Chi-squared goodness-of-fit test, a
best-fit uniform acceleration model was calculated and the results plotted (see ) along
with observed data points (/9). This figure illustrates that the uniform acceleration model
computes velocities that are too low during initial acceleration and that result in the driver—
vehicle unit’s reaching desired velocity much sooner than it should. A linear acceleration model,
which hypothesizes use of maximum acceleration when vehicular velocity is zero, zero
acceleration at desired velocity, and a linear variation of acceleration over time, was investigated.
Comparisons of this model with observed data (see Figure 1) indicate excellent agreement. This
model also compared favorably with the non-uniform acceleration theory (20) used in describing
the maximum available acceleration for the driver—vehicle unit.

This work lead to the development of the triangular acceleration model used in the
TEXAS Model (see ). The author will use the term “jerk rate” to describe the rate of
change of acceleration or deceleration over time and is usually in units of feet per second per
second per second. Starting from a stopped condition, a driver—vehicle unit will use a maximum
positive jerk rate until it reaches the maximum acceleration, then the driver—vehicle unit will use
a negative jerk rate until the acceleration is zero at the driver—vehicle unit’s desired speed. The
maximum acceleration is defined by the driver—vehicle unit’s desired speed and the maximum
acceleration for the driver—vehicle unit.
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FIGURE 1 Uniform versus linear acceleration and observed data.
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FIGURE 2 Triangular acceleration model.

TRIANGULAR DECELERATION

An investigation of existing deceleration models was also undertaken in the early 1970s by Lee
and Rioux, and it was found that the uniform deceleration model did not match observed
behavior accurately when considered on a microscopic scale. Using a Chi-squared goodness-of-
fit test, a best-fit uniform deceleration model was calculated and the results plotted (see )
along with observed data points (/9). This figure illustrates that the uniform deceleration model
yields a higher velocity during the first part of the deceleration maneuver and, as the velocity
approaches zero, produces values that are lower than observed values. A linear deceleration
model, which hypothesizes use of a zero initial deceleration, maximum deceleration at the instant
the driver—vehicle unit stops, and a linear variation of deceleration over time, was investigated.
Comparisons of this model with observed data (see Figure 3) indicate excellent agreement.

This work lead to the development of the triangular deceleration model used in the
TEXAS Model (see ). Starting from a moving condition, a driver—vehicle unit will use a
maximum negative jerk rate until it reaches the maximum deceleration when the driver—vehicle
unit stops. The maximum deceleration is defined by the driver—vehicle unit’s current speed and
the maximum deceleration for the driver—vehicle unit. If a driver—vehicle unit is to decelerate to
a stop, the time to stop and then the distance to stop is calculated each time step increment using
current speed, current acceleration/deceleration, and current maximum deceleration. A
deceleration to a stop is initiated when the driver—vehicle unit’s distance to the location for a stop
becomes less than or equal to the distance to stop.
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EQUATIONS OF MOTION

With the development of the triangular acceleration and triangular deceleration models, it was
clear that the equations of motion had to include jerk rate as follows:

AN = AO+J*DT
VN = VO+AO *DT + 1/2 * ] * DT?
PN = PO+VO*DT+1/2* A0 * DT>+ 1/6 * ] * DT’

where

AN = acceleration/deceleration new in feet per second per second,

AO = acceleration/deceleration old in feet per second per second,
J = jerk rate in feet per second per second per second,

PN = front bumper position new in feet,

PO = front bumper position old in feet,

VN = velocity new in feet per second, and

VO = velocity old in feet per second.

In the TEXAS Model, only the jerk rate is possibly changed each time step increment,
and limits are placed on the maximum positive and negative values for jerk rate. Only in

collisions are extremely large values of jerk rate used to stop a driver—vehicle unit in about 3—6
ft.

Distance From Stop Line (m)

o] 50 100 150 200
ao 1 L 1 1
Uniform Deceration
Linear Deceleration 20
60
° 3
g L5 @
o E
> =
= 404 =
o g
; -10 ;
¥ Observed Data Points
20
-5
0 T T T T T T T 0
0 100 200 300 400 500 600 700 800

Distance From Stop Line (f1)

FIGURE 3 Uniform versus linear deceleration and observed data.
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DECELERATION

FIGURE 4 Triangular deceleration model.

CAR FOLLOWING

An investigation of existing car-following models was undertaken in the early 1970s by Lee and
Rioux, and the non-integer, microscopic, generalized Gazis-Herman-Rothery (GHR) car-
following model (/, 2) was selected because of its superiority and flexibility. If there is no
previous driver—vehicle unit (no driver—vehicle unit ahead of the current driver—vehicle unit)
then it cannot car follow, and thus other logic is used. If the previous driver—vehicle unit is
stopped then it cannot car follow, and thus other logic is used. The GHR Model equation is as
follows:

RelPos = PVPos — PO
RelVel = PVVel - VO
AN = CarEgA * VO™ / RelPos“ - * RelVel

where

AN = current driver—vehicle unit acceleration/deceleration new in feet per second per
second;
AO = acceleration/deceleration old in feet per second per second;
CarEqA = user-specified GHR Model alpha parameter (min. = 1, def. = 4,000, max. = 10,000);
CarEqL = user-specified GHR Model lambda parameter (min. = 2.3, def. = 2.8, max. = 4.0);
CarEqM = user-specified GHR Model mu parameter (min. = 0.6, def. = 0.8, max. = 1.0);
PO = current driver—vehicle unit front bumper current position old in feet;
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PVPos = previous driver—vehicle unit rear bumper position in feet;
PVVel = previous driver—vehicle unit velocity in feet per second;
RelPos = relative position in feet;
RelVel = relative velocity in feet per second; and

VO = current driver—vehicle unit velocity old in feet per second.

The acceleration/deceleration new AN is not allowed to exceed the maximum
acceleration or deceleration for the vehicle. The jerk rate to go from the current driver—vehicle
unit acceleration/deceleration old AO to the current driver—vehicle unit acceleration/deceleration
new AN is not allowed to exceed the maximum jerk rate. A conservative car-following distance
is defined as follows:

RelVel =PVVel - VO
CarDis = (1.7 * PVVel + 4 * RelVel?) / DrivChar

where

CarDis= car-following distance in feet;
DrivChar = user-specified driver characteristic; (<1 = slow, 1 = average, >1 = aggressive,
min. = 0.5, and max. = 1.5);
PVVel = previous driver—vehicle unit velocity in feet per second;
RelVel = relative velocity in feet per second; and
VO = current driver—vehicle unit velocity old in feet per second.

If the relative velocity RelVel is greater than or equal to zero (the previous driver—vehicle
unit is going faster than the current driver—vehicle unit) and the relative position RelPos is
greater than some minimum value, then the driver—vehicle unit is allowed to accelerate to its
desired speed.

If the relative position of the vehicle RelPos is less than or equal to zero, then emergency
braking is applied. If the relative position of the vehicle RelPos is greater than the 1.2 times the
car-following distance CarDis, then the driver—vehicle unit is allowed to accelerate to its desired
speed.

If the previous driver—vehicle unit is decelerating, then calculate where it will stop and
calculate the deceleration to stop behind the driver—vehicle unit ahead when it stops, and if this
deceleration is less than the car following deceleration then use it.

If the traffic signal changed from green to yellow and the current driver—vehicle unit
decides to stop on yellow, then calculate a deceleration to a stop at the stop line. If the traffic
signal is yellow and the driver—vehicle unit previously decided to stop on yellow, then continue a
deceleration to a stop at the stop line.

INTERSECTION CONFLICT CHECKING AND
INTERSECTION CONFLICT AVOIDANCE

Intersection conflict checking (ICC) and intersection conflict avoidance (ICA) are essential
algorithms for microscopic traffic simulation. ICC is the algorithm that determines whether a
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driver—vehicle unit, seeking the right to enter the intersection, has a predicted time—space
trajectory through the intersection that does not conflict with the predicted time—space trajectory
through the intersection of all other driver—vehicle units that have the right to enter the
intersection. ICA is the algorithm used to simulate the behavior of driver—vehicle units that have
the right to enter the intersection and try to maintain a nonconflict time—space trajectory through
the intersection with the predicted time—space trajectory through the intersection of other driver-
vehicle units that have the right to enter the intersection.

Certain driver—vehicle units automatically gain the right to enter the intersection when
there are no major collisions within the system: driver—vehicle units on an uncontrolled lane at a
sign-controlled or signal-controlled intersection, driver—vehicle units going straight or right on
intersection paths that do not change lanes within the intersection when the signal displays
circular green, and all driver—vehicle units on signalized lanes when the signal displays protected
green for their movement. Typical applications of ICC and ICA include a left-turning driver-
vehicle unit crossing opposing leg straight through driver—vehicle units. The TEXAS Model
included the ICC algorithm in Version 1.00 (released 12/01/1977), added the ICA algorithm in
Version 3.10 (released 01/31/1992), and enhanced both algorithms in subsequent versions. The
functionality and effectiveness of these algorithms have been verified extensively over the years
by evaluation of the animation and analysis of the corresponding summary statistics from many
varied simulations.

The TEXAS Model Geometry Processor (GEOPRO) calculates intersection paths starting
at the coordinate for the middle of the stop line for an inbound lane, ending at the coordinate for
the middle of the entry line for a diamond interchange internal inbound or outbound lane, tangent
to the inbound lane, tangent to the outbound lane, and using the largest radius circular arc when
needed. The user defines the turn movements that can be made from an inbound lane and the turn
movements that can be accepted by an outbound lane. An intersection path consists of 4
segments in sequence. Each segment may or may not be used in the intersection path and is
tangent at each end. The first segment is a tangent section, the second segment is an arc of a
circle, the third segment is an arc of a circle, and the fourth segment is a tangent section. After
calculating the geometry for all intersection paths, GEOPRO calculates the geometric conflicts
between intersection paths including dual left turn side swipes (the intersection paths come
within a user-specified distance but do not cross) and merges into the outbound lane. Finally,
GEOPRO creates a list of geometric conflicts ordered by the distance from the beginning of the
intersection path down the intersection path centerline to the point of geometric conflict. Data for
each geometric conflict include the intersection path information and the conflict angle.

For each intersection path involved in a geometric conflict, the TEXAS Model
Simulation Processor (SIMPRO) maintains a linked list of driver—vehicle units whose rear
bumper plus a time safety zone has not crossed the point of geometric conflict. When a driver—
vehicle unit gains the right to enter the intersection, SIMPRO adds the driver—vehicle unit to the
end of the linked list for each geometric conflict for the driver—vehicle unit’s intersection path.
When a driver—vehicle unit is denied the right to enter the intersection, such as when a driver—
vehicle unit decides to stop on a yellow signal indication, SIMPRO removes the driver—vehicle
unit from the linked list for each geometric conflict for the driver—vehicle unit’s intersection
path. As the rear bumper plus a time safety zone crosses the point of geometric conflict,
SIMPRO removes the driver—vehicle unit from the linked list for the geometric conflict for the
driver—vehicle unit’s intersection path.

To process the intersection conflicts for ICC for a driver—vehicle unit on an inbound lane
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or diamond interchange internal inbound lane that has not gained the right to enter the
intersection, SIMPRO first checks whether there are any geometric conflicts for the driver—
vehicle unit’s intersection path, and if there are none, then intersection conflicts are clear. Next,
SIMPRO processes each geometric conflict for the driver—vehicle unit’s intersection path in
distance order. If a geometric conflict does not have a driver—vehicle unit whose rear bumper
plus a time safety zone has not crossed the point of geometric conflict, then the geometric
conflict is clear and the next geometric conflict is tested, else this geometric conflict is
processed. In this discussion, “I,” “me,” or “my” refers to the driver—vehicle unit being
processed, while “he,” “him,” or “his” refers to the next driver—vehicle unit whose rear bumper
plus a time safety zone has not crossed the point of geometric conflict. The time for my front
bumper to arrive at the geometric conflict (TCM), velocity at the geometric conflict for me
(VCM), acceleration at the geometric conflict for me (ACM), and jerk rate at the geometric
conflict for me (SCM) are predicted using my current distance to the geometric conflict, velocity,
acceleration, jerk rate, driver characteristics, vehicle characteristics, speed limit for my
intersection path, and information about any lead driver—vehicle unit that must be car-followed.
The time for his front bumper to arrive at the geometric conflict (TCH), velocity at the geometric
conflict for him (VCH), acceleration at the geometric conflict for him (ACH), and jerk rate at the
geometric conflict for him (SCH) are predicted using his current distance to the geometric
conflict, velocity, acceleration, jerk rate, driver characteristics, vehicle characteristics, speed
limit for his intersection path, and information about any lead driver—vehicle unit that must be
car-followed. A mini-simulation is used by SIMPRO to determine the time it takes the driver—
vehicle unit to traverse the specified distance assuming that the driver—vehicle unit can accelerate
to its desired speed or speed limit of its intersection path or car follow any lead driver—vehicle
unit. The lead driver—vehicle unit, if any, is assumed to continue its current jerk rate. The
velocity, acceleration, and jerk rate of the driver—vehicle unit when it has traversed the specified
distance is also calculated. For ICC and ICA purposes, the lead gap is the space between my rear
bumper and his front bumper when I go ahead of him through the geometric conflict, whereas
the lag gap is the space between his rear bumper and my front bumper when I go behind him
through the geometric conflict.

SIMPRO then calculates the time for the front safety zone for him (TFZ) and the time for
the rear safety zone for him (TRZ) will arrive at the geometric conflict (see the top diagram in

) using the following equations:

ERRJUD = If TCH > 5 then Max(0.0,PIJR * (TCH — 5.0)/7.0) else 0

TPASSM = LVAPM/VCM

TPASCM = DISCLM /VCM

TPASSH = LVAPH/VCH

TPASCH = DISCLH/VCH
TFZ = TCH - TPASSM — TPASCM — (TLEAD — APIJR) — PIJR — ERRJUD/2
TRZ = TCH +TPASSH + TPASCH + (TLAG — APIJR) + PIJR + ERRJUD/2 +

TPASCM

where

APIJR = average PIJR time for all driver—vehicle units in the entire traffic stream in seconds
[calculated by the TEXAS Model Driver—Vehicle Processor (DVPRO)];
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DISCLH= safety distance for him for merge into the same outbound lane in feet;
DISCLM = safety distance for me for merge into the same outbound lane in feet;
ERRJUD = error in judgment in seconds for TCH values greater than 5;

LVAPH = length of vehicle along the intersection path for him at his current position in feet;
LVAPM = length of vehicle along the intersection path for me at my current position in feet;
PIJR = Perception, identification, judgment, and reaction time for the current driver—

vehicle unit in seconds;
TCH = time for his front bumper to arrive at the geometric conflict in seconds;
TFZ = time for the front safety zone for him in seconds;
TLAG = user-defined lag time gap for ICC in seconds (min. = 0.5, def. = 0.8, and

max. = 3.0);
TLEAD= user-defined lead time gap for ICC in seconds (min. = 0.5, def. = 0.8, and
max. = 3.0);

TPASCH = time for his driver—vehicle unit to pass through the geometric conflict because of a
merge into the same outbound lane in seconds (zero if no merge);
TPASCM= time for my driver—vehicle unit to pass through the geometric conflict because of a
merge into the same outbound lane in seconds (zero if no merge);
TPASSH= time for his driver—vehicle unit to pass through the geometric conflict in seconds;
TPASSM = time for my driver—vehicle unit to pass through the geometric conflict in seconds;
TRZ = time for the rear safety zone for him in seconds;
VCH= velocity at the geometric conflict for him in feet per second; and
VCM = velocity at the geometric conflict for me in feet per second.

The time period from TFZ until TRZ is blocked for me by his driver—vehicle unit. See the
bottom diagram in Figure 5 to look at the time sequences from a gap perspective. If I can go
safely in front of him (TCM is less than TFZ), or I can go safely behind him (TCM is greater
than TRZ), then there is no conflict with his driver—vehicle unit at this geometric conflict. If [ am
blocked by his driver—vehicle unit at this geometric conflict (TCM is greater than or equal to
TFZ, and TCM is less than or equal to TRZ), then there is a conflict with his driver—vehicle unit
at this geometric conflict. If there is a conflict, then the ICC process is completed with a conflict
found. If there is no conflict, I go behind him (TCM is greater than TFZ), and there is another
driver—vehicle unit whose rear bumper plus a time safety zone has not crossed the point of
geometric conflict, then I check the next driver—vehicle unit whose rear bumper plus a time
safety zone has not crossed the point of geometric conflict. If there is no conflict and I go before
him (TCM is less than or equal to TFZ), then I check the next geometric conflict for his
intersection path because if I can go before him, then I can go before all other driver—vehicle
units behind him. If all geometric conflicts for his intersection path have been checked and there
are no conflicts, then the ICC process is completed with no conflict found. There are many
special cases accommodated within the actual code when the geometric conflict is a merge, when
there is a major collision somewhere within the system, when the other driver—vehicle unit is
stopped and blocked by a major collision, when there is an emergency driver—vehicle unit in the
system, or when a driver—vehicle unit is currently processing a forced go or forced run the red
signal VMS message.

ICA is the algorithm used to simulate the behavior of driver—vehicle units that have the
right to enter the intersection and try to maintain a nonconflict time—space trajectory through the
intersection with the predicted time—space trajectory through the intersection of other driver—
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FIGURE 5 TEXAS Model ICC gap calculations.

vehicle units that have the right to enter the intersection. The linked list of driver—vehicle units
whose rear bumper plus a time safety zone has not crossed the point of geometric conflict as
described for ICC is also used for ICA. The jerk rate used for ICA (SLPCON) is initialized to 0.0.

To process the intersection conflicts for ICA for a driver—vehicle unit on an inbound lane
or diamond interchange internal inbound lane that has gained the right to enter the intersection or
a driver—vehicle unit that is within the intersection, SIMPRO uses a similar process as described
for ICC. TCM, TCH, TFZ, TRZ, and the other variables are calculated in the same manner, and
the same tests are performed to determine whether there is a conflict. The difference between the
ICC and ICA processes is the action that is taken when a conflict is found. A variable TIM is
calculated based on TCH, the turn movement for my intersection path, the turn movement for his
intersection path, and whether there is a new green signal setting for me. TIM gives priority to a
straight driver—vehicle unit over a turning driver—vehicle unit when they are both predicted to
arrive at the geometric conflict at approximately the same time. If my turning movement is
straight and his turning movement is straight, then TIM is set to TCH. If my turning movement is
straight and his turning movement is left or right, then if I have a new green signal setting, then
set TIM to TCH — 1.0, else set TIM to TCH + 1.5. If my turning movement is left or right and his
turning movement is straight, then set TIM to TCH — 1.5. If my turning movement is left or right
and his turning movement is left or right, then set TIM to TCH. Finally, if I am not an emergency
driver—vehicle unit and he is an emergency driver—vehicle unit, then set TIM to TCH — 5.0. The
jerk rate SLPTCM required for me to travel from my current position to the geometric conflict in
time TCM starting with my current velocity and acceleration is calculated. This jerk rate
represents the average value from the prediction process. If I have already passed the geometric
conflict (TCM is less than or equal to 0.0), then nothing is done for this geometric conflict, and
the next driver—vehicle unit or the next geometric conflict is processed.

The following logic is used when I am trying to go in front of him (TCM is less than or
equal to TIM), therefore I try to accelerate to avoid the conflict. If the front safety zone for him
has already arrived at the geometric conflict (TFZ is less than or equal to 0.0), then I should
accelerate as fast as possible (set SLPTFZ to six times the critical jerk rate CRISLP). If the front
safety zone for him has not already arrived at the geometric conflict (TFZ is greater than 0.0),
then I should accelerate to go in front of him (set SLPTFZ to the jerk rate required for me to
travel from my current position to the geometric conflict in time TFZ starting with my current
velocity and acceleration). A temporary jerk rate SLPTMP is set to the maximum of (SLPTFZ —
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SLPTCM) and 0.0. If I need to accelerate more than normal (SLPTMP is greater than 0.0), and
there is no driver—vehicle unit ahead that I must car follow, and the temporary jerk rate is greater
than the jerk rate used for ICA (SLPTMP is greater than SLPCON), then set SLPCON to
SLPTMP. If I need to accelerate more than normal (SLPTMP is greater than 0.0), and there is a
driver—vehicle unit ahead that I must car follow, and my speed is less than my desired speed, and
the distance between me and the driver—vehicle unit ahead that I must car follow is greater than
the car following distance, and the temporary jerk rate is greater than the jerk rate used for ICA
(SLPTMP is greater than SLPCON), then set SLPCON to SLPTMP. The next driver—vehicle
unit or the next geometric conflict is processed. This procedure will find the maximum positive
jerk rate needed to accelerate to go in front of any driver—vehicle unit where a conflict has been
found.

The following logic is used when I am trying to go behind him (TCM is greater than
TIM), therefore I try to decelerate to avoid the conflict. If his rear safety zone has not reached the
geometric conflict (TRZ is greater than 0.0), then I should decelerate to go behind him (set
SLPTRZ to the jerk rate required for me to travel from my current position to the geometric
conflict in time TRZ starting with my current velocity and acceleration). A temporary jerk rate
SLPTMP is set to the minimum of 4.5 * (SLPTFZ — SLPTCM) and 0.0. If I need to decelerate
more than normal (SLPTMP is less than 0.0), then set SLPCON to SLPTMP, and the ICA
checking process is completed. This procedure will find the negative jerk rate needed to
decelerate to go behind the first driver—vehicle unit where a conflict has been found. If SLPCON
is not set to SLPTMP, then the next driver—vehicle unit or the next geometric conflict is
processed.

If the jerk rate used for ICA has been set (SLPCON is not equal to 0.0), then SLPCON is
added to the jerk rate calculated for this driver—vehicle unit (SLPNEW) if it is the critical value.
There are many special cases accommodated within the actual code when the geometric conflict
is a merge, when there is a major collision somewhere within the system, when the other driver-
vehicle unit is stopped and blocked by a major collision, when there is an emergency driver-
vehicle unit in the system, or when a driver—vehicle unit is currently processing a forced go or
forced run the red signal VMS message.

SIGHT DISTANCE RESTRICTION CHECKING

The user defines the coordinates of all critical points needed to locate sight obstructions in the
intersection area, and the TEXAS Model GEOPRO calculates the distance that is visible between
pairs of inbound approaches for every 25-ft increment along each inbound approach. The
TEXAS Model SIMPRO checks sight distance restrictions. Each driver—vehicle unit on an
inbound approach assumes that it must stop at the stop line until it gains the right to enter the
intersection. If the inbound lane is stop sign controlled or signal controlled, the assumption is
made that sight distance restrictions are not critical and therefore do not need to be checked. If
adequate sight distance is not available to a unit stopped at the stop line, this will not be detected
in SIMPRO.

For driver—vehicle units on inbound lanes to an uncontrolled intersection, if there are
units stopped at a stop line waiting to enter the intersection and the inbound driver—vehicle unit
being examined is not stopped at the stop line, then the approaching driver—vehicle unit will
continue to decelerate to a stop at the stop line without checking sight distance restrictions again
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until it is stopped at the stop line or until there are no driver—vehicle units stopped at the stop
line. This procedure eliminates unnecessary computations and gives the right-of-way to other
driver—vehicle units already stopped at the stop line when the intersection is uncontrolled. If
there are no sight distance restrictions for driver—vehicle units on an inbound approach then
intersection conflicts are checked (see the ICC discussion above). If a driver—vehicle unit is on
an uncontrolled lane approaching a yield-sign-controlled, if the driver—vehicle unit is stopped at
the stop line, or if the intersection path of the driver—vehicle unit has no geometric intersection
conflicts then it is assumed that there are no sight distance restrictions.

The maximum time from the end of the inbound lane that the driver—vehicle unit is
permitted to begin checking sight distance restrictions, so that it may decide to proceed to ICC if
sight distance restrictions are clear, is initially set to 3 s for all intersections. This prohibition
prevents the driver—vehicle unit from gaining the right to enter the intersection when it is
relatively far away from the intersection and thereby unnecessarily affecting the behavior of
driver—vehicle units on other inbound approaches. If the inbound lane is an uncontrolled lane
approaching a yield-sign-controlled intersection, then the time is increased by 2 s plus the time
for the lead safety zone for ICC. This longer time allows driver—vehicle units on the uncontrolled
lanes to gain the right to enter the intersection ahead of other driver—vehicle units on the yield-
sign-controlled lanes. If the intersection is uncontrolled then the time is reduced to 2 s.

In SIMPRO, the time required for the driver—vehicle unit being checked to travel to the
end of the lane is predicted. If this predicted time is greater than the maximum time from the end
of the lane that the driver—vehicle unit may decide to proceed to ICC, then the driver—vehicle
unit cannot clear its sight distance restrictions, and it must check again in the next time step
increment.

The order in which sight distance restrictions are checked by SIMPRO is determined by
the sequence in which intersection conflicts might occur. The sight distance restriction associated
with the longest travel time to an intersection conflict is checked first, then other sight distance
restrictions are checked in descending order of travel time to the intersection conflict. This order
of checking facilitates early detection of an opportunity to pass in front of a driver—vehicle unit
approaching on a sight-restricted lane. Checking continues until all inbound approaches that have
possible sight distance restrictions with the subject inbound approach are cleared.

To check sight distance restrictions in SIMPRO, the time required for a fictitious driver—
vehicle unit, traveling at the speed limit of the approach, to travel from a position that is just
visible on the inbound approach to the point of intersection conflict is predicted. Next, the time
required for the driver—vehicle unit being examined to travel to the point of intersection conflict
is predicted. This prediction assumes that the driver—vehicle unit under examination has gained
the right to enter the intersection and that it may accelerate to its desired speed. If the unit being
checked may not safely pass through the point of intersection conflict ahead of the fictitious
driver—vehicle unit, then it may not clear its sight distance restrictions, and it must check again in
the next time step increment, otherwise, it clears the sight distance restriction and continues
checking other sight distance restrictions.

This procedure ensures that a driver—vehicle unit may safely enter the intersection even if
a driver—vehicle unit were to appear from behind the sight distance restriction just after the
decision to enter the intersection was made.
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LANE CHANGING

An investigation of lane changing models was undertaken in the early 1970s by Lee and Fett (3).
Fett collected and analyzed the field data, developed the original lead and lag gap acceptance
decision models, and used a cosine curve for the lateral position for a lane change.

Rioux developed the concept of distinguishing between two types of lane changes: (1) the
forced lane change wherein the currently occupied lane does not provide an intersection path to
the driver—vehicle unit’s desired outbound approach, and (2) the optional lane change wherein
less delay can be expected by changing to an adjacent lane that also connects to the driver-
vehicle unit’s desired outbound approach. Later, Rioux added cooperative lane changing and a
lane change to get from behind a slower vehicle.

When a lane change is forced, a check is made to determine whether an alternate lane is
geometrically available adjacent to the current position of the driver—vehicle unit being examined
and is continuous to the intersection ahead. In the case of the alternate lane not being accessible
from the current position, but available ahead, one of the two following conditions exists: (1)
there is a lead driver—vehicle unit in the alternate lane ahead, in which case the driver—vehicle
unit sets the lane change jerk rate to car follow the lead driver—vehicle unit in the alternate lane,
or (2) there is not a lead driver—vehicle unit in the alternate lane ahead, in which case the lane
change jerk rate is set to stop the driver—vehicle unit at the end of the alternate lane. If the end of
the alternate lane has already been passed by the driver—vehicle unit when the check for an
available alternate lane is made then the driver—vehicle unit is forced to choose one of the
available intersection paths leading from the currently occupied lane and abandon the original
destination. Otherwise, the driver—vehicle unit checks for an acceptable gap for lane changing.

When a lane change is optional, SIMPRO delays further lane-change checking until the
driver—vehicle unit is dedicated to an intersection path. If there are no lane alternates adjacent to
the current lane, then the lane change status flag is set to no longer consider a lane change. If the
driver—vehicle unit is the first unit in the current lane and its intersection path does not change
lanes within the intersection, then the lane change status flag is set to no longer consider a lane
change. The expected delay is then computed for the driver—vehicle unit’s current lane as well as
for any alternate lanes. If less delay can be expected if the driver—vehicle unit changes into one
of the alternate lanes, then that lane is checked for the presence of an acceptable lead gap and an
acceptable lag gap, otherwise the process is repeated the next time step increment. If there is an
acceptable lead gap and an acceptable lag gap, then the driver—vehicle unit is logged out of the
current lane, logged into the new lane, and the lane change is initiated.

When the lead gap or the lag gap is not acceptable, the driver—vehicle unit tries to
maneuver itself to make the gaps acceptable the next time step increment by accelerating,
decelerating, or asking the lag driver—vehicle unit to car follow the current driver—vehicle unit to
increase the lag gap (this is cooperative lane changing).

SIMPRO keeps track of the lateral position for the lane change old LatPosOld in feet
which starts at the value for the total lateral distance for a lane change in feet TLDIST and
decreases to zero when the lane change maneuver is completed. The lateral position of the lane
change is computed using a cosine curve. Each time step increment, the current position on the
cosine curve XOLD and the new position on the cosine curve XNEW are calculated as follows:
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XTOT =3.5* VO / (DrivChar * VehChar)
TLDIST =1/2 * LanWidOrg + 1/2 * LanWidNew
XOLD = XTOT * ACOS(2 * ABS(LatPosOld) / TLDIST — 1) / PI
XNEW =XOLD +VO * DT + 1/2 * AO * DT> + 1/6 * JN * DT?

where

AO = current driver—vehicle unit acceleration/deceleration old in feet per second per
second;
DrivChar = user-specified driver characteristic (<1 = slow, 1 = average, >1 = aggressive,
min. = 0.5, and max. =1.5);
JN = current driver—vehicle unit jerk rate new in feet per second per second per
second;
LanWidNew = new lane width in feet;

LanWidOrg = original lane width in feet;
LatPosOld = lateral position for the lane change old in feet;
TLDIST = total lateral distance for a lane change in feet;

VehChar = user-specified vehicle characteristic (<1.0 = sluggish, 1 = average, >1 =
responsive, min. = (.5, and max. =1.5);
VO = current driver—vehicle unit velocity old in feet per second;
XNEW = new position on the cosine curve in feet;
XOLD = current position on the cosine curve in feet; and
XTOT = total length of the lane change in feet.

If the new position on the cosine curve XNEW is greater than 95% of the total length of
the lane change XTOT then the lane change is completed. The lateral position for the lane
change new LatPosNew is calculated and stored as follows:

LatPosNew = 1/2 * TLDIST * [1 + COS(PI * XNEW / XTOT)]
where

LatPosNew = lateral position for the lane change new in feet;
TLDIST = total lateral distance for a lane change in feet calculated above;
XNEW = new position on the cosine curve in feet calculated above; and
XTOT = total length of the lane change in feet calculated above.

If lateral position for the lane change new LatPosNew is less than 0.3 ft, then the lane
change is completed. Note that if the driver—vehicle unit speeds up, then the total length of the
lane change XTOT increases, which causes the lane change to lengthen.

In 2008, Rioux extended the maximum lane length from 1,000 ft to 4,000 ft (/3). This
enhancement caused an additional optional lane change to be added before or after the
intersection to move a driver—vehicle unit from behind a slower driver—vehicle unit. If the
adjacent lane did not have an intersection path to the driver-vehicle unit’s desired outbound
approach, a lane change that would temporarily use the adjacent lane, pass the slower moving
driver—vehicle unit, and lane change back into the original lane was performed if possible.
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CRASHES

If the front bumper position of the driver—vehicle unit (lag driver—vehicle unit) is greater than the
rear bumper position of the driver—vehicle unit ahead (lead driver—vehicle unit), then there is a
crash. These were called “clear zone intrusions.” A message giving the details of the lead driver—
vehicle unit and the lag driver—vehicle unit involved in the clear zone intrusion was output, and
the clear zone intrusions were counted. The lag driver—vehicle unit defied physics by placing
itself 3 feet behind the lead driver—vehicle unit traveling at the speed of the lead driver—vehicle
unit and with zero acceleration/deceleration and jerk rate and the traffic simulation continued
normally. Only crashes between a lead driver—vehicle unit and a lag driver—vehicle unit were
detected.

In 2008, Rioux added the option to stop a driver—vehicle unit involved in a major crash
using crash deceleration and remain stopped for the remainder of the simulation (/3). This
involved defining a major crash. Additionally, a crash between driver—vehicle units on different
intersection paths was detected. Finally, code was added to cause other driver—vehicle units to
react to driver—vehicle units involved in a major crash by slowing down as they passed near a
crash if the driver—vehicle unit was not blocked by the major crash. After the driver—vehicle unit
stopped because it was blocked by the major crash and a stochastically generated response time
had elapsed, the driver—vehicle unit could possibly reverse a lane change maneuver if the driver—
vehicle unit was still in the original lane or choosing a different intersection path to a possibly
different desired outbound approach.

CONCLUSION

This paper chronicles the evolution of the TEXAS Model, which was developed by CTR at UT
Austin beginning in the late 1960s. Topics include the early traffic flow theory concepts of
triangular acceleration, triangular deceleration, equations of motion, car following, intersection
conflict checking, intersection conflict avoidance, sight distance restriction checking, lane
changing, and crashes. The TEXAS Model is being enhanced to include connected vehicle
messages by Harmonia Holdings Group and for Rioux to be a test bed for connected vehicle
applications.

The TEXAS Model source code is available for use by the public under the GNU General
Public License as published by the Free Software Foundation. The source code for the TEXAS
Model may be downloaded from

Standard version: http://groups.yahoo.com/neo/groups/TEXAS Model
Version with messaging: http://www.etexascode.org

The TEXAS Model animations may be watched from YouTube (search YouTube for
“TEXAS Model for Intersection Traffic Animation”):

1970s: http://www.youtube.com/watch?v=1z4WIelOfbw
1980s: http://www.youtube.com/watch?v=S0utMJ9{Zls
1990s: http://www.youtube.com/watch?v=PcU6WcaOAcE
2000s: http://www.youtube.com/watch?v=0ah6nCGKwig
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Most of the references may be downloaded from files at http://groups.yahoo.com/neo
/groups/TEXAS Model Documentationl

00000000 READ ME.TXT

00000001 TEXAS Model Development History.txt

19730126 TexITE.zip 19730500 Rioux_thesis.zip, z01, and z02

19740500 Fett thesis.zip 19770000 TRB_TRR 644.zip

19771200 CTR Research Report 184-1.zip, z01, z02, z03, z04, and z05

19771200 CTR Research Report 184-2.zip, z01, z02, z03, z04, z05, z06, and z07

19770700 CTR Research Report 184-3.zip and z01

http://groups.yahoo.com/neo/groups/TEXAS Model Documentation2

19771200 Rioux dissertation.zip, z01, z02, z03, z04, z05, z06, z07, z08, z09, and z10

19780700 CTR Research Report 184-4F.zip
19801100 Torres Evaluation of TEXAS Model.zip

19830800 CTR Research Report 250-1.zip, z01, z02, z03, z04, z05, z06, and z07

http://groups.yahoo.com/neo/groups/TEXAS Model Documentation3 19851100
_CTR Research Report 361-1F.zip and z01 19890100 CTR Research Report 443-1F.zip,
z01, z02, z03, and z04

19910800 CTR TEXAS Model Version 3 0 Documentation.zip, z01, z02, and z03

19930100 CTR Research Report 1258-1F.pdf

19931100 CTR _TEXAS Model Version 3 20 Documentation.zip, z01, and z02
20040824 RiouxEngineering DTRS57-04-C-10007_report.pdf

20050800 CTR_DTFH61-03-C-00138.pdf

20080731 RiouxEngineering DTRT57-06-C-10016_report.pdf

20100110 TRB Intersection Conflict Checking and Avoidance.pdf (not accepted)

20120122 TRB Simulating Crashes and Creating SSAM Files.pdf

20120122 TRB Simulating Crashes and Creating SSAM Files.ppt Evolution of
_Animation_of the TEXAS Model.ppt TEXAS Model for Intersection Traffic.ppt

TEXAS Model for Intersection Traffic Section 508.ppt

TEXAS Model Online Documentation.htm

ACKNOWLEDGMENTS

The author thanks Clyde E. Lee, Professor Emeritus at the University of Texas at Austin, for his
friendship, support, and guidance of the development of the TEXAS Model since 1971 and
David Gibson, FHWA Turner—Fairbank Highway Research Center, for his friendship and
support of the development of the TEXAS Model for many years.

The author also thanks the Texas Department of Transportation for its support of the
TEXAS Model and the University of Texas at Austin Center for Transportation Research for
allowing the source code for the TEXAS Model to be put into the public domain.

REFERENCES

1. Gazis, D. C., R. Herman, and R. W. Rothery. Nonlinear Follow-the-Leader Models of Traffic Flow.
Operations Research, Vol. 9, No. 4, 1960, pp. 545-567.

2. May, A. D, Jr., and H. E. M. Keller. Non-Integer Car-Following Models. In Highway Research

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

Rioux 115

10.

11.

12.

13.

14.

15.

16.

17.

18.

Record 199, HRB, National Research Council, Washington, D.C., 1967, pp. 19-32.

Rioux, T. W. Step-Through Simulation Is Faster Than Driving. In Compendium of the Annual
Meeting of the Texas Section of the Institute of Traffic Engineers, Bryan, Texas, January 26-27, 1973,
pp. 54-73.

Rioux, T. W. Simulation of Traffic Movements in an Intersection. MS thesis, University of Texas at
Austin, 1973.

Fett, 1. Simulation of Lane Change Maneuvers on Intersection Approaches. MS thesis, University of
Texas at Austin, 1974.

Rioux, T. W. The Development of the Texas Traffic and Intersection Simulation Package. PhD
dissertation, University of Texas at Austin, 1977.

Rioux, T. W., and C. E. Lee. Microscopic Traffic Simulation Package for Isolated Intersections. In
Transportation Research Record 644, TRB, National Research Council, Washington, D.C., 1977, pp.
45-51.

Lee, C. E., T. W. Rioux, and C. R. Copeland. The Texas Model for Intersection Traffic-Development.
Research Report No. 184-1, Project 3-18-72-184, Center for Highway Research, The University of
Texas at Austin, 1977.

Lee, C. E., T. W. Rioux, V. S. Savur, and C. R. Copeland. The Texas Model for Intersection Traffic,
Programmer’s Guide. Research Report No. 184-2, Project 3-18-72-184, Center for Highway
Research, University of Texas at Austin, 1977.

Lee, C. E., G. E. Grayson, C. R. Copeland, J. W. Miller, T. W. Rioux, and V. S. Savur. The TEXAS
Model for Intersection Traffic, User’s Guide. Research Report No. 184-3, Project 3-18-72-184,
Center for Highway Research, University of Texas at Austin, 1977.

Lee, C. E., V. S. Savur, and G. E. Grayson. Application of the TEXAS Model for Analysis of
Intersection Capacity and Evaluation of Traffic Control Warrants. Research Report No. 184-4F,
Project 3-18-72-184, Center for Highway Research, University of Texas at Austin, 1978.

Rioux, T. W. Enhancing the Usability of the TEXAS Model for Intersection Traffic Final Report.
Research Report Number SBIR DTRS57-04-C-10007-F, Federal Highway Administration Small
Business Innovation Research Program Solicitation Number DTRS57-03-R-SBIR Contract Number
DTRS57-04-C-10007, Rioux Engineering, Austin, Texas, 2004.

Rioux, T. W., R. F. Inman, C. R. Copeland, Jr., M. Sanu, and Z. Ning. Enhancing the Usability of the
TEXAS Model for Intersection Traffic Final Report. Research Report Number SBIR DTRT57-06-C-
10016-F, Federal Highway Administration Small Business Innovation Research Program Solicitation
Number DTRS57-03-R-SBIR Contract Number DTRT57-06-C-10016, Rioux Engineering, Austin,
Texas, 2008.

Lee, F.-P., C. E. Lee, R. B. Machemehl, and C. R. Copeland, Jr. Simulation of Vehicle Emissions at
Intersections. Research Report No. 250-1, Project 2/3-8-79-250, Center for Transportation Research,
University of Texas at Austin, 1983.

Lee, C. E., R. F. Inman, and W. M. Sanders. User-Friendly TEXAS Model, Guide to Data Entry.
Research Report No. 361-1F, Project 3-18-84-361, Center for Transportation Research, University of
Texas at Austin, 1985.

Lee, C. E., R. B. Machemehl, and W. M. Sanders. TEXAS Model Version 3.0 (Diamond
Interchanges). Research Report No. 443-1F, Project 3-18-84-443, Center for Transportation
Research, University of Texas at Austin, 1989.

Rioux, T., R. Inman, R. B. Machemehl, and C. E. Lee. TEXAS Model for Intersection Traffic,
Additional Features. Research Report No. 1258-1F, Project 3-18-91/2-1258, Center for
Transportation Research, University of Texas at Austin, 1993.

Rioux, T. W. Enhancement of the TEXAS Model for Simulating Intersection Collisions, Driver
Interaction with Messaging, and ITS Sensors, Final Report. Research Report Number DTFH61-03-C-
00138, Center for Transportation Research, University of Texas at Austin, 2005.

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

116 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory

19. Beakey, J. Acceleration and Deceleration Characteristics of Private Passenger Vehicles. In
Highway Research Board Proceedings, Vol. 18, 1938, pp. 81-89.
20. Drew, R. R. Traffic Flow Theory and Control. McGraw-Hill, January 1968.

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

TRAFFIC CONTROL

Variable Speed Limit Control to Increase Discharge
Rates of Freeway Incident Bottlenecks

DANJUE CHEN
SOYOUNG AHN
University of Wisconsin—Madison

ariable speed limit (VSL) schemes are developed based on the kinematic wave theory to

increase discharge rates at freeway incident bottlenecks (BNs) while smoothing speed
transition. The main control principle is to restrict upstream demand (in free flow) progressively
to achieve three important objectives: 1. to provide gradual speed transition at the tail of an
incident-induced queue, 2. to clear the queue around the BN, and 3. to discharge traffic at the
stable maximum flow that can be sustained at the incident BN without breakdown. These control
objectives are accomplished without imposing overly restrictive speed limits. This paper further
provides remedies for the case of a reemerging queue at the BN as a result of an overestimated
stable maximum flow. The results from a parameter analysis suggest that significant delay
savings can be realized with the VSL control strategies.

INTRODUCTION

VSL control seeks to improve safety by smoothing out shockwaves at the tail end of a queue and
freeway efficiency by deferring the onset of congestion or increasing the BN discharge rate.
Earlier efforts to improve freeway efficiency using VSL focused on harmonizing the speed
across vehicles in different lanes to create a more homogenous, stable one-pipe flow with few
lane changes (LC) (/, 2). This can presumably lead to higher capacity and critical density,
thereby deferring or preventing onset of congestion (3). Several studies have shown that VSL
control indeed induces more balanced speed and utilization of lanes (/, 2, 4-6).

SPECIALIST (SPEed Controlllng Algorithm using Shockwave Theory) seeks to
proactively resolve a moving jam and maximize the discharge rate by limiting the speed and
density of the inflow to the moving jam using VSL (7, 8). The algorithm was tested in the field
with reasonable success. Another notable scheme is the mainstream traffic flow control (MTFC)
developed in the framework of discrete-time optimal control (9). The main objective is to control
the free-flow traffic upstream of a BN (before a queue arises) using VSL or ramp metering to
prevent BN activation. The algorithm was tested on a Dutch network through simulation (70).
Later, local feedback control was incorporated into MTFC to further improve field
implementation (/7).

Chen et al. (/2) developed different VSL schemes based on the kinematic wave theory
(13, 14) to increase freeway BN discharge rates and manage the queue upstream (for smoother
speed transition) under two scenarios: steady queue and oscillatory queue that can inevitably
arise at fixed BNs. The key principle is to impose VSL control some distance upstream of a BN
to starve the inflow to the BN and dissipate the queue. Once the queue near the BN vanishes,
another less restrictive VSL is imposed upstream to 1. resolve the heavy queue generated by the
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first VSL and 2. regulate the inflow to sustain the stable maximum BN discharge rate and
prevent BN re-activation.

The strategies cited above were designed primarily to address recurrent BNs or moving
jams, in which a reduction in discharge rate typically ranges from 5% to 15% (15, 16). These
strategies, however, are not suitable for nonrecurrent BNs such as incident BNs, in which
discharge rates can reduce by more than 15%. Incident BNs are usually characterized by
moderate to severe congestion caused by significant reductions in system throughput (in greater
proportion than lanes blocked (/7) and sharp transition upstream from free-flow traffic to the
queue, which may cause secondary incidents. A significant reduction in system throughput is
attributable to 1. a decrease in capacity because of road blockage, 2. rubbernecking around the
incident, 3. change in driver characteristics (/7), and 4. disruptive LCs away from incident
location. With regard to 4, speed and flow may vary significantly among lanes with lower speed
and flow closer to the incident location. LCs away from the incident location are likely to create
voids in other lanes and reduce the discharge rate similar to the capacity drop phenomenon of
recurrent BNs (/8).

In this study, the authors develop VSL strategies to proactively improve the discharge
rate of incident BNs and manage the upstream queue for smoother speed transition. An increase
in discharge rate is achieved by clearing the queue around the incident and then maintaining a
stable maximum flow with harmonized speed to minimize disruptive LCs. Note that other
aforementioned factors for discharge rate reductions (1-3 in the previous paragraph) are not
within the scope of this paper, because VSL control may be not the best option for these issues.
The strategies developed in this paper are based on the kinematic wave theory and use the logic
similar to Chen et al. (/2). However, the new strategies address more effectively several critical
issues for incident BNs: 1. A restrictive speed limit (lower than the speed in queue as in Chen et
al. (12) should be avoided because incident-induced congestion is likely more severe; 2. the
upstream queue management should be more elaborate to provide smoother queue transition; and
3. it may not be straightforward to precisely estimate the stable maximum discharge rate, which
can lead to another queue formation at the incident BN.

This study develops a theoretical framework for VSL control to improve the performance
of incident BNs. This is an important contribution given that existing strategies were primarily
designed to mitigate recurrent BNs. The VSL control strategies developed in this study are
relatively simple, yet capable of addressing two critical issues for incident BNs: 1. reducing
incident-induced total delays significantly, and 2. providing smoother speed transition for better
safety. The theoretical approach provides insights into traffic dynamics with VSL control and the
impact of control parameters on the system performance (e.g., delay savings). Moreover, it
provides a foundational framework to address more complex freeway networks and incorporate
various implementation issues (e.g., detection and control technologies).

The remaining manuscript is organized as follows. Section 2 describes the basic VSL
control strategy, including the analysis of parameters on the system performance and sensitivity.
Two sequel VSL strategies are developed in Section 3 to remedy a reemerging queue at the
incident BN caused by an overestimated stable maximum flow. Concluding remarks are
provided in Section 4.
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BASIC VSL CONTROL FOR INCIDENT BN
Baseline Case

This paper examines freeway BNs caused by incidents that may partially block the roadways and
reduce the throughputs, as shown by a. The authors assume that the traffic evolution can
be well approximated by the kinematic wave model with triangular fundamental diagrams (FD).
The upper FD in Figure 15 describes traffic states upstream of an incident with free-flow speed
u, wave speed w, and jam density k;; and the lower FD describes traffic states at the incident
location with lower free-flow speed 4™ and jam density k}"c. Note that it is assumed u™® < u

because of rubbernecking and other effects induced by the incident.

The authors assume that traffic demand is constant in state 4, and traffic breaks down to
state H after the incident. After the incident is cleared, traffic recovers the full, normal capacity
of gmax in state M. State e represents the stable maximum flow state that can be sustained at the
incident BN without breakdown for an extended period (i.e., BN capacity, gsv = ¢.. The notation,
q-, represents flow in the traffic state denoted in subscript). Note that g < gpy because of LC
disruptions and that gy — g represents the potential gain of system throughput. States G and £
correspond respectively to the free-flow and congested states with the same flow as gy (i.e.,
gsN = qE = qc = q.) upstream of the incident.

qk
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FIGURE 1 Traffic evolution at incident BN.
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The spatio—temporal traffic evolution without any control is illustrated in Figure 1c. After
the incident, a heavy queue (in state /) propagates upstream, forming a shockwave, s44.
(Hereafter, s_ refers to a shockwave delineating two different traffic states denoted in subscript
and represents shock wave speed when used in equations.) When the incident is cleared at time
Ty, the normal capacity recovers and traffic evolves to state M, with the transition marked by
sgy. The queue ends when s 44 collides with sy, at which state 4 is resumed; this demand
recovery is marked by s,,. The queue ending time, t2%5¢, and the total delay resulting from the
incident, W*®¢, can be easily derived from the queuing diagram in Figure 1d, in which 4(¢) and
D(t) denote the virtual arrival and departure curves at the BN, respectively:

thise = -t ()
M—qA
1 (aa-am)am—am)Tm’
Whese = [(A(t) = D(O)dt =5 (qa — qu)Tutong® = = 0=t 2)
2 2(am—q4)

Notably, if the speed in queued state H is low, which is quite likely with an incident, the speed
drop along s 4 would be abrupt. In this case, it would be undesirable to impose a restrictive speed
limit (<vy) to clear the queue around the BN as prescribed by Chen et al. (/2). Additionally, the
upstream queue management strategies may not be sufficient to provide smooth enough transition
at the queue’s tail. A new VSL control strategy to address these problems is introduced below.

Basic VSL Control Strategy

The control principle is simple: restrict the upstream demand (in free flow) progressively. When
done strategically, this will achieve three important objectives together: (1) to induce gradual
transition at the queue’s tail, (2) to clear the queue around the BN, and (3) to discharge traffic at
stable maximum flow without breakdown. The control procedure consists of the following steps.
(All traffic states resulting from the VSL control are shown on the FDs in a, and the
corresponding traffic evolution is shown in the time—space diagram in Figure 2b.)

Step 1

This main step is to control the upstream demand and clear the queue around the BN. Set several
intermediate speed limit values between u and vz with an even increment. (The notation, v_,
represents speed in the traffic state denoted in subscript.) The number of speed limit values will
depend on the difference between u and vg and the increment deemed acceptable to drivers. For
an illustration purpose, the authors assume three intermediate values, denoted as V1, V>, and V.

Step 1-1 At the start of control (¢), impose V; simultaneously over an extended segment
immediately upstream of the queue; see Figure 2b. The length of the segment will be discussed
later. This results in a zone with state @; (Zone 1 in the figure), which has the same density as A4,
but the speed equals toV;; see the FD in Figure 2a. Since the control is imposed simultaneously in
space, the transition between 4 and @; forms a vertical shock, s,z . At the downstream end of the
control, state a@; meets state /1 and forms sg; ;. Notice that with this control, the queue propagates

more slowly (i.e., |Sav1H| < |sagD.
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FIGURE 2 Basic VSL control strategy. (Note: On 2b the dotted line was used to indicate that
the temporal duration of state G was shortened for presentation purposes to show the complete
evolution. A similar way is used in Figure 3c and Figure 4a.)
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Step 1-2 Switch the speed limit from V; to V5 at time Ty, to create Zone 2. Again, the new
speed limit is actuated simultaneously in space immediately upstream of the queue. Similar to
Zone 1, Zone 2 is in state @ with the same density as 4 but with speed > and forms sz where

it meets state H. Notice that the queue propagates even more slowly (i.e., |sav2 H| < |sav1 H| <

|sanl)-

Step 1-3 Similar to Step 1-2, but change speed limit from ¥, to V3 at time Ty5 to create Zone 3.

Step 1-4  Similar to Step 1-2, but change speed limit from V3 to vg at time T, to create Zone 4
in state ag. Finally, the queue moves forward since sg;y > 0 and is resolved sg;y arrives at the
BN at 7.

Step 2

This is to discharge traffic at the stable maximum flow without breakdown. The main idea is to
have upstream traffic (in state 4) gradually evolve to state £, and then let them fully accelerate to
state G before passing the BN.

Create an acceleration zone immediately upstream of the BN so that traffic can accelerate
to u. The length of this zone, L, is set to be 0.35-1 km as in Chen et al. (12).

Step 2-1 When H is resolved at 19, deactivate v at the rate of the maximum backward moving

wave speed, w, to guide the traffic in state @ to accelerate to state aj until the shock reaches the
entrance of the acceleration zone; see Figure 2b. Note that g o, Ay be smaller than gy, resulting
in underutilization of the BN capacity. Fortunately, this period is short (= (£ - &)) and

u
negligible compared to the incident duration. For example, it is about 4 min when u# = 100 km/h,

=—18 km/h, and L = 0.75 km. Nevertheless, one possible remedy is to increase the
deactivation rate to achieve a higher discharge rate than q ap which may be possible given the

low density in ay (relative to the FD). For simplicity when calculating the delay saving, the
authors assume g, =y, which corresponds to a deactivation rate, w' (: Z:;ﬁ?;?:g:’);g)

The trajectory of the first vehicle that crosses the whole acceleration zone at u is denoted
by the connected red arrows in Figure 2b, referred to as the first vehicle trajectory (FVT). The
FVT serves as the boundary for the second set of VSL in the next step and is used to
backcalculate the lengths of the vertical control at vg, V3, V>, and V;, sequentially, as pictured in

Figure 2b.

Step 2-2  Starting at the position of the FVT at 7y, impose V; at the rate of S44, (Saa, = Sag)- At
the same rate, impose V2, V3, and v¢ when the FVT intersects 7y, 713, and T, respectively, such
that all shocks are parallel. Speed limit vz is extended to the entrance of the acceleration zone, at
which drivers are informed to resume free-flow speed u (or v,).

This step results in four zones: Zones I-1V, characterized by states 4| — 43 and E,
respectively. Particularly, state A, in Zone I has the same speed as state @; but a higher density;
see Figure 2a. Notice that in Zones I through IV, vehicles gradually decrease their speed from u

(free-flow speed) to vz and then maintain vz until reaching the entrance of acceleration zone.
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Thereafter, they resume u and traffic evolves to state G. Notice that state G eventually evolves to
state e at the BN without any flow change, as prescribed by the lower FD. (Recall that the lower
free-flow speed at the BN is to capture rubbernecking and other effects of the incident.) In
anticipation of this, traffic may alternatively be controlled to reach state e in the acceleration
region. Regardless, the BN starts to discharge traffic at gsy (¢sv = £ = 96 = q.) after the arrival
of the FVT.

Step 2-3 When the incident is cleared at 7),, deactivate VSL to restore the full capacity of gy,.
To restore g, as soon as possible, deactivation at the entrance of the acceleration zone can be
timed so that the forward moving shock, sy, will reach the BN at 7. However, the gain is only
about 1 min (the trip time of sgu), and thus, one may safely start the deactivation at 7).
Concurrently, VSL is deactivated at the rate of w, forming szy,, which eventually collides with
Sa,g and terminates Zone IV. Notably, the trajectory of the last vehicle that experiences state E is
denoted by the three connected green arrows in Figure 2b, referred to as the last vehicle
trajectory (LVT). As described later, the LVT will serve as the boundary for VSL deactivation.

Step 2-4 Deactivate V), V>, and V3 along the LVT to end the VSL control. As a result, three
new zones, Zones i—iii, form naturally (i.e., no VSL control is needed) upstream of the LVT; see
Figure 2b. States A, — A3 evolve to congested states AT'— AY', respectively, because of the
bounded speeds, V; — V3 downstream. When these states interact with the upstream demand,
shocks sg4m — sg4m form, which mark diminishing queue. As traffic emerges from state A%, it

evolves to the full capacity state, M, forming s4my. When it collides with s44m, the queue
completely vanishes (At is in sec, g4 = 0.8qy, qg = 0.75qy, Lq = 2km, L = 0.75km, Ty, = Zh).

Parameter Analysis

The new queuing diagram with VSL control is shown in Figure 2¢. Notice that the BN discharge

rate increases to qgy at Ty, resulting in quicker queue dissipation at t\>%. ; can be derived based

on u and w' from the time-space diagram in Figure 2b, and t)~5 can be derived from the

queueing diagram in Figure 2c.

1 1 L 1 1
T1:T0+L(;_;):_i'*‘Atcrlt'*‘L(;_;) (3)
tons = ((qe — qu)T1 + (qu — 96)Ti) /(G — qa) 4)

where At is the duration of queue clearance at the BN after VSL (total duration of Zones 1-4),
as labeled in Figure 2b. Aty is derived based on Lg, Sg-p, Sa;n» Sazn»> and Sgzy and expressed as

3qawAt(qe(u—w)+kjwu)+2Lq(qp+k;jw)(quu—qaw+kjwu)

2w(—qequu+qaqew—qpkjuw)

Aty = — (5)

There are several factors that affect Az and thus t;, namely the durations of Zones 1-3,
the number of intermediate VSL values, and the most restrictive VSL, vg. For simplicity, it is
assumed that the durations of Zones 1-3 all equal to A¢. Clearly, the sooner users start vz (i.e., At
is smaller), the sooner the queue at the incident BN can be cleared. Figure 24 illustrates the
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impact, a linear positive relationship between At and Az, which increases faster when the
congestion becomes more severe (i.e., gy decreases as the capacity drop (1 — Z—H) increases).
M

Note that Az should be sufficiently long so that drivers can adapt and transition smoothly, which
indicates the trade-off between the delay saving and speed transition. In the field implementation
of Hegyi (19), such intermediate speed was set to last 20 s. Also notice that the number of
intermediate VSL values between u and vg can affect Azie: given A, it will take longer to start
vg with more intermediate VSL values. This again highlights the trade-off between the delay
saving and speed transition. Finally, the effect of vz on At is intuitive: increasing vg increases
At.it and T; since VSL becomes less restrictive. Conversely, increasing vg can have a positive
effect on t/5L. As evident from Figure 2c, the BN would discharge traffic at a higher rate with
higher vz (recall that gz = gsy), increasing the rate of queue dissipation. This trade-off will be
investigated in more detail shortly.

The delay saving as a result of VSL, AW, , equals to the area of the shaded region in
Figure 2c.

AW!PSL =0.5*(gpny — qu)(Ty — Tl)((tgfllée -7 + tgrchi —Tu) (6)

Figure 2e illustrates the impact of gy on AW,%, . Note that they are respectively expressed
as the fractions relative to the road capacity and baseline total delay (i.e., gzn/qy versus AW, s, /
WPase) to better examine the relative impact. It is interesting to note, however, that in severe
congestion (e.g., qy < 0.5qy,), the fractional delay saving increases with gzn/qur at decreasing
rates up to a certain point and then decreases markedly. This trend is attributable to setting the
most restrictive VSL at vz that varies with ggy, resulting in the trade-off between t; and the rate
of queue dissipation thereafter, as mentioned in the previous paragraph. More specifically,
increasing vz and g results in faster increases in t; and thus decreases in the fractional delay
saving. Also, notice that the impact of At is quite significant. For example, when A¢ increases
from 20 to 140 s, the delay saving can drop by more than 10%.

VSL CONTROL WITH REEMERGENCE OF QUEUE AT INCIDENT BN

Uncertainty in estimation of the stable maximum flow, ¢ggy, is a valid concern because of the
nonrecurrent, wide-varying nature of incidents. Moreover, difficulty in predicting rubbernecking
behavior adds to the challenge. In this section, the authors develop a VSL control strategy for the
case of a reemerging queue at the incident BN, as a result of an overestimated gzy.

It is assumed that the actual stable maximum flow, ggy+, is smaller than gz (and thus ¢.,
qe and qg); see a. As a result, a queue forms again at the BN at 1; (when the BN is
supposed to start discharging at gzy), and traffic reverts to state H (see Endnote 1). This new
queue propagates as sg, as depicted in Figure 3b. If no action is taken, the new queue would
continue to travel upstream, albeit more slowly than the initial queue (s¢y < s4z), and eventually
terminate transition Zones [-IV. Moreover, the BN would discharge at q, meaning little to no
savings in total delay.

To remedy this problem, new VSL control is imposed to clear the newly formed queue
and then adjust the discharge flow. Two strategies, A and B, with different requirements of
implementation, are proposed.
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Strategy A

This is a simpler strategy with two steps, aiming at achieving gy+ as soon as possible. (All
traffic states resulting from Strategy A are shown on the FDs in Figure 3a, and the corresponding
traffic evolution is shown in the time—space diagram in Figure 3b.)

Step A-1

When a new queue is confirmed (at T,), impose new VSL control with speed limit vy
simultaneously over a segment immediately upstream of the acceleration zone to clear the queue;
see Figure 3b. By flow conservation, a new state, E, is created in Zone V with the same density
as state E. The transition between E and E forms a vertical shock, szz. State E evolves to state |
(q; = qg) in the acceleration zone and then resolves the queue, forming a forward moving shock,
Siy- The arrival of sy at the BN marks the clearance of the new queue, which indicates that ggy+
at the BN can be resumed. The spatial extent of this VSL control at T,, denoted by Lz , should be

designed so that state I does not persist at the BN (as pictured).
Upstream of Zone V, state E naturally evolves to state H (Zone VI) and forms sgy. Note
that state H in Zone VI is bounded by vy because of state E downstream. Notably, s, is

To T, R Ty tR 4 time
(b)
FIGURE 3 Strategy A to address queue reemergence.
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terminated as it travels upstream and collides with s,_p . Thereafter, state A3 (Zone III) interacts
with H, forming s, 5. Similar transitions occur to A, (Zone II) and A;(Zone I) sequentially. In
this process, the four transition zones (I-IV) are terminated by the queue in H gradually, and the
speed transition between the intermediate states and H becomes gradually more abrupt.
Eventually, state H interacts with state A directly.

Step A-2

When the queue at the BN is cleared, impose a less restrictive VSL, vg+, upstream of the
acceleration zone to regulate the BN discharge rate at gz (= qgy+). Upstream of the acceleration
zone, traffic evolves from state H to E*, forming s+, and then to state G* in the acceleration
zone. When the incident is cleared, this VSL control should be deactivated similar to Step 2-3.

State E* propagates upstream until it is finally terminated by free-flow traffic A, marked
by s,g+. After the VSL control is deactivated, traffic emerging from state E* evolves to state M
and resumes its full capacity.

Notably, this strategy is able to resolve the new queue and attain a higher BN discharge
flow than qy, yet at the expense of sharper speed transition upstream. Notably, transitions from
A to E* and from A to H are likely very abrupt in the absence of transition layers. Therefore, we
introduce Strategy B to overcome this problem.

Strategy B

This strategy is built on Strategy A, but additional control upstream for smoother speed transition
is added. Detailed steps follow. (All traffic states resulting from Strategy B are shown on the FDs
in a, and the corresponding traffic evolution is shown in Figure 4b.)

Step B-1
Same as Step A-1.
Step B-2
Same as Step A-2.
Step B-3

Notice in Strategy A (Figure 3b) that upstream speed transition is compromised because the
heavy queue in state H (Zone VI) becomes widespread over time. In this step, the heavy queue
will be contained to a shorter distance and resolved sooner by imposing VSL control on states A
and A; — A3 (transition zones I-III). Specifically, when the new queue is confirmed at T, impose
I, immediately upstream of state A; (Zone I) over the same spatial extent as 4, (see Endnote 2).
Following V;, impose V,, V3 and vg+ sequentially with time increment of At; see Figure 4, parts a
and b. This creates low density and low flow states relative to the FD, a;—az and ag-.

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

Chen and Ahn 127

(c) (d)

FIGURE 4 Strategy A to address queue reemergence.
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The transition between az- and H forms a forward shock, s aH which will contain and

terminate state H when colliding with syg+. The spatial extents of V;-V; and vg-at the start
should be determined such that az« is terminated simultaneously with shock sy p+.

Note that state E may be terminated by state H early if s, and sgy collide before vg- is
supposed to go in effect, as depicted in Figure 4b. In this case, speed limit vg+ is turned on
sooner than At, more precisely, when s, 5 collides with s4_ 5. By contrast, if state E still
remains, speed limit vg« is imposed as planned (i.e., At later). This would create a void (state O)
between ag- and E (and later between ag+ and H) because traffic in E travels faster; see Figure
4c, which zooms in the region upstream of Zone VI in Figure 4b, to illustrate more detailed
traffic evolution. If the speed difference between v+ and vg is small, the void will eventually be
resolved by ag-+. Thereafter, state @z« proceeds to resolve Zone VI, marked by sz ;. However,
if the speed difference is significant, the void may pass through Zone VI and proceed to the BN,
resulting in a discharge flow rate of 0, which is highly undesired; see Figure 4d. For this case, the
upstream control (Step A-1) can be delayed until T,, so that the three shocks, s EH » SazE> and

Sasaz» converge; see Figure 4e. With this setting, researchers can actuate speed limit vg-
following V5.

Step B-4

Upstream of @;-a3 and ag«, impose another set of V;-V; and vg+ at the rate of 5,45+ to transition
traffic gradually from A to E* (A = A;. = A,, = Az, — E7). Finally, deactivate the control
when the incident is cleared, similar to Step 2.

Parameter Analysis

As expected, the delay saving would decrease if a queue reemerges at the incident BN; see

a for the queuing diagram. Note, however, that Strategies A and B have the same delay
savings because the additional VSL control in Strategy B only manages the queue transition
while leaving the BN discharge flow the same as in Strategy A. The delay saving (compared to
the base case) is AW,X; and can be derived based on the queueing diagram:

AW = 0.5(qan. — qu) Ty — T (255 — %) + 8.0 — Tw) (8)

7R represents the time when qgy, is resumed and equals to 7, + At,., where At is the new
queue clearance time; see the labels in Figure 35.

Notice that At.;. depends on how responsive the system is. It is assumed that the new
queue is detected after some buffer time, Aty r, or when the queue reaches the entrance of the

acceleration zone, whichever happens first. Then, it is found that At,;. is given by

)

At = min (_ kjw(L+ultpyf) . L(qH(u—W)+ukjw)kj)
qnu (qg—qn)anu
in which the former expression corresponds to early detection (i.e., after Aty ) and the latter for

detection at the entrance. Notice that in the former case, a linear positive relationship exists
between At and Aty ¢. This is expected because the earlier the queue is detected, the sooner
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the queue clearance process can be actuated; see Figure 5b. In the latter case, At,;. depends on
qg, the initial estimation of the stable maximum flow. The higher the g is, the smaller the At
is. This is because a higher g (larger |s;y|) indicates an earlier queue detection and faster
queue dissipation (larger s;), both of which decrease At,;.. Notice that, the critical value of
Aty s when the two cases are equal, denoted by Atgzif, decreases as g increases. Notably, this
indicates that with a higher qg, the queue (at the entrance) can be detected earlier and thus
control actuated earlier. However, it also indicates shorter time available to set up the remedy
action, which could pose a different challenge.

The relationship between the fractional delay saving (AW%;, /W?%5€) and Atp,, fis
illustrated in Figure 5c. With early detection, it decreases as the buffer time increases, which is
expected because At 1s larger. Also notice that the delay saving depends on the new BN
discharge rate, qpn.(9pn+ = qE»): Obviously, a larger qpy, leads to a higher delay saving.

Note that in Strategies A and B, speed limit vy is used to clear the newly formed queue at
the BN. This speed limit can be set to a lower value to clear the new queue faster. However, the
minimum value, vmin, s bounded by the speed that yields ¢, = gu:

_ 4qgw
Vi = (10)
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A speed limit higher than vy, would result in s;; < 0, and it would not be possible to clear the
newly formed queue.

Also note that in both strategies, the duration of Zone V (state E), Atj, is critical for the
experiment set-up, which is given by

o _ L (L+ubtpyr)(qu+kjw) L(qu—kjw)(quu-w)+ukjw)
Atg = Atge — Aty — = = min L , [ ) (11-1)
Thereafter, the control distance at T,, Lz , can be derived accordingly:
. (L+ubtpyp)w L(qH—kjw)(qH(u—w)+ukjw)>
Ls = Atgvy = (— : 11-2
= AtEPH = Mill u (@s—amu(an+w) (11-2)

As revealed by Equation 11-1, in the case of early detection, Atz (as well as Lg) increases
with Aty . This is because shock s,y has to travel longer. For the late detection, both extensions
increase as qy decreases because the shock s; travels more slowly.

CONCLUSIONS AND DISCUSSIONS

In this paper, VSL strategies were developed based on the kinematic wave theory to increase
discharge rates at freeway incident BNs and provide smoother speed transition upstream. The
main logic is to impose VSL control gradually on upstream demand to dissipate the queue
around the incident BN while inducing smoother speed transition at the queue’s tail. After the
queue clearance, VSL control continues to regulate inflow to the BN so that the BN can
discharge traffic at the stable maximum rate in free-flow without breakdown. This is
accomplished without imposing overly restrictive speed limits, an important feature considering
incident situations. Findings from the parameter analysis suggest that significant delay savings
can be realized with this strategy.

The authors further developed two sequel VSL strategies to remedy a reemerging queue
at the incident BN because of an overestimated stable maximum flow. This is a likely scenario
since incidents are nonrecurrent and vary widely in nature. The first, and the simplest, strategy is
designed to clear the new queue and discharge traffic at the adjusted (lower) stable maximum
rate, albeit with less desirable speed transition. The other two strategies were built on the first
one to better manage the upstream queue for smoother transition. The two strategies differed by
the magnitude of error in estimating the stable maximum flow. Not surprisingly, it was found
that delay savings decreased when the stable maximum flow was overestimated; however, they
were still substantial.

Building on the theoretical framework presented in this paper, ongoing research includes
formulation of discrete schemes to 1. accommodate more complex scenarios, such as time
varying demand and realistic freeway networks (with on and off-ramps), 2. shed light on
spatiotemporal features of vehicle delay and speed variation, and 3. evaluate system robustness
with respect to driver compliance and traffic detection/measurement errors, delays and
resolution. Finally, the proposed VSL strategies should be tested in the field and further refined
to address various practical issues, such as detection of traffic states and shockwaves.
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ENDNOTES

It is possible that a queue may form earlier if is sufficiently high. Note, however, that a VSL strategy
to remedy this case would be similar.

This is because the vehicle trajectory passing these three zones is parallel to those passing Zones 1-3,
such as the FVT.
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TRAFFIC CONTROL

A Real-Time Signal Control Strategy for
Mitigating the Impact of Bus Stops on Urban Arterials

CELESTE CHAVIS
Morgan State University

ELENI CHRISTOFA
University of Massachusetts, Amherst

uses stopping at transit stops reduce the capacity of signalized intersections, which can lead

to excessive delays for all users. In order to avoid such phenomena signal control strategies
can be used. This paper presents a signal control strategy to mitigate the impact of bus stop
operations on traffic operations along an undersaturated approach. The objective of the proposed
strategy is to increase the green time for the bus stop approach during the cycle after the bus has
left the stop in order to ensure that the residual queue that was created by the presence of the bus
at the bus stop can fully dissipate within the following cycle. In addition, this strategy ensures
that the cross-street approaches can clear any residuals queues caused by this strategy within a
cycle after its implementation. Kinematic wave theory is used to track the formation and
dissipation of queues and determine the red truncation (or equivalently green extension). The
benefits achieved from the proposed strategy are illustrated through simulation tests at a single
intersection for a variety of bus stop and bus operation characteristics. Average delay and
average queue length for the bus stop and cross-street approaches are used to assess the
performance of the system. The tests performed indicate that the signal control strategy can
achieve substantial reductions in delay for the bus stop approaches without adversely affecting
the cross-street operations and the overall intersection delay, when the demand at those cross
streets is low.

INTRODUCTION

Efficient multimodal transportation systems are essential components for maintaining and
improving the livability of our cities. However, the presence of multiple modes that differ in
their dimensions and performance often complicates traffic operations and leads to
underutilization of available capacity. Such an example is the existence of bus stops that are
common in urban areas. If no bus bays exist, bus stops block lanes causing disruptions to the
traffic stream, reducing the capacity of signalized intersections, and leading to excessive delays
and potentially gridlock. Therefore, a comprehensive evaluation of the impact of bus stops on the
capacity of signalized intersections and the development of signal control strategies to reduce
this impact are critical for achieving efficient multimodal traffic operations and improving
mobility for all users in urban networks.

The impact of bus stops on traffic and transit operations, and in particular on the capacity
of signalized intersections has been extensively studied (/-8). However, several of the studies
have not provided explicit formulas for estimating the impact (2, 5, 6), or have investigated the
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impact in developing countries where bus stops are commonly located on the nonmotorized
traffic lane and the behavior of drivers is substantially different than in the United States (/, 4,
7). Other studies have developed analytical formulas to estimate the impact as a function of the
bus frequency and dwell time, the number of lanes, and the location of the subject bus stop with
respect to the stop line (i.e., near side versus far side). However, some of these studies have not
explicitly considered the impact of the bus stop’s location (i.e., distance from the stop line) on
the capacity of the signalized approach (3, §). Only a recent analytical method has accounted for
the location of the bus stop, the bus dwell time, and the bus frequency when determining the
impact of bus stops on capacity (9).

While the impact of bus stops on the capacity of signalized intersections has been studied
extensively, the literature on strategies that mitigate the impacts of bus stops on the capacity or
delay of signalized intersections is very limited. A recent study by Gu et al. (/0) investigated the
impact of nearside bus stop location on the residual queue length and proposed a real-time bus
holding strategy that ensures clearance of the queue within a signal cycle. However, the study
used predicted arrival times instead of actual arrivals. The study was later extended (/7) to
estimate car and bus delays when the existence of bus stops affects their delays assuming
stochastic bus arrivals and both nearside and far-side bus stops. However, the proposed formulas
assumed that the car arrival flow is always less than the restricted capacity because of the
presence of a bus at a bus stop, and researchers developed their formulas for certain distances of
bus stops downstream and upstream of a signalized intersection.

Given the limitations of the literature, the objective of this study is to investigate the
impact of bus stops on the capacity of signalized approaches as a function of the bus stop’s
location, bus arrival, and dwell times. The study investigates the impacts of those factors for
cases that the car arrival flow is higher or lower than the restricted capacity when a bus is present
at the bus stop during the green time interval, therefore, covering a variety of cases that can
occur in reality. In addition, it suggests using information on the bus stop’s impact on capacity to
implement a real-time signal control strategy that ensures clearance of the residual queue within
the cycle(s) following the detection of a bus’s presence at a bus stop. The focus is on a well-
timed signalized intersection for which all four approaches are undersaturated.

The rest of the paper is organized as follows: First, the authors describe the research
approach that includes the methodology used to estimate the impact of an incident on traffic
operations, in particular queue formation and dissipation as well as the proposed red truncation
signal control strategy. Next, the authors present all different cases that can arise with regard to
queue formation and dissipation patterns for a variety of incident locations, start times, and
durations, as well as demand and signal timing characteristics. The required red truncation
amounts are also calculated for a sample of cases. Next, results on the impact of the signal
control strategy on the performance of the bus stop and cross-street approaches under a variety of
demands, bus stop locations, and dwell times are presented. Finally, the authors comment on the
applicability of the proposed strategy and suggest steps for extending the study.

RESEARCH APPROACH
The proposed research is based on tracking traffic conditions in the time—space domain while bus

stops are both occupied and unoccupied by a bus. In order to do so kinematic wave theory (12,
13) is used. In particular it is assumed that traffic operations for an approach that contains a bus
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stop can be described by a triangular fundamental diagram. By illustrating traffic conditions as
states on a time—space diagram, it is possible to identify the formation and dissipation of queues
and determine the impact of a bus stop on traffic conditions (e.g., queue length and delays).

Once traffic conditions are depicted on a time—space diagram, a signal control strategy is
introduced. This strategy aims at increasing the green time for the bus stop approach over the
next signal cycle in order to clear the additional queues created by the presence of the bus and
avoid oversaturation of the subject approach. If the impact of the bus stop is small and the green
time interval of the next cycle is sufficient to clear the residual queue, then no additional green
time is provided for that approach over the next cycle. The proposed strategy can be
implemented as an early green or green extension depending on the phase sequence within the
cycle. Note that this strategy is based on the assumption that the cycle length remains constant
for the cycle under consideration and the ones immediately following it. For illustrative purposes
throughout this paper it is assumed that the green time interval follows the red in a cycle and
therefore, the signal control strategy implemented corresponds to an early green (i.e., red
truncation). In addition this study calculates the maximum red truncation that is allowed so that
the cross street returns to undersaturated conditions within a cycle after the red truncation.

The proposed methodology assumes knowledge of the triangular fundamental diagram, a
constant demand level for the subject approach, ¢, for the cycle under consideration and the
ones immediately following it as well as the reduced capacity, g, caused by a bus dwelling at a
bus stop; see . It has also been assumed that the reduced capacity g, is equivalent to the
capacity of a traffic lane, which indicates that a bus dwelling at a stop would block one lane. In
addition, the exact bus stop location as measured from the stop line, X, is known. Note that X is
negative. It is also assumed that detection technologies such as automated vehicle location
systems exist and can provide information on the bus arrival at the bus stop, 7,, and its departure
from the stop, T, in real time. Note that no prediction of arrival or departure time is necessary

Flow [vph]

Density [vpm]

FIGURE 1 Fundamental diagram.
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since the signal control strategy is always implemented in the cycle following the bus departure
from the stop. It is further assumed that the bus dwell time does not exceed a cycle length, which
is a reasonable assumption for most bus stops. Finally, it has been assumed that vehicle demand
is available through sensing technologies such as loop detectors placed upstream of potential
queue spillbacks, and the uncontrolled signal timing parameters of the pre-timed signal are
known.

Red Truncation Estimation

In the absence of a bus at the stop the number of vehicles arrived and therefore, served in one
cycle length, N, is equal to ¢,C/3,600 where C is the cycle length in seconds and is the sum of
the red time, R, and green time, G. However when a bus is present and oversaturation occurs, the
number of vehicles, V;, served can be determined by examining the flow rates at the stop line
using the following equation:

Ni = (teqc + g1 + 1494)/3,600 (1)

where 1¢, 1/, and 14 is the total time that the flow rate is gc, g1, and g4, respectively, during the
cycle(s) that the bus is stopped at a bus stop. Given that the number of vehicles which were
served by the intersection, MV, is less than the number of vehicles that arrived, N,, during the
cycle(s) the incident is present, the amount that the red time interval is shortened is such that the
number of vehicles that were unable to go through the intersection as a result of the bus stop-
induced reduced capacity (N, — N;) plus the number of vehicles arriving in the next cycle (N) is
equal to the number of vehicles that can be served during the initial green time for the bus
approach, G, plus the additional green provided, —Dgy. This can be expressed as follows:

Mo Nt .

Dy = min {G — 36002
dc

Where Dy is given in seconds and N, and 1¢ are based on whether or not the incident spans one
or two cycles yielding

N ifT,<C
N, = €= 3
0 {%N otherwisqu c )
_ —1,—14 IfT, <
te = {ZG —1,—1, otherwise “)

The equations for 1; and 14 are dependent on the cases defined by the position of the bus
stop, the arrival and departure time of the bus from the stop, as well as the demand levels and
signal timings, and they will be determined in the following section. Note that Dy, is negative,
because it corresponds to the change in the red time for the bus approach. If it becomes positive,
then no truncation is needed because the initial green time for the approach G is sufficient to
serve all vehicles despite the reduced capacity because of the presence of a bus at the stop.
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Impact on the Cross-Street Traffic

The red truncation implemented for the bus stop approach, D, will result to a reduced green for
the cross-street approaches. Assuming undersaturated traffic conditions for the cross streets, the
maximum cross-street degree of saturation that will allow it to return to undersaturated
conditions within a cycle after the implementation of the red truncation for the bus stop approach
is determined. This maximum red truncation time, DR, qx> €20 bE calculated as

quxC
Dg, . = = — 2G, (11)

where ¢, is the arrival rate at the cross street and g¢, is the saturation flow for the cross-street
approach x, and G, is the green time interval for cross-street approach x when no red truncation
is implemented for the bus stop approach.

Identifying the Cases

Depending on the location of the bus stop, starting time, and dwell time of the bus, the capacity
reduction can be categorized as falling into one of five cases. All other instances that do not fall
into one of the five cases do not require red truncation (i.e., Dz = 0). In order to determine which
case each bus stop induced capacity reduction incident is under and estimate its associated red
truncation time, the following critical times have been identified as

- 3600 X S
175280 U, ®)
3600 X

_ 24 6

L=k+ 5280 w ©)
S 3600 X

> g —qu 5280 v )

. 3600 X .

77 75280 vy ®

T. = veTo(qa — q;) +3600/5280 X(qc — qa) + vrqcR ©)

> (qc — a)vy

T,(q; — qc) + T, (g4 —

T, = e(ar —qc) + To(qa — a1) (10)

da — qc

where T, T», T3, Ta, Ts, Ts are given in seconds. These times are measured at the location of the
dwelling bus, X.

provides the constraints that are used to identify each of the cases. All constraints
in each case must be satisfied, and each case is mutually exclusive. shows the
constraints for Cases 1 to 3 on a time—space diagram for undersaturated conditions as well as the
locations of 7} through 74. Note that for illustration purposes the yellow time intervals are not
shown in the time—space diagrams of Figures 2 through & but are considered to be present at the
end of each phase. The area with the horizontal lines represents the possible locations that 7,
may be located and the vertical lines the locations where 7, may be located (subject to constraint
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TABLE 1 Constraints for Each Case
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Case Constraints
1 T, T3, TL,<T, T, +C, Ts>T,
) T,<C, T, 2T, +C,Te >T, ifqy > q
T, <T3T, =T, +C, otherwise
3 T3<T, <C, T,+C<T,<2C, T1' £Ty, q4 < q
4 Ts <T,, Te=2T, T,<T3 q4>q
5 Ts <Ty Te=2To+C, Ty=Ts, qq>q;

Case 2

Possible locations

Case 2
T 'lf T3 Ty
7
1
]
1
I
1
1
c £ ; ¢

1
i
1
A :
A )

: A
T
I
[
[

Case 3

Possible locations

FIGURE 2 Illustration of constraints for Cases 1 through 3
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FIGURE 3 Case 1, time—space diagram (no control).
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FIGURE 4 Case 2, time—space diagram (truncation needed).
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FIGURE 5 Case 3, time—space diagram (no control).
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FIGURE 6 Case 4, time—space diagram (no control).
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FIGURE 7 Case 5, time—space diagram (no control).
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FIGURE 8 Case 6, no impact (no control).
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T,- T, < O). It is not feasible for an incident to begin at a location in the jam state, since a bus
cannot proceed to the bus stop if it is within the zero speed jam state. Cases 4 and 5 are not
shown, as they represent special cases when the queue following the start of the incident is
starved because of the presence of that incident when demand exceeds the capacity during the
incident (i.e., g4 > qi).

Once the case has been determined the red truncation time, Dg, can be calculated using
the values in , which shows how long the intersection is discharging at rates as defined by
States 4 and /. Figures 3 through 8 show example time—space diagrams for each case and depict
the critical times defined above. Each figure shows in solid black lines the propagation and
dissipation of queues if no signal control strategy is implemented and in dashed lines how the
queue dissipates when the red truncation strategy is in place. The gray dotted lines represent the
formation and dissipation of queues in the absence of a bus at the bus stop; see Figure 4. The
bold line in yellow represents the presence of a stopped bus. For all cases shown it is assumed
that traffic operations can be described by a fundamental diagram with the following
characteristics: g. = 3,600 veh/h, g; = 1,800 veh/h, w = —12 mph, and vy= 30 mph. As can be seen
by the time—space diagrams in Figures 6 and 7, Case 5 is nearly a translation of Case 4. In order
to determine the red truncation time in Case 5, three new variables must be defined: T, = T, — C,
T, =T, — C, and Ts can be found by substituting T, for T, in Equation 9.

The characteristics of bus stop operations for each sample case and the required red
truncation as well as the resulting average vehicles delays for the bus stop approach and the cross
street with and without control are shown in . When demand is low (Case 3, Figure 5; and
Case 6, Figure 8) no truncation is needed. In fact, if the bus is not present at the bus stop while
the signal is discharging, there is no increased delay as a result of the bus dwelling. In Cases 1
and 4, the presence of a bus at the bus stop increases delays; however, queues dissipate within a
cycle without control. Cases 2 and 5 demonstrate scenarios that require red truncation. As
expected the strategy improves the average and total delays along the bus stop approach and
slightly increases delays along the cross street. Additional results are given in the following
section.

APPLICATION
The evaluation of the proposed methodology and real-time signal control strategy has been

performed with the use of simulation, in particular with the software AIMSUN through its
application programming interface (API). API allows for implementing the proposed signal

TABLE 2 Time Spent in States 4, 75, and I, 7

Case T4 T
1 0 min{T,, T,} — max{T,, T,}
2 min{T,, Ty} — min{T3, T, } max{T,, T,} - T, + T, — (T, + C)
3 T, — T min{T,, T, + C} — (T, + C)
4 0 min{T,, T,} — Ts
5 T, — Ts min{T., T,} — T.
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TABLE 3 Parameters and Average Vehicle Delays for Each Sample Case

Bus Stop Approach Cross-Street
Average Delay Average Delay
(s/veh) (s/veh)

X T, T, Demand No No

(ft) (s) (s) Case Dg Control | Control | Control | Control
Case 1 =30 1819 | 1843 q4>q; 0.00 16.49 — 31.46 —
Case2 | —30 43 118 q4s>qr | 797 38.63 35.11 27.11 28.73
Case3 | —-100 | 314 373 q4<q; 0.00 15.86 — 25.82 —
Case4 | =550 | 605 684 q4>qr 0.00 2091 — 26.29 —
Case 5 | =550 78 147 q4>q; | —2.06 18.15 17.44 27.11 27.11
Case 6 | —100 | 619 639 q4<4q; 0.00 11.10 — 16.47 —

control strategy in real time and evaluating its performance through a variety of performance
measures such as delay for the subject bus stop approach, delay for the cross streets, and average
queue length for all approaches.

Test Site

The test site used for the application of the proposed signal control strategy is the intersection of
San Pablo and University Avenues in Berkeley, California; see F'igure 9. The intersection
operates with a four-phase signal with a cycle length of 80 s. Six bus routes with headways that
vary between 10 and 30 min on each route, travel through the intersection and stop at six bus
stops located at different distances from their corresponding stop lines.

San Pablo Avenue

10 buses/hour
1
I
|
I
|
|
I
|
1
I
]
|

FIGURE 9 Test site: San Pablo and University Avenues, Berkeley, California.
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The focus of this study is on the eastbound approach of University Avenue, which has a
nearside bus stop where buses of three different bus lines stop with an overall frequency of 10
buses per hour. The demand levels of both approaches were set in such a way so that the test site
represents traffic conditions at the intersection of a major with a minor roadway. This was
essential since the proposed signal control strategy has been designed under the assumption of
undersaturated conditions and performs best when the cross-street approach is not operating
close to saturation. The car demand for the cross streets was set to 250 vph. Two scenarios of
high and low demand were created for the bus stop approach (eastbound approach of University
Avenue) and the opposite direction of University Avenue. The high demand was set to 2,000 vph
and the low to 1,000 vph with turning ratios of 85% for through, 10% for right, and 5% for left
for both demand scenarios. The same turning ratios were used for the cross-street demands.

For the low-demand scenario the green time for the phase that serves the University
Avenue through movements was set to 37 s, and the one for the cross street through movements
to 19 s. For the high-demand scenario, these green times were set equal to 44 s and 12 s,
respectively. The other two phases that serve the left-turning vehicles had a constant green time
of 5 s allocated to them for both scenarios. Therefore, red truncation was implemented only on
the phase that serves the through cross-street movements. In addition, the lost time, which is
assumed to be equal to the total yellow time, was kept constant and equal to 14 s, 4 s after each
of the through phases and 3 s after each of the left-turning phases. It is assumed that cars will
continue through the intersection for 2 s of the yellow interval, thus an extra 2 s was added the
green time with remaining time in the cycle denoted as red time.

Based on this information, the degrees of saturation for the University Avenue through
movements were 0.57 and 0.96 for the low- and high-demand scenarios and for the San Pablo
approaches equal to 0.28 and 0.44 for the low- and high-demand scenarios. Bus stop locations of
30, 100, 200, and 500 ft from the stop line were tested. The average bus dwell time was set to 40
s with a standard deviation of 30 s. These ensured that several different cases of bus stop
obstruction were captured.

Results

Several tests were performed with the help of the microsimulation software AIMSUN as
described above, and the results were evaluated primarily through two performance measures:
average vehicle delay and average queue length for both the bus stop approach and the cross
streets (an average of the performance of the two cross-street directions is presented here). Ten
replications were run for each scenario to account for the stochasticity in bus and vehicle arrivals
as well as bus dwell times, and the average, as well as the 95% confidence intervals of those
replications, are presented here.

Tests were performed both for a high bus stop approach demand, which exceeds the
reduced capacity due to the bus dwelling, and for a low demand. The results for the low arrival
rate along the bus stop approach show there is no need for red truncation at the cross street, since
even with reduced capacity the intersection approach is still capable of serving all vehicles
within one cycle, thus maintaining undersaturated conditions. It is possible that truncation is
needed when the arrival rate is lower than the reduced capacity of intersection, as the presence of
the bus may impede the discharge rate when a signal turns green. However, if the incident is
sufficiently upstream and/or the degree of saturation low, the blockage caused by the bus
dwelling at the stop does not greatly restrict the flow of arriving vehicles.
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show the changes in average vehicle delay and average queue length

for both the bus stop approach and the cross streets (presented as a weighted average of the two
cross-street through approaches) as well as the 95% confidence intervals. The results indicate
that the proposed signal control strategy can significantly reduce average vehicle delay for the
bus stop approach for all bus stop location scenarios other than the one of 500 ft. As the distance
of the bus stop from the stop line increases its impact on traffic operations close to the signalized
intersection diminishes. As a result, even when no control is in place, the delays of vehicles on
the bus stop approach are on average lower than the ones when the bus stop is located close to
the intersection stop line. This verifies the findings of previous research efforts on the higher
impact of nearside bus stops on the capacity and delays of vehicles at the signalized intersection.
While the average vehicle delay for the cross streets increases, the amount by which it increases
is very low, on the order of 3 to 5 s per vehicle. Taking into account that the cross street is less
heavily traveled than the main street, the strategy results to an overall reduction of delay of about
6% for the case that the bus stop is located directly upstream of the intersection stop line.

Similar trends are observed for the average queue length at the bus stop and the cross-
street approaches. The reduction of average queue length at the bus stop approach diminishes as
the distance of the bus stop from the intersection stop line increases. At the same time the
increase in average queue length observed at the cross-street approaches is minimal on the order
of 0.2 vehicles. This happens because for the tests performed the cross streets were far from

reaching saturation.
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FIGURE 10 Average vehicle delay for various bus stop locations with and without control:
(a) bus stop approach (eastbound University Avenue) and (b) cross-street approaches
(average of northbound and southbound San Pablo Avenue).
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FIGURE 11 Average queue for various bus stop locations with and without control: (a)
bus stop approach (eastbound University Avenue) and (b) cross-street approaches (average
of northbound and southbound San Pablo Avenue).

CONCLUSIONS

This study presents the development of a real-time signal control strategy that uses information
on the location of a bus stop, as well as the bus dwell time, traffic demand levels, and signal
timings. The proposed bus stop mitigation strategy uses kinematic wave theory to track the
formation and dissipation of queues and estimate the amount of green that needs to be added to
the subject approach so that residual queues are cleared within one cycle.

Several tests were performed for a variety of bus stop locations, dwell times, and for two
levels of bus stop approach demands through microsimulation. The outcomes of the tests indicate
that rarely if ever there is a need for implementing the real-time signal control strategy when the
capacity of the approach when a bus is present is higher than the demand of the incoming traffic

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

Chavis and Christofa 147

to the subject approach. On the other hand, when the arrival demand at the bus stop approach
exceeds the lower capacity caused by a bus dwelling at the bus stop, the proposed mitigation
strategy can achieve average delay and average queue length reductions of up to 17% for the bus
stop approach. The 17% reduction in average delay corresponds to about 6 s per vehicle average
delay savings. At the same time, the mitigation strategy only slightly increases average delay for
the cross street on the order of 3 to 5 s per vehicle. When the cross street is less heavily traveled
than the bus stop approach, net benefits from such a control strategy are achieved, and the overall
delay at the intersection decreases. The mitigation strategy is most beneficial when the bus stop
is located very close to the stop line of the signalized approach. Note that the proposed strategy is
applicable for cases where all intersection approaches are undersaturated and is most beneficial
when implemented at intersections that the bus stop approach has a much higher demand than
the cross street.

The benefit of the proposed real-time signal control strategy is that it can be implemented
for any bus stop location, dwell time, and can be used when the vehicle demand is higher than
the reduction in capacity induced by a bus stopping at bus stop and when it is lower. Therefore,
in addition to investigating and mitigating the impact of bus stops on capacity and delay, the
equations presented here and the mitigation strategy are applicable to any type of incident that
can occur in signalized arterial networks, such as freight deliveries, accidents, and more. So,
under the assumption that the characteristics of the incident are known in real time (after the
incident had been removed), the proposed strategy can be implemented to mitigate the impact of
that incident on traffic of that approach. Overall the proposed strategy can be used for real-time
mitigation of bus stop or incident-induced reductions of capacity to improve traffic and transit
operations in urban signalized arterials.

Future steps include improving the mitigation strategy so it can handle bus stop events
that occur within the same cycle or consecutive cycles and cases when a bus is stopping for
longer than one cycle length, and extending the focus of the strategy to include cases where
vehicle demand varies from cycle to cycle.
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FREEWAY TRAFFIC ANALYSIS

Influential Subpaces of Connected Vehicles in Highway Traffic

KSHITIJ JERATH
VIKASH V. GAYAH
SEAN N. BRENNAN
The Pennsylvania State University

his work introduces the novel concept of an influential subspace, with focus on its

application to highway traffic containing connected vehicles. In this context, an influential
subspace of a connected vehicle is defined as the region of a highway where the connected
vehicle has the ability to positively influence the macrostate (i.e., the traffic jam), so as to
dissipate it within a specified time interval. Analytical expressions for the influential subspace
are derived using the Lighthill-Whitham-Richards (LWR) theory of traffic flow. Included results
describe the span of the influential subspace for specific traffic flow conditions and prespecified
driving algorithms of the connected vehicles.

INTRODUCTION

In recent years, there have been significant developments in the ability to inform drivers about nearby
traffic conditions, which often leads to the questions: Can an individual driver use such information
to affect traffic flow? And which drivers in a traffic network have the most influence on traffic flow
(i.e., where and to whom should the information be delivered)? This work introduces the concept of
an influential subspace of a connected vehicle (7), which is defined as the region of a highway where
the connected vehicle has the ability to drive the macroscopic state of traffic flow to a desired state
within a prespecified time. This concept is applicable to several physical, biological, and engineered
systems, and a general formulation will be presented in future publications. In this paper, analysis of
the influential subspace is conducted specifically for a connected vehicle entering a self-organized
traffic jam, using basic postulates of the LWR model of traffic flow (2, 3).

To better understand the concept, consider the following example with reference to
Given a single-lane highway segment where no passing is allowed, assume that a spontaneous traffic
jam has formed on one section so that the macroscopic state (or simply macrostate) of traffic flow in
that region is the jammed state J. Next assume that the desired macrostate is free flow (state 4), with
known flow and density, that currently exists upstream of the traffic jam. Vehicles in this state are
assumed to travel at the maximum permissible velocity [, i.e., the free-flow velocity (v/)], and cannot
travel any faster. Now, as a thought experiment, consider the impact that a connected vehicle
receiving information on downstream traffic conditions could have on the jammed state, for each of
the four regions outlined in Figure 1.

In Region 1 of Figure 1, a connected vehicle is sufficiently far from the jammed state so that
its actions (such as slowing down to avoid the jam) have no positive effect on the jammed state—the
jam would have dissipated by the time the connected vehicle of Region 1 moves downstream. In
Region 2, a connected vehicle could slow down to avoid the traffic jam, and this action could
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FIGURE 1 Thought experiment for understanding the concept of influential subspaces of
connected vehicles in highway traffic. White arrow indicates direction of travel.

result in fewer vehicles entering the jammed state. As a result, Region 2 represents the influential
subspace. However, as a connected vehicle moves closer to the jammed state J, its influence
decreases, and in Region 3, the connected vehicle cannot escape the jam by slowing down and its
actions have no positive influence on the jammed state. Finally, in Region 4, a vehicle may
decide to exit the jam slower rather than at the free-flow velocity, resulting in a negative
influence and a persistent jammed state. The outcomes of this thought experiment are validated
using the LWR model in later sections.

As connected vehicles technology becomes sufficiently advanced and begins to enter the
mainstream, it is imperative that the research community helps fully realize its potential and
efficacy. Prior work on connected vehicles has primarily focused on communication protocols
and vehicular network topologies. While this research is important, it produces few research
insights into the potential impact of connected vehicles on traffic flow. Recent work on the
impact of mixed traffic on self-organized jams (4), effect of individual driving strategies on
traffic flow (3), cooperative adaptive cruise control (6), and cooperative highway driving (7)
have all briefly touched on various aspects of how individuals affect macroscopic traffic flow
dynamics. However, these research efforts do not address the traffic system from the perspective
of influential subspaces of connected vehicles. The following section presents the framework
within which the concept of influential subspaces will be introduced.

PROBLEM SETUP

The problem is setup as a single-lane highway where no passing is allowed. Representative
values of traffic flow parameters such as maximum flow (gmax = 1,800 veh/h), jam density (k; =
110 veh/km), and free-flow velocity (v, = 90 km/h) are used, assuming a triangular relationship
between flow and density. The analysis uses standard results of the LWR model by drawing
time—space diagrams to identify the time taken for the traffic flow to reach a desired macrostate
(i.e., one in which the traffic system is operating in a free-flow state).

To keep the analysis simple, only two connected vehicles are considered in the presented
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work. At time ¢ = 0, the first connected vehicle (CV7) enters the jam and sends an alert signal
indicating a jammed state to the connected vehicle upstream, which receives the signal
instantaneously. The reception of the alert signal from CV/ causes an event-triggered control
action in CV2, which slows down to a predetermined speed vy as selected by the driver or
dictated by an inbuilt cruise control algorithm. When CV'] exits the traffic jam at time ¢ = tgxyT, it
sends another alert signal upstream. This alert results in a second event-triggered control action
in CV2 due to which it speeds up to free-flow velocity v. Depending on the location of the
second connected vehicle CV2, its control policy (i.e., the combined event-triggered actions of
slowing down and speeding up) may or may not have an effect on the macrostate. The next
section discusses several explanatory cases similar to the ones described in Figure 1 that make
the problem setup clearer.

INFLUENTIAL SUBSPACES OF CONNECTED VEHICLES

For the following example, the traffic system is assumed to be operating at traffic state 4 given
by g4 =900 veh/h and k4 = 10 veh/km. Without loss of generality, it may be assumed that the
first connected vehicle CV1 enters the spontaneous traffic jam and sends the alert signal at time

¢t = 0. Upon receiving the signal, the second connected vehicle CV2 is assumed to slow down to a
predetermined speed vy 10 km/h in order to avoid the traffic jam. This results in a slow-moving
state S given by g5 = 733 veh/h and kg = 73 veh/km.

Interpretation of Time—Space Diagrams

With reference to Figures 1 and 2, parts a and b correspond to Region 3 in Figure 1. In these
cases, the actions of the vehicle CV2 have no positive effect on the time it takes to return to the
desired macrostate 4. In both cases, the jammed state J dissipates at time ¢;, independent of the
presence of connected vehicles in the traffic stream. Figure 2¢ corresponds to Region 2 in Figure
1, where the actions of vehicle CV2 cause the traffic system to reach the desired macrostate 4
faster. Specifically, the slow-moving state S vanishes at time tg, whereas the jammed state
vanishes at time ¢ < ¢,. Thus, there is a net reduction in the time taken for the traffic flow to
return to the desired macrostate 4. Finally, Figure 2d corresponds to Region 1 of Figure 1, where
the actions of vehicle CV2 have no positive impact on the time taken to return to macrostate A,
since the jammed state J dissipates of its own accord.

Analytical Solution of Influential Subspaces

Mathematically, the time taken for the traffic system to reach the desired macrostate 4 is given
by

t4 =max{tj, ts} (1)
where #; denotes the time taken for the jammed state J to dissipate, and #s represents the time taken
for the slow-moving traffic state S to vanish. In other words, the time taken to reach the desired

macrostate 4 is governed by which of state J or S persists for a longer period of time. The
mathematical expressions for #; and 75 can be calculated from geometric considerations of Figure 2.
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FIGURE 2 Time-space diagram when distance between the connected vehicles CV1 and
CV2is (a) 200 m, (b) 350 m, () 700 m, and (d) 5,000 m, for Vs= 10 km/h. In cases (a) and
(b), the actions of CV2 have no positive impact on time taken for traffic to return to
macrostate A. In case (C), the slowing down by CV2 causes a more rapid return to
macrostate A (e.g., jam-free traffic flow); CV2 is in its influential subspace. In case (d), the
vehicle CV2 has no positive impact on the macrostate; the jam has already dissipated. A
dashed line indicates jam evolution without connected vehicles. Dash-dotted lines are
vehicle trajectories of connected vehicles.

Expression for Dissipation Time t; of Jammed State ]

Specifically, first consider the evaluation of #; with reference to (or Figure 2¢). In this
scenario, the time taken for the jammed state J to dissipate is a function of the original queue
length x, at time ¢ = 0, the distance between the connected vehicles x, at time ¢ = 0, and the traffic
state 4 that exists upstream of the jammed state J. The expression for ¢, in Figure 3 is given by
Equation 2 as follows:

X, +x
{ =1 )

w
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where x, is the length of the roadway occupied by new vehicles entering the jammed state .J after
time ¢ = 0, and w is the backward wave speed obtained from the triangular fundamental diagram.
The quantity x, is determined by assuming that the number of vehicles is conserved on the
roadway. Specifically, under this assumption, the number of vehicles between the two connected
vehicles CV'1 and CV2 can be calculated to be

xqk
Number of vehicles between CV1 and CV2 = xgk, = xp,k; = xp, = ‘;{ 4 (3)
]

where x, 1s the distance between the connected vehicles CV1 and CV2, and k, and k; represent
the densities of traffic flow in states 4 and J, respectively. Consequently, the expression in
Equation 2 can be expanded to yield

(= Xq + Xaka/k; @)
w
However, this expression is correct only for a specific region of the roadway. The analytical
expressions demarcating this specific region can be found by a careful analysis of Figure 3. Note
that the expression for #; in Equation 4 becomes valid in situations similar to Figure 3, when the
second connected vehicle just manages to avoid the jammed state J, and stays valid till situations
similar to Figure 2d, when the last vehicle ahead of the vehicle CV2 just manages to avoid the
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FIGURE 3 Evaluation of t; using space-time diagram. Only relevant
quantities needed for deriving analytical solution are labeled.
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jammed state J. To evaluate the lower spatial limit (i.e., in the case when the second connected
vehicle just manages to avoid the jammed state J), Equation 4 becomes valid if

Xq — Xp 2 Vstgxir + Ve (t; — tgxir) 5)
where v, represents the speed that the second connected vehicle CV2 slows down to, vy represents

the free-flow velocity, and exit (= x,/w) represents the time at which the first connected vehicle
CV1 exits the jammed state J. The expression in Equation 5 may be simplified to be written as:

Xq (xq + xgka/k; xq>
Y s e B

w w (6)
_ Xq | Vs (Xaka

or Md x”2v5w+w<k]> (7)
k, Vrky Xq

or xd_xdk_]_xd<wk] ZUSW ®)
v k), x
A q

or XaZ {1 - (1 + W) k_]} (vs W) 9)

The upper spatial limit for the validity of Equation 4 is evaluated in the scenario when the
second connected vehicle CV2 is sufficiently upstream so that last vehicle just ahead of CV2
reaches the jammed state at time #, (i.e., when the jam is just about to dissipate of its own
accord). Thus, the upper spatial limit is given simply by

Xq +xXp S WP

(10)
k—Axd Swty—x
or k a (11)
ky
or Xd < E(Wto - xq) (12)

On the other hand, in Figure 2 parts a, b, and d, the expression for #; is obtained quite
simply from the original jam dissipation time t, evaluated in the absence of any connected
vehicles. The jam evolution trajectory is indicated using dashed lines in Figures 2 and 3. In these
scenarios, the jam dissipation time #; = ¢y and is found as follows:

*q

Distance traveled = wty = x4 + vyt = tg = ———— (13)
w — UA]
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where v, represents the interface speed between traffic states 4 and J. Consequently, the
expression for time taken for dissipation of the jammed state J is given by combining the
expressions in Equations 4, 9, 12, and 13 to yield

(1 AV vy ka) T xg k;
: = gw{xq + x4 (k—]>}, if {1 — (1 +W)k_]} (USW) < x4 Sk_A(WtO —xq)

X
—q, else
w — UA]

(14)

Expression for Dissipation Time ts of Slow-Moving State S

Similar geometric arguments can be used to determine the expression for the time taken for the
slow-moving traffic state S to dissipate. Specifically, consider (or Figure 2a) in order to
ascertain the analytical expressions.

If the second connected vehicle CV2 is too close to the first one, as depicted in Figure 4
(or Figure 2a), it enters the jam and the dissipation time for state S is governed by this distance.
In alternative scenarios, when the vehicle CV2 is further upstream, the dissipation time is
constant, as evinced by Figure 2 parts b, ¢, and d. In Figure 4, the dissipation time of the slow-
moving state can be evaluated by geometric calculations as follows:

. Vs +w
Distance = vStH,T - W(ts - tHIT) = vAstS - tS = (—) tHIT (15)
Vas +w

Where ty;7 is the time at which the vehicle CV2 first enters the jammed state J, and v,s is the
interface speed between the states 4 and S. The expression for #;;7 can be found using geometric
considerations to be

Xg— X Xq k4

so that the dissipation time of state S when CV2 is close to the jam is given by

Vs +w ka\xq
t =(_)<1__)— (a7
S Vys +W k; ] vs

On the other hand, in Figure 2 parts b, ¢, and d, where the vehicle CV2 is further
upstream, the dissipation time for the state S can be calculated similarly as follows:

. Vg +w
Distance = vgtgyr — W(ts — tgxir) = Vasts = ts = <—) LexiT (18)
Vas + W
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FIGURE 4 Evaluation of ts using space—time diagram. Only relevant
quantities needed for deriving analytical solution are labeled.

where tzx;r 1s the time at which the first connected vehicle exits the jammed state J, and which
can be found using geometric considerations to be

toyiy = 8 (19)
EXIT — w

so that the dissipation time of state S when CV2 is close to the jam is given by

; _(v5+w>xq 20
ST Vys + W/ w (20)

Consequently, by observing the nature of ts across the various parts of Figure 2, it is
realized that the expression for the dissipation time for the slow-moving state S is

ve+w ki\x Ve +W\X
ts = min <5—) 1--4 —d,<5—)—" 1)
vA5+W k] 'Us vAs‘l‘W w

To recapitulate the major result of this work, the time taken for the traffic system to reach the
desired macrostate A4, is given by

ta = max{t;, ts} (22)

where the expressions for #; and ¢ are provided in Equations 14 and 21, respectively.
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RESULTS

An influential subspace is defined for a specific agent or vehicle in a multiagent system. The
influential subspace is defined by the ability of the specific agent or vehicle to drive the system
to a desired macrostate (4) within a predetermined time (¢pgs). In this example, the time taken for
the traffic system to reach the macrostate 4 is calculated for varying distances between the
connected vehicles CV1 and CV2. If the goal is to reach the macrostate A within, say ¢pgs =160 s,
then the influential subspace for CJV2 is situated between 0.5 and 4.3 km from the vehicle CV1,
as indicated in . On the other hand, if the goal is to reach the macrostate 4 within, say
tpes = 100 s, then it can be said that the influential subspace is empty, or it does not exist.
Knowledge of the influential subspace is a critical element for the efficient
implementation of connected vehicles technology. Implementation of connected vehicles
technology will have to deal with, among other things, issues such as bandwidth limitations and
packet transmission ranges. Consequently, knowledge of the influential subspace can help ensure
that bandwidth is not wasted by transmitting packets to vehicles that are not in their influential
subspaces. Additionally, the same knowledge can help optimally route packets to vehicles within
the influential subspaces and reduce power requirements for transmission equipment. Further,
the concept of influential subspaces has significant potential applications in other areas such as
cooperative adaptive cruise control, where formation, merging, and splitting of platoons can
benefit from the use of this novel concept.
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FREEWAY TRAFFIC ANALYSIS

The Heterogeneity of Capacity Distributions
Among Different Freeway Lanes

KuN XI1E
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HONG YANG
New York University

he stochastic nature of highway capacity has drawn increasing attention in recent studies,

where the capacity distributions are usually estimated for whole freeway sections using
aggregated data from multiple lanes. However, those cross section—based capacity models cannot
be used to assess the risk of semicongested states observed, in which traffic breaks down on
certain lanes while still flowing uninterruptedly on others. This study attempts to investigate the
freeway capacity heterogeneity among individual lanes using robust statistical estimation
methods. Four diverge sections of different interstate highways in California were selected for
the study. Optimal threshold speed was identified for each lane by maximizing the average
reduction of traffic efficiency, which was defined as the product of mean speed and volume.
Capacity observations were obtained for individual lanes, and censoring was indicated, both
based on the optimal threshold speeds. Log-rank and Wilcoxon tests were conducted, and the
results confirmed the heterogeneity of capacity distributions among lanes of the same freeway
section and showed the necessity of estimating capacity distributions for individual lanes
separately. A Bayesian hierarchical Weibull model based on censored capacity data was used to
estimate these lane-specific capacity distributions. The model parameters are allowed to vary
across freeway sections to account for unobserved heterogeneity and accordingly to improve the
accuracy of estimations. In addition, censored data issues are adequately addressed in the
proposed model. It is found that breakdown probability would be overestimated if censoring is
ignored. The proposed model can provide useful insights when diagnosing bottlenecks with
semicongested cases, which may be neglected by the cross section—based models.

INTRODUCTION

Traditional highway capacity is defined as the maximum traffic flow rate that traverses a section
under prevailing roadway, traffic, and control conditions (/). However, the use of deterministic
traffic capacity is an incomplete representation of real-life conditions. The concept of stochastic
highway capacity has been recently discussed in several previous studies (2—4), where the
capacity is defined as the traffic volume below which traffic still flows and above which the flow
breaks down. The capacity in this sense can be regarded as a variable, since the flow rate that
causes traffic breakdown is related to a variety of factors such as traffic composition, driving
behavior, and environmental characteristics (5). The study by Persaud et al. (6) on the
probabilistic breakdown phenomenon in freeway traffic convincingly showed that traffic
capacity is stochastic in nature.
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Regarding the stochastic feature of freeway capacity, it is important to use statistically
robust methods to estimate its distribution based on the observed data. Brilon et al. (4) applied a
nonparametric Kaplan-Meier estimator to obtain breakdown probability based on an analogy
with the statistics of survival analysis. Censored observations on capacity were used in their
studies. However, a complete capacity distribution function couldn’t be obtained using the
Kaplan-Meier due to the limitation of data points observed. In the following study by Brilon et
al. (7), a parametric method was used to estimate the whole capacity distribution function, where
the Weibull model appeared to be the best fit. Recently, Ozguven and Ozbay (8) proposed a
nonparametric Bayesian survival analysis approach for the estimation of the freeway capacity.
Their results indicated that Bayesian estimator could provide robust estimation outputs in the
presence of insufficient and unreliable data.

Most of the previous studies (4, 7, §) treated a multilane section as a single analysis unit,
and aggregated data of all the lanes were used to identify breakdowns and estimate cross
section—based capacity distributions. However, it should be noted that for multilane freeways,
the traffic compositions and operational characteristics vary across different lanes. The vehicles
with higher speed and better acceleration are more likely to travel on the median lanes.
Moreover, the traffic flows of the shoulder lanes have a larger chance of being disturbed by
merging and diverging vehicles on- and off-ramps. On the other hand, different drivers choose to
travel on different lanes according to their destinations (9). In the study by Lawson et al. (10),
higher occupancies were observed on the shoulder lanes, which were upstream of a congested
off-ramp compared with the median lanes. Duret et al. (//) affirmed that traffic demand was not
assigned evenly among lanes on a freeway section. Therefore, breakdown occurrence can be
different even for the lanes of the same freeway section. An empirical study by Dehman and
Drakopoulos (/2) showed the significant difference of breakdown phenomena among lanes.
Munoz and Daganzo (9) also noted a semi-congested state in which some lanes are congested,
and other lanes of the same freeway section are not. The application of capacity models at the
cross-section level will thus ignore the high breakdown probability of certain lanes and cannot
accurately assess the risk of semicongestions. Ma et al. (/3) proposed a lane-based method to
identify breakdown for diverge sections, but capacity distributions for specific lanes were not
estimated. In addition, censored data and unobserved heterogeneity across different freeway
sections were not considered in their study.

This study attempts to investigate the capacity heterogeneity among individual lanes of
diverge sections using robust statistical methods. Semicongestion is a common phenomenon in
diverge sections, where the traffic is likely to breakdown on the shoulder lanes connected to the
off-ramps, even though the traffic on the other lanes is still flowing. This paper starts with data
preparation, where capacity observations and censored data are collected for specific lanes based
on optimal threshold speed identified. Hypothesis tests for the heterogeneity of capacity
distributions among lanes are conducted to confirm the necessity of developing capacity models
at the individual lane level. After that, a novel hierarchical Weibull model is proposed in the
Bayesian framework to estimate lane-specific capacity distributions. The parameters of the
model are allowed to vary across various sections to account for unobserved heterogeneity. In
addition, censored data issues described in Brilon et al. (4) and Ozguven and Ozbay (&) are
explicitly addressed in the proposed model.
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DATA PREPARATION

Traffic data used in this study were obtained from the Performance Measurement System
(PeMYS) of the California Department of Transportation. Four diverge sections that have vehicle
detector stations (VDS) right upstream of the off-ramps were selected. These sections have the
same lane configuration as shown in , but they are located in different interstate
highways, and thus their traffic and environmental features are different. The basic information
of the diverge sections selected is presented in . Traffic speed and volume data of the
selected sections from January 1 to January 31 in 2014 were extracted for each individual lane.

Capacity Observations and Censoring

A traffic breakdown is usually followed by a significant amount of reduction in speed. A
common method [first proposed in Brilon et al. (4) and later applied in Brilon et al. (7), Ozguven
and Ozbay (8), and Ma et al. (/3)] to identify traffic breakdown points based on mean speed was
used in this study. The mean speed (mph) and volume (veh/h) were calculated for each lane at 5-
min intervals. The traffic volume of interval i was taken as an observation of capacity if the
mean speed starts to fall below threshold speed in the next interval i + 1.

Censoring refers to a form of imperfect but useful observation of a variable. Censored
data are, however, valuable but require special consideration to avoid biased estimation results
(14, 15). Ignoring censored data could lead to biased estimates of capacity distributions,
especially for cases with inadequate breakdown points identified. The identification method of
censored data adopted here is consistent with the previous studies such as Brilon et al. (4) and
Ozguven and Ozbay (8). If mean speed is higher than the threshold speed in the current interval
i and the following interval i + /, the volume of the interval i was taken as a right-censored
observation. A right-censored observation provides information that the actual capacity is
ensured to be greater than the observed one. As illustrated in , the volume of the fourth
interval is taken as an observation of capacity, because the speed starts to be lower than the
threshold speed in the following intervals. The volumes in the first three intervals are used as
censored observations, since these observed volumes are not high enough to cause breakdowns.
Traffic is in the congested state in the last three intervals. As suggested by Brilon et al. (4), the
volumes of these intervals don’t provide any information for the capacity distribution and thus
are excluded from the model development.

Median Lane |:||:|
=5  Cemterlae
=5 Shoulderlane 0
Deceleration Lane
Traffic Direction OfﬂRamp Lape

I:I I:I Sensor Detectors

FIGURE 1 Lane configuration and sensor detector
location of the four diverge sections selected.
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TABLE 1 Overview of the Selected Diverge Sections

VDS ID Highway Post Mile Direction County
Section 1 715918 I-5 122.8 Northbound Los Angeles
Section 2 716448 1-105 12.1 Westbound Los Angeles
Section 3 819634 I-15 91.89 Northbound Riverside
Section 4 809070 1-210 61.14 Eastbound San Bernardino

Breakdown Point

Threshold Speed

Speed

Capacity

Censored Censored Observation Excluded

Censored Data Data Excluded Excluded
Data Data Data Data
-

Time Interval

FIGURE 2 Capacity observation and censored data during a breakdown.

Optimal Threshold Speed

In previous research (4, 7, 8), a standard threshold speed of 70 km/h (about 43.75 mph) was
used. However, it is undesirable to use the same threshold speed for different lanes, because the
threshold speed is likely to be associated with geometric design, traffic composition, and
environmental features. Ma et al. (/3) introduced a criterion that can identify the optimal
threshold speed by maximizing mean speed reduction and used it to determine threshold speeds
for specific lanes. Noting that a traffic breakdown is always accompanied by a significant
reduction not only in the traffic speed but also in the traffic volume, the authors propose to use
the product of speed and volume to identify optimal threshold speed in this study.

Let v; and ¢; denote the speed and volume at interval i. A measure called traffic
efficiency, E;, can be calculated as the product of v; and ¢;, namely E; = v; X g;. The concept of
traffic efficiency was first introduced by Brilon (/6). For a certain threshold speed Vrpreshotd, 1f Vi
is greater than Vrpreshold and the speed in the next interval v;1; is lower than Vrpreshold, @ breakdown
is identified that is accompanied by a reduction of efficiency AE; = v; X g; — vi+1 X gi+1. For all the

breakdown points identified using Vrnreshold, the average of efficiency reduction EI can be

computed. After obtaining E, using a variety of Vrreshold, the optimal threshold speed Vot

can be identified as the one that leads to the maximum AE, .
The aforementioned optimization process is used to compute the optimal threshold

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

Xie, Ozbay, and Yang 165

speeds for specific lanes and cross sections. As presented in , the average optimal
threshold speed for cross sections is 44.00 mph, which is quite close to the standard threshold
speed of 43.75 mph. The data of the median lane in Section 4 are used to demonstrate the
breakdown points identified by the standard threshold speed (43.75 mph) and the optimal
threshold speed (52.00 mph), as shown in . The results show that it is more appropriate
to use the optimal threshold speed to determine breakdown occurrence since the average of
capacity observations identified by the optimal threshold speed (1,999 veh/h/lane) is higher than
that obtained by the standard threshold speed (1,926 veh/h/lane). The optimal threshold speeds
listed in Table 2 were used to extract the capacity observations and indicate censoring for
individual lanes and cross sections.

TABLE 2 Optimal Threshold Speeds for Specific Lanes and Cross Sections (mile/h)

Median Lane Center Lane Shoulder Lane Cross Section
Section 1 41 35 33 39
Section 2 46 40 37 41
Section 3 49 43 40 48
Section 4 52 47 40 48
Average 47.00 41.25 38.00 44.00
S
["\,
)
~_~ O 2
= Aa ‘ﬁ‘ At
2 A Ay
-~ B TR R O TS SRR A LB i W v S S
E o o Optimal threshold speed=52.00 mile/h
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w2 <o
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=
) # [dentifed by the standard threshold speed
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FIGURE 3 Breakdown points identified by standard and optimal threshold speeds
(using the median lane of Section 4 for demonstration).
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HYPOTHESIS TESTS FOR CHECKING CAPACITY HETEROGENEITY

Hypothesis tests for heterogeneity of capacity distributions across lanes were performed using
censored capacity data. Let /,(¢) denote the breakdown hazard rate at volume g for the kth lane

(k=1,2,...,K). To compare the capacity distributions among different lanes, the null and
alternative hypotheses are set as follows:

Ho: h1(q) = ha(q) = ... = hi(q) for all q.

Hy: b (q) # h, (q) for at least one pair of ki and k,, where 1<k #k, <K .

The volume observations from different lanes were pooled and sorted in ascending order,
as follows g1 < ¢» < ...<gp. At volume g, the authors observed dj; breakdowns from the kth lane
out of Yy individuals at risk of breakdown, where i = 1,2..., D. The Nelson-Aalen method (/7)
provides a nonparametric estimator of the hazard rate using censored data. Based on the Nelson-
Aalen method, the quantity dj/Yy gives an estimate of breakdown hazard rate at volume ¢; for
the kth lane. It should be noted that the censored observations are supposed to be counted in
obtaining Yj. Similarly, under the null hypothesis, the pooled breakdown hazard rate at volume

K K
q; for the cross section is di/Y;, where d, = Z d, and Y, = z Y, . The test of Hj is based on the
k=1 k=1

weighted difference of estimated hazard rates (/8):

z, ZW( )( i) (1)

1

Where Wi(g;) is the weight function for the kth lane at volume ¢;. In practice, since the
commonly used weight functions have the form Wi(q;) = YuW(q,), then the following exists:

U

Z, =2 (g)dy =Y, 1) )

:<|

Greater Z; indicates that the breakdown hazard rate of the Ath lane tends to be more
different from the expected one under the null hypothesis.
The variance of Z; and the covariance of Z i and 7 ., are determined by (/8)

& Y Y, Y -d
o = W A2 ik 1— ik i . 3
=2 @) - )

and

D

Y, Y-
lkl ik, i
O, =—2 (4 '2Y Y(Y

i=1 i i

d,
o 4)
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Let X represents the estimated (K — 1) X (K — 1) variance—covariance matrix of Z;, where
k=1,2...,K— 1. The overall test statistic for the hypothesis is then defined as follows (/8):

12=(2,,2,,. 2 VENZ,, 2,0 Z ) (5)

This overall test statistic is treated as a chi-square distribution with degree of freedom equal to K
— 1. To calculate the °, a variety of weight functions are proposed in the literature. If the W(g;) =
1 is selected, it leads to the log-rank test (/9), where greater weights are assigned to larger
observations. If the weight function is set to be W(g;) = Y, it results in the generalized Wilcoxon
test (20), where smaller observations are heavily weighted.

Both the log-rank and Wilcoxon tests were conducted to assess the across-lane
heterogeneity of capacity distributions for each section separately, based on censored capacity
data. As presented in , p-values from both the log-rank and the Wilcoxon tests are less
than 0.0001, so the null hypothesis H, should be rejected and the alternative hypothesis H, are
accepted. The results indicate significant heterogeneity of capacity distributions among different
lanes. To improve the accuracy of assessing breakdown risk, it is critical to develop lane-specific
capacity models, which are specified in the next section.

METHODOLOGY OF CAPACITY ESTIMATION

In this section, a full Bayesian approach is proposed to estimate the lane-specific capacity
distributions. A Bayesian approach provides the ability to deal with insufficient data issues, to
flexibly select parameter distributions, and to accommodate complicated model structures (74,
21). In Bayesian models, prior distributions are combined with a likelihood function obtained
from the observed data to estimate posterior distributions. The Bayesian estimation procedure,
prior distributions, and assessment of Bayesian models are also introduced in this section.

Bayesian Hierarchical Weibull Model
Letg=(q', g2, ..., ¢) denote the traffic volume data. According to the previous research (7, 13),

q can be assumed to follow a Weibull distribution w(a, A). The probability density function and
cumulative density function of g are given by

TABLE 3 Results of Log-Rank and Wilcoxon Tests

Test Chi-Square | Degree of Freedom | P-Value Accepted Hypothesis
Section 1 ng-rank 5180 2 <0.0001 Re]:ect H,, accept H,
Wilcoxon 2616 2 <0.0001 Reject Hy, accept H,
Section 2 ng-rank 268 2 <0.0001 ReJ:ect H,, accept H,
Wilcoxon 71 2 <0.0001 Reject Hy, accept H,
Section 3 Log-rank 3743 2 <0.0001 Reject Hy, accept H,
Wilcoxon 1309 2 <0.0001 Reject Hy, accept H,
Section 4 Log-rank 45 2 <0.0001 Reject Hy, accept H,
Wilcoxon 52 2 <0.0001 Reject Hy, accept Hy
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f(qla,2)=0q"" exp(A—exp(1)g”) (6)
and

F(qla,A) = [ f(q|a, A)dg =1-exp(—exp(A)g”) (7

The survival function S(g | a, A) gives the probability that traffic keeps flowing until it
reaches volume ¢. The S(g | o, A) can be derived from F(g | a, A) as follows:

S(qlonA)=1-F(q|o,A) = exp(—exp(4)q”) (8)

To quantify the instantaneous risk that traffic breaks down at volume ¢, a hazard

function H(g | a, A) is introduced. H(g | a, A) is defined as the conditional probability of
breakdown:

H(g|a.2) =%=m]““ exp(A) ©)

According to Equation 9, if a > 1, then the breakdown hazard increases as volume ¢ increases; if
a > 1, then the breakdown hazard is negatively associated with volume g; if a = 1, then the
breakdown hazard is not related to volume g.

Letv=(vi, v, ..., vy)" denote the censoring indicators, where v; = 1 indicates g; is a
breakdown volume, and v; = 0 indicates g; is a censored observation. A censored observation
expresses the information that the actual capacity is ensured to be greater than the observed
volume. Including the censored observations, the likelihood function of (a, A) can be written as

Lo, A1q.v) =]/ (q 10 4)"S(g, |, )™
i=1

\ (10)
=o' exp{dA+) (v,(a—1)log(q,) —exp(A)g,")}

i=1

where d = ZV,. . For the Bayesian Weibull model, it is usually assumed that the parameter &
1

follows a gamma prior distribution I'(7y,m,) and A follows a normal distribution N (y,,c2) (14).
The joint posterior distribution of (a, A) is given by (/4):

r(e,A|q,v) o< L(a, A | g, v)r(e| 1 my) (A | 1y, 07)

o n N 1
= o expldd+ Y (v (e~ Dlog(g) ~exp(D)g, ) ~mar =5 (A= th)’}
0

i=1

(11)
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To estimate lane-specific capacity distributions, different sets of Weibull parameters
should be assigned to different lanes. In addition, the data structure used in this study can be
viewed as a two-level hierarchy with Level 1 being the lane level, and Level 2 being the freeway
section level. Accordingly, a hierarchical model structure is proposed where parameters are
allowed to vary to account for the unobserved heterogeneity across sections (22). Weibull
parameters (o, A7) for the kth lane at the jth section can be specified as follows:

@~ F(rk7mk) (12)
and
Ay ~ N1y, 07) (13)

In Equation 6, ay; and A are taken as random parameters that can vary across the sections.
Parameters 7, my, [, and o] are specific for each lane. For the kth lane, the mean and variance

of ay are ri/my and 7, / m; ; the mean and variance of A; are pand o .

Bayesian Estimation Procedure and Priors

Bayesian models are usually estimated via a Markov Chain Monte Carlo (MCMC) algorithm
(23). The primary technique of MCMC is Gibbs sampling (24), each iteration of which draws a
new value for each unobserved stochastic node from its full conditional distribution given the
current values of all the other quantities in the model (25). The WinBUGS statistical software
package was used to provide a computing approach for the calibration of Bayesian models using
Gibbs sampling (26).

In the absence of credible prior information for model parameters, uninformative priors
were used to express vague and general information about parameters. The priors of 7, and my
were assumed to be the lognormal distribution (0,10°); w was assumed to follow the normal

distribution (0,10°), and o, was assumed with the Inverse-Gamma distribution (107, 107).

Considering convergence and time of updating, two MCMC chains of 30,000 iterations were run,
and the first 10,000 samples were discarded as burn-in. The Brooks-Gelman-Rubin (BGR)
diagnostic proposed by Brooks and Gelman (27) was used to assess the convergence of multiple
chains. Convergence was assumed to occur when the BGR statistic is less than 1.2.

Deviance Information Criterion

The deviance information criterion (DIC) offers a Bayesian measure of model fitting and
complexity (26). Specifically, DIC is calculated as follows:

DIC =D(6)+p, (14)

where D(6) denotes the posterior mean of Bayesian deviance of parameter 8 and can be used to

indicate how well the model fits the data. pp defines the effective number of parameters and is
taken as a measure of model complexity. Models with smaller DIC are preferred.
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RESULTS AND DISCUSSION

The proposed Bayesian hierarchical Weibull model structure was used to estimate lane-specific
capacity distributions. To conduct comparisons, the authors also developed standard Weibull
models where parameters o and A were fixed for different freeway sections. In addition, to study
the impacts of censoring on estimates, two datasets were prepared for modeling: uncensored
dataset, where the censored observations on capacity were excluded; and censored dataset, which
included censored observations. In view of the long convergence time to estimate Bayesian
models with large amounts of data, the authors sampled the censored observations of the second
dataset for the estimation process. The hierarchical Weibull and standard Weibull models were
developed based on these two datasets, respectively. Bayesian posterior estimates of parameters
and DICs of those models are reported in. sd(A) and sd(a) represent the standard deviations of
parameter distributions across sections in the hierarchical models. It should be noted that sd()
and sd(a) are unavailable for standard Weibull models in which parameters are fixed for
different sections. The 95% Bayesian Credible Interval (95% BCI) was used to examine the
significance of estimates. Estimates can be regarded as significant at the 95% level if the BClIs
do not cover 0 and vice versa (28). Parameter estimates are all found to be significant, as their
95% BICs do not cover 0.

Benefits of Hierarchical Structure and Explicitly Addressing Censoring

As shown in , for the uncensored dataset, p(g) of the hierarchical Weibull model (9,610)

is 522 less than that of the standard Weibull model (10,132). Similarly, based on the censored
dataset, the hierarchical Weibull model has a lower p(g) by 423 in comparison with the standard

Weibull model. These findings indicate that the hierarchical Weibull models outperform the
standard Weibull models in term of the goodness of fit. In another aspect, higher pp values are
observed in the hierarchical Weibull models. This reflects the increasing complexity as a result
of including random parameters. Overall, regarding the lower DICs, the hierarchical Weibull
models show substantial improvement, although they are penalized by higher pp values. Note
that it is meaningless to compare models using DIC, unless they are developed based on the
same dataset. So it is erroneous to conclude that the hierarchical model developed based on the
uncensored dataset is superior to the one based on censored dataset, although the former has a
smaller DIC. The hierarchical models allow parameters o and Ato vary across sections and thus
have the flexibility to account for the unobserved heterogeneity. All the estimates of sd(\) and
sd(a) are found to be significantly different from 0, and this provides strong evidence for the
presence of heterogeneity among sections. By capturing the unobserved heterogeneity, the
effects of parameters can be adjusted. As a result the estimates of o and A of hierarchical Weibull
models differ significantly from those of the standard Weibull models. On the other hand, for
each section, the same set of parameters is used to duplicate the capacity distributions in the
hierarchical Weibull models, and in this sense, the within-section correlation of capacity
observations can be addressed simultaneously.

Using the estimated parameters and Weibull cumulative density function shown in
Equation 7, the 25th, 50th, and 75th percentiles of capacity distributions were calculated as
presented in Table 5. Based on the hierarchical Weibull models (uncensored or censored
dataset), the 25th, 50th, and 75th percentiles of the median lanes are greater than those of the
center lanes, respectively. This indicates that greater flow rate is needed for the median lanes
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TABLE 4 Posterior Summary of Bayesian Models

171

Standard Weibull

Hierarchical Weibull

Uncensored Dataset

Censored Dataset

Uncensored Dataset

Censored Dataset

Mean (95% BCI) Mean (95% BCI) Mean (95% BCI) Mean (95% BCI)
Median Lane
A —60.05 —-65.89 —76.48 —70.98
(-66.08, —55.64) (-71.46,-59.76) (-83.25,-69.13) (-76.11,-63.67)
sd(\) — — 0.38 (0.02, 1.59) 0.56 (0.02, 2.65)
o 7.90 (7.33, 8.69) 8.64 (7.83, 9.36) 10.12 (9.09, 11.02) 9.33 (8.28, 10.29)
sd(a) — — 0.13 (0.07,0.27) 0.12 (0.04, 0.38)
Center Lane
A -60.09 —-64.7 -73.91 -72.73
(-64.92, —55.05) (=70.47,-58.37) (-81.26,—67.48) (-75.79, -67.29)
sd(\) — — 0.59 (0.02, 3.2) 0.40 (0.02, 1.64)
o 8.04 (7.37, 8.68) 8.61 (7.76, 9.37) 10.00 (8.74, 11.06) 9.75 (8.94, 10.24)
sd(a) — — 0.17 (0.08, 0.45) 0.11 (0.05, 0.21)
Shoulder Lane
3 —44.68 -50.45 -85.6 -75.16
(-49.15,-40.57) (-55.33,-45.4) (-93.42,-76.22) (—=80.96, —67.09)
sd(\) — — 1.29 (0.02, 5.44) 1.36 (0.02, 5.72)
o 5.96 (5.41, 6.55) 6.69 (6.02, 7.33) 11.65 (10.3, 12.7) 10.15 (9.13, 10.96)
sd(a) — — 0.32 (0.11, 0.62) 00.27 (0.08, 0.54)
Assessment
D(6) 10,132 10,543 9,610 10,120
Pp 6 6 16 17
DIC 10,138 10,549 9,626 10,137

than for the center lanes to result in the same breakdown probability. Similarly, as anticipated,
the center lanes have higher percentiles compared with the shoulder lanes. However, some
inconsistent results (marked with an asterisk) are observed when capacity distributions are
estimated using the standard Weibull models. The 50th and 75th percentiles of the shoulder lanes
are found to be even greater than those of the center lanes, respectively. This result further
confirms the advantage of the hierarchical Weibull models over the standard Weibull models in

adjusting the parameter estimates. In addition, as shown in

, the models developed based

on censored dataset yield greater percentiles than those excluding censored observations. This
finding implies that breakdown probability would be overestimated if censoring is ignored. To
get more reliable statistic inferences, the censored observations have to be treated properly.

Lane-Specific Capacity Distributions

In view of its superiority, the hierarchical Weibull model developed based on censored dataset
was selected to estimate the capacity distributions of specific lanes. As a comparison, the
hierarchical Weibull model was also used to estimate the capacity distribution for cross sections
=—80.84) based on aggregated volume and speed data of multiple lanes.

(.= 10.80,
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TABLE 5 The 25th, 50th, and 75th Percentiles of the Estimated
Capacity Distributions (veh/h/lane)

Uncensored Dataset Censored Dataset
Standard Median Center Shoulder Median Center Shoulder
Weibull Lane Lane Lane Lane Lane Lane
25th
percentile 1,702 1,506 1,469 1,783 1,591 1,572
50th
percentile 1,902 1,680 1,702° 1,974 1,762 1,793
75th
percentile 2,077 1,832 1,913 2,139 1,910 1,989
Uncensored Dataset Censored Dataset
Hierarchical Median Center Shoulder Median Center Shoulder
Weibull Lane Lane Lane Lane Lane Lane
25th
percentile 1,692 1,434 1,395 1,759 1,526 1,454
50th
percentile 1,846 1,566 1,504 1,932 1,670 1,585
75th
percentile 1,977 1,678 1,596 2,082 1,794 1,697

“Inconsistent results.

Substituting the estimates of o and A into the Weibull cumulative density function given in
Equation 7 and the Weibull hazard function shown in Equation 9, breakdown probability and
hazard curves for specific lanes and cross sections are plotted. As shown in , the
shoulder lanes have the highest expected breakdown probability and hazard, while the median
lanes have the lowest ones, given the same traffic flow rate. According to Figure 4a, when the
traffic demand is approaching 2,000 veh/h/lane, the shoulder and center lanes have extremely
high probability to break down, whereas for the median lanes the breakdown probability is
approximately 0.6. In Figure 4b, all the hazard curves are increasing monotonically, which
means that traffic is more likely to break down as the volume increases.

The breakdown probability and hazard curves of the cross sections are close to those of
the center lanes but are significantly different from those of the median and shoulder lanes. It is
found that using the cross section—based capacity models for individual lanes would
underestimate the breakdown probability and hazard for the shoulder lanes and conversely
overestimate them for the median lanes. The lane-based capacity models can be used to estimate
the breakdown probability for specific lanes and thus are helpful in improving the accuracy of
assessing the congestion risk, especially for the semicongested cases; however, the high
breakdown probability in certain lanes would be ignored by section-based capacity models.

Using the proposed Bayesian hierarchical model, Weibull parameters for each diverge
section can also be estimated. As shown in , the breakdown probability curves differ
from one section to another, and this result is consistent with the significance of sd(L) and sd(a).
Moreover, the shoulder lanes have higher sd(\) and sd(a) than those of the median and center
lanes according to. This indicates that the capacity distributions of the shoulder lanes vary
greatly among sections. It is shown in Figure 5 that the lane-specific capacity distributions of
Section 3 have greater variability than those of others, whereas the capacity distributions of
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different lanes in Sections 2 and 4 tend to be closer to each other. A counterintuitive result is that
the breakdown probability of the shoulder lane of Section 2 is slightly lower than that of the
center lane given the same traffic flow rate. A possible reason is that Section 2 provides proper
alignment with the off-ramp, and thus the interaction impacts on the traffic of the shoulder lane
may be smaller. It may also be attributed to the different traffic compositions and driving
behaviors of specific lanes.

CONCLUSIONS

This study contributes to the literature of stochastic freeway capacity by estimating lane-specific
capacity distributions using a novel Bayesian hierarchical Weibull model. Four diverge sections
of different interstate highways in California were studied. The speed and volume data of those
four sections were retrieved from the PeMS. Noting the difference of traffic features among
lanes, a method to obtain the optimal threshold speed by maximizing the average reduction of
efficiency was proposed and used to identify traffic capacity observations and indicate censoring.
Higher breakdown volumes could be observed by using the optimal threshold speed compared
with the standard threshold speed proposed in the literature. Prior to model development, the
censored capacity data were examined by the log-rank and Wilcoxon tests. The test results
provided strong evidences for the heterogeneity of capacity distributions among individual lanes
of the same section and showed the necessity of modeling capacity distributions separately at the
lane level. By comparing with other models, the hierarchical Weibull model based on the
censored dataset had the best performance and thus was used to investigate the capacity
distributions of specific lanes. It is found that breakdown hazard is positively associated with the
prevailing traffic volume and that lane-specific capacity distributions differ from one section to
another. The merits of the proposed model are listed as follows:

e Different sets of Weibull parameters are assumed for the median, center, and shoulder
lanes. Such model specification can support lane-based capacity analysis by estimating the
breakdown probability for each individual lane.

e The parameters of the hierarchical Weibull model are allowed to vary across freeway
sections. By accounting for the across-section unobserved heterogeneity and the within-section
correlation simultaneously, the parameter estimates are properly adjusted. In light of its lower
DIC value, the proposed model shows substantial improvement over the standard Weibull model.

e By integrating the survival analysis theory in the proposed model, the censored data
are appropriately treated. It is found that breakdown probability would be overestimated if
censoring is ignored.

e A full Bayesian approach is adopted. It improves the proposed model in terms of
addressing insufficient data issues, providing flexibility in selecting parameter distributions, and
accommodating complicated model structures.

The proposed lane-specific capacity model can improve the accuracy of breakdown
probability estimation and can provide useful insights when diagnosing bottlenecks with
semicongested cases (i.e., congestions occurring only on certain lanes). Traffic operational
performance can be improved by navigating vehicles to choose uncongested lanes to reduce the
breakdown occurrence according to the outputs of the lanes-based capacity models. The findings
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of this paper need further validation using larger data sets from freeway sections of geographic
diversity. Additional work to compare Weibull distributions with other types of distributions in
the Bayesian hierarchical framework is also suggested. The study on temporal correlation of
capacity distributions is also of future interest.
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Validating the Cost-Effectiveness Model for
California’s Freeway Incident Management Program
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California Department of Transportation

reeway service patrol (FSP) is a widely used incident management measure designed to

assist disabled vehicles along congested freeway segments and reduce nonrecurring
congestion through quick response to accidents and other incidents on freeways. An FSP beat
performance evaluation model has been developed and used to analyze the cost-effectiveness of
providing FSP service on selected freeway corridors and to assess the overall cost-effectiveness
of California’s FSP program. The FSP beat evaluation model estimates traffic delay savings, fuel
savings, and emissions reductions per assisted incident as a result of FSP using deterministic
queuing techniques.

This paper presents 1. a method of using real-world traffic and incident data to validate the

FSP performance evaluation (FSPE) model and 2. the model validation results. The paper also
presents key findings about the reliability freeway performance measures, like vehicle miles
traveled (VMT), vehicle hours traveled (VHT), and traffic delays, estimated using the California
Department of Transportation (Caltrans) Performance Measurement System (PeMS) stationary loop
data and INRIX Analytics probe vehicle data.

INTRODUCTION AND BACKGROUND

Caltrans FSP is an incident management measure designed to assist disabled vehicles along
congested freeway segments and reduce nonrecurring congestion through quick detection,
response, and removal of accidents and other incidents on freeways. In California, the program is
jointly administered by Caltrans, the California Highway Patrol (CHP), and regional
transportation planning agencies. Currently, FSP operates on 193 freeway sites (“beats”) across
the state with 364 tow trucks over 1,800 centerline miles. California, having a large-scale FSP
program and performance-driven decision-making policies, developed an analysis tool to
evaluate the performance of FSP service on selected freeway corridors (i.e., FSP beats).

The benefits of providing FSP service depend on the beats’ geometric and traffic
characteristics and the frequency and type of assisted incidents. Incidents that occur in-lane tend
to be more congestion-causing than shoulder incidents. Likewise, incidents occurring on
freeways with high traffic demand (relatively little excess capacity) tend to cause more
congestion than incidents on freeways with lower volumes. Earlier studies performed by the
University of California, Berkeley (UC Berkeley), validated the FSP beat evaluation model by
analyzing the effectiveness of FSP on a section of the [-880 freeway in the San Francisco Bay
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Area (/) and a section of the I-10 freeway in Los Angeles (2). Extensive data on incidents and
traffic characteristics were collected before and after the FSP deployment using specially
instrumented probe vehicles and data from loop detectors. The data were processed, verified, and
integrated into databases. Then analytical procedures were developed to estimate incident-
specific delays. The resulting FSP performance evaluation (FSPE) model estimated benefits
based on delay and fuel savings, fuel consumption, and air pollution reduction, and it showed
that FSP was a cost-effective measure at the specific test sites.

These previous FSP model validation efforts focused on a very limited set of test sites,
and previous model validation methodologies were applicable only to those FSP beats with
relatively closely spaced PeMS vehicle detector stations. Methods that could be applied to a
broader range of FSP beats (including FSP beats serving less-congested corridors and/or where
PeMS detection stations are sparsely spaced or not available) would be better suited for statewide
FSP model validation and performance monitoring purposes.

To address these needs, a method that was not dependent on tightly spaced (and fully
functional) PeMS detector stations was developed to validate FSP delay savings for freeway
corridors. The FSP’s performance measures are directly derived from its vehicular delay savings;
so0, any validation method would need to quantify vehicular delays and delay savings attributable
to FSP.

The next section of the paper (Section 2) introduces the concepts for the FSPE model.
Section 3 discusses the methods used to validate the FSPE model. Section 4 introduces the data
sources used to develop the validation targets, discusses data quality, and highlights some
observations about the data. The results of the FSPE model validation efforts and an
interpretation of the results follow in Section 5. Section 6, the last section, concludes with
lessons learned and possible future work.

FSPE MODEL OVERVIEW

The FSPE model employs deterministic queuing techniques to estimate incident induced traffic
delays and the associated delay savings attributable to the provided FSP service, graphically
depicted in . Deterministic queuing and queuing diagrams originally discussed in the
freeway operations context by Moskowitz (3) have been applied in numerous studies to analyze
the incident impacts (4).

When an incident occurs, the normal freeway capacity c is reduced to a lesser capacity,
c;, for the duration of the incident, 7. If the traffic demand on the freeway, v, is greater than the
remaining capacity c;, then a queue is formed upstream of the incident. Once the incident has
cleared, after 74 minutes, the built-up queue will discharge at the capacity of the freeway, c, until
the queue is dissipated. The total delay (in vehicle-hours) caused by the incident is the area of the
triangle OCD in Figure 1:

(V_ ¢ )(C —G )TA2

delay =
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FIGURE 1 Estimation of incident delays and FSP delay savings.

The deployment of FSP results in shorter response times that reduce the incident duration
(Trsp) and the associated incident delay (area of triangle OAB in Figure 1). The delay savings
due to FSP is the difference in delays without and with FSP service (area ABDC in Figure 1).
The delay savings is attributable to FSP’s faster response time. The FSP response-time reduction
is the difference between the time that the FSP tow-truck arrived at the incident and the time that
a tow-truck would have arrived had there been no FSP service on the beat. It is assumed that
without the FSP service, stranded motorists would wait for service by a member tow company or
a rotational tow arranged by CHP.

The method predicts no delays when the traffic demand v is less than the remaining
capacity under incident conditions, ¢, However, in reality, there is a small amount of delay to the
traffic stream because of vehicle slow-downs and rubbernecking. These small delays are ignored.
The delay savings (and the benefit-to-cost ratio) depend on incident frequency and characteristics
(remaining capacity and duration) and the FSP beat’s operating characteristics (traffic demand
and freeway capacity). The benefits are greater on heavily traveled FSP beats with a high
frequency of lane-blocking incidents than on free-flowing beats with mostly shoulder
breakdowns.

The methodology used to validate the FSPE model is discussed next, followed by data
sources in Section 4.

METHODOLOGY FOR VALIDATING THE FSPE MODEL
In a previous research effort, a method was developed to divide the total congestion along a

freeway corridor into six components indicating cause of delay: 1. incidents, 2. special events, 3.
lane closures, 4. adverse weather, 5. potential reduction in delays at bottlenecks that ideal ramp
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metering could achieve, and 6. excess demand (5). The Caltrans PeMS system currently hosts a
fully automated two-step version of this method. The first of the two steps estimates the
components of nonrecurrent congestion using statistical regression. The second method locates
all bottlenecks and estimates the potential reduction in traffic delays that ideal ramp metering
could achieve. The method requires input data on traffic volumes and speeds, the time and
location of incidents, special events, lane closures, and adverse weather. It can readily be applied
to any freeway corridor with minimal calibration.

This component of the congestion model assumes that each incident, special event, lane-
closure, and adverse weather condition contributes linearly to the overall delays observed in the
corridor. More complicated causality between explanatory variables, such as between the bad
weather and the number of accidents, was not considered in an effort to keep the number of
parameters in the model reasonable. For the components of congestion research efforts, traffic
volume and speed data were obtained from the Caltrans PeMS website. Using these methods,
traffic delays caused by incidents can be quantified for any freeway corridor given that adequate
traffic and incident data are available for the corridor. These components of congestion
techniques were used to provide empirical-based estimates of incident-induced delays that could
be compared to the FSPE model’s delay savings estimates.

One of the main outputs of the FSPE model is the annual delay savings, in vehicle-hours,
that is attributable to the provided FSP service for a freeway corridor. The expected delay
savings per FSP assist can be easily calculated using the FSPE model inputs and outputs.
Likewise, the expected delay savings per minute of incident reduction can be easily estimated.
For example, if the FSPE model estimated 1,600 VHT of delay savings on a beat, and the FSP
tow trucks were involved with 80 assists annually, with an average incident reduction of 5 min
per assist, then the delay savings per incident-minute would be 1,600/(80 * 5) = 4.00 vehicle-
hours per incident-minute. Traditionally, the crucial challenge for the FSPE model validation
efforts was to find comparable and reliable empirical delay estimates to compare to the FSPE
model output.

Fortunately, a comparable measure (traffic delays per incident-minute) for a freeway
corridor can be estimated using the components of congestion techniques and a combination of
Caltrans PeMS and INRIX Analytics data for selected freeway corridors where FSP service is
provided.

DATA SOURCES FOR FSP MODEL VALIDATION

The two primary data sources for the FSPE model validation dataset were INRIX and PeMS.

The INRIX website provides historical and real-time traffic information, travel times, and
travel time information to public agencies, businesses, and individuals. To do this, INRIX
collects trillions of bytes of information about roadway speeds from nearly 100 million
anonymous mobile phones, trucks, delivery vans, and other fleet vehicles equipped with GPS
locator devices. The data are processed in real time, creating traffic speed information for major
freeways, highways, and arterials across North America, as well as much of Europe, South
America, and Africa. INRIX Analytics and INRIX User Delay Cost Analysis modules were used
to provide traffic delay (congestion) and corridor travel time measures for preselected freeway
corridors (i.e., FSP beats).
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PeMS collects data in real time from over 39,000 individual detectors spanning the
freeway system across all major metropolitan areas in the State of California. PeMS is also an
archived data user service that provides over 10 years of data for historical analysis. It integrates
a wide variety of information from Caltrans and other local agency systems including

Traffic detectors,
Incidents,

Lane closures,

Toll tags,

Census traffic counts,
Vehicle classification,
Weight-in-motion, and
Roadway inventory.

The Caltrans PeMS website was used to provide stationary point traffic volume and delay
data (mainly from freeway loops) for the set of preselected FSP beats. The Caltrans PeMS
website also collects and reports CHP-reported freeway incident data.

The minimum data required to produce an estimate of expected (average) traffic delays
per incident are traffic incident data and traffic delay data. PeMS was used to provide the
incident data. Both INRIX and PeMS calculate and report traffic delays. This led to questions
about how INRIX and PeMS estimate their traffic delays, how well the two delay estimates
compare, and which estimate was the most reliable.

During the data preparation and analysis, PeMS-reported delays and INRIX-reported
delays were compared to see how closely they agreed with regard to a common corridor, time
period, and level of aggregation. shows a scatter plot comparing the PeMS corridor
reported daily traffic delays with the INRIX Analytics reported daily traffic delays for State
Route 24 in California’s East Bay area for the July 1, 2012, through June 30, 2013, time period.
Both sets of daily traffic delays were estimated using a threshold free-flow speed of 60 mph.

The strength of the correlations between the traffic delays and the freeway incidents was
used to help determine whether the INRIX or PeMS estimated delays were better suited for the
components of congestion analysis techniques. It is well known that positive correlations exist
between traffic delays and incident rates and that errors (e.g., measurement, estimation errors) in
the traffic delay estimates and incident data only serve to deteriorate the strength of these
correlations.

shows the correlation coefficients between daily freeway traffic delays (PeMS
and INRIX) and daily freeway incidents for along State Route 24 in California’s East Bay area.
Freeway collisions are one category of incidents in the CHP incidents database. As a sensitivity
test, the correlation analysis was repeated using daily collisions (shown in Table 1).

Using the SR-24 dataset, the INRIX correlations were slightly stronger than the PeMS
correlations. This finding held for incidents and collisions. The average functional detector
spacing was about 1.7 mi per detector station along the SR-24 corridor.

shows the correlation coefficients between daily freeway traffic delays and daily
freeway incidents for FSP Beat 12, an 8.4-mi-stretch of I-80 in the East Bay. The average
functional detector spacing was about 0.5 mi for the FSP Beat 12 corridor.

C opyright Nationwal A c¢c ad

e

m

y


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

184 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory
18,000
= 16,000 .
£ i
8 14,000 . /

.
-
.
\’
.

LL . 1]
L 12000 . -, / .
= .
§ . *e 0.° 1 .f
[
=~ 10,000 T e s R h ] :('.
g e ® ‘.?:’:c . L
e P
% [ ] ."o“:’.' Qe ®
2 % )’- @
a 8000 R I S
z‘ L G‘O'f:.. ’.B“ » @ r
- — ®
[1°] e 3o o8’ .-
[ ] L -
8 6000 el 3’ e |y =0.8606x
v * *e e @ )
=) . = I
g e A R?=0.8412
> L ] / (] Lt a
— 4,000 ® ® § oo s
* L ]
g oﬂ,' 30 .9’ :‘ 0:
< e, ",
1 S L o L J
> 2,000 Ngfftt v .
e ’o'ﬂ % . .
E '.8:. =
0
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

PeMS-Corridor Daily Delays (VHT, FF = 60 mph)

FIGURE 2 Daily traffic delays: PeMS corridor and INRIX-Analytics
(State Route 24; July 1, 2012, through June 30, 2013).

TABLE 1 Correlations Between Traffic Delay Data and Incident Data
FSP Beat 1: State Route 24; Fiscal Year 2012-2013

Variable Sets Incident Correlation Collision Correlation
Coefficient Coefficient
INRIX delays €<-> CHP incidents 0.4018 0.2503
PeMS delays €—> CHP incidents 0.3454 0.2180

TABLE 2 Correlations Between Traffic Delay Data and Incident Data
FSP Beat 12: Interstate 80; Fiscal Year 2012-2013

Variable Set Incident Correlation Collision Correlation
1able Sets Coefficient Coefficient
INRIX delays €<-> CHP incidents 0.3649 0.3101
PeMS delays € > CHP incidents 0.3573 0.3220
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The PeMS (stationary detector) data correlates about as closely to the CHP incident data
as did the INRIX (probe vehicle) data along the FSP Beat 12 corridor with its closely spaced
PeMS detector stations.

Previous work has cited that the reliability of PeMS reported traffic data is dependent on,
among other factors, a corridor’s detector station spacing. For example, in an Evaluation of
PeMS to Improve the Congestion Monitoring Program report, researchers found, “Accuracy in
PeMS-based congestion estimates requires a detector spacing of less than 0.5 miles,” (6).
Another UC Berkeley study concluded:

Spacing loop detectors less than an average of 0.83 miles apart (i.e., using data from
more than eight inductive loop detector stations along the stretch of roadway under study)
did not provide extra benefit in the travel time estimation. The error remains constant
between 6—13% depending on the time of day, regardless of the added loop detector
stations. (7)

The reliability of the results from regression analysis, like that in the components of
congestion techniques, depends heavily on the reliability of the dataset used to feed the
regression analysis. As such, components of congestion analysis have typically been employed
on corridors with relatively closely spaced detector stations. However, FSP service is provided
on several freeway corridors with sparse or no PeMS coverage. So a validation method and data
sources were sought that could be applied to FSP beats regardless of the level of PeMS coverage
throughout the corridors where FSP service is provided.

Previous work has shown that PeMS detector station spacing has a direct impact on the
accuracy of reported travel times and delays. What was not shown was whether PeMS detector
station spacing affects the accuracy of some performance measures more than others. For
example, widely spaced loops might do a better job of reliably reporting VMT than delays or
vice versa.

Sensitivity testing was done on corridors with a high density of functional PeMS detector
stations to gain insights into how the PeMS spacing affected key performance measures for FSP
monitoring and FSPE model validation. shows the correlation coefficients for PeMS
reported traffic volumes as a function of distance between detector stations along a corridor. It is
a measure of how well traffic volumes can be approximated from measured volumes as distance
from the point of measurement increases. Figure 3 also shows the same for approximating traffic
delays from upstream measured delays.

As PeMS detector spacing increases, the ability to approximate traffic volumes
deteriorates slowly as compared to the ability to approximate traffic delays. This implies that for
corridors with widely spaced PeMS Stations, INRIX delay data might provide better delay
estimates than PeMS. This is consistent with findings presented previously in Tables 1 and 2.

STUDY FINDINGS, FSPE MODEL VALIDATION RESULTS

Linear regression techniques were used to estimate the expected (average) traffic delays
attributable to freeway collisions. For this FSPE model validation effort, one year’s worth of
CHP, PeMS, and INRIX data were compiled: July 1, 2012, through June 30, 2013, for FSP beats
(corridors) listed in
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FIGURE 3 Correlations for traffic delays at PeMS stations, I-15 NB San Diego, California.

TABLE 3 Beats Selected for FSPE Model Validation

One-Way Weekday
FSP Beat FSP
Beat | County | Freeway Beat Limits Length (mi) Trucks
ALA 1-580 to Contra Costa Co. line 4.39
CcC 24 Contra Costa Co. line to Oak Hill Rd. 6.25
: ALA 980 1-580 to I-880 2.03 2
880 7th St. to Jackson St. 2.04
12 CC 80 San Pablo Dam Rd. to Cummings Skyway 8.39 2
16 SCL 17 Junction SR-9 to Summit Rd. 7.07
SCL Junction SR-237 to Alameda Co. line 2.08
18 ALA 880 SCL Co. line to Mowry Ave. 7.18 2
22 ALA 580 Santa Rita to Grant Line Rd. 16.48 3
29 SOL 80 Magazine St. to Abernathy Rd. 14.04 2
34 SOL 80 Abernathy Rd. to Vaca Valley Rd. 12.54 2
37 SOL 80 Junction I-505 to Richards Blvd. 16.40 2
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On weekdays in the Bay Area, FSP provides service from 6:00 to 10:00 a.m. and from
3:00 to 7:00 p.m., although some beats operate from 5:30 to 9:30 a.m. in the mornings, and
Friday afternoon shifts might vary on some beats. Sunday (weekend) FSP service is generally
provided with one truck operating from 12:30 to 7:00 p.m.

Since the PeMS and INRIX data sources provided traffic delay measures, PeMS from
stationary source (loop) detectors and INRIX from probe vehicles, three different measures of
vehicular delays were used in the regression analysis to gain insights on how the chosen delay
data source affected the regression model goodness of fit and parameter estimates:

1. PeMS traffic delays: from stationary detectors (e.g., loops),
2. INRIX traffic delays: from a relatively large sample of probe vehicles, and
3. Composite of INRIX (per-vehicle) delays and PeMS traffic volumes.

displays the FSPE model validation results.

The findings in Table 4 are consistent with the findings presented in Tables 1 and 2. For
Beat 1, the model using “INRIX (per-vehicle) Delays & PeMS Traffic Volumes” performed best.
For Beat 12, the model using “PeMS Traffic Delays” performed best. Beat 12 on I-80 has an
average PeMS detector spacing of 0.5 mi/station, whereas Beat 1 on SR-24 has an average of 1.7
mi between PeMS detector stations. These findings are consistent with the postulate that higher
density of detector stations provides higher reliability in estimated performance measures.

The root mean square error term was calculated from the empirical and FSPE model
estimated delay values, and the average regression model F-statistic was calculated for the FSPE
model validation dataset (see ). Overall, the INRIX delay data provided models with
better model fit statistics than those created using the PeMS delay data and better than those
created using the composite PeMS volume and INRIX delays.

The overall average error term (RSME) was lowest for the PeMS delay—based regression
models.

shows a scatter plot comparing the FSPE model estimated delay savings against
the empirically estimated traffic delays.

From the trend lines shown in Figure 4, the FSPE model predicts delay savings that are a
very close match to the empirically estimated traffic delays using PeMS delay data. However, the
FSPE model fairly significantly underestimates delay savings when compared to the traffic
delays estimated using INRIX delay data. It is not clear which delay estimation (PeMS or
INRIX) is more reliable without further probing into the PeMS and INRIX data collection and
delay estimation procedures, and taking into account measurement and sampling errors
associated with PeMS detector spacing and INRIX probe vehicle sample size.
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TABLE 4 FSP Beat Evaluation Model Validation Results

FSPE Regression
Delay Source of Model Regression | Regression | Regression
Savings Traffic Traffic Model Model Model Regression
Bay Area (per Delay Delay Std Err Lower 95% | Upper 95% Model
FSP Beat min) Estimate (per min) of Delay Delay Delay F-Statistic
PeMS 8.11 1.79 4.61 11.61 20.65
Beat I 1144 | INRIX 10.68 1.84 7.08 14.27 33.81
Weekday
PeMS+INRIX 12.77 2.00 8.86 16.68 40.96
PeMS -1.73 1.27 -4.22 0.77 1.84
Beat 1 0.78 | INRIX ~1.33 1.44 415 1.48 0.86
Weekend
PeMS+INRIX -0.48 1.68 -3.78 2.82 0.08
PeMS 4.22 0.83 2.59 5.84 25.76
Beat 12
5.26 INRIX 6.67 1.17 4.39 8.96 33.34
Weekday
PeMS+INRIX 6.56 1.08 4.44 8.67 36.83
PeMS 0.20 0.46 -0.70 1.10 0.19
Beat 12
0.91 INRIX 0.60 0.19 0.23 0.98 10.08
Weekend
PeMS+INRIX 0.91 0.33 0.26 1.55 7.66
PeMS na na na na na
Beat 16 349 | INRIX 2.09 0.72 0.68 3.50 45.70
Weekday
PeMS+INRIX na na na na na
PeMS na na na na na
Beat 16
Weekend 0.75 INRIX 0.60 1.38 -2.11 3.31 0.19
PeMS+INRIX na na na na na
PeMS 3.66 0.83 2.04 5.27 19.63
Beat 18 737 | INRIX 5.49 1.06 3.42 7.56 26.97
Weekday
PeMS+INRIX 5.13 1.01 3.15 7.11 25.79
PeMS 7.61 1.15 5.36 9.86 43.87
Beat 22
6.43 INRIX 17.53 2.16 13.29 21.76 65.77
Weekday
PeMS+INRIX 17.47 1.97 13.61 21.33 78.72
PeMS 6.42 1.17 4.14 8.71 30.36
Beat 22 045 | INRIX 6.50 1.87 2.83 10.17 12.22
Weekend
PeMS+INRIX 8.40 1.79 4.88 11.92 21.92
PeMS 1.22 0.71 -0.17 2.62 2.97
Beat 29 so4 | INRIX 4.61 0.82 3.00 6.22 31.32
Weekday
PeMS+INRIX 2.00 0.43 1.16 2.85 21.52
PeMS 2.01 0.98 0.09 3.93 4.19
Beat 29 067 | INRIX 1.95 0.94 0.11 3.78 4.30
Weekend
PeMS-+INRIX 2.14 1.05 0.08 4.21 4.14

(continued on next page)
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TABLE 4 (continued) FSP Beat Evaluation Model Validation Results
FSPE Regression
Delay Source of Model Regression | Regression | Regression
Savings Traffic Traffic Model Model Model Regression
Bay Area (per Delay Delay Std Err Lower 95% | Upper 95% Model
FSP Beat min) Estimate (per min) of Delay Delay Delay F-Statistic
PeMS 2.87 0.53 1.83 3.90 29.29
Beat 34 558 | INRIX 12.92 2.04 8.93 16.92 40.23
Weekday
PeMS+INRIX 1.03 0.72 -0.38 2.44 2.04
PeMS —0.42 0.67 ~1.74 0.90 0.39
Beat 34 062 | INRIX 1.08 0.94 ~0.77 2.94 132
Weekend
PeMS+INRIX 0.17 0.21 -0.24 0.57 0.66
PeMS 1.16 0.42 0.33 1.98 7.60
Beat 37 577 | INRIX 9.32 1.46 6.46 12.18 40.74
Weekday
PeMS+INRIX 6.73 1.14 4.49 8.97 34.65
PeMS 0.89 0.74 -0.55 2.33 1.46
Beat 37 0.69 | INRIX 1.61 1.32 0.98 421 1.49
Weekend
PeMS+INRIX 2.25 1.45 -0.60 5.09 2.40
TABLE 5 Overall Regression Model Goodness of Fit Statistics
Average Average Average FSPE Versus
FSPE Model Regression Regression Regression
Delay Savings Source of Traffic Model Delays Model Model
(per min) Delay Estimate (per min) F-Statistic RSME
PeMS 2.79 14.48 2.72
3.40 INRIX 5.35 23.22 4.42
PeMS-+INRIX 5.01 21.34 4.48
CONCLUSIONS

Overall, the FSP beat evaluation model replicated delay savings estimates that were in the range
of the empirically estimated traffic delays. However, there is some evidence that the delay
savings component of the FSPE model might be underestimating overall delay savings.

There are sets of plausible factors that might be contributing to the FSPE model’s
underestimate of delay savings, for example, if the FSPE model’s default capacities are higher
than real-world freeway capacities, or if the deterministic queueing methods used in the FSPE
model tend to underestimate delays on congested freeway corridors by failing to capture the
nonlinear nature of queueing, delays, and delay savings.

It should be noted that for this model validation effort, the FSPE model’s default capacity
and other model parameters were used without calibration or adjustments. No fine-tuning was
done to the FSPE model’s parameters or inputs to improve how well the FSPE model’s delay
savings compared to the empirically estimated delay estimates. Using the default capacity, like
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FIGURE 4 Empirically estimated traffic delays versus
FPSE model predicted delay savings.

was done for this validation effort, might underestimate congestion for highly constrained merge,
diverge, or weaving sections. Likewise using the default capacity might result in underestimated
FSP delay savings for freeway segments with hills, tight curves, narrow lanes, and other
geometric conditions that impact the carrying capacity of freeways. Model users do not take
adequate care in ensuring the traffic volumes and other inputs are reasonable and in selecting
capacity estimates that are representative of freeway geometry and traffic conditions.

The key to using any model, the FSP beat evaluation model included, is to understand the
model’s strengths and limitations, take care in preparing the model inputs, and perform reality
checks on the model’s outputs to ensure consistency with observed real-world traffic behavior.

These research efforts validated one of the components of the FSP beat evaluation
(FSPE) model: the FSPE model’s deterministic queueing techniques that estimate delay savings.
Next steps with respect to FSPE model improvement include exploring whether using stochastic
queueing methods instead of deterministic queueing methods would help to improve the FSPE
model’s ability to replicate real-world traffic delays and FSP delay savings.

The research support efforts for the FSP program generally focus on providing
information to enable performance-based decision making. With this, two plausible and useful
work efforts might be to

e Use the INRIX-Analytics datasets to provide calibration targets for the FSPE model;
or, perhaps a method could be developed to directly incorporate the INRIX estimated delays into
the FSP beat performance evaluation process. This would be especially helpful for freeway
corridors (i.e., FSP beats) with limited or no PeMS coverage.

e Compile annual estimates for VMT, VHT, and freeway incidents for the complete set
of California’s FSP beats. Compare the level of FSP service provided on each beat against the
beat’s empirical VMT, VHT, and incident totals as a performance measure to gauge “How
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closely does the allocation of FSP resources match demand for freeway incident management
services?”

e Perform a before-and-after study on a freeway corridor, directly measuring and taking

a detailed look at the overall and incident-induced traffic delays along a freeway corridor with
FSP service on the corridor and without FSP service on the corridor.
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CALIBRATION

Calibrating Multilane First-Order Traffic Flow Model with
Endogenous Representation of Lane-Flow Equilibrium

YASUHIRO SHIOMI
TATSUYA KOZONO
Ritsumeikan University, Japan

his study develops a multilane first-order traffic flow model for freeway networks. In the

model, lane changes are considered as a stochastic behavior in that an individual driver
decreases his or her disutility or cost and are represented as dynamics toward the equilibrium of
lane-flow distribution along with longitudinal traffic dynamics. The proposed method can be
differentiated from the previous studies in the following points: 1. The motivation of changing
the lane is explicitly considered, and it is treated as utility defined by the current macroscopic
traffic state; 2. A whole process of lane-changing is computed by macroscopic manner, that is,
the extension of kinematic wave theory employing the information technology (IT) principle;
and 3. In the model framework, the lane-flow equilibrium curve will be endogenously generated
as a result of self-motivated lane changes. In addition, the parsimony representation enables the
parameter calibration by using the data collected from the conventional loop detectors. As a
result of the parameter calibration using the data collected at four different sites of Chugoku
Expressway in Japan, including sag bottleneck, it is revealed that 1. The proposed method can
represent the lane-flow distribution of any observation sites with high accuracy, and 2. The
estimated parameters can reasonably explain the multilane traffic dynamics and the bottleneck
phenomena on uphill of sag section.

INTRODUCTION

It is well known that under the condition of high traffic volume lane-flow distribution becomes
unbalanced; more traffic tends to use a median lane rather than a middle and outer lane, which
causes the deterioration of traffic capacity at bottleneck sections (7, 2, 3). As intensive
development of intelligent transportation systems (ITS), active and dynamic lane management
has been practically implemented. By employing the technology of ITS, balancing lane-flow
distribution is one of the feasible solutions to increase the throughput of bottleneck flow (3).
Besides the unbalanced lane usage, lane traffic management and control should be considered as
one of the solutions to improve the efficiency and safety in case of lane regulation under road
works or incidents and at the merging, diverging, and weaving sections. For traffic management
to be effective, it is needless to say that a model-based decision support system consisting of
traffic state estimation, traffic state prediction, and optimization and traffic control measures is
essential as mentioned in Yuan et al. (4). However, because of the lack of a method for
computing multilane traffic flow, including lane-change dynamics, a model-based decision
support system enabling lane-based traffic management to be considered has not been realized.
This paper develops the multilane first order traffic flow model, which depicts the
dynamics of lane-changing. In the model, it is assumed that each vehicle changes the lane to

192

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

Shiomi and Kozono 193

improve its utility or decrease its disutility and also that the equilibrium of lane-flow distribution
is achieved as the condition of stochastic user equilibrium (SUE), where all drivers believe that
they cannot improve their utility by changing the lanes anymore. In the model, lane-changes are
represented as the dynamics toward lane-flow equilibrium. The utility function for a vehicle to
choose each lane is defined by only two parameters on the basis of the investigation about lane-
changing behaviour done by Knoop et al. (5) and Shiomi et al. (6): one is a constant value
implying cost breaking the keep-left (or right) rule, and the other one is the average speed
depending on the fundamental diagram and the density of the lane. Such parsimony
representation enables online calibration by using the real-time data from conventional loop
detectors. To compute the possible solution of multilane traffic under the conservation law of
traffic volume, the IT principle (7) is applied. Then, in this paper, the parameters reproducing the
lane-flow distribution are estimated on the basis of the data collected by the conventional loop
detectors. Based on the estimation results, the cross-sectional characteristics of lane-flow
distribution at sag section are discussed.

This paper is organized as follows. In Section 2, state-of-the-art of modelling multilane
traffic is described. In Section 3, the concept of lane-change dynamics and the mathematical
representation of lane-flow equilibrium are described. In Section 4, the computation methods of
multilane traffic flow employing IT principle are overviewed. In Section 5, the parameter
calibration method employing the extended quasi-Newtonian approach is explained, and then in
Section 6, the application results and discussion are described. Finally, the conclusion mentions
the contribution of the paper and recommends future works.

STATE OF THE ART

Considerable scientific attention has been paid on the topic of lane-change behaviour and
multilane flow modelling during the last two decades. Because lane-change is individual vehicle
driving behavior, that is, whether a vehicle changes its lane totally depends on the decision
making that the subject vehicle takes and the situation that the subject vehicle is in, it has been
the most straightforward way to apply microscopic modelling (§—12). This approach can
consider various conditions and variables that may cause making a decision to change lanes.
However, because of the computational tasks and complicated model framework, it is not
appropriate to apply for online and networkwide freeway traffic evaluation. The other approach
is mesoscopic modelling (73, 14). In the approach, the gas-kinetic model is applied to depict
longitudinal multilane traffic dynamics and lateral movement as well. In Shvestsov and Helbing
(13), the proportion of lane changers is exogenously given according with the density. The
motivations behind the lane change behavior are not appropriately considered. In Hoogendoorn
and Bovy (/4), the probability of a vehicle changing the lane is estimated by applying discrete
choice theory. In this case, however, it is required to calibrate various parameters, so that more
precise data is required than conventional loop detectors. Also, it is difficult to employ online
and dynamic traffic estimation based on the real-time data collection.

From the macroscopic approach, Daganzo (15, 16) investigated the traffic phenomena on
a multilane freeway, and proposed a traffic-flow theory based on the kinematic wave model, in
which it is assumed that there are two types of vehicles: slugs, which have lower desired speed
and drive on an outer lane, and rabbits, which have higher desired speed and drive on both outer
and inside lanes depending on traffic conditions. It was proven that the slugs and rabbits theory
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could explain the various traffic phenomena. However, the computational method on the basis of
this theory to depict multilane traffic has not been developed. Laval and Daganzo (7) proposed a
method to computing multilane traffic flow on the basis of kinematic wave theory and developed
a model to depict the influence of the lane changers to the traffic flow. This study employed the
hybrid approach in which lane changers are computed as particles and considered as moving
bottlenecks. It is assumed that the number of lane-change vehicles is proportional to the
differences of traveling speed among lanes. However, it is apparent that this assumption would
not represent the lane-flow equilibrium curve appropriately. Besides, the hybrid approach
combining microscopic and macroscopic model, which can be seen in Hong et al. (/7) and
Okaue and Okushima (/8), is not feasible in the model-based decision support system. Tang et
al. (19), Jin (20), and Jin (217) developed macroscopic models depicting lane-change traffic that
considered the disturbances to the traffic flow caused by lane changes. However, the
representation of the models is not in lane-specific manner.

This contribution can be differentiated from the previous studies in the following points:

1. The motivation of changing the lane is explicitly considered, and it is treated as utility
defined by current macroscopic traffic state;

2. A whole process of lane-changing is computed by macroscopic manner, that is, the
extension of kinematic wave theory employing the IT principle; and

3. In the model framework, the lane-flow equilibrium curve will be endogenously
generated as a result of self-motivated lane changes.

The proposed model represents a lane-specific traffic dynamics with parsimony manner.
Thus, it is expected that it has high feasibility for online and lane-specific traffic state estimation,
prediction, and evaluation of a dynamic lane-control scheme.

MODELING LANE CHANGE AND LANE-FLOW EQUILIBRIUM
Assumptions of Motivations Behind Lane Changes

This study develops the model depicting lane-changing dynamics and lane-flow equilibrium at a
freeway section without any merging and diverging, where all vehicles change the lane to
improve their driving circumstances. Namely, mandatory lane-changes heading to off-ramp or
coming from on-ramp are not considered.

It is well known that on such sections the specific macroscopic relationship between the
total density and the fraction of the lane flow as shown in can be observed. On two-lane
sections, more traffic tends to use on the outside lane when traffic density is not so large, while
under the presence of higher traffic density than approximately 30 (veh/km/2lanes), more traffic
drives on the median lane rather than the other lane. As the density increases, the gap of fraction
becomes insignificant. On three-lane sections, it is more complicated than on two-lane sections.
First, the fraction of the outside lane is more than the other lanes in the presence of less traffic
density than 20 (veh/km), and then traffic on the center lane becomes dominant. In the higher
traffic density than 50 (veh/km), the fraction of the median lane becomes the largest, and finally
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FIGURE 1 Observation of lane-flow distributions in freeways:
() example of two-lane section and (b) example of three-lane section (1)

the gap of fractions among the lanes gets insignificant. This tendency is not special to the
observation site shown in Figure 1 but can be observed generally all over the world.

With regard to the mechanism of the lane-flow distribution and its equilibrium condition,
Wu (2) theoretically revealed that the equilibrium curve was achieved as a result of balance
between the lane-change demand, that is, the proportion of the following vehicles that are forced
to drive less than their desired speed and the proportion of the available gap in the adjacent lanes.
From the empirical aspects, Knoop et al. (5) investigated the relationship between the number of
lane-changes and the density of both original and adjacent lanes. It revealed that in the free-flow
condition the number of lane changes per traffic volume from an outer lane to a median lane and
vice versa is not negatively proportional to the density of the adjacent lane if the density of the
original lane is the same level. This fact implies that lane-change behaviors are not fully
explained only by the gap acceptance, that is, the proportion of the available gap. According to
Shiomi et al. (6), which investigated lane-change behaviors on three-lane sections by applying a
discrete choice model, in the outside and middle lanes, vehicles tend to remain in the original
lane, whereas in the median lane, vehicles tend to change lanes to either the middle or outer
lanes. This fact indicates that drivers basically compliant with the keep-left (in case of Japan)
rule, which also motivates drivers to change the lane or remain on the same lane.

Thus, in this study, it is assumed that

1. Drivers are motivated to change the lane to increase the driving speed, though it
depends on their desired speed; that is, a driver with high desired speed would change the lane
and one with low desired speed would not try that.

2. Basically, drivers would follow the keep-left rule. That is, if the traffic state is the
same among lanes, a driver would choose the outside lane.

3. The demand of lane changes is censored because of the limitation of the available gap
on the target lane, which is mutually related to the available capacity of the target lane.

Then, under these assumptions, a first-order traffic flow model to depict multilane traffic
dynamics is developed.
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Definition of Utility Function and Mathematical Expression of Equilibrium State

Suppose a fundamental diagram is defined lane by lane, and the average speed of lane /, v;, is
given as

Vl:fl(kl)

where f/(*) is a fundamental relationship and 4; is the density on lane /, respectively. A driver
would choose a lane that gives him or her more utility or less disutility. As mentioned in the
previous section, a driver would be motivated to change the lane to increase his or her driving
speed or to follow the keep-left rule. Thus, the cost of a vehicle n to drive on lane /, ¢,,/(k)), 1s
defined as a monotonically increasing function against the density:

C;zz(kl)=%+ﬁz'{ﬁ(kl)}_l+5 (1)

where ki(¢, x) is the density on lane / at time—space point (¢, x), o, is the disutility to violate the
keep-left rule, B; shows sensitivity to the travel time of a unit of distance, and ¢ is an error term
following Weibull distribution, #(0,0), implying the heterogeneity of desired speed and
recognition error. Assuming traffic flow is composed of homogenous vehicles in terms of their
fundamental diagram and the structure of the cost function, the probability that a vehicle chooses
lane / according with the current traffic situation at time ¢ is written as

exp[— 0-¢ (kl )]

S expl-6-¢, &, )]

k

PI(K):

where K(t, x) is the total density and written as

K(t,x)z Zk, (t,x)

Note that an index 7 is omitted because of the clear representation. The lane-flow
equilibrium condition means the state where each driver believes that he or she can no longer
decrease the driving cost by changing the lane, or the situation where even if some vehicle
change their lanes, other vehicles would compensate for the change of lane traffic flow by
changing the lane immediately and as a result lane flow distribution becomes stable. The
equilibrium state is indicated by Equation 2.

e\ €X [—6’-01(/(,*)]
P =5 e (]
k,

K

)

where * is the symbol indicating the equilibrium condition.
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Expression of Lane-Change Dynamics

The equilibrium condition expressed by Equation 2 is equivalent to the solution of the
optimization problem as

. R 1 k,
minZ (k)= Zklj'o c, (a))da)+gzk:kk ln?

subjectto [P-1]
K=Yk
k>0

because the equilibrium condition can be considered as SUE condition, and the cost function is
monotonic increasing function with regard to the density. To solve the problem [P-1], the
objective function is partially linearized as

. 1
minZ(y)= Y ye,(z,)+ > v, In2k

subjectto [P-2]
Y= ZJ’k
Vi 2 6

where z= {z;} is a vector of the density on lane £ at (¢, x). Then, the solution vector y* is given
by calculating KKT condition as

. ek0q(z,)
5 S oo ) ®)

J

It is mathematically proven that the operation
2t + At x)=2(t,x)+ (1 2)y " - 2(e.x)} (4)

gives a better solution of [P-1] than z(z, x), where t > 1 (22). This result implies that when the
cost of each lane is defined as a monotonic increasing function with regard to the density, the
lane-flow distribution gradually approaches the equilibrium condition as vehicles repeatedly
change lanes in an ad hoc manner following the choice probability. In this model, the process
toward the equilibrium represents the dynamics of lane change. In Equation 4 a dynamic
parameter, T, is used. It can be interpreted as the same line as t of Laval and Daganzo (7).
Namely, 1 indicates the number of time steps a driver takes to decide and execute a lane change.
It relates to the gap availability in the target lane. The higher the density of the target lane is, the
longer time to find an available gap takes. Thus, T is considered as such a parameter that relates
to traffic condition, and becomes larger when the density is higher.
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MULTILANE FIRST-ORDER TRAFFIC FLOW MODEL
Framework of Multilane LWR Model
In this study, the multilane Lighthill-Whitham-Richards (LWR) model developed by Laval and

Daganzo (7) is applied with some modification to compute traffic flow on multilane with lane
changes. The conservation law of multilane traffic is written as

aKs(:,x)+an(tax):¢l’[= 1,2,....n ©)
X

where Kj(t, x) and Q((t, x) indicate the density and traffic flow on lane / in position x at time ¢,
respectively. The nonhomogeneous term, ¢;, in Equation 5 shows the balance caused by the lane-
change vehicles. Thus, this term can be rewritten as

¢ = z N Z Dt

I'#l 1'#l

where ¢, means the number of vehicles coming from the other lane (/°) to the target lane (J).

As mentioned above, it is assumed that fundamental diagram is defined lane by lane.
Note that lane change is caused by the differences in the cost among lanes even in the free flow
condition. Thus, the equation of fundamental diagram proposed by van Lint et al. (23) is used. It
is shown as follows:

V,(t.x)= f,(K;)
K, if 0<K, <k
Vag—&; ! SRpSky
) ki ©
Vet ket -(1 - K=k ] otherwise
K, ky—key

where vy, v, ke and kj; show the free flow speed (km/h), critical speed (km/h), critical density
(veh/km), and jam density (veh/km) on lane /, respectively. The example of the fundamental
diagram following to Equation 6 is exhibited as

Extension to Multilane Traffic Flow

Godunov Scheme for Multilane Section

To compute the traffic dynamics following the conservation law in Equation 5, the Godunov
scheme is applied. Then, Equation 5 is discretized as

Kt+1,il _Kti/ inl _Qt,i—l,l _
A + A =) Birsi— D Biior
I'#l I'#l
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where the index ¢ and i show time step and cell number, respectively. Following to CFL
condition, the time step size At and cell length Ax should keep the constrained condition as
follows:

Ax 2> mvellx(vﬂ ) At

In the case of a single-lane section, the traffic volume transferred from the upper cell i to the
downer cell i+1, 4, is given as

4, = min(S R (kJ,iH - K, )Ax)

ti o Vi1

where
K;-Vi-At if0<K, <k,
Sy = . (7)
k.-v, At otherwise
R kci+1 Vein At lf 0< Kt,i+1 < kci+1
YK Vi At otherwise

In Equation 7, S; is the sending function, which means that the traffic demand from the
upper cell, and R;; + ; is the receiving function, which means the supply volume of the downer
cell. The transfer volume is limited as the minimum of the traffic demand, supply volume, and
the physically acceptable number of vehicles in the downer cell. In the following section, the
treatment of lane-change vehicles is given.
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FIGURE 2 An example of fundamental diagram, where v; = {80, 90, 100},
ve = {70, 80, 90}, k. = {15, 15, 15}, and k; = {70, 70, 70}.
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Definition of the Number of the Vehicles with Desire of Lane Change

As mentioned in Section 3, lane-change vehicles are generated to improve their driving cost.
Given the cost function to each lane in accordance with the density of each cell as with Equation
1, the proportion of the vehicles with the desire to change the lane from / to /’, in time and place
(¢, X), puiiyr» 18 defined as Equation 8.

o exp[— a- Cip (Ktil' )] 8
DPiij—i zexp[_ 6-c, ( Ky )] ()

k

Then, the number of vehicles with desire to change the lane is written in accordance with
the sending function S;; as follows:

1
il =" S Prit>r
til

L

where 1 is the dynamics parameter. It is an unknown parameter depending on the traffic state. It
is not able to be observed directly so that should be estimated on the basis of the longitudinal
variation of lane-flow distribution. Along this line, a feedback estimation method [for example,
in Wang and Papageorgiou (24)] could be applied to determine the parameter. The volume of the
traffic with the desire to keep the lane is also defined as

My =S~ anmz'
1eQ,

where Q shows the set of lanes that a vehicle can get to within time step Af from the current lane /.
Computing Lane-Change Vehicles

Based on the number of the vehicles with the desire to keep the lane and the number of the
vehicles with the desire to change the lane, the adjustment process to determine the transfer
volume into the downer cells. The IT principle (7) is applied with partial revisions. In this study,
it is assumed that there are two criteria to execute a lane change. The first criterion is whether a
vehicle can find a space in the target lane, and the other criterion is whether the downstream cell
on the target lane can accept the traffic coming from the upstream of the same lane and its
adjacent lanes.

Let H,;+; denote the total desired number flowing into the cell i + 1 of lane / on time 7 as

Hypgp =My + an‘l'w )
1@,

For Equation 9, the first criterion is applied, that is, the desired number of lane changes is

censored according to the acceptable volume on the adjacent cell on the target lane, which makes
H,iy1; denoted by
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’
Hy iy =My + V- thil'—>l
l'eQ,;

where

Vit = min[L min(R”_l’ (k Ky )Ax)j

H

ti+11

Then, the second criterion is applied. Let @y; denotes,

min(RtM[ ) (k jir1 — K )AX)J

’
H ti+1l

Wy = min(l,
which defines the possible transfer volume with keeping the lane, ¢;;, and the possible transfer
volume with lane change, ¢, as

qii1 = Oyl * M

Grir—1 = Ot * Vit * Liir—i

respectively. Then, the actual traffic volume flowing into the downstream cell i + 1 on lane /,
Ayir1y, 1S written as

A = 4 + z Drir 51

I'#1

Finally, the density of each cell is updated every time step in accordance with

Ky = K + {Aﬁz ~Gu ~ z ¢ti1—>1} “Ax

I'#l

PARAMETER CALIBRATION METHOD
The proposed model requires the following parameters:

e Fundamental diagrams: free speed, critical density, critical speed, and jam density for
each lane, and

e Utility function of lane choice: disutility to violate the keep-left rule, and sensitivity
to the travel time of a unit of distance for each lane.

In this section, the parameter estimation method on the basis of the data collected by the
conventional loop detectors is proposed. Here, the dynamic parameter, 7in Equation 4 is
excluded in the estimated parameters. It is assumed that the parameters of the utility function of
lane choice are defined under given fundamental diagrams. Thus, the parameters are estimated
first for fundamental diagrams, followed by those of utility function of lane choice.
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Estimation Method of FD Parameters

Conventional loop detectors can directly measure the lane-based traffic volume (Q,ss, ;) and
space-mean speed (V,»s, 1), and the density (K,»;) can be indirectly measured by the operation,
Kobs.1 = Qobs.i Vobs,1. Suppose ©; denotes the unknown parameter vector in FD on lane /, the
estimation vector ©;°, which minimizes the residual error between the estimations and the
observations, can be found by Equation 10.

o, (10)

Nl
* . i i
9, —argrr(})m Z{Vobs,l _fl(Kobs,l
1

i

where N; shows the number of observations on lane /. To solve Equation 10, quasi-Newton’s
method is applied.

Estimation Method of Lane-Choice Parameters

For the calibration of lane-flow distribution, o; and ; in Equation 1 are unknown parameters to
be calibrated. According to Equation 2, it is obvious that only the relative difference of the cost
among lanes has influence on the lane-choice behavior, so that a; and B; on the outside lane are
given as 0 and 1, respectively. Then, given the total density K and the unknown parameter set @,
the proportion of lane flow at the equilibrium condition, p.(K|®) = {pes (K|®)| [ =1, 2, ..., n},
where 2 p.s.(K|®) = 1, is obtained by simulating traffic flow on an imaginary ring road with
periodic boundaries. To get the convergence results, the dynamic parameter, 1, is set as the same
with the number of time steps in the simulation.

From the conventional loop detectors, the cross-sectional traffic density, K,ps, and the
proportion of lane flow on lane /, p,s;, can be observed. It requires huge computational tasks to
get the convergence results for all the observed density, so that the estimation of the lane-flow
distribution is obtained by the following approximating method. Suppose x denotes the finite-
discrete point sequences shown as X = {xy, X2, ..., X;| 0 <x; <x; <... <x, <K,}. The set of
convergence solutions of lane-flow equilibrium corresponding to the densities X, Pey(X|®) =
{Pest(x1|D), ..., Pest(x1/®)} under the given parameter set ® is computed in advance. Then, the
estimate of the proportion of lane flow on lane / corresponding to the observed density, K,ps, 1S
obtained as a linear interpolation as follows:

Pest,l (xz|q)) (xi+1 B Kabs )+ Pest,l (xi+1 |(I)) (Kabs B xi) (1 1)

Xip1 =%

ﬁest,l (Kobs |(D) =

where x; < Kops < Xjt1.
The parameter set @ is found by minimizing the residual errors as follows:

o = arg ngnl:ii{i)est,l (K;;bs ‘D)— P(izst }2} (12)
il

where L is the number of lanes. Equation 12 can be solved by applying quasi-Newton’s method.
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APPLICATIONS

The proposed method is applied to the real field data. First, the details of the study site and the
collected data are described, and the parameter estimation results are shown. Then, the
discussion on what the results mean follows.

Study Section

The data used in the study were collected at four cross-sectional points on a three-lane section of
the Chugoku Expressway in Japan, which includes the sag section, and traffic congestion often
occurs behind Takaraduka—West tunnel on 20.32 KP. The geometric features of the target
section and the data collection sites are illustrated in , in which the section between
20.90 and 20.32 KP becomes the bottleneck because of sag structure. The data including 5-min
space—mean speed and 5-min traffic volume were collected lane by lane at each observation
point March 16-23, April 20-30, May 1-18, July 15-31, and September 1-14, 2010. The data
collected under incidents or road works are excluded, so that in total the data of 30 days is used
for the further analysis.

Estimation Results
FD Parameters

As the first step to calibrate the multilane traffic flow model, the parameters in FD of each lane
on each observation site are estimated. The results are summarized in and . As
seen in Figure 4 showing the comparison between the observations and the estimations, the
estimates indicate a good fit to the observations except for 25.20 KP, which is located about 5
km upstream from the bottleneck. Interestingly, even in the congested flow region, the average
speed in the middle lane is larger than that in the outer lanes against the same traffic density, and
as the density increases the gap of the speed diminishes. This tendency is fully captured by the
estimation of FD. Focusing on the traffic capacity, ¢q., defined as v.* k., it appears that traffic
capacity at 20.32 KP is much less than the other sites on any lane, which clearly shows 20.32 KP
becomes a bottleneck.

S Nishinomiya-Najio Aobadai  Takaraduka-West
g % Service Area Tunnel Tunnel

S

8 §
+ e -5.0%

Traffic Direction
—_—

€
Q
}3 -4.0 %
© -1.7 %
o o oo
25.20kp 23.12kp 20.90kp 20.32 kp
) :Loop detector Location [km]

FIGURE 3 Study section.
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FIGURE 4 Comparisons between observations and estimations of FD:
(a) 25.20 KP; (b) 23.12 KP; (C) 20.90 KP; and (d) 20.32 KP.
TABLE 1 FD Parameters
Site Lanes Vi (km/h) Ve(km/h) | k.(veh/km) | q.(veh/h) | k;(veh/km)
Outside 84.7 75.9 14.1 1,070.2 98.2
25.20 KP Median 99.6 90.7 16.6 1,505.6 91.6
Middle 107.6 100.6 17.2 1,730.3 99.2
Outside 82.3 76.2 12.5 952.5 94.7
23.12 KP Median 92.8 85.6 18.4 1,575.0 97.1
Middle 107.1 100.2 16.9 1,693.4 99.3
Outside 84.1 73.0 11.9 868.7 81.5
20.90 KP Median 95.2 82.1 17.9 1,469.6 73.9
Middle 108.7 97.5 17.0 1,657.5 77.2
Outside 80.2 70.6 11.5 811.9 94.6
20.32 KP Median 91.7 82.5 16.3 1,344.8 86.3
Middle 103.1 93.0 16.3 1,515.9 92.5
C opy righ't N a t i o n a |l A c¢c a d

e

m

y


http://www.nap.edu/22095

Shiomi and Kozono 205

Parameters on Lane Choices

To estimate the parameters on the cost function for the lane choice in Equation 1, the variance
parameter 0 is empirically set as 1,000. The number of iterations to get the convergence solution
of Problem 1 (P-1) is set as 50. The number of cells consists of the imaginary ring road is set as
3. As previously mentioned, at any observation site a; and B, is set as 0 and 1.0, respectively, to
standardize the lane choice costs.

The comparisons between the observations and estimation of lane-flow distribution based
on the estimated parameters are shown in , and the estimation results are summarized in

. It is interestingly noted that the range of the estimated parameters is almost the same for
all observation sites. It implies the validity of the estimation results, which can be confirmed by
the comparison results showing the good fits to the observations with high accuracy. Concretely,
the estimation of the lane-flow distribution captures the features that when traffic density is few
the fraction of outside lane is dominant, and as the traffic density increases the most dominant
lanes shift to the middle lane, and finally the median lane becomes the most dominant, though
this feature is slightly different among the observation sites. Thus, these results imply the validity
of the approach employed in the research that the lane-flow distribution is formulated as the SUE
condition, and the motivations behind the spontaneous lane changes are simply described by the
compliance with the keep-left rule and the sensitivity to the increase of the travel time.

Discussions

Hereafter, the paper dicusses the characteristics of lane use along the sag section on the basis of
the estimated lane-choice parameters. a shows the comparisons of the estimated
parameter, o, indicating the degree of compliance with the keep-left rule. If the average speed of
each lane is high, the second term of Equation 1 becomes lower, and the influence of the
parameter on lane choice becomes relatively higher, that is, the parameter, o, has more influence
in the light traffic situation. The larger this parameter of a lane is, the more the cost to drive on
the lane is. According to Figure 64, it is clearly shown that the value of the median lane is larger
than the middle lane for any site, which implies that the median lane is basically not likely to be
chosen when traffic volume is not so large. Focusing on the differences among the observation
sites, it appears that on 25.20 KP, which is the beginning of the downhill section, the parameter
of the middle lane is higher than that of 23.12 KP, which is the middle point of the downhill
section. It means that in the light traffic the fraction of use of the outside lane at 25.20 KP is
larger and gradually shifts to the middle lane toward the middle point of the downhill at 23.12
KP. At the bottom of the sag on 20.90 KP, the value of the median lane is slightly higher than
23.12 KP, while that of the middle lane is almost same. At the uphill section of 20.32 KP, the
value of the middle lane gets higher as well as the median lane. These facts indicate that in the
case of light traffic, on the downhill section where free flow speed tends to be high, the
proportion of the middle lane becomes high, whereas on the bottom and uphill section, where
free-flow speed becomes gradually lower, the proportion of lane use shifts to the outside lane.
This tendency can be seen in Figure 5.
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FIGURE 5 Comparisons between observations and estimations of lane-flow distribution:
(a) 25.20 KP; (b) 23.12 KP; (c) 20.90 KP; and (d) 20.32 KP.

TABLE 2 Parameters on Lane Choices

Sites | 25.20 KP 23.12 KP 20.90 KP 20.32 KP

o 0 0 0 0

o 0.0134 0.0120 0.0122 0.0133

o3 0.0179 0.0181 0.0185 0.0192

By 1 1 1 1

B, 0.830 0.830 0.828 0.830

Bs 0.802 0.809 0.807 0.800
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Figure 6b shows the comparison results of the sensitivity parameter to travel time, 3. This
parameter can be interpreted as follows: The larger the parameter is, the less the lane is likely to
be chosen as traffic gets congested. It should be interestingly noted that all the estimates shown
in Figure 60 are less than 1.0, which is corresponding to the parameter of the outside lane. It
implies that the outside lane is less likely chosen than the other lanes when traffic volume is
high. Also, it can be found that the parameters of the median lanes are less than the middle lanes
in any sites, which indicates that the dominant lane shifts from the outside, middle to the median
as traffic volume increases. These seem to be valid results. Next, the estimation results are
compared among the observation sites. As seen in the figure, the sensitivity of the median lanes
on 23.12 KP (at the middle of the downhill) and 20.90 KP (at the bottom of the sag) are higher
than the other sites, while no large differences in the sensitivity of the middle lanes among the
observation sites are found. It means that on the section from the midpoint of the long downbhill
to the bottom of the sag, the traffic flow tends to use less on the median lane in comparison to the
bottleneck point on 20.32 KP. In addition, the fact that the parameter on the middle lane at 20.90
KP is slightly less than the other sites implies that at the bottom of sag traffic flow tends to use
more on the middle lane. The underlying mechanism inducing such results can be considered as
follows: On the long downbhill section, the traveling speed is high enough on average that drivers
are not strongly motivated to use the median lane, rather they choose more to drive in the middle
lane. When traffic flow comes to the uphill section, it slows down the driving speed on the
whole, and drivers in the middle lane try to change the lane to the median to get the speed gain.
As pointed out in Patire and Cassidy (25), the lateral traffic dynamics beyond lanes might cause
speed disturbance, which might makes 20.32 KP a bottleneck. Although these findings are to be
confirmed by the direct observations on the lane change behavior, it is revealed that the proposed
method can be applied to grasp the characteristics of lane use from the macroscopic point of
view.
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FIGURE 6 Comparisons of estimated parameter values:
(a) parameters of keep-left term; (b) parameters of sensitivity to travel time.
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CONCLUSIONS

In this contribution, a multilane, first-order, macroscopic traffic flow model is developed. In the
model, it is assumed that a driver changes lanes to improve the utility or cost of driving
circumstance. The utility—cost function is composed by a constant value, indicating the cost to
break the keep-left rule; a coefficient of the inverse of the speed defined by the fundamental
diagram, indicating the sensitivity to the increase of the travel time; and an error term, implying
the heterogeneity of drivers and the limitation of the information about the surrounding traffic
situation. Then, the parameters on the cost function are successfully calibrated on the basis of the
data collected from the conventional loop detectors. Also, on the basis of the estimated
parameters, the multilane traffic dynamics on the section including sag are discussed. As a result
of the parameter calibration using the data collected at four different sites of the Chugoku
Expressway in Japan, including sag bottleneck, the following are revealed:

1. The proposed method can represent the lane flow distribution of any observation sites
with high accuracy with the observations, and

2. The estimated parameters can reasonably explain the multilane traffic dynamics and
the bottleneck phenomena on uphill of sag section.

In this study, the parameters of the cost function for lane choices are limitedly calibrated.
Although these parameters are significant for representing the lane-flow distribution, they can
limitedly capture the static characteristics of lane use. To depict the occurrence of lane changes,
it is essential to calibrate the dynamics parameter, z, which adjusts the number of lane change
vehicles. For this purpose, dynamic feedback system employing Kalman filter family method
would be applicable. In addition, it is recommended to upgrade the multilane traffic flow model
to depict, for example, mandatory lane changes at such sections with on- and off-ramps, merging
and diverging with multiclass representation.
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CALIBRATION

Heterogeneous Nonlinear Car-Following
Laws for Traffic Oscillation Prediction

CHRISTINE RHOADES
XIN WANG
YANFENG OUYANG
University of lllinois at Urbana—Champaign

INTRODUCTION

Traffic oscillations have been the subject of intensive research since the 1950s. Originally, linear
car-following laws were used to analyze oscillation properties (/, 2), but more recently,
nonlinear car-following laws have been used in order to reproduce more accurate car-following
behavior (3). While calibrating the nonlinear laws with field data, however, most research
focuses on matching vehicle trajectories in the time domain. Li et al. (4, 5) incorporated
frequency domain properties (e.g., oscillation periodicity and amplitude) into car-following
model calibration such that the describing-function approach (DFA) can be used to predict the
oscillation behavior of a homogeneous platoon (6). No consideration was given to ensure
prediction accuracy in both the time- and frequency-domains simultaneously.

This paper proposes a new approach to calibrate the parameters in a driver-dependent
nonlinear car-following law based on field trajectories. This method is shown to achieve a better
balance between time- and frequency-domain trajectory properties. The developed calibration
framework implements maximum likelihood estimation with a simulation-based feedback
incorporating both time- and frequency-domain prediction errors. The likelihood estimator is
obtained from a modified Tobit model to capture the nonlinearity of the car following model
(e.g., because of truncation near zero or maximum speeds). The feedback is established by
comparing the observed field trajectory with the simulated one under a certain car-following law,
where their actual trajectories and frequency spectrums are used to compute their time- and
frequency- domain errors, respectively. The car-following law is calibrated for each pair of
leader-follower drivers, allowing researchers to consider a platoon of heterogeneous drivers. The
DFA can then be used to predict oscillation propagation in a platoon.

METHODOLOGY

Researchers consider #n vehicles, numbered i = 1, 2, ..., n, traveling in a platoon in one lane. The
trajectory of vehicle 7, with position at time # denoted by x{£), is assumed to satisfy a nonlinear
car-following law. Field trajectory data is used to calibrate the car-following law, and the
designed feedback guarantees that the simulated trajectories reproduce the field trajectory well in
the time—space diagram and the frequency spectrum. The DFA can then be used to predict the
oscillation propagation for the entire platoon, which serves as a validation of the calibration
approach. In the rest of this section, the paper starts by describing the model calibration
technique used to obtain simulated trajectories from field data.

210
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Model Calibration

For illustration, researchers calibrated Newell’s nonlinear car-following law, which adjusts the
desired velocity based on spacing and physical bounds (7):

v (t) = mid{0, k (xl- L(E-r) - x (t —r)) ~W, Vmax}

where w is the backward shockwave speed, k is the sensitivity factor of driving aggressiveness,
vmax 18 the upper bound on velocity, and 7 is the reaction time. A modified version of the Type I
standard Tobit model (8) is used to calibrate the vector of model parameters <k, T, ®, Vma>.
Since velocity has both lower and upper bounds, the Tobit model must be censored from above
and below, yielding the following piecewise model for the actual velocity of vehicle i at time :

0 ifv/(t) <0
v = vi(D+E if0<v() < Vna

Vmax + E lf Vimax

where the error term, €, follows a normal distribution with mean zero and standard deviation .

The model is then calibrated using maximum likelihood estimation based on observed
trajectories in time increments. Note that the velocity upper bound is one of the maximum
likelihood estimators (MLE). To obtain a balance between the time- and frequency-domain
properties of the trajectory, two adjustments are made to the MLE calculation. The first
adjustment ensures accuracy in the simulated trajectory by introducing a penalty based on the
mean-square error between the field and simulated trajectories. The second adjustment ensures
accuracy in the frequency domain by introducing another penalty based on the difference in
amplitude of the two largest frequencies after the discrete Fourier transform is conducted on both
the field and simulated trajectories.

After the adjustments are made, a heuristic search method (e.g., simulated annealing) is
used to find the best parameter vector <k, 1, ®, vmax> that maximizes the likelihood function.
Since the platoon is made of heterogeneous drivers, the model calibration process is conducted
for each pair of consecutive drivers.

Oscillation Prediction
Given the oscillation properties (i.e., amplitude and periodicity) of the leading vehicle, the DFA
(6) can be applied to predict those of the following vehicle under the calibrated nonlinear car-

following law. A general car-following law governing any two adjacent trajectories is
considered:

x{(0) = LIN{(xu (D — x;,(0)]

where L[*) is a linear operator and N{-) is a nonlinear function of spacing. The trajectory of each
vehicle is first decomposed into its macroscopic, x;, and oscillatory, x; components. The Fourier
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transform is then performed on the oscillatory component, and the describing function method is
used to separate the nonlinear and linear components of x ;, yielding

x;(Q) = Li(Q) - Ni(x;1(Q) — x:(Q)) - (x21(2) - x;(Q))

in the frequency domain. shows the system block diagram that represents the above
equation, where the linear operator contains an integrator and a time delay (i.e., reaction time).

Li et al. (5) proposed a method to find x{(() for a given x;,(£1) in a homogeneous
platoon. In this paper, however, the car-following law is calibrated for heterogeneous drivers
instead of an average driver, so this process must be repeated for each pair of consecutive
drivers. The oscillation properties of the trajectories can then be predicted [see Li et al. () for
more details] and compared with field trajectories. This confirms the accuracy of the proposed
model calibration approach in the frequency domain.

By maintaining a balance between time- and frequency-domain properties, the calibrated
car-following models can more accurately reproduce car-following patterns in both domains. The
magnitudes of the penalties assigned during the maximum likelihood estimation are adjustable to
fit for various scenarios where either the time- or frequency-domain accuracy is more relevant
(higher penalty on frequency domain errors would lead to better oscillation propagation
predictions).

NUMERICAL EXAMPLE

Empirical trajectory data are used to validate the proposed model calibration and oscillation
prediction framework. For illustration, this paper considers the platoon consisting of vehicles 86—
101 from the NGSIM data on southbound US-101 in Los Angeles, California, from 7:50 to 8:35
a.m. on June 15, 2005.

Newell’s car-following law is used for illustration, and the best Newell model parameters
for each driver are calibrated. An example of a calibration result (the 92nd driver) can be seen in

. The calibrated parameters for this driver are <k =0.7031, 1= 1.0500 s, ® = 9.5386 ft/s,

and vmax = 47.5789 ft/s>.

| |
xi1(Q) + _/_ vi(Q) | ‘> Nl xi(Q)
—h e ™ H >

— Ni

FIGURE 1 Block diagram of Newell’s nonlinear car-following law.
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Calibration of the 92" Trajectories

Mewell Model
+ CObserved Data
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Spacing

FIGURE 2 Example of a Tobit estimation result (Driver 92).

213

With the calibrated car-following model for each driver, trajectories of all vehicles in the

platoon can be simulated. The simulated and field trajectories match pretty well in the time
domain, as shown in . Then, the DFA is performed on the simulated trajectories to
obtain the oscillation properties; see . It can be seen that the predicted growth of
oscillation amplitude matches also quite well with field observation in the frequency domain.
More examples and insights will be furnished in the full paper.

86" to 101° Trajectories

2000}
1800}
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1400}

= 1200}

&

g 1000}
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FIGURE 3 Platoon trajectory reproduction prediction in the time domain.
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FIGURE 4 Oscillation propagation via frequency—domain DFA.
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KAAN OZBAY
New York University

he predictions of a well-calibrated traffic simulation model are much more valid if made for

various conditions. Variation in traffic can arise as a result of many factors such as time of
day, weather, and accidents. Calibration of traffic simulation models for traffic conditions
requires larger datasets to capture the stochasticity in traffic conditions. “Big Data” collected
using radio frequency identification (RFID) sensors, smart cellphones, and GPS devices provide
extensive traffic data. This study shows the utility of Big Data to incorporate variability in traffic
flow and speed for various time periods. However, Big Data poses a challenge in terms of
computational effort. With the increase in number of stochastic factors, the numerical methods
suffer from the curse of dimensionality. This paper proposes a novel methodology to address the
computational complexity due to the need for the calibration of simulation models under highly
stochastic traffic conditions. This methodology is based on sparse grid stochastic collocation,
which treats each stochastic factor as a different dimension and uses a limited number of points
where simulation and calibration are performed. A computationally efficient interpolant is
constructed to generate the full distribution of the simulated flow output. This paper shows that
this methodology is much more efficient that the traditional Monte Carlo (MC)—type sampling.

INTRODUCTION

Simulation models are mathematical models in which output is derived from a particular model
given the input. The input consists of two main groups of data: physical input data, /;, (e.g.,
volume counts, capacity, and physical features of roadway sections) and calibration parameters,
C; (i.e., adjustable components of driver behavior). Outputs from a simulation model can be
expressed as

OObS:f(IS' Cs) - Osimlls; Cs + € (1)
where
F(I,,C,) = functional specification of the internal models in a simulation system;
Osin, = simulation output data given the input data and calibrations;
¢ = margin of error between simulation output and observed field data; and
O,,s = observed field data.
215
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The process of calibration entails adjusting the calibration parameters (C;) so that the
error between the output from simulation and field conditions is acceptable.

Calibration parameters estimated using limited samples are not always representative of
all possible conditions of the simulated system and will thus result in inaccurate predictions. In
other words, models that are not adequately calibrated cannot accurately capture time-varying
conditions of traffic. Traditional sources of traffic data used in the calibration of traffic models
are either limited by the availability of the data that only cover typical conditions or may not be
reliable enough. However, with the advent of new technologies, information is on the fingertips
of users by means of smart phones, GPS-equipped devices, and RFID readers. The rapid rise in
information technology also has resulted in innovative ways to obtain space- and time-sensitive
information in real time. This, in turn, has led to massive amounts of passively collected location
and event data for various time periods, also called “Big Data.” Big Data provides an opportunity
to validate and calibrate traffic simulation models for a variety of conditions.

Variability can be incorporated within inputs (demands), /;, and calibration parameter set
(supply), C;, during different periods of the day, weather conditions, driver population
composition, highway geometry, and more. There were a number of studies that captured traffic
variability (/-5). However, the increase in the number of factors affecting stochasticity increases
the dimensionality of the calibration process. This in turn results in increased computational
effort required in calibrating traffic simulation models for different conditions such as variability
within weekday/weekend, and seasonal variability, and special situations including adverse
weather and workzones.

This study proposes a novel methodology to address the computational complexity due to
the need for the calibration of simulation models under highly stochastic traffic conditions. The
utility of Big Data to incorporate variability in traffic flow and speed for various time periods is
shown.

LITERATURE AND MOTIVATION

There are myriad studies that deal with calibration of traffic simulation models (5—11, 12—-19).
Because of space constraint, only a sample of them is shown in .

Table 1 also shows the data used in these studies for the calibrating process. It can be
seen that in most studies data used for calibration are limited to a.m. and p.m. peak periods no
more than a few days. Thus, the data capture only a few specific conditions or are a dilute sample
of different conditions. Hence, it is expected that the model predictions will only be accurate for
those specific conditions.

The effect of data and parameter uncertainty in traffic simulation models has received
considerable attention recently (18, /9). Studies from other fields indicate that bias and variance
in simulation output results are a result of the bias and variance in the input models used, after
simulation error is eliminated; the input models consist of simulation model inputs and
parameters.
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TABLE 1 Summary of Literature on the Calibration of Traffic Simulation Models

Complexity; Type of
Simulation Roadway | Performance Data Used in
Authors Tool Section Outputs Calibration
Ma and Abdulhai Micro; Urban Traffic Detector data for 1 h during
(7) PARAMICS counts a.m. peak
Kim and Rilett (6) CORSIM, Freeway | Volume Data 5 loop detector stations for
TRANSIMS 13.9-m section of freeway for 1
h during a.m., p.m., and off
peak
Hourdakis et al. Micro; Freeway | Volume 5-min data from 21 detector
(11) AIMSUN stations for a 12-m freeway
section during p.m. peak for 3
days
Jha et al. (12) Micro; Urban Travel time Detector data for 15 days for
MITSIMLab network a.m. and p.m. peaks on a large
urban network
Toledo et al. (/3) Micro; Freeway, | Speed, Data from 68 detector stations
MITSIMLab arterial density on 3 freeways for 5 weekdays
Qin and Macro; Freeway | Speed Data from 7 detector stations on
Mahmassani (/4) DYNASMA network 3 freeways during a.m. peak for
RT-X 5 weekdays
Balakrishna et al. Micro; Freeway, | Traffic 15-min data from 33 detector
(15) MITSIMLab parkway | Counts stations
Zhang et al. (8) Micro; Urban Flow, 5-min detector count during
PARAMICS freeway Occupancy p.m. peak for 7 days
network
Lietal. (1) Macro Freeway | Flow Loop detector data
Lee and Ozbay (5) | Micro; Freeway | Speed, 5-min detector count during
PARAMICS Counts a.m. peak for 16 days
Zhong and Sumalee | Macro Freeway | Flow Loop detector data for 7 h on 3
3 days in 2 years
Yang and Ozbay (9) | Micro; Freeway | Traffic NGSIM trajectory data for
PARAMICS conflict, lane | US-101 for 15 min
change,
volume, and
speed
Henclewood et al. Micro Freeway | Travel time NGSIM trajectory data for
(18) distribution Peachtree Street in Atlanta, Ga.,
for 30 min
Punzo et al. (19) Micro Freeway | Speed NGSIM trajectory data for I-180
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FHWA’s Traffic Analysis Toolbox (20) recommends that if GEH < 4, where

1 < }
13000
GEH = |~

1 T
—>» (0. .+0, .
2T ,Zzl:( sim,i obs,t)

for link volumes for 85% of the links and average travel times are within 15% of observed
values, then it is considered as a satisfactorily calibrated model (20). In order to achieve this
level of calibration for various conditions (peak, off-peak, weekends, normal and inclement
weather, under accident, and other events), a detailed level of data is required.

As illustrated in Table 1, most of the studies in traffic simulation used a limited amount
of data focusing on a small set of conditions or time periods, or both. As depicted in ,
using only smaller samples of data will not accurately capture variation in traffic data
[additionally, the sources of field data in most of these studies, except (5—9, 19), have been
traditional sources such as loop detectors or manually-acquired data from captured videos, which
can be cumbersome and not always accurate enough]. Using these models for conditions other
than the ones for which calibration data are available would not yield accurate results.

Ozbay et al. (22) showed that the existence of a typical day in traffic demand is not
always likely. Hence, to obtain accurate predictions from a traffic simulation model, it is
important to consider not only the demand from various clusters, but also the variation of
demand within each cluster.

COMPUTATIONAL COMPLEXITY

In cases in which large sources of data spanning different conditions are available, to capture the
stochasticity in traffic conditions, there is an increase in number of factors of stochasticity. This
in turn increases the dimensionality of the calibration process. This then results in increased
computational effort required in calibrating traffic simulation models for various conditions.
Most studies capturing stochasticity in computational traffic models use an MC-type
independent sampling of M simulation runs for various traffic conditions. The number of

2
o . o UVERESPN
replications needed to be at a level of precision vy is given by (%] . However, the

convergence rate for MC-type method or Latin hypercube sampling is slow, O(1/ANM) (23). All of
these numerical methods suffer from the curse of dimensionality. Thus, depending on the size of
the network and number of stochastic dimensions, these approaches can become prohibitive in
terms of computational effort. It may not be possible at all to simulate the output for each and
every possible realization of parameter and input. Also, all possible points in the stochastic space
of simulation output may not have the corresponding observed data. Thus, it is important to
obtain an effective interpolation methodology for predicting output for points with no data.
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FIGURE 1 Illustration of various traffic conditions for which data are required for
calibration [adapted from (21)].

METHODOLOGY
Use of Big Data

Based on the discussions above, making accurate predictions using traffic simulation models
requires calibration data from many sources and in great detail. This data need can be effectively
addressed by the advent of new technologies such as GPS, cellular phones, and RFIDs. The
ubiquity of these technologies ensures that data of great detail and variety are available. Various
demand, speed, flow, and event data can be obtained from the Big Data sources.

This study uses a hybrid of electronic toll collection (ETC) data for demand and traffic
sensor data for speed and flow. ETC data are collected for all toll ways in the United States and
in New Jersey. Taking toll facilities in New Jersey as an example, New Jersey Turnpike
(NJTPK) is spread over 150 mi with 28 interchanges and 366 toll lanes. The Garden State
Parkway is about 170 mi long with 50 toll plazas and 236 toll lanes. Each freeway carries up to
400,000 vehicles per day (24). The ETC data are collected at toll plazas on these freeways (24).
The ETC dataset consists of the individual vehicle-by-vehicle entry and exit time data. It also
consists of the information regarding the lane through which each vehicle was processed (both E-
ZPass and cash users), vehicle types, number of axles, and more.
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The demand from the ETC data is divided into clusters so that different demand patterns
can be analyzed separately. The corresponding sensor data are also obtained into clusters. The
simulation is performed using the clustered demand data distribution and simulation output of
flow, and density is compared to the observed distribution from sensor data.

Stochastic Collocation

As mentioned earlier, there is a need to combat the issue of a high number of replications and
dimensionality when using MC-type methods in capturing stochasticity using computational
traffic models. Stochastic spectral methods provide an efficient alternative to MC-type methods.
In these methods, stochasticity is treated as another dimension, and the stochastic solution space
Q is discretized and approximated (I'). One such stochastic spectral method is stochastic
collocation (SC), where the approximation is performed using deterministic solutions at a set of
prescribed nodes (collocation points) and an interpolation function. For a set of O points in the

stochastic space where the simulation output is calibrated, {@j.}g_] €T, the polynomial
J=

interpolation can be shown as (25)

[
Pex.1.8) = [ (6.1 PEIE = (x.0) = D 5, (x)B,(O)). Vxe D

®, (0,) = interpolating basis polynomials (2)

p;(x) = the deterministic solution at @,

The choice of weights (i.e., the basis functions @) in SC depends on the interpolation
technique. It is important to note that, unlike MC-type sampling methods, the weights assigned
to each deterministic output are different in stochastic collocation methods.

Computationally efficient schemes such as the Smolyak algorithm are used to reduce the
number of collocation points (26, 27) at higher dimensions of stochasticity. Smolyak algorithm,
developed originally for multidimensional integration, entails evaluating deterministic solutions
at the nodes of sparse sampling grids and building the interpolation function. One dimensional

interpolant, with the Smolyak algorithm, is given by, U'(f) = Z S(©,)L,,m, =# nodes at level ..
Jj=1

Sparse interpolant in N-dimensions and g—N interpolation order is given by

A'=U'-U"U"=0
A, (=S (A @A) =A, , ,()+ D (A ®..®AV)(/) (3)

lil<q lil=q

The advantage of this recursive/nested structure is that to increase the order of
interpolation (accuracy) researchers can use all of the deterministic solutions from the previous
steps, 4,.1,n, by adding a few more deterministic solutions: A;y. When new data are available,
additional deterministic solutions can be evaluated, and accuracy of interpolant is improved.

Convergence rate of the interpolant is of the order, O(Q *|logQ]’™ ) (for piecewise
linear basis), O(Q ¥|logQ|* P~V (for k-polynomial basis). This rate can be controlled by the
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polynomial order & (26, 27). Thus, it is shown, empirically, that convergence of this interpolant is

better than the MC method.

An illustration of the discretization of the stochastic space is shown in

From each realization of the parameter set, using the demand distribution as an mput the
simulation output distribution (e.g., flow or density distribution) is generated. This distribution is
compared with the observed output distribution and using a test statistic (such as the test statistic
from the KS test), the error is estimated. This error is used as an objective function and is
minimized as part of the multi-objective parameter optimization (shown in Equation 4) using the
simultaneous perturbation stochastic approximation (SPSA) algorithm. In this study the weights
(w) used are the coefficients of variation of each output measure from the observed data.

iyl {wity (a2, a5 (0F)) + waUa(p2”, 0 (05)) )
where

q? b q; = observed and simulated flows at location i;

pf%, 07 = observed and simulated densities for location i;
®F = parameter set for time period ¢ and iteration k;
wy, wo = weights for the error measures; and

Ui, Up

The main advantages of using this methodology are the following:

functions representing the errors in flow and density.

(4)
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FIGURE 2 Example of approximation of stochastic space by collocation points.
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1. Flexibility in applying to any type of traffic simulation (first order, second order,
meso—microscopic, and more);

2. Computationally more efficient than MC-type exhaustive sampling methods with
effective interpolant to generate full distribution of simulation output;

3. Time consumed by the collocation approach can be further reduced by parallelizing
the simulation under each condition; and

4. Nested form of the algorithm is useful in refining the interpolant as and when there is
new data available.

RESULTS

In order to illustrate the stochastic variation in traffic conditions, a three-lane section of the
NJTPK at Interchange 7 was chosen. Although, microscopic traffic simulation tools such as
Paramics provide a detailed and relatively accurate platform for modeling, the model building,
calibration, and execution can be very time consuming. When studying the effects of various
stochasticities, the focus was on a first-order macroscopic traffic simulation model to model the
traffic flow in the section. The time and space for the model were discretized using the cell
transmission model. A schematic representation of the simulated section, the stochastic input,
and model parameters are shown in .

The variation in demand at this section was captured using the ETC data for every 5 min
between January 1 and August 31, 2011. The demand is divided into clusters using k-means
algorithm. The optimal clusters for the demand distribution are shown in . These data
illustrate that primarily there are three clusters of data: weekday, weekend high, and weekend low.

Each line depicted in Figure 4 is the mean of the cluster for each of the demand cluster.
Using the actual demand values from each of the mean does not take into account the variability
in traffic conditions and may not be useful. Thus, for each cluster, the distribution of demand
during each 5-min time period is generated as illustrated in . The simulation is
performed for a.m. peak (7:00 to 9:00 a.m.) and off-peak (10:00 a.m. to 12:00 p.m) period for
weekday demand cluster and peak period (10:00 a.m. to 12:00 p.m.) of the weekend demand

V) P €

-

pIB(r:vifl) i ' \' ' / ' -
pzﬂ(r:'é&'z) pf(rn'f})

FIGURE 3 Schematic representation of the study section.
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cluster. It is to be noted that, especially during the peak period, the demand distribution for each
sampling period (15 min) is different from the other period. Additionally, since this input
parameter is demand as opposed to flow, each sampling period can be treated as independent of
the other time period. So for simulating 7:00 to 9:00 a.m. with 15-min demands, there will be
eight separate demand distributions, each of which has to be treated as an independent stochastic
dimension.

Traffic sensor data available between January 1, 2011, and August 31, 2011, for every 5
min were used to generate the speed and flow data required for calibration. The sensor data were
separated into the same clusters for the same time periods as the demand clusters. Thus, similar
flow distribution data were generated.

For each of the three time periods, a.m. peak (7:00 to 9:00 a.m.) and off-peak (10:00 a.m.
to 12:00 p.m.) periods for weekday demand cluster and peak period (10:00 a.m. to 12:00 p.m.) of
the weekend demand cluster, the simulation model was calibrated. As mentioned in the
methodology, with the demand distribution as an input, for each realization of the parameter set,
the simulation output flow distribution was generated. This distribution was compared with the
observed flow distribution, and using a test statistic [such as the test statistic from the
Kolmogorov-Smirnov test (KS) test], the error was estimated. This error was used as an
objective function and was minimized using the SPSA algorithm. The result of calibration was
demonstrated using the comparison of simulated and observed flow.

For this study, the Clemshaw-Curtis grid (a two-dimensional version of which can be
seen in Figure 2) was the appropriate sparse grid to discretize the stochastic demand. The
simulation was calibrated using the demand values at each of these grid points. The objective
function for calibration was the test statistic used in the KS test at 90% significance, maximum
separation between two distributions. As mentioned in Equation 3, a sparse grid interpolation
was performed for the output of the simulation and a Smolyak interpolant is constructed.
Distribution of simulated flows was obtained by repeated evaluation of the Smolyak
interpolation function. The simulated flow distribution was compared to the observed
distribution from the sensor data.

The comparison of observed and simulated flow distributions from the calibrated model
for a.m. peak period is shown in .

In order to compare the efficiency of the stochastic collocation approach, the distribution
of simulated flow after model calibration was also generated using the MC sampling method. In
order to achieve the flow distribution, the SC approach required 2,433 evaluations for various
stochastic demand combinations. However, using an MC-type sampling required 240,000 runs of
the simulation model. The reason, as mentioned earlier, was because of the ability to construct an
efficient Smolyak interpolant that uses the simulation output from much fewer runs.

As the second case study, the flow distribution during the off-peak period was also
generated using the sparse grid interpolation. The comparison of observed and simulated flow
distribution from the calibrated model for weekday off-peak period is shown in . It was
observed that there was no flow breakdown during this time period. As in the first case study, the
distribution of simulated flow after model calibration was also generated using the MC sampling
method. In order to achieve the flow distribution, the SC approach required 441 evaluations for
various stochastic demand combinations. However, when using an MC-type simulation required
5,420 samples.
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As the third case study, the flow distribution during the high- and low-demand weekend
peak period was also generated using the sparse grid interpolation. The comparison of observed
and simulated flow distribution for weekend peak period is shown in . It can be observed
that there was no flow breakdown during this time period. Distribution of simulated flow is also
generated using the MC sampling method. In order to achieve the flow distribution, the SC
approach required 441 evaluations for various stochastic demand combinations. However, using
an MC-type simulation required 8,000 samples.

The motivation behind using data from a variety of conditions was to capture the
stochasticity in traffic conditions. To illustrate the drawback of using limited data, researchers
compared the distribution of flow for high- and low-weekend demands with the case where only
three weekend days of flow and demand were used to calibrate the weekend model. The
simulated flow distributions (shown in Figure 8) from a limited data model do not match, not
only the weekend model with high demand but also the weekend model with low demand. This
illustrates the drawback in using limited data for model calibration and the importance of
considering stochasticity in traffic conditions when calibrating traffic simulation models.

CONCLUSIONS AND FUTURE WORK

The predictions of well-calibrated traffic simulation model are robust if the predictions made for
various conditions are accurate. Variations in traffic can arise as a result of many factors, such as
time of day, weather, and accidents. Calibration of simulation models for traffic conditions

requires larger than traditionally adopted datasets capturing the stochasticity in traffic conditions.
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FIGURE 8 Comparison of observed and simulated link flow distributions for
low and high clusters during weekend peak period.
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The advent of new technologies such as RFID sensors, smart cellphones, and GPS devices
provides extensive traffic data, an example of Big Data. Big Data provides a viable alternative to
traditional traffic data sources in providing larger and richer datasets. Although Big Data
provides greater variation in data, it poses a challenge in terms of computational effort. With the
increase in number of stochastic factors, the numerical methods suffer from the curse of
dimensionality. If traditional MC-type sampling is used, the computational effort required to
simulate and calibrate traffic simulation models for various conditions could become intractable.

This study used ETC data for a period from January to August 2011 to capture various
traffic conditions. A novel methodology to encapsulate stochasticity into macroscopic traffic
simulation models and their calibration with much lower computational effort was proposed.
Stochastic collocation, a type of stochastic spectral method, was used to capture stochasticity in
traffic. This method treats each stochastic factor as a separate dimension. Each dimension is
discretized using a set of collocation points, and an interpolant for the output is constructed using
the simulation output at these points. In this study researchers used the Smolyak sparse grid
interpolation method due to the high number of stochastic dimensions.

The main advantages of using this methodology are the following:

1. Flexibility in applying to any type of traffic simulation (first order, second order,
meso—microscopic, and more);

2. Computationally more efficient than MC-type exhaustive sampling methods with
effective interpolant;

3. Time consumed by the collocation approach can be further reduced by parallelizing
the simulation under each condition; and

4. Nested form of the algorithm is useful in refining the interpolant as and when there
are new data available.

To demonstrate the usefulness of this methodology, it was tested for a short on-ramp—off-
ramp section of NJTPK in the vicinity of Interchange 7. The variation in demand at this section
was captured using the ETC data for every 5 min between January 1, 2011, and August 31, 2011.
The demand was divided into clusters using k-means algorithm into weekday, weekend high, and
weekend low clusters. The methodology was applied to calibrate the macroscopic first order
traffic simulation model for a.m. peak (7:00 to 9:00 a.m.) and off peak (10:00 a.m. to 12:00
p.m.) period for weekday demand cluster and the peak period (10:00 a.m. to 12:00 p.m.) for high
and low weekend clusters. For calibrating the model, researchers used the test statistic from the
KS test for flow distributions on the link as the objective function. This measure was minimized
using the SPSA algorithm. It showed that the comparison of simulated and observed flow
distributions for the peak and off-peak periods match well. Also compared was the simulated and
observed flow distributions for weekend peak demand; they matched well. Also illustrated was
the advantage of using varied traffic conditions for model calibration by comparing the simulated
flow distributions generated using models calibrated with a large set of data and models
calibrated using limited days of demand and flow data.

As a part of future work, the probability density function of flows and densities at various
sections will be validated using a holdout dataset. Also this methodology will be extended to
larger highway sections for larger freeway sections with stochastic flow—density relationship.
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EMPIRICAL OBSERVATIONS OF TRAFFIC ANALYSIS

Continuous Flow Metering Alternative Solution to Alleviate
Congestion on Interstate 70 Eisenhower—Johnson Memorial Tunnel

SUSI MARLINA
URS

BRUCE N. JANSON
University of Colorado, Denver

SAEED SOBHI
Colorado Department of Transportation

etering aims to improve traffic flow on the main lanes of a freeway by regulating the

inflow to these lanes. While metering is most often implemented at on-ramps to a freeway,
it can also be used to regulate the flow of traffic on the main lanes themselves. Although
counterintuitive that regulating flow on the main lanes can also improve overall traffic flow, this
can happen in cases where downstream bottlenecks exist. Alternatively, upstream metering may
simply be required to prevent excessive queuing at a downstream bottleneck. This paper
evaluates two metering techniques applied to the eastbound main lanes of Interstate 70 at the
Eisenhower—Johnson Memorial Tunnel (EJMT) to potentially improve traffic flow, shorten the
queues both east and west of the EJMT, and reduce the need to completely stop traffic at the
EJMT. One strategy evaluated is traditional, or manual, metering in which operations staff stop
and start traffic as seen necessary to reduce a downstream queue. The other strategy is called
continuous flow metering (CFM), which automatically displays red and green lights at a given
cycle length to smooth out the traffic stream as well as reduce downstream queuing. The study
results show that CFM did reduce travel times and save person hours of travel in several trial
time periods.

INTRODUCTION

Interstate 70 (I-70) provides the only interstate connection from eastern to western Colorado and
passes through difficult mountain terrain and physical constraints, including the narrow EJIMT,
with only two lanes in each direction. I-70 experiences heavy traffic and subsequently high
delays, particularly during the winter time, when travelers are returning from the high country ski
areas to the Denver metropolitan area. I-70 is classified as an uninterrupted freeway facility. It
frequently serves 50,000 vehicles per day and close to 5,000 vehicles during peak hours. I-70
experiences significant regional and national use by commercial and recreational travel.
Weekend travelers returning to Denver from the high country often encounter significant traffic
jams, delaying trips by hours because of weekend recreational activities in the mountains.

shows the study area: a 16-mi stretch of highway running from Silverthorne at
the western end [mile post (MP) 205] to Bakerville at the eastern end (MP 221). There are
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currently three eastbound (EB) lanes from Silverthorne to the lower runaway truck ramp, then
two lanes to the US-6 Loveland on-ramp, then three lanes to Hermans Gulch, and then two lanes
for the remaining distance to Bakerville. This EB section of highway includes four on-ramps and
four off-ramps, none of which lies between Silverthorne and the EB entrance to the EJMT.

The EJMT is the highest highway tunnel in the world (reaching an elevation of 11,000 ft)
and is located on I-70 approximately 60 mi west of the Denver metropolitan area. It is a major
bottleneck during high-volume periods during winter and summer weekends. Delays are
primarily a result of heavy directional volumes, steep grades (7% approaching the EJMT in the
EB direction), and a long tunnel (1.7 mi). Slower moving trucks on the up and down grades also
contribute to delays, which can be made worse by poor weather conditions and traffic incidents
when they occur. In general, a freeway can operate at full capacity when there is good weather,
good visibility, no incidents, no work zone activity, and no pavement deterioration serious
enough to affect operations.

The basic freeway section analysis of the Highway Capacity Manual 2010 (HCM)
provides little guidance for estimating tunnel lane capacities, since the tunnels affect travel
speeds quite dramatically (/). To approximate the capacity of the EIMT, the following
specifications were used in the basic freeway analysis of the HCM 2010: 10% heavy vehicles,
including trucks, buses, and recreational vehicles; 0 interchanges per mile; 60 mph base free-
flow speed; and rolling terrain for two lanes in each direction. However, if the lane and shoulder
width assumptions reduce the free-flow speed to below 55 mph, then the HCM does not report a
level of service (LOS).

Using these parameters in the HCM basic freeway analysis results in an adjusted capacity
of 1,800 passenger cars per hour per lane (pc/h/In), which is roughly the break point between
LOS E and F for constrained lane and shoulder width conditions. Although the HCM does not
have a capacity adjustment for tunnel effects, the standard capacity reduction for tighter urban
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streets versus open suburban roadways is 10%. Thus, a 10% reduction in capacity to 1,620
pc/h/In seems about right to account for tunnel effects. This estimate also concurs with the
research literature. Levinson et al. (2) estimated the capacity of the Callahan Tunnel in Boston to
be between 1,600 and 1,650 pc/h/In after installing traffic management improvements. Levinson
et al. (2) also cite a New York Port Authority estimate of 1,660 pc/h/In as the maximum
theoretical capacity of a tunnel lane. However, observed maximum volumes in New York and
New Jersey tunnels suggest a maximum practical capacity of 1,350 to 1,450 pc/h/In. Lin et al. (3)
estimated the capacity of a tunnel in Taiwan after improvements to be 1,300 vehicles per hour
per lane (vphpl) in the southbound direction, but only 1,150 vphpl in the northbound direction.
Koshi et al. (4) observed the capacities of tunnels in Japan under congested conditions to be in
the range of 1,100 to 1,400 pc/h/In with the average being about 1,325 pc/h/In.

Although these estimates are wide ranging, based on the above investigations, it was
estimated that for normal operations, the capacity of the EJMT is roughly 1,600 vphpl, or 3,200
vph total for the two lanes in each direction.

TRADITIONAL METERING VERSUS CONTINUOUS FLOW METERING

At times, queues of vehicles traveling EB on the east side of the EJMT extend inside the tunnel
causing stop-and-go conditions and restricting access inside the tunnel for emergency response
vehicles. To alleviate this congestion and public safety concern, the Colorado Department of
Transportation (DOT) implemented a CFM strategy versus the traditional metering approach.
The CFM approach releases the EB traffic on I-70 just before entering the EIMT at a rate based
on freeway volumes and speeds. This approach differed from the traditional metering approach
at the EJMT, which stopped all traffic for up to 20 min at a time. The EJMT staff imposed
traditional metering at the west entrance to the tunnel to prevent queues in the EB lanes beyond
the tunnel from backing up into the tunnel. The shockwave begins in the EB lanes downhill of
the tunnel where the geometric characteristics of the highway cause a long queue to form. A
study by Zang and Shen (5) found that a lane-drop with low remaining capacity, high travel
demand, and a short distance between the merging sign and taper is most likely to produce high
oscillations in flow. Furthermore, Laval et al. (6) found that the evolution of oscillations
occurred in freeway segments with no entrances or exits. In this study, oscillation occurs with no
entrances or exits, but because of a lane drop, high traffic volumes, traffic incidents, and
frequently poor weather conditions.

The traditional metering scheme is to completely stop EB traffic at the west entrance and
to allow the queue east of the tunnel to dissipate to some point past the US-6/Loveland pass on-
ramp (MP 216.5). At that point, the metered traffic is released. The process is repeated if the EB
queue once again nears the tunnel exit. It is not uncommon for traditional metering to be
imposed several times on a Sunday of high traffic returning to Denver. The stoppage periods
often exceed 10 min. After traffic is released, a large platoon of vehicles travels EB until it meets
the back of the queue.
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FIGURE 2 Lane configurations for the two metering schemes.

CFM regulates the flow of traffic into the tunnel similar to ramp metering. The area
immediately west of the EIMT entrance was restriped to provide a four-lane metering area
similar to a toll plaza approximately 50 ft wide and 500 ft long. An additional lane was striped
on either side of the existing travel lanes, providing two metering areas for each travel lane as
shown in the . On an overhead gantry, four signal heads are used to indicate the stop or
go for each lane. The metering lanes are released in alternating fashion (lanes 1 and 3, then lanes
2 and 4, and so on), which eliminates the need for vehicles to merge between other vehicles
when entering the two tunnel lanes. Although the green release phase is set at two seconds, the
frequency of releases could be manually or automatically varied to control the number of
vehicles that are released per minute based on queue conditions east and west of the EIMT. After
several tests, seven cycle rate plans were developed by FHU (7) for CFM implementation based
on capacity and the condition and movement of the queue east of the EJMT as shown in
A 170 traffic signal controller is used for implementation due to its capabilities.

TABLE 1 CFM Cycle Rate Plans

Green Time per Phase Red Time Cycle Rate Capacity
Plan (s) ) ) (vph)
1 2 10 24 600
2 2 8 20 720
3 2 6 16 900
4 2 5 14 1,030
5 2 4 12 1,200
6 2 2 8 1,800
7 2 1 6 2,400
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DATA COLLECTED FOR THE METERING SIMULATION

Incidents and recurrent congestion occur almost every weekend and create the need to meter
eastbound traffic at the tunnel. Traffic data collected for 14 high traffic days during 2010 and
2011 were reviewed in detail to select a representative day. January 30, 2011, was selected as the
case study day for these simulation analyses since 1. that day had the highest EB traffic volumes
for the 2010-2011 winter season, 2. incidents occurred and traditional metering was applied
eight times between 1:00 and 6:00 p.m. with the longest stop duration being 25 min and the
shortest stop duration being 8 min as shown in

Remote traffic microwave sensors (RTMS) collected traffic volumes and speeds in 2-min
bins while the automatic traffic recorder (ATR) in the tunnel collected traffic volumes on an
hourly basis. Colorado DOT staff stationed at the EIMT kept a manual log of all traditional
metering times and durations.

plots the actual speed data collected on Sunday, January 30, 2011. As can be

seen by this graph, severe congestion occurred between 12:00 and 7:00 p.m. The figure shows
that the speed dropped at 12:40 p.m. due to an incident at Hermans Gulch (MP 218.5). To avoid
the queue in the tunnel, EJMT staff first metered the traffic from 1:16 to 1:41 p.m. (25 min).

MODEL DEVELOPMENT, CALIBRATION, AND VALIDATION

Simulation is defined as “a numerical technique for conducting experiments on a digital
computer, which may include stochastic characteristics, be microscopic or macroscopic in

Traditional Metering Log on January 30, 2011
30
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FIGURE 3 Traditional metering stoppage times on January 30, 2011.
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I-70 Eastbound Speeds
January 30, 2011 - Based on RTMS Point Data
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FIGURE 4 1-70 EB speeds on January 30, 2011.

nature, and involve mathematical models that describe the behavior of a transportation system
over extended periods of real time” (8). The VISSIM traffic simulation model was used to
simulate and quantify the traffic flow effects of these alternative metering schemes.

Using traffic simulation to replicate the actual conditions is quite challenging, because
many variables such as driving behavior and highway characteristics create numerous “what if”
scenarios. Developing a realistic model requires significant effort to calibrate and validate the
model to replicate the observed conditions. The VISSIM model uses inputs such as vehicle lane
assignments, vehicle speeds, percentages of vehicles by type, and pretimed and/or actuated
signal timing (9). The experience was similar to the finding of Siuhi and Mussa (/0) that “the
VISSIM default parameters used in trial simulation runs for checking any coding errors showed
that the default model parameters were incorrectly emulating the existing traffic flow
characteristics.”

Traffic composition in the VISSIM model uses of 97% passenger cars and 3% trucks
based on overall EB truck percentages on a typical Sunday afternoon compiled by Hattan and
Germeroth (7). Heavy vehicles percentages are often higher during weekday business hours but
less during weekend days with high recreational traffic volumes. Volume balancing was
performed during all analysis time periods to ensure that volumes along the I-70 corridor were
consistent between interchanges. The balanced mainline volumes were then compared to RTMS
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counts, additional Colorado DOT counts, and other historical data, such as ramp volumes
collected earlier by JF Sato as part of I-70 Mountain Corridor Programmatic Environmental
Impact Statement. These comparisons were made to determine if traffic patterns were being
replicated after the volume balancing procedure was completed. A conservative approach was
adopted at locations where balanced volumes were higher than the counts and comparable
historical data.

The detailed VISSIM model development for I-70 EJMT network proceeded as follows:

1. Aerial photography from Google Earth was stitched together to create the links and
connectors along the corridor. Having the correct scaling is essential for this network.

2. General desired speed range distributions in free-flow conditions were used in the
model per vehicle type, including passenger cars (50 to 80 mph with an average of 65 mph),
trucks (40 to 60 mph with an average of 50 mph), and all vehicles through the tunnel (40 to 50
mph with an average of 45 mph). However, congestion levels and geometric conditions (grades,
curves, merging, diverging, and more) that affect vehicle speed decisions were placed on every
entry link and where speed limits change or on connectors with a different speed limit. Once a
vehicle crossed a speed decision area, it will try to maintain that desired speed until it goes over a
new speed decision point. The reduced speed zones were coded with a desired speed distribution
of plus or minus 5 mph from the initial 10 mph for creating incident.

3. Lane assignments, vehicle inputs, routing decisions, and vehicle compositions were
coded to represent existing conditions. Given the scale of this model keeping track of the volume
through vehicle input and routing decisions at each junction is very critical to creating a realistic
model. Routing decisions are carefully placed so as to not overlap and so that vehicles cannot
accept new routing decisions until they have completed the previous one.

4. Driving behavior parameters, including car following and lane changing parameters,
were specified as prescribed by the Wiedemann 1999 car-following model for freeways.
However, due to unrealistic vehicle behavior resulting from the Wiedemann 1999 parameters,
several car following and lane changing parameters [such as headway time (CC1), car following
variation (CC2), and the desired safety distance] were changed based on engineering knowledge
of the corridor and best practices (/7).

5. Each simulation recorded from 11:00 a.m. to 9:00 p.m. (10 h x 3,600 s = 36,000 s)
with one-hour seeding time to load the initial traffic demand.

The error checking portion of the model development focused on fixing coding errors
before the calibration process began that includes a review of the coded data and a review of the
animation. All coded data (geometry, speeds, signal timing data, and traffic volumes) were
reviewed. The review of the animation was conducted to determine locations where general
coded parameters may have been overlooked. This tuning process involved iterative parameter
changing and simulating until simulated speeds closely matched speeds observed in the field. As
a result, the unrealistic vehicle behavior in comparison to the field observation when using error
checking also involves setting background traffic operation and driver behavior characteristics
including gap acceptances, driver aggressiveness, and vehicle characteristics. The default values
were adjusted during this process so that the model would accurately reflect observed conditions.

Calibration was performed to get equivalent results between the observed and expected
traffic conditions (/2). During validation, the VISSIM model output was compared against field
data to determine if the VISSIM output was within acceptable levels. The GEH statistic
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measuring the goodness-of-fit between observed and modeled flows was used for calibration

purposes (13):
2
GEr - | EV)
(E+V)/2

where E = model estimated volume and V = field count.

Calibration and validation were performed in three basic steps: (1) Compare bottleneck
queue lengths observed in the field and in the simulation, (2) compare field traffic counts to
volumes from the simulation, and (3) calibrate system performance to observed speeds and travel
times.

Figure 5 shows a comparison of observed counts to simulated volumes at Silverthorne,
EJMT West, Hermans Gulch, and Bakerville. When applying a stochastic model, it is not likely
that there will be exact volume matches, but the volumes should be relatively close. Figure 6
shows a comparison of observed to simulated speeds at these locations plus a few more where
speed data were also collected.

Calibration I-70 Eastbound Volumes
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FIGURE 5 Comparison of observed versus simulated EB volumes.
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Calibration 1-70 Eastbound Speeds
Data based on January 30,2011 RTMS
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FIGURE 6 Comparison of observed versus simulated EB speeds.
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presents VISSIM output as compared to the field data and the resulting GEH

statistic. GEH values less than 5 indicate a good fit, and the bottleneck location and queue length
were validated with field observations. It was also confirmed through VISSIM visual animation
that the traffic conditions of the model consistently coincided with field observations.

The January 30th incident was modeled in VISSIM by closing both lanes of the two-lane
EB for 30 min at MP 218.5 starting at 12:34 p.m. The queue length used to validate the model
was that the queue extended to Loveland Pass (about 1.0 mi) at 12:52 p.m. as observed in the
EJMT staff report. The queue continued to build up to the EJMT west entrance at 1:03 p.m.

After the model was calibrated and validated using the actual data, the CFM was then
applied. For the traditional metering on January 30, 2011, the average hourly travel time for the
entire 16-mi analysis section from Silverthone to Bakerville exceeded 3 h at 4:00 p.m.
compares the overall weighted average travel times and the total person-hours of travel time
saved for both scenarios. Comparing the simulated queue lengths, the maximum queue length
extended 7 mi using traditional metering but only 6 mi when CFM was modeled.

TABLE 2 GEH Speed Calibration Statistic

LOCATION Description 11AM 12AM 1PM 2PM 3PM 4PM SPM 6PM 7PM 8PM 9PM
Observed Points Data (V) 72.80 68.10 72.60 72.40 19.98 69.70 70.40 65.90 72.40 68.20 69.00

SILVERTHORNE VISSIM Output (E) 71.20 69.90 70.90 70.60 28.70 64.70 71.80 67.50 70.20 69.80 68.60
GEH 0.19 0.22 0.20 0.21 1.77 0.61 0.17 0.20 0.26 0.19 0.05

Observed Points Data (V) 69.81 69.82 68.90 16.54 11.43 15.07 15.63 38.78 69.94 69.93 69.35

LOWER RUNAWAY VISSIM Output (E) 64.20 63.10 60.50 12.30 15.80 9.90 9.10 64.60 65.90 65.80 64.60
GEH 0.69 0.82 1.04 1.12 1.18 1.46 1.86 3.59 045 0.50 0.58

Observed Points Data (V) 59.43 69.15 24.02 042 0.83 2271 2229 21.66 37.11 57.95 57.58

UPPER RUNAWAY VISSIM Qutput (E) 58.20 56.10 18.40 9.60 10.60 7.80 11.10 34.40 56.30 56.30 54.10
GEH 1.41 1.65 1.22 4.10 4.09 3.82 2.74 241 2.81 0.22 0.47

Observed Points Data (V) 54.88 51.00 7.10 7.00 8.50 15.60 20.30 34.63 55.42 58.10 58.09

EIMT WEST VISSIM Output (E) 53.80 45.60 14.60 15.10 15.50 13.40 15.80 33.90 53.40 54.80 52.20
GEH 0.15 0.78 2.28 244 2.02 0.58 1.06 0.12 0.27 0.44 0.79

Observed Points Data (V) 72.30 50.30 16.80 43.50 58.90 37.80 43.60 51.30 72.80 72.50 71.20

HERMANS GULCH VISSIM Output (E) 77.85 51.21 091 27.70 43.59 55.67 54.56 52.58 77.75 7817 69.08
GEH 0.64 013 5.34 2.65 2.14 2.61 156 0.18 057 0.65 0.25

Observed Points Data (V) 50.02 50.42 53.15 54.04 53.98 57.79 42.20 5179 50.81 53.12 55.03

BAKERVILLE VISSIM Qutput (E) 64.40 69.10 69.40 45.50 60.60 59.90 31.80 63.80 63.90 62.90 59.00
GEH 1.90 242 2.08 1.21 0.87 0.28 1.71 1.58 1.73 1.28 0.53

TABLE 3 Overall Weighted Average Travel Times

. Average EB Travel Time Person-Hours of Travel
No. Scenarios . .
(min) Time Saved
1. | Traditional metering 80.4 —
2. | CFM 72.2 759.0
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CONTINUOUS FLOW METERING ON FEBRUARY 24, 2013

CFM was implemented during heavy traffic conditions on Sunday, February 24, 2013; it started
at 11:50 a.m. and ended at 6:05 p.m. Over the course of 6 h, the CFM timing as implemented in
the field was simulated using Plan 5 for a total of 24 min, Plan 6 for a total of 334 min, and Plan
7 for a total of 17 min. The traditional metering scheme was simulated for nine separate periods
shows the CFM and

to replicate similar conditions when CFM was implemented.

traditional metering schedules modeled.

ANALYSIS OF SIMULATION RESULTS

Three measure of effectiveness (MOEs) were selected to compare the traditional metering to
CFM. These include total average travel time through the 16-mi study area (from Silverthorne to
Bakerville), the total person hours of travel time, and the queue lengths west of the EJMT.

, the simulation model estimated a total average travel time of 84
min using traditional metering on January 30, 2011, while the proposed CFM metering would
have resulted in a total average travel time of 76 min for same this day. The simulation resulted
in a total average travel time of 62 min using CFM on February 24, 2013, while traditional the
metering was estimated to result in a total average travel time of 72 min for this same day.

As shown in

TABLE 4 CFM and Traditional Metering Schedules

CFM Traditional Metering
) ) 2-s green time and 2-s red time ) ) 20-min full stop and
11:50 a.m.—12:53 p.m. (Plan 6) for 63 min 11:50 a.m.—12:55 p.m. 45-min release traffic
2-s green time and 1-s red time 15-min full stop and
12:53-1:10 p.m. (Plan 7) for 17 min 12:55-1:40 p.m. 30-min release traffic
2-s green time and 2-s red time 10-min full stop and
1:10-1:58 p.m. (Plan 6) for 48 min 1:40-2:20 p.m. 30-min release traffic
2-s green time and 4-s red time 10-min full stop and
1:58-2:16 p.m. (Plan 5) for 18 min 2:20-3:00 p.m. 30-min release traffic
2-s green time and 2-s red time 7-min full stop and
2:16-3:01 p.m. (Plan 6) for 45 min 3:00-3:27 p.m. 20-min release traffic
2-s green time and 4-s red time 7-min full stop and
3:01-3:07 p.m. (Plan 5) for 6 min 3:27-3:54 p.m. 20-min release traffic
2-s green time and 2-s red time 5-min full stop and
3:07-6:05 p.m. (Plan 6) for 178 min 3:54-4:19 p.m. 20-min release traffic
5-min full stop and
4:19-4:44 p.m. 20-min release traffic
5-min full stop and
4:44-5:09 p.m. 20-min release traffic
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SUMMARY TOTAL WEIGHTED AVERAGE TRAVEL TIMES FROM 11 AM TO & PM
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FIGURE 7 Summary weighted average travel times.

As shown in , the simulation model estimated that CFM would have saved 855
person-hours of travel time on January 30, 2011, with an even greater savings of 1,134 person-
hours on February 24, 2013. These person-hours of travel time assume an average vehicle
occupancy of 2.6 persons per vehicle.

shows an hourly comparison of estimated travel times for the full 16-mi segment
from Silverthorne to Bakerville over the 9-h study period. With traditional metering, travel times
ranged significantly from 14 min early in the day to a high of 177 min (about 3 h) for vehicles
entering this segment during the hour starting at 4:00 p.m. The maximum travel time with the
CFM strategy was only 120 min, which is nearly a full hour less for travelers during this hour.
Maximum travel times on February 24, 2013, were estimated to have been reached at
approximately 3:30 p.m.; these were 108 min using the CFM strategy and 125 min if traditional
metering were used.

The third MOE examined was the maximum queue length reached on the west side of the
tunnel before the metering location and propagating down the hill toward Silverthorne. It’s
important to reduce this queue to maintain safety and reduce fuel consumption in addition to
travel time. As shown in , significant queues developed between 1:00 and 6:00 p.m. as a
result of using traditional metering in the simulation model, as is observed in the field.
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TABLE 5 Person-Hours of Travel Time (TT) Saved

245

Date Scenarios TT (h) of all 16-mi Person- Person-Hours
Trips (EB) Hours of TT Saved
Traditional meteri —
January 30,2011 raditional metering 3,368 8.757
CFM 3,039 7,902 855
Traditional meteri —
February 24, 2013 raditional metering 2,460 6.396
Ll 2,896 7,530 1,134

|- 70 Eisenhower-Johnson Memorial Tunnel (EJMT) Hourly Travel Times
from Silverthorne to Bakerville EB (16 Miles)
January 30, 2011

180

160 e LS

140

Travel Times (Minutes)
S
8

80

60

40

20

11-12PM 12-1PM 1-2PM 2-3PM 3-4PM 4-5PM 5-6PM 6-7PM 7-8PM
Time
= === Traditional Metering = Continuous Flow Metering

Travel Times (Minutes)

I- 70 Eisenhower-Johnson Memorial Tunnel (EJMT) Hourly Travel Times
from Silverthorne to Bakerville EB (16 Miles)
February 24, 2013

g

=
@
S

g

B
s

-
(=)
)

g

@
S

11-12PM 12-1PM 1-2PM 2-3PM 3-4PM 4-5PM 5-6PM 6-7PM 7-8PM
Time

nngyens Traditional Metering Continucus Flow Metering

FIGURE 8 Hourly TT before and after implementation.

Copyright National Academy of Sciences. All rights reserved.



http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

246 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory

MAXIMUM QUEUE LENGTH FROM EJMT TO SILVERTHORNE

100 Meteringon r Metering on
January 30, 2011 February 24, 2013
9.0
9.0 88
go 81
8.0
7.4 7.4 73 75
7.0 7.0

7_0 4 4
- 6.0
g 6.0 59 59 59
s 5.6
—_— 53 53
L
S
2 so a7
]
-
% 4.0 4.0

4.0 - | I
3
o

33

3.0

20 16

10 06 o7 06

0.4 03
0.0
0.0 S\ s | B ||| Do s e | BRI\ P st | S
Traditional Metering Continuous Flow Metering Traditional Metering Continuous Flow Metering
Scenarios

11-12PM 12-1PM 1-2PM 2-3PM 3-4PM 4-5PM 5-6PM

FIGURE 9 Maximum queue lengths.

The queue was estimated to reach a maximum length of 9 mi on January 30, 2011,
between 3:00 and 4:00 p.m. with traditional metering, but only 7.5 mi with CFM. The queue was
estimated to reach a maximum length of 8.1 mi on February 24, 2013, if traditional metering
were used, but only 6.0 mi with CFM. These estimates indicate that the longest queues to
develop west of the EIMT are consistently shorter with CFM than with traditional metering.

CONCLUSIONS AND LESSONS LEARNED

Simulation can be a very powerful tool for comparing alternative traffic operation plans. Of
course, the simulation model requires careful construction and calibration to existing conditions
regarding roadway characteristics, vehicle types, driver types, allowable travel speeds, lane
changing preferences, and time-of-day variations in entering and exiting traffic volumes. There
are many lessons to be learned in the process of developing and implementing a simulation
model for a real-world application.

Despite the difficulty of proper model specification, once validated to observed data, the
model can serve as a very useful tool for comparison purposes. While its estimates may be high
or low when compared to observed data, depending on the application, the same model applied
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to the same travel demand subject to operational differences can produce relatively dependable
metrics for evaluation.

The objective of this study was specifically to compare the effectiveness of traditional
metering versus CFM in serving traffic through a section of I-70 in Colorado that includes the
EJMT. The simulation results indicate that the implementation of CFM on Sunday, February 24,
2013, improved traffic
operations in all aspects evaluated as compared to traditional metering. The following
performance measures resulting from the simulation model were better for CFM as compared to
traditional metering:

e The average TT was reduced by 11 min, a 15% decrease.

e The highest hourly TT was reduced by 17 min, a 14% decrease.

e The average speed was increased by 22 mph, a 41% increase.

e Person-hours traveled was reduced by 1,134 h, a 15% decrease.

e The maximum queue length west of the EJMT was reduced by 2.1 mi, a 26%
decrease.

CFM showed similar improvements for these MOEs when the travel demands of Sunday,
January 30, 2011, were simulated, a day when traditional metering was in effect. Other lessons
were learned in actual field implementation and monitoring of CFM at this site:

e Utilization of lanes 1 and 4, then lanes 2 and 3 worked better and minimized driver
confusion based on the field observations. Heavy vehicles generally stay in the right lane (lane 3).

e [t is necessary to estimate the capacity of the tunnel before implementing CFM, to
ensure the volume of vehicles allowed to enter the tunnel does not exceed capacity.

e ATR is needed to measure volumes in the tunnel to verify the volume flowing past
the metering location. RTMS and field observations are needed to monitor the queue length
upstream of the metering location. TT runs are needed for actual TTs.

e Using the real-time traveler information or variable message sign (VMS) upstream of
the metering area helped the drivers when metering was in effect. The two VMS messages that
read “TUNNEL METERING AHEAD” and “USE ALL FOUR LANES” were used.

e The signal heads for CFM include a downward green arrow, a solid yellow one, and a
solid red one. The large combined flip signs “STOP HERE ON RED” with a diagonal downward
arrow and “1 VEHICLE PER GREEN IN EACH LANE” are placed to guide the driver when
metering is in effect.

Further research is needed to analyze CFM using different microscopic simulation
software (e.g., TransModeler or AIMSUN) in different settings with different volumes.
Although this high altitude crossing of the Continental Divide is unique to Colorado, the
usefulness of CFM in other settings is expected.
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eatured in this pilot experimental study is the construction and design of an instrumented

vehicle that is able to capture vehicle trajectory data with an extremely high level of
accuracy and time resolution. Once constructed and properly instrumented, the various data
collection systems were integrated with one another, and a driving experiment was conducted on
Northern Virginia roadways with 18 participants taking part in the study. Trajectory data were
collected for each of the drivers as they traversed a predefined loop of four roadway segments
with varying number of lanes as well as shoulder widths. Data collected from the experiment
were then used to calibrate the parameters of the prospect theory car-following model using a
genetic algorithm calibration procedure. Once all model parameters were successfully calibrated,
significance testing was carried out to determine the impacts that the varying roadway
infrastructure had on driving behavior. Results indicated that there were significant changes in
behavior when comparing one-lane roadways to their two-lane counterparts, specifically in cases
where the roadway featured a wide shoulder. Additional testing was conducted to ensure that
there was no variation based on gender as nine study participants were female and nine were
male. The successfulness of this first study conducted using the newly constructed instrumented
vehicle creates the opportunity for a variety of additional studies to be conducted in the future.

INTRODUCTION

Roadway infrastructure impacts driving behavior which, in turn, has significant implications
when analyzing vehicle-to-vehicle interactions and assessing macroscopic transportation network
performance. The main question of interest is: How does the road-surrounding environment
affect the aggressive (risk attitudes) driving behavior from a traffic flow theory perspective? In
order to address this question, the objective of this research is to conduct a real-world driving
experiment featuring a vehicle instrumented to collect trajectory, location, and vehicle diagnostic
data. Data from this experiment are then used to explicitly formulate the structure of the
relationship between various car-following model parameters and one of the geometric features
(shoulder width/median type) shown to be significant in previous studies (/).

Motivation and Contribution

Various methods of vehicle instrumentation have been used over the past 40 years in an effort to
gain additional insights into the factors that contribute to decreased safety on roadways (2). If
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total collisions are considered a surrogate measure for safety, the motivation for the examination
of the different factors leading to unsafe driving conditions is highlighted by the 5,615,000
collisions that occurred on United States roadways in 2012 (an increase from the three previous
years) (3). Additionally, these collisions resulted in 33,561 fatalities (an increase from the
previous two years), and when considering vehicles miles traveled (VMT) as a measure of
congestion the problem is exacerbated as the total VMT in 2012 was 2.969 billion, producing a
fatality rate of 1.13 fatalities per 100 million VMT (both the total VMT and the fatality rate have
increased over the past two years) (3). What becomes clear is that in the past couple of years
roadways are trending in a direction that is both less safe and increasingly congested.

Objectives

As stated above, the main objective of this study is to understand the impact that changes in
roadway geometry have on driving behavior from a traffic flow theory perspective. In order to
develop this understanding, the specific objectives of this study are as follows:

e Construct an instrumented vehicle such that trajectory and headway data can be
collected at a high time resolution and subsequently synced together.

e Design a real-world driving experiment using the instrumented vehicle on roadway
segments with varying geometric characteristics.

e (alibrate the parameters of the prospect theory model using the data gathered from
the driving experiment.

e Determine the effects that specific roadway geometric characteristics have on
driving behavior through statistical analysis of calibrated model parameters.

BACKGROUND

While data driven approaches (predominately focused around the modelling and evaluation of
collision data) are commonplace in the transportation research community, new and affordable
technologies have led to advancements in the collection of real-time driving data. The
quantification of driving behavior in real-time is an important advancement in the assessment of
roadway safety, allowing for new insights through a variety of different methodologies and their
subsequent applications. Three main approaches are used for the collection of real-time data:
driver simulators, naturalistic studies, and instrumented vehicles, all of which have an associated
set of pros and cons.

Driver simulators have been used extensively in a wide range of applications including
(but not limited to) assessment of driver distraction (4), the performance of active safety and
information systems (5), and the evaluation of impaired drivers (6) as well as those with certain
medical conditions (7). Driver simulators are particularly useful as they allow for simulated
driving experiences to be conducted in a safe and controlled environment where various
scenarios (including complicated and high-risk environments) can be created and held constant
for all participants in a given study (8). However, the obvious drawback to these studies is that
they do not take place on actual roadways and are unable to capture the natural interactions that
occur between drivers in the real-world environment (9). As such, on-road data collection
methods such as naturalistic studies and instrumented vehicles are becoming increasingly
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popular in order to better understand road safety crash risks and risk factors (2).

Naturalistic approaches use unobtrusive methods (typically in participants’ own vehicles)
to collect data in real traffic conditions (2). Again, the applications naturalistic studies are vast,
including (but not limited to) examination of risks to heavy vehicle operators through the use of
data acquisition systems, internal and external cameras, and daily activity registers (/0);
assessment of heavy vehicle operator response to a forward collision warning system through the
use of gaze monitoring and brake pedal position (/7); examination of older driver engagement in
secondary activities at intersections through the use of a video camera system as well as a vehicle
diagnostic logging system (/2); and the analysis of rapid deceleration events for older drivers
through the use of a custom driver monitor system that featured a two-axis accelerometer (/3).
Naturalistic studies allow for the collection of large amounts of data (both in terms of the number
of participants and the number of trips made) over an extended period of time. Furthermore, the
instruments used to collect data are unobtrusive (/4), and these types of studies do not require a
researcher to be present in the vehicle during data collection. The collection of this baseline data
is intended to reflect normal driving (9). However, practical and analytical challenges are
commonplace in naturalistic studies as datasets are large and complicated, often requiring the
processing of hundreds or even thousands of hours of vehicle-based and video data (2).
Additionally, since no variables are controlled by the researcher, causal conclusions cannot be
drawn from naturalistic driving studies (9).

Similar to naturalistic studies, field operational tests (FOT) are long-range studies and
again involve some sort of instrumentation. In these studies objective data on situation and
behavior are collected through an automated process, and subjective data are usually collected
manually or electronically (9). In addition to these naturalistic studies, field operational tests and
driver simulator experiments, controlled on-road studies involving instrumented vehicles offer
opportunities for unique data collection through the use of multiple methods (2). These controlled
on-road studies are defined by their reliance on a pre-defined route in order to determine
differences in performance and behavior under varying driving conditions (9). Furthermore, from a
behavior perspective, field studies using instrumented vehicles are frequently regarded as the
ultimate validation stage for assessing behavioral models, safety measures, and improved road
infrastructure design (/5). Still, the potential drawbacks of these controlled on-road studies must be
mentioned, as the studies do not collect data over a long time period (2), and they require a
researcher to be present in the vehicle (potentially impacting the driver’s behavior) (2, 9). With that
being said, these types of studies are well suited to address research questions that are independent
of exposure and that use independent factors that are stable over shorter periods of time (such as
age and personality) and are excellent tools in the early stages of system development and FOT
design [one example of this being a situation where drivers’ headway is affected, and thus the need
for additional sensors (such as lidar sensors) is required] (9). Examples of studies using this type of
instrumented vehicle data collection include examination of the number and nature of errors
committed by drivers in distracted and undistracted states (4), analysis of the situational awareness
of both novice and experienced drivers at rail crossings (/6), and evaluation of an intersection
violation warning prototype (/7). In addition, instrumented vehicles have been used in driver
training through the benchmarking of experienced drivers (Underwood, 2013).

In addition to the behavioral applications mentioned above, driver simulators, field studies,
and instrumented vehicles can allow for collection of trajectory data in order to assess and calibrate
car-following models. Car-following models describe the behavior of the following vehicle as a
function of the lead vehicle’s trajectory, allowing for estimation or prediction of the following
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vehicles’ trajectory in response to the actions of the lead vehicle (/8). Driver simulator experiments
have been conducted to evaluate car-following behavior under normal and evacuation scenarios (79),
and field tests have been conducted using loop detector data to determine distance gaps under
different congestion regimes (20). While these types of studies are most certainly useful in
understanding car-following behavior, instrumented vehicles allow for more detailed data collection
and thus have been used frequently in data collection and calibration efforts (/8).

Examples of instrumented vehicles being used for data collection and the assessment of
driver behavior variability in car-following include two studies by Brackstone et al. (21, 22), where
headways for drivers following the instrumented vehicle were recorded in the first study and then
the research was extended (in the second study) to study the factors that influence the decision-
making process of car-following. While the drivers in Brackstone’s studies knew they were part of
an experiment, Kim et al. (23) used an instrumented vehicle equipped with an infrared sensor, a
differential GPS (DGPS) inertial distance measuring instrument, a vehicle computer, and a digital
video camera to measure the position, speed, and acceleration (as well as demographic information
collected from the video recordings) of the following vehicles, who were unaware that they were
being monitored as part of the study. In an effort to quantify driver reaction times, Ma and
Andreasson (24) equipped a vehicle developed by Volvo Technologies with a GPS system, an
onboard computer, two lidar sensors (facing front and rear), as well as cameras corresponding to
the sensors. The study was conducted on Stockholm roadways and the follow-the-leader behaviors
of random vehicles behind the instrumented vehicle were observed.

Once data from instrumented vehicles are collected, the next step in evaluating car-
following models is the calibration stage. One such study was conducted by Panwai and Dia (25),
who evaluated AIMSUN, PARAMICS, and VISSIM models using instrumented vehicle data
collected in Stuttgart, Germany. In this case, the instrumented vehicle was equipped with radars to
record the differences in speed and headway between the instrumented vehicle and the vehicle
immediately in front of it (26). Similarly, Punzo and Simonelli (27) examined Newell’s model, the
Gipps model, an intelligent driver model, and the MITSIM model through the use of trajectory data
recorded from four instrumented vehicles. Here, the four vehicles were all instrumented with GPS
devices and Global Navigation Satellite System receivers (GLONASS) to record vehicle spacing
data and drove in a platoon on urban and “Sextraurban” roadways in Naples, Italy (28). One final
example of a study focused around car-following model calibration using data from instrumented
vehicles was conducted by Soria et al. (/8). Here, a Honda Pilot SUV was equipped with four
wide-coverage digital cameras, a Honeywell Mobil Digital Recorder, a GPS system, and a laptop
to record geographical position, speed, spacing, left-right turn signal activation, video clips, and
audio recordings. The instrumented vehicle was positioned as the follower, and only the front
camera was used to determine the spacing between the leader and the follower (/8). The authors
then used the data obtained from the instrumented vehicle to calibrate the Gipps model, the Pitt
model, the MITSIM model, and the Modified Pitt model.

RESEARCH METHODOLOGY
Vehicle Instrumentation

The instrumented vehicle used for data collection in this experiment is comprised of three
systems working in unison: a lidar system, a DGPS system, and an OBD (on-board diagnostics)
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monitoring system. Data from all three systems are received by an in-vehicle laptop, which
generates a local timestamp for synchronization purposes. A schematic for the vehicle

instrumentation (overlaid on a laser scan of the actual vehicle) is provided in

lists the various components.

Experimental Set-Up

The driving experiment in this study allows for observation of moment-by-moment local
interactions among drivers, and measures drivers’ preferred traffic measures with known

253

attributes (gender, age, and attitude). Furthermore, experimental set-up involves testing one of

the exogenous geometric factors shown to impact safety. For this pilot study, the authors have

FIGURE 1 Vehicle instrumentation.

TABLE 1 Vehicle Instrumentation Key

Number Instrument Name Data Collected
1 Lidar sensors (2) Trajectory data

2 DGPS antenna Vehicle position data

3 External computing unit

4 Sync box

5 Ethernet switch

6 DGPS receiver Vehicle position data

7 Power box

8 Laptop

9 On-board diagnostics logger Vehicle diagnostic data
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selected shoulder width/number of lanes as the test variables and a driving experiment was
conducted in an interrupted flow scenario. Figure 2 displays a GoogleEarth image of the
Northern Virginia roadway segments selected for this experiment were generated by the
differential GPS data recorded during experimentation. The black line in the figure is the actual
DGPS path travelled by a study participant, and the base stations zdc11910 and lwx11910 (used
to increase the accuracy of the DGPS recordings) are seen in the top left and bottom center of the
figure. Additionally, each of the four segments is highlighted in the figure, where the red lines
mark the start and/or end point of a segment. Segment one is a two-lane roadway with a wide
shoulder, Segment two is a one-lane roadway with a wide shoulder, Segment three is a two-lane
roadway with a narrow shoulder, and Segment four is a one-lane roadway with a narrow
shoulder. For the experiment, 18 drivers (nine males and nine females between the ages of 20
and 33) drove the instrumented vehicle through all four roadway segments. Drivers were instructed
to behave as they would normally, with the exception that they were not permitted to pass the lead
vehicle at any point during the test run. The lead vehicle was operated by an author of this study
and speed was varied (=7 mph from the posted speed limit) on as consistent of a basis as possible
(given the surrounding traffic conditions), at the same locations throughout each of the four
segments.

i | o
“S2dc 111910, %@

(Image from GoogleEarth. Accessed July 23, 2014.)
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Modeling and Calibration

Drivers evaluate their acceleration choice options based on the resulting potential gains and
losses. Prospect theory (29) has been used to model this decision-making process (30). Here,
drivers frame the stimulus where different utilities are assigned to different acceleration choices
considering different weights for gains and losses and then edit the choices based on a prospect
index calculated in the same way as expected utility are calculated. The prospect theory value
function is formulated as follows:

[wm+(1—wm)(tanh(2—”)+1]
Upr(ay) = . [

2

14
(c) ]
14(m’

aop
where Upr is the acceleration value function, a; is the normalization parameter, y > 0 is a
sensitivity exponent indicating how sensitive a driver is toward gains or losses in travel times
(i.e., speeds), and w,, is the relative weight of losses compared to the gains. Here, a driver
choosing a,, as his or her desired acceleration will gain Upr unless he or she is involved in a rear-
end collision. Furthermore, a crash seriousness term k(v, Av) is used to calculate the disutility
resulting from a crash as follows:

U(an) = (1-pni)Upr(an) — pniwek(v, Av) 2)

where p,;is the subjective probability of being involving in a crash at the end of a car-following
duration; p, ;is approximated by a normal distribution given that drivers are assumed to estimate
the future speed v, _1(t+ Af) of vehicle n — 1 to be normally distributed with a mean equal to the
current speed v, 1(¢) and a standard deviation of a X v,-1(¢) (o is a velocity uncertainty
parameter); Upr(a,) is derived from Equation 1, and w, is a crash weighting function, which is
lower for drivers willing to take a higher risk.

Trajectory data recorded by the instrumented vehicle (velocity, acceleration and space
headway) at a resolution of 0.1 s is used to calibrate the model presented above. Since headway
data was not always recorded at the same time resolution as the vehicle motion data, values were
interpolated based on the change in vehicle velocity between recorded headway values.
Calibration was then performed on a segment by segment basis for each driver using a genetic
algorithm procedure. Following the genetic algorithm description of Hamdar and Mahmassani
(31):

1. A chromosome represents a parameter set of the prospect theory model discussed
above and a population consists of N4 such chromosomes.

2. In each chromosome generation, the fitness of each chromosome is determined via
an objective function.

3. All pairs of chromosomes are extensively generated from the current population and
recombined to generate new chromosomes.

4. The crossover point where two chromosomes are combined is randomly selected.

5. Excluding the chromosome with the best fitness score, all genes (model parameters)
are mutated (random variation) based on a given probability. The newly generated
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chromosomes are then used in the next iteration.

6. Initially, a fixed number of generations are evaluated. The evolution is then
terminated when the best-of-generation score converges from one iteration to another for a
given number of generations.

RESULTS AND DISCUSSION
Calibration Results and Significance Testing

displays the descriptive statistics for the calibration results. This includes the average
and standard deviation values for the calibration parameter, velocity and space and time
headways for each segment. Additionally, these descriptive statistics are provided for geometric
characteristics (number of lanes and shoulder width) and gender in , %4, and 5,
respectively.

In order to interpret the statistical significance of the change in calibration parameters
based on number of lanes, shoulder width, and gender, multiple MANOVA tests were conducted
(using the SAS software). Results of the MANOVA test indicate whether or not one can reject
the null hypothesis, the null hypothesis being that a certain exogenous characteristic has no
statistically significant effect on the change in calibration parameters. For statistical significance
and the rejection of the null hypothesis, the p-value must be less than 0.05. displays the
MANOVA results for the effects of number of lanes, shoulder width, and gender on the
calibration parameters. In addition, the effect of changing segments is included at the top of this
table to demonstrate that the null hypothesis can be rejected for the change in segments. If the
null hypothesis could not be rejected for the changing segments as a whole, then there would be
no statistical significance of the calibration results for this study.

From the table, it is clear that a change in the number of lanes has the most statistically
significant effect on the change in the calibration parameters. With this in mind, the data set was
separated based on shoulder width, and a MANOVA test was again conducted for the number of
lanes. These results are displayed in

Here it is clear that the null hypothesis cannot be rejected when considering a change in
the number of lanes on roadways with narrow shoulders, but it can be rejected for a change in the
number of lanes on roadways with wide shoulders.

Finally, to ensure that there was no statistically significant difference based on gender, a
final MANOVA test was carried out for each segment using gender as the dependent variable.
These results ( ) demonstrate that the null hypothesis cannot be rejected based on gender
for any of the segments.
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TABLE 2 Descriptive Statistics for All Segments

Vel. Space RT Vel.
Segment | Stat. (m/s) (m) |Head (s) U 04 Wh, W, T max o B Teorr (s) Error
1 Avg. | 15.18 | 33.03 2.21 5.97 0.73 3.66 89,833 | 5.26 0.21 6.33 17.83 0.63 0.173
Dev. 1.60 7.94 0.66 3.73 0.62 2.18 23,796 | 1.57 0.09 3.39 5.23 0.73 0.074

2 Avg. | 13.99 | 33.09 241 5.40 1.09 2.83 97,944 | 4.83 0.11 7.08 | 20.39 0.36 0.100
Dev. 1.07 | 13.12 1.14 4.90 0.72 1.98 16,913 | 2.07 0.06 2.81 4.02 0.36 0.056

3 Avg. | 1471 | 30.52 2.10 5.64 0.63 4.11 95,000 | 5.16 0.19 5.60 | 20.83 0.72 0.169
Dev. 1.14 6.99 0.55 4.50 0.46 2.24 25,752 | 091 0.06 2.90 4.59 0.53 0.072

4 Avg. | 15.70 | 29.69 1.90 4.27 0.71 3.94 100,778 | 5.67 0.13 6.63 | 20.22 0.62 0.137
Dev 1.50 7.46 0.48 391 0.58 2.46 19,283 | 1.72 0.06 3.03 3.81 0.47 0.059

TABLE 3 Descriptive Statistics for Number of Lanes

Vel. Space | Head RT Vel.

Lanes | Stat. (m/s) (m) (s) \Vj v Wh W, T max a B Teorr (s) Error

1 Avg. 14.84 | 3139 | 2.16 4.83 0.90 339 199361 | 5.25 0.12 6.86 20.31 0.49 0.119

2 Avg. 1495 | 3177 | 2.15 5.81 0.68 3.88 192417 | 5.21 0.20 5.96 19.33 0.68 0.171

TABLE 4 Descriptive Statistics for Shoulder Widths
Vel. Space | Head RT
Shoulder| Stat. (m/s) (m) (s) i Y Wh W, T max a B Teorr (s) [Vel. Error

Wide Avg. 14.58 33.06 2.31 5.68 0.91 325 [ 93,889 | 5.05 0.16 6.71 19.11 0.49 0.137

Narrow | Avg. 15.21 30.10 2.00 4.96 0.67 4.02 97,889 | 542 0.16 6.11 20.53 0.67 0.153

TABLE 5 Descriptive Statistics for Males and Females

Vel. Space | Head RT Vel.
Gender | Stat. (m/s) (m) (s) \Vj 04 W W, T max a B T eorr (s) Error
Female | Avg. 15.01 27.00 1.82 5.48 0.62 349 194,861 | 5.25 0.14 6.68 20.06 | 0.653 | 0.143
Male Avg. 14.78 36.16 249 5.16 0.96 3.78 196917 | 5.21 0.18 6.14 19.58 | 0.514 | 0.147

Ki0ayl Mmoj4 oujel] Jo sieaA 0G Buneigsed


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

258

Circular E-C197: Celebrating 50 Years of Traffic Flow Theory

TABLE 6 General MANOVA Testing

Segment

Statistic Value F-Value P-Value
Wilks’ Lambda 0.484 1.84 0.0106
Pillai’s Trace 0.615 1.78 0.0146
Hotelling-Lawley Trace 0.872 1.90 0.0094
Roy’s Greatest Root 0.571 3.93 0.0005

Shoulder Width

Statistic Value F-Value P-Value
Wilks’ Lambda 0.784 1.90 0.0684
Pillai’s Trace 0.216 1.90 0.0684
Hotelling-Lawley Trace 0.276 1.90 0.0684
Roy’s Greatest Root 0.276 1.90 0.0684

Lanes

Statistic Value F-Value P-Value
Wilks” Lambda 0.688 3.13 0.0036
Pillai’s Trace 0.312 3.13 0.0036
Hotelling-Lawley Trace 0.454 3.13 0.0036
Roy’s Greatest Root 0.454 3.13 0.0036

Gender

Statistic Value F-Value P-Value
Wilks’ Lambda 0.787 1.86 0.0745
Pillai’s Trace 0.213 1.86 0.0745
Hotelling-Lawley Trace 0.271 1.86 0.0745
Roy’s Greatest Root 0.271 1.86 0.0745

TABLE 7 MANOVA Testing for Changing Number of

Lanes Based on Shoulder Width

No Shoulder—Changing Lanes

Statistic Value F-Value P-Value
Wilks’ Lambda 0.717 1.14 0.3704
Pillai’s Trace 0.283 1.14 0.3704
Hotelling-Lawley Trace 0.395 1.14 0.3704
Roy’s Greatest Root 0.395 1.14 0.3704

Wide Shoulder—Changing Lanes

Statistic Value F-Value P-Value
Wilks’ Lambda 0.555 2.31 0.0458
Pillai’s Trace 0.445 2.31 0.0458
Hotelling-Lawley Trace 0.801 2.31 0.0458
Roy’s Greatest Root 0.801 2.31 0.0458
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Segment 1-Gender
Statistic Value F-Value P-Value
Wilks’ Lambda 0.364 1.56 0.2725
Pillai’s Trace 0.636 1.56 0.2725
Hotelling-Lawley Trace 1.749 1.56 0.2725
Roy’s Greatest Root 1.749 1.56 0.2725
Segment 2—Gender
Statistic Value F-Value P-Value
Wilks’ Lambda 0.235 2.90 0.0745
Pillai’s Trace 0.765 2.90 0.0745
Hotelling-Lawley Trace 3.258 2.90 0.0745
Roy’s Greatest Root 3.258 2.90 0.0745
Segment 3—Gender
Statistic Value F-Value P-Value
Wilks’ Lambda 0.372 1.50 0.2895
Pillai’s Trace 0.628 1.50 0.2895
Hotelling-Lawley Trace 1.687 1.50 0.2895
Roy’s Greatest Root 1.687 1.50 0.2895
Segment 4-Gender
Statistic Value F-Value P-Value
Wilks’ Lambda 0.466 1.02 0.4940
Pillai’s Trace 0.534 1.02 0.4940
Hotelling-Lawley Trace 1.148 1.02 0.4940
Roy’s Greatest Root 1.148 1.02 0.4940

Discussion of Results and Parameter Explanation

Based on the significance testing conducted above, results from this pilot experimental study
indicate that drivers change their behavior significantly on roadways with wide shoulders when
there are a varying number of lanes. With this in mind it is important to interpret the parameter
values from segments one and two (displayed above in Table 2). Interpretation of the changes in
the calibration parameters between these two segments requires an explanation of the “physical
meaning” for each of the parameters individually. Beginning with the gamma parameter (y), this
can be thought of as a driver’s sensitivity to perceived gains and losses. That is if the value
function of the Prospect Theory model generally has the form seen in , Increasing gamma
would be indicative of an increase in the amplitude of the curve derived from Equation 1.

Further, the parameter w,, represents the relative weight a driver puts on losses as compared
to gains. Increases in this parameter are indicative of a driver who is valuing potential risks more
than that of potential gains (i.e., becoming more risk adverse). Increasing the alpha parameter is
indicative of a driver being more uncertain of the leader vehicle’s velocity, and the beta parameter
can be thought of as the drivers’ sensitivity to the surrounding environment. Increasing the beta
parameter could be indicative of a number of things, including a more experienced driver or one
that has become impatient. The 71, parameter can be thought of as the anticipation of the driver,
as increasing values indicate a driver that is thinking multiple steps ahead, and decreasing values
indicate a driver who has a myopic view and is thinking about what is occurring in the moment.
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FIGURE 3 Prospect Theory value function (31).

Looking at the changes in average calibrated values for these parameters between
segments one and two it appears that the one-lane segment (segment two) features higher values
for beta and gamma and lower values for alpha, Ty, and w,,. The combined effects of increased
gamma and decreased w,, demonstrate that not only are the drivers putting less weight on
perceived losses but also increasing their sensitivity to their perceived gains and losses. This
result is further explained by an increase in the beta parameter, which in combination with the
effects discussed above seems to indicate that drivers became increasingly impatient during this
segment of the experiment. Reaffirming this notion is the decrease in the value for Tpn,x, which
demonstrates that drivers are thinking more in the moment rather than anticipating what
maneuvers they may make in the future (which seems to indicate a growing level of frustration).
Finally, the largest percentage decrease in any parameter value is seen in that of alpha, indicating
that the driver is very certain of what the vehicle in front of them is doing, once again
reaffirming the notion that drivers became increasingly impatient and frustrated while traversing
this segment of the experiment.

In addition to the driving environment discussed above, significance testing indicated that
drivers change their behavior when moving between one- and two-lane roadways in general. The
most significant changes in terms of the individual calibration parameters are seen in that of
alpha, beta, and gamma. Here it is once again observed that drivers on one-lane roadways are
much more certain of the lead vehicle’s velocity (decreased alpha), become increasingly
sensitive to their environment (or potentially increasingly impatient, increased beta), as well
becoming increasingly sensitive to perceived gains and losses (increased gamma, with a slight
decrease in the risk aversion parameter, wy,).

While the changes in calibration parameters were not statistically significant for shoulder
width or gender, it is interesting to observe that drivers had a higher average velocity, lower
space headway, and thus much lower time headway on roadways with narrow shoulders. That is,
when shoulder width narrowed drivers followed much more closely to the lead vehicle. The
same was true when comparing female drivers to male drivers, as female drivers had an average
time headway that was nearly 0.7 s less than their male counterparts. These changes in average
values were not observed when comparing one-lane to two-lane roadways, as the average
velocity, spacing, and time headway were almost identical in this case.
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CONCLUSIONS AND FUTURE WORK

This pilot experimental study featured the construction of an instrumented vehicle that was able
to successfully capture high time resolution trajectory data through the use of multiple
instruments working in unison. Furthermore, a driving experiment was successfully conducted
with 18 participants driving a predefined loop that featured four segments with varying number
of lanes and shoulder widths. Data collected from the driving experiment was then effectively
calibrated using a genetic algorithm calibration procedure. Finally, significance testing was
conducted on the calibrated parameters for the prospect theory value function, and results
indicated that there were significant changes in driver behavior for varying number of lanes,
specifically when the roadway featured a wide shoulder as opposed to a narrow one.

Research conducted in this study differentiated itself from that of previous studies not
only with the combination of instruments that were used but also in the accuracy and time
resolution of the data that were collected. Further differentiating this study from previous works,
the driving experiment that was conducted tested the differences in behavior based on changing
roadway geometry and then used the collected trajectory data to successfully calibrate the
parameters of the prospect theory car-following model.

Given that this was the pilot experimental study for the instrumented vehicle,
construction and data synchronization posed significant challenges that needed to be overcome
before the actual driving experiment could take place. With these major obstacles out of the way,
opportunity abounds for additional driving experiments to be conducted with a seemingly
limitless potential for different types of experimental set-ups. Furthermore, the vehicle used in
this study was constructed in such a manner that additional instruments can easily be integrated
in the vehicle and instrumentation design, once again opening the door for a wide variety of
future applications and testing.
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NETWORKWIDE MODELING AND CONTROL

Toward a Systematic Exploration of the Influence of Route Choices
on a Network Level of Performance
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Université de Lyon, France

he aim of this paper is to quantify the impact of local demand distribution on the global

network behavior, and, more precisely, to identify how route choices influence the level of
performance of a network. A mesoscopic traffic flow simulator is chosen as an experimental
platform to perform this analysis on an idealized urban center network. To simplify the
exploration, route choice alternatives are clustered in homogeneous groups with respect to the
percentage of overlapping. A large set of flow distributions among routes is evaluated, and
different scenarios are then simulated leading to two main results. First, the fluid/congested
boundary on the network is defined, and its sensitivity to parameters is evaluated. Then, route
choice effects on the network level of performance are quantified using the network macroscopic
fundamental diagram, which provides an aggregate vision of network behavior. Moreover,
spatial distributions of traffic conditions are also investigated because heterogeneities are a well-
known source of network underperformances.

INTRODUCTION

Dynamic modeling of large urban traffic networks is very challenging. Indeed, the complexity
results from the combined effects of the three components of an urban traffic network: supply,
demand, and traffic controls. The local supply is defined by the time-dependent capacity per link.
It can be modified by traffic controls and altered by some local events. The local demand
corresponds to incoming trips on a specific link. It dynamically results from the global demand
(trips from origins to destinations) and the route choice process. Congestion happens when the
local demand exceeds the local supply creating spatial and temporal heterogeneities at the
network level.

Recent works have exhibited from empirical data in downtown Yokohama (/) a well-
defined relation between space—mean flow and density. The existence of such a network
macroscopic fundamental diagram (NMFD) is really appealing because it provides a simple
indicator of a network level of performance. Indeed, for a given traffic state, the mean spatial
speed can be known giving access to travel time estimation. If the network is homogeneously
loaded, the NMFD shape will depend only on supply and traffic control. In this case, several
works have been conducted leading to analytical methods for NMFD estimation taken into
account for network topology and control settings (/—3). Moreover, for congested network
configurations, the NMFD allows quanitification of the deviation from theoretical capacity at a
network level. Therefore, it allows characterizing the decrease of performance of the network
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(capacity drop) caused by heterogeneities resulting either in uneven distribution of local demand
or supply.

Concerning the demand impact, originally, the NMFD was found not to be influenced by
the origin—destination (O-D) matrix and route choices (/). However, recent studies show that
networks with an uneven (in space) or inconsistent (in time) distribution of congestion may
exhibit traffic states that do not fill as a unimodal and well-defined curve. Changes seem only to
be significant when the network operates near its global maximum capacity. Moreover,
Geroliminis and Sun (4) show that spatial distribution of vehicle density within a reservoir
significantly influences the NMFD scattering and several studies (5—7) deal with the effects of
inhomogeneity of densities over a network. Recently, Knoop et al. (8) introduced the
Generalized Fundamental Diagram to take into account the spatial inhomogeneity of densities
that is considered as an input of the mathematical analysis. Moreover, further works on a simple
parallel network have highlighted how route choice distributions modify the NMFD shape (3). In
Mahmassani and Peeta (9), overall user cost and network performance under time-dependant
system optimum and user equilibrium assignment patterns are examined through numerical
experiments performed on a test network under various loading levels. All these works focus on
the influence of network traffic distribution on the network performance estimated from the
NMFD. However, few studies investigate the cause of heterogeneous network traffic states and
thus make the direct connection between the network loading (distribution of the demand) and
the network performance.

This paper will focus on the impact of local demand distributions on the network traffic
conditions in order to improve the description of heterogeneities resulting from the network
structure and the global demand profile. More precisely, the interest is in identifying how route
choices influence the level of performance of the network. The aim is then to establish a
methodology to characterize route choice impacts on the NMFD and on the global network
performance indicators. In order to better identify which component of route choices has the
larger impact, route selection will be studied apart from flow distribution. Since a fine meshed
network leads to a large number of potential route choices, a clustering method to reduce the
problem size by defining homogeneous sets of route selections with identical properties will be
proposed.

As route choices are difficult to observe in practice for dense urban networks and are thus
hard to capture, this paper follows a simulation-based approach to carry out the analysis. The
outline of the paper follows. In Section 2, the global framework of the study is presented,
detailing the network and the analysis designs. The proposed clustering method for route sets
generation is also presented. Then, Sections 3 and 4 are concerned with the results of the
simulations of different scenarios. The network level of performance is examined at different
scales using several indicators.

First, the fluid—congested boundary and its sensitivity to parameters are analysed.
Second, the impact of route choices is studied more in detail through the NMFD and the
potential exhibited capacity drop. Then, spatial heterogeneities are quantified using standard
deviation of macroscopic traffic conditions. Finally, Section 4 presents conclusions and an
outlook on further researches.
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NETWORK DESIGN AND ROUTE CHOICE MODELING

This study considers an idealized network mimicking an urban center. Heterogeneities are
studied both analytically and by simulation. The simulations are performed using the even-based
mesoscopic model proposed by Leclercq and Becarie (/0), which is fully consistent with the
Lighthill-Whitham-Richards (LWR) model (71, 12) at a macroscopic scale for a single-class
triangular fundamental diagram. Moreover, this model provides passing times for all vehicles at
all link boundaries so that vehicle trajectories within all links can be estimated. In order to
complete the analysis design, supply and demand are defined in the following.

Idealized Network Design and Supply Description

The network is represented by a lattice-like road network with 12 origins and 12 destinations.
Only north and west to south and east directions are considered to reduce the problem size. The
84 links of the network represent one-way road sections (see the flow directions represented by
arrows on Figure 1) while the 60 nodes represent intersections. Each road section i has the same
length /; = 300 m. The fundamental diagram parameters are a free-flow speed v = 50 km/h, a jam
density kjam = 200 veh/km, and a capacity C = 0.3676 veh/s. Intersections are controlled by two-
phase traffic signals with a fixed cycle equal to 1 mn, identical for green and red times with no
offset. Note that some symmetry properties are inherent to this network design. Moreover, the
network is not loaded at the beginning of simulations.

Demand Description and Route Choices Modeling
Global Demand

As described above, the studied network is composed of a set of 144 O-Ds, and for each O-D
pair a uniform distribution through destinations occurs. Two parameters are then introduced to
define the demand: the input flow Q;, and a € [0,1], which allows to increment the demand value
from QOj, to Oin(1 + Sa) along the origins links as plotted in . In order to ensure that the
origins links are not saturated, the following is imposed:

Ou(1 +50)< C (1)
where C is the link capacity.
Local Demand

The next step is the route choice description. It is well known that predicting which route

a given traveller would take when going from one origin to one destination is a key step in traffic
forecasting models. The route choice depends, on the one hand, on the attributes of the available
routes, such as travel time, number of traffic lights, and more. On the other hand, characteristics
and preferences of the traveller also influence the choice. All these aspects of the route choices
problem make it particularly complex, especially for large networks representing dense urban
areas. Usually, two approaches can be considered for route choices description. They can either
be provided by a model based on equilibrium principle (user equilibrium or system optimum) or

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

270 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory

by using an implicit/explicit expression for choices as for dynamic traffic assignment models.
Reviews of route choice models are available in the literature in Bovy and Stern (/3), in Ben-
Akiva and Bierlaire (/4) for discrete choice methods, and in Szeto and Wong (/5) for traffic
assignment. This paper will not question the equilibrium principle or traffic assignment models
but instead define a framework to estimate the impact of a high variety of potential choices.
Thus, a two-step process will define route choices: 1. paths selection and 2. flow distribution
over paths.

A total of 3,430 potential paths are available to link the set of 144 O-Ds composing the
studied network; some of them are explicitly represented in Figure 1. First note that resulting
from network design assumptions, all these paths have the same length. As a consequence, the
free-flow travel time is identical for all paths so that they can be clustered according to the level
of overlapping. Moreover, in simulations, routes are assigned to vehicles once they enter the
network.

Step 1: Clustering Method for Paths Description

A crucial property when considering the route set is the correlation between the different
alternatives. Several models have been proposed to take this component into account: Cascetta et
al. (16) for the C-logit model, Ben-Akiva and Bierlaire (/4) for the path-size logit (PSL) model,
and Vovsha and Bekhor (/7) for the link-nested logit model. In this study, the route set definition
was derived from the C-logit model. This model explicitly addresses the correlation among
alternatives (like the two available routes from Og to Dg in Figure 1). The basic idea is to treat the
interdependency of the routes through a commonality factor. Thus, highly overlapped paths have
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FIGURE 1 Simulations are performed with an urban center represented by a lattice-like
unidirectional road network. The arrows represent flow directions.
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a larger factor and therefore smaller utility with respect to similar paths. For each alternative path
pr of a given O-D pair, the common factor CFj is proportional to the degree of overlapping of
path p; with other alternative paths. It is computed as follows:

Y
CF =Bln Yy (L—> )

2,2
LlLk

where Ly is the length of sections shared by paths / and &, while L; and L; are the length of paths /
and k, respectively. Note CF} that defines the proximity of alternatives independently of the flux
on each road, which is appealing to study fluid—congested boundary dissociating the two states.
In this work, it is assumed that B = 1 =y and computed CF}, for each path k of a given O-D pair.
shows the results for two distinct O-D pairs. In order to develop a clustering method for
route set generation, it was decided to target five clusters of paths characterized by their
CF} value as plotted in Figure 2. Therefore, for a given O-D pair, clusters definition then
corresponds to a uniform splitting of the interval defined by the minimum and maximum values
of CF}. More precisely the G, cluster contains two paths with no sections shared and for i = 2 to
5, cluster G; contains alternative paths with more and more shared sections. Note that the
distribution of CFj is specific for each O-D as illustrated in Figure 2. Note also that under these
assumptions, two clusters have specific characteristics: G only contains the two most
independant paths, while Gs contains those which are the most correlated.

Step 2: Sample Choice for Each Cluster of Paths

Because of the definition of paths clusters, several routes are available in a given one. In order to
perform simulations, a maximum of five roads for each O-D pair is imposed. For each cluster G;,
the selected paths are denoted from R to Rs, with decreasing values of the commonality factor,
R; corresponding to the maximum. The selection method is illustrated in Figure 2: For each O-D
pair, CF}, values for each alternative path py is plotted in blue, the five clusters boundary is also
plotted, while the selected paths R; in each cluster are drawn in red. The impact of this particular
sampling method will be further questioned.

Once the paths are assigned to each O-D pair, the following step consists in distributing
the inflow of vehicles across the five potential paths. The aim of this study is to evaluate a large
variability of such a path flow distribution. For this, we consider a discrete approximation of a
normal distribution depending on two parameters p and . This allows for instance to simulate a
uniform distribution over all paths or on the opposite to favor one of the five potential paths
setting the maximum on it.

To summarize the design analysis and the demand definition, presents the
parameters involved in this analysis and the range of values explored in the different scenarios.

In the next sections, different scenarios are analyzed using analytic and numerical
computations. Two distinct analyses are performed to quantify the network level of performance.
First, the fluid—congested boundary for the network and its sensitivity to parameters is presented
in Section 3. This allows characterizing the global network behavior from a rough and binary
point of view. Indeed, the focus is on dynamic loadings. When the local demand on each link
does not exceed its capacity, traffic dynamics only correspond to the queue evolutions within
links. No spillbacks occur and the whole network remains in free-flow conditions. Otherwise,
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FIGURE 2 Histogram of normalized commonality factors for p =1 =y for different O-D
pairs. In red, CFy values correspond to selected paths.

congestion will appear in any link where the local demand exceeds capacity and will propagate
within the network. The network can then be considered as congested or at least partly
congested.

Then, once congestion has appeared, in order to better evaluate the impact at the network
level, two complementary studies are presented. In Section 4, route choices effect is investigated
more in detail through numerical simulations given access to the NMFD and the potential
exhibited capacity drop. Last, spatial heterogeneities are quantified by studying the distribution
of traffic conditions.

TABLE 1 Parameters of the Study

£t in (s; P T

[0.1] | [0.Q=..]| i€ 1.,2,3,4.5 | [0,1] | [0,01;10
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ANALYSIS OF THE NETWORK FLUID-CONGESTED BOUNDARY
Methodology

A simple way to characterize the network performance is to determine the binary state of the
network (free-flow or congested). Interestingly, this can be done without resorting to
simulations.

Indeed, the network fluid/congested boundary can be analytically computed following the
mathematical formalism described in Bierlaire (/8) that is briefly recalled. Refer to Section 2 for
a detailed description of the studied network. Denote the O-D flows associated to each of the 144
considered O-D pairs by g and the link flows for each link by u the link flows for each link. With
the notations already introduced, each O-D pair £ is linked by the set of p; alternatives paths. The
link-path incidence matrix L, only depends on the network topology and is defined by Ly =1 if
link & belongs to path I, 0 otherwise. Thus, the problem can be rewritten under the matrix form

LCq=u 3)

Solving System 3 allows determining with low computational cost the network fluid—
congested boundary. Indeed, as explained in Section 2, a simulation input is defined by the n-
uplet of parameters (a, O, Gi, p, ) where a and Q;, are related to the demand, G; corresponds to
the cluster of paths for a given O-D while p and o are related to the flow distribution over paths
for each O-D pairs. Exploring the range of each parameter, System 3 is solved. If the results are
such that there is at least one saturated link u#; < C, C being the link capacity, the n-uplet is
assigned as congested. Indeed, if a congestion appears at some point, it will naturally spillback
over at least a part of the network.

Results

Following this methodology, several tests are performed to study the fluid/congested boundary
as network performance indicator. Figure 3 shows the evolution of the fluid/congested boundary
depending on the demand: Q;, (x-axis) versus a (y-axis), for three values of ¢: a small one, ¢ =
0.1, meaning that the maximal inflow is mainly concentrated on one path, a large one c = 9.1
simulating the case of a uniform inflow distribution and an intermediate one ¢ = 0.5. For this test
case, the central path described through the parameter p corresponds to the path R; denoted for
each cluster. Note that when o is large, p has no influence. The range of values for (a, Qi)
corresponding to the fluid network configuration respectively congested configuration is plotted
in black, respectively in grey. Recall that O;, parameter is constrained by the value of a as
detailed in Section 1 Equation 1. Therefore, the range of values cannot be entirely explored
leading to this specific shape.

Several conclusions can be deduced from . First of all, it has to be noted that the
shape of the fluid—congested boundary does not depend on either clusters’ identification or ¢
value. Next, for a given clusters’ identification (that is for a given line), comparing the three
columns, the impact of ¢ parameter can be studied. It is clear that the higher o is (that is the most
the flow is distributed over the selected paths for the given cluster) the lower the network is
congested. For instance, for Cluster G», the percentage corresponding to fluid network
configuration grows from 40% for 6 = 0.1 to 56% for 6 = 9.1. Then, for a given o (that is for
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FIGURE 3 Fluid—-congested boundary evolution depending on the demand. In columns,
different values of o and in lines, the level of overlapping from cluster G, to Gs.

a given column), the clusters’ID analysis can be performed. Results on Figure 3 show that the
higher the value of CFy is (that is for a high clusters’ identification), the larger is the fluid zone.
For instance, for o = 0.1, the percentage corresponding to fluid network configuration grows
from 30% for cluster G, to 86% for cluster Gs. That means that the more the paths overlap
between each O-D pair when CFj value is high, the lower the network is congested. This is a
nonintuitive conclusion since usually when considering a single O-D pair low overlapping
intuitively means a better (in the sense of uniformly) distribution over the different routes.
Indeed, higher overlapping values will increase the shared portions of routes with higher flows
and thus a higher probability for congestion. However, the interest here is in the whole network
performance and all O-D pairs need to be considered. That is why in order to improve the
analysis, what the clustering method using the CF}, coefficient means at the network level will be
studied in more detail. For each cluster of paths and for each link of the network, plots
the number of paths crossing over this link normalized versus the total number of paths of each
cluster. It can be observed for instance that as a result of the particular structure of the studied
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network a low commonality factor value for each O-D pair (see first subplot) favors the
peripheral links. Then, comparing the subplots in Figure 4, the level of global overlapping is
increasing from cluster G; to cluster Gs and it can clearly be observed that considering close
alternatives for routes at the single O-D level may paradoxically lead to a whole set of routes that
weakly overlap. clearly shows that the lowest CF}, value is (see cluster ;) means that
more than 50% of the network links carry very few paths (less than 10). For higher CFj, the links
carry more paths with a more homogeneous distribution. This means that the repartition of paths
over the network is more well balanced when CF} inverse.

In the second test, the value of ¢ is assumed to be high enough to have a uniform flow
distribution over the paths and no effect of the p-value. Computations are performed for different
numbers of paths: 1, 2, or 5 paths in each cluster, again chosen from the maximal CF} value in
each cluster. The fluid—congested boundary depending on the demand parameters is plotted in

for clusters G» to G4 which are less specific. The main conclusion is that the higher the
number of paths there are, the lower congestion can be observed. However, the most noticeable
gain is obtained when the number of paths increases from 1 to 2.

When this number is higher than 5 no changes can be identified. Last, a test to study the
impact of the choice for the sample of five paths in a given cluster is performed. Different
options are tried, for instance five paths with an increasing CFj value for each cluster, five paths
equally distributed among a cluster. The results obtained show that there is no significant effect.

Combining the results of these tests, this study shows that the more homogeneously the
flow is distributed over the network, the better the network performance. In this study,
homogeneity conditions result both from high level of overlapping and a uniform flow
distribution through the different paths.

REFINED ANALYSIS OF THE LOCAL DEMAND

DISTRIBUTION ON THE NETWORK PERFORMANCE

In this section, the paper resorts to refined indicators to assess the network performance. Some
are inspired by the concept of the NMFD (e.g., network traffic evolution, capacity drop), others
correspond to classical representations of heterogeneities (e.g., density standard deviation).

Different Indicators to Assess the Network Performance

Using Edie’s generalized definitions (/9) and assuming all vehicles trajectories are available for
each link i the average flow Q; and density Kjin the time step [z + Af] are given by

_ Zkdk Xkt
Qi o LAt L™ ljAt (4)

where dk is the distance traveled by vehicle & in the considered zone (corresponding to link i and

time interval [¢ + Af]) and # respectively, its time spent in the zone. Note that Az should be of the
order of several signal timing to provide accurate mean estimations. These definitions allow
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FIGURE 4 Percentage of paths crossing over each link of the network for clusters G; to Gs.

determining two indicators series: on the one hand, the average network flow Q, density K, and
speed V defined as follows:

_ 2iliQi _ ZiliK; _Q
Q_ Yili k= Yili V_K (5)

The time evolution of Q and K provide a synthetic vision of the network global behavior. For
simplicity, (Q, K) plots are provided for successive time periods.

On the other hand, the standard deviation of the density across the network is used as an
indicator of spatial distribution of network conditions.

Moreover, simulations duration is chosen large enough in order to ensure that the
network reaches in a steady state. This has been monitored by computing the cumulative curves
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for the total in- and outflows. When the difference between these curves (that corresponds to the
total accumulation within the network) is constant, the network is considered to be in a steady
state. Note that when the network is congested the difference can never be constant because
oscillatory patterns are observed. In that case, the network is considered to be in a quasi-steady
state when the magnitude of the variations is small enough.

Curmulative percentage of links
— -

Nurmber of paths

FIGURE 5 Percentage of links that carry at least X paths (repartition function).
wN k
3
Uf"z
Qin

FIGURE 6 Fluid—congested boundary evolution for different number of paths with
uniform inflow distribution for different levels of overlapping, clusters G, to G;.
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—— 5 Paths
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Results

The first test aims at evaluating the (Q, K) plots sensitivity to the level of overlapping representing
through the paths clusters in this analysis. Two cases are plotted in Figure 7 for a fixed demand
corresponding to o = 0.15 = Q;,. In the upper subplot (@) 6 = 10 corresponds to a uniform distribution
whereas in the bottom subplot () 6 =0.1. clearly shows that the NMFD shape depends on
the degree of overlapping of paths: for instance on (a) for clusters Gs to Gs, the network remains in
free-flow condition, whereas for clusters G and G; it switches to congestion. Comparing the two
plots, it can be observed the impact of ¢ since cluster G now experiments congestion in (b).
Moreover, these plots give access to an estimation of the network capacity drop represented by the
difference between solid and dot lines for each cluster.

The reference for capacity is assumed to be the maximal obtained with one of the clusters for
a given simulation. Comparing cluster > and Gs in (a) and (b), the more the inflow is distributed, the
lower the capacity drop is and the better the network performance. For instance, for cluster G, the
absolute capacity drop is equal to 0.029 veh/s (13%) for high ¢ in (a) and to 0.068 veh/s (30%) for
low o in (b). Last, in both cases (different values of ¢), according to the cluster’s identification, the
network can be in a high instable intermediate state [see for instance, cluster G, in subplot (a) and
cluster G in subplot (b)], and the variability decreases when congestion is well established.

—e— Group 1
—o— Group 2
Group 3
—o— Group 4
Group 5
T

T
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
(@
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o
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Density (Veh/m)

(b)

FIGURE 7 NMFD corresponding to each path’s cluster for a given demand
Qin=0.15, a = 0.15 and for (a) a uniform path flow distribution ¢ = 10, and
(b) a tight path flow distribution.
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All previous tests have been performed attributing the same cluster’s identification to the
whole set of O-D pairs. In the following test, the impact of this assumption is studied. Then,
presents the NMFD obtained for two different distributions of clusters’ identification over the O-D as
plotted on the left of the figure. On the upper subplot, the two border clusters are mixed while on the
bottom one-mixed clusters correspond to more medium value of CFy. First, the NMFD resulting
from this cluster’s distribution seems to be the mean of the two original ones: for instance mixing
clusters G and Gs leads to a congested configuration but with less capacity drop. However, the
combination corresponding for instance to cluster G; for west origins combined with cluster G5 for
north origins (green line) is not equivalent in terms of network performance to the reverse one
(magenta line). Especially, the G; — Gs mixed solution (green line) corresponds to a higher
congested configuration whereas the Gs — 1 one is unstable with a larger range of oscillations. It
can be deduced that not only the level of overlapping plays an important role on the network
level of performance but also its distribution between the O-D.

A third test is conducted to study more locally the network performance. Four distinct
subnetworks as illustrated in Figure 9 upper left corner are defined, and the corresponding
NMFD for each subnetwork are plotted, cluster by cluster. In this test, even if the same cluster’s
identification is assigned to the whole set of O-D pairs, shows that the behavior of the
network is not spatially homogeneous depending on the level of overlapping. For instance,
simulations for cluster G| and G, let appear either congested or free-flow steady state with
respect to the subnetwork. Simulations for these clusters on the global network are associated to
congestion, see Figure 7. Not surprisingly, subnetworks 2 and 3 appear more congested for low
CF} values than the two others quarters. This is because low CF} values make the peripheral
links more attractive. Congestion then appears close to the entries where several demand inputs
aggregates.
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over the O-D pairs. The demand is defined by Q;, = 0.15 = a, and
6 = 10 such that the inflow is uniformly distributed.
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defined by Qi = 0.15 = a and ¢ = 10 such that the inflow is uniformly distributed.

Last, in order to study heterogeneities more in detail, represents the standard
deviation of the density over the whole network depending on the demand for three values of o.
First, looking at the effect of the level of overlapping comparing the different lines for a given o,
it has to be noted that the less global overlapping is, the most homogeneous the network is.

Recall that low global overlapping means high CF} values for each O-D pair in this case
study (see Figure 4). Moreover, Figure 10 allows determining the range of parameters leading to
the most heterogeneous zones. Indeed, it clearly appears that around the boundary of the
admissible domain (in terms of constraint on the demand see Equation 1 especially for low ¢
value and low clusters’ identification, the density on the network is highly heterogeneous with a
standard deviation reaching its maximal value. This effect is dispersing when the local level of
overlapping (for each O-D pair) is increasing (comparing in the first column, cluster G; to Gs).
The last point concerns the influence of ¢ parameter: looking more especially at clusters Gs to
Gs, we see that the larger o is, the lower are heterogeneities. To conclude, the optimal solution in
terms of homogeneous network seems to be when the paths are most correlated and the inflow
uniformly distributed.

CONCLUSIONS

In this paper, an analysis of the effect of the local demand distribution on the network traffic
conditions has been be carried out, focusing on how route choices influence the level of
performance of the network. In order to study route choices impact, a clustering method based on
the level of paths’ overlapping has been proposed to generate homogeneous sets of paths. In this
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FIGURE 10 Density standard deviation depending on the demand. In columns, different
values of ¢ and in lines, the level of overlapping from clusters G; to Gs.

work a method was proposed to determine with low computational cost, the fluid/congested
boundary and its sensitivity to route choice. Two levels of analysis have been performed: 1. the
global network behavior through fluid—congested boundary and 2. dynamic network indicator as
the NMFD and spatial distribution of densities. The different evaluated scenarios confirm that
network performance is highly affected by route choice, both by paths selection and flow
distribution.

An important result here is that path overlapping at the network level cannot be directly
assessed through the study of paths overlapping for each O-D pair. Indeed, in this study a
conterintuitive fact is observed: Low overlapping (low CF}) for each O-D leads to the highest
overlapping between paths at the network level. The question of characterizing the level of
overlapping at the network level is very challenging, especially if the influence of paths
overlapping and paths flow distributions are to be considered. The authors are currently
investigating this question. These preliminary results and the associated framework look
promising. The goal is now to improve the analysis design and perform an extensive sensitivity
analysis in order to determine the most influent parameters related to route choices and demand
with respect to the global network performance.
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missions from traffic in networks are a growing concern, and there is a need for simple tools

to estimate the relationship between network properties, traffic conditions, and the resulting
aggregated emissions of pollutants such as greenhouse gases. This paper makes use of a
network’s macroscopic flow—density relation to approximate the following aggregated
components of vehicle driving cycles: time spent cruising at free-flow speed, time spent idling,
and the number of vehicle stops. The networkwide emission is estimated by multiplying these
driving cycle components with associated emissions factors. The study shows that network
emissions are systematically related to the network properties and vehicle density. The proposed
analytical model provides an approximation of emissions within 11% of the estimates from a
conventional microscopic analysis for all but the most congested traffic states. This approach
allows for systematic analysis of network emissions without the need for intensive data
collection and simulation.

INTRODUCTION

Road transportation is a major source of air pollutant emissions. An estimated 1.9 billion gallons
(7.2 billion liters) of gasoline and $100 billion were wasted because of fuel consumption and
delays caused by traffic congestion in 2012 within the United States alone (/). In addition to
wasted energy and time, urban traffic congestion contributes to networkwide emissions of air
pollutants, including hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide. It is
estimated that the on-road vehicles account for more than half of dangerous air pollutant
emissions and over 30% of carbon dioxide emission in the United States (2). Reducing these
emissions is important for protecting and improving human health as well as for reducing
production of greenhouse gases, which are associated with global climate change. Emissions
from vehicles in traffic are playing an increasingly important role in urban policy making and
traffic management in large metropolitan road networks.

Most research on the relationship between traffic and pollutant emissions focuses on
individual vehicles and the effect that engine technologies or driving cycles have on emissions
from that vehicle. The driving cycle is the pattern of acceleration, cruising, deceleration, and
idling as a vehicle traverses distance in the network. In urban environments, the design of the
road network and the timing of traffic signals have systematic impacts on the driving cycles of
the vehicles in the network. The traffic conditions in the network also have an impact on the
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performance of vehicles, because traffic congestion causes additional stopping and idling, which
directly influence the emissions from vehicles in the network. In order to evaluate, control, and
reduce networkwide emissions of air pollutants, traffic emissions need to be estimated
considering the nature of stop-and-go traffic in urban areas.

Although some pollutants have highly localized impacts, which require detailed models
and measurements (e.g., particulate matter), greenhouse gas emissions have a global impact, and
it is most important to be able to estimate the aggregated emissions from traffic in a whole
network. Recent advances in modeling aggregated traffic conditions in urban networks show that
a systematic relationship often exists between average vehicle flow and average vehicle density
in a network. A macroscopic view of urban traffic provides a basis for making aggregated
estimates of air pollutant emissions from the vehicles. This paper shows that emissions factors
developed from existing microscopic emissions models can be integrated with models of
aggregated traffic variables for urban networks in order to estimate the aggregated network-wide
emissions of greenhouse gases from vehicles.

The paper is organized as follows. Section 2 reviews existing literature in the emission
modeling and traffic flow fields. Section 3 presents the overall framework for linking aggregated
traffic variables that are related to the driving cycle with emissions factors to make an aggregated
emissions estimate. A detailed description of how the elements of the driving cycle are estimated
from macroscopic traffic model is given in Section 4. An evaluation is presented in Section 5 by
comparing the emissions estimates from the proposed model with the results from a more
conventional microscopic analysis using simulation. Finally, conclusions are discussed in
Section 6.

EXISTING MODELS

There are a number of existing models in the literature that focus on estimating emissions from
vehicle emissions at various levels of resolution. The most detailed microscopic emissions
models are based on tracking driving cycles in second by second detail, while the most aggregate
models are based on broad averages in order to make regional estimates. Recent advances in
traffic models that address the movements of vehicles and congestion patterns at the network
level provide useful tools for analysis of aggregated traffic conditions. In the following
subsections, some of the most relevant models for modeling emissions and traffic are reviewed.
These form the building blocks of the proposed integrated model.

Vehicular Emissions

Existing models for vehicular emissions generally fall into two main categories: microscopic
models that focus on specific movements of individual vehicles and macroscopic models that are
based on aggregated data and average values. Microscopic models are the most detailed models,
and they often provide instantaneous emissions estimates based on concurrent operating
conditions of a an equipped vehicle or a simulation. These models typically require extensive
data inputs such as second by second trajectories for each vehicle. VT-Micro (3), CMEM (4),
and the project level of MOVES (5) are microscopic models that are widely used in the United
States. In order to analyze the overall effect of changing a signal control system or widening a
roadway, microscopic models require that a detailed microsimulation be developed to generate
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the detailed trajectory of each vehicle that is then used to produce the emission estimate for each
vehicle at each second. This is a time-consuming and costly process, and the data intensity and
computation time make these microscopic models prohibitively burdensome for estimating
emissions in large urban networks. As a result, microscopic models are typically only used in
practice for analyzing small-scale projects. For greenhouse gas emissions, such detailed model
outputs are not necessary in of themselves except that they tend to be more accurate than
emissions estimates from macroscopic models (6).

Macroscopic emissions models are designed to estimate regional emissions from vehicles
based on the average network speed, the total number of vehicles, and some assumed driving
cycles (7, 8). These models require relatively few data inputs, so they are much easier to
implement for large urban networks. However, these models do not account for the effect of
vehicle acceleration and deceleration for stops in a way that is related to what is actually
happening in the network. Macroscopic models relate average speed to a single emission rate,
but in reality a single average speed could be associated with many different driving cycles
ranging from a small number of long stops to a large number of short stops. These driving cycles
should be associated with different emissions rates, so macroscopic models have a tendency to
oversimplify the relationship between traffic patterns and emissions.

In recent years, a third type of model has emerged: mesoscopic emission models. These
models do not require information about the instantaneous movements of individual vehicles, so
they are not as complex and data-intensive as microscopic models. Mesoscopic models typically
require aggregated traffic data that reflects the traffic conditions and congestion in the network,
so they provide more accurate networkwide emission estimation in compare with macroscopic
models. One example is VT-Meso, which uses link-by-link average speed, the number of vehicle
stops, and the stopped delay as aggregated traffic inputs (9). The model synthesizes a typical
driving cycle, and by using the microscopic VT-Micro model, it estimates the average link fuel
consumption and emission rates. Overall network emissions can then be computed by
aggregating the emissions on all links. Gori et al. (/0) presents another mesoscopic emission
model, which uses a dynamic traffic assignment model to estimate the aggregated traffic
parameters, namely distance traveled at free-flow speed, the average speed of vehicles in queues,
and the length of the queues. Mesoscopic models improve the accuracy of emissions estimates
for larger networks, but they require inputs of aggregated traffic variables, and these need to be
obtained either from a simulation or another traffic model.

Modeling Traffic in Networks

Just as emissions can be modeled at varying levels of detail, traffic models also range from
microscopic models that track individual vehicle movements to macroscopic models that relate
aggregated network-level variables. For the purposes of emission modeling, it is common to use
microsimulation tools to construct trajectories for each vehicle that traverses an existing or
hypothetical network. Although simulation models are powerful tools for investigating the
complex interactions of vehicles, it is costly and challenging to build and calibrate the models
appropriately (/7). An alternative is to work with the classic kinematic wave model (12, 13) that
makes some simplifying assumptions about the variability of driver and road characteristics but
can describe the evolution of traffic states on a road segment by tracking the interfaces between
traffic states over space and time. The benefit of this analytical approach is that a wide variety of
traffic scenarios can be evaluated in a robust and consistent way with far less data and
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computational complexity than a microsimulation. At the level of intersections and individual
arterials, kinematic wave theory has been a basis of traffic modeling for decades.

For networks that are homogeneous and well connected and on which demand is
uniformly spread, a consistent relationship between average network flow and average network
density has been shown to exist in theory (/4, 15), in simulations (/6), and in the real world (7,
18). This relation is often referred to as the macroscopic fundamental diagram (MFD) or
network-level fundamental diagram. The size and shape of the MFD depends primarily on the
physical properties of the network including the saturation flow rate, block length, and traffic
signal settings (e.g., cycle length, duration of signal phases, and signal offsets). This aggregate
relation of traffic variables is useful for a network manager, because it can be used to monitor the
network performance or implement control strategies to increase throughput and decrease delays
in the system (/9). An additional objective may be to reduce aggregated fuel consumption and
emissions in a network, but this application of networkwide traffic models has received less
attention in the literature.

Since the critical input for emissions models is an accurate driving cycle, traffic models
need to relate the time that vehicles spend accelerating, cruising, decelerating, and idling to the
traffic conditions on the roadway. An arterial-level model has been developed to estimate
emissions assuming that some traffic data, such as flows and number of vehicle stops, are
measured directly from links in the network and then estimating the other relevant parts of the
driving cycle (20). Another recent model uses kinematic wave theory to make analytical
estimates of the entire driving cycle for traffic on a single link approaching an isolated
intersection (27). The model proposed in this paper is intended to go a step further to estimate
emissions based on aggregated traffic characteristics using the MFD and physical characteristics
of the network.

INTEGRATED TRAFFIC EMISSION MODEL FOR A NETWORK

The proposed modeling framework builds on the Integrated Traffic Emission Model (ITEM)
presented in Shabihkhani and Gonzales (27), which connects an analytical model of traffic
approaching an isolated intersection with emission factors from a microscopic emission model.
That study shows that reliable predictions of emissions at a signalized intersection can be made
using kinematic wave theory to estimate the amount of time vehicles spend idling, the time spent
cruising, and the number of times that vehicles stop per vehicle distance traveled. The model of
networkwide emissions presented in this paper is structured with the same two components: a
traffic model to estimate aggregated traffic parameters and a set of emissions factors to convert
the driving cycle into an emissions estimate.

The trajectories of vehicles approaching an intersection or traversing a network have
repeating patterns of cruising at the free-flow speed, vy, idling while stopped, and decelerating
and then accelerating between speeds vyand 0 for every stop. Therefore, three components of the
driving cycle that must be estimated from the traffic model in order to account for emissions
from the vehicles: the time spent cruising per distance traveled, 7.; the time spent idling per
distance traveled, 7;; and the number of times that vehicles must stop per distance traveled, n.
The total emissions per vehicle distance traveled, E, is then calculated by multiplying these
components by the appropriate emissions factors:
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E=elT, + ¢T; + en (1)

where e, is the emission of interest per unit cruising time, e; is the emission of interest per unit
idling time, and e is the total emission of interest associated with a complete deceleration from v,
to 0 and a complete acceleration from 0 to vy.

In order to make accurate emissions estimates, it is important to have accurate estimates
of the components of the driving cycle (7., T}, and n) and accurate emission factors (e, e;, and
es). The analysis in this paper will focus on investigating simple homogeneous networks in
which the MFD is known to be applicable so that we can focus on using the MFD to estimate
driving cycles. Then these driving cycles will be used to estimate emissions. The details about
how to estimate the driving cycle from the macroscopic traffic data are presented in Section 4.
How to obtain appropriate emissions factors, which are important for analysis of isolated
intersections or larger networks, will also be considered. Although the method may be applied to
measured or simulated vehicle data from any road or network, this investigation will use a
simulation approach to study the performance of idealized networks.

Traffic Simulation

The first step to estimating emissions factors with a microscopic emissions model is to obtain
high-resolution vehicle trajectories that show speed and acceleration a fine temporal resolution
(e.g., every second). In the field, trajectories can be measured from equipped vehicles, but a
simulation model is useful for considering a wider range of traffic conditions, many of which
may not be part of a measured data set. In order to represent the ideal homogeneous network
conditions under which a consistent MFD has been proven to exist, a simple ring network has
been constructed using Aimsun that is consistent with the theoretical assumptions in Daganzo
(14) and Daganzo and Geroliminis (/5). The ring with a single intersection is representative of a
long arterial or network with homogeneous traffic conditions and traffic signals with no offset.

In the ring model, a constant number of vehicles in the system correspond to a constant
density. The full range of possible densities from an empty network up to a complete jam are
systematically analyzed by loading the ring with a specific number of vehicles and then running
the simulation to measure aggregated network flow and extract vehicle trajectories. Feeding each
trajectory into a microscopic emission model provides a second-by-second estimate of the
emissions from each vehicle. Aggregating the emissions from all the individual vehicle
trajectories provides an estimate of the networkwide emissions following the conventional
detailed microscopic approach. In this paper, the project level of MOVES (J) is used as the
microscopic emission model, but the same method could be used with any microscopic model
that uses vehicle trajectories as the model input.

Estimation of Emission Factors

The goal is to estimate emission factors for each component of the driving cycle, so a sample of
trajectories is parsed into cruising, idling, acceleration, and deceleration. This process requires
that thresholds be defined to distinguish between slight oscillations in speed and larger changes
that are associated with accelerations and decelerations associated with stopping. The following
criteria were used to parse the trajectories in Shabihkhani and Gonzales (27), and they are used
again in this study:
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1. A vehicle is considered to be stopped and idling whenever the speed is slower
than 1 mph (1.6 km/h).

2. A vehicle is considered to be accelerating or decelerating when the following
conditions hold: the absolute value of the rate of acceleration exceeds 0.2 mph/s (0.3 km/h/s);
the speed changes by at least 5 mph (8 km/h); the duration of the acceleration or deceleration
lasts at least 2 s; an intermediate period of opposite acceleration does not exceed 1 s; and an
intermediate period of low acceleration does not exceed 3 s.

3. The remaining time, the vehicle is moving at steady enough speed that it is
considered to be cruising.

These criteria were identified because they provided the closest match between the
number of stops counted with the automated procedure and the number of manually counted
stops from empirically measured and simulated trajectories. Although this parsing process may
appear complicated, the important thing is collect observations of enough vehicle trajectories to
obtain a good estimate of the average idling, cruising, accelerating, and decelerating behaviors.

Once the trajectories have been broken into each of the components of the driving cycle,
each trajectory segment has a duration and is analyzed with a microscopic emission model to
estimate the corresponding vehicle emission. For the idling and cruising, the results are simply
averaged to obtain an average emission rate for each second of idling and each second of
cruising. For the accelerations and decelerations the duration and total emission are both
important quantities. Each stop requires that a vehicle decelerate and accelerate, so the sum of
the deceleration and acceleration durations are the period of time when vehicles are neither
cruising nor idling. The cycle of decelerating and accelerating for a stop is associated with a
quantity of pollutants emitted per vehicle stop.

This paper evaluates the proposed analytical model with a number of different network
scenarios in which the free-flow speed is v/= 53 km/h. The project level of MOVES was used to
analyze a sample of trajectories extracted from an Aimsun simulation of a ring-shaped network
as described in Section 3.1. The emissions of interest for our study are greenhouse gases, because
these are global pollutants that are most important to estimate in aggregate for a network. The
relevant unit of measure for greenhouse gases is grams of carbon dioxide equivalents (gCO,eq)
because, this represents the global warming of all greenhouse gases emitted from the vehicles in
terms of an equivalent amount of CO,. The emissions factors for this case are e, = 2.187
gC0Ozeq/s, e; = 0.881 gCOLeq/s, e; = 48.876 gCO,eq/stop, and the average duration of a
deceleration and acceleration cycle is 7= 22 s.

ANALYTICAL MODEL FOR NETWORKWIDE TRAFFIC VARIABLES
Existing macroscopic models for networkwide traffic conditions relate the average network flow,

g, to the average network density, k. These two variables imply the average speed of vehicles in
the network, v, by the well-known relation:

v=q/k (2)

These variables alone provide a lot of useful traffic information about the capacity of a
network and the delays that drivers in the network experience. Ongoing research is being
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conducted to better understand the behavior of the macroscopic flow—density relation for
different types of realistic networks. For the proposed model it is supposed that the MFD for a
network is known or has been measured use it to provide an analytical approximation for the
idling time, cruising time, and number of stops for vehicles in the network. The goal is to
develop a model with sufficient detail to estimate aggregated emissions in the network without
the need to track the details of each vehicle’s movements.

As presented in Section 3, the complexities of a second-by-second vehicle trajectory can
be simplified into three key parts of the driving cycle that are related to emissions: time spent
moving at the cruising speed per vehicle-distance, 7,; time spent idling per vehicle-distance, 77;
and the number of times that vehicle stops per vehicle-distance, n. First considered is how 7;. and
T; can be estimated if n is known. Then it will be considered how the number of stops per
distance can be estimated as well.

Suppose that traffic on a homogeneous network has a triangular fundamental diagram
with free-flow speed of vy . If it is ignored for the moment the range of speeds that are associated
with acceleration and deceleration, vehicles will have piecewise linear trajectories with speed vy
while moving (i.e., cruising) or stopped while idling. All travel time for vehicles can be
classified as effectively cruising or effectively idling. The kinematic waves associated with these
idealized trajectories are the same as the aggregated dynamics of traffic with more realistic
acceleration and deceleration patterns (12, 13).

Every vehicle that stops must decelerate from v,to 0 and then accelerate from 0 back to
v. The duration of the deceleration is 1, and the duration of the acceleration is t,, and these
values depend on the behavior of drivers in a particular network. If the deceleration and
acceleration are at constant rates, then half of 1, and 1, is effectively cruising time and the other
half is effectively idling time. shows how a piecewise linear trajectory and a more
realistic trajectory with constant rates of deceleration and acceleration. For simplicity, we will

Distance

decelerating

5 it
Tg/2, Ti/2, idling

- — — — —

5 5
Tﬂ = I(f =

Ta

accelerating

Time

FIGURE 1 Relationship between a trajectory with constant deceleration and
acceleration rates (solid) and a piecewise linear trajectory simplified
to effective cruising and effective idling (dashed).
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consider a single time associated with the cycle of deceleration and acceleration for each vehicle
stop T = 74 + 1,. Therefore the each stop reduces the actual time spent cruising by ©/2 and the
actual time spent idling by /2. It is important to account for Tt when modeling traffic emissions,
because the emission rates for cruising and idling should be multiplied by the actual cruising and
idling times rather than the effective times.

The effective cruising time per unit distance is simply the inverse of the free-flow
cruising speed, because no distance is traversed while idling. The actual cruising time per unit
distance is then calculated by reducing the effective cruising time by half of deceleration and
acceleration time for each stop:

r=1 Ty G)

where 7 is the number of times a vehicle stops per unit distance traveled.

The effective idling time is the difference between the total travel time per unit distance,
which is the inverse of the average traffic speed, and the effective cruising time. The actual
idling time per unit distance is again calculated by reducing the effective idling time by the other
half of the deceleration and acceleration time per stop:

T,=-———-n (4)

In many cases, it may be possible to measure » from the same data source used to obtain
the estimated macroscopic traffic state k£ and ¢ (i.e., traffic data from probe vehicles could
provide an indication of this value). In the absence of direct measurements, it is useful to be able
to express the number of stops analytically. Although an individual vehicle makes a discrete
number of stops per distance traveled, this could vary across vehicles or road segments.
Therefore, it is useful to be able to have an analytical approximation for .

The simplest approximation is simply to suppose that on average vehicles are stopped
once per cycle. The average distance traveled during a signal cycle of length C is vC, so the
number of stops per distance is given by

n= — (5)

This approximation is appropriate when the signal offset is 0, and especially when the
duration of the red signal exceeds the time required to travel the length of a block at free-flow
speed: C — G > U/v;, where { is the length of a block. When the red phase is sufficiently long, a
vehicle will always have to stop once per cycle when caught at a red signal. When block lengths or
signal times are short enough that this inequality is violated, it is possible for some vehicles to
traverse the network without stopping during every cycle, which is a possible source of errors.

Since the MFD is a property of a specific network, the flow can be expressed as a function
of density, ¢ = O(k). The shape and size of Q(k) depends on the network characteristics (e.g.,
saturation flow, jam density, and block length) and traffic signal settings (e.g., cycle length and
green ratio). Therefore the average speed of vehicles in the network can be expressed as a function
of density, so (2) becomes v(k) = O(k)/k. The emissions in a network are estimated by evaluating
T, T;, and n with v(k) and substituting the resulting driving cycle components into Equation 1.
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EVALUATION WITH AN IDEALIZED NETWORK

The proposed analytical model is evaluated by constructing an idealized network in a
microsimulation and then comparing the emissions estimates with the results of a conventional
microscopic emissions analysis. The accuracy of analytical approximations for the MFD itself is
beyond the scope of this paper, so the analytical approximations are made assuming that the MFD is
measured and known. A ring model is used to represent an idealized homogeneous network as
explained in Section 3.1. It is from this simulation that the empirical MFD is measured, and the
detailed vehicle trajectories are also extracted in order to calculate the modeling error relative to the
conventional microscopic modeling approach.

First a comparison between the analytical modeling approach and the conventional
simulation approach is investigated for a base case network. Then, the effect of varying one network
parameter, the green ratio, is demonstrated using the analytical model to show how the proposed
modeling approach can be used to evaluate changes to the system. Finally, an error analysis if
conducted to compare the performance of the analytical model relative to the conventional
microscopic approach shows that for a wide variety of network characteristics and traffic states.

COMPARISON OF ANALYTICAL AND SIMULATION MODEL RESULTS

The base case network that is used to illustrate the performance of the proposed analytical model has
the following properties: free-flow speed, v/= 53 km/h; saturation flow, s = 1,900 veh/lane-h; jam
density, k; = 200 veh/lane-km; green ratio (length of green phase divided by signal cycle length), G/C
= 0.50; signal cycle length, C = 60 s; block length, £ = 0.30 km; and no signal offset. Running the
simulation for a range of densities between 0 and £;, the average network flow g is plotted for each
density £ in . The points in the figure indicate the measurements from the simulation, and we
will suppose that Q(k) is the empirical curve connecting these points (shown as the solid line).

Using average network speed at each density, v(k) = Q(k)/k, the number of stops is estimated
using Equation 5. a shows the analytically estimated value of n (solid line) and the number
of stops determined by analysis of the simulated vehicle trajectories (dots) as described in Section
3.2. The plot shows that the analytically estimated number of stops has a similar and close trend to
simulated values, especially at low densities (k < 75 veh/lane-km) associated with the free-flow
branch of the MFD. At greater densities the number of stops observed in simulation start to grow
faster than the analytical prediction, because the interactions between vehicles as conditions become
congested create some additional stop-and-go waves that are not accounted for in the simple model.
At the highest densities (k > 175 veh/lane-km), where traffic is nearly completely jammed, the
estimated number of stops per distance soars while the observed number of stops actually declines.
This is a result of the fact that in extremely congested conditions, vehicles move so little during each
cycle that the trajectories do not trigger the necessary thresholds for the stops to get counted.

The analytically computed values for 7 are then used along with the values of v(k) to estimate
the time per distance spent cruising, based on Equation 3, and idling, based on Equation 4. Figure 35
shows the analytically estimated idling time (solid line) and the idling time measured from the
simulated trajectories (dots). The analytically approximation fits closely with the simulated values.
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Since the idling time and cruising time are calculated by subtracting the duration of the
deceleration and acceleration cycles associated with each stop, errors in the estimated number of
stops contribute to errors in the estimated values of 7, and 7;. The values of & where stops are
underestimated also have overestimated values of 7; and vice versa. The error that affects the
idling time (as shown Figure 3) also affects the cruising time estimates (not shown) in a similar
way.

The total greenhouse gas emission per vehicle distance traveled is calculated by
multiplying each of the estimated driving cycle components by the associated emission factors as
show in Equation 1. These results can be compared with the outcome of a conventional
microscopic emissions analysis using the simulated vehicle trajectories. A comparison of the
analytically estimated emissions (solid line) and the aggregated simulation output (dots) is shown
in . The close agreement between the analytical macroscopic model and the detailed
simulation model occurs because aggregating the emissions from all vehicle trajectories together
has the effect of averaging out variations from vehicle to vehicle.

Variation of Signal Timing

The proposed analytical model is particularly useful for comparing the performance of networks
with different characteristics. One example is to consider the effect that changing signal timings
has on the emissions from traffic in a network. Using all the same network parameters as the
base case presented in Section 5.1, an evaluation of the effect of changing the green ratio is
conducted by changing only the value of G/C. a shows the MFD for each of the green
ratios G/C € {0.25, 0.50, 0.75}. The middle value is the same base case presented in Figure 2.

»  Simulation

4000 1 = Analytical Model

3000

2000

Emissions, E (g COzeq/veh-km)

1000

Y

0 25 50 75 100 125 150 175 200
Network Density, k£ (veh/lane-Km)

FIGURE 4 Networkwide emissions estimated using an analytical model based on the

MFD and estimated using detailed trajectories from a simulation and
microscopic emission analysis (G/C = 0.50; C= 60 s; £ = 0.30 km).
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FIGURE 5 Comparison of MFD and analytically estimated emissions for varying green
ratios, G/C € {0.25, 0.50, 0.75}: (@) network flow (MFD) and (b) network emissions.

The effect of G/C on the MFD is not surprising, because a longer green phase within the
cycle allows a greater flow of vehicles to traverse the network. The most restrictive green time
(G/C =0.25) is associated with a low network capacity, and a constant flow that is associated
with a wide range of densities. The analytically estimated emissions for each of the cases are
shown in Figure 5b. The results show that the more restricted green ratio is associated with
greater emissions per vehicle distance traveled, but there is not a big difference between G/C =
0.50 and G/C=0.75.

The ability to compare scenarios based only the MFD is useful because detailed
trajectories do not need to be extracted and analyzed with the microscopic emission model for
each case considered. A similar method can be applied to changing other network parameters
such as the cycle length, C, and block length, £. All of these cases are associated with the same
free-flow speed, v so the set of the emission factors (e, e;, and e,) and the duration of each
acceleration and deceleration cycle (t) remains the same as the base case. If the free-flow speed
in the network were to change, these factors would have to be re-estimated.

Model Errors

In order to assess the accuracy and robustness of the proposed analytical model, an error analysis has
been performed to compare the estimated emissions from the analytical model with the results of a
detailed simulation and microscopic emission analysis. The accuracy is quantified by calculating the
percent error of each analytically calculated emission value relative to the simulated result.

Starting from the base case presented in Section 5.1 with G/C =0.50, C=60 s, and £ =0.30
km, a systematic error analysis was conducted for each of the following variations in isolation: the
green ratio, G/C € {0.25, 0.50, 0.75}; the signal cycle length, C € {30, 60, 120} s; and the block
length, £ € {0.15, 0.30, 0.60} km. For each case a separate ring simulation was constructed to
generate the MFD for the analytical approximation and to generate the detailed vehicle trajectories
for the conventional microscopic analysis. The percent error of the proposed analytical approach
relative to the conventional microscopic simulation approach is summarized in
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TABLE 1 Percent Error of Emissions Estimate from the
Aggregated Analytical Emission Model Relative to the
Microscopic Simulation Model (Base Case: G/C=0.5; C=60s; { = 0.30 km)

Network Properties Network Density, k (veh/lane-km)
L

G/IC C(s) (km) 25 50 100 150 200
Variation of the Green Ratio

0.25 60 0.30 2.1% 4.9% 0.9% 1.7% 15.9%

0.50 60 0.30 —7.7% 10.5% 10.5% —7.6% 19.5%

0.75 60 0.30 -8.4% -7.2% -7.2% -17.4% 22.4%
Variation of the Signal Cycle Length

0.50 30 0.30 9.3% 10.1% 5.5% 0.4% 49.7%

0.50 60 0.30 —7.7% 1.3% 10.5% —7.6% 19.5%

0.50 120 0.30 -11.0% -10.0% 0.2% -1.8% 1.1%
Variation of the Block Length

0.50 120 0.15 -5.0% 8.5% 6.7% -1.2% 22.6%

0.50 120 0.30 =7.7% 1.3% 10.5% —7.6% 19.5%

0.50 120 0.60 -10.3% -7.5% 1.4% 0.2% 22.4%

The network scenarios are clustered into three groups, each group showing the results of
varying one of the network variables. The center row of each cluster is the base case so that the
effect on the percent error from increasing and decreasing each variable can be compared one at
a time. In almost all cases when the network is not completely jammed (k < 200 veh/lane-km),
the model is within 11% of the simulated value. These errors do not appear to have a systematic
bias and the magnitudes are small relative to the variation in emission rates for different values
of k as shown in Figures 4 and 5b. Therefore, the proposed analytical model provides a good
approximation for the detailed microscopic estimates.

Only at the jam density (k = 200 veh/lane-km) are the errors very large and consistently
positive. These large errors occur when the network is near a state of complete gridlock, because
the model predicts a large number of stops but the traffic moves so little with each cycle that the
vehicle trajectories in the simulation never move faster than a slow crawl. Fortunately, these
extremely jammed conditions are rare, and the model performs well for a wide range of
congested traffic conditions and a wide range of network characteristics.

CONCLUSION

A model has been proposed that makes use of the macroscopic relationship between average flow
and density known as the MFD to make analytical estimates of the network- wide emissions from
traffic. A robust relationship is shown between the components of that driving cycle that are
associated with vehicular emissions and the fundamental properties of the network. Aggregated
traffic parameters are used to identify a typical driving cycle. The components of the driving cycle
per vehicle distance traveled (i.e., cruising time, idling time, and number of stops) are estimated
based on the aggregated flow—density relation (MFD), the free-flow speed in the network, the
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duration of a typical acceleration and deceleration associated with a vehicle stop, and the signal cycle
length. These components are then multiplied by emission factors that are developed using a detailed
microscopic emission model, such as the project level of MOVES.

The ITEM that has been presented and evaluated in this paper links macroscopic traffic flow
models with microscopic emissions models in order to exploit the strengths of each modeling
approach. Conventional microscopic traffic emissions modeling requires detailed data for individual
trajectories, which must either be measured in the field or generated with a microsimulation, in order
make detailed emissions estimates. This is not practical for estimating emissions in large urban
networks, but that macroscopic emissions models that are currently available do not adequately
account for the effect that properties of the road network have on driving cycles and the resulting
emissions estimates. The proposed modeling approach address this challenge by making use of state-
of-the-art macroscopic traffic models that are sensitive to properties of the network such as the lane
capacities, block lengths, and traffic signal timings. By making use of the MFD, which embodies the
effects of network properties on the aggregated flow—density relation, networkwide emissions can be
reliably estimated for a wide range of traffic conditions without the need for extensive simulations
and trajectory analysis.

The effect of network characteristics and traffic dynamics on real MFDs is currently a topic
of extensive research. The flow—density is known to exist and be robust for idealized homogeneous
networks, so this was used to demonstrate the potential for using a macroscopic approach to
approximate driving cycles in the network. The shape of the MFD has been studied for various types
of networks have been developed (75, 16, 22), but it is supposed that this relation is either measured
or determined by some other method. Given the traffic state on the MFD, a few other network
characteristics (v C, and 1), and the emission factors (e, e;, and e,), the ITEM has been shown to
approximate the vehicular emissions within 11% of the values from microscopic analysis of
simulated trajectories for all but the most congested traffic states.

This proposed model is useful for monitoring emissions in real networks because traffic
states can be monitored using data collected from many different sources, including vehicle probes,
mobile phones, and fixed detectors. The same data that is useful for monitoring traffic and
implementing efficient traffic control system can also be used to estimate networkwide emissions
without simulations or extensive additional data collection. Furthermore, the analytical approach
provides a tool for systematically analyzing the effect of changes to the network on emissions by
tracking the effect on the MFD. While this paper has focused on demonstrating the potential of this
integrated model with an idealized ring-shaped network, additional work is needed to determine how
well the modeling approach applies to more realistic networks that may have turning vehicles, signal
offsets, or inhomogeneous signal timings and block lengths. Nevertheless, the proposed model has
value because it provides a less data-intensive way to estimate aggregated network emissions, which
is especially important for tracking pollutants like greenhouse gases that have a global impact.
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NETWORKWIDE MODELING AND CONTROL

Existence, Stability, and Mitigation of
Gridlock in Beltway Networks

WEN-LONG JIN
University of California, Irvine

revious studies have shown that the gridlock state can arise in a beltway network. However,

no closed-form formulations were provided for traffic dynamics in a beltway network, and
the existence and stability of gridlock were not established systematically. This paper first
presents the network kinematic wave model for traffic dynamics in a rotationally symmetric
beltway network, including the merging and diverging models. Then it demonstrates that
gridlock is always a stationary solution with fixed exiting ratios. Further, it shows that the
gridlock state may be stable or unstable, depending on the merging priority and the exiting ratio.
Additionally, the mechanisms and limitations of existing mitigation strategies are discussed and
a new adaptive driving strategy is proposed. Finally, the paper concludes with future research
directions.

INTRODUCTION

A beltway network is a ring road with multiple entrance and exit links, as shown in , that
can be embedded in both freeway and arterial networks. A gridlock state in a beltway network is
defined as a traffic state when the total density is positive, but the flow-rate is zero. A trivial case
is when all links, including the entrance and exit links, are totally jammed, and no vehicles can
move around. This can occur when all exit links are blocked. However, more interesting.

{
‘ -
-

() (b)

FIGURE 1 Beltways embedded in (a) a freeway network
and (b) an arterial grid network.
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gridlock states can arise when all entrance links are jammed but all exit links are completely
empty. The latter type of nontrivial gridlock states are concerned in this study

In Daganzo (/) it was shown that a nontrivial gridlock state can appear in a beltway
network, and the sufficient condition for the occurrence of gridlock in such networks was
identified with macroscopic merging and diverging rules in the cell transmission model (2). In
Daganzo (3) the occurrence of gridlock was also demonstrated in an urban beltway network
with continuous entrance and exit links. Further, in Daganzo (4) the dynamics related to the
occurrence and mitigation of gridlock were studied in double-ring networks, and the impacts of
drivers’ adaptation to traffic conditions were analyzed. In Jin et al. () it was shown that a
double-ring network can reach a gridlock state at multiple density levels in the kinematic wave
model. In Jin (6) it was shown that the occurrence of a gridlock state is associated with circular
information propagation on a ring road, and that a gridlock state is a fixed point of a Poincar’e
map. In the literature, however, there lacks a systematic treatment on existence, stability, and
mitigation of gridlock in a beltway network.

This study attempts to fill the gap. First the network kinematic wave model, in which the
Lighthill-Whitham-Richards (LWR) model is used to describe traffic dynamics on each link, is
applied, and macroscopic merging and diverging rules are used to prescribe traffic dynamics at
merging and diverging junctions. Then we mathematically prove that, in a traffic statics problem
with constant demands at the entrance links and constant supplies at the exit links, there exist
stationary states in the network, and gridlock is always a stationary solution. Furthermore, with
the Poincaré map developed in Jin (6), this paper shows that the gridlock state may be stable or
unstable, depending on relationship between the merging priority and the diverging ratio.
Finally, a feedback control algorithm to mitigate gridlock is proposed, and its effect on the
existence and stability of gridlock is discussed.

The rest of the paper is organized as follows. In Section 2 the network kinematic wave
model for traffic dynamics in the beltway network is presented. In Section 3 the traffic statics
problem in the beltway network is formulated, and the existence of gridlock stationary states is
proved. In Section 4 the Poincaré map is applied to study the stability of the gridlock state. In

Section 5, the impacts of an evacuation diverging model on the gridlock state are studied.
In Section 6, the paper concludes with discussions and possible future studies.

NETWORK KINEMATIC WAVE MODEL

For a rotationally symmetric beltway network, shown in Figure 1a, N entrances (or on-ramps)
and N exits (or off-ramps) (N > 2) are labeled from 1 to N, respectively. It is assumed that all
mainline links between an entrance and an exit have the same length, L, and they are labeled
from 1 to 2N in a clockwise fashion. In addition, the merging junctions are labeled by 2n — 1,
and the diverging junctions are labeled by 2n (n=1,- - -, N).

On mainline linka (ea=1, - - -, 2N ), at a point (a, x,) and time ¢, traffic density, speed,
and flow-rate are denoted by ku(x,, 1), va(x, 1), and g.(x,, t), respectively. It is assumed that all
links share the same fundamental diagram (7): ¢ = Q(k), which is unimodal and attains its
capacity C = O(K,) at the critical density of K.. An example is the following triangular
fundamental diagram:

Q(ka) = min{Vka’W(K - ka)} (1)
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where V is the free-flow speed, K is the jam density, and —W is the shockwave speed in
congested traffic. For a flow-rate q,, Ki(q,) and K»(g,) are the respective undercritical (UC) and
overcritical (OC) densities for g,; in other words, Q(K1(q.)) = O(K2(44)) = qa, and Ki(g,) < K. <
K>(g,). The triangular fundamental diagram and K;(-) and K;(-) are shown in

Traffic dynamics on link a, either a mainline, entrance, or exit link, are descrlbed by the
LWR model (8, 9):

dk, 0Q(kg) _
5t o =0 2)

in which traffic queues propagate and dissipate with shockwaves. In the celebrated cell
transmission model (2, /0) the LWR model is extended for traffic dynamics in a network in the
following two steps. First, the following traffic demand and supply functions are defined:

d = D(k,) = Q(min{K,,k,}), and (3a)

s = S(ka) = Q(maX{Kcv ka})- (3b)

0 Kiw) A Raln,) K;

FIGURE 2 The triangular fundamental diagram and flow—density relation.
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Second, traffic dynamics at the merging and diverging junctions can be described by the
following macroscopic models:

(a) At merging junction 2n — 1, the boundary fluxes are given by
q2n-1(0,t) = min{d,p, (L7, t) + 6,(t), 52,1 (07, 1)}, (4a)
G2n—2 (L, t) = min{dy,_, (L7, t), max{s;,,_1(0,t) — 6,(t), Bs2—1(0,)}} (4b)

where 2n —2 = 2N when n =1, g2, - 1(0, ?) is the influx of link 2n — 1, g2, - 2(L, ) the out-flux of
link 2n — 2, d>,, - 2(L—, t) the downstream demand of link 2n — 2, 55, - 1(0, #) the upstream supply
of link 2n — 1, and 9,(¢) the demand of entrance n. Here 1 — 3 is the merging ratio of the entrance,
and P that of the mainline link. This is the priority-based merging model proposed in Daganzo
(2), which was shown to be invariant in Jin (//) and thus can be used to analyze traffic dynamics
in the network without worrying about the existence of so-called interior states.

(b) At diverging junction 2#n, the boundary fluxes are given by

+
q2n—1(l‘r t) = min {dZTl—l(L_r t)' w: %(?} (Sa)

an(O' t) = qun—l(L' t) (Sb)

where ¢2,-1(L, t) is the out-flux of link 2n — 1, 2,(0, ?) is the influx of link 2n, d>, - (L , ?) is the
downstream demand of link 2n — 1, 5,,(0", £) is the upstream supply of link 27, and on(?) is the
supply of exit n. Here 1 — & is the diverging proportion to the exit, and  that to the mainline link.
This is the first-in—first-out diverging model proposed in Daganzo (2) and was shown to be
invariant in Jin (/2). Note that here all vehicles are assumed to have predefined destinations in
the diverge model (5).

Thus, Equations 2, 4, and 5 form the network kinematic wave model, which is the
continuous version of the cell transmission model, for traffic dynamics in the beltway network. It
can be considered a control system, where the traffic densities, k,(x,, ), are state variables; the
entrance demands, 6,(f), and exit supplies, 6,(¢), are inputs; and the merging priority, B, and the
diverging ratio, &, are control variables. Note that k,(x,, ?) is of an infinite dimension, and the
control system is infinite-dimensional and cannot be easily analyzed.

TRAFFIC STATICS PROBLEM AND EXISTENCE OF GRIDLOCK

Following Jin (13), the traffic statics problem for the beltway network is defined as finding
stationary solutions to the kinematic wave model, Equations 2, 4, and 5, when the origin
demands and destination supplies are all constant; in other words, 3,(f) = 6 and c,(¢) = ©.

Stationary Traffic Conditions on Links and at Junctions

As shown in Jin (3, 13), when link a becomes stationary, its density can be written as
(xll E [O) L])
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ka(xa: t) = H(uaL - xa)Kl(CIa) + (1 - H(uaL - xa))KZ (qa) (6)

where u, € [0, 1] is the uncongested fraction of the road, H(-) is the Heaviside function.
The upstream supply and the downstream demand are both constant: 5,(0", ) = s,, and
d,(L , t)=d,. Thus there are four types of stationary states:

Strictly undercritical: u,=1,q,<C,d; = qgands, =C (7a)
Strictly overcritical: u, =0,q,<C,d,=C,and s, = q, (7b)
Critical (C): u, €10,1], g, =C,d, =C,ands, =C (7¢)
Zero-speed shockwave: u, € (0,1),q, < C,d, =C,ands, =C (7d)
A stationary state on link ¢ is illustrated in . Note that all types of stationary states

can be considered as special cases of a zero-speed shockwave. In stationary states around
merging and diverging junctions, Equations 4 and 5 can be simplified as follows:

1. At merging junction 2n — 1,
q2n-1 = min{dzn_5 + 6, Son-1} (8a)

Gan—2 = min{d,,_,, max{s,,_; — 6, fSzn_1}} (8b)

2. At diverging junction 2n,

q2n—1 = Mmin {dZn—psz?n:&} (9a)

d2n = $q2n-1 (9b)

Therefore, to solve the traffic statics problem, it is necessary to find g,, u,, d,, and s, for
a=1,---,2N from the system of algebraic equations in Equations 7, 8, and 9. In general, since
each link can have four possible types of stationary states, there can be 42" possible
combinations, and a brute force method as in Jin (/3) cannot apply in this case.

0 Uy L L
FIGURE 3 Stationary states on a link.
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Existence of Gridlock and Other Stationary Solutions

In the gridlock state in the beltway network, there are ¢, =s, =0,u, =1,and d, =C
fora=1,---,2N.

Lemma 3.1. If 6 > 0 and o > 0, then the entrance links are jammed, and the exit links are
empty.

Proof. For entrance link n at merging junction 2n — 1, since the flow-rates on links 2n — 1 and
2n — 2 are both 0, the flow-rate on the entrance link is also 0. Thus its upstream supply, s, has to
be 0, since, otherwise, its upstream flow-rate equals min{9o, s} > 0. From Equation 7 it is evident
that a link whose upstream supply is 0 has to be totally jammed.

For exit link » at diverging junction 2n, its flow rate is also 0. Thus its downstream
supply, d, has to be 0, since, otherwise, its downstream flow rate equals min{d, ¢} > 0. From
Equation 7 it appears that a link whose upstream supply is 0 has to be empty.

Theorem 3.2. In a beltway network, the gridlock state is always a stationary solution.

Proof. First, clearly the gridlock state is a stationary state on a link as defined in Equation 7.
Second, at merging junction 2n — 1, since d,,,_, = C and s,,_; = 0, we have

Q2n—1 = 0 = min{C + &, 0}
Qon-2 = 0 = min{C, max{—§, 0}}
Thus, the gridlock state satisfies the merge model. Third, at diverging junction 2n,

since d,,,_; = 0 and s,, = 0, we have

. o
d2n-1 = 0 = min {C; 0,1—_5}

q2n = 0 =&qon—1

Thus, the gridlock state satisfies the diverge model. Therefore the gridlock state is a stationary
solution of the network kinematic wave model with constant entrance demand and exit supply.

Theorem 3.2 is a very important observation, even though the mathematical proof is quite
straightforward. From this theorem one can conclude that, if a beltway network is initially
jammed, it will always be jammed. Given Lemma 3.1, this is a bit surprising, since there are
sufficient spaces at the exit links and sufficient vehicles at the entrance links. The occurrence of
such a gridlock state is highly related to the diverging model, in which all vehicles have
predefined routes, even though there are better options in other routes. This suggests that route
guidance strategies can be helpful for preventing the occurrence of gridlock in a beltway
network.
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STABILITY OF GRIDLOCK

In the gridlock state, all mainline links are congested, and traffic waves propagate upstream.
Thus, there is a counterclockwise circular information propagation path along the ring road.
As shown in Figure 1, two Poincar¢ sections are defined at the upstream points of two
consecutive merging junctions 3 and 1, and denote the two out-fluxes of the mainline road by
v(t) = q2(L, t) and vi(¢) = qan (L, 1), respectively.

After T, v(¢) propagates to the diverging junction 2, and s,(0+, ¢ + T7) = v(¢), since link 2 is
congested. From Equation 5 there is

ql(L't + Tl) = g

After Ty, qi(L, t + T) propagates to the merging junction 1, and s; (0*,t + T, + T,) =
q,(L,t + T,) since link 1 is congested. In Equation 4

qon(L,t +T) = Bq (Lt +Ty) = Ev(t)

$
where T= T + T,. Then, after N pairs of entrance and exit links, the following Poincaré¢ map is
obtained:
v(t + NT) = (E)N v(t) (10)
3

Note that the Poincaré map is valid only when all links are congested and cannot capture
other types of stationary states.

For the Poincaré map, (Equation 10), the gridlock state v(¢) = 0 is always an
equilibrium point. Furthermore, from the Poincar’e map, the stability of the gridlock state can
be determined:

1. Wheng < 1, the gridlock state is asymptotically stable, and the half-life equals
In2
N 1n(§)'

2. Wheng > 1, the gridlock state is unstable.

3. When g = 1, there can exist multiple Lyapunov stable stationary states. It can be

verified that these results are consistent with those in Daganzo (/).

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/22095

Celebrating 50 Years of Traffic Flow Theory

Jin 307

MITIGATION OF GRIDLOCK WITH ADAPTIVE DRIVING
Existing Mitigation Strategies

For a beltway network described by Equation 2 with Equations 4 and 5, when the exit links are
uncongested, three types of control strategies have been discussed in Daganzo (7, 3, 4) to
mitigate the impacts of gridlock:

1. The demand J,(?) can be regulated by ramp metering. This may delay the occurrence
of gridlock. But when all links are congested, if g < 1, the system will converge to the gridlock

state irreversibly.
2. The merging ratio for the entrances, 1 — f, can be decreased by signal settings at the

intersections. This can destabilize the gridlock state when g > 1.

3. The diverging proportion to the exits, 1 — £, can be increased by variable message

signs and adaptive driving behaviors. This can also destabilize the gridlock state when? > 1.

These results can be explained by Equation 10. However, as shown in Section 3, these
strategies may not avoid the occurrence of gridlock, since the gridlock state is always a
stationary solution to the system.

A New Adaptive Driving Strategy

This subsection addresses another type of adaptive driving strategy, derived from the evacuation
model in Jin (5). At a diverge 2n, the following diverging model is applied:

q2n—1(L’ t) = min{dZn—l(L_’ t), SZn(0+’ t) + O-n(t)} (1 la)
A2n (0’ t) = min{SZn(0+f t), maX{dZn—l(L_r t) — Op (t), ‘EdZn—l(L_' t)}} (1 lb)

where ¢ €0, 1] is the priority for adaptive drivers to choose the ring road. In a sense, this is a
feedback control strategy, as the diverging ratio is determined by the dynamic traffic conditions.

Consider symmetric stationary solutions on the ring road, in which all odd-numbered
links share the same traffic conditions, denoted by ¢, u, di, and 51, and all even-numbered
mainline links share the same traffic conditions, denoted by ¢», w2, d>, and s,. Thus, from
Equations 8 and 11

q, = min{d; + 8, s,} (12a)
q; = min{d,, max{o; — 6, Bs;}} (12b)
q, = min{dy, s; + g} (12¢)
q; = min{s,, max{d, — 0,¢d;}} (12d)
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Lemma 5.1. When § > 0 and ¢ > 0, the gridlock state is no longer a solution of Equation 12.

Proof. It is assumed that the gridlock state is still a stationary solution of Equation 12; in other
words, d, =d; = C, and 51 = 5, = 0. From the first two equations, it is clear that g, = g, = 0.
However, from the third equation, 0 = min{C, o} > 0, which is impossible. Thus, the gridlock
state is no longer a solution.

Note that the adaptive driving strategy yields the same results as without using it under
uncongested conditions. In this case, g; = d; <s; = C, and from (12¢) and (12d) comes ¢; = d;
and g, = &d,. That is, vehicles can still use their original routes under uncongested conditions.
However, when traffic is congested, some vehicles will have to be rerouted to avoid the
development of gridlock.

CONCLUSION

For this study researchers formulated the traffic dynamics in a beltway network with the network
kinematic wave model incorporating the LWR model as well as invariant merging and diverging
models. Then, stationary states, including the gridlock state, and their stability, were studied.
Finally, existing mitigation strategies were discussed, and a new evacuation-based strategy that
eliminates the gridlock state in stationary states was proposed.

The closed-form network kinematic wave model of the traffic dynamics in the beltway
network has enabled the analyses of stationary states and their stability properties. In this study,
however, the discussions are at the macroscopic level. In the future researchers will be interested
in finding the optimal strategy that prevents gridlock but involves the minimum number of
reroutings at the microscopic level. In addition, researchers will be interested in designing the
best mitigation strategies that can lead to the minimum delays and in designing the adaptive
control strategies for mitigating traffic congestion and avoiding gridlock in more general
networks.
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uch of the literature on exclusive bus lanes pertains to how these lanes might induce shifts

in mode choice by prioritizing bus travel, sometimes at the expense of degrading travel by
car; for example, see Basso et al. (/). A separate line of research theorized that the conversion of
regular-use lanes to bus-only lanes can, in certain circumstances, improve travel for cars as well
as buses, even in the absence of modal shifts (2). By removing buses from queues and putting
them in their own, faster-moving lanes, target service frequencies can be maintained with fewer
buses; thus, fewer bus lanes are needed and more lanes can be left for the exclusive use of cars.

However, these Pareto improvements were predicted in Cassidy et al. (2) only when
converted lanes enjoyed rather high bus flows and only by relying on a so-called “smoothing
effect,” which describes the network capacity gained when distinct travel modes are segregated
into their own lanes. With this segregation, disruptive vehicular interactions are diminished,
which can generate higher bottleneck capacities (3, 4). In efforts to garner the kinds of high-level
insights that can guide large-scale planning decisions, street networks were modeled in Cassidy
et al. (2) as rotationally-symmetric, closed-loop beltways operating in the steady-state.'

The present work follows lines of thought that are similar to those in Cassidy et al. (2),
in that it, too, models the impacts of converting regular lanes to bus lanes on rotationally-
symmetric beltways and assumes that travel demands for buses and cars are not subject to shifts
from one mode to the other. However, the present work recognizes that rush periods are
invariably characterized by non—steady-state conditions. In other words, the early part of a rush
period is typically characterized by travel demand that exceeds beltway capacity, such that
beltway queues expand, while the later part is characterized by demand that falls below
capacity, such that queues gradually disappear. It turns out that these non-steady-state realities
can be favorable to bus lanes, meaning that lane conversions can sometimes improve travel for
buses and cars, even if one ignores the smoothing effect.

ASSUMPTIONS AND METHODS

This paper assumes a set of conditions that might describe the operation of jitney buses in a city
within the developing world, albeit in idealized fashion. Contrary to Cassidy et al. (2), it is
assumed that the number of bus trips made during the rush is fixed, irrespective of whether some
lanes are given to buses. Each bus enters a beltway network during the rush, serves assigned
portions of the network, and then exits. The points from which buses and cars enter the beltway

310
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are uniformly distributed over its boundary. When buses and cars share the same lanes, both
modes compete for available road capacity to enter and circulate through the beltway. When
some lanes are instead set aside for buses, those buses enter and circulate without delay, and cars
are left with fewer lanes on the beltway for their use. The number of bus lanes to be used on the
beltway, NV, must be integer valued such that 1 <N < NT —1, where NT is the beltway’s total
number of lanes available to serve traffic in each travel direction. The upper bound guarantees
that at least one lane is available in each direction to serve cars. Very importantly, once all rush-
period bus tours are completed, all NT lanes are thereafter made available to cars.

It is further assumed that prior to the start of a rush at time # = 0, there is a fixed demand
in passenger car equivalents (pce) that is less than beltway capacity; from ¢ =0 to ¢ = tr, there is a
fixed demand that exceeds the previous rate by the amount A (in pce/h), and this high demand
exceeds beltway capacity, and at ¢ > ¢r, demand returns to the initial low rate that occurred prior
tor=0.

For simplicity, the average speed and the average distance traveled on the beltway are all
measured by pce. The implicit assumption is that the variances in speed and in distance traveled
are not large, neither when measured across vehicles of the same class nor across the two distinct
classes.

Beltway traffic is described using a triangular-shaped macroscopic fundamental diagram
(MFD) that relates total flow on the network (in pce/h) to network-wide density (pce/km), much
as in Daganzo (5). Knowing the beltway’s physical size and the vehicle trip length on it, the
MEFD is rescaled to a network exit function (NEF) that relates the total vehicle accumulation on
the beltway, n (pce), to the rate that vehicles complete their trips on it, ' (pce/h). The maximum
trip-completion rate is fi, and the corresponding accumulation is 7.

For this paper the beltway network is viewed as being composed of a series of identical
building blocks, like the building block shown for a single travel direction in . When the
beltway is congested a; > B, , where aj is the proportion of pce that enters the block j from outside
the beltway, and f; is the proportion of the block’s pce that exits the beltway. Hence for every
pce that enters a block via the beltway, there are (1 + g;) that traverse the block and remain on the
beltway. Given that the blocks are identical and that the beltway is rotationally symmetric, aj and
B; are aggregated across all the beltway blocks. Hence, a = Zjaj and § =Xjpj represent the
proportion of pce that enters and exits the beltway in total. The merge model of Daganzo (3) is
used to estimate the block entry flows at short time steps.

With entry and exit flows thusly obtained for a point in time, ¢, the NEF is used to
determine the accumulation in the beltway, n(#). Then, a queueing diagram like the one in
can be incrementally constructed to estimate delays.

T (1+) (1-B)(1L+) i
/4 N2
o B(l+a) O

FIGURE 1 Building block of the beltway.
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The diagram in Figure 2 was constructed for the case in which buses and cars share the
same lanes. (The fixed flow at # <0 and 7 > ¢ is treated as a background rate and was subtracted
from the cumulative count curves.) When bus lanes are used to segregate buses and cars, the
analysis is performed using the demand for car travel (only), since buses are no longer subject to
delays. The merge model and the NEF are rescaled to account for the diminished space that
remains available to car traffic.

Parametric analysis featuring comparisons of segregated and nonsegregated cases unveils
certain insights. Examples follow.

EXAMPLE FINDINGS

presents analysis outcomes for ranges of #r (normalized by average vehicle free-flow
trip time on the network) and A (normalized by fm). Other key inputs to the analysis are noted in
the figure caption. Most of these were borrowed from Geroliminis and Daganzo (6).

The boundary lines near the graph’s upper-right corner delineate where combinations of ¢,
and A create gridlock on the beltway network. Tellingly, the gridlock region is smaller for the
segregated case, where one or more beltway lanes are given over to buses.

The darker-shaded area at the bottom of the graph highlights the combinations of # and
A, for which bus lanes increase the person-hours traveled by car on the network, and even the
total person-hours traveled by both modes combined, as compared against not setting aside any
lanes for bus-use only. The finding comes despite the advantages that bus lanes extend to bus
travelers. The lighter-shaded region directly atop denotes combinations for which the bus lanes
still increase the person-hours traveled by car but diminish the total hours traveled via both
modes combined. Very importantly, the large unshaded portion of the graph shows where bus
lanes diminish not only the combined total hours traveled but also the hours traveled by cars.

Cumulative
Number (pce)a
Demand curve
At, T
1 1
| LEr Departure
: : curve
3 1
A 1 1
] ]
] |}
[ 1 .
I [ /]
I | 1 et { (4]
[ [ 1
] I ]
1M I I
] I [ ]
] V ]
1 [ 1
] 1 ]
1 L L »
n/AF t

Time(hr)

FIGURE 2 Cumulative total demand, entry and departure curves.
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FIGURE 3 Delay reduction map for a bus demand proportion of 20%, a number of lanes
of 3, fm = 15,660 pce/h, nm = 3,000 pce, a=0. 2, p = 0. 14, a maximum on-ramp capacity of
2fm, and a maximum total accumulation of 6,500 pce.

Car-hours diminish in these latter cases because by enabling buses to travel faster, the bus
lanes mean that the total collection of bus tours will end earlier in the rush. Thereafter, all lanes
are given over for car travel, and cars no longer compete with rush-period buses for beltway
capacity.’

The findings are even more favorable to bus lanes when one considers the smoothing
effect.

Other illustrative analyses and other insights are offered in the full paper.

NOTES

1. The beltway is a good representation of a congested downtown street network. For example,
the beltway’s on- and off-ramps can represent the downtown’s access and egress points; the shorter the
downtown’s block lengths, the greater the number of beltway ramps. And the beltway’s circumference
can be selected so as to account for the downtown'’s total available road space.

2. The bus lanes are not Pareto improving in these cases, because car travelers during the early
part of the rush incur greater delays owing to the fewer number of beltway lanes available to them.
Happily, these added delays are more than compensated for by the delay savings that cars enjoy later in
the rush.
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