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i 

Preface 
 
 

s one of the long-time international members of the Traffic Flow Theory and Characteristics 
Committee and a long-time head of its German counterpart, I want to express my sincere 

congratulations on 50 years of traffic flow theory.  
I remember the ancestors of this committee—like Bob Herman, a former researcher at 

GM, who started investigations of car-following behavior by distance measurements of a vehicle 
in a platoon with a thread winded on a coil and connected with the preceding vehicle. Also 
notable was the analysis of “Investigation of Traffic Dynamics by Aerial Photogrammetry 
Techniques” by Joseph Treiterer and Jeffrey A. Myers from Ohio State University. All this 
pioneering work of traffic flow description and traffic pattern formation was based on the ideas 
of Bruce Greenshields, who first developed the terms “traffic density,” “traffic flow,” and 
“(mean) speed;” their definitions; and the corresponding measuring instructions more than 80 
years ago. It was therefore an utmost concern to celebrate Greenshields’s legacy, which the 
committee honored with a midyear meeting in 2008, in Woods Hole, Massachusetts, 
commemorating 75 years of Greenshields’s famous publication. The resounding success started a 
series of meetings: the 2008 symposium at Woods Hole; “Does Traffic Data Support Traffic 
Models?” in Annecy, France, in 2010; the Symposium on Innovations in Traffic Flow Theory 
and Highway Capacity and Quality of Service in Fort Lauderdale, Florida, in 2012; and now, in 
2014, the committee’s 50th anniversary celebration in Portland, Oregon.  

The observation during my time working with the committee is the trend away from 
macroscopic modeling and toward microscopic simulation because of the enormously increased 
power capacity of computers. Another trend is based on the influence of modern communication 
technology and driver-assistance systems on traffic pattern formation. The applications of short-
range communication technology connecting vehicles with each other and with infrastructure 
facilities enables new traffic control possibilities and opens new challenges for traffic flow 
description and modeling. Cooperative driving with data exchange governing braking actions, 
crash sensor data, steering maneuvers, windscreen wiper positioning, and warning light positioning 
will shape the traffic of the future and redesign the requirements of traffic flow theory. The airbag 
sensor technology will provide us with high-quality approach data.  

Does traffic flow theory offer answers to the way in which rapid and safe data transfer 
has to be organized with prioritization of surrounding vehicles?   

It is already clear that the active distance warning equipment will enhance the knowledge 
of distance and speed and give support for measurements in the “vehicle-to-vehicle” context.   

From “vehicle-to-infrastructure” communication, such as automatic tolling and roadside 
warning systems, destination data can be derived (vehicle probe or floating car data). These data 
find their way into traffic signal preemption and operating condition checks of computer-aided 
operating control systems for transit, an alternative to floating car data via mobile telephone. 
Traffic flow theory can help in the design of safe data transfer including vehicle classification 
and identification, as well as for the design of displays showing hazardous conditions based on 
multifactorial interpretation of actively transmitted vehicle data. The multifactorial analysis links 
the data of the vehicle to infrastructure communication with wheel revolution counter and 
odometer data. 

One of the accomplishments of the committee is the initiation of the “Traffic Flow 
Monograph,” edited by the Federal Highway Administration. This basic compendium is a terrific 
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ii 

support for academia and practitioners, even in its present form, to answer questions about the 
simulation of traffic systems, emissions reduction through better traffic management, empirical 
evaluation based upon on-road measurements, and incident management in intelligent 
transportation. It will be exciting to look forward to a new edition that addresses some of the 
challenges explained above. 

The stimulations to the Highway Capacity Manual are not to be underestimated. Sharing 
the ideas with representatives of well-respected universities from the United States and Canada 
always enriches the committee and so I wish the committee a bright future and many more years 
of inspiring work—ad multos annos! 
 

—Reinhart Kühne, Germany 
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FUNDAMENTAL DIAGRAM 
 

Capacity Drop 
A Comparison Between Stop-and-Go Wave  

and Queue Congestion at Lane-Drop Bottleneck 
 

KAI YUAN 
VICTOR L. KNOOP 

SERGE P. HOOGENDOORN 
Delft University of Technology, the Netherlands 

 
LUDOVIC LECLERCQ 

Université de Lyon, France 
 
 

n freeways, the maximum traffic flow through a bottleneck is usually higher than the outflow 
of congestion there. This phenomenon is called the capacity drop. In literature, there are 

considerable debates about the mechanism causing this phenomenon. This paper studies the 
mechanism by analyzing real-life data of 2 different days. The traffic states downstream of a lane 
drop are analyzed. It is observed that the outflow of a stop-and-go wave on the three-lane section 
is lower than that of a standing queue upstream from the lane-drop bottleneck. A more detailed 
analysis shows the phenomenon on lane level. Finally, data from 2 days show a common feature 
on flow distribution over lanes. This finding shows that even in congestion states, the flow in 
shoulder lane (slow lane) can be lower than that in other lanes in the three-lane section because 
of lower density. Moreover, it is found that close to the bottleneck, a larger part of the flow is in 
the median lane. After several hundred meters the lane flow distribution normalizes to 
equilibrium, indicating much lane changing out of the median lane directly downstream of the 
lane-drop bottleneck. At a four-lane section upstream from the bottleneck, a large number of lane 
changes occur. The understanding of the mechanism behind the capacity drop, as well as the 
sizes of the capacity drop, might lead to measures to reduce delay. Moreover, the flow 
distribution can contribute to lane-changing models closely resembling reality. 
 
 
INTRODUCTION 
 
Generally congestion can be divided into two classes: stop-and-go waves, propagating parts of 
congestion with two fronts moving upstream along a freeway, and standing queue, with its head 
fixed at a bottleneck. An active bottleneck is a bottleneck with a free-flow situation downstream 
and a traffic jam upstream. The activation of a bottleneck signals the onset of a standing queue. 
Theoretically downstream of an active bottleneck the outflow of the standing queue should be 
the maximum flow on the road, or capacity. However, the queue discharging rate of congestion 
is often lower than the maximum flow on a road without congestion. This phenomenon is called 
the bottleneck capacity drop.  

Researchers have observed the capacity drop phenomenon for decades at bottlenecks. 
Those observations point out that the range of capacity drop, the difference between the 
bottleneck capacity and the queue discharging rate, can vary in a wide range. The capacity of the 
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road and the queue discharging flow are essential for the total delay on the road. Hall and 
Agyemang-Duah (1) report a drop of around 6% on empirical data analysis. Cassidy and Bertini 
(2) place the drop ranging from 8% to 10%. Srivastava and Geroliminis (3) observe that the 
capacity falls by approximately 15% at an on-ramp bottleneck. Chung et al. (4) present a few 
empirical observations of capacity drop from 3% to 18% at three active bottlenecks. They show 
at the same location the capacity drop can range from 8% to 18% (excluding the influences of 
light rain). Cassidy and Rudjanakanoknad (5) observe capacity drop ranging from 8.3% to 
14.7%. Oh and Yeo (6) collect empirical observations of capacity drop in nearly all previous 
research before 2008. The drop ranges from 3% to 18%. 

Even though a large amount of research effort has gone into the capacity drop, some 
significant the macroscopic features on capacity drop are still unclear. For example, it is not clear 
to what extent the capacity is reduced when different congestion occurs upstream. Moreover, the 
amount of traffic on each lane (flow distribution over lanes) is unclear, especially at the 
downstream of a bottleneck with compulsory merging behaviors upstream. Hence, this paper 
tries to show more empirical observations to forward traffic research to reveal more empirical 
features. These findings can contribute to a better understanding of the traffic processes, possibly 
leading to control principles mitigating congestion. The paper also gives an indication of the lane 
change behavior at the bottleneck locations.  

This paper answers the following question: What are differences between traffic states 
downstream of stop-and-go waves compared to downstream of standing queues at the same site? 
In answering this question, researchers use the following four subquestions. First, to what extent 
does the capacity reduce downstream of a stop-and-go wave? Most of the previous research 
observes capacity drop phenomenon at active bottlenecks. Few of those studies (7) reveal 
features of capacity drop downstream of a stop-and-go wave. This study presents empirical 
observations of capacity drop in a stop-and-go wave. Second, to what extent does the outflow of 
congestion (i.e., the capacity with congestion upstream) vary at the same road section without 
other disturbances such as weather and road layouts? In short, this subquestion discusses the 
stochasticity of the outflow of the queue. Previous research shows that discharging flows of 
standing queues at one bottleneck only exhibit small deviations (2); but that research only targets 
standing queue at an active bottleneck. In contrast to the standing queue, where traffic states are 
limited in a narrow range because the road layout dictates the congested traffic state upstream, 
different stop-and-go waves can result in different congestion states, including standing queues 
and stop-and-go waves. The study of stop-and-go waves can enlarge the observation samples. 
Third, what is the flow in each lane in queue discharge conditions? This might shed light on the 
capacity drop as well. Fourth, what is the traffic flow distribution over lanes downstream of a 
bottleneck with compulsory merging behaviors upstream, especially locations near bottlenecks?  

To answer these four subquestions, this paper studies a traffic scenario where a standing 
queue forms immediately after a stop-and-go wave passes. It seems that the standing queue is 
induced by the stop-and-go wave. In this scenario, there can be at least two congestion states and 
two outflow states observed at the same road section on the same day.  

The remainder of the paper is set up as follows. Section 2 describes methodologies 
applied in this paper. This section applies shockwave analysis to recognize those different 
congestion. Section 3 shows the study site and the study data. In Section 4, empirical 
observations are presented, including various traffic states and flow distribution in each lane. 
Finally, Section 5 presents the conclusions.       
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METHODOLOGY 
 
This paper targets a homogeneous freeway section with a lane-drop bottleneck upstream. In the 
expected scenario, a standing queue forms immediately after the passing of a stop-and-go wave. 
It seems like the bottleneck is activated by the stop-and-go wave. In this way, researchers can 
compare the outflows of congestion at that location, and possible location-specific influences are 
excluded from the analysis.  

Since the differences in the capacity drop (in standing queues) between any 2 days at the 
same bottleneck are in a small range among days (2), it is difficult to observe standing queues in 
distinctly different congestion states at the same bottleneck. However, the congestion level in a 
stop-and-go wave is considerably different from the congestion in a standing queue. Congestion 
level is represented by vehicle speed in the congestion and density. Previous research (4, 8) 
shows that the capacity drop is strongly related to the congestion level, hence, it is expected that 
downstream of a stop-and-go wave traffic differs from downstream of a standing queue. This 
way, by combining several state points at the same road stretch, can be observed empirically, 
including free flow and congestion states. Shockwave analysis is applied to identify those 
congestion states qualitatively.  

By comparing the outflows downstream of congestion, this paper shows the capacity drop 
corresponding to the two different congestion types: stop-and-go wave and standing queue. The 
key to the traffic state analysis is to identify those traffic states. To avoid unnecessary deviations, 
this paper applies slanted cumulative counts to calculate flow. Both of these two outflows are flow 
detected downstream of the congestion. There are repetitive observations, for the duration of 
congestion until the congestion is dissolved, and there are no other influences from downstream 
apart from the stop-and-go wave. The outflow of a stop-and-go wave can be detected at some 
location where the speed returns to the free-flow speed after the break down phenomenon, and the 
discharging flow can be detected at each location downstream of an active bottleneck.  

The states that occur are determined using shockwave analysis. Figure 1 shows the 
resulting traffic states, including the regions in space-time where the outflows can be measured. 
For the sake of simplicity, the authors chose triangular fundamental diagrams. Figure 1a shows 
these fundamental diagrams, the smaller one for the three-lane section and the larger one for the 
four-lane section. The outflow of a stop-and-go wave, shown as State 5, and discharging flow of 
standing queue, shown as State 6, both lie in the free-flow branch, see Figure 1. The flow in both 
of these two states is lower than the capacity shown as State 1 to represent the capacity drop. A 
stop-and-go wave, State 2 in Figure 1, propagates upstream to the bottleneck, and this triggers a 
standing queue, State 4. Figure 1b shows that once the bottleneck has been activated both of 
States 5 and 6 can be observed in the downstream of the bottleneck. The further away from the 
bottleneck, the longer time State 5 can be observed. Note that because States 5 and 6 are always 
located in the free-flow branch, the shockwave between these two states is always a positive line 
parallel to the free-flow branch. Therefore, in Figure 1b the shockwave between States 5 and 6 is 
always the same in x – t plot, no matter which state shows a higher flow. 

Hence, for measuring the outflow observations at locations far away from the bottleneck 
are preferred. In that case, the outflow of a stop-and-go wave can be measured for a long enough 
time and compared clearly. 

With the same methodology, different outflow features in different lanes are analyzed. 
This shows the performance of each lane during the transition from outflow of stop-and-go wave 
to queue discharging flow. This paper applies slanted cumulative counts to calculate the outflow 
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(a) (b) 

FIGURE 1  Shockwave analysis on one traffic scenario at a lane-drop bottleneck:  
(a) fundamental diagram and (b) x – t plot. 

 
 
in each lane. Note that in the Netherlands the rule is “Keep Right Unless Overtaking.” This 
asymmetric rule might lead to a different lane choice, for instance for slugs and rabbits (9), as 
well as leading to different traffic operations.  
 
 
DATA HANDLING 
 
This paper reveals the flow distribution in each lane as a function of average density over lanes 
in section 4.4. The density (ρ), which is estimated through dividing flow (q) by space–mean 
speed vs, is necessary.  

In the Netherlands, loop detector data is time mean speed (vT) and flow (q). Knoop et al. 
(10) point out the substantial difference between the time–mean speed vT

 
and space–mean speed 

vs, especially when the speed is in congestion. Yuan et al. (11) present a correction algorithm 
based on flow-density relations to calculate space–mean speed. This method requires that traffic 
states should be on the linear congested branch of the fundamental diagram. However, this paper 
considers acceleration states downstream a bottleneck, so the authors need another method. 
Knoop et al. (10) show an empirical relation between space–mean speed and time–mean speed 
(Figure 2). The space–mean speed actually is estimated as harmonic speed. This relation is 
applied to space–mean speed calculation in Ou (12). This paper also applies the relation to 
calculate the space–mean speed and the density.  
 
 
DATA 
 
The data analyzed are 1-min aggregated, collected around a lane-drop bottleneck on the freeway 
A4 in the Netherlands. This paper considers the northbound direction just around Exit 8 (The 
Hague) in A4, shown in Figure 3. The layout of the study site is shown in the right part of Figure 
3. The targeted bottleneck is a lane-drop bottleneck, which is circled in Figure 3. Downstream of 
this bottleneck, there is another lane-drop bottleneck next to Exit 7. Drivers in the targeted road 
section are driving from a four-lane section to a three-lane section (the upward direction in 
Figure 3), so a lane-drop bottleneck occurs. The data are collected from 10 locations with 
approximately 500-m spacing between them, giving a total length of around 5 km. There are two 
detectors in the four-lane section, followed by eight in the three-lane section. This paper does not 
consider detectors further downstream, because vehicles will change into the shoulder  
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FIGURE 2  The impact of difference between time–mean speed and harmonic mean speed: 

10-s aggregation (blue line), 60-s aggregation (black dashed line), and 900-s aggregation 
(red line with circles). [From Knoop et al. (10)]. 

 
 
 
 

 
(a) (b) 

FIGURE 3  Open-street figure of (a) targeted section in freeway A4 in the Netherlands 
shown in red dots, and (b) the layout of the study site. The bottleneck is a lane-drop 

bottleneck highlighted with a red circle. This paper only targets 10 locations. The total 
distance from Location 1 to Location 10 in the freeway is approximately 4.5 km. The 

bottleneck is around 6.5 km from the downstream off-ramp. 
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lane to leave the freeway through Exit 7, possibly leading to external disturbances, for instance 
lane-changing near the off-ramp.  

Data for analysis are collected on 2 days: Monday, May 18, 2009, and Thursday, May 28, 
2009. Figure 4 shows the speed contour plots in the study section on 2 days. There are two 
similar traffic situations on both days. The first event is a stop-and-go wave. On May 18 the 
stop-and-go wave originated from the lane-drop bottleneck near Exit 7 at about 16:45. On May 
28 the stop-and-go wave entered the selected stretch from further downstream at around 16:55. 
At 17:40 and 17:50 (May 18 and 28, respectively), the next stop-and-go wave reached the lane-
drop bottleneck. Downstream of the second stop-and-go wave there is congestion. In order to 
avoid influences of this congestion, this study ends the analysis before the entering of the second 
stop-and-go wave when calculating the outflows. When analyzing the flow distribution, the data 
from 16:00 to 19:00 are analyzed. During the targeted period, there is no other influence from 
downstream (i.e., the bottleneck is active).  
 
 
 
 

 
(a) 

 
(b)  

FIGURE 4  Layout of the study site and data on two days for study: (a) speed contour on 
May 18, 2009, and (b) speed contour on May 28, 2009. The lane-drop bottleneck located 

between Detectors 8 and 9 is activated by a stop-and-go wave from downstream. The 
numbers show locations of detectors. This study is restricted to 10 locations around the 

targeted lane-drop bottleneck. 
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RESULTS 
 
This section first presents the different states and then the capacity estimates; subsequently, the 
lane-specific features are discussed. 
 
State Identification 
 
This section describes empirical observations. Generally, the empirical observations are in line 
with the expectations presented in Section 2. The outflow of the stop-and-go wave and the 
discharging flow of the standing queue are clearly distinguishable. Figure 4 shows empirical 
slanted cumulative counts across three lanes at eight locations downstream of the bottleneck on 2 
study days. The arrow in each figure shows the shockwave, which propagates downstream from 
the bottleneck. This means the traffic is in a free-flow state and not influenced by the off-ramp 
downstream. 

This shockwave separates the outflow of stop-and-go wave from the discharging flow of 
standing queue. This shockwave has been expected in Section 2 (see Figure 1b). At one location, 
the authors first observe the outflow of the stop-and-go wave and then observe the discharging 
flow of the standing queue. First, they find the outflow of the stop-and-go wave only directly 
downstream of the stop-and-go wave. The wave travels upstream, from Location 1 to Location 8. 
Once it reaches Location 8, the traffic state changes, with a wave propagating downstream, 
which takes some time before it reaches Location 8. During that whole time at Location 1 the 
outflow of the stop-and-go wave can be detected.  

The discharging flows found for the 2 days are constant for each day, at 6,040 veh/h 
(May 18) and 5,700 veh/h (May 28), see Figure 5. Although they are different for both days, the 
flows are remarkably constant over time. There is also a difference between the flows 
downstream of the standing queues on May 18 and 28. This holds for all locations downstream 
of the bottleneck, including the acceleration phase. The flow is different but constant for both 
days. During the acceleration process, the density continuously decreases. Since the flows differ 
for the 2 days, the speeds must differ for the 2 days for situations with an equal density. This  
 
 

 
(a) (b) 

FIGURE 5  Slanted cumulative counts across three lanes at eight locations downstream of 
the bottleneck on 2 days: (a) May 18, 2009, and (b) May 28, 2009. 
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means that drivers leave a larger gap than necessary in the day with the lower flow (May 28), since 
apparently, given the speed–density relationship for the other day, they can drive with higher 
speeds given the spacing. 

Moreover, the downstream direction of the shockwave implies that the off-ramp (Exit 7 in 
Figure 3) does not influence the discharging flow. Oh and Yeo (6) imply that the off-ramp at the 
downstream location mitigates the capacity drop. At the study site, the off-ramp that is located far 
away has no effects. The shockwaves propagating downstream imply no influence from 
downstream. 
 
Capacity Estimation 
 
Figure 6 shows the capacities (with standing congestion upstream) that are the outflow of 
congestion at a homogeneous three-lane freeway section. In Figure 6, all red dashed lines show the 
slanted cumulative curves at the downstream locations, and the blue bold lines represent speed 
evolution there. All parts in Figure 6 show firstly a decrease of flow (during the time the stop-and-
go wave is present), indicated by a cumulative flow line with a negative slope. Afterwards, at 
Location 1 the flow is constant for about 20 minutes, at approximately 5,400 veh/h on May 18 and 
5,220 veh/h on May 28. Figures 6c and d show the slanted cumulative curves for Location 8, just 
downstream of the bottleneck. After the stop-and-go wave reaches Location 8, the jam soon 
transforms into a standing queue, and the outflow increases up to 6,040 veh/h and 5,700 veh/h, 
respectively. These two discharging flows propagate downstream from the bottleneck and reach 
Location 1. The higher outflow (6,040 and 5,700 veh/h) is not temporary and remains for at least 
15 min at each location. The solid black line in each of the figures indicates a flow to which the 
slanted cumulative curve can be compared. In each figure, the increasing slope of black lines 
shows that the outflow of stop-and-go wave is lower than the discharging flow of the standing 
queue. Typically, it is found that the outflow of the stop-and-go wave lies in the range of 5,220 to 
5,400 veh/h, and the outflow of the standing queue is in the range of 5,700 to 6,040 veh/h. All data 
points are collected in Table 1. The number of states corresponds to those in Figure 1. 

States 2, 4, 5, and 6 in Figure 1a are identified quantitively. States 2 and 4 stand for 
congestion states. States 5 and 6 represent states of capacities. Thus, a correlation between the type 
of congestion and its outflow is found. In fact, the outflow of a stop-and-go wave is lower than the 
outflow of a standing queue at the same location.  
 
Outflows in Each Lane 
 
When congestion occurs each lane presents different features regarding to outflows. In Figure 7, 
slanted cumulative counts and speed in each lane are presented, shown as a red dashed line and a 
blue bold line, respectively. Slow vehicles and trucks usually drive in the shoulder lane because of 
the Keep Right Unless Overtaking rule. Therefore, the flow and speed detected in each lane at the 
same location differ from each other. In parts a and b of Figure 6, aggregated data over three lanes 
show an increase of outflow at the moment the wave separating the outflow from the stop-and-go 
wave and the outflow from the standing queue reaches the detector. In parts a and c of Figure 7, 
this increase of the outflow is observed in the median and center lane at Location 1 on May 18, 
2009, but not in the shoulder lane. On May 28 this increase is found in all lanes. The lack of 
change in flow in the shoulder lane is remarkable, giving the possibility that the difference in the 
capacity drop is a result of the vehicle composition.  
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(a) (b) 

 
(c) (d) 

FIGURE 6  Average time mean speed (blue bold line) and slanted cumulative counts (red 
dash line) across three lanes at Location 1 and Location 8 on May 18, 2009 (a and c), and 

May 28, 2009 (b and d). 
 
 
 

TABLE 1  Speed and Flow in Different Traffic State Points 

 May 18, 2009 May 28, 2009 
vT (km/h) q (veh/h) vT (km/h) q (veh/h) 

State 2 13.44 2,182.50 6.34 885.00 
State 5 98.73 5,400.00 98.52 5,220.00 
State 4 30.80 6,040.00 29.18 5,700.00 
State 6 98.32 6,040.00 98.24 5,700.00 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

FIGURE 7  Speed and slanted cumulative count in each lane on May 18, 2009 (a, c, and e), 
and May 28, 2009 (b, d, and f), at Location 1. Flows are shown next to the coinciding 

slanted cumulative counts (bold black lines). 
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The 2 days also show a difference: the outflow of the standing queue fluctuates more 
with time on May 18 (see Figure 7e) whereas on May 28 (see Figure 7f) the outflow of the 
standing queue fluctuates strongly in the shoulder lane. At the moment is it unclear what could 
be the reason for the fluctuation. 

When the bottleneck has been active, there are several different traffic states in the 
downstream of the bottleneck. Along the distance, the density decreases. Therefore, in the 
targeted scenario, a large range of density can be detected, which can reveal the flow distribution 
as a function of density across lanes. The flow distributions are shown in Figure 8. Red lines 
show the fast lane (median lane), black lines show the center lane, and blue lines show the slow 
lane (shoulder lane). Three bold lines (see Figure 8a and 8b) represent average flow distribution 
at three lanes based on all data. Circles and triangles are the empirical data collected in each lane 
at location 1 (see Table 1 and Figure 7). Those circles and triangles stand for the state of the 
outflow in each lane at Location 1 [i.e., State 5 and State 6, respectively (see Figure 1)]. The thin 
lines (in Figure 8c and 8d) represent the flow distributions at each location. The lines with five-
point stars stand for the distribution at Location 8.  

Figure 8 parts a and b show flow distributions on 2 different days. Both parts show a 
common feature. When the density lies within the range of 22 to 60 veh/km, the flow in the 
center lane is higher than that in both other lanes, although it keeps decreasing as density grows. 
When the density is around 60 veh/km, the fraction of the flow at shoulder lane reaches the 
minimum at around 23%. For the shoulder lane the decrease of the fraction of the flow was 
sharp, but afterwards the increase is only marginal. Meanwhile from 60 veh/km the fraction of 
the flow in median lane stops increasing with density and begins to stabilize at around 38%. Note 
that the density of 60 veh/km corresponds to a typical critical density.  

When the density exceeds 132 veh/km (May 18) and 95 veh/km (May 28), the fraction of 
the flow in the median is almost equal to the fraction of the flow in the center lane, at around 
35% for each, while the flow percentage at shoulder lane is around 30%. So even in states with a 
very high density, flow in the shoulder lane is still lower than that in the other lanes. When 
density reaches up to 220 veh/km, the flow begins to be distributed evenly over three lanes on 
May 18, while the flow distribution is more unstable on May 28. It is not surprising because in 
extremely high density situation standing vehicles can lead to some detection problems.  

Figure 8 parts c and d show the flow distribution at 8 locations. The flow distribution in 
the median lane (red line) at Location 8 (marked as red five-point stars) is much higher than that 
at the other locations (see Figure 8c and 8d). In contrast, the flow distributions in the center and 
median lanes at Location 8 are the lowest. That is because vehicles merge into the median lane 
when passing through the lane-drop bottleneck. In the downstream of Location 8, the flow 
distribution in the median lane is lower than that at Location 8. For the other locations, the 
distribution situations are similar to each other. The authors explain this by the following: 
Vehicles force themselves into the traffic stream, and it takes some time and distance before 
equilibrium distribution sets in again. Therefore, it is believed that a high percentage of vehicles 
choose to leave the median lane by changing lanes between Location 8 and Location 7. This 
situation is only visible when the density reaches up to 130 veh/km. 

The authors assume that because of the Keep Right Unless Overtaking rule in the 
Netherlands, the shoulder lane (slow lane) among three lanes is first choice for drivers when the 
density is extremely low. As the density increases to around 20 veh/km, the occupation of the 
center lane begins to be higher than that of the shoulder lane. The use of the median lane (fast  
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(a)  (b) 

 
(c)  (d) 

FIGURE 8  Flow distributions at different densities at three-lane freeway section. Parts a 
and b show average flow distributions over three lanes: median lane (red), center lane 

(black), and shoulder lane (blue) on 2 days, May 18 (a and c) and May 28 (b and d). Circles 
and triangles show the performance of each lane in State 5 and State 6, respectively, 

corresponding to data in Figure 7. Parts c and d show flow distributions at each of the eight 
locations. Each thin line shows a flow distribution at each location. Five-point stars 

represent the flow distribution at Location 8. 
 
 
lane) is the least at that time. As the density increases, in contrast to the shoulder lane where flow 
fraction reduces considerably, the use of median lane grows sharply. Finally, the median lane 
and center lane are highly made use of while the shoulder lane is being underused.  
 
Flow Distribution Over Lanes 
 
Figure 9 shows the speed in each lane at the same average density over three lanes. As a result of 
the Keep Right Unless Overtaking rule, when the density is low the speed decreases from median 
lane to shoulder lane. The median lane is the fastest lane. As the density increases, the speed 
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becomes more equal among the lanes. When the flow distribution is equal for the median and 
center lanes, the speed is equal for the three lanes. Because in congestion the speeds are equal in 
all lanes, so the low flow in the shoulder lane must be because of a low density or large spacing. 
That means that microscopically in congestion the spacing between successive vehicles in the 
shoulder lane is the largest among three lanes. 

Figure 10 shows the flow distributions in the four-lane freeway section upstream the 
lane-drop bottleneck. Note that the outflow of the upstream four-lane freeway section is the  
 
 

 
(a)  (b) 

FIGURE 9  Speed–density plot in each lane in the three-lane section on 2 study days: (a) 
May 18 and (b) May 28. The density is the average density over three lanes. 

 
 

 
(a) (b) 

FIGURE 10  Flow distributions at different densities at four-lane freeway section on  
May 18 (a). The distribution on May 28 (b) is similar. The traffic flow is  

moving from Location 10 (a) to Location 9 (b). 
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inflow of the downstream three-lane freeway section. There are two locations for the data 
collection: Location 9 and Location 10 in Figure 3. Traffic flow moves from Location 10 to 
Location 9. The figure only shows the data for May 18; the data for May 28 are similar. In fact, the 
authors can distinguish two pairs of lanes. First, Lane 1 and 2 are the median and shoulder lane of 
one of the upstream branches of the road. The flow distributions in Lanes 3 and 4 are similar to that 
of Lanes 1 and 2, respectively, also originating from a two-lane road upstream. The flow 
distribution at two of the locations differs considerably. On one hand, in contrast to Location 10, 
which is in the upstream of the Location 9, Location 9 shows a lower flow in the median lane, 
especially for low densities. On the other hand, at Location 9 the flow in the shoulder lane is higher 
for low densities.  

The noncompensated number of lane changes can be estimated by the difference in flow 
per lane between the two detectors for a certain density (e.g., one can see how much lower the flow 
is). Compensation is possible by other vehicles making opposite movements (e.g., vehicles moving 
into the lane). In Lane 3, the right center lane, the flow is higher at Location 9. Downstream of 
Location 9, all vehicles in the median lane have to merge into Lane 2. Drivers in Lane 2 (the left 
center lane) might anticipate this and make space for the drivers merging from the median lane. 
These lane changes can be considered as an explanation for the changes in lane flow distribution 
observed between Location 10 and Location 9. The relative flow in Lane 2 does not change as 
much, because there is a similar amount of lane changing from the median lane to Lane 2; what is 
observed is a decrease of the use of the median lane.  The number of lane changing decreases as 
the average density over lanes increases. The flow distribution at Lane 2 and Lane 4 is nearly 
stable for both locations and study days. At Location 9 near the bottleneck, the flow in Lane 3 is 
always the highest for both study days. Note that the demand in the two upstream two-lane freeway 
sections could possibly greatly influence the flow distribution at Location 10. 
 
 
CONCLUSIONS 
 
This paper compares the downstream states of a stop-and-go wave with that of a standing queue. 
The standing queue in this paper is induced at a lane-drop bottleneck by a stop-and-go wave. 
Therefore, at one bottleneck there are two different congestion states observed. In the downstream 
of the congestion there are free-flow states, which means the two outflows detected downstream of 
congestion are the capacities of the road section. This paper applies shockwave analysis to find 
those two outflows at the same road section, which is well traceable in the real data. The most 
important finding is that the outflow of stop-and-go waves is much lower than that of a standing 
queue. Therefore, the capacity with congestion upstream can vary in a rather wide range (e.g., from 
5,220 to 6,040 veh/h at a three-lane road section). The various capacities could be related to 
congestion states. 

In the acceleration from stop-and-go waves, the detected flow grows as the speed increases. 
In contrast, in the acceleration from standing queues, the flow remains a constant flow along 
freeway. So during the acceleration from a standing queue, the density there is an inverse 
proportional function of speed. 

There are two other findings. First, different features of outflow from congestion in 
different lanes can be found. Strong fluctuations occasionally can be observed in the shoulder lane, 
which might even trigger stop-and-go waves later on, for instance near a next bottleneck. Second, 
the flow distribution over three lanes is presented. This shows that particularly near the head of a 
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standing queue more vehicles can merge into the lane adjacent to the ending lane, thereby locally 
increasing the capacity of that lane. The capacity of the shoulder lane is markedly wasted when in 
congestion. The reason for the low flow distribution in the shoulder lane is the large spacing 
between successive vehicles. 

Future research should show the mechanisms behind these features from a behavioral 
perspective (whether people behave differently), from a vehicle perspective (what the influences of 
different acceleration profiles are), or from a flow perspective (what for instance the influence of 
voids is). 
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his paper presents an extended overview of a new methodology for deriving an empirical 
fundamental relationship from vehicle detector data. The new methodology seeks to address 

several sources of noise present in conventional measures of the traffic state that arise from the 
data aggregation process (e.g., averaging across all vehicles over a fixed time period). In the new 
methodology vehicles are no longer taken successively in the order in which they arrived, and 
there is no requirement to seek out stationary traffic conditions; rather, the traffic state is 
measured over the headway for each individual vehicle passage, and the vehicles are grouped by 
similar lengths and speeds before aggregation. Care is also taken to exclude measurements that 
might be corrupted by detector errors. The result is a homogeneous set of vehicles and speeds in 
each bin.  

While conventional fixed time averages may have fewer than 10 vehicles in a sample, the 
new binning process ensures a large number of vehicles in each bin before aggregation. 
Researchers calculate the median flow and median occupancy for each combined length and 
speed bin. Then they connect these median points across all of the speed bins for a given vehicle 
length to derive the empirical fundamental relationship for that length. This use of the median is 
also important; unlike conventional aggregation techniques that find the average, the median is 
far less sensitive to outliers arising from uncommon driver behavior or occasional detector 
errors.  
 
 
INTRODUCTION 
 
This paper presents an extended overview of Coifman (1), which develops a new methodology 
for deriving an empirical fundamental relationship (FR) from vehicle detector data. This work is 
important because much of traffic flow theory depends on the existence of an FR between flow 
(q), density (k), and space–mean speed (v) either explicitly [e.g., Lighthill and Whitham (2), and 
Richards (3) hydrodynamic model] or implicitly [e.g., car following models (4, 5)]. The FR is 
commonly characterized in terms of a bivariate relationship between two of the three parameters 
(in each case the third parameter can be calculated from the fundamental equation, repeated in 
Equation 1). All of the empirically generated FRs use data that average conditions over time or 
space, or both, to calculate the traffic state (q, k, v). It is difficult to measure k directly, so many 
empirical FR studies use occupancy, occ, as a proxy for k, where occ is the percentage of the 
sampling period, T, that vehicles occupy the detector. As shown in Equation 2, in stationary 
traffic occ is proportional to k by the average effective vehicle length, Leff during T; where a 
given vehicle’s effective length is the sum of its physical length and the size of the detection 
zone. 
  

T 
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ݍ  = ݇ ∗  (1) ݒ
ܿܿ݋  = ݇ ∗  ௘௙௙ (2)ܮ

 
Most empirical FR studies use traffic state measurements from conventional detectors 

that average vehicle measurements over fixed time sampling periods. Figure 1a shows the 
measured q versus occ from one of the dual loop detectors in the Berkeley Highway Laboratory 
(BHL) (6) on a single lane on a single day, using T = 30-s aggregation periods. The results are 
typical of 30-s aggregation periods aside from the fact that this location experienced over 12 h of 
recurring congestion on this day, as per the corresponding time series speed shown in Figure 1d. 
The q versus occ plot shows considerable scatter, and it is hard to imagine any single curve that 
would be representative of all of the observed data points. The scatter is commonly attributed to 
combining nonstationary traffic states [e.g., Cassidy (7)], and debate continues as how best to 
address the scatter. 

The choice of T is an effort to balance between maximizing the number of vehicles in the 
sample and minimizing the averaging across inhomogeneous traffic states. Often setting T = 30 s 
is considered to be a good balance between the two competing objectives, though the original use 
of T = 30 s appears to have been for the convenience of telecommunications (8). Figure 1b 
repeats the q versus occ for the same vehicles from Figure 1a, only now using T = 5 min. With 
the longer sample period, each data point in Figure 1b is more likely to combine different 
nonstationary traffic states, yet the scatter in this plot is diminished compared to T = 30 s. 
 

 

FIGURE 1  Conventional q versus occ: (a) T = 30 s, (b) T = 5 min. The corresponding time 
series: (c) flow and (d) speed. For reference, a dashed line is shown at qp = 1,500 veh/h. 
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Thus, the noise in the T = 30-s plot cannot strictly be due to averaging across nonstationary 
traffic states. The T = 5-min plot also exhibits plateauing predicted by Hurdle and Datta (9) and 
subsequently illustrated in Hsu and Banks (10); whereby the q versus occ within the queue is 
truncated at qp, some maximum q below the bottleneck capacity, due to traffic entering from on-
ramps between the detector location and the bottleneck. This downstream demand consumes a 
portion of the bottleneck capacity, and in this case the resulting plateau in the detector data plot 
falls around qp = 1,500 veh/h, as shown with a dashed line throughout Figure 1.  

Conventional fixed time sampling is a crude methodology that was originally designed to 
smooth out variability across vehicles in an era when computing power was expensive. While it 
is true that successive vehicles will usually experience similar traffic conditions while traversing 
the detector, the impacts of differing vehicle properties can far outweigh any benefits that might 
come from arbitrarily grouping vehicles based on successive passages; for example, Coifman 
(11) and Coifman et al. (12) show empirically that the range of feasible vehicle length 
undermines conventional relationships between q and occ. Coifman (13) uses hypothetical 
microscopic models to revisit the process of generating empirical FR and uncovered several 
commonly underappreciated factors that result in surprisingly large, nonlinear distortions of 
empirical traffic state measurements.  

Briefly reviewing Coifman (13), in general for a fleet of homogeneous vehicles, 
stationary traffic, in a sample with a large number of vehicles occ is related to k via Equation 2. 
If one assumes a triangular flow-density FR (denoted qkFR), the curve is uniquely defined by 
capacity, qo, free speed, vf, and jam density, kj. Then, extending to the flow-occupancy FR 
(qoccFR), Equation 3 gives jam occupancy, occj. The resulting qoccFR is shown on the right-
hand side of Figure 2a for a hypothetical example with vf = 65 mph, qo = 2,400 veh/h, kj = 211 
veh/min, and Leff = 20 ft, while the left-hand side shows the corresponding speed-flow 
relationship (qvFR), transposed from the commonly used orientation to facilitate direct 
comparisons between these two forms of the FR.  
 occ௝ = ௝݇ ∗  ୤୤ (3)ୣܮ
 

Even under strictly stationary traffic conditions with homogeneous vehicles, Coifman 
(13) found that conventional aggregated q, occ, and v measurements should exhibit large scatter 
in the queued regime arising from a combination of 

 
1. Errors due to a non-integer number of vehicle headways in a given sample,  
2. Averaging over a small number of vehicles during low q,  
3. The inclusion of detector errors, and  
4. The mixing of inhomogeneous vehicles within a sample.  

 
Generally the errors grow larger at lower v. Coifman (13) also found that, unfortunately, 

the q-occ plane is skewed such that the noisy low-speed samples cover a disproportionately large 
area. The points in the qvFR on the left-hand side of Figure 2a are plotted at 5-mph intervals, and 
the corresponding states are shown in the qoccFR by projecting horizontally to the curve on the 
right-hand side of the figure. Proportionately the qoccFR greatly distorts the relationship to v. 
The dashed lines in Figure 2a show that when speed has dropped from vf by 38% (v = 40 mph) 
flow has only dropped from qo by 10%, and when speed has dropped by 85% (v = 10 mph ) flow 
has only dropped by 49%. In other words, the higher-speed data are compressed into a narrow 
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sliver; for example, one can see that the highest speeds in the queued regime are compressed to a 
small range of q (or of occ), while the low-speed data (v = 10 mph)are spread over more than 
half of the feasible range of q or occ. 
 
 
METHODOLOGY 
 
Coifman (1) develops a new sampling methodology designed to address the above shortcomings 
by specifically focusing on the sources of the distortions and minimizing their impacts. In this 
approach vehicles are no longer taken successively, rather, they are sorted as follows: 
 

• To eliminate the impacts of noninteger headways, individual vehicle headway, h, is 
measured instead of q. The associated detector on-time is measured and is used in conjunction 
with h instead of occ. Here h is measured rear bumper to rear bumper to ensure the driver’s 
chosen gap is combined with his or her vehicle’s on-time. 

• Speed and vehicle length are measured for each individual vehicle. 
• To minimize the impacts arising from a large range of vehicle lengths, the vehicles 

are sorted into length bins that only span 5 or 10 ft. 
• To minimize the impacts of different speeds, the vehicles are then sorted into speed 

bins that only span 1 mph. 
• To minimize the impacts of detector errors, any vehicle following an unmatched 

pulse, involved in a suspected pulse breakup, or following a suspected pulse breakup is excluded, 
because its measured h may be inaccurate. 

• Finally, to ensure the largest possible number of vehicles per sample, the median 
headway and median on-time are found for each bin from the subsection of Step 3 by Step 4 
above, and converted to q and occ via Equations 4 and 5. This clustering approach groups 
vehicles based on similar speed and length. 
ݍ  = ଵ୫ୣୢ୧ୟ୬ሺℎሻ (4) 

 occ = ୫ୣୢ୧ୟ୬ሺ௢௡ሻ୫ୣୢ୧ୟ୬ሺℎሻ  (5) 

 
 
ANALYSIS AND DISCUSSION 
 
The clean hypothetical FR curves in Figure 2a were derived from a homogeneous fleet of 
vehicles with Leff = 20 ft under stationary conditions, over large sample periods. If the 
homogeneous fleet has a different Leff, it yields a different curve. To extend the model from 
Coifman (13) to homogeneous vehicles with longer Leff, one must recognize that qo and kj are 
functions of Leff. If one assumed that all vehicles came to a stop with a constant physical gap 
between vehicles, the parameters of qkFR scale as a function of Leff. Using several different 
values of Leff to recalculate the FR gives rise to a family of curves as shown in Figure 2b. The 
greater Leff, the lower the curve is in this plot, with the top curve corresponding to Leff = 20 ft and 
the bottom to Leff = 73 ft. 
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Coifman (1) applies the process outlined above in the Methodology section to 18 
successive days of empirical detector data from one directional detector station in the BHL with 
four lanes. Combining all of the individual vehicle actuations from all four lanes over 18 days at 
the detector station, measured length is used to sort each vehicle into one of 10 different length 
bins and individual vehicle speed to further sort these vehicles into one of 70 speed bins. After 
sorting all vehicles in this manner, Equations 3 and 4 are applied for each one of these combined 
length and speed bins. Finally, the qoccFR is found by connecting the q and occ values across 
successive speed bins for a given length bin. The right-hand side of Figure 2c shows the resulting 
curves by length bin subject to the following three exclusions:  
 

1. To remove the impacts of the downstream inflow, all speeds in all length bins that 
result in q above the threshold qp for the 18- to 22-ft length bin are suppressed (as per the 
corresponding qvFR in the left-hand side of Figure 2c). 

2. To remove the impacts of the measurement errors at low speeds, all speeds below 5 
mph in all length bins are suppressed. 

3. To remove the impacts of small sample sizes, all combined length and speed bins 
with fewer than 100 vehicles are suppressed.  
 

As a result of the third exclusion, only seven length bins remain with sufficient data. The 
seven curves are distinctly visible in the q – v plane on the left-hand side of Figure 2c. The length 
range increases from the top curve to the bottom curve in this plot. On the right-hand side the 
two shortest length bins remain distinct, but the curves from the five longest bins overlap, in part 
due to the vertical compression as Leff increases, evident in Figure 2b; in part due to smaller 
sample sizes in these length bins; in part due to the fact that the speed measurement errors from 
Exclusion 2 are greater for longer vehicles simply because they are over the detector for a longer 
amount of time; and in part due to the fact that the actual speed-occupancy relationship appears 
to exhibit a slight dependency on Leff for these longer vehicles, leading to a small lateral shift in 
the right-hand side of Figure 2c. All of the curves exhibit trends consistent with the hypothetical 
example in Figure 2b. Although the speed range on Figure 2c is relatively small, 5 to 17 mph, the 
occ range spans roughly a quarter of the observable values below jam occupancy. 

The dotted curves in Figure 2d relax Exclusion 1, lifting the upper bound speed exclusion 
to 50 mph and eliminates the lower bound speed, Exclusion 2, altogether (for reference, the 
curves from Figure 2c are repeated in bold). In the right-hand side of Figure 2d the measured 
qoccFR curves for most of the length bins flatten out at higher q (corresponding to higher v), in 
other words, in the region above the threshold qp from the downstream inflow, shown with a 
dashed line in these plots. For the shortest length bin (again, accounting for over two-thirds of 
the vehicles) the curve now extends measurements down to 1 mph. The curve remains roughly 
straight throughout this low-speed region, possibly indicating that with a sufficiently large 
sample size the median is not very sensitive to the outliers arising from the dual loop detector 
measurement limitations for these very low speeds. If so, the resulting occ range for speeds 
between 1 and 4 mph covers an additional quarter of the feasible values of occ, with the 
combined speed range from 1 mph to 17 mph covering more than half of the feasible occ values. 
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FIGURE 2  (a)  Hypothetical qvFR (left) and qoccFR (right) for a homogeneous fleet of 
passenger vehicles with Leff = 20 ft under stationary conditions and very long sampling 

periods and (b) extending the relationship to homogeneous fleets with longer lengths. The 
empirical qvFR and corresponding qoccFR for each length bin individually using the data 
from all 18 days and all four lanes combined together for (c) 5 mph to 17 mph and (d) 1 to 

50 mph. A dashed line is shown at qp = 1,500 veh/h for reference. 
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The distortions of the q-occ plane discussed in the context of Figure 2a are readily 
apparent in Figure 2 parts c and d as follows. The speed range in Figure 2c spans roughly 18% of 
the feasible speeds (5 mph ≤ v ≤ 17 mph), but these data span roughly 25% of the feasible q and 
occ. As shown in Figure 2d, if one extends the range to 1 mph ≤ v ≤ 17 mph (roughly 26% of the 
feasible speeds) the data now span more than 50% of the feasible q and occ measurements. 
 
 
CLOSING 
 
This paper provided an extended overview of Coifman (1). Greater details of the process and 
discussion of the implications can be found in that paper. 
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ince the pioneering work of Greenshields the fundamental diagram is used to characterize 
and describe the performance of traffic systems (1, 2). During the last years the discussion 

and growing database revealed the influence of human factors, traffic types, or ways of 
measurements on this relation (3, 4). The manifoldness of influences is important and relevant 
for applications but moves the discussion away from the main feature characterizing the 
transport properties of traffic systems. The authors focus again on the main feature by comparing 
the fundamental diagram of cars, bicycles, and pedestrians moving in a row in a course with 
periodic boundaries. The underlying data are collected by three experiments, performed under 
well-controlled laboratory conditions (5–9). In all experiments the setup, in combination with 
technical equipment or methods of computer vision, allowed the authors to determine the 
trajectories with high precision. The trajectories visualized by space-time diagrams show three 
different states of motion (free-flow state, jammed state, and stop-and-go waves) in all these 
systems. Obviously the values of speed, density, and flow of these three systems cover different 
ranges. However, after a simple rescaling of the velocity by the free speed and of the density by 
the length of the agents, the fundamental diagrams conform regarding the position and height of 
the capacity. This indicates that the similarities between the systems go deeper than expected and 
offers the possibility of a universal model for heterogeneous traffic systems. 
 
 
EXPERIMENTS 
 
All three experiments were performed with similar setups, namely on circuits with closed 
boundary conditions where only single-file motion was allowed. Series of runs were carried out 
with a maximal number of participants Nmax = 70, 23, and 33 for the pedestrian, car, and bicycle 
experiment, respectively. To adjust, the global density different runs were performed with different 
numbers of participants N. In general, participants were asked to move normally without 
overtaking. Details of the experiments could be found in Sugiyama et al. (5) and Tadaki et al. (6) 

S
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for cars, in Andresen et al. (7) and Zhang et al. (8) for bicycles, and in Seyfried et al. (9, 10) for 
pedestrian. Time-space diagrams are shown in the center of Figures 1 and 2. Similar plots for cars 
can be found in Sugiyama et al. (5). In all three cases a transition from free flow to jammed flow 
can be observed when the global density is increased. In the free-flow regime all agents can move 
with their desired speed, whereas in the jammed regime stop-and-go waves are observed. 

On the right of Figures 1 and 2 the density–flow relations are shown. Details of the 
measurement method could be found in Zhang et al. (8). The fundamental diagram of pedestrians 
shows three regimes ρ ∈ [0,1.0] m–1, [1.0,1.7] m–1, and [1.7, 3.0] m–1 corresponding to three 
states of pedestrian movement. At the free-flow regime (ρ < 1.0 m–1) the flow increases 
monotonically with the density. For the congested state (ρ > 1.0 m–1) the specific flow starts to 
decrease with increasing density. For ρ > 1.7 m–1 stop-and-go waves dominate the motion of the 
pedestrians (9, 10). Similar results are observed in the bicycle system (7, 8). 
 
 

 
(a) (b) (c) 

FIGURE 1  (a) Snapshots of the pedestrian experiment at different densities. The red lines 
show the trajectories determined automatically from video recordings; (b) trajectories in 
space and time in the measurement area (of length 4 m) with N = 70; and (c) density–flow 

relation. Colors indicate data for runs with different N. 
 
 

 
(a) (b) (c) 

FIGURE 2  (a) Snapshots of the bicycle experiment; (b) trajectories in the measurement 
area (of length 27 m) for the bicycle experiment with N = 33. The same structures can be 
found in trajectories of vehicle systems (5, 6). (c) Density–flow relation. Colors indicate 

data for runs with different N.   
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RESULTS 
 
Plotting the fundamental diagram of these three systems in one diagram shows that the data 
points occupy different ranges of density as well as speeds and do not seem to be comparable to 
each other (see Figure 3). To take into account the different scales of sizes and speeds of the 
agents the authors rescale these quantities. For the length of the agents the authors use L0(p) = 
0.4 m for pedestrians, L0(c) = 3.9 m for cars (6), and the mean value of L0(b) = 1.73 m for 
bicycles (7, 8). For scaling the speed the authors used the free-flow speed of each agent. From 
measurements of the free-flow speed in special runs of the experiments it is known that they are 
about 1.4 m/s for pedestrians and 5.5 m/s for bicycles. For cars the authors use 11.1 m/s (about 
40 km/h) according to Tadaki et al. (6). 

After rescaling it is found that the fundamental diagrams agree, and in all three cases the 
free-flow regimes end at approximately ρ*L0 = 0.5 (see Figure 4). This implies that the transition 
to the congested state occurs when nearly 50% of the available space is occupied. Moreover, the 
capacity (i.e., the maximal flow) agrees for the three systems after the rescaling and amounts 
0.25 to 0.30. In the congested regime the slopes of the fundamental diagram are again similar for 
all three systems. 

The transport properties in such systems could be approximated by the universal equation ݒ෤ = 1 − ߷෤ with ݒ෤ = ݒ ⁄଴ݒ and ߷෤ =  ଴. The normalized maximal flow is then 0.25 at a relativeܮ߷
density of 0.5. This corresponds to the properties to the ASEP (11, 12), which for a long time has 
been considered a minimal model for traffic flows. The main feature of this model is volume 
exclusion. Also models for pedestrian dynamics (13–15) show that these transport characteristics 
could be reproduced by an appropriate consideration of a velocity-dependent volume exclusion, 
which seems to be a universal characteristic of such systems. Considering this universality the 
authors conclude that other properties of the agent, like acceleration or inertia, are less relevant 
for the structure of the fundamental diagram in single-file traffic systems of different agent types. 
In other words models without a proper consideration of the volume exclusion miss an important 
aspect of traffic systems. 
 
 

 

FIGURE 3  Fundamental diagrams for cars, bicycles, and pedestrians.  
Raw data of the density–speed relation.  
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(a) (b) 
FIGURE 4  Fundamental diagrams for cars, bicycles, and pedestrians: (a) scaled data of 

the density–speed relation; speed and density rescaled with the free speed v0 and the length 
of the agents L0; (b) scaled density–flow relation; after the scaling the fundamental 

diagrams agree in the density range observed. 
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ome observations are made on the fundamental diagram of freeway traffic, among which are 
three influence regions, three types of transition around capacity, and capacity drop 

phenomenon. This research aspires to interpret these observations from a human factors 
perspective in traffic flow theory. Of particular interest are the following human factors: drivers’ 
choice of desired speeds, perceived effective vehicle lengths, perception–reaction times, and 
aggressiveness. It appears that all four factors are involved in characterizing traffic flow, though 
they play different roles in the fundamental diagram. Different combinations of these factors give 
rise to the above-mentioned influence regions, transition around capacity, and capacity drop. Of 
critical importance in determining the transition around capacity and capacity drop is drivers’ 
aggressiveness, a factor that has long been overlooked in the past. This paper provides a detailed 
account of where it comes from and how it influences the fundamental diagram. 
 
 
SOME FIELD OBSERVATIONS 
 
Figure 1 illustrates an empirical fundamental diagram observed on Georgia 400, a toll road in 
Atlanta, Georgia. Each point in the “cloud” represents a 5-min aggregation of the original 20-s 
observations, and the diagram consists of 1 year’s worth of data.  
 
Observation 1. Three Influence Regions 
 
Strikingly in this diagram are the following regions. One is the area bounded by lines L1 and L2 
just like a beam of light emitting from the origin O; the other is the area bounded by lines L3 and 
L4 like another beam of light emitting from point D, which represents jam density ௝݇. The area 
Q1Q2Q3Q4 indicates a third region where the two beams of light interfere. 

Obviously, area L1OL2 indicates free-flow conditions, where flow is dictated by free-flow 
speed; area L3DL4 consists of congested conditions, where flow is mainly constrained by drivers’ 
perception–reaction capabilities. Influenced by both free-flow and congested regions, area 
Q1Q2Q3Q4 constitutes a capacity region, since this is where the capacity is most likely to be 
found.  
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FIGURE 1  Fundamental diagram resulting from field observations. 
 
 
It is intriguing to explore what factors are acting behind that drive the shaping of the diagram. Of 
key interests here are capacity condition (magnitude and location), the transition of flow–density 
relationship around capacity, and whether or not there is capacity drop phenomenon. 
 
Observation 2. Three Types of Transition in Flow–Density Relationship 
 
Observed in the field are the following three types of transition regarding flow–density 
relationship around capacity: 
 

• Skewed-parabola (e.g., Curve 1 in Figure 2), 
• Triangular (e.g., Curve 2 in Figure 2), and 
• Reverse-lambda (e.g., Curve 3 in Figure 2). 

 
Where a reverse-lambda transition is most likely found in inner-lane traffic, a triangular 
transition is often resulted in middle-lane traffic or by aggregating over all lanes, and a skewed-
parabola transition is typical in outer-lane traffic. These empirical observations have been 
reported by Koshi et al. (1), Banks (2), and others. 
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FIGURE 2  Flow–density relationships fitted to empirical data. 
 
 
The authors have models that capture the skewed-parabola flow–density relationship as well as a 
few other models that represent the triangular flow–density relationship. It is of great interest to 
understand what gives rise to these types of flow–density relationships. In particular, what causes 
the reverse-lambda transition and how to model it? 
 
Observation 3. Capacity Drop 
 
Figure 3 is another fundamental diagram generated from GA400, but this figure includes only 1 
day’s worth of data on a weekday (see the “cloud” in the background). Consisting of 
observations of flow and density in the field, each data point represents the operating condition 
of traffic over this observation period. A time development of operating conditions is plotted on 
top of the “cloud” with numbers indicating the temporal order of the observations of roughly 10 
min apart. Note that the peak flow occurs at around 7:30 a.m., which is numbered 14 in the 
figure.  

Following the time development, the temporal evolution of traffic conditions around 
capacity seems to suggest a pattern sketched on the right of the figure. First, there is a loading 
process early in the morning as the road starts to empty and traffic demand increases over time. 
This is sketched as Curve 1 in the figure where flow increases almost linearly with density all 
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FIGURE 3  Time series plot of loading and unloading process. 
 
 
the way up to the peak. As demand continues increasing beyond the peak, any disturbance may 
result in traffic breakdown and hence congestion. This corresponds to Curve 2 in the figure. As 
demand decreases, traffic begins to unload where density decreases, and flow increases as in the 
first half of Curve 3. However, the peak of the unloading curve is much less than that of the 
loading curve, and their difference constitutes a capacity drop phenomenon. With demand 
continually decreasing, both flow and density drop, as depicted in the second half of Curve 3. 
This concludes a cycle of traffic operation in a typical day. Similar findings of traffic loading, 
unloading, and capacity drop have been reported in Banks (3), Saberi and Mahmassani (4), and 
Chamberlayne et al. (5). Interested readers are motivated to investigate whether it is possible to 
capture such a phenomenon in traffic flow modelling. 

With these observations and questions, the objective of this paper is to explore factors 
acting behind a fundamental diagram that give rise to these phenomena. The remainder of the 
paper is organized as follows. First, the authors start with examining human factors in car 
following and trace their way into macroscopic representation of traffic flow: the fundamental 
diagram. Next, they analyze the roles that these human factors play in fundamental diagram, in 
particular, which factor controls what part of the diagram. This is followed by revisiting 
empirical data and checking if field observations agree with the above analysis. To facilitate 
application of findings of this research, a method is formulated to roughly estimate human 
factors parameters from traffic flow data without requiring vehicle trajectory data. Lastly, 
findings are summarized and conclusions are drawn. 
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RELATING HUMAN FACTORS TO THE FUNDAMENTAL DIAGRAM 
 
In essence, traffic flow is the result of action and interaction of many vehicles in a driving 
environment. The microscopic view of traffic flow is the result of human factors such as drivers’ 
speed choice, perception–reaction time, acceleration and deceleration, and safety rules. On the 
other hand, the macroscopic view of traffic flow is typically reflected in a fundamental diagram 
that is characterized by macroscopic measures such as capacity, free-flow speed, and jam 
density. Micro-macro coupling is the key to unlocking fundamental diagram. In this paper, the 
authors are particularly interested in how human factors are related to highway capacity and 
traffic congestion and, in return, how the discovery would shed light on traffic flow modelling. 
 
Microscopic View: Human Factors 
 
Stopping Sight Distance 
 
Traffic engineering books (6–8) have it as a standard that safe stopping sight distance (SSD) has 
to be maintained at any point on a roadway. The SSD is the sum of distance traveled during 
perception–reaction time ߬ and braking distance: 
ܦܵܵ  = ݒ߬ +  ଶ2ܾݒ

 
where v is vehicle speed and b is deceleration rate.  
 
Good Driving Rule 
 
Similarly, Forbes and Simpson (9) and equivalently Pipes (10) applied a “good driving rule” 
(GDR) to car following and stipulated that the minimum spacing ݏ∗ between a leading vehicle ݆ 
and a following vehicle i be 
∗௜௝ݏ  = ߬௜ݔሶ௜ + ௝݈ 
 
Where l is effective vehicle length (i.e., the actual vehicle length plus some buffer space at both 
ends).  
 
Safe Driving Rule  
 
Gipps (11) took it further by considering more dynamic and conservative situations between 
vehicles with speeds ݔሶ௜ and ݔሶ௝ and deceleration rates ܾ௜ and ܤ௝ as follows. At any time, vehicle ݅ 
must leave enough spacing ahead such that, when vehicle ݆ suddenly brakes, the spacing should 
allow vehicle ݅ to stop safely behind vehicle ݆ after a perception–reaction process and a braking 
process. A simplified expression of this “safe driving rule” (SDR) can be formulated as 
∗௜௝ݏ  = ሶ௜ଶ2ܾ௜ݔ − ௝ܤሶ௝ଶ2ݔ + ߬௜ݔሶ௜ + ௝݈ 
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If the vehicles travel at the same speed, ݔሶ௜ =  ሶ௝, the above equation reduces to the followingݔ
form (12, 13) (Chapter 4): 
∗௜௝ݏ  = ሶ௜ଶݔ௜ߛ + ߬௜ݔሶ௜ + ௝݈ 
 
where the coefficient of the nonlinear term ߛ௜ is 
௜ߛ  = 12ቆ 1ܾ௜ −  ௝ቇܤ1

 
Unlike perception–reaction time ߬, the physical meaning of γ was not defined, but the coefficient 
was generally regarded as positive. An empirical value for γ would be 0.023 s2/ft (about 0.075 
s2/m) (12).  
 
Aggressive Driving Rule 
 
A less conservative consideration of γi (14) may be the result of choosing proper values for bi 
and Bj. For example, it is recognized that bi actually represents the deceleration rate at which 
driver i believes that he or she is capable of applying in an emergency. Of particular interest is 
the possibility that bi might be greater in magnitude than Bj, which represents driver i’s estimate 
of the emergency deceleration that is most likely to be applied by driver j. Consequently, γi may 
take negative values:γi < 0, which gives rise to an “aggressive driving rule.” Rather than creating 
an extra safety buffer as in the SDR, the negative driving rule even shortens the safe distance 
stipulated by the GDR.  

In sum, when γi = 0 as in the Forbes model, the GDR is resulted; when γi > 0 as in the 
Gipps model, the SDR is resulted since the driver leaves extra room; when γi < 0, the aggressive 
driving rule (ADR) is resulted in that the driver tends to follow dangerously close. Hence, it is 
reasonable to associate γi  to the driver’s aggressiveness, since it represents the driver’s 
willingness to run risk in trade of speed gain.  
 
Longitudinal Control Model  
 
The ADR alone was not modeled. However, Ni (15) recently incorporated the concept of 
aggressiveness into the Longitudinal Control Model (LCM): 
ݐ)ሷ௜ݔ  + ߬௜) = ௜ܣ ൥1 − ൬ݔሶ௜ݒ௜൰ − ݁ଵିೞ೔ೕೞ೔ೕ∗ ൩ 
 
where vi is driver i’s desired speed and Ai is the maximum acceleration desired by driver i when 
starting from standing still. Note that ݏ௜௝∗ = ሶ௜ଶݔ௜ߛ + ߬௜ݔሶ௜ + ௝݈ and aggressiveness γi is allowed to 
be positive, zero, and negative representing a spectrum of driving rules. 

The discussion on traffic flow models thus far has involved a few human factors 
parameters including aggressiveness γi, perception–reaction time τi, desired speed vi, and 
effective vehicle length li. It is interesting to examine how these parameters manifest themselves 
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in the fundamental diagram, where individual behaviors are aggregated to exhibit collective 
properties of traffic flow. 
 
Macroscopic View: The Fundamental Diagram 
 
Characterizing the fundamental diagram are flow-speed-density relationships. Under steady-state 
condition (i.e., traffic state does not change in time), the GDR gives rise to the following flow q 
and density k relationship: 
ݍ  = 1߬ − ݈߬ ݇ 

 
where τ and l are perception–reaction time τi and effective vehicle length lj, respectively, 
aggregated over all vehicles. Similarly, the flow–density relationship implied by the SDR is 
given in parametric form:  
ݍ  = ݇		and			ݒ݇ = ଶݒߛ1 + ݒ߬ + ݈ 
 
Where γ and l are γj and lj, respectively, aggregated over all vehicles. The parametric flow–
density relationship of LCM is 
ݍ  = ݇		and			ݒ݇ = ଶݒߛ)1 + ݒ߬ + ݈)[1 − ln ൬1 − ௩௩೑൰] 
 
where free-flow speed vf is desired speed vi aggregated over all vehicles. 
 
 
INFLUENCE OF HUMAN FACTORS ON THE FUNDAMENTAL DIAGRAM 
 
Desired Speed vi  
 
The foremost of the set of human factors parameters is desired speed vi. When traffic is light and 
actual spacing sij is greater than desired spacing ݏ௜௝∗ , drivers are insensitive to neighboring 
vehicles and are free to choose their desired speed vi. This is what the SDR, GDR, and LCM 
stipulate: 
 
SDR:  ݔሶ௜ = ௜௝ݏ   ௜  whenݒ > ∗௜௝ݏ = ሶ௜ଶݔ௜ߛ + ߬௜ݔሶ௜ + ௝݈	
 
GDR: ݔሶ௜ = ௜௝ݏ  ௜  whenݒ > ∗௜௝ݏ = ߬௜ݔሶ௜ + ௝݈	
 

LCM: ݔሶ௜ = ௜ݒ ൭1 − ݁ଵିೞ೔ೕೞ೔ೕ∗ ൱ for all ݏ௜௝, where ݔሶ௜	~	ݒ௜ when ݏ௜௝ > ∗௜௝ݏ . 
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When aggregated over drivers, desired speed becomes free-flow speed: ݒ௜ →  .௙ݒ
Therefore, all three models agree that desired speed dictates free-flow speed which, in turn, 
determines traffic conditions in the free-flow region of Figure 1. As Forbes (16) pointed out, 
flow ݍ increases linearly with density ݇ without being constrained by leading vehicles. This 
effect is illustrated in the top left subplot of Figure 4, which is generated using LCM. In this plot, 
free-flow speed varies, while the other three parameters are held constant as indicated. Units are 
in metric system.  

The capacity condition of SDR is found at  
௠ݍ  = 12ඥ݈ߛ + ௠ݒ								߬ = ට݈ߛ 														݇௠ = ଶߛ݈ + +߬ඥ݈ߛ + ݈ଶ	 
 

Similarly, GDR yields 
௠ݍ  = ௙ݒ௙߬ݒ + ݈ ௠ݒ								 = ݇௠														௙ݒ = ௙ݒ1߬ + ݈			
 

LCM does not yield a closed form of capacity but can be solved numerically. 
It is interesting to note that, in SDR, capacity is irrelevant to free-flow speed, while both GDR 
and LCM predict that capacity is a function of free-flow speed. The effect is also illustrated in 
the top left subplot of Figure 4. 
 
 

 

FIGURE 4  Influence of human factors on the fundamental diagram. 
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Effective Vehicle Length 
 
Effective vehicle length ݈௜ is the the longitudinal space that a driver sees himself or herself 
representing in the traffic. It is typically regarded as the physical vehicle length plus some buffer 
spaces at both ends. It is also viewed as the bumber-to-bumber spacing when traffic is jammed. 
When aggregated over vehicles, effective vehicle length is the reciprocal of jam density: ݈௜ → ݈ = 1/ ௝݇. Unlike free-flow speed, which is accurately visible in field data, jam density is 
seldom revealed (see Figures 1 to 3). However, it can be deduced by following the trend of the 
congested region or determined from a reasonable range, for example, 100 to 200 veh/km based 
on an effective vehicle length of 5 to 10 m. The influence of ݈ is illustrated in the top right 
subplot of Figure 4, where ݈ is varying while others parameters are held constant. 

In stop-and-go traffic around jammed conditions, the stopping or moving of vehicles 
propagates backward, progressively forming a kinematic wave at jam density ωj. Since drivers 
react strictly according to driving rules, the speed of the kinematic wave at jam density ωj can be 
determined as 
 

SDR:  ௝߱ = ௗ௤ௗ௞ቚ௞ୀ௞ೕ = ቀݒ − ఊ௩మାఛ௩ା௟ଶఊ௩ାఛ ቁ௩ୀ଴ = − ௟ఛ 	
GDR: ௝߱ = ௗ௤ௗ௞ቚ௞ୀ௞ೕ = − ௟ఛ 	
LCM: ௝߱ = ௗ௤ௗ௞ቚ௞ୀ௞ೕ = − ௟ఛା௟/௩೑	
 

Apparently, effective vehicle length affects ωj, and the effect is also illustrated in the top right 
subplot of Figure 4. Assume effective vehicle length of 6 m, perception–reaction time of 1 s, and 
free-flow speed of 30 m/s (or 108 km/h), SDR and GDR suggest an ωj of –21.6 km/h, LCM results in 
–18 km/h. These results are in agreement with field observations as well as with literature [e.g., –23 
km/h in Lighthill and Whitham (17) and –20 km/h in Del Castillo and Benítez (18)]. 

As discussed previously, effective vehicle length also affects capacity condition: its 
magnitude and location. 
 
Perception–Reaction Time 
 
Though free-flow speed appears insensitive to perception–reaction time ߬௜, capacity is heavily 
influenced by this parameter as confirmed by the capacity condition above. Since ߬௜ represents how 
fast a driver responds to stimuli (e.g., braking light of the front vehicle), it mainly takes effect in 
relatively dense traffic, where drivers need to pay attention to surrounding vehicles, especially the 
leading one. Therefore, the congested region is also heavily influenced by perception–reaction time. 
A disturbance in traffic is almost sure to be picked up by following vehicles and gets propagated 
upstream. Hence, backward wave speed ݑ has a close relationship with τi. As a boundary condition, 
the speed of a backward wave at jam density ωj was given above. In general, the shorter the 
perception–reaction time (i.e., ߬௜ ↓), the greater the backward wave speed in magnitude (i.e., |ݑ| ↑), 
and hence the steeper (more negative) the congested branch of the corresponding flow–density 
relationship. The effects are illustrated in the bottom left subplot of Figure 4.  
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As the congested branch becomes steeper, it meets the free-flow branch at higher flow rates 
suggesting greater capacities. However, it seems that perception–reaction time is not the only 
parameter that dictates how the two branches meet and hence the underlying flow–density 
relationship.  
 
Aggressiveness 
 
It turns out that aggressiveness γi plays an even more important role in the shaping of fundamental 
diagram, more specifically, capacity condition (magnitude and location), the transition around 
capacity, and whether or not there is capacity drop phenomenon. 

In the SDR, aggressiveness assumes positive values γi > 0, which corresponds to timid 
drivers who need extra room for increased safety. As drivers become more timid (i.e., ߛ௜ ↑), they will 
need longer safe distances, and hence less flow can be sustained. This relationship is reflected in the 
capacity condition given above.  

In addition, timid traffic (i.e., γi > 0) results in early termination of free-flow condition and 
early onset of congested condition, because drivers tend to respond to leading vehicles at lower 
density than there would be for normal (i.e., γ = 0) or aggressive (i.e., γ < 0) traffic. Meanwhile, the 
transition is smooth (i.e., a skewed parabola flow–density curve is resulted around capacity 
condition. See the bottom right subplot of Figure 4). 

The GDR does not have an aggressiveness term, which can be viewed as γi = 0. Since 
aggressiveness is zero here, it does not play a role in the formula of capacity condition. Meanwhile, 
zero aggressiveness in the GDR always yields a triangular flow–density relationship, meaning 
discontinuity is introduced at capacity condtion (qm, km) where the free-flow condition (i.e., q = vfk) 

and congested condition (i.e., ݍ = ଵఛ − ௟ఛ ݇) meet. 

LCM does not pre-assume a value for γi which can be possitive, zero, or negative depending 
on driver population. When traffic exhibits aggressive characteristics (i.e., γ < 0), LCM predicts that 
free-flow condition may sustain up to very high flow rates (e.g., over 3,000 veh/h) before giving in 
to congested condition. In addition, such a transition can be a drastic one in that flow drops 
significantly when the changeover takes place. It appears as though there were two capacities 
here. One results when loading traffic onto an empty highway. Flow increases linearly with 
density. As density continues increasing, flow keeps its momentum and rises up to levels that 
normally require drivers to observe safe distance. At this point, traffic seems to be oversaturated. 
Consequently, a little disturbance in traffic would result in fast deterioration in conditions. All of 
the sudden, traffic becomes packed, with a significant drop in speed and flow. Another capacity 
is typically resulted during an unloading process from congested condition. As traffic keeps 
recovering toward the free-flow side, no capacity jump is observed around the pervious transition 
point. Instead, the new transition takes place smoothly, as in Figure 3, which suggests another 
capacity that is lower than the previous one (i.e., a capacity drop phenomenon). This results in a 
reverse-lambda flow–density relationship that neither of the other two models captures, and the 
effect is illustrated in the bottom right subplot of Figure 4. 

The above discussion of influence of human factors parameters is summarized in Table 1. 
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WHAT DO EMPIRICAL DATA SAY? 
 
Loading Processes at a Few Locations 
 
Generated from highway data at a few locations worldwide, Figure 5 samples the temporal 
development of the loading processes on these highways, including the Autobahn in Germany, 
Amsterdam Ring Road, Highway 401 in Canada, I-4 in Orlando, and PeMs in California. 
First of all, it is clear that free-flow condition is rather linear across the board, suggesting that drivers 
are not sensitive to leading vehicles and are free to choose their desired speeds. Note that free-flow 
speeds differ on different highways suggesting that drivers’ choice of desired speeds is location 
specific.  

Remarkable in the figure is when the curves peak as the loading process proceeds. For 
instance, the free-flow curve of PeMs is only sustainable at a little over 1,000 veh/h, while those of 
Amsterdam and Autobahn maintain up to about 2,500 veh/h. Though unknown without field 
measurement, perception–reaction time can be roughly deduced from peak flow rates. For example, 
according to the GDR, average headway h is perception–reaction time plus a little buffer, h = τ + l/vf, 
PeMs data suggest a perception–reaction time of a little less than 3.0 s, while that of Amsterdam is 
roughly 1.4 s. Given that free-flow speed is about the same at the two locations, one would conclude 
that drivers at the two locations have about the same taste of desired speed but in general take 
differently time to react to leading vehicles. 

Also striking in the figure is how the curves peak. More specifically, this concerns how free-
flow condition gives in to congested condition. For example, PeMs and Amsterdam data seem to 
transition along a skewed parabola curve; I-4 data suggest a triangular changeover; Autobahn and 
Highway 401 data appear to experience a capacity drop when the congested region takes over (i.e., a 
reverse-lambda shape).  

At the minimum, Figure 4 reveals that different locations give rise to different driver 
characteristics, which, in turn, result in different traffic flow characteristics. For example, the five sets 
of data suggest different free-flow speeds, different peak flow rates, different peak densities, and 
different transition curves. This poses a great challenge to traffic flow modeling, which should not 
only capture the underlying mechanism but also the wide ranges of variability. 
 
 

TABLE 1  Influence of Human Factors on the Fundamental Diagram 

Human Factor Parameters vi li τi γi 
Free-flow speed, vf  Y N N N 
Capacity: magnitude, qm  N Y Y Y Y Y N Y 
Capacity: location, km  N Y Y Y Y Y N Y 
Capacity: transition N N Y N N N Y Y 
Capacity: drop N N Y N N N Y N N Y 
Backward wave speed at jam, ωj  N Y Y N 
Jam density, kj  N Y N N 

NOTE: Y = has influence; N = no influence. A single letter denotes that the same comment applies to the three 
models. Three letters (e.g., N N Y) means the comments of SDR, GDR, and LCM, respectively. 
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FIGURE 5  Temporal development of flow–density relationship on selected highways. 
 
 
Fitting Models to Empirical Data 
 
As a measure of how close modelling matches field observations, Figure 6 illustrates the result of 
fitting the three models to GA400 data with fitted parameters tabulated in Table 2. 

The figure shows that the three models perform almost the same when traffic is light and 
severely congested. However, the difference is salient in the transition from free flow to congestion, 
particularly around capacity condition.With similar settings except for aggressiveness, the safe 
driving rule yields the lowest capacity, while LCM suggests the highest and also the closest to true 
capacity. This result tends to support the significance of aggressiveness in traffic flow modeling.  
Perhaps more prominent in the figure is the transition around capacity. The SDR with  γ = 0.023 (meaning timid drivers) corresponds to a skewed parabola transition; GDR with γ = 0 
(meaning normal drivers) introduces discontinuity that yields a triangular transition; LCM with  γ = –0.041 produces a reverse-lambda transition suggesting a possible capacity drop. 

In traffic flow modeling, it is important to faithfully reproduce free-flow, congested, and 
jammed conditions. It is even more important to capture capacity condition. As evidenced above, 
aggressiveness plays a differentiating role in capacity condition: magnitude, location, transition, 
and capacity drop. In addition, it is attractive for a model to represent a spectrum of transition 
around capacity such as skewed-parabola, triangular, and reverse-lambda, since they are all 
observed in the field. Note that the SDR captures only the first type, the GDR always yields the 
second type, and LCM is able to represent all three types (see Figure 4).  

 

15
3 
k
m/
hr 

10
6 
k
m/

87 
k
m/
hr 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


42 TR Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 

 

FIGURE 6  Three models fitted to empirical data. 
 
 

TABLE 2  Human Factors Parameters Fitted to Empirical Data 

Model ݒ௙ (m/s) ߬ (s) ݈ (m) ߛ (s2/m) 
SDR 29 1.5 6 0.023 
GDR 29 1.5 6 0 
LCM 29 1.3 6 –0.041 

 
 

Though Figure 6 only reveals a likely reverse-lambda transition around capacity and a 
possible capacity drop, these phenomena are confirmed in Figure 3 with temporal development 
of loading and unloading processes illustrated. Combined, Figures 3 and 6 seem to alert us to the 
possibility that loading and unloading processes may follow different speed–density 
relationships. For example, the loading process may be a reverse-lambda type, while the 
unloading is a skewed parabola or a triangle. If this is true, then two issues naturally follow. 
First, this observation seems to suggest that driver characteristics may be different during loading 
and unloading processes, and perhaps they may even be dynamic within a driving process. Such 
an effect is typically not captured in conventional modelling approaches. For example, 
perception–reaction time is normally treated as a constant in the authors’ models unless a 
stochastic approach is taken. Second, this observation may imply different types of flow–density 
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relationship for the same traffic during different processes. This requires that the underlying 
model be flexible enough to capture all of them without having to resort to another model. LCM 
is an example in case. Similarly, Chamberlayne et al. (5) produced the effect of capacity drop in 
INTEGRATION by varying vehicle acceleration behavior without having to introducing a 
discontinuous flow–density relationship. 
 
 
ESTIMATION OF HUMAN FACTORS PARAMETERS 
 
Involving measuring parameters, model calibration can be a time- and resource-consuming task, 
especially when sampling and aggregating a large population becomes necessary. This section 
intends to supplement such an endeavor with a quick, rough estimate by examining only traffic 
flow data that are readily available in most intelligent transportation systems. Assume one starts 
with an empirical diagram such as the clouds in Figures 1, 2, and 6, and somehow a flow–density 
relationship is sketched, as Curve 1 in Figure 7. Since field data typically show clear trend of 
free-flow condition, free-flow speed vf can be found easily as the slope of the trend line in free-
flow region. In addition, field data may also reveal a trend of congested condition. Following the 
trend, one may find jam density kj as the intersection of the trend line and the horizontal axis.  

Estimation of the remaining two human factors parameters, namely perception–reaction 
time ߬ and aggressiveness ߛ, necessitates two known points, A and B, on the curve. Though in 
the figure A appears to be the capacity and B possibly the reduced capacity, they don’t have to 
be special in order to apply the estimation method. Since conditions at A(qA, kA, vA) and B(qB, kB, 
vB) are known, their average microscopic characteristics A(hA, sA, vA) and B(hB, sB, vB) can be 
calculated. Sketched on the right of the figure are trajectories of imaginary vehicles operating at 
conditions A and B. Using geometry of the trajectories and car-following rules, the following can 
be established: 

 ቊݏ஺ = ஺ଶݒߛ + ஺ݒ߬ + ஻ݏ݈ = ஻ଶݒߛ + ஻ݒ߬ + ݈ 
 
 

 

FIGURE 7  Estimation of human factors parameters. 
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Solving the above system of equations yields the following estimates: 
 

۔ۖەۖ
ۓ ߛ = ஻ݒ஺ݏ) − (஺ݒ஻ݏ − ஻ݒ)݈ − ஻ݒ஺ଶݒ(஺ݒ − ஻ଶ߬ݒ஺ݒ = ஻ଶݒ஺ݏ)− − (஺ଶݒ஻ݏ + ஻ଶݒ)݈ − ஻ݒ஺ଶݒ(஺ଶݒ − ஻ଶݒ஺ݒ  

 
Unlike what is required by the SDR, the figure purposely shows that the headway of 

condition A, hA, is shorter than perception–reaction time. This is to alert readers to the possibility 
that aggressive drivers may follow the leader closer than that stipulated by the GDR (i.e., γ < 0). 
Paradoxically, short headways are frequently observed in traffic, particularly in inner lanes, but 
car-following accidents are few. Harris (14) was probably right that this is so “not because the 
separations which drivers allow are necessarily safe but because the emergencies that reveal the 
danger are rare.” 
 
 
CONCLUSIONS 
 
This research examined the role of human factors such as aggressiveness, perception–reaction 
time, desired speed, and effective vehicle length in microscopic car following and traced their 
way into macroscopic traffic flow representation (i.e., fundamental diagram). Then, the influence 
of these human factors on the diagram was analyzed with reference to empirical observations in 
the field. 

The findings of this research are summarized as follows. First, all four factors are actively 
involved in characterizing traffic flow, though they play different roles in fundamental diagram. 
More specifically, desired speed affects free-flow speed which, in turn, dictates free-flow 
condition. Effective length dictates jam density and affects backward wave speed at jam density. 
Perception–reaction time plays a significant role in virtually all aspects of fundamental diagram. 
In particular, perception–reaction time is critical in determining capacity (magnitude and 
location). No less than that of perception–reaction time, the role of aggressiveness has long been 
overlooked. Contrary to what is commonly believed, empirical evidence shows that drivers will 
follow at distances shorter than what is deemed as safe. Hence, aggressiveness is related to a 
driver’s willingness to tailgate in pursuit of speed gain. This research reveals that aggressiveness 
is the key to unlocking the mysteries in fundamental diagram such as reverse-lambda, flow-
density relationship, and capacity drop. 

In addition, empirical observations seem to suggest that driver characteristics may be 
different during loading and unloading processes, and perhaps they may even be dynamic within 
a driving process. Such an effect is typically not captured in conventional modeling approaches. 
For example, perception–reaction time is normally treated as a constant in the authors’ models 
unless a stochastic approach is taken. Meanwhile, empirical observations may imply different 
types flow–density relationship for the same traffic during different processes. This requires that 
the underlying model be flexible enough to capture all of them without having to resort to 
another model. 

Moreover, this research provides a quick estimation method to roughly deduce human 
factors parameters from macroscopic traffic flow data without resorting to microscopic vehicle 
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trajectory data. However, this estimation method is intended as a supplement rather than a 
replacement to field measurements. 
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hile the existing applied length-based vehicle classification model has been to estimate 
vehicle lengths accurately with dual-loop traffic monitoring station data under the free 

traffic condition, it produces considerable errors against congested traffic. In this study, both 
ground-truth vehicle trajectory and simultaneous loop event data are used to characterize the 
impact of congested traffic on vehicle classification. Eight scenarios are synthesized to define the 
vehicles’ stopping locations over two single loops of the dual-loop station. Under the 
synchronized traffic flow, acceleration or deceleration is considered in the new developed 
Vehicle Classification under Synchronized Traffic model (VC-Sync model) to reflect the speed 
variation between loops. As a result, the error of the vehicle classification is reduced from 33.5% 
to 6.7%, compared to the existing applied model. Under the stop-and-go traffic condition, a stop-
on-both-loops-only (SBL) was developed along with the VC-Sync model to simplify the 
complexity of the congested traffic situation in vehicle length estimation. Using the SBL model 
reduces the error from 235% to 17.1%, compared to the existing applied model. Capability of 
identifying traffic phases is a critical prerequisite to applying the new vehicle classification 
models under congestions. Therefore, an innovative method for identifying the traffic phases has 
been proposed based on the existing traffic stream models along with the new findings of the 
authors’ empirical data analysis. As a result, a heuristic traffic phase identification model has 
been developed and successfully applied in the case study for evaluating the new length-based 
vehicle classification models with dual-loop data.  
 
 
INTRODUCTION  
 
This paper presents a scenario-based vehicle classification modeling method to estimate vehicle 
length via revealing possible scenarios of congested traffic impact on accuracy of vehicle length 
detection at a dual-loop station. The modeling effort addresses two issues: (1) identifying a 
sound solution to the problem of distinguishing congestion conditions that could be measured by 
loop data based on traffic flow characteristics and new findings resulting from analysis of the 
video-based vehicular event data, and (2) developing scenario-based models for improving 

W
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vehicle length estimation under congested traffic flows with evaluation of its improved accuracy 
by comparing the results with the existing applied model.  

A dual-loop detector consists of two single-loop detectors placed with a fixed distance 
between single loops (e.g., 20 ft or 6 m), as shown in Figure 1. A vehicle can be detected by the 
dual-loop detector as electrical pulses of current are deduced in the loops when the vehicle enters 
and leaves the loop detection area. Each event of the electrical pulse is recorded as a timestamp. 
Normally, four timestamps, t1, t2, t3, and t4 are recorded when a vehicle is operating through the 
loop detector area, as illustrated by Figure 1. This feature enables measuring traffic speed over 
the detection area, which is one of the key factors in estimating the vehicle length. Vehicle types 
are then identified in three or four “bins” based on the detected vehicle lengths.  

In the existing applied vehicle classification model (which was then proven to be good 
for free traffic flow), no variation of a vehicle’s speed on both single loops is assumed (1). The 
existing model is described as follows: 
 

 (1) 

		ℎݐ݈݃݊݁_ℎ݈݅ܿ݁݁ݒ  = 		݀݁݁݌ݏ		 × 	ை௡ మ்ା	ை௡ మ்ଶ 	–  ℎ (2)ݐ݈݃݊݁_݌݋݋݈

 
where 
 

D = distance between two loops (ft);  
t = t3 – t1; 

OnT1 = t2 – t1; 
OnT2  = t4 – t3; and 

t1, t2, t3, and t4 = time stamps when a vehicle enters or leaves the upstream loop (M loop) or 
downstream loop (S loop) (Figure 1). 

 
Under congested traffic, however, a vehicle’s speed changes frequently and even fiercely 

as it is traveling through the loops. In order to improve the accuracy of the vehicle length 
estimation against congested traffic, the authors extracted the ground-truth vehicle event data 
from video by using the software VEVID (2), which was finally compiled into high-resolution 
vehicular trajectory data. Meanwhile, simultaneous event data are derived from the dual-loop 
data. The sampling dual-loop station is located in the freeway I-71/I-74 in Columbus, Ohio (3). 
Both datasets were used to define scenarios of vehicles’ maneuvers as traversing through the 
loops and model the traffic conditions based on applied traffic stream characteristics and relevant 
theories. Finally, new models suitable for congested flows were developed and evaluated with 
the ground-truth data.  
 
 
LITERATURE REVIEW 
 
Greenshields (4) firstly proposed the traffic stream theory addressing the relationships among 
flow rate, speed, and density, in which speed and density are assumed to be linearly correlated.  
 

 

D
speed

t
=
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FIGURE 1  Layout of a dual-loop detector on highway. 
 
 

Greenberg (5) revised the model of the speed and density to fit a logarithmic curve, based 
on a hydrodynamic analogy and assumption regarding the traffic flow as a perfect fluid and one- 
dimensional compressible flow. Underwood (6) used exponential expression for such a model. 
Researchers have disclosed the discontinuities of the relationships between traffic variables. Edie 
(7) quantified the linear relationship between density and the logarithm of velocity above the 
optimum velocity for uncongested traffic and velocity and the logarithm of spacing (the inverse of 
density) for congested traffic. Multiple curves are often applied to depict the discontinuities. For 
instance, Koshi (8) proposed a reverse lambda shape to describe the flow–density relationship. 
May (9) developed the “two-regime” models to describe the relationship of flow and density. Hall 
(10) proposed an inverted-V shape to represent the flow-occupancy relationship. Polus and 
Pollatschek (11) proposed three regimes of traffic flows (free, dense, and unstable flows), and 
traffic breakdown was explained as the change from dense flow to unstable flow.  

Kerner and Konhäuser (12) and Kerner and Klenov (13) defined traffic flows in three 
categories: free flow, synchronized flow, and stop-and-go flow. The free flow has high travel 
speed and low traffic volume and density. The congested traffic flow is further classified into 
synchronized flow (S) and wide moving jam (J). The synchronized flow has relative low speed 
and high volume and density. A wide moving jam is a moving jam that maintains the mean 
velocity of the downstream front of the jam as the jam propagates. They also disclosed the 
double Z-characteristic shape for relating speed and density. The empirical double Z-
characteristic shape is used to depict the phase transitions between two different phases. F→S 
(free flow to synchronized flow) and S→J (synchronized flow to jam flow) transitions can be 
illustrated by a double Z shape (or termed Z-characteristic) for the F→S→J (free to synchronized 
to jam conditions) transitions. The double Z-characteristic consists of a Z-characteristic for an 
F→S transition and a Z-characteristic for an S→J transition, as well as the phases associated 
with the critical speeds required for the phase transitions. The synchronized traffic defined by 
Kerner is also described as the traffic oscillation by other researchers (14–18). Treiber and 
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Kesting (19) studied the convective instability in congested traffic flow, and they classified 
congested traffic flow into five classes according to the stability that lead to significantly 
different sets of traffic patterns (20). 

It is necessary to determine what traffic variables and thresholds of the selected traffic 
variables will be used to describe the traffic phases and identify the transitions between them. 
Habib-Mattar et al. (21) found out that the congestion would occur if the situation, where the 
speed is less than 37 mph and the density is greater than 64 vpmpl, lasts at least 5 min. Chow et 
al.’s study (22) indicates that if the speed drop is greater than 5 mph during a 5-min period, then 
the traffic flow is at the congestion situation. Lorenz and Elefteriadou (23) defined a traffic 
breakdown as the traffic condition in which the average speed of all lanes on a highway section 
decreases to below 90 km/h for at least a 15-min period, and then Elefteriadou and 
Lertworawanich (24) changed the speed threshold to below 80 km/h. On the other hand, other 
studies indicated that speed alone is insufficient to ensure the identification of congestion. 
Congestion may not be detected by the speed-based algorithm only, and “perhaps the optimal 
speed thresholds are different above a certain occupancy threshold” (25). Zhang et al. (26) used 
four features to characterize an oscillatory traffic pattern: the occurrence of oscillation, the offset 
of the oscillation patterns different lanes, the oscillation period, and the oscillation amplitude in 
flow levels. They set the extreme jam density of 240 vpmpl, flow speed of 50 mph, and wave 
speed of 10 mph. Deng et al. (27) proposed a three-detector approach to identify traffic states 
using multiple data sources, including loop detector counts, AVI Bluetooth travel time readings, 
and GPS location samples. However, it is not always easy in practice to obtain the sensor data 
from all three sources for the traffic flow on a certain highway segment. 

Since the event dual-loop data record individual vehicles’ timestamps over the loops, 
they are usually applied in traffic analysis to derive traveling features of the vehicles (1, 28–31). 
The traffic parameters, such as traffic volume, speed, and occupancy or density can be extracted 
or calculated from the event dual-loop detector datasets, which further enable calculating vehicle 
lengths. The existing applied model of estimating vehicle lengths via dual-loop data (32) is based 
on the assumption that vehicles drive across the dual-loop detection area at a constant speed. The 
model has been validated well against light traffic. Under light traffic condition, vehicles operate 
at a relatively high and stable speed, which can be considered at a constant speed. According to 
Kerner’s Three Phases theory, during uncongested traffic flow it is reasonable that vehicle 
speeds are regarded as constant. However, during congested traffic, especially stop-and-go 
traffic, vehicle speeds become very unstable and are not constant. When the existing model is 
used to estimate vehicle lengths, the accelerations and decelerations of vehicles will distort the 
outputs of the model. Accuracy of vehicle classification drops greatly under very congested 
traffic (33). It is reported that observed errors in truck misclassification ranged from 30% to 41% 
for off-peak hours, and from 33% to 55% for peak hours (32). Li (34) developed a method of 
Bayesian inference for vehicle speed and length estimation using dual-loop data. But the 
congested traffic flow features were not addressed in the method, and it was only tested using the 
traffic flow data with the average speed of 56 mph. 
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DATA COLLECTION  
 
The selected dual-loop detector station, numbered as V1002, is located in the interstate freeway 
I-70/71 at West Mound Street downtown Columbus, and has six dual-loop detectors in both 
directions of the highway. A video camera was placed on the top of the Franklin County Juvenile 
Parking Garage that is close to the station to videotape the traffic flow on I-70/71 over the dual-
loop detector station, as shown by Figure 2. 

Three-day traffic videotaping was conducted July 14–16, 2009. A total of 26 h of traffic 
video data were collected, including light traffic and congestion traffic flows. The concurrent 
event dual-loop data were obtained from the traffic management center (TMC) at the Ohio 
Department of Transportation (DOT). The event loop data is the raw data from the dual-loop 
station, which records the timestamps of each vehicle as it enters and leaves each loop. The 
scanning frequency of the loop is 60 Hz, that is, occupied status of a loop is automatically 
updated 60 times per second.  

The ground-truth data used in this study is the vehicle trajectory data extracted from the 
collected traffic video footage. The software VEVID (2) was employed to extract the ground-
truth vehicle trajectory data from the video.  

A QSTARZ BT-Q1200 Ultra GPS Travel Recorder was adopted as the data logger to 
collect GPS data. The GPS travel data logger was equipped in a probe car running roundly along 
freeway segments of the I-70/I-71, which cover the selected station. The data logger can collect 
the probe vehicle’s speed and location information by second. Some parameters that represent 
characteristics of very congested traffic can be derived from the statistical analysis of the 
collected GPS data, which include range of acceleration or deceleration rate and average 
minimum speed to maintain a vehicle’s moving.  
 
 
DISTINGUISHING TRAFFIC FLOW STATES OR CONDITIONS 
 
Traffic Flow Condition Determined by Phase Representative Variables 
 
Flow rate has been conventionally used as one of the measurable variables to depict the 
characteristics of the traffic flow in previous studies; however, application of the flow rate alone 
may be problematic to identifying the traffic conditions (or phases) when the length-based 
vehicle classification is practiced with dual-loop data. Firstly, any flow rate value may be  
 
 

 
FIGURE 2  Video data collection and loop station at study site. 
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explained by two or more traffic phases (e.g., uncongested or congested traffic), which may 
cause a wrong identification of traffic condition. Secondly, the flow rate is an aggregated 
outcome from the dual-loop–based vehicle classification model and is supposed to be produced 
after the traffic phase is identified. That leads to an illogic procedure in practice. Timestamps and 
occupancies of a vehicle entering and leaving the loops are direct outputs of the loop data. Speed 
and density can be estimated as a mathematical function of the timestamps and occupancies. 
According to Kerner’s empirical double Z-characteristic shape (as shown in Figure 3), the speed 
and density are two variables that can be used to determine the boundaries of each traffic flow 
phase. The speed and density/occupancy are accordingly identified as the phase representative 
variables in this study.  

In Kerner’s study (13) speed and density were applied to depict the empirical double Z-
characteristic shape for the phase transitions between two different phases. The original Z-
characteristic shape was enhanced and simplified in the study, as illustrated in Figure 3. It 
conceptually provides a profile of all the possible phases of traffic flows that could be justified 
by speed and density (or occupancy). Density can be estimated from the loop data by Equation 3 
if the average vehicle length of the traffic flow for varying time of a day could be predetermined 
based on the historical traffic data.  
௜ܭ  = ଵ଴଴଴×ை೎೎௅ೇା௅೐೑೑  (3) 

 
where 
 
 Ki  = density of the traffic flow (vpkmpl) for time period i of a day,  
 Occ  = loop occupancy measurement (%), 
 Lv  = average vehicle length (m), and 

Leff  = effective detector length (m).  
 
 

 

FIGURE 3  Classified traffic flow states (based on Kerner’s Z-curve and data in this study). 
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To simplify the procedure of the traffic condition identification, the F→S transition was 
merged into the free flow phase and S→J transition into the synchronized phase. Equation 4 was 
proposed to facilitate the development of a computing algorithm that will be used to determine 
the traffic flow phase F(ti) of any time period i. 
 

F(ti)= 

 FF, IF [u ≥ 80 & k ≤ 28.1] OR IF [̅ݒሺݐሻ െ ݐሺݒ̅ ൅ 1ሻ ൑ ሻݒvarሺ & ݒ∆ ൏  [∗ݒ
SF, IF [32 ≤ u < 80 & 11.2 ≤ k ≤ 49.7] OR IF [ሺ̅ݒሺݐሻ െ ݐሺݒ̅ ൅ 1ሻ ൐ ሻݒor varሺ ݒ∆ ൒  & ሻ∗ݒ

(occതതതതሺݐሻ െ occതതതതሺݐ ൅ 1ሻ ൑ ∆occሻ  & ሺoccതതതതതതሺݐሻ ൑ occ ∗ሻ] 
TJ, IF [0 ≤ u < 32 & k ≥ 31.1] OR IF [ሺ̅ݒሺݐሻ െ ݐሺݒ̅ ൅ 1ሻ ൐ ሻݒor varሺ ݒ∆ ൒  & ሻ∗ݒ

(occതതതതሺݐሻ െ occതതതതሺݐ ൅ 1ሻ ൐ ∆occሻ  or ሺoccതതതതതതሺݐሻ ൐ occ ∗ሻ]  
SU, IF others  

(4) 

 
where 
 

k = density (vpkmpl); 
u = speek (km/h); 
i = time period i; 

FF = free-flow phase; 
SF = synchronized flow phase; 
TJ = traffic jam phase; 

SU = special or unreasonable case; 
t = a short period of time (5 min in this study);  ̅ݒሺݐሻ = the average speed in time interval t, km/h;  ̅ݒሺݐ ൅ 1ሻ = the average speed in the successive time interval t + 1, km/h; 

var(v) = the variation of all vehicles’ speed during time interval t;  
Δv  = predefined threshold of spot speed difference in successive time intervals, km/h;  
v*  = predefined threshold of the speed variation range in successive time intervals, km/h; occതതതതሺݐሻ = the average occupancy during time interval t; and occതതതതሺt ൅ 1ሻ = the average  

occupancy in the successive time interval t + 1;  
Δocc  = the predefined occupancy bandwidth during the time interval t; and 
occ*  = the maximum average occupancy during the time interval t.  

 
In this study, the percentage of types of vehicles and their average lengths are obtained 

from the sample dual-loop data at the dual-loop station V1002. The sample size is 13,722. The 
three-bin scheme standard adopted by Ohio DOT is used. The sample data indicates that the 
percentages of small vehicle (length ≤ 8.5 m), medium vehicle (8.5 m < length < 14.0 m), and 
large vehicle (length ≥ 14.0 m) are 86%, 4%, and 10%, respectively. Their mean lengths are 
estimated as 5.0, 11.1, and 22.6 m, respectively. At V1002, Leff is 2.6 m, and then, Lv = 0.86 × 5.0 
+ 0.04 × 11.1 + 0.10 × 22.6 = 7.0 m.  The assumed phase representative variables are evaluated 
against the real-world dual-loop data and the VEVID-based vehicular trajectory data. In light of 
the statistical analysis performed on the collected ground-truth and loop data, the thresholds of 
Δv is determined as 16.1 km/h, and v* is determined as 127.7 km/h2 (or the standard deviation is 
11.3 km/h), Δocc is defined as 0.3, and occ* is 0.35. To better understand the relationship 
between each defined traffic phase and the associated level of service (LOS), the LOS is overlaid 
in Figure 3 with corresponding density ranges as defined in the Highway Capacity Manual 2010 
(35).  
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MODELING SCENARIOS OF CONGESTED VEHICLE MANEUVERS OVER LOOPS 
 
Under the synchronized traffic, vehicles speeds may change rapidly and frequently. In other 
words, a vehicle may drive over the upstream and downstream loops at different speeds as it 
increases or decreases its speed after leaving the upstream loop. Under this circumstance, the 
vehicle’s acceleration or deceleration, which is not considered in the existing applied model, 
should not be ignored and is assumed to affect measurement of the vehicle length in great part. 
The characteristics of vehicle movement in the stop-and-go traffic flow are much different from 
the free or synchronized flow traffic. Vehicles are operating at a high, relatively constant speed 
under the free-flow traffic, and the free-flow traffic will transit to the synchronized traffic flow 
when the traffic speed drops significantly. The synchronized traffic flow will change into stop-
and-go traffic when the traffic speed becomes very slow with more frequent acceleration or 
deceleration involved, and from time to time vehicles have to experience one or more stops. 
Under the stop-and-go traffic phase, a vehicle may stop within the dual-loop detection area for at 
least one time. The existing applied vehicle classification model produced more errors under the 
stop-and-go traffic, especially for large vehicles (see Figure 4), and the sample error even 
reaches 235%. It is observed from the comparison of the video-based vehicular event data and 
result from the existing applied model that the vehicle traveling features against stop-and-go 
traffic, such as acceleration or deceleration, and situation of vehicle stopping on loops, actually 
affect the estimation of vehicle lengths. An updated length-based vehicle classification model is 
therefore developed to improve the accuracy of vehicle length estimation under the stop-and-go 
traffic.  

After careful analysis of synchronizing the ground-truth vehicular trajectory data and the 
dual-loop data, eight possible scenarios were synthesized based on possible stopping locations of 
the detected vehicles within the detection area, as illustrated by Figure 5. Those eight scenarios 
are briefly described as follows. 
 

Scenario 1. The vehicle drives across the dual-loop detection area without a stop, which 
is a typical synchronized flow feature. 

Scenario 2. The vehicle stops merely on the M loop and then leaves the dual-loop 
detection area without another stop. 

Scenario 3. The vehicle runs across the M loop and stops only on the S loop. 
Scenario 4. The vehicle comes into the dual-loop detection area and stops only on both 

the M and S loops and then leaves the detection area without another stop. 
Scenario 5. The vehicle stops on the M loop and then moves on and then stops on the S 

loop and finally leaves the detection area without another stop. 
Scenario 6. The vehicle stops first on the M loop and then stops on both the M and S 

loops and finally leaves the detection area. 
Scenario 7. The vehicle stops first on both of the M and S loops, and then stops only on S 

loop. 
Scenario 8. The vehicle stops first only on the M loop and then stops on both of the M 

and S loop, and finally stops only on the S loop. Eventually the vehicle leaves the dual-loop 
detection area without another stop.  
  

C e l e b r a t i n g  5 0  Y e a r s  o f  T r a f f i c  F l o w  T h e o r y

C o p y r i g h t  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

http://www.nap.edu/22095


Wei, Ai Liu, Li, and Wang  57 
 
 

 
FIGURE 4  Vehicle length estimation of the existing applied  

model under stop-and-go traffic. 
 
 

 
(a) 

 

 
(b) 

FIGURE 5  Scenarios of vehicle stopping on dual loops under congestion:  
(a) vehicle stop locations when one stop happened on loops and  

(b) vehicle stop locations when two or more stops happened on loops. 
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Statistical analysis of the sample data indicates that Scenarios 1 through 4 happened 
much more frequently than other scenarios (Figure 6 and Table 1). Scenarios 1 through 4 were 
hence focused in the study, and other scenarios will be considered in the future once sufficient 
sample data will be gained. 

Under the stop-and-go traffic flow, a detected vehicle’s stopping status can be estimated 
based on its corresponding dual-loop data (i.e., the time stamps). An algorithm, as illustrated by 
Figure 7, was developed using On-times and difference of On-times to determine the scenario 
that the detected vehicle has fallen in. Based on the determined scenario, a suitable vehicle 
classification model can be applied to estimate the vehicle length. 

In this algorithm, timestamp t1, t2, t3, t4, OnT1, and OnT2 are adopted as the variables. ts1 is 
defined as the threshold of OnT1 and OnT2, and ts2 is defined as the threshold of the differences 
the timestamps. For a vehicle operating under the stop-and-go traffic condition: 
 

1. If both of OnT1 and OnT2 are less than ts1, it indicates that the vehicle did not make a 
stop within the dual-loop detection area, which means this vehicle falls into Scenario 1. 

2.  If OnT1 is larger than ts1, and OnT2 is less than ts1, it indicates that the vehicle spent 
much longer time on the upstream loop, and this vehicle will be identified into Scenario 2.  

3. If OnT1 is less than ts1, and OnT2 is larger than ts1, it indicates that the vehicle spent 
much longer time on the downstream loop, and this vehicle will be identified into Scenario 3.  

4. If both of OnT1 and OnT2 are larger than ts1, and t3 – t1 < ts2 and t4 – t2 < ts2 (t1, t2, t3, and 
t4, are the same as defined previously), the vehicle can be identified as falling into Scenario 4. 

5. In this study, in light of the statistical analysis on the dual-loop data under stop-and-
go traffic, the thresholds are determined as: ts1 = 4.1 s, and ts2 = 3.0 s. A flow chart of the 
scenario identification algorithm is illustrated by Figure 7.  
 
 

 

FIGURE 6  Percentage of vehicle stopping status in congested traffic. 
 
 

TABLE 1  Vehicle Stopping Status Statistics 

Scenario 1 2 3 4 5 6 7 8 

Percentage 67.3% 9.7% 12.1% 4.6% 4.2% 0.9% 0.7% 0.5% 
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FIGURE 7  Scenario identification algorithm. (Note: ts1 is the threshold of OnT1 and OnT2, 
and ts2 is the threshold of timestamp differences; t1, t2, t3, t4, OnT1, and OnT2 are the same as 

defined previously. In this study, ts1 and ts2 are determined as 4.1 and 3.0 s, respectively.) 
 
 
LENGTH-BASED VEHICLE CLASSIFICATION MODELS UNDER CONGESTION  
 
Vehicle Classification Model Under Synchronized Flow (Scenarios 1 Through 3) 
 
Scenario 1 is a typical case of the synchronized traffic. Its flow density is higher than the free 
flow, and the freedom of maneuvers is greatly restricted. The travel speed is lower than the free 
flow, and higher than the stop-and-go flow. The VC-Sync model was proposed to estimate 
vehicle lengths under the synchronized traffic flow. In this model, a vehicle is assumed to pass 
the detection area at a constant acceleration rate a (a can be either positive or negative) without a 
stop. The length of the vehicle passing over the dual-loop detection area can be calculated by the 
equations as follows:  
 

 (5) 

 

 (6) 

 

 (7) 

 
where 
 
Lv = length of the detected vehicle (ft);  
Ls = length of each single loop which makes up a dual-loop detector (ft);  
vo = speed of the vehicle at the moment it is to enter the upstream loop (M loop) (ft/s); 

2
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a = vehicle acceleration (ft/s2); and  
D = distance between two loops (ft). 

 
t = t3 – t1, OnT1 = t2 – t1, and OnT2 = t4 – t3, t1, t2, t3, and t4 are time stamps when a vehicle 

enters or leaves the upstream loop (M loop) or downstream loop (S loop) (Figure 1). 
Scenarios 2 and 3 can be viewed as special cases of Scenario 1. Scenario 2 is 

approximately equivalent to the situation in which a vehicle stops merely at the front edge of the 
upstream loop and then goes across the detection area without a further stop. This situation can 
be explained that a vehicle under the synchronized traffic is traversing through the detection area 
with acceleration and an initial speed of zero. Similarly, Scenario 3 is approximately equivalent 
to the situation in which a vehicle goes across the detection area without a stop and only stops at 
the end edge of the downstream loop. This situation can be interpreted that a vehicle under the 
synchronized traffic is traversing through the detection area with deceleration and a final speed 
of zero.  
 
Vehicle Classification Model Under Stop-and-Go Flow (Scenario 4) 
 
The stop-and-go traffic has much slower speeds, involving more frequent acceleration or 
deceleration maneuvers. Under the stop-and-go condition, a vehicle may stop within the 
detection area for at least once. Based on the ground-truth data, a statistical analysis was 
conducted to identify the pattern of vehicle stopping locations. As a result, the SBL model was 
developed to estimate the vehicle lengths under Scenario 4. For simplicity, it is assumed that the 
detected vehicle stops right in the middle of the dual loop. After stopping for a period of time ts, 
the vehicle restarts to leave the dual-loop detection area at an acceleration rate a. The SBL model 
is expressed by Equation 8: 
 

 (8) 

 
where 
 

tdec + tacc = OnT1 – ts and ts = t2 – t3 – f3 * t2
acc/vmin;  

Lv  = length of vehicle (ft);  
Ls  = length of each single loop (ft);  

tdec  = time period as a vehicle enters the M loop until it stops (s);  
tacc  = time period as a vehicle starts to move and leaves the M loop (s);  
a = the average acceleration of vehicles as they start to move under 

stop-and go traffic (ft/s2);  
ts  = time period for a vehicle to stop on both loops (s);  

vmin  = average minimum speed remaining without stop (ft/s);  
f1, f2, and f3  = adjusting factors for different vehicle types (in this study,  

f1= f2= f3 = 1); and 
D, t, t2, t3, OnT1, and OnT2 = as the same as defined previously. 
 

In order to make the SBL model applicable to estimating vehicle lengths in practice, the 
vehicle’s acceleration rate (a) and average minimum non-stop speed (vmin) need to be 

2
1 2

1 1

2v dec acc sL f t D f a t L
t

= ⋅ ⋅ ⋅ + ⋅ ⋅ −

C e l e b r a t i n g  5 0  Y e a r s  o f  T r a f f i c  F l o w  T h e o r y

Copyr igh t  Nat iona l  Academy o f  Sc iences .  A l l  r igh ts  reserved.

http://www.nap.edu/22095


Wei, Ai Liu, Li, and Wang  61 
 
 

predetermined. In reality, however, it’s extremely difficult to simply derive the acceleration rate 
of a detected vehicle from its corresponding dual-loop raw data under the stop-and-go condition. 
The GPS data collected by using GPS data loggers is therefore used to obtain a and vmin. Based 
on the collected GPS data, the variables involved in the SBL model were eventually determined 
as follows: the average acceleration rate is 2.5 ft/s2 and the average minimum speed vmin is 7 ft/s.  

Finally, the simulated vehicle lengths from the new developed models were compared 
with the results from the existing model while the ground-truth event data was used as a 
benchmark. The relative error is reduced from 33.5% of the existing model to 6.7% of the VC-
Sync model under Scenarios 1 through 3 (see Figure 8). Under the stop-and-go traffic condition 
as represented by Scenario 4, the relative error was reduced from 235% of the existing model to 
17.1% of the SBL model (Figure 9 and Table 2).  
 
 

 

FIGURE 8  Estimated vehicle lengths under synchronized traffic. 
 

 
FIGURE 9  Estimated vehicle lengths under stop-and-go traffic. 
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TABLE 2  Relative Errors Produced by Classification Models 

Traffic Flow Condition Vehicle Classification Model Error Produced 

Synchronized flow 
VC-Sync Model 6.7% 
Existing Model 33.5% 

Stop-and-go flow 
SBL Model 17.1% 
Existing Model 235% 

 
 
CONCLUSION 
 
The scenario-based vehicle classification models against both synchronized and stop-and-go 
traffic flows were developed by fully considering the impact of congested traffic flows. On the 
basis of watching synchronizing the ground-truth vehicular trajectory data and the dual-loop 
data, eight possible scenarios were synthesized based on possible stopping locations of the 
detected vehicles within the detection area. Those eight scenarios reflect the situations of vehicle 
stopping over loops, which were observed to occur with high possibility in the dual-loop 
detection area. This synthesized method simplifies the modeling of the vehicles’ movements to 
reveal the impact of traffic on the identification of vehicle lengths at the dual-loop station. Under 
the synchronized traffic flow, acceleration or deceleration is considered in the VC-Sync model to 
reflect the speed variation between both loops, which were not conventionally considered in the 
existing applied models. As a result, the error of the vehicle length estimation is reduced from 
33.5% by using the existing model to 6.7% by using the VC-Sync model. Under the stop-and-go 
traffic condition, the stopping status was synthesized into typical scenarios in the SBL model, 
which makes it easier to identify the variables involved in the associate vehicle length modeling. 
As a result, the error is reduced by using the SBL model from 235% to 17.1%, compared with 
the existing applied model. 

Capability of identifying traffic phases is a critical support to applying the length-based 
vehicle classification models. This paper presents an innovative method for identifying the traffic 
phases that was developed based on integrated analysis of the existing traffic stream models and 
the new findings from the authors’ empirical data analysis and modeling efforts. As a result, a 
heuristic traffic phase identification model has developed and successfully applied in the case 
study for evaluating the new length-based vehicle classification models with dual-loop data. 
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his paper proposes a dual boundary optimal velocity model (DBOVM) by substituting a dual 
boundary optimal velocity function (DBOVF) for the original one in the optimal velocity 

model (OVM). The proposed DBOVM can describe the driving behavior of accepting a range of 
satisfied conditions instead of an optimal one under steady traffic. The speed adjustment 
mechanism is introduced into the DBOVM, by which traffic flow can reach the steady state 
everywhere inside of the dual boundary steady region. Properties of traffic state transition in the 
law of DBOVM are analyzed. The approximately linear path of state transition is found, and four 
typical state transition patterns are presented. Besides, the stability of DBOVM is studied by 
means of numerical simulations. It is found that the dual boundary steady region has the 
hysteresis effect that is similar to the explicit time delay in the OVM. The speed adjustment 
mechanism can restrain the hysteresis to some extent and improve the traffic stability. The dual 
boundary steady region in the general DBOVM allows the traffic flow to reach some new steady 
state slightly apart from the formal one under the effect of small perturbation, which does not 
exist for models containing one-dimensional optimal velocity functions.  
 
 
INTRODUCTION  
 
Car-following models, as one of the most useful tools for describing traffic dynamics, have been 
developed for more than six decades. There are two main objectives in the car-following process: 
(1) reducing the speed difference and (2) maintaining an appropriate spacing between the 
following vehicle and the leading vehicle. Most early models as represented by Gazis-Herman-
Rothery models were developed based on the first objective but failed to describe the second 
one. Newell (1) proposed a different model, which successfully captures the characteristic of car-
following behaviors in maintaining an optimal spacing corresponding to the driving speed. 
However, because of the speed expression of the Newell model, it is not convenient to be used in 
traffic simulations. Thirty years later, OVM was developed (2, 3). Similar to the Newell model, 
the OVM contains the optimal velocity function, which allows the following vehicle to adjust its 
speed toward the optimal one, and consequently maintain the appropriate spacing. Moreover, the 
OVM does not have a time delay in its model expression, which makes it convenient for 
theoretical analysis. Because of these advantages, the OVM has drawn widespread attention 
during the last 20 years (4, 5). 

The optimal velocity function assumes that there is a one-to-one correspondence between 
the spatial headway and the optimal driving speed in steady traffic state. However, such an 
assumption may be too ideal from the driver’s perspective (6). Experience demonstrates that 
drivers are satisfied with a range of conditions instead of an accurate optimal performance. 

T 
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Actually, this fact was also noticed in some early studies related to the psychophysical or action 
point models (7). The action point models classify the driving conditions into several scenarios 
separated by threshold boundaries in the “spacing-relative speed” diagram. Drivers will not 
adopt acceleration or deceleration until the changes in conditions exceed the thresholds of 
drivers’ perception. For instance, the Fritzsche model (8) and the Wiedemann model (9) have a 
two-dimensional zone in the spacing–relative speed diagram, within which drivers are satisfied 
with current conditions and maintain their speeds regardless of the performance of leading 
vehicles. Though the fundamentals of the action point model are closer to real driving behaviors, 
the complexity of model structure and the difficulty in calibration of thresholds restrict its 
application in theoretical research areas. 

Another question about the assumption of optimal velocity function in the OVM came 
from the macroscopic observations of freeway traffic flow in recent years. Kerner and Rehborn 
(10, 11) first reported the widely scattered data of congested traffic in the fundamental diagram. 
Moreover, it was found that even the unstable data being removed, the remained steady traffic 
data still scatter in a two-dimensional area in the flow–density plot. These empirical findings 
indicate that there might be an acceptable range of spacing within which drivers are satisfied. In 
order to model such phenomenon, several microscopic traffic flow models were developed in 
recent years (12–15). Though solutions of steady state in these models occupy two-dimensional 
areas, the numbers of parameters are more than the OVM, which increases the complexity of 
models and reduces the efficiency. 

In this paper, a DBOVM is proposed with the original optimal velocity function replaced 
by a DBOVF. The DBOVF is determined by two optimal velocity functions with different 
parameter values, which provides a range for spacing choosing in steady state. By introducing 
the DBOVF into the original OVM, the new model allows drivers to reach their steady states 
within a wide region instead of a specific optimal solution. Besides, the DBOVM also shows 
some interesting properties different from the original OVM, which are also worthy of attention. 

The rest of the paper is organized as follows. First, the basic DBOVM and a simple 
example of DBOVF are presented in Section 2, and then stability analysis based on numerical 
simulation is conducted. In Section 3, a more general form of DBOVM is proposed, and some 
related model properties are analyzed. Some results of comparison analysis between the 
DBOVM and the original OVM are also provided through numerical simulations. Finally, the 
possibility of model extension is discussed. 
 
 
BASIC DBOVM  
 
The Model 
 
Considering the facts that drivers would like to accept a range of spacing instead of an optimal 
one, it is assumed that the steady state occupies a two-dimensional area in the speed-spacing 
diagram. As shown in Figure 1, there are two boundaries in the steady state region. Each 
boundary can be formulated by a certain type of optimal velocity function. The two boundaries 
of the steady state divide the speed-spacing diagram into three regions. In Region I, the spacing 
is too small for the driver to accept, and the driver will reduce the speed toward the optimal 
speed indicated by the left boundary optimal velocity function. In Region III the spacing is too 
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FIGURE 1  Illustration of DBOVF. 
 
 
large, and the driver will accelerate toward the optimal speed indicated by the right boundary 
optimal velocity function. In Region II the driver is satisfied with current conditions and will not 
change the speed until the vehicle moves out of this steady region. 

According to above assumptions, the basic DBOVM is expressed as follows. 
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( ) ( ){ } ( ) ( )
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( ) ( ){ } ( ) ( )

:
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:
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R n n n R n

V x x t if x t V x

x t if V x x t V x

V x x t if x t V x

κ Δ Δ

Δ Δ

κ Δ Δ

 − >
= ≤ ≤
 − <

 

 

 

 (1)

 
where xn(t) denotes the position of the nth vehicle, κ is the sensitivity parameter, VL(Δxn) and 
VR(Δxn) denote the optimal velocity functions of left boundary and right boundary respectively. 
The space headway is noted as Δxn(t) = xn – 1(t) – xn(t). 
 
Simple Example of DBOVF 
 
Many types of optimal velocity functions were proposed during the history of traffic flow 
studies. Among them there are three typical types that were used most widely by researchers, 
namely, the convex type represented by the exponential function (1), the piecewise linear 
function represented by triangle fundamental diagram model (16), and the S-shape function (2). 
In order to make comparison with the original OVM, Bando’s S-shape function is used as the 
boundary function to build the DBOVF. Before modeling the DBOVF, two requirements are 
considered as follows: 
 

1. The range of spacing in the steady state increases with the speed increasing; and  
2. For a given speed ve, the smallest and largest spacing in steady state are 

( )1
LL ex V vΔ −=  and ( )1

RR ex V vΔ −= , then the derivatives of the two boundary-optimal-velocity-

functions at ΔxL and ΔxR should satisfy the following inequation: ( ) ( )L L R RV x V xΔ Δ′ ′≥ . 

 
The first requirement comes from the studies on psychophysical car-following models 

(17, 18). These studies indicated that drivers perceive spacing changes through changes on a 

0 

Left boundary
Right boundary 

Ⅰ Ⅱ Ⅲ
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visual angle subtended by the vehicle ahead. Under such a concept, the range of spacing in 
steady state may also be perceived through a change on a visual angle, which is supposed to be 
nearly stable for various driving speeds. As the visual angle approximates to the ratio of the 
vehicle width to the spacing and the spacing generally increases with the speed increasing, the 
range of spacing is positively correlated to the driving speed. 

The second requirement is from the consideration that the deceleration is usually stronger 
than the acceleration at the margin of steady state. Suppose a vehicle moves a small distance δ
away from the left boundary of steady state ΔxL, with the speed remaining as ve = VL(ΔxL). Then, 
the deceleration adec according to the DBOVM is 
 
adec = κ[VL(ΔxL) – δ) – ve]  (2)

 
Expanding Equation 2 at ΔxL and ignoring the higher order terms results in 

 
( )dec L La V xκδ Δ′= −  (3)

 
When the vehicle moves a small distance δ away from the right boundary of steady state 

ΔxR, the acceleration aacc is 
 

( )acc R Ra V xκδ Δ′=  (4)
 

Therefore, the requirement of ( ) ( )L L R RV x V xΔ Δ′ ′≥  ensures the asymmetry between the 

acceleration and the deceleration, in other words, dec acca a≥ .  

The S-shape optimal velocity function used in Bando’s work (3) is given as 
 

V(Δx) = V1 + V2tanh[C1Δx – C2]  (5)
 
where all parameters, V1, V2, C1, C2 are positive values. Based on the requirements discussed 
above, a simple DBOVF follows: 
 ܸሺ∆ݔሻ = 	 ଵܸ +	 ଶܸtanh	[ܥଵ∆ݔ	– ଵܥ ,[ଶܥ ∈ ,ଵோܥ] ଵ௅] (6)ܥ
 
and the two boundary-optimal-velocity-functions are given by 
 
Left boundary: ( ) [ ]1 2 1 2tanhL LV x V V C x CΔ Δ= + −  (6a)
 
Right boundary: ( ) [ ]1 2 1 2tanhR RV x V V C x CΔ Δ= + −  (6b)

 
The parameter C1 in the original OVM is replaced by C1L and C1R, which correspond to 

the left boundary and the right boundary, respectively. The proposed DBOVF has a very simple 
model structure and satisfies all the requirements listed above. In the following parts of this 
section, the authors will use it together with Equation 1 as the basic DBOVM to explore the 
properties of the model. 
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Stability Features of the Basic DBOVM 
 
As a multiphase car-following model, the DBOVM does not have a uniform model expression, 
which makes it difficult for the analytical stability analysis. In view of this fact, numerical 
simulations are used to study the stability features of the basic DBOVM.  
 
Local Stability  
 
Treiber and Kesting (19) gave a detailed theoretical analysis on traffic stability in their recent 
book. It is pointed out that all time-continuous car-following models with a negative derivative 
of acceleration with respect to speed are unconditionally locally stable, if there are no explicit 
reaction times in models. Recall the dual-boundary-optimal-velocity-function displayed in Figure 
1, the basic DBOVM satisfies the criterion suggested by Treiber and Kesting when the local 
traffic state is located outside of the dual boundary steady region. However, as the driver does 
not perform any acceleration within the steady region, it delays the driver’s response to the 
leading vehicle when the traffic state moves through the dual boundary region in the speed-
spacing phase diagram. Therefore, the basic DBOVM is analogous to the OVM with explicit 
delay (3) in some extent. The simulation studies on the local stability of the basic DBOVM are as 
follows. 

In order to make a comparison study, we use the same parameters as the early literature 
(3) used for the original OVM, namely, V1 = 15.3 m/s, V2 = 16.8 m/s, C1 = 0.086 m–1, C2 = 2.1, 
and κ = 2.9 s–1. For the basic DBOVM, C1L = 0.088 m–1, C1R = 0.076 m–1, and keep all the other 
parameters the same as in the original OVM.  

Three vehicles are considered in the local stability studies. All vehicles are in steady state at 
the beginning of the simulation. For the studies on the basic DBOVM, the initial state of vehicles 
should satisfy either the left or the right boundary optimal velocity function. Otherwise, the 
following vehicles may not respond to the perturbation from the leading vehicle according to the 
law of the basic DBOVM. Therefore, three simulations are conducted for three different scenarios 
respectively, which are (1) initial state on the right boundary of steady region, (2) initial state on 
the left boundary of steady region, and (3) initial state satisfying the optimal function in original 
OVM. All three simulations begin with the driving speed of 10 m/s for all vehicles. Such a speed 
ensures that the initial condition satisfies the string stability criterion of the original OVM (2). 
Then a small perturbation is added on the leading vehicle by giving its position an instantaneous 
change (either increasing by 1 m or reducing by 1m). The simulations are conducted with the time 
step of 0.1 s, and results of the simulations are illustrated in Figure 2. 

Focus on the two subplots in the left side of Figure 2, which show the speed-headway 
phase diagram and speed time series of the simulation for the first scenario. Data of the first 
following vehicle and the second following vehicle are presented in red and blue, respectively. 
The numbers of seconds counted from the beginning of the simulation are marked beside the 
data points in the phase diagram. Two black curves represent the left boundary and the right 
boundary of DBOVF, respectively. At the beginning (t = 0), both two following vehicles stay on 
the right boundary of steady region. The perturbation is added onto the leading vehicle at the first 
second. It is apparent that the state points spiral counterclockwise toward the initial steady state 
around the left and right boundaries. After 30 s, the two following vehicles are still unable to 
return to the initial steady state. Though the perturbation is quite small (less than 5% of the initial  
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FIGURE 2  Phase diagram and speed time series of basic DBOVM. 
 
 
spacing), it is slightly amplified during it propagating upstream. In the phase diagram the blue 
state transition trajectory of the second vehicle is outside of the red trajectory of the first vehicle.  

In the second scenario, both two following vehicles stay on the left boundary of the 
steady region at the beginning. Similarly, the small perturbation is added onto the leading vehicle 
at the first second. The results of the simulation are displayed in the two subplots in the middle 
of Figure 2. There are similar dynamical properties as shown in the first scenario. The states of 
the following vehicles move clockwise toward the initial steady state in a very slow manner. 
Moreover, the amplification of perturbation is also observed during it propagates upstream. 

The two subplots in the right-hand side of Figure 2 give the results of the simulation for 
the third scenario. Under the law of the original OVM, the following vehicles return to the initial 
steady state much faster through smaller spiral trajectories. Both two following vehicles are 
found to recover to their initial steady state 6 s after the perturbation is added. 

Since the driver does not perform any acceleration in the two-dimensional region of 
steady state according to the basic DBOVM, it takes a long time to converge to the steady state. 
Such property may not have remarkable influence on the local stability of the basic DBOVM, 
whereas the slow convergence is likely to amplify the perturbation through the propagation. The 
following gives the simulation result of the dynamics of the basic DBOVM in a long platoon. 
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A Case of Perturbation Propagating Along Platoon 
 
All parameters remained the same as in the local stability studies. The platoon on the open 
boundary road involves 200 vehicles in the simulation. The initial speed and spacing are 5 m/s 
and 18.2 m for all vehicles in the platoon, which satisfies the right boundary optimal velocity 
function of the two-dimensional steady region. Then the perturbation is added 10 s after the 
beginning of the simulation by giving the first vehicle’s position a sudden increment of 1 m. The 
time step is 0.1 s. The initial conditions above ensure the string stability for both two-boundary 
optimal velocity functions under the law of the original OVM [i.e., Vʹ (Δx) ≤ κ/2)]. However, 
simulation for the basic DBOVM shows that the platoon is string unstable, as illustrated in 
Figure 3.  

A very slight acceleration wave can be found propagating upstream after the perturbation 
occurs. Then a deceleration wave appears followed by another acceleration wave. After about 
360 s from the beginning, the deceleration wave merges into the following acceleration wave, 
which is again followed by a new deceleration wave. From Figure 3 it is apparent that the small 
perturbation finally induces a stop-and-go wave during its propagation to the upstream of the 
platoon. 

The simulation above indicates that the string stable criterion of the original OVM for the 
condition on boundary optimal velocity functions may not ensure the string stable of the basic 
DBOVM. In other words, the two-dimensional steady region in the basic DBOVM reduces the 
stability of traffic flow. The mechanism and some amendments about the model are given in the 
following parts of the paper.  
 

 

 

FIGURE 3  Propagation of small perturbation along the platoon in the basic DBOVM. 
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GENERAL DBOVM  
 
The Model 
 
In order to overcome the flaw in the basic DBOVM, the speed adjustment mechanism was 
introduced. In the new model, drivers are allowed to adjust their driving speeds toward the speed 
of leading vehicles within the dual boundary steady region. The modified model is given below.  
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 (7)

 
where λ is the sensitivity parameter of the speed difference between the leader and the follower. 
The speed adjustment mechanism captures the fact that drivers try to duplicate the speed of the 
vehicle ahead and maintain a stable spacing once they drive into their satisfied range of 
conditions, namely, the dual boundary steady region. As the basic DBOVM can be regarded as a 
special case of the new model (λ = 0), the new model is called the general DBOVM. 
 
Properties of State Transition 
 
According to the general DBOVM, the dynamic properties of vehicles are just the same as under 
the law of the original OVM, when the traffic state locates outside of the dual boundary steady 
region in the speed-spacing diagram. In the following, the properties of state transition induced 
by the speed adjustment mechanism inside of the dual boundary region are analyzed.  
 
Path of State Transition  
 
Suppose the state of the nth vehicle is located inside of the dual boundary steady region at time t
as shown in Figure 4a. The speeds of the nth vehicle and the vehicle ahead are ( )nx t and 

( )1nx t− , respectively. According to the law of general DBOVM, the acceleration of the nth 

vehicle at time t  is given by 
 

( ) ( ) ( ){ }1n n nx t x t x tλ −= −    (8)

 
Assume that the vehicle moves with constant acceleration during a very small time 

interval τ, then speeds of the nth vehicle and (n – 1)th vehicle at time t + τ can be expressed as 
 

( ) ( ) ( )n n nx t x t x tτ τ+ = +    (9a)

 

( ) ( ) ( )1 1 1n n nx t x t x tτ τ− − −+ = +    
(9b)

 
Then, the change of the spacing between the nth vehicle and (n – 1)th vehicle during the 
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time interval τ can be calculated as follows: 
 

( ) ( ) ( ) ( ){ } ( ) ( ){ }
2

1 12n n n n n nx t x t x t x t x t x tτΔ τ Δ τ − −+ − = − + −     (10)

 
Therefore, the slope of the state transition path from time t to t + τ in the speed–spacing 

phase diagram can be derived as  
 

( ) ( )
( ) ( )

n n

n n

x t x t
x t x t

τ
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Δ τ Δ
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+ −
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By substituting Equations 8, 9a, 9b, and 10 into Equation 11, one gets the following 
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(12)

 
Equation 12 indicates that the slope β of the state transition path approximates to the 

sensitivity parameter λ in the general DBOVM when (1) the time step τ in the numerical 
calculation approaches zero, or (2) the following vehicle and the leading vehicle have similar 
accelerations. Specifically, when the speed of the leading vehicle remains stable [i.e.,

( )1 0nx t− = ], the slope of the state transition path is expressed as 

 
1

1
2

β τ
λ

=
−

 (13)

 
Considering that the time step used in numerical simulation for car-following models is 

usually quite small (e.g., τ = 0.1 s), the slope of the state transition path can be approximately 
expressed as λ everywhere within the dual boundary steady region. As shown in Figure 4b, the dual 
boundary steady region involves numerous parallel linear paths of state transition, as represented by 
the red lines in the figure. Once the traffic states reach the boundaries of the steady region, the traffic 
states move along the state transition paths until converging at steady states. Figure 5 presents some 
simple scenarios of traffic states transitions in the speed-spacing phase diagram. 

Suppose the leading vehicle’s speed remains stable at ( )1nx t−  during the traffic state 

transition of the following vehicle. The numbers in the figure denote the traffic states in terms of 
time series. The black solid dots represent the final steady states, which are always located at the 
horizontal line with the speed equal to ( )1nx t− . Figure 5a, b, and c display the paths of state 

transitions from the start points (remarked by the number 1) to the final steady state (black solid 
dots). Figure 5a shows that the traffic state can converge to the steady state directly, if the initial 
state-transition-path along which the traffic state enters the dual boundary region has an 
intersection point with the speed horizontal line of the leading vehicle. Otherwise, the traffic 
state has to firstly move across the dual boundary region along the state-transition-path, and then 
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spirals into the dual boundary region again to reach the final steady point (see Figure 5b and 5c).  
For most cases, there is at least one critical point on the boundary where the derivative is 

equal to the slope of the state transition path. Figure 5d illustrates a special case, in which four 
critical points (points A, B, C, and D) exist on the two boundaries as represented by the blue 
solid dots. Take the critical point A for example. When the speed of leading vehicle is lower than 
that of the speed at point A, all the initial states that are located in the right-hand side of point A 
cannot find paths within the dual boundary region for state transitions. Instead, the state 
transition paths for such initial states go zigzag against the boundary until passing the critical 
point A and then approach the final steady state along the state transition path. For the 
neighborhoods around other critical points, similar properties of the state transitions can be 
found, but it is not necessary to go into those details here. 

 
 

 

FIGURE 4  Paths of state transition within dual boundary steady region. 
 
 

 

FIGURE 5  State transitions in speed-spacing phase diagram. 
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Convergence of Traffic State  
 
After obtaining the state transition paths within the dual boundary steady region, another 
interesting question is in what manner the traffic state moves along the state transition path. 
Suppose the nth vehicle reaches the right boundary of the two-dimensional region at time t0 in a 
deceleration process. The speeds of the nth vehicle and the vehicle ahead are denoted as ( )0nx t

and ( )1 0nx t− , and thus ( ) ( )0 1 0n nx t x t−>  . For the sake of convenience, it is assumed that the 

leading vehicle keeps the speed ( )1 0nx t− stable. For a given time step τ, the speed of the nth 

vehicle at time t0 + τ can be derived according to model Equation 7 as follows: 
 

( ) ( ) ( ) ( ){ }0 0 0 1 0n n n nx t x t x t x tτ λτ −+ = − −     (14)

 
Similarly, the speed of the nth vehicle at time t0 + mτ is  

 

( ) ( )( ) ( )( ) ( )( ){ }0 0 0 1 01 1 1n n n nx t m x t m x t m x t mτ τ λτ τ τ−+ = + − − + − − + −     (15)

 
By recursive method, the solution to Equation 15 is  

 

( ) ( )( ) ( ) ( ){ }0 0 1 01 1 1
m m

n n nx t m x t x tτ λτ λτ−+ = − − − −    (16)

 
Then, the speed difference between the nth vehicle and the vehicle ahead at time t0 + mτ 

can be expressed as 
 

( ) ( ) ( ) ( ) ( ){ }( ) ( )( )0 1 0 0 1 0 0 01 1
m m

n n n n n nx t m x t x t m x t x t x tΔ τ τ λτ Δ λτ− −+ = − + = − − = −       (17)

 
Equation 17 indicates that the speed difference between the following vehicle and the 

leading vehicle drops by (1 – λτ) in every time step. Specifically, the speed difference drops by 
(1 – λ) per second, when the time step τ equal to 1 s. If λ = 0.5 s–1, the speed difference drops by 
half per second, which also means that the distance between the current state and the final steady 
state along the state transition path is shortened by half every second as shown in Figure 6. Then, 
after 3 s, the speed difference drops to 1/8 times of the initial value, and the following vehicle is 
approaching stable. 

Recalling the basic DBOVM proposed in Section 2, as the slope of the state transition 
path λ = 0, the speed difference cannot get reduced during the state transition within the dual 
boundary steady region. That’s why the basic DBOVM always takes an unreasonably long time 
to approach the steady state. Moreover, the state transition paths in the basic DBOVM are 
horizontally distributed within the steady region, which indicates that the traffic state cannot 
reach the steady state theoretically. However, under the speed adjustment mechanism in general 
DBOVM, the traffic state can converge to any spacing in between the dual boundary steady 
region. 
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FIGURE 6  Process of state transition with λ = 0.5. 

 
 
Stability Features of the General DBOVM 
 
Local Stability  
 
Using the same conditions as in the studies on the basic DBOVM, the sensitivity parameter λ is set 
as λ = 0.5 s–1. Similar to the studies in Section 2, two simulations are conducted, one for the initial 
state on right boundary and the other for left boundary. Figure 7 shows the simulation results of 
both scenarios. The red data and the blue data represent the first following vehicle and the second 
following vehicle, respectively, and the numbers denote the time series of the state points. It is 
found that the slopes of all state transition paths are equal to 0.51, which is consistent with the 
result computed by Equation 13. As the time step of 0.1 s is used in the simulation, the rate of 
speed difference dropping per second can be computed by Equation 17 as (1 – 0.5 × 0.1)10 = 0.60. 
Therefore, in every second the speed difference drops to 0.60 times of it 1 s before, which is also 
consistent with the simulation results. After 6 s from the perturbation, the state of the first 
following vehicle is very close to the steady state. At the tenth second, the state of vehicle 
converges at some spacing between the two boundaries. Besides, it can be found that the final 
steady spacing of the second following vehicle is closer to the boundary in both scenarios, which 
proves that the effects of speed adjustment mechanism can allow the vehicle to reach any steady 
state within the dual boundary steady region. 

The general DBOVM shows a similarity in the convergence speed with that of the 
original OVM, if one chooses an appropriate sensitivity parameter λ. In order to have deep 
insight of the dynamic features of the general DBOVM, numerical simulations on string stability 
studies are conducted in following. 
 
String Stability  
 
The periodical ring road is used as the simulation condition for studies on string stability. The 
platoon in the ring road involves 100 vehicles in total. Both the left boundary and the right 
boundary are considered as the initial steady state of the platoon in the ring. A small perturbation 
is added on the first vehicle by an instantaneous small jump (less than 5%) in position, and the 

0 
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FIGURE 7  Simulations on local stability of the general DBOVM. 
 
 

time step is 0.1 s in all simulations. In order to make comparison, simulations are conducted for 
all three models: the original OVM, the basic DBOVM (λ = 0), and the general DBOVM (λ = 
0.5). All model parameters remained the same as in the local stability studies. 

First the dynamics of the platoon under the unstable conditions are investigated. The 
initial speed of the platoon is 16 m/s, which is string unstable for both the left boundary and the 
right boundary under the law of OVM. Figure 8 gives the snapshots of the platoon’s dynamics at 
the time t = 5,000 s from the time t = 0 at which the perturbation added. From the figure we can 
see it is apparent that all three models produce the stop-and-go patterns after 5,000 s. The 
hysteresis loop produced by the basic DBOVM is the largest in the phase diagram. With the 
effect of speed adjustment mechanism, the hysteresis loop of the general DBOVM is smaller, 
whereas the original OVM has the smallest one. Another important feature is the relation of the 
hysteresis loops between the original OVM and the basic DBOVM. In the simulation beginning 
from the left boundary of steady region, the left side of the hysteresis loop produced by the OVM 
overlaps the same side of the DBOVM’s loop, while they overlap in the right side for the case 
from the right boundary. 

The simulation results indicate that the dual boundary steady region in the DBOVM has a 
similar effect as the explicit delay for the original OVM (3), which can enlarge the hysteresis 
loop in traffic dynamics. However, the speed adjustment mechanism in the general DBOVM 
restrains such effect in some extent.  

In the next step, the ring road simulation for every different initial steady state on the dual  
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FIGURE 8  Snapshots of phase diagrams of three models at t = 5,000 s. 
 
 
boundary (by the interval of 0.1 m/s in the initial speed) is repeated, and the total simulation time 
to 100,000 s is added, in order to ensure that the perturbation has sufficient time for evaluation. 
Table 1 illustrates the resulting string unstable region for the general DBOVM and the basic 
DBOVM. 

The string unstable regions in the basic DBOVM ( 0λ = ) are wider than the original 
OVM because of the hysteresis effect induced by the dual boundary region. However, the string 
unstable regions for general DBOVM ( 0.5λ = ) are close to that of the original OVM, under the 
effects of speed adjustment mechanism. Because only small perturbations are considered in the 
simulations, the states of vehicles always move around the boundary where they get started, as 
illustrated in Figure 5a. Therefore, the string unstable regions of speed are not the same on the 
two boundaries but are related to the mathematical properties of the boundary optimal velocity 
function. Moreover, as the derivative of left boundary optimal velocity function is larger than 
that of the right boundary at the same speed, simulations starting from the left boundary are 
likely to produce stronger acceleration (or deceleration) than the cases beginning from the right 
boundary, which makes the left boundary less stable than the right one. Therefore, the unstable 
region of DBOVM on the left boundary is wider than that in the right boundary. 

Another interesting phenomenon that can be found is that the final steady states that the 
platoon reaches after the perturbation are slightly different from the original ones where the 
platoon gets started. Specifically, the speed of the final steady state is higher than the initial 
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TABLE 1  String Unstable Regions in General DBOVM and Basic DBOVM 

 
Left Boundary OVF 

V(Δx) = 15.3 + 16.8 tanh [0.088 Δx – 2.1] 
Right Boundary OVF 

V(Δx) = 15.3 + 16.8 tanh [0.076 Δx – 2.1] 

DBOVM 
λ = 0.5 

Δx ϵ (17.9, 31.7) Δx ϵ (21.1, 31.8)  
v ϵ (7.2, 25.3) v ϵ (7.6, 20.5)  

DBOVM 
λ = 0 

Δx ϵ (14.3, 34.9) Δx ϵ (15.4, 40.3)  
v ϵ (3.8, 27.9) v ϵ (3.0, 27.8)  

OVM 
Δx ϵ (16.5, 31.2) Δx ϵ (22.0, 35.2)  

v ϵ (5.7, 24.9) v ϵ (8.5, 24.0)  
 
 
steady state in the order of 0.1 m/s, when the platoon starts from the right boundary. For the 
cases of starting from the left boundary, the final steady speed is found lower than the initial one 
also in the order of 0.1 m/s. The two-dimensional-steady-region allows the platoon to transfer its 
steady state under the perturbation. Similar shifts can be observed on the steady spacing of the 
platoon, if the simulation is conducted in an open boundary road instead of the ring road. 
 
 
DISCUSSION 
 
The basic DBOVM substitute the two-dimensional-steady-region for the optimal velocity 
function in OVM, which is reasonable for modeling the satisfaction range of steady state in car 
following. However, the basic DBOVM cannot reach the steady state inside of the dual boundary 
region during the dynamic process of traffic flow. Therefore, the amendment of the speed 
adjustment mechanism is necessary in the general DBOVM. The effect of speed adjustment in 
the proposed model is similar to the speed adaption concept in the literature (12), while the latter 
one is more complex in model structure. Besides, the general DBOVM has some similarities 
with the FVDM (5), which also has a speed difference term in the model. The speed adjustment 
effect in the general DBOVM only works within the dual boundary steady region, whereas the 
FVDM does not contain a two-dimensional-steady-region, and the speed difference term always 
contributes to the acceleration. 

In this paper, only the S-shape function is considered for the expressions of the DBOVF. 
The differences in the functions of DBOVF may change the stability conditions of the general 
DBOVM, whereas the properties of traffic state transitions are the same as discussed in this 
paper. Another point that should be mentioned is the paths of state transitions within the dual 
boundary steady region are not strictly but approximately linear. However, one can still use the 
sensitivity parameter λ as the slope of the state transition path for roughly analysis. 
 
 
SUMMARY 
 
The main contribution of this paper is that the authors proposed a simple car-following model 
called general DBOVM, which can describe the driving behavior of accepting a range of 
satisfied conditions instead of an optimal one under steady traffic. The model is developed based 
on the OVM, with only two additional parameters. Therefore, it is very convenient for analytical 
and numerical analyses.  
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A simple speed adjustment mechanism is introduced into the basic DBOVM, with which 
the traffic state can converge to steady state everywhere inside of the two boundary steady 
region. Under the effect of speed adjustment, traffic states are transferred along some specific 
paths with an approximately constant slope equal to the sensitivity parameter of the speed 
difference term in general DBOVM. 

The dual boundary steady region in DBOVM has the hysteresis effect, which is similar to 
the effect of explicit delay in OVM. The wider the dual boundary steady region is, the stronger 
the hysteresis effect will be. In spite of the instability that results from the hysteresis of dual 
boundary region, the speed adjustment effect in general DBOVM restrains the hysteresis and 
improves the stability of traffic.  

The dual boundary steady region in the general DBOVM allows the traffic flow to reach 
a new steady state slightly apart from the formal one under the effect of small perturbation. This 
property does not exist in models with one dimensional optimal velocity functions.  

The authors present only the framework of general DBOVM, and such a dual boundary 
steady region can also be introduced into other well-known car-following models. Moreover, the 
parameters of the general DBOVM are required to be calibrated by real traffic flow data, and 
applications of the proposed model will be studied in the next step. 
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ne of the key problems faced by traffic management operators of large urban traffic 
networks is the lack of sufficient data to compute performance indicators. These indicators, 

such as travel time, queue length, loss hours, and total time spent, are useful for offline 
evaluation purposes as well as online traffic control applications. In the latter case, such data are 
particularly of use in coordination algorithms that require information on the number of vehicles 
present or queuing in certain areas. This information in turn is used for example to assess the 
amount of buffer space available to temporarily store or reroute vehicles from more densely used 
parts of the network. Computing the amount of vehicles present or queuing in a certain area 
requires counting the number of vehicles that enter or exit that area. In this extended abstract the 
authors show how through fusing vehicle counts and travel times (measured by any means 
available), the well-known drift-error can be reduced to virtually zero. In the complete paper the 
authors show how this algorithm fits in a wider suite of data fusion tools to compute urban traffic 
performance indicators on the basis of multiple sources of data. 
 
 
CUMULATIVE DRIFT 
 
Denote N (t) as the number of vehicles present on the road stretch at a certain time instant t. Figure 1 
(top) illustrates that the number of vehicles on a simple hypothetical road stretch of 1 km can be 
derived directly using cumulative inflow and outflow curves Q1(t) and Q2(t). The horizontal 
distance between these curves depicts the travel time of the nth vehicle entering this road stretch, 
whereas the vertical distance depicts the number of vehicles N (t) = Q1(t) − Q2(t). It is straight-
forward to compute N(t) numerically (the authors consider discrete time steps k of size ∆t): 
 
N (k + 1) = N (k) + ∆t[q1(k) − q2(k)] (1) 
 

Unfortunately, this approach is highly sensitive to counting errors. Suppose both 
detectors make a 1% counting error that, for the sake of argument, is assumed normally 
distributed around the actual number of vehicles passing both locations: 

 
qi

obs(k) = qi(k) + η(k) (2) 
 

with 

O 
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FIGURE 1  Cumulative inflow and outflow curves for a straight road stretch. 
 

 
ηi(k)~N [0, 0.01 × qi(k)] 

 
Substituting Equation 2 into Equation 1 results in Equation 3: 

 
N (k + 1) = N (k) + ∆t[q1(k) – q2(k)] + ζ(k) (3) 
 
with 
 
ζ(k) = ∆t[η1(k) − η2(k)] 
 
which describes a so-called random walk (the sum of two independent error terms) that may result in 
values anywhere between minus or plus infinity. 

Figure 2a and b (top) show the measured in- and outflows q1(k) and q2(k) on the same 
hypothetical road stretch of 1 km, in which the errors of both 1% and 5% are hardly visible, whereas 
Figure 2a and b (bottom) show the resulting error in the estimated number of vehicles N (k) using 
Equation 1. Even in case of a small error of 1% the error is sizeable—eight vehicles per km may 
make the difference between free-flowing traffic or oversaturated conditions. 
 
 
FUSING FLOW OBSERVATIONS AND MEASURED TRAVEL TIMES 
 
One approach to correct this so-called “drift” error is to use measured (realized) travel times TTobs(t) 
along the same road stretch. The underlying assumption is that travel time measurements are more 
accurate than loop counts (see Endnote 1). Recall that the horizontal distance between the cumulative 
curves allows researchers to estimate this travel time of the nth vehicle entering this road stretch. 
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(a) 

 
(b) 

FIGURE 2  Cumulative drift: (a) measured in- and outflow flows q1(k)  
and q2(k) for detectors with a 1% and 5% error rate, respectively;  

(b) resulting errors in the estimated number of vehicles N(k). 
 
 
Figure 3 illustrates the basic idea. Suppose at some time instant t2 researchers obtain a “travel 
time measurement” TTr

obs (t2). At that same time instant an estimate for the realized travel time 
using the cumulative curves can also be computed: 
 
TTr

est (t2) = t2 − t1 
 
The error in this travel time estimate can now be used 
 
ϵTT (t2) = TTr

obs (t2) − TTr
est (t2) 

 
to correct both cumulative curves. Researchers define n* as the factor with which to correct the 
curves. It turns out this correction factor is proportional to the travel time error, that is, n* ∝. 

 

This is true under the condition that outliers are properly removed before computing the 
average (or median). An example of such an outlier removal technique is the following: 
Remove all travel times observations in a certain time period further away from the median 
travel time than α × TT75 – TT25, where TTXX represents the XXth travel time percentile. The 
outlier removal procedure should be applied strictly for this purpose. 

ϵTT (t2)—details will be provided in the full paper. The rationale of course makes sense. If 
the outflow (Q2) is overestimated, then the rate at which vehicles are able to depart from this 
road stretch is overestimated, and the result is that the travel time these vehicles have incurred is 
underestimated. The opposite occurs when the inflow (Q1) is overestimated; in that case the 
number of vehicles accumulating on the road stretch is exaggerated, and as a result travel time is 
overestimated. In Figure 3 the direction of this correction n* is indicated in case the observed 
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travel time is larger than the estimated travel time [ϵTT (t2) > 0]. It turns out that this approach 
works remarkably well and is capable of eradicating the error in N(t) virtually completely, not 
just in case of random errors but also in case of structural errors (bias). 

Figure 4 gives an example of both 5% structural and random errors—again on the 
hypothetical 1 km road stretch introduced earlier. Figure 4a shows a detail of the corrected 
cumulative curves, the erroneous cumulative curves, and the ground-truth cumulative curves. In 
absolute sense, the algorithm does correct the errors, but relative to one another the algorithm 
does, which is demonstrated by time series of the erroneous versus the corrected number of 
vehicles estimated in Figure 4b—the latter lies very close to the ground truth. 

 
 

 

FIGURE 3  Basic idea of using measured travel times to  
correct for the cumulative errors that result from “drift.” 

 
 

 
(a) (b) 

FIGURE 4  Example of error correction algorithm in case of random errors and structural 
errors: (a) a detail of the corrected cumulative curves, the erroneous cumulative curves, and 

the ground-truth cumulative curves; (b) time series of the erroneous versus the corrected 
number of vehicles estimated—the latter lies very close to the ground truth. 
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FULL PAPER OUTLOOK 
 
This data fusion algorithm appears to fix cumulative drift errors by combining counts with travel 
times that may come from automatic vehicle identification systems, floating car data, Bluetooth 
sniffers, or any type of sensors. In the full paper the authors will discuss the algorithm in depth 
and demonstrate it on various real-life examples in the Netherlands and the United States. 
 
 
ENDNOTE 
 
1. This is true under the condition that outliers are properly removed before computing the average (or 

median). An example of such an outlier removal technique is the following: remove all travel times 
observations in a certain time period further away from the median travel time than α × TT75 – TT25 
where TTXX represents the XXth travel time percentile. The outlier removal procedure should be 
applied strictly for this purpose. 
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onnected vehicles technology will provide drivers with information on the presence and 
behavior of other drivers in their vicinity. This information is intended to help drivers 

make safe and reliable decisions. It will also affect drivers’ strategic and operational decisions, 
with the most impact on the operational decisions, including acceleration choice. From the 
modeling standpoint, however, capturing the effects of this additional information on drivers’ 
decisions is a challenging task and requires a more thorough understanding of humans’ 
decision-making processes. 

Acceleration behavior has been studied extensively in the literature, and several models 
with varying levels of complexity have been introduced to capture the underlying processes. 
Unfortunately, most of these models are designed to capture driving behavior in the absence of 
communications. Their modeling capabilities are even more limited in a mixed environment 
where only a portion of the vehicles are equipped with the essential communication tools. This 
additional information motivates different behaviors in this mixed environment. The addition 
of autonomous vehicles could further contribute to the complexity in this environment. This 
paper is intended to introduce an acceleration framework to capture the impacts of this 
additional information on driving behavior. Accordingly, different acceleration models with 
different assumptions are used for regular, connected, and autonomous vehicles. 
 
 
ACCELERATION FRAMEWORK 
 
This section provides an overview of the acceleration framework with a brief description of the 
acceleration models. 
 
Modeling Vehicles with No Communication Capability 
 
The drivers of these vehicles receive no information from other vehicles or from the traffic 
management center (TMC). They only get information from road signs (variable message signs 
and conventional signs). They also have a rough perception of other drivers’ behavior in their 
vicinity. Moreover, their acceleration behavior has a probabilistic nature, and they are 
uncertain about other drivers’ future behavior. This uncertainty may result in crash occurrence. 

In general, drivers are seeking to travel at a desired speed while avoiding crashes. 
Avoiding crashes is an extremely important factor in drivers’ decision making because of its 
severe consequences. Hamdar et al. (1) presented an acceleration model that avoids (most) 
crashes by specifying behavioral mechanism. An extension to this model was presented by 
Talebpour et al. (2), who recognized that drivers have different perceptions under congested 
versus uncongested regimes. Accordingly, they introduced two utility functions, one for 

C
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modeling driver behavior in congested regimes and one for modeling driver behavior in 
uncongested regimes. At each evaluation stage, based on drivers’ perception of their 
surrounding traffic condition, drivers employ the corresponding value functions to evaluate the 
gains from the chosen acceleration. They introduced a binary probabilistic regime selection 
mechanism into the evaluation stage where drivers use the resulting utility to evaluate each 
acceleration value. Note that this study adopted Talebpour et al.’s acceleration framework to 
model car-following behavior in the absence of communication. 
 

Modeling Communication-Ready Vehicles 
 
These vehicles are expected to have the capability of sending and receiving information to and 
from other vehicles and infrastructure-based equipment. Assuming reliable connectivity in the 
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications networks, each 
vehicle will receive information about other vehicles in this network. The driver also receives 
real-time updates about the TMC decisions (e.g., real-time changes in speed limit). However, 
this information may not be available at all times and locations, and drivers’ behavior may 
change according to the amount of information they receive. Accordingly, four scenarios can 
be defined: active and inactive V2V communications and active and inactive V2I 
communications. 
 
Active Vehicle-to-Vehicle Communications 
 
Considering the flow of information in this V2V–V2I communications network, drivers are 
certain about other drivers’ behaviors. Moreover, they are aware of driving environment, road 
condition, and weather condition downstream of their current location. Therefore, a 
deterministic acceleration modeling framework is suitable for modeling this environment. This 
paper uses the Intelligent Driver Model (IDM) (3) to model this connected environment. While 
capturing different congestion dynamics, this model provides greater realism than most of the 
deterministic acceleration modeling frameworks. 
 
Inactive Vehicle-to-Vehicle Communications 
 
In this driving environment, no active communication exists between vehicles. In case that V2I 
communications are unavailable, drivers’ only sources of information are road signs and their 
perception of surrounding traffic condition. Drivers’ behavior in this case can be modeled 
similarly to the case that vehicles have no communication capability. In the presence of V2I 
communications, drivers directly receive information about the TMC decisions. Drivers’ 
behavior in this case can be modeled similarly to the case that vehicles have active V2I 
communications. 
 
Active Vehicle-to-Infrastructure Communications 
 
From the TMC point of view, active V2I communications will provide a basis to detect 
individual vehicle trajectories that can be used as high-precision input data to traffic control 
algorithms. From the driver’s standpoint, V2I communications do not directly influence the 
drivers’ acceleration choice. Therefore, the acceleration modeling approach under active V2I 
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communications depends on the availability of V2V communications. However, active V2I 
communications will provide real-time information about the TMC decisions (e.g., speed limit 
update in a speed harmonization system), which aim to improve safety and mobility. 
 
Inactive Vehicle-to-Infrastructure Communications 
 
In this driving environment, no direct communication exists between vehicles and the TMC. 
Without V2V communications, drivers’ only sources of information are road signs and their 
perception of surrounding traffic condition. Drivers’ behavior in this case can be modeled 
similarly to the case that vehicles have no communication capability. In the presence of V2V 
communications, drivers may receive information about the TMC decisions from other 
vehicles (if at least one vehicle in the V2V communications network receives information from 
the TMC). Drivers’ behavior in this case can be modeled similarly to the case that vehicles 
have active V2I communications. 
 
Modeling Autonomous Vehicles 
 
Considering the ability of autonomous vehicles to constantly monitor other vehicles in their 
vicinity, an autonomous vehicle is certain about other drivers’ behavior. Moreover, these 
vehicles can react instantaneously to any changes in the driving environment. Therefore, a 
deterministic acceleration modeling framework with reaction time set to zero is suitable for 
modeling this environment. This paper uses IDM (3) to model autonomous vehicles. 
 
 
PRELIMINARY RESULTS 
 
The preliminary simulations targeted a four-lane highway on the eastbound direction of I–290 
near Chicago, Illinois (see Figure 1). This 3.5-mi-long segment has four on-ramps and three 
off-ramps, each with different characteristics and different merging length. An example of 
simulation results are presented in Figure 2. This figure reveals the impact of market 
penetration rate on mobility. In this figure, it is assumed that reaction time of drivers will 
decrease by 50% in the presence of V2V communications. Note that V2I communications are 
inactive in this example. Based on this figure, higher penetration rate of connected vehicles 
results in higher breakdown flow (compare 2,000 veh/h at 0% penetration rate to 2,500 veh/h 
at 50% penetration rate) and density (compare 28 veh/km at 0% penetration rate to 38 veh/km 
at 50% penetration rate). Moreover, the scatter in the fundamental diagram decreases as the 
number of connected vehicles increases and at 100% penetration rate, the breakdown is 
completely eliminated. Therefore, it can be concluded that the efficiency of the highway 
increases as the number of connected vehicles increases. 
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FIGURE 1  Characterization of the selected segment in Chicago, Illinois. 
 
 
 
 

 

     
(a) (b) (c) 

 

    
(d) (e) 

 
FIGURE 2  Flow–density graph for different market penetration rates:  

(a) 0%, (b) 25%, (c) 50%, (d) 75%, and (e) 100%. 
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TRAFFIC CONTROL 
 

Traffic Flow Theory Milestones in Developing the 
TEXAS Model for Intersection Traffic in the Early 1970s 

 
THOMAS W. (TOM) RIOUX 

Rioux Engineering 
 
 

he Traffic EXperimental and Analytical Simulation Model for Intersection Traffic (TEXAS 
Model) was developed by the Center for Transportation Research at the University of Texas 

at Austin beginning in the late 1960s under the leadership of Clyde E. Lee. Thomas W. Rioux 
was leader of the team of graduate students that developed the TEXAS Model and has been 
upgrading the TEXAS Model since its initial development. The TEXAS Model is being 
enhanced to include connected vehicle messages by Harmonia Holdings Group and Rioux to be a 
test bed for connected vehicle applications. The TEXAS Model source code is available for use 
by the public under the GNU General Public License as published by the Free Software 
Foundation. The TEXAS Model source code for the standard version may be downloaded from 
http://groups.yahoo.com/neo/groups/TEXAS_Model, while the version with connected vehicle 
applications may be downloaded from http://www.etexascode.org. This paper chronicles the 
evolution of the TEXAS Model from the early 1970s through 2008 and the early traffic flow 
theory concepts of triangular acceleration, triangular deceleration, equations of motion, car 
following, intersection conflict checking, intersection conflict avoidance, sight distance 
restriction checking, lane changing, and crashes. 
 
 
INTRODUCTION 
 
Microscopic traffic simulation involves defining the movement of individual driver–vehicle units 
through a roadway system in response to driver desires and control, other driver–vehicle units in 
the system, and the absence or presence of traffic control. A driver–vehicle unit is a vehicle with 
specified characteristics (such as type of vehicle, length, maximum acceleration, and maximum 
speed) controlled by a driver with specified characteristics (such as driver type, reaction time, 
and desired speed) that has an intersection origin leg and lane and a destination leg. Every 
driver–vehicle unit in the system is processed every small time-step increment (generally 1 s or 
less), wherein each individual driver makes many decisions (e.g., change lanes, slow down, 
speed up, stop, turn, avoid crash), vehicle detectors and signal controllers are simulated, and 
many measures of effectiveness (MOEs) are gathered and reported. 

Clyde E. Lee was the faculty member who, in the late 1960s, conceived the idea of 
applying the University of Texas at Austin’s (UT) new Control Data Corporation (CDC) 1604 
mainframe digital computer for simulating traffic flow through an intersection. He initiated the 
first development efforts and supervised several ensuing research projects that culminated in the 
TEXAS Model being released in 1977. Lee continued supervising research projects that 
enhanced or used the TEXAS Model until his retirement from UT in 1999. The TEXAS Model 
was developed by the Center for Highway Research and later the Center for Transportation 
Research (CTR) at UT using FORTRAN and mainframe computers. Initial funding for the 

T 
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development efforts was provided by the Texas Department of Transportation (TxDOT) in 
cooperation with FHWA with later funding by FHWA and the UT College of Engineering. 

The original TEXAS Model simulated a single intersection with no control, yield-sign 
control, less-than-all-way-stop-sign control, all-way-stop-sign control, pretimed-signal control, 
semi-actuated-signal control, or full-actuated-signal control using time-step increments between 
0.5 and 1.5 s, inclusive, for a total of 4,500 s (1.25 h). The geometry included up to 6 legs with 
up to 6 inbound and 6 outbound lanes per leg; up to 1,000 ft straight lanes that could be blocked 
at the near end, at the far end, or in the middle; specification of movements allowed to be made 
from each inbound lane; specification of movements allowed to be accepted for each outbound 
lane; sight distance restrictions; detailed intersection path geometry using arcs of a circle and 
tangent sections; and the calculation of potential points of geometric conflicts between 
intersection paths. The traffic stream was stochastically generated using constant, Erlang, 
Gamma, lognormal, negative exponential, shifted negative exponential, and uniform 
distributions for headways with user-specified parameters; the normal distribution for desired 
speeds; and discrete percentages for turn movements, lane assignments, and other percentage- 
based parameters. For each inbound leg, the user specified the hourly volume, the headway 
distribution name and any parameters, the mean and 85th percentile speed, and the percentage of 
each vehicle class in the traffic stream. For each vehicle class (10 provided with a maximum of 
15), the user specified the percentage of each driver class (three provided with a maximum of 
five). 

The model included intersection conflict checking; sight distance restriction checking; 
cooperative lane changing using a cosine curve for the lateral position; car following using the 
Gazis-Herman-Rothery model (1, 2) with user-specified values for lambda (power for relative 
position), mu (power for speed), and alpha (constant); jerk-rate-driven equations of motion; 
triangular acceleration; triangular deceleration; and crashes with the driver–vehicle unit in front. 
MOEs included total delay (actual travel time minus the time to travel the same distance at the 
time-averaged desired speed), queue delay (time from initially joining the end of the queue of 
driver–vehicle units at the stop line until crossing the stop line), stopped delay (time stopped 
from initially joining the end of the queue of driver–vehicle units at the stop line until crossing 
the stop line), delay below a user-specified speed such as 10 mph, vehicle-miles of travel, travel 
time, volume, time and space mean speed, turn percentages, maximum and average queue length 
in 20-ft vehicles, and number of crashes. The MOEs could be printed per driver–vehicle unit and 
were summarized per lane or movement, per inbound leg, and for the entire intersection. 

Initial model development effort began in 1968. Many students, faculty, and staff at UT 
have been involved in the development and use of the TEXAS Model: 
 

• James W. Thomas, a graduate student in civil engineering at the time, began defining 
the concepts and techniques for modeling traffic flow through an intersection. 

• Roger S. Walker, a graduate student in electrical engineering at the time, wrote some 
of the earliest CDC 1604 computer code for the TEXAS Model. His work included the 
development of the COordinated Logic Entity Attribute Simulation Environment program, which 
provided extremely efficient storage of model data and implemented an efficient means for 
processing logical binary networks. He was assisted by Dennis Banks. 

• Thomas W. “Tom” Rioux, a graduate student in civil engineering at the time, started 
work on the project in 1971, followed up on Dr. Walker’s initial work, and became the leader of 
the team that developed the TEXAS Model into a viable tool for practical use in traffic 
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engineering and research using the CDC 6600 computer system until the TEXAS Model was 
released in 1977 (3–11). Rioux was the primary person who developed the field data analog-to-
digital processing software that was used for model validation, DISFIT, GEOPRO, SIMPRO, the 
CDC 250 Display System version of DISPRO, SIMSTA, REMOVEC, REPLACEC, and 
gdvsim. He also participated in the development of DVPRO, the Intergraph UNIX X Windows 
version of DISPRO, the Java version of geoplot, and the Java version of dispro. In 1973, Rioux 
developed an animation on the CDC 250 Display System that was used during initial 
development efforts. Field measurements of queue delay using specifically designed recording 
devices were used to calibrate and validate the TEXAS Model at a 4-leg intersection with 
pretimed signal control in Austin, Texas. 

• Charlie R. Copeland, Jr., an undergraduate and then a graduate student in civil 
engineering at the time, was part of the original development team and was the primary person 
who developed DVPRO and EMPRO. He also participated in the development of the field data 
analog-to-digital processing software, DISFIT, GDVDATA, GDVCONV, SIMDATA, 
SIMCONV, and SIMPRO. 

• Robert F. “Bobby” Inman, an undergraduate student in mechanical engineering at the 
time, was part of the original development team and was the primary person who developed the 
field data collection hardware, GDVDATA, GDVCONV, SIMDATA, SIMCONV, DISPRE, and 
the DOS version of DISPRO. He also led the development effort of the Texas Diamond and 
National Electrical Manufacturers Association (NEMA) traffic signal controller simulators 
within SIMPRO. Harold Dalrymple assisted him in the development of the field data collection 
hardware. 

• Ivar Fett, a graduate student in civil engineering at the time, was the person who 
collected and analyzed the field data and developed the original lane-changing geometry and 
decision models, developed the initial all-way-stop sign control logic, and developed the initial 
pretimed signal control logic for SIMPRO. He participated in the development of the car-
following logic for SIMPRO. 

• William P. Bulloch, a graduate student in civil engineering at the time, developed the 
initial acceleration, deceleration, and car-following models for SIMPRO. 

• Elia King Jordan, a graduate student in civil engineering at the time, developed the 
initial version of DVPRO. 

• Glenn E. Grayson, a graduate student in civil engineering at the time, assisted in the 
development of the actuated signal control logic for SIMPRO and supervised the field data 
collection and analysis, which was used to validate the TEXAS Model. 

• Vivek S. Savur, a graduate student in civil engineering at the time, assisted in the 
field data collection and analysis and assisted in the development of GEOPRO. 

• Scott Carter, a graduate student in civil engineering at the time, was the primary 
person who developed the Intergraph UNIX X Windows version of DISPRO. 

• Moboluwaji “Bolu” Sanu, a graduate student in electrical and computing engineering 
at the time, was the primary person who developed the Java versions of geoplot and DISPRO. He 
later participated in the Small Business Innovative Research Projects performed by Rioux 
Engineering (12, 13). 

• Zhonghui Ning participated in the development of gdvsim in the Small Business 
Innovative Research Projects performed by Rioux Engineering (12, 13). 
 

Many research projects have used the TEXAS Model, and their results are documented 
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elsewhere. The original software programs proved to be a very robust and logically sound 
platform on which numerous evolutionary enhancements, revisions, and new features were 
subsequently added through additional projects at CTR and Rioux Engineering as the TEXAS 
Model migrated from batch mode on a mainframe computer to interactive mode on modern 
microcomputers: 
 

• 1977/12/01 V1.00, initial release; 
• 1983/08/01 V2.00, emissions processor added (14); 
• 1985/11/01 V2.50, converted to run on the DOS operating system on a 

microcomputer using 16-Bit FORTRAN compilers, user-friendly interface added, and DOS 
animation added (15); 

• 1989/01/01 V3.00, diamond interchange geometry and TxDOT Figure 3, 4, 6, and 7 
dual- ring actuated diamond signal controller added (16); 

• 1992/01/31 V3.10, replicate runs added, wide or narrow output selection added, left-
turn pull-out option added, hesitation factor added, maximum number of loop detectors per lane 
increased from 3 to 6, blocked lane processing modified, intersection conflict avoidance added, 
and driver–vehicle unit delay for unsignalized lanes modified; 

• 1992/03/25 V3.11, intersection conflict avoidance error fixed, lane change errors 
fixed, and look ahead algorithms modified; 

• 1992/12/15 V3.12, converted to run on the Unix operating system on a workstation, 
headway distribution fitting processor added, geometry plotting processor added, simulation 
statistics processor added, UNIX X Window animation added, free U-turns at diamond 
interchange added, Dallas diamond signal controller phase numbering added, NEMA TS 1-1989 
signal controller with volume–density operation added, replicate runs for specified number of 
runs added, replicate runs to specified statistical tolerance added, spreadsheet macros developed, 
car following modified, and many small enhancements to numerous algorithms (17); 

• 1993/11/23 V3.20, car following modified and NEMA controller errors fixed; 
• 1994/05/10 V3.21, lane change error fixed; 
• 1994/06/07 V3.22, NEMA and Texas diamond controller errors fixed; 
• 1996/02/28 V3.23, car-following logic modified; 
• 1998/09/21 V3.24, utility programs from80d.exe and to80d.exe added and Y2K-

compliant modifications made; 
• 2000/08/03 V3.25, Java animation added; 
• 2003/08/29 V4.00, compiled using 32-bit FORTRAN compilers and initial vehicle 

messages added; 
• 2005/08/12 V5.00, Java user interface added; geometry plotting processor converted 

to Java; source code released under GNU general public license as published by the Free 
Software Foundation; increased number of driver types to nine; increased number of vehicle 
types to 99; classify detector added; modified logical binary networks to use type LOGICAL 
variables; added Vehicle Message System (VMS) messages for special driver–vehicle units: (1) 
forced go time and duration, (2) forced stop location and duration, (3) forced run red signal time 
and duration; changed minimum time-step increment to 0.01 s; converted all real variables to 
double precision; added VMS message types: (1) Driver DMS, (2) Driver IVDMS, and (3) 
Vehicle IVDMS; added VMS messages: (1) accelerate or decelerate to speed x using normal 
acceleration or deceleration, (2) accelerate or decelerate to speed x using maximum vehicle 
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acceleration or deceleration, (3) stop at the intersection stop line, (4) stop at location x, (5) stop 
immediately using maximum vehicle deceleration, (6) stop immediately using crash deceleration, 
(7) change lanes to the left, (8) change lanes to the right, (9) forced go, and (10) forced run the 
red signal; added VMS messages: (1) start time, (2) active time, (3) location (lane or intersection 
path and beginning and ending positions), (4) driver–vehicle unit number (0 = all), and (5) 
reaction time distributions and parameters; Surrogate Safety Assessment Methodology (SSAM) 
file support added; Linux version developed (12, 18); 

• 2008/07/31 V6.00, all user interface software made Section 508 compliant; built-in 
help and tool tips added; displaying the sight distance restrictions added; displaying the detector 
geometry and activity added; Java application developed to automate the running of the TEXAS 
Model; total simulation time extended to 9999.99 s (2.777775 h); lane length extended to 4000 
ft; Java application to display statistics from 1 run or replicate runs developed; stop on crash 
using crash deceleration and remain stopped option added; crashes between driver–vehicle units 
on different intersection paths added; automated the running of SSAM; attach and display 
orthorectified image file added; updated the NEMA traffic signal controller simulator to NEMA 
TS 2-2003; pedestrians added as they affect the operation and timing of the NEMA and 
hardware-in-the-loop traffic signal controllers; pedestrian signal operation added to animation; 
caused other driver–vehicle units to react to a crash; dilemma zone statistics added; time-varying 
traffic for two or more periods added; hardware-in-the-loop traffic signal controller added; 
additional vehicle attributes added to articulate vehicles; distracted driver VMS message added; 
an optional lane change before or after the intersection to move from behind a slower driver–
vehicle unit added; and simulation of bicycles, emergency driver–vehicle units, and rail driver–
vehicle units added (13); 

• 2010, Small Business Innovative Research (SBIR) project topic 10.1-FH3, 
“Simulating Signal Phase and Timing with an Intersection Collision Avoidance Traffic Model,” 
adding Society of Automotive Engineers J2735 Basic Safety Message, Signal Phase and Timing 
Message (SPAT), and Map Data Message (MAP) awarded to Harmonia Holdings Group, LLC, 
Blacksburg, Virginia; Phase I completed; Phase II in progress; and 

• 2011, SBIR project Topic 11.1-FH2, “Augmenting Inductive Loop Vehicle Sensor 
Data with SPAT and GrID (MAP) via Data Fusion,” adding National Transportation 
Communications for ITS Protocol 1202 vehicle detector, traffic signal controller parameter, and 
traffic signal display messages awarded to Harmonia Holdings Group, LLC, Blacksburg, 
Virginia; Phase I completed; Phase II in progress. 
 
 
TEXAS MODEL TRAFFIC FLOW THEORY 
 
The TEXAS Model defines the perception, identification, judgment, and reaction time (PIJR) as 
a user-specified parameter for each driver class in seconds. Typical values are 0.5 for aggressive 
drivers, 1.0 for average drivers, and 1.5 for slow drivers. Throughout the remainder of this 
document, several functions and constants are used as follows: 
 

ABS(A) = absolute value A, 
ACOS(A) = arccosine of A, 

COS(A) = cosine of A, 
DT = time step increment in seconds, 
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max(A,B) = maximum value of A and B, and 

PI = value for PI. 
 
 
TRIANGULAR ACCELERATION 
 
An investigation of existing acceleration models was undertaken in the early 1970s by Lee and 
Rioux, and it was found that the uniform acceleration model did not match observed behavior 
accurately when considered on a microscopic scale. Using a Chi-squared goodness-of-fit test, a 
best-fit uniform acceleration model was calculated and the results plotted (see Figure 1) along 
with observed data points (19). This figure illustrates that the uniform acceleration model 
computes velocities that are too low during initial acceleration and that result in the driver–
vehicle unit’s reaching desired velocity much sooner than it should. A linear acceleration model, 
which hypothesizes use of maximum acceleration when vehicular velocity is zero, zero 
acceleration at desired velocity, and a linear variation of acceleration over time, was investigated. 
Comparisons of this model with observed data (see Figure 1) indicate excellent agreement. This 
model also compared favorably with the non-uniform acceleration theory (20) used in describing 
the maximum available acceleration for the driver–vehicle unit. 

This work lead to the development of the triangular acceleration model used in the 
TEXAS Model (see Figure 2). The author will use the term “jerk rate” to describe the rate of 
change of acceleration or deceleration over time and is usually in units of feet per second per 
second per second. Starting from a stopped condition, a driver–vehicle unit will use a maximum 
positive jerk rate until it reaches the maximum acceleration, then the driver–vehicle unit will use 
a negative jerk rate until the acceleration is zero at the driver–vehicle unit’s desired speed. The 
maximum acceleration is defined by the driver–vehicle unit’s desired speed and the maximum 
acceleration for the driver–vehicle unit. 
 
 

 

FIGURE 1  Uniform versus linear acceleration and observed data. 
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FIGURE 2  Triangular acceleration model. 
 
 
TRIANGULAR DECELERATION 
 
An investigation of existing deceleration models was also undertaken in the early 1970s by Lee 
and Rioux, and it was found that the uniform deceleration model did not match observed 
behavior accurately when considered on a microscopic scale. Using a Chi-squared goodness-of- 
fit test, a best-fit uniform deceleration model was calculated and the results plotted (see Figure 3) 
along with observed data points (19). This figure illustrates that the uniform deceleration model 
yields a higher velocity during the first part of the deceleration maneuver and, as the velocity 
approaches zero, produces values that are lower than observed values. A linear deceleration 
model, which hypothesizes use of a zero initial deceleration, maximum deceleration at the instant 
the driver–vehicle unit stops, and a linear variation of deceleration over time, was investigated. 
Comparisons of this model with observed data (see Figure 3) indicate excellent agreement. 

This work lead to the development of the triangular deceleration model used in the 
TEXAS Model (see Figure 4). Starting from a moving condition, a driver–vehicle unit will use a 
maximum negative jerk rate until it reaches the maximum deceleration when the driver–vehicle 
unit stops. The maximum deceleration is defined by the driver–vehicle unit’s current speed and 
the maximum deceleration for the driver–vehicle unit. If a driver–vehicle unit is to decelerate to 
a stop, the time to stop and then the distance to stop is calculated each time step increment using 
current speed, current acceleration/deceleration, and current maximum deceleration. A 
deceleration to a stop is initiated when the driver–vehicle unit’s distance to the location for a stop 
becomes less than or equal to the distance to stop. 
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EQUATIONS OF MOTION 
 
With the development of the triangular acceleration and triangular deceleration models, it was 
clear that the equations of motion had to include jerk rate as follows: 
 
AN = AO + J * DT 
VN = VO + AO * DT + 1/2 * J * DT2 
PN = PO + VO * DT + 1/2 * AO * DT2 + 1/6 * J * DT3 
 
where 
 

 
AN = acceleration/deceleration new in feet per second per second, 
AO = acceleration/deceleration old in feet per second per second, 

J = jerk rate in feet per second per second per second, 
PN = front bumper position new in feet, 
PO = front bumper position old in feet, 
VN = velocity new in feet per second, and  
VO = velocity old in feet per second. 

 
In the TEXAS Model, only the jerk rate is possibly changed each time step increment, 

and limits are placed on the maximum positive and negative values for jerk rate. Only in 
collisions are extremely large values of jerk rate used to stop a driver–vehicle unit in about 3–6 
ft. 
 
 

 

FIGURE 3  Uniform versus linear deceleration and observed data. 
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FIGURE 4  Triangular deceleration model. 

 
 
CAR FOLLOWING 
 
An investigation of existing car-following models was undertaken in the early 1970s by Lee and 
Rioux, and the non-integer, microscopic, generalized Gazis-Herman-Rothery (GHR) car- 
following model (1, 2) was selected because of its superiority and flexibility. If there is no 
previous driver–vehicle unit (no driver–vehicle unit ahead of the current driver–vehicle unit) 
then it cannot car follow, and thus other logic is used. If the previous driver–vehicle unit is 
stopped then it cannot car follow, and thus other logic is used. The GHR Model equation is as 
follows: 
 
RelPos = PVPos – PO 
RelVel = PVVel – VO 

AN = CarEqA * VOCarEqM / RelPosCarEqL * RelVel 
 
where 
 

AN = current driver–vehicle unit acceleration/deceleration new in feet per second per 
second; 

AO = acceleration/deceleration old in feet per second per second; 
CarEqA = user-specified GHR Model alpha parameter (min. = 1, def. = 4,000, max. = 10,000);  
CarEqL = user-specified GHR Model lambda parameter (min. = 2.3, def. = 2.8, max. = 4.0); 

CarEqM = user-specified GHR Model mu parameter (min. = 0.6, def. = 0.8, max. = 1.0); 
PO = current driver–vehicle unit front bumper current position old in feet; 
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PVPos = previous driver–vehicle unit rear bumper position in feet; 
PVVel = previous driver–vehicle unit velocity in feet per second; 
RelPos = relative position in feet; 
RelVel = relative velocity in feet per second; and 

VO = current driver–vehicle unit velocity old in feet per second. 
 

The acceleration/deceleration new AN is not allowed to exceed the maximum 
acceleration or deceleration for the vehicle. The jerk rate to go from the current driver–vehicle 
unit acceleration/deceleration old AO to the current driver–vehicle unit acceleration/deceleration 
new AN is not allowed to exceed the maximum jerk rate. A conservative car-following distance 
is defined as follows: 
 
RelVel = PVVel – VO 
CarDis = (1.7 * PVVel + 4 * RelVel2) / DrivChar 

 
where 
 

CarDis = car-following distance in feet;  
DrivChar = user-specified driver characteristic; (<1 = slow, 1 = average, >1 = aggressive,  

min. = 0.5, and max. = 1.5); 
PVVel = previous driver–vehicle unit velocity in feet per second; 
RelVel = relative velocity in feet per second; and 

VO = current driver–vehicle unit velocity old in feet per second. 
 

If the relative velocity RelVel is greater than or equal to zero (the previous driver–vehicle 
unit is going faster than the current driver–vehicle unit) and the relative position RelPos is 
greater than some minimum value, then the driver–vehicle unit is allowed to accelerate to its 
desired speed. 

If the relative position of the vehicle RelPos is less than or equal to zero, then emergency 
braking is applied. If the relative position of the vehicle RelPos is greater than the 1.2 times the 
car-following distance CarDis, then the driver–vehicle unit is allowed to accelerate to its desired 
speed. 

If the previous driver–vehicle unit is decelerating, then calculate where it will stop and 
calculate the deceleration to stop behind the driver–vehicle unit ahead when it stops, and if this 
deceleration is less than the car following deceleration then use it. 

If the traffic signal changed from green to yellow and the current driver–vehicle unit 
decides to stop on yellow, then calculate a deceleration to a stop at the stop line. If the traffic 
signal is yellow and the driver–vehicle unit previously decided to stop on yellow, then continue a 
deceleration to a stop at the stop line. 
 
 
INTERSECTION CONFLICT CHECKING AND  
INTERSECTION CONFLICT AVOIDANCE 
 
Intersection conflict checking (ICC) and intersection conflict avoidance (ICA) are essential 
algorithms for microscopic traffic simulation. ICC is the algorithm that determines whether a 
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driver–vehicle unit, seeking the right to enter the intersection, has a predicted time–space 
trajectory through the intersection that does not conflict with the predicted time–space trajectory 
through the intersection of all other driver–vehicle units that have the right to enter the 
intersection. ICA is the algorithm used to simulate the behavior of driver–vehicle units that have 
the right to enter the intersection and try to maintain a nonconflict time–space trajectory through 
the intersection with the predicted time–space trajectory through the intersection of other driver- 
vehicle units that have the right to enter the intersection. 

Certain driver–vehicle units automatically gain the right to enter the intersection when 
there are no major collisions within the system: driver–vehicle units on an uncontrolled lane at a 
sign-controlled or signal-controlled intersection, driver–vehicle units going straight or right on 
intersection paths that do not change lanes within the intersection when the signal displays 
circular green, and all driver–vehicle units on signalized lanes when the signal displays protected 
green for their movement. Typical applications of ICC and ICA include a left-turning driver- 
vehicle unit crossing opposing leg straight through driver–vehicle units. The TEXAS Model 
included the ICC algorithm in Version 1.00 (released 12/01/1977), added the ICA algorithm in 
Version 3.10 (released 01/31/1992), and enhanced both algorithms in subsequent versions. The 
functionality and effectiveness of these algorithms have been verified extensively over the years 
by evaluation of the animation and analysis of the corresponding summary statistics from many 
varied simulations. 

The TEXAS Model Geometry Processor (GEOPRO) calculates intersection paths starting 
at the coordinate for the middle of the stop line for an inbound lane, ending at the coordinate for 
the middle of the entry line for a diamond interchange internal inbound or outbound lane, tangent 
to the inbound lane, tangent to the outbound lane, and using the largest radius circular arc when 
needed. The user defines the turn movements that can be made from an inbound lane and the turn 
movements that can be accepted by an outbound lane. An intersection path consists of 4 
segments in sequence. Each segment may or may not be used in the intersection path and is 
tangent at each end. The first segment is a tangent section, the second segment is an arc of a 
circle, the third segment is an arc of a circle, and the fourth segment is a tangent section. After 
calculating the geometry for all intersection paths, GEOPRO calculates the geometric conflicts 
between intersection paths including dual left turn side swipes (the intersection paths come 
within a user-specified distance but do not cross) and merges into the outbound lane. Finally, 
GEOPRO creates a list of geometric conflicts ordered by the distance from the beginning of the 
intersection path down the intersection path centerline to the point of geometric conflict. Data for 
each geometric conflict include the intersection path information and the conflict angle. 

For each intersection path involved in a geometric conflict, the TEXAS Model 
Simulation Processor (SIMPRO) maintains a linked list of driver–vehicle units whose rear 
bumper plus a time safety zone has not crossed the point of geometric conflict. When a driver–
vehicle unit gains the right to enter the intersection, SIMPRO adds the driver–vehicle unit to the 
end of the linked list for each geometric conflict for the driver–vehicle unit’s intersection path. 
When a driver–vehicle unit is denied the right to enter the intersection, such as when a driver–
vehicle unit decides to stop on a yellow signal indication, SIMPRO removes the driver–vehicle 
unit from the linked list for each geometric conflict for the driver–vehicle unit’s intersection 
path. As the rear bumper plus a time safety zone crosses the point of geometric conflict, 
SIMPRO removes the driver–vehicle unit from the linked list for the geometric conflict for the 
driver–vehicle unit’s intersection path. 

To process the intersection conflicts for ICC for a driver–vehicle unit on an inbound lane 
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or diamond interchange internal inbound lane that has not gained the right to enter the 
intersection, SIMPRO first checks whether there are any geometric conflicts for the driver–
vehicle unit’s intersection path, and if there are none, then intersection conflicts are clear. Next, 
SIMPRO processes each geometric conflict for the driver–vehicle unit’s intersection path in 
distance order. If a geometric conflict does not have a driver–vehicle unit whose rear bumper 
plus a time safety zone has not crossed the point of geometric conflict, then the geometric 
conflict is clear and the next geometric conflict is tested, else this geometric conflict is 
processed. In this discussion, “I,” “me,” or “my” refers to the driver–vehicle unit being 
processed, while “he,” “him,” or “his” refers to the next driver–vehicle unit whose rear bumper 
plus a time safety zone has not crossed the point of geometric conflict. The time for my front 
bumper to arrive at the geometric conflict (TCM), velocity at the geometric conflict for me 
(VCM), acceleration at the geometric conflict for me (ACM), and jerk rate at the geometric 
conflict for me (SCM) are predicted using my current distance to the geometric conflict, velocity, 
acceleration, jerk rate, driver characteristics, vehicle characteristics, speed limit for my 
intersection path, and information about any lead driver–vehicle unit that must be car-followed. 
The time for his front bumper to arrive at the geometric conflict (TCH), velocity at the geometric 
conflict for him (VCH), acceleration at the geometric conflict for him (ACH), and jerk rate at the 
geometric conflict for him (SCH) are predicted using his current distance to the geometric 
conflict, velocity, acceleration, jerk rate, driver characteristics, vehicle characteristics, speed 
limit for his intersection path, and information about any lead driver–vehicle unit that must be 
car-followed. A mini-simulation is used by SIMPRO to determine the time it takes the driver–
vehicle unit to traverse the specified distance assuming that the driver–vehicle unit can accelerate 
to its desired speed or speed limit of its intersection path or car follow any lead driver–vehicle 
unit. The lead driver–vehicle unit, if any, is assumed to continue its current jerk rate. The 
velocity, acceleration, and jerk rate of the driver–vehicle unit when it has traversed the specified 
distance is also calculated. For ICC and ICA purposes, the lead gap is the space between my rear 
bumper and his front bumper when I go ahead of him through the geometric conflict, whereas 
the lag gap is the space between his rear bumper and my front bumper when I go behind him 
through the geometric conflict. 

SIMPRO then calculates the time for the front safety zone for him (TFZ) and the time for 
the rear safety zone for him (TRZ) will arrive at the geometric conflict (see the top diagram in 
Figure 5) using the following equations: 
 
ERRJUD = If TCH > 5 then Max(0.0,PIJR * (TCH – 5.0)/7.0) else 0 
TPASSM = LVAPM / VCM 
TPASCM = DISCLM / VCM 
TPASSH = LVAPH / VCH  
TPASCH = DISCLH / VCH 

TFZ = TCH – TPASSM – TPASCM – (TLEAD – APIJR) – PIJR – ERRJUD/2 
TRZ = TCH +TPASSH + TPASCH + (TLAG – APIJR) + PIJR + ERRJUD/2 + 

TPASCM 
 
where 
 

APIJR = average PIJR time for all driver–vehicle units in the entire traffic stream in seconds 
[calculated by the TEXAS Model Driver–Vehicle Processor (DVPRO)]; 
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DISCLH = safety distance for him for merge into the same outbound lane in feet;  
DISCLM = safety distance for me for merge into the same outbound lane in feet;  
ERRJUD = error in judgment in seconds for TCH values greater than 5; 
LVAPH = length of vehicle along the intersection path for him at his current position in feet; 
LVAPM = length of vehicle along the intersection path for me at my current position in feet; 

PIJR = Perception, identification, judgment, and reaction time for the current driver–
vehicle unit in seconds; 

TCH = time for his front bumper to arrive at the geometric conflict in seconds; 
TFZ = time for the front safety zone for him in seconds; 

TLAG = user-defined lag time gap for ICC in seconds (min. = 0.5, def. = 0.8, and  
max. = 3.0);  

TLEAD = user-defined lead time gap for ICC in seconds (min. = 0.5, def. = 0.8, and  
max. = 3.0); 

TPASCH = time for his driver–vehicle unit to pass through the geometric conflict because of a 
merge into the same outbound lane in seconds (zero if no merge); 

TPASCM = time for my driver–vehicle unit to pass through the geometric conflict because of a 
merge into the same outbound lane in seconds (zero if no merge); 

TPASSH = time for his driver–vehicle unit to pass through the geometric conflict in seconds; 
TPASSM = time for my driver–vehicle unit to pass through the geometric conflict in seconds; 

TRZ = time for the rear safety zone for him in seconds; 
VCH = velocity at the geometric conflict for him in feet per second; and 

VCM = velocity at the geometric conflict for me in feet per second. 
 
 

The time period from TFZ until TRZ is blocked for me by his driver–vehicle unit. See the 
bottom diagram in Figure 5 to look at the time sequences from a gap perspective. If I can go 
safely in front of him (TCM is less than TFZ), or I can go safely behind him (TCM is greater 
than TRZ), then there is no conflict with his driver–vehicle unit at this geometric conflict. If I am 
blocked by his driver–vehicle unit at this geometric conflict (TCM is greater than or equal to 
TFZ, and TCM is less than or equal to TRZ), then there is a conflict with his driver–vehicle unit 
at this geometric conflict. If there is a conflict, then the ICC process is completed with a conflict 
found. If there is no conflict, I go behind him (TCM is greater than TFZ), and there is another 
driver–vehicle unit whose rear bumper plus a time safety zone has not crossed the point of 
geometric conflict, then I check the next driver–vehicle unit whose rear bumper plus a time 
safety zone has not crossed the point of geometric conflict. If there is no conflict and I go before 
him (TCM is less than or equal to TFZ), then I check the next geometric conflict for his 
intersection path because if I can go before him, then I can go before all other driver–vehicle 
units behind him. If all geometric conflicts for his intersection path have been checked and there 
are no conflicts, then the ICC process is completed with no conflict found. There are many 
special cases accommodated within the actual code when the geometric conflict is a merge, when 
there is a major collision somewhere within the system, when the other driver–vehicle unit is 
stopped and blocked by a major collision, when there is an emergency driver–vehicle unit in the 
system, or when a driver–vehicle unit is currently processing a forced go or forced run the red 
signal VMS message. 

ICA is the algorithm used to simulate the behavior of driver–vehicle units that have the 
right to enter the intersection and try to maintain a nonconflict time–space trajectory through the 
intersection with the predicted time–space trajectory through the intersection of other driver– 
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FIGURE 5  TEXAS Model ICC gap calculations. 
 
 
vehicle units that have the right to enter the intersection. The linked list of driver–vehicle units 
whose rear bumper plus a time safety zone has not crossed the point of geometric conflict as 
described for ICC is also used for ICA. The jerk rate used for ICA (SLPCON) is initialized to 0.0. 

To process the intersection conflicts for ICA for a driver–vehicle unit on an inbound lane 
or diamond interchange internal inbound lane that has gained the right to enter the intersection or 
a driver–vehicle unit that is within the intersection, SIMPRO uses a similar process as described 
for ICC. TCM, TCH, TFZ, TRZ, and the other variables are calculated in the same manner, and 
the same tests are performed to determine whether there is a conflict. The difference between the 
ICC and ICA processes is the action that is taken when a conflict is found. A variable TIM is 
calculated based on TCH, the turn movement for my intersection path, the turn movement for his 
intersection path, and whether there is a new green signal setting for me. TIM gives priority to a 
straight driver–vehicle unit over a turning driver–vehicle unit when they are both predicted to 
arrive at the geometric conflict at approximately the same time. If my turning movement is 
straight and his turning movement is straight, then TIM is set to TCH. If my turning movement is 
straight and his turning movement is left or right, then if I have a new green signal setting, then 
set TIM to TCH – 1.0, else set TIM to TCH + 1.5. If my turning movement is left or right and his 
turning movement is straight, then set TIM to TCH – 1.5. If my turning movement is left or right 
and his turning movement is left or right, then set TIM to TCH. Finally, if I am not an emergency 
driver–vehicle unit and he is an emergency driver–vehicle unit, then set TIM to TCH – 5.0. The 
jerk rate SLPTCM required for me to travel from my current position to the geometric conflict in 
time TCM starting with my current velocity and acceleration is calculated. This jerk rate 
represents the average value from the prediction process. If I have already passed the geometric 
conflict (TCM is less than or equal to 0.0), then nothing is done for this geometric conflict, and 
the next driver–vehicle unit or the next geometric conflict is processed. 

The following logic is used when I am trying to go in front of him (TCM is less than or 
equal to TIM), therefore I try to accelerate to avoid the conflict. If the front safety zone for him 
has already arrived at the geometric conflict (TFZ is less than or equal to 0.0), then I should 
accelerate as fast as possible (set SLPTFZ to six times the critical jerk rate CRISLP). If the front 
safety zone for him has not already arrived at the geometric conflict (TFZ is greater than 0.0), 
then I should accelerate to go in front of him (set SLPTFZ to the jerk rate required for me to 
travel from my current position to the geometric conflict in time TFZ starting with my current 
velocity and acceleration). A temporary jerk rate SLPTMP is set to the maximum of (SLPTFZ – 
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SLPTCM) and 0.0. If I need to accelerate more than normal (SLPTMP is greater than 0.0), and 
there is no driver–vehicle unit ahead that I must car follow, and the temporary jerk rate is greater 
than the jerk rate used for ICA (SLPTMP is greater than SLPCON), then set SLPCON to 
SLPTMP. If I need to accelerate more than normal (SLPTMP is greater than 0.0), and there is a 
driver–vehicle unit ahead that I must car follow, and my speed is less than my desired speed, and 
the distance between me and the driver–vehicle unit ahead that I must car follow is greater than 
the car following distance, and the temporary jerk rate is greater than the jerk rate used for ICA 
(SLPTMP is greater than SLPCON), then set SLPCON to SLPTMP. The next driver–vehicle 
unit or the next geometric conflict is processed. This procedure will find the maximum positive 
jerk rate needed to accelerate to go in front of any driver–vehicle unit where a conflict has been 
found. 

The following logic is used when I am trying to go behind him (TCM is greater than 
TIM), therefore I try to decelerate to avoid the conflict. If his rear safety zone has not reached the 
geometric conflict (TRZ is greater than 0.0), then I should decelerate to go behind him (set 
SLPTRZ to the jerk rate required for me to travel from my current position to the geometric 
conflict in time TRZ starting with my current velocity and acceleration). A temporary jerk rate 
SLPTMP is set to the minimum of 4.5 * (SLPTFZ – SLPTCM) and 0.0. If I need to decelerate 
more than normal (SLPTMP is less than 0.0), then set SLPCON to SLPTMP, and the ICA 
checking process is completed. This procedure will find the negative jerk rate needed to 
decelerate to go behind the first driver–vehicle unit where a conflict has been found. If SLPCON 
is not set to SLPTMP, then the next driver–vehicle unit or the next geometric conflict is 
processed. 

If the jerk rate used for ICA has been set (SLPCON is not equal to 0.0), then SLPCON is 
added to the jerk rate calculated for this driver–vehicle unit (SLPNEW) if it is the critical value.  
There are many special cases accommodated within the actual code when the geometric conflict 
is a merge, when there is a major collision somewhere within the system, when the other driver- 
vehicle unit is stopped and blocked by a major collision, when there is an emergency driver- 
vehicle unit in the system, or when a driver–vehicle unit is currently processing a forced go or 
forced run the red signal VMS message. 
 
 
SIGHT DISTANCE RESTRICTION CHECKING 
 
The user defines the coordinates of all critical points needed to locate sight obstructions in the 
intersection area, and the TEXAS Model GEOPRO calculates the distance that is visible between 
pairs of inbound approaches for every 25-ft increment along each inbound approach. The 
TEXAS Model SIMPRO checks sight distance restrictions. Each driver–vehicle unit on an 
inbound approach assumes that it must stop at the stop line until it gains the right to enter the 
intersection. If the inbound lane is stop sign controlled or signal controlled, the assumption is 
made that sight distance restrictions are not critical and therefore do not need to be checked. If 
adequate sight distance is not available to a unit stopped at the stop line, this will not be detected 
in SIMPRO. 

For driver–vehicle units on inbound lanes to an uncontrolled intersection, if there are 
units stopped at a stop line waiting to enter the intersection and the inbound driver–vehicle unit 
being examined is not stopped at the stop line, then the approaching driver–vehicle unit will 
continue to decelerate to a stop at the stop line without checking sight distance restrictions again 
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until it is stopped at the stop line or until there are no driver–vehicle units stopped at the stop 
line. This procedure eliminates unnecessary computations and gives the right-of-way to other 
driver–vehicle units already stopped at the stop line when the intersection is uncontrolled. If 
there are no sight distance restrictions for driver–vehicle units on an inbound approach then 
intersection conflicts are checked (see the ICC discussion above). If a driver–vehicle unit is on 
an uncontrolled lane approaching a yield-sign-controlled, if the driver–vehicle unit is stopped at 
the stop line, or if the intersection path of the driver–vehicle unit has no geometric intersection 
conflicts then it is assumed that there are no sight distance restrictions. 

The maximum time from the end of the inbound lane that the driver–vehicle unit is 
permitted to begin checking sight distance restrictions, so that it may decide to proceed to ICC if 
sight distance restrictions are clear, is initially set to 3 s for all intersections. This prohibition 
prevents the driver–vehicle unit from gaining the right to enter the intersection when it is 
relatively far away from the intersection and thereby unnecessarily affecting the behavior of 
driver–vehicle units on other inbound approaches. If the inbound lane is an uncontrolled lane 
approaching a yield-sign-controlled intersection, then the time is increased by 2 s plus the time 
for the lead safety zone for ICC. This longer time allows driver–vehicle units on the uncontrolled 
lanes to gain the right to enter the intersection ahead of other driver–vehicle units on the yield- 
sign-controlled lanes. If the intersection is uncontrolled then the time is reduced to 2 s. 

In SIMPRO, the time required for the driver–vehicle unit being checked to travel to the 
end of the lane is predicted. If this predicted time is greater than the maximum time from the end 
of the lane that the driver–vehicle unit may decide to proceed to ICC, then the driver–vehicle 
unit cannot clear its sight distance restrictions, and it must check again in the next time step 
increment. 

The order in which sight distance restrictions are checked by SIMPRO is determined by 
the sequence in which intersection conflicts might occur. The sight distance restriction associated 
with the longest travel time to an intersection conflict is checked first, then other sight distance 
restrictions are checked in descending order of travel time to the intersection conflict. This order 
of checking facilitates early detection of an opportunity to pass in front of a driver–vehicle unit 
approaching on a sight-restricted lane. Checking continues until all inbound approaches that have 
possible sight distance restrictions with the subject inbound approach are cleared. 

To check sight distance restrictions in SIMPRO, the time required for a fictitious driver–
vehicle unit, traveling at the speed limit of the approach, to travel from a position that is just 
visible on the inbound approach to the point of intersection conflict is predicted. Next, the time 
required for the driver–vehicle unit being examined to travel to the point of intersection conflict 
is predicted. This prediction assumes that the driver–vehicle unit under examination has gained 
the right to enter the intersection and that it may accelerate to its desired speed. If the unit being 
checked may not safely pass through the point of intersection conflict ahead of the fictitious 
driver–vehicle unit, then it may not clear its sight distance restrictions, and it must check again in 
the next time step increment, otherwise, it clears the sight distance restriction and continues 
checking other sight distance restrictions. 

This procedure ensures that a driver–vehicle unit may safely enter the intersection even if 
a driver–vehicle unit were to appear from behind the sight distance restriction just after the 
decision to enter the intersection was made. 
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LANE CHANGING 
 
An investigation of lane changing models was undertaken in the early 1970s by Lee and Fett (5). 
Fett collected and analyzed the field data, developed the original lead and lag gap acceptance 
decision models, and used a cosine curve for the lateral position for a lane change. 

Rioux developed the concept of distinguishing between two types of lane changes: (1) the 
forced lane change wherein the currently occupied lane does not provide an intersection path to 
the driver–vehicle unit’s desired outbound approach, and (2) the optional lane change wherein 
less delay can be expected by changing to an adjacent lane that also connects to the driver- 
vehicle unit’s desired outbound approach. Later, Rioux added cooperative lane changing and a 
lane change to get from behind a slower vehicle. 

When a lane change is forced, a check is made to determine whether an alternate lane is 
geometrically available adjacent to the current position of the driver–vehicle unit being examined 
and is continuous to the intersection ahead. In the case of the alternate lane not being accessible 
from the current position, but available ahead, one of the two following conditions exists: (1) 
there is a lead driver–vehicle unit in the alternate lane ahead, in which case the driver–vehicle 
unit sets the lane change jerk rate to car follow the lead driver–vehicle unit in the alternate lane, 
or (2) there is not a lead driver–vehicle unit in the alternate lane ahead, in which case the lane 
change jerk rate is set to stop the driver–vehicle unit at the end of the alternate lane. If the end of 
the alternate lane has already been passed by the driver–vehicle unit when the check for an 
available alternate lane is made then the driver–vehicle unit is forced to choose one of the 
available intersection paths leading from the currently occupied lane and abandon the original 
destination. Otherwise, the driver–vehicle unit checks for an acceptable gap for lane changing. 

When a lane change is optional, SIMPRO delays further lane-change checking until the 
driver–vehicle unit is dedicated to an intersection path. If there are no lane alternates adjacent to 
the current lane, then the lane change status flag is set to no longer consider a lane change. If the 
driver–vehicle unit is the first unit in the current lane and its intersection path does not change 
lanes within the intersection, then the lane change status flag is set to no longer consider a lane 
change. The expected delay is then computed for the driver–vehicle unit’s current lane as well as 
for any alternate lanes. If less delay can be expected if the driver–vehicle unit changes into one 
of the alternate lanes, then that lane is checked for the presence of an acceptable lead gap and an 
acceptable lag gap, otherwise the process is repeated the next time step increment. If there is an 
acceptable lead gap and an acceptable lag gap, then the driver–vehicle unit is logged out of the 
current lane, logged into the new lane, and the lane change is initiated. 

When the lead gap or the lag gap is not acceptable, the driver–vehicle unit tries to 
maneuver itself to make the gaps acceptable the next time step increment by accelerating, 
decelerating, or asking the lag driver–vehicle unit to car follow the current driver–vehicle unit to 
increase the lag gap (this is cooperative lane changing). 

SIMPRO keeps track of the lateral position for the lane change old LatPosOld in feet 
which starts at the value for the total lateral distance for a lane change in feet TLDIST and 
decreases to zero when the lane change maneuver is completed. The lateral position of the lane 
change is computed using a cosine curve. Each time step increment, the current position on the 
cosine curve XOLD and the new position on the cosine curve XNEW are calculated as follows: 
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XTOT = 3.5 * VO / (DrivChar * VehChar) 
TLDIST = 1/2 * LanWidOrg + 1/2 * LanWidNew 

XOLD = XTOT * ACOS(2 * ABS(LatPosOld) / TLDIST – 1) / PI 
XNEW = XOLD +VO * DT + 1/2 * AO * DT2 + 1/6 * JN * DT3 

 
where 

 
AO = current driver–vehicle unit acceleration/deceleration old in feet per second per 

second; 
DrivChar = user-specified driver characteristic (<1 = slow, 1 = average, >1 = aggressive, 

min. = 0.5, and max. =1.5); 
JN = current driver–vehicle unit jerk rate new in feet per second per second per 

second; 
LanWidNew = new lane width in feet; 
LanWidOrg = original lane width in feet; 
LatPosOld = lateral position for the lane change old in feet; 

TLDIST = total lateral distance for a lane change in feet; 
VehChar = user-specified vehicle characteristic (<1.0 = sluggish, 1 = average, >1 = 

responsive, min. = 0.5, and max. =1.5); 
VO = current driver–vehicle unit velocity old in feet per second; 

XNEW = new position on the cosine curve in feet; 
XOLD = current position on the cosine curve in feet; and 
XTOT = total length of the lane change in feet. 

 
If the new position on the cosine curve XNEW is greater than 95% of the total length of 

the lane change XTOT then the lane change is completed. The lateral position for the lane 
change new LatPosNew is calculated and stored as follows: 
 
LatPosNew = 1/2 * TLDIST * [1 + COS(PI * XNEW / XTOT)] 
 
where 

 
LatPosNew = lateral position for the lane change new in feet; 

TLDIST = total lateral distance for a lane change in feet calculated above; 
XNEW = new position on the cosine curve in feet calculated above; and 
XTOT = total length of the lane change in feet calculated above. 

 
If lateral position for the lane change new LatPosNew is less than 0.3 ft, then the lane 

change is completed. Note that if the driver–vehicle unit speeds up, then the total length of the 
lane change XTOT increases, which causes the lane change to lengthen. 

In 2008, Rioux extended the maximum lane length from 1,000 ft to 4,000 ft (13). This 
enhancement caused an additional optional lane change to be added before or after the 
intersection to move a driver–vehicle unit from behind a slower driver–vehicle unit. If the 
adjacent lane did not have an intersection path to the driver-vehicle unit’s desired outbound 
approach, a lane change that would temporarily use the adjacent lane, pass the slower moving 
driver–vehicle unit, and lane change back into the original lane was performed if possible. 
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CRASHES 
 
If the front bumper position of the driver–vehicle unit (lag driver–vehicle unit) is greater than the 
rear bumper position of the driver–vehicle unit ahead (lead driver–vehicle unit), then there is a 
crash. These were called “clear zone intrusions.” A message giving the details of the lead driver–
vehicle unit and the lag driver–vehicle unit involved in the clear zone intrusion was output, and 
the clear zone intrusions were counted. The lag driver–vehicle unit defied physics by placing 
itself 3 feet behind the lead driver–vehicle unit traveling at the speed of the lead driver–vehicle 
unit and with zero acceleration/deceleration and jerk rate and the traffic simulation continued 
normally. Only crashes between a lead driver–vehicle unit and a lag driver–vehicle unit were 
detected. 

In 2008, Rioux added the option to stop a driver–vehicle unit involved in a major crash 
using crash deceleration and remain stopped for the remainder of the simulation (13). This 
involved defining a major crash. Additionally, a crash between driver–vehicle units on different 
intersection paths was detected. Finally, code was added to cause other driver–vehicle units to 
react to driver–vehicle units involved in a major crash by slowing down as they passed near a 
crash if the driver–vehicle unit was not blocked by the major crash. After the driver–vehicle unit 
stopped because it was blocked by the major crash and a stochastically generated response time 
had elapsed, the driver–vehicle unit could possibly reverse a lane change maneuver if the driver–
vehicle unit was still in the original lane or choosing a different intersection path to a possibly 
different desired outbound approach. 
 
 
CONCLUSION 
 
This paper chronicles the evolution of the TEXAS Model, which was developed by CTR at UT 
Austin beginning in the late 1960s. Topics include the early traffic flow theory concepts of 
triangular acceleration, triangular deceleration, equations of motion, car following, intersection 
conflict checking, intersection conflict avoidance, sight distance restriction checking, lane 
changing, and crashes. The TEXAS Model is being enhanced to include connected vehicle 
messages by Harmonia Holdings Group and for Rioux to be a test bed for connected vehicle 
applications. 

The TEXAS Model source code is available for use by the public under the GNU General 
Public License as published by the Free Software Foundation. The source code for the TEXAS 
Model may be downloaded from  

 
Standard version: http://groups.yahoo.com/neo/groups/TEXAS_Model  
Version with messaging: http://www.etexascode.org 

 
The TEXAS Model animations may be watched from YouTube (search YouTube for 

“TEXAS Model for Intersection Traffic Animation”): 
 

1970s: http://www.youtube.com/watch?v=1z4WIeIOfbw 
1980s: http://www.youtube.com/watch?v=S0utMJ9fZls 
1990s: http://www.youtube.com/watch?v=PcU6WcaOAcE 
2000s: http://www.youtube.com/watch?v=oah6nCGKwig 
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Most of the references may be downloaded from files at http://groups.yahoo.com/neo 
/groups/TEXAS_Model_Documentation1 

00000000_READ_ME.TXT 
00000001_TEXAS_Model_Development_History.txt  
19730126_TexITE.zip 19730500_Rioux_thesis.zip, z01, and z02  
19740500_Fett_thesis.zip 19770000_TRB_TRR_644.zip 
19771200_CTR_Research_Report_184-1.zip, z01, z02, z03, z04, and z05 
19771200_CTR_Research_Report_184-2.zip, z01, z02, z03, z04, z05, z06, and z07  
19770700_CTR_Research_Report_184-3.zip and z01 
http://groups.yahoo.com/neo/groups/TEXAS_Model_Documentation2  
19771200_Rioux_dissertation.zip, z01, z02, z03, z04, z05, z06, z07, z08, z09, and z10  
19780700_CTR_Research_Report_184-4F.zip 

19801100_Torres_Evaluation_of_TEXAS_Model.zip  
19830800_CTR_Research_Report_250-1.zip, z01, z02, z03, z04, z05, z06, and z07 
http://groups.yahoo.com/neo/groups/TEXAS_Model_Documentation3 19851100 

_CTR_Research_Report_361-1F.zip and z01 19890100_CTR_Research_Report_443-1F.zip, 
z01, z02, z03, and z04  

19910800_CTR_TEXAS_Model_Version_3_0_Documentation.zip, z01, z02, and z03  
19930100_CTR_Research_Report_1258-1F.pdf  
19931100_CTR_TEXAS_Model_Version_3_20_Documentation.zip, z01, and z02 

20040824_RiouxEngineering_DTRS57-04-C-10007_report.pdf  
20050800_CTR_DTFH61-03-C-00138.pdf 
20080731_RiouxEngineering_DTRT57-06-C-10016_report.pdf 
20100110 TRB Intersection Conflict Checking and Avoidance.pdf (not accepted) 
20120122 TRB Simulating Crashes and Creating SSAM Files.pdf 
20120122 TRB Simulating Crashes and Creating SSAM Files.ppt Evolution_of 

_Animation_of_the_TEXAS_Model.ppt TEXAS_Model_for_Intersection_Traffic.ppt 
TEXAS_Model_for_Intersection_Traffic_Section_508.ppt  
TEXAS_Model_Online_Documentation.htm 
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TRAFFIC CONTROL 
 

Variable Speed Limit Control to Increase Discharge  
Rates of Freeway Incident Bottlenecks 
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ariable speed limit (VSL) schemes are developed based on the kinematic wave theory to 
increase discharge rates at freeway incident bottlenecks (BNs) while smoothing speed 

transition. The main control principle is to restrict upstream demand (in free flow) progressively 
to achieve three important objectives: 1. to provide gradual speed transition at the tail of an 
incident-induced queue, 2. to clear the queue around the BN, and 3. to discharge traffic at the 
stable maximum flow that can be sustained at the incident BN without breakdown. These control 
objectives are accomplished without imposing overly restrictive speed limits. This paper further 
provides remedies for the case of a reemerging queue at the BN as a result of an overestimated 
stable maximum flow. The results from a parameter analysis suggest that significant delay 
savings can be realized with the VSL control strategies. 
 
 
INTRODUCTION  
 
VSL control seeks to improve safety by smoothing out shockwaves at the tail end of a queue and 
freeway efficiency by deferring the onset of congestion or increasing the BN discharge rate.  
Earlier efforts to improve freeway efficiency using VSL focused on harmonizing the speed 
across vehicles in different lanes to create a more homogenous, stable one-pipe flow with few 
lane changes (LC) (1, 2). This can presumably lead to higher capacity and critical density, 
thereby deferring or preventing onset of congestion (3). Several studies have shown that VSL 
control indeed induces more balanced speed and utilization of lanes (1, 2, 4–6).   

SPECIALIST (SPEed ControllIng Algorithm using Shockwave Theory) seeks to 
proactively resolve a moving jam and maximize the discharge rate by limiting the speed and 
density of the inflow to the moving jam using VSL (7, 8). The algorithm was tested in the field 
with reasonable success. Another notable scheme is the mainstream traffic flow control (MTFC) 
developed in the framework of discrete-time optimal control (9). The main objective is to control 
the free-flow traffic upstream of a BN (before a queue arises) using VSL or ramp metering to 
prevent BN activation. The algorithm was tested on a Dutch network through simulation (10). 
Later, local feedback control was incorporated into MTFC to further improve field 
implementation (11).   

Chen et al. (12) developed different VSL schemes based on the kinematic wave theory 
(13, 14) to increase freeway BN discharge rates and manage the queue upstream (for smoother 
speed transition) under two scenarios: steady queue and oscillatory queue that can inevitably 
arise at fixed BNs. The key principle is to impose VSL control some distance upstream of a BN 
to starve the inflow to the BN and dissipate the queue. Once the queue near the BN vanishes, 
another less restrictive VSL is imposed upstream to 1. resolve the heavy queue generated by the 

V 
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first VSL and 2. regulate the inflow to sustain the stable maximum BN discharge rate and 
prevent BN re-activation.   

The strategies cited above were designed primarily to address recurrent BNs or moving 
jams, in which a reduction in discharge rate typically ranges from 5% to 15% (15, 16). These 
strategies, however, are not suitable for nonrecurrent BNs such as incident BNs, in which 
discharge rates can reduce by more than 15%. Incident BNs are usually characterized by 
moderate to severe congestion caused by significant reductions in system throughput (in greater 
proportion than lanes blocked (17) and sharp transition upstream from free-flow traffic to the 
queue, which may cause secondary incidents. A significant reduction in system throughput is 
attributable to 1. a decrease in capacity because of road blockage, 2. rubbernecking around the 
incident, 3. change in driver characteristics (17), and 4. disruptive LCs away from incident 
location. With regard to 4, speed and flow may vary significantly among lanes with lower speed 
and flow closer to the incident location. LCs away from the incident location are likely to create 
voids in other lanes and reduce the discharge rate similar to the capacity drop phenomenon of 
recurrent BNs (18). 

In this study, the authors develop VSL strategies to proactively improve the discharge 
rate of incident BNs and manage the upstream queue for smoother speed transition. An increase 
in discharge rate is achieved by clearing the queue around the incident and then maintaining a 
stable maximum flow with harmonized speed to minimize disruptive LCs. Note that other 
aforementioned factors for discharge rate reductions (1–3 in the previous paragraph) are not 
within the scope of this paper, because VSL control may be not the best option for these issues.  
The strategies developed in this paper are based on the kinematic wave theory and use the logic 
similar to Chen et al. (12). However, the new strategies address more effectively several critical 
issues for incident BNs: 1. A restrictive speed limit (lower than the speed in queue as in Chen et 
al. (12) should be avoided because incident-induced congestion is likely more severe; 2. the 
upstream queue management should be more elaborate to provide smoother queue transition; and 
3. it may not be straightforward to precisely estimate the stable maximum discharge rate, which 
can lead to another queue formation at the incident BN. 

This study develops a theoretical framework for VSL control to improve the performance 
of incident BNs. This is an important contribution given that existing strategies were primarily 
designed to mitigate recurrent BNs. The VSL control strategies developed in this study are 
relatively simple, yet capable of addressing two critical issues for incident BNs: 1. reducing 
incident-induced total delays significantly, and 2. providing smoother speed transition for better 
safety. The theoretical approach provides insights into traffic dynamics with VSL control and the 
impact of control parameters on the system performance (e.g., delay savings). Moreover, it 
provides a foundational framework to address more complex freeway networks and incorporate 
various implementation issues (e.g., detection and control technologies).   

The remaining manuscript is organized as follows. Section 2 describes the basic VSL 
control strategy, including the analysis of parameters on the system performance and sensitivity.  
Two sequel VSL strategies are developed in Section 3 to remedy a reemerging queue at the 
incident BN caused by an overestimated stable maximum flow. Concluding remarks are 
provided in Section 4. 
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BASIC VSL CONTROL FOR INCIDENT BN 
 
Baseline Case 
 
This paper examines freeway BNs caused by incidents that may partially block the roadways and 
reduce the throughputs, as shown by Figure 1a. The authors assume that the traffic evolution can 
be well approximated by the kinematic wave model with triangular fundamental diagrams (FD). 
The upper FD in Figure 1b describes traffic states upstream of an incident with free-flow speed 
u, wave speed w, and jam density kj; and the lower FD describes traffic states at the incident 
location with lower free-flow speed uinc and jam density ௝݇௜௡௖. Note that it is assumed ݑ௜௡௖ <  ݑ
because of rubbernecking and other effects induced by the incident.    

The authors assume that traffic demand is constant in state A, and traffic breaks down to 
state H after the incident. After the incident is cleared, traffic recovers the full, normal capacity 
of qmax in state M. State e represents the stable maximum flow state that can be sustained at the 
incident BN without breakdown for an extended period (i.e., BN capacity, qBN = qe. The notation, 
q–, represents flow in the traffic state denoted in subscript). Note that qH < qBN because of LC 
disruptions and that qBN – qH represents the potential gain of system throughput. States G and E 
correspond respectively to the free-flow and congested states with the same flow as qBN (i.e.,  
qBN = qE = qG = qe) upstream of the incident.    
 
 

   
(a) (b) 

 

      
(c) (d) 

FIGURE 1  Traffic evolution at incident BN. 
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The spatio–temporal traffic evolution without any control is illustrated in Figure 1c. After 
the incident, a heavy queue (in state H) propagates upstream, forming a shockwave, sAH. 
(Hereafter, s– refers to a shockwave delineating two different traffic states denoted in subscript 
and represents shock wave speed when used in equations.) When the incident is cleared at time ெܶ, the normal capacity recovers and traffic evolves to state M, with the transition marked by 
sHM. The queue ends when sAH collides with sHM, at which state A is resumed; this demand 
recovery is marked by sAM. The queue ending time, ݐ௘௡ௗ௕௔௦௘, and the total delay resulting from the 
incident, Wbase, can be easily derived from the queuing diagram in Figure 1d, in which A(t) and 
D(t) denote the virtual arrival and departure curves at the BN, respectively: 
௘௡ௗ௕௔௦௘ݐ  = (௤ಾି௤ಹ)்ಾ௤ಾି௤ಲ  (1) 

 ܹ௕௔௦௘ = (ݐ)ܣ)׬ − ݐ݀((ݐ)ܦ = ଵଶ ஺ݍ) − (ுݍ ெܶݐ௘௡ௗ௕௔௦௘ = (௤ಲି௤ಹ)(௤ಾି௤ಹ)்ಾమଶ(௤ಾି௤ಲ)  (2) 

 
Notably, if the speed in queued state H is low, which is quite likely with an incident, the speed 
drop along sAH would be abrupt. In this case, it would be undesirable to impose a restrictive speed 
limit (<vH) to clear the queue around the BN as prescribed by Chen et al. (12). Additionally, the 
upstream queue management strategies may not be sufficient to provide smooth enough transition 
at the queue’s tail. A new VSL control strategy to address these problems is introduced below.    
 
Basic VSL Control Strategy 
 
The control principle is simple: restrict the upstream demand (in free flow) progressively. When 
done strategically, this will achieve three important objectives together: (1) to induce gradual 
transition at the queue’s tail, (2) to clear the queue around the BN, and (3) to discharge traffic at 
stable maximum flow without breakdown. The control procedure consists of the following steps.  
(All traffic states resulting from the VSL control are shown on the FDs in Figure 2a, and the 
corresponding traffic evolution is shown in the time–space diagram in Figure 2b.) 
 
Step 1 
 
This main step is to control the upstream demand and clear the queue around the BN. Set several 
intermediate speed limit values between u and vE with an even increment. (The notation, ିݒ, 
represents speed in the traffic state denoted in subscript.) The number of speed limit values will 
depend on the difference between u and vE and the increment deemed acceptable to drivers. For 
an illustration purpose, the authors assume three intermediate values, denoted as V1, V2, and V3.  
 
Step 1-1  At the start of control (t0), impose V1 simultaneously over an extended segment 
immediately upstream of the queue; see Figure 2b. The length of the segment will be discussed 
later. This results in a zone with state ܽଵ෦ (Zone 1 in the figure), which has the same density as A, 
but the speed equals toV1; see the FD in Figure 2a. Since the control is imposed simultaneously in 
space, the transition between A and ܽଵ෦	forms a vertical shock, ݏ஺௔భ෦ . At the downstream end of the 
control, state ܽଵ෦ meets state H and forms ݏ௔భ෦ு. Notice that with this control, the queue propagates 

more slowly (i.e.,	หݏ௔భ෦ுห <  .(|஺ுݏ|
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(a) 

 

 
(b) 

 

                
(c) (d) 

 

 
(e) 

FIGURE 2  Basic VSL control strategy. (Note: On 2b the dotted line was used to indicate that 
the temporal duration of state G was shortened for presentation purposes to show the complete 

evolution. A similar way is used in Figure 3c and Figure 4a.) 
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Step 1-2  Switch the speed limit from V1 to V2 at time TV2 to create Zone 2. Again, the new 
speed limit is actuated simultaneously in space immediately upstream of the queue. Similar to 
Zone 1, Zone 2 is in state ܽଶ෦ with the same density as A but with speed V2 and forms ݏ௔మ෦ு where 

it meets state H. Notice that the queue propagates even more slowly (i.e., หݏ௔మ෦ுห < หݏ௔భ෦ுห  .(|஺ுݏ|>
 

Step 1-3  Similar to Step 1-2, but change speed limit from V2 to V3 at time TV3 to create Zone 3.   
 
Step 1-4  Similar to Step 1-2, but change speed limit from V3 to vE at time ௩ܶಶ to create Zone 4 
in state ܽா෦. Finally, the queue moves forward since ݏ௔ಶ෦ு > 0 and is resolved ݏ௔ಶ෦ு arrives at the 
BN at τ0.   

 
Step 2 
 
This is to discharge traffic at the stable maximum flow without breakdown. The main idea is to 
have upstream traffic (in state A) gradually evolve to state E, and then let them fully accelerate to 
state G before passing the BN.  

Create an acceleration zone immediately upstream of the BN so that traffic can accelerate 
to u. The length of this zone, L, is set to be 0.35-1 km as in Chen et al. (12).   

 
Step 2-1  When H is resolved at τ0, deactivate vE at the rate of the maximum backward moving 
wave speed, w, to guide the traffic in state ܽா෦ to accelerate to state ܽா′ 	until the shock reaches the 
entrance of the acceleration zone; see Figure 2b. Note that ݍ௔ಶ′ 	may be smaller than qBN, resulting 

in underutilization of the BN capacity. Fortunately, this period is short (= ቀ௅௨ − ௅௪ቁ) and 

negligible compared to the incident duration. For example, it is about 4 min when u = 100 km/h, 
w = –18 km/h, and L = 0.75 km. Nevertheless, one possible remedy is to increase the 
deactivation rate to achieve a higher discharge rate than ݍ௔ಶ′ , which may be possible given the 

low density in ܽா෦ (relative to the FD). For simplicity when calculating the delay saving, the 

authors assume ݍ௔ಶ′ ′ݓ ,ு, which corresponds to a deactivation rateݍ= ൬= ௤ಹି൫௞ೕା௤ಲ ௪⁄ ൯௩ಶ௤ಹ ௨⁄ ି൫௞ೕା௤ಲ ௪⁄ ൯൰. 

The trajectory of the first vehicle that crosses the whole acceleration zone at u is denoted 
by the connected red arrows in Figure 2b, referred to as the first vehicle trajectory (FVT). The 
FVT serves as the boundary for the second set of VSL in the next step and is used to 
backcalculate the lengths of the vertical control at vE, V3, V2, and V1, sequentially, as pictured in 
Figure 2b. 

 
Step 2-2  Starting at the position of the FVT at t0, impose V1 at the rate of ݏ஺஺భ (ݏ஺஺భ =  ஺ா). Atݏ
the same rate, impose V2, V3, and vE when the FVT intersects TV2, TV3, and ௩ܶಶ, respectively, such 
that all shocks are parallel. Speed limit vE  is extended to the entrance of the acceleration zone, at 
which drivers are informed to resume free-flow speed u (or ve).  

This step results in four zones: Zones I–IV, characterized by states A1 – A3 and E, 
respectively. Particularly, state A1 in Zone I has the same speed as state ܽଵ෦ but a higher density; 
see Figure 2a. Notice that in Zones I through IV, vehicles gradually decrease their speed from u 
(free-flow speed) to vE and then maintain vE until reaching the entrance of acceleration zone. 
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Thereafter, they resume u and traffic evolves to state G. Notice that state G eventually evolves to 
state e at the BN without any flow change, as prescribed by the lower FD. (Recall that the lower 
free-flow speed at the BN is to capture rubbernecking and other effects of the incident.) In 
anticipation of this, traffic may alternatively be controlled to reach state e in the acceleration 
region. Regardless, the BN starts to discharge traffic at qBN (qBN = qE = qG = qe) after the arrival 
of the FVT.  
 
Step 2-3  When the incident is cleared at TM, deactivate VSL to restore the full capacity of qM. 
To restore qM as soon as possible, deactivation at the entrance of the acceleration zone can be 
timed so that the forward moving shock, sGM, will reach the BN at TM. However, the gain is only 
about 1 min (the trip time of sGM), and thus, one may safely start the deactivation at TM. 
Concurrently, VSL is deactivated at the rate of w, forming sEM, which eventually collides with ݏ஺యா and terminates Zone IV. Notably, the trajectory of the last vehicle that experiences state E is 
denoted by the three connected green arrows in Figure 2b, referred to as the last vehicle 
trajectory (LVT). As described later, the LVT will serve as the boundary for VSL deactivation. 
 
Step 2-4  Deactivate V1, V2, and V3 along the LVT to end the VSL control. As a result, three 
new zones, Zones i–iii, form naturally (i.e., no VSL control is needed) upstream of the LVT; see 
Figure 2b. States A1 – A3 evolve to congested states ܣଵ௠– ܣଷ௠, respectively, because of the 
bounded speeds, V1 – V3 downstream. When these states interact with the upstream demand, 
shocks ݏ஺஺భ೘	– ݏ஺஺య೘ form, which mark diminishing queue. As traffic emerges from state ܣଷ௠, it 
evolves to the full capacity state, M, forming ݏ஺య೘ெ. When it collides with	ݏ஺஺య೘, the queue 
completely vanishes (∆ݐ	is	in	sec, ஺ݍ = ,ெݍ0.8 ாݍ = ,ெݍ0.75 ௤ܮ = 2km, ܮ = 0.75km, ெܶ = 2h). 
 
Parameter Analysis 
 
The new queuing diagram with VSL control is shown in Figure 2c. Notice that the BN discharge 
rate increases to ݍ஻ே at ߬ଵ, resulting in quicker queue dissipation at ݐ௘௡ௗ௏ௌ௅. ߬ଵ can be derived based 
on ݑ and ݓ ′ from the time–space diagram in Figure 2b, and ݐ௘௡ௗ௏ௌ௅ can be derived from the 
queueing diagram in Figure 2c.  
 ߬ଵ = ߬଴ + ܮ ቀଵ௨ − ଵ௪′ቁ = − ௅೜௦ಲಹ + ௖௥௜௧ݐ∆ + ܮ ቀଵ௨ − ଵ௪′ቁ  (3) 

௘௡ௗ௏ௌ௅ݐ  = ாݍ)) − ு)߬ଵݍ + ெݍ) − (ீݍ ெܶ) ெݍ) − ⁄(஺ݍ   (4) 
 

where Δtcrit is the duration of queue clearance at the BN after VSL (total duration of Zones 1–4), 
as labeled in Figure 2b. Δtcrit is derived based on ܮ௤, ݏ௔భ෦ு, ݏ௔మ෦ு, ݏ௔య෦ு, and ݏ௔ಶ෦ு and expressed as 
௖௥௜௧ݐ∆  = − ଷ௤ಲ௪∆௧(௤ಶ(௨ି௪)ା௞ೕ௪௨)ାଶ௅೜(௤ಶା௞ೕ௪)(௤ಹ௨ି௤ಲ௪ା௞ೕ௪௨)ଶ௪(ି௤ಶ௤ಹ௨ା௤ಲ௤ಶ௪ି௤ಹ௞ೕ௨௪)   (5) 

 
There are several factors that affect Δtcrit and thus τ1, namely the durations of Zones 1–3, 

the number of intermediate VSL values, and the most restrictive VSL, vE. For simplicity, it is 
assumed that the durations of Zones 1–3 all equal to Δt. Clearly, the sooner users start vE (i.e., Δt 
is smaller), the sooner the queue at the incident BN can be cleared. Figure 2d illustrates the 
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impact, a linear positive relationship between Δtcrit and Δt, which increases faster when the 
congestion becomes more severe (i.e., qH decreases as the capacity drop (1 −	 ௤ಹ௤ಾ) increases). 

Note that Δt should be sufficiently long so that drivers can adapt and transition smoothly, which 
indicates the trade-off between the delay saving and speed transition. In the field implementation 
of Hegyi (19), such intermediate speed was set to last 20 s. Also notice that the number of 
intermediate VSL values between u and vE can affect Δtcrit: given Δt, it will take longer to start  
vE with more intermediate VSL values. This again highlights the trade-off between the delay 
saving and speed transition. Finally, the effect of vE on Δtcrit is intuitive: increasing vE increases 
Δtcrit and τ1 since VSL becomes less restrictive. Conversely, increasing vE can have a positive 
effect on ݐ௘௡ௗ௏ௌ௅. As evident from Figure 2c, the BN would discharge traffic at a higher rate with 
higher vE (recall that qE = qBN), increasing the rate of queue dissipation. This trade-off will be 
investigated in more detail shortly.   

The delay saving as a result of VSL, ∆ ௏ܹௌ௅଴ , equals to the area of the shaded region in 
Figure 2c.   
 ∆ ௏ܹௌ௅଴ = 0.5 ∗ ஻ேݍ) − )(ுݍ ெܶ − ߬ଵ)((ݐ௘௡ௗ௕௔௦௘ − ߬ଵ) + ௘௡ௗ௏ௌ௅ݐ − ெܶ)  (6) 
 

Figure 2e illustrates the impact of qBN on ∆ ௏ܹௌ௅଴ . Note that they are respectively expressed 
as the fractions relative to the road capacity and baseline total delay (i.e., qBN/qM versus ∆ ௏ܹௌ௅଴ /ܹ௕௔௦௘) to better examine the relative impact. It is interesting to note, however, that in severe 
congestion (e.g., ݍு  ெ), the fractional delay saving increases with qBN/qM at decreasingݍ0.5 >
rates up to a certain point and then decreases markedly. This trend is attributable to setting the 
most restrictive VSL at vE that varies with qBN, resulting in the trade-off between τ1 and the rate 
of queue dissipation thereafter, as mentioned in the previous paragraph. More specifically, 
increasing vE and qE results in faster increases in τ1 and thus decreases in the fractional delay 
saving. Also, notice that the impact of Δt is quite significant. For example, when Δt increases 
from 20 to 140 s, the delay saving can drop by more than 10%.  
 
 
VSL CONTROL WITH REEMERGENCE OF QUEUE AT INCIDENT BN 
 
Uncertainty in estimation of the stable maximum flow, qBN, is a valid concern because of the 
nonrecurrent, wide-varying nature of incidents. Moreover, difficulty in predicting rubbernecking 
behavior adds to the challenge. In this section, the authors develop a VSL control strategy for the 
case of a reemerging queue at the incident BN, as a result of an overestimated qBN. 

It is assumed that the actual stable maximum flow, qBN*, is smaller than qBN (and thus qe, 
qE and qG); see Figure 3a. As a result, a queue forms again at the BN at τ1 (when the BN is 
supposed to start discharging at qBN), and traffic reverts to state H (see Endnote 1). This new 
queue propagates as sGH, as depicted in Figure 3b. If no action is taken, the new queue would 
continue to travel upstream, albeit more slowly than the initial queue (sGH < sAH), and eventually 
terminate transition Zones I–IV. Moreover, the BN would discharge at ݍு, meaning little to no 
savings in total delay. 

To remedy this problem, new VSL control is imposed to clear the newly formed queue 
and then adjust the discharge flow. Two strategies, A and B, with different requirements of 
implementation, are proposed.   
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Strategy A 
 
This is a simpler strategy with two steps, aiming at achieving qBN* as soon as possible. (All 
traffic states resulting from Strategy A are shown on the FDs in Figure 3a, and the corresponding 
traffic evolution is shown in the time–space diagram in Figure 3b.) 
 
Step A-1 
 
When a new queue is confirmed (at ଶܶ), impose new VSL control with speed limit ݒு 
simultaneously over a segment immediately upstream of the acceleration zone to clear the queue; 
see Figure 3b. By flow conservation, a new state, ܧ෨ , is created in Zone V with the same density 
as state ܧ. The transition between ܧ and ܧ෨  forms a vertical shock, ݏாா෨ . State ܧ෨  evolves to state ܫ 
ூݍ) = ா෨ݍ ) in the acceleration zone and then resolves the queue, forming a forward moving shock, ݏூு. The arrival of ݏூு at the BN marks the clearance of the new queue, which indicates that ݍ஻ே∗ 
at the BN can be resumed. The spatial extent of this VSL control at ଶܶ, denoted by ܮா෨  , should be 

designed so that state ܫ does not persist at the BN (as pictured).   
Upstream of Zone V, state ܧ naturally evolves to state ܪ (Zone VI) and forms ݏாு. Note 

that state ܪ in Zone VI is bounded by ݒு because of state ܧ෨  downstream. Notably, ݏாு  is 
 
 

 
(a) 

 

 
(b) 

FIGURE 3  Strategy A to address queue reemergence. 
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terminated as it travels upstream and collides with ݏ஺యா . Thereafter, state ܣଷ (Zone III) interacts 

with ܪ, forming ݏ஺యு. Similar transitions occur to ܣଶ (Zone II) and ܣଵ(Zone I) sequentially. In 
this process, the four transition zones (I–IV) are terminated by the queue in ܪ gradually, and the 
speed transition between the intermediate states and ܪ becomes gradually more abrupt. 
Eventually, state ܪ interacts with state ܣ directly.   
 
Step A-2 
 
When the queue at the BN is cleared, impose a less restrictive VSL, ݒா∗, upstream of the 
acceleration zone to regulate the BN discharge rate at ݍா∗ (= ݍ஻ே∗). Upstream of the acceleration 
zone, traffic evolves from state ܪ to ܧ∗, forming ݏுா∗, and then to state ܩ∗ in the acceleration 
zone. When the incident is cleared, this VSL control should be deactivated similar to Step 2-3.   

State ܧ∗ propagates upstream until it is finally terminated by free-flow traffic ܣ, marked 
by ݏ஺ா∗. After the VSL control is deactivated, traffic emerging from state ܧ∗ evolves to state ܯ 
and resumes its full capacity.   

Notably, this strategy is able to resolve the new queue and attain a higher BN discharge 
flow than ݍு, yet at the expense of sharper speed transition upstream. Notably, transitions from ܣ to ܧ∗ and from ܣ to ܪ are likely very abrupt in the absence of transition layers. Therefore, we 
introduce Strategy B to overcome this problem.   

 
Strategy B 
 
This strategy is built on Strategy A, but additional control upstream for smoother speed transition 
is added. Detailed steps follow. (All traffic states resulting from Strategy B are shown on the FDs 
in Figure 4a, and the corresponding traffic evolution is shown in Figure 4b.) 
 
Step B-1 
 
Same as Step A-1. 
 
Step B-2 
 
Same as Step A-2. 
 
Step B-3 
 
Notice in Strategy A (Figure 3b) that upstream speed transition is compromised because the 
heavy queue in state ܪ (Zone VI) becomes widespread over time. In this step, the heavy queue 
will be contained to a shorter distance and resolved sooner by imposing VSL control on states ܣ 
and ܣଵ – ܣଷ (transition zones I–III). Specifically, when the new queue is confirmed at ଶܶ, impose ଵܸ immediately upstream of state ܣଵ (Zone I) over the same spatial extent as A1 (see Endnote 2). 
Following ଵܸ, impose ଶܸ, ଷܸ and ݒா∗ sequentially with time increment of ∆ݐ; see Figure 4, parts a 
and b. This creates low density and low flow states relative to the FD, ܽଵ෦–ܽଷ෦ and ܽா∗෦ .   
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FIGURE 4  Strategy A to address queue reemergence. 
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The transition between ܽா∗෦  and ܪ forms a forward shock, ݏ௔ಶ∗෦ ு , which will contain and 

terminate state ܪ when colliding with ݏுா∗. The spatial extents of ଵܸ- ଷܸ and ݒா∗at the start 
should be determined such that ܽா∗෦  is terminated simultaneously with shock ݏுா∗.     

Note that state ܧ may be terminated by state ܪ early if ݏ஺యா and ݏாு collide before ݒா∗ is 
supposed to go in effect, as depicted in Figure 4b. In this case, speed limit  ݒா∗ is turned on 
sooner than ∆ݐ, more precisely, when ݏ஺యa3෦  collides with ݏ஺యு. By contrast, if state ܧ still 
remains, speed limit ݒா∗ is imposed as planned (i.e., ∆ݐ later). This would create a void (state ܱ) 
between ܽா∗෦  and ܧ (and later between ܽா∗෦  and ܪ) because traffic in ܧ travels faster; see Figure 
4c, which zooms in the region upstream of Zone VI in Figure 4b, to illustrate more detailed 
traffic evolution. If the speed difference between ݒா∗ and ݒா is small, the void will eventually be 
resolved by ܽா∗෦ . Thereafter, state ܽா∗෦   proceeds to resolve Zone VI, marked by ݏ௔ಶ∗෦ ு. However, 
if the speed difference is significant, the void may pass through Zone VI and proceed to the BN, 
resulting in a discharge flow rate of 0, which is highly undesired; see Figure 4d. For this case, the 
upstream control (Step A-1) can be delayed until ଶܶ′ , so that the three shocks, ݏாு , ݏ஺యா, and ݏ஺యa3෦, converge; see Figure 4e. With this setting, researchers can actuate speed limit ݒா∗ 
following ଷܸ.   
 
Step B-4 
 
Upstream of ܽଵ෦-ܽଷ෦ and ܽா∗෦ , impose another set of ଵܸ- ଷܸ and ݒா∗ at the rate of ݏ஺ா∗ to transition 
traffic gradually from ܣ to ܣ) ∗ܧ → ∗ଵܣ → ∗ଶܣ → ∗ଷܣ →  Finally, deactivate the control .(∗ܧ
when the incident is cleared, similar to Step 2.     
 
Parameter Analysis 
 
As expected, the delay saving would decrease if a queue reemerges at the incident BN; see 
Figure 5a for the queuing diagram. Note, however, that Strategies A and B have the same delay 
savings because the additional VSL control in Strategy B only manages the queue transition 
while leaving the BN discharge flow the same as in Strategy A. The delay saving (compared to 
the base case) is ∆ ௏ܹௌ௅ோ  and can be derived based on the queueing diagram: 
 ∆ ௏ܹௌ௅ோ = ∗஻ேݍ)0.5 − )(ுݍ ெܶ − ߬ଵோ)((ݐ௘௡ௗ௕௔௦௘ − ߬ଵோ) + ௘௡ௗோݐ − ெܶ)  (8)  

 ߬ଵோ represents the time when ݍ஻ே∗ is resumed and equals to ߬ଵ +  ௖௟௖ is the newݐ∆ ௖௟௖, whereݐ∆
queue clearance time; see the labels in Figure 3b.  

Notice that ∆ݐ௖௟௖ depends on how responsive the system is. It is assumed that the new 
queue is detected after some buffer time, ∆ݐ௕௨௙, or when the queue reaches the entrance of the 
acceleration zone, whichever happens first. Then, it is found that ∆ݐ௖௟௖ is given by  
௖௟௖ݐ∆  = min ቀ− ௞ೕ௪൫௅ା௨∆௧್ೠ೑൯௤ಹ௨ , − ௅൫௤ಹ(௨ି௪)ା௨௞ೕ௪൯௞ೕ(௤ಶି௤ಹ)௤ಹ௨ ቁ  (9) 

 
in which the former expression corresponds to early detection (i.e., after ∆ݐ௕௨௙) and the latter for 
detection at the entrance. Notice that in the former case, a linear positive relationship exists 
between ∆ݐ௖௟௖ and ∆ݐ௕௨௙. This is expected because the earlier the queue is detected, the sooner 
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(a) (b) 

 
(c) 

 
FIGURE 5  Parameter analysis of Strategies A and B  

[in (b – c), qA = 0.8 qM, qH = 0.5 qM, Lq = 2 km, L = 0.75 km, TM = 2 h]. 
 
 

the queue clearance process can be actuated; see Figure 5b. In the latter case, ∆ݐ௖௟௖ depends on ݍா, the initial estimation of the stable maximum flow. The higher the ݍா is, the smaller the ∆ݐ௖௟௖ 
is. This is because a higher ݍா (larger |ீݏு|) indicates an earlier queue detection  and faster 
queue dissipation (larger ݏூு), both of which decrease ∆ݐ௖௟௖. Notice that, the critical value of ∆ݐ௕௨௙ when the two cases are equal, denoted by ∆ݐ௕௨௙௖௥௜௧, decreases as ݍா increases. Notably, this 
indicates that with a higher ݍா, the queue (at the entrance) can be detected earlier and thus 
control actuated earlier. However, it also indicates shorter time available to set up the remedy 
action, which could pose a different challenge.    

The relationship between the fractional delay saving (∆ ௏ܹௌ௅ோ /ܹ௕௔௦௘) and ∆ݐ௕௨௙ is 
illustrated in Figure 5c. With early detection, it decreases as the buffer time increases, which is 
expected because ∆ݐ௖௟௖ is larger. Also notice that the delay saving depends on the new BN 
discharge rate, ݍ஻ே∗(ݍ஻ே∗ =    .஻ே∗ leads to a higher delay savingݍ ா∗): obviously, a largerݍ

Note that in Strategies A and B, speed limit ݒு is used to clear the newly formed queue at 
the BN. This speed limit can be set to a lower value to clear the new queue faster. However, the 
minimum value, vmin, is bounded by the speed that yields q1 = qH:   
୫୧୬ݒ  = ௤ಹ௪௤ಶା௞ೕ௪  (10) 
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A speed limit higher than vmin would result in ݏூு < 0 , and it would not be possible to clear the 
newly formed queue.    

Also note that in both strategies, the duration of Zone V (state ܧ෨), ∆ݐா෨ , is critical for the 
experiment set-up, which is given by  

ா෨ݐ∆  = ௖௟௖ݐ∆ − ௕௨௙ݐ∆ − ௅௨ = min ቀ− ൫௅ା௨∆௧್ೠ೑൯൫௤ಹା௞ೕ௪൯௤ಹ௨ , ௅൫௤ಹି௞ೕ௪൯൫௤ಹ(௨ି௪)ା௨௞ೕ௪൯(௤ಶି௤ಹ)௤ಹ௨௪ ቁ  (11-1) 

 
Thereafter, the control distance at ଶܶ, ܮா෨  , can be derived accordingly:  

ா෨ܮ  = ுݒா෨ݐ∆ = min ൬− ൫௅ା௨∆௧್ೠ೑൯௪௨ , ௅(௤ಹି௞ೕ௪)(௤ಹ(௨ି௪)ା௨௞ೕ௪)(௤ಶି௤ಹ)௨(௤ಹା௞ೕ௪) ൰  (11-2)  

 
As revealed by Equation 11-1, in the case of early detection, ∆ݐா෨  (as well as ܮா෨ ) increases 

with ∆ݐ௕௨௙. This is because shock ݏூு has to travel longer. For the late detection, both extensions 
increase as ݍா decreases because the shock ݏூு travels more slowly.     
 
 
CONCLUSIONS AND DISCUSSIONS 
 
In this paper, VSL strategies were developed based on the kinematic wave theory to increase 
discharge rates at freeway incident BNs and provide smoother speed transition upstream. The 
main logic is to impose VSL control gradually on upstream demand to dissipate the queue 
around the incident BN while inducing smoother speed transition at the queue’s tail. After the 
queue clearance, VSL control continues to regulate inflow to the BN so that the BN can 
discharge traffic at the stable maximum rate in free-flow without breakdown. This is 
accomplished without imposing overly restrictive speed limits, an important feature considering 
incident situations. Findings from the parameter analysis suggest that significant delay savings 
can be realized with this strategy.   

The authors further developed two sequel VSL strategies to remedy a reemerging queue 
at the incident BN because of an overestimated stable maximum flow. This is a likely scenario 
since incidents are nonrecurrent and vary widely in nature. The first, and the simplest, strategy is 
designed to clear the new queue and discharge traffic at the adjusted (lower) stable maximum 
rate, albeit with less desirable speed transition. The other two strategies were built on the first 
one to better manage the upstream queue for smoother transition. The two strategies differed by 
the magnitude of error in estimating the stable maximum flow. Not surprisingly, it was found 
that delay savings decreased when the stable maximum flow was overestimated; however, they 
were still substantial.  

Building on the theoretical framework presented in this paper, ongoing research includes 
formulation of discrete schemes to 1. accommodate more complex scenarios, such as time 
varying demand and realistic freeway networks (with on and off-ramps), 2. shed light on 
spatiotemporal features of vehicle delay and speed variation, and 3. evaluate system robustness 
with respect to driver compliance and traffic detection/measurement errors, delays and 
resolution. Finally, the proposed VSL strategies should be tested in the field and further refined 
to address various practical issues, such as detection of traffic states and shockwaves.   
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ENDNOTES 
 
1. It is possible that a queue may form earlier if is sufficiently high. Note, however, that a VSL strategy 

to remedy this case would be similar. 
2. This is because the vehicle trajectory passing these three zones is parallel to those passing Zones 1–3, 

such as the FVT. 
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uses stopping at transit stops reduce the capacity of signalized intersections, which can lead 
to excessive delays for all users. In order to avoid such phenomena signal control strategies 

can be used. This paper presents a signal control strategy to mitigate the impact of bus stop 
operations on traffic operations along an undersaturated approach. The objective of the proposed 
strategy is to increase the green time for the bus stop approach during the cycle after the bus has 
left the stop in order to ensure that the residual queue that was created by the presence of the bus 
at the bus stop can fully dissipate within the following cycle. In addition, this strategy ensures 
that the cross-street approaches can clear any residuals queues caused by this strategy within a 
cycle after its implementation. Kinematic wave theory is used to track the formation and 
dissipation of queues and determine the red truncation (or equivalently green extension). The 
benefits achieved from the proposed strategy are illustrated through simulation tests at a single 
intersection for a variety of bus stop and bus operation characteristics. Average delay and 
average queue length for the bus stop and cross-street approaches are used to assess the 
performance of the system. The tests performed indicate that the signal control strategy can 
achieve substantial reductions in delay for the bus stop approaches without adversely affecting 
the cross-street operations and the overall intersection delay, when the demand at those cross 
streets is low.  
 
 
INTRODUCTION 
 
Efficient multimodal transportation systems are essential components for maintaining and 
improving the livability of our cities. However, the presence of multiple modes that differ in 
their dimensions and performance often complicates traffic operations and leads to 
underutilization of available capacity. Such an example is the existence of bus stops that are 
common in urban areas. If no bus bays exist, bus stops block lanes causing disruptions to the 
traffic stream, reducing the capacity of signalized intersections, and leading to excessive delays 
and potentially gridlock. Therefore, a comprehensive evaluation of the impact of bus stops on the 
capacity of signalized intersections and the development of signal control strategies to reduce 
this impact are critical for achieving efficient multimodal traffic operations and improving 
mobility for all users in urban networks. 

The impact of bus stops on traffic and transit operations, and in particular on the capacity 
of signalized intersections has been extensively studied (1–8). However, several of the studies 
have not provided explicit formulas for estimating the impact (2, 5, 6), or have investigated the 
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impact in developing countries where bus stops are commonly located on the nonmotorized 
traffic lane and the behavior of drivers is substantially different than in the United States (1, 4, 
7). Other studies have developed analytical formulas to estimate the impact as a function of the 
bus frequency and dwell time, the number of lanes, and the location of the subject bus stop with 
respect to the stop line (i.e., near side versus far side). However, some of these studies have not 
explicitly considered the impact of the bus stop’s location (i.e., distance from the stop line) on 
the capacity of the signalized approach (3, 8). Only a recent analytical method has accounted for 
the location of the bus stop, the bus dwell time, and the bus frequency when determining the 
impact of bus stops on capacity (9).  

While the impact of bus stops on the capacity of signalized intersections has been studied 
extensively, the literature on strategies that mitigate the impacts of bus stops on the capacity or 
delay of signalized intersections is very limited. A recent study by Gu et al. (10) investigated the 
impact of nearside bus stop location on the residual queue length and proposed a real-time bus 
holding strategy that ensures clearance of the queue within a signal cycle. However, the study 
used predicted arrival times instead of actual arrivals. The study was later extended (11) to 
estimate car and bus delays when the existence of bus stops affects their delays assuming 
stochastic bus arrivals and both nearside and far-side bus stops. However, the proposed formulas 
assumed that the car arrival flow is always less than the restricted capacity because of the 
presence of a bus at a bus stop, and researchers developed their formulas for certain distances of 
bus stops downstream and upstream of a signalized intersection.  

Given the limitations of the literature, the objective of this study is to investigate the 
impact of bus stops on the capacity of signalized approaches as a function of the bus stop’s 
location, bus arrival, and dwell times. The study investigates the impacts of those factors for 
cases that the car arrival flow is higher or lower than the restricted capacity when a bus is present 
at the bus stop during the green time interval, therefore, covering a variety of cases that can 
occur in reality. In addition, it suggests using information on the bus stop’s impact on capacity to 
implement a real-time signal control strategy that ensures clearance of the residual queue within 
the cycle(s) following the detection of a bus’s presence at a bus stop. The focus is on a well-
timed signalized intersection for which all four approaches are undersaturated. 

The rest of the paper is organized as follows: First, the authors describe the research 
approach that includes the methodology used to estimate the impact of an incident on traffic 
operations, in particular queue formation and dissipation as well as the proposed red truncation 
signal control strategy. Next, the authors present all different cases that can arise with regard to 
queue formation and dissipation patterns for a variety of incident locations, start times, and 
durations, as well as demand and signal timing characteristics. The required red truncation 
amounts are also calculated for a sample of cases. Next, results on the impact of the signal 
control strategy on the performance of the bus stop and cross-street approaches under a variety of 
demands, bus stop locations, and dwell times are presented. Finally, the authors comment on the 
applicability of the proposed strategy and suggest steps for extending the study.  
 
 
RESEARCH APPROACH  
 
The proposed research is based on tracking traffic conditions in the time–space domain while bus 
stops are both occupied and unoccupied by a bus. In order to do so kinematic wave theory (12, 
13) is used. In particular it is assumed that traffic operations for an approach that contains a bus 
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stop can be described by a triangular fundamental diagram. By illustrating traffic conditions as 
states on a time–space diagram, it is possible to identify the formation and dissipation of queues 
and determine the impact of a bus stop on traffic conditions (e.g., queue length and delays). 

Once traffic conditions are depicted on a time–space diagram, a signal control strategy is 
introduced. This strategy aims at increasing the green time for the bus stop approach over the 
next signal cycle in order to clear the additional queues created by the presence of the bus and 
avoid oversaturation of the subject approach. If the impact of the bus stop is small and the green 
time interval of the next cycle is sufficient to clear the residual queue, then no additional green 
time is provided for that approach over the next cycle. The proposed strategy can be 
implemented as an early green or green extension depending on the phase sequence within the 
cycle. Note that this strategy is based on the assumption that the cycle length remains constant 
for the cycle under consideration and the ones immediately following it. For illustrative purposes 
throughout this paper it is assumed that the green time interval follows the red in a cycle and 
therefore, the signal control strategy implemented corresponds to an early green (i.e., red 
truncation). In addition this study calculates the maximum red truncation that is allowed so that 
the cross street returns to undersaturated conditions within a cycle after the red truncation.  

The proposed methodology assumes knowledge of the triangular fundamental diagram, a 
constant demand level for the subject approach, qA, for the cycle under consideration and the 
ones immediately following it as well as the reduced capacity, qI, caused by a bus dwelling at a 
bus stop; see Figure 1. It has also been assumed that the reduced capacity qI is equivalent to the 
capacity of a traffic lane, which indicates that a bus dwelling at a stop would block one lane. In 
addition, the exact bus stop location as measured from the stop line, X, is known. Note that X is 
negative. It is also assumed that detection technologies such as automated vehicle location 
systems exist and can provide information on the bus arrival at the bus stop, To, and its departure 
from the stop, Te, in real time. Note that no prediction of arrival or departure time is necessary 
 
 

 

FIGURE 1  Fundamental diagram.  
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since the signal control strategy is always implemented in the cycle following the bus departure 
from the stop. It is further assumed that the bus dwell time does not exceed a cycle length, which 
is a reasonable assumption for most bus stops. Finally, it has been assumed that vehicle demand 
is available through sensing technologies such as loop detectors placed upstream of potential 
queue spillbacks, and the uncontrolled signal timing parameters of the pre-timed signal are 
known. 
 
Red Truncation Estimation 
 
In the absence of a bus at the stop the number of vehicles arrived and therefore, served in one 
cycle length, N, is equal to qAC/3,600 where C is the cycle length in seconds and is the sum of 
the red time, R, and green time, G. However when a bus is present and oversaturation occurs, the 
number of vehicles, Ni, served can be determined by examining the flow rates at the stop line 
using the following equation: 
 

Ni = (τCqC + τIqI + τAqA)/3,600 (1)

 
where τC, τI, and τA is the total time that the flow rate is qC, qI, and qA, respectively, during the 
cycle(s) that the bus is stopped at a bus stop. Given that the number of vehicles which were 
served by the intersection, Ni, is less than the number of vehicles that arrived, No, during the 
cycle(s) the incident is present, the amount that the red time interval is shortened is such that the 
number of vehicles that were unable to go through the intersection as a result of the bus stop-
induced reduced capacity (No – Ni) plus the number of vehicles arriving in the next cycle (N) is 
equal to the number of vehicles that can be served during the initial green time for the bus 
approach, G, plus the additional green provided, –DR. This can be expressed as follows: 
ோܦ  = ݉݅݊ ൜ܩ − 3600 ௢ܰ − ௜ܰ + ஼ݍܰ , 0ൠ (2)

 
Where DR  is given in seconds and No and τC are based on whether or not the incident spans one 
or two cycles yielding  
 ௢ܰ = ቄ ܰ		 if	 ௘ܶ ≤ 2ܰ	ܥ otherwise (3)߬஼ = ൜ ܩ − ߬ூ − ߬஺		 if	 ௘ܶ ≤ ܩ2	ܥ − ߬ூ − ߬஺ otherwise (4)

 
The equations for τI and τA are dependent on the cases defined by the position of the bus 

stop, the arrival and departure time of the bus from the stop, as well as the demand levels and 
signal timings, and they will be determined in the following section. Note that DR is negative, 
because it corresponds to the change in the red time for the bus approach. If it becomes positive, 
then no truncation is needed because the initial green time for the approach G is sufficient to 
serve all vehicles despite the reduced capacity because of the presence of a bus at the stop.  
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Impact on the Cross-Street Traffic 
 
The red truncation implemented for the bus stop approach, DR, will result to a reduced green for 
the cross-street approaches. Assuming undersaturated traffic conditions for the cross streets, the 
maximum cross-street degree of saturation that will allow it to return to undersaturated 
conditions within a cycle after the implementation of the red truncation for the bus stop approach 
is determined. This maximum red truncation time, ܦோ௠௔௫, can be calculated as 
ோ௠௔௫ܦ  ≥ ஼௫ݍܥ஺௫ݍ2 − ௫ (11)ܩ2

 
where qAx is the arrival rate at the cross street and qCx 	is the saturation flow for the cross-street 
approach x, and Gx  is the green time interval for cross-street approach x when no red truncation 
is implemented for the bus stop approach. 
 
Identifying the Cases 
 
Depending on the location of the bus stop, starting time, and dwell time of the bus, the capacity 
reduction can be categorized as falling into one of five cases. All other instances that do not fall 
into one of the five cases do not require red truncation (i.e., DR = 0). In order to determine which 
case each bus stop induced capacity reduction incident is under and estimate its associated red 
truncation time, the following critical times have been identified as 
 

ଵܶ = 36005280 ⋅ ܷܺ௃஺ (5)

ଶܶ = ܴ + 36005280 ⋅ (6) ݓܺ

ଷܶ = ஼ݍ஼ݍ − ஺ݍ ⋅ ܴ + 36005280 ⋅ ௙ (7)ݒܺ

ସܶ = ܥ + 36005280 ⋅ ௙ (8)ݒܺ

ହܶ = ௙ݒ ௢ܶሺݍ஺ − ூሻݍ + 3600 5280⁄ ܺሺݍ஼ − ஺ሻݍ + ஼ݍ஼ܴሺݍ௙ݒ − ௙ݒூሻݍ  (9)

଺ܶ = ௘ܶሺݍூ − ஼ሻݍ + ௢ܶሺݍ஺ − ஺ݍூሻݍ − ஼ݍ  (10)

 
where T1, T2, T3, T4, T5, T6 are given in seconds. These times are measured at the location of the 
dwelling bus, X.   

Table 1 provides the constraints that are used to identify each of the cases. All constraints 
in each case must be satisfied, and each case is mutually exclusive. Figure 2 shows the 
constraints for Cases 1 to 3 on a time–space diagram for undersaturated conditions as well as the 
locations of T1 through T4. Note that for illustration purposes the yellow time intervals are not 
shown in the time–space diagrams of Figures 2 through 8 but are considered to be present at the 
end of each phase. The area with the horizontal lines represents the possible locations that To 
may be located and the vertical lines the locations where Te may be located (subject to constraint 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


138 TR Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 

 

TABLE 1  Constraints for Each Case 

Case Constraints 

1 ௢ܶ ≤ ଷܶ, ଶܶ ≤ ௘ܶ ≤ ଶܶ + ,ܥ ହܶ ൐ ଶܶ  

2 ௢ܶ ≤ ,ܥ ௘ܶ ≥ ଶܶ + ܥ , ହܶᇱ ൐ ଶܶ if ஺ݍ ൐ ூ௢ܶݍ ≤ ଷܶ, ௘ܶ ≥ ଶܶ + ,ܥ otherwise  

3 ଷܶ ൏ ௢ܶ ≤ ,ܥ ଶܶ + ܥ ≤ ௘ܶ ≤ ,ܥ2 ଵܶ ≤ ଶܶ, ஺ݍ ≤   ூݍ
4 ହܶ ≤ ଶܶ, ଺ܶ ≥ ସܶ, ௢ܶ ൏ ଷܶ, ஺ݍ ൐   ூݍ
5 ହܶᇱ ≤ ଶܶ, ଺ܶ ≥ ସܶ + ,ܥ ௢ܶ ≥ ଷܶ, ஺ݍ ൐   ூݍ

 
 

 

FIGURE 2  Illustration of constraints for Cases 1 through 3. 
 

Case 2  Case 3 

Case 1 Case 2

Possible  locations     Possible  locations     
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FIGURE 3  Case 1, time–space diagram (no control). 
 
 

 

FIGURE 4  Case 2, time–space diagram (truncation needed). 
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FIGURE 5  Case 3, time–space diagram (no control). 
 
 

 

FIGURE 6  Case 4, time–space diagram (no control). 
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FIGURE 7  Case 5, time–space diagram (no control). 
 
 

 

FIGURE 8  Case 6, no impact (no control). 
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Te – To ≤ C). It is not feasible for an incident to begin at a location in the jam state, since a bus 
cannot proceed to the bus stop if it is within the zero speed jam state. Cases 4 and 5 are not 
shown, as they represent special cases when the queue following the start of the incident is 
starved because of the presence of that incident when demand exceeds the capacity during the 
incident (i.e., qA > qI).    

Once the case has been determined the red truncation time, DR, can be calculated using 
the values in Table 2, which shows how long the intersection is discharging at rates as defined by 
States A and I. Figures 3 through 8 show example time–space diagrams for each case and depict 
the critical times defined above. Each figure shows in solid black lines the propagation and 
dissipation of queues if no signal control strategy is implemented and in dashed lines how the 
queue dissipates when the red truncation strategy is in place. The gray dotted lines represent the 
formation and dissipation of queues in the absence of a bus at the bus stop; see Figure 4. The 
bold line in yellow represents the presence of a stopped bus. For all cases shown it is assumed 
that traffic operations can be described by a fundamental diagram with the following 
characteristics: qc = 3,600 veh/h, qi = 1,800 veh/h, w = –12 mph, and vf = 30 mph. As can be seen 
by the time–space diagrams in Figures 6 and 7, Case 5 is nearly a translation of Case 4. In order 
to determine the red truncation time in Case 5, three new variables must be defined: ௘ܶ′ = ௘ܶ − ′௢ܶ ,ܥ = ௢ܶ − ′and ହܶ ,ܥ 	can be found by substituting ௢ܶ′  for ௢ܶ in Equation 9. 

The characteristics of bus stop operations for each sample case and the required red 
truncation as well as the resulting average vehicles delays for the bus stop approach and the cross 
street with and without control are shown in Table 3. When demand is low (Case 3, Figure 5; and 
Case 6, Figure 8) no truncation is needed. In fact, if the bus is not present at the bus stop while 
the signal is discharging, there is no increased delay as a result of the bus dwelling. In Cases 1 
and 4, the presence of a bus at the bus stop increases delays; however, queues dissipate within a 
cycle without control. Cases 2 and 5 demonstrate scenarios that require red truncation. As 
expected the strategy improves the average and total delays along the bus stop approach and 
slightly increases delays along the cross street. Additional results are given in the following 
section. 
 
 
APPLICATION 
 
The evaluation of the proposed methodology and real-time signal control strategy has been 
performed with the use of simulation, in particular with the software AIMSUN through its 
application programming interface (API). API allows for implementing the proposed signal  
 
 

TABLE 2  Time Spent in States A, τA, and I, τI 

Case τA τI 
1 0 minሼ ௘ܶ, ସܶሽ − maxሼ ௢ܶ, ଶܶሽ 
2 minሼ ௢ܶ, ସܶሽ − minሼ ଷܶ, ௢ܶሽ maxሼ ௢ܶ, ସܶሽ − ௢ܶ + ௘ܶ − ሺ ଶܶ +  ሻܥ
3 ସܶ − ଷܶ minሼ ௘ܶ, ସܶ + ሽܥ − ሺ ଶܶ +  ሻܥ
4 0 minሼ ௘ܶ, ସܶሽ − ହܶ 
5 ସܶ − ଷܶ minሼ ௘ܶᇱ, ସܶሽ − ହܶᇱ 
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TABLE 3  Parameters and Average Vehicle Delays for Each Sample Case 

 
X 

(ft) 
To 
(s) 

Te 

(s) 
Demand 

Case DR 

Bus Stop Approach 
Average Delay  

(s/veh) 

Cross-Street 
Average Delay  

(s/veh) 
No 

Control Control 
No 

Control Control 

Case 1 –30 1819 1843 qA > qI 0.00 16.49 — 31.46 — 

Case 2 –30 43 118 qA > qI –7.97 38.63 35.11 27.11 28.73 

Case 3 –100 314 373 qA < qI 0.00 15.86 — 25.82 — 

Case 4 –550 605 684 qA > qI 0.00 20.91 — 26.29 — 

Case 5 –550 78 147 qA > qI –2.06 18.15 17.44 27.11 27.11 

Case 6 –100 619 639 qA < qI 0.00 11.10 — 16.47 — 

 
 
control strategy in real time and evaluating its performance through a variety of performance 
measures such as delay for the subject bus stop approach, delay for the cross streets, and average 
queue length for all approaches.   
 
Test Site 
 
The test site used for the application of the proposed signal control strategy is the intersection of 
San Pablo and University Avenues in Berkeley, California; see Figure 9. The intersection 
operates with a four-phase signal with a cycle length of 80 s. Six bus routes with headways that 
vary between 10 and 30 min on each route, travel through the intersection and stop at six bus 
stops located at different distances from their corresponding stop lines. 
 
 

 

FIGURE 9  Test site: San Pablo and University Avenues, Berkeley, California. 
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The focus of this study is on the eastbound approach of University Avenue, which has a 
nearside bus stop where buses of three different bus lines stop with an overall frequency of 10 
buses per hour. The demand levels of both approaches were set in such a way so that the test site 
represents traffic conditions at the intersection of a major with a minor roadway. This was 
essential since the proposed signal control strategy has been designed under the assumption of 
undersaturated conditions and performs best when the cross-street approach is not operating 
close to saturation. The car demand for the cross streets was set to 250 vph. Two scenarios of 
high and low demand were created for the bus stop approach (eastbound approach of University 
Avenue) and the opposite direction of University Avenue. The high demand was set to 2,000 vph 
and the low to 1,000 vph with turning ratios of 85% for through, 10% for right, and 5% for left 
for both demand scenarios. The same turning ratios were used for the cross-street demands.  

For the low-demand scenario the green time for the phase that serves the University 
Avenue through movements was set to 37 s, and the one for the cross street through movements 
to 19 s. For the high-demand scenario, these green times were set equal to 44 s and 12 s, 
respectively. The other two phases that serve the left-turning vehicles had a constant green time 
of 5 s allocated to them for both scenarios. Therefore, red truncation was implemented only on 
the phase that serves the through cross-street movements. In addition, the lost time, which is 
assumed to be equal to the total yellow time, was kept constant and equal to 14 s, 4 s after each 
of the through phases and 3 s after each of the left-turning phases. It is assumed that cars will 
continue through the intersection for 2 s of the yellow interval, thus an extra 2 s was added the 
green time with remaining time in the cycle denoted as red time.  

Based on this information, the degrees of saturation for the University Avenue through 
movements were 0.57 and 0.96 for the low- and high-demand scenarios and for the San Pablo 
approaches equal to 0.28 and 0.44 for the low- and high-demand scenarios. Bus stop locations of 
30, 100, 200, and 500 ft from the stop line were tested. The average bus dwell time was set to 40 
s with a standard deviation of 30 s. These ensured that several different cases of bus stop 
obstruction were captured.  
 
Results 
 
Several tests were performed with the help of the microsimulation software AIMSUN as 
described above, and the results were evaluated primarily through two performance measures: 
average vehicle delay and average queue length for both the bus stop approach and the cross 
streets (an average of the performance of the two cross-street directions is presented here). Ten 
replications were run for each scenario to account for the stochasticity in bus and vehicle arrivals 
as well as bus dwell times, and the average, as well as the 95% confidence intervals of those 
replications, are presented here.  

Tests were performed both for a high bus stop approach demand, which exceeds the 
reduced capacity due to the bus dwelling, and for a low demand. The results for the low arrival 
rate along the bus stop approach show there is no need for red truncation at the cross street, since 
even with reduced capacity the intersection approach is still capable of serving all vehicles 
within one cycle, thus maintaining undersaturated conditions. It is possible that truncation is 
needed when the arrival rate is lower than the reduced capacity of intersection, as the presence of 
the bus may impede the discharge rate when a signal turns green. However, if the incident is 
sufficiently upstream and/or the degree of saturation low, the blockage caused by the bus 
dwelling at the stop does not greatly restrict the flow of arriving vehicles.  
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Figures 10 and 11 show the changes in average vehicle delay and average queue length 
for both the bus stop approach and the cross streets (presented as a weighted average of the two 
cross-street through approaches) as well as the 95% confidence intervals. The results indicate 
that the proposed signal control strategy can significantly reduce average vehicle delay for the 
bus stop approach for all bus stop location scenarios other than the one of 500 ft. As the distance 
of the bus stop from the stop line increases its impact on traffic operations close to the signalized 
intersection diminishes. As a result, even when no control is in place, the delays of vehicles on 
the bus stop approach are on average lower than the ones when the bus stop is located close to 
the intersection stop line. This verifies the findings of previous research efforts on the higher 
impact of nearside bus stops on the capacity and delays of vehicles at the signalized intersection.  
While the average vehicle delay for the cross streets increases, the amount by which it increases 
is very low, on the order of 3 to 5 s per vehicle. Taking into account that the cross street is less 
heavily traveled than the main street, the strategy results to an overall reduction of delay of about 
6% for the case that the bus stop is located directly upstream of the intersection stop line. 

Similar trends are observed for the average queue length at the bus stop and the cross-
street approaches. The reduction of average queue length at the bus stop approach diminishes as 
the distance of the bus stop from the intersection stop line increases. At the same time the 
increase in average queue length observed at the cross-street approaches is minimal on the order 
of 0.2 vehicles. This happens because for the tests performed the cross streets were far from 
reaching saturation.  
 
 

 
(a) 

 
(b) 

FIGURE 10  Average vehicle delay for various bus stop locations with and without control: 
(a) bus stop approach (eastbound University Avenue) and (b) cross-street approaches 

(average of northbound and southbound San Pablo Avenue). 
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(a) 

 
(b) 

FIGURE 11  Average queue for various bus stop locations with and without control: (a) 
bus stop approach (eastbound University Avenue) and (b) cross-street approaches (average 

of northbound and southbound San Pablo Avenue). 
 

 
CONCLUSIONS  
 
This study presents the development of a real-time signal control strategy that uses information 
on the location of a bus stop, as well as the bus dwell time, traffic demand levels, and signal 
timings. The proposed bus stop mitigation strategy uses kinematic wave theory to track the 
formation and dissipation of queues and estimate the amount of green that needs to be added to 
the subject approach so that residual queues are cleared within one cycle.  

Several tests were performed for a variety of bus stop locations, dwell times, and for two 
levels of bus stop approach demands through microsimulation. The outcomes of the tests indicate 
that rarely if ever there is a need for implementing the real-time signal control strategy when the 
capacity of the approach when a bus is present is higher than the demand of the incoming traffic 
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to the subject approach. On the other hand, when the arrival demand at the bus stop approach 
exceeds the lower capacity caused by a bus dwelling at the bus stop, the proposed mitigation 
strategy can achieve average delay and average queue length reductions of up to 17% for the bus 
stop approach. The 17% reduction in average delay corresponds to about 6 s per vehicle average 
delay savings. At the same time, the mitigation strategy only slightly increases average delay for 
the cross street on the order of 3 to 5 s per vehicle. When the cross street is less heavily traveled 
than the bus stop approach, net benefits from such a control strategy are achieved, and the overall 
delay at the intersection decreases. The mitigation strategy is most beneficial when the bus stop 
is located very close to the stop line of the signalized approach. Note that the proposed strategy is 
applicable for cases where all intersection approaches are undersaturated and is most beneficial 
when implemented at intersections that the bus stop approach has a much higher demand than 
the cross street.  

The benefit of the proposed real-time signal control strategy is that it can be implemented 
for any bus stop location, dwell time, and can be used when the vehicle demand is higher than 
the reduction in capacity induced by a bus stopping at bus stop and when it is lower. Therefore, 
in addition to investigating and mitigating the impact of bus stops on capacity and delay, the 
equations presented here and the mitigation strategy are applicable to any type of incident that 
can occur in signalized arterial networks, such as freight deliveries, accidents, and more. So, 
under the assumption that the characteristics of the incident are known in real time (after the 
incident had been removed), the proposed strategy can be implemented to mitigate the impact of 
that incident on traffic of that approach. Overall the proposed strategy can be used for real-time 
mitigation of bus stop or incident-induced reductions of capacity to improve traffic and transit 
operations in urban signalized arterials.  

Future steps include improving the mitigation strategy so it can handle bus stop events 
that occur within the same cycle or consecutive cycles and cases when a bus is stopping for 
longer than one cycle length, and extending the focus of the strategy to include cases where 
vehicle demand varies from cycle to cycle.  
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his work introduces the novel concept of an influential subspace, with focus on its 
application to highway traffic containing connected vehicles. In this context, an influential 

subspace of a connected vehicle is defined as the region of a highway where the connected 
vehicle has the ability to positively influence the macrostate (i.e., the traffic jam), so as to 
dissipate it within a specified time interval. Analytical expressions for the influential subspace 
are derived using the Lighthill-Whitham-Richards (LWR) theory of traffic flow. Included results 
describe the span of the influential subspace for specific traffic flow conditions and prespecified 
driving algorithms of the connected vehicles. 
 
 
INTRODUCTION 
 
In recent years, there have been significant developments in the ability to inform drivers about nearby 
traffic conditions, which often leads to the questions: Can an individual driver use such information 
to affect traffic flow? And which drivers in a traffic network have the most influence on traffic flow 
(i.e., where and to whom should the information be delivered)? This work introduces the concept of 
an influential subspace of a connected vehicle (1), which is defined as the region of a highway where 
the connected vehicle has the ability to drive the macroscopic state of traffic flow to a desired state 
within a prespecified time. This concept is applicable to several physical, biological, and engineered 
systems, and a general formulation will be presented in future publications. In this paper, analysis of 
the influential subspace is conducted specifically for a connected vehicle entering a self-organized 
traffic jam, using basic postulates of the LWR model of traffic flow (2, 3).  

To better understand the concept, consider the following example with reference to Figure 1. 
Given a single-lane highway segment where no passing is allowed, assume that a spontaneous traffic 
jam has formed on one section so that the macroscopic state (or simply macrostate) of traffic flow in 
that region is the jammed state J. Next assume that the desired macrostate is free flow (state A), with 
known flow and density, that currently exists upstream of the traffic jam. Vehicles in this state are 
assumed to travel at the maximum permissible velocity [, i.e., the free-flow velocity (vf)], and cannot 
travel any faster. Now, as a thought experiment, consider the impact that a connected vehicle 
receiving information on downstream traffic conditions could have on the jammed state, for each of 
the four regions outlined in Figure 1.   

In Region 1 of Figure 1, a connected vehicle is sufficiently far from the jammed state so that 
its actions (such as slowing down to avoid the jam) have no positive effect on the jammed state—the 
jam would have dissipated by the time the connected vehicle of Region 1 moves downstream. In 
Region 2, a connected vehicle could slow down to avoid the traffic jam, and this action could  

T 
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FIGURE 1  Thought experiment for understanding the concept of influential subspaces of 

connected vehicles in highway traffic. White arrow indicates direction of travel. 
 
 
result in fewer vehicles entering the jammed state. As a result, Region 2 represents the influential 
subspace. However, as a connected vehicle moves closer to the jammed state J, its influence 
decreases, and in Region 3, the connected vehicle cannot escape the jam by slowing down and its 
actions have no positive influence on the jammed state. Finally, in Region 4, a vehicle may 
decide to exit the jam slower rather than at the free-flow velocity, resulting in a negative 
influence and a persistent jammed state. The outcomes of this thought experiment are validated 
using the LWR model in later sections. 

As connected vehicles technology becomes sufficiently advanced and begins to enter the 
mainstream, it is imperative that the research community helps fully realize its potential and 
efficacy. Prior work on connected vehicles has primarily focused on communication protocols 
and vehicular network topologies. While this research is important, it produces few research 
insights into the potential impact of connected vehicles on traffic flow. Recent work on the 
impact of mixed traffic on self-organized jams (4), effect of individual driving strategies on 
traffic flow (5), cooperative adaptive cruise control (6), and cooperative highway driving (7) 
have all briefly touched on various aspects of how individuals affect macroscopic traffic flow 
dynamics. However, these research efforts do not address the traffic system from the perspective 
of influential subspaces of connected vehicles. The following section presents the framework 
within which the concept of influential subspaces will be introduced. 
 
 
PROBLEM SETUP 
 
The problem is setup as a single-lane highway where no passing is allowed. Representative 
values of traffic flow parameters such as maximum flow (qmax = 1,800 veh/h), jam density (kj = 
110 veh/km), and free-flow velocity (vf  = 90 km/h) are used, assuming a triangular relationship 
between flow and density. The analysis uses standard results of the LWR model by drawing 
time–space diagrams to identify the time taken for the traffic flow to reach a desired macrostate 
(i.e., one in which the traffic system is operating in a free-flow state). 

To keep the analysis simple, only two connected vehicles are considered in the presented 
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work. At time t = 0, the first connected vehicle (CV1) enters the jam and sends an alert signal 
indicating a jammed state to the connected vehicle upstream, which receives the signal 
instantaneously. The reception of the alert signal from CV1 causes an event-triggered control 
action in CV2, which slows down to a predetermined speed vs as selected by the driver or 
dictated by an inbuilt cruise control algorithm. When CV1 exits the traffic jam at time t = tEXIT, it 
sends another alert signal upstream. This alert results in a second event-triggered control action 
in CV2 due to which it speeds up to free-flow velocity vf. Depending on the location of the 
second connected vehicle CV2, its control policy (i.e., the combined event-triggered actions of 
slowing down and speeding up) may or may not have an effect on the macrostate. The next 
section discusses several explanatory cases similar to the ones described in Figure 1 that make 
the problem setup clearer.  
 
 
INFLUENTIAL SUBSPACES OF CONNECTED VEHICLES 
 
For the following example, the traffic system is assumed to be operating at traffic state A given 
by qA = 900 veh/h and kA = 10 veh/km. Without loss of generality, it may be assumed that the 
first connected vehicle CV1 enters the spontaneous traffic jam and sends the alert signal at time  
t = 0. Upon receiving the signal, the second connected vehicle CV2 is assumed to slow down to a 
predetermined speed vs 10 km/h in order to avoid the traffic jam. This results in a slow-moving 
state S given by ݍௌ ≈ 733 veh/h and ݇ௌ = 73 veh/km. 
 
Interpretation of Time–Space Diagrams 
 
With reference to Figures 1 and 2, parts a and b correspond to Region 3 in Figure 1. In these 
cases, the actions of the vehicle CV2 have no positive effect on the time it takes to return to the 
desired macrostate A. In both cases, the jammed state J dissipates at time	ݐ௃, independent of the 
presence of connected vehicles in the traffic stream. Figure 2c corresponds to Region 2 in Figure 
1, where the actions of vehicle CV2 cause the traffic system to reach the desired macrostate A 
faster. Specifically, the slow-moving state S vanishes at time	ݐௌ, whereas the jammed state 
vanishes at time tj < ts. Thus, there is a net reduction in the time taken for the traffic flow to 
return to the desired macrostate A. Finally, Figure 2d corresponds to Region 1 of Figure 1, where 
the actions of vehicle CV2 have no positive impact on the time taken to return to macrostate A, 
since the jammed state J dissipates of its own accord.  
 
Analytical Solution of Influential Subspaces 
 
Mathematically, the time taken for the traffic system to reach the desired macrostate A is given 
by 
 

tA = max{tJ, tS} (1)
 
where tJ denotes the time taken for the jammed state J to dissipate, and tS represents the time taken 
for the slow-moving traffic state S to vanish. In other words, the time taken to reach the desired 
macrostate A is governed by which of state J or S persists for a longer period of time. The 
mathematical expressions for tJ and tS can be calculated from geometric considerations of Figure 2.  
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FIGURE 2  Time–space diagram when distance between the connected vehicles CV1 and 
CV2 is (a) 200 m, (b) 350 m, (c) 700 m, and (d) 5,000 m, for vs = 10 km/h. In cases (a) and 

(b), the actions of CV2 have no positive impact on time taken for traffic to return to 
macrostate A. In case (c), the slowing down by CV2 causes a more rapid return to 

macrostate A (e.g., jam-free traffic flow); CV2 is in its influential subspace. In case (d), the 
vehicle CV2 has no positive impact on the macrostate; the jam has already dissipated. A 

dashed line indicates jam evolution without connected vehicles. Dash-dotted lines are 
vehicle trajectories of connected vehicles. 

 
 
Expression for Dissipation Time tJ of Jammed State J 
 
Specifically, first consider the evaluation of tJ with reference to Figure 3 (or Figure 2c). In this 
scenario, the time taken for the jammed state J to dissipate is a function of the original queue 
length xq at time t = 0, the distance between the connected vehicles xd at time t = 0, and the traffic 
state A that exists upstream of the jammed state J. The expression for tJ in Figure 3 is given by 
Equation 2 as follows: 
௃ݐ  = ௤ݔ + ݓ௡ݔ  (2)
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where xn is the length of the roadway occupied by new vehicles entering the jammed state J after 
time t = 0, and w is the backward wave speed obtained from the triangular fundamental diagram. 
The quantity xn is determined by assuming that the number of vehicles is conserved on the 
roadway. Specifically, under this assumption, the number of vehicles between the two connected 
vehicles CV1 and CV2 can be calculated to be 
 

Number of vehicles between CV1 and CV2 = ௗ݇஺ݔ = ௡ݔ ௃݇ ⇒ ௡ݔ = ௗ݇஺௃݇ݔ  (3)

 
where xd is the distance between the connected vehicles CV1 and CV2, and kA and kj represent 
the densities of traffic flow in states A and J, respectively. Consequently, the expression in 
Equation 2 can be expanded to yield 
௃ݐ  = ௤ݔ + /ௗ݇஺ݔ ௃݇	ݓ  (4)

 
However, this expression is correct only for a specific region of the roadway. The analytical 
expressions demarcating this specific region can be found by a careful analysis of Figure 3. Note 
that the expression for tJ in Equation 4 becomes valid in situations similar to Figure 3, when the 
second connected vehicle just manages to avoid the jammed state J, and stays valid till situations 
similar to Figure 2d, when the last vehicle ahead of the vehicle CV2 just manages to avoid the  
 
 

 
FIGURE 3  Evaluation of tJ using space–time diagram. Only relevant  

quantities needed for deriving analytical solution are labeled. 
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jammed state J. To evaluate the lower spatial limit (i.e., in the case when the second connected 
vehicle just manages to avoid the jammed state J), Equation 4 becomes valid if 
ௗݔ  − ௡ݔ ≥ ா௑ூ்ݐ௦ݒ + ௃ݐ)௙ݒ − ா௑ூ்) (5)ݐ
 
where vs represents the speed that the second connected vehicle CV2 slows down to, vf represents 
the free-flow velocity, and tEXIT (= xq/w) represents the time at which the first connected vehicle 
CV1 exits the jammed state J. The expression in Equation 5 may be simplified to be written as: 
ௗݔ  − ௡ݔ ≥ ௦ݒ ݓ௤ݔ 	+ ௙ݒ ቆݔ௤ + /ௗ݇஺ݔ ௃݇ݓ − ቇ (6)ݓ௤ݔ

or ݔௗ − ௡ݔ ≥ ௦ݒ ݓ௤ݔ 	+ ݓ௙ݒ ቆݔௗ݇஺௃݇ ቇ  (7)

or ݔௗ − ௗݔ ݇஺݇௃ − ௗݔ ቆݒ௙݇஺ݓ ௃݇ 	ቇ ≥ ௦ݒ ݓ௤ݔ  (8)

or ݔௗ ≥ ቊ1 − ቀ1 + ቁ݇஺݇௃ቋିଵݓ௙ݒ ቀݒ௦ ቁ (9)ݓ௤ݔ

 
The upper spatial limit for the validity of Equation 4 is evaluated in the scenario when the 

second connected vehicle CV2 is sufficiently upstream so that last vehicle just ahead of CV2 
reaches the jammed state at time t0, (i.e., when the jam is just about to dissipate of its own 
accord). Thus, the upper spatial limit is given simply by 

 

௤ݔ  + ௡ݔ ≤  ଴ݐݓ
 (10)

or 
݇஺݇௃ ௗݔ ≤ ଴ݐݓ −  ௤ݔ

 
(11)

or ݔௗ ≤ ௃݇݇஺ ൫ݐݓ଴ −  ௤൯ݔ
 

(12)

 
On the other hand, in Figure 2 parts a, b, and d, the expression for tJ is obtained quite 

simply from the original jam dissipation time ݐ଴ evaluated in the absence of any connected 
vehicles. The jam evolution trajectory is indicated using dashed lines in Figures 2 and 3. In these 
scenarios, the jam dissipation time tJ = t0 and is found as follows: 

 
Distance traveled = ଴ݐݓ	 = ௤ݔ + ଴ݐ஺௃ݒ ⇒ ଴ݐ = ݓ௤ݔ − ஺௃ (13)ݒ
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where vAJ represents the interface speed between traffic states A and J. Consequently, the 
expression for time taken for dissipation of the jammed state J is given by combining the 
expressions in Equations 4, 9, 12, and 13 to yield 
 

௃ݐ = ۔ۖەۖ
ݓ1ۓ ቊݔ௤ + ௗݔ ቆ݇஺݇௃ቇቋ , if	 ቊ1 − ቀ1 + ቁݓ௙ݒ ݇஺݇௃ቋିଵ ቀݒ௦ ቁݓ௤ݔ ≤ ௗݔ ≤ ௃݇݇஺ ൫ݐݓ଴ − ݓ௤ݔ௤൯ݔ − ஺௃ݒ , else

	 (14)

 
Expression for Dissipation Time tS of Slow-Moving State S 
 
Similar geometric arguments can be used to determine the expression for the time taken for the 
slow-moving traffic state S to dissipate. Specifically, consider Figure 4 (or Figure 2a) in order to 
ascertain the analytical expressions. 

If the second connected vehicle CV2 is too close to the first one, as depicted in Figure 4 
(or Figure 2a), it enters the jam and the dissipation time for state S is governed by this distance. 
In alternative scenarios, when the vehicle CV2 is further upstream, the dissipation time is 
constant, as evinced by Figure 2 parts b, c, and d. In Figure 4, the dissipation time of the slow-
moving state can be evaluated by geometric calculations as follows: 
 

Distance ுூ்ݐ௦ݒ	= − ௌݐ)ݓ − (ுூ்ݐ = ௌݐ஺ௌݒ ⟹ ௌݐ = ൬ ௌݒ + ஺ௌݒݓ + ൰ݓ ுூ் (15)ݐ

 
Where tHIT is the time at which the vehicle CV2 first enters the jammed state J, and vAS  is the 
interface speed between the states A and S. The expression for tHIT can be found using geometric 
considerations to be 
ுூ்ݐ  = ௗݔ − ௌݒ௡ݔ = ௌݒௗݔ ቆ1 − ݇஺݇௃ቇ (16)

 
so that the dissipation time of state S when CV2 is close to the jam is given by 
ௌݐ  = ൬ ௌݒ + ஺ௌݒݓ + ൰ቆ1ݓ − ݇஺݇௃ቇ ௌݒௗݔ  (17)

 
On the other hand, in Figure 2 parts b, c, and d, where the vehicle CV2 is further 

upstream, the dissipation time for the state S can be calculated similarly as follows: 
 

Distance ா௑ூ்ݐ௦ݒ	= − ௌݐ)ݓ − (ா௑ூ்ݐ = ௌݐ஺ௌݒ ⟹ ௌݐ = ൬ ௌݒ + ஺ௌݒݓ + ൰ݓ ா௑ூ் (18)ݐ
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FIGURE 4  Evaluation of tS using space–time diagram. Only relevant  

quantities needed for deriving analytical solution are labeled. 
 
 
where tEXIT is the time at which the first connected vehicle exits the jammed state J, and which 
can be found using geometric considerations to be 
ா௑ூ்ݐ  = ݓ௤ݔ  (19)

 
so that the dissipation time of state S when CV2 is close to the jam is given by 
ௌݐ  = ൬ ௌݒ + ஺ௌݒݓ + ݓ௤ݔ൰ݓ  (20)

 
Consequently, by observing the nature of ݐௌ across the various parts of Figure 2, it is 

realized that the expression for the dissipation time for the slow-moving state S is 
ௌݐ  = min ቊ൬ ௌݒ + ஺ௌݒݓ + ൰ቆ1ݓ − ݇஺݇௃ቇ ௌݒௗݔ , ൬ ௌݒ + ஺ௌݒݓ + ቋ (21)ݓ௤ݔ൰ݓ

 
To recapitulate the major result of this work, the time taken for the traffic system to reach the 
desired macrostate A, is given by 
஺ݐ  = max	{ݐ௃, ௌ} (22)ݐ
 
where the expressions for tJ and tS are provided in Equations 14 and 21, respectively. 
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RESULTS 
 
An influential subspace is defined for a specific agent or vehicle in a multiagent system. The 
influential subspace is defined by the ability of the specific agent or vehicle to drive the system 
to a desired macrostate (A) within a predetermined time (tDES). In this example, the time taken for 
the traffic system to reach the macrostate A is calculated for varying distances between the 
connected vehicles CV1 and CV2. If the goal is to reach the macrostate A within, say tDES =160 s, 
then the influential subspace for CV2 is situated between 0.5 and 4.3 km from the vehicle CV1, 
as indicated in Figure 5. On the other hand, if the goal is to reach the macrostate A within, say 
tDES = 100 s, then it can be said that the influential subspace is empty, or it does not exist. 

Knowledge of the influential subspace is a critical element for the efficient 
implementation of connected vehicles technology. Implementation of connected vehicles 
technology will have to deal with, among other things, issues such as bandwidth limitations and 
packet transmission ranges. Consequently, knowledge of the influential subspace can help ensure 
that bandwidth is not wasted by transmitting packets to vehicles that are not in their influential 
subspaces. Additionally, the same knowledge can help optimally route packets to vehicles within 
the influential subspaces and reduce power requirements for transmission equipment. Further, 
the concept of influential subspaces has significant potential applications in other areas such as 
cooperative adaptive cruise control, where formation, merging, and splitting of platoons can 
benefit from the use of this novel concept. 
 
 

 
FIGURE 5  Influential subspace of the second connected vehicle, given the desired 

macrostate A and pre-specified time tDES. 
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he stochastic nature of highway capacity has drawn increasing attention in recent studies, 
where the capacity distributions are usually estimated for whole freeway sections using 

aggregated data from multiple lanes. However, those cross section–based capacity models cannot 
be used to assess the risk of semicongested states observed, in which traffic breaks down on 
certain lanes while still flowing uninterruptedly on others. This study attempts to investigate the 
freeway capacity heterogeneity among individual lanes using robust statistical estimation 
methods. Four diverge sections of different interstate highways in California were selected for 
the study. Optimal threshold speed was identified for each lane by maximizing the average 
reduction of traffic efficiency, which was defined as the product of mean speed and volume. 
Capacity observations were obtained for individual lanes, and censoring was indicated, both 
based on the optimal threshold speeds. Log-rank and Wilcoxon tests were conducted, and the 
results confirmed the heterogeneity of capacity distributions among lanes of the same freeway 
section and showed the necessity of estimating capacity distributions for individual lanes 
separately. A Bayesian hierarchical Weibull model based on censored capacity data was used to 
estimate these lane-specific capacity distributions. The model parameters are allowed to vary 
across freeway sections to account for unobserved heterogeneity and accordingly to improve the 
accuracy of estimations. In addition, censored data issues are adequately addressed in the 
proposed model. It is found that breakdown probability would be overestimated if censoring is 
ignored. The proposed model can provide useful insights when diagnosing bottlenecks with 
semicongested cases, which may be neglected by the cross section–based models. 
 
 
INTRODUCTION 
 
Traditional highway capacity is defined as the maximum traffic flow rate that traverses a section 
under prevailing roadway, traffic, and control conditions (1). However, the use of deterministic 
traffic capacity is an incomplete representation of real-life conditions. The concept of stochastic 
highway capacity has been recently discussed in several previous studies (2–4), where the 
capacity is defined as the traffic volume below which traffic still flows and above which the flow 
breaks down. The capacity in this sense can be regarded as a variable, since the flow rate that 
causes traffic breakdown is related to a variety of factors such as traffic composition, driving 
behavior, and environmental characteristics (5). The study by Persaud et al. (6) on the 
probabilistic breakdown phenomenon in freeway traffic convincingly showed that traffic 
capacity is stochastic in nature.  
 

T 
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Regarding the stochastic feature of freeway capacity, it is important to use statistically 
robust methods to estimate its distribution based on the observed data. Brilon et al. (4) applied a 
nonparametric Kaplan-Meier estimator to obtain breakdown probability based on an analogy 
with the statistics of survival analysis. Censored observations on capacity were used in their 
studies. However, a complete capacity distribution function couldn’t be obtained using the 
Kaplan-Meier due to the limitation of data points observed. In the following study by Brilon et 
al. (7), a parametric method was used to estimate the whole capacity distribution function, where 
the Weibull model appeared to be the best fit. Recently, Ozguven and Ozbay (8) proposed a 
nonparametric Bayesian survival analysis approach for the estimation of the freeway capacity. 
Their results indicated that Bayesian estimator could provide robust estimation outputs in the 
presence of insufficient and unreliable data.  

Most of the previous studies (4, 7, 8) treated a multilane section as a single analysis unit, 
and aggregated data of all the lanes were used to identify breakdowns and estimate cross 
section–based capacity distributions. However, it should be noted that for multilane freeways, 
the traffic compositions and operational characteristics vary across different lanes. The vehicles 
with higher speed and better acceleration are more likely to travel on the median lanes. 
Moreover, the traffic flows of the shoulder lanes have a larger chance of being disturbed by 
merging and diverging vehicles on- and off-ramps. On the other hand, different drivers choose to 
travel on different lanes according to their destinations (9). In the study by Lawson et al. (10), 
higher occupancies were observed on the shoulder lanes, which were upstream of a congested 
off-ramp compared with the median lanes. Duret et al. (11) affirmed that traffic demand was not 
assigned evenly among lanes on a freeway section. Therefore, breakdown occurrence can be 
different even for the lanes of the same freeway section. An empirical study by Dehman and 
Drakopoulos (12) showed the significant difference of breakdown phenomena among lanes. 
Munoz and Daganzo (9) also noted a semi-congested state in which some lanes are congested, 
and other lanes of the same freeway section are not. The application of capacity models at the 
cross-section level will thus ignore the high breakdown probability of certain lanes and cannot 
accurately assess the risk of semicongestions. Ma et al. (13) proposed a lane-based method to 
identify breakdown for diverge sections, but capacity distributions for specific lanes were not 
estimated. In addition, censored data and unobserved heterogeneity across different freeway 
sections were not considered in their study.   

This study attempts to investigate the capacity heterogeneity among individual lanes of 
diverge sections using robust statistical methods. Semicongestion is a common phenomenon in 
diverge sections, where the traffic is likely to breakdown on the shoulder lanes connected to the 
off-ramps, even though the traffic on the other lanes is still flowing. This paper starts with data 
preparation, where capacity observations and censored data are collected for specific lanes based 
on optimal threshold speed identified. Hypothesis tests for the heterogeneity of capacity 
distributions among lanes are conducted to confirm the necessity of developing capacity models 
at the individual lane level. After that, a novel hierarchical Weibull model is proposed in the 
Bayesian framework to estimate lane-specific capacity distributions. The parameters of the 
model are allowed to vary across various sections to account for unobserved heterogeneity. In 
addition, censored data issues described in Brilon et al. (4) and Ozguven and Ozbay (8) are 
explicitly addressed in the proposed model.   
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DATA PREPARATION 
 
Traffic data used in this study were obtained from the Performance Measurement System 
(PeMS) of the California Department of Transportation. Four diverge sections that have vehicle 
detector stations (VDS) right upstream of the off-ramps were selected. These sections have the 
same lane configuration as shown in Figure 1, but they are located in different interstate 
highways, and thus their traffic and environmental features are different. The basic information 
of the diverge sections selected is presented in Table 1. Traffic speed and volume data of the 
selected sections from January 1 to January 31 in 2014 were extracted for each individual lane.  
 
Capacity Observations and Censoring 
 
A traffic breakdown is usually followed by a significant amount of reduction in speed. A 
common method [first proposed in Brilon et al. (4) and later applied in Brilon et al. (7), Ozguven 
and Ozbay (8), and Ma et al. (13)] to identify traffic breakdown points based on mean speed was 
used in this study. The mean speed (mph) and volume (veh/h) were calculated for each lane at 5-
min intervals. The traffic volume of interval  was taken as an observation of capacity if the 
mean speed starts to fall below threshold speed in the next interval i + 1.  

Censoring refers to a form of imperfect but useful observation of a variable. Censored 
data are, however, valuable but require special consideration to avoid biased estimation results 
(14, 15). Ignoring censored data could lead to biased estimates of capacity distributions, 
especially for cases with inadequate breakdown points identified. The identification method of 
censored data adopted here is consistent with the previous studies such as Brilon et al. (4) and 
Ozguven and Ozbay (8). If mean speed is higher than the threshold speed in the current interval 

 and the following interval i + 1, the volume of the interval i was taken as a right-censored 
observation. A right-censored observation provides information that the actual capacity is 
ensured to be greater than the observed one. As illustrated in Figure 2, the volume of the fourth 
interval is taken as an observation of capacity, because the speed starts to be lower than the 
threshold speed in the following intervals. The volumes in the first three intervals are used as 
censored observations, since these observed volumes are not high enough to cause breakdowns. 
Traffic is in the congested state in the last three intervals. As suggested by Brilon et al. (4), the 
volumes of these intervals don’t provide any information for the capacity distribution and thus 
are excluded from the model development.  

 
 

 
FIGURE 1  Lane configuration and sensor detector  

location of the four diverge sections selected. 
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TABLE 1  Overview of the Selected Diverge Sections 
 VDS ID Highway Post Mile Direction County 

Section 1 715918 I-5 122.8 Northbound Los Angeles 
Section 2 716448 I-105 12.1 Westbound Los Angeles 
Section 3 819634 I-15 91.89 Northbound Riverside 
Section 4 809070 I-210 61.14 Eastbound San Bernardino 

 
 

 
FIGURE 2  Capacity observation and censored data during a breakdown. 

 
 
Optimal Threshold Speed 
 
In previous research (4, 7, 8), a standard threshold speed of 70 km/h (about 43.75 mph) was 
used. However, it is undesirable to use the same threshold speed for different lanes, because the 
threshold speed is likely to be associated with geometric design, traffic composition, and 
environmental features. Ma et al. (13) introduced a criterion that can identify the optimal 
threshold speed by maximizing mean speed reduction and used it to determine threshold speeds 
for specific lanes. Noting that a traffic breakdown is always accompanied by a significant 
reduction not only in the traffic speed but also in the traffic volume, the authors propose to use 
the product of speed and volume to identify optimal threshold speed in this study.  

Let vi and qi denote the speed and volume at interval i. A measure called traffic 
efficiency, Ei, can be calculated as the product of vi and qi, namely Ei = vi × qi. The concept of 
traffic efficiency was first introduced by Brilon (16). For a certain threshold speed VThreshold, if vi 
is greater than VThreshold and the speed in the next interval vi+1 is lower than VThreshold, a breakdown 
is identified that is accompanied by a reduction of efficiency ΔEi = vi × qi – vi+1 × qi+1. For all the 

breakdown points identified using VThreshold, the average of efficiency reduction  can be 

computed. After obtaining  using a variety of VThreshold, the optimal threshold speed  

can be identified as the one that leads to the maximum .  

The aforementioned optimization process is used to compute the optimal threshold 

iEΔ

iEΔ *
ThresholdV

iEΔ
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speeds for specific lanes and cross sections. As presented in Table 2, the average optimal 
threshold speed for cross sections is 44.00 mph, which is quite close to the standard threshold 
speed of 43.75 mph. The data of the median lane in Section 4 are used to demonstrate the 
breakdown points identified by the standard threshold speed (43.75 mph) and the optimal 
threshold speed (52.00 mph), as shown in Figure 3. The results show that it is more appropriate 
to use the optimal threshold speed to determine breakdown occurrence since the average of 
capacity observations identified by the optimal threshold speed (1,999 veh/h/lane) is higher than 
that obtained by the standard threshold speed (1,926 veh/h/lane). The optimal threshold speeds 
listed in Table 2 were used to extract the capacity observations and indicate censoring for 
individual lanes and cross sections.  

 
 

TABLE 2  Optimal Threshold Speeds for Specific Lanes and Cross Sections (mile/h) 
 Median Lane Center Lane Shoulder Lane Cross Section 
Section 1 41  35 33 39 
Section 2 46 40 37 41 
Section 3 49 43 40 48 
Section 4 52 47 40 48 
Average 47.00 41.25 38.00 44.00 

 
 

 
FIGURE 3  Breakdown points identified by standard and optimal threshold speeds 

(using the median lane of Section 4 for demonstration). 
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HYPOTHESIS TESTS FOR CHECKING CAPACITY HETEROGENEITY  
 
Hypothesis tests for heterogeneity of capacity distributions across lanes were performed using 
censored capacity data. Let denote the breakdown hazard rate at volume q for the kth lane 

(k = 1,2,…,K). To compare the capacity distributions among different lanes, the null and 
alternative hypotheses are set as follows: 
 
H0: h1(q) = h2(q) = … = hK(q) for all q. 
 
HA:  for at least one pair of k1 and k2, where . 

 
The volume observations from different lanes were pooled and sorted in ascending order, 

as follows q1 ≤ q2 ≤ …≤qD. At volume qi, the authors observed dik breakdowns from the kth lane 
out of Yik individuals at risk of breakdown, where i = 1,2…, D. The Nelson-Aalen method (17) 
provides a nonparametric estimator of the hazard rate using censored data. Based on the Nelson-
Aalen method, the quantity dik/Yik gives an estimate of breakdown hazard rate at volume qi for 
the kth lane. It should be noted that the censored observations are supposed to be counted in 
obtaining Yik. Similarly, under the null hypothesis, the pooled breakdown hazard rate at volume 

qi for the cross section is di/Yi, where  and . The test of H0 is based on the 

weighted difference of estimated hazard rates (18):  
 

  (1) 

 
Where Wk(qi) is the weight function for the kth lane at volume qi. In practice, since the 
commonly used weight functions have the form Wk(qi) = YikW(qi), then the following exists: 
 

  (2) 

 
Greater Zk indicates that the breakdown hazard rate of the kth lane tends to be more 

different from the expected one under the null hypothesis.  
The variance of Zk and the covariance of  and  are determined by (18) 

 

  (3) 
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Let  represents the estimated (K – 1) × (K – 1) variance–covariance matrix of Zk, where 
k = 1,2…,K – 1. The overall test statistic for the hypothesis is then defined as follows (18): 
 

  (5) 

 
This overall test statistic is treated as a chi-square distribution with degree of freedom equal to K 
– 1. To calculate the χ2, a variety of weight functions are proposed in the literature. If the W(qi) = 
1 is selected, it leads to the log-rank test (19), where greater weights are assigned to larger 
observations. If the weight function is set to be W(qi) = Yi, it results in the generalized Wilcoxon 
test (20), where smaller observations are heavily weighted.  

Both the log-rank and Wilcoxon tests were conducted to assess the across-lane 
heterogeneity of capacity distributions for each section separately, based on censored capacity 
data. As presented in Table 3, p-values from both the log-rank and the Wilcoxon tests are less 
than 0.0001, so the null hypothesis H0 should be rejected and the alternative hypothesis HA are 
accepted. The results indicate significant heterogeneity of capacity distributions among different 
lanes. To improve the accuracy of assessing breakdown risk, it is critical to develop lane-specific 
capacity models, which are specified in the next section.  
 
 
METHODOLOGY OF CAPACITY ESTIMATION  
 
In this section, a full Bayesian approach is proposed to estimate the lane-specific capacity 
distributions. A Bayesian approach provides the ability to deal with insufficient data issues, to 
flexibly select parameter distributions, and to accommodate complicated model structures (14, 
21). In Bayesian models, prior distributions are combined with a likelihood function obtained 
from the observed data to estimate posterior distributions. The Bayesian estimation procedure, 
prior distributions, and assessment of Bayesian models are also introduced in this section.  
 
Bayesian Hierarchical Weibull Model 
 
Let q = (q1, q2, …, qn) denote the traffic volume data. According to the previous research (7, 13), 
q can be assumed to follow a Weibull distribution w(α, λ). The probability density function and 
cumulative density function of q are given by 
 
 

TABLE 3  Results of Log-Rank and Wilcoxon Tests 
 Test Chi-Square Degree of Freedom P-Value Accepted Hypothesis 

Section 1 
Log-rank 5180 2 <0.0001 Reject H0, accept HA 
Wilcoxon 2616 2 <0.0001 Reject H0, accept HA 

Section 2 
Log-rank 268 2 <0.0001 Reject H0, accept HA 
Wilcoxon 71 2 <0.0001 Reject H0, accept HA 

Section 3 
Log-rank 3743 2 <0.0001 Reject H0, accept HA 
Wilcoxon 1309 2 <0.0001 Reject H0, accept HA 

Section 4 
Log-rank 45 2 <0.0001 Reject H0, accept HA 
Wilcoxon 52 2 <0.0001 Reject H0, accept HA 

  

Σ
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  (6) 
 
and 
 

  (7) 

 
The survival function S(q│α, λ) gives the probability that traffic keeps flowing until it 

reaches volume q. The S(q│α, λ) can be derived from F(q│α, λ) as follows: 
 

  (8) 
 
To quantify the instantaneous risk that traffic breaks down at volume , a hazard 

function H(q│α, λ) is introduced. H(q│α, λ) is defined as the conditional probability of 
breakdown: 

 

  (9) 

 
According to Equation 9, if α > 1, then the breakdown hazard increases as volume q increases; if 
α > 1, then the breakdown hazard is negatively associated with volume q; if α = 1, then the 
breakdown hazard is not related to volume q. 

Let v = (v1, v2, …, vn)ʹ denote the censoring indicators, where vi = 1 indicates qi is a 
breakdown volume, and vi = 0 indicates qi is a censored observation. A censored observation 
expresses the information that the actual capacity is ensured to be greater than the observed 
volume. Including the censored observations, the likelihood function of (α, λ) can be written as 
 

  (10) 

 

where . For the Bayesian Weibull model, it is usually assumed that the parameter 

follows a gamma prior distribution  and λ follows a normal distribution (14). 

The joint posterior distribution of (α, λ) is given by (14): 
 

  (11) 
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To estimate lane-specific capacity distributions, different sets of Weibull parameters 
should be assigned to different lanes. In addition, the data structure used in this study can be 
viewed as a two-level hierarchy with Level 1 being the lane level, and Level 2 being the freeway 
section level. Accordingly, a hierarchical model structure is proposed where parameters are 
allowed to vary to account for the unobserved heterogeneity across sections (22). Weibull 
parameters (αkj, λkj) for the kth lane at the jth section can be specified as follows: 
 

  (12) 

 
and 
 

  (13) 

 
In Equation 6, αkj and λkj are taken as random parameters that can vary across the sections. 

Parameters rk, mk, μk, and  are specific for each lane. For the kth lane, the mean and variance 

of αkj are rk/mk and ; the mean and variance of λkj are μkand .   

 
Bayesian Estimation Procedure and Priors 
 
Bayesian models are usually estimated via a Markov Chain Monte Carlo (MCMC) algorithm 
(23). The primary technique of MCMC is Gibbs sampling (24), each iteration of which draws a 
new value for each unobserved stochastic node from its full conditional distribution given the 
current values of all the other quantities in the model (25). The WinBUGS statistical software 
package was used to provide a computing approach for the calibration of Bayesian models using 
Gibbs sampling (26).  

In the absence of credible prior information for model parameters, uninformative priors 
were used to express vague and general information about parameters. The priors of rk and mk 
were assumed to be the lognormal distribution (0,105); μk was assumed to follow the normal 
distribution (0,105), and  was assumed with the Inverse-Gamma distribution (10-3, 10-3). 

Considering convergence and time of updating, two MCMC chains of 30,000 iterations were run, 
and the first 10,000 samples were discarded as burn-in. The Brooks-Gelman-Rubin (BGR) 
diagnostic proposed by Brooks and Gelman (27) was used to assess the convergence of multiple 
chains. Convergence was assumed to occur when the BGR statistic is less than 1.2.  
 
Deviance Information Criterion 
 
The deviance information criterion (DIC) offers a Bayesian measure of model fitting and 
complexity (26). Specifically, DIC is calculated as follows: 
 

  (14) 

 
where  denotes the posterior mean of Bayesian deviance of parameter and can be used to 

indicate how well the model fits the data. pD defines the effective number of parameters and is 
taken as a measure of model complexity. Models with smaller DIC are preferred.  
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RESULTS AND DISCUSSION 
 
The proposed Bayesian hierarchical Weibull model structure was used to estimate lane-specific 
capacity distributions. To conduct comparisons, the authors also developed standard Weibull 
models where parameters α and λ were fixed for different freeway sections. In addition, to study 
the impacts of censoring on estimates, two datasets were prepared for modeling: uncensored 
dataset, where the censored observations on capacity were excluded; and censored dataset, which 
included censored observations. In view of the long convergence time to estimate Bayesian 
models with large amounts of data, the authors sampled the censored observations of the second 
dataset for the estimation process. The hierarchical Weibull and standard Weibull models were 
developed based on these two datasets, respectively. Bayesian posterior estimates of parameters 
and DICs of those models are reported in. sd(λ) and sd(α) represent the standard deviations of 
parameter distributions across sections in the hierarchical models. It should be noted that sd(λ) 
and sd(α) are unavailable for standard Weibull models in which parameters are fixed for 
different sections. The 95% Bayesian Credible Interval (95% BCI) was used to examine the 
significance of estimates. Estimates can be regarded as significant at the 95% level if the BCIs 
do not cover 0 and vice versa (28). Parameter estimates are all found to be significant, as their 
95% BICs do not cover 0.  

 
Benefits of Hierarchical Structure and Explicitly Addressing Censoring 
 
As shown in Table 4, for the uncensored dataset,  of the hierarchical Weibull model (9,610) 

is 522 less than that of the standard Weibull model (10,132). Similarly, based on the censored 
dataset, the hierarchical Weibull model has a lower  by 423 in comparison with the standard 

Weibull model. These findings indicate that the hierarchical Weibull models outperform the 
standard Weibull models in term of the goodness of fit. In another aspect, higher pD values are 
observed in the hierarchical Weibull models. This reflects the increasing complexity as a result 
of including random parameters. Overall, regarding the lower DICs, the hierarchical Weibull 
models show substantial improvement, although they are penalized by higher pD values. Note 
that it is meaningless to compare models using DIC, unless they are developed based on the 
same dataset. So it is erroneous to conclude that the hierarchical model developed based on the 
uncensored dataset is superior to the one based on censored dataset, although the former has a 
smaller DIC. The hierarchical models allow parameters α and λto vary across sections and thus 
have the flexibility to account for the unobserved heterogeneity. All the estimates of sd(λ) and 
sd(α) are found to be significantly different from 0, and this provides strong evidence for the 
presence of heterogeneity among sections. By capturing the unobserved heterogeneity, the 
effects of parameters can be adjusted. As a result the estimates of α and λ of hierarchical Weibull 
models differ significantly from those of the standard Weibull models. On the other hand, for 
each section, the same set of parameters is used to duplicate the capacity distributions in the 
hierarchical Weibull models, and in this sense, the within-section correlation of capacity 
observations can be addressed simultaneously.  

Using the estimated parameters and Weibull cumulative density function shown in 
Equation 7, the 25th, 50th, and 75th percentiles of capacity distributions were calculated as 
presented in Table 5. Based on the hierarchical Weibull models (uncensored or censored 
dataset), the 25th, 50th, and 75th percentiles of the median lanes are greater than those of the 
center lanes, respectively. This indicates that greater flow rate is needed for the median lanes

( )D θ

( )D θ
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TABLE 4  Posterior Summary of Bayesian Models 
 Standard Weibull Hierarchical Weibull  

Uncensored Dataset Censored Dataset Uncensored Dataset Censored Dataset 
Mean (95% BCI) Mean (95% BCI) Mean (95% BCI) Mean (95% BCI) 

Median Lane 

λ 
–60.05 

(–66.08, –55.64) 
–65.89  

(–71.46, –59.76) 
–76.48  

(–83.25, –69.13) 
–70.98  

(–76.11, –63.67) 
sd(λ) — — 0.38 (0.02, 1.59) 0.56 (0.02, 2.65) 
α 7.90 (7.33, 8.69) 8.64 (7.83, 9.36) 10.12 (9.09, 11.02) 9.33 (8.28, 10.29) 
sd(α) — — 0.13 (0.07, 0.27) 0.12 (0.04, 0.38) 
Center Lane 

λ 
–60.09  

(–64.92, –55.05) 
–64.7  

(–70.47, –58.37) 
–73.91  

(–81.26, –67.48) 
–72.73  

(–75.79, –67.29) 
sd(λ) — — 0.59 (0.02, 3.2) 0.40 (0.02, 1.64) 
α 8.04 (7.37, 8.68) 8.61 (7.76, 9.37) 10.00 (8.74, 11.06) 9.75 (8.94, 10.24) 
sd(α) — — 0.17 (0.08, 0.45) 0.11 (0.05, 0.21) 
Shoulder Lane 

λ 
–44.68  

(–49.15, –40.57) 
–50.45  

(–55.33, –45.4) 
–85.6  

(–93.42, –76.22) 
–75.16 

(–80.96, –67.09) 
sd(λ) — — 1.29 (0.02, 5.44) 1.36 (0.02, 5.72) 
α 5.96 (5.41, 6.55) 6.69 (6.02, 7.33) 11.65 (10.3, 12.7) 10.15 (9.13, 10.96) 
sd(α) — — 0.32 (0.11, 0.62) 00.27 (0.08, 0.54) 
Assessment 

 10,132 10,543 9,610 10,120 
pD 6 6 16 17 
DIC 10,138 10,549 9,626 10,137 

 
 
than for the center lanes to result in the same breakdown probability. Similarly, as anticipated, 
the center lanes have higher percentiles compared with the shoulder lanes. However, some 
inconsistent results (marked with an asterisk) are observed when capacity distributions are 
estimated using the standard Weibull models. The 50th and 75th percentiles of the shoulder lanes 
are found to be even greater than those of the center lanes, respectively. This result further 
confirms the advantage of the hierarchical Weibull models over the standard Weibull models in 
adjusting the parameter estimates. In addition, as shown in Table 5, the models developed based 
on censored dataset yield greater percentiles than those excluding censored observations. This 
finding implies that breakdown probability would be overestimated if censoring is ignored. To 
get more reliable statistic inferences, the censored observations have to be treated properly. 
 
Lane-Specific Capacity Distributions 
 
In view of its superiority, the hierarchical Weibull model developed based on censored dataset 
was selected to estimate the capacity distributions of specific lanes. As a comparison, the 
hierarchical Weibull model was also used to estimate the capacity distribution for cross sections 
(α = 10.80, λ = –80.84) based on aggregated volume and speed data of multiple lanes. 
  

( )D θ
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TABLE 5  The 25th, 50th, and 75th Percentiles of the Estimated  
Capacity Distributions (veh/h/lane) 

Standard 
Weibull 

Uncensored Dataset Censored Dataset 
Median  

Lane 
Center  
Lane 

Shoulder  
Lane 

Median  
Lane 

Center  
Lane 

Shoulder  
Lane 

25th 
percentile 1,702 1,506 1,469 1,783 1,591 1,572 
50th 
percentile 1,902 1,680 1,702a 1,974 1,762 1,793a 
75th 
percentile 2,077 1,832 1,913a 2,139 1,910 1,989a 

Hierarchical 
Weibull 

Uncensored Dataset Censored Dataset 
Median  

Lane 
Center  
Lane 

Shoulder  
Lane 

Median  
Lane 

Center  
Lane 

Shoulder  
Lane 

25th 
percentile 1,692 1,434 1,395 1,759 1,526 1,454 
50th 
percentile 1,846 1,566 1,504 1,932 1,670 1,585 
75th 
percentile 1,977 1,678 1,596 2,082 1,794 1,697 
a Inconsistent results. 
 
 

Substituting the estimates of α and λ into the Weibull cumulative density function given in 
Equation 7 and the Weibull hazard function shown in Equation 9, breakdown probability and 
hazard curves for specific lanes and cross sections are plotted. As shown in Figure 4, the 
shoulder lanes have the highest expected breakdown probability and hazard, while the median 
lanes have the lowest ones, given the same traffic flow rate. According to Figure 4a, when the 
traffic demand is approaching 2,000 veh/h/lane, the shoulder and center lanes have extremely 
high probability to break down, whereas for the median lanes the breakdown probability is 
approximately 0.6. In Figure 4b, all the hazard curves are increasing monotonically, which 
means that traffic is more likely to break down as the volume increases.  

The breakdown probability and hazard curves of the cross sections are close to those of 
the center lanes but are significantly different from those of the median and shoulder lanes. It is 
found that using the cross section–based capacity models for individual lanes would 
underestimate the breakdown probability and hazard for the shoulder lanes and conversely 
overestimate them for the median lanes. The lane-based capacity models can be used to estimate 
the breakdown probability for specific lanes and thus are helpful in improving the accuracy of 
assessing the congestion risk, especially for the semicongested cases; however, the high 
breakdown probability in certain lanes would be ignored by section-based capacity models.  

Using the proposed Bayesian hierarchical model, Weibull parameters for each diverge 
section can also be estimated. As shown in Figure 5, the breakdown probability curves differ 
from one section to another, and this result is consistent with the significance of sd(λ) and sd(α). 
Moreover, the shoulder lanes have higher sd(λ) and sd(α) than those of the median and center 
lanes according to. This indicates that the capacity distributions of the shoulder lanes vary 
greatly among sections. It is shown in Figure 5 that the lane-specific capacity distributions of 
Section 3 have greater variability than those of others, whereas the capacity distributions of 
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(a) (b) 

FIGURE 4  Breakdown probability and hazard curves for specific lanes and cross sections 
based on pooled data: (a) breakdown probability and (b) breakdown hazard. 

 
 

 
 

 
FIGURE 5  Lane-specific breakdown probability curves for each section. 
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different lanes in Sections 2 and 4 tend to be closer to each other. A counterintuitive result is that 
the breakdown probability of the shoulder lane of Section 2 is slightly lower than that of the 
center lane given the same traffic flow rate. A possible reason is that Section 2 provides proper 
alignment with the off-ramp, and thus the interaction impacts on the traffic of the shoulder lane 
may be smaller. It may also be attributed to the different traffic compositions and driving 
behaviors of specific lanes.  
 
 
CONCLUSIONS 
 
This study contributes to the literature of stochastic freeway capacity by estimating lane-specific 
capacity distributions using a novel Bayesian hierarchical Weibull model. Four diverge sections 
of different interstate highways in California were studied. The speed and volume data of those 
four sections were retrieved from the PeMS. Noting the difference of traffic features among 
lanes, a method to obtain the optimal threshold speed by maximizing the average reduction of 
efficiency was proposed and used to identify traffic capacity observations and indicate censoring. 
Higher breakdown volumes could be observed by using the optimal threshold speed compared 
with the standard threshold speed proposed in the literature. Prior to model development, the 
censored capacity data were examined by the log-rank and Wilcoxon tests. The test results 
provided strong evidences for the heterogeneity of capacity distributions among individual lanes 
of the same section and showed the necessity of modeling capacity distributions separately at the 
lane level. By comparing with other models, the hierarchical Weibull model based on the 
censored dataset had the best performance and thus was used to investigate the capacity 
distributions of specific lanes. It is found that breakdown hazard is positively associated with the 
prevailing traffic volume and that lane-specific capacity distributions differ from one section to 
another. The merits of the proposed model are listed as follows: 
 

• Different sets of Weibull parameters are assumed for the median, center, and shoulder 
lanes. Such model specification can support lane-based capacity analysis by estimating the 
breakdown probability for each individual lane. 

• The parameters of the hierarchical Weibull model are allowed to vary across freeway 
sections. By accounting for the across-section unobserved heterogeneity and the within-section 
correlation simultaneously, the parameter estimates are properly adjusted. In light of its lower 
DIC value, the proposed model shows substantial improvement over the standard Weibull model.  

• By integrating the survival analysis theory in the proposed model, the censored data 
are appropriately treated. It is found that breakdown probability would be overestimated if 
censoring is ignored. 

• A full Bayesian approach is adopted. It improves the proposed model in terms of 
addressing insufficient data issues, providing flexibility in selecting parameter distributions, and 
accommodating complicated model structures. 
 

The proposed lane-specific capacity model can improve the accuracy of breakdown 
probability estimation and can provide useful insights when diagnosing bottlenecks with 
semicongested cases (i.e., congestions occurring only on certain lanes). Traffic operational 
performance can be improved by navigating vehicles to choose uncongested lanes to reduce the 
breakdown occurrence according to the outputs of the lanes-based capacity models. The findings 
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of this paper need further validation using larger data sets from freeway sections of geographic 
diversity. Additional work to compare Weibull distributions with other types of distributions in 
the Bayesian hierarchical framework is also suggested. The study on temporal correlation of 
capacity distributions is also of future interest.  
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reeway service patrol (FSP) is a widely used incident management measure designed to 
assist disabled vehicles along congested freeway segments and reduce nonrecurring 

congestion through quick response to accidents and other incidents on freeways. An FSP beat 
performance evaluation model has been developed and used to analyze the cost-effectiveness of 
providing FSP service on selected freeway corridors and to assess the overall cost-effectiveness 
of California’s FSP program. The FSP beat evaluation model estimates traffic delay savings, fuel 
savings, and emissions reductions per assisted incident as a result of FSP using deterministic 
queuing techniques.  

This paper presents 1. a method of using real-world traffic and incident data to validate the 
FSP performance evaluation (FSPE) model and 2. the model validation results. The paper also 
presents key findings about the reliability freeway performance measures, like vehicle miles 
traveled (VMT), vehicle hours traveled (VHT), and traffic delays, estimated using the California 
Department of Transportation (Caltrans) Performance Measurement System (PeMS) stationary loop 
data and INRIX Analytics probe vehicle data. 
 
 
INTRODUCTION AND BACKGROUND 
 
Caltrans FSP is an incident management measure designed to assist disabled vehicles along 
congested freeway segments and reduce nonrecurring congestion through quick detection, 
response, and removal of accidents and other incidents on freeways. In California, the program is 
jointly administered by Caltrans, the California Highway Patrol (CHP), and regional 
transportation planning agencies. Currently, FSP operates on 193 freeway sites (“beats”) across 
the state with 364 tow trucks over 1,800 centerline miles. California, having a large-scale FSP 
program and performance-driven decision-making policies, developed an analysis tool to 
evaluate the performance of FSP service on selected freeway corridors (i.e., FSP beats).  

The benefits of providing FSP service depend on the beats’ geometric and traffic 
characteristics and the frequency and type of assisted incidents. Incidents that occur in-lane tend 
to be more congestion-causing than shoulder incidents. Likewise, incidents occurring on 
freeways with high traffic demand (relatively little excess capacity) tend to cause more 
congestion than incidents on freeways with lower volumes. Earlier studies performed by the 
University of California, Berkeley (UC Berkeley), validated the FSP beat evaluation model by 
analyzing the effectiveness of FSP on a section of the I-880 freeway in the San Francisco Bay 

F 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


180 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 
Area (1) and a section of the I-10 freeway in Los Angeles (2). Extensive data on incidents and 
traffic characteristics were collected before and after the FSP deployment using specially 
instrumented probe vehicles and data from loop detectors. The data were processed, verified, and 
integrated into databases. Then analytical procedures were developed to estimate incident-
specific delays. The resulting FSP performance evaluation (FSPE) model estimated benefits 
based on delay and fuel savings, fuel consumption, and air pollution reduction, and it showed 
that FSP was a cost-effective measure at the specific test sites.  

These previous FSP model validation efforts focused on a very limited set of test sites, 
and previous model validation methodologies were applicable only to those FSP beats with 
relatively closely spaced PeMS vehicle detector stations. Methods that could be applied to a 
broader range of FSP beats (including FSP beats serving less-congested corridors and/or where 
PeMS detection stations are sparsely spaced or not available) would be better suited for statewide 
FSP model validation and performance monitoring purposes. 

To address these needs, a method that was not dependent on tightly spaced (and fully 
functional) PeMS detector stations was developed to validate FSP delay savings for freeway 
corridors. The FSP’s performance measures are directly derived from its vehicular delay savings; 
so, any validation method would need to quantify vehicular delays and delay savings attributable 
to FSP.  

The next section of the paper (Section 2) introduces the concepts for the FSPE model. 
Section 3 discusses the methods used to validate the FSPE model. Section 4 introduces the data 
sources used to develop the validation targets, discusses data quality, and highlights some 
observations about the data. The results of the FSPE model validation efforts and an 
interpretation of the results follow in Section 5. Section 6, the last section, concludes with 
lessons learned and possible future work. 
 
 
FSPE MODEL OVERVIEW 
 
The FSPE model employs deterministic queuing techniques to estimate incident induced traffic 
delays and the associated delay savings attributable to the provided FSP service, graphically 
depicted in Figure 1. Deterministic queuing and queuing diagrams originally discussed in the 
freeway operations context by Moskowitz (3) have been applied in numerous studies to analyze 
the incident impacts (4).  

When an incident occurs, the normal freeway capacity c is reduced to a lesser capacity, 
ci, for the duration of the incident, TA. If the traffic demand on the freeway, v, is greater than the 
remaining capacity ci, then a queue is formed upstream of the incident. Once the incident has 
cleared, after TA minutes, the built-up queue will discharge at the capacity of the freeway, c, until 
the queue is dissipated. The total delay (in vehicle-hours) caused by the incident is the area of the 
triangle OCD in Figure 1: 
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FIGURE 1  Estimation of incident delays and FSP delay savings. 

 
 

The deployment of FSP results in shorter response times that reduce the incident duration 
(TFSP) and the associated incident delay (area of triangle OAB in Figure 1). The delay savings 
due to FSP is the difference in delays without and with FSP service (area ABDC in Figure 1). 
The delay savings is attributable to FSP’s faster response time. The FSP response-time reduction 
is the difference between the time that the FSP tow-truck arrived at the incident and the time that 
a tow-truck would have arrived had there been no FSP service on the beat. It is assumed that 
without the FSP service, stranded motorists would wait for service by a member tow company or 
a rotational tow arranged by CHP. 

The method predicts no delays when the traffic demand v is less than the remaining 
capacity under incident conditions, ci. However, in reality, there is a small amount of delay to the 
traffic stream because of vehicle slow-downs and rubbernecking. These small delays are ignored. 
The delay savings (and the benefit-to-cost ratio) depend on incident frequency and characteristics 
(remaining capacity and duration) and the FSP beat’s operating characteristics (traffic demand 
and freeway capacity). The benefits are greater on heavily traveled FSP beats with a high 
frequency of lane-blocking incidents than on free-flowing beats with mostly shoulder 
breakdowns. 

The methodology used to validate the FSPE model is discussed next, followed by data 
sources in Section 4. 
 
 
METHODOLOGY FOR VALIDATING THE FSPE MODEL 
 
In a previous research effort, a method was developed to divide the total congestion along a 
freeway corridor into six components indicating cause of delay: 1. incidents, 2. special events, 3. 
lane closures, 4. adverse weather, 5. potential reduction in delays at bottlenecks that ideal ramp 
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metering could achieve, and 6. excess demand (5). The Caltrans PeMS system currently hosts a 
fully automated two-step version of this method. The first of the two steps estimates the 
components of nonrecurrent congestion using statistical regression. The second method locates 
all bottlenecks and estimates the potential reduction in traffic delays that ideal ramp metering 
could achieve. The method requires input data on traffic volumes and speeds, the time and 
location of incidents, special events, lane closures, and adverse weather. It can readily be applied 
to any freeway corridor with minimal calibration.  

This component of the congestion model assumes that each incident, special event, lane-
closure, and adverse weather condition contributes linearly to the overall delays observed in the 
corridor. More complicated causality between explanatory variables, such as between the bad 
weather and the number of accidents, was not considered in an effort to keep the number of 
parameters in the model reasonable. For the components of congestion research efforts, traffic 
volume and speed data were obtained from the Caltrans PeMS website. Using these methods, 
traffic delays caused by incidents can be quantified for any freeway corridor given that adequate 
traffic and incident data are available for the corridor. These components of congestion 
techniques were used to provide empirical-based estimates of incident-induced delays that could 
be compared to the FSPE model’s delay savings estimates. 

One of the main outputs of the FSPE model is the annual delay savings, in vehicle-hours, 
that is attributable to the provided FSP service for a freeway corridor. The expected delay 
savings per FSP assist can be easily calculated using the FSPE model inputs and outputs. 
Likewise, the expected delay savings per minute of incident reduction can be easily estimated. 
For example, if the FSPE model estimated 1,600 VHT of delay savings on a beat, and the FSP 
tow trucks were involved with 80 assists annually, with an average incident reduction of 5 min 
per assist, then the delay savings per incident-minute would be 1,600/(80 * 5) = 4.00 vehicle-
hours per incident-minute. Traditionally, the crucial challenge for the FSPE model validation 
efforts was to find comparable and reliable empirical delay estimates to compare to the FSPE 
model output.  

Fortunately, a comparable measure (traffic delays per incident-minute) for a freeway 
corridor can be estimated using the components of congestion techniques and a combination of 
Caltrans PeMS and INRIX Analytics data for selected freeway corridors where FSP service is 
provided. 
 
 
DATA SOURCES FOR FSP MODEL VALIDATION 
 
The two primary data sources for the FSPE model validation dataset were INRIX and PeMS. 

The INRIX website provides historical and real-time traffic information, travel times, and 
travel time information to public agencies, businesses, and individuals. To do this, INRIX 
collects trillions of bytes of information about roadway speeds from nearly 100 million 
anonymous mobile phones, trucks, delivery vans, and other fleet vehicles equipped with GPS 
locator devices. The data are processed in real time, creating traffic speed information for major 
freeways, highways, and arterials across North America, as well as much of Europe, South 
America, and Africa. INRIX Analytics and INRIX User Delay Cost Analysis modules were used 
to provide traffic delay (congestion) and corridor travel time measures for preselected freeway 
corridors (i.e., FSP beats).   
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PeMS collects data in real time from over 39,000 individual detectors spanning the 
freeway system across all major metropolitan areas in the State of California. PeMS is also an 
archived data user service that provides over 10 years of data for historical analysis. It integrates 
a wide variety of information from Caltrans and other local agency systems including 

 
• Traffic detectors, 
• Incidents, 
• Lane closures, 
• Toll tags, 
• Census traffic counts, 
• Vehicle classification, 
• Weight-in-motion, and 
• Roadway inventory. 

 
The Caltrans PeMS website was used to provide stationary point traffic volume and delay 

data (mainly from freeway loops) for the set of preselected FSP beats. The Caltrans PeMS 
website also collects and reports CHP-reported freeway incident data. 

The minimum data required to produce an estimate of expected (average) traffic delays 
per incident are traffic incident data and traffic delay data. PeMS was used to provide the 
incident data. Both INRIX and PeMS calculate and report traffic delays. This led to questions 
about how INRIX and PeMS estimate their traffic delays, how well the two delay estimates 
compare, and which estimate was the most reliable. 

During the data preparation and analysis, PeMS-reported delays and INRIX-reported 
delays were compared to see how closely they agreed with regard to a common corridor, time 
period, and level of aggregation. Figure 2 shows a scatter plot comparing the PeMS corridor 
reported daily traffic delays with the INRIX Analytics reported daily traffic delays for State 
Route 24 in California’s East Bay area for the July 1, 2012, through June 30, 2013, time period. 
Both sets of daily traffic delays were estimated using a threshold free-flow speed of 60 mph.  

The strength of the correlations between the traffic delays and the freeway incidents was 
used to help determine whether the INRIX or PeMS estimated delays were better suited for the 
components of congestion analysis techniques. It is well known that positive correlations exist 
between traffic delays and incident rates and that errors (e.g., measurement, estimation errors) in 
the traffic delay estimates and incident data only serve to deteriorate the strength of these 
correlations. 

Table 1 shows the correlation coefficients between daily freeway traffic delays (PeMS 
and INRIX) and daily freeway incidents for along State Route 24 in California’s East Bay area. 
Freeway collisions are one category of incidents in the CHP incidents database. As a sensitivity 
test, the correlation analysis was repeated using daily collisions (shown in Table 1). 

Using the SR-24 dataset, the INRIX correlations were slightly stronger than the PeMS 
correlations. This finding held for incidents and collisions. The average functional detector 
spacing was about 1.7 mi per detector station along the SR-24 corridor. 

Table 2 shows the correlation coefficients between daily freeway traffic delays and daily 
freeway incidents for FSP Beat 12, an 8.4-mi-stretch of I-80 in the East Bay. The average 
functional detector spacing was about 0.5 mi for the FSP Beat 12 corridor.  
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FIGURE 2  Daily traffic delays: PeMS corridor and INRIX-Analytics  

(State Route 24; July 1, 2012, through June 30, 2013). 
 
 

TABLE 1  Correlations Between Traffic Delay Data and Incident Data 
FSP Beat 1: State Route 24; Fiscal Year 2012–2013 

Variable Sets Incident Correlation 
Coefficient 

Collision Correlation 
Coefficient 

INRIX delays  CHP incidents 0.4018 0.2503 

PeMS delays  CHP incidents 0.3454 0.2180 

 
 

TABLE 2  Correlations Between Traffic Delay Data and Incident Data 
FSP Beat 12: Interstate 80; Fiscal Year 2012–2013 

Variable Sets Incident Correlation 
Coefficient 

Collision Correlation 
Coefficient 

INRIX delays  CHP incidents 0.3649 0.3101 

PeMS delays  CHP incidents 0.3573 0.3220 
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The PeMS (stationary detector) data correlates about as closely to the CHP incident data 
as did the INRIX (probe vehicle) data along the FSP Beat 12 corridor with its closely spaced 
PeMS detector stations.  

Previous work has cited that the reliability of PeMS reported traffic data is dependent on, 
among other factors, a corridor’s detector station spacing. For example, in an Evaluation of 
PeMS to Improve the Congestion Monitoring Program report, researchers found, “Accuracy in 
PeMS-based congestion estimates requires a detector spacing of less than 0.5 miles,” (6). 
Another UC Berkeley study concluded: 

 
Spacing loop detectors less than an average of 0.83 miles apart (i.e., using data from 
more than eight inductive loop detector stations along the stretch of roadway under study) 
did not provide extra benefit in the travel time estimation. The error remains constant 
between 6–13% depending on the time of day, regardless of the added loop detector 
stations. (7) 
 
The reliability of the results from regression analysis, like that in the components of 

congestion techniques, depends heavily on the reliability of the dataset used to feed the 
regression analysis. As such, components of congestion analysis have typically been employed 
on corridors with relatively closely spaced detector stations. However, FSP service is provided 
on several freeway corridors with sparse or no PeMS coverage. So a validation method and data 
sources were sought that could be applied to FSP beats regardless of the level of PeMS coverage 
throughout the corridors where FSP service is provided. 

Previous work has shown that PeMS detector station spacing has a direct impact on the 
accuracy of reported travel times and delays. What was not shown was whether PeMS detector 
station spacing affects the accuracy of some performance measures more than others. For 
example, widely spaced loops might do a better job of reliably reporting VMT than delays or 
vice versa. 

Sensitivity testing was done on corridors with a high density of functional PeMS detector 
stations to gain insights into how the PeMS spacing affected key performance measures for FSP 
monitoring and FSPE model validation. Figure 3 shows the correlation coefficients for PeMS 
reported traffic volumes as a function of distance between detector stations along a corridor. It is 
a measure of how well traffic volumes can be approximated from measured volumes as distance 
from the point of measurement increases. Figure 3 also shows the same for approximating traffic 
delays from upstream measured delays. 

As PeMS detector spacing increases, the ability to approximate traffic volumes 
deteriorates slowly as compared to the ability to approximate traffic delays. This implies that for 
corridors with widely spaced PeMS Stations, INRIX delay data might provide better delay 
estimates than PeMS. This is consistent with findings presented previously in Tables 1 and 2. 
 
 
STUDY FINDINGS, FSPE MODEL VALIDATION RESULTS 
 
Linear regression techniques were used to estimate the expected (average) traffic delays 
attributable to freeway collisions. For this FSPE model validation effort, one year’s worth of 
CHP, PeMS, and INRIX data were compiled: July 1, 2012, through June 30, 2013, for FSP beats 
(corridors) listed in Table 3. 
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FIGURE 3  Correlations for traffic delays at PeMS stations, I-15 NB San Diego, California. 
 
 

TABLE 3  Beats Selected for FSPE Model Validation 

FSP 
Beat County Freeway Beat Limits 

One-Way 
Beat 

Length (mi) 

Weekday 
FSP 

Trucks 

1 

ALA 
24 

I-580 to Contra Costa Co. line 4.39 

2 
CC Contra Costa Co. line to Oak Hill Rd. 6.25 

ALA 
980 I-580 to I-880 2.03 
880 7th St. to Jackson St. 2.04 

12 CC 80 San Pablo Dam Rd. to Cummings Skyway 8.39 2 
16 SCL 17 Junction SR-9 to Summit Rd. 7.07 1 

18 
SCL 

880 
Junction SR-237 to Alameda Co. line 2.08 

2 
ALA SCL Co. line to Mowry Ave. 7.18 

22 ALA 580 Santa Rita to Grant Line Rd. 16.48 3 
29 SOL 80 Magazine St. to Abernathy Rd. 14.04 2 
34 SOL 80 Abernathy Rd. to Vaca Valley Rd. 12.54 2 
37 SOL 80 Junction I-505 to Richards Blvd. 16.40 2 
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On weekdays in the Bay Area, FSP provides service from 6:00 to 10:00 a.m. and from 
3:00 to 7:00 p.m., although some beats operate from 5:30 to 9:30 a.m. in the mornings, and 
Friday afternoon shifts might vary on some beats. Sunday (weekend) FSP service is generally 
provided with one truck operating from 12:30 to 7:00 p.m. 

Since the PeMS and INRIX data sources provided traffic delay measures, PeMS from 
stationary source (loop) detectors and INRIX from probe vehicles, three different measures of 
vehicular delays were used in the regression analysis to gain insights on how the chosen delay 
data source affected the regression model goodness of fit and parameter estimates: 
 

1. PeMS traffic delays: from stationary detectors (e.g., loops), 
2. INRIX traffic delays: from a relatively large sample of probe vehicles, and 
3. Composite of INRIX (per-vehicle) delays and PeMS traffic volumes. 

 
Table 4 displays the FSPE model validation results.  
The findings in Table 4 are consistent with the findings presented in Tables 1 and 2. For 

Beat 1, the model using “INRIX (per-vehicle) Delays & PeMS Traffic Volumes” performed best. 
For Beat 12, the model using “PeMS Traffic Delays” performed best. Beat 12 on I-80 has an 
average PeMS detector spacing of 0.5 mi/station, whereas Beat 1 on SR-24 has an average of 1.7 
mi between PeMS detector stations. These findings are consistent with the postulate that higher 
density of detector stations provides higher reliability in estimated performance measures. 

The root mean square error term was calculated from the empirical and FSPE model 
estimated delay values, and the average regression model F-statistic was calculated for the FSPE 
model validation dataset (see Table 5). Overall, the INRIX delay data provided models with 
better model fit statistics than those created using the PeMS delay data and better than those 
created using the composite PeMS volume and INRIX delays.  

The overall average error term (RSME) was lowest for the PeMS delay–based regression 
models.  

Figure 4 shows a scatter plot comparing the FSPE model estimated delay savings against 
the empirically estimated traffic delays. 
 

From the trend lines shown in Figure 4, the FSPE model predicts delay savings that are a 
very close match to the empirically estimated traffic delays using PeMS delay data. However, the 
FSPE model fairly significantly underestimates delay savings when compared to the traffic 
delays estimated using INRIX delay data. It is not clear which delay estimation (PeMS or 
INRIX) is more reliable without further probing into the PeMS and INRIX data collection and 
delay estimation procedures, and taking into account measurement and sampling errors 
associated with PeMS detector spacing and INRIX probe vehicle sample size. 
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TABLE 4  FSP Beat Evaluation Model Validation Results 

Bay Area 
FSP Beat 

FSPE 
Delay 

Savings  
(per 
min) 

Source of 
Traffic 
Delay 

Estimate 

Regression
Model 
Traffic 
Delay  

(per min) 

Regression
Model 

Std Err 
of Delay 

Regression
Model 

Lower 95%
Delay 

Regression 
Model 

Upper 95% 
Delay 

Regression
Model 

F-Statistic 

Beat 1 
Weekday 11.44 

PeMS 8.11 1.79 4.61 11.61 20.65 
INRIX 10.68 1.84 7.08 14.27 33.81 
PeMS+INRIX 12.77 2.00 8.86 16.68 40.96 

Beat 1 
Weekend 0.78 

PeMS –1.73 1.27 –4.22 0.77 1.84 
INRIX –1.33 1.44 –4.15 1.48 0.86 
PeMS+INRIX –0.48 1.68 –3.78 2.82 0.08 

Beat 12 
Weekday 5.26 

PeMS 4.22 0.83 2.59 5.84 25.76 
INRIX 6.67 1.17 4.39 8.96 33.34 
PeMS+INRIX 6.56 1.08 4.44 8.67 36.83 

Beat 12 
Weekend 0.91 

PeMS 0.20 0.46 –0.70 1.10 0.19 
INRIX 0.60 0.19 0.23 0.98 10.08 
PeMS+INRIX 0.91 0.33 0.26 1.55 7.66 

Beat 16 
Weekday 3.49 

PeMS na  na  na  na  na  
INRIX 2.09 0.72 0.68 3.50 45.70 
PeMS+INRIX na  na  na  na  na  

Beat 16 
Weekend 0.75 

PeMS na  na  na  na  na  
INRIX 0.60 1.38 –2.11 3.31 0.19 
PeMS+INRIX na  na  na  na  na  

Beat 18 
Weekday 7.37 

PeMS 3.66 0.83 2.04 5.27 19.63 
INRIX 5.49 1.06 3.42 7.56 26.97 
PeMS+INRIX 5.13 1.01 3.15 7.11 25.79 

Beat 22 
Weekday 6.43 

PeMS 7.61 1.15 5.36 9.86 43.87 
INRIX 17.53 2.16 13.29 21.76 65.77 
PeMS+INRIX 17.47 1.97 13.61 21.33 78.72 

Beat 22 
Weekend 0.45 

PeMS 6.42 1.17 4.14 8.71 30.36 
INRIX 6.50 1.87 2.83 10.17 12.22 
PeMS+INRIX 8.40 1.79 4.88 11.92 21.92 

Beat 29 
Weekday 5.24 

PeMS 1.22 0.71 –0.17 2.62 2.97 

INRIX 4.61 0.82 3.00 6.22 31.32 

PeMS+INRIX 2.00 0.43 1.16 2.85 21.52 

Beat 29 
Weekend 0.67 

PeMS 2.01 0.98 0.09 3.93 4.19 

INRIX 1.95 0.94 0.11 3.78 4.30 

PeMS+INRIX 2.14 1.05 0.08 4.21 4.14 
(continued on next page) 
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TABLE 4 (continued)  FSP Beat Evaluation Model Validation Results 

Bay Area 
FSP Beat 

FSPE 
Delay 

Savings  
(per 
min) 

Source of 
Traffic 
Delay 

Estimate 

Regression
Model 
Traffic 
Delay  

(per min) 

Regression
Model 

Std Err 
of Delay 

Regression
Model 

Lower 95%
Delay 

Regression 
Model 

Upper 95% 
Delay 

Regression
Model 

F-Statistic 

Beat 34 
Weekday 5.58 

PeMS 2.87 0.53 1.83 3.90 29.29 

INRIX 12.92 2.04 8.93 16.92 40.23 

PeMS+INRIX 1.03 0.72 –0.38 2.44 2.04 

Beat 34 
Weekend 0.62 

PeMS –0.42 0.67 –1.74 0.90 0.39 

INRIX 1.08 0.94 –0.77 2.94 1.32 

PeMS+INRIX 0.17 0.21 –0.24 0.57 0.66 

Beat 37 
Weekday 5.77 

PeMS 1.16 0.42 0.33 1.98 7.60 

INRIX 9.32 1.46 6.46 12.18 40.74 

PeMS+INRIX 6.73 1.14 4.49 8.97 34.65 

Beat 37 
Weekend 0.69 

PeMS 0.89 0.74 –0.55 2.33 1.46 

INRIX 1.61 1.32 –0.98 4.21 1.49 

PeMS+INRIX 2.25 1.45 –0.60 5.09 2.40 

 
 

TABLE 5  Overall Regression Model Goodness of Fit Statistics 
Average 

FSPE Model 
Delay Savings  

(per min) 
Source of Traffic 
Delay Estimate 

Average 
Regression 

Model Delays  
(per min) 

Average 
Regression 

Model 
F-Statistic 

FSPE Versus 
Regression 

Model 
RSME 

3.40 
PeMS 2.79 14.48 2.72 
INRIX 5.35 23.22 4.42 
PeMS+INRIX 5.01 21.34 4.48 

 
 
CONCLUSIONS 
 
Overall, the FSP beat evaluation model replicated delay savings estimates that were in the range 
of the empirically estimated traffic delays. However, there is some evidence that the delay 
savings component of the FSPE model might be underestimating overall delay savings.  

There are sets of plausible factors that might be contributing to the FSPE model’s 
underestimate of delay savings, for example, if the FSPE model’s default capacities are higher 
than real-world freeway capacities, or if the deterministic queueing methods used in the FSPE 
model tend to underestimate delays on congested freeway corridors by failing to capture the 
nonlinear nature of queueing, delays, and delay savings. 

It should be noted that for this model validation effort, the FSPE model’s default capacity 
and other model parameters were used without calibration or adjustments. No fine-tuning was 
done to the FSPE model’s parameters or inputs to improve how well the FSPE model’s delay 
savings compared to the empirically estimated delay estimates. Using the default capacity, like  
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FIGURE 4  Empirically estimated traffic delays versus  

FPSE model predicted delay savings. 
 
 
was done for this validation effort, might underestimate congestion for highly constrained merge, 
diverge, or weaving sections. Likewise using the default capacity might result in underestimated 
FSP delay savings for freeway segments with hills, tight curves, narrow lanes, and other 
geometric conditions that impact the carrying capacity of freeways. Model users do not take 
adequate care in ensuring the traffic volumes and other inputs are reasonable and in selecting 
capacity estimates that are representative of freeway geometry and traffic conditions. 

The key to using any model, the FSP beat evaluation model included, is to understand the 
model’s strengths and limitations, take care in preparing the model inputs, and perform reality 
checks on the model’s outputs to ensure consistency with observed real-world traffic behavior. 

These research efforts validated one of the components of the FSP beat evaluation 
(FSPE) model: the FSPE model’s deterministic queueing techniques that estimate delay savings. 
Next steps with respect to FSPE model improvement include exploring whether using stochastic 
queueing methods instead of deterministic queueing methods would help to improve the FSPE 
model’s ability to replicate real-world traffic delays and FSP delay savings. 

The research support efforts for the FSP program generally focus on providing 
information to enable performance-based decision making. With this, two plausible and useful 
work efforts might be to 
 

• Use the INRIX-Analytics datasets to provide calibration targets for the FSPE model; 
or, perhaps a method could be developed to directly incorporate the INRIX estimated delays into 
the FSP beat performance evaluation process. This would be especially helpful for freeway 
corridors (i.e., FSP beats) with limited or no PeMS coverage. 

• Compile annual estimates for VMT, VHT, and freeway incidents for the complete set 
of California’s FSP beats. Compare the level of FSP service provided on each beat against the 
beat’s empirical VMT, VHT, and incident totals as a performance measure to gauge “How 
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closely does the allocation of FSP resources match demand for freeway incident management 
services?” 

• Perform a before-and-after study on a freeway corridor, directly measuring and taking 
a detailed look at the overall and incident-induced traffic delays along a freeway corridor with 
FSP service on the corridor and without FSP service on the corridor. 
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Calibrating Multilane First-Order Traffic Flow Model with 
Endogenous Representation of Lane-Flow Equilibrium 
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his study develops a multilane first-order traffic flow model for freeway networks. In the 
model, lane changes are considered as a stochastic behavior in that an individual driver 

decreases his or her disutility or cost and are represented as dynamics toward the equilibrium of 
lane-flow distribution along with longitudinal traffic dynamics. The proposed method can be 
differentiated from the previous studies in the following points: 1. The motivation of changing 
the lane is explicitly considered, and it is treated as utility defined by the current macroscopic 
traffic state; 2. A whole process of lane-changing is computed by macroscopic manner, that is, 
the extension of kinematic wave theory employing the information technology (IT) principle; 
and 3. In the model framework, the lane-flow equilibrium curve will be endogenously generated 
as a result of self-motivated lane changes. In addition, the parsimony representation enables the 
parameter calibration by using the data collected from the conventional loop detectors. As a 
result of the parameter calibration using the data collected at four different sites of Chugoku 
Expressway in Japan, including sag bottleneck, it is revealed that 1. The proposed method can 
represent the lane-flow distribution of any observation sites with high accuracy, and 2. The 
estimated parameters can reasonably explain the multilane traffic dynamics and the bottleneck 
phenomena on uphill of sag section.  
 
 
INTRODUCTION 
 
It is well known that under the condition of high traffic volume lane-flow distribution becomes 
unbalanced; more traffic tends to use a median lane rather than a middle and outer lane, which 
causes the deterioration of traffic capacity at bottleneck sections (1, 2, 3). As intensive 
development of intelligent transportation systems (ITS), active and dynamic lane management 
has been practically implemented. By employing the technology of ITS, balancing lane-flow 
distribution is one of the feasible solutions to increase the throughput of bottleneck flow (3). 
Besides the unbalanced lane usage, lane traffic management and control should be considered as 
one of the solutions to improve the efficiency and safety in case of lane regulation under road 
works or incidents and at the merging, diverging, and weaving sections. For traffic management 
to be effective, it is needless to say that a model-based decision support system consisting of 
traffic state estimation, traffic state prediction, and optimization and traffic control measures is 
essential as mentioned in Yuan et al. (4). However, because of the lack of a method for 
computing multilane traffic flow, including lane-change dynamics, a model-based decision 
support system enabling lane-based traffic management to be considered has not been realized.  

This paper develops the multilane first order traffic flow model, which depicts the 
dynamics of lane-changing. In the model, it is assumed that each vehicle changes the lane to 

T 
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improve its utility or decrease its disutility and also that the equilibrium of lane-flow distribution 
is achieved as the condition of stochastic user equilibrium (SUE), where all drivers believe that 
they cannot improve their utility by changing the lanes anymore. In the model, lane-changes are 
represented as the dynamics toward lane-flow equilibrium. The utility function for a vehicle to 
choose each lane is defined by only two parameters on the basis of the investigation about lane-
changing behaviour done by Knoop et al. (5) and Shiomi et al. (6): one is a constant value 
implying cost breaking the keep-left (or right) rule, and the other one is the average speed 
depending on the fundamental diagram and the density of the lane. Such parsimony 
representation enables online calibration by using the real-time data from conventional loop 
detectors. To compute the possible solution of multilane traffic under the conservation law of 
traffic volume, the IT principle (7) is applied. Then, in this paper, the parameters reproducing the 
lane-flow distribution are estimated on the basis of the data collected by the conventional loop 
detectors. Based on the estimation results, the cross-sectional characteristics of lane-flow 
distribution at sag section are discussed.  

This paper is organized as follows. In Section 2, state-of-the-art of modelling multilane 
traffic is described. In Section 3, the concept of lane-change dynamics and the mathematical 
representation of lane-flow equilibrium are described. In Section 4, the computation methods of 
multilane traffic flow employing IT principle are overviewed. In Section 5, the parameter 
calibration method employing the extended quasi-Newtonian approach is explained, and then in 
Section 6, the application results and discussion are described. Finally, the conclusion mentions 
the contribution of the paper and recommends future works.  
 
 
STATE OF THE ART 
 
Considerable scientific attention has been paid on the topic of lane-change behaviour and 
multilane flow modelling during the last two decades. Because lane-change is individual vehicle 
driving behavior, that is, whether a vehicle changes its lane totally depends on the decision 
making that the subject vehicle takes and the situation that the subject vehicle is in, it has been 
the most straightforward way to apply microscopic modelling (8–12). This approach can 
consider various conditions and variables that may cause making a decision to change lanes. 
However, because of the computational tasks and complicated model framework, it is not 
appropriate to apply for online and networkwide freeway traffic evaluation. The other approach 
is mesoscopic modelling (13, 14). In the approach, the gas-kinetic model is applied to depict 
longitudinal multilane traffic dynamics and lateral movement as well. In Shvestsov and Helbing 
(13), the proportion of lane changers is exogenously given according with the density. The 
motivations behind the lane change behavior are not appropriately considered. In Hoogendoorn 
and Bovy (14), the probability of a vehicle changing the lane is estimated by applying discrete 
choice theory. In this case, however, it is required to calibrate various parameters, so that more 
precise data is required than conventional loop detectors. Also, it is difficult to employ online 
and dynamic traffic estimation based on the real-time data collection.  

From the macroscopic approach, Daganzo (15, 16) investigated the traffic phenomena on 
a multilane freeway, and proposed a traffic-flow theory based on the kinematic wave model, in 
which it is assumed that there are two types of vehicles: slugs, which have lower desired speed 
and drive on an outer lane, and rabbits, which have higher desired speed and drive on both outer 
and inside lanes depending on traffic conditions. It was proven that the slugs and rabbits theory 
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could explain the various traffic phenomena. However, the computational method on the basis of 
this theory to depict multilane traffic has not been developed. Laval and Daganzo (7) proposed a 
method to computing multilane traffic flow on the basis of kinematic wave theory and developed 
a model to depict the influence of the lane changers to the traffic flow. This study employed the 
hybrid approach in which lane changers are computed as particles and considered as moving 
bottlenecks. It is assumed that the number of lane-change vehicles is proportional to the 
differences of traveling speed among lanes. However, it is apparent that this assumption would 
not represent the lane-flow equilibrium curve appropriately. Besides, the hybrid approach 
combining microscopic and macroscopic model, which can be seen in Hong et al. (17) and 
Okaue and Okushima (18), is not feasible in the model-based decision support system. Tang et 
al. (19), Jin (20), and Jin (21) developed macroscopic models depicting lane-change traffic that 
considered the disturbances to the traffic flow caused by lane changes. However, the 
representation of the models is not in lane-specific manner.  

This contribution can be differentiated from the previous studies in the following points: 
 
1. The motivation of changing the lane is explicitly considered, and it is treated as utility 

defined by current macroscopic traffic state;  
2. A whole process of lane-changing is computed by macroscopic manner, that is, the 

extension of kinematic wave theory employing the IT principle; and  
3. In the model framework, the lane-flow equilibrium curve will be endogenously 

generated as a result of self-motivated lane changes.  
 
The proposed model represents a lane-specific traffic dynamics with parsimony manner. 

Thus, it is expected that it has high feasibility for online and lane-specific traffic state estimation, 
prediction, and evaluation of a dynamic lane-control scheme.  
 
 
MODELING LANE CHANGE AND LANE-FLOW EQUILIBRIUM 
 
Assumptions of Motivations Behind Lane Changes 
 
This study develops the model depicting lane-changing dynamics and lane-flow equilibrium at a 
freeway section without any merging and diverging, where all vehicles change the lane to 
improve their driving circumstances. Namely, mandatory lane-changes heading to off-ramp or 
coming from on-ramp are not considered.  

It is well known that on such sections the specific macroscopic relationship between the 
total density and the fraction of the lane flow as shown in Figure 1 can be observed. On two-lane 
sections, more traffic tends to use on the outside lane when traffic density is not so large, while 
under the presence of higher traffic density than approximately 30 (veh/km/2lanes), more traffic 
drives on the median lane rather than the other lane. As the density increases, the gap of fraction 
becomes insignificant. On three-lane sections, it is more complicated than on two-lane sections. 
First, the fraction of the outside lane is more than the other lanes in the presence of less traffic 
density than 20 (veh/km), and then traffic on the center lane becomes dominant. In the higher 
traffic density than 50 (veh/km), the fraction of the median lane becomes the largest, and finally  
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(a) (b) 

FIGURE 1  Observation of lane-flow distributions in freeways:  
(a) example of two-lane section and (b) example of three-lane section (1) 

 
 
the gap of fractions among the lanes gets insignificant. This tendency is not special to the 
observation site shown in Figure 1 but can be observed generally all over the world.  

With regard to the mechanism of the lane-flow distribution and its equilibrium condition, 
Wu (2) theoretically revealed that the equilibrium curve was achieved as a result of balance 
between the lane-change demand, that is, the proportion of the following vehicles that are forced 
to drive less than their desired speed and the proportion of the available gap in the adjacent lanes. 
From the empirical aspects, Knoop et al. (5) investigated the relationship between the number of 
lane-changes and the density of both original and adjacent lanes. It revealed that in the free-flow 
condition the number of lane changes per traffic volume from an outer lane to a median lane and 
vice versa is not negatively proportional to the density of the adjacent lane if the density of the 
original lane is the same level. This fact implies that lane-change behaviors are not fully 
explained only by the gap acceptance, that is, the proportion of the available gap. According to 
Shiomi et al. (6), which investigated lane-change behaviors on three-lane sections by applying a 
discrete choice model, in the outside and middle lanes, vehicles tend to remain in the original 
lane, whereas in the median lane, vehicles tend to change lanes to either the middle or outer 
lanes. This fact indicates that drivers basically compliant with the keep-left (in case of Japan) 
rule, which also motivates drivers to change the lane or remain on the same lane.  

Thus, in this study, it is assumed that 
 

1. Drivers are motivated to change the lane to increase the driving speed, though it 
depends on their desired speed; that is, a driver with high desired speed would change the lane 
and one with low desired speed would not try that.  

2. Basically, drivers would follow the keep-left rule. That is, if the traffic state is the 
same among lanes, a driver would choose the outside lane.  

3. The demand of lane changes is censored because of the limitation of the available gap 
on the target lane, which is mutually related to the available capacity of the target lane.  
 

Then, under these assumptions, a first-order traffic flow model to depict multilane traffic 
dynamics is developed.  
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Definition of Utility Function and Mathematical Expression of Equilibrium State 
 
Suppose a fundamental diagram is defined lane by lane, and the average speed of lane l, vl, is 
given as  
 

( )lll kfv =   
 
where fl(･) is a fundamental relationship and kl is the density on lane l, respectively. A driver 
would choose a lane that gives him or her more utility or less disutility. As mentioned in the 
previous section, a driver would be motivated to change the lane to increase his or her driving 
speed or to follow the keep-left rule. Thus, the cost of a vehicle n to drive on lane l, cnl(kl), is 
defined as a monotonically increasing function against the density:  
 

( ) ( ){ } εβα +⋅+= −1
lllllnl kfkc   (1) 

 
where kl(t, x) is the density on lane l at time–space point (t, x), αl is the disutility to violate the 
keep-left rule, βl shows sensitivity to the travel time of a unit of distance, and ε is an error term 
following Weibull distribution, W(0,θ), implying the heterogeneity of desired speed and 
recognition error. Assuming traffic flow is composed of homogenous vehicles in terms of their 
fundamental diagram and the structure of the cost function, the probability that a vehicle chooses 
lane l according with the current traffic situation at time t is written as  
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where K(t, x) is the total density and written as 
 

( ) ( )=
l

l xtkxtK ,,   

 
Note that an index n is omitted because of the clear representation. The lane-flow 

equilibrium condition means the state where each driver believes that he or she can no longer 
decrease the driving cost by changing the lane, or the situation where even if some vehicle 
change their lanes, other vehicles would compensate for the change of lane traffic flow by 
changing the lane immediately and as a result lane flow distribution becomes stable. The 
equilibrium state is indicated by Equation 2.  
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where * is the symbol indicating the equilibrium condition.  
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Expression of Lane-Change Dynamics 
 
The equilibrium condition expressed by Equation 2 is equivalent to the solution of the 
optimization problem as  
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because the equilibrium condition can be considered as SUE condition, and the cost function is 
monotonic increasing function with regard to the density. To solve the problem [P-1], the 
objective function is partially linearized as   
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where z = {zk} is a vector of the density on lane k at (t, x). Then, the solution vector y* is given 
by calculating KKT condition as  
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It is mathematically proven that the operation  

 
( ) ( ) ( ) ( ){ }xtxtxtt ,/1,, * zyzz −+=Δ+ τ  (4) 

 
gives a better solution of [P-1] than z(t, x), where τ > 1 (22). This result implies that when the 
cost of each lane is defined as a monotonic increasing function with regard to the density, the 
lane-flow distribution gradually approaches the equilibrium condition as vehicles repeatedly 
change lanes in an ad hoc manner following the choice probability. In this model, the process 
toward the equilibrium represents the dynamics of lane change. In Equation 4 a dynamic 
parameter, τ, is used. It can be interpreted as the same line as τ of Laval and Daganzo (7). 
Namely, τ indicates the number of time steps a driver takes to decide and execute a lane change. 
It relates to the gap availability in the target lane. The higher the density of the target lane is, the 
longer time to find an available gap takes. Thus, τ is considered as such a parameter that relates 
to traffic condition, and becomes larger when the density is higher.  
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MULTILANE FIRST-ORDER TRAFFIC FLOW MODEL 
 
Framework of Multilane LWR Model 
 
In this study, the multilane Lighthill-Whitham-Richards (LWR) model developed by Laval and 
Daganzo (7) is applied with some modification to compute traffic flow on multilane with lane 
changes. The conservation law of multilane traffic is written as 
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, l = 1, 2, …, n  (5) 

 
where Kl(t, x) and Ql(t, x) indicate the density and traffic flow on lane l in position x at time t, 
respectively. The nonhomogeneous term, φl, in Equation 5 shows the balance caused by the lane-
change vehicles. Thus, this term can be rewritten as  
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where ϕl’l means the number of vehicles coming from the other lane (l’) to the target lane (l).  

As mentioned above, it is assumed that fundamental diagram is defined lane by lane. 
Note that lane change is caused by the differences in the cost among lanes even in the free flow 
condition. Thus, the equation of fundamental diagram proposed by van Lint et al. (23) is used. It 
is shown as follows:  
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where vfl, vcl, kcl and kJl show the free flow speed (km/h), critical speed (km/h), critical density 
(veh/km), and jam density (veh/km) on lane l, respectively. The example of the fundamental 
diagram following to Equation 6 is exhibited as Figure 2.  
 
Extension to Multilane Traffic Flow 
 
Godunov Scheme for Multilane Section 
 
To compute the traffic dynamics following the conservation law in Equation 5, the Godunov 
scheme is applied. Then, Equation 5 is discretized as  
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where the index t and i show time step and cell number, respectively. Following to CFL 
condition, the time step size ∆t and cell length ∆x should keep the constrained condition as 
follows:  
 

( ) tvx fl
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In the case of a single-lane section, the traffic volume transferred from the upper cell i to the 
downer cell i+1, Ati, is given as  
 

( )( )





Δ⋅⋅
≤≤Δ⋅⋅

=





Δ⋅⋅
≤≤Δ⋅⋅

=

Δ⋅−=

++

++++
+

+++

otherwisetVK

kKiftvk
R

otherwisetvk

kKiftVK
S

where
xKkRSA

itit

ciitcici
it

cici

citititi
ti

itiJittiti

1,1,

11,11
1,

1,1,1,

0

0

,,min

 (7) 

 
In Equation 7, Sti is the sending function, which means that the traffic demand from the 

upper cell, and Rt,i + 1 is the receiving function, which means the supply volume of the downer 
cell. The transfer volume is limited as the minimum of the traffic demand, supply volume, and 
the physically acceptable number of vehicles in the downer cell. In the following section, the 
treatment of lane-change vehicles is given.  

 
 

 

FIGURE 2  An example of fundamental diagram, where vf = {80, 90, 100},  
vc = {70, 80, 90}, kc = {15, 15, 15}, and kj = {70, 70, 70}. 
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Definition of the Number of the Vehicles with Desire of Lane Change 
 
As mentioned in Section 3, lane-change vehicles are generated to improve their driving cost. 
Given the cost function to each lane in accordance with the density of each cell as with Equation 
1, the proportion of the vehicles with the desire to change the lane from l to l’, in time and place 
(t, x), pti,ll’, is defined as Equation 8.  
 

( )[ ]
( )[ ] ⋅−

⋅−
=→

k
tikik

tilil
llti

Kc

Kc
p

θ
θ

exp

exp ''
',  (8) 

 
Then, the number of vehicles with desire to change the lane is written in accordance with 

the sending function Stil as follows:  
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til
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where τtil is the dynamics parameter. It is an unknown parameter depending on the traffic state. It 
is not able to be observed directly so that should be estimated on the basis of the longitudinal 
variation of lane-flow distribution. Along this line, a feedback estimation method [for example, 
in Wang and Papageorgiou (24)] could be applied to determine the parameter. The volume of the 
traffic with the desire to keep the lane is also defined as 
 


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→−=
ll

ltiltiltil LSM
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where Ω shows the set of lanes that a vehicle can get to within time step ∆t from the current lane l.  
 
Computing Lane-Change Vehicles 
 
Based on the number of the vehicles with the desire to keep the lane and the number of the 
vehicles with the desire to change the lane, the adjustment process to determine the transfer 
volume into the downer cells. The IT principle (7) is applied with partial revisions. In this study, 
it is assumed that there are two criteria to execute a lane change. The first criterion is whether a 
vehicle can find a space in the target lane, and the other criterion is whether the downstream cell 
on the target lane can accept the traffic coming from the upstream of the same lane and its 
adjacent lanes.  

Let Hti+1l denote the total desired number flowing into the cell i + 1 of lane l on time t as  
 


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→+ +=
ll

ltiltillti LMH
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'1  (9) 

 
For Equation 9, the first criterion is applied, that is, the desired number of lane changes is 
censored according to the acceptable volume on the adjacent cell on the target lane, which makes 
Hti+1l denoted by  
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Then, the second criterion is applied. Let ωtil denotes,  
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which defines the possible transfer volume with keeping the lane, qtil, and the possible transfer 
volume with lane change, ϕtilʹ→l, as  
 
qtil = ωtil · Mtil 
  
ϕtilʹ→l = ωtil · γtil · Ltilʹ→l 
 
respectively. Then, the actual traffic volume flowing into the downstream cell i + 1 on lane l, 
Ati+1l, is written as 
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Finally, the density of each cell is updated every time step in accordance with  
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PARAMETER CALIBRATION METHOD 
 
The proposed model requires the following parameters:  
 

• Fundamental diagrams: free speed, critical density, critical speed, and jam density for 
each lane, and  

• Utility function of lane choice: disutility to violate the keep-left rule, and sensitivity 
to the travel time of a unit of distance for each lane.  
 

In this section, the parameter estimation method on the basis of the data collected by the 
conventional loop detectors is proposed. Here, the dynamic parameter, τ in Equation 4 is 
excluded in the estimated parameters. It is assumed that the parameters of the utility function of 
lane choice are defined under given fundamental diagrams. Thus, the parameters are estimated 
first for fundamental diagrams, followed by those of utility function of lane choice.  
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Estimation Method of FD Parameters 
 
Conventional loop detectors can directly measure the lane-based traffic volume (Qobs, l) and 
space-mean speed (Vobs, l), and the density (Kobs,l) can be indirectly measured by the operation, 
Kobs,l = Qobs,l/Vobs,l. Suppose Θl denotes the unknown parameter vector in FD on lane l, the 
estimation vector Θl

∗, which minimizes the residual error between the estimations and the 
observations, can be found by Equation 10.  
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where Nl shows the number of observations on lane l. To solve Equation 10, quasi-Newton’s 
method is applied.  
 
Estimation Method of Lane-Choice Parameters 
 
For the calibration of lane-flow distribution, αl and βl in Equation 1 are unknown parameters to 
be calibrated. According to Equation 2, it is obvious that only the relative difference of the cost 
among lanes has influence on the lane-choice behavior, so that α1 and β1 on the outside lane are 
given as 0 and 1, respectively. Then, given the total density K and the unknown parameter set Φ, 
the proportion of lane flow at the equilibrium condition, pest(K|Φ) = {pest,l(K|Φ)| l = 1, 2, …, n}, 
where Σl pest,l(K|Φ) = 1, is obtained by simulating traffic flow on an imaginary ring road with 
periodic boundaries. To get the convergence results, the dynamic parameter, τ, is set as the same 
with the number of time steps in the simulation.  

From the conventional loop detectors, the cross-sectional traffic density, Kobs, and the 
proportion of lane flow on lane l, pobs,l, can be observed. It requires huge computational tasks to 
get the convergence results for all the observed density, so that the estimation of the lane-flow 
distribution is obtained by the following approximating method. Suppose x denotes the finite-
discrete point sequences shown as x = {x1, x2, …, xn| 0 < x1 < x2 < … < xn < KJ}. The set of 
convergence solutions of lane-flow equilibrium corresponding to the densities x, Pest(x|Φ) = 
{pest(x1|Φ), …, pest(x1|Φ)} under the given parameter set Φ is computed in advance. Then, the 
estimate of the proportion of lane flow on lane l corresponding to the observed density, Kobs, is 
obtained as a linear interpolation as follows: 
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where xi ≤ Kobs < xi+1.  

The parameter set Φ is found by minimizing the residual errors as follows:  
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where L is the number of lanes. Equation 12 can be solved by applying quasi-Newton’s method.  
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APPLICATIONS 
 
The proposed method is applied to the real field data. First, the details of the study site and the 
collected data are described, and the parameter estimation results are shown. Then, the 
discussion on what the results mean follows.  
 
Study Section 
 
The data used in the study were collected at four cross-sectional points on a three-lane section of 
the Chugoku Expressway in Japan, which includes the sag section, and traffic congestion often 
occurs behind Takaraduka–West tunnel on 20.32 KP. The geometric features of the target 
section and the data collection sites are illustrated in Figure 3, in which the section between 
20.90 and 20.32 KP becomes the bottleneck because of sag structure. The data including 5-min 
space–mean speed and 5-min traffic volume were collected lane by lane at each observation 
point March 16–23, April 20–30, May 1–18, July 15–31, and September 1–14, 2010. The data 
collected under incidents or road works are excluded, so that in total the data of 30 days is used 
for the further analysis.  
 
Estimation Results 
 
FD Parameters 
 
As the first step to calibrate the multilane traffic flow model, the parameters in FD of each lane 
on each observation site are estimated. The results are summarized in Figure 4 and Table 1. As 
seen in Figure 4 showing the comparison between the observations and the estimations, the 
estimates indicate a good fit to the observations except for 25.20 KP, which is located about 5 
km upstream from the bottleneck. Interestingly, even in the congested flow region, the average 
speed in the middle lane is larger than that in the outer lanes against the same traffic density, and 
as the density increases the gap of the speed diminishes. This tendency is fully captured by the 
estimation of FD. Focusing on the traffic capacity, qc, defined as vc･kc, it appears that traffic 
capacity at 20.32 KP is much less than the other sites on any lane, which clearly shows 20.32 KP 
becomes a bottleneck.  
 
 

 
FIGURE 3  Study section. 
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(a) (b) 

 

            
(c) (d)  

FIGURE 4  Comparisons between observations and estimations of FD:  
(a) 25.20 KP; (b) 23.12 KP; (c) 20.90 KP; and (d) 20.32 KP. 

 
 

TABLE 1  FD Parameters 

Site Lanes vf (km/h) vc (km/h) kc (veh/km) qc (veh/h) kJ (veh/km)

25.20 KP 
Outside 84.7 75.9 14.1 1,070.2 98.2 
Median 99.6 90.7 16.6 1,505.6 91.6 
Middle 107.6 100.6 17.2 1,730.3 99.2 

23.12 KP 
Outside 82.3 76.2 12.5 952.5 94.7 
Median 92.8 85.6 18.4 1,575.0 97.1 
Middle 107.1 100.2 16.9 1,693.4 99.3 

20.90 KP 
Outside 84.1 73.0 11.9 868.7 81.5 
Median 95.2 82.1 17.9 1,469.6 73.9 
Middle 108.7 97.5 17.0 1,657.5 77.2 

20.32 KP 
Outside 80.2 70.6 11.5 811.9 94.6 
Median 91.7 82.5 16.3 1,344.8 86.3 
Middle 103.1 93.0 16.3 1,515.9 92.5 
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Parameters on Lane Choices 
 
To estimate the parameters on the cost function for the lane choice in Equation 1, the variance 
parameter θ is empirically set as 1,000. The number of iterations to get the convergence solution 
of Problem 1 (P-1) is set as 50. The number of cells consists of the imaginary ring road is set as 
3. As previously mentioned, at any observation site α1 and β1 is set as 0 and 1.0, respectively, to 
standardize the lane choice costs.  

The comparisons between the observations and estimation of lane-flow distribution based 
on the estimated parameters are shown in Figure 5, and the estimation results are summarized in 
Table 2. It is interestingly noted that the range of the estimated parameters is almost the same for 
all observation sites. It implies the validity of the estimation results, which can be confirmed by 
the comparison results showing the good fits to the observations with high accuracy. Concretely, 
the estimation of the lane-flow distribution captures the features that when traffic density is few 
the fraction of outside lane is dominant, and as the traffic density increases the most dominant 
lanes shift to the middle lane, and finally the median lane becomes the most dominant, though 
this feature is slightly different among the observation sites. Thus, these results imply the validity 
of the approach employed in the research that the lane-flow distribution is formulated as the SUE 
condition, and the motivations behind the spontaneous lane changes are simply described by the 
compliance with the keep-left rule and the sensitivity to the increase of the travel time.   
 
Discussions 
 
Hereafter, the paper dicusses the characteristics of lane use along the sag section on the basis of 
the estimated lane-choice parameters. Figure 6a shows the comparisons of the estimated 
parameter, α, indicating the degree of compliance with the keep-left rule. If the average speed of 
each lane is high, the second term of Equation 1 becomes lower, and the influence of the 
parameter on lane choice becomes relatively higher, that is, the parameter, α, has more influence 
in the light traffic situation. The larger this parameter of a lane is, the more the cost to drive on 
the lane is. According to Figure 6a, it is clearly shown that the value of the median lane is larger 
than the middle lane for any site, which implies that the median lane is basically not likely to be 
chosen when traffic volume is not so large. Focusing on the differences among the observation 
sites, it appears that on 25.20 KP, which is the beginning of the downhill section, the parameter 
of the middle lane is higher than that of 23.12 KP, which is the middle point of the downhill 
section. It means that in the light traffic the fraction of use of the outside lane at 25.20 KP is 
larger and gradually shifts to the middle lane toward the middle point of the downhill at 23.12 
KP. At the bottom of the sag on 20.90 KP, the value of the median lane is slightly higher than 
23.12 KP, while that of the middle lane is almost same. At the uphill section of 20.32 KP, the 
value of the middle lane gets higher as well as the median lane. These facts indicate that in the 
case of light traffic, on the downhill section where free flow speed tends to be high, the 
proportion of the middle lane becomes high, whereas on the bottom and uphill section, where 
free-flow speed becomes gradually lower, the proportion of lane use shifts to the outside lane. 
This tendency can be seen in Figure 5.  
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FIGURE 5  Comparisons between observations and estimations of lane-flow distribution: 
(a) 25.20 KP; (b) 23.12 KP; (c) 20.90 KP; and (d) 20.32 KP. 

 
 

TABLE 2  Parameters on Lane Choices 

Sites 25.20 KP 23.12 KP 20.90 KP 20.32 KP 

α1 0 0 0 0 

α2 0.0134 0.0120 0.0122 0.0133 

α3 0.0179 0.0181 0.0185 0.0192 

β1 1 1 1 1 

β2 0.830 0.830 0.828 0.830 

β3 0.802 0.809 0.807 0.800 

 
  

C e l e b r a t i n g  5 0  Y e a r s  o f  T r a f f i c  F l o w  T h e o r y

C o p y r i g h t  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

http://www.nap.edu/22095


Shiomi and Kozono 207 
 
 

Figure 6b shows the comparison results of the sensitivity parameter to travel time, β. This 
parameter can be interpreted as follows: The larger the parameter is, the less the lane is likely to 
be chosen as traffic gets congested. It should be interestingly noted that all the estimates shown 
in Figure 6b are less than 1.0, which is corresponding to the parameter of the outside lane. It 
implies that the outside lane is less likely chosen than the other lanes when traffic volume is 
high. Also, it can be found that the parameters of the median lanes are less than the middle lanes 
in any sites, which indicates that the dominant lane shifts from the outside, middle to the median 
as traffic volume increases. These seem to be valid results. Next, the estimation results are 
compared among the observation sites. As seen in the figure, the sensitivity of the median lanes 
on 23.12 KP (at the middle of the downhill) and 20.90 KP (at the bottom of the sag) are higher 
than the other sites, while no large differences in the sensitivity of the middle lanes among the 
observation sites are found. It means that on the section from the midpoint of the long downhill 
to the bottom of the sag, the traffic flow tends to use less on the median lane in comparison to the 
bottleneck point on 20.32 KP. In addition, the fact that the parameter on the middle lane at 20.90 
KP is slightly less than the other sites implies that at the bottom of sag traffic flow tends to use 
more on the middle lane. The underlying mechanism inducing such results can be considered as 
follows: On the long downhill section, the traveling speed is high enough on average that drivers 
are not strongly motivated to use the median lane, rather they choose more to drive in the middle 
lane. When traffic flow comes to the uphill section, it slows down the driving speed on the 
whole, and drivers in the middle lane try to change the lane to the median to get the speed gain. 
As pointed out in Patire and Cassidy (25), the lateral traffic dynamics beyond lanes might cause 
speed disturbance, which might makes 20.32 KP a bottleneck. Although these findings are to be 
confirmed by the direct observations on the lane change behavior, it is revealed that the proposed 
method can be applied to grasp the characteristics of lane use from the macroscopic point of 
view.  
 
 

      
(a) (b) 

FIGURE 6  Comparisons of estimated parameter values:  
(a) parameters of keep-left term; (b) parameters of sensitivity to travel time. 
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CONCLUSIONS 
 
In this contribution, a multilane, first-order, macroscopic traffic flow model is developed. In the 
model, it is assumed that a driver changes lanes to improve the utility or cost of driving 
circumstance. The utility–cost function is composed by a constant value, indicating the cost to 
break the keep-left rule; a coefficient of the inverse of the speed defined by the fundamental 
diagram, indicating the sensitivity to the increase of the travel time; and an error term, implying 
the heterogeneity of drivers and the limitation of the information about the surrounding traffic 
situation. Then, the parameters on the cost function are successfully calibrated on the basis of the 
data collected from the conventional loop detectors. Also, on the basis of the estimated 
parameters, the multilane traffic dynamics on the section including sag are discussed. As a result 
of the parameter calibration using the data collected at four different sites of the Chugoku 
Expressway in Japan, including sag bottleneck, the following are revealed: 
 

1. The proposed method can represent the lane flow distribution of any observation sites 
with high accuracy with the observations, and 

2. The estimated parameters can reasonably explain the multilane traffic dynamics and 
the bottleneck phenomena on uphill of sag section.  
 

In this study, the parameters of the cost function for lane choices are limitedly calibrated. 
Although these parameters are significant for representing the lane-flow distribution, they can 
limitedly capture the static characteristics of lane use. To depict the occurrence of lane changes, 
it is essential to calibrate the dynamics parameter, τ, which adjusts the number of lane change 
vehicles. For this purpose, dynamic feedback system employing Kalman filter family method 
would be applicable. In addition, it is recommended to upgrade the multilane traffic flow model 
to depict, for example, mandatory lane changes at such sections with on- and off-ramps, merging 
and diverging with multiclass representation.  
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INTRODUCTION 
 
Traffic oscillations have been the subject of intensive research since the 1950s. Originally, linear 
car-following laws were used to analyze oscillation properties (1, 2), but more recently, 
nonlinear car-following laws have been used in order to reproduce more accurate car-following 
behavior (3). While calibrating the nonlinear laws with field data, however, most research 
focuses on matching vehicle trajectories in the time domain. Li et al. (4, 5) incorporated 
frequency domain properties (e.g., oscillation periodicity and amplitude) into car-following 
model calibration such that the describing-function approach (DFA) can be used to predict the 
oscillation behavior of a homogeneous platoon (6). No consideration was given to ensure 
prediction accuracy in both the time- and frequency-domains simultaneously. 

This paper proposes a new approach to calibrate the parameters in a driver-dependent 
nonlinear car-following law based on field trajectories. This method is shown to achieve a better 
balance between time- and frequency-domain trajectory properties. The developed calibration 
framework implements maximum likelihood estimation with a simulation-based feedback 
incorporating both time- and frequency-domain prediction errors. The likelihood estimator is 
obtained from a modified Tobit model to capture the nonlinearity of the car following model 
(e.g., because of truncation near zero or maximum speeds). The feedback is established by 
comparing the observed field trajectory with the simulated one under a certain car-following law, 
where their actual trajectories and frequency spectrums are used to compute their time- and 
frequency- domain errors, respectively. The car-following law is calibrated for each pair of 
leader-follower drivers, allowing researchers to consider a platoon of heterogeneous drivers. The 
DFA can then be used to predict oscillation propagation in a platoon. 
 
 
METHODOLOGY 
 
Researchers consider n vehicles, numbered i = 1, 2, …, n, traveling in a platoon in one lane. The 
trajectory of vehicle i, with position at time t denoted by xi(t), is assumed to satisfy a nonlinear 
car-following law. Field trajectory data is used to calibrate the car-following law, and  the 
designed feedback guarantees that the simulated trajectories reproduce the field trajectory well in 
the time–space diagram and the frequency spectrum. The DFA can then be used to predict the 
oscillation propagation for the entire platoon, which serves as a validation of the calibration 
approach. In the rest of this section, the paper starts by describing the model calibration 
technique used to obtain simulated trajectories from field data. 
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*

Model Calibration 
 
For illustration, researchers calibrated Newell’s nonlinear car-following law, which adjusts the 
desired velocity based on spacing and physical bounds (7): 
(ݐ)∗௜ݒ  = mid{0, ݇ ቀݔ௜	–ଵ൫ݐ	– –	ݐ൫	௜ݔ	–	൯ݎ ൯ቁݎ ,ݓ–  {୫ୟ୶ݒ
 
where ω is the backward shockwave speed, k is the sensitivity factor of driving aggressiveness, 
vmax is the upper bound on velocity, and τ is the reaction time. A modified version of the Type I 
standard Tobit model (8) is used to calibrate the vector of model parameters <k, τ, ω, vmax>. 
Since velocity has both lower and upper bounds, the Tobit model must be censored from above 
and below, yielding the following piecewise model for the actual velocity of vehicle i at time t: 
 0		 if	ݒ௜∗(ݐ) 	≤ 0 
 vi(t)	=			vi	(t)	+ E	 if	0	<	vi	(t)	<	vmax		 		vmax	+	E		 if	vi	max	
 

where the error term, ε, follows a normal distribution with mean zero and standard deviation σ. 
The model is then calibrated using maximum likelihood estimation based on observed 

trajectories in time increments. Note that the velocity upper bound is one of the maximum 
likelihood estimators (MLE). To obtain a balance between the time- and frequency-domain 
properties of the trajectory, two adjustments are made to the MLE calculation. The first 
adjustment ensures accuracy in the simulated trajectory by introducing a penalty based on the 
mean-square error between the field and simulated trajectories. The second adjustment ensures 
accuracy in the frequency domain by introducing another penalty based on the difference in 
amplitude of the two largest frequencies after the discrete Fourier transform is conducted on both 
the field and simulated trajectories. 

After the adjustments are made, a heuristic search method (e.g., simulated annealing) is 
used to find the best parameter vector <k, τ, ω, vmax> that maximizes the likelihood function. 
Since the platoon is made of heterogeneous drivers, the model calibration process is conducted 
for each pair of consecutive drivers. 
 
Oscillation Prediction 
 
Given the oscillation properties (i.e., amplitude and periodicity) of the leading vehicle, the DFA 
(6) can be applied to predict those of the following vehicle under the calibrated nonlinear car-
following law. A general car-following law governing any two adjacent trajectories is 
considered: 
 xi(t)	=	Li[Ni(xi-l(t)	−	xi	(t))]	
 
where Li(∙)	is a linear operator and Ni(∙)	is a nonlinear function of spacing. The trajectory of each 
vehicle is first decomposed into its macroscopic, x ̅i, and oscillatory, xi, components. The Fourier 
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transform is then performed on the oscillatory component, and the describing function method is 
used to separate the nonlinear and linear components of x	i, yielding 

 x	 i(Ω)	≅	Li (Ω)	∙	Ni(x i–l(Ω)	−	x i(Ω))	∙	(x	 i–l(Ω)	−	x	 i(Ω))	
 
in the frequency domain. Figure 1 shows the system block diagram that represents the above 
equation, where the linear operator contains an integrator and a time delay (i.e., reaction time). 

Li et al. (5) proposed a method to find xi(Ω)	for a given xi–l(Ω)	in a homogeneous 
platoon. In this paper, however, the car-following law is calibrated for heterogeneous drivers 
instead of an average driver, so this process must be repeated for each pair of consecutive 
drivers. The oscillation properties of the trajectories can then be predicted [see Li et al. (5) for 
more details] and compared with field trajectories. This confirms the accuracy of the proposed 
model calibration approach in the frequency domain. 

By maintaining a balance between time- and frequency-domain properties, the calibrated 
car-following models can more accurately reproduce car-following patterns in both domains. The 
magnitudes of the penalties assigned during the maximum likelihood estimation are adjustable to 
fit for various scenarios where either the time- or frequency-domain accuracy is more relevant 
(higher penalty on frequency domain errors would lead to better oscillation propagation 
predictions). 
 
 
NUMERICAL EXAMPLE 
 
Empirical trajectory data are used to validate the proposed model calibration and oscillation 
prediction framework. For illustration, this paper considers the platoon consisting of vehicles 86–
101 from the NGSIM data on southbound US-101 in Los Angeles, California, from 7:50 to 8:35 
a.m. on June 15, 2005. 

Newell’s car-following law is used for illustration, and the best Newell model parameters 
for each driver are calibrated. An example of a calibration result (the 92nd driver) can be seen in 
Figure 2. The calibrated parameters for this driver are < k = 0.7031, τ = 1.0500 s, ω = 9.5386 ft/s, 
and vmax = 47.5789 ft/s>. 
 
 

 

FIGURE 1  Block diagram of Newell’s nonlinear car-following law. 
 

 

	 ∫ 	Ni Li
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FIGURE 2  Example of a Tobit estimation result (Driver 92). 

 
 

With the calibrated car-following model for each driver, trajectories of all vehicles in the 
platoon can be simulated. The simulated and field trajectories match pretty well in the time 
domain, as shown in Figure 3. Then, the DFA is performed on the simulated trajectories to 
obtain the oscillation properties; see Figure 4. It can be seen that the predicted growth of 
oscillation amplitude matches also quite well with field observation in the frequency domain. 
More examples and insights will be furnished in the full paper. 
 
 
 

 

FIGURE 3  Platoon trajectory reproduction prediction in the time domain. 
  

C e l e b r a t i n g  5 0  Y e a r s  o f  T r a f f i c  F l o w  T h e o r y

C o p y r i g h t  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

http://www.nap.edu/22095


214 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 

 

FIGURE 4  Oscillation propagation via frequency–domain DFA. 
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he predictions of a well-calibrated traffic simulation model are much more valid if made for 
various conditions. Variation in traffic can arise as a result of many factors such as time of 

day, weather, and accidents. Calibration of traffic simulation models for traffic conditions 
requires larger datasets to capture the stochasticity in traffic conditions. “Big Data” collected 
using radio frequency identification (RFID) sensors, smart cellphones, and GPS devices provide 
extensive traffic data. This study shows the utility of Big Data to incorporate variability in traffic 
flow and speed for various time periods. However, Big Data poses a challenge in terms of 
computational effort. With the increase in number of stochastic factors, the numerical methods 
suffer from the curse of dimensionality. This paper proposes a novel methodology to address the 
computational complexity due to the need for the calibration of simulation models under highly 
stochastic traffic conditions. This methodology is based on sparse grid stochastic collocation, 
which treats each stochastic factor as a different dimension and uses a limited number of points 
where simulation and calibration are performed. A computationally efficient interpolant is 
constructed to generate the full distribution of the simulated flow output. This paper shows that 
this methodology is much more efficient that the traditional Monte Carlo (MC)–type sampling. 
 
 
INTRODUCTION 
 
Simulation models are mathematical models in which output is derived from a particular model 
given the input. The input consists of two main groups of data: physical input data, Is, (e.g., 
volume counts, capacity, and physical features of roadway sections) and calibration parameters, 
Cs (i.e., adjustable components of driver behavior). Outputs from a simulation model can be 
expressed as 
 ܱ௢௕௦: ,௦ܫ)݂ (௦ܥ → ܱ௦௜௠|ܫ௦, ௦ܥ + 	ε (1) 
 
where 
 
F(Is,Cs)  = functional specification of the internal models in a simulation system; 

Osim  = simulation output data given the input data and calibrations;  
ε  = margin of error between simulation output and observed field data; and  

Oobs  = observed field data. 
 

T 
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The process of calibration entails adjusting the calibration parameters (Cs) so that the 
error between the output from simulation and field conditions is acceptable. 

Calibration parameters estimated using limited samples are not always representative of 
all possible conditions of the simulated system and will thus result in inaccurate predictions. In 
other words, models that are not adequately calibrated cannot accurately capture time-varying 
conditions of traffic. Traditional sources of traffic data used in the calibration of traffic models 
are either limited by the availability of the data that only cover typical conditions or may not be 
reliable enough. However, with the advent of new technologies, information is on the fingertips 
of users by means of smart phones, GPS-equipped devices, and RFID readers. The rapid rise in 
information technology also has resulted in innovative ways to obtain space- and time-sensitive 
information in real time. This, in turn, has led to massive amounts of passively collected location 
and event data for various time periods, also called “Big Data.” Big Data provides an opportunity 
to validate and calibrate traffic simulation models for a variety of conditions. 

Variability can be incorporated within inputs (demands), Is, and calibration parameter set 
(supply), Cs, during different periods of the day, weather conditions, driver population 
composition, highway geometry, and more. There were a number of studies that captured traffic 
variability (1–5). However, the increase in the number of factors affecting stochasticity increases 
the dimensionality of the calibration process. This in turn results in increased computational 
effort required in calibrating traffic simulation models for different conditions such as variability 
within weekday/weekend, and seasonal variability, and special situations including adverse 
weather and workzones.  

This study proposes a novel methodology to address the computational complexity due to 
the need for the calibration of simulation models under highly stochastic traffic conditions. The 
utility of Big Data to incorporate variability in traffic flow and speed for various time periods is 
shown. 
 
 
LITERATURE AND MOTIVATION 
 
There are myriad studies that deal with calibration of traffic simulation models (5–11, 12–19). 
Because of space constraint, only a sample of them is shown in Table 1.  

Table 1 also shows the data used in these studies for the calibrating process. It can be 
seen that in most studies data used for calibration are limited to a.m. and p.m. peak periods no 
more than a few days. Thus, the data capture only a few specific conditions or are a dilute sample 
of different conditions. Hence, it is expected that the model predictions will only be accurate for 
those specific conditions. 

The effect of data and parameter uncertainty in traffic simulation models has received 
considerable attention recently (18, 19). Studies from other fields indicate that bias and variance 
in simulation output results are a result of the bias and variance in the input models used, after 
simulation error is eliminated; the input models consist of simulation model inputs and 
parameters.  
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TABLE 1  Summary of Literature on the Calibration of Traffic Simulation Models 

Authors 

Complexity; 
Simulation 

Tool 

Type of 
Roadway
Section 

Performance 
Outputs 

Data Used in  
Calibration 

Ma and Abdulhai 
(7) 

Micro; 
PARAMICS  

Urban  Traffic  
counts  

Detector data for 1 h during 
a.m. peak 

Kim and Rilett (6)  CORSIM,  
TRANSIMS  

Freeway  Volume  Data 5 loop detector stations for 
13.9-m section of freeway for 1 
h during a.m., p.m., and off 
peak 

Hourdakis et al. 

(11)  

Micro; 
AIMSUN 

Freeway  Volume  5-min data from 21 detector 
stations for a 12-m freeway 
section during p.m. peak for 3 
days 

Jha et al. (12)  Micro; 
MITSIMLab  

Urban  
network  

Travel time  Detector data for 15 days for 
a.m. and p.m. peaks on a large 
urban network 

Toledo et al. (13)  Micro; 
MITSIMLab  

Freeway,  
arterial  

Speed,  
density  

Data from 68 detector stations 
on 3 freeways for 5 weekdays 

Qin and 
Mahmassani (14)  

Macro; 
DYNASMA  
RT-X  

Freeway 
network  

Speed  Data from 7 detector stations on 
3 freeways during a.m. peak for 
5 weekdays 

Balakrishna et al. 
(15)  

Micro; 
MITSIMLab  

Freeway,  
parkway  

Traffic  
Counts  

15-min data from 33 detector 
stations 

Zhang et al. (8) Micro; 
PARAMICS 

Urban 
freeway 
network 

Flow, 
Occupancy 

5-min detector count during 
p.m. peak for 7 days 

Li et al. (1) Macro Freeway Flow Loop detector data 

Lee and Ozbay (5) Micro; 
PARAMICS 

Freeway Speed, 
Counts 

5-min detector count during 
a.m. peak for 16 days  

Zhong and Sumalee 
(3) 

Macro Freeway Flow Loop detector data for 7 h on 3 
days in 2 years 

Yang and Ozbay (9) Micro; 
PARAMICS 

Freeway Traffic 
conflict, lane 
change, 
volume, and 
speed 

NGSIM trajectory data for  
US-101 for 15 min 

Henclewood et al. 
(18) 

Micro Freeway Travel time 
distribution 

NGSIM trajectory data for 
Peachtree Street in Atlanta, Ga., 
for 30 min 

Punzo et al. (19)  Micro Freeway Speed NGSIM trajectory data for I-180
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FHWA’s Traffic Analysis Toolbox (20) recommends that if GEH < 4, where 
 

  

 
for link volumes for 85% of the links and average travel times are within 15% of observed 
values, then it is considered as a satisfactorily calibrated model (20). In order to achieve this 
level of calibration for various conditions (peak, off-peak, weekends, normal and inclement 
weather, under accident, and other events), a detailed level of data is required. 

As illustrated in Table 1, most of the studies in traffic simulation used a limited amount 
of data focusing on a small set of conditions or time periods, or both. As depicted in Figure 1, 
using only smaller samples of data will not accurately capture variation in traffic data 
[additionally, the sources of field data in most of these studies, except (5–9, 19), have been 
traditional sources such as loop detectors or manually-acquired data from captured videos, which 
can be cumbersome and not always accurate enough]. Using these models for conditions other 
than the ones for which calibration data are available would not yield accurate results.  

Ozbay et al. (22) showed that the existence of a typical day in traffic demand is not 
always likely. Hence, to obtain accurate predictions from a traffic simulation model, it is 
important to consider not only the demand from various clusters, but also the variation of 
demand within each cluster. 
 
 
COMPUTATIONAL COMPLEXITY 
 
In cases in which large sources of data spanning different conditions are available, to capture the 
stochasticity in traffic conditions, there is an increase in number of factors of stochasticity. This 
in turn increases the dimensionality of the calibration process. This then results in increased 
computational effort required in calibrating traffic simulation models for various conditions. 

Most studies capturing stochasticity in computational traffic models use an MC-type 
independent sampling of M simulation runs for various traffic conditions. The number of 

replications needed to be at a level of precision γ is given by . However, the 

convergence rate for MC-type method or Latin hypercube sampling is slow, O(1/√M) (23). All of 
these numerical methods suffer from the curse of dimensionality. Thus, depending on the size of 
the network and number of stochastic dimensions, these approaches can become prohibitive in 
terms of computational effort. It may not be possible at all to simulate the output for each and 
every possible realization of parameter and input. Also, all possible points in the stochastic space 
of simulation output may not have the corresponding observed data. Thus, it is important to 
obtain an effective interpolation methodology for predicting output for points with no data. 
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FIGURE 1  Illustration of various traffic conditions for which data are required for 
calibration [adapted from (21)]. 

 
 
METHODOLOGY 
 
Use of Big Data 
 
Based on the discussions above, making accurate predictions using traffic simulation models 
requires calibration data from many sources and in great detail. This data need can be effectively 
addressed by the advent of new technologies such as GPS, cellular phones, and RFIDs. The 
ubiquity of these technologies ensures that data of great detail and variety are available. Various 
demand, speed, flow, and event data can be obtained from the Big Data sources. 

This study uses a hybrid of electronic toll collection (ETC) data for demand and traffic 
sensor data for speed and flow. ETC data are collected for all toll ways in the United States and 
in New Jersey. Taking toll facilities in New Jersey as an example, New Jersey Turnpike 
(NJTPK) is spread over 150 mi with 28 interchanges and 366 toll lanes. The Garden State 
Parkway is about 170 mi long with 50 toll plazas and 236 toll lanes. Each freeway carries up to 
400,000 vehicles per day (24). The ETC data are collected at toll plazas on these freeways (24). 
The ETC dataset consists of the individual vehicle-by-vehicle entry and exit time data. It also 
consists of the information regarding the lane through which each vehicle was processed (both E-
ZPass and cash users), vehicle types, number of axles, and more. 
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The demand from the ETC data is divided into clusters so that different demand patterns 
can be analyzed separately. The corresponding sensor data are also obtained into clusters. The 
simulation is performed using the clustered demand data distribution and simulation output of 
flow, and density is compared to the observed distribution from sensor data. 
 
Stochastic Collocation 
 
As mentioned earlier, there is a need to combat the issue of a high number of replications and 
dimensionality when using MC-type methods in capturing stochasticity using computational 
traffic models. Stochastic spectral methods provide an efficient alternative to MC-type methods. 
In these methods, stochasticity is treated as another dimension, and the stochastic solution space 
Ω is discretized and approximated (Γ). One such stochastic spectral method is stochastic 
collocation (SC), where the approximation is performed using deterministic solutions at a set of 
prescribed nodes (collocation points) and an interpolation function. For a set of Q points in the 

stochastic space where the simulation output is calibrated, , the polynomial 

interpolation can be shown as (25) 
 

 (2) 

 
The choice of weights (i.e., the basis functions Φk) in SC depends on the interpolation 

technique. It is important to note that, unlike MC-type sampling methods, the weights assigned 
to each deterministic output are different in stochastic collocation methods. 

Computationally efficient schemes such as the Smolyak algorithm are used to reduce the 
number of collocation points (26, 27) at higher dimensions of stochasticity. Smolyak algorithm, 
developed originally for multidimensional integration, entails evaluating deterministic solutions 
at the nodes of sparse sampling grids and building the interpolation function. One dimensional 

interpolant, with the Smolyak algorithm, is given by, 

Sparse interpolant in N-dimensions and q–N interpolation order is given by 

 

 (3) 

The advantage of this recursive/nested structure is that to increase the order of 
interpolation (accuracy) researchers can use all of the deterministic solutions from the previous 
steps, Aq-1,N, by adding a few more deterministic solutions: ΔiN. When new data are available, 
additional deterministic solutions can be evaluated, and accuracy of interpolant is improved. 

Convergence rate of the interpolant is of the order, O(Q–2|logQ|3(N – 1)) (for piecewise 
linear basis), O(Q–k|logQ|(k + 2)(N – 1)) (for k-polynomial basis). This rate can be controlled by the 

{ }
1

Q

j j=
∈ ΓΘ

1

ˆ( , , ) ( , , ) ( ) ( , ) ( ) ( ),

( ) = interpolating basis polynomials

( ) = the deterministic solution at 

Q

j k j
j

k j

j j

x t x t p d x x x D

x

ρ

ρ

=Γ

≈ ≈ = Φ ∀ ∈

Φ

ρ ξ ρ ξ ξ ξ ρ Θ Θ

Θ

Θ





1

( ) ( ) , # nodes at level .
im

i
j j i

j

U f f L m i
=

= Θ =

1 1

1 0

, 1,

; 0

( ) ( ... )( ) ( ) ( ... )( )N N

i i i

i ii i
q N q N

q q

U U U

A f f A f f

−

−
≤ =

Δ = − =

= Δ ⊗ ⊗ Δ = + Δ ⊗ ⊗ Δ 
i i

C e l e b r a t i n g  5 0  Y e a r s  o f  T r a f f i c  F l o w  T h e o r y

C o p y r i g h t  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

http://www.nap.edu/22095


Mudigonda and Ozbay 221 
 
 

polynomial order k (26, 27). Thus, it is shown, empirically, that convergence of this interpolant is 
better than the MC method. 

An illustration of the discretization of the stochastic space is shown in Figure 2.  
From each realization of the parameter set, using the demand distribution as an input, the 

simulation output distribution (e.g., flow or density distribution) is generated. This distribution is 
compared with the observed output distribution and using a test statistic (such as the test statistic 
from the KS test), the error is estimated. This error is used as an objective function and is 
minimized as part of the multi-objective parameter optimization (shown in Equation 4) using the 
simultaneous perturbation stochastic approximation (SPSA) algorithm. In this study the weights 
(w) used are the coefficients of variation of each output measure from the observed data. 

 	∑ ቄݓ௜ ଵܷ ቀݍ௜ை௕, ௜ௌ൫Θ௧௞൯ቁݍ ,ଶܷଶ(ρ௜ை௕ݓ	+ ρ௜ௌ൫Θ௧௞൯)ቅே௜ୀଵ஀೟௠௜௡  (4) 

 
where 
,௜ை௕ݍ  ,௜ௌ = observed and simulated flows at location i; ρ௜ை௕ݍ ρ௜ௌ = observed and simulated densities for location i; Θ௧௞ = parameter set for time period t and iteration k; 
w1, w2 = weights for the error measures; and 
U1, U2 = functions representing the errors in flow and density. 

 
The main advantages of using this methodology are the following: 

 
 

 

FIGURE 2  Example of approximation of stochastic space by collocation points. 
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1. Flexibility in applying to any type of traffic simulation (first order, second order, 
meso–microscopic, and more); 

2. Computationally more efficient than MC-type exhaustive sampling methods with 
effective interpolant to generate full distribution of simulation output;  

3. Time consumed by the collocation approach can be further reduced by parallelizing 
the simulation under each condition; and 

4. Nested form of the algorithm is useful in refining the interpolant as and when there is 
new data available. 
 
 
RESULTS 
 
In order to illustrate the stochastic variation in traffic conditions, a three-lane section of the 
NJTPK at Interchange 7 was chosen. Although, microscopic traffic simulation tools such as 
Paramics provide a detailed and relatively accurate platform for modeling, the model building, 
calibration, and execution can be very time consuming. When studying the effects of various 
stochasticities, the  focus was on a first-order macroscopic traffic simulation model to model the 
traffic flow in the section. The time and space for the model were discretized using the cell 
transmission model. A schematic representation of the simulated section, the stochastic input, 
and model parameters are shown in Figure 3. 

The variation in demand at this section was captured using the ETC data for every 5 min 
between January 1 and August 31, 2011. The demand is divided into clusters using k-means 
algorithm. The optimal clusters for the demand distribution are shown in Figure 4. These data 
illustrate that primarily there are three clusters of data: weekday, weekend high, and weekend low.  

Each line depicted in Figure 4 is the mean of the cluster for each of the demand cluster. 
Using the actual demand values from each of the mean does not take into account the variability 
in traffic conditions and may not be useful. Thus, for each cluster, the distribution of demand 
during each 5-min time period is generated as illustrated in Figure 5. The simulation is 
performed for a.m. peak (7:00 to 9:00 a.m.) and off-peak (10:00 a.m. to 12:00 p.m) period for 
weekday demand cluster and peak period (10:00 a.m. to 12:00 p.m.) of the weekend demand  

 
 

 

FIGURE 3  Schematic representation of the study section. 
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FIGURE 4  Clusters and distribution of demand for the  
mainline section at Interchange 7 of NJTPK. 

 
 

 

FIGURE 5  Illustration of demand distribution at various  
sampled times during a.m. peak period. 
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cluster. It is to be noted that, especially during the peak period, the demand distribution for each 
sampling period (15 min) is different from the other period. Additionally, since this input 
parameter is demand as opposed to flow, each sampling period can be treated as independent of 
the other time period. So for simulating 7:00 to 9:00 a.m. with 15-min demands, there will be 
eight separate demand distributions, each of which has to be treated as an independent stochastic 
dimension. 

Traffic sensor data available between January 1, 2011, and August 31, 2011, for every 5 
min were used to generate the speed and flow data required for calibration. The sensor data were 
separated into the same clusters for the same time periods as the demand clusters. Thus, similar 
flow distribution data were generated. 

For each of the three time periods, a.m. peak (7:00 to 9:00 a.m.) and off-peak (10:00 a.m. 
to 12:00 p.m.) periods for weekday demand cluster and peak period (10:00 a.m. to 12:00 p.m.) of 
the weekend demand cluster, the simulation model was calibrated. As mentioned in the 
methodology, with the demand distribution as an input, for each realization of the parameter set, 
the simulation output flow distribution was generated. This distribution was compared with the 
observed flow distribution, and using a test statistic [such as the test statistic from the 
Kolmogorov-Smirnov test (KS) test], the error was estimated. This error was used as an 
objective function and was minimized using the SPSA algorithm. The result of calibration was 
demonstrated using the comparison of simulated and observed flow. 

For this study, the Clemshaw-Curtis grid (a two-dimensional version of which can be 
seen in Figure 2) was the appropriate sparse grid to discretize the stochastic demand. The 
simulation was calibrated using the demand values at each of these grid points. The objective 
function for calibration was the test statistic used in the KS test at 90% significance, maximum 
separation between two distributions. As mentioned in Equation 3, a sparse grid interpolation 
was performed for the output of the simulation and a Smolyak interpolant is constructed. 
Distribution of simulated flows was obtained by repeated evaluation of the Smolyak 
interpolation function. The simulated flow distribution was compared to the observed 
distribution from the sensor data.  

The comparison of observed and simulated flow distributions from the calibrated model 
for a.m. peak period is shown in Figure 6.  

In order to compare the efficiency of the stochastic collocation approach, the distribution 
of simulated flow after model calibration was also generated using the MC sampling method. In 
order to achieve the flow distribution, the SC approach required 2,433 evaluations for various 
stochastic demand combinations. However, using an MC-type sampling required 240,000 runs of 
the simulation model. The reason, as mentioned earlier, was because of the ability to construct an 
efficient Smolyak interpolant that uses the simulation output from much fewer runs.  

As the second case study, the flow distribution during the off-peak period was also 
generated using the sparse grid interpolation. The comparison of observed and simulated flow 
distribution from the calibrated model for weekday off-peak period is shown in Figure 7. It was 
observed that there was no flow breakdown during this time period. As in the first case study, the 
distribution of simulated flow after model calibration was also generated using the MC sampling 
method. In order to achieve the flow distribution, the SC approach required 441 evaluations for 
various stochastic demand combinations. However, when using an MC-type simulation required 
5,420 samples. 
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FIGURE 6  Comparison of observed and simulated link flow  
distributions during a.m. peak period. 

 
 

 

FIGURE 7  Comparison of observed and simulated link  
flow distributions during off-peak period. 
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As the third case study, the flow distribution during the high- and low-demand weekend 
peak period was also generated using the sparse grid interpolation. The comparison of observed 
and simulated flow distribution for weekend peak period is shown in Figure 8. It can be observed 
that there was no flow breakdown during this time period. Distribution of simulated flow is also 
generated using the MC sampling method. In order to achieve the flow distribution, the SC 
approach required 441 evaluations for various stochastic demand combinations. However, using 
an MC-type simulation required 8,000 samples. 

The motivation behind using data from a variety of conditions was to capture the 
stochasticity in traffic conditions. To illustrate the drawback of using limited data, researchers 
compared the distribution of flow for high- and low-weekend demands with the case where only 
three weekend days of flow and demand were used to calibrate the weekend model. The 
simulated flow distributions (shown in Figure 8) from a limited data model do not match, not 
only the weekend model with high demand but also the weekend model with low demand. This 
illustrates the drawback in using limited data for model calibration and the importance of 
considering stochasticity in traffic conditions when calibrating traffic simulation models.  
 
 
CONCLUSIONS AND FUTURE WORK 
 
The predictions of well-calibrated traffic simulation model are robust if the predictions made for 
various conditions are accurate. Variations in traffic can arise as a result of many factors, such as 
time of day, weather, and accidents. Calibration of simulation models for traffic conditions 
requires larger than traditionally adopted datasets capturing the stochasticity in traffic conditions. 
 
 

 

FIGURE 8  Comparison of observed and simulated link flow distributions for  
low and high clusters during weekend peak period. 
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The advent of new technologies such as RFID sensors, smart cellphones, and GPS devices 
provides extensive traffic data, an example of Big Data. Big Data provides a viable alternative to 
traditional traffic data sources in providing larger and richer datasets. Although Big Data 
provides greater variation in data, it poses a challenge in terms of computational effort. With the 
increase in number of stochastic factors, the numerical methods suffer from the curse of 
dimensionality. If traditional MC-type sampling is used, the computational effort required to 
simulate and calibrate traffic simulation models for various conditions could become intractable.  

This study used ETC data for a period from January to August 2011 to capture various 
traffic conditions. A novel methodology to encapsulate stochasticity into macroscopic traffic 
simulation models and their calibration with much lower computational effort was proposed. 
Stochastic collocation, a type of stochastic spectral method, was used to capture stochasticity in 
traffic. This method treats each stochastic factor as a separate dimension. Each dimension is 
discretized using a set of collocation points, and an interpolant for the output is constructed using 
the simulation output at these points. In this study researchers used the Smolyak sparse grid 
interpolation method due to the high number of stochastic dimensions. 

The main advantages of using this methodology are the following: 
 

1. Flexibility in applying to any type of traffic simulation (first order, second order, 
meso–microscopic, and more); 

2. Computationally more efficient than MC-type exhaustive sampling methods with 
effective interpolant; 

3. Time consumed by the collocation approach can be further reduced by parallelizing 
the simulation under each condition; and 

4. Nested form of the algorithm is useful in refining the interpolant as and when there 
are new data available. 
 

To demonstrate the usefulness of this methodology, it was tested for a short on-ramp–off-
ramp section of NJTPK in the vicinity of Interchange 7. The variation in demand at this section 
was captured using the ETC data for every 5 min between January 1, 2011, and August 31, 2011. 
The demand was divided into clusters using k-means algorithm into weekday, weekend high, and 
weekend low clusters. The methodology was applied to calibrate the macroscopic first order 
traffic simulation model for a.m. peak (7:00 to 9:00 a.m.) and off  peak (10:00 a.m. to 12:00 
p.m.) period for weekday demand cluster and the peak period (10:00 a.m. to 12:00 p.m.) for high 
and low weekend clusters. For calibrating the model, researchers used the test statistic from the 
KS test for flow distributions on the link as the objective function. This measure was minimized 
using the SPSA algorithm. It showed that the comparison of simulated and observed flow 
distributions for the peak and off-peak periods match well. Also compared was the simulated and 
observed flow distributions for weekend peak demand; they matched well. Also illustrated was 
the advantage of using varied traffic conditions for model calibration by comparing the simulated 
flow distributions generated using models calibrated with a large set of data and models 
calibrated using limited days of demand and flow data.  

As a part of future work, the probability density function of flows and densities at various 
sections will be validated using a holdout dataset. Also this methodology will be extended to 
larger highway sections for larger freeway sections with stochastic flow–density relationship. 
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etering aims to improve traffic flow on the main lanes of a freeway by regulating the 
inflow to these lanes. While metering is most often implemented at on-ramps to a freeway, 

it can also be used to regulate the flow of traffic on the main lanes themselves. Although 
counterintuitive that regulating flow on the main lanes can also improve overall traffic flow, this 
can happen in cases where downstream bottlenecks exist. Alternatively, upstream metering may 
simply be required to prevent excessive queuing at a downstream bottleneck. This paper 
evaluates two metering techniques applied to the eastbound main lanes of Interstate 70 at the 
Eisenhower–Johnson Memorial Tunnel (EJMT) to potentially improve traffic flow, shorten the 
queues both east and west of the EJMT, and reduce the need to completely stop traffic at the 
EJMT. One strategy evaluated is traditional, or manual, metering in which operations staff stop 
and start traffic as seen necessary to reduce a downstream queue. The other strategy is called 
continuous flow metering (CFM), which automatically displays red and green lights at a given 
cycle length to smooth out the traffic stream as well as reduce downstream queuing. The study 
results show that CFM did reduce travel times and save person hours of travel in several trial 
time periods. 
 
 
INTRODUCTION 
 
Interstate 70 (I-70) provides the only interstate connection from eastern to western Colorado and 
passes through difficult mountain terrain and physical constraints, including the narrow EJMT, 
with only two lanes in each direction. I-70 experiences heavy traffic and subsequently high 
delays, particularly during the winter time, when travelers are returning from the high country ski 
areas to the Denver metropolitan area. I-70 is classified as an uninterrupted freeway facility. It 
frequently serves 50,000 vehicles per day and close to 5,000 vehicles during peak hours. I-70 
experiences significant regional and national use by commercial and recreational travel. 
Weekend travelers returning to Denver from the high country often encounter significant traffic 
jams, delaying trips by hours because of weekend recreational activities in the mountains. 

Figure 1 shows the study area: a 16-mi stretch of highway running from Silverthorne at 
the western end [mile post (MP) 205] to Bakerville at the eastern end (MP 221). There are 
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FIGURE 1  Study area. 

 
 
currently three eastbound (EB) lanes from Silverthorne to the lower runaway truck ramp, then 
two lanes to the US-6 Loveland on-ramp, then three lanes to Hermans Gulch, and then two lanes 
for the remaining distance to Bakerville. This EB section of highway includes four on-ramps and 
four off-ramps, none of which lies between Silverthorne and the EB entrance to the EJMT. 

The EJMT is the highest highway tunnel in the world (reaching an elevation of 11,000 ft) 
and is located on I-70 approximately 60 mi west of the Denver metropolitan area. It is a major 
bottleneck during high-volume periods during winter and summer weekends. Delays are 
primarily a result of heavy directional volumes, steep grades (7% approaching the EJMT in the 
EB direction), and a long tunnel (1.7 mi). Slower moving trucks on the up and down grades also 
contribute to delays, which can be made worse by poor weather conditions and traffic incidents 
when they occur. In general, a freeway can operate at full capacity when there is good weather, 
good visibility, no incidents, no work zone activity, and no pavement deterioration serious 
enough to affect operations. 

The basic freeway section analysis of the Highway Capacity Manual 2010 (HCM) 
provides little guidance for estimating tunnel lane capacities, since the tunnels affect travel 
speeds quite dramatically (1). To approximate the capacity of the EJMT, the following 
specifications were used in the basic freeway analysis of the HCM 2010: 10% heavy vehicles, 
including trucks, buses, and recreational vehicles; 0 interchanges per mile; 60 mph base free-
flow speed; and rolling terrain for two lanes in each direction. However, if the lane and shoulder 
width assumptions reduce the free-flow speed to below 55 mph, then the HCM does not report a 
level of service (LOS). 

Using these parameters in the HCM basic freeway analysis results in an adjusted capacity 
of 1,800 passenger cars per hour per lane (pc/h/ln), which is roughly the break point between 
LOS E and F for constrained lane and shoulder width conditions. Although the HCM does not 
have a capacity adjustment for tunnel effects, the standard capacity reduction for tighter urban 
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streets versus open suburban roadways is 10%. Thus, a 10% reduction in capacity to 1,620 
pc/h/ln seems about right to account for tunnel effects. This estimate also concurs with the 
research literature.  Levinson et al. (2) estimated the capacity of the Callahan Tunnel in Boston to 
be between 1,600 and 1,650 pc/h/ln after installing traffic management improvements. Levinson 
et al. (2) also cite a New York Port Authority estimate of 1,660 pc/h/ln as the maximum 
theoretical capacity of a tunnel lane. However, observed maximum volumes in New York and 
New Jersey tunnels suggest a maximum practical capacity of 1,350 to 1,450 pc/h/ln. Lin et al. (3) 
estimated the capacity of a tunnel in Taiwan after improvements to be 1,300 vehicles per hour 
per lane (vphpl) in the southbound direction, but only 1,150 vphpl in the northbound direction.  
Koshi et al. (4) observed the capacities of tunnels in Japan under congested conditions to be in 
the range of 1,100 to 1,400 pc/h/ln with the average being about 1,325 pc/h/ln. 

Although these estimates are wide ranging, based on the above investigations, it was 
estimated that for normal operations, the capacity of the EJMT is roughly 1,600 vphpl, or 3,200 
vph total for the two lanes in each direction. 
 
 
TRADITIONAL METERING VERSUS CONTINUOUS FLOW METERING 
 
At times, queues of vehicles traveling EB on the east side of the EJMT extend inside the tunnel 
causing stop-and-go conditions and restricting access inside the tunnel for emergency response 
vehicles. To alleviate this congestion and public safety concern, the Colorado Department of 
Transportation (DOT) implemented a CFM strategy versus the traditional metering approach. 
The CFM approach releases the EB traffic on I-70 just before entering the EJMT at a rate based 
on freeway volumes and speeds. This approach differed from the traditional metering approach 
at the EJMT, which stopped all traffic for up to 20 min at a time. The EJMT staff imposed 
traditional metering at the west entrance to the tunnel to prevent queues in the EB lanes beyond 
the tunnel from backing up into the tunnel. The shockwave begins in the EB lanes downhill of 
the tunnel where the geometric characteristics of the highway cause a long queue to form. A 
study by Zang and Shen (5) found that a lane-drop with low remaining capacity, high travel 
demand, and a short distance between the merging sign and taper is most likely to produce high 
oscillations in flow. Furthermore, Laval et al. (6) found that the evolution of oscillations 
occurred in freeway segments with no entrances or exits. In this study, oscillation occurs with no 
entrances or exits, but because of a lane drop, high traffic volumes, traffic incidents, and 
frequently poor weather conditions.  

The traditional metering scheme is to completely stop EB traffic at the west entrance and 
to allow the queue east of the tunnel to dissipate to some point past the US-6/Loveland pass on-
ramp (MP 216.5). At that point, the metered traffic is released. The process is repeated if the EB 
queue once again nears the tunnel exit. It is not uncommon for traditional metering to be 
imposed several times on a Sunday of high traffic returning to Denver. The stoppage periods 
often exceed 10 min. After traffic is released, a large platoon of vehicles travels EB until it meets 
the back of the queue. 
  

C e l e b r a t i n g  5 0  Y e a r s  o f  T r a f f i c  F l o w  T h e o r y

C o p y r i g h t  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

http://www.nap.edu/22095


236 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 

 
FIGURE 2  Lane configurations for the two metering schemes. 

 
 

CFM regulates the flow of traffic into the tunnel similar to ramp metering. The area 
immediately west of the EJMT entrance was restriped to provide a four-lane metering area 
similar to a toll plaza approximately 50 ft wide and 500 ft long. An additional lane was striped 
on either side of the existing travel lanes, providing two metering areas for each travel lane as 
shown in the Figure 2. On an overhead gantry, four signal heads are used to indicate the stop or 
go for each lane. The metering lanes are released in alternating fashion (lanes 1 and 3, then lanes 
2 and 4, and so on), which eliminates the need for vehicles to merge between other vehicles 
when entering the two tunnel lanes. Although the green release phase is set at two seconds, the 
frequency of releases could be manually or automatically varied to control the number of 
vehicles that are released per minute based on queue conditions east and west of the EJMT. After 
several tests, seven cycle rate plans were developed by FHU (7) for CFM implementation based 
on capacity and the condition and movement of the queue east of the EJMT as shown in Table 1. 
A 170 traffic signal controller is used for implementation due to its capabilities. 
 
 

TABLE 1  CFM Cycle Rate Plans 

Plan 
Green Time per Phase 

(s) 
Red Time  

(s) 
Cycle Rate  

(s) 
Capacity  

(vph) 
1 2 10 24 600 
2 2 8 20 720 
3 2 6 16 900 
4 2 5 14 1,030 
5 2 4 12 1,200 
6 2 2 8 1,800 
7 2 1 6 2,400 
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DATA COLLECTED FOR THE METERING SIMULATION 
 
Incidents and recurrent congestion occur almost every weekend and create the need to meter 
eastbound traffic at the tunnel. Traffic data collected for 14 high traffic days during 2010 and 
2011 were reviewed in detail to select a representative day. January 30, 2011, was selected as the 
case study day for these simulation analyses since 1. that day had the highest EB traffic volumes 
for the 2010–2011 winter season, 2. incidents occurred and traditional metering was applied 
eight times between 1:00 and 6:00 p.m. with the longest stop duration being 25 min and the 
shortest stop duration being 8 min as shown in Figure 3. 

Remote traffic microwave sensors (RTMS) collected traffic volumes and speeds in 2-min 
bins while the automatic traffic recorder (ATR) in the tunnel collected traffic volumes on an 
hourly basis. Colorado DOT staff stationed at the EJMT kept a manual log of all traditional 
metering times and durations.   

Figure 4 plots the actual speed data collected on Sunday, January 30, 2011. As can be 
seen by this graph, severe congestion occurred between 12:00 and 7:00 p.m. The figure shows 
that the speed dropped at 12:40 p.m. due to an incident at Hermans Gulch (MP 218.5). To avoid 
the queue in the tunnel, EJMT staff first metered the traffic from 1:16 to 1:41 p.m. (25 min).  
 
 
MODEL DEVELOPMENT, CALIBRATION, AND VALIDATION 
 
Simulation is defined as “a numerical technique for conducting experiments on a digital 
computer, which may include stochastic characteristics, be microscopic or macroscopic in  
 
 
 

 
FIGURE 3   Traditional metering stoppage times on January 30, 2011. 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


238 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 

 
FIGURE 4  I-70 EB speeds on January 30, 2011. 

 
 
nature, and involve mathematical models that describe the behavior of a transportation system 
over extended periods of real time” (8). The VISSIM traffic simulation model was used to 
simulate and quantify the traffic flow effects of these alternative metering schemes.  

Using traffic simulation to replicate the actual conditions is quite challenging, because 
many variables such as driving behavior and highway characteristics create numerous “what if” 
scenarios. Developing a realistic model requires significant effort to calibrate and validate the 
model to replicate the observed conditions. The VISSIM model uses inputs such as vehicle lane 
assignments, vehicle speeds, percentages of vehicles by type, and pretimed and/or actuated 
signal timing (9). The experience was similar to the finding of Siuhi and Mussa (10) that “the 
VISSIM default parameters used in trial simulation runs for checking any coding errors showed 
that the default model parameters were incorrectly emulating the existing traffic flow 
characteristics.” 

Traffic composition in the VISSIM model uses of 97% passenger cars and 3% trucks 
based on overall EB truck percentages on a typical Sunday afternoon compiled by Hattan and 
Germeroth (7). Heavy vehicles percentages are often higher during weekday business hours but 
less during weekend days with high recreational traffic volumes. Volume balancing was 
performed during all analysis time periods to ensure that volumes along the I-70 corridor were 
consistent between interchanges. The balanced mainline volumes were then compared to RTMS 
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counts, additional Colorado DOT counts, and other historical data, such as ramp volumes 
collected earlier by JF Sato as part of I-70 Mountain Corridor Programmatic Environmental 
Impact Statement. These comparisons were made to determine if traffic patterns were being 
replicated after the volume balancing procedure was completed. A conservative approach was 
adopted at locations where balanced volumes were higher than the counts and comparable 
historical data. 

The detailed VISSIM model development for I-70 EJMT network proceeded as follows: 
 

1. Aerial photography from Google Earth was stitched together to create the links and 
connectors along the corridor. Having the correct scaling is essential for this network. 

2. General desired speed range distributions in free-flow conditions were used in the 
model per vehicle type, including passenger cars (50 to 80 mph with an average of 65 mph), 
trucks (40 to 60 mph with an average of 50 mph), and all vehicles through the tunnel (40 to 50 
mph with an average of 45 mph). However, congestion levels and geometric conditions (grades, 
curves, merging, diverging, and more) that affect vehicle speed decisions were placed on every 
entry link and where speed limits change or on connectors with a different speed limit. Once a 
vehicle crossed a speed decision area, it will try to maintain that desired speed until it goes over a 
new speed decision point. The reduced speed zones were coded with a desired speed distribution 
of plus or minus 5 mph from the initial 10 mph for creating incident.  

3. Lane assignments, vehicle inputs, routing decisions, and vehicle compositions were 
coded to represent existing conditions. Given the scale of this model keeping track of the volume 
through vehicle input and routing decisions at each junction is very critical to creating a realistic 
model. Routing decisions are carefully placed so as to not overlap and so that vehicles cannot 
accept new routing decisions until they have completed the previous one. 

4. Driving behavior parameters, including car following and lane changing parameters, 
were specified as prescribed by the Wiedemann 1999 car-following model for freeways. 
However, due to unrealistic vehicle behavior resulting from the Wiedemann 1999 parameters, 
several car following and lane changing parameters [such as headway time (CC1), car following 
variation (CC2), and the desired safety distance] were changed based on engineering knowledge 
of the corridor and best practices (11). 

5. Each simulation recorded from 11:00 a.m. to 9:00 p.m. (10 h × 3,600 s = 36,000 s) 
with one-hour seeding time to load the initial traffic demand.  
 

The error checking portion of the model development focused on fixing coding errors 
before the calibration process began that includes a review of the coded data and a review of the 
animation. All coded data (geometry, speeds, signal timing data, and traffic volumes) were 
reviewed. The review of the animation was conducted to determine locations where general 
coded parameters may have been overlooked. This tuning process involved iterative parameter 
changing and simulating until simulated speeds closely matched speeds observed in the field. As 
a result, the unrealistic vehicle behavior in comparison to the field observation when using error 
checking also involves setting background traffic operation and driver behavior characteristics 
including gap acceptances, driver aggressiveness, and vehicle characteristics. The default values 
were adjusted during this process so that the model would accurately reflect observed conditions. 

Calibration was performed to get equivalent results between the observed and expected 
traffic conditions (12). During validation, the VISSIM model output was compared against field 
data to determine if the VISSIM output was within acceptable levels. The GEH statistic 
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measuring the goodness-of-fit between observed and modeled flows was used for calibration 
purposes (13):  

 

 
 
where E = model estimated volume and V = field count. 
 

Calibration and validation were performed in three basic steps: (1) Compare bottleneck 
queue lengths observed in the field and in the simulation, (2) compare field traffic counts to 
volumes from the simulation, and (3) calibrate system performance to observed speeds and travel 
times.  

Figure 5 shows a comparison of observed counts to simulated volumes at Silverthorne, 
EJMT West, Hermans Gulch, and Bakerville. When applying a stochastic model, it is not likely 
that there will be exact volume matches, but the volumes should be relatively close. Figure 6 
shows a comparison of observed to simulated speeds at these locations plus a few more where 
speed data were also collected. 
 
 

 
FIGURE 5  Comparison of observed versus simulated EB volumes. 
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FIGURE 6   Comparison of observed versus simulated EB speeds. 
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Table 2 presents VISSIM output as compared to the field data and the resulting GEH 
statistic. GEH values less than 5 indicate a good fit, and the bottleneck location and queue length 
were validated with field observations. It was also confirmed through VISSIM visual animation 
that the traffic conditions of the model consistently coincided with field observations.   

The January 30th incident was modeled in VISSIM by closing both lanes of the two-lane 
EB for 30 min at MP 218.5 starting at 12:34 p.m. The queue length used to validate the model 
was that the queue extended to Loveland Pass (about 1.0 mi) at 12:52 p.m. as observed in the 
EJMT staff report. The queue continued to build up to the EJMT west entrance at 1:03 p.m. 

After the model was calibrated and validated using the actual data, the CFM was then 
applied. For the traditional metering on January 30, 2011, the average hourly travel time for the 
entire 16-mi analysis section from Silverthone to Bakerville exceeded 3 h at 4:00 p.m. Table 3 
compares the overall weighted average travel times and the total person-hours of travel time 
saved for both scenarios. Comparing the simulated queue lengths, the maximum queue length 
extended 7 mi using traditional metering but only 6 mi when CFM was modeled. 
 
 

TABLE 2  GEH Speed Calibration Statistic 

 
 
 

TABLE 3  Overall Weighted Average Travel Times 

No. Scenarios Average EB Travel Time 
(min) 

Person-Hours of Travel 
Time Saved 

1. Traditional metering 80.4 — 

2. CFM 72.2 759.0 
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CONTINUOUS FLOW METERING ON FEBRUARY 24, 2013 
 
CFM was implemented during heavy traffic conditions on Sunday, February 24, 2013; it started 
at 11:50 a.m. and ended at 6:05 p.m. Over the course of 6 h, the CFM timing as implemented in 
the field was simulated using Plan 5 for a total of 24 min, Plan 6 for a total of 334 min, and Plan 
7 for a total of 17 min. The traditional metering scheme was simulated for nine separate periods 
to replicate similar conditions when CFM was implemented. Table 4 shows the CFM and 
traditional metering schedules modeled. 
 
 
ANALYSIS OF SIMULATION RESULTS 
 
Three measure of effectiveness (MOEs) were selected to compare the traditional metering to 
CFM. These include total average travel time through the 16-mi study area (from Silverthorne to 
Bakerville), the total person hours of travel time, and the queue lengths west of the EJMT.  

As shown in Figure 7, the simulation model estimated a total average travel time of 84 
min using traditional metering on January 30, 2011, while the proposed CFM metering would 
have resulted in a total average travel time of 76 min for same this day. The simulation resulted 
in a total average travel time of 62 min using CFM on February 24, 2013, while traditional the 
metering was estimated to result in a total average travel time of 72 min for this same day. 
 
 

TABLE 4  CFM and Traditional Metering Schedules 

CFM Traditional Metering 

11:50 a.m.–12:53 p.m. 2-s green time and 2-s red time 
(Plan 6) for 63 min 11:50 a.m.–12:55 p.m. 20-min full stop and 

45-min release traffic  

12:53–1:10 p.m. 
2-s green time and 1-s red time 
(Plan 7) for 17 min 12:55–1:40 p.m. 

15-min full stop and 
30-min release traffic  

1:10–1:58 p.m. 
2-s green time and 2-s red time 
(Plan 6) for 48 min 1:40–2:20 p.m. 

10-min full stop and 
30-min release traffic  

1:58–2:16 p.m. 
2-s green time and 4-s red time 
(Plan 5) for 18 min 2:20–3:00 p.m. 

10-min full stop and 
30-min release traffic  

2:16–3:01 p.m. 
2-s green time and 2-s red time 
(Plan 6) for 45 min 3:00–3:27 p.m. 

7-min full stop and 
20-min release traffic  

3:01–3:07 p.m. 
2-s green time and 4-s red time 
(Plan 5) for 6 min 3:27–3:54 p.m. 

7-min full stop and 
20-min release traffic  

3:07–6:05 p.m. 
2-s green time and 2-s red time 
(Plan 6) for 178 min 3:54–4:19 p.m. 

5-min full stop and 
20-min release traffic  

  
  

4:19–4:44 p.m. 
5-min full stop and 
20-min release traffic  

  
  

4:44–5:09 p.m. 
5-min full stop and 
20-min release traffic  
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FIGURE 7  Summary weighted average travel times. 

 
 

As shown in Table 5, the simulation model estimated that CFM would have saved 855 
person-hours of travel time on January 30, 2011, with an even greater savings of 1,134 person-
hours on February 24, 2013. These person-hours of travel time assume an average vehicle 
occupancy of 2.6 persons per vehicle. 

Figure 8 shows an hourly comparison of estimated travel times for the full 16-mi segment 
from Silverthorne to Bakerville over the 9-h study period. With traditional metering, travel times 
ranged significantly from 14 min early in the day to a high of 177 min (about 3 h) for vehicles 
entering this segment during the hour starting at 4:00 p.m. The maximum travel time with the 
CFM strategy was only 120 min, which is nearly a full hour less for travelers during this hour. 
Maximum travel times on February 24, 2013, were estimated to have been reached at 
approximately 3:30 p.m.; these were 108 min using the CFM strategy and 125 min if traditional 
metering were used.  

The third MOE examined was the maximum queue length reached on the west side of the 
tunnel before the metering location and propagating down the hill toward Silverthorne. It’s 
important to reduce this queue to maintain safety and reduce fuel consumption in addition to 
travel time. As shown in Figure 9, significant queues developed between 1:00 and 6:00 p.m. as a 
result of using traditional metering in the simulation model, as is observed in the field.  
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TABLE 5  Person-Hours of Travel Time (TT) Saved 

Date Scenarios TT (h) of all 16-mi 
Trips (EB)  

Person-
Hours 

Person-Hours 
of TT Saved 

January 30, 2011 
Traditional metering 3,368 8,757 — 
CFM 3,039 7,902 855 

February 24, 2013 
Traditional metering 2,460 6,396 — 
CFM 2,896 7,530 1,134 

 
 

 
 

 
FIGURE 8   Hourly TT before and after implementation. 
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FIGURE 9  Maximum queue lengths. 

 
 
The queue was estimated to reach a maximum length of 9 mi on January 30, 2011, 

between 3:00 and 4:00 p.m. with traditional metering, but only 7.5 mi with CFM. The queue was 
estimated to reach a maximum length of 8.1 mi on February 24, 2013, if traditional metering 
were used, but only 6.0 mi with CFM. These estimates indicate that the longest queues to 
develop west of the EJMT are consistently shorter with CFM than with traditional metering. 
 
 
CONCLUSIONS AND LESSONS LEARNED 
 
Simulation can be a very powerful tool for comparing alternative traffic operation plans. Of 
course, the simulation model requires careful construction and calibration to existing conditions 
regarding roadway characteristics, vehicle types, driver types, allowable travel speeds, lane 
changing preferences, and time-of-day variations in entering and exiting traffic volumes. There 
are many lessons to be learned in the process of developing and implementing a simulation 
model for a real-world application. 

Despite the difficulty of proper model specification, once validated to observed data, the 
model can serve as a very useful tool for comparison purposes. While its estimates may be high 
or low when compared to observed data, depending on the application, the same model applied 
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to the same travel demand subject to operational differences can produce relatively dependable 
metrics for evaluation. 

The objective of this study was specifically to compare the effectiveness of traditional 
metering versus CFM in serving traffic through a section of I-70 in Colorado that includes the 
EJMT. The simulation results indicate that the implementation of CFM on Sunday, February 24, 
2013, improved traffic 
operations in all aspects evaluated as compared to traditional metering. The following 
performance measures resulting from the simulation model were better for CFM as compared to 
traditional metering: 
 

• The average TT was reduced by 11 min, a 15% decrease. 
• The highest hourly TT was reduced by 17 min, a 14% decrease. 
• The average speed was increased by 22 mph, a 41% increase. 
• Person-hours traveled was reduced by 1,134 h, a 15% decrease. 
• The maximum queue length west of the EJMT was reduced by 2.1 mi, a 26% 

decrease. 
 

CFM showed similar improvements for these MOEs when the travel demands of Sunday, 
January 30, 2011, were simulated, a day when traditional metering was in effect. Other lessons 
were learned in actual field implementation and monitoring of CFM at this site: 
 

• Utilization of lanes 1 and 4, then lanes 2 and 3 worked better and minimized driver 
confusion based on the field observations. Heavy vehicles generally stay in the right lane (lane 3).  

• It is necessary to estimate the capacity of the tunnel before implementing CFM, to 
ensure the volume of vehicles allowed to enter the tunnel does not exceed capacity. 

• ATR is needed to measure volumes in the tunnel to verify the volume flowing past 
the metering location. RTMS and field observations are needed to monitor the queue length 
upstream of the metering location. TT runs are needed for actual TTs. 

• Using the real-time traveler information or variable message sign (VMS) upstream of 
the metering area helped the drivers when metering was in effect. The two VMS messages that 
read “TUNNEL METERING AHEAD” and “USE ALL FOUR LANES” were used. 

• The signal heads for CFM include a downward green arrow, a solid yellow one, and a 
solid red one. The large combined flip signs “STOP HERE ON RED” with a diagonal downward 
arrow and “1 VEHICLE PER GREEN IN EACH LANE” are placed to guide the driver when 
metering is in effect.   
 

Further research is needed to analyze CFM using different microscopic simulation 
software (e.g., TransModeler or AIMSUN) in different settings with different volumes.  
Although this high altitude crossing of the Continental Divide is unique to Colorado, the 
usefulness of CFM in other settings is expected. 
 
 
ACKNOWLEDGMENTS 
 
The author thanks many people who have contributed to this study, both directly and indirectly: 
Dave Hattan (Felsburg Holt & Ullevig), Scott Thomas and Bart Przybyl (Apex Design),Will 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


248 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 
Johnson (Parsons Brinckerhoff), and Kathie Haire (HDR Inc.), who provided valuable guidance 
and data, supportive assistance, and helpful discussions on this study, and Travis Boone and 
Mark Schaefer (URS) who provided travel support to present this paper. 
 
 
REFERENCES 
 
1. Highway Capacity Manual 2010. Transportation Research Board of the National Academies, 

Washington, D.C., 2010. 
2. Levinson, H. S., M. Golenberg, and J. Howard.  Callahan Tunnel Capacity Management. In 

Transportation Research Record 1005, TRB, National Research Council, Washington, D.C., 1985, 
pp. 1–10. 

3. Lin F.-B., C.-W. Chang, P.-Y. Tseng, and C.-W. Su. Capacity and Other Traffic Characteristics in 
Taiwan’s 12.9-km-Long Shea-San Tunnel. In Transportation Research Record: Journal of the 
Transportation Research Board, No. 2130, Transportation Research Board of the National 
Academies, Washington, D.C., 2009, pp. 101–108. 

4. Koshi, M., M. Kuwarara, and M. Acahane. Capacity of Sags and Tunnels on Japanese Motorways. 
ITE Journal, Vol. 62, No. 5, 1992, pp. 17–22. 

5. Zhang, H. M., and W. Shen. Numerical Investigation of Stop-and-Go Traffic Patterns Upstream of 
Freeway Lane Drop. In Transportation Research Record: Journal of the Transportation Research 
Board, No. 2124, Transportation Research Board of the National Academies, Washington, D.C., 
2009, pp. 3–17. 

6. Laval, J., D. Chen, K. B. Amer, A. Guin, and S. Ahn. Evolution of Oscillations in Congested Traffic, 
Improved Estimation Method and Additional Empirical Evidence. In Transportation Research 
Record: Journal of the Transportation Research Board, No. 2124, Transportation Research Board of 
the National Academies, Washington, D.C., 2009, pp. 194–212. 

7. Hattan, D. E., and R. Germeroth.  I-70 Eisenhower Johnson Memorial Tunnels Continuous Flow 
Metering (CFM) Study Draft Report. Colorado Department of Transportation–Region 1, FHU 
Reference No. 10-010-18. 2013. 

8. May, D. Traffic Flow Fundamentals. Prentice Hall, NJ, 1990. 
9. PTV Vision, VISSIM 5.40 User Manual, PTV AG, 2012. 
10. Siuhi, S., and R. Mussa. Simulation Analysis of Truck-Restricted and High-Occupancy Vehicle 

Lanes. In Transportation Research Record: Journal of the Transportation Research Board, No. 2012, 
Transportation Research Board of the National Academies, Washington, D.C., 2007, pp. 127–133. 

11. Marlina, S., and B. Janson. Understanding the Dynamic of Truck Traffic Using VISSIM Micro-
Simulation of Zipper Lane Option on Interstate 70. ITE Western District Annual Meeting. 
Anchorage, Alaska, 2011. 

12. Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling 
Software. Publication No. FHWA-HRT-04-04. Federal Highway Administration, U.S. Department of 
Transportation, 2004. 

13. Traffic Analysis Toolbox Volume IV: Guidelines for Applying CORSIM Microsimulation Modeling 
Software. Publication No. FHWA-HOP-07-079. Federal Highway Administration, U.S. Department 
of Transportation, 2007. 

 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


 
 
 

249 

EMPIRICAL OBSERVATIONS OF TRAFFIC ANALYSIS 
 

Measuring the Safety Impact of 
Road Infrastructure Systems on Driver Behavior 

Vehicle Instrumentation and Exploratory Analysis 
 

JUSTIN SCHORR 
SAMER H. HAMDAR 

CLAIRE SILVERSTEIN 
George Washington University 

 
 

eatured in this pilot experimental study is the construction and design of an instrumented 
vehicle that is able to capture vehicle trajectory data with an extremely high level of 

accuracy and time resolution. Once constructed and properly instrumented, the various data 
collection systems were integrated with one another, and a driving experiment was conducted on 
Northern Virginia roadways with 18 participants taking part in the study. Trajectory data were 
collected for each of the drivers as they traversed a predefined loop of four roadway segments 
with varying number of lanes as well as shoulder widths. Data collected from the experiment 
were then used to calibrate the parameters of the prospect theory car-following model using a 
genetic algorithm calibration procedure. Once all model parameters were successfully calibrated, 
significance testing was carried out to determine the impacts that the varying roadway 
infrastructure had on driving behavior. Results indicated that there were significant changes in 
behavior when comparing one-lane roadways to their two-lane counterparts, specifically in cases 
where the roadway featured a wide shoulder. Additional testing was conducted to ensure that 
there was no variation based on gender as nine study participants were female and nine were 
male. The successfulness of this first study conducted using the newly constructed instrumented 
vehicle creates the opportunity for a variety of additional studies to be conducted in the future. 
 
 
INTRODUCTION 
 
Roadway infrastructure impacts driving behavior which, in turn, has significant implications 
when analyzing vehicle-to-vehicle interactions and assessing macroscopic transportation network 
performance. The main question of interest is: How does the road-surrounding environment 
affect the aggressive (risk attitudes) driving behavior from a traffic flow theory perspective? In 
order to address this question, the objective of this research is to conduct a real-world driving 
experiment featuring a vehicle instrumented to collect trajectory, location, and vehicle diagnostic 
data. Data from this experiment are then used to explicitly formulate the structure of the 
relationship between various car-following model parameters and one of the geometric features 
(shoulder width/median type) shown to be significant in previous studies (1). 
 
Motivation and Contribution 
 
Various methods of vehicle instrumentation have been used over the past 40 years in an effort to 
gain additional insights into the factors that contribute to decreased safety on roadways (2). If 

F 
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total collisions are considered a surrogate measure for safety, the motivation for the examination 
of the different factors leading to unsafe driving conditions is highlighted by the 5,615,000 
collisions that occurred on United States roadways in 2012 (an increase from the three previous 
years) (3). Additionally, these collisions resulted in 33,561 fatalities (an increase from the 
previous two years), and when considering vehicles miles traveled (VMT) as a measure of 
congestion the problem is exacerbated as the total VMT in 2012 was 2.969 billion, producing a 
fatality rate of 1.13 fatalities per 100 million VMT (both the total VMT and the fatality rate have 
increased over the past two years) (3). What becomes clear is that in the past couple of years 
roadways are trending in a direction that is both less safe and increasingly congested. 
 
Objectives 
 
As stated above, the main objective of this study is to understand the impact that changes in 
roadway geometry have on driving behavior from a traffic flow theory perspective. In order to 
develop this understanding, the specific objectives of this study are as follows: 
 

• Construct an instrumented vehicle such that trajectory and headway data can be 
collected at a high time resolution and subsequently synced together. 

• Design a real-world driving experiment using the instrumented vehicle on roadway 
segments with varying geometric characteristics. 

• Calibrate the parameters of the prospect theory model using the data gathered from 
the driving experiment. 

• Determine the effects that specific roadway geometric characteristics have on 
driving behavior through statistical analysis of calibrated model parameters. 
 
 
BACKGROUND 
 
While data driven approaches (predominately focused around the modelling and evaluation of 
collision data) are commonplace in the transportation research community, new and affordable 
technologies have led to advancements in the collection of real-time driving data. The 
quantification of driving behavior in real-time is an important advancement in the assessment of 
roadway safety, allowing for new insights through a variety of different methodologies and their 
subsequent applications. Three main approaches are used for the collection of real-time data: 
driver simulators, naturalistic studies, and instrumented vehicles, all of which have an associated 
set of pros and cons. 

Driver simulators have been used extensively in a wide range of applications including 
(but not limited to) assessment of driver distraction (4), the performance of active safety and 
information systems (5), and the evaluation of impaired drivers (6) as well as those with certain 
medical conditions (7). Driver simulators are particularly useful as they allow for simulated 
driving experiences to be conducted in a safe and controlled environment where various 
scenarios (including complicated and high-risk environments) can be created and held constant 
for all participants in a given study (8). However, the obvious drawback to these studies is that 
they do not take place on actual roadways and are unable to capture the natural interactions that 
occur between drivers in the real-world environment (9). As such, on-road data collection 
methods such as naturalistic studies and instrumented vehicles are becoming increasingly 
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popular in order to better understand road safety crash risks and risk factors (2). 
Naturalistic approaches use unobtrusive methods (typically in participants’ own vehicles) 

to collect data in real traffic conditions (2). Again, the applications naturalistic studies are vast, 
including (but not limited to) examination of risks to heavy vehicle operators through the use of 
data acquisition systems, internal and external cameras, and daily activity registers (10); 
assessment of heavy vehicle operator response to a forward collision warning system through the 
use of gaze monitoring and brake pedal position (11); examination of older driver engagement in 
secondary activities at intersections through the use of a video camera system as well as a vehicle 
diagnostic logging system (12); and the analysis of rapid deceleration events for older drivers 
through the use of a custom driver monitor system that featured a two-axis accelerometer (13). 
Naturalistic studies allow for the collection of large amounts of data (both in terms of the number 
of participants and the number of trips made) over an extended period of time. Furthermore, the 
instruments used to collect data are unobtrusive (14), and these types of studies do not require a 
researcher to be present in the vehicle during data collection. The collection of this baseline data 
is intended to reflect normal driving (9). However, practical and analytical challenges are 
commonplace in naturalistic studies as datasets are large and complicated, often requiring the 
processing of hundreds or even thousands of hours of vehicle-based and video data (2). 
Additionally, since no variables are controlled by the researcher, causal conclusions cannot be 
drawn from naturalistic driving studies (9). 

Similar to naturalistic studies, field operational tests (FOT) are long-range studies and 
again involve some sort of instrumentation. In these studies objective data on situation and 
behavior are collected through an automated process, and subjective data are usually collected 
manually or electronically (9). In addition to these naturalistic studies, field operational tests and 
driver simulator experiments, controlled on-road studies involving instrumented vehicles offer 
opportunities for unique data collection through the use of multiple methods (2). These controlled 
on-road studies are defined by their reliance on a pre-defined route in order to determine 
differences in performance and behavior under varying driving conditions (9). Furthermore, from a 
behavior perspective, field studies using instrumented vehicles are frequently regarded as the 
ultimate validation stage for assessing behavioral models, safety measures, and improved road 
infrastructure design (15). Still, the potential drawbacks of these controlled on-road studies must be 
mentioned, as the studies do not collect data over a long time period (2), and they require a 
researcher to be present in the vehicle (potentially impacting the driver’s behavior) (2, 9). With that 
being said, these types of studies are well suited to address research questions that are independent 
of exposure and that use independent factors that are stable over shorter periods of time (such as 
age and personality) and are excellent tools in the early stages of system development and FOT 
design [one example of this being a situation where drivers’ headway is affected, and thus the need 
for additional sensors (such as lidar sensors) is required] (9). Examples of studies using this type of 
instrumented vehicle data collection include examination of the number and nature of errors 
committed by drivers in distracted and undistracted states (4), analysis of the situational awareness 
of both novice and experienced drivers at rail crossings (16), and evaluation of an intersection 
violation warning prototype (17). In addition, instrumented vehicles have been used in driver 
training through the benchmarking of experienced drivers (Underwood, 2013). 

In addition to the behavioral applications mentioned above, driver simulators, field studies, 
and instrumented vehicles can allow for collection of trajectory data in order to assess and calibrate 
car-following models. Car-following models describe the behavior of the following vehicle as a 
function of the lead vehicle’s trajectory, allowing for estimation or prediction of the following 
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vehicles’ trajectory in response to the actions of the lead vehicle (18). Driver simulator experiments 
have been conducted to evaluate car-following behavior under normal and evacuation scenarios (19), 
and field tests have been conducted using loop detector data to determine distance gaps under 
different congestion regimes (20). While these types of studies are most certainly useful in 
understanding car-following behavior, instrumented vehicles allow for more detailed data collection 
and thus have been used frequently in data collection and calibration efforts (18). 

Examples of instrumented vehicles being used for data collection and the assessment of 
driver behavior variability in car-following include two studies by Brackstone et al. (21, 22), where 
headways for drivers following the instrumented vehicle were recorded in the first study and then 
the research was extended (in the second study) to study the factors that influence the decision-
making process of car-following. While the drivers in Brackstone’s studies knew they were part of 
an experiment, Kim et al. (23) used an instrumented vehicle equipped with an infrared sensor, a 
differential GPS (DGPS) inertial distance measuring instrument, a vehicle computer, and a digital 
video camera to measure the position, speed, and acceleration (as well as demographic information 
collected from the video recordings) of the following vehicles, who were unaware that they were 
being monitored as part of the study. In an effort to quantify driver reaction times, Ma and 
Andreasson (24) equipped a vehicle developed by Volvo Technologies with a GPS system, an 
onboard computer, two lidar sensors (facing front and rear), as well as cameras corresponding to 
the sensors. The study was conducted on Stockholm roadways and the follow-the-leader behaviors 
of random vehicles behind the instrumented vehicle were observed. 

Once data from instrumented vehicles are collected, the next step in evaluating car-
following models is the calibration stage. One such study was conducted by Panwai and Dia (25), 
who evaluated AIMSUN, PARAMICS, and VISSIM models using instrumented vehicle data 
collected in Stuttgart, Germany. In this case, the instrumented vehicle was equipped with radars to 
record the differences in speed and headway between the instrumented vehicle and the vehicle 
immediately in front of it (26). Similarly, Punzo and Simonelli (27) examined Newell’s model, the 
Gipps model, an intelligent driver model, and the MITSIM model through the use of trajectory data 
recorded from four instrumented vehicles. Here, the four vehicles were all instrumented with GPS 
devices and Global Navigation Satellite System receivers (GLONASS) to record vehicle spacing 
data and drove in a platoon on urban and “Sextraurban” roadways in Naples, Italy (28). One final 
example of a study focused around car-following model calibration using data from instrumented 
vehicles was conducted by Soria et al. (18). Here, a Honda Pilot SUV was equipped with four 
wide-coverage digital cameras, a Honeywell Mobil Digital Recorder, a GPS system, and a laptop 
to record geographical position, speed, spacing, left-right turn signal activation, video clips, and 
audio recordings. The instrumented vehicle was positioned as the follower, and only the front 
camera was used to determine the spacing between the leader and the follower (18). The authors 
then used the data obtained from the instrumented vehicle to calibrate the Gipps model, the Pitt 
model, the MITSIM model, and the Modified Pitt model. 
 
 
RESEARCH METHODOLOGY 
 
Vehicle Instrumentation 
 
The instrumented vehicle used for data collection in this experiment is comprised of three 
systems working in unison: a lidar system, a DGPS system, and an OBD (on-board diagnostics) 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


Schorr, Hamdar, and Silverstein 253 
 
 

monitoring system. Data from all three systems are received by an in-vehicle laptop, which 
generates a local timestamp for synchronization purposes. A schematic for the vehicle 
instrumentation (overlaid on a laser scan of the actual vehicle) is provided in Figure 1; Table 1 
lists the various components. 
 
Experimental Set-Up 
 
The driving experiment in this study allows for observation of moment-by-moment local 
interactions among drivers, and measures drivers’ preferred traffic measures with known 
attributes (gender, age, and attitude). Furthermore, experimental set-up involves testing one of 
the exogenous geometric factors shown to impact safety. For this pilot study, the authors have 
 
 

 

FIGURE 1  Vehicle instrumentation. 
 
 

TABLE 1  Vehicle Instrumentation Key 

Number Instrument Name Data Collected 
1 Lidar sensors (2) Trajectory data 
2 DGPS antenna Vehicle position data 
3 External computing unit  
4 Sync box  
5 Ethernet switch  
6 DGPS receiver Vehicle position data 
7 Power box  
8 Laptop  
9 On-board diagnostics logger Vehicle diagnostic data 
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selected shoulder width/number of lanes as the test variables and a driving experiment was 
conducted in an interrupted flow scenario. Figure 2 displays a GoogleEarth image of the 
Northern Virginia roadway segments selected for this experiment were generated by the 
differential GPS data recorded during experimentation. The black line in the figure is the actual 
DGPS path travelled by a study participant, and the base stations zdc11910 and lwx11910 (used 
to increase the accuracy of the DGPS recordings) are seen in the top left and bottom center of the 
figure. Additionally, each of the four segments is highlighted in the figure, where the red lines 
mark the start and/or end point of a segment. Segment one is a two-lane roadway with a wide 
shoulder, Segment two is a one-lane roadway with a wide shoulder, Segment three is a two-lane 
roadway with a narrow shoulder, and Segment four is a one-lane roadway with a narrow 
shoulder. For the experiment, 18 drivers (nine males and nine females between the ages of 20 
and 33) drove the instrumented vehicle through all four roadway segments. Drivers were instructed 
to behave as they would normally, with the exception that they were not permitted to pass the lead 
vehicle at any point during the test run. The lead vehicle was operated by an author of this study 
and speed was varied (±7 mph from the posted speed limit) on as consistent of a basis as possible 
(given the surrounding traffic conditions), at the same locations throughout each of the four 
segments. 
 
 
 

 

FIGURE 2  Roadway segments used in this pilot study.  
(Image from GoogleEarth. Accessed July 23, 2014.) 
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Modeling and Calibration 
 
Drivers evaluate their acceleration choice options based on the resulting potential gains and 
losses. Prospect theory (29) has been used to model this decision-making process (30). Here, 
drivers frame the stimulus where different utilities are assigned to different acceleration choices 
considering different weights for gains and losses and then edit the choices based on a prospect 
index calculated in the same way as expected utility are calculated. The prospect theory value 
function is formulated as follows: 
 ܷ௉்(ܽ௡) = [௪೘ା(ଵି௪೘)(୲ୟ୬୦ቀೌ೙ೌబቁାଵ]ଶ ൥ ቀೌ೙ೌబቁଵାቀೌ೙ೌబቁమ൩ఊ

   (1) 

 
where UPT is the acceleration value function, a0 is the normalization parameter, γ > 0 is a 
sensitivity exponent indicating how sensitive a driver is toward gains or losses in travel times 
(i.e., speeds), and wm is the relative weight of losses compared to the gains. Here, a driver 
choosing am as his or her desired acceleration will gain UPT unless he or she is involved in a rear-
end collision. Furthermore, a crash seriousness term k(v, Δv) is used to calculate the disutility 
resulting from a crash as follows: 
 
 U(an) = (1-pn,i)UPT(an) – pn,iwck(v, Δv) (2) 
 
where pn,i is the subjective probability of being involving in a crash at the end of a car-following 
duration; pn,i is approximated by a normal distribution given that drivers are assumed to estimate 
the future speed vn – 1(t + Δt) of vehicle n – 1 to be normally distributed with a mean equal to the 
current speed vn – 1(t) and a standard deviation of α × vn – 1(t) (α is a velocity uncertainty 
parameter); UPT(αn) is derived from Equation 1, and wc is a crash weighting function, which is 
lower for drivers willing to take a higher risk. 

Trajectory data recorded by the instrumented vehicle (velocity, acceleration and space 
headway) at a resolution of 0.1 s is used to calibrate the model presented above. Since headway 
data was not always recorded at the same time resolution as the vehicle motion data, values were 
interpolated based on the change in vehicle velocity between recorded headway values. 
Calibration was then performed on a segment by segment basis for each driver using a genetic 
algorithm procedure.  Following the genetic algorithm description of Hamdar and Mahmassani 
(31): 
 

1. A chromosome represents a parameter set of the prospect theory model discussed 
above and a population consists of NGA such chromosomes. 

2. In each chromosome generation, the fitness of each chromosome is determined via 
an objective function. 

3. All pairs of chromosomes are extensively generated from the current population and 
recombined to generate new chromosomes. 

4. The crossover point where two chromosomes are combined is randomly selected. 
5. Excluding the chromosome with the best fitness score, all genes (model parameters) 

are mutated (random variation) based on a given probability. The newly generated 
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chromosomes are then used in the next iteration. 

6. Initially, a fixed number of generations are evaluated. The evolution is then 
terminated when the best-of-generation score converges from one iteration to another for a 
given number of generations. 
 
 
RESULTS AND DISCUSSION 
 
Calibration Results and Significance Testing 
 
Table 2 displays the descriptive statistics for the calibration results. This includes the average 
and standard deviation values for the calibration parameter, velocity and space and time 
headways for each segment. Additionally, these descriptive statistics are provided for geometric 
characteristics (number of lanes and shoulder width) and gender in Tables 3, 4, and 5, 
respectively. 

In order to interpret the statistical significance of the change in calibration parameters 
based on number of lanes, shoulder width, and gender, multiple MANOVA tests were conducted 
(using the SAS software). Results of the MANOVA test indicate whether or not one can reject 
the null hypothesis, the null hypothesis being that a certain exogenous characteristic has no 
statistically significant effect on the change in calibration parameters. For statistical significance 
and the rejection of the null hypothesis, the p-value must be less than 0.05. Table 6 displays the 
MANOVA results for the effects of number of lanes, shoulder width, and gender on the 
calibration parameters. In addition, the effect of changing segments is included at the top of this 
table to demonstrate that the null hypothesis can be rejected for the change in segments.  If the 
null hypothesis could not be rejected for the changing segments as a whole, then there would be 
no statistical significance of the calibration results for this study. 

From the table, it is clear that a change in the number of lanes has the most statistically 
significant effect on the change in the calibration parameters. With this in mind, the data set was 
separated based on shoulder width, and a MANOVA test was again conducted for the number of 
lanes. These results are displayed in Table 7. 

Here it is clear that the null hypothesis cannot be rejected when considering a change in 
the number of lanes on roadways with narrow shoulders, but it can be rejected for a change in the 
number of lanes on roadways with wide shoulders. 

Finally, to ensure that there was no statistically significant difference based on gender, a 
final MANOVA test was carried out for each segment using gender as the dependent variable. 
These results (Table 8) demonstrate that the null hypothesis cannot be rejected based on gender 
for any of the segments. 
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TABLE 2  Descriptive Statistics for All Segments 

Segment Stat. 
Vel. 
(m/s) 

Space 
(m) Head (s) ψ γ Wm Wc Tmax α β Tcorr 

RT 
(s) 

Vel. 
Error 

1 Avg. 15.18 33.03 2.21 5.97 0.73 3.66 89,833 5.26 0.21 6.33 17.83 0.63 0.173 
Dev. 1.60 7.94 0.66 3.73 0.62 2.18 23,796 1.57 0.09 3.39 5.23 0.73 0.074 

2 Avg. 13.99 33.09 2.41 5.40 1.09 2.83 97,944 4.83 0.11 7.08 20.39 0.36 0.100 
Dev. 1.07 13.12 1.14 4.90 0.72 1.98 16,913 2.07 0.06 2.81 4.02 0.36 0.056 

3 Avg. 14.71 30.52 2.10 5.64 0.63 4.11 95,000 5.16 0.19 5.60 20.83 0.72 0.169 
Dev. 1.14 6.99 0.55 4.50 0.46 2.24 25,752 0.91 0.06 2.90 4.59 0.53 0.072 

4 Avg. 15.70 29.69 1.90 4.27 0.71 3.94 100,778 5.67 0.13 6.63 20.22 0.62 0.137 
Dev. 1.50 7.46 0.48 3.91 0.58 2.46 19,283 1.72 0.06 3.03 3.81 0.47 0.059 

 
 

TABLE 3  Descriptive Statistics for Number of Lanes 

Lanes Stat. 
Vel. 
(m/s) 

Space 
(m) 

Head 
(s) ψ γ Wm Wc Tmax α β Tcorr 

RT 
(s) 

Vel.  
Error 

1 Avg. 14.84 31.39 2.16 4.83 0.90 3.39 99,361 5.25 0.12 6.86 20.31 0.49 0.119
2 Avg. 14.95 31.77 2.15 5.81 0.68 3.88 92,417 5.21 0.20 5.96 19.33 0.68 0.171

 
 

TABLE 4  Descriptive Statistics for Shoulder Widths 

Shoulder Stat. 
Vel. 
(m/s) 

Space 
(m) 

Head 
(s) ψ γ Wm Wc Tmax α β Tcorr 

RT 
(s) Vel. Error

Wide Avg. 14.58 33.06 2.31 5.68 0.91 3.25 93,889 5.05 0.16 6.71 19.11 0.49 0.137 
Narrow Avg. 15.21 30.10 2.00 4.96 0.67 4.02 97,889 5.42 0.16 6.11 20.53 0.67 0.153 

 
 

TABLE 5  Descriptive Statistics for Males and Females 

Gender Stat. 
Vel. 
(m/s) 

Space 
(m) 

Head 
(s) ψ γ Wm Wc Tmax α β Tcorr 

RT 
(s) 

Vel. 
Error 

Female Avg. 15.01 27.00 1.82 5.48 0.62 3.49 94,861 5.25 0.14 6.68 20.06 0.653 0.143 
Male Avg. 14.78 36.16 2.49 5.16 0.96 3.78 96,917 5.21 0.18 6.14 19.58 0.514 0.147 

C
elebrating 50 Y

ears of T
raffic F

low
 T

heoryC
opyright N

ational A
cadem

y of S
ciences. A

ll rights reserved.

http://www.nap.edu/22095


258 Circular E-C197: Celebrating 50 Years of Traffic Flow Theory 
 
 

 

TABLE 6  General MANOVA Testing 

Segment 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.484 1.84 0.0106 
Pillai’s Trace 0.615 1.78 0.0146 
Hotelling-Lawley Trace 0.872 1.90 0.0094 
Roy’s Greatest Root 0.571 3.93 0.0005 

Shoulder Width 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.784 1.90 0.0684 
Pillai’s Trace 0.216 1.90 0.0684 
Hotelling-Lawley Trace 0.276 1.90 0.0684 
Roy’s Greatest Root 0.276 1.90 0.0684 

Lanes 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.688 3.13 0.0036 
Pillai’s Trace 0.312 3.13 0.0036 
Hotelling-Lawley Trace 0.454 3.13 0.0036 
Roy’s Greatest Root 0.454 3.13 0.0036 

Gender 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.787 1.86 0.0745 
Pillai’s Trace 0.213 1.86 0.0745 
Hotelling-Lawley Trace 0.271 1.86 0.0745 
Roy’s Greatest Root 0.271 1.86 0.0745 

 
 

TABLE 7  MANOVA Testing for Changing Number of  
Lanes Based on Shoulder Width 

No Shoulder–Changing Lanes 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.717 1.14 0.3704 
Pillai’s Trace 0.283 1.14 0.3704 
Hotelling-Lawley Trace 0.395 1.14 0.3704 
Roy’s Greatest Root 0.395 1.14 0.3704 

Wide Shoulder–Changing Lanes 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.555 2.31 0.0458 
Pillai’s Trace 0.445 2.31 0.0458 
Hotelling-Lawley Trace 0.801 2.31 0.0458 
Roy’s Greatest Root 0.801 2.31 0.0458 
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TABLE 8  MANOVA Testing Based on Gender by Segment 

Segment 1–Gender 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.364 1.56 0.2725 
Pillai’s Trace 0.636 1.56 0.2725 
Hotelling-Lawley Trace 1.749 1.56 0.2725 
Roy’s Greatest Root 1.749 1.56 0.2725 

Segment 2–Gender 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.235 2.90 0.0745 
Pillai’s Trace 0.765 2.90 0.0745 
Hotelling-Lawley Trace 3.258 2.90 0.0745 
Roy’s Greatest Root 3.258 2.90 0.0745 

Segment 3–Gender 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.372 1.50 0.2895 
Pillai’s Trace 0.628 1.50 0.2895 
Hotelling-Lawley Trace 1.687 1.50 0.2895 
Roy’s Greatest Root 1.687 1.50 0.2895 

Segment 4–Gender 
Statistic Value F-Value P-Value 

Wilks’ Lambda 0.466 1.02 0.4940 
Pillai’s Trace 0.534 1.02 0.4940 
Hotelling-Lawley Trace 1.148 1.02 0.4940 
Roy’s Greatest Root 1.148 1.02 0.4940 

 
 
Discussion of Results and Parameter Explanation 
 
Based on the significance testing conducted above, results from this pilot experimental study 
indicate that drivers change their behavior significantly on roadways with wide shoulders when 
there are a varying number of lanes. With this in mind it is important to interpret the parameter 
values from segments one and two (displayed above in Table 2). Interpretation of the changes in 
the calibration parameters between these two segments requires an explanation of the “physical 
meaning” for each of the parameters individually. Beginning with the gamma parameter (γ), this 
can be thought of as a driver’s sensitivity to perceived gains and losses. That is if the value 
function of the Prospect Theory model generally has the form seen in Figure 3, increasing gamma 
would be indicative of an increase in the amplitude of the curve derived from Equation 1. 

Further, the parameter wm represents the relative weight a driver puts on losses as compared 
to gains. Increases in this parameter are indicative of a driver who is valuing potential risks more 
than that of potential gains (i.e., becoming more risk adverse). Increasing the alpha parameter is 
indicative of a driver being more uncertain of the leader vehicle’s velocity, and the beta parameter 
can be thought of as the drivers’ sensitivity to the surrounding environment. Increasing the beta 
parameter could be indicative of a number of things, including a more experienced driver or one 
that has become impatient. The Tmax parameter can be thought of as the anticipation of the driver, 
as increasing values indicate a driver that is thinking multiple steps ahead, and decreasing values 
indicate a driver who has a myopic view and is thinking about what is occurring in the moment. 
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FIGURE 3  Prospect Theory value function (31). 
 

 
Looking at the changes in average calibrated values for these parameters between 

segments one and two it appears that the one-lane segment (segment two) features higher values 
for beta and gamma and lower values for alpha, Tmax, and wm. The combined effects of increased 
gamma and decreased wm demonstrate that not only are the drivers putting less weight on 
perceived losses but also increasing their sensitivity to their perceived gains and losses. This 
result is further explained by an increase in the beta parameter, which in combination with the 
effects discussed above seems to indicate that drivers became increasingly impatient during this 
segment of the experiment. Reaffirming this notion is the decrease in the value for Tmax, which 
demonstrates that drivers are thinking more in the moment rather than anticipating what 
maneuvers they may make in the future (which seems to indicate a growing level of frustration). 
Finally, the largest percentage decrease in any parameter value is seen in that of alpha, indicating 
that the driver is very certain of what the vehicle in front of them is doing, once again 
reaffirming the notion that drivers became increasingly impatient and frustrated while traversing 
this segment of the experiment. 

In addition to the driving environment discussed above, significance testing indicated that 
drivers change their behavior when moving between one- and two-lane roadways in general. The 
most significant changes in terms of the individual calibration parameters are seen in that of 
alpha, beta, and gamma. Here it is once again observed that drivers on one-lane roadways are 
much more certain of the lead vehicle’s velocity (decreased alpha), become increasingly 
sensitive to their environment (or potentially increasingly impatient, increased beta), as well 
becoming increasingly sensitive to perceived gains and losses (increased gamma, with a slight 
decrease in the risk aversion parameter, wm). 

While the changes in calibration parameters were not statistically significant for shoulder 
width or gender, it is interesting to observe that drivers had a higher average velocity, lower 
space headway, and thus much lower time headway on roadways with narrow shoulders. That is, 
when shoulder width narrowed drivers followed much more closely to the lead vehicle. The 
same was true when comparing female drivers to male drivers, as female drivers had an average 
time headway that was nearly 0.7 s less than their male counterparts. These changes in average 
values were not observed when comparing one-lane to two-lane roadways, as the average 
velocity, spacing, and time headway were almost identical in this case. 
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CONCLUSIONS AND FUTURE WORK 
 
This pilot experimental study featured the construction of an instrumented vehicle that was able 
to successfully capture high time resolution trajectory data through the use of multiple 
instruments working in unison. Furthermore, a driving experiment was successfully conducted 
with 18 participants driving a predefined loop that featured four segments with varying number 
of lanes and shoulder widths. Data collected from the driving experiment was then effectively 
calibrated using a genetic algorithm calibration procedure. Finally, significance testing was 
conducted on the calibrated parameters for the prospect theory value function, and results 
indicated that there were significant changes in driver behavior for varying number of lanes, 
specifically when the roadway featured a wide shoulder as opposed to a narrow one. 

Research conducted in this study differentiated itself from that of previous studies not 
only with the combination of instruments that were used but also in the accuracy and time 
resolution of the data that were collected. Further differentiating this study from previous works, 
the driving experiment that was conducted tested the differences in behavior based on changing 
roadway geometry and then used the collected trajectory data to successfully calibrate the 
parameters of the prospect theory car-following model. 

Given that this was the pilot experimental study for the instrumented vehicle, 
construction and data synchronization posed significant challenges that needed to be overcome 
before the actual driving experiment could take place. With these major obstacles out of the way, 
opportunity abounds for additional driving experiments to be conducted with a seemingly 
limitless potential for different types of experimental set-ups. Furthermore, the vehicle used in 
this study was constructed in such a manner that additional instruments can easily be integrated 
in the vehicle and instrumentation design, once again opening the door for a wide variety of 
future applications and testing. 
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he aim of this paper is to quantify the impact of local demand distribution on the global 
network behavior, and, more precisely, to identify how route choices influence the level of 

performance of a network. A mesoscopic traffic flow simulator is chosen as an experimental 
platform to perform this analysis on an idealized urban center network. To simplify the 
exploration, route choice alternatives are clustered in homogeneous groups with respect to the 
percentage of overlapping. A large set of flow distributions among routes is evaluated, and 
different scenarios are then simulated leading to two main results. First, the fluid/congested 
boundary on the network is defined, and its sensitivity to parameters is evaluated. Then, route 
choice effects on the network level of performance are quantified using the network macroscopic 
fundamental diagram, which provides an aggregate vision of network behavior. Moreover, 
spatial distributions of traffic conditions are also investigated because heterogeneities are a well-
known source of network underperformances. 
 
 
INTRODUCTION 
 
Dynamic modeling of large urban traffic networks is very challenging. Indeed, the complexity 
results from the combined effects of the three components of an urban traffic network: supply, 
demand, and traffic controls. The local supply is defined by the time-dependent capacity per link. 
It can be modified by traffic controls and altered by some local events. The local demand 
corresponds to incoming trips on a specific link. It dynamically results from the global demand 
(trips from origins to destinations) and the route choice process. Congestion happens when the 
local demand exceeds the local supply creating spatial and temporal heterogeneities at the 
network level. 

Recent works have exhibited from empirical data in downtown Yokohama (1) a well-
defined relation between space–mean flow and density. The existence of such a network 
macroscopic fundamental diagram (NMFD) is really appealing because it provides a simple 
indicator of a network level of performance. Indeed, for a given traffic state, the mean spatial 
speed can be known giving access to travel time estimation. If the network is homogeneously 
loaded, the NMFD shape will depend only on supply and traffic control. In this case, several 
works have been conducted leading to analytical methods for NMFD estimation taken into 
account for network topology and control settings (1–3). Moreover, for congested network 
configurations, the NMFD allows quanitification of the deviation from theoretical capacity at a 
network level. Therefore, it allows characterizing the decrease of performance of the network 
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(capacity drop) caused by heterogeneities resulting either in uneven distribution of local demand 
or supply. 

Concerning the demand impact, originally, the NMFD was found not to be influenced by 
the origin–destination (O-D) matrix and route choices (1). However, recent studies show that 
networks with an uneven (in space) or inconsistent (in time) distribution of congestion may 
exhibit traffic states that do not fill as a unimodal and well-defined curve. Changes seem only to 
be significant when the network operates near its global maximum capacity. Moreover, 
Geroliminis and Sun (4) show that spatial distribution of vehicle density within a reservoir 
significantly influences the NMFD scattering and several studies (5–7) deal with the effects of 
inhomogeneity of densities over a network. Recently, Knoop et al. (8) introduced the 
Generalized Fundamental Diagram to take into account the spatial inhomogeneity of densities 
that is considered as an input of the mathematical analysis. Moreover, further works on a simple 
parallel network have highlighted how route choice distributions modify the NMFD shape (3). In 
Mahmassani and Peeta (9), overall user cost and network performance under time-dependant 
system optimum and user equilibrium assignment patterns are examined through numerical 
experiments performed on a test network under various loading levels. All these works focus on 
the influence of network traffic distribution on the network performance estimated from the 
NMFD. However, few studies investigate the cause of heterogeneous network traffic states and 
thus make the direct connection between the network loading (distribution of the demand) and 
the network performance. 

This paper will focus on the impact of local demand distributions on the network traffic 
conditions in order to improve the description of heterogeneities resulting from the network 
structure and the global demand profile. More precisely, the interest is in identifying how route 
choices influence the level of performance of the network. The aim is then to establish a 
methodology to characterize route choice impacts on the NMFD and on the global network 
performance indicators. In order to better identify which component of route choices has the 
larger impact, route selection will be studied apart from flow distribution. Since a fine meshed 
network leads to a large number of potential route choices, a clustering method to reduce the 
problem size by defining homogeneous sets of route selections with identical properties will be 
proposed. 

As route choices are difficult to observe in practice for dense urban networks and are thus 
hard to capture, this paper follows a simulation-based approach to carry out the analysis. The 
outline of the paper follows. In Section 2, the global framework of the study is presented, 
detailing the network and the analysis designs. The proposed clustering method for route sets 
generation is also presented. Then, Sections 3 and 4 are concerned with the results of the 
simulations of different scenarios. The network level of performance is examined at different 
scales using several indicators. 

First, the fluid–congested boundary and its sensitivity to parameters are analysed. 
Second, the impact of route choices is studied more in detail through the NMFD and the 
potential exhibited capacity drop. Then, spatial heterogeneities are quantified using standard 
deviation of macroscopic traffic conditions. Finally, Section 4 presents conclusions and an 
outlook on further researches. 
  

C e l e b r a t i n g  5 0  Y e a r s  o f  T r a f f i c  F l o w  T h e o r y

C o p y r i g h t  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

http://www.nap.edu/22095


Parzani, Leclercq, Benoumechiara, and Villegas 269 
 
 

NETWORK DESIGN AND ROUTE CHOICE MODELING 
 
This study considers an idealized network mimicking an urban center. Heterogeneities are 
studied both analytically and by simulation. The simulations are performed using the even-based 
mesoscopic model proposed by Leclercq and Becarie (10), which is fully consistent with the 
Lighthill-Whitham-Richards (LWR) model (11, 12) at a macroscopic scale for a single-class 
triangular fundamental diagram. Moreover, this model provides passing times for all vehicles at 
all link boundaries so that vehicle trajectories within all links can be estimated. In order to 
complete the analysis design, supply and demand are defined in the following. 
 
Idealized Network Design and Supply Description 
 
The network is represented by a lattice-like road network with 12 origins and 12 destinations. 
Only north and west to south and east directions are considered to reduce the problem size. The 
84 links of the network represent one-way road sections (see the flow directions represented by 
arrows on Figure 1) while the 60 nodes represent intersections. Each road section i has the same 
length li = 300 m. The fundamental diagram parameters are a free-flow speed v = 50 km/h, a jam 
density kjam = 200 veh/km, and a capacity C = 0.3676 veh/s. Intersections are controlled by two-
phase traffic signals with a fixed cycle equal to 1 mn, identical for green and red times with no 
offset. Note that some symmetry properties are inherent to this network design. Moreover, the 
network is not loaded at the beginning of simulations. 
 
Demand Description and Route Choices Modeling 
 
Global Demand 
 
As described above, the studied network is composed of a set of 144 O-Ds, and for each O-D 
pair a uniform distribution through destinations occurs. Two parameters are then introduced to 
define the demand: the input flow Qin and α ϵ [0,1], which allows to increment the demand value 
from Qin to Qin(1 + 5α) along the origins links as plotted in Figure 1. In order to ensure that the 
origins links are not saturated, the following is imposed: 
 
Qin(1 + 5α) < C (1) 
 
where C is the link capacity. 
 
Local Demand 
 
The next step is the route choice description. It is well known that predicting which route 
a given traveller would take when going from one origin to one destination is a key step in traffic 
forecasting models. The route choice depends, on the one hand, on the attributes of the available 
routes, such as travel time, number of traffic lights, and more. On the other hand, characteristics 
and preferences of the traveller also influence the choice. All these aspects of the route choices 
problem make it particularly complex, especially for large networks representing dense urban 
areas. Usually, two approaches can be considered for route choices description. They can either 
be provided by a model based on equilibrium principle (user equilibrium or system optimum) or 
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by using an implicit/explicit expression for choices as for dynamic traffic assignment models. 
Reviews of route choice models are available in the literature in Bovy and Stern (13), in Ben-
Akiva and Bierlaire (14) for discrete choice methods, and in Szeto and Wong (15) for traffic 
assignment. This paper will not question the equilibrium principle or traffic assignment models 
but instead define a framework to estimate the impact of a high variety of potential choices. 
Thus, a two-step process will define route choices: 1. paths selection and 2. flow distribution 
over paths. 

A total of 3,430 potential paths are available to link the set of 144 O-Ds composing the 
studied network; some of them are explicitly represented in Figure 1. First note that resulting 
from network design assumptions, all these paths have the same length. As a consequence, the 
free-flow travel time is identical for all paths so that they can be clustered according to the level 
of overlapping. Moreover, in simulations, routes are assigned to vehicles once they enter the 
network. 
 
Step 1: Clustering Method for Paths Description 
 
A crucial property when considering the route set is the correlation between the different 
alternatives. Several models have been proposed to take this component into account: Cascetta et 
al. (16) for the C-logit model, Ben-Akiva and Bierlaire (14) for the path-size logit (PSL) model, 
and Vovsha and Bekhor (17) for the link-nested logit model. In this study, the route set definition 
was derived from the C-logit model. This model explicitly addresses the correlation among 
alternatives (like the two available routes from O8 to D8 in Figure 1). The basic idea is to treat the 
interdependency of the routes through a commonality factor. Thus, highly overlapped paths have 
 
 

 

FIGURE 1  Simulations are performed with an urban center represented by a lattice-like 
unidirectional road network. The arrows represent flow directions. 

O
1

Q
in

(1
+
5α

)

O
2

Q
in

(1
+
4α

)

O
3

Q
in

(1
+
3α

)

O
4

Q
in

(1
+
2α

)

O
5

Q
in

(1
+
α)

O
6

Q
in

O
7

Q
in

(1+5α)

O
8

Q
in

(1+4α)

O
9

Q
in

(1+3α)

O
10

Q
in

(1+2α)

O
11

Q
in

(1+α)

O
12

Q
in

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

l = 300m

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


Parzani, Leclercq, Benoumechiara, and Villegas 271 
 
 

a larger factor and therefore smaller utility with respect to similar paths. For each alternative path 
pk of a given O-D pair, the common factor CFk is proportional to the degree of overlapping of 
path pk with other alternative paths. It is computed as follows: 
௞ܨܥ  = ߚ ln 	∑ ൭ ௅೗ೖ௅೗భమ௅ೖభమ 	൱

ఊ௟∈ூ 									 (2) 

 
where Llk is the length of sections shared by paths l and k, while Ll and Lk are the length of paths l 
and k, respectively. Note CFk that defines the proximity of alternatives independently of the flux 
on each road, which is appealing to study fluid–congested boundary dissociating the two states. 
In this work, it is assumed that β = 1 = γ and computed CFk for each path k of a given O-D pair. 
Figure 2 shows the results for two distinct O-D pairs. In order to develop a clustering method for 
route set generation, it was decided to target five clusters of paths characterized by their 
CFk	value as plotted in Figure 2. Therefore, for a given O-D pair, clusters definition then 
corresponds to a uniform splitting of the interval defined by the minimum and maximum values 
of CFk. More precisely the G1 cluster contains two paths with no sections shared and for i = 2 to 
5, cluster Gi contains alternative paths with more and more shared sections. Note that the 
distribution of CFk is specific for each O-D as illustrated in Figure 2. Note also that under these 
assumptions, two clusters have specific characteristics: G1 only contains the two most 
independant paths, while G5 contains those which are the most correlated. 
 
Step 2: Sample Choice for Each Cluster of Paths 
 
Because of the definition of paths clusters, several routes are available in a given one. In order to 
perform simulations, a maximum of five roads for each O-D pair is imposed. For each cluster Gi, 
the selected paths are denoted from R1 to R5, with decreasing values of the commonality factor, 
R1 corresponding to the maximum. The selection method is illustrated in Figure 2: For each O-D 
pair, CFk, values for each alternative path pk is plotted in blue, the five clusters boundary is also 
plotted, while the selected paths Ri in each cluster are drawn in red. The impact of this particular 
sampling method will be further questioned. 

Once the paths are assigned to each O-D pair, the following step consists in distributing 
the inflow of vehicles across the five potential paths. The aim of this study is to evaluate a large 
variability of such a path flow distribution. For this, we consider a discrete approximation of a 
normal distribution depending on two parameters p and σ. This allows for instance to simulate a 
uniform distribution over all paths or on the opposite to favor one of the five potential paths 
setting the maximum on it. 

To summarize the design analysis and the demand definition, Table 1 presents the 
parameters involved in this analysis and the range of values explored in the different scenarios. 

In the next sections, different scenarios are analyzed using analytic and numerical 
computations. Two distinct analyses are performed to quantify the network level of performance. 
First, the fluid–congested boundary for the network and its sensitivity to parameters is presented 
in Section 3. This allows characterizing the global network behavior from a rough and binary 
point of view. Indeed, the focus is on dynamic loadings. When the local demand on each link 
does not exceed its capacity, traffic dynamics only correspond to the queue evolutions within 
links. No spillbacks occur and the whole network remains in free-flow conditions. Otherwise,  
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FIGURE 2  Histogram of normalized commonality factors for β = 1 = γ for different O-D 
pairs. In red, CFk values correspond to selected paths. 

 
 
congestion will appear in any link where the local demand exceeds capacity and will propagate 
within the network. The network can then be considered as congested or at least partly 
congested. 

Then, once congestion has appeared, in order to better evaluate the impact at the network 
level, two complementary studies are presented. In Section 4, route choices effect is investigated 
more in detail through numerical simulations given access to the NMFD and the potential 
exhibited capacity drop. Last, spatial heterogeneities are quantified by studying the distribution 
of traffic conditions. 
 
 

TABLE 1  Parameters of the Study 
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ANALYSIS OF THE NETWORK FLUID–CONGESTED BOUNDARY 
 
Methodology 
 
A simple way to characterize the network performance is to determine the binary state of the 
network (free-flow or congested). Interestingly, this can be done without resorting to 
simulations. 

Indeed, the network fluid/congested boundary can be analytically computed following the 
mathematical formalism described in Bierlaire (18) that is briefly recalled. Refer to Section 2 for 
a detailed description of the studied network. Denote the O-D flows associated to each of the 144 
considered O-D pairs by q and the link flows for each link by u the link flows for each link. With 
the notations already introduced, each O-D pair k is linked by the set of pk alternatives paths. The 
link-path incidence matrix L, only depends on the network topology and is defined by Lkl = 1 if 
link k belongs to path l, 0 otherwise. Thus, the problem can be rewritten under the matrix form 
 
LCq = u (3) 
 

Solving System 3 allows determining with low computational cost the network fluid–
congested boundary. Indeed, as explained in Section 2, a simulation input is defined by the n-
uplet of parameters (α, Qin, Gi, p, σ) where α and Qin are related to the demand, Gi corresponds to 
the cluster of paths for a given O-D while p and σ are related to the flow distribution over paths 
for each O-D pairs. Exploring the range of each parameter, System 3 is solved. If the results are 
such that there is at least one saturated link uj ≤ C, C being the link capacity, the n-uplet is 
assigned as congested. Indeed, if a congestion appears at some point, it will naturally spillback 
over at least a part of the network. 
 
Results 
 
Following this methodology, several tests are performed to study the fluid/congested boundary 
as network performance indicator. Figure 3 shows the evolution of the fluid/congested boundary 
depending on the demand: Qin (x-axis) versus α (y-axis), for three values of σ: a small one, σ = 
0.1, meaning that the maximal inflow is mainly concentrated on one path, a large one σ = 9.1 
simulating the case of a uniform inflow distribution and an intermediate one σ = 0.5. For this test 
case, the central path described through the parameter p corresponds to the path R3 denoted for 
each cluster. Note that when σ is large, p has no influence. The range of values for (α, Qin) 
corresponding to the fluid network configuration respectively congested configuration is plotted 
in black, respectively in grey. Recall that Qin parameter is constrained by the value of α as 
detailed in Section 1 Equation 1. Therefore, the range of values cannot be entirely explored 
leading to this specific shape. 

Several conclusions can be deduced from Figure 3. First of all, it has to be noted that the 
shape of the fluid–congested boundary does not depend on either clusters’ identification or σ 
value. Next, for a given clusters’ identification (that is for a given line), comparing the three 
columns, the impact of σ	parameter can be studied. It is clear that the higher σ is (that is the most 
the flow is distributed over the selected paths for the given cluster) the lower the network is 
congested. For instance, for Cluster G2, the percentage corresponding to fluid network 
configuration grows from 40% for σ = 0.1 to 56% for σ = 9.1. Then, for a given σ (that is for 
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FIGURE 3  Fluid–congested boundary evolution depending on the demand. In columns, 
different values of ો and in lines, the level of overlapping from cluster G1 to G5. 

 
 

a given column), the clusters’ID analysis can be performed. Results on Figure 3 show that the 
higher the value of CFk is (that is for a high clusters’ identification), the larger is the fluid zone. 
For instance, for σ = 0.1, the percentage corresponding to fluid network configuration grows 
from 30% for cluster G1 to 86% for cluster G5. That means that the more the paths overlap 
between each O-D pair when CFk value is high, the lower the network is congested. This is a 
nonintuitive conclusion since usually when considering a single O-D pair low overlapping 
intuitively means a better (in the sense of uniformly) distribution over the different routes. 
Indeed, higher overlapping values will increase the shared portions of routes with higher flows 
and thus a higher probability for congestion. However, the interest here is in the whole network 
performance and all O-D pairs need to be considered. That is why in order to improve the 
analysis, what the clustering method using the CFk coefficient means at the network level will be 
studied in more detail. For each cluster of paths and for each link of the network, Figure 4 plots 
the number of paths crossing over this link normalized versus the total number of paths of each 
cluster. It can be observed for instance that as a result of the particular structure of the studied 
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network a low commonality factor value for each O-D pair (see first subplot) favors the 
peripheral links. Then, comparing the subplots in Figure 4, the level of global overlapping is 
increasing from cluster G1 to cluster G5 and it can clearly be observed that considering close 
alternatives for routes at the single O-D level may paradoxically lead to a whole set of routes that 
weakly overlap. Figure 5 clearly shows that the lowest CFk value is (see cluster G1) means that 
more than 50% of the network links carry very few paths (less than 10). For higher CFk the links 
carry more paths with a more homogeneous distribution. This means that the repartition of paths 
over the network is more well balanced when CFk inverse. 

In the second test, the value of σ is assumed to be high enough to have a uniform flow 
distribution over the paths and no effect of the p-value. Computations are performed for different 
numbers of paths: 1, 2, or 5 paths in each cluster, again chosen from the maximal CFk value in 
each cluster. The fluid–congested boundary depending on the demand parameters is plotted in 
Figure 6 for clusters G2 to G4 which are less specific. The main conclusion is that the higher the 
number of paths there are, the lower congestion can be observed. However, the most noticeable 
gain is obtained when the number of paths increases from 1 to 2.  

When this number is higher than 5 no changes can be identified. Last, a test to study the 
impact of the choice for the sample of five paths in a given cluster is performed. Different 
options are tried, for instance five paths with an increasing CFk value for each cluster, five paths 
equally distributed among a cluster. The results obtained show that there is no significant effect. 

Combining the results of these tests, this study shows that the more homogeneously the 
flow is distributed over the network, the better the network performance. In this study, 
homogeneity conditions result both from high level of overlapping and a uniform flow 
distribution through the different paths. 
 
 
REFINED ANALYSIS OF THE LOCAL DEMAND  
DISTRIBUTION ON THE NETWORK PERFORMANCE 
 
In this section, the paper resorts to refined indicators to assess the network performance. Some 
are inspired by the concept of the NMFD (e.g., network traffic evolution, capacity drop), others 
correspond to classical representations of heterogeneities (e.g., density standard deviation). 
 
Different Indicators to Assess the Network Performance 
 
Using Edie’s generalized definitions (19) and assuming all vehicles trajectories are available for 
each link i the average flow Qi and density Kiin the time step [t + Δt] are given by 
 ܳ௜ = ∑ ௗೖೖ௟೔௱௧ ௜ܭ									 = ∑ ௧ೖೖ௟೔௱௧ 													 (4) 

 
where dk is the distance traveled by vehicle k in the considered zone (corresponding to link i and 
time interval [t + Δt]) and tk  respectively, its time spent in the zone. Note that Δt should be of the 
order of several signal timing to provide accurate mean estimations. These definitions allow  
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FIGURE 4  Percentage of paths crossing over each link of the network for clusters G1 to G5. 
 
 
determining two indicators series: on the one hand, the average network flow Q, density K, and 
speed V defined as follows: 
 ܳ = ∑ ௟೔ொ೔೔∑ ௟೔೔ ܭ									 = ∑ ௟೔௄೔೔∑ ௟೔೔ 				ܸ = ொ௄										 (5) 

 
The time evolution of Q and K provide a synthetic vision of the network global behavior. For 
simplicity, (Q, K) plots are provided for successive time periods. 

On the other hand, the standard deviation of the density across the network is used as an 
indicator of spatial distribution of network conditions. 

Moreover, simulations duration is chosen large enough in order to ensure that the 
network reaches in a steady state. This has been monitored by computing the cumulative curves 
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for the total in- and outflows. When the difference between these curves (that corresponds to the 
total accumulation within the network) is constant, the network is considered to be in a steady 
state. Note that when the network is congested the difference can never be constant because 
oscillatory patterns are observed. In that case, the network is considered to be in a quasi-steady 
state when the magnitude of the variations is small enough. 
 
 

 

FIGURE 5  Percentage of links that carry at least x paths (repartition function). 
 
 

 

FIGURE 6  Fluid–congested boundary evolution for different number of paths with  
uniform inflow distribution for different levels of overlapping, clusters G2 to G4. 
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Results 
 
The first test aims at evaluating the (Q, K) plots sensitivity to the level of overlapping representing 
through the paths clusters in this analysis. Two cases are plotted in Figure 7 for a fixed demand 
corresponding to α = 0.15 = Qin. In the upper subplot (a) σ = 10 corresponds to a uniform distribution 
whereas in the bottom subplot (b) σ = 0.1. Figure 7 clearly shows that the NMFD shape depends on 
the degree of overlapping of paths: for instance on (a) for clusters G3 to G5, the network remains in 
free-flow condition, whereas for clusters G1 and G2 it switches to congestion. Comparing the two 
plots, it can be observed the impact of σ since cluster G3 now experiments congestion in (b). 
Moreover, these plots give access to an estimation of the network capacity drop represented by the 
difference between solid and dot lines for each cluster.  

The reference for capacity is assumed to be the maximal obtained with one of the clusters for 
a given simulation. Comparing cluster G2 and G3 in (a) and (b), the more the inflow is distributed, the 
lower the capacity drop is and the better the network performance. For instance, for cluster G2, the 
absolute capacity drop is equal to 0.029 veh/s (13%) for high σ in (a) and to 0.068 veh/s (30%) for 
low σ in (b). Last, in both cases (different values of σ), according to the cluster’s identification, the 
network can be in a high instable intermediate state [see for instance, cluster G2 in subplot (a) and 
cluster G3 in subplot (b)], and the variability decreases when congestion is well established. 

 
 

 

FIGURE 7  NMFD corresponding to each path’s cluster for a given demand  
Qin = 0.15, α = 0.15 and for (a) a uniform path flow distribution σ = 10, and 

(b) a tight path flow distribution. 
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All previous tests have been performed attributing the same cluster’s identification to the 
whole set of O-D pairs. In the following test, the impact of this assumption is studied. Then, Figure 8 
presents the NMFD obtained for two different distributions of clusters’ identification over the O-D as 
plotted on the left of the figure. On the upper subplot, the two border clusters are mixed while on the 
bottom one-mixed clusters correspond to more medium value of CFk. First, the NMFD resulting 
from this cluster’s distribution seems to be the mean of the two original ones: for instance mixing 
clusters G1 and G5 leads to a congested configuration but with less capacity drop. However, the 
combination corresponding for instance to cluster G1 for west origins combined with cluster ܩହ for 
north origins (green line) is not equivalent in terms of network performance to the reverse one 
(magenta line). Especially, the G1 – G5  mixed solution (green line) corresponds to a higher 
congested configuration whereas the G5 – 1  one is unstable with a larger range of oscillations. It 
can be deduced that not only the level of overlapping plays an important role on the network 
level of performance but also its distribution between the O-D. 

A third test is conducted to study more locally the network performance. Four distinct 
subnetworks as illustrated in Figure 9 upper left corner are defined, and the corresponding 
NMFD for each subnetwork are plotted, cluster by cluster. In this test, even if the same cluster’s 
identification is assigned to the whole set of O-D pairs, Figure 9 shows that the behavior of the 
network is not spatially homogeneous depending on the level of overlapping. For instance, 
simulations for cluster G1 and G2 let appear either congested or free-flow steady state with 
respect to the subnetwork. Simulations for these clusters on the global network are associated to 
congestion, see Figure 7. Not surprisingly, subnetworks 2 and 3 appear more congested for low 
CFk values than the two others quarters. This is because low CFk values make the peripheral 
links more attractive. Congestion then appears close to the entries where several demand inputs 
aggregates. 
 
 

 

FIGURE 8  NMFD corresponding to different distributions of clusters  
over the O-D pairs. The demand is defined by Qin = 0.15 = α, and 

 σ = 10 such that the inflow is uniformly distributed.  
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FIGURE 9  NMFD corresponding to 4 different subnetworks. The demand is  
defined by Qin = 0.15 = હ and σ = 10 such that the inflow is uniformly distributed. 

 
 
Last, in order to study heterogeneities more in detail, Figure 10 represents the standard 

deviation of the density over the whole network depending on the demand for three values of σ. 
First, looking at the effect of the level of overlapping comparing the different lines for a given σ, 
it has to be noted that the less global overlapping is, the most homogeneous the network is.  

Recall that low global overlapping means high CFk values for each O-D pair in this case 
study (see Figure 4). Moreover, Figure 10 allows determining the range of parameters leading to 
the most heterogeneous zones. Indeed, it clearly appears that around the boundary of the 
admissible domain (in terms of constraint on the demand see Equation 1 especially for low σ 
value and low clusters’ identification, the density on the network is highly heterogeneous with a 
standard deviation reaching its maximal value. This effect is dispersing when the local level of 
overlapping (for each O-D pair) is increasing (comparing in the first column, cluster G1 to G5). 
The last point concerns the influence of ߪ parameter: looking more especially at clusters G3 to 
G5, we see that the larger σ is, the lower are heterogeneities. To conclude, the optimal solution in 
terms of homogeneous network seems to be when the paths are most correlated and the inflow 
uniformly distributed. 
 
 
CONCLUSIONS 
 
In this paper, an analysis of the effect of the local demand distribution on the network traffic 
conditions has been be carried out, focusing on how route choices influence the level of 
performance of the network. In order to study route choices impact, a clustering method based on 
the level of paths’ overlapping has been proposed to generate homogeneous sets of paths. In this 
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FIGURE 10  Density standard deviation depending on the demand. In columns, different 
values of σ and in lines, the level of overlapping from clusters G1 to G5. 

 
 
work a method was proposed to determine with low computational cost, the fluid/congested 
boundary and its sensitivity to route choice. Two levels of analysis have been performed: 1. the 
global network behavior through fluid–congested boundary and 2. dynamic network indicator as 
the NMFD and spatial distribution of densities. The different evaluated scenarios confirm that 
network performance is highly affected by route choice, both by paths selection and flow 
distribution. 

An important result here is that path overlapping at the network level cannot be directly 
assessed through the study of paths overlapping for each O-D pair. Indeed, in this study a 
conterintuitive fact is observed: Low overlapping (low CFk) for each O-D leads to the highest 
overlapping between paths at the network level. The question of characterizing the level of 
overlapping at the network level is very challenging, especially if the influence of paths 
overlapping and paths flow distributions are to be considered. The authors are currently 
investigating this question. These preliminary results and the associated framework look 
promising. The goal is now to improve the analysis design and perform an extensive sensitivity 
analysis in order to determine the most influent parameters related to route choices and demand 
with respect to the global network performance. 
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missions from traffic in networks are a growing concern, and there is a need for simple tools 
to estimate the relationship between network properties, traffic conditions, and the resulting 

aggregated emissions of pollutants such as greenhouse gases. This paper makes use of a 
network’s macroscopic flow–density relation to approximate the following aggregated 
components of vehicle driving cycles: time spent cruising at free-flow speed, time spent idling, 
and the number of vehicle stops. The networkwide emission is estimated by multiplying these 
driving cycle components with associated emissions factors. The study shows that network 
emissions are systematically related to the network properties and vehicle density. The proposed 
analytical model provides an approximation of emissions within 11% of the estimates from a 
conventional microscopic analysis for all but the most congested traffic states. This approach 
allows for systematic analysis of network emissions without the need for intensive data 
collection and simulation. 
 
 
INTRODUCTION 
 
Road transportation is a major source of air pollutant emissions. An estimated 1.9 billion gallons 
(7.2 billion liters) of gasoline and $100 billion were wasted because of fuel consumption and 
delays caused by traffic congestion in 2012 within the United States alone (1). In addition to 
wasted energy and time, urban traffic congestion contributes to networkwide emissions of air 
pollutants, including hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide. It is 
estimated that the on-road vehicles account for more than half of dangerous air pollutant 
emissions and over 30% of carbon dioxide emission in the United States (2). Reducing these 
emissions is important for protecting and improving human health as well as for reducing 
production of greenhouse gases, which are associated with global climate change. Emissions 
from vehicles in traffic are playing an increasingly important role in urban policy making and 
traffic management in large metropolitan road networks. 

Most research on the relationship between traffic and pollutant emissions focuses on 
individual vehicles and the effect that engine technologies or driving cycles have on emissions 
from that vehicle. The driving cycle is the pattern of acceleration, cruising, deceleration, and 
idling as a vehicle traverses distance in the network. In urban environments, the design of the 
road network and the timing of traffic signals have systematic impacts on the driving cycles of 
the vehicles in the network. The traffic conditions in the network also have an impact on the 

E 
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performance of vehicles, because traffic congestion causes additional stopping and idling, which 
directly influence the emissions from vehicles in the network. In order to evaluate, control, and 
reduce networkwide emissions of air pollutants, traffic emissions need to be estimated 
considering the nature of stop-and-go traffic in urban areas. 

Although some pollutants have highly localized impacts, which require detailed models 
and measurements (e.g., particulate matter), greenhouse gas emissions have a global impact, and 
it is most important to be able to estimate the aggregated emissions from traffic in a whole 
network. Recent advances in modeling aggregated traffic conditions in urban networks show that 
a systematic relationship often exists between average vehicle flow and average vehicle density 
in a network. A macroscopic view of urban traffic provides a basis for making aggregated 
estimates of air pollutant emissions from the vehicles. This paper shows that emissions factors 
developed from existing microscopic emissions models can be integrated with models of 
aggregated traffic variables for urban networks in order to estimate the aggregated network-wide 
emissions of greenhouse gases from vehicles. 

The paper is organized as follows. Section 2 reviews existing literature in the emission 
modeling and traffic flow fields. Section 3 presents the overall framework for linking aggregated 
traffic variables that are related to the driving cycle with emissions factors to make an aggregated 
emissions estimate. A detailed description of how the elements of the driving cycle are estimated 
from macroscopic traffic model is given in Section 4. An evaluation is presented in Section 5 by 
comparing the emissions estimates from the proposed model with the results from a more 
conventional microscopic analysis using simulation. Finally, conclusions are discussed in 
Section 6. 
 
 
EXISTING MODELS 
 
There are a number of existing models in the literature that focus on estimating emissions from 
vehicle emissions at various levels of resolution. The most detailed microscopic emissions 
models are based on tracking driving cycles in second by second detail, while the most aggregate 
models are based on broad averages in order to make regional estimates. Recent advances in 
traffic models that address the movements of vehicles and congestion patterns at the network 
level provide useful tools for analysis of aggregated traffic conditions. In the following 
subsections, some of the most relevant models for modeling emissions and traffic are reviewed. 
These form the building blocks of the proposed integrated model. 
 
Vehicular Emissions 
 
Existing models for vehicular emissions generally fall into two main categories: microscopic 
models that focus on specific movements of individual vehicles and macroscopic models that are 
based on aggregated data and average values. Microscopic models are the most detailed models, 
and they often provide instantaneous emissions estimates based on concurrent operating 
conditions of a an equipped vehicle or a simulation. These models typically require extensive 
data inputs such as second by second trajectories for each vehicle. VT-Micro (3), CMEM (4), 
and the project level of MOVES (5) are microscopic models that are widely used in the United 
States. In order to analyze the overall effect of changing a signal control system or widening a 
roadway, microscopic models require that a detailed microsimulation be developed to generate 
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the detailed trajectory of each vehicle that is then used to produce the emission estimate for each 
vehicle at each second. This is a time-consuming and costly process, and the data intensity and 
computation time make these microscopic models prohibitively burdensome for estimating 
emissions in large urban networks. As a result, microscopic models are typically only used in 
practice for analyzing small-scale projects. For greenhouse gas emissions, such detailed model 
outputs are not necessary in of themselves except that they tend to be more accurate than 
emissions estimates from macroscopic models (6). 

Macroscopic emissions models are designed to estimate regional emissions from vehicles 
based on the average network speed, the total number of vehicles, and some assumed driving 
cycles (7, 8). These models require relatively few data inputs, so they are much easier to 
implement for large urban networks. However, these models do not account for the effect of 
vehicle acceleration and deceleration for stops in a way that is related to what is actually 
happening in the network. Macroscopic models relate average speed to a single emission rate, 
but in reality a single average speed could be associated with many different driving cycles 
ranging from a small number of long stops to a large number of short stops. These driving cycles 
should be associated with different emissions rates, so macroscopic models have a tendency to 
oversimplify the relationship between traffic patterns and emissions. 

In recent years, a third type of model has emerged: mesoscopic emission models. These 
models do not require information about the instantaneous movements of individual vehicles, so 
they are not as complex and data-intensive as microscopic models. Mesoscopic models typically 
require aggregated traffic data that reflects the traffic conditions and congestion in the network, 
so they provide more accurate networkwide emission estimation in compare with macroscopic 
models. One example is VT-Meso, which uses link-by-link average speed, the number of vehicle 
stops, and the stopped delay as aggregated traffic inputs (9). The model synthesizes a typical 
driving cycle, and by using the microscopic VT-Micro model, it estimates the average link fuel 
consumption and emission rates. Overall network emissions can then be computed by 
aggregating the emissions on all links. Gori et al. (10) presents another mesoscopic emission 
model, which uses a dynamic traffic assignment model to estimate the aggregated traffic 
parameters, namely distance traveled at free-flow speed, the average speed of vehicles in queues, 
and the length of the queues. Mesoscopic models improve the accuracy of emissions estimates 
for larger networks, but they require inputs of aggregated traffic variables, and these need to be 
obtained either from a simulation or another traffic model. 
 
Modeling Traffic in Networks 
 
Just as emissions can be modeled at varying levels of detail, traffic models also range from 
microscopic models that track individual vehicle movements to macroscopic models that relate 
aggregated network-level variables. For the purposes of emission modeling, it is common to use 
microsimulation tools to construct trajectories for each vehicle that traverses an existing or 
hypothetical network. Although simulation models are powerful tools for investigating the 
complex interactions of vehicles, it is costly and challenging to build and calibrate the models 
appropriately (11). An alternative is to work with the classic kinematic wave model (12, 13) that 
makes some simplifying assumptions about the variability of driver and road characteristics but 
can describe the evolution of traffic states on a road segment by tracking the interfaces between 
traffic states over space and time. The benefit of this analytical approach is that a wide variety of 
traffic scenarios can be evaluated in a robust and consistent way with far less data and 
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computational complexity than a microsimulation. At the level of intersections and individual 
arterials, kinematic wave theory has been a basis of traffic modeling for decades. 

For networks that are homogeneous and well connected and on which demand is 
uniformly spread, a  consistent relationship between average network flow and  average network 
density has been shown to exist in theory (14, 15), in simulations (16), and in the real world (17, 
18). This relation is often referred to as the macroscopic fundamental diagram (MFD) or 
network-level fundamental diagram. The size and shape of the MFD depends primarily on the 
physical properties of the network including the saturation flow rate, block length, and traffic 
signal settings (e.g., cycle length, duration of signal phases, and signal offsets). This aggregate 
relation of traffic variables is useful for a network manager, because it can be used to monitor the 
network performance or implement control strategies to increase throughput and decrease delays 
in the system (19). An additional objective may be to reduce aggregated fuel consumption and 
emissions in a network, but this application of networkwide traffic models has received less 
attention in the literature. 

Since the critical input for emissions models is an accurate driving cycle, traffic models 
need to relate the time that vehicles spend accelerating, cruising, decelerating, and idling to the 
traffic conditions on the roadway. An arterial-level model has been developed to estimate 
emissions assuming that some traffic data, such as flows and number of vehicle stops, are 
measured directly from links in the network and then estimating the other relevant parts of the 
driving cycle (20). Another recent model uses kinematic wave theory to make analytical 
estimates of the entire driving cycle for traffic on a single link approaching an isolated 
intersection (21). The model proposed in this paper is intended to go a step further to estimate 
emissions based on aggregated traffic characteristics using the MFD and physical characteristics 
of the network. 
 
 
INTEGRATED TRAFFIC EMISSION MODEL FOR A NETWORK 
 
The proposed modeling framework builds on the Integrated Traffic Emission Model (ITEM) 
presented in Shabihkhani and Gonzales (21), which connects an analytical model of traffic 
approaching an isolated intersection with emission factors from a microscopic emission model. 
That study shows that reliable predictions of emissions at a signalized intersection can be made 
using kinematic wave theory to estimate the amount of time vehicles spend idling, the time spent 
cruising, and the number of times that vehicles stop per vehicle distance traveled. The model of 
networkwide emissions presented in this paper is structured with the same two components: a 
traffic model to estimate aggregated traffic parameters and a set of emissions factors to convert 
the driving cycle into an emissions estimate. 

The trajectories of vehicles approaching an intersection or traversing a network have 
repeating patterns of cruising at the free-flow speed, vf , idling while stopped, and decelerating 
and then accelerating between speeds vf and 0 for every stop. Therefore, three components of the 
driving cycle that must be estimated from the traffic model in order to account for emissions 
from the vehicles: the time spent cruising per distance traveled, Tc; the time spent idling per 
distance traveled, Ti; and the number of times that vehicles must stop per distance traveled, n. 
The total emissions per vehicle distance traveled, E, is then calculated by multiplying these 
components by the appropriate emissions factors: 
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ܧ  = ݁௖ ௖ܶ	 + 	݁௜ ௜ܶ + 	݁௦݊ (1) 
 
where ec is the emission of interest per unit cruising time, ei is the emission of interest per unit 
idling time, and es is the total emission of interest associated with a complete deceleration from vf 
to 0 and a complete acceleration from 0 to vf. 

In order to make accurate emissions estimates, it is important to have accurate estimates 
of the components of the driving cycle (Tc, Ti, and n) and accurate emission factors (ec, ei, and 
es). The analysis in this paper will focus on investigating simple homogeneous networks in 
which the MFD is known to be applicable so that we can focus on using the MFD to estimate 
driving cycles. Then these driving cycles will be used to estimate emissions. The details about 
how to estimate the driving cycle from the macroscopic traffic data are presented in Section 4.  
How to obtain appropriate emissions factors, which are important for analysis of isolated 
intersections or larger networks, will also be considered. Although the method may be applied to 
measured or simulated vehicle data from any road or network, this investigation will use a 
simulation approach to study the performance of idealized networks. 
 
Traffic Simulation 
 
The first step to estimating emissions factors with a microscopic emissions model is to obtain 
high-resolution vehicle trajectories that show speed and acceleration a fine temporal resolution 
(e.g., every second). In the field, trajectories can be measured from equipped vehicles, but a 
simulation model is useful for considering a wider range of traffic conditions, many of which 
may not be part of a measured data set. In order to represent the ideal homogeneous network 
conditions under which a consistent MFD has been proven to exist, a simple ring network has 
been constructed using Aimsun that is consistent with the theoretical assumptions in Daganzo 
(14) and Daganzo and Geroliminis (15). The ring with a single intersection is representative of a 
long arterial or network with homogeneous traffic conditions and traffic signals with no offset. 

In the ring model, a constant number of vehicles in the system correspond to a constant 
density. The full range of possible densities from an empty network up to a complete jam are 
systematically analyzed by loading the ring with a specific number of vehicles and then running 
the simulation to measure aggregated network flow and extract vehicle trajectories. Feeding each 
trajectory into a microscopic emission model provides a second-by-second estimate of the 
emissions from each vehicle. Aggregating the emissions from all the individual vehicle 
trajectories provides an estimate of the networkwide emissions following the conventional 
detailed microscopic approach. In this paper, the project level of MOVES (5) is used as the 
microscopic emission model, but the same method could be used with any microscopic model 
that uses vehicle trajectories as the model input. 
 
Estimation of Emission Factors 
 
The goal is to estimate emission factors for each component of the driving cycle, so a sample of 
trajectories is parsed into cruising, idling, acceleration, and deceleration. This process requires 
that thresholds be defined to distinguish between slight oscillations in speed and larger changes 
that are associated with accelerations and decelerations associated with stopping. The following 
criteria were used to parse the trajectories in Shabihkhani and Gonzales (21), and they are used 
again in this study: 
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1. A vehicle is considered to be stopped and idling whenever the speed is slower 
than 1 mph (1.6 km/h). 

2. A vehicle is considered to be accelerating or decelerating when the following 
conditions hold: the absolute value of the rate of acceleration exceeds 0.2 mph/s (0.3 km/h/s); 
the speed changes by at least 5 mph (8 km/h); the duration of the acceleration or deceleration 
lasts at least 2 s; an intermediate period of opposite acceleration does not exceed 1 s; and an 
intermediate period of low acceleration does not exceed 3 s. 

3. The remaining time, the vehicle is moving at steady enough speed that it is 
considered to be cruising. 

 
These criteria were identified because they provided the closest match between the 

number of stops counted with the automated procedure and the number of manually counted 
stops from empirically measured and simulated trajectories. Although this parsing process may 
appear complicated, the important thing is collect observations of enough vehicle trajectories to 
obtain a good estimate of the average idling, cruising, accelerating, and decelerating behaviors. 

Once the trajectories have been broken into each of the components of the driving cycle, 
each trajectory segment has a duration and is analyzed with a microscopic emission model to 
estimate the corresponding vehicle emission. For the idling and cruising, the results are simply 
averaged to obtain an average emission rate for each second of idling and each second of 
cruising. For the accelerations and decelerations the duration and total emission are both 
important quantities. Each stop requires that a vehicle decelerate and accelerate, so the sum of 
the deceleration and acceleration durations are the period of time when vehicles are neither 
cruising nor idling. The cycle of decelerating and accelerating for a stop is associated with a 
quantity of pollutants emitted per vehicle stop. 

This paper evaluates the proposed analytical model with a number of different network 
scenarios in which the free-flow speed is vf = 53 km/h. The project level of MOVES was used to 
analyze a sample of trajectories extracted from an Aimsun simulation of a ring-shaped network 
as described in Section 3.1. The emissions of interest for our study are greenhouse gases, because 
these are global pollutants that are most important to estimate in aggregate for a network. The 
relevant unit of measure for greenhouse gases is grams of carbon dioxide equivalents (gCO2eq) 
because, this represents the global warming of all greenhouse gases emitted from the vehicles in 
terms of an equivalent amount of CO2. The emissions factors for this case are ec = 2.187 
gCO2eq/s, ei = 0.881 gCO2eq/s, es = 48.876 gCO2eq/stop, and the average duration of a 
deceleration and acceleration cycle is τ = 22 s. 
 
 
ANALYTICAL MODEL FOR NETWORKWIDE TRAFFIC VARIABLES 
 
Existing macroscopic models for networkwide traffic conditions relate the average network flow, 
q, to the average network density, k. These two variables imply the average speed of vehicles in 
the network, v, by the well-known relation: 
ݒ  = ݍ	 ݇⁄  (2) 
 

These variables alone provide a lot of useful traffic information about the capacity of a 
network and the delays that drivers in the network experience. Ongoing research is being 
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conducted to better understand the behavior of the macroscopic flow–density relation for 
different types of realistic networks. For the proposed model it is supposed that the MFD for a 
network is known or has been measured use it to provide an analytical approximation for the 
idling time, cruising time, and number of stops for vehicles in the network. The goal is to 
develop a model with sufficient detail to estimate aggregated emissions in the network without 
the need to track the details of each vehicle’s movements. 

As presented in Section 3, the complexities of a second-by-second vehicle trajectory can 
be simplified into three key parts of the driving cycle that are related to emissions: time spent 
moving at the cruising speed per vehicle-distance, Tc; time spent idling per vehicle-distance, Ti; 
and the number of times that vehicle stops per vehicle-distance, n. First considered is how Tc and 
Ti can be estimated if n is known. Then it will be considered how the number of stops per 
distance can be estimated as well. 

Suppose that traffic on a homogeneous network has a triangular fundamental diagram 
with free-flow speed of vf . If it is ignored for the moment the range of speeds that are associated 
with acceleration and deceleration, vehicles will have piecewise linear trajectories with speed vf 
while moving (i.e., cruising) or stopped while idling. All travel time for vehicles can be 
classified as effectively cruising or effectively idling. The kinematic waves associated with these 
idealized trajectories are the same as the aggregated dynamics of traffic with more realistic 
acceleration and deceleration patterns (12, 13). 

Every vehicle that stops must decelerate from vf to 0 and then accelerate from 0 back to 
vf. The duration of the deceleration is τd and the duration of the acceleration is τa, and these 
values depend on the behavior of drivers in a particular network. If the deceleration and 
acceleration are at constant rates, then half of τd and τa is effectively cruising time and the other 
half is effectively idling time. Figure 1 shows how a piecewise linear trajectory and a more 
realistic trajectory with constant rates of deceleration and acceleration. For simplicity, we will  
 

 

 

FIGURE 1  Relationship between a trajectory with constant deceleration and  
acceleration rates (solid) and a piecewise linear trajectory simplified  

to effective cruising and effective idling (dashed). 
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consider a single time associated with the cycle of deceleration and acceleration for each vehicle 
stop τ = τd + τa. Therefore the each stop reduces the actual time spent cruising by τ/2 and the 
actual time spent idling by τ/2. It is important to account for τ when modeling traffic emissions, 
because the emission rates for cruising and idling should be multiplied by the actual cruising and 
idling times rather than the effective times. 

The effective cruising time per unit distance is simply the inverse of the free-flow 
cruising speed, because no distance is traversed while idling. The actual cruising time per unit 
distance is then calculated by reducing the effective cruising time by half of deceleration and 
acceleration time for each stop: 
 ௖ܶ = 	 ଵ௩೑ −	 ఛଶ 	݊ (3) 

 
where n is the number of times a vehicle stops per unit distance traveled. 

The effective idling time is the difference between the total travel time per unit distance, 
which is the inverse of the average traffic speed, and the effective cruising time. The actual 
idling time per unit distance is again calculated by reducing the effective idling time by the other 
half of the deceleration and acceleration time per stop: 
 ௜ܶ = 	 ଵ௩ −	 ଵ௩೑ −	 ఛଶ ݊ (4) 

 
In many cases, it may be possible to measure n from the same data source used to obtain 

the estimated macroscopic traffic state k and q (i.e., traffic data from probe vehicles could 
provide an indication of this value). In the absence of direct measurements, it is useful to be able 
to express the number of stops analytically. Although an individual vehicle makes a discrete 
number of stops per distance traveled, this could vary across vehicles or road segments. 
Therefore, it is useful to be able to have an analytical approximation for n. 

The simplest approximation is simply to suppose that on average vehicles are stopped 
once per cycle. The average distance traveled during a signal cycle of length C is vC, so the 
number of stops per distance is given by 

 ݊ = 	 ଵ௩஼ (5) 

 
This approximation is appropriate when the signal offset is 0, and especially when the 

duration of the red signal exceeds the time required to travel the length of a block at free-flow 
speed: C − G ≥ ℓ/vf, where ℓ is the length of a block. When the red phase is sufficiently long, a 
vehicle will always have to stop once per cycle when caught at a red signal. When block lengths or 
signal times are short enough that this inequality is violated, it is possible for some vehicles to 
traverse the network without stopping during every cycle, which is a possible source of errors. 

Since the MFD is a property of a specific network, the flow can be expressed as a function 
of density, q = Q(k). The shape and size of Q(k) depends on the network characteristics (e.g., 
saturation flow, jam density, and block length) and traffic signal settings (e.g., cycle length and 
green ratio). Therefore the average speed of vehicles in the network can be expressed as a function 
of density, so (2) becomes v(k) = Q(k)/k. The emissions in a network are estimated by evaluating 
Tc, Ti, and n with v(k) and substituting the resulting driving cycle components into Equation 1. 
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EVALUATION WITH AN IDEALIZED NETWORK 
 
The proposed analytical model is evaluated by constructing an idealized network in a 
microsimulation and then comparing the emissions estimates with the results of a conventional 
microscopic emissions analysis. The accuracy of analytical approximations for the MFD itself is 
beyond the scope of this paper, so the analytical approximations are made assuming that the MFD is 
measured and known. A ring model is used to represent an idealized homogeneous network as 
explained in Section 3.1. It is from this simulation that the empirical MFD is measured, and the 
detailed vehicle trajectories are also extracted in order to calculate the modeling error relative to the 
conventional microscopic modeling approach. 

First a comparison between the analytical modeling approach and the conventional 
simulation approach is investigated for a base case network. Then, the effect of varying one network 
parameter, the green ratio, is demonstrated using the analytical model to show how the proposed 
modeling approach can be used to evaluate changes to the system. Finally, an error analysis if 
conducted to compare the performance of the analytical model relative to the conventional 
microscopic approach shows that for a wide variety of network characteristics and traffic states. 

 
 

COMPARISON OF ANALYTICAL AND SIMULATION MODEL RESULTS 
 
The base case network that is used to illustrate the performance of the proposed analytical model has 
the following properties: free-flow speed, vf = 53 km/h; saturation flow, s = 1,900 veh/lane-h; jam 
density, kj = 200 veh/lane-km; green ratio (length of green phase divided by signal cycle length), G/C 
= 0.50; signal cycle length, C = 60 s; block length, ℓ = 0.30 km; and no signal offset. Running the 
simulation for a range of densities between 0 and kj, the average network flow q is plotted for each 
density k in Figure 2. The points in the figure indicate the measurements from the simulation, and we 
will suppose that Q(k) is the empirical curve connecting these points (shown as the solid line). 

Using average network speed at each density, v(k) = Q(k)/k, the number of stops is estimated 
using Equation 5. Figure 3a shows the analytically estimated value of n (solid line) and the number 
of stops determined by analysis of the simulated vehicle trajectories (dots) as described in Section 
3.2. The plot shows that the analytically estimated number of stops has a similar and close trend to 
simulated values, especially at low densities (k < 75 veh/lane-km) associated with the free-flow 
branch of the MFD. At greater densities the number of stops observed in simulation start to grow 
faster than the analytical prediction, because the interactions between vehicles as conditions become 
congested create some additional stop-and-go waves that are not accounted for in the simple model. 
At the highest densities (k > 175 veh/lane-km), where traffic is nearly completely jammed, the 
estimated number of stops per distance soars while the observed number of stops actually declines. 
This is a result of the fact that in extremely congested conditions, vehicles move so little during each 
cycle that the trajectories do not trigger the necessary thresholds for the stops to get counted. 

The analytically computed values for n are then used along with the values of v(k) to estimate 
the time per distance spent cruising, based on Equation 3, and idling, based on Equation 4. Figure 3b 
shows the analytically estimated idling time (solid line) and the idling time measured from the 
simulated trajectories (dots). The analytically approximation fits closely with the simulated values. 
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FIGURE 2  Network flow–density relation (MFD) measured from the simulation of an 
idealized ring network (G/C = 0.50; C = 60 s; ℓ = 0.30 km). 

 
 
 

 
(a) (b) 

FIGURE 3  Components of the driving cycle estimated using the  
analytical model and measured from simulation (a) number of stops and  

(b) idling time (G/C = 0.50; C = 60 s; ℓ = 0.30 km). 
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Since the idling time and cruising time are calculated by subtracting the duration of the 
deceleration and acceleration cycles associated with each stop, errors in the estimated number of 
stops contribute to errors in the estimated values of Tc and Ti. The values of k where stops are 
underestimated also have overestimated values of Ti and vice versa. The error that affects the 
idling time (as shown Figure 3) also affects the cruising time estimates (not shown) in a similar 
way. 

The total greenhouse gas emission per vehicle distance traveled is calculated by 
multiplying each of the estimated driving cycle components by the associated emission factors as 
show in Equation 1. These results can be compared with the outcome of a conventional 
microscopic emissions analysis using the simulated vehicle trajectories. A comparison of the 
analytically estimated emissions (solid line) and the aggregated simulation output (dots) is shown 
in Figure 4. The close agreement between the analytical macroscopic model and the detailed 
simulation model occurs because aggregating the emissions from all vehicle trajectories together 
has the effect of averaging out variations from vehicle to vehicle. 
 
Variation of Signal Timing 
 
The proposed analytical model is particularly useful for comparing the performance of networks 
with different characteristics. One example is to consider the effect that changing signal timings 
has on the emissions from traffic in a network. Using all the same network parameters as the 
base case presented in Section 5.1, an evaluation of the effect of changing the green ratio is 
conducted by changing only the value of G/C. Figure 5a shows the MFD for each of the green 
ratios G/C ∈ {0.25, 0.50, 0.75}. The middle value is the same base case presented in Figure 2. 
 
 

 

FIGURE 4  Networkwide emissions estimated using an analytical model based on the  
MFD and estimated using detailed trajectories from a simulation and  

microscopic emission analysis (G/C = 0.50; C = 60 s; ℓ = 0.30 km). 
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(a) (b) 

FIGURE 5  Comparison of MFD and analytically estimated emissions for varying green 
ratios, G/C ∈ {0.25, 0.50, 0.75}: (a) network flow (MFD) and (b) network emissions. 

 
 
The effect of G/C on the MFD is not surprising, because a longer green phase within the 

cycle allows a greater flow of vehicles to traverse the network. The most restrictive green time 
(G/C = 0.25) is associated with a low network capacity, and a constant flow that is associated 
with a wide range of densities. The analytically estimated emissions for each of the cases are 
shown in Figure 5b. The results show that the more restricted green ratio is associated with 
greater emissions per vehicle distance traveled, but there is not a big difference between G/C = 
0.50 and G/C = 0.75. 

The ability to compare scenarios based only the MFD is useful because detailed 
trajectories do not need to be extracted and analyzed with the microscopic emission model for 
each case considered. A similar method can be applied to changing other network parameters 
such as the cycle length, C, and block length, ℓ. All of these cases are associated with the same 
free-flow speed, vf, so the set of the emission factors (ec, ei, and es) and the duration of each 
acceleration and deceleration cycle (τ) remains the same as the base case. If the free-flow speed 
in the network were to change, these factors would have to be re-estimated. 
 
Model Errors 
 
In order to assess the accuracy and robustness of the proposed analytical model, an error analysis has 
been performed to compare the estimated emissions from the analytical model with the results of a 
detailed simulation and microscopic emission analysis. The accuracy is quantified by calculating the 
percent error of each analytically calculated emission value relative to the simulated result. 

Starting from the base case presented in Section 5.1 with G/C = 0.50, C = 60 s, and ℓ = 0.30 
km, a systematic error analysis was conducted for each of the following variations in isolation: the 
green ratio, G/C ∈ {0.25, 0.50, 0.75}; the signal cycle length, C ∈ {30, 60, 120} s; and the block 
length, ℓ ∈ {0.15, 0.30, 0.60} km. For each case a separate ring simulation was constructed to 
generate the MFD for the analytical approximation and to generate the detailed vehicle trajectories 
for the conventional microscopic analysis. The percent error of the proposed analytical approach 
relative to the conventional microscopic simulation approach is summarized in Table 1. 
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TABLE 1  Percent Error of Emissions Estimate from the  
Aggregated Analytical Emission Model Relative to the  

Microscopic Simulation Model (Base Case: G/C = 0.5; C = 60 s; ℓ = 0.30 km) 

Network Properties Network Density, k (veh/lane-km) 

G/C C (s) 
ℓ  

(km) 25 50 100 150 200 
Variation of the Green Ratio 

0.25 60 0.30 2.1% 4.9% 0.9% 1.7% 15.9% 
0.50 60 0.30 –7.7% 10.5% 10.5% –7.6% 19.5% 
0.75 60 0.30 –8.4% –7.2% –7.2% –17.4% 22.4% 

Variation of the Signal Cycle Length 
0.50 30 0.30 9.3% 10.1% 5.5% 0.4% 49.7% 
0.50 60 0.30 –7.7% 1.3% 10.5% –7.6% 19.5% 
0.50 120 0.30 –11.0% –10.0% 0.2% –1.8% 1.1% 

Variation of the Block Length 
0.50 120 0.15 –5.0% 8.5% 6.7% –1.2% 22.6% 
0.50 120 0.30 –7.7% 1.3% 10.5% –7.6% 19.5% 
0.50 120 0.60 –10.3% –7.5% 1.4% 0.2% 22.4% 
 
 
The network scenarios are clustered into three groups, each group showing the results of 

varying one of the network variables. The center row of each cluster is the base case so that the 
effect on the percent error from increasing and decreasing each variable can be compared one at 
a time. In almost all cases when the network is not completely jammed (k < 200 veh/lane-km), 
the model is within 11% of the simulated value. These errors do not appear to have a systematic 
bias and the magnitudes are small relative to the variation in emission rates for different values 
of k as shown in Figures 4 and 5b. Therefore, the proposed analytical model provides a good 
approximation for the detailed microscopic estimates. 

Only at the jam density (k = 200 veh/lane-km) are the errors very large and consistently 
positive. These large errors occur when the network is near a state of complete gridlock, because 
the model predicts a large number of stops but the traffic moves so little with each cycle that the 
vehicle trajectories in the simulation never move faster than a slow crawl. Fortunately, these 
extremely jammed conditions are rare, and the model performs well for a wide range of 
congested traffic conditions and a wide range of network characteristics. 
 
 
CONCLUSION 
 
A model has been proposed that makes use of the macroscopic relationship between average flow 
and density known as the MFD to make analytical estimates of the network- wide emissions from 
traffic. A robust relationship is shown between the components of that driving cycle that are 
associated with vehicular emissions and the fundamental properties of the network. Aggregated 
traffic parameters are used to identify a typical driving cycle. The components of the driving cycle 
per vehicle distance traveled (i.e., cruising time, idling time, and number of stops) are estimated 
based on the aggregated flow–density relation (MFD), the free-flow speed in the network, the 
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duration of a typical acceleration and deceleration associated with a vehicle stop, and the signal cycle 
length. These components are then multiplied by emission factors that are developed using a detailed 
microscopic emission model, such as the project level of MOVES. 

The ITEM that has been presented and evaluated in this paper links macroscopic traffic flow 
models with microscopic emissions models in order to exploit the strengths of each modeling 
approach. Conventional microscopic traffic emissions modeling requires detailed data for individual 
trajectories, which must either be measured in the field or generated with a microsimulation, in order 
make detailed emissions estimates. This is not practical for estimating emissions in large urban 
networks, but that macroscopic emissions models that are currently available do not adequately 
account for the effect that properties of the road network have on driving cycles and the resulting 
emissions estimates. The proposed modeling approach address this challenge by making use of state-
of-the-art macroscopic traffic models that are sensitive to properties of the network such as the lane 
capacities, block lengths, and traffic signal timings. By making use of the MFD, which embodies the 
effects of network properties on the aggregated flow–density relation, networkwide emissions can be 
reliably estimated for a wide range of traffic conditions without the need for extensive simulations 
and trajectory analysis. 

The effect of network characteristics and traffic dynamics on real MFDs is currently a topic 
of extensive research. The flow–density is known to exist and be robust for idealized homogeneous 
networks, so this was used to demonstrate the potential for using a macroscopic approach to 
approximate driving cycles in the network. The shape of the MFD has been studied for various types 
of networks have been developed (15, 16, 22), but it is supposed that this relation is either measured 
or determined by some other method. Given the traffic state on the MFD, a few other network 
characteristics (vf, C, and τ), and the emission factors (ec, ei, and es), the ITEM has been shown to 
approximate the vehicular emissions within 11% of the values from microscopic analysis of 
simulated trajectories for all but the most congested traffic states. 

This proposed model is useful for monitoring emissions in real networks because traffic 
states can be monitored using data collected from many different sources, including vehicle probes, 
mobile phones, and fixed detectors. The same data that is useful for monitoring traffic and 
implementing efficient traffic control system can also be used to estimate networkwide emissions 
without simulations or extensive additional data collection. Furthermore, the analytical approach 
provides a tool for systematically analyzing the effect of changes to the network on emissions by 
tracking the effect on the MFD. While this paper has focused on demonstrating the potential of this 
integrated model with an idealized ring-shaped network, additional work is needed to determine how 
well the modeling approach applies to more realistic networks that may have turning vehicles, signal 
offsets, or inhomogeneous signal timings and block lengths. Nevertheless, the proposed model has 
value because it provides a less data-intensive way to estimate aggregated network emissions, which 
is especially important for tracking pollutants like greenhouse gases that have a global impact. 
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revious studies have shown that the gridlock state can arise in a beltway network. However, 
no closed-form formulations were provided for traffic dynamics in a beltway network, and 

the existence and stability of gridlock were not established systematically. This paper first 
presents the network kinematic wave model for traffic dynamics in a rotationally symmetric 
beltway network, including the merging and diverging models. Then it demonstrates that 
gridlock is always a stationary solution with fixed exiting ratios. Further, it shows that the 
gridlock state may be stable or unstable, depending on the merging priority and the exiting ratio. 
Additionally, the mechanisms and limitations of existing mitigation strategies are discussed and 
a new adaptive driving strategy is proposed. Finally, the paper concludes with future research 
directions. 
 
 
INTRODUCTION 
 
A beltway network is a ring road with multiple entrance and exit links, as shown in Figure 1, that 
can be embedded in both freeway and arterial networks. A gridlock state in a beltway network is 
defined as a traffic state when the total density is positive, but the flow-rate is zero. A trivial case 
is when all links, including the entrance and exit links, are totally jammed, and no vehicles can 
move around. This can occur when all exit links are blocked. However, more interesting. 
 
 

1 
 
 
 
 
 
 
 
 
 
 
 
 

N 2 
 
 
 
 
 
 
 

n 

(a) (b) 

FIGURE 1  Beltways embedded in (a) a freeway network  
and (b) an arterial grid network.  

P 
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gridlock states can arise when all entrance links are jammed but all exit links are completely 
empty. The latter type of nontrivial gridlock states are concerned in this study 

In Daganzo (1) it was shown that a nontrivial gridlock state can appear in a beltway 
network, and the sufficient condition for the occurrence of gridlock in such networks was 
identified with macroscopic merging and diverging rules in the cell transmission model (2). In 
Daganzo (3) the occurrence of gridlock was also demonstrated in an urban beltway network 
with continuous entrance and exit links. Further, in Daganzo (4) the dynamics related to the 
occurrence and mitigation of gridlock were studied in double-ring networks, and the impacts of 
drivers’ adaptation to traffic conditions were analyzed. In Jin et al. (5) it was shown that a 
double-ring network can reach a gridlock state at multiple density levels in the kinematic wave 
model. In Jin (6) it was shown that the occurrence of a gridlock state is associated with circular 
information propagation on a ring road, and that a gridlock state is a fixed point of a Poincar´e 
map. In the literature, however, there lacks a systematic treatment on existence, stability, and 
mitigation of gridlock in a beltway network. 

This study attempts to fill the gap. First the network kinematic wave model, in which the 
Lighthill-Whitham-Richards (LWR) model is used to describe traffic dynamics on each link, is 
applied, and macroscopic merging and diverging rules are used to prescribe traffic dynamics at 
merging and diverging junctions. Then we mathematically prove that, in a traffic statics problem 
with constant demands at the entrance links and constant supplies at the exit links, there exist 
stationary states in the network, and gridlock is always a stationary solution. Furthermore, with 
the Poincaré map developed in Jin (6), this paper shows that the gridlock state may be stable or 
unstable, depending on relationship between the merging priority and the diverging ratio. 
Finally, a feedback control algorithm to mitigate gridlock is proposed, and its effect on the 
existence and stability of gridlock is discussed. 

The rest of the paper is organized as follows. In Section 2 the network kinematic wave 
model for traffic dynamics in the beltway network is presented. In Section 3 the traffic statics 
problem in the beltway network is formulated, and the existence of gridlock stationary states is 
proved. In Section 4 the Poincaré map is applied to study the stability of the gridlock state. In  

Section 5, the impacts of an evacuation diverging model on the gridlock state are studied. 
In Section 6, the paper concludes with discussions and possible future studies. 
 
 
NETWORK KINEMATIC WAVE MODEL 
 
For a rotationally symmetric beltway network, shown in Figure 1a, N entrances (or on-ramps) 
and N exits (or off-ramps) (N ≥ 2) are labeled from 1 to N, respectively. It is assumed that all 
mainline links between an entrance and an exit have the same length, L, and they are labeled 
from 1 to 2N in a clockwise fashion. In addition, the merging junctions are labeled by 2n − 1, 
and the diverging junctions are labeled by 2n (n = 1, · · · , N ). 

On mainline link a (a = 1, · · · , 2N ), at a point (a, xa) and time t, traffic density, speed, 
and flow-rate are denoted by ka(xa, t), va(xa, t), and qa(xa, t), respectively. It is assumed that all 
links share the same fundamental diagram (7): q = Q(k), which is unimodal and attains its 
capacity C = Q(Kc) at the critical density of Kc. An example is the following triangular 
fundamental diagram: 

 ܳ(݇௔) = minሼܸ݇௔,ܹ(ܭ −	݇௔)ሽ (1) 
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where V is the free-flow speed, K is the jam density, and −W is the shockwave speed in 
congested traffic. For a flow-rate qa, K1(qa) and K2(qa) are the respective undercritical (UC) and 
overcritical (OC) densities for qa; in other words, Q(K1(qa)) = Q(K2(qa)) = qa, and K1(qa) ≤ Kc ≤ 
K2(qa). The triangular fundamental diagram and K1(·) and K2(·) are shown in Figure 2. 

Traffic dynamics on link a, either a mainline, entrance, or exit link, are described by the 
LWR model (8, 9):  

 డ௞ೌడ௧ + 	డொ(௞ೌ)డ௫ೌ = 0  (2) 

 
in which traffic queues propagate and dissipate with shockwaves. In the celebrated cell 
transmission model (2, 10) the LWR model is extended for traffic dynamics in a network in the 
following two steps. First, the following traffic demand and supply functions are defined: 
 ݀ = (௔݇)ܦ 	≡ ܳ(minሼܭ௖, ݇௔ሽ), and (3a) 
ݏ  = ܵ(݇௔) 	≡ ܳ(maxሼܭ௖, ݇௔ሽ). (3b) 
 

 
 

 

FIGURE 2  The triangular fundamental diagram and flow–density relation. 
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Second, traffic dynamics at the merging and diverging junctions can be described by the 
following macroscopic models: 
 

(a) At merging junction 2n − 1, the boundary fluxes are given by  
,ଶ௡ିଵ(0ݍ  (ݐ = minሼ݀ଶ௡ିଶ(ିܮ, (ݐ + ,(ݐ)௡ߜ ,ଶ௡ିଵ(0ାݏ  ሽ, (4a)(ݐ

,ܮ)ଶ௡ିଶݍ  (ݐ = minሼ݀ଶ௡ିଶ(ିܮ, ,ଶ௡ିଵ(0ݏmaxሼ,(ݐ (ݐ ,(ݐ)௡ߜ	− βݏଶ௡ିଵ(0,  ሽሽ  (4b)(ݐ
 
where 2n − 2 = 2N when n = 1, q2n − 1(0, t) is the influx of link 2n − 1, q2n − 2(L, t) the out-flux of 
link 2n − 2, d2n − 2(L−, t) the downstream demand of link 2n − 2, s2n − 1(0, t) the upstream supply 
of link 2n − 1, and δn(t) the demand of entrance n. Here 1 – β is the merging ratio of the entrance, 
and β that of the mainline link. This is the priority-based merging model proposed in Daganzo 
(2), which was shown to be invariant in Jin (11) and thus can be used to analyze traffic dynamics 
in the network without worrying about the existence of so-called interior states. 
 

(b) At diverging junction 2n, the boundary fluxes are given by 
,ܮ)ଶ௡ିଵݍ  (ݐ = min ቄ݀ଶ௡ିଵ(ିܮ, ,(ݐ ௦మ೙൫଴శ,௧൯క , ఙ೙(௧)ଵିక ቅ  (5a) 

,ଶ௡(0ݍ  (ݐ = ,ܮ)ଶ௡ିଵݍߦ	  (5b) (ݐ
 
where q2n−1(L, t) is the out-flux of link 2n − 1, q2n(0, t) is the influx of link 2n, d2n − 1(L

−, t) is the 
downstream demand of link 2n − 1, s2n(0

+, t) is the upstream supply of link 2n, and σn(t) is the 
supply of exit n. Here 1 − ξ is the diverging proportion to the exit, and ξ that to the mainline link. 
This is the first-in–first-out diverging model proposed in Daganzo (2) and was shown to be 
invariant in Jin (12). Note that here all vehicles are assumed to have predefined destinations in 
the diverge model (5). 

Thus, Equations 2, 4, and 5 form the network kinematic wave model, which is the 
continuous version of the cell transmission model, for traffic dynamics in the beltway network. It 
can be considered a control system, where the traffic densities, ka(xa, t), are state variables; the 
entrance demands, δn(t), and exit supplies, σn(t), are inputs; and the merging priority, β, and the 
diverging ratio, ξ, are control variables. Note that ka(xa, t) is of an infinite dimension, and the 
control system is infinite-dimensional and cannot be easily analyzed. 
 
 
TRAFFIC STATICS PROBLEM AND EXISTENCE OF GRIDLOCK 
 
Following Jin (13), the traffic statics problem for the beltway network is defined as finding 
stationary solutions to the kinematic wave model, Equations 2, 4, and 5, when the origin 
demands and destination supplies are all constant; in other words, δn(t) = δ and σn(t) = σ. 
 
Stationary Traffic Conditions on Links and at Junctions 
 
As shown in Jin (5, 13), when link a becomes stationary, its density can be written as  
(xa ∈ [0, L]) 
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 ݇௔(ݔ௔, (ݐ = ܮ௔ݑ)ܪ − (௔ݍ)ଵܭ(௔ݔ + ൫1 − ܮ௔ݑ)ܪ −  (6) (௔ݍ)ଶܭ௔)൯ݔ
 
where ua ∈ [0, 1] is the uncongested fraction of the road, H(·) is the Heaviside function. 

The upstream supply and the downstream demand are both constant: sa(0
+, t) = sa, and 

da(L
−, t) = da. Thus there are four types of stationary states: 

 
Strictly undercritical: ݑ௔ = 1, ௔ݍ	 < ,ܥ ݀௔ = ,௔ݍ and ௔ݏ = (7a) ܥ

Strictly overcritical: ݑ௔ = 0, ௔ݍ	 < ,ܥ ݀௔ = ,ܥ and ௔ݏ = ௔ (7b)ݍ

Critical (C): ݑ௔ ∈ ሾ0, 1ሿ, ௔ݍ = ,ܥ ݀௔ = ,ܥ and ௔ݏ = (7c) ܥ

Zero-speed shockwave: ݑ௔ ∈ (0, 1), ௔ݍ < ,ܥ ݀௔ = ,ܥ and ௔ݏ = (7d) ܥ
 
A stationary state on link a is illustrated in Figure 3. Note that all types of stationary states 
can be considered as special cases of a zero-speed shockwave. In stationary states around 
merging and diverging junctions, Equations 4 and 5 can be simplified as follows: 
 

1. At merging junction 2n − 1,  
ଶ௡ିଵݍ  = minሼ݀ଶ௡ିଶ + ,ߜ  ଶ௡ିଵሽ (8a)ݏ

ଶ௡ିଶݍ  = minሼ݀ଶ௡ିଶ,maxሼݏଶ௡ିଵ − ,ߜ  ଶ௡ିଵሽሽ (8b)ݏߚ
 

2. At diverging junction 2n, 
ଶ௡ିଵݍ  = min ቄ݀ଶ௡ିଵ, ௦మ೙క , ఙଵିకቅ  (9a) 

ଶ௡ݍ  =  ଶ௡ିଵ  (9b)ݍߦ
 
Therefore, to solve the traffic statics problem, it is necessary to find qa, ua, da, and sa for  
a = 1, · · · , 2N from the system of algebraic equations in Equations 7, 8, and 9. In general, since 
each link can have four possible types of stationary states, there can be 42N possible 
combinations, and a brute force method as in Jin (13) cannot apply in this case. 

 
 

 

FIGURE 3  Stationary states on a link. 
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Existence of Gridlock and Other Stationary Solutions 
 
In the gridlock state in the beltway network, there are qa = sa = 0, ua = 1, and da = C 
for a = 1, · · · , 2N . 
 
Lemma 3.1.  If δ > 0 and σ > 0, then the entrance links are jammed, and the exit links are 
empty. 
 
Proof. For entrance link n at merging junction 2n − 1, since the flow-rates on links 2n − 1 and  
2n − 2 are both 0, the flow-rate on the entrance link is also 0. Thus its upstream supply, s, has to 
be 0, since, otherwise, its upstream flow-rate equals min{δ, s} > 0. From Equation 7 it is evident 
that a link whose upstream supply is 0 has to be totally jammed. 

For exit link n at diverging junction 2n, its flow rate is also 0. Thus its downstream 
supply, d, has to be 0, since, otherwise, its downstream flow rate equals min{d, σ} > 0. From 
Equation 7 it appears that a link whose upstream supply is 0 has to be empty. 
 
Theorem 3.2.  In a beltway network, the gridlock state is always a stationary solution. 
 
Proof. First, clearly the gridlock state is a stationary state on a link as defined in Equation 7. 
Second, at merging junction 2n − 1, since	݀ଶ௡ିଶ = ଶ௡ିଵݏ	and	ܥ = 0,we	have 
ଶ௡ିଵݍ  = 0 = minሼܥ + ,ߜ 0ሽ 
ଶ௡ିଶݍ  = 0 = minሼܥ,maxሼ−ߜ, 0ሽሽ 
 
Thus, the gridlock state satisfies the merge model. Third, at diverging junction 2n,  
 since	݀ଶ௡ିଵ = 0	and	ݏଶ௡ = 0,we	have 
ଶ௡ିଵݍ  = 0 = min ൜ܥ, 0, 1ߪ −  ൠߦ
ଶ௡ݍ  = 0 =  ଶ௡ିଵݍߦ
 
Thus, the gridlock state satisfies the diverge model. Therefore the gridlock state is a stationary 
solution of the network kinematic wave model with constant entrance demand and exit supply. 

Theorem 3.2 is a very important observation, even though the mathematical proof is quite 
straightforward. From this theorem one can conclude that, if a beltway network is initially 
jammed, it will always be jammed. Given Lemma 3.1, this is a bit surprising, since there are 
sufficient spaces at the exit links and sufficient vehicles at the entrance links. The occurrence of 
such a gridlock state is highly related to the diverging model, in which all vehicles have 
predefined routes, even though there are better options in other routes. This suggests that route 
guidance strategies can be helpful for preventing the occurrence of gridlock in a beltway 
network. 
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STABILITY OF GRIDLOCK 
 
In the gridlock state, all mainline links are congested, and traffic waves propagate upstream. 
Thus, there is a counterclockwise circular information propagation path along the ring road. 
As shown in Figure 1, two Poincaré sections are defined at the upstream points of two 
consecutive merging junctions 3 and 1, and denote the two out-fluxes of the mainline road by 
v(t) = q2(L, t) and v1(t) = q2N (L, t), respectively. 
 
After T1, v(t) propagates to the diverging junction 2, and s2(0+, t + T1) = v(t), since link 2 is 
congested. From Equation 5 there is  
,ܮ)ଵݍ  ݐ + ଵܶ) = ߦ(ݐ)ݒ  

 
After T2, q1(L, t + T1) propagates to the merging junction 1, and ݏଵ(0ା, ݐ + ଵܶ + ଶܶ) ,ܮ)ଵݍ= ݐ + ଵܶ) since link 1 is congested. In Equation 4  
,ܮ)ଶேݍ  ݐ + ܶ) = ,ܮ)ଵݍߚ ݐ + ଵܶ) = ߦߚ  (ݐ)ݒ
 
where T = T1 + T2. Then, after N pairs of entrance and exit links, the following Poincaré map is 
obtained: 
ݐ)ݒ  + ܰܶ) = ቀఉకቁே  (10) (ݐ)ݒ

 
Note that the Poincaré map is valid only when all links are congested and cannot capture 
other types of stationary states. 

For the Poincaré map, (Equation 10), the gridlock state v(t) = 0 is always an 
equilibrium point. Furthermore, from the Poincar´e map, the stability of the gridlock state can 
be determined:  

 

1. When 
ఉక < 1, the gridlock state is asymptotically stable, and the half-life equals ୪୬ ଶ–ே	୪୬	(഍ഁ). 

2. When 
ఉక > 1, the gridlock state is unstable.  

3. When 
ఉక  = 1, there can exist multiple Lyapunov stable stationary states. It can be 

verified that these results are consistent with those in Daganzo (1).  
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MITIGATION OF GRIDLOCK WITH ADAPTIVE DRIVING 
 
Existing Mitigation Strategies 
 
For a beltway network described by Equation 2 with Equations 4 and 5, when the exit links are 
uncongested, three types of control strategies have been discussed in Daganzo (1, 3, 4) to 
mitigate the impacts of gridlock: 
 

1. The demand δn(t) can be regulated by ramp metering. This may delay the occurrence 

of gridlock. But when all links are congested, if  
ఉక < 1, the system will converge to the gridlock 

state irreversibly. 
2. The merging ratio for the entrances, 1 − β, can be decreased by signal settings at the 

intersections. This can destabilize the gridlock state when 
ఉక > 1. 

3. The diverging proportion to the exits, 1 − ξ, can be increased by variable message 

signs and adaptive driving behaviors. This can also destabilize the gridlock state when 
ఉక > 1. 

 
These results can be explained by Equation 10. However, as shown in Section 3, these 

strategies may not avoid the occurrence of gridlock, since the gridlock state is always a 
stationary solution to the system. 
 
A New Adaptive Driving Strategy 
 
This subsection addresses another type of adaptive driving strategy, derived from the evacuation 
model in Jin (5). At a diverge 2n, the following diverging model is applied: 
,ܮ)ଶ௡ିଵݍ  (ݐ = minሼ݀ଶ௡ିଵ(ିܮ, ,(ݐ ,ଶ௡(0ାݏ (ݐ +  ሽ  (11a)(ݐ)௡ߪ
,ଶ௡(0ݍ  (ݐ = minሼݏଶ௡(0ା, ,ିܮ)maxሼ݀ଶ௡ିଵ,(ݐ (ݐ − ,(ݐ)௡ߪ ,ିܮ)ଶ௡ିଵ݀ߦ  ሽሽ (11b)(ݐ
 
where ξ ∈ [0, 1] is the priority for adaptive drivers to choose the ring road. In a sense, this is a 
feedback control strategy, as the diverging ratio is determined by the dynamic traffic conditions. 

Consider symmetric stationary solutions on the ring road, in which all odd-numbered 
links share the same traffic conditions, denoted by q1, u1, d1, and s1, and all even-numbered 
mainline links share the same traffic conditions, denoted by q2, u2, d2, and s2. Thus, from 
Equations 8 and 11  
ଵݍ  = minሼ݀ଶ + ,ߜ  ଵሽ  (12a)ݏ
ଶݍ  = minሼ݀ଶ,maxሼߪଵ − ,ߜ  ଵሽሽ  (12b)ݏߚ
ଵݍ  = minሼ݀ଵ, ଶݏ +  ሽ  (12c)ߪ
ଶݍ  = minሼݏଶ,maxሼ݀ଵ − ,ߪ  ଵሽሽ  (12d)݀ߦ
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Lemma 5.1.  When δ > 0 and σ > 0, the gridlock state is no longer a solution of Equation 12.  
 
Proof. It is assumed that the gridlock state is still a stationary solution of Equation 12; in other 
words, d2 = d1 = C, and s1 = s2 = 0. From the first two equations, it is clear that q1 = q2 = 0. 
However, from the third equation, 0 = min{C, σ} > 0, which is impossible. Thus, the gridlock 
state is no longer a solution. 

Note that the adaptive driving strategy yields the same results as without using it under 
uncongested conditions. In this case, q1 = d1 ≤ s1 = C, and from (12c) and (12d) comes q1 = d1 
and q2 = ξd1. That is, vehicles can still use their original routes under uncongested conditions. 
However, when traffic is congested, some vehicles will have to be rerouted to avoid the 
development of gridlock. 
 
CONCLUSION 
 
For this study researchers formulated the traffic dynamics in a beltway network with the network 
kinematic wave model incorporating the LWR model as well as invariant merging and diverging 
models. Then, stationary states, including the gridlock state, and their stability, were studied. 
Finally, existing mitigation strategies were discussed, and a new evacuation-based strategy that 
eliminates the gridlock state in stationary states was proposed. 

The closed-form network kinematic wave model of the traffic dynamics in the beltway 
network has enabled the analyses of stationary states and their stability properties. In this study, 
however, the discussions are at the macroscopic level. In the future researchers will be interested 
in finding the optimal strategy that prevents gridlock but involves the minimum number of 
reroutings at the microscopic level. In addition, researchers will be interested in designing the 
best mitigation strategies that can lead to the minimum delays and in designing the adaptive 
control strategies for mitigating traffic congestion and avoiding gridlock in more general 
networks. 
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uch of the literature on exclusive bus lanes pertains to how these lanes might induce shifts 
in mode choice by prioritizing bus travel, sometimes at the expense of degrading travel by 

car; for example, see Basso et al. (1). A separate line of research theorized that the conversion of 
regular-use lanes to bus-only lanes can, in certain circumstances, improve travel for cars as well 
as buses, even in the absence of modal shifts (2). By removing buses from queues and putting 
them in their own, faster-moving lanes, target service frequencies can be maintained with fewer 
buses; thus, fewer bus lanes are needed and more lanes can be left for the exclusive use of cars. 

However, these Pareto improvements were predicted in Cassidy et al. (2) only when 
converted lanes enjoyed rather high bus flows and only by relying on a so-called “smoothing 
effect,” which describes the network capacity gained when distinct travel modes are segregated 
into their own lanes. With this segregation, disruptive vehicular interactions are diminished, 
which can generate higher bottleneck capacities (3, 4). In efforts to garner the kinds of high-level 
insights that can guide large-scale planning decisions, street networks were modeled in Cassidy 
et al. (2) as rotationally-symmetric, closed-loop beltways operating in the steady-state.1 

The present work follows lines of thought that are similar to those in Cassidy et al. (2), 
in that it, too, models the impacts of converting regular lanes to bus lanes on rotationally-
symmetric beltways and assumes that travel demands for buses and cars are not subject to shifts 
from one mode to the other. However, the present work recognizes that rush periods are 
invariably characterized by non–steady-state conditions. In other words, the early part of a rush 
period is typically characterized by travel demand that exceeds beltway capacity, such that 
beltway queues expand, while the later part is characterized by demand that falls below 
capacity, such that queues gradually disappear. It turns out that these non-steady-state realities 
can be favorable to bus lanes, meaning that lane conversions can sometimes improve travel for 
buses and cars, even if one ignores the smoothing effect. 
 
 
ASSUMPTIONS AND METHODS 
 
This paper assumes a set of conditions that might describe the operation of jitney buses in a city 
within the developing world, albeit in idealized fashion. Contrary to Cassidy et al. (2), it is 
assumed that the number of bus trips made during the rush is fixed, irrespective of whether some 
lanes are given to buses. Each bus enters a beltway network during the rush, serves assigned 
portions of the network, and then exits. The points from which buses and cars enter the beltway 

M
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are uniformly distributed over its boundary. When buses and cars share the same lanes, both 
modes compete for available road capacity to enter and circulate through the beltway.  When 
some lanes are instead set aside for buses, those buses enter and circulate without delay, and cars 
are left with fewer lanes on the beltway for their use. The number of bus lanes to be used on the 
beltway, N, must be integer valued such that 1 < N < NT –1, where NT is the beltway’s total 
number of lanes available to serve traffic in each travel direction. The upper bound guarantees 
that at least one lane is available in each direction to serve cars. Very importantly, once all rush-
period bus tours are completed, all NT lanes are thereafter made available to cars. 

It is further assumed that prior to the start of a rush at time t = 0, there is a fixed demand 
in passenger car equivalents (pce) that is less than beltway capacity; from t = 0 to t = tr, there is a 
fixed demand that exceeds the previous rate by the amount λ (in pce/h), and this high demand 
exceeds beltway capacity, and at t > tr, demand returns to the initial low rate that occurred prior 
to t = 0. 

For simplicity, the average speed and the average distance traveled on the beltway are all 
measured by pce. The implicit assumption is that the variances in speed and in distance traveled 
are not large, neither when measured across vehicles of the same class nor across the two distinct 
classes. 

Beltway traffic is described using a triangular-shaped macroscopic fundamental diagram 
(MFD) that relates total flow on the network (in pce/h) to network-wide density (pce/km), much 
as in Daganzo (5). Knowing the beltway’s physical size and the vehicle trip length on it, the 
MFD is rescaled to a network exit function (NEF) that relates the total vehicle accumulation on 
the beltway, n (pce), to the rate that vehicles complete their trips on it, f (pce/h). The maximum 
trip-completion rate is fm and the corresponding accumulation is nm. 

For this paper the beltway network is viewed as being composed of a series of identical 
building blocks, like the building block shown for a single travel direction in Figure 1. When the 
beltway is congested aj > βj , where aj is the proportion of pce that enters the block j from outside 
the beltway, and βj is the proportion of the block’s pce that exits the beltway. Hence for every 
pce that enters a block via the beltway, there are (1 + aj) that traverse the block and remain on the 
beltway. Given that the blocks are identical and that the beltway is rotationally symmetric, aj and 
βj are aggregated across all the beltway blocks. Hence, a = Σjaj and β =Σjβj represent the 
proportion of pce that enters and exits the beltway in total. The merge model of Daganzo (5) is 
used to estimate the block entry flows at short time steps. 

With entry and exit flows thusly obtained for a point in time, t, the NEF is used to 
determine the accumulation in the beltway, n(t). Then, a queueing diagram like the one in Figure 2 
can be incrementally constructed to estimate delays. 
 
 

 

FIGURE 1  Building block of the beltway. 
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The diagram in Figure 2 was constructed for the case in which buses and cars share the 
same lanes. (The fixed flow at t < 0 and t > tr is treated as a background rate and was subtracted 
from the cumulative count curves.) When bus lanes are used to segregate buses and cars, the 
analysis is performed using the demand for car travel (only), since buses are no longer subject to 
delays. The merge model and the NEF are rescaled to account for the diminished space that 
remains available to car traffic. 

Parametric analysis featuring comparisons of segregated and nonsegregated cases unveils 
certain insights. Examples follow. 
 
 
EXAMPLE FINDINGS 
 
Figure 3 presents analysis outcomes for ranges of tr (normalized by average vehicle free-flow 
trip time on the network) and λ (normalized by fm). Other key inputs to the analysis are noted in 
the figure caption. Most of these were borrowed from Geroliminis and Daganzo (6). 

The boundary lines near the graph’s upper-right corner delineate where combinations of tr 
and λ create gridlock on the beltway network. Tellingly, the gridlock region is smaller for the 
segregated case, where one or more beltway lanes are given over to buses. 

The darker-shaded area at the bottom of the graph highlights the combinations of tr and 
λ, for which bus lanes increase the person-hours traveled by car on the network, and even the 
total person-hours traveled by both modes combined, as compared against not setting aside any 
lanes for bus-use only. The finding comes despite the advantages that bus lanes extend to bus 
travelers. The lighter-shaded region directly atop denotes combinations for which the bus lanes 
still increase the person-hours traveled by car but diminish the total hours traveled via both 
modes combined. Very importantly, the large unshaded portion of the graph shows where bus 
lanes diminish not only the combined total hours traveled but also the hours traveled by cars. 
 
 

 

FIGURE 2  Cumulative total demand, entry and departure curves. 
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FIGURE 3  Delay reduction map for a bus demand proportion of 20%, a number of lanes 
of 3, fm = 15,660 pce/h, nm  = 3,000 pce, a = 0. 2, p = 0. 14, a maximum on-ramp capacity of 

2fm, and a maximum total accumulation of 6,500 pce. 
 
 

Car-hours diminish in these latter cases because by enabling buses to travel faster, the bus 
lanes mean that the total collection of bus tours will end earlier in the rush. Thereafter, all lanes 
are given over for car travel, and cars no longer compete with rush-period buses for beltway 
capacity.2 

The findings are even more favorable to bus lanes when one considers the smoothing 
effect. 

Other illustrative analyses and other insights are offered in the full paper. 
 

 
NOTES 
 

1. The beltway is a good representation of a congested downtown street network. For example, 
the beltway’s on- and off-ramps can represent the downtown’s access and egress points; the shorter the 
downtown’s block lengths, the greater the number of beltway ramps. And the beltway’s circumference 
can be selected so as to account for the downtown’s total available road space. 

2. The bus lanes are not Pareto improving in these cases, because car travelers during the early 
part of the rush incur greater delays owing to the fewer number of beltway lanes available to them. 
Happily, these added delays are more than compensated for by the delay savings that cars enjoy later in 
the rush. 
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his paper proposes analytical estimates of a network macroscopic fundamental diagram 
(MFD) using probabilistic methods. It produces a distribution for the MFD, found to 

depend mainly on two parameters. This abstract focuses on Figure 1, which shows the 
comparison between the MFDs from an exact traffic simulation and the 90% probability 
interval from the authors’ analytical method. 

Existing analysis methods for the MFD fall into three types: 1. empirical (1–12), 2. 
analytical (13–15), and 3. simulation (16–22). Analytical results are based on the method of 
cuts for homogeneous corridors where all intersections see the same set of cuts, so the cuts 
from a single intersection suffice to compute the MFD for the whole corridor. Despite this 
apparent simplicity, this approach quickly becomes intractable, and one needs to resort to 
simple but numerical algorithms to identify all possible cuts. Additionally, the homogeneous 
corridor method cannot be scaled up without complications to estimate the network MFD, 
mainly because a network path cannot be guaranteed to have constant offset all along, even 
for homogeneous networks. 

This paper introduces the concept of probabilistic homogeneous corridors, where all 
intersections see the same distribution of cuts. This allows tackling deterministic 
inhomogeneous corridors with different block length, signal timing, and others. 

The example presented in Figure 1 is of networks with random offsets; the general 
method will be presented in the final paper. The general method can be used to randomize 
other variables of the problem such as block length and signal timing; this is important 
because it allows the analytical estimation of MFDs on inhomogeneous networks, for which 
analytical methods are currently unavailable. 

Random offset networks could be a good approximation for networks with traffic 
actuated signals or without coordination, and Figure 1 shows that it provides tight bounds for 
the deterministic problem. The dimensionless formulation of this problem provides new 
insights, including the following examples: 1. Only two parameters determine the MFD 
distribution, 2. The distribution of network capacity depends on a single parameter, 3. The 
existence of a symmetry line in the MFD, which is crucial for mathematical tractability, and 
4. The block length does not affect the MFD when it is larger than twice the critical block 
length. 
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FIGURE 1  Comparison between the MFDs produced by an exact traffic simulation and 
the 90% probability interval produced by the analytical method. 
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POSTER PRESENTATION 
 

Adapting Car Traffic Models and Concepts to Bicycle Traffic 
 

ABDELAZIZ MANAR 
GANG CAO 

Ville de Montréal, Canada 
 
 

ver the past 50 years, a huge number of traffic models have been developed to capture and 
model the driver behaviour on streets, roads and freeways. Almost, all models were 

developed for motorized modes.  Hence, as bicycle use in cities rapidly increases the need for 
more refined models arises in order to capture and model cyclist behaviour on bike facilities.  

In order to capitalize on the years of traffic modeling development, it is legitimate to 
consider adapting these models to bicycle traffic and thus benefit from all the research efforts in 
the field of traffic theory. Since, the objective function for a driver, or a cyclist, is to control his 
vehicle's speed and direction while maintaining his desired speed and avoiding accidents; it is 
likely, that despite the difference in vehicle type, the driving logic and driver behaviour will be 
similar. Research has already begun in this area, but compared to what has been done for 
motorized modes, we are still in the early stages of traffic science for this emerging mode. 

This paper presents three aspects of traffic vehicle science adapted to bicycle traffic. 
These are car-following models, the fundamental relationships of traffic flow and the Action 
Point Model. The results obtained using car-following models were compared to empirical data 
collected with global positioning system (GPS) devices installed on a pair of cyclists in a 
following situation with no opportunity to overtake. The fundamental relationships are examined 
using data collected by video at a fixed location on a bike facility. Finally, the paper presents a 
behavioral comparison between the bike–cyclist and the car–driver systems using the Action 
Point Model. 

The results indicate that car-following models, fundamental relationships and the Action 
Point Model all have the potential to reproduce real world data for bicycle traffic. Also, the 
commercial simulation software, in this case, VISSIM, can be used with some calibration effort, 
to reproduce similar results to the observed data.  
 
 
INTRODUCTION 
 
New realities have emerged with the growing of cycling as a transportation mode in its own 
right. Thus, cycling is no longer reserved to leisure and its utility now exceeds its recreational 
use. In addition, occasionally we begin to see on some bicycle facilities in Montréal, Québec, 
Canada, a phenomenon long reserved to motorized modes: congestion (i.e., situations where 
platoons of cyclists are forced to follow in single lane given the density of cyclists and lack of 
overtaking opportunity). This situation can be well modeled by bike-following model. 

The need to develop methods and tools to assist engineers and planners to analyze the 
performance of this mode is increasingly justified (1). Researchers (2, 3) have already begun but 
compared to what has been done for motorized mode, we are still in the early stages of the traffic 
science for this emerging mode.  
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DATA COLLECTION 
 
Two types of data were collected as part of this study in two locations in Montréal. Both 
locations were off- street, two-way exclusive bicycle facilities. 
 
GPS Data 
 
The first set of data was collected in a controlled experiment. To examine and model the 
behavior of a pair of cyclists in a strictly following situation, the time–space trajectories of a pair 
of cyclists on bicycle facility, was recorded by two GPS devices (Garmin and Forerunner 305). 
The units would provide speed and position for a pair of cyclists every second,.  

Both devices were synchronized at starting point and secured to wrists of each cyclist, 
allowing the recording of data on a stretch of 1.7 km on bicycle facility of 1.50 m wide in 
Montréal. The raw data was then compiled and processed to build the time–space diagram. The 
time–space diagram is very rich in information, enabling one to calculate an important set of 
indicators that explain the behavior of the cyclists. 

Despite the precision of this GPS device (velocity accuracy <0.05 m/s), some data were 
cleaned from random errors, attributed essentially to satellite signal blockages. Less than 6% of 
raw data was smoothed to minimize the observed errors. The smoothed process consisted to 
calculate the new values from the average of six values data observed before and after the error 
(three on each side).  
 
Video Data 
 
A second set of data was recorded on a 1.45 m wide exclusive off-street bicycle facility located 
in Montréal, using a video collection unit. This recorded the times of passages of bicycles 
passing over a short section of 2 m. A camera mounted on a 6-m high pole was filming the flow 
of bicycles during the p.m. peak hour. From the 324 cyclists recorded, 253 pairs of cyclists were 
identified. These pairs were within platoons of two to 15 cyclists. The data was extracted 
manually with the Windows Movie Maker utility from Microsoft that allows the processing with 
a precision of one-thirtieth (1/30th) of a second. We could then obtain the individual speed, the 
spacing, the gap, and the headway for each pair of cyclists. The dataset would then yield through 
mathematical transformations to flow rate, density and speed. 
 
Global Data Analysis 
 
The dataset collected provides a rich amount of information on the dynamics of the cyclist and 
his behavior. Regarding of the basic parameters (speed, acceleration, and spacing), Table 1 gives 
the general statistics compiled using data collected with the GPS device as well as the recorded 
video. 

These values are quite similar to those found in the literature. For example, the average 
speed used by the Highway Capacity Manual 2010 (4) is 5.7 m/s. In general, the average speed 
reported in the literature (5, 6) varies between 4.7 and 6.9 m/s. As for the acceleration, one of the 
rare studies on the subject in Denver, Colorado, (6) reported an average acceleration of 0.24 m/s2 
and an average deceleration of –0.27 m/s2 on an off-street facility. 
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TABLE 1  Statistics of Bicycles Dynamics 

Parameters Minimum Maximum Average 
85th 

Percentile 
Standard 
Deviation N 

Speed (m/s) 
(from video) 2.00 8.00 5.67 6.42 0.99 324 

Acceleration (m/s2) 
(from GPS) — 1.34 0.20 0.40 0.21 340 

Deceleration (m/s2) 
(from GPS) –1.81 — –0.20 –0.03 0.22 340 

Spacing (m) 
(from video) 2.89 62.91 14.78 24.93 10.09 253 

Spacing (m) 
(from GPS) 2.22 61.10 13.2 23.17 10.00 340 

 
 

BIKE-FOLLOWING MODEL AND RESULTS 
 
As bicycle traffic increases, a cyclist increasingly needs to evaluate and adjust his relative 
position to other cyclists, thus the importance of modeling the bike-following situation. A bike-
following model is a single mathematical equation combining direct and indirect physical and 
operational characteristics of the bicycle (length, speed, and acceleration), human factors 
(perception, decision, and action), and the cyclist’s immediate environment (heavy, moderate, or 
free-flow traffic). Overall, the microscopic model is formulated using the following logic: 
 
Reaction (t + Δt) = ƒ[Sensibility (t) , Stimulus (t)] 

 
Over the past 50 years, close to 100 car-following models have been developed (7). 

These models were originally intended for the understanding the traffic dynamic, more 
specifically, the phenomenon of congestion. These models are also used in traffic safety analysis, 
and since the late 1960s, they are imbedded in microscopic traffic simulators. Currently, 
microscopic simulation is extensively used for planning, training, and research. As of the mid-
1990s, microscopic simulation has become an integral part of intelligent transportation systems. 
 
Microscopic Data Analysis 
 
The data collected with the GPS device allowed reproducing the actual behaviour of both cyclists 
during the trip using one-second time steps. Figure 1 shows the trajectory of the pair of cyclists, 
their speed and acceleration profiles as well as the spacing maintained between the two bicycles. 

Figure 1 shows the correlation between the each cyclist’s dynamic behavior, especially 
when the spacing between them is reduced, which occurs around the 60th second. At this 
moment, the follower is forced to adjust his speed to the leading cyclist because the follower can 
not overtake the leader. The follower’s set point was to start 10 s after the start of the first cyclist, 
then he had to catch up and follow the leader without overtaking him. 

Thus, there exists a given spacing between two cyclists beyond which the follower moves 
freely and below which he needs to adjust his speed to the leader to maintain a safe distance 
while trying to maintain his desired speed. This can be better illustrated using a phase plane of 
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(a) (b) 

                     
(c) (d) 

FIGURE 1  Behavior of a pair of cyclists in following situation: (a) time–space  
diagram; (b) speed profile; (c) acceleration profile; and (d) spacing profile. 

 
 
the first order, also known as Action Point Model, as shown in Figure 2. This graph links the 
relative velocity (speed difference of the two cyclists) to the spacing between the two cyclists (8). 

From Figure 2, it is found that the follower enters the leading cyclist’s influence zone 
when their spacing is about 16 m. Kahn and Raksuntorn (6) found this interaction distance equal 
to 21 m. In a natural process, the follower tries to minimize the difference between his and the 
leader’s speed while maintaining a safe and comfortable distance. The equilibrium is achieved 
through several adjustment cycles by the follower. This equilibrium point is not static but varies 
depending on the relative speed and spacing. 

In order to adjust his speed, the follower must continually be aware of his position relatively 
to his equilibrium point. This information is provided through the distance perception threshold 
(DPT). This is defined as the minimum level of change in spacing that can be perceived by the 
cyclist. At this threshold, the cyclist becomes aware that he is moving away from his equilibrium 
point. If he is negatively moving away from this point, he will increase his speed and if he is 
positively moving away, he will reduce his speed. The simplest equation, developed by Evans (9), 
was chosen and adapted to bicycle traffic. 

The same figure shows the minimal distance the cyclist keeps at all times to avoid colliding 
with the leading cyclist, when overtaking is not possible. This minimal spacing corresponds to the 
length of a bicycle (1.8 m) plus a minimal gap. According to field data collected with the GPS 
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FIGURE 2  Phase plane trajectory for a pair of cyclists in following situation.  

(DPT = distance perception threshold.) 
 
 
device, this minimal gap is about 0.42 m; therefore, resulting in a minimal spacing of 2.22 m. 
However, the video data indicated that some following cyclists had a lateral offset to the leader but 
just behind him in the same lane. So, there was no spacing between the two cyclists. In the most case, 
this situation was a prelude to the overtaking maneuver. These cases were not taken into 
consideration for this study.  
 
Bike-Following Models  
 
Five models representing the bike-following situation were investigated. The choice is mainly based 
on the popularity of models and their theoretical concept. In addition, a sixth model proposed by the 
authors has also been the object of the analysis. Table 2 shows the models used to reproduce the 
behaviour of the following cyclist according to his own behavior and the behavior of the leading 
cyclist. The first four models are derived from existing car-following models, the fifth developed 
specifically for bikes and the last is proposed by the authors. 

The first three models simulate the acceleration and the other three simulate the speed. The 
model proposed by the authors incorporates two constraints. The first constraint reflects a minimum 
spacing (Sj) between two stopped cyclists. A second constraint limits the maximum speed of the 
cyclist, when the free-flow conditions prevail. It is assumed that this speed corresponds to the 85th 
percentile of observed speeds. 

For the calibration process, the values of the proposed models parameters were optimized 
using an iterative function minimizing the sum of squared deviations. This optimization allowed 
reproducing as faithfully as possible the four variables describing the behaviour of two cyclists in a 
following situation. These variables are speed, acceleration, position and the spacing between the two 
bicycles for every time step (1 s). 
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TABLE 2  A List of Bike-Following Models Investigated 
Models Formula 

Chandler (10) 
 

Gazis (11) 

Pipes (12) 

Gipps (13) 

 

Raksuntorn (6) 
 

Proposed Model 
(Manar) 

 
 
 

In addition, for each variable, we calculated the regression between observed and 
theoretical values obtained by each model. The value of the slope of the regression and the 
multiple correlation coefficients (R2) were obtained. Also, the Fisher significance test was 
calculated to assess the similarity between the observed and theoretical values. Table 3 presents 
the optimized parameters and the statistical comparison between the observed and theoretical 
data. 

Overall, all models can reproduce fairly well the behaviour of the cyclist in a following 
situation. Statistically, all models are significant for reproducing speed, acceleration and position 
of the following cyclist. However, to estimate the spacing between the two cyclists, only the 
Raksuntorn’s model produced a statistically significant result. 

Figure 3 shows the curves for speed (3a), acceleration (3b), and spacing (3c) as modeled 
by the six bike-following models. These simulated results are compared with the following and 
leading cyclists’ actual profiles obtained through the GPS device. For the case of spacing, it is 
clear that the models that simulate the speed rather than acceleration produce better results. But 
when the first 70 s during which the follower was trying to catch up the leader are removed 
(Figure 3d), all models perform well. 
  

m

vn-1(t) – vn(t)an(t+T) = α
xn-1(t) - xn(t)

l 

vn(t)m

vn-1(t) – vn(t)an(t+T) = α
xn-1(t) - xn(t)

l 

vn(t)m

vn-1(t) – vn(t)an(t+T) = α
xn-1(t) - xn(t)

l 

vn(t)
vn-1(t) – vn(t)an(t+T) = α

xn-1(t) - xn(t)
l 

vn(t)an(t+T) = α
xn-1(t) - xn(t)

l 

vn(t)an(t+T) = α
xn-1(t) - xn(t)

l 

vn(t)

an(t+T) = CW 
xn-1(t) - xn(t)

2

vn-1(t) - vn(t)an(t+T) = CW 
xn-1(t) - xn(t)

2

vn-1(t) - vn(t)an(t+T) = CW 
xn-1(t) - xn(t)

2

vn-1(t) - vn(t)

vn(t+T) = Min

vn(t) + 2,5aT(1-vn(t)/V)    0,025 + vn(t)/V ;

bT +  b2T2 – b    2[xn-1(t) – xn(t) – s] - vn(t)T
- vn-1(t)2/b*

½
vn(t+T) = Min

vn(t) + 2,5aT(1-vn(t)/V)    0,025 + vn(t)/V ;vn(t) + 2,5aT(1-vn(t)/V)    0,025 + vn(t)/V ;

bT +  b2T2 – b    2[xn-1(t) – xn(t) – s] - vn(t)T
- vn-1(t)2/b*

½

vn(t+Δt) = α1vn (t) + α2 xn-1(t)-xn(t) + α3   vn-1(t)-vn(t)vn(t+Δt) = α1vn (t) + α2 xn-1(t)-xn(t) + α3   vn-1(t)-vn(t)

vn(t+T) = Min   Vf ;  δ (xn-1(t) – xn(t) – Sj )vn(t+T) = Min   Vf ;  δ (xn-1(t) – xn(t) – Sj )

an(t+T) = λ vn-1(t) – vn(t)an(t+T) = λ vn-1(t) – vn(t)
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TABLE 3  Bike-Following Models Comparisons  
Models/ 

Parameters Chandler Gazis Pipes Gipps Raksuntorn Manar 

Optimized 
coefficients λ = 1.7 

α = 1.7 
m = 0.01 
l = 0.17 

CW = 680 

a = 2.0 
T = 1.0 

V = 10.0 
s = 3.0 

b = –2.0 
b* = –2.0 

α1 = 0.96 
α2 = 0.02 
α3 = 0.35 

Vf = 6.42 
δ = 0.85 
Sj = 2.22 

Sp
ee

d Slope 0.999 1.008 1.006 0.994 1.000 0.995 
R2 0.971 0.981 0.978 0.976 0.985 0.972 
Fcal/Fcrit 0.860 0.934 0.909 0.866 0.929 0.935 

Po
sit

io
n Slope 1.010 1.012 1.011 1.000 1.000 0.999 

R2 0.999 0.999 0.999 0.999 0.999 0.999 
Fcal/Fcrit 0.800 0.800 0.801 0.794 0.790 0.796 

A
cc

el
er

at
io

n Slope 0.346 0.914 0.646 0.752 1.387 1.105 

R2 0.935 0.957 0.936 0.915 0.832 0.930 

Fcal/Fcrit 0.111 0.637 0.326 0.729 0.932 0.515 

Sp
ac

in
g Slope 0.656 0.585 0.605 1.315 1.356 0.534 

R2 0.594 0.599 0.588 0.703 0.838 0.860 
Fcal/Fcrit 7.752 3.089 8.094 1.467 0.849 1.307 

NOTE: The ratio Computed Fisher/Critical Fisher < 1 means that one accepts the hypothesis that variances of 
observed and theoretical values are not statistically different for a level of confidence of 99% (α = 0.01; Df = 340). 
 
 
Microsimulation with VISSIM 
 
Moreover, the data collected were used to compare with results produced by micro-simulation 
software VISSIM (14). During the simulation with a pair of bikes, the leader’s positions and 
speeds were adjusted for each second according to collected data, and the software determine the 
speeds and acceleration/deceleration of the follower. The experiment was done with default 
parameters offered with software and with calibrated acceleration–deceleration and driving 
behaviour parameters. As illustrated in Figure 4, the speed of followers produced with default 
parameters is very sensitive and unstable, but after calibration effort, the result was relatively 
smooth and convincing. The sum of squared deviation between the observed follower’s speeds 
was reduced from 1,051 (with default parameters) to 478 (after calibration).  
 
 
BICYCLE TRAFFIC FLOW MODELS 
 
The Highway Capacity Manual 2010 (4) recommends a capacity of 2,000 cyclists per hour per 
lane. However, the capacity values reported in the literature (5) vary from 1,500 to 5,000 bicycles 
per hour depending on bicycle facility width. Because traffic flow on bicycle facilities is usually  
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FIGURE 3  Bike-following models results: (a) speed, (b) acceleration, (c) spacing, and  
(d) period during which the follower trying to catch up with the leader is removed. 

 
 

 
FIGURE 4  VISSIM simulation results. 

 
 
low, capacity can rarely be observed. 

The data collected on the off-street facility with video recorder were used to define the 
fundamental relationships of bicycle traffic. Thus, the flow was calculated from the inverse of 
headways, and the density from the inverse of spacing.  

In order to construct fundamental relationships curves, it was required to determine the 
theoretical maximum density of the facility. The theoretical maximum density from the 
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experimentation was 0.33 bicycles/m2, which is equivalent to 475 bicycles/km for a 1.45 m wide 
bicycle lane. AASHTO (15) recommends nearly the same value with 0.32 bicycles/m2. These 
values are based on minimal manoeuvring space required for a cyclist. 

Four existing models were investigated for fit. Table 4 presents the models chosen, the 
optimized coefficients of their parameters and the R2 values. 

These models were calibrated and the resulting curves are presented in Figure 5. For the 
flow–density relationship, all four models reproduced an acceptable fit with observed data. 
However, the speed–density correlation of all four models with field data is relatively low. This 
is explained by the high dispersion of speed when bicycle traffic is fluid. This is actually the 
reflection of differences in physical abilities of cyclists in this sample. In all cases, the shapes of 
the empirical results are fully consistent with the modeled results. 

 
 

COMPARISON BETWEEN BIKE–CYCLIST AND CAR–DRIVER SYSTEMS 
 
To compare the two systems, the same two cyclists drove two cars in a following situation. The 
same GPS devices and set of rules were used for the bicycle-following experiment as for the car-
following test. 

Despite differences in the values of driving parameters for the two systems, the two phase 
plans (Figures 2 and 6) show a similarity in the driving behavior. 

 
 

TABLE 4  Fundamental Relationships Models Investigated 

Models Formula 

Optimized 
Coefficients and 

Field Limit Values 

R2 of Observed 
and Modeled 
Data Values 

Flow Speed 

Newell (16) 
 

vf = 24 
0.87 0.36 kj = 475 

λ = 13,200 

Pipes-Mujal (12) 
 

vf = 24 
0.84 0.35 kj = 475 

n = 1.65 

Northwestern 
(modifieda) (17)  

vf = 24 
0.74 0.31 ko = 250 

α = 3.4 

Van Aerde (18) 
 

vf = 24 

0.83 0.34 c1 = 0.00187135 
c2 = 0.00561404 
c3 = 0.00010046 

a The constant value of α in the original model was 2. 
 

-v = vf 1 - e λ (1/k - 1/kj)vf
-v = vf 1 - e λ (1/k - 1/kj)vfv = vf 1 - e λ (1/k - 1/kj)vf

v = vf 1-(k/kj)
n

v = vf e-½ (k/ko)
α

v = vf e-½ (k/ko)
α

k = 1-
c1 + + c3 v

c2
vf - v

k = 1-
c1 + + c3 v

c2
vf - v
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FIGURE 5  Fundamental relationships comparison with experimental data. 

 
 

 
FIGURE 6  Phase plane trajectory for a pair of cars in following situation. 

 
 
However, to obtain an objective comparison, a new concept is introduced: a Normalized 

Phase Plan (Figure 7). The two phase plans are normalized according to the maximum values of each 
system. Thus, by dividing the values of relative speed for each system by its maximum value, and 
dividing the values of spacing for each system by its maximum value, the two phase plans obtained 
can be directly compared. 

Figure 7 clearly shows that following drivers, indifferently of the mode used, adopt the same 
driving logic when seeking the acceptable equilibrium between their desired speed and maintaining a 
safe distance from the leader. This figure also shows that the amplitude of most phase cycles fall 
within a 40% deviation of relative speed. It means that, whatever the mode used, the following driver 
accelerates or decelerates at the same amplitude but not necessarily at the same rate. 
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FIGURE 7  Normalized phase plane trajectories for a pair of cars and bicycles. 

 
 
FINDINGS AND CONCLUSIONS 
 
With the increasing popularity of cycling in Montréal, we now see an increased intensity of 
traffic on bicycle facilities. The authors take advantage of the advances in data gathering 
technologies to automatically collect data and investigate fundamental as well as bike-following 
models. In the latter case, a new bike-following model is proposed. 

Two types of data were recorded as part of this research. First, a pair of cyclists in a 
following situation was tracked using a GPS device. Second, a video collection unit was used to 
film a flow of cyclists on a busy bicycle facility at a fixed spot location. The findings can be 
summarized as follow: 

 
• There is a distance between two cyclists beyond which the follower moves freely and 

below which he needs to adjust his speed to the leader to maintain a safe distance when the 
overtaking is not possible. This zone of influence starts when the spacing is about 16 m. The 
minimal spacing, Sj, is 2.2 m including the bicycle length (1.8 m). 

• Using the instantaneous flow rate and measuring the space needed by cyclists to 
manoeuvre, it was found that flow can reach nearly 2700 bicycles/h/m and the maximum density 
(Kj) can reach 0.33 bicycle/m2 for this 1.45 m width bicycle facility. 

• Investigating the fundamental relationships, it was found that the experimental data 
are fully consistent with the results obtained with theoretical relationships. However, correlation 
for Speed-Density relationship is relatively low due to greater speed dispersion reflecting the 
large differences in physical abilities of cyclists. On the other hand, flow–density relationships 
offer a better fit and Newell’s model performs better than the others. 

• Six bike-following models were calibrated. All models perform well to estimate 
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speed and acceleration, but only Raksuntorn’s model is statistically significant for estimating 
spacing. However, when the first 70 s of data are removed, all models estimate well the spacing. 
These first 70 s corresponds to the time the follower took to catch up to the leader. The 
acceleration values during this time were quite high. 

• Using the same experimental conditions, bike-following and car-following 
observations were compared using normalized phase plans. It can be concluded that a given pair 
of drivers behave similarly independently of the type of vehicle used.  

• Simulation software like VISSIM (14) can be used to simulate bike interaction, but 
the calibration of parameters is needed to adapt the software to the characteristics of cyclist. 

 
These bike-following models can be use in commercial simulation packages like VISSIM 

(14), CORSIM (19), or SIMTRAFFIC (20) to account for longitudinal bicycle dynamics. With 
additional research on cyclist behaviour, and their interaction with other vehicles, the existing 
simulation tools or the next generation of modelling tools will be able to simulate real world 
mixed traffic conditions. 
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 Gaussian approximation of the stochastic model by Jabari and Liu proposed is 
implemented for a case study. The Gaussian approximation estimates the mean traffic 

density from the long-term trend of a stochastic model, and a variance calculated from the 
deviance of the stochastic model and its long-term limit. The mean is the deterministic Godunov 
scheme. Through this case study the model is shown capable of producing accurate queue size 
estimates in a viable amount of time for cycle-by-cycle traffic estimation on an arterial road. 
Model variance is controllable by choice of time step; however, smaller time steps limit the 
ability of the model to produce a range of solutions which contain the ground truth observation. 
 
 
INTRODUCTION 
 
Traffic congestion on roads is a continuing concern around the world. In the past this has been 
addressed by adding capacity to infrastructure, i.e., adding more lanes to highways and adding 
more roads. This solution is largely subject to budget constraints.  

Another solution that has been adopted more recently is operating existing infrastructure 
more efficiently. This strategy involves using knowledge of real-time traffic conditions to reduce 
congestion (1). Examples of this include ramp metering and advanced wait time notice on 
freeways. In the context of traffic lights, real-time traffic data allows for more efficient traffic 
signal timings.  

Traffic signals historically operate by fixed-cycle lengths of red time and green time. 
Recently, many fixed-cycle lengths require actuation in order for certain phases of the traffic 
cycle to occur, i.e., left-turn signals that are only included in the cycle is a vehicle is detected in 
the left-turn lane. Actuated signals can be more efficient than fixed-cycle timings by skipping 
unnecessary phases of a signal cycle, shortening the time vehicles wait at the signal. However, 
traffic has to stop at the stop line in order to actuate the signal. Adaptive (predictive) traffic 
signal timings, which are based on real-time arrival rates of traffic, further improve efficiency by 
optimizing signal cycle lengths according to expected queue sizes (number of vehicles stopped 
behind stop line). The expected queue sizes identify where the bulk of traffic is located. As an 
example, if the location of the bulk of traffic is located, that traffic could progress through 
continual green lights.  

In the development of cost-efficient methods to predict traffic conditions, point-source 
detectors such as inductance loop detectors are cheaper to implement; however, they lack the 
accuracy that video cameras have. This has led to the development of traffic flow models to 
predict traffic conditions based off of inductance loop detector data.  

A 
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TRAFFIC MODELING OVERVIEW 
 
Traffic flow theory models estimate traffic evolution for various levels of vehicle aggregation. 
The most common types of models are microscopic, mesoscopic, and macroscopic. 

Microscopic traffic flow models have high detail and depend on driver’s behavior 
interaction between individual vehicles. These behaviors include driver’s choice of time distance 
between other vehicles, choice of speed, acceleration, deceleration, and lane changes. 
Microscopic models can simulate complex traffic conditions. In order to accurately model traffic, 
a large amount of parameters are required. A disadvantage to using microscopic models to 
predict traffic conditions is that real-time point-source data is usually aggregated over 1- to 5-
min intervals, thus model updates are not as precise when updated with aggregated data. 

Mesoscopic models have medium detail, describing the behavior of small groups of 
vehicles, segregated by speed and position. 

Macroscopic models have low level of detail as they represent aggregated levels of flow 
without considering individual vehicle behavior. These models are able to produce results fast 
and are able to use aggregated real-time data without loss of accuracy, which motivates their 
application. 

Lighthill and Whitham and Richards proposed a first-order deterministic model which is 
widely used throughout macroscopic modeling—the Lighthill-Whitham and Richards (LWR) 
model (2, 3). The LWR model has been used to describe queue buildup and discharge in traffic. 
It shows the existence of shock waves in traffic; however, its solutions assume that traffic can 
adjust its speed instantaneously. It lacks diffusive terms which would model drivers’ reaction to 
changes in traffic such as shock waves. 

While deterministic models have been able to capture important physical phenomenon, 
these models are typically dependent on an assumed flow–density relationship. Flow–density 
relationships admit large fluctuations in behavior (4, 5). This high variability is due to driver 
decisions, adverse weather conditions, etc., and has led to the development of stochastic 
microscopic and macroscopic models to capture this variation. A challenge in stochastic modeling 
is obtaining reasonable computation times. In an attempt to minimize this issue, many models have 
been created by adding Gaussian noise to deterministic models. Since Gaussian noise can be 
characterized by its mean and variance, this becomes less of a computational hassle. However the 
addition of Gaussian noise could contradict physical phenomenon by producing negative traffic 
densities as well as avoiding mean dynamics of the original deterministic model as the dynamic 
equations are nonlinear (6). 

A computationally viable model is proposed in Jabari and Liu (7) which uses the long-
term trend of the stochastic Markovian model as the mean of the model (6). The covariance of 
the mean is derived from the deviance of the stochastic model and its deterministic long-term 
limit. The long-term trend or fluid limit of the stochastic model is the deterministic Godunov 
scheme, which is a method for solving the macroscopic LWR model. The variance is 
controllable by the time step such that nonnegative densities ranges can be obtained for 
sufficiently small time step. 

Because of the linearity of the stochastic model, the state can be compared to real data 
using the linear Kalman filter to improve mean traffic density estimations. Using the linear 
Kalman filter is faster than using nonlinear filters and is a unique feature of this model. 
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OBJECTIVE 
 
The primary objective of this paper is to investigate the use of the Gaussian approximation 
proposed in Jabari and Liu (6). This method is chosen for its ability to guarantee of nonnegative 
traffic flow and that the variance is derived from deterministic model parameters such that the 
model is computationally feasible to implement in traffic control systems. We implement the 
model for a case study in which we wish to describe traffic conditions downstream on a 
homogeneous road with no lane changes from knowledge of upstream conditions. 
 
 
LITERARY REVIEW 
 
Lighthill, Whitham, and Richards Model 
 
Macroscopic models describe traffic evolution as aggregated amounts of traffic. These models 
use traffic density, flow rates, and a fundamental relationship to characterize traffic. Lighthill and 
Whitham and Richards proposed the following first-order macroscopic model from 
hydrodynamic theory (4, 5): 
 
ρt + qx = 0 (1)

 
for traffic density ρ(x,t), and flow q(x,t). This partial differential equation (PDE) represents the 
change of vehicles in a road segment as the difference of the flow of vehicles in and out of the 
road. This was proposed as a model of traffic flow with the assumption that the flow of traffic is 
a function of density: q(x,t) = Q[ρ(x,t)]. This reduces the PDE to an ordinary differential 
equation: 
 ∂ρ(ݔ, ݐ∂(ݐ + ܳᇱ(ρ) ߲ρ(ݔ, ݐ∂(ݐ = 0 (2)

 
The general solutions to Equation 2 are a family of straight lines in the x – t plane. Each 

solution has wave speed, or slope, Qʹ(ρ) characterized by the value of ρ. A popular method to 
model traffic with the LWR model is to divide a road into segments called cells, choose a flux 
function, and use initial conditions to solve 2. By dividing the road into cells, the assumption of 
differentiability used to derive 2 does not hold, and only weak solutions are allowed. The weak 
solutions are not unique, such that various methods have been developed to physically model 
traffic flow. These methods are based on how shock waves and expansion waves are demonstrated. 

Daganzo (8, 9) proposed piecewise linear sending and receiving functions in Equations 3 
and 4 as flux functions to describe flow between cells as well as shock waves in traffic. These 
functions are used to create a flux function as seen in Figure 1. This method is a cell transmission 
model (CTM), which is a special case of Godunov’s scheme (10). Daganzo’s CTM was developed 
to solve the LWR model for complicated network topologies. 
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FIGURE 1  Example of Daganzo’s flux function (a) composed from the minimum of  
(b) a sending function and (c) a receiving function. 

 
 ܵ௘൫ρ(݅, ൯(ݐ = min	 ൛ݒ௙ρ(݅, ,(ݐ ,݅)୫ୟ୶ൟ (3)ܴ௘൫ρݍ ൯(ݐ = min	 ቄݍ୫ୟ୶, ߱ ቀρ୨ୟ୫ − ρ(݅, ቁቅ (4)(ݐ

 
The subscript ‘e’ denotes an equilibrium or empirically derived (fundamental) flow–

density relationship.  
For ease of notation, we declare y(i + .5,t) to be the vector of densities in cells adjacent to 

the boundary at i + .5 at time t for all i ϵ C. 
 ࢟(݅ + .5, (ݐ = ൤ ρ(݅, ݅)ρ(ݐ + 1, ൨ (5)(ݐ

 
This notation is used in calculation of CTM flux functions, which calculate shock waves 

at the boundaries of cells. |ܥ|	denotes the cardinality, or size of the set of cells in ܥ. This is used 
to denote the index of the last cell. The procedure for Daganzo’s CTM is found in Algorithm 1. 
 
 

Algorithm 1  CTM 

 

  

.)൫࢟ߣ 5, ௞)൯ݐ = ܴ௘൫1)ߩ, |ܥ|)൫࢟ߣ ௞)൯ݐ + .5, ௞)൯ݐ = ܵ௘൫ܥ|)ߩ|, ݅)൫࢟ߣ ௞)൯ݐ + .5, ௞)൯ݐ = min	 {ܵ௘(ߩ(݅, ,(௞ݐ ܴ௘(ߩ(݅ + 1,  {(௞ݐ
,݅)ߩ (௞ାଵݐ = ,݅)ߩ (௞ݐ + Δݐℓ௜ ݅)࢟)ߣ) − .5, (௞ݐ − ݅)൫࢟ߣ + .5,  ௞)൯ݐ

Assume initial density ρ(݅, 0)for all cells ݅ ∈  .ܥ
Initialize model with fundamental parameters. 
Compute flux function at boundaries for each cell ݅ = 1 to |ܥ| from ݇ = 1	to end: 
 

 
Update new densities: 
 

Next ݇ 
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Gaussian Approximation 
 
The Gaussian approximation model uses the CTM as an approximation to the long-term trend of the 
stochastic model in Jabari and Liu (6). The stochastic model is a microscopic queueing model which 
counts vehicle departures from cells based on stochastic time headways. The deviance between the 
stochastic and its fluid limit, outlined in Jabari and Liu (7), allows us to calculate the covariance of 
the deterministic model based on the stochastic model’s probabilistic deviance from it. This allows a 
range of solutions to be given for density estimates based on a stochastically derived model. The 
deviance is derived as a stochastic differential equation, with solution in differential form given in 
Equation 6 for initial covariance matrix Ψ(0), where D(t), B, and Γ(t) are given in Equations 9, 10, 
and 11. Equation 6 is approximated using Riemann sum integration: 
 ݀શ(ݐ)݀ݐ = D(t)શ(t) + શ(t)D(t)T + BΓ(t)Γ(t)୘B୘ (6)

 න ݀શ(ݐ)݀ݐ ݐ݀ =௧ା୼௧
௧ શ(t + Δt) − શ(t)≅ D(t)શ(t)Δt + શ(t)D(t)TΔt + BΓ(t)Γ(t)୘B୘Δt (7)

 
Such that: 
 શ(t + Δt) ≅ શ(t)+D(t)શ(t)Δt + શ(t)D(t)TΔt + BΓ(t)Γ(t)୘B୘Δt (8)
 
This solution serves as the covariance of the data in the cells. The diagonal elements of the 

covariance matrix are the individual variances of each corresponding cell’s density (Figure 2). 
D(t) is defined to be a |ܥ| ×  matrix with row elements given by Equation 9 for each	|ܥ|

cell i ϵ C. 
The middle element is the diagonal element of row i, 

 1ℓ௜ ቈ⋯ 	0	 ݅)൫ഥ࢟ߣ߲ − .5, ݅)ߩ൯߲̅(ݐ − 1, (ݐ ݅)൫ഥ࢟ߣ߲			 − .5, ,݅)ߩ൯߲̅(ݐ (ݐ − ݅)൫ഥ࢟ߣ߲ + .5, ,݅)ߩ൯߲̅(ݐ (ݐ − ݅)൫ഥ࢟ߣ߲ + .5, ݅)ߩ൯߲̅(ݐ + 1, (ݐ 		0	⋯ ቉ (9)

 
 

 

FIGURE 2  CTM with two cells.  
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B is a |ܥ| × |ܥ| + 1	matrix used to correctly combine flux terms in Γ(t) with the 
corresponding cell length, 
 

B ≡
ێێۏ
ێێێ
ۍێ 1ℓ1 − 1ℓ1 0 0 ⋯ 0 00 1ℓ2 − 1ℓ2 0 ⋯ 0 0⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮0 0 ⋯ 0 0 1ℓ|஼| − 1ℓ|஼|ۑۑے

ۑۑۑ
ېۑ
 (10)

 
Γ(t) is a |ܥ| + 1 × |ܥ| + 1 matrix of Ito integrands, 

 

Γ(t) ≡ ێێۏ
.)ഥ࢟)ߣඥ̅ܿۍێ 5, ((ݐ 0 ⋯ 00 ܿ̅ඥߣ(ഥ࢟(1.5, ((ݐ ⋱ 0⋮ ⋱ ⋱ ⋮0 ⋯ 0 ܿ̅ඥߣ(ഥ࢟(|ܥ| + .5, ۑۑے	((ݐ

ېۑ
 (11)

 
Derivatives of Flux Functions 
 
The matrix D(t) requires the computation of partial derivatives of flux functions, which are non-
differentiable in the classical sense. We can rewrite flux equation in Algorithm 1 as the average 
of the sending and receiving functions minus the distance (norm) between the two: 
 min	 {ܵ௘(̅ߩ௜), ܴ௘( {(௜ାଵߩ̅ = 12 (ܵ௘(̅ߩ௜) + ܴ௘(̅ߩ௜ାଵ) − |ܵ௘(̅ߩ௜) − ܴ௘(̅ߩ௜ାଵ)|) 	 = 12 (ܵ௘(̅ߩ௜) + ܴ௘(̅ߩ௜ାଵ) − ට൫ܵ௘(̅ߩ௜) − ܴ௘(̅ߩ௜ାଵ)൯ଶ 

(12)

(13)

 
for ρത௜, ρത௜ାଵ ∈ [0, ρ୨ୟ୫]. This allows the partial derivatives to be written: 
݅)൫ഥ࢟ߣ߲  + .5)൯߲݅ߩ = ݅ߩ݀(௜ߩ̅)12݀ܵ݁ ቆ1 − ܵ௘(̅ߩ௜) − ܴ௘(̅ߩ௜ାଵ)|ܵ௘(̅ߩ௜) − ܴ௘(̅ߩ௜ାଵ)|ቇ 	߲ ݅)ഥ࢟)ߣ + 1+݅ߩ߲((5. = 1+݅ߩ݀(௜ାଵߩ̅)12ܴ݀݁ ቆ1 + ܵ௘(̅ߩ௜) − ܴ௘(̅ߩ௜ାଵ)|ܵ௘(̅ߩ௜) − ܴ௘(̅ߩ௜ାଵ)|ቇ 

(14)

(15)

 
The partial derivatives exist everywhere except for	ܵ݁൫ߩത݅൯ = ܴ݁൫ߩത݅+1൯. For this case, 

Equation 12 reduces to: 
 min	 {ܵ௘(̅ߩ௜), ܴ௘( {(௜ାଵߩ̅ = 12 (ܵ௘(̅ߩ௜) + ܴ௘(̅ߩ௜ାଵ), (16)

 
such that the partial derivatives are: 
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݅)൫ഥ࢟ߣ߲  + .5)൯߲݅ߩ = ݅ߩ݀(௜ߩ̅)12݀ܵ݁  (17)

݅)ഥ࢟)ߣ߲ + 1+݅ߩ߲((5. = 1+݅ߩ݀(௜ାଵߩ̅)12ܴ݀݁  (18)

 
A summary of the weak partial derivatives of the flux function are found in Table 1. 

 
TABLE 1  Flux Derivatives 

 ܵ௘(̅ߩ௜) < ܴ௘(̅ߩ௜ାଵ) ܵ௘(̅ߩ௜) = ܴ௘(̅ߩ௜ାଵ) ܵ௘(̅ߩ௜) > ܴ௘(̅ߩ௜ାଵ) ߲ߣ൫ഥ࢟(݅ + .5)൯߲ߩ௜  
݀ܵ௘(̅ߩ௜)݀ߩ௜  

12݀ܵ௘(̅ߩ௜)݀ߩ௜ ݅)ഥ࢟)ߣ߲ 0  + ௜ାଵߩ߲((5.  0 
12ܴ݀௘(̅ߩ௜ାଵ)݀ߩ௜ାଵ  

ܴ݀௘(̅ߩ௜ାଵ)݀ߩ௜ାଵ  

 
 
Gaussian Approximation Algorithm 
 

Algorithm 2  Gaussian Approximation 

 
 
  

Initialize model with fundamental parameters and B: ̅ߩ(∙ ,0) = ∙)൫ഥ࢟ߣ0 ,0)൯ = 0 
For ݇ = 1 to end: 
Compute flux function at boundaries for ݅ = 1 to	|ܥ| − .)൫ഥ࢟ߣ :1 5, ௞)൯ݐ = ܴ௘൫̅1)ߩ, |ܥ|)൫ഥ࢟ߣ ௞)൯ݐ + .5, ௞)൯ݐ = ܵ௘൫̅ܥ|)ߩ|, ݅)൫ഥ࢟ߣ ௞)൯ݐ + .5, ௞)൯ݐ = min{ܵ௘(̅ߩ(݅, ,(௞ݐ ܴ௘(̅ߩ(݅ + 1,  {(௞ݐ
Update ડ(ݐ), D(ݐ). 
Compute covariance: 
 શ(t୩ାଵ) = શ(t୩)+D(t୩)શ(t୩)Δt + શ(t୩)D(t୩)TΔt + BΓ(tk)Γ(tk)୘B୘Δt 
Update mean densities for ݅ = 1 to	|ܥ|: 
,݅)ߩ̅  (௞ାଵݐ = ,݅)ߩ̅ (௞ݐ + Δݐℓ௜ ݅)ഥ࢟)ߣ) − .5, (௞ݐ − ݅)൫ഥ࢟ߣ + .5,  ௞)൯ݐ
Calculate confidence interval from variance and mean: 
 ܿ݅ା = ,݅)ߩ̅ (௞ାଵݐ + 1.96ඥશ୧୧(t୩ାଵ)Δt ܿ݅ି = ,݅)ߩ̅ (௞ାଵݐ − 1.96ඥશ୧୧(t୩ାଵ)Δt 
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Nonnegative Densities 
 
The diagonal elements of the covariance matrix are the variances for each cell density. The 
variance is used to create a confidence interval about the mean. Mean density values are 
automatically guaranteed to be non-negative by the calculation of flux between cells. The range 
of potential density values around the mean is not guaranteed to be nonnegative.  

We know from (Jabari and Liu, 2013) that the covariance matrix converges to BΓΓTBTdt 
for which, the diagonal elements are	શ୧୧ = ቀ ୡതℓ೔ቁ ݅)ഥ࢟)ߣ) − 1, (௞ݐ − ,݅)൫ഥ࢟ߣ  The variance is .ݐ௞)൯݀ݐ

then calculated by: 
 න ൬ cതℓ௜൰ ݅)ഥ࢟)ߣ) − 1, (ݑ + ,݅)൫ഥ࢟ߣ ݑ൯݀(ݑ = න E|ߩ෤(݅, (ݑ − Eߩ෤(݅, ௧ା୼௧ݑଶ݀|(ݑ

௧
௧ା୼௧
௧ 	= ൬ cതℓ௜൰૛ ݅)ഥ࢟)ߣ) − 1, (ݐ + ,݅)൫ഥ࢟ߣ =	ݐ൯Δ(ݐ શ࢏࢏Δݐ 

(19)

 
To control the range of solutions to be guaranteed non-negative with 95% confidence, 

one would choose the smallest of the time steps that satisfies the CFL condition (11) and ρത(݅, (௞ାଵݐ − 1.96ඥશ୧୧(ݐ௞ାଵ)Δݐ > 0. For the latter part of the condition we have: 
  Δݐ ≤ ρതଶ൫1.96ඥશ࢏࢏൯ଶ (20)

 
If traffic is in a free flow state such that	ܵ௘(ρത) < ܴ௘(ρത), we have: 

 Δݐ ≤ ρതଶℓ௜ଶ7.68ܿ̅ଶݒ௙ρത				= ρതℓ௜ଶ7.68ܿ̅ଶݒ௙			 ≥ 18	ρതℓ௜ܿ̅ଶ 	 ℓ௜ݒ௙		 (21)

 
The other issue of concern is avoiding densities within the 95% confidence interval that 

would be greater than jam density ρjam. This would require	ρത + 1.96ඥશ୧୧Δt ≤ ρ୨ୟ୫, such that: 
 Δݐ ≤ ൫ρ୨ୟ୫ − ρത൯ଶ൫1.96ඥશ࢏࢏൯ଶ (22)

 
If traffic is in a congested state such that	ܵ௘(ρത) > ܴ௘(ρത), we have: 

 Δݐ ≤ ൫ρ୨ୟ୫ − ρത൯ℓ௜ଶ7.68ܿ̅ଶω  (23)

 
In general, the recommendation in 23 is a more relaxed bound than in 21 as it is often 
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true that	ݒ௙ > ߱. If one wanted to guarantee with 95% confidence that density values around the 
mean density of	̅ߩ = (തߩ)ܵ௘	௖௥௜௧, which is the upper bound of density values which result inߩ >ܴ௘(ߩത), it would be required that: 
 Δݐ ≤ min	 ቆ18 ௙ݒ௠௔௫ݍ ℓ௜ଶܿ̅ଶݒ௙ , ℓ௜ݒ௙ቇ		 (24)

 
Of course, this cannot guarantee all traffic densities to be nonnegative. 

 
Numerical Example 
 
The purpose of this example is to show how we implemented the Gaussian approximation model 
in Algorithm 2 with a 95% confidence interval as allowed by the computation of the covariance 
matrix. To exhibit queue build-up and discharge by the model, we shall consider a large inlet cell 
arrival rate Amax(t). In actual implementation of the model, the arrival flow rate varies with real-
time data calibration. Consider an arterial road with a traffic signal that turns red, g(t) = 0 for t ϵ 
[30,150) and is green otherwise g(t) = 1 is modeled for 250 s. We choose to model this as a 
simple two cell setting with a cell length of .05 km. Assume a triangular fundamental 
relationship with free-flow speed vf = 100 km/h, maximum flow rate qmax = 2,100 vph, backward 
wave propagation speed ω = 14 km/h, and jam density ρjam = 171 veh/km, coefficient of variation ܿ̅ = 1	for both states, maximum arrival rate Amax = 2,100, and a time step of Δt = .045 s. Then the 
flux function is calculated as: 
.)൫ഥ࢟ߣ  5, ൯(ݐ = min{ܣ௠௔௫(ݐ), 14(171 − ,ത(1ߩ ,൫ഥ࢟(1.5ߣ(25) {((ݐ ൯(ݐ = min{100ߩത(1, ,(ݐ 2100,14(171 − ,ത(2ߩ ,൫ഥ࢟(2.5ߣ(26) {((ݐ ൯(ݐ = min	 ,ത(2ߩ100} ,(ݐ (27) {(ݐ)2100݃

 B = ቂ20 −20 00 20 −20ቃ (28)

Γ(ݐ) = ൦ඥߣ(ഥ࢟(. 5, ((ݐ 0 00 ඥߣ(ഥ࢟(1.5, ((ݐ 00 0 ඥߣ(ഥ࢟(2.5, ൪ (29)((ݐ

ܦ = 120 ێێێۏ
.)൫ത࢟ߣ߲ۍ 5, ,ത(1ߩ൯߲(ݐ (ݐ − ,൫ത࢟(1.5ߣ߲ ,ത(1ߩ൯߲(ݐ (ݐ − ,൫ത࢟(1.5ߣ߲ ,ത(2ߩ൯߲(ݐ ,൫ത࢟(1.5ߣ߲(ݐ ,ത(1ߩ൯߲(ݐ (ݐ ,൫ത࢟(1.5ߣ߲ ,ത(2ߩ൯߲(ݐ (ݐ − ,൫ത࢟(2.5ߣ߲ ,ത(2ߩ൯߲(ݐ (ݐ ۑۑۑے

ې
 (30)
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Case Study 
 
An arterial road case study was carried out on eastbound Highway 14 in Brookings, South 
Dakota, between 22nd Avenue and 25th Avenue (Figure 3). Data were collected from 7:30 to 
8:00 a.m. and the traffic largely consisted of passenger vehicles, with minimal amounts of lane 
changing. The road section is homogeneous, which allows us to use a homogeneous conservation 
equation. 

To model traffic conditions on the road, we need to fit the parameters of the triangular 
fundamental diagram in Figure 1 to traffic conditions specific to the road. We desire to update 
the model with traffic flow and density data, and hence need to measure traffic conditions 
upstream. As a measure of performance, we also need to measure the traffic conditions 
downstream to test model estimates. The maximum queue size is measured downstream to 
compare with model estimates of density. Density values are used to estimate the queue size. 

A video camera recorded the eastbound flow of traffic downstream from the traffic signal 
at 22nd Avenue at a point at which vehicles have reached free-flow speed. The intention is to 
record the flow and density rates of traffic flow upstream. The density upstream was measured 
using the space–mean speed along with the relation ݍ = ρݒ	such that 
 ρത = 1Δݐ ∑ ߬௜ே௜ୀଵΔݔ  (31)

 
where τ௜ represents the trajectory of vehicle ݅. Vehicle trajectories times were measured over the 
length of the upstream segment and segmented by the offset cycle times. Offset in this scenario 
is the travel time of a vehicle from the detector location to the downstream traffic light. Vehicle 
time trajectories allow density to be calculated over the entire cycle time, just as an inductance 
loop detector would record vehicle occupancy over an entire cycle length. 
 
 

 

FIGURE 3  Daft Logic mapping 2014 (12). 
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FIGURE 4  Traffic densities with 95% confidence intervals. 

 
 

Flow rates are taken to be the vehicle count over the offset cycle time. A fixed point in 
the video is used to count vehicles with (Figure 4). 

The Gaussian approximation model is a linear model, which allows it to be calibrated 
with real-time observations using the linear Kalman filter. This provides an advantage over other 
filters in that it is relatively fast. The filter is used in this case study to create optimal estimates of 
upstream density, ρ(1,t), and inlet arrival flow rates, Amax. 

Another video camera recorded the downstream queue. This camera serves as the ground 
truth queue size to compare against the model’s prediction. The model uses the upstream data to 
calibrate model estimates with the linear Kalman filter. The model then makes predictions of 
density for downstream cells. The density for each cell will then be used to determine if the 
traffic is considered to be in the queue. Cells are considered to be in the queue, starting from the 
most downstream cell, if the mean traffic speed is less than 8.05 km/h and the cell downstream is 
also in the queue. 

Free-flow speed vf, which is the slope of the free-flow regime in Figure 1, is assumed to 
be a bit larger than the speed limit: 56.32 + 3.21 km/h. The capacity flow qcap is determined from 
the saturation flow rate according to the procedure in Currin (13). The jam density ρjam is 
estimated by dividing the number of cars in a queue by the estimated length of the queue. The 
backward wave speed is derived as: ω = ି௤ౙ౗౦஡ౠ౗ౣି஡ౙ౗౦. This is the last of the parameters from the 

fundamental diagram that need to be determined. 
The last model parameter we wish to find is the coefficient of variation of vehicle time 

headways, ܿ̅, from the fit of a lognormal distribution to time headways in both the congested and 
uncongested regimes. Data is fit to three-parameter lognormal distributions using statistical 
analysis system (SAS) with parameters in Table 2. 
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TABLE 2  Lognormal Fit to Time Headways 

 Threshold Scale Shape Mean SD ̅܋ A2 Test 
Free flow 0.5869 0.6485 0.8867 3.420 3.097 0.906 0.4273 
Congested 3.252 1.021 1.228 9.154 11.07 1.21 0.3707 

NOTE: SD = standard deviation.  
 
 

The null hypothesis is that the data are random samples from the assumed distribution. 
We use Anderson-Darling (A2) goodness-of-fit test to test the alternative hypothesis, which is 
that the data are not from the assumed distribution. The A2 test values in Table 2 are under their 
respective critical values for the 0.05-significance levels, thus the distributions fit well enough 
that we fail to reject the null hypothesis. 

A time step of 1/2 of the recommendation of the Courant-Friedrichs-Lewy (CFL) condition 
is arbitrarily chosen as the largest time step which visually maintains stability (CFL condition is a 
necessary but not sufficient). A time step of this size does not guarantee nonnegative density 
estimates for the confidence interval. A smaller time step of 1/16 of the CLF recommendation, 
which maintains mostly nonnegative density confidence intervals, is shown for comparison. 

The choice of cell size affects both accuracy and computation time. From an accuracy 
standpoint, smaller cell sizes increase the accuracy of the end of the queue. Cell sizes could be as 
small as the length of a vehicle. The total length of the observed section of road is approximately 
248 m. The cell size was taken to be factors of the imperial road length. 

In selecting the maximum queue from the model, the mean maximum queue size is used 
as the criteria. Cell densities consecutively above crawl density are considered for the maximum 
queue size confidence interval. Figure 5 represents an example of a case in which some cells 
would be considered part of the queue for the confidence interval, but not for the mean, and vice 
versa. The last five cells would be used in calculation of the maximum density, whereas only the 
last four cells would be considered for the lower confidence interval. Scenarios arise in which no 
density for the lower confidence interval are included in the queue size estimate, in which case 
the lower confidence interval for the maximum queue size is 0 vehicles. 
 
 

 

FIGURE 5  Densities in gray-shaded region considered for maximum queue size. 
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The queue size is determined to be the number of consecutive vehicles from the stop line 
traveling slower than crawl speed (taken to be vcrawl = 8.05 km/h). Since the model produces 
estimates of density, cells are considered to be in the queue if their density is greater than the 
crawl density. Crawl density is determined to be where the lines qcrawl = vcrawlρcrawl and  
q = ω(ρjam – ρ) intersect. 

Minimal lane changing occurs in the data set, thus the lanes are independent of each other 
and can be modeled individually. The queue sizes for the median lane were too small to 
determine model parameters from and thus are excluded in estimation. Queue sizes for the 
shoulder lane range from 0 to 10 vehicles. 

 
 

RESULTS 
 
Results of the model estimates are shown in Figure 6 against the measured queue size. The 
model uses the first three iterations as a warm-up period to adapt to inlet flow and density values, 
and these are excluded from the figure. Since the time step in equation 20 requires knowledge of ρത	and	શ, it is difficult to choose a time step greater than zero that will guarantee nonnegative 
density estimates. 

Additionally, we would not expect a confidence interval that is small enough to avoid 
nonnegative densities to also include measured conditions downstream. One purpose of 
developing a 95% confidence interval is to capture the range of values that could be expected in 
the downstream queue. 

It is notable that the measurements are close to this range of values. It is also notable how 
much difference exists in model success for varying cell lengths and time step. Essentially 
confidence intervals can be constructed for a model with equal cell lengths which produce very 
different results, as is seen between Figure 6a and b. This is because the stochastic model 
converges to the mean for smaller time steps, and the deviance of the two is what characterizes 
the 95% confidence interval. Choice of cell size affects the confidence interval as well. The time 
step decreases by the square of the cell length as the cell length decreases. This results in a 
conundrum in which a cell length is desired to be small enough to accurately capture the edge of 
the queue, but large enough such that the confidence interval provides usable information. 

The measured observations are not all within the 95% confidence interval for any one 
model. We tested crawl speeds of 8.05 ± 3.22 km/h to determine if discrepancy existed for 
determining queue size during observation. Observed vehicles were only considered to be part of 
the queue if their speed was thought to be less than vcrawl = 8.05 km/h; however, this was not 
directly calculated. It could be possible that a vehicle was not observed to be in the queue, but 
would have been modeled. Results for the model estimate with crawl speeds of 8.05 ± 3.22 km/h 
did not improve the model’s success. 

Another possible explanation is error in data collection. While minimal lane changes 
occur in the videos, a short section of the road between the cameras’ view was not observed. 
Unaccounted lane changes would affect queue size. In estimating the saturation flow rate, few 
queues were observed with the recommended initial queue of 10 vehicles. Thus the saturation 
flow rate could be inaccurate. Additionally, this would impact the value of the backwards wave 
speed ω. The degree of accuracy in measurements of distance and time in videos can affect the 
accuracy of the all of the data as well. 
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(a) (b) 

 

 
(c) 

FIGURE 6  Comparison between estimated and measured queue sizes. 
 
 

Throughout this case study, many updates were made to the data to improve their 
accuracy. The changes that the model was most sensitive to were changing the upstream flow 
rates and changing the free-flow speed and backward wave speed. This emphasizes the 
importance of fitting the fundamental parameters to relevant historical data. Updating density 
values resulted in negligible change, as is expected for a Markov model. Updating flow values 
greatly affected model predictions. This shows the importance of updating the inlet flow rate, as 
the Kalman filter assigns the maximum flow allowed into the road to be the inlet flow rate until 
the next filter iteration. Updates to density produce temporary effects in the model estimates, and 
was not as important in updating the model. 
 
 
CONCLUSION 
 
Macroscopic models accumulate random microscopic phenomenon across lengths of roads. 
Stochastic models have been developed to simulate the stochastic nature of vehicle interactions 
and arrivals. In order to produce computationally viable models, researchers have added 
Gaussian noise to a deterministic model to create a stochastic model. This could lead to negative 
estimated densities, which is an undesirable physical feature. The model outlined in Jabari and 
Liu (6) creates a doubly stochastic Poisson counting process based on stochastic time headways. 
This model was developed to create a stochastic cell transmission model with the limiting 
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features of the stochastic process to be the deterministic Godunov scheme. The deviance between 
the stochastic and deterministic model is derived as a stochastic differential equation, from which 
the variance of the mean counting process is derived. This stochastic differential equation is 
shown to be a Gaussian distribution about the fluid limit. 

This paper implements the Gaussian approximation model proposed in Jabari and Liu (7) 
on an arterial road in Brookings, South Dakota. The deterministic model is computationally 
viable, its variance is controllable such that nonnegative density distributions are obtainable, and 
the mean of the original stochastic model used in the derivation of the Gaussian approximation 
converges in the fluid limit to Godunov scheme dynamics. The linearity of the model allows for 
the use of Kalman filtering for calibrating the model to real-time data. 

The case study was able to produce results with 80% accuracy in predicting observed 
queue sizes within the confidence interval at the loss of guaranteeing nonnegative densities. In 
practice, it does not seem reasonable to expect that a model maintaining nonnegative densities 
with 95% confidence produces a large variance. It must be determined which takes priority in 
modeling traffic flow: providing ranges of traffic flow values that accurately represent the 
modeled situation, or maintaining physical phenomenon that densities should be nonnegative. 
 
 
FUTURE WORK 
 
The Gaussian approximation model can be applied to any traffic operations management systems 
that require traffic predictions. This includes advanced signal timing, ramp metering, and 
advanced wait time notice. 

The CTM was developed to solve the LWR model for complicated network topologies. 
Thus the Gaussian approximation could be investigated and developed for these scenarios. To do 
this, one would derive this from deterministic merge and diverge dynamics. 

It would be of interest for those implementing this model in the future to use Monte Carlo 
simulation of the stochastic process to check whether the 95% confidence interval about the 
mean is valid for various time steps. The authors of this paper assumed the derivation of the 
variance of the stochastic process to its mean to be sufficient. 
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n investigation into platooning and passing maneuvers within a passing-lane section on a 
rural two-lane, two-way highway is presented in this study. The study site is located on  

US-287 between the town of Townsend and the city of Helena in the state of Montana. Traffic 
volumes at study site, while considered relatively low, are typical on two-lane highways in many 
rural states. Per-lane analysis of performance measures and lane utilization (volume split) were 
used to indirectly examine passing maneuvers and lane changing at successive locations within 
the passing lane section. For the case study site, it was evident that traffic performance became 
relatively stable beyond 0.5 mi into the passing lane for the traffic volumes investigated. 
Therefore, results strongly suggest that most passing maneuvers already took place before the 
0.5-mi station and that the actual passing lane length is well beyond the optimal length required 
for breaking up platoons and improving performance. 
 
 
INTRODUCTION 
 
Two-lane highways constitute the vast majority of highway facilities particularly in states where 
most vehicular travel takes place in rural areas. Passing maneuvers are restricted on those 
highways and are typically performed using the opposing lane when sight distance and gaps in 
the opposing traffic stream permit. This has serious implications on traffic performance and 
safety. From traffic performance perspective, the limited passing opportunities would result in 
higher impact of slow-moving vehicles on mobility and performance. This impact generally 
increases with the increase in traffic level in the two directions of travel, the proportion of slow-
moving vehicles in the traffic stream, and the average speed differential between the mainstream 
and slower vehicles. The use of passing lanes is known to alleviate this unique operational 
characteristic on well-traveled two-lane highways. Passing lanes allow vehicles traveling at 
faster speeds to overtake slow-moving vehicles, thus breaking up platoons and reducing delays 
associated with inadequate passing opportunities. Therefore, it is well known that using passing 
lanes generally improves operations and results in better level of service on two-lane highways. 
Two very important aspects in planning and designing passing lanes on two-lane highways are 
the determination of the appropriate passing lane length and the frequency at which passing lanes 
are provided. This study examines platooning and performance within the passing lane, which is 
important in understanding the length requirement for passing lanes on two-lane highways.  
 
  

A 
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BACKGROUND  
 
In the course of the literature review performed in this study, only limited research was identified 
that is related to passing-lane length requirement. In this section, information available about 
passing lane length requirement in the current practice as well as the few relevant studies in the 
literature are presented.  

The Highway Capacity Manual (HCM) (1) recommends a passing-lane length based on 
traffic level as shown in Table 1. The source of the values provided in this table is a study that 
was conducted more than 25 years ago using traffic simulation (2).  

The Policy on Geometric Design of Highways and Streets (3), known as the Green Book, 
suggests values for passing lane length that are very consistent with the values in the current 
HCM. The absolute minimum length for passing lanes according to the Green Book is 300 m 
(1,000 ft) excluding tapers. Also, the optimal length provided in the green book is 0.8 to 3.2 km 
(0.5 to 2.0 mi) which is the same range of values provided in Table 1.   

A few researchers have investigated performance or passing maneuvers within passing 
lanes with the objective of understanding the passing lane length requirement under various 
traffic conditions.  

Harwood and Hoban (4) used the traffic simulation model TWOPAS in an attempt to 
determine optimal length and spacing of passing lanes. Their data showed that optimal passing 
lane length was dependent on traffic volume. For low traffic level, the optimal passing lane 
length is 0.5 to 0.75 mi. For medium traffic level (around 400 vph) the optimal length is .75 to 
1.0 mi, and for higher traffic level (equal or greater than 700 vph) the optimal length is 1.0 to  
2.0 mi. Results from this study were used in developing the HCM recommended values for 
passing lane lengths in the HCM 2000 and HCM 2010 (1, 5).    

Another study by Harwood and St. John (2) investigated 12 passing lane sites in six 
states. The purpose of this study was to determine the effective length and spacing of passing 
lanes. At each site, automatic traffic recorders and observers were used to collect data. The data 
recorders collected vehicle mix, speed, headway, and acceleration while the observers primarily 
counted the passing maneuvers. The locations of the data recorders were 500 ft upstream of the 
entrance taper, 100 ft downstream of the entrance taper, in the middle of the passing lane, 300 ft 
from the beginning of the exit taper, 500 ft downstream of the exit taper, and 1 mi downstream of 
the exit taper. Six hours of data were collected at each site. The main measures of effectiveness 
for this study were traffic speed, percent of vehicles in a platoon, and passing rate. The study 
found that operational benefits of passing lanes exist over a distance of three to 8 mi and that the 
optimal length of passing lanes generally vary from 0.5 to 1.0 mi.   
 
 

TABLE 1  Optimal Passing Lane Length in the HCM  
Directional Demand Flow Rate (pc/h) Optimal Passing Lane length (mi) 
≤ 100 ≤ 0.5 

> 100 ≤ 400 > 0.5 ≤ 0.75 

> 400 ≤ 700 > 0.75 ≤ 1.0 

≥ 700 > 1.0 ≤ 2.0 

NOTE: pc/h = passenger cars per hour. 
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Woolridge et al. (6) researched the optimal length and spacing of passing lanes on two-
lane highways using the traffic simulation model TWOPAS. A generic two-lane highway with 
varying length of passing lane was tested. The spacing between passing lane sections was varied 
between 1 and 8 mi at 1-mi intervals and the length of passing lane was varied between .25 and  
2 mi at .25-mi intervals. The results of the simulation showed that the optimal length of passing 
lane varied between 0.8 and 2.0 mi and the optimal spacing varied between 3.5 and 11 mi.   

Gattis et al. (7) studied sites with a 2+1 passing-lane configuration (also known as a 
three-lane configuration or an alternating passing lane) in Arkansas. This configuration has one 
lane in each direction (like a normal two-lane highway) and center lane that acts as a passing 
lane alternating in direction. This is demonstrated in Figure 1.  

Four sites were selected for study of platoon-breakup and passing rates: two on US-70, 
one on US-65, and one on US-82. Study results showed that the greatest reduction in platooning 
was between 0.93 and 1.86 mi into the three-lane section and that the platooning at the beginning 
of the three-lane segment was always greater than at the end. Further, the researchers found that 
the maximum passing rate occurred between 0.93 and 1.86 mi into the site. Past 1.86 mi, passing 
rate leveled off or declined. Passing rates also increased with higher volumes. 

May and Emoto (8) conducted a field study to analyze the passing lane usage. A plot of 
the total volume versus the passing lane volume was created. A best-fit line was developed and a 
passing experiment was conducted to determine the number of passes vehicles made per mile of 
passing lane. The number of passes varied from 1.5 passes per mile to 1.75 passes per mile. 
 
 
PROBLEM STATEMENT  
 
The periodic use of passing lanes is one of the most common operational improvements on two-
lane highways. In many instances, it is proven more feasible than other costlier improvements 
such as the super 2+1 and the upgrade to a four-lane highway facility. In planning and designing 
passing lanes, two parameters are deemed very important; the passing lane length required and 
the interval at which the passing lane should be provided on a particular highway to achieve the 
desired performance improvement. This current research is associated with the former of the two 
design parameters.   

The determination of the needed or optimal passing lane length requires a good 
understanding of traffic behavior within the passing lane sections. Developing such an 
understanding is somewhat challenging in that it should largely rely on empirical field 
observations, particularly in the absence of advanced and proven simulation models. Vehicular 
 
 

 

            

 

FIGURE 1  “2+1 Passing Lane” configuration. 
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interactions in most simulation models are based on highly theoretical and sometimes very 
simplistic car-following and lane-changing models that may not yield realistic results. This is 
especially true for the simulation of two-lane highway operations where only a limited number of 
simulation models are available to researchers and practitioners. On the other hand, field 
investigations are constantly challenged, to various degrees, by limitations to site geometrics, 
traffic conditions, data collection techniques, or combinations of the aforementioned factors. 
Nonetheless, field observations offer valuable information about the dynamics of vehicular 
interactions within the passing lane section that is much needed in the literature. As such, it is the 
objective of this research is to empirically explore the dynamics of platoon break up within a 
typical passing-lane section with respect to the passing-lane length requirement. While this case 
study involved a single passing lane site, findings of the case study is deemed applicable to many 
similar sites on two-lane highways in rural areas.    
 
 
STUDY SITE  
 
The study site investigated in this research is located on US-287 Southbound between the town 
of Townsend and the city of Helena in the state of Montana. This particular passing lane is 
roughly located at around 8 mi north of Townsend and 25 mi south of Helena. The passing lane 
is around 2.33 mi in length and is located in level terrain. The highway has standard lane width 
and wide shoulders at the passing lane location. No major access points exist which could affect 
travel patterns within the passing lane of interest. Only one unpaved driveway in the northbound 
direction exists and is located further downstream in the study area. Southbound traffic using the 
driveway was observed in the field and found too small to have any noticeable influence on lane 
utilization patterns. The annual average daily traffic at this site in the data collection year (2008) 
was around 5,000 vehicles per day.    
 
 
STUDY DESIGN  
 
In order to investigate performance and lane utilization, multiple detector stations were used at 
the study site. Specifically, five automatic traffic recorder stations were used to gather data both 
upstream and within the passing lane over a 1-week period in June 2008. As illustrated in Figure 2, 
the first station was located 250 ft upstream of the passing lane; the other four stations were 
located at 0.25, 0.5, 1.0, and 1.5 mi downstream of the lane addition taper into the passing lane. 
Traffic data including counts, speeds, headways, and vehicle classification were obtained at the 
single lane upstream of the passing lane and for each individual lane within the passing lane 
section. Counts and vehicle classification were used to establish lane utilization within the 
passing lane while headways, speeds, classification, and counts were used in investigating 
performance upstream and within the passing-lane section. Three different performance 
measures were used in the study; percent followers, average travel speed, and follower density. 
Percent followers represents the percentage of vehicles with short headways (less than 3 s) in the 
traffic stream. This is the surrogate measure used by the HCM for estimating percent-time-spent 
following in the field. Follower density is the number of followers in a directional traffic stream 
over a unit length, typically 1 km or 1 mi. It can easily be found by multiplying percent followers 
and traffic density. This measure, which has been used in South Africa (9), was found the most    
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FIGURE 2  Field data collection setup. 
 
 
promising among other measures investigated in a recent study (10). Average travel speed is the 
arithmetic mean of all speeds observed at a point location and is the secondary performance 
measure used by the HCM for Class I two-lane highways, which includes rural two-lane arterials 
and primary highways (1).    
 
 
STUDY RESULTS  
 
Per Lane Examination of Performance Measures  
 
In order to understand traffic behavior within the passing lane, performance measures most 
relevant to platooning and impedance were examined individually on the normal and passing 
lanes. As discussed earlier, three measures of performance were examined in this analysis; 
percent followers, follower density, and average travel speed. In this analysis, plots of each 
performance measure were created as a function of distance into the passing lane at different 
traffic levels. Figure 3 shows the percent followers at successive data collection stations within 
the passing lane section at three different traffic levels.  

On the normal (left) lane, the percent followers seems to rise significantly in the first 0.25 
mi, then drops to or slightly below its original level (upstream of passing lane) between 0.25 and 
0.5 mi on that same lane and finally levels off. On the passing (right) lane, the changes exhibit a 
different pattern: percent followers remains relatively steady in the first 0.25 mi, slightly drops 
between 0.25 and 0.5 mi, and eventually levels off. These patterns are common to all traffic 
levels investigated. One observation that is somewhat unexpected here is the relatively low 
reduction in percent followers in the passing lane section despite the fact that the total traffic on 
the single lane has split over two lanes within the passing section. In fact, percent followers at 
0.25 mi station is much higher than the original value when averaged over the two lanes. It 
should be understood that those results do not suggest deterioration in performance upon 
entering the passing lane, but rather a sign of the limitation in using the time headway as the only 
performance indicator.   

Figure 4 shows the follower density at successive data collection stations within the 
passing lane section at the same different traffic levels. As shown, follower density in each lane 
drops from the pre-passing-lane value within the first 0.25 mi, in spite of the rise in percent 
followers. This is because traffic volume splits into two separate volumes in the two available 
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FIGURE 3  Percent followers at the passing lane section for various traffic levels. 
 
 
lanes beyond the taper. Apparently, the effect of the decrease in volume on follower density is 
higher than that of the increase in percent followers at 0.25 mi station, which was clearly 
exhibited in Figure 3. At 0.25 mi into the passing lane, follower density in the left lane is 
significantly higher than that in the right lane. This may well be related to the notable increase in 
percent followers at this station as illustrated in Figure 3. The only exception is when traffic level 
is at around 75 vph. At this traffic level, it seems that the density in the normal lane has 
decreased to an extent that caused follower density on the left lane to be lower than that on the 
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FIGURE 4  Follower density by lane at the passing lane section. 
 
 
right lane regardless of the increase in percent followers. At 0.5 and 1.5 mi into the passing lane 
section follower density is always higher on the passing lane than on the normal lane. In general, 
the lower the traffic level, the higher the discrepancy in follower density between the two lanes. 
Given the relatively close values for percent followers at the 0.5- and 1.5-mi stations, results 
shown in this figure indicate that more traffic use the right lane in general, including free-moving 
vehicles outside vehicular platoons which constitute high proportion of vehicles at low traffic 
levels.    

Figure 5 shows average travel speed on the two lanes within the passing section at 
various traffic levels. Speed changes along the distance into the passing lane exhibit very 
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FIGURE 5  Average travel speed at the passing lane section. 
 
 
consistent trends at all traffic levels particularly in the normal (left) lane. In this lane, speed 
increases sharply in the first 0.5 mi (around 13% increase), then declines to a lower value at  
1.5 mi into the passing lane. The final speed at 1.5-mi distance is still notably higher than the 
original pre-passing lane speed. Specifically, the speed at 1.5-mi distance is roughly the middle 
value between the pre-passing lane speed and that at 0.5-mi distance into the passing lane. A 
totally different trend is shown for the other lane. In the passing lane, speed generally maintains 
its pre-passing lane value with the exception of a small increase (around 2 mph) between  
0.25 and 0.5 mi into the passing lane. As expected, the final speed in the passing lane at 1.5 mi 
distance is lower than its counterpart for the normal lane, but is still higher than the pre-passing 
lane speed.    
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The previous results reveal some of the important aspects of drivers’ behavior in using 
passing lanes. Upon arriving at the passing lane section, traffic is normally split into two streams, 
one in each travel lane. Examining performance measures in Figures 3 to 5 suggest that 
aggressive drivers always opt to remain in the normal (left) lane, while slower-moving vehicles 
and other vehicles that are not much affected by slower speeds tend to use the passing lane. The 
sharp increase in short headways in the normal lane (as evidenced by the percent followers at 
0.25 mi in Figure 3) and the notable increase in speed (Figure 5) both suggest that the majority of 
aggressive drivers use the left lane upon arriving at the passing-lane section. On the other hand, 
changes on the passing lane are less notable. Percent follower slightly declines and average 
speed slightly increases (around 4%) mainly because of the drop in traffic flow from the pre-
passing lane level.  
 
Per Lane Analysis of Traffic Volumes  
 
To gain further insights into traffic behavior within the passing lane section, and to better 
understand the performance trends discussed in the previous section, traffic counts at the 
successive data collection stations are analyzed at various traffic levels and results are presented 
in Figure 6. This figure shows traffic volume split in the two available lanes as a percentage of 
the total volume at the data collection stations. As shown in this figure, the majority of traffic 
chose to use the passing lane within the distance investigated. The analysis shows that, at  
0.25-mi distance, between 60% and 80% of traffic utilizes the right (passing) lane depending on 
the traffic level. At 0.5-mi distance into the passing lane, these percentages increase and they all 
fall roughly in the range of 70% to 85%.  

This indicates that many drivers may choose to change lanes beyond the taper section and 
well into the passing-lane section. One possible explanation could be as follows: some moderate 
(nonaggressive) drivers stuck behind slow-moving vehicles may choose to take the right lane, 
but only after passing the vehicle(s) they were impeded by, while others may make the same 
decision when caught up by aggressive drivers traveling at higher speeds in the left lane. Besides 
the increase in passing lane split, this hypothesis is also supported by the increase in average 
travel speed and the slight decrease in percent followers in the passing lane due to these 
moderate drivers moving into the passing lane.    

At 1.5-mi distance, the passing-lane split slightly declines and varies in the range 
between 65% and 75% depending on the traffic level. This indicates that some drivers may 
decide to return to the normal lane well in advance of the passing-lane end. This is particularly 
true for drivers who use the right lane mainly to allow passing of faster vehicles and not because 
they drive at very low speeds. The other major trend exhibited in this figure is the increase in the 
passing lane traffic split at lower traffic levels and vice versa, which is somewhat expected.       

 
Interpretation of Results in Regard to Driver Behavior 
 
In this section, the trends exhibited in the previous figures are analyzed in relation to drivers’ 
lane selection (lane changing) behavior within the passing-lane section. Those figures show that 
the percentage of short headways in the normal lane rises sharply in the first 0.25 mi. Half mile 
into the passing section, the percentage of short headways in the normal lane drops to below the 
pre-passing lane value. Meanwhile, average travel speed of vehicles in this same lane continues  
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FIGURE 6  Volume split over available lanes at the  
passing-lane section for various traffic levels. 

 
 
to increase (until the 0.5-mi station). Those trends can be interpreted as follows: between the 
upstream and the 0.25-mi stations aggressive drivers have chosen the left lane and begun 
speeding up. The moderate drivers (or majority of them) also chose the left lane in order to pass 
the slowest vehicles before they move to the passing lane. Between 0.25 and 0.5 mi, the 
moderate drivers shift to the right lane upon passing the slower vehicles. This is supported by the 
dramatic drop in percent followers in the left lane. Further, Figure 5 shows the highest percent of 
drivers in the passing lane occurring at the 0.5-mi station. By the time the traffic reaches the  
0.5-mi station, the aggressive drivers have been able to pass the moderate (and slowest vehicles) 
and the moderate drivers have been able to pass the slowest vehicles. Beyond that point, drivers 
begin transitioning back gradually to the normal lane from the passing lane. This implies that, for 
this particular site, a passing lane length between 0.75 and 1.0 mi may prove to be adequate for 
all passing purposes. 
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Implication of Results on Passing Lane Length 
 
In this research, passing maneuvers and lane changing were indirectly examined through the use 
of performance measures and volume lane split at successive locations within a passing lane 
section. Traffic volumes at the study site, though ranged between low and moderate traffic 
levels, are typical on two-lane highways in many rural states. For this case study site, it was 
evident that traffic performance became relatively stable beyond half a mile into the passing 
lane, which suggests that most passing maneuvers already took place before the 0.5-mi station. 
Accordingly, it is logical to conclude that the actual length of the passing lane under study is well 
beyond the optimal length given traffic conditions prevalent at the study site.  
 
 
CONCLUSION 
 
This paper presents a case study investigation of traffic performance and lane utilization at a 
passing-lane section on a rural two-lane highway in Montana. The analyses provided valuable 
insights that led to better understanding of driver’s lane selection and lane changing behavior 
within the passing lane section. While this case study involved a single passing lane site, the 
results presented in this paper are applicable to many similar passing lanes on rural two-lane 
highways.     
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his research aims to analyze the urban road network macroscopic fundamental diagram 
under vehicular ad-hoc networks (VANETs) environment. The macroscopic (network) 

fundamental diagram (MFD or NFD), which relates network space–mean density and flow, has 
been shown to be existed in urban network with homogeneous traffic conditions. Although MFD 
represents the network performance and is an important indicator for traffic management, the 
practical application of the MFD is limited to the fact that the homogenous traffic condition is 
generally not observed in the real network. However, with wireless communication technology, 
VANETs provide such environment and therefore could be evaluated by MFD. VANETs are 
networks in which each node is a vehicle. The adjacent vehicles in VANETs are equipped with 
wireless communication devices. Under VANETs environment, the road network system 
provides communications not only between individual vehicles, but also between vehicles and 
nearby fixed equipment and roadside facilities. Therefore, the vehicles in VANETs environment 
receive real-time road information, thus improve traveling safety and efficiency. 

The primary object of this study is to explore whether a well-defined MFD exists in 
urban road network under VANETs environment. To analysis the MFD under VANETs 
environment, a simulation test is conducted with gird road network in NS-3 simulation platform. 
The MFD of the simulated network is presented in the study. The simulation results are 
compared between different wireless communication scenarios. The results show that the urban 
road network performs a MFD under VANETs environment. Meanwhile, wireless 
communications under VANETs environment has an impact on the shape of the MFD for the 
simulated road network. 
 
 
INTRODUCTION 
 
Ongoing Work 
 
The MFD or NFD, which relates network space–mean density and flow, has been shown to exist 
in urban network with homogeneous traffic conditions. Although MFD represents the network 
performance and is an important indicator for traffic management, the practical application of the 
MFD is limited to the fact that the homogenous traffic condition is generally not observed in the 
real network. 

T 
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However, with wireless communication technology, VANETs provide such environment 
and therefore could be evaluated by MFD. 

VANETs are networks in which each node is a vehicle. The adjacent vehicles in 
VANETs are equipped with wireless communication devices. Under VANETs environment, the 
road network system provides communications not only between individual vehicles, but also 
between vehicles and nearby fixed equipment and roadside facilities. Therefore, the vehicles in 
VANETs environment receive real-time road information, thus improving traveling safety and 
efficiency. Due to the advantages of VANETs, it has received much attention from the 
automotive industry, government agencies, and researchers. 

The primary object of this study is to explore whether a well-defined MFD exists in 
urban road network under VANETs environment. To analysis the MFD under VANETs 
environment, a simulation test is conducted with gird road network in NS-3 simulation platform. 
The MFD of the simulated network is presented in the study. The simulation results are 
compared between different wireless communication scenarios. 
 
 
LITERATURE REVIEW 
 
VANETs Network and Vehicle Wireless Communications 
 
Introduction to VANETs Network 
 
VANETs are networks in which each node is a vehicle. The adjacent vehicles in VANETs 
environment are equipped with wireless communication devices and therefore they are no longer 
isolated systems. Such systems aim to provide communications between (1) individual vehicles 
and (2) between vehicles and nearby fixed equipment, or roadside units. The goal of VANETs is 
to improve traffic safety and by traffic efficiency by providing timely information to drivers and 
concerned authorities. 
 
Wireless Communication Standards and Data in VANETs 
 
The automotive industry is working to develop the dedicated short-range communication 
(DSRC) technology, for use in vehicle-to-vehicle and vehicle-to-roadside communication in 
VANETs. There are several standards which defines the wireless communication standards in 
VANETs environment. The IEEE 802.11p amendment for wireless access in vehicular 
environments (WAVE) defines the wireless communication band of DSRC in VANETs. The 
IEEE 1609.2, 1609.3, and 1609.4 standards define the security, network services, and 
multichannel operation standard in VANETs. The SAE J2735 Message Set Dictionary supports 
interoperability among DSRC applications through the use of standardized message sets, data 
frames and data elements. 
 
Macroscopic Fundamental Diagram Analysis Under VANETs Environment: Ongoing Work 
 
Simulation Study in NS-3 Simulation Platform 
 
Proposed simulation test is conducted with the NS-3 network simulator platform. Vehicle 
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mobility and network communication are integrated through events under NS-3 simulator. User-
created event handlers can send network messages or alter vehicle mobility each time a network 
message is received and every time vehicle mobility updated by the model. 
 
Test Network 
 
Propose simulation network is a grid network which consists of grids and links with same 
properties. This study employs NS-3 network simulator as a simulation platform. 
 
Simulation Setting 
 
Simulation will be conducted with the NS-3 network simulator. Different simulation scenarios 
will be tested during simulation: (1) grid network simulation with communications between 
vehicles to vehicles (V2V) and vehicles to infrastructure (V2I) and (2) grid network simulation 
with only communications between V2V. 
 
Macroscopic Fundamental Diagram Analysis in VANETs: Ongoing Work 
 
MFD in Simulation Network 
 
The MFD of the simulation network, which relates network flow and space–mean density, will 
be presented under VANETs environment according to the simulation results. The MFDs for 
different simulation scenarios will be compared and analyzed. 
 
Impacts of Wireless Communication in VANETs to MFD 
 
By comparing the MFDs for different simulation scenarios, the impacts of wireless 
communication in VANETs to MFD will be discussed. 
 
 
CONCLUSION AND FUTURE WORK 
 
The research investigates the urban road network macroscopic fundamental diagram under 
vehicular ad-hoc networks (VANETs) environment. The major contribution of this study is to 
show the existence of macroscopic fundamental diagram in urban road network under VANETs 
environment. To analysis the MFD under VANETs environment, a simulation test is conducted 
with gird road network in NS-3 simulation platform. The MFD of the simulated network is 
presented in the study. By comparing simulation results between different wireless 
communication scenarios, research shows that wireless communications under VANETs 
environment has an impact on the shape of the MFD for the simulated road network. 

Future research will investigate the macroscopic fundamental diagrams under VANETs 
environment with field data and real urban network rather than grid network in simulation. 
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INTRODUCTION 
 
In the last decades, drastically increased traffic demands in cities have resulted in congestion 
problems. The development of intelligent transportation system (ITS) technologies with new 
monitoring paradigms and computational tools enables to alleviate congestions by estimating traffic 
states in real-time and thus implementing traffic-responsive signal control schemes instead of fixed 
one, which is particularly not adapted to oversaturated conditions (1). Although an appropriate use of 
these new technologies will ameliorate traffic in local congested areas, an optimal traffic-responsive 
signal control in scale of an arterial or a network is computationally intractable. 

In urban networks with signal-controlled intersections, when demand exceeds capacity 
queues fail to clear during the allocated green times that creates oversaturated traffic conditions. 
Spillovers occur when growing queues at the downstream link block the arrivals from the immediate 
upstream link such that vehicle queues cannot discharge at capacity, although the signal phase is 
green. Spillbacks may also occur when turning vehicles fill up the available storage length of turn 
bays and block the through movements. This results in a significant reduction of the intersection 
capacity and also excessive delay both for the through traffic movement and the cross-street traffic 
entering the arterial.  

This paper advances the state-of-the-art of traffic signal control in congested urban arterials 
by integrating a clustering approach into a control policy of long queues prior to spillover occurrence 
to reduce the risk of spillovers through a feedback strategy. First, we introduce an arterial clustering 
approach that detects in real-time the links with long queues along one direction of the arterial, 
clustering them together if they are consecutive and then identifying the entrance and exit 
intersections of each cluster. These intersections indeed constitute critical junctions (considering the 
analogy of an active bottleneck in a freeway) and therefore, proper adjustment of the signal timing 
settings in those intersections could improve traffic conditions in the whole arterial. Thus, it enables 
to implement locally smaller-sized decentralized signal control strategies while ensuring at the same 
time the global coherence of these strategies along the arterial. In this manner, we seek to improve 
traffic on arterial at a very low cost by acting merely on critical intersections, as opposed for instance 
to network-wide optimization process. This approach is adaptive and does not require information 
about turning movements, which is difficult to be estimated in real-time. 

Hence, the purpose of this paper is to develop an elegant signal control strategy based on the 
arterial clustering approach that enables to act only locally on specific intersections. Including an 
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advanced detection of oversaturated states and a specific focus on queue spillovers prevention, it 
leads to significant reduction of congestion and thus improves the network traffic conditions (2). 
 
ARTERIAL PARTITIONING 
 
The clustering approach consists in detecting in real-time the arterial links with long queues, 
grouping them together if they are adjacent, and consequently identifying the entrance and exit 
intersections of each cluster. These intersections constitute critical junctions along the arterial. Thus, 
by proper modifications of the signal settings at those locations one could expect improvements in 
the traffic situation of the whole arterial. The developed methodology can be integrated in existing 
coordinated or actuated strategies as it intervenes in only a few intersections, with the objective of 
decreasing the risk of spillbacks. 

The arterial partitioning first utilizes a criterion to differentiate oversaturated or close-to-
spillback links from the uncongested ones based on the queue length at the end of each red phase. It 
is assumed that queue lengths can be estimated with some error from loop detectors or probe vehicle 
data by using existing state-of-the art techniques (3). 

A cluster of congested links consists of consecutive congested links in the arterial delimited 
with noncongested links. The entrance intersection designates the signalized intersection located at 
the upstream limit of the group of congested links. This intersection is denoted by ݈ and the link just 
downstream l + 1. Correspondingly, the exit intersection is located at the downstream limit of the 
group of congested links and is denoted by f as well as the link just upstream (see Figure 1a). 

The choice of the threshold to decide whether a link is considered as congested or not is 
based on a preventive strategy that detects moderate queues that exceed the capacity of the 
corresponding approach at the downstream intersection. Hence, considering arterial partitioning for 
cycle k + 1, we propose: if ݍ௞௜ > ௖௥௜ݍ , link i is considered as congested, where ݍ௞௜  is the queue 
(vehicles per lane) in link ݅ at cycle k and ݍୡ୰௜ = 	 ୧݃୬୧୲௜ .  which is maximum queue of vehicles per ݏ
lane in link i that can completely be cleared during the next green phase ୧݃୬୧୲௜  for the arterial through 
movement with fixed-time control (ݏ denotes the saturation flow per lane). 

The pseudo code for arterial partitioning approach is as follows: 
 

1. If cycle k of all intersections has been completed 
2. Loop i = 1,2,…, imax (i = 1 stands for the most upstream link in the arterial) 

3. If ݍ௞௜ > ௖௥௜ݍ  
 

If (i = 1) or (ݍ௞௜ିଵ ≤  (௖௥௜ିଵݍ
 Append intersection i – 1 to the entrance intersections l 
Else  
 Append intersection i – 1 to the interior intersections 
End If 
 

If (i = imax) or (ݍ௞௜ାଵ ≤  (௖௥௜ାଵݍ
 Append intersection i to the exit intersections f 
End If 

 

End If 
End Loop  
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Figure 1 illustrates arterial partitioning, as the demand creates queues that spill back 
upstream San Pablo–University critical intersection on several links up to San Pablo–Dwight 
intersection with fixed-time signal control. Congestion is consistently present from cycle 25 until 
the end of the simulation when very low demand enables all long queues to clear. Hence, San 
Pablo–University intersection is an exit intersection for the larger part of the simulation period (see 
Figure 1c), whereas San Pablo intersections with Addison, Allston, Dwight, and Grayson are 
successively entrance intersections during the simulation. Arterial partitioning and fixed-time 
signal control in Figure 1c reveals that besides these queue spillovers phenomena, Cedar and 
Gilman streets also face oversaturated conditions (i.e., ݍ௞௜ > ௖௥௜ݍ ) for about half of the simulation. 
Thus, arterial partitioning methodology appears also to be a valuable performance measurement 
tool independently of signal controlling. 

 
 
SIGNAL CONTROL STRATEGY 
 
Arterial partitioning at each cycle identifies group of congested links that are delimited with exit 
and entrance intersections. The seminal intuition of the proposed signal control strategy is to act 
only on exit and entrance intersections along the arterial. If one considers a critical group of 
congested links as a whole, to regulate its accumulation to the uncongested state, we need to 
manipulate the inflow and outflow of the critical group of congested links. Thus, the general 
direction is to increase the green phase duration of the arterial through movement at the exit 
intersection (increase the outflow) and also, to decrease the corresponding green phase duration 
at the entrance intersection (decrease the inflow). The corollary of such control strategy is that 
the interior intersections of a group of congested link are still controlled with initial fixed 
timings. 	
Exit Intersection Signal Control 
 
Arterial partitioning is triggered once the queue in a link exceeds the corresponding 
intersection’s capacity. At cycle k + 1 for which exit intersection signal control is activated, 
green extension is based on the difference between previous queue length ݍ௞௙ and ݍ௖௥௙ . In 
addition, when the risk of a potential queue spillover in link f becomes significant (ݏ௞௙ <  (௖௥ݏ
another compensatory term is added to the green extension. Hence, the control strategy for the 
first cycle of activation is: 

 ݃௞ାଵ௙ 	= 	݃௜௡௜௧௙ + ௞௙ݍൣܭ ௖௥௙ݍ	− ൧ ௖௥ݏ௦ଵൣܭ	+	 − min൫ݏ௞௙	,  ௖௥൯൧ (1)ݏ
 
where ݃௞ାଵ௙ is the cycle ݇ + 1 green time for the through arterial movement at intersection ݂, and ܭ and ܭ௦ଵ represent time increments (in seconds) for each additional vehicle queuing, 
respectively, beyond ݍ௖௥௙  and passed ݏ௖௥ threshold. For the next cycles as long as ݍ௞௙ > ௖௥௙ݍ	 , a 
feedback control is implemented based on the attributes of the two last cycles, k and k-1: 
 ݃௞ାଵ௙ 	= 	݃௞௙ + ௞௙ݍൣ	ܭ ௞ିଵ௙ݍ	− ൧	+	ܭ௦ଵൣmin൫ݏ௞ିଵ௙ 	, ௖௥൯ݏ − min൫ݏ௞௙	,  ௖௥൯൧ (2)ݏ
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(a) 

 

 
(b) 

 

 
(c) 

FIGURE 1  Arterial partitioning of San Pablo Avenue (Berkeley, California) northbound 
approach: (a) schematic example of arterial partitioning; (b) evolution of link queue lengths 

over time with fixed-time control (links queue occupancy from 0 to 1); and (c) arterial 
partitioning. (Note: blue = no detection of long queue; red = long queue detection; dark red = 

queue spillover detection). 
 
 
Note that, feedback controller parameters, ܭ and	ܭ௦ଵ, have to be chosen according to proper 
control engineering methods or manual fine-tuning to maximize the reduction of the network 
delay time, however, feedback controllers are shown to be robust to a moderate range of 
parameter values (4). 
 
Entrance Intersection Signal Control 
 
The objective of the entrance control is to prevent or at least delay queue spillovers occurrence. 
Therefore, reduction of the arterial through movement green time at the entrance intersection is 
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only profitable when there is a substantial risk of queue spillovers occurrence, that is when ݏ௞௟ାଵ <  :௖௥. Hence, we propose the following feedback controlݏ
 ݃௞ାଵ௟ 	= 	݃௞௟ ௞ିଵ௟ାଵݏ௦ଶൣmin൫ܭ	− 	, ௖௥൯ݏ − min൫ݏ௞௟ାଵ	,  ௖௥൯൧  (3)ݏ
 
where ܭ௦ଶ is a parameter to be calibrated to maximize the reduction of the delay time.  
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educing the impact of incidents on the freeway network, which represents a key goal for most 
regional traffic management systems, requires an effective traffic incident management system. 

Early and accurate recognition of incident impact the network represents one of the key challenges 
associated with incident management. Microscopic simulation represents an effective strategy for 
forecasting incident impact because it provides opportunities to study diverse conditions that may 
occur irregularly both spatially and temporally in the field. Often, the traffic simulation parameters 
appear be calibrated for uncongested conditions. This research explores macroscopic network 
performance when applying microscopic simulation models calibrated under both congested and 
uncongested conditions; the research considers a default uncongested parameter set and compares it 
with a parameter set calibrated using macroscopic data during congested conditions and a parameter 
set calibrated using microscopic data during congested conditions. Using a testbed along I-210 in 
Pasadena, California, the study varies incident duration, traffic volume, and lane closures to 
investigate the change in results across all three models. The study also investigates six actual 
incidents and compares the simulation results with the observed field conditions collected from the 
California Department of Transportation Performance Measurement System database. During the 
experimental cases, the macroscopic congested parameter set consistently estimates longer network 
travel times and slower speeds. The comparison with the field conditions confirms that the 
macroscopic congested parameter set better reflects field performance especially during more 
congested conditions. This research indicates the need to use congested conditions for calibration 
when investigating incident impact.  
 
 
INTRODUCTION 
 
An effective traffic incident management system has a crucial impact on reducing or minimizing the 
impact of incidents on the freeway network; it represents one of the key goals for most regional 
traffic management systems. The blockage or closure of freeway lanes causes significant delays on 
the road network (Kwon et al., 2006). These temporary blockages may cause changes in driving 
behavior in both blocked and unblocked lanes. As incidents create queues, delay, rubbernecking, 
secondary crashes, and many other problems, the accurate assessment of incident impacts appears 
critical for effective operational management policies. 

Microscopic traffic simulation provides opportunities to study diverse experimental traffic 
conditions that may occur irregularly both spatially and temporally in the field. Often the parameters 
in the traffic simulation software appear to only be calibrated for the uncongested situation. Recent 
research (Gomes et al., 2004) indicates that microscopic traffic simulation parameters may actually 
change during incident conditions. Within the incident zone, which is where the lane numbers are 
reduced, Knoop et al. (2009) shows that the driver reaction time increases significantly and produces 
a 30% lower queue discharge rate at the macroscopic level. In this study, the researchers use traffic 

R 
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simulation to investigate the impact of incident induced changes in microscopic behavior parameters’ 
on macroscopic performance. 

Woody (2006) finds that the VISSIM parameters—CC0, CC1, CC2, CC4, and CC5—have 
more influence on the capacity of a freeway section than other parameters. Sheu (2006) models intra-
lane and inter-lane traffic behavior. Sheu calibrates the microscopic travel behavior characteristics: 
maximum acceleration, maximum deceleration, minimum safety spacing, and mean reaction time. 
The current research integrates these four traffic behavior parameters in a VISSIM model and 
compares the network performance resulting from an incident when VISSIM is calibrated based on 
congested and uncongested conditions. The definition of maximum acceleration from Sheu’s 
research is similar to the definition of driver behavior parameter CC9, which is actually acceleration 
at 50 mph. According to PTV VISION, the maximum deceleration is the maximum technically 
feasible deceleration. During an incident induced situation, driver behavior impacts both car-
following and lane changing based on the minimum safety spacing and mean reaction time. The 
minimum safety spacing is similar to standstill distance, and mean reaction time is compared with 
CC1 (headway time). The study investigates the following research questions: 

 
• What are the differences in macroscopic performance measures (such as speed, flow, and 

delay) when congested freeway conditions are simulated using traffic behavior parameters calibrated 
under congested conditions versus those calibrated under uncongested conditions?  

• Do the number of lanes blocked during an incident affect the magnitude of these 
differences?  

• What effect, if any, does incident duration have on these differences?  
• Does the amount of demand affect these differences?  
• Do the uncongested-based parameters or the congested-based parameters more 

accurately reflect observed field performance during congested conditions?  
 
 
METHODOLOGY  
 
Test Environment 
 
This paper considers a previously studied 15-mi long section of I-210 West between Vernon St. and 
the SR-134 junction in Pasadena, California (Figure 1). This site is selected because it has both 
California Department of Transportation (Caltrans) Performance Measurement System (PeMS) data 
(e.g., speed, flow, and occupancy) and California Highway Patrol incident data available. 
Furthermore, an earlier study specifically calibrates VISSIM for this site using qualitative operational 
criteria during congested conditions (Gomes et al., 2004). The current study uses PeMS data sources 
during both the experimental and validation phases of the project.  

This freeway section has a high-occupancy vehicle (HOV) lane, a freeway connector, and 20 
metered on-ramps with and without bypass lanes. A median side HOV lane spans the entire study 
network and is separated by intermittent barrier. The Gomes et al. (2004) test network uses these 
characteristics to replicate the exact field conditions. However, the current study only considers the 
main lane movement of eastbound and westbound I-210 because the study focuses on the car-
following and lane-changing behavior specifically related to an incident rather than allowing those 
resulting from weaving, merging, and diverging to interfere. As a result, the study does not consider 
any HOV or on- and off-ramp movements. The research design treats HOV lanes as a regular lane  
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FIGURE 1  Geographic position of the study network (Google Map, accessed on July 2014). 

 
 
with the main lane movement because the incident location of gives the drivers access to the HOV 
lane. Figure 1 shows the location of the study network in Los Angeles.  

VISSIM simulations require a comprehensive and complete description of the network 
layout for a realistic output, and the recommended method for entering geometric information is 
to construct a scaled map, in a bitmap or jpeg format. Using 32 high-resolution Google pictures 
from Google map, the author makes a single panorama view of the network with the photo 
merge command of Adobe Photoshop. The research team uses the network graphic as the 
background for the VISSIM network. Important features for replicating the test bed include: 
 

1. Number of lanes; 
2. Width of lanes; 
3. Lane drops; 
4. Auxiliary lanes; 
5. Location of the HOV lanes; 
6. Location of data collection points; and 
7. Location of the experimental incident. 
 
The EB traffic enters the network at Orange Grove Boulevard and leaves the network at 

N. Vernon Avenue (Figure 1). Table 1 shows the layout of various network sections with lane 
configurations and milepost positions. Throughout the test bed, the number of lanes varies in 
different sections. Depending on the configuration of the lanes, an incident can have numerous 
effects on capacity. Where SR-134 starts to merge with I-210, the minimum number of lanes is 

Route 6682 (Foothill Freeway-Segment 1) 
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four plus a HOV lane. Vehicle Detection ID 717606 (Table 1) is situated at Orange Grove 
Avenue near milepost R13.18. This initial section is only 0.53 mi long and has four main lanes, 
one HOV with no access in this section, and no auxiliary lane. Similarly, the section that starts at 
N. Marengo Avenue is almost 1 mi long and has an auxiliary lane along with five main lanes and 
one HOV lane. Here, the HOV lane still has no entry or exit. But the last section of the study 
network near I-605 to I-210 off-ramp has a different configuration. The auxiliary lane here starts 
at the I-605 to I-210 off ramp and ends at N. Irwindale Avenue. The whole section has four main 
lanes and access between the main lanes and HOV lane. Throughout the study section, the lane 
width varies from 11 to 12 ft. The inner shoulder width varies from 2 to 12 ft whereas the outer 
shoulder width remains 10 ft in most sections. The experimental case considers an incident in the 
eastbound direction just after the N. Lake Avenue overpass, which has five main lanes and one 
HOV lane. The validation case uses different locations on the eastbound direction because they 
have available incident information. The research team places VISSIM queue counters, travel 
time sections, and data collection stations in these sections for performance measurement. Queue 
counters provide average queue length, maximum queue length, and number of vehicles stopped 
in the queue. A queue counter also measures the longest queue in the network. For both the 
experimental and validation cases, queue counters help identify the presence of any queue 
upstream of the incident during the simulation run and help calculate the queue dissipation time. 
A travel time section helps in the validation process where only Route 6682 of I-210 (Figure 1) 
is considered and it can easily measure the travel time from origin A to destination B. The data 
collection sections measure the microscopic level behavior such as speed, acceleration, and 
occupancy of each vehicle in the network. 

 
 

TABLE 1  Layout of Study Network Sections 

ID Schematic 
Start 
Name 

CA 
PM 

Abs. 
PM Length 

Lanes + 
HOV + 

Auxilary 
Auxilary 

Start 
Auxilary 

End 
717606 

 

Orange 
Grove 

R13.18 13.18 0.53 4+1+0 NA NA 

717631 Fair Oaks 
1 

R25.14 25.12 0.46 4+(1)+0 NA NA 

717633 Marengo R25.74 25.72 0.68 5+1+1 N. 
Marengo 
Ave. 

N. Lake 
Ave. 

717646 San 
Gabriel 

R28.7 28.68 0.91 5+1+1 N. 
Sunny 
Slope 
Ave. 

N. 
Kinneloa 
Ave. 

761206 Irwindale R38.009 38.3 0.5 4+1/(1)+1 I-605 to 
I-210 E 
off-ramp 

N. 
Irwindale 
Ave. 

NOTE: ID = identification; CA = California; PM = post mile; abs. = absolute; NA = not available; N = north; ave. = avenue. 
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Traffic Demand 
 
Instead of choosing an arbitrary traffic volume for the experiment, the researchers use the 
Caltrans PeMS database for setting likely high-volume cases where an incident will result in 
congestion. Relying on field data for traffic demand ensures that the network performance in 
response to an incident reflects real conditions while the focus on peak conditions increases the 
importance of the incident impacts. The study uses the hourly flow data from six randomly 
selected months in 2006 to identify the peak hour and peak flow rate for each day of the week. 
For the weekday cases, the peak hour occurs at either 8:00 a.m. or 5:00 p.m. For example, the 
most frequently occurring peak hour (mode) for Friday is 8:00 a.m. and the average peak hour 
flow rate for the eastbound direction is 5,486 vph (Table 2). This study considers both Tuesday 
and Friday peak demands to see if a moderate change in demand during the peak hour impacts 
the macroscopic performance measures during an incident. The following tables give both 
eastbound and westbound demands. 
 
Incident Lane Blockage and Closure 
 
Like traffic demand, the incident magnitude or number of affected lanes also impacts the 
congestion level. Due to lane drops and auxiliary lanes (Table 1), different sections of I-210 in 
the study test bed have different lane configurations; however, the minimum number of lanes is 
five. Throughout the experimental design, only main lane movements (four lanes) may be 
blocked by an incident while the HOV lane remains clear for all experimental trials. The 
researchers investigate the resulting impacts from nine different lane closure patterns. These 
include single lane closures for each of the four lanes and combination lane closures for 
 
 

TABLE 2  Weekly Average Peak Hour Flow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Day Time of Day Average Hourly Flow (vph) 
Eastbound Flow 
Friday 8 5,486 
Saturday 12 4,917 
Sunday 13 4,478 
Monday 17 5,725 
Tuesday 17 5,887 
Wednesday 17 5,853 
Thursday 17 5,756 
Westbound Flow 
Friday 8 5,946 
Saturday 12 5,715 
Sunday 13 5,739 
Monday 17 6,043 
Tuesday 17 6,283 
Wednesday 17 6,211 
Thursday 17 6,186 
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contiguous lanes (e.g., lane 1 and 2, lane 2 and 3, lane 3 and 4, lanes 1 through 3, and lanes 2 
through 4). Larger incidents require more lane changes and may cause the variation in 
performance between the different VISSIM models to increase. For validation purpose, three 
main lane movements and three HOV movements are considered and HOV lane movement is 
restricted for the HOV-class type vehicles that have a passenger occupancy of more than two. 
 
Incident Duration  
 
The duration of any type of incident also has an effect on the network performance because 
longer lasting incidents typically cause longer queues to develop. All of the experimental 
variables discussed to this point affect the incident’s impact on the network. The impact becomes 
more severe as the demand, the number of affected lanes and the incident duration increase. An 
initial review of the California PeMS data indicates that even short incidents typically last 30 
min; therefore, the experiment considers two incident durations of 30 and 45 min representing 
relatively typical short incidents.  

Figure 2 describes different combinations for the experimental variables in each 
simulation trial. Incident location is the highest level in this hierarchy. Two different traffic 
demands for Friday (5,486) and Tuesday (5,887) represent the next experimental dimension. The 
nine different lane closure combinations and two incident durations (30 and 45 min) represent 
the remaining experimental dimensions. In total, these create 36 different experimental trials.  
 
Parameter Mapping  
 
The parameter comparison (Table 3) provides evidence that the default VISSIM parameters in 
the uncongested condition are different from the I-210 West parameters, which have been 
calibrated based on congested conditions. After the test bed construction, the research team 
selects three different sets of microscopic driving behavior parameters for the experiment. The 
default VISSIM parameters represent the parameters calibrated under uncongested conditions. 
Two other sets of driving behavior parameters represent VISSIM calibrations under congested 
conditions (Sheu, 2013; Gomes et al., 2004). As an example of parameter mapping from earlier 
 
 

 
FIGURE 2  Variation of experimental combinations. 
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TABLE 3  Comparison of Calibrated Parameters 

Driving Behavior Parameter Sets Default VISSIM Sheu (14) I-210 (5) 
Lane change (ft)   200–1,450 
Maximum deceleration for own (ft/s2)  –23.95  
Maximum deceleration for the trailing vehicle (ft/s2)    
Waiting time before diffusion (s)    
Safety distance reduction factor    
CC0 (stand-still distance) (ft) 4.92 3.94 5.57 
CC1 (headway time) (s) 0.9  0.9 
CC2 (following variation) (ft) 13.12  13.12 
CC3 (threshold for entering following) –8  –8 
CC4 (negative following threshold) –0.35  –2 
CC5 (positive following threshold) 0.35  2 
CC6 (speed dependency of oscillation) 11.44   
CC7 (oscillation acceleration) 0.82   
CC8 (standstill acceleration) 11.48 11.68  
CC9 (acceleration at 50 mph) 4.92 7.28  
 
 
studies, the minimum safety distance, which Sheu (2013) describes in terms of vehicle length and 
stand-still distance, is related to the stand-still distance in the VISSIM model. The research team 
matches this and other similar parameters from the previous research with closely related VISSIM 
driver behavior parameters (those mentioned in Table 3) and generates the corresponding value for 
each of them. In VISSIM, different road classes have default parametric values. For the freeway 
section, only the highlighted parameters are changed for the Sheu and I-210 experimental models.  
 
Experimental Design 
 
The study uses three types (uncongested, congested–macro and incident–micro) of calibrated 
VISSIM models for the experimental test bed; for each type, variations are also evaluated based on 
the ranges of observed parameter values. The calibrated VISSIM model for I-210 is the base 
congested–macromodel while the default VISSIM model serves as the uncongested model. For 
each “experimental incident,” the study compares the three VISSIM model results. Figure 2 
describes the experimental variables for each simulation trial, which is replicated for each VISSIM 
model. Section 3 discusses the measures included in this comparative analysis in detail.  
 
Simulation Evaluation  
 
This study uses two simulation output files, Data Collection and Network Performance. As its 
name indicates, the Network Performance output file describes network performance of the test 
bed. This file provides macroscopic parameters such as average speed, total delay, and total travel 
time. Queue counters and detectors are placed at various section of the test bed alongside with 
travel time sections. The queue counter output files provide the data for calculating the queue 
dissipation time. Travel time Station 16 is placed at the starting point of Route 6682 (Foothill 
Freeway, EB I-210-Segment 1). This station measures the time required for the vehicles to reach 
the end of this section. 
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MACROSCOPIC MEASURES OF EFFECTIVENESS 
 
Each experimental case generates critical macroscopic performance measures like delay, travel 
time, and speed. These measures are used for comparative analysis and validation. The research 
investigates differences in macroscopic performance due to changes in microscopic travel 
behavior and the experimental variables. One measure, Travel Time Index, is the ratio of the 
actual average travel time to free-flow travel time. A lower index value shows better network 
performance and less incident impact.  

Figure 3 compares four different combinations of average speed from the experiment. 
The left two graphs compare the speed for a 30-min incident for different driving behavior 
parameters. In both cases, the macroscopic congested parameters result in lower average speed. 
In most cases, Sheu’s microscopic congested parameters give a higher average speed than 
observed for the other cases. The same pattern is also found for the 45-min incident.  

For the experimental incident location, the study also examines the travel time for the 30- 
and 45-min duration incidents with two different traffic demand and various lane closure 
combinations (Figure 4). As expected, the travel time increases with the increase in number of 
lanes affected by the incident; however, as incident impact increases (more lanes closed and longer 
time to clearance), the simulated models show greater variability. The travel time results reflect the 
speed results where the macroscopic parameters give a longer travel time and the microscopic 
parameters give a lower travel time. The network speed and total travel time charts show that the 
default parameters give a total travel time that lies between the I-210 and Sheu parameters. The  

 
 

   
 

  
FIGURE 3  Average speed for different lane closure combinations and incident duration. 
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FIGURE 4  Total travel time for lane closure combinations and incident duration. 
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reason behind this could be the more accurate replication of the situation in the Gomes et al. model 
because in the general case an incident induced calibrated parameter should result in lower speed 
than the default parameters. The comparison of travel time for a 30-min-long incident (Figure 5) 
indicates that the incident duration has a significant impact on network performance.   

The percentage of difference is the ratio of the difference (non-zero) of the default value 
and the two congested parameter cases. The results in Table 4 show that Sheu’s calibrated 
parameters have a smaller difference from the default for speed. For the single-lane closures, all 
of the differences for the Sheu model remain 8% or lower. In contrast, the I-210 model has 
differences in excess of 20% and over half of the single-lane closure experiments result in 
differences in excess of 10%. Sheu’s model departs further from the baseline model when more 
lanes are closed and longer incidents occur while the I-210 model does not appear to show the 
same if any change in speed difference when the incident increases in size.  

 
 

FIGURE 5  Travel time comparison for a 30-min incident. 
 

 
TABLE 4  Percentage Difference in Travel Time Measurement 

Demand Incident 
Length

Lane 1 Lane 2 Lane 3 Lane 4 Lane 12 Lane 23 Lane 34 Lane 123 Lane 234

Friday 30 6.9% 16.1% 22.8% 0.2% 1.6% 0.7% 7.3% 6.1% 13.9%
Friday 45 10.4% 8.6% 6.1% 9.2% 0.6% 0.7% 6.6% 21.3% 32.8%

Tuesday 30 16.2% 0.1% 17.0% 14.8% 14.8% 0.9% 5.4% 14.1% 15.6%
Tuesday 45 12.5% 4.7% 12.2% 14.1% 15.8% 1.1% 2.0% 18.4% 2.5%
Friday 30 0.3% 0.1% 8.6% 1.8% 6.2% 16.3% 5.6% 7.7% 13.1%
Friday 45 0.7% 0.2% 6.8% 1.3% 3.7% 10.8% 6.8% 2.9% 22.3%

Tuesday 30 0.1% 18.4% 6.5% 1.9% 6.2% 12.6% 22.7% 0.8% 3.2%
Tuesday 45 2.2% 16.3% 6.5% 2.8% 0.2% 28.5% 12.0% 3.8% 9.0%
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VALIDATION 
 
Approach 
 
The validation procedure compares the simulation outcomes with the field values of network 
performance during actual incidents on a selected set of measures of effectiveness. The observed 
incident impact can be assessed using macroscopic Caltrans PeMS data to generate the observed 
measures of effectiveness. 

Failed detectors represent a common problem that research studies face while using detector 
data. Large quantities of data is readily available from California PeMS and the reliability of these 
data is pretty high. For validation, the reliability of the vehicle detector stations (VDS) remain above 
85% for the three different incident days (Table 6), which indicates that the field results remain 
relatively valid. 

The simulation results can be compared to the field data during the observed incidents. 
For each selected performance measure, an error indicator evaluates the relationship between the 
simulation output and the field data. Root mean square error (RMSE) measures this divergence.  

 RMSE = 	ටଵ௡ ∑ ௜ݕ) − ො௜)ଶ௡௜ୀଵݕ  (1) 

 
where 
 
yi = is the observed value of the ith observation and  ݕො௜ = is the predicted value of the ith observation. 
 

Considering the field observation as the observed value, the RMSE can be used as a 
measure of the spread of the y-values. Mean absolute percentage errors (MAPEs) can be used to 
study simulated traffic arrivals, average arrival speed, and lane changing fractions. The MAPE is 
defined as follows: 

 MAPE = ଵ଴଴ே ∗ ∑ ቚ௫೔ି௫ො೔௫೔ ቚே௜ୀଵ   (2) 
 
where 
  ො௜ = is the modeled or simulated observation, andݔ   ,௜ = is the field observationݔ 
 N = is the number of data points. 

 
 

TABLE 6  Percent of the PeMS Detectors Working 

Detectors Working 
  June 1, 2014 June 9, 2014 June 30, 2014 

Working 87.1 95.16 93.55 
Not working 12.9 4.84 6.45 

Total  100 100 100 
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Validation Sub-Network and Incident Description 
 
Travel time along a segment of the network can be accumulated from the California PeMS; 
PeMS designates a segment of I-210 as Route 6682 (4.568 mi) and tracks travel time for this 
segment. The absolute start post mile (PM) of Route 6682 is 24.980 and the end PM is 29.548. 
For this route, the study collects field data from three vehicle detection stations (Figure 6). These 
stations are selected arbitrarily on the I-210 eastbound corridor (Route 6682–Foothill Freeway, 
eastbound, Segment 1) where incidents have occurred in real life. One downstream station 
captures the traffic conditions beyond the incident, which shows the number of vehicles 
departing the incident area. Another one is less than 1 mi upstream and captures the nearby 
incident impact. The final one is located almost at the beginning of the study section to track the 
number of vehicles entering the study section and calculate freeway demand; it should be in a 
location where the incident queue will not reach it. The study collects PeMS flow and speed 
measurements for these three locations every 5 min after the incident occurs.  

The validation process considered six recent incidents—three HOV and three main 
lane—within Route 6682. The first incident, a stalled vehicle, blocked the HOV lane at Altadena 
(I-210–east PM 28.40) on Friday, May 2, 2014, at 14:48. After being assigned at 14:57, the 
California Highway Patrol (CHP) cleared the incident in 26 min. The second HOV incident, tire 
debris, occurred at the same location on Friday, May 16, 2014, at 15:55 p.m. and lasted about 12 
min. The last HOV incident, a metal basket in the lane, occurred near Altadena (I-210–east PM 
29.00) on Friday, June 6, 2014, from 11:30 to 11:42 a.m. None of the HOV incidents involved a 
crash; however, they could still have an impact on network performance. 

The remaining three incidents occurred on the main lanes. The first incident, a stalled car, 
occurred in lane one on Sunday, June 1, 2014 at 14:30 near I-210–east PM 28.30 and required 
almost 6 min to clear. The second incident, tire debris blocking lane 3, took place at I-210–east 
PM 28.40 from 6:00 to 6:26 a.m. on Monday, June 9, 2014. The last incident, plywood blocking 
lane three, occurred at I-210–east PM 28.40 from 11:08 to 11:16 a.m. on Monday, June 30, 2014.  

While none of these incidents involve crashes, they represent typical incidents that may 
regularly occur on any freeway. If a congested calibration reflects observed field conditions more 
closely for these incidents, larger incidents appear likely to magnify this importance. Table 7 
summarizes the validation incident time and location data.  

 
 

 
FIGURE 6  VDS position for data validation cases. 
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TABLE 7  Incident Location, Time and Duration 

Date Time of Occurrence Duration (min) Location Travel Time (min) 

5/2/2014 2:48:00 p.m. 26 HOV 14.3356 
5/16/2014 3:55:00 p.m. 12 HOV 19.6648 
6/1/2014 2:30:00 p.m. 6 Lane 1 4.0996 
6/6/2014 11:30:00 a.m. 12 HOV 4.4616 
6/9/2014 6:00:00 a.m. 26 Lane 3 4.0268 

6/30/2014 11:08:00 a.m. 8 Lane 3 4.2428 
 
 

The demand varies during each of these incidents, and PeMS data, shown in Table 8, 
reflects this demand. Vehicles enter the subnetwork in three locations. Eastbound I-210 ramp 
enters from South Bound I-210 while the US-134 main lane movement occurs at the start of 
Route 6682. The US-134 HOV demand is either calculated from the US-134 main lane 
movement or collected from PeMS. The American Community Survey (2012) identifies that 
11.09% of California workers over age 16 use the HOV lane. Due to the lack of HOV PeMS 
data, the validation sets the HOV demand for the HOV incidents at 11% of main lane demand.  
 
Results 
 
The research team creates travel time sections along route 6682 (starts at O and ends at D on 
Figure 6) so that the simulation travel times may be directly compared with the PeMS travel 
times. The simulated subnetwork travel times and field data appear in Table 9. For the three main 
lane incidents, which do not appear to have much impact on traffic conditions based on the small 
changes in field travel times, the three parameter sets exhibit similar performance; the simulated 
differences remain 6% or less. The percent error from the field conditions remains thirteen 
percent or less, too. The HOV incidents, which have a more pronounced impact on field 
conditions, see a significant difference in the simulated results. For the HOV incidents, the 
macroscopic congested parameters consistently estimate longer travel times which more closely 
reflect field conditions. While the simulated results fail to capture the full impact of the first two 
HOV incidents, the macroscopic congested parameters recognize that significant congestion 
likely occurs. For the same cases, the other parameter sets reflect travel times at least 16% lower 
than I-210 parameters these differences increase to as much as 58% for the second incident. The 
differences with the field conditions appear even more pronounced they range from 19% to 80%. 
The validation shows that a model calibrated to capture congested conditions will produce a 
more accurate representation of network performance during incident conditions. 
 
 

TABLE 8  Validation Demand 

Location HOV 
5/2/2014 

HOV 
5/16/2014 

HOV 
6/6/2014 

Main 
6/1/2014 

Main 
6/9/2014 

Main 
6/30/2014 

EB I-210 ramp 1,320 1,380 1,080 603 150 575 
US-134 HOV 560 589 536 612 120 420 
US-134 main 5,088 5,357 4,872 4,500 3,000 4,800 
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TABLE 9  Travel Time Validation 

  HOV 
5/2/2014 

HOV 
5/16/2014 

HOV 
6\6\2014 

Main 
6/1/2014 

Main 
6/9/2014 

Main 
6/30/2014 

Field TT (min) 14.336 19.665 4.462 4.100 4.027 4.243 
Default (min) 3.766 3.808 3.614 3.724 3.516 4.088 
I-210 (min) 8.387 9.117 4.309 3.722 3.562 4.058 
Sheu (min) 4.089 3.969 3.632 3.686 3.518 3.843 

 
 

TABLE 10  Simulated versus Observed RMSE and MAPE 

Simulation Parameter Set RMSE MAPE 
Default 0.535 11.1 
I-210 0.323 7.13 
Sheu 0.565 12.7 

 
 

The RMSE and MAPE (Table 10) reflect similar conclusions. The macroscopic 
congested parameters have a lower RMSE and MAPE than the other two parameter sets. The 
congested model appears much more capable of capturing the true impacts of congested 
conditions than the other two models. Sheu’s model reflects the largest error because it estimates 
faster speeds as the typical conditions.  
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
This study examines simulation results for three different parameter sets (uncongested, 
macroscopic congested, and microscopic congested) during incident conditions. When 
comparing the results during the experimental incidents, the macroscopic congested parameter 
set consistently predicts longer travel times and lower speeds. The differences between the 
model results appear to increase as the incident magnitude increases (i.e., more lanes closed and 
longer clearance time); the microscopic congested parameter set exhibits a greater departure 
from the uncongested results as the magnitude increases. Due to the high volumes used in this 
study, the incident duration and number of lanes closed have a significant impact on network 
performance. The results indicate that the model likely has a significant impact on network 
performance during incident conditions and these differences become more important for larger 
incidents.  

The second part of the study compares the same microscopic simulation parameter sets 
with observed field conditions inside the study network during actual incidents. For this case, the 
macroscopic congested parameters reflect field conditions much closer than the other parameter 
sets during significantly congested conditions and generate similar results with the other models 
during the relatively uncongested incidents. While the macroscopic congested parameters 
outperform the other parameter sets during congested conditions, they still fail to adequately 
capture incident impacts; this indicates the need to consider congested lane changing and lateral 
spacing behavior to capture the full incident impact. Lane-changing behavior can significantly 
change the queue accumulation in a heavily congested network and hence additional parameter 
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mapping appears necessary. Incident conditions also introduce the concept of compulsory lane 
changing maneuvers where vehicles upstream of an incident site must vacate all blocked lanes. 
The macroscopic parameters have a larger standstill distance, which may reflect Knoop et al.’s 
findings that the driver reaction time increases during an incident. Curiously, the microscopic 
congested parameter set shows the greatest departure from field conditions, however, this may 
reflect the challenge of mapping one microscopic model into another model rather than its actual 
performance. This issue needs to be explored more closely by using microscopic data to directly 
calibrate VISSIM parameters. The study shows that a model calibrated to capture congested 
conditions produces a more accurate representation of network performance during incident 
conditions and it likely suffers little degradation in performance during uncongested conditions.  

Additional future research should explore if the increase in reaction times near an 
incident translates to the opposing flow direction, and identify the parameters necessary to 
adequately capture the rubbernecking phenomenon. An ideal experiment will explore numerous 
sites where both site specific congested and uncongested calibration occurs; furthermore, an 
increase in the field cases to cover a wider range of lane closures, incident durations and 
demands appears valuable, too. For validation purposes, incorporating the observed origin–
destination pattern and all network components appears critical because they can help mitigate 
the incident impacts; these rely on the location of the HOV’s intermittent barrier and on- and off-
ramps. 
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rom a methodological point of view it is widely accepted that simulation is a useful 
technique to provide an experimental test bed to compare alternate system designs, 

replacing the experiments on the physical system by experiments on its formal representation in 
a computer in terms of a simulation model. Simulation may thus be seen as a sampling 
experiment on the real system through its model. The reliability of this decision-making process 
depends on the ability to produce a simulation model representing the system behavior closely 
enough for the purpose of using the model as a substitute of the actual system for experimental 
purposes. This reliability is established in terms of validation of the model. Model validation 
is inherently a statistical process in which the uncertainty due to data and model errors should 
be account for. This paper review the current practice of traffic modeling validation 
methodology proposed by traffic simulation guidelines published by public administrations 
or organizations (FHWA, UK Higways, TfL, etc.) and compares the statistic techniques used in 
other simulation fields. On the other hand, the paper describes techniques associated to 
uncertainty analysis and sensitivity analysis for understanding the nature of each input parameter 
of the traffic simulation model and their contribution in the simulation outputs. The set of 
parameters of a traffic simulation could be partitioned into two independent sets, parameters 
related to the supply (topological information, speed limits, traffic control, etc) and demand 
(vehicle types and origin–destination matrices). This paper is focused on apply the 
uncertainty analysis on the demand side because it is an unobservable parameter and 
normally is estimated using undirected methods. 

All cases are illustrated numerically with examples from real-life simulation projects 
with the Aimsun simulator. 

 
 

 

F 
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INTRODUCTION 
 
Capacity has been understood as a deterministic traffic volume threshold, above which the flow 
breaks down into queued or bottleneck conditions with heavy congestion while below which 
traffic will flow (1). This indicates if the capacity is 3,000 vph, the traffic flows when velocity is 
2,999 vph, and it is congested when its 3,001 vph. However, empirical capacity observations 
suggest stochastic capacity variations over time which is hardly described in a deterministic 
manner. Elefteriadou et al. (2) showed the breakdown does not necessarily occurs at the same 
demand level. Minderhoud et al. (3) investigated the empirical capacity estimation method for 
uninterrupted flow and recommended the product limit method. Brilon et al. (4) extended this 
method and suggested a Weibull distribution to describe the stochastic capacity based on 
empirical observations from Germany. In addition, they applied the stochastic capacity concept 
to capture travel-time reliabilities in freeway networks. This stochastic capacity concept 
differentiated from the conventional fixed-capacity definition is a noticeable advancement by 
enabling a probabilistic nature of road capacities, however this concept still bears the flow of its 
inability to capture how road capacities vary over time (i.e., defining freeway capacity as a time 
series). As a result of the stochastic capacity concept, the travel time will be stochastic. 
Therefore, the significant impacts of stochastic capacity on travel time reliability can be 
conducted. 
 
 
OBJECTIVE 
 
The purpose of this research is to provide a stochastic analysis of highway capacities using 
empirical data from Georgia SR-400 (GA400) as evidences. This problem is an intricate one as 
highway capacity depends on diverse dynamic factors, such as weather conditions, vehicle 
composition, heterogeneous driver behavior and static factors, including road geometric 
conditions, vehicle characteristics. Accurate modeling of capacity variation has to take these 
numerous factors into consideration, which may require substantial empirical data to unveil the 
underlying capacity variation patterns. Since the capacity changes day by day and form a series 
according to the time, we can look the capacity changing from a different perspective, namely, 
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the time series. In this paper, a time series method for modeling the capacity series will be 
developed, also, the suggested approach with a case study and experimental results would be 
illustrated. 
 
 
MOTIVATION 
 
The impetus to model highway capacity as a stochastic process is largely motivated by the fact 
that empirical highway capacity observations show stochastic variations over an extended 
observation duration as is verified from Figure 1. A stochastic analysis of highway capacity is 
essential to understand the freeway bottleneck breakdown, congestion dynamics, and prediction 
of travel time reliability (5). Capacity is typically defined as the maximum amount or number 
that can be continued or accommodated. According to the current published version of the 
Highway Capacity Manual 2010 (HCM 2010), the capacity of a system element is defined as 
“the maximum sustainable hourly flow rate at which persons or vehicles reasonably can be 
expected to traverse a point or a uniform section of a lane or roadway during a given time period, 
under prevailing roadway, environmental, traffic and control conditions. Highway capacity can 
be expressed either in vehicle or person. Without further clarification, the capacity here is vehicle 
capacity by default unless otherwise specified. 
 
 

 
(a) (b) 

 

 
(c) (d) 

FIGURE 1  Capacity variation patterns on basic freeway segment from multiple  
GA400 detectors over a whole year’s weekday observations:  

(a) 4000040, (b) 4001119, (c) 4001118, and (d) 4001118.   
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EMPIRICAL CAPACITY 
 
Estimation of Empirical Capacities 
 
According to HCM 2010, capacity is the maximum hourly rate at which vehicles pass a point at a 
given time period. When estimating capacity from empirical data, the 15-min flow rate is usually 
used. In the original GA400 dataset, traffic was reported every 20 s regarding the vehicle counts 
(i.e., cars, vans, and trucks). A passenger-car equivalent factor is used to convert the number of 
heavy vehicles to the equivalent number of passenger cars. The 15-min flow rate is scaled up to 
an hourly rate by multiplying 4, and the capacity of this location is estimated by the maximum 
hourly rate of each day. Repeat this process for every single weekday over the year 2003, a series 
of highway capacities and its variations over time is therefore obtained and this capacity 
variation trend can be described by a time series analysis. Next, the empirical capacity variations 
are presented at the freeway basic segment and the freeway on/off-ramps. 
 
Capacity Variations on Basic Freeway Segment 
 
As shown by Figure 1, the capacity does fluctuate on a daily basis within an interval: 
approximately 1,600 to 2,400 vphpl for freeway basic segment, and from 250 to 750 vphpl for 
freeway on/off-ramps. It is meaningful to describe the how capacities are distributed as is shown 
in Figure 1d. A Weibull distribution has been suggested and used in previous studies to describe 
it, however the statistical distribution fails to capture the capacity variations over time if there are 
interests to predict the future capacity changes. Therefore, a time-series analysis is adopted to 
bridge this gap which is appealing for prediction purposes. 
 
Capacity Variations at On- and Off-Ramps 
 
The capacity variation pattern at the freeway on/off-ramps is explored to reveal that this capacity 
variation pattern is not unique to basic freeway segments. The pattern is observed and verified in 
Figure 2. Therefore, the modeling and analysis methodology for a stochastic analysis of capacity 
variations on freeway basic segments is transferable to on- and off-ramps. 
 
 

 
(a) (b) 

FIGURE 2  Capacity variations at on- and off-ramps from GA400 over a year’s weekday 
observations: (a) on-ramp and (b) off-ramp. 
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PRELIMINARY RESULTS 
 
Initial Spectral Analysis 
 
A case study is designed to demonstrate the methodology using the GA400 dataset. Since the 
auto-correlation function (ACF) and partial auto-correlation function (PACF) did not suggest an 
obvious fit to a certain model. To investigate seasonality over the whole year 2003, a spectral 
analysis is employed to explore the trend in the capacity series to assess the seasonality 
characteristics of how capacity essentially varies over time for all the weekdays as is shown in 
Figure 3. The Figure 3a shows a smoothed spectrum from the capacity series estimated from one 
detector on GA400. In order to show how the seasonality is somehow related to how capacity 
changes on a particular weekday (i.e., Monday, Tuesday, Wednesday, Thursday, and Friday), the 
individual capacity series are plotted from Monday to Friday as is shown in Figure 3. 
 
 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

FIGURE 3  Spectral analysis and Monday through Friday capacity series: (a) spectral, (b) 
Monday, (c) Tuesday, (d) Wednesday, (e) Thursday, and (f) Friday. 
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Initial Time Series Analysis 
 
After conducting the spectral analysis, there are peaks shown on the priodogram, it reaches the 
highest point at ω = 0.05. Let T = 2π/ω, one gets T ≈ 20, which is approximately a month 
excluding the weekends. (The data set is weekday data, so around 20 days one month.) Fit the 
capacity variations with an ARIMA (0, 1, 1) × (1, 0, 0)20 model, the AIC indicates the lowest 
value, which seems suggesting a monthly seasonality on the capacity variation. In addition, 
residual is fairly close to the white noise, which shows the proposed model describes the original 
data faithfully. As a result, a short-term forecasting of highway capacities can be performed to 
predict future capacity changes (Figure 4). 
 
 
CONCLUSION 
 
A preliminary stochastic time series analysis of highway capacities is provided and verified from 
the empirical observations both from basic freeway segments and on/off-ramps of Georgia SR-
400. Modeling capacities as a stochastic time series instead of a statistical distribution function 
has obvious benefits to traffic operations analysis by knowing the temporal dimension of how 
capacity changed over time (existing) and how capacity might change in the near future (i.e., 
short-term prediction). 

 
 

 
(a) 

 
(b) 

FIGURE 4  Model residual’s (a) ACF and PACF  
and (b) 10 days short-term forecasting. 
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nder connected vehicle environment, vehicles are able to communicate and exchange 
detailed information such as speed, acceleration, and position in real time. Such information 

is important for improving traffic safety. In the meantime, it allows vehicles to collaborate with 
each other, which may significantly improve traffic operations particularly at intersections and 
freeway ramps. To assess the potential benefits of collaborative driving behaviors enabled by 
connected vehicle technologies, this research proposes an optimization-based ramp control 
strategy and develops a simulation platform using VISSIM, MATLAB, and the Car2X module in 
VISSIM. In addition to the optimal control strategy, an empirical gradual speed limit control 
strategy is also proposed. These strategies are evaluated using the developed simulation platform 
in terms of average speed, average delay time, and throughput and are compared with a 
benchmark case with no control. The study results indicate that the proposed optimal control 
strategy can effectively coordinate all merging vehicles at freeway on-ramps and substantially 
improve safety and efficiency, especially when the freeway traffic is not oversaturated. 
 
 
INTRODUCTION 
 
In freeway ramp areas, frequent lane-changing and merging maneuvers can significantly reduce 
capacity and cause traffic congestion. These maneuvers may also jeopardize traffic safety, 
especially when vehicles from on-ramps have to first decelerate to a low speed due to congestion 
or lack of safe gaps, merge onto the freeway, and accelerate to normal speeds. Under connected 
vehicle environment, vehicles are able to communicate and exchange detailed information such 
as speed, acceleration, and position in real time. Such information is important for improving 
traffic safety. In the meantime, it allows vehicles to collaborate with each other, which may 
significantly improve traffic operations particularly at intersections and freeway ramps. Such 
collaborations can be facilitated by autonomous vehicles as they require only a minimum 
“reaction time”. Additionally, such information can be shared with upstream vehicles in a timely 
fashion. In this way, they can take proactive actions such as moving to the median or to the left-
most lane to make room for the merging ramp vehicles. Intuitively, these collaborative driving 
behaviors may contribute to smoother merging maneuvers and improved operations in freeway 
ramp areas. 

Recently, many studies (1–4) have been conducted to investigate the potential benefits 
that connected vehicle technologies may bring. Most of these studies are focused on intelligent 
vehicle and traffic control, traffic safety, advanced traveler information systems, and incident 

U 
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management. As an important aspect of intelligent traffic control, ramp control has also been 
addressed in several of these studies that are summarized below. 

Sivaraman and Trivedi (5) investigated active traffic safety based on predictive driver 
assistance (PDA) and cooperation among vehicles, drivers, and infrastructure. Four levels of 
cooperation strategies were considered, which were in-vehicle cooperation, vehicle-driver 
cooperation, vehicles to vehicles (V2V) cooperation, and vehicles to infrastructure (V2I) 
cooperation. The authors used Markov Chain Monte Carlo (MCMC) simulation to quantify the 
safety effects of PDA and cooperation at various levels based on a predefined near-collision 
scenario. Four cases consisting of one ramp vehicle merging onto a highway were simulated and 
analyzed. The results show that active safety was greatly enhanced by either one of the PDA, 
V2V, or V2I strategies. 

Shingde et al. (6) proposed and implemented two algorithms called Head of the Lane 
(HoL) and All Feasible Sequences (AFS) for automated merge control. The HoL is a distributed 
and iterative merge control algorithm. In each iteration, two vehicles closest to the merging point 
from the two merging approaches follow certain rules to determine their merge sequence. The 
AFS is a centralized algorithm. Instead of using an iterative approach, it takes a snapshot of all 
vehicles from the two merging approaches and determines their merge sequence simultaneously. 
Experimental results suggest that HoL and AFS perform equally well in terms of average driving 
time to intersection (DTTI). HoL works only when the traffic volume is low, while AFS works 
for both low and high traffic conditions. 

Milanés et al. (7) developed a ramp control system consisting of a control model and a 
fuzzy controller. The control model determines when a merging vehicle should enter the main 
road. The fuzzy controller is used to “drive” all vehicles following the decisions made by the 
control model. This system was first tested using a simulator. It was further validated in the real 
world using three vehicles. The real-world validation considered a congested scenario with two 
closely spaced vehicles on the main road and the third vehicle on the minor road. Lu and Hedrick 
(8) also developed a mathematical approach for modeling one vehicle from the minor road 
merging onto the main road between two vehicles. Although these developed methods worked 
for the simple scenario with only three vehicles, it is unclear whether they can effectively and 
safely handle more complicated scenarios with multiple merging vehicles. 

Cao et al. (9) proposed a nonlinear model predictive control (MPC) method for merging 
traffic control. Only two vehicles were considered in their model and case studies, with one on 
the main road and the other one on the minor road. This merge control problem was formulated 
as a nonlinear optimization problem and solved by C/GMRES. Similar to previous studies on 
merge control, this study by Cao et al. considered oversimplified cases and the developed model 
may not be generalized to solve real-world merge control problems. 

Although these studies (5–9) suggest that connected or autonomous vehicles can improve 
traffic safety and increase traffic throughput at freeway ramps, none of them looked at how to 
optimally coordinate the movements of freeway and ramp vehicles in a complex and realistic 
setting. In this paper, a nonlinear optimization model is developed for this purpose. This model 
takes the second-by-second accelerations of all vehicles as the decision variables and tries to 
maximize the total speed of all vehicles over the next short time period. It also ensures that when 
a vehicle arrives at the merging point, the distance headways between it and adjacent vehicles are 
greater than a minimum value to guarantee safety. In addition, a simulation platform is 
developed based on VISSIM, MATLAB, and the VISSIM Car2X module to quantify the benefits 
of this optimal ramp control strategy. The optimization model is detailed in Section 2. Section 3 
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describes the simulation platform. The proposed model and simulation platform are validated in 
Section 4 using several case studies. Section 4 also describes the plan to evaluate the proposed 
optimal control strategy using simulation. The simulation results are presented and discussed in 
Section 5. Section 6 provides conclusions and recommendations for future research. 
 
 
MODEL FORMULATION 
 

Figure 1 shows a typical freeway on-ramp, based upon which the proposed control model is 
formulated. The freeway segment under investigation is about 1,000 m long. The location where 
the ramp and the freeway connect is called the merging point. A merging zone is defined as a 
segment of the rightmost lane of the freeway that is within 250 m downstream of the merging 
point. Under the connected vehicle environment, freeway vehicles will be informed of the traffic 
conditions in the merging zone and on the ramp. Based on such information, freeway vehicles 
may slow down, accelerate, or shift to the left lane to allow vehicles from the ramp to join the 
freeway. They may also choose to do nothing. To model such behaviors, four reaction zones, 
Zones 0 through 3, are considered in this study. As shown in Figure 1, Zones 1~3 are [0, 250), 
[250, 500), and [500, ∞) meters upstream of the merging point, respectively. Zone 0 is [0, ∞) 
meters downstream of the merging point. 

This study assumes that all lane changes are completed in Zone 3. Upon entering Zone 2, 
vehicles switch to the autonomous driving mode until they enter Zone 0. In Zones 2 and 1, 
freeway vehicles are not allowed to change lanes. Zone 2 is for both freeway and ramp vehicles 
to adjust their longitudinal trajectories based on the optimal control model described below. 
Following the optimized trajectories, these vehicles can safely pass the merging point without 
any conflicts. Upon entering Zone 1, all vehicles should travel at a constant speed. Once these 
vehicles leave Zone 1, human drivers can take over the vehicle control. The proposed optimal 
ramp control model is based on a strict assumption that all vehicles are connected via dedicated 
short-range communications (DSRC). Once freeway and ramp vehicles are in Zone 2, they will 
turn the control over to a central traffic controller and strictly execute the instructions received 
from the central controller.  
 
 

 

FIGURE 1  Freeway on-ramp considered in this study. 
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The optimal control strategy is formulated as a nonlinear optimization problem as shown 
in Equations 1 through 7. 
 Min	(−∑ ∑ ∑ ௠௞ୀଵ௡೔௝ୀଵଶ௜ୀଵ	௜,௝,௧ೖݒ )  (1) 

              s.t. 
 0 ≤ ௜,௝,௧ೖݒ ≤ ,݅∀				௠௔௫ݒ ݆, ݇ (2) 

௠௜௡ܩ  ≤ หݔ௜,௝,௧ೖ − ,݅∀   ௜,௝ିଵ,௧ೖหݔ ݇; ݆ = 2,… , ݊௜ (3) 
௠௜௡ܩ  ≤ หݔଵ,௝,௠ − ݆∀	  ଶ,௣,௠หݔ = 1,… , ݊ଵ; ݌ = 1,… , ݊ଶ   (4) 
 |ܽ௜,௝,௧ೖ − ܽ௜,௝,௧ೖశభ| ≤ ܽ୫ୟ୶	_ௗ௜௙௙   ∀݅, ݆; ݇ = 1,… ,݉ − 1   (5) 
 ௫೔,ೕ,೟ೖశభି௫೔,ೕ,೟ೖ௧ೖశభି௧ೖ = ;௜,௝,௧ೖݒ 	௩೔,ೕ,೟ೖశభି௩೔,ೕ,೟ೖ௧ೖశభି௧ೖ = ܽ௜,௝,௧ೖ  ∀݅, ݆; ݇ = 1,… ,݉ − 1   (6) 

 							ܽ௠௜௡ ≤ ܽ௜,௝,௧ೖ ≤ ܽ௠௔௫  ∀݅, ݆; ݇      (7) 
 
where 
 

i  = lane identifier (1-ramp and 2-freeway right lane); 
j,p = vehicle index; 
k  = time step index; 
m  = total number of time steps (m = 10 for this study); 
ni = total number of vehicles in Zone 2 of lane i; 
tk = the kth time step; ܽ௜,௝,௧ೖ	 = acceleration of vehicle j in lane i at time step tk; ݒ௜,௝,௧ೖ	 = velocity of vehicle j in lane i at time step tk; ݔ௜,௝,௧ೖ	 = distance of vehicle j in lane i at time step tk to the merging point; 

vmax = speed limit; 
Gmin = minimum distance gap; 
amin = minimum acceleration rate; 
amax = maximum acceleration rate; and 
amax_diff  = maximum acceleration rate change between two consecutive time steps. 
 

A decision interval of 10 s (i.e., m = 10) is considered. This interval is further divided 
into 10 1-s decision steps. At the beginning of each 1-s decision step, each vehicle needs to 
decide its acceleration rate, which is a decision variable of the above optimization model. By 
optimizing these acceleration rates, the optimal control model aims to maximize the total speed 
of all merging vehicles in each decision step subject to the following constraints: 

 
• Constraints 2 ensure that each vehicle maintains a nonnegative speed (ݒ௜,௝,௧ೖ) that is 

no greater than the speed limit; 
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• Constraints 3 require that the distance between two consecutive vehicles in the same 
lane must be greater than a minimum value Gmin; 

• Constraints 4 make sure that any pair of freeway and ramp vehicles maintains a safe 
distance at the end of the decision interval (i.e., when k = 10). This is achieved by projecting 
ramp vehicles onto the freeway using the merging point as the reference; 

• Constraints 5 limit the acceleration rate changes of each vehicle between two 
consecutive time steps to prevent aggressive driving behaviors; 

• Constraints 6 describe the relationships among speed, acceleration, and distance. 
Acceleration is the derivative of velocity with respect to time, and velocity is the derivative of 
distance traveled to time; and 

• Constraints 7 ensure that each vehicle maintains an acceleration rate that is no larger 
than amax and no less than amin at each time step. 
 

To further prevent aggressive driving behaviors from happening, the original objective 
function 1 is modified by adding a second term as shown in 8, where ܵܦ௜,௝ is the standard 
deviation of accelerations for vehicle j in lane i. This new term is identical to the notion of 
acceleration noise which has been used previously in traffic flow control (10). This new 
objective function has been used to carry out all the case studies and simulations in this research. 
 min	(−∑ ∑ ∑ ௠௞ୀଵ௡೔௝ୀଵଶ௜ୀଵ	௜,௝,௧ೖݒ + ∑ ∑ ௜,௝௡೔௝ୀଵଶ௜ୀଵܦܵ ) (8) 
 
 
DEVELOPMENT OF MODELING FRAMEWORK 
 
To evaluate to what extent the optimal control model can improve traffic operations at freeway 
on-ramps, an integrated modeling platform is developed. First, a microscopic traffic simulator, 
VISSIM, is integrated into the platform to simulate the merging process at freeway on-ramps. 
With the VISSIM simulator and the Car2X module included in it, the accelerations, speeds and 
positions of all vehicles in Zone 2 can be captured precisely. This information is fed into an 
optimization module coded in MATLAB. The optimization module takes all the inputs and finds 
the optimal control strategies (i.e., accelerations) for each vehicle. These optimal strategies are 
sent back to the VISSIM simulator for vehicle control. To facilitate the data exchange between 
MATLAB and VISSIM, a C++ application is developed. The optimization module written in 
MATLAB is encapsulated into a dynamic-link library and called by the C++ application. This 
C++ application is then compiled as an executable file to override the default driver behavior 
model in VISSIM. Figure 2 illustrates the architecture of the modeling platform. 
 
 
MODEL VALIDATION AND EXPERIMENTAL DESIGN 
 
Model Validation 
 
To demonstrate how the optimization-based control algorithm works and to verify the 
effectiveness of the proposed model, two case studies are conducted. In both studies, the 
following parameters are used: vmax = 25 m/s (about 60 mph), amax = 5 m/s2, amin = –5 m/s2,  
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FIGURE 2  Integrated platform architecture. 
 
 

amax_diff = 2 m/s2, and Gmin = 10 m. Since vehicles are not allowed to change lanes in Zones 2 and 
1, only one lane is considered for the freeway in this study. 
 
Case Study I: Four Vehicles 
 
In this case study, two freeway vehicles and two ramp vehicles are considered. The initial 
accelerations and speeds of all vehicles are assumed to be 0 m/s2 and 20 m/s, respectively. The 
initial vehicle states are summarized below. Clearly, if all vehicles maintain their initial speeds, 
the freeway and ramp vehicles will run into each other at the merging point. 
ଵ,௝,଴ݔ								  = ሾ490		500ሿ, ଶ,௝,଴ݔ		 = ሾ490		500ሿ,									ݒଵ,௝,଴ = ሾ20		20ሿ,					ݒଶ,௝,଴ = ሾ20		20ሿ,									ܽଵ,௝,଴ = ሾ0		0ሿ,								ܽଶ,௝,଴ = ሾ0		0ሿ	

 
The modeling results for this case study are summarized in Figure 3. Veh1-1 and veh1-2 

stand for the first and second vehicles on the freeway and veh2-1 and veh2-2 denote the two 
vehicles on the ramp. Figure 3a clearly shows that the constraints on accelerations are satisfied. 
Since the initial speeds are all less than the speed limit, the vehicle accelerations are all positive. 
These vehicles adopt different acceleration patterns in order to maximize their speeds and 
maintain sufficiently large distance headways at the time they arrive at the merging point. As 
shown in Figure 3b, none of the four vehicles exceed the 25 m/s speed limit and their speeds all 
reach 25 m/s at the end of the 10-s decision interval. The time-space diagram in Figure 3c shows 
the trajectories of the four vehicles. This is done by projecting the four vehicles onto a single 
lane and using the merging point as the reference point for calculating the distance. At the  

Car2X Application

VComVISSIM .dllcars in neighborhood 
of sending vehicle

C++

C++ C++ 

send (vehicle, message) 
receive (vehicles, messages)„connect ()“

get_speed() 
set_speed()
get_velocity()
get_position()
set_color()
...
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FIGURE 3  Optimization results for Case Study I: (a) acceleration versus time,  
(b) speed versus time, and (c) distance versus time. 

 
 
beginning, the distance headway between veh1-1 and veh2-1 is 0. The same thing is true for 
veh1-2 and veh2-2. By executing the optimal acceleration instructions produced by the model, 
the four vehicles can pass the merging point safely with a minimum headway of 10 m. 
 
Case Study II: 20 Vehicles 
 
Case study II is used to validate the optimal control model’s performance under heavy traffic 
conditions. It considers 10 freeway vehicles and 10 vehicles on the ramp in Zone 2. The initial 
states of all vehicles are 
ଵ,௝,଴ݔ  = ሾ500	490	480	470	460	450	440	430	420	410ሿ ݔଶ,௝,଴ = ሾ500	490	480	470	460	450	440	430	420	410ሿ ݒଵ,௝,଴ = ሾ20	20	20	20	20	20	20	20	20	20ሿ				 
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ଶ,௝,଴ݒ  = ሾ20	20	20	20	20	20	20	20	20	20ሿ	 ܽଵ,௝,଴ = ሾ0	0	0	0	0	0	0	0	0	0ሿ				 ܽଶ,௝,଴ = ሾ0	0	0	0	0	0	0	0	0	0ሿ 

 
The speed and acceleration profiles of the 20 vehicles are presented in Figure 4. Because 

of the relatively large number of vehicles, the acceleration profiles are mixed together. 
Compared to those for case study I, the acceleration profiles here are also more difficult to 
interpret due to the complicated interference among the different vehicles. Nevertheless, the 
results indicate that constraints 5 and 7 are satisfied. Figures 4c and 4d show that some vehicles 
may not be able to reach the speed limit (25 m/s) when they pass the merging point due to 
congestion. These vehicles have to slow down in order to create safe gaps for each other. Figure 5 
shows the trajectories of the 20 vehicles. The pattern shown in Figure 5 is very similar to that 
in Figure 3. If all vehicles are projected onto a virtual lane, at the end of the 10-s interval, one 
will see a platoon of approximately evenly spaced vehicles.  
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FIGURE 4  Optimized speed and acceleration results for case study II: (a) acceleration 
versus time for vehicles on highway, (b) acceleration versus time for vehicles on ramp, (c) 
speed versus time for vehicles on highway. and (d) speed versus time for vehicles on ramp. 
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FIGURE 5  Optimized time–distance diagram for Case Study II. 
 
 
Simulation Framework Validation 
 
This validation study is to examine the integration of VISSIM, MATLAB, and Car2X. It is done 
by comparing the optimized control instructions generated by MATLAB with the VISSIM 
control results. For this validation, the freeway and ramp vehicle inputs are set to 1,000 vph and 
500 vph, respectively. A random seed of 19 is used in VISSIM to run the simulation. The 
simulated vehicle trajectories between 30 and 40 s from the beginning of the simulation are 
recorded and compared with those calculated by the optimal control model coded in MATLAB. 

At 30 s, there are seven vehicles in Zone 2. Veh-H-12, Veh-H-13, and Veh-H-14 are on 
the freeway and Veh-R-15, Veh-R-16, Veh-R-17, and Veh-R-18 are on the ramp. Their distances 
from the merging point, their speeds and accelerations are plotted in Figure 6. Between 30 and 
40 s, these vehicles meet all the speed and acceleration constraints. Table 1 shows the distances 
of each vehicle to the merging point at different time steps. D1 in Table 1 is the minimum 
distance between any two vehicles in the same lane. D2 is the minimum distance between any 
two vehicles from different lanes in Zone 2. The data in Table 1 shows how vehicles adjust their 
speeds to create safe gaps at the merging point. At 30 s, D2 is 4.09 m, which is between Veh-H-
14 and Veh-R-15. Therefore, at least one of these two vehicles should either accelerate or 
decelerate. At the end of the optimization, D2 has been increased to 10.02 m, which is larger 
than the required minimum safe distance of 10 m. 

 

Celebrating 50 Years of Traffic Flow Theory

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22095


Xie, Zhang, Gartner, and Arsava 401 
 
 

30 32 34 36 38 40

-0.3

0.0

0.3

0.6

0.9

1.2

1.5
Ac

ce
le

ra
tio

n 
(m

/s
2 )

Time (s)

 Veh-H-12
 Veh-H-13
 Veh-H-14
 Veh-R-15
 Veh-R-16
 Veh-R-17
 Veh-R-18

30 32 34 36 38 40
23.0

23.5

24.0

24.5

25.0

S
pe

ed
 (m

/s
)

Time (s)

 Veh-H-12
 Veh-H-13
 Veh-H-14
 Veh-R-15
 Veh-R-16
 Veh-R-17
 Veh-R-18

 
(a) (b) 

30 32 34 36 38 40

50

100

150

200

250

300

350

400

450

500

D
is

ta
nc

e 
to

 m
er

gi
ng

 p
oi

nt
 (m

)

Time (s)

 Veh-H-12
 Veh-H-13
 Veh-H-14
 Veh-R-15
 Veh-R-16
 Veh-R-17
 Veh-R-18

 
(c) 

FIGURE 6  Data collected from VISSIM simulation: (a) acceleration versus time. (b) speed 
versus time, and (c) distance versus time. 

 
 

TABLE 1  Distance to Merging Point for Vehicles 
Time 

(s) 
Distance to Merging Point (m) D1 D2 Veh-H-12 Veh-H-13 Veh-H-14 Veh-R-15 Veh-R-16 Veh-R-17 Veh-R-18 

30 287.46 383.36 407.10 403.01 426.66 453.20 489.77 23.75 4.09
31 262.57 358.48 382.15 378.10 401.73 429.57 464.86 23.68 4.05
32 237.57 333.48 357.58 353.10 376.73 404.57 439.86 24.11 4.48
33 212.57 308.48 333.30 328.10 351.73 379.57 414.86 24.82 5.20
34 187.57 283.48 309.19 303.10 326.73 354.57 389.86 25.72 6.09
35 162.57 258.48 285.18 278.10 301.73 329.57 364.86 26.70 7.08
36 137.57 233.48 261.17 253.10 276.73 304.57 339.86 27.69 8.07
37 112.57 208.48 237.05 228.10 251.73 279.57 314.86 28.57 8.95
38 87.57 183.48 212.73 203.10 226.73 254.57 289.86 29.25 9.63
39 62.57 158.48 188.12 178.10 201.73 229.57 264.86 29.64 10.02
40 37.57 133.48 163.12 153.10 176.73 204.57 239.86 29.64 10.02
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Table 2 shows the accelerations recorded during the VISSIM simulation. The 
acceleration value in each time step was recorded at the end of the step (i.e., the acceleration of 
0.1054 for Veh-H-12 at 32 s means the acceleration from 31 to 32 s is 0.1054). Table 3 shows 
the accelerations suggested by the optimal control model coded in MATLAB. The suggested 
acceleration is given at the beginning of each time step (i.e., the acceleration of 0.105387 for 
Veh-H-12 at 31 s is for the time step between 31 and 32 s). Comparing the values in Tables 2 
and 3 indicates that VISSIM strictly follows the accelerations obtained by the optimal control 
model. The maximum difference between the optimized and actually executed accelerations is 
0.0001 m/s2 at 32 s for Veh-H-14, which is negligible. 
 
Experimental Design 
 
The previous validation studies show that the proposed optimal control model and integrated 
simulation platform work under both low and heavy traffic conditions. To further demonstrate 
their effectiveness, in the rest of this paper, this optimal control model and platform are applied 
 
 

TABLE 2  Recorded Accelerations During VISSIM Simulation 

Time (s) 
Highway (m/s2) Ramp (m/s2) 

Veh-H-12 Veh-H-13 Veh-H-14 Veh-R-15 Veh-R-16 Veh-R-17 Veh-R-18 
30 
31 0 0 0 0 0 0 0 
32 0.1054 0.1223 –0.3782 0.0914 0.0701 1.3757 0.0917 
33 0 0 –0.2823 0 0 0 0 
34 0 0 –0.1862 0 0 0 0 
35 0 0 –0.0903 0 0 0 0 
36 0 0 0.0057 0 0 0 0 
37 0 0 0.1018 0 0 0 0 
38 0 0 0.1977 0 0 0 0 
39 0 0 0.2937 0 0 0 0 
40 0 0 0.3897 0 0 0 0 

 
 

TABLE 3  Suggested Accelerations Calculated in MATLAB 

Time (s) Highway (m/s2) Ramp (m/s2) 
Veh-H-12 Veh-H-13 Veh-H-14 Veh-R-15 Veh-R-16 Veh-R-17 Veh-R-18 

30 
31 0.105387 0.122316 –0.37824 0.091373 0.070093 1.375658 0.091721 
32 –4.4E-35 0 –0.28224 –1.6E-18 0 –2.9E-17 0 
33 0 0 –0.18626 –6E-18 –9.9E-32 4.23E-18 2.33E-18 
34 0 0 –0.09026 –2.8E-18 9.86E-32 8.05E-17 1.15E-19 
35 –4.1E-32 –4.1E-32 0.00572 –1E-17 –8.4E-18 1.04E-16 5.88E-18 
36 9.86E-32 0 0.101721 –8.5E-18 –7.9E-18 –8.3E-17 4.88E-18 
37 0 0 0.197722 8.1E-19 8.52E-18 3.02E-17 –8.2E-33 
38 –3.9E-31 0 0.293723 –6.8E-17 1.02E-18 –1.2E-17 –5.5E-17 
39 4.93E-32 –3.9E-31 0.3897 6.21E-17 –7.3E-18 6.32E-17 1.09E-16 
40 0 0 0 1.37E-35 0 0 0 
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to various traffic scenarios against two other control cases. The different control cases to be 
evaluated and compared are summarized below. 
 

Case 0. As its name suggests, this case does not consider any communications among 
vehicles or any autonomous vehicles. It simply lets human drivers coordinate their merging 
behaviors and is introduced as a benchmark (i.e., do nothing). All vehicles follow the default 
driver behavior models included in VISSIM. 

Case 1. If the speed of any vehicles in Zone 0 is less than 45 km/h, upstream vehicles in 
Zones 1 and 2 will be advised to reduce their speeds to 50km/h and 70km/h, respectively. Since 
the same distance headway will be considered safer under a lower traffic speed, this strategy may 
create additional safe gaps and allow more on-ramp traffic to merge onto the freeway.  

Case 2. This is the same as the proposed optimal control strategy. Trajectories of vehicles 
in Zone 2 will be collected every 10 seconds. The information is sent to MATLAB for 
optimization and the optimized accelerations for each vehicle in the next decision interval (10s 
long) will be sent back to the related vehicles. These vehicles will then strictly follow these 
optimized acceleration instructions.  
 

For the comparison, three levels of traffic demand (low, medium, high) are considered for 
the freeway, which are 800 vph, 1,000 vph, and 1,200 vph. Similarly, the on-ramp traffic flow 
rate is assumed to be 300 vph, 500 vph, and 700 vph, respectively. In total, there are nine 
different combinations of traffic demand. In all the simulations, the default Wiedemann 99 car-
following model and free lane selection behavior in VISSIM are adopted. In addition, vehicles 
follow the same constraints as described at the beginning of Section 4.1 except for ܩ௠௜௡ = 15 m. 
Each simulation run represents 3,600 s of ramp operations in the real world.  
 
 
RESULT ANALYSIS AND CONCLUSION 
 
The three cases are compared in terms of average delay time, average speed, and traffic 
throughput. In the following sections, the outputs for each of the three measurements of 
effectiveness are presented and discussed in detail. 
 
Average Delay Time 
 
The average delay time results, grouped by the on-ramp traffic flow, are shown in Figure 7. 
Figure 7a shows the average delay time results with the on-ramp traffic flow being 300 vph. 
Figures 7b and 7c present the results for the on-ramp traffic flow being 500 vph and 700 vph, 
respectively.  

As shown in Figure 7a, when both the freeway and on-ramp flows are low, there is no 
significant difference between Cases 0 and 1. As the freeway traffic flow increases, Case 0 
significantly outperforms Case 1. This suggests that reducing freeway traffic speed is 
unnecessary for light ramp traffic. The results in Figure 7b (ramp traffic = 500 vph) indicates that 
Case 1 performs significantly better than Case 0 for almost all scenarios except when the 
freeway traffic flow is 1,200 vph. This is probably because when the freeway traffic is low to 
medium, it is possible to create additional safe gaps for merging ramp vehicles by reducing the  
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(c)

FIGURE 7  Average delay time comparison: (a) low on-ramp traffic,  
(b) medium on-ramp traffic, and (c) high on-ramp traffic. 

 
 

speeds of freeway vehicles. However, it is impossible to do so when the freeway traffic is heavy. 
The results in Figure 7c show the same trend as in Figure 7b. For all traffic flow scenarios 
considered in this study, Case 2 performs the best and its delay time is almost negligible. 

 
Average Speed 
 
Figure 8 shows the average speed results grouped by the on-ramp traffic flow. For all traffic 
scenarios considered, Case 2 performs very well and its average speeds are barely affected by the 
varying traffic flows. On the contrary, the average speeds of both Cases 0 and 1 are significantly 
reduced by the heavy traffic flows of both ramp and freeway. For high ramp and low freeway 
flows, Case 1 significantly outperforms Case 0. In this case, reducing the speeds of freeway  
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FIGURE 8  Average speed comparison: (a) low on-ramp traffic,  
(b) medium on-ramp traffic, and (c) high on-ramp traffic. 

 
 
vehicles can help to create additional safe gaps for ramp vehicles to merge onto the freeway. The 
overall network average speed thus is increased. However, for low ramp (300 vph) or heavy 
freeway (1,200 vph) traffic flows, Case 0 consistently performs better than Case 1. This suggests 
that the gradual speed limit strategy should take into consideration both ramp and freeway traffic 
conditions. 
 
Traffic Throughput 
 
The traffic throughput results in Figure 9 are consistent with the average delay time and average 
speed results. When the ramp traffic flow is low (300 vph), there is no major difference among 
the three cases. As the ramp or freeway traffic flow increases, the differences among the three 
cases become more significant. In general, Case 2 performs the best and it allows all vehicles to  
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FIGURE 9  Throughput comparison: (a) low on-ramp traffic,  
(b) medium on-ramp traffic, and (c) high on-ramp traffic. 

 
 

clear the network for all scenarios. Case 1 performs better than Case 0 when the ramp traffic is 
heavy and the freeway traffic flow is low. Again, Case 0 outperforms Case 1 when the freeway 
traffic flow is high and the ramp flow is low. 
 
 
CONCLUSION 
 
This paper proposes and evaluates an optimization-based ramp control strategy assuming all 
vehicles are connected and controlled automatically. A simulation platform is developed 
integrating VISSIM, MATLAB, and the Car2X module in VISSIM. The proposed optimal ramp 
control strategy is formulated as a nonlinear optimization problem and solved using the 
MATLAB optimization toolbox. This optimization model divides the decision interval into 1-s 
time steps. Based on the initial speeds, accelerations, and locations of all vehicles, the control 
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algorithm takes the second-by-second accelerations of each vehicle as the decision variable and 
optimizes them. The optimized accelerations are then used to control these vehicles during the 
next decision interval.  

Three case studies are conducted to validate the effectiveness of the developed optimal 
control model and the simulation platform. The proposed optimal control algorithm (Case 2) is 
further compared with a do-nothing strategy (Case 0) and a gradual speed limit strategy (Case 1) 
for controlling a typical freeway on-ramp. Various levels of freeway and on-ramp traffic flows 
are considered, which results in nine test scenarios. These three ramp control strategies are 
compared in terms of average delay time, average speed, and traffic throughput. When either the 
freeway or the on-ramp traffic flow is low, there is no significant difference among the three 
control strategies in terms of throughput. This is likely because ramp vehicles can all find a safe 
gap to join the freeway without causing long standing queues. For the remaining scenarios 
considered, the optimal control strategy substantially outperforms the other two strategies. When 
the freeway traffic is heavy and the on-ramp traffic is light, the gradual speed limit strategy 
performs even worse than not considering any control. This gradual speed limit strategy works 
when the freeway traffic flow is low and the on-ramp has a medium to heavy traffic. 

The results demonstrate the potential effectiveness of the proposed optimization-based 
ramp control strategy. However, it is based on a strict assumption that all vehicles are connected 
and controlled automatically. In future studies, it would be interesting to consider how to 
optimally control a mixture of autonomous vehicles and vehicles controlled by human drivers. 
Also, multilane freeways can be considered instead of a single-lane freeway. In this case, lane 
changing decisions can be included as decision variables in addition to the acceleration rates. 
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 macroscopic traffic flow model describes the evolution of aggregated traffic characteristics 
over time and space, which is a basic and critical component for various modern intelligent 

transportation systems, e.g., a real-time freeway control system. Traditional macroscopic traffic 
flow models are built in the Eulerian coordinates using Eulerian traffic characteristics, such as 
density, speed and flow. Recently, the Lagrangian traffic flow modeling using Lagrangian traffic 
characteristics, such as spacing and speed, began to attract research attentions. It is favored over 
the Eulerian model mostly for its more accurate and simplified discrete simulation results (1, 2), 
and its convenience in incorporating vehicle-based information. However, up to now only a first-
order model is presented (1, 2). Our paper proposes a new second-order Lagrangian macroscopic 
traffic flow model for freeways. The idea originates from Payne’s second-order Eulerian model 
which was derived on the basis of car-following considerations (3). It reflects the fact that a 
driver usually adjusts the speed based on the traffic condition ahead, and that a time delay exists 
as a driver reacts to the changed traffic condition. A dynamic speed equation is formulated to 
represent these behavioral facts. A lane-drop scenario is simulated to examine the model 
performance. Comparison with the first-order Lagrangian model confirms the effectiveness and 
advantages of the proposed second-order model. 
 
 
INTRODUCTION  
 
For over 60 years, researchers have devoted great efforts to model the complicated real-world 
traffic flow system in mathematical ways. Macroscopic traffic flow modeling is a representative 
way to describe the evolution of aggregated traffic characteristics over time and space. The 
macroscopic models are widely applied in various modern intelligent transportation systems 
(ITS). For example, in real-time traffic state estimation, model-based traffic state estimators use 
macroscopic models to propagate aggregated traffic state variables over time and space.  

According to the levels of detail, traffic flow modeling can be categorized into three 
levels. The lowest aggregated level depicting detailed individual driving behaviors is referred to 
as the microscopic traffic flow modeling, and the highest aggregated level focusing on the 
average traffic flow characteristics while neglecting the heterogeneous driving behaviors is 
referred as the macroscopic traffic flow modeling. Mesoscopic traffic modeling lies in between, 
digging into more details than the macroscopic models but still leaving out the detailed driving 
behaviors such as lane changing. Our research focuses on the macroscopic level. 

With respect to coordinate systems, macroscopic traffic flow models can fall into either 
Eulerian models or Lagrangian models. The Eulerian coordinate system has its origin fixed in a 
spatial position, in which an observer standing on the freeway is stationary in this system while 

A 
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an observer riding on a vehicle is moving. In a Lagrangian coordinate system, the origin is fixed 
on the moving vehicles and thus any observer stationary to the freeway (stationary in the 
Eulerian coordinate system) is moving. The difference of the two systems lies in the change of 
observing perspectives. Typically, an Eulerian model defines state variables as locally 
aggregated traffic flow characteristics (traffic density, traffic flow, mean space speed), while a 
Lagrangian model uses vehicle group based characteristics (vehicle group position, vehicle group 
mean speed, vehicle group mean spacing). In this paper, we develop our model in the Lagrangian 
coordinate system, which is a relatively new and promising area. 

Macroscopic traffic flow models can also be classified into first-order or second-order (or 
higher-order) models. The conservation equation and a fundamental diagram constitute a first-
order model, while a second-order model incorporates an additional dynamic speed equation. In 
other words, the speed is no longer statically determined by the density–spacing condition 
according to the fundamental diagram. With the dynamic speed extension, researchers intend to 
elaborate the models on their capabilities in reproducing some of the real-world traffic patterns 
like oscillation in congestions, traffic hysteresis, and gradual speed change. In addition, the 
second-order model can be conveniently used in joint estimation of both density–spacing and 
speed at the same time in model-based real-time traffic state estimation, which further facilitates 
the utilization of speed measurements to enhance the estimation accuracy.  

Traffic flow models may also have different emphasis on physical road conditions, e.g., 
freeways or local routes. Our proposed model assumes a freeway stretch.  

There are several reasons motivate us to propose this second-order Lagrangian traffic 
flow model: (a) for empirical considerations, we believe that the reaction delay and anticipation 
should be reflected in the speed equation; (b) for practical considerations, this model would be a 
good candidate to conveniently incorporate vehicle-based spacing and speed information in 
model-based traffic state estimation; and (c) for theoretical considerations, there are several 
existing Eulerian second-order models serving as a complementation to the first-order models. 
However, no such a model exists in the Lagrangian framework. Our model is the result of the 
efforts in bridging this gap.  

For these purposes, a second-order Lagrangian macroscopic traffic flow model for 
freeways is proposed. In the rest of this paper, we first present an overview of existing traffic 
flow models in Section 2. Details of the proposed model are illustrated in Section 3. We evaluate 
the performance of this model in Section 4 through a simulation-based experimental analysis and 
conclude this paper in Section 5. 
 
 
LITERATURE REVIEW AND MOTIVATIONS 
 
A macroscopic traffic flow model generally includes (a) a conservation equation and (b) a static 
or dynamic speed equation. This section reviews some popular existing Eulerian and Lagrangian 
traffic flow models. 
 
Eulerian Traffic Flow Models 
 
Traditional macroscopic traffic flow models are built in the Eulerian coordinate system. The 
Lighthill-Whitham and Richards (LWR) model (4, 5) is the most well-known model serving as 
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the basis for most current macroscopic traffic flow models. It models the traffic flow dynamics 
as a kinematic wave model described by the partial differential equations below. 
 

( , ) ( , )
0 ( )

( , ) [ ( , )] ( )

q x t x t a
x t

q x t Q x t b

ρ

ρ

∂ ∂ + =
∂ ∂

 =

  (1) 

Equation 1a is the conservation equation, stating that the change in flow (q) over space 
(x) equals to the change of density (ρ) over time (t) in the x × t space. Equation 1b is the 
fundamental diagram describing the nonlinear relationship between density and flow. Almost all 
of the macroscopic models are developed from this LWR model. For example, the widely 
applied cell transmission model (CTM) (6, 7) is a discretized version of LWR with the 
assumption that the fundamental relationship between traffic flow and density is triangular. The 
freeway segment is discretized into a chain of fixed-length cells, assuming that the traffic 
condition within each cell is homogeneous. At each time step the traffic state variables are 
propagated along the spatial “cell-chain.”  

With specific formulation of the fundamental diagram and some numerical computation 
method, the LWR-type models can be implemented in discrete simulations. Plenty of research 
has been conducted in this area to demonstrate the capabilities and drawbacks of the LWR-type 
models. It is demonstrated to be capable of reproducing basic phenomena observed in dynamic 
traffic flows in the real world, such as the conservation of vehicles, the forming and dissolving of 
congestion at bottlenecks, and the fact that the traffic condition is propagated over time and 
space in different directions under different prevailing traffic modes (e.g., congested or free 
flow) (6, 8). However, the main drawback of the LWR-type models is that vehicles are assumed 
to be able to attain their desired speed (represented by the fundamental diagram) instantaneously, 
implying infinite acceleration and deceleration. This problem and the resulted simulation 
inaccuracy lead the researchers to build higher-order models, mostly by incorporating a dynamic 
speed equation.  

The second-order models assume that before vehicles reach the equilibrium speed 
described by the fundamental diagram, there is a time delay for acceleration or deceleration. For 
example, Payne (3) formulates the dynamic speed–density relationship as 

 
V(x,t + τ) = V[ρ(x + Δx,t) (2) 

 
Equation 3 has the following assumptions: First, drivers adjust their speeds according to 

the downstream traffic condition, and thus the space mean speed v(x, t) depends on the 
downstream density ρ(x + Δx,t). Second, drivers gradually accelerate/decelerate in reaction to the 
traffic condition change ahead, that is, the desired (equilibrium) speed would be reached with a 
time delay (τ). Third, the dynamic speed relationship can be described by the Eulerian 
fundamental diagram with perturbations τ and Δx. Indeed, this model was derived on the basis of 
car-following considerations. Papageorgiou (9) extended the model to account for ramp flows. 
As we mentioned previously, the second-order models have been shown to be capable of 
reproducing traffic patterns where the first-order models are incapable of, and serving as a good 
candidate model for real-time traffic state estimations (10). However, there are also arguments 
questioning the reasonability of the high-order models. Daganzo criticizes the possibility of 
negative flow and speed prediction in some extreme conditions (11). Others have noticed the 
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underlying assumption that the desired speed distribution is a property of the road but not the 
drivers (12). Papageorgiou argues that the second-order models have their merits in remedying 
the false assumption of the static fundamental diagram, and that the negatively predicted flow–
speed values occur only in extreme conditions (13). Other common blames include that the 
second-order models have more parameters to be calibrated, and that the stability requirement 
becomes stronger in discrete simulation. Fortunately, these difficulties can be successfully 
overcome with careful model calibration efforts. As we see more and more second-order models 
in ITS applications in recently years, we believe that the advantages of the second-order models 
cannot be dismissed.  
 
Lagrangian Traffic Flow Models 
 
Originating from the flow dynamics theory, macroscopic flow movement can also be observed in 
the perspective of a moving particle in the flow, which defines the Lagrangian coordinate 
system. Leclercq (1) presented the formulation of the LWR partial differential equation (PDE) 
model in Lagrangian coordinates:  
 

( , ) ( , )
0 ( )

( , ) [ ( , )] ( )

s n t u n t a
t n

u n t U s n t b

∂ ∂ + =
∂ ∂

 =

  (3) 

 
The first Equation 2a is the Lagrangian conservation equation. It states that the change of 

spacing (s) over time equals to the change of the mean speed (u) over the cumulative of number 
of vehicles (n) in the n × t space. This Lagrangian conservation equation can be derived from the 
Eulerian conservation equation by applying s = 1/ρ, /q n t= ∂ ∂ , and /n xρ = −∂ ∂  (1). The 
second Equation 2b is the Lagrangian fundamental diagram, a function relating the spacing to 
speed, which can be obtained by applying s = 1/ρ to the Eulerian fundamental diagram. An 
examples of the Lagrangian fundamental diagram is the Smulders’ fundamental diagram (14): 

 

, if 

(s)
, otherwise 

f cr
f cr cr

jam
cr

cr jam

v v
v s s s

s
u U s s

v
s s

−
− ⋅ ≥

= =  − ⋅
 −

  (4) 

where vf, vcr, scr, and sjam stand for the free-flow speed, the critical speed, the critical density, and 
the jam density, respectively. Another example is an exponential-form fundamental diagram (9) 
in Equation 5, where a is a parameter needs calibration. 
 

1
(s) v exp

a
cr

f
su U

a s
  = = ⋅ −  

   
  (5) 
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Van Wageningen-Kessels (2) develops a concrete framework for implementing the first-
order Lagrangian traffic flow model for mixed-class and multiclass vehicles. In the mixed-class 
model, the traffic flow is discretized into vehicle groups using Godunov scheme. The advantages 
of this alternative to the traditional Eulerian models can be summarized as following. First, the 
traffic characteristics are propagated only in the flow direction since drivers only react to the 
front vehicles, which simplifies the discretization procedure (the upwind method). Second, the 
discrete simulation results show higher accuracy in many scenarios, compared with the Eulerian 
case. Third, the vehicle-based information (e.g., spacing measurements) can be directly used in 
state estimation (15). Since the Lagrangian modeling is a relatively new area, no second-order 
traffic flow model has been presented yet. 
 
 
A SECOND-ORDER LAGRANGIAN MODEL 
 
Applying the same idea as Payne’s (3), we start our modeling with the following dynamic speed 
equation: 
 

( , ) [ ( , )]t nu n t U s n tδ δ+ = −   (6) 

Equation 6 has the following three assumptions. First, the speed is adjusted according to the 
traffic condition ahead. As n stands for the accumulated volume of vehicles, it is decreasing 
along the flow direction, and ( )nn δ−  corresponds to a position in the downstream ( 0nδ > ). 

Second, the speed is gradually changing with finite acceleration/deceleration, and the 
equilibrium speed cannot be reached until tδ  time later. Third, the dynamic speed relationship 

can be described by the spacing-speed fundamental diagram with perturbations nδ  and tδ .  

 
Derivation of the Dynamic Speed PDE 
 
Expanding the right side of Equation 6 using Taylor expansion, we obtain Equation 7. 
 

d ( , ) d [ ( , )]
( , ) [ ( , )]

d d
[ ( , )] ( , )

[ ( , )]
( , ) n

t n

n

u n t U s n tu n t U s n t
t n

U s n t s n tU s n t
s n t

δ δ

δ

+ ⋅ = − ⋅

∂ ∂= − ⋅ ⋅
∂ ∂

  (7) 

We apply the following assumptions that are similar to those in the Eulerian models. 
Assume /n sδ θ ρ θ= ⋅ = , where θ  is a constant parameter assumed to be around 0.5θ = . 

Assume that ( )[ , ] / ( , )U s n t s n t∂ ∂  is positively constant. Let 
[ ( , )]

( , )

U s n t
s n t

λ θ ∂= ⋅
∂

 , and the right-

hand side of the Equation 7 becomes 
( , )

[ ( , )]
n

s n tU s n t
s
λ ∂− ⋅

∂
.  
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The term 
d ( , )

d

u n t
t

 in Equation 7 is the acceleration term which should be treated as

d ( ( ), )

d

u n t t
t

, leading to Equation 8. 

 
d ( ( ), )

d

u n t t u u n
t t n t

∂ ∂ ∂= + ⋅
∂ ∂ ∂

  (8) 

 
Applying / /n t q u s∂ ∂ = =  and letting tτ δ= , we finally obtain the dynamic speed PDE 

in Equation 9. 
 

( , ) ( , ) ( , ) 1 ( , )
[ ( , )] ( , )

( , ) n

u n t u n t u n t s n tU s n t u n t
t n s n t s

λ
τ

∂ ∂ ∂ = − ⋅ + ⋅ − − ⋅ ∂ ∂ ∂ 
  (9) 

 
Equation 3a, Equation 9, and a fundamental diagram (e.g., Equation 4, Equation 5) 

constitute the proposed continuous second-order Lagrangian traffic flow model.  
 
Discrete Model 
 
Let j be the index for the vehicle group and j = 1 represents the vehicle group in the most 
downstream, and k be the index for the time steps. Let Δn denote the vehicle group size over all 

lanes, and let ηj denote the vehicle group size per lane. Thus j
j

n
L

η Δ=  and jn η∂ = − . Note that in 

the macroscopic level n is a continuous dimension, and thus Δn is continuous as well. ε is added 
to the denominator to ensure computation stability. The discretized model consists of the 
following three equations. 
 

1( 1) ( ) ( ) ( )j j j j
j

Ts k s k u k u k
η − + = + ⋅ −   (10) 
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( 1) ( ) ( ( )) ( )
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j j j j
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s k s k
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  (11) 
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, otherwis
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  (12) 

 
Equation 10 is the discrete Lagrangian conservation equation, Equation 11 is the discrete 

Lagrangian dynamic speed equation and Equation 12 is the Lagrangian Smulders’ fundamental 
diagram, which could also be other valid forms. 
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The proposed discrete dynamic speed equation (Equation 11) has four components on the 
right-hand side. The first component is the current speed, the second component represents the 
influence of the difference between the desired speed and the current speed, the third component 
represents the influence of the speed of the front vehicle group, and the last component 
represents the influence of the spacing of the front vehicle group. The last three components 
together state that the drivers’ desire to reach the equilibrium speed and the influences from the 
leading vehicles result in the finite acceleration/deceleration (i.e., the gradual change of speed) 
from the current speed. In contrast, the first-order model determines the speed purely by the 
spacing of the current vehicle group during the same time step. Obviously, the dynamic speed 
equation is more realistic according to the real-world observations.  

The model has three additional critical parameters, i.e., τ , ( )λ θ , and ε . ε  is added to 

ensure the computation stability, while τ and ( )λ θ  have physical meanings. τ  represents the 
reaction delay time, and θ  represents how much the current vehicle group is influenced by the 
front spacing condition. Thus, with a larger τ  and a smaller θ , one may expect less sensitivity 
of the drivers to the front condition and more oscillations in congestions. This expectation is 
observed in the simulation results in Section 4.  

This discrete model can be viewed as a state space model, and the state variables are the 
spacing and speed of the vehicle groups. This formulation makes it convenient to conduct joint 
estimation of speed and to incorporate vehicle speeds as measurements. 
 
Influence of Merges and Diverges 
 
The model described by Equations 10 through 12 is a freeway link model, i.e., it does not take 
into considerations of the ramp flows. Van Wageningen-Kessels (2) has shown that with merge 
(onramp) flows and diverge (offramp) flows, the Langrangian conservation equation becomes: 
 

( )2s u s
t n

α β∂ ∂− = − ⋅ −
∂ ∂

.  (13) 

where α and β stands for the inflow rate and outflow rate [in veh/(m/s)], respectively. The ramp 
flows can indirectly influence the mainstream speed through this conservation equation. 
However, the dynamic speed equation also needs to be modified to directly reflect the influence 
of ramp flows. Generally, the onramp flow merges into the mainstream flow with a lower speed 
vonramp < vmain and need to accelerate to match the mainstream speed. For the offramps, the 
exiting flow needs to decelerate to match the offramp speed limit. Thus both merge and diverge 
cause speed reduction in the mainstream flow. Previously, an additional term to the dynamic 
speed equation has been proposed (9) in the Eulerian second-order models to reflect this 
acceleration/deceleration phenomenon. For onramps it is described as (vonramp – v) α/ρ. Assume 
vonramp  = (1 – υ) v, it becomes /vυ α ρ− ⋅ ⋅ , [0,1]υ ∈ . For off-ramps it is a similar term with α 
replaced by β. For the Lagrangian dynamic speed equation, a similar term can be added to 
Equation 9 with ρ replaced by s, described in Equation 14. 
 

1
( ) ( )

n

u u u sU s u v s
t n s s α β

λ υ α υ β
τ

∂ ∂ ∂ = − ⋅ + ⋅ − − ⋅ − ⋅ + ⋅ ⋅ ⋅ ∂ ∂ ∂ 
  (14) 
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The additional term represents the acceleration–deceleration phenomenon, which is in 
unit of m/s2. 
 
Boundary Conditions 
 
The model is not completed for discrete simulation without appropriate boundary conditions. For 
the inflow boundary the minimum supply-demand method is applied (Equation 15) (16). Let Di 
stand for the demand of traffic flow in freeway segment i, and Si the supply. Let qcr stand for the 
critical flow. The time step index k is omitted for simplicity. The minimum supply–demand 
method for the inflow boundary is the same as that for the Eulerian case except for that the 
freeway segment i is in fact the available space in the most upstream, i.e., the distance between 
the starting position of the freeway and the position of the last vehicle group that is already in the 
computation domain. Segment i – 1 is a dummy segment where the unsatisfied traffic demand 
queues. Once the calculated flow ( )1i iq − →  is as large as a vehicle group of size Δn, it is allowed to 

enter the computation domain.  
 

( ) 11 min ,i ii iq D S−− → =   

if free flow,

o.w.

if free flow,

o.w.

i i cr
i

cr

cr i cr
i

i

q s s
D

q

q s s
S

q

>
= 


>
= 


  (15) 

 
At the outflow boundary, a dummy vehicle group is assumed to represent the out-

boundary condition. The first vehicle group within the computation domain follows the dummy 
vehicle group according to the upwind method until it leaves the computation domain and 
becomes the new dummy vehicle group. 
 
Stability Requirements 
 
For the discrete simulation of the first-order Lagrangian model, the Courant-Friedrichs-Lewy 
(CFL) condition described in Equation  16 ensures the numerical computation stability.  
 

min

( ( ))
max jU s kT

sη
∂

⋅ ≤
∂

∣ ∣1  (16) 

Indeed, it limits the maximum distance that a vehicle group can travel within one time 
step. For detailed explanation we refer to (2). The minimum size of vehicle groups per lane (ηmin) 
is obtained by letting CFL = 1. However, the second-order model incorporates a dynamic speed 
equation, and thus the CFL number cannot be approximated using Equation 16. The condition is 
in fact the same that during one time-step, a vehicle group cannot cross two discretization 
boundaries in the numerical computation. Experimental experience from simulation found that 
the required vehicle group size is larger but still reasonable for a macroscopic level simulation. 
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Discussions 
 
Arguments between the first-order models and the second-order models have never stopped. As 
mathematical models are approximations of the physical world, they can hardly be exactly 
accurate. The same is true for the Lagrangian traffic flow models. There is no simple conclusion 
for the comparison, as they both have their own advantages and disadvantages. The fundamental 
diagram is only a coarse approximation of the empirical evidence. The proposed model is more 
sensible as it improves the first-order model by dynamically modeling the speed. Particularly, the 
speed property would be related to vehicle groups instead of a location on the road. This makes 
the Lagrangian second-order model more reasonable than the Eulerian counterpart. 
 
 
EXPERIMENTAL ANALYSIS 
 
This section presents the experimental analysis of the proposed second-order model using a lane-
drop scenario shown in Figure 1. This experimental analysis is not intended to be a quantitative 
measure of how accurate the model is compared with a real data set. Rather, it is compared with 
the outputs of the first-order Lagrangian model to show the performance and the potential 
advantages of the second-order model, with the underlying assumption that the first-order model 
is reasonable (2). 
 
Scenario Description 
 
A lane-drop scenario (Figure 1) is assumed to emulate the onset and discharge of congestion. 
The total length of the freeway stretch is 6km  without ramps. At x = 3 km the number of lanes 
drops from three to two. The initial condition is set to be low flow. Later on, a surge occurs in 
the inflow demand, which forms the congestion when it reaches the lane-drop area. The 
congestion propagates backward until the demand surge ends and the inflow queue disappears, 
and then it discharges, leaving a triangular shape of low-speed area in the speed map. 
 
 

 
FIGURE 1  Experiment scenario. 
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FIGURE 2  Lane-drop simulation model. 
 

 
Lane-Drop Simulation Model 
 
To realize the lane-drop scenario in discrete simulation, the simulation model explained in Figure 2 
is adopted. When a vehicle group approaches the lane merging area, it is propagated ahead in the 
flow direction in an assumed three-lane freeway, and then the traffic characteristics (spacing, 
speed) are adjusted by assuming that the occupied area is the same while the number of lanes is 
reduced from three to two. The new spacing is calculated as , ,

2 1/ )(k new k old
j js s L L= ⋅  , where 1L  

represents the number of lanes before the lane-drop, and 2L  represents the number of lanes after 

the lane-drop.  
 
Experiment Settings 
 
The Smulders’ fundamental diagram is adopted, and the related parameters vcr, vf, scr, and sjam are 
set to be 75 km/h, 120 km/h, 30 m/veh/lane, and 5 m/veh/lane. The simulation duration is 0.8 h 
to allow a full evolution of congestion, and the demand surge occurs between 0.1 and 0.3h. The 
low-demand input flow is 1 veh/s, while the high-demand input flow is 2veh/s. The time-step 
duration T  is set to be 1 s, and the vehicle group size Δn is 4.6. For a first-order model, the CFL 
condition requires that Δn > 2.5 with T = 1. Both the first-order model and the second-order 
model are implemented in MATLAB. All these settings are the same for both models to make 
the outputs comparable.  

The second-order model has three more parameters to calibrate, namely, τ, θ (or λ), and ε. 
Two nominal sets are tested, where Set 1 uses τ = 1.05, θ = 0.55, and ε = 0.05, and Set 2 uses τ = 
1.14, θ = 0.40, and ε = 0.05. At this point, the parameter sets for the dynamic speed equation are 
chosen to ensure the simulation stability and yield reasonable (in the sense of traffic flow 
dynamics) outputs given other foregoing settings. They are not optimized towards a real data set. 
On the other hand, it is noticed that given other foregoing conditions, the parameters τ, θ, and ε 
can only vary within a small range while the simulation is still stable. Thus one may expect that 
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these parameters do not change greatly from the nominal data sets even when they are calibrated 
towards a real data set. 
 
Outputs and Discussion 
 
The simulation results are presented in Figure 3 to Figure 8. Figure 3 shows the speed map for 
the first-order model, with an amplified area shown in the Figure 4. Figure 5 and Figure 7 show 
the results for the second-order model with different parameter sets, with the same area amplified 
in Figure 6 and Figure 8, respectively. The lane-drop location and the amplified area are 
indicated in the figures. Initially, the demand volume is low such that the speed is close to the 
free flow speed, shown as the deep blue color. Between 360 s and 1,080 s, the demand volume is 
increased, resulting in a lower speed shown as light blue color before the lane-drop. As the 
plotting area is truncated at x = 1,000 m, this high-demand period is slightly shifted to the right 
in the figures. The increased inflow volume creates the congestion as it reaches the lane-drop 
location (the bottleneck), and the congestion propagates backward. When the inflow demand is 
decreased and the inflow queue is dissolved, the congestion begins to discharge. 
 
 

 

FIGURE 3  Speed map: first-order model. 
 
 

 

FIGURE 4  Speed map, amplified area: first-order model. 
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FIGURE 5  Speed map: second-order model with Parameter Set 1. 
 
 

  

FIGURE 6  Speed map, amplified area: second-order model with Parameter Set 1. 
 
 

We can see from the figures that all of them are able to reproduce the onset and discharge 
of the congestion caused by the lane-drop bottleneck. However, these figures have observable 
differences. Figure 5 exhibits similar pattern to that of the first-order model (Figure 3) but with 
some slight oscillations of speed, while Figure 7 shows more stop-and-go waves during the 
congestion. These stop-and-go waves are amplified towards the bottom of the congestion 
triangle. Researchers have found similar patterns in analyzing the real world data (17).  

Van Wageningen-Kessels (2) has analyzed the stop-and-go waves that sometimes (e.g., 
low discretization resolution or CFL = 1) appear in the first-order Lagrangian model, and 
concluded that those waves are artificial as they are resulted from the diffusion error, and should 
not be confused with the real-world stop-and-go waves. However, the second-order model 
naturally creates the stop-and-go waves in congestion by adjusting how much the speed at 
current time-step relies on the speed during the last time-step, how fast it can reach the 
equilibrium speed, and how sensitive it is to the condition of the leading vehicles. When the 
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FIGURE 7  Speed map: second-order model with Parameter Set 2. 
 
 

  

FIGURE 8  Speed map, amplified area: second-order model with Parameter Set 2. 
 
 
reaction delay is relatively long, or that the vehicles are not sensitive to the front condition, the 
oscillation becomes more obvious (Parameter Set 2). In the contrary, when the drivers reach their 
desired speeds faster and are more sensitive to the front conditions (Parameter Set 1), the speed 
map becomes smoother. The resulted differences from the two parameter sets show the 
flexibility of the proposed model.  

It is worth mentioning that the magnitude of the time delay parameter τ is one order 
higher than the drivers’ reaction time in the microscopic level. In fact, this τ is two orders higher 
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than the drivers’ reaction time in the Eulerian case. It should be treated as a macroscopic 
parameter, rather than being enforced to be the microscopic one.  
 
 
CONCLUSIONS 
 
In this paper, we propose a second-order Lagrangian macroscopic traffic flow model. A dynamic 
speed equation is derived from the realistic modeling of the reaction delay and driving 
anticipation. We show in a lane-drop simulation that the second-order model is not only able to 
reproduce the onset and discharge of congestion as the first-order model does, but also able to 
naturally create stop-and-go waves which are amplified as the waves propagate backward. These 
phenomena are coincident with the patterns identified in the real-world data. In addition, it can 
facilitate joint estimation of speed and incorporating speed measurements in traffic state 
estimation. All these observations show that the proposed model has advantages over the first-
order model. However, there are still some fundamental topics that are not addressed. For 
example, no empirical validation has been conducted even for the first-order model. Calibration 
of model parameters would be another worthwhile future work. We are continuing our efforts in 
this direction.  
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ABSTRACT
The fundamental diagram of a road, including free flow capacity and queue discharge rate, is

very important for traffic engineering purposes. In the real word, most traffic measurements come

from stationary loop detectors. This paper proposes a method to fit Wu’s fundamental diagram

to loop detector data. Wu’s fundamental diagram is characterised by five parameters, being the

free flow speed, wave speed, free flow capacity, queue discharge rate and jam density. The fits

appear to be not very sensitive to the right value for the wave speed or the free flow speed. The

proposed method therefore entails fixing these two parameters. The method consists of two steps.

We first use a triangular fundamental diagram to separate the congested branch from the free flow

branch. Then, the remaining three parameters of Wu’s fundamental diagram are fitted on each of

the branches using a least square fit. This method is shown to be robust for cases tested in real life,

and hence very noisy, data.
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INTRODUCTION
In traffic flow theory the fundamental diagram is an essential concept. The fundamental diagram

relates two of the three variables average speed (v), flow (q) and density (k) to each other. If two

of these variables are known, the third can be derived using the relation q = kv. Therefore, if only

one variable is known, and the fundamental diagram is known, the traffic state can be determined.

Since Greenshields (1) showed the relation between speed and density, many theories have

been developed to work with the fundamental diagram, including the often used LWR model (2, 3).

Although many papers are written on the shape of the fundamental diagram (see section

3.1), it is remarkable how much spread is present if one plots observed flows versus observed

densities. This spread can have different causes, for instance:

1. The traffic is not stationary during the aggregation interval.

2. The traffic itself is heterogeneous.

3. There are detector failures, or other measurement errors.

4. Within the aggregation interval an integer number of vehicles is measured.

5. The speed is calculated as time mean speed instead of space mean speed.

6. Intrinsic measurement errors occur, for instance loops do not detect vehicles standing

still (speed 0 km/h).

Although solutions have been found for several of these problems, most often traffic engi-

neers still use loop detector data from freeways, with the abovementioned problems. If they want

to apply theoretical concepts such as shock wave theory or the method of characteristics, they need

to have a fundamental diagram. The parameters of the fundamental diagram should be calibrated

for the observed road, as each road has its own characteristics, leading to a unique fundamental

diagram.

Traffic control measures, such as ramp metering (4) or main lane metering (5) are exploiting

the capacity drop, i.e. the difference between free flow capacity and the queue discharge rate. In

order to find the right settings for these measures, it hence is required to find a reliable value

for both values. For consistency of the results and calculation speed (if various locations are

involved), an automatic fitting procedure is useful. However, due to errors in the data automatic

fitting procedures often lead to extreme values for capacity or jam density, as will be shown later

in the paper. This paper presents a method which can be applied in an automated way, preventing

extreme values on noisy data – a property we will call robustness in the remainder of the paper. The

key of the method proposed here (see also figure 4) is that first a triangular fundamental diagram is

fitted to find the critical density, used to separate the free flow and the congested branch. Then, a

more realistic fundamental diagram is fitted on the congested data and the free flow data seperately.

Variables which are known are fixed, thereby impoving the robustness of the fit.

This paper first gives an overview of the literature on the fundamental diagram and the

fitting procedures. Then, the experimental setup is introduced, showing the different choices in the

research approach. This setup also includes the simulation setup and a description of the empirical

data used to test the methodology. Then, the methodology is introduced and the simulation results

are discussed, followed by a section presenting the fitting results on empirical data. Finally, we

discuss the results and present the conclusions.
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LITERATURE REVIEW
This section first describes the general shapes of the flow-density relationship, followed by a de-

tailed discussion of the shape proposed by Wu . Then, the existing literature of fitting a functional

form to this relationship is discussed.

Shapes of the fundamental diagram
Many shapes have been proposed for the fundamental diagram, ranging from very simple functions

to functions with mathematically useful properties, functions including the microscopic traffic

characteristics or relations based on empirical findings.

Greenshields (1) was the first to observe traffic flows and to hypothesize a linear relation-

ship between speed and density. Applying the relation

q = kv (1)

the linear relation between speed v and density k corresponds to a parabolic relation between speed

v and flow q. The fundamental diagram defines a number of characteristics of the traffic flow. First

of all, it determines the capacity, or the maximum flow that can be maintained for a short period

of time. The corresponding density is the so-called critical density. This capacity distinguishes

two states or regimes: for densities lower than the critical density, traffic is in an uncongested

state, while for higher densities, traffic is in a congested state. The Greenshields fundamental

diagram is called a univariate model, since both the uncongested regime and the congested regime

are described using the same formula. Another well known univariate model is Drake’s model (6),

where the speed is an exponentially decreasing function of the density.

Two-variate models use distinct formulas to describe the congested and the uncongested

regime. The simplest two-variate model is a triangular fundamental diagram, that describes both

regimes with a straight relationship. The slope of the uncongested regime is equal to the free speed,

while the slope of the congested regime equals the shock wave speed (describing the speed with

which the congestion front is moving upstream). The latter shows a direct relation between the

fundamental diagram and shockwave theory (2). Daganzo (7) introduced the truncated triangular

fundamental diagram. Here, the capacity is not only reached at the critical density, but for a certain

range of densities the flow is constant, and maximal. Edie (8) was among the first researchers

to show that a discontinuous relation might be more appropriate to describe traffic dynamics. He

distinguished the regime of the free traffic, with the so-called free flow capacity as maximum flow,

and the congested traffic, having the so-called queue discharge rate as maximum flow. As the

curve is discontinuous, free flow capacity is higher than the queue discharge rate. This is called

the capacity drop (9). Koshi et al. (10) introduced an inverse lambda shaped fundamental diagram,

which included this capacity drop. In this diagram, traffic has a free speed up to a capacity point.

However, the congested branch does not start at capacity, but connects below the capacity point to

the free flow branch. An addition to the inverse lambda shaped fundamental diagram is made by

Wu (11). He assumes that the speed in the free flow branch is not constant, but decreasing with

increasing density. The shape of the free flow branch is determined by the overtaking opportuni-

ties, which depend on the number of lanes. Figure 1 visulises the density-flow and density-speed

diagram mentioned above.

Kerner (12) proposed a different traffic flow theory, the so-called three phase traffic flow

theory. Instead of distinguishing an uncongested regime and a congested regime, Kerner describes

three phases of traffic. In addition to the uncongested regime, the congested regime has been split
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FIGURE 1 Different shapes of the fundamental diagram

into two distinct phases: synchronised flow and wide moving jam. In a wide moving jam traffic

stands still and the wave moves upstream (similar to stop-and-go waves); in synchronised flow, the

traffic is moving. Contrary to other researchers, Kerner claims that in this state several equlibrium

distances exist for the same speed, leading to an area rather than a line in the flow-density plane.

So far, the described fundamental diagrams are all deterministic. Recent research (13) has

tried to explicitly include stochastic aspects in the fundamental diagram.

Each of the fundamental diagrams mentioned above has its advantages and disadvantages.

The existence of a capacity drop requires the fundamental diagram to have at least two regimes:

a free flow regime and a congested regime. In free flow, the most realistic model is that speed

decreases with increasing densities, implying a non-linear free flow branch. Taking these two

requirements as a starting point, we have chosen to fit Wu’s fundamental diagram to our data.

Wu’s fundamental diagram
The fundamental diagram by Wu (11) is based on the overtaking possibilities. Those differ for

roads with a variable number of lanes. Wu (11) defines a fundamental diagram by prescribing the

speed as function of density. He argues that the speed changes gradually from the free flow speed

vfree to the critical speed vcrit. The way it decreases depends on the number of lanes, N . In an

equation, this gives:

vfree flow branch(k) = vfree(vfreevcrit)

(
k

kcrit

)N−1

(2)

Multiplying both sides with the density gives the relation between the flow (speed times flow is

density: equation 1) and the density. For the congested branch, Wu proposes a straight line in the

flow-density relationship, starting at a lower flow than the free flow, hence incorporating a capacity

drop. It can be easily verified that these equations can be rewritten, and different parameters can

be chosen to represent the same shape. For this paper, we rewrote the equations such that the

parameters of the fundamental diagram were as meaningful as possible. Note that rewriting the

equations or changing variables does not change the relationship, nor the parameter values. Table

1 shows the variables and their default values being used for this paper.
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TABLE 1 The parameters of Wu’s fundamental diagram and their default values
name symbol default value

Free flow speed vfree 115 km/h

Wave speed w -18 km/h

Free flow capacity Cf 2400 veh/h

Queue discharge rate Cq 1800 veh/h

Jam density kjam 150 veh/km/lane

Algorithms to fit a fundamental diagram
Although the shape of the fundamental diagram is under discussion, not much literature can be

found on how to estimate a fundamental diagram. More researchers discuss which data to use for

such an estimation.

Typically, fundamental diagrams are estimated from aggregated data at a specific location

(14, 15). Depending on the type of detectors used to derive these data, occupancy or densities are

observed. In addition, speeds can be averaged over time or harmonically averaged. One of the

drawbacks is the existence of transient phases, which are difficult to distinguish from equilibrium

phases. Only the latter should be used to derive the fundamental diagram, as this describes traffic in

an equilibrium state. When using the fundamental diagram to predict how traffic states propagate

(both in time and in space), the estimation should be based on spatial measurements (in accordance

to Edie’s definition of equilibrium). As detectors only collect data at a single cross-section, probe

vehicles can be used (16). Chiabaut et al. (17) use the passing rate to estimate a fundamental

diagram, as this is independent of the traffic flow state. Using NGsim data, they prove that a linear

fundamental diagram can be used to describe the traffic and that both the congested wave speed

and the jam density can be accurately predicted.

Although literature clearly has shown drawbacks of detector data, this is the type of data

typically available. Therefore, we have developed a method to estimate the fundamental diagram

based on detector data.

EXPERIMENTAL SETUP
This section introduces the different parameters to be fit and which combinations of these pa-

rameters we compare. Also, the setup of the simulation to be used to assess the methodology is

elaborated upon, and some details are given on the empirical data we use for evaluation.

Influencing elements in fitting a fundamental diagram
In the process of the fitting of the fundamental diagram several aspects play a role. We can fix

parameters , that is, not all the parameter values need to be estimated. Also, different speed av-

erages might lead to different results. Moreover, the stochasiticy of real traffic might be different

from a traffic simulation. This section comments on these variables , while in the next section it is

indicated which combinations are tested.

Fixing parameters
Fixing one or more parameters will increase the robustness of a fit, simply because one can set the

parameter to a value which must be approximately right. Thereby, it is avoided that a variable is

set to an extreme value because another variable is wrong.

Wu’s fundamental diagram has five parameters, of which 2 are the capacities which are to

be estimated. The remaining 3 are the free flow speed, the wave speed and the jam density. The
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TABLE 2 The analyses performed
Par fixed Data source Type of data Results in

- Simulation Detector, arithmetic mean figure 7(a)

vfree and w Simulation Detector, arithmetic mean figure 7(c)

vfree Simulation Detector, arithmetic mean figure 7(d)

w Simulation Detector, arithmetic mean figure 7(e)

- Simulation Edie table 3

vfree and w Simulation Edie table 3

- Simulation Detector, harmonic mean figure 7(f)

vfree and w Simulation Detector, harmonic mean figure 7(g)

w Simulation Detector, harmonic mean figure 7(h)

- Real Detector, arithmetic mean figure 7(i)

vfree and w Real Detector, arithmetic mean figure 7(j)

w Real Detector, arithmetic mean figure 7(k)

jam density is most constant, and can be determined by other methods as well (e.g., (17, 18)). Also

the free flow speed can relatively easy be estimated based on the speed limit. The jam density is

more difficult to estimate on beforehand, and this will not be considered in the tests here. Fixed

wave speed and/or free flow speed will be considered.

Type of data in relation to speed averaging
Some of the problems when determining the fundamental diagram are caused by the fact that the

reported mean speeds are time mean speeds. For the density calculation by k = q/v (eq. 1) one

needs the space mean speed, or as approximation the harmonically averaged speed. Figure 6(a)

shows the differences of these different density calculations for the simulations. Still, high density

areas hardly occur, but the congested conditions are better represented in the diagram. This has to

do with the fact that the congested states are more affected by the speed averaging procedure (19).

Another cause of problems when determining the fundamental diagram is the fact that

the measurements are taken at one location. From the simulation, also the full trajectories are

known. That means that we can apply Edie’s definitions (8). In particular, we divide the road into

segments of 100 meters and consider time intervals of 10s, leading to an area in space and time

A = 100 ∗ 10=1000 ms. For these rectangles in space and time, the total distance travelled D by

all vehicles and the total time spent in the area T can be calculated. The flow and density then are

calculated by q = D/A and k = T/A. In this paper we will look at the consequences of using

detector data or Edie’s definitions based on the full trajectories.

Real world data or simulation data
In the paper, first the method is applied to simulation data. The advantage of using data from a

microscopic simulation program is that the ground truth (i.e., the underlying fundamental diagram)

is known, and there are no measurement errors. Moreover, all type of data (time mean speeds,

harmonically mean speeds, Edie’s generalised density using trajectories) can be obtained from the

simulation. The simulation setup is chosen simple in order to test the properties of the proposed

methodology. Later, the same method is applied to real world data.

Analyses
The section above indicated several combinations of influencing elements in the fitting procedure.

Not all combinations are tested in this paper. Table 2 shows the analyses we chose for this paper.

Celebrating 50 Years of Traffic Flow Theory • Portland, Oregon • August 11-13, 2014 7

(a) Parameters (b) Road layout

FIGURE 2 Fosim simulation setup

The selection we made is based on a combination of simulation data and real data, but the

emphasis is on simulation data. The main reason is that the ground truth (theoretical fundamental

diagram) is known for these simulation data Moreover, we can get arithmetic mean speeds and

harmonic mean speeds at (virtual) detectors as well as Edie’s data from the trajectories. So, in

short, all information is available to perform extensive tests on the proposed method.

As said, fixing of parameters might increase the robustness of the fitting results, so we will

consider fixing the free flow speed and/or the wave speed. As will turn out, especially fitting the

congested part is difficult, particularly if only the arithmetic mean speed is known. Therefore, for

real data only fixed wave speed is considered.

Simulation
In this section we discuss the various elements of the simulation, such as the simulation model and

the setup of the simulation.

Simulation program
The methodology is tested using simulation data. The advantage of traffic simulation is that the

ground truth is known (see figure 3(a)), although lane changing effects are not taken into account.

To generate simulation data we use Fosim (20). Fosim is the only simulation model that has

been validated for Dutch freeways, and it is used by the Dutch road authority for ex-ante capacity

assessments for new infrastructure (21).

Fosim implements a Wiedeman principle (22) in the car-following model. The equilibrium

spacing drivers prefer is a quadratic function of their speed:

s = z3v
2 + z2v + z1 (3)

Fosim implements by default two user classes: passenger cars and Heavy Good Vehicles

(HGV). For passenger cars, three different types of drivers are distinguished: aggressive drivers,

more timid drivers and drivers driving vans. For each of these driver-vehicle combinations, input

parameters are determined (see the screenshot in figure 2(a)).

Simulation setup
For the sake of simplicity and traceability, we only consider a homogeneous flow of timid drivers

in passenger cars in the simulation. We have used the default (thus validated) parameters for this
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FIGURE 3 The traffic characteristics in Fosim simulation model

vehicle class. For our driver population, this means that the parameter values for z1, z2, and z3
are respectively 3m, 0.72s and 0.0050s2/m. This, together with the vehicle length of 4m gives the

speed spacing diagram, which can be translated into a flow-density diagram (see figure 3(a)). Note

that this theoretical calculation does not take stochasticity into account. The resulting capacity from

this relationship seems to be rather high, at a value of approximately 3275 veh/h/lane, equalling a

headway of 1.1s. This is the theoretical capacity in case all vehicles are following (in both lanes).

These flow values are being observed in the Netherlands for passenger cars only in the left lane.

For instance, on the A4 section between The Hague and Leiden (see the section on fitting results

on empirical data) we find a maximum flow in the left lane of 56 vehicles in one minute, equalling

3360 veh/h.

The case study we consider for estimating the fundamental diagram is as simple as possible.

We consider a two lane freeway with an onramp, see figure 2(b). The top of this figure shows the

demands, both for the main road (origin 2), and for the onramp (origin 1). With these demands the

capacity of the road is temporarily exceeded. First, a stop-and-go wave is created by increasing

the flow on the main road, where the head of the congestion is just downstream of the end of the

onramp. Secondly, bottleneck congestion is created by a higher inflow from the ramp and a lower

inflow from the main road.

We have collected speeds, flows and density at detectors, located 250m apart, see the yellow

boxes in figure 2(b). As these detectors observe passing moments of vehicles per lane, only data

from the two main lanes are used for the estimation of the fundamental diagram. As merging

occurs at the merging lane, causing disturbance of the process, we have excluded detectors 6 and

7.

In Fosim, simulations often lead to congestion where vehicles come to a complete stop.

Also, passenger cars accelerate at a high rate, thus not passing detectors at a low speed. As men-

tioned, when traffic is completely stationary (standing still), no vehicles pass the detector, and no

traffic is observed. So the only traffic that is being observed is the relatively fast moving – because

quickly accelerating – traffic. To overcome these problems , we create other types of bottlenecks

as well. Instead of creating an infrastructure bottleneck, we halve the free speeds. This way, we

Celebrating 50 Years of Traffic Flow Theory • Portland, Oregon • August 11-13, 2014 9

FIGURE 4 The overview of the fitting procedure

prevent vehicles from standing still, and thus we prevent the introduction of model bias into our

data set.

Experimental data
The method proposed in this paper is also applied on data from the A4 freeway in the Netherlands

between Amsterdam and Rotterdam. The stretch we consider is 10km long (from Leiden to The

Hague). On this freeway only loop detector data are being collected, consisting of flows and time

mean speeds.

FITTING METHODOLOGY
The main innovation of the method proposed in this paper is that we first use a triangular fundamen-

tal diagram to separate the congested branch from the free flow branch. Then, Wu’s fundamental

diagram is fitted on each of the branches. A graphical overview of the method is presented in

figure 4. In this fitting process, some variables can be fixed. In this figure, it is indicated that the

wave speed and the free flow speed are taken fixed, which will turn out to give the most robust

fitting results.

Use of data points
We assign a weight p to each of the data points based on their reliability. This weight is not

constant, as data points that can be trusted should contribute more to the quality of the fit than

unreliable points and outliers. The following weights are assigned:

• Speeds under 10 m/s cannot be trusted. It would be very rare to have situations where

the speed is constantly 10 km/h. Therefore, this will be a mixture of states, in which only

the moving vehicles are measured. Due to the nature of local measurements, vehicles

standing still will not be measured at all. Moreover, the approximation of the space mean

speed by time mean speed will be worse when the spread of (measured) speeds is higher.

Therefore, we give measurements with these low speeds a lower weight. In order to get a
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FIGURE 5 The triangular fit

robust fit, we do not want to pre-specify the speed which is too low, but we would like to

relate that to the speeds resulting from the fundamental diagram. If the weight would be

zero, the fitting procedure benefits from choosing a very high free speed, thereby ignoring

all aggregation intervals with a lower free speed. Since this is undesirable, a weight of

0.5 is given to these points.

• The measurements are taken at a freeway. Therefore, in low density conditions we expect

high speeds. Consequently, low speeds at low densities are a measurement error. This

could be due to the fact that speeds are time mean speeds, which distorts the speed and

hence the estimation of density. This means these data points are unreliable. If the speeds

are below 20 m/s in free flow, the points are neglected.

Performance measures and optimization
The fit will give a predicted flow (q̃) based on the measured density ki. The error for a data point

(one observation of flow and density) can be calculated as the difference between the observed

flow q and the predicted flow q̃. As error of the fit we consider the weighted root mean square error

of all data points, indicated by ε:

ε =

√∑
I pi (q̃i − qi)

2∑
I pi

(4)

The goal of the optimization is to minimize this error.

Fitting a triangular fundamental diagram
First, we will estimate the triangular fundamental diagram. This will give a robust estimation of

the critical density. That critical density will be used later on to separate the free flow branch from

the congested branch. The separation of the two branches is made based on density. A separation

on speed is less reliable. The fitting procedure could end up fitting a high free flow speed, which

fit data points with the high speeds very well. The other points, which one would assign to the

free flow branch, would be moved to the congested branch, which has a higher spread anyway, and

therefore would fit in the line of expectation.
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FIGURE 6 Observations of combinations of speed and density using different (speed) defi-
nitions

This fundamental diagram has three degrees of freedom: the free flow speed, the critical

density and the jam density. Note that the capacity is determined by the free flow speed times the

critical density. In our approach the shock wave speed is fixed, so two degrees of freedom remain:

the free flow speed and either the critical density or the jam density, which is for fitting purposes

equivalent.

The result of this fitting procedure is a triangular fundamental diagram. This triangular

fundamental diagram will give the critical density which is input to the fitting procedure of the Wu

fundamental diagram (below).

Fitting Wu’s fundamental diagram
For the same reasons as above, we assume a fixed shock wave speed w. Moreover, for freeway

driving, we can assume a fixed free speed. This is because it does hardly influence capacity, and it

is relatively constant for freeways. In this paper, we set the free flow speed u0 to 30 m/s.

The critical density is used to split the data into free flow points and congested data points.

There might be an error in the estimation of the critical density. Therefore, data points with a

density between 90% and 120% of the estimated critical density from the triangular fit are not

taken into account. If one considers the fundamental diagram, this is generally not an issue: the

fitting of the diagram can be done on the “slopes” of the fundamental diagram. The points near the

top of the diagram can belong to both branches, thus introducing an error in the fit, but these points

are not necessary to find the slopes of the congested branch and the free flow branch respectively.

The remaining parameters of the fundamental diagram which need to be estimated are: (1)

the free flow capacity, (2) the queue discharge rate and (3) the jam density (see figure 4).

SIMULATION RESULTS
This section presents the results of the fitting procedure. We start showing the fundamental diagram

using Edie’s definitions. Then, the estimation results when different parameter values are fixed in

order to see the sensitivity of each parameter are shown. Finally, the improvement of the fit when

using harmonic mean speeds is identified.
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TABLE 3 The value of the parameter estimates
Detector (arithm. mean speed) Edie Harmonic mean

Fixed parameters - vfree&w vfree w readout - vfree&w - vfree&w w
vfree (km/h) 126 [115] [115] 121 100 116 [115] 126 [115]

w (km/h) -4.6 [-18] -8.2 [-18] -22 -3.6 [-18] -5.7 [-18] [-18]

Cf (veh/h/lane) 2789 4015 3880 3311 3400 4919 5942 2949 4126 3264

Cq (veh/h/lane) 2039 2149 2069 2098 2250 2460 2593 2169 2286 2258

kjam (veh/km/lane) 477 144 276 144 135 709 171 410 153 153

Edie’s definitions
The fundamental diagram using the points obtained by Edie’s definitions can be visualized by the

proportion of observations for a combination of density and flow. This is done in figure 6(b). The

line of the fundamental diagram agrees to a large extent with the theoretical lines; however, the

diagram constructed from the trajectories shows a large capacity drop, while this is not present in

the theoretical curve. This is because the theoretical curve is only based on car-following behavior,

and does not take into account that drivers might leave a larger gap than desired when leaving the

queue.

Fix various parameters
This section describes what happens to the fit of the fundamental diagram if some of the parameters

are fixed, while applying the proposed methodology. Table 3 presents the results for the different

parameters values, as well as the values for these parameters as derived from the graph using

Edie’s definitions. For Edie’s definitions, we read the parameter values for the ground truth from

the figure; this is possible because the figure give very clear lines.

The table shows large differences between the different fits. The graphical representation

is also shown in figure 7. Figure 7(a) shows the curve if no parameters are fixed. The jam density

is estimated at 477 veh/km/lane, which is much higher than the approximately 145 veh/km/lane

which follows from theory and the analysis of trajectories using Edie’s definitions. Figure 7(b)

shows the fundamental diagram with the free flow speed and the wave speed being fixed. The

shape and parameters matches relatively well with the shape of fundamental diagram from Edie’s

definitions, although the free flow capacity is higher. In fact, it seems that in the fundamental dia-

gram according to Edie’s definitions the speed decreases strongly just before the free flow capacity

point is reached. Therefore, a comparable fit of the shape of Wu leads to a higher capacity point

Given these intrinsic shortcomings, the fit is reasonably well.

It is of course a disadvantage to fix both the free flow speed and the wave speed. Therefore,

it is also checked whether the same results can be obtained by fixing one of these. Figure 7(d)

shows that fixing only the free flow speed does not alleviate this problem, but figure 7(e) shows

that fixing only the wave speed does.

Effect of the speed averaging
As mentioned before, speed averaging has an effect on the points in the fundamental diagram,

particularly on the congested branch. Figure 7(f) shows the fit of the flow-density diagram where

the density is computed using the harmonic mean speed and all parameters are estimated. In

figure 7(g) the free flow speed and the wave speed have been fixed in the fit. Overall, the density

can be better estimated when the density is based on the harmonic mean speed. However, as the

amount of points along the congested branch is very limited, not much information is known on
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FIGURE 7 Fits of the fundamental diagrams on simulation data (a-h) and real data (i-k)
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the shape of the congested branch. This is due to the very low speeds at which these points are

located. The fit with all 5 parameters estimated still has a very large estimated jam density of

410 veh/km/lane, hence this method is unfeasible for practice. This can be improved by fixing

the wave speed, and possibly also the free flow speed. Especially the method only fixing the

wave speed yields good results (see table 3), with a closely matching free flow capacity and queue

discharge rate.

APPLYING THE METHOD TO EMPIRICAL DATA
Figure 7(j) shows the fitting results on the real data. First, figure 7(i) shows what happens if all

five parameters of Wu’s fundamental diagram are fitted simultaneously. This leads to a fit which

visually does not seem to follow the data points. Moreover, the free flow capacity is estimated to

be(much) lower than the queue discharge rate. If we fix the wave speed and the free flow speed

(see figure 7(j)), the fit follows the expected shape of the fundamental diagram better. However, the

capacity values are slightly lower than the capacities indicated in the Dutch version of the Highway

Capacity Manual (23). The fitted capacities are 1890 veh/h/lane for the three lane section and 2270

veh/h/lane for the two lane section, where the Dutch Highway Capacity Manual indicates values

of 2100 veh/h/lane for both situations. Also the data points seem to point at a slightly higher

capacity. However, for design purposes, a slight underestimation of the capacity is better than an

overestimation. The queue discharge rate is estimated at 1725 veh/h/lane.

Fixing only the wave speed, which gives a good fit with simulation results, is not work-

ing for the case with real data, since the free flow capacity will be given an extreme value (see

figure 7(k)).

We can thus conclude that the method fixing the wave speed and the free flow speed can

also be used to fit a fundamental diagram on empirical data.

CONCLUSIONS
This paper presents a method to fit a fundamental diagram to traffic data, thereby estimating the

free flow capacity and queue discharge rate. Difficulty is that points near the capacity can be

assigned to either of the two branches, which makes the fitting process difficult, leading to extreme

values. We propose to first separate the free flow branch from the congested branch by a triangular

fit. Then, the free flow speed and the wave speed are fixed, thereby limiting extreme values. The

method proved to yield reasonable, though not perfect, results on simulation data. Also for more

noisy real world data, the method gives realistic capacity estimates.
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ABSTRACT
Accuracy measures are used to quantify the accuracy of road traffic and pedestrian flow observa-

tions, models, simulations and predictions. We propose two new ways to measure the accuracy, by

introducing and quantifying the phase error and the diffusion error. These errors take into account

specific features that are of interest in traffic and pedestrian flow models. The phase error penalises

a wrong estimate of the location of a high density region, the diffusion error penalises too smooth

transitions between high density and low density regions. Combining the results of both accuracy

measures, gives better insight than traditional accuracy measures into how the methodologies or

models may be improved. Test cases show the application of the accuracy measures for the selec-

tion of a simulation method and for parameter estimation. Moreover, they show how the measures

can be applied both for (one dimensional) road traffic flow and for (two dimensional) pedestrian

flow.
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INTRODUCTION
Practical applications of traffic and pedestrian flow theory include many steps in which accuracy

is important: the flow is observed, a model and simulation tool are built and their parameters are

estimated. The model can then be used for predictions, either or not based on real time data. In

all these steps errors are made: there are discrepancies between reality and observation, between

observations and models, between models and simulations based on them. One step further, Huber

et al. (1) introduce methods to assess the accuracy of traffic information.

A lot of research effort has been put into assessing the accuracy of the steps. Qualitative

assessments are used to show whether certain characteristics or phenomena are well represented

(2, 3, 4, 5). Yet, more effort has been put into quantification of accuracy and their application in

model choice, parameter calibration, validation and sensitivity analysis (6, 7, 8, 9, 10, 11, 12, 13).

However, the way accuracy is quantified is often straightforward and does not provide information

on the type of error that was made. For example, variables are compared on a one-to-one basis: the

predicted value of a selected variable (e.g. speed, headway, density) at certain locations and times

is compared to the reference value at the same locations and times. For each location and time

the difference is computed and the difference is averaged over the whole space and time domain.

The averaging can be done in many ways (12), including the mean error (ME), mean absolute

error (MAE) and root mean square error (RMSE). Therefore, the accuracy measure does not give

insight into what causes the error and how improvements in the applied methodologies can help to

increase the accuracy.

Our main contribution is the introduction of two new accuracy measures that do give insight

into the type of error and take into account the specific features of traffic and pedestrian flow,

such as chaotic behaviour and the importance of sharp transitions and the location and time when

congestion occurs. The new accuracy measures apply the concepts of phase error and diffusion

error and are introduced in the next section. They can be applied to both (one dimensional) road

traffic flow and to (two dimensional) pedestrian flow, as we show in the Section ‘Case Studies’.

We conclude by discussing the main results and future research directions.

ACCURACY MEASURES
Traffic and pedestrian flows show large and sometimes sudden changes in the values of important

variables. Congestion occurs locally and there may be congestion with low speeds just upstream of

an on ramp, while 500 meter downstream traffic is free flowing and speeds are high. Additionally,

stop and go waves are characterised by sudden and steep changes in density and speed. Pedestrian

flows also show complex phenomena such as lane formation and clogging upstream of an exit. We

introduce accuracy measures that can handle these key phenomena and include high penalties if

they are represented badly. We focus on three important features:

1. key phenomena with steep state changes over time and/or space such as a sudden drops in

speed (e.g. at the tail of congestion) or sudden speed increases (e.g. just upstream of a

bottleneck) (14, 15),

2. key phenomena with states alternating over space and possibly time such as stop and go

waves in road traffic or lanes in pedestrian flows (16, 17, 18),

3. the speed or velocity of high density areas, causing spill back and possible blockage of

ramps, exits or other parts of networks (2, 19, 20).

We select those features because they characterise traffic and pedestrian flows and the features

distinguish them from many other types of flows such as most fluid flows.
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(a) Centre of mass for phase error. Crosses indicate
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indicate the position of vehicles. The height of the bars indicate

the approximated density. The crosses are the centres of mass

of the individual bars. The red star indicates the centre of mass

of all bars.

FIGURE 1 Examples of centre of mass used to define the phase error and diffusion error.

To measure the accuracy of a data set, a model, a simulation or a prediction, its variables

(e.g. speed, velocities, densities or headways) are compared to those of a reference or ‘ground

truth’. We propose two new accuracy measures for traffic and pedestrian flows. They are based on

the concepts of phase error and diffusion error, as introduced in the next section. Unlike the tradi-

tional measures, the new measures take into account the specific features of traffic and pedestrian

flows as described above. They do this by measuring whether the location of high density areas

is reproduced correctly (phase error) and by measuring how well sharp transitions are reproduced

(diffusion error).

Location of Centre of Mass and Phase Error
Both the phase error and the diffusion error use the concept of centre of mass to quantify the

accuracy. In physics, the centre of mass is defined as the point at which the entire weight of a

body may be considered as concentrated so that if supported at this point the body would remain

in equilibrium in any position.We translate the location of the centre of mass �X as the point where

all particles (vehicles or pedestrians) may be considered as concentrated. The concept is illustrated

in Figure 1(a). We define the location of the centre of mass at time t. The location �xn of the n-th

particle is supposed to be known for all particles n ∈ N present at time t. The location of the

centre of mass �Xparticle is defined as follows:

�Xparticle =
1

N

N∑
n=1

�xn (1)

with �Xparticle and �xn scalar in one dimensional road traffic flow and column vectors with two rows

in two dimensional pedestrian flow.

C
elebrating 50 Y

ears of T
raffic F

low
 T

heory

C
opyright N

ational A
cadem

y of S
ciences. A

ll rights reserved.

jcorrero
Typewritten Text
493

jcorrero
Typewritten Text
494

http://www.nap.edu/22095


Celebrating 50 Years of Traffic Flow Theory • Portland, Oregon • August 11-13, 2014 4

x
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(a) Reference solution

x

y

(b) Solution with phase error

x

y

(c) Solution with diffusion error

FIGURE 2 Three possible states of a crowd. The reference solution is considered as the
ground truth, where all pedestrians are gathered within an ellipse shaped region (a). If a
model predicts the location of the ellipse incorrectly, there is a phase error (b). If a model
predicts that the pedestrians are more spread out over the region and the transition at the
edge of the ellipse is too smooth, there is a diffusion error (c).

In a more generic case, location of the centre of mass within the domain Ω can be defined

as:

�X =

∫
�x∈Ω ρ(�x)�x d�x∫
�x∈Ω ρ(�x) d�x

(2)

In a continuum model ρ(�x) would be the density at location �x, but it can also be interpreted as the

probability that a particle is present at location �x. This definition is useful if the density at every

point in the domain is known, or can be derived. If the domain can be subdivided into i ∈ [1 : I]
cells (road segments with a certain length or regions with a certain area), and the cells have constant

density ρi, then (2) reduces to:

�Xcontinuum =

∑I
i=1 Aiρi�xi∑I
i=1Aiρi

(3)

with Ai the length (in one dimensional flow) or area (in two dimensional flow) of the i-th cell.

Therefore, Aiρi is the (expected) number of particles within cell i. �xi denotes the location of the

centre of mass of the cell, which can be computed easily if the cell has a simple shape and ρi is

constant within the cell. The definition in (3) is useful if data from loop detector is available or if

continuum flow models are applied.

Phase Error
A phase error occurs if the average speed of the particles is too low or too high or if they move

in the wrong direction, see Figure 2(b). This results in an inaccuracy in the location of patterns

such as a high density/low speed region in a congestion pattern or in lanes formed in bi-directional

pedestrian flow. The difference in the location of the centre of mass between the reference solution

and the test solution is therefore a measure for the phase error:

�Ephase = �Xtest − �Xref (4)

We note that in some cases a phase error is something to avoid, for example when one wants to

predict if or when the tail of a queue upstream of a traffic light will reach the next upstream inter-

section. In other cases, such as with lanes formed in bi-directional pedestrian flow, a phase error
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may only indicate that the high and low density/speed regions have ‘swapped’: e.g. pedestrians

walk from left to right where they were supposed to walk from left to right and vice versa. This

type of phase error does not pose a problem in most applications. The difference between two

causes for phase errors implies that they always need an interpretation to understand whether the

phase error should be avoided or it can be ignored.

Height of Centre of Mass and Diffusion Error
To quantify the diffusion error we use the concept of centre of mass in a slightly different way and

use it to define the centre of mass in the direction of a fundamental variable such as density, speed

or x- or y-velocity. The concept is illustrated in Figure 1(b). We define the centre of mass in the

direction of the fundamental variable, as the centre of mass of the area under its profile. In the

figure, the position of N + 1 vehicles is depicted, with xn the location of the n-th particle. In this

case, each bar indicates one vehicle. The centre of mass in the direction of variable f is the height

of the combined centre of mass of all N bars:

F =
1

N

N∑
n=1

fn
2

(5)

We note that (5) also holds in two dimensional cases. Generalization of (5) without assuming each

cell contains exactly one particle, but instead taking a continuum approach as in (3), leads to:

Fcontinuum =

∑I
i=1 Aiρifi

2
∑I

i=1Aiρi
(6)

with Ai the area of the i-th cell and ρi its density, which is assumed to be constant. Consequently,

Aiρi is the number of particles in the i-th cell. Finally, further generalisation gives, similar to (2):

F =

∫
�x∈Ω ρ(�x)f(�x) d�x

2
∫
�x∈Ω ρ(�x) d�x

(7)

Diffusion error
A diffusion error occurs if transitions between areas with a high value of the fundamental variable

and with a low value become too smooth, see Figure 2(c). If the fundamental variable is density,

high density regions get a lower density and vice versa. Therefore, if transitions are sharp, the

centre of mass in density direction is higher than when transitions are smoother. The difference in

the centre of mass in the direction of the fundamental variable between the reference solution and

the test solution is a measure for the diffusion error:

Ediff = Ftest − Fref (8)

CASE STUDIES
We discuss the concepts of phase and diffusion error further using some case studies. The case

studies compare simulation results with analytical model solution (for road traffic, case 1), and with

experimental data (for pedestrian flows, case 2). Errors are quantified using our newly developed

accuracy measures and traditional ones. The results show that the new accuracy measures give

insight into how accurate simulation results are and help to identify the cause of inaccuracies.
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Case 1: Queue Upstream of Traffic Light
This case illustrates the application of the new accuracy measures to compare simulation results

with the analytical model solution. We consider a hypothetical one lane road with a queue (density

is jam density) of vehicles in front of a red light. Downstream of the queue the density is initially

zero, the length of the queue is 2 kilometre and upstream of the queue the initial density is half of

critical density. At time t = 0, the red light turns green and vehicles start driving. To determine

the traffic state until the queue has solved, we use the LWR model (19, 21) with a parabolic-linear

fundamental diagram (22) with maximum speed 33.3 m/s, critical speed 20.8 m/s, critical density

0.33 vehicles/m and jam density 0.2 vehicles/m.

Analytical and numerical solution
We solve this problem both analytically and by simulation. We use three different simulation

methods: a minimum supply demand method with explicit time stepping (23, 24), an upwind

method with explicit time stepping (25) and an upwind method with implicit time stepping (26).

Furthermore, we vary the time step size to study the influence of the Courant-Friedrichs-Lewy

(CFL)-number (27). With a small time step size, the CFL-number is small and a simulation takes

long. However, with a too large time step size, the CFL-number is larger than 1 and the minimum

supply demand method and the upwind method get unstable, resulting in unrealistic simulation

results. The simulation results and the exact solution are shown in Figure 3 and 4.

Accuracy
Analysis of the numerical methods show that all methods are first order accurate, implying that the

global error is proportional to the numerical resolution (28). However this does not mean that, in

practice, the accuracy of the methods is similar. To measure the accuracy of the simulation results,

they are compared to the exact solution. We do this only at time t = 600 s, which is representative

for the whole time period. For all solutions we compute the centre of mass of the cross sections

shown inFigure 4. The phase error and diffusion error are computed as in (4) and (8), respectively.

For the diffusion error we use the density as variable: f = ρ. The errors are shown in Figure 5.

Results
The results in Figure 5 show that the minimum supply demand method always performs worse

than the upwind explicit method. The performance of the upwind implicit method depends on

the time step size: it gives relatively high accuracy if the CFL-number is small, while accuracy

is low (errors are large) if it is large. For CFL-numbers larger than 1, the minimum supply de-

mand method and the upwind explicit method become unstable and give very unrealistic results

and they are therefore omitted from the figure. The accuracy of the upwind implicit method de-

creases with increasing CFL-number, but the accuracy is of the same order as that of the minimum

supply demand method. Furthermore, the results show that, for the minimum supply demand and

the upwind implicit method, the phase error depends more strongly on the CFL-number than the

diffusion error. For the upwind explicit method the difference is not clearly visible from the graphs.

Discussion
These results give insight into when to use which numerical method. A large error, has to be

weighted against a large computation time (i.e. small time steps). Furthermore, if the phase error

is important in the application (for example if one wants to know whether congestion will spill
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FIGURE 3 Densities computed with different numerical methods and fixed time step size.
The vertical dashed line indicate the time for which cross sections are shown in Figure 4. The
other dashed lines indicate sharp boundaries in the analytical solution.
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(c) Upwind method with implicit

time stepping.

FIGURE 4 Density profiles at time t = 600 s with different numerical methods and time
step sizes.

back until a certain off ramp), than also the CFL-number should be taken into account. If a small

diffusion error is more important, than it is less important to chose a good CFL-number, as long

as it is not larger than 1 with the minimum supply demand method or the upwind explicit method.

We note that no final conclusion on an appropriate numerical method can be drawn from this very

limited test case. Instead a wider range of tests such as in (26) should be performed. However, the

test case shows how the new accuracy measures can be applied to support the choice of simulation

method.

Case 2: Bidirectional Pedestrian Flow
In this case we illustrate how to compare data from an experiment with bidirectional pedestrian

flows (29) with simulation results and how to apply the results in parameter estimation. We con-

sider a 10 meter long and 4 meter wide corridor. Two groups of pedestrians cross the corridor in

opposite directions, thus creating a bi-directional flow.
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(b) Diffusion error in queue test case.

FIGURE 5 Accuracy of solutions at time t = 600 s with different numerical methods and
time step sizes/CFL numbers.
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FIGURE 6 Typical class specific densities in simulation (coloured areas, purple and yellow)
and positions of pedestrians in preprocessed experimental data (red and purple stars), both
at time t = 350 s.

Experimental data
The data that was gathered from this experiment and is used here, includes positions in both x- and

y-direction every 0.1 seconds, for 7 minutes. The data also includes identification numbers to trace

individual pedestrians. We preprocessed the data to extract velocities of individual pedestrians ev-

ery 0.1 seconds and to assign each pedestrian to a group: group 1 when entering on the left and

leaving on the right, group 2 for pedestrians walking in the opposite direction. The preprocessed

data shows that the setup resulted in lane formation. Most frequently, there are 2 lanes with pedes-

trians walking on their right hand side of the corridor. In some situations, there are 1, 3 or 4 lanes

(30). A typical situation is shown in Figure 6.

Simulation results
The experimental data is compared to simulation results. These were obtained using a continuum

pedestrian flow model (31) and simulation method (32). The simulation was performed for a

Celebrating 50 Years of Traffic Flow Theory • Portland, Oregon • August 11-13, 2014 9

TABLE 1 Settings and some results of pedestrian simulation.
parameter set βu βo N resulting lanes

1 0.80 2.30 705 right

2 0.70 1.36 708 left

3 0.63 0.63 707 none

experimental data na na 709 right

corridor of the same width (4 meters) but longer (50 meters). Only the results for the centre 10

meter were used for comparison with the experimental data, see Figure 6.

In the simulation, pedestrians enter from both sides, with inflow demand equal to capacity.

Group 1 moves from the left to the right, group 2 moves from right to left. Parameters were

chosen to have realistic values: free flow speed is 1.34 m/s and jam density is 5.4 pedestrians/m2.

However, to compare the accuracy for different simulation results we used three different sets of

parameter values for the avoidance of the own group (βu) and the avoidance of the other group

(βo). For more details about the model and its parameters we refer to (31). We chose the parameter

values such that the total number of pedestrians crossing the area would be very similar to those

in the experimental data with N = 709. Furthermore, the parameters were chosen to give clearly

distinguishable results, with either two lanes with pedestrians walking on their right hand side of

the corridor (set 1) or on their left hand side (set 2), or with no lanes at all (set 3). We did not

consider parameter settings resulting in more than two lanes. The settings are summarised in Table

1.

Accuracy
For both the experimental data and the simulation results, the centres of mass are computed and

compared. We compute the phase error as in (4), but for both groups separately. For the diffusion

error, we apply (8), again for both groups separately. We use the centre of mass of the reference

solution Fref as in (5) with fn = vx,n,u the velocity in x-direction of the n-th pedestrian of group

u and with N the total number of pedestrians of group u. Furthermore, the centre of mass of the

test solution Ftest is as in (6) with fi = vx,i,u the velocity in x-direction of group u in the i-th cell.

Also for the density ρi only pedestrians of group u are taken into account, i.e. ρi is the number

of pedestrians of group u in cell i. We use the centre of mass in x-velocity direction instead of in

density (ρ) direction because the density is not straightforward to determine from the experimental

data, while the x-velocity is relatively simple to extract from the position data. Furthermore, it

gives better insight into the differences in the results than the speed or y-velocity, because speed is

always positive and in the experimental data close to free flow speed of the experiment (1.34 m/s)

and because y-velocity is mostly close to zero.

We also compared the parameter sets with respect to traditional error measures. To compute

the errors, at each time step, the experimental data for each pedestrian was compared with the

simulations results at that location. The RMSE of the speed of each group at time t is defined as:

ERMSE,|vu|(t) =

√∑
i∈I [|vu,ref(xi, yi, t)| − |vu,test(xi, yi, t)|]2

Ntest(t)
(9)

with (xi, yi, t) the position of the i-th pedestrian in the experimental data at time t, u ∈ {1, 2}
the group, |vu,ref(xi, yi, t)| its speed, |vu,test(xi, yi, t)| the speed at this location and time according
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to the simulation and Ntest(t) the number of pedestrians in the area at time t according to the

experimental data. The ME of the speed of each group at time t is defined as:

EME,|vu|(t) =

∑
i∈I [|vu,ref(xi, yi, t)| − |vu,test(xi, yi, t)|]

Ntest(t)
(10)

The RMSE of the velocity in x-direction is defined as:

ERMSE,vx(t) =

√∑
i∈I [vx,ref(xi, yi, t)− vx,test(xi, yi, t)]

2

Ntest(t)
(11)

with the velocity in x-direction the weighted average velocity of both groups in the simulation:

vx,test(xi, yi, t) =
ρ1vx,1 + ρ2vx,2

ρ1 + ρ2
(12)

The MAE of the velocity in x-direction is defined as:

EMAE,vx(t) =

∑
i∈I |vx,ref(xi, yi, t)− vx,test(xi, yi, t)|

Ntest(t)
(13)

Results
The errors are shown in Figures 7–9 and Tables 2 and 3. The figures show the development of

the errors over time, the table shows the average error over the last 200 seconds. We note that the

values of the errors vary largely over time, unlike in the road traffic test case. This shows that we

would not be able to draw reasonable conclusions if we would only study the error at one moment

in time as we did in the previous case.

TABLE 2 Errors in the pedestrian simulation, traditional measures
parameter set ERMSE,|v1| ERMSE,|v2| ERMSE,vx EME,|v1| EME,|v2| EMAE,vx

1 0.066 0.070 0.31 -0.028 -0.046 0.73

2 0.065 0.069 0.54 -0.030 -0.049 1.86

3 0.065 0.068 0.34 -0.027 -0.046 1.27

TABLE 3 Errors in the pedestrian simulation, new measures
parameter set Ephase, x1 Ephase, x2 Ephase, y1 Ephase, y2 Ediff , v1 Ediff , v2
1 -0.57 0.64 -0.42 0.19 0.033 0.049

2 -0.68 0.51 1.27 -1.25 0.032 0.044

3 -0.45 0.52 0.41 -0.64 0.026 0.041

Most traditional error measures do not discriminate between the parameter sets: the RMSE

of the group specific speeds (|v1| and |v2|) are almost the same for each parameter set. The same

holds for the ME of the group specific speeds. The only difference can be found in the velocities

in x-direction, both the RMSE and the MAE show different values for different parameter sets.

However, the error is largest if the lanes are swapped (i.e. pedestrians walk on their left hand side

Celebrating 50 Years of Traffic Flow Theory • Portland, Oregon • August 11-13, 2014 11
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FIGURE 7 Errors using parameter set 1. Red dashed: group 1 (walking from left to right),
blue solid: group 2 (walking from right to left), black solid: RMSE of vx, green dashed:
MAE of vx.
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FIGURE 8 Errors using parameter set 2. Red dashed: group 1 (walking from left to right),
blue solid: group 2 (walking from right to left), black solid: RMSE of vx, green dashed:
MAE of vx.
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FIGURE 9 Errors using parameter set 3. Red dashed: group 1 (walking from left to right),
blue solid: group 2 (walking from right to left), black solid: RMSE of vx, green dashed:
MAE of vx.

of the corridor, instead of at their right hand side). The difference in RMSE of vx between set 1

(correct lane formation) and set 3 (no lanes) is small.

The phase errors for both groups in x-direction are similar for each parameter set and we do

not see any pattern. However, the other new measures do discriminate between the parameter sets.

The absolute phase error (pe in y1 and in y2) is largest for parameter set 2, as expected. However,

this is combined with a diffusion error of similar size than diffusion errors with the other parameter

sets. The diffusion error is small, but clearly largest for set 1 and smallest for set 3.

Discussion
We note that in all simulations, the total number of pedestrians crossing the corridor is (almost)

the same as in the experimental data. Therefore, an error measure based on the total flux (such as

used by Kretz et al. (9)) would not be able to discriminate between the parameter sets. An other

traditional error measure is based on the likelihood of the simulation result (11). This may be an

appropriate approach to estimate parameters. However, it does not give any insight into the type of

inaccuracies and how they may be reduced.

The results of the traditional accuracy measures give little insight in the cause of the error

and would prefer parameter set 3 over set 2, while in most applications, the lane formation is es-

sential and parameter set 2 would yield better results than set 3. The results for the phase error

in y-direction are similar to those for the RMSE and MAE of vx. However, the phase error gives

insight into the type of error: the location of the lanes is predicted wrongly in set 2. The diffusion

error does not add much insight because the speeds both in the experimental data and in the simu-

lation are always close to the free flow speed of 1.34 m/s. Furthermore, in the experiments, three

or four lanes were formed in some instances, while in the simulations there are only two. For a test

case with more variation in the speeds or with a simulation setting with more lanes, the diffusion

error may be able to discriminate between different parameter sets.
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DISCUSSION, CONCLUSION AND OUTLOOK
We have introduced two new accuracy measures, phase error and diffusion error. They give better

insight in the type of error and take into account specific features of traffic and pedestrian flows.

The accuracy measures quantify the error using a method based on the centre of mass of a region

with high density or speed. The new accuracy measures are more meaningful in traffic and pedes-

trian flow applications than traditional methods. Because of their generic formulation, they can

be used in a wide range of applications: from the assessment of a data collection method to the

quantification of the accuracy of traffic information.

We applied the new accuracy measures to two test cases. In the first case we compared dif-

ferent simulation methods for road traffic flow (one-dimensional), in the second case we compared

different parameter settings of a pedestrian flow model. Both cases show that the way the accuracy

is defined is important. A good result according to one accuracy measure, may be a bad result

according to an other accuracy measure. Furthermore, some accuracy measures fail to discrimi-

nate between the different test settings and give similar accuracies independent of the simulation

method or parameter set. The new accuracy measures give insight into the type of error by show-

ing, for example, that the phase error is small, while the diffusion error is large. This indicates

that, if one wants to increase the accuracy, the model or simulation method should be improved to

reduce diffusion.

It is important to note that, especially for the phase error, the interpretation of the error

remains important. In some cases (such as while predicting the spill back of a queue until the

upstream intersection), a large phase error should be avoided, while in other cases (such as lane

formation in bi-directional pedestrian flow) a phase error may only indicate that the lanes are

swapped.

The current applications focus on simple problems and networks with different phenomena

at different location have not yet been considered. The new accuracy measures could be used as

building blocks for an assessment method for accuracy on networks. This can for example be done

by splitting the networks into parts and isolating areas with different layout or flow characteristics.

Furthermore, we have now explored the applications for one-dimensional road traffic flow and for

two-dimensional pedestrian flow. However, the methods may be extended to other applications

such as network flows using a Network Fundamental Diagram (33).

An other future research direction is to extend the measures to changes over time. In our

current applications, either the error at just one moment was considered, or the average error over

a longer period of time. Time could be considered explicitly in the measures by also comparing

the centre of mass in time direction. This may especially improve the quantification of the phase

error.

Finally, the measures may be extended for heterogeneous flow including for example trucks

and passenger cars or different types of pedestrians. In (26) we have developed a method to give

trucks a higher weight when computing the centre of mass than passenger cars. This method can

be extended to pedestrian flows.
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ABSTRACT 

In this paper we pursue the effect of volatility on the probability of highway breakdown.  
Because daily aggregated flow values exhibit dissimilar levels of variability throughout the day, 
a stochastic volatility (SV) model was pursued.  Under this format, assuming traffic flow 
volatility follows an autoregressive process of order one, volatility was estimated at each 15-
minute time step per day during the collection period of 205 days.  A computational Bayesian 
format was used to fit parameters of 205 SV models to data collected from one bottleneck site 
along Interstate 93 in Salem, NH.  Fitted results show that volatility estimates successfully 
capture flow variability observed from the traffic data.  To evaluate the effect of SV on 
breakdown, a sampling scheme was created in which sampled demands and capacities were 
compared.  To estimate demand, a signal was first extracted from the flow aggregates using a 
Functional Data Analysis (FDA) model and then combined with a sampled SV estimate.  For 
stochastic capacity, daily flow maxima were used as either censored or uncensored estimates of 
capacity based on breakdown occurrence.  By extreme value theory, these capacity values are 
distributed as a Generalized Extreme Value (GEV) distribution.  From a GEV model fitted to our 
data, capacity estimates are sampled and compared to SV-based demand to produce breakdown 
probabilities by time of day.  Finally, our breakdown probabilities are compared to those 
estimated by the sample data only to illustrate the effect of SV on breakdown.         
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INTRODUCTION 

 Theoretically, highway breakdown will occur when flow  , some flow ( ) at 
time ( ), equals or exceeds roadway capacity .  However, because breakdowns do not 
necessarily occur at the same demand levels (Elefteriadou et al., 1995), our breakdown protocol 

 cannot be confirmed with field data (Brilon et al., 2007; Lorenz and Elefteriadou, 2001). 
In light of this, breakdown will be treated as a chance event with the following probability 
model:   

 

where travel demand at time , , and roadway capacity, , are both considered random 
variables.  In order to estimate this probability expression, we must identify suitable models for 
both traffic demand and capacity.  A complication arises as flow values, values used to calibrate 
our models, are typically very noisy.  To address this, to mitigate the irregular fluctuations, flow 
values are typically extracted from coarse aggregates.  That is, traffic flow variability (noise) is 
removed to identify a realistic signal.  What if we could estimate the natural variability in 
demand and re-introduce it into our breakdown prediction?  In so doing, how would this 
volatility in demand affect the performance of the roadway?  Will traffic noise increase the 
chance of breakdown?  In this work we aim to answer these questions and quantify the effect of 
flow volatility on the probable occurrence of breakdown.    

APPROACH 

A dominant characteristic of freeway traffic flow is the time-varying volatility.  That is, a 
roadway commonly experiences distinct periods of contrasting levels of flow variability (Figure 
1).  Such behavior is also commonly observed in financial or economic time series.  To account 
for this type of behavior, Taylor (1982) suggests that volatilities evolve in a stochastic nature, an 
approach commonly referred to as the ‘stochastic volatility’ (SV) model.  So, in our expression 
for the probability of breakdown, , for any day,  

 
 
or demand at time  is normally distributed about some flow  with a time-indexed standard 
deviation (Note the distinction between demand and flow, where, going forward, demand is a 
combination of known flow and random variability).  The unique feature of the SV model is the 
time-varying standard deviation, , which is itself introduced as a random variable.  

Laflamme and Ossenbruggen 
 

 

FIGURE 1  Illustration of time-varying volatility in traffic flows for a typical weekday during the collection 
period.  We observe that flow values are more volatile during morning and evening commuting hours.   

DATA 

Data was collected by the State of New Hampshire (NH) Department of Transportation 
along northbound lanes of interstate I-93 at one location in Salem, NH that observes both daily 
breakdowns and heavy demand.  Data collection was made possible by a side-fire radar unit 
located just north of an exit ramp, exit 1, and just south of an entrance ramp to I-93.  Just north of 
the radar device (downstream), I-93 is physically constricted from three to two lanes.  The 
positioning of this device is ideal as data collected here fit perfectly to the theoretical framework 
of flow-based capacity analyses (Minderhoud et al., 1997).  As stated by Brilon et al. (2005), the 
capacity of the freeway segment is analyzed most precisely at or slightly upstream of a 
bottleneck.   

The radar device was scheduled to intermittently measure traffic at irregular but frequent 
time periods about 1 minute apart.  The data collection period occurred between April 1 and 
November 30, 2010, a total of 244 days.  The observations (raw data) consist of the following 
measurements:  vehicle counts, average speed, occupancy, and speed of individual vehicles 
observed over the interval.  During this collection period, there were several scheduled days 
where the radar devices were shut down for maintenance.  In the end, after omitting these days 
where no traffic measurements were recorded, a total of 205 days were retained for our analysis.   

Aggregation 
 

Because radar data are collected over very short, irregular time intervals, these 
measurements were aggregated into uniform intervals.  The HCM recommends that 
transportation engineers use aggregates (intervals) no shorter than 15-minutes in order to ensure 
‘stable’ traffic flow rates.  Longer intervals are especially suitable for macroscopic/speed-flow 
analyses and intervals shorter than 5-minutes should be avoided (Highway Capacity Manual, 
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2000).  That is, for shorter intervals, it is possible to observe speeds and flows that simply cannot 
be sustained over longer periods, and these measurements are not accurate representations of 
traffic conditions.  As stated by Greenwood et al. (2007), analyzing capacity is a macroscopic 
endeavor related to management, policy, design and regional speed/flow comparisons, thus 
stable, longer interval durations are appropriate.  While exact lengths vary among analyses, 15-
minute intervals are commonly used for capacity studies (See, for example, Agyemang-Duah and 
Hall, 1991; Yang and Zhang, 2005; Lorenz and Elefteriadou, 2001; Elefteriadou and 
Lertworawanich, 2002; Minderhoud et al., 1997).  For these reasons, and to produce results that 
are directly comparable to those put forth by the HCM, observations were binned into 15-minute 
aggregates.   

From each of the raw vehicle counts (total volume, or number of vehicles, observed 
during a precisely defined interval), the corresponding interval length during which they were 
observed and a flow rate, or equivalent hourly rate of vehicles passing a point (the ‘traffic flow 
rate,’ by definition), was simply calculated.  This then yields flow rates that are expressed in the 
customary scale of vehicles per hour (vph), but based on short, unstable time intervals.  Next, 
these flow rates were binned into non-overlapping, sequential 15- minute intervals based on 
original observation times.  Lastly, for each bin, the component flow rates were averaged to 
produce aggregated flow ( ) rates for each 15-minute interval during the collection period.  
Thus, we have 96 estimates per day, or .  Addressing traffic speed ( ) is a simpler 
task as precise speed (in mph) and time measurements are recorded for every vehicle observed 
during the collection period.  Speed aggregates are then calculated by first separating all 
observations into 15-minute bins, and then simply taking their average.   

CAPACITY DATA 

Daily Maxima as Estimates of Capacity 
 

Modern methods of estimating breakdown probabilities are based on stochastic capacity, or 
treating capacity as a random variable (See, for example, Brilon et al., 2005; Lorenz and 
Elefteriadou, 2001).  That said, no universally accepted measure of capacity has been 
established.  Breakdown flows, however, those flows measured immediately before the onset of 
congestion, have been widely adopted as estimators of capacity (See, for example, Elefteriadou 
and Lertworawanich, 2002; Brilon et al., 2005; Lorenz and Elefteriadou, 2001; Minderhoud et 
al., 1996).  However, one concern when using breakdown flows is that higher flows or daily flow 
maxima often occur prior to congested conditions.  These cases suggest that breakdown flows 
are actually underestimating capacity since higher flows were observed just prior to breakdown.  
By instead considering daily flow maxima, we would capture these higher flows prior to 
breakdown and ultimately obtain more representative measures of capacity, the maximum flow 
that a roadway can sustain.  Another concern when using breakdown flows is that they are highly 
dependent on subjective, and often arbitrary, breakdown identification criteria.  Daily flow 
maxima, of course, have the advantage of being independent of the methods used to identify 
breakdowns.  

Another commonly used estimate of freeway capacity is the maximum pre-breakdown 
flow (See, for example, Hall and Agyemang-Duah, 1991; Hall et al., 1992), or the maximum 
sustained flow prior to breakdown.  Based on aggregated traffic data, Elefteriadou and 
Lertworawanich (2002) provide evidence that distributions of breakdown flows and maximum 
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pre-breakdown flows are statistically similar and, by extension, that maximum pre-breakdown 
flows are suitable estimates for capacity.  Because daily flow maxima typically occur prior to 
breakdowns, in practice, daily flow maxima closely resemble maximum pre-breakdown flows, 
although the two are conceptually different.  Thus, using daily flow maxima to estimate capacity 
has many of the same benefits as using pre-breakdown flows.  For one, both maxima and pre-
breakdown flows account for cases (as described above) where flows decrease prior to 
congestion, a so-called ‘lingering’ or lagged effect, and are better representations of the true 
maximum throughput of the roadway.  However, while maxima and pre-breakdown flows are 
somewhat similar, maxima have the advantage of being consistently available.  That is, 
extraction of pre-breakdown flows is completely dependent on breakdowns, while daily maxima, 
on the other hand, have no such dependence and may be obtained on a regular basis regardless of 
breakdown occurrence.  Using maxima, then, is especially beneficial when breakdowns are rare 
as such cases would yield relatively few pre-breakdown flows.  Laflamme (2013) presents a 
detailed discussion on the use and advantage of using daily maxima as capacity values. 

Censoring 
 

As stated by the HCM, the capacity for a given facility is the flow rate that can be 
achieved repeatedly for peak periods of sufficient demand (Highway Capacity Manual, 2000).  
Therefore, not every maximum flow is a suitable estimate of freeway capacity, and only those 
daily maxima associated with ‘sufficiently high demand’, demand typically resulting in 
breakdown, should be considered as such.  On days where demand is insufficient, when 
breakdowns are not observed, daily conditions are not adequate (sufficiently extreme) to assess 
the true capacity of the roadway.  In these cases, under a survival analysis premise, the 
corresponding maxima are deemed censored (right-censored) capacity values as the roadway can 
surely service higher demands.  That is, breakdowns would occur at some higher flow rates, and 
the resulting capacity, the maximum daily flows, would necessarily be larger than the observed 
value.  Alternatively, we may simply consider these cases as incomplete data records where the 
true maximum, the capacity, is simply missing.  Despite the incompleteness associated with 
censored values, they still contain valuable information and will therefore be considered in the 
calibration of our capacity distribution (See, for example, Geistefeldt, 2010).  In a comparison of 
capacity distributions approaches, Geistefeldt and Brilon (2009) found that using censored data 
achieves significantly more precise estimates, especially at higher quantiles.  Lastly, our 
censoring designation establishes a correspondence between extreme flows and breakdown 
which we intuitively know exists.     

The Generalized Extreme Value Distribution 

Our capacity data, daily maxima extracted from the traffic stream measurements, are 
approximated by the Generalized Extreme Value distribution (GEV).  That is, , 
where  represents the capacity random variable.  The GEV is three-parameter distribution given 
by the following form: 
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defined on   with  and  the respective location and scale parameters.  The 
shape parameter of the GEV, , characterizes the rate of tail decay, where , , and 

 correspond to data with heavy tails, light tails, and short tails, respectively.  For our data, 
in the expression above, we replace the random variable  with capacity data  as both censored 
and uncensored (observed) daily flow maxima.  By theory, our capacity data, the maximal flows, 
can be suitably and accurately approximated by the GEV distribution.     

Despite violating the model assumption, that a series of independent random variables 
define the block maxima, the conclusion that the block maxima have a GEV distribution is still 
reasonable (Coles, 2001).  Quantile plots for daily maxima show strong correspondence between 
observed and predicted values, which illustrates the appropriateness of the model class and 
justifies the use of the GEV for our data.  Additionally, the GEV approach assumes daily 
maxima be identically distributed which, from observing the 8 months of data, appears to be the 
case.  That is, we observe no true seasonality (‘heavy’ season), no trend, no oscillations nor 
systematic patterns in maximal values. 

TRAVEL DEMAND 

 When forecasting , simply specifying demand as a constant flow value, , 
would naively suggest that the travel demand is known with certainty, and breakdown prediction 
would be .  The noise observed in the daily demand profile, as seen in Figure 1, would 
not play a role in forecasting breakdown.  We simply do not know that this is the case.  In our 
approach, we consider  for each of the 205 days.  To investigate whether or 
not noise in flow has a destabilizing effect on reliability, we will assess the effect that both  
and  have on our breakdown probability estimates.  

Stochastic Volatility 

 For each of the 205 days and at each of the 96 time periods, stochastic volatility was 
estimated.  Following Kastner and Fruhwirth-Schnatter (2013), the variance in flow 
measurements ( ), , for each day is assumed to have the following properties: 

 

 

 

where  is called the latent, time-varying volatility that follows a stochastic evolution.  
Since  above depends on ,  is a one-step ahead forecast that depends on .  
Moreover,  has a variance that is not allowed to vary unrestrictedly with time, but rather is an 
autoregressive process of order one.  We note that this model was fitted to each of the 205 days 
independently, thus allowing the parameters , , and  to vary by day.  This approach was 
deemed necessary in order to capture the day-to-day variation observed in the traffic record.   

FUNCTIONAL DATA ANALYSIS (FDA) MODELING 
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An integral tool used to analyze traffic breakdown is functional data analysis (FDA), or 
functional data models.  FDA models are used to extract the signal from the 15-minute 
aggregates which, although they are accurate representations of speed and flow, are still very 
‘noisy.’  Furthermore, irregularities in the data collection process, or missing measurements, may 
result in aggregates calculated from few observations.  Because these raw traffic observations 
can be erratic, because short intervals may identify traffic estimates that can only be sustained 
over the short term, aggregates based on few of these raw observations may be similarly noisy.  
To address this issue, functional data analysis (FDA) is employed to produce summaries, or 
smooth representations, of the data (both speed and flow) over a fine time scale, to extract the 
signal from the noise.  These resulting interpolating smooths will be herein referred to as ‘traces’ 
(For further details regarding our FDA models and theory, the reader is directed to Ramsay and 
Silverman, 2005, for example).  We note that in the previous discussing regarding the estimation 
of SV, FDA models were NOT used as their smoothness is believed to mask the true, observed 
variability in the traffic stream data.  However, for other parts of our analysis (see below), the 
noise in our data is considered as nuisance variability and FDA traces are, in fact, preferable.   
 
Data Traces, Capacity, and Breakdown 
 

Traces derived from FDA models are especially beneficial for extracting capacity data.  
These traces represent trends of already aggregated data, and the peaks of these smooth curves 
necessarily correspond to sustained maxima which are natural estimates of capacity.  Therefore, 
to help extract realistic signals from the noisy aggregates, daily flow maxima will be extracted 
from fitted FDA flow traces (smooths).  Figure 2 below illustrates the usefulness of the FDA 
traces as the smooth curve helps to identify a realistic maximal value.     

Because the censoring designation of daily flow maxima is dependent on daily 
breakdowns, and because these values directly relate to fitted capacity distributions, accurate 
assessment of breakdowns is essential.  Like most traffic analyses, we define breakdown to be 
the transition between freely flowing traffic and congested conditions.  This transition, or 
breakdown, occurs when persistent speeds above a fixed threshold are immediately followed by 
persistent speeds below the same threshold.  This speed threshold was set to 48 mph based on a 
visually distinction between congested and freely flowing traffic regimes.  By applying FDA, we 
are able to extract interpolated, intermediate speed and flow values based on the smooth 
representations of the data.  Thus, traces address the two issues with our data:  they provide 
precise (in time) estimates while maintaining smoothness.  When sustained drops in traffic 
speeds do occur, associated daily maximal flows are considered observed capacity data.  
Otherwise, on days where traces do not identify sustained breakdown, associated maxima are 
censored values.  Both these censored and observed capacity values will be used to calibrate the 
previously defined GEV model. 
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FIGURE 2  Speed (left) and flow (right) FDA traces for April 1, 2010.  The small circles represent flow 
aggregates.  Since a sustained speed below 48mph was observed (left), that day’s maximal peak flow (right) 

was deemed a capacity value.   

 
PROCEDURE (BAYESIAN MODEL FITTING) 

Capacity Data 

In general, daily maxima (capacity data) have two dominant characteristics:  small 
sample sizes and a high number of censored values.  Because of this, and because capacity 
model-fitting need not be done in real-time, a computational Bayesian approach was employed.  
Ozguven and Ozbay (2008) concluded that Bayesian estimation is far superior (more efficient) to 
non-parametric techniques for survival analyses with small samples and substantial amounts of 
censoring.  The OpenBUGS statistically software was used for these applications, and the 
analysis and manipulation of all OpenBUGS output, the data containing the Bayesian samples of 
the parameters, was then performed with the R statistical software.   

Because there is an absolute limit to the number of vehicles a road may carry, finite upper 
bounds were assumed for the capacity data, and, consequently, GEV shape parameters were 
assumed to be negative.  The corresponding prior distribution on the shape parameter reflects 
this limitation.  A somewhat diffuse prior distribution for the GEV scale parameter was chosen, 
but within a realistic range based on previous model-fitting.  Similarly, a semi-informative prior 
distribution was chosen for the location parameter as the center of the distribution can be 
estimated within a reasonable range.  Thus, the scale and shape priors were not over-specified, 
and we allowed the data to guide these posterior analyses.   

Freeway capacities,   are assumed to be generalized extreme value distributions (GEV) 
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with location, scale, and shape parameters , and , respectively.  Collected data are the 
combined maximum daily traffic flows, each of which is classified as a censored or un-censored, 
capacity value based on the previously established definition.  For the GEV model, the shape ( ), 
scale ( ), and location ( ) parameters are assumed to follow uniform prior distributions on (-.75, 
0), (0, 10), and (3, 10), respectively. 

Posterior results are based on 5,000 MCMC iterations, the first 2,000 discarded as a 
‘burn-in’ period.  Convergence and independence from the starting values were checked by 
CODA (distributions, traces, etc.), the standard tools in such cases.  Also, in all cases, starting 
values for the sampling scheme were generated from the defined prior distributions.   

Demand and Stochastic Volatility 
 
 Because of the complexity of the stochastic variability model discussed previously, 
parameter estimation is obtained via Bayesian MCMC methods.  Fortunately, the R package 
‘stochvol’ (Kastner, 2014) provides an efficient algorithm for such a Bayesian estimation of SV 
model parameters.  To complete the setup, prior distributions for SV parameters , , and  
must be established.  The parameter  is assigned a diffuse normal distributions ( (0, 100)) as 
this prior specification is not typically influential on estimation (Kastner, 2014).  For , the prior 
is specified by beta distribution hyperparameters (5, 1.5).  Finally, following Kastner (2014) and 
Fruewirth-Schnatter and Wagner (2010), we assign  a centered normal prior with 
hyperparameter equal to 1.  Such a choice of hyperparameter value is not believed to be 
influential on our final results (Kastner, 2014).  For further discussion regarding prior 
specification and the details of the process, the reader is directed to Kastner and Fruhwirth-
Schnatter (2013).     
 

The Bayesian sampling process is repeated for each time period (for each ) to 
yield distribution estimates for  for each day (for each ).  Posterior results are 
based on 10,000 MCMC iterations, with a ‘burn-in’ period of 1,000 iterations and further 
thinned.  The ‘stochvol’ package converts its output to CODA-compatible objects, so 
convergence and independence from the starting values were checked by the typical methods 
(distributions, traces, etc.).  In our case, the MCMC iterations indicated convergence to the 
stationary distribution of the chain.    

RESULTS 
 
SV for Individual Days 
 
 As stated, the SV model was fitted to each day independently.  To observe the effect of 
flow volatility on the SV parameter estimates, plots of flows and SV estimates were compared 
for each day.  Figures 3 and 4 below presents output for two days of our collection period:  both 
the SV in terms of posterior quantiles of the latent volatilities in percent ( ) over 
time (top) as well as the corresponding daily flow profile on the same time axis.   
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FIGURE 3  Plots of SV in terms of posterior quantiles of the latent volatilities (top) and daily flow values for 

April 14, 2010. 

 

FIGURE 4  Plots of SV in terms of posterior quantiles of the latent volatilities (top) and daily flow values for 
May 5, 2010. 
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 Figures 3 and 4 are typical of output for most days in that the SV model effectively 
identifies changes in flow volatility throughout the day.  That is, from both plots we can observe 
strong correspondence between flow volatility and increases (spikes) in SV.  Figure 4 is 
interesting as there was a span of missing flow values on this day (around time step 72-82) which 
were imputed based on the last observed flow.  Observing the SV plot during this same period, 
we see SV estimates of zero.     
 
SV by Time of Day 
 

As stated previously, the SV was fitted to each day independently.  Our procedure then 
produces an estimate of SV for each of 96 times steps for each of 205 days.  Although day-to-
day variability is observed in the flow data, most days seem to follow a somewhat similar pattern 
where volatility increases during morning and evening commuting hours.  With this in mind, we 
have decided to group the daily SV estimates together and identify trends by time of day.  More 
specifically, for the 205 estimate of SV at each of the 96 time steps, we have calculated both the 
mean confidence bounds.  Figure 5 below presents these values as a time series. 

   

 
FIGURE 5  Mean stochastic volatility (SV) by time of day (black) along with upper and lower 5% bands 

(grey). 

 While the grouping and averaging process across all 205 days does seem to ‘wash away’ 
much of the variability, we can glean some information from this plot.  Clearly, the increase in 
flow variability during the evening commute (around 6-7PM) is preserved in the SV plot and 
apparent in the somewhat sharp spike at this time.  Since flow volatility is observed during this 
time on the majority of days, we expect the SV estimates to reflect this behavior.  Also, we note 
that not only are the SV estimates during the evening commuting hours high on average, but the 
upper confidence band indicates that these values may be very large.  Although morning 
commuting hours also tend to be volatile times, the averaging process seems to mask this 
behavior.  We speculated that morning volatility probably occurs over a wider range of times 
when consider all days.  If this is the case, our procedure would fail to preserve the spikes at 
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particular time steps and instead give smoother, elevated values.  This does appear to be the case 
as SV estimates tend to be fairly high during the morning hours in comparison to other times of 
the day.      
 
Breakdown Probabilities 
 

For capacity, for the  model, our Bayesian approach yields posterior vector estimates of 
model parameters , , and .  Each vector, then, corresponds to a fitted GEV distribution for 
capacity.  At each quantile of these many distributions, the median value was extracted to 
produce a single estimate of the GEV distribution form.  Similarly, Bayesian models yield 
estimates for  at all  and for each day.  Once these parameters are identified, a simulation-
based procedure is used to estimate the probability of breakdown, or breakdown risk.  Such an 
approach takes advantage of the extraordinary wide variety of outcomes observed in the data set. 
 

Before performing our simulation, we first collect flow signal estimates, , for all  and  as 
identified via FDA traces.  Then, we collect all  for each day as identified from our SV model 
fitting procedure (above).  Next we estimate the probability of breakdown by performing the 
following steps: 
 

1) For some , randomly select a  ( . 
2) For that same , randomly select a  ( ) and sample from  

to determine given by . 
3) Draw a sample from the fitted GEV to obtain , an estimate for the capacity of the 

roadway. 
4) If , then record this sample as a breakdown. 
5) Repeat the process 1,000 times, recording the breakdown state for each sample.  The 

number of breakdowns among the 1,000 samples is denoted . 
6) Calculate the empirical probability for breakdown, , at time  given by 

.  We denote this value, the probability of breakdown at time , as .   
7) Repeat the process for all  ( ) to find all . 

 

As a comparison, to determine the effect of SV on breakdown probability, a second 
simulation was performed.  In this simulation, however, the  were sampled from the raw flow 
aggregates (as opposed to the FDA signals) and no additional volatility component (SV) was 
considered.  This flow value is then compared to a sampled capacity value (as above) to 
determine breakdown state.  The process is repeated 1,000 times for each time step to identify 
empirical probabilities of breakdown.  Finally, this breakdown probability was compared to that 
obtained using the SV.  Figure 6 below compares the probability estimates for the two sampling 
procedures by time of day.    
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FIGURE 6  Probability of breakdown ( ) by time of day as calculated by SV model (black) and sampling 
without considering SV (red).  Confidence bounds for SV model predictions are included as well (grey lines). 

The effect of introducing noise into our breakdown prediction is quite stark.  When 
modeling the volatility separately and combining it with a flow signal, the prediction of 
breakdown itself becomes very noisy, much noisier, in fact, than probabilities based on the raw 
flow data.  We observe from Figure 6 that the SV-based predictions of breakdown are not 
smooth, but tend to fluctuate wildly, especially at known volatile times of the day 
(morning/evening commutes).  This seems to be in keeping with the ‘random’ nature of 
breakdown occurrence, where breakdowns cannot be predicted based solely on traffic flow.   

CONCLUSION AND DISCUSSION 

In this paper we have outlined a procedure to predict highway breakdowns based on flow 
values.  The innovative part of our approach is the independent modeling of flow volatility 
through the use of a stochastic volatility model, a model form commonly used in economic time-
series analyses.  Functional data analysis (FDA) is used to extract realistic flow signals by time 
of day.  These flow signals are combined with estimates of SV to produce component estimates 
of demand.  In the end, when compared to estimates based on observed data, our estimation 
procedure yields dissimilar demands and ultimately dissimilar predictions of breakdown.  We 
have simply introduced a procedure, but, going forward, a more thorough simulation-based study 
should be performed to evaluate the predictive ability of our approach.  That is, many of our 
conclusions are based on visual analysis, and more thorough statistical testing of our model 
should be pursued.  The application of our study is clear:  estimation of probabilistic prediction 
of breakdown can be a valuable tool for decision-makers and administrators.  At the very least, 
results suggest that volatility plays a role in this breakdown, and that the SV-model is a suitable 
approach to estimate this volatility.    
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The National Academy of Sciences was established in 1863 by an Act of Congress, 
signed by President Lincoln, as a private, nongovernmental institution to advise the 
nation on issues related to science and technology. Members are elected by their peers  
for outstanding contributions to research. Dr. Ralph J. Cicerone is president.

The National Academy of Engineering was established in 1964 under the charter of 
the National Academy of Sciences to bring the practices of engineering to advising 
the nation. Members are elected by their peers for extraordinary contributions to 
engineering. Dr. C. D. Mote, Jr., is president.

The National Academy of Medicine (formerly the Institute of Medicine) was 
established in 1970 under the charter of the National Academy of Sciences to advise  
the nation on medical and health issues. Members are elected by their peers for 
distinguished contributions to medicine and health. Dr. Victor J. Dzau is president.

The three Academies work together as the National Academies of Sciences, Engineering, 
and Medicine to provide independent, objective analysis and advice to the nation and 
conduct other activities to solve complex problems and inform public policy decisions.  
The Academies also encourage education and research, recognize outstanding 
contributions to knowledge, and increase public understanding in matters of science, 
engineering, and medicine. 

Learn more about the National Academies of Sciences, Engineering, and Medicine at 
www.national-academies.org. 

The Transportation Research Board is one of seven major programs of the National 
Academies of Sciences, Engineering, and Medicine. The mission of the Transportation 
Research Board is to increase the benefits that transportation contributes to society by 
providing leadership in transportation innovation and progress through research and 
information exchange, conducted within a setting that is objective, interdisciplinary, 
and multimodal. The Board’s varied activities annually engage about 7,000 engineers, 
scientists, and other transportation researchers and practitioners from the public and 
private sectors and academia, all of whom contribute their expertise in the public 
interest. The program is supported by state transportation departments, federal agencies 
including the component administrations of the U.S. Department of Transportation, and 
other organizations and individuals interested in the development of transportation. 

Learn more about the Transportation Research Board at www.TRB.org.
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