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The Second Strategic Highway  
Research Program

America’s highway system is critical to meeting the mobility and 
economic needs of local communities, regions, and the nation. 
Developments in research and technology—such as advanced 
materials, communications technology, new data collection tech-
nologies, and human factors science—offer a new opportunity 
to improve the safety and reliability of this important national 
resource. Breakthrough resolution of significant transportation 
problems, however, requires concentrated resources over a short 
time frame. Reflecting this need, the second Strategic Highway 
Research Program (SHRP 2) has an intense, large-scale focus, 
integrates multiple fields of research and technology, and is 
fundamentally different from the broad, mission-oriented, 
discipline-based research programs that have been the mainstay 
of the highway research industry for half a century.

The need for SHRP 2 was identified in TRB Special Report 260: 
Strategic Highway Research: Saving Lives, Reducing Congestion,  
Improving Quality of Life, published in 2001 and based on a 
study sponsored by Congress through the Transportation Equity 
Act for the 21st Century (TEA-21). SHRP 2, modeled after the 
first Strategic Highway Research Program, is a focused, time-
constrained, management-driven program designed to com
plement existing highway research programs. SHRP 2 focuses 
on applied research in four areas: Safety, to prevent or reduce the 
severity of highway crashes by understanding driver behavior; 
Renewal, to address the aging infrastructure through rapid design 
and construction methods that cause minimal disruptions and 
produce lasting facilities; Reliability, to reduce congestion through 
incident reduction, management, response, and mitigation; and 
Capacity, to integrate mobility, economic, environmental, and 
community needs in the planning and designing of new trans-
portation capacity.

SHRP 2 was authorized in August 2005 as part of the Safe, 
Accountable, Flexible, Efficient Transportation Equity Act: A 
Legacy for Users (SAFETEA-LU). The program is managed by the 
Transportation Research Board (TRB) on behalf of the National 
Research Council (NRC). SHRP 2 is conducted under a memo-
randum of understanding among the American Association of 
State Highway and Transportation Officials (AASHTO), the 
Federal Highway Administration (FHWA), and the National 
Academy of Sciences, parent organization of TRB and NRC. 
The program provides for competitive, merit-based selection 
of research contractors; independent research project oversight; 
and dissemination of research results.
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This report analyzes the performance of a passive alcohol sensor included in the head unit 
of the data acquisition system used in the SHRP 2 Naturalistic Driving Study (NDS). Driver 
impairment is a critical issue in traffic safety, and the ability to identify alcohol-impaired 
drivers would be valuable for users of the NDS data. The sensor responds to the presence 
of alcohol in the cabin air. A positive sensor reading can come from many sources: alcohol 
from the breath of a driver or other occupant, an open container of an alcoholic bever-
age, aftershave lotion or perfume, windshield wiper fluid, and even some fast food. On the 
other hand, open windows may dissipate alcohol from an impaired driver’s breath before 
it reaches the sensor. Thus, the sensor can produce a positive reading when the driver is 
sober and can produce a negative reading for an alcohol-positive driver. The objective of 
this report is to evaluate the sensor performance under several scenarios with known driver 
alcohol levels and to investigate the feasibility of developing an algorithm to identify poten-
tially alcohol-impaired drivers based on the sensor output.

The SHRP 2 NDS is the first large-scale study focused on collision prevention (as opposed 
to injury prevention once a collision occurs) since the Indiana Tri-Level Study (Tri-Level 
Study of the Causes of Traffic Accidents: Final Report, DOT HS-805 085, U.S. Department 
of Transportation, May 1979). Vehicle use was recorded continuously during the SHRP 2 
NDS. Information on vehicle travel, or exposure, can be extracted at the same level of detail 
as for safety-related events, such as crashes and near crashes. Hence, the SHRP 2 NDS is 
the first large-scale study to support detailed estimates of collision risk. Moreover, crashes 
are a leading cause of nonrecurring congestion, so collision prevention has added benefits 
in terms of reduced delay, fuel consumption, and emissions. The NDS provides objective 
information on the role of driver behavior and performance in traffic collisions and on the 
interrelationship of the driver with vehicle, roadway, and environmental factors.

The SHRP 2 Safety research program was carried out under the guidance of the Safety 
Technical Coordinating Committee (TCC), which was composed of volunteer experts. 
The Safety TCC developed and approved all project descriptions and budgets and met 
semiannually to review progress and approve any program modifications. The Oversight 
Committee approved all budget allocations and contract awards. Assistance was pro-
vided by expert task groups, which developed requests for proposals, evaluated proposals 
and recommended contractors, and provided expert guidance on many issues, such as 
data access policies and procedures. The decisions and recommendations of the govern-
ing committees were implemented by the SHRP 2 staff as they carried out day-to-day 
management of the research projects.

F O R E W O R D
Kenneth L. Campbell, SHRP 2 Chief Program Officer, Safety
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1

The second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study (NDS) 
offers a unique glimpse into alcohol-impaired driving through the inclusion of an alcohol sensor 
within the standard instrumentation package. This research effort developed and evaluated an 
alcohol-detection algorithm using the sensor through two approaches: an experimental in-vehicle 
testing regimen and an examination of a subset of SHRP 2 NDS trips.

For the experimental in-vehicle testing, a sedan was instrumented with two SHRP 2 alcohol 
sensors. During 50 15-minute trials, controlled levels of alcohol were introduced into the cabin 
and alcohol sensor readings were recorded. The sensitivity of the algorithm at detecting alcohol 
presence during these trips was 96.6% and the specificity was 100%.

A data set was created using SHRP 2 trips that were visually reduced via manual video coding 
for the presence of imbibed and unimbibed alcohol (n = 659). It provided insight into many 
unimbibed alcohol sources that can lead to misclassification as imbibed alcohol. Confusion 
matrices were conducted on the data set and a subset comprising trips with moderately impaired 
drivers and “normal” driving trips. The results indicated a sensitivity ranging from 92.2% to 
93.7% and a specificity ranging from 36.9% to 100%. The large variance in specificity is due to 
one of the data sets intentionally oversampling “positive” cases.

The results indicate that an alcohol-detection algorithm can be a useful tool for identify-
ing potential alcohol-impaired trips in the SHRP 2 database. However, trained data reduc-
tionists should also be used to make final impairment determinations due to the large number 
of unimbibed alcohol sources that can affect the sensor.

Executive Summary

Naturalistic Driving Study: Alcohol Sensor Performance
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2

Overview

Alcohol-impaired driving continues to be a significant public 
health concern. In 2011, 9,878 people were killed as a result of 
drunk driving in the United States, representing 31% of all 
traffic fatalities (1). Increased traffic crash risk results from 
drivers who experience pronounced and systematic physio-
logical impairment while under the influence of alcohol (2, 3). 
Additionally, the intoxication level of passengers is linked 
to heightened crash risk through increased distraction of 
drivers (3, 4). Therefore, the presence of alcohol within a 
vehicle is a measure of significant interest when investigating 
crash causation.

The second Strategic Highway Research Program (SHRP 2) 
Naturalistic Driving Study (NDS) has collected 50 million vehi-
cle miles of naturalistic driving data on more than 3,000 drivers. 
The instrumentation of the vehicles used in this study included 
prototype alcohol-sensing technology that continuously 
detected the amount of ethanol in the vehicle’s interior. How-
ever, this sensor outputs a raw value that is difficult for those 
unfamiliar with the technology to interpret. In addition, the 
presence of uncharacterized noise affects the sensor’s ability 
to detect the presence of alcohol.

Several previous efforts explored the efficacy of the SHRP 2 
alcohol sensor to detect the presence of imbibed alcohol. These 
included an experimental pilot study and Phase 1 (proof of 
concept) of the current project. The current effort, Phase 2, 
was built on previous attempts to develop an alcohol-detection 
algorithm that could be used to flag potential alcohol-involved 
cases in the SHRP 2 data set.

Background

Detailed descriptions of the SHRP 2 database, alcohol sensor, 
and previous research efforts follow.

SHRP 2 Database

The SHRP 2 database provided the primary data set used for 
early algorithm efforts and is also the primary database for 
this project. The SHRP 2 NDS is the largest naturalistic driv-
ing study of its kind. As noted, it comprises 50 million miles of 
data, 5 million trip files, and more than 3,000 primary drivers. 
The data set contains video and kinematic information from 
each of the specially instrumented SHRP 2 vehicles. The abil-
ity to detect the presence of alcohol using SHRP 2 sensors will 
help answer a multitude of research questions and will aid in 
evaluating the impact of alcohol on driver errors and crash 
likelihood.

Hardware Configuration

The alcohol sensor installed in the SHRP 2 vehicles was a 
model HS130D from Sencera Co., Ltd. (Figure 1.1). This 
sensor is a tin dioxide semiconductor gas sensor designed to 
quickly detect alcohol vapors at high relative humidity.

The alcohol sensor was manufactured to detect the pres-
ence of ethanol in the air. This could include alcohol vapors 
released into the cabin of a vehicle from the natural breathing 
of an individual who had consumed alcohol or a variety of 
unimbibed sources (e.g., hand sanitizer, perfume, mouthwash). 
The sensor returned a raw value in millivolts (mV). For the 
SHRP 2 project, the alcohol sensor was installed on the under-
side of the head unit, which was mounted near the vehicle’s 
rearview mirror mount. This central location meant that it 
was equally able to detect alcohol vapors from the breathing 
of both the driver and the passenger.

Pilot Investigation

A pilot study of the alcohol sensor was conducted to examine 
the accuracy of the sensor under a variety of conditions. This 

C h a p t e r  1
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set. This was a limited exploratory effort that sought to develop 
an alcohol-detection algorithm from the SHRP 2 alcohol sen-
sor and apply that algorithm to a selection of SHRP 2 trips. It 
also included limited sensor testing using a human partici-
pant with the alcohol sensor in the same location as the final 
SHRP 2 sensor instrumentation.

The human participant testing indicated that sensor read-
ings in the SHRP 2 location decreased as a function of BrAC. 
Figure 1.2 shows the filtered alcohol sensor readings over time 
for occupants with differing BrAC levels. The vertical red lines 
represent the times when the windows were rolled up or down; 
the first red line marks windows being rolled down, the second 
red line shows windows being rolled up, and the third red line 
marks windows being rolled down again. This shows that 
alcohol sensor readings were sensitive to windows being rolled 
up or down and that sensors may, in fact, be able to detect the 
presence of alcohol because the change in sensor readings 
corresponds directly to the introduction of fresh air into the 
vehicle cabin.

Despite the strong results, a successful algorithm was not 
developed in this initial phase that could reliably detect driver 
and passenger impairment in the SHRP 2 data set. This was 
partly due to the limited time, scope, and unanticipated chal-
lenges that arose during this effort. For example, there was no 
true “gold standard” data set of known alcohol-impaired trips 
to use as a model for alcohol sensor algorithm development. 
Also, a number of unanticipated substances were identified 
that seemed to strongly influence alcohol sensor readings 
(e.g., windshield wiper fluid and fast food). Given these out-
comes, a second phase of research was initiated to continue 
development of the alcohol-detection method.

Phase 2: Development and Evaluation  
of an Alcohol-Detection Algorithm

The current effort, Phase 2, built on the results and over-
came many of the challenges of the previous efforts. This 

research involved administering controlled doses of alcohol 
to researchers and having them sit in a vehicle equipped with 
an alcohol sensor. Researchers were administered alcohol 
to achieve target breath alcohol content (BrAC) readings of 
0.05 grams per deciliter (g/dL) and 0.08 g/dL. These researchers 
then sat in either a front or back seat. Test conditions varied, 
based on whether the vehicle was moving, the air inside the 
vehicle was set to recirculate, or the windows were up or down.

Results demonstrated that the prototype alcohol sensor 
configuration installed in the vehicle at that time could detect 
and distinguish varying levels of participant intoxication in 
several of these experimental conditions. In particular, the 
most accurate sensor readings occurred when the heating, 
ventilation, and air conditioning (HVAC) was set to recircu-
late air and the windows were up. The sensor had difficulty 
detecting all but relatively high levels of alcohol when the 
HVAC system was on fresh air settings.

Furthermore, the study also found differences in alcohol 
sensor readings for imbibed versus unimbibed alcohol. The 
primary difference was a steady, continually decreasing sensor 
reading for imbibed alcohol versus a sharper spike in sensor 
readings for unimbibed alcohol. These results suggested that a 
suitably designed algorithm could potentially differentiate 
between imbibed versus unimbibed alcohol.

There were several significant changes between the alcohol 
sensor used in the pilot and the final SHRP 2 instrumentation. 
These include sensor position, the addition of a fan to circu-
late air across the sensor in the SHRP 2 instrumentation, and 
significant software changes. Thus, while the results from the 
pilot research are useful, they cannot be generalized to alcohol 
sensor readings in the actual SHRP 2 data set.

Phase 1: Alcohol-Detection Algorithm  
Proof of Concept

The first phase of research examined the likelihood of devel-
oping an alcohol-detection algorithm from the SHRP 2 data 

Figure 1.1.  Alcohol sensor (left), sensor on circuit board (middle), and head unit as installed in SHRP 2 fleet (right).
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was primarily accomplished through the development of a 
gold standard data set through experimental in-vehicle test-
ing and extensive data reduction of SHRP 2 trips for signs 
of impairment. The objectives of the effort were to develop 
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Figure 1.2.  Alcohol sensor readings decrease as BrAC increases.

an alcohol-detection algorithm to be applied to the SHRP 2 
database and evaluate the accuracy of the algorithm at detect-
ing and differentiating imbibed and unimbibed alcohol in 
the SHRP 2 database.
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Research Approach

The present research study built on the pilot investigation 
and Phase 1. Those earlier exploratory efforts established a 
framework for understanding the nature of the alcohol sen-
sor, provided significant insight into the necessary direction 
for Phase 2, and demonstrated several research needs. The 
primary need was a gold standard data set to better under-
stand alcohol sensor readings and more precisely evaluate the 
accuracy of any developed alcohol-detection algorithm using 
this sensor. Additionally, an accurate assessment of intoxica-
tion based on video evidence was necessary to evaluate driver 
and passenger impairment in existing SHRP 2 trips.

To meet these diverse objectives, two research approaches 
were undertaken. Each of these approaches met different 
objectives as follows:

1.	 Mechanical Breather Approach: A gold standard data set 
was critical to understanding sensor readings and accu-
rately evaluating an alcohol-detection algorithm using 
this signal. A carefully controlled experimental data set 
was created by instrumenting a sedan with the standard 
SHRP 2 instrumentation—including the alcohol sensor—
and controlling the amount of alcohol present within the 
vehicle cabin. This was accomplished through a variety of 
methods that are more fully described in the Mechanical 
Breather Approach section.

2.	 Naturalistic Approach: The ultimate objective of the research 
was to validate the efficacy of the alcohol sensor at iden-
tifying imbibed alcohol trips within the SHRP 2 database. 
Specifically, the naturalistic data approach was designed to 
determine whether the sensor could
a.	 Differentiate between imbibed and unimbibed alco-

hol; and
b.	 Differentiate between cases of suspected moderate alco-

hol use and cases with no suspected alcohol use.
	 The naturalistic approach met this objective by coding 

trips for alcohol involvement from the SHRP 2 database 
by manually performing visual data inspection to identify 

both alcohol impairment of the driver or passenger and 
potential unimbibed alcohol sources.

A data set was created from the SHRP 2 database for the nat-
uralistic approach. This naturalistic test data set was designed 
to investigate false positives and the ability of the alcohol sen-
sor to differentiate between imbibed and unimbibed alcohol. 
Given the purpose of this data set, the vast majority of included 
trips were selected on the basis of positive alcohol sensor values. 
This overrepresentation of positive alcohol sensor readings 
made this data set a poor source for evaluating the sensor’s 
performance at discriminating trips involving alcohol from 
those trips not involving alcohol. This sampling approach 
inflated the number of false positives compared with the 
SHRP 2 database. Thus, a subset of this data set, called the 
“impaired data set,” was created; the subset was limited to con-
trol trips and trips in which a passenger or driver was deemed 
at least “moderately” impaired by the data reductionists. Spe-
cifically, the impaired data set included only trips in which 
data reductionists suspected at least a moderate impairment 
of a driver or passenger and control trips that were not initially 
selected because of alcohol sensor flags or time of day. The 
sampling, trip selection, and manual coding are described in 
more detail in the Naturalistic Approach section of this report.

Finally, known impaired trips from the SHRP 2 data set were 
examined to develop the alcohol-detection algorithm. These 
trips were chosen independently from the trip files used in 
the naturalistic test data set. These were primarily identified 
by drivers admitting they were driving while impaired or from 
trips in which alcohol impairment was identified when the trip 
was being evaluated for another purpose.

Mechanical Breather Approach

One important objective of this research was to identify 
whether the alcohol sensor could reasonably detect alcohol 
and how it responded to varying levels. This was necessary 
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to determine if the sensor was accurately capturing data and 
to aid in developing an algorithm. Since the purpose of the 
sensor was to detect imbibed alcohol, ideally a study could 
have been conducted in which drivers with different levels of 
blood alcohol content (BAC) would drive a vehicle (or at least 
be in the driver seat of a vehicle) instrumented with the alcohol 
sensor. With data from such a study, the sensor’s response to 
varying BACs could have been assessed. Unfortunately, because 
of both cost reasons and Institutional Review Board (IRB) 
challenges, this approach was not practical within the allotted 
time frame. Given these constraints, the best solution was to 
develop a mechanical alcohol breather based on a human’s 
natural breath at varying BACs. This mechanical breather was 
then used to produce different levels of alcohol in the vehicle 
while it was being driven.

Development of the “Boozooka” 
Mechanical Breather

Collecting data from intoxicated individuals is time con-
suming and complex given the extra steps needed to protect 
human participants and control BrAC. To circumvent these 
problems, a mechanical breather, fondly called the Boozooka, 
was developed. The Boozooka—consisting of an air compres-
sor, regulator, alcohol chamber, mixing valve, and breath alco-
hol tester that released controlled amounts of alcohol vapors 
into the cabin—diffused alcohol into the air in a manner simi-
lar to human breathing (Figure 2.1).

The compressor pumped air through a regulator that was 
tuned to represent a typical human breathing rate of 10 liters 
of air per minute. The air was then split into two streams, one 
of which passed air through an alcohol chamber filled with 
cotton balls saturated with 80 proof vodka (cotton balls helped 
control splashing in the chamber while the vehicle was in 
motion). A needle valve allowed the alcohol concentration to 
be tuned by controlling the amount of air passing through the 
chamber relative to the bypass. During trips, the compressor 
was powered using a cigarette lighter plug-in.

The exact BrAC was measured using a Lifeloc FC20 breath 
alcohol tester, which is accurate to ±0.005 g/dL. Three Lifeloc 
FC20 breath alcohol testers were rotated between trips to 
ensure none of the units became saturated. All units were fac-
tory recertified by Lifeloc Technologies immediately before 
data collection. During each experiment, the Boozooka released 
alcohol vapors of varying BrAC concentrations according to 
the test plan.

Even though the Boozooka did not emulate certain charac-
teristics of human breath (e.g., humidity, temperature, carbon 
monoxide and other gases) it was still functionally equivalent 
for the alcohol sensor. The Boozooka “breathed” the alcohol at 
a controlled BrAC and volume. Furthermore, the Boozooka 
was designed to emulate how a human breathes in the vehicle. 
Since the output from the Boozooka did not blow directly onto 
the alcohol sensor, it was expected that the various gases of 
humans in the vehicle and the Boozooka were mixed by the 
time they reached the alcohol sensor. Finally, the Boozooka was 
also tested against an alcohol-impaired individual to ensure 
that the system responded qualitatively in a similar manner.

Experimental Vehicle

For the in-vehicle testing of the mechanical breather, an M35 
Infinity sedan was specially instrumented for the project. It 
was imperative that this instrumentation mirror the SHRP 2 
instrumentation setup as closely as possible. The M35 had two 
SHRP 2 head units, encompassing the alcohol sensor, mounted 
just under the rearview mirror. This positioning not only 
matched that of the single head unit of the SHRP 2 instrumen-
tation but also allowed for the collection of readings from two 
alcohol sensors simultaneously, doubling the amount of data 
collected and providing a reliability estimate of alcohol sensor 
values. Specifically, this allowed for the direct comparison of 
two alcohol sensor readings under the exact same conditions. 
The vehicle was also equipped with a small data acquisition 
system (MiniDAS) to collect the alcohol sensor data. Images of 
the experimental equipment are shown in Figure 2.2.

Data-Recording Interface

The vehicle data acquisition system (DAS) used a data-
recording program that ran on a custom embedded Linux 
operating system. In addition to choreographing the col-
lection of synchronized data, this program also provided an 
interface for researchers to enter experimental conditions 
and variables into the in-vehicle data stream (a screenshot of 
the user interface is provided in Appendix A). In particular, 
study variables could be directly associated with correspond-
ing alcohol sensor readings from the two head units. For 
example, the researchers kept a record of the in-vehicle BrAC, 
experimental conditions, air currents, and trip number. Data 

Figure 2.1.  Boozooka mechanical breather used for 
in-vehicle alcohol testing.
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were collected and stored at a rate of 10 Hz, the same rate 
used by the alcohol sensor in the SHRP 2 study.

Experimental Procedure

Experimental tests were performed on a predetermined study 
route that included several types of roadways and speeds rang-
ing from 25 mph to 65 mph and that lasted approximately  
15 minutes. Fifty trials were conducted under three experi-
mental conditions. Each trial included only one condition. The 
conditions and number of trials are as follows:

1.	 Control testing (no BrAC), 6 trials;
2.	 Human testing, 11 trials; and
3.	 Boozooka testing, 33 trials.

The heaviest emphasis was on Boozooka testing; the human 
testing was done primarily for validation.

Across all experimental conditions within the vehicle, one 
researcher drove and another researcher entered data. During 
Boozooka testing, a third researcher operated the Boozooka 
and confirmed its BrAC output using the breath alcohol testers. 

In the human testing condition, an additional researcher who 
had consumed alcohol sat in the passenger seat. The con-
trol trials were performed primarily with the driver and the 
researcher who entered data, occasionally with a third researcher 
observing from the back seat.

Ten trials were conducted using recirculating air, and  
40 trials used fresh air settings. The pilot study research indi-
cated fresh air would provide a more challenging environ-
ment for detecting alcohol presence, so more fresh air trials 
were chosen. Windows were rolled up for all trips since 
previous research indicated that the alcohol sensor could 
not detect alcohol presence with the windows rolled down. 
Accordingly, trips with windows rolled down were not 
conducted.

Between each experimental trial for all test conditions, the 
car was parked and the windows or doors were opened for 
approximately 10 to 15 minutes to allow the alcohol sensor to 
return to baseline.

Before each Boozooka trial, the level of alcohol within the 
alcohol chamber was examined. If the level was too low, 
then alcohol was added. The Boozooka operated for at least 
10 minutes before beginning a trip to ensure stable BrAC 

Figure 2.2.  M35 (upper left), outside view of the two head units and MiniDAS (upper right), MiniDAS (lower left), 
and inside view of two head units and MiniDAS (lower right).
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output, and a trip did not start until multiple consecutive 
readings were within approximately 0.04 g/dL. Readings on 
Boozooka BrAC were taken at least every 5 minutes of the 
trip using the Lifeloc FC20 breath alcohol testers. For the 
human testing, a BrAC reading was taken at the beginning 
and end of each trip since slight changes in BrAC were pos-
sible during the course of a trip.

Mechanical Breather Data Set

The mechanical breather data set included a total of 50 
15-minute experimental trials. Two alcohol sensors in the 
instrumentation provided the independent readings repre-
sented in Table 2.1, doubling the number of samples for 
analysis. These trips constituted the gold standard data set 
because of the experimentally controlled presence of alco-
hol within the vehicle.

Naturalistic Approach

The ultimate goal of a successful alcohol-impairment algo-
rithm was to detect impaired trips within the SHRP 2 data set 
while minimizing false detections due to the presence of 
unimbibed alcohol. It was important to make sure the sample 
had an adequate number of true positives in which imbibed 
alcohol was likely (most important), false positives in which 
other sources of alcohol were likely, and a control group in 
which alcohol presence, though possible, was unlikely.

To enable testing with SHRP 2 data, a reference data set 
was developed in which impairment was independently 
determined. Significant effort went into the development 
of a behavioral checklist for impairment using visual cues that 
could be identified using the SHRP 2 cameras. Similarly, the 
SHRP 2 trips included in the sample and the data reduction 
team in charge of reducing the trip files were carefully selected.

Note that trip files, or trips, for the purpose of the natural-
istic driving data are defined as the time from the vehicle being 
started to it being turned off. Up to a 60-second delay occurred 
between vehicle ignition and data collection due to the startup 
of the DAS. All analyses made use of the entire trip to identify 
the possible presence of unimbibed and imbibed alcohol.

Selection of SHRP 2 Trip Files

At the beginning of the project, it was impossible to deter-
mine the number of total impaired trips in the SHRP 2 data-
base; the number of substances or events that would trigger 
the alcohol sensor; and the success of the algorithm in detect-
ing and differentiating types of alcohol. This necessitated a 
trip selection approach that would maximize the probability 
of finding impaired trips and populate the data set with trips 
of interest for evaluation. Thus, the first and largest (n = 562) 
batch of trips was selected to maximize the likelihood of 
positive (i.e., sensor-flagged) trips. All trips in this batch 
were selected from trips occurring between 12:00 a.m. and 
4:00 a.m. in the driver’s local time, a time range expected to 
have a high likelihood of trips containing imbibed alcohol. 
Additionally, trips were selected on the basis of alcohol sen-
sor values to maximize the probability of finding impaired 
trips and trips with unimbibed alcohol. Trips that crossed 
a certain threshold for spikes, standard deviations, or aver-
ages for sensor readings were flagged and set aside for the 
reduction team. This process created an ideal data set for 
evaluating false positives and testing the algorithm’s ability 
to discriminate between imbibed and unimbibed alcohol 
within a vehicle.

Once a large number of impaired and unimbibed alcohol 
trips were identified through manual video review, a sec-
ond batch of trips was chosen. These trip files were chosen 
at random, irrespective of time of day or sensor readings, 
to select a group of trips during which imbibed alcohol 
presence was unlikely. While the first batch of trips achieved 
the objective of exploring the sensor’s ability to differenti-
ate imbibed from unimbibed alcohol presence, the second 
batch of trips (n = 97) successfully evaluated the alcohol 
sensor’s ability to differentiate alcohol-involved trips from 
trips without alcohol presence (i.e., false alarms). This was 
primarily accomplished through the inclusion of the con-
trol trips.

The final data set included a total of 659 trips. Originally, 
692 trips were sent to the data reduction team across the two 
batches. However, 33 trips were excluded because (1) they did 
not go through the initial data ingestion quality assurance 
process required for any trip used in the SHRP 2 data set,  
(2) the consented driver was not present for the trip, or (3) the 
videos or alcohol sensor data did not properly load. The final 
data set of 659 trips served as the naturalistic test data set.

Alcohol-Impairment Behavioral Checklist  
and Data Reduction Checklist

Other than the alcohol sensor and the kinematic sensors, 
the camera views of the standard SHRP 2 instrumentation 
package provided the most reliable method for determining 

Table 2.1.  Mechanical Breather (Gold Standard)  
Data Set

Conditions Experimental Trials Total Samples

Control (no BrAC)   6   12

Human Impaired 11   22

Boozooka 33   66

Total 50 100
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intoxication. Camera views captured the forward roadway, 
rear view, driver’s face, and driver’s hands. Reductionists 
looked at all camera views to determine impairment.

Data reductionists checked for and coded signs of impair-
ment across several broad categories that included visually 
seeing alcohol sources within a vehicle (both imbibed and 
unimbibed), behavioral cues from the face-view camera, 
and driving performance. The data reductionists observed 
and coded these categories of data and were then asked to 
make subjective evaluations of driver impairment and degree 
of impairment.

The behavioral checklist was made after carefully review-
ing and synthesizing information from literature related to 
visual signs of impairment (5–10). From this literature 
more than 90 behavioral and visual cues were identified for 
assessing alcohol intoxication. Out of this broader list of iden-
tified cues, 64 cues were deemed observable using SHRP 2 
video. These cues and operational definitions are provided 
in Appendix B.

Reductionists also coded signs or presence of unimbibed 
alcohol. They were given a protocol with a list of known alco-
hol sensor triggers: fast food, hand sanitizer, perfume, cologne, 
cigarettes, marijuana, other drugs, chewing gum, and wind-
shield wiper fluid. Reductionists had the option of noting in 
the data file any other substances that they deemed suspicious 
or that might contain any form of alcohol.

Data Reduction Procedure

Six specially trained data reductionists from the Virginia Tech 
Transportation Institute (VTTI), all of whom had experience 
working with intoxicated individuals in a field setting for other 
research efforts, reduced the trip files. In previous endeavors 
they collected BrAC data from pedestrians in a bar-centric 
downtown district; on average, each individual had spent over 
100 hours conducting research in this field setting with intox-
icated individuals (11–13). Furthermore, each of the data 
reductionists was trained specifically for this project by a data 
reduction supervisor.

Four of the data reductionists served as the primary data ana-
lysts for trip files. These reductionists filled out a check sheet 
that coded behavioral cues for impairment (see Appendix B), 
noted any observed types of unimbibed alcohol, noted indica-
tors of poor driving performance, and made determinations 
about the driver’s and passenger’s level of intoxication. These 
data reductionists were allowed to examine all video views but 
were instructed not to look at alcohol sensor readings to remove 
potential bias. Reduction of each video took approximately 
10 to 15 minutes with the data reductionists watching the first 
2 minutes, last 2 minutes, and 3 minutes at random points in 
between. Additionally, the data reductionists watched most of 
the video at 10× speed to find possible sources of unimbibed 

alcohol and identify critical events that could be particularly 
informative in determining impairment.

One data reductionist served as the alcohol sensor valida-
tor and, to avoid bias, was the only individual allowed to look 
at the alcohol sensor readings. This individual was instructed 
to consider the alcohol sensor and all video views to further 
examine points in the trip when the alcohol sensor drastically 
changed. This reductionist would then code events happening 
around that time period in an Excel file separate from the one 
used by the four primary reductionists. This procedure ensured 
that sources of unimbibed alcohol were not missed since it was 
difficult for the primary reductionists to catch every substance 
used, particularly during longer trips. Unimbibed alcohol was 
caught most often because it usually produced sharp spikes in 
sensor readings. However, this procedure was also able to iden-
tify intoxicated individuals entering the vehicle in designated 
driver (DD) scenarios, alcoholic beverages being poured within 
a vehicle, and other similar types of impaired trips. The alcohol 
sensor validator was not allowed to edit the Excel log of the 
primary data reductionists and did not determine impairment. 
At the conclusion of the data reduction effort, a senior member 
of the research team updated the primary data file to include 
substances identified by the alcohol sensor validator. Again, 
only the timestamps and identification of substances were 
updated, not decisions regarding intoxication.

The final data reductionist served as the quality assurance 
reviewer who went through and validated the work of the four 
primary reductionists. This reductionist added comments 
to the data file when discrepancies of judgment were identi-
fied, which caused the original reductionists to review their 
comments. When the data reductionists agreed with the 
changes, they were entered into the data file. In the event of 
disagreement, the data reduction supervisor or senior mem-
ber of the research team would view the trip and make the 
final determination.

Naturalistic Test Data Set

As shown in Figure 2.3, the naturalistic test data set includes 
659 trips. Of these trips, 562 were initially chosen because of 
a preliminary positive alcohol sensor reading and their late-
night occurrence when alcohol use was more likely (Batch 1). 
The remaining 97 trips served as a control group and were 
selected randomly, irrespective of the time of day (Batch 2). 
All 659 trips were reduced via manual video coding to iden-
tify possible impairment and possible sources of alcohol, 
including potential false positives.

Although the test data set did contain control trips, it con-
tained over five times more trips with likely alcohol presence. 
This ratio is much different from what would be expected in the 
SHRP 2 database. The SHRP 2 database would be expected to 
have far fewer trips with alcohol present than trips without 
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Batch 1: Late Night
and Alcohol Sensor

Positive Trips
n = 562 

Batch 2: Randomly 
Selected Control Trips 

n = 97 

Complete Data
Set 

n = 659 

Moderately 
Impaired Trips

n = 91 

Control Trips 
n = 97 

Trip
Batches

Impaired
Data Set

Naturalistic
Test Data Set

Figure 2.3.  Distribution of trip files into relevant 
analysis databases.

alcohol present. Therefore, this data set was not designed to 
determine the sensitivity and specificity that an algorithm 
would have when compared with the SHRP 2 database—it 
was too biased toward positive alcohol readings. Instead, 
this data set was designed to investigate the accuracy of the 
alcohol-detection algorithm in differentiating imbibed from 
unimbibed alcohol because reliably separating false positives 
from true positives was a primary objective of the study.

A second objective of the naturalistic test data set was to 
determine how well impaired driving trips could be differen-
tiated from unimpaired driving trips. As shown in Figure 2.3, 
a subset of the naturalistic test data set, the impaired data set, 
was used to test this objective. The impaired data set included 
all the randomly selected control trips (Batch 2) and trips 
from the naturalistic test data set identified by reductionists 
as having at least one vehicle occupant who was moderately 
impaired. Thus the impaired data set comprised 188 trip files, 
including 91 trips in which video reductionists rated at least 
one vehicle occupant as being “moderately” impaired and 
97 randomly selected trips serving as a controlled baseline.

The impaired data set was designed specifically to show how 
well the algorithm could differentiate moderately impaired 
driving from normal driving. Analyses were conducted sep-
arately on both the complete naturalistic test data set and 
the impaired data set derived from this sample.

Neither the naturalistic test data set nor its subset, the 
impaired data set, provided a representative estimate of the 
algorithm’s effectiveness across the entire SHRP 2 database, as 
developing a data set for this purpose would have been cost 
prohibitive. For example, out of the 97 control trips, only one 
indicated potential driver impairment. Thus, a large number 
of randomly selected trips would need to be evaluated to find 
a sufficient number of potentially impaired trips to assess this 
algorithm, an effort that was outside the budgetary constraints 
of the project.
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Findings and Applications

Algorithm Considerations 
and Development

Previous research efforts for the alcohol sensor and an exam-
ination of trips known to have imbibed and unimbibed alco-
hol presence created the framework for the development of 
an alcohol-detection algorithm using alcohol sensor data. 
These considerations and examples are detailed below along 
with a description of their translation into the final non
proprietary algorithm used in this research.

Critical Considerations for 
Algorithm Development

As shown in Figure 3.1, alcohol sensor readings are almost 
always defined by certain characteristics. In particular, the 
figure shows an unimpaired trip free from the presence of 
unimbibed alcohol; it also shows the warm-up period and 
“shadow” that characterize the alcohol sensor output. Almost 
all readings, even in the presence of alcohol, have a warm-up 
period and shadow. The shadow is seen in the figure as a set 
of sensor readings that mirror the primary readings and is 
typically 15 mV below the primary sensor output.

Figure 3.1 also demonstrates a warm-up period before the 
alcohol sensor readings stabilize, which can range from a 
couple of seconds to a couple of minutes. In this and other 
graphs showing alcohol sensor readings, the y-axis represents 
alcohol sensor readings in mV. The x-axis represents time in 
milliseconds (ms). In the unimpaired trip represented by this 
graph, the baseline reading can also be observed when no alco-
hol is present. These baseline readings are most often above 
4,000 mV. The presence of alcohol causes the sensor reading 
to drop.

The sensor was also sensitive to a variety of unimbibed alco-
hol and other substances. These included windshield wiper 
fluid, hand sanitizer, chewing gum, fast food, cologne, per-
fume, cigarettes, aerosol spray, glass cleaner, mouthwash, and 

other substances containing alcohol or an alcohol base. Many 
of these substances have very similar effects on the sensor. An 
example of sensor readings under various unimbibed sub-
stances can be seen in Figure 3.2. Again, the y-axis represents 
mV, and the x-axis represents time (ms). This figure shows 
that sensor readings typically drop sharply at the introduc-
tion of unimbibed substances and have a slow, often gradual, 
return to baseline. Fast food differs slightly, with a slow and 
less pronounced drop in sensor values. Additional investiga-
tion was not warranted: it is unknown what components of 
the fast food excited the sensor or the breadth of food types 
that may have had an influence.

Additionally, several positive cases of impairment were 
identified. These included clear visual evidence based on 
driver performance and video, drivers verbally reporting 
alcohol involvement using the critical incident button, video 
footage of police arresting a driver for driving under the influ-
ence (DUI), or visual confirmation of alcoholic beverages in 
the vehicle. These trips were useful in developing algorithms 
that could detect alcohol-impaired drivers.

Figure 3.3 shows an example of a trip with impaired pas-
sengers. During this trip, several intoxicated individuals got 
into the back seat of a vehicle while at a stop sign. The indi-
viduals had plastic cups with what was later reported verbally 
by the driver to be alcohol. In the associated video, the driver, 
who had not been drinking, pressed the critical incident button 
once the passengers exited to report that they smelled strongly 
of alcohol. The figure shows a dip in sensor readings when the 
intoxicated passengers entered the vehicle followed by a rise 
to baseline when they exited the vehicle, showing how sen-
sor readings typically drop under the influence of intoxicated 
individuals.

From these confirmed alcohol-imbibed trips, it was evident 
the alcohol sensor had the potential to detect the presence of 
imbibed alcohol regardless of the number of individuals in the 
vehicle who consumed alcohol or their position within the 

C h a p t e r  3
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vehicle. The readings appeared to indicate a stronger sensor 
response with a decrease in readings when the individual who 
consumed alcohol was in the driver or passenger seat rather 
than in the back seat. However, a similar pattern of sensor read-
ings was observed outside the magnitude of the drop in sensor 
readings based on a front-seat versus back-seat individual hav-
ing a positive BrAC. From these cases there did not appear to 
be a difference in sensor response whether the individual who 
consumed alcohol was in the driver seat or the passenger seat. 
A scenario in which the driver with a positive BrAC was the 
sole occupant of a vehicle would produce sensor readings 
similar to a scenario in which the front-seat passenger was 
intoxicated and the driver was sober. These observations were 
consistent with the alcohol sensor setup. As a result of the sen-
sor’s location near the rearview mirror, it was more exposed to 
the breath of the front-seat passenger and driver rather than 
back-seat passengers.

Algorithm Development

The information from the graphs in Figure 3.3 was used to 
create an alcohol-detection algorithm using the alcohol sen-
sor to detect impaired individuals within a vehicle and to dif-
ferentiate imbibed from unimbibed sources of alcohol. To 
remove bias from the performance metrics of the final algo-
rithm, none of the trips used for development of the algo-
rithm were included in any of the evaluation data sets. Across 
the files, it was observed that both the slope and absolute 
value of alcohol sensor readings were critical to understand-
ing alcohol presence within a vehicle. Researchers considered 

the following while developing the alcohol algorithm, which 
should be used as guidance in future development:

•	 A moving average allowed the sensor shadow to be elimi-
nated by removing all points that deviated strongly from the 
average.

•	 The absolute value of sensor readings was shown to relate to 
the presence of imbibed alcohol. While the strength of this 
effect can potentially vary from sensor to sensor, a threshold 
of 3,965 mV was established for the alcohol-detection algo-
rithm. Any trip with an average below this level after con-
trolling for unimbibed alcohol was classified as containing 
imbibed alcohol.

•	 A quick change, or steep slope, in alcohol sensor readings 
was most often the result of unimbibed alcohol and should 
be considered in reducing false positives.

•	 There appeared to be a large amount of variance in whether 
or not a particular trip had a warm-up period and the length 
of that period. For the purposes of this alcohol-detection 
algorithm, a warm-up period of 50 seconds was set. This 
helped ensure that short trips were not thrown out while 
removing some of the anomalous readings that could occur 
at the beginning of trip files.

Mechanical Breather 
Boozooka Validation

Before assessing the accuracy of the alcohol-detection algo-
rithm on the experimental gold standard data set, the Boozooka 
needed to be validated for representativeness and accuracy. 
This was accomplished by comparing alcohol sensor readings 

Figure 3.1.  Alcohol sensor shadow effect and example of warm-up period.
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Figure 3.2.  Effect of various types of unimbibed alcohol on alcohol sensor.
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in the presence of the Boozooka with the controlled trips with 
intoxicated individuals.

As shown in Figure 3.4, values for the first alcohol sensor 
(top) and second alcohol sensor (bottom) changed consistently 
as a function of the Boozooka’s activity. This operational control 
indicated the Boozooka worked at a fundamental level. Indeed, 
the sensor readings changed in a way that was consistent with 
other known impaired trips and were highly correlated.

Direct comparisons between trips with an impaired passen-
ger and the Boozooka were also conducted. These tests matched 
the BrAC levels of the individual to the Boozooka for direct 
comparisons. Figure 3.5 shows average alcohol sensor readings 
at various BrAC categories broken down by Boozooka and 
human testing. The pattern of sensor readings was consistent 
for both conditions—voltage decreased as BrAC increased. 
However, the average value of sensor readings was substantially 
lower for the Boozooka condition than for human testing. 
This was likely the result of setting the Boozooka to “breathe”  
10 liters per minute, the average rate for an individual of 
medium-to-large build. The researcher used for human testing 
was substantially smaller in weight and likely also breathed at a 
much lower rate, resulting in lower volumes of alcohol entering 
the cabin at a similar BrAC. The consistent trend of sensor read-
ings created confidence in the Boozooka as a reasonable proxy 
for an intoxicated individual. Albeit, the discrepancy served as a 
reminder that many factors can influence the volume of alcohol 
that enters a cabin. Future research could expand the Boozooka 

testing by looking at the influence of breathing rate across a 
larger spectrum of representative values.

Mechanical Breather Gold 
Standard Data Results

The dual sensor setup (i.e., two head units each with an alcohol 
sensor installed in the same vehicle) provided a unique oppor-
tunity to investigate how two sensors operated under virtually 
identical environmental conditions. Across all trips, the Pearson 
correlation between Alcohol Sensor 1 (AS1) and Alcohol Sensor 
2 (AS2) was .989, p < 0.01. While this did not necessarily dem-
onstrate that both sensors worked perfectly at assessing alcohol 
presence, it did indicate that the sensors behaved similarly 
across various levels of alcohol presence and trips. It should be 
noted that correlations are a measure of similarity of rank order. 
Thus, this strong correlation between sensors did not necessar-
ily mean they provided identical readings but rather that their  
readings varied to similar degrees across time periods.

The gold standard data set also allowed for the examination 
of whether or not BrAC differences could be detected using 
the SHRP 2 alcohol sensor. Pearson correlations between AS1 
and BrAC were -.526, p < 0.01, and between AS2 and BrAC 
were -.534, p < 0.01. This indicated that differences in BrAC 
could potentially be detected within a given sensor.

Figure 3.6 shows the average readings for each alcohol 
sensor across all trips categorized by ranges of BrAC; it also 
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Figure 3.4.  Change in sensor based on Boozooka on/off status (functional control).
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Figure 3.5.  Alcohol sensor readings as a function of 
BrAC for Boozooka and human testing.
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shows that alcohol sensor readings dropped for both sensors 
as BrAC increased. However, although the absolute value of 
the alcohol sensor readings for AS1 and AS2 were similar 
under no alcohol presence, AS1 had a steeper decrease in 
sensor readings with increased BrAC. Thus, while sensor 
readings were sensitive to BrAC, the sensitivity appeared to 
differ across sensors. Without standardizing sensor read-
ings or knowing the calibration for a given sensor, BrAC 
estimates from sensor values are likely not possible. Addi-
tional research with several sensors would be necessary to 
confirm this finding.

In addition to providing a better basic understanding of 
the alcohol sensors, the gold standard data set also helped 
evaluate an algorithm to detect in-vehicle alcohol presence 
by using a confusion matrix based on the principles of Sig-
nal Detection Theory. In this confusion matrix, each trip 
was classified according to whether alcohol was actually pres-
ent within a vehicle and the algorithm’s estimate of alcohol 
presence. For example, if alcohol was present in the vehicle 
but the algorithm estimated that no alcohol was present, 
then that instance would be classified as a false negative. A 
sample confusion matrix indicating four possible outcomes 
is displayed in Figure 3.7.

Results for the alcohol-detection algorithm against the 
gold standard data set are presented in Figure 3.8. As shown 
in the figure, the sensitivity of the algorithm was 96.6%. The 
specificity of the algorithm was 100%. Overall, only three of 
the 100 trips were incorrectly categorized by the alcohol-
detection algorithm. These trips were at low BrACs, and 

sensor readings were close to the threshold for detection. 
The results for the gold standard data set indicate that the 
algorithm performed well at differentiating trips based on 
alcohol presence.

Naturalistic Test Data Results

The naturalistic test data set contained 659 trips and was 
designed to be overrepresented with cases in which the alcohol 
sensor indicated a positive reading. This allowed researchers 
to examine the ability of the alcohol sensor to differentiate 
imbibed from unimbibed alcohol.

Out of these 659 trips, unimbibed alcohol was found in 
290 trips. While the percentage of trips with unimbibed alco-
hol was inflated because of how trips were select, the relative 
frequency of various unimbibed substances in relation to 
each other was likely to be representative of the broader 
SHRP 2 database. Of the 290 trips, 58% (n = 167) contained 
windshield wiper fluid. This was followed by hand sanitizer 
(n = 26; 9%), cologne/perfume (n = 24; 8%), multiple sub-
stances (n = 18; 6%), cigarettes/other drugs (n = 36; 13%), fast 
food (n = 12; 4%), glass cleaner (n = 4; 1%), and chewing gum 
(n = 3; 1%).

Since this data set oversampled positive sensor readings, it 
was most useful for evaluating the alcohol-detection algo-
rithm’s accuracy at differentiating between these positive 
readings. Table 3.1 is a contingency table depicting the accu-
racy of the algorithm at differentiating all possible combi-
nations of alcohol presence. The true state is shown in the 
columns of the table, and the algorithm response is shown in 
the rows. A chi-square test on the contingency table was sta-
tistically significant, c2(9) = 365.4, p < 0.01. This result indi-
cated that the alcohol-detection algorithm performed better 
than chance at estimating and differentiating alcohol pres-
ence within a vehicle on this data set. For the aforementioned 
reasons, the number of false positives was inflated in this data 
set. However, the chi-square test shows that the alcohol-
detection algorithm was moderately accurate at differentiat-
ing alcohol presence. While the alcohol-detection algorithm 
was 91.7% accurate when there was imbibed alcohol, it was 
only 22.6% accurate at predicting unimbibed alcohol alone 
and 35.5% accurate at predicting the presence of both imbibed 
and unimbibed alcohol.

Even though the number of false positives was inflated in 
this data set, it was possible to explore the alcohol algo-
rithm’s accuracy at detecting alcohol presence in a confu-
sion matrix. Though this bias toward alcohol-positive cases 
should be considered when interpreting the results, a con-
fusion matrix was created by classifying trips as imbibed 
alcohol present or no imbibed alcohol present. This was 

Figure 3.7.  Confusion matrix.

True State

Alcohol 
present 

No alcohol
present

Algorithm
Response 

Alcohol present True positive False positive 

No alcohol present False negative True negative 

Figure 3.8.  Confusion matrix for gold standard 
data set.

True State 

Alcohol 
present 

No alcohol 
present 

Algorithm 
Response 

Alcohol present 85 0 

No alcohol present 3 12 
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done by categorizing trips coded as “imbibed alcohol only” 
and “both imbibed and unimbibed alcohol present” in an 
“alcohol present” classification. Similarly, trips that were 
coded as “unimbibed alcohol only” or “neither imbibed nor 
unimbibed alcohol present” were categorized as “no alco-
hol present.” The results of the confusion matrix are 
depicted in Figure 3.9. The sensitivity was 93.7% and the 
specificity was 36.9%. Again, this range was likely the result 

of the inflated number of false positives, and the algorithm 
likely performed worse than it would on the entire SHRP 2 
database.

As mentioned, a subset of the naturalistic test data set was 
extracted to form the impaired data set. The ability of the alco-
hol sensor algorithm to differentiate the type of alcohol pres-
ence within the vehicle was evaluated using a chi-square test 
on the impaired data set. The chi-square contingency table is 
shown in Table 3.2, with rows representing the algorithm 
response and columns representing the estimated true state. 
The overall chi-square test was significant, c2(9) = 259.95,  
p < 0.01, indicating the alcohol sensor algorithm performed 
better than chance at estimating alcohol presence. It should 
be noted that the accuracy of the alcohol-detection algorithm 
led to many cells in the contingency table having fewer than 
five observations, which can bias chi-square values. The table 
shows that the alcohol-detection algorithm was particularly 
accurate at estimating no alcohol presence and impaired driver 
or passenger trips.

Figure 3.9.  Confusion matrix for alcohol-detection 
algorithm against naturalistic test data set.

True State

Imbibed alcohol 
present 

No imbibed 
alcohol present

Algorithm
Response

Imbibed alcohol present 194 285 

No alcohol present 13 167 

Table 3.1.  Contingency Table Showing Algorithm Accuracy on the Full 
Naturalistic Test Data Set

Algorithm Response

True State

Total
Percent 

Accurate
No Alcohol 

Present
Imbibed 
Alcohol

Unimbibed 
Alcohol

Both Types 
of Alcohol

No Alcohol Present 101 1 1 0 103 98.1%

Imbibed Alcohol 99 133 107 33 372 35.7%

Unimbibed Alcohol 12 5 53 7 77 68.8%

Both Types of Alcohol 5 6 74 22 107 20.5%

Total 217 145 235 62 659

Percent Accurate 46.5% 91.7% 22.6% 35.5%

Table 3.2.  Contingency Table Showing Algorithm Accuracy  
on the Impaired Data Set

Algorithm Response

True State

Total
Percent 

Accurate
No Alcohol 

Present
Imbibed 
Alcohol

Unimbibed 
Alcohol

Both Types 
of Alcohol

No Alcohol Present 96 1 0 0 97 99.0%

Imbibed Alcohol 0 54 0 16 70 77.1%

Unimbibed Alcohol 0 3 2 3 8 25.0%

Both Types of Alcohol 0 3 0 10 13 76.9%

Total 96 61 2 29 188

Percent Accurate 100.0% 88.5% 100.0% 34.5%
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The confusion matrix for the impaired data set is shown in 
Figure 3.10. The sensitivity of the algorithm against this data 
set was 92% and the specificity was 100%. This indicated the 
alcohol-detection algorithm performed extremely well when 
trips were classified with greater certainty of imbibed alcohol 
involvement. In particular, the algorithm was not prone to 
false negatives, suggesting that alcohol-detection performance 
increased as the observable signs of intoxication increased.Figure 3.10.  Confusion matrix for impaired data set.

True State 

Alcohol
present 

No alcohol
present 

Algorithm
Response 

Alcohol present 83 0 

No alcohol present 7 98
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Conclusions and Suggested Research

Researchers used a multifaceted approach to further inves-
tigate the standard alcohol sensor in SHRP 2 vehicles and 
develop an initial alcohol-detection algorithm based on the 
sensor data. The second phase of research was designed with 
this goal in mind. Specifically, the objectives were to (1) deter-
mine the necessary considerations in an alcohol-detection 
algorithm to be applied to the SHRP 2 database and (2) eval-
uate the accuracy of an algorithm using these considerations 
at detecting and differentiating between imbibed and unim-
bibed alcohol in the SHRP 2 database. Through an examina-
tion of SHRP 2 data and several experimental manipulations, 
an alcohol-detection algorithm was developed and investi-
gated. This allowed for a basic evaluation of an algorithm and 
an assessment of the usefulness of the sensor for identifying 
imbibed alcohol. A summary of conclusions and recommen-
dations from this research follows.

Alcohol-Detection 
Algorithm Accuracy

To maximize its utility, this type of algorithm must detect 
cases of imbibed alcohol and also filter out the effects of other 
substances that can affect the alcohol sensor and produce false 
detections. After all, the sensor was only designed to detect 
general alcohol presence within the cabin. At the conception 
of this project, little was known about the alcohol sensor’s 
reaction in the presence of various types of alcohol. Thus, 
characterization of the sensor’s response to both imbibed and 
unimbibed alcohol was necessary.

Sensor’s Ability to Detect Alcohol Presence

To answer the fundamental question of the sensor’s alcohol-
detection accuracy, an experimental gold standard data set 
was created. While it was difficult to confirm alcohol impair-
ment in the SHRP 2 data set, the gold standard data set allowed 
for the careful distribution of alcohol into the cabin of a vehicle 

using a mechanical breather. This provided an ideal metric 
for evaluating the alcohol-detection algorithm. When tested 
against this data set, the algorithm was over 95% accurate at 
differentiating alcohol presence from no alcohol presence. 
The only inaccuracies were a few trips with low doses of 
alcohol that barely missed the detection threshold.

Differentiating Unimbibed  
and Imbibed Alcohol Presence

A variety of substances that are naturally introduced into 
motor vehicles contain alcohol. To reduce false alerts, an 
alcohol-detection algorithm must be able to differentiate these 
unimbibed forms of alcohol from the presence of humans 
in the vehicle who have imbibed alcohol. This ability was 
assessed by creating a naturalistic test data set from the SHRP 2 
database that was heavily weighted toward positive alcohol 
sensor readings.

A variety of substances were identified that had an impact 
on the alcohol sensor readings. The most common substance 
was windshield wiper fluid—although other substances were 
shown to affect the sensor when introduced into the vehicle. 
These substances generally had a similar effect: a steep drop in 
alcohol sensor readings followed by a gradual return to base-
line for the given trip. However, this was not always the case. 
For example, fast food often resulted in a slow, less severe drop 
in alcohol sensor readings. As another example, when wind-
shield wiper fluid was used to melt ice on the windshield, it 
often had a lingering, constant presence with an unusually slow 
or even absent return of alcohol sensor readings to baseline. 
It is hypothesized that this occurred because ice saturated by 
windshield wiper fluid remained on the windshield. This intro-
duced a constant stream of alcohol vapors into the cabin, thus 
making it difficult to differentiate imbibed from unimbibed 
alcohol.

While the alcohol-detection algorithm was highly accurate 
in determining alcohol presence within a vehicle, it was only 

C h a p t e r  4
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weakly to moderately able to differentiate imbibed versus 
unimbibed alcohol. In particular, the alcohol-detection algo-
rithm tended to classify unimbibed alcohol trips as imbibed 
trips, which meant a tendency for false positives. For most 
analyses, false positives are better than false negatives. Visual 
data validation can remove trips that were actually the result 
of unimbibed substances, but false negatives cannot be feasi-
bly reduced through a manual validation process (all video 
would need to be reduced for signs of alcohol).

The difficulty in differentiating imbibed from unimbibed 
alcohol stemmed from a variety of sources. The effects of 
unimbibed alcohol on sensor readings can be long lasting 
and, thus, similar to the signature left by imbibed alcohol. 
Additionally, many sources of unimbibed alcohol are intro-
duced into the vehicle at the beginning of a trip, placing the 
steep spike in sensor readings (a strong differentiating char-
acteristic between imbibed and unimbibed alcohol) in the 
sensor warm-up period. As a result, this spike is not detected 
or assessed by the alcohol-detection algorithm. The warm-up 
period is occasionally marked by a spike in sensor readings 
even without the presence of unimbibed or imbibed alcohol. 
Thus, the characteristic spike of unimbibed alcohol is masked 
by this warm-up period. Finally, from the data on the DAS, 
there is no way to determine many of the changes in the cabin 
that can influence the sensor and further mask unimbibed 
alcohol (e.g., HVAC settings and window position).

Detecting BrAC Differences

The primary purpose of the alcohol-detection algorithm was 
to provide a yes or no estimate of whether or not an impaired 
individual was within a vehicle. Substantial benefits emerge 
from this binary rating. However, it was also worth examining 
whether the alcohol sensor could be used to estimate level of 
intoxication. Results from the gold standard data set revealed 
a moderate negative correlation between BrAC and alcohol 
sensor values. Unfortunately, while readings within a sensor 
could reflect level of intoxication (albeit with a large margin 
of error), these readings were not consistent across sensors 
and could not be interpreted to measure BrAC.

The potential remains for a rough calibration of each sen-
sor individually to attempt concentration assessment. This 
would require fairly accurate estimates of intoxication within 
a vehicle and using that as a basis for interpreting other read-
ings on the same sensor. This could potentially be achieved 
by calculating the average alcohol sensor reading per trip and 
standardizing those readings across trips for a given alcohol 
sensor. From this information, a trip could be assessed on the 
basis of the standard deviation of the alcohol sensor reading 
for that trip compared with other trips in the same vehicle 
(i.e., the same sensor). While this may potentially provide a 

very rough estimate of intoxication, it remains uncertain if 
such an approach would be feasible or functional.

Ultimately, other challenges with calculating BrAC made 
this calibration unrealistic, and future research should not 
consider trying to calculate BrAC from the SHRP 2 database. 
For example, the absolute value of sensor readings could 
change depending on the size and position of the intoxicated 
individual, the number of intoxicated individuals, the presence 
of other sources of alcohol within the vehicle (i.e., unimbibed 
alcohol), air circulation, windows being up or down, humid-
ity, vehicle cabin volume, and a number of other factors. It 
is not feasible to assess BrAC with reasonable accuracy from 
the SHRP 2 sensor. Imbibed alcohol detection should be 
thought of as a binary classification rather than as a measure 
of concentration.

The Algorithm’s Ability to Detect Moderately 
Impaired Drivers from Baseline Driving

Ultimately, the alcohol-detection algorithm must be accurate 
at determining the presence of alcohol in SHRP 2 trips. Since 
this is naturalistic data, it is unknown how much alcohol, if 
any, someone has consumed. The ground truth measure used 
for assessing alcohol consumption came from video review 
of the drivers. It was difficult to confirm alcohol impairment 
in SHRP 2 trips via video review when there was potentially 
minor impairment with few or no behavioral cues. Therefore, 
some trips may have been misclassified in the test data set as 
“no imbibed alcohol” when in fact imbibed alcohol was pres-
ent but the video reduction team could not see it.

In 91 trips, the driver was judged to be moderately impaired. 
These trips were combined with the 97 control trips to assess 
how well the algorithm would do at differentiating moderately 
impaired trips from “normal” driving. In this case, the algo-
rithm performed quite well, indicating that the sensor and an 
associated impairment algorithm could be used to identify 
trips in which moderate impairment was likely. In general, the 
algorithm appeared to perform better as observable impair-
ment increased. This result supports running an algorithm 
across the SHRP 2 data to isolate potential imbibed alcohol 
use. However, false alarms due to other alcohol sources appear 
to be quite common in the data set and will continue to be a 
problem. Therefore, running this algorithm and accepting a 
positive result for imbibed alcohol without further verifica-
tion is not recommended.

Recommendations

These results suggest many future directions for research and 
provide insight into future use of the alcohol sensor with 
SHRP 2 data. Several key recommendations follow.
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Recommendation 1: Consider the Following 
Criteria in an Alcohol-Detection Algorithm  
for Use with the SHRP 2 Data

Any algorithm that is developed for use on the alcohol sensor 
should consider the following criteria:

•	 There is large variance in the warm-up period for this sensor 
before it begins to produce stable readings. This can last as 
long as 2 minutes.

•	 An artifact in the data effectively creates a sensor shadow 
(e.g., 15 mV offset) that should be filtered out or ignored.

•	 The absolute value of sensor readings can potentially vary 
from sensor to sensor. Nominally, a threshold of 3,965 mV 
should be established for the alcohol-detection algorithm 
(assuming no unimbibed alcohol). A more sensitive approach 
would be to obtain a stable baseline from each sensor.

•	 Unimbibed alcohol should be considered in reducing false 
positives. A quick change in alcohol sensor readings (i.e., 
steep slopes) is often associated with unimbibed alcohol.

•	 Many factors can influence this sensor, including temperature 
change, air flow and circulation, and number of passengers.

Recommendation 2: Broadly Use the  
Alcohol-Detection Algorithm to  
Find Impaired Trips

The applied alcohol-detection algorithm was not without 
error, yet it regularly performed better than chance across 
multiple research efforts and data sets. Indeed, the sensitivity 
was over 90% across all of the various data sets and approaches. 
This suggests that the alcohol sensor data are useful at identi-
fying alcohol-impaired trips and providing an initial indicator 
of the potential for alcohol involvement within a trip. The 
SHRP 2 data set provides a unique glimpse into alcohol-
impaired driving. Considering the high hit rate of the alcohol-
detection algorithm, it could be of the utmost importance in 
gleaning information on impaired driving from the SHRP 2 
database. Identified trips can then be further explored using 
trained data reductionists to differentiate driver impairment 
from other potential unimbibed alcohol sources.

Recommendation 3: Always Accompany 
Use of the Algorithm with Trained 
Data Reductionists

While the alcohol-detection algorithm performed well at 
identifying impaired trips, many known barriers restricted 

its accuracy. In particular, sources of unimbibed alcohol can 
produce significant errors in interpreting the alcohol sensor 
readings. These sources appear to be quite common in the 
SHRP 2 database. Many of these sources of unimbibed alco-
hol can be visually identified by a trained data reductionist. 
In addition to finding sources of unimbibed alcohol, highly 
trained data reductionists can and should be used to vali-
date the results of any alcohol-detection algorithm using the 
SHRP 2 alcohol sensor. The accuracy of the results of an algo-
rithm could be enhanced with confirmation by trained data 
reductionists. The misclassification of other alcohol sources as 
intoxication by the algorithm might provide erroneous con-
clusions regarding alcohol-impaired driving in the SHRP 2 
database if trips are not visually validated by specially trained 
data reductionists.

Recommendation 4: Do Not Disregard the 
Impact of Unimbibed Alcohol Presence

Much of this report discusses unimbibed alcohol as a pri-
mary source of error in the alcohol-detection algorithm. 
However, some of these substances (e.g., cigarettes, fast 
food, hand sanitizer) may involve distracted driving that 
has an impact on driver behavior and performance. Thus, 
a secondary benefit of the alcohol-detection algorithm may 
be to identify other substances that may also affect driving 
performance.

Overall Conclusion

The alcohol sensor of the standard SHRP 2 instrumentation 
was designed to detect alcohol vapors within a cabin. At the 
beginning of this effort, it was uncertain if the alcohol sensor 
accurately performed this function. Assuming the function was 
fulfilled, it was even more uncertain if alcohol sensor readings 
could reliably differentiate imbibed versus unimbibed alcohol 
within a vehicle. To answer these questions, the mechanical 
breather and SHRP 2 data sets were used to explore the accuracy 
of an alcohol-detection algorithm. Considering the scope and 
detail of the SHRP 2 data set, an alcohol-detection algorithm 
could shed valuable light on alcohol-impaired driving. How-
ever, many challenges remain for the broad implementation of 
an algorithm using this sensor. Despite its relatively high suc-
cess rate, care should be taken when using an algorithm and 
this sensor. Other substances can result in false positives, and 
visual inspection of SHRP 2 data should almost always accom-
pany the algorithm’s application in scientific endeavors.
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SOL-Eye User Interface Screenshot
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Operational Definition of Behavioral Cues

A p p e n d i x  B

Category Behavior Operational Definition

Appearance

1. Eyes Blinking (flitting) Rapid blinking. Excessively frequent blinking.

Lids, heavy Prolonged, slow blinks. Drooping eyelids. Eyes half shut.

Dozing Similar to “nodding off.” Eyes completely shut for prolonged periods of time. Head drops and 
jerks back up.

2. Hands Shaking Hands twitching/shaking. Hands unsteady.

3. Face Flushed Face is red. Face is blotchy or has dark spots on cheeks.

Sweating Beads of sweat on face. Hair appears wet.

Drooling Saliva appears around mouth. Drool may run down face. Driver frequently wipes mouth.

4. Hair Disheveled Hair disorganized. Hair sticking up or ruffled. Hair not neat.

5. Clothes Shirt unkempt Shirt partially untucked. Shirt wrinkled excessively. Shirt buttoned incorrectly. Collar turned up 
or partially turned up. Shirt generally fitting or being worn improperly.

Loosening/taking off Shirt unbuttoned or partially buttoned. Sleeves rolled up. Untucking or loosening shirt. 
Removing articles of clothing. Missing articles of clothing.

6. Body tremors/
shaking

Body tremors/shaking Body is shaking uncontrollably. Slight shaking of the body. Body is experiencing tremors.

7. Sensation Rubbing head (like for 
a headache)

Driver is using hands to rub the face or temples as if they have a headache. Massages temples, 
face, or back of neck.

Rubbing face Rubs face for a second or more. Does not include brushing objects off of face.

Dizzy/swaying/leaning 
against window

Body appears to be uncontrolled. Head spinning. Body leaning to one side or not upright. 
Body leaning against window.

Nauseous Driver appears to be on the verge of getting sick. May make motion as if to throw up or gag. 
Covers mouth with hand like they are about to vomit. Face appears sick.

8. Memory Repetitive action Engages in any repetitive action. Examples: Playing with hair, adjusting clothing, rubbing eyes, etc.

Gets lost Looks around as if not knowing where s/he is.

Affective

9. Nervousness Nervous Driver looks uncomfortable or nervous.

Restless Driver seems fidgety. Frequent movements. May seem uncomfortable.

Agitated Appears annoyed. May seem short with passengers. Driver may display frustrated facial 
emotions or give rude hand gestures.

Relaxed Driver appears overly calm.
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Category Behavior Operational Definition

10. Mood Crying Face wet from tears. Wipes eyes.

Exhilarated Driver seems full of energy. Bouncing in seat. Drumming on steering wheel. Singing to radio. 
Dancing in seat.

Rapid changes in 
mood

Driver experiences a multitude of emotions in a very short period. Emotions quickly 
fluctuating.

Hostile Angry look on driver’s face. Driver makes rude or aggressive gestures. Driver appears to be 
yelling. Driver is forceful with gestures.

Distracted Not paying attention to the road. Excessively looking around in and/or outside the vehicle.

Extremely friendly Driver may appear overly talkative, use excessive or exaggerated hand gestures, or have an 
unusually open body posture.

Talkative Driver is constantly talking.

Sexually aggressive Excessive touching, forced contact, or strong sexual gestures.

Confused Driver does not appear to know what is going on or where s/he is. Has confused look on face. 
Looking around as if to gain clues.

Motor

11. Coordination Posture/can’t sit up 
straight

Slumped in seat. Leaning to one side of seat. Driver attempts to sit up straight but fails.

Drops/spills/knocks 
things over

Attempts to reach for something and instead knocks it over. While holding something, drops it 
without intent.

12. Nervous system Hiccups Determined by throat constricting, shoulders abruptly moving up and then down.

Belching Determined by mouth open, head moving forward.

Vomiting Throwing up.

Seizures, convulsions Violent jerking motions of entire body.

Asleep Eyes completely closed with body relaxed.

Breathing fast Frequent and quick rising and dropping of chest and/or shoulders.

Yawning Prolonged wide open mouth.

Stupor Driver has blank glance. Appears “zoned out.” Not paying attention to surroundings. Steady 
forward gaze without focusing eyes or scanning driving scene.
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