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Preface

Extreme weather has affected human society since the beginning of recorded 
history and certainly long before then. Humans, along with every other living 
thing on the Earth, have adapted to a certain range of variability in the weather. 

Although extreme weather can cause loss of life and significant damage to property, 
people and virtually every other creature have, at least to some degree, adapted to the 
infrequent extremes they experience within their normal climatic zone.

Humans’ use of fossil fuel since the start of the Industrial Revolution has begun to 
modify the Earth’s climate in ways that few could have imagined a century ago. The 
consequences of this change to the climate are seemingly everywhere: average tem-
peratures are rising, precipitation patterns are changing, ice sheets are melting, and 
sea levels are rising. These changes are affecting the availability and quality of water 
supplies, how and where food is grown, and even the very fabric of ecosystems on 
land and in the sea.

Despite these profound changes, climate change and its associated risks still may 
appear to many people as distant and remote in both time and space. The natural 
daily and seasonal variability of the weather can mask the changes in the overall 
climate. Yet, when people experience extreme events that they believe may be occur-
ring with different—usually greater—frequency or with increased intensity, many ask 
about the connection between climate change and extreme events.

Effective, rigorous, and scientifically defensible analysis of the attribution of extreme 
weather events to changes in the climate system not only helps satisfy the public’s 
desire to know but also can provide valuable information about the future risks of 
such events to emergency managers, regional planners, and policy makers at all levels 
of government. A solid understanding of extreme weather event attribution in the 
context of a changing climate can help provide insight into and confidence in the 
many risk calculations that underpin much of society’s building codes; land, water, 
health, and food management; insurance; transportation networks; and many addi-
tional aspects of daily life.

There are compelling scientific reasons to study extreme weather event attribution as 
well. The basic physics of how the climate system works and the broad-scale impacts 
of rapid addition of greenhouse gases on the climate system are well understood. 
However, much is still to be learned about how the changing climate affects specific 
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weather events. Improved attribution, and ultimately prediction of extreme events, will 
demonstrate an even more nuanced and sophisticated understanding of the climate 
system and will enhance scientists’ ability to accurately predict and project future 
weather and climatic states.

The past decade has seen a remarkable increase in interest and activity in the extreme 
event attribution field. The first attempt at attributing an extreme weather event to 
climate change was published in 2004, analyzing the 2003 European summer heat 
wave that killed tens of thousands of people. In 2012 the American Meteorological 
Society started to publish a special annual issue of their Bulletin, compiling articles on 
extreme weather events of the past year. From 2012 to 2015, the number of research 
groups submitting studies to this issue has grown by more than a factor of five. A goal 
of this report is to provide a snapshot of the current state of the science of attribution 
of extreme weather events and to provide recommendations for what might be useful 
future avenues of both research and applications within this field.

Like all areas of study, terminology matters. As this field is relatively new, not everyone 
may be familiar with terms such as “counterfactual,” “fraction of attributable risk,” or 
“selection bias.” Because the committee chose to use the terminology as it is defined 
and used in the relevant literature we have included a Glossary that defines these key 
terms.

A reoccurring theme of this report is the importance of the framing of any attribu-
tion question. Although climate scientists are frequently asked “Was a given observed 
weather event caused by climate change?” we believe this is a poorly formed (or ill-
posed) question that rarely has a scientifically satisfactory answer. The report discusses 
appropriate ways to frame attribution questions as well as the interplay between 
meteorological and human-made factors in the realization of extreme events.

In addition to exploring framing and attribution methods, the report provides a 
synopsis of the attribution of nine specific types of extreme events. Not every type of 
event discussed is a pure meteorological event. Droughts, floods, and wildfires, for in-
stance, all have human, as well as natural, components. Land management, controlled 
burning, and dams and levees impact the magnitude and frequency of these extreme 
events. The committee believes there is a large weather and climate signal to these 
types of events, however, and climate scientists are frequently asked to comment on 
them.

I want to thank our numerous sponsors: the David and Lucile Packard Foundation, 
the Heising-Simons Foundation, the Litterman Family Foundation, the National 
Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric 
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Administration (NOAA), and the U.S. Department of Energy, with additional support 
from the Arthur L. Day Fund of the National Academy of Sciences. In addition to meet-
ing the needs of our sponsors, the committee hopes this report will be of use to the 
scientific community, the media, and policy makers who are interested in this topic. 

Over the course of just 3 months the committee held a number of webinar meetings, 
met twice in person, and conducted a widely attended community workshop where 
we heard a diversity of views from the international community working on event at-
tribution. During these meetings the committee gathered information, discussed and 
debated their views, and crafted this report. Over the course of the study, the com-
mittee engaged with international and U.S. scientists who spearheaded development 
of extreme event attribution approaches, as well as with the broader detection and 
attribution and climate science communities. (See Appendixes B and C for the names 
of the experts the committee consulted.)

In closing, I want to personally thank my fellow committee members for their sus-
tained hard work and exceptional dedication to this report. When we started this 
process, many people believed that it would take more than 1 year to produce such a 
report. That Attribution of Extreme Weather Events in the Context of Climate Change was 
produced within 6 months is a testament to the focus and commitment of each mem-
ber of this committee. I also want to thank and note with great appreciation the inci-
sive and thoughtful comments of our reviewers, whose efforts significantly improved 
this report, and to thank everyone who gave of their time and expertise to speak at 
our workshop, on our webinars, or otherwise communicate with the committee during 
our study process. Finally, I want to acknowledge the superb efforts of the National 
Academies of Sciences, Engineering, and Medicine staff, led by Katie Thomas  took our 
many disparate inputs, made them into a collective whole, kept us focused and on 
schedule, and did so with constant grace, cheerfulness, and good humor. Thank you.

David W. Titley, Chair
Committee on Extreme Weather Events and Climate Change Attribution
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Glossary1

Attribution: The process of evaluating the relative contributions of multiple causal factors 
to a change or an event with an assignment of statistical confidence (Hegerl et al., 2010).

Bias: A term used by statisticians to mean the difference between the true quantity 
and the estimates of that quantity based on data from repeated studies with statisti-
cally equivalent samples of data.

Causal factors: Influences on the climate system, including both external forcings—
which may be either anthropogenic (greenhouse gases [GHGs], aerosols, ozone pre-
cursors, land/water use) or natural (volcanic eruptions, solar cycle modulations)—and 
slowly varying components of the system (sea-surface temperatures [SSTs], sea ice, 
soil moisture, snow cover) that are known to influence climatic conditions on seasonal 
timescales. 

Causality: The relationship between something that happens or exists and an effect, 
result, or condition for which it is responsible.

Conditioning: The process of limiting an attribution analysis to particular types of 
weather or climate situations. For example, an attribution study may assess whether 
human influence on the climate plays a role in a given type of event when El Niño 
“conditions” prevail.

Counterfactual: From the perspective of attribution studies, counterfactual or coun-
terfactual world refers to a hypothetical “control” world that has only been impacted 
by natural forcings and internal variability. In practice it usually refers to the observed 
climatic conditions (e.g., a specific sea-surface temperature [SST] distribution) as they 
might have occurred had anthropogenic forcing been absent.

Detection: Detection of change is defined as the process of demonstrating that 
climate or a system affected by climate has changed in some defined statistical sense 
without providing a reason for that change (Hegerl et al., 2010).

Dynamic: Concerning the motion of bodies under the action of forces. In the context 
of event attribution, dynamics would include both large-scale circulation patterns—
which can modulate temperature and precipitation extremes—and storms.

1  The Intergovernmental Panel on Climate Change reports and the National Climate Assessment are 
excellent resources for climate-related definitions.
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Ensemble: A collection of similar entities. In climate science, the term usually refers 
to a collection of simulations by a single model but with different initial conditions 
(hence different internal variations) or to a set of simulations of similar design by dif-
ferent climate models.

Exceedance probability: Probability that a quantity (e.g., temperature or precipita
tion) will exceed some specified threshold.

Extreme event: A weather or climate event that is rare at a particular place (and, 
sometimes, time of year) including, for example, heat waves, cold waves, heavy rains, 
periods of drought and flooding, and severe storms. Definitions of rare vary, but an ex-
treme weather event would normally be as rare as or rarer than a particular percentile 
(e.g., 1st, 5th, 10th, 90th, 95th, 99th) of a probability density function estimated from 
observations expressed as departures from daily or monthly means. 

Factual: From the perspective of attribution studies, factual refers to the currently 
observed world as it exists in the context of climate change.

(External) Forcing: A term that refers to a forcing agent outside the climate system 
causing a change in the climate system. Examples include volcanic eruptions, solar 
variations and anthropogenic changes in the composition of the atmosphere, and 
land use change. 

Fraction of attributable risk (FAR): The fraction of the likelihood of an event that is 
attributable to a specific causal factor.

Framing: The process of posing scientific questions that arise when an event occurs 
and establishing the context within which they are answered (e.g., whether some 
kind of conditioning is involved). Framing may include translation of a question such 
as “Did human-induced climate change cause this event?” into one or more ques-
tions that science may be better able to answer: for instance, “Has human influence 
on the climate increased the frequency or intensity of events like the one that has just 
occurred?”

Internal variability: The technical term that is often used to describe the natural, 
unforced, chaotic variability that occurs continually in the climate system. It is a com-
ponent of natural variability.

Model: A set of ideas; a physical representation or set of formulas that describe a 
process or system. In climate science, and in this report, the term usually refers to a set 
of equations describing the physical laws governing the behavior of the atmosphere, 
ocean, sea ice, land surface, and other components of the Earth system, whose solu-
tions simulate the time evolution of the system.
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Natural variability: Internally (such as El Niño–Southern Oscillation) and externally 
(e.g., volcanic eruptions or changes in solar radiance) induced natural climate variabil-
ity that occurs without anthropogenic forcing. 

P0: Counterfactual probability p0 (i.e., the probability of an event in a world without 
human influence on climate).

P1: Factual probability p1 (i.e., the probability of an event in the currently observed 
world as it exists in the context of climate change).

Return time: A return time (or period) is a commonly used metric of probability; 
for example, a 100-year return time means that in any given year, there is a 1-in-100 
chance of the threshold being reached. If the climate were not changing, return time 
could also be interpreted as the average time between events, but it should not be 
interpreted as the time that will pass before an event occurs again. 

Risk ratio: The ratio of probabilities under two different conditions or settings; in 
event attribution this is generally the ratio of the probability under anthropogenic 
forcing (the factual scenario) to that under the counterfactual scenario. While well 
established in epidemiology, the term is a misnomer because it is a ratio of probabili-
ties and does not involve risk as formally defined to account for both probability and 
magnitude of impact.

Selection bias: A term used by statisticians to describe the systematic errors in proba-
bilistic inference that can arise when the data that are collected or analyzed are not 
representative of the population of interest. A famous example is the mis-prediction 
of the outcome of the 1948 U.S. presidential election (Dewey versus Truman) based on 
a telephone survey, because in those days only the wealthier members of society had 
their own telephones.

Thermodynamic: Concerning heat and temperature and their relation to energy and 
work. In the context of event attribution, thermodynamics would include behavior 
related to the warming and increased moisture-holding capacity of the atmosphere.

Variance: A term used by statisticians to mean the variability of an estimate of a quan-
tity based on one sample of data around the average estimate of that quantity that 
would be calculated based on data from repeated studies with statistically equivalent 
samples of data.
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Summary

The observed frequency, intensity, and duration of some extreme weather events 
have been changing as the climate system has warmed. Such changes in extreme 
weather events also have been simulated in climate models, and some of the 

reasons for them are well understood. For example, warming is expected to increase 
the likelihood of extremely hot days and nights (Figure S.1). Warming also is expected 
to lead to more evaporation that may exacerbate droughts and increased atmospheric 
moisture that can increase the frequency of heavy rainfall and snowfall events. 

The extent to which climate change influences an individual weather or climate event 
is more difficult to determine. It involves consideration of a host of possible natural 
and anthropogenic factors (e.g., large-scale circulation, internal modes of climate vari-
ability, anthropogenic climate change, aerosol effects) that combine to produce the 
specific conditions of an event. By definition, extreme events are rare, meaning that 
typically there are only a few examples of past events at any given location. 

Nonetheless, this relatively new area of science—often called event attribution—is 
rapidly advancing. The advances have come about for two main reasons: one, the 
understanding of the climate and weather mechanisms that produce extreme events 
is improving, and two, rapid progress is being made in the methods that are used for 
event attribution. This emerging area of science also has drawn the interest of the 
public because of the frequently devastating impacts of the events that are stud-
ied. This is reflected in the strong media interest in the connection between climate 
change and extreme events, and it occurs in part because of the potential value of 
attribution for informing choices about assessing and managing risk and in guiding 
climate adaptation strategies. For example, in the wake of a devastating event, com-
munities may need to make a decision about whether to rebuild or to relocate. Such 
a decision could hinge on whether the occurrence of an event is expected to become 
more likely or severe in the future—and, if so, by how much. 

The ultimate challenge for the science of event attribution is to estimate how much 
climate change has affected an individual event’s magnitude1 or probability2 of occur-
rence. While some studies now attempt to do this, most consider classes of events 
that are similar to the event that has been observed. Irrespective of whether a specific 

1  In this report “magnitude” and “intensity” are used synonymously.
2  In this report “probability” and “frequency” are used synonymously.
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FIGURE S.1  This figure shows a time series of the annual maximum nighttime temperature averaged 
over the European Region. Temperatures are plotted as anomalies, or deviations from normal (in this 
case, 1961-1990), in degree Kelvin (K). Observed temperatures are represented by the black lines and are 
based on Caesar et al. (2006; updated). The orange lines come from model simulation (Martin et al., 2006). 
Both observations and model output show an increasing trend in nighttime temperature anomalies over 
time. The horizontal dotted lines denote the uncertainty range (5-95%) due to natural climate variability. 
SOURCE: Stott et al., 2011.

event or a class of events is studied, results remain subject to substantial uncertainty, 
with greater levels of uncertainty for events that are not directly temperature related. 
The conclusions drawn also depend, in general, on choices made when selecting the 
events, framing the questions asked about the role of climate change, designing the 
modeling setup, and selecting statistical tools to quantify uncertainty. 

More and more event attribution studies are being published every year, and study 
results are increasingly requested very quickly after events occur. Some of the study 
methods are still relatively novel, however, and there are a range of views about how to 
conduct and interpret the analyses. This report examines the science of attribution of 
specific extreme weather events to human-caused climate change and natural variabil-
ity3 by reviewing current understanding and capabilities. It assesses the robustness of 
the methods for different classes of events and attribution approaches, provides guid-
ance for interpreting analyses, and identifies priority research needs (the full statement 
of task can be found in Appendix A). This study is sponsored by the David and Lucile 
Packard Foundation, the Heising-Simons Foundation, the Litterman Family Foundation, 
the National Aeronautics and Space Administration (NASA), the National Oceanic and 

3  In this report, the term “natural variability” encompasses both externally forced variations other than 
anthropogenic as well as the chaotic component of the atmosphere that is not externally forced. See Glossary. 
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Atmospheric Administration (NOAA), and the U.S. Department of Energy (DOE), with 
additional support from the Arthur L. Day Fund of the National Academy of Sciences.

EVENT ATTRIBUTION APPROACHES

Event attribution approaches can be generally divided into two classes: (1) those that 
rely on the observational record to determine the change in probability or magnitude 
of events, and (2) those that use model simulations to compare the manifestation of 
an event in a world with human-caused climate change to that in a world without. 
Most studies use both observations and models to some extent—for example, model-
ing studies will use observations to evaluate whether models reproduce the event of 
interest and whether the mechanisms involved correspond to observed mechanisms, 
and observational studies may rely on models for attribution of the observed changes.

Some types of observation-based approaches to event attribution use the historical 
context in order to determine changes in the rarity of an observed event based on 
long-term data. For example, this might involve comparing the statistical probability 
of an event in today’s climate to its probability in some previous time several decades 
earlier when the concentration of anthropogenic greenhouse gases (GHGs) was much 
lower. In practice, historical observations are often not available for a long enough 
period to enable a reliable statistical evaluation of whether there has been a signifi-
cant change in event frequency or intensity. 

Another observational approach is based on analyzing the characteristics of a given 
weather event (e.g., the large-scale circulation pattern) and looking for historical ana-
logues in order to determine how meteorologically similar events have changed. These 
studies might compare the amount of rainfall in the current event to similar past events 
to estimate how the long-term increases in atmospheric temperature and moisture 
affected the event. As such, this approach does not address how climate change may 
have influenced the conditions that gave rise to a particular weather pattern. Some 
studies have also diagnosed the frequency of circulation states in order to determine 
if these may explain or counteract any change in extreme events. In general, it will be 
challenging to attribute any such changes to anthropogenic climate change. 

Weather and climate model-based approaches to extreme event attribution compare 
model-simulated weather and climate phenomena under different input conditions: 
for instance, with and without human-caused changes in GHGs. Many studies rely on 
coupled atmosphere-ocean climate models, while others may use global atmospheric 
models, regional models, or models that are constructed specifically to represent a 
particular class of weather events, such as hurricanes. Multiple simulations can be 
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conducted to test how changes in sea-surface temperature (SST), the levels of atmo-
spheric CO2 or aerosols, or other variables affect the extreme event of interest. Simula-
tions are often repeated many times with small changes in the initial atmospheric or 
other conditions to estimate some uncertainties and sensitivities. Figures S.2 and S.3 
provide examples of model-based attribution for the extreme heat events in Russia 
during the summer of 2010 and the extreme flooding events in England and Wales 
during the autumn of 2000, respectively.

Many studies have used climate models to understand just how unusual observed 
conditions are with respect to the distribution of possible conditions in a world that 
is unperturbed by humans. Models are often used to estimate the probability of 
occurrence of an event with human-caused climate changes (p1) and without these 
changes (p0). These estimated probabilities are often used to estimate the fraction of 
attributable risk (FAR)—FAR = (p1 – p0)/p1—or the risk ratio (RR)—RR = p1/p0. These 
model-based estimates of attributable risk or RR hinge on the model used being able 
to reliably simulate both the event in question and any changes in this event that may 
occur due to human-caused climate change or another considered factor.

Some recent studies also have used models to attempt to follow the evolution of a 
particular extreme weather event—for example, through the use of a set of short-
term forecasts using a weather model. This allows detailed study of particular extreme 
events with a model capable of representing those specific events with fidelity and 
quantification of the effect of certain aspects of climate change (e.g., increased 
moisture-holding capacity of a warmer atmosphere) in which there is high confidence. 
Such studies cannot fully address frequency of occurrence because the results are 
highly conditional both on the initial state of the atmosphere and land surface that 
is specified to the model and on the specific sea-surface conditions that prevailed at 
the time of the event. With these constraints, it may be possible to estimate changes in 
event magnitude or changes in the frequency of exceedance above or below a given 
event magnitude, conditional on all else that is required to be specified to make the 
short-term forecasts. It is not possible, however, to study whether the likelihood of the 
occurrence of similar initial states and sea-surface conditions has changed.

ASSESSMENT OF CURRENT CAPABILITIES

Event attribution is more reliable when based on sound physical principles, con-
sistent evidence from observations, and numerical models that can replicate the 
event. The ability to attribute the causes of some extreme event types has advanced 
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FIGURE S.2  Western Russia experienced several heat waves in the summer of 2010, leading to average 
temperatures in July 2010 exceeding the long-term observed average by more than 5°C. This extreme 
heat prompted questions about the potential effect of human-caused climate change. To address this 
question, Otto et al. (2012) used an atmospheric general circulation model to produce hundreds of simu-
lations of the climate of the 2000s (blue circles) and of the 1960s (green circles). Defining heat waves as 
having high temperatures and anti-cyclonic circulation anomaly (associated with persistent conditions), 
they examined how likely it would be for temperature to exceed a given magnitude. Using this approach, 
the authors concluded that the average observed temperature during July 2010 of nearly 25°C was sig-
nificantly more likely in the 2000s than in the 1960s, corresponding to a shift from a 99-year return time 
to a 33-year return time (downward black arrow; horizontal arrow explained in Figure 2.1). SOURCE: Figure 
courtesy of Friederike Otto, adapted from Otto et al. (2012).

rapidly since the emergence of event attribution science a little more than a decade 
ago, while attribution of other event types remains challenging. In general, confidence 
in attribution results is strongest for extreme event types that

•	 have a long-term historical record of observations to place the event in an 
appropriate historical context;
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FIGURE S.3  In England and Wales, October and November 2000 were the wettest autumn months 
since records began in 1766, resulting in widespread flooding and substantial damages. Pall et al. (2011) 
examined the sensitivity of the change in the frequency of occurrence of extremely high river runoff in 
England and Wales for autumn 2000 using different climate models to simulate a world in which humans 
were not influencing climate (see Chapter 3). Blue is the modeled return time for 2000 runoff (identical 
in each panel) against frequency of occurrence, while colored dots show the return times in a world that 
might have been, constructed by removing the pattern of human influence on sea surface temperatures 
(SSTs) from four different climate models: HadCM3 (brown, a), GFDL (purple, b), PCM (pink, c), and MIROC 
(orange, d). The horizontal black line on each panel corresponds to the highest daily runoff observed dur-
ing these 2 months. SOURCE: Pall et al., 2011. 

•	 are simulated adequately in climate models4; and 
•	 are either purely meteorological in nature (i.e., the event is not strongly influ-

enced by built infrastructure, resource management actions, etc.) or occur in 
circumstances where these confounding factors can be carefully and reliably 
considered. 

4  By “adequately” the committee means that, at a minimum, climate models used for event attribution 
need to accurately capture the spatial patterns and variability of relevant climate-related phenomena. See 
Table S.1 and Box 4.1 for the committee’s assessment of the capabilities of climate models to simulate each 
event type.
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Non-meteorological factors can limit the accuracy of model simulations of extreme 
events and confound observational records. Drought and wildfire are examples of 
events for which non-meteorological factors can be especially challenging in attribu-
tion studies.

Furthermore, confidence in attribution results that indicate an influence from anthro-
pogenic climate change is strongest when there is an understood and robustly 
simulated physical mechanism that relates a given class of extreme events to long-
term anthropogenic climate changes such as global-scale temperature increase or 
increases in water content of a warmer atmosphere. 

More frequent occurrences of extreme heat and less frequent occurrences of extreme 
cold are examples of changes that are consistent with increasing global mean 
temperatures.

Using this set of criteria (i.e., sound physical principles, consistent evidence from 
observations, and numerical models that can replicate the event) the committee 
assessed their confidence in event attribution capabilities for different extreme event 
types, as illustrated in Figure S.4 and Table S.1. 

Confidence in attribution findings of anthropogenic influence is greatest for 
those extreme events that are related to an aspect of temperature, such as the 
observed long-term warming of the regional or global climate, where there is 
little doubt that human activities have caused an observed change. For extreme 
heat and cold events in particular, changes in long-term mean conditions provide a 
basis for expecting that there also should be related changes in extreme conditions. 
Heavy rainfall is influenced by a moister atmosphere, which is a relatively direct conse-
quence of human-induced warming, though not as direct as the increase in tempera-
ture itself. The frequencies and intensities of tropical cyclones and severe convective 
storms are related to large-scale climate parameters whose relationships to climate are 
understood to varying degrees but, in general, are more complex and less direct than 
are changes in either temperature or water vapor alone. Nevertheless, atmospheric 
circulation and dynamics play some role in the development of an extreme event, 
which is different for different event types. Changes in atmospheric circulation and 
dynamics are generally less directly controlled by temperature, less robustly simulated 
by climate models, and less well understood.

Event attribution can be further complicated by the existence of other factors that 
contribute to the severity of impacts. For example, while many studies have linked 
an increase in wildfires to climate change, the risk of any individual fire depends on 
past forest management, natural climate variability, human activities in the forest, 
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FIGURE S.4  Schematic depiction of this report’s assessment of the state of attribution science for differ-
ent event types. The horizontal position of each event type reflects an assessment of the level of under-
standing of the effect of climate change on the event type, which corresponds to the right-most column 
of Table S.1. The vertical position of each event type indicates an assessment of scientific confidence in 
current capabilities for attribution of specific events to anthropogenic climate change for that event 
type, which draws on all three columns of Table S.1. A position below the 1:1 line indicates an assess-
ment that there is potential for improvement in attribution capability through technical progress alone 
(such as improved modeling, or the recovery of additional historical data), which would move the symbol 
upward. A position above the 1:1 line is not possible because this would indicate confident attribution in 
the absence of adequate understanding. In all cases, there is the potential to increase event attribution 
confidence by overcoming remaining challenges that limit the current level of understanding. (See Box 
4.1 for more details.)
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TABLE S.1  This table, along with Figure S.4, provides an overall assessment of the 
state of event attribution science for different event types. In each category of extreme 
event, the committee has provided an estimate of confidence (high, medium, and 
low) in the capabilities of climate models to simulate an event class, the quality and 
length of the observational record from a climate perspective, and an understanding 
of the physical mechanisms that lead to changes in extremes as a result of climate 
change. The entries in the table, which are presented in approximate order of overall 
confidence as displayed in Figure S.4, are based on the available literature and are the 
product of committee deliberation and judgment. Additional supporting information 
for each category can be found in the text of Chapter 4, summarized in Box 4.1. 
The assessments of the capabilities of climate models apply to those models with 
spatial resolutions (100km or coarser) that are representative of the large majority 
of models participating in the Coupled Model Intercomparison Project Phase 5 
(CMIP5). Individual global and regional models operating at higher resolutions may 
have better capabilities for some event types, but in these cases, confidence may still 
be limited due to an inability to assess model-related uncertainty. The assessments 
of the observational record apply only to those parts of the world for which data 
are available and are freely exchanged for research. Most long records rely on in situ 
observations, and these are not globally complete for any of the event types listed in 
this table, although coverage is generally reasonable for the more densely populated 
parts of North America and its adjacent ocean regions.  

� = high

� = medium

� = low

Capabilities of Climate 

Models to Simulate 

Event Type 

Quality/Length of the 

Observational Record 

Understanding of 

Physical Mechanisms 

That Lead to Changes in 

Extremes as a Result of 

Climate Change

Extreme cold events � � �

Extreme heat events � � �

Droughts � � �

Extreme rainfall � � �

Extreme snow and ice 

storms
� � �

Tropical cyclones � � �

Extratropical cyclones � � �

Wildfires � � �

Severe convective 

storms
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and possibly other factors, in addition to any exacerbation by human-caused climate 
change.

Confidence in attribution analyses of specific extreme events is highest for 
extreme heat and cold events, followed by hydrological drought and heavy pre-
cipitation. There is little or no confidence in the attribution of severe convective 
storms and extratropical cyclones. Confidence in the attribution of specific events 
generally increases with an increased understanding of the effect of climate change 
on the event type. Gaps in understanding and limitations in the historical data lead to 
differences in confidence in attribution of specific events among different event types.

Attribution of events to anthropogenic climate change may be complicated by 
low-frequency natural variability, which influences the frequencies of extreme 
events on decadal to multidecadal timescales. The Pacific Decadal Oscillation and 
the Atlantic Multidecadal Oscillation are examples of such variability. Characterization 
of these influences is uncertain because the observed record is too short to do so reli-
ably or to assess if climate models simulate these modes of variability correctly. 

PRESENTING AND INTERPRETING EXTREME EVENT ATTRIBUTION STUDIES

Given the relative newness of the event attribution field, standards have not yet been 
established for how to present results, which can make their interpretation difficult, 
particularly if conflicting evidence is available. Most event attribution studies are sub-
ject to substantial uncertainty. Results also hinge on how the event that is analyzed is 
defined, the specific questions that are posed, the assumptions made when analyzing 
the event, and the data, modeling, and statistical tools used to conduct the analysis. It 
is therefore essential to communicate the event definition, event attribution questions, 
assumptions, and choices clearly when reporting on the outcome of an event attribu-
tion study. The technical nature of this information makes it challenging to accurately 
communicate results, uncertainties, and limitations to the broader public. 

There is no single best method or set of assumptions for event attribution, as these 
depend heavily on the framing of the question and the amount of time available 
to answer it. Time constraints may themselves affect framing and methodological 
choices by limiting analyses to approaches that can be undertaken quickly. 

A definitive answer to the commonly asked question of whether climate change 
“caused” a particular event to occur cannot usually be provided in a determinis-
tic sense because natural variability almost always plays a role. Many conditions 
must align to set up a particular event. Extreme events are generally influenced by 
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a specific weather situation, and all events occur in a climate system that has been 
changed by human influences. Event attribution studies generally estimate how 
the intensity or frequency of an event or class of events has been altered by climate 
change (or by another factor, such as low-frequency natural variability). Thus, examples 
of questions that the scientific community can attempt to address include: 

•	 “Are events of this severity becoming more or less likely because of climate 
change?” 

•	 “To what extent was the storm intensified or weakened, or its precipitation 
increased or decreased, because of climate change?” 

Statements about attribution are sensitive to the way the questions are posed 
and the context within which they are posed. For example, when defining an 
event, choices must be made about defining the duration of the event (when did it 
begin and when did it end) and the geographic area it impacted, but this may not 
be straightforward for some events (e.g., heat waves). Furthermore, different physical 
variables may be studied (e.g., drought might be characterized by a period with insuf-
ficient precipitation, excessively dry soil, or reduced stream flow), and different metrics 
can be used to determine how extreme an event was (e.g., frequency, magnitude). 
Whether an observation- or model-based approach is used, and which observations 
and/or models were available for studying the event, will also constrain the sorts of 
questions that can be posed. 

Attribution studies of individual events should not be used to draw general con-
clusions about the impact of climate change on extreme events as a whole. Events 
that have been selected for attribution studies to date (e.g., events affecting areas with 
high population and extensive infrastructure attract the greatest demand for informa-
tion from stakeholders) are not a representative sample. Also, events that are becom-
ing less likely because of climate change (e.g., cold extremes) will be studied less often 
because they occur less often than events whose frequency is increasing because of 
climate change. Furthermore, attribution of individual events is generally more dif-
ficult than characterizing the statistical distribution of events of a given type and its 
dependence on climate. For example, it may be possible to make confident statements 
about how some class of extreme events is expected to change because of human-
induced climate change, while at the same time an attribution study of an individual 
event of that type may be unable to make a confident statement about the human 
influence on that one specific event. Thus, for all of these reasons, counts of available 
attribution studies with any positive, negative, or neutral results are not expected to 
give a reliable indication of the overall importance of human influence on extreme 
events.
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Unambiguous interpretation of an event attribution study is possible only when 
the assumptions and choices that were made in conducting the study are clearly 
stated and uncertainties are carefully estimated. The framing of event attribu-
tion questions, which may depend strongly on the intended application of the study 
results, determine how the event will be studied and can lead to large differences in 
the interpretation of the results. Event attribution studies presented in the following 
manner are less likely to be misinterpreted:

•	 Assumptions about the state of one or more aspects of the climate system at 
the time of the event (e.g., SST anomalies, atmospheric circulation regimes, 
specific weather situations) are clearly communicated. 

•	 Estimates of changes in both magnitude and frequency are provided, with 
accompanying estimates of uncertainty, so users can understand the esti-
mated degree of change from the different perspectives.

•	 Estimates of changes in frequency are presented as a risk ratio—that is, in 
terms of the ratio of the probability of the event in a world with human-
caused climate change to its probability in a world without human-caused 
climate change. Equivalently, one can compare the return periods of the event 
(i.e., how rarely an event occurs) in the world without climate change to that in 
the world with climate change.

•	 The impact of assumptions (e.g., of how estimates of changes in magnitude 
and frequency depend on SST anomalies or atmospheric circulation regimes) 
is discussed.

•	 Statements of confidence accompany results so users understand the strength 
of the evidence. 

Bringing multiple scientifically appropriate approaches together, including 
multiple models and multiple studies helps distinguish results that are robust 
from those that are much more sensitive to how the question is posed and the 
approach taken. For example, robust attribution analyses typically show that the 
results are qualitatively similar across a range of event definitions, acknowledging that 
quantitative results are expected to differ somewhat because of differences in defini-
tion. Utilizing multiple methods to estimate human influences on a given event also 
partially addresses the challenge of characterizing the many sources of uncertainty in 
event attribution.

Examples of multiple components that can lead to more robust conclusions include:

•	 Estimates of event probabilities or magnitudes based on an appropriate 
modeling approach that has been shown to adequately reproduce the event 
and its circumstances, such as the dynamic situation leading to the event.
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•	 Reliable observations against which the model has been evaluated and that 
give an indication of whether the event in question has changed over time in 
a manner that is consistent with the model-based attribution.

•	 Assessment of the extent to which the result is consistent with the physical 
understanding of climate change’s influence on the class of events in question.

•	 Clear communication of remaining uncertainties and assumptions made or 
conditions imposed on the analysis.

THE PATH FORWARD

Improving Extreme Event Attribution Capabilities

Continued research efforts are necessary to increase the reliability of event attribution 
results, particularly for event types for which attribution is presently poorly under-
stood. Some of this research is covered in the ongoing work to understand the con-
nection between climate change and long-term statistics of extremes. Improvements 
in attribution capability for all event types require improvements in observations, 
models, theoretical understanding of the links between climate change and extremes, 
and analysis techniques. 

A focused effort to improve understanding of specific aspects of weather and 
climate extremes could improve the ability to perform extreme event attribution. 
Because extreme event attribution relies strongly on all aspects of the understanding 
of extremes and their challenges, the committee endorses the recommendations iden-
tified in the white paper sponsored by the World Climate Research Programme “WCRP 
Grand Challenge: Understanding and Predicting Weather and Climate Extremes” 
(Box S.1; Zhang et al., 2014) as necessary to make advances in event attribution.

In particular, this committee recommends research that aims to improve event attribu-
tion capabilities, which includes increasing the understanding of

•	 the role of dynamics and thermodynamics in the development of extreme events;
•	 the model characteristics that are required to reliably reproduce extreme 

events of different types and scales;
•	 changes in natural variability, including the interplay between a changing 

climate and natural variability, and characterization of the skill of models to 
represent low-frequency natural variability in regional climate phenomena 
and circulation; 

•	 the various sources of uncertainty that arise from the use of models in event 
attribution; 
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•	 how different levels of conditioning (i.e., the process of limiting an attribution 
analysis to particular types of weather or climate situations) lead to apparently 
different results when studying the same event; 

•	 the statistical methods used for event attribution, objective criteria for event 
selection, and development of event attribution evaluation methods;

•	 the effects of non-climate causes—such as changes in the built environment 
(e.g., increasing area of urban impervious surfaces and heat island effects, land 
cover changes), natural resource management practices (e.g., fire suppression), 
coastal and river management (e.g., dredging, seawalls), agricultural practices 
(e.g., tile drainage), and other human activities—in determining the impacts of 
an extreme event; 

•	 expected trends in future extreme events to help inform adaptation or mitiga-
tion strategies (e.g., calculating changes in return periods to show how the risk 
from extreme events may change in the future); and 

•	 the representation of a counterfactual world that reliably characterizes the 
probability, magnitude, and circumstances of events in the absence of human 
influence on climate. 

Research efforts targeted specifically at extreme events, including event attribution, 
could rapidly improve capabilities and lead to more reliable results. In particular, there 
are opportunities to better coordinate existing research efforts to further accelerate 
the development of the science and improve and quantify event attribution reliability. 
Also, it would be beneficial to encourage interdisciplinary research at the interface 
between the climate, weather, and statistical sciences to improve analysis methods. 
Event attribution capabilities would be improved with better observational records, 
both near–real time and for historical context. Long, homogeneous observed records 

BOX S.1   
KEY RECOMMENDATIONS FROM THE WHITE PAPER “WCRP GRAND CHALLENGE:  
UNDERSTANDING AND PREDICTING WEATHER AND CLIMATE EXTREMES” 

•	� substantial advances in modelling (including but not limited to model resolution) 
•	� advances in the understanding of the physical mechanisms leading to extremes
•	� increased effort to extend the historical observational record, including planned climate 

quality reanalyses over longer historical periods
•	� improvements in remote sensing products that extend long enough to document trends 

and sample extremes

SOURCE: Zhang et al., 2014.
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are essential for placing events into a historical context and evaluating to what extent 
climate models reliably simulate the effect of decadal climate variability on extremes.

Event attribution could be improved by the development of transparent com-
munity standards for attributing classes of extreme events. Such standards could 
include an assessment of model quality in relation to the event/event class. They also 
could include use of multiple lines of evidence, developing a transparent link to a 
detected change that influences events in question and the clear communication of 
sensitivities of the result to how the question of event attribution is asked. 

Systematic criteria for selecting events to be analyzed would minimize selection 
bias and permit systematic evaluation of event attribution performance, which 
is important for enhancing confidence in attribution results. Studies of a repre-
sentative sample of extreme events would allow stakeholders to use such studies as 
a tool for understanding how individual events fit into the broader picture of climate 
change. Irrespective of the method or related choices, it would be useful to develop 
a set of objective event selection and definition criteria. This would help to reduce 
selection bias and, in some cases, lead to methodological improvements. This also 
is a prerequisite for the development of a formalized approach to evaluating event 
attribution results and uncertainty estimates, similar to the existing approaches used 
to evaluate weather forecasts.

Event Attribution in an Operational Context

As more researchers begin to attempt event attribution, their efforts would benefit 
from coordination to make sure that there is a systematic approach and that uncer-
tainties are explored across methods and framing. Event attribution can benefit from 
links to operational numerical weather prediction where available. Some groups are 
moving toward the development of operational extreme event attribution systems to 
systematically evaluate the causes of extreme events based on predefined and tested 
methods. Objective approaches to compare and contrast the analyses among mul-
tiple different research groups based on agreed event selection criteria are yet to be 
developed. 

In the committee’s view, attributes of a successful operational event attribution system 
would include the following:

•	 objective event-selection criteria to reduce selection bias so stakeholders 
understand how individual events fit into the broader picture of climate 
change;
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•	 provision of stakeholder information about causal factors within days of an 
event, followed by periodic updates as more data and analysis results become 
available; 

•	 clear communication of key messages to stakeholders about the methods and 
framing choices as well as the associated uncertainties and probabilities; and

•	 reliable assessments of performance of the event attribution system through 
evaluation and verification processes utilizing observations and seasonal fore-
casts and skill scores similar to those used routinely in weather forecasting.

Some future event attribution activities could benefit from being linked to an 
integrated weather-to-climate forecasting effort on a range of timescales. The 
development of such an activity could be based on concepts and practices within the 
Numerical Weather Prediction community. Ultimately the goal would be to provide 
predictive (probabilistic) forecasts of future extreme events at lead times of days to 
seasons or longer, accounting for natural variability and anthropogenic influences. 
These forecasts would be verified and evaluated using observations, and their rou-
tine production would enable the development and application of appropriate skill 
scores. The activity would involve rigorous approaches to managing and implement-
ing system enhancements to continually improve models, physical understanding, 
and observations focused on extreme events. Although situating some future event 
attribution activities in an integrated weather-to-climate forecasting effort would lead 
to more coordination, the committee encourages continued research in event attribu-
tion outside of an operational context to ensure further innovation in the field.

CONCLUDING REMARKS

The ability to understand and explain extreme events in the context of climate change 
has developed very rapidly over the past decade. In the past, a typical climate scien-
tist’s response to questions about climate change’s role in any given extreme weather 
event was, “We cannot attribute any single event to climate change.” The science has 
advanced to the point that this is no longer true as an unqualified blanket statement. 
In many cases, it is now often possible to make and defend quantitative statements 
about the extent to which human-induced climate change (or another causal factor, 
such as a specific mode of natural variability) has influenced either the magnitude or 
the probability of occurrence of specific types of events or event classes. The science 
behind such statements has advanced a great deal in recent years and is still evolving 
rapidly. Still further advances are necessary, particularly with respect to evaluating and 
communicating event attribution results and ensuring that event attribution studies 
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meet the information needs of stakeholders. Further improvement will depend not 
only on addressing scientific problems specific to attribution but also on advances in 
the basic underlying science, including observations, modeling, and theoretical under-
standing of extreme events and their relation to climate change. 
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Extreme weather and climate events (e.g., heat waves, droughts, heavy rainfall, 
hurricanes) have always posed risks to human society. A matter of growing inter-
est, however, is the degree to which humans are changing these risks through 

anthropogenic climate change. This concern has been driven by the growing impacts 
on ecosystems, communities, and infrastructure of recent extreme events across the 
United States and the world.

Efforts to attribute the causes of individual extreme events need to be understood in 
the broader context of what we already know about climate change. Humans have 
contributed to warming of the climate system globally (predominantly due to anthro-
pogenic greenhouse gas [GHG] emissions). This finding is supported by multiple lines 
of evidence that originate from data from observing systems across the globe on land 
and sea and in the atmosphere and from structurally different analyses of multiple 
components of the climate system. A substantial body of evidence also shows that 
climate change has led to discernible and quantifiable changes in the intensity and/or 
frequency of some types of extremes (Donat et al., 2013; IPCC, 2014; Melillo et al., 2014; 
Seneviratne et al., 2012; Figure 1.1). 

Extreme weather is one way that people experience climate change. Extreme events 
are abrupt, occur in the present, and are highly visible, as opposed to long-term 
climate change trends that seem abstract, distant, gradual, and complicated (Howe et 
al., 2014). The global news includes reports on extreme weather or climate events on 
a regular basis: for example, in 2015 there was a May-June India-Pakistan heat wave, 
both a “1,000-year rainfall event” in South Carolina (Figure 1.2) and Hurricane Patricia, 
the “strongest eastern Pacific or Atlantic hurricane in the historical record,” in Octo-
ber, as well as widespread flooding in northern England in December. Each of these 
cases has led to questions from the media and the public about whether the events 
were “caused” by climate change. Attribution draws the explicit connection between 
climate science as a whole and the specific event in the news, making the science con-
crete in a way that statements about broader trends and future projections do not.

C H A P T E R  O N E
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FIGURE 1.1  This probability density function captures the likelihood of specified events resulting from 
a given temperature distribution and its changes. As with any bell curve, those events that fall near the 
center (events occurring in a mid-range temperature state) are most likely, and events that occur in lower 
and upper temperature extremes have smaller probability. A world with climate change could have differ-
ent effects on the probability of extreme values of the distribution. For example, in (a) a simple shift of the 
entire distribution toward a warmer climate could lead to fewer cold weather and extreme cold weather 
events and more hot weather and extreme hot weather events. Alternatively, in (b) increased tempera-
ture variability without a shift in the mean could lead to more extreme cold and heat events, with lower 
probability of mid-range temperature events. In a third example (c), an altered shape of the temperature 
distribution could result in no change in the mean but differing likelihoods in extreme events on both 
ends of the temperature spectrum (in this example, a change in asymmetry toward the hotter part of the 
distribution). SOURCE: IPCC, 2012.
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B.

or sub-national levels can substantially affect
livelihood options and resources and the capacity
of societies and communities to prepare for and
respond to future disasters. [2.2, 2.7] 

A changing climate leads to changes in the
frequency, intensity, spatial extent, duration,
and timing of extreme weather and climate
events, and can result in unprecedented
extreme weather and climate events. Changes
in extremes can be linked to changes in the mean,
variance, or shape of probability distributions, or all
of these (Figure SPM.3). Some climate extremes (e.g.,
droughts) may be the result of an accumulation of
weather or climate events that are not extreme
when considered independently. Many extreme
weather and climate events continue to be the
result of natural climate variability. Natural variability
will be an important factor in shaping future
extremes in addition to the effect of anthropogenic
changes in climate. [3.1]

Observations of
Exposure, Vulnerability,
Climate Extremes,
Impacts, and Disaster
Losses

The impacts of climate extremes and the potential
for disasters result from the climate extremes
themselves and from the exposure and vulnerability
of human and natural systems. Observed changes
in climate extremes reflect the influence of
anthropogenic climate change in addition to natural
climate variability, with changes in exposure and
vulnerability influenced by both climatic and non-
climatic factors.

Exposure and Vulnerability

Exposure and vulnerability are dynamic, varying across temporal and spatial scales, and depend on
economic, social, geographic, demographic, cultural, institutional, governance, and environmental factors
(high confidence). [2.2, 2.3, 2.5] Individuals and communities are differentially exposed and vulnerable based on
inequalities expressed through levels of wealth and education, disability, and health status, as well as gender, age,
class, and other social and cultural characteristics. [2.5]

Settlement patterns, urbanization, and changes in socioeconomic conditions have all influenced observed
trends in exposure and vulnerability to climate extremes (high confidence). [4.2, 4.3.5] For example, coastal
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Figure SPM.3 | The effect of changes in temperature distribution on
extremes. Different changes in temperature distributions between present and
future climate and their effects on extreme values of the distributions:
(a) effects of a simple shift of the entire distribution toward a warmer climate;
(b) effects of an increase in temperature variability with no shift in the mean;
(c) effects of an altered shape of the distribution, in this example a change in
asymmetry toward the hotter part of the distribution. [Figure 1-2, 1.2.2]
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FIGURE 1.2  Historic flooding in South Carolina in October 2015. SOURCE: Chuck Burton/Associated Press.

WHY INVESTIGATE THE CAUSES OF EXTREME EVENTS?

Given that climate change affects the climate system globally, it is impossible to rule 
out some contribution from climate change to any extreme event. Each extreme 
event, however, has a host of possible natural and anthropogenic causes in addition 
to anthropogenic climate change. Examples of natural causes include large-scale 
circulation, internal modes of climate variability, and some aerosol effects (e.g., marine 
aerosol, stratospheric and volcanic aerosol). Furthermore, the resulting impacts of that 
event can be mitigated or exacerbated by other factors (e.g., the local topography, 
land use). 

There are several motivations for investigating the causes of individual extreme 
events. From a scientific perspective, these studies increase our understanding of 
how and why the frequency and intensity of extremes has changed over time. These 
studies may also spur model improvements to ensure that the models used in event 
attribution studies adequately represent the event being studied. There is an element 
of scientific curiosity, but the primary motivation for event attribution goes beyond 
science. 
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Extreme events are directly traceable to loss of life, rising food and energy prices, in-
creasing costs of disaster relief and insurance, fluctuations in property values, and con-
cerns about national security. Extreme events can and have evoked policy changes: for 
example, Superstorm Sandy led to supplemental Congressional legislation to increase 
the National Weather Service’s numerical weather modeling capacity.1 Furthermore, 
global insurer Munich Re calculated that natural disasters caused more than $90 bil-
lion in overall losses and $27 billion in insured losses in 2015 alone (NatCatSERVICE, 
2016).2 A study in the Bulletin of the American Meteorological Society (BAMS) (Lazo et 
al., 2011) noted that weather affects about 3.4% of the U.S. Gross Domestic Product, or 
more than $500 billion per year. 

The strong societal impacts of extreme events explain public and policy maker inter-
est in understanding their underlying causes. In addition, it is important to assess what 
is known about climate and non-climate causes of such events in order to evalu-
ate whether they are likely to pose increasing risks to life and property in particular 
regions in the future. As is established in this report and many others, the climate con-
tribution to risk associated with some kinds of extreme events is expected to increase 
over time as the concentration of GHGs in the atmosphere increases. Some of the 
anticipated impacts can be reduced, however, through such management strategies 
as land use planning if the connections between climate change and extreme events 
like intense precipitation are better understood. Such planning would ideally be based 
on a broad risk assessment, including projections of future trends in extreme events, 
and it need not rely specifically on attribution of individual events. 

As they improve, event attribution studies can be a tool for informing choices about 
assessing and managing risk and guiding adaptation strategies. Such information 
may be critical to multiple decision makers, among them insurers, elected officials 
and policy makers, local and regional land and resource managers, zoning and infra-
structure planners and engineers, litigators, and emergency managers who focus on 
disaster risk reduction. 

OVERVIEW OF EXTREME EVENT ATTRIBUTION RESEARCH

In the past decade, the field of extreme event attribution has moved from generalized 
statements about expecting certain events to increase in frequency or magnitude, 

1  See https://www.ametsoc.org/boardpges/cwce/docs/profiles/MurphyJohnD/2013-08-SCM.pdf (ac-
cessed May 31, 2016).

2  NatCatSERVICE is a natural catastrophe loss database that analyzes approximately 1,000 events 
every year.
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to documented increases in frequency or intensity of extreme events, to probability-
based attribution of individual events. Following an extreme climate or weather event, 
the standard response from scientists has typically been that global warming does not 
“cause” any single event in a deterministic sense, but it can make some of them more 
likely to occur or more intense when they do. Because of advances in the relatively 
young science of extreme event attribution, however, it is now possible in some cases 
to provide quantitative information about how climate change may have impacted 
the probability or intensity of an individual event and to cast this within a probabilistic 
causal framework. 

In perhaps the first attempt at extreme event attribution, Stott and colleagues (2004) 
showed that climate change had at least doubled the chance of the record-breaking 
2003 European summer heat wave that has been associated with the death of more 
than 70,000 people by some accounts (Robine et al., 2008). Since then, advances in the 
field have prompted numerous studies (e.g., the 2010 Russian heat wave [Dole et al., 
2011; Otto et al., 2012]; the Texas drought and heat wave in 2011 [Hoerling et al., 2013; 
Rupp et al., 2012]; and the ongoing California drought [Cheng et al., 2016; Diffenbaugh 
et al., 2015; Williams et al., 2015]). BAMS now publishes annual special issues on event 
attribution (Herring et al., 2014, 2015b; Peterson et al., 2012, 2013b), which include a 
compilation of short studies on events that occurred during the previous year. An indi-
cation of the developing interest in event attribution is highlighted by the fact that in 
4 years (2012-2015), the number of papers increased from 6 to 32. 

Detection and Attribution of Long-Term Changes

Many elements of extreme event attribution research are derived from the more 
mature field of detection and attribution of long-term changes in the characteristics 
of the climate, such as changes in the frequency or intensity of extremes as well as 
changes in average climatic conditions. 

The primary approach used in detection and attribution research is to compare obser-
vations (e.g., of spatial patterns of decadal mean temperatures) to expected changes, 
which are derived from climate model simulations. The methods used for detection of 
change continue to evolve, but repeatedly they have been demonstrated to be robust 
(see, e.g., Allen and Stott, 2003; the appendices in Hegerl et al., 2007, and Bindoff et al., 
2013; the review of Hegerl and Zwiers, 2011; and recent papers that suggest further 
changes to the methods, such as Ribes et al., 2013, 2015; Ribes and Terray, 2013; and 
Hannart et al., 2015b).
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Considerations Specific to Attribution of Extreme Events

Attribution is defined as the process of evaluating the relative contributions of mul-
tiple causal factors to a change or event with an assignment of statistical confidence3 
(Hegerl et al., 2010). Many causal factors impact any given extreme event, so attribu-
tion to any of them could be studied in principle. Our statement of task covers attribu-
tion to both human-induced climate change and natural variability. In a number of 
respects the scientific issues are similar, whether human influence or natural variability 
is being assessed in an attribution study, so much of our discussion is general. Where 
attribution to human influence raises distinct scientific issues, our discussion priori-
tizes those, and our conclusions and recommendations do as well.

The occurrence of any individual extreme event, by itself, does not prove or disprove 
that the climate is changing. Nevertheless, event attribution studies seek to calculate 
how much human-induced climate change has affected an individual event’s magni-
tude or probability of occurrence (Stott et al., 2015). 

Conclusions regarding attribution of extreme events are strongly affected by the way 
“extreme” is defined by scientists. Seneviratne and colleagues (2012) define climate 
extremes (extreme weather or climate events) as “the occurrence of a value of a 
weather or climate variable above (or below) a threshold value near the upper (or 
lower) ends of the range of observed values of the variable.” In fact, the threshold that 
is selected as “extreme” is generally based on 20th-century observations, but the base-
line of what is “normal” is changing over time. In the future, events that are currently 
considered extreme may eventually be considered normal. Therefore, scientists gener-
ally establish metrics to characterize the extreme nature of the event being attributed 
in the context of a baseline period.

There are several important challenges related to event attribution (discussed in more 
detail in other chapters), including defining and interpreting an “event” and character-
izing a “cause,” or a causal link. Further issues arise from the many different ways that 
scientists (who are often working with different sources of data and models) describe 
the degree of certainty about their findings and characterize the uncertainty. 

THIS STUDY AND THE COMMITTEE’S APPROACH

This committee was asked to examine the science of attribution of extreme weather 
events to human-caused climate change and natural variability by reviewing current 

3  In practice, not all attribution studies include statistical confidence.
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understanding and capabilities; assessing the robustness of the methods; providing 
guidance for interpreting analyses; and identifying priority research needs (see Ap-
pendix A for the full statement of task).

This study is sponsored by the David and Lucile Packard Foundation, the Heising-
Simons Foundation, the Litterman Family Foundation, the National Aeronautics and 
Space Administration (NASA), the National Oceanic and Atmospheric Administration 
(NOAA), and the U.S. Department of Energy, with additional support from the National 
Academy of Sciences’ Arthur L. Day Fund. Beyond the sponsors, the intended audi-
ences for this report are the scientific community, decision makers, and the media. 
The committee’s goal for this report is to provide these audiences with guidance in 
interpreting new attribution studies and about the robustness of extreme event at-
tribution science. The committee also hopes that this report guides future support and 
development of high-priority attribution and detection projects.

Although it is clear to the committee that communication is a critical issue in extreme 
event attribution, communication is not discussed in detail in this report, as it is not 
part of the committee’s charge. Indeed, a careful and comprehensive treatment of the 
many issues associated with science communication related to climate attribution 
could be a study in its own right. The committee recognizes the importance of com-
municating clearly and accurately framing any climate-related issue, however. Framing 
of event attribution questions—how they are posed, and the context within which 
they are posed—is a key issue, both in terms of communicating study results and 
in designing and conducting event attribution studies (e.g., Otto et al., 2013, 2015b; 
Trenberth et al., 2015). Different event framing can lead to large differences in the 
interpretation of evidence regarding whether human influence on the climate system 
played a role. The committee has included a detailed discussion on the framing of 
extreme event attribution questions in Chapter 2 and offers guidance on communi-
cating event attribution study results in Chapter 3. 

Although this report focuses almost exclusively on the physical aspects of the causes 
of extreme events, including the effect of anthropogenic climate change, it is impor-
tant to acknowledge that significant human aspects (other than human-induced GHG 
emissions) do influence the severity of extreme events. This includes the perception of 
what is regarded as being “extreme” and the role that human activity plays in creat-
ing the vulnerability and exposure that determine the impacts of extreme events 
(Cardona et al., 2012). Event attribution is important because of its relationships to risk 
perception, disaster risk, climate change adaptation, disaster risk reduction, commu-
nication, and decision making. Human behavior can either exacerbate or mitigate the 
impacts of extreme events. For these reasons, understanding the social, ethical, and 
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human behavior issues that are connected to the experience of extreme events is an 
important research need.

REPORT ROAD MAP

This report focuses on several topics related to the committee’s statement of task. 
Chapter 2 discusses the framing of event attribution questions. Chapter 3 discusses 
the challenges and uncertainties associated with the implementation of the differ-
ent approaches to extreme event attribution. In Chapter 4 the committee provides 
an evaluation of the robustness of the attribution work that has been completed for 
specific types of extreme events as well as identifies anticipated progress in research 
efforts. Chapter 5 provides guidance for future research.
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“What we observe is not nature itself, but nature exposed to our method of questioning.” 
 —Werner Heisenberg

To answer a question scientifically, the question needs to be posed in a way that 
is amenable to scientific analysis. The question often asked by the public and the 
media, “Was this extreme event caused by anthropogenic climate change, yes or 

no?” is not well posed because the word “cause” can have several different meanings. 
For a record-breaking extreme event, a potential rephrasing of this question might be 
“Could an event of this severity have happened in this location and time of year with-
out climate change?” Generally speaking the answer will be “yes” because observa-
tional records are too short to have well sampled the full range of climate possibilities. 
In this case a more informative rephrasing of the question could be “Are events of this 
severity becoming more or less likely because of climate change?” For a weather event 
such as a storm, which in detail is always unique, a potential rephrasing of the ques-
tion might be “To what extent was the storm intensified, or its precipitation increased, 
because of climate change?”

How event attribution questions are posed, and the context within which they are 
posed, is referred to as framing. The developing literature on event attribution has 
shown that the framing of questions is fundamental to the choice of method that is 
used and can lead to large differences in the interpretation of evidence regarding 
whether human influence on the climate system played a role. This chapter explores 
the different ways in which event attribution studies can be framed. 

The chapter begins with a number of framing issues that arise in any event attribution 
study. It goes on to discuss the additional framing issues that arise when the attribu-
tion is conditional on the state of the climate system (e.g., for a given sea-surface 
temperature [SST] pattern, such as that associated with El Niño–Southern Oscillation 
[ENSO]), a naturally occurring source of interannual variability). Because all event 
attribution is performed and interpreted within the broader context of the scientific 
understanding of climate change, this too represents part of the framing and so is 
explicitly discussed in that vein. The interest in extreme events is typically driven by 
their impacts on society, which raises further framing issues when non-climate anthro-
pogenic factors come into play. Finally, because the choice of which events to study is 

C H A P T E R  T W O
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another aspect of framing, the possible role of selection bias in affecting the interpre-
tation of collections of attribution studies also is discussed.

GENERAL CONSIDERATIONS

The traditional and perhaps easiest-to-interpret approach to event attribution pos-
its that the probability of an event is related in some way to the observed event and 
thus uses model simulations or observational data. It does this for both the factual 
(currently observable) world as it exists in the context of climate change and a hypotheti-
cal counterfactual world without climate change; the difference between the factual 
and counterfactual probabilities is taken to represent the effect of climate change. 

Attribution refers to causation, but there are different kinds of causation. In the clas-
sical (deterministic) context, causation can be either necessary or sufficient, and these 
concepts have probabilistic counterparts (Hannart et al., 2015a; Pearl, 2009). Necessary 
causation means that the event can occur only in the presence of the causal factor, 
but it could be that other causal factors are necessary too. Multiple causation is typi-
cal with weather-related extremes, where many conditions must align to set up a 
particular event. An example would be a record-breaking heat wave that occurred in 
the presence of a summertime blocking1 anti-cyclonic circulation, a condition known 
to lead to heat waves. One possibility is that the observed temperature conditions 
could have occurred in either the factual or the counterfactual world (and just had not 
previously been observed because of the shortness of the observational record), but 
that the likelihood is substantially higher in the factual world because of the increase 
in mean temperature. Another possibility is that the temperature conditions would 
have been effectively impossible in the counterfactual world and were possible in the 
factual world (though still rare) only because of the mean warming. In this latter case, 
it may be said that the event could only have occurred because of climate change. 

In contrast, sufficient causation concerns whether the presence of the causal factor 
alone is enough to produce the event. For extreme events, for which the probability 
of an event is generally low, climate change (which is always present in the factual cli-
mate) cannot be a sufficient cause. Sufficient causation would arise only when climate 
change has caused an event to have become very likely and no longer be extreme in 
the current climate (relative only to the historical baseline). 

1  “Blocking” is a disruption of the prevailing westerly flow that is associated with anomalous warm and 
cool temperatures.
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Interpretation of Single Events and Causation

Event attribution questions are often posed in terms of a specific actual event, but 
definitive attribution of a specific event in a deterministic manner is generally not 
possible. This is because on the one hand, most events could have happened in the 
counterfactual world (so the probability of necessary causation is less than 100%), 
while on the other hand, the entire climate system, and therefore all extreme events, 
are being affected by climate change (as discussed further below), thereby obviating 
the question. Therefore, event attribution is usually a matter of changing probabilities 
rather than a deterministic yes or no. For example, a scientific researcher might re-
pose the question “Was Hurricane Sandy caused by climate change?” as “How much 
did human influence on climate increase the odds of a tropical or post-tropical storm 
with winds greater than 65 knots making landfall in northern New Jersey?” Moreover, 
analysts necessarily estimate relevant probabilities using more than just the event in 
question. In fact, probabilities are usually estimated using a definition of an event that 
differs from the specific event, such as by estimating the probability of an event as 
or more extreme than the event of interest. As a result, the answers obtained are no 
longer directly about the actual event. Epidemiology concentrates heavily on such 
a probabilistic framing, which is discussed in relation to other possible framings in 
Parascandola and Weed (2001). For example, Rothman’s Epidemiology: An Introduction 
(Rothman, 2012) frames strength of causation as relating to probabilities that per-
tain to collections of events, in contrast to his deterministic perspective on individual 
events: “With respect to an individual case of disease, however, every component 
cause that played a role was necessary to the occurrence of that case.”

Hannart and colleagues (2015a) present a causal framework for event attribution that 
provides probabilities of necessary and of sufficient causation. They show that the 
metric known as the fraction of attributable risk (FAR), which was introduced to ex-
treme event attribution by Allen (2003), can be interpreted as an estimate of the prob-
ability of necessary causation (by anthropogenic forcing) of an event. It is interesting 
to note that the argument made by Allen (2003) for interpreting the FAR as applying 
to an individual event was actually a legal one rather than a physical one: namely, that 
an uninsured loss should be equated with the cost of insurance against a similar loss. 

The FAR, however, is perhaps the easiest to interpret when an “event” is taken to be a 
class of events (e.g., all events as intense or more intense than the event that has been 
observed) rather than an individual event. In this case, a FAR of 80% would mean that 
four of five events belonging to the class of events in the factual world would not have 
happened in the counterfactual world. This interpretation corresponds to the prob-
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abilities that are currently estimated in event attribution studies, which are not those 
of the actual event but are of a broader class. 

While Hannart and colleagues (2015a) provide some very useful insights, a focus on 
formal analysis of causation may distract attention from important questions about 
changing probabilities of extreme events and their impacts on risk, which may be 
the more important questions from scientific and impacts/adaptation perspectives. 
Physically, the notion that an event may not have been affected by climate change can 
be difficult to justify in a climate system in which everything is connected. This point 
is made by Hansen and colleagues (2014b), Solow (2015), and Trenberth (2012), who 
suggest that given the pervasive effects of anthropogenic influence on the climate—
unlike, for example, the isolated effect of smoking on an individual smoker—it may 
not make sense to speak about whether an event has or has not been caused or af-
fected by anthropogenic influence. In reality, all events are occurring in a world influ-
enced by anthropogenic climate change, but one can still clearly talk about changes in 
probability. 

Frequency Versus Magnitude

If an extreme event truly is rare in the current climate, then almost by definition it re-
quired some unusual meteorological situation to be present, and the effect of climate 
change is only a contributing factor. For example, a heat wave induced by an unusu-
ally persistent summertime atmospheric high pressure system situation (i.e., blocking) 
would be exacerbated by anthropogenic warming of several degrees Celsius (C) (leav-
ing aside possible amplifiers such as soil-moisture feedbacks, for simplicity), but it may 
have been a heat wave nonetheless. In this case, to reach the recorded temperature 
extreme both the unusual blocking situation and the anthropogenic warming were 
necessary conditions. Attribution in such a case with several necessary causal factors 
is heavily dependent on the framing and also is liable to misinterpretation. In studies 
of the 2010 Russian heat wave, for example, one study concluded that the event was 
largely natural because the temperature anomalies were greatly in excess of those ex-
plainable by long-term trends (Dole et al., 2011), whereas another concluded that the 
anthropogenic influence was significant because long-term climate change, though 
small, greatly increased the probability of exceeding specified temperature thresholds 
(Rahmstorf and Coumou, 2011). This apparent contradiction in conclusions can be 
reconciled by understanding that these two studies aim at answering the attribution 
question in two different ways. In this particular case, a small change in the magnitude 
of the mean can correspond to a large change in the frequency of extremes (Otto et 
al., 2012; see Figure 2.1) because of anthropogenic influence. Interpretation therefore 
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FIGURE 2.1  Different ways of describing the effect of anthropogenic climate change on July heat waves 
over western Russia, motivated by the extreme heat wave of summer 2010. Heat waves are defined here 
by a combination of high temperature and anti-cyclonic circulation anomaly (associated with persistent 
conditions). Both figures show model estimates of the likelihood of occurrence of an extreme of at least 
the given magnitude for conditions in the 1960s (green) and 2000s (blue), expressed either as a return 
time or as a probability. The top figure shows magnitude versus probability (or return time), whereas the 
bottom figure shows the same data plotted as probability (or return time) versus magnitude, which is 
related to the cumulative distribution function commonly encountered in statistics but here shows prob-
ability of exceedance rather than the usual probability of non-exceedance. In both panels the magnitude 
of the July 2010 Russian heat wave (indicated by the thin black line) corresponds to a large change in like-
lihood arising from climate change (from a 99-year return time to a 33-year return time, indicated by the 
horizontal arrow in the top figure and the vertical arrow in the bottom figure), but to a small (compared 
to the overall anomaly of 2010 with respect to average July conditions [dashed line]) relative change 
in magnitude (indicated by the vertical arrow in the top figure and the horizontal arrow in the bottom 
figure). SOURCE: Figure courtesy of Friederike Otto, adapted from Otto et al. (2012).
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ultimately depends on whether the interest in a particular type of event is predomi-
nantly related to changes in frequency for a given magnitude—which might be the 
case if, for example, exceedance of a fixed extreme temperature threshold leads to a 
marked impact such as a reduction in crop yield—or to changes in magnitude for a 
given frequency—which might be the case if, for example, it was required to design 
structures capable of withstanding the event magnitude associated with a prescribed 
return time.

Event Definition

In order to facilitate probabilistic analysis, a particular event is usually generalized to a 
broader class of event. Analyses may use the magnitude of an actual event and quan-
tify probabilities of exceeding that observed magnitude, or they may use a percentile 
from the climatology in place of the magnitude of an actual event. Analyses also may 
focus on events over a longer timescale and larger region than those of the event 
itself, considering the causes of the prevailing climatic conditions that provide the 
context for the event rather than the specifics of the event itself (e.g., Stott et al., 2004). 
Generally speaking, using a larger spatio-temporal footprint will emphasize more 
strongly the anthropogenic role (e.g., Fischer et al., 2013). 

Furthermore, in some cases different physical variables may be considered. For ex-
ample, studies of the recent California drought focusing on precipitation deficit have 
tended to find no discernible anthropogenic influence (Seager et al., 2015), while 
those focusing on a combination of precipitation deficit and high temperature (which 
affects evaporation) have tended to find an anthropogenic influence (Diffenbaugh et 
al., 2015; Williams et al., 2015). These different definitions of drought can lead to confu-
sion if the difference is not recognized.

Event definitions should take the limitations of both observations and models into 
account. For example, if an observationally based approach (see Chapter 3) is to be 
used to estimate changes in the probability or magnitude of an event by comparing 
an earlier period with a recent period, then it would be necessary to ensure that (1) the 
observational data are of high quality (e.g., free of non-climatic heterogeneities), 
(2) the record is long enough to allow reliable comparison of extremes between two 
subperiods, and (3) human influences are accounted for in a defensible manner and 
that natural influences or non-climatic human influences do not confound the esti-
mate. In the case of model-based approaches (see Chapter 3), event definitions should 
be constrained in such a way that the focus is on events that the model can simulate 
reliably and for the correct reasons.
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A robust attribution analysis would show that results are qualitatively similar across 
a range of event definitions, acknowledging that quantitative results are expected 
to differ somewhat because of differences in definition. Results for particular spatial 
regions or scales or for particular temporal periods, seasons, or scales may differ from 
results for other regions, scales, or periods, but for a robust result, one would expect 
that results would be similar for events defined by similar characteristics, without 
strong sensitivity to the exact definition. One would hope, too, that results using differ-
ent magnitudes for defining an event class would be similar, though as the magnitude 
becomes either non-extreme or very extreme, quantitative results are expected to 
differ. For instance, using structurally different methods, different regions, and differ-
ent seasonal temperature thresholds, Christidis and colleagues (2014) and Sun and 
colleagues (2014) develop qualitatively similar estimates of the FAR of an extremely 
warm summer in China.

Fraction of Attributable Risk Versus Risk Ratio

Another aspect of framing concerns how the difference between the factual probabil-
ity p1 and the counterfactual probability p0 (that is, the probability of the same event 
in a world that is identical but for the human influence on climate) is expressed. One 
choice is to express it as FAR = (p1 – p0)/p1. The limitations of FAR are well recognized 
in other fields: see, for example, the World Health Organization statement concerning 
the equivalent metric used in attributing causes of disease risk.2 One difficulty in any 
interpretation of the FAR is its tendency to saturate at values near one for very rare 
events: that is, events for which the estimated p0 is very close to zero. For such events, 
even small increments in the estimated likelihood of p1 of the event when consid-
ering the effects of human influence lead to a FAR close to 1, with little discrimina-
tion between smaller and larger increments in p1 relative to p0. Additionally, it is not 
designed for describing cases where the likelihood decreases, which can be the case 
with climate change (e.g., of cold extremes, which in some regions have become sub-
stantially less frequent [see, e.g., Cattiaux et al., 2010], and assessment in Bindoff et al., 
2013). Hannart and colleagues (2015a) show that the probability of necessary causa-
tion is the maximum of 0 and the calculated FAR, and therefore it will be zero in cases 
of decreasing likelihood. Hence, the aggregation of attribution results using this metric 
would provide a biased overview of human influences on extreme events. 

Another important limitation occurs when events have more than one causal factor, 
as will generally be the case for extreme events (as discussed above). For example, one 

2  See http://www.who.int/healthinfo/global_burden_disease/metrics_paf/en (accessed May 31, 2016).
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can easily imagine an extreme event that was affected both by anthropogenic factors 
and by a particular SST anomaly pattern (e.g., ENSO) such that both factors cause an 
increase in the probability of the event, but neither factor on its own is sufficient to 
make its frequency exceed a certain threshold. (Treating the factors separately as-
sumes that the particular SST anomaly pattern is unrelated to climate change, an 
assumption that may or may not be justified.) If p0 is sufficiently small, then the FAR 
could be close to one for both causal factors. In an event attribution study of such an 
event, if only anthropogenic factors were considered, then a FAR near one could easily 
be interpreted to mean that anthropogenic factors are fully responsible for the event 
even when there are other causes. Rothman (2012) points out that the sum of FAR 
values of multiple causes is not constrained to sum to one. Failure to appreciate this 
feature of the FAR can lead to apparently conflicting viewpoints concerning a specific 
event. 

Another potential weakness of the FAR is that the strength of necessary causation may 
be confused with the strength of the statistical evidence. For example, as a probabi-
listic extension of necessary causality, a FAR of 0.8 could be interpreted as there being 
an 80% likelihood that anthropogenic forcings were a necessary cause of the event. In 
analyses using statistics, however, “likely” is generally used to refer to the strength of 
the statistical evidence. To give a concrete example, a person could have little statisti-
cal certainty in an estimated FAR of 0.8 with a broad confidence interval of (0.1, 0.95) 
that indicates considerable ignorance about the true FAR. A reader, though, might 
be inclined to believe that the person is confident of the result if the focus is solely 
on the single value 0.8. Alternatively, a person could have high statistical certainty 
in a small FAR with a confidence interval of (0.05, 0.15) around an estimated FAR of 
0.1, indicating little uncertainty about the true FAR. The difficulty lies in the fact that 
event attribution studies estimate a probability, so the discussion of likelihood may 
pertain to the magnitude of the estimated probability or to the uncertainty about that 
probability.

An alternative way of comparing probabilities is the risk ratio (RR)—RR = p1/p0. The 
FAR and the RR are mathematically equivalent—there is a one-to-one mapping be-
tween the two quantities—but the RR directly frames the result in terms of the relative 
probabilities under the two scenarios and is analogous to how epidemiological results 
are presented to the public. For instance, a member of the public is apt to be familiar 
with a statement such as “Smoking increases the probability of lung cancer by a fac-
tor of X.” Although the RR does not have the same causal interpretation as the FAR 
(Hannart et al., 2015a), that may not be disadvantageous if, as suggested earlier, the 
probabilistic causal interpretation of individual extreme events (as opposed to collec-
tions of events) is inappropriate in the case of climate extremes. Furthermore, a proba-



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

35

Framing

bilistic analysis done using model output can always be framed as reporting a ratio 
of probabilities explicitly as estimated based on the model such that this dependence 
on model quality is very clear. In contrast, a causal statement about a single real-world 
event is a much stronger statement directly about the real world, and the dependence 
on the model to estimate the causal quantity may not be as easily communicated and 
is easily overlooked. 

The Null Hypothesis

Estimating the unconditional probabilities of very rare events is extremely challenging 
because of observational and model limitations, and it is difficult to quantify the un-
certainties in the calculations. In addition, it becomes more difficult to discern human 
influence at smaller spatio-temporal scales (Angelil et al., 2014; Bindoff et al., 2013; 
Fischer et al., 2013) because analysis on these scales offers less opportunity to reduce 
the magnitude of natural variability through spatial and temporal averaging or other 
techniques. Although it is perfectly reasonable—and even advisable (Nicholls, 2001) 
to report an estimated magnitude of effect with an uncertainty interval that includes 
zero (i.e., no effect)—there is a tendency in climate science to regard such results as 
null results of there being no effect. That interpretation is incorrect, however: Failure to 
reject the null hypothesis of no effect should not be regarded as evidence in favor of 
there being no effect. An inability to rule out there being no effect (i.e., lack of statisti-
cal significance) does not necessarily mean that the effect is small; it may just mean 
that the uncertainties are large. Therefore, it could be misleading to report a result of 
no detectable effect of climate change as no effect of climate change. To avoid any 
misunderstanding, it is always advisable to focus on effect size and to report confi-
dence intervals (or Bayesian analogues) rather than focusing on statistical significance 
(Nicholls, 2001).

CONDITIONAL ATTRIBUTION

Rather than attempting to answer questions about changes in probability or intensity 
considering only the influence of external forcing, a person may attempt to answer 
these questions after limiting or constraining the state of one or more slowly vary-
ing parts of the climate system. This “conditional attribution” approach has been used 
in many recent studies (see Chapter 3) that investigate the role of external forcing 
conditional upon the prevailing pattern of SST anomalies. The reasoning is often that 
the SST anomaly structure likely had an influence on the atmospheric circulation that 
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prevailed during the event, and that the effect of external forcing can be more clearly 
assessed by controlling for such internal influences. 

A very similar approach involves conditioning on the state of the large-scale atmo-
spheric circulation (Cattiaux et al., 2010; Yiou et al., 2007). While to date this has been 
applied mainly to observational analysis (see Chapter 3), it could in principle be ap-
plied to a climate model through some kind of nudging.3 For example, specifying the 
state of the stratosphere seems sufficient to constrain the winter-mean North Atlantic 
Oscillation in climate models (Douville, 2009), and spectral nudging of winds (leaving 
the thermodynamic quantities free to respond to forcing) is an established method 
in regional climate modeling (von Storch et al., 2000; Waldron et al., 1996). One also 
could imagine conditioning on the state of the tropical atmosphere (thereby over-
coming potential model errors in the local response to tropical SSTs) or anomalous 
Arctic sea-ice extent or other such factors. In short, a logical extension of conditioning 
on the prevailing pattern of SST anomalies is to condition on various aspects of the 
large-scale circulation or the atmosphere’s lower-boundary conditions (sea-ice, snow 
cover, soil moisture, etc.) that are known to be important in altering the likelihood of 
extreme events.

One can go even further and condition on the specific weather situation (see Chap-
ter 3), asking how large-scale, long-term changes in thermodynamic quantities of the 
atmosphere such as temperature or humidity—which are more directly attributable 
to greenhouse gas increases than is any specific weather event (e.g., Bindoff et al., 
2013)—may have changed the severity of an event (Trenberth et al., 2015). For in-
stance, given the landfall of a hurricane at a certain point, how might its intensity have 
changed because of SST or atmospheric humidity anomalies along its path, and to 
what extent might those anomalies (defined relative to long-term historical averages) 
be attributable to human influence? How was the coastal flooding the storm induced 
increased by long-term sea level rise? How were rainfall amount and intensity and 
subsequent inland flooding affected by the warmer, moister atmosphere? These could 
be useful questions for local authorities who use past extremes as benchmarks to ask 
when planning future resilience. Although the attribution question is now framed in 
a deterministic manner—uncertainties in the calculations need to be estimated, but 
that is a different issue (see “Uncertainty Quantification” in Chapter 3)—this approach 
can be given a probabilistic interpretation if one adopts a “nowcasting” perspective: 

3  Nudging is a well-known scientific technique in which observations are used to guide a dynamic 
model, such as a climate or weather model. Nudging (Lorenc et al., 1991) is an example of a type of data 
assimilation, which refers to a broad class of methods that are used to introduce observations into dynamic 
models. Improvement in data assimilation techniques has been a key factor in the steady improvement of 
the weather forecast skill that has been achieved over the past three decades.
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Given the state of the atmosphere as estimated from the meteorological observing 
system, what is the probability distribution of specific weather features such as intense 
rainfall in a particular catchment? But, the probability distribution is certainly narrower 
than would result when conditioning on a large-scale circulation state or SST anomaly 
(see Shepherd, 2016). 

Probabilistic Formulation

The trade-off involved in conditioning is that it improves the signal-to-noise ratio of 
the anthropogenic influence while providing a more realistic simulation of the event, 
but a full estimate of the change in likelihood of the event would require an explicit 
estimate of the change in the probability or intensity of the anomalous climatic or 
weather state on which the inference is conditioned (see below). Such a change could 
either increase or decrease the conditional anthropogenic effect. (Strictly speaking, it 
also may require an estimate of the change in probability when the conditional state 
is absent, but this would not be relevant if the conditional state was necessary for the 
event to occur [Shepherd, 2016].) Note that this issue applies as much to conditioning 
on an SST pattern as it does to conditioning on a specific weather situation. Whether 
it is necessary to make the additional effort to estimate the change in probability of 
the climatic or weather state would be a matter for the user of the information to 
determine (Otto et al., 2015c). Trenberth and colleagues (2015) argue that for extreme 
weather events that cannot be adequately simulated in global models it is the only 
credible approach. Even for large-scale circulation patterns, if anthropogenic changes 
in their likelihood did matter, then one would need to assess one’s confidence in the 
simulated changes. This would seem to be extremely challenging, given the low con-
fidence in these aspects of climate change compared with thermodynamic aspects 
(Bindoff et al., 2013; Shepherd, 2014).

When considering the probability of an event, use of the RR rather than the FAR would 
allow one to represent conditional analyses in their broader context. For a simple 
example, consider a conditional analysis of an event under El Niño conditions (e.g., 
Zhang et al., 2010). The conditional RR (see equation 2.1) for the probability of the 
event, conditioning on the El Niño conditions, denoted N, is

	
Pf E  N( )
Pc E  N( ) 	 (2.1)

where Pf is the probability under the factual world (i.e., the currently observable world 
as it exists in the context of climate change) and Pc is the probability under the counter
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factual world without anthropogenic influence. If we now want to add information 
about how forcings affect El Niño conditions (see equation 2.2), we can consider

	
Pf E  N( )
Pc E  N( ) ×

Pf N( )
Pc N( ) =

Pf E ,N( )
Pc E ,N( ) 	 (2.2)

to get an unconditional RR concerning the joint occurrence of the event and El Niño in 
the factual and counterfactual worlds. This multiplication of risk ratios is not possible 
if one uses the FAR. Note that the product above is now the RR for an altered event 
definition that includes the condition of the system and the meteorological outcome 
(such as heavy precipitation), as opposed to either an unconditional RR that considers 
the meteorological outcome under all possible states or a conditional RR that con
siders the meteorological outcome under a specified climatic state. This is analogous 
to what was done in Figure 2.1, where the anti-cyclonic circulation associated with a 
high-pressure system was part of the definition of the heat wave, and is often a sen-
sible choice if the extreme can occur only under unusual dynamic conditions. If there 
is little information about the RR for the dynamics, it may be sensible to concentrate 
on the conditional RR, treating the ratio for the dynamics as one. This is the approach 
taken by Diffenbaugh and colleagues (2015) in their analysis of the recent California 
drought, where precipitation is controlled by storm-track dynamics, which are highly 
variable and uncertain, but the persistent warming is leading to an increasing risk of 
drought conditions. Cattiaux and colleagues (2010) also use such a factorization of the 
RR via conditioning to argue that cold extremes are becoming less likely despite the 
occurrence of the cold European winter of 2010, although their results also suggest 
that the probability of the circulation situation itself has not changed.

As discussed above, one also can consider multiple causes of an event, such as anthro-
pogenic influence and El Niño, such that we have an RR for each (see equation 2.3), 

	
Pf E( )
Pc E( )  and 

Pf E  N( )
Pf E  N c( ) 	 (2.3)

respectively, where Nc indicates non-El Niño conditions. These RR values cannot be 
used together in a quantitative fashion, however, because different variables are being 
conditioned on.

USE OF BACKGROUND KNOWLEDGE ABOUT CLIMATE CHANGE

In conditional attribution, background knowledge about climate change is explicitly 
included through the choice of the counterfactual conditions, for instance, the coun-
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terfactual SSTs. Background knowledge also is often included in unconditional attribu-
tion, however, by couching the event attribution within the broader context of climate 
change science. A firmer basis for an event attribution result identifies a human influ-
ence if one can demonstrate that there has been human influence on a related aspect 
of the climate—that is, if detection and attribution results demonstrate that human 
influence has altered the mean state in some way in the region where the event oc-
curred. That is almost certain to be the case for temperature-related events, but the 
detection and attribution literature on precipitation generally deals with precipitation 
change on very large scales, as the signal of precipitation change is emerging more 
slowly due to high climate variability (e.g., Zhang et al., 2010; see Bindoff et al., 2013; 
Collins et al., 2013; Kirtman et al., 2013).

In general, there is a higher degree of confidence concerning the understanding of 
purely thermodynamic aspects of climate change associated with warming and in-
creased moisture-holding capacity of the atmosphere compared with dynamic aspects 
of climate change (Shepherd, 2014). The latter include both large-scale circulation pat-
terns, which can modulate temperature and precipitation extremes, and storms. Thus, in 
any event attribution study, it is important to distinguish between the purely thermo
dynamic and the dynamic drivers. If the response of the dynamic drivers to climate 
change is a significant component of the anthropogenic influence, then the plausibility 
of that response needs to be established. Confident attribution is not possible in the 
absence of adequate understanding (see further discussion in Chapter 4 and Figure 4.7). 

OTHER FACTORS AFFECTING IMPACTS OF EXTREME EVENTS

Attribution of extreme events is primarily anchored in discussions about anthropo-
genic climate change, yet many extreme events also are affected by other types of 
anthropogenic processes, which raise additional framing issues in terms of event im-
pacts. Human-related activity not directly linked to anthropogenic climate change can 
worsen an extreme event. The urban heat island effect is an example of such an effect 
of human activity on temperature extremes. Heat wave characteristics such as dura-
tion and magnitude may be increasing in large U.S. cities because of the combination 
of global warming and urban heat (Habeeb et al., 2015; Zhou and Shepherd, 2010).

Beyond heat waves, increases in temperature also can lead to other kinds of extreme 
events, including drought and wildfire. The occurrence of these events is closely related 
to the drying effect associated with higher temperatures when evapotranspiration is 
moisture-limited, and this depends strongly on the nature of the land cover (Seneviratne 
et al., 2016). 
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An important effect of intense precipitation is related to flooding of the land surface, 
which is affected by a wide range of factors other than changes in the climate. For 
example, the intensity of flooding is affected by a range of human land use decisions, 
including urbanization and river channelization efforts (Melillo et al., 2014). In particu-
lar, precipitation is falling onto more impervious surfaces. Du and colleagues (2015) 
confirm that an increase in impervious surfaces associated with rapid urbanization 
has led to greater peak discharge and flood volume in parts of China over the past 
30 years. Shepherd and colleagues (2011) also note increased flow rates of floodwater 
in cities due to impervious surfaces. In some cases, upstream flood control efforts actu-
ally increase damages downstream in the same watershed. Furthermore, the “extreme” 
nature of flooding is often defined in human terms because the impact of flood 
events is often calculated in dollars. These costs are directly affected by the value of 
infrastructure that has been constructed in the floodplain (Downton and Pielke, 2005; 
Downton et al., 2005). 

Increasing temperatures and changes in precipitation are related in multiple ways to 
evaporation from the land surface and the water demand of plants (transpiration). 
In fact, feedbacks from the land surface and land management practices have been 
shown to affect local and regional drought events. A classic example is the so-called 
Dust Bowl period that coincided with heat waves in 1934 and 1936, where land 
management was a factor exacerbating the drought through dust (e.g., Seager, 2011). 
More recently, drought conditions in Brazil may be amplified by Amazon deforesta-
tion due to decreases in dry season latent heat flux (Bagley et al., 2014; Nazareno and 
Laurance, 2015). 

Wildfires may also be affected by land management decisions. For example, there is 
substantial evidence that past fire control practices have increased the likelihood of 
large-scale wildfires because of the buildup of fuels that occurs when natural, lower-
intensity fires are suppressed (Allen et al., 2002). Likewise, the decision to build homes 
at the wildland-urban interface (e.g., in Southern California; see Figure 2.2) greatly 
increases the costs associated with fires and firefighting. 

Perhaps the best example of the intersection of land use decisions and extreme 
events is in coastal areas: Not only have people made major changes to the morphol-
ogy of coasts that in some cases exacerbate the impacts of coastal storms, many of 
the major cities around the globe are located in or near coastal areas as well. Storm 
surges that historically might have been blunted by barrier dunes or wetlands now 
directly impact urban infrastructure. Furthermore, dredging and other coastal modi-
fications may be linked to increases in minor flooding after the 1980s in parts of the 
mid-Atlantic United States (Ezer and Atkinson, 2014). The costs of these coastal flood-
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FIGURE 2.2  Aerial view of wildland-urban interface and fire damage (located at the top of the image). 
SOURCE: Image courtesy of National Park Service. 

ing events are high, in part because of the high value of coastal investments, much of 
it knowingly constructed in areas of high vulnerability. The “extreme” nature of coastal 
flooding is therefore a product of a combination of different anthropogenic impacts, 
some of which have little to do with climate-mediated effects like sea level rise. 

Human-related activity not directly linked to anthropogenic climate change (such as 
urban impervious surfaces, land cover changes, and dredging) can worsen an extreme 
event. Therefore, attribution studies should clearly distinguish such climate factors 
from the effects of climate change, and the results should be framed accordingly. 
Apart from more accurately isolating the anthropogenic climate change effect, this 
also has the benefit of identifying risk factors that could potentially be mitigated at 
the local level. 
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Selection Bias and Systematic Event Attribution

Most of the currently available literature on event attribution focuses on events 
selected by researchers. In recent years, collections of such studies have been pub-
lished in Bulletin of the American Meteorological Society (BAMS) yearly supplements 
(e.g., Herring et al., 2014, 2015b; Peterson et al., 2012, 2013b). There is a desire to 
summarize anthropogenic influence across all of the events and to ask whether it is 
causing a change in extreme events generally. This has led to the presentation of a 
summary of the BAMS results in tabular form, from which one might calculate the pro-
portion of events for which anthropogenic influence is found. As the editors acknowl-
edge, however, the studies presented in the supplements are not a representative 
sample of any well-defined population; hence, summarizing across the studies does 
not provide direct information about changes in extreme events collectively. 

Scientifically, a “bias” refers to an unintentional but systematic error in a quantitative 
estimate arising from the particular way in which the estimate was made, and it is to 
be distinguished from random errors due to insufficient data or an intentional selec-
tion of cases to achieve a predetermined result. In statistics, “selection bias” refers spe-
cifically to potential systematic errors in probabilistic inference arising when the data 
that are collected or analyzed are not representative of the larger population about 
which one wants information. In the context of event attribution, selection bias can 
arise when the studies are based on events that actually occurred and that are chosen 
for study by the researcher. Selection bias does not affect the validity of any particular 
result, but it is relevant for meta-analyses of collections of results.

Potential biases in attribution results are of concern for collective assessment of 
anthropogenic influence on extreme events, but they may not be relevant if the focus 
is on a climatological understanding of events or on the implications of attribution 
analyses for adaptation and planning in specific contexts. Some of the issues dis-
cussed below also arise in meta-analysis in the medical literature, in which the goal is 
to improve statistical power by analyzing results from multiple studies that assess the 
same scientific question.

What follows is a list of several potential forms of selection bias, with shorthand labels 
for each provided in parentheses:

1.	 bias from studying only events that occur (occurrence bias),
2.	 bias from choosing to study events for which the researcher suspects either 

anthropogenic influence in general or an increase in likelihood from anthro-
pogenic influence specifically (choice bias),
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3.	 bias from publishing studies about events for which the study finds either 
anthropogenic influence in general or an increase in likelihood from anthro-
pogenic influence specifically (publication bias), and

4.	 bias in choosing regions or event definitions of interest to the analyst (type 
bias).

Occurrence bias is more subtle and likely more easily overlooked than the other types 
of selection bias listed above. The simplest example of occurrence bias is an event 
class for which p1 is zero or vanishingly small, while p0 is rather larger. Such events will 
never occur in the current world and never be analyzed. As a result, few publications in 
the literature exist that find event classes that are much less likely in the factual world.

Similarly, the influence of occurrence bias can occur in less drastic settings. Occurrence 
bias could result in a scientific literature that suggests that extreme events are gener-
ally becoming more common because of anthropogenic influence. Suppose there are 
100 event classes (across regions and types of events) that can occur, and we consider 
the probability of occurrence over the course of 1 year. Further suppose that for 50% 
of those event classes p1 = 0.04 and p2 = 0.02 and that for 50% of the classes the re-
verse is true: p1 = 0.02 and p2 = 0.04. An example of a generally decreasing likelihood 
of an event class under climate change is cold events. Collectively, the probabilities 
across all event classes are equal under both scenarios. Now consider the events that 
occur in a given year. On average, there will be six events, four representing classes 
that are more frequent under the factual world and two representing classes that are 
more frequent under the counterfactual world. If a study of each event is done, and 
assuming the study can determine the RR or FAR without statistical uncertainty, four of 
the six studies will show that the event is more likely under the factual world and two 
of the six less likely under the factual world. A general conclusion across the six studies 
would be that extreme events are more likely because of anthropogenic influence. A 
more realistic scenario is that because of statistical uncertainty, no firm conclusions 
can be drawn in some of the studies. For those studies in which anthropogenic influ-
ence is found, however, a similar imbalance would persist, with more studies showing 
an increase in extreme events in the factual world than a decrease. 

The remaining three types of bias are more straightforward to understand. Choice bias 
could arise because scientists are actively interested in finding events that are related 
to climate change or simply to subtle factors in the choice of what events to study. 
Publication bias is a well-known problem that distorts results obtained from doing col-
lective analysis across published studies. Finally, a clear example of type bias is simply 
the geographic bias where attribution studies are done, focusing more attention on 
understanding extreme events in areas such as North America and Europe, although 
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this is beginning to change. Due to these biases, a meta-analysis of event attribu-
tion results based on tabulating results from an ad hoc collection of studies could be 
severely misleading. 

The potential for selection bias does not contradict that there can be good reasons to 
examine particular events if one is interested in those events themselves, such as for 
reasons of public curiosity or of liability or as historical benchmarks for resilience.

GUIDANCE FOR FRAMING EVENT ATTRIBUTION QUESTIONS

The notion that an event may not have been affected by climate change can be dif-
ficult to justify in a climate system in which everything is connected. In any extreme 
event, multiple contributing factors are involved (both human-induced and natural). 
Therefore, results of event attribution studies should not be framed as the cause being 
either anthropogenic or natural, as frequently it will be a combination of both.

Statements about attribution are sensitive to the way the questions are posed and the 
context within which they are posed. Results of event attribution studies with respect 
to the extent of anthropogenic influence can differ depending on how the results are 
framed. Therefore, in any attribution analysis, one should be explicit about the framing 
choices and explain why those particular choices were made. Framing choices include:

•	 how single events are interpreted;
•	 the type of conditioning involved, if any;
•	 whether changes in frequency or in magnitude of an event are assessed; 
•	 how the event is defined;
•	 how the factual and counterfactual probabilities are compared (e.g., FAR ver-

sus RR); and
•	 whether the results are cast as a null hypothesis significance test.

The RR has many advantages over the FAR and is less prone to misinterpretation. The 
RR directly frames the result in terms of the relative probabilities under a world with 
anthropogenic climate change and a world without. The FAR, by contrast, does not 
represent a share of causation because for any given event, multiple factors can have 
FARs that are close to one. Further framing issues arise for impacts of extreme events 
because other anthropogenic factors (e.g., land use) apart from climate change often 
significantly affect the magnitude of impacts. 

It also is useful to present results in more than one way (e.g., magnitude and fre-
quency), so that users understand there are different ways of looking at the event. 
Relevant quantities (probabilities or magnitudes) should be estimated, with accompa-
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nying uncertainty intervals, to help users understand the strength of the evidence. This 
approach is more useful and less prone to misinterpretation than is null hypothesis 
significance testing. Furthermore, results should be presented in terms of the overall 
understanding of the climate system, as this is important prior information that affects 
the interpretation of the result. 

An essential part of the framing involves whether or not the attribution is conditioned 
(e.g., on the current climatic or specific weather state) because that affects the quanti-
tative estimates of the extent of anthropogenic influence and more closely relates the 
study to the factors driving the particular event. An unconditional attribution analysis 
of a joint probability can be considered a product of conditional attribution analyses 
(see equation 2.4), i.e.,

	
Pf E ,N( )
Pc E ,N( ) =

Pf E  N( )
Pc E  N( ) ×

Pf N( )
Pc N( ) 	 (2.4)

where E is the event, N is a conditioning factor (such as SST anomaly pattern), Pf is the 
probability under the factual world (i.e., the currently observable world as it exists 
in the context of climate change), and Pc is the probability under the counterfactual 
world that might have been without anthropogenic influence. If the response of N to 
climate change is highly uncertain, then the last factor might be assumed to be one in 
which case the unconditional and conditional probabilities are equal.

Various sources of selection bias are almost inevitable in event attribution applied to 
individual events. Such selection biases interfere with the ability to draw general con-
clusions about anthropogenic influence on extreme events collectively. 

Overall, it is useful to perform event attribution with all factors explicitly assessed and 
discussed: thermodynamic and dynamic aspects of anthropogenic climate change, 
non-climate anthropogenic factors, and natural variability. This helps the user under-
stand the uncertainties in the calculation, the resilience to current climate variability, 
and other anthropogenic factors that might be relevant.
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The findings of event attribution studies are influenced both by how questions 
about a human or natural influence on an event are asked and by the methods 
used to answer the questions. A natural first step in event attribution, for ex-

ample, is to study observations in order to determine the rarity of the event in histori-
cal context, or to study the circulation and other aspects of the state of the climate 
that prevailed when the event occurred. While observations are useful, attribution 
studies generally use climate models, which incorporate knowledge of the physics of 
the climate system, to quantify how human or natural influences have changed the 
frequency or intensity of events like the observed event relative to a baseline forcing 
scenario. Climate and other numerical models are useful because they can be used to 
investigate responses to controlled forcing (see conditioning in the previous chap-
ter) and also to generate a larger sample size than is possible from observations—for 
example, “control” runs of 1,000 years with no changes in greenhouse gas (GHG) forc-
ing. The various options for using observations and models for event attribution are 
discussed in subsequent sections. 

METHODS BASED ON OBSERVATIONS

The Role of Observations

Observations are used to a varying extent in all approaches to event attribution. Many 
studies determine the rarity of an observed event in the context of long-term histori-
cal data, often using statistical methods. For example, Swain and colleagues (2014) fit 
a statistical distribution to Northeastern Pacific circulation anomalies related to the 
recent California drought in order to determine that the very persistent ridge type of 
circulation pattern1 that sustained the drought is extremely rare in the historical con-
text (see Figure 3.1). Also, many studies begin by setting out the dynamic context from 
observations as an analysis of the combination of factors and events that contributed 
to the extreme event, and often later as a benchmark for model simulations of similar 
events (e.g., Hoerling et al., 2013; Pall et al., 2011). 

1  A circulation pattern is an elongated area of relatively high atmospheric pressure; the opposite of 
trough.

C H A P T E R  T H R E E



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

48

AT T R I B U T I O N  O F  E X T R E M E  W E AT H E R  E V E N T S  I N  T H E  C O N T E X T  O F  C L I M AT E  C H A N G E

FIGURE 3.1  Example of an observational analysis supporting an event attribution analysis: Number of 
years in the past that 2013 California precipitation anomalies (panel a) and geopotential height values 
were exceeded in the historical record (panel b) in comparison to a time series of California mean precipi-
tation (panel c). SOURCE: Swain et al., 2014. 

A requirement for the attribution of a change in probability of events to human (or 
natural) influence is detection of a change either in observations of the event analyzed 
or in appropriately related climate variables (see Hegerl et al., 2010). In practice, statis-
tically confident detection of a change in the frequency or the intensity of the event 
type itself is possible only for a subset of event types (the most common example 
being temperature extremes) because it takes a long observational record and well-
observed statistics of extremes to be able to do so (e.g., King et al., 2015). It is often 
challenging to detect trends because of the limitations of the observational record 
(both quality and record length). Trend detection is also complicated by unforced 
natural variability that can cause apparent trends that may last decades. 

The limitations of trend detection in the frequency or intensity of extreme events 
imply that event attribution must often rely on the understanding of long-term 
changes in variables that have a close physical relationship to the event in question 
and are expected to affect the frequency or the intensity of the event in question. 
Such attributed long-term changes could pertain to the mean state of the climate, or 
to extremes over a larger area, or to a variable that demonstrably contributes to the 
extreme event, such as higher water availability for extreme rainfall (e.g., Pall et al., 
2011). The less direct the relationship is between an attributed human contribution 
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to change in a climate variable and a type of extreme event, the more results hinge 
on climate models reliably replicating the effect of human influence, and the less the 
result is grounded on observations.

Studies often rely on a scientific understanding of the causes of change in a related 
aspect of temperature (such as the observed long-term warming of the regional or 
global climate) where there is little doubt (Bindoff et al., 2013) that there has been 
significant change due to human activities. These changes in mean conditions then 
provide a basis for expecting that there also should be related changes in extreme 
conditions. For instance, a change in extremes at a location may be linked directly to a 
change in the mean at that same location (see Figures 1.1 and 3.2), and thus, an attrib-
uted change in the mean may provide supporting evidence for attribution for the re-
lated extremes (e.g., Rahmstorf and Coumou, 2011). Somewhat less directly than is the 
case with temperature extremes, heavy rainfall is influenced by a moister atmosphere, 
which has been linked to human influence because it is an expected consequence of a 
warmer atmosphere (e.g., Bindoff et al., 2013; Santer et al., 2007, 2009). Significant low-
frequency natural variability can make it difficult to detect a change due to human 
influence because the natural variability reduces the signal-to-noise ratio. Similarly, 
attribution may be complicated by circulation changes that can either strengthen or 
offset the effects of human influence, and several studies have claimed to find such an 
effect (Christidis et al., 2015; Herring et al., 2015a; Schaller et al., 2014; Szeto et al., 2015). 
Tropical cyclone intensity or the probability of severe convective storms are even 
further removed from temperature, but they have known relationships to large-scale 
climate parameters whose relationships to climate are somewhat better understood 
than those of the events themselves. 

Event attribution is most reliable when the link to an attributed long-term change is 
made explicitly and is fairly tightly connected to the event. The attribution of long-
term change (e.g., as assessed in Bindoff et al. [2013] and Hegerl et al. [2007]) neces-
sarily involves both observations and models. The link between long-term change and 
event frequency or intensity may, in some cases, be demonstrated through the use of 
climate models; in other instances, however, such a link will rely on physical reasoning 
or conceptual models (e.g., see Hegerl and Zwiers, 2011). The establishment of a strong 
link may not be possible in all cases, with the result that the link to the observed at-
tributed changes may be fairly indirect in some studies. In principle, the changing 
probability of a type of event could be evaluated based on climate model simulations 
in the absence of any trend detection in historical observations, but in most cases 
confidence would be lower than for attribution of changes that have actually been ob-
served. Also, any positive result from such studies is likely to be challenged, as models 
are not perfect replications of reality.
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FIGURE 3.2  The five hottest summers in eastern China’s observed record over the past six decades have 
all occurred since 2000—in 2013, 2007, 2000, 2010, and 2011—with 2013 and 2007 summer temperatures 
being the hottest. This figure shows the relationship between anomalies of the number of heat wave days 
and of summer mean temperatures in Eastern China: time series of the number of summer season (June-
August) heat wave days and mean temperature anomalies relative to the 1955-1984 average (a) and scat-
ter plot of heat wave days and summer temperature anomalies (b). A day is considered a heat wave day if 
the daily maximum temperature is 35°C or above. SOURCE: Sun et al., 2014.
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Statistical Analysis of Observations

Statistical analysis of observations can be used to quantify the changing probability of 
specific events even in the absence of the use of climate models. Such approaches are 
attractive because results hinge neither on the reliability of a particular climate model 
nor on its ability to simulate the event in question. They do, however, hinge on the 
availability of long-term, high-quality data. In addition, an observation-based analysis 
requires a statistical analysis that quantifies changes in extremes over time: for exam-
ple, the kind of changes that might be expected from GHG or aerosol forcing. In par-
ticular, such a statistical model for human influence needs to be strongly supported 
by understanding of the causes of related changes in the climate system (Hegerl et 
al., 2010). If this is the case, such studies can be complementary to attribution studies 
based on climate models.

Statistical Analysis of Observed Change in Events

This type of approach uses historical observations to characterize the distribution of 
a type of event that is similar to a particular observed event (generally excluding the 
particular event itself to avoid some aspects of selection bias; see Chapter 2). In order 
to address the human influence, it identifies a trend or covariate in observed data 
that may be related to human influences. This approach is justifiable only if there is 
supporting evidence that the covariate indeed has a causal link to human influences. 
Otherwise, trends caused by other factors or natural variability may be aliased, leading 
to either an overestimate or an underestimate of the human influence. 

An example of such work is King et al. (2015), who analyze the annual recordings in 
the Central England Temperature (CET) meteorological dataset and rely on an earlier 
paper (Karoly and Stott, 2006) that attributes at least part of CET warming to human 
influences . They fit a generalized Pareto distribution2 (GPD) to the warmest 20% of 
annual temperatures above a time-varying threshold that increases linearly with CO2 
concentration. This statistical model assumes no change in variability in the upper 
tail of the annual temperature distribution, and it also assumes that the temperature 
response to rising CO2 is linear. When available evidence points to a strong human 
contribution to the mean temperature change at that location, as in King et al. (2015), 
this suggests a two-step attribution (Hegerl et al., 2010) of some of the change in ex-
tremes to the human forcing. The fraction of attributable risk (FAR) is calculated based 

2  The generalized Pareto distribution is a statistical distribution used to model exceedances above a 
specified threshold level.
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on the probability of an extreme annual temperature (in particular, exceedance of the 
second highest annual temperature) for the present compared to the probability for 
early in the 20th century. 

Similarly, van Oldenborgh et al. (2015) apply a generalized extreme value (GEV) 
distribution3 to seasonal and daily winter minimum temperature from station data 
in De Bilt, the Netherlands, and Chicago. The study leaves out the extreme event in 
question (which occurred in 2013/2014 winter in both locations) and allows the GEV 
location parameter to shift with climate change (represented by global mean tem-
perature). Such an approach allows comparison of the return time of an extreme event 
between the climate of the 1950s and the present. Results indicate that very cold 
events have become significantly more rare, and very warm events more frequent. 
Again, results hinge on the time evolution of global mean temperature being a good 
approximation to the time evolution (although not magnitude) of the human influ-
ence at that location.

Overall, attribution using statistical analysis of observed time series works best for 
temperature, or variables that are closely related to temperature, as global and many 
regional results are available that quantify the human contribution to long-term tem-
perature change. For example, regional temperature scales reasonably well with the 
global temperature evolution on longer timescales for many, but by far not all regions 
(see Sutton et al., 2015). Studies that rely on such supporting evidence attributing the 
trend should point this out clearly. It would be preferable if such studies could explic-
itly include uncertainty in the fraction of trend that is due to human influences in the 
analysis as well as additional uncertainty due to the indirect relationship of the vari-
able in question to the larger-scale attributed trend. In the example of temperatures 
in De Bilt, for instance, the human contribution to global mean temperature is a range, 
not a single value, and uncertainty increases further when going to the regional scale. 
Any anthropogenic trend may be enhanced or reduced by decadal climate variability 
(Box 3.1). For example, multidecadal variability can influence regional precipitation 
patterns and cause apparent trends (Dai, 2013), such as those found for storminess 
over Great Britain (Alexandersson et al., 2000). 

Observed Circulation Analogues 

A second approach is based on analysis of the synoptic situation of a given event and 
looks for historical analogues with similar circulation states (e.g., Cattiaux et al., 2010; 

3  The generalized extreme value is a statistical distribution used to model the extremes of blocks of 
data of fixed lengths, such as a season or 1 year.
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Yiou et al., 2007) in order to determine how meteorologically similar events have 
changed (e.g., due to the thermodynamic effects of climate change). As such, this 
approach conditions on a particular synoptic situation (or sequences of situations), 
although studies also have diagnosed the frequency of circulation states in order to 
determine if these may explain or counteract any change in extreme events when 
conditioned (e.g., Cattiaux et al., 2010; see discussion in Chapter 2). 

Cattiaux et al. (2010) analyze the synoptic situation of the winter of 2009/2010 in 
Europe and find that it was less cold than would have been expected based on 
temperatures from days in earlier winters with similar synoptic situations, particu-
larly given how extreme some of the daily circulation indices were in the winter of 
2009/2010. They used several indicators for circulation (e.g., North Atlantic Oscillation 
[NAO] index and blocking frequency) and selected atmospheric flow analogues for a 
period around each winter day from the past 61 years. The composite average tem-
perature for these analogues, which were based on prior years, was significantly colder 
than the 2009/2010 winter mean temperature for most stations (see Figure 3.4). Sub-
tracting the global warming trend from the 2009/2010 winter temperatures yielded 
similar temperatures to those of the analogues, and no trend was found in synthetic 
winter temperatures derived from the analogue situations, suggesting that the ob-
served trend is not explained by changes in circulation.

The uncertainties in observation-based analyses are considerable, but they are dif-
ferent and complementary to the uncertainties in attribution approaches that rely 
strongly on climate models to estimate the difference between present conditions 
and those that would have occurred without human influences. 

METHODS BASED ON CLIMATE AND WEATHER MODELS

In nearly all attribution studies of extreme events, climate and weather models are an 
indispensable tool. While the specific type and configuration of the model depends on 
the type of extreme event being studied, most studies use some version of a global at-
mospheric model. Some also may use one or more coupled climate models (e.g., from 
the Coupled Model Intercomparison Project Phase 5 [CMIP5] modeling project) or a 
model that is constructed specifically to represent a particular type of phenomenon, 
such as tropical cyclones. Such models represent important atmospheric processes, in-
cluding, among many more, the transport of heat, moisture, and momentum by winds; 
the interaction of solar and infrared radiation with atmospheric gases and clouds; and 
the exchange of heat and moisture between the atmosphere and the land or ocean 
surface. 
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BOX 3.1 
UNFORCED NATURAL VARIABILITY

Natural variability includes both the response to natural external forcings, such as volcanic 
eruptions, and the unforced, chaotic variability that occurs continually in the climate system 
(also known as internal variability). We experience some of that variability as weather, but it also 
occurs on much longer timescales, resulting in extended periods that may be cooler, warmer, 
dryer, or wetter than average. Such low-frequency internal variations at decadal-to-multidecadal 
timescales represent a major challenge in the attribution of extreme events to anthropogenic 
climate change. Over these timescales these variations can dominate externally forced changes 
(Deser et al., 2014; Hawkins and Sutton, 2009) by producing temporarily large trends in key 
climate variables. The decadal and multidecadal trends associated with internal variations im-
pact not only the mean values over periods of decades but also their distributions in space 
and time, including the tails of the distributions and hence the frequencies of extreme events 
(Sardeshmukh et al., 2015). 

The following are examples of the impacts of low-frequency natural variability on extreme 
events of the type addressed in this report. First, by one definition, the occurrence of heat waves 
in the United States peaked in the Dust Bowl decade of the 1930s, and the record frequencies of 
heat waves during that decade have yet to be exceeded (Peterson et al., 2013b; Figure 3.3). These 
heat waves occurred during a period of rapid global warming over the period 1900 to 1950 that 
probably had a human component on the global scale (Hegerl et al., 2007) as well as a natural 
variability component, but it also was a period of anomalous circulation and strong variability 
(see Bindoff et al., 2013). Second, hurricane activity in the North Atlantic displays multidecadal 
variability associated with low-frequency variations in Atlantic Ocean sea-surface temperatures 
(Camargo et al., 2013), although human-caused greenhouse gas increases and particulate pol-
lution also have been implicated in recent hurricane trends in the North Atlantic (Booth et al., 
2012). Third, the North Pacific and adjacent land areas are influenced by multidecadal variations 
in temperature and precipitation associated with the Pacific Decadal Oscillation (Dai, 2013). The 
latter has a longer timescale than the El Niño–Southern Oscillation, although the connections 
between these two modes of ocean-atmosphere variability are still being investigated (Wang et 
al., 2014). Both of these large-scale climate oscillations have been linked to variations in the risk 
of intense precipitation over North America (e.g., Fuentes-Franco et al., 2015; Zhang et al., 2010). 
Observationally derived annual probabilities of extreme events (or their inverses, return periods) 
may be misleading if the available record length is too short to adequately reflect the full range 
of variation from low-frequency natural variability (e.g., Jain and Lall, 2001) or if the underlying 
statistical methodology does not account for the presence of such variability.
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In model-based attribution studies, the use of large ensembles of simulations can enable 
averaging that removes much of the unforced natural variability. Thus, externally forced signals 
may be more prominent in unconditional attribution studies. When attribution of extreme events 
is conditioned on observed SSTs (for which there is only one historical realization), however, 
unforced natural variability may impact conclusions about likelihoods. In the case of a counter-
factual SST state, for example, the counterfactual climate would have its own natural variability 
that might or might not be comparable to that of the present climate, with implications for the 
likelihoods of SST anomalies of a particular magnitude in the two climates. Finally, anticipation 
of future changes in extreme events over the next decade or two—the timescales of interest 
for many risk assessments (e.g., by insurers)—must consider the role of natural variability in the 
likelihood of particular types of events. 

BOX 3.1  CONTINUED

FIGURE 3.3  Time series of decadal average values of heat wave (red bars) and cold wave (blue bars) 
indices over various regions of the United States; the average for the entire United States is shown at the 
lower left. These indices are a normalized (to an average value of 1.0) metric of the number of extreme 
temperature events for spells of 4-day duration. An event is considered extreme if the average tempera-
ture exceeds the threshold for a 1-in-5 year recurrence. The horizontal labels give the beginning year of 
the decade. Recent decades tend to show an increase in the number of heat waves and a decrease in the 
number of cold waves, but over the long-term, the drought years of the 1930s stand out as having the 
most heat waves. SOURCE: Peterson et al., 2013b.
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FIGURE 3.4  Example of an analysis using observational circulation analogues, investigating the unusu-
ally cold winter conditions in Europe in 2010. In the top figure, panel (a) shows observations of winter 
2010 European temperatures; panel (b) shows an average of winters with similar daily circulation over the 
second half of the 20th century (analogue); and panel (c) shows the difference between both. The time se-
ries (bottom figure) analyzes the (averaged over all European stations) winter 2010 anomaly of daily mean 
temperature of −1.3°C (indicated by a dashed line) in the context of the historical record and analogues. 
It shows normalized 1949-2010 time series of observed (black line) and analogue mean temperature 
anomalies (gray line), illustrating the warming of observed winters relative to analogue winters (red seg-
ments: positive observed–analogue differences; blue segments: negative observed–analogue differences). 
SOURCE Cattiaux et al., 2010.

The advantages of using climate and weather models include the ability to utilize 
specific input conditions (e.g., sea-surface temperature [SST], levels of atmospheric 
CO2, or aerosols) and to compare results between simulations using different input 
conditions, generally for the factual (currently observable) world as it exists in the context 
of climate change and the hypothetical counterfactual worlds without climate change, to 
assess changes in event frequency. It is also necessary and useful to repeat the simula-
tion many times (e.g., by making small random perturbations to the initial conditions) 
in order to generate a larger sample of simulations and thus obtain better estimates of 
some of the uncertainties and sensitivities involved in event attribution. 

Model simulations are well suited to provide quantitative estimates of the degree to 
which extreme event frequencies or magnitudes in the factual world differ from what 
would have happened in a world unperturbed by human emissions of GHGs (and 
other forcing factors; see Chapter 2 for a discussion of framing). It is essential, how-
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ever, that any models used for event attribution be able to simulate extreme events 
reasonably similar to the one that is analyzed. The models also should be carefully 
evaluated to assess if they correctly reproduce the statistics of extreme events, the 
specific weather situation leading to events, and local feedbacks that may strengthen 
events (see Zhang et al., 2014, 2015). It is important to note that evaluating the ability 
of models to simulate particularly rare events remains a challenge. Reliable simulation 
of non-extreme events does not necessarily indicate that a model will reliably simulate 
extreme events. This section describes some specific types or configurations of models 
and how they have been used in extreme event attribution studies. 

Coupled Climate Models

Many studies use coupled climate models, such as the models that participated in 
CMIP5 (Taylor et al., 2012). Such models incorporate interactive representations of the 
atmosphere, ocean, sea ice, and the land surface, and often they also include repre-
sentations of the carbon cycle. CMIP5 and similar earlier experiments are coordinated 
efforts of modeling groups around the world to provide simulations with global cli-
mate models using several scenarios of relevance to extreme event attribution. Some 
simulations of the recent past (typically 1850-2005) use only estimates of natural 
forcing such as changes in solar radiation and volcanic eruptions (CMIP5-NAT). Others 
are run using only anthropogenic forcing (CMIP5-ANT), or only GHG changes (CMIP5-
GHG), as distinct from anthropogenic forcing that also includes, for example, changes 
in sulfate aerosol distributions. The most realistic simulations of historic global climate 
change are usually those that include all of the above (CMIP5-ALL). For simulations 
covering periods after 2005, extreme event attribution studies usually draw from one 
or more of the four scenarios of future GHG concentrations known as Representative 
Concentration Pathways, or RCPs. (Note that differences between scenarios emerge 
only later in the 21st century, so the scenario choice has little influence for the period 
between 2006 and the present.) Some modeling groups have provided as many as 40 
simulations of the 21st century. Preindustrial control simulations, many several hun-
dred years long, are sometimes used to define the counterfactual world (e.g., Sun et al., 
2014), while in other cases CMIP5-NAT simulations are used for this purpose (e.g., King 
et al., 2015). 

Coupled climate models can be used to assess the changes in the likelihood of break-
ing current regional average monthly or seasonal temperature or rainfall records. The 
chances of breaking an existing record are compared in the simulated current climate 
with the chances in the counterfactual world and used to provide a lookup table of 
the FAR values for whenever a new record is set (Lewis et al., 2014).
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Studies using coupled models would typically be considered unconditional attribu-
tion studies4 (see Chapter 2) unless the study specifically attempted to control for 
some feature of the state of the climate system. In the CMIP5 models, SSTs from a 
given year do not correspond to those observed in that year. Therefore, studies that 
condition on an observed SST anomaly pattern (conditional attribution; see Chapter 2 
and discussion below) do not use CMIP5 outputs. They may, however, use the atmo-
spheric components of coupled models that participated in CMIP5, or higher-resolu-
tion atmospheric models that are most closely related to weather prediction models. 

It also is possible to use coupled models for conditional attribution studies, such as for 
El Niño years, by selecting specific years that have the same phase of El Niño as ob-
served (Lewis and Karoly, 2013).

CMIP5 is most suitable for studying extremes with large spatial scale (e.g., heat waves, 
droughts, and cold events), though other types of studies also have used CMIP5. CMIP5 
simulations have two key advantages over atmosphere-only simulations: the inclu-
sion of the oceans, and the large number of simulations already available, which can 
be used to generate more robust statistics. For example, large multi-model ensembles, 
on the order of 100 simulations or more, have been used for studies detecting human 
influence on the frequency of record high CETs, such as occurred in 2014 (King et al., 
2015), for study of the California drought (Seager et al., 2015), and for studies of the 
record warm summer in eastern China in 2013 (Sun et al., 2014). 

Atmosphere-Only Models Using Observed SSTs

A second type of model simulation uses an atmospheric general circulation model 
(GCM) in which the observed historical evolution of SSTs and sea ice extent is speci-
fied. These are often called “AMIP” runs5 and are usually coupled to a land model. 
Specific patterns of SSTs and GHGs (or other boundary conditions) can be imposed, 
exerting a degree of conditioning on the results that is not present in CMIP simula-
tions. Atmosphere-only model studies are most valuable when the coupling between 
the ocean and the atmosphere is primarily one-way: that is, when feedbacks of the 
atmosphere to the ocean can be neglected for the purposes of the phenomenon 

4  Studies using coupled models normally include conditioning on natural external forcing of climate, 
such as volcanic activity and variations in solar output. This has not been a significant issue since event 
attribution was proposed simply because we have not seen an explosive volcanic eruption on a scale likely 
to significantly impact the statistics of weather events. Nevertheless, this will happen eventually, of course.

5  Originally referring to the Atmospheric Model Intercomparison Project, a specific experiment using 
observed SSTs from 1979 to 1993 (Gates, 1992).
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being studied. The number of ensemble members in such studies can vary from a 
relatively small number of runs for analysis of large-scale events (order 10s of runs, 
e.g., Funk et al., 2013; Wilcox et al., 2015) to others using large ensembles with 100 or 
more simulations (e.g., Christidis and Stott, 2012). In some cases, atmospheric model 
ensemble simulations may consist of many thousands of model runs (e.g., Otto et al., 
2015a; Pall et al., 2011; Schaller et al., 2016). Such studies are often facilitated by the 
climateprediction.net/weather@home infrastructure (see Box 3.4 later in this chapter). 
Two common features of studies that use very large ensembles is that they are often 
restricted to a single model, and they use a large number of short simulations (e.g., 
less than 1 year to perhaps a decade) in contrast to a smaller number of multidecadal 
or longer simulations. 

Three types of perturbations are relevant for generating ensemble members: initial 
condition, model physics, and SSTs. Initial condition ensembles (the model is run 
with a variety of slightly different initial conditions at the start) are used in almost all 
model-based event attribution studies (including unconditional studies using ensem-
bles such as CMIP5) to provide the replication needed to quantify the frequency of 
events or distribution of event magnitudes. One approach to producing such ensem-
bles is to perturb initial condition using next-day differences from a separate simula-
tion (e.g., see Massey et al., 2014). 

Perturbed physics experiments are not generally used in attribution studies—primarily 
because with a prescribed-SST design, perturbations that do not significantly degrade 
the model climatology also have been found to have relatively little impact on variables 
of interest—but they could be. The opportunity for this kind of perturbation arises 
because processes in the models that occur at scales smaller than the resolved scale are 
normally approximated using information from resolved-scale fields (e.g., temperature, 
geopotential, winds). These approximations involve adjustable parameters with values 
determined from empirical studies and usually are fixed for all model runs. Atmospheric 
convection, which occurs on spatial scales of a few kilometers, is an example of the type 
of process that must be parameterized in models that have resolutions that are too 
coarse to allow convection to be well simulated on the explicit model grid. In perturbed 
physics experiments, these parameters are varied across a range of plausible values. 
Simulations using particular parameter combinations are evaluated both to determine 
the realism of the simulated climate compared with observed (20th-century) climate 
and to span a range of uncertainty in future climate or climate parameters, such as the 
climate sensitivity (Stainforth et al., 2005). 

For attribution experiments, SST perturbations of the counterfactual world are some-
times used as well. Instead of simply using control simulations as in CMIP5, experiments 
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using fixed SSTs include “counterfactual” SSTs in which an estimate of the anthropo-
genic contribution to modern SST patterns is subtracted from the observed SSTs (e.g., 
Pall et al., 2011). Perturbations to the SST patterns are done to assess sensitivity or to 
quantify uncertainty in event attribution results to the choice of the counterfactual 
SST. Different climate models generate different patterns of SST changes in response to 
human influences: for example, because they exhibit different aerosol forcing or cloud 
feedbacks to warming. The choice of different SST patterns to be removed matters in 
practice, and this uncertainty is discussed below (e.g., see Figure 3.5). Studies using mul-

FIGURE 3.5  Sensitivity of change in the occurrence frequency of extremely high river runoff in England 
and Wales for autumn 2000 using different climate models to characterize and remove the human influ-
ence on sea-surface temperature from a counterfactual world. This figure illustrates that while present 
condition runoff return periods tend to be more frequent than those in any such counterfactual world, 
the occurrence frequencies in a counterfactual world depend on the model used to create it. Blue is the 
modeled return time for 2000 runoff (identical in each panel) against occurrence frequency, while colored 
dots show the return times in a counterfactual world, constructed by removing the pattern of human 
influence on SSTs from four different climate models: HadCM3 (brown, a), GFDL (purple, b), PCM (pink, c) 
and MIROC (orange, d). The horizontal black line on each panel corresponds to the highest daily runoff 
observed during these 2 months. SOURCE: Pall et al., 2011. 
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tiple estimates of counterfactual SSTs have employed both global atmospheric models 
(e.g., Feser et al., 2015b; Massey et al., 2014; Pall et al., 2011; Rupp et al., 2012) and a re-
gional climate model (discussed further in the next subsection) that is nested within a 
global atmospheric model (e.g., Bergaoui et al., 2015; Black et al., 2015; King et al., 2015). 

Studies Conditioning on Seasonal Forecasts

On the seasonal timescale, Hoerling and colleagues (2013), studying the 2011 Texas 
drought, use the National Oceanic and Atmospheric Administration (NOAA) Climate 
Forecast System (CFS) initialized at six-hourly intervals starting June 1, 2011, with 
CO2 concentrations set at either 1988 or modern values, for a total of 240 runs and 
also additional ensembles of 15 and 24 runs started on the first day of June of each 
summer between 1981 and 2011. Hence, they explore the impact of the increase in 
CO2 concentrations since 1988 conditioned on that component of climate variability 
that was predictable on a seasonal timescale. The weather@home contribution to 
the near–real-time attribution studies in the World Weather Attribution project also 
uses an ensemble of seasonal forecast SSTs (from the UK Met Office GLOSEA5 forecast 
system) to define present-day conditions prior to subtracting a range of signals of 
anthropogenic warming. In both of these cases, the definition of “present-day condi-
tions” in the conditioning of attribution statements is restricted to the component of 
present-day weather that is predictable on a seasonal timescale. In many cases, this 
may be more consistent with the expectations of stakeholders interpreting attribution 
statements than is conditioning on SSTs precisely as observed. 

Downscaling

Some types of extreme events are not well simulated by global models, either coupled 
or atmosphere-only, often because these models are not run at sufficiently high spatial 
resolution. Additional models, embedded within a global model to provide large-scale 
environmental conditions, may be used to represent these events better. Because these 
models are meant to represent finer scales than the global models in which they are 
embedded, such methods can be collectively termed “downscaling.” One example is a 
high-resolution regional atmospheric model that runs on a subset of the global domain 
and is forced at the lateral boundaries by the global model (e.g., Marthews et al., 2015). 
Other downscaling models may be designed especially to capture a specific event type. 
For example, Emanuel (2006) embeds an efficient, idealized tropical cyclone model 
within large-scale fields obtained from global models. Other downscaling methods 
are statistical, not involving any dynamic model at all. Examples include environmental 
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indices used to predict the genesis of tropical cyclones (Emanuel and Nolan, 2004; 
Tippett et al., 2011) or of tornadoes (Brooks et al., 2003; Diffenbaugh et al., 2013; Tippett 
et al., 2012; Trapp et al., 2007). These indices are derived from statistical analysis, using 
observations, of spatio-temporal relationships between large-scale variables and the 
extreme event in question. As with any other kind of model, it is important to test such 
specialized models—independently, and in combination with the global climate model 
as used in any attribution study—in order to determine model adequacy.

Highly Conditioned Simulations

The studies just discussed constrain the state by specifying SST anomaly patterns (or 
the component thereof that is predictable on a seasonal timescale) for factual and 
counterfactual world simulations. As discussed in Chapter 2, some approaches provide 
much stronger constraints on the current state of the climate system than condition-
ing on SST patterns, corresponding to different framings of the attribution question. 
Such highly conditioned studies, which are fewer and less well developed than the 
types discussed above, constrain the initial conditions closely to observed, and per-
form forecast-type simulations. 

Some of these highly conditioned studies use ensembles of forecast simulations in 
order to improve estimates of uncertainty. Two types of forecasts have been under-
taken: (1) weather-type forecasts, over a period of a few days; and (2) seasonal fore-
casts, over a period of a few months. In the first case, the model must be initialized 
within the predictability window—that is, only a few days in advance of the event—so 
that the model may actually simulate the development of the event from the begin
ning. For example, Meredith and colleagues (2015), who studied the floods that 
affected the Black Sea town of Krymsk in July 2012, use a triply nested configuration 
of the Weather Research and Forecasting model, initialized at six-hourly intervals over 
a 30-hour period (hence 6 runs) for two different SST forcings, for a total of 12 runs. 
Another recent example is Lackmann (2015), who use a nested modeling approach to 
study Hurricane Sandy. 

Closely related to the forecasting approach, Hannart and colleagues (2015b) recently 
proposed using a data assimilation system for event attribution. The idea is to define 
events in a highly specific fashion such that the probability of the event is very small 
in both the factual and the counterfactual world, which implies that the probability of 
sufficient causation (Hannart et al., 2015a) also is very small. Such definitions are pos-
sible for variables that are measured on continuous scales (e.g., temperature, precipita-
tion, and the central pressure of storm systems), and where differentiation between 
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minutely different values is at least possible, in principle. For example, the probability 
of an event defined in terms of maximum temperature that lies within a narrow range 
of an observed value, Tmax,obs – e < Tmax < Tmax,obs + e where e > 0, converges to zero as 
e approaches zero for all values of Tmax,obs even though the probability density func-
tion f(Tmax,obs) > 0 for all physically plausible values of Tmax,obs.

6 Under these conditions 
the FAR, which Hannart and colleagues (2015b) relate to the probability of necessary 
causation, converges to one minus the ratio of probability density functions in the 
two worlds for the variable defining the event. A data assimilation system (such as an 
Ensemble Kalman Filter–based system of the type used at many weather forecasting 
centers) can then be used to estimate these probability density functions. 

Development of this idea is currently in its very preliminary stages, but it suggests a 
path toward operational event attribution that exploits current operational weather 
forecasting capabilities. It would, however, be restricted to sharply focused event defini-
tions based on quantities that are assimilated in numerical weather prediction systems.

UNCERTAINTIES IN MODEL-BASED STUDIES

Many event attribution methods and analyses rely on estimating event probabilities 
or distributions of event magnitudes from model simulations. As a result, confidence 
in attribution results necessarily depends on the skill of the model in simulating the 
event type under analysis in both of the scenarios. This dependence is well known in 
the event attribution community (e.g., Christidis et al., 2013b), but emphasis on as-
sessing models varies across attribution studies and may be little recognized among 
stakeholders, policy makers, and the general public. 

Model quality with regard to event attribution requires careful thought. Christidis 
and colleagues (2013b) contrast the ability of a model to accurately represent the 
climatology (i.e., the distribution of weather over time) in terms of frequency and 
climatological features of the event of interest with the model’s predictive skill. They 
argue that robust event attribution is possible even when only the climatology is well 
represented. The quality of the model(s) in representing an event or the climatology of 
an event class is best assessed using the factual simulations, because these are ex-
pected to correspond most closely to the observed climate. Even then, however, only 
limited information is available from observations for extreme events. For instance, 

6  Note that the relationship between the probability of the event Tmax,obs – e < Tmax < Tmax,obs + e and the 

probability density function f(Tmax) is given by P(Tmax,obs – e < Tmax < Tmax,obs + e) = f t( )dt
Tmax,obs −ε

Tmax,obs +ε

∫ .
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Stott and colleagues (2004) considered whether the model’s interannual variability 
corresponded to that of the observations, while Pall and colleagues (2011) considered 
the model’s quality with respect to dynamic features, and Christidis and colleagues 
(2013b) considered the reliability of hindcasts. 

Such evaluations are necessary, but they are not a sufficient demonstration of model 
quality. The quantitative correspondence of the statistics of such variables as tempera-
ture and precipitation between model output and observations does not necessarily 
imply that the mechanisms that produce variability and extremes are well represented 
in the model. Thus, assessment of the model needs to go beyond a quantitative com-
parison that accounts for sampling uncertainty and must assess key processes that 
lead to or exacerbate the event. 

The quality of a model under the counterfactual scenario may be difficult to evaluate. 
A counterfactual scenario that describes the present-day climate, absent the influence 
of anthropogenic forcing but accounting for contemporaneous volcanic and solar 
forcing, does not exist; thus, its quality is not directly assessable by comparison against 
observations that have been made under exactly those forcing conditions. In this case, 
quality can be determined only from the evaluation of model performance under 
other forcing scenarios for which observational data are available. 

Such assessment includes the evaluation of model quality for the factual world with 
anthropogenic forcing over the past several decades, and it may be based on instru-
mental data for time periods before extensive anthropogenic influence and possibly 
using paleoclimatic reconstructions of earlier periods. Also, knowledge of fundamental 
climate science and of model structure can provide an understanding of what kinds of 
events may or may not be well characterized by models in terms of the variables that 
are used to define the events, dependence on circulation patterns, dependence on 
SSTs, spatial scales, and temporal scales.

As discussed in Chapter 2, a key decision in the framing of a model-based event attri-
bution study is the degree of conditioning that is imposed on the model. The optimal 
choice of both conditioning and model will depend on the question being addressed 
and the event under consideration. 

Unconditional Attribution

At one level, the most comprehensive and most easily interpretable kind of attribu-
tion is unconditional. For this, a model must be both global and coupled to a dynamic 
ocean. It must then be run for sufficiently long periods to reliably determine the 
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statistics of the extreme in question: the rarer the extreme, the longer this needs to be. 
Those two constraints will limit the spatial resolution and the degree of complexity of 
the model that can be used. In general, at present, models that can be run in this mode 
will be something like CMIP5-class models (e.g., King et al., 2015; Knutson et al., 2014). 
The challenging part of this kind of attribution is supporting the assumption that 
the model is a reliable mimic of reality. Given the known capabilities (and deficien-
cies) of this class of model, which have been comprehensively assessed in the Inter
governmental Panel on Climate Change (IPCC) reports, this requirement has implica-
tions in terms of which kinds of extreme events can be addressed. 

Most coupled models exhibit substantial biases in mean climate and variability 
relative to observations, especially at the regional scale, so some bias correction will 
almost certainly be required, and the validity of this must be established. Typically, 
model output is bias corrected by computing anomalies, either by subtracting or by 
dividing by some climatological mean and potentially adjusting the variance (e.g., 
Sippel and Otto, 2014). A further intervention requiring even stronger assumptions 
entails adjustments to quantiles to make the distribution of the model output corre-
spond better to that of the observations (e.g., Edwards et al., 2014). The argument for 
such adjustments is that a model may reasonably represent long-term climate change 
but be offset in terms of the magnitudes of variables of interest (e.g., Bindoff et al., 
2013). Such adjustments should ideally be founded in physical arguments, because 
it is not clear what type of evaluation against observations could be done to give 
confidence to estimated changes in probability or magnitude in such circumstances. 
Also, it should be recognized that the bias adjustments rely on observations that may 
be uncertain for a variety of reasons in and of themselves. Sources of observational 
bias and uncertainty are multiple and include insufficient or changing instrumental 
coverage; bias from sources such as poor placement of the instrument; inhomogeneity 
arising for a variety of reasons, including changes in exposure, instrument, observing 
protocol, and location in the case of in situ observations, and, for example, orbital drift 
in the case of satellite data; and uncertainty associated with gridding and analysis 
procedures (see previous section on observational approaches).

Temperature extremes can probably be addressed with some degree of confidence 
using CMIP5-class models, although there may be challenges for heat extremes where 
land-atmosphere coupling provides a strong feedback. In contrast, droughts would be 
somewhat more challenging as they depend on precipitation over land, which models 
generally find challenging, as well as on the land surface and its feedbacks (Seneviratne 
et al., 2010). To the extent that both phenomena depend on atmospheric blocking and 
storm track dynamics, however, these models are unlikely to be fully reliable because 
they continue to exhibit deficiencies in these phenomena (Flato et al., 2013). Moreover, 
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events such as large intense storms may not be addressable with such models, be-
cause most do not adequately simulate such events (e.g., Seiler and Zwiers, 2015a). In 
general, such models should be used only to address extremes that are under a strong 
thermodynamic control. If dynamic processes are the dominant feature of the event, as 
would be the case for an explosive extratropical storm or a tropical cyclone, then model 
uncertainty needs to be addressed, and this may be extremely challenging. The effects 
of dynamic and thermodynamic processes also may be difficult to disentangle—for ex-
ample, as in a flooding event—because dynamic processes may control the circulation 
that transports and converges the moisture that produced the flood, while thermody-
namic processes may determine the amount of moisture that was actually transported 
to the drainage basin where the flooding occurred.

Multi-model ensembles can be used for event attribution either in a sensitivity analy-
sis framework, repeating the analysis for each model, or by averaging across models 
in some fashion. While a multi-model ensemble may have less bias than any single 
model, when representing both the mean state (e.g., Flato et al., 2013; Gleckler et al., 
2008) and the indices of moderate extremes (e.g., Sillmann et al., 2013b), even results 
averaged across models may be biased relative to the true earth system because of 
shared inadequacies in their representation of the system. An example is the general 
equatorward bias in the North Atlantic storm track (Zappa et al., 2013b). In addi-
tion, because model ensembles are generally ensembles of opportunity, with some 
models being closely related (see Knutti et al., 2013), the issue is further complicated. 
In general, as discussed in the section “Uncertainty Quantification” below, model bias is 
difficult to quantify, particularly for extremes for which large observational uncertainty 
hinders the ability to compare to the truth (Kharin et al., 2007, 2013) and even more so 
for the counterfactual scenario.

Conditional Attribution

In conditional attribution analyses, model quality should ideally be assessed condi-
tionally: Does the model accurately represent the climatology given the forcings and 
the conditioning factors? And, does it produce extremes similar to the observed event 
for similar reasons? 

Conditioning on Patterns of Sea-Surface Temperatures 

The first level of conditioning is by SST anomaly pattern. Because the SST pattern is 
imposed, an atmospheric model can be used. This has two practical benefits: First, 
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model biases associated with the ocean state will be mitigated. Second, because 
only the atmosphere and land surface are simulated, the model can be run for longer 
periods of time to quantify more extreme statistics, can be run at higher spatial 
resolution, or can include more complete representations of the land-surface or key 
model components. 

In general, models that can be run in this mode may be something like seasonal-forecast 
or previous-generation weather-prediction models, which might have better represen-
tations of storm track dynamics and moist processes than CMIP5-class models, although 
often the atmospheric components of CMIP5-class models also are used. Because biases 
are usually reduced when specifying the ocean state and with potentially better rep-
resentations of relevant processes, it might be possible to more confidently address 
some types of drought. Extratropical cyclones also may be addressable at some level. It 
is unlikely, however, that it would be possible to perform reliable event attribution on 
tropical storms and intense convective precipitation with such models, even if resolution 
and the representation of moist processes are somewhat better than for CMIP5 models. 
Although dynamically driven extremes may be reasonably well represented in such 
models, the dynamic response of the atmosphere to climate change remains uncertain. 
This uncertainty must be addressed in any attribution study, which at a minimum argues 
for using more than one model, although this is often not sufficient (see the section 
“Uncertainty Quantification” below). 

Additional uncertainties arise in studies that condition on the SST patterns. One issue 
is the uncertainty associated with estimating the counterfactual ocean state. This un-
certainty arises because such studies condition on the ocean state in the factual (i.e., 
currently observable) world, and therefore, they condition on a feature of that world; 
but one needs a corresponding ocean state in the counterfactual world. Nevertheless, 
studies that use atmospheric models often use multiple estimates of the ocean warm-
ing due to human influences and results—particularly in studies of precipitation—can 
be surprisingly sensitive to this (see Otto et al., 2015c; Pall et al., 2011; see Figure 3.4). 
The uncertainty associated with estimating the counterfactual ocean state is driven by 
the uncertainty in estimating the anthropogenic component of the factual world SSTs, 
which is performed using regression-based detection and attribution formalisms (e.g., 
Hegerl and Zwiers, 2011). 

A second issue is that the attribution statement comparing the factual and counter-
factual worlds depends on the conditioning in this setting; as discussed in Chapter 2, 
such a conditional analysis does not account for differences in the likelihood of the 
conditional SST anomaly pattern in the two worlds. Finally, little work has been done 
to date to understand how attribution statements vary across different possible ocean 
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states—in particular, different modes of variability (e.g., whether conditional attribu-
tion statements would differ markedly under El Niño or La Niña conditions). 

One strategy for addressing extremes at smaller scales within this framework is to 
use regional models embedded within global models (see the section “Downscaling” 
above). This is a useful strategy for events that are driven by large-scale circulation 
and can improve the representation of precipitation extremes, particularly when as-
sociated with orographic influences. Nevertheless, uncertainties will remain and the 
gridpoint scale of such a model still cannot be reliably compared to the local scales at 
which extreme convective events are experienced (Westra et al., 2014). 

Other kinds of conditioning on large-scale aspects of the climate state, such as soil-
moisture anomalies, sea-ice extent, or stratospheric circulation, would be subject to 
similar considerations.

Conditioning on the Features of an Event 

The options change yet again for conditioning on the space and timescale of a single 
large storm event, such as one of the named European winter storms or a tropical 
cyclone, which can be done with data assimilation and/or short-term forecasts. In 
this case, a high-resolution weather forecast model with a detailed representation 
of topography—and perhaps even with explicit convection—can be used because 
the simulations need only be performed for a few days or weeks at most. Thus, tropi-
cal storms and severe precipitation events can be studied (see e.g., Lackmann, 2015; 
Meredith et al., 2015), but tornadoes remain a challenge. Because the factual simula-
tion can now be directly compared with the observed event, in all its relevant details, 
evaluation of whether the model is fit-for-purpose can be performed at a level that 
is not possible in frameworks more weakly constrained by observations (i.e., less 
strongly conditioned). Nevertheless, the description of the counterfactual remains a 
challenge because it is necessary to determine the anthropogenic component of the 
thermodynamic conditions relevant for the event; this introduces uncertainties com-
parable to those of determining the counterfactual ocean state in atmosphere-only 
model simulations, as discussed above. 

In general, uncertainties that result from model skill limitations are difficult to describe 
precisely and are circumstance specific; these uncertainties are discussed further 
below. 
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UNCERTAINTY QUANTIFICATION

Uncertainty arises from many sources; some of this uncertainty is amenable to statisti-
cal characterization, while other aspects are difficult to quantify. Sampling uncertainty 
is the inherent uncertainty from trying to quantify the intensity and frequency of 
extreme weather or climate events using datasets of limited size from either observa-
tions or model ensembles. Additional uncertainties arise from the use of models in 
event attribution. 

Quantifying Sampling Uncertainty

Sampling uncertainty arises from using a dataset of limited size—either an observa-
tional dataset or an ensemble of model simulations—to estimate event probabilities 
or distributions of event magnitudes. In the context of event attribution, the main 
source of sampling uncertainty is the chaotic unforced variability that is a pervasive 
feature of the climate system and that is simulated to various extents by climate 
models, even when run without any type of time-varying natural or anthropogenic 
external forcing. This can include substantial contributions from the low-frequency 
natural variability of the climate system (Box 3.1), including the effects of long-term 
oscillations that may confound the effects of human-induced changes in analyses 
based on short observational records. Observational uncertainty in the actual state of 
the climate system caused by datasets of limited size and by errors in measurements 
can also contribute to sampling uncertainty. Such uncertainty is represented in en-
semble observational datasets such as HadCRUT4 (Morice et al., 2012) and ensemble 
reanalyses such as the 20th Century Reanalysis (Compo et al., 2011). 

Quantifying uncertainty because of limited sampling can be addressed using well-
established statistical techniques and could be done from either a frequentist or a 
Bayesian perspective (Box 3.2). The simplest approach is to use the empirical probabil-
ity, namely, to calculate the proportion of times that the event (often defined based 
on a given variable exceeding a threshold) occurred. The uncertainty from the differ-
ence between this empirical probability and the true underlying probability can be 
estimated using a variety of standard techniques (Fagerland et al., 2015). With limited 
data, and when attempting to quantify small probabilities in the tail of a distribution, 
extreme value methods can be helpful in reducing statistical variability (Coles, 2001; 
Kharin and Zwiers, 2005). One difficulty that can arise is when the estimated p1 or p0 
is 0, which can result in difficulty in quantifying sampling uncertainty in estimates of 
risk ratio (RR) or FAR as well as FAR values that become uninformative because they 
saturate near 1 (see Chapter 2). Some statistical techniques can estimate a one-sided 
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uncertainty interval in such situations (Hansen et al., 2014b), but these have not been 
part of common practice in event attribution analyses. 

In modeling studies, uncertainty from natural variability is accounted for in analyses 
that use coupled models. Such model simulations sample over the state of the climate 
system and, if run for sufficiently long or with sufficiently large ensembles, should, in 
principle, represent the full distribution of natural variability as a component of sam-
pling uncertainty. For a representative sample, however, very long time series may be 
needed (Wittenberg et al., 2014), and models may not capture dynamics in response 
to forcing or teleconnections well.

As discussed earlier, observation-based approaches that avoid the use of models often 
compare a recent time period intended to represent the world under anthropogenic 
influence to a historical time period (e.g., the early or mid-20th century) with weaker 
anthropogenic influences (e.g., Hansen et al., 2014b; King et al., 2015; van Oldenborgh 
et al., 2014) as proxies for the factual and counterfactual scenarios. Sampling uncer-
tainty considerations discussed above apply to estimating probabilities for both time 
periods. For extreme events, one generally needs adequate replication over time—
thus, requiring a long time period—to reduce uncertainty, and uncertainty is often 
high because of a paucity of data. A statistical bias may arise, however, when using 
data from long time periods because the climate is not stationary over that period, 
though some statistical techniques are able to account for some aspects of non-
stationarity (King et al., 2015; van Oldenborgh et al., 2015). In addition, uncertainty can 
be high because the length of the time period under consideration may not repre-
sent the full range of natural variability. In the face of natural variability that includes 
decadal-scale variability that will not be well sampled in most observational samples, 
it will be difficult even to adequately quantify the uncertainty. 

A technical concern with the statistical analyses in the event attribution literature is 
that studies often mix frequentist and Bayesian perspectives (Box 3.2) and methodolo-
gies without a clearly defined probabilistic framework. In particular, analyses often use 
the well-established bootstrap technique to quantify uncertainty in quantities such as 
FAR and RR (Christidis et al., 2013b; Pall et al., 2011; Stone and Allen, 2005). The boot-
strap is a technique that estimates the sampling distribution of a statistic (Davison 
and Hinkley, 1997), such as an empirical probability, p̂ . In other words, it quantifies the 
variability of p̂  (around the true p) that would occur in repeated analyses with statisti-
cally equivalent samples of data; this is the “repeated sampling” discussed in Box 3.2. 
In the most straightforward approach to the bootstrap, this involves resampling with 
replacement from the data: for example, resampling from the ensemble members in 
a model-based attribution analysis. This sampling distribution can then be used to es-
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BOX 3.2 
FREQUENTIST VERSUS BAYESIAN APPROACHES TO STATISTICSa

Both the frequentist and the Bayesian approaches to statistics attempt to use data to 
estimate quantities of interest and to quantify our uncertainty in making such estimates, but 
the approaches differ in how probability is used. Frequentists use probability only to model 
certain processes that relate to how data are collected and are broadly described as “sampling.” 
Bayesians use probability more widely to model sampling as well as other kinds of uncertainty 
and variability. Both approaches then use well-established principles to calculate estimates of 
the quantity of interest and uncertainty bounds on those estimates. 

The easiest way to appreciate the differences between the two approaches is to first consider 
a simple example that is unrelated to climate science. Thus, imagine that we are interested in the 
average height h, in inches, of all adult males in the United States. 

A Bayesian statistician would begin with a “prior distribution,” meaning a probability distribu-
tion that describes what we know about h before collecting any data. Some prior information is 
available: h is certainly between 60 and 84 inches, and is more likely near the middle of this range. 
A reasonable way to describe this knowledge might be to use a bell-shaped curve that gradually 
rises from a value of zero for values of h greater than 60, reaches a peak at 72 inches, and then 
gradually declines again until again becoming zero at 84 inches. The curve is drawn so that the 
area under the curve is one, indicating that the true value of h has to be somewhere between 60 
and 84, and the peak at 72 indicates our prior belief that this is the most likely value of h. After 
collecting some data (e.g., the heights of a random sample of U.S. adult males), the Bayesian would 
use established techniques to update this prior distribution in light of the data to get a new prob-
ability distribution for h called the “posterior distribution.” The posterior distribution reflects our 
state of knowledge about h after collecting data. Using the posterior distribution, the Bayesian can 
make a statement such as P(70 ≤ h ≤ 74) = 0.95—that is, there is a 95% chance that the average 
height of all males in the United States lies between 70 and 74 inches. 

Frequentists do not allow themselves to make such statements. For a frequentist, h is simply 
an unknown constant that could in principle be known (such as by measuring the heights of 
all adult males at a given time). To frequentists, the probability statement above is meaningless 
because h is a fixed value, and they make probability statements that only describe what happens 
with repeated sampling. An example of an acceptable probability statement for a frequentist 
would be P(70 ≤ H ≤ 74) = 0.65, where H is the height of a randomly drawn individual from the 
population of adult males in the United States. Such a statement would tell us that 65% of U.S. 
males have heights between 70 and 74 inches. We might judge from this that the average height 
h also lies in this range, but a frequentist would not assign a probability to that judgment. But, he 
or she might give a confidence interval for h. In this case, the end points of such an interval are 
constructed from the heights of a random sample of males in such a way that, if the sampling 
process were repeated, the interval would cover h with a specified probability, such as 90%. That is, 
if the sampling process were repeated 100 times, and if a 90% confidence interval were calculated 
each time, then we would expect approximately 90 out of the 100 of the confidence intervals to 
include the unknown constant h. The confidence level and the length of this interval together 
give an indication of the precision of the estimate of h that is obtained from the available sample.

continued



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

72

AT T R I B U T I O N  O F  E X T R E M E  W E AT H E R  E V E N T S  I N  T H E  C O N T E X T  O F  C L I M AT E  C H A N G E

The sampling variability that is described by frequentists can arise in a number of ways. In 
the example above, it originates from the process of randomly selecting individuals from the U.S. 
population of adult males. In climate science, it can arise from observing different periods in the 
evolution of a weather or climate process that exhibits chaotic variability (e.g., 30-year temperature 
trends calculated from different 30-year periods would almost surely be different even if there 
were no external influences on the climate), by selecting different periods from a single climate 
or weather model simulation, or using different simulations from the same climate or weather 
model that have been started from different initial conditions. In all cases, a frequentist describes 
the uncertainty that arises from using different samples drawn in statistically equivalent ways, 
whereas a Bayesian also will use additional knowledge that is described in the form of probability 
distributions that quantify what is known or judged to be more or less likely given the available 
understanding before gathering further data. This can include descriptions of uncertainties, such 
as model and parametric uncertainty, that may rely on expert judgment (to greater or lesser ex-
tents in different situations) to describe the relative likelihoods of different possibilities.

a Adapted from https://www.quora.com/What-is-the-difference-between-Bayesian-and-frequentist-
statisticians (accessed June 1, 2016).

BOX 3.2  CONTINUED

timate a standard error or confidence interval. This is a frequentist approach because 
the sampling distribution is the probability density function (PDF) of the statistic, 
p̂ , not the PDF of the true value, p. In the frequentist approach, p is not random and 
therefore cannot have a distribution. Necessarily, only a Bayesian approach can pro-
vide a PDF for the true value of the quantity of interest, such as p, FAR, or RR, based on 
the available observational or modeling data. 

Event attribution analyses, however, generally plot the sampling distribution and carry 
out calculations with it that are presented and interpreted in a Bayesian framework. 
An early example of this is Stott and colleagues (2004), who report PDFs (they also call 
these “normalized likelihoods”) for return probability and FAR, where these PDFs are 
based on the bootstrap and are actually sampling distributions. This interpretation of a 
sampling distribution as a PDF for the quantity of interest (i.e., as a Bayesian posterior 
distribution) is akin to the common statistical misinterpretation that a hypothesis test 
provides a probability that the null hypothesis is true. In certain simple circumstances, 
the numerical results from interpreting the sampling distribution as a Bayesian poste-
rior coincide with the Bayesian posterior distribution that would have been computed 
from implementing a Bayesian approach to the problem (Gelman et al., 2013). How-
ever, no statistical result shows that this is, in general, the case, so use of the bootstrap 
to compute results that are then interpreted in a Bayesian fashion is not, in general, 
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justified by statistical theory. Rather than carrying out a frequentist analysis and giv-
ing it a Bayesian interpretation, an analysis that seeks to provide a PDF for a quantity 
such as FAR or RR should use the Bayesian framework with a stated prior distribution 
and determine the resulting posterior distribution rather than using the bootstrap. 
This would require the analyst to specify a prior distribution, which can be difficult to 
decide on and may be subjective. A frequentist alternative that will often be straight-
forward to implement is to report a confidence interval calculated using standard 
statistical methods, such as the bootstrap.

Quantifying Uncertainty in Model-Based Analyses

In studies based on model output, one can quantify sampling uncertainty as de-
scribed in the previous section, and one can reduce sampling uncertainty as much as 
desired by using larger ensembles, limited only by computational time and resources. 
Uncertainty from using a model (or models) to approximate the climate system is dif-
ficult to quantify or to reduce, however, although there is a large body of literature on 
uncertainty quantification for deterministic models (Santer et al., 2003; see also some 
of the discussion in the section “Uncertainties in Model-Based Studies” ). In particular, 
all models have biases in representing the climate system that carry over into a bias in 
estimated event probabilities, even for events for which a model is carefully evaluated 
before its use for event attribution. As discussed further below, bias may be reduced 
but will not be avoided entirely by using multiple models.

The following sources of uncertainty affect estimates of event probabilities and mag-
nitudes in model-based analyses (Hawkins and Sutton, 2009):

•	 Boundary condition uncertainty (sometimes called “scenario uncertainty”): This 
includes aspects of the system that are fixed in the model and therefore not 
simulated by the model. For example, depending on the model details, this can 
include some aspects of land-surface characteristics. 

•	 Model uncertainty: This is the uncertainty from the inability of any model to 
fully represent the system, including uncertainty that arises from the need to 
parameterize (approximate) the representation of sub-grid scale processes. 
The nature of this uncertainty will vary with the type of model that is used for 
event attribution (e.g., ranging from global coupled models, to nested regional 
climate models, to very-high-resolution convection permitting models).

•	 Parametric uncertainty: This represents uncertainty in the appropriate values 
for parameters in the climate model. Parametric uncertainty could be consid-
ered to be one component of model uncertainty. 
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The following are additional sources of uncertainty in conditional analyses:

•	 Counterfactual boundary condition uncertainty: For the counterfactual scenario, 
there is uncertainty in boundary conditions such as the SSTs in atmosphere-
only model simulations. 

•	 Conditioning uncertainty: This is the uncertainty that arises because conditional 
results pertain directly only to the state of the system that is conditioned on, 
such as the SST state in atmosphere-only models. As discussed in Chapter 2, 
conditional attribution inherently ignores changes in the likelihood of the 
conditioning state and whether the attribution result would differ when con-
ditioning on other possible states of the system.

Standard statistical analysis is not well suited to deal with these sources of uncertainty, 
and these uncertainties have not been broadly addressed in the large majority of 
studies, although some studies have addressed limited aspects of model uncertainty. 
One approach that can help to characterize the parametric uncertainty component of 
model uncertainty is the use of perturbed physics ensembles (PPEs) to sample from 
parameter distributions (e.g., Christidis et al., 2013b). The use of multi-model ensem-
bles can help to characterize model uncertainty, as done in studies using the CMIP5 
archive. In addition, some studies have done event attribution with atmosphere-only 
models using multiple SST patterns meant to quantify the uncertainty related to the 
state of the system under natural forcings (Christidis et al., 2013a; Pall et al., 2011). 

Some studies account for these types of uncertainties by using methods that involve 
drawing samples. For example, in a PPE, one draws multiple parameter samples and 
runs a model simulation for each draw of the parameters. In a multi-model ensemble, 
the simulations available can be viewed as drawing a sample from the space of models. 
Interpretation, however, of such a sample based on an ensemble of opportunity of 
climate models—for example, those that participated in CMIP3 or CMIP5—remains 
a challenging topic (Annan and Hargreaves, 2010; Rougier et al., 2013). Estimation of 
event probabilities (and derived quantities such as FAR or RR) and uncertainties then 
proceeds by treating the variability induced by varying the parameters or using mul-
tiple models as sampling variability from a frequentist perspective. 

While implementation of such a procedure is straightforward computationally, the 
statistical framework for the interpretation of the results remains underdeveloped and 
requires careful thought and further research. Such analyses are not easily interpreted 
from a frequentist statistical perspective because they combine uncertainty from con-
ceptually different sources (e.g., chaotic variability generated spontaneously by the 
climate system versus deliberate investigator imposed variations of parameter values 
versus the sequence of difficult to characterize decisions that are made in construct-
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ing a given CMIP5 climate model). They might be considered as Bayesian analyses, 
however, that sample from prior distributions over parameters and/or models (Tebaldi 
et al., 2005), although this interpretation may require some alteration to the details of 
the statistical analysis. Finally, it is important to recognize that while a Bayesian analy-
sis quantifies the uncertainty for the given prior distribution (e.g., over parameters or 
models), results depend on that prior distribution, and the prior distribution may be 
difficult to characterize. 

Such analyses, either frequentist or Bayesian, do not eliminate or quantify statistical 
bias from systematic differences between model results and the real climate system 
(see Box 3.3). Because observations are not available to assess the quality of model-
based estimates of p0, and they will often be inadequate to assess estimates of p1, it is 
not possible to determine whether estimates of p1, p0, FAR, and RR are unbiased esti
mates of their real-world counterparts. Viewed from a Bayesian perspective, the prior 
distribution over parameters or models is not updated based on observed data as in a 
standard Bayesian analysis. 

This concern about statistical bias can be stated in another way in the context of 
multi-model analyses. Agreement among models in estimates of p1, p0, FAR, and RR 
may be considered a necessary, but not sufficient, condition for confidence in an at-
tribution statement because agreement does not limit the possibility of inadequacies 
and unknown errors that are common among models. 

BOX 3.3 
BIAS VERSUS VARIANCE

In considering the frequentist statistical properties of a statistical procedure, statisticians 
distinguish bias from variance. Bias is the systematic difference between the true quantity and 
data-based estimates of that quantity that is present across repeated studies with statistically 
equivalent samples of data. Variance is the variability of the estimates across repeated studies. In 
principle, it is straightforward (though not necessarily practical) to reduce variance by increasing 
the sample size. In contrast, bias is hard to quantify and to reduce in either frequentist or Bayesian 
analyses, particularly if it is fundamentally related to the manner in which the data are collected. 
For example, if there is no limit on computing resources, then the variance of a model-based 
estimate of risk ratio (RR) can be reduced to any specified small level by generating sufficiently 
large ensembles of the factual and counterfactual simulations from that model. But because the 
estimate is from a model that inherently has limitations, it will nevertheless be biased relative to 
the true RR. Because one cannot carry out a controlled experiment by drawing samples of real 
Earth systems, it will be difficult to avoid bias.
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In light of the difficulties that arise in trying to quantify overall uncertainty in model-
based analyses, one alternative to formal uncertainty quantification is simple sensi-
tivity analysis that assesses how sensitive the results are to such choices as model or 
parameter values. For example, certain work in the statistics literature  attempts to 
quantify the extent to which a potential source of bias could change the conclusions 
of an analysis (e.g., VanderWeele and Arah, 2011). Alternatively, analyses could make 
use of observations to weight parameter values and models based on a comparison 
of factual world simulations to observations. Choosing the metric on which to judge 
the skill of different models remains difficult, however, and rankings of models can 
vary widely depending on the metric and outcome under consideration (e.g., Flato 
et al., 2013; Gleckler et al., 2008). Furthermore, such a weighting assumes that it also 
holds in the counterfactual world. As yet, there has been limited success in identifying 
“emergent constraints” (e.g., Bracegirdle and Stephenson, 2012; Hall and Qu, 2006) that 
use observations to identify models that will perform similarly under future forcing, 
and similar difficulties can be expected when considering model performance in the 
counterfactual world.

In summary, given the complicated nature of the various sources of uncertainty in 
model-based analyses, efforts at uncertainty quantification in event attribution analy-
ses mix frequentist and Bayesian ideas and may not carefully define the statistical 
framework being used. The lack of a defined statistical framework makes it difficult to 
evaluate the uncertainty statements, yet such evaluation is a critical component of the 
overall evaluation of event attribution methods. As with operational weather forecast-
ing, it is important to evaluate not just the best estimate in the attribution statement 
but also the uncertainty stated for that estimate.

THE USE OF MULTIPLE METHODS

Any study on event attribution will be influenced by the way the event is selected and 
framed, the way uncertainties are estimated and communicated, and the extent to 
which the model is suitable for purpose. It is clear, however, that satisfyingly addressing 
uncertainties in all of these aspects is difficult if not impossible. In the absence of being 
able to do so, some studies have started using multiple, different methods to estimate 
human influences on a given event. King and colleagues (2015) use an observations-
only detection method to estimate changes in return period of an unusually warm year 
in Central England Temperature (CET), in comparison with a CMIP5 modeling-based 
approach. The latter approach uses climate model simulations, selecting models that 
reasonably simulate the variability of CET, and it compares the probability of an anoma-
lously hot year between simulations with natural forcings only and those that include 
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anthropogenic forcings. Results were not identical but were comparable, and the 
authors chose to communicate the conservative result. Nevertheless, while unusually 
hot years are an interesting test bed, they pose greatly reduced difficulties compared to 
other types of extremes. Hence, multi-approach papers for non-temperature extremes 
in particular are recommended. 

There also are a variety of papers analyzing similar events in the Bulletin of the Ameri-
can Meteorological Society (BAMS) reports (Herring et al., 2014, 2015b), such as mul-
tiple analyses of the California drought (Funk et al., 2014; Swain et al., 2014; Wang and 
Schubert, 2014). The case of the California drought illustrates that careful analysis of 
contradictory results in particular is required and that using a single study may pro-
vide incomplete information: Swain and colleagues (2014) show that the atmospheric 
conditions, such as the anomalous ridge that contributed to the drought, may have 
been made more likely due to global warming (at least in CMIP5 models). Thermo-
dynamic changes such as more available water vapor may counteract human influ-
ences on circulation (Wang and Schubert, 2014), which means human influences on 
California precipitation are unclear (all three papers). 

Bringing multiple studies together, when there is robust scientific understanding, 
helps separate results that are reasonably robust from those that are more sensitive to 
framing and approach. 

RAPID ATTRIBUTION AND OPERATIONALIZATION

The media, the public, and decision makers increasingly ask for results from event 
attribution studies during or directly following an extreme event. To meet this need, 
some groups are developing rapid and/or operational event attribution systems to 
provide attribution assessments on faster timescales than the typical research mode 
timescale, which can often take years (Box 3.4). 

Efforts to develop rapid event attribution (hours to days) are often being developed 
in a research setting by university-based groups because they tend to operate in a 
reactionary mode and to analyze events that draw interest and that fall within their 
capabilities. 

While some groups are working to provide attribution statements on rapid times-
cales, a key focus of operational attribution is to provide attribution assessments on 
seasonal timescales. Operational attribution is defined as a regular activity with well-
established protocols to systematically evaluate the causes of extreme events based 
on predefined and tested methods. It would provide results on a range of timescales: 
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BOX 3.4 
EXAMPLES OF RAPID AND/OR NEAR-OPERATIONAL EVENT ATTRIBUTION EFFORTS

A brief summary of the main groups engaging in the development of operational and/or 
rapid attribution systems is included below.

EUCLEIA
The EUropean CLimate and weather Events: Interpretation and Attribution project, or 

EUCLEIA, is a 3-year project funded by the European Union that studies the attribution of weather 
and climate risks, primarily for Europe. The project aims to “provide well-verified assessments of 
the extent to which weather-related risks have changed due to human influences on climate” 
and to “identify those types of weather events where the science is still too uncertain to make 
a robust assessment of attributable risk.”a A key deliverable of this project is an operational at-
tribution system based on HadGEM-A,b which will run on a seasonal cycle, delivering attribution 
assessments for each season together with estimated uncertainty. A component of the project in 
its preoperational phase is to test developing capability to assess specific weather and climate 
events, using test cases of heat waves, cold spells, droughts, floods, and storm surges that are 
being conducted. An early example is the exploration of the role of atmospheric circulation and 
climate change in the extreme rainfall in the United Kingdom during the winter of 2013-2014 
(Christidis and Stott, 2015). EUCLEIA is working closely with stakeholders to derive the require-
ments for this operational system and involves social scientists as well as natural scientists in 
order to better obtain insights from the stakeholder perspective. 

EUCLEIA also collaborates with weather@home and World Weather Attribution, whose 
efforts are described below.

World Weather Attributionc

World Weather Attribution, or WWA, is an international effort coordinated by Climate Centrald 
designed to sharpen and accelerate the ability of the scientific community to not only analyze 
but also communicate the possible influence of climate change on extreme weather events. The 
project relies on a range of approaches described in this chapter, including observationally based 
approaches, the use of existing ensembles of climate change simulations such as those produced 
for CMIP5, and the generation of very large ensembles with the weather@home infrastructure. In 
the latter case, WWA uses the weather@home experimental design, but it replaces the observed 
sea surface temperatures (SSTs) with seasonal forecasts in order to predict the probability of 
extreme events under current climate conditions 1 month ahead. The counterfactual world is 
simulated as in other weather@home experiments. The intent is both to shorten the response 
time of attribution studies following an event, to an almost real-time response, and to restrict the 
conditioning of attribution statements to that component of observed natural variability that is 
predictable on these timescales, because this is more consistent with the level of conditioning of 
these statements expected by stakeholders (see discussion of the role of conditioning in attribu-
tion statements). WWA is also coordinating with the international disaster response community 
through its partnership with the Red Cross/Red Crescent Climate Centre.e
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Weather@homef

Weather@home is a project within climateprediction.net, a climate-modeling project that 
uses the computing capacity available in desktop computers of volunteers in the general public. 
Climateprediction.net is based at the University of Oxford in the Environmental Change Insti-
tute and the Oxford e-Research Centre. Using the computing resources provided by volunteers 
through the climateprediction.net distributed computing network, weather@home runs very 
large ensembles of simulations with the UK Met Office’s HadAM3P global atmosphere-only 
model to investigate how the odds of extreme weather events change due to anthropogenic 
climate change, other external forcings, and natural variability. Depending on the problem that is 
being investigated, the system can also be configured to dynamically downscale the output from 
HadAM3P by nesting the HadRM3Pg regional model nested in the output from the global model.

For example, to investigate the 2013 heat waves and drought in Australia and New Zealand, 
weather@home is using their distributed computing power to run two experiments: repre-
senting 2013 as observed using SST observations from December 2012 through November 
2013 and present-day atmospheric gas concentrations, and the counterfactual world of 2013 
obtained by removing the modeled SST patterns of anthropogenic forcing from the observed 
2012/2013 SSTs.h

While weather@home is not aiming to do its own rapid attribution system, they are nonethe-
less a crucial partner in WWA and, as such, provide real-time attribution.

Weather Risk Attribution Forecast
The Weather Risk Attribution Forecast (WRAF) is a collaboration of the University of Cape 

Town, the Lawrence Berkeley National Laboratory, and the University of Botswana, which pro-
vides the first real-time product to examine whether and how greenhouse gas emissions have 
contributed to our weather. The WRAF is a product, based on HadAM3-N48i and HadAM3P- N96j 
models, run in parallel with the seasonal forecast produced by the Climate Systems Analysis 
Group (CSAG) at the University of Cape Town. The attribution forecasts are issued monthly. 
Preliminary forecasts are generated 1 month in advance; the final (hindcast) version is issued 
2-3 months later when observed SSTs become available and are integrated into the model 
simulations.

a See http://eucleia.eu (accessed June 1, 2016).
b HadGEM-A is a coupled Earth System Model that was used by the Met Office Hadley Centre for the 

CMIP5 centennial simulations.
c See http://www.climatecentral.org/wwa (accessed June 1, 2016).
d See http://www.climatecentral.org (accessed June 1, 2016).
e See http://www.ifrc.org (accessed June 1, 2016).
f See http://www.climateprediction.net/weatherathome (accessed June 1, 2016).
g HadRM3P is a high-resolution, regional configuration of HadAM3 (atmosphere-only model) with im-

proved physics.

BOX 3.4  CONTINUED

continued
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h See http://www.climateprediction.net/weatherathome/australia-new-zealand-heat-waves/
experiment-setup (accessed June 1, 2016).

i HadAM3-N48 is a dynamic model of the atmosphere produced by the UK Met Office Hadley Centre. It 
solves equations describing the evolution of the atmospheric state on a polar grid with a spatial resolution 
of 3.75 degrees in longitude and 2.5 degrees latitude with 19 vertical levels.

j HadAM3P-N96 is a dynamic model of the atmosphere produced by the UK Met Office Hadley Centre. 
It is a modified version of HadAM3 that runs at a higher spatial resolution (1.875 × 1.25 degrees) and uses 
different methods of estimating the effects of small-scale processes.

BOX 3.4  CONTINUED

during and immediately following an event, monthly or seasonally, and for publication 
in annual assessments (Stott et al., 2015). Such results would be supported by subse-
quent in-depth study of key events and regular updates on the performance of the 
event attribution system. By utilizing predetermined, objective event selection criteria, 
selection bias (see Chapter 2) would be minimized, helping stakeholders understand 
how individual events fit into the broader picture of climate change (Stott et al., 2015). 
The nascent efforts to operationalize event attribution employ many of the methods 
discussed in this chapter. 

Objective approaches to compare and contrast the analyses among multiple differ-
ent research groups based on agreed event selection criteria are yet to be developed, 
although the annual BAMS special issues on event attribution (Herring et al., 2014, 
2015b; Peterson et al., 2012, 2013a) could be considered an initial step in the ongoing 
operationalization of event attribution. 

Groups engaging in various near-operational and rapid event attribution efforts ac-
knowledge that careful consideration must be given to the assessment of uncertain-
ties and communication of the results. As discussed in Chapter 2, the ways in which 
the research questions are framed can influence the outcomes and results of event 
attribution analyses. The time constraints associated with rapid attribution may affect 
framing and methodological choices by limiting analyses to approaches that can be 
undertaken quickly. Examples of possible limitations are: reliance on a primarily obser-
vationally based approach and possibly on station data that have not yet been quality 
controlled; inability to assess the robustness of model-based results through reliance 
on single models with specified SSTs or “off-the-shelf” global model runs from an en-
semble of opportunity; and insufficient time either to investigate causal mechanisms 
or to evaluate the model for the particular extreme events. Providing robust attribu-
tion statements on very short timelines is therefore difficult and results are likely to be 
less robust. This has to be balanced against the need for timely information. Hence, it 
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is important to follow up on any rapid attribution with studies that are not subject to 
such limitations in order to evaluate and improve the reliability. 

Clearly communicating key messages to stakeholders about the methods and framing 
choices as well as the associated uncertainties and probabilities is critical to ensuring 
successful operational services. Furthermore, an important component of an opera-
tional system would be the use of methods to routinely evaluate the reliability of the 
event attribution assessments in much the same way that objective skill scores are an 
important aspect of the monitoring and evaluation of the performance of seasonal 
forecasting systems. Additionally, such systems should have rigorous approaches to 
managing and implementing system improvements, again akin to the methods used 
to continually improve models and data assimilation systems in operational weather 
prediction centers. 

GUIDANCE FOR INCREASING THE ROBUSTNESS OF EVENT ATTRIBUTION 

There is no single best method or set of assumptions for event attribution because 
these depend heavily on the framing of the question and the amount of time available 
to respond to the question. Time constraints may themselves affect framing and meth-
odological choices by limiting analyses to approaches that can be undertaken quickly 
(e.g., van Oldenborgh et al., 2015). This could mean relying primarily on observations, 
or using conditioned or highly conditioned modeling approaches that can be under-
taken with computationally fast dynamic models, or using unconditional approaches 
based only on available simulations, such as the CMIP5 ensemble of historical climate 
change simulations. 

Assessment of model quality in relation to the event or event class of interest is criti-
cal for enhancing confidence in event attribution studies. Different event types pose 
different requirements for model fidelity. In general, larger-scale and longer-timescale 
events should be representable in global models, although representation of land-
surface processes may be important for drought and heat waves and may lead to 
biases in event amplitude—for example, in some models (e.g., Hanlon et al., 2013). 
Smaller-scale and shorter-timescale events may require high-resolution models, which 
generally will be regional and could be either embedded within a global model or run 
in weather-forecast mode; they also could be based on a well-performing downscaling 
tool. Community-developed standards could help to encourage careful assessment.

For extremely rare meteorological events (e.g., Hurricane Sandy), the combination of 
rarity and spatial scale makes an unconditional attribution approach challenging from 
a modeling perspective. In this case, following the event itself in a highly conditional 
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manner, either through short-term forecasts or through data assimilation, allows the 
use of high-resolution modeling tools capable of representing the event with great 
fidelity. When discussing results of such studies, however, this conditioning needs to 
be clearly communicated because it strongly constrains the types of statements that 
can be made. In particular, the change in probability of event occurrence—measured, 
for example, by FAR or RR—cannot be assessed by this method, and this could serve 
either to counteract or to amplify the changes in event magnitude or other properties 
that are attributed.

In almost all cases, event attribution questions relate to differences in the probability 
of a given event class or in the distribution of event magnitudes, and questions should 
be answered in the context of explanations about sources of uncertainty. Different 
approaches and levels of conditioning may help to control the sources of uncertainty, 
with greater amounts of conditioning being expected to improve signal-to-noise 
ratios. Nevertheless, uncertainty can never be fully eliminated. Thus, statistical methods 
are required in all cases, including those when the analysis is highly conditioned on 
specific features of the circumstances surrounding an event, to properly account for 
uncontrolled variability and uncertainty. Statistics plays a key role in framing, design-
ing, and interpreting event attribution studies.

Uncertainty in event attribution results needs to be estimated as much as possible 
and clearly communicated. Uncertainty emerges from a number of different sources. 
In the context of event attribution, the main source of sampling uncertainty is the 
chaotic unforced variability that is a pervasive feature of the climate system and that 
is simulated to various extents by climate models, even when run without any type of 
time-varying natural or anthropogenic external forcing. This can include substantial 
contributions from the low-frequency natural variability of the climate system, includ-
ing the effects of long-term oscillations that may confound the diagnosis of the effects 
of human-induced changes in analyses based on short observational records. There 
are well-established statistical procedures for accounting for sampling uncertainty 
induced by limited sample sizes in observations and in initial condition model ensem-
bles. In contrast, quantifying uncertainty from using models to represent the climate 
system is difficult, and well-established statistical procedures are not available for use 
in the event attribution context. In some cases, results from methods that are designed 
explicitly to account for sampling variability have been given a Bayesian interpreta-
tion without establishing the framework within which such an interpretation would 
have meaning. In contrast, standard frequentist analysis or explicit implementation of 
Bayesian methods stands on firm statistical footing. The statistical framework for the 
interpretation of analyses that sample from parameter, model, and initial/boundary 
condition distributions is not yet well-defined and needs further development. While 
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a full quantification of uncertainty is desirable, it may be difficult to quantify the effect 
of many sources of uncertainty in a falsifiable way. Thus, sensitivity analyses may offer 
the best practical path forward. 

Event attribution results, particularly for local events or such events that are strongly 
influenced by climate dynamics and its changes, are subject to substantial uncertainty 
and hinge on assumptions made when selecting a modeling setup and using statisti-
cal tools to quantify uncertainty. Given that these choices and the representation of 
uncertainties can be highly technical, communicating results of event attribution to 
the broader public in a way that does not overstate the result or fails to sufficiently 
highlight the assumptions involved in the analysis is difficult. 
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The scientific issues and challenges associated with extreme event attribution 
vary greatly from one event type to another. This chapter considers event types 
one at a time, focusing first on issues associated with event definition. Such 

issues may be conceptual or associated with limitations of the available observations. 
As background to attribution studies of single events of each type, prior knowledge 
also is reviewed. This includes research on patterns or trends in historical observa-
tions as well as projections of future change using climate models. Though not strictly 
attribution, this broader context is relevant to the statement of task in that any sci-
entifically responsible attribution statements are informed, necessarily, not just by 
formal attribution studies but by all aspects of existing scientific understanding of the 
relationship between the extreme event type in question and climate change. Existing 
attribution studies on single extreme events also are reviewed as part of this back-
ground. The number of studies varies widely; for some event types there are few or 
even no such studies. For each category, advances that might be possible in the near 
future are considered.

The event types considered here do not represent all possible event types influenced 
by climate factors; moreover, some examples are of events defined not solely by atmo-
spheric or meteorological quantities like temperature. The section on extreme precipi-
tation, a meteorological event, considers only precipitation itself, not flooding, as the 
defining characteristic. The section on drought focuses on meteorological drought 
(primarily precipitation deficit) and hydrological drought, which are consequences of 
atmospheric factors. Wildfires are not, strictly speaking, meteorological events at all, 
but they—like other extreme events discussed here—are of great societal concern, 
and the likelihood and extent of wildfires can be influenced by climatic factors. These 
choices about how and whether to include non-meteorological factors in our assess-
ment of attribution are subjective and reflect committee judgment, available litera-
ture, and expertise. The committee recognizes that many additional events and other 
natural hazards may be impacted by climate change (e.g., sea level rise, landslides, 
coral bleaching, etc.) that could be discussed in the context of event attribution.

C H A P T E R  F O U R
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EXTREME COLD EVENTS

Event Type Definition

Extreme cold events are generally described in terms of temperature, although wind, 
snow, and ice can compound the impacts of an extreme cold event (Figure 4.1). The 
actual temperatures that characterize a cold event vary regionally and seasonally, but 
the temperatures during such an event will be in the cold tail of the probability distri-
bution of temperatures for a location or region and time of year. The event definitions 
most often are based on daily temperatures, although multiday or longer averages 
also have been used. The criteria can be either an absolute temperature threshold (e.g., 
0ºC, 0ºF, –20ºC), often arbitrarily chosen, or a percentile value such as the 1-percentile 
or the 10-percentile criterion used in the Expert Team on Climate Change Detection 
and Indices (ETCCDI) ClimDEX database (Sillmann et al., 2013a,b). Duration and inten-

FIGURE 4.1  The frozen Great Lakes during February 2014 (National Aeronautics and Space Administration 
image). Cold outbreaks ranging from days to seasons still occur, but their frequencies and magnitudes are 
decreasing.
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sity are other metrics of an extreme cold event. Metrics of duration can be the length 
of time (e.g., number of days) that a certain minimum threshold of temperature is ex-
ceeded or the time for which the multiday average temperature is below a prescribed 
threshold; intensity, on the other hand, is often measured by the lowest temperature 
attained. In some instances, the severity of a cold event has been quantified as the 
product of the event duration and intensity.

Prior Knowledge and Overview of Attribution Studies

Extreme cold events are driven by a combination of thermodynamics (cold air mass 
formation) and dynamics (the large-scale circulation, advection). Horton and colleagues 
(2015) have used self-organizing maps derived from atmospheric reanalyses to show 
that both factors have played roles in recent changes in extreme cold events. In par-
ticular, increasing trends in northerly flow have led to an increasing trend in winter cold 
extremes over central Asia. 

The research to date indicates that extreme cold events are less frequent and less 
severe than in previous decades, although interannual variability is still large enough 
to allow extreme cold events such as occurred in North America in 2014 and Europe in 
2012. Even over 60-year periods, trends in the coldest temperature of the year are not 
compellingly positive over Europe and the United States (van Oldenborgh et al., 2015, 
Figure 4b). The increases in cold extreme daily minimum temperatures (i.e., warming) 
are generally greater than are the increases in extreme daily maximum temperatures, 
and there is no indication of increased variability of daily or monthly winter tempera-
tures over the United States (Kunkel et al., 2015; Screen et al., 2015). A similar warming 
of the coldest temperatures over other land areas of the world emerged from Sillmann 
and colleagues’analysis (2013a,b) of the ETCCDI indices for 1948-2005 in 4 differ-
ent atmospheric reanalyses and 31 Coupled Model Intercomparison Project Phase 5 
(CMIP5) models. The tendency for cold extremes to warm by more than hot extremes 
also is apparent in Collins and colleagues’ (2013) Figures 12.13 and 12.14 as well as the 
U.S. National Climate Assessment’s Figure 2.20 (Melillo et al., 2014). 

The general expectation is that cold events defined relative to fixed temperature 
thresholds should become less frequent and less severe as the climate warms on the 
global scale. But, it is nonetheless possible for them to increase in frequency or in-
tensity regionally for periods of time (e.g., due to increases in the intensity of cold air 
advection from polar to lower-latitude regions). 

Extreme cold events in eastern North America have characterized a few recent 
winters (2014, 2012), but such events are less frequent and their actual temperatures 
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less extreme in the past few decades than in earlier decades of the 20th century 
(van Oldenborgh et al., 2015; Wolter et al., 2015). In an analysis of observational data, 
van Oldenborgh and colleagues (2015) find that the return times of the lowest mini-
mum temperatures of 2014 in the midwestern United States ranged from 6 to 44 years 
in the present climate, but only from 3 to 7 years in the climate of the 1950s; likewise, 
return times of the cold winter-averaged temperatures were greater in the present 
climate than in the 1950s. Decreases in cold wave events of 4-day duration had the 
lowest frequency during the 2001-2010 decade in all eight subregions of the United 
States examined by Peterson and colleagues (2013b), although the decade of the 1980s 
had the highest frequencies nationally. But, 20-year return values of the daily minimum 
temperatures warmed over the entire contiguous United States during the 1950-2007 
period, by as much as 3° and 4ºC in much of the West (Peterson et al., 2013b). 

There is a notable absence of conditional attribution studies pertaining to extreme 
cold events. Nevertheless, observational studies do provide evidence of a general 
decrease in the frequency of occurrence of extreme cold temperatures over the 
past few decades in most land areas of the world (Hartmann et al., 2013; Kharin et 
al., 2013). Kharin and colleagues show that the trends of extreme cold ETCCDI indi-
ces are comparable in atmospheric reanalyses and CMIP5 historical simulations in 
which external forcing was historical. In this respect, external forcing (including its 
anthropogenic component) is implicated in the decreasing frequency of observed 
cold extremes. The reduction of cold extremes has been detected and attributed in 
extreme seasonal and annual temperatures (Christidis et al., 2012; Stott et al., 2013) as 
well as in the ETCCDI metrics of cold daily extremes (Morak et al., 2013; Zwiers et al., 
2011). Attribution studies by Kharin and colleagues (2013) and others have drawn on 
comparisons of observational data with climate model simulations driven by natural 
and anthropogenic forcing. 

More recently, Wolter and colleagues (2015) also find decreasing frequencies of 
extreme cold events: in this case, events affecting the Upper Midwest of the United 
States, in CMIP5 models and in an ensemble of Community Earth System Model 
(CESM) simulations driven by historical forcing. The decreased frequency of cold 
extreme arises primarily from the underlying increase of the mean temperature, not 
from the decreased variability (Screen et al., 2015; Trenary et al., 2015; Wolter et al., 
2015). Gao and colleagues (2015) show that decreases in temperature variance ac-
count for generally less than 20% of the projected 21st-century decreases in extreme 
cold temperatures over North America; the mean warming accounts for most of the 
remainder. The fact that underlying warming has moderated cold extremes also has 
been shown using daily circulation analogs for the European cold events of 2010 
(Cattiaux et al., 2010).
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Several recent attribution studies have examined extreme cold events in the context 
of retreating Arctic sea ice. By prescribing reduced Arctic sea ice cover but historically 
observed ocean temperatures outside of the Arctic in two different global climate 
models, Screen and colleagues (2015) find that ice loss is associated with decreased 
likelihood of extreme cold events (as well as decreased variability of temperature) over 
nearly the entire Northern Hemisphere land areas. The exception is the central Asian 
region, where the probability of extreme cold events increases with ice loss, in agree-
ment with earlier studies (Inoue et al., 2012; Kim et al., 2014; Mori et al., 2014). For the 
rest of the hemisphere, the underlying warming dominates the trend of extreme cold 
events, implying that thermodynamically induced changes dominate dynamically 
induced variations, such as the jet stream. While some studies do point to influences 
of sea-ice change on large-scale dynamics (Francis and Vavrus, 2015; Jaiser et al., 2013; 
Kim et al., 2014; Peings and Magnusdottir, 2014), the signals remain embedded in the 
noise of natural variability (Barnes et al., 2014) and, from the perspective of extreme 
cold events, are overwhelmed by the underlying warming. Additional attempts to link 
Arctic warming with an amplified jet stream and cold winters in middle latitudes have 
been made by Francis and Vavrus (2012, 2015).

On the Horizon

While the observational network is sufficiently dense to capture extreme cold events 
over most land areas (except possibly Antarctica), there have been few evaluations 
of the ability of models to simulate the frequency and the intensity of these events. 
Sillmann and colleagues (2011) and Whan and colleagues (2016) show that some 
climate models are able to capture the linkage between atmospheric blocking and 
cold events over Europe and North America, respectively. More comprehensive assess-
ments are needed, however, of models’ ability to simulate cold temperatures for the 
right reasons. The lowest temperatures are often reached under clear-sky, calm condi-
tions characterized by strong near-surface temperature inversions. Limited vertical 
resolution is likely to impact model simulation of temperatures in such situations. It 
also is apparent from the studies cited above that atmospheric blocking events must 
be well simulated if models are to simulate extreme cold events realistically. Finally, 
decadal and even longer trends in cold extremes can be impacted by multidecadal 
variability in the climate system (e.g., the Atlantic Multidecadal Oscillation [AMO] and 
the Pacific Decadal Oscillation [PDO]), which models must simulate in order to capture 
the temporal spectrum of extreme cold events. 

With regard to a possible role of sea-ice loss and Arctic amplification, mechanistic 
linkages are still an active area of research. Such linkages may contribute to cold 
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events in some areas, particularly central Asia, but the dynamic mechanisms underly-
ing such linkages need to be established. Hypothesis-driven model experiments are 
needed to identify any dynamic mechanisms linking Arctic changes with midlatitude 
extreme events.

Finally, impact-relevant metrics of extreme cold events need to be developed for 
use in attribution studies. In a climate with polar amplified warming, increased equa-
torward flow will likely be required if cold air advection is to cause any hypothetical 
increase of extreme cold events in middle latitudes. In such cases, the extreme cold 
temperatures will be associated with winds to a greater extent than in the past, which, 
in turn, will contribute to more extreme windchill values. Metrics such as the windchill 
index are just starting to be used in cold event attribution studies (Gao et al., 2015).

EXTREME HEAT EVENTS

Event Type Definition

Heat events have been defined over a variety of timescales in the literature, from as 
little as 1 day to at least 1 year. This report distinguishes between temperature anoma-
lies of short duration (days, heat events) and those of longer duration (weeks and 
longer, warm anomalies). Because temperature is a continuous variable, the spatial 
extent of a given heat event or warm anomaly is somewhat subjectively defined and 
can change through time as the event unfolds. Typically, a latitude-longitude box is 
used, but sometimes single stations (e.g., King et al., 2015) or political boundaries (e.g., 
Texas or Korea) are used. While a large majority of studies focus on heat events over 
land, some (e.g., Funk et al., 2013; Kam et al., 2015) have looked at warm sea surface 
temperatures (SSTs) anomalies over periods of seasons to years.

The impacts of heat events and warm anomalies (e.g., on human health) can be 
exacerbated by high dew points, and also by high nighttime temperatures (which, 
in turn, are more likely if dew points are high; e.g., Gershunov and Guirguis, 2012). 
Conversely, the amplitudes of the warm anomalies themselves can be increased by 
land-atmosphere feedbacks if moisture is low; this connection between drought and 
warm anomalies is covered below in the section on drought. In addition to their direct 
impacts, warm anomalies over both land and ocean can contribute to other types of 
extreme events (e.g., droughts or wildfires).
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FIGURE 4.2  This figure shows a time series of the annual maximum nighttime temperature averaged 
over the European Region. Temperatures are plotted as anomalies, or deviations from normal (in this 
case, 1961-1990), in degree Kelvin (K). Observed temperatures are represented by the black lines and are 
based on Caesar et al. (2006; updated). The orange lines come from model simulation (Martin et al., 2006). 
Both observations and model output show an increasing trend in nighttime temperature anomalies over 
time. The horizontal dotted lines denote the uncertainty range (5-95%) due to natural climate variability. 
SOURCE: Stott et al., 2011.

Prior Knowledge and Overview of Attribution Studies

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 
(Hartmann et al., 2013) noted that “a large amount of evidence continues to sup-
port the conclusion that most global land areas analyzed have experienced signifi-
cant warming of both maximum and minimum temperature extremes since about 
1950” and concludes that “it is . . . very likely that human influence has contributed to 
observed global scale changes in the frequency and intensity of daily temperature 
extremes since the mid-20th century, and likely that human influence has more than 
doubled the probability of occurrence of heat waves in some locations” (Figure 4.2). 
They also note that minimum temperatures have increased more than maximum tem-
peratures, and maps of changes show statistically significant increases in two indices 
of extreme temperatures in almost every land area since 1950: the 90th percentile of 
daily minimum temperatures and the 90th percentile of daily maximum temperatures. 
For the region of North and Central America (lumped for purposes of simplicity in a 
table), they assess changes in heat waves and warm events as “medium confidence: 
increases in more regions than decreases but 1930s dominates longer-term trends in 
the USA.” The U.S. National Climate Assessment corroborates and provides additional 
details:  “Heat waves have generally become more frequent across the U.S. in recent 
decades, with western regions (including Alaska) setting records for numbers of these 
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events in the 2000s. . . . Most other regions in the country had their highest number of 
short-duration heat waves in the 1930s” (Walsh et al., 2014). Regarding future projec-
tions, in the IPCC Fifth Assessment Report, Collins and colleagues (2013) stated that “It 
is also very likely that heat waves, defined as spells of days with temperature above a 
threshold determined from historical climatology, will occur with a higher frequency 
and duration.”

For northern hemisphere land areas, numerous studies have examined different 
aspects of trends in extreme temperatures. Horton  and colleagues (2015), for ex-
ample, relate trends in extreme temperatures to atmospheric circulation changes over 
the 1979-2013 period, and Abatzoglou and Redmond (2007) explain the asymmetry 
in seasonal warming (1958-2006) between the eastern and western United States as a 
consequence of changes in atmospheric circulation. Peterson  and colleagues (2013b) 
note the decadal changes in heat waves in nine U.S. regions, defined as collections of 
states, for each decade since the 1900s, where a heat event is defined as a 4-day period 
exceeding the 5-year return period value for the period 1895-2010 (Figure 3.5). The 
1930s remains the decade with the most heat waves, a curious fact that may be partly 
explained by the types of circulation changes noted by Horton and colleagues (2015) 
and Abatzoglou and Redmond (2007) for more recent periods. They note that even 
on these spatial scales, natural variability can dominate over anthropogenic warming 
to date. 

Heat events are arguably the extreme weather events for which attribution studies 
are most straightforward and have the longest history. Public and scientific interest in 
extreme event attribution increased rapidly after the 2003 European heat wave, which 
was associated with tens of thousands of excess deaths and prompted the seminal 
paper by Stott and colleagues (2004), whose methods form the groundwork for much 
subsequent work in this field (e.g., fraction of attributable risk). Of the events covered 
in the annual Explaining Extreme Events special issue of BAMS, heat events or warm 
anomalies are the largest share (e.g., 8 out of 32 for 2014). This may reflect the greater 
likelihood of successful attribution of heat waves, compared to other event types, to 
human-induced climate change using existing models and data (see the discussion of 
selection bias in Chapter 2). 

Most attribution studies of heat events and warm anomalies include an assessment 
of the trend in the temperature statistic used to define the event and an indication of 
how extreme the event was in the context of the observed record. Many studies also 
compare the magnitude with a distribution from long CMIP5 runs: in some cases, from 
long simulations with constant 19th-century radiative forcing; in some cases, from 
simulations using observed radiative forcing (i.e., CMIP5-ALL). For example, the Euro-
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pean annual mean temperature in 2014 was shown to be far outside the distribution 
of CMIP5 20th-century simulations even with observed forcing (Kam et al., 2015). 

Most recent studies calculate fraction of attributable risk (FAR), and some also estimate 
the uncertainty in FAR—for instance, by bootstrapping subsets from natural ensem-
bles using 10 general circulation models (GCMs) (King et al., 2015). Some studies also 
explore how the results depend on event definition: for example, Black and colleagues 
(2015) examine the January 2014 heat events in Adelaide and Melbourne, Australia, 
using definitions of heat wave with durations ranging from 1 to 5 days. Some studies 
also compute return periods for different thresholds (e.g., Christidis et al., 2015) or the 
risk ratio (RR) (e.g., Hannart et al., 2015a). 

A number of studies used very large ensembles (i.e., bigger than available from CMIP5) 
from either a global (e.g., Massey et al. 2014; Rupp et al., 2012) or a regional (Black et 
al., 2015; King et al., 2015; Figure 4.3) atmospheric model. In these studies, changes in 
FAR, RR, and/or return period are calculated using an approach (see Chapter 3) that 
estimates the anthropogenic contribution to modern SSTs and subtracts that from the 
observed SSTs, typically with SST patterns from at least a few global coupled climate 
models used to estimate the anthropogenic contribution. Other approaches to esti-
mating the counterfactual include using early 20th-century or preindustrial control 
(e.g., Black et al., 2015). 

On the Horizon

Simulations of heat events and warm anomalies may benefit from improvements in 
land-surface schemes in global and regional models. Few studies include an evalu-
ation of the models’ ability to simulate the important statistical properties of the 
event of interest. While Trenberth and colleagues (2015) do not include heat events 
among their examples of a highly conditioned approach, this approach clearly could 
be applied to heat events, starting perhaps with one of the most impactful events, 
like the Russian heat wave of 2010. Heat events and warm anomalies may be the best 
candidates for assessing the reliability and robustness of attribution methods because 
the direct thermodynamic effects on this type of extreme event are generally more 
straightforward than, for example, heavy rainfall. 
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FIGURE 4.3  The single very hot days in Melbourne still show a large spread in FAR values despite the 
higher frequency of such events under both the “natural” and the “all forcings” climate scenario, compared 
with the counterfactual. This figure shows FAR and the corresponding increase in likelihood calculated for 
Adelaide (blue) and Melbourne (black) heat waves of different durations. The temperature threshold used 
to define heat waves was 42°C for Adelaide and 41°C for Melbourne. Ten “natural” ensembles are aggre-
gated (black symbols) in order to calculate a best estimate of FAR, while each of the “natural” ensembles 
is considered separately (white symbols) in order to better sample the possible range of FAR values and 
estimate uncertainties. SOURCE: Black et al., 2015. 

DROUGHTS

Event Type Definition

Droughts are complex phenomena involving various combinations of atmospheric in-
puts (chiefly precipitation, but also temperature), storage terms like soil moisture and 
snowpack, and responses of the human and natural system on a variety of timescales. 
In addition, there are several types of drought (Wilhite and Glantz, 1985); these include 
meteorological drought (lower than expected precipitation over an extended period); 
hydrological drought (depletion of surface or subsurface water supply); agricultural 
drought (aspects of meteorological drought or hydrological drought that have im-
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pacts on agriculture, like reduced crop yield); and socioeconomic drought (effects on 
the supply of economic goods like hydroelectric power). In this report, we focus on 
meteorological drought and hydrologic drought.

Droughts are driven by multiple factors, including precipitation deficits, feedbacks 
associated with soil moisture and evapotranspiration, and large-scale dynamics associ-
ated with ocean, land, and air temperatures. Droughts can occur across broad regions 
up to continental scale, but they also can have dramatically different implications for 
communities that are in close proximity to each other. The same drought can change 
in location and intensity from month to month in dramatic ways, as can be seen in 
the maps produced by the National Integrated Drought Information System (NIDIS) 
and the U.S. Drought Monitor. Furthermore, anthropogenic climate change has been 
shown to affect drought differently in different seasons and in different regions, par-
ticularly in the varied ways that reduced snowpack affects surface flows. 

As Redmond (2002) points out, drought may be better defined as “insufficient water to 
meet needs.” Thus, a holistic view of droughts encompasses both meteorological and 
hydrologic factors, on the “supply” side, and terrestrial ecosystems, human consump-
tion, and losses, on the “demand” side, as well as infrastructure for water delivery, poli-
cies that affect water use, flexibility in addressing local shortfalls, etc. Because event 
selection for extreme event attribution is often driven by the magnitude of the im-
pacts rather than the magnitude of the atmospheric driver, such considerations can be 
important in framing a drought attribution study. Similar holistic considerations apply 
to other extreme event types, to varying degrees. 

One reason that attributing both extreme flooding and extreme droughts to anthro-
pogenic climate change is particularly difficult is that changes in the hydrologic cycle 
are both causes of the event (a climatic driver) and consequences of the event (with 
water supply availability and flooding being literally “downstream” from the changes 
in precipitation). Another is that land use decisions and investments in water-related 
infrastructure for hydroelectric power generation, flood control, and water supply 
have dramatically changed the natural hydrology within watersheds and have usually 
decreased—but sometimes increased—the risks associated with extreme events. It is 
therefore often quite challenging to attribute the impacts of droughts and floods to 
extreme events in the same way that it is possible to attribute changes in the intensity 
of precipitation (which is “upstream” from the drought or flood).

As an illustration of the complexity of defining and assessing drought, consider some 
of the hydrologic contributing factors to drought. Redmond (2002) refers to a “snow 
drought”—that is, for locations like much of the western United States that receive 
a majority of precipitation as snowfall and where summer precipitation is typically 



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

96

AT T R I B U T I O N  O F  E X T R E M E  W E AT H E R  E V E N T S  I N  T H E  C O N T E X T  O F  C L I M AT E  C H A N G E

quite low, a deficit in winter snow can lead to summer drought. Bumbaco and Mote 
(2010) take the concept further, providing specific examples of when low winter 
precipitation or, in some cases, high winter or spring temperature ends up producing 
unusually low snowmelt for the dry summer period. Because there are so few observa-
tions, especially long records, of soil moisture, many studies use an index of drought 
computed from monthly observations of precipitation and/or temperature, like soil 
moisture computed in a hydrologic model, the Standardized Precipitation Index, or 
the Palmer Drought Severity Index (Funk et al., 2013). The simplicity of the latter makes 
it attractive to use in large-scale drought assessments, but that also may bias results—
especially in the context of climate change. Thus, assessment of change in drought 
characteristics should consider including several indices, with specific consideration of 
their particular limitations (Seneviratne et al., 2012; Sheffield et al., 2012).

Prior Knowledge and Overview of Attribution Studies

The IPCC Special Report on Extremes (Seneviratne et al., 2012) noted that on a global 
scale, and owing in part to the variety of ways to define drought, there were not 
enough direct observations of drought-like conditions to conclude that there were 
robust global trends, but some regions of the world have experienced more intense 
and longer droughts. The IPCC Fifth Assessment Report (Hartmann et al., 2013) notes 
that some studies find an increase in the percentage of global land area in drought 
since 1950, but interannual and decadal-scale variability is high, and the results de-
pend on datasets and methods used. The attribution section assigns low confidence 
to attributing changes in drought over global land areas since the mid-20th century 
due to observational uncertainties and, again, high variability (Bindoff et al., 2013). 
Also, results differ depending on whether drought is defined as a rainfall deficit or by 
using hydrological variables like evaporation, many of which are affected by warming 
(see, e.g., Seneviratne et al., 2010). Nevertheless, some regional attribution studies are 
available. For example, Barnett and Pierce (2009) suggest that human influence has 
affected the hydrology of the western United States when snowpack and seasonal 
streamflow are considered. Because temperature plays a role in determining evapora-
tion, snowpack, soil moisture, and—indirectly—streamflow, attribution of hydrological 
drought may be more robust than is strictly meteorological drought, which is more 
strongly influenced by precipitation. It also may be the case that attribution for some 
specific droughts may be more straightforward than reaching broad conclusions 
about the role of anthropogenic climate change in droughts globally because some 
of the specific regional factors that cause varying responses of drought to climate may 
be better understood in particular locations and times than others.
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Regarding projections of future drought over the 21st century due to human in-
fluence, the IPCC Special Report on Extremes expressed “medium confidence that 
droughts will intensify in the 21st century in some seasons and areas, due to re-
duced precipitation and/or increased evapotranspiration. This applies to regions 
including southern Europe and the Mediterranean region, central Europe, central 
North America, Central America and Mexico, northeast Brazil, and southern Africa” 
(Seneviratne et al., 2012). Low confidence was expressed elsewhere due to disagree-
ment between different projections, resulting both from different models and from 
different indices of drought. Additional uncertainties result from soil moisture limita-
tions on evapotranspiration, the impact of CO2 concentrations on plant transpira-
tion, observational uncertainties relevant to interpretation of historical trends, and 
process representation in current land models (e.g., Greve et al., 2014; Sheffield et al., 
2012; Trenberth et al., 2014).

Many drought-related attribution studies (e.g., Funk et al., 2015; Hoerling et al., 2013; 
Wilcox et al., 2015) use a similar approach to those for heat: comparing CMIP5 runs 
from the preindustrial control, natural-only 20th century, and anthropogenic forcings. 
Some (e.g., Barlow and Hoell, 2015; Hoerling et al., 2013) use SST-conditioned runs: 
that is, atmosphere-only model simulations using observed SSTs, often compared 
with a counterfactual to compute FAR. A few also use an approach closer to seasonal 
forecasting, which somewhat resembles a highly conditioned approach: Hoerling and 
colleagues (2013) use an 80-member ensemble with the operational Global Forecast 
System (GFS) model for October 2009-September 2011 to study the Texas drought of 
2011, and Funk and colleagues (2015) also use GFS to study the east African drought 
of 2012.

With both global and regional models, numerous papers have used very large en-
sembles of simulations generated on the climateprediction.net platform. For ex-
ample, Bergaoui and colleagues (2015) looked at drought in the Southern Levant 
(approximately Israel) using the Hadley HadAM3P global model and counterfactual 
SSTs generated from 11 GCMs; Marthews and colleagues (2015) use the regional 
model HadRM3P to study drought in east Africa; Rupp and colleagues (2012) use the 
HadAM3P global model to study heat and drought over Texas.

Other studies using large ensembles do not use climateprediction.net, however. Seager 
and colleagues (2015) draw on simulations with observed SSTs to April 2014 made by 
7 research groups, with a total of 150 GCM simulations. Their focus is more on diag-
nosing teleconnections to specific SST anomalies, however, than on attribution to 
human-induced climate change. Shiogama and colleagues (2013b) use a 100-member 
ensemble of MIROC5 to study drought in the south Amazon region. 
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As might be expected given the ambiguity of results concerning the trends in fraction 
of global area affected by drought (Hartmann et al., 2013), attribution studies do not 
always find strong influence of anthropogenic climate change. Some recent studies of 
the Colorado River anticipate dramatic impacts on river flows associated with changes 
in temperature (Vano et al., 2012, 2014). Meanwhile, no anthropogenic contribution 
was specifically identified in a recent study of eastern Brazil’s recent drought; rather, it 
was linked to a natural but unusual excursion of the South Atlantic Convergence Zone 
(Otto et al., 2015c). Several other studies (namely, Barlow and Hoell, 2015; McBride et 
al., 2015; Wilcox et al., 2015) found uncertain changes in likelihood and strength (see 
also Herring et al., 2015a, for summary tables). Shiogama and colleagues (2013a) note 
that their results were sensitive to bias correction. 

While most attribution studies of drought focus on precipitation deficits, others have 
taken a more expansive approach. Funk and colleagues (2015) run a hydrologic model 
over eastern Africa and discuss changes in soil moisture and evapotranspiration, 
though they do not conduct attribution on those variables. Marthews and colleagues 
(2015), also studying east African drought, compute return periods for precipitation, 
specific humidity, and both shortwave and longwave radiative fluxes. 

While drought is acknowledged to be a complex phenomenon due to the many 
physical processes involved and the broad range of societal factors that influence its 
occurrence and intensity, some aspects of drought are influenced by temperature in 
ways that are better understood, and thus more amenable to attribution, than others. 
In particular, temperature exacerbates hydrological drought in some regions by in-
creasing surface evaporation, so that increasing temperature causes an increasing risk 
of hydrological drought even if precipitation does not change (e.g., Diffenbaugh et al., 
2015; Williams et al., 2015).

On the Horizon

Because drought is caused by multiple factors at different scales and contexts, an area 
that needs further work is understanding the dominant factors that have historically 
been causes of drought in specific regions and watersheds. For example, for much of 
the United States, the drought of record is still the 1930s Dust Bowl era, which, in turn, 
might have been exceeded by droughts early in the last millennium (e.g., Herweijer 
et al., 2007). Though there are anthropogenic links to changes in atmospheric circula-
tion patterns (and associated anomalies in precipitation and temperature) in differ-
ent seasons of the year and in different regions of the globe, the multiple interacting 
causes of individual droughts are not well understood. It may be possible to disen-
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tangle some of these components of drought and perform attribution studies in this 
context. Other possible future efforts that remain largely unexplored include using a 
combination of large ensemble and full hydrologic model simulations for attribution, 
decomposing droughts into circulation components and thermodynamic compo-
nents (as suggested by Trenberth et al., 2015). Another challenge in the attribution 
of drought relates to its linkage to climate variability (e.g., SST anomalies in different 
basins) on seasonal-to-decadal timescales. Given that understanding is lacking on how 
different climate modes change as a result of anthropogenic climate change, our abil-
ity to understand drought response related to changes in climate variability is limited. 
Because droughts (like many other extremes) can lead to shifts in water management 
and policy, water managers and policy makers alike often ask the attribution question, 
alongside more immediate questions like predicting the end of a current drought, and 
these demands are likely to continue. 

The ongoing California drought has been the subject of a large and rapidly growing 
number of studies, often reaching apparently contradictory conclusions. For example, 
Cheng and colleagues (2016) distinguish between the response of shallow (<10cm) 
and deep (>1m) soil moisture and estimate little effect of anthropogenic warming 
on drought risk because of competing influences of rising precipitation and rising 
temperature. By contrast, Diffenbaugh and colleagues (2015) find that warming alone 
increases drought risk in California, using a modified drought severity index. It will be 
an important challenge for future workers to develop a systematic approach to syn-
thesizing all of these different studies.

EXTREME RAINFALL

Event Type Definition

An extreme rainfall event is defined as one in which precipitation over some specified 
time period exceeds some threshold, either at a point (i.e., as measured by a single rain 
gauge) or in an average over some spatial region. 

In practice, the definition of an extreme rainfall event varies widely. Time periods of 
interest can vary from hourly to monthly. The choice of threshold also is quite variable. 
Some studies use fixed absolute thresholds (e.g., 25.4 mm or 1 inch/day), while others 
use a fixed percentile based on the distribution at a given location in order to capture 
variations in what “extreme” means in practice in different regions. Some studies do 
not use thresholds at all. For example, some studies use annual or seasonal maxima 
(e.g., 24-hour precipitation accumulation). This approach also is used to develop the 
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intensity duration frequency (IDF) curves for extreme precipitation that are used in 
engineering practice.

Extreme precipitation can typically be traced to forcing associated with strong vertical 
motion and significant water vapor (Westra et al., 2014). Extreme precipitation is asso
ciated with an array of meteorological processes, including tropical cyclones, extra
tropical cyclones, monsoons, atmospheric rivers, and localized convection (Kunkel et 
al., 2013). 

Changes in extreme rainfall can be quantified using such empirically defined metrics as 
trends in the frequency with which some specified threshold is exceeded. Alternatively, 
statistical methods rooted in extreme value theory (Coles, 2001) can be used, allowing 
return levels for the most extreme events to be quantified (Kunkel et al., 2013).

Attribution of regional precipitation extremes is more challenging than that of tem-
perature extremes (Bhend and Whetton, 2013; van Oldenborgh et al., 2013). Numerical 
models, as a rule, do not simulate precipitation as well as they do temperature be-
cause of the smaller space and timescales of the precipitation field and the strong 
reliance on parameterizations of convection and other physical processes in all but 
the highest-resolution models. Kendon and colleagues (2014) argue that convection-
permitting models on the order of 1.5 km horizontal resolution are necessary to re-
solve convective processes associated with certain types of events. The salient lesson 
is that caution is required with extreme rainfall analysis of lower resolution models.

Prior Knowledge and Overview of Attribution Studies

More intense and more frequent extreme precipitation events have long been pro-
jected in a warming climate (Hartmann et al., 2013; Hirsch and Archfield, 2015). An 
array of studies continues to provide strong support for upward trends in the intensity 
and frequency of extreme precipitation events (Kunkel et al., 2013; Seneviratne et al., 
2012). Wuebbles and colleagues (2014) project that such trends will continue and that 
heavy precipitation in simulations in CMIP5 may be underestimates relative to ob-
served trends. Regarding the recent historical record, Hartmann and colleagues (2013) 
state:  “It is likely that since about 1950 the number of heavy precipitation events over 
land has increased in more regions than it has decreased. Confidence is highest for 
North America and Europe where there have been likely increases in either the fre-
quency or intensity of heavy precipitation with some seasonal and/or regional varia-
tion. It is very likely that there have been trends towards heavier precipitation events 
in central North America.” With respect to future projections, Kirtman and colleagues 
(2013) state:  “The frequency and intensity of heavy precipitation events over land will 
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likely increase on average in the near term. However, this trend will not be apparent 
in all regions because of natural variability and possible influences of anthropogenic 
aerosols.”

Global atmospheric water vapor concentrations are robustly expected to increase 
with temperature at a rate of around 6-7% per degree Celsius, approximately consis-
tent with the saturation value as determined by the Clausius-Clapeyron relationship, 
because observed and projected changes in relative humidity are small (e.g., Held 
and Soden, 2006; Wright et al., 2010). Global mean rainfall values cannot increase at 
this rate because of global energy budget constraints (e.g., Held and Soden, 2006). 
Extreme rainfall events are not subject to these constraints, and a simple hypothesis 
is that the intensity of such events should increase at the rate that water vapor does 
(Allen and Ingram, 2002). This would be the case if the atmospheric circulation (includ-
ing the strength of convective updrafts) were to remain constant in amplitude and 
structure. Dean and colleagues (2013) conclude that moisture availability was 1 to 5% 
higher for an extreme precipitation event in New Zealand because of anthropogenic 
greenhouse gases (GHGs). They also conclude that the number of synoptic events 
with ample moisture for extreme rain events increased. Integrated Water Vapor (IWV) 
Transport associated with Atmospheric Rivers (ARs) also has been shown to increase 
using CMIP-5 models under RCP8.5 (Warner et al., 2015). This led to increased mean 
and extreme winter precipitation along the West Coast of the United States.

Thus, analysis of trends in extremes sometimes focuses on whether trends in either 
models or observations are less than, equal to, or greater than that expected from the 
Clausius-Clapeyron relationship (e.g., Lenderink and Van Meijgaard, 2008; O’Gorman 
and Schneider, 2009; Singleton and Toumi, 2013). This is useful in that it separates the 
relatively well-understood role of increasing specific humidity from the much less 
well-understood role of changes in updraft strength or vertical structure, focusing at-
tention on possible physics behind the latter to the extent it is found to be important. 

Consistent with this expectation, Kunkel and colleagues (2013) note that trends in the 
mean are less than those in the extreme values. Wuebbles and colleagues (2014) sum-
marize key findings using the extreme precipitation index (EPI) and note an upward 
trend in both the intensity and the frequency of extreme precipitation events in the 
United States. A number of other studies have noted statistically significant increases 
in the frequency of occurrence or intensity of extreme precipitation events with dura-
tions ranging from hours to several days in various parts of the world (Donat et al., 
2013; Krishnamurthy et al., 2009; Mann and Emanuel, 2006; Westra et al., 2013).

Westra and colleagues (2013), using land-based data, find that annual maxima of 1-day 
precipitation have increased significantly, with a central estimate of roughly 7% per 
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1-degree C temperature rise. Herring and colleagues (2014) cite a number closer to 
5.3% per 1-degree C temperature rise, though within the uncertainty range of Westra 
and colleagues (2013). Janssen and colleagues (2014) update previous EPI-based 
studies and evaluated climate model simulations using Representative Concentration 
Pathways. Their results find increasing trends in extreme precipitation over the conti-
nental United States. Zhang and colleagues (2013) conclude that increases in Northern 
Hemisphere precipitation extremes since 1951 can be partially attributed to human 
influence on the climate, estimating a sensitivity of 5% per degree C in intensity. Their 
findings suggest that 1-in-20 year events in the 1950s are trending toward becoming 
1-in-15 year events, which translates to a FAR of 25% and a RR of 1.33.

Most approaches to attribution of regional precipitation extremes have utilized en-
sembles of global models, a specific model in conjunction with a long historical record, 
or non-parametric statistical analyses of observational climate datasets. 

Hoerling and colleagues (2014), using the National Aeronautics and Space Administra-
tion’s (NASA’s) Goddard Earth Observing System Model, Version 5 (GEOS-5) simula-
tions, conclude that the extreme 5-day rainfall in northeast Colorado in 2013 could 
not be conclusively linked to anthropogenic climate change. In fact, they argue that 
such events may have become less frequent in that region. By contrast, they did note 
that Sillmann and colleagues (2013a,b) show increases in 5-day rainfall intensities 
for the globe and in the overall averages by the end of the 21st century. The strength 
of Hoerling and colleagues’ (2014) simulations lies in the 1-degree model simula-
tions available over a significant period of the record (1871-2013), which allow for 
robust statistical analysis and characterization of the tails of the distribution. Model 
uncertainty itself is not addressed, however, nor is the dynamic mechanism for the 
simulated weakening of precipitation extremes in northeast Colorado identified or its 
robustness assessed.

Knutson and colleagues (2014) analyze seasonal precipitation extremes in the regions 
of the United States in 2013, using Global Historical Climate Network data in combina-
tion with CMIP5 output to perform attribution to external forcing (natural and anthro
pogenic combined). They find a role for external forcing in some of the observed 
extremes and “some suggestion of increased risk attributable to anthropogenic forc-
ing,” but they are not able to clearly distinguish anthropogenic from natural forcing 
because their study design did not separate these. Otto and colleagues (2015a) use 
very large ensemble or regional-scale models in a probabilistic event attribution study 
in the United Kingdom. Their results are somewhat conflicting in terms of whether 
anthropogenic forcing contributed to extreme summer precipitation events. They find 
that the risk of an extreme rainfall event doubled in July because of anthropogenic 
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forcing but not in the other summer months. The authors suggest that the Clausius-
Clapeyron relationship governs the July results but that unresolved dynamic pro-
cesses are likely playing some role as well.

On the Horizon

Most of the attribution studies related to precipitation extremes have been conducted 
with a limited number of models or limited simulation samples. Larger multi-model 
ensembles would increase confidence. Heterogeneity issues in surface observations 
need to continue to be addressed also. Though convective parameterization continues 
to be a challenge of modeling studies addressing precipitation, increasing computer 
power and model spatial resolution should mitigate this limitation.

As the data record of satellite-based precipitation estimates lengthens, they may 
become viable for trend detection and attribution studies for extreme precipitation. 
Satellite-based studies are emerging as particularly useful for assessing regional and 
global extremes, particularly over the oceans and poorly instrumented regions (Lockhoff 
et al., 2014, Pombo et al., 2015). The Global Precipitation Measurement (GPM) mission 
and other capabilities will be beneficial in the coming years to decades (Hou et al., 2014).

As stated by Otto and colleagues (2015a), it will be critical that future studies better 
understand and resolve the multiple meteorological causes of heavy precipitation in 
order to better grasp causality and attribution. This statement will be relevant to any 
future attribution studies on extreme rainfall events. 

EXTREME SNOW AND ICE STORMS

Event Type Definition

Severe winter weather includes snow and ice (freezing rain) storms, often accom-
panied by wind. While there are no universal criteria for defining extreme snow or 
ice storms, the National Weather Service typically issues heavy snow warnings for 
expected accumulations of 6 inches in 12 hours (or 8 inches in 24 hours) and ice 
storm warnings for expected ice accumulations of 0.25 inches or more. Impacts of a 
snow or an ice storm are compounded by wind as well as by the population of the 
area impacted by the storm. Region-specific impact indices have been developed: for 
example, the Northeast (U.S.) Snowfall Impact Scale (NESIS), which combines snow-
fall amounts and the number of people residing in the affected area. The absence of 
universal metrics for assessing heavy snow and ice events complicates the analysis 
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of trends and attribution studies. In addition, snowfall measurements are known to 
suffer from heterogeneities, such as gauge undercatch, and data on snow depth are 
of limited value for determining the snowfall from a single storm, as compaction and 
drifting are common with winter snow events. Lack of in situ measurements hinders 
the analysis of extreme snow and ice events in sparsely populated areas.

Prior Knowledge and Overview of Attribution Studies

Overall snow cover has decreased in the Northern Hemisphere, due in part to higher 
temperatures that shorten the time snow is on the ground (Derksen and Brown, 2012). 
Few studies have addressed trends in heavy snow and ice events, however, especially 
over regional and larger spatial scales. For the entire Northern Hemisphere, the sum-
mary in the preceding section (“Extratropical Cyclones”) showed that there is mixed 
evidence for trends in the frequency and intensity of cold-season storms, regardless 
of whether they produce snow and/or freezing rain. Several studies of overall storm 
frequencies also indicate a northward shift in the primary tracks during winter (Seiler 
and Zwiers, 2015a,b; Wang et al., 2013). Theory suggests that for the coldest climates, 
the occurrence of extreme snowfalls should increase with warming due to increas-
ing atmospheric water vapor, while for warmer climates it should decrease due to 
decreased frequency of subfreezing temperatures, though by less than mean snowfall 
decreases (O’Gorman, 2014).

Over the century timescale, data from 1900 to the early 2000s show no significant 
trend in the percentage of the United States experiencing seasonal snowfall totals in 
the upper (or lower) 10 percentiles defined from the record as a whole (Kunkel et al., 
2009). But when the top 100 snowstorms (defined on the basis of snowfall amount 
and areal coverage) are evaluated for various regions of the United States, there are 
substantial increases in the frequencies of occurrence from 1901-1960 to 1961-2013 in 
the northern regions (Northern Plains, Upper Midwest, Ohio Valley, and Northeast) but 
not in the southern regions of the United States (Figure 4.4). 

To the committee’s knowledge, recent analyses of the frequencies of ice storms in the 
United States are lacking. Earlier studies of the number of freezing rain days (regard-
less of amount or intensity) showed no evidence of systematic trends in freezing rain 
occurrences over the United States during the latter half of the 20th century (Chang-
non and Karl, 2003; Houston and Changnon, 2006). There are indications of increases in 
ice storms in the North Atlantic subarctic (Hansen et al., 2014a), however.

In view of the data limitations and the ambiguities in event definition, it is not sur-
prising that there have been few attribution studies of global or regional trends in 
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FIGURE 4.4  Decadal frequency of top 100 snowstorms in subregions of the United States from 1901 to 
2013: (a) Ohio Valley and the Northeast, (b) Southeast and South, (c) Upper Midwest and Northern Plains. 
Shaded bars in the 2010s represent snowstorms occurring from October 2010 through April 2013, when 
the paper was submitted. SOURCE: Lawrimore et al., 2014.



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

106

AT T R I B U T I O N  O F  E X T R E M E  W E AT H E R  E V E N T S  I N  T H E  C O N T E X T  O F  C L I M AT E  C H A N G E

observations of extreme snow and ice events. Yet, there have been several attribution 
studies of particular events, conditioned on initial conditions in the atmosphere. 
Edwards and colleagues (2014) simulate the western South Dakota blizzard of October 
2013, finding no difference in accumulated snowfall (snow water equivalent) between 
preindustrial counterfactual runs and modern-day simulations. Anel and colleagues 
(2014) use an ensemble of model simulations of recent winters to conclude that 
heavier-than-normal snowfall seasons in the Spanish Pyrenees are not directly attrib-
utable to anthropogenic forcing. Wang and colleagues (2015b) show that Himalayan 
blizzards such as the October 2014 event have an increased likelihood of occurrence 
when tropical cyclones from the Bay of Bengal interact with stronger extratropical 
systems, and they inferred an “increased possibility” of such circumstances in the 
future. In an earlier study conditioned on SSTs, Barsugli and colleagues (1999) find that 
the major ice storm of 1998 in the northeastern United States and eastern Canada was 
simulated more accurately when observed El Niño ocean temperature anomalies in 
the tropical Pacific were prescribed. With the possible exception of a tropical cyclone 
connection in the study by Wang and colleagues (2015b), none of the event attribu-
tion studies point to anthropogenic climate change as a major factor in the heavy 
snow events. The sample of case studies of extreme snow events examined to date, 
however, is too small to rule out possible anthropogenic warming effects. While trends 
in freezing rain events in the northern middle latitudes are prime candidates for ef-
fects of anthropogenic warming (Cheng et al., 2011; Klima and Morgan, 2015), system-
atic analyses of observed trends in freezing rain events have yet to be performed.

On the Horizon

Attribution of extreme snow and ice events suffers from a similar challenge as do 
some other extreme event types in that the events are strongly governed by the 
atmospheric circulation, for which externally forced changes are uncertain. For this 
reason, attribution of extreme snow and ice storm events may benefit from an empha-
sis on the thermodynamic state during particular events, as argued by Trenberth and 
colleagues (2015). Conditional attribution studies of snow and ice storms have lagged 
behind similar studies for other event types.

The databases underlying assessments of heavy snow and icing events have major 
deficiencies that hinder trend detection as well as attribution studies. It is likely that 
events are missed and/or their severity is underestimated. The construction of data-
bases suitable for attribution studies merits consideration and action in the observing 
community.
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Finally, recent cold winters and heavy snow events in the northern United States have 
raised public awareness of this type of event. The number of high-impact events in the 
northeastern United States, as measured by the population-weighted NESIS index, in-
creased abruptly in the 2006-2015 period. This apparent abrupt increase, as well as the 
need to distinguish changes in drivers from changes in impacts, makes clarification 
of the role of anthropogenic climate change in snowstorms affecting the northern 
United States a high priority.

TROPICAL CYCLONES

Event Type Definition

The National Oceanic and Atmospheric Administration (NOAA) defines a tropical 
cyclone as “a warm-core non-frontal synoptic-scale cyclone, originating over tropical 
or subtropical waters, with organized deep convection and a closed surface wind 
circulation about a well-defined center.” In each region of the globe that is prone 
to tropical cyclones, a Regional Specialized Meteorological Center, under the World 
Meteorological Organization (WMO), determines when a given system is a tropical 
cyclone and determines its intensity from available observations. 

The intensity of a tropical cyclone is conventionally understood to indicate its maxi-
mum sustained wind. This is only a loose guide to the potential severity of a given 
storm’s impacts, however, as hazards associated with cyclones include both coastal 
and freshwater flooding as well as winds. A specific tropical cyclone event also might 
be defined for attribution purposes by storm surge, precipitation, storm size, economic 
damage, or other variables. For some of these quantities, observations are inadequate. 

Maximum sustained wind speed itself is determined largely from satellite images, 
with in situ observations used where available. Uncertainties are significant (e.g., Knaff 
et al., 2010; Landsea and Franklin, 2013; Velden et al., 2006; see Figure 4.5) and may 
be greater for other variables, such as storm surge in regions where automated tide 
gauges are not available. 

Even with good observations, the severity of an event may be very different in dif-
ferent variables. A storm may have weak winds, for example, but still cause a major 
disaster due to precipitation, storm surge, or high vulnerability. Similarly, attribution 
studies may reach different conclusions depending on which variable is considered, 
without necessarily implying any contradiction.
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FIGURE 4.5  The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite 
acquired this image of Cyclone Chapala (04A) approaching the Arabian Peninsula on October 30, 2015 
(it made landfall in early November 2015). Only two tropical cyclones have hit the Peninsula since reliable 
records started in 1979. At the time of this image, the tropical cyclone had sustained winds between 130 
and 135 knots (150-155 miles or 240-250 kilometers per hour) and significant wave heights of 38 feet. 
SOURCE: NASA. http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=86899 (accessed June 1, 
2016). 

To the committee’s knowledge, purely observation-based methods have not been 
used to perform event attribution studies on tropical cyclones. Methods that rely on 
extreme value theory (e.g., van Oldenborgh et al., 2015) are not practical for tropical 
cyclones. These methods rely on the existence of a continuous time series for the vari-
able of interest, while tropical cyclones are rare events that do not provide such time 
series. Many studies (as discussed below) look for trends in tropical cyclone statistics, 
but for the most part these have been inconclusive even on regional or global scales.
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Prior Knowledge and Overview of Attribution Studies

Many studies have examined whether long-term trends exist in tropical cyclone 
statistics. Assessment of these trends is difficult due to the shortness of observational 
records in many basins; large natural variability, including at low frequencies, which 
may obscure any longer-term trends; and changes in observing systems and practices 
over time, which introduce heterogeneities into the observations even in those basins 
that do have relatively long-term records. Synthesis studies, using specified thresholds 
of statistical significance against a null hypothesis of zero trend, typically find that 
long-term trends cannot be clearly detected in tropical cyclone numbers, intensities, 
or integrated measures of activity (e.g., IPCC, 2014; Knutson et al., 2010; Walsh et al., 
2015). An exception may be the frequency of the most intense storms. 

Some studies find marginally significant increases in the frequency of category 4 and 
5 storms (e.g., Elsner et al., 2008; Emanuel, 2006; Kossin et al., 2013), while others find 
yet greater significance by, for example, detecting a temporal pattern of increase that 
more closely matches estimates of GHG-driven change rather than a pure linear trend 
(Holland and Bruyere, 2014). In some regions, there are clear trends in recent decades; 
the Atlantic, where data are of highest quality, stands out (e.g., Emanuel, 2006). The 
attribution of these trends to specific causes remains debated, however, with some 
attributing them to natural variability and others to reductions in anthropogenic 
aerosol forcing (Mann and Emanuel, 2006). Kossin and colleagues (2014) find a robust 
increase—both in the global and hemispheric means and in most individual basins—
in the average latitude at which storms reach their maximum intensities.

Little model-based research addresses the question of whether an anthropogenic 
influence is already present in long-term tropical cyclone statistics. There is, however, 
a large literature that addresses how tropical cyclones may change in future cli-
mates. Some of these studies use the same global climate models as used for overall 
climate change assessment (e.g., Camargo, 2013), but these are generally viewed as 
inadequate because their spatial resolutions are too low to produce good simula-
tions of tropical cyclones. The field has advanced greatly in recent years due to the 
existence of higher-resolution global atmospheric models (e.g., Yoshimura and Sugi, 
2005; Zhao et al., 2009) as well as innovative downscaling techniques that combine 
higher-resolution regional or idealized models of tropical cyclones with global models 
of climate change (Emanuel, 2006), or statistical refinement techniques to address the 
limitations on cyclone intensity posed by limited resolution (Zhao and Held, 2010).

Based in large part on these new models, broad consensus has emerged as to the 
expected future trends and their levels of certainty (e.g., IPCC, 2013; Knutson et al., 
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2010; Walsh et al., 2015). Tropical cyclones are projected to become more intense as 
the climate warms. There is considerable confidence in this conclusion, as it is found in 
a wide range of numerical models and also justified by theoretical understanding, par-
ticularly because there is a well-established body of theory for the maximum potential 
intensity of tropical cyclones (e.g., Bryan and Rotunno, 2009; Emanuel, 1986, 1988; 
Holland, 1997). The rate of intensification per degree of global mean surface warming 
remains quantitatively uncertain; however, because maximum potential intensities are 
projected to rise (e.g., Camargo, 2013), future observations of tropical cyclones with 
intensities significantly higher than those observed in the past would be consistent 
with expectations in a warming climate, and attribution studies for such storms would 
have a firm basis in physical understanding.

The global frequency of tropical cyclone formation is projected to decrease (Camargo 
et al., 2014; Knutson et al., 2008, 2010; Seneviratne et al., 2012; Walsh et al., 2015), but 
there is less confidence in this conclusion than in the increase in intensity; some 
credible models produce increases in frequency (Emanuel, 2013). The uncertainty is 
still greater in projections of tropical cyclone frequency in individual basins. Changes 
in the frequency of the most intense storms are related to changes in both the fre-
quency of all storms and the average storm intensity. Thus, they are less certain than 
the intensity changes alone because reduced frequency and increased intensity 
have opposing effects; Christensen and colleagues (2013) state that the frequency 
of the most intense storms “will more likely than not increase substantially in some 
basins under projected 21st century warming.” Precipitation in tropical cyclones is 
expected to increase because of the increased water vapor content of the atmosphere, 
similarly to other extreme precipitation events; Christensen and colleagues (2013) 
express medium confidence in this projection. While there are only a few projections 
of changes in storm surge itself, total coastal flood depths, relative to fixed elevations, 
are confidently projected to increase as a consequence of sea level rise (e.g., Hoffman 
et al., 2010; Woodruff et al., 2013). Coastal flood risk due to storm surge is projected to 
increase due to both sea level rise and tropical cyclone intensity change, though the 
influence of the latter is more model-dependent (e.g., Emanuel, 2008; Lin et al., 2012).

To the committee’s knowledge, attribution studies of single tropical cyclones using 
large ensemble simulations (without conditioning on event occurrence), for example, 
as needed to calculate a FAR, have not been performed. Murakami and colleagues 
(2015), however, executed a study of this kind with a global high-resolution model to 
perform attribution on a single tropical cyclone season as a whole. 

The highly-conditioned method has been used in a few recent studies of individual 
tropical cyclones. Trenberth and Fasullo (2007) and Wang and colleagues (2015a) esti-
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mate the role of climate change in the rainfall produced by pairs of individual storms 
in the United States and Taiwan. Lackmann (2015) simulates Hurricane Sandy (2012) 
in a high-resolution regional model nested into large-scale climate fields obtained 
from coupled simulations representing conditions in 1900, 2012, and 2100. Irish and 
colleagues (2014) consider the influence of anthropogenic climate change on the 
flooding due to Hurricane Katrina in 2005, including an estimate of the potential 
anthropogenic influence on the hurricane’s intensity as well as the role of sea level rise 
in increasing the total water depth relative to a fixed benchmark. All of these studies 
find modest increases in their respective measures of event intensity due to warming. 
The highly conditioned approach may be particularly attractive for tropical cyclone 
studies because large-ensemble approaches have not yet been practical, while a range 
of tools exists for modeling individual storms and their impacts.

On the Horizon

Though not practical in the past, large-ensemble attribution studies of individual 
tropical cyclones are becoming technically possible. High-resolution global models 
now exist that simulate tropical cyclones reasonably well (e.g., Shaevitz et al., 2014) 
and could be used for this purpose; the challenge is the high computational cost per 
simulation year as well as the large number of years required for statistical signifi-
cance. Downscaling methods, whether statistical, dynamic, or hybrid (e.g., Emanuel, 
2006), can be much less computationally expensive and could be used today for such 
studies (e.g., Takayabu et al., 2015). These methods typically require specified SST and 
so would be conditional on a given SST scenario as well as GHG increases. In addition 
to these two conditions to model quality requirements, the lack of consensus on the 
significance of observed trends in tropical cyclone statistics would pose a challenge to 
the interpretation of such studies for tropical cyclones. Because one of the difficulties 
in trend detection studies is the sample size in the presence of large low-frequency 
natural variability, however, model-based attribution studies would have an advantage 
to the extent that they could generate larger sample sizes than those available from 
observations.

EXTRATROPICAL CYCLONES

Event Type Definition

The term “extratropical cyclone” refers to the migratory frontal cyclones of middle 
and high latitudes, which are embedded within the large-scale westerly flow and thus 
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move from west to east. There is no unique operational definition for the term, though 
a number of features are commonly agreed to be important. Extratropical cyclones de-
rive their energy from the horizontal temperature contrasts in the extratropical atmo-
sphere, through the process of baroclinic instability, and often contain fronts, though 
they also may be strengthened by latent heat release. Extratropical cyclones likewise 
can arise as tropical cyclones lose their axisymmetry and other tropical features in the 
process of extratropical transition. Studies generally define extratropical cyclone in-
tensities either by minimum surface pressure (converted to sea level) or by maximum 
lower-tropospheric vorticity. 

The impacts of extratropical cyclones are generally felt through frontal precipita-
tion, storm surges, or windstorms; the latter are often concentrated in so-called sting 
jets embedded within the synoptic system. Storm surges warrant special treatment 
because they also depend on tidal variations and on sea-level rise, not just on the 
storm itself.

Prior Knowledge and Overview of Attribution Studies

Statistics of observed events exhibit pronounced multidecadal variability, often linked 
with large-scale circulation patterns such as the North Atlantic Oscillation (NAO). 
Although trends are sometimes reported in the literature, they are highly sensitive to 
the period chosen and to how the storms are defined. Assessments of historical cen-
tennial timescale changes have to be based largely on reanalyses, which may contain 
long-term heterogeneities (Krueger et al., 2013). As a result, there is no consensus on 
attributed trends in observations, at least in the Northern Hemisphere. A recent com-
prehensive review for the North Atlantic and northwest Europe is provided by Feser 
and colleagues (2015a), and for the U.S. East Coast by Colle and colleagues (2015).

The expected effect of human-induced climate change on extratropical cyclones is 
unclear because there are competing factors: The reduction in pole-to-equator tem-
perature gradient expected from polar amplification would tend to weaken cyclones, 
but the increase in moisture would tend to strengthen them, as would the increase in 
upper tropospheric temperature gradient (O’Gorman, 2010). Although the IPCC Fourth 
Assessment Report concluded that cyclones would be expected to strengthen, this 
was based on a study (Lambert and Fyfe, 2006) that used minimum surface pressure 
as the index; the overall expected decrease in surface pressure at higher latitudes 
thus induced a trend which was not actually related to cyclone intensity. In the IPCC 
Fifth Assessment Report, future projections of extratropical cyclones were found to be 
uncertain (Christensen et al., 2013).  
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Moreover, the storm track positions could change location in the future. Zappa and 
colleagues (2013b) find an overall intensification of the wintertime storm track over 
northern Europe in the CMIP5 models and a weakening of the Mediterranean storm 
track, but the confidence in this projection remains uncertain  because the relevant 
physical processes are not yet understood. Seiler and Zwiers (2015a,b) find that explo-
sive cyclones “rapidly intensifying low pressure systems with severe wind speeds and 
heavy precipitation” tend to shift poleward in the Northern Hemisphere, decrease in 
frequency due to weakening baroclinicity, and increase slightly in intensity. Hoskins 
and Woollings (2015) discuss the various physical mechanisms that have been pro-
posed for driving anthropogenic circulation changes at midlatitudes and their link to 
weather extremes, and they conclude that there is substantial uncertainty concerning 
what can be expected in the future.

Human influence appears to be stronger in the Southern Hemisphere, where it has 
been exerted through stratospheric ozone depletion. Model-based attribution studies 
have found an ozone depletion influence on Southern Hemispheric extratropical 
cyclones and associated extreme precipitation, evident most clearly in a poleward 
shift in the storm track (Grise et al., 2014; Kang et al., 2013).

Yang and colleagues (2015) use a seasonal prediction system to assess the drivers 
of the extreme storminess over the central United States and Canada in winter 
2013/2014; they found no evidence of a human influence, but they did find a FAR in 
the range of 33-75% due to the multiyear anomalous tropical Pacific winds. 

Marciano and colleagues (2015) run a weather model to simulate observed individual 
wintertime extratropical cyclone events along the U.S. East Coast in present-day and 
project future thermodynamic environments. They find increases in precipitation, 
cyclone intensity, and low-level jet strength resulting from the increased latent heat-
ing. This was for the future, however; there was no assessment of the human influ-
ence so far. For storm surges, the contribution from sea-level rise has been estimated 
under the highly conditioned assumption of no change in storminess; Lopeman and 
colleagues (2015) perform such a study for Hurricane Sandy in 2012; technically an 
extratropical cyclone at landfall), while Colle and colleagues (2015) discuss longer-
term changes in New York City. In both cases, the anthropogenic contribution to past 
storm surges was estimated to be small but predicted to become a substantial factor 
(in terms of decreases in return periods) over the course of this century. 

Because extratropical cyclones are defined as discrete events rather than extreme 
values of continuous time series, observation-based methods for attribution using 
extreme value theory may not apply as straightforwardly to extratropical cyclones as 
to some other event types. Nevertheless, both van Oldenborgh and colleagues (2015) 
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and Wild and colleagues (2015) use observational analysis to challenge the suggestion 
(e.g., Huntingford et al., 2014) that the intense storminess over the United Kingdom in 
winter 2013/2014 was driven by anomalously warm Pacific SSTs, which might have an 
anthropogenic component.

On the Horizon

Trzeciak and colleagues (2014) suggest that although current global climate models 
generally underrepresent the intensity of extratropical cyclones due to insufficient 
latent heat release, once the horizontal resolution is finer than about 100 km they 
should be adequate, and that the systematic biases will then mainly involve storm 
track location. Seiler and Zwiers (2015a) found that resolution is not correlated with 
explosive storm intensity across the CMIP5 ensemble, but they note that competing 
effects of vertical resolution and model physics inhibit strong interpretation of that 
result. Horizontal resolution has been found to be important in sensitivity studies 
with single models (e.g., Jung et al., 2006), and idealized simulations of extratropical 
cyclones have been shown to be limited by resolution and dissipation at typical 
climate model resolutions (Polvani et al., 2004). Thus, it may still be the case that 
resolution is a factor limiting analyses of storm intensity, and that improvements 
in resolution will be beneficial to future attribution studies. Zappa and colleagues 
(2013a) showed that the location biases (features simulated with some fidelity but 
occurring in the wrong location) in CMIP5 models are generally very severe in the 
North Atlantic. As a result, typically the model biases in storm count at specific loca-
tions are several times larger than the change expected under RCP8.5 at the end of 
the century. Experience with medium-range and seasonal prediction systems has 
shown that these biases tend to be alleviated with higher spatial resolution, however. 
Thus, it is currently feasible to run global models with a reasonable representation of 
extratropical cyclones. The main issue for event attribution, then, is to assess whether 
simulated anthropogenic changes in the large-scale circulation that affect the storm 
tracks are credible. Without a robust physical understanding of the processes con-
trolling such changes, or a clear signature in observations, this will be a challenge 
(Hoskins and Woollings, 2015). 

Any attribution of the impacts of extratropical cyclones—frontal precipitation, storm 
surges, or windstorms—would likely have to downscale the synoptic situation in some 
credible manner, which for the foreseeable future will require a highly conditioned 
framework.
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WILDFIRES

Event Type Definition

Although wildfires are not meteorological events, their likelihood and extent can be 
influenced by climatic factors. Wildfires are often large and rapidly spreading fires 
affecting forests, shrub areas, and/or grasslands. Wildfires occur in many areas of the 
world, especially those with extensive forests and grasslands (Romero-Lankao et al., 
2014). While most wildfires are started by lightning, a substantial number are started 
by humans, especially near populated areas. The most common metric of wildfires is 
the area burned, either by a single wildfire or by all wildfires during a fire season in a 
particular region. 

Attribution of wildfire trends and extreme events is complicated by (1) the role of 
humans in ignitions, fire suppression, and management of forests and other biomes 
(Gauthier et al., 2015; Lin et al., 2014); (2) the importance of lightning, hence small-
scale thunderstorms, in igniting large fire outbreaks; (3) the importance of larger-scale 
weather in the wildfire spread and growth into major events (specifically, winds and 
humidity for fire spread, and rain for extinguishing a fire outbreak; Abatzoglou and 
Kolden, 2011); and (4) the health of the forest (e.g., a white pine bark beetle infesta-
tion). Thus, attribution studies need to consider three time/space scales: (1) individual 
large fires, which are controlled primarily by short-term weather patterns; (2) regional-
scale within-season extreme fire periods, which are driven by seasonal weather pat-
terns; and (3) large fire seasons, which are regional-scale events resulting from climate 
teleconnections associated with persistent blocking ridges that cause extended fire 
seasons (with delayed season-ending rains). Preseason preconditioning of soils and 
vegetation can play a role on all three timescales.

Prior Knowledge and Overview of Attribution Studies

Analysis of wildfire trends and extremes is limited by the availability of consistent data 
records. For example, fire surveillance methods have improved in recent decades; the 
area actually burned by a fire can be less than the area within the fire perimeter; and 
some metrics of fire activity include only large fires. There has been an overall increase 
in the area burned in the United States over the past several decades (Figure 4.6). The 
increase is especially apparent in the West. Trends are less apparent in Canada, where 
the area burned by large fires increased from the 1960s to the 1980s and 1990s, after 
which there has not been an increase (Krezek-Hanes et al., 2011). Globally, however, fire 
weather season lengths showed significant increases during 1979-2013 across more 
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FIGURE 4.6  Yearly area burned by large wildfires in the United States, 1984-2013, color-coded by level of 
damage caused to the landscape—a measure of wildfire severity. SOURCE: U.S. Environmental Protection 
Agency’s “Climate Change Indicators in the United States.” Data source: MTBS (Monitoring Trends in Burn 
Severity), a multiagency partnership, http://www.mtbs.gov/index.html (accessed June 1, 2016).
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than 25% of the Earth’s vegetated surface, resulting in a 19% increase in the global 
mean fire weather season length (Jolly et al., 2015). 

Periods of unstable atmospheric conditions result in high winds, rapid fire growth, 
extreme fire behavior, and convective storms that provide lightning for ignitions. 
Because climate models do not explicitly include lightning (or explicit formulations of 
convective storms), atmospheric stability and rain rate have been used to construct 
indices of lightning activity derived from model output. In an application of this ap-
proach to the output of a set of global climate models, Romps and colleagues (2014) 
project an increase in lightning strikes over the contiguous United States by 12% 
(+/–5%) per °C of global warming, or about 50% over this century. 

Wildfires are closely associated with heat and drought, so some of the attribution is-
sues pertaining to extreme wildfires and their likelihoods are covered in the preceding 
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subsections on heat and drought. One of the earliest attribution studies showed that 
the increase of wildfire burn areas in Canada during 1959-1999 was consistent with 
anthropogenic summer warming (Gillett et al., 2004).

In addition to the controls by climate and weather (highlighted above), the availability 
of fuels and hence the state of the vegetation affects individual fires, as well as overall 
fire season severity. Attribution studies have generally used climate model output in 
conjunction with vegetation models or with metrics of fire risk derived from model-
simulated precipitation and temperature. An example of the latter is a recent study 
by Yoon and colleagues (2015), who use ensembles of historical and future RCP8.5 
simulations by the CESM model to show that an increase in fire risk in California is 
attributable to climate change. Beginning in the 1990s, the latter part of the historical 
simulation, a clear separation emerges between fire risks driven by only natural vari-
ability (the counterfactual climate, a long preindustrial simulation) and those driven by 
anthropogenic climate forcing (Yoon et al., 2015; see Figure 2.2). These results indicate 
that an increase in fire risk in California is attributable to climate change, consistent 
with the occurrence since 2010 of several of the most severe fire years on record in 
California. 

Similar model-derived results have been obtained for the broader western United 
States (Luo et al., 2013; Yue et al., 2013), for Alaska (Mann et al., 2012), and for Canada 
(Flannigan et al., 2015). In the latter study, each degree of warming was found to re-
quire a precipitation increase of 15% to offset the temperature-driven decrease of the 
moisture content of fine surface fuels. 

On the Horizon

Climate warming has resulted in longer fire seasons, consistent with the recent ob-
served increase in severe fire years in the western United States and Alaska, as well 
as Brazil, eastern Africa, and parts of Eurasia (Jolly et al., 2015). What is less clear is 
how climate warming is driving changes in the atmospheric circulation and its tele
connections, resulting in persistent areas of high pressure that lead to large fire 
years on regional scales. Similarly, it is unclear how climate warming is regulating the 
shorter-term weather patterns that control extreme fire periods during which fires 
expand rapidly. Counterfactual model experiments are needed to address the role of 
climate warming in severe fire years regionally and in shorter episodes of rapid fire 
expansion. 

Finally, there is a lack of compelling evidence of an influence of climate warming on 
the formation of convective storms that result in lightning ignitions. While climate 
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and weather conditions (temperature, wind, humidity) determine the rate of wildfire 
growth, ignitions—primarily by lightning in some areas, but predominantly by humans 
in others—are a prerequisite for wildfires. In view of the model-based projections of 
increases in lightning activity and fire season length, there is a need for attribution 
studies of severe fire years on a regional basis using the large ensemble methods and 
conditional methods discussed earlier. Such studies could use climate model output 
in conjunction with vegetation-fire modules that are being developed for inclusion in 
earth system models. Large fires are almost always smaller than the grid cells of today’s 
earth system models, however, so sub-grid cell variability will need to be represented 
in land-surface modules that are either run offline or coupled to coarser-resolution 
atmospheric models. 

SEVERE CONVECTIVE STORMS

Event Type Definition

Severe convective storms (SCSs) are those that produce strong winds, hail, tornadoes, 
extensive lightning, or heavy precipitation. Usually these storms occur over land. The 
term “convection” in meteorology refers to strong vertical motion—updrafts and 
downdrafts—driven by buoyancy in the atmosphere. In practice, the term “severe” 
is typically applied when some variables exceed specified thresholds—for example, 
wind speeds greater than 25 m/s or hailstones larger than 2 cm (Doswell, 2001). The 
term “hazardous convective weather” also has been used (e.g., Tippett et al., 2015).

SCSs are small in both spatial extent and temporal duration compared to many other 
extreme weather events. The most extreme hazards, such as tornadoes and large 
hail, are particularly localized and not well resolved by conventional meteorological 
observations. As a consequence, reports by amateur observers on the ground form 
the longest and most direct observational datasets, at least in the United States. In 
much of the world, good long-term report data do not exist, and where they do, their 
formats are generally not uniform from country to country. Even within the United 
States there are considerable heterogeneities in space and time. The intensities of tor-
nadoes are generally assessed not by direct observation but by surveys of damage on 
the ground after the fact. This also requires human judgment, introducing additional 
inhomogeneity. It is possible to assess some aspects of SCS weather from radar and 
other remote sensing observations, and new datasets are being developed that may 
allow these observations to be used for climate purposes, but these do not yet have 
records comparable in length to observer reports.
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Based on both physical understanding and empiricism, there is some knowledge of 
which large-scale environmental conditions are favorable to the formation of SCSs. 
Vertical instability to buoyant ascent—associated with unusually warm humid near-
surface air and cool air aloft (e.g., as measured by convective available potential 
energy [CAPE])—is required to form strong updrafts and downdrafts, while vertical 
wind shear enables those to organize into the larger convective storms that gener-
ate hail, tornadoes, and other hazards (e.g., Brooks, 2013; Brooks et al., 2003). CAPE, 
shear, and other relevant environmental variables are better observed and have more 
homogeneous long-term records (both in direct observations and in observation-
based assimilation datasets such as reanalysis) than do SCSs themselves, so many 
climate studies focus on these large-scale variables. One limitation of this approach is 
that the associations between these variables and the storms are partly empirical and 
thus might change as climate does. Also, the occurrence of severe weather is by no 
means guaranteed by a favorable large-scale environment; rather, it requires initiation 
by a preexisting disturbance of some kind, a process which appears less predictable 
and whose dependence on climate is not well understood.

Prior Knowledge and Overview of Attribution Studies

Detection of trends is difficult due to data heterogeneities. In the United States, obser-
vations of both tornadoes and hail show significant increases over the latter half of the 
20th century, but these are widely understood to be artifacts of increased frequency 
of reporting rather than actual meteorological trends (e.g., Brooks and Dotzek, 2007). 
Environmental variables predictive of tornado formation, for example, do not show 
the trends that tornadoes themselves do (Tippett et al., 2015). Studies of trends in the 
United States find different results depending on the time period and spatial region 
chosen, but there is no broad agreement on the detection of long-term trends in 
overall SCS activity such as might be related to anthropogenic climate change. In the 
literature, there are some consistent indications of increased year-to-year variability, as 
well as concentration of activity in fewer outbreaks of larger magnitude (Sander et al., 
2013; Tippett, 2014), but there is no clear connection between this and climate change.

Several studies have used climate model projections to estimate the effect of GHG 
increases on future SCS activity in the United States. Due to the impossibility of ade
quately simulating severe convection in low-resolution climate models, these studies 
all focus on changes in large-scale environmental variables associated with SCS activ-
ity (e.g., CAPE and vertical wind shear) rather than in the storms themselves, a form of 
statistical downscaling. 
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These studies show that the climate models project conflicting signals for the two 
primary predictors of SCS activity over the U.S. plains, where storm activity is great-
est in the current climate (e.g., Trapp et al., 2007). Convective instability increases in a 
warming climate, but wind shear decreases. Changes in storms will depend on which 
of these dominates the other. Studies to date suggest that instability wins, such that 
SCS activity will increase (Diffenbaugh et al., 2013; Trapp et al., 2009). This conclusion 
could be sensitive to the details of the environmental index chosen, given that the two 
effects are competing. The limited number of such studies is presumably the reason 
why recent reports do not include detailed assessments of future projections of SCS 
activity. The IPCC Special Report on Extremes (Seneviratne et al., 2012) did consider 
hail distinctly from other precipitation extremes, finding that “confidence is still low for 
hail projections particularly due to a lack of hail-specific modelling studies, and a lack 
of agreement among the few available studies.”

Highly conditioned approaches are feasible for SCS today, using either environmental 
indices or small-domain, high-resolution models forced by environmental conditions 
derived from larger-scale ones, as has been done earlier for tropical cyclones (Knutson 
and Tuleya, 2004); a small number of studies have already been done using this meth-
odology for future scenarios (Gensini and Mote, 2015; Trapp and Hoogewind, 2016).

The committee is not aware of any attribution studies of any kind for individual SCS 
events, whether single storms or outbreaks consisting of multiple storms. 

On the Horizon

Attribution studies of SCS events are technically feasible, but they require steps 
beyond those necessary for some other types of events due to their fine spatial and 
timescales. A large ensemble approach to attribution can probably be done only for 
environmental indices predictive of SCS activity, rather than the SCS activity itself. 
This additional statistical downscaling step would add another layer of uncertainty 
to the interpretation. As computing power increases, convection-permitting models 
can be used, allowing some degree of direct representation of SCS activity. For the 
most severe manifestations, such as tornadoes, explicit simulation in global or regional 
model attribution studies is probably not feasible in the near future. 
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CHALLENGES AND OPPORTUNITIES FOR ATTRIBUTION 
OF PARTICULAR TYPES OF EXTREME EVENTS

Attribution is much more feasible for some events than for others. The existing litera-
ture largely reflects this variability, with the most straightforwardly attributable event 
types having significant numbers of studies and the least having few or none. The dif-
ficulty of performing attribution on a given event type is a function of the space and 
timescales of the event type; the adequacy of observations to resolve the event (and 
the availability of those observations over a long-term historical record); the ability of 
climate models to simulate the event; and the simplicity of that event type’s physical 
relationship to anthropogenic climate change.

Extreme heat and cold events are the simplest events on which to perform attribu-
tion, and the ones for which the most mature literature exists. They are well resolved 
by available observations, relatively well simulated in models; and their relationship 
to global warming—though not without its complexities—is straightforward com-
pared to that of some other event types. Tornadoes (and, more broadly, SCSs) are 
arguably the most difficult events to attribute, and accordingly, no studies have been 
performed. These events are poorly observed, cannot be simulated in climate models 
at present, and have a complex and subtle relation to climate change, with compet-
ing factors tending to drive the response in opposite directions. The other event 
types lie in between. Droughts are more complex than heat and cold events, and thus 
more challenging targets for attribution. As large-scale events, however, droughts 
are still more straightforward in their meteorological aspects (i.e., leaving aside non-
meteorological components of drought such as land use, water management deci-
sions, etc.) than some other event types. While the non-meteorological aspects of 
droughts can render them complex, the role of increasing temperature in exacerbat-
ing hydrological drought through increased evaporation is more straightforward, and 
this increases confidence in attribution results that hinge on that mechanism. Tropical 
cyclones are among the more challenging event types, though they are somewhat 
more tractable than tornadoes due to their larger scales and better observations. 
Extratropical cyclones, extreme precipitation events, and snow and ice storms are in 
between these extremes. Wildfires present unique challenges due to the fact that 
they are not fundamentally meteorological events and are difficult to classify on this 
spectrum. The committee assessed their confidence in event attribution capabilities 
for different classes of extremes, as illustrated in Figure 4.7 and Table 4.1. Figure 4.7 
schematically depicts the committee’s assessment of the state of attribution science 
for specific event types along two axes.
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FIGURE 4.7  Schematic depiction of this report’s assessment of the state of attribution science for differ-
ent event types. The horizontal position of each event type reflects an assessment of the level of under-
standing of the effect of climate change on the event type, which corresponds to the right-most column 
of Table 4.1. The vertical position of each event type indicates an assessment of scientific confidence in 
current capabilities for attribution of specific events to anthropogenic climate change for that event type 
(assuming the attribution is carried out following the recommendations in this report), which draws on 
all three columns of Table 4.1. A position below the 1:1 line indicates an assessment that there is potential 
for improvement in attribution capability through technical progress alone (such as improved modeling, 
or the recovery of additional historical data), which would move the symbol upward. A position above 
the 1:1 line is not possible because this would indicate confident attribution in the absence of adequate 
understanding. In all cases, there is the potential to increase event attribution confidence by overcoming 
remaining challenges that limit the current level of understanding. See Box 4.1 for further details and 
caveats about this figure.
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TABLE 4.1  This table, along with Figure 4.7, provides an overall assessment of the 
state of event attribution science for different event types. In each category of extreme 
event, the committee has provided an estimate of confidence (high, medium, and 
low) in the capabilities of climate models to simulate an event class, the quality and 
length of the observational record from a climate perspective, and an understanding 
of the physical mechanisms that lead to changes in extremes as a result of climate 
change. The entries in the table, which are presented in approximate order of overall 
confidence as displayed in Figure 4.7, are based on the available literature and are the 
product of committee deliberation and judgment. Additional supporting information 
for each category can be found in the text of this chapter, summarized in Box 4.1. 
The assessments of the capabilities of climate models apply to those models with 
spatial resolutions (100 km or coarser) that are representative of the large majority 
of models participating in the Coupled Model Intercomparison Project Phase 5 
(CMIP5). Individual global and regional models operating at higher resolutions may 
have better capabilities for some event types, but in these cases, confidence may still 
be limited due to an inability to assess model-related uncertainty. The assessments 
of the observational record apply only to those parts of the world for which data 
are available and are freely exchanged for research. Most long records rely on in situ 
observations, and these are not globally complete for any of the event types listed in 
this table, although coverage is generally reasonable for the more densely populated 
parts of North America and its adjacent ocean regions.
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� = low
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BOX 4.1 
ADDITIONAL DETAIL FOR FIGURE 4.7 AND TABLE 4.1

Figure 4.7 and Table 4.1 should be interpreted qualitatively rather than quantitatively. The 
position of each event type in this space is the result of committee judgment, and therefore, each 
is subjective. The relative positions of event types that are close to each other, in particular, can 
all be debated. Below is a brief justification for each event type’s position.

Extreme cold events: These are broadly similar to heat events with some differences. There 
is perhaps even greater confidence in the attribution of long-term change in cold extremes to 
human influence than for hot extremes. Land-surface feedbacks may be less important, and 
observed trends in minimum temperatures are stronger than those in maxima, and there are 
theoretical reasons for expecting a decrease in variance as the pole-to-equator temperature 
gradient weakens. The impact of selection bias is particularly important here as warming reduces 
the number of events likely to be targeted for attribution.

Extreme heat events: Climate models represent heat events well, compared to many other 
event types, and observations characterize events and trends similarly well. Long-term change 
in hot extremes has been attributed to human influence on the climate system. Some challenges 
remain due to land-surface feedbacks and understanding of low-frequency variability.

Droughts: Observations and global models capture precipitation deficits better than some 
other extreme event types. Difficulties stem from land-surface feedbacks, lack of soil moisture 
observations, the role of low-frequency variability, the complexity of defining drought for the 
purpose of attribution, and the role of non-meteorological factors in causing drought. The rela-
tively high placement of drought along both axes in the figure reflects the well-understood role 
of warming in hydrological drought via increased surface evaporation, reduced snow accumula-
tion, and increased snowmelt.

Extreme rainfall: Climate models have some capability, though model physics and resolu-
tion are limiting. There is a strong physical basis for expecting a climate change influence, and 
observed trends are broadly consistent with that expectation. Because extreme rainfall events 
are small-scale and occur on weather timescales, the overall climate change signal includes many 
such events, increasing the robustness of the signal.

In all cases of event attribution, observations are critical, and at the same time, im-
provement depends to some extent on improvement in numerical models. This need 
is most acute for those event types with the smallest space and timescales. To some 
extent, increasing computer power, thus allowing higher resolution, will facilitate 
progress. 
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Extreme snow and ice storms: Few attribution studies have been performed. Physical bases 
of climate change influences are well understood individually, but event attribution is made 
difficult due to the complexity of influences in combination (increasing water vapor increases 
potential snow and freezing rain amounts, but increasing temperature decreases likelihood of 
freezing). Observations also are inadequate for extreme snow and ice storms. 

Tropical cyclones: Most climate models have inadequate resolution for attribution studies, 
though specialized higher-resolution models are better and improving quickly. Few attribution 
studies of individual storms have yet been performed. There is considerable physical understand-
ing of some aspects; tropical cyclone intensity and precipitation are confidently expected to 
increase with warming. Detection of trends in observations is challenging due to low-frequency 
variability as well as inhomogeneity and shortness of records. 

Extratropical cyclones: Climate models can simulate the events to some extent, though reso-
lution and physics may still be limiting in many models, particularly in their ability to resolve the 
most extreme local manifestations of the storms, such as strong winds and heavy precipitation. 
Detection of trends in observations, robustness of projections, and physical understanding of 
climate change influences are all weak. Few attribution studies have been performed.

Wildfires: Few attribution studies have been performed. Observations are problematic, and 
typical climate models do not include all the physical processes, especially variations in fuel 
properties. Wildfire process understanding also remains limited, particularly on the macro scale 
that is relevant to assessing the influence of climate on fire. While it is very likely that warming 
increases the risk of fire, the important role of non-meteorological factors and limitations of both 
observations and models nonetheless pose challenges for attribution.

Severe convective storms: The committee is not aware of any attribution studies. Observa-
tions of both individual events and trends are problematic. Climate models do not resolve the 
events, and some phenomena (e.g., tornadoes) are not resolved even by the highest-resolution 
models in use for operational weather forecasting. Physical understanding of the events’ re-
lationship to climate change is limited. Statistical or dynamic downscaling offers promise of 
improvement.

BOX 4.1  CONTINUED
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In the past decade, the field of extreme event attribution has made great strides in 
understanding and explaining extreme events in the context of climate change. This 
is still an emerging science, however; thus, continued research is required to increase 

the reliability of event attribution results, particularly for event types that are presently 
poorly understood. The need for improved understanding is coming at a time when 
there is increasing inquiry by the public, policy makers, and practitioners about the 
relationship between specific weather events and climate change (e.g., the question, 
“Is it caused or affected by climate change?”). Advances in the field will depend not 
only on addressing scientific problems specific to attribution but also on advances in 
the basic underlying science, including observations, weather and climate modeling, 
statistical methodology, and theoretical understanding of extreme events and their 
relation to climate. 

This chapter builds on the information presented in the preceding chapters to pro-
vide guidance for framing questions about event attribution and approaches to 
ensuring the robustness and reliability of event attribution studies and information. 
The committee also recommends future research that would improve extreme event 
attribution capabilities and discusses the future of event attribution in an operational 
context.

ASSESSMENT OF CURRENT CAPABILITIES

Event attribution is more reliable when based on sound physical principles, con-
sistent evidence from observations, and numerical models that can replicate the 
event. The ability to attribute the causes of some extreme event types has advanced 
rapidly since the emergence of event attribution science a little over a decade ago, 
while attribution of other event types remains challenging. In general, confidence in 
attribution results is strongest for extreme event types that

•	 have a long-term historical record of observations to place the event in an 
appropriate historical context;

•	 are simulated adequately in climate models; and
•	 are either purely meteorological in nature (i.e., the nature of the event is not 

strongly influenced by the built infrastructure, resource management actions, 

C H A P T E R  F I V E
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etc.) or occur in circumstances where these confounding factors can be care-
fully and reliably considered. 

Non-meteorological factors confound observational records and can limit the accuracy 
of model simulations of extreme events. Drought and wildfire are examples of events for 
which non-meteorological factors can be especially challenging in attribution studies.

Furthermore, confidence in attribution results that indicate an influence from anthro-
pogenic climate change is strongest when

•	 there is an understood and robustly simulated physical mechanism that 
relates a given class of extreme events to long-term anthropogenic climate 
changes such as global-scale temperature increase or increases in water con-
tent of a warmer atmosphere. 

Confidence in attribution findings of anthropogenic influence is greatest for 
those extreme events that are related to an aspect of temperature, such as the 
observed long-term warming of the regional or global climate, where there is 
little doubt that human activities have caused an observed change. For example, 
a warmer atmosphere is associated with higher evapotranspiration rates and heavier 
precipitation events through changes in the air’s capacity to absorb moisture. Atmo
spheric circulation and dynamics play some role, however, which is different for differ-
ent event types. Changes in atmospheric circulation and dynamics are generally less 
directly controlled by temperature, less robustly simulated by climate models, and 
less well understood. Event attribution can be further complicated by the existence of 
other factors that contribute to the severity of impacts.

Confidence in attribution analyses of specific extreme events is highest for 
extreme heat and cold events, followed by hydrological drought and heavy 
precipitation. There is little or no confidence in the attribution of severe convec-
tive storms and extratropical cyclones. Confidence in the attribution of specific 
events generally increases with our understanding of the effect of climate change in 
the event type. Nevertheless, the gap between this understanding and confidence in 
attribution of specific events varies among event types.

Attribution of events to anthropogenic climate change may be complicated by 
low-frequency natural variability, which influences the frequencies of extreme 
events on decadal to multidecadal timescales. The Pacific Decadal Oscillation and 
Atlantic Multidecadal Oscillation are examples of such variability. Characterization of 
these influences is uncertain because the observed record is too short to do so reli-
ably, and it also is too short to assess whether climate models simulate these modes of 
variability correctly. 
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PRESENTING AND INTERPRETING EXTREME EVENT ATTRIBUTION STUDIES

There is no single best method or set of assumptions for event attribution because 
these depend heavily on the framing of the question and the amount of time avail-
able to answer it. Time constraints may themselves affect framing and methodological 
choices by limiting analyses to approaches that can be undertaken quickly. 

A definitive answer to the commonly asked question of whether climate change 
“caused” a particular event to occur cannot usually be provided in a deterministic 
sense because natural variability almost always plays a role. Many conditions must 
align to set up a particular event. Extreme events are generally influenced by a specific 
weather situation, and all events occur in a climate system that has been changed by 
human influences. Event attribution studies generally estimate how the intensity or 
frequency of an event or class of events has been altered by climate change (or by 
another factor, such as low-frequency natural variability). 

Statements about attribution are sensitive to the way the questions are posed 
and the context within which they are posed. For example, when defining an 
event, choices must be made about defining the duration of the event (when did it 
begin and when did it end) and the geographic area it impacted, but this may not 
be straightforward for some events (e.g., heat waves). Furthermore, different physical 
variables may be studied (e.g., drought might be characterized by a period with insuf-
ficient precipitation, excessively dry soil, or reduced stream flow), and different metrics 
can be used to determine how extreme an event was (e.g., frequency, magnitude). 
Whether an observation- or model-based approach is used, and the sorts of observa-
tions and/or models available for studying the event, also will constrain the sorts of 
questions that can be posed. 

Attribution studies of individual events should not be used to draw general con-
clusions about the impact of climate change on extreme events as a whole. Events 
that have been selected for attribution studies to date are not a representative sample 
(e.g., events affecting areas with high population and extensive infrastructure will at-
tract the greatest demand for information from stakeholders). In addition, events that 
are becoming less likely because of climate change (e.g., cold extremes) will be studied 
less often because they occur less often than events whose frequency is increasing 
because of climate change. Furthermore, attribution of individual events is generally 
more difficult than characterizing the statistical distribution of an event of a given type 
and its dependence on climate. For all of these reasons, counts of available attribution 
studies with either positive or negative or neutral results are not expected to give a reli-
able indication of the overall importance of human influence on extreme events.
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Unambiguous interpretation of an event attribution study is possible only when 
the assumptions and choices that were made in conducting the study are clearly 
stated and the uncertainties are carefully estimated. The framing of event attribu-
tion questions, which may depend strongly on the intended application of the study 
results, determines how the event will be studied and can lead to large differences in 
the interpretation of the results. Event attribution studies presented in the following 
manner are less likely to be misinterpreted:

•	 Assumptions about the state of one or more aspects of the climate system at the 
time of the event (e.g., sea-surface temperature [SST] anomalies, atmospheric 
circulation regimes, specific synoptic situations) are clearly communicated.

•	 Estimates of changes in both magnitude and frequency are provided, with 
accompanying estimates of uncertainty, so users can understand the esti-
mated degree of change from the different perspectives.

•	 Estimates of changes in frequency are presented as a risk ratio: that is, in terms 
of the ratio of the probability of the event in a world with human-caused 
climate change to its probability in a world without human-caused climate 
change. Equivalently, one can compare the return periods of the event (i.e., 
how rarely an event occurs) in the world without climate change to that in the 
world with climate change.

•	 The impact of assumptions (e.g., of how estimates of changes in magnitude 
and frequency depend on SST anomalies or atmospheric circulation regimes) 
is discussed.

•	 Statements of confidence accompany results so users understand the strength 
of the evidence.

Bringing multiple scientifically appropriate approaches together, including 
multiple models and multiple studies, helps distinguish results that are robust 
from those that are much more sensitive to how the question is posed and the 
approach taken. Utilizing multiple methods to estimate human influences on a given 
event also partially addresses the challenge of characterizing the many sources of 
uncertainty in event attribution.

Examples of multiple components that can lead to more robust conclusions include:

•	 Estimates of event probabilities or effect magnitudes based on an appropriate 
modeling tool that has been shown to reasonably reproduce the event and its 
circumstances, such as the dynamic situation leading to the event.

•	 Reliable observations against which the model has been evaluated and that 
give an indication of whether the event in question has changed over time in 
a manner that is consistent with the model-based attribution.
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•	 Assessment of the extent to which the result is consistent with the physical 
understanding of climate change’s influence on the class of events in question.

•	 Clear communication of remaining uncertainties and assumptions made or 
conditions imposed on the analysis.

THE PATH FORWARD

Improving Extreme Event Attribution Capabilities

A focused effort to improve understanding of specific aspects of weather and 
climate extremes could improve the ability to perform extreme event attribution. 
The World Climate Research Programme (WCRP) has identified climate extremes as 
one of its grand challenges, suggesting major areas of scientific research, modeling, 
analysis, and observations for WCRP in the next decade. Because extreme event at-
tribution relies on all aspects of the understanding of extremes and their challenges, 
the committee endorses the recommendations from the white paper “WCRP Grand 
Challenge: Understanding and Predicting Weather and Climate Extremes” (Box 5.1; 
Zhang et al., 2014) as necessary to make advances in event attribution. Advances 
made in understanding the physical mechanisms and in improving the realism of 
extreme events in weather and climate models will benefit event attribution studies.

The committee recommends that research that specifically aims to improve event at-
tribution capabilities include increasing the understanding of

•	 the role of dynamics and thermodynamics in the development of extreme 
events;

BOX 5.1  
KEY RECOMMENDATIONS FROM THE WHITE PAPER “WCRP GRAND CHALLENGE: 
UNDERSTANDING AND PREDICTING WEATHER AND CLIMATE EXTREMES”

•	� substantial advances in modelling (including but not limited to model resolution) 
•	� advances in the understanding of the physical mechanisms leading to extremes
•	� increased effort to extend the historical observational record, including planned climate 

quality reanalyses over longer historical periods
•	� improvements in remote sensing products that extend long enough to document trends 

and sample extremes

SOURCE: Zhang et al., 2014.
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•	 the model characteristics that are required to reliably reproduce extreme 
events of different types and scales;

•	 changes in natural variability, including the interplay between a changing 
climate and natural variability, and improved characterization of the skill of 
models to represent low-frequency natural variability in regional climate 
phenomena and circulation; 

•	 the various sources of uncertainty that arise from the use of models in event 
attribution; 

•	 how different levels of conditioning (i.e., the process of limiting an attribution 
analysis to particular types of weather or climate situations) lead to apparently 
different results when studying the same event; 

•	 the statistical methods used for event attribution, objective criteria for event 
selection, and development of event attribution evaluation methods;

•	 the effects of non-climate causes—such as changes in the built environment 
(e.g., increasing area of urban impervious surfaces and heat island effects), 
land cover changes, natural resource management practices (e.g., fire sup-
pression), coastal and river management (e.g., dredging, seawalls), agricultural 
practices (e.g., tile drainage), and other human activities—in determining the 
impacts of an extreme event; 

•	 expected trends in future extreme events to help inform adaptation or mitiga-
tion strategies (e.g., calculating changes in return periods to show how the risk 
from extreme events may change in the future); and 

•	 the representation of a counterfactual world that reliably characterizes the 
probability, magnitude, and circumstances of events in the absence of human 
influence on climate. 

Research that is targeted specifically at extreme events, including event attribution, 
could rapidly improve capabilities and lead to more reliable results. In particular, 
there are opportunities to better coordinate existing research efforts to further 
accelerate the development of the science and to improve and quantify event 
attribution reliability. Examples of event attribution research coordination include 
EUropean CLimate and weather Events: Interpretation and Attribution (EUCLEIA), 
weather@home, World Weather Attribution (see Box 3.4 for additional information 
on these), and the International Detection and Attribution Group (IDAG), all of which 
also coordinate with one another. Furthermore, given that event attribution spans 
climate and weather, the field would benefit from interdisciplinary research at the 
interface between the climate, weather, and statistical sciences to improve analysis 
methods. Event attribution capabilities would be improved with better observational 
records, both near–real time and for historical context. Long, homogeneous observed 
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records are essential for placing events into a historical context and for evaluating to 
what extent climate models reliably simulate the effect of decadal climate variability 
on extremes.

Event attribution could be improved by the development of transparent commu-
nity standards for attributing classes of extreme events. Such standards could in-
clude an assessment of model quality in relation to the event/event class. Community 
agreement is needed on when a model represents a given event type well enough for 
attribution studies to be possible. At present, such standards do not clearly exist, and 
some model-based attribution studies do not even attempt to assess model adequacy. 
Such standards are critical for enhancing confidence in event attribution studies. 
Other examples of necessary community standards include use of multiple lines of 
evidence, development of a transparent link to a detected change that influences 
events in question, and clear communication of sensitivities of the result to framing of 
the event attribution question. 

Systematic criteria for selecting events to be analyzed would minimize selection 
bias and permit systematic evaluation of event attribution performance, which 
is important for enhancing confidence in attribution results. Studies of a repre-
sentative sample of extreme events would allow stakeholders to use such studies as 
a tool for understanding how individual events fit into the broader picture of climate 
change. Irrespective of the method or related choices, it would be useful to develop a 
set of objective criteria to guide event selection. A simple example of an objective ap-
proach might be to select events based on their rarity in the historical record using a 
fixed threshold, such as 24-hour precipitation events throughout a given domain that 
exceed the local 99th percentile of historical precipitation events. It should be noted, 
however, that even in this case, subtleties associated with historical quantile definition 
would need to be considered. The development of objective criteria for event selec-
tion would help both to reduce selection bias and to lead to methodological improve-
ments. A path forward to avoiding selection bias is to perform event attribution on a 
predefined set of events of several different types that could reasonably be expected 
to occur in the current climate. This could involve systematic definition of events or 
consideration of events based on the full historical record and not just current events. 
Christidis and colleagues (2014) describe one example of such an approach: namely, a 
method for precomputing estimates of how human influence has changed the odds 
of extremely warm regional seasonal mean temperatures based on a formal detection 
and attribution methodology (see Chapter 3). Another example is the approach of try-
ing to identify “grey swan tropical cyclones” (events not seen before, but theoretically 
possible) before they occur (Lin and Emanuel, 2015).



Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

134

AT T R I B U T I O N  O F  E X T R E M E  W E AT H E R  E V E N T S  I N  T H E  C O N T E X T  O F  C L I M AT E  C H A N G E

Event selection criteria also is a prerequisite for the development of a formalized 
approach to evaluating event attribution results and uncertainty estimates. Such 
evaluation is important for establishing confidence in event attribution statements. 
Development of such an approach could be modeled after existing approaches used 
to evaluate weather forecasts. One possible approach to evaluation would be to use a 
large sample of objectively selected events on a global scale to evaluate if, on average, 
model predictions or simulations of extreme events are on target. This could involve 
seasonal and decadal predictions of the number of events of a certain type based on 
simulations with external drivers only. Events that become more frequent with global 
warming, as well as events that become less frequent, such as cold spells, would be 
included in such an approach. 

Event Attribution in an Operational Context

As more researchers begin to attempt event attribution, their efforts can benefit from 
coordination to improve analysis methods and work toward exploring uncertainties 
across methods and framing. Event attribution can benefit from links to operational 
numerical weather prediction where available. As discussed in Chapter 3 (see also 
Box 3.4), some groups are moving toward the development of operational extreme 
event attribution systems to systematically evaluate the causes of extreme events 
based on predefined and tested methods. Objective approaches to compare and con-
trast the analyses among multiple different research groups based on agreed event 
selection criteria are yet to be developed. 

In the committee’s view, a successful operational event attribution system would 
have several key characteristics. First is the development and use of objective event 
selection criteria to reduce selection bias so stakeholders understand how individual 
events fit into the broader picture of climate change. Second is the provision of stake-
holder information about causal factors within days of an event, followed by updates 
as more data and analysis results become available. This is analogous to such other 
fields as public health and economics, where it is acceptable to revise initial forecasts 
and analyses as more data become available (e.g., Gross Domestic Product estimates, 
recession start and stop dates, etc.). A third characteristic of a successful event at-
tribution system is clear communication of key messages to stakeholders about the 
methods and framing choices as well as the associated uncertainties and probabilities. 
Finally, reliable assessments of performance of the event attribution system are 
needed. Such assessments could be developed through processes utilizing regular 
forecasts of event probability and intensity, observations, and skill scores similar to 
those used routinely in weather forecasting for evaluation. Rigorous approaches to 
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managing and implementing system improvements also are a critical element of 
these assessments.

Some future event attribution activities could benefit from being linked to an 
integrated weather-to-climate forecasting effort on a range of timescales. The 
development of such an activity could be modeled from concepts and practices 
within the Numerical Weather Prediction (NWP) and seasonal forecasting commu-
nity. NWP, which dates back to the 1950s, is focused on taking current observations of 
weather and processing these data with computer models to forecast the future state 
of weather. A project linking attribution and weather-to-climate forecasting likewise 
could build on recent efforts to increase national and international capacity to forecast 
the likelihood of extreme events at subseasonal-to-seasonal timescales1 (WMO, 2013). 

Ultimately the goal would be to provide predictive (probabilistic) forecasts of future 
extreme events at lead times of days to seasons, or longer, accounting for natural 
variability and anthropogenic influences. These forecasts would be verified and evalu-
ated utilizing observations, and their routine production would enable the develop-
ment and application of appropriate skill scores (using appropriate metrics to define 
and track the skill). The activity would involve rigorous approaches to managing and 
implementing system enhancements to continually improve models, physical under-
standing, and observations focused on extreme events. 

Correctly done, attribution of extreme weather events can provide an additional line 
of evidence that demonstrates the changing climate as well as its impacts and con-
sequences. An accurate scientific understanding of extreme weather event attribu-
tion can be an additional piece of evidence needed to inform decisions on climate 
change–related actions.

The committee also encourages continued research in event attribution outside of 
an operational context to ensure further innovation in the field. This would facilitate 
better understanding of a breadth of approaches, framings, modeling systems, and the 
performance of event attribution methods across past events, including in the longer 
historical context. 

1  Another National Academies of Sciences, Engineering, and Medicine committee is study-
ing this topic and will produce a report in the spring of 2016: http://dels.nas.edu/Study-In-Progress/
Developing-Research-Agenda/DELS-BASCPR-13-05. 
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Statement of Task

An ad hoc National Academies of Sciences, Engineering, and Medicine commit-
tee will examine the science of attribution of specific extreme weather events 
to human-caused climate change and natural variability. Specifically, the com-

mittee will:

•	 Provide an assessment of current scientific understanding and capabilities for 
attribution of specific extreme weather events to climate change.

•	 Provide guidance about the robustness of extreme event attribution science. 
The guidance should discriminate among different attribution approaches 
and different classes of extreme events, and should consider various character-
istics of the analysis (e.g., data coverage and quality, model performance, etc.).

•	 Identify research priorities for further development of the approaches.
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Workshop Agenda

Extreme Weather Events and Climate Change Attribution 
Workshop Agenda 

October 21-22, 2015 
Keck Center 

500 Fifth Street, NW, Washington, DC

WORKSHOP GOALS

Inform the committee as they write their report on the science of attribution of spe-
cific extreme weather events to human-caused climate change and natural variability. 

Specifically, the committee will: 

•	 Provide an assessment of current scientific understanding and capabilities for 
attribution of specific extreme weather events to climate change. 

•	 Provide guidance about the robustness of extreme event attribution science. 
The guidance should discriminate among different attribution approaches and 
different classes of extreme events, and it should consider various characteris-
tics of the analysis (e.g., data coverage and quality, model performance, etc.). 

•	 Identify research priorities for further development of the approaches.

WEDNESDAY, OCTOBER 21, 2015

OPEN SESSION–Keck 103

12:00 P.M.	 Lunch available to all participants

OPEN SESSION–Keck 100

1:00 P.M.	 Welcoming remarks and introduction

		  David Titley, Pennsylvania State University 
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1:30 P.M.	 Framing of event attribution questions and risk-based perspective for 
decision making 

		  Alexis Hannart, National Center for Scientific Research (France)

2:00 P.M.	 Background and overview on climate attribution of extreme events 

		  Friederike Otto, University of Oxford

2:30 P.M. 	 Break

3:00 P.M.	 Panel on Methods and Uncertainties 

		   Moderated by: Ted Shepherd, University of Reading 

	 Panelists will have 5 min for a brief presentation; remaining time to be used for 
discussion.

	 •	� Observed climate change, Geert Jan van Oldenborgh, Royal Netherlands 
Meteorological Institute (WebEx)

	 •	� Coupled ocean/atmosphere climate models, David Karoly, University of 
Melbourne (WebEx) 

	 •	� Large ensembles, Myles Allen, University of Oxford
	 •	� SSTs and sea ice, Judith Perlwitz, National Oceanic and Atmospheric 

Administration Earth System Research Laboratory 
	 •	� Circulation analogs, Pascal Yiou, Alternative Energies and Atomic Energy 

Commission (France) 
	 •	� Building confidence, Leonard Smith, University of Oxford

5:00 P.M.	 General Discussion

	 (includes questions/comments from Webinar participants)

		   Moderated by: John Walsh, University of Alaska, Fairbanks

5:45 P.M.	 Adjourn

6:15 P.M.	 Reception [Keck Atrium]

THURSDAY, OCTOBER 22, 2015

OPEN SESSION–Keck 100

9:30 A.M	 Panel on Attribution of Specific Weather Phenomena 

	 Moderated by: Phil Mote, Oregon State University 
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	 Panelists will have 5 min for a brief presentation; remaining time to be used for 
discussion. 

	 •	� Extreme heat and cold events, Ken Kunkel, National Oceanic and Atmo
spheric Administration National Centers for Environmental Information/
North Carolina State University

	 •	� Drought events, Marty Hoerling, National Oceanic and Atmospheric 
Administration Earth System Research Laboratory 

	 •	� Wildfires, Eric Kasischke, National Aeronautics and Space Administration/
University of Maryland

	 •	� Extreme rain events/flooding, Michael Wehner, Lawrence Berkeley 
National Laboratory

	 •	� Extreme snow/freezing rain events, Jay Lawrimore, National Oceanic 
and Atmospheric Administration National Centers for Environmental 
Information

	 •	� Hurricanes, Tom Knutson, National Oceanic and Atmospheric Adminis-
tration Geophysical Fluid Dynamics Laboratory

	 •	� Tornadoes, Jeff Trapp, University of Illinois
	 •	� Extreme sea level rise events, William Sweet, National Oceanic and 

Atmospheric Administration National Ocean Service 

10:45 A.M.	 Break

11:15 A.M.	 Panel discussion continues

12:15 P.M.	 Working lunch

1:15 P.M. 	 Break out group session to identify opportunities and challenges on the 
following topics:

	 1.	 Uncertainty quantification: 
		  a.	 assessing model quality
		  b.	 uncertainty quantification given a reasonable model
		  c.	 how can event attribution be evaluated
	 2.	� Framing of event attribution questions (Are we asking the right ques-

tions?) and how to describe and quantify a potential anthropogenic 
component to the meteorological causes of an extreme event, given 
that natural variability is generally playing a dominant role.

	 3.	� Timescale/operational event attribution (e.g., How does the timescale of 
an event impact our ability to attribute the event? On what timelines can 
event attribution studies be conducted? How does the timescale of an 
event affect the timeline on which attribution studies can be conducted?).
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3:15 P.M	 Break (Time for Rapporteurs to collect their thoughts)

3:45 P.M.	 Rapporteurs report back in plenary

4:15 P.M.	 Invited responses to the workshop discussions

		   Kathy Jacobs, University of Arizona

5:00 P.M	 Wrap up 

		  David Titley, Pennsylvania State University

5:30 P.M.	 Adjourn
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Committee Mini Biographies

Dr. David Titley (Chair) is a Professor of Practice in Meteorology and the Found-
ing Director of the Center for Solutions to Weather and Climate Risk at Pennsylvania 
State University and a Senior Adjunct Fellow at the Center for New American Security. 
Dr. Titley’s 32-year Naval career included duties as Oceanographer and Navigator of 
the Navy and Assistant Deputy Chief of Naval Operations for Information Dominance. 
Dr. Titley initiated and led the U.S. Navy’s Task Force on Climate Change, and he also 
served on the staff of the U.S. Commission on Ocean Policy. After retiring from the Navy 
with the rank of Rear Admiral, Dr. Titley served as the Deputy Undersecretary of Com-
merce for Operations, the Chief Operating Officer position at the National Oceanic and 
Atmospheric Administration. He has spoken on various domestic and international 
stages, including Congressional Hearings, the International Panel on Climate Change, 
and a TEDx talk, among others. Dr. Titley serves on the CNA Military Advisory Board, and 
he has served on National Academies of Sciences, Engineering, and Medicine commit-
tees as a member and co-chair. He is a fellow of the American Meteorological Society. 
He earned a Ph.D. in Meteorology from the Naval Postgraduate School.

Dr. Gabriele Hegerl is Professor of Climate System Science at the University of 
Edinburgh. Her interests are in determining the causes of observed climate changes, 
focusing on mean and extreme temperature and precipitation. She works on the 
interface between climate modeling and climate observations, with a focus on uncer-
tainty, on variability and change in climatic extremes, and on the use of palaeo-proxy 
data to study climate variability and change during the last millennium. Dr. Hegerl is 
a fellow of the Royal Society of Edinburgh and has a Wolfson fellowship by the Royal 
Society. She is one of the co-leads of the World Climate Research Programme’s Grand 
Challenge on climate extremes. Dr. Hergerl has been a lead author and coordinating 
lead author on the Intergovernmental Panel on Climate Change.

Ms. Katharine L. Jacobs is the Director of the Center for Climate Adaptation Science 
and Solutions (CCASS) and a Professor in the Department of Soil, Water and Environ-
mental Science at the University of Arizona. From 2010 to 2013, Ms. Jacobs served as 
an Assistant Director in the U.S. Office of Science and Technology Policy (OSTP) in the 
Executive Office of the President. Ms. Jacobs was the Director of the National Climate 
Assessment (NCA), leading a team of 300 authors and more than 1,000 contributors 
who wrote the Third NCA report. The report was published in May of 2014. She also 
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was the lead advisor on water science and policy and climate adaptation within 
OSTP. Prior to her work in the White House, Ms. Jacobs was the Executive Director of 
the Arizona Water Institute from 2006-2009, leading a consortium of the three state 
universities focused on water-related research, education, and technology transfer in 
support of water supply sustainability. She has more than 20 years of experience as a 
Water Manager for the Arizona’s Department of Water Resources, including 14 years as 
Director of the Tucson Active Management Area. Her research interests include water 
policy, connecting science and decision making, stakeholder engagement, use of cli-
mate information for water management applications, climate change adaptation, and 
drought planning. Ms. Jacobs earned her M.L.A. in Environmental Planning from the 
University of California, Berkeley. She has served on eight National Research Council 
(NRC) panels and was Chair of the NRC panel on Adapting to the Impacts of Climate 
Change and a member of the panel on America’s Climate Choices.

Dr. Philip W. Mote is a Professor in the College of Earth, Oceanic, and Atmospheric 
Sciences at Oregon State University (OSU); Director of the Oregon Climate Change 
Research Institute (OCCRI) for the Oregon University System; and Director of Oregon 
Climate Services, the official state climate office for Oregon. Dr. Mote’s current research 
interests include scenario development, regional climate change, regional climate 
modeling with a super-ensemble generated by volunteers’ personal computers, and 
adaptation to climate change. He is the co-leader of both the National Oceanic and 
Atmospheric Administration–funded Climate Impacts Research Consortium for the 
Northwest and the Northwest Climate Science Center for the U.S. Department of the 
Interior. Since 2005 he has been involved in the Intergovernmental Panel on Climate 
Change, which shared the 2007 Nobel Peace Prize. He is also a coordinating lead 
author and advisory council member for the U.S. National Climate Assessment and has 
served on numerous committees for the National Research Council. He earned a B.A. in 
Physics from Harvard University and a Ph.D. in Atmospheric Sciences from the Univer-
sity of Washington, and he arrived at OSU to establish OCCRI in 2009.

Dr. Christopher J. Paciorek is an Associate Research Statistician, as well as a lecturer 
and the statistical computing consultant in the Department of Statistics at the Univer-
sity of California, Berkeley. His statistical expertise is in the areas of Bayesian statistics 
and spatial statistics, with primary application to environmental and public health 
research. Dr. Paciorek’s work in recent years has focused on methodology and ap-
plied work in a variety of areas, in particular: quantifying trends in extreme weather, 
quantifying millennial-scale changes in vegetation using paleoecological data, and 
developing computational software for hierarchical modeling (the NIMBLE project). He 
has also worked on measurement error issues in air pollution epidemiology, Bayesian 
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methods for global health monitoring with a focus on combining disparate sources of 
information, and spatio-temporal modeling of air pollution. Before coming to Berkeley, 
he was an Assistant Professor in the Biostatistics Department at the Harvard School 
of Public Health. He finished his Ph.D. in Statistics at Carnegie Mellon University in 
2003 and also has an M.S. in Ecology from Duke University and a B.A. in Biology from 
Carleton College.

Dr. J. Marshall Shepherd, a leading international expert in weather and climate, was 
the 2013 President of the American Meteorological Society (AMS) and is Director of 
the University of Georgia’s (UGA’s) Atmospheric Sciences Program. Dr. Shepherd is 
the Georgia Athletic Association Distinguished Professor of Geography and Atmo-
spheric Sciences and hosts The Weather Channel’s Sunday talk show Weather Geeks. In 
2014, the Captain Planet Foundation honored Dr. Shepherd with its Protector of the 
Earth Award. (Recent recipients include Erin Brockovich and former Environmental 
Protection Agency Administrator Lisa Jackson.) He is also the 2015 Recipient of the 
Association of American Geographers Media Achievement award and the 2015 UGA 
Franklin College of Arts and Sciences Sandy Beaver Award for Excellence in Teaching. 
Prior to UGA, Dr. Shepherd spent 12 years as a Research Meteorologist at the National 
Aeronautics and Space Administration (NASA) Goddard Space Flight Center and was 
Deputy Project Scientist for the Global Precipitation Measurement mission. In 2004 he 
was honored at the White House with a prestigious PECASE (Presidential Early Career 
Awards for Scientists and Engineers) award. Dr. Shepherd is a Fellow of the American 
Meteorological Society and recipient of its Charles Anderson Award. Two national 
magazines, the AMS, and Florida State University, have also recognized Dr. Shepherd 
for his significant contributions. He is frequently sought as an expert on weather and 
climate by major media outlets like CBS’s Face the Nation, USA Today, Time, CNN, NOVA, 
and The Today Show. His TEDx Atlanta Talk on “Slaying Climate Zombies” is highly re-
garded and cited. Dr. Shepherd is also frequently asked to advise key leaders at NASA, 
National Science Foundation, National Oceanic and Atmospheric Administration, 
the White House, Congress, and various agencies. He is on the board of Mothers and 
Others for Clean Air, a partnership with the American Lung Association. He has more 
than 75 peer-reviewed scholarly publications and numerous editorials. Dr. Shepherd 
received his B.S., M.S., and Ph.D. in Physical Meteorology from Florida State University. 
He co-authored a children’s book on weather called Dr. Fred’s Weather Watch. 

Dr. Theodore G. Shepherd obtained a B.Sc. in Mathematics and Physics from the Uni-
versity of Toronto in 1979, and a Ph.D. in Meteorology from the Massachusetts Institute 
of Technology in 1984. After a postdoctoral fellowship at the Department of Applied 
Mathematics and Theoretical Physics at the University of Cambridge, he took up a fac-
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ulty position in the Department of Physics at the University of Toronto in 1988. In 2012 
he moved to the Department of Meteorology at the University of Reading to become 
the inaugural Grantham Professor of Climate Science. His research interests range from 
theoretical geophysical fluid dynamics to climate modeling and data analysis, with a 
focus on atmospheric circulation. He has held leadership roles in scientific assessments 
of both climate (Intergovernmental Panel on Climate Change) and stratospheric ozone 
(World Meteorological Organization/United Nations Environment Programme), as 
well as in the World Climate Research Programme, and he is a Fellow of the American 
Meteorological Society, the American Geophysical Union, and the Royal Society of 
Canada. From 2001-2005 he was Chief Editor of the Journal of the Atmospheric Sciences. 
In 2014 he was honored as a Thomson Reuters Highly Cited Researcher.

Dr. Adam Sobel is a Professor at Columbia University’s Lamont-Doherty Earth Obser
vatory and Fu Foundation School of Engineering and Applied Sciences. He is an atmo-
spheric scientist who specializes in the dynamics of climate and weather, particularly 
in the tropics, on timescales of days to decades. A major focus of his current research 
is extreme events, such as hurricanes, tornadoes, floods, and droughts, and the risks 
these pose to human society in the present and future climate. He is leading a new 
Columbia University Initiative on Extreme Weather and Climate. Dr. Sobel holds a B.S. 
in Physics and a B.A. in Music from Wesleyan University and a Ph.D. in Meteorology 
from the Massachusetts Institute of Technology. In the past few years, he has received 
the Meisinger Award from the American Meteorological Society, the Excellence in 
Mentoring Award from the Lamont-Doherty Earth Observatory of Columbia University, 
an AXA Award in Extreme Weather and Climate from the AXA Research Fund, and an 
Ascent Award from the Atmospheric Sciences Section of the American Geophysical 
Union. Dr. Sobel is author or co-author of more than 100 peer-reviewed scientific 
articles, and his book Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme 
Weather of the Past and Future, published in October 2014 by HarperCollins, received 
the 2014 Atmospheric Science Librarians International Choice Award in the popular 
category.

Dr. John Walsh received his B.A. in Mathematics from Dartmouth College in 1970 and 
his Ph.D. in Meteorology from the Massachusetts Institute of Technology in 1974. He 
spent a postdoctoral year at the National Center for Atmospheric Research. He was 
a faculty member at the University of Illinois for 30 years and, more recently, at the 
University of Alaska in Fairbanks. While at Illinois, he led a polar research group and co-
authored an undergraduate textbook, Severe and Hazardous Weather: An Introduction 
to High-Impact Meteorology. He also spent 1 year as the Chair in Arctic Marine Science 
at the Naval Postgraduate School in Monterey, California. At the University of Alaska 
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Fairbanks, Dr. Walsh is currently the Chief Scientist of the International Arctic Research 
Center. His recent research has addressed Arctic climate change; seasonal to decadal 
variability of sea ice; predictability of climate change in high latitudes; and changes 
in arctic weather in the context of climate change. In 2009 he received the Usibelli 
Distinguished Researcher Award from the University of Alaska. He is a Fellow of the 
American Meteorological Society.

Dr. Francis W. Zwiers, before becoming Director of the Pacific Climate Impacts Con-
sortium, served as a Research Scientist (1984-2006), Chief of the Canadian Centre for 
Climate Modelling and Analysis (1997-2006), and Director of the Climate Research 
Division (2006-2010), all at Environment Canada. He is an Adjunct Professor in the 
Department of Mathematics and Statistics of the University of Victoria and in the 
Department of Statistics and Actuarial Science of Simon Fraser University. His expertise 
is in the application of statistical methods to the analysis of observed and simulated 
climate variability and change. Dr. Zwiers is a Fellow of the Royal Society of Canada 
and of the American Meteorological Society, a recipient of the Patterson Medal 
(Meteorological Service of Canada), and a recipient of an Honorary Doctorate from 
Western University. He has served as an Intergovernmental Panel on Climate Change 
(IPCC) Coordinating Lead Author of the Fourth Assessment Report and as an elected 
member of the IPCC Bureau for the Fifth Assessment Report.
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