
229Hacking Web Intelligence. http://dx.doi.org/10.1016/B978-0-12-801867-5.00013-6
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Quick and Dirty Python 13
INFORMATION IN THIS CHAPTER

 • Introduction to programming

 • Python intro

 • Python components

 • Examples and Samples

 • Creating tools and transforms

INTRODUCTION
After covering many interesting topics related to utilizing different automated tools,
in this chapter we will be learning to create some. Sometimes there is a need to
perform some specific task for which we are not able to find any tools which suits
the requirements, this is when we have some basic programming knowledge so that
we can quickly create some code to perform the desired operation. This chapter will
touch upon the basics of Python programming language. We will understand why
and how to use Python, what are the basic entities and then we will move on to cre-
ate some simple but useful code snippets. It is advised to have some programming
knowledge before moving on with this chapter as we will be covering the basic essen-
tials related to the language and jump straight into the code. Though the examples
used would be simple yet having some programming experience would be helpful.

Anyone who has some interest in computer science is familiar with the concept of
programming. In simple terms it is the process of creating a program to solve a prob-
lem. To create this program we require to have a language using which we can write
instructions for computer to understand and perform the task. The simple objective
of a computer program is to automate a series of instructions so that they need not to
be provided one by one manually.

PROGRAMMING VERSUS SCRIPTING
The language we are going to be discussing in this chapter is Python, which is commonly
termed as a scripting language, so before moving further let’s understand what that
means. Usually the code written in a programming language is compiled to machine code
using a program called compiler to make it executable. For example, code written in C++
language is compiled to create an exe file which can be executed in a Windows platform.

CHAPTER 13 Quick and Dirty Python230

There is another program called as an interpreter which allows running a language code
without being compiled. So if the execution environment for a piece of code is an inter-
preter it is a script. Usually Python is executed in such environment and hence is com-
monly called a scripting language. This does not mean that a scripting language cannot
be compiled, it simply is not usual. All scripting languages are programming languages.

INTRODUCTION TO PYTHON
Python is a high-level programming language created by Guido Van Rossum, which
emphases on the readability of code. Python is very fast and allows solving problem
with minimum amount of code and hence is very popular among people who need
to create quick scripts on the go, such as pentesters. There are various versions of
Python but we will be focusing on the 2.7 version in this chapter. Though the latest
version as of now is 3.4, yet most of the Python tools and libraries available online
are based on the 2.7 version and the 3.x version is not backward compatible and
hence we will not be using it. There are some changes in 3.x version but once we get
comfortable with 2.7 it won’t require much effort to move to it, if required.

The main agenda behind this chapter is not to create a course on Python that
would require a separate book in itself. Here we will be covering the basics quickly
and then move on to creating small and useful scripts for general requirements. The
aim is to understand Python, write quick snippets, customize existing tools, and cre-
ate own tools as per requirements. This chapter strives to introduce the possibili-
ties of creating efficient programs in a limited period of time, provide the means to
achieve it, and then further extend it as required.

There are other alternatives to Python available, mainly Ruby and Perl. Perl is one
of the oldest scripting languages and Ruby is being widely used for web develop-
ment (Ruby on Rails) yet Python is one of the easiest and simplest language when
it comes to rapidly creating something with efficiency. Python is also being used for
web development (Django).

INSTALLATION
Installing Python in Windows is pretty straight forward, simply download the 2.7
version from https://www.python.org/downloads/ and go forward with the installer.
Linux and other similar environments mostly come preinstalled with Python.

Though, it is not mandatory yet highly recommended to install Setuptools and Pip
for easy installation and management of Python packages. Details related to Setuptools
and Pip can be found at https://pypi.python.org/pypi/setuptools and https://pypi.python.
org/pypi/pip respectively.

MODES
We can run Python basically in two ways, one is to directly interact with the interpreter,
where we provide the commands through direct interaction and see the output of it (if
any) and other one is through scripts, where we write the code into a file, save it as

https://www.python.org/downloads/
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip

 Introduction 231

filename.py and execute it using the interpreter. Though writing the script is a better
way of writing a code which could be used and modified later yet the interactive mode
is also very helpful. We can quickly check how a command works, what are its attri-
butes, we can quickly try something that we want to write and see the results, and we
can test and debug our code easily and also get help related to any command quickly. It
is also a good practice to start with the interpreter to learn about the different aspects of
the language and then utilize them to create the script by combining the blocks.

HELLO WORLD PROGRAM
So for the customary “Hello World” program, we can simply go ahead into the
Python interpreter by typing “Python” and write the code.

print “Hello World”

This prints “Hello World” into the interpreter and it can’t get simpler than this. If we
want this in a script form then we can write the same code in a text file and save it as
helloworld.py. Now to execute it we need to call this file through Python.

python helloworld.py

In Windows we can also call the script file simply from the command prompt to
run our script or by double clicking on the script file. In Linux environment we can
execute this script directly using the dot slash notation, but for that first we need to
make the file executable using the command “chmod.”

chmod 755 helloworld.py
./helloworld.py

Though it is not mandatory it is a good practice to specify Python environment
into the script file itself through shebang notation. For this we simply need to include
the following line at the starting of the script file.

#!/usr/bin/python

It simply specifies where is the interpreter required to execute this file. This is
only supported in Linux environment but including it into the code does not have
any change in Windows environment so it is better to include it so that the same code
can execute in both the environments. If multiple interpreters are installed in Linux
then we can simply change the environment path to the one suitable for our code, for
example, if both Python 3.0 and 2.7 are installed we can write #!/usr/bin/Python2.7
to use the 2.7 interpreter to execute our code.

FIGURE 13.1

Hello World example.

CHAPTER 13 Quick and Dirty Python232

IDENTIFIERS
In programming, identifiers are the names used to identify any variable, function,
class, and other similar objects used in a program. In Python, they can start with
an alphabet or an underscore followed by alphabets, digits, and underscore. They
can contain a single character also. So we can create identifiers accordingly, except
certain words which are reserved for special purposes, for example, “for,” “if,” “try,”
etc. Python is also case sensitive which means “test” and “Test” are different.

DATA TYPES
Python has different variable types, but is decided by the value passed to it and does
not require to be stated explicitly. Actually the data type is not associated with the
variable name but the value object and the variable simply references to it. So a vari-
able can be assigned to another data type after it already refers to a different data
type.

FIGURE 13.2

Value assignment.

Commonly used data types are:

 • Numbers
 • String
 • Lists
 • Tuples
 • Dictionaries

To define a number simply assign a variable with a number value, for example,

>>>samplenum=10

Just to know there are various types of numerical such as float, long, etc.
To define a string we can use the help of quotes (both single and double), for

example,

>>>samplestr=”This is a string”
>>>samplestr2=’This is another string’

We can also utilize both the types of quotes in a nested form. To create multiline
strings we can use triple quotes.

 Introduction 233

FIGURE 13.3

Triple quotes.

We can also utilize the % operator for strings to include different data types. The values
are passed in a tuple (discussed later) and %d is for integers, %s is for strings, %f for float.

Example code

>>> sample_str=”There are total %d number of floors in the %s
building”%(4,’xyz’)

>>>sample_str

There are total 4 number of floors in the xyz building

Python provides an interesting data type called list and according to its name it is
a list of variables of different types. To create a list we can utilize square brackets and
separate the variables with commas.

>>>samplelist=[123, “str”, ‘xyz’, 321, 21.22]
>>>samplelist
[123, “str”, ‘xyz’, 321, 21.22]
>>>samplelist[1]
‘str’

Tuples are similar to lists but are immutable and are created using parentheses.

FIGURE 13.4

List and tuples.

Dictionary is another interesting data type which consists of items with values
associated with them. In these key-value pairs the key needs to be unique whereas
the value can change.

CHAPTER 13 Quick and Dirty Python234

>>>sampledict={‘test1’:’123’,’test2’:’234’,’test3’:’345’}
>>>sampledict[‘test1’]
‘123’
>>>sampledict[‘test4’]=’456’
>>>sampledict[‘test3’]=’333’
>>>sampledict
{‘test1’: ’123’, ’test2’: ’234’, ’test3’: ’333’, ’test4’: ’456’}

There are also various functions provided by different object which can be of great
help at times, instead of writing whole new set of code to perform it. To find out these
we can get help from Python functions “dir” and “help”.

>>>dir(sampledict)
>>>help(sampledict)

FIGURE 13.5

Using Python help.

 Introduction 235

We have demonstrated some basics of data types but there is much more opera-
tions which can be performed on these data types. Some basic examples are
shown below:

>>>a=12
>>>b=2
>>>a*b
24
>>>a=”test”
>>>b=”next”
>>>a+b
‘test next’
>>>lt1=[‘1’,’2’,’3’]
>>>lt2=[‘4’,’5’,’6’]
>>>lt1+lt2
[‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’]

We can perform various operations on these elements. Some examples are shown
below.

>>>a=1
>>>b=2
>>>a+b
3
>>>a=”test”
>>>b=”string”
>>>a+b
‘teststring’
>>>a.upper()
‘TEST’
>>>c=”This is a string”
>>>c.find(‘ring’)
12
>>>c.find(‘xyz’)
-1
>>>sample_list=[‘qw’,’er’,’ty’,123]
>>>sample_list.append(456)
>>>sample_list
[‘qw’, ’er’, ’ty’, 123, 456]

INDENTATION
Before moving further let’s clear up on one import concept of Python. Python sup-
ports code readability. Unlike other languages such as C++ it does not use brackets
to specify the code blocks, whereas uses indentation. So when creating a block of
code we need to provide whitespaces to indicate the structure. One important point
is that we can have variable number of spaces for indentation but within a block all
the statements should have the same amount. Some people use spaces for indentation
and some use the tab feature, it is better to stick with one and not mix up both in a

CHAPTER 13 Quick and Dirty Python236

single code. The examples shown in the following chapter will work on this concept
and we will be using spaces.

Basic terms (class, function, conditional statements, loops, etc.)
Now let’s move forward with conditional statements.

The most basic conditional statement is “if.” The logic is simple, if the provided

condition is it will execute the statement, else it will move on. Basic structure of “if”
and associated conditions is shown below.

if condition:
 then_this_statement
elif condition:
 then_this_statement
else:
 this_condition

Example code

#!/usr/bin/python
a=10
b=12
c=15
if (a==b):
 print “a=b”
elif (b==c):
 print “b=c”
elif (c==a):
 print “c=a”
else:
 print “none”

Write this in a notepad file and save it as if_con.py. This code will result in the
response “none,” when executed in Python. The “elif” and “else” conditions are not
mandatory when using “if” statement and we can have multiple “elif” statements.
Similarly we can also have nested “if” conditions where there will be if statements
within another if statement, just proper indentation needs to be kept in mind.

if condition:
 then_this_statement
 if nested_condition:
 then_this_nested_statement
 else nested-else_condition:
 then_this_nested-else_statement

The “while” loop is next in line. Here we will provide the condition and the loop will
run until that condition is true . Structure of “while” is shown below.

while this_condition_statement_is-true:
 run_this_statement

 Introduction 237

Example code

#!/usr/bin/python
a=10
c=15
while (a<c):
 print a
 a=a+1

Output

10
11
12
13
14

We can also utilize “break” and “continue” statement to control the flow of the loop.
The “break” statement is used to break out of the current loop and the “continue”
statement is used to pass the control back to the starting of the loop. There is one
more interesting statement called “pass” which does nothing, in particular is used
just as a placeholder.

Another useful conditional statement is “for” loop. Using it we can iterate through
the items present within an object such as a tuple or list.

Example code

#!/usr/bin/python
sample_tup=(‘23’,’test’,12,’w2’)
for items in sample_tup:
print items

Output

123
test
12
w2

We are simply passing the individual values in the tuple sample_tup and putting them
inside the variable items one by one and printing them.

Example code

#!/usr/bin/python
str=“String”
for items in str:
 print items

CHAPTER 13 Quick and Dirty Python238

Output

S
t
r
i
n
g

We can also utilize the attributes of the objects (find through “dir” and “help”) for the
iteration purpose. Similar to “while” we can also use “break” and “continue” state-
ments in “for” loop as well.

Now we are done with the conditional statements and move forward with other
structures.

MODULES
Sometimes there is a need to reuse the code or manage it depending upon our
requirement, this is where modules come into picture. Say there are multiple com-
ponents of an object and these components are also required in some other object, so
instead of creating these components again and again we can simply create and store
them separately and call them into the object as and when required. For example,
creating a program for an entity car and another for truck, both will have common
components such as brakes, accelerator, etc., so we will code these components
once and simply call them into the program according to the requirement, instead
of creating them again and again. This is very helpful in organizing and managing
the code.

Modules can define variables, functions, and classes, we will discuss about these
shortly. Once we create these and save them in separate files, we can import them
into our code and use their functionalities.

Example code

#!/usr/bin/python
y=“Module String”

Save this as x.py. Create another file called mod.py and save the following code

into it:

#!/usr/bin/python
import x
print x.y

output

Module String

So we simply created a module with just a variable, called it into another code
and used its variable. Utilizing modules we can create complex programs without

 Introduction 239

cluttering all the code into a single file. We can also import a module using the call
“from module_name import desired_portion”.

Let’s learn about functions and classes.

FUNCTIONS
Functions help to group a set of code as a single functionality, which is useful in code
with large number of lines of code. Function start with the keyword “def” followed
by the function name and then the parenthesis inside which the arguments are placed
and then the colon. Functions also contain a return statement to terminate it and pass
back values (can be null). To call a function we can use its name along with the val-
ues to be passed (inside the parenthesis).

Example code

#!/usr/bin/python
def simplefunc(atr_arg):
 print “Print me first”
 print atr_arg
 return
str=“Sample String”
simplefunc(str)

Output

Print me first
Sample String

CLASSES
Using classes we can group different operations together. To create a class we simply
need to start with the keyword class followed by a name for the class and then a colon.

Example code
#!/usr/bin/python
class sample_class:
 def __init__(self, classarg):
 self.cla=classarg
 def firstfunc(self):
 print “First Function”
 return self.cla+“ Return”
 def secfunc(self):
 print “Second Function”
 return self.cla+“ Return”
classobj=sample_class(“Argument”)
print classobj.firstfunc()
print classobj.secfunc()

CHAPTER 13 Quick and Dirty Python240

Output

First Function
Argument Return
Second Function
Argument Return

Here the function __init__ is the constructor of the class and is the first function
which runs in the class. The variable “classobj” is the object for the class “sample_
class” and using it we can communicate with the objects inside the class. As dis-
cussed earlier we can also create this as a module and call it inside another program.

As discussed earlier, let’s take another example of importing modules.

Example code

#!/usr/bin/python
class sample_class:
 def __init__(self, classarg):
 self.cla=classarg
 def firstfunc(self):
 print “First Function”
 return self.cla+“ Return”
 def secfunc(self):
 print “Second Function”
 return self.cla+“ Return”
classobj=sample_class(“Argument”)

This file is being saved as mod.py and another file calls this as a module with the code:

#!/usr/bin/python
from mod import *
print classobj.firstfunc()

Output

First Function
Argument

In Python we can also create directory of modules for better organization through
packages. They are hierarchical structures and can contain modules and subpackages.

WORKING WITH FILES
Sometimes there is a need to save or retrieve data from files for this we will learn how
to deal with files in Python.

First of all, to open a file we need to create an object for it using the function open
and provide the mode operation.

>>>sample_file=open(‘text.txt’,“w”)

Here the name sample_file is the object and using open function we are opening the
file text.txt. If the file with this name does not already exists it will be created and if
already exists it will be overwritten. The last portion inside the parenthesis describes

 Introduction 241

the mode, here it is w which means write mode. Some other commonly used modes
are “r” for reading, “a” for append, “r+” for both read and write without overwriting,
and “w+” for read and write with overwriting.

Now we have created an object so let’s go ahead and write some data to our file.

>>>sample_file(“test data”)

Once we are done with writing data to the file we can simply close it.

>>>sample_file.close()

Now to read a file we can do the following:

>>>sample_file=open(‘text.txt’,“r”)
>>>sample_file.read()
‘test data’
>>>sample_file.close()

Similarly we can also append data to files using “a” mode and write() function.
Python has various inbuilt as well as third party modules and packages which

are very useful. In case we encounter a specific problem that we need to solve using
Python code it is better to look for an existing module first. This saves a lot of time
figuring out the steps and writing huge amount of code through simply importing the
modules and utilizing the existing functions. Let’s check some of these.

Sys
As stated in its help file this module provides access to some objects used and main-
tained by interpreter and functions that strongly interact with it.

To use it we import it into our program.

import sys

Some of the useful features provided by it are argv, stdin, stdout, version, exit(), etc.

Re
Many times we need to perform pattern matching to extract relevant data from a
large amount of it. This is when regular expressions are helpful. Python provides “re”
module to perform such operations.

import re

Os
The “os” module in Python allows to perform operating system-dependent
functionalities.

import os

Some sample usages are to create directories using mkdir function, rename a file
using rename function, kill a process using kill function and display list of entries in
a directory using listdir function.

CHAPTER 13 Quick and Dirty Python242

Urllib2
This module allows to perform URL-related operations such as open a web page. It
is very helpful when working with web applications.

import urllib2

There are many other useful modules such as Scapy (network), Scrapy (web scrap-
ing), nose (testing), mechanize (stateful web browsing), and others which provide
huge amount of functionalities in their domain. Some modules are inbuilt and some
need to be installed separately. There is still much more to explore in this topic but
here we will be stopping with these points and move on to the next topic.

USER INPUT
Certain problems require to take user input. Here are two methods to do so:

Using Sys module we can take user input from command line argument.

Example code

#!/usr/bin/python
import sys
a=sys.argv[1]
print a
print a*4
a=int(a)
print a
print a*4

Save this as usrinp.py and pass the command line argument.
C:\Python27>usrinp.py 2

Output

2
2222
2
8

argv is a list that takes command line arguments where the index 0 is reserved for
filename. We can also pass multiple values and iterate by changing the index value
of argv. Here we have also demonstrated a simple type conversion (string to integer).

Another method is to get input at run time, this can be done using raw_input.

Example code

#!/usr/bin/python
import sys
a=raw_input(“Enter something: ”)
print a*4

 Introduction 243

When executing this code, it will prompt the message “Enter something”, once we
input the value it will generate the response accordingly. For an input value “a” it will
generate the output “aaaa”.

COMMON MISTAKES
Some common issues faced during the execution of Python code are as follows.

Indentation
As shown in examples above, Python uses indentations for grouping the code. Some
people use spaces for this and some use tabs. When running the code written by some
person or modifying it we sometimes face the indentation error. To resolve this error,
check the code for proper indentation and correct the instances; also make sure to not
mess up by using tabs as well as spaces in the same code as it creates confusion for
the person looking at the code.

Libraries
Sometimes people have a completely correct code, yet it fails to execute with a library
error. The reason is missing of a library that is being called in the code. Though it
is a novice mistake, sometimes experienced people also don’t read the exact error
and start looking for errors in the code. The simple solution is to install the required
library.

Interpreter version
Sometimes the code is written for a specific version of the language and when being
executed in a different environment, it breaks. To correct this, install the required ver-
sion and specify it in the code as shown earlier in this chapter or execute the code using
the specific interpreter. Sometimes there are multiple codes which require different ver-
sions; to solve this problem we can use virtualenv, which allows us to create an isolated
virtual environment where we can include all the dependencies to run our code.

Permission
Sometimes the file permissions are not set properly to execute the code so make the
changes accordingly using chmod.

Quotes
When copying code from some resources such as documents and websites there is a
conversion between single quote (‘) and grave accent (`) which causes errors. Iden-
tify such conversions and make the changes to the code accordingly.

So we have covered basics about the language let’s see some examples which can
help us to understand the concepts and understand their practical usage and also get
introduced to some topics not discussed above.

Similar to shodan, discussed in a previous chapter there is another service
called zoomeye. In this example we will be creating a script using which will query

CHAPTER 13 Quick and Dirty Python244

zoomeye and extract the IP address from the result page. We have to pass the query
term from command line.

For this we will first create the URL for this by combining the base URL and the
search term passed through command line. Then we will send the request to this URL
using the function urlopen from the module urllib2. Further we will be parsing the
response page and extract the IP addresses from it using BeautifulSoup.

#!/usr/bin/python
import sys
import urllib2
from bs4 import BeautifulSoup
url=“http://www.zoomeye.org/search?q=”
term=sys.argv[1]
comurl=url+term
response=urllib2.urlopen(comurl)
soup = BeautifulSoup(response)
for item in soup.findAll(“a”,{‘class’:’ip’}):
 print item.string

FIGURE 13.6

Zoomeye script result.

http://www.zoomeye.org/search?q=

 Introduction 245

For our next example we will create an extension for Burp Suite. Burp Suite is an
application proxy which is used for web application security assessment. It allows to
create extensions through which we can extend its functionalities. For our extension
we will simply extract the host name of the target.

#! /usr/bin/python

A sample burp extension in python (needs jython) which extracts
hostname from the request (Target Tab).
from burp import IBurpExtender
from burp import IMenuItemHandler
import re
import urllib2
class BurpExtender(IBurpExtender):
 def registerExtenderCallbacks(self, callbacks):
 self.mCallBacks = callbacks
 self.mCallBacks.registerMenuItem(“Sample Extension”,
hostnamefunc())

class hostnamefunc(IMenuItemHandler):
 def menuItemClicked(self, menuItemCaption, messageInfo):
 print “--- Hostname Extract ---”

 if messageInfo:

 request1=HttpRequest(messageInfo[0].getRequest())
 req=request1.request
 host=req[1]
 print host
 print “DONE”
class HttpRequest:
 def __init__(self, request):
 self.request=request.tostring().splitlines()

To make this extension run, first we need to install Jython and configure it under the
options tab within extender. Once this is done we can add our extension under the
Extensions tab within extender. To use our extension we simply need to right click on
a target domain under the target tab and click on the “Sample Extension” on the right
click menu, the result will be shown in the Extensions in extender tab. The example
is simply to demonstrate an extension using Python we can further enhance it by
performing other operations on the host name.

MALTEGO TRANSFORMS
In a previous chapter we discussed about Maltego, a simple and effective open source
intelligence (OSINT) tool. We learned how to use it, what all features it provided,
what are its elements, etc. Let’s take this a step further and utilizing the knowledge of
Python we have just acquired to extend this framework. As mentioned in a previous
chapter, the power of Maltego lies in its transforms. For quick recall a transform is
basically a piece of code which takes an entity (or a group of entities) as an input and

CHAPTER 13 Quick and Dirty Python246

extracts data in the form of entity (or entities) based upon the relationship. Maltego
has a lot of inbuilt transforms and keeps on updating the framework with new ones,
but it also allows to create new ones and use them, this can be very helpful when we
need something custom according to our needs.

Before we move any further we need the “MaltegoTransform” Python library by
Andrew MacPherson, which is very helpful in local transform development. It can
be downloaded from the page https://www.paterva.com/web6/documentation/develo
per-local.php. Some basic examples of local transforms created using the library are
also present at the bottom of the page. Once we have the library in our directory we
are ready to go and create our own first transforms.

To create any program first we need to have a problem statement. Here we need
to create a transform so let’s first identify something that would be helpful during
our OSINT exercise. There is a service called as HaveIBeenPwned (https://haveibee
npwned.com) created by Troy Hunt which allows users to check if their account has
been compromised in a breach. It also provides an application programming inter-
face (API) using which we can perform the same function. We will be using the v1
of the API (https://haveibeenpwned.com/API/v1) and provide an e-mail address to
check if our supplied e-mail has any account associated.

To utilize the API we simply need to send a GET request to the service in the
form shown below and it will provide a JSON response to show the website names.

https://haveibeenpwned.com/api/breachedaccount/{account}
Let’s first specify the path of the interpreter

#!/usr/bin/python

Now we need to import the library MaltegoTransform

from MaltegoTransform import *

Once we have the main library we need to import some other libraries that will
be required. Library “sys” is to take user input and urllib2 to make the GET request.

import sys
import urllib2

Once we have imported all the required libraries, we need to assign the function
MaltegoTransform() to a variable and pass the user input (e-mail address) from
Maltego interface to it.

mt = MaltegoTransform()
mt.parseArguments(sys.argv)

Now we can pass the e-mail value to a variable so that we can use it to create the
URL required to send the GET request.

email=mt.getValue()

Let’s create a variable and save the base URL in it.

hibp=“https://haveibeenpwned.com/api/breachedaccount/”

https://www.paterva.com/web6/documentation/developer-local.php
https://www.paterva.com/web6/documentation/developer-local.php
https://haveibeenpwned.com
https://haveibeenpwned.com
https://haveibeenpwned.com/API/v1
http://https://haveibeenpwned.com/api/breachedaccount/
http://https://haveibeenpwned.com/api/breachedaccount/

 Introduction 247

As we have both the parts of the complete URL, now we can simply combine
them to create the complete URL.

getrequrl=hibp+email

Let’s send the GET request using the function urlopen in the library urllib2 and store
the response in a variable, but while handling the exception. Now we need to run a
for loop to go through the values being stored in the variable (response) and add these
values to the variable for the transform.

try:
 response = urllib2.urlopen(getrequrl)
 for rep in response:
 mt.addEntity(“maltego.Phrase”,“Pwned at ” + rep)
except:
 print “”

In this last step we need to return the output of the variable.

mt.returnoutput()

Now simply save this as emailhibp.py.

Complete code

#!/usr/bin/python
from MaltegoTransform import *
import sys
import urllib2
mt = MaltegoTransform()
mt.parseArguments(sys.argv)
email=mt.getValue()
hibp=“https://haveibeenpwned.com/api/breachedaccount/”
getrequrl=hibp+email
try:
 response = urllib2.urlopen(getrequrl)
 for rep in response:
 mt.addEntity(“maltego.Phrase”,“Pwned at ” + rep)
except:
 print “”
mt.returnoutput()

Now to check if our code is running properly we simply need to execute this program
in the terminal and pass an e-mail address as a command line argument.

Example

./emailhibp.py foo@bar.com

or

python ./emailhibp.py foo@bar.com

http://https://haveibeenpwned.com/api/breachedaccount/

CHAPTER 13 Quick and Dirty Python248

FIGURE 13.7

Transform output.

We can see that the response is a XML styled output and contains the string
“Pwned at [“Adobe”,“Gawker”,“Stratfor”]”. This means our code is working prop-
erly and we can use this as a transform. Maltego takes this XML result and parses it
to create an output. Now our next step is to configure this as a transform in Maltego.

Under the manage tab go to Local Transform button to start the Local Transform
Setup Wizard. This wizard will help us to configure our transform and include it into
our Maltego instance.

In the Display name field provide the name for the transform and press tab, it will
generate a Transform ID automatically. Now write a small description for the trans-
form in the Description field and the name of the Author in the Author field. Next we
have to select what would be the entity type that this transform takes as input, in this
case it would be Email Address. Once the input entity type is selected we can choose
the transform set under which our transform would appear which can also be none.

FIGURE 13.8

Transform setup wizard.

 Introduction 249

Now click on next and move to the second phase of the wizard. Here under the
command field we need to provide the path to the programming environment we are
going to use to run the transform code. In our case it would be

/usr/bin/python (for Linux)

C:\Python27/python.exe (for Windows)

Once the environment is set we can move to the parameters field, here we will
provide the path to our transform script. For example,

/root/Desktop/transforms/emailhibp.py (for Linux)

C:\Python27\transforms\emailhibp.py (for Windows)

One point to keep in mind here is that if we select the transform file using the
browse button provided in front of the “Parameters” field, then it will simply take
the file name in the field, but we need absolute path of the transform to execute it so
provide the path accordingly.

FIGURE 13.9

Transform setup wizard.

After all the information is filled into the place we simply need to finish the wiz-
ard and our transform is ready to run. To verify this, simply take an e-mail address
entity and select the transform from the right click menu.

CHAPTER 13 Quick and Dirty Python250

FIGURE 13.10

Select transform.

FIGURE 13.11

Transform execution.

Now we have created our first transform and also learned how to configure it in
Maltego. Let’s create another simple transform. For this example we will be using
the website http://www.my-ip-neighbors.com/. It allows to perform a reverse IP
domain lookup, simply said the domains sharing the same IP address as the one of
the provided domain. As in the previous transform we provided an e-mail address as
the input here we require a domain name, but this website provides no API service
and hence we will have send the raw GET request and extract the domains out of the
web page using regular expressions through the library “re”.

http://www.my-ip-neighbors.com/

 Introduction 251

#!/usr/bin/python
from MaltegoTransform import *
import sys
import urllib2
import re
mt = MaltegoTransform()
mt.parseArguments(sys.argv)
url=mt.getValue()
mt = MaltegoTransform()
opencnam=“http://www.my-ip-neighbors.com/?domain=”
getrequrl=opencnam+url
header={‘User-Agent’:’Mozilla’}
req=urllib2.Request(getrequrl,None,header)
response=urllib2.urlopen(req)
domains=re.findall(“((?:[0-9]*[a-z][a-z\\.\\d\\-]+)\\.(?:
[0-9]*[a-z][a-z\\-]+))(?![\\w\\.])”,response.read())
for domain in domains:
 mt.addEntity(“maltego.Domain”, domain)
mt.returnoutput()

*http://txt2re.com/ can be used to create regular expressions.

Similarly we can create lot of transforms which utilize online services, local tools
(e.g., Nmap scan), and much more using Python. The examples shown above and
some more can be found at https://github.com/SudhanshuC/Maltego-Transforms.
Some other interesting transforms can be found at https://github.com/cmlh, else they
are just a quick Github search away (https://github.com/search?utf8=%E2%9C%93
&q=maltego+transform).

There is also a Python-based framework available, which allows creating Maltego
tranforms easily called as Canari (http://www.canariproject.com/).

There are various topics which we have not covered but the scope is limited and
topic is very vast. Some of these are exception handling, multiprocessing, and mul-
tithreading. Below there are some resources which can be helpful in this quest of
learning Python.

RESOURCE
https://github.com/dloss/python-pentest-tools

A great resource to learn more about Python and its usage is the Python docs
itself https://docs.python.org/2/. Another great list of Python-based tools with focus
on pentesting is present at https://github.com/dloss/python-pentest-tools. It would be
great to create something interesting and useful by modifying, combining, and add-
ing to the mentioned resources. The list is divided into different sections based on the
functionality provided by the tool mentioned.

So we have covered some basics of Python language and also learned how to
extend Maltego framework through it. Through this chapter we have made an attempt
to learn about creating own custom tools and modify existing ones in a quick fashion.

http://www.my-ip-neighbors.com/?domain=
http://txt2re.com/
https://github.com/SudhanshuC/Maltego-Transforms
https://github.com/cmlh
https://github.com/search?utf8=%E2%9C%93%26q=maltego+transform
https://github.com/search?utf8=%E2%9C%93%26q=maltego+transform
http://www.canariproject.com/
https://github.com/dloss/python-pentest-tools
https://docs.python.org/2/
https://github.com/dloss/python-pentest-tools

CHAPTER 13 Quick and Dirty Python252

This chapter is just an introduction of how we can simply create tools with minimum
amount of coding. There is certainly room for improvement in the snippets we have
shown in functional as well as structural terms, but our aim is to perform the task as
quickly as possible.

Though we have tried to cover as much ground as possible yet there is so much
more to learn when it comes to Python scripting. Python comes with a large set of
useful resources and is very powerful; and by using it one can create power tool-
set, recon-ng (https://bitbucket.org/LaNMaSteR53/recon-ng) is great example of it.
We have discussed about this Reconnaissance framework in a previous chapter. One
great way to take this learning further would be to practice more and create such tools
which could be helpful for the community and contribute to the existing ones such
as recon-ng.

Slowly we are moving toward the end of this journey of learning. We have been
through different aspects of intelligence gathering in different manners. Moving on
we will be learning about some examples and scenarios related to our endeavor,
where we can utilize the knowledge we have gained in a combined form.

https://bitbucket.org/LaNMaSteR53/recon-ng

	13 - Quick and Dirty Python
	Introduction
	Programming versus scripting
	Introduction to Python
	Installation
	Modes
	Hello World program
	Identifiers
	Data types
	Example code

	Indentation
	Example code
	Example code
	Output
	Example code
	Output
	Example code
	Output

	Modules
	Example code
	output

	Functions
	Example code
	Output

	Classes
	Example code
	Output
	Example code
	Output

	Working with files
	Sys
	Re
	Os
	Urllib2

	User input
	Example code
	Output
	Example code

	Common mistakes
	Indentation
	Libraries
	Interpreter version
	Permission
	Quotes

	Maltego transforms
	Complete code
	Example

	Resource

