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INTRODUCTION

The expected increase over the next several 
decades in the proportion of adults over the age 
of 65 may lead to a concomitant increase in the 
proportion of age-related diseases and disor-
ders, including age-related cognitive decline, 

Alzheimer’s disease (AD), and other types of 
dementia (Association, 2010). Age-related cog-
nitive decline is relatively ubiquitous and may 
precede frank cognitive impairment and demen-
tia later in life. In fact, brain pathology and brain 
atrophy are thought to precede the onset of age-
related cognitive decline by several decades, 
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indicating a growing need to identify factors 
earlier in life that either precipitate the onset 
of cognitive decline or protect against decline 
(Jack & Holtzman, 2013). Lending support 
to this idea, individual variability in both the 
extent and rate of decline in episodic memory, 
processing speed, and executive function sug-
gests the presence of factors that influence the 
trajectory of cognitive losses (Salthouse, 2010). 
These results suggest some promising hypoth-
eses that age-related cognitive decline may not 
be inevitable and that if the factors contribut-
ing to individual variation in cognitive decline 
could be identified we may be able to more 
effectively test interventions to prevent, delay, 
or even reverse accumulated losses (Erickson, 
Gildengers, & Butters, 2013).

Over the past several decades there has been 
an increase in the number of non-pharmaceu-
tical products marketed as tools to potentially 
mitigate cognitive losses and dementia in late 
life. Some of these products, such as nutraceu-
ticals and cognitive training video games, have 
become a major source of revenue for some 
organizations but are currently based on rather 
equivocal empirical support. Health behaviors, 
such as regular participation in physical activ-
ity, have also garnered attention as promis-
ing methods of reducing the risk for cognitive 
impairment and will be discussed in depth in 
this chapter.

One basic premise of this literature is that the 
brain, including its molecular, cellular, and struc-
tural architecture, retains the capacity to change 
in a favorable way in late adulthood. This 
premise is not as self-evident as is sometimes 
assumed. For example, an argument has long 
been made, with plentiful support from animal 
research, that the brain loses some of its capac-
ity for plasticity with increasing age (Kolb & 
Teskey, 2012). Although animal research has not 
argued for a complete absence of brain plasticity 
in late life, a diminished capacity for plasticity 
may suggest that physical activity or cognitive 
training interventions could have limited effects 

in altering cognitive and brain outcomes in late 
adulthood. As will be seen in this chapter, it 
appears that the brain retains a natural capacity 
for plasticity in late adulthood and that physi-
cal activity has the capacity to take advantage of 
this natural characteristic of the brain.

Despite the many unanswered questions in 
this field, and the need for much more research 
to be conducted, we will conclude that there is 
considerable promise for non-pharmaceutical 
approaches that focus on health behaviors, 
and in particular physical activity, to posi-
tively influence neurocognitive function in late 
adulthood. We have organized this chapter 
by first defining important terminology and 
then describing epidemiological and observa-
tional results. We then discuss recent interven-
tions and brain imaging studies that attempt 
to determine the neural correlates of cognitive 
improvements resulting from physical activity 
and finish by discussing the potential molecu-
lar mechanisms, other health behaviors, and 
take-home messages of this line of research.

DEFINITIONS

Before proceeding to a discussion of research 
findings it is important to first define the ter-
minology that will be used throughout this 
chapter. First, the term “physical activity” is a 
general term often referring to any activity that 
may be aerobic or non-aerobic in nature and 
independent of the type, dose, or frequency 
of the activity. This may include moderate-to-
vigorous forms of structured aerobic activities 
such as brisk walking, tennis, or swimming and 
hobbies such as gardening, carpentry, or danc-
ing (Caspersen, Powell, & Christenson, 1985). 
Physical activity has historically been measured 
in cross-sectional and observational studies of 
cognitive aging by self-report questionnaires 
that ask participants to report their levels of 
physical activity by questions such as “On 
average, how many city blocks do you walk 
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per day” (Erickson et al., 2010). The strength of 
these approaches is that self-report question-
naires can be easily administered in studies 
with large sample sizes and do not take much 
time to score, but their weaknesses are that 
they may be prone to both social desirability 
biases and may not reliably capture non-struc-
tured activity throughout the day (Erickson, 
Weinstein, & Lopez, 2012). More recent studies 
have begun to successfully employ objective 
measures of physical activity using monitoring 
devices, such as accelerometers and pedom-
eters (Gow et  al., 2012). These studies tend to 
demonstrate a greater magnitude of benefit of 
physical activity on cognitive and brain out-
comes than studies using self-report question-
naires (Middleton et al., 2011).

Participation in physical activity influences 
physical fitness, such as cardiovascular endur-
ance, muscle strength, muscle endurance, flex-
ibility, and body composition. One measure of 
cardiovascular endurance is maximal oxygen 
capacity (VO2max) and it is often used to assess 
the efficacy of interventions to improve cardio-
vascular fitness. That is, aerobic exercise inter-
ventions in which participants are randomized 
to a condition that receives a structured form of 
aerobic exercise (i.e., brisk walking) or to a more 
non-aerobic control condition (i.e., stretching), 
often use VO2max to test whether the interven-
tion effectively improved cardiovascular endur-
ance. Most randomized exercise interventions 
examining neurocognitive outcomes have used 
aerobic forms of activity such as brisk walking 
with older adults, but more non-aerobic forms 
of activity such as resistance training have also 
been conducted and will be described in this 
chapter. Resistance training studies often incor-
porate measures of muscular strength (e.g., 
1-repetition maximum), power, or endurance. 
In sum, the term “physical activity” is gen-
eral and includes many forms of exercise such 
as strength training or aerobic exercise while 
VO2max is a measure of aerobic capacity that is 
modifiable by participation in aerobic activities.

EPIDEMIOLOGICAL STUDIES

Epidemiological studies are observational 
in nature and examine whether engagement in 
physical activity is associated with longitudinal 
changes in cognitive function or risk for demen-
tia. With few exceptions, these studies have 
found that physical activity is associated with 
reduced cognitive decline and a lower incidence 
of dementia. For example, in a study by Larson 
et al. (2006) 1740 men and women over the age 
of 65 without cognitive impairment reported the 
number of times per week that they performed 
different physical activities for at least 15 min 
over the past year. After a follow-up period of 
6.2 years, the incidence rate of AD was signifi-
cantly higher for individuals that engaged in 
physical activity fewer than three times per 
week (19.7 per 1000 person years) as compared 
to those who engaged in physical activity more 
than three times per week (13.0 per 1000 per-
son years). In another study, Podewils et  al. 
(2005) reported that over a course of 5.4 years 
in 3375 men and women over 65 years of age, 
greater engagement in self-reported physi-
cal activity was associated with a reduced risk 
of AD. Retrospective studies have also found 
that self-reported physical activity during early 
to midlife is associated with a reduced risk of 
dementia (Dik, Deeg, Visser, & Jonker, 2003; 
Middleton, Barnes, Lui, & Yaffe, 2010; Rovio 
et  al., 2005) and mild cognitive impairment 
(MCI) (Grande et  al., 2014). Meta-analyses of 
prospective studies have confirmed these asso-
ciations. For example, in a meta-analysis of 15 
prospective longitudinal studies including more 
than 33,000 participants that were followed 
for 1–12 years, greater engagement in physi-
cal activity was associated with nearly a 40% 
reduced risk for cognitive decline (Sofi et  al., 
2011). In sum, these studies and many others 
(Yaffe, Barnes, Nevitt, Lui, & Covinsky, 2001) 
make a convincing case that greater engagement 
in physical activity is associated with a reduced 
risk of cognitive decline and AD. In fact, Barnes 
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and Yaffe (2011) suggest that physical activity 
may be the single most important modifiable 
risk factor for dementia in the United States.

Several recent studies have begun to use 
objective measures of physical activity and fit-
ness in relation to risk for AD, and suggest 
that these instruments may be more sensitive 
to physical activity patterns throughout the 
day and less susceptible to biases associated 
with self-reports. For example, Barnes, Yaffe, 
Satariano, and Tager (2003) examined self-report 
measures of physical activity in addition to 
objective measures of cardiorespiratory fitness 
(VO2max) in a 6-year study of 349 individuals 
over the age of 55. They found that only objec-
tive fitness measures were significantly associ-
ated with reduced cognitive decline. In another 
study, Buchman et  al. (2012) reported that 
greater total daily physical activity as assessed 
by 10 days of continuously monitored actig-
raphy was associated with a twofold reduced 
risk of AD over a 4-year period in 716 older 
adults, even after controlling for self-reported 
physical activity. Indeed, correlations between 
self-reported physical activity and objective 
physical activity levels are often relatively low 
(Westerterp, 2009), which might explain why 
larger samples are often necessary to detect 
associations using self-report measures of activ-
ity while smaller samples are sufficient for 
detecting associations with objective measures.

Overall, the epidemiological literature has 
provided convincing evidence that engaging in 
physical activity is involved in the risk for AD, 
however these studies have many limitations 
including the use of a wide range of physi-
cal activity measures, inconsistent use of more 
comprehensive cognitive batteries, and the key 
challenge of interpreting the causal directions 
between physical activity and risk for AD. For 
example, it is possible that those individuals 
experiencing subtle losses in cognitive func-
tion may choose to avoid engagement in physi-
cal activity or that loss in physical functions is 

a prodromal marker for cognitive decline and 
dementia-related pathology. Randomized inter-
ventions in which physical activity is systemati-
cally increased for a period of several months is 
more capable of addressing this issue.

Physical Activity and Fitness 
Associations with Cognition

The examination of fitness, physical activ-
ity, and cognition dates back to the 1970s when 
Spirduso and Clifford (1978) found that older 
adult athletes performed significantly better 
on a series of simple reaction time and choice 
reaction time tasks compared to their sedentary 
counterparts and performed similarly to that 
of younger (18–25-year-old) adults. The asso-
ciation between higher fitness levels, greater 
amounts of physical activity, and superior cog-
nitive performance has now been replicated 
in dozens of studies (Bunce, Barrowclough, 
& Morris, 1996) and meta-analyses of cross- 
sectional studies have demonstrated that 
engaging in physical activity or having higher 
fitness levels is associated with significantly 
better cognitive performance (Etnier, Nowell, 
Landers, & Sibley, 2006).

Randomized Trials of Aerobic Exercise on 
Cognition

Although cross-sectional studies have con-
clusively shown associations between physical 
activity, fitness, and cognitive function, these 
studies are naturally limited in their ability to 
make causal inferences about participation in 
physical activity and cognitive outcomes. Thus, 
the positive associations described in the cross-
sectional literature could reflect an inherent dif-
ference between higher fit and lower fit adults 
in response styles, personality, genetic, or other 
biological or psychosocial factors. In other 
words, cross-sectional studies are potentially 
confounded by unmeasured third variables that 
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covary with a propensity to engage in physi-
cal activity or to have higher fitness levels. To 
partially circumvent this issue, randomized 
controlled trials have been conducted that 
assign individuals to one of two conditions: (i) 
a treatment condition that receives moderate-
intensity physical activity such as brisk walking 
or resistance training, or (ii) a control condi-
tion that receives light stretching or educational 
course materials. For example, in one interven-
tion, Dustman et al. (1984) randomized 43 sed-
entary, but cognitively healthy, older adults to 
one of three groups for a 4-month period: an 
aerobic training group that received three 1-h 
walking and slow jogging sessions per week, a 
control group that received light strength and 
flexibility exercises, and a non-exercise control 
group. They found that the aerobic exercise 
condition showed improvements on measures 
of memory, processing speed, and inhibitory 
control while each of the control groups did 
not improve on any of these measures. Similar 
effects were found in a sample of 124 cogni-
tively healthy, but low-fit older adults that were 
randomized to 6 months of either a brisk walk-
ing condition or to a stretching-and-toning con-
trol condition (Kramer et al., 1999). They found 
that the exercise group, compared with the 
control group, demonstrated improvements on 
measures that were more executive in nature 
including task-switching, response compatibil-
ity, and stopping tasks, while tasks and condi-
tions less executive in nature did not show the 
same benefits from the exercise treatment.

The results from Kramer et  al. (1999) sug-
gested a degree of domain specificity with 
exercise such that executive functions may be 
affected more than other cognitive domains. This 
hypothesis was tested in a meta-analysis of 18 
randomized exercise interventions that included 
both treatment and control groups (Colcombe 
& Kramer, 2003). The results suggested that the 
effects of exercise on cognitive function were 
both general and specific; general in the sense 

that nearly all cognitive domains improved after 
exercise, but specific in the sense that executive 
functions were affected more than other cogni-
tive domains. Results from other meta-analyses 
of exercise interventions have shown relatively 
consistent patterns (Angevaren, Aufdemkampe, 
Verhaar, Aleman, & Vanhees, 2008; Hindin & 
Zelinski, 2012; Smith et  al., 2010), but also sug-
gest that the positive effects of exercise might be 
moderated by age such that older adults ben-
efit more than younger participants (Etnier et al., 
2006; Smith et al., 2010).

Resistance Training on Cognition
Although resistance, or strength, training has 

a broad range of systemic benefits (Borst, 2004; 
Layne & Nelson, 1999), very few studies to date 
have focused on the role of resistance training 
in promoting cognitive health. However, it is 
noteworthy that a meta-analysis (Colcombe & 
Kramer, 2003) of randomized controlled trials 
found that aerobic exercise programs that were 
combined with resistance training had a greater 
positive effect on cognitive function than aero-
bic exercise alone (effect size = 0.59 vs. 0.41, SE 
= 0.043, P<0.05). A key randomized controlled 
trial supporting the hypothesis that resistance 
training is beneficial for cognitive function was 
conducted by Cassilhas et al. (2007). They dem-
onstrated that resistance training three times per 
week for 24 weeks significantly improved several 
measures of cognitive function among 62 com-
munity-dwelling senior men aged 65–75 years. 
Extending the work of Cassilhas and colleagues, 
Liu-Ambrose et  al. (2010) found that resist-
ance training improved selective attention and 
response inhibition in senior women. Specifically, 
155 community-dwelling women participated 
in a 12-month trial that required them to engage 
in progressive resistance training either once or 
twice per week. Compared with a balance and 
tone control group, those in the resistance train-
ing groups performed significantly better on the 
Stroop Colour-Word Test at trial completion.
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Effects of Exercise on Impaired Populations
These promising results from cognitively 

healthy older adults have prompted research-
ers to examine whether participation in exercise 
could enhance cognitive function in adults with 
MCI or dementia. For example, one study ran-
domized 33 older adults with MCI to either an 
aerobic exercise group or to a stretching control 
group for 4 days per week for 6 months (Baker 
et  al., 2010a). They found sex-specific effects 
such that the women in the study showed 
improvements in cognitive function after the 
intervention while the men showed only mar-
ginal improvements. In another study, 86 
women with MCI were randomized to receive 
2 days per week of aerobic exercise, resistance 
training, or a balance and toning control con-
dition (Nagamatsu, Handy, Hsu, Voss, & Liu-
Ambrose, 2012). They reported that both aerobic 
exercise and resistance training improved mem-
ory performance compared to the control 
condition. More specifically, aerobic exercise 
improved verbal learning memory while resist-
ance training improved associative memory. 
However, only resistance training improved 
executive functions. These, and other studies 
(Lautenschlager et al., 2008), suggest that mod-
est amounts of exercise may be an effective and 
low-cost method of improving cognitive func-
tion in individuals with MCI or the early stages 
of dementia.

Cross-Sectional Associations Between 
Physical Activity and Gray Matter 
Volume

Since 2003 there has been a dramatic rise in 
the number of studies using neuroimaging 
methods to examine whether engaging in physi-
cal activity influences the integrity of the human 
brain—either in terms of volume, morphology, 
white matter tracts, or functional outcomes. 
As will be described below, these studies using 
magnetic resonance imaging (MRI) or positron 

emission tomography (PET), have provided 
persuasive evidence that the brain retains some 
degree of plasticity in late adulthood and that 
only modest amounts of physical activity are 
necessary to promote a healthy brain.

One way to examine brain integrity is 
through assessments of gray matter volume. 
Unfortunately, the brain atrophies in late adult-
hood, and does so non-uniformly, with the pre-
frontal cortex, caudate nucleus, and medial 
temporal lobes showing the most precipitous 
losses. In a study to test whether higher cardi-
orespiratory fitness levels would be associated 
with greater gray matter volume, Colcombe 
et  al. (2003) recruited 55 cognitively healthy 
older adults between 55 and 79 years of age 
and used a semi-automated method of calculat-
ing regional gray matter volume throughout the 
brain. As predicted, older age was associated 
with reduced gray matter volume in the pre-
frontal cortex and medial temporal lobes, but 
higher cardiorespiratory fitness levels attenuated 
the age-related decline in gray matter volume 
in these same regions. Thus, these results sug-
gested some regional specificity to the effects of 
fitness on the brain: those regions largely sup-
porting higher-level cognitive functions and 
executive functions were more strongly associ-
ated with fitness than other regions.

In another cross-sectional study, Weinstein 
et  al. (2012) examined gray matter volume as 
a function of cardiorespiratory fitness levels in 
139 cognitively healthy older adults and found 
that higher fitness levels were associated with 
greater gray matter volume in the prefrontal 
and anterior cingulate cortex and that greater 
gray matter volume was associated with bet-
ter performance on several different cognitive 
outcomes including attentional control and 
memory processes. In fact, this finding has now 
been replicated in studies across the lifespan 
(Chaddock, Erickson, Prakash, Kim et al., 2010; 
Chaddock, Erickson, Prakash VanPatter, et  al., 
2010; Chaddock, Pontifex, Hillman, & Kramer, 
2011; Chaddock et al., 2012).
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Consistent with cardiorespiratory fitness 
results, Floel et  al. (2010) used self-reported 
measures of physical activity in 75 cognitively 
healthy older adults and found that greater 
engagement in physical activity was associ-
ated with greater volume of the prefrontal cor-
tex even in those with low amounts of physical 
activity (also see Gow et  al., 2012) indicating 
that only modest amounts of physical activ-
ity may be sufficient for altering gray matter 
volume. The links with cognitive performance 
suggest that greater volume is not simply a 
meaningless by-product of higher fitness and 
physical activity levels but contributes to ele-
vated cognitive function in late adulthood.

In addition to the prefrontal cortex, several 
studies have examined associations with the 
volume of the hippocampus, a region that plays 
a critical role in memory formation and predicts 
conversion to AD. For example, Erickson et al. 
(2009) examined cardiorespiratory fitness lev-
els in 165 cognitively healthy adults and found 
that higher fitness levels were associated with 
greater hippocampal volumes and that larger 
hippocampi were associated with better spa-
tial memory performance. In addition, Bugg, 
Shah, Villareal, and Head (2012) and Szabo 
et  al. (2011) have reported that higher fitness 
levels are associated with larger hippocam-
pal volumes and better executive function 
and reduced rates of forgetting in cognitively 
healthy older adults. Overall, these results pro-
vide provocative evidence that there are posi-
tive associations between hippocampal volume 
and physical activity habits or fitness levels.

Randomized Trials of Exercise on Gray 
Matter Volume

The results from the cross-sectional neu-
roimaging studies described above are com-
pelling, but are limited in their capability to 
make causal inferences about physical activity 
and brain volume. To circumvent these chal-
lenges in interpretation, Colcombe et al. (2006) 

conducted a randomized clinical trial in 59 cog-
nitively healthy older adults and found that 6 
months of participation in moderate-intensity 
exercise 3 days per week resulted in an increase 
in gray matter volume in the prefrontal and 
anterior cingulate cortex compared to a stretch-
ing-toning control group. There is also evi-
dence for plasticity of the hippocampus with 
exercise. For example, Erickson et  al. (2011) 
randomized 120 cognitively healthy older 
adults to either a brisk walking exercise group 
or to a stretching-toning control group for 12 
months. They found that the brisk walking 
condition increased the size of the hippocam-
pus while the stretching control group showed 
a decline over the same period.

Associations Between Physical Activity, 
Fitness, and White Matter Integrity

White matter integrity also declines in late 
adulthood and has been linked to slower pro-
cessing speed and poorer executive function. 
Fortunately, several studies have examined if 
physical activity is associated with elevated 
white matter integrity in late life. In one study, 
Tseng et al. (2013) using diffusion tensor imag-
ing (DTI) examined white matter integrity in 
ten older adult athletes compared to ten seden-
tary controls. They found that the older adult 
athletes had greater white matter integrity and 
fewer white matter lesions compared to their 
sedentary peers. Similar effects were found 
when examining cardiorespiratory fitness lev-
els in a sample of 26 cognitively healthy older 
adults (Johnson, Kim, Clasey, Bailey, & Gold, 
2012) (also see Marks et  al., 2007) and when 
using self-reported levels of physical activ-
ity. For example, in 276 older adults, Tian et al. 
(2014) found that greater self-reported physi-
cal activity levels were associated with greater 
white matter integrity in the medial temporal 
lobes and cingulate cortex. Although few ran-
domized trials have as of yet examined effects 
of increasing physical activity on white matter 
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integrity, one randomized intervention of 70 
cognitively healthy older adults found negli-
gible group-wise effects of the intervention on 
white matter integrity, but found that those 
individuals showing a greater change in aero-
bic fitness levels from the aerobic exercise inter-
vention showed an increase in white matter 
integrity after the completion of the interven-
tion (Voss, Heo et  al., 2013). These results are 
consistent with those reported for gray matter 
volume, but since there has only been one ran-
domized intervention examining white mat-
ter integrity, it remains difficult to draw causal 
conclusions about whether an exercise inter-
vention influences this tissue property.

Aerobic Exercise Effects on Functional 
MRI Patterns

In addition to volumetric studies, several 
functional MRI studies have examined whether 
exercise changes the dynamics of brain func-
tion. For example, Colcombe et al. (2004) found 
in cognitively healthy older adults that higher 
cardiorespiratory fitness levels were associated 
with greater brain activation during an atten-
tionally demanding task in the prefrontal and 
parietal cortices and reduced activation in the 
anterior cingulate cortex. Similar effects were 
found in older adults randomized to receive 
either an exercise brisk walking condition 
compared to those randomized to a stretching-
toning condition (Colcombe et al., 2004). Other 
functional MRI studies have found similar 
associations such that greater prefrontal cor-
tex activation is associated with higher fitness 
levels (Prakash et  al., 2011; Vidoni et  al., 2013) 
or that maintenance of physical activity after 
the completion of an intervention resulted in 
greater prefrontal cortex activation (Rosano 
et  al., 2010). Greater amounts of self-reported 
physical activity have also been associated 
with increased activity in the prefrontal cortex 
compared to sedentary peers (Smith, Nielson, 

Woodard, Seidenberg, Verber et  al., 2011) and 
a 12-week randomized exercise intervention 
in individuals with MCI increased activa-
tion in the prefrontal cortex during a semantic 
memory task (Smith et  al., 2013). In addition 
to task-evoked activation patterns, Voss et  al. 
(2010) found that higher cardiorespiratory fit-
ness levels were associated with greater func-
tional connectivity in regions of the so-called 
default mode network, and these associations 
explained some of the link between cardiovas-
cular fitness and cognitive function (also see 
Burdette et al., 2010).

Effects of Resistance Training on 
Cerebral Blood Flow and fMRI Patterns

In a cross-sectional study of 59 older adults, 
Xu et al. (2014) acquired MRI resting state cere
brovascular perfusion data. It is hypothesized 
that one mechanism by which physical activ-
ity maintains cognitive function in older adults 
is by augmenting cerebral perfusion. Xu et  al. 
demonstrated that women who engaged in 
resistance training at least once per week exhib-
ited greater cerebrovascular perfusion than 
women who did not. This interaction remained 
significant after controlling for other physical 
activity, demographics, and health variables.

In a 12-month randomized controlled trial of 
resistance training with 155 older women aged 
65–75 years old, Liu-Ambrose, Nagamatsu, 
Voss, Khan, and Handy (2012) showed that 
twice-weekly resistance training increased neu-
ral activation in the anterior portion of the left 
middle temporal gyrus and the left anterior 
insula extending into lateral occipital fron-
tal cortex. Among older women with MCI, 
Nagamatsu et  al. (2012) demonstrated that 
twice-weekly resistance training improved asso-
ciative memory performance (i.e., the ability 
to remember items that were previously pre-
sented simultaneously). In conjunction, regional 
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patterns of functional plasticity were found in 
the resistance training group. Specifically, three 
key regions in cortex showed greater functional 
activation during the associative memory task 
after 6 months of training—the right lingual 
gyrus, the right occipital-fusiform gyrus, and 
the right frontal pole.

Mediators and Moderators

Animal studies have been influential in our 
understanding of the molecular pathways that 
explain how exercise affects the brain. These 
studies have shown that exercise is capable of 
increasing the rate of angiogenesis, or the pro-
duction of new capillary beds, in several brain 
areas including the cerebellum, striatum, and 
cortex (Voss, Vivar, Kramer, & van Praag, 2013). 
A greater number of capillary beds in the brain 
allows more nutrients and oxygen to enrich the 
tissue, thereby providing a healthier environ-
ment for existing cells. Exercise also increases 
the proliferation and survival of new neurons 
in the dentate gyrus of the hippocampus, which 
are involved in enhanced learning and mem-
ory associated with exercise (Erickson, Miller, 
& Roecklein, 2012). These cellular changes are 
likely occurring through a cascade of several dif-
ferent molecules including increased BDNF and 
IGF-1 expression, decreases in pro-inflamma-
tory cytokines, and changes in several different 
neurotransmitter systems including dopamine 
and serotonin (Hillman, Erickson, & Kramer, 
2008). Because of the limitations in studying 
these molecular pathways in human brain tis-
sue, research has examined the extent to which 
blood-based changes in these molecules may 
be linked to improvements in either cognitive 
or brain function. For example, Erickson et  al. 
(2011) found that increases in hippocampal vol-
ume after a 12-month aerobic exercise interven-
tion were positively correlated with increased 
serum BDNF levels. Voss, Erickson et al. (2013) 
also reported that aerobic exercise-related 

changes in functional connectivity were cor-
related with increases in serum BDNF and 
IGF-1 levels while IGF-1 was associated with 
cognitive improvements after resistance train-
ing (Cassilhas et  al., 2012). Exercise-induced 
changes in insulin sensitivity and pharmacoki-
netics may also play a role in mediating the 
improvements in cognitive performance (Baker 
et  al., 2010b; Tarumi et  al., 2013). Nonetheless, 
despite this promising research we still have a 
poor understanding in humans of how the dif-
ferent molecular pathways are related to brain 
and memory functions that improve with exer-
cise and how the different molecular systems 
may differ between resistance and aerobic exer-
cise (Cassilhas et al., 2012).

Exercise does not influence neurocogni-
tive function equally for all people. That is, 
some individuals benefit more than others and 
understanding the factors that may be attenu-
ating or magnifying the effects may encour-
age the development of tailored interventions. 
There is some evidence that exercise may be able 
to attenuate the genetic susceptibility associ-
ated with risk for dementia. For example, Smith, 
Nielson, Woodard, Seidenberg, Durgerian, et al. 
(2011) has shown that the positive effect of 
physical activity on functional MRI activation 
is moderated by the APOE genotype such that 
APOE ε4 carriers benefited more than non-car-
riers from physical activity. In support of this 
result, Head et  al. (2012) using PET reported 
that APOE ε4 carriers showed reduced amyloid 
levels when they engaged in greater amounts 
of physical activity relative to APOE ε4 car-
riers that did not engage in physical activity. 
Although not all studies have shown the same 
effects (Podewils et  al., 2005), there is growing 
evidence that genetic susceptibility for cogni-
tive or brain decay may be an important mod-
erator of physical activity with those carrying 
the risk allele demonstrating the greatest ben-
efits of physical activity (Erickson, Banducci 
et al., 2013).
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Other Health Factors Related to 
Cognition

In this chapter we have focused on the effects 
of physical activity and exercise as an important 
health behavior that influences cognitive and 
brain function in late adulthood. This empha-
sis on physical activity, however, does not mean 
that other health behaviors and health factors 
are not important in influencing cognitive and 
brain function in late adulthood. In fact, there 
is considerable evidence that high blood pres-
sure is associated with both impaired cognitive 
function, an increase in white matter lesions, 
increased risk for dementia, and reduced gray 
matter volume (Bender & Raz, 2012; Goldstein, 
Bartzokis, Guthrie, & Shapiro, 2002; Kivipelto 
et al., 2001; Leritz et al., 2010; Tzourio, Dufouil, 
Ducimetiere, & Alperovitch, 1999; Whitmer, 
Sidney, Selby, Johnston, & Yaffe, 2005). In fact, 
the association between high blood pressure 
and poorer cognitive function may be exacer-
bated by genetic susceptibility for dementia (de 
Leeuw et al., 2004; Peila et al., 2001; Zade et al., 
2010), indicating moderating effects between 
genetic and health-related variables. Obesity 
is also an important health factor that has been 
found to increase the risk for dementia (Raji 
et  al., 2010) and is related to impaired white 
matter integrity (Verstynen et al., 2013) through-
out the brain and reduced activation in prefron-
tal brain circuits (McFadden, Cornier, Melanson, 
Bechtell, & Tregellas, 2013). Unfortunately there 
is limited evidence for weight loss interventions 
to have any lasting impact on cognitive perfor-
mance in late life (Siervo et al., 2011).

Insulin resistance and leptin resistance are 
often both correlated with obesity and high 
blood pressure and both play an important role 
in cognitive function and brain health. Along 
these lines, more studies have been examin-
ing the impact of the metabolic syndrome 
(MetS) on cognitive function throughout the 
lifespan. MetS is a cluster of metabolic factors 
that increase risk for cardiovascular diseases 

and often includes the presence of Type II dia-
betes or insulin resistance. Using the MetS 
criteria, several studies have reported asso-
ciations with both brain volume (Onyewuenyi, 
Muldoon, Christie, Erickson, & Gianaros, 2014) 
and impaired cognitive function (Yates, Sweat, 
Yau, Turchiano, & Convit, 2012) in mid to late 
life. These studies, and many others, have sug-
gested an important role of cardiovascular and 
metabolic risk factors in cognitive and brain 
health and risk for dementia in late life. In fact, 
improvements in cardiovascular health may 
be an important pathway by which increased 
physical activity has long-term positive effects 
on the brain.

CONCLUSION

It is clear that cross-sectional research has 
shown that higher fitness levels and greater 
engagement in physical activity are almost 
uniformly associated with elevated cogni-
tive function, greater prefrontal cortex and 
hippocampal volume, greater white matter 
integrity, increased prefrontal activation dur-
ing challenging cognitive tasks, and increased 
resting state connectivity between the hip-
pocampus and prefrontal cortex. Although 
there have been fewer randomized trials of 
exercise, those that have been conducted have 
supported the cross-sectional research and 
demonstrate that interventions are capable 
of improving cognitive function—especially 
executive and memory function, increasing 
gray matter volume, improving resting state 
connectivity, and increasing the efficiency of 
task-evoked activation. Finally, the cognitive 
and neuroimaging studies are supported by a 
large body of epidemiological studies that have 
clearly demonstrated that engaging in greater 
amounts of physical activity is associated with 
a reduced risk of experiencing cognitive decline 
or dementia. In short, epidemiological, cogni-
tive, and neuroimaging studies have provided 
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a body of convincing research on the positive 
effects of exercise on brain health and function.

Despite these promising results there are 
several outstanding issues that have yet to be 
resolved. First, although there is growing evi-
dence from cross-sectional and intervention 
research that both aerobic and resistance exer-
cise influence brain and cognitive outcomes in 
MCI and dementia, more studies are needed to 
characterize and understand these effects. For 
example, we have a poor understanding of the 
potential for physical activity to act as a pri-
mary or secondary prevention of dementia or 
as a treatment for existing impairments. Along 
these lines, there is currently no evidence that 
an exercise intervention will have long-term 
consequences on slowing the incidence rates of 
dementia. Answers to these issues could have 
far-reaching public health implications for both 
dementia and other neurologic and psychiatric 
conditions.

There is also a paucity of research on the 
most appropriate dose of exercise, the fre-
quency or duration, or the type of exercise 
most effective for enhancing memory and cog-
nitive function. In addition, we still know very 
little about whether the exercise prescription 
would differ depending on the baseline cogni-
tive status of the individual. Although most 
intervention studies have reported that 3 days 
per week is sufficient for detecting significant 
improvements in brain and cognitive outcomes, 
we have little evidence for whether greater 
frequencies or intensities of activity would be 
more beneficial or whether lower frequencies 
would show equivalent effects (Nagamatsu 
et  al., 2012). Before physical activity can be 
widely prescribed as a method of improving 
cognitive function there is a need to identify the 
doses in which activity would prove to be most 
beneficial for the widest range of adults.

Finally, although we have a growing under-
standing of the possible mechanisms for how 
exercise influences the brain along with clear 
associations between other cardiovascular and 

cardiometabolic health factors and brain func-
tion, we have a poor understanding of the pri-
mary pathways involved and the ways in which 
cardiovascular, metabolic, and physical activity 
behaviors and predictors influence brain health 
and function together. Since these factors are cor-
related with one another, it will be important 
to determine the extent to which associations 
between obesity and brain health can be indepen-
dently explained by physical inactivity, hyperten-
sion, or other cardiovascular risk variables.

In sum, we have highlighted some of the 
most recent and compelling research on physical 
activity and cognitive function and argue that 
this research demonstrates not only a hope that 
physical activity could be a promising method 
for improving brain function but that it also 
demonstrates a clear capacity for brain plasticity 
in late adulthood.
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