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Abstract 

 .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
 

Watershed models simulating the physical process of runoff usually require daily or sub-daily 

rainfall time series data as input.  However, even when rainfall records are available, they 

contain only limited and finite information regarding the historical rainfall pattern to 

adequately assess the response and reliability of a water resource system.  This study is 

therefore concerned with the development of a stochastic rainfall model that can reliably 

generate many sequences of synthetic rainfall time series’ that have similar properties to 

those of the observed data. 

 

The ‘MCME’ model developed is based on a combination of the rainfall occurrence 

(described using a Markov Chain process) and the distribution of rainfall amounts on wet 

days (represented by the Mixed-Exponential probability function).  Various optimization 

methods were tested to best calibrate the model’s parameters and the model was then applied 

to daily rainfall data from 3 different regions  across the globe (Dorval, Quebec, Sooke 

Reservoir in British Columbia and Roxas City in the Philippines) to assess the accuracy and 

suitability of the model for daily rainfall simulation.  The feasibility of the MCME model was 

also assessed using hourly rainfall data available at Dorval Airport in Quebec (Canada). 

 

In general, it was found that the proposed MCME model was able to adequately describe 

various statistical and physical properties of the daily and hourly rainfall processes 

considered.  In addition, an innovative approach was proposed to combine the estimation of 

daily annual maximum precipitations (AMPs) by the MCME with those by the downscaled 

Global Circulation Models (GCMs).  The combined model was found to able to provide 

AMP estimates that were comparable to the observed values at a local site.  In particular, the 

suggested linkage between the MCME and downscaled-GCM outputs would be useful for 

various climate change impact studies involving rainfall extremes. 
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Résumé 

 .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
 

La précipitation est souvent considérée comme la composante d’entrée principale pour les 

modèles de simulation de ruissellement.  Toutefois, même si les donnés de précipitation sont 

disponibles, ces données ne contiennent qu’une quantité d’information limitée concernant la 

variabilité de précipitation dans le passé.  La présente étude a alors pour objet d’élaborer un 

modèle stochastique de précipitation qui est capable de générer plusieurs séries synthétiques 

de précipitation ayant les mêmes propriétés statistiques et physiques que les données 

historiques. 

 

Le modèle MCME proposé dans cette étude consiste ā une combinaison de la composante 

d’apparition de pluie (représentée par la chaîne de Markov) et la composante de répartition 

de quantité de précipitation (représentée par la loi exponentielle mixte).  L’évaluation de la 

faisabilité et de la précision de ce modèle a été effectuée en utilisant les données de 

précipitations journalières disponibles en trois sites situés dans trois régions différentes du 

monde et en utilisant plusieurs méthodes de calibration par les techniques d’optimisation 

locale et globale.  La faisabilité  du modèle MCME a été également évaluée avec les données 

de précipitation horaire disponibles ā l’aéroport de Dorval au Québec (Canada).   

 

En général on a trouvé que le modèle MCME est capable de décrire adéquatement diverses 

propriétés statistiques et physiques des processus de précipitations journalier et horaire 

considérés.  En plus, une approche innovatrice a été suggérée pour combiner l’estimation des 

précipitations annuelles maximales par le modèles MCME avec celles fournies par la mise en 

échelle des modèles de circulation globale (GCM).  On a trouvé que les modèles combinés 

sont capable du calculer les précipitations annuelles maximales qui sont comparables aux 

valeurs observées en un site donné.  En particulier la connection entre le modèle MCME et 

les outputs de GCM serait très utile pour toutes les études des effets du changement 

climatique concernant les précipitations extrêmes. 

 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
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1. Introduction 
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1.1 Context 

Climate variables, in particular, rainfall occurrence and intensity have important impacts on 

human and physical environments.  Periods of dry weather with no rainfall can have major 

consequences on water supply affecting groundwater levels and plant and crop production, 

while excessive rainfall may cause flooding often at a great cost to human, economic, and 

environmental systems.  Therefore, knowledge of the frequency of occurrence and intensity 

of rainfall events is essential for planning, design and management of various water resources 

systems. 

 

For instance, in the management of urban and rural water systems, important hydrological 

processes such as runoff, infiltration and erosion are usually determined using watershed 

simulation models which require daily rainfall data as input.  Rainfall data is also required in 

the analysis of pollutant migration through water flow systems.  However, existing historical 

records of rainfall are often insufficient in length or inadequate in their completeness and 

spatial coverage to provide reliable simulation results.  Therefore, stochastic simulations of 

rainfall or stochastic rainfall generators have been widely used to generate many sequences of 

synthetic rainfall time series that could accurately describe the physical and statistical 

properties of the observed rainfall process at a given location. 

 

A more recent issue of concern has been climate change and its effects on the environment.  

Therefore, there is an urgent need for predicting the variability of rainfall for future periods 

for different climate change scenarios in order to provide necessary information for high 

quality climate-related impact studies.    

 

Although there are a few existing stochastic models, such as WGEN (Richardson et al., 

1984), ClimGEN (Campbell, 1990), STARDEX project (Haylock and Goodess, 2004) and 

others (Semenov and Barrow, 1997) that could provide synthetic rainfall time series data, 

they are often complex and specific to data locations, sensitive to available data structure (ie. 
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missing data) and restrictive to user needs.  In addition, most available stochastic rainfall 

models were limited to producing rainfall time series at the daily scale and were not able to 

provide rainfall sequences at shorter time scales for many hydrologic applications in urban 

watershed.  Furthermore, there are also few conclusive methods that could connect Global 

Circulation Model (GCM) outputs to stochastic rainfall model parameters. 

 

1.2 Research Objectives 

In view of the above-mentioned needs and issues, the present study aims at the following 

main objectives: 

 

 To develop a stochastic rainfall model that could provide reliable simulations of daily 

rainfall series at a given location; 

 To assess the performance of the proposed model and its applicability using historical 

data from different climatic conditions; 

 To investigate and develop a stochastic rainfall model for rainfall processes at the hourly 

scale; 

 To develop an approach for linking GCM outputs to the local stochastic rainfall model 

for assessing the impacts of climate change on the distribution of annual maximum 

rainfalls. 

 

1.3 Study Sites 

Three locations in largely different climatic conditions were considered for the modeling of 

daily rainfall.  Daily rainfall data was acquired from Dorval Airport in Montreal, Quebec in 

Canada, Sooke Reservoir in Victoria, British Columbia in Canada and Roxas City in Capiz, 

the Philippines.  Their locations are shown on Figure 1-1.   

 

The Montreal region has a humid continental climate with four distinct seasons.  June to 

mid-August spans the summer months with abundant rainfall and thunderstorm activity. A 

considerably long winter period lasts from mid-November to mid-March with large amounts 

of snowfall.  Annual rainfall amounts to an average of 897 mm.  
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DORVAL 

SOOKE DAM

ROXAS CITY 

Figure 1-1: Locations of Data Sites (Source: Google Maps) 

 

The climate of the Sooke Reservoir in the Victoria region is mild and moist. The summer 

months are warm and dry, while the mild winter months are typically free from sub-freezing 

temperatures. Monthly rainfall during the months of June, July and August for the area has 

average between 14.0 mm to 20.7 mm of rain, with an annual precipitation of around 1500 

mm.  

 

Roxas City, Capiz belongs to the third type of climate where seasonal changes are not 

pronounced, with a largely tropical monsoon climate where rainfall is evenly distributed 

throughout the year.  It is relatively dry, however, from November to April and wet during 

the months of May to October (i.e., monsoon season).  The average monthly rainfall is 48.9 

mm while the average annual rainfall is 2029 mm. 

 

Since most previous applications of the type of model developed in this study were applied 

using data from temperate climate regions, it was expected that the model developed in this 

study could be better assessed using data from the three sites mentioned above. 

 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
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2. Literature Review 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
 

2.1 Stochastic Rainfall Models 

The modeling of rainfall has a long history in literature, with significant advances being made 

over the years in the statistical methods and techniques used and the subsequent accuracies 

achieved. Waymire and Gupta (1981), Stern and Coe (1984) reviewed many models, with a 

large majority being based on empirically derived models with ‘fitted’ parameters (referred to 

here as the Occurrence-Amount Model).  Le Cam (1961), Kavvas and Delleur (1981) however, 

looked at models built upon representing meteorological ideas through point cluster 

processes (the Cluster Model). 

 

2.1.1 Cluster Models 

Two of the most recognized cluster-based models used in the stochastic modeling of rainfall 

are the Neyman-Scott Rectangular Pulses (NSRP) model (Kavvas and Delleur, 1981) and the 

Bartlett-Lewis Rectangular Pulses (BLRP) model (Rodriguez-Iturbe et al., 1987).  These 

models represent rainfall sequences in time and rainfall fields in space where both the 

occurrence and the depth processes are combined and parameter estimation is performed 

from the hourly and the integrated rainfall data. 

 

Originally developed for the spatial distribution of galaxies, Kavvas and Delleur (1981) used 

the Neyman-Scott model for rainfall simulation.  In the NSRP model, storms arrive in a 

Poisson process consisting of discs representing rain cells, with centers distributed over an 

area according to a spatial Poisson process.  Rodriguez-Iturbe et al. (1987) and Cowpertwait 

et al. (1995) use five parameters which are related to the number of rain cells, rain cell 

durations, intensities, inter-arrival times of storms, and waiting times from the origin to the 

rain cell origins. 

 

The BLRP model has been described in great detail by Rodriguez-Iturbe et al. (1987), Khaliq 

et al. (1996) and others.  In the six-parameter BLRP model, the number of cells is 
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geometrically distributed whereas in the NSRP model any other convenient form for this 

distribution can also be assumed.  

 

The major advantage of cluster models is in their capability to describe rainfall amounts in 

shorter time-scales.  However, they also tend to overestimate the probability of dry periods 

for large scales for which modifications have been suggested (Entekhabi et al., 1989).  Studies 

by Han (2001) also show that the NSRP model does not provide as good a fit to rainfall 

amounts as an occurrence-amount model.  The estimation of parameters is also a sensitive 

and difficult task that requires optimization procedures with well-defined initial and 

boundary values.  

 

2.1.2 Occurrence-Amount Models 

Models of this kind are capable of simulating daily rainfall records of any length, based on 

simulating occurrences and rainfall amounts separately. Parameter estimates are needed for 

transitional probabilities for occurrences and fitting parameters through a frequency 

distribution for rainfall amounts.  The research work presented in this thesis is based on this 

approach. 

 

2.1.2.1 Modeling of Occurrences 

Initially, studies on describing the distribution of dry or wet spell lengths had been done by 

Lawrence (1954).  Gabriel and Neumann (1962) are thought to be the first to use a first 

order two-state stationary Markov Chain to describe the occurrence of daily rainfall, 

assuming that the probability of rainfall on any day depends only on weather the previous the 

previous day was dry or wet.  Haan et al. (1976) proposed a stochastic model for simulating 

daily rainfall where the two states of ‘dry’ or ‘wet’ are described by estimating transitional 

probabilities from historical data for each month of the year. Dumont and Boyce (1974 

further modified the model for non-stationarity by fitting separate chains to different periods 

of the year, while Woolhiser and Pegram (1978) fitted continuous curves to the transitional 

probabilities. 
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The appropriate order of Markov Chain to be used in occurrence modeling has also 

generated substantial work in literature.  Rascko et al. (1991) found a first order Markov 

Chain to produce too few long spells for certain climates.  Jones and Thornton (1997), Wilks 

(1999) have suggested higher order chains, thereby increasing the Markov model’s memory 

or dependence beyond simply the previous day and further into the past.  Gates and Tong 

(1976) proposed the use of the Akaike’s Information Criterion (AIC) as a procedure for 

estimating the order of a Markov Chain. Using the AIC, Chin (1977) found that the order of 

conditional dependence of daily rainfall occurrences depends on the season and geographical 

location, and that the common practice of assuming a first order relation is not always 

applicable, especially during the winter months.  In more recent developments, Gregory et al. 

(1993) found that a first-order, multi-state model may be better than a higher order, two-state 

model.  They suggested that a model containing a continuum of states as opposed to discrete 

sets would be best. 

 

Another alternative approach to modeling the rainfall occurrences is through the use of spell-

length models, where observed relative frequencies of dry or wet day spells are fitted to a 

probability distribution.  This ‘alternating renewal process’ (Buishand, 1977; Roldan and 

Woolhiser, 1982; Rascko et al., 1991) allows for a new spell of opposite type of random 

length to be generated once a spell of consecutive dry or wet days have ended. 

 

2.1.2.2 Modeling of Rainfall Amounts 

Given the occurrence of a rainfall event, the knowledge of the distribution of rainfall is 

essential for modeling daily rainfall sequences.  There are mainly two approaches in 

estimating the rainfall depth on wet days.  Katz (1977) and Buishand (1977) consider the 

rainfall sequence as a chain-dependent process where rainfall amounts, although 

independent, and its distribution function depend on the state of the previous day (ie. dry or 

wet).  The more widely adopted method however assumes successive day rainfall amounts 

are independent and a theoretical distribution can be fitted to rainfall amounts (Todorovic 

and Woolhiser, 1975). 

 

6 

 

 



There is a considerable amount of literature on the statistical distribution of rainfall amounts 

for different length periods.  Good fits have been achieved in the monthly and yearly time 

scales for rainfall distributions using gamma, Gaussian, logarithmic normal and normal 

distributions (Kotz and Neumann, 1963; Delleur and Kavvas, 1978; Srikanthan and 

McMahon, 1982).  However, distributions on the daily or lower scales have greater variability 

resulting in highly skewed distributions, thereby limiting the number of applicable 

distribution functions (Nguyen and Rouselle, 1982; Woolhiser and Roldan, 1982).   

 

There appears to be no single distribution that was generally accepted for describing rainfall 

amount distributions over a wide range of regions and time scales.  Richardson (1981) used 

the one-parameter exponential model, due to its simplicity, as a first approximation of daily 

rainfall distribution. However, other investigations of the two-parameter gamma distribution 

showed a generally improved fit to the observed data than the exponential (Ison et al., 1971; 

Katz, 1977; Buishand, 1977).  The three-parameter kappa distribution (Mielke, 1973) was 

found to be in similar agreement to the gamma.  A two-parameter Weibull has also been used 

for modeling daily rainfall due to its similarities to the gamma-family distribution. A three-

parameter mixed-exponential distribution (a mixture of two one-parameter exponential 

distributions) was, however, found to best represent rainfall amounts in many U.S. stations 

(Woolhiser and Roldan, 1982) and particularly, for locations in Quebec, Canada (Nguyen and 

Mayabi, 1990), which is the prime focus area of this thesis. In addition to providing better 

fits (Foufoula-Georgiou and Guttorp 1987; Wilks 1998) and a better representation of 

precipitation extremes (Wilks, 1999) than more conventional choices such as the gamma 

distribution, use of this distribution also improves the spatial coherency of precipitation 

simulated at a network of locations (Wilks 1998). 

 

The accurate estimation of parameters of the above mentioned distributions is largely based 

on the method of maximum likelihood (ML) or the method of moments.  Greenwood and 

Durand (1960) presented an iterative method for approximations of the ML estimators for 

the gamma distribution function, while Rider (1961) provided initial parameter solutions for 

the mixed-exponential function through the method of moments.  Nguyen and Mayabi 

(1990) suggested a faster convergence to the optimal parameter set by solving seven 

likelihood functions with incremental initial guesses for 2 of the parameters within a 
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reasonable bound.  All iterative convergence methods for the ML estimates were found to be 

computationally exhaustive and often provided local optimum solutions.  The method of 

moments, though simple, is seen to often give statistically inefficient parameter estimates for 

asymmetric distributions.  It should be noted that robust global optimization methods used 

in the calibration of watersheds such as, the Shuffled Complex Evolution (SCE) method 

(Duan et al., 1994) and the Direct Search Complex (DSC) algorithm (Nelder and Mead, 

1965) have not yet been commonly applied to parameter estimation of probability 

distributions using the ML method.  However, with the recent advance of computing 

capability these global optimization methods could provide more robust and more reliable 

parameter estimates. 

 

2.1.2.3 Modeling of Seasonal Variations 

Several investigators have used the Fourier series to describe the periodic seasonal 

fluctuations of parameters estimated in stochastic models of precipitation.  Seasonal variation 

in occurrence parameters for the Markov Chain model was first studied by Feyernherm and 

Bark (1967) and Fitzpatrick and Krishnan (1967), while Ison et al. (1971) used least squares 

estimates of Fourier coefficients to examine the variability of gamma distribution parameters.  

Woolhiser and Pegram (1978) further used maximum likelihood estimates of the Fourier 

coefficients to describe the seasonal variability in parameters from a two-state Markov Chain 

model for occurrence and from a mixed-exponential distribution for rainfall amount. 

 

2.2 Stochastic Weather Generators 

Stochastic weather generators were developed to produce synthetic daily time series of 

climate variables including precipitation, temperature and solar radiation (Richardson, 1981; 

Richardson and Wright, 1984; Rascko et al., 1991), where the underlying assumption is that 

the synthetic time series is statistically identical to that of the observed series.  Of specific 

interest to the research work presented in this thesis is the precipitation component of these 

different generators which are modeled using the various techniques outlined in the previous 

sections of this chapter.  
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2.2.1 Applications 

There can be three major applications for a weather generator (WG) as outlined by many 

including Wilks and Wilby (1999) and Semenov et al. (1998): 

 

2.2.1.1 Risk Assessment: Modeling of Weather Systems 

Risk assessment in hydrological and agricultural applications requires prolonged lengths of 

data which are not available from observational records.  This is because a good estimation 

of the probability of extreme events using short length observed data is not often possible.  

Mearns et al. (1984) used long synthetic weather series to examine the impact of severe 

droughts on crop behavior, while Favis-Mortlock et al. (1997) studies long-term rates of soil 

erosion.  Semenov and Porter (1995) also studied the sensitivity of various systems to 

climatic variability by adjusting the parameters that govern the generators simulations. 

 

2.2.1.2 Missing Data: Spatial Interpolation and Temporal Downscaling 

Weather generators have also been used to simulate data series for regions where no data is 

available.  Hutchison (1995) used thin-plate smoothing to spatially interpolate the parameters 

between sites while Richardson and Wright (1984) and Hanson et al. (1994) interpolated 

parameters using smooth contour plots. 

 

In the case where monthly or seasonal data is available and daily data is missing Wilks (1992) 

suggested identifying the relationships between the daily parameters in terms of the monthly 

or seasonal statistics.  Hershfield (1970) and Geng et al (1986) found empirical linear 

relationships of parameters (transitional probabilities, as well as gamma distribution 

parameters) between time-scales in different climates around the world, which were valid 

over only the calibrated data range (Hutchison, 1995).  

 

2.2.1.3 Climate Change: Downscaling 

The third area of application is a more recent development arising from the need of studying 

climate change effects on the environment.  The output from Global Circulation Models 

(GCMs) provides information on anticipating climate variables with the evolution of climate 
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on Earth under various conditions (eg. increased concentration of greenhouse gases in the 

atmosphere).  However, GCM data is given at a very coarse spatial resolution (~50,000 km2 

or more) and are inapplicable to local scale applications.  To deal with this issue, dynamical 

downscaling methods, i.e.,   Regional Climate Models (RCM) nested by a GCM over a 

limited region of the globe have been used (Giorgi and Mearns, 1999), as have statistical 

downscaling means through weather typing approaches (Wilby et al., 2002a).  Regression-

based downscaling methods are also employed to relate large-scale climate predictors from 

the GCM to local scale predictands (eg. Wilby et al., 1997, 2002a, 2004; Kilsby et al., 1998). 

 

The use of stochastic weather generators in the construction of multiple ‘scenarios’  of 

climate change was suggested by Wilks (1992), where these weather generators would be able 

to simulate indefinite lengths of the altered climate.  This would be particularly important in 

assessing impact and risk models since large series of future climatic data is clearly not 

available.  Parameters for the generator could be ‘downscaled’ from the GCM to the local 

scale by finding parameter relationships at different spatial scales (Dubrovsky, 1997; Wilks, 

1992, Semenov and Barrow, 1997). 

 

2.2.2 Existing Programs 

At the present time there are several known software packages that are available for use for 

stochastic weather generation. Some common ‘Richardson-type’ (see Figure 2-1) WGs are 

USCLIMATE, WGEN, CLIMGEN, CLIGEN, while a ‘serial-approach’ (see Figure 2-2) 

WG is LARS-WG.   
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Figure 2-1: Markov Chain based Weather Generator (Wilks and Wilby, 1999) 

 
 

Figure 2-2: Spell Length based Weather Generator (Wilks and Wilby, 1999) 

 

There is significant literature on the application of WGEN (Soltani et al., 2003; Zhang et al., 

2004) and LARS-WG (Nguyen et al., 2005; Semenov et al., 1998) over various climatic 

conditions in North America, Europe and Asia that show that both generators simulate daily 

statistics of the observed data series well but the generators also have difficulty in 

reproducing annual variability in monthly means and simulating the distribution of frost and 

hot spells. LARS-WG matched observed data better when compared to a large number of 

data sites due to its semi-empirical distribution.  However, a greater number of parameters 

are needed for the LARS-WG.  GEM is another improved generator with the basic internal 
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structure of the USCLIMATE and WGEN however it also preserves serial and cross-

element correlations (Johnson et al., 2000).  Table 1-1 briefly outlines the rainfall modeling 

structure of some of the available WGs in use.  Other WGs available include SIMMETEO 

(Geng, 1988), Met&Roll (Dubrovsky, 1997), and CLIMAK (Danusa, 2002). 

 

Model Occurrences Amounts Reference 

2-parameter gamma 

distribution.  
Monthly transition probabilities 

of a 1st-order Markov Chain 
Richardson and Wright (1984) WGEN 

Threshold: 0 mm 

Lengths of alternate wet and 

dry spells generated from a 

semi-empirical distribution 

fitted to observed series 

Semi-empirical distribution Rascko et al. (1991) 
LARS-WG 

Threshold: 0 mm Semenov & Barlow (1997) 

3-parameter mixed-

exponential distribution 
Hanson et al. (1994) Monthly transition probabilities 

of a 1st-order Markov Chain 
USCLIMATE 

Johnson et al. (2000) 
Threshold: 25 mm 

Monthly transition probabilities 

of a 1st-order Markov Chain 

2-parameter skewed normal 

distribution 

Nicks & Gander (1994) 
CLIGEN 

Arnold and Elliot (1996) 

Monthly transition probabilities 

of a 1st-order Markov Chain 

2-parameter Weibull 

distribution 
Campbell (1990) CLIMGEN 

Table 2-1: Rainfall Modeling Components of Various Weather Generators 

 

2.3 Further Advances in Rainfall Modeling 

Other advances made in the modeling of rainfall include the use of spectral theory (Waymire 

et al., 1984).  Elsner and Tsonis (1993) studied the concept of entropy in assessing the 

complexity and predictability of rainfall records. Gyasi-Agyei et al. (1997) described a hybrid 

point rainfall model, while another stochastic rainfall model is the diffusion model 

Pavlopoulos and Kedem (1992). 

 

In addition, existing stochastic weather models may be adapted for simultaneous simulations 

at multiple locations instead of a single-site model.  A multivariate normal distribution has 

been used to describe multisite precipitation by Hutchison (1995). Another approach used is 

to explicitly simulate spatially distributed phenomena at multiple sites (Waymire et al., 1984; 

Cox and Isham, 1988).  Many non-parametric approaches involving ‘resampling’ for 
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stochastic simulation have been also suggested, thereby eliminating the assumption of a 

theoretical probability distribution. The complex procedures of the resampling from the 

precipitation series while capturing time correlations have been described by Young (1994) 

Lall et al. (1996), and Rajagopalan et al. (1997).  

 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
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3. Methodology 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
  

3.1 Data Description 

 

3.1.1 Historical Data Acquisition 

The daily rainfall meteorological data from the Dorval Airport in Montreal, Quebec were 

provided by Environment Canada for an uninterrupted 30-year record for the period of 1961 

to 1990.  Daily total rainfall was recorded in millimeters, and the measurements were within a 

precision of one-tenth of a millimeter. Hourly data for the Dorval station was also available 

from March 1943 to July, 1992 with large sections of missing data particularly in the early 

part of the record (pre 1960s).  After 1960, there were also missing hourly data scattered 

sparsely through days.  

 

Daily rainfall records from the Sooke Reservoir in Victoria, British Columbia were acquired 

from Professor Mohammad Dore, Brock University.  A lengthy record of 88 years spanning 

from January 1916 to December, 2004 was available for analysis.   

 

Daily rainfall data from the Roxas City rain gage station, Capiz in the Philippines were 

extracted from meteorological records spanning from January, 1950 to December, 1990, with 

measurements given in millimeters.  Partial data for the year of 1962 and the complete set for 

1963 were unavailable.  

 

Although different lengths of records and regions with various climate conditions were 

available, the study in this research was foremost concerned on the rainfall modeling of 

Dorval Airport, Montreal.  Therefore, the available 30 year daily data was first used.  The 

same 30 year period of 1961 to 1990 was then extracted and used from the Sooke Reservoir 

and Roxas City record series to compare and assess the model’s performance.  Rainfall 

recorded during the winter months in Dorval Airport is the equivalent to snow-melt 

amounts. 
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3.1.2 Observed Data Analysis 

Figure 3-1 shows the daily mean rainfall amount for all three climate stations studied in this 

research and how they vary monthly, while Figures 3-2 to 3-4 shows the empirical 

distribution of rainfall amounts on wet days (rainfall > 0 mm) for the 30 year period (1961-

90).   

 
Figure 3-1: Monthly Comparison of Mean Daily Rainfall at 3 Sites of Interest 

 
Figure 3-2: Frequency Histogram of Daily Rainfall Depth on Wet Days (Dorval Airport) 
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Figure 3-3: Frequency Histogram of Daily Rainfall Depth on Wet Days (Sooke Reservoir) 

 
Figure 3-4: Frequency Histogram of Daily Rainfall Depth on Wet Days (Roxas City) 

 

Figure 3-1 shows that compared to Dorval Airport, there is a greater seasonal variability in 

the mean daily rainfall amounts for Sooke Reservoir and Roxas City.  Figures 3-2 to 3-4 also 

show that there are higher occurrences of daily rainfall amounts exceeding 33 mm in Sooke 

Reservoir and Roxas City. 
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3.2 The Markov Chain-Mixed Exponential Model 

The proposed rainfall modeling scheme, referred hereafter as the Markov Chain-Mixed 

Exponential (MCME) model, is a ‘Richardson-type’ model consisting of two components: (i) 

the first component based on the Markov chain to describe the occurrences of rainy days, 

and (ii) the second component using the mixed-exponential distribution to represent the 

distribution of daily rainfall amounts.  Once the parameters of these two components are 

determined a random number generation process is used to simulate daily rainfall conditions 

according to the MCME model of rainfall. 

 

3.2.1 The Occurrence Process  

The use of the Markov chain for the modeling of daily rainfall occurrences has been 

suggested by many previous studies (Chin, 1977; Roldan and Woolhiser, 1982).  The 

observed rainfall data series is treated simply as a series of two states: dry or wet; modelled as 

either a 0 or 1 respectively with a first order Markov Chain explaining the dependence 

between wet and dry days on successive days.  Let  be the random variable representing 

the occurrence or non-occurrence of precipitation on day of year 

nX ,τ

n τ : 

 

 wetis day  if
dry is day  if

1
0

, n
n

X n
⎩
⎨
⎧

=τ  (1) 

 

Hence, the transition probabilities of the first-order Markov chain are defined as follows: 

 

{ } 1for     | 1,,, >=== − niXjXPp nnnij ττ  (2) 

 

and 

 

{ } | 365),1(1,1, iXjXPpij === −ττ (3)  
 

where, i and j can be 0 (dry) or 1 (wet).  
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3.2.1.1 Estimating Transition Probability Parameters 

The maximum likelihood method can be used to estimate these transition probabilities by 

computing the observed number of transitions aij,k from state (i=0 or 1) on day (n-1) to state 

(j=0 or 1) on day n in period k across the entire length of record where 0 represents a dry day 

and 1 represents a wet day (Woolhiser and Pergram, 1978).  For the purposes of this 

research, the year is taken into k = 12 monthly periods: 

 

kk

k
k aa

a
p

,01,00

,00
,00 +
= (4) 
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The unconditional probability of being wet on day n can be approximated by: 
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3.2.2 The Rainfall Amount 

The mathematical objective in describing rainfall amounts is to incorporate all amounts of 

rainfall on wet days and fit the empirical observed frequency distribution to a theoretical 

probability density function. 

 

The mixed-exponential model was found to be the most accurate for describing the 

distribution of daily rainfall amounts as compared to other popular candidate distributions 

such as simple exponential, gamma, and Weibull (Roldan and Woolhiser, 1982; Han, 2001) 

according to the Akaike Information Criterion and Maximum Likelihood Function Values. 

The distribution of daily precipitation amounts were described by the mixed-exponential as 

follows: 
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For 210,10,0 μμ <<<<> px , in which  is the probability density function, )(xf 1 , μp , 

and 2μ 1μ 2μ are the parameters.   and  are thought to explain a small and large mean 

respectively of two exponential distributions which are combined by a weighting factor, p, to 

form the mixed-exponential distribution.  

 

The parameters of the mixed-exponential function were estimated through the method of 

moments and the method of maximum likelihood as outlined further in the sections below. 

 

3.2.2.1 Estimation of Parameters through the Method of Moments 

These parameters of the mixed-exponential were computed using the method of non-central 

moments where the three non-central moments are defined as: 

  

(8) 

3
2

3
1

3
3

2
2

2
1

2
2

211

)1(66)(

)1(22)(

)1()(

μμ

μμ

μμ

ppXEM

ppXEM

ppXEM

−+==

−+==

−+==

 

 (9) 

 

(10) 

 

The sample moments of Mi (where i = 1,2,3) can be expressed as: 
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Everitt and Hand (1981) and Rider (1961) showed that the population and sample means can 

be computed and solved for the mixed-exponential parameters: 
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where, 
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This solution is feasible only provided that the sequence 1/M1, 2M1/M2, 6M2/2M3 is 

decreasing or increasing to satisfy the conditions 2μ̂ 2μ̂, >0.  Otherwise, the parameters 

estimated may give negative or complex number solutions. 

 

3.2.2.2 Estimation of Parameters through the Method of Maximum Likelihood 

The method of maximum likelihood is another method by which to estimate parameters for 

any distribution function.  The likelihood function for the mixed-exponential is: 
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For simplicity for solving, the log-likelihood function is defined to be: 
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Further simplified, 
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where, p1=p and p2=(1-p).  

 

3.2.3 Parameter Optimization Techniques 

Optimal solutions to maximizing the log-likelihood function can be found using various 

methods. The following three optimizing methods were used: 

 

3.2.3.1 Iterative Optimization 

Everitt and Hand (1981) found the following solutions for the estimating the parameters to 

the log likelihood equation (Eq. 21): 
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These iterative equations were solved for the optimal solution using a method suggested by 

Nguyen and Mayabi (1990) which provides a fast convergence rate.  Seven initial estimates of 

the three parameters were chosen by ranging p from 0.2 to 0.8 at intervals of 0.1.  µ1 was set 

to range from 0.2  to 0.8  at intervals of 0.1 .   is the mean the rainfall amounts of all 

wet days. The corresponding µ2 was calculated using the given p and µ1: 

x̂ x̂ x̂ x̂

 

(26) 
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The iteration providing the highest value out of the seven likelihood functions was taken to 

be the optimal solution to estimating the parameters. 

 

3.2.3.2 Nelder Mead Direct Search Complex (DSC) Algorithm 

The DSC algorithm was developed by Nelder and Mead (1965), which minimizes a function 

of n variables and allows bounds and limits to be imposed upon the estimated solutions.  

This DSC method uses a geometric simplex shape which directs its vertices to the minimum. 

 

Since the likelihood function in question is to be optimally maximized, the DSC algorithm 

simply minimizes the negative of the log likelihood function (Eq. 21).  The simplex method 

incorporates operations to rescale the simplex based on the local behavior of the function.  

Starting with an ‘initial guess’ for the n variables, the algorithm creates 2n points x1, x2, … x2n 

at which the function value is evaluated.  Simplex reflections are expanded in the same 

direction if the reflected value is good, however a poor value results in a contraction. If the 

function value at the contracted point is worse yet, the simplex is shrunk keeping the best 

point. 

 

At each iteration step, the worst point xj with the largest function value is replaced with a 

reflection point, xk: 

 

)( jk xccx −+= α  (27) 
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∑
≠−

=
n

ji
ixn

c
2

12
1  (28) 

 

and α>0 is a positive reflection coefficient. The algorithm then tests f(xk) for the newly created 

point xk.  If f(xk) < f(xi) (for all i), then an expansion point, xe is created: 

 

)( cxcx ke −+= β  (29) 

 

where, c is as defined above in Eq. 27 and β>1 is a positive expansion coefficient.  If, 

however, the new point, xk is worse, that is f f(xk) > f(xi) (for all i), then a contraction point, xc is 

created: 

 

)( cxcx jc −+= γ  (30) 

 

where, γ is the contraction coefficient with γ>0.  If the contraction point is still the worst, then 

the complex is shrunk by replacing the worst point, xj and retaining the best point, xq. The 

new shrunk point is, xs: 

 

)( qjs xxx −+= δδ  (31) 

 

where, δ is the shrink coefficient with a value greater than 0.  The value of xs is then set to xj. 

If the value of any of the generated points is beyond the stated bounds of the parameters, the 

point is reset to the bound itself.  The iterations resume once again, starting at the expansion 

step until the function value reaches one of the two stopping criterion stated below (Eq. 32 

and 33) with a stated tolerance, ε. 
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This algorithm was applied to optimizing the log likelihood function of the mixed-

exponential, using a modified DSC function in MATLAB with the following settings: 

 

DSC Settings Values 

ε, tolerance level 0.001 

max # of iterations 15000 

Simplex Coefficients Values 

α, reflection 1 

β, expansion 2 

γ, contraction 0.5 

δ, shrink 0.5 

Parameter Bounds Range 

p, weight 0 to 1 

µ1, small mean 0 to 15 

µ2, large mean 15 to 100 

Initial Guesses Values 

p, weight 

µ1, small mean 
Output from Iterative Optimization 

(Sec. 3.2.3.1) 

µ2, large mean 

Table 3-1: DSC Initialization Settings 

 

3.2.3.3. Shuffled Complex Evolution (SCE) Algorithm 

This global optimization technique developed by Duan et al. (1992) was found to be able to 

provide more accurate and more robust results than the local optimization procedures 

(Peyron and Nguyen, 2004) and was applied to minimize the negative of the log-likelihood 

function.  Where the regular simplex search operates independently, the SCE differs by 

sharing information among different groups of point to find a global optimum. 
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The algorithm takes as input an initial guess and an upper and lower bound for each 

estimated parameter.  The SCE method samples a population of points randomly from the 

given feasible space which are in turn split into several ‘communities’ or complexes.  Each 

community of points undergo ‘evolution’ based on statistical ‘reproduction’ that uses the 

simplex shape to search for the optimal answer.  Communities are also mixed at different 

points to share information.  The complete process is described in greater detail below: 

 

1.  The algorithm samples s points (x1, x2, … xs) in the feasible space for which the function 

values f(xi) are evaluated. 

 

2.  The s points are sorted according to increasing function value in an array D. 

 

3.  D is partitioned into p complexes of arrays A1, A2, … Ap where p>1, each complex 

containing m points with m>1. 

 

4.  Each complex A is then evolved using the competitive complex evolution algorithm: 

 i) A trapezoidal probability distribution is applied to each Ak (k = 1,2…p): 
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ii) q number of points referred to as ‘parents’ are selected from Ak according to 

distribution above and stored in B  along with their corresponding function values. 

 

iii) Locations of Ak which are used to create B are stored in L, where L and B are 

sorted such that the q points are in increasing function value. 

 

iv) The worst parent point uq from B is used to create a new point or an ‘offspring’ 

through a reflection step: 

 

   qugr −= 2 (35) 
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where,  
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v) If the point r provides a function value fr < fq, then uq is replaced by r.  Otherwise, a 

contraction step is performed: 

 

   2/)( qugc += (37) 

 

vi) If the point c provides a function value fc < fq, then uq is replaced by c.  If not, a 

new point z is randomly generated in the feasible space in a mutation step. uq is then 

replaces by uz.  If after the reflection step, r  is not in the feasible space the mutation step 

is performed. 

 

vi) Steps iv) to vi) are then repeated a user specified α times to create more offspring. 

 

vii) All new offspring in B are then re-stored in Ak in their parents’ original locations 

and Ak is sorted in increasing function value and steps 4 i) to vi) is repeated a user 

specified β times. 

 

6. All new Ak are then shuffled back into D and sorted in increasing function value.  A 

convergence criterion similar to the DSC method is checked.  If the criterion is not met, the 

algorithm reiterates from the partitioning step. 

 

The SCE and CCE functions written in MATLAB by Duan et al. (1992) were modified for 

the use of estimating the minimum of the negative log-likelihood function (Eq. 21).  It also 

allowed for the range of the lower bound µ2 to be updated and replaced after each complex 

evolution step with the best estimate for µ1 such that µ2 > µ1.  User-specified parameters are 

tabulated below in Table 3-2.  The default values for the mutation coefficients are built into 

the function created by Duan et al. (1992).  
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SCE Settings Values 

# of evolutionary steps 10 

max # of iterations 10000 

# of complexes 3 

% stopping criterion 0.01 

Parameter Bounds Range 

p, weight 0 to 1 

µ1, small mean 0 to 30 

µ2, large mean Updated µ1 to 100 

Initial Guesses Values 

p, weight 0.5 

µ1, small mean 6 

µ2, large mean 12 

Table 3-2: SCE Initialization Settings 

 

3.2.4 Seasonal Variability of Parameters 

As outlined in the methods above, five parameters (two describing the transitional 

probabilities and three explaining the mixed-exponential distribution) can be found for 12 

sets of monthly data.  Each parameter set is then fitted to a finite Fourier series (Woolhiser 

and Pegram, 1978), where the parameters change periodically through the 12 months of the 

year, which is the case with weather processes.  

 

The parameter set for the rainfall process for each month τ  can be written as: 

 

{ )(),(),(),(),()( 2110 }τμτμττττ pppv oo=  (38) 

 

The parametric monthly Fourier series representation of the parameters for τ = 1, 2… w, 

where w = 12, can be written as: 
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Here, h is the maximum number of harmonics needed to specify the variation of parameter 

concerned, it is however set to a constant h = 5 for the purposes of this research based on 

the research of Han (2001).  Thus, a maximum of 2h + 1 coefficients are needed to describe 

each parameter , which makes for a parsimonious estimation.  Furthermore, is defined 

as the sample estimate of the unknown population periodic parameter  where: 

τûτv
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The coefficients of the Fourier series in [Eq. 39] are determined through maximum 

likelihood estimates as follows, for all j = 1, 2 … h harmonics specified: 
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An alternate polar form of the Fourier series was also considered, however not applied to the 

final model.  

  

∑
=

⎥⎦
⎤

⎢⎣
⎡ ++=

h

j
jj w

jCuv
1

)2cos(ˆ θτπ
ττ  (43) 

 

3.3. Simulation: A Rainfall Generator in MATLAB 

MATLAB functions were developed to create a software package in order to simulate daily 

rainfall using the MCME model for any time series of data.  The stochastic model was 

created such that the occurrence and amounts on any given day would be random, however 

the overall simulated time series would preserve observed occurrence patterns and rainfall 

amount distributions.  The daily model was later adapted for the hourly scale.   
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3.3.1 Daily Scale 

The daily rainfall simulations were achieved using the following methods as shown through 

the flow diagram of the programming functionality and MCME modeling in Figure 3-5: 

 

At the initial calibration stage, an observed series of data is input into the package, after 

which it is separated into monthly segments which are then fed into functions which extract 

monthly transitional probabilities using an empirical count of the states of consecutive days 

[Eqn. 4 and 5] and mixed-exponential parameters using the SCE algorithm.   

 

The calculated monthly parameters are in turn fed into the simulation stage, where the user is 

prompted to initialize the process by entering the length of synthetic time series data that is 

required and specifying the state of the previous day (ie. wet or dry).  The simulation is then 

allowed to run.  

 

1. For any given day, a uniform random number, u between 0 and 1 is generated. 

 

2. The parameter set of the month to which the simulated day belongs to is extracted. 

 

i) If the preceding day is dry and u < p00 , then the current day is to said to be dry and 

the process restarts at step 1.  However, if u > p00, the day is said to be wet and a 

rainfall amount is then required to be generated. 

 

ii) If the preceding day is wet and u < p10 , then the current day is to said to be dry 

and the process restarts at step 1.  However, if u > p10, the day is said to be wet and a 

rainfall amount is then required to be generated. 

 

3. If step 2 determined a wet day, another uniform random number, u is generated.  A 

theoretical cumulative density function (CDF) (Eq. 44) of the rainfall amounts is constructed 

using the estimated mixed-exponential parameters: 
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For the given u, the Newton-Raphson approximation method is employed to approximate the 

solution for the amount, X.  The following function is solved using an initial approximation 

for Xnew = µ1  or   µ2: 

 

uXFY −= )(  (45) 

  

A new approximation for Xnew is found using, 

 

'Y
YXX oldnew −=  (46) 
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These iterations are continued until following stopping criterion [Eqn. 48] is achieved and 

the daily estimated rainfall amount is estimated to be Xnew. 

 

001.0≤− oldnew XX   (48) 

 

Once the rainfall amount of the current simulated day is determined, the current day is set to 

the preceding day and the simulation process is restarted at step 1 until the user specified 

time frame is fulfilled. 
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Figure 3-5: Flow Chart of MCME Rainfall Generator in MATLAB 

 

3.3.2 Hourly Scale 

The hourly simulation model was adjusted in its data intake functions where every day 

contained twenty four values for occurrences and amounts.  Successive hourly data was then 

treated similarly to daily data where all the hourly data are separated into monthly data sets 

and twelve sets of five monthly parameters are derived for the hourly rainfall MCME model.  

The same algorithm as stated above for the daily process was then used to describe 

successive day states and rainfall amounts.  The data handling and random number 

generation procedure was much more computationally intensive for generating rainfall series 

at the hourly scale at the daily scale. 

 

3.4 Assessment of the MCME Model 

The application of the different optimization techniques in estimating the mixed-exponential 

parameters were first evaluated by using data from Dorval Airport for the period of 1961-
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1990.  The different techniques were then evaluated graphically (frequency distribution 

curves, exceedance probability curves) and through quantitative analysis of the log-likelihood 

function value. 

 

The MCME stochastic rainfall generator was then calibrated with daily data from 1961-1980 

from each of the stations in Dorval Airport, Sooke Reservoir and Roxas City.  The mixed-

exponential fit was compared with observed monthly distributions for each location.  Based 

on the calibration, 100 simulations were generated.  The effectiveness of the Newton-

Raphson technique of extracting a rainfall amount from the CDF curve was also shown 

graphically.   

 

For each simulation output, a set of statistical and physical criteria, described in the sections 

below, were used for the evaluation of the MCME model in its ability to preserve observed 

characteristics of rainfalls.   Both graphical and numerical comparisons were used in this 

evaluation. 

 

3.4.1 Statistical Properties 

Statistical properties of 100 synthetic daily time series produced by each model were analyzed 

graphically using box plots for monthly comparisons of the 100 simulated series with the 

observed.  Two parameters of the rainfall time-series were examined via box-plot 

representation: (1) Mean and (2) Standard Deviation.  In addition, the ability of the MCME 

model in describing the distribution of annual maximum precipitations (AMPs) (see section 

3.5.1) was also carried out. 

 

Figure 3-6 explains in greater detail the characteristics of a boxplot to describe the accuracy, 

robustness and variability of an estimation of a given parameter from the generated rainfall 

series. 
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Figure 3-6: Characteristics of a Boxplot 

 

3.4.2 Physical Properties 

Table 3-3 presents the six indices that have been selected for evaluating the performance of 

the MCME model in the description of the physical properties of the underlying rainfall 

process (Gachon et al., 2005). Prcp1 and SDII indices are related to the occurrence and 

intensity of precipitation, respectively, whereas the other three indices involve the 

precipitation extremes.  CDD is related to the occurrence of dry days; R3days, Prec90p and 

R90N are linked to the intensity of extreme rainfalls.  The 90th percentile index (Prec90p) is 

defined using Cunnane’s plotting position formula (Cunnane, 1978).   

 

 

Rainfall 

Property 
Index Definitions Units 

Frequency Prcp1 
Percentage of wet days 

(Threshold: 0 mm) 
% 

Intensity SDII 

Sum Daily Intensity Index: Sum of 

daily rainfall divided by # of wet 

days 

mm/wet day 

CDD Consecutive dry days (0 mm) days 

R3Days Maximum 3-day total rain mm 

Prec90p 90th percentile of rainy amount mm 
Extremes 

R90N 
% of days rainfall exceeds the 90th 

percentile 
% 

Table 3-3: Seasonal Indices of the Physical Properties of Rainfall 

≤1.5 IQR 

IQR 

X75, 75th Percentile 

X25, 25th Percentile 

X50, Median 
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These physical characteristics of the rainfall series are computed on a seasonal basis where 

the seasons are characterized as follows: 

 

 Winter – December, January, February 

 Spring – March, April, May 

 Summer – June, July, August 

 Autumn – September, October, November 

 

Similarly, the hourly model was applied to hourly data from Dorval Airport (1961-1980) and 

the same assessment was carried out.  To test the applicability of the hourly model in daily 

situations, the hourly simulations were aggregated or ‘lumped’ to form daily simulations and 

compared to the observed daily series. The same statistical and physical properties were 

assessed for these outputs as well. 

 

3.5 Linking to the GCM 

Design rainfall amounts are considered to be the maximum amount of precipitation for a 

given duration and for a given return period.  Frequency analysis of annual maximum 

precipitation (AMP) series at a daily scale can be used to provide design rainfall for the one-

day duration. 

 

Climate variable data of the A2 scenario from the Canadian CGCM and the Hadley Center’s 

HadCM3 models were used to statistically downscale to the daily local rainfalls at Dorval 

Airport using the Statistical DownScaling Model (SDSM) (Wilby et al., 2002a).  The 100 

simulations from the downscaled-CGCM and HadCM3 of daily rainfall data was acquired for 

the period of 1961 to 1990 and used in the frequency analysis of AMPs in comparison with 

the frequency analysis of observed AMPs and MCME-estimated AMPs. 

 

3.5.1 Calibration of AMP Curves 

For calibration purposes, the maximum daily rainfall within each year was extracted from the 

daily rainfall series for the first twenty-year (1961-1980) period.  These AMPs were ranked in 
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descending order in order to compute the empirical probability, pi for each rank, i using 

Cunnane’s plotting position formula: 

 

2.0
4.0

+
−

=
n
ipi  (49) 

 

in which, i = 1, 2, … n and n = 20.  The AMP values were then plotted against their return 

periods, Ti: 

 

i
i p
T 1

=  (50) 

 

For the MCME, CGCM and HadCM3 simulation outputs, there were 100 sets of 20 ranked 

AMP values.  The mean AMP value for each rank was then computed for each model.  Thus, 

four AMP frequency curves were derived using the observed annual maximum rainfall data, 

the mean-MCME, mean-downscaled-CGCM and mean-downscaled-HadCM3 AMPs.  In 

addition, combined AMP models based on the weighted linear combination of the mean-

MCME and mean-downscaled-GCM models (both CGCM and HadCM3) were found using 

the least square method: 
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∑  (51) 

 

where, 1 > w1 > 0 and 1 > w2  > 0 are the estimated weighting factors subject to, 

 

121 =+ ww  (52) 

 

3.5.2 Validation of AMP Curves 

In order to test the predictive ability of the combined weighted models, which were 

calibrated using data from 1961 to 1980, the second portion of the simulated data from 1981 

to 1990 was used to calculate AMPs: 
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where, w1 and w2 were the calibrated values from the previous step.  As compared to the 

available observed AMP values for the 1981-1990 validation period the  combined models 

were expected to provide more accurate results than those given by the uncorrected mean-

MCME, mean-downscaled-CGCM and mean-downscaled-HadCM3 AMP models.  Aside 

from the graphical plots, the following numerical procedures were used to further assess the 

accuracy of these models: 

 

Mean Absolute Error (MAE): 

 

∑
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Root Mean Squared Error (RMSE): 
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4. Results and Discussion 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
 

4.1 Comparison of Mixed-Exponential Parameter Estimation Methods 

The distribution of rainfall amounts on wet days was assumed to be best described by the 

three parameter mixed-exponential function.  To determine the best method for the 

estimation of parameters, four methods were compared with each provided slightly different 

results when applied to monthly data from Dorval Airport for the period of 1961-1990.  

When directly solving for the three parameters using the Method of Non-Central Moments, 

the monthly parameters estimated in table 4-1 show mathematical inconsistencies for six out 

of the twelve months (shaded areas).  Although, these estimated parameters could provide 

some ‘good’ fits to the empirical wet day distribution (Figure 4-1), some computed 

parameters (shaded areas in Table 4-1) do not make any physical sense as they are either 

negative or complex numbers.  This numerical inconsistency is generally due to the data 

series structure which can vary from month to month and is dependent on how complete a 

data series is.  Therefore, due to the inability of the method to restrict parameter values 

within a ‘reasonable’ range, optimization techniques to maximize the log-likelihood function 

were explored. 

 

Method of Moments  
Month p µ1 µ2 

1 0.205 2.414 6.558 

2 0.000 -547.500 6.100 

3 0.011 -4.558 7.232 

4 Failed 

5 -0.325 3.317 5.734 

6 0.933 8.014 15.588 

7 0.061 0.217 9.387 

8 0.056 1.673 10.259 

9 0.687 6.944 16.570 

10 1.000 7.260 103.250 

11 -0.037 0.327 7.524 

12 0.000 -23.124 7.095 
Table 4-1: Estimated Parameters through the Method of Moments 
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Tables 4-2 to 4-4 show monthly parameter estimates calculated using three different 

optimization techniques.  At first glance, it appears that all three techniques provide 

estimates which are in close to exact agreement to each other (in terms of parameter value, as 

well as log-likelihood function value) and also provide similar curve fits (Figure 4-1).  

However, both the Iterative Optimization and Nelder-Mead techniques were 

computationally exhaustive and sensitive to initial parameter ‘guesses’.  The Iterative 

Optimization required multiple initial guesses which provided several locally optimized 

parameter sets of which the chosen set was taken to be the one with the highest log-

likelihood value.  This assumption of global optimization cannot be tested for every data set 

and, therefore, a more ‘robust’ technique is required that could work in any simulation 

process for any data location. 

 

Iterative Optimization (Nguyen and Mayabi, 1990)  
Month p µ1 µ2 logL(p, µ1, µ2) 

1 0.65 4.25 8.39 -873.25 

2 0.13 4.59 6.33 -749.80 

3 0.41 5.28 8.40 -823.01 

4 0.10 7.72 7.72 -867.62 

5 0.11 6.52 6.52 -885.48 

6 0.87 7.68 14.34 -898.26 

7 0.39 5.70 10.85 -914.37 

8 0.36 6.87 11.43 -996.72 

9 0.82 7.62 20.43 -843.82 

10 0.99 7.07 23.14 -912.46 

11 0.11 7.78 7.79 -1077.60 

12 0.24 6.04 7.42 -1041.40 
Table 4-2: Parameters using Iterative Optimization of the Maximum Likelihood Function 

 

Although, the Nelder-Mead technique is a local optimization technique, it requires an initial 

parameter guess set.  The method itself converges to a solution at a faster rate than the 

iterative optimization.  It was found that the final optimized parameter set is sensitive to the 

initial guess and in order to minimize this sensitivity a ‘good’ initial guess is needed.  The 

estimates from the iterative optimization or the method of moments were used for this 

purpose.  However, this two-step optimization procedure is computationally more 

complicated and expensive.  Additionally, in the month October (Table 4-3) the Nelder-

Mead optimization failed to converge to an optimal parameter solution for the given 

algorithm settings. 
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Direct Search Complex (Nelder-Mead)  

Month p µ1 µ2 logL(p, µ1, µ2) 

1 0.65 4.26 8.42 -873.25 

2 0.12 4.56 6.32 -749.80 

3 0.43 5.31 8.44 -823.01 

4 0.58 7.72 7.72 -867.62 

5 0.66 6.52 6.52 -885.48 

6 0.88 7.70 14.57 -898.26 

7 0.40 5.72 10.87 -914.37 

8 0.35 6.81 11.38 -996.72 

9 0.82 7.62 20.48 -843.82 

10 Failed 

11 0.57 7.79 7.79 -1077.60 

12 0.19 5.92 7.36 -1041.40 
Table 4-3: Estimated Parameters using DSC Optimization of the Maximum Likelihood Function 

 

The Shuffled Complex Evolution algorithm provided the most efficient convergence to the 

global optimal solution of parameters.  As Table 4-4 shows, the parameters for all twelve 

months were estimated without any failure or numerical inconsistency.  The advantage of 

using the SCE over the other methods is listed below: 

 

 The SCE was computationally the most efficient in converging to an optimal solution 

regardless of the data series size; 

 The SCE was not sensitive to the initial guess and provided the optimal global solution 

irrespective of the initial guess; 

 The SCE allowed for imposing initial bounds upon the estimated parameters to ensure 

the optimal solution would be within a reasonable parameter space. 

 

Since the MCME simulation model was created to generate synthetic daily rainfall series for 

any location and data series, the method that produced the most robust estimates with the 

most certainty was to be considered in the final model.  Thus, the best method, given its 

advantages stated above, was found to be the Shuffled Complex Evolution method.   

 

An additional advantage of the SCE over the other methods is in its flexibility to manipulate 

the likelihood function within the algorithm with or without constraints.  These constraints 

can be introduced under different climate scenarios where the mixed-exponential parameters 

can be forced to follow certain relationships.  For instance, the weighted sum µ1 and µ2 can 
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be equated to a monthly mean rainfall amount for a given scenario where the daily values are 

not known in the future.  This has the potential to allow for the incorporation of climate 

change information in the model. 

 

 Shuffled Complex Evolution (Duan, 1992) 

Month p µ1 µ2 logL(p, µ1, µ2) 

1 0.65 4.26 8.42 -873.25 

2 0.79 6.08 6.16 -749.81 

3 0.43 5.31 8.45 -823.01 

4 0.87 7.72 7.73 -867.62 

5 0.79 6.52 6.55 -885.48 

6 0.88 7.70 14.59 -898.26 

7 0.40 5.72 10.88 -914.37 

8 0.35 6.82 11.37 -996.72 

9 0.82 7.62 20.47 -843.82 

10 0.90 6.84 11.04 -912.66 

11 0.63 7.75 7.83 -1077.60 

12 0.47 6.58 7.52 -1041.40 
Table 4-4: Estimated Parameters using SCE Optimization of the Maximum Likelihood Function 

 

Figure 4-1 shows the mixed-exponential function fit to the observed monthly rainfall 

distributions using the different methods.  The numbering of the graphs represents the 

respective distribution on the months from January (i.e., Graph 1) to December (i.e., Graph 

2). 

 

 



 

 
Figure 4-1: PDF fits through Various Techniques 
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4.2 Performance of the Daily MCME Model in Different Climate 

Conditions 

Monthly parameters for rainfall distribution (amount) and occurrences were estimated using 

the SCE method and Markov Chain process for daily rainfall series from Dorval Airport, 

Sooke Reservoir and Roxas City for period of 1961-1980.  Following Fourier series fitting of 

each variable for seasonal variability throughout the year, simulations for synthetic time series 

were conducted for the 20 year period using the calibrated parameter sets.  The comparative 

results of the MCME model’s performance in the three data locations are described in the 

sections below. 

 

4.2.1 Fitting of Mixed-Exponential Distribution to Observed Data 

To assess the descriptive ability of the mixed-exponential distribution, relative frequency 

curves and exceedance probability curves were used. 

 

4.2.1.1 Relative Frequency Curves 

Figures 4-2 to 4-4 shows the monthly relative frequency histograms with the theoretically 

derived mixed-exponential curve.  The relative frequency of rainfall shows the empirical 

probability of rainfall between a 6 mm rainfall range.  The theoretical probabilities were then 

compared at nine 6 mm intervals from 0 to 54 mm of rainfall at each location.  Although a 

larger range could be used for comparison, the 6 mm intervals were taken to be adequate for 

the purposes of error analysis. 

 

Table 4-5 lists the Mean Absolute Errors (MAE) and the Root Mean Square Errors (RMSE) 

associated with the theoretical and observed fits obtained for each month of each location.  

In general, it can be seen a very good fit between the theoretical mixed-exponential function 

and the observed relative frequency can be achieved with an average RMSE of less than 

0.018.  Although the mixed-exponential fits well the data for all locations for all twelve 

months, it can be seen that the data from the Philippines fits the mixed-exponential function 

the best out of the three locations followed by Dorval Airport and finally, Sooke Reservoir.   
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Dorval Airport Sooke Reservoir Roxas City  

Month MAE RMSE MAE RMSE MAE RMSE 

1 1.042E-02 1.533E-02 9.077E-03 1.107E-02 9.235E-03 1.545E-02 

2 9.730E-03 1.385E-02 1.193E-02 1.432E-02 3.650E-03 4.796E-03 

3 1.958E-02 2.734E-02 7.296E-03 9.649E-03 2.133E-02 3.135E-02 

4 1.417E-02 2.029E-02 2.432E-02 3.820E-02 1.550E-02 1.739E-02 

5 9.132E-03 1.287E-02 1.823E-02 2.859E-02 1.010E-02 1.471E-02 

6 1.189E-02 1.815E-02 1.278E-02 1.678E-02 1.156E-02 1.672E-02 

7 9.809E-03 1.377E-02 1.272E-01 2.020E-02 1.280E-02 1.490E-02 

8 8.306E-03 9.643E-03 8.484E-03 1.228E-02 9.265E-03 1.176E-02 

9 1.526E-02 1.979E-02 1.504E-02 1.963E-02 7.066E-03 8.775E-03 

10 1.020E-02 1.380E-02 7.670E-03 9.434E-03 1.012E-02 1.331E-02 

11 1.303E-02 1.851E-02 1.551E-02 2.043E-02 6.801E-03 8.839E-03 

12 1.274E-02 1.682E-02 1.198E-02 1.567E-02 7.498E-03 8.731E-03 

Average 1.202E-02 1.668E-02 1.300E-02 1.802E-02 1.041E-02 1.389E-02
Table 4-5: Error Analysis of Mixed-Exponential Fits to Observed Data 

 

For Roxas City, the months of November, December and February have the best fit.  The 

best months represented for Dorval Airport was May, July and August, while out of the 

twelve months January, August and October provided the best fit.  Figures 4-2 to 4-4 further 

illustrate the ‘goodness’ of fit with the bars representing the observed frequency histograms 

and the lines plotting the theoretically derived function curve. 
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Figure 4-2: Daily Rainfall Distribution Fits using Monthly Parameters (Dorval Airport) 
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Figure 4-3: Daily Rainfall Distribution Fits using Monthly Parameters (Sooke Reservoir) 
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Figure 4-4: Daily Rainfall Distribution Fits using Monthly Parameters (Roxas City) 
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4.2.1.2 Exceedance Probability Curves 

The exceedance probability of monthly rainfall plotted on a semi-log scale provides another 

qualitative tool to assess the performance of the mixed-exponential distribution.  The 

exceedance probability is defined as the probability of a rainfall amount occurring that is 

greater than that of a given rainfall amount.  Thus, the probability of rainfall exceeding a low 

amount (<1mm) would be high, whereas the probability of exceeding rainfall events above 

50 mm is a more unlikely event. 

 

The observed probabilities are plotted in large dots while the theoretical values are connected 

with the dashed line.  The semi-log scale helps to determine the mixed-exponential nature of 

the data if it exists at all.  The rainfall distribution of a particular month would follow an 

exponential function if the observed probability follows a straight line.  However, it can be 

seen that for all months in Roxas City and all months, excluding February and November, in 

Sooke Reservoir the exceedance probability curves contain at least two slopes which indicate 

a mixed-exponential distribution.  The break in slopes points to the physical evidence 

concerning the presence of at least two different types of storm rainfall (convective and non-

convective) and further supports the use of the mixed-exponential.  

 

The probability curves from Dorval however do not all portray an obvious mixed-

exponential nature apart from the months of March, September.  Some data points in certain 

months in Sooke Reservoir also seem to plateau.  This is perhaps due to the lack of observed 

data for higher rainfall amounts in the plotted range.  Overall, the use of the mixed-

exponential function can be seen to be very appropriate in all three regions due to its 

flexibility in capturing the mixture of storm types, as well as a single exponential pattern. 
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Figure 4-5: Exceedance Probabilities for Daily Rainfall (Dorval Airport) 
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Figure 4-6: Exceedance Probabilities for Daily Rainfall (Sooke Reservoir) 
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Figure 4-7: Exceedance Probabilities for Daily Rainfall (Roxas City) 
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4.2.2 Fourier Series Fit to Parameter Sets 

Two Markov Chain transitional probabilities (p00 and p10) and three mixed-exponential 

parameters (p, µ1 and µ2) were generated for each month at each location.  Thus, a total of 

sixty parameters were needed to describe the rainfall process.  Seasonal variability of each 

parameter through the twelve months of the year was then represented by using maximum 

likelihood estimates of the periodic parameters using five harmonics (Han, 2001).  This 

Fourier series fit is compared to the non-fitted transitional probabilities (Section 4.2.2.1) and 

mixed-exponential parameters (Section 4.2.2.2). 

 

As can be seen in Figures 4-8 to 4-10, the Fourier fits for all transitional probabilities are in 

very close agreement.  However, the parameter µ1 for Dorval (Figure 4-11), Sooke Dam 

(Figure 4-12) and Roxas City (Figure 4-12) is not as well represented.  Similarly, the Fourier 

fit for p at Sooke Dam varies with the original estimate.  This perhaps implies that lower 

rainfall amounts may not be as well predicted.   

 

An improvement of fit may be suggested by maximizing the variance explained using a 

higher number of harmonics than the five used in this analysis for each parameter at each 

location.  This would however increase the total number of parameters needed to be 

estimated (see Section 3.2.3).  The use of five harmonics for all five parameters lowers the 

total number of parameters needed in the model from sixty to fifty-five.  According to Han 

(2001), five harmonics were sufficient in explaining over 90% of the variance of monthly 

parameters at Dorval.   

 

The number of harmonics may of course be reduced and increased according to each 

parameter set at each location to create a more parsimonious model but this was beyond the 

scope of creating a general MCME model suited to various data from various locations.  An 

algorithm optimizing for the number of harmonics needed to explain maximum variance of 

parameters from any location can always be incorporated in the model in future studies. 
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4.2.2.1 Transitional Probabilities 

 
Figure 4-8: Monthly Transitional Probabilities and Fourier Series Fits (Dorval Airport) 

 

 
Figure 4-9: Monthly Transitional Probabilities and Fourier Series Fits (Sooke Reservoir) 
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Figure 4-10: Monthly Transitional Probabilities and Fourier Series Fits (Roxas City) 
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4.2.2.2 Mixed-Exponential Parameters 

 
Figure 4-11: Monthly Mixed-Exponential Parameters and Fourier Series Fits (Dorval Airport) 
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Figure 4-12: Monthly Mixed-Exponential Parameters and Fourier Series Fits (Sooke Reservoir) 
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Figure 4-13: Monthly Mixed-Exponential Parameters and Fourier Series Fits (Roxas City) 
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4.2.3 Simulation Verification 

Following the calibration of rainfall amounts using Fourier fits of the mixed-exponential 

Section 4.2.3.1 verifies the simulated daily rainfall amount.  Sections 4.2.3.2 and 4.2.3.3 then 

compares the simulated parameters from 100 simulations to the calibrated parameters  

 

4.2.3.1 Generating Rainfall Amount from the CDF 

Using the Fourier series parameters for the mixed-exponential cumulative density function 

(CDF), for every wet day a random number between 0 to 1 was generated and the Newton-

Raphson algorithm was used to extract the rainfall amount.   

 

To verify that this technique accurately derived the correct rainfall amount from the CDF, 

the daily simulated amount (small trace dots) was plotted against the observed cumulative 

probability (large dots) of rainfall (Figures 4-14 to 4-16).  The simulated large dots were 

expected to follow the empirical probability curve, which is indeed confirmed for all month 

at all three locations. 

 

For the months of January to March, November and December in Sooke Dam, it can be 

seen that the simulated values are often higher than the empirical values.  This is due to the 

lack of observed rainfall amounts within the plotted rainfall range. 
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Figure 4-14: Simulated Rainfall and Observed Cumulative Distribution (Dorval Airport) 
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Figure 4-15: Simulated Rainfall and Observed Cumulative Distribution (Sooke Reservoir) 
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Figure 4-16: Simulated Rainfall and Observed Cumulative Distribution (Roxas City) 
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4.2.3.2 Simulated Transitional Probabilities 

The boxplots in Figures 4-17 to 4-22 represent the spread of the transitional probabilities 

computed from the 100 sets of monthly simulated data.  Those are compared to the 

empirical transition probabilities (represented by the dots connected by the dashed line).   

 

It is apparent that the simulated transitional probabilities are well preserved and comparable 

to the empirical values for all three locations.  The median value of each boxplot is well 

matched to the empirical value.  The spread around the median in the boxplots represents 

the variability that exists in 100 simulations over 20 years.  The seasonal variability can also 

be seen in general trend of the monthly boxplots for the whole year.  Thus, it can be seen 

that the simulation of daily rainfall occurrences is comparable to that of the observed 

patterns. 

 

A further investigation of the transitional probabilities at Dorval Airport shows that a day is 

more likely to be dry if the previous day was dry in the months of April and October. 

Similarly, there is a higher probability of rain on a given day in June, October and November 

if the previous day was also rainy.  There is also a clear periodic trend in these parameters. 

 

At Sooke Dam, the likelihood of a dry day following another dry day increases from the 

month of January till July, after which is declines to its lowest value in December.  The 

transitional probability of p10 also supports the fact that the winter months of November to 

February contain the most rainy days in the year. 

 

Figures 4-21 and 4-22 show the month of April as the driest month in Roxas City.  This is 

implied because the likelihood of a day being dry is the highest during this month, regardless 

of the status of the previous day.  The months of July to December seem to contain the 

largest number of wet days due to their relatively low values of the transitional parameters.  

Further analysis of the occurrence properties of simulated and observed data are provided in 

Section 4.2.4. 
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Figure 4-17: Comparison between Simulated (Boxplots) and Empirical (o-- -o) p00 (Dorval Air.) 

 

 
Figure 4-18: Comparison between Simulated and Empirical p10 (Dorval Air.) 

 

62 

 

 



 
Figure 4-19: Comparison between Simulated and Empirical p00 (Sooke Res.) 

 

 
Figure 4-20: Comparison between Simulated and Empirical p10 (Sooke Res.) 
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Figure 4-21: Comparison between Simulated and Empirical p00 (Roxas City) 

 

 
Figure 4-22: Comparison between Simulated and Empirical p10 (Roxas City) 
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4.2.3.3 Simulated Mixed-Exponential Parameters 

When comparing simulated mixed-exponential parameters to the empirical (observed) values, 

it can be seen that the simulated weighting parameters p for Dorval Airport (Figure 4-23), in 

particular, varies greatly from the empirical values.  In fact, for a majority of the months the 

range of simulated values is very large, often spanning the entire feasible space (0 to 1) for 

the parameter.  For many cases (March, April, June, July, October and November) even the 

middle 50% of simulated values in the boxplots do not match the empirical value.  This is 

also true for the simulation of the lower mean parameter µ1 (Figure 4-24) in the same 

months.  The simulated boxplots for the higher mean parameter µ2 (Figure 4-25), however 

contain the empirical values and follows a similar trend. 

 

In contrast, the median of the simulated boxplots and the empirical parameter values for 

Sooke Reservoir and Roxas City show close agreement in value as well as the trend.  There is 

also a noticeable seasonal periodic variation in all parameters for these two locations.  In 

addition, there appears to be a higher distribution of rainfall with high means from the 

months of June to November in Roxas City, while Sooke Reservoir the rainfall distribution 

largely consists of a lower mean distribution. 

 

The wide differences in simulated and empirical values for the mixed-exponential for Dorval 

Airport and some months in Sooke Reservoir can be explained mainly due to the fact that 

unlike the transitional probabilities which are estimated by the corresponding empirical 

probabilities, the mixed-exponential parameters are estimated by the maximum likelihood 

method.  This procedure does not aim to preserve the specific observed mixed-exponential 

parameters, but merely aims to find any parameter set that globally maximizes the likelihood 

of matching the mixed-exponential function to the empirical distribution.  Therefore, it is 

expected that the generated rainfall series would provide a good match between the 

simulated mixed-exponential function and the empirical distribution of rainfall amounts 

rather than preserve the exact value of each mixed-exponential parameter independently. 
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Figure 4-23: Comparison between Simulated (Boxplots) and Empirical (o - - o) p (Dorval Airport) 

 

 
Figure 4-24: Comparison between Simulated and Empirical µ1 (Dorval Airport) 
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Figure 4-25: Comparison between Simulated and Empirical µ2 (Dorval Airport) 

 

 
Figure 4-26: Comparison between Simulated and Empirical p (Sooke Res.) 
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Figure 4-27: Comparison between Simulated and Empirical µ1 (Sooke Res.) 

 

 
Figure 4-28: Comparison between Simulated and Empirical µ2 (Sooke Res.) 
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Figure 4-29: Comparison between Simulated and Empirical p (Roxas City) 

 

 
Figure 4-30: Comparison between Simulated and Empirical µ1 (Roxas City) 
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Figure 4-31: Comparison between Simulated and Empirical µ2 (Roxas City) 

 

4.2.4 Properties of Simulation and Observed Series 

The statistical and physical properties of 100 simulations and the observed rainfall series 

were compared, as described in the following: 

4.2.4.1 Statistical Properties 

Figures 4-32 to 4-37 show daily means and standard deviations of observed and simulated 

rainfall series for each month at all three locations.  The observed boxplot contains 20 values 

for each year in the observed data period.  Each monthly simulation boxplot contains 20 

values for each year in the simulated period (twenty years) for every one of the 100 

simulations, adding to a total of 2000 values in the boxplot.   

 

A qualitative inspection of the boxplots shows that the medians of the means and standard 

deviations of the simulations are comparable to the observed statistical characteristics.  The 

spread (middle 50%) of these characteristics are also very similar.  Table 4-6 provides 

quantitative percentage error difference between simulated and observed medians.  

Although, it can be seen that most errors are less than 10% for all locations, the differences 

in the months of January to April at Roxas City are very high (i.e. up to 400%).  This is 

mainly due to the observed data gaps during those months at that location. 
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Figure 4-32: Monthly Means of Daily Rainfalls (mm) for Dorval Airport 

1 – Observed, 2 - Simulated 

 

 
Figure 4-33: Monthly Std Deviations of Daily Rainfalls (mm) for Dorval Airport 

1 – Observed, 2 - Simulated 
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Figure 4-34: Monthly Means of Daily Rainfalls (mm) for Sooke Reservoir 

1 – Observed, 2 - Simulated  

 

 
Figure 4-35: Monthly Std Deviations of Daily Rainfalls (mm) for Sooke Reservoir 

1 – Observed, 2 - Simulated  
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Figure 4-36: Monthly Means of Daily Rainfalls (mm) for Roxas City 

1 – Observed, 2 - Simulated 

  

 
Figure 4-37: Monthly Std Deviations of Daily Rainfalls (mm) for Roxas City 

1 – Observed, 2 - Simulated  
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Mean (mm) Standard Deviation (mm) Dorval 
obs sim 1 diff (%) obs sim 1 diff (%) 

January 1.97 1.89 -3.91 3.63 3.96 9.01 

February 1.58 1.76 11.59 3.92 3.87 -1.43 

March 2.31 1.95 -15.68 5.69 4.50 -20.85 

April 2.24 2.56 14.22 5.50 5.74 4.40 

May 1.75 1.99 13.62 3.77 4.31 14.40 

June 2.78 2.39 -14.04 5.68 5.27 -7.10 

July 2.38 2.52 6.19 5.83 5.39 -7.54 

August 2.91 3.06 5.16 6.84 6.62 -3.21 

September 2.84 3.08 8.61 6.72 6.97 3.71 

October 2.20 2.49 13.00 4.82 5.45 12.94 

November 2.66 2.36 -11.28 5.20 4.61 -11.31 

December 2.72 2.65 -2.50 4.82 5.12 6.12 

MAE(%) 9.98 8.50 

Mean (mm) Standard Deviation (mm) Sooke Reservoir 
obs sim 1 diff (%) obs sim 1 diff (%) 

January 7.61 9.22 21.24 14.63 18.64 27.39 

February 8.01 7.15 -10.71 14.88 14.68 -1.40 

March 5.94 5.17 -12.98 9.97 10.68 7.20 

April 2.52 2.73 8.31 5.34 6.29 17.62 

May 1.31 1.11 -14.76 3.73 3.00 -19.58 

June 1.09 1.00 -7.52 2.97 3.04 2.27 

July 0.71 0.73 3.22 2.70 2.37 -12.20 

August 0.74 1.03 38.39 2.97 3.28 10.57 

September 2.17 1.88 -13.34 5.45 5.47 0.45 

October 5.27 4.87 -7.61 11.88 11.29 -4.93 

November 7.53 8.60 14.26 13.67 15.57 13.94 

December 10.77 10.51 -2.49 18.18 18.84 3.68 

MAE(%) 12.90 10.10 

Mean (mm) Standard Deviation (mm) Roxas City 
obs sim 1 diff (%) obs sim 1 diff (%) 

January 3.43 5.13 49.62 4.6139 10.18 120.64 

February 1.26 3.15 151.02 3.6957 6.4549 74.66 

March 0.97 3.34 244.50 2.2951 6.2897 174.05 

April 0.54 2.96 442.92 2.1579 8.3857 288.60 

May 3.48 5.51 58.11 7.8402 11.282 43.90 

June 8.79 12.05 37.12 13.706 18.999 38.62 

July 9.37 9.35 -0.18 11.732 13.2 12.51 

August 7.60 9.28 22.09 12.49 15.022 20.27 

September 8.74 8.59 -1.71 12.122 12.773 5.37 

October 10.68 13.03 21.94 13.432 19.966 48.65 

November 9.33 11.21 20.22 16.149 20.093 24.42 

December 6.47 7.37 13.82 7.9988 11.38 42.27 

MAE(%) 88.60 74.50 
1 Simulated values correspond to mean of 100 simulations 

 

Table 4-6: Numerical Comparison of Daily Median Statistical Properties 



4.2.4.2 Physical Properties of Rainfall Series 

Figures 4-38 to 4-49 show seasonal precipitation indices of the observed and simulated time 

series at each location.  In general, good agreements between observed and simulated 

physical indices were found.  Tables 4-7, 4-8 and 4-9 summarize the results in terms of the 

percentage differences between median observed and simulated values (mean over the 100 

simulated series).   

 

Among the three locations, the seasonal properties from Dorval are best preserved with the 

average percentage difference being less than 6% for any season.  However, the differences 

for the consecutive dry days during winter and spring are somewhat higher, 8.3% and 12.5%, 

for these seasons, respectively.  The errors for maximum 3-day rainfall total during summer 

and autumn were 9.6% and 20.3%. 

 

For Sooke Reservoir, the worst simulated property was the maximum 3-day rainfall total, 

with differences exceeding 25% and 86% in winter and summer.  All other seasonal indices 

were well within 10% of the original median values. 

 

Percentage of wet days for all four seasons during winter, spring, summer and autumn are 

poorly simulated with median differences exceeding 52%, 110%, 39% and 42% respectively 

for Roxas City.  This could be largely due to the data missing for an entire year of the 

calibrated observed series and some further data gaps within some months. 

 

Overall, most simulated seasonal physical characteristic of rainfall are well preserved in the 

MCME simulations.  The best property simulated was the simple daily intensity index and 

the 90th percentile of rainfall amounts at below 5% across the board. 
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Figure 4-38: Winter Indices (Dorval Airport): 1 – Observed, 2 - Simulated  

 

 
Figure 4-39: Spring Indices (Dorval Airport): 1 - Observed, 2 - Simulated 
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Figure 4-40: Summer Indices (Dorval Airport): 1 – Observed, 2 - Simulated  

 

 
Figure 4-41: Autumn Indices (Dorval Airport): 1 – Observed, 2 - Simulated  
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Figure 4-42: Winter Indices (Sooke Reservoir): 1 – Observed, 2 - Simulated 

 

 
Figure 4-43: Spring Indices (Sooke Reservoir): 1 – Observed, 2 - Simulated  
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Figure 4-44: Summer Indices (Sooke Reservoir): 1 - Observed | 2 - Simulated  

 

 
Figure 4-45: Autumn Indices (Sooke Reservoir): 1 – Observed, 2 - Simulated 
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Figure 4-46: Indices for December to February (Roxas City): 1 – Observed, 2 - Simulated 

 

 
Figure 4-47: Indices for March to May (Roxas City): 1 – Observed, 2 - Simulated 
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Figure 4-48: Indices for June to August (Roxas City): 1 – Observed, 2 - Simulated 

 

 
Figure 4-49: Indices for September to November (Roxas City): 1 – Observed, 2 - Simulated 
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Winter Spring Dorval 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp1 (%) 36.67 35.56 -3.03 28.80 30.43 5.66 

SDII (mm) 6.03 6.15 2.02 7.62 7.43 -2.55 

CDD (days) 8.00 9.00 12.50 12.00 11.00 -8.33 

R3Days (mm) 29.50 27.82 -5.69 31.60 31.98 1.20 

Prec90p (mm) 14.95 14.59 -2.41 17.84 17.41 -2.41 

R90N (%) 9.09 10.00 10.00 10.00 9.76 -2.44 

MAE (%) 5.94 3.77 

Summer Autumn Dorval 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp1 (%) 32.07 31.52 -1.71 32.42 32.97 1.70 

SDII (mm) 8.75 8.54 -2.34 7.95 8.29 4.34 

CDD (days) 9.50 10.00 5.26 11.00 11.00 0.00 

R3Days (mm) 37.85 34.21 -9.62 30.75 36.99 20.29 

Prec90p (mm) 22.00 20.80 -5.45 18.48 19.32 4.55 

R90N (%) 9.60 9.76 1.61 10.00 9.67 -3.33 

MAE(%) 4.33 5.70 
1 Simulated values correspond to mean of 100 simulations 

 

Table 4-7: Numerical Comparison of Median Seasonal Indices (Dorval Airport) 

 

Winter Spring Sooke Res. 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp1 (%) 41.11 40.00 -2.70 29.35 29.35 0.00 

SDII (mm) 21.26 23.32 9.73 10.33 10.64 3.06 

CDD (days) 11.00 10.00 -9.09 12.00 14.00 16.67 

R3Days (mm) 106.70 134.13 25.71 51.35 58.54 13.99 

Prec90p (mm) 52.24 55.68 6.58 22.35 25.46 13.88 

R90N (%) 9.38 9.76 4.06 9.55 9.68 1.38 

MAE (%) 9.65 8.16 

Summer Autumn Sooke Res. 
obs sim 1  sim 1 diff (%) obs diff (%) 

Prcp1 (%) 12.50 15.22 21.74 30.22 30.77 1.82 

SDII (mm) 7.22 6.66 -7.63 18.12 16.98 -6.28 

CDD (days) 27.00 22.00 -18.52 13.00 13.00 0.00 

R3Days (mm) 11.10 20.68 86.31 97.40 93.18 -4.34 

Prec90p (mm) 17.08 16.83 -1.44 39.39 41.44 5.19 

R90N (%) 9.09 9.53 4.78 10.34 10.00 -3.26 

MAE(%) 23.40 3.48 
1 Simulated values correspond to mean of 100 simulations 

 

Table 4-8: Numerical Comparison of Median Seasonal Indices (Sooke Reservoir) 
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December to February March to May Roxas City 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp1 (%) 44.44 67.78 52.50 21.20 44.57 110.25 

SDII (mm) 7.62 8.06 5.79 8.92 9.36 4.93 

CDD (days) 5.50 5.00 -9.09 11.00 10.00 -9.09 

R3Days (mm) 63.70 84.82 33.16 34.90 74.47 113.38 

Prec90p (mm) 18.32 19.82 8.24 28.74 26.53 -7.69 

R90N (%) 10.20 10.00 -1.97 9.09 9.80 7.84 

MAE (%) 18.46 42.20 

June to August September to November Roxas City 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp1 (%) 53.80 75.00 39.39 53.85 76.92 42.86 

SDII (mm) 13.08 13.84 5.83 14.65 14.68 0.21 

CDD (days) 4.50 4.00 -11.11 4.00 3.00 -25.00 

R3Days (mm) 93.40 126.42 35.35 122.95 145.73 18.53 

Prec90p (mm) 37.31 37.61 0.81 37.62 39.12 3.99 

R90N (%) 9.57 9.88 3.21 9.90 10.00 0.99 

MAE(%) 15.95 15.26 
1 Simulated values correspond to mean of 100 simulations 

 

Table 4-9: Numerical Comparison of Median Seasonal Indices (Roxas City) 

 

4.3 Performance of Hourly MCME Model  

To assess the feasibility of the MCME model for hourly rainfall simulations, a modified 

hourly MCME model was created and its performance assessed using hourly data from 

Dorval Airport for the calibrated period from 1961-1980. 

 

4.3.1 Fitting of Mixed-Exponential Distribution to Observed Data 

Figure 4-50 shows the hourly distribution of rainfalls at increments of 0.6 mm from 0 to 5.1 

mm.  Although the fitted mixed-exponential curve fit most observed relative frequency 

points well, the lowest interval from 0 to 0.3 mm is slightly underestimated. 

 

The exceedance probability curves in Figure 4-51 provide evidence of multiple slopes, 

especially in the months of January and May to November, further supporting the use of 

mixed-exponentials in describing the distribution of hourly rainfall in the region.  
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Figure 4-50: Hourly Rainfall Distribution Fits using Monthly Parameters (x0.1 mm) 
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Figure 4-51: Exceedance Probability for Hourly Rainfall (x0.1 mm) 
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4.3.2 Fourier Series Fit to Parameter Sets 

The Fourier fits (Figures 4-52 to 4-53) for the transitional probabilities and mixed-

exponential parameters are very close to originally derived parameters showing seasonal 

variations as well.  These hourly curve fits are in better agreement than that for the daily 

parameters (especially, µ1 and µ2 parameters). 

  

 
Figure 4-52: Monthly Transitional Probabilities and Fourier Series Fits for Hourly Rainfall 
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Figure 4-53: Monthly Mixed-Exponential Parameters and Fourier Series Fits for Hourly Rainfall 
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4.3.3 Simulation Verification 

All computed parameters for the hourly MCME model fall within the simulated boxplots 

and are in agreement to the median observed values.  The probability of a dry hour following 

dry hour is, as expected, very high (Figure 4-54).  The highest chance for a wet hour 

occurring following a dry hour, albeit very low still, is from May to October, whereas, a dry 

hour following a wet hour is more likely in the months of June through to August.  Similarly, 

the probability of a dry hour following a wet hour is during the month of July (Figure 4-55).  

These rainfall occurrence characteristics were well described by the MCME model. 

 

As for the daily model, the simulated mixed-exponential parameters in the hourly model do 

not always match the empirical values (Figures 4-56 to 4-58).  The simulated middle 50% of 

the boxplots for the weighted parameter p do not contain the calibrated value for February, 

April and December, however, the other two mean parameters are well represented by the 

simulations.  There is also a clear seasonal periodic variation in the lower and higher means, 

with the lower means staying hovering around 0.1 mm throughout the year. 

  

 
Figure 4-54: Comparison between Simulated (Boxplots) and Empirical (o - - o) Hourly p00  
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Figure 4-55: Comparison between Simulated and Empirical Hourly p10 

 

 
Figure 4-56: Comparison between Simulated and Empirical Hourly p 
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Figure 4-57: Comparison between Simulated and Empirical Hourly µ1 

 

 
Figure 4-58: Comparison between Simulated and Empirical Hourly µ2 
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4.3.4 Properties of Simulated and Observed Rainfall Series 

Figures 4-59 and 4-60 show the boxplots for the hourly means and standard deviations of 

hourly rainfall for each month at Dorval Airport.  Table 4-10 shows that percent difference 

between all the simulated and observed medians are, on average, 18%.  The differences 

between simulated and observed means and standard deviations, however, are at their largest 

between the months of May to July with differences exceeding 20%.   

 

A further analysis was conducted to see whether the hourly rainfall data could be aggregated 

or ‘lumped’ to form a daily rainfall equivalent.  The simulated statistical and physical 

properties of the daily rainfalls were then compared to the observed daily data from the same 

period.  Figures 4-61 and 4-62 show that the simulated lumped median values for the daily 

mean and standard deviations are underestimated at an average of 32% and 38% difference, 

respectively. 

 

When comparing the physical properties of the hourly simulations (Figures 4-63 to 4-66), it 

can be seen that the maximum number of consecutive dry hours (CDH) and maximum 8-

hour total rainfall (R8H) are underestimated at more than 25% for all four seasons.  The 

percentage of wet hours (Prcp1%) is the best simulated seasonal property, while the hourly 

intensity index (equivalent to the daily SDII) shows less than 8% difference during spring, 

summer and autumn (Table 4-11). In the comparison of lumped daily rainfall properties 

(Figures 4-67 to 4-70), however, Prcp1% is worst captured by the lumped simulations when 

compared to daily rainfall.  Apart from the winter season, the median value of Prcp1% is 

overestimated at a difference larger than 50% of the observed.  The total 3-day total rainfall 

(R3Days) is the only property that was simulated to less than 10% difference of the observed 

value. 

 

In summary, the MCME model could describe reasonably well the statistical and physical 

properties of hourly rainfall series when its parameters were estimated using data at the same 

hourly scale.  However, this model was found not to be able to capture accurately the 

properties of rainfall series for the daily scale from the ‘lumped’ hourly information.  This 

inconsistency should be investigated further using hourly rainfall data from other regions. 
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Figure 4-59: Monthly Means of Hourly Rainfalls (x 0.1 mm) 1 – Observed, 2 – Simulated 

 

 
Figure 4-60: Monthly Standard Deviations of Hourly Rainfalls (x 0.1 mm) 

1 – Observed, 2 – Simulated 
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Figure 4-61: Monthly Means of Lumped Daily Rainfalls (mm) 

1 - Observed Daily, 2 – Lumped Daily 

 

 
Figure 4-62: Monthly Std Deviations of Lumped Daily Rainfalls (mm) 

1 - Observed Daily, 2 –Lumped Daily 

 

 

 

93 

 

 



Mean (0.1 x mm) Standard Dev (0.1 x mm) Hourly 
obs sim 1 sim 1 diff (%) obs diff (%) 

January 0.19 0.29 49.64 1.60 2.83 76.60 

February 0.19 0.16 -14.62 1.26 1.65 31.28 

March 0.45 0.44 -3.00 3.07 3.05 -0.55 

April 0.78 0.78 0.12 3.95 3.87 -2.11 

May 0.68 0.86 25.15 3.67 4.38 19.45 

June 1.16 0.90 -21.97 7.22 5.63 -22.07 

July 1.01 1.21 19.93 7.15 8.63 20.66 

August 1.28 1.17 -8.81 8.89 7.98 -10.21 

September 1.09 1.38 27.16 7.27 8.57 17.83 

October 1.02 0.89 -12.48 4.59 4.14 -9.68 

November 0.80 0.90 12.34 4.16 4.38 5.05 

December 0.39 0.32 -17.57 2.77 2.50 -9.75 

MAE(%) 17.73 18.77 

Mean (mm) Standard Deviation (mm) Lumped Daily 
obs sim 1 sim 1 diff (%) obs diff (%) 

January 1.97 0.69 -64.80 3.63 2.10 -42.15 

February 1.58 0.38 -75.75 3.92 1.18 -70.03 

March 2.31 1.06 -54.14 5.69 2.37 -58.33 

April 2.24 1.86 -16.74 5.50 3.01 -45.19 

May 1.75 2.06 17.67 3.77 3.10 -17.75 

June 2.78 2.16 -22.07 5.68 3.63 -35.98 

July 2.38 2.91 22.46 5.83 5.26 -9.76 

August 2.91 2.81 -3.25 6.84 4.86 -28.98 

September 2.84 3.32 17.07 6.72 5.67 -15.69 

October 2.20 2.14 -2.62 4.82 3.06 -36.66 

November 2.66 2.17 -18.54 5.20 3.38 -34.95 

December 2.72 0.78 -71.37 4.82 2.01 -58.28 

MAE(%) 32.21 37.81 
1 Simulated values correspond to mean of 100 simulations 

 

Table 4-10: Numerical Comparison of Statistical Properties (Hourly and Lumped Daily) 
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Figure 4-63: Winter Indices (Hourly): 1 – Observed, 2 - Simulated 

 

 
Figure 4-64: Spring Indices (Hourly): 1 – Observed, 2 – Simulated 
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Figure 4-65: Summer Indices (Hourly): 1 – Observed, 2 – Simulated 

 

 
Figure 4-66: Autumn Indices (Hourly): 1 – Observed, 2 – Simulated 
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Figure 4-67: Winter Indices (Daily): 1 - Observed Daily, 2 – Lumped Daily 

 

 
Figure 4-68: Spring Indices (Daily): 1 - Observed Daily, 2 – Lumped Daily 

 

97 

 

 



 
Figure 4-69: Summer Indices (Daily): 1 - Observed Daily | 2 – Lumped Daily  

 

 
Figure 4-70: Autumn Indices (Daily): 1 - Observed Daily | 2 – Simulated 
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Winter Spring Hourly 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp (%) 2.45 2.43 -1.10 6.05 6.52 7.86 

SDII (0.1xmm) 10.05 11.30 12.49 10.96 10.76 -1.87 

CDH (hrs) 581.00 413.00 -28.92 325.00 211.50 -34.92 

R8Hr (0.1xmm) 166.00 110.09 -33.68 186.00 118.66 -36.20 

Prec90p (0.1xmm) 23.40 26.10 11.54 25.00 24.69 -1.24 

R90N (%) 9.62 10.00 4.00 9.03 9.95 10.27 

MAE (%) 15.29 15.40 

Summer Autumn Hourly 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp% (%) 6.32 6.43 1.79 8.06 8.26 2.56 

SDII (x0.1mm) 17.57 17.40 -1.00 11.96 12.86 7.52 

CDH (hrs) 206.50 150.00 -27.36 257.50 148.00 -42.52 

R8Hr (x0.1mm) 203.50 151.21 -25.70 205.50 143.12 -30.36 

Pr90p (x0.1mm) 44.72 41.30 -7.66 24.78 28.42 14.70 

R90N (%) 9.94 9.98 0.39 9.67 10.00 3.45 

MAE(%) 10.65 16.85 

Winter Spring Lumped Daily 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp (%) 36.67 18.64 -49.15 28.80 44.57 54.72 

SDII (mm) 6.03 3.63 -39.72 7.62 3.81 -50.01 

CDD (days) 8.00 16.00 100.00 12.00 8.00 -33.33 

R3Days (mm) 29.50 11.98 -59.40 31.60 21.19 -32.96 

Prec90p (mm) 14.95 8.64 -42.20 17.84 8.70 -51.20 

R90N (%) 9.09 10.00 10.00 10.00 9.90 -0.98 

MAE (%) 50.08 37.20 

Summer Autumn Lumped Daily 
obs sim 1 sim 1 diff (%) obs diff (%) 

Prcp% (%) 32.07 53.26 66.10 32.42 54.95 69.49 

SDII (mm) 8.75 5.06 -42.13 7.95 4.70 -40.89 

CDD (days) 9.50 5.00 -47.37 11.00 5.00 -54.55 

R3Days (mm) 37.85 34.39 -9.15 30.75 31.23 1.54 

Prec90p (mm) 22.00 12.70 -42.30 18.48 11.02 -40.37 

R90N (%) 9.60 9.80 2.12 10.00 9.80 -1.96 

MAE(%) 34.86 34.80 
1 Simulated values correspond to mean of 100 simulations 

 

Table 4-11: Numerical Comparison of Seasonal Indices (Hourly and Lumped Daily) 
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4.4 Annual Maximum Precipitation Analysis 

The annual maximum precipitation (AMP) analysis was conducted on data from Dorval 

Airport only since there were data gaps in the data from Roxas City.  The methodology of 

linking the MCME to the GCM-downscaled models outlined in Section 3.5 was applied to 

data from Dorval Airport for the period of 1961-1980 for calibration and 1981-1990 for 

validation. 

 

4.4.1 Calibration of Combined Models 

Figures 4-71 to 4-73 show the ranked AMP boxplots for the simulated outputs from the 

MCME, downscaled-CGCM and downscaled-HadCM3. The dashed line plots the observed 

AMP for the same period.  MCME AMP boxplots clearly overestimate, while the 

downscaled HadCM3 underestimate the observed values.  Through graphical display, the 

observed series falls best within the downscaled-CGCM AMP boxplots. 

 

The weighted combination of the mean MCME and mean downscaled-HadCM3 provides 

the closest agreement with the observed series, as shown in Figure 4-74.  An optimal 

weighting factor of 0.69 is applied to the mean MCME AMP series, while a factor of 0.31 

was applied to the mean downscaled-HadCM3 series. Similarly, an optimal weighting factor 

of 0.43 is applied to the mean MCME AMP series, while a factor of 0.57 was applied to the 

mean downscaled-CGCM series (Figure 4-75).  Table 4-12 shows the errors associated with 

the AMP curves used in this calibration stage (as well as the validation period).  The 

combined mean MCME and mean downscaled-HadCM3 model provides the lowest MAE 

and RMSE values of 2.83 mm and 3.40 mm.   

 

Hence, the combination of the MCME-estimated AMPs and those given by the HadCM3 

and CGCM could provide a good correction of bias in the estimation of AMPs at a local site.  

Most importantly, this combination would provide a linkage between the MCME model with 

a GCM model (downscaled values) for assessment of climate change impacts on AMPs at 

local sites for future periods. 
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Figure 4-71: MCME - Ranked AMP Boxplots vs Observed Series (1961-1980) 

 

 
Figure 4-72: CGCM - Ranked AMP Boxplots vs Observed Series (1961-1980) 

 

 
Figure 4-73: HadCM3 - Ranked AMP Boxplots vs Observed Series (1961-1980) 
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Figure 4-74: Calibration of AMP Frequency Curves with HadCM3 (1961-1980) 

 

 
Figure 4-75: Calibration of AMP Frequency Curves with CGCM (1961-1980) 
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4.4.2 Validation of Combined Models 

Using the same weighting factors from the calibration stage, simulations from the MCME, 

downscaled-CGCM and downscaled-HadCM3 models for the 1981-1990 period were used 

to assess the feasibility of the proposed bias correction method in the estimation of AMPs at 

Dorval Airport.  Figures 4-76 to 4-78 show the comparison between the boxplots of 

simulated AMPs and the observed AMPs for the validation period.   

 

In general, it can be seen that the combined model (Figures 4-79 and 4-80) could provide a 

better fit to the observed values, ie. the bias is reduced.  More specifically, the downscaled-

HadCM3 boxplots (Figure 4-78) underestimate the observed series.  The combined model of 

the mean MCME and mean downscaled-HadCM3 (Figure 4-79) provides however a closer 

fit to the observed as can be seen by the reduction of MAE and RMSE values in Table 4-12.  

For the CGCM, the combined model of mean MCME and mean downscaled-CGCM 

(Figure 4-80) did improve the bias of the MCME but did not significantly improve the bias 

of the downscaled-CGCM.  Nevertheless, the advantage of combining the GCM downscaled 

values could provide a better tool in the study of the climate change impacts on extreme 

precipitation characteristics at a local site as mentioned previously.  

 

Calibration ('61-'80) Validation ('81-'90) 
Model 1 

MAE RMSE MAE RMSE 

MCME 3.00 3.77 4.35 4.08 

HadCM3 3.52 4.94 5.66 4.69 

MCME+HadCM3 2.83 3.40 4.23 3.56 

Calibration ('61-'80) Validation ('81-'90) 
Model 2 

MAE RMSE MAE RMSE 

MCME 3.00 3.77 4.35 4.08 

CGCM 3.16 3.71 3.72 3.01 

MCME+CGCM 3.09 3.63 3.81 3.23 
 

Table 4-12: Error Analysis of Simulated and Observed AMP Series 
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Figure 4-76: MCME - Ranked AMP Boxplots vs Observed Series (1981-1990) 

 
Figure 4-77: CGCM - Ranked AMP Boxplots vs Observed Series (1981-1990) 

 
Figure 4-78: HadCM3 - Ranked AMP Boxplots vs Observed Series (1981-1990) 
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Figure 4-79: Calibration of AMP Frequency Curves with HadCM3 (1981-1990) 

 

 
Figure 4-80: Calibration of AMP Frequency Curves with CGCM (1981-1990) 
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5. Conclusions and Recommendations 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
 

5.1 Conclusions 

The main objective of the present study was to develop a stochastic model that could 

accurately describe rainfall processes in different locations.  The proposed model consists of 

a combination of two components: the “rainfall occurrence” component, represented by the 

first-order Markov Chain (MC), and the “rainfall amount” component, described by the 

mixed-exponential (ME) distribution.  The feasibility of the MCME model was tested using 

daily rainfall data from different climatic conditions (Dorval Airport in Quebec and Sooke 

Reservoir in British Columbia, Canada, and Roxas City in the Philippines) and hourly rainfall 

data available at Dorval Airport for the 1961-1990 period.  The main conclusions from the 

present study are as follows: 

 

1) The MCME model was found to be able to describe adequately the statistical and 

physical properties of daily and hourly rainfall processes.  More specifically, the 

means and standard deviations and the precipitation indices of simulated series were 

found to be in good to excellent agreement with the corresponding observed median 

values (<10% difference in most cases).  However, the number of consecutive dry 

days and the maximum 3-day rainfall totals were not well preserved by the MCME 

model, with larger than 20% difference for some seasons and locations. 

 

2) The rainfall occurrence process can be well described by a Markov Chain for all 

locations. 

 

3) The rainfall amounts distributions can be well described by the mixed-exponential 

distribution for all locations.  In addition, the Shuffled Complex Evolution (SCE) 

method was found to be the best method for estimating the mixed-exponential 

parameters as compared to the Method of Moments, the local Direct Search 

Complex optimization method, and the Multiple Guess Iterative optimization 

method. 
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4) The Fourier series was found to be able to describe accurately the seasonality of the 

MCME model parameters, especially the transitional probabilities.  

 

5) In comparison to the daily model, the hourly MCME model for Dorval Airport, 

produced larger errors between observed and simulated data series, even though the 

hourly data showed a better fit to the mix-exponential function.  The number of 

maximum consecutive dry hours and maximum 8-hour rainfall amount were not well 

simulated by the model for some seasons.  In addition, inconsistency was found 

regarding the description of daily rainfall characteristics using the hourly-calibrated 

MCME model. 

 

6) A combined weighted model of the annual maximum precipitation (AMP) series of 

the MCME model and downscaled-GCM models (using a regression based method) 

provided an efficient and practical method for correcting the bias of calibrated data 

simulations in order to achieve a good agreement between downscaled-GCM AMPs 

and the observed AMPs at a local site.  Furthermore, this combination could provide 

a necessary linkage between the MCME model and the downscaled-GCM outputs 

for climate change impact assessment studies. 

 

In summary, given sufficient rainfall time series data for any location, the daily MCME model 

is capable of calibrating to that observed series and simulating any number of synthetic series 

of any length of time.  The calibrated model could preserve adequately the observed 

statistical and physical characteristics of the underlying rainfall process, over at least the 

temperate and tropical areas analyzed in this study.  

 

5.2 Recommendations for Future Work 

Several recommendations may be suggested for improving the modeling and programming 

structure of the MCME model in this study. 
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Reducing Parameters 

As mentioned earlier, the current model allows the use of a fixed number of harmonics (five) 

to describe the Fourier series fit to the estimated parameters.  However, the model may be 

made more parsimonious by determining the number of significant harmonics, based on 

cumulative periodograms (Salas et al., 1980) and reducing the number of parameters required 

for all twelve months and all locations.  This involves considerable programming complexity 

where the generalized model will need to find the optimal number of harmonics and 

calibrate given any set of data. 

 

Temporal Downscaling 

To produce synthetic rainfall data from the 24 hour scale to the 5 minute scale, the hourly 

MCME model was examined.  However, at lower time scales, the first order Markov chain 

dependency for the transitional probabilities may not be sufficient to represent the strong 

persistence of rainfall occurrence.  Therefore, higher order Markov Chains should be 

investigated when modeling the MCME for shorter time scales.  Although mixed exponential 

works well for the hourly scale, other distributions should also be studied at shorter time 

scales to see what could provide the most acceptable fit with observed amounts. 

 

MCME models may also be developed at each time scale to see whether scaling relationships 

exist for different parameters from the daily time step to the 5 minute step.  This would 

allow researchers and engineers the ability to simulate rainfall through temporal downscaling, 

at time scales where the observed data are not available or insufficient.  There is, however 

more computational difficulties associated with smaller time steps creating larger data 

processing problems. 
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Effect of Climate Change 

The effect of climate change on rainfall patterns may be incorporated into the MCME model 

by adjusting the five MCME parameters directly.  Regression downscaling techniques linking 

climate variables outputted from GCMs to local mixed-exponential parameters and 

transitional probabilities could provide one such method.  Another method may involve the 

calibration of parameters using consecutive 5 to 10-year periods and noting the trend in 

changing parameters.  This trend may then be used to extrapolate the parameters to a future 

time and applied by ‘brute force’ to the model.  However, more research is required to know 

whether climate change affects rainfall occurrence or amounts or both at the local scale.  The 

question of how site specific the effect of climate change is when affecting the rainfall 

process must also be answered. 

 

The MCME model must be further developed to incorporate change in climate variability, 

over various areas, in the mixed-exponential part of the model.  The effect of large scale 

variability (Wilby et al., 2002b), i.e., NAO, ENSO, etc. should be considered. 

 

Predicting the Annual Maximum Precipitation Series 

It must be noted that the combined weighted AMP series presented in this study was 

calibrated to only one sample of observed data and must be tested in other areas.  Therefore, 

the combined model cannot provide any measure of uncertainty when predicting AMPs.  A 

bootstrapping technique may be used in future studies to provide a confidence interval for 

the observed series and then used in the calibration of any MCME and downscaled GCM 

AMP series.  Data from longer periods should also be used to eliminate discontinuities in the 

observed series for better calibration. 

 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .      
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