RISK PROPERTIES AND PARAMETER ESTIMATION ON MEAN REVERSION AND
GARCH MODELS

by

ROELF SYPKENS

submitted in accordance with the requirements
for the degree of

MASTER OF SCIENCE

in the subject

APPLIED MATHEMATICS

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISER: DR E M RAPOO

SEPTEMBER 2010



List of Acronyms

ACF
AlC
AR
ARCH
ARMA
BHHH
CIR
CSS
GARCH
GBM
GRG
JB

Kurt
LM
MA
MLE
OLS
OUMR
PACF

QQ-Plot

- Autocorrelation Function

- Akaike Info Criterion

- Autoregressive

- Autoregressive Conditional Heteroscedasticity
- Autoregressive Moving Average

- Berndt-Hall-Hall-Hausman

- Cox-Ingersoll-Ross

- Conditional Sum of Squares

- Generalised Autoregressive Conditional Heteroscedasticity
- Geometric Brownian Motion

- Generalized Reduced Gradient

- Jarqu-Bera

- Kurtosis

- Lagrange Multiplier

- Moving Average

- Maximum Likelihood Estimation

- Ordinary Least Squares

- Ornstein-Uhlenbeck Mean Reverting

- Partial Autocorrelation Function

- Quintile-Quintile Plot



Introduction

Most of the notations and terminological conventions used in this thesis are Statistical.
The aim in risk management is to describe the risk factors present in time series. In order
to group these risk factors, one needs to distinguish between different stochastic
processes and put them into different classes. The risk factors discussed in this thesis are
fat tails and mean reversion. The presence of these risk factors fist need to be found in the
historical dataset. | will refer to the historical dataset as the original dataset. The Ljung-
Box-Pierce test will be used in this thesis to determine if the distribution of the original
dataset has mean reversion or no mean reversion.

The Ljung-Box-Pierce test is explained in paragraph 2.9, page 15. The second risk
property is found by applying a QQ-plot on the original dataset to determine if this
dataset has normal (no fat tails) or fat tail present. The first Q stands for the quantiles of
the original datasets or the simulated dataset and will be assigned as the x-coordinates.
For example let the dataset used to construct the first Q be dataset 1. The second Q stands
for the quantiles of a second dataset, for example dataset 2 are used as the yardstick to
dataset 1. Dataset 2 is normally distributed with theoretical normal mean and theoretical
normal variance with the same number of observations as dataset 1 and will be assigned
as the y-coordinates. The QQ-plot will represent coordinates (x;,y;) for i=12,...,n

where n is the number of observation for dataset 1 and dataset 2. If a QQ-plot is applied
on a dataset 1 and the QQ-plot appears to be linear it indicates that dataset 1 has the same
normal (no fat tails) properties as dataset 2. If a large amount of coordinates on both ends
of the scatter plot generated by the QQ-plot bends away (deviates) from the straight line
also in the QQ-plot, then this indicates that dataset 1 has fat tails.

After the risk properties for the original dataset has been found one need to simulate a
model that has the same risk properties as in the original dataset. A summary of the
simulated models | will be using and the risk properties associated with them are
described in the following table.

Table 1.1: Stochastic Processes Used in Simulation

Distribution Tail of Distribution
Mean Reversion Normal Fat
GARCH, GBM + Jumps, One-Factor Logarithmic
No GBM Vasicek Model + Jumps
Yes Vasicek, AR(p) One-Factor Logarithmic Vasicek Model, CIR Models

Key: GBM = Geometric Brownian motion;
GARCH = Generalised Autoregressive Conditional Heteroscedasticity
CIR = Cox-Ingersoll-Ross
AR(p) = autoregressive model of order p

In order to simulate a model one needs to determine the optimal estimators for these
models. The risk properties for the simulated model can then be determined which should
have the same risk properties as the original dataset. Interest rate processes are often




considered as mean reverting, fat tails are often present in foreign exchange processes
and both risk factors (fat tails and mean reversion) are usually present in credit spreads.
To test whether a model has the mean reversion property one needs to test for first-order
stationarity. If a series is stationary then mean reversion is present, if not, mean reversion
IS not present. The presence of stationarity is often called the autoregressive (AR) test.
The AR test involves calculations of the autocorrelations and partial autocorrelations to
see whether there is lag in the regression.

Ordinary least squares for the initial estimators and the maximum likelihood estimation
procedures to find the optimal estimators for the simulated models are discussed in
chapter 1. These methods will be used in all the other chapters except chapter 3 where the
optimal estimators for these simulated models are determined by minimising the
conditional sum of squares.

In chapter 2 the geometric Brownian motion is discussed. The Brownian motion is the
ceaseless, irregular random motion of small particles immersed in a liquid or gas as
observed by R. Brown in 1827. The stochastic process associated with the Brownian
motion is called the Brownian process or Wiener Process. The geometric Brownian
motion (GBM) is widely used in explaining prices at equity and foreign exchange
markets. | will first generate two datasets with the same characteristics as the GBM
model. Risk properties for the original dataset (FTSE100 monthly closing price indices
from the 2" of April 1984 up to the 2" of January 2001) are determined and a simulated
GBM model is fitted on the original dataset. Risk properties for the simulated model are
then determined and based on the similarities between the risk properties of the original
dataset compared with the risk properties of the simulated model one can decide whether
the simulated model is a good choice.

The autoregressive processes are useful in describing situations in which the present
value of a time series depend on its preceding values and a random shock. This process is
known as a mean reverting model and is discussed in chapter 3. Risk properties for the
original dataset (the daily average number of defects per truck found in the final
inspection at the end of the assembly line of a truck manufacturing plant) are determined
and a simulated AR(p) model is fitted on the original dataset. Risk properties for the
simulated model are then determined and based on the similarities between the risk
properties of the original dataset compared with the risk properties of the simulated
model one can decide whether the simulated model is a good choice.

For the modelling of electricity prices researchers prefer to use single-factor, two-factor,
multifactor and hybrid models, which include factors like demand and supply. The
one-factor Vasicek model on the log spot price is theoretically strong but has little
practical implication. This model is discussed in chapter 4. Risk properties for the
original dataset (the logarithms of Sweden’s Electrical spot prices in terms of Euro per
Megawatt from 1% of January 2008 to 31% of December 2008) are determined and a
simulated Logarithmic Vasicek simulation model is fitted on the original dataset. Risk
properties for the simulated model are then determined and based on the similarities



between the risk properties of the original dataset compared with the risk properties of the
simulated model one can decide whether the simulated model is a good choice.

Chapter 5 discusses the Vasicek model. The Vasicek or Ornstein-Uhlenbeck process is
the most common model used for the pricing of bonds. The main advantage of the
Vasicek model is that it has an explicit solution. The Vasicek and CIR models are two
important models for short rate interest rate modelling. The CIR model is discussed in
chapter 7. Risk properties will also be investigated in chapters 5, 7 and 8 as what was
done in chapters 2, 3 and 4. In chapters 4, 5 and 7 | also investigated the differences in
accuracy between the OLS and MLE procedures influenced by the tails of the QQ-plots.

Interest rates are stochastic in nature and there are at least two factors needed in order to
explain adequately their behavior thus a two-factor Vasicek is presented in chapter 6.

The GARCH models rely in the assumption that the volatility changes with time and the
past information. The Geometric Brownian motion assumes the volatility to be constant.
For the GARCH models it has been observed that when the volatility at a specific point in
time abnormally increase or decrease (spike) in terms of the other volatilities around the
vicinity of that specific point the actual data from that specific point in time will
subsequently increase or decrease more as compare to the actual data around that specific
point in time. For this reason, this observation is very important for forecasting purposes.
An investor will now identify that at a specific point in time a particular stock will
increase or decrease more rapidly as usual. The investor will stand the chance of making
more profit as usual or make a bigger loss at that point in time for that particular stock. In
chapter 8 the ARCH and GARCH estimators.
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Chapter 1

1 ESTIMATION PROCEDURES

Before the mean reversion and no mean reversion for example the GARCH models are
investigated the two main methods for estimation discussed in this thesis will be
introduced. The true parameters will be estimated and are revered to as parameter
estimates or equivalently estimators. Two procedures of calculating the estimators are
ordinary least squares (OLS) estimation and maximum likelihood estimation (MLE).

1.1  Ordinary Least Squares (OLS) Estimation In Time Series

The first method is the ordinary least squares estimation procedure. According to W. S.
Wei (1994)" the ordinary least squares (OLS) estimation procedure was developed from
regression analysis. Regression analysis is probably the most common statistical method
in statistical data analysis and the ordinary least squares the most common used
estimation procedure in statistics. The following model is considered:

Y, =6X, +e,, t=12,.,n (1.1)

The following assumptions on the error term, e, , are made:
o  The expectation of the error term is: E[e,]=0.

e The variance of the error term is: Var(e, )= E[e? |- (E[e,])? = E[e?]= o2, where

2
e

o is a constant. The variance of the error is the expected squares deviation of

Y, from the line 6X,. One thus needs to minimise Var(e, )* in order to obtain the

most accurate OLS estimate.
e  The autocorrelation between the error terms is: E[e,e, |=0 for t =k .

e The error term and the explanatory variable X, is uncorrelated: E[X,e,]=0.
The ordinary least squares estimator for coefficient & in equation (1.1) is:
Z Xth
="t . (1.2)
X/
=1

t

This estimator, @, is the best linear unbiased estimator of & under the assumptions of the
error term. If one considers the following model:

Y, =60Y, , +e, t=212,..,n (1.3)

1 WWS Wei Time Series Analysis: “Univariate and Multivariate Methods” (1990) 147.



then the ordinary least squares estimator for coefficient ¢ in equation (1.3) is:

R ZYHYt ZYH(‘W it et) Z:thlet
O = =2 =2

= =0+ (1.4)

~on n n
24 24 24
t=2 t=2 t=2
In regression analysis, the OLS estimator of an explanatory variable will be inconsistent
and biased except if the error term is uncorrelated with the explanatory variable. The

second method is the maximum likelihood estimation procedure. This procedure is more
efficient and commonly used in time series analysis.

1.2 Maximum Likelihood Estimation (MLE)"

Suppose we observe an original dataset Z =z, ,z, ,..,z, with n observations. We need

to apply the MLE procedure on this original dataset. Assume the true unknown
conditional probability density function derived from the original dataset is g(-|Z,6,)

where 6, is the true parameter of the original dataset. One needs to choose the most

appropriate simulation model for the original dataset. The simulation model will belong
to some kind of conditional density function say f(-|Y,6) that should have the same

distribution as g(-|Z, 90). One needs to generate a new dataset X that must be used to
determine the likelihood function defined as:

L(&):f[f(xw;e)

where f(X |Y;49) is the conditional probability density function of X given Y and 4.
Let X =X, Xy sy X, be generated from Y = LD A which in tern is generated by

the appropriate simulation model. The initial starting value for the simulation model is
the same as the starting value of the original dataset such that x_ =z . The simulation

model X, is used to simulate x_, up until x _ is used to simulate x, . Note that

parameter @ can be a vector that consists of more than one parameter. To maximise the
likelihood function one can take the logarithm of the likelihood function and if the
observations X =X, ,X, ..., X, are independent then:

InL(6)= In{f[ F(X |Y;9)}= In{]‘[ X, X o X, |Y;9)}

i=1
=|n{ﬁf(xtl 1Y;0)f(x, [Y;6)..f(x, |Y;¢9)}=Zn“lnf(xtl 1Y:0)
i=1 i=1
The maximum likelihood estimator for 6, is defined as

6 =arg max In L(0)=arg mgtlenf(th 1Y;0) (1.5)

i=1

12 Carnegie Mellon University “Manual for the Sphinx-III recognition system” Technical version 17
http://www.speech.cs.cmu.edu/sphinxman/HMM.pdf (Accessed 21 September 2010).
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Chapter 2

2 NO MEAN REVERSION - GEOMETRIC BROWNIAN MOTION
The main purposes for this chapter are:

e generate two GBM datasets

e simulate the sample mean and variance of GBM

e finding the risk properties for the original dataset (FTSE100 monthly closing
price indices)

e choosing the simulated model which should have the same risk properties as the
original dataset. Table 1.1 is used to find the most appropriate simulated model
with the same risk properties as the original dataset

e finding the estimators for this simulated model. The method used to
find the estimators used in the simulation model is called the MLE

e finding the 95% confidence interval for an unknown parameters of the
original dataset

e finding the risk properties of the simulated model

e comparing the original and simulated risk properties and analysing the
appropriateness of the simulated model.

2.1  Basic Properties — Geometric Brownian Motion (GBM)

The Geometric Brownian Motion (GBM) is a fundamental example of a stochastic
process that neither has fat tails nor mean reversion properties. In this section, the basic
properties of the GBM will be stated and then a simulated GBM will be fitted on
historical data to find the risk properties of the dataset. By looking at the risk properties
one can determine if the GBM will be a good model to choose to fit the historical dataset.
According to D.G. Luenberger (1998)*, the GBM is the underlying process from which is
derived to form the Black and Scholes formula for pricing European options. Let the

continuous-time of stock prices be assigned as x, where In(x,) obeys the following
defined equation:

dInx, =vdt+odW, (2.1)

Here v and o >0 are constants and W, is a standard Brownian motion. In ordinary
calculus one may derive that

dlnx, :‘L—Xf (2.2)

t

® DG Luenberger Investment Science (1998) 308.



If equation (2.2) is substituted into (2.1) one will obtain:

Dyt + odw, (2.3)
Xt

According to ordinary differential calculus equation (2.3) is correctly derived from (2.1)
and (2.2) but due to the fact that the Wiener processes are not differentiable functions and
do not follow the rules of ordinary calculus, equation (2.3) must be replaced by Ito
calculus which accommodates the Wiener processes correctly. If we use Ito’s Lemma (as
mentioned in J.C. Hull, (2000)*?) and which is explained in more detail in paragraph 4.2,
page 27 of this thesis) the right hand side of equation (2.3) will become:

dx 1
—t=(v+—02]dt+odwt. (2.4)
X, 2

For convenience let V:,u—%az in equation (2.4), the Geometric Brownian motion of
the asset price, X, over time becomes:

% = 4t + odW, (2.5)

t

Here dW, represents an increment to a standard Brownian motion W,. According to Z

Brzezniak (1999)'°, W, which is also known as a noise term for te(O,oo] has the
following properties:

o for0=t, <t <---<t,, the increments W, —W, ,..,W, —W, are independent,

s
o {W,} has stationary increments.
e EW,]=0 forall t

If W, is observed as a white noise process dW, is quantifiable. By replacing v in

equation (2.1) with v = u —%02 , equation (2.1) can be written as:

dInx, :(,u—%azjdt+odwt. (2.6)

12 3C Hull Options Futures & Other Derivatives 4 ed (2000) 229.
16 7 Brzezniak et al “Basic Stochastic Processes”



This means that In(xt) is an Arithmetic Brownian Motion. By integrating equation (2.6)
between, t and u according to Damiano Brigo et al (2007)*, gives:

Inx, —Inx, =(ﬂ_%62)(u_t)+a(wu w)- N[(,u—%az)(u—t),o-z(u—t)J @7)

According to Damiano Brigo et al (2007)*, by letting u =T, t =0 and taking the
exponent on equation (2.7) leads to:

X; =X, exp((y—%az)T + oW, j (2.8)

The mean and the variance of x; according to Damiano Brigo et al (2007)* are:

E[x; ]=x,e" and  Var[x; |=e*"x? (e"zT —1). (2.9)

2.2  Two Types of Geometric Brownian Motion Datasets

One needs to represent a mathematical model (simulated model) that present an
approximation of the historical dataset. In order to find an appropriate simulated model
one needs to look at the risk properties of the original dataset. After the appropriate
simulated model has been chosen, assumptions can be made of how the dataset might
react after the last available time. According to D.G. Luenberger (1998)° let At =t , —t.
and for t, <t, <---<t, where t=t, is the time for the initial price. The simulation
equation derived from equation (2.5) is:

Xt

— [+ urt+ 0z, At x, (2.10)

i+l

Here Z, is a random variable from an independent identically standard normal

distribution, with a mean of zero and a variance of one. Another version of a simulation
equation for the GBM can be obtained by using equation (2.1) and the fact that

N Y
p-30

In(xtm)—ln(xti ):vAt+o-Zi\/E. (2.11)

* D Brigo et al “A Stochastic Processes Toolkit for Risk Management” (2007) SSRN http://ssm.com/abstrac
t=1109160 (Accessed 9 September 2009).
® DG Luenberger Investment Science (1998) 308.



http://ssm.com/abstrac
http://ssrn.com/abstract=1109160

By taking the exponent of both sides of equation (2.11), it yields:

X, =X, exp(vAt +0Z, Jat ) (2.12)

In practice the two different simulation models are equally good.

In the following example two methods are shown to generate approximately the same
Geometric Brownian motion.

2.3  Example 2.1 — Generate Two Geometric Brownian Motion Datasets

Let At =1/52, the initial price x, =100, v=0.3, x=0.425, and the volatility o =0.5.

The second last column on the right of the following table illustrated below is the
simulation of the spot price based on equation (2.10) and the last column the simulation
of the spot price according to equation (2.12). Both simulations depend on the same
Z, ~N(02).

Table 2.1: Generate Two Geometric Brownian Motions

i t; Z, X, (2.10) X, (2.12)
0 0 100 100
1 0.019230769 0.114289378 101.6097619 101.3787962
51 0.980769231 1.116391104 100.7722344 103.2251215
52 1 0.2270815 103.1825395 105.4700207
GBM Simulation
140
120
100
According
o 80 to (2.10)
‘E) * = "= According
a 60 to (2.12)
40 A
20 1
(0 T e e ]
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
Timein weeks

Figure 2.1: Generate Two Types of Geometric Brownian Motion Datasets

The generated Geometric Brownian Motions according to equations (2.10) and (2.12) are
simultaneous plotted in Figure 2.1. The following Figure 2.2 illustrates eight simulations




of prices all with initial spot price of x, =100 and At=1/365, v=0.15, and the
volatility o =0.7 . Note that t, <--- <t.,, and simulations are based on equation (2.12).

8 Simualtions

450

Spot Price

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501
Time in Days

Figure 2.2: Simulation for Eight Geometric Brownian Motions

By observing Figure 2.2 it is noted that not any of the eight simulated Geometric
Brownian Motions show evidence of mean reversion.

2.4  Maximum Likelihood Estimation (MLE) — Geometric Brownian Motion

According to Damiano Brigo et al (2007)°, the parameters that need to be optimised are
0 = (u, o) for the GBM. Let the log return be given as:

y, =Inx, —Inx . (2.13)

According to equation (2.7) y, =Inx, —Inx, _is normally distributed for all
Yoo Yo, o0 Vi and assume independence for Yio Ve, o0 Ve - The likelihood function will
be denoted as:

L(9)= fg (yt1 ) yt2 L ytn )

:lj A ):lj £y, 10).

® Brigo et al “A Stochastic Processes Toolkit for Risk Management”.



Here f, is the probability density function, vy, ,y, ..., Y, are the log returns according to
equation (2.13). Let & = (1, ), then the probability density function f, is:

RISl |

= exp—
X, o271t 20t

The likelihood function needs to be maximised to obtain the optimal estimators
0 =(i1,6). The natural logarithm of the likelihood function must be differentiated in

terms of 4 and o then equated to zero which will yield two equations and must be
solved simultaneously to obtain:

W:(ﬂ_%&zjﬂ (2.14)
V=0567At (2.15)
where
n Inx, —Inx
wo3 Yu X 7T, (2.16)
i1 N n
A \2
n —W
vzz(y" ) (2.17)
=) n
: A . a2V 1., W
First one needs to determine W and Vv then the MLE are: & Y and p==o +E'

25 Confidence Intervals for Parameters of the GBM

The 957% confidence interval for the parameter w according to Damiano Brigo et al
(2007)" is:

W—l.%ﬂgwsﬁwl.%ﬂ (2.18)
Jn Jn
and the 95% confidence for the sample variance of the GBM v is:
nv nv
: Sv<— (2.19)
X n,0.025 Xn,0975

Here xZoos and xi.es are the upper and lower percentiles of the chi-squared

distributions with n degrees of freedom. Confidence intervals are used to find the upper
and lower regions of the true parameters w and v . The reason why one needs to estimate

"D Brigo et al “A Stochastic Processes Toolkit for Risk Management”.



parameters w and v first, is because W and ¥ are used to estimate o and x in order to
determine MLE.

2.6 Example 2.2 - Maximum Likelihood Estimation Procedure

First the risk properties of the dataset which in this example is the FTSE100 monthly
closing price indices from the 2™ of April 1984 up to the 2" of January 2001 must be
calculated. The Ljung-Box-Pierce test defined in paragraph 2.8 page 14 is:

Q =3784.976> 42 , s = 67.504

The corresponding p—value is 2.2e-16 which is less than 0.05. The null hypothesis
(H,) will be rejected indicating that the distribution of the original dataset is not mean
reverting.

Normal Q-G Plot
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Figure 2.3: QQ-Plot for FTSE100 monthly closing price indices

Fat tails are observed in the QQ-plot for the FTSE100 monthly closing price indices.
According to Table 1.1 the most appropriate simulated models to choose for similar risk
properties of the original dataset are GBM + Jumps or One-Factor Logarithmic Vasicek
Model + Jumps. The simulated model that | choose for this dataset is the GBM which
will not be the most appropriate simulation model. 1 choose this model for example
purposes only. In this example the estimators of the FTSE100 monthly closing price
indices from the 2" of April 1984 up to the 2" of January 2001 are calculated by using
the maximum likelihood estimation procedure. The equations used are (2.16) and (2.17).

Table 2.2: Calculations for GBM Estimators

Date i t; Xti In(xti ) yti
1984/04/02 0 0.000000 1138.3 7.0372912

1984/05/01 1 0.083333 1016.6 6.924219005 | -0.1130722

2001/01/02 201 16.750000 6297.5 8.747908008 | 0.011980974




According to equation (2.16):

=Y _LTI08LT_ 4 hng510531
<'n 201

(2.20)
and
Inx, —Inx
o2 nx, w _ (8.747908008-7.0372919) _ ) 1oartoeag
n 201

By using Table 2.2 and applying equation (2.17) one will obtain:

n W 2

0=y §7 nW) - 0'472819261: 0.002360452. (2.21)
i=1

The 95% confidence interval for the parameter w (sample mean of the GBM) is

/0.00236045: J0.00236045:
0.008510531-1.96 ¥ 002300452 6 008510531+ 1,96 Y0:202300452
7201

v201

0.001793836< w < 0.015227227
and the 95% confidence for the sample variance of the GBM v is

201(0.002360459 _ _ 201(0.002360452)
242.1559 B 163.63

0.001959279< v < 0.00289953E.

We have 95% confidence that the true parameter estimated with w will lie between
0.001793836 and 0.015227227. The true variance of the GBM will lie between
0.001959279 and 0.00289953¢ with a 95% level of confidence

Solving equations (2.14) and (2.15) yield

52 = 0002360452, 1r539543 (2.22)
At ()
6= \/Azt 0.16830160% (2.23)

.~ W 1A2 0.0085105
ﬂ —

00283254 0.116289091. 2.24
T T_f 3= (2.24)

10



Fitting the GBM to the FTSE100 monthly closing prices will involve equation (2.10), &
and &2 such that:

X, =1+ it + 6z, VAt . (2.25)

Let At zé, and Z, ~ N(0,1) independent identical random variables and let the initial

price index be x, =11383. The following Figure 2.4 will plot the GBM simulation
(2.25) together with the original FTSE100 closing monthly price indices.

GBM Fit to FTSEL00 Monthly Closing Price Indices

8000 -
7000 -

5000 A ),A[ RTINS

FTSE100
4000 A
"""" Simulated|

3000 - GBM

Closing Price Indices

2000 -

1000 =

Apr-86 1
Apr-88
Apr-90
Apr-92
Apr-94
Apr-96
Apr-98
Apr-00

Apr-84

Figure 2.4: FTSE100 Closing Monthly Price Indices versus Simulated GBM

By looking at Figure 2.4 it is clear that neither the FTSE100 closing monthly price
indices nor the simulated GBM model shows mean reversion.

2.7  Simulation for Sample Mean and Variance of GBM

From a total number of 201 logarithmic returns for the FTSE100 monthly closing prices
the maximum likelihood estimates for the mean and the standard deviation are given in
equations (2.20) and (2.22). Suppose we generate 10000 datasets each containing 201

normal random values with mean W= 0.008510531 and variance & =0.0283254%.Let
the datasets be denoted as D;, where i=12,.10000 (indicating the datasets) and

j =1,2,3,...201 (amount of random values in each set).

11



Ten thousand sample mean estimates for each dataset are determined as:

1 201

Wl = 2_012 Dlj

j=1

1 201

Ly

W10000 = m; D10000 i
for random values D;; that are normally distributed with mean 0.008510531 and variance
0.02832543. The estimated variances for these datasets are:

S (Dlj —V\71 )2

Vi=2 201

j=1

N 2
201 _
A (DlOOOO j Wioo00 )
V1oooo =
i 201

Let At=1/12 for the FTSE100 monthly closing prices and substitute it into a similar
equation as equation (2.23). The sample standard deviations estimates for 10000 datasets

are.
Y
S, =|~L
At

~n

A V
Sio000 = 1| 2. 2.26
10000 At ( )

Similar equations as (2.24) are used to derive 10000 sample mean estimates defined as:

A

~ W1 1(~ \2
= — 4 —
A At 2( 1)
~ V\7 1/~ 2
Aloooo = 2:00 +E(S1oooo) . (2.27)

The frequency histogram in Figure 2.4 below for equations (2.27) indicate that the
sample means for 10000 datasets do not deviate much from the first estimated sample
mean 4 =0.116289091.

12



Frequency Histogram
— Expected Normal
180

160

140

120

100

80

No. of obs.

60

40

20

y

I M‘
il
. il
0.1054 0.1074 0.1094 0.1114 0.1134 0.1154 0.1174 0.1194 0.1214 0.1234 0.1254

GBM Parameter for the Mean

Figure 2.5 Frequency Histogram for 10000 Sample Means

The frequency histogram, for 10000 sample standard deviations derived in equations
(2.26), using an adjusted chi-squared distribution is displayed in Figure 2.6 below. The
adjusted residuals are used to determine the adjusted chi-squared distribution. The reason
for using the adjusted chi-squared distribution rather than the chi-squared distribution is
that a shape which is less skew can be fitted on this frequency histogram indicating where
the sample standard deviations cluster.

Frequency Histogram
Chi-Square test = 23766.11079, df = 37 (adjusted) , p = 0.00000
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Sample Standard Deviation of GBM
Figure 2.6: Adjusted Chi-Square Frequency Histogram on 10000 Sample Standard
Deviations
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In both cases the two estimators are very close to their theoretical limits. Estimated
sample standard deviations indicated in equations (2.26) seems to cluster around the
estimated sample standard deviation 6 =0.16830160% indicated in (2.23). Before one
needs to determine the mean reversion in the simulated models one needs to introduce the
following test.

2.8  Estimated Sample ACF and PACF

The autocorrelation functions (ACF or p, ) and partial autocorrelation functions (PACF
or ¢, ) are estimated by the sample autocorrelation function, r, , and the sample partial
autocorrelation, f, .° For a given time series, X, X,,..., X, , the autocorrelation at lag k is
estimated by:

=% (2.28)

where ¢, is known as the estimated autocorrelation at lag k defined as:

1 n—|k| B - .
¢, = n——|k| tZ:l:(xt ~ X)X —X) if K[ <n

0 otherwise

where ¢, is known as the estimated variance at lag 0 defined as:

Co :lznl(xt -x).

N

The mean of the time series is defined as:

g

The estimated partial autocorrelation, f,, at lag k is given as:

*

f i 2.29
kk_m (2.29)

=

where |P,| denotes the determinant of the matrix:

° DG Nel Time Series Analysis Module (1994) 7.
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pk — f 1 n I, s T
rk—l rk—2 rk—3 rk—4 r1 1
and where matrix, P, is:
1 r-l rZ r3 If-k 2 r-l
Pk* = " 1 " , ks I
e T2 Tes T o0 Fy

2.9  Ljung-Box-Pierce-test Procedure

The Ljung-Box-Pierce-test procedure explained by G.M. Ljung and G.E.P. Box (1979)°
is used to test for the significance of the ACF and PACF. A set of m autocorrelations
may be tested at once by using the Ljung-Box-Pierce test. The hypothesis test is used
when testing whether the true autocorrelations, p, , are significant:

H,: p. =0, k <m (dataset follows mean reversion/random/white noise process)

Versus
H,: p. #0, k <m (dataset does not follow mean reversion/random/white noise

process).

If H, is not rejected then it indicates that the time series is random and follows a white
noise process. On the other hand, if H, is rejected it indicates that the time series shows
a clear pattern and is not random indicating serial correlation is present.

The test statistic is:

2

Q=n(n- Z)é(nri J

(2.30)

where m is the number of sample autocorrelation function, r,, be tested. The sample
autocorrelation function, r, is defined at equation (2.30). The number of sample

® GM Ljung and GEP Box “The likelihood function of stationary autoregressive-moving average models”
(1979) Biometrika 66 265 — 270.
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) . ) n ) .
autocorrelation functions is, m = 7 where n is the total number of observations of the

original dataset . We reject H, if Q > x5, where yZ. isa chi-square distribution with
m degrees of freedom and o level of significance.

2.10 Testing for Mean Reversion and Fat Tails

The FTSE100 monthly stock index will be modeled by making use of the GBM. The
FTSE100 monthly closing prices from the 2™ of April 1984 up to the 2" of January 2001
are used. The FTSE100 dataset is available in Appendix Al. The QQ-plot for the original
dataset (FTSE100 monthly closing prices) is found to have fat tails (Figure 2.7) as well as
the QQ-plot for the simulated GBM model. The simulated GBM is derived from equation
(2.10). The QQ-plot for the original dataset (FTSE100 monthly closing prices) and the
simulated GBM is plotted in Figure 2.7 and Figure 2.8 respectively.
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Figure 2.7: QQ-plot for the original dataset: FTSE100 Monthly Indicates

QQ-Plot for Simulated GBM
Distribution: Normal
Simulated GBM = 2923.2727+1234.8099
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Figure 2.8: QQ-plot for the Simulated GBM for the FTSE100 Monthly Indicates
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Let At= é and Z, ~ N(0,1) independent identical random variable and the initial price

index be x, =11383. The general formula for the estimated autocorrelation function if
we use a time series X, , X X, s

£,

n—k
= mZ(X“ —Wx W), k=12, (2.31)

i=1

where vV and W are defined in equation (2.14) up to equation (2.17).

2.11 Notes and Research

Firstly 1 noticed that the FTSE100 monthly closing prices produced risk properties
similar to the GBM + Jump and the One-Factor Logarithmic Vasicek Model + Jump
models. The GBM will be an inappropriate simulation model to use. | used the GBM for
example purposes only. After the GBM is simulated on the original dataset the risk
properties of the simulated model are investigated.

If H, is rejected for the Ljung-Box-Pierce test on the simulated model it implies that
there is mean reversion of the simulated GBM model. For fifteen sample
autocorrelations, the test statistic Q =2067> y/ .05 = 24.9957 indicates H, will be

rejected, meaning the simulated GBM model does not follow a white noise process and
significant autocorrelations are present thus mean reversion is not present (no stationarity
present).

Both the original dataset as well as the simulated GBM model have fat tails and no mean
reversion properties, meaning that the FTSE100 monthly closing prices roughly follows
the risk profile of the GBM. One may choose a more appropriate simulation model based
on the risk properties of the original dataset based on Table 1.1 and based on these risk
properties one may choose the GBM with jumps, which have fat tails but no mean
reversion.

In paragraph 2.3 if standard normal random variable were used to generate a GBM as
indicated in the generation of equation (2.10) and plotted in Figure 2.1, the QQ-plot
indicate short tails (normal tails) and the test for mean reversion of the 52 generated

GBM model is Q=214.0> yj,0s =24.9957. The dataset generated from equation

(2.10) fits the risk properties of the simulated GBM based on Table 1.1. For this reason
the generated GBM will be well fitted with a simulated GBM.

17



Chapter 3

3 MEAN REVERSION - THE AUTOREGRESSIVE ORDER ONE: AR(l)
MODEL

The main purposes for this chapter are:

e finding the risk properties for the original dataset (daily average number of
defects per truck)

e choosing the simulated model which should have the same risk properties as the
original dataset. Table 1.1 is used to find the most appropriate simulated model
with the same risk properties as the original dataset

e using the conditional sum of squares method of finding the optimal estimator to
be used for this simulated model

e finding the risk properties of the simulated model

e comparing the original and simulated risk properties and analysing the
appropriateness of the simulated model.

3.1  Basic Properties - AR(1) Model
The property of mean reversion means that the time series process always reverts to a
certain constant with a limited variance (variation) or deviation around the reverted

constant. The stationary autoregressive model of order one has this property.

Suppose x, is a time series (not necessarily stationary) such that x, is dependent on X, ,
and a random shock, &,, where E(g,)=0, Var(s,)=o? and E(g,e,)=0 for t #s. Then
the model of X, can be written as:

Xy = a(xt—l)+gt (3.1)

This is called a simple autoregressive model of the first order and is denoted as AR(l).
This model is also known as the Markov model. The AR(1) as in (3.1), is centered around
zero but the model can also be centered around x indicated as:

(Xt - a(xt—l))_ H=& (3.2)
This process will be stationary and invertible if || <1 such that (1-oB)™" <. A
stationary or a mean reverting dataset will have an overall pattern that is parallel with the

X —axis. The inverted model from (3.1) is:

x, =([1-aB) ¢ (3.3)
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where B is a back shift operator such that x,B =x,, and for a constant oB =«.
Equation (3.3) can be extended to:

X =(L+aB+a?B?+--), for [Ba| <1
:(1+1//18+z//282 +---)gt
:\P(B)gt

with y —weights: y; = a’. The autocovariances for the AR(l) model are:

o0
_ 2
Oy =0, Z'//j‘//j+k

j=0

0
2 i 0tk
=ana’a“
j=0

The variance of the AR(L) model is then:

Var(x,)=o, =

The aurocorrelation at lag k for the AR(1) model is:

Px = Tk = "
Oy
The partial autocorrelations are:
a iIf k=1
P = .
0 if k>1

Equation (3.1) can be modified in such a way that it is centered to its mean x to become
equation (3.2). Substitute &, = c2¢,, where ¢, are independent uncorrelated normal
N(0,1) random variables, into equation (3.2) then:

(X —alx)-u=0, (3.4)
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Equation (3.4) can now be expressed by:
(Xt - a(xtfl )) =SH+X, —Xat O-ezé/t (3.5)
then by rearranging (3.5) gives:

AX, = (Xt - Xt—l): H—X4 +a’(Xt_1)+O'ezé't

- (1—a)((l_La)—xt_1)+0§§t-

3.2  Estimation - AR(1) Model

By investigating the significance of the autocorrelation functions (ACF’s) and partial
autocorrelation functions (PACF’s) of x, we choose the order for p and q. The method

of testing the significance of the ACF’s and PACF’s is known as the
Ljung-Box-Pierce-test procedure explained by W. S. Wei (1994).2 If one draw the ACF
and PACF for different lags of the AR(p) model one will observe that the ACF will tails

off as exponential decay or damped sine waves and the PACF will cuts off after lag p .

By using the Box-Jenkins estimation procedure, which is explained by W. S. Wei

(1994),® one will obtain the conditional sum of squares, CSS =isf, which will be
t=1

minimised by the ordinary least squares method to find the optimal value for « . One can
choose any initial value for « such that |a|<1 and use equation (3.2) to determine

&, ..., &, Determine CSS for different values of « . The o value for the smallest CSS
will be optimal value for « assigned as ¢ and used in the simulated AR(1) model.

3.3 Fitting AR(1) Model to Truck Manufacturing Defects Data

The dataset in this section are available in Appendix A2. This dataset is the daily average
number of defects per truck found in the final inspection at the end of the assembly line
of a truck manufacturing plant. The data consists of 45 daily observations of consecutive
business days from the 4™ of November to the 10" of January. One needs to determine
the risk properties of this dataset. The Ljung-Box-Pierce test on this dataset is:

Q=15.7287< y2 s =19.67514

The corresponding p—value is 0.1515 which is larger than 0.05. The null hypothesis
(H,) will not be rejected indicating that the distribution of the original dataset is mean

& Wei Time Series Analysis 106.
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reverting. Indecisive tails are observed in the QQ-plot. Based on the risk properties
calculated for the average number of defects per truck if one assume normal tails one

may choose the AR(p) simulated model.

0.400000000 -
0.331377483
0.300000000 -
207293785
0.200000000 -
126200458
0.100000000 - 062326743
0.019048135 0.029930305
1 2 3 49.016819405 11
-0.0427326

-0.100000000 - -0.069327110

-0.100583089

-0.200000000 - -0.146751779

Figure 3.1: The Estimated Autocorrelation for Average Number of Defects per Truck

Figure 3.1 presents the estimated ACF for eleven lags. By using paragraph 3.2 one can
observe that these ACF values indicate damped sine waves.
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0.200000000 -
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-0.100000000 -
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Figure 3.2: The Estimated Partial Autocorrelation for Average Number of Defects per
Truck

Figure 3.2 presents the estimated PACF for eleven lags. By using paragraph 3.2 one can

observe that these PACF values will cuts off after lag order p =1. For this reason | will

choose an AR(1) simulation model.

The AR(1) series x, = ax,, +¢, will be fitted to the dataset. One needs to center this
dataset around its mean.
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45

Let u= 4%(2 th =1.78866667. Now let x, — x = z, such that equation (3.1) becomes:

t=1

Z, — a(zt—l) =&

Let ¢, =0, then ¢, =2, —0z,, &, =2, —0Z,,... &, =1, —0at, . One needs to take the

conditional sum of squares (CSS), which will be minimised by choosing the optimal
value for « . One may use Microsoft Excel’s solver add-inn functionality to minimise the
conditional sum of squares with respect to « . The following table gives the optimal

A

value of o assigned as & where &, depend on ¢ in order to obtain a minimum

conditional sum of squares.

Table 3.1: The AR(1) Model Fitting to Data, (1-0.428863)(x, —1.78866667) = ¢,

e

2
t X Ly =X —H &y &y
1 1.2 -0.58867 0 0
2 1.5 -0.28867 -0.03621 | 0.001311
3 1.54 -0.24867 -0.12487 | 0.015592
4 2.7 0.911333 1.017977 | 1.036278
5 1.95 0.161333 -0.2295 | 0.052672
45 1.84 0.051333 0.05505 | 0.003031
where
. n CSS
a =0.428863 CSS =Y &2 =9.251275 ol =
=1

The fitted model is:

n_

(1-0.428863B)(x, —1.78866667) =

(x, —1.78866667)—0.428869x, , —1.78866667) = ¢,

which gives:

x, =1.78866667+0.428863«,_, —0.7670929541+ &, .

1 0.2102562¢.

(3.8)

Let x, =1.2 and ¢, are independent uncorrelated normal N(0,1) random variables such
that o2 =0.2102562E and &, ~ N(0,0.21025625) then the fitted equation (3.8) is plotted

against the actual data:
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The AR(1) Model Ftting to Data

1 3 5 7 9 11131517 1921 232527 29 31 33 3537 39 41 43 45
Time

Figure 3.3: The AR(1) Model Fitting to Data, (1-0.428863)(x, —1.78866667) = &,

3.4  Testing for Mean Reversion and Fat Tails

The QQ-plot for the simulated model according to equation (3.8) indicated in Figure 3.3
is plotted in Figure 3.4.

QQ-Plot for Simulated AR(1) Model
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Figure 3.4: QQ-plot for the Simulated AR(1) Model for the Truck Manufacturing
Defects Data

According to Figure 3.4 indecisive tails are present in the simulated dataset indicated by
the QQ-plot. The QQ-plot on the original dataset also indicates indecisive tails are
present. Testing the mean reversion of the simulated model involve the Ljung-Box-
Pierce-test.
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35 Notes and Research

By investigating the original dataset and apply the Ljung-Box-Pierce test on this dataset
one observed that mean reversion is present. Indecisive tails are observed from the QQ-

plot on the original dataset. Based on the these risk properties one may choose the AR(p)
simulation model.

In order to determine the order of p for the AR(p) simulation model one may use
paragraph 3.2 and conclude that this is a AR(1) simulation model. This conclusion is
made due to the fact that the estimated PACF’s cut off after lag 1 and the estimated
ACEF’s produce damped sine waves.

The Ljung-Box-Pierce-test for the simulated AR(1) model is Q =22.42> y/ s =19.67

indicates H, will be rejected, meaning the simulated AR(1) model does not follow a

white noise process and significant autocorrelations are present thus mean reversion is
not present (stationarity not present). From these results one can conclude that the
simulated AR(1) will not be the best model to use for this particular dataset. This could
have been the result of the indecisive tails observed for the original dataset and the
simulated model.

The simulated AR(1) should have mean reversion properties that are the same as the risk

properties for the original dataset. Rather choose either One-Factor Logarithmic Vasicek
or CIR simulation models where mean reversion and fat tails are present.
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Chapter 4

4 MEAN REVERSION - THE ONE-FACTOR VASICEK MODEL ON
LOG SPOT PRICES

For electricity price modelling some academics, like M. Davidson, C. Markus and B.
Anderson are strong proponents for “hybrid” models. Other academics such as A.
Lavassani, A. Sadeghi and A. Ware prefer to use the single-factor and multi-factor
models. The main purposes for this chapter are:

o finding the risk properties for the original dataset (the historical model involve
electricity prices)

e choosing the simulated model which should have the same risk properties as
the original dataset. Table 1.1 is used to find the most appropriate simulated
model with the same risk properties as the original dataset

o finding different methods of calculating the estimators for this
simulated model. These methods used to find the estimators are called OLS
estimation and two different MLE methods

e comparing the accuracy of the OLS estimation and the two MLE by observing
whether the model have fat or normal tails. This is done by using the QQ-
plots

o finding the risk properties of the simulated model

e comparing the original and simulated risk properties and analysing the
appropriateness of the simulated model.

4.1  Basic Properties - One-Factor Vasicek Model Based On Log Spot Price
An initial one-factor Vasicek model can be defined by:
dP = o€~ InP, Pdt+oPdW,. (4.1)

We call « the mean reversion rate, g the related long-term mean level of the natural
logarithm of the Electricity spot prices, o the related volatility in the electricity spot
prices and W, the standard Brownian/Wiener process.

A natural logarithm transformation on the spot price, the log-price process In B, will
be:

X, =InP, 4.2)
where P, is the electricity spot prices at time t. According to P. Bjerksund et al.
(2008)™°, the generalised one-factor Vasicek process has a state variable defined as:

1 p Bjerksund et al “Gas Storage Valuation: Price Modelling v. Optimization Methods” (2008
Journal of Enconometric Literature http://www.nhh.no/Admin/Public/Download.aspx?file=/Files/Fil
ler/institutter/for/dp/2008/2008.pdf (Accessed 09 September 2009).




2 2 t t
X, =€ X, + 2 |- T+ e [e”udu+oe™ [e™dw (4.3)
' ° 20) 2a !

u=0 u=0

According to P. Bjerksund et al. (2008)*°, the conditional expectation for the natural
logarithm of the spot price x,, given that time t =0 is defined as:

2 2 t
E,[X] =e“”t(x0 +U—]—G—+oze“”t Ie“”,udu (4.4)
200 | 2« 2o

and the conditional variance of the spot price X,, given that time t =0 is defined as:

t
Var,[x,]=Var, (oe‘”’t fedw, ]

u=0

t
_ O_ze—zm jemudu

u=0
_ Gzezm[ 1 em}t
200 =0
2 ~
S (4.5)
2c -

According to P. Bjerksund et al. (2008)'° the conditional expectation for the spot price
X, given that the time is s is defined as:

— 2 2 t
E.k = e”“s{xs +§—} —;—+o:e’0’t e udu (4.6)
o o

u=s

and the conditional variance for the spot price x,, given that the time is s is defined
as:

t
Var,[x,]=Var, (oe‘”’t _[e““ dw, ]

u=s

t
_ O_Ze—Zat Iezaudu

u=0
t 2 -
:O_2e2at|:ie20!u} :O-_(_e*ZOI(*S/ . (47)
2 s 20 -

1 p Bjerksund et al “Gas Storage Valuation: Price Modelling v. Optimization Methods” (2008
Journal of Enconometric Literature http://www.nhh.no/Admin/Public/Download.aspx?file=/Files/Fil
ler/institutter/for/dp/2008/2008.pdf (Accessed 09 September 2009).




4.2 Explicit Solution - One-Factor Vasicek Model on Log Spot Price

According to S.M. Sheikh (2007)** we need an initial model for the stochastic
differential equation (SDE). As mentioned in the previous section, let:

X, =InP, (4.8)
dx, =d(InP,). (4.9)

If we use Ito’s Lemma as mentioned in J.C. Hull, (2000)12, such that if one has a
variable P, it followings an Ito process:

dP, = a(P,,t)dt +b(P,,t)dW, (4.10)

where dW, is a Wiener process. Let a and b be functions of P, and t. When we

have a function, x,, of B, and t such as equation (4.9). We can subsequently express
equation (4.9) as:

2
dx, =| a % ¢ oy L2 0% gy p gy, (4.12)
P 2 oP oP,

If one compares equation (4.1) with equation (4.10) it is observed that:
a(R.t)=a(u-InR)R, b(R,t)=oP, (4.12)

and by using (4.8) and (4.11) we obtain:

,TL=0, == (4.13)

By substituting (4.12) and (4.13) into (4.11), equation (4.11) can be expressed as:

d(lnpt):(%(a(ﬂ_lnpt)Pt)Jro_212 (on)Z]dt%oPtdwt
t t t

which simplify to:

2

dx, =a(,u—InPt)dt—%dt+oth

2

dx, :o{y—;—a—xtjdt+odwt. (4.14)

1 SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis”
(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
(Accessed 9 September 2009).

12 JC Hull Options Futures & Other Derivatives 4 ed (2000) 229.
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Now consider,
U, =e“x,.
Appling Ito’s Lemma to previous equation gives,

du, =d(e"x,)=e“dx, +ae“‘xtdt+%a2e“‘(dt)2. (4.15)

We know that (dt)2 equals zero and if we use equation (4.14) and substitute it into
(4.15), then:

2

du, = d(e“‘xt)= e” [a(,u —;—a— X, jdt+ odwt} +ae”x, dt

2
d(e“x, )= e"{a[u —g—aJdt + ath}+ e x,dt — e x dt

2
d(e“‘xt)za(y—g—a]e“‘dt+oemdwt. (4.16)

Integrating equation (4.16) on both sides with regards to time from t, —>t,, one
obtains:

2\t tisg
eatm Xti+1 o eati th - a[lu - Z-_aj J-eanS to J.eanWS ' (417)
t t

Use At=t,, —t, and multiply both sides of equation (4.17) with e “- and reorder
then:

i+l

X, =xe“ +(,u—0—2j(1—e‘m)+ c;e”‘“”tj.e"‘sdwS : (4.18)

tiy i
! 2a :
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4.3  Ordinary Least Squares (OLS) Estimation - One-Factor Vasicek Model
on Log Spot Price

With reference to S.M. Sheikh (2007)™, I derive from equation (4.18) a system of
linear equations. First we need to convert equation (4.18) into the following structure.

Y=mX+C+e& (4.19)

From equation (4.19) we need to minimise the variance of the error, Var,, (). The
minimising of the variance of the error term is the second assumption on the error
term, e, = &, made in paragraph 1.1, page 1 of this thesis.

By minimising the variance of the error one can obtain the estimators ¢, £ and & .
Subtracting x, on both sides of equation (4.18) yields,

2 i+1

X, —% =% (™ —1)+(y—‘2’—aj(1—e-““)+ oe_“t‘“t;i[ e“dW,. (4.20)

By comparing equation (4.19) with equation (4.20) one will obtain:

t+
& =oe " Ie"‘deS (4.21)
t

Let

X, — X X,

X, —X

n-1 tn—Z tn—2

X, —

such that Y =X, -X,, is @ [nx1] matrix, containing the differences of the log spot

prices, X isa [n ><1] matrix, the intercept, ¢, and the slope of the regression line, m .
Let the noise or residual term be denoted as « and let the noise term be a [nx1]
matrix. As indicated above, the equation for the slope of the regression line is,
m = (e""At —1). By using this equation one will obtain « , which yields:

' SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis”
(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
(Accessed 9 September 2009).
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(4.22)

The equation for the intercept of the regression line also indicated above is,

2
c= (,u _Z_aj(l_ e’“m). By using this equation we can find an expression for x :

C o’

+—. 4.23
1-e™) 2« (4.23)

/J:

Notes that the parameters «, 1 and o must be estimated.
4.3.1 Deriving the Estimators In Order to Minimise the Variance of the Errors

In this section we will determine the variance of the error, ¢, and then determine the
estimaors which will minimise this variance. First | will state some rules of
expectation according to J.S. Milton et al (1995)" and R.E. Walpole (1990)* ed. 3:

o E[c] =c (The expected value of any constant is that constant).

e E[cX]=cE[X] (Constants can be excluded from expectations).

o E[X+Y]=E[X]+E[Y] (The expected value of the sum is equal to the sum
of the expected values).

Using equation (4.19), we can write an expression for the error ¢ as:
e=Y-mX—-c (4.24)
The general formula for the variance of the error ¢ is given as:
Var(e) = E[e2 |- (E[¢]). (4.25)

In order to apply the Ordinary Least Squares Regression according to J. A. Rice
(1988)™°, one needs to assume E[s]=E[Y —mX —c], is zero. The assumption,

E[¢]=E[e,]=0, is also derived from paragraph 1.1 of page 1 of this thesis. It follows
that:
Var(s) = E[(Y —mX —c)’]
=E[Y? -mXY +m*X? —mXY + m*X? +cmX —cY +mcX +c¢?]
= E[(Y —mX )* —2c(Y —mX)+c?]
= E[Y? -2mXY +m?X? —2cY +2mcX +c?].

3 JS Milton and JC Arnold Introduction to Probability and Statistics: Principles and Applications for
Engineers and the Computing Sciences 3 ed (1995) 53.

 RE Walpole Introduction to Statistics 3 ed (1990) 145.

15 JA Rice Mathematical Statistics and Data Analysis (1988) 459.

30



By using the rules of expectation stated above we can say that:
Var(g)= E[Y ?]—-2mE[XY ]+ m?E[X ] - 2cE[Y]+2mcE[X]+c?. (4.26)

In order to minimise the variance of the residuals we need to take partial derivatives
of the variance with respect to m and c. Subsequently a zero will be equated to these
two equations as follows:

Var(e

om
Var(e

oc

N—

o= —2E[XY ]+ 2mE[Xx ?]+ 2cE[X =0 (4.27)

N—"

|.=—2E[Y]+2mE[X]+2c =0 (4.28)

Observe that if the second equation (4.28) is simplified we obtain:

E[V]-mE[X]-c=0
E[v —mX —c]=E[¢]=0.

This proves the assumption that the expectation of the error, E[g], is zero. The first
equation (4.27) needs to be simplified:

ME[X ?]+CcE[X] = E[XY]. (4.29)

Subsequently equation (4.28) must be simplified and multiplied with E[X] which
give:

mE[X]E[X]+cE[X] = E[X]E[Y] (4.30)
Subtracting (4.30) from (4.29) yield:

mE(X 2)-(E(X))*1= E[XY]-E[XE[Y].

Variance(X) Covariance(X,Y)

Divide both sides of the previous equation with Var(X ) then the optimal value of m
becomes m:

m=

Cov(X,Y)
Var(X) (4.31)

Var

Substitute equation (4.31) into (4.28) one will obtain the optimal value c indicated as
¢ which yields:

_ Cov(X,Y)E[X]

VarX) (4.32)

¢=E[Y]

The minimum estimators for parameters m and ¢ will be respectively m and €.
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4.3.2 Calculation for the Minimum Variance of the Errors

With reference to S.M. Sheikh (2007)* the optimal intercept, ¢, and the slope, m , of
the regression line derived in equations (4.31) and (4.32) are substituted into equation
(4.26) to minimise the variance of the residuals, ¢. First let me define some
abbreviations:

Var(X)=o2
Var(Y)=o?
Cov(X,Y)=0y,.

The minimum variance will be:

2

Var,, (e)= E(r?)- 22X E(XY )+ (GXY jz E(x?)-2E(Y)- [MJE(YH

2?{ {E:]—%;mj;(x){av)—%;mfx
—E(Y2)-2[E(Y)F +[E(Y )P _ZZ_XiY E(XY)+(Z—X)2(YT E(x?)+ 2E(X)E(Y)(;>g
+ 2E(X)E(Y)(Z2<Y —2(66—?}2 E(xA)2 ‘ZE(X)E(Y)%{%T E(Ax )

From the last expression one needs to merge the marked symbols A and merge the
marked symbols B to obtain:

V()= E(r ) [E()F - 22 [E(xv)- E<x>E<v>]+(“X;j [E(x?)- [Ex ]

2

O'X

2 2
Oy Oxy Ox

The minimum variance will become:

var,,,(¢)= oy —["—j : (4.33)

Oy

The minimum variance of the errors equation (4.33) must be equal to the variance of
the residuals derived in equation (4.21) which yield:

g 2 2
Var(s)=E(¢?)= E(oe”’t‘” | edeS] =a$—((’i] . (4.34)
t; o

X

1 SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis”
(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
(Accessed 9 September 2009).
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According to B. @ksendal (2000)™° the integral needs to be evaluated by using the
following properties.

4.3.3 Properties of Ito Calculus

Assume that E[W,]=0, W, is stationary for all t, for t, =t,, W, and W, are

independent Wiener processes then let f eV(S,T) such that the Ito integral is
defined by:

]l ()=

f(t, @)dW, .

m’—.—!

Let function f eV(S,T) be approximated by ¢<V(S,T), and ¢ is known as the
elementary function:

¢(t’ a)) = Zj:ej (C‘))Z[ti ,tM)(t)'

Let x be denoted as the characteristic (indicator) function and e; must be
F, -measurable in such a way that F, be the history of W, up to time t. The integral
of the elementary function ¢ is:

i¢5(ta)dW Yel M W]

i=0

Now we can define the following Ito isometry.

1% B @ksendal, Stochastic Differential Equation: An Introduction with Applications, 5 ed. (2000) 32.
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Theorem 1. If ¢(t, ) is bounded such that E{}(¢5—¢n )2dt} —0, ¢, €V(S,T) and
S

#(t, ) is an elementary function then

mm Wi }
[

Proof. Let AW; =W, —W, . Then

E{Tj(gbz(t,w)dt}

S

e s - 0 it i ]
&AW AW, | = E[ej?:KtH—tj) if =]

And we know that AW, and AW, are independent if i < j. It follows that

E{@ﬂt,w)dwt)z} = E[Egbz(t,w)dt}

and

E[e;AW,] = E[e; JE[AW,] =0, then
o]

.
Based on these conditions we can say that since E[j(¢—¢n )Zdt} — 0 if follows that
S

g

E[} (p-¢,) dt} —0or [} E(¢) dt < oo} . It follows that from equation (4.34):

TE(e Vds = - [e2 —
gE(et)ds—za[e2t <.
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The solution of equation (4.34) by using Ito’s isometry will yield:

2
ti+1
Var(g) = E(oe‘”““1 Je”dWS]
t.

2
ti+1
=gle?%m E{ je%dwsJ
t.

ti+1
= gl 2%n Iez"‘sds
5

_ o220t %[ezas]ﬁ_gﬂ
=20ty i i i
— ole 2t - [eZat a2t ]
o (L—e>). (4.35)

" 2a

Therefore by setting equation (4.35) equal to (4.34) it will enable us to determine the
optimal estimator & for the parameter o . Before the optimal estimators rh and ¢ are
substituted the parameter o will yield:

2 2
O'\f _(UAJ :O'_(l_ezam)

Ox
L (0'2 _low) J (4.36)

By first solving the optimal estimators m and ¢ by using (4.51) and (4.52) and
substituting these estimators into equations (4.22), (4.23) and (4.36) yield the OLS

estimates:

P In(rf +1)
At
¢ G’

- .
H il—e‘““i 24
2a ol
A2 2 XY
o= —| oy — )
) 5

These three OLS estimates above are obtained from applying the first two assumption
of the error term in paragraph 1.1 page 1 on this model.

35



4.4 Maximum Likelihood Estimation (MLE)

With reference to S.M. Sheikh (2007)* one may use equation (4.18), the conditional
expectation and conditional variance for the logarithm of the electricity spot prices are
respectively given as:

=Ex, Ix, ) (4.37)

i+l i+1 i

and

2
ti+1
w, =oler E{Je“dws} :
t.

Since each x, term is known the conditional variance for the logarithm of the
electricity spot prices can be further extended with x, — x, such that :

o

—Elx e ]+ E[(ﬂ - %j(l— e )} +oe E[Ie“sdws}

2

= x, e J{,u—g—j(l—e“t‘) (4.38)

-~ E[xti e+ (,u —;—2](1— e )+ oe ™ ]e‘”sdws]
0

(04

&
because of the fact that E{je”dws} =0.
0

The variance w; is:

4 2
w = o2 E[J'e“sdws}
0
9
=gl _[ez‘”sds
0
_ ole [eZati _1]
20

= foen] (4.39)

1 SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis”
(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
(Accessed 9 September 2009).
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We may conclude that the log-prices are x, ~ N(vti,wtf) for i=123,...,n. From
chapter 1 the likelihood function becomes:

L(a,y,gz)zli[\/zlﬁexp{—ﬁ@ti —vti)z} (4.40)

The natural logarithm of (4.40) is taken and the derivatives in terms of «, x and o°
for which three equations will be obtained and each substituted to zero.

The natural logarithm of equation (4.41) is:

2w

n 0 (Inw; 1
InL(e, 1,0%)= —EanE—Z[ T T )2} | (4.41)
One needs to express equation (4.41) in terms of the functions of « , which will make
equation (4.41) a one-variable maximisation problem. Taking the derivative of (4.41)
in terms of 4 and set the derivative to zero yields:

o(nL) _ 0
ou
0 [ s (Xti _Vt,yj
- = - =0
o\ = 2Wti
- (Xt, _V'fi)avtI
2w o
Zn;(x‘iw—_zv“)(l—e‘m- )=o0. (4.42)
i=1 t

Substituting equation (4.38) into (4.42) gives:

: (X‘i e _[ﬂ_g;j(l_ewti )J(

Zl " 1-e)=0
: (Xti -x e Xl_ e ) s (1— e )
i=1 Wt2 ) (/u ) ng Wtz -0
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Subsequently we may assign the first function in terms of an optimal « assigned as
a which yields:

f(d)z[/} &Z]Zi(x‘i X i). (4.43)

26) & (l-e)

where the optimal values of «, x and o assigned «, 42 and & (also known as the
MLE?’s) are used to solve the last equation on page 37. The derivative of the natural

logarithm of the likelihood function, S—L is complicated to derive, subsequently by
o

. L . . . .
looking at :—2 =0, all the other functions in terms of « can be determined. First let:
(o2

0 aln(w?) 1@ 1 6(xti -

1 o Vti)z _1 s B zaW_ti_
_EZ_: Glo EZ_Z oo’ 2iz=1:(xti Vt‘) do? =0

= i1 Wi,

SN I Loy ) e ) i 2a -
oo 22‘W§ 20x, vti)za(l e )+2§‘ o 0. (4.44)

If equation (4.39) is substituted into (4.44) and if o2 is multiplied throughout, then:

Subsequently we may assign the second function in terms of an optimal « assigned
as a which yields:
: (Xti _\7ti )Z

g(@)=% - % boe) (4.45)
24 ( 0 (x, -V, )J
2n+y ——

i—1 1+ eia}ti

where the optimal values of ¢, 4 and o assigned &, 4 and & (also known as the
MLE?’s) are used to solve the equation above equation (4.45). After substituting @ ,
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and ¢ into equation (4.38) and substitute equation (4.41) into the changed equation
(4.38) one may say:

G, =x,e " + f(af-e)=h(a). (4.46)

Equation (4.45) can now be expressed by:

Z”: (Xti - hi (d))z

A2 —2o;
O i=1 1/—9 o

0ld)=5 - » (x —h@))
2(n+§7—”‘+e'&ti }

After substituting @, 4 and & into equation (4.39) one will obtain:

W =g(a)1-e?™]. (4.47)

If we substitute equation (4.46) and (4.47) into (4.41) then (4.41) becomes:

2

InL(é, 2,6°)= —gln 2n—%zn:(ln(g(d)[l—em‘ 1)

i=1

52
19 (xti —X, &% - f(o‘c)(l—e*’f“i ))2

. 4.48
2% (g@m-e ) 449

45  Simulation of the One-Factor Vasicek Model on the Log Spot Price
As indicated in equation (4.8) let:

X, =InR, .

where P, is the electricity spot price at time t;. The stochastic differential equation
for x, is defined in equation (4.14) as:

~n2

dx, =o‘{,&—g—d—xti Jdt+édwt.
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With reference to A. Lari-Lavassani et al (2001)"" the numerical simulation for above
equation can be expressed by:

A2

X, —X = o}A{ﬁ—% — X, j+a\/A_tZi

such that:

A2

X, =X +&At([z—%—xt}+&\/ﬂzi
i+1 1 a 1

~2
X, =(L-aAt)x, + o?At[[z - Z—] +6JAZ, (4.50)
i+l i o

where At=t, ,—t. and Z, are independent identically normally distributed random
variable with a mean of zero and a variance of one. The actual spot prices P, will be

obtained by taking the exponent of x, such that:

P =e",

4.6  Example 4.1 - Estimators for Electricity Spot Prices

Sweden’s Electrical spot prices are given in terms of Euro per Megawatt from 1% of

January 2008 to 31* of December 2008 in Appendix A3. The first risk property of this
original data is the mean reversion. The Ljung-Box-Pierce test on this dataset is:

Q =5062834> 42, =113.1453

The corresponding p—value is 2.2e-16 which is less than 0.05. The null hypothesis
(H,) will be rejected indicating that the distribution of the original dataset is not mean
reverting.

" A Lari-Lavassani et al “Mean reverting models for energy option pricing” (2001) University of Calgary.
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Figure 4.1: QQ-plot on the Logarithmic Sweden’s Daily Electricity Prices Indicates

One can see that according to Figure 4.1 the data in the QQ-plot do not follow the straight
line which indicates fat tails are present in the original dataset. One may now choose an
appropriate simulated model based on Table 1.1. Due to the fact that the Logarithmic
Sweden’s Daily Electricity Prices Indicates have no mean reversion and fat tail risk
properties one may choose the more appropriate One-Factor Logarithmic Vasicek
simulation model with jumps to fit on this original dataset. | however choose the One-
Factor Logarithmic Vasicek simulation model which is an inappropriate model based on
the risk properties of Table 1.1. Equation (4.50) is used to simulate the one-factor
Vasicek model on Sweden’s electrical log spot prices. Assume that the initial spot price is
P, =4141 such that X,, =3.815732. Let At =1/366. The vector Y is the difference of

the log spot prices and (4.31) and (4.32) will be used to determine the ordinary least
square estimates m and € respectively.

Table 4.1: Ordinary Least Squares Estimation on Sweden’s Dataset

Date i t Xti yti = Xti+1 B Xti
0 0 3.815732
1/1/2008 1 0.0027322| 4.00296 0.187228
1/2/2008 2 0.0054645| 3.960242 -0.04272
1/3/2008 3 0.0081967 | 3.870576 -0.08967
1/4/2008 4 0.0109290| 3.850573 -0.02
1/5/2008 5 0.0136612| 3.863673 0.0131
1/6/2008 6 0.0163934 | 4.046554 0.182881
1/7/2008 7 0.0191257| 3.894266 -0.15229
12/30/2008 365 0.9972678| 3.773910 -0.01434
12/31/2008 366 1.0000000| 3.759571 -0.02572
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By using Table 4.1 the first estimator for this model is:

Cov(X.,Y) _ -00161_ ) cays (4.51)
Var(X)  0.0985

m=

By using equation (4.32) one can solve ¢ which yields the second estimator:
6= epy]- SV EIXT _ ) gq, (00162)3.891363

—0.635742. (4.52)
Var(X) 0.0985

Then equations on bottom of page 35 are used to yield the following estimators for this
model:

_In(+1) _ 621102783
At

¢ 6?

(1= .+ — =3.9889595¢
H il—e‘”’At ) 24

~ 2
g1 =22 [af — j —12.92752034.
il— e ’ Oy

According to Appendix B.4, the negative logarithmic likelihood function given as:

n A2
E(A,ﬁ,&2)22|nzﬂ+z(m;'v‘i + 2\22 (x, —vti)zJ (4.53)

5

is minimised using the ‘fminsearch’ function in Matlab to determine the maximum
likelihood estimators. The OLS estimates are used for the initial values of the likelihood
function before minimising the likelihood function. The estimates obtained to minimise
(4.53) are:

4 =69.8327658 1 =3.83643665 &° =0.0000000004023

If one chooses the above estimates as initial values and one calculate the optimal
estimates to maximise (4.53) by using the Microsoft Excel solver add-inn functionality,
the estimates obtained converge to:

a =69.8327655 [ =3.83643665 &2=0
More information on the Microsoft Excel solver add-inn functionality is explained in

chapter 5, paragraph 5.9 on page 55. By observing the simulated plot based on these
estimates and compared to the OLS, it is clear that 62 =0 is not accurate.
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The optimisation of « in terms of maximising the likelihood function (4.53) did not
provide an adequate simulated model that represents a similar shape of the original
dataset. Alternatively | choose to apply the following two procedures. Firstly I choose
&, =69.8327655 obtained from Matlab and Microsoft Excel solver add-inn when
minimising (4.53) and use equations (4.44), (4.47) and (4.46) derived from the MLE
procedure to derive the optimal estimators £ and &2

t(a)=| a- ) @ lx —xe™) 140593008
\“T2a) 5 h-e®) 361243017

0 (Xti -9, f (35.89152273

PR Je A j
g(@)=""-= Zl-e) 3638477 — 0.054204066€

T2 nx —)) ( —3.1E—13)
2{n+;(—)1+edti J 2| 365+ 270,757

=3.8919232

Solving these equations simultaneously, one will obtain:
a =69.8327655 [ =3.9461272@ &° =7.570439641

Secondly | choose ¢, =65.31102783% obtained from the OLE procedure and also used
equations (4.44), (4.47) and (4.46) derived from the MLE procedure to derive the optimal
estimators & and &°:

A2 A2
f(a)= (u - ‘Zj—j ~3.8919995¢  g(4)= ‘2’— =0.054204571

a a

Table 4.2: Summary of One-Factor Logarithmic Vasicek Optimal Estimators
)2 a 62
OLS 3.98895956 65.3110178 12.92752034
MLE - &, 3.94612726 69.8327655 7.57043964
MLE - &, 3.94620416 65.3110178 7.080311448

In the following Figure 4.1 the simulated models are: the blue line (MLE - ,), the green
line as (MLE - &,), and the red line (uses the OLS estimators). The black line indicates

Sweden’s real electricity prices. According to Figure 4.2 the green and blue lines as
almost completely the same. In Figure 4.2 the real electricity prices for Sweden in Euro
per Megawatt and the simulated One-Factor Vasicek model on the log spot price

according to equation (4.50) was transformed to P, = e’ and simultaneously displayed.
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Electricity Prices in Euro per Megawatt
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Simulation of One-Factor Vasicek on Sweden's Electricity Prices
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Date

Figure 4.2: Simulated Electricity Prices for Sweden versus the Real Prices

4.7  Testing for Mean Reversion and Fat Tails

Sweden’s

daily electricity prices in Euro per megawatt are available in Appendix A3. By

using the dataset for the simulated green model, the QQ-plot on Sweden’s simulated One-
Factor Vasicek model indicates the tails of the quantiles are significantly larger than

compared

to the standard normal quantiles. This factor indicates the presence of fat tails

in return of these prices. The result in Figure 4.3, derived from Statistica 8.0, indicates
that a Jump process is needed in this model. Due to the topic of this thesis, Jump process
will however not be discussed.

Observed Value

QQ-Plot of Simulated Logarithmic Vacisek Model
0.01 0.05 0.25 0.50 0.75 0.90 0.99
130 T T T T T T - , .

120
110
100
90
80
70
60
50
40

30

20

-4 -3 -2 -1 0 1 2 3 4

Theoretical Quantile

Figure 4.3: QQ-plot for Simulated One-Factor Vasicek Model on Sweden’s Daily

Electricity Prices Indicates
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According to Figure 4.3 fat fails are present in the QQ-plot. The mean reversion property
for the simulated One-Factor Vasicek Model according to the Ljung-Box-Pierce-test is

Q =1550.802> 42 s =113.1453,

indicating H, will be rejected, meaning the simulated One-Factor Vasicek model using

the estimators obtained from the MLE (using the green model), procedure does not
follow a white noise process and significant autocorrelations are present thus mean
reversion is not present (no stationarity present).

As observed in Table 4.2, the OLS estimates compared to the two MLE methods for the
three estimators are quite different due to the fact that fat tails are present in the QQ-plot
indicated in Figure 4.3. Please note that | should have rather fit a one-factor Vasicek
model with jumps on the log spot prices for more accuracy. The following paragraph
deals with more differences between OLS and MLE for less fat tails.

4.8  Testing for Differences on OLS Estimation and MLE

One may choose specific estimators when generating a dataset from the one-factor
Vasicek model on standard normal random variables using equation (4.50). The
sufficiency of the OLS and MLE estimators can then be compared to the original

parameters. Assume that the initial spot price is B_=100 such that x, =4.60517. Let

At =1/366. Let the original parameters be o =5, =6 and o =3. A new original
dataset is generated from 366 standard normal random values with initial x, =4.60517.

Table 4.3: Ordinary Least Squares Estimation on Standard Normal Random Dataset

Date i t Xti yti = Xti+1 - Xti
0 0 4.60517
1/1/2008 1 0.0027322| 4.557516 -0.04765
12/31/2008 366 1.0000000| 5.935349 -0.01055

Table 4.4: Summary of One-Factor Logarithmic Vasicek Optimal Estimators

U a 6
OLS 6.372716095 5.419546444 2.744700762
MLE — Solver Add-Inn 6.509520394 3.691574684 1.3819780487

By using Table 4.3 and equations (4.23), (4.24) and (4.36) one will obtain the results for
the OLS indicated in Table 4.4. By using the Microsoft Excel solver add-inn
functionality, the estimators are given in the second row of Table 4.4. According to
Figure 4.4, the tails are not so fat (normal tails) compared to Figure 4.1 and Figure 4.3
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and the estimator differences are less for the OLS estimate and the MLE in Table 4.4 as
compared to Table 4.2. | have observed that the fatter the tails or equivalently the more
outliers present in the original dataset, the larger the divergences for the estimators
determined with the OLS estimation compared to the MLE procedure.

Quantile-Quantile Plot
0.01 0.05 0.25 0.50 0.75 0.90 0.99

75

7.0

6.5

6.0

i
7

Observed Value

5.0 f;

45 s
-4 -3 -2 -1 0 1 2 3 4
Theoretical Quantile
Figure 4.4: QQ-plot for Simulated One-Factor Vasicek Model on Standard Normal
Random Variables

4.9 Notes and Research

My aims in this chapter are first to find the risk properties of the historical dataset. One
may then choose an appropriate simulation model with the same risk properties as the
original dataset. In order to generate a simulation model, the OLS and two methods for
the MLE of the Sweden’s the log spot price in terms of Euro per Megawatt from 1% of
January 2008 to 31% of December 2008 are calculated. After calculating the OLS and the
two MLE’s | showed via the QQ-plot that fat tails exist in the original dataset and the
simulated model.

When fat tails are present it indicates that large differences will occur between the OLS
and MLE methods. The OLS and MLE are approximately the same if the tails are not fat,
but if the tails get fatter the more inaccurate the OLS procedure become due to the fact
that the OLS method is biased. Significant Ljung-Box-Pierce-tests are found in the
original dataset and the simulated model such that mean reversion is not present.

Due to these results one should rather use the One-Factor Logarithmic Vasicek
simulation model with jumps to fit on this original dataset. | however choose the One-
Factor Logarithmic Vasicek simulation model which is an inappropriate model to use
based on the risk properties of Table 1.1. The One-Factor Logarithmic Vasicek
simulation model with jumps is not discussed in this thesis. |1 choose the One-Factor
Logarithmic Vasicek simulation model for illustration purposes only. As seen in Figure
4.2 both methods of the MLE are approximately the same and give more accurate
simulated models than the simulated model derived from the OLS method.
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Chapter 5

5 MEAN REVERSION - THE VASICEK MODEL
The main purposes for this chapter are:

e finding the risk properties for the original dataset (the historical model standard
normal random data)

e choosing the simulated model which should have the same risk properties as the
original dataset. Table 1.1 is used to find the most appropriate simulated model
with the same risk properties as the original dataset

e finding different methods of calculating the estimators for this simulated model.
These methods used to find the estimators are called OLS estimation and two
different MLE methods

e comparing the accuracy of the OLS estimates and the two MLE by observing
whether the model have fat or normal tails. This is done by using the QQ-plots.

e finding the risk properties of the simulated model

e comparing the original and simulated risk properties and analysing the
appropriateness of the simulated model.

5.1  Basic Properties - Vasicek Model

The Vasicek model, owing its name to Vasicek (1977), is one of the earliest stochastic
models of the short-term interest rate. This model is also known as the Gaussian model,
the Ornstein-Uhlenbeck mean reverting (OUMR) process or the extended-Vasicek model
according to P. Skantze et al (2000)*® which is a suitable model to apply the maximum
likelihood estimation (MLE) or the ordinary least squares (OLS) method on. The
instantaneous spot rate (or “short rate”) used for historical estimation is defined according
to J.C.G. Franco *° as:

dx, = a(u— X, )dt + cdW, (5.1)

where «, ux and X, are constants and dW, represents an increment to a standard
Brownian motion W,. The spot rate x, will fluctuate randomly but over the long run

tends to revert to some level . The speed of reversion is known as « and the short-term
standard deviation is o where both influence the reversion.

The non null property of negative rates is a major shortcoming for the Vasicek model.
This is an unrealistic property for the modelling of interest rate when using Vasicek

18 p Skantze et al “Stochastic Modeling of Electric Power Prices in a Multi-market Environment” (2000)
IEEE Cambridge University.

9 JCG Franco “Maximum Likelihood Estimation of Mean Reverting Processes” (2008) http://www.invest
mentscience.com/Content/howtoArticlessMLE for OR mean_reverting.pdf  (Accessed 09 September
2009).
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models. Solving the Ornstein-Uhlenbeck Stochastic Differential Equation includes taking
the derivative of e“x, which yields:

d(e”“xt)z X, ce”dt +e“dx, . (5.2)
Rearrange the order of equation (5.2) gives:

e“dx, = d(e”“xt)— X, ce”dt. (5.3)
Multiply both sides of equation (5.1) with e*is:

e”dx, =e"a(u—x, )dt+e”odW, . (5.4)
By using equation (5.3) and substitute it into equation (5.4), yields,

d(ex, )= ce™ wt + e odW, . (5.5)
If an integral is taken from time t =0 to t gives:
t t
e“x, =X, + jae"‘s,uds+ J'e”‘sodws. (5.6)
t=0 t=0
Writing equation (5.6) in terms of x, yields:

t t t .
X; = Xoe_at + J.O{ease—“tluds+ J.ease—atodws — Xoe—a't + J'ae—a(t—S)ludS_i_ J.e_a(t_s)OdWS
t=0 t=0 o0 o

=X, ™ +,u(l—e’“‘)+ je“(‘s)odws : (5.7)

t=0

The solution of the stochastic differential equation (5.1) between s and t, if 0<s<t is:

S

t
X, =X g t=s) +y(1—e‘“(t‘s))+ oe™ je““qu : (5.8)
t=s
As indicated in chapter 4, the second integral on the right hand side of equation (5.7) is
t
[e™*)odW, which follows a normal distribution with a mean of zero and a variance

t=0

such that:
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The conditional mean and variance of X, given X, is:

EO[Xt] :/J"'(XO _/ut)eﬂt
2

Var,[x,] :CZT—Ol(l—e‘ZO‘t ) a>0. (5.9)

The conditional mean and variance of x, given X, are:

E.[x 1=+ (X, — g o

2

Var,[x,] = ‘2’_0[(1— g 29}, (5.10)

If time increases the mean tends to the long-term value « and the variance remains
bounded, implying mean reversion. The long-term distribution of the Ornstein-Uhlenbeck
process is stationary and is Gaussian with mean x and variance o? /2« .

5.2 Maximum Likelihood Estimate (Method 1) - Vasicek Model

The discrete time version on the time grid t,t,,....,t, with time step At=t, —t, , will be
used in this section. If x,_is given, the conditional density function f of x, by using
equations (5.9), yields:

/2 e RN
{2 e )
. 20 ol O (1_e—2a(t,—t|71))

200

The log-likelihood function is given by:

n

2
InL(x; m.or.0)=—2 In(‘;—aj - %ZIn(l— oli-h.)
i=1

n — ) — _ —a(ti-tiy) 2
:_%Z(th - (thlza tl-uf - ) . (5.11)
= 1_e (I i 1)
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The log-likelihood function needs to be maximised by taking partial derivatives of
equation (5.11) towards x, ¢ and o which yield three equations all equal to zero:

8|nL(Xt;,u,a,a)| 0 8|nL(Xt;,u,a,0)| 0 alnL(Xt;,u,a,O')
i= =

a |c3-: 0
ou oa oo

The aim is to solve these equations simultaneously and write equation (5.11) as a
one-dimensional expression.

Looking at the first derivative:

oln L(Xt;,u,a,O') _ —izn: (Xti —U— (XtH — ﬂk_a(ti_ti—l))
a/,l o’ ‘T 1+ e*“(ti*tu)
which if we assume that o # 0 and o = 0 gives:

n (Xt _Xt- eat t.1)

= t(@)= 3 {E :I:jg)l. (5.12)

The second derivative gives:

oln L(Xt;,u,a,o-) _ _£+2_ai(xt. _'“_(Xt,,l _Iutk—a(tifti,l))z

oo c o'%s 1-e

which simplify to:

(5.13)

ﬂ&):\/Z& N L) ”'l)

n 5 1—e2elit)

The log-likelihood function first needs to be expressed by functions of « by using (5.12)
and (5.13) and then maximised with respect to « which yields:

\/A(a)=—g|n|:M}——Z|n( p2alti-tiy )
. (Xti B f(O‘)_(Xti,1 B f(“)kia(tiitifl))z

n
- g(f(a),a)2 ; 1_e_2a(ti_ti—l) ' (514)
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According to this method, a likelihood expressed in (5.14) is written in terms of functions
of « and then maximised in terms of « . An optimal value & derived from maximising
(5.14) is substituted into (5.12) and then (5.13) to determine 4z and & .

5.3 Simulation - Vasicek Model

The simulation model for the Ornstein-Uhlenbeck process with time step At=t, —t,
according to M.A. van den Berg (2007) % is derived from (5.8) and is given as:

. . . 1_e72dAI
X, =xe“ +y(1—e ““)+ 6|2,
i+l i Za

where Z, is independent identically distributed and follows a standard normal
distribution with a mean of zero and a variance of one.

5.4  Example 5.1 — Generating Original Dataset Using Vasicek Model

Let At=0.25, the mean reversion rate « =7, the long term mean x=5.5 and the
volatility o =0.15. Also let the initial spot rate be x, =15. Table 5.1 determines the

generated values for Xy, X

bss *

Table 5.1: Generating Original Dataset Using Vasicek Model

i t; Z, X,

0 0 15

1 0.25 |-0.021674|7.144863
2 0.5 0.910547 |6.037468
3 0.75 2.316137|6.233474
4 1 -0.537386|5.478949
5 1.25 |-0.459722|5.369295
6 1.5 2.956149|6.294233
7 1.75 1.364187 | 6.015017
8 2 -1.254898|5.242699
9 2.25 -1.747471|4.972366
10 2.5 0.767391 |5.620383
154 38.5 -0.11734 | 5.45406
155 38.75 |-1.93103 |4.958368

%0 MA van den Berg “Calibrating the Ornstein-Uhlenbeck model” (2009) http://www.sitmo.com/doc/Calibr
ating_the_Omstein-Uhlenbeck_model (Accessed 02 June 2009).
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Figure 5.1: Plot for Generated Vasicek Model

Figure 5.1 plots the generated values for x,..x,_ with t,,...,t,s;. By observing Figure 5.1
one can clearly see the reversion of the original data that revert to some level 4 =5.5.
The risk properties for this dataset x, ,..x, = must be determined. The Ljung-Box-Pierce

test on this dataset is:

Q=10.4913< z2 .. =53.835

The corresponding p—value is 1 which is larger than 0.05. The null hypothesis (H,)

will not be rejected indicating that the distribution of the original dataset is mean
reverting. The risk property stated above corresponds to Table 1.1 for the Vasicek model.

Normal Q-Q Plot

Sample Quantiles
1

Figure 5.2: QQ-Plot of Generated Vasicek Model
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Based on observing Table 5.2, one can see that normal tails are present which also
corresponds to Table 1.1 for the simulated Vasicek model. The Vasicek simulated model
will thus be an appropriate simulated model to choose based on the similarities between
the risk properties of the generated dataset and Table 1.1.

5.5  Ordinary Least Squares Estimation - Vasicek Model

The linear relationship between two consecutive observations x, —and x, is linear with
independent identical random values & such that:

X,, =ax tb+e

i+l

where

_ a2aAt
a=e™ b=gll-e™) & ,=0 1;—0: (5.15)

(5.16)
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The following formulas are used to simplify further calculations:

n n
SX :thi—l SY :thi
i=1 i=1
n n n

SXY = thi—lxti !
i=1

(5.17)

The estimated coefficients of the parameters a, b and ¢, of least squares regression line
are:

LS, =SS, 6_S,-aS,

- nS, —S2 ~n
s ns, —S2-4(ns, -S,S,) 5.18)
. n(n-2) '

The ordinary least square (OLS) estimates s, @ and & are:
nS, -S,S nS, -S,S nS, —S,S
In ————* S, —| —X—" IS, —2In — 22V 2y
nS,, —S, . ns,, —S, nS, —S,
At a NS, —S,S " 2
|1 2Ty At 1| "B =53y
nSxx _Sx nSXX —Sf

56  Example 5.2 — Ordinary Least Squares Estimation

&=-

By using the following table along with equations (5.17) and equations (5.18), the
estimators in equations above are calculated.

Table 5.2: Calculations of Equations (5.17)

i t Zi Xti Xé XIH Xti
0 0 15 225
1 0.25 -0.021674| 7.144863 |51.04906 |107.1729
2 0.5 0.910547 | 6.037468 |36.45102 |43.13688
3 0.75 2.316137 | 6.233474 |38.85619 | 37.6344
4 1 -0.537386| 5.478949 |30.01889 |34.15289
5 1.25 -0.459722 | 5.369295 |28.82933 | 29.4181
154 38.5 -0.11734 | 5.45406 |29.74677 |29.57323
155 38.75 -1.93103 | 4.958368 |24.58541 |27.04323
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From Table 5.2 the solutions for equations (5.17) are:
y i

S, =Y X  =8656887 S, =) _x, =8556471
i=1

W t;
i=1

S. =D X  =4939401 S, =) x’=473898603
i=1

S, = D% X, =_24796626046
i=1

Using these results, the solutions of equations (5.18) yield:

. NS, -S,S, - S, -8,
a=—2 "V -0170041408  b=—Y—* =4570607537
nS, —S, n
nS, —S2-4alns, -S,S
£ =, —2—2 1S, =5.5,) =0.286218753.
n(n-2)

Finally the estimators obtained from the OLS method are:

6= M@ _7 08685326 =P _550703078¢
At 1-a

. . [—2In(8)

G&=¢ —1.093480328.
9\ Atl—a?)

5.7 Maximum Likelihood Estimate (Method 2) - Vasicek Model

Alternative calculations for the maximum likelihood estimates are made according to

M.A. van den Berg (2007)? as follows. The conditional density function for X, given
X, IS

i-1

—aht —ant \\2
f(xti |Xti71;ﬂ,a,a): 21 . eXp!(Xt — X, € :ﬂ(l—e ))
o

20

where

(5.19)

2! Van den Berg “Calibrating the Ornstein-Uhlenbeck model”.
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The log-likelihood function is given by:

In L(y,a,a)zznlln f(xti | XtH;,u,a,O')

i=1

=~ Yin(27)-nin(o)- 12 zn:(xt, —x_ e —uli-e)f . (5.20)
2 20 i=1 I =

The log-likelihood function needs to be maximised by taking partial derivatives of
equation (5.20) with respect to x, ¢ and o which yield three equations all equal to
zero:

dln L(,u,a,a)l _0
ou “
dlIn L(,u,a,a)l _0
oo “
oinL(u, a,0)
AL 0
oo
The estimators will be:
Z(Xti _Xtme_dm) 1 Z(Xt. _/[lxxt.fl _‘&)
f= = (1 —aAt) d:__tln = n
n A
° Z(Xtifl ’u)z
i-1
&’ :% > (x, ——e(x - a)f . (5.21)
i=1
By using equations (5.17), the MLE’s are:
2 S e, (5.22)
N (R '
S, — A4S, — S 0
d_im{[ o T /By T ]J (5.23)
At S, — 245, +ni
&’ :% 5, —2e s, ses 2afle s, —e s )inil-e | (524)

If equation (5.23), & , is substituted into (5.22), /1, it yields:
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S, — 208, +ni’
%—mfﬁa+m7
S, —24S, +ni’
S, (S, —248, +na?)-(s,, - a8, - iS, +na?)s,
(S, — 248, +npa?)-(S,, — iS, — &S, +nit?)
S,S, —S,S,, +A(S?-5,S, )+na%(s, -s,)
S —S, +AlS, -S,) '

ni =
1-

S, — 5, — i8S, +ni?
Sy_(xy AS, — 18, ﬂ}sx

The optimal estimate according to the alternative maximum likelihood estimation method
is:

A S,Sx —5,S, (5.25)
“Tn, s, )-67-s8,) |
Substitute (5.25), zz, into (5.23) gives:
S, —alS, +S, )+ na?
G=—Lin >0 i " ) ks (5.26)
At S, —24S, +nu

and using (5.25) and (5.26), the third estimate &2 is:

2 2a

o = m[sw _ Ze_dAthy n e_ZO?AtSXX _ Zl[lt (1_ e—dAt XSy . e—dAtS ) )+ n/&tz (1_ e_dAt )2]
(5.27)

5.8  Example 5.3 -Maximum Likelihood Estimation (Method 2)
By using the results from the previous section, the following results are obtained.

S,=>.x  =865688728 S =>x =8556470955
i=1 i=1

n

S =X, =4939400626 S, =) x’=473898603
i=1

yy
i=1

Sy =D % X, =4796.626046.
i=1
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Substituting these results into equations (5.22), (5.23) and (5.24) give:
S,Su =SSy
n(S, —S, )-(S2-5,,

i 1, Sxy—,&(SXjLSy)WLn,[z2
a=-—1In
AU | S, —2/8, +nji?

Q= - 5.50703078¢

} =7.08685326

& =% S, —2e°S +e s _2p(l-e S, —e ™S )+ni(l-e )2]= 0.080864127
so that:
. [ 2a
6=5,|—2 _ —1086402711,
l_ef aAt

5.9  Maximum Likelihood Estimate (Method 3) — Vasicek Model

Yet another method of determining the estimators is by using Microsoft Excel’s solver
add-inn. Microsoft Excel Solver uses the Generalized Reduced Gradient (GRG2). %

5.10 Example 5.4 -Maximum Likelihood Estimation (Method 3)
In this example Microsoft Excel’s solver add-inn is used to maximise equation (5.20).

The log-likelihood function given in (5.20) is determined in the last column of Table 5.3
indicated by InL for different values of i =1,...,155. The cell for InL if i =155 will be

maximised by changing the cells selected for the estimators s, ¢ and & .

Table 5.3: Optimisation of Equation (5.20)

i t Zi Xti InL

0 0 15

1 0.25 -0.021674 7.14486264 | 0.335101

2 0.5 0.910547 | 6.037468392 | 0.281184

3 0.75 2.316137 | 6.233473608 | -1.8833

4 1 -0.537386 | 5.478949333 | -1.68686

5 1.25 -0.459722 | 5.369295498 | -1.45761

6 1.5 2.956149 | 6.294232775 | -5.18212

7 1.75 1.364187 | 6.015016672 | -5.70906
154 38.5 -0.11734 5.454060205 | -23.562
155 38.75 -1.93103 4.958367504 | -25.0241

The maximum value of the log-likelihood function is:

22 N Herrala “Vasicek Interest Rate Model: Parameter Estimation, Evolution of the Short-Term Interest
Rate and Term Structure” https://oa.doria.fi/bitstream/handle/10024?43257/nbnfi-fe200901141021.pdf?.se
quence=3 (Accessed 09 September 2009).
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InL=-25.0241
for estimators:
£ =5.50703137¢, a =7.086842792 and o =0.28436607

so that:

6=5. 2%  _1086401554.

1 —e —2aAt

Table 5.4: Summary of Vasicek Optimal Estimators

H a &
OLS 5.507030788 7.08685326 1.093480328
MLE - Method 2 5.507030788 7.08685326 1.086402711
MLE - Method 3 5.507031376 7.08684279 1.086401554

5.11 Testing for Mean Reversion and Fat Tails for Simulated Model

Quantile-Quantile Plot of Simulated Model
Distribution: Normal
Varl = 5.5811+0.466*x
0.01 0.05 0.25 0.50 0.75 0.90 0.99

16

14
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-3 2 -1 0 1 2 3

Theoretical Quantile

Figure 5.3: QQ-plot for Simulated Vasicek Model

The simulated Vasicek model has a QQ-plot that indicates that the process has normal
tails and one need to test if there is any presence of mean reversion. The OLS estimates
are very close to the MLE estimates and the original parameters used for the simulated
model. The estimators for the OLS and MLE are close due to the fact that there are no fat
fails present in the QQ-plot for the generated dataset as well as the simulated model and
consequently the biasness in the OLE will not be majorly influenced.
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Autocorrelation Function

Simulated Vasicek

(Standard errors are white-noise estimates)
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Partial Autocorrelation Function

Simulated Vasicek
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5.12 Notes and Research

My aims in this chapter are first to generate the original dataset. One needs to find the
risk properties of this generated dataset and obtain a simulated model from Table 1.1
which has the same risk properties. The Vasicek model will be an appropriate simulation
model to choose based on the risk properties of the generated dataset. The OLS and two
methods for the MLE of a randomly generated time series that consist of 155
observations are calculated.

After calculating the OLS and the two MLE’s I showed via the QQ-plot that normal tails
exist in the simulated models. Due to the fact that normal tails are present in the
simulated models small differences will occur between the OLS and the different MLE
methods. The OLS and MLE are approximately the same if the tails are not fat, but if the
tails get fatter the more inaccurate the OLS procedure become due to the fact that the
OLS method is biased. The mean reversion property for the simulated model is also
determined by using the Ljung-Box-Pierce-test to determine the significance of the ACF
and PACF.

According to Table 3.1 and the results found in Figure 5.5, the estimated PACF cuts off
after lag 1 and the estimated autocorrelations produce damped sine waves which indicates
that this simulated model is similar to the AR(1) stationary mean reversion process.
According to the Ljung-Box-Pierce-test based on the simulated dataset
Q=10.10< x5 .0 = 43.7729 indicates H, will not be rejected, meaning the simulated

Vasicek model does follow a white noise process and significant autocorrelations are not
present thus mean reversion is present. These results coincide with Table 1.1 for the risk
properties of Vasicek Model. For this reason the Vasicek model will be a good fitted
model to choose for this generated dataset according to the generated dataset’s risk
properties.
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Chapter 6

6 THE TWO-FACTOR VASICEK MODEL
The main purpose for this chapter is:

e using the MLE method of finding the optimal estimator to be used for this
simulated model.

6.1  Basic Properties of the Two-Factor Vasicek Model

In this study, the two-factor Vasicek model is used to find the optimal multi-period
allocation between long and short bonds for an investor.

With reference to J. J. Kung (2008)%, consider the following two-factor Vasicek
interest rate model for the interest rates, which is divided into short rate for the one
factor and long rate for the other factor. Let r(t) be the short rate and I(t) be the long

rate. The two-factor mean-reverting Vasicek model is defined as:

dr(t)=a' (8" —r(t)ldt+o'dz" (t) (6.1)
dit)=c'(8' —1(t))dt+o'dz' (t) (6.2)

where dZ"(t) and dZ'(t) are two Wiener processes such that dZ'(t)dz'(t)= pdt and
p the correlation between the short and long rate. Let «" and «' be the
measurements of the strength of reversion to their respective mean levels; " and g',

the instantaneous volatilities of changes in the short rate and finally " and &', the
instantaneous volatilities of changes in the long rate. Let the price of the short bond
and long bond be assigned as P'(t) and P'(t) respectively. The price dynamics of
the short and long bonds are:

d;rr ét)) _ r(t)dt (6.3)
U _[r(0)+v'2 bt viaz' ). (6.4)

The volatility of P'(t) is assigned as v', while 2' is the market price for interest rate
risk. Let w(t) be a fraction of wealth invested in the short rate and 1—w(t) the
remaining wealth invested in the long bond. The dynamics of wealth V(t) are:

dv(t):v(t)w(t)dpﬁrét))+v(tx1_w(t))iﬁ_'(£t)). ©5)

2 JJ Kung “Multi-period asset Allocation by Stochastic Dynamic Programming” (2008) Applied
Mathematics and Computation 199 341-348.
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By substituting equations (6.3) and (6.4) into (6.5) one obtains:

dV (t) = (v (O)r(t)+V E)a—wt)v' 2 Jdt+V (Y1 w(t)V'dz' (t). (6.6)

The long bond is calculated by the following formula:

P'(t): C C C M

T ATy S CINTrY) DTS O

where C is the coupon payment, n is the number payments, 1(t) is the interest rate of
the long bond at time tand M is the value at maturity. **

(6.7)

6.2 Maximum Likelihood Estimation for the Two-Factor Vasicek Model

The datasets used for the application of the two-factor Vasicek model are the daily
market yield on U.S. Treasury security rates at 6-month constant maturity, and
10-year constant maturity from the 4™ of January 1982 up to the 26™ of June 2009.
There are a total number of 6872 observations for both datasets.

If a coupon of $10 is paid every six months and the value of coupon at maturity is
$1000 then the price of the long bond in 10-year constant maturity is:

P'(t)= $10 $10 $10 $1000 68)

[

The MLE is based on large sample asymptotic estimators and should be appropriate
even if the datasets are not normal. The discrete form of equations (6.1) and (6.2) are:

r(t+At)—r(t) =" (8 —rt)At+o' s VAt (6.9)
I(t+At)-1(t) =o' (8" —1(t)At+o's' VAL (6.10)

where & and &' are independent standard normal variables. The natural logarithm
of the likelihood functions must be maximised. The first logarithmic likelihood
function  derived  from  equation (6.9), using the fact that

r(t+At)—r(t)—a' (B - r(t)At = o' s /AL ~ N(O, (ar)zAt), is defined as:

i[r(tmt)—r(t)—oﬂm(ﬁr —r(t))f

e )=~ Gnlo”f ot P in(er) 3

2(c" ) At
(6.11)

# TInvestopedia “Advanced Bond Concepts: Bond Pricing” http://www.investopedia.com/university/ad
vancedbond/advancedbond2.asp?viewed=1 (Accessed 30 June 2009).
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where the optimal values of o, 8" and o' indicated respectively as &', A" and

o "are chosen to maximise (6.11). Let r(t) be assigned as the daily market yield on

U.S. Treasury security rates at 6-month constant maturity. The same method applies
for the second logarithmic likelihood function derived from equation (6.10), using the

fact that I(t + At)—I(t)— ' ("~ I(t)at = o' &' VAT ~ N[0, (o'  at), is given by:

Do Pat " >+ a)-10)- ' sl 1)
inLla', 50" )=~Zin(o" f at -2 n2r)- 2

2(0" )2 At
(6.12)

where the optimal values of «', ' and &' indicated respectively as &', 4' and &
are chosen to maximise (6.12). Let I(t) be assigned as the daily market yield on U.S.

Treasury security rates at 10-year constant maturity. The discrete form for equation
(6.4) is:

M:[r(t)Jrv'l' ]At-I—VI{;‘I\/A_t (6.13)

where &' is a standard normal random variable. In order to derive the logarithm of the
likelihood function from (6.13) one will obtain:

_()_( (t)+v' 2 Jat = v VAt ~ No.(v f at).

J, one can show that

P'(
and by using x (

)+v' A - JAt—v'g'\/_~N( (')ZAt).

The logarithm of the likelihood function using coefficients v' and A' is given as:

Zn:{x(t)—( (t)+v'2 _<V2')2M2
In(v' J’ At —gln(27z)— -

In L(v',i'):—g

6.14
oo (614

|
where x(t):ln[ P'(t) J is derived from modifying equation (6.8) for different

P'(t-1)
values of t. The optimal values of v' and A' indicated respectively as V' and A' are
chosen to maximise (6.14).
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Table 6.1: Estimators ¢, 3" and 6"

N A 2
Date t | r(t) -6 month | 1(t) - 10 years | [r(t + At)—r(t) - g at(g" —r(t))
01/04/1982 1 0.1316 0.1419
01/05/1982 2 0.1341 0.1444 6.2500000E-06
01/06/1982 3 0.1346 0.1459 2.5000000E-07
06/26/2009 |6872 0.0031 0.0352 3.1354652E-10

By assigning the daily market yield on U.S. Treasury security rates at 6-month
constant maturity as r(t) and the 10-year constant maturity as 1(t) from the 4" of
January 1982 up to the 26" of June 2009 one may use Table 6.1 to determine the
optimal estimators ¢", A" and &" which will maximise equation 6.11. I used the
Microsoft Excel solver add-inn function to maximise equation 6.11 to obtain:

6872

e+ a0)-r(t)- @t - r(t)f

)3
nL(a 3r.67)= —%nln(&r)zm —%nln(zﬁ)— = o T
— 3941491

The same method was applied to obtain the maximum logarithmic likelihood
functions:

L' 3'.6')=4011662 and  InLly', 1 )=1472051.

Table 6.2: Summary of the Estimators for Two-Factor Vasicek Model
Parameter MLE

2" 0.000714234

r

0.027891921
0.000781326
0.000817419

r

0.050127054
0.000705433
0.028409325
-1.884035964

Q> h) L | E> )

§->_> <

The optimal estimators in Table 6.2 are used as well as backward recursion to
optimise proportion W(t) expressed in equation (6.5).

6.3 Notes and Research

Only the estimators for the simulated Two-Factor Vasicek Model using the MLE are
illustrated in this chapter.
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Chapter 7

7 MEAN REVERSION - THE CIR MODEL

The square root process (CIR process) is a widely used for modelling interest rates. This
process is an underlying process for the Cox-Ingersoll-Ross term structure model (1985).

The main purposes for this chapter are:

o finding the risk properties for the original dataset (the historical model involve 30-
day AA financial interest rates)

e choosing the simulated model which should have the same risk properties as the
original dataset. Table 1.1 is used to find the most appropriate simulated model
with the same risk properties as the original dataset

e finding different methods of calculating the estimators for this simulated model.
These methods used to find the estimators are called OLS estimation and MLE

e comparing the accuracy of the OLS estimates and the MLE by observing whether
the model have fat or normal tails. This is done by using the QQ-plots

e finding the risk properties of the simulated model

e comparing the original and simulated risk properties and analysing the
appropriateness of the simulated model.

7.1  Basic Properties — CIR Model

The dynamic representation of the CIR model according to K. Kladivko % is:
dX, = (X, )dt+ (X, )dw, (7.1)

where W, is a standard Brownian motion for t>0. The functions w(-) and of(-) are

respectively the drift and the diffusion functions of the process. The square root process
(CIR process) given in the following stochastic differential equation is the fundamental
process in interest rate modelling.

dx, = o —x )dt+ oy /x dW, (7.2)

where x, is the interest rate and 6 = («, 1,) are the model parameters. It has the mean
reverting property, i.e. interest rate x, moves in the direction of its mean x at speed « .
The drift function is known as z(x,,0)=a(u—x,) and is linear. The diffusion function
o?(x,,0)= x,o? is proportional to the interest rate x,.

% K Kladivko “Maximum Likelihood Estimation of the Cox-Ingersoll-Ross Process: The Matlab
Implementation™ http://dsp.vscht.cz/konference matlab/MATLABO7/prispevky/kladivko_k/kladivko_k.pdf
(Accessed 9 September 2009).
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7.2 Maximum Likelihood Estimate - CIR Model

Assume a discrete time version on the time grid t,,t,,....,t, with time step At=t, —t, ,
will be used in this section.

If x, is given, the conditional density function g of x, is:

q
olx,, | tﬁ)—ce‘“‘“[vﬂy' (2 BV )

u,
where
co 2c
O_Z 1_ e—aAt
u, =cxe
Vti+1 = CXti+1
2au
q=""%-1
O

(as indicated by A.S. Hurn et al (1999)%) and Iq(2 Ut,VtM) is a modified Bessel

function of the first kind and of order q. The likelihood function for the interest rate x,
with n observations is:

n-1

L@)=]] g(xtn1 | X, 0). (7.3)

i=1
The log-likelihood function is given by:

n-.

InL(x, @, o) Zln( (x,_ 1%:6)

n-1 Vt-
(n—1)In(c)+ -V,  +0.5qIn| —=
i+l u

i= t;

} Infi, (2 fu.v, . )]J (7.4)

% AS Hurn et al “On the Efficacy of Simulated Maximum Likelihood For Estimating the Parameters of
Stochastic Differential Equations” (1999) Journal of Time Series Analysis Vol 24 No 1.
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where u, =cx,e™™" and v= cx, .- The log-likelihood function needs to be maximised by

taking partial derivatives of equation (7.4) with respect to x, a« and o, putting them
equal to zero yield three equations:

oln L(Xt;,u,a,a)
ou

oln L(Xt;,u,a,O')l 0
oa “

oln L(Xt;’u’a'o-)L:O
oo c

,=0.

Solving these equations will yield the maximum likelihood estimates:
6 =(c i,6)=arg max In L(6).

7.3  The Ordinary Least Squares Estimation Procedure for CIR-Model

The starting points for optimisation are vital and the Ordinary Least Squares method is
used to determine these points.

The simulation of equation (7.2) is illustrated as:

X — X —a(,u X, )At+arg (7.5)

where &~ N(0,At) and also as:
X, =opAt+ @- ozAt)xti +0, /% Ate, (7.6)

where ¢, ~ N(O,l). In order to use the OLS, equation (7.5) must be transformed to:

( —Xt) oAt
'”_ ' = —a, X At+og, .
1 1

n-1
The sum square of the error (cygti )2 must be minimised in terms of ¢ and u to obtain
i=1

a and £ such that:

(x )

n-1
(@, i) =arg T',,n izl:(agt‘ ) =arg myln Z \/> Ls arAt

|+1 |
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which will be:

-1 n-1 1 n-1 n-117

n?—-2n+1+ th > ->x >——(n- 1)2 b
. i=1 th i=1 =1 th i=1 Xt
o =
n— n-1 1]
(n -2n+1-— th > J
i=1 =1 th
n-1 n-1 X n-1
(N-1> x> —3"x,
R | X, T
H= .
n-1 n-1 1 n-1 n-1 1 n-1 Xt-
£n2—2n+1+2xt > =% > —n- l)Z'“J
i=1 i i=1 th i=1 I i=1 Xti i=1 Xti

The standard deviation, &, of the errors is the estimated diffusion parameter,

ot r“ﬂ

7.4 The MLE for CIR-Model Using MATLAB Command - besseli

In MATLAB the modified Bessel function of the first kind is available under the
command besseli(q,2 JU, Vs, ) but calculations results in an estimation failure. The scaled

version of the Bessel function in MATLAB is denoted as I;(Z Ut,Vt,A) and its command

in MATLAB is besseli(q,ZJuti Ve ,1).

The modified Bessel function can be defined as:

I (2 UV, . ): exp(Z\/ UV, . )I . (2\/uti Vi, ) (7.7)

By substituting equation (7.7) in (7.4) will yield a log-likelihood function given by:

n-1
InL(z,t,0)=(n-1)In(c)+ Z[— u, -V, +0.50 In(\;‘—lJ +2,Ju v, |+ In[l : (2 UV, . )]

i=1 t;

(7.8)
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The Bessel function of the first kind for order g according to R. Haberman, Fourth
Edition (2004)" is defined as:

1 g=0

I~q (z)=

qu!zq q>0.

and 1_,(z)=(~2)1,(z) and according to www.mathworks.com® the modified Bessel’s
equation for noninteger q is defined as:

1.(2)- @ z((%) fr(a+k +1)j

where T'(er) is a gamma function. The negative logarithmic likelihood function given by:

InL(z, &,0)=—(n—-1)In(c)— nzl( u, -V, +0.5q In(\ﬁ—l] +2,Ju v, + In[l : (2 UV, | )]

i=1 t

is minimised by using the ‘fminsearch’ functionality provided by Matlab.
7.5  The MLE for CIR-Model Using MATLAB Command - ncx2pdf

The optimal estimators can be derived from an alternative maximum likelihood
estimation procedure. The MATLAB program uses the non-central y° probability
density function available in the Statistics Toolbox under ncx2pdf command. The
modified Bessel function of the first kind will not be used but rather the non-central y?

distribution, which is based on the central x> distribution weighted by a Poisson
distribution.

%" R Haberman Applied Partial Differential Equations: with Fourier Series and Boundary Value Problems
4 ed (2004) 308.

28 Mathworks http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/t
echdoc/ref/besseli.html&http://www.mathworks.com/cgi-bin/texis/webinator/search/?db=MSS&prox=page
&rorder=750&rprox=750&rdfreq=500&rwfreq=500&rlead=250&sufs=0&order=r&is_summary on=1&R

esultCount=10&query=bessel
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The density function for the interest process according to S. Zeytun (2007)*° is:

@)= T e (@)= T (02)

where
da
Ve dop

2
o

Ay =CXg exp(_ Ott)

and ;(Z(v,/lt) is the non-central chi-squared, y?, distribution function with v degrees of
freedom and non-central parameter 4, .

#'§ Zeytun and A Gupta “A Comparative Study of the Vasicek and the CIR Model of the Short Rate”
(2007) ITWM 124,
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7.6 Example 7.1 —Estimators for the CIR Model

Consider the data, which consists of the 30-day AA financial interest rates. The data
was annualised using a 360-day year or bank interest from the 1% of January 1997 to
the 26"™ of June 2009. The dataset consists of 3131 observations.
The Ljung-Box-Pierce test for the 30-day AA financial interest rates is:

Q=572972.4 > y2 s = 846.083

The corresponding p —value is 2.2e-16 which is less than 0.05. The null hypothesis
(H,) will be rejected indicating that the distribution of the original dataset is not
mean reverting.

Normal Q- Plot
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Figure 7.1: QQ-Plot for 30-day AA financial interest rates

According to the QQ-plot for the 30-day AA financial interest rates fat tails are
present. The CIR simulation model will not be the most appropriate model for this
dataset. According to Table 1.1 one should rather choose the GBM + Jumps,
One-Factor Logarithmic Vasicek Model + Jumps. | choose the CIR model only for
example purposes. In order to use the CIR simulation model, one needs to determine
the optimal estimators. The ordinary least squares, optimal maximum likelihood
estimation using the besseli command and the optimal maximum likelihood
estimation using the ncx2pdf command are given in Table 7.1. The MATLAB
program used to determine the MLE, using the besseli command is given in
appendix B1 and the MATLAB program for ncx2pdf command in appendix B2. The
OLS estimation program is included at the beginning of each of the besseli and
ncx2pdf command programs, which serves as the initial values for the estimators.

Table 7.1: Estimators for CIR Model

Q Y2, o InL
OLS (initial) 0.184091278 | 0.037013893 | 0.139535942
ML - besseli 0.283542293 | 0.016454519 | 0.107825364 | -1.705689364245570e+004
ML — ncx2pdf | 0.169209129 | 0.016931142 | 0.107884752 | -1.705689364056405e+004

The time step used from 1% of January 1997 to the 26" of June 2009 for the 30-Day
AA financial interest rates is At=1/360. Using equation (7.6) the CIR-Model
simulation, together with the 30-day AA financial interest rates, are plotted in
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Figure 7.2. The solid line indicates the original interest rates and the dotted line is the
simulated CIR-Model using besseli’s maximum likelihood estimates. No mean
reversion is clearly visible from the solid black line in Figure 7.2. Choose an initial
starting value x, =0.0535, for the simulated CIR-Model. | also attempt the MLE

procedure in Microsoft Excel which resulted in inconclusive results.

30-DayAA Interest Rate vs. Simulated CIR-Model

01021997 O7/10/1998 01A18/2000 07/25/2001 DZ!D?Qq_D)?éteDBHSQDDd 0272202006 08/28/2007 0312/2009

Figure 7.2: A Simulated CIR-Model, X, = daAt + €At X, +6./x, Ate,

7.7 Testing for Mean Reversion and Fat Tails for Simulation Model

According to Figure 7.3 fat fails are present in the QQ-plot for the simulated CIR
model.

QQ-Plot of Simulated CIR Model
0.01 0.05 025 050 0.75 0.90 0.99

0.06

0.05
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0.03

Observed Value

0.02

Theoretical Quantile

Figure 7.3: QQ-plot for the Simulated CIR Model
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7.8 Notes and Research

The null hypothesis, H,, is rejected for the Ljung-Box-Pierce test on the original

dataset (30-day AA financial interest rates). The test statistic on the simulated model
is rejected for H, meaning the the simulated CIR model (using besseli’s maximum

likelihood estimates in simulated model) do not follow a white noise process and
significant autocorrelations are present thus mean reversion is not present (no
stationarity present). Fat tails are observed from the QQ-plots of the original dataset
(Figure 7.1) and the simulated CIR model (Figure 7.3).

The risk properties of the original dataset do not coincide with Table 1.1 for the risk
properties of the simulated CIR model. This means that the fitted CIR model on the
30-day AA financial interest rates is a rough estimated model and one might try to fit
a GBM with jumps on the dataset or one could choose a different time window on the
dataset and try a fitted CIR model again.

From observing Figure 7.1 and Figure 7.3, fat tails are present for the original dataset
and the simulated model. Due to the presence of fat tails the differences for the
estimators for the OLS and MLE are large indicated in Table 7.1.
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Chapter 8

8 NO MEAN REVERSION - AUTOREGRESSIVE CONDITIONAL
HETEROSCEDASTICITY (ARCH) MODELS

The ARCH models were first introduced by Engle (1982) and are used to model
conditional variances. Suppose a time series exhibit periods of unusually large
volatility, followed by periods of tranquillity, we cannot assume a constant variance.
One might want to forecast the conditional variance of a series.

The main purposes for this chapter are:

e finding the risk properties for the volatility of the original dataset (the
historical model involve S&P 500 closing prices)

e construct several simulated volatility models (which include different ARCH
and GARCH models) that should have the same risk properties as the
volatility of the original dataset

e finding the estimators for this simulated volatility model. The method used to
find the estimators are called Berndt-Hall-Hall-Hausman Iteration

e finding the risk properties of the simulated model

e comparing the original and simulated risk properties and analysing the
appropriateness of the simulated model.

8.1  General Properties for the ARCH(q) Process

Consider the following time series, X,,X,,..., X, and assume that the returns of this
time series is defined by y, =In(x, /x,, ). Let F, denote the information set at time t,

which include y, and all the past realisations of the process y,. The ARCH model
will be applied on the returns.

The ARCH (q) model for the returns are:

Yi = Et—l[yt]+ & (8.1)

& =1,0, (8.2)
q

ol =a, +ae’, +..+ aqaiq =, + Zaigii (8.3)
i=1

The ARCH model produced a revolution in time series because it has properties that
the Autoregressive Moving Average Model ( ARMA) is not able to produce. These
properties are:

e The return series show little serial correlation.

e The serial correlation of the absolute or squared returns are significant where

p(gf,gil)= a#0.

e The expected returns are close to zero, such that E[e, | F,,]=0.
e The volatility vary over time.
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e The return series are leptokurtic or heavy-tailed (fat tails). This check is done by
the kurtosis, which must always be positive and infinite if 3> >1.
e Extreme returns appear in clusters.

The unconditional variance, &2, for the ARCH (q) model is defined by:

G° :Var(@z): E(Uf)—[E(Ut s

= E(O'tz)
= E(a, )+ alE(gf_l)+...+aqE(5t2_q)
= aO +a10t{l +..+ aqa»iq
q
1-2«

The unconditional variance will be finite (converge to a constant value) and
non-negative if the coefficients «; have conditions, ¢, 20, ¢, 20, for i=12,...,q

9
and 0< ) a; <1. Equations (8.3) can be written as an AR(q) for &7 if u, = &7 — &7,
i=1

such that:
2 2 2
£ =Qy+ e Tt aE, T,
where E,,[u,]=0 and E(z?)<oo.

8.2  General Properties for the ARCH(1) Process

One can easily derive ARCH (1) from ARCH(q) if q=1 in (8.3):

ol =a, +a,el,. (8.4)

The conditional distribution for &, given &, is:

(gt |‘C"t71)~ N(O, O_tz)'

This model (8.4) is known as the ARCH (1) model, since the conditional variance
depends only on one lagged squared error. The ARCH (1) model has stationary
moments of the second and fourth order, if 32 <1. These moments are:
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The proof of the forth moment, E(gt“) according to P. Cizck et al (2005)% is:

¢ = Els]= E[E(s! | &8, ] = E[0PE(2} | 68, )1 = EIZ{1E (o + a6, ) ]

= 3(055 +2a,0,E[e2,]+af E[gt‘il]) (8.5)
and let Z, :§ ~N(04), using E(z?)=E(e2,)= (1f‘; ) and ¢ =E[g!,],
t 1

equation (8.5) becomes:
c= 3(0(5 +2a,0, (0 I(L—a,))+ afc).

Solving ¢, one will obtain the fourth moment. The kurtosis coefficient « for
ARCH (1) model, is then defined as:

e ) o Ele) _3-a?)]
T T )

If the kurtosis coefficient x =3 is normal and if x> 3, it then indicates that fat tails
are present. This is called leptokurtosis.

8.3  Generalised Autoregressive Conditional Heteroscedasticity (GARCH)
Models

For the GARCH models the conditional variance is dependent upon its previous lags.
The GARCH (11) model is:

of =ay sl + ol (8.6)

According to P. Hanson and A. Lunde (2004)*, there is compelling evidence that it is
difficult to find a volatility model that outperforms the simple GARCH (1,1) model.

This model can be expanded to become the GARCH (q, p) model:

2 2 2 2 2
Of =Qy+a &+ +aE + o, +..+ Bo, (8.7)

q p
2 2
=a,+ E a, e + E Bio; -
i=1 j=1

where the current conditional variance depends upon q lags of the squared error
(g—ordermoving average ARCH term) and p lags of the conditional variance
( p—orderautoregressive GARCH term).

¥ P Cizck (2005) “ARCH and GARCH Models” http://mars.wiwi.hu-berlin.de/tutorials/sfe
htm1node66.html (Accessed 25 February 2009).

%1 P Hansen et al “A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)
Model?” (2004) 20 Journal of Applied Econometrics 873-889.
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For a stationary GARCH (g, p), the coefficients «; and B, for the unconditional
variance must have the following restrictions:

a; 20, fori=012,..,q,
B; =0, fori=12..,p

OSZq:ai +Zp:,6j <1.
i=1 j=1

The unconditional variance, &7, for GARCH (g, p), under these conditions will be
finite and non-negative. The unconditional variance, &, for GARCH (g, p) is:

—2
o, =

for Oszq:ai +Zp:ﬂj <1.
j=1

i=1

The fourth moment for the GARCH (1,1) process according P. Cizck et al (2005)* is
given as:

6c}
=3+ 5 -
(1_ﬂ1 — 2o, —3a; )

It can be proven that Etfl(gf): 67 and with u, =& — Et_l(gf), equation (8.6) can be
written as:

gl =ay+(a, - B )el, +U, — BU,, (8.8)
which constitutes an ARMA(L,1) model.

8.4 Estimation of ARCH-GARCH Models

Assume the error, ¢,, obtained from the return, y,, needs to be modelled with an
ARCH (1) process for t=012,..,n. Two parameters, «,, «, according to

equation (8.4), needs to be maximised through the maximum likelihood estimator.
The joint conditional density function for the first given value ¢,, is:

f(gnign—l""’gl |50): f(gn |8n—1)f(8n—1 | gn_z)x-nx f(‘91 | 80)- (8.9)

By substituting equation (8.4) into (8.2), one will obtain:

2P Cizck “ARCH and GARCH Models”.
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_ _ 2
& =07 =40y ta,& 4 L

where (g, | &,,)~ N(O, af), ol =a, +a,e’,. This leads to the conclusion that:

F(e, |6.)= iq{ﬁJ . (8.10)

Oy Oy

Let d(x) denote the standard normal distribution function such that:

D(x) = % exp(— X—;] .

Using equation (8.10), equation (8.9) becomes the conditional likelihood function:

L(aO’al): f(gn’gn—l"'”gl | 50): f(gn |<C"n—1)f(5n—1|5n—2)><"'>< f(gl |50)

:i@ 8_n X 1 (D gn_l X"'Xiq) i
O, O, o] Oha ] ]
1

10 8
= - expl —=>—%
@r) 70,0, % %0, ( zt-wa

1 1o &l
(2 )nlz(lﬂ[ eXp[_EgotzJ'
V4 O'tj St
t=1

(8.11)

Taking the natural logarithm of the conditional likelihood function, equation (8.11)
becomes:

InL(eg, )= —%Zn{ln(af)Jr g—i}

Oy

2
:—%Z(In(ao +algt2_1)+—2 ] (8.12)

where the constant term (n/2)In(27) is discarded.

The optimal values for the parameters (,,c,) are determined by equating the
derivatives of these parameters to zero:

oInL(ay, ) _lzn:[ 1 B gl J

da, 21| oy + 0{18t2_1 (0{0 + algtz—l )2
1n 1 8t2
B Y o B 8.13
2 tZi(Gtz Ut4 ] | |
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and

onl(eg, o)) 1S , (1 &
e e e E 1 8.14
oa, 24 o of (8.14)

One cannot find explicit solutions for equations (8.13) and (8.14), to obtain the

optimal  estimators  (&,,&,). A  recursive  method, called the
Berndt-Hall-Hall-Hausman (BHHH) method proposed by Engle (1982)* is used. Let

0=(ay,a,) and

olnL _(aInL aInLj/

00 da, ' Oa,

where (8.12) becomes:

One may say that

InL = iln L,
t=1
amL:iamg_
00 = 00

8.5 The Berndt-Hall-Hall-Hausman lteration Method

The following steps are needed to determine the optimal estimators:

e Firstly, one needs to choose the initial values as 6, = (4, ).

Secondly, let v, = 3 olnt,

t=1

(6, ) be a vector after k steps.

. n dlnL
e Consequently, a matrix B = za N4

=1 00
e Calculate a matrix defined as: 6,,, =6, +B™v,.

e The iteration will stop when the values stabilises.

/
% needs to be computed.
00

After one applied the Berndt-Hall-Hall-Hausman Iteration Method in minimising the
likelihood function InL, (@) in terms of o . The optimal o assigned as & is now

substituted into the GARCH volatility models.

% RF Engle “The Use of ARCH/GARCH Models in Applied Econometrics” (2006) 15 Journal of
Economic Perspectives 157-168.
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8.6  Test for Normality of Dataset

Before and after the analysis on the dataset is done, a normality test called the
Jarqu-Bera (JB) is performed. The test statistic is:

Jarque—Beru = g(sz +(KT_3)) ~ 42

where S is the skewness, and x is the kurtosis. The JB test statistic follows a
chi-square distribution with 2 degrees of freedom. The skewness is a measure of
asymmetry of the distribution of the series around its mean. It may be expressed as:

S =12n:(yi _VT.

n= o

The kurtosis will chance depending on the ARCH /GARCH model used. The
estimator for the standard deviation, that is on the biased estimator for the variance, is
defined as:

where “s” is the standard deviation of the returns, indicated as:

(yi - y)z

n
S =
iz n-1

The hypothesis test with Jarqu-Bera is:

H, : the data is normally distributed versus
H, : the data is not normally distributed.

One will reject H,, if JB> y,.,, where 2 is the degrees of freedom and « is the
level of significance. One may also reject H, if the p—value is less than 0.05.
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8.7  Application on the ARCH and GARCH Models

Let x, denote the closing price of the S&P500 at the end of trading day t. The closing

prices for the S&P500 index start at the 1% of January 1980 and end at the 19" of
March 1988, with a total of 3000 observations. The returns of this time series are
defined as y, =In(x, /x,_,). Based on these returns one can determine the sample

“SZ I

variances of the returns, indicated as:

SZ :Zn:(yi _y)z'

iz n-1

By keeping the first return y, =In(x,/x,)fixed one can determine the sample
variance of for any time t =2,3/4,...3000. The Ljung-Box-Pierce based on paragraph
2.8 for the volatility of the S&P500 dataset is:

Q = 477347.3> 4% 0 = 814.8215

The corresponding p —value is 2.2e-16 which is less than 0.05. The null hypothesis
(H,) will be rejected indicating that the volatility distribution of the original dataset
is not mean reverting.

Normal Q-G Plot

= o

Sample Quantles

000000 000005 000010 000015 000020 000025

T T T T T T T
-3 -2 -1 o} 1 2 <3

Theoretical Quantiles

Figure 8.1: The QQ-Plot of the sample variances of S&P500 Returns -
Yo = In(xt /Xt—l)

According to the QQ-Plot for the volatility of the S&P500 returns, the tails are fat.
The risk properties of the volatilities of the returns of the original dataset is not mean
reverting and the tails are fat. These risk properties correspond with Table 1.1 risk
properties for the GARCH simulation model for the volatilities of the returns. I will fit

different GARCH volatility models on the sample variances, s2.
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Figures 8.2, 8.3 and 8.4 plot the returns, square returns and the absolute returns of the

S&P500.

S&P500 Returns

0.06

0.05

Returns

-0.04
-0.05

Date

Figure 8.2: Plot of S&P500 Returns - y, = In(x, /X, )
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Figure 8.3: Plot of S&P500 Square Returns - y? = (In(x, / x,_,))*
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Figure 8.4: Plot of S&P500 Absolute Returns - |y,| = [In(x, / X,

From observing Figure 8.2, there are patterns, although not as clear for the returns of
the S&P500, but still distinctive, emerge from the square and absolute returns. This
indicates the volatility of returns. The plots of the square and absolute returns indicate
volatility clustering. Low values of volatility are followed by low values, while high
values of volatility are followed by high values. This observation is very important for
forecasting purposes. Patterns usually emerge when serial correlation is present. In the
following Figures 8.4, 8.5 and 8.6 the sample autocorrelations for the first 20 lags of
the returns, square returns and absolute returns for the S&P500 are displayed.
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Figure 8.5: Estimated Autocorrelation of vy,
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Figure 8.6: Estimated Autocorrelation
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Figure 8.7: Estimated Autocorrelation |y,| =|In(x, /X, )
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The sample autocorrelations for the returns, squared returns and absolute returns
indicate significance in their first 20 lags according to the Ljung-Box-Pierce-test
procedure, explained in chapter 2 of this thesis. The sample autocorrelations for the
squared and absolute returns indicate positive serial autocorrelation and their decay
are much slower than compared with the sample autocorrelations of the returns.

8.8  Testing the ARCH/GARCH Effects

The hypothesis test applicable to the Ljung-Box-Pierce-test statistic, is defined as:

Q(a)=n(n-2)

Ty

where 1, denotes the estimated sample autocorrelation of the squared and absolute
returns, which will be used to determine evidence for time varying conditional

volatility.
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The estimated sample autocorrelation of the squared returns is denoted as:

n{k| . .
> (v =97 Ny - 9°)
r, =-=
~2 \2
>(vZ-9?)
t=1
n y?
where §? => 2L Testing whether the true autocorrelations, p, , of the squared or
t=1 N

absolute returns are significant, involve the hypothesis test:

H,: p, =0, forall k <q (no evidence of time varying volatility), versus
H,: p.#0, forsome value of k <q (evidence of time varying volatility).

We reject H, if Q(q)> ;(j;a, g, which indicates the degree of freedom, while «

represents the level of significance. We also reject H, if the p—value is less
than 0.05. The p-value for the two-tail test, according to the alternative hypothesis, is:

p—value=2P(3? <Q(q)) or,
p—value= 2P(;(2 > Q(q)).

8.9  Lagrange Multiplier (LM) Test

The LM test is used to determine if any ARCH effects are present. The null
hypothesis is denoted as:

Ho! ap=a,=-=a,=0, (no ARCH effects are present), versus
Hautag#0o0ra, #0o0r...or o, #0 (ARCH effects are present, ARCH (q + r))
or
Hapiag#20o0rap#0o0r...or o, 20 (GARCH effects are present,
GARCH ((g+r), 8)).

The test statistic is:

LM (q)=nR? ~ 42,

where R? is calculated from the regression of &’ =, +as’, +---+ .6, +U,

mentioned at the end of paragraph 8.1. One will reject H, if LM (q)> ;(j;a. The LM

test can also be used for general classification of the GARCH models. The LM test
can however be rejected, not because ARCH effects are present, but because of
misspecification of the ARCH /GARCH model. Therefore caution must be applied.
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8.10 Testing ARCH/GARCH Effects on S&P500

Table 8.1 illustrates the Ljung-Box-Pierce-test procedure, while Table 8.2 illustrates
the Lagrange Multiplier (LM) test for ARCH (q), suchthat =1, q=3, q=5, q=7
and g =9 on 3000 daily return values of the S&P500 dataset.

Table 8.1: Q(q) Using the Estimated Sample Autocorrelation of the Squared Returns

q Q(q) Xaa p—value
1 38.6863 3.841459 0.000
3 141.4671 7.814728 0.000
5 283.7676 11.0705 0.000
7 364.1553 14.06714 0.000
9 449.451 16.91898 0.000

Some illustrations of the calculations in Table 8.1 are:

2

Q(1) = 3000(3000+ 2) m

=38.6863> y7,,, = 3.841459.

2

Q(9) = Q(8) + 30003000+ 2) m

=449.451> yZ . =16.91898.

The results obtained in Table 8.1 illustrate that the null hypothesis will be rejected,
indicating that ARCH effects are present for g=1, q=3, q=5, q=7 and q=9.
This is in accordance to the Ljung-Box-Pierce-test procedure. This indicates that the
dataset will have to be transformed into ARCH (q) or GARCH (g, p), such that q =1,

qg=3, q=5, =7 and g =9 are used for more accurate forecasting.

Table 8.2: Calculation for LM (q) Before ARCH (q) or GARCH (g, p)
Transformation

q LM (q) X p—value
1 82.55084 3.841459 0.000
3 66.52530 7.814728 0.000
5 62.86956 11.0705 0.000
7 57.57094 14.06714 0.000
9 60.01441 16.91898 0.000

Some illustrations of the calculations in Table 8.2 are:

LM (1) = 3000(0.027517) = 82.55084 > 1., s = 3.841459

LM (9) = 3000(0.020005) = 60.01441> 2, s =16.91898
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The results obtained in Table 8.2 illustrate that the null hypothesis will be rejected.
This indicates that the ARCH effects are present for q=1, q=3, q=5, q=7 and

q=9, according to the Lagrange Multiplier (LM) test. The dataset will then have to
be transformed into ARCH (q) or the GARCH (g, p), for q=1, q=3, q=5, q=7
and g =9, for more accurate forecasting. The results in both Tables 8.1 and 8.2 mean
that volatility was successfully removed.

After the ARCH (q) models are applied on the dataset, the Lagrange Multiplier test is
used again to determine whether the transformation removed the volatility. The results
in Table 8.3 indicate that all the tests will be rejected, indicating that all the ARCH (q)
models are adequate in removing the volatility.

Table 8.3: Calculation for LM (q) After ARCH (q) or GARCH (g, p)
Transformation

q LM (q) X p—value
1 0.056904 3.841459 0.8115
3 2.585095 7.814728 0.4601
5 4.063720 11.0705 0.5403
7 6.955938 14.06714 0.4335
9 12.41581 16.91898 0.1909

8.11 Model Selection

The determination for the orders of g and p in the ARCH(q) and GARCH (g, p)
models are of great significance. E-Views uses the Akaike info criterion (AIC),
Schwarz criterion and the Hannan-Quinn criterion for the model selection. By using
the lowest values of the AIC, Schwarz or Hannan-Quinn procedures, one will obtain
the best orders for the models. According to E. Zivot (2008)**, the AIC will choose
values of q<2 and p <2 for the GARCH (g, p) models. For the ARCH (q) models,
the AIC will choose large values of q. Low orders for the GARCH (g, p) models are
preferred above larger orders for the ARCH (q) models. This is due to numerical
estimation stability and over arching. Table 8.4 provides the AIC, Schwarz criterion,
Hannan-Quinn criterion, as well as the logarithmic likelihood for ARCH(q) and
GARCH (g, p). The orders used for the ARCH(q) model are q=1, q=3, q=5,

q=7 and q=9, while 1<q<2 and 1< p <2 is used for the GARCH (g, p) model.

% E Zivot “Practical Issues in the Analysis of Univariate GARCH Models” (2008) 15 Handbook of
Financial Time Series http://faculty.washington.edu/ezivot/research/practicalgarchfinal.pdf. (Accessed
09 September 2009).
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Table 8.4: Model Selection Test

(CI, p) AIC Schwarz Hannan Log Likelihood
(1,0) -6.61796 -6.61396 -6.61652 9928.939
(3,0 -6.64338 -6.63538 -6.64050 9969.075
(5,0) -6.67713 -6.66512 -6.67281 10021.690
(7,0) -6.68499 -6.66897 -6.67923 10035.480
(9,0) -6.69847 -6.67844 -6.69126 10057.700
(1,1) -6.73013 -6.72413 -6.72797 10098.200
(1,2) -6.73144 -6.72343 -6.72856 10101.150
(2,1 -6.72947 -6.72146 -6.72659 10098.200
(2,2) -6.73194 -6.72193 -6.72834 10102.92000

For a pure ARCH (q) model, the ARCH (9) model will be chosen for all selection
criterion, as well as a maximum logarithmic likelihood (at q=9). Due to the
possibility of over aching the ARCH (9) model is not the best model to choose. For
the GARCH (g, p) model, a GARCH (2,2) will be selected by AIC, a GARCH (11)
will be selected by Schwartz and a GARCH (1,2) by the Hannan-Quinn test. For many
applications it is hard to beat the simple GARCH (L1).

8.12 Volatility Estimation of ARCH/GARCH Models

The estimated volatility models for ARCH(q) (if q=1, q=3) and GARCH (g, p)
(for 1<g<2 and 1< p<2)aregivenin Table 8.5.

Table 8.5: Volatility Estimation of ARCH/GARCH Models

(CI, p) ARCH /GARCH Model Kurtosis
(1,00 | 6¢ =0.0000705+0.111566¢, 4781474
(3.0) | 6¢ =0.0000564+0.0.096435%, +0.0856445, +0.10681% 4.348387
(1.1) | 6¢ =0.000000683+0.0420507, +0.9492735¢, 3712614
(1.2) | 6 =0.00000116+0.074204, +0.04034857, +0.8710105, 3.678737
(2.1) | 6 =0.00000068+0.0428894:, —0.0009265 , +0.94939457 3712253
(2.2) | 6¢ =0.00000125+0.063448, +0.0187107, +0.00658157, +0.89569257, | 3650480
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8.13 Notes and Research

Firstly | investigated the risk properties of the volatility of the returns of the S&P500
closing prices. According to paragraph 8.7, there is no mean reversion and fat tails are
present in the volatility of the returns. According to Figure 8.1 fat tails are present.
These risk properties correspond to the risk properties of the GARCH simulation
model for the volatilities indicated in Table 1.1.

All the simulated volatility models will have very large Jarque-Bera values. These
results confirm non-normality. The coefficients of the sum of all the models add up to
a number less than one. If the sum is close to one, as in GARCH (g, p) for 1<q<2
and 1< p <2, it indicates a slow mean reversion for the simulated volatility models.
On the other hand, if it is much less than one, as in the ARCH (1) and the ARCH (3)

models, it indicates a much faster mean reversion but no significant mean reversion is
present on the these simulated volatility models.

Due to the fact that the kurtosis of all the simulated volatility models in Table 8.5
exceeds 3 these models will have fat tails. The simulated volatility models have the
same risk properties compared to the risk properties of the original sample volatilities
of the returns.
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Chapter 9

9 GENERAL CONCLUSION
. Main Purpose of Script

The main purpose of this script is to apply techniques for determining the risk properties
of the original dataset. After these risk properties are identified one may choose an
appropriate stochastic model in Table 1.1 to simulate the original dataset. One need to
calculate the estimated parameters for the simulation models and GARCH simulated
volatility models. Risk properties should then be similar in the simulated models
compared to the risk properties of the origin dataset. In chapter 2 a MLE procedure was
used to determine the optimal parameters on the original dataset (FTSE100) and then
applied for the simulated GBM.

In chapter 3 the conditional sum of squares were minimised to find the optimal parameter
we used in the simulated AR model.

In chapter 4 the optimal parameters were calculated by using the OLS and MLE
procedures on the original dataset (Sweden’s Electricity Prices). According to S.M.
Sheikh (2007)*, the OLS and MLE for his electricity prices were approximately the
same. | found these estimated parameters were not the same for my annual electricity
price dataset. Due to the fact that fat tails in the QQ-plot for Sweden’s Electricity prices
were found the MLE procedure will be more accurate compared to the OLS. | found that
the greater the observation deviates from normality indicated as fat tails in the QQ-plot,
the larger the difference between the parameters for the OLS and MLE procedure. The
reason for this difference is due to the fact that the Ordinary Least Squares method relies
on the structure of the dataset to be approximately linear. The Ordinary Least Squares
method is useful to determine the initial values for the parameters in iteration of
optimisation.

In chapter 6 | only determined the estimated parameters of the two-factor Vasicek model.

For chapter 8, | used a very large S&P500 dataset of 4382, but because of extreme
fluctuation in the data at some point in time, | could not manage to sufficiently get rid of
the volatility by using the ARCH/GARCH models. For this reason | chose a smaller
S&P500 dataset of 3000 observation, which worked better. Due to the fact that the
kurtosis of all the volatility models in Table 8.5 exceeds 3 these models will have fat
tails.

1 SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis”
(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
(Accessed 9 September 2009).
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1. Examples Used in the Thesis

This thesis contain examples such as FTSE100 monthly closing prices, the daily
electricity prices for Sweden [in Euros per megawatt], daily average number of truck
manufacturing defects, S&P500 closing index’s, the 30-day AA financial interest rates
and the daily market yield on U.S. Treasury security rates at 6-month constant maturity,
and 10-year constant maturity.

1.  Programs Used in the Thesis

| used a Microsoft Excel Macro to calculate the estimated sample autocorrelation. |
initially tried to determine the parameters for the CIR model by using Microsoft Excel,
but estimation failure occurred and thus | successfully determined these parameters by
means of the scaled version of the Bessel function in MATLAB. I also used Statistica for
the determination of the sample autocorrelation functions and sample partial
autocorrelation functions. The adjusted chi-squared distribution in Statistica was used to
obtain Figure 1.8. Statistica and R version 2.8.1 were used to determine the Ljung-Box-
Pierce tests as well as the QQ-plots. The Microsoft Excel solver add-inn was used to
determine the maximum for the likelihood function, as well as the minimum of the least
squares of the errors, by changing the parameters. E-views was used to determine the
parameter for the ARCH/GARCH volatility models, as well as the Lagrange Multiplier
Test and kurtosis of these models.
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Appendix A: Selected Datasets

A.1: FTSE100 Monthly Closing Prices (Read across).

1138.3|1016.6]1039.2|1009.4|1103.3|1139.3|1152.1|1181.1|1231.2|1280.2|1260.8| 1277

1291 | 1313 [1234.9|1261.7|1341.1| 1290 [1377.2|1439.1|1412.6] 1435 [1543.9|1668.8

1660.5/1602.8/1649.8(1558.1|1661.2|1555.8|1632.2|1636.6| 1679 |1808.2|1979.2|1997.5

2050.5| 2203 |2284.1|2360.9|2249.7| 2366 |1749.8|1579.9|1712.7|1790.8|1768.8|1742.5

1802.2]1784.4|1857.6]1853.6|1753.6/1826.5|1852.4|1792.4{1793.1|2052.1|2002.4| 2075

2118 |2114.4| 2151 | 2297 |2387.9]|2299.4|2142.6|2276.8|2422.7|2337.3|2255.4|2247.9

2103.412345.1|2374.6|2326.2|2162.8/1990.2|2050.3|2149.4|2143.5|2170.3|2380.9|2456.5

2486.212499.5|2414.8|2588.8|2645.7[2621.7| 2566 |2420.2|2493.1|2571.2|2562.1|2440.1

2654.1(2707.6|2521.2|2399.6|2312.6| 2553 |2658.3|2778.8|2846.5|2807.2| 2868 |2878.7

2813.1{2840.7| 2900 |2926.5| 3100 |3037.5| 3171 |3166.9|3418.4|3491.8|3328.1|3086.4

3125.3]2970.5|2919.2|3082.6|3251.3|3026.3|3097.4|3081.4|3065.5|2991.6|3009.3|3137.9

3216.7|3319.4|3314.6|3463.3|3477.8|3508.2|3529.1|3664.3|3689.3|3759.3|3727.6|3699.7

3817.9|3747.8| 3711 |3703.2|3867.6|3953.7|3979.1| 4058 |4118.5|4275.8|4308.3|4312.9

4436 [4621.3|4604.6|4907.5|4817.5|5244.2|14842.3|4831.8|5135.5|5458.5|5767.3|5932.2

5928.3|5870.7|5832.5| 5837 |5249.4|5064.4|5438.4|5743.9|5882.6| 5896 |6175.1|6295.3

6552.216226.2|6318.5|6231.9|6246.46029.8|6255.7|6597.2|6930.2 6268.5|6232.6|6540.2

6327.416359.3|6312.7|6365.3|6672.7[6294.2|6438.4|16142.2|16222.5|6297.5

A.2: Daily Average Number of Truck Manufacturing Defects (Read across).

1.2 | 15 [1.54| 2.7 |1.95| 2.4 |3.44|2.83|1.76| 2 |2.09|1.89| 1.8
1.25]1.58 |2.25| 2.5 [2.05|1.46|1.54|1.42[1.57| 1.4 |1.51|1.08|1.27
1.18]1.39 |1.422.08 |1.85|1.82|2.07 |2.32[1.23|2.91 [1.77 |1.61 |1.25
1.15]1.37|1.79|1.68 | 1.78 | 1.84
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A.3:

The Daily Electricity Prices for Sweden in Euros per Megawatt (Read across).
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Appendix B: Programs for Implementing Estimation

B.1: The MATLAB program used to determine the MLE for the CIR Model

using besseli command.

% %
% Main Program: CIR.m
% %

load C.txt —ascii

Int_Rates = C;
dt=1/360;

params = [0.8 .2 .9];
format long

CIR = CIR_calibr_b(Int_Rates, dt)

% Load the text file which include 30-
Day AA interest rates

% The Time Step delta t

% Set initial values for parameters
% Set precision of parameters to 16
decimal places

% Calling Function CIR_calibr_b

% %
% Function Called: CIR calibr_b

% %
function CIR = CIR_calibr_b(Int_Rates, dt)

% %
% Ordinary Least Square Estimation Procedure

% %

N=length(Int_Rates);

x = [ones(N-1,1) Int_Rates(1:N-1)];
ols = (X*X)"(-1)*(x"* Int_Rates(2:N));
m = mean(Int_Rates);

v = var(Int_Rates);

params = [-log(ols(2))/dt,m,sqrt(2*ols(2)*v/m)];

% Find the length of interest rate

% Construct (N-1 X 2)-Matrix

% OLS calculation

% Determine the average of interest
rate

% Determine the variance of interest
rate

% OLS calculation

% %
% Main Program For Estimators
% %

options = optimset(‘MaxFunEvals', 100000, ‘MaxIter', 100000);
CIR = fminsearch(@Function_CIR, params, options);

maxL = Function_CIR(params)

function maxL = Function_CIR(params)

alpha = params(1);
theta = params(2);
sigma = params(3);

¢ = (2*alpha)/((sigma”™2)*(1-exp(-alpha*dt)));
g = ((2*alpha*theta)/(sigma”™2))-1;
u = c*exp(-alpha*dt)* Int_Rates(1:N-1);

v = ¢* Int_Rates(2:N);

% Find optimal parameter
% Set Likelihood function as a function

%Assign parameters to function

% Set initial value, 0.8, to parameter 1
% Set initial value, 0.2, to parameter 2
% Set initial value, 0.9, to parameter 3

maxL = -(N-1)*log(c)+sum(u+v-log(v./u)*q/2-...
log(besseli(q,2*sqrt(u.*v),1))-abs(real(2*sqrt(u.*v))));

end
end
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B.2: The MATLAB program used to determine the MLE for the CIR model
using ncx2pdf command.

% %

% Main Program: CIR2.m

% %

load C.txt —ascii % Load the text file which include 30-Day
AA interest rates

Int_Rates = C;

dt=1/360; % The Time Step delta t

params = [0.8 .2 .9];

format long Set precision of parameters to 16 decimal
places

CIR2 = CIR_calibr_b2(Int_Rates, dt) % Calling Function CIR_calibr_b2

% %

% Function Called: CIR_calibr_b2

% %

function CIR2 = CIR_calibr_b2(Int_Rates, dt)

% - - - %

% Ordinary Least Square Estimation Procedure

% %

N=length(Int_Rates);

X = [ones(N-1,1) Int_Rates(1:N-1)]; % Construct a (N-1 X 2)-Matrix
ols = (X*x)"(-1)*(x"™ Int_Rates(2:N));

m = mean(Int_Rates);

v = var(Int_Rates);

params = [-log(ols(2))/dt,m,sqrt(2*ols(2)*v/m)];

% %
% Main Program For Estimators
% %

options = optimset(‘MaxFunEvals', 100000, ‘MaxIter', 100000);
CIR2 = fminsearch(@Function_CIR2, params, options);
maxL = Function_CIR2(params)

function maxL2 = Function_CIR2(params)

alpha = params(1); % Set initial value, 0.8, to parameter 1
theta = params(2); % Set initial value, 0.2, to parameter 2
sigma = params(3); % Set initial value, 0.9, to parameter 3

¢ = (2*alpha)/((sigma”2)*(1-exp(-alpha*dt)));
q = ((2*alpha*theta)/(sigma”2))-1;
u = c*exp(-alpha*dt)* Int_Rates(1:N-1);
v = ¢* Int_Rates(2:N);
s = 2*c* Int_Rates(2:N);
nc = 2*u;
df = 2*q+2;
gpdf = ncx2pdf(s, df, nc);
ppdf = 2*c*gpdf;
maxL2 = sum(-log(ppdf));
end
end
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B.3: The Microsoft Excel Macro used to determine the ACF.

¢ Sub MM() ¢ Subroutine name is MM ¢

Dim colcount(5500) As Integer ‘Define Integer variable for column count
Dim ggg, Name As Variant

Dim i As Integer, k As Integer

Dim neq As Integer

Dim Sum_data(5500), Average(5500), As Double

Dim Square(5500), Autocorr(5500), As Double

‘Define Sum_data, Average, Square, Autocorr as Double vectors

Dim Sum_Square(5500), r As Double
Dim Max(5500), Min(5500) As Double

Name = "Total"

ggg = "notempty"

k=4

While ggg <>
999 = Worksheets("DATA").Cells(k, 3).Value
k=k+1

Wend

rowcount=k -5 'Amount of last row
n = rowcount

For i =1 To rowcount 'Assign t values to
Cells(3+1i,2) =i

Next i

For k=0 To rowcount 'Assign k values to
Cells(3+k, 1) =k

Next k
Average(1) =0

Sum_data(1) =0
Sum_Square(1) =0

3

‘Determine Average

For k =1 To rowcount
Sum_data(i) = Sum_data(i) + Worksheets("DATA").Cells(k + 3, 3).Value
Next k

Worksheets("DATA").Cells(rowcount + 6, 8).Value = Sum_data(i)
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Worksheets("DATA").Cells(rowcount + 7, 8).Value = Sum_data(i) / rowcount
Average(i) = Sum_data(i) / rowcount

3

*Assign Names to Cell in Excel Spreadsheet

Worksheets("DATA").Cells(rowcount + 6, 7).Value = "Sum"
Worksheets("DATA").Cells(rowcount + 7, 7).Value = "Average"

3

‘Determine Variance and Average

Sum_Square(1) =0

For k =1 To rowcount

Sum_Square(i) = Sum_Square(i) + (Worksheets("DATA").Cells(k + 3, 3).Value - Average(i)) * 2
Next k

Variance = Sum_Square(i) / (rowcount)
Worksheets("DATA").Cells(3, 5).Value = Variance

Average(i) = Sum_data(i) / rowcount

3

'‘Determine Autocovariance and Autocorrelation

Autocorr(lagk) = 0
For lagk =1 To rowcount - 1
For k =1 To rowcount - lagk

Autocorr(lagk) = (Worksheets("DATA™).Cells(k + 3, 3).Value - Average(i)) *
(Worksheets("DATA").Cells(k + 3 + lagk, 3) - Average(i)) + Autocorr(lagk)

Next k

" Autocorrealtion
Worksheets("DATA").Cells(3 + lagk, 4).Value = Autocorr(lagk) / Sum_Square(i)

' Autocovariance
Worksheets("DATA").Cells(3 + lagk, 5).Value = (Autocorr(lagk) / Sum_Square(i)) * Variance

3

'Assign a Name to Cell in Excel Spreadsheet

Worksheets("DATA").Cells(2, 4).Value = "Autocorrelation”
Next lagk

End Sub
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B.4: The MATLAB program used to determine the MLE for the one-factor logarithmic
Vasicek Model using (4.42).

% %
% Main Program: vas.m
% %

load swe.txt -ascii
load time.txt -ascii
V_data=swe; %x1 - X365
t=time; % 1 - 365

ML _log_vasicek_params = log_vasicek(V_data, t) % Calling Function

log_vasicek
% %
% Function Called: log_vasicek
% %

function ML _log_vasicek_params = log_vasicek(V_data, t)

n=length(V_data); % 365 time points

%params = [65.31102 3.98896 12.92752]; % OLS already determined
params = [65.31102 3.98896];

options = optimset(‘MaxFunEvals', 100000, ‘MaxIter', 100000);
ML_log_vasicek params = fminsearch(@FT_VAS_LL_ExactFull, params, options);

function mll = FT_VAS_LL_ExactFull(params)
alpha = params(1);

mu = params(2);

%sigma_square = params(3);

sigma_square = 12.92752;

x0=3.815732;

v= xo*exp(-alpha*t)+(mu-(sigma_square)/(2*alpha))*(1-exp(-alpha*t));
w_2 = ((sigma_square)/(2*alpha))*(1-exp(-2*alpha*t));

mll = (n/2)*log(2*pi)+sum(log(w_2/2)+(1/(2*w_2))*(V_data-v)."2);

end
end
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