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Introduction 
 

Most of the notations and terminological conventions used in this thesis are Statistical. 

The aim in risk management is to describe the risk factors present in time series. In order 

to group these risk factors, one needs to distinguish between different stochastic 

processes and put them into different classes. The risk factors discussed in this thesis are 

fat tails and mean reversion. The presence of these risk factors fist need to be found in the 

historical dataset. I will refer to the historical dataset as the original dataset. The Ljung-

Box-Pierce test will be used in this thesis to determine if the distribution of the original 

dataset has mean reversion or no mean reversion.  

 

The Ljung-Box-Pierce test is explained in paragraph 2.9, page 15. The second risk 

property is found by applying a QQ-plot on the original dataset to determine if this 

dataset has normal (no fat tails) or fat tail present. The first Q stands for the quantiles of 

the original datasets or the simulated dataset and will be assigned as the x-coordinates. 

For example let the dataset used to construct the first Q be dataset 1. The second Q stands 

for the quantiles of a second dataset, for example dataset 2 are used as the yardstick to 

dataset 1. Dataset 2 is normally distributed with theoretical normal mean and theoretical 

normal variance with the same number of observations as dataset 1 and will be assigned 

as the y-coordinates. The QQ-plot will represent coordinates ),( ii yx  for ni ,...,2,1  

where n is the number of observation for dataset 1 and dataset 2. If a QQ-plot is applied 

on a dataset 1 and the QQ-plot appears to be linear it indicates that dataset 1 has the same 

normal (no fat tails) properties as dataset 2. If a large amount of coordinates on both ends 

of the scatter plot generated by the QQ-plot bends away (deviates) from the straight line 

also in the QQ-plot, then this indicates that dataset 1 has fat tails. 

 

After the risk properties for the original dataset has been found one need to simulate a 

model that has the same risk properties as in the original dataset. A summary of the 

simulated models I will be using and the risk properties associated with them are 

described in the following table. 

 

Table 1.1: Stochastic Processes Used in Simulation 

Distribution Tail of Distribution 

Mean Reversion Normal Fat 

No GBM 
GARCH, GBM + Jumps, One-Factor Logarithmic 

Vasicek Model + Jumps 

Yes Vasicek, AR(p) One-Factor Logarithmic Vasicek Model, CIR Models 

Key: GBM = Geometric Brownian motion;  

         GARCH = Generalised Autoregressive Conditional Heteroscedasticity 

         CIR = Cox-Ingersoll-Ross              

         AR(p) = autoregressive model of order p  

 

In order to simulate a model one needs to determine the optimal estimators for these 

models. The risk properties for the simulated model can then be determined which should 

have the same risk properties as the original dataset. Interest rate processes are often 
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considered as mean reverting, fat tails are often present in foreign exchange processes 

and both risk factors (fat tails and mean reversion) are usually present in credit spreads. 

To test whether a model has the mean reversion property one needs to test for first-order 

stationarity. If a series is stationary then mean reversion is present, if not, mean reversion 

is not present. The presence of stationarity is often called the autoregressive (AR) test. 

The AR test involves calculations of the autocorrelations and partial autocorrelations to 

see whether there is lag in the regression.  

 

Ordinary least squares for the initial estimators and the maximum likelihood estimation 

procedures to find the optimal estimators for the simulated models are discussed in 

chapter 1. These methods will be used in all the other chapters except chapter 3 where the 

optimal estimators for these simulated models are determined by minimising the 

conditional sum of squares.  

 

In chapter 2 the geometric Brownian motion is discussed. The Brownian motion is the 

ceaseless, irregular random motion of small particles immersed in a liquid or gas as 

observed by R. Brown in 1827. The stochastic process associated with the Brownian 

motion is called the Brownian process or Wiener Process. The geometric Brownian 

motion (GBM) is widely used in explaining prices at equity and foreign exchange 

markets. I will first generate two datasets with the same characteristics as the GBM 

model. Risk properties for the original dataset (FTSE100 monthly closing price indices 

from the 2
nd

 of April 1984 up to the 2
nd

 of January 2001) are determined and a simulated 

GBM model is fitted on the original dataset. Risk properties for the simulated model are 

then determined and based on the similarities between the risk properties of the original 

dataset compared with the risk properties of the simulated model one can decide whether 

the simulated model is a good choice.  

 

The autoregressive processes are useful in describing situations in which the present 

value of a time series depend on its preceding values and a random shock. This process is 

known as a mean reverting model and is discussed in chapter 3. Risk properties for the 

original dataset (the daily average number of defects per truck found in the final 

inspection at the end of the assembly line of a truck manufacturing plant) are determined 

and a simulated AR(p) model is fitted on the original dataset. Risk properties for the 

simulated model are then determined and based on the similarities between the risk 

properties of the original dataset compared with the risk properties of the simulated 

model one can decide whether the simulated model is a good choice. 

  

For the modelling of electricity prices researchers prefer to use single-factor, two-factor, 

multifactor and hybrid models, which include factors like demand and supply. The     

one-factor Vasicek model on the log spot price is theoretically strong but has little 

practical implication. This model is discussed in chapter 4. Risk properties for the 

original dataset (the logarithms of Sweden’s Electrical spot prices in terms of Euro per 

Megawatt from 1
st
 of January 2008 to 31

st
 of December 2008) are determined and a 

simulated Logarithmic Vasicek simulation model is fitted on the original dataset. Risk 

properties for the simulated model are then determined and based on the similarities 
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between the risk properties of the original dataset compared with the risk properties of the 

simulated model one can decide whether the simulated model is a good choice.  

 

Chapter 5 discusses the Vasicek model. The Vasicek or Ornstein-Uhlenbeck process is 

the most common model used for the pricing of bonds. The main advantage of the 

Vasicek model is that it has an explicit solution. The Vasicek and CIR models are two 

important models for short rate interest rate modelling. The CIR model is discussed in 

chapter 7. Risk properties will also be investigated in chapters 5, 7 and 8 as what was 

done in chapters 2, 3 and 4. In chapters 4, 5 and 7 I also investigated the differences in 

accuracy between the OLS and MLE procedures influenced by the tails of the QQ-plots.     

 

Interest rates are stochastic in nature and there are at least two factors needed in order to 

explain adequately their behavior thus a two-factor Vasicek is presented in chapter 6.  

 

The GARCH models rely in the assumption that the volatility changes with time and the 

past information. The Geometric Brownian motion assumes the volatility to be constant. 

For the GARCH models it has been observed that when the volatility at a specific point in 

time abnormally increase or decrease (spike) in terms of the other volatilities around the 

vicinity of that specific point the actual data from that specific point in time will 

subsequently increase or decrease more as compare to the actual data around that specific 

point in time. For this reason, this observation is very important for forecasting purposes. 

An investor will now identify that at a specific point in time a particular stock will 

increase or decrease more rapidly as usual. The investor will stand the chance of making 

more profit as usual or make a bigger loss at that point in time for that particular stock. In 

chapter 8 the ARCH and GARCH estimators.       
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Chapter 1 
 

1 ESTIMATION PROCEDURES 
 

Before the mean reversion and no mean reversion for example the GARCH models are 

investigated the two main methods for estimation discussed in this thesis will be 

introduced. The true parameters will be estimated and are revered to as parameter 

estimates or equivalently estimators. Two procedures of calculating the estimators are 

ordinary least squares (OLS) estimation and maximum likelihood estimation (MLE).  

 

1.1 Ordinary Least Squares (OLS) Estimation In Time Series 

 

The first method is the ordinary least squares estimation procedure. According to W. S. 

Wei (1994)
1
 the ordinary least squares (OLS) estimation procedure was developed from 

regression analysis. Regression analysis is probably the most common statistical method 

in statistical data analysis and the ordinary least squares the most common used 

estimation procedure in statistics. The following model is considered: 

 

ttt eXY   ,  nt ,...,2,1     (1.1) 

 

The following assumptions on the error term, te , are made: 

 The expectation of the error term is:   0teE . 

   The variance of the error term is:          2222

etttt eEeEeEeVar  , where    

    2

e  is a constant. The variance of the error is the expected squares deviation of  

  tY  from the line tX . One thus needs to minimise  2

teVar  in order to obtain the   

   most accurate OLS estimate. 

 The autocorrelation between the error terms is:   0kt eeE  for kt  . 

 The error term and the explanatory variable tX  is uncorrelated:   0tt eXE . 

The ordinary least squares estimator for coefficient   in equation (1.1) is: 








n

t

t

n

t

tt

X

YX

1

2

1̂ .      (1.2) 

 

This estimator, ̂ , is the best linear unbiased estimator of   under the assumptions of the 

error term. If one considers the following model: 

 

ttt eYY  1 ,  nt ,...,2,1     (1.3) 

 

                                                           

1 WWS Wei Time Series Analysis: “Univariate and Multivariate Methods” (1990) 147. 
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then the ordinary least squares estimator for coefficient   in equation (1.3) is: 

 
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2

11

2

2

1

2

1

ˆ 



 .   (1.4) 

In regression analysis, the OLS estimator of an explanatory variable will be inconsistent 

and biased except if the error term is uncorrelated with the explanatory variable. The 

second method is the maximum likelihood estimation procedure. This procedure is more 

efficient and commonly used in time series analysis. 

 

1.2 Maximum Likelihood Estimation (MLE)
12

 
 

Suppose we observe an original dataset 
nttt zzzZ ,...,,

21
  with n  observations. We need 

to apply the MLE procedure on this original dataset. Assume the true unknown 

conditional probability density function derived from the original dataset is  0,| Zg   

where 0  is the true parameter of the original dataset. One needs to choose the most 

appropriate simulation model for the original dataset. The simulation model will belong 

to some kind of conditional density function say  ,| Yf   that should have the same 

distribution as  0,| Zg  . One needs to generate a new dataset X that must be used to 

determine the likelihood function defined as: 

 

   



n

i

YXfL
1

;|   

where  ;| YXf  is the conditional probability density function of X  given Y  and  .  

Let 
nttt xxxX ,...,,

21
  be generated from 

120
,...,,




nttt xxxY  which in tern is generated by 

the appropriate simulation model. The initial starting value for the simulation model is 

the same as the starting value of the original dataset such that 
10 tt zx  . The simulation 

model 
0t

x is used to simulate 
1t

x , up until 
1nt

x  is used to simulate 
ntx . Note that 

parameter   can be a vector that consists of more than one parameter. To maximise the 

likelihood function one can take the logarithm of the likelihood function and if the 

observations 
nttt xxxX ,...,,

21
  are independent then: 

     
















 



n

i

ttt

n

i

YxxxfYXfL
n

11

;|,...,,ln;|lnln
21

  

                                           ;|ln;|...;|;|ln
121

11

YXfYxfYxfYxf t

n

i

n

i

ttt n 










  

The maximum likelihood estimator for 0  is defined as 

   


;|lnmaxarglnmaxargˆ
1

1

YXfL t

n

i




        (1.5) 

                                                           
12

   Carnegie Mellon University “Manual for the Sphinx-III recognition system” Technical version 1”  

      http://www.speech.cs.cmu.edu/sphinxman/HMM.pdf  (Accessed 21 September 2010). 

http://www.speech.cs.cmu.edu/sphinxman/HMM.pdf
http://www.speech.cs.cmu.edu/sphinxman/HMM.pdf
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Chapter 2 
 

2 NO MEAN REVERSION – GEOMETRIC BROWNIAN MOTION  
 

The main purposes for this chapter are:  

 

 generate two GBM datasets 

 simulate the sample mean and variance of GBM 

 finding the risk properties for the original dataset (FTSE100 monthly closing 

price indices) 

 choosing the simulated model which should have the same risk properties as the 

original dataset. Table 1.1 is used to find the most appropriate simulated model 

with the same risk properties as the original dataset 

 finding the estimators for this simulated model. The method used to  

      find the estimators used in the simulation model is called the MLE 

 finding the 95% confidence interval for an unknown parameters of the 

 original dataset 

 finding the risk properties of the simulated model 

 comparing the original and simulated risk properties and analysing the 

appropriateness of the simulated model. 

 

 

2.1 Basic Properties – Geometric Brownian Motion (GBM) 

 

The Geometric Brownian Motion (GBM) is a fundamental example of a stochastic 

process that neither has fat tails nor mean reversion properties. In this section, the basic 

properties of the GBM will be stated and then a simulated GBM will be fitted on 

historical data to find the risk properties of the dataset. By looking at the risk properties 

one can determine if the GBM will be a good model to choose to fit the historical dataset. 

According to D.G. Luenberger (1998)
3
, the GBM is the underlying process from which is 

derived to form the Black and Scholes formula for pricing European options. Let the 

continuous-time of stock prices be assigned as tx  where  txln  obeys the following 

defined equation: 

 

tt dWvdtxd ln      (2.1) 

 

Here v  and 0  are constants and tW  is a standard Brownian motion. In ordinary 

calculus one may derive that  

 

t

t

t
x

dx
xd ln      (2.2) 

                                                 
3
 DG Luenberger Investment Science (1998) 308. 
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If equation (2.2) is substituted into (2.1) one will obtain: 

 

t

t

t dWvdt
x

dx
     (2.3) 

 

According to ordinary differential calculus equation (2.3) is correctly derived from (2.1) 

and (2.2) but due to the fact that the Wiener processes are not differentiable functions and 

do not follow the rules of ordinary calculus, equation (2.3) must be replaced by Ito 

calculus which accommodates the Wiener processes correctly. If we use Ito’s Lemma (as 

mentioned in J.C. Hull, (2000)
12

) and which is explained in more detail in paragraph 4.2, 

page 27 of this thesis) the right hand side of equation (2.3) will become: 

 

t

t

t dWdtv
x

dx
 








 2

2

1
.    (2.4) 

For convenience let 2

2

1
 v  in equation (2.4), the Geometric Brownian motion of 

the asset price, tx , over time becomes: 

 

t

t

t dWdt
x

dx
       (2.5) 

 

Here tdW  represents an increment to a standard Brownian motion tW . According to Z 

Brzezniak (1999)
16

, tW  which is also known as a noise term for   ,0t  has the 

following properties: 

 

 for nttt  100 , the increments 
101

,...,



nn tttt WWWW  are independent. 

  tW  has stationary increments. 

   0tWE  for all t  

 

If tW  is observed as a white noise process tdW  is quantifiable. By replacing v  in 

equation (2.1) with 2

2

1
 v , equation (2.1) can be written as: 

 

tt dWdtxd  







 2

2

1
ln .    (2.6) 
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 JC Hull Options Futures & Other Derivatives 4 ed (2000) 229. 
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This means that  txln  is an Arithmetic Brownian Motion. By integrating equation (2.6) 

between, t  and u  according to Damiano Brigo et al (2007)
4
, gives: 

 

       

























 tutuNWWtuxx tutu

222 ,
2

1
~

2

1
lnln     (2.7) 

 

According to Damiano Brigo et al (2007)
4
, by letting Tu  , 0t  and taking the 

exponent on equation (2.7) leads to: 

 


















 TT WTxx  2

0
2

1
exp .      (2.8) 

 

The mean and the variance of Tx  according to Damiano Brigo et al (2007)
4
 are: 

 

  T

T exxE 
0   and     122

0

2  TT

T exexVar  .  (2.9) 

 

 

2.2 Two Types of Geometric Brownian Motion Datasets  

 

One needs to represent a mathematical model (simulated model) that present an 

approximation of the historical dataset. In order to find an appropriate simulated model 

one needs to look at the risk properties of the original dataset. After the appropriate 

simulated model has been chosen, assumptions can be made of how the dataset might 

react after the last available time. According to D.G. Luenberger (1998)
3
 let ii ttt  1  

and for nttt  10  where 0tt   is the time for the initial price. The simulation 

equation derived from equation (2.5) is: 

 

 
ii tit xtZtx 


1

1
.    (2.10) 

 

Here iZ  is a random variable from an independent identically standard normal 

distribution, with a mean of zero and a variance of one. Another version of a simulation 

equation for the GBM can be obtained by using equation (2.1) and the fact that 

2

2

1
 v : 

 

      tZtvxx itt ii



lnln

1
.   (2.11) 

                                                 
 

 
4
 D Brigo et al “A Stochastic Processes Toolkit for Risk Management” (2007) SSRN http://ssm.com/abstrac 

t=1109160 (Accessed 9 September 2009). 
3
 DG Luenberger Investment Science (1998) 308. 
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By taking the exponent of both sides of equation (2.11), it yields: 

 

 tZtvxx itt ii



exp

1
.    (2.12) 

 

In practice the two different simulation models are equally good. 

 

In the following example two methods are shown to generate approximately the same 

Geometric Brownian motion.   

 

2.3 Example 2.1 – Generate Two Geometric Brownian Motion Datasets 

 

Let 52/1t , the initial price 100
0
tx , 3.0v , 425.0 , and the volatility 5.0 . 

The second last column on the right of the following table illustrated below is the 

simulation of the spot price based on equation (2.10) and the last column the simulation 

of the spot price according to equation (2.12). Both simulations depend on the same 

 1,0~ NZ i .   

 

Table 2.1: Generate Two Geometric Brownian Motions 

i  it  iZ  
it

x  (2.10) 
it

x  (2.12) 

0 0   100 100 

1 0.019230769 0.114289378 101.6097619 101.3787962 

          

51 0.980769231 1.116391104 100.7722344 103.2251215 

52 1 0.2270815 103.1825395 105.4700207 
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Figure 2.1: Generate Two Types of Geometric Brownian Motion Datasets    

 

The generated Geometric Brownian Motions according to equations (2.10) and (2.12) are 

simultaneous plotted in Figure 2.1. The following Figure 2.2 illustrates eight simulations 



 

 

 

 

 

 

 

7 

of prices all with initial spot price of 100
0
tx  and 365/1t , 15.0v , and the 

volatility 7.0 . Note that 5000 tt   and simulations are based on equation (2.12).  
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Figure 2.2: Simulation for Eight Geometric Brownian Motions     

 

By observing Figure 2.2 it is noted that not any of the eight simulated Geometric 

Brownian Motions show evidence of mean reversion.  

 

2.4 Maximum Likelihood Estimation (MLE) – Geometric Brownian Motion          

 

According to Damiano Brigo et al (2007)
6
, the parameters that need to be optimised are 

  ,  for the GBM. Let the log return be given as: 

 

1
lnln




iii ttt xxy .    (2.13) 

 

According to equation (2.7) 
1

lnln



iii ttt xxy is normally distributed for all 

nttt yyy ,...,,
21

 and assume independence for 
nttt yyy ,...,,

21
. The likelihood function will 

be denoted as: 

 

   
nttt yyyfL ,...,,

21   

               



n

i

t

n

i

t ii
yfyf

11

| . 

 

                                                 
6
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Here f  is the probability density function, 
nttt yyy ,...,,

21
 are the log returns according to 

equation (2.13). Let   , , then the probability density function f  is: 

 

 
t

t
y

y

tx
yf

t

t

t

t

i

i

i 2

2

2

2

2

1

exp
2

1 0













































 . 

 

The likelihood function needs to be maximised to obtain the optimal estimators 

  ˆ,ˆˆ  . The natural logarithm of the likelihood function must be differentiated in 

terms of   and   then equated to zero which will yield two equations and must be 

solved simultaneously to obtain: 

tw 







 2ˆ

2

1
ˆˆ      (2.14) 

 tv  2ˆˆ       (2.15) 

 

where 

 

n

xx

n

y
w

tt
n

i

t ni 0
lnln

ˆ
1






    (2.16) 

 
 







n

i

t

n

wy
v i

1

2
ˆ

ˆ .     (2.17) 

 

First one needs to determine ŵ  and v̂  then the MLE are: 
t

v




ˆ
ˆ 2  and 

t

w




ˆ
ˆ

2

1
ˆ 2 . 

 

2.5 Confidence Intervals for Parameters of the GBM  

 

The 95% confidence interval for the parameter w  according to Damiano Brigo et al 

(2007)
7
 is: 

 

n

v
ww

n

v
w

ˆ
96.1ˆ

ˆ
96.1ˆ      (2.18) 

and the 95% confidence for the sample variance of the GBM v  is: 

2

975.0,

2

025.0,

ˆˆ

nn

vn
v

vn


      (2.19) 

Here 
2

025.0,n  and 
2

975.0,n  are the upper and lower percentiles of the chi-squared 

distributions with n  degrees of freedom. Confidence intervals are used to find the upper 

and lower regions of the true parameters w  and v . The reason why one needs to estimate 

                                                 
7
 D Brigo et al “A Stochastic Processes Toolkit for Risk Management”. 
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parameters w  and v  first, is because ŵ  and v̂  are used to estimate 2  and   in order to 

determine MLE.  

 

2.6 Example 2.2 - Maximum Likelihood Estimation Procedure  

 

First the risk properties of the dataset which in this example is the FTSE100 monthly 

closing price indices from the 2
nd

 of April 1984 up to the 2
nd

 of January 2001 must be 

calculated. The Ljung-Box-Pierce test defined in paragraph 2.8 page 14 is: 

 

504.673784.976 2

05.0,50  Q  

 

The corresponding valuep   is 2.2e-16 which is less than 0.05. The null hypothesis 

( 0H ) will be rejected indicating that the distribution of the original dataset is not mean 

reverting.  

 
Figure 2.3: QQ-Plot for FTSE100 monthly closing price indices 

 

Fat tails are observed in the QQ-plot for the FTSE100 monthly closing price indices. 

According to Table 1.1 the most appropriate simulated models to choose for similar risk 

properties of the original dataset are GBM + Jumps or One-Factor Logarithmic Vasicek 

Model + Jumps. The simulated model that I choose for this dataset is the GBM which 

will not be the most appropriate simulation model. I choose this model for example 

purposes only. In this example the estimators of the FTSE100 monthly closing price 

indices from the 2
nd

 of April 1984 up to the 2
nd

 of January 2001 are calculated by using 

the maximum likelihood estimation procedure. The equations used are (2.16) and (2.17).   

 

Table 2.2: Calculations for GBM Estimators  

Date i  it  
it

x    
it

xln  
it

y   

1984/04/02 0 0.000000 1138.3 7.0372912  

1984/05/01 1 0.083333 1016.6 6.924219005 -0.1130722 

            

2001/01/02 201 16.750000 6297.5 8.747908008 0.011980974 
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According to equation (2.16):  

 

008510531.0
201

710617.1
ˆ

1




n

i

i

n

y
w    (2.20) 

 

and 

 

 
008510531.0

201

0372912.7747908008.8lnln
ˆ 0 







n

xx
w

ttn . 

 

By using Table 2.2 and applying equation (2.17) one will obtain: 

 

 
002360452.0

201

476079261.0ˆ
ˆ

1

2







n

i

i

n

wy
v .   (2.21) 

 

The 95% confidence interval for the parameter w  (sample mean of the GBM) is: 

 

201

002360452.0
96.1008510531.0

201

002360452.0
96.1008510531.0  w  

015227227.0001793836.0  w  

 

and the 95% confidence for the sample variance of the GBM v  is: 

 

            
   

63.163

002360452.0201

1559.242

002360452.0201
 v  

002899535.0001959279.0  v . 

 

We have 95% confidence that the true parameter estimated with w  will lie between 

001793836.0  and 015227227.0 . The true variance of the GBM will lie between 

001959279.0  and 002899535.0  with a 95% level of confidence.  

 

Solving equations (2.14) and (2.15) yield 

 

 
02832543.0

12
1

002360452.0ˆ
ˆ 2 




t

v
    (2.22) 

168301603.0
ˆ

ˆ 



t

v
     (2.23) 

              
 

  116289091.002832543.0
2

1

12
1

008510531.0
ˆ

2

1ˆ
ˆ 2 


 

t

w
.  (2.24) 
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Fitting the GBM to the FTSE100 monthly closing prices will involve equation (2.10), ̂  

and 2̂  such that: 

 

 
ii tit xtZtx 


 ˆˆ1

1
.    (2.25) 

  

Let 
12

1
t , and  1,0~ NZ i  independent identical random variables and let the initial 

price index be 3.1138
0
tx . The following Figure 2.4 will plot the GBM simulation 

(2.25) together with the original FTSE100 closing monthly price indices.  
 

GBM Fit to FTSE100 Monthly Closing Price Indices
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Figure 2.4: FTSE100 Closing Monthly Price Indices versus Simulated GBM   

 

By looking at Figure 2.4 it is clear that neither the FTSE100 closing monthly price 

indices nor the simulated GBM model shows mean reversion. 

 

2.7 Simulation for Sample Mean and Variance of GBM 

 

From a total number of 201 logarithmic returns for the FTSE100 monthly closing prices 

the maximum likelihood estimates for the mean and the standard deviation are given in 

equations (2.20) and (2.22). Suppose we generate 10000 datasets each containing 201 

normal random values with mean 008510531.0ˆ w  and variance 02832543.0ˆ 2  .Let 

the datasets be denoted as ijD , where 10000,...2,1i  (indicating the datasets) and 

201,...3,2,1j  (amount of random values in each set).  
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Ten thousand sample mean estimates for each dataset are determined as: 

 





201

1

11
201

1ˆ

j

jDW  

  





201

1

1000010000
201

1ˆ

j

jDW  

 

for random values ijD  that are normally distributed with mean 0.008510531 and variance 

0.02832543. The estimated variances for these datasets are: 

 

 






201

1

2

11

1
201

ˆ
ˆ

j

j WD
V  

  

 






201

1

2

1000010000

10000
201

ˆ
ˆ

j

j WD
V  

 

 

Let 12/1t  for the FTSE100 monthly closing prices and substitute it into a similar 

equation as equation (2.23). The sample standard deviations estimates for 10000 datasets 

are: 

 

t

V
S


 1

1

ˆ
ˆ  

  

t

V
S


 10000

10000

ˆ
ˆ .    (2.26) 

  

 

Similar equations as (2.24) are used to derive 10000 sample mean estimates defined as: 

 

 21
1

1
ˆ

2

1ˆ
ˆ S

t

W
A 


  

  

 210000

10000

10000
ˆ

2

1ˆ
ˆ S

t

W
A 


 .    (2.27) 

 

The frequency histogram in Figure 2.4 below for equations (2.27) indicate that the 

sample means for 10000 datasets do not deviate much from the first estimated sample 

mean 116289091.0ˆ  .     
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Frequency Histogram 
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Figure 2.5 Frequency Histogram for 10000 Sample Means 

 

The frequency histogram, for 10000 sample standard deviations derived in equations 

(2.26), using an adjusted chi-squared distribution is displayed in Figure 2.6 below. The 

adjusted residuals are used to determine the adjusted chi-squared distribution.  The reason 

for using the adjusted chi-squared distribution rather than the chi-squared distribution is 

that a shape which is less skew can be fitted on this frequency histogram indicating where 

the sample standard deviations cluster.  
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Figure 2.6: Adjusted Chi-Square Frequency Histogram on 10000 Sample Standard 

       Deviations 
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In both cases the two estimators are very close to their theoretical limits. Estimated 

sample standard deviations indicated in equations (2.26) seems to cluster around the 

estimated sample standard deviation 168301603.0ˆ   indicated in (2.23). Before one 

needs to determine the mean reversion in the simulated models one needs to introduce the 

following test.  

2.8 Estimated Sample ACF and PACF  

 

The autocorrelation functions (ACF or k ) and partial autocorrelation functions (PACF 

or kk ) are estimated by the sample autocorrelation function, kr , and the sample partial 

autocorrelation, kkf .
9
 For a given time series, nxxx ,...,, 21 , the autocorrelation at lag k  is 

estimated by: 

 

0c

c
r k

k       (2.28) 

 

where kc  is known as the estimated autocorrelation at lag k  defined as:  

 

  










 






otherwise

nkifxxxx
knc

kn

t

ktt
k

0

1

1
 

 

where 0c  is known as the estimated variance at lag 0  defined as: 

 

 



n

t

t xx
n

c
1

2

0

1
. 

 

 

The mean of the time series is defined as: 

 









 



n

t

tx
n

x
1

1
. 

 

The estimated partial autocorrelation, kkf  at lag k  is given as: 

 

k

k

kk
P

P
f

*

      (2.29) 

 

where kP  denotes the determinant of the matrix: 

                                                 
9
 DG Nel Time Series Analysis Module (1994) 7. 
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
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
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1
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

 

 

and where matrix, *

kP , is: 

 



























kkkkk

k

k

k

rrrrrr

rrrrr

rrrrr

P

14321

23211

12321

*
1

1









. 

 

2.9 Ljung-Box-Pierce-test Procedure 

 

The Ljung-Box-Pierce-test procedure explained by G.M. Ljung and G.E.P. Box (1979)
5
 

is used to test for the significance of the ACF and PACF. A set of m  autocorrelations 

may be tested at once by using the Ljung-Box-Pierce test. The hypothesis test is used 

when testing whether the true autocorrelations, k , are significant: 

 

       :0H  0k , mk   (dataset follows mean reversion/random/white noise process) 

versus  

         :1H  0k , mk   (dataset does not follow mean reversion/random/white noise 

process). 

 

If 0H  is not rejected then it indicates that the time series is random and follows a white 

noise process.  On the other hand, if 0H  is rejected it indicates that the time series shows 

a clear pattern and is not random indicating serial correlation is present. 

 

The test statistic is: 

 

 
 







m

k

k

kn

r
nnQ

1

2

2      (2.30) 

where m  is the number of sample autocorrelation function, kr , be tested. The sample 

autocorrelation function, kr  is defined at equation (2.30). The number of sample 

                                                 
5
 GM Ljung and GEP Box “The likelihood function of stationary autoregressive-moving average models” 

(1979) Biometrika 66 265 – 270. 
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autocorrelation functions is, 
4

n
m  , where n is the total number of observations of the 

original dataset .  We reject 0H  if 
2

;mQ   where 2

;m  is a chi-square distribution with 

m degrees of freedom and   level of significance.  

2.10 Testing for Mean Reversion and Fat Tails 

 

The FTSE100 monthly stock index will be modeled by making use of the GBM. The 

FTSE100 monthly closing prices from the 2
nd

 of April 1984 up to the 2
nd

 of January 2001  

are used. The FTSE100 dataset is available in Appendix A1. The QQ-plot for the original 

dataset (FTSE100 monthly closing prices) is found to have fat tails (Figure 2.7) as well as 

the QQ-plot for the simulated GBM model. The simulated GBM is derived from equation 

(2.10). The QQ-plot for the original dataset (FTSE100 monthly closing prices) and the 

simulated GBM is plotted in Figure 2.7 and Figure 2.8 respectively.  

 

 
Figure 2.7:  QQ-plot for the original dataset: FTSE100 Monthly Indicates 

 

 
QQ-Plot for Simulated GBM

Distribution: Normal

Simulated GBM = 2923.2727+1234.8099

-3 -2 -1 0 1 2 3

Theoretical Quantile

0.01 0.05 0.25 0.50 0.75 0.90 0.99

0

1000

2000

3000

4000

5000

6000

7000

O
b
s
e
rv

e
d
 V

a
lu

e

 
Figure 2.8:  QQ-plot for the Simulated GBM for the FTSE100 Monthly Indicates 
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Let 
12

1
t , and  1,0~ NZ i  independent identical random variable and the initial price 

index be 3.1138
0
tx . The general formula for the estimated autocorrelation function if 

we use a time series 
n

ttt xxx ,...,,
21

 is: 

 

 
  











kn

i

ttk wxwx
vkn

r
kii

1

ˆˆ
ˆ

1
, ,...2,1k   (2.31) 

 

where v̂  and ŵ  are defined in equation (2.14) up to equation (2.17).  

 

 

2.11 Notes and Research 

 

Firstly I noticed that the FTSE100 monthly closing prices produced risk properties 

similar to the GBM + Jump and the One-Factor Logarithmic Vasicek Model + Jump 

models. The GBM will be an inappropriate simulation model to use. I used the GBM for 

example purposes only. After the GBM is simulated on the original dataset the risk 

properties of the simulated model are investigated.  

 

If 0H  is rejected for the Ljung-Box-Pierce test on the simulated model it implies that 

there is mean reversion of the simulated GBM model. For fifteen sample 

autocorrelations, the test statistic 9957.242067 2

05.0,15  Q  indicates 0H  will be 

rejected, meaning the simulated GBM model does not follow a white noise process and 

significant autocorrelations are present thus mean reversion is not present (no stationarity 

present). 

 

Both the original dataset as well as the simulated GBM model have fat tails and no mean 

reversion properties, meaning that the FTSE100 monthly closing prices roughly follows 

the risk profile of the GBM. One may choose a more appropriate simulation model based 

on the risk properties of the original dataset based on Table 1.1 and based on these risk 

properties one may choose the GBM with jumps, which have fat tails but no mean 

reversion.  

 

In paragraph 2.3 if standard normal random variable were used to generate a GBM as 

indicated in the generation of equation (2.10) and plotted in Figure 2.1, the QQ-plot 

indicate short tails (normal tails) and the test for mean reversion of the 52 generated 

GBM model is 9957.240.214 2

05.0,15  Q . The dataset generated from equation 

(2.10) fits the risk properties of the simulated GBM based on Table 1.1. For this reason 

the generated GBM will be well fitted with a simulated GBM.  
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Chapter 3 
 

3 MEAN REVERSION – THE AUTOREGRESSIVE ORDER ONE:  1AR  

MODEL  
 

The main purposes for this chapter are:  

 

 finding the risk properties for the original dataset (daily average number of 

defects per truck) 

 choosing the simulated model which should have the same risk properties as the 

original dataset. Table 1.1 is used to find the most appropriate simulated model 

with the same risk properties as the original dataset 

 using the conditional sum of squares method of finding the optimal estimator to  

      be used for this simulated model 

 finding the risk properties of the simulated model 

 comparing the original and simulated risk properties and analysing the 

appropriateness of the simulated model. 

 

3.1 Basic Properties - AR(1) Model 

 

The property of mean reversion means that the time series process always reverts to a 

certain constant with a limited variance (variation) or deviation around the reverted 

constant. The stationary autoregressive model of order one has this property.  

 

Suppose tx  is a time series (not necessarily stationary) such that tx  is dependent on 1tx  

and a random shock, t , where   0tE  ,   2

etVar    and   0stE   for st  . Then 

the model of tx  can be written as: 

 

  ttt xx   1      (3.1) 

 

This is called a simple autoregressive model of the first order and is denoted as  1AR . 

This model is also known as the Markov model. The  1AR  as in (3.1), is centered around 

zero but the model can also be centered around   indicated as: 

 

   ttt xx   1      (3.2) 

 

This process will be stationary and invertible if 1  such that   
1

1 B . A 

stationary or a mean reverting dataset will have an overall pattern that is parallel with the 

x axis. The inverted model from (3.1) is: 

 

  tt Bx 
1

1


      (3.3) 

 



 19 

where B  is a back shift operator such that 1 tt xBx  and for a constant  B . 

Equation (3.3) can be extended to: 

 

   tt BBx   221              for 1B  

                 tBB   2

211  

         tB   

 

with  weights: j

j   . The autocovariances for the  1AR  model are: 

 







0

2

j

kjjek   







0

2

j

kjj

e   







0

22

j

jk

e   

2

2

1 






k

e . 

 

The variance of the  1AR  model is then: 

 

 
2

2

0
1 





 e

txVar . 

 

The aurocorrelation at lag k  for the AR(1) model is: 

 

kk

k 



 

0

. 

 

The partial autocorrelations are: 

 










10

1

kif

kif
kk


     

 

Equation (3.1) can be modified in such a way that it is centered to its mean   to become 

equation (3.2). Substitute tet  2 , where t  are independent uncorrelated normal 

 1,0N  random variables, into equation (3.2) then: 

 

   tett xx  2

1        (3.4) 
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Equation (3.4) can now be expressed by: 

 

   tetttt xxxx  2

111       (3.5) 

 

then by rearranging (3.5) gives: 

 

    tettttt xxxxx  2

111    

             
  tetx 




 2

1
1

1 










  . 

 

3.2 Estimation - AR(1) Model 

 

By investigating the significance of the autocorrelation functions (ACF’s) and partial 

autocorrelation functions (PACF’s) of tx  we choose the order for p  and q . The method 

of testing the significance of the ACF’s and PACF’s is known as the                         

Ljung-Box-Pierce-test procedure explained by W. S. Wei (1994).
8
 If one draw the ACF 

and PACF for different lags of the  pAR  model one will observe that the ACF will tails 

off as exponential decay or damped sine waves and the PACF will cuts off after lag p .  

 

By using the Box-Jenkins estimation procedure, which is explained by W. S. Wei 

(1994),
8 

one will obtain the conditional sum of squares, 


n

t
tCSS

1

2 , which will be 

minimised by the ordinary least squares method to find the optimal value for  . One can 

choose any initial value for   such that 1  and use equation (3.2) to determine       

1 , …, n . Determine CSS  for different values of  . The   value for the smallest CSS  

will be optimal value for   assigned as ̂  and used in the simulated AR(1) model. 

 

 

3.3 Fitting AR(1) Model to Truck Manufacturing Defects Data  

 

The dataset in this section are available in Appendix A2. This dataset is the daily average 

number of defects per truck found in the final inspection at the end of the assembly line 

of a truck manufacturing plant. The data consists of 45 daily observations of consecutive 

business days from the 4
th

 of November to the 10
th

 of January. One needs to determine 

the risk properties of this dataset. The Ljung-Box-Pierce test on this dataset is: 

 

67514.197287.15 2

05.0,11  Q  

 

The corresponding valuep   is 0.1515 which is larger than 0.05. The null hypothesis 

( 0H ) will not be rejected indicating that the distribution of the original dataset is mean 

                                                 
8
 Wei Time Series Analysis 106. 
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reverting. Indecisive tails are observed in the QQ-plot. Based on the risk properties 

calculated for the average number of defects per truck if one assume normal tails one 

may choose the  pAR  simulated model. 

 

 

 
Figure 3.1: The Estimated Autocorrelation for Average Number of Defects per Truck 

 

Figure 3.1 presents the estimated ACF for eleven lags. By using paragraph 3.2 one can 

observe that these ACF values indicate damped sine waves.  

 

 
 

Figure 3.2: The Estimated Partial Autocorrelation for Average Number of Defects per 

                    Truck 

Figure 3.2 presents the estimated PACF for eleven lags. By using paragraph 3.2 one can 

observe that these PACF values will cuts off after lag order 1p . For this reason I will 

choose an  1AR  simulation model. 

 

The  1AR  series ttt xx   1  will be fitted to the dataset. One needs to center this 

dataset around its mean. 

 



 22 

Let 78866667.1
45

1 45

1









 

t

tx . Now let tt zx    such that equation (3.1) becomes: 

 

  ttt zz   1 . 

 

Let 01  , then 122 zz   , ,...,233 zz    444545 zz   . One needs to take the 

conditional sum of squares (CSS), which will be minimised by choosing the optimal 

value for  . One may use Microsoft Excel’s solver add-inn functionality to minimise the 

conditional sum of squares with respect to  . The following table gives the optimal 

value of   assigned as ̂  where t  depend on ̂  in order to obtain a minimum 

conditional sum of squares.     

 

Table 3.1: The  1AR  Model Fitting to Data,    ttx  78866667.1428863.01  

t tx   tt xz  t  
2

t  

1 1.2 -0.58867 0 0 

2 1.5 -0.28867 -0.03621 0.001311 

3 1.54 -0.24867 -0.12487 0.015592 

4 2.7 0.911333 1.017977 1.036278 

5 1.95 0.161333 -0.2295 0.052672 

          

45 1.84 0.051333 0.05505 0.003031 

 

 

where 

 

428863.0ˆ    251275.9
1

2 


n

t
tCSS   21025625.0

1

2 



n

CSS
e . 

 

The fitted model is: 

 

   ttxB  78866667.1428863.01  

    ttt xx   78866667.1428863.078866667.1 1  

   

which gives: 

 

ttt xx   7670929541.0428863.078866667.1 1 .  (3.8) 

 

Let 2.10 x  and t  are independent uncorrelated normal  1,0N  random variables such 

that 21025625.02 e  and  21025625.0,0~ Nt  then the fitted equation (3.8) is plotted 

against the actual data: 

 



 23 

The AR(1) Model Fitting to Data 
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Figure 3.3: The  1AR  Model Fitting to Data,    ttx  78866667.1428863.01  

 

3.4 Testing for Mean Reversion and Fat Tails 

 

The QQ-plot for the simulated model according to equation (3.8) indicated in Figure 3.3 

is plotted in Figure 3.4.  

 
QQ-Plot for Simulated AR(1) Model 
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Figure 3.4:  QQ-plot for the Simulated AR(1) Model for the Truck Manufacturing 

        Defects Data 

 

According to Figure 3.4 indecisive tails are present in the simulated dataset indicated by 

the QQ-plot. The QQ-plot on the original dataset also indicates indecisive tails are 

present. Testing the mean reversion of the simulated model involve the Ljung-Box-

Pierce-test.  
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3.5 Notes and Research 

 

By investigating the original dataset and apply the Ljung-Box-Pierce test on this dataset 

one observed that mean reversion is present. Indecisive tails are observed from the QQ-

plot on the original dataset. Based on the these risk properties one may choose the AR(p) 

simulation model.    

 

In order to determine the order of p for the AR(p) simulation model one may use 

paragraph 3.2 and conclude that this is a AR(1) simulation model. This conclusion is 

made due to the fact that the estimated PACF’s cut off after lag 1 and the estimated 

ACF’s produce damped sine waves.  

 

The Ljung-Box-Pierce-test for the simulated AR(1) model is 67.1942.22 2

05.0,11  Q  

indicates 0H  will be rejected, meaning the simulated AR(1) model does not follow a 

white noise process and significant autocorrelations are present thus mean reversion is 

not present (stationarity not present). From these results one can conclude that the 

simulated AR(1) will not be the best model to use for this particular dataset. This could 

have been the result of the indecisive tails observed for the original dataset and the 

simulated model.  

 

The simulated AR(1) should have mean reversion properties that are the same as the risk 

properties for the original dataset. Rather choose either   One-Factor Logarithmic Vasicek 

or CIR simulation models where mean reversion and fat tails are present.  

 

 

 



10
 P Bjerksund et al “Gas Storage Valuation: Price Modelling v. Optimization Methods” (2008) 

Journal of Enconometric Literature http://www.nhh.no/Admin/Public/Download.aspx?file=/Files/Fil 

ler/institutter/for/dp/2008/2008.pdf  (Accessed 09 September 2009). 
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Chapter 4 
 

4 MEAN REVERSION – THE ONE-FACTOR VASICEK MODEL ON 

LOG SPOT PRICES   

 

For electricity price modelling some academics, like M. Davidson, C. Markus and B. 

Anderson are strong proponents for “hybrid” models. Other academics such as A. 

Lavassani, A. Sadeghi and A. Ware prefer to use the single-factor and multi-factor 

models.  The main purposes for this chapter are:  

 

 finding the risk properties for the original dataset (the historical model involve 

electricity prices) 

 choosing the simulated model which should have the same risk properties as 

the original dataset. Table 1.1 is used to find the most appropriate simulated 

model with the same risk properties as the original dataset 

 finding different methods of calculating the estimators for this 

      simulated model. These methods used to find the estimators are called OLS 

      estimation and two different MLE methods 

 comparing the accuracy of the OLS estimation and the two MLE by observing 

whether  the model have fat or normal tails. This is done by using the QQ-

plots 

 finding the risk properties of the simulated model 

 comparing the original and simulated risk properties and analysing the 

appropriateness of the simulated model. 

 

4.1 Basic Properties - One-Factor Vasicek Model Based On Log Spot Price 

 

An initial one-factor Vasicek model can be defined by: 

 

ttttt dWPdtPPdP ln .   (4.1) 

 

We call  the mean reversion rate,  the related long-term mean level of the natural 

logarithm of the Electricity spot prices,  the related volatility in the electricity spot 

prices and tW  the standard Brownian/Wiener process.  

  

A natural logarithm transformation on the spot price, the log-price process tPln  will 

be: 

 

tt Px ln      (4.2) 

where tP   is the electricity spot prices at time t . According to P. Bjerksund et al. 

(2008)
10

, the generalised one-factor Vasicek process has a state variable defined as: 

                                                 
 



10
 P Bjerksund et al “Gas Storage Valuation: Price Modelling v. Optimization Methods” (2008) 

Journal of Enconometric Literature http://www.nhh.no/Admin/Public/Download.aspx?file=/Files/Fil 

ler/institutter/for/dp/2008/2008.pdf  (Accessed 09 September 2009). 
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 (4.3) 

 

According to P. Bjerksund et al. (2008)
10

, the conditional expectation for the natural 

logarithm of the spot price 
tx , given that time 0t  is defined as: 
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and the conditional variance of the spot price 
tx , given that time 0t  is defined as: 
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According to P. Bjerksund et al. (2008)
10

 the conditional expectation for the spot price 

tx , given that the time is s  is defined as:  

                   dueexexE

t

su

ut

s

st

ts
22

22

  (4.6) 

 

and the conditional variance for the spot price 
tx , given that the time is s  is defined 

as: 
t
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sts dWeeVarxVar ][  
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4.2 Explicit Solution - One-Factor Vasicek Model on Log Spot Price 

 

According to S.M. Sheikh (2007)
11

 we need an initial model for the stochastic 

differential equation (SDE). As mentioned in the previous section, let:   

 

tt Px ln      (4.8) 

                                                tt Pddx ln .      (4.9) 

 

If we use Ito’s Lemma as mentioned in J.C. Hull, (2000)
12

, such that if one has a 

variable tP  it followings an Ito process: 

 

    tttt dWtPbdttPadP ,,      (4.10) 

 

where tdW  is a Wiener process. Let a  and b  be functions of tP  and t . When we 

have a function, tx , of tP  and t  such as equation (4.9). We can subsequently express 

equation (4.9) as: 

 

t

t

t

t

tt

t

t

t dW
P

x
bdt

P

x
b

t

x

P

x
adx




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






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


















2

2

2

2

1
  (4.11) 

 

If one compares equation (4.1) with equation (4.10) it is observed that: 

 

    ttt PPtPa ln,   ,   tt PtPb , ,  (4.12) 

 

and by using (4.8) and (4.11) we obtain: 

 

tt

t

PP

x 1





, 0




t

xt , 
22

2
1

tt

t

PP

x





   (4.13) 

 

By substituting (4.12) and (4.13) into (4.11), equation (4.11) can be expressed as: 

 

       tt

t

t

t

tt

t

t dWP
P

dtP
P

PP
P

Pd 
1

2

1
0ln

1
ln

2

2














  

 

which simplify to: 

 

  ttt dWdtdtPdx 


 
2

ln
2

 

ttt dWdtxdx 



 










2

2

.   (4.14) 
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 SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis” 

(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf    

(Accessed  9 September 2009).  
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 JC Hull Options Futures & Other Derivatives 4 ed (2000) 229. 

http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
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Now consider, 

 

t

t

t xeU  . 

 

Appling Ito’s Lemma to previous equation gives, 

 

   22

2

1
dtedtxedxexeddU t

t

t

t

t

t

t

t

   .   (4.15) 

 

We know that  2dt  equals zero and if we use equation (4.14) and substitute it into 

(4.15), then: 
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tt
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t dWedtexed  



 










2

2

.    (4.16) 

 

Integrating equation (4.16) on both sides with regards to time from 1 ii tt  one 

obtains: 
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
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t

s

t

t

t

t
dWedsexexe  




 .  (4.17) 

 

Use ii ttt  1  and multiply both sides of equation (4.17) with 1 ite
 and reorder 

then: 
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



 



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s

sttt

tt dWeeeexx  



 .  (4.18) 
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4.3 Ordinary Least Squares (OLS) Estimation - One-Factor Vasicek Model 

on Log Spot Price 

 

With reference to S.M. Sheikh (2007)
11

, I derive from equation (4.18) a system of 

linear equations. First we need to convert equation (4.18) into the following structure. 

 

 cmXY     (4.19) 

 

From equation (4.19) we need to minimise the variance of the error,  minVar . The 

minimising of the variance of the error term is the second assumption on the error 

term, te , made in paragraph 1.1, page 1 of this thesis. 

 

By minimising the variance of the error one can obtain the estimators ̂ , ̂  and ̂ . 

Subtracting 
it

x  on both sides of equation (4.18) yields, 
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s
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
 . (4.20) 

 

By comparing equation (4.19) with equation (4.20) one will obtain: 

 

 1  tem   

                  tec 
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Let  
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such that 
ii tt xxY 

1
, is a  1n  matrix, containing the differences of the log spot 

prices, X  is a  1n  matrix, the intercept, c , and the slope of the regression line, m . 

Let the noise or residual term be denoted as   and let the noise term be a  1n  

matrix. As indicated above, the equation for the slope of the regression line is, 

 1  tem 
.  By using this equation one will obtain  , which yields: 
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 
t

m






1ln
 .    (4.22) 

 
The equation for the intercept of the regression line also indicated above is, 

 tec 







 




 1

2

2

. By using this equation we can find an expression for  : 

 

  




 21

2





 te

c
.    (4.23) 

 

Notes that the parameters  ,   and  2  must be estimated.   

 

4.3.1 Deriving the Estimators In Order to Minimise the Variance of the Errors 

 
In this section we will determine the variance of the error,  , and then determine the 

estimaors which will minimise this variance.  First I will state some rules of 

expectation according to J.S. Milton et al (1995)
13

 and R.E. Walpole (1990)
14

 ed. 3: 

 

   ccE   (The expected value of any constant is that constant). 

    XcEcXE   (Constants can be excluded from expectations). 

      YEXEYXE    (The expected value of the sum is equal to the sum 

of the expected values). 

 

 Using equation (4.19), we can write an expression for the error   as: 

 

cmXY      (4.24) 

 

The general formula for the variance of the error   is given as: 

 

    22)(  EEVar  .     (4.25) 

 

In order to apply the Ordinary Least Squares Regression according to J. A. Rice 

(1988)
15

, one needs to assume    cmXYEE  , is zero. The assumption, 

    0 teEE  , is also derived from paragraph 1.1 of page 1 of this thesis. It follows 

that: 

                ][)(
2

cmXYEVar                                    

                          ][ 222222 cmcXcYcmXXmmXYXmmXYYE   

                              ]2[ 22
cmXYcmXYE   

                          ]222[ 2222 cmcXcYXmmXYYE  . 
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By using the rules of expectation stated above we can say that: 

 

  2222 ][2][2][][2][ cXmcEYcEXEmXYmEYEVar  .    (4.26) 

 

In order to minimise the variance of the residuals we need to take partial derivatives 

of the variance with respect to m  and c . Subsequently a zero will be equated to these 

two equations as follows: 

 

 
      0222| 2

ˆ 



XcEXmEXYE

m

Var
m


  (4.27) 

 
    0222| ˆ 




cXmEYE

c

Var
c


   (4.28) 

 

Observe that if the second equation (4.28) is simplified we obtain: 

 

    0 cXmEYE  

    0 EcmXYE . 

 

This proves the assumption that the expectation of the error,  E , is zero. The first 

equation (4.27) needs to be simplified: 

 

][][][ 2 XYEXcEXmE  .    (4.29) 

 

Subsequently equation (4.28) must be simplified and multiplied with  XE  which 

give: 

 

][][][][][ YEXEXcEXEXmE     (4.30) 

 

 Subtracting (4.30) from (4.29) yield: 

 

              
),(var)(

22 ][

YXianceCoXVariance

YEXEXYEXEXEm  . 

 

Divide both sides of the previous equation with  XVar  then the optimal value of m 

becomes m̂ : 

 

 
 XVar

YXCov
m

,
ˆ  .    (4.31) 

 

Substitute equation (4.31) into (4.28) one will obtain the optimal value c indicated as 

ĉ  which yields: 

 

 
 XVar

XEYXCov
YEc

][,
][ˆ  .    (4.32) 

 

The minimum estimators for parameters m  and c  will be respectively m̂  and ĉ . 
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4.3.2 Calculation for the Minimum Variance of the Errors 

 

With reference to S.M. Sheikh (2007)
11

 the optimal intercept, c , and the slope, m , of 

the regression line derived in equations (4.31) and (4.32) are substituted into equation 

(4.26) to minimise the variance of the residuals,  . First let me define some 

abbreviations:  

 

  2

XXVar   

  2

YYVar   

       XYYXCov , . 

 

The minimum variance will be:  
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. 

 

From the last expression one needs to merge the marked symbols A and merge the 

marked symbols B to obtain: 

 

                   
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


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
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The minimum variance will become: 

 
2

2
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










X

XY
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


 .    (4.33) 

 

The minimum variance of the errors equation (4.33) must be equal to the variance of 

the residuals derived in equation (4.21) which yield: 
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. (4.34) 
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According to B. Øksendal (2000)
16

 the integral needs to be evaluated by using the 

following properties. 

 

4.3.3 Properties of Ito Calculus 

 

Assume that   0tWE , tW  is stationary for all t , for ,21 tt   
1t

W  and 
2t

W  are 

independent Wiener processes then let  TSVf ,  such that the Ito integral is 

defined by: 

 

     
T

S
tdWtffI  ,| . 

 

Let function  TSVf ,  be approximated by  TSV , , and   is known as the 

elementary function: 

 

      tet
ji tt

j
j 1,,


  . 

 

Let   be denoted as the characteristic (indicator) function and je  must be 

jtF -measurable in such a way that 
jtF be the history of SW  up to time t .  The integral 

of the elementary function   is: 

 

    
jj tt

j
j

T

S
t WWedWt 




1
0

,  . 

 

Now we can define the following Ito isometry. 
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Theorem 1. If   ,t  is bounded such that   0
2








 
T

S
n dtE  ,  TSVn ,  and 

  ,t  is an elementary function then       
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Proof. Let 
jj ttj WWW 

1
. Then 
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And we know that iW  and jW are independent if ji  . It follows that  
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0][][][  jjjj WEeEWeE , then 
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 

Based on these conditions we can say that since   0
2


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
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S
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 . It follows that from equation (4.34): 
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The solution of equation (4.34) by using Ito’s isometry will yield: 
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.     (4.35) 

 

Therefore by setting equation (4.35) equal to (4.34) it will enable us to determine the 

optimal estimator ̂  for the parameter  . Before the optimal estimators m̂  and ĉ  are 

substituted the parameter   will yield: 
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By first solving the optimal estimators m̂  and ĉ  by using (4.51) and (4.52) and 

substituting these estimators into equations (4.22), (4.23) and (4.36) yield the OLS 

estimates: 

 

 
t

m






1ˆln
̂  

     
  




 ˆ2

ˆ

1

ˆ
ˆ

2

ˆ





 te

c
 

              
  















 2

2
2

ˆ2

2

1

ˆ2
ˆ

X

XY
Yte 








. 

 

These three OLS estimates above are obtained from applying the first two assumption 

of the error term in paragraph 1.1 page 1 on this model. 
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4.4 Maximum Likelihood Estimation (MLE)  

 
With reference to S.M. Sheikh (2007)

11
 one may use equation (4.18), the conditional 

expectation and conditional variance for the logarithm of the electricity spot prices are 

respectively given as: 
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Since each 
it

x  term is known the conditional variance for the logarithm of the 

electricity spot prices can be further extended with 
itt xx 

0
such that : 
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because of the fact that 
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11

 SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis” 

(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf    

(Accessed  9 September 2009).  

http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
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We may conclude that the log-prices are  2,~
iii

ttt wvNx  for ni ,...,3,2,1 . From 

chapter 1 the likelihood function becomes: 

 

   

















n

i

tt

ti

ii

i

vx
ww

L
1

2

22

2

2

1
exp

2

1
,,


 .  (4.40) 

 

The natural logarithm of (4.40) is taken and the derivatives in terms of  ,   and 2  

for which three equations will be obtained and each substituted to zero.  

 

The natural logarithm of equation (4.41) is: 
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One needs to express equation (4.41) in terms of the functions of  , which will make 

equation (4.41) a one-variable maximisation problem. Taking the derivative of (4.41) 

in terms of   and set the derivative to zero yields: 
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Substituting equation (4.38) into (4.42) gives: 
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Subsequently we may assign the first function in terms of an optimal   assigned as 

̂  which yields: 
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where the optimal values of  ,   and   assigned ̂ , ̂  and ̂  (also known as the 

MLE’s) are used to solve the last equation on page 37. The derivative of the natural 

logarithm of the likelihood function, 
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, is complicated to derive, subsequently by 
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If equation (4.39) is substituted into (4.44) and if 2  is multiplied throughout, then: 
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Subsequently we may assign the second function in terms of an optimal   assigned 

as ̂  which yields: 
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where the optimal values of  ,   and   assigned ̂ , ̂  and ̂  (also known as the 

MLE’s) are used to solve the equation above equation (4.45). After substituting ̂ , ̂  
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and ̂  into equation (4.38) and substitute equation (4.41) into the changed equation 

(4.38) one may say: 
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Equation (4.45) can now be expressed by: 
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After substituting ̂ , ̂  and ̂  into equation (4.39) one will obtain: 
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If we substitute equation (4.46) and (4.47) into (4.41) then (4.41) becomes:  
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4.5 Simulation of the One-Factor Vasicek Model on the Log Spot Price 

 

As indicated in equation (4.8) let: 
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where 
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P  is the electricity spot price at time it . The stochastic differential equation 

for 
it

x  is defined in equation (4.14) as: 
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With reference to A. Lari-Lavassani et al (2001)
17

 the numerical simulation for above 

equation can be expressed by: 
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where ii ttt  1  and iZ  are independent identically normally distributed random 

variable with a mean of zero and a variance of one. The actual spot prices 
it

P  will be 

obtained by taking the exponent of 
it

x  such that: 
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4.6 Example 4.1 - Estimators for Electricity Spot Prices 

 

Sweden‟s Electrical spot prices are given in terms of Euro per Megawatt from 1
st
 of 

January 2008 to 31
st
 of December 2008 in Appendix A3.  The first risk property of this 

original data is the mean reversion. The Ljung-Box-Pierce test on this dataset is: 

 

1453.113834.5062 2

05.0,90  Q  

 

The corresponding valuep   is 2.2e-16 which is less than 0.05. The null hypothesis 

( 0H ) will be rejected indicating that the distribution of the original dataset is not mean 

reverting.   

                                                 
17

 A Lari-Lavassani et al “Mean reverting models for energy option pricing” (2001) University of Calgary.   
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Figure 4.1: QQ-plot on the Logarithmic Sweden‟s Daily Electricity Prices Indicates 

 

One can see that according to Figure 4.1 the data in the QQ-plot do not follow the straight 

line which indicates fat tails are present in the original dataset. One may now choose an 

appropriate simulated model based on Table 1.1. Due to the fact that the Logarithmic 

Sweden‟s Daily Electricity Prices Indicates have no mean reversion and fat tail risk 

properties one may choose the more appropriate One-Factor Logarithmic Vasicek 

simulation model with jumps to fit on this original dataset. I however choose the One-

Factor Logarithmic Vasicek simulation model which is an inappropriate model based on 

the risk properties of Table 1.1. Equation (4.50) is used to simulate the one-factor 

Vasicek model on Sweden‟s electrical log spot prices. Assume that the initial spot price is 

41.41
0
tP  such that 815732.3

0
tx . Let 366/1t . The vector Y  is the difference of 

the log spot prices and (4.31) and (4.32) will be used to determine the ordinary least 

square estimates m̂  and ĉ  respectively.  

 

Table 4.1: Ordinary Least Squares Estimation on Sweden‟s Dataset 

Date i  t  it
x  

iii ttt xxy 
1

 

 0 0 3.815732  

1/1/2008 1 0.0027322 4.00296 0.187228 

1/2/2008 2 0.0054645 3.960242 -0.04272 

1/3/2008 3 0.0081967 3.870576 -0.08967 

1/4/2008 4 0.0109290 3.850573 -0.02 

1/5/2008 5 0.0136612 3.863673 0.0131 

1/6/2008 6 0.0163934 4.046554 0.182881 

1/7/2008 7 0.0191257 3.894266 -0.15229 

          

12/30/2008 365 0.9972678 3.773910 -0.01434 

12/31/2008 366 1.0000000 3.759571 -0.02572 
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By using Table 4.1 the first estimator for this model is: 
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By using equation (4.32) one can solve ĉ  which yields the second estimator: 

 

 
 

  
635742.0

0985.0

891363.30161.0
0002.0

][,
][ˆ 

XVar

XEYXCov
YEc . (4.52) 

 

Then equations on bottom of page 35 are used to yield the following estimators for this 

model: 
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According to Appendix B.4, the negative logarithmic likelihood function given as: 
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is minimised using the „fminsearch‟ function in Matlab to determine the maximum 

likelihood estimators. The OLS estimates are used for the initial values of the likelihood 

function before minimising the likelihood function. The estimates obtained to minimise 

(4.53) are: 

 

    169.8327655ˆ     3.83643665ˆ      0040230.00000000ˆ 2   

 
If one chooses the above estimates as initial values and one calculate the optimal 

estimates to maximise (4.53) by using the Microsoft Excel solver add-inn functionality, 

the estimates obtained converge to: 

 

9.83276556ˆ     3.83643665ˆ      0ˆ 2   

 

More information on the Microsoft Excel solver add-inn functionality is explained in 

chapter 5, paragraph 5.9 on page 55. By observing the simulated plot based on these 

estimates and compared to the OLS, it is clear that 0ˆ 2   is not accurate.  
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The optimisation of   in terms of maximising the likelihood function (4.53) did not 

provide an adequate simulated model that represents a similar shape of the original 

dataset. Alternatively I choose to apply the following two procedures. Firstly I choose 

9.83276556ˆ
1   obtained from Matlab and Microsoft Excel solver add-inn when 

minimising (4.53) and use equations (4.44), (4.47) and (4.46) derived from the MLE 

procedure to derive the optimal estimators ̂  and 2̂ : 
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Solving these equations simultaneously, one will obtain: 

 

  9.83276556ˆ     23.94612726ˆ      570439641.7ˆ 2   

 

Secondly I choose 31102783.65ˆ
2   obtained from the OLE procedure and also used 

equations (4.44), (4.47) and (4.46) derived from the MLE procedure to derive the optimal 

estimators ̂  and 2̂ : 
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Table 4.2: Summary of One-Factor Logarithmic Vasicek Optimal Estimators 

  ̂  ̂  
2̂  

OLS 3.98895956 65.3110178 12.92752034 

MLE - 1̂  3.94612726 69.8327655 7.57043964 

MLE - 2̂  3.94620416 65.3110178 7.080311448 

 

In the following Figure 4.1 the simulated models are: the blue line (MLE - 1̂ ), the green 

line as (MLE - 2̂ ), and the red line (uses the OLS estimators). The black line indicates 

Sweden‟s real electricity prices. According to Figure 4.2 the green and blue lines as 

almost completely the same. In Figure 4.2 the real electricity prices for Sweden in Euro 

per Megawatt and the simulated One-Factor Vasicek model on the log spot price 

according to equation (4.50) was transformed to it

i

x

t eP  and simultaneously displayed. 
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Figure 4.2: Simulated Electricity Prices for Sweden versus the Real Prices  

 

4.7 Testing for Mean Reversion and Fat Tails 

 

Sweden‟s daily electricity prices in Euro per megawatt are available in Appendix A3. By 

using the dataset for the simulated green model, the QQ-plot on Sweden‟s simulated One-

Factor Vasicek model indicates the tails of the quantiles are significantly larger than 

compared to the standard normal quantiles. This factor indicates the presence of fat tails 

in return of these prices. The result in Figure 4.3, derived from Statistica 8.0, indicates 

that a Jump process is needed in this model. Due to the topic of this thesis, Jump process 

will however not be discussed.  
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Figure 4.3: QQ-plot for Simulated One-Factor Vasicek Model on Sweden‟s Daily 

       Electricity Prices Indicates 
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According to Figure 4.3 fat fails are present in the QQ-plot. The mean reversion property 

for the simulated One-Factor Vasicek Model according to the Ljung-Box-Pierce-test is  

1453.1131550.802 2

05.0,90  Q , 

 indicating 0H  will be rejected, meaning the simulated One-Factor Vasicek model using 

the estimators obtained from the MLE (using the green model), procedure does not 

follow a white noise process and significant autocorrelations are present thus mean 

reversion is not present (no stationarity present).  

 

As observed in Table 4.2, the OLS estimates compared to the two MLE methods for the 

three estimators are quite different due to the fact that fat tails are present in the QQ-plot 

indicated in Figure 4.3. Please note that I should have rather fit a one-factor Vasicek 

model with jumps on the log spot prices for more accuracy. The following paragraph 

deals with more differences between OLS and MLE for less fat tails. 

4.8 Testing for Differences on OLS Estimation and MLE  

 

One may choose specific estimators when generating a dataset from the one-factor 

Vasicek model on standard normal random variables using equation (4.50). The 

sufficiency of the OLS and MLE estimators can then be compared to the original 

parameters. Assume that the initial spot price is 100
0
tP  such that 60517.4

0
tx . Let 

366/1t . Let the original parameters be 5 , 6  and 32  . A new original 

dataset is generated from 366 standard normal random values with initial 60517.4
0
tx .  

 

Table 4.3: Ordinary Least Squares Estimation on Standard Normal Random Dataset 

Date i  t  it
x  

iii ttt xxy 
1

 

 0 0 4.60517  

1/1/2008 1 0.0027322 4.557516 -0.04765 

          

12/31/2008 366 1.0000000 5.935349 -0.01055 

 

Table 4.4: Summary of One-Factor Logarithmic Vasicek Optimal Estimators 

  ̂  ̂  
2̂  

OLS 6.372716095 5.419546444 2.744700762 

MLE – Solver Add-Inn 6.509520394 3.691574684 1.3819780487 

 

By using Table 4.3 and equations (4.23), (4.24) and (4.36) one will obtain the results for 

the OLS indicated in Table 4.4. By using the Microsoft Excel solver add-inn 

functionality, the estimators are given in the second row of Table 4.4.  According to 

Figure 4.4, the tails are not so fat (normal tails) compared to Figure 4.1 and Figure 4.3 
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and the estimator differences are less for the OLS estimate and the MLE in Table 4.4 as 

compared to Table 4.2. I have observed that the fatter the tails or equivalently the more 

outliers present in the original dataset, the larger the divergences for the estimators 

determined with the OLS estimation compared to the MLE procedure.   
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Figure 4.4: QQ-plot for Simulated One-Factor Vasicek Model on Standard Normal  

        Random Variables 

 

4.9 Notes and Research 

 

My aims in this chapter are first to find the risk properties of the historical dataset. One 

may then choose an appropriate simulation model with the same risk properties as the 

original dataset. In order to generate a simulation model, the OLS and two methods for 

the MLE of the Sweden‟s the log spot price in terms of Euro per Megawatt from 1
st
 of 

January 2008 to 31
st
 of December 2008 are calculated. After calculating the OLS and the 

two MLE‟s I showed via the QQ-plot that fat tails exist in the original dataset and the 

simulated model.  

 

When fat tails are present it indicates that large differences will occur between the OLS 

and MLE methods. The OLS and MLE are approximately the same if the tails are not fat, 

but if the tails get fatter the more inaccurate the OLS procedure become due to the fact 

that the OLS method is biased. Significant Ljung-Box-Pierce-tests are found in the 

original dataset and the simulated model such that mean reversion is not present.  

 

Due to these results one should rather use the One-Factor Logarithmic Vasicek 

simulation model with jumps to fit on this original dataset. I however choose the One-

Factor Logarithmic Vasicek simulation model which is an inappropriate model to use 

based on the risk properties of Table 1.1. The One-Factor Logarithmic Vasicek 

simulation model with jumps is not discussed in this thesis. I choose the One-Factor 

Logarithmic Vasicek simulation model for illustration purposes only. As seen in Figure 

4.2 both methods of the MLE are approximately the same and give more accurate 

simulated models than the simulated model derived from the OLS method.  
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Chapter 5 
 

5 MEAN REVERSION – THE VASICEK MODEL  
 

The main purposes for this chapter are:  
 

 finding the risk properties for the original dataset (the historical model standard 

normal random data) 

 choosing the simulated model which should have the same risk properties as the 

original dataset. Table 1.1 is used to find the most appropriate simulated model 

with the same risk properties as the original dataset 

 finding different methods of calculating the estimators for this simulated model. 

These methods used to find the estimators are called OLS estimation and two 

different MLE methods 

 comparing the accuracy of the OLS estimates and the two MLE by observing 

whether  the model have fat or normal tails. This is done by using the QQ-plots. 

 finding the risk properties of the simulated model 

 comparing the original and simulated risk properties and analysing the 

appropriateness of the simulated model. 

 

5.1 Basic Properties - Vasicek Model 

 

The Vasicek model, owing its name to Vasicek (1977), is one of the earliest stochastic 

models of the short-term interest rate. This model is also known as the Gaussian model, 

the Ornstein-Uhlenbeck mean reverting (OUMR) process or the extended-Vasicek model 

according to P. Skantze et al (2000)
18

 which is a suitable model to apply the maximum 

likelihood estimation (MLE) or the ordinary least squares (OLS) method on. The 

instantaneous spot rate (or “short rate”) used for historical estimation is defined according 

to J.C.G. Franco 
19

 as: 

 

  ttt dWdtxdx       (5.1) 

 

where ,    and 0x  are constants and tdW  represents an increment to a standard 

Brownian motion  tW . The spot rate tx  will fluctuate randomly but over the long run 

tends to revert to some level  . The speed of reversion is known as   and the short-term 

standard deviation is   where both influence the reversion.  

 

The non null property of negative rates is a major shortcoming for the Vasicek model. 

This is an unrealistic property for the modelling of interest rate when using Vasicek 

                                                           
18

 P Skantze et al “Stochastic Modeling of Electric Power Prices in a Multi-market Environment” (2000) 

IEEE Cambridge University.     
19

 JCG Franco “Maximum Likelihood Estimation of Mean Reverting Processes” (2008) http://www.invest 

mentscience.com/Content/howtoArticles/MLE_for_OR_mean_reverting.pdf  (Accessed 09 September 

2009).   

http://www.investmentscience.com/Content/howtoArticles/MLE_for_OR_mean_reverting.pdf
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models. Solving the Ornstein-Uhlenbeck Stochastic Differential Equation includes taking 

the derivative of t

t xe  which yields: 

 

  t

tt

tt

t dxedtexxed    .    (5.2) 

  

Rearrange the order of equation (5.2) gives: 

 

  dtexxeddxe t

tt

t

t

t   .    (5.3) 

 

 Multiply both sides of equation (5.1) with te is:  

 

  t

t

t

t

t

t dWedtxedxe    .   (5.4) 

 

By using equation (5.3) and substitute it into equation (5.4), yields, 

 

  t

tt

t

t dWedtexed    .   (5.5) 

 

 

If an integral is taken from time 0t  to t  gives: 
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Writing equation (5.6) in terms of tx  yields: 
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The solution of the stochastic differential equation (5.1) between s  and t , if ts 0  is: 

 

      


 

t

st

u

utstst

st dWeeeexx   1 .  (5.8) 

 

As indicated in chapter 4, the second integral on the right hand side of equation (5.7) is 

 




t

t
s

st dWe
0

  which follows a normal distribution with a mean of zero and a variance 

such that: 
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The conditional mean and variance of tx  given 0x  is: 

 

         t

tt exxE   00 ][  

            ,1
2

][ 2
2

0

t
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

   .0    (5.9) 

 

The conditional mean and variance of tx  given sx  are: 
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If time increases the mean tends to the long-term value   and the variance remains 

bounded, implying mean reversion. The long-term distribution of the Ornstein-Uhlenbeck 

process is stationary and is Gaussian with mean   and variance  2/2 .  

 

5.2 Maximum Likelihood Estimate (Method 1) - Vasicek Model 

 

The discrete time version on the time grid nttt ,....,, 21  with time step 1 ii ttt  will be 

used in this section. If 
1it

x  is given, the conditional density function f  of 
it

x  by using 

equations (5.9), yields: 
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The log-likelihood function is given by: 
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The log-likelihood function needs to be maximised by taking partial derivatives of 

equation (5.11) towards  ,   and   which yield three equations all equal to zero: 
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The aim is to solve these equations simultaneously and write equation (5.11) as a        

one-dimensional expression. 

 

Looking at the first derivative: 
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which if we assume that 0  and 0  gives: 
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The second derivative gives: 
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which simplify to: 
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The log-likelihood function first needs to be expressed by functions of   by using (5.12) 

and (5.13) and then maximised with respect to   which yields: 
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According to this method, a likelihood expressed in (5.14) is written in terms of functions 

of   and then maximised in terms of  . An optimal value ̂  derived from maximising 

(5.14) is substituted into (5.12) and then (5.13) to determine ̂  and ̂ .  

 

5.3 Simulation - Vasicek Model 

 

The simulation model for the Ornstein-Uhlenbeck process with time step 1 ii ttt  

according to M.A. van den Berg (2007)
 20

 is derived from (5.8) and is given as: 
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where iZ  is independent identically distributed and follows a standard normal 

distribution with a mean of zero and a variance of one. 

 

5.4 Example 5.1 – Generating Original Dataset Using Vasicek Model 

 

Let 25.0t , the mean reversion rate 7 , the long term mean 5.5  and the 

volatility 15.0 . Also let the initial spot rate be .15
0
tx  Table 5.1 determines the 

generated values for 
1551

,... tt xx . 

 

Table 5.1: Generating Original Dataset Using Vasicek Model 

i  it  iZ  
it

x  

0 0   15 

1 0.25 -0.021674 7.144863 

2 0.5 0.910547 6.037468 

3 0.75 2.316137 6.233474 

4 1 -0.537386 5.478949 

5 1.25 -0.459722 5.369295 

6 1.5 2.956149 6.294233 

7 1.75 1.364187 6.015017 

8 2 -1.254898 5.242699 

9 2.25 -1.747471 4.972366 

10 2.5 0.767391 5.620383 

        

154 38.5 -0.11734 5.45406 

155 38.75 -1.93103 4.958368 

                                                 
20

 MA van den Berg “Calibrating the Ornstein-Uhlenbeck model” (2009) http://www.sitmo.com/doc/Calibr 

ating_the_Omstein-Uhlenbeck_model (Accessed 02 June 2009). 

http://www.sitmo.com/doc/Calibr
http://www.sitmo.com/doc/Calibrating_the_Omstein-Uhlenbeck_model
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Figure 5.1: Plot for Generated Vasicek Model   

 

Figure 5.1 plots the generated values for 
1551

,... tt xx  with 1551 ,..., tt . By observing Figure 5.1 

one can clearly see the reversion of the original data that revert to some level 5.5 . 

The risk properties for this dataset 
1551

,... tt xx  must be determined. The Ljung-Box-Pierce 

test on this dataset is: 

 

835.5310.4913 2

05.0,38  Q  

 

The corresponding valuep   is 1 which is larger than 0.05. The null hypothesis ( 0H ) 

will not be rejected indicating that the distribution of the original dataset is mean 

reverting. The risk property stated above corresponds to Table 1.1 for the Vasicek model.  

 
Figure 5.2: QQ-Plot of Generated Vasicek Model   
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Based on observing Table 5.2, one can see that normal tails are present which also 

corresponds to Table 1.1 for the simulated Vasicek model. The Vasicek simulated model 

will thus be an appropriate simulated model to choose based on the similarities between 

the risk properties of the generated dataset and Table 1.1. 

 

5.5 Ordinary Least Squares Estimation - Vasicek Model 

 

The linear relationship between two consecutive observations 
1it

x  and 
it

x is linear with 

independent identical random values   such that: 

 




baxx
ii tt 1

 

  

where 
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sd
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Express these equations in terms of the parameters  ,   and   which yield: 
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The following formulas are used to simplify further calculations: 
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. (5.17) 

 

The estimated coefficients of the parameters a, b and sd  of least squares regression line 

are: 
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The ordinary least square (OLS) estimates ̂ , ̂  and ̂  are: 
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5.6 Example 5.2 – Ordinary Least Squares Estimation  

 

  

By using the following table along with equations (5.17) and equations (5.18), the 

estimators in equations above are calculated. 

 

Table 5.2: Calculations of Equations (5.17) 

i  t  iZ  
it

x   
2

it
x  

ii tt xx
1

 

0 0   15 225   

1 0.25 -0.021674 7.144863 51.04906 107.1729 

2 0.5 0.910547 6.037468 36.45102 43.13688 

3 0.75 2.316137 6.233474 38.85619 37.6344 

4 1 -0.537386 5.478949 30.01889 34.15289 

5 1.25 -0.459722 5.369295 28.82933 29.4181 

            

154 38.5 -0.11734 5.45406 29.74677 29.57323 

155 38.75 -1.93103 4.958368 24.58541 27.04323 
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From Table 5.2 the solutions for equations (5.17) are: 
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Using these results, the solutions of equations (5.18) yield: 
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Finally the estimators obtained from the OLS method are: 
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5.7 Maximum Likelihood Estimate (Method 2) - Vasicek Model 

 

Alternative calculations for the maximum likelihood estimates are made according to 

M.A. van den Berg (2007)
21

 as follows. The conditional density function for 
it

x  given 

1it
x  is: 
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21

 Van den Berg “Calibrating the Ornstein-Uhlenbeck model”. 
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The log-likelihood function is given by: 
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The log-likelihood function needs to be maximised by taking partial derivatives of 

equation (5.20) with respect to  ,   and   which yield three equations all equal to 

zero: 

 

 
0|

,,ln
ˆ 








L
 

 
0|

,,ln
ˆ 








L
 

 
0|

,,ln









L
 

 

The estimators will be: 
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By using equations (5.17), the MLE’s are: 
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If equation (5.23),̂ , is substituted into (5.22), ̂ , it yields: 
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The optimal estimate according to the alternative maximum likelihood estimation method 

is: 
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Substitute (5.25), ̂ , into (5.23) gives: 
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and using (5.25) and (5.26), the third estimate 2̂  is: 
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5.8 Example 5.3 –Maximum Likelihood Estimation (Method 2) 

 

By using the results from the previous section, the following results are obtained. 
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Substituting these results into equations (5.22), (5.23) and (5.24) give: 

 

   
507030788.5ˆ

2







yxxxyxx

xyxxxy

SSSSSn

SSSS
  

 
08685326.7

ˆˆ2

ˆˆ
ln

1
ˆ

2

2


























nSS

nSSS

t
xxx

yxxy
 

      080864127.01ˆ1ˆ22
1 2ˆ2ˆˆˆ2ˆ2   t

x

t

y

t

xx

t

xy

t

yy enSeSeSeSeS
n

 

 

so that: 
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5.9 Maximum Likelihood Estimate (Method 3) – Vasicek Model 

Yet another method of determining the estimators is by using Microsoft Excel’s solver 

add-inn. Microsoft Excel Solver uses the Generalized Reduced Gradient (GRG2). 
22

  

5.10 Example 5.4 –Maximum Likelihood Estimation (Method 3) 

 

In this example Microsoft Excel’s solver add-inn is used to maximise equation (5.20). 

The log-likelihood function given in (5.20) is determined in the last column of Table 5.3 

indicated by Lln  for different values of 155,...,1i . The cell for Lln  if 155i  will be 

maximised by changing the cells selected for the estimators ̂ , ̂  and ̂ .         

 

Table 5.3: Optimisation of Equation (5.20) 

i  t  iZ  
it

x  Lln  

0 0   15   

1 0.25 -0.021674 7.14486264 0.335101 

2 0.5 0.910547 6.037468392 0.281184 

3 0.75 2.316137 6.233473608 -1.8833 

4 1 -0.537386 5.478949333 -1.68686 

5 1.25 -0.459722 5.369295498 -1.45761 

6 1.5 2.956149 6.294232775 -5.18212 

7 1.75 1.364187 6.015016672 -5.70906 

          

154 38.5 -0.11734 5.454060205 -23.562 

155 38.75 -1.93103 4.958367504 -25.0241 

The maximum value of the log-likelihood function is: 

                                                 
22

 N Herrala “Vasicek Interest Rate Model: Parameter Estimation, Evolution of the Short-Term Interest 

Rate and Term Structure” https://oa.doria.fi/bitstream/handle/10024?43257/nbnfi-fe200901141021.pdf?.se 

quence=3 (Accessed 09 September 2009).    

https://oa.doria.fi/bitstream/handle/10024/43257/nbnfi-fe200901141021.pdf?sequence=3
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0241.25ln L  

 

for estimators: 

  

507031376.5ˆ  ,  086842792.7ˆ   and  28436607.0  

 

so that: 
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Table 5.4: Summary of Vasicek Optimal Estimators 

  ̂  ̂  ̂  

OLS 5.507030788 7.08685326 1.093480328 

MLE - Method 2 5.507030788 7.08685326 1.086402711 

MLE - Method 3 5.507031376 7.08684279 1.086401554 

5.11 Testing for Mean Reversion and Fat Tails for Simulated Model 

 
Quantile-Quantile Plot of Simulated Model

Distribution: Normal

Var1 = 5.5811+0.466*x
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Figure 5.3: QQ-plot for Simulated Vasicek Model  

 

The simulated Vasicek model has a QQ-plot that indicates that the process has normal 

tails and one need to test if there is any presence of mean reversion. The OLS estimates 

are very close to the MLE estimates and the original parameters used for the simulated 

model. The estimators for the OLS and MLE are close due to the fact that there are no fat 

fails present in the QQ-plot for the generated dataset as well as the simulated model and 

consequently the biasness in the OLE will not be majorly influenced.   
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Autocorrelation Function

Simulated Vasicek

(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 +.005 .0717
 29 +.009 .0720
 28 +.009 .0722
 27 -.003 .0725
 26 -.010 .0728
 25 +.039 .0731
 24 +.013 .0734
 23 +.016 .0736
 22 -.018 .0739
 21 -.019 .0742
 20 -.027 .0745
 19 -.007 .0748
 18 +.029 .0750
 17 +.028 .0753
 16 +.022 .0756
 15 -.054 .0758
 14 -.021 .0761
 13 +.047 .0764
 12 +.011 .0767
 11 +.022 .0769
 10 +.022 .0772
  9 -.053 .0775
  8 -.046 .0777
  7 +.050 .0780
  6 +.073 .0782
  5 +.002 .0785
  4 +.001 .0788
  3 +.068 .0790
  2 +.059 .0793
  1 +.169 .0796
Lag Corr. S.E.

0
10.10 .9997
10.10 .9996
10.08 .9992
10.07 .9987
10.07 .9979
10.05 .9965
 9.76 .9954
 9.73 .9928
 9.68 .9890
 9.62 .9834
 9.56 .9755
 9.42 .9657
 9.42 .9493
 9.27 .9314
 9.13 .9078
 9.05 .8750
 8.54 .8590
 8.47 .8115
 8.10 .7776
 8.08 .7064
 8.00 .6291
 7.92 .5424
 7.46 .4882
 7.10 .4181
 6.69 .3501
 5.83 .3229
 5.83 .2121
 5.83 .1201
 5.08 .0788
 4.53 .0334
  Q p

 
Figure 5.4: Estimated Autocorrelations for Simulated Vasicek Model  

 

 
Partial Autocorrelation Function

Simulated Vasicek

(Standard errors assume AR order of k-1)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 30 -.002 .0803
 29 -.000 .0803
 28 +.005 .0803
 27 +.002 .0803
 26 -.019 .0803
 25 +.046 .0803
 24 +.002 .0803
 23 +.010 .0803
 22 -.008 .0803
 21 +.001 .0803
 20 -.027 .0803
 19 -.024 .0803
 18 +.023 .0803
 17 +.017 .0803
 16 +.034 .0803
 15 -.038 .0803
 14 -.032 .0803
 13 +.032 .0803
 12 +.001 .0803
 11 +.026 .0803
 10 +.041 .0803
  9 -.048 .0803
  8 -.067 .0803
  7 +.029 .0803
  6 +.072 .0803
  5 +.001 .0803
  4 -.022 .0803
  3 +.055 .0803
  2 +.031 .0803
  1 +.169 .0803
Lag Corr. S.E.

 
Figure 5.5: Estimated Partial Autocorrelations for Simulated Vasicek Model  

 



 61 

5.12 Notes and Research 

 

My aims in this chapter are first to generate the original dataset. One needs to find the 

risk properties of this generated dataset and obtain a simulated model from Table 1.1 

which has the same risk properties. The Vasicek model will be an appropriate simulation 

model to choose based on the risk properties of the generated dataset. The OLS and two 

methods for the MLE of a randomly generated time series that consist of 155 

observations are calculated.  

 

After calculating the OLS and the two MLE’s I showed via the QQ-plot that normal tails 

exist in the simulated models. Due to the fact that normal tails are present in the 

simulated models small differences will occur between the OLS and the different MLE 

methods. The OLS and MLE are approximately the same if the tails are not fat, but if the 

tails get fatter the more inaccurate the OLS procedure become due to the fact that the 

OLS method is biased. The mean reversion property for the simulated model is also 

determined by using the Ljung-Box-Pierce-test to determine the significance of the ACF 

and PACF.  

According to Table 3.1 and the results found in Figure 5.5, the estimated PACF cuts off 

after lag 1 and the estimated autocorrelations produce damped sine waves which indicates 

that this simulated model is similar to the  1AR  stationary mean reversion process. 

According to the Ljung-Box-Pierce-test based on the simulated dataset 

7729.4310.10 2

05.0,30  Q  indicates 0H  will not be rejected, meaning the simulated 

Vasicek model does follow a white noise process and significant autocorrelations are not 

present thus mean reversion is present. These results coincide with Table 1.1 for the risk 

properties of Vasicek Model. For this reason the Vasicek model will be a good fitted 

model to choose for this generated dataset according to the generated dataset’s risk 

properties.  
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Chapter 6 
 

6  THE TWO-FACTOR VASICEK MODEL 

 

The main purpose for this chapter is:  

 

 using the MLE method of finding the optimal estimator to be used for this 

      simulated model.  

 

6.1 Basic Properties of the Two-Factor Vasicek Model 

 

In this study, the two-factor Vasicek model is used to find the optimal multi-period 

allocation between long and short bonds for an investor.    

 

With reference to J. J. Kung (2008)
23

, consider the following two-factor Vasicek 

interest rate model for the interest rates, which is divided into short rate for the one 

factor and long rate for the other factor. Let  tr  be the short rate and  tl  be the long 

rate. The two-factor mean-reverting Vasicek model is defined as: 

 

      tdZdttrtdr rrrr       (6.1) 

      tdZdttltdl llll       (6.2) 

 

where  tdZ r  and  tdZ l  are two Wiener processes such that     dttdZtdZ lr   and 

  the correlation between the short and long rate. Let r  and l  be the 

measurements of the strength of reversion to their respective mean levels; r  and l , 

the instantaneous volatilities of changes in the short rate and finally r  and l , the 

instantaneous volatilities of changes in the long rate. Let the price of the short bond 

and long bond be assigned as  tP r
 and  tP l  respectively. The price dynamics of 

the short and long bonds are: 

 

 
 

 dttr
tP

tdP
r

r

      (6.3) 

 
 

    tdZvdtvtr
tP

tdP llll

l

l

  .   (6.4) 

  

The volatility of  tP l  is assigned as lv , while l  is the market price for interest rate 

risk. Let  tw  be a fraction of wealth invested in the short rate and  tw1  the 

remaining wealth invested in the long bond. The dynamics of wealth  tV  are: 

 

     
 
 

    
 
 tP

tdP
twtV

tP

tdP
twtVtdV

l

l

r

r

 1 .  (6.5) 

                                                 
23

 JJ Kung “Multi-period asset Allocation by Stochastic Dynamic Programming” (2008) Applied 

Mathematics and Computation 199 341-348.   
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By substituting equations (6.3) and (6.4) into (6.5) one obtains: 

 

                    tdZvtwtVdtvtwtVtrtVtdV llll  11  .  (6.6) 

 

The long bond is calculated by the following formula: 

 

 
           nn

l

tl

M

tl

C

tl

C

tl

C
tP













1111
21

 .  (6.7) 

 

where C  is the coupon payment, n  is the number payments,  tl  is the interest rate of 

the long bond at time t and M  is the value at maturity. 
24

 

 

6.2 Maximum Likelihood Estimation for the Two-Factor Vasicek Model 

 

The datasets used for the application of the two-factor Vasicek model are the daily 

market yield on U.S. Treasury security rates at 6-month constant maturity, and        

10-year constant maturity from the 4
th

 of January 1982 up to the 26
th

 of June 2009. 

There are a total number of 6872 observations for both datasets.  

 

If a coupon of 10$  is paid every six months and the value of coupon at maturity is 

1000$  then the price of the long bond in 10-year constant maturity is: 

 

  
        202021

2
1

1000$

2
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2
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





















tltltltl

tP l  .  (6.8) 

 

The MLE is based on large sample asymptotic estimators and should be appropriate 

even if the datasets are not normal. The discrete form of equations (6.1) and (6.2) are: 

 

        tttrtrttr rrrr      (6.9) 

           tttltlttl llrl      (6.10) 

 

where r  and l  are independent standard normal variables.  The natural logarithm 

of the likelihood functions must be maximised. The first logarithmic likelihood 

function derived from equation (6.9), using the fact that 

         tNtttrtrttr rrrrr 
2

,0~  , is defined as: 
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(6.11) 

                                                 
24

  Investopedia “Advanced Bond Concepts: Bond Pricing” http://www.investopedia.com/university/ad 

vancedbond/advancedbond2.asp?viewed=1 (Accessed 30 June 2009).  

 

http://www.investopedia.com/university/ad
http://www.investopedia.com/university/advancedbond/advancedbond2.asp?viewed=1
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where the optimal values of r , r  and r  indicated respectively as r̂ , r̂  and 
r̂ are chosen to maximise (6.11). Let  tr  be assigned as the daily market yield on 

U.S. Treasury security rates at 6-month constant maturity. The same method applies 

for the second logarithmic likelihood function derived from equation (6.10), using the 

fact that          tNtttltlttl lllrl 
2

,0~  , is given by: 
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(6.12) 

 

where the optimal values of l , l  and l  indicated respectively as l̂ , l̂  and l̂  

are chosen to maximise (6.12). Let  tl  be assigned as the daily market yield on U.S. 

Treasury security rates at 10-year constant maturity. The discrete form for equation 

(6.4) is: 

 

 
 

   tvtvtr
tP

tP llll

l

l




    (6.13) 

 

where l  is a standard normal random variable. In order to derive the logarithm of the 

likelihood function from (6.13) one will obtain: 

 

 
 

     tvNtvtvtr
tP

tP lllll

l
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and by using  
 

 




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
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
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l

,  one can show that  
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The logarithm of the likelihood function using coefficients lv   and l  is given as: 
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where  
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l

 is derived from modifying equation (6.8) for different 

values of t . The optimal values of lv  and l  indicated respectively as lv̂  and l̂  are 

chosen to maximise (6.14). 
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Table 6.1: Estimators r̂ , r̂  and r̂  

Date t   tr  - 6 Month  tl  - 10 years        2ˆˆ trttrttr rr    

01/04/1982 1 0.1316 0.1419  

01/05/1982 2 0.1341 0.1444 6.2500000E-06 

01/06/1982 3 0.1346 0.1459 2.5000000E-07 

          

06/26/2009 6872 0.0031 0.0352 3.1354652E-10 

 

By assigning the daily market yield on U.S. Treasury security rates at 6-month 

constant maturity as  tr  and the 10-year constant maturity as  tl  from the 4
th

 of 

January 1982 up to the 26
th

 of June 2009 one may use Table 6.1 to determine the 

optimal estimators r̂ , r̂  and r̂  which will maximise equation 6.11. I used the 

Microsoft Excel solver add-inn function to maximise equation 6.11 to obtain: 
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2ln
2

6872
ˆln

2

6872
ˆ,ˆ,ˆln







    91.39414  

 

The same method was applied to obtain the maximum logarithmic likelihood 

functions: 

 

  62.40116ˆ,ˆ,ˆln lllL          and           51.14720ˆ,ˆln llvL  . 

 

Table 6.2: Summary of the Estimators for Two-Factor Vasicek Model  

Parameter MLE 
r̂  0.000714234 
r̂  0.027891921 
r̂  0.000781326 
l̂  0.000817419 
l̂  0.050127054 
l̂  0.000705433 
lv̂  0.028409325 
l̂  -1.884035964 

 

The optimal estimators in Table 6.2 are used as well as backward recursion to 

optimise proportion  tw  expressed in equation (6.5).     

 

6.3 Notes and Research 

 

Only the estimators for the simulated Two-Factor Vasicek Model using the MLE are 

illustrated in this chapter.  
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Chapter 7 
 

7 MEAN REVERSION – THE CIR MODEL 

 

The square root process (CIR process) is a widely used for modelling interest rates. This 

process is an underlying process for the Cox-Ingersoll-Ross term structure model (1985).  

 

The main purposes for this chapter are:  

 

 finding the risk properties for the original dataset (the historical model involve 30-

day AA financial interest rates) 

 choosing the simulated model which should have the same risk properties as the 

original dataset. Table 1.1 is used to find the most appropriate simulated model 

with the same risk properties as the original dataset 

 finding different methods of calculating the estimators for this simulated model. 

These methods used to find the estimators are called OLS estimation and MLE 

 comparing the accuracy of the OLS estimates and the MLE by observing whether  

the model have fat or normal tails. This is done by using the QQ-plots 

 finding the risk properties of the simulated model 

 comparing the original and simulated risk properties and analysing the 

appropriateness of the simulated model. 

 

7.1 Basic Properties – CIR Model 

 

The dynamic representation of the CIR model according to K. Kladivko 
25

 is: 

 

     tttt dWXdtXdX       (7.1) 

 

where tW  is a standard Brownian motion for 0t . The functions    and    are 

respectively the drift and the diffusion functions of the process. The square root process 

(CIR process) given in the following stochastic differential equation is the fundamental 

process in interest rate modelling. 

 

  tttt dWxdtxdx      (7.2) 

 

where tx  is the interest rate and   ,,  are the model parameters. It has the mean 

reverting property, i.e. interest rate tx  moves in the direction of its mean   at speed  . 

The drift function is known as    tt xx   ,  and is linear. The diffusion function 

  22 ,  tt xx   is proportional to the interest rate tx . 

                                                 
25

 K Kladivko “Maximum Likelihood Estimation of the Cox-Ingersoll-Ross Process: The Matlab 

Implementation” http://dsp.vscht.cz/konference_matlab/MATLAB07/prispevky/kladivko_k/kladivko_k.pdf 

(Accessed 9 September 2009). 

http://dsp.vscht.cz/konference_matlab/MATLAB07/prispevky/kladivko_k/kladivko_k.pdf


67 

 

 

7.2 Maximum Likelihood Estimate - CIR Model 

 

Assume a discrete time version on the time grid nttt ,....,, 21  with time step 1 ii ttt  

will be used in this section.  

 

If 
it

x  is given, the conditional density function g  of 
1it

x  is: 
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(as indicated by  A.S. Hurn et al (1999)
26

) and  
1

2
ii ttq vuI  is a modified Bessel 

function of the first kind and of order q . The likelihood function for the interest rate tx  

with n  observations is: 
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The log-likelihood function is given by: 
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26

 AS Hurn et al “On the Efficacy of Simulated Maximum Likelihood For Estimating the Parameters of 
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where t

tt ecxu
ii

   and 
1


it

cxv . The log-likelihood function needs to be maximised by 

taking partial derivatives of equation (7.4) with respect to  ,   and  , putting them 

equal to zero yield three equations: 
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Solving these equations will yield the maximum likelihood estimates:  

 

   


Llnmaxargˆ,ˆ,ˆˆ  . 

 

7.3 The Ordinary Least Squares Estimation Procedure for CIR-Model 

 

The starting points for optimisation are vital and the Ordinary Least Squares method is 

used to determine these points. 

 

The simulation of equation (7.2) is illustrated as: 
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where  tN
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,0~  and also as: 
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where  1,0~ N
it

 . In order to use the OLS, equation (7.5) must be transformed to: 
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which will be: 
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The standard deviation,̂ , of the errors is the estimated diffusion parameter, 
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7.4 The MLE for CIR-Model Using MATLAB Command - besseli   

 

In MATLAB the modified Bessel function of the first kind is available under the 

command  
1

2,
ii tt vuqbesseli  but calculations results in an estimation failure. The scaled 

version of the Bessel function in MATLAB is denoted as  
1

21

ii ttq vuI  and its command 

in MATLAB is  1,2,
1ii tt vuqbesseli .  

 

The modified Bessel function can be defined as: 
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By substituting equation (7.7) in (7.4) will yield a log-likelihood function given by: 
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The Bessel function of the first kind for order q  according to R. Haberman, Fourth 

Edition (2004)
27

 is defined as: 
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and      zIzI q

q

q

~
1

~
  and according to www.mathworks.com

28
 the modified Bessel‟s 

equation for noninteger q  is defined as: 
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where    is a gamma function. The negative logarithmic likelihood function given by: 
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is minimised by using the „fminsearch‟ functionality provided by Matlab.   

 

7.5 The MLE for CIR-Model Using MATLAB Command - ncx2pdf   

 

The optimal estimators can be derived from an alternative maximum likelihood 

estimation procedure. The MATLAB program uses the non-central 
2  probability 

density function available in the Statistics Toolbox under ncx2pdf command. The 

modified Bessel function of the first kind will not be used but rather the non-central 
2  

distribution, which is based on the central 
2  distribution weighted by a Poisson 

distribution.  

                                                 
27

 R Haberman Applied Partial Differential Equations: with Fourier Series and Boundary Value Problems 

4 ed (2004) 308. 
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The density function for the interest process according to S. Zeytun (2007)
29

 is: 
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           txctt   exp0  

             

and  tv  ,2  is the non-central chi-squared, 2 , distribution function with v  degrees of 

freedom and non-central parameter t . 
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 S Zeytun and A Gupta “A Comparative Study of the Vasicek and the CIR Model of the Short Rate” 

(2007) ITWM 124. 
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7.6 Example 7.1 –Estimators for the CIR Model   

 

Consider the data, which consists of the 30-day AA financial interest rates. The data 

was annualised using a 360-day year or bank interest from the 1
st
 of January 1997 to 

the 26
th

 of June 2009. The dataset consists of 3131 observations.                              

The Ljung-Box-Pierce test for the 30-day AA financial interest rates is: 

 

083.846572972.4 2

05.0,780Q  

 

The corresponding valuep  is 2.2e-16 which is less than 0.05. The null hypothesis 

(
0H ) will be rejected indicating that the distribution of the original dataset is not 

mean reverting.  

 
Figure 7.1: QQ-Plot for 30-day AA financial interest rates 

 

According to the QQ-plot for the 30-day AA financial interest rates fat tails are 

present. The CIR simulation model will not be the most appropriate model for this 

dataset. According to Table 1.1 one should rather choose the GBM + Jumps,        

One-Factor Logarithmic Vasicek Model + Jumps. I choose the CIR model only for 

example purposes. In order to use the CIR simulation model, one needs to determine 

the optimal estimators. The ordinary least squares, optimal maximum likelihood 

estimation using the besseli command and the optimal maximum likelihood 

estimation using the ncx2pdf command are given in Table 7.1. The MATLAB 

program used to determine the MLE, using the besseli command is given in 

appendix B1 and the MATLAB program for ncx2pdf command in appendix B2. The 

OLS estimation program is included at the beginning of each of the besseli and 

ncx2pdf command programs, which serves as the initial values for the estimators.    

 

Table 7.1: Estimators for CIR Model  

 ˆ  ˆ  ˆ  Lln  

OLS (initial) 0.184091278 0.037013893 0.139535942  

ML - besseli 0.283542293 0.016454519 0.107825364 -1.705689364245570e+004 

ML – ncx2pdf 0.169209129 0.016931142 0.107884752 -1.705689364056405e+004 

 

The time step used from 1
st
 of January 1997 to the 26

th
 of June 2009 for the 30-Day 

AA financial interest rates is .360/1t  Using equation (7.6) the CIR-Model 

simulation, together with the 30-day AA financial interest rates, are plotted in 
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Figure 7.2. The solid line indicates the original interest rates and the dotted line is the 

simulated CIR-Model using besseli’s maximum likelihood estimates. No mean 

reversion is clearly visible from the solid black line in Figure 7.2. Choose an initial 

starting value 0535.00x , for the simulated CIR-Model. I also attempt the MLE 

procedure in Microsoft Excel which resulted in inconclusive results.  

 

 

Figure 7.2: A Simulated CIR-Model, 
iiii tttt txxttx ˆˆ1ˆˆ

1
 

7.7 Testing for Mean Reversion and Fat Tails for Simulation Model  

According to Figure 7.3 fat fails are present in the QQ-plot for the simulated CIR 

model.  

 

QQ-Plot of Simulated CIR Model
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Figure 7.3:  QQ-plot for the Simulated CIR Model 
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7.8 Notes and Research 

The null hypothesis, 
0H , is rejected for the Ljung-Box-Pierce test on the original 

dataset (30-day AA financial interest rates). The test statistic on the simulated model 

is rejected for 
0H  meaning the the simulated CIR model (using besseli’s maximum 

likelihood estimates in simulated model) do not follow a white noise process and 

significant autocorrelations are present thus mean reversion is not present (no 

stationarity present). Fat tails are observed from the QQ-plots of the original dataset 

(Figure 7.1) and the simulated CIR model (Figure 7.3).  

The risk properties of the original dataset do not coincide with Table 1.1 for the risk 

properties of the simulated CIR model. This means that the fitted CIR model on the 

30-day AA financial interest rates is a rough estimated model and one might try to fit 

a GBM with jumps on the dataset or one could choose a different time window on the 

dataset and try a fitted CIR model again.   

 

From observing Figure 7.1 and Figure 7.3, fat tails are present for the original dataset 

and the simulated model. Due to the presence of fat tails the differences for the 

estimators for the OLS and MLE are large indicated in Table 7.1.   
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Chapter 8 
 

8 NO MEAN REVERSION – AUTOREGRESSIVE CONDITIONAL 

HETEROSCEDASTICITY (ARCH) MODELS  

 

The ARCH models were first introduced by Engle (1982) and are used to model 

conditional variances. Suppose a time series exhibit periods of unusually large 

volatility, followed by periods of tranquillity, we cannot assume a constant variance. 

One might want to forecast the conditional variance of a series.  

 

The main purposes for this chapter are:  

 

 finding the risk properties for the volatility of the original dataset (the 

historical model involve S&P 500 closing prices) 

 construct several simulated volatility models (which include different ARCH 

and GARCH models) that should have the same risk properties as the 

volatility of the original dataset 

 finding the estimators for this simulated volatility model. The method used to 

find the estimators are called Berndt-Hall-Hall-Hausman Iteration 

 finding the risk properties of the simulated model 

 comparing the original and simulated risk properties and analysing the 

appropriateness of the simulated model. 

 

8.1 General Properties for the ARCH(q) Process 

 

Consider the following time series, nxxx ,...,, 21  and assume that the returns of this 

time series is defined by  1/ln  ttt xxy . Let tF  denote the information set at time t , 

which include ty  and all the past realisations of the process ty . The ARCH  model 

will be applied on the returns.     

 

The  qARCH  model for the returns are: 

 

    tttt yEy  1       (8.1) 

  ttt z  ˆ         (8.2) 
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2 ...    (8.3) 

 

The ARCH  model produced a revolution in time series because it has properties that 

the Autoregressive Moving Average Model ( ARMA ) is not able to produce. These 

properties are: 

 

 The return series show little serial correlation. 

 The serial correlation of the absolute or squared returns are significant where 

  0, 2

1

2   tt . 

 The expected returns are close to zero, such that   0| 1 tt FE  . 

 The volatility vary over time. 
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 The return series are leptokurtic or heavy-tailed (fat tails). This check is done by 

the kurtosis, which must always be positive and infinite if 13 2  . 

 Extreme returns appear in clusters. 

 

The unconditional variance, 2 , for the  qARCH  model is defined by: 
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The unconditional variance will be finite (converge to a constant value) and 

non-negative if the coefficients i  have conditions, 00  , ,0i  for qi ,...,2,1  

and 



q

i

i

1

10  . Equations (8.3) can be written as an  qAR  for 2

t  if 22 ˆ
tttu   , 

such that: 
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where   01  tt uE  and   2

tE  .  

  

8.2 General Properties for the ARCH(1) Process 

 

One can easily derive  1ARCH  from  qARCH  if 1q  in (8.3): 
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 tt  .    (8.4) 

 

The conditional distribution for t  given 1t  is: 
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This model (8.4) is known as the  1ARCH  model, since the conditional variance 

depends only on one lagged squared error. The  1ARCH  model has stationary 

moments of the second and fourth order, if 13 2

0  . These moments are: 
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The proof of the forth moment,  4

tE   according to P. Cizck et al (2005)
30

 is: 
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equation (8.5) becomes: 
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Solving c , one will obtain the fourth moment. The kurtosis coefficient   for 

 1ARCH  model, is then defined as: 
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If the kurtosis coefficient 3  is normal and if 3 , it then indicates that fat tails 

are present.  This is called leptokurtosis.   

 

8.3 Generalised Autoregressive Conditional Heteroscedasticity (GARCH) 

Models  

 

For the GARCH models the conditional variance is dependent upon its previous lags. 

The  1,1GARCH  model is: 
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According to P. Hanson and A. Lunde (2004)
31

, there is compelling evidence that it is 

difficult to find a volatility model that outperforms the simple  1,1GARCH  model.  

This model can be expanded to become the  pqGARCH ,  model: 
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where the current conditional variance depends upon q  lags of the squared error 

( orderq  moving average ARCH  term) and p  lags of the conditional variance 

( orderp  autoregressive GARCH  term).  
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For a stationary  pqGARCH , , the coefficients i  and j  for the unconditional 

variance must have the following restrictions: 

 

,0i  for qi ,...,2,1,0 , 

,0j  for pi ,...,2,1  
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ji
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The unconditional variance, 2

t , for  pqGARCH , , under these conditions will be 

finite and non-negative. The unconditional variance, 2

t , for  pqGARCH ,  is: 
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for  
 
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The fourth moment for the  1,1GARCH  process according P. Cizck et al (2005)
32

 is 

given as: 
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It can be proven that   22

1
ˆ

tttE    and with  2

1

2

tttt Eu   , equation (8.6) can be 

written as: 

 

  11

2

1110

2

  tttt uu      (8.8) 

 

which constitutes an  1,1ARMA  model.   

 

8.4 Estimation of ARCH-GARCH Models  

 

Assume the error, t , obtained from the return, ty , needs to be modelled with an 

 1ARCH  process for nt ,...,2,1,0 . Two parameters, 0 , 1  according to 

equation (8.4), needs to be maximised through the maximum likelihood estimator. 

The joint conditional density function for the first given value 0 , is: 

 

       01211011 ||||,...,,  ffff nnnnnn    .  (8.9) 

  

By substituting equation (8.4) into (8.2), one will obtain: 
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where    2
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 tt  .  This leads to the conclusion that: 
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Let  x  denote the standard normal distribution function such that: 
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Using equation (8.10), equation (8.9) becomes the conditional likelihood function: 
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Taking the natural logarithm of the conditional likelihood function, equation (8.11) 

becomes: 
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where the constant term    2ln2/n  is discarded. 

   

The optimal values for the parameters  10 ,  are determined by equating the 

derivatives of these parameters to zero: 
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and  
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One cannot find explicit solutions for equations (8.13) and (8.14), to obtain the 

optimal estimators  10
ˆ,ˆ  . A recursive method, called the 

Berndt-Hall-Hall-Hausman (BHHH) method proposed by Engle (1982)
33

 is used. Let  
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where (8.12) becomes: 

 

    














2

2

2ln
2

1
ln

t

t

ttL



 . 

   

One may say that  
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8.5 The Berndt-Hall-Hall-Hausman Iteration Method 

 

The following steps are needed to determine the optimal estimators: 

 

 Firstly, one needs to choose the initial values as  01000 ,  . 
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 Calculate a matrix defined as: kkk vB 1

1



  . 

 The iteration will stop when the values stabilises. 

 

After one applied the Berndt-Hall-Hall-Hausman Iteration Method in minimising the 

likelihood function  tLln  in terms of  . The optimal   assigned as ̂  is now  

substituted into the GARCH volatility models. 
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8.6 Test for Normality of Dataset 

 

Before and after the analysis on the dataset is done, a normality test called the      

Jarqu-Bera (JB) is performed. The test statistic is: 
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where S is the skewness, and   is the kurtosis. The JB test statistic follows a         

chi-square distribution with 2 degrees of freedom. The skewness is a measure of 

asymmetry of the distribution of the series around its mean. It may be expressed as: 
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The kurtosis will chance depending on the GARCHARCH / model used. The 

estimator for the standard deviation, that is on the biased estimator for the variance, is 

defined as: 
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 where “s” is the standard deviation of the returns, indicated as: 
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The hypothesis test with Jarqu-Bera is: 

 

:0H  the data is normally distributed  versus  

          :1H  the data is not normally distributed. 

        

One will reject 0H , if 
2

;2 JB , where 2  is the degrees of freedom and   is the 

level of significance.  One may also reject 0H if the valuep  is less than 0.05. 
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8.7 Application on the ARCH and GARCH Models  

 

Let tx  denote the closing price of the S&P500 at the end of trading day t . The closing 

prices for the S&P500 index start at the 1
st
 of January 1980 and end at the 19

th
 of 

March 1988, with a total of 3000 observations. The returns of this time series are 

defined as  1/ln  ttt xxy . Based on these returns one can determine the sample 

variances “ 2s ” of the returns, indicated as: 
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By keeping the first return  011 /ln xxy  fixed one can determine the sample 

variance of for any time 3000,...4,3,2t . The Ljung-Box-Pierce based on paragraph 

2.8 for the volatility of the S&P500 dataset is: 

 

8215.814477347.3 2

05.0,750  Q  

 

The corresponding valuep   is 2.2e-16 which is less than 0.05. The null hypothesis 

( 0H ) will be rejected indicating that the volatility distribution of the original dataset 

is not mean reverting.  

 

 
 

Figure 8.1: The QQ-Plot of the sample variances of S&P500 Returns -  

         1/ln  ttt xxy  

 

According to the QQ-Plot for the volatility of the S&P500 returns, the tails are fat. 

The risk properties of the volatilities of the returns of the original dataset is not mean 

reverting and the tails are fat. These risk properties correspond with Table 1.1 risk 

properties for the GARCH simulation model for the volatilities of the returns. I will fit 

different GARCH volatility models on the sample variances, 2s .     

 

 



 

 

 

 

 

83 

 

Figures 8.2, 8.3 and 8.4 plot the returns, square returns and the absolute returns of the 

S&P500.     
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Figure 8.2: Plot of S&P500 Returns -  1/ln  ttt xxy  
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Figure 8.3: Plot of S&P500 Square Returns -   2

1

2 /ln  ttt xxy  
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S&P500 Absolute Returns
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Figure 8.4: Plot of S&P500 Absolute Returns -  1/ln  ttt xxy  

 

From observing Figure 8.2, there are patterns, although not as clear for the returns of 

the S&P500, but still distinctive, emerge from the square and absolute returns.  This 

indicates the volatility of returns. The plots of the square and absolute returns indicate 

volatility clustering.  Low values of volatility are followed by low values, while high 

values of volatility are followed by high values. This observation is very important for 

forecasting purposes. Patterns usually emerge when serial correlation is present. In the 

following Figures 8.4, 8.5 and 8.6 the sample autocorrelations for the first 20 lags of 

the returns, square returns and absolute returns for the S&P500 are displayed. 
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(Standard errors are white-noise estimates)
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Figure 8.5: Estimated Autocorrelation of  1/ln  ttt xxy  
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Autocorrelation Function

Squared Returns

(Standard errors are white-noise estimates)
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141.5 0.000
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38.69 .0000
  Q p

 

Figure 8.6: Estimated Autocorrelation   2

1

2 /ln  ttt xxy  

 
Autocorrelation Function

Absolute Returns

(Standard errors are white-noise estimates)
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Figure 8.7: Estimated Autocorrelation  1/ln  ttt xxy  

 

The sample autocorrelations for the returns, squared returns and absolute returns 

indicate significance in their first 20 lags according to the Ljung-Box-Pierce-test 

procedure, explained in chapter 2 of this thesis. The sample autocorrelations for the 

squared and absolute returns indicate positive serial autocorrelation and their decay 

are much slower than compared with the sample autocorrelations of the returns. 

 

8.8 Testing the ARCH/GARCH Effects      

 

The hypothesis test applicable to the Ljung-Box-Pierce-test statistic, is defined as: 
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where kr  denotes the estimated sample autocorrelation of the squared and absolute 

returns, which will be used to determine evidence for time varying conditional 

volatility.  
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The estimated sample autocorrelation of the squared returns is denoted as: 
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2ˆ .  Testing whether the true autocorrelations, k , of the squared or 

absolute returns are significant, involve the hypothesis test: 

 

        :0H  0k ,   for all qk   (no evidence of time varying volatility), versus 

 :1H  0k ,   for some value of qk   (evidence of time varying volatility). 

        

We reject 0H  if   2

; qqQ  , q , which indicates the degree of freedom, while   

represents the level of significance. We also reject 0H  if the valuep  is less 

than 0.05.  The p-value for the two-tail test, according to the alternative hypothesis, is: 

 

       qQPvaluep  22    or,  

  qQPvaluep  22  . 

 

8.9 Lagrange Multiplier (LM) Test 

 

The LM test is used to determine if any ARCH  effects are present. The null 

hypothesis is denoted as: 

 

   :0H  010  q  ,    (no ARCH  effects are present), versus 

:1aH 00   or 01   or … or 0q  ( ARCH  effects are present,  rqARCH  ) 

or 

:2aH 00   or 01   or … or 0q  (GARCH  effects are present, 

  ,rqGARCH  ). 

 

The test statistic is: 

 

  2

,

2 ~  qnRqLM   

 

where 2R  is calculated from the regression of tqtqtt u 

22

110

2    

mentioned at the end of paragraph 8.1. One will reject 0H  if   2

; qqLM  . The LM 

test can also be used for general classification of the GARCH  models. The LM test 

can however be rejected, not because ARCH  effects are present, but because of 

misspecification of the GARCHARCH /  model.  Therefore caution must be applied.   
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8.10 Testing ARCH/GARCH Effects on S&P500 

 

Table 8.1 illustrates the Ljung-Box-Pierce-test procedure, while Table 8.2 illustrates 

the Lagrange Multiplier (LM) test for  qARCH , such that ,1q  ,3q  5q , 7q  

and 9q  on 3000 daily return values of the S&P500 dataset. 

 

Table 8.1:  qQ  Using the Estimated Sample Autocorrelation of the Squared Returns 

q   qQ  
2

;q  valuep   

1 38.6863 3.841459 0.000 

3 141.4671 7.814728 0.000 

5 283.7676 11.0705 0.000 

7 364.1553 14.06714 0.000 

9 449.451 16.91898 0.000 

 

Some illustrations of the calculations in Table 8.1 are: 

 

 
 

841459.36863.38
13000

)23000(30001 2

05.0;1

2

1 


 
r

Q . 

  

   
 

91898.16451.449
93000

)23000(300089 2

05.0;9

2

9 


 
r

QQ . 

 

The results obtained in Table 8.1 illustrate that the null hypothesis will be rejected, 

indicating that ARCH  effects are present for ,1q  ,3q  5q , 7q  and 9q .  

This is in accordance to the Ljung-Box-Pierce-test procedure. This indicates that the 

dataset will have to be transformed into  qARCH  or  pqGARCH , , such that ,1q  

,3q  5q , 7q  and 9q  are used for more accurate forecasting.  

 

Table 8.2: Calculation for  qLM  Before  qARCH  or  pqGARCH ,         

      Transformation  

q   qLM  
2

;q  valuep   

1 82.55084 3.841459 0.000 

3 66.52530 7.814728 0.000 

5 62.86956 11.0705 0.000 

7 57.57094 14.06714 0.000 

9 60.01441 16.91898 0.000 

 

Some illustrations of the calculations in Table 8.2 are: 

 

    841459.355084.82027517.030001 2

05.0;1  LM  

  

    91898.1601441.60020005.030009 2

05.0;9  LM  
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The results obtained in Table 8.2 illustrate that the null hypothesis will be rejected.  

This indicates that the ARCH  effects are present for ,1q  ,3q  5q , 7q  and 

9q , according to the Lagrange Multiplier (LM) test. The dataset will then have to 

be transformed into  qARCH  or the  pqGARCH , , for ,1q  ,3q  5q , 7q  

and 9q , for more accurate forecasting. The results in both Tables 8.1 and 8.2 mean 

that volatility was successfully removed.     

 

After the  qARCH  models are applied on the dataset, the Lagrange Multiplier test is 

used again to determine whether the transformation removed the volatility. The results 

in Table 8.3 indicate that all the tests will be rejected, indicating that all the  qARCH  

models are adequate in removing the volatility.  

 

Table 8.3: Calculation for  qLM  After  qARCH  or  pqGARCH ,  

       Transformation  

q   qLM  
2

;q  valuep   

1 0.056904 3.841459 0.8115 

3 2.585095 7.814728 0.4601 

5 4.063720 11.0705 0.5403 

7 6.955938 14.06714 0.4335 

9 12.41581 16.91898 0.1909 

 

8.11 Model Selection 

 

The determination for the orders of q  and p  in the  qARCH  and  pqGARCH ,  

models are of great significance. E-Views uses the Akaike info criterion (AIC), 

Schwarz criterion and the Hannan-Quinn criterion for the model selection. By using 

the lowest values of the AIC, Schwarz or Hannan-Quinn procedures, one will obtain 

the best orders for the models. According to E. Zivot (2008)
34

, the AIC will choose 

values of 2q  and 2p  for the  pqGARCH ,  models. For the  qARCH  models, 

the AIC will choose large values of q . Low orders for the  pqGARCH ,  models are 

preferred above larger orders for the  qARCH  models.  This is due to numerical 

estimation stability and over arching. Table 8.4 provides the AIC, Schwarz criterion, 

Hannan-Quinn criterion, as well as the logarithmic likelihood for  qARCH  and 

 pqGARCH , .  The orders used for the  qARCH  model are ,1q  ,3q  5q , 

7q  and 9q , while 21  q  and 21  p  is used for the  pqGARCH ,  model. 

 

                                                 
34

 E Zivot “Practical Issues in the Analysis of Univariate GARCH Models” (2008) 15 Handbook of 

Financial Time Series http://faculty.washington.edu/ezivot/research/practicalgarchfinal.pdf. (Accessed 

09 September 2009). 

http://faculty.washington.edu/ezivot/research/practicalgarchfinal.pdf
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Table 8.4: Model Selection Test 

 pq,  AIC Schwarz Hannan Log Likelihood 

(1,0) -6.61796 -6.61396 -6.61652 9928.939 

(3,0) -6.64338 -6.63538 -6.64050 9969.075 

(5,0) -6.67713 -6.66512 -6.67281 10021.690 

(7,0) -6.68499 -6.66897 -6.67923 10035.480 

(9,0) -6.69847 -6.67844 -6.69126 10057.700 

(1,1) -6.73013 -6.72413 -6.72797 10098.200 

(1,2) -6.73144 -6.72343 -6.72856 10101.150 

(2,1) -6.72947 -6.72146 -6.72659 10098.200 

(2,2) -6.73194 -6.72193 -6.72834 10102.92000 

 

For a pure  qARCH  model, the  9ARCH  model will be chosen for all selection 

criterion, as well as a maximum logarithmic likelihood (at 9q ). Due to the 

possibility of over aching the  9ARCH  model is not the best model to choose. For 

the  pqGARCH ,  model, a  2,2GARCH  will be selected by AIC, a  1,1GARCH  

will be selected by Schwartz and a  2,1GARCH  by the Hannan-Quinn test. For many 

applications it is hard to beat the simple  1,1GARCH .   

 

 

8.12 Volatility Estimation of ARCH/GARCH Models 

 

 

The estimated volatility models for  qARCH  (if ,1q  3q ) and  pqGARCH ,  

(for 21  q  and 21  p ) are given in Table 8.5. 

 

Table 8.5: Volatility Estimation of ARCH/GARCH Models 

 pq,   GARCHARCH / Model Kurtosis 

(1,0) 
2

1

2 111566.00000705.0ˆ
 tt    4.781474 

(3,0) 
2

3

2

2

2

1

2 106815.0085644.0096435.0.00000564.0ˆ
  tttt    4.348387 

(1,1) 
2

1

2

1

2 ˆ949273.0042050.0000000683.0ˆ
  ttt    3.712614 

(1,2) 
2

2

2

1

2

1

2 ˆ871010.0ˆ040348.0074204.000000116.0ˆ
  tttt    3.678737 

(2,1) 
2

1

2

2

2

1

2 ˆ949394.0000926.00428894.000000068.0ˆ
  tttt    3.712253 

(2,2) 
2

2

2

1

2

2

2

1

2 ˆ895692.0ˆ006581.0018710.0063448.000000125.0ˆ
  ttttt     3.659480 
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8.13 Notes and Research 

 

Firstly I investigated the risk properties of the volatility of the returns of the S&P500 

closing prices. According to paragraph 8.7, there is no mean reversion and fat tails are 

present in the volatility of the returns. According to Figure 8.1 fat tails are present. 

These risk properties correspond to the risk properties of the GARCH simulation 

model for the volatilities indicated in Table 1.1.  

 

All the simulated volatility models will have very large Jarque-Bera values. These 

results confirm non-normality. The coefficients of the sum of all the models add up to 

a number less than one. If the sum is close to one, as in  pqGARCH ,  for 21  q  

and 21  p , it indicates a slow mean reversion for the simulated volatility models.  

On the other hand, if it is much less than one, as in the  1ARCH  and the  3ARCH  

models, it indicates a much faster mean reversion but no significant mean reversion is 

present on the these simulated volatility models.  

 

Due to the fact that the kurtosis of all the simulated volatility models in Table 8.5 

exceeds 3 these models will have fat tails. The simulated volatility models have the 

same risk properties compared to the risk properties of the original sample volatilities 

of the returns.      
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Chapter 9 
 

9 GENERAL CONCLUSION 
 

I. Main Purpose of Script 

 

The main purpose of this script is to apply techniques for determining the risk properties 

of the original dataset. After these risk properties are identified one may choose an 

appropriate stochastic model in Table 1.1 to simulate the original dataset. One need to 

calculate the estimated parameters for the simulation models and GARCH simulated 

volatility models. Risk properties should then be similar in the simulated models 

compared to the risk properties of the origin dataset. In chapter 2 a MLE procedure was 

used to determine the optimal parameters on the original dataset (FTSE100) and then 

applied for the simulated GBM.  

In chapter 3 the conditional sum of squares were minimised to find the optimal parameter 

we used in the simulated AR model.  

 

In chapter 4 the optimal parameters were calculated by using the OLS and MLE 

procedures on the original dataset (Sweden’s Electricity Prices). According to S.M. 

Sheikh (2007)
11

, the OLS and MLE for his electricity prices were approximately the 

same. I found these estimated parameters were not the same for my annual electricity 

price dataset. Due to the fact that fat tails in the QQ-plot for Sweden’s Electricity prices 

were found the MLE procedure will be more accurate compared to the OLS. I found that 

the greater the observation deviates from normality indicated as fat tails in the QQ-plot, 

the larger the difference between the parameters for the OLS and MLE procedure. The 

reason for this difference is due to the fact that the Ordinary Least Squares method relies 

on the structure of the dataset to be approximately linear. The Ordinary Least Squares 

method is useful to determine the initial values for the parameters in iteration of 

optimisation.  

 

In chapter 6 I only determined the estimated parameters of the two-factor Vasicek model.    

 

For chapter 8, I used a very large S&P500 dataset of 4382, but because of extreme 

fluctuation in the data at some point in time, I could not manage to sufficiently get rid of 

the volatility by using the ARCH/GARCH models. For this reason I chose a smaller 

S&P500 dataset of 3000 observation, which worked better. Due to the fact that the 

kurtosis of all the volatility models in Table 8.5 exceeds 3 these models will have fat 

tails.  

  

 

                                                           
11

 SM Sheikh “Modeling Energy Spot Market and Pricing Energy Derivatives: A Technical Analysis” 

(2007) http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf    

(Accessed  9 September 2009).  

http://etd.library.pitt.edu/ETD/available/etd-04262007-152450/unrestricted/Final-Thesis.pdf
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II. Examples Used in the Thesis 

 

This thesis contain examples such as FTSE100 monthly closing prices, the daily 

electricity prices for Sweden [in Euros per megawatt], daily average number of truck 

manufacturing defects, S&P500 closing index’s, the 30-day AA financial interest rates 

and the daily market yield on U.S. Treasury security rates at 6-month constant maturity, 

and 10-year constant maturity.  
 

III. Programs Used in the Thesis 
  

I used a Microsoft Excel Macro to calculate the estimated sample autocorrelation. I 

initially tried to determine the parameters for the CIR model by using Microsoft Excel, 

but estimation failure occurred and thus I successfully determined these parameters by 

means of the scaled version of the Bessel function in MATLAB. I also used Statistica for 

the determination of the sample autocorrelation functions and sample partial 

autocorrelation functions. The adjusted chi-squared distribution in Statistica was used to 

obtain Figure 1.8. Statistica and R version 2.8.1 were used to determine the Ljung-Box-

Pierce tests as well as the QQ-plots. The Microsoft Excel solver add-inn was used to 

determine the maximum for the likelihood function, as well as the minimum of the least 

squares of the errors, by changing the parameters. E-views was used to determine the 

parameter for the ARCH/GARCH volatility models, as well as the Lagrange Multiplier 

Test and kurtosis of these models.          
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Appendix A: Selected Datasets 

 

A.1: FTSE100 Monthly Closing Prices (Read across). 

1138.3 1016.6 1039.2 1009.4 1103.3 1139.3 1152.1 1181.1 1231.2 1280.2 1260.8 1277 

1291 1313 1234.9 1261.7 1341.1 1290 1377.2 1439.1 1412.6 1435 1543.9 1668.8 

1660.5 1602.8 1649.8 1558.1 1661.2 1555.8 1632.2 1636.6 1679 1808.2 1979.2 1997.5 

2050.5 2203 2284.1 2360.9 2249.7 2366 1749.8 1579.9 1712.7 1790.8 1768.8 1742.5 

1802.2 1784.4 1857.6 1853.6 1753.6 1826.5 1852.4 1792.4 1793.1 2052.1 2002.4 2075 

2118 2114.4 2151 2297 2387.9 2299.4 2142.6 2276.8 2422.7 2337.3 2255.4 2247.9 

2103.4 2345.1 2374.6 2326.2 2162.8 1990.2 2050.3 2149.4 2143.5 2170.3 2380.9 2456.5 

2486.2 2499.5 2414.8 2588.8 2645.7 2621.7 2566 2420.2 2493.1 2571.2 2562.1 2440.1 

2654.1 2707.6 2521.2 2399.6 2312.6 2553 2658.3 2778.8 2846.5 2807.2 2868 2878.7 

2813.1 2840.7 2900 2926.5 3100 3037.5 3171 3166.9 3418.4 3491.8 3328.1 3086.4 

3125.3 2970.5 2919.2 3082.6 3251.3 3026.3 3097.4 3081.4 3065.5 2991.6 3009.3 3137.9 

3216.7 3319.4 3314.6 3463.3 3477.8 3508.2 3529.1 3664.3 3689.3 3759.3 3727.6 3699.7 

3817.9 3747.8 3711 3703.2 3867.6 3953.7 3979.1 4058 4118.5 4275.8 4308.3 4312.9 

4436 4621.3 4604.6 4907.5 4817.5 5244.2 4842.3 4831.8 5135.5 5458.5 5767.3 5932.2 

5928.3 5870.7 5832.5 5837 5249.4 5064.4 5438.4 5743.9 5882.6 5896 6175.1 6295.3 

6552.2 6226.2 6318.5 6231.9 6246.4 6029.8 6255.7 6597.2 6930.2 6268.5 6232.6 6540.2 

6327.4 6359.3 6312.7 6365.3 6672.7 6294.2 6438.4 6142.2 6222.5 6297.5   

 

A.2: Daily Average Number of Truck Manufacturing Defects (Read across). 

1.2 1.5 1.54 2.7 1.95 2.4 3.44 2.83 1.76 2 2.09 1.89 1.8 

1.25 1.58 2.25 2.5 2.05 1.46 1.54 1.42 1.57 1.4 1.51 1.08 1.27 

1.18 1.39 1.42 2.08 1.85 1.82 2.07 2.32 1.23 2.91 1.77 1.61 1.25 

1.15 1.37 1.79 1.68 1.78 1.84               
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A.3: The Daily Electricity Prices for Sweden in Euros per Megawatt (Read across).  

45.4 54.8 52.5 48 47 47.6 57.2 49.1 47.2 48.5 47.1 46.4 46.1 47.4 

45.7 45.6 45.6 44.7 41.1 40.9 48.4 49.4 51.2 43.6 41.8 39.8 39.8 44.3 

41.7 41.6 40.7 39.3 39.6 39.8 49.3 46.9 41.4 43.2 40 38.3 38.1 40.8 

40.7 41.1 47.7 52.8 44.8 38.9 44.6 44 41.3 38.5 34.9 32.8 31 35.3 

32.8 29.4 32.3 32.7 28.6 27.7 33.3 36.7 38.1 32.5 36.2 28.4 26.3 29.4 

29.7 28.4 27.9 32 26.4 24.8 27.8 29.1 31 30.4 27.6 27.6 29.9 30 

44 37.2 52.4 41.8 29.3 26.6 37 39.1 38.5 40.1 39.4 37.6 35.2 42.6 

46.4 50.4 49.3 48.6 43.3 38.6 53.5 46.3 47.6 47.7 51.3 44.8 43.2 51.1 

47.7 46.9 46.7 45.8 42.4 30.4 37.4 40.2 35.1 14.2 32.7 22.2 9.18 32.7 

36.3 35 31.6 28 8.06 13.7 29.4 30.9 35.6 36.7 40.9 43.3 41.2 49.4 

53.9 60.1 52.5 58.3 45.7 27.9 48.5 59.9 53.9 54.1 52.4 51 42.8 66.8 

76.7 58.9 58.7 52.6 59.5 52.4 67.6 59 58.3 64.5 56.5 49 49.2 74.5 

68.1 67.5 63.6 53.7 50.1 46.6 48.5 55.3 56.9 55.8 54.6 54.7 47.8 58.8 

62.2 62.6 60.7 58.2 59.3 52.6 60.2 64.3 63.3 62.9 61.3 58 54.9 60.4 

61 58.3 61.3 66.3 58 33.8 26.1 52.4 60.8 57.7 57.7 59.6 55.6 47.5 

64 64.6 65.9 65.8 65.1 57.1 47.7 62.8 57 63.5 61.2 60.4 59.8 55.8 

68.1 71.5 71.6 69.6 67.4 56.9 49.4 70.5 69.5 67.9 74.6 74.4 66.5 58.8 

68.2 70.5 70.7 71 75.6 72.3 68.8 76.4 71.1 71.4 71.1 70.3 68.1 62.1 

69.3 71.3 71.7 71.3 70.2 66.2 64.6 78.4 76.6 75 81.5 77.6 73 68.2 

84 77.2 79.2 87.4 79.2 68.1 66.5 81.1 77.3 71.8 72.2 71.8 66.1 62.4 

74.5 73.2 73.2 71.7 65.2 58.9 57 59.8 58.8 59.1 57.4 56.5 54.9 51.6 

53.2 53.9 59.9 57.9 54.5 51.5 43.2 53.2 56.9 57.3 60 59.1 53.6 52.6 

55.3 57.4 56.9 55.7 56.4 55.8 49.6 51.2 52.2 53.8 55.2 54.4 48.9 48.6 

55.8 52.6 52 51.8 54.8 48.1 48.3 63.3 60.5 50.6 48.3 47.6 48.6 47.3 

54.9 49.1 49.9 48.6 49.2 44.4 43.8 46.8 54.4 54 52.9 48.1 44.8 42.8 

49.5 45.6 43.5 42.1 40.3 37.6 38.6 41.2 41.6 38.6 37.7 38.8 41.5 41.3 

43.6 42.9 41.8                       
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Appendix B:  Programs for Implementing Estimation 
 
B.1: The MATLAB program used to determine the MLE for the CIR Model 
        using besseli command.  
%---------------------------------------------------------------------------------------------------------------------------- % 

% Main Program: CIR.m 
%--------------------------------------------------------------------------------------------------------- -------------------% 
 
load C.txt –ascii                                % Load the text file which include 30-

Day AA interest rates  
Int_Rates = C; 
dt=1/360;                                                % The Time Step delta t      
params = [0.8 .2 .9];                               % Set initial values for parameters 
format long % Set precision of parameters to 16 

decimal places   
 
CIR = CIR_calibr_b(Int_Rates, dt)                                                % Calling Function CIR_calibr_b 
 
%---------------------------------------------------------------------------------------------------------------------------- % 

% Function Called: CIR_calibr_b  
%-------------------------------------------------------------------------------------------------------- --------------------% 
 
function CIR = CIR_calibr_b(Int_Rates, dt) 
 
%---------------------------------------------------------------------------------------------------------------------------- % 

% Ordinary Least Square Estimation Procedure  
%----------------------------------------------------------------------------------------------------------------------------% 
 
    N=length(Int_Rates);                                   % Find the length of interest rate 
    x = [ones(N-1,1)  Int_Rates(1:N-1)];           % Construct (N-1 X 2)-Matrix  
    ols = (x'*x)^(-1)*(x'* Int_Rates(2:N));        % OLS calculation 
    m = mean(Int_Rates);                           % Determine the average of interest 

rate 
    v = var(Int_Rates);                                  % Determine the variance of interest 

rate 
    params = [-log(ols(2))/dt,m,sqrt(2*ols(2)*v/m)];       % OLS calculation 
 
%---------------------------------------------------------------------------------------------------------------------------- % 

% Main Program For Estimators 
%---------------------------------------------------------------------------------------------------------------------------- % 
options = optimset('MaxFunEvals', 100000, 'MaxIter', 100000); 
CIR = fminsearch(@Function_CIR, params, options);      % Find optimal  parameter 
maxL = Function_CIR(params)                        % Set Likelihood function as a function 
  
  function maxL = Function_CIR(params)         %Assign parameters to function 

 
      alpha = params(1);                % Set initial value, 0.8, to parameter 1 
      theta = params(2);                 % Set initial value, 0.2, to parameter 2 
      sigma = params(3);                % Set initial value, 0.9, to parameter 3 
      c = (2*alpha)/((sigma^2)*(1-exp(-alpha*dt))); 
      q = ((2*alpha*theta)/(sigma^2))-1; 
      u = c*exp(-alpha*dt)* Int_Rates(1:N-1); 
      v = c* Int_Rates(2:N); 
      maxL = -(N-1)*log(c)+sum(u+v-log(v./u)*q/2-... 
                        log(besseli(q,2*sqrt(u.*v),1))-abs(real(2*sqrt(u.*v)))); 
 end 
end 
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B.2: The MATLAB program used to determine the MLE for the CIR model 
        using ncx2pdf  command.  
%---------------------------------------------------------------------------------------------------------------------------- % 

% Main Program: CIR2.m 
%----------------------------------------------------------------------------------------------------------------------------% 
 
load C.txt –ascii                                     % Load the text file which include 30-Day 

AA interest rates  
 
Int_Rates = C; 
dt=1/360;                                                  % The Time Step delta t      
params = [0.8 .2 .9];  
format long Set precision of parameters to 16 decimal 

places   
 
CIR2 = CIR_calibr_b2(Int_Rates, dt)    % Calling Function CIR_calibr_b2 
 
%----------------------------------------------------------------------------------------------------------------------------% 

% Function Called: CIR_calibr_b2  
%-------------------------------------------------------------------------------------------------------------------- --------% 
 
function CIR2 = CIR_calibr_b2(Int_Rates, dt) 
 
%---------------------------------------------------------------------------------------------------------------------------- % 

% Ordinary Least Square Estimation Procedure  
%----------------------------------------------------------------------------------------------------------------------------% 
 
    N=length(Int_Rates); 
    x = [ones(N-1,1)  Int_Rates(1:N-1)];       % Construct a (N-1 X 2)-Matrix  
    ols = (x'*x)^(-1)*(x'* Int_Rates(2:N)); 
    m = mean(Int_Rates);   
    v = var(Int_Rates); 
    params = [-log(ols(2))/dt,m,sqrt(2*ols(2)*v/m)]; 
%---------------------------------------------------------------------------------------------------------------------------- % 

% Main Program For Estimators  
%---------------------------------------------------------------------------------------------------------------------------- % 
options = optimset('MaxFunEvals', 100000, 'MaxIter', 100000); 
CIR2 = fminsearch(@Function_CIR2, params, options); 
maxL = Function_CIR2(params) 
  
    function maxL2 = Function_CIR2(params) 
    alpha = params(1);                             % Set initial value, 0.8, to parameter 1 
    theta = params(2);                              % Set initial value, 0.2, to parameter 2 
    sigma = params(3);                            % Set initial value, 0.9, to parameter 3 
    c = (2*alpha)/((sigma^2)*(1-exp(-alpha*dt))); 
    q = ((2*alpha*theta)/(sigma^2))-1; 
    u = c*exp(-alpha*dt)* Int_Rates(1:N-1); 
    v = c* Int_Rates(2:N); 
    s = 2*c* Int_Rates(2:N); 
    nc = 2*u; 
    df = 2*q+2; 
    gpdf = ncx2pdf(s, df, nc); 
    ppdf = 2*c*gpdf; 
    maxL2 = sum(-log(ppdf)); 
    end 
end 
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B.3: The Microsoft Excel Macro used to determine the ACF.   

 
‘-------------------------------------------------------------------------------------------------------------------------------‘ 

‘ Sub MM() ‘ Subroutine name is MM ‘ 
‘----------------------------------------------------------------------------------------------------------------------------- --‘ 

 

Dim colcount(5500) As Integer   ‘Define Integer variable for column count 

Dim ggg, Name As Variant       

Dim i As Integer, k As Integer 

Dim neq As Integer 

Dim Sum_data(5500), Average(5500), As Double  

Dim Square(5500), Autocorr(5500), As Double   

 

‘Define Sum_data, Average, Square, Autocorr as Double vectors 

 

Dim Sum_Square(5500), r As Double 

Dim Max(5500), Min(5500) As Double 

 

Name = "Total" 

 

ggg = "notempty" 

k = 4 

While ggg <> "" 

   ggg = Worksheets("DATA").Cells(k, 3).Value 

   k = k + 1 

Wend 

 

rowcount = k - 5            'Amount of last row 

n = rowcount 

 

For i = 1 To rowcount       'Assign t values to 

Cells(3 + i, 2) = i 

 

Next i 

 

For k = 0 To rowcount       'Assign k values to 

Cells(3 + k, 1) = k 

 

Next k 

 

Average(1) = 0                

Sum_data(1) = 0 

Sum_Square(1) = 0 

 

‘----------------------------------------------------------------------------------------------------------------------------- --‘ 

'Determine Average 
‘---------------------------------------------------------------------------------------------------------- ---------------------‘ 

 

For k = 1 To rowcount 

 

Sum_data(i) = Sum_data(i) + Worksheets("DATA").Cells(k + 3, 3).Value 

 

Next k 

 

Worksheets("DATA").Cells(rowcount + 6, 8).Value = Sum_data(i) 
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Worksheets("DATA").Cells(rowcount + 7, 8).Value = Sum_data(i) / rowcount 

Average(i) = Sum_data(i) / rowcount 

 

‘----------------------------------------------------------------------------------------------------------------------------- --‘ 

'Assign Names to Cell in Excel Spreadsheet  
‘------------------------------------------------------------------------------------------------------------------------------- ‘ 

 

Worksheets("DATA").Cells(rowcount + 6, 7).Value = "Sum" 

Worksheets("DATA").Cells(rowcount + 7, 7).Value = "Average" 

 

‘-------------------------------------------------------------------------------------------------------------------------------‘ 

'Determine Variance and Average 
‘----------------------------------------------------------------------------------------------------------------------------- --‘ 

 

Sum_Square(1) = 0 

 

For k = 1 To rowcount 

Sum_Square(i) = Sum_Square(i) + (Worksheets("DATA").Cells(k + 3, 3).Value - Average(i)) ^ 2 

Next k 

 

Variance = Sum_Square(i) / (rowcount) 

Worksheets("DATA").Cells(3, 5).Value = Variance 

 

Average(i) = Sum_data(i) / rowcount 

 

‘------------------------------------------------------------------------------------------------------------------------------- ‘ 

'Determine Autocovariance and Autocorrelation 
‘-------------------------------------------------------------------------------------------------------------------------------‘ 

Autocorr(lagk) = 0 

 

For lagk = 1 To rowcount - 1 

 

For k = 1 To rowcount - lagk 

 

Autocorr(lagk) = (Worksheets("DATA").Cells(k + 3, 3).Value - Average(i)) * 

(Worksheets("DATA").Cells(k + 3 + lagk, 3) - Average(i)) + Autocorr(lagk) 

 

Next k 

 

' Autocorrealtion 

Worksheets("DATA").Cells(3 + lagk, 4).Value = Autocorr(lagk) / Sum_Square(i) 

 

' Autocovariance 

Worksheets("DATA").Cells(3 + lagk, 5).Value = (Autocorr(lagk) / Sum_Square(i)) * Variance 

 

‘------------------------------------------------------------------------------------------------------------------------------- ‘ 

'Assign a Name to Cell in Excel Spreadsheet  
‘------------------------------------------------------------------------------------------------------- ------------------------‘ 

 

Worksheets("DATA").Cells(2, 4).Value = "Autocorrelation" 

 

Next lagk 

 

End Sub      
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B.4: The MATLAB program used to determine the MLE for the one-factor logarithmic         
        Vasicek Model using (4.42). 
 
%----------------------------------------------------------------------------------------------------------------------------% 

% Main Program: vas.m 
%---------------------------------------------------------------------------------------------------------------------------- % 
 

load swe.txt -ascii 
load time.txt -ascii 
V_data=swe; %x1 - x365 
t=time; % 1 - 365 
 

ML_log_vasicek_params = log_vasicek(V_data, t)   % Calling Function     

                               log_vasicek 
 
%----------------------------------------------------------------------------------------------------------------------------% 

% Function Called: log_vasicek  
%---------------------------------------------------------------------------------------------------------------------------- % 

 

function ML_log_vasicek_params = log_vasicek(V_data, t) 
     
n=length(V_data);                                                      %  365 time points 
%params = [65.31102 3.98896 12.92752];                %  OLS already determined   
params = [65.31102 3.98896];      
  
options = optimset('MaxFunEvals', 100000, 'MaxIter', 100000); 
ML_log_vasicek_params = fminsearch(@FT_VAS_LL_ExactFull, params, options); 
  
function mll = FT_VAS_LL_ExactFull(params) 
     
alpha = params(1); 
mu = params(2); 
%sigma_square = params(3); 
sigma_square = 12.92752; 

     
xo=3.815732; 
     
v= xo*exp(-alpha*t)+(mu-(sigma_square)/(2*alpha))*(1-exp(-alpha*t)); 
w_2 = ((sigma_square)/(2*alpha))*(1-exp(-2*alpha*t)); 
     
mll = (n/2)*log(2*pi)+sum(log(w_2/2)+(1/(2*w_2))*(V_data-v).^2); 
      
end 
end 
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