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Abstract

Inspired by the recent advantages of Multiple-Input Multiple-Output (MIMO) technolo-
gies in wireless communications, the MIMO concept was adopted in the radar context.
By exploiting the potentials of MIMO techniques in respect of combating the fading of
a channel, a MIMO radar system was created to handle a similar problem by exploiting
widely separated antennas, namely, the variations in the returned signal power from dif-
ferent aspects of a target of interest. Compared with conventional radar systems, such
a multiple-antenna radar system may result in a better understanding or estimation of a
target’s radar cross section by angular or spatial diversity, which consequently delivers a
better performance.

This dissertation studied the detection performance of MIMO radar systems: the study
can be divided into two parts, viz. detection of stationary targets and detection of moving
targets.

With respect to the detection of stationary targets, firstly, the detection performance of
MIMO radar systems in white Gaussian noise was examined. A comparison between
MIMO and phased array radar systems was then presented to illustrate their respective
properties. Secondly, the robustness of MIMO radar systems to clutter was investigated.
It was found that MIMO radar systems are better able to remove the effects of clutter than
that of phased array radar systems. Thirdly, a more practical distributed MIMO radar
system in respect of bandwidth limitations was proposed. Three classical distributed al-
gorithms, namely, OR, AND, and Majority Logic (MAJ), were applied to existing MIMO
radar systems. Lastly, a MIMO passive radar system based on FM waveform was in-
troduced. By using the Neyman-Pearson hypothesis, an optimal receiver for the MIMO
passive radar was developed.

Taking Doppler shift into account, detection performance of moving targets was investi-
gated. The effects of instantaneous Doppler shift on the detection performance were first
examined. Afterwards, the detection of moving targets including range considerations
was discussed.

Additionally, the pertinent Matlab source codes used throughout the dissertation are at-
tached. These will assist both newcomers and current radar researchers who study the
detection performance of MIMO radar systems.
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Chapter 1

Introduction

Radar, an acronym for RAdio Detection And Ranging, has long been a powerful tool
for detecting and locating electrically conductive objects. The term radar was coined
by the U.S. Navy in the 1940s. By emitting electromagnetic waves and receiving the
scattered energy, a radar system can identify the range, altitude, speed, and other relevant
information from objects of interest. Originally, radar systems were mainly developed
for military purposes and specifically to monitor movement of enemy aircraft, ships and
ground-based vehicles. Currently, in addition to being used by the military, radar systems
are involved in various civilian fields, such as air-traffic control, weather forecasting, earth
crust mapping and so on.

In respect of radar systems, multiple-antenna technique is not a new technique. In the 80’s,
a multistatic radar concept was invented by ONERA-the French Aerospace Lab, namely,
Synthetic Impulse Antenna Radar (SIAR). However, at that moment, this new system
did not show its overwhelming advantages compared with conventional radar systems,
which thus was deemed impractical. Recently, inspired by the advantages of MIMO in
wireless communication domain, a novel multiple antenna radar system was introduced
by Fishler, et al (2004), which was referred to as MIMO radar [28]. By exploiting the
potentials of MIMO techniques in respect of overcoming fading of a channel, such a
radar system delivers a better detection performance than monostatic radar system or
conventional multistatic radar. Owing to the novelty of MIMO radar, thus so far only
sporadic research has been done on the detection performance of MIMO radar systems.

In this dissertation, the background and detection theory of radar systems is introduced.
Both stationary and moving target detection of MIMO radar systems are then examined
and conducted. The relevant Matlab source codes are attached.

1.1 Overview

MIMO has been the subject of considerable research in the field of wireless communica-
tions during the past four decades. By exploiting the spatial diversity of multiple antennas
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as either transmitter or receiver, a communication system not only increases its channel
capacity but also decreases the fading effect in a wireless channel [71, 72]. Unlike the
conventional single antenna communication system, all the information streams emitted
by multiple transmit antennas utilise experiencing multiple transmit paths in order to over-
come the effect of channel fading over a single communication path.

Radar scanners suffer the variations of the returned signal power from different aspects
of a target of interest. This is referred to as Radar Cross Section (RCS) [64]. In terms of
MIMO, it is important to note that the fluctuations of RCS and the fading of a channel
are mathematically similar. Both may be regarded as probability distributions of known
random variables. For instance, Swerling I model and Rayleigh fading channels are both
Rayleigh distribution of random variables. Consequently, this has given rise to the idea of
combining MIMO and radar.

The existing MIMO radar systems may be divided into two categories. One was intro-
duced by Lincoin Laboratory, Massachusetts Institute of Technology in the U. S [12, 14].
This MIMO radar system was based on the conventional phased array radar system, where
each coherent sub array emitted orthogonal waveforms. However, in the wireless commu-
nication domain, MIMO is a technology aiming to produce spatially independent signals,
hereby introducing spatial diversity, and consequently improving the performance of a
wireless communication system.

Alternatively, E. Fishler, et al (2004) created another type of MIMO radar system, which
in contrast to the conventional phased array radar systems utilises widely separated anten-
nas. This kind of MIMO radar made its debut at the IEEE international radar conference
[28]. Unlike the traditional phased array radar systems, this novel radar system used
multiple antennas to improve the performance by increasing the distances between the
antennas. The results showed that such a MIMO radar system obtains far better results
than conventional radar systems in terms of target detection, parameter estimation, range
resolution, etc [34]. This dissertation will concentrate on the detection study of this new
MIMO radar system, which embraces stationary and moving targets detection, MIMO
passive radar detection, distributed MIMO radar detection and MIMO radar detection
under clutter circumstances.

Improving the detection performance has always been an important concern. As one of
vital radar theories, detection theory has become highly sophisticated with the develop-
ment of statistical communication theory. There are too many outstanding scholars with
significant contributions in this field to be listed here. Given the scope of this dissertation,
the contributions of only four innovators are reviewed herein, namely, Woodward, North,
Marcum and Swerling.

Inspired by information theory development, Woodward introduced an important concept,
namely, Ambiguity Function (AF). This is a useful function of measuring radar solutions
and ambiguity [75]. His approach is based on radar waveform, and it will be detailed in
Chapter 2.
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North is well known for the contribution on the matched filter theory [57]. By maximizing
the signal to noise ratio, the matched filter approach can optimally detect signals immersed
in noisy backgrounds. This will be discussed in detail in Chapter 2.

A comprehensive statistical analysis of radar detection was presented in the classic works
of Marcum [56] and Swerling [66]. Marcum addressed the problem of detecting nonfluc-
tuating targets in a white Gaussian noise background. Swerling extended this model to
fluctuating targets with a background of white Gaussian noise. In order to commemo-
rate their contributions, people named nonfluctuating targets and fluctuating targets as the
Marcum target model and the Swerling target model, respectively. Their results acted as
a catalyst to the development of target detection, and then considerable work was done in
the field of radar detection.

1.2 Motivation

There are two primary motivations to undertake this dissertation. One is the success of
the MIMO concept in wireless communication systems and the other one is the lack of
studies on predicting the detection performance of MIMO radar systems, in particular,
with regard to the detection and location of moving targets. It is commonly agreed that
radar systems experience a drop in detection performance with increased frequency shift
due to Doppler effects. As a result, in this dissertation, detection performance of the
MIMO radar system in respect of both stationary and moving targets will be evaluated on
one hand, devise a design in such a way to meet the detection requirements on the other
hand.

As mentioned previously, since radar detection theory is highly sophisticated with the
development of statistical communication theory, the intention of this dissertation is not
to introduce or develop any novel detection algorithm or method of signal processing, but
to analyse and theorise the detection performance of MIMO radar systems based on the
classical algorithms (e.g. N-P test). Necessary numerical simulation results are presented
to validate analysis, which exploit the detection performance of MIMO radar systems as
a function of other parameters, such as the number of either transmit or receive antennas,
various detection algorithms and the different signal to interference and noise ratios.

In order to benefit both newcomers and radar researchers who carry on detection study of
MIMO radar systems, the pertinent Matlab source codes used throughout the dissertation
are attached. These will help to demonstrate the functioning of the MIMO radar system,
thus creating a better understanding.

Therefore, main contributions in this dissertation are to analyse the detection performance
of MIMO radar systems, especially with regard to moving target detection, to simulate
systems under various scenarios in order to validate analysis, to design a MIMO passive
radar system, and to provide relevant Matlab source codes to facilitate the work of other
radar researchers.
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1.3 Objectives of the Work

The principal aims of this dissertation are following:

• To conduct a theoretical analysis of the MIMO radar’s operating specifications;

• To perform research on the classical radar detection algorithms in noise;

• To analyse the detection performance of MIMO radar systems both theoretically
and numerically, based on classical radar detection algorithms;

• To study the detection performance of a MIMO passive radar system based on FM
broadcasting signals;

• To examine the Doppler effects on target detection when using MIMO radar sys-
tems;

• To develop Matlab source codes to demonstrate and test MIMO radar systems.

• To draw conclusions in respect of the detection abilities of MIMO radar systems
and to provide recommendations on how to improve or enhance such detection
performance.

1.4 Dissertation Outline

The five Chapters of this dissertation, which sets out to analyse and evaluate the detection
performance of MIMO Radar systems, organised as follows:

• Chapter 1 introduces the overview and motivation of the work, and it states specific
aims of the work presented in this dissertation.

• Chapter 2 studies the background with reference to this work, which may be divided
into three sections, namely, the Doppler effect, the use of matched filters, and the
ambiguity function. A literature review on the detection of either conventional radar
systems or MIMO radar systems is presented. Some brief results are described as
well.

• Chapter 3 analyses and evaluates the performance of MIMO radar systems with
regard to detecting stationary targets. Detection theory in respect of MIMO radar
systems is analysed in depth and the simulation results under various scenarios
are provided. These include detection performance results with clutter or without
clutter, comparative results between MIMO Radar and conventional phased array
radar, detection results of MIMO passive radar based on Frequency Modulation
(FM) broadcasting signals, and detection performance results obtained by utilising
different distributed detection algorithms.
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• Chapter 4 moves on to address the moving targets detection problems of MIMO
radar systems. A more comprehensive Doppler shift calculation for a MIMO pas-
sive radar system is investigated based on the literature review contained in Chapter
2. Numerical results are then presented under different scenarios. This is assisted to
design a system capable of detecting a moving target, while taking the probability
of false alarm into account .

• Chapter 5 concludes the work done by summarising and listing the findings and
achievements of this work. Lastly, this dissertation is sealed with discussions and
recommendations of future work.
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Chapter 2

Background

An overview of the theory and concepts pertinent to the use of radar systems to detect
targets is presented in this chapter. As the aim of this dissertation is to calculate the
probability of various MIMO radar systems to detect targets, this chapter summarises
the relevant theories and concepts relating to Doppler frequency, matched filters, and the
ambiguity function. In addition, a critique is provided of the important literature relating
to detection studies and to the various available configurations of MIMO radar systems.

2.1 Doppler Shift

The impact of relative motion between antennas and targets on a radar system may be
characterised into 2 aspects. One is a dialation in the receive signal. Another one is fre-
quency shift. This dialation will induce serious distortions in the reconstructed images. In
order to process the received signal with a serious dialation, both wideband and narrow-
band compensations have been proposed, respectively, which may effectively eliminate
the impact of dialation. The purpose of this dissertation is to investigate the detection
performance of MIMO radar systems. Therefore, the analysis of frequency shift will be
carried out.

When observing an electromagnetic wave, the amount of the frequency change of a wave
due to its motion is referred to as the Doppler shift, which is usually expressed in hertz.
In order to distinguish stationary objects from moving targets, this section examines the
Doppler shift for a radar system made up of a single transmitter and receiver, called
bistatic radar. It is well known that even a tiny motion causes a change in the Doppler
frequency, which leads to a performance variance in a radar system. Therefore, it is cru-
cial to study of the effects of Doppler effects for a radar system. For the purposes of
this dissertation, the analysis how the Doppler relationship changes the radar waveform
is conducted, as it is reflected from the moving target. Furthermore, the Doppler shift of
moving targets, as detected with a stationary transmitter and receiver, is investigated in
this dissertation.
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The Doppler shift is defined as the time rate or change of the total path length of the
scattered signal, normalized by the wavelength λ . It should be noted that the frequency
shift may be caused by the motion of either target or one of the transmitter or receiver.
Aiming to investigate the moving target detection of MIMO radar systems, it is assumed
that moving targets and stationary transmitter and receiver are implemented in this disser-
tation. Thus, the Doppler shift may be described by the contribution of range rates from
both transmitter and receiver, which may be mathematically and geometrically expressed
as follows:

fd =
1
λ

[
d
dt
(RT +RR)

]
(2.1)

fd =
1
λ

(
dRT

dt
+

dRR

dt

)
(2.2)

where the symbol of fd represents Doppler frequency and RT , RR denote path length
between targets to transmitters and receivers, respectively.

Figure 2.1: Doppler geometrical relationship.

Figure 2.1 depicts the Doppler relationship scenario of a radar system and a moving target,
where symbols of V , δ , and β represent the magnitude of velocity, the aspect angle of
velocity, and the angle between the transmitter and receiver with vertex at the target,
respectively. It is shown from Fig. 2.1 that the term dRR/dt is the projection of the
target’s velocity vector onto the receiver-to-target Line Of Sight (LOS), which is in the
form of:

dRR

dt
=V cos(δ +

β

2
) (2.3)

where β = θT − θR. The symbols of θT and θR signify the transmitter’s look angle and
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receiver’s look angle, respectively. It should be noted that the look angle of antennas
are measured positive clockwise from the north of the coordinate system. Therefore, the
receiver’s look angle is negtive in Fig. 2.1.

Similarly, the term dRT/dt is the projection of the target’s velocity vector onto the transmitter-
to-target LOS, which may be given as:

dRT

dt
=V cos(δ − β

2
) (2.4)

Combining Eqn. 2.2, 2.3 and 2.4, it yields the Doppler frequency initiated by the moving
target only, which is given as:

fd =
2V
λ

cosδ cos
(

β

2

)
(2.5)

where V is the velocity of the target and β/2 represents the bistatic bisector. It may
be observed from Eqn. 2.5 that the Doppler frequency is determined by the projected
velocity component of the target along the bistatic bisector. Furthermore, it is also shown
from Eqn. 2.5 that, at the baseline (β/2 = 90o), the Doppler shift is zero for all velocities.
This is a general result for all the values of the target velocity aspect angle (δ ). In addition,
another special case, namely, when a target of interest is moving at a tangent to a bistatic
contour (|δ |= 90o) is also given zero Doppler shift.

Consider a special case, where R = RT = RR, Eqn. 2.5 will be deduced as:

fd = 2
V
λ

= 2
dR
λdt

(2.6)

This is the well-known monostatic Doppler shift expression. The symbol of R signifies
the distance between the target of interest and the antenna.

A Doppler relationship normalized by (2V/λ ) is illustrated in Fig. 2.2. The target veloc-
ity aspect angle (δ ) is uniformly varying from −180 degrees to +180 degrees, whereas,
the bistatic angles (β ) are 0 degrees, 90 degrees, and 180 degrees. Obviously, the system
will be reduced to the monostatic radar if β equals 0o.

In Fig. 2.2, Zero Doppler shift is found (β/2 = 90o), as mentioned before. In addi-
tion, for all given bistatic angles (β ), a positive bistatic target Doppler shift may be ob-
served when the target velocity aspect angle lies between −90 degrees and +90 degrees
(−90o < δ <+90o).
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Figure 2.2: Normalized Doppler shift versus target velocity aspect angle.

The next simulation is carried out on the frequency of 94 MHz. The velocities of two
moving targets are 250 m/s and 150 m/s. The absolute values of Doppler shift are pre-
sented in Fig. 2.3. It can clearly be seen that the faster moving target yields a bigger
Doppler frequency.

Lastly, an analysis of Doppler relationship versus uniformly varying velocity is plotted in
Fig. 2.4. The same parameters are utilised as Fig. 2.3. The carrier frequency is 94 MHz.
While the velocities of the moving target are uniformly varying from −250 m/s to 250
m/s. The aspect angles of velocities are 45 degree and 60 degree, respectively.
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Figure 2.3: Absolute value of Doppler frequency for different velocities.
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Figure 2.4: Doppler frequency versus uniformly varying velocities.
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2.2 Matched Filters

This section is devoted to the design and analysis of matched filters. A matched filter is a
kind of linear filter that is used to maximise Signal to Noise Ratio (SNR) in the presence
of additive stochastic noise. It is well known that SNR is a vital parameter in respect of
radar application. Matched filters are therefore utilised extensively in a radar system to
extract useful information about a target of interest from additive white Gaussian noise. In
this section, firstly, a matched filter detector for a radar system is described. Based on the
Neyman-Pearson hypothesis, an optimal radar detector will be developed. It is evident,
from the comparative results that the performance of a matched filter receiver is the same
as that of an optimal receiver. Secondly, an analysis is provided of output SNR and of
the processing gain of a matched filter detector. Lastly, the detection performance of the
matched filter detector under various scenarios is presented.

2.2.1 The Matched Filter Detector

A receiver that may optimally detect emitted signals in the presence of additive white
Gaussian noise by exploiting maximum SNR is referred to as a matched filter detector or
a matched filter receiver. In order to detect weak target echoes in the presence of noise,
a matched filter correlates each echo with a delayed replica of the original transmitted
signal. As a classical cooperative signal detector, the matched filter is only optimal for a
a-priori ’known’ signal, which means that the information of the transmitted signals has
to be known by the detector. A matched filter detector flowchart is shown in Fig. 2.5.

Figure 2.5: The matched filter detector.

where the symbol of s [k] denotes the information signal at time k, w [k] signifies the chan-
nel noise at time k, and s′ [k] represents the impulse response of matched filter at time
k, which is the delayed replica of original signal. It should be noted that the operation
between signal y [k] and s′ [k] is a convolution and not a multiplication.

It should be noted that the signals of s [k] and w [k] are uniformly sampled versions of the
continuous signals. Since the output of matched filter is discrete in any case, the received
signals y [k] are of the form after passing through the noise channels:
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y [k] = s [k]+w [k] ,k = 1,2, ...,K (2.7)

where s [k] are the transmitted signals, and w [k] denote zero mean additive white Gaussian
noise with variance σ2. In the next chapter, the analysis of detection performance of
MIMO radar systems will be conducted in continuous time. Another fact should also be
noted that the signals of S and W are vectors of s [k] and w [k] for all K, which will be
analysed in the next subsection.

An echo is then passed through a matched filter. The process of using a matched filter
detector is equivalent to correlating an echo with a delayed replica of the transmitted sig-
nal. That is the reason why a cooperative detector needs to know the original transmitted
signals. Matched filters are so called because they are matched to the original transmitted
signals, namely mirrored signals. For instance, the impulse response s′ [k] of the matched
filter is of the form [1]:

s′ [k] = s [K− k] or s′ [K− k] = s [k] ,k = 1,2, ...,K (2.8)

By exploiting the mirrored version of the transmitted signals, the maximum attainable
SNR will be yielded at the output of the matched filter. It is important to note that the
highest SNR occurs only at a specific moment in time. Furthermore, a matched filter
receiver is the form of the signal that is to be detected [44].

z [k] =
K

∑
i=1

s
′
[k− i]y [i] (2.9)

Substituting Eqn. 2.7 into Eqn. 2.9, the output of the matched filter is given as:

z [k] =
K

∑
i=1

s
′
[K− i] (s [i]+w [i]) (2.10)

Substitute Eqn. 2.8 into Eqn. 2.10:

z [k] =
K

∑
i=1

s [K− (k− i)] (s [i]+w [i]) (2.11)

It can be observed, from Eqn. 2.11, that the matched filter receiver is a correlation between
the transmitted signals and the received signals. The impulse response of matched filter
is the flipping and shifting version of the transmitted signal.

At a particular moment k = K, the above formula becomes:

z [K] =
K

∑
i=1

s [i]y [i] =
K

∑
i=1

s [i] (s [i]+w [i]) (2.12)

The above equation is the theoretical maximum output of the matched filter, which is
equivalent to the Neyman-Pearson detector. The SNR analysis of Eqn. 2.12 will be
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conducted in next subsection, where it is proved that the maximum value of SNR may be
achieved at moment k = K.

For the purpose of comparison, the output of the Neyman-Pearson detector will be de-
rived. With respect to the Neyman-Pearson test, the two hypotheses H0 (noise only with-
out signals and clutter) and H1(signal and noise) are defined as:

H0 : y [k] = w [k] , k = 0,1, ...,K (2.13)

H1 : y [k] = s [k]+w [k] , k = 0,1, ...,K (2.14)

where y is the measurement, s denotes the transmitted signals, and w is white Gaussian
noise with zero mean and variance σ2. The aim of the Neyman-Pearson hypothesis is to
maximise the probability of detection, subject to a constant probability of false alarm.
The probability of false alarm is defined as the probability of declaring a target present
while in fact the target is absent.

Since the noise is a Gaussian distribution variable, the hypotheses H0 and H1 are of the
form:

P(y | H0) =
1

(2πσ2)
K/2 exp

[
− 1

2σ2

K

∑
k=1

y2 [k]

]
(2.15)

P(y | H1) =
1

(2πσ2)
K/2 exp

[
− 1

2σ2

K

∑
k=1

(y [k]− s [k])2

]
(2.16)

Thus, the threshold γ in favour of H1 of the Neyman-Pearson detector may be expressed
as:

P(y | H1)

P(y | H0)
> γ (2.17)

By substituting Eqn. 2.15 and Eqn. 2.16 into Eqn. 2.17, the threshold γ is given as:

exp

[
− 1

2σ2

(
K

∑
k=1

(y [k]− s [k])2−
K

∑
k=1

y2 [k]

)]
> γ (2.18)

In order to remove the exponential term, a logarithm is applied at both sides. Eqn. 2.18
thus becomes:

− 1
2σ2

(
K

∑
k=1

(y [k]− s [k])2−
K

∑
k=1

y2 [k]

)
> lnγ (2.19)

Eqn. 2.19 may be deduced as:
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− 1
2σ2

K

∑
k=1

s2 [k]+
1

σ2

K

∑
k=1

y [k]s [k]> lnγ (2.20)

When the energy term is normalised, the test statistic for hypothesis H0 and H1 may be
expressed as:

Γ =
K

∑
k=1

y [k]s [k]> γ
′ (2.21)

where γ ′ = σ2lnγ + 1
2 ∑

K
k=1 s2 [k].

The process of Neyman-Pearson detector is shown from Eqn 2.13 to Eqn. 2.21. It may
be observed that the output of the matched filter is equivalent to the test statistic of the
Neyman-Pearson detector. Thus, it may be concluded that the matched filter has the same
performance as the the Neyman-Pearson detector.

2.2.2 Analysis of the Matched Filter

As a crucial quantity of the matched filter, the output SNR is first derived in this subsec-
tion. The expression of the possibility of detection subject to the probability of false alarm
and SNR of the matched filter is derived. Based on possibility of detection equations, The
plots of the probability of detection versus SNR under various scenarios are presented in
the next subsection.

As the objective function, SNR will be defined first. It is well known that SNR is short
for signal to noise ratio. As its name implies, with respect of matched filter, SNR can be
mathematically expressed as [2][46]:

SNR =
instantaneous signal power

average noise power
=
| zs |2

Ex{z2
w}

(2.22)

The underlying assumption is that additive white Gaussian noise w with zero mean with
a two-sided power spectral density of N0/2 is employed. The fact that the filtered noise
zw is no long white should be noted. The symbols of zs and zw are the desired signal and
the noise of received signals. Ex(·) is the expected value operator.

Recall Eqn. 2.10, the desired signal and the filtered noise may be expressed as:

zs [k] =
K

∑
i=1

s
′
[K− i]s [i] (2.23)

zw [k] =
K

∑
i=1

s
′
[K− i]w [i] (2.24)

Replaced zs and zw by Eqn. 2.23 and Eqn. 2.24, the SNR is given as:
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SNR =

|
K

∑
i=1

s
′
[K− i]s [i] |2

E

( K

∑
i=1

s
′
[K− i]w [i]

)2
 (2.25)

Defining

S
′
=
[
s
′
[K−1] s

′
[K−2] ... s

′
[0]
]T

(2.26)

W = [w [1] w [2] ... w [K]]T (2.27)

Where [.]T is transpose operation. It should be noted that the S′ and W are vectors for all
K.

A similar manner as [2] is conducted for further reduction. Combined with Eqn. 2.26 and
Eqn. 2.27, Eqn. 2.25 may be simplified as:

SNR =
| S′T s |2

E
{(

S′
T

W
)2
} (2.28)

Expend the denominator:

SNR =
| S′T s |2

S′
T

E
{

WWT}S′
(2.29)

which may be further deduced as:

SNR =
| S′T s |2

σ2S′
T

S′
(2.30)

where σ2 is the variance of noise.

According to the Cauchy-Schwarz inequality,

| S
′T

s |2≤| S
′T

S
′
|| sT s | (2.31)

Equality is reached when S′ = cs, where c is a constant. According to the definition
of matched filter, the impulse response of matched filter is a flopped in place version of
original signal, thus the constant equals to one (c = 1). Furthermore, the maximum output
SNR of the matched filter is in the form of:

SNR =
| sT s |

σ2 =
E
σ2 (2.32)
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where the symbol of E signifies signal energy. Thus, the maximum SNR of matched filter
is the signal energy divided by the variance of noise.

Since it is assumed that a two-sided power spectral density of N0/2 noise is employed,
Eqn. 2.32 may be rewritten as:

SNR = 2
E
N0

(2.33)

which is a well-known analysis result of matched filter under additive white Gaussian
noise circumstance. The same results may be found at Eqn. 2.17 of [51] and Eqn. 3.93 of
[55], although the analysis is based on the Fourier transform.

The basic idea behind detection problem is to build connections between the probability of
detection and the probability of false alarm. Therefore, the detection problem of matched
filter may be soloved by the following three steps. Firstly, a probability of false alarm is
defined to satisfy a special system design. Under the predefined probability of false alarm,
the second step is conducted to evaluate an intermediate, the threshold. By manipulating
the intermediate, the last step is performed to calculate the probability of detection as a
function of the probability of false alarm and other parameters, such as signal variance,
noise variance, and the number of samples. Based on the above analysis, the detection
performance of matched filter under additive white Gaussian noise circumstance will be
examined.

Recall Eqn. 2.10, the hypothesis H0 and the hypothesis H1 of Neyman-Pearson test for
matched filter may be expressed as:

H0 :
K

∑
i=1

s
′
[K− i]w [i] (2.34)

H1 :
K

∑
i=1

s
′
[K− i] (s [i]+w [i]) (2.35)

where the symbols of s [i], s
′
[K− i], and w [i] are desired signals, the impulse response of

matched filter, and white Gaussian noise. It should be noted that after filtering, the noise
is no long white but Gaussian distributed.

According to the definition of matched filter, the impulse response is flipped version of
original signal. Recall Eqn. 2.8, the Eqn. 2.34 and Eqn. 2.35 may be rewriten as:

H0 :
K

∑
i=1

s [i]w [i] (2.36)

H1 :
K

∑
i=1

s [i] (s [i]+w [i]) (2.37)

Since noise w [i] is white and uncorrelated with the impulse response of matched filter
and transmit signals, the expected value of the test statistic under hypothesis H0 may be
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expressed as:

Ex(H0)= Ex

(
K

∑
i=1

s [i]w [i]

)
= 0 (2.38)

where Ex(·) is expected value operation as previously defined.

In a similar manner [44], under hypothesis H1, the expected value may be hence given as:

Ex(H1) : = Ex

{
K

∑
i=1

s [i] (s [i]+w [i])

}
= Ex

{
K

∑
i=1

(s [i]s [i]+ s [i]w [i])

}
(2.39)

Consequently, the output of Eqn. 2.39 is:

Ex

{
K

∑
i=1

s [i]s [i]

}
= E (2.40)

where the symbol of E represents signal energy.

The variance of the test statistic under hypothesis H0 may be evaluated as:

Var (H0)=Var

(
K

∑
i=1

s [i]w [i]

)
= σ

2E (2.41)

where Var (·) is variance operation and σ2 is noise variance.

Similarly, the variance of hypothesis can be calculated as:

Var (H1) : =Var

{
K

∑
i=1

s [i] (s [i]+w [i])

}
= σ

2E (2.42)

Therefore, the test statistic of Gaussian distributed under each hypotheses can be ex-
pressed as following:

H0 : N
(
0,σ2E

)
(2.43)

H0 : N
(
E,σ2E

)
(2.44)

Same results may be found at [16][44]. In [3], the performance analysis of binary antipo-
dal signals with matched filters is conducted.

The probability density function (PDF) relationship between the probability of detection
and the probability of false alarm is depicted in Fig. 2.6 [44]. The PDF of hypothesis H0

and the PDF of hypothesis H1 are represented by red-dot and green-solid lines, respec-
tively. As the intermedia, the threshold (black-solid) is defined by the probability of false
alarm. The value of signal energy is depicted by the black-dot line. It is important to note
that the relevant probabilities are areas under its own PDF. For instance, the probability of
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false alarm is the right side area in respect of threshold under PDF of hypothesis H0. The
probability of detection and the probability of miss detection are under PDF of hypothesis
H1. Additionly, the following formula can be achieved.

Pd +Pmiss = 1 (2.45)
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Figure 2.6: PDF relationship between probability of detection and probability of false
alarm.

It may be observed that in terms of a fixed threshold, the detection performance may
be improved by moving PDF of hypothesis H1 to the right side. An efficient way is to
increase signals energy or reduce noise variance, which is equivalent to increase signal to
noise ratio. The expression of the probability of detection in terms of the probability of
false alarm and the output SNR of the matched filter will be derived next. As previously
analysed, the PDF of hypothesis H0 is Gaussian distributed. Thus, the probability of false
alarm Pf a may be given as:

Pf a = Pr{T > γ | H0}= Q
(

γ√
σ2E

)
(2.46)

As predefined above, σ2 is the noise variance and E denotes the signal energy. The
symbol of γ signifies the threshold.

Q(x) =
∫

∞

x

1√
2π

exp
(
−t2

2

)
dt = 1−Φ(x) (2.47)
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where Q(x) is well-known to calculate the right-tail probability of normal radar variable.
The symbol of Φ(x) represents the normal Cumulative Distribution Function (CDF).

As is shown in Fig. 2.6, for any probability of detection, equality holds:

Pd = Pr{T > γ | H1}= Q
(

γ−E√
σ2E

)
(2.48)

According to Eqn. 2.46, the threshold is given as:

γ =
√

σ2EQ−1 (Pf a
)

(2.49)

where Q−1 (·) is the inverse function of Q(·).

By substituting Eqn. 2.49 into Eqn. 2.48, the probability of detection can be calculated
as:

Pd = Q

(√
σ2EQ−1 (Pf a

)
−E

√
σ2E

)
= Q

(
Q−1 (Pf a

)
− sqrt(SNR)

)
(2.50)

where sqrt (·) returns square root values. Same results may be found at [44].

Eqn. 2.50 reveals the relationship between the probability of detection, the probability of
false alarm, signal and noise variances for matched filter under additive white Gaussian
noise circumstance. Based on the above analysis, detection problem may be soloved by
the following steps. A probability of false alarm is defined to meet design requirements.
The threshold based on the probability of false alarm is thus calculated. By manipulat-
ing the conditional PDF of the probability of detection and the detection threshold, the
probability of detection subject to the probability of false alarm may be computed.

It should be noted that, the above analysis is limited to a single sample. The improvement
will occur when processing Ns samples instead of a single sample for a matched filter
detector, which is investigated below.

In the case of Ns samples, the SNR may be given as:

SNRNs =
(NsP)

2

Nsσ2 = Ns
E
σ2 (2.51)

where P is transmitting power. By exploiting Ns samples, the value of SNR VSNR is
multiplied by Ns (NsVSNR).

The processing gain by Ns samples is correspondingly given as:

G = 10log10 Ns dB (2.52)

It is important to note that a processing latency is generated as soon as multiple samples
are implemented.

19



Univ
ers

ity
 of

 C
ap

e T
ow

n

2.2.3 Performance of the Matched Filter Detector

In this subsection, the probability of detection by considering the SNR of the matched
filter detector is first examined. The probabilities of false alarm are listed in the figure.
The probability of detection versus the various values of SNR is plotted in Fig 2.7. It is
evident that given a probability of false alarm, the detection performance may be improved
by increasing the values of SNR. It may be observed that for a given SNR, the probability
of detection will be increased by reducing the probability of false alarm. Additionly, to
achieve same probability of detection, more SNR is needed for higher probability of false
alarm. For instance, a comparison is conducted between systems of Pf a = 1× 10−4 and
Pf a = 1×10−6. In order to achieve same probability of detection (0.6), an extra SNR is
needed for the system of Pf a = 1×10−6.
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Figure 2.7: Detection performance of matched filter detector.

The corresponding probabilities of miss detection are depicted in Fig. 2.8. Same prob-
abilies of false alarm are implemented, which are Pf a = 1× 10−2, Pf a = 1× 10−4, and
Pf a = 1×10−6, respectively.

Fig. 2.9 below demonstrates the impact of different numbers (Ns) of processing samples.
As expected, for a matched filter detector, the detection performance is significantly im-
proved by processing more samples instead of a single sample. In Fig. 2.9, the values of
Ns are 1, 2, 3, and 4, whereas the false alarm rate is fixed at millionth

(
Pf a = 1×10−6).
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Figure 2.8: Mis-detection performance of the matched filter receiver.
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Figure 2.9: Probability of detection versus SNR in relation to different numbers of pro-
cessing samples.
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2.3 Ambiguity Function

It is well known that the ability of a radar system to detect or distinguish targets of interest
from other objects (clutter) depends on the radar waveform. Thus, radar waveform design
is a crucial subject for radar study. Ambiguity function, as a useful tool to analyse the
resolution and ambiguity of the radar waveform, is studied in this section. It starts with a
thorough explanation and comprehensive definition of the ambiguity function before ex-
amining the cross ambiguity function and the physical meaning of the ambiguity function.
In addition, background related to the FM waveform ambiguity function are summarised,
and ambiguity function surface plots in respect of time and Doppler shift are provided.

The ambiguity function is a widely used and powerful tool to analyse the properties of a
radar signal waveform. In the ambiguity function surface plot, the properties of a radar
waveform in respect of detection, parametric measurement accuracy, range and Doppler
resolution, ambiguities and clutter rejection can be easily observed. The ambiguity func-
tion was formulated by Woodward (1953) [75]. As discussed in the matched filter section,
a received signal having different Doppler frequency and time delay will be correlated
with an original mirrored transmitted signal by the matched filter detector. The ambiguity
function is made up of a series of correlation integrals based on the matched filter detec-
tor. Such a function describing the output of a matched filter in terms of time delay τ and
Doppler frequency fd may be mathematically represented as:

χ (τ, fd) =
∫ T

0
sr (t)s∗ (t− τ) (2.53)

where sr (t) denotes the received signal and s∗ (t− τ) is the transmitted or reference sig-
nal at delay τ . The symbol of (.)∗ signifies the complex conjugate operation and the
integration time is represented as T .

A typical transmitted signal is in the form of:

s(t) =| u(t) | exp [ j2π fct] (2.54)

where | u(t) | is the magnitude of the transmitted signal, the symbol of | . | denotes abso-
lute the value of the complex number, and the carrier frequency is expressed as fc.

It is assumed that the received signal sr (t), as stated above, is the mirrored version of the
emitted signal except at time delay and Doppler frequency. Substituting Eqn. 2.54 into
Eqn. 2.53, Eqn. 2.53 in respect of true time delay τ0 is given as:

χ (τ, fd) =
∫ T

0
u(t− τ0)u∗ (t− τ)exp [ j2π ( fc + fd)(t− τ0)]exp [− j2π fc (t− τ)]

(2.55)

If the effects of the true time delay and carrier frequency is not implemented( fc = 0,τ0 = 0),
Eqn. 2.55 may be simply deduced as:
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χ (τ, fd) =
∫ T

0
u(t)u∗ (t− τ)exp [ j2π fdt] (2.56)

which is called the uncertainty function [54], whereas | χ (τ, fd) |2 is called the ambiguity
function.

Some main properties are listed as follows [54]:

• The maximum value of the ambiguity function occurs at the origin, which means
that the received signal is completely matched with the reference signal. With re-
spect to the mathematical equation, it occurs only when the two signals have the
same time delay and zero Doppler frequency, which is also referred to as the auto-
correlation response of the waveform.

| χ (τ, fd) |2max=| χ (0, 0) |= (2E)2 (2.57)

where the symbol of E denotes the energy of the signal.

• The time delay and Doppler frequency are symmetric along both time delay and
frequency axes.

| χ (τ, fd) |2=| χ (−τ, − fd) |2 (2.58)

• The total volume is constant, which equals the maximum value of the ambiguity
function. It should be noted that the integral works on all delays and Doppler fre-
quencies. ∫∫

| χ (τ, fd) |2 dtd fd = (2E)2 (2.59)

• If the function S ( f ) is the Fourier transform of the signal s(t), then the ambiguity
function can be calculated as:

| χ (τ, fd) |2=|
∫

S∗ ( f )S ( f − fd)exp [− j2π f t] |2 (2.60)

The proofs may be found in [51].

The ambiguity function can be calculated by calculating the term u∗ (t)exp [ j2π fdt] sub-
ject to a given Doppler shift fd . Then, the correlation output of u∗ (t)exp [ j2π fdt] and
u(t) can be calculated.

An example of the ambiguity function is illustrated in Fig. 2.10, which depicts the am-
biguity function surface plot of white Gaussian random variables with zero means and
standard variance

(
σ2 = 1

)
. According to the ambiguity function definition, a typical

ambiguity function surface plot should be a 3-D plot, including the information of the
Doppler shift and the time delay or equivalent distance away from antennas. The ideal
ambiguity function of signal waveform is a Dirac delta function or thumbtack function.
Consequently, it is expected, from the ideal signal waveform for radar systems, that the
value of the ambiguity function is infinitely large at origin ( fd = 0,τ = 0), while it is zero
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everywhere else. In a practical radar system, the ideal signal waveform should possess a
infinite spike at ( fd = 0,τ = 0) and be near zero everywhere else. In Fig. 2.10, the output
of the ambiguity function is normalized to 1. It may be observed from Fig. 2.10 that the
white Gaussian distribution random variable is an ideal illuminator of opportunity relat-
ing to a passive radar system. In addition, the 2-D results of the ambiguity function for
the time delay and Doppler frequency domains are presented to further demonstrate the
waveform properties of Gaussian random variables. Furthermore, the AF output of white
Gaussian noise is plotted on dB scale in Fig. 2.11.

Figure 2.10: The AF surface of white Gaussian r.v.

Unlike the ambiguity function, the Cross Ambiguity Function (CAF), sometimes also
called the Complex Ambiguity Function (CAF), deals with the correlation of two different
signal waveforms in respect of a range of time and frequency offsets. Derived by Stein
(1981) [65], a cross ambiguity function in respect of two different received signals s1 and
s2 can be expressed as:

χ (τ, fd) =
∫

∞

−∞

s1 (t)s∗2 (t− τ)exp [− j2π f t]dt (2.61)

where τ denotes the time delay and f is the frequency offset to be searched.

Note that Eqn. 2.61 looks almost like the Fourier transform with respect to Doppler
frequency, except that it is a function of range. In order to demonstrate the physical
meaning of the cross ambiguity function for a radar system, s1 (t)s∗2 (t− τ) is replaced
by y(t)s∗ (t− τ), where y(t) means the received information and s(t− τ) denotes the
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Figure 2.11: The AF output of white Gaussian r.v on dB scale.

transmitting signal at time delay τ , respectively. Two important points should be noted
in this regard. The first one is that the cross ambiguity function for a radar system is the
Fourier transform for the correlation product of the received signal and the transmitted
signal. It is well known that the Fourier transform or Fourier analysis is an effective tool
for power spectrum study, thus, the probability density of the scattering amplitudes can
be measured by spectrum analysis. The second point is that, according to the theory of
the matched filter, the optimal detection process is correlating the received signal with
the original transmitted signal, so that the ambiguity function reveals the properties of
the output of the matched filter in terms of detection, parametric measurement accuracy,
range and Doppler resolution, and ambiguities. Ideally, the autocorrelation or the self-
correlation of the transmitter signal should be a delta function, which means that the
output of the autocorrelation of the transmitter signal should be 1 at the origin, but 0 at
other place. Hence, the ideal plot of the autocorrelation of the transmitter signal should
be a sharp spike at the point of origin.

Recently, passive radar systems attracted considerable attention. Unlike conventional
radar systems, a passive radar detects and tracks an object of interest by exploiting the re-
flective signals from non-cooperative illuminators of opportunity, such as commercial FM
broadcasting signals, Digital Audio Broadcasting (DAB) signals, Digital Video Broad-
casting (DVB) signals, wireless communication signals, etc. By utilising non-cooperative
radar transmitters, such a radar system benefits from low hardware costs, covert operation,
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robustness against stealth, etc.

In this dissertation, the detection performance of a MIMO passive radar system experi-
encing FM broadcasting signals will be studied. Therefore, some essential background of
the cross ambiguity function of such a passive radar system based on FM signals will be
presented to illustrate the potential of FM signals as illuminators of opportunity. The FM
theory will be studied. Besides of theory study, the results of a sinusoidal wave by fre-
quency modulation are demonstrated to assist theory understanding. lastly, the ambiguity
function surface plot of above corresponding FM signals is also presented to show the
potential of FM signals as an ideal illuminator of opportunity for passive radar systems.

FM is widely used in the field of broadcasts radio. As an analogue modulation, FM
conveys information signals over a sinusoidal carrier wave. The modulation is done by
using its instantaneous frequency, in which the frequency of the carrier wave is modulated.
FM can be also referred to as Phased Modulation (PM) because PM is the time integral
of FM modulation signals. The FM transmitted signal in respect of carrier amplitude Ac

and carrier frequency fc can be represented as:

y(t) = Ac cos
(

2π fct +2π f4
∫ t

0
s(τ)dτ

)
(2.62)

where f4 denotes the frequency deviation, which is defined as the maximum frequency
shift away from the carrier frequency fc in one direction. f4 is also called the frequency
sensitivity, which measures the signal transmitted over the given bandwidth. s(t) is the
information signal, of which the amplitude is restricted to 1 (| s(t) |≤ 1).

Normally, a baseband modulated signal may be approximated as a sinusoidal wave with
a frequency fs. The integral of such a sinusoidal wave can thus be given as:

s(t) =
As cos(2π fst)

2π fs
(2.63)

As is the amplitude of the information signal, which is below 1.

Therefore, the FM transmitted transmitting signals given in the condition of Eqn. 2.63
could be further simplified as:

y(t) = Ac cos
(

2π fct +
f4
fs

cos(2π fst)
)

(2.64)

The FM signals based on the above analysis are illustrated in Fig. 2.12. The original signal
is a sinusoidal wave with frequency 50 Hz The carrier frequency for FM in this case is
200 Hz. The frequency deviation is 10 Hz, which means that the maximum frequency
away from the carrier frequency in one direction is 10 Hz.

Now considering a simple passive bistatic radar system with one transmitter and one
receiver and exploiting FM broadcasting signals, the corresponding direct signal from
the transmitter can be simply expressed as:
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Frequency modulation

Figure 2.12: The frequency modulation signal.

R =
√

EAS+W (2.65)

where R is the received signal, E denotes the transmitted signals energy,
√

E is thus the
transmitted signals power, the symbol of A signifies the amplitude, S represented the
FM transmitted signal, and W indicates the channel noise, which has white Gaussian
distribution.

The ambiguity function surface plot of the above FM signals is shown in Fig 2.13. It
can be seen from this figure that a thumbtack plot may be achieved that is similar to
the white Gaussian distribution random variables. Consequently, the FM illuminator of
opportunity is regarded as the Gaussian or equivalent Gaussian random variables. In fact,
according to the Central Limit Theorem (CLT), the received signal without a target for
a passive radar system by exploiting FM illuminators of opportunity utilises Gaussian
random variables. The detailed derivation will be presented in Chapter 3. From Fig. 2.13,
we can conclude that FM broadcasting signal is an ideal illuminator of opportunity for
passive radar systems. Lastly, the AF output of FM signals on dB scale is presented in
Fig. 2.14.
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Figure 2.13: The ambiguity function of FM signals.

Figure 2.14: The ambiguity function output of FM signals on dB scale.
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2.4 Literature Review

In this section, selected papers on the detection performance of MIMO radar systems are
reviewed.

As a fundamental principle, the principle of detection for a radar system attracted consid-
erable interest since radar has been invented. A comprehensive understanding of detection
principle for a radar system may be found in [47]. Originally published in 1968, [47] is
one of the great time-tested classics in the field of detection theory. The detection theory
of Gaussian signals in white Gaussian noise is introduced in details. Furthermore, the
detection theories of slowly fluctuating point targets, Doppler-spread targets, and chan-
nel range-spread targets are also presented. The book of [21] is also one of classic test
books. The following topics are covered in detail. [21] begins with relating math fun-
damentals, such as probability theory, random processes, and statistical decision theory.
Optimum radar detection is then introduced. Both nonfluctuating model and fluctuating
models detection based on multiple observations are presented. Based on the radar equa-
tion, cumulative detection of both stationary and moving targets is further presented. In
addition, an interesting topic is also given to reduce testing time, which thus can achieve
more efficient detection.

The concept of MIMO as applied to a single transmitter and receiver radar was investi-
gated by Fishler et al [28]. Motivated by the potential of MIMO techniques to overcome
channel fading in a communication system, Fishler et al adapted the concept of MIMO to
a radar system, with the aim of dealing with similar issues, namely, the fluctuations of tar-
gets. In conventional radar systems, fluctuations of targets are responsible for degrading
performance. In contrast, the proposed MIMO radar exploits independently transmitted
signals from the widely spaced transmit antennas to achieve better RCS estimation of the
underlying targets, which consequently improves the performance of a radar system. In
Fishler et al’s paper [28], such a MIMO radar system model was described. Due to the
space limits of a conference paper, the focus of the analysis was on the direction find-
ing (DF) performance of the proposed MIMO radar system. The numerical results in
terms of the Cramer-Rao bound are presented, which show that the MIMO technique may
dramatically improve the performance of a radar system in terms of DF accuracy.

Fishler et al further studied and analysed the detection performance of MIMO radar sys-
tems in their work [29, 30]. Paper [29], which was also a conference paper, is a con-
cise version of paper [30], where the detection performance of MIMO radar systems was
studied by Fishler et al. A novel concept, viz. statistical MIMO radar, was introduced,
which can also be found in other work by Haimovich et al [35]. By utilising the classic
Neyman-Pearson hypothesis test, the optimal detector for statistical MIMO radar systems
was developed and the simulated results of the optimal detector were presented. The ad-
vances of statistical MIMO radar in terms of detection emerged when it was compared
with conventional phased array radar systems, multiple input single output (MISO) radar
systems. As the basis of statistical MIMO radar systems, the concept of widely spaced
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antennas is numerically defined in [30].

The comparison between this novel multiple-antenna radar and conventional multiple-
antenna radar is inevitable. A well-known paper regarding comparison between MIMO
radar and phased arrary radar was presented in [18]. The comparison was carried out on
the following 5 aspects: waveforms, transmit antenna, transmit antenna gain, SNR, and
maximum useful area of range-Doppler space. As an advanced wireless communication
technique, MIMO has been proved a promising solution for next generation wireless com-
munication to increase channel capacity and decrease bit error ratio [8][70]. On the other
hand, phased array radar is a mature and developed multiple-antenna technique for radar
systems. The comparison is more or less unfair for MIMO radar systems. It should be
noted that unlike phased array radar, the way to improve the performance of MIMO radar
is to utilise angular diversity or space diversity but not coherent gain, which is a novel
approach to implement multiple-antennas on a radar system. Furthermore, combined
with phased array radar systems, MIMO-phased radar was proposed in [38] by exploit-
ing MIMO radar with collocated antennas. This novel system aims to enjoy advantages
of angular or space diversity from MIMO technique on one hand, without sacrificing the
main advantages of phased array radar systems on the other hand. The effectiveness of the
proposed combined MIMO and phased radar systems may be observed from numerical
results.

It should be noted that in papers [28][30], only Swerling I model targets are employed.
It is well known that the basic work on the detection of fluctuating targets has been done
by Peter Swerling [66]. The fluctuating targets may be further characterised into four
categories. In respect of case I and case III, the fluctuating targes are summarised as
slow fluctuation, which are scan-to-scan fluctuating. The amplitude distribution can be
recognized as well-known Rayleigh random distribution. Whereas the cases of Swerling
II and Swerling IV are characterised as fast pulse-to-pluse fluctuating targets, which rep-
resents that the targets whose return is independent from pulse to pulse. Based on the
PDF of a radar RCS, the probability of detection of a fluctuating target is calculated in
[23]. As a function of estimate of the stationary mean, correlation function, and PDF, the
RCS amplitude distribution of a complex target is modeling. By utilising chi-squared and
Kolmogorov-Smirnov nonparametric test, under the null hypothesis, it has been shown
that the data follow a particular theoretical distribution. With a knowledge of classical
detection statistics, the probablity of detection for a complex target can be calculated.
Drumheller, David M extended Swerling fluctuating models to Chi-square models [24].
In addition, Rice and Log-normal fluctuating tagets detection are presented in [19][20].

Acting as a catalyst, papers [29, 30] attracted the attention of more and more scholars
who were interested in the field of MIMO radar. Sammartino et al, for example, extended
MIMO radar systems by using real target models [61]. Unlike [30], which only examined
the Swerling case I. Sammartino et al [61], also looked at the spherical and Swerling case
III. In addition to studying MIMO radar systems, the real target models were also applied
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to two other multiple antennas radar systems,viz. netted radar and re-phased netted radar.
A more concrete Rice target detection study of MIMO radar systems was presented by
Tang et al in [68]. Based on Stein’s lemma, an optimum detector for the Rice targets
of MIMO radar systems was developed by exploiting the concept of relative entropy.
Some interesting results were achieved. In the low SNR region, the Rice target detection
of MIMO radar depends on the number of receive antennas. In the high SNR region,
the improvement of the detection performance depends on the product of the number of
transmit antennas and the number of receive antennas. Another detection study of MIMO
radar systems based on relative entropy can be obtained from Tang et al [67].

Subsequently, the detection of a target, composed of a finite number of small scatterers,
was examined by Du et al [26]. As special configurations, the system models presented
in [30] were extended to a general case without placing a limitation on the locations of
antennas. The theoretical probability of detection expression was derived to predict the
performance of MIMO radar systems, which is a meaningful guideline to avoid time-
consuming simulations in practice. At the IEEE international radar conference 2009, Du
et al, extended the target model to a more realistic case [25].

The detection performance of MIMO radar systems with clutter effects may be obtained
from Sammartino et al in [15, 60]. Based on the Spherically Invariant Random Vector
(SIRV), a novel MIMO detector was introduced by Chong et al in the non-Gaussian clutter
environment [15]. Gamma and Weibull clutter models, for example, were applied to
MIMO radar systems. The theoretical performance of the new detector was investigated,
which was verified by Monte Carlo simulations. It was showed by simulation results
that the detection performance of MIMO radar may be improved dramatically by the
new detector. In [60], for instance, the effects of K-distributed clutter on the detection
performance of MIMO radar systems were examined. The simulation results showed that
the detection performance may be improved significantly by increasing the number of
antennas.

Inspired by the development of passive radar systems, some attempts were made to apply
the concept of MIMO to passive radar systems. By using third party transmit antennas,
for example, a passive radar system possesses many advantages, such as low cost of oper-
ation and maintenance, covert operation, rapid updates etc. A MIMO passive radar based
on FM radio transmit antennas was thus investigated by Krzysztof Kulpa and Mateusz
Malanowski in [45], where the MIMO passive radar is used to increase surveillance vol-
ume. A paper by Jeong et al [40] examined the performance of MIMO radar systems
embedded in the Wideband Code Division Multiple Access (W-CDMA) network. A W-
CDMA rake receiver was developed for MIMO passive radar systems. Since W-CDMA
is a successful commercial 3G wireless communication system, this novel mechanism of
integrating radar with W-CDMA is more flexible and convenient.

In addition, some novel types of radar systems were developed based on MIMO radar. In
[22][76], Wu et al extended the existing MIMO radar systems with Orthogonal Frequency
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Division Multiplexing (OFDM) waveforms. An overwhelming advance from MIMO
OFDM radar is that it can meet a deficit of demanding capacity for MIMO radar sys-
tems. Another reason is that the proposed MIMO OFDM radar may be a promising type
of MIMO passive radar that uses digital illuminators of opportunity. A MIMO radar ex-
periences frequency diversity, introduced in [79]. It can be observed that such frequency
diversity may significantly reduce the target’s fluctuations.

In contrast, unlike the above MIMO radar systems with orthogonal waveforms, a concept
paper of MIMO radar systems with coherent pulse detector was investigated by A. Sheikhi
and A. Zamani in [62]. By exploiting temporal coherent pulse, the proposed MIMO radar
systems overcome the difficulties of the classic phased array radar systems in terms of
parameter identifiability, flexibility of transmit beampattern design, degree of freedom,
tracking ability, jammer rejection, etc. The coherent detection performance in respect of
MIMO radars may be also obtained by A. Sheikhi and A. Zamani in [63], where Constant
False Alarm Rate (CFAR) and Generalized Likelihood Ratio Test (CLRT) detectors were
developed. The superiority of MIMO radars over the conventional phased array radars
with regard to coherent processing may be observed. Besides of temporal coherent pulse,
an adaptive detector based on GLRT was also proposed. The detection performance of
MIMO radars with coherent pulses was examined by Qu et al in [58]. It is worth noting
that the detection performance of MIMO radars with coherent pulses in Swerling case I
targets overcomes that of Swerling case II targets, while, normally, the performance of a
radar system in Swerling case II targets is better than that of a radar system in Swerling
case I targets.

In reality, it is hard to receive either fully correlated or independent signals from different
antennas. Therefore, a more realistic case of partially correlated scattering from the target
has been examined in [6]. The GLRT detector for target detection was proposed based on
the maximum likelihood estimates of the unknown parameter. Target detection and iden-
tification by using canonical correlation and subspace partitioning was proposed by Wei
in [73]. The maximum canonical correlation between the targets set and the observations
and coefficients of the canonical vector have been utilised to identify and detect targets.
In addition, the study on the correlation and optimization of waveform for MIMO radar
systems was conducted by K. W. Forsythe [32]. Two types of waveform optimization
were examined based on static radar systems. By exploiting space-time coding, it has
been proved by X. Song et al, the cross correlation of waveform for MIMO radar systems
may be significantly reduced [77]. The performance degradation in resolving spatially
close returns can be attribuated to the correlation among waveforms. In [77], space-time
coding, also known as a MIMO technology, was implemented to migrate effects of cross
correlation. The effectiveness of space-time coding may be observed from numerical
results.
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2.5 Summary

In this chapter, the background of this dissertation was introduced. The Doppler relation-
ship for a single transmitter and receiver bistatic radar system was examined. Defined as
the time rate or change of the total path length of the scattered signal, the Doppler fre-
quency is determined by the projected velocity component of the target along the bistatic
bisector. Simulation results under various scenarios were presented. To assess weather it
is an efficient detector, the matched filter theory was examined. The mathematical forms
of the probability of detection subject to the probability of false alarm and the values of
SNR were derived based on the theory of matched filter detection. Both non-fluctuating
targets and fluctuating targets were implemented. Both analysis and simulation results
of detection and mis-detection are provide. The derived expression was verified by the
simulation results. In addition, the processing gain of multiple samples for a matched
filter detector was examined. The ambiguity function of the FM signals was studied. It is
evident from the simulation results that such an illuminator of opportunity is an ideal pas-
sive source of information for a radar system. Lastly, selected papers studying detection
abilities of MIMO radar systems were reviewed.
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Chapter 3

Detection Performance in respect of
Stationary Targets

As it is well known, a radar system transmits electromagnetic energy to detect targets.
Some of this energy is reflected off of targets or called scatterers within the search volume,
which is referred to as a radar return. The probability of detection is the probability that
a sample amplitude of the radar return exceeds the predefined threshold voltage. The
variations within a target’s RCS is responsible for lowering the probability of detection.
It was found by Swerling [66] that the detection performance of a radar system may be
significantly degraded by the fluctuations of a target’s RCS. In order to commemorate his
contribution, the models of fluctuation targets were named after Swerling. Phased array
radar was proposed to increase the received target signal energy, in which either transmit
or receive antennas are placed close together to maximise the coherent signal processing
gain.

Inspired by the development of MIMO techniques in the field of wireless communication,
the notion of MIMO radar was first introduced in the proceedings of the IEEE interna-
tional radar conference 2004. It is well known that detection and estimation are the two
key problems of radar systems, although these are not only limited to radar systems but
also extend to communication systems. As a promising method of overcoming fading
during transmission, MIMO or space-time coding concepts were adapted to radar systems
to address the problems of the reflected signal fluctuations. As an alternative approach,
MIMO radar exploits the angular diversity of targets to reduce the effects of targets’ fluc-
tuation. It is evident from the simulation results by Fishler. et al [29] that the performance
of a radar system in terms of detection, estimation, navigation, etc can be significantly
improved by such angular diversity.

In order to generate angular or spatial diversity, as is the case in communication systems,
the spacing of antennas is crucial in MIMO radar systems. It is well known that, in
MIMO communication systems, the multiple antennas must be widely spaced in order to
transmit independent signals. When the concept of MIMO from a communication system
is applied to a radar system, it is also the objective of MIMO radar systems to achieve
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spatial (angular) diversity, where the widely separated antennas can measure the RCS of a
target from different angles and consequently provide a better understanding of the target
of interest.

This chapter is organised as follows. In the first section below, the detection performance
of MIMO radar systems is examined. It thus looks at comparative studies between MIMO
radar and phased array radar systems in order to illustrate their respective properties. The
second section develops a practical distributed MIMO radar configuration in terms of
bandwidth limitation. The closed-form probability calculations of detection based on
OR, MAJ, and AND rules are computed and simulation results under various scenarios
are presented. In the last section, by exploiting illuminator of opportunity, the MIMO
passive radar system based on FM signals is proposed. The simulation results of such a
MIMO passive radar system is provided as a function of different values of SNR, various
numbers of antennas, different integration times, etc.

3.1 Detection Performance of MIMO Radar Systems

The detection probability of MIMO radar systems is analysed and evaluated in this sec-
tion. This analysis may be divided into the following parts, which are listed as follows:

• A MIMO radar system model is depicted. The closed-form expression of the prob-
ability of detection is derived, and it is verified by the simulation results.

• Comparative studies between MIMO and phased array radar systems are carried
out.

• The robustness to clutter between of MIMO and phased array radar systems are
examined and compared.

3.1.1 MIMO radar probability of detection calculations

Without loss of generality, a MIMO radar system with M transmit antennas and N receive
antennas is employed. It is assumed that a narrow-band signal is emitted by the ith trans-
mit antenna

(√
E/Msi (t)

)
, where E is the total energy. The orthogonal waveform si (t)

satisfies:

∫ T

0
si (t)s∗j (t)dt = δi j =

0 i 6= j

1 i = j
(3.1)

where the symbol of (·)∗ denotes the conjugate operation.

The received signals are of the form:

r (t) =

√
E
M

αs(t− τ)+w(t) (3.2)
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where r (t) represents the received signal. The target is modelled as Swerling type I,
hence α are independent and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean, which may be expressed as α ∼ CN

(
0,σ2IMN

)
. IMN is the

identity matrix with size MN by MN (MN×MN). As mentioned before, s(t− τ) is the
transmitted signal. The symbol of w(t) ∼CN

(
0,σ2

wIMN
)

indicates AWGN. It should be
noted that there are M orthogonal waveforms due to M independent transmit antennas.

In order to ensure the angular or spatial diversity, it is crucial that the antennas are widely
separated. In [30][76], the minimum distance among antennas is derived, and it is of the
form:

d ≥ λR
D

(3.3)

where λ denotes the wavelength of the signal waveform, R represents the distance be-
tween the target of interest and the antenna, and D is the effective size of the target. The
λ/D indicates the beamwidth of the energy backscattered from the target towards the
transmitter. Eqn. 3.3 means that when the inter-element spacing in the transmit antenna
array is greater than the target beamwidth coverage at distance R, the target then presents
different aspects to adjacent transmit antennas. This minimum distance is the measure to
distinguish MIMO radar from conventional multiple-antenna radar, phased array radar. If
the distance among antennas is below or fails to obey this measure. A high correlation be-
tween signals either transmitted or received by an array will thus occurs. Conversely, the
MIMO technique improves detection performance of a radar system by exploiting the in-
dependence between signals at the array elements. Therefore, throughout the dissertation,
the minimum distances among antennas obey Eqn. 3.3 strictly.

The Neyman-Pearson hypothesis of MIMO radar may be expressed as:

X =

H0 : w(t)

H1 :
√

E
M αs(t− τ)+w(t)

(3.4)

H0 denotes the null hypothesis and the symbol of H1 signifies the alternative hypothesis,
which means that the target exists at delay τ .

The distribution of the test statistic is of the form [26][30][35]:

‖ X2 ‖∼

H0 : σ2
w

2 χ2
2MN

H1 :
(

E
2M σ2

α +
σ2

w
2

)
χ2

2MN

(3.5)

Where χ2
2MN represents a chi-square random variable with 2MN degrees of freedom. The

symbols of σ2
α and σ2

w represent the variance of fluctuation of a target’s RCS and noise, re-
spectively. Due to Swerling I targets implemented, α is sampled from complex Gaussian
random variables

(
α ∼CN

(
0,σ2IMN

))
. The variance of α is affected by the transmitted

signal power.
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Therefore, the optimal detector in terms of the Neyman-Pearson test is given by:

‖ X2 ‖
> H0

< H1
γMIMO (3.6)

where γMIMO is the threshold, depending on the value of the probability of false alarm.

The corresponding probability of the false alarm is given as:

Pf a = P
(

σ2
wχ2

2MN
2

> γMIMO

)
(3.7)

Thus, the threshold γMIMO may be computed as:

γMIMO =
σ2

w
2

F−1
χ2

2MN

(
1−Pf a

)
(3.8)

where F−1
χ2

2MN
represents the inverse cumulative distribution function of a chi-square ran-

dom variable with 2MN degrees of freedom.

Furthermore, the probability of detection for MIMO radar systems is of the form:

Pd = P
(

E
2M

σ
2
α +

σ2
w

2

)
χ

2
2MN > γMIMO (3.9)

Substitute Eqn. 3.8 into Eqn. 3.9, and thus the probability of detection is given as
[30][35]:

Pd = 1−F
χ2

2MN

((
σ2

w
E
M σ2

α +σ2
w

)
F−1

χ2
2MN

(
1−Pf a

))
(3.10)

The probability of detection in respect of the values of SNR is plotted in Fig. 3.1. Three
different numbers of antennas for MIMO radar systems have been employed, two by
two, five by five, and eight by eight systems, respectively. A two by two (2×2) system
consists of two transmit antennas and two receive antennas. The probability of false alarm
is fixed at millionth

(
Pf a = 1×10−6), which means that the false alarm is only allowed

to happen once over million data. The results from left to right are eight by eight, five
by five, and two by two systems, respectively. As expected, by exploiting angular or
spatial diversity, the detection performance of MIMO radar systems may be significantly
improved by increasing the number of antennas. For example, take two by two and five
by five systems as an example, with respect to the same performance (Pd = 0.5), about
two dB diversity gain is provided by the five by five MIMO radar system over the two by
two MIMO radar system.

Fig. 3.2 depicts the probability of mis-detection versus SNR. As is the case with MIMO
in wireless communication fields, in Fig. 3.2, a linearly scaled y-axis is replaced by a
logarithmically scaled y-axis. A three by three MIMO radar system is compared with a
four by four MIMO radar system. The probability of false alarm is fixed at millionth,
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Figure 3.1: Detection performance of MIMO radar systems.

as was the case in the previous example. The red-dot results and the blue-solid results
are those obtained with the three by three and four by four systems, respectively. The
potential of MIMO radar system in terms of detection performance is clearly shown in
Fig. 3.2. There is about a 1.5 dB diversity gain from the four by four MIMO radar system
when the probability of mis-detection equals one percent

(
Pmiss = 1×10−2).

The last result presented in this sub-section is the Receive Operating Characteristic (ROC)
plot of the MIMO radar systems, which demonstrates the relationship between the prob-
ability of detection and the probability of false alarm. Also known as Relative Operat-
ing Characteristic, a ROC curve demonstrates the sensitivity of true rate versus false rate.
With respect to a radar system, a classical ROC curve indicates the sensitivity between the
probability of detection and the probability of false alarm. A MIMO radar system made
up of two transmit antennas and two receive antennas is employed to illustrate the ROC
performance. The values of SNR are one and three (SNR = 1dB,3dB) and the probability
of false alarm varies uniformly from zero to one

(
Pf a ∼ (0−1)

)
. The number of transmit

and receive antennas are five (M = N = 5), as is shown in x-axis. A common sense may
be observed that more SNR is needed to realize the same probability of detection when a
lower probability of false alarm is required.
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Figure 3.2: Probability of mis-detection of MIMO radar systems.
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Figure 3.3: ROC performance on various SNR.

39



Univ
ers

ity
 of

 C
ap

e T
ow

n

3.1.2 Comparison between MIMO and phased array radar systems

To create a fair comparison, a phased array radar system with M transmit antennas and
N receive antennas is implemented. It is also assumed that the narrow-band signal is
emitted by the ith transmit antenna

(√
E/Msi (t)

)
, where the symbol of E denotes the

total energy. The orthogonal waveform si (t) may be represented same as Eqn.3.1. It
should be noted that with respect to both MIMO and phased array radar systems, the total
transmit power is normalised to one. Since, as stated previously, there are M transmit
antennas and N receive antennas for MIMO and phased array radar systems, the transmit
power of each element is equal.

After passing through the matched filter, the output of the matched filter is of the form:

r (t) =

√
E
M

αϕ (x,y)H
ϕ

(
x
′
,y
′
)

ψ (x,y)H
ψ

(
x
′
,y
′
)

s(t− τ)+w(t) (3.11)

where ψ (x,y) and ϕ (x,y) indicate the relative position between transmit antennas and tar-
gets, receive antennas and targets, respectively. The symbols of ϕ

(
x
′
,y
′
)

and ψ

(
x
′
,y
′
)

are relative beamformers from transmit and receiver position to targets, respectively. (.)H

denote Hermitian transform operations. The symbol of w(t) represents the noise. With
respect to phased array radar systems, the understanding of a target of interest will be
reinforced by altering the relative phase of signal fed to each antenna. The symbols of
ψ (x,y) and ϕ (x,y) describe position relative parameters, such as angles between either
transmit or receive antennas and targets. As is well known, in phased array radar systems,
the processing gain is achieved when the steer toward direction of beamformer from the
receiver equals the angle of the target between the receiver (x,y) =

(
x
′
,y
′
)

. This process-
ing gain of the phased array radar system when the beamformer steers to the target may
be mathematically expressed as [30][31]:

ϕ (x,y)H
ϕ

(
x
′
,y
′
)
= N (3.12)

ψ (x,y)H
ψ

(
x
′
,y
′
)
= M (3.13)

This means that the maximum transmit and receive diversity gains for the phased array
radar systems are M and N, respectively. It should be noted that the fading coefficient
α of a target plays key role to achieve this maximum processing gain. Compared with
phased array radar, MIMO radar is easily to overcome this fade [30].

Thus, the Neyman-Pearson test statistic of the phased array radar systems may be repre-
sented as [30]:

‖ X2 ‖∼

H0 : σ2
wN
2 χ2

(2)

H1 :
(

EMN2

2 σ2
α +

σ2
wN
2

)
χ2
(2)

(3.14)
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Compared with the MIMO radar systems, the degrees of freedom of the chi-square dis-
tribution are reduced from 2MN to 2. Same methodology as the MIMO radar systems is
implemented to derive the probability of false alarm herein. This gives rise to the follow-
ing form of the probability of false alarm:

Pf a = P

(
σ2

wNχ2
(2)

2
> γarray

)
(3.15)

Therefore, the threshold for the phased array radar system is calculated by:

γarray =
σ2

wN
2

F−1
χ2
(2)

(
1−Pf a

)
(3.16)

The probability of detection for the phased array radar system given a certain probability
of false alarm is in the form of:

Pd = 1−F
χ2
(2)

(
σ2

w
σ2

w +EMNσ2
α

F−1
χ2
(2)

(
1−Pf a

))
(3.17)

Another interesting multiple antenna radar configuration was proposed by Fishler. et al
[30], namely the Multiple Input Single Output (MISO) radar system. As its name implies,
it comprises multiple transmit antennas and a single receive antenna, which is regarded
as a hybrid of a MIMO and a phased array radar system. The optimal detector is of the
form:

‖ X2 ‖
> H0

< H1
γMISO (3.18)

where γMISO is the threshold to ensure the requirement of the probability of false alarm.

The same derivation method is implemented as was used for the MIMO and the phased
array radar systems [30]. The probability of false alarm, the threshold, and the probability
of detection are of the form, respectively:

Pf a = P
(

σ2
wNχ2

2M
2

> γMISO

)
(3.19)

γMISO =
σ2

wN
2

F−1
χ2

2M

(
1−Pf a

)
(3.20)

Pd = 1−F
χ2

2M

(
σ2

w

σ2
w + ENσ2

α

M

F−1
χ2

2M

(
1−Pf a

))
(3.21)

The differences among the MIMO, phased array, and MISO radar systems lie in the de-
grees of freedom of chi-square random variables. They are 2MN, 2, and 2M, respectively.
Since both MIMO and MISO have same number of transmit antennas, it could be an in-
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teresting topic to compare detection performance between MIMO and MISO radars with
digital beamforming receivers.

The detection performances of MIMO, MISO, and phased array radar systems are illus-
trated in Fig. 3.4. Two transmit antennas and four receive antennas were employed for
both MIMO and phased array radar systems. To ensure a fair comparison, as is previously
defined, the total transmit powers are equal for three systems. Furthermore, two transmit
antennas were also used to the MISO radar system. The probability of false alarm is fixed
at ten thousandth

(
Pf a = 1×10−4). It is evident from Fig. 3.4 that, in the high SNR

region, the detection performance of the MIMO radar systems is better than that of the
phased array radar systems, while in the low SNR region, the performance of the phased
array radar systems in terms of detection is better than that of the MIMO radar systems.
This means that the phased array radar is better at detecting smaller targets, whereas the
MIMO radar is better at detecting and tracking larger targets. Recognised as a hybrid of
MIMO and phased array radar systems, not surprisingly, the performance of the MISO
radar systems lies between MIMO and phased array radar systems [49].
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Figure 3.4: Comparative detection performance of MIMO, MISO, and phased array radar
systems.

The mis-detection performances of MIMO, MISO, and phased array radar systems are
shown in Fig. 3.5. Four transmit antennas and four receive antennas were used for both the
MIMO and phased array radar systems. Four transmit antennas were used for the MISO
radar system too. The probability of false alarm is set at ten thousandth

(
Pf a = 1×10−4).
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It is clear from the figure that the performance of the MIMO radar systems is better when
the SNR is increasing.
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Figure 3.5: Miss detection performance of MIMO, MISO, and phased array radars.

In Fig. 3.6, the impact of different numbers of antennas on the detection performance is
examined. As expected, more diversity gain is generated by using more antenna for both
MIMO and phased array radar systems. In Fig. 3.6, the number of the transmit antennas
is set at two (M = 2), while the number of the receive antennas increases from two to ten
(N = 2,3, ...,10). The probability of false alarm is fixed at millionth

(
Pf a = 1×10−6).

The value of SNR equals nine dB (SNR = 9dB). The curvature of the simulation results
shows that, by exploiting MIMO techniques, more diversity gain may be achieved for a
multiple-antenna radar system. An interesting conclusion can be found from Fig. 3.6,
namely, that MIMO radar systems are more sensitive to changes in the number of anten-
nas. In fact, it will be shown in the following sections that the MIMO radar systems are
more sensitive to the changes of parameters due to the higher degrees of freedom in terms
of chi-square distribution random variables.
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Figure 3.6: The impact of different number of receive antennas on the detection perfor-
mance.
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3.1.3 Robustness of the MIMO radar systems to clutter

So far , none of the results have taken clutter into account. However, in practice, clutter
is inevitable. It could be unwanted echoes returned from buildings, mountains, sea, rain,
even animals. It is well known that such clutter can cause serious performance losses in
radar systems. In this subsection, the effects of clutter on the detection performance of
MIMO radar systems will be thus examined. By comparing these with phased array radar
systems, the potential of the MIMO radar systems to reduce the effects of clutter is shown.

Without loss of generality, a MIMO radar system with M transmit antennas and N receive
antennas is employed. As in the previous subsections, it is assumed that a narrow-band
signal is emitted by the ith transmit antenna

(√
E/Msi (t)

)
, where E is the total energy.

In the presence of clutter, the received signals are thus of the form:

r (t) =

√
E
M

αs(t− τ)+

√
E
M

αcs(t− τ)+w(t) (3.22)

The same definitions are employed as in the previous subsections. r (t) represents the
received signals. Since Swerling type I targets are employed throughout the thesis, the
symbol of α can be modelled as identically distributed zero-mean complex Gaussian
random variables

(
α ∼CN

(
0,σ2IMN

))
, and IMN is identity matrix with size MN by MN

(MN×MN). w(t) ∼ CN
(
0,σ2

wIMN
)

indicates AWGN. The symbol of αc denotes the
clutter. The intention of this dissertation is not to introduce new models of clutter but
to demonstrate the robustness of MIMO radar systems to clutter. Therefore, a simple
Gaussian distribution clutter is implemented

(
αc ∼CN

(
0,σ2

c IMN
))

, which in order to
lead to a closed-form expression of the probability of detection. By comparing the results
of the MIMO and phased array radar systems, it is shown that the MIMO radar can reduce
the effects of clutter more effectively than that of phased array radar systems.

The Neyman-Pearson hypothesis of the MIMO radar systems in the presence of clutter
may be denoted as:

X =

H0 :
√

E
M αcs(t− τ)+w(t)

H1 :
√

E
M αs(t− τ)+

√
E
M αcs(t− τ)+w(t)

(3.23)

where H0 and H1 indicate that the target either does not exist or does exist at delay τ ,
respectively.

Similar derivation manner as previous subsection, thus, the distribution of the test statistic
is given as:

‖ X2 ‖∼

H0 :
(

E
2M σ2

c +
σ2

w
2

)
χ2

2MN

H1 :
(

E
2M

(
σ2

α +σ2
c
)
+

σ2
w

2

)
χ2

2MN

(3.24)

where χ2
2MN represents a chi-square random variable with 2MN degrees of freedom.
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By exploiting the optimal detection, the corresponding probability of false alarm in re-
spect of MIMO radar systems in the presence of clutter can be expressed as:

Pf a = P
((

Eσ2
c

2M
+

σ2
w

2

)
χ

2
2MN > γMIMO

)
(3.25)

Thus, the threshold γMIMO may be denoted as:

γMIMO =

(
Eσ2

c
2M

+
σ2

w
2

)
F−1

χ2
2MN

(
1−Pf a

)
(3.26)

where F−1
χ2

2MN
represents the inverse cumulative distribution function of a chi-square ran-

dom variable with 2MN degrees of freedom.

Furthermore, the probability of detection for MIMO radar systems is stated as:

Pd = P
(

E
2M

(
σ

2
α +σ

2
c
)
+

σ2
w

2

)
χ

2
2MN > γ (3.27)

By substituting Eqn. 3.26 into Eqn. 3.27, the probability of detection is given as:

Pd = 1−F
χ2

2MN

((
E
M σ2

c +σ2
w

E
M σ2

α + E
M σ2

c +σ2
w

)
F−1

χ2
2MN

(
1−Pf a

))
(3.28)

On the other hand, the received signals of the phased array radar systems may be repre-
sented as:

X =

H0 :
√

E
M MNαcs(t− τ)+w(t)

H1 :
√

E
M MNαs(t− τ)+

√
E
M MNαcs(t− τ)+w(t)

(3.29)

where the symbols of α ∼ CN
(
0,σ2), αc ∼ CN

(
0,σ2

c
)
, and W ∼ CN

(
0,Nσ2) signify

the complex amplitude, clutter, and noise, respectively.

The Neyman-Pearson test statistic of the phased array radar systems radar systems when
there is clutter circumstance is thus given as:

‖ X2 ‖∼


H0 :

(
EM2N2σ2

c
2M +

σ2
wN
2

)
χ2
(2)

H1 :
(

EM2N2(σ2
c +σ2

α)
2M +

σ2
wN
2

)
χ2
(2)

(3.30)

The degrees of freedom in respect of the chi-square distribution are two.

As same method was used in the phased array radar without clutter, the probability of false
alarm, the threshold, and the probability of detection of the phased array radar systems
when faced with clutter may be expressed as, respectively:

Pf a = P

((
EMN2σ2

c +σ2
wN
)

χ2
(2)

2
> γarray

)
(3.31)
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γarray =

(
EMN2σ2

c +σ2
wN

2

)
F−1

χ2
(2)

(
1−Pf a

)
(3.32)

Pd = 1−F
χ2
(2)

((
EMNσ2

c +σ2
w

EMN (σ2
α +σ2

w)+σ2
w

)
F−1

χ2
(2)

(
1−Pf a

))
(3.33)

The detection performance versus Signal to Clutter Ratio (SCR) is presented in Fig. 3.7.
Four by four systems for both the MIMO and the phased array radars were implemented.
The probability of false alarm is fixed at millionth

(
Pf a = 1×10−6). The values of SNR

vary from 6 dB to 15 dB by 3dB. The detection performance of the MIMO radar systems
is shown as blue-solid lines, whereas the detection performance of the phased array radar
systems is plotted as red-dot lines. It may be observed from Fig. 3.7 that the detection
performance of the MIMO radar systems is significantly improved by increasing the SNR.
Conversely, the detection performance of the phased array radar is slightly affected by the
variance of SNR. In other words, the same increment of SNR may bring more diversity
gain to the MIMO radar systems. As stated in the previous section, the MIMO radar
systems are more sensitive to the changes of parameters.
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Figure 3.7: Detection performance versus SCR.

Fig. 3.8 describes the comparison detection performances of MIMO and phased ar-
ray radar systems versus SNR. The number of transmit and receive antennas is five
(M = N = 5). The probability of false alarm is set at millionth

(
Pf a = 1×10−6) as in

the previous test. The values of SCR vary uniformly from five to twenty by five. The
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same trend as in Fig. 3.7 could be found in Fig. 3.8. MIMO radar systems are thus
sensitive to changes in parameters, whereas, phased array radar systems are unaffected by
changes in parameters. Sometimes, though, they perform better.
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Figure 3.8: Probability of detection versus SNR in the presence of clutter.

It is observed that MIMO radar systems are more sensitive to the change of parameters
than that of phased array radar systems. Under clutter circumstance, same SNR or SCR
increment may produce more processing gain to MIMO radar systems than that of phased
array radar systems. It should also be mentioned that the modelling of clutter here is static
and needs to be further explored [7]. Other forms of clutter will modify the detection
results here. For instance, real clutter, in particular sea clutter, has time correlation. It
should be noted that the aim of this subsection is to prove the robustness of MIMO radar
systems to the clutter compared with phased array radar systems. In addition, clutter
viewed by different transmit-receive pairs has a largely unknown dependence on bistatic
angle, but might exhibit correlation. i.e. a large scatter might tend to be strong in all
bistatic views. It is assumed here that the target backscatter is uncorrelated with angle.
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3.2 Distributed Detection of MIMO Radars

The optimal detector under the Neyman-Pearson hypothesis raises the question of how
to characterise more practical and sub-optimal schemes. It is well known that the opti-
mal detector is impractical due to bandwidth limitations of the interlinks. In this section,
therefore, a practical low-bandwidth consumption distributed MIMO radar system is de-
veloped in which a finite number of decision messages is sent to the fusion centre [9].
Compared with optimal MIMO radar systems, clearly, there is a performance loss from
distributed MIMO radar systems. In practice, however, the distributed MIMO radar sys-
tem is nonetheless a meaningful configuration in terms of bandwidth limitation.

As is shown in Fig. 3.9, a fusion centre has been added compared with MIMO radar
systems to process data from each branch. It has been proved that compared with a single
antenna radar system, a multiple-antenna distributed radar network results in a larger
coverage area. This is due to the fact that each antenna transmits a detective pulse and
receives a radar return due to this transmitted detective pulse as well as the transmitted
pulses from rest antennas in this distributed radar network [39][53]. It has been an issue
in terms of multitarget identification since monostatic radar systems. As is well known,
multitarget may be distinguished by Capon method [33]. Multitarget identification study
in a MIMO radar enviroment could be found in [41]. It has been found that with respect
to MIMO radar systems, the targets angles from different transmit antennas and receive
antennas may be ultised with received signals to improve accuracy of locations of multiple
targets. It should be noted that synchronization of this MIMO radar system play key role
to increase received SNR. The impact of synchronization on received SNR may be found
in [39]. After receiving a binary decision from each branch, the final decision will be
made depending on the different distributed algorithms.

There are three classical decision rules, namely, OR rule, AND rule, and MAJ rule [78].
The above three distributed detection algorithms will be investigated in MIMO radar sys-
tems.

3.2.1 OR Rule

The OR rule is defined as follows: if one detection result of the total number of branches
is positive, the final decision is positive. If the fusion centre adopts the OR rule, the
total mis-probability is the product of the individual miss probabilities. Therefore, the
detection probability of a distributed MIMO radar system with the OR rule may hold as :

P = 1− (1−Pd)
MN (3.34)

It is important to note that the probability of false alarm of the fusion centre is also the
product of the individual probabilities of false alarm.
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3.2.2 AND Rule

In contrast to the OR rule, the AND rule means that a positive decision is only made when
each sub-branch achieves a positive decision. Hence, the detection probability of this MN

out of MN MIMO radar system is of the form:

P = (Pd)
MN (3.35)

3.2.3 MAJ Rule

MAJ is short for majority logic. As its name implies, if x out of total MN sub-branch
selected as reference branches to declare the decision for distributed MIMO radar sys-
tems, the positive decision is only made when all the x branches obtain positive decisions.
Obviously, the number x lies among one to MN (X ∼ (1−MN)). When x equals one,
the system becomes into OR distributed system, and if x equals MN, then the system is
equivalent to AND distributed system. The performance of MAJ distributed detection
thus lies between OR and AND rules. The detection performance of the MIMO radar
systems under the MAJ rule is of the form:

P =
MN

∑
i=x

(
MN

i

)
(Pd)

i (1−Pd)
MN−i (3.36)

3.2.4 Detection Performance of Distributed MIMO Radar Systems

The detection performance of a distributed MIMO radar system without clutter is pre-
sented in Fig. 3.10. The probability of false alarm is fixed at ten thousandth

(
Pf a = 1×10−4).

There are two transmit antennas and two receive antennas at each side. Compared with
optimal detector, there is clearly an expected performance gap. Despite this performance
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loss, as is expected, the OR rule provides the best performance among all the fixed rules.
Therefore, the OR rule is the rule most widely used in the literature and in practice.
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Figure 3.10: Distributed detection performance.

The detection probability curves of a two by two (2×2) MIMO radar system in the
presence of clutter versus SCR is plotted in Fig. 3.11. The SNR is fixed at twenty dB
(SNR = 20dB), and the probability of false alarm is ten thousandth

(
Pf a = 1×10−4) .

The detection performance of the OR rule sub-optimal scheme is much better than that of
the other two systems.

We will now examine the detection performance of the proposed distributed MIMO radar
system with the same order of diversity but with different numbers of transmit antennas
or receive antennas. For example, instead of examining a system comprising two transmit
antennas and two receive antennas, one transmit antenna with four receive antennas, and
a system with four transmit antennas and one receive antenna are examined. Without loss
of generality, the OR rule is applied to the MIMO radar system with the fixed probability
of false alarm at ten thousandth

(
Pf a = 1×10−4).

Since clutter, when viewed multistatically, has a largely unknown dependence on bistatic
angle, although it might exhibit correlation over transmit or receive pairs. i.e. a large scat-
terer might tend to be strong in all bistatic views, it triggers a fixed diversity MIMO radar
system, which could achieve different detection performances with different numbers of
antennas. The target backscatter, except for very small targets, is likely to be uncorrelated
with angle, as assumed in this dissertation.
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Figure 3.11: Detection performance versus signal to clutter ratio.
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Figure 3.13: The impact on the different number of antennas in the presence of clutter.

3.3 MIMO Passive Radar Detection based on the FM sig-
nals

Based on the Neyman–Pearson hypothesis, the detection problem for a radar may be
solved by two steps. The first step manipulates the conditional PDFs of measurements
(P(H0) ,P(H1)), so as to obtain sufficient statistic PDFs, in some cases, however, there is
no closed-form expression. The second step calculates the probability of detection Pd of
such a radar system by the threshold, which can be evaluated after the predefined value of
the probability of false alarm

(
Pf a
)
. The same two-step method will be implemented in

this chapter. The key problem is to derive the PDFs of measurements for MIMO passive
radar systems.

As assumed in Chapter 2, the received signal without a target of a single transmitter
and single receiver passive radar system based on FM illuminator of opportunity may be
modelled as Gaussian random variables. If this assumption is valid, the statistic of MIMO
passive radar system experiencing FM signals with targets can be consequently summa-
rized as Chi-square random variables, as was the case in previous sections. Thus, this
section starts with the PDF derivation of the received signal without target for a single
transmitter and single receiver passive radar system in respect of FM illuminators of op-
portunity. Afterwards, the results will be adapted to MIMO passive radar systems under
the null hypothesis. The value of the threshold is then applied to the alternative hypothesis
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to calculate the probability of detection for a MIMO passive radar system with respect to
FM illuminators of opportunity. Lastly, the simulation results under various scenarios are
presented to verify the derivations.

3.3.1 Derivation of the Probability Density Function of Null Hypoth-
esis

As direct calculation of PDF of the self ambiguity function is a daunting task, some rea-
sonable assumptions about received signals are predefined in order to arrive at a theoret-
ical model. It is assumed that the signal’s spectrum is white and the received signals are
uncorrelated. The purpose of these two assumptions is to ensure that the real components
of the signal and the imaginary component of the signal are independent. Furthermore,
the transmitting signal and channel noise are independent of each other.

As discussed in Chapter 2, the power spectrum can be calculated by means of the ambigu-
ity function. On the other hand, the probability density may be calculated by manipulating
the spectrum density function. Thus, the probability density can be analysed by using the
ambiguity function. The received signal without any target may be represented as:

R(k) =|
N f−1

∑
t=0

x(t)exp
(
− j2πkt

N f

)
|2 k = 0,1, ...,N f −1 (3.37)

Using the same definitions as the Discrete Fourier Transform (DFT) [4], N f denotes the
block size of transform or it refers to the number of Fourier frequencies. The symbol
of x(t) signifies the relating signal, here equalling sd (t− τ)y(t), where the symbol of
sd (t) denotes the direct transmitting signal and y(t) is the received signal without target
(y(t) = sd (t)+w(t)). j is the imaginary unit

(
j2 =−1

)
.

The complex variable x(t) may be expanded as [69]:

x(t) = xi (t)+ j ∗ xq (t) (3.38)

It is well known that exp
(
− j2πkt

N f

)
= cos

(
−2πkt

N f

)
+ j sin

(
−2πkt

N f

)
. Thus, rearranging Eqn.

3.37 and Eqn. 3.38, yields:

R(k) =|
N f−1

∑
t=0

(
xi (t)cos

(
2πkt
N f

)
+ xq (t)sin

(
2πkt
N f

))

+ j
N f−1

∑
t=0

(
xq (t)cos

(
2πkt
N f

)
− xi (t)sin

(
2πkt
N f

))
|2 (3.39)

The symbols of A(k) and B(k) denote the real and imaginary components, respectively,
thus R(k) = A(k)2 +B(k)2.
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As is stated by the central limit theorem, a sufficiently large number of independent ran-
dom variables, each with finite mean and variance, can be approximately modelled as
normally distributed random variables [10]. A(k) and B(k) are Gaussian distributed ran-
dom variables with zero mean, as claimed in work [69] by Shan (2007). Since both A(k)

and B(k) are long enough, if A(k) and B(k) can be proved to be independent, then
√

R(k)

is a Gaussian distribution. The correlation of A(k)and B(k) can be expressed as:

corr (A(k) ,B(k)) = E (A(k) ,B(k))

E
N f−1

∑
t=0

(
xi (t)cos

(
2πkt
N f

)
+ xq (t)sin

(
2πkt
N f

))

×
N f−1

∑
t=0

(
xq (t)cos

(
2πkt
N f

)
− xi (t)sin

(
2πkt
N f

))
(3.40)

Under the condition k = 0,1, ...,N f −1, the above equation equals zero [69]. Thus
√

R(t)

is the Gaussian distributed random variable with zero mean. Since the variance of A(k)

and B(k) may be calculated as:

σA(k) ∼ N

0,σ2

√√√√N f−1

∑
t=0

2cos2
(

2πkt
N f

)+N

0,σ2

√√√√N f−1

∑
t=0

2sin2
(

2πkt
N f

) (3.41)

σB(k) ∼ N

0,σ2

√√√√N f−1

∑
t=0

2cos2
(

2πkt
N f

)+N

0,σ2

√√√√N f−1

∑
t=0

2sin2
(

2πkt
N f

) (3.42)

N
(
µ,σ2) indicates the Gaussian distribution random variable with mean µ and variance

σ2. According to the central limited theorem [36][37], the mean and variance of the
new generated Gaussian distribution random variable are the sum of each independent
Gaussian random variable

(
µ = µ0 +µ1 + ...+µN,σ

2 = σ2
0 +σ2

1 + ...+σ2
N,

)
. Thus the

above equations can be further deduced as:

σA(k) ∼ N
(
0,σ2√2N f

)
(3.43)

σB(k) ∼ N
(
0,σ2√2N f

)
(3.44)

The accuracy of these derivations is verified in Fig 3.14, in which a standard normal
distribution x(t) is implemented and the block size of DFT varies from 512 to 2560. It is
evident that there is good agreement between analysis and simulation results.
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Figure 3.14: The accuracy of derivations.

Under the above agreement, the PDF of the received signal by normalising A(k) and
B(k) as standard normal distribution random variables may be derived, since it is well
known that the sum of the squared standard normal distribution random variables can be
modelled as chi-square random variables. Scaling A(k) and B(k) by the factor 1

σ2
√

2N f
,

1
σ2
√

2N f
A(k) and 1

σ2
√

2N f
B(k), standard normal random variables then become(

1
σ2
√

2N f
A(k) , 1

σ2
√

2N f
B(k)∼ N (0,1)

)
. Consequently, the PDF of the squared received

signal is a chi-square random variable with two degrees of freedom.

1
2N f σ4 | χ (τ, fd) |2=

1
2N f σ4 R(k)∼ χ

2
2 (3.45)

where | χ (τ, fd) |2 is the ambiguity function of the received signal. fd is the Doppler
frequency, which is replaced by k in the DFT term.

In the case of a MIMO passive radar system under null hypothesis, the above derivation
can be extended in a straightforward manner:

H0 : χ
2
2MN (3.46)

where M and N are the number of transmit antennas and receive antennas, respectively.
The degrees of freedom for the chi-square distribution in the case of MIMO passive radar
system are consequently extended from 2 to 2MN.
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Consequently, given a probability of false alarm for a MIMO passive radar system, a
similar threshold as that of the MIMO radar system may be achieved, which takes the
form of:

γpassive =
σ2

p

2
F−1

χ2
2MN

(
1−Pf a

)
(3.47)

It should be noted that the variance of the MIMO passive radar σ2
p is different from that

of MIMO radar systems discussed in the previous sections.

3.3.2 Probability Density in the Presence of a Target

Unlike received signals without a target, the received signal for a MIMO passive radar
system under the alternative hypothesis may be expressed as:

y(t) = sd (t)+ sr (t)+w(t) (3.48)

where sd (t) and w(t), the same as the case without a target, refer to the direct signal and
channel noise. The difference from the only noise case is brought by the reflected signal
by a target, which is denoted as sr (t) in Eqn. 3.48.

In order to formulate the probability density of the received signal with a target for the
MIMO passive radar system, substituting Eqn. 3.48 into 3.37, yields:

R(k) =|
N f−1

∑
t=0

y(t)sd (t− τ)exp
(
− j2πkt

N f

)
|2 k = 0,1, ...,N f −1 (3.49)

A close look at Eqn.3.49 and Eqn. 3.37 shows that the only difference is the inner term
sr (t), therefore, the Eqn.3.49 may be deduced as:

√
R(k) = A(k)+B(k)+

N f−1

∑
t=0

sr (t)sd (t− τ)exp
(
− j2πkt

N f

)
(3.50)

√
R(k)≈ A(k)+B(k)+2ασ

2N f (3.51)

where the symbol of α is the complex amplitude of the reflected signal. Consequently, σ2
α

denotes the reflected power of the target of interest, which is very small compared with
the direct signal in practice. Given the normalised A(k) and B(k), if we square

√
R(k),

it will lead to a summation of the squared independent non-zero mean Gaussian random
variables, which are referred to as non-central chi-square distribution random variables
[69].

In order to compute the non-central parameter, the non-zero mean or the constant needs
need to computed first [5]. As analysed before, the symbols of A(k) and B(k) denote the
real and imaginary parts, respectively. Thus, the received signals may be expressed as:
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R(k) =
(
A(k)+2ασ

2N f
)2

+B(k)2 (3.52)

Then, the constant is given as 4α2σ4N2
f . As obtained from Eqn. 3.43 and Eqn. 3.44, the

variance of R(k) is 2σ4N f . Therefore, the non-central coefficient is given as [5]:

λ =
4α2σ4N2

f

2σ4N f
= 2α

2N f (3.53)

In practice, instead of single sample processing in one block, multiple samples are em-
ployed to improve the performance of the system. Assuming the sampling frequency fs,
which denotes the bandwidth in the FM system, and the observation time T , which also
indicates the integral time, the above equation may be adjusted as:

λ = 2α
2 fsT (3.54)

where the product of fsT reveals the total processing samples in the time length T .

In the case of MIMO passive radar systems, the degrees of freedom increase from 2
to 2MN. Consequently, the non-central parameter for the MIMO passive radar system
becomes:

λMIMO = 2α
2 fsT MN (3.55)

The standard form of the non-central chi-square distribution random variables for MIMO
passive radar systems may be expressed correspondingly as [5]:

fx (x;2MN;λMIMO) =
1
2

exp−(x+λMIMO)/2
(

x
λMIMO

)2MN/4−1/2

I
2MN/2−1

(√
λMIMOx

)
(3.56)

The mean and variance of such non-central chi-square random variables are of the form:

µ = 2MN +2α
2 fsT MN (3.57)

σ
2 = 2

(
2MN +2×2α

2 fsT MN
)

(3.58)

The alternative hypothesis of MIMO passive radar systems may be calculated as:

H1 :

(
E

2M
+

σ2
p

2

)
χ

2
non(2MN) (3.59)

where the symbol of E is total transmitting power and χ2
non(2MN) denotes the non-central

chi-square distribution random variables with 2MN degrees of freedom.
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Therefore, the probability of detection for a MIMO passive radar system based on the FM
broadcasting signals subject to the probability of false alarm is given as:

pd = 1−F
χ2

non(2MN)

(
σ2

p
E
M +σ2

p

)(
F−1

χ2
2MN

(
1−Pf a

))
(3.60)

Generally, the closed-form solution for these complex mathematical calculations does not
exist. Some empirical approximations exist for the manual calculation though [16]. One
popular example of this is the Albersheim equations [59].

3.3.3 Detection Performance of MIMO passive radar systems based
on FM waveform

In this section, the detection performance of MIMO passive radar systems is investigated.
Considering the practical environment, the carrier frequencies of commercial FM sound-
broadcasting band are allocated between 87.5 MHz and 108 MHz, and there are 204 chan-
nels, each of 100 KHz bandwidth. Thus, throughout this section, the sampling frequency
is assumed to be 100 KHz ( fs = 100,000Hz).

The impact on the reflected or scattering power is illustrated in Fig. 3.15. A four by four
MIMO radar system is implemented, which means that there are four transmit antennas
and four receive antennas. The integral time is 1 second and the probability of false alarm
is millionth

(
Pf a = 1×10−6). The values of scattering power to the directed signal ratio

in this example are -46 dB, -50 dB, -60 dB, and -70 dB, respectively. It is interesting to
notice that the impact of the reflected power is descending when the values of power are
decreasing. In fact, the detection performance plot will be approximately overlapped even
when lower scatter power than -70 dB is engaged, which raises an issue relating to the
minimum detectable scattering power. In practice, signals are buried in the noise, which
are sometimes not detectable since their powers are too small, which brings a trade-off
study between the product of time-bandwidth ( fsT ) and the number of antennas. It is
obvious that a bigger number of antennas can produce more angular diversity, or spatial
diversity, as discussed in previous sections. Conversely, increasing the product of time-
bandwidth is another solution. Normally, the sampling rate or the bandwidth for FM
broadcasting is fixed in each country. Thus, the detection performance of such a passive
radar system in respect of minimum detectable signals may be improved by extending the
integral or observation time length.

In Fig. 3.16 below, the detection performance of a MIMO passive radar system with
regard to different integral time is demonstrated. In contrast to the above case, a 2 by 2
MIMO passive radar system is implemented here. The probability of the false alarm rate is
the same as in the last example

(
Pf a = 1×10−6). The value of the SNR is set at 5 dB, and

the values of Reflected to Direct signal power Ratio (RDR) vary from -55 dB to -35 dB.
The integral times are 0.5 sec, 1 sec, and 2 sec, respectively. As expected, the detectable
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Figure 3.15: Detection performance against different reflected power.

range of a MIMO passive radar system may be significantly extended by exploiting more
observation time. However, it should also be noted that the detection efficiency can-not
be improved by extending integral time. It is inevitable, from Fig. 3.16, that curvature is
affected by different integral time.

The ROC plot is depicted in Fig. 3.17, two different MIMO passive radar systems are
engaged, in which one is a 3 by 3 MIMO passive radar system and another one is a 5 by
5 MIMO passive radar system. The values of SNR are qualified at 5 dB and 10 dB and
the reflected to direct signal noise ratio is fixed at -50 dB for both systems. Based on the
above analysis, the detection performance of MIMO passive radar systems is a function
of the product of time-bandwidth, SNR, RDR, and the number of antennas.
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3.4 Summary

In this chapter, the detection performance in respect of stationary targets of a novel multi-
ple antennas radar system, namely, a MIMO radar system, was examined. The detection
performance of various MIMO radar systems was analysed and simulated. The closed-
form expression for the probability of detection was computed and verified by simulation
results.

Firstly, in order to achieve a better understanding of such a MIMO radar system, a com-
parison was presented between MIMO radar systems and phased array radar systems. In
addition, the comparison included a hybrid system between MIMO radar systems and
phased array radar systems, namely, MISO radar system.

Secondly, the robustness of MIMO radar systems to clutter was investigated. By com-
paring these results with those relating to phased array radar systems, it was found that
MIMO radar systems are more sensitive to the change of parameters, such as SCR, SNR,
and the number of antennas. The same increment of SNR or SCR may produce more
processing gain to a MIMO radar system than that of a phased array radar system.

Thirdly, due to bandwidth limitations, a more practical distributed MIMO radar system
was proposed. In this sub-optimal scheme, only part of the decision message instead of
all the decision messages was sent to the fusion center to meet the low-bandwidth require-
ment. Three classical distributed algorithms were applied to MIMO radar systems, which
were OR rule, AND rule, and MAJ rule, respectively. Simulation results shows that, as the
most commonly used in the literature and practice, OR rule sub-optimal scheme performs
better that those of the other two sub-optimal scenarios.

Lastly, since passive radar systems attract considerable attention due to its low hardware
cost, covert operation, robustness against stealth, etc by exploiting non-cooperative il-
luminators of opportunity, a MIMO passive radar system based on FM waveform was
proposed. By using Neyman-Pearson hypothesis, an optimal receiver for the MIMO pas-
sive radar was developed. The detection performance as a function of various parameters
was presented.
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Chapter 4

Detection of Moving Targets

In practice, radar researchers are more interested in detecting and tracking moving tar-
gets than stationary targets, such as buildings, tree, mountains, etc. This chapter thus
addresses detection performance issues of MIMO radar systems in respect of moving
targets. As discussed above, Doppler shift is the standard velocity measurement of mov-
ing targets. Therefore, this chapter begins by presenting Doppler frequency calculations
for MIMO radar systems. It should be noted that the targets and antennas are assumed
to perform in the same dimension, which means that the velocities of targets are sim-
ply 2-dimensional. As stated in the previous chapters, the principle of radar detection
is to induce and summarise the relationship between the probability of false alarm, the
threshold, and the probability of detection. The probability of false alarm as a function of
threshold is thus analysed. Some results are plotted in respect of the probability of false
alarm versus the threshold. The probability of detecting moving targets of MIMO radar
systems is then examined. Both simulation and analysis results under various scenarios
are presented.

4.1 Doppler Frequency Calculation for a MIMO Radar
System

In Chapter 2, a simple Doppler shift relationship for a bistatic radar system was described.
It was found that, as a means of measuring the change in velocity, the Doppler frequency
for a bistatic radar system lies on the projected velocity component of the target along the
bistatic bisector. It is well known that the Doppler frequency caused by the moving targets
is responsible for performance variances in a radar system. As this chapter aims to predict
the detection performance for the moving targets of a MIMO radar system, therefore,
in this section, the Doppler relationship study is extended into a more complex radar
system, which is made up of multiple transmit antennas and multiple receive antennas.
As in Chapter 2, however, the Doppler frequency calculation is restricted to the stationary
transmit and receive antennas, while moving targets are employed.
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Without loss of generality, a MIMO radar system with M transmit antennas and N receive
antennas is employed. These were placed wide apart, as in [30]. Advocated by Willis
(1995) in [74], a well-known understanding of the Doppler shift of a bistatic radar con-
figuration is the time rate or change of the total path length of the scattered signal. In the
case of a MIMO radar system, the same principle is employed. The Doppler frequency
is extended to a summation from different transmit-receive antenna pairs. For example,
as shown in Fig. 4.1, for a MIMO radar system of two transmit antennas and two receive
antennas, the total Doppler frequency is a summation of four different antenna pairs.

Figure 4.1: The moving target scheme of a MIMO radar system.

As discussed in Chapter 2, in the case of stationary transmit and receive antennas, the
Doppler frequency can be determined by the projected velocity component of the target
along the bistatic bisector. Thus, the Doppler frequency for the 2-dimensional velocity
may be calculated as:

fD =
|V |

λ
cosθ (4.1)

where |V | denotes the amplitude of velocity, the symbol of θ signifies the moving direc-
tion, and λ represents the wavelength, which may be expressed as:

λ =
c
fc

(4.2)

The symbol of c is the speed of light and fc stands for the carrier frequency.

Now, two special cases to demonstrate the Doppler frequency relationship for a MIMO
radar system are examined. In the first case, a target is traveling at a constant speed with
uniformly varying direction, whereas in the second case, a target is traveling in a constant
direction at various velocities. A simple scheme with two transmit antennas and a single
receive antenna is employed. In the first case of constant speed (|V |= 200(m/s)), the di-
rection with respect to the first transmit-receive pair varies uniformly from 0 to 90 degrees,
whereas, the direction with respect to the second transmit-receive pair varies uniformly
from −90 to 0 degrees. In the second case of constant direction (θ1 = 60o,θ2 = 30o), the
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velocity varies uniformly from 100 m/s to 200 m/s. The relating Doppler shift relationship
is illustrated below:
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Figure 4.2: The Doppler shift relationship for a two by one MIMO radar system.

In Fig. 4.2, the carrier frequency is set at 1 GHz. As shown in Fig. 4.2, the Doppler effect
is bigger when the moving speed is larger and the Doppler frequency is determined by
the projected velocity component of the moving targets along the x-axis. In the case of
3-dimensional velocity, as discussed in Chapter 2, another parameter, namely, the angle
difference between transmit and receive antennas, needs to be introduced to demonstrate
the relatively 3-dimensional motion between objects and antennas.

4.2 Detection of Moving Targets

The Neyman-Pearson criterion is typically employed in radar detection to derive expres-
sions for the probability of false alarm, the threshold, and the probability of detection,
which is the most powerful test specifies a procedure to test an alternative hypothesis
against a null hypothesis. When this is incorporated into radar detection problems, the
probability of detection can be maximised by using the Neyman-Pearson test for a given
probability of false alarm less than or equal to a particular value. The Neyman-Pearson
hypothesis will thus be implemented in detecting moving targets and to analyse the inter-
nal relationship between the probability of false alarm, the threshold, and the probability
of detection.
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The probability of false alarm for a MIMO radar system is calculated in Subsection 4.2.1.
In Subsection 4.2.2, the detection performance of moving targets for a MIMO radar sys-
tem is mathematically demonstrated. Necessary derivations are provided. Lastly, in Sub-
section 4.2.3, the detection performance under various scenarios of moving targets for
MIMO radar systems is presented.

4.2.1 The Probability of False Alarm

Signals processed by radars are inherently corrupted by unwanted clutter and system ther-
mal noise. With respect to moving targets, the echo signals returned from the target of
interest are thus impaired by the interference caused by the Doppler shift. The basis of
distinguishing targets from other reference objects is to choose wisely when setting a fixed
amplitude threshold level, which is required to be greater than noise mean level, while,
conversely, also being less than the expected magnitude of the returned signal. Conse-
quently, any signal, whose amplitude is over the threshold, will be claimed as a detected
target. As stated before, however, it is possible that a noise peak will be greater than the
threshold, thus leading to a false detection, which is referred to as a false alarm. The ratio
of the number of false alarms over the total number of samples is known as the probability
of false alarm.

Under the null hypothesis, the received signals are noises only, and they may be expressed
as:

H0 : w(t) (4.3)

Without loss of generality, the noise is modelled by means of identically distributed zero-
mean Gaussian random variables with variance σ2

w, as in previous chapters. In the case
of multiple antennas, w(t) is the sum of a number (MN) of identically distributed Gaus-
sian variables, where M is the number of transmit antennas and the symbol of N sig-
nifies the number of receive antennas. As assumed before, samples are independent.
Therefore, w(t) may be modelled as zero-mean Gaussian random variables with MN

variance
(
w(t)∼ N

(
0,σ2

wIMN
))

, where IMN is the identity matrix with size MN by MN
(MN×MN).

In the case of MIMO radar systems, the distribution of the test statistic may be represented
in the following manner:

H0 :
σ2

w
2

χ
2
2MN (4.4)

where the symbol of χ2
2MN denotes the chi-square distribution with 2MN degrees of free-

dom. The Probability of Density Function (PDF) is of the form:

p
χ2

2MN
=

1
2MNΓ(MN)

xMN−1 exp−x/2 (4.5)
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where Γ(.) denotes the Gamma function.

Thus, with regarding toThe ROC plot as a function of range is represented in Fig. 4.11.
Not surprisingly, more SNR is needed to realize a high quality. In this simulation example,
the range is thus fixed at 2.5× 108 m. the MIMO radar system, the probability of false
alarm as a function of the threshold may be given as:

Pf a = F
(

σ2
wχ2

2MN
2

> γMIMO

)
(4.6)

The symbol of F (.) signifies the cumulative distribution function. Consequently, the
threshold given the probability of false alarm may be expressed as:

γMIMO =
σ2

w
2

F−1
χ2

2MN

(
1−Pf a

)
(4.7)

where F−1 (.) means the inverse CDF.

In the case of phased array radars, the corresponding distribution of the test statistic is of
the form:

H0 :
σ2

wN
2

χ
2
2 (4.8)

where the degrees of freedom of the chi-square distribution are reduced from 2MN to 2.

Consequently, the PDF of the chi-square distribution in the case of phased array radars
may be deduced as:

p
χ2

2
=

1
2Γ(1)

exp−x/2 (4.9)

The corresponding probability of false alarm as a function of the threshold is given as:

Pf a = F
(

σ2
wNχ2

2
2

> γarray

)
(4.10)

Therefore, the threshold is in the form of:

γarray =
σ2

wN
2

F−1
χ2

2

(
1−Pf a

)
(4.11)

Compared with MIMO radar configurations, the degrees of freedom for the chi-square
distribution are reduced from 2MN to 2. Conversely, the variance of noise varies from σ2

w

to σ2
wN, where N is the number of receive antennas.

Lastly, with respect to MISO radar systems, a hybrid of MIMO and phased array radar
systems, the corresponding distribution of the test statistic may be expressed in the fol-
lowing manner:

H0 :
σ2

wN
2

χ
2
2M (4.12)
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The corresponding PDF of chi-square distribution for MISO radar systems may be ex-
pressed as:

p
χ2

2M
=

1
2MΓ(M)

xM−1 exp−x/2 (4.13)

The degrees of freedom for the MISO radar scheme are M, which means that it lies be-
tween MIMO and phased array radar systems.

Thus, the CDF of the probability of false alarm as a function of the threshold is of the
form:

Pf a = F
(

σ2
wNχ2

2M
2

> γMISO

)
(4.14)

Consequently, the threshold of MISO radar systems given a certain probability of false
alarm is of the form:

γMISO =
σ2

wN
2

F−1
χ2

2M

(
1−Pf a

)
(4.15)

As a hybrid of MIMO and phased array radar system, the degrees of freedom for the chi-
square distribution are M. Conversely, the variance of noise is extended to σ2

wN, which is
the same as in phased array radar systems.

The probability of false alarm as a function of the threshold for MIMO MISO and phased
array radar systems is depicted in Fig. 4.3. The number of transmit and receive antennas
are 2 and 3, respectively. Compared with MISO and phased array radar systems, in order
to achieve the same probability of false alarm, the threshold of MIMO radar systems must
be relatively lower, which shows the potential of MIMO radar system in terms of detection
issues. The probability of false alarm versus the threshold for a MIMO radar system with
various numbers of antennas is charted in Fig. 4.4. As expected, when the number of
antennas is incrementally increased it also increases the degrees of freedom of chi-square
distribution, and then there are higher requirements with regard to the threshold level. The
systems engaged are 2by2, 2by3, and 3by3, respectively.
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Figure 4.3: The probability of false alarm vs threshold.
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4.2.2 Detection Performance of Moving Targets

In the radar receiver, if the power of the received signals is greater than a certain threshold,
the system will declare that a target has been detected. In Chapter 3, the detection perfor-
mance for MIMO radar systems is analysed and examined in respect of stationary targets.
The situation in respect of stationary targets is ideal, as the signal is perfectly known by
receiver. In practice, however, targets are more likely to be moving. This creates issues
with regard to the detection of signals with unknown parameters. The detection of moving
targets with unknown velocity may also be included in this category.

In terms of the Neyman-Pearson test, under the alternative hypothesis, the received signals
consist of targets and noise, which may be expressed in the following manner:

H1 :

√
E
M

αs(t− τ)+w(t) (4.16)

Using the same definitions as in Chapter 3, symbols of E, M, and W (t) denote the total
transmit power, the number of transmit antennas, and system noise, respectively. In the
case of Swerling I fluctuating targets, α may be modelled as identically distributed zero-
mean complex Gaussian random variables

(
α ∼CN

(
0,σ2IMN

))
. With respect to the

non-fluctuating targets, the signal amplitude Am may be represented as a function of SNR
[27]:

Am =
√

2σ2
wSNR (4.17)

where σ2
w is the variance of noise.

In the case of stationary targets, as discussed in Chapter 3, the orthogonal transmit signals
s(t) are of the form:

∫ T

0
si (t)s∗j (t)dt = δi j =

0 i 6= j

1 i = j
(4.18)

As is well known, the optimal receiver calculates the probability of detection by compar-
ing the above statistic with the threshold. If the threshold is exceeded, the system will
declare that a target has been detected, otherwise, it will declare that no target has been
detected.

In practice, a radar waveform consists of two parts. The first part is a sinusoidal wave
carrier with a certain frequency and amplitude according to different radar applications.
The second part refers to the modulations used, such as amplitude modulation, frequency
modulation, and phase modulation. A typical radar signal may be written as:

s(t) = Am (t)cos(2π fct +θ) (4.19)

where the symbol of fc indicates the carrier frequency. θ is the initial phase, which is
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uniformly distributed over [0,2π] and independent from signal to signal. The symbol of
Am (t) denotes the amplitude of the signal, in the case of Swerling I fluctuating targets,
which may be modelled as complex Gaussian distribution random variables, whereas,
non-fluctuating targets, can be calculated by using a given SNR

(
Am =

√
2σ2

wSNR
)

.
Therefore, the probability of detection in respect of the unknown initial phase for a radar
system may be calculated by averaging over the initial phase θ .

In the case of moving targets, the signal may be rewritten as:

s(t) = Am (t)cos(2π fst +2π fdt +θ) (4.20)

where the Doppler frequency is denoted by the symbol fd .

If the Doppler frequency and initial phase are known at the receiver and if they remain
constant during the observation time, then the factor cos(2π fst +2π fdt +θ) will be a
constant, which may be simply denoted by the symbol Con. The detection issues in respect
of this example may be calculated by combining Eqn. 3.10, Eqn. 3.17, and Eqn. 3.21
with factor Con. Consequently, the probability of detection for MIMO, phased array, and
MISO radar systems may be expressed in the following manners:

Pd(MIMO) = 1−F
χ2

2MN

((
σ2

w
EC2

on
M σ2

α +σ2
w

)
F−1

χ2
2MN

(
1−Pf a

))
(4.21)

Pd(array) = 1−F
χ2

2

(
σ2

w
σ2

w +EC2
onMNσ2

α

F−1
χ2

2

(
1−Pf a

))
(4.22)

Pd(MISO) = 1−F
χ2

2M

(
σ2

w

σ2
w +

EC2
onNσ2

α

M

F−1
χ2

2M

(
1−Pf a

))
(4.23)

If the parameters of the Doppler frequency and initial phase are not known for the receiver,
the probability of detection may be computed by means of two steps. The unknown
initial phase θ may be averaged over 2π . The result may be further averaged over the
incremental phase caused by the unknown Doppler frequency ϕ = 2π fdT . As indicated in
the definition of the probability of detection, a target will be detected if the received power
is greater than a certain threshold. In the case of MIMO radar systems, the probability of
detection may be represented as:

Pd(MIMO) =
∫

∞

T h

∫ 2π

0
p
(
H2

1 | θ
)

(4.24)

The symbol of p
(
H2

1 | θ
)

signifies the PDF of test statistic in the favour of alternative
hypothesis under the condition of θ . The closed-form solutions do not exist for such
integrals. Some approximations may be found in [11][17][21][59].

With respect to a moving target without constant moving speed, it is mere to acquire
the instantaneous values of the Doppler frequency and phase of signals. Thus, here, we
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propose a cumulative detection measurement for moving targets based on the average
velocity and observation time.

As is well known, for a radar system, one can obtain SNR as a function of range and RCS
by manipulating the radar range equation. Given a target, since the RCS of the target
is fixed, the values of SNR vary correspondingly for different locations of the target of
interest. Keeping this in mind, thus, as an intermediary, SNR may be calculated by using
the effective range. The probability of detection as a function of the target’s range can be
further calculated by the values of SNR.

Serving as a theoretical study, a simple scheme is implemented in this work. Each
transmit-receive antenna pair is assumed to be an independent bistatic radar, and each
pair experiences the same coefficient, such as transmitting antenna power gain, receiv-
ing antenna power gain, received peak power, transmitted peak power, etc. For a bistatic
radar system, the range measurement is defined as the product of transmitter-to-target
range and receiver-to-target range. Furthermore, it is assumed that compared with the
distance among antennas, the traveling distance of moving targets is big enough to re-
move the effects of space between the antennas, which means that the change of range
may be computed by the product of velocity and observation time.

A well-known range equation for the bistatic radar may be expressed in the form of:

SNR =
PT GT GRλ 2σBF2

T F2
R

(4π)3 kTsBnκ2LT LR
(4.25)

Table 4.1: Definitions.
PT transmitted power
GT transmit antenna power gain
GR receive antenna power gain
λ transmitted wavelength
σB radar cross section
FT propagation parameter for transmitter-target path
FR propagation parameter for receiver-target path
k Boltzmann’s constant, 1.3807×10−23JK−1

Ts receiver noise temperature
Bn receiver noise bandwidth
κ range product
LT transmit system losses
LR receive system losses

The Boltzmann constant is the physical constant, which indicate energy at the individual
particle level when the temperature is observed at the collective or bulk level.

A reduced range equation of bistatic radar system is expressed in the following manner:

SNR =
PT GT GRc2σB

(4π)3 f 2
c κ2

(4.26)
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where c denotes the speed of light and fc indicates the carrier frequency. With regard
to the effect of the Doppler frequency, the carrier frequency may be calculated as fc =

fc + fd . The rest remaining parameters are the same as defined above.

It is assumed that the range difference for a bistatic radar system may be simply computed
by the product of average moving speed and observation. Thus, the above equation may
be further rewritten as:

SNR =
PT GT GRλ 2σBF2

T F2
R

(4π)3 kTsBn (V T )2 LT LR
(4.27)

In the case of multiple antennas, each transmit-receive pair is independent from others.
Therefore, the total SNR is a summation of the independent transmit-receive pairs. The
corresponding probability of detection may be calculated by using Eqn. 3.10, Eqn. 3.17,
and Eqn. 3.21. The simulation results will be presented in the next section.

4.2.3 Monte Carlo Simulations

The detection performance of moving targets for multiple antennas radar systems will be
examined in this section. The detection performance of instantaneous Doppler frequency
is examined first, and thereafter the cumulative probability of detection for moving targets.

The main involved parameters in the first part are listed as following:

Table 4.2: Simulation parameters.
M number of transmit antennas 2
N number of receive antennas 2

SNR signal to noise ratio -5~20dB
V velocity 100m/s
Fc carrier frequency 10GHz
θ the initial phase π/18
c speed of light 3×108m/s

Pf a the probability of false alarm 1×10−6

θi moving direction θi =
i

MN π

Fr Pulse Repetition Frequency (PRF) 1MHz

Without indicating on the simulation plots, the default parameters are listed above.

The probability of detection for various multiple antennas radar systems is illustrated in
Fig. 4.5. The Doppler frequency may be calculated by manipulating Eqn. 4.1. It should
be noted that the absolute value of Doppler frequency is implemented in this dissertation.
The meaning of positive and negative values of Doppler frequency indicate the moving
direction, thus, it will not affect the detection performance. It can be seen from Fig. 4.5
that there is good agreement between the simulation results and the theoretical results.
As expected, in the high SNR region, MIMO radar systems outperform the traditional
multiple antenna radar systems, namely, phased array radar systems. As a hybrid of
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MIMO and phased array radar systems, the detection performance of the MISO radar
configuration lies between MIMO and phased array radar systems.
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Figure 4.5: Detection performance of MIMO, MISO, and phased array radar systems.

The impact of diversity gain on the detection performance of MIMO radar systems is
illustrated in Fig. 4.6, which plots the detection performance of a moving target of interest
versus SNR. In this example, the MIMO and phased array radar systems are 2by2 and
4by4, respectively. It is evident, from Fig. 4.6, that the detection performance may be
significantly improved by the diversity or spatial gain provided by multiple antennas. It
may be observed that the analysis is verified by the simulation results. Additionally, for
high quality service, for instance, the required probability of detection is above ninety
percent, which means that MIMO radars are better than phased array radar systems under
such circumstances.

The comparative study between static and moving targets for a MIMO radar systems is
conducted in Fig. 4.7. Besides default parameters, the comparison is performed between
two MIMO radar systems, which are two by two and two by five radar systems, respec-
tively. The initial phase is defined as π/6. It may be clearly observed from Fig. 4.7 that
there is a detection performance loss attributed to Doppler frequency between static and
moving targets. Take two by five MIMO radar systems as an example, there is about 1 dB
loss when the probability of detection equals 0.6.

The detection performances of various values of Doppler shift are summarised in Fig.
4.8. The Doppler frequency is normalised by the PRF, which may be expressed as fd/ fr.
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Figure 4.6: Impact of different number of antennas on the detection performance.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB), Initial phase (θ=π/6), v=100m/s.

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

2×5, static 

2×5, moving

2×2, static

2×2, moving

Figure 4.7: Comparison between static and moving targets for MIMO radar system.
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A thorough definition may be found in [13]. The total phase for the input signal varies
uniformly from 0 degree to 90 degrees in increments of 10 degrees. It can be seen that
moving targets cannot be detected even for very large SNR when the total phase is too
large, which means that each SNR is appointed a maximum detectable velocity. The
total phase is made up of two parts, as stated before, namely, the initial phase and the
contribution of Doppler frequency. Since cos(x) is mono-decreasing between 0 degree
and 90 degrees, the corresponding probability of detection is decreasing too. If the initial
phase is assumed to be zero, thus, when the phase equals to 90 degrees, the corresponding
Doppler frequency equals 250 kHz. According to Eqn. 4.1,

fd =
v
c

fs (4.28)

It may be obtained:

v = 7.5×104 (m/s) (4.29)

which means that under the above detectable speed, a greater SNR is needed to detect
faster targets.
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Figure 4.8: Detection performance on various total phase.

The ROC performance of both MIMO and phased array radar systems is ploted in Fig.
4.9, in which the relationship between the probability of detection and the probability of
false alarm is depicted. As expected, MIMO radar systems outperform phased array radar
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systems with high SNR. Conversely, though in the low SNR region, phased array radar
systems perform better than MIMO radar systems.
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Figure 4.9: ROC of MIMO and phased array radar systems.

The second part of this section presents the cumulative probability of detection for moving
targets in respect of the range change. The involved parameters are listed as following:

Similarly as the last part of this section, the default parameters will be implemented with-
out special indication.

Based on Eqn. 4.25, Fig. 4.10 demonstrates SNR as a function of range. It is well
known that the value of SNR given a target will be reduced by the increment of range.
The Fig 4.10 illustrates the internal relationship between SNR and range for a MIMO
radar system. Three different targets are engaged. The RCS for each target is 10 dBsm,
15 dBsm, and 20 dBsm, respectively. The remaining simulation parameters are listed in
Table. 4.3. It is clearly shown that the value of SNR decreases by increasing range. It is
interesting to observe that the curvatures for these three simulation results look similar,
which means that for a given radar system, the impact of range to the value of SNR is
fixed.

It should be noted that it may have many other forms in respect of radar range equations.
The aim of this dissertation is to introduce a cumulative detection method for moving
targets based on the average moving speed due to the fact that it is difficult to know
instantaneous details of moving targets. For instance, the time-bandwidth product and
Doppler processing may also bring extra gain to a radar system. In this work, it is thus
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Table 4.3: Simulation parameters.
M number of transmit antennas 2
N number of receive antennas 2
Pt transmitted power 30 dBW
Gt transmit antenna gain 30 dB
Gr receive antenna gain 30 dB

RCS radar cross section 10, 15, 20 dBsm
v̄ average speed of target 100 m/s
c speed of light 3×108 m/s

Pf a the probability of false alarm 1×10−6

k maximum range 9×107m
Fc carrier frequency 10 GHz
Ft transmit path propagation factor -5 dB
Fr receive path propagation factor -5 dB
Bo boltzmann constant 1.3807×10−23JK−1

Bn bandwidth of noise 6MHz
Ts receive temperature 300
Lt transmit loss 1 dB
Lr receive loss 1 dB

assumed that transmit and receive gains (GT ,GR) include other potential gains. On the
other hand, transmit and receive loss (LT ,LR) also include other potential system loss.

The corresponding detection performances in respect of these three targets with different
SCR are presented in Fig 4.11. For a given moving target, if it moves towards the radar
observers, after a certain observation time, the detectable probability will be significantly
enhanced. Conversely, if a target travels away from the radar, the probability of detection
will be impaired.

The last figure shows the cumulative detection results for various MIMO radar systems.
As is shown in Fig. 4.12, the MIMO radar systems are two by two, three by two, and three
by three, respectively. It may be clearly observed that the detection performance may be
significantly improved by spatial diverity. The target with 15 dBsm RCS is implemented
in this example. The rest values of simulation parameters could be found in Table. 4.3.
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Figure 4.10: SNR calculation by range.
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Figure 4.11: Detection performance versus range.
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Figure 4.12: Cumulative detection with various numbers of antennas.

4.3 Summary

A study in respect of the detection of stationary targets by using MIMO radar systems
was carried out in the previous chapter. Unlike the case of moving targets, the detection
of stationary targets requires the receiver to know accurately the signal information. In
practice, however, this may not be the case. Consequently, in this chapter, we examined
the detection performance in respect of moving targets of MIMO, MISO, and phased array
radar systems. In the case of moving targets, it is assumed that the phase is unknown, and
this is affected by the initial phase and Doppler shift caused by the motion of targets. The
analysis was verified by the simulation results. It may be observed that there is a good
agreement between theoretical results and simulation results.

Based on the radar range equation, the cumulative probability of detection in respect of
moving targets was calculated. This is influenced by the fact that it is more difficult to
detect or track far objects than ones that are close to the observer. A long distance will
decrease SNR. Consequently, this will impair the probability of detection. It should be
noted that, given the theoretical study herein, the system model proposed in this disser-
tation is very simple. It is assumed that the distance between antennas compared with
the travel distance of moving targets is too small to be neglected. In the future, a more
realistic scheme would need to be explored.
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Chapter 5

Conclusions

The MIMO technique can efficiently increase the capacity and reduce the fading of a
channel in a wireless communication system. Recently, motivated by the development of
MIMO techniques in the field of wireless communication, the concept of MIMO has been
applied in the radar context to handle a similar issue, the variations in the returned signal
power from different aspects of a target of interest. It is well know that those variations
are responsible for impairing the detection and estimation performance of a radar system.
A MIMO radar system can achieve better understanding or estimation of a target’s RCS
by observing it from various angles. Consequently, the detection and estimation of a
radar system may be significantly improved by exploiting the angular or spatial diversity
of targets. The basis of MIMO radar systems is widely separated antennas to assure
angular or spatial diversity. This dissertation has been devoted to studying the detection
performance of such a novel multiple-antenna radar system, which can be divided into
two parts, viz. the detection of stationary targets and the detection of moving targets.

Chapter 2 introduces the background relating to the use of radar systems for detection of
targets. The relevant theories and concepts in terms of Doppler frequency, matched filter
and the ambiguity function have been summarised. The Doppler frequency relationship
for a bistatic radar has been described, and the Doppler frequency calculation for a practi-
cal environment has been presented. The matched filter theory and the ambiguity function
theory have been implemented to compute the probability of detection and to study the
ambiguity property of FM waveform, respectively. Additionally, a critique is provided of
the important literature relating to detection study and various MIMO radar mechanisms.

In Chapter 3, the detection performance of stationary targets for the MIMO radar sys-
tems has been examined. This chapter started with the detection performance of station-
ary targets in the white Gaussian noise. In order to gain a better understanding of this
novel multiple-antenna radar system, a comparison study between MIMO radar systems
and conventional phased array radar systems is presented to demonstrate their respective
properties. In addition, the comparison, including a hybrid of MIMO and phased array
radar systems, known as a MISO radar system, has also been presented. It has been found
that in the high SNR region, the detection performance of a MIMO radar system is bet-
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ter than that of a phased array radar system, while in the low SNR region, in contrast,
the phased array radar system delivers better detection performance. Based on that, we
can conclude that the MIMO radar system is better at detecting or tracking bigger tar-
gets, whereas the phased array radar system has advantages in detecting smaller targets.
As expected, the detection performance of MISO radar systems lies between MIMO and
phased array radar systems.

Afterwards, the robustness of MIMO radar systems to clutter has been studied. Compared
with the relevant results of phased array radar systems, it has been shown that MIMO radar
systems are able to mitigate the effects of clutter. It is evident from the results obtained
in this study that MIMO radar systems are more sensitive to the changes of parameters
than those of the phased array radar systems, which may be attributed to the degrees of
freedom of the chi-square distribution random variables. It has been deduced that the
degrees of freedom for the MIMO and phased array radar systems are 2MN and 2, where
M and N are the number of transmit antennas and receive antennas, respectively.

A more practical distributed MIMO radar system has been proposed with bandwidth con-
siderations. In this sub-optimal scheme, instead of all the decision messages, only part of
the decision message has been sent to the fusion center to meet the low-bandwidth require-
ment. Three well-known distributed algorithms have been adapted to the MIMO radar
context. They are the OR rule, AND rule, and MAJ rule, respectively. It is clearly ob-
served that there is a performance loss compared with the optimal MIMO radar systems.
However, considering bandwidth requirements, the sub-optimal scenarios are meaningful
configurations in practice. Additionally, as the rule most commonly used in the litera-
ture and practice, the OR rule used in the sub-optimal system delivers a better detection
performance than those of the other two sub-optimal scenarios.

Based on the FM waveform, a MIMO passive radar system has been proposed in Chap-
ter 3. By exploiting non-cooperative illuminators of opportunity, a passive radar system
attracts considerable attention due to its low hardware cost, covert operation, robustness
against stealth, etc. By using Neyman-Pearson hypothesis, an optimal receiver for the
MIMO passive radar has been developed. The closed-form equations for the probability
of false alarm, the threshold, and the probability of detection have been derived. Lastly,
the detection performance as a function of various parameters has correspondingly been
presented.

Chapter 4 investigated the detection performance of moving targets for the MIMO radar
systems. This chapter started with the Doppler frequency calculation for the MIMO radar
systems. The detection study of moving targets was examined first by taking instan-
taneous Doppler frequency into account. Thereafter, the detection study was extended
to a more complex system, including range considerations. The cumulative probability
of moving target detection for the MIMO radar systems has been derived. The results
showed that Doppler frequencies may cause a detection performance loss for a radar sys-
tem.
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Additionally, in order to assist both newcomers and current radar researchers who con-
duct detection studies of MIMO radar systems, the pertinent Matlab source codes used
throughout the dissertation may be found in the appendix.

This served as a theoretical study and, consequently, many topics relevant to the MIMO
radar systems are open in the future. Without attempting completeness, some are listed
briefly here:

• A more realistic simulation should take the full radar equation into account, which
means that different pairs of transmitters or receivers experience a different signal
to noise or signal to clutter ratio.

• We should also mention that the modelling of clutter needs to be further explored.
Many forms of clutter have symmetric (spiky) distributions, which would modify
the results obtained here.

• The trade-offs between spatial diversity and coherent processing gain should be
further explored in more detail, which means that a novel multiple-antenna radar
configuration integrating MIMO and phased array radars should be examined fur-
ther.

• As discussed in the section looking at MIMO passive radar, the trade-offs of ex-
panding the minimum detectable reflected power in respect of the product of time-
bandwidth and the number of antennas should be further explored.

• Moreover, the direct signal cancellation should be further developed for MIMO
passive radar systems in order to improve their detection range and performance.

• Furthermore, the real data should be manipulated to test the performance of this
novel multiple-antenna radar system.

• Lastly, more practical issues in relation to hardware should be addressed in the
future.
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Appendix A

Matlab Source Codes

All the Matlab source codes utilised in this research are listed here, which could be found
in attached CD. All parameters are set according to the last simulation run.

Chapter 2:

1. Doppler.m demonstrates Doppler relationship for a bistatic radar, absolute value of
Doppler frequency, and 3-D plot of Doppler frequency.

2. Detectionpdfs.m plots the PDFs relationship among the probability of detection,
the probability of false alarm, the threshold, and the probability of mis-detection
for non-fluctuated targets.

3. Matchedfilter.m is the Matlab code to compute and simulate the probability of de-
tection and the probability of mis-detection for the matched filter receiver, which
can be extended to multiple-samples straightforwardly.

4. Fmdemonstrate.m is the file to demonstrate FM signals.

5. AFofFM.m is the ambiguity function for FM signals.

Chapter 3:

1. MIMOPdperformance.m may compute and simulate the probability of detection
and the probability of mis-detection subject to the probability of false alarm for
MIMO, phased array, and MISO radar systems, which could provide various detec-
tion results in terms of different number of transmit antennas, different number of
receive antennas, various values of SNR, etc.

2. ROCdifferentSNR.m may generate 3-D ROC plots for MIMO radar systems.

3. Robustnesstoclutter.m provides comparative results for MIMO and phased array
radars with the effects of clutter, which may generate various results depending on
different values of SNR and SCR.
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4. DistribuatedMIMOradars.m embraces three classical distributed algorithms OR,
AND, and MAJ, which can offer various detection results for distributed MIMO
radar systems.

5. Varianceoffft.m tests variance assumption for the MIMO passive radar systems.

6. MIMOpassivedetection.m provides detection performance of the MIMO passive
radar systems as a function of SNR, number of antennas, integral time, etc.

Chapter 4:

1. Dopplerformultipleantennas.m reveals Doppler frequency for multiple-antennas radar
systems.

2. PfaMIMO.m represents the probability of false alarm and the threshold for MIMO,
phased array and MISO radar systems.

3. Detectionofmovingtargets.m demonstrates the detection performance of moving
targets for MIMO, phased, phased array and MISO radar systems, which can gen-
erate various detection results depending on various parameters such as number of
antennas, SNR, Doppler frequency, etc.

4. SNRvsrange.m plots the impact of range to SNR for different targets and cumulative
detection of MIMO radar based on range.
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