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Abstract

The Statistical Theory Underlying Human Genetic Linkage Analysis Based
on Quantitative Data from Extended Families

U. Galal
MSc Thesis, Department of Statistics, University of the Western Cape

Background

Traditionally in human genetic linkage analysis, extended families were only used in the
analysis of dichotomous traits, such as Disease/No Disease. For quantitative traits, anal-
yses initially focused on data from family trios (for example, mother, father, and child)
or sib-pairs. Recently however, there have been two very important developments in
genetics: It became clear that if the disease status of several generations of a family is
known and their genetic information is obtained, researchers can pinpoint which pieces of
genetic material are linked to the disease or trait. It also became evident that if a trait is
quantitative (numerical), as blood pressure or viral loads are, rather than dichotomous,
one has much more power for the same sample size. This led to the development of sta-
tistical mixed models which could incorporate all the features of the data, including the
degree of relationship between each pair of family members. This is necessary because a
parent-child pair definitely shares half their genetic material, whereas a pair of cousins
share, on average, only an eighth. The statistical methods involved here have however
been developed by geneticists, for their specific studies, so there does not seem to be a
unified and general description of the theory underlying the methods.
The aim of this dissertation is to explain in a unified and statistically comprehensive man-
ner, the theory involved in the analysis of quantitative trait genetic data from extended
families. The focus is on linkage analysis: what it is and what it aims to do. There is a
step-by-step build up to it, starting with an introduction to genetic epidemiology. This
includes an explanation of the relevant genetic terminology. There is also an application
section where an appropriate human genetic family dataset is analysed, illustrating the
methods explained in the theory sections.
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1 Introduction and Objectives

STATISTICAL MODELS: A statistical model is a formal representation of the way in

which data are thought to arise, and the features of the model dictate how questions of interest

may be stated unambiguously and how the data should be manipulated and interpreted to

address the questions. Different models embody different assumptions about how the data

arise; thus, the extent to which valid conclusions may be drawn from a particular model

rests on how relevant its assumptions are to the situation at hand . . . Formally, a statistical

model uses probability distributions to describe the mechanism believed to generate the data.

That is, responses are represented by a [sic] random variables whose probability distributions

are used to describe the chances that a response takes on different values. How responses

arise may involve many factors; thus, how one “builds”a statistical model and decides which

probability distributions are relevant requires careful consideration of the features of the

situation (Davidian, 2005:13).

Genetic studies are generally carried out to isolate and identify the genetic factor(s)

responsible for the trait under investigation. These traits are usually a disease or some

characteristic which indicates disease severity, such as blood pressure or weight. Due to

recent technological advances, genetic sequencing has become more viable and, as a result

of this, there is also an increasing need for advanced statistical techniques which can be

used to analyse genetic data.

It has been found that, genetically, two random unrelated individuals are 99.9% identi-

cal. The 0.1% difference observed is responsible for the variation between individuals.

As with any statistical analysis, studies undertaking the analysis of genetic data need to

account for the sources of variation observed in the data. This is just one of the fac-

tors to consider when building an appropriate statistical model for genetic data. In the

area of genetic research, there are two broad types of studies which are carried out on

humans: population-based studies where unrelated individuals are recruited, and family-
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based studies where relatives are recruited. The latter is the focus of our study.

Family-based genetic studies are different to population-based studies as well as standard

epidemiological studies. There are several reasons for this, which combine to make family-

based studies both unique and interesting. These are:

1. considering the correlation between trait values on related individuals;

2. considering the correlation between genes (pieces of genetic material that may code for

a biological function) that are close together on the genome; and

3. accounting for the fact that each individual has two independent genetic observations

for each gene under observation– one of which comes from their mother and the other from

their father– resulting in a correlation between the genetic material of related individuals.

The first point above draws attention to a fundamental difference between most research

studies and studies in human family genetics. In the former, researchers assume subjects

are randomly selected from a population. Therefore, observations on them are assumed to

be independent and the corresponding statistical methods can be used. In family genetic

studies, affected individuals are first selected, then their entire family is also recruited for

the study. These individuals are called probands.

When statisticians use the word ‘sample’, they are referring to a group of observational

units selected from the population of interest. However, when geneticists talk about a

sample, they are referring to a piece of a person’s genetic material. To avoid confusion, we

will use ‘study group’ to refer to the group under observation. In addition, when referring

to the way in which the study group was selected, we will use the word ‘recruited’, rather

than the word ‘sampled’, to again avoid confusion. Geneticists generally refer to the

recruitment of the study group as ‘ascertainment’.

Families are recruited to investigate whether or not trait values for the individuals in the

study are correlated. Correspondingly, our statistical analysis should account for the fact

that family members are genetically related and thus expected to be similar for inherited

traits, such as eye colour and height. However, they will also be similar for traits which
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are due to sharing a common environment, such as radiation poisoning caused by the

family home being near a faulty nuclear power plant. The first step in a family genetic

study of quantitative (numerical) traits, is to distinguish between these two sources of

correlation because the former is genetic and the latter, called environmental, is not. We

can determine if traits are actually inherited or if familial similarity is due to shared

environment by including in analyses the degree to which individuals are related to one

another. If a trait is inherited, then the more closely related two people are, the more

similar they are expected to be with respect to the trait. Thus the degree of correlation

between family pairs will differ according to the degree of relation. Conversely, for a

trait which is caused by environmental factors, all the family members are expected to be

similar with respect to the trait, regardless of the degree of relation between them. Thus,

all family pairs should have the same correlation for these trait values.

An obvious method for analysing this data is cluster analysis. However, we cannot use

traditional cluster analysis for family-based genetic studies; we must modify it. Since

there are different degrees of relation between different family pairs, cluster analysis does

not correctly capture the statistical variation which exists in family genetic data. In

addition, individuals that marry into a family are only linked to the family through their

children. Therefore, including a single per-family random effect (“cluster”) in a statistical

model is not appropriate. In this study we will illustrate how to include the degree of

relation between family pairs, using a matrix of relationships known as a kinship matrix,

together with the per-family random effect.

Pedigree or family studies require information for as many family members as is feasible.

It is not always possible to obtain genetic information for all family members, as they

may be deceased or unreachable. However, their relationship to the rest of the family

is useful for analysis because they inherit genetic material from their predecessors and

transmit this same genetic material to their descendants. As a result, they are included

in datasets even when no other information is available for them.
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For the second point, we need to consider the phenomenon called linkage, which occurs

when two genes are inherited together in such a way that one gene acts as though it is

joined or linked to the other gene. This is investigated using genes called markers, which

have known locations. There are many markers on the genome and many of them are

non-functional genes. If two linked markers are both found to be associated with the trait

of interest, then the causal gene (the gene responsible for the trait) is likely to either lie

between these two markers or close to one of them. In this case, we say that the markers

are informative since their locations narrow-down the area in which the causal gene can

be sought.

The third point highlights a unique and important aspect of genetic data. For every

part of a gene in an individual, there are two genetic observations, one from each parent.

It is not possible to determine which part originates from which parent, unless parental

genetic information is available and distinguishable. Also, each of the two pieces of genetic

information is considered to be independent of the other piece, except if the parents are

related. If the two pieces are different, then it is normally assumed that only one of

them is correlated to the trait of interest and that the piece and trait value are inherited

from the same parent. We are essentially searching for this piece, but we have to count

each person and his trait twice. Thus, the pairs of genetic data inside each person are

independent, but the people involved are not, especially if we are considering an extended

family. In a statistical analysis, we somehow need to account for this phenomenon. In

this study, we will illustrate how to do this through a family-specific random effect and a

matrix depicting the genetic similarities between family pairs, for a particular marker.

These three points bring to light the unique aspects of family-based genetic studies, as

well as their complexities. If an extended family, which is the subject of this study, is

particularly large, then calculating a kinship matrix, for instance, becomes more compu-

tationally intensive. In addition, no standard statistical packages are equipped to carry

out these calculations.
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In terms of modeling extended pedigrees, the obvious choice is a linear mixed-effects

model, which can be specified in most standard statistical packages. Some basic assump-

tions of such a model are that the random effect is the same for each family, the correlation

between family pairs can be modeled through a known correlation structure and that fam-

ily sizes are the same. However, all of these assumptions fail for the type of model we are

considering here. Therefore, the linear mixed-effects model requires modification. Our

solution is to use the matrices of genetic relationships to specify coefficients for the vari-

ances, thus creating potentially different covariances for each family pair. As a result,

only the variance-components are actually estimated. Building up and explaining these

models is the main focus of this thesis.

Another challenge we face is that the modifications suggested here are impossible to

specify in most standard statistical packages. Fortunately, there are now several programs

available which do allow the specifications we require.

1.1 Data

Individuals in a family study are categorised as founders- people who have no parents in

the pedigree- such as the spouses of family members (‘marry-ins’) and the top generation

in a pedigree, and non-founders-those people who have both parents in the pedigree.

Founders are related to their children but it is usually assumed that their genetic infor-

mation is independently obtained from the population.

Historically, genetic family studies were only carried out on sibling pairs, nuclear families,

or family trios. Family trios consist of parents and one (usually affected) child. While

the proband is always the main focus of interest, the parents are considered because they

are the source of the child’s genes. Nuclear families are families which consist of two

generations of individuals: parents and at least one child. They are ideal for studies

of major gene (single-gene) disorders, such as cystic fibrosis. However, they are less

appropriate for complex (many-gene) diseases, such as cancer, heart disease, diabetes and
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obesity. One reason is because disease susceptibility genes can be difficult to identify if, in

different families, different genes have a significant effect on the same disease (Ellsworth

and Manolio, 1999). For such studies, extended pedigrees are more informative. Another

reason for nuclear families being inappropriate is that there may be many genes having

undetectable effects, but together they cause a disease.

Due to recent developments in the area of human genetics, there is a need for more

complex statistical methods because:

1. if the disease status of several generations of a family is known (as opposed to just two

or three family members) and their genetic information is obtained, then researchers can

pinpoint with greater accuracy which genes are linked to the trait of interest;

2. until recently, the analysis of quantitative genetic data was not computationally viable.

However, with improvements in modern computers, this is now possible.

It is important to be able to analyse quantitative data because, for a study group of the

same size (and all else being equal), statistical power is much greater for quantitative

rather than dichotomous data. The advantage of using quantitative data was recognised

in terms of genetic analysis many years ago by Douglas Falconer when he wrote:

The genetic principles underlying the inheritance of metric [quantitative] characters are

basically those of population genetics . . . But since the segregation of the genes concerned

cannot be followed individually, new methods of study are needed and new concepts have to

be introduced. The branch of genetics concerned with metric characters is called quantita-

tive genetics or biometrical genetics. The importance of this branch of genetics need hardly

be stressed . . . It is therefore in this branch that genetics has its most important applica-

tion to practical problems and also its most direct bearing on evolutionary theory (Falconer,

1989:104).

This led to the subsequent development of statistical models for quantitative measures.

One such model is the modified linear mixed-effects model mentioned earlier, which can
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incorporate all the features of the data.

Programs which can be used to analyse family genetic data require the data in a specific

format for analysis. This is to ensure the inclusion of the unique information required

for a family study. For example, family data must show how each individual is related to

every other individual in the family. One way to do this is to create, for each individual, a

list of names of related individuals, as well as a description of their relationship. However,

this is cumbersome. A simpler, more elegant method, lists the parents of each individual.

All the other relationships can be inferred once the parents are identified: if they share

parents, they are siblings; if their parents share parents, they are first cousins; and so on.

This is the method used to set up the data for family studies. Table 1 is an example of

the first few entries of a genetic dataset. It shows the information for two families; the

first is an extended family while the second is a family trio.

Table 1: Example data

Family Person Dad Mom Sex Affection Quantitative Genetic
ID ID ID ID Trait Marker

F100 1 0 0 1 0 X 0 0
F100 2 0 0 2 2 X 2 1
F100 3 1 2 2 2 140.5 2 1
F100 4 1 2 2 1 122.8 2 2
F100 5 0 0 1 1 150.7 0 0
F100 6 5 4 2 1 145.0 2 1
F100 7 0 0 1 1 161.0 2 2
F100 8 7 3 1 1 158.9 2 2
F100 9 7 3 1 2 156.2 2 1
F100 10 7 3 2 1 152.4 2 2
F105 1 0 0 1 1 X 1 2
F105 2 0 0 2 2 145.5 2 2
F105 3 1 2 1 2 166.3 2 1

Datasets for genetic family studies contain, for each individual and at the very least,

variables identifying: the ID of the family; the individual’s ID within the family; the

IDs of the individual’s parents; the sex of the individual; information for the trait(s) of

interest; and information for the gene(s) of interest. As such, the first four columns in

Table 1 give the pedigree information. They identify all the individuals in each family
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and give their relationships to each other. Column 1 gives the family ID, while column

2 gives the ID for each individual in the respective families. Columns 3 and 4 give the

parental IDs for each individual. For example, in family F100, the parents of founder

individuals 1 and 2 are unknown, as indicated by the zeros, but 1 and 2 are the respective

father and mother of individuals 3 and 4. Similarly, in family F105, individual 3’s father

and mother are individuals 1 and 2, respectively.

Column 5 gives the gender of each individual, where 1=male and 2=female. These first

five columns appear in every genetic pedigree dataset, in this exact order.

We can infer the relationship between other family pairs through the parental IDs. So

for family F100, since individuals 3 and 4 share the same parents, they must be siblings.

In the same way, we see that person 7 has no parents in the family, and must thus be a

founder, specifically a married-in. This is substantiated when we move further down the

table and find that individuals 7 and 3 are the parents of individuals 8, 9 and 10, thus

implying that individual 7 is married to individual 3. This also implies that persons 1

and 2 are the grandparents of individuals 8, 9 and 10, and also of 6, who is the offspring

of individuals 4 and 5, where 5 is also a married-in. In this way a family tree, known as

a pedigree, can be built for each family in the study.

Column 6 of Table 1 gives the affection status of the individual, for the trait, where

1=unaffected, 2=affected and 0=unknown. This column is omitted if the trait of interest

is not dichotomous. Column 7 gives the quantitative trait value (height (cm), say) for

each person, where X denotes missing values. Finally, column 8 contains the genetic

information. Each cell of this column consists of either a pair of numbers (for example,

2 1) or symbols (for example, a A), where 0=unknown. In datasets, these are separated

by either a forward slash (2/1), a space (2 1) or no separator (21). One of the symbols

represents the part of a gene that comes from the individual’s mother, while the other

comes from the individual’s father. In practice it is usually not known which part comes

from which parent as this is something that cannot be determined in the laboratory.
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As some of the components shown in Table 1 are unique to genetic family studies, the

methods involved in the analysis of such data have traditionally been developed by geneti-

cists for their specific studies. As a result, it is difficult for statisticians without sufficient

knowledge of genetics to understand the methodology. In addition, a unified and general

theory of the statistical methodology involved here, does not appear to exist.

The aim of this study is to formulate, in unambiguous mathematical notation, a statistical

model that has as special cases some of the models which are currently used to investigate

the existence of linkage in human family genetics. The methodology will be written

up for statisticians, under the assumption that they have little to no knowledge about

genetics. As a result, we will begin our study by introducing some important and necessary

genetic definitions and concepts (Chapter 2). This is because, as stated in Burton et al.

(2005:941):

. . . knowledge about the underlying biology, coupled with the inferential tools of modern

epidemiology and biostatistics, allows important aetiological questions to be answered in ways

that are more rigorous, and often more powerful, than approaches that fail to make the best

use of both the epidemiology and the genetics.

The next step will be to illustrate how to explore genetic data (Chapter 3). In Chapter 4,

we introduce the statistical methodology that will be the focal point of this study, namely

variance-components methods. In Chapters 5 and 6 we describe systematically and in

statistical language, the methodology involved in a genetic family analysis. By systematic

we mean that we will start by explaining methods for familial aggregation (Section 5.1),

which is the simplest model. We will then consecutively add specific random effects,

leading to models enabling inference on segregation analysis and broad-sense heritability

(Section 5.3) and lastly, linkage analysis and narrow-sense heritability (Chapter 6). These

are the first steps in any genetic study investigating the heritability of disease in humans.

Familial aggregation aims to determine if a trait runs in families by checking if trait
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values are correlated inside families. If there is evidence of aggregation, we investigate

further to see if it is due to inherited genes or to shared environment. Heritability allows

us to determine what proportion of the trait variance is due to heritable genetic factors.

Segregation analysis involves using family relatedness to fit specific genetic models to trait

data. These models assist in determining whether correlations are higher if relatives are

more closely related. For all the models, hypothesis tests are used to determine if the

traits are in fact inherited.

Linkage analysis aims to determine if a particular trait in an individual is transmitted

through families together with a specific gene. If there is evidence of this occurring,

the location of this gene is sought. Linkage analysis tests a marker for linkage with

a hypothetical causal gene. If linkage is found to exist, the conclusion is that the true

causal gene is in linkage with, and hence physically close to, the marker. This thus reduces

the area in which the true disease gene should be searched for.

Even though the approach to a family genetic analysis is presented in a systematic way

here, this is not necessarily the way it is done in practice. For instance, if there is other

evidence that familial inheritance exists, then the first step may be skipped. However, all

the steps are presented here as they illustrate how standard statistical methods can seldom

be used to analyse human genetic data. As a result, they also illustrate the limitations of

standard statistical packages for such analyses.

The model that is developed will be explained and built up by considering the unique

properties of genetic data, that were discussed previously. The models that are used

to investigate linkage already exist and are those that underly, among others, the QTDT

(Quantitative Transmission Disequilibrium Tests) software (Abecasis et al., 2000a, 2000b).

However, these have not been presented in the literature using one set of notation, or in

a language that is familiar to statisticians.
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1.2 Practical example

To demonstrate the statistical methods used in practice and explained in the theoretical

sections of this study, we will present the results of the analyses of data obtained from

research carried out in the area of hereditary cardiovascular disease in extended pedigrees.

The data, which has already been analysed and published (Revera et al., 2007, Revera et

al., 2008, Van der Merwe et al., 2008 and Heradien et al., 2009), consists of information for

22 families obtained from research conducted in South Africa on hypertrophic cardiomy-

opathy (HCM). These families together contain 507 individuals, but genetic information

is only available for at most 329 individuals, depending on the marker under observation.

The remaining people are included because they provide information on the way in which

those family members with available information, are related to one another. For exam-

ple, if my grandparents are not included in our pedigree, it will not be apparent that my

first cousins and I are related.

HCM is a frequently inherited cardiac muscle disease, characterised by thickening of the

left ventricular wall of the heart. Hypertrophic means ‘excessive thickening’ while car-

diomyopathy implies a disease of the heart muscles. It is an inherited disorder which is

known to cause sudden death in young people (under the age of 35). It is caused by

(known) mutations in the genes that encode the protein components of the cardiac sar-

comere. These proteins are responsible for heart contraction. Ventricular thickening is

highly variable and the variability is due to both genetic factors and non-genetic factors

such as age and sex (Revera et al., 2007).

The quantitative traits used to illustrate the data analysis are both measures of ventric-

ular thickness: LVMecho is left ventricular mass as measured by echocardiography; and

cwtscore is a composite measure of ventricular thickness.

We will explore the data, then demonstrate familial aggregation and heritability, and

investigate whether the markers are linked. This example will be referred to as the
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Heartdata example from this point onward.

Analysis of the data will be carried out using statistical software packages which are de-

signed specifically for analysing genetic data. The data analysis and results are discussed

in Chapter 7. Before we can get to that however, we need to understand the context of

this study and the type of data we are interested in. To begin, Chapter 2 introduces the

genetic background necessary to this study.
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2 Genetics: Introduction and Terminology

2.1 Molecular genetics

Human genetic material is composed of deoxyribonucleic acid (DNA) which is divided

into chromosomes. Each chromosome consists of two strands which are joined together

by the base pairs A/T or C/G, and twisted to form a double-helix structure. The human

genome consists of 23 pairs of chromosomes: 22 autosomal pairs and 1 sex-determining

pair. Of these 23, one member of each pair is inherited from the mother and one from

the father. This bi-parental inheritance is the most important property of the genetic

data statisticians must analyse. The members of each chromosomal pair (except the

sex-determining chromosomes in males) are known as homologous chromosomes because

they contain identical gene locations, called gene loci (sing. locus) along their lengths.

The loci have identical genetic potential, implying that the gene pairs influence the same

characteristics in the individual. However, the genetic sequence (sequence of base pairs)

in each chromosomal pair need not be identical, since each locus is defined by the par-

ticular sequence of bases found there (Burton et al., 2005). When the DNA sequence

at a particular gene locus varies between the chromosomes of different individuals in the

population, each version of the sequence is known as an allele. Sometimes alleles are not a

sequence but have only two possible forms, for example the bases G or T, as seen with sin-

gle nucleotide polymorphisms (SNPs). Whatever the form, alleles are the hereditary unit

factors responsible for transmitting genetic information from one generation to another.

Humans are diallelic, meaning that we have two alleles at each genetic locus, one from our

mothers and one from our fathers. The transmission of genetic information from parents

to children occurs during meiosis. It is the process of cell division which occurs during

reproduction, after fertilisation has occurred. During meiosis, the developing child’s ga-

metes (sperm and ova) form. The cells divide and replicate, and the DNA partitions to

create the gametes. Since the gametes are involved in sexual reproduction through fertil-

ization, they contain only one set of chromosomes. When the child grows up and in turn
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mates, the one set of chromosomes will then be passed on to the offspring at conception.

The offspring’s second set of chromosomes will come from the gamete of the other parent.

Alleles that occur frequently in the population are called wild-type or normal alleles,

while those that contain modified genetic information are known as disease susceptibility

or mutant alleles. Mutation occurs during meiosis. In practice, it is not always clear

which alleles are wild-type and which are mutant.

2.2 Mendelian (or transmission) genetics

In the mid-1800s, after experimenting with hybridization in the pea plant, Gregor Mendel

set down several hypotheses/postulates which formed the cornerstones of studies on ge-

netic inheritance (Klug & Cummings, 2000):

1. Genetic characteristics in individuals are controlled by (paired) unit factors (alleles).

2. The paired alleles (One maternal and one paternal) segregate or separate randomly

during meiosis, such that each gamete receives one allele or the other with equal proba-

bility (Known as Mendel’s First Law: Segregation).

3. This law was later disproved for alleles that are linked. When gametes form, seg-

regating pairs of alleles assort independently of each other, leading to extensive genetic

variation (Known as Mendel’s Second Law: Independent assortment).

The physical expression of some clinical outcome (usually a disease) or inherited character-

istic, such as eye colour, blood pressure or height, is known as the individual’s phenotype.

The word ‘phenotype’ is interchangeable with the word ‘trait’ and the latter is the one

we will continue to use in this study. An individual’s genetic status at a single gene

locus, often represented by paired alleles (for example 1/2, 1/1, 2/2), is called his geno-

type. If a locus contains identical alleles, for example 1/1 or 2/2, the individual is said

to be homozygous at that locus, while he is heterozygous at that locus for the 1/2 or 2/1

alleles. An individual with heterozygous alleles is called a heterozygote while one with

homozygous alleles is known as a homozygote.
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Dominance and recessiveness describe the relationships between traits and alleles and

thus aid in determining an individual’s trait from his genotype. For a dichotomous trait

at a diallelic locus, allele 1 is completely dominant with respect to disease susceptibility

if an individual needs only one copy of this allele to be affected. On the other hand,

allele 1 would be recessive for the same disease if an individual needed two copies to be

affected (Burton et al., 2005). Therefore, dominance and recessiveness are two sides of

the same coin. For example, suppose that for some disease caused by a diallelic locus,

allele 1 is the dominant allele. The penetrance function of the disease, Pr(disease|G, E),

is defined as the conditional probability of observing the disease of interest, given the

individual’s genotype (G) and considering environmental factors that could influence the

risk of him having the disease (E). It is a density function if the trait is quantitative

and a mass function when the trait is discrete. Although complete penetrance is rare,

sickle-cell anemia is an example of a disease where the condition is caused only by genetic

factors (Elston, 2004).

For a dichotomous trait (disease/no disease), in the dominance case, the penetrance func-

tion shows that an individual with one copy of the disease susceptibility allele, 1, has the

same risk of disease as someone with two copies, i.e. P (disease|1/1) = P (disease|1/2).

Conversely, if allele 1 is recessive with respect to a disease, then an individual with only

one copy of this disease susceptibility allele has the same risk as an individual with no

copies of it, i.e. P (disease|1/2) = P (disease|2/2) (Terwilliger, 2005). Therefore, if allele

1 is completely dominant for a disease, then allele 2 is recessive protective against the

same disease.

Finally, codominance occurs when each of the three genotypes have different effects on

the trait, i.e. P (disease|1/1) 6= P (disease|1/2) 6= P (disease|2/2).

Figures 1 and 2 describe the concepts of dominance and recessiveness visually.

Let us first consider the dichotomous trait in the two plots of Figure 1. Here, allele 1 is

first completely dominant (left plot) with respect to disease susceptibility, then completely
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recessive (right plot). Thus, for a disease that is inherited dominantly, we see that having

at least one copy of allele 1 is sufficient to cause illness. However, if the disease is inherited

recessively, then two copies of allele 1 are required to cause the disease. In this case, allele

2 is recessive-protective against the disease since one copy of allele 2 will ‘protect’ against

the disease. In other words, in the latter case, allele 2 is dominant with respect to disease

protection. However, these examples are of an extreme case. In reality, the situation is

not as extreme and complete dominance rarely occurs. Therefore, disease susceptibility

usually lies somewhere between these two extremes.

Autosomal

dominant 

inheritance

1/1 1/2 2/2

Sick

Healthy

Disease  

status

Genotype

Sick

Autosomal 

recessive 

inheritance

1/1 1/2 2/2

Healthy

Disease  

status

GenotypeGenotype Genotype

Figure 1: Plot illustrating dominance and recessiveness in a dichotomous trait, where allele 1 is either
dominant or recessive with respect to disease susceptibility

For a quantitative trait such as height, shown in Figure 2, we have a similar situation

to the dichotomous case in Figure 1. The difference is that now, the trait values have

density functions where the mean value of the trait will depend on the type of inheritance.

Therefore, if allele 1 is dominant for tall stature and height is inherited dominantly (top

left plot), then one copy of allele 1 will be sufficient to result in a person being taller than

the average. If height is inherited recessively (top right plot), one copy of allele 2 will

result in a person who is shorter than average. So here allele 2 is dominant with respect

to short stature (or recessive-protective against tall stature).
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For quantitative traits, we are interested in a special type of codominance called additive

inheritance. It occurs when the expected trait value in a heterozygous allele pair lies

exactly half-way between the expected trait values of the two corresponding homozygous

pairs. In Figure 2, additive inheritance is depicted in the bottom plot. Here, the average

height of someone who is heterozygous lies between the heights of the homozygotes. Thus,

if allele 1 is dominant with respect to tall stature, the 1/1 genotype will have a height

distribution with a higher mean than the 1/2 and 2/2 genotypes.

The bars going through each point in the graph indicate the spread about each of those

means (the density functions).
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1/1 1/2 2/2
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Genotype
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µ12

µ22
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(m)

1.80
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Additive inheritance

Figure 2: Plot illustrating dominance and recessiveness in a quantitative trait, where allele 1 is respectively
dominant, recessive or additive with respect to height
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Figures 1 and 2 are two examples of graphs which can be produced to understand genetic

data. However, as with any study, all the data needs to be explored and understood

before any analysis can be carried out. We look at data exploration in more detail in the

next chapter.
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3 Exploratory Data Analysis

When analysing any data, the first step is to explore and understand the data so that

any possible errors can be found and the appropriate statistical analyses, if any, may be

identified and carried out. A data exploration starts by plotting the data to understand it,

identify the distributions of the various factors under consideration and detect anomalous

values. Histograms and box-and-whisker plots are produced for exploring quantitative

data while categorical and ordinal data are graphed with either bar charts or pie charts.

Pairwise plotting, such as scatterplots for quantitative data, allows the statistician to iden-

tify patterns or trends, thus identifying possible associations between pairs of variables,

if they exist. Thereafter, appropriate summary statistics are calculated.

Data exploration helps us to understand the data by telling us what it looks like, what the

distribution of various variables may be, whether there are any anomalous observations,

whether or not the data needs transformation, and it gives us an idea of how to proceed

with the analysis. However, genetic studies require additional, more specialised exploring

due to the nature of the information. In particular, family studies involve studying the

inheritance patterns of individuals in families, given their traits, genotypes and their

relationships to each other. As mentioned before, family members are related and are

thus similar with respect to inherited traits, so understanding their relationship is vital to

analysing family data. The families used in these studies can be (simple) nuclear families

or (complex) multi-generational extended families. Exploring family data, regardless of

the family-size, begins with a pedigree such as the one in Figure 3, which depicts a nuclear

family. In a pedigree, circles represent females and squares represent males.

At the top of the pedigree are the parents, who are called Dad and Mom. The line joining

them represents a mating, which results in two daughters, Sue and Jane. The shaded

circle representing Mom implies that she is affected with the trait of interest. Since the

circle representing Sue is also shaded, Sue is also affected. Thus, it is possible that Mom

passed on the causal allele(s) to Sue. Since Dad and Jane are represented by unshaded
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Dad Mom

Sue Jane

Figure 3: Pedigree of nuclear family

symbols, they are either not affected or their affection status is unknown. This family is

one that shows signs of a trait that may be passed on from parent to child, so further

inquiry is justified. If we had information for the extended family, there could be more

clarity regarding the possible inheritance of the trait. For example, if we had information

for the great-grandparents and their great-grandchildren, then we could see if cousins far

removed share the trait, and thus possibly the causal alleles. Pedigree diagrams such as

the one above can be produced and used to visually assess data for extended families.

Trait vs. genotype plots, such as those shown in Figures 1 and 2 should be made to

explore any possible inheritance patterns in the trait under investigation; is it dominant,

recessive or additive? In practice though, inheritance patterns are rarely simple.

In Figure 4, the plot on the left summarises the number of members in the various

Heartdata families. There is one very large family, with over 90 members, as indicated by

the bar on the extreme right-hand side of the plot. The plot on the right illustrates the

number of generations in the families. It shows that the Heartdata contains at least two
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generations in each family, and at most five. There are three nuclear families, which have

two generations, and most of the remaining families have either three or four generations

of members.

Summary of family structure
(507 individuals in 22 families)

Figure 4: Summary of family structure

As a result of considering extended families with information for several generations, it is

vital to assess the family and genotype data for pedigree and genotype errors. Checking

for pedigree error involves validating that the relationships between the family members

have been correctly captured. For example, a pedigree error would occur if a child was

recorded as the parent of his father.

Assessing genotype errors involves ensuring that the individual and family genotypes are

correctly typed and adhere to Mendelian inheritance. For example, a genotype error in a
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family would occur when a child has an allele that comes from neither parent. Inconsistent

Mendelian inheritance, and thus genotype errors, are easier to detect in large pedigrees

than in affected sibling pair studies where no other family data is available (Teare and

Barrett, 2005). For example, say a child shares no alleles in common with his father,

but shares an allele in common with his brother and paternal grandmother. Without

the grandmother’s genotype, it would be impossible to determine that it is the father’s

genotype that was incorrectly captured in the dataset. We might then have wrongly

concluded that the father is not the child’s father, when in reality he is.

One way of checking for genotype errors is using the Hardy-Weinberg Law (HWL), which

tests the statistical independence of two alleles at a locus. It is based on binomial proba-

bilities, assuming there is random mating and no mutation, migration or natural selection.

Random mating here implies that the probability that two individuals mate is independent

of their genotype and ethnic group (Thomas, 2004). Under these assumptions, consider

alleles 1 and 2 at a particular diallelic locus, such that they occur in the proportions p

and (1−p) = q respectively in the population. Then, assuming random mating, the geno-

type frequencies for genotypes 1/1, 1/2 and 2/2 occur in the proportions p2, 2pq and q2

respectively. This is Hardy-Weinberg Equilibrium (HWE) and it occurs after just a single

generation of random mating, regardless of the initial genotype frequencies. Therefore, ac-

cording to HWE, genotype and allele frequencies in a large, randomly-mating population

remain stable over generations.

In population genetics, the HWL is a fundamental law describing the relationship between

allele and genotype frequencies in a randomly-mating population. It is used to check the

quality of the data and for testing genetic associations.

Deviations from HWE may have several causes, among which are non-random mating

and genotyping errors, as discussed in Wiggington et al. (2005) and Foulkes (2009). In

their paper, Wiggington et al. state that the former generally leads to false homozygos-

ity, which implies a shortage of heterozygous allele pairs in the population. The latter
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however, leads to an excess of heterozygotes, and this can be tested for if genotyping

error is suspected. Therefore, testing for compatibility with HWE is a routine check for

genotyping errors. Nevertheless, compatibility with HWE does not necessarily imply that

there are no genotype errors.

Since HWE is defined for a randomly-mating population, testing it on related individuals

would be invalid. In pedigree studies, even though observations are not independent,

HWE can still be used as a data-quality check. It is tested on a selected set of unrelated

individuals from each of the families, as was done above. This requires identifying and

then selecting all the members of each family who are genotyped but are not related to

the parents in that family. This usually refers to those people who have married into the

family. In addition, the chosen individuals must be genotyped, implying that there are

usually many more founders than there are selected unrelated individuals.

As this process is tedious and time-consuming in practice, particularly if the family is

very large, specialised software is used to test HWE.

For the Heartdata, the HWE plot in Figure 5 is produced for Marker 11, for the unrelated

individuals in the data.

In Figure 5, the graph on the left shows the distribution of the genotypes in the study

group. The values in each cell indicate the following observed genotype counts:

For the 1/1 genotype, the observed genotype count is 12.

For the 1/3 genotype, the observed genotype count is 15.

For the 3/3 genotype, the observed genotype count is 7.

Therefore, there are 7 + 12 = 19 homozygotes and 15 heterozygotes. The shading of

each cell indicates the expected genotype counts under HWE, such that the darker blocks

indicate genotypes with high expected counts, while the lighter blocks indicate genotypes

with lower expected counts. Here, allele 3 is the minor allele as the 3/3 genotype has a

lower count than the 1/1 genotype.
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7.0

Exact Hardy-Weinberg test among 34 unrelated individuals for Marker 11

( Observed heterozygotes: 15, p = 0.7247 )

12.0 15.0

Figure 5: Hardy-Weinberg test on unrelated individuals, for Marker 11

The graph on the right shows the exact heterozygote probability distribution derived by

Wigginton et al. (2005), for the number of heterozygotes, conditional on the number of

rare allele (minor allele) copies. As indicated in the text above the graph, there are 29 rare

allele copies: 15 from the heterozygote and 2x7 = 14 from the seven 3/3 homozygotes.

The null hypothesis tested is that of HWE. The exact test is analogous to Fisher’s exact

test for contingency tables. If the number of observed heterozygotes (indicated by a star

in the probability distribution graph) falls too far to the left or right on the graph, then

the null hypothesis is rejected as this indicates, respectively, either a deficit or excess of

heterozygotes. On the graph, the bars in red fall in the area of the distribution which

is used to calculate the p-value. Wigginton et al. (2005) and Foulkes (2009) recommend

using the exact test, as it is better than the commonly used chi-squared goodness-of-fit
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test which is based on asymptotic theory. The chi-squared test can give very large or small

p-values and is sometimes extremely anti-conservative, meaning that the type I error rate

can exceed the nominal significance level. This is because the expected frequency of rare

alleles is not usually high enough for the chi-squared test to be appropriate. On the other

hand, the exact test never exceeds the nominal significance level, even when there are

only a small number of minor alleles in the sample.

In Figure 5, there are three significant levels at which HWE is tested: 0.05, 0.01 and

0.001. The results are indicated underneath the graph on the right. Since the p-value for

the test is 0.7274, as indicated in the sub-heading of the figure, there is sufficient evidence

for HWE at all three significant levels. This is indicated by the green tick symbol. If

there is no HWE, the green tick is replaced by a red cross.

Another component of exploring family data involves carrying out pairwise age checks

on all the relative pairs in each of the families. This ensures that the pedigree makes

sense and that the information is entered correctly into the dataset. For example, we can

identify discrepancies in the ages of family members if, say, a grandmother is younger

than her grandchild or a mother is only 5 years older than one of her children.

For the Heartdata, the scatterplot in Figure 6 shows the age relationship for parent-child

pairs. The circled points identify cases where parent-child age anomalies occur. When the

age check was carried out, the parents and children causing the anomaly were identified.

For the points circled in red, individual 3 in family F100 was identified as being 61.0 years

old. This person had 4 children, aged 57.0 (individual 5), 55.0 (individual 6) and 51.0

(individuals 7 and 8), which is clearly impossible.

The age discrepancies found here were reported to the researchers and it was explained

that these were not in fact the ages of the individuals in the dataset, but rather the

age at which their hearts were assessed, explaining the apparent anomaly. Had an age

check not been done, we would have assumed the ages in the dataset were in fact the

person-ages rather than age at assessment and this would have affected the interpretation
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Relative pair plot for Age

Figure 6: Relative pair plot for Age

of any analysis involving age. This example illustrates the importance of data checking

and follow-up of discrepancies.

As part of the exploratory analysis, it is also important to report summary information

for any dichotomous or quantitative traits, and for covariate data. These reports include

information for correlations between sibling and other relative pairs. Various graphs

can again be produced to help identify patterns in the data. For quantitative data,

histograms or box-and-whisker plots help identify outliers and influential observations. In

addition to this, graphs allow the visual detection of departures from normality. This is

an important consideration when analysing quantitative data as transformations may be

necessary before any statistical analysis will be valid.

Let us consider the quantitative trait, cwtscore, from the Heartdata. Figure 7 shows a

histogram of this trait.
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Distribution of values for trait cwtscore
( Mean: 163.80 Variance: 2377.50 )

Figure 7: Summary plot for quantitative trait cwtscore

From Figure 7 we see that the distribution of cwtscore is skewed to the right, with mean

163.80 and variance 2377.50. Before any analysis is carried out, this data may need to

be transformed to achieve approximate normality. For the Heartdata traits, we used

a method of transformation called quantile normalisation; it was chosen as the most

appropriate transformation in the original analysis of the data. It is a method which

makes the distribution of a variable as close to normal as possible, without changing the

order of the observations of that variable. It works as follows: firstly, all the observations

are ranked; then 0.5 is subtracted from each rank and the answer is divided by the number

of observations. This value is considered as a standard normal cumulative distribution

value, and the corresponding standard normal quantile is found.

For cwtscore, the quantile normalised data is called Qcwtscore and its distribution is

plotted in Figure 8.
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Distribution of values for trait Qcwtscore
( Mean: -0.00 Variance: 0.96 )

Figure 8: Summary plot for quantitative trait Qcwtscore

We see that Qcwtscore looks much more symmetrically distributed than cwtscore. As

expected, the mean is now zero and the variance is 1.

As with any statistical analysis, it is important that the results are carefully and correctly

interpreted by reporting estimated effect sizes in practically understandable units of mea-

surement. In the case of quantile normalisation, the effect sizes cannot be transformed

back into the original unit of measurement. As a result, they cannot be interpreted in

terms of specific estimated effect sizes. To produce effect sizes which can be interpreted,

the untranformed data is also analysed and the results are used solely for interpretational

purposes.

As mentioned before, if a trait is shared by individuals because it is inherited, then the

correlation between pairs of these individuals will get stronger the more closely related
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they are. If however, the trait is shared because the individuals share a common environ-

ment, then the correlation between all sharing pairs will be the same. Finally, if the trait

is independently distributed, as with random strangers, then no correlation is expected.

Bearing this in mind, quantitative traits should be explored by producing scatterplots of

the trait values for family pairs, such as siblings or parent-child pairs. These plots could

illustrate patterns in trait values, which are due to family relatedness. For example, for

an inherited trait such as height, we expect the scatterplot for sibling pairs to show a

high correlation, while the same plot for two random strangers should show a completely

random scatter because unrelated individuals are not expected to be genetically similar.

As such, observations on them should be uncorrelated. For family members that are

less closely related, for example uncle-nephew or cousin-cousin pairs, some correlation is

expected, but not as much as that for sibling pairs.

Pairwise scatterplots

Figure 9: Pairwise scatterplots

Figure 9 illustrates scatterplots for two different family pairs. The graph on the left is
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the sib-sib plot for a trait and shows the distribution of the trait among sibling pairs. It

indicates that a good positive correlation exists between the sibling trait values, as would

be expected for a trait clustering in families. The plot on the right shows the distribution

of the same trait for avuncular-pairs, which are pairs made up of an uncle/aunt with a

niece/nephew. We see here that the scatter is more random, and thus less correlated,

than that for the siblings. This indicates an inherited trait, as avuncular pairs are third

degree relatives while siblings are first degree relatives and are thus much more similar

genetically.

The histogram in Figure 10 shows the distribution of the quantitative covariate Systolic

blood pressure. Here, we again see that the distribution is slightly skewed to the right

Distribution of values for SystBP
( Mean: 124.09 Variance: 389.07 )

Figure 10: Summary plot for systolic blood pressure

and thus this data may also need to be transformed to achieve approximate normality,

before any analysis is carried out.
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It is not always the case that a set of data will only contain quantitative covariates. Often,

there are also dichotomous covariates, such as ethnicity or gender, as in the Heartdata.

One of the other dichotomous variables found in the Heartdata is called Mutation. It

indicates whether or not an individual is affected with the mutation which causes HCM,

where 1 =No and 2 =Yes.

Finally, the genetic marker data can be plotted and explored, as shown for Marker 14, in

Figure 11. The distribution plot on the left shows that, for this marker, 295 out of 507

individuals are genotyped and allele 2 occurs more frequently than allele 1 (60% vs. 40%

respectively).

Marker allele frequencies for Marker 14      
(295 of 507 individuals genotyped)

Figure 11: Marker allele frequency for Marker 14
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The plot of informativeness shows the proportion of genotyped individuals that are ho-

mozygous and heterozygous. Marker informativity is determined by the proportion of

heterozygous individuals in a population and is important because it determines how use-

ful a genetic marker is. For homozygous parents, it cannot be determined which alleles

are transmitted to offspring. Therefore, those meioses are not informative for linkage as

it is unknown whether or not recombination occurs. This will be explained further in

Chapter 6. For Marker 14, about 44% of the genotyped individuals are heterozygous and

thus informative. The remainder are not informative as they are homozygous.

In the next section, we present linear mixed-effects methodology. This is the focus of our

study since mixed-effects models form the basis for one way in which family genetic data

can be modeled.
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4 Linear Mixed-effects Models

The notion that haphazard variation may arise from a number of sources and that it may

be valuable to identify these sources and measure their impact has a long history and many

applications and implications. Indeed, it is only in very simple situations that it is likely to be

satisfactory to represent haphazard variation by independent identically distributed random

variables or by the essentially equivalent notion of random sampling from a hypothetical

infinite population (Cox & Solomon, 2003:ix).

The haphazard (or random) variation and the other sources of variation referred to above

can be accounted for in the particular statistical models that are used to analyse data.

This is done by including random effects in models. Variance-components methodology

is used for the analysis of random effects, where different sources of random variation in

the data are accounted for in the statistical model. Cox & Solomon (2003) describe how

patterns of variation are partly systematic and partly haphazard. The systematic varia-

tion is usually the treatment variation or the between-unit variation, which is explained

through the dependency on explanatory features. The most common source of haphazard

variation is known as either natural variation, measurement error, residual error or sam-

pling error. It expresses the natural variability that exists between similar individuals or

experimental units.

We will explain variance-components methodology by describing the simplest model then

building it up step by step. This simplest, smallest model consists of one fixed and one

random effect. The fixed effect is the mean, µ, of the observed data. It is one source of

the systematic variation which Cox & Solomon (2003) refer to. Their haphazard variation

is represented by the variance of the random effect, ei. We call this variance the random

error or residual variance, and denote it by σ2
e . In the simple model, σ2

e accounts for all

the haphazard or random variation in the data. Therefore, the total variance in the data

is just σ2
e .
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We will build up the more complex models that we require by adding fixed and random

effects to the simple model. In general, the mean and residual variance are not counted

when referring to the number of fixed and random effects added to a model, as every

model must contain at least these two elements. For example, when we say a model

contains one fixed and two random effects, we assume that this is over and above the

mean and residual variance.

The model we ultimately develop here is the specific type of mixed-effects model for

variances, which is required for the analysis of human genetic family data. In addition,

aside from the simplest models, we will not discuss estimation or testing because, for the

complex models, these are research topics on their own.

To explain the models we want to build up, we use a trivial example. This is because the

models used in the analysis of family-based genetics have additional levels of complexity

which will be added in the next chapter. Our aim therefore, is to explain the necessary

statistical techniques here, in a comprehensive manner and using a simple example, then

extending these techniques to include the genetic data.

4.1 Simplest case: Fixed mean model

Suppose that we take a random sample of r red apples. We want to estimate the shelf-

life, µ, of a red apple. Let y ∼ N (µ, σ2
e) be the random shelf-life of an apple. Then,

y(r × 1) = (y1, . . . ,yr)
T is the random vector of the shelf lives of the r apples. It has a

multivariate normal distribution, which is an extension of the normal distribution for a

single random variable. Through its form it naturally accounts for the correlation among

the elements of y. Therefore, since y is a random vector consisting of r elements that are

all normally distributed, it has a r-variate multivariate normal distribution with a mean

and covariance matrix that we have to determine.
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In this very simple case, the model for the shelf lives of the apples is:

yi = µ + ei, for i = 1, . . . , r. (1)

Here, ei is the random effect or residual of apple i such that the ei are independent and

identically distributed (i.i.d.) N (0, σ2
e). It follows that the vector of residuals for the r

apples, e(r × 1) = (e1, . . . , er)
T ∼ Nr(0, σ

2
eIr).

To find the corresponding model for the vector of all apples y, we expand Model (1) for

each of the r apples: y1 = µ + e1
...

yr = µ + er

 ,

which implies y1
...
yr

 =

 1
...
1

µ +

 e1
...
er

 .

Thus

y = 1rµ + e.

In standard matrix notation, this is

y = Xβ + e,

where X (r× 1) = 1r is the design matrix of fixed effects and β(1× 1) = µ represents the

vector of regression coefficients.

From this, the mean and covariance matrix are, respectively,

E(y) = E(1rµ + e)

= 1rµ, since E(e) = 0

cov(y) = E[(y − E(y))(y − E(y)T )]

= E[eeT ]

= σ2
eIr, because eij ∼ i.i.d.

Therefore, y ∼ Nr(1rµ, σ2
eIr).
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The parameters µ and σ2
e can be jointly estimated via maximum likelihood estimation

(MLE) or method of moment estimation (MME), by first estimating µ then using this

estimate to estimate σ2
e . Both MLE and MME give the same unbiased estimates of µ but

MLE gives biased estimates of σ2
e . Fortunately, we can write σ̂2

e as a function of s2
e, the

unbiased sample estimate.

To obtain the MLEs of model parameters, we first need to define a likelihood function: If

y ∼ N (µ, σ2
e) is the random shelf-life of an apple, then f(y) is the density function of y,

such that

f(y) =
1√

2πσe

e−
1
2
(x−µ

σe
)2 .

The likelihood function of y, denoted by L(·), in terms of µ and σ2
e , is the joint density

of the independently observed sample values. So,

L(µ, σ2
e) =

r∏
i=1

f(y, µ, σ2
e)

=
r∏

i=1

1√
2πσe

e−
1
2(

yi−µ

σe
)
2

To obtain the MLEs of µ and σ2
e , we simultaneously maximise the natural log of the

likelihood with respect to µ and σ2
e , to get

µ̂ = ȳ

=
1

r

r∑
i=1

yi

=
1

r
1T

r y

(
r

r − 1
)σ̂e

2 = s2
e

=
1

r − 1

r∑
i=1

(yi − ȳ)2

=
1

r − 1
(y − 1rȳ)T (y − 1rȳ),

where it can be shown that µ̂ ∼ N (µ, 1
r
σ2

e) and (r−1)s2
e

σ2
e

∼ χ2
r−1 (non-central), indepen-

dently of each other.
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These estimates can be used to derive confidence intervals and test hypotheses about the

mean (for example H0 : µ = µ0) and/or residual variance (for example H0 : σ2
e = σ2

0)

using likelihood ratios (LR), which are based on the previously defined likelihood function.

These tests compare different possible values for the unknown parameter being estimated.

Let θ denote the unknown parameter, such that θ ∈ S, the parameter space. Then the

likelihood of the parameter value under the simple null hypothesis, H0 : θ = θ0, is

compared to the likelihood of the value under the (simple) alternate hypothesis, H1 : θ =

θ1. The likelihood ratio test statistic is then

λ =
L(θ0)

L(θ1)
.

If λ is large, θ0 is more likely, but if it is small, θ1 is more likely.

In our applications, we will always test a simple null hypothesis against a composite

alternative hypothesis, which is the sample space. Thus, H1 : θ ∈ S. Here, the likelihood

ratio is

λ =
L(θ0)

L(θ ∈ S)
.

Since L(θ ∈ S) is evaluated at θ̂, the MLE of θ, λ will always be less than 1. If λ is

close to 1, there is sufficient evidence in support of the null hypothesis. However if λ is

significantly smaller than 1, the LR test rejects the null hypothesis (Hogg & Tanis, 2006).

The hypothesis test is based on 2ln(λ) having an asymptotic chi-squared distribution,

with degrees of freedom equal to the difference in the number of parameters estimated

between the null and full (alternate) models.

In Section 4.1, we have introduced a very simple model and explained how to estimate

its parameters. Now suppose that we look more closely at our shelf-life data and realise

that perhaps µ does not encompass the full mean of the data. This implies that there is

another source of systematic variation in our data and it needs to be accounted for. To

do this, we need more fixed effects in our model as it is the fixed effects which account

for the systematic variation in data.
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4.2 Fixed effects model

Suppose that on closer inspection of the data, we found that there was actually a preser-

vative that was tested on the apples, so that the shelf-life of the treated apples (t = 1)

could be compared to those that were untreated (t = 2). Assume that the treatment

was randomly assigned to the apples, such that r1 were treated with the preservative and

r2 were left untreated. This means that there is now a treatment effect, the additional

source of systematic variation, which we need to account for in our model, so that the

new model will differ from Model (1) in Section 4.1. Including the treatment implies that

the total sample size N = r1 + r2 = r.

Let µ be the fixed mean shelf-life of the untreated apples, and let τt denote the fixed effect

of preservative t on the shelf-life of the ith apple. Let yti denote the random shelf-life of

apple i treated with preservative t. Suppose the data is arranged so that the r1 treated

apples are first and the r2 untreated ones follow. Then a model for this data, looks as

follows:

yti = µ + τt + eti, for t = 1, 2; i = 1, . . . , rt, (2)

where eti ∼ i.i.d N (0, σ2
e) is the residual for the ith apple. Then the vector of residuals

e ∼ Nr(0, σ
2
eIr).

In linear Model (2), there is one observation on each apple, so there is only one random

component, eti, corresponding to each apple. Here,

E(yti) = µ + τt, since E(eti) = 0

var(yti) = E[(yti − (µ + τt))
2]

= E[eti
2]

= σ2
e .

Therefore, yti ∼ N (µ + τt, σ
2
e).

To find the model for y
ti
(r×1), Model (2) can be expanded and written in matrix notation
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as follows 

y11 = µ + τ1 + e11
...

y1r1 = µ + τ1 + e1r1

y21 = µ + τ2 + e21
...

y2r2 = µ + τ2 + e2r2


,

which is equivalent to

y11
...

y1r1

y21
...

y2r2


=



1
...
1
1
...
1


µ +



1 0
...
1 0
0 1
...
0 1


(

τ1

τ2

)
+



e11
...

e1r1

e21
...

e2r2


.

The above can be written as

y =
(

1r1

1r2

)
µ +

(
1r1

0r2

)
τ1 +

(
0r1

1r2

)
τ2 + e. (3)

Written more concisely, in standard matrix notation, this is

y = Xβ + e, (4)

where

X (r × (1 + 2) = r × 3) =
(

1r1
1r1

0r1

1r2
0r2

1r2

)
is the design matrix of fixed mean and treatment effects, and

β(3× 1) =

 µ
τ1

τ2


is the vector of regression parameters.

Now, from Model (3)

E(y) = Xβ(r × 1), since E(eti) = 0

cov(y) = E[eeT ]

= σ2
eIr, since eti ∼ i.i.d.

= Ω(r × r), say.
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Therefore, in standard notation, y ∼ Nr(Xβ,Ω).

The problem with Model (4) is that the columns of X are not linearly independent,

implying that X is not of full rank. As a result, there are more parameters than equations

(3 vs. 2, respectively). Thus, not all the parameters can be uniquely estimated, implying

that there are an infinite number of solutions. This makes y unidentifiable. To make it

identifiable so that we can estimate the parameters uniquely, we assume τ1 = −τ2. Hence

we now have Model (5) with only two fixed effects, µ and τ1 :

y = Xβ + e, (5)

where

X (r × 2) =
(

1r1
1r1

1r2
−1r2

)
,

which has full rank equal to 2, and

β(2× 1) =
(

µ
τ1

)
:

is the corresponding vector of regression parameters.

The parameter estimates of Model (5) can be jointly estimated via maximum likelihood

estimation by maximising the log of the likelihood function. However, the likelihood

function now changes to include τ1,

L(µ, τ1, σ
2
e) =

r1∏
i=1

1√
2πσe

e
− 1

2

(
yi−(µ+τ1)

σe

)2 r2∏
i=1

1√
2πσe

e
− 1

2

(
yi−(µ−τ1)

σe

)2

.

Since X is now of full rank, the determinant of X TX exists, and hence its inverse matrix

is calculated as follows:

The determinant of X TX is

det(X TX ) =
∣∣∣∣ r 2r1 − r
2r1 − r r

∣∣∣∣
= r2 − (2r1 − r)2

= 4r1(r − r1).

From this, the inverse of X TX is

(X TX )−1 =
1

4r1(r − r1)

(
r r − 2r1

r − 2r1 r

)
.
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Let

ȳt =
1

rt

rt∑
i=1

yti =
1

rt

1T
rt
y

t
, t = 1, 2.

Then the unbiased MLEs of the parameters of Model (5) can be shown to be:

β̂ =
(

µ̂
τ̂1

)
= (X TX )−1X Ty.

Using this we can find µ̂ and τ̂1 :

β̂ = (X TX )−1X Ty

=
1

4r1(r − r1)

(
r r − 2r1

r − 2r1 r

)(
1T

r1
1T

r2

1T
r1

−1T
r2

)(
y

1
y

2

)
=

1

4r1(r − r1)

(
r r − 2r1

r − 2r1 r

)(
r1ȳ1 + r2ȳ2

r1ȳ1 − r2ȳ2

)
=

...

=
1

4r1r2

(
2r1r2(ȳ1 + ȳ2)
2r1r2(ȳ1 − ȳ2)

)
=

(
µ̂
τ̂1

)
where,

µ̂ =
1

2
(ȳ1 + ȳ2);

τ̂1 =
1

2
(ȳ1 − ȳ2).

So,

µ̂ + τ̂1 =
1

2
(ȳ1 + ȳ2) +

1

2
(ȳ1 − ȳ2)

= ȳ1

and

µ̂− τ̂1 =
1

2
(ȳ1 + ȳ2)−

1

2
(ȳ1 − ȳ2)

= ȳ2.

Now,

E(β̂) = E
(

µ̂
τ̂1

)
= β
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and

cov(β̂) = σ2
e(X TX )−1

=
σ2

e

4r1r2

(
r r − 2r1

r − 2r1 r

)
.

Therefore,

var(µ̂) =
σ2

er

4r1r2

= var(τ̂1)

and

cov(µ̂, τ̂1) =
σ2

e(r − 2r1)

4r1r2

.

Finally, we know that the MLE of σ2
e is biased, so in Section 4.1 we gave ( r

r−1
)σ̂e

2 = s2
e,

which is unbiased. In this section, where we consider treatment effects,(
r

r − 1

)(
σ̂e

2r

4r1r2

)
= s2

e.

Thus, µ̂ ∼ N (µ, σ2
er

4r1r2
), τ̂1 ∼ N (τ1,

σ2
er

4r1r2
) and 4r1r2(r−1)s2

e

r2σ̂e
2 ∼ χ2

4r1r2(r−1)

r2

, independently of

µ̂ and τ̂1.

As before, these estimates can be used to derive confidence intervals and test hypotheses

about the population. To test population means, the null hypothesis could be, for exam-

ple, H0 : τ1 = 0. If we wanted to test the population variance, we could test H0 : σ2
e = σ2

0,

which is a chi-squared test. However, we are not interested in testing the variance in this

instance, therefore this test is not shown here.

For testing either of these hypotheses, we use a likelihood ratio (LR) test, where the

LR is in terms of a ratio of two variance estimates. It can be shown to be equivalent

to an F-test, with the numerator and denominator having been calculated from classical

variance decomposition. This can be shown for the shelf-life data here, where we can test

for example, the null hypothesis H0 : τ1 = 0. We can show the relationship between the

variance-components here using analysis of variance (ANOVA):

The total sum of squared (SS) deviations is a measure of the sum of squared deviation

of each observation from the overall mean. Since we have treatment effects in our model,
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and we are testing these via H0 : τ1 = 0, we must decompose the total sum of squares as

follows:

SStotal =
2∑

t=1

rt∑
i=1

(yti − ȳ.)
2

=
2∑

t=1

rt∑
i=1

(yti − ȳt + ȳt − ȳ.)
2

=
2∑

t=1

rt∑
i=1

(yti − ȳt)
2 +

2∑
t=1

rt∑
i=1

(ȳt − ȳ.)
2 + 2

2∑
t=1

rt∑
i=1

(yti − ȳt)(ȳt − ȳ.)

=
2∑

t=1

rt∑
i=1

(yti − ȳt)
2 + r

2∑
t=1

(ȳt − ȳ.)
2 + 0

= SSerror + SStreatment.

The SSerror is a measure of the squared deviations between observations within a treatment

group and the mean of that group, while the SStreatment is a measure of the squared

deviations between each treatment mean and the overall mean. Now, under the null

hypothesis of equal treatment means for our two treatment groups,

SSerror

σ2
e

∼ χ2
r−2

SStreatment

σ2
e

∼ χ2
2−1,

where the latter is non-central chi-squared when the null hypothesis is rejected. We thus

have two independent estimates of σ2
e from the two mean squares (MS)

MSerror =
SSerror

r − 2

MStreatment =
SStreatment

2− 1
.

The mean squared error (MSerror) is an unbiased estimator of σ2
e , while the mean square

treatment (MStreatment) is only an unbiased estimator if the null hypothesis H0 : τ1 = 0

is true. The likelihood ratio, in this case, is just MSt

MSe
= F (2 − 1, r − 2), and it is this

F-statistic which is used to assess whether or not the null hypothesis should be rejected.

It has a non-central F-distribution with (2 − 1) and (r − 2) degrees of freedom, for the

numerator and denominator respectively, and non-centrality parameter equal to

rt

2∑
t=1

(
µt − µ

σe

)2

= r1

(
τ1

σe

)2

− r2

(
τ1

σe

)2

.
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Under the null hypothesis of no treatment differences, the non-centrality parameter is zero.

If MSt is significantly larger than MSe, there is a large difference between treatments,

implying that there is sufficient evidence to reject the null hypothesis. Therefore, by

having a treatment effect in the model, σ2
e is better estimated than if treatment effect

is not included, in which case the variance estimate will be over-inflated because the

treatment contribution to σ2
e is not teased out. If there is no significant difference between

the treatments, the estimate of σ2
e will not change, even when the treatment effect is

included in the model. This is related to the topic of confounding, which is discussed

later. Although the focus of this study is on variances, adding fixed effects to a model

affects the estimates of the variance and variance-components, making the understanding

of the theory important.

In this section, because we are estimating and testing a specific treatment, inferences

made from the analysis are only made about this treatment. Therefore, the treatment

effect τt is known as a fixed effect, and models such as Model (5) are called fixed-effects

models. The parameters of such models form the basis for studying contrasts, for example,

between treatments, groups or people.

4.3 Random effects or variance-components model

Let us put aside the treatment effect for a moment. Suppose we now cut each of the r

randomly chosen apples into j = 1, . . . , 4 pieces of approximately equal size. If yij is the

shelf-life of the jth piece of the ith apple, then y
i
(4× 1) = (yi1, . . . ,yi4)

T is the vector of

measurements of the shelf-life of pieces of the ithapple, y(N × 1) = (y
1
, . . . ,y

r
)T is the

vector of measurements of the shelf-life of all apple pieces, and the total sample size is

N =
∑r

i 4 = 4r.

In contrast to the previous examples, we now have measurements on pieces of the same

apple. As a result, the shelf-lives of the apple pieces are correlated and this correlation

must somehow be accounted for in the model. This is done by including two random

effects in a statistical model, one for apple pieces, which we already have, and another for
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the apples from which those pieces come. Both of these random effects have means of zero

but different variances. The residual variance, σ2
e , is for apple pieces while σ2

b is for apples.

So here, the sum of these two variances gives the total variance of the shelf-life of the

apple pieces. Adding the random apple effect to the model affects the variance-covariance

matrix of the observations. As a result, the variance and covariances of y
i
, and thus y,

will not be as straight-forward as previously.

Let bi be the random apple effect, such that bi ∼ i.i.d N (0, σ2
b ). In terms of the impact

of the haphazard variation which Cox & Solomon (2003) refer to, bi is the random effect

measuring the impact of apples on shelf-life.

Let eij be the residual corresponding to piece j of the ith apple, such that eij ∼ i.i.d N (0, σ2
e).

Then ei(4× 1) = (ei1, . . . , ei4)
T ∼ N4(0, σ

2
eI4) is the within-apple residual vector.

The eij and bi are independent of each other within each apple and also for different

apples.

Let µ be the overall mean shelf-life of the apple pieces, then a model for this data, for the

jth piece of the ith apple, is:

yij = µ + bi + eij for i = 1, . . . , r; j = 1, . . . , 4. (6)

Here,

E(yij) = µ, since E(eij) = 0

var(yij) = σ2
b + σ2

e , because cov(bi, eij) = 0.

Therefore, yij ∼ N (µ, σ2
b +σ2

e), where σ2
b is the between-apple component of variance and

σ2
e is the within-apple component of variance.

Expanding out Model (6), for an apple, givesyi1 = µ + bi + ei1
...

yi4 = µ + bi + ei4

 ,

which is equivalent to 
yi1

yi2

yi3

yi4

 =


1
1
1
1

µ +


1
1
1
1

bi +


ei1

ei2

ei3

ei4

 .
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Then, in matrix notation, Model (6) is

y
i
= 14µ + 14bi + ei, for i = 1, . . . , r. (7)

The mean vector and covariance matrix for y
i
(4 x 1) are calculated as follows:

E(y
i
) = 14µ(4× 1), since E(eij) = 0

cov(y
i
) = E[(14bi + ei)(14bi + ei)

T ]

= 14E(bibi
T )1T

4 + E(eiei
T ), since cov(bi, eij) = 0.

= σ2
b141

T
4 + σ2

eI4.

Now,

σ2
b141

T
4 = σ2

b


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 = σ2
bJ4.

This implies that the covariance matrix of y
i

cov(y
i
) = σ2

bJ4 + σ2
eI4

=


σ2

b + σ2
e σ2

b σ2
b σ2

b

σ2
b σ2

b + σ2
e σ2

b σ2
b

σ2
b σ2

b σ2
b + σ2

e σ2
b

σ2
b σ2

b σ2
b σ2

b + σ2
e


= Ωi(4× 4), say.

So, cov(yij,yik) = σ2
b , for all j 6= k, and y

i
∼ N4(14µ,Ωi).

Note that here, Ωi has a compound symmetry structure, which is when the correlation,

ρ, between all pairs of observations, is the same. In our case, the correlation coefficient

between any two pieces of the ith apple is given by

ρ(yij,yik) =
cov(yij,yik)√

var(yij)var(yik)
=

σ2
b

σ2
b + σ2

e

, for all j 6= k.

This known as the intraclass correlation coefficient (ICC) and it is estimated from Model

(7) where, within an apple, the covariance between each pair of apple pieces is the same.
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In the extreme situation when the between-apple variance σ2
b = 0, ρ = 0, implying that

there is no correlation between any two pieces of the same apple. Hence there is maximum

variation between two such apple pieces. However, when σ2
b is much larger than σ2

e , (that

is, σ2
e → 0) then the correlation between pieces of the same apple is also large. This in

turn means that there is minimum variation between these pieces.

Later, we will see how this changes when considering families rather than apples, and we

will also see where the complications arise with family data.

We can now write out the model for y(N×1) by expanding out Model (7) for all r apples:
y

1
y

2
...
y

r

 =


14

14
...
14

µ +


14 04 · · · 04

04 14 · · · ...
...

...
. . . 04

04 · · · 04 14




b1

b2
...
br

+


e1

e2
...
er

 .

Let

Zb(N × r) =


14 04 · · · 04

04 14 · · · ...
...

...
. . . 04

04 · · · 04 14

 ,

then

y = 1Nµ + Zbb + e, (8)

where

b(r × 1) = (b1, . . . ,br)
T is the vector of random effects,

Zb(N × r) is the design matrix corresponding to the random apple effects, and

e(N × 1) = (e11, . . . , er4)
T ∼ NN(0, σ2

eIN) is the vector of residuals.

Model (8) can be written more succinctly in standard notation, as

y = Xβ + Zbb + e, (9)

where β(1× 1) = µ is the vector of fixed mean effects,

X (N × 1) = 1N is the design matrix for the mean vector,

Zb(N × r) is the design matrix corresponding to the random effects, and

b(r × 1) is the vector of random effects.
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Now,

E(y) = 1Nµ, since E(eij) = 0

= Xβ(N × 1)

cov(y) = ZbE(bbT )ZT
b + E(eeT ), since cov(bi, eij) = 0.

= σ2
bZbZT

b + σ2
eIN

where ZbZT
b (N × N) is a block diagonal matrix consisting of (4 × 4) blocks of 1 on the

diagonal and zeros on the off-diagonal. Thus,

ZbZT
b (N ×N) =



1 1 1 1 0 0 0 0 · · · 0 0 0 0
1 1 1 1 0 0 0 0 · · · 0 0 0 0
1 1 1 1 0 0 0 0 · · · 0 0 0 0
1 1 1 1 0 0 0 0 · · · 0 0 0 0
0 0 0 0 1 1 1 1 · · · 0 0 0 0
0 0 0 0 1 1 1 1 · · · 0 0 0 0
0 0 0 0 1 1 1 1 · · · 0 0 0 0
0 0 0 0 1 1 1 1 · · · 0 0 0 0

...
...

. . .
...

0 0 0 0 0 0 0 0 · · · 1 1 1 1
0 0 0 0 0 0 0 0 · · · 1 1 1 1
0 0 0 0 0 0 0 0 · · · 1 1 1 1
0 0 0 0 0 0 0 0 · · · 1 1 1 1



=


J4 O4 · · · O4

O4 J4 · · · O4
...

...
. . .

...
O4 O4 · · · J4

 .

In standard notation, y ∼ NN(Xβ,Ω), where the block diagonal covariance matrix of y

is

Ω(N ×N) = σ2
bZbZT

b + σ2
eIN

= σ2
b


J4 O4 · · · O4

O4 J4 · · · O4
...

...
. . .

...
O4 O4 · · · J4

+ σ2
e


I4 O4 · · · O4

O4 I4 · · · O4
...

...
. . .

...
O4 O4 · · · I4



=


Ω1 0 · · · 0

0 Ω2 · · · ...
...

...
. . . 0

0 · · · 0 Ωr

 ,
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where the elements Ωi are the previously shown per-apple covariance matrices. The

diagonalisation can be explained as follows:

We see that the covariances between two pieces of different apples is cov(yij,ysk) =

0, for all j, k and i 6= s, so the correlation coefficient between any two pieces from different

apples is

ρ(yij,ysk) =
cov(yij,ysk)√

var(yij)var(ysk)
=

0

σ2
b + σ2

e

= 0, for all j, k and i 6= s.

Therefore, all of the off-diagonal elements of Ω are zero. The diagonal elements of Ω

are the within-apple covariances and thus consist of blocks of elements which are the

compound symmetric, per-apple, Ωi matrices. There are r of these– one for each of the r

apples under investigation.

Here, we can again decompose the total sum of squares, as we did in Section 4.2. However,

instead of a treatment sum of squares, we will have a between-apple sum of squares (SSb).

This in turn implies that the correlation between two pieces of the same apple can be

written in terms of the mean squares, namely

ρ(yij,yik) =
σ̂2

b

σ̂2
b + σ̂2

e

=
MSb −MSe

(r0 − 1)MSb −MSe

, for all j 6= k,

where

r0 =
2r1(r − r1)

r
.

This leads to a F-test where the F-statistic under the null hypothesis, H0 : σ2
b = 0, is

F =
(

MSb

MSe

)
∼ F (2− 1, r − 2).

As in previous sections, the method of moments estimates again differ from the maximum

likelihood estimates, although it is not shown here as estimation is not our focus.

In this example, if we had failed to account for the fact that pieces of the same apple

are correlated, then the mean square error of shelf-life of apple pieces would have been

over-inflated. This is because all the variation in the lifetimes of apple pieces would not

have been properly accounted for. By correctly accounting for the correlations and all the

sources of random variation in the lifetimes, the variance of yij, and thus the variances
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and covariances of y
i
and y, are more accurately estimated. In other words, the estimates

will be measured with little error and will thus be close to the true value (Rothman et

al., 2008). Therefore, any tests carried out on the data will be more precise, that is, the

random error of estimation will be small (Rothman et al., 2008).

In this section, as in the previous ones, we have models which are used to estimate the

within-apple/residual variance σ2
e . The difference in each section is that the value of σ2

e

varies according to the specified model. So whenever new factors are added to a model,

the estimate of this within-apple variance changes according to what kind of factor is

added.

In Model (9), the additional factor (apples) represents a random sample from a larger set

of factors. Since such models contain only random effect terms, they are called random-

effects models. The levels of a random effect are not of particular interest in themselves

(so we are not interested in particular apples), but may be useful in understanding some of

the variation in the underlying population from which they are drawn, and then removing

it. Random variables are usually summarised by their variances, as shown in this section

(4.3). As a result, such models are also known as variance-components models.

Fixed effects are generally estimated in a different way to random effects. They are

assumed to have no variance of their own, while each random effect has a corresponding

variance-component which must be estimated. As illustrated in Section 4.2, the addition

of fixed effects to a model (the treatment effect in our case) affects the estimate of the

residual variance, σ2
e . In particular, by including them in a model and then estimating

them, the residual variance is reduced because the variance due to these effects is adjusted

for (by removing it from the residual variance).

As demonstrated above, effects are fixed or random depending on whether they are the

only effects of interest (fixed effects) or if they are randomly sampled from a larger popu-

lation of effects and are not, in themselves, of particular interest (random effects). These

effects can be modeled separately, as in the models shown in the previous sections, where
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fixed effects (Section 4.2) and random effects (Section 4.3) are modeled separately. How-

ever, both fixed and random effects can be accounted for in the same model. Such models

are known as mixed-effects models and are shown in the following sections.

4.4 Mixed-effects model: Two fixed effects and one random effect

Suppose that we again cut each of the r apples into j = 1, . . . , 4 pieces. We again want to

compare the shelf-life of pieces of r1 treated apples to the shelf-life of pieces of r2 untreated

apples (t = 1, 2 respectively). Assume that µ is the fixed mean shelf-life of the untreated

apple pieces. Here, r = r1 + r2 apples, so the total sample size N =
∑r

i 4 = 4r. The

model for this data is an example of a simple mixed-effects model, containing one fixed

effect (treatment) and one random effect (apple). The structure of this model is just a

combination of Models (5) , the fixed-effects model, and Model (9), the random effects

model. In practice, mixed-effects models are usually more complex, and since we are

interested in the effects of adding different fixed and random effects to a model, we will

not discuss the simplest model here. Instead we consider a model with two fixed effects

and one random effect.

So, suppose we also have information on the weight (in grams) of all the apple pieces and

we would like to include it in the model as a covariate. In statistics, we consider covariates

carefully for several reasons:

1. some of the covariates may be important predictors of the outcome (shelf-life of the

apples, in our case), but their effects maybe masked by the other predictors;

2. the effect of some predictors may not be balanced across the levels of exposure, so we

also need to somehow account for this;

3. it is possible to have a covariate that is independently associated with both a predictor

(usually the exposure variable) and the outcome variable, in a way that causes it to con-

found or confuse the effect of the exposure variable on the outcome, even though it is not

in the causal pathway between the two. Such a covariate contributes to the covariance in

a model and is known as a confounder. The distortion produced by a confounder may be
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large and can lead to effects being either overestimated or underestimated. Epidemiolo-

gists call this distortion confounding.

In a statistical model, we ‘adjust for’, ‘account for’,‘correct for’ or ‘covary for’ the effects

of such covariates and confounders by including them in the model as fixed effects. This

removes the effects of these variables from the sum of squares of the model, leaving behind

only the effect that is independent of these variables (Rothman et al., 2008). Adjustment

also removes the effect of these confounders from the estimates of the fixed effects, but

that is not the focus here so it will not be discussed further.

Let xtij represent the weight of the jth piece of the ith apple, treated with t, which has

unknown coefficient α, in the model.

Let ytij be the shelf-life of the jth piece of the ith apple, where apple i is treated with

preservative t. Then, y
ti
(4 × 1) = (yti1, . . . ,yti4)

T is the vector of measurements of the

shelf-life of pieces of the ithapple, treated with t, and y(N × 1) = (y
11

, . . . ,y
2r2

)T is the

vector of measurements of the shelf-life of all apple pieces. Finally, let τt represent the

effect of preservative t on the ith apple, such that τ1 = −τ2, which as we showed previously,

ensures identifiability in estimation.

The data can then be modeled as follows:

ytij = µ + τt + αxtij + bti + etij, for t = 1, 2; i = 1, . . . , rt; j = 1, . . . , 4, (10)

where, bti and etij are, respectively, the random apple effect and residual for the jth piece

of the ith apple, for treatment t.

Assume that etij ∼ i.i.d N (0, σ2
e) and bti ∼ i.i.d N (0, σ2

b ), independently of the etij.

Then, var(ytij) = σ2
b + σ2

e , as we had for Model (6). However, the expected value of

ytij, E(ytij) = E(µ + τtij + αxtij + bti + etij) = µ + τtij + αxtij, which is different to that

for Model (6) as we now have two additional fixed effects.

Therefore, ytij ∼ N (µ + τtij + αxtij, σ
2
b + σ2

e).
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Expanding Model (10) for the ith apple gives:yti1 = µ + τt + αxti1 + bti + eti1
...

yti4 = µ + τt + αxti4 + bti + eti4

 ,

which implies
yti1

yti2

yti3

yti4

 =


1
1
1
1

µ +


1
1
1
1

 τt + α


xti1

xti2

xti3

xti4

+


1
1
1
1

bti +


eti1

eti2

eti3

eti4

 .

Thus, for the vector y
ti
(4× 1), we have:

y
ti

= 14µ + 14τt + αxti + 14bti + eti, for t = 1, 2; i = 1, . . . , rt (11)

where xti(4× 1) = (xti1, . . . , xti4)
T is the vector of weights of each apple piece, and

eti(4 × 1) = (eti1, . . . , eti4)
T ∼ N4(0, σ

2
eI4) is the within-apple residual vector. Thus, eti

and bti are independent in each apple and independent of each other for different apples.

The expected value and covariance matrix for y
ti
(4× 1) are:

E(y
ti
) = 14µ + 14τt + αxti(4× 1), since E(etij) = 0

cov(y
ti
) = σ2

bJ4 + σ2
eI4, since cov(bti, etij) = 0

= Ωi(4× 4), say.

Writing out Ωi(4×4) fully for the ith apple gives the same covariance matrix as for Model

(7), the random effects model. Thus,

cov(ytij,ytik) = σ2
b , for all j 6= k, t = 1, 2

ρ(ytij,ytik) =
σ2

b

σ2
b + σ2

e

, for all j 6= k, t = 1, 2.

However, here, y
ti
∼ N4(14µ+14τt +xtiα,Ωi), as there are additional fixed effects terms.

To write out the vector of all observations, y(N × 1), in matrix notation, expand Model
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(11): 

y
11
...

y
1r1

y
21
...

y
2r2


=



14
...
14

14
...
14


µ +



14
...
14

−14
...

−14


τ1 + α



x11
...

x1r1

x21
...

x2r2



+



14 · · · 04 04 · · · 04
...

. . .
...

... · · · ...
04 · · · 14 04 · · · 04

04 · · · 04 14 · · · 04
... · · · ...

...
. . .

...
04 · · · 04 04 · · · 14





b11
...

b1r1

b21
...

b2r2


+



e11
...

e1r1

e21
...

e2r2


.

Therefore,

y = 1Nµ +
(

1(4r1)

−1(4r2)

)
τ1 + αx + Zbb + e, (12)

where

x(N × 1) = (x111 . . . x2r24)
T is the vector of fixed weights for all the apple pieces,

b(r × 1) = (b11, . . . ,b2r2)
T ∼ Nr(0, σ

2
bJr) is the vector of random effects for all the

apples,

e(N × 1) = (e111 . . . e2r24)
T ∼ NN(0, σ2

eIN) is the vector of residuals for all the apple

pieces, and

Zb(N×r) is the same design matrix of regression coefficients for the random apple effects,

seen for Model (8). It again corresponds to b.

Written more succinctly in standard notation, Model (12) is

y = Xβ + Zbb + e, (13)

where

X (N × 3) =
(

1(4r1) 1(4r1) x(4r1)

1(4r2) −1(4r2) x(4r2)

)
,

is the design matrix for the fixed effects, with

x(4rt)(4rt × 1), the vector of weights of all apple pieces that are treated with preservative

t, where t = 1, 2.
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The vector of fixed effect regression parameters is, β(3× 1) =

 µ
τ1

α

 ,

b(r × 1) ∼ Nr(0, σ
2
bJr), is the vector of random effects and

Zb(N × r) is the same design matrix for the random apple effects, which is shown for

Model (8).

Finally, e(N × 1) ∼ NN(0, σ2
eIN) is the vector of residuals.

Therefore, y ∼ NN(Xβ,Ω), with

E(y) = 1Nµ +
(

1r1

−1r2

)
τ1 + αx

= Xβ(N × 1), since E(etij) = 0

cov(y) = σ2
gZbZT

b + σ2
eIN, because cov(bti, etij) = 0

= Ω(N ×N)

=


Ω1 0 · · · 0

0 Ω2 · · · ...
...

...
. . . 0

0 · · · 0 Ωr

 ,

where ZbZT
b (N×N) is the same block diagonal matrix from Model (9), with (4×4) blocks

of 1 on the diagonal, and zeros on the off-diagonal. It is used to calculate the elements,

Ωi, which are the per-apple covariance matrices defined above.

In the above models, even though we have other terms in the models, the covariance

matrices have the same form as those in Section 4.3, where we illustrated the random

effects models. This is because the additional terms in the model, τt and xtij, are fixed

effects and not random effects. This implies that the variance due to these effects is

incorporated into the residual variance, so that σ2
e in Model (11) will differ from σ2

e in

Model (7). On the other hand, if the additional terms had been random effects, the

variance due to these effects would have been included in the covariance matrices of y
ti

and y as additional variance-components, in the same way as σ2
b was included in the

covariance matrices in Section 4.3.

In Model (13), as in Model (9), the correlation between any pair of pieces from different
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apples is given by ρ(ytij,ytsk) = 0, for all j, k, i 6= s and t = 1, 2. Therefore, pieces from

different apples do not correlate with each other at all.

As pairs of pieces of the same apple have the same covariance (σ2
b ), we can think of each

apple as being a ‘cluster’. Thus, σ2
b represents the between-cluster source of variation,

while σ2
e represents the within-cluster source of variation. These are the two sources of

variation found in any mixed-effects model which has clusters. From the ICC we see that,

if the variation between apples is large relative to the variation within an apple, then

the correlation between pieces of the same apple will also be large because the within-

apple variation is small. Hence, as the between-cluster variation increases, so will the

within-cluster correlation.

In Section 4.4, we modeled fixed and random effects simultaneously. We saw that if we

take a random-effects model and add fixed effects to it, we get a mixed-effects model

where the structure and components of the covariance matrix are the same as those in

the random effects model, but the matrix of fixed effects changes due to the addition

of fixed effects. In the following section, we keep the same fixed effects structure as in

Section 4.4, but add another random effect to the models, to observe the impact on the

covariance matrices.

4.5 Mixed-effects model: Two fixed effects and two random effects

Let us now consider the same situation as in Section 4.4, where we cut our r apples

into quarters and have the effect of two treatments (τt, for t = 1, 2) which are randomly

assigned to r1 treated and r2 untreated apples. As before, let τ1 = −τ2 for identifiability,

and let µ be the mean shelf-life of the untreated apples. There are thus r = r1 + r2 apples

and N = 4r apple pieces in total.

In addition, we again have the weight (grams) of each of the 4r apple pieces, denoted by

(xtij), with unknown coefficient α.

Suppose we now also consider that each quarter from the same apple is not exactly the

same as the other three quarters because we cannot realistically cut an apple into exactly

56

 

 

 

 



equal halves, and thus exactly equal quarters. Let us assume that two quarters that

come from the same half of an apple are more similar than two quarters that come from

different halves of an apple. This implies that there is a random effect of position, and

the impact of this random effect must be measured if we are to have accurate estimates,

as it is another source of haphazard variation in our data.

Let fti be the random effect of the position of the jth piece of the ith apple, treated with

t, such that f = 1, 2, 3, 4. Here, we can assume that pieces 1 and 2 come from the same

half of an apple and pieces 3 and 4 come from the other half of the same apple. Under

these assumptions, pieces 1 and 2 will be more correlated with each other, as will pieces

3 and 4. On the other hand, pieces 1 and 3, 2 and 4, and 2 and 3 will not be as highly

correlated with each other since they come from different halves of an apple. We will

assume here that the correlation between pieces 1 and 2, 2 and 3, and so on, are the same

across all the apples. To account for this unknown correlation in the model, as well as in

the covariance matrix of the model, we must assign coefficients to fti.

Suppose that j, k = 1, 2, 3, 4 are the jth and kth pieces of an apple, and zftijk is the

regression coefficient corresponding to fti, for pieces j and k in apple i.

Assume again that ytij is the shelf-life of the jth piece of the ith apple, treated with t,

so that y
ti
(4 × 1) = (yti1, . . . ,yti4)

T is the vector of measurements of the shelf-life of

pieces of the ith apple, treated with t, and y(N × 1) = (y
11

, . . . ,y
2r2

)T is the vector of

measurements of the shelf-life of all apple pieces.

Let etij be the residual and bti be the random apple effect. Here, we again have etij ∼

i.i.d N (0, σ2
e) and bti ∼ i.i.d N (0, σ2

b ).

In addition, let fti ∼ i.i.d N (0, σ2
f ), such that etij,bti and fti are all independent of each

other and each one is independent within an apple. We thus have

ytij = µ + τt + αxtij + zT
ftij

f ti + bti + etij, for t = 1, 2; i = 1, . . . , rt; j = 1, . . . , 4, (14)

where zT
ftij

(1× 4) = {zftijk} is the vector of regression coefficients for the jth apple piece,

corresponding to the random position effect, fti, and

f ti(4×1) = (fti, . . . , fti)
T is the vector of the random effects of position of each apple piece
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relative to each other piece in an apple.

For ytij(1× 1),

E(ytij) = E(µ + τt + αxtij + zT
ftij

f ti + bti + etij)

= µ + τt + αxtij, since E(etij) = 0

var(ytij) = E[(zT
ftij

f ti + bti + etij)
2]

= E[(zT
ftij

f ti)
2] + E[bti

2] + E[etij
2] + 0, cov(bti, fti) = cov(bti, etij) = cov(fti, etij) = 0

= σ2
f + σ2

b + σ2
e , since zftijk = 1 for all j = k, t = 1, 2.

Thus, ytij ∼ N (µ + τt + αxtij, σ
2
f + σ2

b + σ2
e). So we now have an additional variance

component in the model. The effect on the covariance matrices of y
ti
(4×1) and y(N×1)

is shown below.

Expanding Model (14) for the ith apple gives:yti1 = µ + τti1 + αxti1 + zfti11fti + · · ·+ zfti14fti + bti + eti1
...

yti4 = µ + τti4 + αxti4 + zfti41fti + · · ·+ zfti44fti + bti + eti4

 ,

which implies
yti1

yti2

yti3

yti4

 =


1
1
1
1

µ +


1
1
1
1

 τt + α


xti1

xti2

xti3

xti4



+


zfti11 zfti12 zfti13 zfti14

zfti21 zfti22 zfti23 zfti24

zfti31 zfti32 zfti33 zfti34

zfti41 zfti42 zfti43 zfti44




fti
fti
fti
fti

+


1
1
1
1

bti +


eti1

eti2

eti3

eti4

 .

Thus,

y
ti

= 14µ + 14τt + αxti + Zfti
f ti + 14bti + eti, for t = 1, 2; i = 1, . . . , rt, (15)

where

f ti(4 × 1) = (fti, . . . , fti)
T is the vector of random position effects of each apple piece

relative to the other pieces,

eti(4× 1) = (eti1, . . . , eti4)
T ∼ N4(0, σ

2
eI4) is the within-apple residual vector,
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bti ∼ i.i.d N (0, σ2
b ) is the random apple effect, and

Zfti
(4 × 4) = {zftijk} is the symmetric matrix of regression coefficients corresponding to

the random position effect, fti.

Since E(etij) = 0 and cov(bti, fti) = cov(bti, etij) = cov(fti, etij) = 0,

E(y
ti
) = 14µ + 14τt + αxti(4× 1)

cov(y
ti
) = E[(Zfti

f ti + 14bti + eti)(Zfti
f ti + 14bti + eti)

T ]

= Zfti
E(f tif ti

T )ZT
fti

+ 14E(btibti
T )1T

4 + E(etieti
T ),

= σ2
fZfti

ZT
fti

+ σ2
bJ4 + σ2

eI4

= Ωi(4× 4), say,

where

Zfti
ZT

fti
(4× 4) =


1 z2

fti12
z2

fti13
z2

fti14

z2
fti21

1 z2
fti23

z2
fti24

z2
fti31

z2
fti32

1 z2
fti34

z2
fti41

z2
fti42

z2
fti43

1

 .

Now,

cov(ytij,ytik) = z2
ftijk

σ2
f + σ2

b , for all j 6= k, t = 1, 2, and

ρ(ytij,ytik) =
z2

ftijk
σ2

f + σ2
b

σ2
f + σ2

b + σ2
e

, for all j 6= k, t = 1, 2,

so the covariance matrix of each apple, Ωi(4× 4), looks as follows:

Ωi =


σ2

f + σ2
b + σ2

e z2
fti12

σ2
f + σ2

b z2
fti13

σ2
f + σ2

b z2
fti14

σ2
f + σ2

b

z2
fti21σ

2
f + σ2

b σ2
f + σ2

b + σ2
e z2

fti23
σ2

f + σ2
b z2

fti24
σ2

f + σ2
b

z2
fti31σ

2
f + σ2

b z2
fti32

σ2
f + σ2

b σ2
f + σ2

b + σ2
e z2

fti34
σ2

f + σ2
b

z2
fti41σ

2
f + σ2

b z2
fti42

σ2
f + σ2

b z2
fti43

σ2
f + σ2

b σ2
f + σ2

b + σ2
e

 .

While it also appears to have a compound symmetry structure, this is not the case here

because the correlation between different pieces of an apple will differ according to the

position of the pieces.

Thus, although Ωi here is symmetric, it differs from Ωi in Sections 4.3 and 4.4, in that:

1. we now have three components of variance, whereas there were only two variance-

components previously; and
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2. the new component here, σ2
f , has a coefficient which describes the relationship between

two apple pieces, depending on where on the apple they are positioned relative to each

other. This was not the case in those previous sections.

So here, y
i
∼ N4(14µ + 14τt + αxti,Ωi), where Ωi has the structure shown above.

Expanding Model (15) for y(N × 1), the vector of shelf lives for all the apples in the

sample, gives:

y
11
...

y
1r1

y
21
...

y
2r2


=



14
...
14

14
...
14


µ +



14
...
14

−14
...

−14


τ1 + α



x11
...

x1r1

x21
...

x2r2



+



Zf11 · · · O4 O4 · · · O4
...

. . .
...

... · · · ...
O4 · · · Zf1r1

O4 · · · O4

O4 · · · O4 Zf21 · · · O4
... · · · ...

...
. . .

...
O4 · · · O4 O4 · · · Zf2r2





f11
...

f1r1

f21
...

f2r2


+

+



14 · · · 04 04 · · · 04
...

. . .
...

... · · · ...
04 · · · 14 04 · · · 04

04 · · · 04 14 · · · 04
... · · · ...

...
. . .

...
04 · · · 04 04 · · · 14





b11
...

b1r1

b21
...

b2r2


+



e11
...

e1r1

e21
...

e2r2


.

Therefore,

y = 1Nµ +
(

1(4r1)

−1(4r2)

)
τ1 + αx + Zf f + Zbb + e, (16)

where

x(N × 1) = (x111 . . . x2r24)
T is the vector of fixed weights for all the apple pieces,

f(N × 1) = (f11, . . . , f2r2)
T ∼ NN(0, σ2

fZfZT
f ) is the vector of random effect of position

for all the apple pieces, with ZfZT
f (N ×N) = {z2

ftijk
}

b(r× 1) = (b11, . . . ,b2r2)
T ∼ Nr(0, σ

2
bJr) is the vector of random effects for all r apples,

and
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e(N × 1) = (e111 . . . e2r24)
T ∼ NN(0, σ2

eIN) is the overall vector of residuals.

In addition,

Zf (N ×N) =



Zf11 · · · O4 O4 · · · O4
...

. . .
...

... · · · ...
O4 · · · Zf1r1

O4 · · · O4

O4 · · · O4 Zf21 · · · O4
... · · · ...

...
. . .

...
O4 · · · O4 O4 · · · Zf2r2


and

Zb(N × r) =



14 · · · 04 04 · · · 04
...

. . .
...

... · · · ...
04 · · · 14 04 · · · 04

04 · · · 04 14 · · · 04
... · · · ...

...
. . .

...
04 · · · 04 04 · · · 14


.

Writing Model (16), in the more concise standard matrix notation gives:

y = Xβ + Zb + e, (17)

where

X (N × 3) is the design matrix for the fixed effects and is the same as the corresponding

design matrix for Model (13); namely

X (N × 3) =
(

1(4r1) 1(4r1) x(4r1)

1(4r2) −1(4r2) x(4r2)

)
,

where

x(4rt)(4rt×1) is the vector of weights of all apple pieces that are treated with preservative

t, t = 1, 2,

β(3× 1) = (µ, τ1, α)T is the vector of fixed effects,

Z(N × (N + r)) is the design matrix for the random position and apple effects, and it has

the following structure:

Z =



Zf11 14 · · · O4 04 O4 04 · · · O4 04
... · · · . . .

...
...

...
... · · · ...

...
O4 04 · · · Zf1r1

14 O4 04 · · · O4 04

O4 04 · · · O4 04 Zf21 14 · · · O4 04
...

... · · · ...
...

...
...

. . .
...

...
O4 04 · · · O4 04 O4 04 · · · Zf2r2

14


,
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where

Zfti
(4 × 4) = {zftijk} is the symmetric matrix of regression coefficients corresponding to

the random position effect, fti.

Next,

b((N + r)× 1) =



f11

b11
...

f1r1

b1r1

f21

b21
...

f2r2

b2r2



∼ N(N+r)(0, σ
2
fZfZT

f + σ2
bZbZT

b )

is the vector of random effects, with ZfZT
f (N × N) = {z2

ftijk
}, and ZbZT

b (N × N), the

block diagonal matrix shown for Model (9), with (4× 4) blocks of 1 on the diagonal and

zeros on the off-diagonal.

Finally, e(N × 1) ∼ NN(0, σ2
eIN) is the vector of residuals.

Therefore,

E(y) = Xβ(N × 1), since E(etij) = 0

cov(y) = E[(Zf f + Zbb + e)(Zf f + Zbb + e)T ]

= ZfE(ffT )ZT
f + ZbE(bbT )ZT

b + E(eeT ), as cov(bti, fti) = cov(bti, etij) = cov(fti, etij) = 0

= σ2
fZfZT

f + σ2
bZbZT

b + σ2
eIN

= Ω(N ×N), say,

where ZfZT
f (N ×N) = {z2

ftijk
}, and ZbZT

b (N ×N) is described above.

Then, y ∼ NN(Xβ,Ω), where the block diagonal covariance matrix of y is

Ω(N ×N) =


Ω1 0 · · · 0

0 Ω2 · · · ...
...

...
. . . 0

0 · · · 0 Ωr

 ,

and the elements Ωi are defined above.
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Between Section 4.5 and Section 4.4, we have seen that adding fixed effects to a model

does not alter the form of the covariance matrix. In contrast, adding random effects

does change the covariance matrix, by including in it additional variance components

which represent the variation due to these new effects. As a result, these additional

variance-components affect the covariances of observations between pieces of the same

apple, and thus the correlation between these pieces. As we saw for Model (15), the

correlation coefficient between any two pieces of the same apple, for the models above, is

ρ(ytij,ytik) =
z2
ftijkσ2

f+σ2
b

σ2
f
+σ2

b
+σ2

e
, for all j 6= k, t = 1, 2. Here, there is an additional component in

both the numerator and denominator, whereas in Section 4.4, the correlation contained

only the between-apple component of variance and the residual variance. In addition, the

new component, σ2
f , has a coefficient which contributes to the correlation. Through this

coefficient, the correlation between two pieces of the same apple accounts for the position

of those pieces relative to the each other. Finally, cov(ytij,ytsk) = 0 and ρ(ytij,ytsk) =

0, for all j, k, i 6= s and t = 1, 2, so two pieces from different apples do not correlate with

each other at all.

Here, the estimated value of the residual variance, σ2
e also differs from the estimate in

Section 4.4, as there is an additional random effect in the models here. The variation

due to this new effect adds an additional variance-component, σ2
f , to the total variance.

It thus accounts for some of the variation in the data. Therefore, the total variance now

is split between the three components σ2
e , σ

2
b and σ2

f , where σ2
e accounts for the residual

variance, as well as the variance due to all the fixed effects in the models.

Dividing up random variation and accounting for all sources of variation in dataset, as

demonstrated in the previous sections, is the crux of variance-components methodology.

It is necessary since valid statistical inferences about means and differences between means

can only be made when the corresponding variances are correctly specified and estimated.

The models shown in Section 4.5 are among the most basic types of mixed-effects models

we find. In the last section (4.6), we expand these models to include d covariates (fixed
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effects) since, in practice, it is seldom the case that there are only one or two covariates

that need to be considered.

Adding covariates to models changes the matrix of fixed effects but does not affect the

structure of the covariance matrix, as we have seen. This is fortunate as our previous

covariance matrix will not become more complex. However, each additional fixed effect

will affect the estimate of σ2
e , as the variation due to these fixed effects is accounted for

in σ2
e .

4.6 Mixed-effects model: Several fixed effects and two random effects

The number of fixed and random effects presented in this section have been chosen specif-

ically to correspond to those presented in Chapter 7, where the results of the Heartdata

analysis are presented. The motive behind this is to reinforce and implement the theory

presented here practically, using real-world data. As such, this example is tailored to fit

the Heartdata, although we are still considering the statistical theory in terms of apples,

as it is better understood in this context first.

The primary objective of the Heartdata is to develop appropriate models and test the

variance-components in order to establish heritability and linkage. As such, we are not

interested in testing (and do not have) any treatment effects for this data. Due to this,

the models in this section exclude the treatment effects that we considered in Sections 4.4

and 4.5, making the models here a little simpler.

Suppose we have d = 10 covariates (predictors), whose effects on the apples we must take

into consideration in our models.

Assume again that we have r apples, each cut into four pieces, so that N =
∑r

i 4 = 4r

apple pieces in total.

Let x1,ij, . . . , x10,ij denote ten covariates of interest and let α1, . . . , α10 be the unknown

coefficients corresponding to each of these xd,ij.
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Assume also that we have two random effects:

bi ∼ i.i.d N (0, σ2
b ), the random apple effect, and

fi ∼ i.i.d N (0, σ2
f ), the random effect which measures the impact of the position of apple

piece j in apple i, relative to the other three pieces. It has regression coefficient zfijk.

Also, eij ∼ i.i.d N (0, σ2
e) is the random residual for the jth piece of the ith apple, such

that eij,bi and fi are all independent of each other between apples, and each one is also

independent within an apple.

If yij(1×1) is the shelf-life of the jth piece of the ith apple and µ is the overall mean shelf-

life of the apple pieces, then y
i
(4 × 1) = (yi1, . . . ,yi4)

T is the vector of measurements

of the shelf-life of pieces of the ith apple, and y(N × 1) = (y
1
, . . . ,y

r
)T is the vector of

measurements of the shelf-life of all apple pieces. A model for this data, for each apple

piece, is

yij = µ + xT
d,ijα + zT

fij
f i + bi + eij, for i = 1, . . . , r; j = 1, . . . , 4; d = 1, . . . , 10, (18)

where

zT
fij

(1× 4) = {zfijk}, and

xT
d,ijα(1× 1) = ( x1,ij x2,ij · · · x10,ij )


α1

α2
...

α10


= α1x1,ij + α2x2,ij + · · ·+ α10x10,ij.

Therefore,

E(yij) = µ + xT
d,ijα, since E(eij) = 0

= µ + α1x1,ij + α2x2,ij + · · ·+ α10x10,ij

var(yij) = E[(zT
fij

f i)
2] + E[bi

2] + E[eij
2] + 0, because cov(bi, eij) = cov(bi, fi) = cov(eij, fi) = 0

= σ2
f + σ2

b + σ2
e , since zfijk = 1 for all j = k.

Thus, yij ∼ N (µ + α1x1,ij + α2x2,ij + · · · + α10x10,ij, σ
2
f + σ2

b + σ2
e). So unlike in Section

4.5, we now have some additional terms in the mean expression and no treatment effect

terms, while the variance contains the same three components as it did there.
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If we expand Model (18) for the ith apple, we get:yi1 = µ + α1x1,i1 + · · ·+ α10x10,i1 + zfi11fi + · · ·+ zfi14fi + bi + ei1
...

yi4 = µ + α1x1,i4 + · · ·+ α10x10,i4 + zfi41fi + · · ·+ zfi44fi + bi + ei4

 ,

which gives
yi1

yi2

yi3

yi4

 =


1
1
1
1

µ +


x1,i1 x2,i1 · · · x10,i1

x1,i2 x2,i2 · · · x10,i2

x1,i3 x2,i3 · · · x10,i3

x1,i4 x2,i4 · · · x10,i4




α1

α2
...

α10

+


zfi11 zfi12 zfi13 zfi14

zfi21 zfi22 zfi23 zfi24

zfi31 zfi32 zfi33 zfi34

zfi41 zfi42 zfi43 zfi44




fi
fi
fi
fi



+


1
1
1
1

bi +


ei1

ei2

ei3

ei4

 .

Therefore,

y
i
= 14µ + Xdi

α + Zfi
f i + 14bi + ei, (19)

for i = 1, . . . , r, d = 1, . . . , 10, where

Zfi
(4 × 4) = {zfijk} is the symmetric matrix of regression coefficients for the random

position effect, fi,

Xdi
(4× 10) = {xd,ij} is the matrix of covariates for the ith apple,

α(10× 4) = (α1, . . . , α10) is the vector of regression coefficients corresponding to Xdi
,

bi(1× 1) ∼ i.i.d N (0, σ2
b ) is the random apple effect, and

ei(4× 1) = (ei1, . . . , ei4)
T ∼ N4(0, σ

2
eI4) is the within-apple residual vector.

With this, we can calculate the mean, variance and covariances of y
i
(4 x 1) :

E(y
i
) = 14µ + Xdi

α(4× 1), since E(eij) = 0

=

µ + α1x1,i1 + · · ·+ α10x10,i1
...

µ + α1x1,i4 + · · ·+ α10x10,i4



cov(y
i
) = σ2

fZfi
ZT

fi
+ σ2

bJ4 + σ2
eI4, since cov(bi, eij) = cov(bi, fi) = cov(eij, fi) = 0

= Ωi(4× 4), say,
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with

Zfi
ZT

fi
(4× 4) =


1 z2

fi12
z2

fi13
z2

fi14

z2
fi21

1 z2
fi23

z2
fi24

z2
fi31

z2
fi32

1 z2
fi34

z2
fi41

z2
fi42

z2
fi43

1

 .

Therefore,

cov(yij,yik) = z2
fijk

σ2
f + σ2

b , for all j 6= k, and

ρ(yij,yik) =
z2

fijk
σ2

f + σ2
b

σ2
f + σ2

b + σ2
e

, for all j 6= k.

So, even though the coefficient of σ2
f is defined differently here, this covariance matrix has

the same structure as the corresponding one in Section 4.5, namely

Ωi =

{
σ2

f + σ2
b + σ2

e for j = k
z2

fijk
σ2

f + σ2
b for j 6= k,

Therefore, y
i
∼ N4(14µ + Xdi

α,Ωi).

We see here that Ωi has not changed from Models (15) to (19). However, E(y
i
) has

changed in that its elements differ between the two models. They change according to

the changes in the fixed effects of the models. Therefore, adding covariates to, or removing

them from, a model affects only the mean because the covariates are fixed effects. As a

result, expanding Model (19) for the full set of r apples will not alter the structure of the

covariance matrix, Ω, from the one in Section 4.5, but the additional fixed effects will

affect the mean of the overall model y(N × 1).

So, expanding Model (19) gives:
y

1
y

2
...
y

r

 =


14

14
...
14

µ+ +


Xd1

Xd2

...
Xdr




α1

α2
...

α10

+


Zf1 ON · · · ON

ON Zf2 · · · ...
...

...
. . . ON

ON · · · ON Zfr




f1

f2
...
f r



+


14

14
...
14

µ +


14 04 · · · 04

04 14 · · · ...
...

...
. . . 04

04 · · · 04 14




b1

b2
...
br

+


e1

e2
...
er

 .
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This is equivalent to

y = 1Nµ + Xdα + Zf f + Zbb + e, (20)

where

Xd(N × 10) = {xd,ij} is the matrix of covariates,

α(10× 1) = (α1, . . . , α10) is the vector of regression coefficients corresponding to Xd,

f(N × 1) = (f1, . . . , fr)
T ∼ NN(0, σ2

fZfZT
f ) is the vector of random effect of position for

all the apple pieces, with ZfZT
f (N ×N) = {z2

fijk
},

b(r × 1) = (b1, . . . ,br)
T ∼ Nr(0, σ

2
bJr) is the vector of random effects for all r apples,

and

e(N × 1) = (e11 . . . er4)
T ∼ NN(0, σ2

eIN) is the overall vector of residuals. In addition,

Zf (N x N) and Zb(N x r) are the matrices of regression coefficients corresponding to

f and b respectively.

Model (20) can be written more compactly in standard matrix notation as

y = Xβ + Zb + e, (21)

where

X (N × (d + 1) = N × 11) =


14 Xd1

14 Xd2

...
...

14 Xdr


is the design matrix for the fixed effects and differs from that in Model (17) because the

fixed effects differ between the two models.

We also have

β((d + 1)× 1 = 11× 1) =


µ
α1

α2
...

α10

 ,

the vector of fixed effects corresponding to X , and
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e(N × 1) ∼ NN(0, σ2
eIN), the vector of residuals.

Z(N × (N + r)) =


Zf1 14 ON 04 · · · ON 04

ON 04 Zf2 14 · · ·
...

...
...

...
...

...
. . . ON 04

ON 04 ON 04 · · · Zfr 14

 .

Corresponding to Z is b((N + r)× 1), the vector of random effects. It differs from b in

Section 4.5, and looks as follows:

b =



f1

b1

f2

b2
...
f r

br


.

Given Models (20) and (21),

E(y) = 1Nµ + Xdα, since E(eij) = 0

= Xβ(N × 1)

cov(y) = σ2
fZfZT

f + σ2
bZbZT

b + σ2
eIN, because bi, fi, eij ∼ i.i.d.

= Ω(N ×N), say,

where

ZfZT
f (N ×N) = {z2

fijk
}, and

ZbZT
b (N ×N) =


J4 O4 · · · O4

O4 J4 · · · O4
...

...
. . .

...
O4 O4 · · · J4


is the block diagonal matrix of 1’s, seen in Sections 4.4 and 4.5.

Then, y ∼ NN(Xβ,Ω), where the block diagonal covariance matrix of y is

Ω(N ×N) =


Ω1 0 · · · 0

0 Ω2 · · · ...
...

...
. . . 0

0 · · · 0 Ωr

 ,
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and the elements Ωi are defined above. We thus have that cov(yij,ysk) = 0 and ρ(yij,ysk) =

0, for all j, k and i 6= s.

In this section, we have seen how taking out some fixed effects and adding many to a

model still does not alter the form of the covariance matrix and thus the correlations

between pieces of the same apple. However, the variance estimates of Model (21) will

differ from the variance estimates of Model (17) in Section 4.5, even though the forms of

the covariance matrices, Ω, are the same. This is because adding fixed effects reduces the

estimate of the residual variance since the variance due to these fixed effects is taken out

of the residual variance.

Next in this study we will leave behind the apples and show how the mixed-effects model

methodology which has been developed here, applies to the analysis of family-based ge-

netic studies, where the models are even more complicated due to family members being

genetically related. In particular, we show how the covariance matrix, Ω, developed in

Sections 4.5 and 4.6 gets more complicated when we have to consider the degree to which

family members are related. In the covariance matrix above, we had a coefficient for the

random effect of apple-piece position but assumed that in all the apples, the correlation

between the same two pieces, for example pieces 3 and 4, was the same. In family genetic

studies, such assumptions cannot be made when considering the correlation between fam-

ily pairs with regard to some trait. This is because the amount of genetic material at a

particular genetic locus, which is shared by, for example sibling pairs, will differ from one

family to another.
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5 Statistical Genetics

We are far too apt to regard common events as matters of course, and to accept many

things as obvious truths which are not obvious truths at all, but present problems of much

interest... Why is it when we compare two groups of persons selected at random from the

same race, but belonging to different generations of it, we find them to be closely alike? Such

statistical differences as there may be, are always to be ascribed to differences in the general

conditions of their lives . . . The processes of heredity are found to be so wonderfully balanced

and their equilibrium to be so stable, that they concur in maintaining a perfect statistical

resemblance so long as the external conditions remain unaltered.

If there be any who are inclined to say there is no wonder in the matter, because each

individual tends to leave his like behind him, and therefore each generation must resemble the

one preceding, I can assure them that they are utterly mistaken. Individuals do not equally

tend to leave their like behind them . . . The question, then, is this:– How is it that although

each individual does not as a rule leave his like behind him, yet successive generations resemble

each other with great exactitude in all their general features? (Galton, 1877:492)

Studies seeking to statistically explain heredity and the relationship between family mem-

bers can be traced back as far as the 1800s with Sir Francis Galton’s explanation of the

laws of heredity using the law of deviation (Galton, 1877). In that lecture, he discussed

the resemblance of and differences between each generation of sons and their fathers. He

explained how traits such as height are inherited, yet the variation in successive gener-

ations causes a reversion toward ‘mediocrity’. With crude equipment and the relatively

little knowledge about genetics in existence in those times, Galton could not trace and

identify the specific cause of the observed inheritance. In the 133 years since he gave that

first lecture, the study of statistical genetics has leapt forward thanks to technological

and computational advancements which have improved the understanding of genetics and

made complex statistical analysis more viable.
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In October 1990, the Human Genome Project was founded with the aim to ultimately

map the entire human genome and thus enable the identification of alleles responsible for

the multitude of human diseases found in the world. The Project’s primary aims were

to gain a better understanding of the role of genetic factors in complex diseases and to

gain new insights into human evolution (Palmer (2005), Watson (1990)). Thanks to their

efforts and the work of others, much more is now understood about the inheritance of

alleles in families. Scientists use this knowledge, combined with advances in statistics, to

trace inheritance patterns of both common and rare diseases. Using these patterns, they

then try to identify the exact allele(s) responsible for specific diseases; the ultimate aim

of any genetic study.

Family studies are carried out because if a trait runs in families, then somewhere on some

chromosome, lies a locus where the allele(s) responsible for the trait can be found. The

fact that family members share a common living environment and are related (and thus

more similar genetically than random unrelated individuals) aids researchers in identifying

these alleles.

5.1 Familial aggregation

One of the first steps in a potentially genetic study is called familial aggregation and it is

based on the tendency for genetic traits, usually diseases, to cluster in families. The aim

is to determine whether or not a trait runs in families, without possessing any genetic

information for the participants in the study. This is done by observing if aggregation

occurs more often than is expected by chance. If the disease does appear to aggregate in

families, the next step is to determine if it could be inherited. If it does not appear to

aggregate in families, it is not likely to have a strong genetic component. Therefore this

first step is very important as it determines the direction of future research.

In analyses, each family unit is treated as a specialised cluster and possible environmental

influences (such as age, physical characteristics or even exposure to some toxins) are used
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to study the effects on disease risk. Without information on environmental influences,

aggregation caused by shared alleles is indistinguishable from aggregation due to shared

environment. As a result, statistical models assessing familial aggregation usually combine

these two sources of variation and model them as the within-family variance.

For a dichotomous trait such as disease/no disease, aggregation can be assessed via odds

ratios and risk ratios, but for quantitative traits, familial aggregation is usually assessed

using a correlation or covariance-based measure. Since family pairs are not independent,

if the trait is assumed to follow a multivariate normal distribution, then the extent of

familial aggregation can be measured by estimating intraclass correlation coefficients.

These correlations can be obtained from standard linear regression models using ANOVA

methods, as shown in Chapter 4, but we now define the variables as follows:

Consider a set of r extended families, each with ni members. The total number of family

members N =
∑r

i ni. Let yij represent the random quantitative trait value for individual

j from family i. Then y
i
(ni × 1) = (yi1, . . . ,yini

)T is the random vector of trait values

for family i. The overall vector of trait values is given by y(N × 1) = (y
1
, . . . ,y

r
)T .

Let bi ∼ i.i.d N (0, σ2
b ) denote the random effect corresponding to the trait deviation of

family i from the overall mean µ, and let eij ∼ i.i.d N (0, σ2
e) be the trait deviation of

individual j from the family mean µi. Assume bi and eij are mutually independent, so

cov(bi, eij) = 0 for individual j, and cov(bi,bs) = 0, cov(eij, eik) = 0 for all i 6= s, j 6= k,

respectively.

Based on this notation, a model of this data for the jth person in the ith family is:

yij = µ + bi + eij, for i = 1, . . . , r; j = 1, . . . , ni, (22)

where

E(yij) = µ

var(yij) = σ2
b + σ2

e .

Therefore, yij ∼ N (µ, σ2
b + σ2

e).
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Of the variance-components, the former, σ2
b , is the random between-family component

of variance and it represents the variation of the ‘true’ family means about the popula-

tion mean. The latter, σ2
e , is the within-family component and it is the variance of the

individuals in a family about the mean of that family µi.

Model (22) is analogous to Model (6), the random effects model, where the between- and

within-apple components of variance were discussed. Now however, we can think of our

families as the apples and the individuals in the families as being the pieces of the apples.

Therefore, just as we defined a random effect for each apple and we had to account for the

variation between the apples, we now have a random family effect and we have to account

for the differences between families. We must also account for the difference between

individuals in each family, or rather, account for the similarity within each family. As

explained before, the more similar family members are, the greater the difference between

families will be, relative to the difference within families. We can see this if we write

Model (22) for family i in matrix notation:

y
i
= 1ni

µ + 1ni
bi + ei, for i = 1, . . . , r, (23)

where ei(ni × 1) = (ei1, . . . , eini
)T ∼ Nni

(0, σ2
eIni

) is the within-family residual vector.

From this we see that

E(y
i
) = 1ni

µ(ni × 1)

cov(y
i
) = σ2

bJni
+ σ2

eIni
, since cov(bi, eij) = 0.

= Ωi(ni × ni).

Specifically, we have

cov(yij,yik) = σ2
b , for all j 6= k

cov(yij,ysk) = 0, for all j, k and i 6= s.
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Therefore, y
i
∼ Nni

(1ni
µ,Ωi) and

ρ(yij,yik) =
cov(yij,yik)√

var(yij)var(yik)
=

σ2
b

σ2
b + σ2

e

, for all j 6= k.

This is just the intraclass correlation coefficient we saw previously. In the case of families,

it is known as the intra-family correlation (Burton et al., 2005). It tells us that, in the

extreme case when σ2
b = 0, ρ = 0. This implies that there is no variation in trait values

between families and thus no correlation between pairs of family members because all the

families are the same. On the other hand, when σ2
b is much larger than σ2

e , the correlation

coefficient will also be large as trait values of family members are more similar to each

other than to members of other families.

This intra-family correlation coefficient is estimated from a model which assumes that the

covariance between each family pair is the same, and it does not account for how closely

related a family pair are. Unlike in the case where the apples were cut into equal numbers

of pieces, family sizes differ and family pairs have varying degrees of relation with each

other.

Incorporating the degree of relationship between pairs of family members (and thus their

correlations) will be discussed further in the following sections. However, we must first

introduce an important measure of family relatedness.

5.2 Kinship

Through σ2
b , we have demonstrated how the similarity between family members can be

accounted for in a statistical analysis. However, we have still not accounted for the

degree to which family members are related. As emphasised previously, this is important

because the more closely related two people are, the more similar they are genetically.

Family relatedness is accounted for in an analysis through a measure known as the kinship

coefficient, denoted by ϕ. It is a function of the degree of the relationship between two

people. The more closely related these individuals are, the larger ϕ will be. Therefore, in
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family i, ϕijk accounts for the genetic variation that exists between two family members,

j and k, based solely on how closely related they are.

Dad Mom

Grandparent-grandchild: 

R = 2

Parent-child: 

R = 1

Unrelated individuals:     

R = 4

Ally

Nick Sue Jane

Jack

Ryan

First cousins: 

R = 3

Siblings:     

R = 1

Figure 12: Pedigree depicting degrees of relationship

The degree of relationship between individuals j and k can be described as the number of

connections between them in a pedigree. We can calculate this by counting the number of

nodes crossed on the path between the two individuals, including person j’s node. Figure

12 is of an extended pedigree depicting the different degrees of relationship for different

family pairs. We have taken the nuclear pedigree from Figure 3 and extended it to include

more family members. The extended pedigree consists of eight members: Dad and Mom

are the parents of Sue and Jane, as before; Nick is married to Sue and they have one

child, Jack; Ryan is married to Jane and their daughter is Ally. We assume that Nick

and Ryan are only related to the rest of the family through their marriages. At the top of

the pedigree are the parents, who are unrelated and thus have degree of relation R = ∞.
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They have two daughters who are first degree relatives with each other and with their

parents (R = 1). We see this since, the only node between say, Mom and Jane, is Jane’s.

Similarly, the only node counted between Sue and Jane, is Jane’s. When the daughters

Sue and Jane have their own children, we see that there are now grandparent-grandchild

relationships. These are second degree relationships (R = 2), as seen with Dad and Jack

where two nodes are counted (Sue’s and Jack’s). First cousins are third degree relatives,

as seen with Jack and Ally where we count the nodes of Sue, Jane and Ally. Continuing

in this way, we can identify the degree of relationship between any two individuals in a

pedigree. This allows us to compute the corresponding kinship coefficient, ϕ, which is

calculated mathematically as follows:

Let R = degree of relationship between two people. Then, (1
2
)R is called the coefficient

of relationship and can be described as the expected proportion of shared alleles. The

kinship coefficient is defined as ϕ = (1
2
)R+1. In analysis, we use 2ϕ = (1

2
)R. A formal

definition of kinship will be given in Section 6.2.

For various pairs of individuals, the degree of relationship and the corresponding kinship

coefficient are shown in Table 2. These values are used to calculate the covariances

Table 2: Degree of relation (R) and kinship coefficients (ϕ) for various family pairs

Relative types R 2ϕ
Monozygotic (identical) twins 0 1
Parent–offspring 1 1/2
Dizygotic (non-identical) twins/Sib–pairs 1 1/2
Half-sibs 2 1/4
Grandparent–grandchild 2 1/4
Uncle/Aunt–niece/nephew 2 1/4
First cousins 3 1/8
Unrelated individuals ∞ 0

between pairs of individuals in a pedigree study. This is done through a matrix of kinships

coefficients for each family and will be shown in more detail in the sections that follow.
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5.3 Segregation analysis

The partitioning of the variance into its components allows us to estimate the relative

importance of the various determinants of the phenotype, in particular the role of heredity

versus environment . . . The question of ‘relative importance’ can be answered only if it is

expressed in terms of the variance attributable to the different sources of variation. The

relative importance of a source of variation is the variance due to that source, as a proportion of

the total phenotypic variance. The relative importance of heredity in determining phenotypic

values is called the heritability of the character (Falconer, 1989:125–126).

Quantitative genetics aims to identify the genetic factors that account for the trait variance

observed in quantitative traits, as well as to identify the extent to which these genetic

factors contribute to trait variance. This is done through a measure known as heritability,

which measures the genetic contribution (of all inherited alleles) to trait variability. In

general, heritability is about the cause of variation in a particular trait (Burton et al.,

2005). Therefore, determining heritability is one of the first objectives when studying

such traits. Heritability is estimated through segregation analysis, which is the process of

fitting genetic models to trait data from family members. The aim of segregation analysis

is to find a model that best explains the pattern of familial aggregation observed, by

testing to see if alleles are involved in disease aggregation.

Falconer (1989) questions how intrinsically discontinuous variation, which is caused by

genetic segregation, translates into the continuous variation of quantitative traits. They

give two reasons: the first is that the numerous alleles affecting the trait segregate si-

multaneously; the second is the superimposition of truly continuous variation which is

caused by non-genetic factors. This results in the distinction between alleles which are

concerned with Mendelian inheritance (single-genes) and those that result in quantita-

tive traits (many minor genes). The difference between the two, according to Falconer

(1989:105), “ . . . lies in the magnitude of their effects relative to other sources of varia-

tion”. Single-genes have a large effect. Therefore, they cause a recognisable discontinuity,
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even when there is segregation at other loci and non-genetic variation is present. These

may thus be studied by Mendelian methods. However, there are also the minor genes

whose effects are not large enough to cause a distinct discontinuity. As a result, these

genes cannot be studied individually. They result in variation that is caused by the simul-

taneous segregation of many genes. Traits such as obesity and predisposition to certain

diseases, are believed to be caused by the inheritance of minor genes.

Segregation analysis involves developing models that contain parameters quantifying the

degree of influence on the trait of both a single-gene locus and loci containing minor

genes. In particular, it aims to determine if alleles segregate randomly in families. To

assess whether this occurs in a quantitative trait, a hypothesis test can be carried out

where the null hypothesis tested is that there is no hereditary variation. In other words, all

the variation in trait values between family members can be attributed to environmental

factors. Such tests are carried out as a first step into the study of a potentially heritable

trait.

Consider again our set of r extended families, each with ni members, where the total

number of family members is N =
∑r

i ni. Let yij represent the random quantitative trait

value for individual j from family i, and let y
i
(ni × 1) = (yi1, . . . ,yini

)T , be the random

vector of trait values for family i. The overall vector of trait values is then y(N × 1) =

(y
1
, . . . ,y

r
)T .

We want to decompose the between-family variance, σ2
b , into two components: the her-

itable genetic variance (σ2
g), which we will call hereditary variance; and a non-heritable

shared-environment variance (σ2
f ). As before, let σ2

e denote the residual variance seen

previously. Therefore, σ2
e is the residual variance after accounting for the heritable and

shared environment portions of variation.

Let gi ∼ i.i.d N (0, σ2
g) denote the hereditary random effect for family i. It measures the

impact of inherited genetic material on the trait.

Let fi ∼ i.i.d N (0, σ2
f ) be the environmental effect of family i. It measures the impact,
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on trait values, of sharing a common environment.

Let eij ∼ i.i.d N (0, σ2
e) be the environmental or residual effect for individual j from

family i.

Assume gi, fi and eij are independent of each other for different families and independent

within families as well.

In order to extract the heritable component of variance from the between-family variance,

we need to include family relatedness in the segregation model. This is done through

specifying a vector of regression coefficients for gi; in particular the kinship coefficients

between each family pair. Specifying kinships as the coefficients of σ2
g defines σ2

g as

hereditary genetic variance and separates it from other between-family variation.

Suppose µ is the overall fixed mean trait value. Thus, a model for this data, for the jth

person in the ith family, is

yij = µ + zT
gij

g
i
+ fi + eij, for i = 1, . . . , r; j = 1, . . . , ni, (24)

where zT
gij

(1×ni) = {zgijk =
√

2ϕijk} is the vector of regression coefficients for individual

j, corresponding to the hereditary random effect for family i, and ϕijk is the kinship

coefficient between individuals j and k in family i. Including the kinship coefficient in

the model allows us to account for the degree of relation between each family pair, rather

than assuming they all have the same degree of relation. This allows us to model a

different coefficient for each family pair, which is similar to what was done in Section 4.5

where we specified a coefficient representing the relationship between two apple pieces,

depending on their position in the apple.

From this we get

E(yij) = µ

var(yij) = σ2
g + σ2

f + σ2
e , as cov(gi, fi) = cov(fi, eij) = cov(gi, eij) = 0.

Since we are interested mostly in the heritable genetic effects, rather than the shared-

environment effects, fi is usually omitted from models and its effects are therefore com-
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bined with the within-family effects eij. Thus, Model (24) becomes, for the jth individual

in the ith family,

yij = µ + zT
gij

g
i
+ eij, for i = 1, . . . , r; j = 1, . . . , ni. (25)

For individual j, yij is normally distributed with the following mean and variance:

E(yij) = µ, since E(eij) = 0

var(yij) = σ2
g + σ2

e , since cov(gi, eij) = 0. and 2ϕijk = 1 for all j = k.

Expanding Model (25) for the ith family gives

y
i
= 1ni

µ + Zgi
g

i
+ ei, for i = 1, . . . , r, (26)

where Zgi
(ni × ni) = {

√
2ϕijk} is the symmetric matrix of regression coefficients for the

hereditary random effects, gi.

Therefore,

E(y
i
) = 1ni

µ(ni × 1)

cov(y
i
) = σ2

gZgi
ZT

gi
+ σ2

eIni
, because cov(gi, eij) = 0

= Ωi(ni × ni), say,

Now,

Zgi
ZT

gi
(ni × ni) =


1 2ϕi12 · · · 2ϕi1ni

2ϕi21 1 · · · 2ϕi2ni

...
...

. . .
...

2ϕini1 2ϕini2 · · · 1

 ,

since 2ϕijk = 1 for all j = k. As a result, for segregation analysis, the covariance between

individuals j and k in family i is given by

Ωijk = cov(yij,yik) =

{
σ2

g + σ2
e if j = k

2ϕijkσ
2
g if j 6= k,

where ϕijk is the kinship coefficient between individuals j and k.
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Thus the covariance matrix is

Ωi(ni × ni) =


σ2

g + σ2
e 2ϕi12σ

2
g · · · 2ϕi1ni

σ2
g

2ϕi21σ
2
g σ2

g + σ2
e · · · 2ϕi2ni

σ2
g

...
...

. . .
...

2ϕini1σ
2
g 2ϕini2σ

2
g · · · σ2

g + σ2
e

 ,

Given this, for family i the vector of trait values y
i
∼ Nni

(1ni
µ,Ωi).

When analysing familial aggregation, the trait correlation between any relative pair is

just the intrafamily correlation coefficient. For the segregation Model (26), the covari-

ance between members of two different families is zero, so their correlation is zero. The

correlation between pairs of relatives differs for different family pairs, depending on their

relationship, as shown by:

ρ(yij,yik) =
cov(yij,yik)√

var(yij)var(yik)
=

2ϕijkσ
2
g

σ2
g + σ2

e

, for all j 6= k.

This allows us to separate the heritable genetic variance, σ2
g , from the residual variance,

σ2
e . We can thus estimate the heritable genetic variance by weighting it according to the

degree of relation between the family pair. This is illustrated in the following example.

Suppose that family i in our set of r families is the example family from Figure 3, consisting

of Dad, Mom, Sue and Jane. Their covariance matrix will be

Ωi =


σ2

g + σ2
e 2ϕDad,Momσ2

g 2ϕDad,Sueσ
2
g 2ϕDad,Janeσ

2
g

2ϕDad,Momσ2
g σ2

g + σ2
e 2ϕMom,Sueσ

2
g 2ϕMom,Jane

2ϕDad,Sueσ
2
g 2ϕMom,Sueσ

2
g σ2

g + σ2
e 2ϕSue,Janeσ

2
g

2ϕDad,Janeσ
2
g 2ϕMom,Janeσ

2
g 2ϕSue,Janeσ

2
g σ2

g + σ2
e

 .

Since ϕ = 1
4

for all parent-offspring and sib-pair relationships, and it is zero for the

Dad-Mom relationship, this matrix becomes

Ωi =


σ2

g + σ2
e 0 1

2
σ2

g
1
2
σ2

g

0 σ2
g + σ2

e
1
2
σ2

g
1
2
σ2

g
1
2
σ2

g
1
2
σ2

g σ2
g + σ2

e
1
2
σ2

g
1
2
σ2

g
1
2
σ2

g
1
2
σ2

g σ2
g + σ2

e

 .

Since we will use this family for further demonstrations, we will shorten the names of the

family members to their first initial and use these in the matrices. Therefore, Dad, Mom,
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Sue and Jane will be represented by D, M, S and J, respectively. In addition, since the

covariance matrices are all square and symmetric, only the upper triangle will be written

out in detail.

Even for the simple nuclear family we have used, the covariance matrix does not have a

structure which can be modeled using standard statistical software. This is also true when

we extend the matrix to include other family members. To demonstrate this, suppose we

extend our example family of Dad, Mom, Sue and Jane, to include Jane’s husband, Ryan

(R), and their daughter, Ally (A). The covariance matrix for the family, including Ryan

and Ally, will now be:

Ωi =



σ2
g + σ2

e 2ϕD,Mσ2
g 2ϕD,Sσ2

g 2ϕD,Jσ2
g 2ϕD,Rσ2

g 2ϕD,Aσ2
g

σ2
g + σ2

e 2ϕM,Sσ2
g 2ϕM,Jσ2

g 2ϕM,Rσ2
g 2ϕM,Aσ2

g

σ2
g + σ2

e 2ϕS,Jσ2
g 2ϕS,Rσ2

g 2ϕS,Aσ2
g

σ2
g + σ2

e 2ϕJ,Rσ2
g 2ϕJ,Aσ2

g

σ2
g + σ2

e 2ϕR,Aσ2
g

σ2
g + σ2

e


.

Substituting in the corresponding kinship coefficients from Table 2, gives:

Ωi =



σ2
g + σ2

e 0 1
2
σ2

g
1
2
σ2

g 0 1
4
σ2

g

σ2
g + σ2

e
1
2
σ2

g
1
2
σ2

g 0 1
4
σ2

g

σ2
g + σ2

e
1
2
σ2

g 0 1
4
σ2

g

σ2
g + σ2

e 0 1
2
σ2

g

σ2
g + σ2

e
1
2
σ2

g

σ2
g + σ2

e


.

Once an extended family is considered, the covariance matrix for the family no longer

has a recognisable structure. Here, the more closely related a pair is, the bigger the

covariance between them. Similarly, the less closely related they are, the smaller the

covariance between them is, until it reaches zero for unrelated individuals.

We can now expand Model (26) to include all the families in the study group, in the same

way as we did with the apples in Chapter 4. This gives

y = 1Nµ + Zgg + e, (27)

where e(N × 1) = (e11, . . . , ernr)
T ∼ NN(0, σ2

eIN) is the vector of environmental effects,

g(N × 1) = (g1, . . . ,gr)
T ∼ NN(0, σ2

gZgZT
g ) is the vector of all random hereditary effects,
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and

Zg(N ×N) = {
√

2ϕijk} is the block diagonal symmetric matrix of regression coefficients

for the hereditary random effects, gi, for all r families.

From this we get,

E(y) = 1Nµ(N × 1)

cov(y) = σ2
gZgZT

g + σ2
eIN, since cov(gi, eij) = 0.

= Ω(N ×N), say,

where ZgZT
g (N ×N) is a block diagonal matrix such that

ZgZT
g =



2ϕ111 · · · 2ϕ11n1 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

2ϕ1n11 · · · 2ϕ1n1n1 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 2ϕr11 · · · 2ϕr1nr

...
. . .

...
. . .

...
. . .

...
0 · · · 0 · · · 2ϕrnr1 · · · 2ϕrnrnr



=


Z2

g1
ON · · · ON

ON Z2
g2

· · · ...
...

...
. . . ON

ON · · · ON Z2
gr

 .

From this, cov(yij,ysk) = 0, for all j, k and i 6= s.

Thus,

Ω(N ×N) = σ2
gZgZT

g + σ2
eIN

=



σ2
g + σ2

e · · · 2ϕ11n1σ
2
g · · · 0 · · · 0

...
. . .

...
. . .

...
. . .

...
2ϕ1n11σ

2
g · · · σ2

g + σ2
e · · · 0 · · · 0

...
. . .

...
. . .

...
. . .

...
0 · · · 0 · · · σ2

g + σ2
e · · · 2ϕr1nrσ

2
g

...
. . .

...
. . .

...
. . .

...
0 · · · 0 · · · 2ϕrnr1σ

2
g · · · σ2

g + σ2
e


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=


Ω1 0 · · · 0

0 Ω2 · · · ...
...

...
. . . 0

0 · · · 0 Ωr

 ,

since 2ϕijk = 1 for all j = k.

Given this, we get y ∼ NN(µ,Ω), where µ and Ω are defined above.

Since we are interested in inference on the parameters µ, σ2
e and specifically σ2

g , we can

carry out a hypothesis test where the null hypothesis is H0 : σ2
g = 0. If the null hypothesis

is rejected, we have sufficient evidence to assume the trait of interest is inherited in our

set of families.

The problem with such a hypothesis test is that standard statistical software does not

allow us to specify a potentially different coefficient for each covariance in the covariance

matrix. As a result, specialised software such as QTDT, SOLAR (Sequential Oligogenic

Linkage Analysis Routines) and MENDEL were developed. Full details of these software

programs are available on the websites listed in Table 8. For segregation analysis, this

software calculates the necessary kinship coefficients, based on the pedigree data, and

uses them in the model.

Now that we have introduced segregation analysis, we have the elements we need to discuss

heritability, which is an important measure relating to inheritance. Different authors

define heritability in different ways. We present the definition used by the majority of

them, including Burton (2005).

The variance estimates obtained from the segregation Model (27) can be used to estimate

heritability. The proportion of trait variance that is attributed to all hereditary factors

(all alleles inherited from parents), compared to environmental factors, is known as the

broad-sense heritability. It is denoted by H2, and is defined as:

H2 =
σ2

g

σ2
g + σ2

e

.

It expresses the extent to which an individual’s observed trait value is determined by his
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genetic material. The larger H2 is, the more heritable the trait is, because more of the

variation in the trait is explained by genetic factors, that is, σ2
g > σ2

e . Consequently, the

larger H2 is, the greater the difference between families will be because the difference

within families will be relatively smaller. Similarly, if σ2
g = 0, H2 = 0, which implies

that the trait is not heritable. Finally, if 0 < σ2
g < σ2

e , then H2 −→ 0, which suggests

that the trait is weakly heritable. Familial correlations depend on the degree to which

family members are related. Therefore, the more closely related they are, the higher the

correlations are expected to be.

We have said before that the aim of a genetic study is to determine if a trait is inherited,

and if so, to isolate and identify the causal alleles. To do this we need to measure the

genetic variation which exists at a particular locus (Burton et al., 2005). Using H2, we

can determine if a trait is heritable, but it considers all forms of hereditary variation, and

not specifically the variation due to a particular genetic locus. For this we look to another

measure of heritability, explained in Chapter 6 which follows.

Having now described familial aggregation, segregation analysis and heritability, we can

move on to linkage analysis, which is the main focus of our study.
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6 Linkage Analysis

6.1 Introduction and background

As early as 1903, Sir Walter Sutton . . . pointed out the likelihood that organisms contain

many more “unit factors” than chromosomes. Soon thereafter, genetic studies with several or-

ganisms revealed that certain genes were not transmitted according to the law of independent

assortment, rather these genes seemed to segregate as if they were somehow joined or linked

together. Further investigations showed that such genes were part of the same chromosome,

and they were indeed transmitted as a single unit.

We now know that most chromosomes consist of very large numbers of genes . . . Because the

chromosome, not the gene, is the unit of transmission during meiosis, linked genes are not

free to undergo independent assortment. In theory, the alleles at all loci of one chromosome

should be transmitted as a unit during gamete formation. However, in many instances this

does not occur (Klug & Cummings, 2000:137).

Contrary to Mendel’s third postulate, alleles found near each other on the same chro-

mosome do not segregate independently, but rather behave as though they are joined

or linked. They are thus transmitted from parent to offspring as a single unit during

meiosis. This is known as cosegregation, and when it occurs, linkage is said to exist. The

fact that alleles near each other on a chromosome segregate together more often than

expected, while alleles on different chromosomes segregate together purely by chance, is a

fundamental concept of linkage analysis. It aims to localise alleles in an extended family

by considering the co-inheritance of traits and genetic markers.

Linkage analysis is best at detecting alleles with strong effects on the trait in question.

When the alleles at a locus control a quantitative trait, the locus is called a quantitative

trait locus (QTL). Linkage analysis attempts to establish whether alleles at a marker locus

are linked to alleles at a QTL.

Some examples of linkage analysis in practice include Stone et al. (2002), Abecasis et al.
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(2004) and Xu et al. (2009). Stone et al. (2002) investigates a locus potentially associated

with a predisposition to severe obesity. According to them, severe obesity is known to

be heritable, but identifying the susceptibility alleles has been difficult. Linkage studies

in this area have proven to be challenging due to the genetic complexity underlying the

predisposition to severe obesity. This is because linkage analysis is sensitive to the degree

of genetic complexity of a trait and predisposition to severe obesity has been found to be

very complex. Linkage is also generally better at detecting alleles with a high penetrance,

strong effects on the trait under observation and low within-family genetic variation.

Stone et al. (2002) used several strategies in an attempt to overcome the problem caused

by the genetic complexity of the disease. One of these strategies involved selecting their

families in a specific way, so as to increase their ability to detect linkage.

Abecasis et al. (2004) and Xu et al. (2009) investigate possible loci associated with

schizophrenia in the Afrikaner population of South Africa. According to them, multiple

loci and environmental factors affect susceptibility to schizophrenia, but the role of indi-

vidual loci is not fully understood. In addition, non-familial forms of the disease also exist,

affecting findings. Researchers in both studies used linkage analysis to isolate genomic

regions in which possible susceptibility alleles lie. To overcome the possible ethnic het-

erogeneity found in other studies, their study population was restricted to the genetically

isolated Afrikaner population.

Going back in history, Mendel believed that during meiosis, each new gamete cell randomly

receives one member of each homologous chromosomal pair, originating from either the

maternal or paternal parent. It is now known that an event called a crossover may occur

during meiosis. In a crossover event, parts of the maternal chromosome of a homologous

pair ‘swaps’ genetic material with the corresponding parts of the paternal chromosome,

resulting in chromosomes that contain a mixture of DNA from both parents (Burton et

al., 2005).

Crossovers between two loci result in recombination, the joining of alleles from two different
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homologous chromosomes. Recombination ensures that every gamete is unique and is

usually observed when an odd number of crossovers occur (Burton et al., 2005).

Figure 13 shows in a simplified manner, how a crossover event occurs between two loci

on homologous paternal and maternal chromosomes. During meiosis, the maternal and

paternal homologous chromosomes line up next to each other and replicate. Suppose we

are looking at two specific diallelic loci on such chromosomes. The first locus has alleles

1 and 2, and the second has alleles 3 and 4, on the respective maternal and paternal

chromosomes. Now, part of one of the maternal chromosomes breaks off and joins with

part of one of the paternal chromosomes. It does so in such a way that this piece of

maternal chromosome ‘swaps’ with the corresponding piece of the paternal chromosome.

Suppose that this breaking and recombining occurs between the two loci of interest. Then,

after the crossover event occurs, we see that alleles 3 and 4 ‘exchange’ chromosomes. We

thus say that a recombination of these two alleles has occurred at the second locus.

Recombination can be observed in families, as shown in Figure 14. This is based on

knowing the phase (which allele comes from which parent) of the individuals in the pedi-

gree, for two diallelic markers. When phase is known, the alleles at the markers can be

written with a box between them. Alleles in the first block are assumed to come from the

paternal parent while those in the second box are assumed to come from the maternal

parent. Alleles from different linked loci on the same chromosome are called haplotypes.

For the pedigree in Figure 14, Sue gets her 2–3 haplotype from her father and the 2–4

haplotype from her mother. Jane gets the 1–3 haplotype from her father and the 2–4

haplotype from her mother. However, here we see that there is a recombination in the

alleles inherited from the father, as the 1 allele is transmitted to Jane instead of the 2

allele.

As the physical distance between two loci on the same chromosome increases, the prob-

ability of recombination, θ, between them during meiosis also increases until the limiting

value of θ = 1
2

is reached. This is the same as the probability that two loci on separate
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3

4
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3

1

1 3

2 4

2 4

chromosomes

Four gametes- two 
parental and two 
recombinant

Figure 13: A single crossover event during meiosis

chromosomes will undergo recombination. Two loci that are immediately adjacent to each

other on a chromosome are unlikely to undergo recombination. This can also be measured

in terms of the recombination fraction, where two loci are linked if recombination between

them occurs with a probability less than 1
2
. When θ = 1

2
, there is no linkage.

The methods of linkage analysis can be applied to both single-gene disorders (parametric

or model-based linkage analysis) and complex disease analysis (non-parametric or model-
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4 

Figure 14: Hypothetical pedigree for demonstrating recombination

free linkage analysis), which are generally caused by both genetic and environmental

factors. Here, the terms ‘model-free’ and ‘non-parametric’ are genetic terms which mean

that no mode of inheritance is assumed (Elston, 1998). They differ from the statistical

terms which indicate that no distributional assumptions are made about the data. Since

both types of linkage analysis require specifying a statistical model and estimating pa-

rameters, the terms ’model-based’ and ’model-free’ will be used to distinguish between

them.

In model-based linkage analysis, a genetic mode of inheritance is assumed, that is, assump-
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tions are made about the penetrances and allele frequencies. To describe the evidence for

linkage in a model-based linkage analysis, geneticists use a transformation of the likelihood

ratio (LR) test, known as the lod score or lods, which is a function of the recombination

fraction. The null hypothesis is that there is no linkage, so H0 : θ = 1
2
, while H1 : θ < 1

2
.

In the model-free case, no assumptions are made about the penetrances and allele fre-

quencies, so linkage is not assessed through the recombination fraction. This is because,

under the null hypothesis, the marker and trait are assumed to segregate independently

and randomly of each other, making the true mode of inheritance irrelevant to the validity

of any tests.

Model-based methods of linkage, such as the lod score, are used predominantly for single-

gene disorders. For complex diseases, it is almost impossible to correctly specify the

entire model. In such cases, model-free methods of linkage analysis are preferred. Model-

based methods are not discussed further here. In the following section, the focus will be on

model-free linkage methods, which are used to increase the robustness, speed and accuracy

of calculations, due mostly to modern improvements in computational technology. Of

all the model-free methods that can be used, the variance-components methods are of

particular interest to us. As with any statistical method, they have their advantages and

disadvantages. Before we look at the model-free variance-components methods however,

another important measure needs to be introduced.

6.2 Identical by descent

Previously, it was mentioned that one of the reasons why genetic pedigree studies are

unique is that they contain information for family members, which needs to be accounted

for when carrying out statistical analyses on such data. We have already presented the

kinship coefficient, which quantifies the degree of relationship between family pairs. We

now present a measure which allows us to quantify the degree of genetic similarity between

family pairs, at a specific genetic locus. Thereafter we will illustrate how this information
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is used in linkage analysis.

The probability that two family members share 0, 1 or 2 alleles from the same source

at any autosomal locus defines their genetic relationship at that locus. Two alleles at a

specific locus, each one from a different person, are said to be identical by descent (IBD)

if they come from a common ancestor. If they are identical in their DNA composition,

but it is unknown whether or not they have a common ancestor, then they are said to be

identical by state (IBS). Two alleles that are IBD must also be IBS.

Let πijk(a) be the probability that individuals j and k in family i share a alleles IBD

at a single marker locus. Parent-child pairs must share 1 allele IBD, with probability

1 (assuming the parents are unrelated individuals). Sib-pairs share anything from 0 to

2 alleles IBD at a locus, while monozygotic (identical) twins share both alleles IBD.

Unrelated individuals share 0 alleles IBD, with probability 1.

IBD probabilities for sib-pairs and other relative-pairs need to be calculated from their

observed genotypes at a particular locus. For example, for a particular locus, consider

the three scenarios in Figure 15: In pedigree 1 of Figure 15, Dad has genotype 1/2, Mom

has genotype 3/4 and their children have genotypes: Sally: 1/3; Ty: 2/3, and Kay: 2/3.

Since both parents are heterozygous and thus informative at this locus, the IBD sharing

of each offspring pair can be determined exactly. Sally gets her 1 allele from Dad and the

3 allele from Mom, while Ty receives his 2 allele from Dad and 3 allele from Mom. Sally

and Ty receive different alleles from Dad but the same 3 allele from Mom, thus they share

1 allele IBS. They also share this allele IBD, with probability 1. Similarly, Sally shares

the 3 allele IBD (and IBS) with Kay, so they also share 1 allele IBD with probability

1. Now, Kay and Ty both receive their 2 allele from Dad and their 3 allele from Mom,

implying that they share 2 alleles IBS and they share 2 IBD with probability 1.

In pedigree 2 of Figure 15, Dad has genotype 1/2, Mom has genotype 1/3 and their

children have genotypes: Sue: 1/2; and Jane: 1/3. Thus, Sue and Jane share 1 allele

IBS. If we did not have the parental genotypes, Sue and Jane’s IBD sharing probabilities
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Sue Jane

1/2 1/3 

Dad Mom

1/2 1/3 

Sally Kay

2/3 1/3 
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2/3 

Dad Mom

1/2 3/4 

1. 2.

Sue Jane

Dad Mom

1/2 

1/2 1/2 

1/2 

3.

Figure 15: Hypothetical pedigrees for IBD probability calculations

would have to be estimated. However, we know the phase: Sue gets her 2 allele from Dad

and her 1 allele from Mom, while Jane gets her 1 allele from Dad and her 3 allele from

Mom. Thus, Sue and Jane share 0 alleles IBD at this locus, with probability 1.

For a slightly more complicated scenario, we look at pedigree 3 in Figure 15. Here, Dad,

Mom and both children have genotype 1/2. So we know that Sue and Jane share 2 alleles

IBS but we do not know if they are IBD. We can use a table to calculate Sue and Jane’s

IBD sharing at this locus. Now, Sue can get either her 1 or 2 allele from Dad and the

other from Mom. Similarly for Jane. Suppose we distinguish between these and count

the number of alleles they share, as shown in Table 3.
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Table 3: Number of alleles shared IBD by sib-pairs, at a given locus

Jane
Sue Dad 1/Mom 2 Dad 2/Mom 1

Dad 1/Mom 2 2 0
Dad 2/Mom 1 0 2

From Table 3, Sue and Jane have the same genotype, but their phase might be different.

Thus they can share either 0 or both alleles IBD, with the following IBD probabilities:

πS,J(0) =
2

4
=

1

2

πS,J(1) =
0

4
= 0

πS,J(2) =
2

4
=

1

2
.

Now suppose we have also obtained genotype information for the extended pedigree in

Figure 16, for a specific diallelic marker. This pedigree consists of six members: Dad

and Mom are again the parents of Sue and Jane; Ryan is married to Jane and their

daughter is Ally. We assume that Ryan is only related to the rest of the family through

his marriage. Suppose that the family’s genotypes at this marker are: Dad: 1/2; Mom:

1/2; Sue: 1/1; Jane: 1/1; Ryan: 0/0 (unknown); and Ally: 1/2. The IBD sharing of pairs

of members from this family can be inferred in the same way as shown above, using the

known genotypes.

Table 4 gives the IBD probabilities and kinship coefficients for pairs of members of the

example family in Figure 16. In this table, Dad and Ally share 0 alleles IBD for the

marker, but Mom and Ally share 1 allele IBD, even though both pairs are grandparent-

grandchild relationships. So while the two pairs have different IBD sharing at this locus,

we still capture their relationship through the kinship coefficient, which is the same for

both pairs. Also, although Ryan’s genotypes are unknown, we can calculate his IBD

sharing with the rest of the family because he is a married-in; he is only related to the

rest of the family through his daughter.
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1/2 
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0/0   

Sue Jane Ryan

1/1 1/1 

1/2 

Figure 16: IBD probability calculations for a hypothetical extended pedigree

Table 4: IBD probabilities and kinship coefficients when genotypes are known

IBD probabilities
Relative type Relative pair π(0) π(1) π(2) π̄ijk 2ϕ
Parent–offspring Dad/Mom–Sue/Jane 0 1 0 1/2 1/2

Jane/Ryan–Ally 0 1 0 1/2 1/2
Sib–pairs Sue–Jane 0 0 1 1 1/2
Grandparent–grandchild Dad–Ally 1 0 0 0 1/4

Mom–Ally 0 1 0 1/2 1/4
Aunt–niece Sue–Ally 0 1 0 1/2 1/4
Unrelated individuals Dad–Mom 1 0 0 0 0

Dad/Mom/Jane/Sue–Ryan 1 0 0 0 0

While the scenarios in Figures 15 and 16 are relatively straight-forward, when some geno-

types are not available or informative, IBD sharing cannot always be inferred and, in such

cases, theoretical or prior IBD probabilities have to be used. These are based on the same

information as kinship coefficients. They are calculated under the null hypothesis of no

linkage and assuming that all individuals in a pedigree are heterozygous. For sib-pairs,
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the probability that they share 0, 1 or 2 alleles IBD under these assumptions, occurs with

probability πijk(0) = 1
4
, πijk(1) = 1

2
and πijk(2) = 1

4
respectively. These probabilities

are based on the binomial distribution, under the assumption that alleles segregate with

equal probability.

Consider the pedigree in Figure 17. This pedigree is from Figure 12 and now contains the

genotype information (in blue) for several family members, at a specific diallelic marker

locus. The genotypes of Sue, Jane, Jack and Ally are unknown.

Dad

1/2 

5/6 7/8   

3/4 

Mom

Ally

5/6 7/8   

Nick Sue Jane

Jack

Ryan

Figure 17: Hypothetical pedigree for theoretical IBD probability calculations

Since Sue and Jane are the offspring of Dad and Mom, each of their genotypes can be

either 1/3, 2/4, 1/4 or 2/3, with equal probability. Table 5 gives the possible number of

alleles they can share IBD. We use this table to calculate the prior probabilities of siblings

sharing 0, 1 or 2 alleles IBD.
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Table 5: Possible number of alleles shared IBD by sib-pairs

Jane
Sue 1/3 2/4 1/4 2/3
1/3 2 0 1 1
2/4 0 2 1 1
1/4 1 1 2 0
2/3 1 1 0 2

From Table 5 we can see that the theoretical or prior IBD probabilities are

πS,J(0) =
4

16
=

1

4

πS,J(1) =
8

16
=

1

2

πS,J(2) =
4

16
=

1

4
.

This is true for any such sib-pair.

Given the above four possible genotypes for Jane and given that Ryan has genotype 7/8,

their daughter, Ally, can have any one of the following possible genotypes with equal

probability:

1/7, 1/8, 3/7, 3/8, 2/7, 2/8, 4/7 or 4/8. So if we want to work out the the theoretical or

prior IBD sharing probabilities for a grandparent–grandchild pair, we can tabulate the

alleles for, say, Dad and Ally, as in Table 6.

Table 6: Possible number of alleles shared IBD by grandparent-grandchild pairs

Ally
Dad 1/7 1/8 3/7 3/8 2/7 2/8 4/7 4/8

1/2 1 1 0 0 1 1 0 0

Therefore,

πD,A(0) =
4

8
=

1

2

πD,A(1) =
4

8
=

1

2

πD,A(2) =
0

8
= 0,
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which is true for any grandparent–grandchild pair.

The kinship coefficient (ϕijk), defined in Section 5.2, can be defined in terms of prior or

theoretical IBD probabilities: it is the probability that a pair of alleles at a given locus

in family i, one selected randomly from individual j and the other from individual k, are

IBD. Mathematically, this is represented as:

ϕijk =
1

2

[
πijk(1)

2
+ πijk(2)

]
=

1

4
[1.πijk(1) + 2.πijk(2)]

Let π̄ijk be the expected proportion of alleles shared IBD by individuals j and k in family

i. Then,

π̄ijk =
1

2

2∑
a=0

a.πijk(a)

=
1

2
[1.πijk(1) + 2.πijk(2)]

= 2ϕijk

Therefore, 2ϕijk gives us the probability that a randomly selected allele from individual i

and a randomly selected allele from individual j, originate from the same ancestor. The

theoretical (prior) IBD probabilities and kinships are summarised in Table 7.

Table 7: Prior IBD probabilities and kinship coefficients for various family pairs

IBD probabilities
Relative types π(0) π(1) π(2) π̄ijk 2ϕ
Monozygotic (identical) twins 0 0 1 1 1
Parent–offspring 0 1 0 1/2 1/2
Dizygotic (non-identical) twins/Sib–pairs 1/4 1/2 1/4 1/2 1/2
Half–Sibs 1/2 1/2 0 1/4 1/4
Grandparent–grandchild 1/2 1/2 0 1/4 1/4
Uncle/Aunt–niece/nephew 1/2 1/2 0 1/4 1/4
First cousins 3/4 1/4 0 1/8 1/8
Second cousins 15/16 1/16 0 1/32 1/32
Unrelated individuals 1 0 0 0 0

It is important to note that Table 7 is a table of theoretical IBD values, which explains why

the IBD sharing and kinship coefficients are the same. The IBDs given in Table 7 are only
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used in practice when a specific individual’s genotype is unknown or uninformative. Once

genotypes are available for family members, IBD sharing is fully dependent on them. Thus

in Table 4, π̄ijk, is actually the observed proportion of alleles shared IBD and it differs

from 2ϕ, whereas in Table 7, π̄ijk and 2ϕ are the same, because π̄ijk is based on theoretical

(prior) IBD sharing. Since IBD sharing depends on genotypes, there are potentially

different IBD probabilities at each genetic locus, for any two related individuals.

In Table 4 we showed actual IBD probabilities, calculated from available (observed) geno-

types, and in Table 7 we calculated theoretical IBD probabilities by assuming all family

members are heterozygous and informative. In practice, there is an intermediate step

between actual and theoretical IBD calculations. The theoretical IBD sharing in Table

7 can be estimated more accurately if the population allele frequencies are known. For

example, for the pedigree in Figure 17, suppose Mom’s genotype is unknown but we do

know that allele 1 occurs with a frequency of say, 20%. Then we can use this as a prior

probability for Mom’s unknown genotype by assuming that her hypothetical 3/4 genotype

is actually 1/1; 1/2 or 2/2 with binomial probabilities: (0.2)2; (2x0.2x0.8); and (0.8)2 re-

spectively. However, this method is computationally demanding, so specialised programs

are available to carry out these complex calculations.

As with kinship coefficients, IBD values are important when building up statistical models

because they make up the coefficients of the locus-specific variance in the covariance

matrices. The expected proportion of alleles shared IBD (the expected value of the

IBD distribution) is used to extract the variance-component of a specific marker. If the

genotypes of a study group are not known for a particular marker, then it is not possible

to separate the effect of that marker from the overall effect of all genes (heritability).

In other words, we cannot split the trait variance into heritable genetic variance and a

locus-specific variance. This is the crux of model-free linkage analysis and is presented in

the next section.
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6.3 Model-free linkage analysis

In model-free linkage analysis, the relationships between sib-pairs and other relative-pairs

in extended pedigrees are used in an attempt to locate the chromosomal position of trait-

causing alleles. It is based on the hypothesis that, at the QTL, there is a greater similarity

between the traits of relative pairs that share alleles IBD than between those that do not

share alleles IBD. The basis of model-free linkage is that genotypic similarities at the QTL

are positively correlated with trait similarities. Here, marker and trait data in families

are assessed for evidence of linkage.

The model-free methods we will focus on here are the variance-components methods.

These methods are sensitive to sampling and distributional assumptions; namely that

genetic parameters assume random recruitment and underlying normality. Their advan-

tages include application to large, complex pedigrees instead of just sib-pairs, and they

can easily include multiple loci, gene∗gene interactions, as well as gene∗environment in-

teractions (none of which will be considered here). Variance-components methods are also

more powerful than some other methods when the model assumptions are met.

Historically, quantitative trait linkage analysis is only carried out on sib-pairs or family

trios. One sib-pair method is the Haseman-Elston (HE) method, from which the variance-

components methods for family analysis were developed. It is a regression-based method

in which the squared trait differences between sib-pairs, Di = (y
ij
− y

ik
)2, are regressed

on the (estimated) expected proportion of alleles shared IBD by the sib-pair (π̄ijk), at the

locus of interest. If the marker is linked to a QTL, then the sibling pair are expected to

share more alleles IBD, as well as have more similar trait values. In this case, there is a

negative relationship between Di and π̄ijk (Teare & Barrett, 2005).

On the other hand, the classic variance-components technique involves splitting the total

variance into variance due to genetic factors and variance due to environmental factors.

This was later improved by including in the model, a variance-component (σ2
a) for the
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hypothesised QTL near the marker. In this way, linkage analysis could be carried out.

While variance-components methods are generally more powerful than HE, the biggest

advantage that the HE method has over variance-components methodology is that it

is more robust to non-normality and selective recruitment than variance-components.

However, it can only be used for sib-pair analysis while variance-components methods can

be used to analyse data for pedigrees of any size. Also, HE cannot easily accommodate

covariates while an important advantage of variance-components is that it enables us to

model means and variances simultaneously, as shown in Chapter 4. This is what makes

the variance-components methodology more powerful than traditional sib-pair analysis.

This is demonstrated in Pratt et al. (2000), which found that the variance-components

methods are consistently more powerful than the HE method. They attributed the large

difference in results to the loss of information which occurs when only sib-pairs are used,

compared to extended families.

For complex traits, in addition to environmental effects, there may be the aggregate effects

of alleles at several loci which contribute a fixed amount to the trait (additive inheritance).

Additive inheritance centres around the idea that additive alleles at various loci control

quantitative traits, resulting in continuous variation which can be explained by Mendelian

inheritance. Here, the hereditary variance, σ2
g , is divided into locus-specific or additive

genetic variance, σ2
a, and variance due to alleles at many loci. σ2

a is important because it

is the main cause of resemblance between relatives. In addition, it can be estimated from

observed genotype data, making it useful in practice.

As stated in Burton et al. (2005:946), “One of the principal reasons for fitting a variance-

components model is to estimate the variance attributable to additive genetic effects.”

This can be done from a model such as the one which follows.

Suppose there is a particular genetic marker locus that we are interested in. The model

for linkage analysis includes both the kinship coefficient and IBD sharing for each family

pair, at the locus. This is done by including coefficients for the random effects of family
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relatedness and the specific locus. The kinship coefficients extract the hereditary variance,

σ2
g , from the between family variance and are the coefficients of the hereditary random

effect. Similarly, using the observed (estimated) proportion of alleles shared IBD as the

coefficient for the locus-specific random effect, we extract the locus-specific variance, σ2
a,

from σ2
g . This allows us to account for the degree to which a pair is related, as well as to

account for the alleles they inherit at a specific locus.

Consider our set of r extended families, each with ni members. The total number of family

members N =
∑r

i ni. Let yij represent the random quantitative trait value for individual

j, from family i. Let y
i
(ni× 1) = (yi1, . . . ,yini

)T be the random vector of trait values for

family i and let the overall vector of trait values be y(N × 1) = (y
1
, . . . ,y

r
)T . Let gi ∼

i.i.d N (0, σ2
g) denote the hereditary random effect for family i, and let eij ∼ i.i.d N (0, σ2

e)

be the environmental effect for individual j from family i. Now let ai ∼ i.i.d N (0, σ2
a)

be the random locus-specific additive allelic effect for family i. It measures the impact of

the additive allelic effect at the specific locus. Assume gi, ai and eij are independent of

each other for different families and independent within families as well.

Then, for the jth individual in the ith family, a model for this data is

yij = µ + zT
aij

ai + zT
gij

g
i
+ eij, for i = 1, . . . , r; j = 1, . . . , ni, (28)

where

µ is the overall mean trait value,

zgij(1 × ni) = {zgijk =
√

2ϕijk} is the vector of regression coefficients for individual j,

corresponding to the hereditary random effect for family i, where ϕijk is the kinship co-

efficient between individuals j and k in family i.

Finally, zT
aij

(1 × ni) = {zaijk =
√

π̄ijk} is the vector of regression coefficients for indi-

vidual j, corresponding to the additive random effect of the marker locus, for family i,

where π̄ijk is the observed (estimated) proportion of alleles shared IBD by individuals

j and k in family i.

Therefore, for individual j, yij is normally distributed with the following mean and vari-
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ance:

E(yij) = µ, since E(eij) = 0

var(yij) = σ2
a + σ2

g + σ2
e , since cov(ai,gi) = cov(ai, eij) = cov(gi, eij) = 0

and 2ϕijk = π̄ijk = 1 for all j = k.

As a result, the variance of the trait for the jth person in the ith family includes the

variance-component for the additive genetic effect.

Expanding (28) for the ith family gives

y
i
= 1ni

µ + Zai
ai + Zgi

g
i
+ ei, for i = 1, . . . , r, (29)

where

Zgi
(ni×ni) = {

√
2ϕijk} is the symmetric matrix of regression coefficients for the random

hereditary effects, and

Zai
(ni × ni) = {√π̄ijk} is the symmetric matrix of regression coefficients for the random

additive locus effects.

Therefore,

E(y
i
) = 1ni

µ(ni × 1)

cov(y
i
) = E(Zai

ai + Zgi
g

i
+ ei)(Zai

ai + Zgi
g

i
+ ei)

T

By the assumption of mutually independent random effects

cov(y
i
) = Zai

E(aiai
T )ZT

ai
+ Zgi

E(g
i
g

i
T )ZT

gi
+ E(eiei

T )

= σ2
aZai

ZT
ai

+ σ2
gZgi

ZT
gi

+ σ2
eIni

= Ωi(ni × ni), say.

As is the case for segregation analysis,

Zgi
ZT

gi
(ni × ni) =


1 2ϕi12 · · · 2ϕi1ni

2ϕi21 1 · · · 2ϕi2ni

...
...

. . .
...

2ϕini1 2ϕini2 · · · 1

 .
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Now,

Zai
ZT

ai
(ni × ni) =


1 π̄i12 · · · π̄i1ni

π̄i21 1 · · · π̄i2ni

...
...

. . .
...

π̄ini1 π̄ini2 · · · 1

 .

So, for model-free linkage analysis, the covariance between individuals j and k in family

i is given by

Ωijk = cov(yij,yik) =

{
σ2

a + σ2
g + σ2

e if j = k
π̄ijkσ

2
a + 2ϕijkσ

2
g if j 6= k,

where ϕijk is the kinship coefficient and π̄ijk is the observed (estimated) proportion of

alleles shared IBD by individuals j and k in family i.

From this we get,

ρ(yij,yik) =
π̄ijkσ

2
a + 2ϕijkσ

2
g

σ2
a + σ2

g + σ2
e

, for all j 6= k.

So now the correlation between two related individuals accounts for the degree to which

they are related (hereditary effects) as well as their locus-specific genetic relationship

(additive allelic effects).

For our family consisting of Dad, Mom, Sue, Jane, Ryan and Ally, the covariance matrix

Ωi has the following structure:


σ2

a + σ2
g + σ2

e π̄D,Mσ2
a + 2ϕD,Mσ2

g π̄D,Sσ2
a + 2ϕD,Sσ2

g π̄D,Jσ2
a + 2ϕD,Jσ2

g π̄D,Rσ2
a + 2ϕD,Rσ2

g π̄D,Aσ2
a + 2ϕD,Aσ2

g

σ2
a + σ2

g + σ2
e π̄M,Sσ2

a + 2ϕM,Sσ2
g π̄M,Jσ2

a + 2ϕM,Jσ2
g π̄M,Rσ2

a + 2ϕM,Rσ2
g π̄M,Aσ2

a + 2ϕM,Aσ2
g

σ2
a + σ2

g + σ2
e π̄S,Jσ2

a + 2ϕS,Jσ2
g π̄S,Rσ2

a + 2ϕS,Rσ2
g π̄S,Aσ2

a + 2ϕS,Aσ2
g

σ2
a + σ2

g + σ2
e π̄J,Rσ2

a + 2ϕJ,Rσ2
g π̄J,Aσ2

a + 2ϕJ,Aσ2
g

σ2
a + σ2

g + σ2
e π̄R,Aσ2

a + 2ϕR,Aσ2
g

σ2
a + σ2

g + σ2
e

 .

Using the IBD and kinship values from Table 4, the covariance matrix above becomes:

σ2
a + σ2

g + σ2
e 0 1

2
σ2

a + 1
2
σ2

g
1
2
σ2

a + 1
2
σ2

g 0 0 + 1
4
σ2

g

σ2
a + σ2

g + σ2
e

1
2
σ2

a + 1
2
σ2

g
1
2
σ2

a + 1
2
σ2

g 0 1
2
σ2

a + 1
4
σ2

g

σ2
a + σ2

g + σ2
e 1σ2

a + 1
2
σ2

g 0 1
2
σ2

a + 1
4
σ2

g

σ2
a + σ2

g + σ2
e 0 1

2
σ2

a + 1
2
σ2

g

σ2
a + σ2

g + σ2
e

1
2
σ2

a + 1
2
σ2

g

σ2
a + σ2

g + σ2
e


.
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This matrix is now even more complex than the corresponding covariance matrix for

segregation analysis (Model (26)) as we now have one more variance component. The

level of complexity will also increase with family size, as we now have to include both

kinship coefficients and IBD probabilities for all additional family members.

We can expand Model (29), for all the families in our study group, to obtain the model

for all the observations. Here, we have

y = 1Nµ + Zaa + Zgg + e, (30)

where

e(N × 1) = (e11, . . . , ernr)
T ∼ NN(0, σ2

eIN) is the vector of environmental effects,

a(N × 1) = (a1, . . . , ar)
T ∼ NN(0, σ2

aZaZT
a ) is the vector of all random locus-specific

additive allelic effects,

g(N × 1) = (g1, . . . ,gr)
T ∼ NN(0, σ2

gZgZT
g ) is the vector of all random hereditary effects,

Za(N × N) = {√π̄ijk} is the block diagonal symmetric matrix of regression coefficients

for the random locus-specific effects, ai, while

Zg(N ×N) = {
√

2ϕijk} is the block diagonal symmetric matrix of regression coefficients

for the random hereditary effects, gi, for all r families.

Therefore,

E(y) = 1Nµ(N × 1)

cov(y) = σ2
aZaZT

a + σ2
gZgZT

g + σ2
eIN, since cov(ai,gi) = cov(ai, eij) = cov(gi, eij) = 0

= Ω(N ×N), say,

where ZgZT
g (N ×N) is the block diagonal matrix of kinship coefficients, and

ZaZT
a (N ×N) =



π̄111 · · · π̄11n1 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

π̄1n11 · · · π̄1n1n1 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · π̄r11 · · · π̄r1nr

...
. . .

...
. . .

...
. . .

...
0 · · · 0 · · · π̄rnr1 · · · π̄rnrnr


.
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Since cov(yij,ysk) = 0 for all j, k and for family i 6= s, and an individual’s kinship

coefficient and IBD probability with himself are both equal to one, Ω(N ×N) is



σ2
a + σ2

g + σ2
e · · · π̄11n1σ2

a + 2ϕ11n1σ2
g · · · 0 · · · 0

...
. . .

...
. . .

...
. . .

...
π̄1n11σ

2
a + 2ϕ1n11σ

2
g · · · σ2

a + σ2
g + σ2

e · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · σ2
a + σ2

g + σ2
e · · · π̄r1nr σ2

a + 2ϕr1nr σ2
g

...
. . .

...
. . .

...
. . .

...
0 · · · 0 · · · π̄rnr1σ

2
a + 2ϕrnr1σ

2
g · · · σ2

a + σ2
g + σ2

e


.

This matrix has the same block diagonal matrix structure as the covariance matrices we

have seen before, where each block is made up of the family-specific covariance matrix:

Ω =


Ω1 0 · · · 0

0 Ω2 · · · ...
...

...
. . . 0

0 · · · 0 Ωr

 .

Here we need to estimate the three variance-components σ2
a, σ

2
g and σ2

e . However, as

before, this cannot be done using standard statistical software since such packages do

not calculate and allow the IBD and kinship coefficients to be specified in the covariance

matrix. So we again have the computational challenge we faced with the segregation

model.

Model (30) is a general form of the linear mixed-effects models we have described for

segregation analysis and familial aggregation. It is also a general form of most of the

models used in practice. Although implemented by Abecasis et al. (2000a) in QTDT,

simpler forms of this mixed-model methodology were applied to family data much earlier.

An example is the paper by Amos (1994) which uses mixed-models that include kinship

coefficients and IBD probabilities in the covariance matrices, in a similar way to what we

have shown here. They however split the locus-specific random effect into three categories

(a, d,−a) depending on the individual’s genotype. The variance components for a and

−a are extracted via IBD sharing, while the variance component for d is extracted by

the probability of the pair sharing both alleles at that locus IBD. Therefore their model
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contained four variance components. However, they could only apply their model to sib-

pair data due to the computational limitations involved with calculating IBD sharing for

other family pairs.

Almasy and Blangero (1998) extend the results of Amos (1994) to families of arbitrary

size. However their research focuses on multipoint quantitative trait linkage, where several

markers are simultaneously tested for linkage. This entails calculating multipoint relative-

pair IBD sharing, which is complex for large families.

We can now use the variance estimates from Model (30) to estimate another type of

heritability. The proportion of trait variance due specifically to the effects of alleles

transmitted from parents to offspring, at a particular locus, is known as the narrow-sense

heritability. It measures the degree to which a trait is passed from parent to child.

Narrow-sense heritability (h2), which is generally recognised as the heritability of the trait

at a specific locus, is defined as

h2 =
σ2

a

σ2
a + σ2

g + σ2
e

.

h2 = 0, implies that there is no heritability, i.e. variation is not due to alleles at that

specific locus.

If h2 = 1, then the trait is very heritable. Therefore all the variation is due alleles at that

specific locus.

Although heritability is an important concept, it is also open to misinterpretation. As

stated in Burton et al. (2005:946), “It is not about cause itself, but about the cause

of variation in a particular trait in a particular population at a particular time.” This

is because the denominator, which is the total variance of the trait, is a mixture of the

variance attributable to genes; to shared environment; residual variance due to unshared

and unmeasured factors; as well as measurement error. So heritability for a given trait

can vary greatly from one study population to another. In addition, adjustment for

covariates also affects the interpretation of heritability. For example, adjusting for an

important environmental covariate may decrease the total variance but leave the allelic
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variance unchanged. So narrow-sense heritability decreases, giving the appearance that

alleles account for more variation in the data than is actually true.

However, heritability is still calculated in practice as it can increase the analytical effect

of a study by guiding the selection of the study population. In addition, high heritability

can support further study into a trait’s genetic determinants. If the trait is found to be

heritable, all further research assumes heritability and researchers move on to analyses

for locating causal alleles.

To conclude our investigations into linkage analysis, we recall that for single-gene disor-

ders, model-based linkage methods are satisfactory, but these do not apply to complex

diseases. Here, much more sophisticated methods such as variance-components analysis

are needed. In addition, more sophisticated software is required as standard statistical

software is not sufficient for such complex and specialised analyses.

In Chapter 7, we illustrate the analysis of the Heartdata and discuss the results. Through

this analysis, the statistical theory we have presented up to this point will be reinforced

and its practical application explained.
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7 Practical Example

7.1 Data exploration

In this section we show how data from a published genetic study (Revera et al., 2007,

Revera et al., 2008, Van der Merwe et al., 2008 and Heradien et al., 2009), which we

have called the Heartdata, is analysed. This will be done in the systematic way discussed

in the opening chapters of this dissertation. The aim of the analysis is to determine

whether a specific marker affects a specific trait after adjusting for the presence/absence

of known HCM-causing mutations, in other words, whether it modifies the effect of these

mutations. The software packages we used for the analysis of the Heartdata are not

the only ones available for this type of analysis. However, since this is not a software

review, we will not discuss any packages other than those which we have used. These are

among those listed in Table 8. The two quantitative traits analysed here are measures of

Table 8: Software list

Software Uniform Resource Locator (URL) Page

PEDSTATS http://www.sph.umich.edu/csg/abecasis/PedStats/ 111
QTDT http://www.sph.umich.edu/csg/abecasis/QTDT/ 10, 120
Simwalk http://www.genetics.ucla.edu/software/simwalk/ 121
Haploview http://www.broadinstitute.org/haploview/haploview 116
Merlin http://www.sph.umich.edu/csg/abecasis/merlin/ 121
R-Kinship http://CRAN.R-project.org/package=kinship 120
Cyrillic http://www.cyrillicsoftware.com/ 120
Prelude, Finale Downloaded with QTDT and Merlin 121, 121
SOLAR http://www.sfbr.org/solar/ 85
MENDEL http://www.genetics.ucla.edu/software/ 85

left ventricular thickness: LVMecho is left ventricular mass in grams (g), as measured by

echocardiography; and cwtscore is a composite measure of ventricular thickness, measured

in millimeters (mm). Since these traits have skew distributions, they were transformed

using quantile normalisation and are called QLVMecho and Qcwtscore, respectively. The

quantitative covariates adjusted for are: Age (in years); body surface area (BSA) in square

110

 

 

 

 



meters (m2); systolic blood pressure (SystBP) and diastolic blood pressure (DiastBP) as

measured in millimeters of mercury (mmHg); and heart rate (HR) in beats per minute

(bpm).

There are also several dichotomous covariates in the dataset: Ethnicity (1=Afrikaner,

2=Mixed ancestry); Mutation (which describes whether an individual carries a mutation

or not and is coded 1=No, 2=Yes); and W92, T797 (which identify families in which

these two possible types of mutations segregate). The third type of mutation, W403, is

assumed to be present in the absence of the other two. It is therefore redundant in the

analysis so that the model becomes identifiable. Lastly, we have data for four genetic

markers, called Marker 11; Marker 12; Marker 13; Marker 14 respectively.

The opening lines of Chapter 3 state that the first step of any analysis is to explore the data

to understand it and determine the appropriate method of analysis. The results presented

in Chapter 3 are part of the exploratory analysis carried out on the Heartdata. Due to the

unique components of this and other genetic datasets, namely genetic marker information

as well as pedigree information, analysis of genetic datasets requires specialised software.

As a result, the exploratory analysis on the Heartdata was carried out in a program

called PEDSTATS (Wigginton and Abecasis, 2005). It is an open-source package created

to carry out preliminary analyses on genetic datasets of various sizes.

As shown in Chapter 3, PEDSTATS produces many graphs that allow the exploration and

summarisation of the data being analysed. It also reports summary information for all

traits and covariate data. These reports include information for trait correlations between

sibling pairs and other relative pairs. For dichotomous traits, PEDSTATS reports the

proportion of individuals with the particular trait and provides details about the affected

individuals. Table 9 gives a summary of the outputs obtained from PEDSTATS and

presented here.

PEDSTATS is a command-line utility that is run with the command: pedstats -d

heart.dat -p heart.ped --age Age --pairs --hardyWeinberg --pdf
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Table 9: Summary of outputs from analysis

Output Contents Page

1 Pedigree structure 113
2 Age check 114
2 Hardy-Weinberg check using 34 unrelated individuals 115
4 Quantitative trait statistics 116
5 Covariate statistics 117
6 Pair statistics 118
7 Marker genotype statistics 120
8 IBD sharing for Marker 13 using example pedigree 122
9 Heritability: Qcwtscore 125
10 Testing trait: Qcwtscore 126
11 Heritability: QLVMecho 128
12 Testing trait: QLVMecho 128
13 Linkage: Qcwtscore 130
14 Testing trait: Qcwtscore (Marker 13) 131
15 Linkage: QLVMecho 132
16 Testing trait: QLVMecho (Marker 13) 133

The -d selects the input data file, which is called heart.dat. It contains two columns. The

first contains descriptions for the traits (denote by T), covariates (C), affection status (A)

and marker genotypes (M). The second column contains the name of the variable that

corresponds to the description in the first column. The first five columns of a genetic

dataset are omitted from description in the .dat file as they always contain the same

variables, in the same order. These are: Family ID, Person ID, Dad ID, Mom ID and

Sex, as shown in Table 1.

The -p in the command selects the appropriate pedigree file, which contains family struc-

ture information, covariate and affection status information, as well as trait and genotype

information. It is the file which contains all the data for analysis.

The --age selects the age-related variable from the dataset. The word following this

command is the name of the variable which contains the age data. In this instance, that

variable is just called Age.

--pairs specifies that counts must be done on all family pairs, namely, siblings, half-sibs,
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parent-child pairs, grandparent-grandchild pairs, cousin pairs and avuncular pairs. In

addition, the traits and covariates must be summarised in terms of counts and correlations,

for each of the family pairs.

--hardyWeinberg instructs PEDSTATS to run Hardy-Weinberg tests on the data, both for

all individuals in the pedigree file, as well as on a group of unrelated individuals which

the program chooses from the study group. Since we have related individuals, the test on

all individuals is not valid as HWE is based on unrelated people. Thus only the test on

the unrelateds will be discussed here.

Finally, --pdf instructs the program to generate summary graphs, such as those presented

in Chapter 3, and write them to an Adobe PDF file.

These input files and the command form the basis for analysis in other programs such as

QTDT and Simwalk, which we discuss later.

Output 1 gives a summary of the pedigree information for the Heartdata example: the

number of pedigrees in the study group; the number of individuals; and the distribution

of the individuals within the families.

Output 1. Pedigree structure

Individuals: 507
Founders: 156 founders, 351 nonfounders

Gender: 257 females, 250 males
Families: 22

Family Sizes
Average: 23.05 (5 to 95)

Distribution: 8 (13.6%), 5 (9.1%) and 13 (9.1%)

Generations
Average: 3.41 (2 to 5)

Distribution: 3 (40.9%), 4 (36.4%) and 2 (13.6%)

Checking family connectedness . . .
. . . All individuals in each family are connected

For the Heartdata, there are 507 individuals who come from 22 families. In total, there are
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156 founders and 351 non-founders. There are also 257 females and 250 males. Following

this, we have information for the average family size and the distribution of family sizes,

as well as the average number of generations and the corresponding distribution. As

noted previously, there are between 2 and 5 generations in the families here. Finally,

PEDSTATS tells us that all of the individuals in each of the families are appropriately

related to one another. Thus, a family-relatedness check is successful.

Next we do an age check on our individuals to make sure that there are no data entry

errors. This is shown in Output 2, which corresponds to Figure 6. The outliers shown in

Figure 6 are identified in Output 2.

Output 2. Age check

Checking for gaps less than 13.0 among relative pairs for covariate Age . . .

In family F100, individual 3 has age 61.0.
However, 3 should have age at least 70.0, since 3 (61.0) is the mother of 5 (57.0).

Additionally,

3 (61.0) is the mother of 8 (51.0)
3 (61.0) is the mother of 7 (51.0)
3 (61.0) is the mother of 6 (55.0)

In family F101, individual 27 has age 45.0.
However, 27 should have age at least 50.0, since 27 (45.0) is the mother of 29 (37.0).

Additionally,

27 (45.0) is the mother of 30 (34.0)

In family F172, individual 6 has age 45.0.
However, 6 should have age at least 69.0, since 6 (45.0) is the father of 8 (56.0).

Additionally,

6 (45.0) is the father of 7 (42.0)
6 (45.0) is the father of 2 (52.0)

Checking for gaps greater than 70.0 among relative pairs for covariate Age . . .
Checking for values that differ among twin pairs for covariate Age . . .
Checking for differences greater than 30.0 in sibling values for covariate Age . . .

The age checks in Output 2 identify some anomalies, which were discussed in Chapter
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3. As mentioned there, it was found that the ages tested above were actually the age at

which the individuals’ hearts were tested and not their current ages, which explains the

seemingly anomalous observations. As such, an age check is not appropriate for this data,

but doing it highlighted some potential interpretation problems.

Among others, PEDSTATS ensures that the pedigree information is correct by checking

the relatedness between family members (an individual cannot be his own father), checking

Mendelian inheritance and by making sure that the sex-codes are consistent for each

pedigree.

The following outputs give examples of such summary statistics produced for the Heart-

data.

Output 3 gives the text output for the Hardy-Weinberg equilibrium test on Marker 11.

It corresponds to Figure 5. In Output 3 we have the number of homozygous and het-

Output 3. Hardy-Weinberg check using 34 unrelated individuals

N Hom N Het E Het N Alleles Alleles P-value
Marker 11 19, 7 rare 15 16 2 3/1 0.7274 E

erozygous allele pairs for Marker 11, for 34 unrelated individuals, as well as the number

of alleles present and what they are called. There are 19 homozygous pairs (7 of which

are minor-allele pairs) and 15 heterozygous pairs, as shown in Figure 5. The third column

gives the expected number of heterozygotes under HWE, which is 16. The fourth indi-

cates that there are two alleles for the marker, while the fifth column tells us what these

alleles are called (3/1). The last column gives the p-value for the HWE test and indicates

that the HWE exact test (E) was run. Since the p-value (0.7274) is not significant, there

is not sufficient evidence supporting a departure from Hardy-Weinberg Equilibrium for

Marker 11 for the selected unrelated individuals. So we fail to reject the null hypothesis

of HWE.

For the Heartdata, all the markers tested were in HWE except for Marker 12 which has 31
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homozygous pairs, (one of which is the minor-allele pair) and 1 heterozygous allele pair.

The expected number of heterozygotes is two, and the two alleles found here are alleles

1 and 2. The p-value for the HWE test was 0.0476, which is significant at the 5% level.

Therefore, there is sufficient evidence to suggest that Marker 12 deviates from HWE.

For HWE testing, some programs, such as Haploview, choose their unrelated individuals

in a different way to PEDSTATS. In Haploview, the married-ins are chosen and are all

included, but the unrelateds inside families are chosen differently for each run of the test.

Hence the result differs with each run. PEDSTATS always chooses the most optimal

group of unrelateds, so repeated runs on the same families should produce similar HWE

test results.

In Output 4 we have the summary statistics for LVMecho and cwtscore, and their quantile

normalised counterparts, QLVMecho and Qcwtscore, respectively. Columns 1 and 2 of

Output 4. Quantitative trait statistics

All Minimum Maximum Mean Variance Sibling correlation
LVMecho 187 (36.9%) 48.200 476.600 158.310 4608.852 0.110
cwtscore 176 (34.7%) 97.000 353.500 163.798 2377.505 0.088

QLVMecho 187 (36.9%) -2.550 2.550 -0.001 0.958 0.127
Qcwtscore 176 (34.7%) -2.530 2.530 -0.002 0.957 0.123

Output 4 give the names of the trait, the number of observations for this trait and the

corresponding percentage (out of 507) in brackets. Columns 3–6 give the minimum value,

maximum value, mean and sample variance for each trait. The last column gives the

overall sibling correlation for each trait.

The two untransformed traits, LVMecho and cwtcore, have large ranges and variances.

Once transformed though, they become symmetric and have means close to zero and

variances close to one, as seen for the corresponding transformed traits QLVMecho and

Qcwtscore. The sibling correlations for all of these traits are small and positive. Thus,

when one siblings’ measurement increases (or decreases), so does the corresponding mea-

surement for the other sibling.

116

 

 

 

 



The covariates in the dataset can also be summarised as shown for the traits. The

Heartdata contains several covariates and these are summarised in Output 5: As for

Output 5. Covariate statistics

All traits Minimum Maximum Mean Variance Sibling correlation
Ethnicity 507 (100.0%) 1.000 2.000 1.722 0.201 1.000

Age 331 ( 65.3%) 14.000 94.000 40.955 285.904 0.858
Mutation 355 ( 70.0%) 1.000 2.000 1.428 0.246 0.234

W92 507 (100.0%) 0.000 1.000 0.321 0.219 1.000
T797 507 (100.0%) 0.000 1.000 0.448 0.248 1.000
BSA 197 ( 38.9%) 1.300 2.500 1.826 0.056 0.138

SystBP 209 ( 41.2%) 90.000 230.000 124.091 389.073 0.221
DiastBP 209 ( 41.2%) 60.000 120.000 79.234 106.142 0.084

HR 201 ( 39.6%) 44.000 120.000 69.134 141.417 0.024

Output 4, the columns of Output 5 give respectively, the covariate name; number and

percent of observations; the minimum; maximum; mean; variance; and sibling correlation

for each covariate. Ethnicity, Mutation, W92 and T797 are all dichotomous variables, so

we can interpret their means as percentages of individuals in the groups. For example,

for Mutation, 42.8% of the study group harbour a mutation. For the specific mutation

types, for W92 the two categories are 0 and 1, where 1 indicates a presence of mutation

W92 in the family. So a mean of 0.321 implies that 32.1% of the individuals in the study

group are from families harbouring mutation W92 and 78% are from the other families;

44.8% from T797 and the rest from W403.

For Age, the youngest family member is tested at age 14 and the eldest at age 94. The

group mean age at which hearts are tested is 41 years, and the variance is 286 (SD=17

years). The sibling correlation is high (0.86), so sibings hearts were tested at around the

same ages.

For body surface area (BSA), systolic BP, diastolic BP and heart rate (HR), information

is only available for about 40% of the study group. In addition, all four have sibling

correlations below 0.25. The mean systolic BP is 124 mmHg and the variance is 389

(SD=20 mmHg), while the mean diastolic BP is 79 mmHg and the variance is 106 (SD=10

mmHg). Thus, while the means for both are in the normal range, the systolic BP variance
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is higher.

For both the traits and covariates, pairwise statistics can be produced. These are reported

for all family pairs, as shown in Output 6.

Output 6. Pair statistics

Relative Pair Counts:

Sib-pairs: 519 pairs
Half-Sibs: 65 pairs
Cousins: 1047 pairs

Parent-Child: 702 pairs
Grandparent-Grandchild: 546 pairs

Avuncular: 985 pairs

Pair Correlations for Each Trait:

Sib HalfSib Cousin ParentChild Grandparent Avuncular
LVMecho 0.1103 -0.1004 0.0610 0.0417 0.3251 0.0613
cwtscore 0.0876 -0.1915 -0.0177 -0.0367 -0.0016 0.0828

QLVMecho 0.1271 -0.0595 0.0810 0.0422 0.1990 0.0770
Qcwtscore 0.1232 -0.1707 -0.0060 -0.0698 0.0966 0.1328

Pair Counts for Each Trait:

Sib HalfSib Cousin ParentChild Grandparent Avuncular
LVMecho 161 15 271 92 18 241
cwtscore 139 12 238 80 20 234

QLVMecho 161 15 271 92 18 241
Qcwtscore 139 12 238 80 20 234

Pair Correlations for Each Covariate:

Sib HalfSib Cousin ParentChild Grandparent Avuncular
Age 0.8579 0.1489 0.4390 0.7708 0.3068 0.7050
BSA 0.1381 -0.0888 0.0601 0.2642 0.3132 -0.0118

SystBP 0.2215 0.5049 0.3000 0.2250 -0.0009 0.1176
DiastBP 0.0844 0.1002 0.2446 0.1238 0.1345 -0.0309

HR 0.0236 0.3044 0.0235 0.0294 0.1378 0.0462

Pair Counts for Each Covariate:

Sib HalfSib Cousin ParentChild Grandparent Avuncular
Age 407 40 829 229 67 671
BSA 179 26 289 100 20 271

SystBP 202 29 307 110 26 307
DiastBP 202 29 307 110 26 307

HR 191 22 304 107 23 302

The first part of Output 6 reports the number of family pairs in the study group and then

goes on to give the pairwise correlation and count results for the traits and quantitative
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covariates, for each type of family pair. The Heartdata pedigree file consists of 519

sibling pairs, 65 half-sib pairs, 1047 cousin pairs, 702 parent-child pairs, 546 grandparent-

grandchild pairs and 985 avuncular pairs. There is a great deal of overlap between pairs,

as shown by, for example, there being more parent-child or sibling pairs than individuals

in the study group.

If the trait correlations get smaller as the degree of relation between the family pair gets

larger, the trait may be heritable. For the pair correlations for the traits, the sibling

correlation for LVMecho is 0.11, for half-sibs it is -0.10, for cousins it is 0.06, 0.04 for

parent-child pairs, 0.33 for grandparent-grandchild pairs and 0.06 for avuncular pairs.

The negative correlation for half-sibs is likely to be the coincidence of an inaccurate

estimate, based on a small number of pairs (65).

The next part of the table gives the count data for each type of relative pair, for each of

the selected traits. The numbers are similar and, as expected, there are the same number

of observations for LVMecho and QLVMecho, and for cwtscore and Qcwtscore.

For the paired covariate data, the correlations presented are for the quantitative covariates

only as they are not defined for the dichotomous variables. For Age, the correlations, in

descending order, are 0.86 for siblings, 0.77 for parent-child pairs, 0.71 for avuncular pairs,

0.44 for cousin pairs, 0.31 for grandparent-grandchild pairs and finally 0.15 for half-sibs.

These correlations tell us about the ages at which the hearts of the pair were tested. So,

for the sibling for example, the high correlation implies that siblings were tested at similar

ages.

As with the traits, if a covariate is heritable, we expect the covariate correlation to decrease

as the degree of relation between the family pair increases.

Lastly, we have Output 7 which gives the summary information for Markers 12, 13, 14 and

15. It shows that, for Marker 12 for example, 251 out of the 507 individuals in the study

group were genotyped, making up about 50% of the sample. Of these, 23 individuals
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Output 7. Marker genotype statistics

Genotypes Founders Heterozygosity
Marker 11 326 (64.3%) 26 (16.7%) 52.1%
Marker 12 251 (49.5%) 23 (14.7%) 9.2%
Marker 13 245 (48.3%) 20 (12.8%) 22.4%
Marker 14 295 (58.2%) 27 (17.3%) 44.1%

(14.7%) are founders and only 9.2% of the total number of genotyped individuals are

heterozygous. The output for the other three markers is interpreted in the same way. The

output for Marker 14 corresponds to what was seen for Figure 11 in Chapter 3, where 44%

of the genotyped individuals were heterozygous. As explained there, the proportion of

heterozygous individuals determines marker informativity, and thus how useful a marker

is for linkage analysis. Here, Marker 12 and Marker 13 have low heterozygosity and thus

low informativity. Marker 11 and Marker 14 have reasonably high heterozygosity (52.1%

and 44.1% respectively).

The summary statistics produced by PEDSTATS and given in Output 5, do not give useful

text output for the dichotomous covariates. These can however be visually assessed via

the graphical output produced by PEDSTATS, which is presented in Chapter 3, or by

using other programs, such as R, to visually assess the data and create summary tables.

Finally, using a package such as Kinship (in R) or Cyrillic, we can draw a pedigree, such

as those in Figures 3 and 17, for each of the 22 families.

Once we have explored our data, understood it and carried out any necessary cleaning

and transforming, we can start the data analysis. To test heritability and do linkage

analysis on the Heartdata, we used a command-line program called QTDT which, as

mentioned previously, is one of several programs that may be used. QTDT is appropriate

to our study as it applies variance-components methodology in the analysis of family

data. It can be applied to quantitative traits, to all family types– from nuclear families to

extended pedigrees– and it can run analysis both with and without parental genotypes.

However QTDT cannot understand categorical covariates with more than two categories,
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so categorical variables with more than two categories, such as our three types of mutation,

can be accommodated by splitting them into dummy variables, as we did.

In order to do a linkage analysis on the Heartdata, QTDT requires a matrix of all the

IBD probabilities for all family pairs in the sample, which it does not calculate. Simwalk

and Merlin are two programs which can calculate IBD matrices. We used Simwalk as our

families were too complex for Merlin.

Before Simwalk can be run, we have to run another program, called Prelude, which

provides an interface between Simwalk and QTDT. It estimates allele frequencies and

generates input files for Simwalk, which are used to calculate IBD probabilities. Prelude

is run using the following command: prelude -d heart.dat -p heart.ped -aa -t0.001

The -d and -p specify the input files, as before. The -aa specifies that all the individuals

should be considered for estimating the allele frequencies and the -t0.001 specifies the

estimated recombination fraction between the markers.

Once we have run this, the data is run through Simwalk, using: simwalk2

This creates separate text files with IBD probabilities for each of the 22 families. This is

done as explained in Section 6.2 on IBD sharing.

Finally, all the information from the separate IBD files is gathered into one document

using a program called Finale and the command: finale IBD-01.*

This generated IBD file is automatically called qtdt.ibd and is used in further analysis.

It contains the IBD probabilities for every family pair in our 22 families, for all of the

markers under consideration. Output 8 is an example of the information this file contains.

It gives us the IBD sharing for some members of one particular family, F100. Although

the names are invented, the genotypes, which are for Marker 13, are not. They correspond

to those in Figure 16 and the IBD sharing corresponds to the values in Table 4.

The first part of Output 8 gives identifies the family and gives the pedigree information
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Output 8. IBD sharing for Marker 13 using example pedigree

Example pedigree and corresponding genotypes

Family ID ID DID MID Sex Marker13
F100 46 (Mom) 1 2 2 1 2
F100 47 (Dad) 0 0 1 1 2
F100 49 (Sue) 47 46 2 1 1
F100 50 (Jane) 47 46 2 1 1
F100 51 (Ryan) 0 0 1 0 0
F100 52 (Ally) 51 50 1 1 2

IBD sharing between family pairs:

Family ID IDj IDk π100,jk(0) π100,jk(1) π100,jk(2)
F100 47 46 1 0 0
F100 47 49 0 1 0
F100 47 50 0 1 0
F100 47 52 1 0 0
F100 46 49 0 1 0
F100 46 50 0 1 0
F100 46 52 0 1 0
F100 49 50 0 0 1
F100 49 52 0 1 0
F100 50 52 0 1 0
F100 51 46 1 0 0
F100 51 49 1 0 0
F100 51 50 1 0 0
F100 51 52 0 1 0

for the various family members, including their genotypes for Marker 13.

For the second part of Output 8, the first column identifies the family, while the second

and third columns give the IDs of two individuals in that family. These are the two family

members whose IBD sharing is shown in the remaining columns of the table. These last

three columns give the probability of the two individuals sharing 0, 1 or 2 alleles IBD,

respectively, for Marker 13. For example, if we consider individuals 47 (Dad) and 46

(Mom), they share 0 alleles IBD with probability 1, 1 allele IBD with probability 0 and

2 alleles IBD with probability 0. This is expected as they are unrelated. If we look

at individuals 47 and 49 (the daughter of individual 47), then we see that they share 1

allele IBD with probability 1. This is also expected as they are a parent-child pair. The

remaining rows are interpreted similarly. In this example, IBD sharing can be determined
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exactly as we have all the genotype information we need.

Once we have all the IBD information for all the families in our study group, we can

proceed with the data analysis.

7.2 Familial aggregation

As we have mentioned before, the first step in identifying a potentially heritable trait

is establishing that the trait runs in families. Then, if it does, proceed to establishing

whether the aggregation is partly due to shared genes or entirely due to shared environ-

ment. Establishing familiality does not require any familial data and testing it is not

possible in QTDT. Since it is essentially a test for clustering, which can be carried out

using a mixed-effects model and any statistical package, we can use the ‘lme’ function (for

linear mixed-effects models) in R. To test family clustering we specify a between-family

random effect in our model. This model was shown in the section on familial aggregation

(Model (22)). In practice, covariates will also be adjusted for in this model. Once we have

obtained the estimate for σ2
b through such a mixed-effects model, we can formally test for

and use the intraclass correlation coefficient to investigate possible familial clustering. If

this is established, we can continue on to the next step, which is testing heritability using

the segregation analysis model. Since we know that HCM clusters in families, we will not

go into detail on testing familial aggregation, but rather move on to testing segregation,

heritability and linkage, which are the focus of this study.

7.3 Segregation analysis and heritability

To estimate broad-sense heritability we need to specify the segregation model, adjusting

for covariates, then estimate the hereditary random effect σ2
g and use this estimate to

calculate the broad-sense heritability. Heritability measures the inherited/genetic contri-

bution to the variability of a trait. To assess it we run the Heartdata through QTDT

using the command: qtdt -d heart.dat -p heart.ped -a- -cus- -we -veg --p-values
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> heritability.txt

The -a- turns off the association model; we are not interested in association analysis here,

just linkage. The -cus- option specifies the inclusion of all the covariates, as well as sex in

the model. The -we specifies a model with only environmental variance (e) and compares

it to -veg, which specifies a model with both hereditary genetic variance (g) and the

environmental variance (e). The former specifies the variances for a null model while the

latter specifies them for the full model. Including the hereditary genetic variance in the

model results in QTDT calculating kinship coefficients for the families. These kinships

are included as coefficients in the covariance matrices for each family, as explained in

previous sections.

Finally, --p-values specifies that all the p-values are printed and not just the significant

ones, which is the default option. The output from this analysis is written to a text file

which is named by the command: > heritability.txt.

Model (25), the segregation analysis model, is used for assessing heritability for the Heart-

data. In addition, d = 10 covariates are adjusted for in the model, as shown in Section

4.6. Table 10 lists these ten covariates and their corresponding coefficients. Recall that

Table 10: List of covariates and the interpretation of the effect sizes

Covariates Effects

µ Overall mean
x1,ij Age α1 Effect of being mixed ancestry
x2,ij Ethnicity α2 Effect of waiting one year to test individual j’s heart
x3,ij Mutation α3 Effect of carrying a mutation
x4,ij W92 α4 Effect of being in a family that carries mutation W92
x5,ij T797 α5 Effect of being in a family that carries mutation T797
x6,ij BSA α6 Effect of one unit of BSA
x7,ij SystBP α7 Effect of one unit of systolic blood pressure (SystBP)
x8,ij DiastBP α8 Effect of one unit of diastolic blood pressure (DiastBP)
x9,ij HR α9 Effect of a unit of heart rate (HR)
x10,ij Sex α10 Effect of individual j being a female

x2,ij, x6,ij, . . . , x9,ij are quantitative covariates while the remaining five are dichotomous.
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The null hypothesis we test is H0 : σ2
g = 0 and the alternative hypothesis, which specifies

the full model, is H1 : σ2
g > 0.

We can now run our segregation model on our traits, starting with cwtscore. However,

recall that the distribution of cwtscore is very skew so it had to be transformed since

inference based on this data would not be valid, as assumptions of normality are violated.

Quantile normalisation was used to transform the data and the transformed observations

are found in Qcwtscore, which we proceeded to analyse. Output 9 gives the null and full

models consecutively.

Output 9. Qcwtscore

Null model:

df Log(Likelihood) Variances Means
162 183.8 σ2

e 0.484 (Intercept) -6.349
Ethnicity :mixed ancestry 0.405

Age 0.012
Mutation 0.806

W92 -0.079
T797 0.351
BSA 1.025

SystBP 0.013
DiastBP -0.003

HR 0.015
Sex: female -0.241

Full model:

df Log(Likelihood) Variances Means
161 180.9 σ2

e 0.324 (Intercept) -6.218
σ2

g 0.161 Ethnicity :mixed ancestry 0.303
Age 0.016

Mutation 0.830
W92 -0.079
T797 0.238
BSA 1.064

SystBP 0.011
DiastBP -0.002

HR 0.015
Sex: female -0.247

From Output 9, we see that null model is based on 162 degrees of freedom and gives a
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log-likelihood of 183.8, while the full model is based on 161 degrees of freedom and gives

a log-likelihood of 180.9. The variance from the null model, 0.484, is split into two so

that, for the full model: the environmental variance σ̂2
e = 0.324 and the hereditary genetic

variance σ̂2
g = 0.161. These are, respectively, the portion of variance due to environment

effects and the portion which is due to heritable genetic factors. Since the former is larger,

most of the variation in the data is due to environmental factors.

Although QTDT estimates effect sizes of covariates, it does not give the standard errors of

the estimates because this is not the aim of the package. Since those using it are primarily

interested in testing variance components, QTDT is designed to carry out likelihood ratio

tests on the variance components. Output 10 gives the result of the heritability test on

Qcwtscore.

Output 10. Testing trait: Qcwtscore

Allele df(0) -Lnlk(0) df(V) -Lnlk(V) Chisq P-value
N/A 162 183.8 161 180.9 5.88 0.015 (174 probands)

Output 10 tells us that there are no alleles used in the analysis, which is correct as this is

a heritability analysis and therefore does not require any genotype information. Next it

says that the estimates for the null model were calculated on 162 degrees of freedom, with

a log-likelihood of 183.8. Following this, we see that the estimates for the full model were

calculated on 161 degrees of freedom with a log-likelihood of 180.9. The chi-square value

for the difference between the null and full models is based on likelihood ratios and the test

value of 5.9 comes from 2(Lnlk(0)-Lnlk(V)). It gives a p-value of 0.015. Lastly, the output

shows that the test was based on 174 probands. Since the p-value is significant at the

5% level, we reject the null hypothesis at this significance level. Hence, there is sufficient

evidence to support the hypothesis that H1 : σ2
g > 0. Therefore, in this study group, it

appears that the trait Qcwtscore is heritable. The broad-sense heritability estimate for

this data is obtained using the variance estimates from the full model, given in Output 9.
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Thus, the broad-sense heritability is

H2 =
σ̂2

g

σ̂2
g + σ̂2

e

=
0.161

0.161 + 0.324
= 0.332.

Suppose now that our ith family consists of the family members we have in our example

pedigree from Figure 17, which we used for the covariance matrix of Model (26) in Section

5.3. Substituting the variance estimates from the full model of Qcwtscore into that

covariance matrix gives us the following covariance matrix for our extended family, which

consists of Dad, Mom, Sue, Jane, Ryan and Ally:

Ωi =



0.485 0.000 0.081 0.081 0.000 0.040
0.485 0.081 0.081 0.000 0.040

0.485 0.081 0.000 0.040
0.485 0.000 0.040

0.485 0.081
0.485

 .

The same analysis as above can be carried out for QLVMecho as LVMecho also had to

be transformed using quantile normalisation. For the null and full models of QLVMecho,

we turn to Output 11.

From Output 11, we see that the variance estimates, from the full model, are: σ̂2
e = 0.323

for the environmental variance and σ̂2
g = 0.119 for the hereditary genetic variance, adding

up to the 0.44 in the null model.

Output 12 gives the result of the heritability test on QLVMecho. It tells us that the esti-

mates for the null model were calculated on 172 degrees of freedom, with a log-likelihood

of 185.7. Following this, we see that the estimates for the full model were calculated on

171 degrees of freedom with a log-likelihood of 183.7. The 2(Lnlk(0)-Lnlk(V)) chi-square

value is 3.93. It gives a p-value of 0.048. Lastly, the output shows that the test was

based on 184 probands. Since the p-value is significant at the 5% level, we reject the null

hypothesis. So there is sufficient evidence to support the hypothesis that H1 : σ2
g > 0.

Therefore, in this study group, it appears that QLVMecho is heritable. The broad-sense
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Output 11. QLVMecho

Null model:

df Log(Likelihood) Variances Means
172 185.7 σ2

e 0.441 (Intercept) -5.128
Ethnicity :mixed ancestry 0.228

Age 0.018
Mutation 0.505

W92 -0.146
T797 0.132
BSA 1.688

SystBP 0.005
DiastBP -0.005

HR 0.010
Sex: female -0.470

Full model:

df Log(Likelihood) Variances Means
171 183.7 σ2

e 0.323 (Intercept) -5.288
σ2

g 0.119 Ethnicity :mixed ancestry 0.193
Age 0.020

Mutation 0.533
W92 -0.102
T797 0.103
BSA 1.803

SystBP 0.004
DiastBP -0.006

HR 0.009
Sex: female -0.448

Output 12. Testing trait: QLVMecho

Allele df(0) -Lnlk(0) df(V) -Lnlk(V) Chisq P-value
N/A 172 185.7 171 183.7 3.93 0.048 (184 probands)

heritability estimate for this data is

H2 =
σ̂2

g

σ̂2
g + σ̂2

e

=
0.119

0.119 + 0.323
= 0.269.
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7.4 Linkage analysis

Linkage analysis aims to assess whether there is evidence that genotypic similarities for

relatives, at a specific marker, are independent of trait similarities. This is done through

testing the locus-specific trait variance, σ2
a, at a specific marker; in this example we present

the results for Marker 13 as it was the most significant of all the markers. To test the

Heartdata for linkage, we run the following command in QTDT: qtdt -d heart.dat -p

heart.ped -i heart.ibd -a- -cus- -weg -vega --p-values > linkage.txt

Here, the input data and pedigree files are specified as for segregation analysis. As

before, the -cus- option specifies the inclusion of sex and all the covariates in the model.

We use the segregation model as our null model; -weg specifies a null model with both

environmental variance (e) and hereditary genetic variance (g). Through -vega we add the

the locus-specific variance component for Marker 13, to the full model. It thus contains

the hereditary genetic variance (g), environmental variance (e) and the locus-specific

additive allelic variance (a). The output from this analysis is written to a text file called

linkage.txt. Finally, the IBD file, which is required for this analysis, is specified using -i.

Here, since we are interested in testing for an locus-specific effect of Marker 13, the null

hypothesis is H0 : σ2
a = 0 and the alternative hypothesis H1 : σ2

a > 0. As a result, for

linkage analysis we use the genotype information for each individual. The null and full

models for Marker 13 for Qcwtscore are summarised in Output 13.

From Output 13 we see that the estimates for the variances, from the full model, are 0.342

for the environmental variance, 0.000 for the hereditary genetic variance and 0.134 for the

allelic variance of Marker 13. Since the first is the largest, most of the variation in the

data is due to environmental factors. The hereditary genetic variance is zero, implying

that all the genetic variation for Qcwtscore is caused by Marker 13.

As with segregation analysis, we again see here how the null model variance splits in the

full model, where there is a hereditary variance, an environmental variance, as well as

129

 

 

 

 



Output 13. Qcwtscore (Marker 13)

Null model:

df Log(Likelihood) Variances Means
161 180.9 σ2

e 0.324 (Intercept) -6.218
σ2

g 0.161 Ethnicity :mixed ancestry 0.303
Age 0.016

Mutation 0.830
W92 -0.079
T797 0.238
BSA 1.064

SystBP 0.011
DiastBP -0.002

HR 0.015
Sex: female -0.247

Full model:

df Log(Likelihood) Variances Means
160 178.8 σ2

e 0.342 (Intercept) -6.048
σ2

g 0.000 Ethnicity :mixed ancestry 0.280
σ2

a 0.134 Age 0.017
Mutation 0.848

W92 -0.041
T797 0.223
BSA 1.062

SystBP 0.010
DiastBP -0.003

HR 0.015
Sex: female -0.244

an allelic variance. In this instance, the hereditary variance of the null model is split

between the environmental and allelic variances in the full model, making the remaining

hereditary genetic variance negligible in the full model. This is possible because of the dif-

ferent structures of our families; the families have different sizes and different IBD sharing

between pairs, making the covariances differ between different families. As a result, the

variance does not split into components as cleanly as we expect it to theoretically. Thus,

for Qcwtscore, all of the genetic variation in the data is due to Marker 13, rather than

some of it being due to the marker and some it being due to the remaining hereditary

genetic variance.

Output 14 is generated by QTDT for the likelihood ratio test on the variances:
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Output 14. Testing trait: Qcwtscore (Marker 13)

Allele df(0) -Lnlk(0) df(V) -Lnlk(V) Chisq P-value
All 161 180.9 160 178.8 4.08 0.044 (174 probands)

Output 14 tells us that all the alleles were used in the analysis, which for our data means

both alleles for Marker 13, as it is diallelic. Next it says that the estimates for the

null model were calculated on 161 degrees of freedom, with a log-likelihood of 180.9. The

estimates for the full model were calculated on 160 degrees of freedom with a log-likelihood

of the 178.8. The chi-square value for the difference between the null and full models here

is 4.08 and gives a p-value of 0.044. Lastly, the output shows that the test was based on

174 probands. Since the p-value is significant at the 5% level, we have sufficient evidence

to reject the null hypothesis at this significance level. Hence, there is sufficient evidence

favouring the alternative hypothesis, H1 : σ2
a > 0. Therefore, for this study group, it

appears that the trait Qcwtscore is linked to Marker 13.

Taking again our example pedigree from Figure 17, suppose that their IBD sharing and

kinship coefficients in Table 4 are actually for Marker 13. Thus, using those values, we can

illustrate what the covariance matrix, Ωi, from Section 6.3 looks like for the six members

Dad, Mom, Sue, Jane, Ryan and Ally, for Marker 13. Here we assume that Mom, Jane

and Ally are ‘affected’ with the mutation W92. Substituting in the rounded-off values of

the variance estimates, gives:

0.476 0.000 0.067 0.067 0.000 0.000
0.476 0.067 0.067 0.000 0.067

0.476 0.134 0.000 0.067
0.476 0.000 0.067

0.476 0.067
0.476

 .

By the definition given in previous chapters, and using the estimated variance components

from the analysis on Qcwtscore, the narrow-sense heritability estimate is

h2 =
σ̂2

a

σ̂2
a + σ̂2

g + σ̂2
e

=
0.134

0.134 + 0.0.000 + 0.342
= 0.282.
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We can carry out the same linkage analysis as above on QLVMecho, for Marker 13. Again

the null model here is the same as the corresponding segregation model and the full model

contains the locus-specific variance for Marker 13. The null and full models for QLVMecho

are given in Output 15.

Output 15. QLVMecho (Marker 13)

Null model:

df Log(Likelihood) Variances Means
171 183.7 σ2

e 0.323 (Intercept) -5.288
σ2

g 0.119 Ethnicity :mixed ancestry 0.193
Age 0.020

Mutation 0.533
W92 -0.102
T797 0.103
BSA 1.803

SystBP 0.004
DiastBP -0.006

HR 0.009
Sex: female -0.448

Full model:

df Log(Likelihood) Variances Means
170 182.8 σ2

e 0.335 (Intercept) -5.116
σ2

g 0.000 Ethnicity :mixed ancestry 0.177
σ2

a 0.106 Age 0.020
Mutation 0.547

W92 -0.100
T797 0.066
BSA 1.806

SystBP 0.004
DiastBP -0.006

HR 0.009
Sex: female -0.449

Output 15 shows that the estimates for the variances, from the full model, are 0.335 for

the environmental variance, 0.000 for the hereditary genetic variance and 0.106 for the

additive allelic variance. As with Qcwtscore, for QLVMecho the null model hereditary

variance, σ2
g = 0.119, is split up in the full model, between σ2

e and σ2
a. The full model

hereditary variance is zero, implying that all the genetic variance in the model is due

Marker 13. As with Qcwtscore, a third of the total variance for QLVMecho is due to the
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marker, while the remainder is due to environmental factors.

Output 16 is generated by QTDT for the likelihood ratio test on the variances: It tells us

Output 16. Testing trait: QLVMecho (Marker 13)

Allele df(0) -Lnlk(0) df(V) -Lnlk(V) Chisq P-value
All 171 183.7 170 182.8 1.91 0.167 (184 probands)

that both alleles for Marker 13 were used in the analysis. Next it says that the estimates

for the null model were calculated on 171 degrees of freedom, with a log-likelihood of

183.7. The estimates for the full model were calculated on 170 degrees of freedom with a

log-likelihood of the 182.8. The chi-square value for the difference between the null and

full models here is based on likelihood ratios and the test value is 1.91, which gives a

p-value of 0.167. The test was based on 184 probands. Since the p-value is not significant

at the 5% level, we do not have sufficient evidence to reject the null hypothesis at this

significance level. Therefore, for QLVMecho, for Marker 13, there is not sufficient evidence

in favour of H1 : σ2
a 6= 0. So QLVMecho does not appear to have significant additive allelic

effects from Marker 13, implying that there is no linkage to this marker, despite all the

genetic variance being due to it.

In this chapter, we have used data from investigations into hypertrophic cardiomyopathy

to illustrate the analysis of quantitative, extended pedigree, data. The most important

and interesting concept that we have shown through the systematic anaysis here, is the

splitting of variances into components.

In our segregation model for the two traits, we showed how the null model environmental

(total) variance is split into two components in the full model. We achieved this split

by using the kinship coefficients between family pairs to extract the hereditary genetic

variance from the total variance.

For the linkage model of each trait, we used the trait’s segregation model, with components

σ2
e and σ2

g , as the null model. In the full model, we split the hereditary variance into a
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part which accounts for variation due to the alleles of a specific marker, Marker 13, and

a shared environment part. The IBD sharing between family pairs was used to achieve

this split. As a result, the linkage model contains three variance-components. Thus, in

going from segregation to linkage, we went from a (null) model with one variance, to a

segregation model with two variance-components, to a linkage model with three variance

components.
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8 Discussion

Genetic studies are usually carried out in order to identify the allele(s) responsible for

the trait or disease we are investigating. Linkage analysis is a very important first step

in the search for the causal allele(s) as it allows researchers to localise broad regions of

a chromosome in which these alleles may lie. Linkage analysis is best for localising rela-

tively rare alleles with high penetrances. These are usually single-gene traits that follow

Mendelian inheritance patterns. Complex traits however, usually involve environmental

effects and more than one locus, and are thus more difficult to analyze. Hence the causal

allele(s) are more difficult to localise.

In this study, we systematically built up the variance-components linkage models in a

way that the statistical theory could be understood. In addition, the models we build

up are a general form of many of those used in practice. Historically, different methods

of linkage analysis were developed as the need for them arose, so linkage models were

usually developed for particular sets of data. As a result, the statistical methodology,

particularly for model-free linkage using variance-components models, was not written

up. This is what prompted this dissertation. The models we have described here are

special types of mixed-models and are implemented in QTDT, but no literature exists

which systematically explains the statistical theory underlying the software.

Suppose we are investigating hypertrophic cardiomyopathy– a cardiac muscle disease that

is characterised by the thickening of the left ventricular wall of the heart. Suppose the trait

we are interested in is left ventricular thickness. Consider the variance of left ventricular

thickness: some people in our study group have hearts with normal sized left ventricles

while others have hearts with unusually thick left ventricles. We want to know why this

is so.

Some of the differences may be because ventricular thickness differs between individuals

from different ethnic groups. We can remove the effect of ethnicity (adjust for it) by
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putting it into our statistical model as a fixed effect (covariate). This enables us to model

separate means for each ethnic group. We can then estimate the residual variance, which

will be smaller than the unadjusted variance, since the variance due to the ethnicity is

removed from it. So the parameters we can estimate from this model are the mean, ethnic

effects and variance.

Maybe the family you belong to has an effect on ventricular thickness. We can then

either model family in the same way as ethnicity, that is, as a fixed effect, or we can

model it as a random effect. If we model it as a fixed effect, we will estimate an effect

for each family, which we do not need. We also want to be able to generalise about

other families and specify a parsimonious model. So we model family membership as a

random effect. This saves us degrees of freedom and allows us to split the variance into

a component that represents variation between families (family effect) and a component

that represents variation between individuals inside a family (residual effect). We do

this by splitting each observation into a mean, an ethnic effect, a family effect and a

residual effect. Then, using an appropriate method, we obtain the “best” estimates of

our parameters. The residual variance will again be smaller than before as we now also

remove the family variance from the total variance. By testing the significance of the

between-family variance component, we can determine if we have sufficient evidence that

ethnicity aggregates in families.

Our next question pertains to the between-family variance- is it the result of environment

factors (for example: mom’s cooking is high in fat) or is it hereditary? To investigate

this, we split the total variance into three components: hereditary variance; environmental

between-family variance and residual variance. Specifically, we split the earlier between-

family variance into heritable and non-heritable components. This is not straight-forward

since we can’t separate the two variances; they are confounded. However, we have in-

formation about the covariances between individuals and we can use this. For ventricle

thickness, if the covariance between close relatives, siblings say, is higher than the covari-

ance between cousins, and that covariance is larger than the covariance between more
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distant relatives, then we have evidence of heritability. We can use this to split the heri-

table and non-heritable variances by assuming that the trait covariance between any pair

of individuals is their kinship coefficient times the heritable/hereditary genetic variance.

In this way, we can use the covariances of all available pairs to estimate the components

of the between-family variance. To determine if ventricular thickness is hereditary, we

can test the hereditary variance. If there is evidence of variation due to heritability, then

we have detected the segregation of ventricular thickness in families.

After this, we want to know where on the genome the alleles that are causing ventricular

thickness lie. We genotype the individuals in our study group at a series of linked markers

in a candidate region, or even more commonly, genotype individuals at a series of markers

all across the genome. Based on their genotypes at a particular marker, we calculate IBD

probabilities for each pair of individuals. This is the probability of them sharing 0,1 or

2 alleles from common ancestors. We now want to split our hereditary variance into a

general hereditary component and a component which explains the variation due to the

specific locus. Using a similar argument to the one for segregation analysis, we again

need the covariance between pairs of individuals to estimate this locus-specific additive

allelic variance component. We specify the models so that, for the covariance of each pair

of individuals, the expected proportion of alleles shared IBD (calculated from the IBD

distribution for that pair) is the coefficient of the locus-specific variance. The idea now

is that the more alleles a pair shares IBD, the stronger the correlation should be. Thus,

the expected IBD coefficients will extract the portion of variance which is explained by

the alleles shared at that locus. This variance can be estimated and tested to determine

if the alleles at that locus contribute significantly to the variance of ventricular thickness.

If it does contribute significantly, then we have detected linkage of ventricular thickness

to that locus.

For single-gene disorders where the effects are larger, and due to crossovers, linkage analy-

sis can identify smaller regions of interest. However, for complex diseases, linkage analysis

can only identify large regions on a chromosome. These regions contain hundreds of loci,
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many of which will be potential candidates for the trait under investigation. Thus it can

be shown that linkage to a trait can be detected for markers over a relatively large area

of the genome. This means that recombination must have occurred here, so linkage can

be detected even if the true locus is not close to the marker. Since we are looking for a

causal locus, we need to look at progressively narrower regions of the chromosome. As

recombination is unlikely to occur here, linkage will no longer be informative. This is why

other methods, functional as well as statistical, have to be used to localise the specific

allele(s) affecting ventricular thickness. Specifically, tests of allelic association are used.

Often, a family-based association analysis for a specific trait is carried out on regions of

the genome which are first identified through linkage analysis.
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