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文摘要 

随着市场的全球化和竞争的激烈化，供应链也随之变得越来越复杂。在如此的 

市场环境下，可行而又有效的供应链管理对一个公司的成败是至关重要的。而 

在供应链管理中，库存问题是一个及其重要的分支。库存费用往往是巨大的。 

本篇论文由三篇文章组成，分别考虑了三个相关的随机库存管理问题。 

第一篇文章考虑了一个动态非平稳的随机库存问题。其补货的形式是以一种批 

量补货，例如用卡车，或者容器。我们考虑两种不同的情况。第一种，价格是 

外在的。第二种，价格是由公司决定的。在第一种情况，如果订货成本没有准 

备成本的话，我们可以证明无论是单级的，还是多级的供应链，其最优的订货 

策略是（r，Q)策略。如果存在准备成本的话，我们证明对于单级的供应链来 

讲，基于批量的（S，S)策略是最优的。在第二种情况下，在假设需求关于价 

格的函数是可加形式下，我们证明（r，Q, P)策略是最优的，在这种策略下， 

补货策略服从（r，Q)策略，而价格由库存水平决定。 

第二篇文章研究了一个多期随机库存问题，其准备成本是关于订货量的一个分 

段函数。具体的说，如果订货量小于C,那么准备成本是K1�否则的话，准 

备成本是K2�这里我们假设K2>=K:1，这个费用结构在一些工业和生产机构有 

很多应用。我们首先介绍了一种新的函数类，叫做CKK1，K2)凸。在假设条 

件K1<=K2<=2K1下，我们部分的刻画了最优订货策略。而在更加松独的条件 

K1<=K2下，我们通过另外一种新的函数叫强K凸，刻画了其最优订货策略的 

结构。通过这些分析，我们给出了一个有效的启发式算法。数值试验表明这种 

启发式算法对于解决这类问题非常有效。 

第三篇文章研究的是一个多期的生产库存问题，其下一期的准备成本将被这期 

的订货量影响。具体的说，如果这期的订货量超过一个临界值，那么下期的系 

统将处于“暖”状态。而此时，无论生产与否都不会产生任何准备成本。相 

反，如果这期的订货量小于这个临界值，那么下期的系统将处于“冷”状态。 

这时，任何生产都会产生一个准备成本。我们对这个系统建立了一个动态规 

划。在假设需求服从Polya或者均勾分布的前提下，我们部分地刻画了最优订 

货策略。基于这些分析，我们给出了一个启发式算法。数值试验表明这种启发 

式算法的效率和效果都非常的不错。 
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With increased globalization and competition in the current market, supply chain 

lias become longer and more complicated than ever before. An effective and ef-

ficient supply chain is crucial and essential to a successful firm. In a supply 

chain, inventories are a very important component as the investment in invento-

ries is enormous. This dissertation consists of three essays related to stochastic 

inventory management. 

The first essay considers a dynamic non-stationary inventory problem in which 

replenishment is made in fixed lot sizes (e.g., in full truckloads or full containers). 

We consider two separate cases: one with exogenous pricing and the other with 

endogenous pricing. In the first case (exogenous pricing), we show that when 

the ordering cost contains only a variable component, the reorder-point lot-size 

policy or (r, Q) policy is optimal for both single-stage and multi-echelon inventory 

systems. In the presence of a fixed cost, we establish the optimality of batch-



based (s, S) policies for the single-stage inventory system. In the second case 

(endogenous pricing), we show that when the demand function has the additive 

form and there is only a variable ordering cost, the (r, Q) list-price policy is 

optimal for the single-stage system, where inventory replenishment follows an 

(r, Q) policy and the optimal price in each period depends on the order-up-to 

level. 

The second essay analyzes a periodic-review, stochastic, inventory-control sys-

tem in which the fixed order-cost is a step function of the order size. In particular, 

if the order size is within a specified limit, C, then the setup cost is Ki] otherwise 

it is K2, where K2 > Ki. This cost structure is motivated from some industrial 

applications and transportation/production contracts used in practice. Under the 

condition that Ki < K2 < 2Ki, we introduce a new concept called C — {Ki,K2)-

convexity, which enables us to partially characterize the structure of an optimal 

ordering policy. For the general condition Ki < K2� the analysis is facilitated 

with a different notion called strong iC-convexity. Based on this analysis, we 

provide a partial characterization of the optimal policy and construct an easy-to-

implement heuristic method that has near-optimal performance in random test 

instances. Our study extends or redevelops (with different techniques) several 

existing results in the literature. 

The third essay studies a firm's periodic-review production/inventory order-

ing decisions when the next period's setup cost depends on the quantity pro-

duced/ordered in the current period. In particular, if the current period's pro-



duction/order quantity exceeds a specified threshold value, the system starts the 

next period in a "warm" state and no fixed setup cost is incurred; otherwise 

the state is considered "cold" and a positive setup cost is required for produc-

tion/ordering. We develop a dynamic programming formulation of the problem 

and provide a partial characterization of the optimal policy under the assumption 

that the demands follow a Polya or Uniform distribution. We use the structural 

results to develop fairly simple heuristic policies, which perform highly effectively 

in our computational experiments. 

Ill 



Acknowledgement 

I would like to express my sincere gratitude to my advisor, Professor Youhua 

Chen, who serves not only as my committee chair, but also as a mentor and 

wonderful teacher in my life. His patient guidance, constant enthusiasm, unwa-

vering support and encouragement throughout my doctoral studies are extremely 

valuable to me and deeply appreciated. I would also like to thank him for his 

incredible effort and willingness to help me at any time and anywhere. I believe 

I have benefited a lot from his experience and expertise. 

I also thank Professors Chung-Yee Lee, Houmin Yan, and Xiang Zhou for being 

my committee members. Their personal and academic advices benefit me a lot. 

I am also thankful to Professors Youyi Feng, Jian Yang, and Ozgun Caliskan-

Demirag, with whom I had opportunity to get involved in some joint research, 

which is fruitful and very enjoyable. 

I thank my master super visor； Professor Houcai Shen. He inspired my ini-

tial interests in O. R. and brought me into the research area of supply chain 

management. 

I would like to thank my family for their unconditional love, great support and 

IV 



encouragement. Without their support, I will not be able to achieve anything. 

My wife LiHua Gao always has confidence in me and always stay with me to 

overcome whatever difficulty I face in my daily life during my Ph.D. study. 

I have great respect for the teachers at my schools. In addition to being good 

instructors, they were dedicated and caring. I have enjoyed all the course work 

at CUHK, thank you to the excellent instructions of the faculty. 

I would like to extend my thanks to my friends who have shared my ups and 

downs. Their encouragement and helps have been very important. In particular, 

I want to thank Zhiyuan Chen, Hao Ding, Binyang Li, Yanchu Liu, Meng Lu, 

Lijun Ma, Xiangwei Wan, Haifeng Wang, Weili Xue, Di Yang, and Quan Yuan. 



This work is dedicated to. 

VI 



Abstract i 

Acknowledgement iv 

1 Inventory System with Batch Ordering 1 

1.1 Introduction 1 

1.1.1 Background and Main Contributions 1 

1.1.2 Literature Review 5 

1.2 Single-stage Inventory Problem 10 

1.2.1 Overview of Main Results in this Section 12 

1.2.2 Q-Jump-Convexity 13 

1.2.3 Zero Fixed Cost 19 

1.2.4 Positive Fixed Costs 23 

1.3 Multi-stage Inventory Problem 26 

1.4 Single-stage Inventory-Pricing Problem 35 

1.4.1 Model and Results 35 

1.4.2 Numerical Study 40 

viii 



1.5 Concluding Remarks 45 

1.6 Appendix 48 

1.6.1 Proofs 48 

1.6.2 Markov-Modulated Demand 52 

2 Inventory System with Quantity-Dependent Setup Cost 55 

2.1 Introduction 55 

2.2 The Model 61 

2.3 The Case with Condition Ki < K2 < 2Ki 62 

2.3.1 Preliminary Results: i<'2)-Convexity 63 

2.3.2 Analysis of the Optimal Policy 66 

2.4 The Case with Condition Ki < K2 < 2Ki and Heuristic Policy . . 73 

2.4.1 Preliminary Results: Strong i^-Convexity 73 

2.4.2 Analysis of the Optimal Policy 74 

2.4.3 A Heuristic Policy 77 

2.5 A Special Case of the General Setting: Multiple Identical Fixed Costs 80 

2.6 Conclusion 86 

2.7 Appendix 88 

3 Inventory System with Warm/Cold States 102 

3.1 Introduction and Literature Review 102 

3.2 The Model and Preliminaries 108 

3.3 Partial Characterization of the Optimal Policy 119 

3.4 Heuristic Policies and Numerical Results 128 

viii 



3.4.1 Heuristic Policies 129 

3.4.2 Numerical Results 133 

3.5 Concluding Remarks 138 

3.6 Appendix 141 

3.6.1 Numerical Results 141 

3.6.2 Extension to the Infinite Horizon Case 141 

Bibliography 145 

IX 



List of Figures 

.1 Illustration of the (s, S)q policy 13 

,2 Geometric examples of Q-jump-convex function with Q = 3 . . . . 17 

.3 Optimal List Price as a Function of Initial Inventory Level 41 

.4 Optimal Reorder Levels as a Function of Batch Size 42 

.5 Total Optimal Profits as a Function of Batch Size 43 

.6 Fixed Pricing Strategy vs. Dynamic Pricing Strategy. 44 

,7 One-off Change Pricing Strategy vs. Dynamic Pricing Strategy. . 45 

2.1 Geometric Illustration of a C-{Ki, K2)-coirvex Function 65 

2.2 Illustration of Critical Points in Definition 3 68 

2.3 Optimal Policy for the Case where Ki < K2 < 2Ki 70 

2.4 Optimal Policy given by Chao and Zipkin (2008) 77 

3.1 Optimal Policy for Case (A4) 122 

3.2 Illustration of functions gt,i, i — 1,2 127 

3.3 Relative Errors for MO Policy. 138 

3.4 Relative Errors for GBS Policy. 139 



1.1 Optimal Policy 24 

1.2 Parameter Values for Base Scenario 41 

2.1 Numerical Results: Poisson Distribution 100 

2.2 Numerical Results: Binomial Distribution 101 

3.1 Optimal Policy for Scenario I (Cold State) 123 

3.2 Optimal Policy for Scenario II (Warm State) 124 

3.3 Heuristic Policy for Scenario I (Cold State) 130 

3.4 Heuristic Policy for Scenario II (Warm State) 131 

3.5 Maximum Relative Errors for the MO and the GBS Policies . . . 137 

3.6 Maximum Relative Errors for the OB Policy: Uniform Demand . 142 

3.7 Maximum Relative Errors for the OB Policy: Poisson Demand . 143 

XI 



Chapter 

Inventory System with Batch 

Ordering 

1.1 Int ro duct ion 

1.1.1 Background and Main Contributions 

Materials often flow in fixed batch sizes in supply chains. For example, pack-

aged consumer goods typically arrive at stores in casepacks (Ketzenberg et al, 

2000), finished goods may be transported in full containers from manufacturers 

to distributors, and work-in-process (WIP) is usually processed in convenient 

lot sizes between production stages. Furthermore, many companies experience 

non-stationary demand because of seasonality, trends, and short life cycles. For 

example, electronic products mostly have life cycles in units of months, with 6- to 

12-month life cycles being common (Graves and Willems, 2008). In addition, the 
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prices of raw materials such as metals, oil, and electricity vary significantly over 

time. All of these situations require a non-stationary model with batch ordering. 

Facilitated by advanced information technologies, many industries beyond the 

airlines and hotels have been applying dynamic pricing strategies in the last 

decade. Dynamic pricing, where price adjusts over time to match supply with 

demand, has long been adopted in retail industries. For instance, Market Watch 

(Cheng, 2009) recently reported: 

"At the Banana Republic store in New York's World Financial Center, a 

white pleated skirt was on sale for $39.99, marked down from $69. The same 

skirt was discounted to $33.99 at Banana Republic's SoHo store) just two 

miles away. 

“The $6.00 difference wasn't a mistake. It's part of Banana Republicpar-

ent Gap Inc. 's very deliberate move to tailor prices to fit local demand and 

inventory - right down to the individual store level 

"The payoff: Gap's merchandise margins have either matched or topped 

year-ago levels in each of the past five months through May...” 

Market Watch further pointed out that other retailers, including Wal-Mart 

Stores Inc., Home Depot, Sears, and Macy's Inc., had taken on or expanded 

some forms of store-based markdowns; i.e., rather than marking down by entire 

market, they used a markdown strategy that depends on a store inventory and 

its local market demand. 
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In response to these developments, there has emerged a growing body of aca-

demic research on integrated pricing and inventory decisions. This is because 

a basic yet critical success element of marketing and operations is the ability 

to match supply with demand. As Federgruen and Heching (1999) have shown, 

an optimal integrated price and inventory control policy can result in significant 

profit improvements by 6.5% for a specialty retailer as compared to a sequential 

procedure in which a price trajectory is determined first (by marketing/sales), 

followed by an inventory replenishment policy to optimally match the resulting 

sequence of demand distributions. Therefore, integrated pricing and inventory 

control is not only useful, but is essential. To date, however, the literature on 

pricing-inventory control has confined itself to models with arbitrary ordering 

sizes (i.e., lot-for-lot sizes), whereas in supply chains, materials often flow in fixed 

batch sizes. Extending some of the existing models of pricing-inventory control 

to take into account batch ordering is one of the primary goals of this paper. 

As batch ordering is pervasive in the retail, distribution, industrial, and service 

environments, it is no surprise that numerous papers dealing with batch-ordering 

inventory systems have appeared in the literature. In a single-stage, periodic-

review setting, Veinott (1965) shows the optimal inventory policy to be of the 

(r, Q) type, or the so-called reorder-point lot-size policy: when the inventory level 

falls below the reorder point r, it is increased to the range between the reorder 

point and the maximum level r + Q by placing an order of a single batch (Q) 

or multiple batches. His optimality result has been formally established in a 
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stationary setting (i.e., the cost and demand parameters are identical over time, 

and the demand distributions over time are i.i.d.). For the non-stationary setting, 

Veinott has provided a set of sufficient conditions under which the same policy 

structure is optimal. These conditions are, however, difficult to verify (or can 

be verified only numerically). Moreover, Veinott's model includes only variable 

ordering costs. Therefore, the first two objectives of this chapter are (1) to identify 

easily verifiable conditions for the optimality of the reorder-point lot-size policy 

and (2) to analyze the structure of the optimal policy in the presence of fixed 

ordering costs. Both objectives will be accomplished in a non-stationary setting. 

Chen (2000) further extends Veinott's analysis to multi-echelon systems with 

batch ordering and establishes the optimality of the echelon stock-based reorder-

point lot-size ordering policy under the long-run average criterion. On the basis 

of the equivalence between serial and assembly systems under certain conditions 

(Rosling, 1989), his results also prevail for an assembly system with batch order-

ing. Chen's work also extends the model proposed by Clark and Scarf (1960), 

which assumes a base quantity of one for every stage. However, Chen (2000) 

points out in his concluding remarks that an extension of his results to a non-

stationary setting constitutes an open problem. In this chapter, we attempt to 

solve this problem, which is our third objective. 

To achieve the three aforementioned objectives, we introduce a new class of 

convex functions, which we coin as Q-jump-convexity, strong Q-]ump-convexity, 

and Q-j ump- i^- convexity. These functions have appealing properties that enable 
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us to make several contributions to the existing literature. In particular, this 

chapter extends both Veinott (1965) and Chen (2000). First, by virtue of our 

new class of convex functions, we are able to characterize the structure of the 

objective function and establish the optimality of the (r, Q) policy for a single-

stage, periodic-review, non-stationary inventory system with batch ordering. The 

assumptions are standard: linear variable ordering costs and convex holding-

shortage costs. Our analysis is then extended to multi-echelon settings parallel to 

those of Chen (2000), but in a non-stationary setting. Second, we also characterize 

the optimal policy structure for a single-stage, batch-ordering, non-stationary 

inventory system with fixed ordering costs. The optimal policy structure is now 

of the batch-based (s, S) type. Finally, to demonstrate the robustness of our 

approach, we further extend our analysis of the single-stage problem in which 

prices are exogenous to the case in which prices are endogenous. More specifically, 

we consider a periodic pricing-inventory control problem with batch ordering, but 

no fixed order costs. Demand in each period depends on the price in an additive 

form (see Section 4 for more details). We demonstrate that the (r, Q) ordering 

policy remains optimal for inventory replenishment and that the list price is 

optimal for pricing decisions. This result also constitutes an important addition 

to the existing literature. 

1.1.2 Literature Review 

In this subsection, we briefly survey a few of the most related models. Four 

bodies of literature are related: inventory models emphasizing non-stationaries, 
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batch ordering problems, inventory-pricing models, and generalized notions of 

convexity. 

Inventory models emphasizing non-stationaries. The problem of peri-

odic inventory replenishment with stochastic demand is pervasive in the retail, 

industrial, distribution, and service environments. The majority of models deal-

ing with inventory management issues are thus discrete-time based. Moreover, 

underlying many of these models is a basic setting that incorporates stochastic 

demand in a non-stationary environment. These non-stationaries arise from a 

variety of different causes: for example, (i) changes in economic conditions (Kar-

lin, 1960b; Song and Zipkin, 1993; Sethi and Cheng, 1997; Gavirneni, 2004); 

(ii) seasonal effects (Karlin, 1960a; Zipkin, 1989); (iii) Bayesian updates of de-

mand information (Lovejoy, 1990); and (iv) short product life cycles (Graves and 

Willems, 2008; Neale and Willems, 2009). 

The majority of work on stochastic, non-stationary inventory models focuses 

on characterizing the form of the optimal policy, for example, in addition to the 

above referenced papers, Scarf (1960) with setup costs and Kapuscinski and Tayur 

(1998) with a capacity constraint. These two papers are based on a single-stage 

setting. Relative to the non-stationary, single-stage literature, there is much less 

work for the optimality results in multi-echelon non-stationary models. Chen and 

Song (2001) show that an echelon base-stock policy with state-dependent order-

up-to levels is optimal for a serial supply chain with Markov-modulated demand. 

Dong and Lee (2003) demonstrate that the structure of Clark and Scarf's (1960) 
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optimal stocking policy holds under time-correlated demand processes using a 

Martingale model of forecast evolution. Because the time-varying parameters 

for these optimal policies are difficult to compute, a number of papers focus on 

heuristic algorithms to calculate them: for example, Morton and Pentico (1995) 

in a single-stage setting, and Graves and Willems (2008), Neale and Willems 

(2009), and Ettl et al. (2000) for multi-echelon systems. However, none of the 

work has addressed the optimality issue with batch ordering in a non-stationary 

environment. 

Batch-ordering models. Batch-ordering models, which have been exten-

sively investigated in the operations management literature, can be categorized 

based on a primary characteristic: single-stage or multi-echelon. Here, we survey 

only the most relevant papers that study the optimal policy structures. For single-

stage models, as referred earlier, Veinott (1965) demonstrates the optimality of 

(r, Q) policies for both stationary and non-stationary settings. To the best of our 

knowledge, there is only one paper by Alp, Huh and Tan (2009) that analyzes the 

optimal policies under the conditions of batch ordering and stochastic demand 

in a single-stage system with fixed order costs. More specially, they study the 

features of batch ordering, where a separate fixed cost is associated with each 

batch order. They partially characterize the optimal policy and propose two ef-

fective heuristic policies. Different from our model, however, they do not restrict 

the order quantities to integer multiples of the batch size, instead allowing the 

possibility of partial batches. 
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In addition to Chen (2000), who extends Veinott's stationary model to the 

multiechelon model with batch-ordering, Chao and Zhou (2009) study a serial 

system with batch ordering and fixed replenishment intervals (each of which may 

contain multiple review periods) and develop the structural properties of the 

system. Their paper generalizes Chen's (2000) work. 

In general, however, the reorder-point, lot-size ordering policy is not optimal 

for many complex multi-echelon systems. Nevertheless, as it is easy to implement, 

many evaluation bounds and heuristics have been proposed (see De Bodt and 

Graves, 1985; Axsater and Rosling, 1993; Chen and Zheng, 1994, 1998; Cachon, 

2001; and Shang and Zhou, 2009). For references on the computation of optimal 

parameters within the class of the full batch-ordering policy, the reader is referred 

to Zheng and Chen (1992), Federgruen and Zheng (1992), and Gallege (1998). 

Inventory-pricing problem. Federgruen and Heching (1999) establish the 

optimality of the base-stock list-price policy, when the ordering cost is propor-

tional to the order size and the batch-ordering requirement is absent. The base-

stock list-price policy is characterized by the base-stock level for inventory replen-

ishment and the respective list-price for pricing. Our inventory-pricing model is 

motivated in part by Federgruen and Heching. We extend their work by allowing 

batch ordering and demonstrate the (r, Q) list-price policy to be optimal for the 

additive demand model (note that they consider a more general demand model). 

The past few years have witnessed significant progress in this area. For models 

with both variable and fixed costs, see Chen and Simchi-Levi (2004a&b), Huh and 
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Janakiraman (2008), Chen et al. (2006), and Song et al. (2009). For relatively 

earlier surveys, see Elmaghraby and Keskinocak (2003), Yano and Gilbert (2003), 

and Chan et al. (2004). To the best of our knowledge, however, no literature in 

this area has yet addressed the batch-ordering issue. 

Generalized notion of convexity. The last stream of the literature we 

consider is generalized notions of convexity analysis. Since Scarf's (1960) K-

convexity, many variations of generalized convexity have been proposed in inven-

tory theory, based on the structure of the models, including quasi-K-convexity 

by Porteus (1971), symmetric-K-convexity by Chen and Simchi-Levi (2004a), 

{Ki, K2)-coiwexitY by Ye and Duenyas (2007) and Semple (2007), and CK-

convexity by Gallego and Scheller-Wolf (1998). Our notion of Q-jump convexity 

is another generalization of convexity and Q-jump iC-convexity is a variation of 

iiT-convexity. 

In summary, this chapter strives to fill the following gaps that exists in the 

inventory literature: batch ordering in a non-stationary setting, batch ordering 

with fixed ordering costs, and batch ordering with pricing decisions. In terms 

of models, our work is most closely related to that of Veinott (1965) for the 

single-stage model, Chen (2000) for the multi-echelon setting, and Federgruen 

and Heching (1999) for the inventory-pricing problem. Our research is intended 

to complement theirs. In terms of analytical tools, we propose a set of generalized 

convex functions, that are new to the literature. 
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1.2 Single-stage Inventory Problem 

In this subsection, we first specify our basic setting, the single-stage model, then 

introduce the concept of Q-jump-convexity, and finally apply it to structural 

analysis of the model. 

We consider a dynamic non-stationary inventory model in which demands in 

different periods are independent random variables. At the beginning of each 

period, the system is reviewed, and then an order may then be placed for any 

nonnegative integral multiple of Q, a given positive number. Finally, demand 

arrives, and any unsatisfied demand is fully backordered. We assume without 

loss of generality that the leadtime is zero, because our analysis can easily be 

generalized to non-zero leadtimes by the notion of inventory position. 

Three types of costs are assessed: ordering, holding, and penalty costs. Let q 

be the unit ordering cost and ht{x) the holding/penalty cost incurred at the end 

of period t with ending inventory level x. We assume that ht{x) is convex and 

liin|3;|_4oo ht{x) = DO. Let Lt{y) = E{ht{y — A)}，which represents the expected 

holding/penalty cost in terms of the order-up-to level y at the beginning of period 

t. Note that all of the costs may vary over periods, because we consider a non-

stationary system. The costs in future periods are discounted with discount factor 

a < 1. 
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For period t = 1,2, ...,T, let 

Xt = the inventory level at the beginning of period t before an order is placed; 

Ut = the inventory level (or position) after any order is placed in period t, but 

before demand is realized; and 

Dt = demand in period t. 

Throughout this chapter, we define Z as an integer set, as a nonnegative 

integer set, and E as a real set. 

Here, we consider the discrete version in which Dt, xt and yt are integer-valued, 

i.e., Dt 6 Z+ and xt, yt G Z. 

For any given cct, the decision space can be characterized by 

A{xt) = {yt\yt = Xt-\- mQ, for m e Z+}. 

Let vt{xt) be the optimal expected discounted cost from period t until the end 

of the planning horizon T, when the starting inventory level in period t is Xt, 

and VT+I (X) = 0 for all a: 6 Z. A dynamic program for the above problem is as 

follows. For each t — 1,2, ...,T, we have 

vt(xt) = -ctxt + inf {S{yt - Xt) • KJt(yt)}, (1.1) 
ytEAixt) 

where K is the fixed ordering cost, 5{z) = 1 if 2; > 0 and = 0 otherwise, and 

Jtivt) = Ltivt) + ctyt + aE[vt+i{yt — Dt). 

In what is to follow, we first provide an overview of the optimality results and then 

give the definition of Q~] ump-convexity. Finally, we consider the cases without 

and with a fixed cost (i.e., K = 0 and K > 0), respectively. 
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1.2.1 Overview of Main Results in this Section 

First, we divide Z into Q different non-overlapping groups (or sets) as follows. Let 

[j]Q = {z£ Z\z = mQ + j，m = 0，±1，±2’. • • }，for j = 1,2, ••• ,Q. (Note that 

[0]q can be treated as [Q]Q-) [ j J q represents the set of integers with remainder j 

when they are divided by Q. 

Second, we define a batch-based (s, S) policy, denoted by (s, S)q policy. Let 

Xt e [jjg be the initial inventory level (before ordering) in period t, j = 1,2,…’ Q, 

Definition 1.1. (Batch-based (s, S) Policy) An inventory policy is called a batch-

based {s, S) policy or (s, S)q policy, where s = ..., s*^), S = …，S^), 

and both s^ and S^ belong to j = 1,2, • • • , Q, if inventory replenishment 

follows an (s^^ S^) policy, i.e., if Xt < s^, then order up-to S^, and otherwise, 

order nothing. 

As indicated by Figure 1.1, the batch-based (s, S) policy implies that for any 

group [j]Q，j = 1，2，... , Q, an ordinary (s-̂ , S^) policy is optimal. When ŝ  = Ŝ ^ 

this policy will be called batch-based base-stock policy, denoted by (S)q, where 

S = {5^, . . , ， C l e a r l y , the (r, Q) policy (Veinott 1965) is a special case of 

(S)Q policy. And, an (S)q policy is the (r, Q) policy if maxj{S^} — minj{S'- '}= 

Q — 1. Then, r = mmj{S^. 

In the following, we will show that in the absence of fixed costs, the opti-

mal policy is of the (r, Q) type for a periodic-review, non-stationary, single-stage 

model. We prove this result by two steps: first prove that the batch-based base-

stock or (S)Q policy is optimal and then show that m a x j { } — mirij{S^} = Q — 1, 
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XT E [I]Q-

xt e [2]Q. 

XT^ [Q]Q 
.Q 

a; e [1]Q 

a； 6 [2]Q 

X e [Q]Q 

Figure 1,1: Illustration of the (s, S)q policy 

i.e., the (r, Q) policy is optimal. In the presence of fixed costs, we demonstrate 

that the optimal policy no longer has a simple form, however, a batch-based (s, S) 

or (s, S)q policy is optimal. 

All the structural analysis has been facilitated by the notion of (Q-jump con-

vexity and its variants. To the best of the authors' knowledge, this concept, 

which is formally introduced in the next subsection, has never been reported in 

the literature. 

1.2.2 Q-Jump-Convexity 

To begin with, recall the definition of ordinary convexity. As we consider discrete-

valued demand and inventories, all functions are defined in a discrete manner. 

Definition 1.2. A function f{x) : Z R is convex if for any zi e Z, Z2 £ 

and zi > Z2, 

This definition is equivalent to the following two statements: A function f{x): 



Q-Jump-Convexity 

For Model (1.1) with K = 0 and Q = 1, ordinary convexity is sufficient for 

structural analysis. When Q > 1, in contrast, it is no longer sufficient. 

Definition 1.3. (Q-Jump-Convexity) A function f{x) : Z E Z5 Q-jump-convex 

if for any y eZ, 

f{y + Q)-m>f{y)-f{y-Q)-

Equivalently, a function f(x) : Z —> M is Q-jump-convex if and only if for any 

y e 之 e Z+, and b e Z+/ {0 } ’ f{y + zQ) > f{y) + — f(y — 6Q)}. 

To understand this definition in a more intuitive way, refer to Figure 1.2, which 

illustrates three Q-jump-convex functions with Q = 3, where for any x € Z, 

9iix)= 

0.5 

3 + X 

if ^^ [1]3’ 

i f ^ ^ [2]3， 

if xe [3]3. 

ff2�=x^/6 for any x e Z. 
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Z —̂  E is convex if and only if for any y G Z， 

f(y + i)-~f{y)>m-f{y~i). 

or if and only if for any y gZ^ z G Z+，and b € Z+/{0}， 

1
/
 f{y 
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2.6 if 5 c e [ 1 ] 3 

93(x)= < 3.9 i f � c € [2]3 

4.2 if 3 c G [3]3 

Clearly, Q-j ump-convexity is an extension of convexity, and it is reduced to con-

vexity when (5 = 1. We summarize the properties of jump-convex functions as 

follows. 

Lemma 1.1. (Properties of Q-Jump-Convexity) 

(a) A convex function is also a Q-jump-convex function. 

(b) If f{x) is Q-jump-convex and a is a positive scalar, then so is af(x). 

(c) The sum of any two Q-jump-convex functions is also Q-jump-convex. 

(d) If v{x) is Q-jump-convex and w is a random variable that takes only non-

negative integer values, then G{y) = E{v{y — lu)} is also Q-jump-convex. 

(e) f(x) is Q-jump-convex if and only if for any given integer a, g°'(y) = f{a + 

yQ) is convex. 

Proof. Parts (a), (b), and (c) follow directly from the definition of Q-jump-

convexity. 

Part (d). Without loss of generality, suppose that the distribution of w can 

be characterized by P{w = i) = Xi for 2 = 0,1,2, where W is an upper 

bound and X)二o Xi = 1- Then, G{y) — X ]二 — Next, we prove that G{y) 

satisfies G{y + zQ) > G{y) + f{G(?/) — G{y — bQ)} for smy y e Z, z € Z+, and 
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b e Z+/ {0 } . Note that for any i = 0 , 1 , 2 , W , \v(p + zQ - i) > - i) + 

^{Xiv{y — i)~ ^iv{y — bQ — i)}, due to the Q-jump-convexity of v{x). Combing 

these W inequalities, we can obtain the desired result. 

Part (e). We first prove the necessity. By the Q-jiimp-convexity of f{x), for 

any y,aGZ, z e Z+，and b e Z+/ {0 } , we have 

f(a 十(y + 之)Q) > f{a + yQ) + ^{f{a + yQ) — f(a + (y - b)Q)}, 

which implies that + z) > g辽(y) + l{g%y) — g%y 一 b)}. 

For the sufficiency, we need only prove that for any x e z E Z*̂ , and 

b G Z+/ {0 } , f{x + zQ) > fix) + l{f{x) — fix 一 hQ)}. By the convexity of 

we have for any y e z e Z+, and b 6 Z+/{0}， 

9%y + 9'{y) +1 側 — — &)}, 

which implies that 

f(a + z)Q) > f(a + yQ) + ^{/(a + yQ) - f{a + (y - b)Q)}. 

Then, the result holds by letting x = a-h yQ. • 

Part (e) provides another way of interpreting Q-jump-convexity by connecting 

it with convexity. More specifically, based on a Q-jump-convex function f{x), we 

can construct a new function g°'{y) by picking up all those points whose distances 

from point a are integral multiples of Q. Then, f{x) is Q-jump-convex if and 

only if for any integer a, g"'(y) is convex. 
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f(x) 

1 1 1 1"" “ ““ ‘“ 1 
： 6 • ； :gl i - g ? / 

t : 

样麵 \ � 
i 5 

X 
T 1 1 丨 y 
J > » 1 / t 样麵 \ � 

i 5 

X 
T 1 1 丨 y 
J > » 1 / _ _ 

N / � 
, i / V ’ \ 

— 

/ k \ \ F 1 ^^ 
； 1 ( t i l 

-6 -5 -4 -3丨-2丨-1丨 0 1 1 t 1 2! 3 ; 4| 5 1 6 t i l l 7 8 

Figure 1.2: Geometric examples of Q-jump-convex function with <3 = 3 

Strong Q-Jump- Convexity 

We will see that Q-}ump-convexity can not guarantee the optimality of (r, Q) 

policy. Hence, we need a stronger kind of convexity as follows. 

Definition 1,4. (Strong Q-Jump- Convexity) A function f{x) : Z —> M strong 

Q-jump-convex if for any zi eZ, Z2 € and Zi > Z2, 

f(Zl+Q)-M)>f{z2 + Q)~f{z2). 

Lemma 1.2 (a) below indicates that a convex function is also strong Q-jump-

convex, and that a strong Q-jump-convex function is also Q-jump-convex. How-

ever, the reverse does not hold. Figure 1.2 gives an example to show that a 

strong Q-jump-convex function may not be convex and that a Q-jump-convex 

function may not be strong Q-jump-convex. In Figure 1.2, for any x E Z, 

g3(x -h Q) — = 0, which implies that function is strong Q-jump-

convex. Clearly, gz{x) is not convex. However, although gi{x) is Q-jump-

convex, it is not strong Q-jump-convex, because 0.5 = (—6 + — 5'i(—6) > 
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+ Q) — 5) = 0. In conclusion, only g) is convex, and both g) and gz 

are strong Q-jump-convex, whereas all three functions are Q-jump-convex. 

We summarize the properties of strong Q-jump-convex functions as follows. 

Lemma 1.2. (Properties of Strong Q- Jump-Convexity) 

(a) A convex function is also strong Q-jump-convex, and a strong Q-jump-

convex function is also Q-jump-convex. 

(b) If f{x) is strong Q-jump-convex and a is a positive scalar, then so is af{x). 

(c) The sum of any two strong Q-jump-convex functions is also strong Q-jump-

convex. 

(d) If v(x) is strong Q-jump-convex and w is a random variable that takes only 

nonnegative integer values, then G{y) = E{v{y~''w)} is also strong Q-jump-

convex. 

Proof. The proof is similar to that of Lemma 1.1，and is thus omitted. • 

Q-Jump-K-Convexity 

The two types of Q-jump-convexity thus far introduced can be used to analyze 

Model (1.1) with iiT = 0. To deal with the model with K > 0, however, we need 

to extend Q-jump-convexity to Q-jump-/f-convexity. 

Definition 1.5. (Q-Jump-K-Convexity) A function f{x) : Z M. is Q-jump-

K-convex if for any x eZ, z E and b G Z+ / {0 } , 

f{x + zQ) + K> f{x) + ^[f{x) - fix 一 bQ)]. 
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Clearly, Q-jump-iT-convexity is an extension of iiT-convexity (Scarf, 1960). 

Lemma 1.3. (Properties of Q-Jump-K-Convexity) 

(a) A convex or Q-jump-convex function is also Q-jump-0-convex. Moreover, a 

K-convex function is Q-jump-K-convex. 

(b) If f(x) is Q-jump-K-convex and a is a positive scalar, then af{x) is Q-

jump-aK-convex; moreover, if f{x) is Q-jump-Ki -convex, then it is also 

Q-jump~K2-convex for K2 > Ki > 0. 

(c) The sum of a Q-jump-K i-convex function and a Q-jump-K2 - convex function 

is Q-jump-{Ki + K2)-convex. 

(d) If v{x) is Q-jump-K-convex and w is a discrete random variable that takes 

only nonnegative integer values, then G(y) = E{v{y — w)} is also Q-jump-

K-convex. 

(e) f(x) is Q-jump-K-convex if and only if for any given integer a, g°'{y)= 

f{a + yQ) is K-convex. 

Proof. See the Appendix. 口 

1.2.3 Zero Fixed Cost 

In this subsection, we consider the case of Model (1.1) with K = 0 and prove the 

main results, i.e., the optimality of the (r, Q) policy. 

We first prove that the batch-based base-stock or (S)q policy is optimal. 
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Lemma 1.4. (a) For any t = 1,2, Jt{yt) o.nd Vtixt) are Q-jump-convex. 

(b) For any t = 1, 2,…,T，there exists S{ G [j]Q, where j = 1, 2 , Q , such that 

the (S)Q policy is optimal. 

Proof. We prove (a) and (b) simultaneously by induction. 

For t = T + 1, vt+1 = 0，and the results thus hold. (Note that as long as vt+i 

is convex in x, the desired result remains true.) By induction, we assume that 

Vt+i(x) is Q-jump-convex. By Lemma 1.1 parts (b) and (d), aE[vt+i{yt — A ) ] is 

also Q-jump-convex. Because ht{y) is assumed to be convex, Lt{yt) is also convex. 

Then, by Lemma 1.1 parts (a) and (c), Jt{yt) = Lt{yt) + ctyt + aE{vt+i{yt 一 A ) ] 

is Q-jump-convex. 

For any j = 1’ 2 , Q , define fj,{(z) = Jt(j+zQ). Thus, for any given Xt G [jjg, 

vt(xt) = -CtXt + min {iiii(zt)}. 

By Lemma 1.1 part (e), / 4 � is convex. Note that ^ ^ is an integer, asxt E [j]Q. 

By the convexity of ju{(z), there exists G [j]Q , such that ^ ^ minimizes f4{^t) 

(if not unique, then take the largest minimizer), and for any Xt G [j]Q， 

vt{xt)= 

.s{ - j • 
l4{门)—ctXt = Jt(Sl) — CtXt if Xt < 
二. (1.2) 

iAC^Q — (kXt = Jt{xt) — CtXt if Xt > S}. 

(Prom the relationship between fJ^H^t) and Jtiyt)^ we know that for j = 1 , 2 ， Q , 

s i is the largest minimum point of Jt(yt) on [j]Q.) 

For any given integer a, let v^{z) = Vt{a-{-zQ). Because a-^ zQ E [a]Q for any 
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z eZ,we have 

= ^ ^ (1.3) 
Ca __ a 

fit(z)~Ct{a + zQ) if z > 

By the convexity of ji认z), we know that vf{z) is also convex. By Lemma 1.1 part 

(e), Vt(Xt) is Q-jump-convex, which completes the proof. • 

Lemma 1.4 indicates that for any group [j]q , j = 1,2, • • • , Q, the base-stock 

policy is optimal, that is, if the inventory level Xt G [j]Q at the beginning of the 

period is less than S^, then order up to S^. The following theorem shows the 

optimality of the (r, Q) policy by proving maxj{5?} — minj{5?} = Q. 

Theorem 1.1. (a) For any t = 1,2, ...,T, Jt{yt) and Vt{xt) are strong Q-jump-

convex. 

(b) The (r, Q) policy is optimal for the non-stationary system. 

Proof. We prove the results by induction. For t = T + 1, vt+i = 0 and the 

results hold. Assume ？ ^ 奸 t o be strong Q-jump-convex. By Lemma 1.2 parts 

(b) and (d), ut+i{yt) = OiE[vt+i{yt 一 A ) ] is also strong Q-jump-convex. 

We first prove that the (r, Q) policy is optimal for period t, i.e, — 

miiiJ {Si} = Q — 1, which is clearly equivalent to SI — Si < Q — 1 for any 

= 1 , 2 , Q . We prove it by contradiction. Suppose there exists ii and I2, 

such that — S]^ > Q. Because Sl^ is the largest minimum point of Jt{yt) for 

yt € we have the following inequality: 

LtiSl^) + + CtSl^ < LtiSl^ + Q) + + Q) + + Q). (1.4) 
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Similarly, for Sl\ we obtain: 

Lt {Sf ) + uJt-,i[ST) + CtST < H S f — Q) + 0；奸1(5? — Q) + — Q). (1.5) 

By Equations (1.4) and (1.5), the following results hold. 

cu^KiOS? + Q) — 俯)> Lt(sn — L诚 +Q)-ctQ 

> - Q) - LT(SN - C,Q 

〉0；汗1(5?)—0；糾(5?—(5)， (1.6) 

where the second inequality holds because Li(yt) is convex and Sf^ > Sl^ + Q. 

Thus, ujt^iiSf +Q) —0；奸1(̂ 1) > a;t+i(«Sf) -ujt+i{Sf - Q ) , which contradicts 

the hypothesis of iOt+i(yt) being strong Q-jump-convex, because > Sl̂  + Q. 

Let Tt = minj{S{}. Then, the (r ,̂ Q) policy is optimal for period t. 

Next, we prove that Vt{x) is strong Q-jump-convex, i.e., for any Zi G Z, 2；2 ^ 芯， 

and zi > Z2, Vt(^i + Q) — vti^i) > 叫(之2 + Q) — Vt(Z2). Note that, by Lemma 1.2 

parts (a) and (c), Jt{yt) = Lt(yt) + aE[vt+i{yt — A)1 is strong Q-jump-convex. 

Here, for convenience, let q = 0. Suppose that zi £ [jijg and z<i G 

Case 1: r t > z \ > z>i. It is then clear that Vt{zi) = Jt{Si^) and Vt{z2) — ). 

Note that Zi+Q < Ti + Q, which implies that Vt{zi + Q) = ), Similarly, we 

have Vt{z2 + Q) = Jt{S(^)- Therefore, vt(ziQ) - Vt{zi) = Vt{z2 + Q) - Vt{z2) = 0. 

Case 2: zi > n > • In this case, Vt(zi) = Jt[zi), Vt{zi + Q) = Jt(zi + Q), 

and Vt{z2 + Q) —Vt{z2) = 0. Because Jt{z) is Q-jump-convex, Lemma 1.1 part (e) 

implies that Jt(z) is non-decreasing on [j]Q A [rt, +00), and hence, Jt{zi + Q)— 

JT{ZI) > 0. Therefore, VT{ZI + Q) - VT(ZI) > 0 = VT(Z2 + Q) - (之2). 



CHAPTER 1. INVENTORY SYSTEM WITH BATCH ORDERING 23 

Case 3: Zi > Z2 > n. Then, vt(zi) = Jt(zi), Vt(zi + Q) = Jt(zi + Q), 

VT(Z2) = Jt(<2̂ 2)，and VT{Z2 + Q) = Ji(勿 + Q). Because JT{YT) is strong Q-jump-

convex, Jt{zi + Q) — Ji(^i) > Jt{zi + Q) — Jt⑷，which implies that vt{zi + Q)— 

Vt{Zi) > Vt[Z2 + Q) - Vt(Z2)‘ 

Therefore, Vt(x) is also strong Q-jump-convex, which completes the proof. • 

1.2.4 Positive Fixed Costs 

In a supply chain, inventory replenishment typically involve a setup cost in a 

direct production or purchasing system. In a manufacturing setting, a setup 

cost may represent the cost of operations to prepare for production that can 

include activities such as cleaning, warming up and calibrating equipment, and 

readying the shop floor and workforce. In a purchasing setting, the setup cost may 

represent the additional administrative costs, including inspection and receiving, 

etc. However, no literature studies the optimal policy for the system with positive 

setup cost and batch ordering. 

In this subsection, we consider the case with K > 0. It may be expected that 

an (s, r, Q) policy is optimal, and operates as follows. If the inventory level is 

below the "re-order" point 5, then it is optimal to order a minimum multiple of 

Q to increase the inventory level to above r; otherwise, it is optimal to order 

nothing. 

By the definition, the (s, S)q policy is an (s，r, Q) policy zf maxj{s-'}— 

mmj{s^} — Q — 1 and — = Q — 1, Here, s = minj{s^} and 

r = 
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Unfortunately, the following example shows that an (5, r, Q) policy may not 

be optimal (optimization was carried out in Matlab). 

Example 1.1. Consider a two-period problem with non-stationary parameters. 

Assume that the one-period cost function Lt{y) = htE[{y — DJ"^] 4-pf j5'[(A — y)'^], 

for t = 1,2，where ht and pt are the unit holding and shortage costs, respectively. 

Suppose that Q 二 5, = 20, ct = 0, and a 二 0.9. Fort = 2, h2 = 3； p2 = 6, and 

D2 follows a Poisson distribution with mean A = 20. For t = 1, hi = 1, pi = 10； 

and Di follows a Binomial distribution, b(x; n, q) = — q)几—工 with q = 0.75 

and n = 30. vis shown in Table 1.1, the hatch-based (s, S) policy is optimal 

Moreover, the optimal policy is unique. PVe can see that 3l — Sf > Q = 5. 

Therefore, an (s, r, Q) policy is not optimal 

Table 1.1: Optimal Policy 

j 1 2 3 4 5 

4 -14 -13 -17 -16 -15 

si 26 27 28 9 10 

We now prove the optimality of (s, S)q policy. 

Theorem 1.2, (a) For any t 二 1，2，...,T, Jt(yt) and Vt(xt) are Q-jump-K-

convex. 

(b) For any t = 1,2, there exists s{ and S{ with si < S{, and sj, S{ € [jjg； 

where j = 1,2,Q, such that the (s, S)Q policy is optimal. 
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Proof. We prove the results by induction. For t = T+1, vt+i = 0, and the results 

clearly hold. Assume 1144-1(0;) to be Q-jump-i^-convex. By Lemma 1.3 parts (b) 

and (d), aE[vt+i{yt — A ) ] is also Q-jump-iir-convex. Then, by Lemma 1.3 parts 

(a) and (c), Jt(yt) 二 Lt{yt) + Ctyt + aE[vt+i{yt 一 A)1 is Q-jump-i^-convex. 

For any j = 1,2’ ...，Q, define i4(z) = Thus, for any given Xt E [jjg, 

冗t — j 
Vti^t) = -CtXt + min {S(zt • K + /4 � } . 

By Lemma 1.3 part (e), fili^) is K-convex. Referring to Porteus (2002, page 

108), there exists sj and S^, with sj < Si, and si, Sf € [jjg, such that the 

{si, Sf) policy is optimal, where ^ ^ minimizes jil(zt) and sj is the smallest £t, 

such that ^ + K. Moreover, for any Xt 6 [jjg, 

vtixt)= 
= MS})-ctXt^K if xt<si, 

Mt(-^gr^) - ^t^t = JtM - CtXt if Xt > si. 
(1,7) 

(From the relationship between 么t) and Jt(yt), we know that for j = 1,2, ...,Q, 

Si is a minimum point of Jt(yt) on [j]Q and sj is the smallest value less than Sf 

and belonging to {J]Q such that Jt{sl) < Jt{Si) + K.) 

For any given integer a, define v^{z) = vt{a + zQ). Because a + zQ e [oIq for 

any z gZ^ we have 

- ct(a + zQ) + K ifz< 
vt(z) = ^ (1.8) 

fxUz)-Ct(a + zQ) if z > 

By the i^-convexity of we can conclude that is i^-convex. By Lemma 

1.3 part (e), Vtixt) is also Q~]ump-iC-convex, which completes the proof. 口 
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Note that in the above proof, the original problem is decomposed into Q 

subproblems based on groups [jjg, j = 1, 2 , Q . For each subproblem, an 

ordinary (s, S) policy is optimal. We are unaware of any similar result for a batch-

ordering model with fixed order costs in the literature, even in the stationary case. 

1.3 Multi-stage Inventory Problem 

In this section, we characterize the optimal policy for a periodic-review, single-

item, serial inventory system with batch ordering. In a stationary setting and 

with the long-run average criterion, Chen (2000) shows that the (r, Q) policy is 

optimal. Our model is different from his in that we consider a non-stationary 

setting and hence, a different approach is called for. 

For notational simplicity, we consider the two-stage case (as Clark and Scarf, 

1960, do). Customer demand arises at stage 1 only, stage 1 replenishes its inven-

tory from stage 2, and stage 2 from an outside supplier with one-period leadtime. 

We assume the leadtime from stage 2 to stage 1 to be two periods. Our as-

sumptions of two stages only and a two-period leadtime are made without loss of 

generality, as more stages and an arbitrary leadtime can be treated similarly. 

Define the echelon inventory level at stage 2 to be the inventories on hand at 

stages 1 and 2 plus inventories in transit to stage 1, minus backorders at stage 

1. Define the echelon inventory position at stage i to be the echelon inventory 

level at stage i plus inventories in transit to stage z, for i = 1,2. For period 
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t = 1,2,...,T, let 

xit = the on-hand inventory at stage 1 after the receipt of order due in this period; 

yt = the echelon inventory position at stage 1, after an order is placed, but 

before demand is realized; 

Wit = the quantity to be delivered to stage 1 one period in the future; 

X2t == the echelon inventory level at stage 2, before an order is placed; 

zt 二 the quantity ordered at stage 2 from the outside supplier; and 

Dt = demand in period t. 

The sequence of events that occur in each period is as follows. In-transit items 

due in this period arrive; decisions are made regarding how much to order from 

the upstream at each stage; demand is realized and costs are incurred based on 

the inventory levels at the end of the period. Each order placed by stage i must 

be a nonnegative multiple of a stage-specific base batch, Qi, i = 1,2. As in 

Chen (2000), we assume that they satisfy the following integer-ratio constraint: 

Q2 = nQi, where n is a positive integer value. 

Note that Wn G [<3i]Qi’ because the order from stage 1 must be a positive 

integer multiple of Qi. Therefore, Wu + Xu and Xu belong to the same group. We 

further assume that the on-hand inventory at stage 2 in period 1 belongs to group 

[Qi]qi' This assumption is reasonable, because each order from both stages 1 and 

2 is a positive integer multiple of Qi, and thus there is no incentive to keep an 

inventory at stage 2 that is a fraction of Qi. Consequently, the on-hand inventory 
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at stage 2 in any period belongs to group [Qi]Qi’ which implies that Wifj-xit and 

X2t belong to the same group. 

Demands in different periods are independent. When the customer demand 

exceeds the on-hand inventory at stage 1，the excess is backlogged. Four types 

of costs are assessed: ordering, shipping, holding, and penalty costs. Let C2t 

and cit be the ordering cost for stage 2 and shipping cost from stage 2 to 1 in 

period t, respectively, and Luixu) {L2t{x2t)) be the expected holding/shortage 

cost (holding cost) incurred at stage 1 (2) in period t in terms of their echelon 

inventory levels Xu {x2t)- We assume Lit{xit), i = 1,2, to be convex. 

Define Ai{x) := {r}\r} — x+mQi^ for m G Z+ } and A2 ：= {r]\rf = mQ�, for m € 

Z+} . Let Vt{xit, wu, X2t) be the minimum expected discounted cost for the whole 

system from period t until the end of the planning horizon T, and VT+i{xit, wu, X2t)= 

0. For each i = 1 ， 2 , T , we have 

Vt{Xlu'Wit,X2t) 

= _ mill {c2tzt + cit{yt 一 xu - wu) + Lit{xit) + Imixat) 

+ otE[vt+i(xit + Wit — A , Vt 一 Xit - Wu, X2t + zt-~ A ) ] } , (1-9) 

where Ai(xit + Wu, X2t) = {q < X2t\ri € Ai{xit + Wu)}. 

Before going further, we need to investigate the following auxiliary system. 

Instead of treating both stages as a whole, we now consider stage 1 separately 

and assume that stage 2 has unlimited inventory. Let vl{xit, Wit) be the minimum 

expected discounted cost at stage 1, which begins with Xu units on hand and wu 

units in transit. Then, for the auxiliary system, we have the following dynamic 



CHAPTER 1. INVENTORY SYSTEM WITH BATCH ORDERING 29 

program: 

V彻It, Wit) = min {cit(yt ~ Xu — Wu) + Lu{xit) 
yteAiixxt+wit) 

+ aE[vl^^{xit + Wit — DuVt — xu 一 li^u)]}- (1.10) 

We can see that problem (1.10) is actually a single-stage problem with a 

leadtime of two periods, as discussed in §1.2. Moreover, we can re-express (1.10) 

as 

vH工It, Wit) == + aElLit+i(xu + Wit 一 A ) ] + M^it + mt), (l-H) 

where 

M 工 ) = m i n {cit(2/ — a；) + a'^E[Lit+2(y — Dt — A+i ) ] + aB[(l)t+i{y ~ A) ] } -
ye>Ai(a;) 

(1.12) 

with (f)T+i (x) = 0. 

Clark and Scarf (1960) characterize the relationship between Vt{xit,wit,x2t) 

and vl{xu, Wu) without batch ordering, which plays a central role in establishing 

the optimality results. The following lemma demonstrates that such a relationship 

remains in the batch-ordering setting. 

Lemma 1.5. There exists a sequence of functions 7rt(rc2x)； yj�th 7i:t{x2t) — L2t{^2t)： 

such that 

yt{xit,wu,X2t) = vl{xit,wit) + 7rt{x2t). 
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Proof. We prove this lemma by induction. For t — T, from (1.9) and vt+i — 0, 

VT(XIT,Wit,X2T) 

= — min {c2tZT + Cir^/r — â ir — Wit) + Lit(xit) + L2t(x2t)}-
yTeAi(xiT+mT,X2T),ZT€A2 

(1.13) 

Then, the results clearly hold, and = Assume it to be true for 

period t + 1, i.e., Vt+i{xit+i,Wit+i,X2t+i) = W k + i ) + frtix2t+i)- Then, 

Equation (1.9) can be rewritten as 

Vt{xit, Wit, X2t) = _ min {cu(yt — xu — Wu) + Lit{xit) 
yt&Ai(xit+wit,x2t) 

+ + Wit — Dt,yt — xu — u ^ k ) ] } 

+ min {c2tzt + L2t(x2t} + a 丑 + Zt - A ) ] } - (1.14) zteA2 

From (1.14), we can see that aside from the constraint that yt < X2t in Ai(xit + 

Wit, the optimal solution of yt is the same as that for the problem of stage 1 

considered separately, for which we have shown in §1.2 that there exists ft, such 

that (ft, Qi) policy is optimal. Then, if X2t > ft, the constraint yt < X2t is not 

operative, and we thus obtain 

Vt{3:iuWit,X2t) = vl(xit,wit) + min {c2tZt + L2t{x2t) + aE[iTtJri{x2t + - A ) ] } , 

(1.15) 

which implies that the result holds with 'Ki{x2t) = mmztGA2{<̂ 2t̂ t + L2t{x2t) + 

aE[Kt+i{x2t ^zt- A ) ) } -

If X2t < ft, then it is optimal to increase the stock level as high as possible at 

stage 1. Note that X2t and Xu + wu belong to the same group, that is, X2t is a 
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feasible solution. Therefore, in this case, it is optimal to order up to X2t, and we 

have 

Vt{Xu,Wu,X2t) 

=Cu(x2t — Xit — Wit) + Lit(xit) + + Wu — A , X2t — 一 W l̂Jl 

+ mm {c2tZt + L2t[x2t) + aE[Kt+i{x2t + Z t - A ) ] } - (1-16) 

ztG â 

Suppose that X2t G [et]Q, for some et = 1) 2, ...’Qi, and Sfl = [ft^n + Qi) A [ef]Q. 

Define 

At(x2t) = Cit{x2t — xit — Wit) + Lu(xit) + aE[vl^i(xu + wu — A,工2t — Xu 一 wu)] 

-vl{xit,Wu), (1.17) 

for X2t < Sil and zero for X2t > Sjl- Now, we need only prove that At(x2t) is 

independent of xu and wu in the case of X2t < Sil. 

Turn to the auxiliary system. Referring to (1.10) and by the definition of SH 

we have 

VL(XIT,WIT) = CII (5G-XIT-WIT)-^LIT {XIT)+AE [？ ; { X U + W U - A , S^L-XU-WU)]. 

Putting the above equation into (1.17), we can obtain 

= Cit(x2t — Sil) Hr a{E{vl+^{xu + Wit — A , 工 2 t - Xit — U^it)] 

— + Wu — Dt, Stl 一 工It — ^ l i ) ] } - (1-18) 

Finally, by Equation (1.11), we have 

M^2t) = ~ 5'S) + a^E[Lit+2(^2t - A - A + i ) — 魄 一 Dt — A + i ) ] 

+ aE[<Pt+i{x2t — D t ) — 也 — A) ] , (1.19) 
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which is independent of Xu and Wu, and hence, the proof is complete. o 

Prom Equations (1.16) and (1.17), we have 

vt{xiu Wit, X2t) = vlixiu Wit)+At(x2t)+ min {c2tZt+L2t{x2t)+aE[Trt+i{x2t+zt-Dt)]}. 

Therefore, 7rt{x2t) satisfies the following dynamic equation. 

7RT{X2T) = min {CZT + (釣 t) + + a 五 + 么i — A ) ] } , (1.20) 

with 7Tt{x2t) = L2t{'^2t)- TO solve vt{xit^ Wu, X2t), it is sufficient to compute 

vl{xit,wit) and w t (工a n d consequently, to compute (^t(^) and 7rt(x2t) (see 

(1.12)). To characterize the optimal policy, we need the following lemma. 

Lemma 1.6. If f{x) is strong Qi-jump-convex and Q2 = mQi for some positive 

integer m, then f{x) is also strong Q2 -jump-convex. 

Proof. See the Appendix. • 

The following theorem investigates the properties of (/>i(a;) and 7rt{x2t) and 

characterizes the optimal policy for each stage. 

Theorem 1.3. For any t = 1,2, ...,T, we have 

(a) and At(x2t) are strong Qi-jump-convex and 7rt(x2t) is strong Q2-jump-

convex. 

(b) For stage 1, there exists ru, such that when X2t > ru + Qi, it is optimal to 

follow the (rii, Qi) policy, and when X2t < tu + Qi, it is optimal to order 

up-to X2t, if Xit + Wit < i"it, and to order nothing, if Xu + Wu > ru-

(c) For stage 2, there exists r2t, such that the {r2t, Q2) policy is optimal. 
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Proof. We prove these results by induction. 

(a). First, we prove the strong Q-jump-convexity of (ptix). As 於 ( 冗 ） = 0 , 

the result holds for T + 1. Suppose it is also true for period t + 1. Referring to 

Equation (1.12), and observing that the first two terms in (1.12) are convex in 

y� the terms within the curly brackets of (1.12) are thus strong Qi~jump-convex. 

Prom the analysis of single-stage problem, we know that <l)t{x) is also strong 

Qi-jump-convex. 

Second, we prove that Kt{x2t) is also strong Qi-jump-convex. Let A J {x2t)= 

CitX2t + a^B[Lit+2(x2t - A - A+i) ] + - A ) ] , and Af(x2t) = -Cit5'g -

- A - A+i) ] — — A) ) . Then, At(a:2t) = AK吻）+ 

Aj(a;2f)- By Lemma 1.2 (c), we need only prove that both A J {x2t) and A^(x2t) 

are strong Qi-jump-convex. Because Lit+2{x) is convex and (f)t{x) is strong Qi-

jump-convex, by Lemma 1.2 parts (b), (c), and (d), Aj(a:2i) is also strong Qi-

jump-convex. Note that for any r G Z, r + Qi and r belong to the same group, 

and thus have the same S益 by the definition. Therefore, for any 7\ > r2, Af(ri + 

Q) - Aj(ri) = 0 = Aj(r2 + Q) — A?(T2)’ which implies that Aj(x2t) is also strong 

(5i-j ump-convex. 

We now focus on 7rt{x2t)- Suppose Wt+i {x2t) to be Q2-jump-convex. By Lemma 

1.6 and the convexity of Lit+2{x) and Qi-jump-convexity of At(x2t), the terms 

within the curly bracket of Equation (1.20) are Q2-i ump- convex. By the analysis 

of the single-stage problem, we know that iTt{x2t) is also strong Q2-iump-convex. 

(b). Referring to Equation (1.14), the first and second minimizations rep-
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resent stage 1 and stage 2 problems, respectively. We first consider the first 

minimization, i.e., stage 1 problem. Substituting Equation (1.11) into the first 

minimization, we obtain 

_ min {cuVt + a'^E[Lu+2{yt - A - A+i) ] + a 丑 — A ) ] } 
YTEAI(XU+WIF„X2F,) 

+ Ljt(xit) + aElLit+i(xit + Wit — A ) ] — Cu(xit + Wu). 

By the convexity of Lit+2(^) and the strong (^i-jump-convexity of (/)t+i(x), the 

terras within the first curly bracket of Equation (1.14) are strong Qi-jump-convex. 

Define ru as the reorder point at stage 1 in period t. Then, if X2t > ru + QI, 

the constraint yt < X2t is not operative, and thus (r^, Qi) policy is optimal. If 

X2t < Tit + Qi, then it is optimal to order as much as possible. Note that X2t and 

xit + Wit belong to the same group, that is, X2t is a feasible solution. Therefore, 

it is optimal to order up to X2t-

(c). We now consider the second minimization in Equation (1.14), i.e., stage 

2 problem. Because 兀糾 is strong Q2-jump-convex, so are the terms within the 

second curly bracket. Similar to the single-stage problem, we know that there 

exists a reorder point R2T, such that the (R2T, Q2) policy is optimal. • 

We conclude this section with two remarks. 

Remark 1.1. Our analysis can also be extended to a periodic-review assembly 

system with batch ordering. Under standard assumptions, Chen (2000) estab-

lishes the equivalence between an assembly system and a serial system with batch 

ordering. Because this result is established without assuming a stationary setting， 

it prevails in our model We do not repeat his analysis here, but note that the 
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analysis of the assembly system is the same as that of the serial system. 

Remark 1.2. Another extension would be to allow a fixed cost K at stage 2. In 

this case, the optimal policy for stage 1 does not change, and by the analysis in 

^1.2.4, we know that an (s, S)q policy is optimal for stage 2. 

1.4 Single-stage Inventory-Pricing Problem 

In this section, we take pricing as an endogenous decision, that is, the firm has to 

make ordering and pricing decisions simultaneously in each period. We show that 

the (r, Q,p) policy is optimal for an inventory-pricing system with zero fixed cost 

and additive demand. This policy can be described as follows. The inventory is 

replenished according to the (r,Q) policy, and the price is set at p{yt), where yl 

is the optimal order-up-to level. 

1.4.1 Model and Results 

We retain all of the notations in Section 1.2 and introduce several additional 

notations. For period it == 1,2’ ...，T, 

Pt = the selling (or list) price in period t, 

p̂ p̂t are the lower and upper bounds on pt, respectively, and 

dt = expected demand level in period t. 

We consider the additive demand function: 

= + (1.21) 
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where "f is a random variable. Such a demand model is commonly seen in the 

OM literature e.g., Chen and Simchi-Levi (2004a), Huh and Janakiraraan (2008), 

Chen et al. (2006), and Alloii and Zeevi (2009). 

Without loss of generality, we assume that E[Pt] = 0. As usual, we also 

assume zero replenishment leadtime. 

Assumption 1.1. For any t = 1 , 2 , T , (1) Dt(pt, Pt) take nonnegative integer 

values, i.e., Dt{pt, Pt) € 2 十 . � Dtipt) is strictly decreasing in pt E Pt, where 

Pt = 

Part (1) of Assumption 1.1 is in line with Section 1.2. Part (2) of Assumption 

1 implies a one-to-one correspondence between the selling price and expected 

demand. Hence, we can replace the pricing decision with the expected demand 

level dt and define the feasible expected demand level set as Dt — [迄 ,w h e r e 

df = Dtip^) and dt = A f e ) . Moreover, Assumption 1 implies that the inverse 

function of A f e ) , denoted by D广,is also strictly decreasing. We also assume 

that the expected revenue Rt[dt) ：= dtD^^{dt) is a concave function of expected 

demand dt € D/；. 

Let Lt(y,p) = E{ht{y — Dt{p, Ct))}, which represents the expected hold-

ing/penalty cost in terms of the order-up-to level at the beginning of period t 

(after possible ordering). For technical reasons, we make the following assump-

tions regarding functions ht{y) and Lt{y,p), which are again commonly seen in 

the literature (see Federgruen and Heching, 1999; Chen and Simchi-Levi, 2004a). 

Assumption 1.2. For any t = 1,2,T, 
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(i) ht{y) is a convex function in y. 

(ii) Lt{y,p) = limy^-^[cty+Lt{y^p)] = l iniy^oo[(cf-Ct+i)y+hiy,p)]= 

oo for all p E Pt-

(iii) 0 < Lt{y,p) = 0(\y\'^) for some integer p. 

(iv) E[Dt{p, et)Y < oo for all p 6 Pt. 

For consistency, our objective is to minimize the total expected cost instead 

of maximizing the expected profit. Let Vt{xt) be the optimal expected discounted 

cost from period t until the end of planning horizon T, when the starting inventory 

level in period t is x. Let vr十ifcc) = 0 for all x. Then, for any t = 1,2, ...T, we 

have 

ut{xt) 二 -CtXt + min {Jtivt)}^ (1.22) 
yt&Aixt) 

where 

Mvt) = min Utivudt), and 
DTEJJT 

Utivu dt) = ~R[dt) + CtVt + E{ht{yt — dt — A) + CiVt+iiVt — dt — Pt)}-

We next present an important result, which states that strong Q-jump-convexity 

can be preserved under a minimization operation. 

Lemma 1.7. Suppose that rj(x) is a convex function, ^(x) is strong Q-jump-

convex and D = [d, d], where d<deZ, then, 

r(y) = mm{r]{d) + -f{y — d)} 
aGD 

is also strong Q-jump-convex. 



CHAPTER 1. INVENTORY SYSTEM WITH BATCH ORDERING 38 

Proof. See the Appendix. • 

Next, we prove the optimality of the (r, Q,p) policy, i.e., the inventory strategy 

is a (r, Q) policy and the optimal list-price depends on the order-up-to inventory 

level in each period. 

Theorem 1.4. (a) For any t — 1,2, Jt{yt) and Vt{xt) are both strong 

Q-jump-convex. 

(b) For any t = 1 , 2 , T , the (r, Q,p) policy is optimal 

Proof. We prove the results by induction. For t = T + 1, the results clearly 

hold. Assume Vt+i {x) to be strong Q-jump-convex. By Lemma 1.2 parts (b) and 

(d), wt+i{x) = E{ht{x — Pt) + avt+i(x — Pt)} is also strong Q-jump-convex. Note 

that —R{dt) is a convex function. Then, by Lemma 1.7, Jt{yt) is also strong Q-

jump-convex. Prom the analysis in Section 1.2.3, we know that the (r, Q) policy 

is optimal for inventory replenishment, and that Vt{xt) is also strong Q-jump-

convex, which completes the proof. • 

Define dt(yt} as the expected demand associated with the best selling price 

for a given inventory level yt, i.e., 

dt{yt) = arg min {Ut[yu 

at GDt 

Corollary 1.1. For any t = 1,2, there exists a dt{yt) that maximizes 

Jtiyt, dt) for any given yt, such that 
(a) yt — dt{yt) is a nondecreasing function of yt. 

(b) dtivt) is nondecreasing on [j]Q, j = i.e., dt(yt + Q) > dt{yt). 
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Proof. See the Appendix. • 

Corollary 1,1 (a) implies that the higher the inventory level at the beginning of 

period t, the higher the expected inventory level at the end of period t. This result 

is consistent with the case without batch-ordering in Federgruen and Heching 

(1999). 

Federgruen and Heching (1999) further show that the optimal expected de-

mand dt{yt) to be selected in any given period is nondecreasing in the prevailing 

inventory level yt. This result may not hold in the batch case (see the following 

numerical study). However, Corollary 1.1 (b) proves that the optimal expected 

demand dt{yt) increases on [jJq, for each j = 1,2, Note that Part (a) also 

implies that yt+Q-dtivt + Q) > yt~dt(yt), i.e., dt{yt) > Myt+Q) -Q. Together 

with Part (b), we have the following relationship between dt{yt) and dt{yt + Q). 

DTIVT + Q)> DTIVT) > DTIVT + Q)~-Q. 

This relationship may be helpful in computing the optimal expected demand. 

Let vf {xt) be the optimal expected discounted cost from period t until the 

end of the planning horizon T for the system with batch size Q. The following 

theorem indicates the relationship between the optimal costs for systems with 

different batch sizes. 

Theorem 1.5. Suppose that Qi = nQi for some integer n, then, vf^ {xt) < 

fort==:l’2".,T. 

Proof. We prove the result by induction. For t = T + 1, the result clearly 

holds. Suppose it is also true for t 十 1. Then, U，[yt,dt) < U?乂yt,dt) and 
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thus J?'{yt) < J?\yt). Let A^{xt) = {yt\yt = Xt + mQ, for some m G 

Referring to Equation (1.22), we have vf^{xt) < due to the fact that 

A'^'ixt) D A'^^ixt). a 

1.4.2 Numerical Study 

Although they do not consider batch ordering, Federgruen and Heching (1999) 

have explored a number of qualitative insights into the structure of optimal poli-

cies and their sensitivity with respect to several parameters. A natural question 

is how does the batch size affect these insights and sensitivities? To address this 

question, we focus in particular on the impact of Q. Among the major questions 

investigated, we plan to investigate the following insights. 

(i) The sensitivity of the optimal list price to the initial inventory level with 

different batch sizes; 

(ii) the sensitivity of the optimal reorder level to the batch size Q; and 

(Hi) the benefits of a dynamic pricing strategy compared to a fixed or one-off 

price change strategy with different batch sizes. 

For the numerical experiment, we assume Dt{pt) to be stationary and linear, 

i.e., Dt{pt) = a — bpt. The random part pt is assumed to follow a binomial 

distribution q) = — q)几—工.The holding and backlogging costs are 

proportional to the end-of-the-period inventory level or backlog, at rates of h and 

TT, respectively. The salvage value for any inventory remaining at the end of the 



CHAPTER 1. INVENTORY SYSTEM WITH BATCH ORDERING 41 

Table 1.2: Parameter Values for Base Scenario 
Order Holding Penalty Discount 

b n g Cost c Cost h Cost tt p pt Rate a 

174 3 20 0.7 5 2 10 20 40 0. 

Invantory Level 

Figure 1.3: Optimal List Price as a Ponction of Initial Inventory Level. 

horizon is assumed to be zero. Table 1.2 summarizes the values of all parameters 

for the base scenario. Here, we consider the infinite horizon case unless otherwise 

specified. 

Figure 1.3 exhibits, for the base scenario, the optimal list price as a function of 

the starting inventory level in the first period of the horizon with different batch 

sizes. Consistent with Federgruen and Heching (1999), we can observe that when 

Q 二 1, the optimal list price is decreasing in the inventory level. As observed, 

the optimal list price may not decrease in the inventory level, when Q > 1. 

However, in this case, the price is still decreasing in [j]g, for any j = 1,2, 



Figure 1.4: Optimal Reorder Levels as a Function of Batch Size. 

as indicated by Corollary 1.1 (b). Clearly, when Q = 1 and the initial inventory 

level is low, the optimal price becomes constant because of the base-stock policy. 

Nevertheless, when Q > 1, the base-stock levels are different for the inventory 

levels in different groups, and the price fluctuates accordingly. Also note that 

when the inventory level is below the reorder points, the prices are also constant 

in group [j]Q, j = 1 , 2 , Q . We can further see that the optimal list prices in 

the cases of Q 二 1 and Q = 5 converge at the same value: 32.7. 

Figure 1.4 displays the reorder level r in the first period under different batch 

sizes. Roughly speaking, the reorder level decreases as the batch size increases, 

but not monotonically. This is consistent with the (r, Q) literature (e.g., Chen 

and Zheng, 1994). 

When comparing the optimal total profits of different settings, we take the 

maximal relative difference over all possible states. More specifically, if we let 
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Figure 1.5: Total Optimal Profits as a Function of Batch Size. 

and be the discounted total profits of two different settings, respectively, then 

the relative percentage difference is defined as 

RD = max U f — f ) / f ] x 100%. 

Figure 1.5 exhibits the impact of the batch size on the optimal total profit 

under dynamic pricing strategy and fixed price strategy, respectively. For the 

fixed price strategy, we set the same price over the entire horizon. Here, we set 

p == 30. To achieve the result, we compare the total profit with different batch size 

to that with Q = 1. It can be observed that the profit may not monotonically 

decrease in the batch size. However, as indicated in Theorem 1.5, the profit 

drops as the batch size increases in integer multiples. On the other hand, the 

profit appears not sensitive to batch size Q. For example, comparing Q = 1 with 

Q = 20, profit declines only by 0.44% under dynamic pricing strategy, and 0.74% 

under fixed price strategy. Therefore, the firm has less incentive to find a supplier 

that can provide a smaller batch size. Furthermore, dynamic pricing can reduce 
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Figure 1.6: Fixed Pricing Strategy vs. Dynamic Pricing Strategy. 

the impact of the batch size on the total profit. 

Figure 1.6 shows that even in a stationary environment significant benefits 

accrue from a dynamic pricing strategy relative to a fixed price strategy. In the 

latter case, we choose the single best price throughout the planning horizon. For 

a batch size of around 17, the profit enhancement may be as much as 2.37%. As 

observed in the general literature of revenue management, in the retail sector, 

these differences may have very large impacts on bottom-line profit figures. Al-

ternatively, the benefits of a dynamic pricing strategy increase as the batch size 

increases. Therefore, it is more profitable for retailers to adopt a dynamic pricing 

when the batch size is large. 

Figure 1.7 gauges the profit improvement from a one-off change pricing strat-

egy to a dynamic pricing strategy, i.e., there is only one price modification in 

the middle of the horizon. Here, we consider the case with T = 30, which is a 
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Figure 1.7: One-off Change Pricing Strategy vs. Dynamic Pricing Strategy. 

very good approximation of the infinite horizon case. With the one-off change 

pricing strategy, we reset the prices at the middle of horizon, i.e., t = 15. As 

expected, the benefits of a dynamic pricing strategy increase as the batch size 

increases. Compared to Figure 1.6, we can see that although the price is modified 

only once in the middle of the horizon, this modification results in a significant 

improvement in profits compared to the fixed price strategy. 

1.5 Concluding Remarks 

In this chapter, we investigate a non-stationary periodic-review inventory system 

with and without fixed costs in which replenishment is made in fixed lot sizes. 

We introduce two new concepts, Q-jump-convexity and strong Q-jump-convexity, 

to show that the (r, Q) policy is optimal for both single-stage and multi-echelon 

models without a fixed ordering cost. When a positive fixed cost is incurred； we 
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further introduce Q-]ump-i^-convexity to establish the optimality of the (s, S)q 

policy. We also analyze a pricing-batch system with additive demand and show 

that the (r, Q,p) policy is optimal. 

To conclude this chapter, we suggest a number of important extensions. 

© More General Cost Structure: The analysis thus far assumes that the 

single-period holding/shortage cost function Lt is convex. Although this assump-

tion is commonly used in the literature, it can be extended to strong Q-jump-

convexity in our model. The results will be guaranteed by Lemma 1.2 part (c). 

® Infinite Time Horizon: With several technical assumptions (see Sethi and 

Cheng, 1997), the optimal policy for the nonstationary finite single-stage horizon 

case could be extended to the infinite horizon case. Another extension is to 

investigate the nonstationay infinite horizon multi-stage model, and essentially 

a generalization of Chen (2000). However, significant effort would be required 

for such an extension, and so we leave it as a future research direction. For 

the single-stage inventory-pricing model, the extension to the stationary infinite 

horizon can be accomplished by following the standard approach (see Federgruen 

and Heching, 1999). 

© Markov-Modulated Demand Model: As elaborated in Song and Zipkin 

(1993), many randomly changing environmental factors, such as fluctuating eco-

nomic conditions and uncertain market conditions in different stages of a product 

life-cycle, can have a major effect on demand. For such situations, the Markov 

chain approach provides a natural and flexible alternative for modeling the de-
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mand process. This analysis is presented in Appendix 1.6.2. As expected, the 

optimal policy is state-dependent. With the same logic, the results can also be 

extended to the case with Markovian variable ordering cost. 

• Other Possible Extensions: First, for the inventory-pricing model, we 

consider only the additive demand form. A nature question is whether (r,Q,p) 

remains optimal for the multiplicative or more general demand form. Our no-

tion of Q-jump-convexity may be useful, but is not immediately applicable to 

tackling the multiplicative or more general demand form. We leave it for our 

future research. Second, all of our models contain only one system state, i.e., 

the inventory level. If other issues are considered, such as information updating, 

then these models may lead to multiple system states. A natural future research 

direction would be to explore how Q-jump-convexity can be extended from one 

dimension to multiple dimensions. Third, lot sizing with uncertain yields is an 

important issue in production/manufacturing systems. It would be interesting to 

see if the method developed in this chapter can be extended to structural analysis 

of a random yield model with batch ordering. Finally, one of the limitations of the 

models analyzed in this chapter is the lack of capacity constraints. Incorporating 

capacity constraints of inventory replenishment would therefore be another pos-

sible extension. In the case of single-stage models without fixed costs, we expect 

that the optimal inventory policy would become a modified (r, Q) policy, i.e., 

if ordering, then the firm orders according to the (r, Q) requirement if possible; 

otherwise, it orders to full capacity. 
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1.6 Appendix. 

1.6.1 Proofs 

PROOF OF LEMMA 1.3. Parts (a) and (b) follow directly from the definition 

of Q-jump-ZT-convexity. 

Part (c). Suppose that fi{x) and faipc) are Q-jump-i^i-convex and Q-jump-

/G-convex, respectively. Then, by the definition, for any x G Z, z e and 

b € Z+/{0}， 

fi{x + zQ) + Ki> h(x) + jlMx) — Mx — hQ% 

and 

+ zQ) +K2> f2{x) + ~[f2(x) — Mx — bQ)]. 

Letting f{x) = fi{x) + f2(x) and combing above two inequalities, we obtain 

that for &nyxeZ,ze and b G Z+ / {0 } , 

fix + zQ) + {K^ + K2) > fix) + ^lf(x) — fix — bQ)], 

which results in that f{x) is Q-juinp-(/Ci + K2)-convex. 

Part (d). Without loss of generality, suppose that the distribution of w can be 

characterized by P{w = i) = Xi for z = 0,1,2,..., W, where W" is a upper bound 

and Y^q h 二 1. Then，G{y) = ^i'^iv — � ) . N e x t , we prove that G[y) 

satisfies G(y + zQ) + K > G(y) + l{G[y)-G[y-hQ)] for any 2/ G Z, ^ G and 

b e Z+ / {0 } . Note the fact that for any i = 0 , 1 , 2 ,…，X i v i y + XiK > 

Xiv(y — z) + (2/ — i) — Xiv{y — bQ — z)}, due to the Q-jump-iiT-convexity of 

v{x). Combing these W inequalities, we obtain the desired result. 
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Part (e). We first prove the necessity. By the Q-jump-i^-convexity of /(rc), 

for any y,a e Z^ z € Z+, and b G Z + / { 0 } ’ we have 

f(a + fe + z)Q) + K>fia + yQ) + ^{f{a + yQ) — f(a 十(y — 6)Q)}, 

which implies that g%y + z) + K > g°iy) + 一 g"iy — b)}. 

For the sufficiency, we just need to prove that if for any x e z E and 

b e Z + / { 0 } , f{x + zQ)-\-K> f{x) + 营 { /O) - fix — bQ)}. By the K'-convexity 

of g°'{y), we have for any y ^Z, z E and b 6 Z+/{0}， 

g�(y + z) + K> g%y) + — g\y - 6)}, 

which implies 

/(a + (t/ + z)Q) + ir>/(a + yQ) + ^{/(a + yQ) - f{a + (y —糊}. 

Then, the result holds by letting x = a-\- yQ. 口 

PROOF OF LEMMA 1.6. For any > z : � w e need to prove /(^i + Q2)— 

f(zi) > f{z2 + Q2) — f (Z2) • Because Q2 = mQi for some integer m, we have 

f(zi + Q2) — fizi) = Y, /(么 1 + Qi + iQi) — fi^i + iQi). 
i=Q 

and 
m—1 

f{z2 + Q2) — f(z2) = +Ql+ iQl) 一 f{Z2 + iQl). 

By the strong Qi-jump-convexity of /⑷，we can obtain that for any i = 0,1,..., m -

1, f{zi + + iQl) — /(么 1 + iQl) > f{z2 + Qi+ iQl) — f{z2 + iQl). Therefore, 

f(zi + Q2) — fiz,) > f{z2 + ^ 2 ) 一 / f e ) . • 
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PROOF OF LEMMA 1.7. Define d{y) = min{d : d G argmiiideD{77(^0 + 7(2/ — 

d)}} . Then, for any z EZ and d{z) G D, we have 

r{z) = rj{d{z))+j(z-d{z)). (1.23) 

Next, we prove by discussing two cases that for any zi & Z, Z2 €： Z and 

> Z2, 

+ Q)-~ > + Q ) -

Case 1: zi — d{zi + Q) < Z2-- d�Z2) • In this case, d{zi + Q) > d(jZ2) + zi — Z2, 

which, by the convexity of r}{x) and Zi > Z2, implies 

V{d{zi + Q)) — v{d(zi + Q) + 之2 — zi) > r^d(之2) + 么i 一 么2) — 讽勿)).(1.24) 

Note that d{zi + Q),d(Z2) 6 D. As d(zi + Q) > d(jZ2) + - Z2 > d(Z2), then 

d{z2) -h zi — Z2 G D . Therefore, by the definition of d(zi), we have 

T{zi) = r]id(zi))^j{zi-d(zi)) 

< vid(z2) + Zi- Z2) + J{Z2 — d{z2)). (1.25) 

Also note that d{zi + Q) > d(zi + Q) -i- Z2 — Zi > d{z2h which implies d(zi + 

Q) Z2~ zi G D. Similarly, by the definition of d{z2 + Q), we can obtain 

r(z2 + Q) = v{d{z2 + Q)) + 7(^2 + Q- d{z2 + Q)) 

< r]{d{zi + Q) + Z2- ZI) + -F{zi + Q- d{zi + Q)). (1.26) 

By the definition of V{zi + Q) and r(^2) (referring to (1.23)), (1.24)，(1.25), and 



CHAPTER 1. INVENTORY SYSTEM WITH BATCH ORDERING 51 

(1.26), the following inequalities hold. 

r(zi + Q) — Tizi) — r{z2 + Q)+ T{Z2) > v{d{zi + Q)) — r]{d{z2) + 么i — Z2) 

—r}{d{zi + Q) + 22 - z^) + rj(d(Z2)) 

> 0. 

Case 2: zi 一 d(zi + Q) > Z2 - d(z2). In this case, zi + Q - d(zi + Q) > 

Z2 + Q — d(z2), which, by the strong Q-jump-convexity of 7 � � i m p l i e s 

7(么1 + Q - d(zi + Q)) — j (z i — d(zi + Q)) > j(z2 + Q - d ( z 2 ) ) —如 - d { z 2 ) ) . 

(1.27) 

By the definition of d{zi)y we have 

T{z^) = rJ{d{z^)) + 'y(zl~d{zl)) 

< V{d{zi + Q)) + ^{zi — d{zi + Q)). (1.28) 

Similarly, by the definition of d{z2 + Q), we can obtain 

r(^2 + Q) 二 vid{z2 + Q)) + 7(^2 + Q- d{z2 + Q)) 

< V(d(z2)) + 7(约 + Q — d(Z2)). (1.29) 

By the definition of r(2;i + Q) and r(z2) (referring to (1.23)), (1.27), (1.28), and 

(1.29), the following inequalities hold. 

+ Q) — r(么 1) — r(z2 + Q) + r(z2) > 7(尉 + Q~-d(zi + Q)) — 7(^1 — d(zi 十Q)) 

—7(^2 + Q- d{Z2)) + J{Z2 — d(Z2)) 

>0. 
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Therefore, r(y) is also strong Q-jump-convex. • 

PROOF OF COROLLARY 1.1. (a). Letting dt = yt - dt, then Jt{ytJt)= 

-R{yt 一 dt) + CtVt + E{ht[dt - A) + avt+i{dt — A) } - By the convexity of -R{x), 
A A 

Jt{yt,dt) is submodular in yt and dt. Then, the result thus follows from Topkis 

(1998, Theorem 2.4.3 and Lemma 2.8.1). 

(b). Define 

R{dt) = -R{dt) + ctdt 

and 

� � y t — dt) = B{ht(yt — dt — A) + (m+i(yt -dt- Pt)} + CtiVt — dt). 

Then, U{yt, dt) = R{dt) + uj{yt — dt). By the definition of d{zi) and d{zi + Q), we 

have 

-R{d{zi)) + u{zi - d(zi)) < -R{d{zi + Q)) + uj{zi — d{zi + Q))’ 

-R(d{zi + Q)) + u{zi + Q- d{zi + Q)) < -R{d(z^)) + uj{zi + Q — d{zi)). 

Combing them, we can obtain 

u{zi +Q-d{zi)) — uj{zi — d(zi)) > uj{zi +Q- dizi + Q)) — uj{zi — d{zi + Q)). 

By the strong Q-]ump-convexity of d{zi) < d{zi + Q). • 

1.6.2 Markov-Modulated Demand 

We only consider the single-stage case. Suppose the demand process to be driven 

by an exogenous Markov chain, i.e., the state of the Markov chain in a period 
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determines the demand distribution in that period. We show that batch-based 

policies with state-dependent order-up-to levels are optimal for the system. 

Specifically, the demand process is driven by a discrete-time Markov chain 

W = {W{t),t > 0} which has w states and is time homogeneous. Let I = 

{1,2,..., u*} be the state space of W and pii’i2, G W , be the one-step tran-

sition probability from state ii to %2-

For clarity, we assume that the events in each period occur in the following 

sequence. At the beginning of each period, (1) the state of the Markov chain W 

is observed; (2) a replenishment order, if any, is placed; (3) the order is received 

from the outside supplier; and (4) demand arrives during the period and at the 

end of the period, holding and backorder costs are assessed. 

Using the principle of optimality, we can write the following dynamic program 

for the above problem. For each t = 1,2, we have 

M^t, i) = -CtXt + inf {S{yt - Xt) - K J t { y u 0}， (1-30) 
ytEA{xt) 

where K is the fixed cost, and 

Jtivt, i) = Ltivu i) + ctVt + aE[vt+i{yt — A, H+i)\it = \. 

In the following, we first consider the case without a fixed ordering cost (i.e., 

K = 0), and then with K respectively. 

Zero Fixed Cost 

We now show that the optimal policy is of a (r, Q) structure with state-dependent 

reorder levels. 
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Theorem 1.6. (a) For any t = 1,2, Jtivui) and Vt{xt,i) are strong Q-

jump-convex for any given state i. 

(b) The state-dependent (r{i), Q) policy is optimal. 

Proof. We prove the results by induction. For t = T + 1, VT+I = 0 and the 

results clearly hold. Assume Vt+i{x,i) to be strong Q-jump-convex for any given 

i. By Lemma 1.2 parts (b) and (d), ujt+i(yt,i) = aE[vt+i{yt — A , =幻 is 

also strong Q-jump-convex for any given i. Then, with the same logic of Theorem 

1.1, we can obtain the desired results. • 

Positive Fixed Cost 

In this case, we prove that a state-dependent (s, S)q policy is optimal by using Q-

jump-J^-convexity. When Q = 1, Sethi and Cheng (1997) establish the optimality 

of state dependent (s, 5) policy. Their results are built upon iiT-convexity. As for 

all X E the respective functions are K-convex in our setting, their analysis 

can also carry over. 

Theorem 1.7. (a) For any t = 1,2, ...,T, Jtiyt, i) and Vt(Xt, i) are Q-jump-K-

convex for any given state i. 

(b) For any t = 1,2, ...,T, there exist s((i) and with si{i) < Slii), 

and si{i),S{{i) 6 where j = 1 , 2 , Q , such that the state-dependent 

(s(i),S(i))Q policy is optimal. 

Proof, The proof is similar to that of Theorem 1.2 and thus omitted. 



Chapter 2 

Inventory System with 

Quantity-Dependent Setup Cost 

2.1 Introduction 

We consider a periodic-review, stochastic, inventory-control system where the 

fixed order/setup cost depends on the size of each order. In particular, there is 

a prespecified order-quantity limit, C, based on which the setup cost can take 

one of two values, Ki or K : � I f the order quantity is within the specified limit, 

then the fixed cost is Ki\ otherwise it is K2- The ordering cost also includes a 

variable component that is linear in quantity. Mathematically, the cost of ordering 

quantity z is given by 

c � = K i l [ 0 <z<C]-h K2l[z >a] + cz, (2.1) 

55 
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where Ki and K2 are the two fixed setup costs, c is the unit purchase cost, and 

1 [.] is the indicator function with value one if the statement in brackets is true and 

zero otherwise. In this chapter, we concentrate on the case where 0 < Ki < K2-

Some examples of the specific cost structure can be found in transportation 

and production contracts with order-quantity restrictions. In such contracts, 

it is usually required that the buyer commits to a certain order volume in a 

given period, and deviations can be penalized with increased ordering costs. For 

example, if satisfying an order beyond the contract volume would necessitate 

a new setup or an emergency shipment for the producer, this additional cost 

can be reflected in the buyer's ordering cost. Faced with uncertain demand and 

implications of exceeding the quota, the buyer then needs to carefully control 

the inventory decisions. Chao and Zipkin (2008) and Henig et al. (1997) study 

inventory-control models motivated from similar applications in practice. The 

former article considers a case where the fixed cost K is incurred only if the order 

quantity exceeds a certain threshold, R, and there is no fixed cost otherwise, i.e., 

c{z) = Kl[z > R] -i-cz. Clearly, our order-cost function provides a generalization 

as we can select Ki = 0 to obtain their model. In a similar spirit, the cost 

structure in Henig et al. (1997) includes a linear purchase cost which is only 

incurred when the order size is larger than R, however no fixed cost is analyzed. 

For better intuition on the cost structure, consider the following examples 

with which the authors are familiar from practice. A firm in the aluminum 

profile industry produces customized profiles for desk and chair manufacturers 
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in a make-to-stock fashion and deliver them in short notice. A typical product 

first goes through a continuous production line and then is put into a furnace 

for solution heat treatment before a finishing process. A bottleneck is related to 

the heat treatment, which is confined by the capacity of the furnace equipment. 

The firm currently has two furnaces with different capacities, one being larger 

than the other but necessitating a higher setup cost. According to each period's 

production-order size, the company utilizes the appropriate furnace and incurs 

the corresponding setup cost. Other examples come from the electricity market 

and air/sea cargo carrier industry, where the service providers discourage the use 

of resources beyond contract capacity by monetarily penalizing overuse during 

peak periods. More such examples can be found in Gupta (1994) and Lippman 

(1969) • 

Our order-cost function captures the characteristics of order-size dependent 

fixed costs that are observed in practice. However, the complex structure brings 

analytical challenges. More specifically, the function given in (2.1) is neither 

convex nor concave, hence the existing results with general convex or concave 

ordering costs (Porteus 2002) are not directly applicable to our setting. Corre-

spondingly, we develop a new methodological concept to characterize the optimal 

policy in the presence of order-size dependent fixed setup cost. To explore struc-

tural results, we first tackle a special case of the problem with the condition 

Ki < K2 < 2Ki. We introduce a concept called C — {Kl^ iir2)-convexity and 

show that it is preserved in the dynamic programming recursions. This result 
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enables us to partially characterize the optimal ordering policy. The optimal pol-

icy is defined using five critical points and consists of different ordering decisions 

in five regions of the initial inventory level. Next, we consider the general case 

with the condition Ki < K2 and employ a concept called strong iiT-convexity to 

derive the preservation and optimality results parallel to the special case. In the 

general model, the optimal policy becomes more complex with less explicit deci-

sions in some of the decision regions. This motivates us to construct a heuristic 

policy that is easy to implement. Our computational experiments show that the 

heuristic policy performs very close to the optimal policy. 

Our analysis of the general case extends the work by Chao and Zipkin (2008) 

and the structure of the optimal policy for our model has some similarities to 

theirs. However, since the authors analyze a less complex cost structure, their 

optimal policy is a bit simpler and can be obtained from our optimal policy by 

setting Ki = 0. Furthermore, the definitions of some critical points and the 

construction of the heuristic policy are different in our analysis. In the special 

case, the condition Ki < K2 < 2Ki leads to an order-cost function that is 

subadditive, which implies that 0(^1+^2) < c(2i)+0(2^2) for all Zi�Z2 > 0, where Zi 

is the ordering quantity. Lippman (1969) discusses an inventory control problem 

where the order-cost function is nondecreasing and subadditive. Although our 

model with the condition Ki < K^ < 2Ki is a special case of Lippman's, we 

not only use a different method to analyze the problem, but also provide a more 

complete characterization of the optimal policy, which also facilitates constructing 
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a more efficient heuristic policy. 

When K2 oo and C < 00, our model can address the case with finite 

ordering capacity. Periodic-review inventory systems with finite ordering capac-

ity and fixed setup costs have been investigated by Gallego and Scheller-Wolf 

(2000), Shaoxiang and Lambrecht (1996), and Shaoxiang (2004). The first two 

articles tackle the problem in a finite horizon scenario and provide partial char-

acterizations of the optimal policy. Shaoxiang and Lambrecht (1996) show that 

the optimal policy is not generally of (s, S) type and rather follows an X-Y 

band structure, while no complete characterization is given within the X and Y 

bounds. Gallego and Scheller-Wolf (2000) provide further results towards more 

explicit characterization by using a notion that the authors call CK-convexity. 

Different from these works, the fixed cost in our analysis is not constant but de-

pends on the order size. Correspondingly, to partially characterize the optimal 

policy when Ki< K%< 2Ki, we introduce a different concept called C-{Ki,K2)-

convexity, which takes root in CisT-convexity (Gallego and Scheller-Wolf, 2000) 

and (i^i, i^s)-convexity (Ye and Duenyas, 2007). In the general case, we use 

strong iiT-convexity, a restricted version of strong CK-convexity due to Gallego 

and Scheller-Wolf (2000), to prove our optimality results. 

We also consider a more general setting, multiple fixed costs, with the following 

ordering cost structure , 

n 

c{z) = Y^ Kil[A <Z< a + i ] + cz, (2.2) 
i=l 

where Ki^i > Ki and Ci+i > Ci‘ 
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However, we numerically show that the optimal policy sometimes is very com-

plex. As a special case, we study the trucking problem, where Ki+i — Ki = K, 

Ci+i — Ci = C, and n —> H-oo. Such a problem can be observed when the same 

setup activities with, the identical fixed cost are required, when the order quan-

tity exceeds some threshold points. For example, a Hong Kong based herbal tea 

manufacturer bottles its drinks outside of Hong Kong but maintains a warehouse 

locally. The company ships its products from the bottling plant using a heteroge-

nous fleet of trucks, which are charged at different fixed costs per truck plus a flat 

rate per kilogram shipped. The cost structure is such that the fixed portion of the 

ordering cost increases as the size of an order increases. In this case, C represents 

the capacity of a truck and K the cost of its use. Iwaniec (1979) provides the 

conditions under which the full-load ordering policy is optimal: if the inventory is 

below some critical point 0, order the smallest number of full vehicle loads to raise 

the inventory level just above 9; otherwise, do not order. These conditions are, 

however, restrictive and difficult to verify (or can be verified only numerically). 

Here, we relax these conditions and explore the structure of optimal policies. 

Our research contributes to the periodic-review, stochastic, inventory-control 

systems literature by analyzing an order-size dependent fixed cost, which is moti-

vated from industry practices. Analytically, we contribute by introducing a new-

class of functions, and extending or redeveloping several existing results in the 

literature using different techniques. As inventory costs continue to represent sig-

nificant operating expenses for companies, we believe our research findings will 
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be valuable in efficient management of these systems. 

2.2 The Model 

Consider a firm which manages a single-product, periodic-review inventory system 

facing stochastic demand over a finite time horizon of T periods. At the beginning 

of each period t, the firm may place an order, in which case an ordering cost as 

shown in (2.1) is incurred: An order of size C or lower is available for a fixed 

setup cost Ki, however, ordering larger than C requires a higher setup cost K:. 

Once placed, the order arrives instantaneously and is then used as part of the 

on-hand inventory to satisfy the random demand. Any unsatisfied demand is 

fully backorderedj and holding/backorder costs are assessed at the end of a given 

period. We assume that all costs in future periods are discounted by o; < 1 and 

demands in consecutive periods are independently distributed. 

For period t = 1,2, ...,T, let 

Xt 二 inventory level at the start of period t, before an order is placed. 

Ut = inventory level after any order is placed, but before demand is realized. 

Dt = nonnegative demand in period t. 

L(jjt) = one-period expected holding/backorder cost with inventory level yt. 

We assume that L{yt) is convex and L{yt) = oo. Let ftixt) be the 

total expected cost when the initial inventory in period t is Xt and the optimal or-

dering policy is employed in the remaining t periods. The dynamic programming 
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recursion for ft{xt) can be written as 

ftixt) = -cxt + inf {Kil[xt <yt<xt + C]-^ i^zlfc/i > + C] + Gt{yt)]. 

(2.3) 

where Gt{yt) = cyfi-L{yt)+aE[ft-i{yt — Dt)]. The firm's objective is to determine 

the policy that returns / i • � for all x. We assume the boundary conditions 

fo{x) = 0. For convenience, we also assume that c = 0 (Veinott and Wagner 

1965). 

We analyze the problem in two cases. In the first case, we assume that the 

condition Ki < K2 < 2Ki holds, which allows us to exploit a new type of 

convexity property to derive some structural results. In practice, such a condition 

might correspond to situations where a higher order quantity results in a larger 

setup cost, but the difference is limited with the smaller setup cost. For example, 

dispatching a high capacity truck at a high setup cost can be more cost effective 

than dispatching two identical, smaller-capacity trucks each with lower setup 

costs. Our analysis in the second case considers the general condition Ki < K2. 

2.3 The Case with Condition Ki < K2 < 2Ki 

In this section, we consider a special case with the condition Ki < K2 < 2Ki. Our 

analytical results in this case are facilitated by a notion that we call C~{Ki, K2)-

convexity. In the following, we first formally define C-{Ki, i^2)-convexity and 

derive some preliminary results for the analysis of the optimal policy. 
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2.3.1 Preliminary Results: K2)-Convexity 

Many different inventory models with setup costs have been studied in the lit-

erature. According to the structure of the model, different kinds of convexity 

(concavity) properties have been employed to characterize the optimal policy. To 

analyze our problem, we introduce a new class of functions that are C-{Ki^ K2)-

convex and show a preservation property, under which optimality results are 

derived. To connect this new concept with other related notions in the litera-

ture, we first provide a general definition using a property that we refer to as 

cr(A")-convexity. 

Definition 2.1. A real-valued function G is called a(K)-convex for K > 0, if 

for ally, 0 < b < 00, and z E [0,00)， 

G{y + ；̂) + a{K) > G{y) + ~{G{y) — G{y — 6)}. 

For convenience, we write the variables in one dimensional form. This def-

inition can easily be extended to the multidimensional case. Note that, a{K)-

convexity corresponds to mere convexity when cr(K) ~ 0, i^-convexity when 

cr{K) = K (Scarf, 1960), symmetric-i^-convexity when a{K) == max{J, 1 — 

(Chen and Simchi-Levi 2004a), (iCi, i^2)-convexity recently proposed by Ye and 

Duenyas (2007) when cj{K) = (1 — f}Ki + fiiTa-niin{f, 1 - l}mm{Ki, K2}, and 

weak (iTi, X2)-convexity when a{K) = (1 — + fiiTs (Sempie, 2007). 

As a general procedure, we try to find a right a (K ) to define a class of functions 

with appealing properties, which we then use to characterize the optimal policy. 
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To tackle our model, we define a particular cr(i^)-convexity, which has similarities 

to the (Ki, -convexity of Ye and Duenyas (2007). 

Definition 2.2. A real-valued function G is called C-{Ki, K2)-convex for Ki, 

K2 > 0； if for all y, 0 < a < 00, 0 < b < 00, and z G [0,00)； 

G{y + z) + K^) > G{y) + ~{G(y - a) - G{jj - a - 6)}, 

where 
( 

c j c (KuK2)= I (2.4) 
K2 z>C. 

\ 

See Figure 2.1 for an illustration of K'2)-convexity. In the graph, let 

A {y - a - b,G{y — a — 6)), B = [y - a,G{y - a)), and R = 

Further, for C > > 0 let B = {y + zi,Ki + G{y + 尉））’ and for Z2 > C let 

F = {y Z2j K2 + G{y + Z2)). Note that the points are selected such that A and 

B lie on the left of y, E lies between y and y + C, and F lies on the right of 

y + C. Geometrically, C-{Ki, •K2)-convexity means that the two lines drawn from 

any point R connecting points R and E and connecting points R and F both 

have larger slopes than a line connecting any two points A and B behind y. Note 

that when K2— 4-00, C-{Ki, K2)-coiivexiiY reduces to CiC-convexity (Gallege 

and Scheller-Wolf, 2000). 

Using the definition, we show some properties of C-{Ki, K2)-convex functions, 

which will be useful in our analysis. 

Lemma 2.1. (a) A convex function is also a C-(0,0)-convex function. 
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G{x) F. 

y -a-h y — a y y + zi y + C y +勿 

Figure 2.1: Geometric Illustration of a C-{Ki, K2)-coTivex Function 

(b) If f is C-{Ki, K2)-convex and 7 is a positive scalar, then 7 / is C-('yKi, 

'jK2)-convex. 

(c) If f is C-{Ki, K2)-convex, then it is also C-(K[, K2)-convex for any K[ > 

Ki and K'^ > K2. 

(d) The sum of a K2)-convex function and a C-(K[, K^j-convex function 

is C-(Ki + K2 + K'^yconvex. 

(e) If V is C-{Ki, K2)-convex, (p is the probability density of a positive random 

variable, and G{y) = then G is also C-{Ki, K2)-convex. 

The stated results imply preservation properties for C-{Ki, i<r2)-convexity un-

der some common operators and are relatively straightforward to show. Next, we 

prove that C-(Ki, -convexity can be preserved under a minimization operator. 

This nontrivial result will play a central role in deriving the structural properties 
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of the optimal cost functions. 

Theorem 2.1. Suppose G{x) is a C-{Ki^ K2)-convex function and Ki, K2 are 

nonnegative constants such that Ki < K2 < 2Ki. Then, f{x) = m.my>x{Kil[x < 

y <x + C]+ K2l[y > x-\-C]-\- G[y)), is also C-{Ki, K2)-convex. 

In proving the theorem, it turns out that the condition K2 < 2Ki is necessary. 

(Otherwise, we refer to part (a) of case (VI) in the proof, where the assumptions 

fix —a) = K2 + G(x — a — b+fjr) and z e [0,C] imply = Ki. Then, by 

setting f f i = 0 and K2 > 0, we find that Ki-hG{x-}- z-i- fi) — f{x) + crci^i, K2)= 

G{x z •+• fj) — f{x) < 0, which contradicts with the definition of C-{Ki, K2)-

convexity.) 

2.3.2 Analysis of the Optimal Policy 

To characterize the optimal policy, we first investigate the structure of objective 

function. Let us define 

Jt{x) = min {Kil{z > 0) + Gt{x + z)}, and (2.5) 

Vtix) = i n f 〉 工 ） + My)}. (2.6) 

Then, we have the following result: 

Lemma 2.2. For any K2 > Ki, ft{x) = Vt{x). 

Lemma 2.2 specifies an alternative representation of the objective function 

ft{x), which facilitates easier analysis in the rest of this chapter. 
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Having established the technical results, we proceed to characterize the op-

timal policy by using some critical points. We first verify the continuity of the 

functions ft{xt) and Gt{xt), which makes the critical points well-defined. 

Theorem 2.2. For any K2 > Ki, ft{xt) and Gt{xt) are continuous functions for 

any t = 0,1, ...,T. 

Definition 2.3. Given the non-negative constants C, K\ and K2, let us define: 

S = arg inf Gt{x)] 

Si = inf{:c|C?t(x) < K i + Gt{S)y, 

S2=-mi{x\Gt{x)<K2 + Gt(S)}. 

Note that we drop the subscript t from the definition of critical points for 

notational simplicity. The critical points Si and S2 can be interpreted as the points 

below which ordering lower and larger than C up-to respectively, dominates 

ordering nothing. With Theorem 2.2 on hand, the continuity can allow the critical 

points to take the corresponding values, e.g., Gt(si) = K j + Gt{S). We can use 

Si, S2, and S to prove the following lemma. 

Lemma 2.3. If Gt{x) is a C-{Ki, K2)-convex function, then 

(i) Gt{y) + Ki> Gt{x) for any x + C > y > x > si； 

(ii) Gt{y) + K2> Gt(x) for any y > x > Sa； 

(iii) s2<si< S; 

(iv) Gt{x) is non-increasing in (—00, S2); 
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(v) Jt{S) = Gt{S). 

Figure 2.2: Illustration of Critical Points in Definition 3 

Please refer to Figure 2.2 to better visualize the critical points. The preceding 

lemma reveals some optimality results. For example, when a; > s!, it is more 

costly to place an order of any size than not to order, hence "order nothing" 

is the optimal decision in this region. However, the given critical points are 

not sufficient to characterize the optimal policy completely in all regions. For 

example, when S2 < ^ < -̂ i, one could think that it is optimal to order up to S if 

S — x < C, and when x < S2, it is optimal to order up to 5 if 5 —a; > C. However, 

this may not be true. For illustration, we reconsider the example in Figure 2.2 and 

concentrate on the points x and y. Given the initial inventory level x < S2, notice 

that ordering up to y, instead of S may result in a lower cost, i.e., Gi(y) + Ki as 

opposed to Gt{S) + K2, provided that y — x < C and S — x > C. Consequently, 

we need to define additional critical points to characterize the structure of the 

optimal policy. 

Definition 2.4. Given non-negative constants C, Ki and K2, and C-(J{i,K2). 
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convex functions Gt{x) and Ji{x), let us define 

s = inf{:r|J力⑷ < K 2 + Jt(S)}; 

s' = niin{5' — C, si}; 

s" = inf{x\s <x<s\ Jt{x) < i^i + Gt{x + C)}. 

The time indices of the critical points are again suppressed for notational 

convenience. Here, s is the point below which ordering larger than C up-to S 

dominates ordering no more than C and s" is the point below which ordering C 

dominates ordering less than C. The following lemma, together with Lemma 2.3， 

will be vital in partially characterizing the optimal policy. 

Lemma 2.4. If Gt(jr) is a C-{Ki, K2)~convex function and Jt{x) and Gt{x) sat-

isfy Equation (2.5), then 

(i) My) + > Jt{x) for any y> x> s; 

(ii) s + C < 

(iii) s < s" < < 51； 

(iv) Jt(x) > i^i + Gt(x + C) for any s <x < s". 

We use the following five critical points (s, s", Si,S) to characterize the 

optimal policy. The decision area is now divided into the following five regions: 

( -0O,s) , [S,S〃)，[S",S')’ [5',Si), [si ,+oo). 

Theorem 2.3 establishes our main result in characterizing the optimal policy. For 
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illustration, we show the critical points and decision areas in Figure 2.3, where 

we also summarize the optimal ordering decisions. 
Order up-to S Order up-to y < S Order nothing, z* = 0 Order up-to S Order nothing, z' = 0 
z' > C z* =C or C > z* > 0 but C > z* > 0 

1 1 1 1 1 
s s" S' Si S X 

Figure 2.3: Optimal Policy for the Case where Ki < K2 < 2Ki 

Theorem 2.3. (a) Gt{x) and ft{x) are K2)-convex for all t. 

(h) For each t = 1,2, ...T, there exists an optimal policy that can be charac-

terized by the points s < s" < s' < si < S in the following way: 

(i) Order up to S, when x < s; 

(ii) Order exactly C, when s <x < s"; 

(iii) Order no more than C, when s" < x < s'; 

(iv) Order up to S, when s' < x < Si； 

(v) Order nothing when x > si. 

Proof, (a) We show the proof by induction. First, we assume that ft-i {x) is 

C-{Ki, K2)-convex. Then, it follows from parts (b), (c) and (e) of Lemma 2.1 

that aE[ft-i{y — D)] is C-{aKi,aK2), and thus iiy-convex. Prom the 

properties of C-{Ki^ i^2)-convexity in parts (a), and (d) of the same lemma, we 

can easily verify that Gt{y) is C-{Ki, K2)-coiiYex. We can now apply the result 

in Theorem 2.1 and conclude that ft{x) is C-{Ki, /f2)-convex. 
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(b) We divide the decision area into five regions (Figure 2.3): 

( -00 , s), [s,s"), [s",s'), [s'’si), [si,+oo), 

and prove that the given policy is optimal in each region. 

(i) X € (—ooj s): Prom the definition of s and part (v) of Lemma 2.3, for any 

X < s, we have Jf(rr) > Jt{S) + 二 Gt(^S) + K2, which implies that ordering 

larger than C up-to S dominates ordering no more than C. Since s < S — C by 

part (ii) of Lemma 2.4, ordering larger than C up-to S is a feasible action, and 

thus it is optimal in this region. 

(ii) a; e [5, s"): Prom part (iv) of Lemma 2.4, it is clear that ordering less 

than C is not better than ordering exactly C. Further, it follows from part (i) of 

the same lemma that ordering no more than C always dominates ordering larger 

than C. Hence, it is optimal to order exactly (7. 

(iii) X G [s� , Similar to the previous case, it follows from part (i) of Lemma 

2.4 that ordering no more than C always dominates ordering larger than C. 

However, in this case, the optimal decision is not always to order C, since Gt{x) 

may or may not be decreasing in this subinterval. Correspondingly, we know that 

a quantity between 0 and C must be ordered, but we cannot determine its exact 

value. 

(iv) X e [s', si): We analyze this region in two scenarios. In the first scenario, 

S — C > si, i.e. s' 二 Si, and then this region becomes empty; otherwise, we 

consider the second scenario, s' = S — C, which implies that given the initial 

inventory level x within the region, the postorder inventory level can reach S by 
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ordering no more than C. Prom the definition of si, for any a: < si, we have 

Gt(x) > Gt(S) + Ki. Furthermore, since S is the global minimizer of Gt{x) and 

< we have Gt{S) + Ki < Gt{x) + K2 for any x. Consequently, the optimal 

decision in this region is to order up to S. 

(v) X € [si, +00): FVom parts (i) and (ii) of Lemma 2.3 and Equation 2.4, it 

follows that Gt{x + z) + ac{Ki,K2) > Gt{x), and the optimal decision is clearly 

not to order. • 

Note that, when Ki = K2, our model reduces to the classical inventory model 

with a fixed cost, for which the optimal policy is well known to be of (s, S) type. 

We can show that our optimal policy takes an (s, S) form if we can verify that 

Si = s when Ki = K2- From Lemma 2.4, we know Si > 5, hence it suffices to 

prove that si < s, which, by the definition of 5, is equivalent to proving that for 

any x < Si, Jt{x) > Jt{S) + K2. By the definition of Jt⑷，we have 

Jt{oo) = mm{Gt{sc), K^ + min Gt{x + z)}, 
Q<z<C 

>Tam{Gt{x),K2 + Gt(S)}, 

where the first inequality follows from the definition of S and the last inequality-

follows from Lemma 2.3(v) and that x < si. Hence, we can conclude that si < s 

and obtain the desired result. 
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2.4 The Case with Condition Ki < K2 < 2Ki and Heuristic 

Policy 

In this section, we remove the condition K2 < 2Ki and analyze the general case 

where the two setup costs only satisfy K2 > Ki. Our analysis so far has shown 

that G- {Ki, i(r2)-convexity may not be preserved under this general condition. 

(Please refer to the discussion after Theorem 2.1 for details.) To derive some 

results regarding the optimal policy in this case, we use a different concept called 

strong /(T-convexity, which is a less restricted form of -convexity. As a 

result, the characterization of the optimal policy becomes less explicit and more 

complex in some regions of the state space. 

2.4.1 Preliminary Results: Strong iC-Convexity 

We start with the definition of strong i^-convexity. 

Definition 2.5. A real-valued function G is called strong K-convex for K > 0, 

if for all y, Q < a < 00, Q <h < 00, and z € [0,00), 

Giy + z) + K> G{y) + ~{G{y — a) — G{y — a — b)}. 

Strong iC-convexity is a special form of strong Ci^-convexity with C —> 00, 

which was introduced by Gallego and Scheller-Wolf (2000). Clearly, strong K-

convexity is iiC-convexity and C-{Ki, i<'2)-convexity is strong i^2-convexity, if 

K2 > Ki\ however, the reverse may not hold. For completeness, we summarize 

some properties of strong iiT-convex functions that are useful for our analysis. 
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Lemma 2.5. (a) If f is convex, then f is strong K-convex. 

(b) If f is strong K-convex and 7 > 0, then 7 / is strong '•yK-convex. 

(c) If f is strong Ki convex, then it is also strong K2 convex for any K2 > Ki. 

(d) The sum of a strong Ki-convex function and a strong K2-convex function 

is strong {Ki + K2)-convex, function. 

(e) If f is strong K-convex and X is a positive random variable, then g{x):= 

Ef{x — X) is strong K-convex. 

Proof. The proof is similar to that of Lemma 2.1. • 

In Theorem 2.4, we show a preservation property of strong iiT-convexity, which 

will enable us to prove that the cost functions are strong i^2-convex and partially 

characterize the optimal policy in the next section. 

Theorem 2.4. Suppose Gt{x) is a strong K2~convex function, and Ki, K2 are 

nonnegative constants such that Ki < K2. Then, ft{x) = miny>3;{i^il[a: < y < 

X + C]+ K2l[y > X + C]-\- Gt{y)} is also strong K2-convex. 

Proof. Referring to the proof of Theorem 2.1, the result directly follows from 

the fact that K2 > CTC{KI,K2). • 

2.4.2 Analysis of the Optimal Policy 

Before we proceed, we note that Lemma 2.2 is valid under the general case，i.e., 

ft(x) = Vt(a:), where Vt(x) is defined as in Equation (2.6). 
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We describe the optimal policy using the critical points (s, s", s', Si, S) that 

were introduced in Section 2.3. First, we describe some properties of Gt{x)^ Jt(3：), 

and ftix) with respect to these critical points. 

Lemma 2.6. If Gt{x) is a strong K2-convex function, and Jt{x) and Gt{x) satisfy 

Equation (2.5), then 

(i) Gt{y) + K2> Gt{x) for any y > x > S2; 

(ii) Gt{x) is non-increasing in (—oo, S2) and Gt{S) = Jt(5); 

(iii) Jt{y) + K2> Jt(x) for any y > x > s; 

(iv) Jtix) >Ki+ Gtix + C) for any s < x < s". 

(v) s<s" <s' <Sx<S and. s^C <S. 

Lemma 2.6 verifies that the results in Lemmas 2.3 and 2.4 continue to hold 

in the general case, except Lemma 2.3(i), which results in a different ordering 

decision in the region [si, +00) • The characterization of the optimal policy for all 

regions is given in the following theorem. 

Theorem 2.5. (a) Gt{x) and ft{x) are strong K2-convex for all t. 

(b) For each t = 1,2, ...T, there exists an optimal policy that can be charac-

terized by the points s < s" < s' < si < S in the following way: 

(i) Order up to S, when x < s; 

(ii) Order exactly C, when s <x < s"; 

(iii) Order no more than C, when s" <x < s'; 
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(iv) Order up to S, when <x < si； 

(v) Order no more than C when x > Si. 

Proof, (a) We show the proof by induction. First, we assume that ft-i{x) is 

strong i^2-convex. Then, it follows from parts (b), (c) and (e) of Lemma 2,5 that 

aE[ft-i{y — D)] is strong aK2-coiivex, and thus strong iiTg-convex. Prom the 

properties of strong K'-convexity in parts (a) and (d) of the same lemma, we can 

verify strong iir2-convexity of Gt{y) and, applying Theorem 2.4, we conclude that 

ft{x) is strong iir2-convex. 

(b) All cases except (v) can be proved along the same line of arguments as in 

the proof of Theorem 2.3. In case (v), Theorem 2.3 uses the result in Lemma 2.3(i) 

which no longer holds. Hence, it is sufficient to consider the last region a; > 5i 

to complete the proof. Note that, Lemma 2.6(i) can still guarantee ordering less 

than C dominates ordering larger than C. However, we can not determine the 

exact value of the optimal order quantity. • 

Excluding the last region, the optimal policy in the general case is identical to 

that in the special case. In particular, for a given initial inventory a; G [si, oo), the 

policy under the condition Ki < K2 < 2Ki indicates "ordering nothing" as the 

optimal decision, whereas the corresponding decision in the general case is less 

clear. This is indeed expected since the condition under the special case is stronger 

than Ki < K2 and facilitates tighter results due to C-{K1, i^"2)-convexity. 

Note that, when we assume Ki = 0, our model reduces to that studied by 

Chao and Zipkin (2008). In their analysis, the characterization of the optimal 
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policy is as shown in Figure 2.4. In our model, setting Ki = 0 leads to the 

equality Si S, which implies that s' = S — C. Correspondingly, we can see that 

our policy is identical to theirs with s" = u. Similar to a result in the authors' 

study, we can easily verify using induction that the optimal cost function ft{x) 

is decreasing in C. 
Order > C Order = C Order < C Order < C Order < C 
Up to S Up to y < S Up to y < 5 Up to S Up to y > S 

U 

Figure 2.4: Optimal Policy given by Chao and Zipkin (2008) 

2.4.3 A Heuristic Policy 

In Theorem 2.5, we have provided a characterization of the optimal policy. How-

ever, the policy is not explicit regarding the optimal ordering decisions in the 

regions where the initial inventory is between s" and s' or is larger than 5i. This 

complication is mainly due to the fact that Gt{x) may not be well-behaved in 

the corresponding regions. In particular, G{x) may not be unimodal, i.e., de-

creasing in (—oo, S) and increasing in {S, +oo), and even if it is, we may still not 

know whether Gt{x) decreases sufficiently low that ordering exactly C becomes a 

better decision than ordering nothing. Consequently, implementing the optimal 

policy requires exhaustive search procedures, which can be undesirable from a 

practical perspective. Hence, we turn our attention to development of a heuristic 

policy that simplifies the decisions in the corresponding regions. To construct an 

easily-implementable heuristic policy, we assume that Gt{x) is unimodal. Under 
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this assumption, it is clearly optimal to order nothing in [s：, oo). Furthermore, 

letting the unit penalty/shortage cost per-period be p, we note that the marginal 

profit of adding one unit to the on-hand inventory can be assumed to be p, when 

the inventory level is low. Thus, if pC > Ki, it is reasonable to assume that 

Gt{x + C) + Ki < Gt{x), which together with the monotonicity of Gt(x) implies 

that ordering exactly C is optimal; otherwise, ordering nothing is optimal. Based 

on the preceding assumptions, we propose the following heuristic policy: 

(i) When the initial inventory level is less than s, order up to S. 

(ii) When the initial inventory level is between s and s〃，order exactly C. 

(iii) When the initial inventory level is between s" and order exactly C, if 

pC > Ki\ order nothing, otherwise. 

(iv) When the initial inventory level is between s' and si, order up to S. 

(v) When the initial inventory level is above Si, order nothing. 

We test the performance of the proposed heuristic policy with some numerical 

instances. Our computational experiment is designed as follows. We assume that 

the one-period cost function takes the form L{y) = hE[{y — D)+] -\-pE[{D — y)+]， 

where h and p are the unit holding and penalty costs per period, with values 

= 4, and p = 2 or 8. The rest of the parameters are selected as follows: 

a = 0.9, T = 10, C = 2,10, and 20, Ki = 10, and K2 = 10,20,50, and 200. In 

the base case, we represent the demand using Poisson distribution, with mean 

values A = 10，20, and 30. The state space is taken as the interval [—200,300]. 

Let f f and ff be the discounted cost of heuristic and optimal policy, respec-
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tively. To evaluate the performance of the heuristic, we use a measure based on 

relative error, which is defined as follows. 

E i = max iff -f?)If?. 

Similar to Chao and Zipkin (2008), we take the maximum relative error over all 

possible states of x. 

Table 1 summarizes the results. Since the optimal policy is only partially 

characterized, we obtain the optimal costs through complete enumerations. We 

also note that our assumption on the unimodal structure of Gt{'^) actually holds 

in most of the cases that we tested. Prom the results, it appears that the heuristic 

policy is optimal in majority of the cases, with less than 3% maximum relative 

errors. The cases with small p and C values or large K2 values seem to have the 

worst performances. 

In alternative settings, we test binomial and symmetric triangle demand dis-

tributions. In the first case, D follows the distribution function B{x\n, q)= 

— where ElD] — nq and Var{D) = nq{l — q). In the numerical 

instances, we keep the mean demand fixed, i.e., E[D\ = nq = 20, and test various 

levels of variance, by altering q. Table 2.2 shows the results. We can see that the 

heuristic policy performs quite well with the largest error around 1%. For the 

case with symmetric Triangle distribution, we test instances with the lower limit 

set at zero and the upper limit at the values 10, 30，50 and 100. Similarly, the 

heuristic policy gives near-optimal solutions. For space restrictions, we omit the 

computational results for this case. 
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2.5 A Special Case of the General Setting: Multiple Iden-

tical Fixed Costs 

In this section, we consider a more general model where the ordering cost depends 

on multiple volumes denoted by Q with a corresponding fixed cost K ” i = 

1 , 2 , n . Without loss of generality, we assume Ct > Cj for any i > j. Further, 

we let Ci = 0 and Cn+i = +oo. In detail, when the order quantity is between Ci 

and Cj+i, the fixed cost is Ki, Similarly, we assume that K^ have the increasing 

property, i.e. K^, > Kj for any i > j. Then, our problem can be formulated as a 

dynamic programme by: 

n 

ft{xt) = inf { V K,l[xt + + C ^ ] + Gtfet)}, (2.7) 
Z=1 

where Gt{yt) = L{yt) + OiE[ft-i{yt — A)] -

However, it is difficult to deal with such a general problem. First, from a 

technical viewpoint, the conditions that guarantee the preservation of C-{Ki,K2)-

convexity seem very restrictive, although the definition can be easily extended to 

the multiple setup costs case. Second, the policy is indeed very complex in some 

cases. Consider the following example: Demand in each period has a Binomial 

distribution with X = 27 and q = 0.75. The discount factor is 0.9. There are 

linear holding and backlog costs with rates h = 1 and p = 8. The fixed costs are 

Ki = 20, K2 = 40, and K3 = 60 and the capacities are C2 = 10 and C3 = 40, 

respectively. Consider T = Q. The following table shows the optimal policy for 

this example. We can see that in some areas, for example, ( -16 , -11], ( - 6 , —3], 
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and (14,17], it is optimal to order up-to certain local minimums. 

xt e (-00’ -21 ] 

order up-to 44 

( - 2 1 , - 1 6 ] 

order exactly 40 

( - 1 6 ’ - 1 1 ] 

order up-to 24 

(—11,-6] 

order exactly 40 

( - 6 . - 3 ] 

order up-to 34 

工t e ( - 3 ,4 ] 

order exactly 40 

(4,9] 

order up-to 44 

(9,14] 

order exactly 10 

(14，17] 

order up-to 24 

(17,+oo) 

order nothing 

In the following, we consider a special case, the trucking problem, studied by 

Iwaniec (1979), with C^+i —Ci==C, K^+i — Ki = K, and n —> +oo. In this case, 

C represents the capacity of a truck and K the cost of its use. 

Let Jt{cc) = Gt{x), and define 

Jl(x) = min {Kl{z > 0) + Xf^ix + z)}, 2 = 1,2,.... (2.8) 

We may interpret Jl{x) as the minimal cost of using at most i trucks in period t 

with the beginning inventory level x. 

Then, we can re-express ft{x) and have the following result: 

Lemma 2.7. For any 力=1’ 2, ft{x) = lim!—+oo Ji(x). 

Proof. For i = 1 , 2 , w e define 

AHx) = min \ k , + min • 

Clearly, ft(x) = We first prove the recursion property of 

A 计 1(2；) = min{AX^), K + min A^fe)}. (2.9) 
xKy-^x-^-C 
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Note that 

K + min AHy) = K min min < K. + min Gt(z) > 
X<Y<X+C X<Y<X+C L<3<I [ Y+CJ<Z<Y+CJ+I J 

= K + min min {K. + min GAz) > 

= m i n < + min Gt(z) > . 
1力9 I “ x+Cj<z<y+Cj+2 

Since Kj+i 2 i^” we have 

mm{A'{x),K + min A^fe)} = min{A^(a;), K^+i + min Gt(y)} 

X<Y<X+C X+CI+I <Y<X+CI+2 

= A 出 ⑷ . 

Next, we prove by induction that for any 1 — 1,2, 

Jl{x) = min {Gt{x), A'{x)}. 

The result clearly holds for z = 1. Suppose it holds for z = j . Then, we can 

obtain 

J f i ⑷ 二 彻 ) ’ i ^ + rmn^Jliy)} 
x<y<x+C J 

= miii{Gt(3;),A^x),K+ min Gt(y),K+ min A-'fe)} 
X<Y<X+C X<Y<X+C 

= m i n < Gt {x), A { x ) , Kj+i + min Gt {y) 
t x<y<x+C;,+2 

二 m i n { G t W ， A 州⑷ } , 

where the third equality follows from (2.9). 

Therefore, ft(x) = mm{Gt(x), = liniH+oo Jli^)- • 

Our analysis is facilitated by the definition of (C, i^)-convexity, which is due 

to Shaoxiang (2004), who in turn extends Gallege and Scheller-Wolf (2000). 
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Definition 2.6. A real-valued function G is called (C, K)-convexity, if for all y, 

0 < a < 00, and 0 < 6 < oo, V2； G [0, C], 

G{y + z) + K> G{y) + ~{G{y -a) — G{_y~~a- 6)}, 

and 

{G{y-a - C) 一 G{y-a) - K)/C > iG{y) — Giy + z) - K)/z}. 

We list some of properties of (C, i^")-convexity, while for their proofs, refer to 

Shaoxiang (2004). 

Lemma 2.8. (a) A convex function is also a (C, 0)-convex function. 

(b) If f is (C, K)-convex and 7 is a positive scalar, then 7 / is (C.'jK)-convex. 

(c) If f is (C, K)-convex, then it is also (C, K')-convex for any K' > K• 

(d) The sum of a (C,Ki)-convex function and a (C,K2)-convex function is 

{C, K\ + K2)-convex. 

(e) Ifv is (C, K)-convex, 4> is the probability density of a positive random vari-

able, and G{y) = v{y — then G is also (C, K)-convex. 

Lemma 2.9. Suppose G{x) is (C, K)-convex, then there exists Y, such that 

(i) G{x) is a decreasing function for x < Y; 

(ii) G{x -C)> G(x) + K for x< Y; 

(iii) G{x) < G{x -{-z)-hK,forx>YandO<z<C. 
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The (C, iir)-convexity is used to solve the traditional capacity inventory model. 

In that case, Property (i) and (ii) imply that it is optimal to order full capacity 

when the inventory level is below Y—C] and property (iii) indicates that when the 

inventory level is above Y, it is optimal not to order. However, when the inventory 

level is between Y ~ C and Y", the optimal decision cannot be characterized. In 

fact, as Shaoxiang(2004) shows numerically, in such an interval, the ordering 

pattern will be different from problem to problem. 

Let S = arginf Gt(x) and y*(xt) be the optimal order up-to level of Problem 

(2.7) with the initial inventory level Xt. 

Theorem 2.6. For any t = 1,2,…，T, 

(i) ft{x), Gt{x) and Jl{x) are (C, K)-convex, where z = 1,2,. ‘.; 

(ii) there exists Yt such that y*{xt) = xt, when Xt > Yt； y*{xt) = y*{xt + C), 

when Xt <Yt- C; 0 < y*{xt) < C, when Yt - C <Xt <Yt 

Proof, (i) We prove the results by induction and suppose that ft-i{x) is (C, K)-

convex. We first prove that Jl{x), i = 1,2,... are (C, K')-convex. By Lemma 

2.8 and (C, fr)-convexity of ft-i(x), Jf{x) = Gt{x) is also (C, i^)-convex. Note 

that Problem (2.8) is a capacity inventory problem with setup cost K. Referring 

to Shaoxiang (2004), (C, ii^-convexity can be preserved under minimization of 

Problem (2.8). Therefore, Jt{x) is (C, if)-convex. With, the same logic, we can 

obtain that J彻),i = 1,2,..., are (<7, i^)-convex. By Lemma 2.7, ft{x) is also 

(C, i^)-convex. 
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(ii) Because Gt(x) is (C, K)-cojivex, by Lemma 2.9 (iii), we have that Gi{xt) < 

Gt{xt + mC + 2) + mK, for any Xt > Yt, nonnegative integer m and 0 < z <C, 

which implies that it is optimal not to order, when Xt > Yt, and 0 < y*{xt) < C, 

when Yt~C < Xt < Yt. Please refer to Shaoxiang (2004) for the detail definition 

of Fi. 

Lemma 2.9 (i) and (ii) imply that for any Xt <Yt — C, 

mm{Gt{xt), K + inf Gt{yt)} = K + Gt(xt + C). 
3^t<yt<xt+C 

Therefore, for any Xt <Yt — C, we can obtain 

ft{xt) = inf I V Kd[xt + a<yt<xt + C.+i] + Gt(yt)] 

二 n i i n { G i ( : E f i n f Gt{yt), 
^t<yt<xt+C 

+00 inf ^ V 凡 11 工i + a < y t < x t + a + i ] + Gtivt)} 
yt>xt+C ^ 1=2 

= min + Gtixt + C), inf Kdlxt + a < y t < X t - \ - a + i j + Gt{yt)] 

r 4-00 

= mini Gtixt + C), inf V ^t-iM^t + C； < yt S 工i + C.+i] + Qt(yt) 
i y 彻 c•二 

二 + 椒 + C0， 

which implies y*{xt) = y*{xt + C). • 

Theorem 2.6 indicates that it is optimal to order nothing, when the inventory 

level is above Yf and the optimal actions associated with two starting inventory 

levels below Yt̂  are the same, provided that these starting inventory levels differ 

by a multiple of C. That is, it suffices to find the optimal order up-to level y*ixt), 

for Yt-C < Xt < Yt. Moreover, for any Yt ~ C < s^t < Yt, 0 < y*{xt) < C. 
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Therefore, the optimal action y*{xt) in any period t can be restricted to the set 

(Yt — CjYt + C] for any starting inventory level Xt < Yt. 

Let� ."I be the largest integer smaller than or equal to the argument inside. 

Theorem 2.6 also implies that when the initial inventory level xt < Yt — C, 

first order at l e a s t f u l l - t r u c k amount to raise the inventory level up-to 

[Yt — C, "Kf) and then, it is possible to partially use another truck. 

2.6 Conclusion 

In most of the earlier studies on periodic-review inventory problems, the fixed 

setup cost has been assumed to be invariant of the order size. However, in real 

systems there can be situations where the fixed cost is dependent on the order size. 

For example, contractual agreements in some industries such as transportation 

and production usually reflect cases where the buyers bear higher fixed ordering 

costs when they exceed a specified contract volume C. Motivated from these 

applications, we analyze an inventory control problem where the firm incurs a 

fixed cost of Ki when the order quantity is less than or equal to C and a fixed 

cost of K2 > Ki otherwise. 

We first tackle the problem in a special case with the condition Ki < K2 < 

2Ki. Our analysis in this case is based on a new technical concept that we in-

troduce, i.e., C-{Ki, i<'2)-convexity. In particular, we prove that the optimal cost 

functions are C-{Ki^ K2)~coiiveXy which facilitates a characterization of the op-

timal policy. Although the characterization is partial, as is the case in several 
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other studies analyzing order-size dependent fixed costs, our results show a rea-

sonably simple optimal policy, which is defined using five critical points and has 

some resemblance to the classical (s，S) type policies. In the general case, the 

C-(iCi, iir2)-convexity property no longer holds, and to partially characterize the 

optimal policy, we rely on another notion called strong i^-convexity. We also 

develop a heuristic method to simplify the policy in the general case and conduct 

numerical experiments to test the performance, which appears highly effective. 

The ordering cost ftinction with two fixed setup costs provides generalizations 

of some existing results in the literature. When Kĵ  = K2, our model reduces to 

the classical inventory problem analyzed by Scarf (1960). In the general case, 

if we assume that Ki = 0 then our model reduces to that of Chao and Zipkin 

(2008), and we verify that our results extend theirs. Our analysis redevelops an 

earlier result by Lippman (1969), which was derived for inventory problems with 

a subadditive ordering cost function such as ours in the special case Ki < K2 < 

2Ki, To redevelop the author's result, we use a different technical property, i.e., 

iiy-convexity, which facilitates a more complete characterization of the 

optimal policy and brings advantages in implementation. We devise the notion 

of C-{Ki, i<"2)-convexity inspired from some other structural properties in the 

literature; specifically, CiiT-convexity by Gallego and Scheller-Wolf (2000) and 

(i^i, /C2)-convexity by Ye and Duenyas (2007). Strong if-convexity property that 

we utilize in the general case is originated from a relevant concept called strong 

CK-com/exity that was introduced by Gallego and Scheller-Wolf (2000). 
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For more than two fixed costs, we consider a special case, i.e., trucking prob-

lem. We explore the structure of the optimal policy. The analysis is facilitated by 

the notion of (C, i^)-convexity introduced by Gallege and Scheller-Wolf (2000) 

and Shaoxiang (2004). 

One extension of our research could be to consider the complementary case 

with Ki > K2. Our preliminary analysis has shown that some of the current 

results no longer hold under this alternate setting and a new method should be 

developed to analyze the optimal policy. In another extension, multiple thresholds 

on the order size can be introduced which will lead to multiple setup costs and 

potentially further analytical challenges. 

2.7 Appendix 

Proof of Lemma 2.1. Parts (b), (c), and (d) directly follow from the definition 

of C-{Ki^ ^"2)-convexity. 

(a) Assume G{x) is a convex function, which implies that for all 0 < a < 00 

and 6 > 0, 

G{y) - G{y ~~h)> G{y — a)-G{y — a — b). 

By the definition of convexity, we have: 

G{y + z)- G{y) — ^-{G{y) — G{y — b)} > 0, 

G(y + G{y) — ^{Giy-a)-G{y-a-b)} > 0. 

The last inequality implies that G{x) is C-(0,0)-convex. 
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(e) For each x <y and 0 < A < 1, 

Jo 

> —幻 + -a-O-viy-a-b-O)-叱C^i,而Wm 

-G{y) + ^{G{y -~a)~~G(y~a~ b)} — ac{Ki, K2). 

Hence, G is also K2)-convex. • 

Proof of Theorem 2.1. For notational simplicity, we define 

A = f{x + z)~ fix) - -{fix-a)-f{x~a-b)} + aciKi.K^) 

To show that f{x) is C-{Ki, K'aj-convex, it suffices to show that A > 0. We 

do so by considering the nine different cases for the pair of values /(a; + z) and 

f{x — a ~h). In doing so, we will replace f{x) and f{x — a) by suitable upper 

bounds. 

Case I: f(x + z) = G(x + z) and f{x — a —b) ~ G{x — a —b) 

We can write f{x) < G{x) and f{x ~ a) < G{x — a). With these inequalities, 

the result then follows from the C-(iiri, i^2)-convexity of G. 

Case II: f{x + z) = G{x + z) and f{x ~a — h) 二 iifi + G{x ~ a — h') for some 

b-C <b' <b. Then, 

A = Gix-^z)- fix) - ^{f{x ~a)~Ki-G{x-a-h')} + ac{Ku K2) 

We consider two subcases. 

(a) Assume first that f(x — a) G{x — a — b'). Then, it suffices to show 

that G{x -j- z) — f{x) + <Jc(Ki^ K2) > 0. Using the definition of we 
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can verify that for any zi € (0, C] and Z2 € (C, +00)’ f{x) < G{x + zi) + Ki and 

f{x) < G{x + Z2] + K2. Hence, the result follows. 

(b) Assume now that f(x — a) > Ki G{x - a — b'). Prom the definition of 

f{x)j we have Ki + G(x — a) > f(x — a), which implies that 

G{x - a) - G{x - a-b') > f{x ~ a) ~~ Ki - G{x - a - £ » ' ) > 0. 

Using this relation and the inequalities G{x) > f{x) and 0 < 6' < 6, respectively, 

we can verify the first two inequalities in 

A>Gix + z)- G{x) 一 ~{G{x -a)-~G{x-a~b')} + adKi, K2) 

> G{x + z) — G{x) — ^{G{x -a)-G{x-a-b')} + crc{Ki, K2) 

>0. 

The final inequality follows from the C-{Ki, ir2)-convexity of G. 

Case III: f{x + z)= G{x + z), and f{x-a-h) = K2 + G{x~a~~h^ fi') for 

some / / > C. We consider two subcases. 

(a) If f(x — a) < K2 + G{x - a ~~ b + , the result follows from similar line 

of arguments used in part (a) of Case II. 

(b) If f(x — a) > K2 + G{x — a — b + fjf), then due to the condition Ki < K2� 

we have a; —a —b + /Li/ <x —a, i.e., / / < b. This can also be seen by assuming on 

the contrary that x — a < a: — a — b + fjf < x — a + C or x —a —b-j- fj,' > x — a + C. 

In the former case, f{x — a) < Ki + G{x — a - 6 + / / ' ) < + G{x — a - 6 + ii'), 

which contradicts with the assumption in this subcase. In the latter case, it is 

clear that f{x - a) < K2 + G{x - a - b + /j'), which also contradicts with the 
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assumption. Next, letting b' = b — ji'^ we have 

A = + 么)一 f {x ) - — a) — iG — — a — 6 + //)} + adKi.K^) 

> G{x + z ) - G{x) - ^{G{x-a)—K2~G{^a:-a-b + fj!)�+ ac{Ki, K2) 

> G{x + z) - G{x) - ~{G{x - a) — GOr — a - 6')} + + � 2 

> 0, (2.10) 

where the first inequality follows from f{x) < G(x) and f{x — a)< G{x — a), the 

second inequality follows from Q < b' == b — /j/ < b, and the last inequality follows 

from the C~{Ki, 1^2)-convexity of G. 

Case IV: f{x-i-z) = Ki + G{x + + /j,), for some fi G [0, C] and f{x -a-b)= 

G{x-~a—b). Using the inequalities f(x) < Ki + G{x+fi) and f{x~a) < G{x—a), 

we can write 

A>Ki-^G(x-j-z + f2)-Ki-~Gix-i-f2)~- ^{Gix ~ a) - - a ~ b)} + K^) 
0 

=G{x' + 么）-G{x') - — a') - G{x' — a! — b)} + K^) 

> 0, (2.11) 

where x' ~ x-\- ^^ a' = ayi and the last inequality holds due to the C八Ki, K2)-

convexity of G. 

Case V: f(x + z) = Ki-^G{x + z-\-fj) and f{x-a-b) = Ki-^G{x-a~b +(i') 

for some fi, jj! € [0, C]. Let G{x + z) = Ki + G{x + 4- and G{x ~ a —h)— 

Ki+G{x-a~h + ^'). Then 

A - (5(x + - f{x) - ~a)-G{x-a- b)} + ac(Ki, K2) 
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If f(x — a) > Ki-^ G{x — a — 6 + / / ) ’ then the analysis is similar to part (b) of 

Case III. Otherwise, f{x — a) < + —a —& + //)，and there are two subcases 

to consider. 

(a) If /i + 2； < C, then given the initial inventory level x, the cost function can 

reach the point x+^+2； with setup cost Ki. Thus, G{x+z) = Ki-\-G{x+z-\-iJ,) > 

f{x). Furthermore，f{x ~ a) < G{x — a — 6), hence we have A > 0. 

(b) If /i + ^ > C, then 

A>Ki + G{x-{-z-i-fi)-{Ki+ G(x + C)) 

~~{Ki+G{x~a + ijf)~Ki-G{x-a-b + ij!)}+ ac(Ki, i^) 

=G(x' + z') — G[x') — ^{G{x' - a!) 一 G[x' — a' — b)} + o"c(i^i’ ii^ 
0 

>0, 

where x' = x-\-C,z' = z + fj,~C>0 and a' = a + C = > 0. 

Case VI: f(x + z) = Ki+G{x+z+fi) and f{x-a-b) = K2 + G{x-a-b+fj.') 

for some (i G [0, C], and (jf E [C, oo]. We consider two subcases. 

(a) If f{x — a) < K2 + G{x — a — b + then it suffices to show that 

Ki+G{x -hz+^) - f {x ) - i -ac {Ki ,K2) > 0. Using the inequalities > Ki 

and our assumption 2Ki > K2, we can verify that Ki + G{x + z + 11) — f{x) + 

aciKi,K2)>2Ki+G{x + z + fj,)-f{x)>K2^G{x + z^fj,)~G(x + fi)>0, 

hence the result follows. 

(b) If f(x~a) > a—&+V)’ since Ki < K2, then x~a—h-^ij! < x-a, 

i.e., ji' < b. This can also be verified by contradiction similar to the analysis in 
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part (b) of Case III. Then, 

A = Ki + G{x + z + fj,)~ fix) — { { f { x - a ) - K 2 - G { x - a - b + ii')} + <TC{KI , K2) 
0 

>G{x + z + FI)- G{x + /x) - ^{G{x --a)-K2~G(x-a~b + //)} + CTC{KuK2) 

> G{x + 之)一G{x) 一 ̂ { G { x + a�恥,K^) + 化 

>0, 

where x = x -h b' = b ~ the second inequality follows from G{x — a) > 

f{x — a) > + G{x ~-a-~b + f/) and 0 < 6' < 6, and the last inequality follows 

from the C-(J(ri, -convexity of G. 

Case Vn： f(x+z) = K2+G(x+z+/j,) and f(x — a — b) = G{x-a~b) for some 

/i 6 [C, 00]. Letting G{xi-z) = K2 + G{x+z-i-fi) and G{x~a — h) = G[cc—a — b), 

this case can be analyzed similar to Case IV. 

Case VIII: f(x+z) == and f(x--a-b) 二 i^i+GOc— 

for some /i, G [C, 00] and / / G [0, C]. Letting G{x + z) = K2 + G(x + z + fi) and 

G(x - a —b) = Ki-\- G{x — a — 6 + / / ) , this case can be analyzed similar to Case 

IV. 

Case IX: f(x-\-z) = K2 + G{x + z-\-fi.) md f{x-a-b) = K2 + G{x-a~b-\'fi') 

for some fi, / / e [C, 00]. Letting G{x + z) = G{x + z-{-ii) and G{x — a-b)= 

K2 + G{x — a — b + fj,'), this case can be analyzed similar to Case III. • 

Proof of Lemma 2.2. Prom (2.3), we can reexpress ft(x) as: 

Mx) - min{Gt{x), Ki + inf ^ G她 K2 + inf^ Gt[y)}. 
x<y<x+C y>x+C 
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Note also that, 

Vt{x) = mm{Jt{x), K2 + inf J办 ) } 
y>x 

=mm{Gt(x),Ki + inf Gt{y),K2 + inf Jt{y)} 
x<y<x+C y>x 

=mm{Gt(x), Ki + inf Gtiy),K2 + inf^Gife)} 
x<y<x+C y>x+C 

where the last equality follows from the fact that infy^x Jt{y) = infy>a； Gt{y) and 

K2 > Ki. Hence, we obtain identical expressions for ft{x) and Vt{x) and the 

result follows. • 

Proof of Theorem 2.2. We prove the result by induction. First, we assume 

that ft-i{xt) is continuous. Then, Gt{xt) is clearly a continuous function, i.e., for 

any e > 0, there exists (5 > 0 such that for any \xf~yt\ < \Gt{xt) — Gt{yt)\ < 

Without loss of generality, we assume yt > Xt and consider the following cases. 

(a) ft{xt) < ftiyt)' There exists f i > 0 such that ft{xt) = K(j j ) + Gt{xt + fj). 

Then, 

ftiVt) — Mxt) = Myt) — K{f,) - Gt(xt + fi) 

< K(jj) + Gt{yt + M) - — Gt{xt + fi) 

=Gtivt + - Gt{xt + M) 

where we define K{/i) such that K({j,) = 0, if // = 0, Kij j ) = Ki, if 0 < /i < C, 

and K(IJL) = K2, otherwise. 

(b) Myt) < ft(xt)- There exists > 0 such that ft{yt) = + Gt{yt + m)-
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Then, 

fti^t) 一 ftiVt) = f t � — K { f j ) 一 Gtiyt + IJ) 

< K{fi) + Gtixt + K{fi) - Gtivt + m) 

= G t { x t + /i) - Gtivt + M) 

< e. 

Therefore, we have \ftiyt) < M工t)\ < • 

Proof of Lemma 2.3. First note from the definition of (7-(i^i，ir2)-convexity 

that for all ^ > 0, 0 < a < oo, and 0 < < oo, we have: 

Gt{x + 之）+ > Gt{x)十 hGd：!； — a) — Gt{x - a - b)}. 
0 

(i) For Si <x<y<x + C,we take a = = x — Si, and let z = y — x. 

Then, e [0, C) and the following inequality holds: 

Gt{y) + Ki> Gt{x) + ^{Gt{x) — Gt{s^)}. 

By the definition of Si and Theorem 2.2, we have Gt{si) = Ki + Gt{S) and thus, 

by the above inequality, 

which implies that Gtiy) + Ki > Gt{x). 

(ii) For S2 < X < y, we take a = O^b = x — S2, and let z = y — x. Then, the 

following inequality holds for any z in [0，C) or [C, +00): 

Gtiy) + ac{Kt,K2) > G,ix) + ^{Gtix) — G力(S2)}. 
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By the definition of S2 and Theorem 2.2, we have Gt(s2) = K2 + Gt{S). Note 

that ac{Ki ,K2) < K2. Thus, by the above inequality, we have 

which implies that Gt{y) + K2> Gt{x). 

(iii) The results follow directly from the definitions of si, S2 and S, 

(iv) We take a:; + 2： 二 and x — S2. Then for any S2>xi> 2:2, 

办 1) — G t f e ) } < G t � + ac(Kh K2) — Gt[S2) 
Xi — X2 

<Gt{S) + K2~~Gt{s2) 

= 0 , 

where the first inequality follows from the definition of C-{Ki, K2)~conYexityj the 

second from that ac{Ki , K2) < K2, and the equality from the definition of S2. 

(v) Referring to Equation (2.5), the result follows from the fact that 5 is a 

minimizer of Gt(x) • 

Proof of Lemma 2.4. (i) We first prove that S2 — C < s < S2- By Equation 

(2.5) and Lemma 2.3(v), we have Jt(S2) < ^4(52) < K2-i- Gt{S) = K2 + Jt{S), 

which implies that s < 82- Note that for any x < S2 — C, Jt{x) > niin{C?i(;r)，iiTi + 

minx<y<x+c Gt{y)} > K2 + Jf(5), where the second inequality holds due to the 

fact y < X + C < 82- Hence, by the definition of s, we have S2 — C<S. Now, we 

are ready to prove the result: <h{y) + K2 > Jt{x) for any y > x> shy considering 

three cases. 
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Case 1: y > X > S2- Let q{y) be the optimal solution of (2.5). Then, we have 

Jt{x)<Kil{q{y)>0) + Gt(x + q{y)) 

< Ktl{q{y)〉0) + Gt{y + q{y)) + K2 

=My) + 

where the second inequality follows from Lemma 2.3(ii) and y + q{y) > x-i-q{y) > 

52-

Case 2: S2 > y > x > s. In this case, ii y + q{y) > S2, then Jt{x) < 

Ki + Gt{s2) < + Gt{y + q{y)) + K2 = Jt{y) + K2. If y + q{y) < S2, Jt{x) < 

Ki + Gt{y + q{y)) < Ki + Ji{y) < Jt{y) + K2, where the first inequality follows 

from the fact that y + q{y) — x < S2 ~ {s2 ~ C) = C. 

Case 3: y > S2 > x > s. In this case, we prove the result by contradiction 

and assume that Jt{x) > Jt[y) + K2. Then, for any x > p > s, 

Jt(x) = min {Kil{z > 0) + Gt{x + z)}, 

=MP), 

where the inequality follows from Lemma 2.3 (iv) and S 2 > x > p . 

Therefore, for any x > p > s, Jt{p) > Jt{x) > Jt{y) -\-K2> Jt{S) + K2, which 

contradicts with the definition of s. 

(ii) Let us define S3 = inf{a;|Gt(2；) < iCa ~ i^i + Clearly, S3 < S. 

Then, for any a; € [S3 ~ C, S3], we have 
Jtix) <Ki + Gt(s,) <K2 + Gt{S) = ^2 + J机 
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where the first inequality follows from (2.5)，the second from the definition of 53, 

and the equality is due to part (v) of Lemma 2.3. By the definition of s, we have 

S<S3-C<S-C. 

(iii) Here we show the proof for the result si > s. Other inequalities hold 

directly from the definitions of the critical points and part (ii) of this lemma. 

Since Gt{si) <Ki+ Gt�S), we have J{si) < Gt(si) Gt(S) < + Jt(S) 

which implies by the definition of s that si > s. 

(iv) The result follows from the definition of s". • 

Proo f of Lemma 2.6. First note from the definition of strong /fa-convexity 

that for all y, 0 < a < cx), 0 < 6 < 00, and z G [0,00), 

G{f) + ^{G{y - a) ~ G{y - a - 6)}. 

(i) We take y > s^^h = y — S2, a = 0, and z > 0. Then, the following inequality 

holds: 

Gt{y + z) + K2> Gt{y) + ^{Gt{y) — Gt(幻)}. 

By the definition of S2 and Theorem 2.2，we have Gt{s2) = K2 + Gt{S) < K2-}-

Gt{y + z) and thus, by the above inequality, 

which implies that Gt{y + z) + Ki > Gt{y). 

(ii) Then for any S2 > â i > X2, take y z = S, y = xi, a = 0, and y ~b = X2 
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and we have 

- G t f e ) } < GtiS) + — G 办 1) 
Xi — X2 

<0, 

where the first inequality follows from the definition of strong K2-coiLvexity, and 

the second from the definition of S2. 

By the definition of S, it is clear that Gt{S) = Jt{S). 

(iii) The proof is similar to that of Lemma 2.4(i). 

(iv) The results follow directly from the definition of s and s". 

(v) The results follow directly from the definitions of the critical points. • 
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A p C K2 Error A P C 1<2 Error A P C K2 Error 

10 2 2 10 0 20 2 2 10 0 30 2 2 10 0 

10 2 2 20 0 20 2 2 20 0 30 2 2 20 0 

10 2 2 50 0 20 2 2 50 0 30 2 2 50 0 

10 2 2 200 0.0281 20 2 2 200 0 30 2 2 200 0 

10 2 10 10 0 20 2 10 10 0 30 2 10 10 0 

10 2 10 20 0 20 2 10 20 0 30 2 10 20 0 

10 2 10 50 0 20 2 10 50 0 30 2 10 50 0 

10 2 10 200 0 20 2 10 200 0 30 2 10 200 0 

10 2 20 10 0 20 2 20 10 0 30 2 20 10 0 

10 2 20 20 0 20 2 20 20 0 30 2 20 20 0 

10 2 20 50 0 20 2 20 50 0 30 2 20 50 0 

10 2 20 200 0 20 2 20 200 0 30 2 20 200 0 

10 8 2 10 0 20 8 2 10 0 30 8 2 10 0 

10 8 2 20 0 20 8 2 20 0.0012 30 8 2 20 0.0059 

10 8 2 50 0.0068 20 8 2 50 0.0007 30 8 2 50 0.0038 

10 8 2 200 0.0075 20 8 2 200 0.0093 30 8 2 200 0.0087 

10 8 10 10 0 20 8 10 10 0 30 8 10 10 0 

10 8 10 20 0 20 8 10 20 0 30 8 10 20 0 

10 8 10 50 0 20 8 10 50 0 30 8 10 50 0 

10 8 10 200 0 20 8 10 200 0 30 8 10 200 0 

10 8 20 10 0 20 8 20 10 0 30 8 20 10 0 

10 8 20 20 0 20 8 20 20 0 30 8 20 20 0 

10 8 20 50 0 20 8 20 50 0 30 8 20 50 0 

10 8 20 200 0 20 8 20 200 0 30 8 20 200 0 

Table 2.1: Numerical Results: Poisson Distribution 
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Q P C Error Q P C K2 Error g P C K2 Error 

0.25 2 2 10 0 0.5 2 2 10 0 0.75 2 2 10 0 

0.25 2 2 20 0 0.5 2 2 20 0 0.75 2 2 20 0 

0.25 2 2 50 0 0.5 2 2 50 0 0.75 2 2 50 0 

0.25 2 2 200 0 0.5 2 2 200 0.0004 0.75 2 2 200 0.0016 

0.25 2 10 10 0 0.5 2 10 10 0 0.75 2 10 10 0 

0.25 2 10 20 0 0.5 2 10 20 0 0.75 2 10 20 0 

0.25 2 10 50 0 0.5 2 10 50 0 0.75 2 10 50 0 

0.25 2 10 200 0 0.5 2 10 200 0 0,75 2 10 200 0 

0.25 2 20 10 0 0.5 2 20 10 0 0.75 2 20 10 0 

0.25 2 20 20 0 0.5 2 20 20 0 0.75 2 20 20 0 

0.25 2 20 50 0 0.5 2 20 50 0 0.75 2 20 50 0 

0.25 2 20 200 0 0.5 2 20 200 0 0.75 2 20 200 0 

0.25 8 2 10 0 0.5 8 2 10 0 0.75 8 2 10 0 

0.25 8 2 20 0 0.5 8 2 20 0 0.75 8 2 20 0 

0.25 8 2 50 0 0.5 8 2 50 0 0.75 8 2 50 0 

0.25 8 2 200 0.0090 0.5 8 2 200 0.0089 0.75 8 2 200 0.0080 

0.25 8 10 10 0 0.5 8 10 10 0 0.75 8 10 10 0 

0.25 8 10 20 0 0.5 8 10 20 0 0.75 8 10 20 0 

0.25 8 10 50 0 0.5 8 10 50 0 0.75 8 10 50 0.0094 

0.25 8 10 200 0 0.5 8 10 200 0 0.75 8 10 200 0 

0.25 8 20 10 0 0.5 8 20 10 0 0.75 8 20 10 0 

0.25 8 20 20 0 0.5 8 20 20 0 0.75 8 20 20 0 

0.25 8 20 50 0 0.5 8 20 50 0 0.75 8 20 50 0 

0.25 8 20 200 0 0.5 8 20 200 0 0.75 8 20 200 0 

Table 2.2： Numerical Results: Binomial Distribution 



Chapter 3 

Inventory 

States 

3.1 Introduction and Literature Review 

We consider a periodic-review production/inventory control problem in which the 

current period's setup cost varies depending on the quantity produced/ordered 

in the previous period. Specifically, we analyze the following scenario. At the 

beginning of each period, the production/ordering process is considered to be 

in one of two states: "warm" or "cold". The warm state corresponds to the 

case where an amount over a threshold value R has been produced/ordered in 

the previous period, and the cold state corresponds to the case otherwise. If 

the process begins with a warm state, then there is no fixed setup cost for any 

amount of production/ordering in the current period; otherwise, a fixed cost K 

is incurred. More formally, the cost for producing/ordering a quantity z is given 

102 
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by 

c{z, q) = K5{z)5{R -q) + cz,z> 0, (3.1) 

where q is the quantity produced/ordered in the previous period, c is the unit 

production/purchase cost, and S(x) = 1 if a; > 0 and 0 otherwise. We refer to 

(3.1) as the order-cost function and use the words "production" and "ordering" 

interchangeably in the rest of this chapter. 

The main motivation for the described cost structure comes from applications 

in some manufacturing environments. For example, Robinson and Sahin (2001) 

mention that manufacturers in the food, chemical, and pharmaceutical industries 

may sometimes deliberately increase the output on a given day to save the next 

day's equipment cleanup and inspection fees. Toy and Berk (2006) give exam-

ples from other industries such as glass, steel, and ceramic, which often include 

processes with highly expensive setup costs. In these settings, continued pro-

duction in one period allows the manufacturer to avoid setup activities such as 

shutdowns/startups and cooling/reheating in the next period, and it can be cost 

effective even when the excess output has to be recycled and reproduced in some 

cases. 

Although manufacturing settings provide intuitive reasons for such cost struc-

tures, it is not difficult to think of similar schemes that could be applicable in 

purchasing environments. For example, ordering larger than a threshold quantity 

in a given period could render a large portion of the next period's customs in-

spection/clearance activities unnecessary. In vendor-buyer settings, the specific 
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cost structure can be captured through some incentives. For instance, the vendor 

may offer to eliminate some setup activities or reimburse the associated costs 

in the following period if the buyer's current order quantity exceeds a specified 

threshold quantity. Similar incentives can also be designed with rebates given in 

a qualifying period to be exercised in the next period as also mentioned in Toy 

and Berk (2006). 

Systems with the concepts of warm/cold states have been investigated by Berk 

et al. (2008) and Toy and Berk (2006) in the context of dynamic lot-sizing. In 

both studies, finite capacity is assumed, and the process can be kept warm by 

producing larger than a threshold value and by incurring a warming cost over 

unused capacity. If the next period starts with a warm state, then only a minor 

setup is needed; otherwise a major setup is performed at a higher cost. In the 

first article, the authors analyze the case where both setup costs can take pos-

itive values, and provide theoretical results on the optimal production plan by-

assuming deterministic demand and no shortages. The second article provides an 

extension with possible lost sales but assumes zero minor setup cost, similar to 

our model, and maintains the deterministic demand structure. A relevant work 

that considers lost sales in lot-sizing is by Aksen et al. (2003). In their analy-

sis, fixed setup cost parameters are time-variant but they are independent of the 

production quantity, hence state-independent, and demand is assumed known. 

Agra and Constantino (1999) consider state-dependent setup costs, which can be 

minor or major (including also a start up cost) depending on whether a setup 
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was done in the previous period or not. No threshold restriction or capacity limit 

is imposed and demand is assumed to be known with the unsatisfied part back-

logged. Our model differs from these studies mainly in that we analyze decisions 

in a stochastic demand setting. Although this allows us to address the prob-

lem in more realistic scenarios, it also complicates the analysis and necessitates 

some simplifying assumptions such as infinite capacity and zero fixed setup cost 

in the warm state. We also assume that no additional cost is incurred for or-

dering beyond the threshold quantity except the variable unit-purchase cost, i.e., 

warming cost is zero. These assumptions appear to hold more easily in procure-

ment settings than production settings, in which capacity limits can be restrictive 

and warming costs could be nonzero. For example, a process can be kept warm 

onto the next period by utilizing costly undertime and overtime options, which 

facilitate producing larger quantities or slowing down the process for continued 

production. Such deliberate production rate adjustments have been studied by 

Gallege (1993) and Moon et al. (1991) in the context of economic lot scheduling. 

Stochastic inventory problems have been extensively studied in the literature, 

dating back to the work by Scarf (1960). Earlier results for the classical periodic-

review problem assume convex ordering costs and rely on the î sT-convexity of 

the optimal cost functions to prove that the optimal policy is of (s, S) type: an 

order size up to the target level S is placed if the inventory level is less than the 

reorder level s; nothing is ordered otherwise. Some extensions of this work include 

generalizations of the cost-order function. For example, under the assumption 
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that the demand densities are Polya or Uniform, Porteus (1971) and (1972) show-

that a generalized (s, S) policy (with multiple reorder and target levels) is optimal 

when the ordering cost is concave. To prove this result, a new class of functions 

is defined with the property of quasi-iiT-convexity, which is also employed in 

our analysis. We make the same assumptions on the demand distribution as in 

Porteus (1971) and (1972) and partially characterize the optimal policy, which 

in part carries some properties of the (s, S) structure. In a more recent study, 

Chao and Zipkin (2008) work on an extension where the fixed component of the 

ordering cost is incurred only if the order quantity exceeds a threshold value, while 

the variable component is assumed linear. The authors find that this structure 

complicates the optimal policy, but a partial characterization can be derived using 

the K-convexity of the optimal cost functions. Our order-cost function is different 

in that the fixed cost depends on the order quantity in the previous period rather 

than the current period and is incurred when the order quantity does not exceed 

the threshold value. Furthermore, our results require the i^-convexity property be 

generalized to quasi-/sT-convexity, which helps us derive a partial characterization 

of the optimal policy similar to their work. 

Ordering costs of general forms appear in problems with multi-sourcing op-

tions. Fox et al. (2006) analyze a case where items can be procured from two 

suppliers with different fixed and variable costs. The resulting order-cost function 

is piecewise linear and concave, and a reduced form of generalized (s, S) policy 

is shown to be optimal under the assumption of log-concave demand. Hua et 
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al. (2009) analyze a similar problem but introduce limits on order sizes. This 

leads to an order-cost function that is neither concave nor convex. In their anal-

ysis, the optimal cost functions are shown to be quasi-convex and the structure 

of the optimal policy is fully characterized under certain conditions. We derive 

our structural results relying on the quasi-i^-convexity of the cost functions, and 

we use the more restrictive quasi-convexity property to develop a heuristic pol-

icy. One technical difficulty in applying the concept of quasi-K"-convexity to the 

stochastic inventory problems is that some preservation properties need to be 

proved under complex operations. Recently, Chen et al. (2010) show that quasi-

iT-concavity can be preserved under an optimization operation, which is used to 

characterize the optimal policy for a joint inventory control and pricing problem 

with a concave ordering cost and backlogged excess demand. In our analysis, 

we find a new preservation property of quasi-iC-convexity under a minimization 

operation and build upon this property to derive our results for the inventory 

control problem with state-dependent ordering cost and lost sales. 

In particular, we study a production/inventory control problem with an order-

cost function as defined in (3.1). We analyze the problem in a single-item periodic-

review setting with stochastic demand and lost sales, and the objective is to find 

the optimal policy that minimizes the total cost over a finite horizon. The classical 

lost-sales inventory models with and without setup cost are special cases of our 

model by assuming R = -f-oo and = 0, respectively. We prove some structural 

results on the optimal cost functions using the concept of quasi-iC-convexity, and 
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use these to provide a partial characterization of the optimal policy. Based on this 

analysis, we propose some heuristic policies that are easy to implement and highly 

effective. This chapter contributes to the literature by analyzing a warm/cold 

process-state-dependent fixed setup cost under stochastic demand, which can 

address relations between production/ordering decisions in two successive periods. 

3.2 The Model and Preliminaries 

We consider a firm's ordering decisions over a finite time horizon of T periods. 

At the beginning of period t, the firm has an initial stock level Xt and needs 

to decide on the order-up-to inventory level yt (> rcf), or equivalently the order 

quantity qt = yt — Xf Then, the random demand Dt is realized and satisfied, 

while the excess part is considered as lost sales. We assume that demands in 

different periods are independent random variables. 

Three types of costs are assessed: ordering, inventory holding, and penalty 

cost of unsatisfied demand or shortage. The cost of ordering includes a variable 

component with the unit-purchase cost given by c and a fixed component K, 

which is incurred only when the process is in a cold state as shown by (3.1). 

Without loss of generality, we set the unit-purchase cost to zero. The one-period 

holding/penalty cost, h{x), is incurred at the end of the period as an inventory 

holding cost when a; > 0 and a shortage cost otherwise. Consistent with most of 

the relevant literature, we assume that h(x) is convex, minimized at a; = 0, and 

that lini|a;|_oo h{x) = oo. The expected one-period holding and shortage cost is 
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conveniently written m terms of the inventory level after ordering in period t and 

IS denoted with L{yt) 

Since the total cost m a period depends on the process state as well as the 

current inventory level, we use a two-dimensional vector {xt̂  qt-i) to represent the 

system state Here, qt-i is the order quantity in period t—1 and identifies whether 

the process is in a warm or cold state at the start of period t Let 0 < a < 1 

denote the discount factor Then, given states Xt and g^-j, we define iTt[工t,<lt-i) 

to be the optimal total expected discounted cost from period t through the end 

of the planning horizon T The firm's objective is to determine the ordering 

policy that minimizes the total expected cost over the planning horizon Then, 

the firm's optimization problem is given by the following dynamic programming 

formulation 

TTtixt, qt-i) = nun {K6(qt)5{R — qt-i) + L{yt)十 — A)"^, Qt)]} 
Vt>^t 

(3 2) 

We assume the boundary conditions = 0 The two-dimensional 

system state is fairly difficult to deal with, thus we re-express Uti^t, Qt-i), i = 

1,2, , T as 

ft,iM qt-i G [o,i?), 
7rt{xt,qt-i) = (3 3) 

ft,2M Qt-i > R, 

where the functions « = 1,2, are defined as the optimal cost functions 

corresponding to a cold and warm process state, respectively We again assume 

fT-hi,t{3^T+i) = 0, for 2 = 1,2 For a given period with cold state, the firm may 

order larger or smaller than R, and incur a fixed cost for any positive quantity 
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In the former case, the system state is transformed from cold to warm in the 

next period, while it stays cold in the latter. When a period starts in a warm 

state, similar decisions are made but no fixed cost is incurred. Maintaining the 

one-dimensional representation, the recursive expressions for ft,i{xt) and ft,2{xt) 

are then given by 

ft,i{xt) = min \ min + {K5(yt - xt) + gt,i{yt)}\ , 
{yt>xt+R xt<yt<xt+R J 

(3.4) 

and 

ftA^t) == min min gt,2{yt)： mm gt,i{yt) >, (3.5) 
{yt>xt+R xt<yt<xt+R J 

and gt,i[yt), « = 1,2 is defined as gt,i[yt) = L{yt) + aE“�i{yt — A ) , where 

f t + i , m z < 0， 
(3.6) 

ft+iM z>0. 

We start our analysis with the definition of a quasi-i^-convex function, which 

is due to Porteus (1972). 

Definition 3.1. A function f : R R is quasi-K-convex if any x < y and 

0 < 6 <1 imply that 

f[Ox + (1 — d)y) < max [f{x),K + f[y)]. 

A notion closely related with quasi-K-convexity is defined next. First, note 

that a function f is said to be non-i^-decreasing on X if for all x,y E X satisfying 

X <y and K > 0, f{x) < K + f{y). Then, a function f .. R — R is (nontrivially) 

quasi-iC-convex if there exists a scalar a such that f is quasi-i^-convex with 
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changeover a, i.e., f is decreasing on (—00, a] and non-i^-decreasing on [a, +00) 

(Porteus (1972)). 

Note the following properties of quasi-i^-convex functions (Porteus (2002)): 

Lemma 3.1. (a) If f is convex or K-convex, then f is quasi-K-convex. 

(b) If f is quasi-K-convex and 7 > 0, then 7 / is quasi-jK-convex. 

(c) The sum of a quasi-Ki-convex function with changeover at h and a quasi-

K2-convex function with changeover at b is quasi-{Ki + K2)-convex with 

changeover at b. 

(d) If f is quasi-K-convex with changeover at a and X is a positive Polya or 

uniformly distributed random variable, then there exists b > a such that 

g{x) := Ef{x — X) is quasi-K -convex with changeover at b. 

The stated properties are useful since they show certain conditions under 

which quasi-i^'-convexity is preserved with some common operators. Part (d) 

suggests that quasi-i^-convexity is preserved under expectation for Polya or Uni-

form distributions. However, no result exists to indicate that the property would 

extend for other distributions. This leads to the following assumption in our 

analysis. 

Assumption 3.1. Demand in any period follows a positive Polya or Uniform 

distribution. 

As stated in Porteus (2002), Polya distributions have useful smoothing prop-

erties and they consist solely of translations and convolutions of exponentials, 
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reflected exponentials, and normals. We also note that quasi-iiT-convexity is not 

necessarily preserved for the minimum of two functions that are quasi-iC-convex. 

In Lemma 3.2, we prove that the property holds under certain conditions, obtain-

ing the first preliminary result towards investigating the structural properties of 

the optimal cost functions. 

Lemma 3.2. Suppose J\[x) and 从of) are both quasi-Ki-convex functions such 

that for any x €lZ, JizO^) > Ji{x). Then, for any 0 < K2 < Ki, 

J{x) = rain < min {K2 + Ji(y)}, min {K26{y - x) + J2(y)} > 
X'\'R>y>x J 

is also quasi-Ki-convex and non-K1-decreasing in E. 

Proof . We let Si and S2 denote the minimizers of Ji{x) and J2{x), respectively. 

(If they are not unique, we take the largest one.) Then, we have either K2 + 

Ji{Si) < MS2) or K2 + Ji(Si) > MS2). 

Case I: Suppose K2 + Ji(S'i) < J2(«?2). We prove the quasi-i^i-convexity 

of J{x) by showing that the function is quasi-jFCi-convex with a changeover at 

Si — FL First, we analyze the interval [ — 0 0 , — i?]. For any x < Si — R, 

mmy>x+R{K2 + Ji{y)} = K2 + Ji(5i) and hence, we need to compare K2 + 

Ji(<S'i) and m.inx+R>y>x{K25{y — x) + J2{y)} to determine J{x). Note that 

m.iiLx+R>y>x{K25{y — x) + J2(y)} > 7̂2(5̂ 2)，because S2 is a minimizer of 

Further, since K2 + Ji(<S'i) < 从S2�, it follows that J{x) = + Ji{Si), which is 

a constant. 

Next, we analyze the interval ~ R, 00]. To establish the result that J{x) 

is non-K'i-decreasing on [»Si — R, 00], we show that any xi,x2 G [5i — R, 00] 
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satisfying Xi < X2 imply J{xi) < J(x2) + Ki. At the point x = X2, we have either 

JM = mmy>a,2+R{K2 + Ji(y)} or J(x2) = mma:2+R>y>x2{^2Hy — ^2} + Mv)}-

In the first subcase, J(xi) < mmy>j:^+E{K2 + M v ) ) ^ mi%>a;2+ij{i^2 + 

Ji(y)} = J{x2) < J{X2)+KI, where the first inequality follows from the definition 

of J(x), the second inequality is due to fewer choices since Xi < X2y and the third 

equality holds since J{x2) = miny>a;2+fl{i^2 + Ji (y)} in this case. 

In the second subcase, J{x2) = mina;2+i?>j/>a;2 {K26(y — + (y)}• It suffices 

to consider the case where X2 is the minimizer of J2{y) on X2 + since this 

will imply the result for any other x* minimizing J2(y) in this region. Because 

X2 is the minimizer of ^2(2/) on [X2,X2 + R), we have J{x2) = •/2(工2). Given 

xi < X2, we have either xi R < X2 01 Xi + R > X2. In the former case, we 

have J{xi) < mmy>a:i+R{K2 + Jiiv)} < K2 + Ji(x2) < Ki + J2(:C2) = Ki + 

7(0:2), where the first and second inequalities follow from the definition of J{x) 

and minimization, respectively, the third inequality follows from the assumptions 

stated in the lemma, and the last equality holds since J{x2) = ^2(^2) in this case. 

Using similar arguments for the case with X i + R > X2, we can verify that J{xi) < 

一 Xi) + J2{y)} < + < + h�工么=i^i + 

Hence, we can conclude that J(a:) is quasi-K'i-convex under Case 1. 

Case II: Suppose K2 + Ji{Si) > 从S2Y Then, it follows that the minimizer 

of J(x) is S2, i.e., J(S2)=拟In this case, we prove the quasi-Ki-convexity 

of J{x) by showing that there exists a changeover point b < S2 such that the 

function is decreasing (constant) in (—00, b] and non-Ki-decreasing in [6,+00]. 
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We first show that J{x) is non-it"!-decreasing in [5^2，+00). Let Xi,X2 G 

[S2, +00) such that xi < X2. At the point x = 3:2, we have either J{x2)= 

m i n a ; 2 + H > y > a ; 2 ) + {y)} or J{x2) = miny>a:^+R{K2+Ji(y)}. In the first 

case, we consider the case where X2 is the minimizer of J2(y) on 1x2, X2-^R) (sim-

ilar to the analysis in Case I), and find J{x2) = 72(2^2)- Then, we have J{xi) < 

J2{xi) < 72(0:2) + Ki = J{x2) i -K i , where the second inequality follows from the 

quasi-i^i-convexity of J2{x). In the second case, J{x2) = mmy>x2+R{^2 +Ji (y ) } -

Then, by using the definition of J(x) and the relationship xi < we can ver-

ify that J{xi) < + Ji(y)} < miny>a;2+i?{^2 + Mv)} = ^fe) < 

J{x2) + Ki，and the non--decreasing property holds. 

Next, we show the existence of the changeover point b. Let a be the smallest 

number such that K2 + Ji(Si) > J 2 � . T h e existence of a number a < S2 is 

assured by K2 + Ji{Si) > 从82�. Thus, for any x < a^ K2 Ji(5i) < 

We consider two cases: a< Si — R and a > Si — R. 

If a < Si—Rj then we set b = a. Notice that for any x < b{= a), + < 

hence it follows that J{x) = K2 + Ji(<5i), that is, J{x) is a constant in 

(—00, b]. Moreover, for any xi,x2 G [b, 52) and xi < 0̂ 2，it follows from the 

definition of J{x) and the quasi-Ki-convexity of J2{x) that J{xi) < J2{xi) < 

Ki +12(32) 二 i^i + J(52) < Ki-\- J{x2), where the last inequality holds, because 

S2 is the minimizer of J{x). Hence, J(x) is non-i^i-decreasing on [6, Sy. 

II a > Si — R^ then we set h = Si — R. Then, for any x<b = Si ~R< a, 

K2 + Ji{Si) < JaOc). Hence, it follows that J{x) = + i.e., a constant in 
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(—00, b]. For any cc G [6, S2], if x < S2 - R, then J{x) < Ji(S2) + K2 < MS2) + 

Ki=Ki + J{S2)] otherwise, J{x) < + JaC^s) < J2(5̂ 2) + Ki = Ki + J{82)^ 

So, J{x) is non-iCi-decreasing in [b, Sy. 

Given that J{x) is non-iCi-decreasing on [b, ^2] and [)?2,+oo]，we can easily 

show that it is non-i^i-decreasing on [6, +00): for any zi G [6, S2] and Z2 E 

[52, +00), we have J(Z2) K i > 八S2) + i^i > J(2i), which follows since S2 is a 

minimizer and J{x) is non-Ki-decreasing on [6, S2]-

Thus far, we have proved the quasi-iifi -convexity. Notice that in all cases, 

J(x) is a constant on the left of the changeover point and non-i^i-decreasing on 

the right. Hence, we can conclude that J{x) is non-i^i-decreasing in M. • 

In our next preliminary result, we compare the total cost functions depending 

on the starting state status of the process. In part (i), we show that, with the 

same inventory level, the total cost with a cold state is always larger than that 

with a warm state, but it is less than the total cost with a warm state plus the 

setup cost. Part (ii) shows that with a higher inventory level, the sum of the total 

cost with a warm state and setup cost is always larger than the total cost with 

a cold state. Part (iii) implies that both ft,i{x) and / t ’ i � are non-JT-decreasing 

in M. It is clear that these properties will also hold for ft,i{x). 

Lemma 3.3. For any t = 1,2, ...^T, ft’i and ft,2 satisfy the following relation-

ships: 

� for any a; 6 E, A,2 � + K> ft,i(x) > ft，2 ⑷， 

(ii) for any X2 > Xi, /f,2(2^2) + K > ft,i{xi), 
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(iii) for any X2 > 2；!, ft,i{x2) K > ft,i{xi). 

Proof . We prove parts (i) and (ii) by considering two separate cases: (a) f t f l {x )= 

mmy>:,+R{gt,2{y)}, and (b) ft,2(x) = mm^+R>y>:,{gt,i{y)}. 

(i) For case (a), we have ft’i(x) < miny>a;+R{K + 取2(2/)} = K + ft,2(x}. For 

case (b)，ft,i(x) < + 9t,i (v)} < ^ + = 

K + ft,2(^)- The second inequality in the lemma can be easily verified. Prom the 

results of part (i), we can also conclude that p f j { x ) > gt,2{^)-

(ii) For case (a), ft,i{xi) < < mmy>^^+R{K+gt^2{y)}= 

K + /t’2(a:2), where the second inequality follows from that X2 > xi. For case 

(b), let ft,2{x2) = gt,i{y{x2)) where X2 + R > y f e ) > If y[x2) + then 

hi(xi) < K + gt^i{y[x2)) +ft,2[x2). If y{x2) > xi^R, then mmy>^^+R{K + 

9t,i{y)} < + gt,liv)} = K + /i,2(冗2). From part (i), we have 

gt,i(oc) > 9t,2{x) which implies that mmy>a,,+R{K + 取2(2/)} < mmy>^^+R{K + 

9t,i{y)} < K + ft,2{^2)- Thus, we have ft,i{xi) < mmy>:,,+R{K + gt,2{y)} < 

(iii) Again, consider two cases: /f,1(0:2) = and/t’i(:c2) 二 

- x) + gt，i(y)}. In the first case, ft,i{xi) < mmy>:,,+R{K + 

gtAy)} < + gt,2{y)} = f t , i M - In the second case, we have 

ft,1(^1) < + mm to’2(2/)}， min 

min {K6{y-x) + gt,iiy)} 
X2+R>y>X2 
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where the second inequality follows due to the fact that gt’2($) < gt,i(x) from 

part (i) and since xi < X2. Using similar arguments, we can also prove that 

ft,2(^1) + 2(2:2). • 

We are now ready to prove our main results on the structural property of the 

optimal cost functions. 

Theorem 3.1. For any t = 1,2, ft,i and gt,i，i ~ 1,2, are both quasi-K-

convex. 

Proof . We prove the results by induction. For t = T + 1, since fT+i’i(x) = 0, it is 

clear that fT+i,i(x), i = 1,2, are quasi-K-convex. Assume that it is true for period 

t + 1, i.e., /i+i，i(a;) and ft+i，2(工)are quasi-i^-convex. Lemma 3.3(iii) implies that 

/t+i.iO^), i = 1,2, are non-jRr-decreasing in M. Hence, by the definition of fi^i^i(x), 

ft-i-i,i(x) is nonincreasing on (—00,0] and non-i^-decreasing on [0, +00), that is, 

it is quasi-AT-convex with a changeover point â  = 0,z = 1,2. As h(x) is a convex 

function with a minimizer x* = 0, h{x) is also quasi-iT-convex with a changeover 

point (2/1=0 and K ~ Q. Prom parts (c) and (d) of Lemma 3.1,讲,1 and 讲，2 are 

quasi-iiT-convex. Moreover, by Lemma 3.3{i), we have gt,i > §1̂ 2- Therefore, by 

Lemma 3.2, both and ft�2 are quasi-iiT-convex which completes the proof. • 

Before we proceed, we make some remarks about the sensitivity of the preced-

ing results to the model assumptions. We assume in our analysis that the demands 

follow Polya or Uniform distribution. Under this assumption, we show that the 

optimal cost functions possess the special structure of quasi-i^i-convexity, which 

is preserved under the minimization function shown in Lemma 3.2. Recall a re-
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lated concept called isTi-convexity, which suggests that a real-valued function f 

is iiTi-convex for Ki > 0, if for any x < y, and A G [0,1], / ( ( I — A)x + Xy) < 

(1 一 X)f{x) + Xf{y) + XKi Simchi-Levi et al (2004). When Ki = 0, we have 

convexity and Lemma 3.2 trivially holds. If one could show for any Ki that Ki-

convexity is preserved in Lemma 3.2, then our assumption on the demand distri-

bution would not be needed. Unfortunately, by constructing a counterexample 

(Example 1) we can verify that Xi-convexity is not preserved, and correspond-

ingly, we are not able to relax the restriction on the demand distribution. 

The second remark is about the unsatisfied demand, which is assumed to be 

lost in our analysis. Alternatively, if backorders are allowed the quasi-i^-convexity 

of the optimal cost functions may no longer hold. This can be seen from Theorem 

3.1，where ft+i,i(x) and /t+i’2(3：) may not be non-increasing in (—oo,0]. This 

implies that the changeover points of ft+i,i{x) and ft+i，2(工)may be below zero 

and hence are not necessarily consistent with that of h(x). Consequently, gt+i,i 

may not be quasi-iiT-convex. 

Example 3.1. In Lemma 3.2, let K2 = Ki. Suppose Ji{x) and J 2 � have 

the same minimizer denoted by S. Then, by assumption Ji{S) < J2�.Let 

Si = mm{a;|Ji(a;) = Ji(S) + Ki} and S2 = min{a;| J2(2；) = J^iS) + Ki}. First, 

pick up R such that S — R< inin{si, S2}. Then for any x < S R, J{x) = Ki~\-

Ji{S). Next, suppose Ji{x) and J2{x) are both strictly increasing in {S, +00) and 

Ki + Ji{S^R) > J2(5% then J{S) = J2�.Finally, note that by construction 

S ~ S2 < R, and thus J(S2) = min{Ji(s2 + R) + Ki,Ki + J2{S)}. Since we 
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assumed that Ji{x) is strictly increasing in (5, +oo), we have Ji (s2 + R) > J2{S). 

Consequently, J(S2) = Ki-j- J2 � . N o w we can pick up three points x = S — R^ 

S2, and S with the values J{x) 二 •K"! + Ji(5), Ki 4- J 2 � and J2⑶，respectively. 

Recall that a function f{x) is iCi-convex if, for any Xi < xi and A € (0,1], 

/(A:ci + (1 —入)0；2) < + (1 —入)(/(工2) + K). For iC-convexity to hold in 

this example, we need to show that for any A G (0,1]，J(S2) < AJ(5 — i?) + (1 — 

X){J{S) + Ki), which implies J 2 � < XJi{S) + (1 —入)J2(S). However, since we 

have Ji{S) < J2(S% we have J2{S) > AJi(SO + (1 — X)J2{S), which contradicts 

with iifi-convexity. 

Having established the preliminary theoretical results, we are now ready to 

explore the structure of the optimal policy. As also mentioned by Chao and 

Zipkin (2008), when the ordering cost function takes complex forms such as in 

our model, the optimal policy becomes complicated and even impossible to fully 

characterize, nevertheless, partial characterizations can be developed, which we 

tackle next. 

3.3 Partial Characterization of the Optimal Policy 

In this section, we investigate the optimal ordering/production policy for the 

warm/cold process. First, we define some critical points that will be useful to 

show several properties comparing gt,i{x), i = 1,2. 

Definition 3.2. Given non-negative constants R, K, functions gt^i(x), i 二 1,2, 
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and L{x), we define: 

SL = arg inf L(a;) 

Si = aiginf gt,^{x), i = 1,2 

St = mi{x\gt,z{x) < K + 取“5；)}，i = l,2 

53 = 丨取 1(0；) < K + 讲’2(5̂ 2)} 

54 = inf{a; > S 2 - < min ^2(2/)} 
y>a;+jF£ 

55 二 inf{si > x > S i - Rlgt,i('5'i) < min 04,2(2/)} 

y>x+E 

For notational convenience, we suppress the time index for the critical points. 

Note that the set used to define S5 can be empty; in such cases inf 0 refers 

to Sl, Obviously, there is a correspondence between ŝ  and the reorder level, 

and between Si and the order-up-to level. For an example interpretation of the 

critical points, notice that S5 corresponds to the first point between Si — R and 

Sl such that ordering larger than R fails to dominate ordering less than R up-to 

Sl. The following lemma reveals several results using the critical points and the 

relationships among them. 
Lemma 3.4. For any t = 1,2,..., T, and i = 1,2, we have 

(i) For any S s“ gt,z{x) > iT + 讲，“£；)，and for any y > x > s” gt，i(jr) < 

K + gtM， 

(ii) For any x < S3； gt,i{x) >K + 取2(5*2)/ for any S2 - R < x < S4, gt,i{x) > 

K + mmy>^+Rgt,2{y)； for any Si - R < x < S5, gt,i(Si) > miny^^j+i?九2(?/)， 

and for any x > sg, gt,i{Si) < mmy>^+R gt,2{y), 
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(iii) For any X2> Xi> Sl, gt,i{^i) < K 9t,2{x2), 

(iv) Si < S3 < minlS'i, S2, SL}, S4 < S3, and if S2 — R G [^i — R, Si]； then 

S5> S2- R. 

Proo f . Parts (i) and (ii) follow from the definitions of quasi-i^-convexity and the 

critical points. 

(iii) Since L{x) is increasing on x > Sl, L(x2) > L{xi). Then, using Lemma 

3.3(ii), we have gt,i(,ooi) = L{xi) + aEft+i^i{xi 一 A ) < 丄(工2) + 工2 — 

Dt) + K< 淑2(工2) + K. 

(iv) By Lemma 3.3(i), gt,如)< gt,i{x} which implies 取2(氏）< 9t,i{Si), be-

cause S2 is a rrLinimizer of 淑 2 � - T h u s , we have 取 1(53) < K + 取2(<Ŝ 2) < 

K + gt,i{Si)^ which by definition, implies Si < S3. 

By Lemma 3.3(i), gt,i{Si) < K gt�2�S2�. Thus, by the definition, Si > 53 for 

i = 1,2. 

If SL > S2) clearly s^ < S2 < SL- Otherwise by Lemma 3 ( i ) ， 免 ’ < 

K + 取2(狗)，which implies S3 < SL-

By definition,取i(S3) < K + gt,2{S2) < K + minj^^+ij 取2(2/), which implies 

54 < 53. 

As gt,i{Si) < 讲,2(5̂ 2) and 82-Re[Si- R, si], we have s石 > S2 ~~ H • 

With Lemma 3.4, we have established some order relationships among the 

critical points. Unfortunately, we can not describe all such relationships, e.g., 

between S3 and S2 — R, Si and Si — R, and Si and S2, In fact, we can construct 

examples by setting the proper value for R and show that different relationships 
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can exist. This is especially easy to see considering that the critical points Si, 

S3, and Si, i = 1, 2, in period T, are independent of R. Thus, we need to in-

vestigate different cases in terms of the relative values of these critical points. 

Clearly, the optimal policy depends on the current state and hence, will be dis-

cussed separately under two different scenarios: Cold (Scenario I) and Warm 

(Scenario II). Before we show our main result in Theorem 3.2, we further define 

56 = mf{5i > a; > - 取 1(5*1) < miny>^+Rgt,2{y)}• Again, inf0 indicates Si. 

Let X be the initial inventory level at the beginning of period t. 

Theorem 3.2. Beginning with a cold (warm) state, the optimal policy is partially 

characterized as Scenario I (Scenario II) and shown in Table 3.1 (3.2). 

Proof . In the following, we first show the result for the most complex case in the 

cold state (A4), for which the optimal policy is illustrated in Figure 3.1. (The 

proofs for the other cases follow a similar logic.) Next, we prove the result for 

the the warm state. 
Order up-to S Order up-to y < S Order nothing, z* — Q Order up-to S Order nothing, z* = Q 
z* > C z* =C or C >z* >0 hut C> z* >0 

1 1 1 1 1 
8 S" S' Si S X 

Figure 3.1: Optimal Policy for Case (A4) 

In case (A4), we first show that for any x € (—00, S2 — i?], it is optimal to 

order up to S2 and for any x 6 +00), it is optimal to order nothing. 

By Lemma 3.4 (ii), for any x < S2 -- R < ss, 9t,2(S2) + K < gt,i(x) which 

implies that ordering up-to S2 dominates ordering nothing. Since for any x, 
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Table 3.1: Optimal Policy for Scenario I (Cold State) 

Case Inventory Level, x Optimal Decision 

S3 <S2-R 

(Al) 

order up-to S2 S3 <S2-R 

(Al) sz <x <SL order larger than R or nothing 

S3 <S2-R 

(Al) 

x> SL order nothing 

SB> S2-R 

and 

SI<S2-R 

(A2) 

X<S2-R order up-to S2 SB> S2-R 

and 

SI<S2-R 

(A2) 

S2 — R < X < S4 order larger than R 

SB> S2-R 

and 

SI<S2-R 

(A2) 

S4<X <SL order larger than R or nothing 

SB> S2-R 

and 

SI<S2-R 

(A2) x> SL order nothing 

sz > S2 — R 

and 

si> S2-R>SI-~R 

(A3) 

x < S 2 - R order up-to S2 sz > S2 — R 

and 

si> S2-R>SI-~R 

(A3) 

S2 — R < X < S5 order larger than R 

sz > S2 — R 

and 

si> S2-R>SI-~R 

(A3) 

S5 <X <Si order up-to Si 

sz > S2 — R 

and 

si> S2-R>SI-~R 

(A3) Sl <x < Sl order larger than R or nothing 

sz > S2 — R 

and 

si> S2-R>SI-~R 

(A3) 

x> SL order nothing 

Sz> S2 — R 

and 

s i > S i - R > S2-R 

(A4) 

X<S2~R order up-to S2 Sz> S2 — R 

and 

s i > S i - R > S2-R 

(A4) 

S2-R<X <85 order larger than R 

Sz> S2 — R 

and 

s i > S i - R > S2-R 

(A4) 

S5 <X <SI order up-to S\ 

Sz> S2 — R 

and 

s i > S i - R > S2-R 

(A4) Sl < X < S7® order larger than R 

Sz> S2 — R 

and 

s i > S i - R > S2-R 

(A4) 

S7 < X < SL order larger than R or nothing 

Sz> S2 — R 

and 

s i > S i - R > S2-R 

(A4) 

x> SL order nothing 

ss> 82-R 

and 

Si — R> 81�S2 — R 

(A5) 

X < 82 ~R order up-to S2 ss> 82-R 

and 

Si — R> 81�S2 — R 

(A5) 

S2 - R<x < s j order larger than R 

ss> 82-R 

and 

Si — R> 81�S2 — R 

(A5) 

S7 <x < SL order larger than R or notbing 

ss> 82-R 

and 

Si — R> 81�S2 — R 

(A5) x> SL order nothing 

's7 = max-fsi. S/il 
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91,2(^2) < 9t,i{^), then 取 2 ( 2 ) + K < gt,i{x) + K which implies that ordering 

up-to S2 dominates ordering less than R, when x < S2 — R- Hence, for any 

X e (—00, — i?], ordering up-to S2 is a feasible action and dominates any other 

action which proves its optimality. 

Also by Lemma 3,4 (i) and (iii), for any y > x > Sl > Si, gt,i{x) < K + gt,i(y) 

and gt,i(x) < K-i-gt,2{y) which is sufficient to conclude that it is optimal to order 

nothing. 

We have proved the results in the regions, (—00,5̂ 2 —丑]and [SL, +00). Next, 

other regions are discussed. 

For any x G {S2-R,Si-R], since x < si, mma;<y<x+R{K6{y-x)+ gt,i(1/)} > 

K + Then, + 取 2 W } < K取 2 ( 5 ^ 1 ) < K + < 

—x) + gt,i {y)} where the first inequality follows from x+R < Si 

and the second from fft’2($) < fft,i(^)- Thus, ordering larger than R is optimal. 

For any x & [Si— R, S5], by Lemma 3.4 (ii), ordering larger than R dominates 

ordering up to 5i, which dominates ordering nothing due to the relation that 

Si — R < X < Si- Hence, it is optimal to order larger than R. 

Table 3.2: Optimal Policy for Scenario 11 (Warm State) 

X<S2-R order up-to S2 

S2 — R <x < SQ order larger than R 

SQ <x < SI order up-to S� 

X> SI order less or larger than R 
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Consequently, for any x € {S2 — R, S5], it is optimal to order larger than R. 

For any x G (sb, Si], it is clear that ordering up-to Si dominates ordering 

nothing. By Lemma 3.4 (ii), ordering up-to S�dominates ordering larger than R 

since x > S5. Hence, it is optimal to order up-to Si, 

For any x E [si, max{si, S4}], it is not optimal to order up-to Si^ QE x > si. 

By Lemma 3.4 (ii), it is optimal to order larger than R. 

For any x € [max{si, S 4 } , S L ] , as before, it is not optimal to order up-to Si. 

However, it may be optimal to order larger than R or order nothing. 

Next, we analyze the warm scenario by considering two different cases: Si > 

S2 or Si < 82- First, it is clearly optimal to order up to S2, when the inventory 

level is below S2 — Ft. Second, if < 82, i.e. Si — R< 52, by the definition of SQ, 

it is optimal to order larger than R when the inventory is between S2 — R and SQ 

and order up-to Si when the inventory is between sq and Si. Now, we consider 

the case where > S2. When the inventory is between S2 — R and Si — R, 

ordering larger than R up-to Si always dominates both ordering less than R and 

ordering nothing, as g2{x) < gi{x) and Si is the minimizer of gi{x). Then, since 

it is optimal to order larger than R when the inventory is between Si — R and 

Se, it is also optimal to order larger than R when the inventory level is between 

S2 — R and Se-

For any x G [Se, Si], by the definition of Se, ordering up-to Si dominates other 

actions. • 

Although the policy is discussed in many different cases depending on the 
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critical points, only one of these cases will occur in any given period and the 

values of the critical points can be calculated efficiently with a dynamic pro-

gramming procedure. For an illustration of the optimal policy, consider the fol-

lowing example. Suppose that the holding and shortage costs are linear, i.e., 

L{y) = hE[(y - D)+] + pEl{D - ")+] where /i = 4 and p = 10, and that the de-

mand follows a uniform distribution within the interval [0, 20]. We set the fixed 

cost K = 4:0 and the threshold value R = 20,, and consider period T — 30. The 

optimal policy requires comparison of the functions gt’i, i = 1,2, which we plot 

in Figure 3.2. We can compute the following critical points: = 19, S2 = 17, 

Si = 10, S2 = 9, S3 = 14, S4 = 8, Ss = 5. If the current process is warm, 

the optimal policy is readily available from Scenario II. If the current process 

is cold, then we first determine the specific case under Scenario I by comparing 

the values of the critical points. In this example, we can see that S3 > S2 — R 

and Si > Si ~ R > S2 ― R, hence case (A4) occurs. Finally, we implement the 

corresponding policy as a function of the initial inventory level. 

The optimal policy can be greatly simplified under some special cases. For 

example, when i? = 0+，our setting reduces to the scenario studied in Agra and 

Constantino (1999), and it follows from Lemma 3.4 (iv) that the only feasible case 

in the cold state is (Al). Note that the total optimal discounted cost function 

TTtixtyqt î) depends on the threshold value R. In Theorem 3.3, we show that 

TTt{xt, qt-i) is decreasing in R. 

Theorem 3.3. The total discounted cost function Trt{xt, qt~i) is decreasing in R. 
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Inventory Level 

Figure 3.2: Illustration of functions gt^i, z = 1,2. 

Proof . We prove the result by induction. It is clearly true for period T + 1, 

because 7rr+i(a^r+i，收―i) = 0. Assume the result holds for period t + 1, i.e., 

兀i+i(工i+i, qt) is decreasing in R‘ Referring Equation (3.2), both the first term and 

the last term in the bracket are decreasing in R and other terms are independent 

of R. Thus, TVtixt, Qt-i) is also decreasing in R, which completes the proof. 口 

Thus far, we have determined the optimal ordering decision in many of the 

possible intervals of x̂  however, we have not been able to give a full characteri-

zation in others. For example, when S2 — R < x < s^ in case (A4), the optimal 

decision indicates that the order size should be larger than R without specifying 

the exact value, which must be found by solving miny>a;+ij{i^ + Note 

that gt,2{^) may or may not be decreasing on this subinterval, thus it may not be 

optimal to order exactly R units. The theoretical results are useful to understand 
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the structure of the optimal policy. Prom a practical point of view, however, the 

optimal policy might be difficult to implement since multiple sets of different ac-

tions are required depending on the specific relations between the critical points 

which are computed in each period. Correspondingly, we concentrate our efforts 

on developing heuristic policies. 

3.4 Heuristic Policies and Numerical Results 

In this section, we propose three heuristic policies and compare their performances 

with a numerical study. We aim to develop simple and effective heuristic methods 

that firms can use in practice. We also generate insights on the performance of 

the heuristic policies as a function of the model parameters K and R, and the 

initial inventory level. 

The first heuristic is based on the structure of the optimal policy that has been 

characterized in Section 3.3. Our main goal in developing the optimality-based 

heuristic, which we refer as OB policy, is to obtain close-to-optimal performance 

and could trade off with implementation challenges. Correspondingly, it is more 

appropriate for firms with significantly high inventory costs. The next heuristic is 

a myopic (MO) policy, which is widely used in practice due to its easy implemen-

tation. Under such a policy, the firm only focuses on the single-period problem 

at each period, hence ignores the impact of its decisions on the future costs. The 

last heuristic that we study is based on a structural assumption on the optimal 

cost functions and simplifies the ordering decisions to base stock policies. We re-



CHAPTER 3. INVENTORY SYSTEM WITH WARM/COLD STATES 129 

fer to this heuristic as the generalized base stock (GBS) policy. In the following, 

we first explain each heuristic policy in more detail, and next present the results 

from our numerical investigations. 

3.4.1 Heuristic Policies 

Optimality-Based Policy: The OB policy is inspired by the partial character-

ization of the optimal policy given in Table 3.1 and 3.2. More specifically, we 

construct the heuristic by approximating the decision "order larger than R or 

nothing" with "order nothing", and the decision "order larger than R “ with "or-

der exactly R." When the decision is not clear as in the last interval of the warm 

state, we choose to "order nothing" treating the critical point Si as the order-

up-to point. Ordering decisions are further simplified by merging some intervals 

with different optimal decisions into one with a common ordering decision. Table 

3.3 and 3.4 summarizes our proposed heuristic method. 

While further simplifications of the ordering decisions are possible and might 

be desirable from a practical perspective, this will most likely degrade the heuris-

tic performance. On the other hand, since the main motivation for the OB heuris-

tic is to obtain close-to-optimal performance and the implementation issues are 

assumed secondary, we believe that our proposed method is effective under such 

managerial concerns. 

Myopic Policy: The MO policy can be adopted to our model as follows. First, 

let us define SL = inf{2;|L(a;) < K + L{SL)}, where L{x) is the expected one-

period holding and shortage cost when the current period has the initial inventory 
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Table 3.3: Heuristic Policy for Scenario I (Cold State) 

Case Inventory Level Ordering Decision 

S3 <S2-R aj < S3 order up-to S2 

X > S3 order nothing 

S3> S2-R X<S2-R order up-to S2 

and 8 2 - R < x < Si'' order exactly R 

si<S2-R S4 < X order nothing 

sz> S2 — R X<S2-R order up-to S2 

and S2-R<X<S5^ order exactly R 

si> S2-R> Si-R S5 < X < Si order up-to Si 

Si < X order nothing 

S3> S2-R X<S2-R order up-to S2 

and S2 — R < X < s^ order exactly R 

si>Si-R>S2-R S5 < X < Si order up-to Si 

Si < X < S7 order exactly R 

S7 < X order nothing 

S3>S2~~R x< 82-R order up-to S2 

and S2 — R<x < S7 order exactly R 

Si-R> si> S2-R S7 < X order nothing 

For easier computation we redefine S4 — inf {a; > 52 ~ R\gt,i{x) < K + gt’2(x + R + 1)}, and 

S5 = inf {si>x>Si- i?bt,i(5i) < gt,2{x + R+1)}. 
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X. In each period, depending on the system state and the current inventory level, 

the heuristic implements the following decisions. When the system is in a cold 

state, if X < SL, it is optimal to order up to SL] otherwise nothing should be 

ordered. When the system is in a warm state, then it is optimal to order up to 

SL whenever the inventory level falls below SL- While the main advantage of 

the MO policy is the easiness in implementation, it also provides us benchmark 

results to compare our OB policy. As we present in the numerical section, the 

OB policy outperforms the MO policy with significant cost differences, which 

implies that exploring the structure of the optimal policy pays off in generating 

cost savings. 

Generalized Base Stock Policy: We develop the GBS policy by making 

some assumptions on the structural properties of the cost functions gt’i, i = 1,2, 

which have been shown to be quasi-iiT-convex. We first remind a concept called 

quasi-convexity: A function f is quasi-convex if for any x and y, and 0 < A < 1, 

f{Xx-^{l — X)y) < m.ax{f(x), / ( y ) } . Obviously, any function that is quasi-convex 

is also quasi-i^-convex, but the opposite is not necessarily true. In the GBS 

Table 3.4: Heuristic Policy for Scenario II (Warm State) 

x<S2- R order up-to S2 

S2-R<X<Sg order exactly R 

se <x< Sl order up-to Si 

x> Sl order nothing 
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heuristic, we assume that gt^i, i 二 1,2 are quasi-convex. With this assumption, 

we are assured that the cost functions cannot be increasing and then decreasing, 

which can be used to verify the following results: 

min Ot,2(yt)= 
yt>xt+R 

取 2 ⑶ 

9t,2{xt + R) 

and 

xt<yi<xt+R 

gt,i{xt + R) 

取 lO^i) 

gtA^t) 

xt + R< 52, 

otherwise. 

xt + R< Si, 

oot< Si <xt + R, 

Si < xt. 

(3.7) 

(3,8) 

As previously defined, Si and S2 are the minimum points of gt’i, i = 1,2’ 

respectively. The GBS policy is implemented as follows. In each period, we first 

determine the optimal policy under the hypothesis that the process state in the 

following period must be warm or cold. Next, we compare the costs corresponding 

to each of these cases and select the one with the lower cost. The optimal policy is 

then implemented accordingly. We can derive the optimal order decisions by using 

Equations (3.7) and (3.8). If the process is assumed to be kept warm in the next 

period, the current period's order quantity must be larger than i?, and the relevant 

optimization problems from Equations (3.4) and (3.5) are K + QtaiVt) 

and Then, it follows from (3.7) that a base stock policy with 

safety stock S2 is optimal irrelevant of the process state in the current period. 

If the next period's process state is hypothesized to be cold, then the optimal 

ordering decision depends on the current process state. In particular, if the 
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process is in a warm state then we solve the following optimization problem: 

mbixtSytSxt+R fftiiXyt). F^om (3.8), we can verify that the optimal policy suggests 

to order R, whenever the inventory level is less than S\ — i?, to order up-to , 

whenever the inventory level is between Si — R and and to order nothing, 

whenever the inventory level is larger than Si. If the process is currently in a 

cold state, then we solve miÎ a： <̂ŷ <xt•̂ R{K5{yt — ^t) + 讲’ife/t)}，by comparing the 

cost functions gt,i{xt) and K + gt,i{yt)• The optimization problem 

in the latter case can be solved by using the expressions in (3.8). 

Prom an implementation perspective, the GBS policy is more advantageous 

compared to the OB policy since it requires computing only two critical points Si 

and S2 in each period. Among all heuristic policies, the MO policy is the easiest 

to implement since minimization is done for a single period. Next, we evaluate 

the performance of the heuristic policies. 

3.4.2 Numerical Results 

This section presents results from our numerical study. In our computational 

experiments, the one-period expected cost function is assumed linear in the ending 

inventory, i.e., L{y) ~ hEl{y — D)+'pE[{D — y)'^] where h andp are the per-unit 

per-period holding and shortage cost, respectively. We compare the performance 

of the heuristics with the optimal policy using the maximal relative error over all 

possible states, similar to Chao and Zipkin (2008). More specifically, if we let f告 

and ffi be the discounted cost of heuristic and optimal policy, respectively, then 
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the relative percentage error of the heuristic policy is defined as 

where i = C,W denotes the cold and warm initial states and the superscript 

H = {OB, MO, GBS} represents the type of the heuristic policy. Clearly, a 

zero relative error implies the heuristic to be optimal. As we only partially char-

acterize the optimal policy, the minimal cost /名 is obtained through complete 

enumerations. We select the base parameters as follows: T = 10 ,丑=5,20 ,50 , 

and K = 10，20,50,200. The discount factor is set as a = 0.9, We let the unit 

holding cost h = 4, and the unit shortage cost p — 2 or p = 8, reflecting two 

situations with less/more costly shortages than inventory leftovers. 

We first report the performance of the OB policy. Although our results on the 

characterization of the optimal policy require the assumption that the demands 

follow a Polya or Uniform distribution, we test Poisson distribution as well as 

the Uniform distribution. For the Uniform demand, we draw the demand values 

from the interval [0, B] where B = 20,50 and 100. In the case of Poisson demand 

distribution, the mean demand A is tested at values 10, 20, and 30. The total 

number of instances tested for each demand distribution is 72. We observed that 

the OB policy is in fact optimal in almost all cases except in two instances with 

Poisson demands where it is very close to the optimal. Overall, the maximum 

relative error among all cases tested is less than 0.6%, hence the heuristic policy 

performs quite satisfactorily. (The complete numerical results are available in the 

Supplementary Appendix.) The results also reveal that the cases with smaller p 
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and larger ROT K values lead to sub optimal results. For these instances, we also 

observe that Ec is larger than Ew, implying that the heuristic performance can 

be affected from the initial process state. We performed additional experiments 

with the symmetric Triangle distribution by setting its lower limit to zero and 

upper limit to 10, 30, 50 and 100. Similarly, the results indicate that the heuristic 

policy is optimal for almost all of the cases. 

The main strength of the OB heuristic is that it performs quite close to the op-

timal policy even when the demand assumption is relaxed. Given its near-optimal 

performance, however, we are not able to derive further insights on the heuristic 

performance as a function of model parameters. Overall, we recommend the OB 

policy as an effective method to solve the periodic-review inventory problem for 

the warm/cold process in which the ordering cost function takes a special form 

and the inventory costs are substantial. 

Next, we evaluate the performance of the MO and GBS policies and compare 

them with the OB policy. Prom the base parameters, we select ？7[0,20] as the 

demand distribution. Table 3.5 summarizes the maximum relative errors of the 

MO and GBS policies for different values of p, K and R. The OB policy is optimal 

in all of these instances. We can see that the MO policy performs significantly 

worse than the OB and GBS policies, with the maximum relative errors as high as 

97.90%. This implies that it can be very costly to ignore the future cost functions 

when making decisions for a given period. We also observe that the relative errors 

of the MO policy are increasing in K and decreasing in R. Unlike the OB policy, 
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the MO policy ignores the future cost and in particular, the process state in 

the following period. Thus, the main cost difference between the MO and OB 

policies comes from the future cost, which is a function of the process state. As 

K increases, the future cost difference between the warm and cold states also 

becomes larger, and hence the cost of the MO policy increases. On the other 

hand, as R increases, the system is kept in the cold state more frequently, which 

makes the MO policy perform closer to the OB policy. The results also show that 

the relative errors of the MO policy are generally higher with an initial warm 

state than a cold state. Under the MO policy, the critical points are stationary 

over periods and the order-up-to level SL is the same for the warm and cold 

states. In the given instances, we can numerically find S2 < Si < SL implying 

that the minimum point in the warm state is more further away from SL, hence 

possibly resulting in a worse situation for the warm state. In the case of the GBS 

heuristic, we can see that the relative errors are ranging from 1.83% to 8.01% 

where the best performance appears for large R, K and small p values, however 

we do not observe any monotonicity properties. Different from the MO policy, 

the relative errors under the GBS policy are not sensitive to the process state. 

To derive further insights on the performance of the MO and GBS heuristics, 

we investigate the impact of the starting inventory level in period 1. Figures 3.3 

and 3.4 show the maximum relative error as a function of initial inventory level 

assuming that the system starts in a cold state and that R = 20 and K = 20. 

Roughly speaking, the relative error is first increasing and then decreasing in the 
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p R K rpMO ^GBS jpGBS P E K E转。 鄉 。 E^BS ipGBS 

2 5 10 11.37 11.95 4.17 4.17 8 5 10 5.47 5.72 4.56 4.56 

2 5 20 25.19 30.53 4.45 4.45 8 5 20 11.37 11.95 4.87 4.87 

2 5 50 51.20 62.33 4.38 4.38 8 5 50 30.02 38.07 5.49 5.48 

2 5 200 97.39 94.67 3.58 3.58 8 5 200 73.02 93.60 5.29 5.29 

2 20 10 6.99 7.70 4.68 4.68 8 20 10 6.30 6.48 5.32 5.31 

2 20 20 12.66 14.95 3.60 3.60 8 20 20 6.99 7.70 5.81 5.81 

2 20 50 30.71 32.43 4.51 4.50 8 20 50 15.12 18.37 5.69 5.69 

2 20 200 97.90 87.75 3.14 3.14 8 20 200 56.16 66.89 4.34 4.34 

2 50 10 6.00 6.59 5.08 5.08 8 50 10 9.20 9.49 7.93 7.93 

2 50 20 11.25 13.14 3.70 3.70 8 50 20 12,16 13.84 8.01 8.01 

2 50 50 23.51 31.40 1.85 1.83 8 50 50 13.17 15.77 5.15 5.15 

2 50 200 88.78 66.83 2.65 2.65 8 50 200 37.59 40.23 3.27 3.27 

Table 3.5: Maximum Relative Errors for the MO and the GBS Policies 

starting inventory level for the MO policy. When the inventory level is low, the 

optimal policy requires an order size up to 82- However, in the MO policy, low 

inventory levels trigger an ordering decision to bring the inventory level to SL- In 

this range, the relative error is constant around 6%. When the inventory levels are 

in the intermediate range, the performance of the MO policy worsens significantly 

due to its non forward-looking behavior. In particular, although it is optimal to 

order larger than R to switch from the cold state to the warm, the MO policy does 

not consider the future cost function and leads to an order size less than R failing 

to recognize the cost savings by switching. As the initial inventory level increases, 

both the optimal policy and the MO heuristic place orders less frequently, and 
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Figure 3.3: Relative Errors for MO Policy. 

correspondingly, the relative error decreases and converges to zero in the higher 

range of the interval. Figure 3.4 shows the results for the GBS policy. Unlike 

the MO policy, the GBS heuristic is optimal when the starting inventory level is 

low. This is due to the reason that both the optimal policy and the GBS policy 

decide to order up to S2 for the low levels of inventory. In the other regions, the 

relative errors follow an approximately similar pattern to that in the MO policy. 

3.5 Concluding Remarks 

Most manufacturing and purchasing systems require certain setup activities prior 

to production or ordering, which are generally carried out at a cost. These setup 

costs are sometimes so substantial that firms may look for ways to reduce or 

eliminate certain activities for cost savings. For example, some manufacturing 

firms deliberately produce quantities exceeding a threshold value, i.e., keep the 

system warm in a given period, to avoid some of the setup activities in the next 



starting Inventory Level 

Figure 3.4: Relative Errors for GBS Policy. 

period. The firm's production decisions under such settings have been investi-

gated by some researchers assuming demand is known. In this chapter, we tackle 

the problem in a stochastic-demand setting. 

More specifically, we analyze a firm's production/ordering decisions over a 

finite-horizon where the firm incurs a fixed setup cost in a period only when 

the previous period's production/order quantity is less than the threshold value 

R. We present a dynamic programming formulation of the problem and provide 

some structural results on the cost functions. One important concept that we 

use in our analysis is called quasi-iiT-convexity. Since quasi- iiT-convexity is not 

necessarily preserved under minimization, the analysis of the problem becomes 

nontrivial, and we show several intermediary results which help us partially char-

acterize the optimal policy. The optimal policy can be complex or undesirable 

for some firms, hence we also develop some easier and effective heuristic policies. 
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A numerical investigation is presented to evaluate the heuristic performances. 

An optimality-based heuristic policy provides near-optimal solutions under sev-

eral demand distributions, significantly outperforming a myopic policy that has 

advantages in implementation. A heuristic policy that trades off well the im-

plementation issues and solution performance is developed by assuming some 

structural properties on the cost functions and is based on generalized base stock 

policies. The numerical experiments show less than 10% maximum relative errors 

compared to the optimal policy. 

Some extensions of our work might be useful. In this direction, we analyzed the 

case of an infinite horizon model (The analysis is provided in the Supplementary 

Appendix.) We find that the optimal policy for the infinite horizon case inherits 

that of finite horizon case. Typically the optimal policy can be simplified in the 

infinite horizon case. However, in the current model, we are unable to eliminate 

any of the cases that exist in the finite horizon case. Our work can be extended 

to incorporate capacity limit per period, C > R�which might be of practical 

relevance. In that setting, a heuristic policy that combines our results with those 

of Shaoxiang (2004) may be effective. Another extension could be to include a 

non-zero minor setup cost when the process is in the warm state rather than 

assuming that setup cost is zero. Understandably, this would lead to an even 

more complicated optimal policy, however, an efficient heuristic policy may be 

developed to guide the production/inventory managers in their decisions. 
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3.6 Appendix 

3.6.1 Numerical Results 

The numerical results are shown m Tables 3 6 and 3 7 

3.6.2 Extension to the Infinite Horizon Case 

Assume the demands for different periods to be 11 d We show that the T-penod optimal cost 

function /i ,i and ft,2 both converge uniformly to finite-valued functions fi and /2, respectively 

The optimal policy for the infinite horizon problem inherits the structure of the T-penod 

problem 

Define SL = mm{a; > SL L{X) > L{SL) + K} The following lemma shows that SX, is a 

upper bound of St,i and 爲’2 

L e m m a 3.5. For any t = 1,2, ,T, mQx{St,uSt,2} < S^ 

Proof . To prove Lemma 3 5, it suffices to show that gt,z{^) > gt.tiSh) for all x > Sl > Sl 

Applying part (111) of Lemma 3 3, we can obtain 

gtA工)—9USL) = L{x) — L{SL) + AE[FT+U{X ~ D) - FT+I^SI — D)] 

> L{x) - L{SL) — AK 

> LISL) - HSL) ~ AK 

> 0 

This ends the proof • 

T h e o r e m 3.4. The optimal cost functions and ft肌 the T赫period problem converge um-

formly to functions fi and f2 m any finite interval 

Proo f . Denote by yt{x) the optimal inventory level after ordering when the initial inventory 

level IS X By Lemma 8, it is easy to prove that there exists a constant M such that yt (x) e [0, M] 

for all X E [0, M] mdependent of t 
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B P R K ES^ RPOB B V R K POB B p R K JPOB 

20 2 5 10 0 0 50 2 5 10 0 0 100 2 5 10 0 0 

20 2 5 20 0 0 50 2 5 20 0 0 100 2 5 20 0 0 

20 2 5 50 0 0 50 2 5 50 0 0 100 2 5 50 0 0 

20 2 5 200 0 0 50 2 5 200 0 0 100 2 5 200 0 0 

20 2 20 10 0 0 50 2 20 10 0 0 100 2 20 10 0 0 

20 2 20 20 0 0 50 2 20 20 0 0 100 2 20 20 0 0 

20 2 20 50 0 0 50 2 20 50 0 0 100 2 20 50 0 0 

20 2 20 200 0 0 50 2 20 200 0 0 100 2 20 200 0 0 

20 2 50 10 0 0 50 2 50 10 0 0 100 2 50 10 0 0 

20 2 50 20 0 0 50 2 50 20 0 0 100 2 50 20 0 0 

20 2 50 50 0 0 50 2 50 50 0 0 100 2 50 50 0 0 

20 2 50 200 0 0 50 2 50 200 0 0 100 2 50 200 0 0 

20 8 5 10 0 0 50 8 5 10 0 0 100 8 5 10 0 0 

20 8 5 20 0 0 50 8 5 20 0 0 100 8 5 20 0 0 

20 8 5 50 0 0 50 8 5 50 0 0 100 8 5 50 0 0 

20 8 5 200 0 0 50 8 5 200 0 0 100 8 5 200 0 0 

20 

20 

8 

8 

20 

20 

10 

20 

0 

0 

0 

0 

50 

50 

8 

8 

20 

20 

10 

20 

0 

0 

0 

0 

100 

100 

8 

8 

20 

20 

10 

20 

0 

0 

0 

0 

20 8 20 50 0 0 50 8 20 50 0 0 100 8 20 50 0 0 

20 8 20 200 0 0 50 8 20 200 0 0 100 8 20 200 0 0 

20 8 50 10 0 0 50 8 50 10 0 0 100 8 50 10 0 0 

20 8 50 20 0 0 50 8 50 20 0 0 100 8 50 20 0 0 

20 8 50 50 0 0 50 8 50 50 0 0 100 8 50 50 0 0 

20 8 50 200 0 0 50 8 50 200 0 0 100 8 50 200 0 0 

Table 3,6: Maximum. Relative Errors for the OB Policy: Uniform Demand 
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A p R K ES^ pOB A P R K EgB rpOB A P R K fpOB 

10 2 5 10 0 0 20 2 5 10 0 0 30 2 5 10 0 0 

10 2 5 20 0 0 20 2 5 20 0 0 30 2 5 20 0 0 

10 2 5 50 0 0 20 2 5 50 0 0 30 2 5 50 0 0 

10 2 5 200 0 0 20 2 5 200 0 0 30 2 5 200 0 0 

10 2 20 10 0 0 20 2 20 10 0 0 30 2 20 10 0 0 

10 2 20 20 0 0 20 2 20 20 0 0 30 2 20 20 0 0 

10 2 20 50 0 0 20 2 20 50 0 0 30 2 20 50 0 0 

10 2 20 200 0 0 20 2 20 200 0 0 30 2 20 200 0 0 

10 2 50 10 0 0 20 2 50 10 0 0 30 2 50 10 0 0 

10 2 50 20 0 0 20 2 50 20 0 0 30 2 50 20 0 0 

10 2 50 50 0 0 20 2 50 50 0 0 30 2 50 50 0 0 

10 2 50 200 2.7e-003 0 20 2 50 200 0.61 0.054 30 2 50 200 0 0 

10 8 5 10 0 0 20 8 5 10 0 0 30 8 5 10 0 0 

10 8 5 20 0 0 20 8 5 20 0 0 30 8 5 20 0 0 

10 8 5 50 0 0 20 8 5 50 0 0 30 8 5 50 0 0 

10 8 5 200 0 0 20 8 5 200 0 0 30 8 5 200 0 0 

10 8 20 10 0 0 20 8 20 10 0 0 30 8 20 10 0 0 

10 8 20 20 0 0 20 8 20 20 0 0 30 8 20 20 0 0 

10 8 20 50 0 0 20 8 20 50 0 0 30 8 20 50 0 0 

10 8 20 200 0 0 20 8 20 200 0 0 30 8 20 200 0 0 

10 8 50 10 0 0 20 8 50 10 0 0 30 8 50 10 0 0 

10 8 50 20 0 0 20 8 50 20 0 0 30 8 50 20 0 0 

10 8 50 50 0 0 20 8 50 50 0 0 30 8 50 50 0 0 

10 8 50 200 0 0 20 8 50 200 0 0 30 8 50 200 0 0 

Table 3.7: Maximum Relative Errors for the OB Policy: Poisson Demand 
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Note the fact that for any constant ci, C2, C3 and C4, we have 

|min{ci,c2} ~ min{c3,c4}| < min{|ci -c3j,|c2 —C3|,|C2 - csj, |c2 -C4I}. 

Thus, we can obtain 

r+oo __ __ 
。思恐/1,*,“4 - "̂ f+i-K®)! - "17� Ift+hiivt — 0 — ft+2,i{yt+i 一 ^MiOd^l 

r+co ~ __ 
< 〜思恐 , y� 丨/m’办t — 0 — ft+2,i{yt+i — CMiOd^ 

< 〜 思 ^ IA+l’i�-/i+2’i(20l 

where the fist inequality follows from the above fact and the second from that yt{x) e [0,M] 

for all X e [0, M] independent of t. 

Since M can be chosen arbitrarily large, we have shown that ft,i{x) converges monotonely 

and uniformly for all x in any finite interval. The functions ft,i{x) are continuous and converge 

uniformly, thus the limit function fi{x) is also continuous. • 

Let functions fi{x) and /2(工）represent the minimum total expected discounted cost of the 

infinite horizon when the current process state is cold and warm, respectively. It follows from 

the theory of Markov decision processes that 

fi{xt)=mm{ min {K+L{y)+aEf2{{y-D)+)}, min {k6{y-x)+L{y)+aEM{y-D)+)}} 

and 

f2{xt) = mm{ ^n {L{y)+aEf2{{y~D}+)}, {L{y) + aEM{y - D)+)}}. 
y>x+R x+R>y>x 

The convergence guarantees that the optimal policy for the infinite horizon case inherits 

that of finite horizon case. Typically in the infinite horizon case, the optimal policy can be 

simplified. However, in the current model, we are unable to eliminate any of the cases that 

exist in the finite horizon case. 
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