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Abstract 

This thesis focuses on the use of prosodic features for automatic spoken 

language identification (LID). LID is the problem of automatically determining 

the language of spoken utterances. After three decades of research, the state-

of-the-art LID systems seem to give a saturating performance. To meet the 

tight requirements on accuracy, prosody is proposed as alternative features to 

provide complementary information to LID. 

There are no conventional ways to model prosody. We use a large prosodic 

feature set which covers fundamental frequency (FO), duration and intensity. 

It also considers various extraction and normalization methods of each type of 

features. In terms of modeling, the vector space modeling approach is adopted. 

We introduce a framework called prosodic attribute model (PAM) to model the 

acoustic correlates of prosodic events in a flexible manner. Feature selection 

and preliminary LID tests are carried out to derive a preferred term-document 

matrix construction for modeling. 

The PAM-based prosodic LID system is compared with other prosodic LID 

systems with a task of pairwise language identification. The advantages of 

comprehensive modeling of prosodic features is clearly demonstrated. Analysis 

reveals the confusion patterns among target languages, as well as the feature-

language relationship. The PAM-based prosodic LID system is combined with 

a state-of-the-art phonotactic system by score-level fusion. Complementary 

effects are demonstrated between the two different features in the LID problem. 

An additional operation on score calibration, which further improves the LID 

system performance, is also introduced. 



摘要 

本文主要研究韻律特徵在語言識別（LID)技術上之運用。語言識別旨 

在自動判別説話語句的所屬語言。歷經三十多年的研發，現時最前沿的語言 

識別系統似乎面對著性能飽和的問題。為迎合對系統髙準確度的逼切要求， 

我們提出使用非傳統的韻律特徵為語言識別系統提供互補資訊。 

現存並無常規方法對韻律特徵建立模型。我們將使用一大型的韻律特 

徵集，它涵蓋基頻、時間長度及音量强度，並考慮各種特徵的提取及正 

規化方法。我們以向量空間模型法進行訓練，並描述了一個韻律屬性模型 

(PAM)，該模型可在語言識別過程中，以靈活的方式為各種韻律現象的聲 

學相關建模。我們進行了特徵選取以及初階的語言識別測試，以推估較佳的 

詞彙-文件矩陣構造。 

基於韻律屬性模型（PAM)的語言識別系統將會與其他亦以韻律特徵為 

主的同類系統進行比對。以二元語言進行評估，結果清楚顯示全面訓練模型 

在語言識別上的優勢。我們透過分析，揭示了不同目標語言之間的混淆模 

式，以及特徵與語言之間的特定關係。基於韻律屬性模型（PAM)的語言 

識別系統亦會以評分融合的方法，與現時最尖端、基於音位配列結構特徵 

(phonotactic)的語言識別系統相結合°這兩種不同特徵在語言識別問題中 

顯示了很好的互補效應。本文亦另介紹了評分校準技術，其可進一步提升語 

言識別系統之性能。 
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Chapter 

Introduction 

1.1 Objectives of research 

Automatic spoken language identification (LID) is the process of automatically 

determining the language of spoken utterances [3, 4]. It has many applica-

tions in multi-lingual multi-media information processing. For example, an 

interactive voice response (IVR) system catering customers speaking different 

languages can use a frontend language identification module to route incoming 

calls [3]. With the internet and the trend of globalization, massive amount of 

multi-media contents in different languages become available. Voice-based user 

interface and dialog systems with language identification capabilities become 

technically feasible. This application is also attractive because it does not as-

sume a known language [5]. Some governments are also interested in spoken 

language identification due to its potential in monitoring and surveillance [6 . 

The study of spoken language identification can be traced back to the sixties 

in the last century [7, 8]. The main objective of these studies is to look for 

language dependent characteristics in phones, intonation or other speech units. 

Conventional LID approaches make use of the acoustic and/or the phonotactic 

properties in speech. After three decades of research, these approaches attain 

very competitive performance in large-scale LID tasks [9]. In a typical language 

detection task with 30-second test utterances, the equal error rates is normally 

below 3%. 



In recent years, conventional LID approaches seem to give a ceiling per-

formance. Apart from striving for even higher accuracies, it would be inter-

esting if we could find alternative approaches to the conventional LID strate-

gies. Prosody refers to the rhythmic and intonational properties of speech [10 . 

It is mainly realized by the isochronous recurrence of some types of speech 

units, by the fundamental frequency (FO), or by intensity. A number of studies 

showed both human and computers are capable of distinguishing languages with 

prosodic cues [7, 11, 12]. Being very different from the acoustic-phonetic fea-

tures, prosody features appear to be good candidates of alternative LID features. 

Nevertheless, there exists no standard feature set on a par with the cepstral fea-

tures for automatic speech recognition. Many different prosodic features were 

reported in previous studies. Particularly for LID, the use of prosodic features 

has not been studied in a systematic way. As a result, prosodic features were 

generally not considered to be effective for LID. 

In this thesis, we will look into the use of prosodic features for automatic 

spoken language identification in a systematic way. By reviewing the different 

prosodic features proposed for various purposes, we investigate the modeling of 

a comprehensive set of prosodic features for LID. These attributes are derived to 

represent the FO and intensity contours, and the segmental durations in many 

different ways. 

Under the principle of comprehensive modeling, a large number of candidate 

attributes are obtained for LID application. We propose to analyze the candi-

date attribute using an information-theoretic approach. The analysis serves 

two purposes. First，it facilitates a feature selection process by comparing the 

language-discrimination abilities of attributes. In this way, the problem dimen-

sion can be flexibly controlled. Second, the analysis can greatly improve our 

understanding about the prosodic characteristics of specific languages. 

To draw a convincing result, the proposed prosodic features will be tested 

with large-scale standard LID tasks such as NIST LRE 2007 and NIST LRE 2009 

13, 14]. We will also look at the error reduction a prosodic LID system brings 

to a state-of-the-art phonotactic LID system. If error reduction is significant, it 



proves complementary effects exist between the prosodic and the conventional 

LID approaches. 

1.2 Thesis outline 

In Chapter 2, an overview to LID approaches would be given. It would cover 

the conventional acoustic and phonotactic approaches, as well as various issues 

in a prosody-based LID system. Chapter 3 and 4 discuss two important LID 

system components, namely acoustic tokenization and statistical language 

modeling. Chapter 5 summarizes the system flow, the scoring mechanisms and 

the performance of the prosody-based LID system. It is followed by some 

language- and feature-specific analysis in Chapter 6. Chapter 7 introduces 

score fusion with a state-of-the-art phonotactic LID system, as well as score 

calibration towards competitive LID results. The whole thesis is concluded in 

Chapter 8. 



Chapter 2 

Language identification overview 

The study of spoken language identification (LID) can be traced back to the 

sixties in the last century [7, 8]. The main objective of these studies is to look for 

language dependent characteristics in phones, intonation or other speech units. 

Starting from the seventies, automatic LID systems were used to compare the 

spectral similarity between a test speech, whose language identity is in question, 

and some exemplars in a known language [15 . 

A spoken language can be identified using information gathered from dif-

ferent sources. Conventional LID approaches roughly fall into two large cate-

gories -acoustic and phonotactic. LID systems with the acoustic approach (also 

known as spectral systems) find the language-relevant properties in static fea-

tures, which are derived from acoustic frames, raw waveform features, formant 

vectors, etc. LID systems with the phonotactic approach (also known as token 

systems) are based upon phone tokenization results. The co-occurrence statis-

tics of sequences of allowable phones and phonemes in different languages are 

modeled to achieve LID. There is a rich source of literature introducing the LID 

implementations with acoustic and/or phonotactic approaches [2, 3, 5, 15, 16 . 

Prosody is an important component of human speech. It refers to the rhyth-

mic and intonational characteristics, which are observed over a relatively long 

time span [10]. The use of prosodic features for LID has been studied sporad-

ically over the years. Given the inferior performance compared with the con-

ventional acoustic/phonotactic LID systems, there is no consensus about the 



general effectiveness of prosodic features to LID. Nevertheless, speech prosody 

is highly language-dependent and expected to play a role in distinguishing lan-

guages. 

The first half of this chapter introduces the conventional LID approaches. 

Section 2.1 introduces feature extraction, followed by the descriptions of the 

acoustic and phonotactic LID approaches in Section 2.2 and 2.3 respectively. 

In the second half of this chapter, we will look at the use of prosodic features in 

LID in Section 2.4. Principles for using prosodic features, syllabification, and a 

review on different features previously used will be included. To go through the 

LID system completely, we will look at the language classifier in Section 2.5. 

Focus will be put on support vector machine (SVM), which is widely adopted 

in the acoustic, phonotactic approaches of LID. SVM will also be implemented 

in the prosody-based LID system proposed in this thesis. 

2.1 Feature extraction 

Modeling in both acoustic and phonotactic LID systems starts with short-time 

acoustic features. In this section the details of acoustic feature extraction is 

introduced. Various techniques in feature normalization, compensation and 

adaptation will also be highlighted. 

2.1.1 Short-time acoustic features 

There are several short-time acoustic features typically used for LID. Due to its 

popularity, Mel-scale frequency cepstral coefficients (MFCC) would be taken as 

an example to illustrate feature extraction below. First, short-time temporal 

frames of 20ms wide are obtained. 10ms shift is present between successive 

frames. Stationarity is assumed in all frames, and to each of which discrete 

fourier transform (DFT) and Mel-scale filterbank are applied. DFT transforms 

the acoustic signal into frequency domain representation. Mel-scale filterbank 

are specially designed to stimulate the non-uniform frequency resolution in the 

perceptual processing performed by human ears. Instead of the Mel-scale filter-



bank, sometimes gammatone filterbank [17] is used as it is reported to give a 

good approximation of the human auditory filter. 

MFCC are obtained by taking the inverse DFT on the logarithm of the mag-

nitude of the filterbank outputs. These coefficients can be seen as information 

about rate of change in magnitude across different spectrum bands. Formant 

frequencies in speech, which directly reflect the phoneme being spoken, are 

modeled. An overview of speech signal analysis is found in [1]. Figure 2.1 

summarizes the acoustic feature extraction procedures. 

Voice activity detection (VAD) is an optional preprocessing step in the LID 

system. It removes silence frames, which deteriorate the effectiveness of HMM 

modeling, and retains only the high quality speech frames for LID. In NIST 

Language Recognition Evaluation (LRE) 2009, radio broadcast speech was in-

troduced in the VOA training/testing corpus. In such case, a more sophisticated 

VAD helped to remove also the music from the audio archive. VAD can be im-

plemented with energy features [18], or with a phone recognizer [19]. 

Besides MFCC, another popular coding method in LID systems is to use 

Perceptual Linear Prediction (PLP) coefficients [20]. This method uses all-pole 

spectral modeling to derive the coefficients. Compared with conventional linear 

prediction (LP) analysis [21], PLP analysis is claimed more consistent with 

human hearing. 

Two additional preprocessing techniques may be introduced towards bet-

ter feature modeling. First, delta and delta-delta coefficients are appended to 

the original feature vector, where deltas are the differential between successive 

frames. Second, linear discriminant analysis (LDA) can be applied to maximize 

the separation between target classes [22 . 

Figure 2,1: Extraction of acoustic features，adopted from [1] 



2.1.2 Feature normalization and adaptation 

Feature normalization aims at removing the bias caused by unrelated factors 

such as speaker, channel and environment. For example, vocal tract length 

normalization (VTLN) is a frequency warping technique that tries to normalize 

the inter-speaker difference due to the shift in formant centre frequencies with 

different vocal tract length [23]. Cepstral mean substraction (CMS) subtracts 

the mean cepstral value from each feature vector. Relative spectra (RASTA) 

filtering is a technique originally invented for predictive linear prediction (PLP) 

coefficients to remove slow channel variation. It can also be applied to cepstral 

features [24]. CMS requires the computation of long-term cepstral mean, while 

RASTA requires only a single-pass computation over the input data. The im-

pact of RASTA on the LID performance was reported to be identical to CMS 

2 . 

Feature compensation and adaptation serve similar purposes of feature nor-

malization. They compensate variability in channel, session and/or other unde-

sirable factors. Nevertheless, they are normally carried out after some prelimi-

nary processing in the feature domain, or in the model domain after a first-pass 

training. Examples for feature compensation include feature domain latent fac-

tor analysis (fLFA) and nuisance attribute projection (fNAP) [25]. Examples for 

adaption in the model domain include maximum-a-posteriori (MAP) adaptation 

and maximum likelihood linear regression (MLLR) adaptation. Both adapta-

tion methods make use of unlabeled data to update model parameters. MAP 

adaptation constrains on the contribution of unlabeled data. MLLR adaptation 

is an affine transformation [26]. Joint factor analysis (JFA) model is another 

method to tackle inter-session variation. It is popularly used in LID systems in 

recent years [27, 28，29 . 

2.2 Acoustic approach 

Acoustic LID systems focus on the direct modeling of short-time spectral fea-

tures introduced in Section 2.1.1. Gaussian mixture models (GMM) are typi-



cally employed to model the language identity. In the recent decade, the acoustic 

approach to LID is further enhanced with various implementations of machine 

learning and pattern recognition algorithms. For instance, Maximum mu-

tual information and support vector machine make use of discriminative 

training algorithms. Shifted delta cepstra compensate the lack of long-range 

modeling in the acoustic approach. 

2.2.1 Gaussian mixture modeling classification 

In this method, a multi-variate Gaussian mixture model (GMM) models the 

distribution of short-time feature vectors from the same language. Let Vt denote 

the feature vector. It lies on a certain point in the feature space. Under the 

GMM assumption J its probability density equals a weighted sum of K normally 

distributed densities, 

K 

= (2 .1) 

k=l 

In the above equation, 6 = {w^^ 叫、is the set of model parameters. bk{vt) 

is the observation probability specific to mixture k. It is computed using the 

mean statistics (ik and the covariance statistics T̂ k- The probability terms are 

summed with mixture weights Wk. For a language rit, Ont is constructed. Its 

parameters are found with training data from the language. 

In recognition, the test utterance is transformed into sequence of short-time 

feature vectors, {vq , "Ui,..., Vt,.. . , vt~i). The log likelihood that the sequence 

belongs to language Ut is computed by the following equation, 

T~1 

mvo,…，^T-l>|enJ 二 ^ l o g p K i e ^ j , (2.2) 
t=0 

which is essentially the joint probability of all short-time feature vectors with 

independence assumption. In the decision stage, language with the maximum 

log likelihood is chosen. 

Ut = argmax£((vo,..., Vt- i ) !©^) (2.3) 



There are various techniques for the training of model parameters We 

label all training utterances belonging to language rif with indices (0,1, . . . , r , . . . , i?-

1). The log likelihood for a training utterance r is The maximum 

likelihood (ML) criterion is widely adopted for the training of Or "nt: 
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nt： Expectation maximization (EM) algorithm is used for the optimization of 0 

subject to maximum likelihood in Eq.{2.4) [30 . 

2.2.2 Improved methods for acoustic approach 

Maximum mutual information 

Maximum mutual information (MMI) is an example for the use of discriminative 

training in LID. With MMI, optimization is performed on posterior probability 

31]. Suppose a model is trained for target language nt. The objective 

function of MMI is, 

Apart from the true class log likelihood, in the optimization with MMI 

criterion the log likelihood of competing classes is also taken into accounts. 

Other discriminative training approaches include minimum classification er-

ror (MCE) [32], minimum phone/word error (MPE/MWE) [33] and functional 

MPE (fMPE)[34]. Compared with, the Bayesian learning approach, these ap-

proaches involve additional considerations in the competing scores, the decision 

rule and/or the error in the course of modeling. 

Support vector machines 

Support vector machine (SVM) is a large margin method which also falls under 

the discriminative training approaches. SVM differs from other discriminative 

training approaches in its vector-based classifier backend. In the course of mod-



eling, a kernel function is used to transform the input sequence to a fixed-length 

feature vector for vector-based learning. In this section, two kernel functions 

-generalized linear discriminant sequence (GLDS) and Gaussian supervector 

(GSV) are introduced. 

Generalized linear discriminant sequence (GLDS) kernel [35] expands the 

feature vector by taking monomials. For instance, expanding a 38-dimensional 

MFCC plus delta feature vector up to degree 3 results in a feature space with 

a dimension of ClCl^ + Cj^Cf + C f C f + C f C f = 10660. 

The idea of Gaussian supervector (GSV) is to adapt a universal background 

model (UBM) GMM on a per utterance basis and then use the resulting shift 

to predict the language class [36, 37]. Dimension of GSV is P x K where K is 

the number of Gaussian mixtures in the UBM GMM and P is the dimension of 

feature vector. 

Shifted delta cepstra 

Shifted delta cepstra (SDC) modeling is an approach which endeavours to cap-

ture the dynamic properties of speech in the hope of better modeling the change 

of vocal tract in the course of articulation [38]. As its name goes, the major 

characteristic of SDC is the use of delta features between successive frames. 

Standard SDC configurations are specified by four parameters {N,d,p,k), where 

N is the number of cepstral coefficients obtained from a short-time acoustic 

frame; d is the advance and delay for the delta coefficients; p and k specify re-

spectively the separation and the number of the blocks to concatenate together. 

In language recognition experiments, a standard configuration is 7-1-3-7 with 

the static cepstra prepended，producing a 56-dimensional SDC vector. 

2.3 Phonotactic approach 

In the phonotactic approach, LID systems model the co-occurrence statistics of 

sequences of allowable phones and phonemes in different languages. A typical 

phonotactic LID system has three components [39]. First, a voice tokenizer 
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temporally groups the continuous flow of incoming voice into segment units 

and performs categorization. An automatic speech recognizer (ASR) is often 

applied to serve this purpose. Second, a statistical language model captures 

the language-dependent phonetic and phonotactic information of the tokenized 

units. Finally, a language classifier identifies the language of the test speech. 

The three components can be implemented with different input features and dif-

ferent modeling methods. A classical example is the parallel phone recognition 

followed by language modeling (PPRLM) [2]. With large margin training with 

support vector machines (SVM), in recent years the bag of sounds approach is 

used in tokenized system for speaker and language recognition [4, 40 . 

Parallel phone recognition followed by language model (PPRLM) is one of 

the prevailing methods for phonotactic LID since it was proposed in the nineties 

2]. The structure of PPRLM is illustrated in Figure 2.2. Suppose we have 

three target-languages, Farsi, French and Tamil, in language recognition. First, 

multiple phone decoders recognize the test speech just like ordinary ASR engines 

do. These decoders do not have to be trained on the target languages. It 

depends of the availability of labeled speech. In our example, the three decoders 

form three parallel front ends. In every frontend output, multiple backend n-

gram language models are trained for all target languages, resulting a total of 

9 n-gram models. The output from all backends are averaged to give an overall 

language likelihood score. 

Various advancements in phonotactic LID systems are observed in recent 

years. Gauvain proposed to consider multiple hypotheses in the PPRLM system 

INPUT 
SPEECH 

MODEL FOR FARSI 

MODEL FOR FRENCH 

MODEL FOR TAMIL 

MODEL FOR FARSI 

MODELFORFRENCH 

[MODEL FOR TAMIL 

I MODEL FOR FARSI 

I MODEL FOR FRENCH 

I MODEL FOR TAMIL 

LIKliLIHOOD 

COMBINE & 
PICK MAX 

HYPOTHESIZED 
LANGUAGE 

Figure 2.2: PPRLM block diagram adopted from [2] with target languages being 
Farsi, French and Tamil 
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with a lattice [41]. Recently, discriminative training of language recognizer, 

particularly with support vector machine (SVM), was proposed [4，40]. Speech 

data is transformed to fixed-length feature vectors for vector-based training 

and testing. Usually the feature vectors represent the occurrence statistics of 

different tokens or token n-grams. 

2.4 Prosodic features for LID 

Prosody refers to the rhythmic and international properties in speech. The 

use of prosodic features for LID originates from some perceptual studies. In 

1968, Atkinson suggested that human subjects can discriminate between English 

and Spanish poetry with intonation and duration cues [7]. In another study 

11]，syllabic rhythm was shown to be sufficient for an English-Japanese spoken 

language discrimination task by French-speaking listeners. Muthusamy et al. 

found some prosodic cues used by human listeners to distinguish Mandarin, 

Japanese and Vietnamese from other languages [42 . 

The three major types of prosodic properties in speech are duration, funda-

mental frequency (FO) and intensity. Unlike short-time acoustic features, these 

properties are observed over a relatively long time span [10]. Before prosodic 

features can be used for LID, there are a series of questions to answer. These 

questions include the time span of the linguistic unit for feature extraction, the 

actual features to extract, the way of modeling, etc. 

2.4.1 Syllable: The basic unit for prosody 

Prosodic features are suprasegmental. For many empirical tasks related to 

speech recognition using prosodic features, the basic unit for prosodic feature 

extraction is syllable, pseudosyllable or a suprasegmental unit of similar size 

12, 43, 44, 45, 46]. Considering also some linguistic studies on prosodic proper-

ties [47, 48，49J 50, 51，52, 53], some principles on processing the acoustic signal 

on the syllable level for prosody modeling are deduced: 

• The discussions of prosodic properties in linguistics often involve different 
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levels of abstraction. This thesis studies the use of prosodic features in 

a computer-based application of LID. Focus will be put on the acoustic 

correlates of prosodic events. 

• Linguistic analysis of prosodic properties often starts at the level of syl-

lables and extends to words and phrases. Meanwhile, the complexity of 

an automatic speech processing algorithm may be too high for processing 

long phrases. To balance between the two, syllable is chosen to be the 

basic unit for prosodic feature extraction. 

• Because there is not a consistent and language-independent definition on 

syllable in the acoustic domain of speech [12, 54], automatic segmentation 

is used to construct units called pseudosyllables. A pseudosyllable is a 

unit inferred from the results of automatic processing of speech, spanning 

over one linguistic segment and may not map exactly to the linguistic 

definition of a syllable [12, 55, 56 . 

• The surface representations of stress and tones are often anchored to vow-

els. (Pseudo)syllable alignments shall coincide with this anchor. In other 

words, syllabification shall be implemented through vowel detection. In-

stead of syllable boundaries, syllable nuclei are to be marked. 

In this thesis, pseudosyllable is defined as the basic unit for prosodic fea-

ture extractions. A syllabification process to construct these units is nec-

essary. There are different approaches for syllabification, and they can be 

classified into two categories. In the first category, syllabification is based 

on the phone alignments from an automatic speech recognition (ASR) engine 

12, 55, 56，57, 58, 59]. In the second category, an ASR engine is not used 

46，60, 6 1 . 

The ASR approaches for syllabification essentially group the ASR-generated 

phones to construct a pseudosyllable. The most common pseudosyllabic struc-

ture is C"V, where C and V refer to a consonant and a vowel respectively, n 

is a non-negative integer. With this approach, pseudosyllable is a unit having 

one or more consonants followed by a vowel, according to the results from an 
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ASR engine. Instead of training the ASR engine with precise phone models, it 

is usually adequate to merge phone classes to create a consonant(C)/vowel(V) 

binary set. From the C/V alignments, pseudosyllable boundaries are marked. 

For the non-ASR approaches, other suprasegmental landmarks are used. For 

instance, pseudosyllables can be found by delimiting the pitch segment by the 

minimum point of a smootlied FO contour [60]. In [46], excitation source infor-

mation was used to find vowel onset points as the landmarks of pseudosyllables. 

Adami and Hermansky used inflection points and start or end of voicing to seg-

ment speech signal [61]. As such, the duration of a pseudosyllable will depend 

on the exact implementation method in an experiment. 

2.4.2 Prosodic features 

The three major prosodic feature types are duration, fundamental frequency 

(FO) and intensity. Various studies investigated the use of prosodic features for 

LID and other related speech and speaker recognition tasks. Because of the lack 

of a conventional set of prosodic features on a par with the short-time acoustic 

features, these studies differ in terms of the features and experiments involved. 

Table 2.1 summarizes the prosodic features that were used for the various 

tasks. In almost all cases, the basic unit for prosodic feature extraction is a 

syllable-like unit. From the table, we can see combinations of different attributes 

under the three major prosodic feature types - duration, FO and intensity. 

Usage of specific features 

Rouas et al. [10], Yin et al [57] and Timoshenko and Hoge [58] proposed to 

solve the LID problem by using speech rhythms only. Rouas [10] assumed a 

pseudosyllabic structure of C^V, and used a three-dimension feature vector to 

represent the rhythmic information of a pseudosyllable, 

[Dci+Dc2 + ..--^Dcn D^ Nc]. (2.6) 

The first term, Dci + . . . + Dcn, is the total duration of the consonantal 
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Table 2.1: Comparison of the prosodic features used for different tasks 
Author 
Task description Prosodic features used Backcnd 

classifier 

R o腿 et al [10]* 
Language identification 

Rouas [12]*， 
Language identification 

Rouas et al [62]* 
Language identification 

Ym et al [57广， 
Language identification 

Timoshenko and Hoge [58] 
Language identification 

Lin and Wang [60]* 
Language identification 

Piat et al 

Acccnt identification 

Tone and accent learning 

Kochanski et al [59] 
Speech/Poem analysis 

Biadsy and Hirschberg[55]'^^ 
Dialect identification 

Mary and Yegnanauayana [46]* 
S p eaker / Language 
Recognition 

Peng and Wang [65]*仍 

Tone recognition 

Ha/en and Zue [66] 
Language identification 

Thyme-Gobbel 
and Hutchins [43广0 
Language identification 

Total consonant cluster duration, total vowel duration, GMM 
Complexity of consonantal cluster 

Phrase FO curve gradient, pseudosyllable FO residue, GMM 
energy contour gradient in pseudosyllablcs, 
duration of vocalic segments 

Total duration of consonantal segments and vowel segments GMM 
Number of segments m the consonantal clusters 
FO mean J FO variance，FO skewness, FO kurtosis 
Accent location, FO bandwidth 

Duration of segments assuming unvoiced-voiced 
sequence in specch 

Duration of pseudosyllablcs, assuming C^̂ V structure 

Lcgendre polynomial approximation to a segment 
of pitch contour 

Ratio of syllable duration over word duration, Average 
energy & energy profile of cach syllable, FO slope, 
speaker-normalized FO 

VQ 

ANN 

GMM 

HMM 

a syllabic, Pitch slope 
Maximum and mean 

in syllable final, 
pitch from 

Mean pitch across 
Extended features 
adjaccnt syllables, 
Difference features Changes m intensity maximum, 
pitch maximum, pitch mean, mid-point, slope 

Segment(C/V) duration, loudness, degree of aperiodicity 
early/late loudness m segment, spectral change 
mean FO, pitch slope, pitch peak alignment, RMS intensity, HMM 
duration, delta between two pseudosyllables 

Change in FO, FO peak from voice onset pomt(VOP)， 

amplitude tilt, duration tilt, distance between 
successive VOPs，duration of voiced region, delta 
of log energy between pseudosyllables 

FO values taken in multiple time points in a syllable, 
duration of FO contour, subsyllabic mean of log-energy, 
FO and energy values m adjacent syllables 

FO, delta FO, segment duration 

Asymmetnc 
k lines clustering 

Coefficient of 
determination 

Neural 
network 

SVM 

Pitch contour shape, delta max pitch / delta mid-pomt 
pitch between syllables, distance between syllables, 
syllable duration, delta duration, amplitude contour 
shape J delta mid-pomt amplitude / delta max amplitude 
between syllables, low frcqucncy FFT of amplitude 
envelop, syllable location & speaking rate withm 

GMM 

Histogram 
comparison 

Shriberg et al [56]* 
Speaker recognition 

FO, energy and duration features m various extraction 
h normalization methods with syllable-NERF modeling 

SVM 

withm one syllable, pseudosyllable, oi similai supra-segmental unit 
^Normalization measuies applied to some features 
"Pel-speaker 2：-score normalized log-scale values aie used foi all featmes 
^Energy is subtiacted by the utteiaiice maximum, deiivativcs ovei the contoui aie also taken 
^Moving window noimalization is applied to FO and eneigy values 
•Aveiages，deltas, standard deviations measuxes are taken Individual featmes aie combined into featuic pans 

Correlations of ] 
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* contour" 

(a portion within a 
pseudosyllable) 
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Pseudosyllable 
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Time/ 10ms 

200 220 240 

Figure 2.3: FO and intensity contours and portions within a pseudosyllable 

Fundamental frequency (FO) and intensity exhibit themselves in the form 

of short-time measurement sequences. These sequences are commonly known 

as contours. Figure 2.3 shows the FO and intensity contours. The top panel 

of the figure is the speech waveform spoken in Mandarin. The vertical dotted 

lines mark the boundaries of six pseudosyllables. They are generated with an 

ASR approach for syllabification. The middle and bottom panel show the FO 

contour and the intensity contour respectively. Pseudosyllable-based attributes 

are extracted from the portion of contours within the corresponding syllable 

boundaries. 

Among different FO attributes, the typical ones include FO mean, FO gra-
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cluster in a pseudosyllable. The second term, By, is the duration of the vowel 

segment. The last term, Nc, is the number of segments in the consonantal 

cluster, indicating the complexity of the pseudosyllable. In the studies of Yin 

et al. and Timoshenko and Hoge, duration attributes are represented by even 

simpler features with, one or two dimensions [57, 58 . 
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dient and delta attributes. FO mean is the average value of all frame-based 

measurements from the portion of FO contour. FO gradient is obtained by first 

performing linear regression of the portion of FO contour, and then measuring 

the slope of the regression line. In [60], Lin and Wang extended this idea and 

applied Legendre polynomial approximation. Delta features refer to the dif-

ference of a particular FO attribute across two contiguous pseudosyllables. FO 

attributes are found to be widely used in different studies as reported in Table 

2.1. 

Intensity attributes are derived in a similar manner to the FO attributes. 

Typical intensity attributes include average and delta amplitude. Many in-

tensity attributes have a large dynamic range, sometimes logarithm is taken 

56, 63:. 

Usage of a large feature set 

In Thyme-Gobbel and Hut chins' study [43], The "discrim" system investigated 

224 individual prosodic features, including pitch, syllable duration, shape of 

amplitude contour in terms of average, delta, standard deviation. Individual 

features were also combined into feature pairs. Nevertheless, among these 224 

attributes only a small subset were used in training and discrimination modules 

43；. 

Shriberg studied a large set of prosodic features, known as syllable non-

uniform extraction region features (SNERF), for speaker recognition [56]. SNERF 

are defined both by the region from which the features are extracted, and by 

the type of features extracted within that region [67]. In principle, the extrac-

tion region of SNERF covers a syllable. An ASR engine with a typical English 

phone set is trained, and a program called "tsylb2" uses a set of hand-crafted 

rules to match the English phones to English syllables [56]. 

Following the trichotomy of prosodic features, SNERF include pitch, energy 

and duration [56]. For pitch features, multiple variants of frame-based FO mea-

surements are obtained. Examples are maximum, mean, minimum values in the 

FO measurements. Probability of pitch halving/doubling in each frame is also 
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calculated, by using a log-normal tied-mixture model of pitch. The extraction 

of energy features in SNERF is similar to that of pitch features. The only dif-

ference is that extraction regions for energy features are not limited to voiced 

frames. For duration, multiple extraction regions are used to extract features. 

These include syllables, and subsyllabic units like onset, nucleus and coda. 

SNERF are quantized features. By repeating different quantization reso-

lutions from 2 up to 60, several versions for each quantized feature are gen-

erated. Feature normalization is another issue. Most syllable-based SNERFs 

are normalized over a longer window covering multiple units. This normaliza-

tion approach captures the syntagmatic properties of the features, where the 

contrast of prosodic properties can be made with reference to the neighbouring 

speech units. Normalization is carried out by dividing by/subtracting mean，z-

normalization (subtracting mean, then divide by standard deviation) or finding 

percentiles. 

2.5 Language classification with SVM 

A language classifier is an important module in an LID system which identi-

fies the language of the test speech. All analogous modules in related speech 

recognition tasks with prosodic features are summarized under the column of 

backend classifier in Table 2.1, The major classifiers used include Gaussian 

mixture model (GMM), hidden Markov model (HMM) and support vector ma-

chine (SVM). In this thesis, SVM will be implemented to serve language clas-

sification purpose. SVM is a large margin training method originating from 

a statistical learning problem for binary classification. Traditional classifiers 

like the Bayesian network model the probability distributions of the train-

ing data in every target class separately [68]. Overfitting may occur and the 

generalization ability is degraded. In a binary classification problem, SVM 

is trained in a discriminative manner. The training algorithm finds a deci-

sion function with maximum generalization ability [69], SVM is widely used 

in various applications in speech processing, speaker and language recognition 
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X, 

Figure 2.4: The binary-class training data, hyperplane and the margin 

40, 65, 68, 70, 71, 72, 73, 74 

In each LID trial, a particular language is detected. To accomplish this 

goal, a binary classifier is trained from a multi-lingual training database with 

many utterances. After some transformation, each utterance is represented by 

a P-dimensional feature vector x. We want to distinguish those feature vectors 

X which belong to the target language against all other x. Figure 2.4 is a 

simplified illustration with some training samples in a two-dimensional feature 

space. In the figure, training samples of the two classes are marked by crosses 

and circles respectively. The training procedure finds an optimal hyperplane H 

which separates these two classes of x subject to a maximum margin, |(i+1 + |. 

In the following, we consider the three elements in SVM training, which are 

linear separability of data, the margin and the slack variable. From these 

three elements, the objective function of SVM is formulated. 

Linear separability 

In a F~dimensional space (R-^), a hyperplane H can be defined by the following 

equation, 

H = {xe -\-b = 0,w en}. (2.7) 

w and b can be referred to as weights and bias respectively [75]. Weight is a 

normal vector orthogonal to H. Its value affects the orientation of H. Bias 

is the scaled offsets of H from the origin. It translates the position of H. 
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The prerequisite for an optimal hyperplane H is that H separates the training 

samples of the two classes by two different half spaces. This constraint is referred 

to as linear separability. Let y^ be the class label of the k^^ sample. It takes 

either of the values 士1. Also let x^ be the feature vector of the k̂ ^ sample. The 

linear separability constraint can be described by an inequality [76], 

Vk {w^Xf, + 6) > 1 Vfc. (2.8) 

Margin 

Recall that the training procedure finds the optimal hyperplane H. Besides 

linear separability, an optimal H has a large margin. Margin is the sum of two 

distances, and which are measured from H to the closest sample in 

each class. and |cL| are illustrated in Figure 2.4. We use the normal form 

of H in Eq.(2.7). With some derivations, the value of margin can be expressed 

in terms of w [76], 

2 
d+ + |cL =——. （2.9) 

w 

Slack variables 

Figure 2.4 illustrates the case when linear separability cannot be attained. We 

have to neglect some data points such that the remaining binary-class samples 

become linear separable again. In the figure, two samples (fci and fc?) are ne-

glected. For each neglected sample, linear separability constraint (Eq.{2.8)) is 

relaxed by introducing a slack variable J. The modified constraint equation 

becomes 

Vk {w^xk + 6) > 1 - e/c； C/fc > 0 yk. (2.10) 

The scenario illustrated in Figure 2.4 is modeled by > 0 and “ > 0. For 

other samples, no relaxation by slack variables is needed and the corresponding 

^'s vanish. The margin derived in this way is no longer the absolute separation 

between two classes of samples. It is referred to as a soft margin. With more 

relaxation, a larger value of the soft margin could be returned, which, seems to 
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indicate good bisection by H. Nevertheless, more relaxation also means more 

samples (such as ki and in Figure 2.4) are disregarded, and a penalty is 

incurred by this act of negligence. A common penalty function is: 

(2.11) 
k=l 

C and m are penalty function parameters. In this thesis, we assume C is any 

positive constant and m = 1. 

Optimization objective 

In SVM training, the value of the margin (Eq.(2.9)) is maximized (or its recip-

rocal is minimized). Also, the penalty incurred by linear separability relaxation 

(Eq.(2.11)) is minimized. Written in vector form, the whole optimization prob-

lem is formulated as, 

min ^w^w + 

subject to(s.t.) disLg(y)(X^w + 6) - 1 + ^ ^ 0, 

^ t 0. (2.12) 

w E R"̂  is the normal vector orthogonal to the separating hyper plane H. 

X E R尸xK is the collection of K observation vectors in the P-dimensional 

input space, y G is the class label of the training data, diag(y) is a 

diagonal matrix with elements yi,...,yK- 1 is a vector with K elements of all 

ones. ^ G is a vector of K non-negative slack variables which relax the 

separability constraint. 

The whole problem is convex and can be solved by quadratic programming. 

To avoid the high problem dimension, it is popular to transform the original 

primal problem to a dual problem. Optimality conditions in the primal and the 

dual problems are well defined. In practical implementation of support vector 

machine training, other issues have to be tackled. For example, the methods to 

map the input samples to high-dimensional space vary [761. There are different 
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choices of penalty functions (Eq.(2.11)) when the linear separability constraint is 

relaxed. Finally, when the problem dimension is still large after transformation 

to the dual problem, the data have to be decomposed into many working sets 

and optimization is done iteratively [77, 78, 79]. 

22 



Chapter 3 

Acoustic tokenization 

A prosody-based LID system is proposed in this thesis. Because prosodic fea-

tures are suprasegmental and are extracted from a rather long linguistic unit in 

the syllable level, the prosody-based LID system works in an analogous way as 

a phonotactic LID system introduced in Chapter 2 does. The general flow of 

such a system is summarized by figure 3.1. An acoustic tokemzer frontend seg-

ments the speech into syllables, from which prosodic features are extracted. In 

the statistical language modeling module, occurrence statistics of the prosodic 

features are computed, using the hag of sounds approach, for example. Finally, 

the statistics are used to train a language classifier. 

Figure 3.1: A phonotactic LID approach for prosodic features 

In this chapter, our implementation of the acoustic tokemzahon frontend in 

the LID system is explained in detail. The tokenization frontend temporally 

groups the continuous flow of incoming voice into segment units and prosodic 

features are extracted. According to the principles described in Section 2.4.1, 

the segment unit to use is pseudosyllable. The syllabification algorithm is 
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/tsV /y：/ 

Detected 
nucleus 

Figure 3.2: Detecting the syllable nucleus of /ts^y：/ 

introduced in Section 3.1 and its effectiveness are justified by syllabification 

experiments in Section 3.2. From each pseudosyliable, a large number of 

prosodic attributes will be extracted. These attributes will be introduced in 

Section 3.3. 

3.1 Syllabification algorithm 

We implement a syllabification algorithm which segments speech by finding the 

nuclei of pseudosyllables. With our intuitions on syllables, the detection to 

pseudosyllabic nuclei relies on the loudness of speech. At micleus positions, it 

is assumed high acoustic intensity must exist because of mouth opening. 

In the syllabification algorithm, we extract the intensity profile in the sono-

rant band by band pass filtering, Local peaks are detected using rectifica-

tion and low pass filtering. These peaks are considered as candidates of the 

nuclei of pseudosyllables. All candidates are evaluated by a scoring function in 

the intensity peak picking part. Eligible peaks are accepted as a pseudosyl-
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labic nucleus. This algorithm is a non-ASR approach to syllabification. It is 

referred to as peak-picking syllabification (PPS) hereinafter. 

Figure 3.2 shows an example of PPS with a Cantonese syllable /ts^y:/ (with 

the character 處 ) . T h e syllable has an aspirated affricate onset and a long high 

front rounded vowel. Band pass filtering removes the consonantal contents. 

Low pass filtering returns only one peak in the vocalic region, whose eligibility 

is confirmed by the scoring function. The detected nucleus is marked in the 

figure. 

3.1.1 Band pass filtering 

In the first step of PPS, a band pass filter is used to reduce the non-vocalic 

components of speech, as well as background noise. The considerations in this 

step include the passing band and the type of the band pass filter. In an earlier 

study, Weigel used a relatively broad frequency band (250Hz to 2500Hz) for the 

detection of vocalic components in speech [80]. Mermelstein used the telephone 

bandwidth from 500Hz to 4000Hz [81:. 

There were also studies in which a narrower passing band was used. Pfitzinger 

et al. found the frequency regions from 360Hz to 1650Hz useful [54]. Howitt 

tried different band edges within the first formant (Fl) frequency bands and 

found that passing frequency from OHz to 650Hz produced the optimal results 

82]. Pellegrino and Andre-Obrecht used the short-time energy from the Mel-

scale frequency filters in the range of lOOHz to lOOOHz to locate voiced speech 

region [83]. The passing band is called sonorant band, which corresponds to 

the frequency regions where vocalic segments best demonstrate their energy 

concentration. In the ideal case, the filtered signal contains only the vocalic 

component of speech. 

In this thesis, a digital filter with passing band of 300Hz to lOOOHz will be 

used. This band is expected to exclude the nasal sounds in low frequency regions 

and the formants in high frequency regions, which are zero-crossing frequencies 

related to the phone type and quality. The digital filter used is a fourth-order 

elliptic filter with 0.5dB passband ripple and 70dB stopband rejection. 
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3.1.2 Full wave rectification and low pass filtering 

The vocalic component of speech can be regarded as a simple carrier modulated 

by the intensity profile. In the second and third steps of PPS, full wave rec-

tification and low pass filtering act as a standard demodulator. The extracted 

temporal envelop will be regarded as intensity profile. 

An illustrative example is shown in Figure 3.3. The vocalic component is 

shown in the left sub-figure. The effect of full wave rectification is illustrated in 

the right sub-figure. It shifts the formajits upward, by doubling their frequencies 

without changing the shape of the envelope. Finally, a low pass filter outputs 

the temporal envelope. The low pass filter is implemented as moving-window 

average, i.e. 

T / 2 

Ulpf n ^j^Yl ^LPF[n + r (3.1) 

r=-T/2 

where xlpf is the input and Ulpf is the output of the filter. The frequency 

response of this linear filter is a sine function with the mainlobe bandwidth of 

In this study, the mainlobe of the linear filter is set to be 20Hz wide, and 

the width of moving window is 50ins. 

Temporal envelope 

Vocalic contents 

M 

Figure 3.3: Full wave rectification of the vocalic component of speech for nuclei 
detection, (left) Carrier of vocalic content modulated by the intensity profile 
(right) Full wave rectified signal for the demodulation of the intensity profile 
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3.1.3 Intensity peak picking 

In the final step of PPS, an algorithm detects pseudosyllabic nuclei from the 

intensity profile. Two procedures are involved. First, a moving window slides 

along time and determines the positions of local maxima and minima in the 

intensity profile. By varying the width of the moving window, more or fewer 

extrema points will be returned. This width has to be tried empirically. To 

prevent from false alarms due to the perturbations in the intensity profile, a 

median filter is used. A minimum syllable width is also imposed. 

The second procedure of intensity peak picking is to verify whether a local 

maximum is a pseudosyllabic nucleus. Detected local maxima, or peaks, in the 

intensity profile are regarded as candidates of pseudosyllable nuclei. A scoring 

function comprising four criteria is proposed to quantify the eligibility of a peak 

for being a pseudosyllabic nucleus. 

In the following, the four criteria and the scoring function will be introduced. 

The working principle of intensity peak picking is to have higher acceptance by 

the moving window first. Subsequently, the scoring function is used to eliminate 

the false alarms. 

moving 
window 

Intensity profile 
after LPF 
Detected nucleus 

Peak not regarded 
as nucleus 

Figure 3.4: Using a moving window, the peak picking algorithm rejects some 
local maxima in the intensity profile in syllabification 

Voicedness 

Voicedness is a binary criterion, which means it contributes either one or zero 

to the scoring function. This criterion is proposed because pseudosyllable nuclei 

are assumed to lie on vowels. The binary decision of voiced/unvoiced is made 

by comparing the intensity of speech in the frequency bands from 300Hz to 
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1500Hz, with a voicing threshold. The threshold is determined for every speech 

utterance from 3 seconds to 30 seconds long with histogram analysis. 

Peak height 

Peak height is a continuous-valued criterion in the scoring function. The larger 

the peak height, the more probable this peak being a pseudosyllable nucleus. 

With the local maxima and minima detected by the moving window, peak height 

is defined as the offset of the peak amplitude with respect to the immediately 

left minimum point plus that with respect to the immediately right minimum 

point. 

Peak range 

Peak range is a continuous-valued criterion. It counts the number of times a 

particular peak is reported to be the local maximum by the moving window. A 

pseudosyllable nucleus is expected to exhibit maximum intensity, captured by 

the detection window at multiple positions. On the contrary, maximum signal 

amplitude caused by perturbations of signals, weak glides or nasals is generally 

local, and reported as maximuni by the detection window at one or two positions 

only. Assume the temporal width and shift of the detection window is wpps 

and Tpps respectively, it is obvious that the upper bound of peak range is 二二. 

That means a candidate is reported to be a local maximum point whenever the 

moving detection window covers. 

Stand-alone peak 

A peak is said to be stand-alone if there are no other peaks in the vicinity. We 

define this vicinity as a region bounded by the nearest local minima on the left 

and right. We take an example of evaluating the third peak in Figure 3.4. The 

local minima immediately after the peak is caused by perturbations and thus is 

not considered as a valid minimum. This third and the immediately following 

peaks are not stand-alone peaks. 
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The stand-alone peak criterion marks naturally-occurred stand-alone peaks 

with a value one. In case there are more than one peak, it chooses the best peak 

so as to enforce the stand-alone criterion. The peak that scores the highest 

according to the criteria of voicedness, peak height and peak range will receive a 

value one. In Figure 3.4, the first, second and last peaks are naturally-occurred 

stand-alone peaks. The third peak is an enforced stand-alone peak, which is 

preferred to the one immediately following. 

The scoring function 

With the four criteria, an overall scoring function is computed to quantify the 

eligibility of a detected local maximum point to be a pseudosyllable nucleus. 

Eligibility = wpps^Cpps 

where Wpps = 切3切4] ； Cpps — [C1C2C3C4] . (3.2) 

(7i,C2,C3 and (̂ 4 are the four criteria of voicedness, peak height) peak range 

and stand-alone peak respectively, corresponding to the four weights Wi, W2, W3 

and W4. Criteria Ci and C4 are binary variables having values of either 0 or 1, 

Criteria C2 and C3 have their values normalized to a range between 0 and 1. 

Different weight combinations and detection thresholds are tried 

exhaustively for an optimal value for the eligibility scoring. 

3.2 Experimental results in syllabification 

Experiments are carried out with three read-speech corpora, namely TIMIT 

in English, CUSENT in Cantonese and 863 in Mandarin. The corpora con-

tain multiple speakers, and the gender is balanced. Each, speech utterance in 

these corpora is from 2 to 5 seconds long. The number of utterances in 863, 

CUSENT and TIMIT are 205, 247 and 204, respectively. The speech contents 

are from news articles or passages designed to meet the phonetic balance cri-

terion. Broadband clean recordings are downsampled to telephone bandwidth 
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Table 3.1: Experimental results on syllabification conditioned on the width of 
moving window and the weight factor 

Moving 
window Corpus tXJppst Detection 

threshold Insertion Deletion Vowel error 
rate (VER) 

80ms 863 (Mandarin) [0.] L 0.1 0.8 0.2] 1 6.61% 5.30% 11.91% 
CUSENT (Cantonese) [0.] L 0.2 0.5 0.5] 1 4.14% 2.12% 6.26% 
TIMIT (English) [0.：； ) 一 0.5 0.2 0.8] 1 4.26% 17.54% 21.80% 
Overall [0.] L 0.2 0.2 0.8] 1 6.24% 8.13% 14.36% 

130ms 863 (Mandarin) [0.] L 0.5 0.2 0.8] 1 4.16% 4.71% 8.87% 
CUSENT (Cantonese) [0.] L 0.5 0.2 0.8] 1 2.05% 2.59% 4.64% 
TIMIT (English) [0.] L 0.8 0.2 0.8] 1 2.40% 20.48% 22.88% 
Overall jo.] L 0.5 0.2 0.8] 1 2.52% 9.89% 12.41% 

T w p p s are the weight vector [wiW2Ws'W4] corresponding to the four peak picking criteria (Eq.(3.2)) 

before the syllabification algorithm is applied. 

To calculate the detection accuracy, the detected pseudosyllables are com-

pared with some reference data. Phone-level forced alignment or automatic 

segmentation of sub-syllabic units are provided with the corpora. From these 

alignments, boundaries of reference syllables are generated. An assumption of 

C^V reference syllable structure is enforced. 

In the proposed algorithm, the width of the moving window has to be empir-

ically determined. Two widths, 80ms and 130ms are considered. They roughly 

correspond to the pseudosyllable durations in English and Chinese speech re-

spectively. According to Equation (3.2), different weights are applied to the 

four criteria. Four weights, 0.1，0.2, 0.5 and 0.8, are freely combined to form 

many weight factors. Together with three proposed detection thresholds, 1， 

1.5 and 2，an optimal combination of weights and threshold subject to a high 

syllabification accuracy is found by greedy search. 

The performance of syllabification algorithm is reflected as insertions, dele-

tions and vowel error rate (VER). Insertion rate measures the percentage of 

reference syllables where more than one pseudosyllable is detected by the al-

gorithm. Deletion rate measures the percentage of reference syllables where 

there is a detection miss. Vowel error rate (VER) is the sum of insertions and 

deletions. 

Inferring from the syllabification results, the three languages fall into two 

categories: Cantonese and Mandarin syllabification benefit from using a longer 
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moving window (130 ms), while English syllabification benefits from using a 

shorter moving window (80 ms). 

For Chinese, the vowel error rate (VER) is below 10% with the 130ms moving 

window. The four peak-picking criteria, in the descending order of importance, 

are stand-alone peak, peak height, peak range and voicedness. This rank of sig-

nificance is preserved for English syllabification with the 80ms moving window, 

except that voicedness receives a slightly higher importance. English syllabifi-

cation has a higher VER about 20%. 

The deletion rate of English pseudosyllables is significantly higher than other 

error terms. In a stress language like English there will be some syllables whose 

intensity is too small to be detected. It is an open question whether the errors 

should really be considered as deletions, or the definition of syllables in these 

languages should be revised. 

3.3 Extraction of prosodic attributes 

There exists no standard prosodic feature set on a par with the cepstral features 

for automatic speech recognition. As a result, many different prosodic features 

were reported in previous studies (Section 2.4.2). Despite some commonality, 

the choices of features and the exact definitions of individual feature parameters 

are highly application- and task-dependent. The task of LID involves multiple 

languages, each of which has its distinctive properties in prosody. It is not 

reasonable to expect that a single type of features would be adequate to dis-

tinguish all of the languages. Effective LID may require the joint contributions 

of many individual features. Such an approach was shown successful in the 

speaker recognition task [56 . 

In this section, we introduce a comprehensive set of prosodic attributes that is 

potentially useful for LID. Here a prosodic attribute refers to an explicitly defined 

measurement from the acoustic signals . These attributes describe the supraseg-

mental variation of FO, intensity, and duration in many different ways. Referring 

to previous studies, in this thesis 105 prosodic attributes are explored. These 
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Pseudosyllabic nuclei 
from syllabification 
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Super term-document matrix 

Figure 3.5: Prosodic attribute extraction 

prosodic attributes are divided into seven groups. They are (I) FO basic, (II) 

Intensity basic, (III) Duration basic, (IV) FO regression, (V) Intensity 

regression, (VI) FO residue and (VII) Intensity residue. Group (I),(II),(III) 

are prosodic features in basic forms. Within each group there is a number of 

attributes derived from different frame-based or syllable-based measurements, 

and with different normalization methods. Group (IV),(V),(VI),(VII) are re-

lated to the polynomial regression of FO/intensity contours. No normalization 

is needed. 

Prosodic attribute extraction is a multi-stage process illustrated in Figure 

3.5. First, the frame estimates of pitch and intensity are obtained. From these 

short-time estimates, FO segment contours and intensity segment contours are 

derived. Then, some measurements in FO/intensity/duration are obtained in the 

basic forms. These measurements can be frame-based or syllable-based measure-

ments. The final step is normalization^ after which precisely defined prosodic 

attributes in Group (I),(II) and (III) are obtained. On the other hand, poly-

nomial regression of the segment contours returns prosodic attributes in Group 
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(IV),(V),(VI) and (VII). 

Apart from verbal descriptions, in the following a prosodic attribute is also 

denoted by %，s), where the subscript z is a shorthand indicating the nature 

of the prosodic attribute, and 5 is the index to the pseudosyllable. In this 

chapter's discussion on feature extraction, the pseudosyllable index s will be 

omitted for notation simplicity. Vi will be referring to the prosodic attribute i 

from a pseudosyllable not explicitly stated. 

3.3.1 Frame estimates and segment contours 

Frame estimates for FO, intensity and duration 

The large number of FO, intensity and duration attributes originate from short-

time frame estimates. The FO attributes are from frame-based pitch estimates 

generated by a pitch extraction algorithm [56, 84]. Intensity attributes are 

computed from frame-based intensity estimates, which are represented by the 

RMS energy values [84]. There are no frame estimates for duration, but duration 

attributes can be inferred from the segment contours derived below. 

Segment contour: definition 

Short-time pitch and intensity estimates form discrete sequences. The typical 

time step (frame shift) between successive samples is 10ms. The sequences 

extend to continuous lines called contours. As prosodic attributes are extracted 

on the pseudosyllable level, we are interested in the corresponding portion of 

the contours (Figure 2.3). For the sake of clarity, such portions of contours are 

referred to as FO segment contour and intensity segment contour hereinafter. 

In later discussions, a segment contour will be denoted by f . Suppose there 

are T samples in f , 

/ = [/[•]，/[i]，...，/[r — i ] r , (3.3) 

f[t — 1] denotes the point in the segment contour, f should be taken from 

some pseudosyllable indexed s, but for simplicity, the pseudosyllable index is not 
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shown. Moreover, the notation for an FO segment contour is not distinguished 

from that of an intensity segment contour, unless ambiguity occurs. 

Segment contour derivation 

With the pseudosyllabic boundaries from an ASR approach for syllabification 

(Section 2.4.1), the segment contours are readily derived. In this study, syllabi-

fication is done with PPS. It only finds pseudosyllabic nucleus but not pseudo-

syllabic boundaries (Section 3.1). With only the locations of nuclei, we resolve 

to the shape and trajectory of the FO contours to derive segment contours. 

Figure 3.6 shows the derivation of segment contours under PPS. On the bot-

tom panel, PPS detects the pseudosyllabic nuclei. Assuming the C^V syllabic 

structure, and using the fact that FO is often undefined in consonantal regions; 

thus, an FO segment contour is constructed as the longest continuous extension 

of FO contour from the pseudosyllabic nucleus. For a syllable with a glide or 

approximant onset, where the FO contour becomes continuous across two pseu-

dosyllables, the segment contour will be bisected at the point with the lowest 

sonorant band intensity. 

After the FO segment contours are defined, intensity segment contours are 

constructed to align with the FO segment contours. The use of FO characteristics 

to align intensity segment contours is a crude approximation. Nevertheless, 

it is also adopted in the construction of SNERF (Section 2.4.2) [56]. More 

investigations would be needed in the future. 

Figure 3.6 shows a perfect case of segment contour derivation. The segment 

contours align well with the syllable alignments produced by the ASR engine on 

the top panel. The segment contour of each pseudosyllabic has a finite duration, 

this can be used as a duration attribute. 

In the subsequent prosodic attribute extraction process, contours in even 

longer temporal range will be considered. A pair contour refers to the contour 

spanning across two pseudosyllables. A triplet contour spans across three pseu-

dosyllables. An utterance contour spans across a pause-delimited utterance. 
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Figure 3.6: Derivation of FO and intensity segment contours under PPS 

3.3.2 FO, intensity and duration measurements 

Prosodic attributes in group (I) FO basic, (II) Intensity basic and (III) Du-

ration basic are attributes in basic forms. A number of measurements are 

extracted from each group. The measurements are classified into frame-based 

and syllable-based. 

Frame-based measurements 

Frame-based measurements are those measurements which are directly taken 

from the segment contour f . For each pseudosyllable, the segment contour 

gives many (normally, several to dozens of) frame-level values, out of which one 

measurement is taken as the frame-based measurement. 

There are three examples of frame-based measurements for FO and intensity 

respectively, namely FO nucleus, intensity nucleus, FO maximum, intensity max-

imum, FO minimum and intensity minimum. They are explained as in Figure 
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Figure 3,7: Basic attributes in FO, duration and intensity types 

3.7. FO/intensity nucleus is the element in f at the position of pseudosyllabic 

nucleus. FO/intensity maximum and FO/intensity minimum are respectively 

the 95^^-percentile and S^-percentile values in the contour f . 

Syllable-based measurements 

Syllable-based measurements are not directly taken from the segment contour 

f . Normally, they are derived as a function of f . There are two syllable-based 

measurements for FO and intensity respectively. All duration measurements are 

syllable-based. They are graphically illustrated in Figure 3.7. 

For FO and intensity, the measurements are FO span, intensity span, FO 

gradient and intensity gradient Span measures the numerical range of the 

elements in f. Gradient is computed by the quotient of span divided by the 

temporal offset of maximum from minimum. 

For duration, nuclei separation is the separation between two consecutive 

nuclei. Syllable length is the length of a pseudosyllable delimited by local minima 

in the intensity contour. Voicing ratio is the ratio of the segment contour length 

to syllable length. Exceptionally long durations due to utterance breaks are 

excluded by an outlier detection algorithm. In Figure 3.8, the nucleus of the 

first syllable in the two detected utterances are marked with solid vertical lines, 

with which an utterance could be clearly identified. 
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3.3.3 Normalization 

The extraction of the three groups of basic attributes (Group (I) to Group (III)) 

is not completed without normalization. Normalization aims at reducing unde-

sirable bias of feature values caused by irrelevant factors like speaker and style 

variations. In this study, the raw measurements undergo two different normal-

ization methods: Bias removal (abbreviated as B) and z-normalization (abbre-

viated as Z). The normalization window covers three temporal ranges, namely 

Triplet, Utterance and File. In the following, the normalization of frame-based 

measurements and syllable-based measurements will be described separately. 

Normalization of frame-based measurements 

First, we consider a frame-based measurement fg [t], which is the (t+1)让 element 

in the segment contour fs from the pseudosyllable s. As a measurement directly 

taken from the segment contour, fs[t] could be compared with all other elements 

in fs and even in /s±w (the segment contours of neighbouring pseudosyllables). 

The frame-based normalized attributes for s are obtained by: 

Raw : 

Bias removal : 

z-normalization 

"̂ raw = fs i 1 (3.4) 

^̂B = fs[t] =/J力]一/i, (3.5) 
z fs[t] -

Vz = fs[t] (3.6) cr 

where /i and a^ are the mean and variance estimated from { / s -wi j • •.，/s+W2}-

/ is a segment contour containing several to dozens of measurements. The 

normalization window covers W1 + W2 + 1 pseudosyllables in the vicinity of the 

target syllable s. By varying W1 and W2, three time spans are considered: 

• Triplet, which covers three consecutive syllables, fs-i, fs and /s+i. 

• Utterance, which covers a pause-delimited utterance (Figure 3.8) 

• File, the longest available content in test data, which may be 10, 30 or 45 

seconds depending on the test conditions. 
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Normalization recovers the syntagmatic properties of attributes, reducing 

the bias and dynamic range variations over different time spans. For instance, 

utterance mean and variance are related to intonation. Statistics of longer time 

span over an utterance may carry certain speaker characteristics. 

There are six frame-based measurements, which are FO/intensity nucleus, 

FO/intensity maximum and FO/intensity minimum. For each measurement, 

two normalization methods (B,Z) over three time spans (Triplet, Utterance^File) 

are applied to the log-scale value. For the time span File, the normalization is 

also performed for the linear feature value. Together with the raw measurement, 

each frame-based prosodic measurement gives rise to nine normalized attributes. 

Normalization of syllable-based measurements 

Syllable-based measurements include span, gradient, nuclei separation, syllable 

length and voicing ratio. In this section, a syllable-based measurement is rep-

resented by the function output g(f). The normalized syllable-based attributes 

are obtained by, 

Raw : 

Bias removal : 

z-normalization 

V 測= g(fs)-

^B = gifs) = gifs)-"， 

Z 9{fs) - M vz = gifs)= a 

(3.7) 

(3.8) 

(3.9) 

The normalization operations are similar to those for frame-based measure-

ments. The normalization window is {p(/s_wi), . •.，5*(/s+w2)}. Since g{f) is a 

scalar, the points for calculating fi and a will be much fewer than the case of 

frame-based measurements. Normalization over Triplet is not done because of 

insufficient data for mean and variance calculations. Four normalization meth-

ods (B, Z in Utterance and File) are applied to the log-scale value of the features. 

Together with the raw measurement, each syllable-based prosodic feature gives 

rise to five normalized attributes. 
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3.3.4 Regression and residue features 

FO gradient motivates the use of regression and residue features. Lin and Wang 

60] suggested that the second-order coefficient from the polynomial regression 

of an FO contour provided language-dependent information. In this thesis, the 

first- and second-order regression coefficients are calculated from the FO and the 

intensity segment contour. Consider a segment contour f = [/[O], / [ I ] , f [ T — 

We perform the M^^-order regression of f and obtain a set of regression 

coefficients a* = [aj a工…al^]^ by, 

T- / M 

a = argmin m
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aj^，the highest-order coefficient in a*, is taken as the prosodic attribute from 

regression analysis. Let iVegi and fj-eg2 denote the regression attributes in first 

and second order. They are obtained as a^ in a*, after performing regression 

with M = 1 and M = 2 in Eq.(3.10) respectively. 

20 30 40 50 60 70 80 90 100 
Time / 10ms 

Figure 3.8: Regression and residue attributes in FO and intensity types 
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Motivated by the supra-tone units for tone modeling [85], regression on seg-

ment contours is also performed on contours across two syllables {pair contours, 

Fig. 3.8). Up to the fourth-order regression is done to capture the high order 

of curvature. 

Regressions of the contours across three syllables (Triplet) and longer re-

gions (Utterance) are not intended to model the contour shape. They tend to 

represent the intonation in a longer temporal range, providing another form of 

normalization to FO and intensity. FO residue and intensity residue are calcu-

lated by subtracting the regression line at nucleus from the FO/intensity mea-

surements at the same position, representing syllable-level fluctuations around 

the phrase curve (Figure 3.8). 

3.3.5 Summary of prosodic attributes 

To systematically represent the large set of prosodic 

index is assigned to each prosodic attribute to replace 

All prosodic attributes used are enumerated in Table 3 

attributes, a numerical 

the subscript notation. 

,2 . 
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triplet 
utterance 

Nucleus 

Maximum 

Minimum 

Span 

Gradient 

Nuclei 
Separation 

Syllable len^ 

Voicing rati( 

r^-order on 
2"^-order on 
l ( o rder on 
2"'^-order on 

Raw 
Z-File 
Z-File (linear) 
Z-Uttcrance 
Z-Tnpiet 
B-File 
B-File (linear) 
B-Utterance 
B-Triplet 
Raw 
Z-File 
Z-File (linear) 
Z-Uttcrance 
Z-Triplct 
B-File 
B-Filc (linear) 
B-Utterarice 
B-Triplet 
Raw 
Z-File 
Z-File (linear) 
Z-Utterance 
Z-Triplet 
B-Filo 
B-Filc (linear) 
B-Utterance 
B-Triplet 
Raw 
Z-File 
Z-Utterance 
B-File 
B-Utterance 
Raw 
Z-File 
Z-Utterance 
B-File 
B-Uttcrance 

Raw 
Z-File 
Z-Utterance 
B-Filc 
B-Utterance 
Raw 
Z-File 
Z-Utterance 
B-Filc 
B-Uttcrance 

) 

1 syllable 
1 syllable 

2 syllables 
2 syllables 
2 syllables 
2 syllables 
3 syllables 
utterance 

31 
32 
33 

35 
36 
37 
38 
39 
41 

44 

47 
48 
49 
51 
52 
53 
54 
55 
56 
57 
58 
59 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

21 
22 

23 

71 
72 
73 
74 
75 
76 
77 
78 
79 
81 
82 
83 
84 
85 
86 
87 
88 
89 
91 
92 
93 
94 
95 
96 
97 
98 
99 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

21 

22 
26 

27 
28 
29 
125 
126 

127 
128 

5 
6 
7 
8 

19 
20 
29 
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(1,11) FO/Intensity basic 
(frame-based) 

FO/Intensity basic 
(syllable-based) 

(III) Duration basic 
(syllable-based) 

(IV,V) FO/Intensity regression 

(VI,VII) FO/Intensity residue 

Table 3.2: The unified notation for all yrosodic attributes 
Qr�up Attribute with Attribute index {i in v̂ ) 
Name specified normalization / FO-type Intensity-type Duration-type 

extraction method 
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Chapter 4 

Statistical language modeling 

After the 105 prosodic attributes are extracted, this chapter is devoted to the 

problem of modeling these attributes. iV-gram statistical language modeling is 

commonly used to capture long-range sequential information. In related studies, 

pseudosyllable bigram and trigram modeling and simple modeling in the phrase 

level are typical [12, 46]. In longer ranges, prosodic 4-grams and phonetic 5-

grams were used for speaker and dialect recognition respectively [70, 86 . 

The main idea of this chapter is to construct various n-grams of prosodic 

attributes. The flow of this chapter follows the modeling process, which is shown 

in Figure 4.1, Continuous-valued prosodic attributes have low resolutions, it is 

typical to quantize a continuous prosodic feature to discrete categories [12, 

56](Section 4.1). These discrete-valued attributes can be used by themselves 

or combined with other attributes to form prosodic tokens (Section 4.2). 

Vector space modeling is adopted to model the statistics of prosodic tokens 

and their n-grams with count vectors (Section 4.3). With a parallel and flexible 

approach known as prosodic attribute model (PAM, Section 4.4), different 

count vector constructions will be compared with LID experiments. PAM with 

vector space modeling gives count vectors with a large dimension. This will 

bring a huge computation load. Attribute selection is carried out to produce 

a moderately-sized set of attributes. Finally, a standard construction of super 

term-document matrix is derived from these selected attributes for subsequent 

LID experiments (Section 4.5). 
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Pseudosyllabic Nuclei 
from syllabification 

ATTRIBUTE 
EXTRACTION 

Prosodic token 

Unigram 
n-gram 
Skipping n-gram 
Boundary n-gram 

Super term-document matrix 

Figure 4.1: Statistical language modeling of the tokenized prosodic features 

In this chapter we will encounter language modeling notations and equations 

for the calculation of term-document matrix dimensions. In short, q refers to a 

quantized prosodic attribute. The quantization resolution is denoted by ||Q||, 

where Q is the set of all possible values in q. We also introduce prosodic token, 

w. In a loosely defined context, w and q can be perceived similarly as a syllable 

unit for n-gram modeling. Readers can also refer to the List of Symbols pages 

in the beginning of the thesis. 

4.1 Attribute quantization 

With the fewest assumptions on the distribution of a feature value, scalar quan-

tization assigns the continuous-valued attribute into equally populated bins [56 . 

Let denote the 产 prosodic attribute at the pseudosyllable s. The quantized 

attribute g(i，s) is given by, 
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(l{i,s) = (le{^{i,s)) e Qu ( 4 - 1 ) 

where qĵ -) is the quantization function. The quantization levels can be different 

for each attribute i. Qi is the set of all possible values of the quantized attribute. 

It would be referred to as inventory hereinafter. The cardinality of this set, 

denoted by ||Qi||, is equivalent to the size of the inventory or the quantization 

resolution. 

The use of equally-populated bins implies that the quantization is not uni-

form. In this study, the decision levels are found from a multilingual data set 

comprising 548k pseudosyllables from the NIST LRE 1996 development and 

evaluation sets, NIST LRE 2003 evaluation set and OGI-TS corpus [87, 88, 89 . 

These multi-lingual data sets include speech data from English, Farsi, French, 

German, Hindi, Japanese, Korean, Mandarin, Russian, Spanish, Tamil and 

Vietnamese. 

A prosodic LID system previously reported used only two to three bins for 

quantizing each prosodic feature [12]. On the other hand, a study using prosodic 

features for speaker recognition used up to 60 quantization bins. Significant 

performance gain was reported when the number of quantization levels were 

increased from 2 to 5 [56]. In this thesis, three quantization resolutions, 3, 6 

and 9, are tried. 

4.2 Generation of prosodic tokens 

A set of prosodic tokens can be defined by one or more quantized attributes. 

Let Ws denote the prosodic token for pseudosyllable indexed s. For clarity in 

the following discussions about n-gram modeling, the defining attributes, i, will 

be omitted in the notation of the prosodic token. 

Prosodic tokens defined by one attribute 

This is the simplest case when only a single prosodic attribute is considered. 

The prosodic token Wg is equal to the quantized prosodic attribute. 
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Ws = q(i,s) e Qi. (4.2) 

The physical meaning of a prosodic token can be understood by looking at 

an example in which FO gradient is the defining attribute. Such a token set 

includes some "rising tone tokens", some "flat tone tokens" and some “falling 

tone tokens". 

Prosodic tokens defined by multiple attributes 

In some cases it is beneficial to model two or more attributes together. The 

set of prosodic tokens are formed by taking the Cartesian product among the 

individual attributes concerned. Taking the co-modeling of two attributes as an 

example, we have 

Ws = q(i,s) X q(j,s) e QiX Qj, (4.3) 

where i and j are the indices of two different prosodic attributes. For exam-

ple, we can look at the high-rising and low-rising tones in Cantonese. Their 

characteristics are described by the FO attribute together with, the FO gradi-

ent attribute. By defining a set of FO register-gradient tokens, the properties 

of the mentioned tones can be explicitly modeled. Other examples of multiple-

attribute prosodic tokens include taking the Cartesian product of two attributes 

with the same measurement but different normalization methods. 

4.3 Vector space modeling of prosodic token n-

grams 

A bag of sounds approach is adopted from previous works on information re-

trieval, particularly text categorization [4, 90]. Given many text documents, 

the task of text categorization is to look for a certain number of characteristic 

words (or terms) that can classify the documents into different categories. It is a 

two-mode analysis problem. In the training process, classes in both dimensions, 
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namely terms and documents, are derived simultaneously [91, 92, 93 . 

In a prosody-based LID problem, training/testing utterances are analogous 

to text documents. Prosodic tokens are analogous to words or terms. The use of 

a term-document matrix is adopted to model variable-length speech utterances 

with fixed-length feature vectors [4’ 39, 40, 56, 94]. For each training utterance 

(document), a count vector is constructed. Its elements are the occurrence 

counts of prosodic tokens (terms) in the utterance. The count vectors of different 

documents are aligned and stacked together to form the term-document matrix. 

Figure 4.2 shows two P-hy-K term-document matrices computed from the 

data of two languages ni and n^. The occurrence counts of P prosodic tokens 

in K documents of each language are modeled. By comparing the column 

vectors in the two matrices, it is found that the second token from the top has 

sparse occurrences in language n!，while the fourth to sixth prosodic tokens in 

language n^ have either frequent or sparse occurrences. These are language-

specific properties useful for LID. Some terms, such as the third one from the 

top, have similar occurrence patterns in both languages. They can be discarded 

without affecting recognition performance much. 

In practical implementation, the occurrence counts of prosodic token n-

grams are also taken into accounts to model long-range sequential information 

40, 95, 96]. The number of terms (P) in the term-document matrix depends 

on the size of the prosodic token inventory, and the order of n-gram. Usually it 

is much larger than that shown in Figure 4.2. Language classifier can be built 

with a vector-based classifier, typically support vector machine. 

Let cc(:，k:) denote a count vector for training document k, which is an utter-

•K document: 
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ance, in the term-document matrix. Different ways of constructing the count 

vectors will be introduced below. Construction of count vectors uses prosodic 

tokens. In most cases, only one or two prosodic attributes are involved. The-

oretically the count vector construction can be repeated with each of the 105 

attributes defined in Table 3.2，giving a large number of term-document matri-

ces. 

4.3.1 Count vectors for different prosodic token n-grams 

Prosodic token unigrams 

The count vector of a prosodic token unigram is constructed by counting the 

occurrence of each, prosodic token. The dimension of the count vector is equal 

to I丨Q� .For a prosodic token defined by an attribute pair i and j, there are 

II Qz X Qj II different tokens to be counted. 

If a prosodic token Ws is defined by single attribute, its count in the utterance 

(document) k is given by, 

x{ws,k) = C(叫 

If Ws is defined by an attribute pair, the count is given by, 

C{ws\k) 

(4.4) 

x{ws, k)= (4,5) 

C{wt\k) is a function that returns the actual count. It is normalized by the 

sum of counts of all unique tokens Wt in the prosodic token inventory (Q^ or 

Q^ X Q J . 

Prosodic token n-grams 

Long-range sequential information can be modeled by prosodic token n-grams. 

n-gram modeling of different attributes are done separately. Assume the inven-

tory size of attribute i is 6 (i.e. ||Qj|| —6). If the order of n-gram is 3, prosodic 

token trigram of this attribute has the inventory size of =216. The count 
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for a prosodic token n-gram WgWs in document k is obtained as, 

x(ws'Ws, k) = ^ C ( 屯 , y k ) — — 厂 , (4.6) 

where Ws = Ws-{n-i)^ •.. > 川 i s the history of n — 1 preceding pseudosyllables. 

Skipping n-grams 

In the modeling of higher-order n-grams, data scarcity is a concern. It is de-

sirable to avoid zero probability estimates, which happen when an n-gram does 

not occur in the training data [96]. Assume we have representing 

the trigram of a prosodic token. The trigram count is given by, 

x{Ws-2Ws-lWs:k) = — — (4.7) 
E切爽_i扣圧C(Wt^2Wt-lWt\k) 

W h e n the order of n-gram increases, the prosodic token inventory Q广 in-

creases exponentially. The dynamic range of x becomes huge and the data 

scarcity may sabotage the representative power of the counts. 

Various measures are taken to maintain the robustness of the counts ob-

tained. The most well-known technique is smoothing. It takes some probability 

away in the rarely occurred n-grams for which the probability is greatly over-

estimated. Meanwhile, additive smoothing finds a constant, which is added to 

all unigram counts and thus eliminate zero probability items [96]. Moreover, a 

squash function can be used to normalize the dynamic range of the terms, and 

to ensure that the n-grams with large probabilities would not dominate [40]. In 

document retrieval studies, the counts of word n-grams are scaled by inverse-

document frequencies [39]. In another approach, models combining classes and 

words can be used, resulting fewer units and relieving the pressure towards 

scarcity [97, 98 . 

Skipping n-gram modeling is a rather simple approach to tackling data 

scarcity. In this approach, an n-gram is broken into subsets of lower-order 

n-grams by skipping some of the tokens, so as to reduce zero-probability occur-

rences. Examples of using this method for prosodic features are found in [45 
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where a prosodic token trigram was broken into three skipping trigrams in the 

order of 2, 

Ws-^2Ws-lWs ^ Ws-2Ws-i,Ws-2Ws, Ws^lWs- (4.8) 

In this thesis, a count for a prosodic token n-gram will be broken into 

counts in its skipping n-grams. Take the prosodic token trigram Ws-~2'Ws-iWs as 

an example again, the skipping n-gram prosodic token counts are computed as, 

, , � C{Ws-2'Ws-l\k) 
x(Ws-2Ws-l, k)= 

x(Ws-2Ws,k)= 

x{Ws-iWs,k)= 
C{ws-iws\k) 

(4.9) 

(4.10) 

(4.11) 

The skipping n-gram approach not only alleviates the threat of data scarcity, 

but also reduces the dimension of the count vector. In regular n-gram modeling, 

the inventory size is With CJ sets of skipping n-grams in the order of 2, 

the inventory size is x Dimension reduction is more noticeable when 

\Qi\\ is large and/or the order of n-gram is high. 

Boundary n-grams 

Boundary refers to a sentence boundary. In long-range modeling, it is more 

likely that a high-order n-gram touches or spans across a sentence boundary. 

There were very few related studies on prosody modeling that considered bound-

aries. In [99], consistent reductions of word recognition errors were demon-

strated by incorporating sentence boundary information into prosody model-

ing. For language recognition, pragmatic functions like speaker's intention and 

attitude are often expressed near sentence boundaries and may create noise. Ex-

amples include tone patterns for interrogations and exclamations. Meanwhile, 

if language-specific boundary tones exist, modeling sentence boundary would 

benefit language recognition. 

Consider a boundary bigram, which is defined as a bigram at sentence initial 

or at sentence final (^Ws—Ls), where denotes a sentence boundary. 
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It is inferred from detected short pauses in speech. By accommodating the 

skipping model concept, boundary skipping n~grams can be defined, which are 

skipping n-grams in the order of 2 (e.g. ^s-m'^s or Ws-mih where m < n). 

Three configurations with different treatments to boundary bigrams are tested: 

I G N O R E ] Ignore boundary: This is the simplest approach. Automatic pause 

detection is not carried out and no boundary bigram is computed. 

D E L E T E ] Delete boundary bigrams: The boundary bigrams 叫s or Ws—mih 

are dropped before any statistical modeling is done. This is based on the as-

sumption that boundary bigrams mainly carry pragmatic functions unrelated 

to languages. 

E X P L O I T ] Exploit boundary bigrams: A separate prosodic token of pause 

is used in the modeling of boundary bigrams. For instance, with the inventory 

size being equal to 6, there are (6 + 1)^ = 49 bigrams, among which 36 are 

normal bigrams, 6 are sentence initial bigrams, 6 are sentence final bigrams, 

and 1 is a pause bigram 

4.3.2 Super term-document matrix 

One important assumption in the generation of prosodic token is to process 

each attribute separately by scalar quantization [12，56]. Thus, many term-

document matrices are constructed in parallel. Each of them models only one 

to several attributes. This results numerous term-document matrices and they 

are concatenated to form a super term-document matrix. Figure 4.3 illustrates 

a super term'document matrix whose component matrices include two matrices 

constructed by prosodic token unigrams and one matrix constructed by prosodic 

token skipping trigrams (Section 4.3.1). 

4,4 Prosodic attribute model 

Vector space modeling of prosodic attributes implemented in this thesis can 

process a large number of prosodic attributes. In the construction of super 

term-document matrices, prosodic token unigram and prosodic token skipping 
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Figure 4.3: Concatenation to form a super term-document matrix, subscripts to 
I are attribute indices m Table 3.2 

trigram can be selected in a flexible manner. Also, modeling of different prosodic 

attributes are done in a parallel manner. This flexible and parallel modeling 

approach is referred to as prosodic attribute model ( P A M ) hereinafter. 

In this section, we will explore a preliminary design of term-document ma-

trix under P A M . The parallel modeling of prosodic features is common to the 

studies of prosodic features [12, 56]. W e will use an experiment to show how the 

modeling capabilities suffer by separate modeling instead of modeling prosodic 

features altogether. W e also want to construct compact term-document ma-

trices while keeping the quantization resolution and the order of n-gram high 

enough to retain necessary information. Finally, we want to compare the simple 

prosodic tokens which are defined by a single attribute (Section 4.2) with the 

complex ones defined by several attributes (Section 4.2). Constraining a fixed 

matrix dimension, we want to find out which combination strategy is more 

effective. 

In the following experiments, different ways of constructing term-document 

matrices will be compared in terms of LID performance in NIST Language 

Recognition Evaluation (LRE) 2009 [14]. Comparison will be based on the 
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average equal error rate (average EER) Term-document matrix constructions 

which give smaller average EER are preferred The derivation of average EER 

will not be discussed for the time being, as the lack of these details does not 

obscure the major focus of comparing different term-document matrix construc-

tions 

4.4.1 Attribute-wise modeling in PAM 

P A M adopts the vector space modeling techniques from a phonotactic LID 

system [4, 39] Modeling of prosodic attributes differs from the phonotactic 

counterpart in that a phonetic token is normally the output of a phone recog-

nizer, and such a token is completely defined by different phonetic dimensions 

For instance, the Cantonese phone /ts^/ in Section 3 1 is defined not only by its 

manner of articulation (affricate), but also by its place of articulation (alveolar, 

articulated with the tongue against or close to the superior alveolar ridge), as 

well as by other dimensions (voiceless, aspirated) O n the contrary, a prosodic 

token IS partially defined, m the sense that its acoustic correlates lie on only a 

subset of, but not all prosodic attributes 

In this section, experimental results will show how the modeling capabilities 

suffer from the attribute-by-attribute separate modeling of P A M W e will create 

prosodic phones to compare with the prosodic tokens in P A M Prosodic phones 

are completely defined on all prosodic attributes, analogous to how the phone 

/tsh/ IS defined in the previous paragraph In the prosodic domain, there is no 

standard way to come up with such a phone Intuitively, it is derived by taking 

the Cartesian product of all defining attributes (same method as m Section 

4 2) To work with a manageable dimension, we assume a concise attribute set 

to represent the whole prosodic space, and modeling is done up to bigram The 

attributes in the concise set are listed m Table 4 1 

These three attributes are considered to be representative for the three major 

types of prosodic attributes, namely FO, Intensity and Duration In a later 

section (Section 4 5 2), attribute analysis will be performed to show that these 

attributes are among the most effective attributes for LID 
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Table ̂  1.1: The defining attributes of a prosodic phone 
Type Attribute 

39 FO Nucleus, normalized with Bias removal over Triplet 
27 Intensity 2nd-order regression on 2 pseudosyllables 

129 Duration Voicing ratio 

is the attr ibute index in Table 3,2 

In unigram modeling, the number of terms in the term-document matrix 

is equal to the size of the prosodic phone inventory. For bigram modeling, the 

inventory size is squared. If we model prosodic phones, the total dimension of 

the term-document matrix is, 

/ 
n II 1-gram) 

i=[39,27,129] 

+ n II 2-gram) 
\i=[39,27,129] 

(4.12) 

Q(i,1-gram) II and II Q(i,2-gram) II are the scalar quantization resolutions for the 

defining attributes in unigram and bigram construction respectively. The two 

resolutions can be different. For all attributes, ||Q(i,i-gram)|| is set to 9 to secure 

a higher resolution. || Q(i,2-gram) 11 is set to 3 so that the number of bigrams is at 

a manageable size. The total dimension is 1458. 

With P A M , the term-document matrices for the three attributes are con-

structed separately. The super term-document matrix is obtained by concate-

nating the attribute-wise term-document matrices. Its dimension is, 

E ( I I 弥 
i=[39，27，129] 

am) 11 + 11 Q ( 口 -gram) | n - ( 4 . 1 3 ) 

With Qu ,1-gram) || ~ 9 and II Q ( i ,2 -gram) || = 3, the total dimension with P A M is 

only 54. 

Table 4.2 compares the approach using completely defined prosodic phones 

against the approach with partially defined prosodic tokens with P A M . Com-

parison is made in terms of the number of terms in the super term-document 

matrices, as well as the average E E R . To the best of our knowledge, there has 

not been any similar comparison. For both prosodic phones and prosodic tokens 
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Table 4.2: EER with different models for NIST LRE 2009 
Modeling Number of Average 
method terms'̂  E E R 

Prosodic phones 1458* 32.38% 
Prosodic tokens with P A M 54* 34.76% 

liQ{i,Ingram) li = 9 a n d 11 Q(i,2-gram) II = 3 
Number of terms is the dimension of the term-document matrix 

with PAM) the average E E R is 30%-35%. Although we only use a concise at-

tribute set with 3 prosodic attributes, this result is already comparable to those 

reported in other studies [12, 46]. P A M achieves significant dimension reduction 

by discarding the across-attribute information. With three attributes, it can be 

shown that P A M reduces the term-document matrix dimension by 96%. Given 

the compactness of P A M , we see a great potential to extend its modeling capa-

bilities by including other prosodic attributes. The attribute-wise modeling in 

P A M is justified and will be applied to other attributes. 

4.4.2 Expanding single-attribute prosodic tokens 

Based on the attribute-wise separate modeling in P A M (Eq.(4.13))，there are 

a couple of options to improve the representation of information in the term-

document matrices. W e can increase the quantization resolution, or increase 

the order of n-gram to model trigram information. Consider two cases, 

(II 1-gram) II + || Q( i ,n-gram) 
i=[39,27,129] 

Increased resolution: n = 2, || Q(i,n-gram) || = 6. 

Trigram modeling: n = 3, || Q(z>.gram) || 二 3. 

The dimensions of the super term-document matrices for the above two cases 

(Increased resolution, Trigram modeling) are 135 and 108 respectively. The av-

erage E E R in Table 4.3 show that the term-document matrix with increased 

resolutions gives a slightly better performance than that with, longer-range in-

formation. While this trend is general to most languages, in our study the 
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Table 4.3: EER with increased resolution vs trigram modeling (NIST LRE 2009) 
Expanded Number of Average 
model terms" E E R 

Increased resolution 135 33.87% 
Trigram modeling 108 34.34% 

“Number of terms is the dimension of the super term-document matrix 

detections of Hindi, Portuguese, Spanish and Turkish are found to benefit more 

from trigram modeling. In the following experiments, prosodic tokens are mod-

eled up to their trigram. The quantization resolution will be set to 6. 

4,4.3 Combining single-attribute prosodic tokens 

In Section 4.2, multiple attributes are combined to form prosodic token un-

igrams. In Section 4.3.1，prosodic token n-grams are constructed by taking 

the Cartesian products of neighbouring unigrams. W e would like to compare 

whether one combination method is favourable over another. 

With the concise attribute set (Table 4.1)，the size of super term-document 

matrix for the two combination approaches is determined as follows, 

Attribute combination — Unigram + multiple-attribute unigram (in pseu-

dosyllabic positions s — 1，s and s + 1), 

I 1-gram) II + 3 X 11 1-gram) || • ( 4 . 1 4 ) 

i=[39,27,129] i=[39,27,129] 

n-gram construction — Unigram + single-attribute prosodic token trigrams, 

y ^ II 1-gram) II + ^ || Q ( i , 3 - g r a m ) ( 4 . 1 5 ) 
i=[39,27,129] i=[39,27,129] 

In both Eq.(4.14) and (4.15), the first term corresponds to the prosodic 

token unigram. In the second term, nine parameters (three attributes in three 

pseudosyllabic positions) are combined in two different ways. By retaining the 

first term on prosodic token unigram and rearranging the second term, we also 
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tried two irregular combinations of the nine parameters. Following the notation 

on prosodic tokens (Eq,(4.2) and (4.3))，in the irregular combinations we have 

the following prosodic tokens, 

Irregular combination 1, 

资39， i<?(129，s)， 

？(39,s) X 5(27,5-1-1) X 9 ( 1 2 9 , 5 - 1 ) , 

_ ’卜 1) X (l{21,s) X _9，s+l), 

^(39,5+1) X ̂ (27,.-1) X <?(129,s)- (4.16) 

Irregular combination 2, 

9(39,5)) ^(27,s) 5 资 129，s)， 

免39，s) X ^ ( 2 7 , s - l ) X ^ (129,s+1) ; 

9(39,5+1) X Q(27,S) X 5(129,5-1)； 

0^(39,s-1) X 资 2 7 , s + l ) X 5(129,s ) ' (4.17) 

Note that in all combinations, the same attributes are used and hence the 

dimension of the super term-document matrices is the same. The four combi-

nations can be interpreted as modeling the joint statistics of different factors. 

Intuitively, if two factors are independent, joint statistics modeling is not neces-

sary. A m o n g the four combination methods, the n-gram construction method is 

expected to give the best result. This is because a high correlation is expected 

within the n-gram of a single attribute. 

Table 4.4 shows the LID performances of the four combinations. The results 

agree with our intuition. N-gram construction gives slightly lower average E E R 

than other combination methods. It should be noted that this construction 

also attains a lower average E E R compared with, the prosodic phone modeling 

method in Table 4.2, with the number of terms in term-document matrices 

reduced by half. 
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Table 4.4: EER with different combinations of prosodic tokens (NIST LRE 
2009) 
Combination Number of Average 
method terms" E E R 

Attribute combination 675 33.15% 
n-gram construction 675 32.34% 
Irregular combination 1 675 33.17% 
Irregular combination 2 675 33.88% 

“Number of terms is the dimension of the super term-document matrix 

4.4.4 A preliminary design of term-document matrix un-

der PAM 

From the above experiments, we conclude the following principles of construct-

ing the term-document matrices under P A M : 

• Term-document matrices are created with attribute-by-attribute separate 

modeling. Matrices from different attributes are concatenated to form a 

super term-document matrix. (Section 4.4.1) 

• Single-attribute prosodic tokens are modeled in unigram and trigram. 

The quantization resolutions for the prosodic tokens, ||Q(i,i-gram)|| and 

I 3-gram) II are 9 and 6 respectively. (Section 4.4.2) 

• Term-document matrices constructed by prosodic token trigrams are in-

cluded. These trigrams are combinations of neighbouring unigrams of the 

same attribute. (Section 4.4.3) 

4.5 Attribute selection in term-document ma-

trices 

Recall that the construction of term-document matrices is replicated for different 

prosodic attributes. A m o n g the 105 prosodic attributes introduced in Section 

3.3, many of them carry similar kind of information. FO/Intensity/Duration 

basic attributes exploit various normalization methods, while the regression 
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attributes cover different regression orders on target contours with different 

lengths. It would be a computation intensive task to exhaust all possible at-

tributes in the super term-document matrix. In this section, an information-

theoretic metric is developed to evaluate the prosodic token unigrams of all 

attributes. From the 105 prosodic attributes (seven groups) in Table 3.2, a 

subset of prosodic attributes which are effective to LID are selected for the LID 

experiments. 

4.5.1 Mutual information evaluation 

The process of attribute selection follows a mutual information approach. The 

robustness of the method lies on the fact that it measures arbitrary dependencies 

between the analysis variables, such that it can be applied as a frontend process 

before classifier training. It is also suitable for classification tasks with complex 

decision boundaries [100 . 

In each step of the analysis we focus on one target language, n^. The full 

data set can then be divided into two partitions: the true part which belongs 

to Tit and the imposter part which does not. 

Evaluation to single prosodic attributes 

W e adopt an information-theoretic perspective and re-interpret the prosodic to-

kens defined by a single attribute, as well as the language labels. The quantized 

attribute qi is regarded as the observation output from a random variable Qi. 

Int and are regarded as the observation output of a binary random variable 

Lnr As such J we can quantify the information that Qi contains about L^” 

by considering the entropy of L^^ conditioned on Qi. This entropy measure is 

known as mutual information [100]. It is formulated mathematically as, 

/ ( L n t ; Q,) = — H ( L 肩 , ( 4 . 1 8 ) 

where 丑 a n d H{Lnt\Qi) are entropy terms defined as, 

= - ^ (4.19) 
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E . (4.20) 

96 Q, \ � = { 0 ’ 1 } / 

Simply speaking, the mutual information equation visits every attribute 

value q and compares the probability of the true class data P{lnt) and the 

imposter class data P卜Iru). Qi is the set of all possible values of q (i.e. the 

inventory). In prosodic token unigram analysis, the size of Q^ is essentially 

the quantization resolution of attribute i. In this thesis, three resolutions (3, 

6 and 9) are investigated and three mutual information values are obtained by 

Eq.(4.18). The three values are averaged to yield a single mutual information 

metric for comparison. 

The larger the mutual information /(L^^; Q J , the more information about 

Lnt is available in Q” For different Q^, Q^) have different order of mag-

nitudes and dynamic ranges. In order to alleviate this problem, I(Lnt;Qi) is 

compared with where R* is a binary random variable independent 

of Q” but shares similar statistical properties with Nevertheless, there 

does not exist such a binary random variable R*. In implementation, we create 

500 binary random variables i?2，…，-Rsoo- Every R has the same first-order 

statistics with L ^ , but the mutual information between an attribute Q^ and 

different binary random variable R varies. From the 500 mutual information 

terms, the first- and second-order statistics are calculated. These statistics are 

used as normalization references for I{Lnt]Qi)- z values for I{Lnt',Qi) with 

respect to E r [ I { R ; Q^)] and STDji[I{R] Q^)] are calculated as, 

Mutual information /(•;•) is non-negative. A prosodic attribute i should 

carry more information about than any random label R. Thus, Z(jit’i) is 

expected to have positive values. A larger value of 之(nt，i) indicates attributes i 

is more effective in identifying language nt. 
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Evaluation to prosodic attribute pairs 

In Section 4.2，some prosodic tokens defined by multiple attributes are intro-

duced. W e consider a prosodic token defined by two attributes i and j. Mutual 

information to these prosodic tokens can be computed in a similar manner to 

Eq.(4.18), 

X g,) = H{Q„Q,) — (4.22) 

The inventory is Qt x Qj. It is the Cartesian product of the inventory of 

individual attributes i and j. It is assumed that the quantization resolution of 

both attributes are 6, thus x Q』 = 3 6 . 

The important question is whether the prosodic tokens defined by two at-

tributes would create an effect of synergy. In other words, we want to compare 

Eq.(4.22) with Eq.(4.18), where Q^ and Qj are modeled separately. Define 

Isyn〔似,� as a measure for the degree of synergy between attributes i and j in 

representing rit, 

I s y 几 X Qj) — I � L n ” Qi) — / ( L ‘ Qj) 

=H[Q” QJ) - Q, - {H{Q,) — im\L�-{H{Q,) -

= - {HiQ,) + H{Q,) -

=I{Q^；QJ\LnJ~I{Q^]Q,). (4.23) 

Repeating Eq.(4.23) in all pairs from the 105 attributes, there are ( 7严 = 

5565 Isyn metrics, indicating the effectiveness of the 5565 pairs of attributes to 

the identification of nt. W h e n /5yn(„。%力 gives a large value, it means that it is 

advantageous to combine attributes i and j to form a prosodic token. In order 

to attain such a condition, conditional mutual information between Q^ and Qj 

should be large while the general mutual information should be small. It means 

that within the class = 1 or = 0, two attributes i and j should be sharing 

some information. This information is language dependent, because the mutual 

information term I{Qt', is conditioned on the class /„。Meanwhile, in 

the global sense Q^ and Q . should be independent to the greatest extent, so 
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complementary information among the attributes exists. 

4.5.2 Language-independent prosodic attribute selection 

Recall there are 105 prosodic attributes (Table 3.2). They fall into seven groups. 

In single attribute analysis, attribute selection will be done within each group. 

W e select among attributes with different normalization methods from Group 

(I) to Group (III) attributes. From Group (IV) to Group (VII), attribute selec-

tion is done among different regression orders and different temporal ranges in 

modeling. Attribute selection is done in a language-independent manner, the 

Z(nt,i) metric for different languages rit are averaged to give z(n仏力.The attributes 

with the large values of z(nt，i) within each group will be selected. 

For the attribute pair analysis, the Isyn metric averaged over different target 

languages is evaluated for the 5565 attribute pairs. The pairs are ranked in 

descending orders of the metric. To maintain a manageable size of super term-

document matrix, no more than 20 attribute pairs will be selected. 

Mutual information metrics are calculated from the training corpora, which 

are NIST L R E 1996 development and evaluation sets (30-second). The corpora 

contain data of 12 target languages, including Arabic, English, Farsi, French, 

German, Hindi, Japanese, Korean, Mandarin, Tamil, Vietnamese and Spanish. 

In each language, there are 130 utterances (roughly 14400 pseudosyllables) for 

analysis. 

Single prosodic attributes 

From the 105 prosodic attributes, 20 prosodic attributes that are most effective 

to LID are selected for the LID experiments. Table 4.5 shows the metric 

for all prosodic attributes. The selected attributes are marked by check marks. 

There are three frame-based measurements in the types of FO and inten-

sity respectively, namely nucleus, maximum and minimum. Bias removal over 

Triplets consistently gives the largest z values and their unigram attributes are 

selected. These attributes are also selected for prosodic token n-gram modeling. 

Due to the similarity between these attributes, only the nucleus attribute will 
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(IJI) 
ro/Intensity Nucleus 
basic 
(frame based) 

Maximum 

Raw 
Z-File 
Z-FilG(liiicar) 
Z-Utterance 
Z-Triplet 
B-Fiie 
B-File(linear) 
B-Utterance 
B-Triplet 
Raw 
Z-File 
Z File(liiicar) 
Z-Utteraiice 
Z-Triplet 
B File 
B-File(lmear) 
B-Utterance 

Mimmum 

FO/Intensity Span 
basic 
(syllable-bdsed) 

Gradient 

(III) 
Duration Nuclci 
basic Separation 
(syllable-based) 

Syllable IcrigUi 

(IV,V) 
rO/Ilitensity 

(VI,VII) 
FO/Inlen&ily 
residue 

Voicing ratii 

1'''-order on 
2"'^-oidcr or 
l“-or(ler on 
2"''-order on 
3"'-order on 
4th-order on 
1®'-order oil 
P'-order 

oil triplet 
oil utterance 

Z-Pile 
Z-File(lmear) 
Z-UUcrance 
Z Triplet 
B-File 
B-File{lmear) 
B-Utteraiice 
B-Tnplet 
Raw 
ZFile 
Z-Utterance 
B-File 
B-Utterance 
Raw 
Z-File 
Z Uttei ance 
B-Filc 
B-Utterauce 

Z-File 
Z-UUeraiice 
B-File 
B-Utteraiice 
Raw 
Z-File 
Z-Utterance 
B-Fiio 
B-Utterance 

1 syllable 
1 syllable 

2 syllables 
2 syllables 
2 hyllables 
2 feyllables 
3 syllables 

Table 4.5: scores for different normalization and extraction methods 
p Attribute with FO-type Intensity-type Duration-type 

specified normallydtiou / Selected Selected Selected Name ,, , ‘ i zu, i Z(„,,) i zi„,,) extraction motliod � ‘ umgram n-gram � ‘ umgram n,-gram � ‘ umgidin n-gi 

11 4 34 
12 2 39 
13 1 14 
14 3 34 / 
15 2 94 
16 4 35 
17 1 66 
18 178 
19 3 08 / 
20 2 78 
29 3 96 / 

71 2 84 
72 4 41 
73 3 20 
74 4 38 
75 4 21 
76 3 85 
77 2 85 
78 4 37 
79 4 74 / 
81 2 81 
82 4 17 
83 3 09 
84 4 21 
85 3 97 
86 3 74 
87 2 79 
88 4 28 
89 4 64 / 
91 2 84 
92 3 89 
93 3 78 
94 3 98 
95 4 19 
96 3 62 
97 3 16 
98 3 58 
99 3 95 / 
101 2 73 
102 1 31 
103 0 95 
104 2 10 
105 2 15 
106 3 03 / 
107 166 
108 1 27 
109 1 95 
110 1 89 

21 3 26 
22 4 39 
26 4 21 
27 4 92 
28 4 14 
29 4 14 
125 4 04 
126 3 16 

31 2 68 
32 3 78 
33 4 25 
34 4 18 
35 4 78 
36 4 01 
37 4 01 
38 4 23 
39 5 10 / 
41 2 78 
42 3 98 
43 4 22 
44 4 10 
45 4 82 
46 4 26 
47 4 31 
48 4 41 
49 5 02 / 
51 2 78 
52 3 81 
53 4 74 
54 4 50 
55 4 97 
56 4 04 
57 4 23 
58 4 76 
59 5 38 / 
61 3 19 
62 3 28 
63 1 87 
64 4 04 / 
65 3 86 
66 4 35 / 
67 3 36 
68 1 97 
69 3 87 
70 3 93 

11 4 82 / 
12 4 94 / 
16 4 96 / 
17 412 
18 4 73 
19 4 19 
L21 5 29 
L22 4 75 

23 5 01 
24 4 32 
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be used in the n-gram form. 

For syllable-based measurements, the FO/intensity gradient attributes are 

the most effective without normalization. The optimal normalization method 

for FO span is Bias removal over Files, while intensity span is not effective with 

any normalization method. The span attributes will be used only in unigram 

form under the FO type. 

There are three duration attributes. Voicing ratio does not require normal-

ization and gives a comparatively large z value among all duration attributes. 

Across different normalization variants, nuclei separation is generally more effec-

tive than syllable length. The optimal normalization method for both attributes 

is Bias removal over Files. Syllable length will be used only in unigram form. 

For regression attributes, the three attributes with the largest z values will 

be selected for the type of FO and intensity respectively. Generally, FO regression 

attributes are more effective with lower regression orders and intensity attributes 

are more effective with higher regression orders. For residue attributes, residues 

over Triplets are more effective, 

Prosodic attribute pairs 

Table 4.6 lists the attribute pairs selected for constructing multiple-attribute 

prosodic tokens. The selection is based on the Isyn(叫metric (Eq.(4.23)). 

A m o n g the candidates with large values of Isyn(几t，i’f), some combinations that 

are physically sound are selected over the others. It is noticed that attribute 

pairs using the same measurement but different normalization/regression meth-

ods tend to give larger values of 街’、介 Some pairs across two attribute 

groups are noted for regression attributes. 

For the basic frame-based attributes of FO and Intensity, the three frame-

based measurements {nucleus, maximum and minimum) demonstrate the same 

trend. Attributes with Z-File and B-File normalization methods are combined. 

For the basic syllable-based attributes of FO and intensity, similar attributes 

normalized over the time span of File are combined. For duration attributes, raw 

attributes are combined with normalized attributes. Regression attributes in 
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Table 4.6: Selected attribute pairs to combme as prosodtc tokens 
Group Name i Attribute 1 i Attribute 2 

(I) FO basic 

(II) Intensity basic 

(in) Duration basic 

{IV) FO regression 

(V) Intensity regression 2 
22 

(VI) FO residue 121 
(VII) Intensity residue 125 

33 Nucleus, Z-File(linear) 
43 Maximum, Z-Pile(linear) 
53 Minimum, Z-Pile{lmcar) 
64 Span, B-File 
66 Gradient, Raw 
72 Nucleus, Z-File 
82 Maximum, Z-Pile 
104 Span, B-Filc 

Nuclei separation, Raw 
Syllable length, Raw 
Syllable length, Raw 

P^-order on 1 syllable 
l (order on 1 syllable 
pt-order on 1 syllable 

pt-order on 1 syllable 
2nd-order ( .syllable 

l® -̂order regression on 3 syllables 
ls�order regression on 3 syllables 

36 Nucleus, B-File 
46 Maximum, B-File 
56 Minimum, B-File 
69 Gradient, B-File 
67 Gradient, Z-File 
77 Nucleus, B-File(linear) 
87 Maximum, B-File(linear) 
109 Gradient, B-File 
112 Nuclei separation, Z-File 
117 Syllable length, Z-Fiie 
129 Voicing ratio 
12 2 � r d e r on 1 syllable 

ist-order on 2 syllables 
FO Gradient, Z-File 

2nd-order on 1 syllable 
3rd-order on 2 syllables 
^ FO residue on triplet 

16 
67* 
22 

28 

123 
127* Intensity residue on triplet 

"Attribute two attribute 

different regression orders or with different length of the target segment contours 

are combined. They also combme with residue attributes. 

4.5.3 The 14-attribute prosodic feature set 

In the following LID experiments, prosodic features will be modeled by a super 

term-document matrix built by three types of vector space constructions. In 

the first type, term-document matrices with prosodic token unigrams are con-

structed with every of the 20 selected single attributes in Table 4.5. The second 

type includes 14 term-document matrices with prosodic token trigrams from 

Table 4.5. In the last type, the 18 selected attribute pairs in Table 4.6 will be 

modeled as prosodic token unigrams. 

Since there are considerable overlap between the three types of construc-

tions, this super term-document matrix will be named after the number of 

defining attributes in prosodic token trigrams, i.e. 14-attribute prosodic feature 

set. Counting the number of terms, the prosodic token trigrams outnumber the 

other two types and will be the major component in the super term-document 

matrix. 
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Chapter 5 

Language identification 
experiments 

Before looking at the language identification (LID) experimental results, let 

us have an overview of the prosody-based LID system as depicted in Figure 

5.1. Input speech segments first go through a syllabification process, which 

locates the nuclei of pseudosyllables (Section 3.1). Prom these landmarks of 

pseudosyllables, the attribute extraction module determines segment contours 

of FO and intensity of each pseudosyliable. Subsequently, various measurements 

and normalization methods are used to derive the prosodic attributes (Section 

3.3). The extracted prosodic attributes, which are continuous-valued, are then 

quantized. Prosodic tokens and various forms of n-grams are defined by one or 

multiple of these quantized attributes. Fixed-length term-document matrices 

are constructed. Some of these matrices are selected and concatenated to form 

a super term-document matrix (Section 4.3 and 4.4). Support vector machines 

are then used to build a vector-based language classifier (Section 2.5). 

In this chapter, we would introduce the generation and backend process-

ing of scores from the vector-based language classifier (Section 5.1). Then, the 

evaluation metrics for system performance will be introduced (Section 5.2). 

The language identification experiments reported in this chapter include two 

tasks. The first task is pairwise language identification with ten languages 

in the Oregon Graduate Institute Telephone Speech (OGI-TS) corpus [89] (Sec-
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tion 5.3). The second LID task is language detection in Language Recog-

nition Evaluations (LRE) of National Institute of Standards and Technology 

(NIST) [14] (Section 5.4), Different constructions of term-document matrices 

in Chapter 4 will be tested for an optimal super term-document matrix for LID. 

Trained models for 
target languages 

Figure 5.1: System diagram of the prosody-based language recognizer 

5.1 Detection scores from language classifier 

5.1.1 Generation of detection scores 

In the section, we start with a simple case where a single detector is used to 

detect the presence of a target language. Then we will proceed to a multi-class 

language detector which gives a likelihood score vector. This is the actual 
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scenario in many LID tasks where multiple target languages are involved. 

Single detector likelihood scores 

A binary-class support vector machine (SVM) can readily solve a language de-

tection problem for which a yes or no answer is required. It gives a likelihood 

score indicating the probability of the sample belonging to the target language. 

It uses the hyperplane equation w'^x + 6 = 0, where x is the vector space repre-

sentation of a speech segment, w and b indicate the orientation and position of 

the hyperplane respectively (Section 2.5). W e also have y, a true or false label 

in the training speech segments. 

In the training stage, an optimal hyperplane is found. This hyperplane can 

be regarded as the optimal boundary, which linearly separates the true and 

imposter classes y = 1 and y = — 1 in the feature space. In this thesis, the 

features are the occurrence counts of different prosodic token n-grams. 

In the testing stage, the count vector of a speech segment is processed by 

the support vector machine. The distance from the hyperplane, w ^ x + 6，is 

returned. The value of the distance ranges from negative infinity to positive 

infinity. A positive value indicates that the sample is on the side of the target 

class and a negative value is for the imposter class. The magnitude of the 

distance indicates how far the sample is from the hyperplane. If the sample 

is on the hyperplane, the distance is zero and it indicates equal probability to 

the true and the imposter classes. The distance can be used to define a log 

likelihood ratio, k, where 

(5.1) 

r is a language detector. In the case of soft margin support vector machine, 

r = (w,b乂) (Section 2.5). Ut denote the target class y ~ 1 in the support 

vector machine. If the prior probability is available, this likelihood ratio can be 

transformed by a sigmoid function to a posterior probability, based on which 

the binary-class classifier can make a decision. 
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The log likelihood ratio considering prior is given by, 

K, nt _ _ 

P-nt — 
log 

p{x\nt,T)p{nt) 
p{x\^nt,T)p{-int) 

P{nt) 
P^rit) 

(5.2) 

Applying sigmoid function, we obtain, 

nt 
〜 一 l + exp(—/V:,) 

卜 r H , r ) p ( � n i ) 

1 + p{x\nt,T)p{nt) 
p{x)p(nt\x,r) 

p{x,nt\T) 

p(x){p{nt\x, r) -hp{^nt\x, r)) 

—p{nt\x, r) (Posterior probability), (5.3) 

The decision of detection is made as follows, 

p { n t \ x ^ r ) > - accept to class n^; 

I—> reject from class nt. 

(5.4) 

( 5 . 5 ) 

In this thesis, and also conventional LID experiments, no prior information 

on target classes is assumed. Therefore, 

P(nt) = P 卜 nt)=-

� � n t —�nt 

nt (5.6) 

Apart from language detection, in the following we also include pairwise lan-

guage identification experiments, This can be easily derived from the language 

detection case discussed above, by replacing the imposter class, with the 

second target class，nt2-
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Multi-class likelihood score vector 

Let us consider the detection problem with multiple target languages. W e as-

sume there are N target languages. For a particular speech segment, N different 

single-language detectors can be applied, resulting in a score vector as follows, 

Ai Ac A nt \ ]T 
AiV (5.7) 

This vector is known as a multi-class likelihood score vector. In practice, can 

be any similarity metric. A large value of 入nt indicates high likelihood of target 

language nt. It could be likelihood score, posterior probability, or likelihood 

ratio. In this thesis, we use log likelihood ratio, and Eq.(5.7) is rewritten as, 

A i , A ! A N ^T 
，N (5.8) 

The multi-class log likelihood ratio are derived from the scaled distance k from 

many single language detectors. 

A"；, = log 
exp [K 

En^nt exp (ft̂  
(5.9) 

With no specific information, the prior probability of each class is assumed 

to be p{n) = 1/N for all n. With reference to Eq.(5.2) and (5.3), it can be seen 

that the prior terms vanish and posterior probability can be calculated using the 

sigmoid function again. The multi-class log likelihood ratio considering prior is, 

A 二 = log 

log 

exp 

E • 严 ( 几 ) 

e x p ( � J 吾 

E n ^ n , e x p 一 

，nt I 
(5.10) 

Applying sigmoid function, we obtain, 

P-^nt^ ^ ) = ( l + e x p ( - A ; ) ” 

广exp 十 En^n, exp 

exp ( k -'Ut. 
exp (k'̂ 1 

En exp (^！ 

(Posterior probability). (5.11) 
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Language detectors make decisions based on log-likelihood ratios instead of 

posterior probabilities. Because posterior probability is a monotonic increasing 

function of the log-likelihood ratio, both measures essentially give the same 

decision. The decision on accepting or rejecting a speech segment as in the 

target language rit is made according to the following rule, 

X̂ l̂ t — n̂t > 0 ̂  accept to class rit] (5.12) 

X^似—0nt < 0 t—> reject from class nt- (5.13) 

The threshold dm depends on the target language nt. 

5.1.2 Backend score processing 

In language recognition it is allowed to perform score normalization by consider-

ing the detection scores across trials and across target languages. Suppose there 

are K detection trials. Consider all target languages and all trials together in 

an N-hy-K score matrix, two backend operations are applied to improve the 

performance of language recognition. 

The first process is known as the Gaussian backend. A linear discriminant 

analysis (LDA) transformation matrix can be applied. Geometrically, it rotates 

the score matrix such that the ratio of between-class variance to the within-class 

variance is maximized [101]. The transformation matrix is found by optimiza-

tion using the score matrix of training data. 

The second operation is referred to as calibration. It is described by the 

following expression, 

A：.- = + (5.14) 

where 7 is a global scaling factor and <5 is a linear shifting vector. Optimal 

transformation parameters are determined from a held-out data set, subject 

to the maximum-a-posteriori criterion [102]. is the adjusted score after 

calibration. Loosely speaking, calibration covers any numerical manipulation 

to the raw score subject to a defined criterion. More sophisticated calibration 

methods are discussed in Chapter 7. 
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5.2 Performance evaluation 

All the reported LID tasks in this thesis are closed-set detections. Possible 

languages in testing trials are within a closed set known a priori. As opposed to 

this, open-set detection is a more challenging task where test data may contain 

unknown out-of-set languages. 

The performance of a closed-set language recognition experiment is eval-

uated with a large number of input speech segments. In many studies, an 

evaluation metric known as average cost performance, is adopted. The 

CAvg metric has been used in the NIST language recognition tasks [13, 14]. It 

calculates (̂ detect (几f), which is the total costs of misses and false alarms in the 

detector for a target language n^. With N target languages, C^vg is given by, 

1 N 
CAvg = J ^ Y l d̂etect (nt) (5.15) 

n t = l 

where Ĉ detect (叫)=^Missi^Target-P Miss (^f) + 〉:C'faPNon-TargetP FA ij^t ； ̂ n)' 

Tin 和 t 

(5.16) 

Cmiss and Cfa are the penalties for the two types of errors. Typically, equal 

penalty of 1 is assumed. P Target and P Non-Target is the prior probability of having 

the target in the detection trial Without prior knowledge, the probability for 

P Target IS Set to be The probability for having any non-tar get classes is 

In the closed-set detection with N languages, there are N — 1 non-targets, thus 

probability of a particular non-target is, 

PNon-Target = ^ (for closed-set detection). (5.17) 
2 A' — 1 

With the above information, the error metric for each target language, 

Ĉ detect(7̂ f)，is given by, 

C d e t e c t M == ^PuUnt) + E 广 ) . (5.18) 

Hnf^nt 

The probability terms of errors,尸fa(几t,几and Puissi'̂ 't), are derived from 

a large number of detection trials. 
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PFA{nt,nn) = P{XZ, — K > 0|c - Tin) 

— P{c = Un) 

PMi“nt) = P(KIh - ‘ < 0|c = nt) 
-PjXZu - 0nt<�c 二 nt) 

— P(c - nt) 

M(nt) 

Ant) 

(5.19) 

(5.20) 

c is the true class label. W e introduce k to denote the index of a speech 

segment. c{k) is the language of the speech segment k. In the above equations, 

T(nt) contains the indices of speech segments whose true class is nt. (X(nf): 

k E [1,2,..., K]\c{k) = rit). is the subset of where the indexed 

speech segments are falsely accepted as class nt. M{nt) is the subset of X(nt) 

where the indexed speech segments are falsely rejected from class nt‘ || - | 

denotes set cardinality. Physically || ！ n „ ) || and \\M.{nt) || count respectively 

the number of false alarms and misses in the experimental data set. 

The dominance of detection misses or false alarms in a detection experiment 

is affected by the detection threshold By trying different values of 〜，we 

can record the interaction between the single miss term and the summation 

of false alarm terms in Ĉ detect(叫）(Eq.(5.18)). A performance curve called 

detection error tradeoff (DKI) curve can then be plotted. 

Along the D E T curve, the operating point of equal error rate is of great 

study interest. It gives the error where the term 尸Miss(几t) has the smallest 

difference with, the weighted sum of P f a ( 几 i n Cdetect(^0-

CeerK) = 661 CdetectM. (5.21) 

5.3 Pairwise language identification 

Pairwise language identification with ten languages is carried out with the Ore-

gon Graduate Institute Telephone Speech (OGI-TS) corpus [89]. Pairwise Ian-
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91 43% 
90 00% 
94 29% 
98 57% 
94 29%* 
98 51% 
84 29%* 
91 43% 
98 57% 

84 29%* 77 14% 
80 0 0 % * 

65 71%* 
85 71%* 
80 00% 

82 86% 
90 00%* 
94 29% 
85 71% 

83 5 8 % 82 61%* 85 32% 84 70% 

t a l ) [62] 69 12% 70 87% 58 87% 64 60% 
Wang) [45] 81 84% 85 05% 71 51% 84 65% 

88 49% 84 74% 88 52% 82 09% 88 33% 93 49% 

62 92% 
86 0 6 % 

68 2 2 % 67 39% 
82 71% 83 4 1 % 

67 18% 
73 31% 

67 71% 62 94% 
76 75% 88 21% 

English 
Farsi 
Frcnch 
German 
Japanese 
Korean 
Mandarin 
Spam&h 
Tamil 
Vietnamese 
Avoragc" 

(cf Rouas e 
(cf Lin and 

'"Average" is the acciu acy taken average from nine pan wise LID with a particulai language They arc compaied with 
the results fiom Rouas et al [62] and Lm and Wang [4S] 
Reported lesults having lower accmacies than [62] are undetlined 
Those having lowei acouiacieb than [45] are mark with an * 

Each training and test utterance is about 45 seconds long. The super term-

document matrix is constructed based on the 14-attribute prosodic feature set 

(Section 4.5.3). Backend operations are not applied in this experiment. 

Results of the = 45 pairwise LID experiments are included in Table 5.1. 

The pairwise results are compared to those reported in Rouas et al. [62] and Lin 

and W a n g [45]. It is noticed that the use of the 14-attribute prosodic feature 

set already gives better performance than Rouas et al. [62] in all language 

pairs but the Korean/Spanish pair. Compared with Lin and W a n g [45], general 

performances are improved, but the language pairs involving Farsi give a worse 

performance. 

5.4 Language detection 

The second LID task is language detection in Language Recognition Evaluations 

(LRE) of National Institute of Standards and Technology (NIST) [14]. L R E 

73 

guage identification accuracies will be compared with the experiments reported 

in literature [45，62]. There are ten target languages in the pairwise language 

identification. They include English, Farsi, French, German, Japanese, Korean, 

Mandarin, Spanish, Tamil and Vietnamese. 

Table 5.1: Pairwise LID accuracy with OGI-TS 45-second speech 
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Table 5.2: Target languages and channel conditions to be covered m LID model 
training 

Target Channel Target Channel Target Channel 
language VOA CTS language VOA CTS language VOA CTS 
Amharic / Farsi / / Portuguese / 
Bosnian / French. / / Russian / / 
Cantonese / / Georgian / Spanish / / 
Creole-Haitian / Hausa / Turkish / 
Croatian / Hindi / / Ukrainian / 
Dan / Korean / / Urdu / / 
American English / / Mandarin / / Vietnamese / / 
Indian English / Pashto / 

are large-scale language identification tasks. The recent L R E events were held 

biannually in 2003, 2005, 2007 and 2009. In the following experiments, we 

will include LID experiments with NIST L R E 2009. W e will make comparison 

among different prosodic attributes. W e will also compare the full, skipping, 

and boundary n-grams in terms of LID performance. 

5.4.1 About NIST LRE 2009 

In NIST L R E 2009, there are 23 target languages: Amharic, Bosnian, Can-

tonese, Creole-Haitian, Croatian, Dari, American English, Indian English, Farsi, 

French, Georgian, Hausa, Hindi, Korean, Mandarin, Pashto, Portuguese, Rus-

sian, Spanish，Turkish, Ukrainian, Urdu and Vietnamese [14], Also, there is a 

number of candidates for the out-of-set languages. They are not considered as 

we focus on closed-set detection in this thesis. 

The evaluation data includes 41793 utterances in two channel conditions, 

namely conversational telephone speech (CTS) and telephone bandwidth broad-

cast radio speech from Voice of America programmes (VOA). These utterances 

have nominal duration of 3, 10 or 30 seconds. The exact length of every utter-

ance varies and no labels of nominal durations are given. Duration estimation 

is carried out to select 15274 30-second utterances. Then, the utterances m 

the out-of-set languages are removed, giving 10635 30-second utterances for the 

experiments reported below. 

C T S Training data include NIST L R E 1996, 2003 development and evalu-
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ation sets, as well as NIST L R E 2007 development data. For broadcast radio 

speech, two corpora are available for training. They are from the past Voice 

of America radio programmes, "V0A2" and "V0A3". The total amount of 

data is roughly 2TB. The data is recorded in program archives from 30 min-

utes to 2 hours. Some training data only have possible language labels created 

by an automatic procedure. Such data is not used for system training in our 

experiments. 

The broadcast radio training data contains music, repeated promotion clips, 

and foreign language teaching programmes. A preprocessing step of speech/music 

separation tries to remove them. Segmentation is also performed to extract 

training data with matched duration. At least 9 hours of training data is se-

cured for each target language. 

For each available language-channel condition, a target versus imposter 

model is trained with the binary-class support vector machine (Chapter 2.5). 34 

language-channel models are trained in total and they are enumerated in Table 

5.2. Data with the same language but different channels compared with the tar-

get class is removed from training. For instance, in training the Gantonese-CTS 

target class model, Cantonese-VOA data is discarded. 

In the testing stage, C T S scores and V〇A scores of the same target language 

will be combined (if there exist two channel models for the target language). 

Score combination is simply realized by the selection of larger score value among 

the two. Backend operations mentioned in Section 5.1.2 are applied. In cali-

bration, a development set consisting of 1518 telephone speech utterances from 

NIST L R E 2007 evaluation set and 4523 broadcasting speech utterances from 

V 0 A 3 is used [13；. 

Ceer(jh) of the 23 detectors will be found out by Eq.(5.21). A n average EER 

will be computed by averaging the 23 Ceer(^t) figures, and comparison among 

different experimental conditions will be based on this figure. 
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5.4.2 Comparison among different attribute groups 

Recall there are seven prosodic attribute groups: (I) FO basic, (II) Intensity 

basic, (III) Duration basic, (IV) FO regression, (V) Intensity regression, (VI) FO 

residue and (VII) Intensity residue (Section 3.3, Table 3.2). In Section 4.5, we 

use the Z(jit，i) and /5，(询，⑶ metrics for attribute selection within each group. 

Attributes with similar normalization/extraction methods are selected to give 

the 14-attribute prosodic feature set. These selected attributes are shown again 

in Table 5.3. 

Attribute selection mentioned above is not done globally across attribute 

groups. It is unknown whether attributes from different groups carry comple-

mentary or redundant information. In the first experiment with NIST L R E 

2009, we compare the 14-attribute feature set with seven partial sets. Each 

partial set has one of the attribute groups removed. The objective of this ex-

periment is to justify the necessity to use different prosodic attributes in LID. 

W e also test the effect of expanding the feature set from 14 attributes to 67 

attributes (Table 5.3). Various normalization methods except the raw attributes 

are used. The expanded feature set has 7839 terms, as opposed to the 2340 terms 

in the 14-attribute feature set. The objective of expanding the attribute set is to 

verify the working principle of "selecting attributes among similar normalization 

method". 

Table 5.4 shows the Ceer(?T't)'s and average E E R for the 14-attribute fea-

ture set and the seven partial sets. A large error in a partial set indicates 

the attribute group being excluded in this partial set is important. In almost 

all partial sets, there is an increase in average E E R compared with the 14-

attribute feature set. This demonstrates all prosodic attribute groups, rather 

than attributes of specific kind, are important to LID. Nevertheless, the E E R 

goes down when Intensity basic attributes (Group (11)) are excluded. The 

cause of the ineffectiveness of this attribute group is unknown. It may be the 

poor extraction algorithm, inappropriate normalization methods or the pres-

ence of noise in this attribute group which causes the error increase. Further 

investigations in feature extraction and modeling will help. 
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Table 5.4: EER with different attribute groups excluded (NIST LRE 2009) 
Target 
language 

(I) 
Attribute groups 1 

(II) (III) (IV) 

Ceer(nt) 
bo exclude 

(V) (VI) (VII) 
14-attribute 67-attribute 
feature set featme set 

Amharic 18 59% 16 07% 18 61% 18 34% 19 34% 20 33% 18 15% 18 31% 17 08% 
Bosnian 25 07% 24 56% 28 96% 26 20% 24 28% 25 08% 27 04% 26 76% 20 84% 
Cantonese 12 84% 10 48% 14 20% 14 96% 13 08% 13 42% 12 80% 13 11% 11 07% 
Cieole-Haitian 21 00% 18 89% 21 36% 21 67% 24 16% 21 30% 18 88% 19 81% 18 88% 
Cioatian 25 57% 23 14% 27 37% 25 22% 25 80% 24 75% 25 53% 26 60% 24 74% 
Dan 32 65% 26 25% 32 70% 34 96% 32 94% 33 93% 33 42% 32 65% 30 85% 
Ameiican Engli&h 26 88% 26 41% 30 15% 29 28% 27 99% 27 19% 26 95% 27 73% 25 88% 
Indian English 16 09% 15 56% 18 41% 16 42% 17 43% 16 58% 17 43% 15 06% 16 40% 
Farsi 28 90% 28 39% 28 96% 30 63% 29 93% 29 17% 28 69% 27 88% 24 04% 
French 20 98% 20 00% 18 74% 18 48% 18 23% 17 72% 16 96% 17 73% 17 47% 
Georgian 22 05% 24 02% 25 06% 26 57% 25 56% 25 35% 25 80% 23 31% 23 57% 
Hausa 15 94% 13 16% 16 95% 16 43% 14 14% 15 43% 13 66% 14 14% 12 59% 
Hindi 26 24% 23 54% 23 84% 25 94% 25 19% 24 59% 22 49% 24 26% 23 24% 
Korean 32 28% 25 32% 34 41% 33 33% 31 82% 33 79% 32 51% 31 82% 28 59% 
Mandarin 11 38% 10 57% 12 04% 11 65% 11 55% 12 73% 11 63% 10 11% 11 28% 
Pa&hto 21 32% 18 27% 23 14% 21 57% 21 83% 23 06% 22 80% 21 13% 19 29% 
Portuguese 20 95% 20 42% 18 92% 25 93% 26 70% 2116% 22 36% 20 93% 20 90% 
Russian 26 96% 23 71% 23 71% 26 77% 24 85% 25 03% 25 62% 25 97% 22 22% 
Spanish 25 42% 25 45% 26 74% 27 02% 25 97% 26 53% 23 90% 23 91% 22 80% 
Turkish 19 79% 19 80% 24 93% 23 66% 21 12% 22 14% 22 14% 22 14% 20 10% 
Ukrainian 38 11% 29 12% 38 91% 36 86% 36 60% 34 74% 36 64% 35 05% 36 34% 
Urdu 25 58% 24 01% 25 37% 26 67% 26 62% 25 32% 24 25% 25 11% 23 51% 
Vietnamese 8 81% 6 92% 7 55% 9 75% 9 43% 8 18% 7 55% 7 24% 9 12% 

Average EER 22 76% 20 61% 23 52% 23 84% 23 24% 22 94% 22 49% 22 21% 20 90% 
The seven attribute groups to exclude 
(VI) FO regression (V) Intensity regresi 

(I) FO basic (11) Intensity basic (III) Duration basic 
(VI) FO residue (VII) Intensity residue 

Regarding the LID errors of the expanded feature set, a 5.9% relative reduc-

tion in average E E R (from 22 21% to 20 90%) is observed by including more 

attributes with different normalization/extraction methods. Meanwhile, partial 

feature set (II) (where Intensity basic attributes are removed) gives even bet-

ter performance in most languages. The inclusion of more attributes does not 

necessarily improve recognition performance. In the remaining experiments in 

this chapter, the Intensity basic attributes will be discarded. 

5.4.3 The use of skipping n-grams 

The use of skipping n-grams reduces the dimensions of term-document matrices 

In [45]，skipping n-grams were also shown to give a better LID performance than 

full n-grams. That study used Markov models for LID, whereas the PAM-based 

prosodic LID system in this thesis follows the vector space modeling approach 

In this section, it will be shown that skipping n-gram models also give better 

LID performance in the vector-based system. 
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Table 5.5: EER with full vs skipping trigrams (NIST LRE 2009) 
Model Number of Average 
name terms'^ OcerM 
Full trigrams Unigrams +2592 21.41% 
Skipping trigrams Unigrams +1296 20.61% 
"Number of terms is the dimension of the super term-document matrix 

The comparison is done in trigrams. W e use the 14-attribute feature set 

with, two Intensity basic attributes removed. Recall l|Q(i,trigram)||, the scalar 

quantization resolution of each, attribute, equals 6 (Section 4.4.4). This leads 

to 12 (attributes) = 2592 full trigrams or 12 x (C| x 6 )̂ = 1296 skipping 

trigrams. The latter configuration gives 50% dimension reduction. LID results 

are shown in Table 5.5. The skipping trigrams with smaller dimension give 

better LID performance. Experiments to compare higher-order n-grams are not 

practical because of the exponential dimension grow of full n-grams. Skipping 

n-grams are preferred to full n-grams when the order of n-gram is higher than 

2. 

5.4.4 The use of prosodic token boundary n-grams 

In this section, different boundary n-gram methods are compared. By using the 

skipping n-grams, prosodic token trigrams are described by some sets of = 

36 skipping n-grams for the [ I G N O R E ] and [DELETE] configurations. In 

I G N O R E ] , prosodic events at sentence boundaries are not distinguished from 

those in other positions. In [ D E L E T E ] , prosodic events at sentence boundaries 

are removed. In the [ E X P L O I T ] configurations, an extra pause prosodic token 

is added to represent pause, giving some sets of (6 + 1)2 = 49 distant bigrams. 

W e use a feature set of 10 attributes, similar to the partial set excluding In-

tensity basic attributes (Section 5.4.2). The exact attributes used for prosodic 

token n-gram modeling is marked in Table 5.3. W e compare the language recog-

nition E E R in different boundary modeling methods. The results are shown in 

Table 5.6. 

The [DELETE] configuration is the baseline. It was adopted in former 

experiments. The baseline configuration is justified by comparing with the 
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Table 5.6: EER with different boundary n-grams (NIST LRE 2009) 
Target Ceerint) 
language IGNORE DELETE* EXPLOIT 
Amharic 15.33% 14.32% 15.08% 
Bosnian 27.33% 23.66% 25.07% 
Cantonese 11.08% 10.32% 10.06% 
Creole-Haitian 19.92% 18.32% 16.21% 
Croatian 27.93% 25.31% 23.95% 
Dari 29.06% 27.46% 26.19% 
American English 26.23% 23.90% 24.53% 
Indian English 13.28% 12.91% 13.11% 
Farsi 26.92% 26.92% 23.33% 
French 20.76% 18.25% 17.78% 
Georgian 21.56% 24,56% 21.09% 
Hausa 12.91% 14.91% 11.86% 
Hindi 25.58% 23.95% 23.79% 
Korean 23.59% 22.12% 20.99% 
Mandarin 10.27% 10.34% 10.27% 
Pashto 19.08% 18.05% 18.33% 
Portuguese 20.91% 20.15% 18.60% 
Russian 23.77% 22.79% 22.99% 
Spanish 28.05% 25.97% 25.51% 
Turkish 20.61% 20.63% 18.83% 
Ukrainian 29.64% 30.15% 26.81% 
Urdu 28.03% 26.33% 25.85% 
Vietnamese 7.38% 6.35% 6.03% 
Average EER 21.27% 20.33% 19.40% 

[DELETE] resembles the baseline configuration used in previous experiments (Table 5.4，5.5) 

IGNORE] configuration, which reverts to the simplest ？7,-gram configuration 

with the fewest assumptions and gives a higher Ceer-

The [EXPLOIT] is the most effective to LID as it captures more informa-

tion. Extra information in a boundary n-gram can be traced from its physical 

meaning. The boundary n-gram {ws—m#s 〇r m切s) explicitly models a pseu-

dosyllable conditioned on its position relative to the sentence boundary (#). 

5.4.5 Long-range prosodic n-grams 

Using the approach of exploiting boundary n-grams, the order of n-gram mod-

eling is extended to 5. 5-gram modeling exhibits only marginal improvements 

over trigram modeling. It gives an average E E R of 19.10% as compared with 

19.40% with its trigram counterparts. 
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Chapter 6 

Analysis on prosodic language 
identification 

A n LID system comprises multiple language detectors. Each detector distin-

guishes the target languages from many other non-target languages. In a closed-

set language detection task with N languages, there are N x N terms in the 

confusion matrix. To further understand how the PAM-based LID system be-

haved, in this chapter we will break down the LID error terms and look at the 

confusion between languages (Section 6.1). Also, the PAM-based LID sys-

tem makes use of a large number of prosodic attributes. The effectiveness of a 

certain prosodic attribute to detection is expected to vary across different target 

languages. W e will refine the mutual information evaluation metric previously 

introduced in Section 4.5, and look into the important prosodic attributes 

in the detection of some target languages (Section 6.2). 

6.1 LID result analysis 

To analyze the LID result with prosodic features, NIST L R E 2007 is used as 

the testing dataset. Evaluation data consists of 2158 30-second utterances. Un-

like NIST L R E 2009, channel condition of NIST L R E 2007 evaluation data 

is limited to conversational telephone speech (CTS)_ There are 21 target lan-

guages/dialects, 11 of which are dialects of a larger language class. A list of all 
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Table 6.1: Target languages/dialects of NIST LRE 2007 
Target language/dialect Target language/dialect 

Arabic 
Bengali 
Farsi 
German 
Japanese 
Korean 
Russian 
Tamil 
Thai 
Vietnamese 

Chinese: Cantonese 
Chinese: Mandarin (Mainland) 
Chinese: Mandarin (Taiwan) 
Chinese: Min 
Chinese: Wu 
English: American English 
English: Indian English 
Hindustani: Hindi 
Hindustani: Urdu 
Spanish: Caribbean Spanish 
Spanish.: Non-Caribbean Spanish 

languages/dialects is given in Table 6.1. 

The NIST L R E 2007 dataset has only one channel condition. The propor-

tion of data with noise, non-speech, language mislabeling is significantly lower 

than that in L R E 2009. These factors make L R E 2007 a preferred data set for 

the analysis of the relationship between different prosodic attributes and target 

languages. In the following, we will present the experimental results and anal-

ysis of the general language recognition task of NIST L R E 2007 [13]. Unlike 

the official specification, we will treat each dialect separately, and look at the 

performance of 21 language detectors. Also, backend score processing (Section 

5.1.2) is excluded in the LID result reported in this section. This eliminates 

all operations across different target detectors, making the language-dependent 

analysis straightforward. 

6.1.1 Performance evaluations on different target lan-

guages 

Table 6,2 shows the Ceerijh) of the 21 language detectors by using the 14-

attribute feature set as introduced in Section 4.5.3. The average E E R is 22.84%. 

Prom the table, it is noticed that Bengali, German, Japanese, Korean, Tamil, 

Vietnamese, Cantonese and Mandarin (Taiwan) can be detected with, a C鄉(jit) 

below 20%. O n the other hand, Russian, Urdu, Non-Caribbean Spanish and 

Caribbean Spanisli have C扰人nt) equal or above 30%. 
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Table 6.2: EER of 21 detectors for NIST LRE 2007 

Target Cocr{nt) of the 
14-attribute language 
feature set 

Arabic 24.71% 
Bengali 17.50% 
Farsi 26.26% 
German 19.69% 
Japanese 16.24% 
Korean 18.88% 
Russian 35.00% 
Tamil 12.42% 
Thai 23.74% 
Vietnamese 14.99% 

Cantonese 17.50% 
Mandarin (Mainland) 21.56% 
Mandarin (Taiwan) 10.39% 
Min 23.90% 
W u 22.38% 

American English 21.27% 
Indian English 27.51% 

Hindi 26.93% 
Urdu 37.64% 

Caribbean Spanish 29.99% 
Non-Caribbean Spanish 31.10% 

Average E E R 22.84% 

W e can understand the relationship among different languages by looking 

at the confusion matrices. In the detection of a particular target language 

the error metric C鄉(jit) is computed by 1 term corresponding to detection miss 

(PMiss(叫))and 20 terms corresponding to false alarms (JVa(叫，^̂ ri)) (Eq.(5.18) 

and Eq.(5.21)). The whole confusion matrix comprises hundreds of terms. W e 

focus on the error terms larger than 40%, which is about two times of the average 

E E R . This gives us an idea on the worst behaving portion in the detection 

experiment. 

The chosen error terms are listed in Table 6.3. All are false alarm terms. 

In the detection to target language th, the detector wrongly accepts a large 

proportion of testing samples in another language W e can see a high rate 

of false alarms among Chinese dialects. The same observation is also found 
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Table 6.3: Language pairs with high confusion rate (>4Q%) for NIST LRE 2007 
Target 
language [nt) 

Non-target 
language {n F̂A (nt,n„) Non-target 

language {n„ P¥A{nt,n„ 
[Tone languages] 
Cantonese Mandarin (Mainland) 62 5% Mandarin (Taiwan) 48 8% 

Wu 40 0% 
Mandarin (Mainland) Mandarin (Taiwan) 91 0% Mm 61 3% 

Cantonese 57 5% 
Mandarin (Taiwan) Mandarin (Mainland) 63 8% Mm 56 3% 
Mm* Mandarin (Taiwan) 87 2% Mandarm (Mainland) 75 0% 

Cantonese 57 5% 
Wu Mandarin (Mainland) 60 0% Cantonese 58 8% 

Thai Vietnamese 42 5% Cantonese 41 3% 
Vietnamese Cantonese 58 8% 

[Non-tone languages] 
Arabic* German 57 5% Tamil 52 5% 

Non-Caribbean Spanish 50 0% 
Bengali Urdu 40 0% 
Japanese Korean 43 8% 
Farbi American English 47 5% Arabic 41 3% 
Russian* Bengali 70 0% Urdu 55 0% 

Japanese 53 8% 

American English Indian English 43 1% 
Indian Enghbh Rusbian 56 3% German 53 8% 

Hindi 49 4% 

Hindi Urdu 63 8% Indian English/Bengali 55 0% 
Tamil 45 6% 

Urdu* Farsi 78 8% Bengali 67 5% 
Hindi 60 6% 

Caribbean Spanish Non-Canbbean Spanish 65 6% 
|rq nO/ 

Tamil 54 4% 

Non-Canbbcan Spanish* 
Bengali 
Caribbean Spanish 
Farsi 

OO B/O 
65 0% 
45 0% 

Tamil 54 4% 

Languages) with only the thiee tcims included 

m Hindustani and Spanish dialects. In the detectors of Arabic, Russian, Min, 

Urdu and Non-Caribbean Spanish, there are many languages giving high rate 

of false alarms. Only the three largest error terms are included in the table. 

W e are interested in the relationship between Ut-rin for all enumerated lan-

guages. In Table 6.3，the 21 target languages are divided into two classes -

tone languages and non-tone languages. Tone languages include the five Chi-

nese dialects, Thai and Vietnamese. The remaining languages are all non-tone 

languages. It is noticed that all nt-Un pairs are purely tonal or purely non-tonal. 

In the following, we will look at the confusion among tone languages first, fol-

lowed by that among non-tone languages. In each case, a directed graph is 

constructed. All arcs are directed from Un to nt, indicating the large likelihood 

of accepting the samples into the tit model. 
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Confusion among tone languages 

Figure 6 1 IS an directed graph illustrating the confusion among different tone 

languages In five pairs of Chinese dialects, both the forward arc and the in-

verted arc are present {Cantonese, W u } , {Cantonese, Mandarin (Mainland)}, 

{Mandarin (Mainland), Mandarin (Taiwan)}, {Mandarin (Mainland), M m } , 

and { M m , Mandarin (Taiwan)} This indicates a rather symmetric confusion 

(i e high rate of false alarms in language 712 in the detection of rii，as well as in 

language ni in the detection of n。) From the linguistic point of view, the two 

Mandarin dialects are closest among five dialects, and the M m dialect is spo-

ken in the area near Taiwan These are reflected in the triangular relationship 

between the three dialects in the figure 

By looking at Figure 6 1, we can also get a grasp of using the prosodic 

model for a language to detect another language For instance, Cantonese is 

at the tail of five arcs This indicates the possible use of Vietnamese, Thai, 

M m , Mandarin (Mainland) or W u model to detect Cantonese The properties 

of Mandarin (Taiwan) are well modeled by the Mandarin (Mainland) model and 

the M m Model, resulting 91 0 % and 87 2 % of false alarm respectively (Table 

6 3) 

Cantonese 4 
小 

W u 

Mandarin 
(Mainland) 

Mm > Mandarin 
(Taiwan) 

Figure 6 1 A directed graph for tone language pairs with high confusion In 
the detection of a target language [head of the arc], a high rate of false alarm is 
found with testing samples of the confusing language [tail of the arc] Arcs are 
all directed from tails to heads 
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Caribbean 
Spanish 

Non-Caribbean 
Spanish 

Figure 6.2: A directed graph for non-tone language pairs with high confusion. 

Confusion among non-tone languages 

There are 14 non-tone languages. The confusion pattern is more complicated 

than tone languages. Figure 6.2 is the directed graph for non-tone language 

pairs with high confusion. The Hindustani dialects, as well as the Spanish 

dialects, have symmetric confusion. 

Prom Figure 6.2，connections are found among the several languages spoken 

in India. These languages include Bengali, Hindi, Urdu, Tamil and Indian 

English. Hindi is the closest with Urdu and Indian English, showing high rates of 

confusion. It is interesting to note a high confusion between Urdu and Bengali. 

Urdu is mainly spoken in Pakistan and northern India (e.g. Delhi, J a m m u and 

Kashmir), whereas Bengali is mainly spoken in Bangladesh and eastern Indian 

(e.g. West Bengal). 

Then we look at language pairs with a single arc. The two English dialects 

are good examples. The arc originates from Indian English to American English, 

indicating the prosodic properties of the Indian English are found in the model of 

the American English, and the reverse does not hold. There are two languages 

which have prosodic properties commonly found in the model of many other 

languages. In Figure 6.2, both Bengali and Tamil are at the tail of four arcs. 

Simply speaking, it is possible to use Arabic, Spanish and Hindi detectors to help 
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the detection of Tamil. In Section 7.2，a related idea will be tested. Detector 

scores for a particular language will be used to help the detection of another 

"related language". 

6,2 Language-specific prosodic properties 

In Section 4.5, prosodic attributes are evaluated with two information-theoretic 

metrics, and isyn(彻山力，in a language-independent manner. In fact, the ef-

fectiveness of a certain prosodic attribute to detection is expected to vary across 

different target languages. For example, FO gradient and residue attributes are 

crucial to the detection of tone languages. Moving one step forward, we can look 

into a particular value (and its n-grams) of the attribute. A good example is 

the attribute of FO gradient. Negative gradient is more indicative for detecting 

Mandarin than for other tone languages, due to the many occurrences of the 

falling-tone syllables in Mandarin. In this section, the mutual information eval-

uation to attributes introduced in Section 4.5.1 will be refined. Using the new 

metric, the relationships between different languages and prosodic attributes 

are revealed. 

6.2.1 Bin-level mutual information evaluation 

A bin-level mutual information metric is derived after /(L几“ Q Q (Eq.(4.18) in 

Section 4.5.1). It is intended to focus on a specific value (or bin) of an attribute. 

W e consider the entropy of L^ conditioned on the value q of attribute i, which 

is defined as, 

H(Lr.,\Q, = q) 二 -^P{ln^Q^ = q)logPiL^Q, = q). (6.1) 

Meanwhile we extend the unigram case to consider n-gram observations of the 

attribute over a sequence of pseudosyllables. Let qs denote the observed at-

tribute value of the ŝ ^ pseudosyllable in an utterance. Then the entropy of 

target language rit conditioned on the n-gram observation Qs-n+i ‘ • • Qs-iQs is 
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given by, 

丑(Intks—n+l • • . Qs-iqs) = - ^ P{lnMs-n+l . • • Qs-l办)logP(Znt ks—n+l • . . qs-lQs)-

lnt = {0,l} 
(6.2) 

Given the limitation of data scarcity, our analysis is based on the skipping 

trigram [EXPLOIT] construction. In other words, the entropy terms cover the 

bigram qs-iQs, Qs-2Qs-i and the skipping trigram qs-.2Qs [45, 96], as well as the 

bigrams gs—i#，i^Qs, Qs-2# where • denotes an inter-utterance pause. 

6.2.2 Interpretation of the metrics 

Let us consider a general equation for the calculation of entropy for a binary 

random variable, 

h[p) =plogp + (1 — :P)log(l — p). (6.3) 

where p — P{Ln^ = 1) oi p = = l\Qi = q). Figure 6.3 gives a plot 

of h{'p) against p (the solid line). For simplicity we consider the case that Q^ 

takes only two discrete values, i.e., Q^ = {1, 2}. First we look at the bin-

level metric. H{Ln^\Qi = 1) and == 2) are obtained by substituting 

p = P{Lnt = l\Qz = 1) and p = P[Lnt — l\Qi = 2) respectively in Eq.(6.3). 

They are marked as "x" in the figure. 

The geometric illustration in Figure 6.3 helps interpreting the mutual infor-

mation metrics. W e consider H(Lnt)obtained by substituting p = P(Ln^ = 1) 

in Eq.(6.3). The bin-level mutual information metric is a relative quantity that 

must be interpreted with respect to 况 ) . W h e n H{Ln^\Q^ — q) lies fur-

ther away from H(Lnt), the attribute value q is considered more influential to 

the determination of the target language. In physical sense, we can think of an 

example with q corresponding to high FO. If most of the observed high-FO pseu-

dosyliables are from the target language, a large distance from \Q^ = q) to 

H{Lnt) is expected. In other words, the attribute value (or bin of quantization) 

of "high FO" is useful in detecting the target language. 

The same figure also provides some knowledge on I{Lnt',Qi), the metric 
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previously used in Section 4.5.1. H{Lnt\Qi) is obtained as the weighted sum 

of the two bin-level metric, according to Eq.{4.20). Graphically, lies 

on the dashed line in Figure 6.3 and is vertically aligned with Because 

h is concave for 0 < p < 1, I(J^nt',Qi) is non-negative. The attribute-level 

metric depends on all corresponding bins q. If the conditional entropy terms 

H{Lnt\Qr = q) for all q,s are further away from H{Lnt), the weighted sum, 

will be smaller. /(L^JQJ will be larger, indicating larger amount 

of information contained in the attribute i about the target language. 

h(v), 
H{U\ Q,二S)— 

H{Lh\Q,) 

H{Ln,\ Q,= l) 

0 1 f 02 
P(U=1\Q,= 1) P{Ln,= l) 

0 3 f 04 p 
P{Ln,=l\Q^=2) 

Figure 6.3: Mutual information metrics reflected in an entropy equation 

6.2.3 Normalization of evaluation metrics 

Same as I{Lnt]Qt), the metric previously used in Section 4.5.1, normalization 

is necessary for the bin-level mutual information metric. W e use the identical 

set of random variables R to compute 500 reference conditional entropy terms 

H{R\Qi = q). The normalized bin-level metric is given by, 

之(nt’i，Q 产 q)— 
可Lrjft 二 Q O I 

a (6.4) 

where /i and a^ are the statistical mean and variance of {H(Ri\Q^ = q), = 

q),... , = g)}. With the assumption of statistical independence be-

tween R and Q” the conditional entropy terms H(R\Q^ = q) and the uncondi-

tional entropy terms H[R) should give similar statistics of /i and cr̂ . Because all 

R,s are constructed such that P{R = l) = P{Lnt — 1), /i and can be further 

deduced to define an interval in which H(Lnt) probably lies. As explained in 
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Section 6.2.2, the bin-level metric is a relative quantity, compared with respect 

to the original uncertainty of target language identity 

6.2.4 Methodology 

W e focus on the 21 target languages in NIST L R E 2007 and calculate the 

normalized bin-level metric,如山q产g). The speech data analyzed consists of 

the L R E 1996 and 2007 development sets, as well as the L R E 1996, 2003 and 

2005 evaluation sets (30-second). For each language, there are at least 8000 

pseudosyllables for analysis. 

Under the skipping trigram [EXPLOIT] configuration (Section 5.4.3 and 

5.4.4) with 105 attributes, for each target language there are 3 x 105x49 ~ 15435 

prosodic token bigrams in total for consideration. W e rank the values of z metric 

from large to small and select the first 2500 prosodic token bigrams. Recall 

that the selected prosodic feature set is language-dependent. It has a dimension 

comparable to that of the 14-attribute feature set in Section 4.5.3. W e will look 

at the LID results, and study the characteristics of the 2500 selected prosodic 

bigrams in each target language. 

6.2.5 Language-specific prosodic properties 

With the language-dependent prosodic feature set, the average E E R is 22.26%. 

It is marginally better than using the language-independent 14-attribute feature 

set (22.84% as in Table 6.2), Another purpose of the analysis is to improve our 

understanding about the prosodic characteristics of different languages. 

W e look at the 2500 selected attribute bigrams in each target language and 

focus on those with large values of conditional entropy H{Lnt\(ls-iQ.s) • W e can 

relate the values of conditional entropy [h(p)) to the probability (p) via Figure 

6.3. Simply speaking, these attribute bigrams appeal to us because they have 

frequent occurrences in language rtt (such that the probability is large). 

First let us look at Cantonese. Cantonese is a tone language with register 

tones [85]. Lexical tones are distinguished not only by contour shape, but also 

by pitch height. A unique tone sequence in Cantonese is alternating high and 
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low tones. W e consider the attribute of FO residue over Triplet for Cantonese. 

Large conditional entropy is found on the bigrams qs-i^s =〈15〉,〈16〉,〈51〉，〈61〉 

in bin-level analysis. The numbers in {•} are the six-level quantized values 

across two pseudosyllables. For instance, (61) indicates a high tone above the 

phrase curve followed by a low tone below the phrase curve. The observed 

value of conditional entropy reflects the abundance of L-H/H-L syllable pairs in 

Cantonese. This is consistent with the linguistic facts. 

Then we look at other tone languages involved in this study, namely Man-

darin, Vietnamese and Thai. Mandarin is similar to Cantonese, in terms of the 

alternating high and low tone patterns as reflected by FO residue over Triplet. 

Thai and Mandarin have a popular use of falling tones. In the attribute of FO 

gradient, the conditional entropy is large on the bigrams〈1*〉and〈*1〉where * 

means any attribute value. The smallest attribute value “1” denotes a falling 

tone. Vietnamese shows the opposite trend. Conditional entropy in FO gradient 

is large for the bigrams〈6*〉and (*6). This indicates the abundance of rising 

tones in the language. 

Japanese is a pitch-accent language. There are only two pitch levels (H and 

L) in the language. In each word, one accented syllable (or mora in a rigorous 

sense) is found at most. There is a pitch transition from H to L immediately 

after the accented mora. In other morae the pitch stays flat as either H or 

L [103]. Due to this linguistic fact, the conditional entropy of FO span {B-

File) for Japanese stands out. The bigrams (15),(51),(16) and (61) are believed 

to indicate the pitch transition before or after an accented mora. They give 

high conditional entropy. Other distinctive bigrams include (11),(12) and (21). 

They indicate the unaccented part of the word where the pitch stays flat and 

the vertical span of FO is minimal. 

Apart from tone and pitch-accent languages discussed above, language-

specific properties can also be found in non-tone languages. For example, Tamil 

is a language with no lexical stress [104]. This linguistic fact is reflected by 

the regular rhythm and intensity observed in the intensity nucleus, residue and 

nuclei separation (B-File) attributes. 
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Chapter 

Score fusion and calibration 

Various LID experiments are reported in Chapter 5. These results are generated 

by an LID system solely based on prosodic features. In the first part of this 

chapter, we will show optimal ways to combine the results of the PAM-

based prosodic LID system and the state-of-the-art phonotactic LID 

system. LID performance enhancements will be demonstrated. In the second 

part of this chapter, some numerical adjustment to scores will also be 

carried out, which brings further improvements to system results. 

7.1 Application-independent score fusion 

Fusion is the combination of multiple sets of scores. It is common in a large-

scale LID system. In P P R L M systems, multiple set of LID scores are generated 

from parallel streams of tokenizers [105]. In other cases, multiple sets of scores 

are from different LID sub-systems. In [106], LID sub-systems with acoustic, 

phonotactic and prosodic features were stacked together. Log scores of different 

systems were added together to give the score of an ensemble classifier. In 

74], Gaussian backend process (Section 5.1.2) was incorporated in the score 

fusion of G M M - L M , P P R L M and G M M - S V M systems. In [45], fusion method 

was derived in a Bayesian framework [107]. In general, fusion methods are 

implemented by linearly combining the component scores. The difference lies 

on the method to derive the combination weights. 
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In the following, the PAM-based prosodic LID system is fused with a state-

of-the-art phonotactic LID system on the score level The phonotactic LID 

system adopts a parallel phone recognition followed by vector space model 

( P P R V S M ) approach [108] It is one of the subsystems in the Institute for 

Infocomm Research submission to NIST L R E 2009 Compared with the av-

erage E E R in the PAM-based prosodic LID system, which is above 20%, the 

P P R V S M system has an average E E R below 5 % 

Let Ai"̂ ^̂  and be scores from the two systems Fusion is earned out 

by extending the calibration equations (Eq (5 14)) [102] The fused score is, 

(:=71入1:力2入2二， (7 1) 

Optimal weights 71 and 72 are found by an objective function subject to the 

m a x i m u m posterior probability (Eq (5 11)) This objective does not assume 

any particular LID scenario It is independent with parameters such as Cmiss , 

Cfa and prior probabilities in the calculation of detection costs Therefore, it 

IS known as apphcahon-tndependent fusion [102 

The linear translation term is dropped in score fusion Intuitively, the 

target-dependent bias should have been handled by backend calibration so this 

extra term is no longer necessary W e compare the two cases with and without 

in our fusion experiment For two sub-systems which behave differently in 

terms of Ĉ eer (几t), the omission of 6nt gives better results 

LID experiments reported m Chapter 5 for NIST L R E 2009 will be repeated 

with score fusion Development and testing sets for both systems are identical 

The training set for the P P R V S M system include more speech data from the 

C A L L F R I E N D and O H S U Corpora 

7.1.1 Score fusion with a phonotactic LID system 

Table 7 1 compares the results of different fusion scores in NIST L R E 2009 

O n the leftmost column is the result of the state-of-the-art phonotactic LID 

system Its average E E R is 3 56% The next column shows the errors from 
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Table 7 1 EER when different prosodtc feature sets are fused with PPRVSM m 
the score level (NIST LRE 2009) 

Target 
language 

C e e r ( n t ) for 

Phonotactic 
PPRVSM system 

Ceer(jh) after fusion with 
14-attribute 7 partial Partial set (11)§ 

set sets« [DELETE] [EXPLOIT] 

Amharic 0 75% 0 54% 0 76% 0 75% 0 51% 
Bosnian 9 30% 8 10% 7 90% 7 04% 7 32% 
Cantonese 1 56% 131% 131% 1 06% 132% 
Creole Haitian 2 11% 2 12% 155% 155% 155% 
Croatian 5 61% 5 60% 6 07% 5 80% 6 12% 
Dan 8 74% 8 18% 7 98% 8 00% 8 02% 
American English 3 73% 4 17% 3 75% 3 91% 4 11% 
Indian English 5 24% 3 89% 4 23% 4 51% 4 52% 
Farsi 199% 2 09% 2 05% 2 29% 2 05% 
French 2 79% 2 49% 2 50% 2 26% 2 27% 
Georgian 154% 151% 147% 1 50% 130% 
Hausa 128% 103% 0 79% 100% 0 73% 
Hindi 8 40% 7 50% 7 80% 7 23% 7 26% 
Korean 130% 1 08% 0 63% 0 84% 0 70% 
Mandarin 1 15% 1 16% 1 26% 1 08% 1 08% 
Pashto 4 77% 3 55% 3 55% 3 29% 3 26% 
Portuguese 126% 1 28% 151% 146% 1 30% 
Russian 2 33% 2 83% 2 48% 2 73% 2 75% 
Spanish 154% 130% 1 24% 1 30% 1 30% 
Turkish 127% 0 79% 0 82% 0 79% 0 80% 
Ukrainian 6 67% 5 67% 5 93% 5 96% 5 45% 
Urdu 5 81% 5 78% 5 54% 5 27% 5 32% 
Vietnamese 2 83% 2 20% 194% 3 10% 191% 

Average EER 
(before fusion) 3 56% 22 21% 一 20 33% 19 40% 

(after fusion) — 3 22% 3 18% 3 10% 3 08% 

7 partial sets are formed by excluding attributes in different prosodic groups 
Partial set (II) is the 14 attribute set with Intensity basic attributes excluded 

the phonotactic-prosodic fused score where 14 prosodic attributes introduced in 

Section 4 5 3 are used Score fusion brings a 9 6 % relative reduction of average 

E E R to 3 22% 

In the third column, seven sets of scores from all partial prosodic sets in 

Section 5 4 2 are used Together with the P P R V S M phonotactic scores, a score 

fusion with eight systems is carried out In Table 5 4，LID performance of the 

seven partial sets was shown to vary Score fusion from multiple sets of prosodic 

scores elicits complementary effects The average E E R , 3 18%，is smaller than 

that using 14 prosodic attributes altogether 

In the two rightmost columns in Table 7 1，the partial set (II) with Intensity 
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basic attributes excluded is used with different configurations of boundary n-

grams. In Section 5.4.4 and Table 5.6, these constructions demonstrate better 

performance over the basic setup. These trends of E E R in the prosodic LID 

system before fusion are shown to be brought forward to the fused system with 

the P P R V S M scores in Table 7.1. 

In the state-of-the-art LID, acoustic/phonotactic systems generally perform 

much better than prosodic systems. Nevertheless, score-level fusion trials with 

different prosodic systems do show E E R reduction from 9.6% to 13.5% relatively. 

From the results in Table 7.1, it seems to be the case if a prosody-based system 

has a lower E E R , the fusion result will also be better. 

There have been disputes whether prosodic features can assist in a LID task 

in general. A common belief is that the use of prosodic features is language-

specific [10, 105]. W e test the four tonal languages (Cantonese, Hausa, Mandarin 

and Vietnamese) and four other languages (Amharic, Indian, French and Turk-

ish) which give smallest E E R with the 14-attribute prosodic set. Significant 

E E R reductions are observed for these languages after score fusion with the 

P P R V S M system. If only the test data of these eight languages are retained, 

prosodic features bring a 30.9% relative reduction of E E R , from 1.81% to 1.25%. 

7.2 Target dependent score calibration 

While prosodic features bring significant E E R reductions to some languages, 

there are some "difficult" languages whose E E R is high for both P P R V S M and 

prosodic systems. A m o n g the 23 target languages in NIST L R E 2009, five 

related language pairs are generally considered to be mutually intelligible [14 . 

They are listed below, 

• Russian-Ukrainian • Hindi-Urdu • Farsi-Dari 

• Bosnian-Croatian • English (American)-Englisli (Indian) 

Public results reveal higher recognition errors in these related pairs [9]. De-

tection to these related languages becomes a bottleneck in a state-of-the-art 

language recognition system. Intuitively, if some error reduction techniques 
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specific to these related languages are introduced, there is hope to reduce the 

global error. 

Let ni and n2 represent two related languages. They are mutually intelli-

gible. Detection among rii and 712 is believed to give many misses and false 

alarms. Here we make two hypotheses: 

Hypothesis 1: Cost minimization specific to ni and n) would be beneficial to 

the reduction of the global cost performance. 

Hypothesis 2: The log likelihood ratios for ni and n] contain similar and 

complementary information. 

W e will start with a set of language recognition results which is calibrated 

in the global level. Further calibration specific to those related language pairs 

are conducted. 

7.2.1 Evaluation metrics 

It is important to review the evaluation metrics before some calibration methods 

are proposed to reduce errors. In the calculation of average cost performance in 

NIST Evaluations, detection scores to all target languages are pooled together. 

After pooling, a single detection threshold is used for detection. The decision 

making process is rewritten by replacing the language-dependent threshold 

introduced in Section 5.1, 

X^t似[k) — 0 >0 accept k belongs to class nt] 

X^n^ {k) — 9 <0 reject k belongs to class nt. 

The error terms in the pooled data are, 

(7.2) 

(7.3) 

c 二 = 

P u U n t ) = P(A二t - ^ < 0 | c = nt)= 

^
 
)
 

I(nt) 

(7.4) 

(7.5) 

Physically, || || and || A4(nt) || count the number of false alarms 

and misses in the experimental data set. A n example of detection likelihood of 
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Figure 7,1: Likelihood ratio 乂：^^七 for nt detection in a data set with two classes: 
i^t,几n 

a two-class data set with target class Ut and non-target class is plotted in 

Figure 7.1, in which || M{nt) || can be obtained by counting the number of filled 

circles, while || || is the number of filled triangles. 

The dominance of detection miss or false alarms in the detection experiments 

is affected by a global detection threshold 0. By varying the value of 0, there 

will be different operating points. The pooled EER is the error at the operating 

point where the weighted sum of all Pmiss (几f) terms has the smallest difference 

with the weighted sum of 尸fa(几i，？̂n) in all language pairs. It is denoted by, 

C'p-eer = 6er Ca vg) 

where Cavk is given by, 

n=l 

广 / 、— I d ( \ , IPYhint^n, 
detect J = 十 乙 ^ jy _ 工 

rin^rit 

(7.6) 

(7.7) 

(7.8) 

Another operating point in our interest is the minimum global average cost, 

which is defined by, 

Cmin 二 min Cavs- (7.9) 
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Note that both Cmin and Cp_eer are based on a global threshold across all 

languages. This is different from the C鄉 metrics used in earlier chapters. 

7.2.2 Problem formulation 

Cost minimization by likelihood ratio adjustment 

Consider two related languages ni, n。. According to Hypothesis 1, we propose 

to minimize the cost terms and C„2,ni5 where 

Cm,712 = ^Miss(m) + ,FA(ni，n2)， (7.10) 

Cn2,ni 二 ̂ M i s s M + Tli). (7.11) 

Eq.(7.10) and (7.11) are rewritten forms of Eq.(7.8), retaining only the cost 

components related to classes ni and 712. Note the cost for a single detection 

miss is iV — 1 times of the cost for a single false alarm. This ratio is inherited 

from the Cdetect definition in Eq.(7.8). 

In the following, the minimization of C„i，„2 is illustrated as an example. Let 

Ut = rii be the target language and rv = is the related language. Referring to 

Eq.(7.4) and (7.5), we can choose to adjust the threshold 9 and/or the likelihood 

ratio for a smaller Cm,nr. Because this cost minimization is specific to rit 

and fir only, we fix the global parameter 9 and adjust . 

Another issue is that target class specific cost minimization should be per-

formed to the in-class data in Ut or rv only, while this information is generally 

unavailable in the testing set. The workaround is to use a rough estimate of 

target class. Let be the estimated indices of speech segments in language 

n (i.e. estimate of X(n)). X(n) is derived heuristically. By evaluating the vector 

of detection likelihood ratios of speech segment k (Eq.(5.8)), k is put in X(n) if 

is found to be among the largest three ratios. 

In cost minimization, the goal is to have an adjusted X'l̂二 such that both sets 

M(nt) and Ur) shrink. According to Hypothesis 2,入!̂尤几̂  and contain 

similar and complementary information. W e propose the following adjustment, 
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= y^ntik) + 干m，nAk, Q ^ r J , 

where 

rnt,nr[k,an,,nr) = (7.12) 
0 otherwise. 

\ 

Literally, Eq.(7.12) says that in the detection of language rit, the log likeli-

hood ratio for a subset of speech segment indexed k € {X(nt) UX(n^)} has to be 

adjusted as a linear combination of 入二*(幻 and 乂二, is the adjusted 

likelihood ratio.〜’„『is the weight for likelihood ratio combination. 

After A"^^ is adjusted for the minimization of cost Cn^^n^, minimization of 

(7„2,ni can be done in the same manner. By substituting nt = n) and =几i 

and repeating the operation in Eq.(7.12), X'ĵ ^̂  is found from A!̂ ‘ and fv̂ s.m. 

Optimal parameters for score calibration 

For the likelihood ratio adjustment of each target language nt with its related 

language we use the development data set to find the optimal parameters 

such that the errors indicated by Eq.{7.4) and Eq.(7.5) are minimized. Instead of 

minimizing the sets ||jF(nt, and we propose to minimize the total 

erroneous deviations of likelihood ratios in the development data set. Erroneous 

deviations can be easily visualized in Figure 7.1. For a detection miss, it is the 

vertical distance from the detection threshold 9 to the filled circle. For a false 

alarm, it is the vertical distance from the filled triangle to 6. Mathematically, 

the minimization of total erroneous deviations is formulated as, 

K 

min Y] m a x (队 ( k ) x f(k, a似，„� 

subject to (s.t.) |ant,nj < 1, 

〜 」 - ( “ ” ) ， 

—(TV — 1 ) if kel(nt). 

1 otherwise. 
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/(•) is the deviation of from a reference point (0-hv). 乂二^ is the adjusted 

likelihood ratio defined in Eq.(7.12). The reference point is the detection thresh-

old Q, shifted by v. y^ x /(•) returns positive values for erroneously detected 

segments and negative values for appropriately detected ones. The max(-) op-

eration removes deviations which are not erroneous. A m o n g the positive-valued 

deviations there are two error types: misses and false alarms, y^ scales the two 

error types with the default N — 1 : 1 ratio. Every 〜，rv is bounded such that 

A'^^ lies in a suitable range. The objective function is convex on ant’nr. Thus, 

with a fixed v^ a globally optimal solution of 〜’n, can be found [109]. The 

objective function in Eq.(7.13) tries to push the likelihood ratios of detection 

misses and false alarms towards the reference point +1；). 

The polarity of v indicates the optimization goal towards fewer misses or 

fewer false alarms. Referring to Figure 7.1, a positive v pushes the dashed line 

(reference point) upwards. Thus there will be more filled circles (missed targets) 

included in the optimization in Eq.(7.13), and the parameter for likelihood ratio 

adjustment, 0；„“„『，will be optimized towards the goal of having fewer misses. 

Oppositely, a negative v will lead to an optimal parameter which favours fewer 

false alarms. 

Experimental procedures 

Detection target dependent calibration is carried out for each of the five related 

language pairs, namely Bosnian and Croatian, Dari and Farsi, Hindi and Urdu, 

Russian and Ukrainian, American and Indian English. These language pairs are 

highlighted in the NIST L R E 2009 task specification [14]. W e do not propose 

any methods in finding out these pairs. 

Figure 7.2 shows the system diagram of the complete language detection 

system, in which the two shaded blocks are the modules of detection target 

dependent calibration for one pair of related target languages rii and n). A 

pair of adjusted likelihood ratios, denoted by and A巧。，is derived. There 

are totally ten target languages (in five pairs) whose likelihood ratios are ad-

g
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Figure 7.2: System diagram of score cahbratwn 

justed following Eq.(7.12). In each adjustment, the optimal 〜’rv is found from 

a development data set, with the objective function in Eq.(7.13). A convex 

optimization tool, cvx, is used [110]. The optimal ant,nr parameters are then 

substituted in Eq.(7.12) with the NIST L R E 2009 evaluation set. Cmm and 

Cp.eer with the evaluation data is reported. 

W e focus on an application-independent fusion system with. P P R V S M and 

seven partial sets (Table 7.1). For notation simplicity, scores and error costs 

after the first-pass global application-independent fusion are referred to as ongi-

nal scores hereinafter. O n top of the original scores, detection target dependent 

score calibration is carried out to obtain calibrated scores. 

7.2.3 Experimental results 

Reference point for erroneous deviation minimization 

To test the best reference point {9 + v) in Eq. (7.13), the experimental pro-

cedures described above are repeated with different values of v. Recall that a 

positive V favours fewer misses and a negative v favours fewer false alarms. A 

sequence of v from —6 to 6，spaced 0.5 apart, is tested. C m m and Cp.eer with, 

the evaluation data are plotted in Figure 7.3. 

From the figure, a clear trend of increasing errors can be observed if the 
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Figure 7.3: Original and calibrated Cmm, Cp.^er 皿th optimal Oint,nr under differ-
ent values of v 

value of V is too large or too small. Both Cmm and Cp.eer attain the lowest 

values when v equals 3.5. This positive value implies optimization of parameter 

a in Eq.(7.13) should prefer fewer detection misses. It is reasonable since the 

error cost for a detection miss is TV — 1 times of the cost for a false alarm, as 

defined in Eq.(7.10) and (7.11). 

The exact value of v depends on the erroneous deviations of likelihood ra-

tios, which are the vertical distances between detection threshold 6 and filled 

circles/triangles in Figure 7.1. By inspecting the scores with the development 

data set, erroneous deviations of likelihood ratios are generally found to be 

smaller than 6. Therefore v is tried in the range from —6 to 6. Unique optimal 

V can also be trained in the optimization for different rit, rv pairs. Nevertheless, 

a reasonable guess of a universal v already leads to C m m and Cp-eer reduction, 

compared with the original error terms as shown in the horizontal lines in Figure 

7.3. 

Global detection errors 

Figure 7.4 shows the detection errors for the evaluation data with original and 

calibrated scores. Original scores are those globally calibrated with FoCaL [102'. 

Calibrated scores are obtained via the proposed calibration method, v is chosen 

to be 3.5. C m m and Cp-eer for the original scores over 23 target languages is 4.36% 
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Figure 7.4: DET plot for the original and the calibrated scores with v = 3.5 

and 4.45% respectively. After the proposed calibration, Cmm and Cp-eer over 23 

target languages are reduced to 3.31% and 3.33% respectively. A relative E E R 

reduction of 25.2% is achieved. 

Table 7.2 shows the error statistics at the global (7應 and Cp_eer operating 

points for every target language. Results of the five related language pairs 

are enumerated separately to the top of the table. As expected, the major 

contribution in error reduction comes from the five related language pairs. The 

10 languages except Russian have error reductions after calibration. For the 

other 13 languages, although their detection scores are uiitouched, reduction in 

Cjnm and Cp_eer Can also be observed. 

Detection errors in different target languages 

Detection target dependent calibration is shown to reduce the pooled E E R in 

the global data set. In this section, the source of error reduction in the five 

pairs of related languages will be investigated. 

Referring to Eq.(7.8), the component terms of Cdetect(̂ i) are recorded in 

Table 7.3 for analysis. These components include the miss rate to a target 

language (Pmiss(叫))，and the overall false alarm rate E 尸？化广)).They 

summarize the detection of target language Ut from all imposter languages, and 

are referred to as global error terms hereinafter. 

It is reminded at the pooled EER operating point, the global error terms of 
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Table 7.2: Error statistics befor 'e and a fter score calibration 
Before calibration After calibration 

(With KtJ (With 
Cmin ^p-eer c . Cp_eer 

(Bosnian 20.25% 18.54% 8.11% 8.12% 
I Croatian 7.78% 6.92% 6.45% 6.48% 
r Dari 8.97% 9.07% 7.14% 7.03% 
1 Farsi 3.21% 3.67% 2.60% 2.65% 
(Amer ican English 3.86% 4.00% 3.57% 3.61% 
I Indian English 4.21% 4.53% 3.75% 3.79% 
r Hindi 7.88% 8.43% 5.42% 5.46% 
I Urdu 5.77% 6.61% 5.29% 5.35% 
r Russian 4,15% 5.21% 5.28% 5.35% 
I Ukrainian 10.89% 9.90% 6.39% 6.40% 

Average of 5 related language pairs 7.70% 7.69% 5.40% 5.42% 

Amharic 1.09% 1.34% 0.88% 0.89% 
Cantonese 1.30% 1.34% 1.35% 1.36% 
Creole-Haitian 1.65% 1.91% 1.79% 1.81% 
French 2.44% 2.74% 2.24% 2.28% 
Georgian 1.38% 1.55% 1.49% 1.49% 
Hausa 0.81% 0.91% 0.81% 0.84% 
Korean 0.71% 0.96% 0.56% 0.57% 
Mandarin 1.44% 1.46% 1.28% 1.29% 
Pashto 3.56% 4.11% 3.52% 3.46% 
Portuguese 1.54% 1.63% 1.41% 1.44% 
Spanish 2.90% 3.87% 2.21% 2.26% 
Turkish 2.41% 1.56% 2.64% 2.65% 
Vietnamese 2.04% 1.99% 2.00% 2.02% 

Average of other 13 languages 1.79% 1.95% 1.71% 1.72% 

Average on 23 languages 4.36% 4.45% 3.31% 3.33% 

miss and false alarm probabilities in a single target language do not have to 

satisfy the equal error criterion. For instance, with original scores, Puiss and 

Pfa for Bosnian is 35.49% and 1.58% at the pooled EER operating point, giving 

Cdetect of 18.54% (Table 7.2). 

As opposed to the global error terms, the false alarm rate specific to a related 

language pair (i^FA(?^i，is also included in Table 7.3. This specific false 

alarm term indicates how well the LID system can classify the two related 

languages before and after calibration. The optimal parameter â t̂ nr found by 

Eq.(7.13) is also recorded in Table 7.3. 

ant，nr specifies the proportion of the related language likelihood ratio (A二;;) 
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Table 7.3: Pooled EER for different targets 
nt 
(Target 
language) 

Cp eer before calibration 
[Global error terms] . 

Cp eer after calibration 
[Global error terms] , 

r Bosnian 35 49% 158% 23 94% 0 76 12 68% 3 57% 71 28% 
1 Croatian 8.78% 5 07% 74 93% 0 43 8 78% 4 18% 79 72% 
r Dan 14 91% 3 22% 14.32% 0 34 11 05% 3 01% 35 29% 
I Farsi 0 26% 7 08% 72 49% - 0 30 0 51% 4 79% 47 81% 
J American English 2 08% 5 92% 55 50% 0 05 3 40% 3 81% 45 52% 
I Indian English 2 54% 6 51% 38 93% 0 13 3 05% 4 54% 37 50% 
f Hindi 4 20% 12 67% 80 74% 0 62 1 80% 9 13% 97 89% 
I Urdu 2 11% 11 12% 85 76% 0 67 2 11% 8 58% 96 85% 
r Russian 0 00% 10 43% 52 06% - 0 27 0 19% 10 52% 43 56% 
1 Ukrainian 19 07% 0 73% 3 25% 0 76 10 82% 198% 34 03% 
Ur IS the related language (i e the other language m the pair) 
Un includes all languages other than rit 

to be added to the target language likelihood ratio (A二力打J in calibration (Eq.(7.12)) 

By looking at the parameter ant.nr) two scenarios can be observed. 

In the first scenario, a negative CKnt.n̂  is found to be optimal. Take Russian 

detection as an example and refer to Eq.(7.12), such an adjustment subtracts 

A 二 from the original 入 二 ： likelihood ratio. The subtraction op-

eration suppresses the high scores in 二n in case of a false alarm m 

Ukrainian, and compensates the low scores in case of a detection miss in Rus-

sian. Recall that the error cost for a detection miss is TV — 1 times of the cost for 

a false alarm (Eq.(7.10) and (7.11)). So the biggest concerns are those Russian 

speech segments having large scores in A^̂ ûĵ ^man' which will incur detection 

misses of Russian after the subtraction operation in Eq.(7.12). As a result, the 

prerequisite for a negative a to be optimal is a low false alarm rate in the de-

tector of the related language. In Table 7.3, Pfa (几t:Ukrainian，n—Russian) is 

only 3.25%. A subtraction will not incur detection misses of Russian. Similarly, 

scores of the Dari detector have relatively low false alarm rate in Farsi (14.32%), 

and it is subtracted from the scores of the Farsi detector. 

The second scenario occurs for the detector rtt where false alarm rate is high 

in the detector of the related language. The optimal ant,nr parameters found by 

Eq.(7.13) are non-negative. This is because subtraction of scores would incur 

a significant number of detection misses, which means a high cost Cdetect {^t) 

contributing to the average error. In the score adjustment of American and 
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Indian English, the optimal value of 〜，n̂^ are found to be around zero. For other 

detectors, optimal values of ant,nr are positive. Essentially the adjusted score is 

a weighted sum of scores from rit and n^ detectors. The two related languages are 

less differentiated, in return for fewer detection misses PMiss(^t), and/or fewer 

false alarms irrelevant to the related language pairs Pfa(几t，〜l^n^ {^tUTv}). 

After score calibration, the global error terms of all languages except Russian 

is reduced. However, the confusion between the pair of related languages is 

actually increased. Calibration towards a lower global error somehow sacrifices 

the differentiation between a target language rif and its related language 

A n extra experiment is performed, in which only the confusions between Ut 

and Ur are looked at [111]. Another cost function is defined and search for the 

optimization parameters is repeated. Irrelevant imposter data which, belong to 

neither rit nor n^ are removed. In such case, all parameters are found to 

be negative, and the confusions between rit and are slightly decreased. 

Comparison of the results in different systems 

In the final experiment, detection target dependent calibration is repeated with 

two other configurations used in previous experiments in Table 7.1. They are the 

P P R V S M scores, and the fused scores between P P R V S M and the partial set (II) 

E X P L O I T ] , which models boundary n-grams explicitly but with Intensity 

basic attributes removed. Fusion results are recorded in Table 7.4. To make 

results comparable to former experiments’ both pooled EER (C7p-eer) and average 

EER (Ceer) are shown. 

Empirical results show that pooled EER is often higher than average EER. 

This is because the constant threshold across all target languages cannot handle 

score mismatch among different detectors. There are actually opinions saying 

that the use of a common scale for multiple detections of different targets is not 

desirable [112, 113 . 

Detection target dependent calibration improves the LID performance in 

an ubiquitous way. It brings a 13% relative average EER reduction and a 

22%-25% relative pooled EER reduction in different LID fused systems. The 
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improvements by the score-level calibration is orthogonal to feature-level system 

fusion In other words, the error reduction brought by prosodic features is still 

noticeable after the applying calibration The lowest error is observed in the 

phonotactic-prosodic fused system with detection target dependent calibration 

Average E E R (C^r) and pooled E E R (Cp eer) are 2 67% and 3 30% respectively 

Table 7 4 Average EER and pooled EER before and after target dependent 
cahbratwn (NIST LRE 2009) 

LID 
system 

Before calibration 
(with x z j 

Ceer C^p-eer 

After calibration 
(with A : : ) 

C'eer C p eer 

PPRVSM 
PPRVSM H 
PPRVSM H 

h 7 partial sets^ 
h partial set (II) [EXPLOIT]* 

3 56% 
3 18% 
3 08% 

4 63% 
4 45% 
4 42% 

3 08% 
2 78% 
2 67% 

3 61% 
3 33% 
3 30% 

A partial set is formed by excluding attributes m one of the prosodic groups (I) to (VII) 
Partial set (II) with Intensity basic attributes excluded, modeling boundary n grams explicitly 
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Chapter 8 

Conclusions 

8.1 Summary 

In this thesis, the use of prosodic features for LID is validated with three im-

portant operations. First, a large set of prosodic attributes are used in LID 

experiments. Second, an information-theoretic approach is used to analyze and 

select among different attributes. Third, score-level fusion with a state-of-the-

art phonotactic LID system is performed. 

The large set of features proposed in this study covers 105 prosodic at-

tributes. This contrasts to many previous studies, where only a small number 

of prosodic attributes were involved. With the prosodic attribute model (PAM) 

approach, a super term-document matrix is constructed to model the cross-

attribute correlations and long-range sequential information of prosodic tokens 

in a flexible manner. The PAM-based prosodic LID system is compared with 

other prosodic LID systems, and is shown to perform the best. Various con-

structions of term-document matrices are tested with NIST L R E 2009. The 

test results validate the use of a comprehensive attribute set, and help to find 

a preferred construction for the super term-document matrix. 

There is a large number of prosodic features involved in this study. A n 

information-theoretic approach is used to select among different normalization 

and regression methods to give a 14-attribute feature set. Also, a refined met-

ric of bin-level mutual information evaluates the prosodic token bigrams in a 
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language-dependent manner, and reveals the prosodic characteristics of specific 

target languages. 

The PAM-based prosodic LID system not only works well as a stand-alone 

system, but also provides complementary effects to a state-of-the-art phono-

tactic LID system by score-level fusion. Performance of a phonotactic-prosodic 

fused system is generally better if the stand-alone prosodic system has fewer 

errors. In the optimal setting, the inclusion of prosodic features reduces the 

equal error rate from 3.56% to 3.08% in a closed-set language detection task. 

Detection target dependent calibration is also carried out and further reduction 

of errors is observed. 

8.2 Contribution of the work 

State-of-the-art spoken language identification (LID) systems make use of large-

scale acoustic/phonotactic modeling. Prosody features are alternative. Their 

usage in an LID task has been studied sporadically in the past decade, but 

investigations were limited to a few specific types of FO or duration features. 

Also, there are very few studies that promote prosodic features to large-scale 

LID tasks. To our knowledge, we are the only participant in NIST Language 

Recognition Evaluation (LRE) 2009 who makes use of prosodic features in an 

LID system. In this thesis, we show a comprehensive modeling approach to a 

large number of prosodic features in large-scale LID tasks. This gives convincing 

evidence of the effectiveness of prosodic features to distinguish spoken languages. 

In this thesis, a couple of machine learning techniques are applied in the 

course of language detection. A n information-theoretic approach is proposed 

to analyze the effectiveness of different prosodic attributes and to facilitate 

a feature selection process for dimension reduction. A convex optimization 

approach is proposed for the backend processing of score fusion and calibration. 

These approaches are likely to work well in other empirical tasks which may or 

may not be with prosodic features. 
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8.3 Limitations and Future work 

Most of the LID experiments reported in this thesis are based on the 14-attribute 

feature set. Compared with the over-complete representation of 105 prosodic 

attributes, there may be much information which is not adequately modeled. 

There are attempts to expand the 14-attribute feature set by including various 

measurements/normalization methods; and n-gmm modeling is extended up to 

5-gram. These changes significantly increase the problem dimension, but only 

marginal performance improvements are observed. In the future, some efficient 

methods to incorporate new information to the PAM-based prosodic LID model 

are expected to help. For instance, parallel streams of similar attributes can be 

modeled in a lattice. Feature-level fusion can be done. 

Despite having a large number, the 105 prosodic attributes by no means 

represent the complete prosodic space. As there is not a conventional set of 

prosodic features, we do not know exactly which prosodic attributes to extract 

for the LID task. Apart from FO, intensity and duration, other elements, such as 

timbre, pauses, tempo, etc, are sometimes considered to be elements of prosody. 

The appropriate modeling of these elements may provide useful information to 

LID. The interaction between spectral and prosodic features is another impor-

tant phenomenon to model. 

According to [5, 43], the effectiveness of prosodic attributes in LID varies 

across languages. The bin-level mutual information metric is intended to serve 

the purpose of deriving language-dependent feature sets for system training. 

However, results in Section 6.2.5 show that such feature sets only gives marginal 

improvements. In a follow-up experiment, we added score fusion and calibration 

modules in the backend. The LID error with language-specific feature set was 

25% relatively lower than using the language-independent set (with fusion and 

calibration) [114]. Further studies can be done along this line. 

A numerical adjustment to score is introduced in Chapter 7 to improve LID 

accuracy. While this operation significantly reduces the pooled error, the dis-

tinguishability among some similar languages is actually sacrificed (Table 7.3). 

That reminds us of different LID scenarios where different handling methods 
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apply. Towards developing a real-world LID application, considerations to its 

evaluation metric are important. 
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