
New Considerations for 
Modeling Financial Volatility 

CHU, Chun Fai Carlin 

A Thesis Submitted in Partial Fulfilment 
of the Requirements for the Degree of 

Doctor of Philosophy • 
in 

Systems Engineering and Engineering Management 

The Chinese University of Hong Kong 
April 2011 



. . > 

UMI Number: 3491979 

‘ All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent on the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 
Dissertation PublisNing 

UMI 3491979 

Copyright 2011 by ProQuest LLC. 
All rights reserved. This edition of the work is protected agalcisl 

unauthorized copying under Title 17, United States Code. 
c • 

ProQuest LLC. 
789 East Eisenhower Parkway 

‘ P.O. Box 1346 
Ann Arbor, Ml 48106- 1346 



Thesis / Assessment Committee 
t� 

. -

Professor Yu Xu，Jeffrey (Chair) 

,Professor Lam, Kai Pui (Thesis Supervisor) 

Professor So Man-Cho，Anthony (Committee member) 
t 

Professor David Allen (External Examiner) 

V 

� 

¥ 



Abstract 

This research study investigates three new considerations for improving the 
performance of volatility modeling of financial returns. T w o of them are re-
lated to the intraday volatility modeling and the other one is about the use 
of overnight information for daily volatility modeling. 

About the intraday volatility modeling, the limitations and potential 
problems of using Andersen & Bollerslev's approach are addressed and dis-
tinct modifications are proposed to tackle the corresponding issues. The first 
suggestion is about the utilization of the interaction between the intraday 
periodicity and the heteroskedasticity while the second is about the modified 
normalization for the estimation of the intraday periodicity. 

The proposed modifications are tested with different ARCH-structures, 
including GARCH(1 ,1 ) , FIG A R C H ( l , d , l ) and H Y G A R C H ( l , d , l ) , by using 
simulated data and market data. Apart from studying the 1-step-ahead out-
of-sample performance, severar multiple-step-ahead forecasting results are 
also addressed. Under the same level of model flexibility (parameterized por-
tions), our proposed modifications always outperform the original method in 
both in-sample fitness and out-of二sample performance on various forecasting 
horizons. 

On the other hand, the third suggestion is about the inclusion of overnight 
information for the estimation of daily volatility. This study explores the pos-
sibility of incorporating the overnight ^^ajjg^e indirectly through the use of 
linearly combined daily volatility estimators. The empirical results demon-
strate that the inclusion of overnight variance can produce substantial in-
fluence when the minimum-variance constraints are relaxed. Besides, the 
influence is revealed to be not monotonic as an increase of the overnight 
proportion does not necessarily produce a larger influence. 

Furthermore, it is demonstrated that the inclusion of overnight variance 
can improve the prediction accuracy of the Chicago Board of options Ex-
change ( C B O E ) volatility indexes (VIX and V X D ) under specific weight 
combinations. The findings contradict the common perception that overnight 
return does not contain useful information for daily volatility modeling. 
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摘要 

本研究提出三個新的考慮以改善金融波動模型的性能。其中兩個都涉及到日内的 

波動模型，另一個是關於使用整夜的金融信息以改善每日的波動模型。 

本硏究是透過探討Andersen & Bollerslev的日内波動模型的局限性和潛在的問題， 

從而提出相應的解決方法。第一個建議是關於善用日内的週期性和異方差之間的相 

耳作用，而第二個是關於對估算日内的週期性之修改。 

本硏究使用模擬數據和市場數據對所提出之建議進行測試，當中之建議是經過不同 

的 A R C H 結 構 對 之 進 行 測 試 ’ 包 括 G A R C H ( 1 ， 1 ) ’ FIGARCH(l，d，l)和 

HYGARCH(l,d,l)�此外’本研究對所提出之建議進行不同預測範圍的性能分析’ 

包括1步之預測及多步之預測。在相同的模型靈活性水平下（具備有相同的參數之 

模型）’無論在樣本內和樣本外之性能都顯示本文所提出的建議是優於原本的方 

法。 

另一方面，第三個建議是關於使用整夜的金融信息以改善每日的波動模型。本硏 

究探討使用線性組合的方法作爲合倂整夜金融信息的可能性。當最小方差約束被 

解除後’實證結果證明了合倂之整夜金融信息是可以產生明顯的影響。而且’本 

硏究還發現整夜的金融信息之影響並不是跟從線性的比例增力卩’較大比重之整夜 

信息並不一定產生較大的影響。 

另外，分析結果途表明了經合倂後之線性組合可以對芝加哥期權交易所（CBOE ) 
- 波動指數（VIX指數和VXD)作出更準確的預測。此硏究結果顯示了整夜的金融 

信息是可以對每日波動模型提供有富有意義的資訊。 



Contents 

1 Introduction 1 
1.1 Thesis content 1 
1.2 Contributions 8 
1.3 Organization of the thesis 10 

2 Literature Review 13 
2.1 Modeling the volatility of intraday returns 14 

2.1.1 Characteristics of intraday returns 14 
2.1.2 Models for intraday volatility modeling 17 

2.1.2.1 Andersen h Bollerslev's sequential estimation 
model 17 

2.1.2.2 Periodic Autoregressive Conditional Heteroskedas-
ticity ( P - G A R C H ) model 21 

2.1.2.3 Engle's Multiplicative Component model . . . 22 . 
2.2 Models for measuring daily volatility 24 

2.2.1 Daily volatility estimators 24 
2.2.1.1 Garman & Klass's daily volatility estimators . 25 
2.2.1.2 Hansen & Lunde's volatility estimators . . . . 25 

2.2.2 Engle's Multiplicative Error Model (MEM) 27 
2.2.3 Chicago Board of Exchange ( C B O E ) Volatility index . 30 

2.3 Supplementary note 31 
2.3.1 Flexible Fourier functional form for the approximation 

of periodic dynamics 31 

‘ 3 Integrated framework approach for intraday volatility mod-
eling 33 
3.1 Introduction and the research objective 35 
3.2 Andersen h Bollerslev's sequential intraday volatility model 

and its limitation 38 
3.3 Proposed Integrated framework approach 41 

' 3.4 Model specifications and Evaluation criteria 45 

t • • 
111 



3.4.1 Specifications of filtration process and A R C H structures 45 
3.4.2 Evaluation criteria 48 

3.5 Simulation study on the effectiveness of the integrated frame-
work 52 

• 3.6 Empirical investigation 57 
3.6.1 In-sample fitness 59 
3.6.2 Out-of-sample intraday forecasting performance . . . . 66 
3.6.3 Out-of-sample 1-day-ahead forecasting performance . . 76 

3.7 Concluding remarks 80 
3.8 Supplementary note 82 

3.8.1 Limitation of the integration framework approach for 
E G A R C H ( 1 ’ 1 ) structure 82 

3.8.2 Proposed integrated framework approach with the use 
of GARCH(1 ,1 ) structure - Maximum likelihood esti-
mation method 85 

3.8.3 Graphical representations on the out-of-sample fore-
cast performance 90 

3.8.4 Properties of the realized variance estimator 92 

4 Day-varying structure for modeling intraday periodicity 98 
4.1 Introduction and the research objective 100 
4.2 Andersen h Bollerslev's intraday periodicity estimation and 

its limitation 103 
4.3 Proposed normalization procedure for estimating intraday pe-

riodicity 108 
4.4 Characteristics of the residuals of the approximation function . 109 

4.4.1 Data description 109 
4.4.2 Specification of the approximation function 110 
4.4.3 Heteroskedasticity of the residuals I l l 

4.5 Simulation study on the robustness of the normalization pro-
cedures 113 

4.6 Application on intraday volatility modeling 120 
4.6.1 Data description and sampling method 120 
4.6.2 Specification of Engle's Multiplicative Component A R C H 

model 121 
4.6.3 Evaluation criteria 123 
4.6.4 In-sample fitness 125 
4.6.5 Out-of-sample forecasting performance 127 

4.7 Concluding remarks 133 
4.8 Supplementary note 135 

iv 



- 4.8.1 Equivalent modeling performance by scaled intraday 
periodicity series 135 

4.8.2 Characteristics of the two normalization procedures for 
evaluating day-invariant periodicity 136 

5 Impact of the overnight information on daily volatility mod-
eling 139 
5.1 Introduction and the research objective 141 
5.2 Specifications of daily volatility estimators 144 

5.2.1 Garman & Klass's volatility estimators 144 
5.2.2 Realized variance and Hansen & Lunde's whole-day-

based variance estimator 145 
5.3 Specification of Engle's Multiplicative Error Model 148 
5.4 Correlation analysis among models with and without overnight 

information 150 
5.4.1 Generalized whole-day-based variance formulation . . . 151 
5.4.2 Preliminary study on the empirical data 153 
5.4.3 Results from models under minimum-variance assump-

tions 155 
5.4.4 Results from models under the generalized whole-day-

based formulation 158 
5.5 Modeling C B O E volatility index using M E M volatility . . . . 162 

5.5.1 Regression models for V I X / V X D prediction 162 
5.5.2 Results from models with and without overnight infor-

mation 164 
5.6 Concluding Remarks 167 
5.7 Supplementary note 168 

5.7.1 Analysis of the ratio of between O n l and a l 168 

5.7.2 Analysis of the ratio of between On"} and . . . . 169 

6 Concluding remarks and further work 171 

A Nomenclature 176 

Bibliography 180 

V 



List of Figures 

2.1 Correlogram of 10-minute N A S D A Q returns 15 
2.2 Correlogram of 10-minute N A S D A Q absolute returns 16 

3.1 Correlogram of the absolute intraday returns, 5-day period -
(a) NASDAQ, (b) S&P 500 58 

3.2 Block diagram of the two approaches 90 
3.3 Improvement on R-square by using the integrated framework 

approach 91 
3.4 Improvement on MSE by using the integrated framework ap-

proach 91 
3.5 Improvement on M A E by using the integrated framework ap-

proach 92 

4.1 Shape of the time series 工？丨〜叩已 115 
4.2 Expected values: Error-to-signal ratio=0.3, Mean=-2.6 . . . . 1 1 8 

5.1 Illustration of the scope of four estimators 144 
5.2 Autocorrelation of the 10 minute intraday data - S&P 500 and 

DJIA (with 95% confidence level bounds) 154 
5.3 Autocorrelation of the 30 minute intraday data - S&P 500 and 

DJIA (with 95% confidence level bounds) 155 
5.4 A R C H ( 2 ) model fit measure under the generalized weighted 

approach 158 
5.5 Ljung-Box(12) model fit measure under the generalized weighted 

approach 159 
5.6 Comparison of correlation coefficient under the generalized 

weighted approach 160 
5.7 Correlation coefficient under the generalized weighted approach 

(p > 0.9) 161 
5.8 Adjusted R-square among the regression models 165 
5.9 F statistics for testing zero coefficient 165 
5.10 F statistics for testing join zero coefficients 166 

vi 



List of Tables 

3.1 Simulation results (10,000 repetitions for each situation) . . . 56 
3.2 Descriptive statistics of the intraday returns (multiplied by 100) 59 
3.3 In-sample fit - Deseasonalized by simple averaging 62 
3.4 In-sample fit - Deseasonalized by F F F method 63 
3.5 Diebold-Mariano test, In-sample fit for various A R C H struc-

ture -Deseasonal ized by simple averaging 65 
3.6 Diebold-Mariano test, In-sample fit for various A R C H struc-

ture -Deseasonal ized by the F F F method 65 
3.7 Out-of-sample fit, GARCH(1，1) - Deseasonalized by simple 

averaging 68 
3.8 Out-of-sample fit, FIG A R C H ( l , d , l ) - Deseasonalized by sim-

ple averaging 69 
3.9 Out-of-sample fit, H Y G A R C H ( l , d , l ) - Deseasonalized by sim-

ple averaging 70 
3.10 Out-of-sample fit, GARCH( l , l ) -Deseasona l i zed by F F F method 71 
3.11 Out-of-sample fit, FIG A R C H ( l , d , l ) - Deseasonalized by F F F 

method 72 
3.12 Out-of-sample fit, HYGARCH(l，d，l) - Deseasonalized by F F F 

method 73 
3.13 Diebold-Mariano test, Out-of-sample fit for various A R C H 

structure, 1-step-ahead daily forecast - Deseasonalized by sim-
ple averaging 74 

3.14 Diebold-Mariano test, Out-of-sample fit for various A R C H 
structure, 1-step-ahead daily forecast - Deseasonalized by F F F 
method 75 

3.15 Out-of-sample fit, 1-step-ahead daily forecast - Deseasonalized 
by simple averaging 77 

3.16 Out-of-sample fit，1-step-ahead daily forecast - Deseasonalized 
by F F F method 78 

3.17 Diebold-Mariano test, Out-of-sample fit for various A R C H 
structure, 1-step-ahead daily forecast - Deseasonalized by sim-
ple averaging 79 

vii 



3.18 Diebold-Mariano test, Out-of-sample fit for various A R C H 
structure, 1-step-ahead daily forecast - Deseasonalized by the 
FFF method 79 

4.1 Descriptive statistics of the intraday returns {multiplied by 100) • 110 
4.2 Results of Bartlett's test and Brown-Forsythe's test 112 
4.3 Heteroskedastic error - Correlation between the true series and the 

expected series 117 
4.4 In-sample fit for GARCH(1,1) 126 
4.5 In-sample fit for FIGARCH(l ,d , l ) 126 
4.6 Out-of-sample fit for GARCH(1,1) - NASDAQ 128 
4.7 Out-of-sample fit for GARCH(1,1) - S&P 500 129 
4.8 Out-of-sample fit for FIG ARCH ( l ,d ’ l ) - NASDAQ 131 
4.9 Out-of-sample fit for FIG ARCH ( l ,d , l ) - S&P 500 132 

j 5.1 Descriptive statistics of squared overnight return (On?) , Squared 
零 Sigma 4 ( a j ) and Newey-West realized variance . . . . 156 

5.2 Diagnostics information for the M E M models 156 
5.3 Combinations (A) that give larger adjusted R-square affd with 

F statistics larger than 95% confidence critical value 167 

A . l Nomenclature for Chapter 3 (Integrated framework approach) 177 
A.2 Nomenclature for Chapter 4 (Day-varying structure) 178 
A.3 Nomenclature for Chapter 5 (Impact of the overnight infor-

mation) 179 

viii 



Chapter 1 

Introduction 

1.1 Thesis content 

This research study investigates three new considerations for improving the 

performance of volatility modeling of financial returns. The content of this 

study is classified into two parts, the first part studies the possible improve-

ments on the modeling accuracy of an intraday volatility process while the 

second part investigates the potential usage of a commonly neglected intra-

day information source, overnight return, for modeling the market-expected 

volatility indicator (Chicago Board of Options Exchange volatility index). 

The first proposed modification on intraday volatility modeling is about 

the utilization of the interaction between the intraday periodicity and the 

heteroskedasticity of intraday returns. T o model the volatility of intraday 

returns, one approach is to handle the two properties, periodicity and het-

eroskedasticity, simultaneously and the other alternative is to capture each 

distinct property sequentially. Bollerslev and Ghysels take the first approach 

1 



Chap 1: Introduction • 14 

and they propose the Periodic A R C H ( P - A R C H ) model [21] by using a set 

of periodically varying autoregressive coefficients to represent the compos -

ite effect of the two properties. T h e model handles the interaction between 

the two properties implicitly to provide the best fit for the underlying se-

ries. On the other hand, Andersen and Bollerslev work on the alternative 

approach and they suggest a sequential method to capture the two properties 

individually. T h e periodicity is explicitly estimated at the first place and the 

heteroskedasticity is modeled afterwards. Their method makes use of a filtra-

tion process (deseasonalization), dividing the original series by the estimated 

periodicity, to separate out the periodicity and models the subsequently fil-

tered series with appropriate A R C H models. T h e overall volatility of the 

underlying raw series is recovered as the product of the estimated periodicity 

times the volatility of the filtered series [2, 3 . 

Due to the complexity and the requirement of the computational ly ex-

pensive parameter estimation of P - A R C H model , its practicality is limited 

in the literature. On the contrary, the use of the sequential method be-

comes a c o m m o n approach in recent years because of its clarity and simplic-

ity [4，9，17, 24, 42，43, 53, 55, 57’ 59，69]. However, it is questionable whether 

the sequentially estimated A R C H parameters give the optimal performance 

when the object ive is to model the volatility of the raw series. Under the 

sequential setting, the estimation of the A R C H parameters is solely based on 

the characteristics of the filtered series and therefore, the estimated model 

can only assure an optimal fit for the corresponding filtered series. There 

‘ is no indication that the recovered intraday volatility fits the raw series op-

timally. O n the contrary, it can be shown that the sequential estimation 

\•； 
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approach may not achieve the optimal result under a general situation. 

Our proposed framework improves the subsequent A R C H structure in the 

sequential method by integrating the filtration process and the A R C H process 

in a united setting and optimizing the model parameters for the raw series in-

stead of the filtered series. The presence of the estimated periodicity and the 

a r c h volatility simultaneously enables the consideration of their interaction 

while the use of the raw series assures the optimal fit to the target series. 

The integrated framework can be written as a modified P - A R C H structure 

where the periodically varying autoregressive coefficients are represented as 

the product of the estimated periodicity times the A R C H parameters. On 

the other hand, the computational requirement of our framework tends to be 

lesser than the P - A R C H structure as our framework only employs one addi-
泰 

tional variable, parameterized mean value of the intraday return, compared 

to the sequential approach does. The parameterized mean is demonstrated 

to give little influence empirically and may be restricted to its unconditional 

expected value to further reduce the computational requirement. 

The proposed framework is tested with GARCH(1,1), FIGARCH(l,d,l) 

and H Y G A R C H ( l , d , l ) structures by using 10-minute returns of the NAS-

D A Q index and the 召&;P 500 index. Moreover, both normally distributed 

and t-distributed innovations are considered in the investigation. The per-

formance measures include regression mean squared error, mean abso-

lute error and Diebold-Mariano hypothesis tests [30] on squared error and 

absolute error. Apart from studying the 1-step-ahead out-of-sample perfor-

mance, several multiple-step-ahead forecasting results (up to one-day-ahead 

forecasts) are also addressed. Under the same level of model flexibility (pa-
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rameterized portions) , the proposed framework outperforms the sequential 

estimation method in bo th in-sample fitness and out-of -sample performance 

on all the forecasting horizons. T h e effectiveness of applying the integrated 

framework to different A R C H structure is also discussed in research work. 

Another modif icat ion on the intraday volatility model ing is about the es-

t imation method of the intraday periodicity. T h e magnitude of intraday peri-

odic ity is always restricted to fol low an identically repeated U-shape structure 

across days [4, 8，17，24’ 37, 53，54, 55]. W e speculate that this restriction . 

may hinder the periodicity t o represent the underlying dynamics effectively. 

Andersen Sc Bollerslev provide a method to estimate the intraday per iod-

icity with the allowance of day-variability [3]. T h e periodicity is modeled in 

two steps. T h e dynamics of an intraday return series is firstly approximated 

by a smooth ing function (Flexible Fourier Form) and, secondly, the periodic-

ity is recovered by a normalization procedure with the use of the approxima-

. t i o n results. Their method is capable of defining the estimated periodicity 

to b e either day-invariant or day-variant with proper adjustments. However, 
t 

when the method is applied for day-variant situation, it can be shown that 
" .. . 

the resultant periodicity violates the implicit constraint, which is. derived 

f rom the initial model ing assumption, in some situations. As a result, the 

correctness of the periodicity cannot be assured at all times. 
« -

'Furthermore, the original normalization procedure is shown to be sus-

ceptible t o heteroskedastic errors. It is demonstrated that the t ime series 

of the expected periodicity is deviated f rom its true value when the ap-

proximated series is contaminated with heteroskedastic errors. T h e conjec-

ture of the presence of heteroskedastic errors is supported empirically. T h e 
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approximation errors of the smoothing function are demonstrated to have 

, non-constant variances. The Bartlett 's Test [16] and the Brown-Forsythe's * 

Test [23] significantly rejected the null hypothesis of constant error variance 

at 5 % significance. As the approximated results are used as the substitute of 

the true underlying dynamics, it is reasonable to assume the approximated 

series to be deviated from its true value with heteroskedastic errors instead 

of homoskedastic errors. 

A modified normalization procedure that ensures the fulfillment of the 

implicit constraint is proposed in this research work. The new procedure 

adjusts the magnitude of the periodicity with reference to the size of its 
t 

corresponding daily variance. W h e n the proposed procedure is applied for 

the day-variant situation, the results are turned out to be more robust to 

heteroskedastic errors under numeric simulations. For day-invariant situa-

tion, our procedure is proved to give the same performance as the original 

normalization does mathematically. 

T h e modified normalization procedure is tested with G A R C H ( 1 , 1 ) and 

F I G A R C H ( l , d , l ) structure by using 10-minute returns of-the N A S D A Q in-

dex and the S&P 500 index. T h e modified procedure is demonstrated to out-

perform the original procedure in bo th in-sample fitness and out-of-sample 

performance on various the forecasting horizons for both normally distributed 

. a n d t-distributed innovations. 

T h e second part of this study explores the potential J^enefits of incorporat-

ing overnight information for modeling an financial instrument, the Chicago 

Board of options Exchange ( C B O E ) volatility indexes. The C B O E indexes 

indicate the market expectation of future volatilities and their values are 

• , 

« 
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compiled by averaging the weighted prices of put and call options [75]. As 

the option prices reflect the values of volatilities for both trading and non-

trading (overnight) period, we speculate that the overnight information may 

help to improve the modeling accuracy of the C B O E indexes. 

Due to the difference in sampling interval, overnight information is always 

limited to work as an exogenous variable in typical A R C H type models. This 

approach is shown to be ineffective as the involved coefficient is always in- , 

significantly different from zero. Our work explores the possibility of incorpo-

rating the overnight variance indirectly through the use of linearly combined 

daily volatility estimators [41, 45, 46]. Unlike common time series data, the 

values involved in our work are all positive in, nature. The specialized model 

for positive disturbances, Multiplicative Error Model ( M E M ) [36], is used to 

• model the underlying conditional volatility process. 

Th e empirical results demonstrate that the inclusion of overnight variance 

gives unnoticeable influence on the underlying conditional volatility process 

under the minimum-variance constraints. However, it can produce substan-

tial influence when the constraints are relaxed. Besides, the influence is 

revealed to be not monotonic as an increase of the overnight proportion does 

not necessarily produce a larger influence. 

Furthermore, it is demonstrated that the inclusion of overnight variance 

can improve the prediction accuracy of the C B O E volatility indexes ( V I X 

and V X D ) . The conditional volatilities resulted from the linearly combined 

overnight variance and realized variance are shown to improve the adjusted 

R-square of the A R ( 1 ) regression models under specific weight combinations. 

Th e findings contradict the common perception that overnight return does 

\ 
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not contain useful information for daily volatility modeling. 

Overall, three new considerations for modeling the volatility of financial 

returns are proposed in this research work. They are 1) Utilization of the 

interaction effect between the intraday periodicity and the heteroskedasticity; 

2) Modified normalization for the estimation of the intraday periodicity; and 

3) Inclusion of overnight information for the estimation of daily volatility. 

Details of these propositions are documented in the following chapters. 

m 

\ 
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1.2 Contribution^ 

This research work addresses the possible improvements on volatility model-

ing of financial return with the use of three new considerations stated in the 

previous subsection. The key contributions from the corresponding research 

works can be summarized as: 

1) Utilization of the interaction between the intraday periodicity 

and the heteroskedasticity (covered in Chapter 3) 

• Demonstration of the mathematical limitations of Andersen & Boller-

slev's sequential estimation approach for modeling intraday volatility 

process 

• Proposition of a new framework for modeling intraday volatility 

• Discussion of the effectiveness of the proposed framework on different 

A R C H structure theoretically 

• Performance demonstration of the proposed method through simula-

tion study and empirical analysis 

2) Modified normalization for the estimation of the intraday peri-

odicity (covered in Chapter 4) 

• Demonstration of the potential contradiction in Andersen k Boller-

slev's normalization method when it is applied to estimate day-varying 

intraday periodicity “ 

‘ • Empirical illustration of the heteroskedasticity of the residuals for cal-

culating the intraday periodicity 
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• Simulation study of the robustness of Andersen k Bollerslev's method 

for heteroskedastic residuals 

• Proposition of a new normalization for estimating intraday periodicity 

• Mathematical proof of the equivalent modeling performance between 

Andersen h Bollerslev's method and the proposed method for estimat-

ing day-invariant intraday periodicity. 

• Performance demonstration of the proposed method through simula-

tion study and empirical analysis 

3) Inclusion of overnight information for the estimation of daily 

volatility (covered in Chapter 5) 

• Proposition of a linearly combined daily volatility estimator with the 

inclusion of overnight information 

• Empirical analyses on the proposed linearly combined estimator on 

M E M structure and its prediction performance on C B O E volatility 

indexes (VIX and V X D ) 
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1.3 Organization of the thesis 

The main contents of this work is divided into four chapters. Chapter 2 

gives a brief literature review on modeling the intraday volatility and daily 

volatility respectively. The commonly used Andersen h Bollerslev's method 

together with the P - A R C H structure will be discussed as they are two dif-

ferent fundamental concepts for intraday volatility modeling. Understanding 

of the two methods will make it easier to comprehend our proposed mod-

ifications on intraday volatility modeling in the subsequent chapters. On 

the other hand, for daily volatility modeling, literatures of some well-known 

daily volatility estimators, including Garman & Klass's versions and Hansen 

h Lunde's versions, will be addressed. Furthermore, a brief review on the 

Multiplicative Error Model (MEM) will be included. The M E M has a unique 

characteristics as it works for data with non-negative disturbances, which is 

different from typical time series data. The linkage between the Chicago 

Board of Exchange (CBOE) volatility indexes and the model-based volatil-

ity estimates will also be discussed. 

Chapter 3 focus on our first proposition on intraday volatility modeling, 

namely integrated framework approach. The mathematical limitations of 

Andersen k Bollerslev's sequential approach will be addressed. It is shown 

that the utilization of the interaction between the intraday periodicity and 

the A R C H process can be a potential improvement of the model accuracy 

and therefore, a revised version is proposed. The new approach improves 

the subsequent A R C H structure in the sequential method by integrating 

the filtration (deseasonalization) process and the A R C H process in a united 

t 
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sett： ag and optimizing the model parameters for the raw series instead of the 

filtered series. Our proposed method is tested through simulation study and 

empirical analysis. Preferences on using our approach for various forecasting 

horizons are strongly supported. Besides, a discussion of the effectiveness 

of the proposed framework on different A R C H structure is provided in this 

chapter. 

On the other hand, a modified method for the estimation of intraday 

periodicity is discussed in Chapter 4. To tackle the potential contradiction 

in Andersen k Bollerslev's normalization method for estimating day-varying 

intraday periodicity, the original method is modified to fulfill the implicit 

constraint for the construction of daily variances from their corresponding 

intraday variances. For the situation that the periodicity is modeled to be 

day-variant, the proposed method is shown to be less susceptible to het-

eroskedastic errors through numerical simulations. For day-invariant period-

icity, our method is proven to give the same performance as Andersen and 

Bollerslev's method does mathematically. Preference on using the proposed 

method is supported empirically. 

Apart from the investigation of modeling an intraday volatility process, 

this research work also covers the area of daily volatility modeling. In Chap-

ter 5’ we explores the possibility of incorporating the overnight information 

indirectly through the use of linearly combined daily volatility estimators. 

Our empirical results demonstrate that the inclusion of overnight variance 

� can produce substantial influence when the minimum-variance constraints 

are relaoced. Moreover, the influence is revealed to be not monotonic as an 

increase of the overnight proportion does not necessarily produce a larger 
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influence. Furthermore, it is demonstrated that the new estimators can im-

prove the prediction accuracy of the Chicago Board of options Exchange 

(CBOE) volatility indexes (VIX and V X D ) under specific weight combina-

tions. The concluding remarks and future directions appear in the last part, 

Chapter 6. 

• ‘ — 

• End of chapter. 



Chapter 2 

Literature Review 

This chapter provides a brief review on modeling the intraday volatility and 

daily volatility respectively. Before presenting the reviews on the intraday 

volatility modeling methods, the key characteristics of intraday returns will 

be firstly addressed. After that, there will be reviews on the commonly used 

Andersen k Bollerslev's sequential estimation method, the P - A R C H model 

and the Engle's Multiplicative Component model. 

For daily volatility modeling, literatures of some well-known daily volatil-

ity estimators, including Garman k Klass's versions and Hansen k Lunde's 

versions, will be addressed in the section 2.2. A brief review on the specialized 

model for non-negative disturbances, Multiplicative Error Model (MEM) , 

will be included. Furthermore, the linkage between the Chicago Board of Ex-

change ( C B O E ) volatmty indexes and the model-based volatility estimates 

will also be discussed. 

13 
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2.1 Modeling the volatility of intraday returns 

2.1.1 Characteristics of intraday returns 

There is a long stem of empirical studies on intraday return. In 1985, Wood 

et al. [72] presented their investigation on the 1-minute returns of public 

stocks listed in New York Stock Exchange(NYSE). The mean of the return 

tended to be around zero but the mean of absolute return tended to change 

in a noticeable pattern. The mean of absolute return was large at the market 

start and dropped to a small value in the middle of the day, then it rose to 

\ a larger value when the market was near to close. This distinct pattern is 

called as a ’U-shape，pattern. 

Some empirical works were done for different sampling frequencies in re-

cent years, including Admati k Pfleiderer [1] worked on 1-hour stock returns; 

Beltratti k Claudio [17] studied 30-minute exchange rate returns; Giot [43 

used 15-minute and 30-minute stock returns and Andersen & Bollerslev [3 

‘ investigate the return of 5-minute exchange rate and stock respectively. Over-

all, it is commonly assumed that the mean of intraday return is nearly zero 

and tends to be a true zero when the sampling frequency increases. The 

mean of absolute returns and the square of the returns gives a U-shape pat-

tern when they are plotted against time for all sampling frequencies. And, 

the kurtosis increases as the sampling interval becomes smaller. There is not 

any clear relationship between skewness and sampling frequency. 

Apart from distributional characteristics, one of the key ingredients for 

time series modeling is the properties of autocorrelation. Studies worked on 

" either the returns of exchange rate or stock [72] [1] [3] [17] [43] [67] in differ-
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ent sampling frequency gave similar results. T h e sample autocorrelations of 

intraday returns oscillate around zero and are insignificantly different f rom 

zero. However, the autocorrelations of absolute returns give a remarkably 

regular pattern within a day shift and across days. T h e autocorrelation is 

high at the beginning, declines in the middle and rises at the end when it 

is plotted against t ime within a day shift. T h e pattern appears within a 

day shift is replicated with a little decay in the magnitude when the auto-

correlations are plotted across a longer period (e.g. a few days shift). T h e 

remarkably repeated pattern in the autocorrelations sheds the possibility of 

the existence of regularity of the variance of intraday returns. 

T h e correlograms (autocorrelation plot ) of raw returns and absolute re-

turns for 10-minute N A S D A Q index data are plotted in Figure 2.1 and Fig-

ure 2.2 respectively. 
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Figure 2.1: Correlogram of 10-minute N A S D A Q returns 

T h e existence of the periodic U-shape patterns in Figure 2.2 reveals that 

typical A R C H type models (e.g. A R C H [31], G A R C H [19], E G A R C H [61], 

F I G A R C H [13], F I E G A R C H [22], H Y G A R C H [29]) cannot be applied to 
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Figure 2.2: Correlogram of lO-minute N A S D A Q absolute returns 

model the volatility of the series directly. It is because the autocorrelations 

of the absolute series of typical A R C H models are specified to follow a strictly 

decaying pattern under their theoretical assumptions. 

O n the other hand, there is a specialized mode l for handling the above 

periodic U-shape patterns. Bollerslev and Ghysels proposed a model called 

P - G A R C H ' [ 2 1 ] t o capture the repetitive U-shape variations with periodically 

changing coefficients in the conditional variance equation. Different from typ-

ical A R C H type models where the conditional variances are formulated by a 

A R M A structure, the P - G A R C H model expresses the conditional variances 

as a periodic A R M A structure instead. T h e use of a periodic A R M A struc-

ture enables the capability to capture the repetitive periodic patterns theo-

retically. However, the applications of P - G A R C H on high-frequency financial 

data are limited in the literature due to its complexity and computational ly 

expensive parameter estimation requirement. 
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2.1.2 Models for intraday volatility modeling 

T h e summary of three different approaches for modeling an intraday volatility 

process is presented in this section. The elaborations on Andersen & Boller-

slev's sequential estimation model and the P - G A R C H model may help the 

reader to better understand on the content in Chapter 3. The subsections, 

Engle's Multiplicative Component model, can be used as the background 
t 

information for Chapter 4. 

4 

2.1.2.1 Andersen & Bollerslev's sequential estimation model 

Th e seminal work by Andersen k Bollerslev establishes a commonly used 

method for modeling the intraday volatility in a sequential way [3]. They 

notice a prominent U-shape periodic pattern in an absolute intraday return 

series and discuss the inappropriateness to employ a A R C H type model on 

an intraday return series directly. To solve the problem, they propose the 

periodicity should be filtered out before the A R C H model is applied. T h e y 

propose to decompose the intraday volatility into two components, repre-

senting the periodicity and heteroskedasticity respectively. The periodicity 

is estimated at the first place and the heteroskedasticity is modeled after-

wards. Their method makes use of a filtration process, dividing the series 

by the estimated periodicity, to separate out the periodicity and models 

the subsequently filtered series with appropriate A R C H models. The overall 

, volatility of the underlying series is recovered as the product of the estimated 

periodicity times the volatility of the filtered series. -
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Estimation of the intraday periodicity 

T h e estimation of periodicity is carried out in two steps. The dynamics 

of an intraday return series is firstly approximated by a smoothing func-

tion (Flexible Fourier Form) and, secondly, the periodicity is recovered by a 

normalization procedure with the use of the smoothed results. 
/ 

T h e estimation of the periodicity is based on an assumption on an intra-

day return process: 

n.n = E{rt,n) + St,n ‘ ‘ Zt,n 

Zt,n 〜 雅 1) (2.1) 

« 

w h e r e i s an intraday return of day t in n- th intraday interval and E{rt,n) is 

the unconditional expectation of rt,n' The rt,n is calculated as log{Pt,n/Pt,n-i)-

尸 i s the index value and Ptfi is the value at the market open. The intraday 

periodicity is denoted as St,n and it reflects the U-shape regularity across 

days, at is a daily volatility (standard deviation) of the return in day t and 

N is the number of intraday interval per day. Zt,n is a i.i.d. standard normal 

random term. The above formula provides a simplified expression of an in-
< 

traday return process and makes the estimation of the intraday periodicity 

feasible. • 

There are a number of estimators available to evaluate the value of at, 

including A R C H type conditional volatility [33], realized variance [6] and 

" X range-based estimators [41, 64’ 66’ 68, 73]. T h e G A R C H ( 1 , 1 ) conditional 

volatility is used as the substitute of at throughout this research work. 

• 

( 
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B y squaring and taking logs on both sides on the equation 2.1, we get: 

si * zln * = TV * (rvv -丑 ( n ) ) 2 

’ iog(slJ + log(zlJ + log(af) = log(N) + - E(rt)l) 

log(slJ + log{zlJ = 2log(\Tt,n - E{Tt)\) + log{N) 

-log 的 (2.2) 

f 

Therefore, the St,n can be expressed in terms of an intermediate proxy 

variable for the intraday dynamics under the following settings: 

xt,n = 2log[\rt,n - E{rt,n)\] - log{a1) + log{N) 

Xt,n = /(e|crt,n)+Ut,n 
,三 f{QM (2.3) 

T h e function / ( @ | c r “ n ) is a flexible Fourier form[39] which is defined as 

belowi : . 

/ ( e k t , n ) = E 4 [ f ： ^kj • + + (2.4) 
j=0 k=0 p=l 

where 9 represents the parameter set {ukj, 7pj, Variables J , K and P 

control the order of expansion. The parameter set 9 is estimated by setting 

- / ( 6 | a t , n ) as a regressor (independent variable) for a dummy variable Xt,n 

of a linear regression with Ut,n as a zero mean i.i.d. error term. Xt,n is an 

approximation of the underlying periodic dynamic. The 全t,n is allowed to 

1 Additional elaboration on the flexible Fourier form is presented in the Supplementary 
note 2.3.1. 

« 
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vary across days by setting J > 0. Reader can refer to page 152-153 in the 

paper [3] for detailed explanation on the validity of this method . 

After obtaining the approximated value of the intraday dynamics £t,n, a ‘ 

normalization step is used to retrieve the intraday periodicity St�n accordingly. 

S . exp(^) 

� = a f ^ L ： ^ () 

where St,n denotes the intraday periodicity and S is the sample size of the 

intraday return series. 

O n the other hand, Andersen & Bollerslev also suggest a heuristic method 

to estimate the intraday periodicity without imposing any model assumption. 

T h e y suggest that the periodicity can be estimated as the mean absolute 

value for the corresponding interval [2]. 

= ^ ^ 、（2.6) 

where 7\打 is the intraday return of the n - th intraday interval on d a y 丄 T 

is the total number of days in the sample, and T i are the indexes of the 

start day and the end day respectively. 

Filtration process (Deseasonalization) 

T h e filtration (deseasonalization) process is defined as: 

= 、 广 聊 ti-) (2.7) 
St,n 

T h e ft,n denotes a filtered series which is free f rom the problematic (pe-
0 

riodic) pattern in the autocorrelations of the absolute intraday return series. 
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St,n represents the intraday periodicity which is required to be estimated 

based on the observed intraday returns. 

Composition of an intraday volatility 

After the filtration process, the volatility of the filtered series can be 

1 modeled by any A R C H type models. Let the conditional volatility of the 

一 filtered series be at,n, the intraday volatility for the underlying observed 

intraday return series will be calculated as: 

c t̂.n = St,n .斤t,n (2.8) 

Overall, it is shown that the intraday volatility can be expressed as the 

result of the volatility of the filtered series times the intraday periodicity. 

i 

2.1.2.2 Periodic Autoregressive Conditional Heteroskedasticity (P-

GARCH) model 

T o model the volatility of intraday returns, another approach is to use a 

P - G A R C H model [21]. It is designed to capture the repetitive periodic time 

variation in the second-order moment (variance) of a series. The model 

makes use of periodically varying autoregressive coefficients to represent，the 

periodicity in conditional heteroskedasticity' (Quoted from the paper [21]). 

For example, a P - G A R C H ( 1 ’ 1 ) structure can be applied on Ct directly to 

model its underlying volatility. 
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P-GARCH(1,1) ‘ 

of = ĉ s �� (2-9) 

- 6t 〜 D ( 0 ’ a n 

where at is the volatility of the intraday innovation Ct. The innovations are 

assumed to follow a zero-mean i.i.d. distribution with varying variances of. 

The subscripts of the variables denote the corresponding time index. uJs(t), 

as(t) and � are periodically varying coefficients with particular value for 

each period s(t). For the situation where there are L stages for a single peri-

odic cycle, the number of parameters for the above P - G A R C H ( 1 , 1 ) structure 

will be 3L. 

Due to the complexity of the model and the computationally expensive 

requirement for estimating the parameters, the P - G A R C H structure is not a 

popular approach for intraday volatility modeling. 

2.1.2.3 Engle's Mtfltiplicative Component model * » 

Apart from decomposing the intraday volatility into two distinct components 

(eqt. 2.8), Engle et al [37] suggest a refined version to further decompose the 

volatility into three multiplicative components. The model is called as. the 

Multiplicative Component model. 

= St.n • (̂ t ‘ y/Qt,n (2.10) 
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where at,n is an intraday volatility, St.n and at are the intraday periodicity and 

the daily conditional volatility respectively. T h e gt,n is a A R C H conditional 

volatility. 

For instance, the overall framework for modeling the intraday volatility 

with GARCH(1，1) [19] structures with normally distributed innovation can 

be described as: 

Ct.n 二 托 
St,n • at 

qt,n = 0； + Q； • + P • qt,n-l 

rt,n �"(0’kntTtv\/) (2.11) 

where denotes a series with heteroskedasticity and « is its conditional 

mean, w’ a and P are the G A R C H ( 1 , 1 ) parameters. T h e parameters w, 

oi and P are estimated with the maximum likelihood method. 
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2.2 Models for measuring daily volatility 

There are different methods to measure the daily volatility of a financial 

instrument. The following paragraphs give a brief overview on the possible 

ways used in this research, namely the point estimator, model-based ( A R C H 

� models) conditional volatility and market-based volatility indexes. 

2.2.1 Daily volatility estimators 

Estimating volatility has long been a major issue in the financial literature. 

The classical estimation method assumes the underlying stock price follows 

simple Brownian motion and takes the squared log daily return as a unbi-

ased variance estimator. However, this simple estimator cannot satisfactorily 

< capture the underlying dynamics and was shown to be not efficient [41]. In 

1980，Parkinson formulated a way to use high and low price to better capture 

the underlying dynamics [64]. In the same year, Garman and Klass proposed 

a minimum-variance unbiased variance estimator for simple Brownian mo-

tion [41]. Ten years later, an estimator for drifted Brownian motion was pro-

posed by Rogers and Satchell. It was a drift-independent variance estimator 

that was proven to be unbiased for Brownian motion with drift [66]. Be-

sides, Yang and Zhang formulated a multiple-day-averaged drift independent 

minimum-variance unbiased variance estimator in 2000 [73]. These volatility 

estimators are called range-based estimators as they are calculated by using 

the open, high, low and close information. 

The linearly combined estimator used in this research (third modification) 

is based on the seminal work by Garman & Klass. 
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2.2.1.1 Garman Klass's daily volatility estimators 

• Garman and Klass proposed a number of estimators in their seminal paper in 

1980 [41]. Among the few estimators, there is one for estimating the volatility 

in the active trading period and one for whole day period. The estimator for 

active trading period is formulated as follows. 

的 = 0 . 5 1 1 { u - df - 0.019[c(u + d) — 2ud] - O.SSSc^ (2.12) 

where Ct and Ot are the log values of the closing price and the opening price, 

Ht and Lt are the log values of the highest price and the lowest price for day 

t respectively. The normalized high, low and close are expressed as u, d and 

c individually, where u 二 Ht - Ot�d 二 Lt 一 Ot and c^Ct- Ot. 

narman &: Klass，s minimum-variance estimator 

The whole day version is formulated as : 

al = p O , - + 的 （2.13) 

where f is the fraction of that day that trading is closed and it is set to 

1050/1440 in our study, a is a weight parameter and it is set to 0.12 to 

achieve minimum-variance property regardless of the value of f. 

2.2.1.2 Hansen & Lunde's volatility estimators 
... • 

, A n o t h e r stream of volatility estimators are called high-frequency estimators 

as they are based on the high-frequency intraday return information. Re-

， alized variance is the most well-known high frequency estimator to measure 
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the volatility in active trading period. It is formulated as the sum of squared 

high-frequency intraday returns. Its formulation for day t can be expressed 

as: 

m 
迁 = (工i) 一 P(工i 一 (2.14) 

t=l 

where Xi denotes the time, p{xi ) is the price at time Xi, A is the sampling 

interval, m is the total number of intraday price recorded (excluding the 

opening price) in a day and p(xo) is the opening price of day t. 

An important concern about the estimation of realized variance is whether 

the return series is autocorrelated or not [63]. The standard realized variance 

becomes biased when the returns are autocorrelated and the result should 

then be adjusted accordingly. The autocorrelation phenomenon always hap-

pen in high frequency data and there are various ways to offset the bias. 

Hansen k Lunde suggested an estimation method to handle the bias and 
» 

< regarded it as Newey-West modified realized variance [45]. This method is 

based on Bartlett kernel and is guaranteed to be nonnegative. The Newey-

West modified variance for day t is defined as: 

m q J^ m— 

t=l h=l y 卞丄 

Ui 二 pO^i) — — A ) (2-15) 

the variable q represents the lag-length and it is set to q = ceil{^) where 

yj is the desired length of lag window and d is the total length of sampling 

period (trading period) in minutes[45 
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Hansen and Liinde，s minimum-variance estimator 

For the whole day period, Hansen and Lunde defined an optimally com-

bined whole day variance estimator in 2005 [46]. It is a minimum-variance 

estimate constructed by weighted squared overnight return and Newey-West 

modified realized variance. The following equations show the settings for 

Hansen and Lunde's minimum-variance whole-day-based estimator (^IhoieRv)-

^IholeRV = + 

U^l 二（1-⑷？ 
Ml 

* Mo 
(jJn — (p — 

^ 二 _ (2.16) 

A'Hi + - 2Mi/i2r7i2 

where uj{ and are the optimal weight for the min-variance estimator, 

rf^ is the squared overnight return. /Xo, " i and Ai2 are the expected value 

of integrated variance, overnight variance and Newey-West realized variance 

respectively. 771,772 and 7712 are the variance of overnight variance and Newey-

West realized variance and their covariance respectively. 

2.2.2 Engle's Multiplicative Error Model (MEM) 

Most of the popular volatility prediction models such as variants of A R C H 

models [19, 36, 35，47] and RiskMetrics [60] are not suitable to handle non-

negative time series as the information source. T o properly handle the non-

negativity, Engle proposed to model the error in the series as the multiple 

of the conditional mean estimates, adopting it as the mean equation in the 
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G A R C H framework [36]. This model is known as Multiplicative Error Model 

( M E M ) and it can provide consistent results for various distributions of error 

terms under its quasi maximum likelihood estimation method, making it 

robust to ambiguous error assumptions [52’ 38]. 

The way to employ volatility estimators as input series for G A R C H type 

models is different from those for treating returns as input series. Due to the 

non-negative nature of the volatility estimators, it is difficult to use tradi-

tional G A R C H type models, which are based on linear formulations on the 

return process, to estimate the model parameters as the variance and higher 

moments of error distribution are unlikely to be constant [36]. Engle pro-

posed an efficient way to model non-negative series in a G A R C H framework 

by treating the series as a composition of its conditional mean multiplied by 

a unit-mean error term. This multiplicative error structure is able to provide 

consistent results for error terms belong to a family of gamma distribution � 

as the corresponding first order optimality conditions on the log-likelihood 

functions is the same. 

The M E M (1,1) model is defined by the following two equations. 

Xt = fitet Mean eqt. (2.17) 

叫 = u + arct-i + i^Mt-i + c^zt-i Variance eqt. (2.18) 

In the mean equation, Xt is the non-negative time series, fit is the conditional 

mean estimates and et represents a unit-mean gamma-distributed i.i.d. error 

process. The variance equation is similar as that in the G A R C H framework 

by replacing the error squared term with Xt in the A R C H term. Furthermore, 
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exogenous variables are treated by including Zt in the variance equation. 

Wi th the restriction of unit-mean on the distribution of et, the corre-

sponding log-likelihood function for the model is defined as L{9). 

T 工t 
L(0) = constant - aY^l-log{^tiO)) 一 j ^ ] (2.19) 

where a controls the shape of the gamma distribution, 9 is the parameter 

set { a , P and d} to be estimated and T is the size of training sample. The 

first order optimality condition for maximum likelihood estimation is: 

I；卜 M/x 州 ） - ( 2 . 2 0 ) 

Noticing that the shape variable a does not affect the first order condition 

and its value is irrelevant and does not have any influence on 0 and their 

standard errors [36, 38 . 

Without the justification of the underlying error distribution, it is sug-

gested to derive the parameters in equation 2.18 by traditional G A R C H 

framework as the maximizer of equation 2.19, which is a quasi maximum 

likelihood estimator. Lee & Hansen demonstrated the Gaussian likelihood 

estimation method for GARCH(1 ,1 ) can provide consistently estimated pa-

rameters for input series which is neither Gaussian nor independent [52 . 

Referring to Engle's procedure, the parameters can be obtained by taking 

the positive square root of the non-negative variable of interest y/xt as the 

dependent variable and setting the mean value to zero with the assumption 

of normally distributed errors [36, 38]. This framework has been successfully 

modeled the dynamics of non-negative volatility series, including range-based 
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and high-frequency estimates, in some applications [38’ 51，50] and has been 

extended to multivariate cases recently [25 . 

2.2.3 Chicago Board of Exchange (CBOE) Volatility 

index 

Besides using econometric models to measure future volatility, there is an-

other way to indicate the level of fluctuation in the future. T h e Chicago 

Board of Opt ions Exchange ( C B O E ) , the world 's largest options exchange, 

has compiled volatility indexes (e.g. V I X and V X D . V I X aims to capture the 

volatility of S & P 500 index while V X D aims at D o w Jones Industrial Aver-

age ( D J I A ) ) by averaging the weighted prices of the corresponding put and 

call opt ions to measure the market expectat ion on future volatility[75]. T h e 

indexes are used to represent the market's expectat ion of future fluctuation 

on the next 30 calendar days (22 trading days) and hence they are called 

market-based volatility [65]. 

T h e C B O E market-based volatility index has been related to the model 

based condit ional volatility in recent literatures. Blair et al. investigated the 

information content of the V I X for the prediction of G A R C H volatility and 

found out the current V I X value contains the richest information content 

for 1-step-ahead predicted realized volatility [18]. Besides, Engle & Gallo 

studied the possibility of using M E M volatilities t o improve the prediction 

of V I X in 2006. T h e y demonstrated multi-step average volatilities can b e 

incorporated as statistically significant repressors in the auto-regression of 

the V I X [38:. 
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2.3 Supplementary note 

2.3.1 Flexible Fourier functional form for the approx-

imation of periodic dynamics 

T h e Fourier series is always considered as a nature choice to model a periodic 

series. Any periodic series can be decomposed and expressed as a sum of 

simple trigonometric functions, sines and cosines, and the approximation 

accuracy is controlled by the total number of terms employed accordingly. A 

closed-form periodic function p i x ) of period 27r, it can be represented as: 

oo 
p(x) = do + Yliancosinx) + bnSin(nx)) (2.21) 

• n=l 

a � = 

On 二 X f p{x)cos{nx)dx ri 二 
TT J-TV 

bn = - f p{x)sin{nx)dx n = 1,2, • • •‘ 
TT J—IT 

T h e coefficients oq, On and bn are evaluated based on Euler formulas and 

the R.H.S. of equation 2.21 converges to the L.H.S. as n goes to infinity. 

However, the above closed-form solution cannot be applied to many prac-

tical situations as the periodic function p{x) is either unknown or cannot be 

expressed as a closed-form function. Nevertheless, the idea to decompose , 

a series into a sum of trigonometric functions turned to be very powerful 

and became one of the popular methods to handle periodic series in bo th 

non-financial and financial applications [70]. For financial applications, Gal-

lant [39] and Andersen & Bollerslev [3] modified the original Fourier series to 
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incorporate the possible existence of a linear trend, quadratic trend and het-

^ eroskedasticity in the stock market. T h e revised form is called the modified 

flexible Fourier form ( F F F ) / ( 0 ; c r t , n ) and it is defined as follows: 
* 

» 

J 71 D 
: “ f{0\(Jun) = ^ [MOj + Mlj-^ + + Y. ^ij^n^di 

+ + (2.22) 

i 
參 

where N is the total number of subintervals for a single period. For 
�� 

our study, N is the number of intraday intervals per day. Ni = ^ ^ and 

N2 = q represents the parameter set 入ij，7ij，�h ^t 

. is the daily volatility; n is the in^ex for specific intraday interval; In=di is a 
奢 

‘ i n d i c a t o r variable which equals to 1 for specific interval di and 0 otherwise. 

, Variables J' and ^ controls the order of expansion. 

For the cases-that a time series is not directly observable, the modified 

flexible Fourier form (FFF) ' can be employed to model the underlying dynam-
養》 • , * 

ics with very few restrictions'on the possible shape of the series. However, the 
» ‘ . 

* * - • 

selection of the order of expansion is still an open'issue and there is not any 
» « 

. * c lear consensus on the way to balance in-sample fitness and out-of-sample 
"" » . ‘ 

V prediction accuracy. [70] [39] [3 
‘ ‘ ‘ , • ‘ • 

% * 4 

Other flexible functional forms can be used for modeling periodic patterns 
.* t 

but the,discussion of their suitabilities are out of the scope of this study. 

… Readers may refer to the paper by Thompson [70] for additional information 

* of other functional forms. 
• — • 

辱 

• End of chapter•� 
% 麵 

( 

奏 
/ 

^ . 1 
» » 

• I • . 



w
 

C
O

 



Chap 3: Integrated framework approach for volatility modeling � 34 

Chapter 3 

Integrated framework approach 

for intraday volatility modeling 

Summary 

This chapter discusses the limitations of Andersen & Bollerslev's 
sequential estimation approach for modeling an intraday volatility 
process. Under the sequential setting, the estimation of the 
A R C H parameters is solely based on the characteristics of the 

" filtered series and therefore, the estimated model can only assure 
an optimal fit for the corresponding filtered series. There is no 
indication that the recovered intraday volatility fits the raw series 
optimally. On the contrary, it can be shown that the sequential 
estimation approach may not achieve the optimal result under a 
general situation. 

A new approach that utilizes the interaction effect between the 
periodicity and the heteroskedasticity is proposed. Our method 

‘ improves the subsequent A R C H structure in the sequential 
‘ method by integrating the filtration (deseasonalization) pro-

cess and the ‘ A R C H process in a united setting and optimizing 
the model parameters for the raw series instead of the filtered series. 

Th e proposed approach is tested with GARCH(1 ,1 ) , FI-
GARCHl ( l , d , l ) and H Y G A R C H ( l , d , l ) structures by using 10-
minute returns of the N A S D A Q and S&P 500 indexes. Preferences 
on using our approach for various forecasting horizons are supported 
empirically. 

» • 
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3.1 Introduction and the research objective 

T h e existence of periodicity and heteroskedasticity in intraday returns com-

plicates the way to model its underlying volatility process. One attempt is 

to handle the two properties simultaneously while the other alternative is 

to capture each distinct property sequentially. Bollerslev and Ghysels pro-

pose to employ a set of periodically varying autoregressive coefficients to 
/ 

capture the composite effect of the two properties simultaneously through 

. t h e Periodic A R C H ( P - A R C H ) model [21]. The model handles the inter-

action between the two properties implicitly to provide the best fit for the 

underlying series. Alternatively, Andersen and Bollerslev suggest a sequen-

tial method to capture the two properties individually. T h e periodicity is 

explicitly estimated in the first place and the heteroskedasticity is modeled 

afterwards. Their method makes use of a filtration process, dividing the se-

ries by the estimated periodicity, to separate out the periodicity and models 

the subsequently filtered series with appropriate A R C H models. The over- ‘ 

all volatility of the underlying raw series is recovered as the product of the 

estimated periodicity times the volatility of the filtered series [2, 3 . 

Due to the complexity and the computationally expensive parameter esti-

mation requirement of P - A R C H model , its practicality, is limited in the litera-

ture for modeling high frequency intraday returns. On the other hand, the use 

of the sequential method becomes a c o m m o n approach in recent years because 

of its clarity and simplicity [4, 8，9’ 17，24’ 42, 43, 53, 54, 55, 56，57, 59, 69 . 

However, it is questionable whether the sequentially estimated A R C H pa-
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rameters give the optimal performance when the objective is to model the 

volatility of the raw series. Under the sequential setting, the estimation of 

the A R C H parameters is solely based on the characteristics of the filtered » 

series and therefore, the estimated model can only assure an optimal fit for 

the corresponding filtered series. There is no indication that the recovered 

intraday volatility fits the raw series optimally. On the contrary, it can be 

shown that the sequential estimation approach may not achieve the optimal 

result under a general situation. 

An integrated framework approach that utilizes the interaction effect 

between the periodicity and the heteroskedasticity is proposed. The pro-

posed framework improves the subsequent A R C H structure in the sequen-

tial method by integrating the filtration process and the A R C H process in a 

united setting and optimizing the model parameters for the raw series instead 

of the filtered series. The simultaneous presence of the estimated periodic-

ity and the A R C H volatility enables the consideration of their interaction 

while the use of the raw series assures the optimal fit to the target series. 

The integrated framework can be written as a modified P - A R C H structure 

where the periodically varying autoregressive coefficients are represented as 

the product of the estimated periodicity times the A R C H parameters. Un-

der the same level of model flexibility (parameterized portions), the optimal 

< 

model parameters of the integrated framework is demonstrated to achieve a 

better fit for the underlying series empirically. 

The remainder of this chapter is organized as follows: Section 3.2 ad-

dresses the limitations of Andersen & Bollerslev's sequential estimation method. 

The formulation of our proposed framework together with the rationales be-
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hind our modifications are stated in Section 3.3. The effectiveness of apply-

ing the proposed framework to different A R C H structures is also discussed 

in this section. Section 3.4 states the model specifications and the evaluation 

criteria. Apart from the consideration of the two filtration approaches pro-

posed by Andersen k Bollerslev, our framework is tested with three A R C H 

structures including GARCH(1，1), F I G A R C H ( l , d , l ) and H Y G A R C H ( l ’ d , l ) 

under the assumption of either normally distributed or t-distributed innova-

tions. Furthermore, beside the investigation of one-step-ahead out-of-sample 

forecasts, the performances of different forecasting horizons are also studied 

to illustrate the capability of the proposed framework over multiple-step-

� ahead periods. Section 3.6 states the details of our empirical analyses. The 

results are based on the use of 10-minute intraday returns of the N A S D A Q 

index (3-year period) and the S&P 500 index (2.5-year period) . Section 3.7 

contains the concluding remarks. 

I 
'1 
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3.2 Andersen &z. Bollerslev,s sequential intra-

day volatility model and its limitation 
The most commonly used method to model an intraday volatility process 

is Andersen & Bollerslev's sequential estimation approach [2，3]. They pro-

pose to decompose the intraday volatility into two components, representing 

the periodicity and heteroskedasticity respectively. T h e periodicity is esti-

mated at the first place and the heteroskedasticity is modeled afterwards. 

Their method makes use of a filtration process, dividing the series by the 

estimated periodicity, to separate out the periodicity and models the subse-

quently filtered series with appropriate A R C H models. The overall volatility 

of the underlying series is recovered as the product of the estimated period-

icity times the volatility of the filtered series. 

For the situation that a time series of i.i.d. zero-mean intraday innova-

tions is given, the filtration process will then be: 

= ^ (3.1) 

where et,n denotes the intraday innovation, ft^n is the filtered series and St,„ is 

the pre-estimated intraday periodicity. The subscripts denote the time index 

for the variable, where t�n means the n-th intraday interval on day t. 

Afterwards, the volatility of the filtered series is modeled by a A R C H 

model accordingly. For the case that G A R C H (1,1) is employed to model the 
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filtered series, the corresponding formulation will be: 

. = n.n - « 

^In = ^ + O^^ln-l + P^ln-1 

k n � D i O , a l J (3.2) 

where it̂ n is the innovation of the filtered series and it follows a i.i.d. zero-

mean distribution with variance equals to k. denotes the mean value of 

the filtered series; u, a and (3 are the parameters for a GARCH(1,1) struc-

ture. The volatility of the intraday innovation is recovered as the product 

of the pre-estimated periodicity times the volatility of the filtered series (i.e. 

yJVar{tt^n) = St.nCt.n). 

Prom another perspective, the distributional property of the intraday 

innovation et can be inferred as: 

� m 兮n) 

5t.n(et.n + i^)�D(St，nK>,sln 约，J • 

et.n � 片 n ) (3.3) 

It is argued that the recovered intraday volatility St,n^t,n from the se-

quential estimation approach may not achieve the best result for modeling 

the volatility of et,n because: 

1. The distributional property implied from the sequential approach may 

be different from the initial assumption, which formulates the intraday 

- innovation series as zero-mean. 
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The result from the sequential approach implies €t,n � D ( S t ’ n / ^ , sf n^f n) 

and therefore the mean of Ct.n is modeled as a time varying value St.n/t. 

Although et,n is zero-mean, there is no guarantee that the conditional 

mean of the filtered series k is zero as the filtration is a nonlinear trans-

formation process. For the case that k is non-zero, the mean of et丨„ 

implied from the sequential approach will be a time varying non-zero 

value. 

2. The subsequently estimated A R C H parameters may not work with the 

estimated periodicity in the best possible way to represent the 

volatility of et,n. 

As the estimation of periodicity St,n cannot be error-free in practice, 

the filtered series will always be contaminated. The contamination of 

the filtered series will in turn affect the correctness of the subsequently 

estimated A R C H parameters. As the A R C H parameters are optimized 

solely for the erroneous filtered series, there is no guarantee that the 

composite term St,n^t,n provides the best fit for Ct.n- It is possible that 

the estimated St,n can work with another parameter set to give a better 

representation for the raw series under the same specification of A R C H 

structure. 

To search for an optimal fit for the intraday innovation series, an inte-

grated framework that directly operates on Ct.n with the consideration of the 

interaction effect between the periodicity and heteroskedasticity is proposed. 
ft 
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3.3 Proposed Integrated framework approach 

Our proposed framework improves the subsequent A R C H structure in the 

sequential method by integrating the filtration process and the A R C H process 

in a united setting while optimizing the model parameters for the raw series 

(target) instead of the filtered series. The filtration process stated in the 

equation 3.1 is embedded into the ARCH framework specified by the equation 

set 3.2 with the change of the distributional specification on the innovation 

series. The simultaneous presence of the estimated periodicity and the A R C H 

volatility enables the consideration of their interaction while the use of the 

raw innovations assure the optimal fit of the target series. With a given series 

of pre-estimated periodicity, the volatility of the raw series is formulated as: 

et,n 二 厂 一 

^In = ^ + C^iln-1 + Kn-l 

ei,n � 例 0 ’ 4 n 对 J (3.4) 

The key advantage of the integrated framework relies on its ability to 

adjust the model parameters appropriately. The simultaneous presence of the 

intraday periodicity 5t,n and the A R C H conditional volatility at,n explicitly 

reveals the magnitude of the composite term St.n^t.n) which represents the 

volatility of the target series. As a result, the model parameters can be 

adjusted in a way such that at,n works complementarily with St.n to provide 

the best fit of et,n. In addition, the direct specification of et,n helps to assure 

its zero-mean property. 
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On the other hand, the above integrated framework can be written as a 

variant of Periodic A R C H type (P-ARCH) structure [21] where the periodi-

cally varying autoregressive coefficients are represented as the product of the 

estimated periodicity times the A R C H parameters. 

Consider the multiplication of both sides of the variance equation in the 

equation set 3.4 with s?丨… 

对 n = + + 4nP 苟， 

_ ”2 . , I ^^In 2 -2 I 如 2 -2 (n r\ 

Since St，n̂t，n 二 et — St.n/̂  and Var(€t,n) = St.n t̂.rn the above equation can 

be re-written as below by letting C7f’„ = Var(€t,n)' 

n n QJS/ Yi . . 2 n 2 
< n = ^U^ + - ^ ( e t . n - 1 - St,n-1/C) + - "^CT^.n- i 

2 , / 2 n , 2 2\ ,彻t ,n 2 

CtS? 
- - ^ 2 s t . n - l / c e t . n - l (3.6) 

Substituting CJs(t,n) = sl^U + asl^K^, as{t,n) = and Ps{t.n)= 

彻?,n/s?,n-i» the above equation becomes: 

^t.n 二 叫 + OCs{t,n)^ln-l + 一 2as(f,n)St,n-l/tet,n-l (3.7) 

The coefficients Ois{t,n) and /?s(t,n) vary with the change of the pe-
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riodicity St,n along the time index (t, n) . The equation 3.7 can be considered 

as a modified version of the P - G A R C H structure with an additional term, 

-2aa( f )Sn- i« iet - i , influences the change of o f . 

On the other hand, by letting Vt,n = — and assuming Vt̂ n to be 

i.i.d. zero-mean normally distributed. The above equation can be re-written 

as: * 

^In 一 t̂.n = + + /5s(t.n)(^n-l 一 乂n-1) 

-2Q;s(t’n) 5t,n-1 ̂ ^ t̂.n-1 

= + {0isit,n) + A»(t ’n))e?,„ 一 1 — /?s(t ,n)夠,n-1 + ” t,n 

-2as(t,n)5t,n-l«ef,n-l (3.8) 

It can be observed that the squared intraday innovations are modeled by 

a periodic A R M A structure with the additional term. The periodic A R M A 

structure provides the capability to capture the repetitive periodic autocor-

relation pattern which is prevalent in most intraday innovation series. Our 

integrated framework aims to search for the best parameter set under the 

periodic structure. 

The above elaboration can be extended for the situations where the in- . 

novations of the filtered series are modeled by an A R M A structure. In other 

words, the above argument can be applied to the situations of using the 

A R C H [31], the G A R C H [19], the I G A R C H [32], the F I G A R C H [13] and the 

H Y G A R C H [29] structures to model the filtered series. However, it is note-

worthy that the benefit of applying the integrated framework is limited for 

some variants of A R C H structures. For example, the E G A R C H [61] and the 
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F I E G A R C H [22] structures handle the log of the conditional variances with 

an A R M A structure instead. The integration of the filtration process can 

only facilitate part of the parameters in the corresponding variance equation 

to be periodically varying. As a result, it is not recommended to apply the 

integrated framework on those structures.^ 

^The limitation of the integrated framework for the EG ARCH (1,1) structure is pro-
vided in the supplementary note 3.8.1. In addition, the proposed framework does not 
give a significant performance gain over Andersen & Bollerslev's sequentially estimation 
method in our preliminary empirical investigation when either the EG ARCH (1,1) or the 
FIGARCH(l,d,l) structure is used. 
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3.4 Model specifications and Evaluation cri-

teria 

It is speculated that the proposed integrated framework would give a more 

favorable performance than the traditional sequential estimation method do, 

for the situations that the filtered series is modeled as an A R M A struc-

ture. This speculation will be checked with the use of two distinct intraday 

periodicities together with three different A R C H structures. The following 

subsections detail the corresponding specifications and the evaluation crite-

ria. 

3.4.1 Specifications of filtration process and ARCH 

structures • • 

Andersen & BoUerslev have proposed two ways to estimate the intraday 

periodicities for the removal of the periodic effect in an intraday innovation 

series. T h e first way is to estimate the intraday periodicity as the mean 

absolute value for the corres^>onding interval [2 . 

St’n = (3.9) 

where r^n is the intraday return of the n-th intraday interval on day i. T 

is the total number of days in the sample, 7\ and T2 are the indexes of the 

start day and the end day respectively. 

Apart f rom the above approach, the intraday periodicity can be estimated 

with appropriate assumptions on the underlying intraday dynamics [3]. It is 
» 

* < 
» 
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assumed that the intraday return follows: 

�� ‘ n.n = 丑 ( r t . n ) + • 为 . ( 3 . 1 0 ) 

« 

• where zt丨打 is an i.i.d. zero-mean unit-variance variable and N denotes the 

number of intraday interval per day. The method makes use of the modified 

Flexible Fourier Form (FFF) to estimate through an intermediate proxy 

variable Xt,n under the following settings: 

a^t.n = '^logWrt^n - E{rt,n)\] - log{a^) + log{N) 

Xt,n 三 f{e\n) (3.11) 

where Xt,„ is an approximation of the underlying periodic dynamic. The 

function / ( 9 | n ) is a modified version of the flexible Fourier form[39] which 

is defined as : 

/ ( B i n ) = ni + U j ^ c o s ? ^ + 5 , s i n A (3.12) 
j=0 p= l 八 八 

where 0 represents the parameter set Variables J and P control 

the order of expansion. The parameter set 6 is estimated by setting / ( 0 | n ) — 

as a regressor (independent variable) for the dummy variable Xt̂ n through a 

linear regression with zero mean i.i.d. error terms. 

After obtaining the approximated value of the intraday dynamics a 

^The order of expansion for the flexible Fourier form /(9|n) in the equation 3.12 is set 
to J = 2 and P = 4. Expansion beyond this order gives insignificant qoefficients for the 
additional i/j,7p and dp under our empirical investigation. Furthermore^ the GARCH(1,1) 
conditional volatility is considered as the substitute of ct in this paper (ttie same substitute 
as Andersen & Bollerslev's original work [3)) 
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normalization step is \ised to retrieve the intraday periodicity St’n accordingly. 

— S. e x p ( ^ ) • 
st'n = (3.13) 

where S is the sample size of the intraday return series. 

Besides checking the capability for two distinct filtration methods, our 

proposed framework will also be tested on different A R C H structures. Three ‘ 

structures, G A R C H ( 1 , 1 ) , FIG A R C H ( l , d , l ) [13] and H Y G A R C H ( l , d , l ) [29], 

will be considered to handle the heteroskedasticity of the filtered series re-

spectively. For the case that F I G A R C H ( l ’ d , l ) is used, the variance equation 

of the filtered series (i.e. the second line in the equation set 3.4) will be 

changed to : 

= + ( 卜 a L ) . ( l - L ” ] ‘ _ i ) 2 ‘ ‘ 

• 碎 n_l (3 .14) 
* 

where the model parameters become u, a , / ? and d. The notation L is the lag 

operator and (1 — L Y is the fractional differencing operator. The parameters 

are constrained to obey u ; > 0 , 0 < d < l — 2 a and 0<p<a-hd to ensure 

the positivity of 

OnOihe other hand, the H Y G A R C H ( l , d , l ) structure is defined as： 

攀 

^In = U； + { l - /?L - (1 - 5L) . (1 + a [ ( l - L Y - 1 ] ) } . ( ^ V i ) ' 

+ P ^ l n - i -乂、 (3 .15) 

« 

where cj, a , / ? , 5 and d are the model parameters and a ; > 0 , a > 0 , / ? > 0 
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and d > 0. 

T h e H Y G A R C H model nests the G A R C H , I G A R C H and F I G A R C H . 
d 

T h e G A R C H and the F I G A R C H models correspond to a = 0 and a： = 1 

respectively when 0 < d < 1 . W h e n d = 1, the H Y G A R C H model reduces 

to the G A R C H for a 二 0 or the I G A R C H for a = 1. 

3.4.2 Evaluation criteria 

Several methods are selected for the comparison of model performance, in-

cluding regression R�，Mtean Squared Error (MSE) , Mean Absolute Error 

( M A E ) and Diebold-Mariano test ( D M test). According to a comprehensive 

review on the evaluation methods for volatility forecasting from Poon and 

Granger [65], these measurements reflect the performance in different per-

spectives and therefore, their results help to deliver a better overall picture. 

Furthermore, beside the investigation of one-step-ahead out-of-sample fore-

casts, several forecasting horizons will also be studied to reflect the trends 

among the multi-step ahead performances. 

T h e regression B? from the Mincer and Zarnowitz type regression is em-

ployed in this study to measure the in-sample and out-of-sample model per-

formances. The forecasted volatilities are tested against the 'observed volatil-

ity'. T h e regression takes the form as: 

, = 6o + • ^i.mode/ + (3.16) 

L r*' 

where VJ is the ’observed variance' and aî modei denotes the forecasted volatil-

ity f rom the corresponding model. T h e s u b s c r i p t i s the index for the time 
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series and Ui is a zero mean i.i.d. error term. 

A commonly used representative for the 'observed variance’ in the liter-

ature is the squared return. It is an unbiased estimator of the variance for a 

zero mean return process. The use of the squared return as the estimator of 

the 'observed variance，for a single intraday interval poses a natural exten-

sion to the multiple-step-ahead variance estimator, where multiple，observed 

variance' are summed together to represent the variance for the involved 

period [7，24, 67, 69]. This method matches the concept of realized vari-

ance [5, 6，15] and it has been demonstrated that the summation of multiple 

squared returns can give a reasonably precise estimation of the variance for 

the involved period when the sampling-frequency is no more frequently than 

5-minute [11’ 9’ 45, 14’ 6 3 ” 

The application of the squared returns as the 'observed variance' suits well 

for the situation where the returns are zero-mean. To account for non-zero 

mean situations, the squared innovation may give a more accurate measure-

ment instead [56, 57]. The results listed in this paper will be based on the 

use of the squared innovation as the ’observed variance,. 4 
f 

The innovation is defined as: ‘ 

% 
ft = n - Ei ir ) (3.17) 

where & and Ti are the innovation and the return of the period i respectively. 
« 

Ei{r) is the expected value (unconditional mean) of the returns given the 

3 Properties of the realized variance estimator is provided in the supplementary 
note 3.8.4 

4Same conclusions are drawn from the empirical analyses with the used of the squared 
return as the 'observed variance*. Empirical results with the use of squared return as the 
measurement can be obtained by contacting the author. 

\ 
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information up to the period i. 

The Mean Squared Error (MSE) and the Mean Absolute Error ( M A E ) 

are selected as the second category of measurements. They indicate the dif-

ferences between the forecasted volatility and the 'observed volatility': 

MSE = ^ jZiVi^'' - model? (3.18) 
^ t=i 

MAE = - ai^modeil (3.19) • 

where F denotes the number of forecasted results. 

Furthermore, the Diebold-Mariano test (DM test) [30] is used to compare 

the predictive accuracy between the sequential estimation method and our 

proposed integrated framework. The forecasted volatility from the sequential 

method {ai^bose) is considered as the benchmark for the comparison in this 

study. The test statistics {DM) is calculated as: 

DM = 
‘ {Var(Sl)y/^ 

Si = 耿 " 2 , ai,tase)-耶"2’ ^i,model) (3.20) 

—^ 

where Si and Var(Si) denote the mean of 5i and the Newey-West heteroskedas-

ticity and autocorrelation consistent (HAC) variance of Si respectively. 

Cî rnodei) is the loss functioii for a specific measurement. The loss 

function for squared error and absolute error are defined by the equations 3.21 

and 3.22. 

LsEiyl'\ model) = - a^,model? (3.21) 
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L A s i V i ^ ^ ^ i ^ i . m o d e l ) = 丨 存 — 制 丨 (3.22) 

The null hypothesis is Hq : E{S) ^ 0 while the alternatives are Hf : E(6) > 0 

and Hf : E(6) < 0. The test statistics is asymptotically normal distributed. 

The hypothesis H f indicates the selected model performs better than the 

base model and H f gives a reverse indication. 

In additional to the investigation of 1-step-ahead forecasts, the forecasting 

performance will also be checked for multiple horizon situations. The vari-

ances of involved periods are summed together to represent an accumulated 

variance that covers the corresponding multiple horizons. The forecasted 

volatility for m-horizon with the use of information up to the period i is 

defined as: 

. ^ 2VZ2 
^(^i+j,model) (3.23) 

V=1 / 

where ai+ĵ rnodei denotes the forecasted volatility for the j ) - t h period with 

the use of information up to the period i. For the period i + 1 to z + m, the 

forecasted volatilities are calculated by the model with the same parameters. 

The model is the 'first-step-ahead forecast, d-{+2,model is the second-step-

ahead forecast and so on. 

Similarly, the square root of the 'observed variance' that covers m-horizon 

is defined as: 

/i+m � � ” 2 � 

E 0 4 ) 2 (3.24) 
\k=i+l / 
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3.5 Simulation study on the effectiveness of 

the integrated framework 

The advantages of the proposed integrated framework over Andersen & Boller-

slev's sequential approach has been discussed in section 3.3 and this section 

covers a set of simulation experiments which helps to reflect the magnitude 

of the potential improvement. The simulation data representing the intraday 

innovation series will be generated under the following procedure : 

1. Generate a temporary conditional volatility series c r� „ with a G A R C H ( 1 ’ 1) 

structure. 

2. Multiply al n with a pre-determined U-shape periodic factor series Ut,n 

to form an intraday volatility series at̂ n- The U-shape factor is deter-

mined by the empirical information (NASDAQ data series) used in this 

thesis. 

3. Generate a temporary series with a^^ as its variance parameter. 

The x[ n series is either normally distributed or t-distributed. 

4. To reflect situations where the actual intraday series deviates from a 

specific A R C H structure, the final Emulated data series Xt,n is con-

structed as Xt,n = x[n + yt,n. The yt,n is a random term with user-

specified occurrence probability and intensity {i.e. t/t,„ = intensity x 

occurrence probabi l i ty) . 

The second step in our data generating procedure takes care the repetitive 

U-shape pattern appeared in an intraday volatility process. The magnitude of 

( 

� 
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Ut�n is calculated to mimic the conditions observed in the empirical N A S D A Q 

data set.5 

The above procedure is capable of producing a more 'realistic' intraday 

series where the generated series Xt,n can be observed to deviate from a 

structure which is perfectly described by a simple A R C H structure. There 

are two possible methods to generate data with deviations from a perfect 

A R C H structure and they are : 1) altering the series and use it as the 

underlying variance series; 2) adding random term to the data series. 

The first method does not give a satisfactory result since the generated 

data does not produce the commonly observed U-shape pattern. However, 

the addition of a random term always shows the maintenance of the U-shape 

pattern in the A C F of squared observations. As a result, the second method 

is resorted to the fourth step in the data generating procedure. The random 

deviation yt，n is modeled as two components, intensity and occurrence prob-

ability. The intensity is specified as the k-th percentile of the absolute value 

of Xt,n series whereas the occurrence probability denotes the likelihood of the 

presence of the deviation. 

The simulation results with the assumption of normally distributed and 

t-distributed (with degree of freedom equals to 5) innovations are tabulated 

in table 3.1. The a and /? of the GARCH(1 ’1 ) structure are specified as 0.07 

and 0.925 respectively. The u (long term volatility level) and the magnitude 

of the Ut,n series are determined to minic the properties appeared in the 

empirical N A S D A Q data set with the use of FFF deseasonalization method. 

SThe variation of Ut,n series is determined by the FFF parameters obtained from the 
empirical NASDAQ data set and the overall magnitude of the series is maintained to follow 
the empirical ratio. 
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The intensity for the random term yt,n is set to the 98-th percentile of the 

absolute Xt̂ n series. The length of the intraday series is 4,914 by setting the 

parameters with 126 days and 39 intraday intervals per day. Each specific 

setting is repeated 10,000 times to obtain the overall simulation result. 

The simulation result in table 3.1 shows that the integrated framework 

approach achieves better results in terms of the averaged R^, MSE and M A E 

for all the situations. The improvements obtained by using the integrated 

framework approach become more obvious when the level of deviation, rep-
I 

resented by the occurrence probability of the random term, changes from 0 

to 0.1. In other words, the degree of improvement increases when the sim-

ulated data becomes more deviated from the 'perfectly structured' intraday 

innovations. For the situation where the occurrence probability = 0.1, the 

improvement oVR'^, MSE and M A E are 3.72%, 0.64% and 0.38% for normally 

distributed innovations while the improvements are 5.59%, 4.48% and 3.71% 

for t-distributed innovations with Dof = 5. 

Apart from comparing the magnitude of MSE and M A E between the two 

estimation approaches, Diebold-Mariano hypothesis tests are conducted to 

reflect the model performance in another aspect. The averaged test statistics 

, (t-statistics) are positive for the situations and this reflects the integrated 

framework tends to outperform the traditional sequential approach. Fur-

thermore, similar as the trend observed in MSE and M A E , the benefits from 

the integrated framework become more obvious with the increase of level of 

deviation. 

The framework significantly outperforms (5% of level of significance) the 

sequential approach in squared error and absolute error for 58.57% and 
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83.29% of the simulation samples (10,000 repetitions), for normally dis-

tributed innovations when the occurrence probability = 0.1. For t-distributed 

innovations, the proposed framework significantly gives better results in squared 

• error and absolute error for 84.93% and 83.89% respectively. 

Overall, the simulation results of R"̂ , MSE, M A E and Diebold-Mariano 

hypothesis tests indicates a positive preference on the integrated framework 

over the sequential estimation method. 

V 
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3.6 Empirical investigation 

The data used in our experiment is composed of 10-minute returns for the 

N A S D A Q composite stock index ( N A S D A Q ) from 15 August 2005 to 12 

Sept 2008, consisting of 28,392 observations (728 days), and the Standard 

and Poors composite stock index (S&P 500) from 10 March 2006 to 12 Sept 

2008, consisting of 22,893 observations (587 days). The returns are recorded 

from 9:30 to 16:00 and therefore there are a total of 39 intraday returns per 

trading day. All the values of intraday returns are multiplied by 100 for the 

ease of presentation. The correlogram of the absolute return series of the 

two data sets, N A S D A Q and S&P 500, are plotted in Figure 3.1 and their 

descriptive statistics are tabulated in Table 3.2. 

The correlograms of the absolute returns in Figure 3.1a and Figure 3.1b 

illustrate the periodic autocorrelation pattern in both N A S D A Q and S&P 

500 data. The autocorrelations vary in a U-shape pattern and its magnitude 

declines slowly through time. The distinctive pattern suggests the existence 

of periodicity and heteroskedasticity in the series and validates the use of 
I 

Andersen & Bollerslev's approach and periodic A R M A structures to model 

the underlying series. 

‘ The results from Table 3.2 indicate that the intraday returns are signif-

icantly rejected by the Jarque-Bera normality test and exhibit excess Kur-

tosis, for both the N A S D A Q and the S&P 500 data sets. It is advisable to 

consider other distribution types to model the intraday innovations beside 

the usage of the normal distribution. The empirical works from Bollerslev 

and Wilhelmsson demonstrated that the use of t-distributed errors helps 
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Figure 3.1: Correlogram of the absolute intraday returns, 5 -day period - (a) 
N A S D A Q , (b ) S & P 500 

(a) NASDAQ 

_ 

1 i I i i I , I i I I 

I » « M n t « tn 149 1M BQ 

(b) SkP 500 
I I — I — I — I — \ — I — I I 

• ” �.••.‘ 

f t K 
p m i m 
站！ 1 1 I I I i I I i 

• » « • M tn nt i « iM in m i»i 

to handle the high kurtosis in the data when GARCH(1，1) mode l is em-

ployed [20’ 71]. Therefore, apart f rom investigating the situation of normally 

distributed innovations, the assumption of t-distributed innovations will also 

be addressed. ® 

T h e model parameters are estimated by a rolling-sample method in this 

paper. This method updates the training samples step by step. For instance, 

®The likelihood function for (^distribution is based on Bollerslev's work on 1987. [20] 
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Table 3.2: Descriptive statistics of the intraday returns (multiplied by 100) 

N A S D A Q SfcP 500 
Start date 16-Aug-05 13-Mar-06 
End date 12-Sep-08 12-Sep-08 
Observation 28,392 22,893 
Mean “ - 0 . 0 0 0 8 -0.0001 
Max 1.1768 1.4236 
Min -1.4115 -1.4297 
Standard deviation 0.1400 0.1362 
Skewness -0:0175 0.1770 
Robust skewness -0.0111 -0.0088 
Kurtosis 7.7803 10.8744 
Jarque-Bera (p-value) <0.001 <0.001 

Note: The robust skewness [49], which is robust against 

outliers, is calculated as a l i S l ^ M . The Jarque-Bera 

value is the p-value of the Jaxque-Bera test [48] with the 

null hypothesis that the Intraday returns are normally dis-

tributed. 

-

if the sample size is S�the first sample for model training will be the 1 to 

S observations, the second sample will be the 2 to 5 + 1 observations and 

so on. The sample size 

is set to be 200 days (7,800 intraday periods) in this 

study. There are 528 days (20,592 periods) and 387 days (15,093 periods) 

out-of-sample observations for the N A S D A Q and the S&P 500 data sets 

respectively. • 

3.6.1 In-sample fitness 

The performance of the integrated framework approach is investigated under 

several model settings. Combinations of two filtration processes, three A R C H 

fi ‘‘‘ 
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structures and two distributional assumptions are engaged to illustrate the 

effects. For clarity, the filtration process with the use of estimated intraday 

periodicity determined by the equation 3.9 is named as the simple averaging 

method while the second way to estimate the periodicity (equations 3.11 

to 3.13) is named as the F F F method. The results are tabulated in a multiple 

columns format, where the columns in the middle represents the values with 

the assumption of normally distributed innovations and the columns on the 

right side represent those from t-distributed innovations. 

Th e in-sample results for various situations under the simple averaging 

filtration method are listed in Table 3.3 and the results with the use of the 

F F F method are listed in Table 3.4. Similarly, the values of the Diebold-

Mariano tests are tabulated in Table 3.5 and Table 3.6 for the two filtration 

methods respectively. The values in the above tables are the averaged results 

from all the training samples. 

According to the results from the pair-wise comparisons, the use of an 

integrated framework gives more favorable performance than the traditional 

sequential approach does for most situations. There are a total of 12 sit-

nations investigated for each data set (i.e. two filtration methods, three 

A R C H structures, two distributional assumptions) and all of them demon-

strate positive improvements on the regression R^. The improvement of R ] 

ranges f rom 2.53% - 2.97% and 2.06% - 2 .89% for the N A S D A Q and the SkP 

500 respectively. 
I 

Th e integrated framework approach also shows positive improvements of 

M S E and M A E . Among all situations, the M S E are shown to be increased 

by 0 .66% - 1.67% and 0.23% - 2.37% for the two data sets respectively. For 
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M A E , all results indicate positive improvements, except the situation of using 

simple averaging filtration method with the F I G A R C H ( 1 ,d, 1) structure un-

der the t-distributional assumption for the S&P 500 data set, which produces 

a worser performance ( -0 .13%). 
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Chap 3: Integrated framework approach for volatility modeling � 64 

Although the magnitude of improvement percentages on MSE and M A E 

are not large, there are strong indications on the preference to our proposed 

framework. The results of Diebold-Mariano hypothesis test listed in Ta-

ble 3.5 and Table 3.6 indicate that the integrated framework produces smaller 

squared errors and absolute errors in large portions of training samples at 

5% significance level. For the N A S D A Q data, our framework is verified to 

give smaller squared errors for 62% - 83% of training samples and smaller 

absolute error for 63.2% - 83% of samples. For the S&P 500, our frame-

work significantly outperforms the sequential estimation method by giving 

smaller squared errors and absolute errors for at least 71.2% of samples in 

10 out of 12 situations. The use of integrated framework is supported with 

fewer samples when the FIG A R C H ( l , d , l ) structure is employed under the 

t-distributional assumption. Nevertheless, the overall results show a strong 

perference to our framework. ^ 

^Perference to the integrated framework is also apparent when the squared return is 
used as the 'observed variance'. The two measurements, squared return vs. squared 
innovation, lead to almost the same results (i.e. less than 1% difference for in-sample 
and out-of-sample MSE and MAE). The corresponding results can be obtained by 
contacting the author. 

* 
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Table 3.5: Diebold-Mariano test, In-sample fit for various A R C H structure -
Deseasonalized by simple averaging 

NASDAQ 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure t-statistics Big. % t-statistics Sig. % t-Btatistics Sig. % t-statistics Sig. % 

GARCH(1,1) 4.505 70.3% 4.793 80.1% 5.539 83.0% 5.542 83.0% 

FIGARCH(l,d,l) 3.815 72.4% . 4.436 83.0% 3.191 73.5% 2.518 63.2% 
HYGARCH(l ’d , l ) 4.217 68.4% 4.783 78.9% 5.916 83.0% 6.093 83.0% 

S&P 500 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure t-st&tistics Sig. % t-statiatica Sig. % t-statistics Sig. % t-statistics Sig. % 

GARCH(1,1) 5.719 78.0% 6.337 78.0% 6.594 78.0% 7.365 78.0% 
FIGARCH(l,d,l) 4.321 71.2% 3.929 72.0% 1.612 53.3% -0.658 30.6% 

HYGARCH(l ,d. l ) 5.747 74.9% 6.649 78.0% 6.045 78.0% 8.030 78.0% 

Note： The DM-SE and DM-AE are the averaged results of the test statistics for squared error 
and absolute error respectively. The alternative hypothesis indicates that the integrated frame-
work outperforms the sequential method. The Sig % denotes the percentage of the acceptance 
of the alternative hypothesis with p-value<0.05 for all the triuning samples. 

Table 3.6: Diebold-Mariano test, In-sample fit for various A R C H structure -
Deseasonalized by the F F F method 

NASDAQ 
normally-distributed innovationa t-distributed innovationa 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure t-rtatistica Sig. % t-st&tiatica Sig. % t-Btatiatics Sig. % t-statistics Sig. % 

GAIICH(1,1) 4.080 59.8% 4.600 75.5% 5.614 83.0% 5^671 83.0% 
FIGARCH(l,d,l) 3.553 63.7% 4.093 82.8% 3.167 71.2% 2.560 63.2% 

HYGARCH(l ’d , l ) 4.121 62.0% 4.837 77.0% 5.867 82.1% 6.283 83.0% 

8S£P 500 
normally-diitributed innovationa t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure t-st&tlstica Sig. % t-atatistics Sig. % t-Btatiatics Sig. % t-statistics Sig. % 

GARCH(1,1) 6.372 78.0% 6.428 78.0% 7.285 78.0% 7.677 78.0% 
FIGARCH(l,d,l) 4.874 72.9% 4.199 75.4% 3.067 61.7% 1.021 39.6% 

HYGARCH(l ,d, l ) 6.161 77.9% 6.776 78.0% 7.301 78.0% 8.045 78.0% 

Note： The DM-SE and DM-AE are the averaged results of the test statistics for squared error 
and absolute error respectively. The alternative hypothesis indicates that the integrated frame-
work outperforms the sequential method. The Sig % denotes the percentage of the acceptance 
of the alternative hypothesis with p-value<0.05 for all the training samples. 
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3.6.2 Out-of-sample intraday forecasting performance 

The out-of-sample performance over different forecasting horizons for the 

G A R C H ( 1 , 1 ) , the FIG A R C H ( l . d . l ) and the H Y G A R C H ( l ’ d ’ l ) structures 

� are tabulated in Table 3.7, Table 3.8 and Table 3.9 respectively, for the simple 

averaging filtration method. In addition, the results for the F F F filtration 

method are tabulated in Table 3.10 to Table 3.12. 

Similar to the findings from the in-sample fit analyses, the integrated 

framework is shown to produce superior performance in terms of R^, squared 

errors and absolute errors empirically. The forecasts from the proposed 

framework produces higher R^ than the corresponding results from the se-

quential approach under all forecasting horizons, varying from 1-step-ahead 

to 25-step-ahead, for bo th the N A S D A Q and S & P 500 data. 

Positive improvements in M S E and M A E are observed in all the 12 situ-

ations for the N A S D A Q data. The improvement percentage of M S E ranges 

from 0 .87% to 9 .7% over various horizons while the improvement percentage 

of M A E ranges from 0 .35% to 7.48%. For the S & P 500 data, all situations 

demonstrate positive improvements of M S E and M A E by the integrated 

framework, except the 1-step-ahead forecast under the FIGARCH(l，d，l) 

structure with the t-distributional assumption, when the simple averaging 

filtration method is employed. 

T h e results of the Diebold-Mariano test are listed in Table 3.13 and Ta-

ble 3.14. T h e integrated framework always produces significantly smaller (at 

5 % significance level) squared errors and absolute errors among various fore-

eating horizons for both data sets. However, by comparing the results over 

several forecasting horizons, it is observed that the statistical significance of 
； 
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the Diebold-Mariano tests tend to decrease with the increase of forecasting 

horizon for both the N A S D A Q and the S&P 500 data. Nevertheless, the 

test results still significantly indicate a positive preference to the integrated 

framework for 25-step-ahead forecasts under all situations.® 

®For the ease of reading, graphical representations of the forecast performance in terms 
of R"̂ , MSE and MAE are also included in the supplementary note 3.8.3 
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Chap 3: Integrated framework approach for volatility modeling 74 

Table 3.13: Diebold-Mariano test, Out-of-sample fit for various A R C H struc-
ture, 1-step-ahead daily forecast - Deseasonalized by simple averaging 

NASDAQ 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure Horizon t-statistics p-value t-statistics p-value t-statistics p-value t-statistics p-value 

“ G A R C H ( 1 , 1 ) i 10.644 0.000 12.395 0.000 11.809 0.000 13.490 0.000 
3 8.767 0.000 11.905 0.000 9.293 0,000 12.124 0.000 
5 8.407 0.000 11.702 0.000 8,749 0.000 11.427 0.000 
10 7.445 0.000 11.057 0.000 7.719 0.000 10.821 0.000 
15 6.561 0.000 10.661 0.000 6.978 0.000 10.105 0.000 
25 3.876 0.000 7.967 0.000 4.789 0.000 7.761 0.000 

FIGARCH(l,d,l) i 7.691 0.000 8.453 0.000 6.464 0.000 5.412 0.000 
3 8.025 0.000 10.605 0.000 7.094 0.000 7.796 0.000 
5 8.255 0.000 11.790 0.000 7.619 0.000 9.334 0.000 
10 7.743 0.000 12.571 0.000 7.747 0.000 11.116 0.000 
15 6.765 0.000 11.911 0.000 7.627 0.000 11.496 0.000 
25 3.542 0.000 8.784 0.000 5.671 0.000 9.699 0.000 

HYGARCH(l ,d, l ) 1 8.703 0.000 10.462 0.000 14.381 0.000 15.95< 0.000 
3 9.185 0.000 12.759 0.000 10.620 0.000 14.160 0.000 
5 9.108 0.000 13.654 0.000 9.985 0.000 14.176 0.000 
10 8.136 0.000 13.486 0.000 8.619 0.000 13.598 0.000 
15 6.978 0.000 12.344 0.000 7.583 0.000 12.174 0.000 
25 4.224 0.000 9.048 0.000 5.136 0.000 9.215 0.000 

S^P 500 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure Horizon t-statistics p~value t-statistics p-value t-statistics p>-value t-statistics p-value 

GARCH(1,1) i 9.690 0.000 11.764 0.000 10.691 0.000 13.271 0.000 
3 8.324 0.000 11.905 0.000 8.679 0.000 12.486 0.000 
5 7.710 0.000 11.616 0.000 7.965 0.000 12.263 0.000 
10 6.540 ‘ 0.000 10.673 0.000 6.726 0.000 10.686 0.000 
15 5 . 6 5 ^ 0.000 9.486 0.000 5.894 0.000 9.233 0.000 
25 3.590 0.000 6.893 0.000 4.152 0.000 6.675 0.000 

FIGARCH(l,d,l) i 6.908 0.000 6.482 0.000 1.866 0.031 -0.851 0.803 
3 7.258 0.000 9.187 0.000 4.698 0.000 4.279 0.000 
5 7.281 0.000 10.039 0.000 5.357 0.000 5.316 0.000 
10 6.973 0.000 11.090 0.000 5.385 0.000 7.218 0.000 
15 6.478 0.000 11.093 0.000 5.395 0.000 7.990 0.000 
25 4.087 0.000 7.536 0.000 4.178 0.000 7.116 0.000 

HYGARCH(l ,d , l ) 1 10.835 0.000 14.484 0.000 12.009 0.000 16.329 0.000 
3 8.775 0.000 13.594 0.000 8.925 0.000 13.920 0.000 
5 8.139 0.000 13.625 0.000 8.100 0.000 13.562 0.000 
10 6.791 0.000 12.868 0.000 6.855 0.000 11.911 0.000 
15 5.663 0.000 11.224 0.000 5.970 0.000 10.062 0.000 
25 3.369 0.000 7.169 0.000 4.304 0.000 7.378 0.000 

Note: The DM-SE and DM-AE are the test statistics for squared error and absolute error 
respectively. The alternative hypothesis indicates that the integrated framework outperforms 
the sequential method. 

I. 
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Table 3.14: Diebold-Mariano test, Out-of-sample fit for various A R C H struc-
ture, 1-step-ahead daily forecast - Deseasonalized by F F F method 

NASDAQ 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure Horizon t-statistics p-value t-statistics p-value t-statistics p-value t-statistics pHvalue 

_ _ G A R £ ; H ( 1 ’ 1 ) i 11.167 0.000 13.290 0.000 12.537 0.000 14.683 0.000 
3 8.763 0.000 ’ 12.553 0.000 9.621 0.000 12.908 0.000 
5 8.173 0.000 12.392 0.000 8.890 0.000 12.290 0.000 
10 7.279 0.000 12.206 0.000 7.884 0.000 11.575 0.000 
15 6.585 0.000 11.512 0.000 7.281 0.000 10.81(2 0.000 
25 4.309 0.000 8.528 0.000 5.468 0.000 8.734 0.000 * 

FIGARCH(l .d. l ) i 8.879 0.000 9.955 0.000 7.292 0.000 6.242 0.000 
3 8.603 0.000 11.711 •‘ 0.000 7.748 0.000 8.734 0.000 
5 8.531 0.000 12.699 0.000 8.158 0.000 10.167 0.000 
10 7.850 0,000 13.312 0.000 8.286 0.000 12.277 0.000 
15 7.023 0.000 12.444 0.000 8.336 0.000 12.779 0.000 
25 4.379 0.000 9.113 0.000 7.298 0.000 11.548 0.000 

HYGARCH(l .d , l ) 1 10.472 0.000 13.445 0.000 14.584 0.000 16.719 0.000 
3 10.236 0.000 14.842 0.000 11.125 0.000 14.965 0.000 
5 9.839 0.000 15.096 0.000 10.434 0.000 14.899 0.000 
10 8.769 0.000 14.741 0.000 9.355 0.000 14.594 0.000 
15 7.690 0.000 13.416 0.000 8.660 0.000 13.509 0.000 
25- 5.098 0.000 9.722 0.000 6.638 0.000 10.741 0.000 

‘ S ^ P 500 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure Horizon t-statistics p-value t-statistics p-value t-statistics p~value t-statistics p-value 

GARCH(1,1) i 11.146 0.000 13.178 0.000 11.702 0.000 14.340 0.000 
3 9.052 0.000 12.654 0.000 9.073 0.000 13.185 0.000 
5 8.090 0.000 12.305 0.000 8.125 0.000 12.525 0.000 
10 6.637 0.000 11.000 0.000 6.723 0.000 11.046 0.000 
15 5.575 0.000 9.249 0.000 5.800 0.000 9.071 0.000 
25 3.225 0.001 5.928 ‘ 0.000 3.940 0.000 5.944 Q.QOQ 

FIGARCH(l ,d, l ) i 7.855 0.000 7.128 0.000 4.532 0.000 2.471 0.007 
3 7.646 0.000 9.680 0.000 5.865 0.000 6.826 0.000 
5 7.453 0.000 10.420 0.000 6.126 0.000 7.476 0.000 
10 6.961 0.000 10.936 0.000 5.843 0.000 9.013 0.000 
15 6.326 0.000 10.666 0.000 5.609 0.000 9.146 0.000 
25 3.992 0.000 7.158 0.000 4.781 0.000 7.891 0.000 

HYGARCH(l .d , l ) 1 11.641 0.000 15.148 0.000 12.688 0.000 16.182 0.000 
3 9.088 0.000 14.186 0.000 9.509 0.000 14.141 0.000 
5 8.258 0.000 13.875 0.000 8.608 0.000 13.359 0.000 
10 6.819 0.000 12,693 0.000 7.467 0.000 11.781 0.000 

‘ 15 5.565 0.000 10.869 0.000 6.516 0.000 10.061 0.000 
25 3.112 0.001 ‘ 6.710 0.000 4.577 0.000 6.893 0.000 

Note： The DM-SE and DM-AE are the test statistics for squared error and absolute error 
respectively. The alternative hypothesis indicates that the integrated framework outperforms 
the sequential method. 
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3.6.3 Out-of-sample 1-day-ahead forecasting performance 

Apart from investigating the results on various intraday horizons, the per-

formance of 1-day-ahead forecasts is studied to reflect the capability of the 

framework. To eliminate the influence from forecast& which cover an inter-

day period, the findings will be based on consecutive forecasts which cover 

the horizons st£Prting from the first intraday period to the last period on the 

same day. The 1-day-ahead forecasts are calculated with the use of intraday 

information up to the last period on the most recent day. (i.e. the t -f 1 1-

day-ahead forecast is calculated with the information up to the last intraday 

period on day t. The results are tabulated in Table 3.15 to Table 3.18. 

Our framework produces better results under all situations for both data 

sets. The averaged improvements of R^ is 2.41%, MSE is 8.27% and M A E 

is 6.23% for the N A S D A Q data while the averaged improvements of R"̂  is 

2.80%, MSE is 8.96% and M A E is 6.74% for the S&P 500 data. Almost all 

the results of Diebold-Mariano test indicate that the proposed framework 

reduces squared errors and absolute errors significantly at a 5% sigiiificane 

level. 

Overall, the empirical analysis demonstrated that the proposed frame-

work produces better in-sample and out-of-sample MSE and M A E in 

most situations. Besides, the Diebold-Mariano hypothesis tests always sig-

nificantly accept (with p-value<0.05) the alternative hypothesis that the inte-

grated framework outperforms the sequential estimation method by reducing 

squared errors and absolute errors. The superiority of the proposed frame-

work is demonstrated. 
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Table 3.17: Diebold-Mariano test, Out-of-sample fit for various A R C H struc-
ture, 1-step-ahead daily forecast - Deseasonalized by simple averaging 

* N A S D A Q 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure t-statistics p-value t-statistics p-value t-statistics p^value t-statistics p-value 

~ ~ G A R C H ( 1 , 1 ) 1.640 0.051 3.186 0.001 2.152 0.016 2.465 0.007 
FlGARCH(l ,d , l ) 1.451 0.074 4.601 0.000 2.229 0.013 3.808 0.000 
HYGARCH(l .d , l ) 2.166 0.015 4.453 0.000 2.471 0.007 3.932 0.000 

S^P 500 
normally-distributed innovations t-distributed innovations 

DBH-SE DM-AE DM-SE DM-AE 
ARCH structure t-statistics p-value t-statistics p-value t-statistics p-value t-statistics p-value 

GARCH(1,1) 2.463 0.007 5.772 0.000 2.597 0.005 3.966 0.000 
FIGARCH(l,d,l) 2.082 0.019 5.210 0.000 1.779 0.038 3.870 0.000 
HYGARCH(l ,d , l ) 2.221 0.013 4.476 0.000 2.456 0.007 3.940 0.000 

Note： The DM-SE and DM-AE are the test statistics for squared error and absolute error 
respectively. The alternative hypothesis indicates that the integrated framework outperforms 
the sequential method. 

Table 3.18: Diebold-Mariano test, Out-of-sample fit for various A R C H struc-
ture, 1-step-ahead daily forecast - Deseasonalized by the F F F method 

N A S D A Q 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure t-st&tiatics p-value t-statistics p-value t-statistics p-value t-statistics p-value 

GARCH(1,1) 2.314 0.011 4.480 0.000 2.654 0.004 3.514 0.000 

FIGARCH(l ,d, l ) 2.046 0.021 5.104 0.000 2.864 0.002 5.149 0.000 
HYGARCH(l .d , l ) 2.540 0.006 5.128 0.000 2.863 0.002 4.812 0.000 

BicP 500 
normally-distributed innovations t-distributed innovations 

DM-SE DM-AE DM-SE DM-AE 
ARCH structure t-atatiatiai p-value t-gt>tigtic8 p-value t-HtatiBtics p-value t-statistics p-value 

~ ~ G A R C H ( 1 , 1 ) 3.698 0.004 5.398 0.000 2.754 0.003 ^041 0.000 
FIGARCH(l,d,l) 2.344 0.010 5.305 0.000 2.684 0.004 5.496 0.000 

H Y G A R C H ( M , 1 ) 2.476 0.007 4.564 0.000 2.559 0.005 3.655 0.000 

Note： The DM-SE and DM-AE are the test statistics for squared error and absolute error 
respectively. The alternative hypothesis indicates that the integrated framework outperforms 
the sequential method. ‘ 
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3.7 Concluding remarks 

The limitations of Andersen & Bollerslev's sequential estimation approach 

for modeling an intraday volatility process is addressed in this paper. To 

search for better A R C H parameters, an integrated framework approach that 

utilizes the interaction effect between the periodicity and the heteroskedas-

ticity is proposed. The proposed framework improves the subsequent A R C H 

structure in the sequential method by integrating the filtration process and 

the A R C H process in a united setting and optimizing the model parameters 

for the raw series instead of the filtered series. The simultaneous presence of 

the estimated periodicity and the A R C H volatility enables the consideration 

of their interaction while the use of the raw series assures the optimal fit to 

the target series. The integrated framework can be written as a modified 

P - A R C H structure where the periodically varying autoregressive coefficients 

are represented as the product of the estimated periodicity times the A R C H 

parameters. On the other hand, the effectiveness of applying the integrated 

framework to different A R C H structures is also discussed in this paper. 

The performance of the proposed approach is tested empirically under two 

filtration approaches with three A R C H structure, including GARCH(1 ,1 ) , 

F I G A R C H ( l , d , l ) and H Y G A R C H ( l , d ’ l ) structures by using 10-minute re-

turns of the N A S D A Q index (3-year period) and the S&P 500 index (2.5-year 

period). Moreover, both normally distributed and t-distributed innovations 

are considered in our investigation. The performance measures include re-

gression i?2，mean squared error, mean absolute error and Diebold-Mariano 

hypothesis tests on squared error and absolute error. Apart from study-
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ing the 1-step-ahead out-of-sample performance, several multiple-step-ahead 

forecasting results (up to a one-day-ahead forecast) are also addressed. Un-

der the same level of model flexibility (parameterized portions), the inte-

grated framework approach is demonstrated to achieve better performances 

in both in-sample fitness and out-of-sample forecasts for most cases. The im-

provements become more substantial when the volatility models are applied 

on 1-day-ahead forecasting. The proposed method is demonstrated to give 

3.36% - 15.13% reduction on squared errors and 3.54% - 9.31% reduction on 

absolute errors under different situations. 

Overall, apart from considering the integrated framework as an alterna-

tive method for intraday volatility modeling, its superior modeling accuracy 

can help practitioners to better estimate the intrinsic value of an important 

financial instrument, the variance swap, in the hedge fund industry. 
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3.8 Supplementary note 

3.8.1 Limitation of the integration framework approach 

for EGARCH(1,1) structure 

This supplementary note illustrates the limitation of applying the integrated 

framework approach to a specific type of A R C H model, where the log of the 

conditional variances are modeled through A R M A structure (e.g. E G A R C H [61 

and F I E G A R C H [22]). The following content is based on using the EGARCH(1 ,1 ) 

structure specified below for modeling the filtered series: 

l o g { a l J = cj + a • g(et,n-\) + P • 

9{^t,n) = 0 ' et,n l(\h,n\ " ^(l^t.nl)) 

et.n 〜 _ ， 对 J (3.25) 

where it̂ n is a i.i.d. zero-mean symmetrically distributed innovation for the 

time index (i,Ti). It represents the innovation of the filtered series for an 

intraday volatility modeling process. The variance of St.n is cj, a , P�9 

and 7 are the model parameters. Furthermore, g{et^n) is a zero-mean i.i.d. 

variable under the above setting. By letting Vt.n 三分(&,n)，the EGARCH(1 ,1 ) 

can be simplified as: 

l o g i a l J = + + (3.26) 

On the other hand, a typical Periodic E G A R C H ( 1 ’ 1 ) structure [21], which 

is capable of capturing a repetitive periodical autocorrelation pattern, exists 
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with the following structure when it is applied to model an intraday innova-

tion series. 

log{alJ = UJs{t,n) + Ois{t,n) . 9{^t,n-l) + A»(t,n).細(̂ ^‘之打-」 

三 Js(t’n) + Oi3{t,n) . Vt,n-l + Ps{t,n) . 

et,n � _ ’ a ? . n ) (3.27) 

where ujs{t,n), c^s(t’n) and Ps t̂.n) are periodically changing coefficients. 

denotes an i.i.d. zero-mean innovation of the raw intraday return series. 

g(et,n) is the same function as specified in the equation set 3.25. 

For the case that the proposed integrated framework approach is applied 

to the E G A R C H ( 1 , 1 ) structure, the formulation of the volatility process of 

the intraday innovation series will be: 

et.n = — 

iogiaf j = O； + a • g(it,n-i) + P • /op(afn-i) 

et.n � D ( 0 ’ s ? , „ 5 ? , J (3.28) 

Letting a f^ = sf^^f ,…the above variance equation can be re-written as: 

logi^U = u^ + a • p(et,n-i) + P • 

log{alJ - f log(slJ = ^^ + log{slJ - f - a • 9{et,n-i) + P ‘ logi^ln-i) 

+ 0 . log(sl几一 1) - 0 . hg(sU 

/ \ 

\Pi.n-lJ / 
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/ \ 
^ogicrU = Uj + logl -h p • log((jl^_i) 

\ [ S t . n - l j / 

St,n-\ 

Vl^t.n-lJ ” 

H 9(St,n-\^t,n-\) 

‘ = u ； + log f r - ^ ^ ) + P • 

+ b(Si,n-iet,n-l) - E(g{St,n-\^t,n-\)) 
St,n-1 

+ E{g{St,n-\h,n-\)), 

/ \ 

+ [^ (St ,n - ie t ,n - l ) - E{g(St,n-l^t,n-\)) 
St,n-1 

+ E{g{st,n-\et,n-i)) 
5t,n-l 

=+ log (r̂ Ĥ ) + . 
I VKn- lJ^^y J 

(3.29) 

where St,n • 9{^t,n) = g{st,nh,n) because of > 0. Since et,n is an i.i.d. 

variable, will be a zero-mean i.i.d. variable w h严 = g{st ,n^t,n)-
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The above equation can be re-written as: 

妨 K n ) = 4(t ’n) + < t , n ) � , n - l + � ] 0 5 K n - l ) (3.30) 

where … a n d …are periodically changing coefficients. The notation 
r / \ 彳 

乂“,n) is equivalent to 卜 + log (js�:二丨站 j + • ^i9{st,n-i^t,n-i)) j and 

Q '̂.(i.n)三 aht，n-\. 

The coefficient of the term in the above equation is constrained 

to be the same along different time indexes. Comparing with the periodic 

EG A R C H structure in the equation set 3.27，the capability of modeling the 

repetitive periodical autocorrelation pattern is much restricted and therefore, 

the performance gain by using our proposed method may be limited. Our pre-

liminary empirical investigation does not indicate a significant performance 

gain from our proposed approach over Andersen k. Bollerslev's sequentially 

estimation method. 

3.8.2 Proposed integrated framework approach with 

the use of GARCH(1，1) structure - Maximum 

likelihood estimation method 

The sequential approach proposed by Andersen h Bollerslev does not con-

sider the interaction effect between the intraday periodic component and the 

A R C H process. As the A R C H model parameters are estimated with the 

.use of the filtered series, the estimated model can only assure an optimal fit 

for the filtered series only. There is no indication that the recovered intra-

day volatility, product of the intraday periodic component times the A R C H 
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conditional volatility, fits the raw intraday series optimally. 

An integrated framework that utilizes the interaction effect between the 

intraday periodic component and the A R C H conditional volatility is pro-

posed to model the volatility of the raw intraday return series. T h e frame-

work incorporates the filtration process and the A R C H structure in a united 

setting such that the intraday periodic component and the A R C H condi-

tional volatility are present in a time. T h e recovered intraday volatility is 

revealed and its fitness can be assessed during the model estimation process. 

Furthermore, to ensure an optimal fit, the integrated framework makes use 

of the likelihood of the raw intraday return series instead of the use of the 

filtered series as the sequential approach does. As a result, under the same 

level of model flexibility {parameterized portions)，the optimal parameter set 

from the integrated framework should achieve the largest likelihood of the 

raw return series. 

T h e key advantage of the integrated framework relies on its ability to 

adjust the model parameters such that an intraday periodic component and 

it corresponding A R C H conditional volatility can work in a complementary 

way. Consider a situation that an intraday innovation series { “ „ } is equal 

to the product of a specific intraday periodic component series times 

a series (filtered series) which is based on using as the underlying 

volatilities. 

T o model the corresponding intraday volatility process, the intraday pe-

riodic component is needed to be estimated in the very beginning. However, 

it is clear that the estimation process is not error free in practice. Denote 

the estimated intraday periodic component as which is different from 
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s。，and the estimated A R C H volatility as at.n- For the sequential approach, 

the A R C H parameters are estimated with the filtered series only. Since the 

erroneous St̂ n produces an erroneous filtered series, the estimated dt,n will 

most probab ly different from the a^.^. As a result, the overall error of the 

recovered intraday volatility St’n . is equal to the product of the errors 

f rom the St,n and at,n- T h e optimality of the recovered intraday volatility 

series for the original {Ct,n} series is not guaranteed. 

O n the other hand, under our proposed integrated framework, the mode l 

parameters are adjusted to ensure the 5"t’n works complementari ly to the 

St,n. T h e compos i te term St,n • which is equal to the recovered intraday 
m 

volatility, is opt imized to fit the {xit^n} series in the best possible way. T h e 

adverse impact f rom the erroneous St,n is alleviated. 

T h e fol lowing formulations detail our proposed framework. Define the 

likelihood function of the raw intraday innovations as: 

L F r 咖 = n (3.31) 
V(t,n)GS 

where (j){(j\x) denotes a probabil ity density funct ion of a variable x with 

its mean equals to zero and its standard deviation equals to a . S is a set 

containing all the day and interval index pairs (t, n) for the sample data. 

and Gt̂ n are the innovations of the raw series and its volatility respectively. 

As the intraday volatility is modeled as the product of the intraday peri-

od i c c o m p o n e n t and the A R C H condit ional volatility, the fol lowing equation 



Chap 3: Integrated framework approach for volatility modeling � 88 

holds: 

Ĉ t.n = • ^t.n (3.32) 

Our proposed approach makes use of the identical values of St,n as Andersen 

& Bollerslev's sequential approach does. The estimate of the composite term 

5t,n • is regarded as the recovered intraday volatility. 

Let g (0\{ f t ,n} , t ,n) be a function to calculate the conditional volatility 

series for a particular n-th intraday interval on day i by a specified A R C H 

structure with the use of a particular parameter set 6 given the filtered series 

{n ,n } - The optimal parameter set 0 for the likelihood LF— can be estimated . 

as: 

^ = argemax JJ 0(5t.n • t,n)|6.n) (3.33) 
V{t,n)GS 

With the use of the above framework, the optimal parameter 6 will be 

driven in a way such that the estimated conditional volatility g(没|ft,n，力，n) 

works with the St,n cooperatively to achieve the best fit for the intraday 

innovations series. 

For the situation that GARCH(1 ,1 ) is selected as the A R C H structure and 

the innovations are assumed to be i.i.d. normally distributed, our proposed 

framework can be formulated as below: 

0 = argg max ^ l{9) 
V(t,n)eS 

么 \ St,nCrt,n / 
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~ — Ct.n 
T't.n = 

St.n 

it.n = h,n - f^ 

^In = W + l)2 + / ? � n - l 

� " ( 0 ’ 4 n � J 

u � C i � P > 0 

e = ‘ (3,34) 

T h e first two lines indicate that the opt imal parameter set 9 is estimated 

with the log likelihood function which is based on the intraday innovation 

in this framework. is assumed to fol low an i.i.d. zero-mean standard 

normal distribution with its variance equals to s"̂ ，n玲n. T h e intraday peri-

od i c c omponent St,n is calculated by the same procedures as in Andersen & 

Bollerslev's sequential estimation method . T h e A R C H structure g{6\ft,ny t � n ) 

is defined by the fourth and fifth lines with the parameter set 9 to mode l the 

condit ional volatility series 

B lock diagrams of the two approaches are included to illustrate the differ-

ences. In Figure 3.2, the Andersen Sz Bollerslev's sequential approach handles 

the intraday periodicity and the heteroskedasticity independently. Their ap-

proach estimates the A R C H parameters purely based on the deseasonalized 

series 丨n，therefore, it may be possible that the estimated parameters may 

not provide the opt imal fit for the raw intraday innovation s e r i e s O n 

. the other hand, the proposed integrated approach optimizes its parameters 

. f o r the series instead and it also considers the interaction between the 

intraday periodicity and the heteroskedasticity. T h e proposed framework in-
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tegrates the filtration and the A R C H structure in a unified framework. 

Andersen & Bollerslev，s sequential approach 

estimate the A R C H 
^ , estimate intraday ^ deseasonalize , parameters for , q 

. p e r i o d i c i t y the series y the series r ,n 
intraday , model 

innovations descasonalized parameters 
series 

Proposed Integrated framework approach 

一 -estimate the A R C H 
~ ； ； parameters for 

一 estimate mt^day — s e r i e s � „ _ • Q 

.^ ‘ n p e n � — ” u 丨 _ n - with the consideration modd 
intraday of the interaction effect parameters 

innovations r‘ , . .. 
of the penodicity 5… 

Integrated ftamework 

Figure 3.2: Block diagram of the two approaches 

3.8.3 Graphical representations on the out-of-sample 

forecast performance 

T h e following charts try to provide a quick overview on the out-of -sample 

forecast performance in terms of R^, M S E and M A E . There are totally 24 

tested situations in our study and all of them give very similar findings. 

T h e situation - using the G A R C H ( 1 , 1 ) structure, deseasonalized by the sim-

ple averaging method, with normally distributed innovations and tested by 

N A S D A Q data - is selected as an illustration. 

T h e Figure 3.3, 3.4 and 3.5 indicate the corresponding improvements 

， f rom using the proposed integrated framework approach over the original 
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Improvement on R-squared 
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Figure 3.3: Improvement on R-square by using the integrated framework 
approach 

Improvement on MSE 
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Figure 3.4: Improvement on MSE by using the integrated framework ap-
proach 

sequential approach. It can be observed that our approach outperforms in 

the aspects of R^, MSE and M A E over various forecasting horizons, ranging 

from 1-step-aliead to 25-step-ahead. The three bar charts represent the re-

sults for a particular case out of the total 24 situations tested in the study. 

Nevertheless, the same findings (i.e. the proposed approach produces higher 

smaller MSE and M A E ) can also be observed in the other 23 situations. 
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Improvement on MAE 
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Figure 3.5: Improvement on M A E by using the integrated framework ap-
proach '饭、 -

3.8.4 Properties of the realized variance estimator 

The following paragraphs provide the mathematical foundations for using the 

realized variance, sum of squared innovations, as an unbiased estimator of 

the latent variance parameter of a daily innovation process. It can be shown 

that the realized variance is more efficient (estimator with smaller estimation 

error) than a traditional estimator based on a daily innovation. 

Consider the situation that a daily innovation is composed of N number 

of i.i.d. intraday innovations : 

N 

^t = 
t = l 

2 
〜 雅 务 ） （3.35) 

The tt and et,i denote a daily innovation for day t and an intraday inno-

vation for the i-the period on day t respectively. et,i is assumed to follow a 

standard normal distribution with variance equals to o f / i V . 
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As et,i is independent of each other, the variance of et equals to : 

N 

Var{et) = Var(^et.i) 
t=i 

1=1 
N 

二 a? (3.36) 

However, it is important to know that the parameter a l is not directly 

observable in practice. Its value can only be estimated through the infor-

mation obtained from the observed innovations et and Ct.i- The prot)erties 

of two estimators, the simple unbiased estimator and the realized variance 

estimator, are compared as follows : 

U n b i a s e d n e s s p r o p e r t y 

The traditional estimator of the latent variable erf is a squared daily 

innovation (i.e. e?). It is an unbiased when the intraday innovations are 

independent of each other. 

E{el) = E[{e, - 0)^] 

二 Var(et) 

= ( 3 . 3 7 ) 

On the other hand, the another candidate, realized variance estimator, is 

defined as the sum of squared intraday innovations (i.e. E i^ i It is also 
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an unbiased estimator since : 

^(Eii) 二 
1=1 1=1 

- h N 
二 

= a 1 (3.38) 

V a r i a n c e ( a c c u r a c y ) o f t h e e s t i m a t o r s 

The traditional estimator {ef) and the realized variance estimator (E^l i e?.t) 

are proved to be unbiased in the above section. However, it can be shown that 

the realized variance estimator does a better j ob as it is more efficient (estima-

tor with smaller estimation error) than the traditional estimator. Consider 

the variability (variance of the estimator) of the realized variance estimator. 

VariZel) = E V a r g J 
i=l 1=1 

= j : { E { e l ) - [ E { e l ) r } 
1=1 

二 叫 - 叫 昏 2 

= 

= - ( • ^ 胁 4)-1) (3.39) 

where 2; is a standard normal variate with E{z^) = 3. 

The above value is shown to be smaller than the variance of the traditional 
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estimator : 

Var(eD = Var{[Gtzf) 

二 \ /ar (o f 巧 

= [ E { z ' ) — [E{z')f] 

= [ c j , ) \ E { z ' ) - 1) 

> (3.40) 
i = l 

As a result, the realized variance is a more efficient estimator when the 

number of intraday intervals N > I. Furthermore, the realized variance is 

also a consistent estimator as its variance decrease with the increase of N 

(equation 3.39). 

Applicability under a general setting 

T h e argument of the superiority of using the sum of intraday innovations 

as the estimator is also valid when the daily innovation is defined as the 

aggregation of intraday innovations with different level of variability. 

Consider a daily innovation is re-defined as: 

N 

^t = E ^ m 
1 = 1 

et.i � A ^ ( 0 ’ 切iCxH (3.41) 

where the Wi reflect the level of variability of the i - th intraday innovation. 

Wi thout loss of generality, the weight factor is formulated to follow 仏！ Wi — 

1 and Wi > 0. Therefore, it can be shown that Var(€t ) = a f . 
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The unbiasedness property still holds: 

五 ( f X i ) -
i = l i = l 

= 

t=i 
N 

= 

i = l 

= ^ t (3.42) 

t=i 
N N-1 N 

t = l i = l j=i+l 

N N-1 N 

i = l i = l j = i + l 
N N-1 N 

= E 妮 , i ) + 2 E E 0 
x=l 1=1 J =1+1 

=CTt (3.43) 

The variance of the estimators are : 

f x j = EVariel) 
1=1 1=1 

i = i 
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i=l 1=1 

1=1 i=i 

i=l 1=1 

= Z w f ^ a t i E i z ' } - ! ) (3.44) 
1=1 

Varied) = Var{[Gtzf) 

= - 1) 

> E + 彻 O O - 1 ) (3.45) 
1=1 

Under the initial setting where E i l i Wi = 1 and Wi > 0，it implies Wi < 1. 

The inequality in the equation set 3.45 holds because as X^ili ^J? < 1. Fur-

thermore, the variability of the estimator, sum of squared intraday innova-

tions, tends to decrease with the increase of the number of intraday interval 

N. 

• End of chapter. 
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Chapter 4 

Day-varying structure for 

modeling intraday periodicity 

Summary 

The periodicity appearing in an intraday volatility process is 
always modeled to follow an identically repeating structure. It 
varies in-a U-shape pattern within a trading day while its value 
for every particular intraday interval is identical across days. This 
rigid day-invariant structure may hinder the potential usage of 
the variability of periodicity across days. Andersen k Bollerslev 
provide a method that is capable of estimating the periodicity 
with the allowance of day-variability. However, the performance of 
the day-variant periodicity is always demonstrated to be inferior 
to the corresponding day-invariant version empirically. 

We improve their normalization method by adjusting the estimated 
values to fulfill the implicit constraint for the construction of daily 
variances from their corresponding intraday variances. For the sit-
uation that the periodicity is modeled to be day-variant, the pro-
posed method is shown to be less susceptible to heteroskedastic er-
rors through numerical simulations. For day-invariant periodicity, 
our method is proven to give the same performance as Andersen 
and Bollerslev's method does mathematically. Furthermore, our 
method is tested by using 10-minute returns of N A S D A Q index (3-
year period) and S&P 500 index (2.5-year period). Preference for 
using the proposed method is supported empirically. 
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4.1 Introduction and the research objective 
n 
4 

T h e periodicity appearing in an intraday volatility process is always modeled 

to follow an identically repeating structure [4，8, 17，24, 53, 54, 55]. It varies 

in a U-shape pattern within a trading day while its value for every particular 

intraday interval is identical across days. It is speculated that this rigid 

day-invariant structure may hinder the potential usage of the variability of 

periodicity across days. 

Andersen & Bollerslev provide a method to estimate the intraday peri-

odicity with the allowance of day-variability [3]. T h e periodicity is modeled 

in two steps. T h e dynamics of an intraday return series is firstly approxi-

mated by a smoothing function (Flexible Fourier Form) and, secondly, the 

periodicity is recovered by a normalization procedure with the use of the 

approximation results. Their method is capable to define the estimated pe-

riodicity to be either day-invariant or day-variant with proper adjustments. 

However, when the method is applied for day-variant situation, it can be 

shown that the resultant periodicity violates the implicit constraint, which 

is derived from the initial modeling assumption, in some situations. As a 

result, the correctness of the periodicity cannot be assured at all times. 

Furthermore, the normalization procedure proposed by Andersen & Boller-

slev is shown to be susceptible to heteroskedastic errors. It is demonstrated 

that the time series of the expected periodicity deviates f rom its true value 

when the approximated series is contaminated with heteroskedastic errors. 

T h e conjecture of the presence of heteroskedastic errors is supported empiri-
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cally. The approximation errors of the smoothing function are demonstrated 

to have non-constant variances. The Bartlett 's Test [16] and the Brown-

Forsythe's Test [23] significantly rejected the null hypothesis of constant error 

variance at 5 % significance. 

A modified normalization procedure that ensures the fulfillment of the 

implicit constraint is proposed in this study. Our procedure regulates the 

magnitude of the periodicities with reference to the size of their corresponding 

daily variances, guaranteeing that the coherence of the intraday variances and 

their aggregated results is met. The procedure is capable for handling both 

day-variant and day-invariant periodicities. W h e n the proposed procedure is 

applied to the day-variant situations, the results turn out to be more robust to 

heteroskedastic errors than the original method under numeric simulations. 

Besides, the modified method is demonstrated to give superior performance 

in intraday volatility modeling empirically. 

For the day-invariant situation, the series of the estimated periodicity 

resulting from the modified method can be shown to be a scaled version 

of the results from the original method. Besides, it can be mathematically 

proven that the modified method gives identical performance in intraday 

volatility modeling as the original normalization does. 

T h e remainder of this work is organized as follows: Section 4.2 contains 

a brief review of Andersen k Bollerslev's procedure for estimating the intra-

day periodicity. The limitations of direct application to model day-variant 

periodicity is also addressed in this section. The rationale behind our modifi -

cation together with its formulation are discussed in Section 4.3. Section 4.4 

and 4.5 illustrate the influence from heteroskedastic errors on the estimated 
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periodicity. The existence of heteroskedastic errors is verified empirically 

in Section 4.4 and the robustness of the normalizations are checked by a 

simulation study in Section 4.5. 

T h e effect of applying the modified day-variant periodicity to model an 

intraday volatility process will be investigated in Section 4.6. The modi -

fied day-variant periodicity will be tested against the original day-variant 

version and the day-invariant version, with the use of G A R C H ( 1 , 1 ) and 

F I G A R C H ( l , d , l ) structures under the assumption of either normally dis-

tributed innovations or t-distributed innovations. The measurements crite-

ria includes R^, mean squared error(MSE) and mean absolute error ( M A E ) . 

Beside the investigation of one-step-ahead out-of-sample forecasts, several 

forecasting horizons will also be studied to reflect the trends among the multi-

step ahead performances. T w o sets of 10-minute intraday returns, N A S D A Q 

and S&P 500 indexes, are used in the empirical investigation. Section 4.7 

contains the concluding remarks. 

ff 
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4.2 Andersen & Bollerslev，s intraday period-

icity estimation and its limitation 

T h e seminal work by Andersen h Bollerslev establishes a g o o d example, for / 

model ing the intraday periodicity [3]. T h e y notice a prominent U-shape 

periodic pattern in an absolute intraday return series and discuss the inap-

propriateness to employ a A R C H type model on an intraday return series 

directly. T o solve the problem, they propose the periodicity should be fil-

tered out before the A R C H model is app l i ed . T h e estimation of periodicity 

is carried out in two steps. T h e dynamics of an intraday return series is 

firstly approximated by a smoothing function (Flexible Fourier Form) and, 

secondly, the periodicity is recovered by a normalization procedure with the 

use of the smoothed results. 

T h e estimation of intraday periodicity is based on an assumption on an 

intraday return process: 

T-t.n = + St,n . 为 . ( 4 . 1 ) 

where is an intraday return of day t in n - th intraday interval and E[rt�n) is 

the unconditional expectation of rt,n- T h e rt,n is calculated as log{Pt,n/Pt,n-i)-

Pt�n is the index value and •Pt,o is the value at the market open. 

T h e intraday periodicity is denoted as St,n and it reflects the U-shape 

regularity across days, at is a daily volatility (standard deviation) of the 

return in day t and N is the number of intraday interval per day. 2t,n is a 

i.i.d. standard normal random term. T h e G A R C H ( 1 , 1 ) conditional volatility • >> 

I 

4i 
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is chosen as the substitute of at in this paper.^ The above formula provides a 

simplified expression of an intraday return process and makes the estimation 

of the intraday periodicity feasible. 

By squaring and taking logs on both sides on the equation 4.1, the St,n 

can be expressed in terms of an intermediate proxy variable for the intraday 

dynamics Xt̂ n under the following settings: ‘ 

Xt,n = /(0|(7t,n) + nt,n 

士 t,n = / ( e i ^ t . n ) (4.2) 

The function / (6|crt ,n) is a modified version of the flexible Fourier form[39 

which is defined as : 

J P T)7i27r DTISTT 
/ ( e k t , n ) = E ' o i i E ^kj ‘ 'n!' + + d ^ ^ s i n — ) ] (4.3) 

j = 0 fc=0 p = l � v 

where 0 represents the parameter set {"fcj.’ 7pj’ Variables J, K and P 

control the order of expansion. The parameter set 9 is estimated by setting 

/ (G | c 7 f ,n ) as a regressor (independent variable) for a dummy variable Xt.n 

of a linear regression with Ut̂ n as a zero mean i.i.d. error term. is an 

approximation of the underlying periodic dynamic. The Xt̂ n is allowed to 

vary across days by setting J〉0. 

After obtaining the approximated value of the intraday dynamics a 

^ There are a number of estimators available to evaluate the value of crt, including ARCH 
type conditional volatility [33), realized variance (6) and range-based estimators (41, 64， 

66, 68’ 73). 

4 
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normalization step is used to retrieve the intraday periodicity St,n accordingly. 
y 

— “ 邵 ( ¥ ) (4 41 

where S is the sample size of the intraday return series. 

The inclusion of a day-varying factor in the flexible Fourier form function 

(by setting J > 0 in the equation 4.3) always helps to improve the approx-

imation accuracy. However, the day-varying property of the approximation 

results can cause the recovered intraday periodicities to violate the the im-

, plicit constraint, which is derived from the initial modeling assumption of 

an intraday return process, in some situations. The f(5Tlbwing paragraphs 

elaborate the concept. 

Wi th the initial modeling assumption of an intraday return process listed 

in the equation 4.1, the calculation of the variance of daily return can be 

formulated as: 

N 
Since rt 二 

.n=l 
N / CJt � 

= E ( 丑 + . ^ • 2 t , � 

(N ( a W 
^ Var{rt) = Var (X^i 卜 . 为 . ( 4 . 5 ) 

where n denotes an accumulated return in the active trading period for day t. 

The variance equation can be simplified as below when the intraday returns 

are assumed to be independent among themselves. 

V a r ( n ) = (4.6) 
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Since at represents the daily volatility (square root of variance), the above 

equation implies the following constraint which should hold for all the pos-

sible day t in the sample data. 

n=l 

As the main purpose of finding the intraday periodicity is for modeling an 

intraday volatility process, the exact magnitude of the St,n is not an important 

concern. In fact, it is proved that the use of a scaled 5t,„ series gives equivalent 

performance on modeling an intraday volatility process as the original series 

does.2 Therefore, any intraday periodicity series which fulfills the below 

condition will perform as good as one which obeys the equation 4.7. 

f X n = k (4.8) 
n=l 

where k is any real number. The above condition can be regarded as an 

implicit compliance to the constraint listed in the equation 4.7 and it is 

called as the 'implicit constraint' in this paper. 

For the situations that the intraday periodicity is restricted to be day-

invariant (i.e. the periodicity varies in a U-shape pattern within a trading 

day while its values for every particular intraday interval are identical across 

days), the results from normalization in the equation 4.4 are shown to fulfill 

the implicit constraint automatically. 

^Mathematical elaboration is provided in 4.8.1 

I 
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Consider the series of intraday periodicity for a particular day /]，let: • 

fcl = E < , n (4.9) 
n=l 

When the periodicity is day-invariant (i.e. Sd,,n 二 Sd .̂n for all possible 

d u c k within the sample data) , we know for sure that the below condition 

holds for all possible day d. As a result, the implicit constraint is fulfilled 

automatically. 

. E 4 n = (4.10) 
n=l 

On the other hand, for day-variant situations, the Andersen k Boller-

slev's normalization can be shown to violate the implicit constraint in most 

situations, when the periodicity is day-variant (i.e. Sdj,n ,n for distinct 

day di and c^)’ the condition in the equation 4.8 will not hold for most cir-

cumstances. It is because the sum of the sf .̂  per day will vary along days as 

there is not any constraint to ensure the fulfillment of the above condition 

for distinct days. 



Chap 4: Day-veurying structure for estimating intraday periodicity 108 

4.3 Proposed normalization procedure for es-

timating intraday periodicity 

As the estimation of intraday periodicity is based on a pre-specified assump-

tion (the equation 4.1), we speculate that the fulfillment of the implicit con-

straint, which is derived from the assumption, may improve the performance 

of the estimated results. A modified normalization procedure is proposed as: 

The above formulation ensures J2n=i = N for all possible day t. As a 

result, the variance equation listed in the equation 4.6 holds and the implicit 

constraint is fulfilled. 

For the situation that the intraday periodicity St,n is restricted to be 

non day-vary ing, the performance of the estimated periodicity for intraday 

volatility modeling becomes the same as those from the use of the original 

procedure.^ The modified normalization gives different results when St,n is 

day-vary ing (by specifying the order of expansion of the flexible Fourier form 

to J > 1). 

3puU elaboration is provided in 4.8.2 
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4.4 Characteristics of the residuals of the ap-

proximation function 

Apart from the violation of the implicit constraint, the original normalization 

procedure can be demonstrated to be susceptible to heteroskedastic errors. 

The conjecture of the presence of heteroskedasticity is supported empirically. 

The residuals from the approximation function is shown to be heteroskedastic 

through the Bartlett's test and the Brown-Forsythe's test. As the approxi-

mated results are used as the substitute of the true underlying dynamics, it 

is reasonable to assume the approximated series deviates from its true value 

with heteroskedastic errors. The following subsections state our findings. 

4.4.1 Data description 

The data used in our experiment is composed of 10-minute returns for the 

N A S D A Q composite stock index ( N A S D A Q ) from 15 August 2005 to 12 

Sept 2008, consisting of 28,392 observations (728 days), and the Standard 

and Poors composite stock index (S&P 500) from 10 March 2006 to 12 Sept 

2008，consisting of 22,893 observations (587 days). The returns are recorded 

from 9:30 to 16:00 and therefore there are a total of 39 intraday returns per 

trading day. All the values of intraday return are multiplied by 100 for the 

ease of presentation. The the descriptive statistics of the two data sets are 

tabulated in Table 4.1. 
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Table 4.1: Descriptive statistics of the intraday returns (multiplied by 100) 

一 NASDAQ SfcP 500 
Start date 16-Aug-05 13-Mar-06 
End date 12-Sep-08 12-Sep-08 
Observation 28,392 22,893 
Mean -0.0008 -0.0001 
Max 1.1768 1.4236 
Min -1.4115 -1.4297 
Standard deviation 0,1400 0.1362 
Skewness -0.0175 0.1770 
Robust skewness -0.0111 -0.0088 
Kurtosis 7.7803 10.8744 
Jarque-Bera (p-value) <0.001 <0.001 

Note: The robust skewness [49], which is robust 
against outliers, is calculated as a ^ t i l ^ . The 
Jarque-Bera value is the p-value ot the Jarque-
Bera test [48] with the null hypothesis that the 
intraday returns are normally distributed. 

4.4.2 Specification of the approximation function 

The order of expansion of the approximation function f{Q\at, n) is set to 

J = ly K = 2 and P = 4. Expansion beyond this order gives insignificant 

coefficients for the additional parameters. 

On the other hand, the GARCH(1 ,1 ) conditional volatilities used in the 

equatioiTs 4.2 and 4.3 are based on a daily return series with the latest daily 

return defined as a convex combination of a m-day moving average of histor-

ical daily returns and an accumulated sum of intraday returns: 

. “ = ( 1 - 劳 ) 华 + 給 , i (4.12) 

where r̂  means the daily return for day i and ft is the forecast of the latest 
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daily return given the information up to the n-th interval. The variable rri is 

set to 5 for all the empirical investigations in this paper. 

4.4.3 Heteroskedasticity of the residuals 

The residuals of the approximation function (i.e. Xt,n — Xt,Ti in the equation 

set 4.2) are shown to have non-constant variances based on the empirical find-

ings. T w o hypothesis tests, the Bartlett’s test [16] and the Brown-Forsythe's 

test [23], are used to check the homoskedasticity of the errors. The Bartlett's 

test verifies the equality of variances from different samples for normally dis-

tributed variables while the Brown-Forsythe's test works for non-normality 

situations. The null hypothesis of the tests state the variances from the 

different samples are homoskedastic. 

Our investigation organizes the residuals into 10 bins by two different 

ways. The first way groups the errors according to their calendrical order, 

where the first group contains the farthest data and the last group contains 

the most current data. The second way arranges the residuals by the mag-

nitude of their daily volatility, where the errors from the least volatile days 

are grouped together and the errors from the most volatile days are grouped 

as another group. 

The rolling-sample method is employed for the empirical analysis in this 

paper. This method updates the training samples step by step. For instance, 

if the sample size is S, the first sample will be the 1 to 5 observations, the 

second sample will be the 2 to 5 + 1 observations and so on. The sample size 

is set to be 200 days (7,800 intraday periods) in this study. Therefore, there 

are totally 20,592 sample sets for N A S D A Q data and 15,093 sets for S&P 
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500 data. The results of the hypothesis tests are tabulated in Table 4.2. 

Table 4.2: Results of Baxtlett's test and Brown-Forsythe's test 

Bartlett's test Brown-Forsythe's test 
by calendrical by daily by calendrical by daily 

order volatility size order volatility size 
NASDAQp-va lue 0.0030 0.0038 0.0539 0.0670 

(Sig. %) (98.73%) (98.45%) (80.22%) (68.12%) 
S&:P 500 p-value 0.0017 0.0002 0.0389 0.0159 

(Sig. %) (99.50%) (99.98%) (77.02%) (91.06%) 

Note: The p-values, with the null hypothesis of homoskedasticity, are the 
averaged results from all the training samples (i.e. 20,592 sets for NASDAQ 
and 15,093 sets-for S&P 500). The Sig. % denotes the percentage of rejecting 
the null hypothesis with 5% significant level. 

In Table 4.2, the p-values are the averaged results from all the training 

samples. The Sig. % denotes the percentage of the acceptance of the alter-

native hypothesis, the residuals are heteroskedastic with 5% significant level. 

The results from the Bartlett's test strongly indicate that the residuals are 

heteroskedastic. For both N A S D A Q and S&P 500 data sets, over 98% of the 

samples reject the null hyopthesis with 5% significant level, no matter the er-

rors are grouped by calendrical order or by their corresponding daily volatility 

size. The Brown-Forsythe's test gives similar findings, but with fewer sup-

porting samples. Nevertheless, large portion of samples (ranges from 68% t^ 

91% for different combinations) indicate the existence of heteroskedasticity 

with 5% significant level empirically. Therefore, it is reasonable to assume 

the residuals are heteroskedastic instead of homoskedastic. 
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4.5 Simulation study on the robustness of the 

normalization procedures 

The robustness of the two normalization procedures with the presence of two 

types of errors, homoskedastic and heteroskedastic, are investigated in this 

subsection. The robustness is measured by the correlation between the series 

of the true intraday periodicity and the series of the expected periodicity. 

A larger correlation means the method is the more robust. Theoretically, 

the expected intraday periodicity recovered from the two normalization of 

Andersen Sz Bollerslev's method is defined as: 

ri rJ ( / . J . e c c p r ; ' " 城 j ) \ 
= / / ,风 J 丄 • dj • di (4.13) 

where T and N denote the number of sample day and the number of intraday 

interval per day respectively, is the true series and 5i�j is the error, which 

can be either homoskedastic or heteroskedastic. The (piSij) is the pdf of the 

random error, which is modelled as normally distributed in this study. 

For the modified normalization, the expected periodicity is calculated as: 

丑 ( � n ) = P � 2 ) . 編 dj (4.14) 

However, direct evaluation of the above two integrals are very difficult as 

they involve the calculation of the sum of log normal variables can 
• * 

be written as e ® “ . ê *-̂ , which is log normal). Studies have shown that the 

integration of sum of log normal variables cannot be expressed in any closed-
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form expression [58]. As a result, the robustness will be investigated through 

a simulation study. 

^ T h e first step to conduct the experiment is to define a time series repre-

senting the true underlying intraday dynamics Since the normalizations 

involve the use of a nonlinear function (log function) , the magnitude of the 

series should be concerned. Three series with different mean values are used 

as the benchmark for checking the robustness of the expected values. T h e 

three benchmark series are obtained through a linear scaling of the following 

series: 

= d, + cos g + (4.15) 

T h e ccf，Pe is a day-varying periodic series which is composed of two c o m p o -

nents, dt and cos + 导).The former represents the day-varying port ion 

and the latter represents the periodic portion. T h e variable N is set to 39 

to match the actual number of intraday interval per day of our experiment 

data. 

T h e day varying portion dt is formulated to follow a simple oscillating 

sequence: 

dt = d t - i + At (4.16) 

• where At = —At_i when dt = d or dt = d, otherwise At = A t _ i . T h e 

symbols , d and d, denote the upper bound and lower bound respectively. 

T h e series dt is defined by setting di = d, A i = 一0.01, d — 0.05, d = 0 in 

this simulation experiment. 
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O n the other hand, the periodic port ion cos + is used to introduce 

the per iodic pattern in the series T h e shape of the t ime series x f ^ e 

for our simulation study is depicted in figure 4.1. 

Figure 4.1: Shape of the t ime series xf，Pe 

(a) 200 intervals (b) 1200 intervals 

Oil 1 1 1 1 1 1 1 1 » 1 Oil 1 1 1 1 1 

_ _ 
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Overall , the true underlying intraday dynamics is formulated as: 

a^U = scaling . xt^r' (4.17) 

where the parameter scaling is set in a way t o transform the series to 

have a specified mean value. 

T h e second assumption made in our simulation is about the characteris-

tics of the heteroskedastic error. T h e heteroskedasticity of the error is m i m -

icked by the daily change of its standard deviation. T h e standard deviat ion 

of the error 严评） i s assumed to fol low an oscillating sequence: 

c(么s/uxpe) = + A； (4 .18) 
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where 广叩e jg the time index in the above function. AJ = - A J . ^ when 

叩e) = ^ or 叩 e ) = 幽， o t h e r w i s e A； = ^ and a(S) 

are the pre-specified upper bound and lower bound respectively. The series 

(7(5广ape)“is defined by setting = 兩 ’ A； = - 0 . 5 , 兩 = 1 . 1 ， 

a(S) = 0.1. 

Like the procedures to handle the x̂ ^̂  series, an underlying error series 

� ’ ) ape generated at the beginning and the actual error series St is then 

obtained through a linear scaling. The S ^严 is defined as: 

S I 产 � i V ( 0 ， 严 ( 4 . 1 9 ) 

T h e magnitudes of the series and the error series Si j is controlled 

‘ to represent the scenarios with different error intensities. The intensity is 

categorized by the ratio of the averaged value of absolute Si j to the averaged 

value of absolute x j ^ (i.e. In addition, as^the sensitivity 

of the normalizations vary with the change of the magnitude of rc't.n (log 

function is involved in the normalizations), several mean values of the series 

(i.e. E[xi J ) are employed to reflect the properties of the normalizations 

under different operating ranges. 

_' • -Based on the properties of the empirical data, the mean value of the 

一-

‘ approximated intraday dynamics Xt n ranges from -2.017 to -2.394 and -1.840 

- to -2.578 for N A S D A Q and S&P 500 data sets respectively. Furthermore, 

the maximum and minimum values are 1.963 and -7.011 for for N A S D A Q , 

, ' ,,4.230 and -6.540 for S&P 500. In our simulation study, the series of the true 
vidue x^n is assumed to lie within a similar range of Xt,n. The length of the 
• * … 

• • • • 

• % - * • 

* f 

‘ 、 . 
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series is constructed to have 7,800 periods (i.e. 200 days times 39 intraday 

intervals) and the errors series are simulated for 100,000 times. 

Lastly, the expected periodicities for the two normalizations are defined 

as: 

‘ 五 = < 丄 二 ‘ ) (4.20) 

= { f (4.21) ’ 

T h e equation 4.20 denotes the expectation for the original normalization and 

. ‘ the equation 4.21 is for the modified procedure. 

T h e correlations between the two series, the series of the intraday peri-
華 

odicity recovered from x[ „ and the series of the expected periodicity, under 
» 贅 

various situations are tabulated in Table�4 .3 . 

Table 4.3: Heteroskedastic error - Correlation between the true series and the 
expected series • 

Error-to-signal ratio 

0.1 0 .2 0 .3 
Original Modifled Original Modiflad Original Modified 

normal ixation normaliMtion normalization normalisation normaliKatlon normalization 

Mean = -2.6 0.999 >0.999 0.983 0.994 0.912 0.982 
Mean = -2.2 >0.999 >0.999 - 0.987 0.995 0.932 0.985 
Mean = -1.8 >0,999 >0.999 0.990 0.996 0.948 0.987 . 

Note: The numbers represent the correlation between the series of the intraday periodicity 
recovered from the series of Xj and the series of the corresponding expected value. The Error-
tosignol denotes the ratio between the average of the absolute error series and the average of 

� t h e true absolute xj „ series (i.e. The Mean value indicates the the average 
of the true x； ,, seri^ (i.e. E[z't,„l). The boundaries of i j ^ are 2.379 to -6.621’ 2.779 to -6.221 
and 3.179 to -5.821 for the mean values of -2.6, -2.2 and -1.8 respectively. 

With the presence of heteroskedastic error, the correlations from the m o d -



o 

Chap 4: Day-veurying structure for estimating intraday periodicity 118 

Figure 4.2: Expected values: Error-to-signal rat io=0.3 , M e a n = - 2 . 6 

(a) Original Normalization (b) Modified Normalization 
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ified normalization procedure are shown to be greater than those from the 

original normalization. T h e correlations from the modified normalization 

range f rom >0 .999 to 0.982, and the results f rom the original normalization 

are f rom >0 .999 to 0.912, for the nine simulation conditions. T h e gain from 

the modif ied procedure becomes larger when either the mean value or the 

error intensity is increased or both . T h e correlation from the original normal-

ization decreases to 0.912 for the situation of 五 a n d error intensity 

(E[|5tj|]/E[|a:t^^|])) is 0.3, whereas the correlation of the modif ied procedure 

is 0.982 under the same simulation condition. 

O n the other hand, for the presence of homoskedastic errors, the corre-

lations from the original normalization and the modified procedure are all 

greater than 0.999 for the above nine combinations. T h e results are not 

tabulated here for clarity. 
« , 

Overall, as the residuals of the approximation function of the intraday 

dynamics are demonstrated to be heteroskedastiq in the subsection 4.4.3，it 
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is reasonable to assume the approximated series deviates from its true value 

with heteroskedastic errors instead of homoskedastic errors. With the pres-

ence of heteroskedastic errors, the expected intraday periodicity from the 

modified normalization gives higher correlations than those from the orig-

inal normalization under different simulation conditions. The next section 

illustrates the benefits of applying the modified normalization for intraday 

volatility modeling empirically. 
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4.6 Application on intraday volatility model-

ing 

It is speculated that the violation of the implicit constraint may give adverse 

effects on the estimated intraday periodicity. However, as the magnitude of 

the periodicity is not directly measurable, there is no way to obtain its true 

underlying value from the market data and therefore, the performance of 

the estimated periodicity cannot be check straight forwardly. T o show the 

benefits for real applications, the two normalizations are compared on the 

overall performance of modeling intraday volatility series. 

4.6.1 Data description and sampling method 

The descriptive statistics of the two data sets, the N A S D A Q and the S&P 

500 index returns, are summarized in Table 4.1 under the sub-section 4.4.1. 

• The results indicate that the two data sets exhibit excess Kurtosis and their 

returns are significantly rejected by the Jarque-Bera normality test. It is ad-

visable to consider other distribution type to model the intraday innovations 

besides the usage of normal distribution. The empirical works from Boller-

slev and Wilhelmsson demonstrated that the use of t-distributed errors helps 

to handle the high kurtosis when GARCH(1，1) model is employed [20’ 71]. 

Therefore, both normally distributed and t-distributed innovations ^ will be 

employed in this paper. On the other hand, the sample size is set to be 200 

days (7,800 intraday periods) in this study. Under the rolling-sample method 

described in the sub-'section 4.4.3，there will be 528 days (20,592 periods) and 

� T h e likelihood function for t-distribution is based on Bollerslev's work on 1987. |20) 
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387 days (15,093 periods) out-of-sample observations for the N A S D A Q and 

the S&P 500 data sets respectively. 

4.6.2 Specification of Engle's Multiplicative Compo-

nent ARCH model 

Based on the formulation of the high frequency intraday volatility in Engle 

et al's paper [37], an intraday volatility can be modeled by the following 

multiplicative components: 

0"t,n = 5t.n . CTt .凡、介 (4.22) 

where at,n is an intraday volatility, St,n and at are the intraday periodicity and 

• the daily conditional volatility respectively. T h e qt,n is a A R C H conditional 

volatility. 

T w o A R C H structures, G A R C H ( 1 , 1 ) and F I G A R C H ( l , d , l ) are used to 

model the qt,n in our empirical investigation. Besides, bo th normal and t-

distributed innovations will be considered. The performance from three dis-

tinct sets of estimated intraday periodicity St,n，including the day-varying 

periodicity f rom modified normalization, the day-varying results form the 

original normalization and the day-invariant periodicity, will be studied. 

For instance, the overall framework for modeling the intraday volatility 

with GARCH(1，1) [19] structures with normally distributed innovation can 
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be described as: 

St.n • (h 

qt,n = + a . + . gt,n-l 

rt.n � N ( E { n , n ) A s t , n C T t V Q t , n ] ' ) ( • ) 

where denotes a series with heteroskedasticity and k, is its conditional 

mean, ( j , a and P are the G A R C H ( 1 , 1 ) parameters. T h e parameters k,, u, 

� a and P are estimated with the maximum likelihood method. 

Three sets of St�n are provided for the above framework. T w o day-varying 

periodicity series are obtained by setting 二 1 in the modified Fourier form 

function (the equation 4.3) while the day-invariant periodicity is obtained 

by setting <7 = 0. The other parameters for the order of expansion are 

set to 二 2 and P = 4. Expansion beyond this order gives insignificant 

coefficients for the additional parameters. 

On the other hand, apart from studying the situation of normally dis-

tributed innovations, the situation of t-distributed innovations will also be 

considered in our experiment. Furthermore, the performance of the normal-

izations will be checked with FIGARCH(l，d , l ) in addition to the G A R C H ( 1 , 1 ) 

structure. T h e variance equation of FIGARCH(l，d，l) [13] is formulated as: 

ql = + + a'L) • (1 - L)'] ‘ (|t.n-i) ' (4.24) 

where the model parameters become P, a' and d. T h e notation L is the lag 

operator and (1 一 L ” is the fractional differencing operator. T h e parameters 
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are constrained to obey 0 < a;, 0 < d < 1 - and 0 < < a ' + d to ensure 

the positivity of 

The above equation will replace the second line (variance equation) in the 

equation set 4.23 for representing the F I G A R C H ( l , d , l ) structure. 

4.6.3 Evaluation criteria 

The performance of the modeling an intraday volatility process is measured 

by several criteria, including regression Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) . Furthermore, besides the investigation of one-

step-ahead out-of-sample forecast, several forecasting horizons will also be 

studied to reflect the trends among the trends among the multi-step ahead 

performance. 

The regression from the Mincer and Zarnowitz type regression is em-

ployed in this study to measure the in-sample and out-of-sample model per-

formances. The forecasted volatilities are tested against the ’observed volatil-

ity'. The regression takes the form as: 

V- ' ' ' = bo + h ' ai,model + Ui (4.25) 

where VJ is the ’observed variance' and aî modei denotes the forecasted volatil-

ity from the corresponding model. The subscript i is the index for the time 

series and Ui is a zero mean i.i.d. error term. The results listed in this 

paper will be based on the use of the squared innovation as the 'observed 

variance’. ^ 
SSame conclusions are drawn from the empirical analyses with the used of the squared 

return as the 'observed variance'. 

\ 
\ 



Chap 4: Day-varying structure for estimating intraday periodicity 124 

The innovation is defined as: 

� i = 一五 ( n ) (4.26) 

where L and u are the innovation and the return of the period i respectively. 

E {r i ) is the expected value (unconditional mean) of u given the information 

up to the period i. 

The Mean Squared Error (MSE) and the Mean Absolute Error ( M A E ) are 

selected as the other category of measurements. They indicate the differences 

between the forecasted volatility and the 'observed volatility': 

MSE = (4-27) 

MAE = (4.28) 
^ i=i 

where F denotes the number of forecasted results. 

In additional to the investigation of 1-step-ahead forecast, the forecasting 

performance will also be checked for multiple horizon situations. The vari-

ances of involved periods are summed together to represent an accumulated 

variance that covers the corresponding multiple horizons. The forecasted 

volatility for m-horizon with the use of information up to the period i is 

defined as: 

fm � “ 2 
! ： ( 〜 么 m o d ( 4 . 2 9 ) 

\J=1 / 

where ai+j^modei denotes the forecasted volatility for the (z + ; ) - t h period with 
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the use of information up to the period i. For the period z + 1 to z + m , the 

forecasted volatilities are calculated by the model with the same parameters. 

The ai+i^rnodei is the first-step-ahead forecast, cri+2,model is the second-step-

ahead forecast and so on. 

Similarly, the square root of the 'observed variance，that covers m-horizon 

is defined as: 

/ i-fm \ " 2 
E ( 狱 (4-30) 

\k=i+l / 

4.6.4 In-sample fitness 

Three sets of estimated intraday periodicities are compared under the condi-

tions of normally distributed innovations and t-distributed innovations. The 

in-sample results for the GARCH(1，1) and the FIG A R C H ( l , d , l ) structure 

are tabulated in Table 4.4 and 4.5 respectively. The results are the average 

of the 20,592 and 15,093 training samples for the N A S D A Q and the S&P 500 

data set correspondingly. 

For the G A R C H ( 1 ’ 1 ) structure, the modified day-variant periodicity gives 

the best R^ and M S E among the three normalization methods for both NAS-

D A Q and S&P 500 data sets. In contrast, direct application of Andersen k 

Bollerslev's normalization procedure for evaluating day-variant periodicity 

(original day-variant) gives the worst performance for all the measurement 

criteria. The performance of typical day-invariant periodicity ranks in the 

middle for the criteria of R^ and MSE. There is not a clear consensus on 

which normalization achieves the smallest M A E , as the modified day-variant 

method gives the best result for the S&P 500 data while the day-invariant 
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method gives the best result for the NASDAQ data. 

Table 4.4: In-sample fit for GARCH(1,1) 

N A S D A Q '• 
— normally-dlBtributod Innovations t-dlatrtbuted innovntlona — 

Normalization ~ bp bi MSB MAE ~ o bi MSE M A ^ 

Modified (Day-variant) 0.004 0.707 0.1663 0.00875 0.07077 0.010 0.86： '̂ 0.1863 0.00887 0.07084 

Original (Day-vBrient) 0.007 0.675 0.1544 0.00889 0.07116 0.013 0.637 0.1546 0.00901 0.07120 

Dny-lnvarliint 0.005 0.701 0.1554 0.00877 0.0T076 0.011 0.857 0.1554 0.00890 0 . 0 7 0 8 2 、 

SAcP BOO 
normally-distributed innovatione t-dlatrlbuted Innovotlons 

t^rmali..>tion ‘ bp bg MSE MAE ~ o bi MSB MAE 

Modified (Day-variant) 0.001 0.740 0.2060 0.00807 0.06609 0.005 0.709 0.2061 0.00876 0.06808 

Original (Dny-VBrlant) 0.007 0.667 0.1040 0.00909 0.06663 0.011 0.639 0.1937 0.00921 0.06664 

Day-Invariant 0.001 0.734 0.2029 0.00870 0.06608 0.005 0.704 0.2029 0.00879 0.06608 

Note： The values of bo,bi,R^, MSE and MAE are the averaged results from all the training 
samples. 

Table 4.5: In-sample fit for FIGARCH(l,d,l ) 

N A S D A Q 
norniftlly-distributed innovations I t - d l s t r l b u t g d innovatlonB 

Normalisation ^ bi 只 M S B MAE bp bi R MSE MAE 

Modifled (Day-variant) 0.003 0.714 0.1696 0.00870 0.07068 0.009 0.673 O.X609 0.00883 0.07084 

Original (Day-variant) 0.006 0.683 0.1577 0.00886 0.07115 0.011 0.649 0.1683 0.00897 0.07124 

Day-Invariant 0.004 0.708 0.1S85 0.00873 0.07066 0.010 0.668 0.1587 0.008B6 0.07082 

SfcP 600 
1 norntBlly-diBtributed innovations | t-diatributed InnovaUona 

Normalization bp bj MSB MAE 一 bo t i R MSB MAE 

ModlHed (Day-variant) 0.001 0.740 0.3104 0.00866 0.08612 0.007 0.688 0.2081 0.00901 0.06607 

Original (Day-variant) 0.007 0.663 0.1991 0.00921 0.06721 0.013 0.616 0.1958 0.00960 0.06795 

Day-Invariant 0.001 0.736 0.2077 0.00869 0.06620 0.007 0.684 0.2053 0.00903 0.06703 

Note: The values of 60,61, fi^, MSB and MAE are the averaged results from all the training 
samples. 

The same findings are observed for the FIG A R C H ( l , d , l ) structure. The 

modified day-variant periodicity gives the best R^ and MSE, the typical 

day-invariant periodicity gives the second best performance and the original 

day-variant gives the worst. The results of M A E indicates the modified day-

variant method and the day-invariant method achieve the smallest values 

for the S&P 500 and the N A S D A Q data set respectively. The original day-

invariant gives the worst M A E for both data sets. 

Overall, the in-sample results of R^ and MSE show a positive prefer-

ence on the modified day-variant periodicity under the GARCH(1 ’1 ) and 
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F I G A R C H ( l , d , l ) structure for both normally and t-distributed innovations. 

4.6.5 Out-of-sample forecasting performance 

Th e out-of-sample performance over different forecasting horizons for using 

G A R C H ( 1 , 1 ) structure are tabulated in Table 4.6 and Table 4.7. 

Regardless of the distributional assumption (either normally-distributed 

innovations or t-distributed innovations), the modified day-variant periodic-

ity gives the best R^ and MSE for the forecasting horizons ranging from 1 to 

25 and the best M A E for horizons 3 to 25, for the N A S D A Q data set. For 

the S&P 500 data set, it achieves the best MSE and M A E for horizons 

ranging from 1 to 25, except for one specific case. The R^ of 1-step-ahead 

forecast with normally-distributed innovations from the use of the modified 

day-variant periodicity is slight lower than the day-invariant version (i.e. 

0.2178 vs. 0.2180). 

On the other hand, for the F I G A R C H ( l , d , l ) structure, the modified day-

variant periodicity also shows a strong preference over the other methods 

for most situations. According to the results in Table 4.8, the modified 

day-variant periodicity achieves the best R"^ and MSE for both normally-

distributed and t-distributed innovations for all the forecasting horizons when 

N A S D A Q data is employed. However, the M A E for the short horizons rang-

ing from 1 to 5 by using the modified day-variant periodicity are slight worser 

than the results from using day-invariant periodicity. Nevertheless, as peo-

ple always place more emphasis on M S E instead of M A E for performance 

evaluation purpose, the modified day-variant periodicity can be considered a 

better candidate as a whole. 
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The forecasting performance on S&P 500 data tabulated in Table 4.9 also 

reflects the superiority of the modified day-variant periodicity. Among the 

12 distinct situations with different forecasting horizons and distributional 

assumptions, the modified day-variant periodicity achieves the highest R"̂  for 

10 time咨 and lowest M S E and M A E for all 12 times. 

Overall, the modified day-variant periodicity tends to produce better out-

of-sample and M S E for various forecasting horizons (i.e. 1 to 25 periods). 

The above conclusion is valid for both G A R C H ( 1 ’ 1 ) and FIG A R C H ( l , d ’ l ) 

structure with either normally or t-distributed innovations. T h e superiority 

of the modified day-variant periodicity is demonstrated. 
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4.7 Concluding remarks 

The limitations of direct application of Andersen k Bollerslev's method 
V 

for modeling day-variant intraday periodicity are addressed in this paper. 

Firstly, the original method does not consider the potential conflict appear-

ing in the normalization procedure. It is shown that the resultant periodicity 

violates the implicit constraint, which is derived from the initial modeling 

assumption, in some situations. As a result, the overall intraday variances 

cannot be aggregated to form reasonable substitutes for their corresponding 

daily variances. 

Secondly, the original normalization procedure is shown to be suscepti-

ble to heteroskedastic errors. It is demonstrated that the time series of the 

expected periodicity is deviated from its true value when the approximated 

series is contaminated with heteroskedastic errors. The conjecture of the 

presence of heteroskedastic errors is supported empirically. The approxima-

tion errors of the smoothing function are demonstrated to have non-constant 

variances. The Bartlett's Test and the Brown-Forsythe's Test significantly 

rejected the null hypothesis of constant error variance at 5 % significance. As 

the approximated results are used as the substitute of the true underlying 

dynamics, it is reasonable to assume the approximated series to be devi-

ated from its true value with heteroskedastic errors instead of homoskedastic 

errors. 

To formulate a better day-variant intraday periodicity, a modified nor-

malization procedure that ensures the fulfillment of the implicit constraint is 

proposed. The modified procedure regulates the magnitude of the periodic-
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ities with reference to the size of their corresponding daily variances, guar-

anteeing that the coherence of the intraday variances and their aggregated 

results is met. For the robustness on heteroskedastic errors, the modified 

procedure is demonstrated to outperform the original normalization through 

numerical simulations. The time series of the expected periodicity from the 

modified method match the underlying true series closer with higher than 

the original normalization does under various heteroskedastic situations. 

On the other hand, the application of the modified periodicity in volatil-

ity modeling is also investigated in this study. Our method is tested with 

GARCH(1，1) and FIGARCH(l，d，l) structures by using 10-minute returns 

of the N A S D A Q index (3-year period) and the S&P 500 index (2.5-year pe-

riod). Both normally distributed and t-distributed innovations are considered 

in our investigation. The performance measures include regression mean 

squared error and mean absolute error. Apart from studying the 1-step-

ahead forecast performance, several multiple-step-ahead forecasting results 

(up to a 25-step-ahead forecast) are also involved. 

By comparing with the original day-variant intraday periodicity and the 

• day-invariant version, our proposed day-variant periodicity is demonstrated 

，to give superior performance in both in-sample fitness and out-of-sample fore-

cast. T h e proposed method is always shown to produce the highest H? and 

the lowest MSE. Our findings indicates that the allowance of the periodicity 

to be day-variant can help to improve the modeling accuracy of an intraday 

volatility process as a whole. 

« 
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4.8 Supplementary note 

4.8.1 Equivalent modeling performance by scaled in-

traday periodicity series 

Based on the application of intraday periodicity for modeling an intraday 

volatility process, it can be demonstrated that the use of a scaled intraday 

periodicity series produces the same overall performance as the original series 

does. 

Let st，n be the original intraday periodicity series and be the scaled 

version: 

= C . (4.31) 

where C is a real number constant. 

Consider the deseasonalized series f〔打 obtained with the use of the scaled 

series 

-/ 一 n’n - E{rt,n) 
^t.n 一 

= - E{rt,n) 
一 C . St,n 

二 1 - E{rt,n) 
一 C St,n 

= i • (4.32) 

The ft,n equals to the series deseasonalized by the original series St,n- It can 

be observed that the deseasonalized series f；^ can be expressed in terms of 
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Let be the A R C H volatility of the series ft,n- Based on the above 

equation, the volatility of the deseasonalized series can be written as: 

= (4.33) 

The a^^ denotes the conditional volatility of the series 

Since the volatility of an intraday return at̂ n is defined as a multiple of 

the intraday periodicity and the volatility of the corresponding deseasonalized 

series, the at,n can be written as: 

f̂ t.n = s't,n • K n 

= ( C • 5t.n) • • ^t.n) 

= S t . n . � n (4.34) 

The second line in the above equation set is supported by the equations 4.31 

and 4.33. This demonstrates the two normalizations give identical results 

for the situation that the intraday periodicity is non day-varying. When the 

periodicity varies along days, the ratio C will no longer be constant for all 

days and its influence cannot be offset. 

4.8.2 Characteristics of the two normalization proce-

dures for evaluating day-invariant periodicity 

The Andersen h Bollerslev's normalization procedure and the modified nor-

malization procedure give different influence on modeling the intraday volatil-
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ity process when the intraday periodicity St,n is allowed to be changed along 

days. However, they give identical performance for the case that St,n does 

not vary along days (i.e. St̂ ,n = St̂ n̂ for all possible 亡1,̂ 2 within the sample 

data). The following paragraphs elaborate the concept. 

Bearing in mind that the Andersen & Bollerslev's normalization proce-

dure is defined as: 

S-exp(^) , 、 

where S is the sample size of the intraday return series. ii,j is the approxi-

mated intraday dynamics of the return series. It can be re-written as: 

st.n = fc.errp(字） （4.36) 

where k = SjT^L义 Ef=i exp^Y) 

On the other hand, the modified normalization procedure is: 
春 

VN.expi^) 

where N is the number of intraday interval per day. 

For the situation that the intraday periodicity 5t,n is restricted to be 

non day-varying, the it’n must be invariant across days.® Therefore, the 

denominator of the modified normalization becomes constant across days 

®The order J of the approximating function /(9|<7t,n) (Flexible Fourier form) in the 
equation 4.3 decides whether St.n is allowed to be changed along the day index t. When 
J > 1, the st,n depends on its corresponding daily volatility at and the values of St,„ vary 

^ ^ along the day index t. The condition of non day-varying St,n implies J = 0. 
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and the modified normalization can be regarded as: 

s ,n = k ' ^ e x p i ^ ) (4.38) 

where k' = v ^ / ( E f = i = \ / i V / ( E - L i for all 

in the data sample. 

As a result, it can be observed that the values of intraday periodicity 

recovered from the two normalization methods only differ from each other in 

a constant ratio when the the Xi j is day-invariant. 

Using the result from the supplementary note 4.8.1, we know for sure that 

the two normalizations give equivalent performance on modeling an intraday 

volatility process when the St,n is non day-varying. 

• End of chapter. 
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Chapter 5 

Impact of the overnight 

information on daily volatility 

modeling 

Summary 

The overnight return is one kind of information that can re-
flect the volatility of the corresponding financial instrument. 
However, all volatility estimators, either based on range-based or 
high-frequency data, do not include this information in their formu-
lations due to the incompatibility of the involved sampling interval. 

In this study, we explore the possibility of incorporating the 
overnight variance indirectly through the use of linearly combined 
daily volatility estimators. Our empirical results demonstrate that 
the inclusion of-overnight variance can produce substantial influ-
ence when the minimum-variance constraints are relaxed. . Be-
sides, the influence is revealed to be not monotonic as an in-
crease of the overnight proportion does not necessarily produce a 
larger influence. Furthermore, it is demonstrated that the inclu-
sion of overnight variance can improve the prediction accuracy of 
the C B O E volatility indexes ( V I X and V X D ) under specific weight 
combinations. Our findings contradict the common perception that 
overnight return does not contain useful information for volatility 
modeling. 
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5.1 Introduction and the research objective 

The overnight return, the return that results from the price difference be-

tween last market close and current market open, is one kind of information 

that can reflect the volatility of the corresponding financial instrument. How-

ever, not all volatility estimators make use of this information in their for-

mulation. For example, the estimators proposed by Parkinson [64], Garman 

Sc Klass (o-J) [41], Rogers k Satchell [66] and even the standard realized vari-

ance [10] do not incorporate overnight returns whereas estimators proposed 

by Garman & Klass (a|) [41], Yang & Zhang [73] and Hansen k Lunde [46 

do. There is no consensus on which kind of estimators, with and without 

overnight return, can better capture the underlying volatility in stock mar-

ket. Furthermore, some estimators are based on daily range quotes while 

some are base on high frequency quotes and this further complicates the 

problem about the appropriateness of incorporating overnight return in the 

formulation of volatility estimators. 

One practical usage of volatility estimators is to set them as the infor-

mation sources for volatility prediction. Popular volatility prediction models 

such as variants of A R C H / G A R C H [19’ 36, 35, 47] and RiskMetrics [60] are 

shown to satisfactorily capture the underlying dynamics. However, most of 

their variants are not suitable for handling non-negative time series as an 

information source. To properly handle the non-negativity, Engle proposed 

to model the error in the series as the multiple of the conditional mean es-

timates, adopting it as the mean equation in the G A R C H framework [36 . 
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This model is known as the Multiplicative Error Model ( M E M ) and it can 

provide consistent results for various distributions of error terms under its 

quasi maximum likelihood estimation method, making it robust to ambigu-

ous error assumptions [52’ 38 • 

Besides using econometric models to measure future volatility, there is 

another way to indicate the level of fluctuation in the future. The Chicago 

Board of Options Exchange ( C B O E ) , the world's largest options exchange, 

•has compiled volatility indexes by averaging the weighted prices of put and 

call options to measure the market expectation on future volatility[75]. The 

C B O E market based volatility index has been related to the model based 

conditional volatility in recent literatures. Blair et al. investigated the in-

formation content of V I X for the prediction of G A R C H volatility and found 

out the current V I X value contains the richest information content for 1-

step-ahead predicted realized volatility [18]. Besides, Engle & Gallo studied 

the possibility of using M E M volatilities to improve the prediction of V I X in 

2006. They demonstrated multi-step average volatilities can be incorporated 

as statistically significant regressors in the auto-regression of V I X [38 , 

In this study, the impact of overnight information on volatility prediction 

is explored. W e investigate the characteristics of M E M volatilities result-

ing from various degree of overnight component and assess their incremental 

information content accordingly. Our study aims to address the following 

issues: 1) To what extent overnight information affects M E M outcomes; 2) 

Whether range-based and high-frequency estimators behaves differently; 3) 

Whether the inclusion of overnight information provides additional informa-

tion for predicting market-based volatilities. This study is divided in two 
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phases to tackle these issues systematically. In the first phase, the relation-

ships among the predicted conditional volatilities from range-based and high 

frequency estimators with and without overnight information are studied. 

In additional to the defined minimum-variance situations [41’ 46], a gener-

alized framework is proposed to broaden the investigation. Afterward, the 

incremental information content of the predicted volatilities is assessed by 

the improvements on the auto-regression of market based volatility indexes 

in the second phase. 

Our work is organized as follows. Specifications of various volatility esti-

mators are in Section 5.2. A brief introduction of Multiplicative Error Model 

( M E M ) and the model settings for our study are in Section 5.3. Empirical 

• investigations of impacts of overnight information are discussed in Section 5.4 

and 5.5. Section 5.6 summarizes our findings. 

1 
參 
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5.2 Specifications of daily volatility estima-

tors 

Four estimators are selected as input sources for M E M models in our study. 

Garman and Klass's 'estimators are selected as range-based estimators to 

• measure the volatility in active trading period ( d l ) and whole day period (a|) 

respectively. For high frequency estimators, Newey-West realized variance 

i^Nvy) and Hansen and Lunde's whole-day-based minimum-variance realized 

variance {^IjhoieRv) are chosen. Figure one illustrates the time spans of these 

estimators. Overnight information is embedded in both whole-day-based 

estimators, and alf^^i^j^y . 

OvemlghilnlonnaliQn Adnekadng 
ofdayl intomaliono<dayl • 

/ K y^^K~\ Tin. 
H f 1 1 1—^ 

f&CO 1&00 MO 咖 脑 
Endoficttn Endofadiw SMoiactw Endafadv* Endo(sc)m 

Iradngotdayhi lndngddiyl-1 bidinoofdarl Indngofdiyl IndingofdayNn 
. V _ _ , 

WMa day period of dayl 
Ranoe-based esfcnalofs: 
(fj-tttudonKiv«tradingMooratton (Ĵ^ -basedonwemigMandKlh«Mnginformabon 

HWHfBwmywtiTOlw: 

(T̂ -̂bisedonaĉ tradhgMxmalon dyĵ jH** based on ovwnlghlindactfvflmSng information 

Figure 5.1: Illustration of the scope of four estimators 

/ 

5.2.1 Garman & Klass's volatility estimators 

Garman and Klass proposed a number of estimators in their seminal paper in 

1980 [41]. Among the few estimators, there is one for estimating the volatility 

in active trading period and one for whole day period. The estimator for 
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active trading period is formulated as follows. . 

a^ = 0.511(u - df — 0.019[c(u -{• d) - 2ud\ - O.SSSc^ (5.1) 

where Ct and Ot are the log values of the closing price and the opening price, 

Hi and Lt are the log values of the highest price and the lowest price for day 

t respectively. The normalized high, low and close are expressed as u, d and 

c individually, where u — Ht — Ot, d — Lt — Ot and c = Ct — Ot. 

The whole day version is formulated as : 

殆 F g o , - + 的 （5.2) 

1 ^ 

where f is the fraction of that day that trading is closed and it is set to 

1050/1440 in our study, a is a weight parameter and it is set to 0.12 to 

achieve minimum-variance property regardless of the value of / . 

5.2.2 Realized variance and Hansen Lunde's whole-

day-based variance estimator 

Standard Realized variance is the most well-known high frequency estimator 

to measure the volatility in an active trading period. Its formulation for day 
I 

t is : 

- > - � m 

= (5.3) 
. 1=1 

4 

t 
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where Xi denotes the time, p{xi) is the price at time Xi, A is the sampling 

interval, m is the total number of intraday price recorded (excluding the 

opening price) in a day and p{xo) is the opening price of day t. 

An important concern about the estimation of realized variance is whether 

the return series is autocorrelated or not [63]. The standard realized variance 

becomes biased when the returns are autocorrelated and the result should 

， t h e n be adjusted accordingly. The autocorrelation phenomenon always hap- ‘ 
I 

pen in high frequency data and there are various ways to offset the bias. 

� Hansen & Lunde suggested an estimation method to handle the bias and 

regarded it as the Newey-West modified realized variance [45]. This method 

is based on Bartlett kernel and is guaranteed to be nonnegative. The Newey-

West modified variance for day t is defined as: 

m g m—h 
^ I w = E 认2 + 2 乞 ( 1 - ) E yiVi+h 

t=i h=i y 卞丄 i=i 
Vi = p{xi) - p(xi - A ) (5.4) 

the variable q represents the lag-length and it is set to q = ceil(^) where 

w is the desired length of lag window and d is the total length of sampling 

period (trading period) in minutes[45 

For the whole day period, Hansen and Lunde defined an optimally com-

bined whole day variance estimator in 2005 [46]. It is a minimum-variance 

estimate constructed by weighted squared overnight return and Newey-West 

modified realized variance. The following equations show the settings for 



、 
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Hansen and Lunde's minimum-variance whole-day-based estimator (or^fioieRv)-

^wholeRV — ^l^'l.t + ^^^NW^t 

= ( l l 严 
Ml 

, Mo 
= � — 

^ = A l̂̂ l 一 ̂ 1^27712 

+ MlT?! - 2/XiM27?12 
(5.5) 

where cjJ and cjJ are the optimal weight for the min-variance estimator. 

^ is the squared overnight return. f i Q � a n d fi2 are the expected value 

of integrated variance, overnight variance and Newey-West realized variance 

respectively. 771,772 and 7712 are the variance of overnight variance and Newey-

West realized variance and their covariance respectively. 

ft 
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5.3 Specification of Engle's Multiplicative Er-

ror Model 

The way to employ volatility estimators as input series for GARCH type 

models is different from those for treating returns as the input series. Due 

to the non-negative nature of the volatility estimators, it is difficult to use 

traditional G A R C H type models, which is based on linear formulation on 

return process, to estimate the model parameters as the variance and higher 

moments of the error distribution are unlikely to be constant [36]. Engle 

proposed an efficient way to model non-negative series in G A R C H framework 

by treating the series as a composition of its conditional mean multiplied by 

a unit-mean error term. This multiplicative error structure is able to provide 

consistent results for error terms belong to a family of gamma distribution 

as the corresponding first order optimality conditions on the log-likelihood 

functions is the same. 

The M E M (1,1) model is defined by the following two equations. 

Xt = fjbtet Mean eqt. (5.6) 

叫 = c j + a x t - i + PfJit-i + c 'zt-i Variance eqt. (5.7) 
\ 

In the mean equation, Xt is the non-negative time series, fit is the conditional 

mean estimates and et represents a unit-mean gamma-distributed i.i.d. error 

process. The variance equation is similar as that in the G A R C H framework 

by replacing the error squared term with Xt in the A R C H term. Furthermore, 

exogenous variables are treated by including Zt in the variance equation. 

-r 
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The first order optimality condition for maximum likelihood estimation 

is: 

l l - M 肩 - 命 （5.8) 

where 9 is the parameter set { a , P and d) to be estimated and T is the size 

of training sample. 

The MEM(1 ,1 ) framework is employed to predict the future volatility 

based on the most up-to-date volatility estimates. This framework has been 

successfully modeled the dynamics of non-negative volatility series, including 

range-based and high-frequency estimates, in some applications [38’ 51, 50 

and has been extended to multivariate cases recently [25]. We treat Xt in 

equations 5.6, 5.7 as a proxy to represent the input series (volatility estimates) 

for the model. 
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5.4 Correlation analysis among models with 

and without overnight information 

Correlation analysis on the predicted conditional volatilities from M E M with 

and without overnight information are used to study the overnight impact. 

As stated in Section 5.2, a j and ( 5 a r e estimators without the consideration 

of overnight return in their formulation while o"! and o-^hoieRV are estimators 

with overnight return. 

To model the M E M 1-step-ahead conditional variances, we leave the ex-

ogenous term in equation 5.7 empty and replace the Xt in equation 5.6 by 

the estimators defined in equations 5.1- 5.5 correspondingly. Since the es-

timators represent variance for different time spans as stated in figure 5.1, 

their magnitudes are naturally different. Therefore, we employ the corre-

lation coefficient as a scale-independent measure to evaluate the impact of 

overnight information. For instance, if all overnight returns equal to zero, 

the correlation will be 1. A small correlation demonstrates a large impact 

from overnight returns. The predicted conditional volatilities (i.e. square 

root of the conditional mean estimates) are named as MEM-a^, MEM-o^, 

MEM-(Jnw, and MEM-a^hoieRV respectively for the rest of this paper for 

clarity. 

厂、. 

I 

) 
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5.4.1 Generalized whole-day-based variance formula-

tion 

Observing that the minimum-variance estimators in equations 5.2 and 5.5 

can be formulated as: 

Vart = wiOn^ + W2Actt (5.9) 

where Vart and Actt represent variance estimates of whole day period 

and active trading period on day t respectively. wi and W2 are weight factors 

and Out is the overnight return. Vart can then be considered as a linear com-

bination of squared overnight return and variance estimate of active trading 

period. 

The minimum-variance estimators, a^ and ^Ij^oieRv^ can be considered 

as a particular weight combination. Scholars may use weights other than 

the minimum-variance weights to construct whole-day-based variance esti-

mators. For example, Blair [18] and Gallo [40] use weights with wi:w2 = 1:1 

to construct their estimators for whole day period. Sometimes, people may 

simply set ii/i = 0 as it is supposed that the magnitude of overnight variance 

is comparatively small and cannot give significant influence on the outcomes. 

To broaden our investigation of impact from overnight information, we try 

to consider all the possible combinations of positive wi and W2 and formulate 

the estimator for whole day period as: 

Van = { w i + w 2 ) [ — ^ + —ActA 
Wi + W2 Wi + W2 

= + W2){X0n'} + (1 - X)Actt) (5.10) 
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where A is some positive scalar and 0 < A < 1. A can be considered as a 

variable that governs the composition and its value indicates the influence of 

overnight information on a whole-day-based estimator. The portion XOnf + 

(1 — X)Actt represents a scaled version of Vart. 

As our MEM models do not have any exogenous variable, the scaling 

factor, Wi + W2�only adds a constant term, Tlog{wi + W2)�to the likelihood 

function in equation 5.8. The optimal conditional variances for the original 

series therefore only differs the scaled version in a factor of Wi + W2. In 

other words, the value of conditional volatilities for the original series equals 

to those from scaled series multiply y/wi + W2. Since we use correlation to 

compare the overnight impact and linear regression to reflect the incremental 

information content of the predicted conditional volatilities, the properties of 

scaled form XOnl + (1 — X)Actt can therefore demonstrate the corresponding 

properties of the original series. Our generalized whole-day-based formula-

tions are as follows. 

general a^^ = \0n] + (1 - \)aXt (5.11) 

general = XOn] + (1 - (5.12) 

where general a j ^ and general a\yi represent generalized variance esti-

mators based on range information and high-frequency information respec-

tively. Our refined study will use these two estimators to substitute the Xt 

in equations 5.6 and 5.7 for evaluating the impact of overnight return. Their 

corresponding predicted conditional volatilities are labeled as MEM-general 

<74 and MEM-general (Jrv. 



Chap 5: Impact of the overnight information . 153 

5.4.2 Preliminary study on the empirical data 

T w o index data sets, S&P 500 and Dow Jones Industrial Average (DJIA) , in 

the period of 13 March 2006 to 11 January 2008 (458 trading days) are used 

in our study. The index values are sampled every 10 minutes starting from 

9:30 to 16:00 inclusively. In addition, the daily close of their corresponding 

volatility indexes, V I X and V X D , are used for the regression analysis to 

investigate the information content of the predicted volatilities. 

Our data selection scheme for model training is based on a rolling sample 

approach. For instance, if the sample size is m, the first sample for model 

training will be the 1 to m observations, the second sample will be the 2 to 

m + 1 observations and so on. In this study, the size of training sample is 

3 / 5 of the total available data of each data set. The set of input samples 

are used to produce their corresponding 1-step-ahead predicted conditional 

volatilities. Afterwards, the correlation among the resultant predicted series 

are measured to reflect the impact of overnight information. The predicted 

series are used as sample data for the regression analysis of volatility indexes 

in the second phase study. 

An important concern about the calculation of realized variance is whether 

the return series is autocorrelated or not. If the return series is autocorre-

lated, the calculated result should be adjusted to offset the bias caused by the 

autocorrelation. In our study, the realized variance is estimated with the use 

of 10 minute intraday returns. Figure 5.2 contains the "autocorrelation plots 

of two return series, S&P 500 and DJIA, with 95% confidence bounds. It in-

dicates that the first serial correlation coefficients of both series are nonzeros 

and the series of DJIA has some other nonzero coefficients in lag 3, 5, 9 and 
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10. To tackle the autocorrelation problem, we apply the Newey-West method 

in equation 5.4 to estimate the realized variances for this study. Following 

Hansen Lunde's practice, we select the a fixed value for the desired length 

of lag window for bias adjustment [46]. The autocorrelation plot (figure 5.3) 

for 30 minute intraday returns shows the series are not suffered from the 

autocorrelation problem and therefore we choose the length of lag window to 

cover 30 minutes (7ii=30). 
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Figure 5.2: Autocorrelation of the 10 minute intraday data - S&P 500 and 
DJIA (with 95% confidence level bounds) 

The descriptive statistics and correlation coefficients among squared overnight 

return (On^), squared sigma 4 { a j ) and Newey-West realized variance (a^vy), 

are reported in Table 5.1. 

The mean of O n � i s much smaller and its magnitude is less than 1/100 

of those of a l or for both S&P 500 and DJIA cases. Furthermore, the 

distribution of On^ is more asymmetric and has thicker tails than the two 

variance series. Observation of a few large On? accounts for the high values 

of kurtosis. The low correlations of Ot\? to either o-J or a h ^ indicate that 
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Figure 5.3: Autocorrelation of the 30 minute intraday data - S&P 500 and 
DJIA (with 95% confidence level bounds) 

it contains information other than those in the two variance series. Besides, 

the correlation between a l and is not very high (less than 0.8) and this 

indicates the two estimated variance series are different from each other. 

5.4.3 Results from models under minimum-variance 

assumptions 

As mentioned in Section 5.3, the estimators a l and o-^hoieRv consider overnight 

information in their formulation while a j and do not. It is interesting to 

know whether the inclusion of overnight information in the estimators gives 

noticeable impacts on the predicted volatilities. M E M volatilities without 

overnight information (MEM-(J4, MEM-CTATW/) are considered as the corre-

sponding base series for comparison purpose. The correlation (p) between 

the base series and the testing series, which contains overnight information, 

are calculated to reflect the impact. The value of p will be 1 if the overnight 

returns are zeros and as a result, a large correlation demonstrates a small 
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S&iP 500 

的 A w 

Mean 6.74E-07 4.55E-05 5.21E-05 

“Median “ 1.18E-09 “ 2.58E-05 “ 2.78E-05 
~ ~ M a x 4.49E-05 5.33B-04 6.29E-04 
“ M i n “ 0 2.00E^06 ‘ 3.13E-06 
“ S . D . 3.49E-06 5.97E~05 “ 6.54E-05 

Skewness “ 9.07 — 3.86 3.31 ‘ 
Kurtosis 97.65 ‘ 23.28 19.85 

Correlation 
On2 0.245 0.207 

with a j 0.847 
D J I A 

a'i d 力 … 

Mean 7.69E-07 1.31E>-04 5.23E-05 

“Median 9.20E-09 1.04E-04 3.Q0E-05 
M ^ 5.75E-05 9.Q9E-04 5.45E-04 
Min 0 4.90E-06 2.79E-06 

3.86E-06 9.96E-05 6.10E-05~ 
“Skewness 9.24 2.86 3.10 
"Kurtosis 115.10 15.69 16.99 

Correlation 
“with On^ -0.147 -0.009 

a j 0.794 

Table 5.1: Descriptive statistics of squared overnight return ( O n ? ) , Squared 
Sigma 4 ( a f ) and Newey-West realized variance 

impact. 

ARCH(2) Q(12) 
SSiP 500 mean mean 
MEM-g4 - 0.476 8.529 
MEM-g6 0.476 8 . 5 ^ 

MEM-gjvvv^ 0.885 7.139~ 
MEM-g^fcotaflv 0.885 7.139 

a r c h (2) Q(12) 
D J I A mean mean 

MEM-ovi - 0.368 13.415 
MEM-cre 0.368 13.439" 

一 MEM-CNW 0.994 7.095 
M E M - g — 0 . 9 9 4 7.0厂 

Table 5.2: Diagnostics information for the M E M models 

T h e model fitness is checked by A R C H test on the standardized residuals 

and Ljung-Box test on the squared standardized residuals. Since rolling 
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sample approach is used in this study, there are 184 M E M structures for a 

single input estimator and we propose to access them by the average values 

of the test statistics t o avoid the abnormality caused by few specif ic samples 

with highly fluctuating values. T h e results of A R C H ( 2 ) test ( 5 % critical 

va lue=5 .99 ) and Q ( 1 2 ) ( 5 % critical va lue=21 .03) , are reported in table 5 . 2 � 

and no major specif ication problems are signaled by the diagnostics. 

T h e impact of overnight information is assessed by the correlation coeff i -

cient between models with and without overnight variance. For range based 

estimators, the correlation coefficients between MEM-£74 and MEM-ere are 

1.000 for b o t h S & P 500 and D J I A . It can b e explained by the highly con-

trasting weight ratio in the formulation Under the minimum-variance 

situation, is calculated as 0 . 1 6 5 * 0 n ? + 3 .249*a| and the ratios of the 

mean of On^ t o are 1 : 68 for S & P 500 and 1 : 170 for D J I A . i A s a result, 

including On^ in the formulation gives an extremely small impact to and 

thus the MEM-cre should b e highly correlated with MEM-cr4. 

On the other h 如 d , for b o t h S & P 500 and D J I A dataset, the correlation 

coefficients between MEM-C7NM/ and MEM-cr^hoURV are also equal to 1.000. 

T h e weight ratios between the mean of On^ t o are 1 : 77 and 1 : 68 for 

S & P 500 and D J I A respectively. ^ These results are different f r o m Hansen k 

Lunde 's finding [46] as the magnitude of overnight variance of market index 

is much smaller than those appeared in individual listed stocks. W i t h such 

high correlation among the M E M volatilities, it is conc luded that the effect 

of overnight information in either Garman ' s or Hansen's whole-day-based 

1 Elaboration on the calculation of the weight ratio of dl is documented in the supple-
mentary note 5.7.1. 

^Elaboration on the calculation of the weight ratio of cr'̂ hoieRV is documented in the 
supplementary note 5.7.2. 
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variance is minimal under the minimum-variance situation. 

5.4.4 Results from models under the generalized whole-

day-based formulation 

Th e empirical results in the previous section show that overnight return 

square ( O n ” cannot give a significant impact on the M E M . However, the 

composit ion of the involved estimators, a l and ^l,hoieRv ‘ are constrained by 

the minimum variance situation and therefore other possible combinations 

have not yet been studied. The minimum variance assumption is relaxed 

and an investigation under the general situation specified in equations 5.11 

. and 5.12 is carried out. A n experiment has been conducted by adjusting 

A from 0 to 1 with 0.001 for each increment and the results are recorded 

accordingly. 

� S&P 500 - ARCH(2) test 
Si I I I —•I 1 1 1 1 1 r 

---Mean: MEM-ganeral ô  
* • Mean: MEM-oeneral o^ ^ 

广 i 
2 - r 

i 

U nl I I 1 1 1 1 1 1 1 U 
0 0.1 02 OJ 0.4 0.6 0.7 0.8 0.9 1 

X 
, DJIA-AnCH(2) lest 

g| • i 1——；~I ‘ -—» • > ‘ r 
-藝-Mean； MEM-genafslô  
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Figure 5.4: A R C H ( 2 ) model fit measure under the generalized weighted ap-
proach 
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Figure 5.5: Ljung-Box( 12) model fit measure under the generalized weighted 
approach 

The model diagnostic information is visualized by figures 5.4 and 5.5. In 

general, MEM-general (74 tends to have smaller A R C H ( 2 ) values, which can 

‘ be interpreted as better model fit, than MEM-general cr^v over a large range 

of A. However, Ljung-Box test gives an opposite result indicating M E M -

general ajiv always has a better fit. So, there.is no consensus to differentiate 

which type of estimator has a better model fit. For the validation of M E M , all 

� t h e mean values of A R C H ( 2 ) statistics for either MEM-general (74 or M E M -

general cTflv are smaller than the critical value (5.99) for all possible A. For 

‘ L j u n g - B o x ( 1 2 ) test, the means of MEM-general A^ and MEM-general GRV is 

larger than the critical.value when A >0.999 for S&P dataset. For DJIA data, 
會 

the no autocorrelation hypotheses are rejected when A >0 .987 and A >0.982 

for the cases in MEM-general A^ and MEM-general GRV respectively. As a 

result, we conclude that the M E M models are valid for S&P 500 dataset 

4 



Chap 5: Impact of the overnight information . 160 

under 0 < A <0.998 and DJIA under 0 < A <0.981. 

The impact of the overnight return is reflected by the correlation graphs. 

Figure 5.6 depicts the correlation among the predicted volatilities for A from 

0 to 1 inclusively. To improve the visibility, the pTot is zoomed to give the 

view for p >0 .9 in figure 5.7. 
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Figure 5.6: Comparison of correlation coefficient under the generalized 
weighted approach 

For S&P 500, MEM-general (74 and MEM-general aRv give similar be-

havior. The correlation coefficients stay nearly constant (almost equal to 

1) until A reaches around 0.4 and decrease sharply to the local minimum. 

The p then bounds back to a high value and oscillates until A attains a high 

value. Specifically, the p of MEM-general C74 decreases sharply from around 

'A=0.39 to the local minimum at A=0.437 with p=0.917. The p increases and 

rebounds to the original level at A=0.51. A similar U-shape pattern is also 

observed in MEM-general cjyvw but the region is shifted to 0 .40< A <0.52 

with the local minimum at A=0.433 with /9=0.927. 

• 
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MEM-g«rw«l o^ vi. M6M-ô  f： i ‘ i 
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Figure 5.7: Correlation coefficient under the generalized weighted approach 
{p > 0.9) 

For DJIA, the U-shape of MEM-general 0-4 appears around the range of 

0 .81< A <0.88. The range for MEM-general any is around 0 .48< A <0.59. 

Their local minima are at A=0.835 with p=0.765 and A=0.517 with p=0.845 

respectively. The shift of the U-shape can be explained by the difference of 

the magnitudes between the af and 

To summarize, the appearance of a U-shape portion in every curve demon-

strates the inclusion of overnight information can influence the characteristics 

of M E M volatility. However, the influence is not monotonic as an increase of 

overnight proportion does not necessary produce a larger change in correla-

tion. 
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5.5 Modeling CBOE volatility index using MEM 

volatility 

The information content of M E M predicted volatilities is assessed by their in-

fluence on the prediction of market based volatility indexes (VIX and V X D ) . 

V I X aims to capture the volatility of S&P 500 index while V X D aims at Dow 

Jones Industrial Average (DJIA) [75 . 

5.5.1 Regression models for V I X / V X D prediction 

Under ideal efficient market hypothesis, risk neutral assumptions and the 

absence of insider information leakage, the model based predicted volatility 

and the market based volatility index should contain the same information 

content. However, these ideal situations is not valid for the real case and 

the information content of the two volatilities are usually different. Fur-

thermore, their coverage on time horizon are different. The options used to 

computed the indexes last for around 30 calendar days covering both trading 

and non-trading overnight period [75] while the model based prediction may 

be based on estimators without any overnight component. As the market 

based volatility indexes cover the volatility for both overnight and active 

trading period, it is interesting to know whether the inclusion of overnight 

information in model based volatility can provide any additional predictive 

value. For the simplicity, the existence of any incremental information con-

tent of the overnight return is checked by simple linear regression models 

based on the ordinary least squares method. The general regression model 
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is as follows : 

MIt — K. -f 7M/t_i + SMemRanget 

+�MemHighFreqt (5.13) 
t 

T 

M I is the market based index, such as V I X and V X D . k, 7 ,6 and C are 

the regression coefficients, MemRanget and MefnHighFreqt are the proxies 

that represent the M E M predicted volatilities for day t with various weight 

on overnight composition. The estimators in equations 5.1, 5.2 and 5.11 are 

substituted as the range-based proxies {MemRanget) while 5.4, 5.5 and 5.12 

are as high-frequency proxies (MemHighFreqt) respectively. 

By placing restrictions on certain parameters, we can define four different 

models. 

1. Base model of A R ( 1 ) for the prediction of market based index 

by setting (5 = C = 0 

2. Model with the use of range-based information as an additional regres-

sor: C = 0 

3. Model with the use of high-frequency information as an additional re-

gressor: (5 = 0 

4. Unrestricted model that incorporate both range-based and high-frequency 

information 

The regression results are compared relatively to the base specification(i.e. 

simple A R ( 1 ) model). Adjusted R-square and F statistics are used as per-

formance measures. Although the value of market indexes constructed by 
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C B O E represents volatilities in annual basis, the regression models are still 

valid as the model coefficients can absorb the scaling effect. 

5.5.2 Results from models with and without overnight 

information 

Observing that overnight information gives a noticeable impact in specific 

ranges, it is interesting to know whether the impact contains useful informa-

tion or not. We assess the incremental information content by treating the 

MEM predicted conditional volatilities as exogenous variables to predict the 

market based volatility indexes (VIX and V X D ) . For the simplicity, simple 

linear A R ( 1 ) OLS regression models are used in this study. The base model 

defined in equation 5.13 is used as the baseline for comparison purposes. 

M E M volatilities which help to increase the adjusted R-square and pass the 

join zero coefficient test with 95% confidence (indication of the coefficients 

are non-zeros with 95% confidence) are considered to contain incremental 

information content in this study. The results of the adjusted R-square and 

F statistics are plotted in figures 5.8, 5.9 and 5.10. 

For both V I X and V X D regressions, models with combination A=0 are 

checked and none of them can produce a regression result with larger adjusted 

R-square than the base model and pass the F test at the same time. There-

fore, we regard the M E M predicted volatilities without overnight information 

do not contain incremental information for market based indexes. 

On the other hand, there are cases that give a better R-square and pass 

the F test when overnight information is embedded. Table 5.3 lists the combi-
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Figure 5.8: Adjusted R-square among the regression models 
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Figure 5.9: F statistics for testing zero coefficient 

nations that contain incremental information for the regression. The results 

for V I X and V X D regressions are consistent. The inclusion of MemRanget 

cannot improve the prediction whereas MemHighFreqt can give favorable 

results for some combinations. In additional, the information content of 

MemRanget is not complementary to MemHighFreqt as models with the 
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Figure 5.10: F statistics for testing join zero coefficients 

use of both range-based and high-frequency information are always not as 

good as models that use MemHighFreqt alone. Our empirical results ex-

emplify that overnight information can improve the prediction of the C B O E 

volatility indexes under specific combinations. However, 
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V I X regression 
~N^odel 2 Model 3 Model 4 

0.381 “ 0.413 
~~0.382 ~~0.469 

0 .389— 0.473 ~ 
0.399 
0.401 — 
0 .407— 
0.412— 

Nil 0.413 
0 .419— 
0 .424一 

0.469— 

0.473一 

0.502— 

0.509~~ 
0.526 

V X D regression 
Model 2 Mod:l 3 M o d e l � 

0.480 “ 0.487 
0 . 4 8 7 ~ 0.841 — 
0.490 
0.578 

‘ Nil 0.583 
0 . 8 7 4 ~ 
0 . 8 8 0 ~ 

0 .881— 
0.885 

Table 5.3: Combinations (A) that give larger adjusted R-square and with F 
statistics larger than 95% confidence critical value 

5.6 Concluding Remarks 

The impact of overnight return on Engle's Multiplicative Error Model ( M E M ) 

is investigated in this study. Under minimum-variance situations, the overnight 

return has nearly no impact on models based on either Carman's or Hansen's 

whole-day-based estimators for both S&P 500 and DJIA data. When the 

minimum-variance conditions are relaxed, our general formulations demon-

strate U-shape patterns in the correlation graphs among the predicted con-

ditional volatilities with and without overnight information. However, the 
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influence is not monotonic as an increase of the overnight proportion does 

not necessary produce a larger change in correlation. 

On the other hand, our empirical results show that the inclusion of 

overnight information can improve the prediction of market based volatility 

indexes, VIX and V X D , under specific combinations. We demonstrate MEM 

volatilities resulting from linearly combined overnight variance and high fre-

quency realized variance can help to improve the prediction of C B O E indexes 

under a simple linear AR(1 ) OLS regression. More sophisticated regression 

models may further exploit the hidden value from overnight information. The 

above findings contradict the common perception that overnight return does 

not contain useful information for volatility prediction. 

5.7 Supplementary note 

5.7.1 Analysis of the ratio of between On? and a^ 

According to the specification of a ! in the equation 5.2, the ratio of the 

weights between squared overnight return (Onf = (Ot - Ct-i)^) and a^ can 

be deduced by the following approach: 

Substituting the original formulation with wi = y and W2 = jEj -

.2 ( O t - C t - i r , M " � ^ 
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The ratio Wi : W2 can be simplified as: 

a 1 - a 
叫：川 2 二 J ' Yzrj 

f - a 

1 - a 1 
= 1 : 1 + - 7 z ^ - — 

a ( l — / ) a 
i 

For min-variance estimator, a=0 .12 and therefore W2 > I when ^ ^ ^ - ^ > 0. 

(i.e. iLi2 > 1 when f > 0.12). Also, W2 increases with the increase of f . 

Since f represents the portion of market close and it equals to 0.729 

( / = 1 0 5 0 / 1 4 4 0 ) for US market which opens 6.5 hours a day, the ratio between 

wi and W2 for composing a l will be 1 : 19.7. In addition, the ratio of 

E{0n1):E{al) are 1 : 68 and 1 : 170 for SkP 500 and DJIA data respectively 

{E{x) denotes the mean of x). As a result, it is reasonable to observe that 

the overnight return cannot give any significant influence on the final value 

of and the correlations between a j and are very high (Our experiment 

data shows correlation over 0.9997). 

5.7.2 Analysis of the ratio of between Onj and 

The specification of a^/ioieHV is: 

^IholeRV == ^I'^lt + 

c.； = (1-⑷化 
Ml 

. Mo 
cj = if—— 

M2 

一 + M?祐-如I 剛 12 
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The ratio of and û J are 1 : 77 and 1 : 68 for S&P 500 and DJIA data 

empirically. Furthermore, the magnitude of E ( O n f ) / E ( a % ^ i ) is less than 

1 /60 for the two data sets. Therefore, the overnight return cannot affect the ' 

final value of a^hoieRV much. The correlations between a^hoieRV and 

are equal to 1.00 for the two data sets. 

• End of chapter. 



Chapter 6 

Concluding remarks and 

further work • 

This research aims to explore the possibility of improving the existing prac-

tices in volatility modeling. There are three new suggestions in this study, 

namely 1) Utilization of the interaction effect between the intraday periodic-

ity and the heteroskedasticity; 2) Modified normalization for the estimation 

of the intraday periodicity; and 3) Inclusion of overnight information for the 

estimation of daily volatility. The first two modifications address the limita-

tions of the commonly used intraday volatility modeling approach - Andersen 

& Bollerslev's sequential estimation approach while the third modification 

is about the inclusion of overnight information. for the estimation of daily 

volatility. 

The first modification is based on the fact that Andersen & Bollerslev's 

sequential approach does not consider the interaction between the intraday 

periodicity and the A R C H process (heteroskedasticity). Their approach is 

171 
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» mathematically shown to produce a sub-optimal result under a general situ-

ation. 

Our proposed approach, the integrated framework approach, improves 

the subsequent A R C H structure in their method by integrating the filtration 

process and the A R C H process in a united setting and optimizing the model 

parameters for the rffw series instead of the filtered series. T h e simultaneous 

presence of the periodicity and the A R C H volatility enables the considera-

tion of their interaction while the use of the raw series assures the optimal fit 

to the target series. Besides, our framework can be re-written as a modified 

P - A R C H structure where the periodically varying autoregressive coefficients 

are represented as the product of the estimated periodicity times the A R C H 

parameters. ( P - A R C H structure is well-known for its capability to handle the 

periodicity and the heteroskedasticity in a time series simultaneously.) Fur-

thermore, the effectiveness of applying the integrated framework to different 

A R C H structures is also discussed in this work. 

/C Th e second modification is about the estimation method of the intra-

day periodicity. Under Andersen k Bollerslev's method, the periodicity is 

estimated in two steps. The dynamics of an intraday return series is firstly 

approximated by a smoothing function (Flexible Fourier Form) and, secondly, 

the periodicity is recovered by a normalization procedure with the use of the 

approximation results. Their method is capable of defining the estimated pe-

riodicity to be either day-invariant or day-variant with proper adjustments. 

However, when the method is applied for day-variant situation, it is shown 

that the resultant periodicity violates the implicit constraint, which is derived 

from the initial modeling assumption, in some situations. 
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A modified normalization procedure that ensures the fulfillment of the im-

plicit constraint is proposed in this research work. The new procedure adjusts 

the magnitude of the periodicity with reference to the size of its corresponding , 

daily variance. W h e n the proposed procedure is applied for the day-variant 

situation, the results turn out to be more robust to heteroskedastic errors 

under numeric simulations. For the day-invariant situation, our procedure 

is proved to give the same performance as the original normalization does 

mathematically. 

The two proposed modifications on intraday volatility modeling are tested 

with different A R C H structures, including G A R C H ( 1 , 1 \ F I G A R C H ( l , d , l ) 

and H Y G A R C H ( l , d , l ) , by using simulated data and market data. The per-

formance measures include regression mean squared error, mean absolute 

error and Diebold-Mariano hypothesis tests on squared error and absolute ‘ 

error. Apart from s t u d y i n ^ h e 1-step-ahead out-of-sample performance, sev-

eral multiple-step-ahead forecasting results are also addressed. Under the 

same level of model flexibility (parameterized portions), our proposed mod-

ifications always outperform the original method in both in-sample fitness 

‘ and out-of-sample performance on various forecasting horizons. 

Early work of the two modifications has been submitted to the Journal of ‘ 

Applied Econometrics and reviewed by T im Bollerslev, the original proposer 

of the sequential modeling approach. Although the work was rejected, Tim's 

responses show an interest in the first modification and an agreement on 

the uniqueness of the second modification. Finally, the revised writing of 

the first modification is accepted by the Journal of International Financial 

Markets, Institutions and Money, which published Andersen k Bollerslev's 
) 
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work on the application of their sequential method in 2000. On the other 

hand, the writing of the second modification was accepted for presentation 

in the 4th CSDA International Conference on Computational and Financial 

Econometrics ( C F E 10) on Dec 2010. 

， The third modification is about the inclusion of overnight information 

for the estimation of daily volatility. The possibility of incorporating the 

overnight information is explored through the use of linearly combined daily 

volatility estimators. The empirical results demonstrate that the inclusion of 

overnight information can produce substantial influence when the minimum-

variance constraints are relaxed. Besides, the influence is revealed to be not 

- - 一 • 

monotonic as an increase of the overnight proportion does not necessarily / 

produce a larger influence. Furthermore, it is demonstrated that the inclusion 

of overnight variance can improve the prediction accuracy of the Chicago 

Board of options Exchange ( C B O E ) volatility indexes ( V I X and V X D ) under 

specific weight combinations. The findings contradict the common perception 

that overnight return does not contain useful information for daily volatility 

modeling. 

The empirical findings of the third modification were initially presented 

in the International Symposium on Financial Engineering and Risk Manage-

ment in 2007 and the revised writing is published in the Journal - 'Statistics 

and Its Interface' in 2008. 

A b o u t the further work, it is considered that the second modification, 

Modified normalization for the estimation of the intraday periodicity, may 

be further developed. The version documented in this research is based 

on the key assumption that the innovations are independent of each other. 
"V 
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However, real situations may not follow this nice assumption and it would 

be good to have a method that is capable of handling correlated innovations. 

Some initial studies on this issue have already been carried out. 

It is found out that th6* major obstacle for developing a workable pro-

cedure is about the mutual dependence of the periodicity and the modeled 

, innovation. Since the two components are not directly observable, their val-

ues are estimated with the use of the other party's value and the correlation 

matrix of the modeled innovations. A simultaneous estimation of the two 

components together with the correlation matrix is infeasible due to the 

excessive computational requirement. Initial investigation suggests that a 

step-wise method may be used to provide a good approximated result for the 

problem. Additional effort is required for further development. 

• End of chapter. 

J 



Appendix A 
A 

Nomenclature 

J 1 • 

S u m m a r y 

The following tables contain brief explanations of the symbols used 
in this thesis. 

« 

• End of chapter. 
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Table A . l : Nomenclature for Chapter 3 (Integrated framework approach) 

Tî n Intraday return of day t in n-th intraday interval 
� t , „ Intraday innovation of day t in n-th intraday interval 

Gt^ri Intraday volatility (standard deviation) of day t in n-th 
intraday interval 

ft^n Deseasonalized return of day t in n-th intraday interval 
„ Deseasonalized innovation of day t in n-th intraday in-

terval 
dt,n Deseasonalized volatility (standard deviation) of day t 

in n-th intraday interval 
T Total number of days in the data sample 
N Number of intraday period per day 
S Set that contains all the day and interval index pairs 

(t, n) for the in-sample data 
rt Daily return of day t 

ti Daily innovation of day t 
at Daily volatility of day t ‘ 

Zt’n Zero-mean independently and identically distributed 
(i.i.d.) standard normal random term 

St.n Intraday periodic component 
E ( X ) Unconditional expectation of the variable X 

/ ( 6 | n ) Flexible Fourier form to approximate the U-shape peri-
odic dynamics 

0 Parameter set for a A R C H framework 
D(x, al) Independently ajid identically distributed (i.i.d.) distri-

bution of a variable x with a variance a^ 

N{x, al) Standard normal distribution of a variable x with a vari-
‘ ance a^ 

<p{a\x) Probability density function of a zero-mean variable x 
with its standard deviation equals to a ‘ 
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Table A.2: Nomenclature for Chapter 4 (Day-varying structure) 
广 

Pt,n Index value of day t in n-th intraday interval 
Pt，Q Market open index value of day t 

Ti^n Intraday return of day t in n-th intraday interval 

Intraday innovation of day t in n-th intraday interval 

(7t’„ Intraday volatility (standard deviation) of day t in n-th 
intraday interval 

N Number of intraday period per day 

^i n Standardized intraday innovations for the n-th interval 
on day t 

Ti Daily return of day t 

at Daily volatility of day t 

Zt’n Zero-mean independently and identically distributed 
(i.i.d.) standard normal random term 

Ut̂ rt Zero-mean independently and identically distributed 
(i.i.d.) random term 

St,„ Intraday periodic component 

Xt,n Intermediate proxy variable representing the intraday 
periodic dynamics 

E(X) Unconditional expectation of the variable X 
N(x, a^) Standard normal distribution of a variable x with a vari-

ance (Jj 
(piSij) Probability density function of the variable Si^ 

f{B\at, n) Flexible Fourier form to approximate the U-shape peri-
odic dynamics 
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Table A.3: Nomenclature for Chapter 5 (Impact of the overnight information) 

Ct Log value of the closing price for day t 

Ot Log value of the opening price for day t 

Ht Log value of the highest price for day t 

Lt Log value of the lowest price for day t 

u Normalized high for day t�i.e. Ht — Ot 

d Normalized low for day t, i.e. Lt — Ot 

c Normalized close for day t�i.e. Ct — Ot 

dl ^ Garman h Klass's daily volatility estimator 
GIJY/J^ Newey-West modified realized variance estimator 
Orit Overnight return 
general a ^ Proposed linearly combined range-based daily volatility 

estimator 
general Proposed linearly combined high-frequency daily volatil-

ity estimator 
A Weight factor of the proposed linearly combined daily 

volatility estimator 
MEM-general a^ Conditional volatility series resulting from the MEM 

model with general as input 
MEM-general apty Conditional volatility series resulting from the MEM 

model with general j as input 
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