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Abstract of thesis entitled: 

Non-inferiority Testing for Correlated Ordinal Categorical Data 

w i th Misclassification 

Submitted by Han, Yuanyuan 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in July 2011 

When a new treatment comes out, i t is likely to find benefits 

of the new one, such as fewer side effects, greater convenience of 

employment, or lower cost in terms of money and time. Therefore, 

the more appropriate research question is whether the new one 

is non-inferior or equivalent to, but not necessarily superior to 

the reference treatment. Consequently, the non-inferiority test 

or equivalence test is widely used in medical research, which is 

oriented towards showing that the difference of effect between 

the two treatments probably lies in a tolerance interval w i th the 

pre-defined lower or upper bounds. In this thesis, we consider 

non-inferiority tests when the data are ordinal categorical. In 

particular, we are interested in correlated data. We wi l l develop 

non-inferiority testing procedures for data that are obtained by 



the paired design and three-armed design. We take advantage of a 

latent normal distribution approach to model ordinal categorical 

data. 

Moreover, misclassification is frequently encountered in collect-

ing ordinal categorical data. We also consider the non-inferiority 

test based on the data wi th misclassification. We have explored 

two different approaches. The first approach can be applied when 

misclassification probabilities are known or can be calibrated. 

The second approach deals wi th the case when we have partially 

validated data that provide the information on misclassification. 

The proposed approaches have wide applications that are not con-

fined to tests in medical research. We design a substantive study 

to illustrate the practicality and applicability of the proposed ap-

proaches. 

Keywords: Non-inferiority Test, Bootstrap, Misclassification, 

Partially Validated Data. 
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摘 要 

常一種新的治療方法出現，我們可能發現它的好處主要來自于副作用較 

少、使用較方便、或成木較低。在此條件F，我們不一定需要新方法在效果上 

顯著好於現有方法，而只需要其在預先設定的範圍内不次於或等效於現有方 

法。因此，當給定一個可容許區問的情況下，I卩劣效性檢驗和等效檢驗在醫學 

領域得到了廣泛的應用。在木文中，我們考慮具有相關性的有序分類數據的非 

劣效性檢驗問題。實驗設計包括配對設計和三維塊設計。我們使用潛在正態分 

佈方法對具有相關關係的有序分類數據建模。 

此外，錯誤分類在有序分類數據收集的過稈中經常出現。我們也提出用于 

有分類錯誤的有序分類數據的非劣效性檢驗。我們探討兩種不同的方法。第一 

種方法可以處理分類錯誤概率已知或者可以被校準的情況；労一種是當錯誤分 

類概宇.未知的情況，对此，我們則可以採用部份驗證數據的方法。這兩種方法 

不僅在醫學領域有廣泛應用，也能被廣泛應用到冗他领域。在本文中，我們基 

于一个实际问题设计问巻、收棠数据并應用上述的方法加以分析，以說明所提 

出方法的實用性和適用性。 

關鍵字：非劣效性檢驗，錯誤分類，部份驗證數據，自助抽樣< 
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Chapter 

Introduction 

When a new treatment comes out, i t is likely to find benefits 

of the new one, such as fewer side effects, greater convenience of 

employment, or lower cost in terms of money and time. Therefore, 

the more appropriate research question is whether the new one 

is non-inferior or equivalent to, but not necessarily superior to 

the reference treatment. Consequently, the non-inferiority test 

or equivalence test is widely used in medical research, which is 

oriented towards showing that the difference of effect between 

the two treatments probably lies in a tolerance interval wi th the 

pre-defined lower or upper bounds. 

For continuous variables, non-inferiority is often assessed by 

comparing the two mean responses as presented in Ng (2001) and 

L iu et a l (2002). Tang & Tang (2004) and Munk et al. (2007) 

considered the methods for the assessment of non-inferiority w i th 

binary data. Tang h Poon (2007) developed methods to conduct 



equivalence and non-inferiority tests when there are two indepen-

dent treatments w i th data that are in ordinal scale. However, 

l i t t le has been achieved for non-inferiority for correlated ordinal 

outcomes. We generalize the work of Tang & Poon (2007) and use 

the latent normal distribution model to account for non-inferiority 

tests w i th correlated ordinal data. The latent normal model as-

sumes that the observed ordinal categorical variables are crude 

measurements of latent continuous variables which are multivari-

ate normally distributed. 

Although the two-armed non-inferiority test that compares two 

treatments including an active control and an experimental treat-

ment is frequently employed, Tang & Tang (2004) and Hung et al. 

(2007) are of the view that the applications of a non-inferiority 

t r ia l design that does not contain a placebo arm are controversial. 

Thus the results from such a t r ia l design can be rather difficult to 

interpret w i th confidence. One remedy to this problem is to add 

a placebo arm, which is widely acknowledged, see D'Agostino et 

al. (2003) and Pigeot et al. (2003). Three-armed t r ia l enables 

to addressing the important issue of assay sensitivity that refers 

to the abil i ty of a test to detect differences between effective, less 

effective, and ineffective therapies. 

Methods have been proposed in the literature to test the non-

inferiority of the treatments in a three-armed design. For exam-

ple, Koch and Tangen (1999) and Pigeot et al. (2003) have de-



veloped methods for three-armed non-inferiority tests. However, 

they operated on the assumption that the outcome variables from 

the placebo, active controlled, and the new experimental groups 

were all independently normally distributed w i th the same vari-

ance. In this thesis, we wi l l relax both the independent and the 

continuous-scale normally-distributed-data assumptions and de-

velop non-inferiority test for three-armed design data. 

Another important consideration in this thesis is to develop 

non-inferiority testing procedures that can handle data sets wi th 

misclassification. I t has been noted in Y in & Poon (2008) that 

misclassification is frequently encountered in collecting ordinal 

categorical data. Misclassification occurs when the responses do 

not reflect the true state of a participant of the study and hence 

the state of the participant is misclassified to an inappropriate 

cell in the contingency table, producing a contingency table wi th 

misclassified data. Y i u & Poon (2008) proposed two approaches 

to analyze ordinal categorical data w i th misclassifications. 

In the case wi th known misclassification probabilities, Y iu & 

Poon (2008) used the direct optimization method to get the max-

imum likelihood (ML) estimates of the parameters of a latent 

variable normal model. In the case w i th unknown misclassifi-

cation probabilities, Y iu & Poon (2008) used a latent variable 

normal model and a two-stage estimation procedure. In the first 

stage, the M L estimates of the cell probabilities are obtained by 



maximizing the likelihood function. Based on these estimated cell 

probabilities, the model parameters are estimated through a mod-

ified minimum chi-squared approach. Poon k Wang (2010) also 

worked on a latent variable normal model. They developed a uni-

fied E M approach to find the M L estimates of the model param-

eters, Although E M approach is computationally more efficient 

for multivariate problem, the computational t ime may be longer 

than the two-stage estimation procedure in the low-dimensional 

designs. We wi l l develop a non-inferiority testing procedure that 

can be applied to correlated ordinal categorical data. 

Non-inferiority test in the three-armed design wi th misclassi-

fied categorical ordinal data has not been addressed in the litera-

ture. We wi l l also develop procedure for the analysis of three-

armed multivariate ordinal categorical data w i th misclassifica-

tion. Non-inferiority testing procedures for ordinal categorical 

data w i th possible misclassification have wide applicability. We 

designed a substantive study to illustrate how these procedures 

can be applied in research studies. We have designed a study wi th 

the real data set on How Effective the Learning Paths (HELP) 

are obtained through questionnaire. The study investigated the 

effectiveness of four different learning approaches of university 

students. Students were asked to express their opinions on the 

four approaches by means of rating the degree of agreement on 

the effectiveness of the four different approaches. The data set 



consists of responses that correspond to the true states of the 

variables of interest and responses on surrogate variables w i th 

misclassifications. The study shows that the proposed partial ly 

validated data method to be introduced in Chapter 5 can be used 

in a flexible manner to facilitate a more comprehensive and infor-

mative data analysis. 

Depending on different types of ordinal categorical data, we 

develop various tests for non-inferiority tests w i th different mod-

els for ordinal categorical data. The thesis is organized as fol-

lows. Chapter 2 addresses the non-inferiority test for the paired 

data, and in Chapter 3 we further discuss non-inferiority test for 

paired data w i th misclassification. In Chapter 4，non-inferiority 

test in three-armed block design is introduced, and in Chapter 5 

testing procedures for three-dimensional data set w i th misclassi-

fication are introduced. Specifically, in Chapter 3 and Chapter 5, 

we present two approaches that can handle known and unknown 

misclassification probabilities, respectively. In each of the chapter 

from Chapters 2 to 5, the proposed methods have been applied 

to analyze real data sets, and simulation studies have been used 

to assess the proposed procedures. The assessment results are 

reported separately in each chapter. 

I t is worthy of note that most of the works in relation to 

three-armed designs in the literature have been focused on non-

inferiority rather than equivalence test. In light of this, our focus 



wil l be on non-inferiority test. However, the nature of testing 

equivalence and testing non-inferiority are the same. We wi l l dis-

cuss the equivalence test briefly in Chapter 6 that concludes the 

thesis w i th a discussion. 



Chapter 2 

Paired Data 

2.1 Introduction 

In many research studies, researchers need to deal w i th pair wise 

ordinal data. For example, in medical research w i th one treat-

ment and one control, we may use paired data design to address 

the heterogeneity of the init ial conditions of the test subjects and 

to enhance generalizability of the research results. When we have 

a sample of n pairs of observations, w i th responses classified by 

two ordinal variables, say reference group (Z/?) and treatment 

group { Z t ) , then we may summarize the paired data into a con-

tingency table. Assuming the numbers of categories are the same 

for the two variables, i.e., both have categories from 1 to K, where 

K is the number of categories, then the responses can be summa-

rized in Su K X K contingency table that is presented in Table 

2.1. 



Table 2.1: Two-way contingency table for matched pairs with ordinal data 

ZR 
1 2 3 • • • K Total 

1 nil nu • • • niK 

2 n2i n22 ？̂23 • • • n2K 712+ 

3 nsi 几32 几33 • • • nsK 几3+ 

： 
1 •., ： •. • 

： ； 

K riKi nK2 nK3 ... riKK nK+ 

Total n+i n+2 n+3 • • . n+K n 

Let ri i j be the observed frequency in the (i, j ) t h cell, then 

nij = n. To analyze the ordinal data, one of the 

commonly used approaches is to consider a model wi th under-

lying continuous variables, say Xr and Xt. We also assume that 

( ^ X r , X t ) T are bivariate normally distributed as S)，where 

/ \ / 

M 
fJ'R 

and S 二 

a 

\0-RT 

R o-RT 

2 a' 

The underlying continuous variables Xr and Xt are related to 

the observed ordinal categorical variables Zr, and Zt, Specifically, 

the relationship is given by 

Zi 二 k if P k < X i < A + i = = 

8 



where /3i = -oo, {Sk+i = oo and (3 = (J32,…,PkY is a vector of 

unknown thresholds. Here, to enable straightforward comparison 

between iit and 仲，we follow Tang & Poon (2007) and assume 

that the two sets of thresholds are the same for Xr and Xt. 

Since the location and dispersion of the underlying continu-

ous variables are not defined, we fix the population mean and 

variance for the underlying continuous variable of the reference 

group. That is, we set and Var(Xi?)= l , and we have 

= and S = 
1 o-RT 

O-RT (^T 
(2.1) 

0 

I^T 

The means and variances of the two underlying variables are then 

compared in a relative sense. Let 9 — (/xt, ctrti P'Y be the 

unknown parameter vector of the model. The parameter ctrt 

is the covariance of Xr and Xt, (J t̂ and are the mean and 

variance of Xt, which can be interpreted in a relative sense to 

those of Xr. For example, if the value of iit is positive, the 

location of Xt lies to the right of Xr, and if a^ is less than 1, 

the variation of Xt is less than that of Xb- Please refer to Poon 

(2004) for more details. 

Assuming pi j to be the probability of an observation that falls 



in the (z, j )th cell, we have 

Pij = = 

= — $2(A+1，/3j;"，5]) 

— / V i ; /^，S) + ； (2.2) 

where $2 (A, Â , 5]) is the bivariate normal distribution func-

t ion wi th mean ^ and covariance matrix E, evaluating at ft and 

Pj, The maximum likelihood estimate (MLE) of 6 can be ob-

tained by maximizing the log likelihood function 

K K 

(2.3) 
1=1 j= i 

This latent normal distribution approach has been used exten-

sively to analyze ordinal categorical data. However, its applica-

tions in the context of equivalence or non-inferiority tests have 

not been explored. Some init ial works in this regard are available 

in Tang and Poon (2007). 

2.2 Non-inferiority Test 

When a new treatment is readily available to be applied, i t is 

likely to find its benefits, such as fewer side effects, greater conve-

nience of employment, or lower cost in terms of money and time. 

Therefore, to compare the newly developed treatment and the ex-

isting reference treatment, a more appropriate way to approach 

10 



the problem is to examine whether the new treatment is non-

inferior to the existing reference treatment. The non-inferiority 

test is oriented to show that the effect difference between the 

two treatments is probably to lie in a tolerance interval w i th pre-

defined lower bound. 

Based on the latent normal distribution model that is described 

in Section 2.1, we develop a procedure that can be applied to 

ordinal categorical data to assess the non-inferiority of two treat-

ments. Specifically, let f i r — I^r be the discrepancy in location 

between the two treatments under condition, the non-inferiority 

test is accomplished by testing 

Hq '' UT — f^R ^ —A 
(2.4) 

Hi ： fiT - IJ^R > - A . 

Here, A is a positive value, known as the non-inferiority mar-

gin, which can be predefined by the experience in practice and 

in need. The non-inferiority of two treatments can be concluded 

if the null hypothesis is rejected，i.e., the lower bound of the 

100(1 — a)% confidence interval (CI) for /Mr 一 [•Ir is greater than 

一A given significance level a (Blackwelder, 1998). 

Based on the model in (2.1) w i th fiR = 0, the non-inferiority 

11 



test can be simplified as follows 

^T < - A 
(2.5) 

H i \ i i T > - A . 

2.3 Implementation 
The M L E 0 = 轮了 oi 0 = ( / i r , 4 , c a n be 

obtained by maximizing the log likelihood function in (2.3). To 

find the CI of ^ t for conducting the non-inferiority test, we also 

need a way to get the standard errors of fiT. In practice, one 

can implement the program Mx developed by Neale et al. (1999) 

to produce parameter estimates and standard errors. Mx is a 

widely used software and i t can be downloaded at no cost. I t 

is recommended for two reasons. Firstly, i t is widely available 

and is a free software available in the public domain. Secondly, 

it allows flexibil ity in setting the constraints for the parameters. 

However, the standard errors produced by the function “SE” in 

Mx are not stable. As the new feature of Mx enables the genera-

t ion of bootstrap standard error, so we make use of the bootstrap 

method to find the standard errors {SE) and then construct one-

sided 100(1 — a)% CI for / i^ by {(lt — ZaSEif i r ) , +c>o), where 

is the upper a probabil ity point of the standard normal distribu-

tion. To assess the performance of the CIs such constructed, we 

need to first assess the performance of the SE. The assessment is 

12 



accomplished by simulation studies wi th results presented in the 

next two sections. 

2.4 Simulation 

To examine the performance of the proposed method by simula-

tion, a number of data sets were generated based on a set of known 

parameter values. We set K equal to 3, and the thresholds for the 

two variables are set to be identical to /？之 二 —0.2 and /̂ s = 0.5. 

In other words, the true values are {p, ctrt, A，（Ab — 1^2))^ = 

(0.2,0.3,1, (—0.2,0.7))^, The number of simulation replications 

is 1000. We considered three different sample sizes: 300, 100 and 

80. 

Two statistics were computed for the simulation of each sam-

ple size as performance indicators. They are the mean of all the 

estimates for each parameter and the root mean squared error 

(RMS) compared to the true parameter value across the 1000 

replications. Specifically, let ffj�be the estimate of the j-th ele-

ment in 0 in the z-th replication, we computed 

1 1000 
- 1 Y 

t= 

and 
1000 

1000 

13 



where Ô j is the true value of the j-th element 6j of 0. More-

over, the ratio R is used to assess the accuracy of standard error 
A 

estimate for the parameter, say, 6j. The empirical sampling stan-
A 

dard deviation based on the 1000 replications SD{6j) and the 

mean across the 1000 replications of the standard error estimates 
一 A 

SE{Oj) were used to compute the ratio 

R = SD{Oj)/S~E{§j). 

If R is close to 1, i t indicates that the standard error estimates 

are accurate. 

We have summarized the simulation results in the following 

three tables. 

Table 2.2: Simulation result for sample size 300 

AT &RT 
八o A 

Ih ft - h 

True value 0.2 0.3 1 -0.2 0.7 

Mean 0.200 0.301 1.040 -0.202 0.702 

RMS 0.085 0.081 0.292 0.071 0.069 

SE 0.083 0.084 0.307 0.071 0.068 

SD 0,085 0.081 0.289 0.071 0.069 

R 1,023 0.969 0.941 0.997 1.006 
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Table 3.5: Simulation result with r^ 0.7, sample size 1000 

AT &RT 
八 2 

CTy 
A 

ft A — h 

True value 0.2 0.3 1 -0.2 0.7 

Mean 0.204 0.318 1.172 -0.205 0.713 

RMS 0.145 0.153 0.626 0.122 0.118 

SE 0.151 0.162 0.698 0.106 0.105 

SD 0.145 0,152 0,602 0.122 0.118 

R 0.963 0.936 0.862 1.146 1.120 

Table 2.4: Simulation result for sample size 80 

AT &RT 
^ 2 CT^ 

A 
ft ft - P2 

True value 0.2 0.3 1 -0.2 0.7 

Mean 0.194 0.305 1.165 -0.210 0.713 

RMS 0.163 0.167 0.731 0.131 0.124 

SE 0.169 0.182 0.873 0.113 0.112 

SD 0.163 0.167 0.712 0.131 0.123 

R 0.966 0.919 0.816 1.152 1.100 
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Prom the results in Tables 2.2-2.4, we can see that the mean 

values of the estimates are very close to the true values in all sit-

uations, and the root mean squared errors are reasonably small. 

The values of R are all between 0.8 and 1.2. Therefore, the sim-

ulation results indicate that the proposed estimation procedure 

can provide the users of acceptable parameter estimates and stan-

dard errors no matter the sample size is large or not, and that 

the larger sample size leads to more accurate parameter estimates 

(smaller RMS) and standard errors. 

The simulation results suggest that these estimates and stan-

dard errors are reliable and therefore applicable for constructing 

confidence intervals for non-inferiority test. 

2.5 Bootstrap Confidence Interval 

In testing non-inferiority, the confidence interval approach rather 

than hypothesis testing method is widely recommended (Black-

welder, 1998). As stated in Section 2.3，a one-sided 100(1 — a)% 

C I for fiT is given by { / I t — ZaSEiJiT), +oo), where z。is the up-

per a probability point of the standard normal distribution and 

SEifi/r) is the standard error of [ i t produced by the bootstrap 

method. 

To evaluate the performance of CIs empirically, a commonly 

used evaluation standard is the expected coverage probability 
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(ECP). Specifically, in the context of non-inferiority test, let L 

be the lower bound of the produced CI and /xto the true value of 

the parameter /i^, we use 

1 1000 

ECP = ~^Y]I{L 化o). 1000 
(2.6) 

We expect that the coverage probability is approximately equal 

to 1 — a. The approximate CI is conservative if the coverage 

probability is larger than 1 — a, while i t is liberal if the coverage 

probability is smaller than 1 — a. As 95% CIs are constructed in 

the simulation studies, we expect that the coverage probability of 

these CIs on the true population values would be approximately 

95%. 

We have different sample sizes in the simulation: 300, 100 and 

80，and the simulation results based on 1000 replications are as 

follows. 

Table 2.5: Evaluation of the performance of CIs 

NOBS Covering True Value Times ECP 

300 953 0.953 

100 959 0.959 

80 970 0.970 

The values of ECP are quite reasonable but are slightly larger 

than 0.95, especially when the sample size is small. The result 
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indicate that this method produces CIs that are slightly conser-

vative when the sample size is not large enough. However, this 

problem improves when sample size becomes larger. 

2.6 Examples 

2.6.1 Example 1 

Table 2.6 reports the result of an example wi th data sampled from 

Bri t ish Royal Ordnance factories during 1943-1946. The ordered 

contingency table summarizes the right eye and left eye unaided 

distant vision grade in 7477 women employees, aged 30-39 years. 

Obviously, the measurements of the two eyes are likely correlated 

and naturally form paired data. This data set is analyzed by 

many authors, and most relevant to our research is available in 

the study by Lui & Cumberland (2001), where they drew the con-

clusion on equivalence of the two eyes by comparing the marginal 

probabilities of the two variables. 
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Table 2.6: Right and left eye unaided distance vision for women in Stuart(1955) 

Left eye 
Right eye 

Highest (1) Second(2) Third(3) Lowest (4) Total 

Highest (1) 1520 266 124 66 1976 

Second(2) 234 1512 432 78 2256 

Third(3) 117 362 1772 205 2456 

Lowest (4) 36 82 179 492 789 

Total 1907 2222 2507 841 7477 

As an il lustration of our method, we analyzed the data set 

by using the proposed latent variable approach and test non-

inferiority by testing the hypothesis (2.5). 

Let A = 0.2 and we consider the data for the left eye to be the 

data for treatment group and those for the right eye to be those 

for the reference group, then the M L estimate of the mean of the 

treatment group is j l r = 0.0326. The 95% confidence interval 

is (—0.022, +00) w i th the lower bound -0.022 greater than -0.2 

at 0.05 level of significance. We conclude that unaided distance 

vision of the left eye group is non-inferior to that of the right 

eye group. Our conclusion is consistent w i th the result in Lu i & 

Cumberland (2001) from the non-inferiority test perspective. 
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2.6.2 Example 2 

This example is to compare the diagnostic accuracy between the 

digitized film and the plain film in detecting the malignant lesions 

for breast cancer. Table 2.7 presents the mammography data 

in Zhou et al. (2002) consisting of 45 subjects, and they are 

classified into one of the four categories by using the digitized 

and plain films in a mammography study. The four categories 

are normal (coded 1)，benign (coded 2), probably benign (coded 

3), and suspicious (coded 4). 

Table 2.7: The 45 subjects cross-classified by using digitized and plain films 

Plain film 

Digit ized film ^^ 
1 2 3 4 Total 

1 17 2 2 1 22 

2 1 4 2 1 8 

3 1 1 4 1 7 

4 2 0 3 3 8 

Total 21 7 11 6 45 

l=normal，2=bemgn, 3—probably benign and 4二suspicious 

Zhou et al. (2002) implemented Schuirmann's method (1987), 

which was based on non-parametric estimate of the area under 
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receiver operating characteristic (ROC) to assess the equivalence 

of the two types of films. Their result suggests that there is 

no sufficient evidence that the plain film and digitized film have 

equivalent diagnostic accuracy. The digitized film is a more ad-

vanced technology than the plain film. However, the plain film 

does not need the facil ity like the workstation, and i t can be ap-

plied widely. Let digitized film be the reference group and plain 

film be the treatment group, so we want to test whether the plain 

film is non-inferior to the digitized film in diagnostic accuracy. 

We set A = 0.2，and we get 95% one-sided confidence interval 

as (—0.164’+00). The lower bound -0.164 is larger than -0.2. 

Thus, we may draw the conclusion that the plain film is non-

inferior to the digitized film in terms of accuracy. 

2.6.3 Example 3 

This data set is taken from Ezzet & Whitehead (1993). I t is 

f rom a two-treatment, two-period crossover tr ial, which is aiming 

to compare the instructions of two inhalation devices for deliver-

ing the drug salbutamol in 286 asthma patients. Patients were 

asked to rate the clarity of leaflet instructions accompanying each 

device, using a 4-point ordinal scale. I n Table 2.8, we have sum-

marized the entries for crossover study on treatment A and B 

in the table. As an il lustrative example, we let Treatment B be 

the reference group and Treatment A be the treatment group. 
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The objective is to test whether the introduction for inhaler A is 

non-inferior to B in terms of easy-to-understand language. 

Table 2.8: Clarity of inhaler A and B Instructions in AB sequence order 

“ - T r e a t m e n t B(period 2) 

Treatment A (period 1) � 
1 2 3 4 Total 

1 59 35 3 2 99 

2 11 27 3 2 41 

3 0 0 0 0 0 

4 1 1 0 0 2 

Total 71 63 5 3 142 

1; Easy, 2: Only clear after re-reading, 3; Not very clear, 4; Confusing 

In light of no previous comparison conclusion, we illustrate this 

example w i th the most prevailing non-inferiority margin A 二 0.2. 

In A B order, the confidence interval is (0.058, +oo) w i th 0.058 

greater than -0.2 at significance level of 0.05. We can conclude 

that the clarity of introductions of A is non-inferior to B. 
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Chapter 3 

Paired Data with 
Misclassification 

3.1 Introduction 

In Chapter 2, i t is assumed that the data collected reflect the true 

state of the respondents. However, respondents in many studies 

do not report the true state due to various reasons, leading to 

misclassification of the responses. The use of non-precise mea-

surement instruments may also lead to misclassification. 

The objective of this chapter is to develop statistical proce-

dures for testing non-inferiority for data w i th misclassification. 

Two approaches have been developed by Y iu & Poon (2008) and 

Zhang (2007) for analyzing ordinal categorical data wi th misclas-

sification. In the first approach, misclassification probabilities 

are assumed to be known or can be calibrated. In the second 

approach, these probabilities are assumed to be unknown and in-
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formation on misclassification is obtained by analyzing data that 

is collected using the method of partially validated data. 

The models that are based on underlying normally distributed 

variables and the estimation of the models for these two ap-

proaches are presented in the following two sections. Moreover, 

we develop procedures to test non-inferiority, and assess the per-

formance of the proposed procedures by simulation studies. 

3.2 Model with Known Misclassification Prob-
abilities 

Suppose we have a Kx Kcontingency table wi th N observations. 

Let k = (A;(l), k{2)) and Uk the observed frequency in cell k , 

where k{l),k{2) = 1,2, • • • E^ is used to denote the K x K 

matrix w i th element k equal to 1 and all other elements equal to 

0, Zj is Si, Kx K matrix wi th Z^j as its elements in cell k, which 

is used to represent the classification of the j - t h subject. X j is a 

K X K matr ix wi th Xkj as its elements in cell k and is used to 

represent the true classification or true state of the j - t h subject. 

We also have 

Xk,j 二 k 
1 if the j - t h subject truly belongs to the cell k. 

0 otherwise 
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1 if the j-th subject is classified into the cell k, 

0 otherwise 

1 if the j - t h subject tells the t ruth or is correctly classified, 

0 otherwise 

for j 二 1,…，iV. 

Let u = (w(l)，w(2)), where u(l)^u{2) = 1 ,2 , . . . , K^ we define 

the several probabilities that are involved in the model as follows. 

(a) pu is the probability that a subject actually belongs to the 

cell u. 

P[Xj 二 Eu) 二 Pu-

These probabilities satisfy the constraint 0 < Pu < I and 
K K 

E E = 1. 
u(l)=l w(2)=l 

Similar to Chapter 2, we assume that the true classifica-

tions are related to some underlying continuous variables and 

hence pu is of the form (2.2). That is, pu is a function of the 

unknown parameters in mean, thresholds and the covariance 

matrix. 

(b) Tuj is the probability of the j - t h subject being classified cor-

rectly given that the subject actually belongs to the cell u. 

That is 
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where the r ^ j ' s are supposed to be known and are called the 

honesty probabilities. On the other hand, the probability of 

the j - t h subject being misclassified given that the subject 

actually belongs to cell u is given by 

(c) is the probability of a subject being classified into the cell 

k given that the subject actually belongs to the cell u and 

is misclassified.. 

P { Z j = E k \ X j = Eu, Yj = 0) = 、 u , 

where 

0 < Tfeu < l ’7 im 二 0, 

and E f ( i ) = i Ef(2)=i ^ku = 1. 

3.2.1 Maximum likelihood estimation 

Suppose that we have a data set of size N . Based on the afore-

described model, let Zk,j be the realization of the random variable 

Zk,j. The log-likelihood function is then given by 

=iog(nli Ukm^i 偶 = E k ) 

= = E f = i E 。 ) 二 1 E M 2 ) = I 外,j log P 偶 = E k ) 

= J 2 k { 2 ) = l ^kj Z)w(2)=l i^kujPu) 
(3.1) 
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where p^ is given by (2.2), and 

Tk�i if u = k 
•ku�j — (3.2) 

- ru,j) otherwise 

are the elements of the matrix , which is the matrix of transition 

probabilities wi th which the j - t h subject is transited from the 

true state to another state wi th misclassification. I t is a two-

dimensional matrix of (K x K) by {K x K). For the problem 

with known misclassifications, ipku.j are known constants, and 

E • 尸 1 for l<j<N. 

Similar to Chapter 2, the unknown parameter vector is 0 = 

(/iy, CT丑T, c r 圣 , P r o m (2.2) and (3.1), the parameters in 6 are 

involved only in the cell probability Pu, the M L estimate 9 can 

be obtained by solving the likelihood equation 

0 二 ！ 二 V V — X ^ 
—dOk — ； ^ ^ dp, dQk ’ 

where k — 1 , s , and s is the number of unknown parameters. 

Taking into consideration the accessibility by practitioners, we 

also use Mx to obtain the M L estimates. 
/S 

When 0 becomes available, we can find CI for ^ t to examine 

non-inferiority by testing the hypothesis in (2.5). The CI is given 

by [fiT — ZaSE{fiT)^ +oo), where Za is the upper ol probability 

point of the standard normal distribution and SE is the bootstrap 

standard error. 
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3.2.2 Simulation 

To assess the performance of the CIs such constructed, we need 

to first assess the performance of the SE and then the CI. This 

is accomplished by simulation studies. 

A number of data sets are generated based on a set of known 

parameter values to examine the performance of the proposed 

method. We set K equal to 3. The true parameter values are 

(/iT, (JRT, (Jh P2, ( f t — ^2)7 = (0.2,0.3，1, —0.3，0.6f. 

The number of simulation replications was 1000, and we con-

sidered three different sample sizes: 1000, 500 and 300. Assuming 

Tuj = Tu for all j = 1,…,N, We examined three different mis-

classification probabilities: r^ = 0.7,0.8 and 0.9. 

The set of j ku values that were adopted to analyze the data is 

presented in Table 3.1. The values were compiled based on the 

assumption that misclassification only occurred between adjacent 

cells, and wi th equal probability. 

The jku values in combination wi th the Tu values produce the 

transit ion misclassification probability matr ix 屯，where 屯 = 屯 j 

for all j as Tuj = Tu for all j. As a result, we obtained three 屯 

matrices that are presented in Tables 3.2 to 3.4. The simulation 

results are presented in Tables 3.5 to 3.13, w i th different values 

of Tu indicating different misclassification levels. We used the 

same assessment standards as those in Chapter 2 to evaluate the 

28 



proposed method. 

Table 3.1: ^uu values 

False 

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

(1,1) 0 1/2 0 1/2 0 0 0 0 0 

(1,2) 1/3 0 1/3 0 1/3 0 0 0 0 

(1,3) 0 1/2 0 0 0 1/2 0 0 0 

True (2,1) 1/3 0 0 0 1/3 0 1/3 0 0 

(2,2) 0 1/4 0 1/4 0 1/4 0 1/4 0 

(2,3) 0 0 1/3 0 1/3 0 0 0 1/3 

(3,1) 0 0 0 1/2 0 0 0 1/2 0 

(3,2) 0 0 0 0 1/3 0 1/3 0 1/3 

(3,3) 0 0 0 0 0 1/2 0 1/2 0 
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Table 3.2: Transition misclassification probability matrix ^ for Tu — 0.7 

False 

(1’1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

(1,1) 0.7 0.15 0 0.15 0 0 0 0 0 

(1,2) 0.1 0.7 0.1 0 0,1 0 0 0 0 

(1,3) 0 0.15 0.7 0 0 0.15 0 0 0 

True (2,1) 0.1 0 0 0.7 0.1 0 0.1 0 0 

(2,2) 0 0.075 0 0.075 0.7 0.075 0 0.075 0 

(2,3) 0 0 0.1 0 0.1 0.7 0 0 0.1 

(3,1) 0 0 0 0.15 0 0 0.7 0.15 0 

(3,2) 0 0 0 0 0.1 0 0.1 0.7 0.1 

(3,3) 0 0 0 0 0 0.15 0 0.15 0.7 
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Table 3.2: Transition misclassification probability matrix ^ for Tu — 0.7 

False 

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

(1,1) 0.8 0.1 0 0.1 0 0 0 0 0 

(1,2) 0.067 0.8 0.067 0 0.067 0 0 0 0 

(1,3) 0 0,1 0.8 0 0 0.1 0 0 0 

True (2,1) 0.067 0 0 0.8 0.067 0 0.067 0 0 

(2,2) 0 0.05 0 0.05 0.8 0.05 0 0.05 0 

(2,3) 0 0 0.067 0 0.067 0.8 0 0 0.067 

(3,1) 0 0 0 0.1 0 0 0.8 0.1 0 

(3,2) 0 0 0 0 0.067 0 0.067 0.8 0,067 

(3,3) 0 0 0 0 0 0.1 0 0.1 0.8 
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Table 3.2: Transition misclassification probability matrix ^ for Tu — 0.7 

False 

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

(1,1) 0.9 0.05 0 0.05 0 0 0 0 0 

(1,2) 0.033 0,9 0.033 0 0.033 0 0 0 0 

(1,3) 0 0.05 0.9 0 0 0.05 0 0 0 

True (2,1) 0.033 0 0 0.9 0.033 0 0,033 0 0 

(2,2) 0 0.025 0 0.025 0.9 0.025 0 0.025 0 

(2,3) 0 0 0.033 0 0.033 0.9 0 0 0.033 

(3,1) 0 0 0 0.05 0 0 0.9 0.05 0 

(3,2) 0 0 0 0 0.033 0 0.033 0.9 0.033 

(3,3) 0 0 0 0 0 0.05 0 0.05 0.9 
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Table 3.5: Simulation result with r^ 0.7, sample size 1000 

AT &RT 
八 2 

CTy 
A, 

ft ft — ft 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.199 0.283 1.017 -0.435 0.874 

RMS 0.054 0.057 0.216 0.143 0.281 

SE 0.055 0.057 0.222 0.042 0.056 

SD 0.054 0.055 0.216 0.045 0.059 

R 0,988 0.955 0.973 1.080 1.052 

Table 3.6: Simulation result with TU = 0.8, sample size 1000 

Ar &RT 
八2 

CTj. 
A 

ft 
A A 

/53-/32 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.198 0.291 1.026 -0.373 0.746 

RMS 0.051 0.054 0.212 0.087 0.155 

SE 0.053 0.054 0.213 0.045 0.050 

SD 0.051 0.053 0.210 0.046 0.052 

R 0.966 0.988 0.989 1.024 1.033 
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Table 3.7: Simulation result with r^ = 0.9, sample size 1000 

AT &RT 
A 2 
a^ 

/S 
A 4 -

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.200 0.299 1.030 -0.331 0.661 

RMS 0.049 0.051 0.193 0.053 0.074 

SE 0.050 0.050 0.193 0.043 0.042 

SD 0.049 0.051 0.191 0.043 0.042 

R 0.971 1.006 0.986 1.002 1.016 

Table 3.8: Simulation result with r^ = 0.7, sample size 500 

A t &RT 
A 2 
a^ 

/S 
ft ft — ft 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.200 0.278 1.034 -0.429 0.866 

RMS 0.080 0.081 0.316 0.142 0.278 

SE 0.077 0.082 0.320 0.054 0.074 

SD 0.080 0.078 0.315 0.060 0.080 

R 1.030 0.957 0.983 1.094 1.085 
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Table 3.7: Simulation result with r^ = 0.9, sample size 1000 

i^T &RT 
A 0 

(T^ 
八 

曰2 k -

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.197 0.287 1.040 -0.371 0.742 

RMS 0.074 0.074 0.301 0.096 0.159 

SE 0.075 0.077 0.313 0.060 0.069 

SD 0.074 0.072 0.298 0.064 0.071 

R 0.981 0.940 0.952 1.065 1.030 

Table 3.10: Simulation result with TU — 0,9, sample size 500 

At &RT 
A 0 

ft - h 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.199 0.296 1.043 - 0.330 0.659 

RMS 0.071 0.067 0.274 0.067 0.083 

SE 0.072 0.072 0.284 0.059 0.058 

SD 0.071 0.067 0.271 0.060 0.059 

R 0.987 0.937 0.952 1.015 1.017 
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Table 3 . 7 : Simulation result with r^ = 0.9, sample size 1000 

AT &RT 
八2 
(J J. 

A 
— 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.203 0.274 1.025 -0.424 0.861 

RMS 0.100 0.109 0.381 0.143 0.277 

SE 0.100 0.106 0.415 0.065 0.089 

SD 0.100 0.106 0.380 0.072 0.094 

R 0.999 1.001 0.917 1.098 1.061 

Table 3.12: Simulation result with r^ = 0.8, sample size 300 

AT &RT 
^ 2 

ARJ. 

A /S 八 

A - A 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.198 0.284 1.052 -0.373 0.744 

RMS 0.098 0.100 0.391 0.108 0.170 

SE 0.098 0.100 0.418 0.072 0.086 

SD 0.098 0.099 0.388 0.080 0.090 

R 1.001 0.989 0.928 1.102 1.046 
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Table 3 . 7 : Simulation result with r^ = 0.9, sample size 1000 

AT &RT A 2 
(T^ 

A 
ft A - ft 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.200 0.290 1.046 -0.332 0.660 

RMS 0.094 0.090 0.341 0.083 0.097 

SE 0.094 0.093 0.376 0.073 0.072 

SD 0.094 0.090 0.338 0.077 0.076 

R 0.998 0.965 0.900 1.055 1.056 

Prom the results presented in the Tables 3.5-3,13, we see that 

the mean values of the estimates are very close to the true values 

in all situations, the root mean squared errors and the mean of 

standard errors are reasonably small. The values of the ratio (R) 

are all between 0.8 and 1.2. Therefore, the simulation results indi-

cate that the proposed estimate procedure in general can provide 

reliable parameter estimates and standard errors. 
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Table 3.14: Non-inferiority CI for different values 

Tu NOBS ECP 

0.7 1000 0.959 

0,8 1000 0.958 

0.9 1000 0.962 

0.7 500 0.957 

0.8 500 0.962 

0.9 500 0.967 

0.7 300 0.955 

0.8 300 0.960 

0.9 300 0.960 

Moreover, in Table 3.14, we can see that the ECPs of the CIs 

are close to 0.95 in all cases, suggesting that the use of the CI to 

examine non-inferiority wi l l produce reliable results. 

We also summarized the simulation results w i th respect to 

the different sample sizes (NOBS) and TU values in the follow-

ing graphs, where MIST, MISS, and MIS9 stand for the results 

w i th Tu = 0.7, Tu = 0.8, and TU = 0.9 respectively. The five pa-
- A A 

rameters estimates in 0 = ( /V, ft? {h — ft)) are labeled 

from Parameterl, Parameter2 to Parameters. We can see that for 

all the unknown parameters, the accuracy of the estimates wi l l 

be improved if the sample size increases or if r^ gets bigger, as 

reflected by the fact that RMS becomes smaller and R gets closer 
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Figure 3 1: RMS known misclassification probabilities 
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Figure 3.2: SD/SE Ratio, known misclassification probabilities 

3.2.3 Example 4 

We used the data set in Table 2,6 from Stuart (1955) again, and 

combined the sparse "lowest" group and the "third" group to 

obtain a contingency table as presented in Table 3.15. We assume 

that the honesty probability is known and is TU^J = TU — 0.8, 

and the transition misclassification probability matrix is given in 

Table 3.3. 
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Table 2.6: Right and left eye unaided distance vision for women in Stuart(1955) 

Left eye 
Right eye 

High(l) Medmm(2) Low(3) Total 

High(l) 1520 266 190 1976 

Medmm(2) 234 1512 510 2256 

Low(3) 153 444 2668 3245 

Total 1907 2222 3348 7477 

Using the right eye as the reference and the left eye as the 

treatment, we obtained fxr = 0.034, suggesting that the distance 

vision of the left eye is lower than that of the right eye. The 

lower bound of non-inferiority test C I is 0.014, which is larger 

than -0.2 at 0.05 level of significance. Therefore, we can conclude 

non-inferiority. That is to say, when the honesty probability is 

known as 0.8, we can achieve a conclusion that is the same as in 

the case of no misclassification. (See Section 2.6.1) 

3.3 Model for Partially Validated Data 

When the misclassification probabilities are not known, we can 

use partial ly validated data to seek information in relation to 

misclassification. For partially validated data, it is assumed that 

two devices are available to classify the participating subjects. 

One device is called the true classifier. I t can classify participants 
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accurately but usually wi th higher cost. The other device, called 

the fallible classifier, is more likely to lead to misclassification but 

i t is usually less expensive. The responses of the participants who 

are classified by the true classifier reflect the true situation and 

other responses obtained by the fallible classifier may not reflect 

the true state of the respondents. 

Let k represent the cell classified by the fallible device, and u 

the one classified by true measurement device. The total sample 

size of a data set that is obtained from partial ly validated data is 

N. Out of which n randomly drawn units are classified by both 

devices and n/j⑷ is the total number of units for which the true 

and fallible devices result to the classification to cells u and fe, 

respectively. The remaining n* — N — n units are classified by the 

fallible device only, and is the total number of units that have 

been classified into cell k. The data structure is summarized in 

Table 3.16. 
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Let pu be the probability that a unit actually belongs to cell 

u\ TTfc be the probability that a unit is classified into cell k by the 

fallible device; and cjk(u) be the probability that one is classified 

into cell k when it actually falls in cell u . Using the method 

suggested in Y iu k Poon (2008) and Zhang (2007), i t can be 

shown that the M L estimates pu of pu and 1̂>知(权）of ujk{u) are 

given as follows: 

= \r - (3-3) 

⑴ k〔u) — • : . (3.4) 

Let p^ he d. {K X K) X 1 vector that stores puS for u{l)= 

... ,K; u(2) = 1,... and p* be its M L estimate wi th el-

ements that are given by (3.3). Let 0 二 （“/r, o t ? ? ， 产 be 

the unknown parameters vector as before. Then p* — p*(0) and 

the estimate Q oi Q can be obtained by the method of Modified 
A 

Minimum Chi-square (MMC) in which G minimizes the function 

G{e) = if 一 — (3.5) 

where His a. {K X K) by {K x K) matrix. The diagonal elements 

of f t that correspond to pu are given by 

Pu , 2,1 1、⑴i{u) + p / � \ 
n r u ^ N 77/ V TTfc 

k 

and the off-diagonal elements that correspond to pu and pu' for 

u • v! are given by 
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PuPu' y^ (3 6) 

^ ^ ^ • • 

A 

The matrix ft can be derived analytically and ft is obtained by 

replacing the unknown parameters in w i th their consistent es-

timates. We used Mx to compile a program to find the estimates 

of the parameters by minimizing (3.5). 

3.3.1 Simulation 

In the simulation, we set K equal to 3, and set the true parameter 

values (/XT, (Jrt, 4，Ih, ijh 一 A ) ) ^ = (0.2,0.3,1, 一0.3，0.6f. The 

two thresholds are set to be identical as ft = —0.3 and /Ŝ  — 0.3 

for both dimensions. 

To generate the data with misclassification, we make use of 

the misclassification matrices in Tables 3.2, 3.3 and 3.4 that were 

compiled based on different TU values and the assumption that 

misclassification only arises between adjacent cells wi th equal 

probability. 

The simulation results are summarized by using both tables 

and graphs. To make it clear in the graph, we use NOBS and 

NRES to represent N and n in the presentation. We simulated 

three different combinations of data sets wi th sizes {N, n)= 

{NOBS, NRES) = (1000,600), (500,300) and (500,200). 

The simulation study was completed by using the following 
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steps: 

1. Simulate N observations w i th 6 known to get a set of ordinal 

categorical data and a contingency table wi thout misclassi-

fication. 

2. Use the misclassification matr ix to generate niisclassified data 

so as to get a set of ordinal categorical data w i th misclassi-

fication. 

3. For n randomly drawn observations out of the N observations, 

the classification results based on steps 1 and 2 were used. 

For the remaining N — n observations, only the classification 

results based on step 2 were used. 

Based on the data set, we can find the parameter estimates by the 

Modif ied M in imum Chi-square (MMC) method (See (3.5)). We 

repeated steps 1 to 3 for 1000 times, generating 1000 replications 

for the simulation. We can then get the mean of estimates based 

on the 1000 sets, and we can also compute RMS and the standard 

deviation {SD) based on the 1000 estimates. 

To assess the confidence interval that is obtained by using the 

bootstrap standard errors，we used the following steps 4 and 5. 

4. For the data set generated in each simulation replication, we 

draw samples of size n from the n observations 100 times 

w i t h replacement, and draw 100 samples of size N — n f rom 

the remaining N — n observations w i t h replacement. 
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5. For each of 100 bootstrap samples, f ind the estimates of the 

parameters, so we have 100 sets of estimates for the unknown 

parameters. For each parameter, the standard error is ob-

tained as the standard deviation based on the 100 estimates. 

The simulation results are presented in Tables 3.17 to 3.25 as 

follows. 

Table 3.17: Simulation result for NOBS二 1000 NRES-600 二 0.7 

At &RT 
八0 
a^ 

A 

132 ft - ft 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0,202 0.303 1.021 -0.299 0.595 

RMS 0.053 0.056 0.216 0.046 0.043 

SE 0.055 0.055 0.215 0.045 0.041 

SD 0.053 0.056 0.215 0.046 0.043 

R 0.970 1.030 1.000 1.011 1.049 
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Table 5.17: Simulation result for NOBS-2000 NRES=1200 r^ 二 0.8 

Ar &RT 
/V 2 A 

h - P2 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.202 0.302 1.016 -0.299 0.595 

RMS 0.052 0.054 0.202 0.045 0.042 

SE 0.053 0.053 0.204 0.044 0.040 

SD 0.052 0.054 0.202 0.045 0,042 

R 0.981 1.016 0.989 1.023 1.049 

Table 3.19: Simulation result for NOBS=1000 NRES-600 - 0.9 

AT &RT 
八2 

Grp 
/S 

ft - ft 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.202 0.303 1.016 -0.299 0.596 

RMS 0.048 0.052 0.189 0.043 0.039 

SE 0.051 0.050 0.192 0.042 0.038 

SD 0.048 0.052 0.188 0.043 0.039 

R 0.945 1.032 0.982 1.014 1.037 
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Tabic 3,20: Simulation result for NOBS-500 NRES-300 r,,. = 0.7 

fir &RT 
/V 2 A 

A _ k 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.205 0.307 1.060 -0.301 0.598 

RMS 0.077 0.079 0.323 0.063 0.058 

SE 0.082 0.083 0.354 0.064 0.056 

SD 0.077 0.079 0.318 0.063 0.058 

R 0.937 0.949 0.896 0.992 1.046 

Table 3.21: Simulation result for NOBS=500 NRES二300 TU - 0.8 

P'T &RT 
^ 2 a午 

A A A 
ft - ft 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.205 0.307 1.056 -0.301 0.598 

RMS 0.074 0.076 0,311 0.061 0.056 

SE 0.079 0.079 0.329 0.062 0.054 

SD 0.074 0.075 0.306 0.061 0.056 

R 0.938 0.951 0.929 0.983 1.044 
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Table 5.17: Simulation result for NOBS-2000 NRES=1200 r^ 二 0.8 

At &RT 砖 
A 

ft - h 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.204 0.306 1.048 -0.301 0.598 

RMS 0.072 0.072 0.289 0.059 0.052 

SE 0.075 0.074 0.299 0.060 0.051 

SD 0.071 0.072 0.285 0.059 0.052 

R 0.952 0.967 0.953 0.981 1.025 

Table 3.23: Simulation result for NOBS-500 NRES-200 r^ 二 0.7 

Mt &RT 
八0 

(J^ 
A 

ft - ft 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.204 0.308 1.064 -0.297 0.593 

RMS 0.085 0.092 0.378 0.069 0.067 

SE 0.094 0.101 0.488 0.070 0.062 

SD 0.085 0.092 0.373 0.068 0.066 

R 0.898 0.915 0.764 0.974 1.077 
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Table 5.17: Simulation result for NOBS-2000 NRES=1200 r^ 二 0.8 

AT &RT 八9 
c4 

A ^ - ̂  
True value 0.2 0.3 1 -0.3 0.6 

Mean 0.204 0.307 1.060 -0.298 0.594 

RMS 0.080 0.086 0.353 0.065 0.062 

SE 0.087 0.092 0.425 0.067 0.058 

SD 0.080 0.086 0.348 0.064 0.062 

R 0.917 0.935 0.818 0.965 1.060 

Table 3.25: Simulation result for NOBS=500 NRES-200 r^ 二 0.9 

P'T &RT 
A 2 
CR去 

/S 

卢2 ft - k 

True value 0.2 0.3 1 -0.3 0.6 

Mean 0.201 0.308 1.053 -0.300 0.597 

RMS 0.075 0.079 0,321 0.060 0.057 

SE 0.079 0.081 0.339 0.062 0.054 

SD 0.075 0.079 0.317 0.060 0.057 

R 0.948 0.972 0.935 0.967 1.050 
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Table 5.25: Non-inferiority test for different r-U values 

Tu NOBS NRES ECP 

0.7 1000 600 0.958 

0.8 1000 600 0.959 

0.9 1000 600 0.965 

0.7 500 300 0.970 

0.8 500 300 0.965 

0.9 500 300 0.965 

0.7 500 200 0.976 

0.8 500 200 0.979 

0.9 500 200 0.962 

Prom Tables 3.17 to 3.25，we see that the mean values of the 

estimates are very close to the true values in all situations, and 

the RMS and the mean of standard errors are reasonably small. 

The ratios are all between 0.8 and 1.2. Therefore, the simulation 

results indicate that the proposed estimate procedure in general 

can provide the users w i th reliable parameter estimates and stan-

dard errors. We can also see from Table 3.26 the ECPs of the CIs 

are close to 0.95 in all cases, suggesting that the use of the CI to 

examine non-inferiority are reliable but a l i t t le conservative. 

We also summarized the simulation results w i th respect to the 

different NOBS, NRES and TU values in the following Figures 3.3 

to 3.6, where MIST, MISS, and MIS9 stand for r ^ = 0.7, r^ = 0.8, 
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and Tu — 0.9 respectively. We can see from the figures that for 

all of the unknown parameters, the accuracy of the estimates wi l l 

be improved if NOBS, NRES or the r^ value increases, as evident 

by the fact that the RMS gets smaller and the ratio R = SD/SE 

gets closer to 1. 

Figure 3.3: RMS NOBS paired design with partially validated data 
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MIS7 
M1S8 
MIS9 

Figure 3.4: RMS NRES paired design with partially validated data 

Figure 3.5' Ratio NOBS paired design with partially validated data 
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N — MIS7 
> MIS8 

A MIS9 

Figure 3 6: SD/SE Ratio NRES paired design with partially validated data 

3.3.2 The data set on How Effective the Learning Paths 

(HELP) are 

We analyze a data set on “How Effective the Learning Paths 

(HELP) are" to illustrate how the proposed partially validated 

data method can be used in a flexible manner to facilitate a more 

comprehensive and informative data analysis. The study inves-

tigated the effectiveness of four different learning approaches of 

university students, and the data is obtained through question-

naires. 

In addition to attending lectures, university students use dif-

ferent learning approaches to gain a better understanding of key 
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concepts. Four approaches are commonly used, they are (1) dis-

cussing wi th lecturers, (2) discussing wi th teaching assistants, 

(3) discussing w i th peer students, or (4) conducting independent 

self-study. To compare the effectiveness of the four learning ap-

proaches, data were collected from university students. Students 

were asked to express their opinions on the four approaches by 

means of rating the degree of agreement on the effectiveness for 

the four different approaches. 

However, it is natural that not all students have used all the 

four methods in their university study, and hence some can only 

respond to the questions using their perceptions. For the purpose 

of evaluating the effectiveness of an approach, students' responses 

that are based on general perception can be regarded as being 

obtained from the fallible classifier in the partially validated data. 

The cost of obtaining perception data is usually lower. On the 

other hand, students who are frequent users of a specific learning 

approach can provide more reliable assessment in terms of the 

effectiveness of the approach, especially if responses were made 

w i th reference to recent experiences. Responses such obtained can 

be regarded as responses being obtained from the true classifier. 

Therefore, to achieve a better comparison among the four dif-

ferent learning approaches, data were collected from 871 students 

for the following three groups of questions. Each group has 4 

questions corresponding to the four different approaches. 
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a) Communication frequencies 

In the past 6 months, how often have you used the fol-

lowing learning paths to make better understanding of a 

concept out of the time you spend in lecture? 

al ) Discussing with course lecturers 

a2) Discussing with teaching assistants 

a3) Discussing with peers 

a4) Independent learning 

b) To solve difficulties in understanding a concept after 

class, how much do you agree or disagree with the fol-

lowing statements? 

b l ) Discussing wi th course lecturers can make confusing concepts 

clear 

b2) Discussing wi th teaching assistants can make confusing con-

cepts clear 

b3) Peer discussions can make confusing concepts clear 

b4) Independent learning can make confusing concepts clear 

c) Considering the last time that you conducted the fol-

lowing learning approaches to make better understanding 

of a concept after class, how much do you agree or dis-

agree with the following statements? 

c l ) Discussing with course lecturers made confusing concepts clear 

last t ime 

c2) Discussing wi th teaching assistants made confusing concepts 
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clear last t ime 

c3) Peer discussions made confusing concepts clear last time 

c4) Independent learning made confusing concepts clear last time 

For the questions in Group b and Group c, a five-point scale was 

adopted w i th “1” representing "highly disagree" and “5” repre-

senting "highly agree". In other words, a response of “1，' means 

that the student found the method not helpful at all and “5” very 

helpful. 

There are five response categories for the questions in Group a. 

They are (i) Never, (ii) 1 to 3 times, (iii) 4 to 6 times, (iv) 7 to 9 

times, and (v) more than 9 times. Students whose responses fall 

in the category "never" wi l l not have responses available for the 

questions in Group c. In this case, only fallible perception type 

responses to questions in Group b were available for analysis. 

Such method of data collection wi th the Group a questions in 

HELP allows us to clearly distinguish the types of fallible percep-

t ion and more reliable experience data. We wi l l illustrate in the 

next subsection on how the proposed method for analyzing par-

t ia l ly validated data can be used to make use of all the available 

data to achieve a comparison of the learning approaches. 

In this chapter, we wi l l analyze two of the four learning paths 

by using the paired data model suggested in this chapter. The 

analysis of more variables wi l l be discussed in Chapter 5. 

58 



3.3.3 Example 5 

In this section, we present the analysis that was based on the data 

in relation to "discussing wi th lecturers" (Xp), and "independent 

learning" ( X t ) . 

The data is presented in Table 3.27. The objective is to ex-

amine whether independent learning is non-inferior to discussing 

wi th lecturers. There are 871 (NOBS) effective questionnaires 

after data cleaning. By using the questions in Group a as the 

discriminator, we have 679 (NRES) respondents that have been 

classified by both the true device and the fallible device. As a 

minor modification of the original data, we collapsed the five-

category data into three-category by combining the first three 

categories to reduce the number of sparse cells. 
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Table 3.27: Data structure of example 5 in 3.3.3 

^ ^ ^ F a l l i b l e 
True 

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Total 

(1,1) 35 14 4 11 3 1 4 0 1 73 

(1,2) 12 32 2 5 14 2 4 4 0 75 

(1,3) 3 6 29 0 5 6 1 0 2 52 

(2,1) 12 4 3 34 15 0 8 3 2 81 

(2,2) 9 16 3 19 56 8 6 11 2 130 

(2,3) 0 2 8 3 10 15 2 6 3 49 

(3,1) 2 0 0 9 2 0 34 11 1 59 

(3,2) 0 1 0 12 8 3 14 32 8 78 

(3,3) 0 1 2 1 10 6 1 14 47 82 

Total 73 76 51 94 123 41 74 81 66 679 

Fallible only 33 33 19 31 30 7 12 12 15 192 

Grand total 106 109 70 125 153 48 86 93 81 871 

Fallible device: Group b (lecturer, independent learning) 
True device: Group c (lecturer, independent learning) 

Based on the proposed method, the estimation of the param-

eters are given by f i r 二 -0.074, anr = 0.1376, a r 二 0.8088, 

台2 = —0.4808, and - ft = 0.982, and the corresponding 

standard errors are 0.050, 0.050, 0.097，0.037 and 0.038. As 

( l t ~ —0.074 is smaller than = 0, i t provides evidence that 

independent learning is less effective than discussing w i th lectur-
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ers. 

To test the non-inferiority of the two paths, we use the margin 

A = 0.2. The 95% CI for f i r is (—0.156,+00). The lower bound 

-0.156 is greater than -0.2’ Therefore, we can conclude that in-

dependent learning is non-inferior to discussing w i th lecturers. 

That is, independent learning approach could be promoted as an 

extension and enhancement of the proper lecture, since students 

themselves can crystallize the key concepts as effective as seeking 

help from lecturers after class. 
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Chapter 4 

Testing Non-inferiority in Block 
Design 

4.1 Introduction 

The applications of a non-inferiority t r ia l design that does not 

contain a placebo arm may be controversial, and the results from 

such a t r ia l design can be rather difficult to interpret w i th confi-

dence. To address this issue, one can adopt a three-armed tr ial 

design (see Tang & Tang (2004); Pigeot et al. (2003)). In three-

armed trials, investigators use both a known effective standard 

treatment and a placebo as control. This design can clearly dis-

tinguish between a treatment that does not work (i.e., the refer-

ence treatment is superior to placebo but the new treatment is 

not) and a study that does not work ( ie . , neither the reference 

nor the new treatment is superior to the placebo), as stated in 

Tang & Tang (2004). 
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Koch k Tangen (1999) and Pigeot et al. (2003) studied the 

problem of non-inferiority testing in a three-armed clinical t r ia l 

including a placebo. Their methods are suitable to employ when 

the outcome responses from the placebo, active control, and the 

new experimental treatments are all independently normally dis-

tr ibuted wi th the same variance. Tang & Tang (2004) and Munk 

et al. (2007) considered assessment of non-inferiority wi th bi-

nary data. However, l i t t le has been achieved in the literature for 

non-inferiority analysis of ordinal categorical data, and in partic-

ular when the responses of the placebo, active control and new 

treatments are obtained via a block-design. In this section, we 

develop a latent variable approach to study non-inferiority in a 

three-armed design. 

4.2 Model and Data 

Let {Xp, X j i , XtY be the multivariate normally distributed vari-

ables of interest wi th the subscripts P, R, and T stand for the 

placebo, reference and new treatment groups, respectively. More-

over, let the mean vector of (Xp, Xr, XtY be 

T 
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and the covariance matrix be 

o'p o-PR aPT 

^PR ^R CFRT 

、^PT (^RT CFT , 

We operate on the assumption that Xp, X r , and X t cannot 

be observed, and these underlying continuous variables Xp, X r 

and Xt are related to the observed ordinal categorical variables 

Zp, Zr and Z t , Specifically, the relationship is given by 

Zi = k if f3k<Xi< ^k+i 

for i = P�H k = 1’ K, where 

(4.1) 

— oo and 

[3 = ifiz,.,,, PkY is a vector of unknown thresholds. Here, to 

enable straightforward comparison between ( j l t and /U/?, we assume 

that the thresholds are invariant for Xp, X r and X t , 

As every observed data point of Zp, Z丑，and Zt must fall in 

a cell oi Q. K X K X K contingency table, an ordered contingency 

table can be easily generated as follows: 
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Table 4.1: Block design: Response of Placebo Group for Zp = m {m = 

1，… 

ZR 
1 2 3 • • • K Total 

1 nmll nml2 ... ^mlK 几ml + 

2 nm22 nm23 • • • nm2K 几m2+ 

3 几m33 ... nm'SK 

： ： “ • . ： I ： 

K nmKl rhiK2 TlmKS ... TlrriKK 几mK+ 

Total 几m+1 ^m+2 • • . ^m+K 

Our objective is to test whether the treatment is non-inferior to 

the reference group, wi th the effectiveness of the reference group 

relative to that of the placebo group as a benchmark for internal 

validation. 

Let n爪ij (where E L i E l L i E KK n mij n] be the observed 

number of respondents that falls in the mij-th cell wi th the corre-

sponding cell probability Pmiĵ  so the data set consists of n three 

dimensional measurements that are all expressed in an ordinal 

scale. 

We use the frequencies in the K x K x K contingency table 

to first estimate the mean f j and covariance matrix 5] and then 
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conduct non-inferiority test. 

Since the location and dispersion of the underlying continuous 

variables are not defined, we fix the population mean and the 

variance of the placebo group. That is, we fix / ip = 0 and cxp = 1, 

and we have 

‘ 0 1 1 a PR O'PT ‘ 

I^R and E — o-pR (7% O'RT . (4.2) 

\0-pT (JRT 4 J 
The means and variances of the other two underlying variables 

are then compared in a relative sense. Let 0 =�jiji, /^t, ct^-, 

apT, (JRT, ( y \ 、 b e the unknown parameter vector of the model. 

The parameters /i/?, jj/r, and a^ are treated as the means and 

variances of Xr and Xt respectively, which can be interpreted in 

a relative sense to those of Xp. 

Let Prnij be the probabi l i ty of an observation that falls in the 

(m, j ) t h cell, we have 

Pm” = Pr {Zp = m, Zb = I, Zt j) 

=*^3(An+l， f t+ l， f t+ l ; M， S ) — m： A+1) ft-fl j M， 

+ ^3(/5m, A , M, 5]) + <^3(An+l，A, A ； " ’ 

+ $3(An，A+1, ft ； A , ft ； M , ^ ) , (4.3) 

where 肌，卢”爲；//，S) is the three-dimensional mult ivariate 
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distr ibution function w i th mean /L6 and covariance matr ix S , eval-

uating at prn，ft and respectively. The maximum likelihood 

estimate of 6 can be obtained by maximizing the log likelihood 

function 

K K K 

^mij log Vmij [0). (4 .4 ) 
m—l i=l j=l 

4.3 Non-inferiority Test 

Once the M L E f i r of (jlt is available, non-inferiority can be ex-

amined by testing hypothesis on the difference of the means of 

the various treatments. Let us first recap the testing problem in 

terms of the difference of the population means. Similar to the 

discussion in the previous chapter, let the positive quantity A 

stand for the min imum difference to be detected, the hypothesis 

of non-inferiority is 

HQ : flT — ^R < - A 
(4.5) 

H i : flT — ĵ R > - A 

and non-inferiority can be established if HQ is rejected. Following 

Tang & Tang (2004), in three-armed design, —A can be chosen 

as a fraction f of the difference of the population means fiR and 

f ip, i.e., —A = f i p R —仲）.Thus, the non-inferiority test becomes 
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Ho ： l^T- fif^R - M p ) h … 
(4.6) 

Hi： fiT- fipR - f^P)' 

To choose an appropriate value of / , the paper of Committee 

for Proprietary Medicinal Product (CPMP) and Tang k Tang 

(2004) suggested that / =—臺 o r / = —! are acceptable. They 

represent a tolerable amount of reduction in efficacy. Besides, the 

commonly shared level for clinically unimportant is 20 percent, 

which is equivalent to / = — 

Assuming that [ i r —仲 > 0 and let tt = 1 + / , then we wi l l 

have the non-inferiority hypothesis test as 

HQ : < TT 
仲 一 (4.7) 

Hi ： > TT. 

As a result, the non-inferiority test can be expressed by 

HQ ： flT — ^(-IR — (1 ~ 7r)/ip < 0 
— (4.8) 

Hi \ flT — TTjJ^R 一 (1 一 7r)lJp > 0. 

In this context, we may draw conclusions based on i/j* — (1t — 
A A 

rtjiR — (1 — 7r)/ip. That is, if t j f — ZaSE(tp*) > 0, we can reject the 

null hypothesis and establish non-inferiority of the new treatment 

to the standard treatment. 

Since we have j ip 二 0, the non-inferiority test can be simplified 
as 
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Hq ： UT — t̂ Î R < 0 
(4,9) 

Hi \ jlT-邓R > 0. 
A 

In this case, we also have ijj* = fiT —兀I^r' That is, if ip* — 
A 

ZaSE{ilj^) > 0, we can reject the null hypothesis and conclude 

non-inferiority. 

4.4 Simulation 

To examine the performance of the proposed method, a number 

of data sets that are based on a set of known parameter values 

were generated. We set K = 3 and the thresholds for the three 

dimensions to be identical, given by 二 —0.2 and 二 0.5. 

For each simulation, a data set was generated wi th the true val-

ues of ^ = (/i/?, /XT, (^PR, ctrj crpT, c t r t , /?2, (Jh — Ihyf equal to 

(0.2,0.4,0.3,1,0.3，0.3，1，一0.2’ 0.7)^. In non-inferiority test w i th 

three-armed design, we also pay much attention to '0* since i t is 

the benchmark of decision making in the hypothesis test. Given 

6 and / = the true value of 功* = 0.24. 

The number of simulation replications is 1000. We consider 

three different sample sizes: 1000, 500 and 300. 

We st i l l use the mean, RMS, and the Ratio R = SD/SE 

that are compiled based on the 1000 replications to assess the 

performance of the proposed method. We have summarized the 
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simulation results in the following three tables. 

Table 4.2: Block design simulation result for sample size 1000 

m A t &PR 吟 ^PT ^RT 砖 r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0,200 0.403 0.302 1.030 0.304 0.308 1.033 -0.201 0.703 0.243 

RMS 0.044 0.049 0.045 0.156 0.044 0.059 0.160 0.039 0.038 0.045 

SE 0.045 0.049 0.045 0.157 0.045 0.058 0.159 0.040 0.038 0.045 

SD 0.045 0.050 0.046 0,160 0.045 0.060 0,164 0,039 0.038 0.045 

R 0.989 1.013 1.015 1.018 0.989 1.035 1,030 0.980 1.013 1.00 

Table 4.3: Block design simulation result for sample size 500 

m AT ^ PR ^ 9 
�R ^PT &RT ^ o 

碎 h-02 r 
True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.200 0.404 0.304 1.037 0.299 0.308 1.038 -0.200 0,700 0,243 

RMS 0.064 0.071 0.064 0.227 0.063 0.082 0.225 0.058 0.053 0.062 

SE 0.064 0.070 0.064 0.226 0.064 0.083 0.228 0.056 0.054 0.063 

SD 0.064 0.072 0.064 0.227 0.063 0.082 0.225 0.058 0.053 0.062 

R 1,001 1.031 1.011 1.007 0.982 0.983 0.985 1.019 0.985 0.984 
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Table 4,4: Block design simulation result for sample size 300 

m Ar &PR 4 &PT &RT 4 h A - A r 

True value 0,2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.204 0.406 0.304 1.076 0.308 0.314 1.065 -0,197 0.700 0.242 

RMS 0.081 0.088 0,084 0.297 0.083 0.111 0.301 0.071 0.071 0.080 

SE 0.084 0.090 0.084 0.309 0.085 0.112 0.307 0.073 0.069 0.083 

SD 0.082 0,089 0,086 0.312 0.085 0.115 0.315 0.071 0.071 0.081 

R 0.976 0.981 1,021 1.010 1,000 1.026 1.026 0.973 1.027 0.975 

From the results in Tables 4.2-4.4, we can see that the mean 

values of the estimates are very close to the true values in all 

situations, and the root mean squared errors and the mean of 

standard errors are reasonably small. The ratios (R) are all be-

tween 0.8 and 1.2. Therefore, the simulation results indicate that 

the proposed estimate procedure in general can provide the users 

w i th acceptable parameter estimates and standard errors. 

The simulation results for 'ip* are also satisfactory, suggesting 

statistical inferences based on the estimate j * of wi l l likely 

provide reliable results. We further explore this point in the next 

section. 
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4.5 Bootstrap Confidence Interval 

Similar to the discussion in Section 2.3, a CI for 功 w h i c h is given 
A 

by 一 can be used to test non-inferiority in 

three-armed block design, where Za is the upper a probabil i ty 

point of the normal distr ibut ion function and SE is the standard 
A A. 

error produced by the bootstrap method. I f — ZaSE{il)*) > 0, 

we can conclude non-inferiority. 

To assess the performance of the CIs such constructed, we 

need to assess the performance of the SE and the CIs, and i t is 

accomplished by simulation studies. 

As before, to evaluate the performance of CIs empirically, we 

use expected coverage probabil i ty (ECP), measuring the expected 

proport ion of the times that the CIs contain the true value of the 

parameter. 

Three sample sizes have been studied: 1000，500, and 300. In 

all of the simulation studies, 1000 replications have been used. 

Table 4.5: Evaluation of the Non-inferiority Test CIs 

NOBS Covering True Value Times Expected Coverage Probability 

1000 958 0.958 

500 959 0.959 

300 969 0.969 

The C I for non-inferiority test is in general a bi t conserva-
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tive because the coverage probability is slightly larger than the 

expected level. 

4.6 Example 6 

This data set first appeared in Kenward & Jones (1991), and it 

was originally designed as the three-period three-treatment cross-

over t r ia l on patients wi th primary dysmenorrhea!. There are 86 

subjects available for the trial, which were randomly assigned to 

receive all of the three treatments in six possible orders ABC; 

ACB; BAG; BCA; CAB and CBA, where A = Placebo., B = 

Low dose analgesic as the treatment arm; C = High dose an 

algesic as the reference arm. A t the end of each treatment, each 

subject rated the amount of relief obtained in an ordinal scale: 

none = 1; moderate = 2; and complete = 3. Here, we assume 

that the carry-over effect can be ignorable in the study to conduct 

the non-inferiority test in a block design. That is, we combined 

outcomes (1,2,3) in ABC order and (1,3,2) in ACB order. After 

this modification, the data set can be used as an illustration as 

follows: 
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Table 4.8: Three-armed trial on 86 patients, X p — 3 

1 2 3 Total 

1 6 4 5 15 

2 3 13 10 26 

3 0 8 14 22 

Total 9 25 29 63 

Table 4.7: Three-armed trial on 86 patients, X p = 2 

1 2 3 Total 

1 1 3 2 6 

2 2 3 1 6 

3 2 1 2 5 

Total 5 7 5 17 
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Table 4.8: Three-armed trial on 86 patients, Xp — 3 

XR 
1 2 3 Total 

1 2 0 2 4 

2 0 0 0 0 

3 1 1 0 2 

Total 3 1 2 6 

We are concerned wi th whether low dose is non-inferior to 

high-dose level in this example. The M L E of the unknown pa-

rameters (IR, " r , crpR, crpT, (^RT, of, ft, ( A — ft), are 1.307, 

1.105, -0.254, 0.657, -0.206, 0.215，0.779, 0.621, 0.856, 0.060 and 
A 

五 = 0.123. The 95% one-sided confidence interval for is 

(—0.142, +oo), it shows that the null hypothesis of non-inferiority 

can not be rejected at a 二 0,05, since the lower bound is less than 

0. In other words, "Low dose analgesic" is not non-inferior to the 

"High dose analgesic". 
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Chapter 5 

Block Data with 
Misclassification 

5.1 Introduction 

In Chapter 3, we have proposed the method to test non-inferiority 

for the data w i th misclassification in a pair design. In this chap-

ter, we wi l l consider the test of non-inferiority in the context of 

three-armed design. Test procedure for situations w i th known 

misclassification probabilities and w i th partial ly validated data 

wi l l be developed. The performance of the proposed method wi l l 

be assessed through simulation, and the applications of the pro-

posed method wi l l be demonstrated by two real data examples. 
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5.2 Model with Known Misclassification Prob-
abilities in Three-armed Trial 

Suppose we have Si K x K x K contingency table wi th N observa-

tions. Let k — {k{l),k{2)^ k{3)) and n^ the observed frequency in 

cell k, where k�,k(2),k(3) ~ 1,2, • • • E^ is used to denote 

the K X K X K array wi th element k equals to 1 and all other 

elements equal to 0. Zj is a K x K x K array wi th Zj^j as its 

elements in cell k and it is used to represent the classification 

of the j - t h subject. Xj is sl K x K x K array wi th X]^�as its 

elements in cell fc, and it is used to represent the true state of the 

j - t h subject. 

We also have 

1 if the j - t h subject t ruly belongs to the cell k , 

0 otherwise 
Xk,] 二 

Zfcj = 
1 if the j - t h subject is classified into the cell /c, 

0 otherwise 

for j = 1. 

1 if the j-th subject tells the t ru th or is correctly classified, 

0 otherwise 

L e t n = u(2), w(3)), where w(l) , w(2), 1^(3) = 1,2,…， iT. 

Generalizing the model in Section 3.2, we define the several prob-

abilities that are involved in the model as follows. 
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(a) pu is the probability that a subject actually belongs to the 

cell u. 

P{Xj = Eu) 二 Pu. 

These probabilities satisfy the constraint 0 < p^ < I and 
K K K 

V y Y.vu-x. 
u{l)=l u(2)=l 

Similar to Chapter 4，we assume that the true classifica-

tions are related to some underlying continuous variables and 

hence Pu is of the form (4.3). That is, pu is a function of the 

unknown parameters mean, thresholds and the covariance 

matrix. 

(b) Tuj is the probability of the j-ih subject being classified cor-

rectly given that the subject actually belongs to the cell u . 

That is 

= = 五 u ) 二 T•以 

where the TUJ，s are supposed to be known and are called the 

honesty probabilities. On the other hand, the probability of 

the j-th subject being misclassified given that the subject 

actually belongs to cell u is given by 

== = 二 1 — V 》 

(c) is the probability of a subject being classified into the cell 

k given that the subject actually belongs to the cell u and 
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is misclassified. 

where 

P { Z , 二 = Eu, y； - 0) - Jku： 

0 < < l ,7 im 二 0， 

and Ef ( i )= i Em3)=i 7ku = l , for all u KK K 

5.2.1 Maximum likelihood estimation 

Suppose that we have a data set of size N . Based on the afore-

described model, let z^^j be the realization of the random variable 

Zk,j • The log-likelihood function is then given by 

I = log(nf=i Utau, n̂ m̂ i Um)=i[Pr{Zj = E K 
k{l) 

K 
/c(2): 

K 
m-

f̂c, 

Ef=i I2�)=1 Ek(2)=i Ek(3)=i 之k,J log Pr{Zj = E} 

2^/c(l)=l Z^A'(3)=1 之fc，J 

log(X]u(l)=l '^ku,jpu) 
、！{ K 

and 

功 few J = 
rk,j if u = k 

7few(l - Tuj) otherwise 

(5.1) 

(5.2) 

are the elements of the matrix 屯” which is the matrix of tran-

sition probabilities wi th which the j - t h subject is transited from 

the true state to another state w i th misclassification. I t is a two-

dimensional matrix of {K x K x K) hy (K x K x K)^ and 
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J2k = 1 for l < j < N . 

For the problem w i th known misclassifications, values are 

known constants. Similar to Chapter 4，the unknown parameter 

vector isO = (ji仏 Mr, (Tpr, (t% (tpt, ctrt, iPr . Let Ok 

be the A;th element in 9. As parameters in 6 are only involved in 
/S 

the cell probabi l i ty p^ in (5.1)，the M L estimate 9 can be obtained 

by solving: 

猛钱•^瓷k’ (5_3) 
•y(l)=l v[2)—\ w(3)=l 

where k = 1 , 5 , and s is the number of unknown parameters 

or the dimension of 0. Taking into consideration the accessibil-

i ty by practitioners, we also use M x to obtain the M L estimates 

0. The standard error estimates are acquired through bootstrap 

method. We wi l l test non-inferiority in three-armed design in a 

way as described in Section 4.3. That is, we find the CI for 
A A 

that is given by (功* — ZaSEijp'')^ +oo), where 2：̂  is the upper a 

probabi l i ty point of the standard normal distr ibut ion function. 

We employ the C I to test non-inferiority, and the non-inferiority 
A A 

can be concluded at the significant level a if 於* — ZaSE(tlj*、> 0. 

5.2.2 Simulation 

We used a simulation study to assess the performance of the pro-

posed method for testing non-inferiority w i th the presence of mis-

classified data. 
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A number of data sets are generated based on a set of known 

parameter values. We set K equal to 3. The true values for 

the parameters are 6 = {ij,r, fir^ (^pr, apT, ctrt, cr^, /32, ( f t — 

ft))^- (0.2,0.4,0.3,1,0.3, 0.3,1,—0.2，0.7 厂 Moreover, we also 

examined the performance of 'ip* since i t is the benchmark of 

decision making in our hypothesis testing. Given 6 and f = _、, 

the true value of i j f is 0.24. 

The number of simulation replications was 1000 and we consid-

ered three different sample sizes: 2000, 1000 and 800. Assuming 

— Tu for all j 二 1，…，N , three different misclassification prob-

abilities Tu = 0.7,0.8 and 0.9 were used in the simulation. 

The set of j ^ u values that were adopted to analyze the data is 

presented in Table 5.1. The values were compiled based on the 

assumption that misclassification only occurred between adjacent 

cells, w i th equal probability. 

The values combined w i th the r^ values produce the tran-

sition misclassification probabil i ty matr ix 屯，where 屯 二 屯 j for 

all j as Tu,j = Tu for all j. For the different r^ — 0.7, 0,8，and 

0.9, the resulting 屯 matrices are reported in Tables 5.2 to 5.4, 

The simulation results are presented in Tables 5.5 to 5.13，with 

different values of r ^ indicating different misclassification levels. 

We used the same assessment standards as those in Chapter 2 to 

evaluate the proposed method for three-armed design w i th mis-

classification. 
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Table 5.11: Simulation data with. Tu = 0.7 known for sample size 800 

AH At ^ PR 八2 
。R d'PT O'RT 

O 
碎 台2 r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.199 0.400 0.294 1.009 0.292 0.292 1.009 -0.251 0.801 0.241 

RMS 0.035 0.038 0.036 0.132 0.038 0.047 0.137 0.060 0.107 0.034 

SE 0.035 0.039 0.037 0.135 0.037 0.048 0.137 0.032 0,037 0.035 

SD 0.035 0.038 0.036 0.132 0.037 0.047 0.137 0.032 0.036 0.034 

R 0.998 0.996 0.974 0.981 0.998 0.983 1.001 0.988 0.982 0.972 

Table 5.6: Simulation data with TU — 0.8 known for sample size 2000 

m I^T O'PR (JPT A 2 
(T去 自2 k-台2 'ip* 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0,24 

Mean 0.201 0.397 0.296 1.009 0.295 0.296 1.003 -0.230 0.758 0.237 

RMS 0.034 0.037 0.035 0.129 0.036 0,045 0.128 0.042 0.067 0.033 

SE 0.034 0.037 0.035 0.125 0.035 0.045 0.125 0.031 0.033 0.033 

SD 0.034 0.037 0.034 0.129 0.035 0.045 0.128 0.030 0.033 0.033 

R 1.001 0.997 0.983 1.032 1.005 1.009 1.017 0.985 1.001 0.979 
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Table 5.11: Simulation data with. Tu = 0.7 known for sample size 800 

AI? At OPR 碎 &PT &RT 
^ o 
砖 H 4 - / 3 2 R 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.199 0.400 0.298 1.002 0.297 0.296 1.000 -0,213 0.724 0.241 

RMS 0.033 0.035 0.032 0.114 0.033 0.041 0.116 0.032 0.038 0.032 

SE 0.033 0,036 0.033 0.116 0.033 0.042 0.117 0,029 0.029 0.032 

SD 0.033 0.035 0.031 0.114 0.033 0.041 0,116 0,029 0.030 0.032 

R 1.017 0.980 0.955 0.977 1.000 0.981 0,991 1.003 1.007 0.974 

Table 5.8: Simulation data with 丁以=0.7 known for sample size 1000 

m At &PR 
N 9 

^PT &RT (jy P2 r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.197 0.400 0.290 1.010 0.293 0.294 1.009 -0.250 0.800 0.242 

RMS 0.050 0.054 0.053 0,181 0,053 0.065 0.181 0,068 0.111 0.049 

SE 0.050 0.055 0.053 0,194 0,053 0.069 0.195 0,045 0.052 0.050 

SD 0.050 0.054 0.052 0,181 0.052 0.065 0.181 0,046 0.049 0.049 

R 1.017 0.998 0.987 0,933 0,984 0.941 0.927 1.015 0.943 0.989 
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Table 5.11: Simulation data with. Tu = 0.7 known for sample size 800 

m ：At ^PR 碎 &PT 
八2 

o-j. h r 

True value 0.2 0,4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.198 0,399 0.294 1.012 0.296 0.296 1.013 -0.230 0.759 0,241 

RMS 0.049 0.052 0.050 0.169 0.049 0.061 0.170 0.053 0.074 0.048 

SE 0.048 0.053 0.050 0.180 0.050 0.065 0.182 0.043 0.046 0.048 

SD 0.049 0.052 0.049 0.169 0.049 0.061 0.169 0.044 0,044 0,048 

R 1.027 0.999 0.996 0.939 0.979 0.943 0,931 1.019 0.947 0.992 

Table 5.10: Simulation data with r^ — 0.9 known for sample size 1000 

m A T &PR &PT ^RT k -台2 r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.199 0.400 0.296 1.010 0.299 0.299 1.012 -0.213 0.726 0.241 

RMS 0.047 0.051 0.047 0.160 0.048 0.058 0.157 0.044 0.046 0.046 

SE 0.046 0.050 0.047 0.167 0.048 0.061 0.169 0.041 0.042 0.046 

SD 0.047 0.051 0.047 0.159 0.048 0.058 0.156 0.042 0,039 0,046 

R 1.019 1.003 0.996 0.956 1.015 0.953 0.925 1.019 0,931 0.998 
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Table 5.11: Simulation data with. Tu = 0.7 known for sample size 800 

AI? A T ^PR 4 &PT &RT r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.196 0.396 0.292 1.021 0.293 0.299 1.016 -0.252 0.800 0.240 

RMS 0.054 0.061 0.060 0.210 0.059 0.074 0.215 0.073 0.115 0.056 

SE 0,055 0.061 0.059 0.222 0.060 0.078 0.221 0.051 0.058 0.056 

SD 0.054 0.061 0.060 0.209 0.059 0.074 0,215 0.051 0.058 0,056 

R 0.979 1.000 1.003 0.945 0.990 0.944 0.973 1.010 1.013 1.006 

Table 5.12: Simulation data with t „ = 0.8 known for sample size 800 

Ai? At ^PR 存PT ^RT 4 艮2 R 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.195 0.397 0.295 1.019 0.296 0.301 1.018 -0,231 0.759 0.241 

RMS 0.053 0.060 0.057 0.194 0.056 0.069 0,201 0.058 0.079 0.055 

SE 0.054 0.059 0.056 0.204 0.056 0.073 0.206 0.048 0.052 0,054 

3D 0.053 0.060 0.057 0.194 0.056 0.069 0.201 0.049 0.052 0,055 

R 0.981 1.014 1.015 0.947 0.992 0.945 0.976 1.007 1.009 1.018 
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Table 5.11: Simulation data with. Tu = 0.7 known for sample size 800 

m A T &PR ^PT &RT 
^ 9 

cr手 h k - 必* 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.197 0.397 0.298 1.020 0.298 0.305 1.016 -0.214 0.726 0.240 

RMS 0.052 0.057 0.054 0.185 0.053 0.067 0.188 0.049 0.053 0.052 

SE 0.052 0.057 0.053 0.190 0.053 0.069 0.191 0.046 0,047 0,052 

SD 0.052 0.057 0.054 0.184 0.053 0.067 0.188 0.047 0.047 0.052 

R 0.997 1.012 1.026 0.967 0.991 0.962 0.986 1.023 1.005 1.006 

Table 5.14: Non-inferiority test with TU known 

ru NOBS ECP 

0.7 2000 0.964 

0.8 2000 0.969 

0.9 2000 0.958 

0.7 1000 0.962 

0.8 1000 0.958 

0.9 1000 0.967 

0.7 800 0.959 

0.8 800 0.957 

0.9 800 0.957 

Moreover, in Table 5.14, we have summarized the ECPs of the 

confidence intervals of The values are close to but slightly 
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larger than 0.95 in all cases, suggesting that the use of the CIs to 

examine non-inferiority wi l l produce reliable results. 

We also summarized the simulation results wi th respect to 

the different sample sizes (NOBS) and 丁U values in the Figures 

5.2 and 5.3, where the three different curves stand for the re-

sults wi th Tu = 0.7 (MIST), = 0,8 (MISS), and r^ = 0.9 

(MIS9), respectively (see Figure 5.1). The ten parameters in 

"i?，"r, crpT, (JRT, crh （A?—，々* are labeled from Pa-

rameter!, Parameter2 to Parameter 10 (See Figure 5.1). Gener-

ally, for all the parameters, the values of RMS decrease to 0 and 

the values of the ratio SD/SE get closer to 1 as sample size in-

creases, indicating that: (i) the parameter estimates are accurate; 

and (ii) the estimated standard errors are reliable. 

Parameterl = fin, Parameter2 = (It, Parameters 二（3"/>尺，Parameter̂  — 
Parameter5 = apx, Parameter^ — Parameter7 — Parameters = /32, 
Parameter^ 二台•i 一台and Parameter 10 — 

MiS9 

Figure 5.1; Graph legend 
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Figure 5.2: RMS, known misclassification rate 
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Figure 5.3: SD/SE ratio, known misclassification rate 
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3.3.3 Example 5 

We analyzed the data set in Example 6 w i th the data given in 

Tables 4.6, 4.7 and 4.8. As an il lustration, we assume that the 

transit ion matr ix is known and is the one in Table 5.3 w i th hon-

esty rate 0.8. 

W i t h the proposed method, we can obtained ftR 二 1.517, fir — 

1.260, apR = -0.353, a l = 0.96, apT = —0.282, a 虹 = 0 . 3 4 4 , 

砖 - 1 . 1 5 2 ,台2 二 0.636,冷3 — ft 二 1.1, and 一 = 0,046. The 95% 

CI for V̂ * is (-0.245,十oo). Since the lower bound of C I -0.245 is 

a negative value, the non-inferiority can not be concluded, which 

is consistent w i th the conclusion of Example 6. That is, even if 

there exists misdassifications in the data set, we are confident 

that the conclusion wi l l be the same. 

5.4 Block Design with Partially Validated Data 

5.4.1 Model for partially validated data 

When the misclassification probabilities are not known, we can 

use part ial ly validated data to seek information in relation to 

misclassification. Similar as before, partial ly validated data is 

assumed to have obtained by using two devices to classify the re-

sponses. The true classifier can classify units correctly but usually 

w i t h higher cost. The fallible classifier may lead to misclassifica-
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t ion but i t is less expensive. 

Let k represent the cell classified by the fallible device, and 

u the one for true measurement device. The total sample size 

of a data set that is obtained from partial ly validated data is 

N. Out of which n randomly drawn units are classified by both 

devices and nk(u) is the total number of units for which the true 

and fallible devices result to the classification to cells u and k, 

respectively. The remaining n* = N — n units are classified by the 

fallible device only, and is the total number of units that have 

been classified into cell k. The data structure is summarized in 

Table 5.15. 
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Let pu be the probability that a unit actually belongs to cell 

u; TTfs be the probability that a unit is classified into cell k by the 

fallible device; and Wfc⑷ be the probability that one is classified 

into cell k when it actually belongs to cell u. As before, it can 

be shown that the ML estimates pu of p^ and ⑷ of uJk{u) are 

given as follows: 

[nl + nk(+))nk{u) 
= M - (5-4) 

^k{u) = ^r ’ （5.5) 
Nnk � Pu 

Let p* be a ( i^ X X /C) X 1 vector that stores p^s for u{l)= 

u{2) = u{3) = and p* be its M L 

estimate wi th elements that are given by (5.4). 

Let 9 二 {/jLr, fiT, o-pR, <7% apT, ctrt, be the unknown 
A 

parameters vector as before, then p* = The estimate 6 

can be obtained by the method of Modified Minimum Chi-square 
A 

(MMC) wi th 0 minimizing the function 

G{0) = (5.6) 

where Q, is d, {K x K x K) by {K x K x K) matrix. The diagonal 

elements of O that correspond to pu are given by 

n N n ^ TTfc 
k 

and the off-diagonal elements that correspond to pu and Pu' for 
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XL • v l are given by 

PuPu' y^ ^k{u)^k{u') (5 7) 

The matr ix O can be derived analytically by generalizing the 

method in Y iu & Poon (2008) and Zhang (2007), and { l is ob-

tained by replacing the unknown parameters in H wi th their con-

sistent estimates. We construct program in the freely available 

software Mx to get the estimates of the unknown parameters. 

5.4.2 Simulation 

To examine the performance of the proposed method by simu-

lation, a number of data sets that are based on a set of known 

parameter values were generated. 

We set K equal to 3 and set the true parameter values 0 = 

("H, Mt, o-pR, cr|, apT： o-RT, 卢 2，（A — e q u a l to (0.2，0.4,0.3， 

1,0.3,0.3,1, —0.2,0.7)^. The two thresholds are set to be iden-

t ical as 132 — —0.2 and = 0.5 for all of the three dimensions. 

In particular, we examined the performance of '0* since it is the 

benchmark of decision making in our hypothesis testing. Given 

6 and / 二 一!，the true value of i j f is 0.24. 

To generate the data wi th misclassification we make use of 

the misclassification matrices in Tables 5.2, 5.3 and 5.4 that were 

compiled based on different 丁让 values and the assumption that 
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misclassification only arises in the adjacent cells wi th equal prob-

ability. 

The simulation results are summarized by using both tables 

and graphs. To make it clear in the graph, we use NOBS and 

NRES to replace N and n in the presentation. We simulated three 

different combinations of data sets wi th sizes (TV, n) = (NOBS^ 

NRES) = (2000,1200), (1500,900) and (1000,600). The simula-

tion steps are the same as those in Section 3.3.1. 

As before, there are three different misclassification probabil-

ities used in the simulation. They are TU — 0,7, TU 二 0.8 and 

Tu = 0.9. The simulation results are presented in Tables 5.16 to 

5.24 as follows. 

Table 5.16; Simulation result for NOBS-2000 NRES-1200 r^ = 0.7 

m flT O'PR 絲 /?2 r 

True value 0,2 0.4 0,3 1 0.3 0,3 1 -0.2 0.7 0.24 

Mean 0.205 0.409 0.305 1.011 0.307 0.306 1.004 -0.194 0.697 0,246 

RMS 0.036 0.040 0.037 0.137 0.038 0.047 0.129 0,032 0,033 0,036 

SE 0.037 0.041 0.038 0.136 0.039 0.049 0,136 0.032 0.033 0,037 

SD 0.035 0.039 0.036 0.136 0.038 0.047 0.129 0.032 0.032 0.036 

R 0.958 0.956 0.964 1.002 0.977 0.953 0.949 0.981 0.988 0.970 
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Table 5.17: Simulation result for NOBS-2000 NRES=1200 r^ 二 0.8 

Ai? AT ^ PR &PT &RT A 9 
砖 艮广台2 r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.205 0.409 0.305 1.010 0.306 0,305 1.004 -0.195 0.697 0,245 

RMS 0,035 0,039 0.035 0.130 0.037 0.045 0.126 0.031 0.032 0.036 

SE 0,036 0,039 0.036 0.130 0.037 0.047 0.130 0.031 0.031 0.036 

SD 0.035 0.038 0.035 0.130 0.036 0.045 0.126 0.031 0.032 0.035 

R 0.979 0.972 0,960 1.000 0.985 0.957 0.969 0.986 1,005 0,996 

Table 5.18: Simulation result for NOBS二2000 NRES-1200 r^ = 0.9 

m 时 apR CPT O'RT CTj, h-h 
True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.205 0.408 0.305 1.010 0.306 0.305 1.005 -0.196 0.698 0.244 

RMS 0.034 0.037 0.033 0.123 0.035 0.043 0.117 0,030 0.030 0.034 

SE 0.034 0.038 0.035 0,123 0.035 0.045 0.123 0,030 0.030 0.034 

SD 0.033 0.037 0.033 0.122 0.034 0.043 0.117 0.030 0.030 0.034 

R 0.979 0.972 0,951 0.996 0.977 0.955 0.954 0.988 0.996 0.993 
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Table 5.23: Simulation result for NOBS=1000 NRES-600 r^ 二 0,8 

m AT &PR &RT 
A 

"2 h - h ¥ 
True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.204 0.411 0.306 1.012 0.308 0.311 1.016 -0.196 0.697 0.248 

RMS 0.041 0.047 0.043 0.149 0,044 0.057 0.155 0.037 0.037 0.043 

SE 0.044 0,049 0.045 0,163 0.046 0.060 0.166 0.038 0.039 0.044 

SD 0.041 0,046 0.042 0.149 0.044 0.056 0.154 0.036 0.037 0.042 

R 0.935 0.922 0,942 0.915 0.942 0.941 0.930 0.944 0.956 0.943 

Table 5.20: Simulation result for NOBS=1500 NRES-900 TU 二 0.8 

A 

f^R AT ^ PR A 2 &PT &RT (J J. k - h r 
True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.203 0.409 0.305 1.013 0.307 0.310 1.013 -0.197 0.697 0.246 

RMS 0.040 0.045 0.041 0.144 0.043 0.054 0,145 0.035 0.036 0.041 

SE 0.042 0.047 0.043 0,155 0.044 0.057 0.157 0.037 0.037 0.043 

SD 0.040 0.044 0.041 0.143 0.043 0.054 0.145 0.035 0.035 0.041 

R 0.946 0.939 0,942 0.925 0.968 0.944 0.921 0.950 0.954 0.963 
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Tabic 3,20: Simulation result for N O B S - 5 0 0 NRES-300 r,,. = 0.7 

m I^T O'PR 4 O'PT (Ty 台2 r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.203 0.408 0.305 1.011 0.306 0.309 1.014 -0.198 0.698 0.246 

RMS 0.039 0.043 0.040 0.139 0.041 0.052 0.140 0.034 0.034 0.040 

SE 0.041 0.045 0.041 0.146 0.042 0.054 0.148 0.036 0.035 0.041 

SD 0.039 0.042 0.039 0.139 0.041 0.052 0.139 0.034 0.034 0.039 

R 0.952 0.944 0.960 0.950 0.979 0.961 0.939 0.951 0.955 0.964 

Table 5.22: Simulation result for NOBS-1000 NRES=600 = 0.7 

m I^T PR (^PT ctrt c4 h r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0,209 0.417 0.310 1.019 0.315 0.315 1.022 -0,190 0.694 0,249 

RMS 0.054 0,060 0.053 0.196 0.057 0.072 0.203 0.047 0.049 0.054 

SE 0.060 0.072 0.061 0.217 0.063 0.081 0.223 0.051 0.051 0,062 

SD 0.053 0.058 0.052 0.195 0.055 0.071 0.202 0.045 0.049 0.053 

R 0.885 0.803 0.856 0.897 0.867 0,871 0.907 0.899 0.948 0,851 
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Table 5.23: Simulation result for NOBS=1000 NRES-600 r^ 二 0,8 

f^R At &PR 
八2 

^PT &RT 
A 0 

a冬 h h - k r 

True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0,24 

Mean 0,208 0.414 0,309 1.018 0.314 0.314 1.018 -0.191 0,695 0.247 

RMS 0.052 0.057 0,050 0.187 0.054 0.069 0.188 0.044 0.047 0.051 

SE 0.057 0.068 0.058 0.205 0.060 0.077 0.209 0.048 0.049 0.059 

SD 0.051 0.056 0.050 0.186 0.052 0.068 0.188 0.043 0.046 0.051 

R 0.897 0.815 0,856 0.907 0.867 0.888 0,898 0.894 0.948 0.865 

Table 5.24: Simulation result for NOBS-1000 NRES=600 r^ = 0.9 

m /iT JPT O'RT * 
True value 0.2 0.4 0.3 1 0.3 0.3 1 -0.2 0.7 0.24 

Mean 0.207 0.411 0.308 1.020 0.312 0.314 1.018 -0.193 0.696 0.246 

RMS 0,050 0.054 0.048 0.179 0.052 0.066 0,181 0.042 0.044 0.048 

SE 0.054 0.064 0.055 0.191 0.056 0.072 0.193 0.046 0.046 0.055 

SD 0.049 0.053 0.048 0.178 0.050 0,065 0.180 0.042 0.044 0.048 

R 0.911 0.838 0.873 0.933 0.901 0.908 0.933 0.899 0,964 0.878 
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Table 5.25: Non-inferiority test for different r-u values 

Tu NOBS NRES ECP 

0.7 2000 1200 0.942 

0.8 2000 1200 0.946 

0.9 2000 1200 0.944 

0.7 1500 900 0.95 

0.8 1500 900 0.955 

0.9 1500 900 0.948 

0.7 1000 600 0.961 

0.8 1000 600 0.967 

0.9 1000 600 0.961 

From Tables 5.16 to 5.24, we see that the mean values of the 

estimates are very close to the true values in all situations, the 

RMS and the mean of standard errors are reasonably small. The 

values of the ratio R are all between 0.8 and 1.2. Therefore, the 

simulation results indicate that the proposed estimate procedure 

in general can provide the users wi th reliable parameter estimates 

and standard errors. 

We summarize the simulation results w i th respect to the dif-

ferent NOBS, NRES and r^ values in the following graphs, in 

which MIST, MISS, and MIS9 stand for the r^ 二 0.7, r^ = 0.8, 

and 丁U = 0.9 respectively. As before, the legend of the following 

graph is given in Figure 5.1. We can see for all of the unknown 
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parameters, the accuracy of the estimates wi l l be improved if the 

NOBS, NRES or the TU value increases, as evident by the fact that 

the RMS becomes smaller and the ratio i? = SD/SE becomes 

closer to 1. 

Figure 5 4 RMS-NOBS block design with partially validated data 
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Figure 5.5: RMS-NRES block design with partially validated data 

Figure 5 6: Ratio-NOBS block design with partially validated data 
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Figure 5.7: Ratio-NRES block design with partially validated data 

5.4.3 Example 8 

In this section, we illustrate how the proposed method can be 

used to analyze real data. We used the HELP data set wi th 

871 (NOBS) effective respondents. By using the responses to the 

questions in Group a as the discriminator, there are 679 (NRES) 

subjects who have responses from both the true device and the 

fallible device. As independent learning is the most intuitive and 

convenient path out of the four choices, it is chosen as the placebo 

group (Xp). We are interested in detecting whether the peer dis-

cussion ( X t ) is non-inferior to the discussion wi th course lecturers 
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Based on the previous analysis in Chapter 3, we have estab-

lished that independent learning is non-inferior to discussing w i th 

course lecturers. The estimate fiR is greater than f ip and i t is a 

common sense that the lecturers can provide more professional 

explanation in concept clarification than students, so i t suggests 

that the prerequisite 仲一 / ^p〉0 in three-armed design is likely 

to be true. Under these specifications w i th / = — |，the HELP 

data set was analyzed by using the three-armed design model w i th 

part ial ly validated data. 

The estimates of the parameters are given by fiR = 0.138, ( I t ~ 

-0.207, apE = 0 . 1 9 6 ， 二 1.312，gpt 二 0.420，^RT : 0.156, 

砖 = 0 . 9 4 1 5 , ft = -0.423, ft — ft = 1.124, and 二 -0.317. 

The 95% CI for 於* is ( -0 .476,+oo) . The negative lower bound 

of the C I means that discussing w i th peers is not non-inferior to 

discussing w i th teachers. 
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Chapter 6 

Conclusion 

We have developed statistical procedures for conducting non-

inferiority tests in two-armed and three-armed designs wi th ordi-

nal categorical outcomes. We used a latent variable normal model 

and used the maximum likelihood approach to get the parameter 

estimates and bootstrap method to obtain the standard errors of 

the parameter estimates. The proposed procedure can be widely 

used not only in clinical and pharmaceutical fields (see Metzler & 

Haung (1983) and Tang & Poon (2007)), but also in many other 

fields, such as sensory and consumer field in Bi (2005). 

As misclassification is frequently encountered in contingency 

tables, we have also developed non-inferiority testing procedures 

for ordinal categorical data w i th misclassifications. Two methods 

have been developed to analyze data sets w i th misclassification. 

The first assumes that the probabilities of misclassification are 

known, and the other assumes that information on rnisclassifi-
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cation is available in a data set that is obtained from partial ly 

validated data. 

I t is also worth noting that many research studies use a closely 

related surrogate variable to replace a primary variable of interest 

when the primary variable is difficult to measure, as explained in 

Poon & Wang (2010). We can consider the classification based 

on a surrogate variable to be fallible and the classification based 

on the primary variable of interest to be true, and the procedure 

that has been developed for analyzing partial ly validated data 

can then be applied. We have illustrated the application of the 

proposed method by using the HELP data set in Examples 5 and 

8. 

In HELP data set, i t is worthy of note that many students had 

not discussed wi th teaching assistant in the past six months, so 

we have not used the relevant variables (a2, b2 and c2) in any of 

our analysis. We have attached the questionnaire in Appendix. 

In many research studies, wc may have different surrogate vari-

ables w i th different cost requirements. Besides, we have already 

il lustrated that the higher honest rates may lead to more reli-

able results. The selection of appropriate surrogate variables 

from a cost-effectiveness perspective is an interesting topic for 

further research. Another interesting research topic is to explore 

the optimal allocation in the design of collecting partially vali-

dated data. That is, determining how many respondents should 
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be classified by the two classifiers so as to achieve optimal re-

sult in non-inferiority testing, given the different costs of the two 

classifiers. 

In effect, the power and sample size determination is also a hot 

topic in three-armed design. Pigeot et aL(2003) have calculated 

the sample size that is required to achieve a given power assuming 

normality and homogeneity of variances in the three independent 

treatments when the data are observed in a continuous scale. The 

sample size requirement in the context of ordinal categorical data 

is an interesting topic for further research. In this thesis, we use 

Wald-type CIs to test non-inferiority, and other methods can also 

be applied to develop CIs, such that CIs based on score-test. The 

comparison of the performance of the Wald-type intervals and the 

score-type intervals is an interesting topic in future studies. 

The nature of non-inferiority test and equivalence test are the 

same. Following the notation that we have been used, testing of 

equivalence involves the testing of the following hypothesis: 

Hq ： flT - fJ^R < - A or (J.T - fiR> A 

(6.1) 
Hi ： —A < jlT — I^R < 

Following the argument of Blackwelder (1998), equivalence can 

be concluded when the 100(1 — 2a)% confidence interval of f i^ — 

fiR entirely falls wi th in the predefined endpoints (—A, A ) given 

significance level a. The method proposed in this thesis can be 
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employed to conduct equivalence tests w i th minor modification. 
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Appendix 

Questionnaire on How Effective the Learning Paths are 

a) Communication frequencies 

In the past 6 months, how often have you used the following 

learning paths to make better understanding of a concept out of 

the time you spend in lecture? 

Statements 
Times 

Statements 
Never 1-3 4-6 7-9 > 9 

al) Discussing with course lecturers 1 2 3 4 5 

a2) Discussing with teaching assistants 1 2 3 4 5 

a3) Discussing with peers 1 2 3 4 5 

a4) Independent learning 1 2 3 4 5 

b) To solve difficulties in understanding a concept after class, 

how much do you agree or disagree wi th the following statements? 
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Statements Highly Disagree —Highly Agree 

b l ) Discussing with course lecturers 

can make confusing concepts clear 
1 2 3 4 5 

b2) Discussing with teaching assistants 

can make confusing concepts clear 
1 2 3 4 5 

b3) Peer discussions can make 

confusing concepts clear 
1 2 3 4 5 

b4) Independent learning can 

make confusing concepts clear 
1 2 3 4 5 

c) Considering the last time that you conducted the following 

learning approaches to make better understanding of a concept 

after class, how much do you agree or disagree w i th the following 

statements? Please tick your answer. 

Statements Highly Disagree Highly Agree 
NOT 

Applicable 

cl) Discussing with coursc lecturers 

made confusing concepts dear last time 
1 2 3 4 5 NA 

c2) Discussing with teaching assistants 

made confusing concepts clear last time 
1 2 3 4 5 NA 

c3) Peer discussions made 

confusing concepts clear last time 
1 2 3 4 5 NA 

c4) Independent learning made 

confusing concepts clear last time 
1 2 3 4 5 NA 
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