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ABSTRACT 

This thesis considers the effect of stochastic skew in the interest rate cap and currency 

option markets, where wc observe obvious stochastic variation of skew of implied Volatility 

curve over time. To develop option pricing; models consistent with empirical evidence, we 

adopt the Wishart process to model both stochastic volatility and stochastic skew of tlio 

asset return and to price options in both markets. As an affinc imodel, the model is 

analytically tract able. Some distributional properties of the models are studied. The key 
T 

feature of our model is that, when compared with the multi-factor Hestoii model, which 

generates stochastic skew through its volatility processes, the Wishart process contains 

not only volatility processes, but also volatility-unrelated processes which provide extra 

freedom to model the variation of skew that is not captured by the volatility processes. 

Numerical experiments demonstrate that the Wishart model has greater flexibility to 

model stochastic skew than the multi-factor Heston model in both the interest rate cap 

market and currency option market. Finally, results of calibration to market data and 

model estimation demonstrate the superiority of the Wishart model to the multi-factor 

Heston model in the interest rate cap market. 

« 

iv 

1 



摘 要 、 

本文考慮在利率上限市場和貨幣期權市場裡的隨機偏度机ochastic skew現象，在這 

兩個市場裡我們觀察到引伸波動曲線的偏度表現出明顯的隨機時態變化。為了開發與 

赏證研究一致的期權定價模型，我們採用Wishart過程模擬資産收益中的隨機波動和 
* 

隨機偏度的效果’並為這兩個市場裡的期權定價。作為一個Affine模型’•該模型是解 

-•析上易駕叙的。一些有關該模型的分佈特性會考察。該模型的主要特點是，當與那 

只能通過波動過程産生隨機偏度的多因Heston模型比較 ’ Wishart過程不僅包含波動過 

程‘，也包含與波動無關的、提供額外自由度來捕捉單靠波動過程捕捉不到的隨機偏 

度的過程。數值實驗表明 ’ Wishart模型比多因Ilcston模型在利率上限市場和货幣期權 

市場裡有更大的彈性去捕捉隨機偏度’。最後，校準市場數據和模型估計的結果顯示 

出Wishart模型比較多因Heston模型的優越性。 
X 
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Chapter 1 

Introduction 

1.1 Background 

The main theme of the thesis is the development of option pricing models capable of 

modeling "stochastic skew’，present in the interest rate cap market and currency option 
4 

market, respectively. • 
i * 

In financial markets, a well-known stylized fact is that the implied volatility, which is 

the number placed in the constant volatility term of the Black and Scholcs [12] option pric-

ing formula in order to obtain the quoted option price, exhibits a shape of smile or smirk 

as a function of.morieyness level or strike price; as a consequence, the assumption of the 
« 

Black-Scholes [12] model that asset price is log-normally distributed is no longer valid. To 

^biiild an option pricing model that is consistent with the observed volatility smile/smirk, 

the notion of stochastic volatility is introduced^ and, particularly within the affine stochas-
Un the thesis, WG restrict ourselves within the framework of stochastic volatility and exclude the local volatility 

models and jump diffusion models. 
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tic volatility framework (for general definition, see Dai and Singleton [31], Duffie and Kan 

32], Duffie et al. [33]), the steepness (skew) of t he model implied volatility ainile/sinirk 

is com rolled by the correlation belAveen the shocks to the asset return and to the variance 

dynamics so that positive (rcsp. negative) correlation results in upward (rcsp. downward) 

sloping smile/smirk. It is known as the leverage effect. At the beginning of development, 

models with single stochastic volatility, for example, Heston [48], are developed in order 

to model the time-varying nature of volatility. Later, models with multiple stochastic-

volatilities, for example, Bates [7] and ChristofFersen et al. [25), arc developed to capture 

multiple risk factors and better model the term structure of volatility in financial markets. 

Recently, "stochastic skew", documented by Carr and Wu [21] in curreiicy option mar-

ket and by Christoffersen et al. [25] in index option market, refers to the fact that the 

slope of the volatility sniile/smirk varies stochastically over time, which poses a new chal-

lenge to building option pricing models consistent with market phenomena. Within the 

affine stochastic volatility framework, it means that models with stochastic instantaneous 

correlation between the shocks to the asset return and to the variance are necessary. How-

ever, in the Heston [48] model, this correlation is fixed so it cannot generate stochastic 

skew. In the Christoffersen et al. [25] model, this correlation, although stochastic, given a 

fixed set of model parameters, is completely determined by the variance factors, thereby 

limiting the power to model stochastic skew. 

Different from, and extending, the above models, a new class of option pricing models 

has been developed by incorporating the Wishart process, which not only models stochas-

tic volatility, but also provides extra flexibility to model stochastic skew. The Wishart 
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process, closed-relatcd to the well-known and important Wishart distribution in inultivari-

atc statistics (please refer to Appendix A), tu, a matrix extension of Ileston [48) volatility 

model, is proposed by Bni [18] and is introduced into finance by Gourieroux [38]. Ever 

since then, the Wishart process is used as a tool to model multivariate risk (for example, 

Gourieroux et al. [39], and Gourieroux and Sufaiia [40]), to prico options on multiple as-

sets (for example, Brangcr and Muck [16], and Da Fonscca et al [29]), to model stochastic 

skew in equity/iiidex option markets (for example, Da Fonseca et al. [30], Da Foruseca 

and Grfksselli [28], and Gruber et al. [43]) and, to investigate the choice of optimal port-

folio when the correlations across assets arc stochastic (for example, Buraachi et al. il9]). 

Asymptotic approximation of vanilla, option priccs and implied volatilities with Wishart 

stochastic volatility arc derived in Bcnabid el al. [9] and easy-to-iniplemciit Moiitc Carlo 

(MC) procedures are provided by Gauthier and Possamai" [37 . 

That the Wishart process is a symmetric positive-definite matrix affine process makers 

it suitable to act as a sourcc of stochastic volatility for option pricing, in the multi-asset 

framework, its symmetry and positivity make it resemble a stochastic covariaricc matrix 

of asset prices so that options on multiple assets can be priced (for example, Da Fonseca 

et al. [29], Gourieroux [38], and, Gourieroux and Sufaiia [40]); on the other hand, in the 

single-asset framework, when the conditional variance of gusset price equals the trace of 

Wishart process, the off-diagonal processes of Wishart process give the freedom to model 

stochastic skew (for example, Da Fonscca et al. [30], Da Fonscca and Grasselli [28] and, 

Gruber et al. [43，）. Finally, the affine nature of the Wishart process makes it straightfor-

ward to derive closed-form formula for vanilla option prices, in terms of the, characteristic 

function, so that these options can be accurately and efficiently priced through Fourier 
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transform. “ 

So far, the Wishart process is successfully iiiipleinoiited in the equity option and index 

option markets; however, the possibility of applying Wishart process in other financial 

inaikots is largely unexplored. Therefore, in the thesis, we study stochastic skew in other 

markets，namely, the interest rate cap and curroncy option markets, aii(J develop consis-

tent option pricing models through the use of Wishart process. The related background 

and our contribution for eacli c,ase are provided below. 

1.2 Stochastic Skew in Interest Rate Cap Market 

III the interest rate derivative markets, the LIBOR market model, separately developed 

by Brace et al. [14], Jainshidiaii [50], and Miltersen et al. [62], is the benchmark model 

for pricing interest rate derivatives, where, in an arbitrage-free term structure framework, 

the simply compounding forward rates are log-normally distributed and that the market 

conventional Black's [11] formula is justified for the pricing of caplets. As a consequence, 

it is in contrast to the Heath, J arrow and Morton (HJM) [46] framework, under which if 

the continuously compounded instantaneous forward rate being modeled is log-normally 

distributed, it explodes with positive probability so the bond price is zero, and, it is very 

difficult, if not impossible, to obtain closed-form solutions of those liquidly-traded vanilla 

derivatives, for example, caps and swaptions, to allow for rapid pricing and calibration. 

Apart from theoretical reasons, the prevalence of the LIBOR market model also lies on 

the fact that, when the volatility and correlation structure of the observed simple forward 
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rates being modeled arc oxtractod from market prices of caps and swaptions, most, if 

not all, of the cxotic derivatives can be priced usiiiR MC simulation or analytical pricing 

formulae. For more details, please refer to Bachert et al. [6] or Rcboiiato [69 . 

The assumption that simply forward rates arc log-normally clLstVibuted implies that 

implied caplet volatility curves should be flat. However, this violates the observation 

that the implied volatility curvcs often exhibit a shape of smile or smirk, thereby im-

plying that the distribiitioii of log-forward rates has fatter left tail than when compared 

with the normal distribution. As such, it motivates the development of more sophis-

ticated LIBOR market models. In particular, the stochastic volatility inodcl is such a 

class of models in which the term structure is multiplicative-perturbed by positive-valued 

stochastic processes whose shocks are possibly correlated with the shocks to the term 

structure. The widely adopted approach is the lieston [48] model, for instance, Andersen 

and Brotherton-Ratdiffe [3], and Wu and Zhang [80], in which the variance process follows 

a mean-reverting square-root process. Particularly, in tho Wii and Zhang [80] model, the. 

most prominent feature is that the slope of implied volatility curvc is controlled by the 

correlation between the shocks to the forward rate and to the variance dynamics, and the 
t 

caplet price is expressed .in terms of the characteristic function of log-forward rate and 

rapidly computed through fast Fourier transform. 

Notwithstanding the above, recently, the discovery of the "unspanned stochastic volatil-

ity" (hereafter, USV) by Collin-Dufrcsne and Goldstein [26], where the priccs of caps and 

swaptions are driven by stochastic volatility factors that arc not spanned by the under-

lying forward rates or forward swap rates, shows that stochastic volatility is necessary 

.5 



in term structure modelling. In fact, thoy show that all Jl.IM models with stochfLstic 

volatility can exhibit USV. More importantly, based on this finding, Li and Zhao [58 

demonstrate that traditional term structure models have difficulty hedging interest rate 

derivatives and show that imilliple sic)dia>;tic; volatility factors ar(i riec(;ssary to capturo 

USV. Thus, these results invoke the application of multi-factor stochastic volatility mod-

els t.o price caps and swaptions,'-^ for example, Han [45], J arrow ct al. [51], and Schwartz 

and IVollo [72]. All these models use at least throe Hostoii volatilities to capture USV 

and, thus, are consistently shown to have bettor perforinaiicx; than do models with OIK̂  

or two 1 lesion volatilities, lleceiitly, Beloiuostnyl et al. [S] and Ma [61] also multi-factor 

stochastic volatility LIBOR market models. 

With regard to this thesis, our objective is to develop a piactically useful term struc-

ture model which is able to capture not oiily USV, but also, more importantly, "stochastic 

skew” observed in tlie interest rate cap market. Mcianwhile, wc also note that Gourier-

oiix and Sufaiia [41] also develop term structure models based on the Wishart process; 

however，they develop an extension of the Quadratic term structure model and derivo tlio 

condition of positive bond yield for all maturities, but do not provide clused-lbrin pricing 

formula for any interest rate options. Different from theirs, our paper aims at developing 

ail analytically tractable term structure model for pricing interest rate derivatives with 

extra flexibility to capture stochastic skew. 

' A s a remark, evidence of the presence of USV in other linaiicial markets is provided by Anc'nrseii and Bciizoui 

|4]，Bikbov and Chernov [10], Collin-Dufnisne ct al. (27), Hoidari and Wu [47], Schwartz and 'lYolle [73], and 

others. 
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First, we define and document stochastic skew in a set of U.S. interest rate cap data 

from J Illy-2002 to De(,cmh()r-2()09, As a m(；讓 n，of the slopes of volatility curve, the skew 

of the implied caplet volatility curve for a particular maturity is defined as the difference 

botwoon the Black's irnplicHl caplet volatilities at two nioiieyncss levels'^ Throughout th(; 

sample of data, w(�obscirvo that t\m skow of individual maturities exhibits stochastic vari-

ation over time. 

Second, to price caps/floors consistently with such empirical phenomenon, we incorpo-

rate the Wishart procoss into the LIROR market model in order to provide extra flexibility 

to model stocheustic skew. Wo derive closod-forin formula for caplet prices based on freez-

ing approximation and Fourier transform. MC simulation is carried out to demonstrate 

the accuracy and efficiency of the pricing formula. Obviously, analytical tractability is an 

advantage of our model over multi-factor Ileston IIJM models, for example, Schwartz and 

Tiolle [72], and Quadratic term structure models, for oxairiple, Gouricroux and Sufana 

[41]. 

Third, sincc wc claim that the volatility-unrelated processes in our model provide an 

‘ additional degree of freedom to model stochastic skew, we show that, through a riurnerical 

experiment, given a set of parameters, by varying the volatility-iiiirolatod procnssos, our 

modol can alter the volatility skew without changing the volatility level. This property 

obviously is an potential advantage over the multi-factor Iloston LIBOR market model. 

Fourthly, a calibration cxcTc'iav, is carried out demonstrate the superiority of the two-
^ Moneynes8 is the ratio of the strike price to the forward rate of the caplet. 
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dimensional Wishart model to the two-factor Heston model in fitting the implied caplet 

volatility surfacc in one day. 

Finally, we estiiimU�the two-dimoiisioiial Wisharl inodcl and t,h() two-factor Heston 

model using iimrkol data of 3 years (Jauuary-20()4 to Dec(iiiibcr-20U6) and perform an 

out-oi-samplc test using market data of the following 3 years (Jaimary-2007 to Dccu^mber-

2009). The essencc of the estimation exercise is to show that, given a fixed set of model 

parameters, when compared with the two-factor Hest-on model, the volatility-unrclatod 

processes in our inodcl proviclo an cuiditiorial degree of frcK d̂oin to better capture the time 

variation of stodui^slic skew, wliidi can improve the pricing pcrfoniiarico of our model. 

Estimation results show that the better pricing porfonnancc of the Wishart inodol over 

the two-factor Heston model can be attributed to the better modeling of .st.ocha,stic akaw 

by the Wishart model. 

It is worthwhile to emphasize that the main difference between our research and the 

prcvioiisly-mcntionod term structure literature is that our emphasis is that the eiiliance-

mcnt ill pricing is acliicvcd by including a volatility-unrelated process which gives extra 

fr(H3doiii to model stochaustic skew, while the emphasis of Han [45], J arrow ei al. [51], 

Schwartz and Trolle [72], and Ma [61] is that the enhanccmont in pricing is achieved by 

the inclusion of multiple stochastic volatilities which are solely responsible for the skew in 

their models; as a result, their models have some restriction on modeling stochastic skew. 

ft 
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1.3 Stochastic Skew in Currency Option Market 

Similar to the interest rate cap iiiarkct, currency option market also exhibits stochcustic 

skew, which is first documented by Carr and W\i [21]. Moreover, it is well-known that cur-

rcncy values exhibit mean-reversion (for example, .lorion and Sweeney {521, and Sweeney 

74)) and stochastic volatility (for example，Bates [7], Ilcston [48], and Palm and Vlaar 

65]). To be consistent with the latter two properties, Wong and Lo |7Gl assuiric that tin? 

log-curroncy value follows a rnoan-rovcrting process ami the, volatility follows the Mcstoii 

model. To further allow for multi-scalc stochastic volatility, Wong and Zhao [77] assume 

that the volatility dynamics is driven by two Heston stochastic volatilities; however, their 

model has limited degree of freedom to model stochastic skew. 

To tak(； into accoimt; tho above three ossential features - nicaii-ioversioii, stocha.stic 

volatility and stocha.stic skew of foreign exchange rate, wc generalize the two-factor He-

ston stochaustic volatility model of Wong and Zhao [77] through the iisc of the Wishart 

process and develop an accurate aiid efficient option pricing model which possesses extra 

flexibility to capture "stochastic skew" in the currency option market. 

First, we use risk reversal'' as a proxy for volatility skew ami document stochastic skew 

in the EUR/USD currency option market. Throughout the sample, we find that the skew 

of individual maturities exhibits stochastic time-varying nature. 

^Thc lO-delta risk reversal is defined as the difference between the implied volatilities of a 10-cielta call and a 

lO-delta put. Risk reversal of other deltas is defined similarly. For more information on the terminologiefi used in 

currency option markets, please refer to Reiswich and Wystup f70| 
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Socond, wc generalize the Wong and Zhao [77] mode� l )y making use of the Wishart 

proccss and derive pricing, formula for vanilla (Uinency options, in addition, wo oxtoiids 

our model to includo Poissoii shocks with arbitrary jiiirip sizo distribution, generalizing 

the ‘single-volatility framewoik of O'llara and Pi Hay [64]. MC simulation is carried out 

to justify the accuracy and efficiency of the model. 

Finally, using a term structure of currcncy futures prices, we carry out a simple nii-

inorical cxpcriiiicnt to show that, when cornparejd with the rnulti-iuctor Hcston model, 

the Wishart mochil an additional degree fr(iodoin to model stochastic skew once the 

variance factors arc fitted to short-term and long-term volatilities. 

1.4 Outline of Thesis • » 

TJiis thesis is organized as follows: Chapter 2 demonstrates the proscnce of stocliaijtic skew 

in the interest rate cap market, incorporates tho Wishart process into the LIBOR mar-

ket model, with closcd-form solution for caplet prices derived. Chapter 3 deriionstratcs 

the presence of stochastic skew in the currency option market and dcvoloi) a currency 

option pricing model through the use of Wishart process, which accommodatcs for mean-
t 

reversion, stochaijtic volatility and stochastic skew, and derive closod-forin formula for 

pricing currency options. For both chapters, accurate and efficient closed-form pricing 

formulas for vanilla options arc demonstrated by using MC simulation, and numerical 

examples arc provided to illustrate the crucial properties of our models. JAirthcrniore, for 

the interest rate cap market, wo provide calibration and estimation results of the Wishart 

10 



\ ‘ 

model and the Heston model. Chapter 4 concludes the thesis. Mathematical derivations 

and numerical methods applied arc found in Appciiciiccs. 
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‘ . ‘ 

I 
• 

Chapter 2 

Stochastic Skew in Interest Rate 

Cap Market 

This chapter provides the empirical cvidoricc of stochastic skew in the U.S. interest rate 

cap market and develop a practically useful, consistent term structure model by incorpo-

rating the Wishart proccss into the LIBOR market model. Closed-form formula of caplet 

priccs is derived using freezing approximation and Fourier transform, whose accuracy and 

efficiency is demonstrated by MC simulation. Numerical example shows that, when com-

pared with the multi-factor Hestori model, the Wishart model has an additional degree 

of freedom to model stochastic skew once the variance factors are fitted to short-term 
f 

and long-term volatilities, thereby highlighting the strength of the Wishart model. A 

calibration cxercise is carried out to show that the two-dimensional Wishart model per-

forms better than the two-factor Heston model in fitting the implied volatility surface 

in one day. Finally, we estimate the two-dinieiisional Wishart model and,the two-factor 

Heston model with a time series of implied volatility surfaces, and results shows that the 

.12 



two-dimensional Wishart model outperforms the two-factor Heston model. 

2.1 Empirical Evidence 
• t 

The sample consists of weekly data (on each Friday) of U.S. 3-month forward LIBORs and 

iiiid-quotcs of U.S. Black's cap volatilities for various strike priccs (1%, 2%, 3%, 4%, 5%, 

6%, 7%, 8% and 9%) and maturities (1, 2, 3’ 4, 5, 6, 7’ 8, 9 and 10 years) from July 2002 

to December 2009. On each day, we strip the Black's implied caplct volatility surface from 

the cap volatility s>irfax?,e, and, for cach maturity, wc linearly interpolate caplct volatility 乂 

curves with respect to the strike price at fixed moncyness levels (0.7, 0.8, 0.9’ 1.0, 1.1， 

1.2 and 1.3). Now, the implied caplct volatility skew for a particular maturity, as a 

measure of the slope of volatility curve, is defined aa the difference between the implied 

caplet volatilities at moneyncss levels 1.3 and 0.7. Then, wc compute the skew over all 

maturities for the whole sample and display in Figures 2.1 and 2.2. Figure 2.1 reveals that 

the implied volatility skew for all maturities fluctuates randomly over the whole sample 

period. The clustering effect is also observed and is more pronounced in short maturities 

(1 year to 4 years) than in long maturities (5 years to 10 years). On the other hand’ 

. F i g u r e 2.2 evidences the stochastic nature of the term structure of the implied volatility 

skew, which exhibits different patterns like hump-shaded, decreasing or increasing pattern. 

Therefore, to be consistent with this market phenomenon, a term structure model should 

grant sufficient flexibility to capture the variation of implied volatility skew. 

4 
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Panel 1 ； l-year Panel 2: 2-year 

I f ^ ^ i f ^ ^ 
100 200 300 100 200 300 

Weeks Weeks 
Panel 3: 3-year Panel 4: 4-year 

CO r CO 
- 0 . 2 - 0 .2 

100 200 300 100 200 300 
Weeks Weeks 

Panel 5: 5-year Panel 6: B-year 

CO CO 
-0 .2 -0.2 

1D0 200 300 100 200 300 
Weeks Weeks 

Panel 7: 7-year Panel 8: 8-year 

老 - 0 . 1 ^ . I -0.1 

CO CO 
-0 .2 -0.2 

100 200 300 100 200 300 
Weeks Weeks 

Panel 9: 9-year Panel 10: 10-year 

I - 0 . 1 • I -0.1 双 

CO 00 
-0.2 -0.2 

100 200 300 100 200 300 
Weeks Weeks 

Figure 2.1: The time scries of implied caplet volatility skew for various maturities from July 

2002 to December 2009. 
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2.2 The Model 

In this section, we incorporate the Wishart proccss into the benchmark LIBOR market 

model aud derive the analytical formula of caplet prices through the freezing approxi-

mation and Fourier transform. We demonstrate the accuracy and efficiency of pricing 

formula by MC simulation. 

To facilitate our discussion, we define the following notations: 1.[如 j i , j=i,“”n (or 

二i’...,n) as a square matrix of order n with Â ^ (or Aij) being its (z, j)-th element; 

2. [B]ij as the (z, ji)-th element of the matrix B; 3. Tt{A) as the trace of the matrix 

A\ 4. A^ as the transpose of the matrix A, that is, with a slight abuse of notation, 

[A7� ]� j= i ’…— [j4<«/]?j=i”..’n; and，5. and 0„ as the identity matrix and zero matrix of 

order n, respectively. ‘ 

Let (n, {J^t}f>o» Q) be a filtered prolDability space, where the square matrix Brow-

nian motions \Vt =[冲?)],-,)=：1”..,“ and Zt = [Zt”]‘，:7=i”..’n are defined for all i > 0 and are 

adapted to the filtration {^£}t>o- Here, for i,j — 1，...，n，Wl^ (resp. Z力 are indepen-

dent scalar Brownian motions. The probability measure Q is considered as risk-neutral 

measure. 

Under the probability measure Q, the Wishart process St — [StJ]i，j=i,"”n is an TT-by-Ti 

symmetric positive-definite matrix process that follows the dynamics 
、 

dUt = (Qf^T + MEt + ^tM'^^dt + y/LtdWtQ 卞 Q'̂  ̂ dWtf y/^u * . (2.1) 

where M = [A/ij]i,j=i’…’„ and Q = [Qi:^]U=i” . ,� 虹e constant real square matrices, and 
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the square root of is defined as the unique symmetric positive definite matrix 

such that = Dt, that is, = Yl?=i ^t^t'- To guarantee mean-reversion feature 

and strict positivity of the Wishart process, we â ssurae that M is negative semi-definite, 

QQ^ = ^Q^Q and P > n — 1 (see Bru [18]). For n = 2, the positive definitencss condition 

is equivalent to Sj^SP - > o. 

Suppose that wo observe the term structure at time 0. Given a set of dates {Tj }广二"V 

such that 0 < t < Ti < …< Tj < Tj+i < .•• < i, we assume tliat, under the 

measure Q, the price at time i of a default-free zero coupon bond with maturity 

Tj at which it pays 1 unit of currency, denoted as 巧⑴’ follows the dynamics 

^ ^ = rit)dt 十 A(Vj(t)y/^tdZr)� (2.2) 

for j — 1，...，7V + 1，where t 6 [0,7^), r{t) is the instantaneous risk-free rate, Vj{t) is 

a diagonal matrix of adapted scalar processes with the i-th diagonal element denoted as 

and Vj(t) — for t > Tjy Ht is the Wishart process specified by (2.1) and Zt is a 

matrix Browniari motion correlated with Wt in the way that the same correlation Rij is 

applied to all the Brownian motions belonging to the column i of Zt and the corresponding 

Brownian motions of the column j of Wt so that Zt can be written a.s (see Da Fonseca et 

al. [30]) 

Zt = WtR^ 十 Bty/ln - RRT� (2.3) 

where Bt is a matrix Brownian motion independent of Wt and R = ....,n-

Dcfine Lj{t) as the time t value of the simple forward rate with reset date Tj and 

maturity date 7^4-1, where t € [0, Tj\ and j = 1，…，TV. The no-arbitrage assumption 

.17 
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yields the relationship 

» 

where AT^ = Tj. By Ito's lemma, Lj{t) follows the dynamics 

^ ^ ^ 二 T r ( " “ O v ^ ( " 石 - ) ， (2.4) 

where C/j(t) is a diagonal matrix of doteriiiinistic bounded piece-wise continuous functions 

with the i-th diagonal clement denoted aii and Uj{t) = 0„ for t > Tj, and satisfies 

the equation, ^ 

Since t and are close, Pi{t) behaves as a risk-free bank account so that we can set 

Vi(t) = On, which is justified by Brace et al. [14]. Therefore, wc have 

To gain the first insight of the model, consider the instantaneous variance conditional on 

the information up to time t. 

If each represents the i-th factor driving the term structure of forward rates, then 

秦 the diagonal elements of Ĥ  serve aa a multiplicative, stochastic perturbation to the volatil-

ity of forward rate, thereby giving rise to volatility skew over maturities. The off-diagonal 

elements of Et do not enter into the instantaneous variance but, as shown later, they give 

extra freedom to model the variation of implied volatility skew. 

.18 



Sinco a cap is simply a scries of separately exercisable caplcts, the pricing of caps 

is rcd\iced to the pricing of cap lots which wc will focus on. Now, a caplet with ma-

turity 1 and strike price K is a call option on Lj{t) that determines the payoff 

ATj max{Lj(Tj) — /� ' , ( ) } at reset date Tj and pays at maturity date . It is more 

convenient to consider the pricing of caplet under T^^-i-forward measure, Q ? ” ] , which is 

equivalent to Q, under which Lj{t) is a martingale. The following proposition provides a 

way for deriving the dynamics of Lj(t) and under Tj�i-forward measure. 

Proposition 2.2.1. Assume that the Novikov condition is satisfied, that is, for t € 

E^ [cxp ( i J^ ] < oo. 

Then 

dZ了…=dZt 一 y/^,yj-^i{t)dt (2.6) 

ciWp"- ' = dWt - ^ t V j + i { t ) R d t (2.7) 

are the square matrix Brownian motions for Lj{t) and under , respectively. The 

dynamics of Lj(t) and Et under are, respectively, 

^ ^ = � v ^ d Z r … ) ， （2.8) 

- h y / E t d W p ' - ' Q + ， (2.9) 

where 

A/了叫 t) = M + 

.19 



Proof : Please refer to Section B.l of Appendix B. • 

Under the probability measure , the pricc of the caplct with maturity Tj+i and 

‘ strike price K is given by 

= … [ i n a x { L , ( T , ) - A', 0} • 

However, since the inoan-roverting parameter of the Wishart process under 

depends on forward rate processes Lk(t), for k = 1,. . . , j , through (2.5), it becomes 

non-affine in the state variables and the model loses analytical tractability. Analytical 

tractability can be achieved by "freezing" all forward rat(，processes Lk(t)’ for k 二 1,...，j•， 

at their initial values (see, for example, Brace et al. [15]，Ma [61], Piterbarg [67], Schwartz 

and Ti olle [72], and Wu and Zhang [80]): 

Then, the irie^aii-reverting parameter of the Wishart process boconies 

yV 广 ⑷ = M + ⑴ ’ (2.11) 

which is now a deterministic function of t. 

Remark 2.2.1. If the matrices M, Q and R are diagonal and Eo (the value of at t = 0) 

is positive-definite and diagonal, the Wishart process (2.1) reduces to the multi-factor Hes-

ton model so that the Wishart model embraces inulti-factor Heston term structure models 

as special cases. Interestingly, if we add a Poisson-Normal jump component^ to the for-

ward rate dynamics (2.8) under forward measure，we derive the multi-stochastic volatility 

1 Please refer to Ihc working paper by Leung et al. [54j 
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LIBOR market, model of J arrow eX al. [51] with non-zero correlation coefficients. On the 

other hand, if wc take tho limit T,+�i T] and lot Lj{t) be continuously compounded, wo 

clĉ rivc the multi-sto(:ha«st,i(�volatility HJM model of Schwartz and Tiollc [72] â s a special 

case of the Wishart model. 

Remark 2.2.2. The Wu and Zhang [80] model, which, to our knowledge, is the first, 

correlation-based siriglo-stochaKlic volatility LIBOR market model, has n factors driving 

the term structure and I additional USV factor; on the other hand, the Wishart model 

ha« n factors driving the tcnn structure and n additional USV factors. 

2.2.1 The Characteristic Function 

One attractive feature of the Wishart riiodel is that the affiue nature of Wishart proccss 

enables us to compiitc the the characteristic function of the log-forward rate pr()c(iss so 

that the pricing of caplets can thus be achieved by fast Fourier transform. 

Proposition 2.2.2. Suppose that Xt = In Lj{t) and the characteristic function of Xtj 

under the Tj^ i-forward measure, conditional on the information that {Xt = x, = E}, 

is denoted as 

^(x, E, r; u) 4 = x, = e ] , (2.12) 

where T — Tj — t, i — and ix e M. Then the characteristic function of X-r^ in (2,12) 

is given by 

= exp(Tr(>4(r;iz)E) + i?ij：-h rj(r; w)) , (2.13) 
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where the functions .4(T; u) and r(r; u) satisfy 

A\{T-U) - IJ(T-u)-^G{T:U) (2.14) 

C(T;U) 二 —書 T R ( L I I / / ( T ; U ) 

+ � (A/了…{Tj - .s)'�’ + 2\uUj{7j - (2.15) 

where G(r; u) and / / ( r ; a) aro matrix functions (with H{r] u) invertibl(^) satisfying 

^ ( C{T:U) U{T;U)) 

==(G{T- U) H{r-u) ) ( 2 _ 1 6 ) 

( MT"切一 T) -2Q'' Q ^ 

X ( i\u{\u - l)Uj{Tj - r)2 - (M'厂，(T, 一 T)t + '2\uUj(Tj 一 r)RQ^ ) ’ 

with initial conditions G'(0; u) = 0„ and //(O; u) — 

Proof : Please refer to Section B.2 of Appendix B. • 

Conimoii forms of forward volatility functions in Uj{t) can be found hi Chapter 

6 of Brigo and Mcrcurio [17]. For paramctric forms, where the forward rate volatilities 

‘ are time-dependent, the differential equation (2.16) has r-dependent coefficients (which 

arc continuous or piecewisc continuous) and, thus, has to be solved by nuirierical ODE 

(means ordinary differential equation) solvers, such as Runge-Kutta methods (please refer 

to Section D.l of Appendix D for the Runge-Kutta methods). Note that wc choosc to 

apply the numerical method on the linear differential equation (2.16) but not on the orig-

inal matrix differential Hiccati equation in the proof bccause a linear system has better 

numerical stability than for a non-liiicar system. 

.22 



A widely-UKCxi parainctric form of forward rate volatility function is given by 

= (a, + h,{Tj 一 ”) cM-Cr(Tj — A)) + 山、 (2.17) 

wliore (li, hi € R, c ,̂ ri, > 0 and a � + (k > 0 for i — 1, . . . ’ n, whose choice allows for 

the hunii)(^fl-shapc(i and timo-hoiiiogcncous properties of term structure; of forward rate -

volatility often observed in tlic market, for which a detailed discussion can be found in 

Chapter 6 of Rcbonato [69). 

Interestingly，for non-parametric forms, whore Uj{t) are piecewise-constant for 0 < 

, t < T j � t h e differential equation (2.16) admits an explicit solution in the form of recursive 

matrix oxporumtials (some methods of computing matrix exponentials arc given in Scction 

" D.2 of Appendix D) and, therefore, the pricing of caplct can easily be implemented, a.s 

illustrated in the following corollary. 

4 

Corollary 2.2.1. Suppose t.hat the interval [0, Tj] is partitioned by { (T“ T“ i ] }二� ’ where * 
0 = TO < Ti < • •. < T;v-i < T/v = Tj. Assume that for all k — 1,. .. , j , on cadi (TX, T̂ H]， 

Uk(Tj — r) is a constant diagonal matrix, say, u)^、} Then, tho solution for A{T\ U) at Tj 

is given by 

A(7y’u) - //(Tj;ur'G(Tj;u), (2.18) 

where G(r; u) and //(r; u) are matrix functions (with H iiivertible) satisfying, for i = 

is a zero matrix if the associated forward rate vanishes. 
A 
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0 

0, I, 

( + " (7 " “1 ;…) 

=(Gir^xi) / / (T ‘ ;u) ) (2.19) 

( ( Afp." -2Q^Q \\ 

with initial conditions C(ro； U) = 0 and //(TQ； U) — In, where 

M p . ' 全 肿 l̂ ) (2.20) 
frs 1 

The solution for c(t; u) at Tj is given by , 

c(Tj;u) - 十 X X ( M , " ” T + 2 i u " f "Q)(7"‘+i - T , ) ) . (2.21) 
t = 0 

Proof: Please refer to Section B.3 of Appendix B. • 

Corollary 2.2.1 simplifies Proposition 2.2.2 by expressing the solution of the differential 

equation (2.16) into a recursive matrix exponential (2.19). It should be noted that the 

recursive solution is also applied by J arrow et al. [51], Wu and Zhang [80], and Ma [61 

to solve scalar Riccati equations for the characteristic function. 

With the characteristic function of the log-forward rate obtained in Proposition 2,2.2， 

the corresponding probability density function can be computed by the inverse Fourier 

transform of the characteristic function. Figure 2.3 shows that, when correlation coeffi-

cients Rii and R22 are taken negative (resp. positive), the distribution of the logarithm 

‘ of 5-ycar forward rate has fatter (resp. thinner) left tail and thinner (rosp. fatter) right 

tail (when compared with the normal distribution), which corresponds to a downward 

24 
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(rcsp. upward) sloping implied caplct volatility curve. Thus, the Wishart model is in line 

with other correlation-based models, such as Wu and Zhang [80], where downward slop-

ing implied volatility curves are generated by introducing negative correlation coefficients 

between the shocks to the forward rate and to the variance dynamics. 

4 
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2.2.2 The Pricing Formula for Caplcts 

Let C{K, Tj^i) be the value of caplet with maturity T}+i and strike price A'. We apply 

the and Madan citeCM99 approach to price caplets. The key is that the modified caplet 

price is given by 

= A T j P . + i (0) exp{a In [max{L, (7；) - K, 0} 
roo 

= A T j P j + i (0) cxp(a In K) / (e" - /v 

Jk 

where q?+��s�is the probability density function of In Lj{Tj) under Q'y)+i，whose Fourier 

transform is in terms of the characteristic futiction of In Lj{Tj) in Proposition 

2.2.2. A positive parameter a is selected so that C(/(，7}+]) is squarc-intcgrable in A', 

which guarantees the cxistcncc of its Fourier transform. The caplct pricc is obtained by 

applying inverse Fourier transform, which, after some calculations, is given below 

山+1) — A T y 州 ( O ) ^ ^ y � + + 妖 ’ （ ） 

The above integral is approximated by Simpson's rule: 

� � A T P � p e-i("…>l^(a:,S，T;6 - (a + 1)0 
J •—u 

where N is the number of grid points for the interval [0, Tj], 7? = = jv and 

\r} for j = 0，；V —] 

I i ( 3 - f ( - i V ^ ^ r / for 7 = 

The rest of the implementation of the fast Fourier transform can be found in Carr and 

Madan [22] so it is omitted for brevity. 
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2.3 Simulation Study 

To preserve the analytical tractability of the Wishart model, we adopt the technique of 

"freezing coefficients" in Equation (2.10). To investigate the accuracy of such approxi-

mation, we compare the caplet prices computed by formula (2.22) and by MC simulation 

for the case of n = 2 in the Wishart model. The procedure of the simulation is given in 

Section D.3 of Appendix D. 

The initial term structure is the set of U.S. forward LIBORs on 12-25-2009. For the 

parameters of the forward rate volatility function in (2.17), for simplicity, we assume that, 

for i = 1,2, â  = 0.01, bi = 0.03，Ci = 0.30 and di = 0.13. For the parameters of the 

Wishart proct^，we set ；0 = 5， 

. , ( -0 .50 0.00 \ ^ ( 0.40 0.05 \ 
^ J ‘ I 一 • y 0.00 -0 .05 j y 0.05 0.10, j 

( - 0 . 4 0 —0.20 \ ( 0.50 0.20 \ 
/ ^ = • Eo = . 

� - 0 . 2 0 -0 .40 j y 0.20 0.50 J 

We use Simpson's rule to compute the integral in (2.22) with 128 points and grid size 0.50 

and apply the sixth-order Ruiige-Kutta method (please refer to Section D.l of Appendix 

D) with stepsize of 1/24 to solve the differential equation (2.16); on the other hand, wc 

carry out the MC simulation with 100,000 sample paths and time step of 1/24. Table 2.1 

reports the caplet priccs (in basis points), CPU times and percentage pricing error pro-

duced by analytical formula (2.22) (labeled as "AF") and by MC simulation (labeled as 

"MC"), respectively. In the table, for all moneyeness levels and maturities, the percentage 

errors between AF prices and MC prices are within 1%. In addition, the CPU times for • 

computing AF prices are much less than those for MC prices. Thus, the simulation study 

. 28 



demonstrates the accuracy and efficiency of the analytical formula. 

N 

.29 



Ta
ble

 2
.1:

 T
he

 ca
pl

et
 p

ric
es

 (i
n 

ba
sis

 p
oin

ts)
 a

nd
 C

PU
 ti

m
es

 p
ro

du
ce

d 
by

 th
e 

an
aly

tic
al

 fo
rm

ul
a 

an
d 

M
C 

sim
ul

at
ion

 

th
eir

 p
er

ce
nt

ag
e p

ric
in

g e
rr

or
. 

T
=1

 
T

=2
 

T
=3

 
T

=4
 

T
=5

 

M
on

cy
nf

is
s 

A
F 

M
C

 
%

 E
rr

or
 

A
F 

M
C

 
%

 E
rr

or
 

A
F 

M
C

 
%

 E
rr

or
 

A
F 

M
C

 
%

 E
rr

or
 

A
F 

M
C

 
%

 E
rr

or
 

0.
6 

10
.9

4 
10

.9
5 

-0
.0

9 
24

.8
5 

24
.8

0 
0.

20
 

35
.0

1 
34

.9
7 

0.
12

 
40

.6
3 

40
.4

0 
0.

57
 

44
.3

8 
44

.3
6 

0.
03

 

0.
7 

8.
21

2 
8.

22
1 

-0
.1

1 
18

.9
5 

18
.9

0 
0.

28
 

27
.2

7 
27

.2
3 

0.
17

 
.3

2.
26

 
32

.0
5 

0.
66

 
35

.8
1 

35
.8

0 
0.

03
 

0.
8 

5.
56

1 
5.

56
9 

-0
.1

5 
13

.5
4 

13
.4

9 
0.

39
 

20
.3

6 
20

.3
2 

,0
.2

2 
24

.8
8 

24
.7

1 
0.

70
 

28
.2

9 
28

.2
7 

0.
05

 

0.
9 

3.
19

3 
3.

20
1 

-0
.2

6 
8.

94
9 

8.
90

9 
0.

45
 

14
.5

3 
14

.5
0 

0.
23

 
18

.6
4 

18
.5

0 
0.

73
 

21
.9

0 
21

.8
9 

0.
06

 

1.
0 

1.
45

0 
1.

45
6 

-0
.4

5 
5.

42
5 

5.
40

6 
0.

35
 

9.
91

5 
9.

89
7 

0.
17

 
13

.5
8 

13
.4

8 
0.

72
 

16
.6

4 
16

.6
6 

-0
.0

8 

1.
1 

0.
49

4 
0.

49
7 

-0
.6

8 
3.

00
9 

3.
00

1 
0.

25
 

6.
47

6 
6.

46
4 

04
9 

9.
64

6 
9.

58
0 

0.
69

 ‘
 

12
.4

4 
12

.4
7 

-0
.2

2 

1.
2 

0.
12

4 
0.

12
6 

-0
.9

4 
1.

53
2 

1.
52

7 
0.

28
 

4.
06

3.
 r

>l
.0

57
 

0.
15

 
6.

69
6 

6.
66

0 
0.

53
 

9.
16

8 
9.

20
3 

-0
.3

8 

1.
3 

2.
36

E
-0

2 
2.

38
E

-0
2 

-0
.8

2 
0.

72
1 

0.
71

8 
0.

40
 

2.
45

9 
2.

46
2 

-0
.1

1 
4.

55
5 

4.
54

6 
0.

20
 

6.
67

1 
6.

71
1 

-0
.5

9 
1.

4 
3.

56
&

03
 

3.
55

E
^3

 
0.

35
 

0.
31

7 
0.

31
5 

0.
49

 
1.

44
2 

1.
45

1 
-0

.6
0 

3.
04

6 
3.

05
9 

-0
.4

3 
4.

80
3 

4.
84

3 
-0

.8
3 

To
ta

l C
P

U
 T

im
e 

(s
ec

) 
1.

16
 

27
7 

2.
07

 
54

9 
3«

36
 

88
8 

4.
67

 
12

44
 

5.
79

 
16

16
 

T
=6

 
T

=7
 

T
=8

 
T

=9
 

T
=1

0 

M
on

ey
ne

as
 

A
F 

M
C

 
%

 E
rr

or
 

A
F 

•M
C

 
%

 E
rr

or
 

A
F 

M
C

 
%

 E
rr

or
 

A
F 

M
C

 
%

 E
rr

or
 

A
F 

M
C

 
%

 E
rr

or
 

0.
6 

44
.6

6 
44

.4
8 

0.
40

 
43

.4
9 

43
.4

6 
0.

07
 

39
.0

4 
39

.0
3 

0.
04

 
45

.2
3 

44
.9

7 
0.

59
 

40
.7

3 
40

.7
6 

-0
.0

8 
0.

7 
36

.5
1 

36
.3

5 
0.

44
 

35
.9

6 
35

.9
4 

0.
03

 
32

.5
7 

32
.5

5 
0.

05
 

38
.0

4 
37

.8
1 

0.
59

 
34

.4
8 

34
.5

4 
-0

.1
7 

0.
8 

29
.3

8 
29

.2
5 

0.
45

 
29

.3
6 

29
.3

6 
0.

00
 

26
.9

1 
26

.8
9 

0.
07

 
31

.7
3 

31
.5

7 
0.

51
 

29
.0

1 
29

.1
0 

-0
.3

0 
0.

9 
23

.2
8 

23
.2

1 
0.

39
 

23
.7

1 
23

.7
2 

-0
.0

7 
22

.0
4 

22
.0

4 
0.

02
 

26
.3

0 
26

.1
9 

0.
42

 
24

.2
9 

24
.3

9 
-0

.4
3 

1.
0 

18
.2

4 
18

.1
8 

0.
29

 
18

.9
6 

18
.9

9 
-0

.1
7 

17
.9

3 
17

.9
5 

-0
.0

8 
21

.6
9 

21
.6

1 
0.

35
 

20
.2

4 
20

.3
5 

-0
.5

5 

1.
1 

14
.1

1 
14

.0
9 

0.
14

 
15

.0
5 

15
.0

9 
-0

.2
7 

14
.5

0 
14

.5
3 

-0
.2

3 
17

.8
0 

17
.7

6 
0.

23
 

16
.8

2 
16

.9
3 

-0
.6

6 
1.

2 
10

.8
1 

10
.8

2 
-0

.0
3 

11
.8

6 
11

.9
1 

-0
.4

3 
11

.6
7 

11
.7

1 
-0

.3
6 

14
.5

6 
14

.5
5 

0.
04

 
13

.9
4 

14
.0

4 
-0

.7
4 

1.
3 

8.
21

8 
8.

22
8 

-0
.1

2 
9.

28
9 

9.
34

7 
-0

.6
2 

9.
34

9 
9.

39
6 

-0
.5

0 
11

.8
7 

11
.9

0 
-0

.1
9 

11
.5

3 
11

.6
3 

-0
.8

0 
1.

4 
6.

20
3 

6.
21

5 
-0

.1
9 

7.
24

4 
7.

31
2 

-0
.9

3 
7.

46
9 

7.
51

8 
-0

.6
6 

9.
66

5 
9.

71
4 

-0
.5

0 
9.

52
7 

9.
61

3 
-0

.9
0 

To
ta

l 
C

P
U

 T
im

e 
(s

ee
) 

7.
56

 
20

07
 

9.
09

 
24

11
 

10
.3

2 
28

37
 

12
.4

9 
32

79
 

14
.3

1 
37

38
 

w
 

c 



2.4 Model Properties 

In this section, we demonstrate the flexibility of the model on modeling the stochastic 

skew over the multi-factor Heston model. 

2.4.1 Stochastic Correlation 

Under the framework of stochastic volatility, t he implied volatility skew at time t generated 

by the model critically depends on the instantaneous correlation between the shocks to 

the forward rate Lj{t) and the variance dynamics Tr(Et), which, in the Wishart model, 

is given by 

Pt = I \ I ' . (2.23) 

Consider the case that n = 2. If we take matrices RQ and Ê  to he diagonal in (2.23), we 

obtain the instantaneous correlation of the t w o factor Heston model, denoted as 

which is shown to be stochastic through the variance dynamics Eji and Ep. Thus, a two* 

factor (also multi-factor) Heston model generates stochastic skew through its variance 

dynamics. For our model, if we take Et to be a 2 x 2 symmetric positive definite matrix 

and R to be upper triangular in (2.23), we obtain the instantaiieoiLS correlation, denoted 

as p�D-Wi«，which is related with ppv-Hes ^^ follow 

p r 场 = P f v-Hes + ^ ———口2 (2.24) 

^(uj '^(t )PEr + (Txf ( t ) ) 2 E ? V Q ? i E ; � + 

The above relation shows that the state variable E尸 and parameter Ryi�which act in-

dependently from the volatility factors Eji and offer extra flexibility to control the 

.31 

T 



term structure of skew. This flexibility is crucial when E/^ and E'P have been fitted to 

short-term and long-term volatilities. 

2.4.2 Numerical Example 

To illustrate the fact that the dynamics of UP grants extra freedom to control the volatility 

skew, we perform a numerical experiment for the case n — 2. The initial tonn structim; 

and the parameters of the forward rate volatility fimctioiLs arc the same as those given 

in the simulation study; however, the parameters of the Wishart process are given by: 

( - 0 . 0 5 0.00 \ ( 0.20 0.00 \ 
M = Q = , 

y 0.00 —0.50 y � 0 . 0 0 0.20 y 

„ ( -0 .40 Rr, \ ^ ( 0.50 \ 
li — Do ~ 

y 0.00 -0 .40 j � E J ^ 0.50 

In order to show that the process E p and parameter R12 offer the Wishart model ex-

tra flexibility to control the volatility skew when compared with the two-factor Heston 

model, we consider three different cases, where the first case is {R\2y Ej^) = (—0.60,0.40), 

the second case is = ( -0 .60, -0 .40) and the third ca«e is = (0,0). 

From Remark 2.2.1 arid Equation (2.24), we refer the ease that {R12, Sj^) = (0,0) to the 

two-factor Heston model. 

Figure 2.4 shows the implied caplet volatility curves generated by the three cases, where 

the lines with crosses’ stars and dots represent the curves gen(3rated by the Wishart model 

with = (-0.60,0.40), = ( -0 .60 , -0 .40 ) and = (0, 0) (the 
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two-fact or Heston model), respectively. Panels 1 to 5 show that when compared with the 

two-factor Heston model with {R12, = (0,0), Ihc implied caplel volatility skews for 

the Wishart model with 二 (-0.60,0.40) (resp. ( R � � ,货 ) = ( - 0 . 6 0 , -0.40)) 

are more (resp. less) negative, indicating that the Wishart modol offers extra flexibility to 

control volatility skew when compared with tho two-fac^tor Ileston modol. Note that the 

turning point of the volatility curves is almost cxactly on tho at-thc-money level, indicat-

ing that the volatility level is not affected by varying Ej^. On ihc other hand, Panels 6 to 

10 show that the volatility curvos generated by the three cases almost coincide, indicating 

again that setting Ej^ non-zero has negligible effect on the volatility level, an朽 the effect 

of EP on volatility skew is diminishing as the Wishart process is rnoan-ieverting. As an 

interpretation to the above experiment, suppose that, to estimate the models by a time 

series of data, for the two-factor Heston model, if the set of model parameters is fixed, it 

has a good fit to the volatility level by the processes E厂 and Ep; howcjvor, it contains no 

other process to control or fit the volatility skew; therefore, changing the value of SJ 丨 and 

E p must also change the volatility skew and vice versa. It makes the control of volatility 

level and volatility skew difficult. In contrast, for the Wishart model, once the processes 

Eji and EP are fitted to volatility level, it contains another dynamics HP, which docs not 

affect the volatility level, that allows us to better fit the volatility skew. This property 

makes the Wishart model advantageous in pricing interest rate caps whon tht; implied 

caplet volatility skews are stochastic. 

Figure 2.5 shows that the term structure of skew of the Wishart model with (R]2, = 

(-0.60,0.40) (rcsp. (/{口，货)=(-0.60, -0.40)) is much steeper (resp. flatter) than that 

of the two-factor I leston model with (/?i2, Sj^) == (0,0). ThiLs, the numerical experiment 
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suggests that the Wishart model has extra flexibility to control volatility skew when com- '' 

pared with the two factor Ileston model. 
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2.5 Model Calibration 

In this section, wo calibrate the two-dimensional Wishart model and tho two factor Hes-

ton model to the forward LIBORs and cap prices reported on 02-Dec-2()05 by minimizing 

the sum of squared error of model implied and market caplot volatilities over all malu-

rities and moneyness levels. To highlight the importance of the state variable and 

parameter 7?. 12'on modeling stocluLstic skow, w(! take R to be an upper triangular matrix 
、 

and restrict matrices M and Q to be diagonal. For both models, w(； adopt the paramctric 

form in (2.17) for i = 1,2 to modol t ho term structure of caplot volatility. 

Figure 2.6 shows the quality of fitting in terms of Black's implied caplet volatilities. 

In particular, it shows that both models match well to data. Calibrated paramctors and 

pricing errors of both models arc reported in Table 2.2, where the Wishart model pro-

duces about 27% improvonicnt in terms of sum of squared error and about 13% in terms 

of average absolute percentage error] over the two factor Heston model. 

In short, this empirical study shows that the two-dimensional Wishart model performs 

better than the two-factor Heston model in fitting the implied volatility surface in one day. 

» 

^The average absolute percentage error is the average of the absolute value of the porcontage error of model 

itriplied and market caplet volatilities over all maturities and moneyness lev«l«. 
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Table 2.2: Tlio calibratxxi pararnot(;is, sum of squared error and the average absolute pcrcdiitagc 

of pricing error of the two-diincnsioual Wishart moflcl and the two-fact-or Hcstou model on 

02-De(:-2005. 

Paranictc^rs 2D-Wishiu-t 2SV-lIestoii 
/3 1.8346 1.8512 

Mil -0.2522 -0.2304 
M22 -1.3833 -6.2181 
Qu 0.2004 . 0.3271 ‘ 
Q22 0.1488 0.2967 
Rn -0.9990 -0.9558 
Ri2 0.1489 —— 
R22 0.7527 ~0.7CG9 

0.0471 0.2131 
Ej^ -0.1799 —— 
Eg^ 0.7356 0.7087 
ai ” -0.1542 -0.0064 
61 0.8944- 0.4150 
cj 0.4678 0.3771 
di 0.1101 0.0244 
a.2 -0.4300 0.1191 
62 0.2593 -0.8780 
C2 0.4557 0.3300 
d2 0.3950 0.06G8 

Sum of Squared Error 1.1076 x ICT'i 1.5189 x lO-.i 
Average Absolute % Error 0.4947% 0.5714% 
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2.6 Model Implementation 

In Section 2.1, we observe that the implied caplet volatility skew is Htoduistic in nature. 

In the Section 2.4, we also show that the Wishart model possesses greater flexibility than 

the nnilti-factor Iloston model on modeling stochastic skew. In this scction, wc implement 

the Wishart inodol with n 二 2 and comparc its performance with that of the two-factor 

Hcston model. 

2.6.1 Covariance Structure of Forward Rates 

Wc estimate the covariaiicc structure of forward rates using the approach of Han [45], 

J arrow et al. [51] and Longstaff et al. [60]. 

Referring to Equation (2.4), under measure Q, since, for j = 1,. .. , N, 

the covariance between the changes in Lj(t) ami Lfc(t), for j , A: = 1,. .. , N is given by 

二 ( 忘 相 4 ” ( 彼 ) 成 

Therefore, the model instantaneous covariance matrix with fixed maturities is given by 

where 

/ .“(/)(,)…，4”)⑴、 
Ut = : ； 

W 加 . . . 必 W 
A , == d i a g ( i : ; i，...， i r ) . 

t 
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• At time 0, suppose that tho historical unconditional covarianco of changes in forward 

rates with fixed time-to-maturities is approximated as II = UAQU'^, where Ao e is a 

diagonal matrix whose diagonal elements are the first n largest eigenvalues in descending 

order, and tho columns of " € 股“乂打 ^ro tho cor Responding eigenvectors with unit norm. 

Then, we assume that the model instantaneous covariance matrix with fixed tirn.e-to-

maturities shares the same eigenvectors as tlic historical unconditional covarianco matrix 

/ / , that is, 

^Timc-to-maturity 二 fj入 j/i，. 

To model stochastic covariance structure, what we need is the instantaneous covariance 

matrix of changes in forward rates with fixed maturities, Therefore, at time 0, 
n^aturity 二 ^Ti.ne-lo-.naturlty � � � ^ � . Q, WG obtain Q广'"rily from n7【™“o*n,atuHty thrOUgh 

the time-homogeneity property (see, for example, Chapter 6 of Rebonato [69]): as time 

goes by, whenever a forward rate vanishes, w(! discard the last row of the matrix U (which 

represents the term struct\ire factors of the forward rate with the longest time-to-maturity) 

of U, that is, for t G [T ,̂ T^+i), 

/ "1,1 … " l ’ n \ 
Ut = i : 

For example, during the first 3-month period, the N forward rates arc living and the full 

version of U is used. After the first 3-month period, the first forward rate L! vanishes at 

t = 7i, leaving only {N 一 1) forward rates living; as a result, due to time-homogeneity, 

the relevant version of Ut is given by the first (TV — 1) rows of the original U. This process 

is repeated until the last 3-month period, that is, the 1朋t forward rate. Implicitly, we 

make the assumption that the covariances arc constant within adjacent rcsot dates, that 
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is, the dynamics of forward rates are given by, for 0 < t < Ti and j 二 1，... "V ’ 

^ ^ = (. • • )dt + Tr (diag(t/,,i,. . . , Uj,rr)V^tdZt). 

For Tk < t < Tk+i and j = A- -f 1, . . . ,7V, 

Therefore, each Uj{t), for 二 1，. •. ’ ^^ is a piecewise constant function of t. 
% 

2.6.2 Estimation Procedure 

For the covariance structure of forward ratcjs, we estimate it from the changes in forward 

rates from the beginning of the sample using a window of one year and roll over the 

procedure as time goes by. To estimate the model parameters B and the volatility variables 

St, we minimize the sum of squared implied volatility error, instead of the sum of squared 

percentage pricing error, since the quotation convention in the interest rate cap market 

is in terms of volatilities. Consider a sample of T weeks of forward rates and caplet 

volatilities, where in week t we have Nt caplet volatilities. Denote IV^^^^^it, Ki,Ti) as 

the market caplet volatility in week t of the i-th caplet with strike price K�and maturity 

7； and / ( “ T；; ©，St) as the model implied caplet volatility in week t of the i-tli 

caplet with strike price Ki and maturity Ti, given B and St. 

In the first step, for a given set of structural parameters G = for t = 

1, . . . ,T, Et is given by 
Nt • 

S： = arg rnin ； ^ ( I V M - ^ e t ( 力 ， j � “ y；.) _ 凡 了 “ ©^ e,))^ 

Since, for each day, we have 7 moiicyness levels (from 0.7 to 1.3) and 10 maturities (from 

1 year to 10 years), Nt 二 70. Then, for the set of state variables { S j ? ^ ! obtained, we 
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estimate the model parameters 0 by minimizing the sum of squared implied volatility 

error over the entire sample 
T Nt 

e* = arg mill 二 [ ( I 八 、 了 — K ” T,; 0 , 
1 = 1 

Finally, we evaluate the model fit by using the implied volatility root mean squared error 

(IVRMSE) ‘ 

1 T Nt 

IVRMSE = . j ^ Y l K ” TO — I V M � 加 l < ” 7；; G)*, S””， . 

where N = "卜 

2.6.3 Results 
For the two-factor Heston model, it corresponds to the Wishart model with n = 2 and 

f 
the matrices M，Q, R and being diagonal; for the Wishait model, we restrict matrices 

M and Q to be diagonal and R to be upper-triangular in order to investigate the effect on 

pricing of the addition of the skew-related components (i?42 and S P in the Wishart model) 

over the two-factor Heston model. The in-samplc estimation is carricd out for the 3-ycar 

period, from Jaii-2004 to Dcc-2006, while the out-of-samplc estimation is carried out for 

the following 3-year period, namely, from Jan-2007 to Dec-20()9. The out-sample results 

are obtained by computing the volatility variables by using the structural parameters 

estimated in the in-samplc period. The estimation results for both models are reported in 

Table 2.3. In in-samplc period and out-of-samplc period, the 2-D Wishart model improves 

on the two-factor Heston model by 8/57% and 5.88%, respectively, in terms of IVRMSE. 

Since the Wishart model contains one more process E尸 and one more parameter Rn, 

which act independently from the volatility factors, than the two-factor Heston model, 
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Table 2.3: The estimation results for the two-dimensional Wishart model and the two-factor 

Heston model. 

Parameters 2D-Wis 2SV-IIcs 
(3 0.1865 0.0004 

Mil -0.9554 -0.6793 
M'22 -0.0036 -0.0036 
Qii 1.2740 1.9998 

Q22 1.2289 0.2115 
Rn -0.1249 -0.0693 
Hi 2 -0.9989 —— 
J{22 -0.2245 -0.9999 

In-samplc IVRMSE (xlO—2) 3.2140 3.5154 
Oiit-of-sample IVRMSE (xlQ-^) 3.5801 3.8039 

better pricing performance of the Wishart model over the two-factor Ileston model can 

be attributed to the fact that, given a fixed set of model parameters, the time variation 

of the volatility-unrelated proccss in the Wishart model provides a degree of freedom to 

better capture stochastic skew over time. 

2.7 Summary 

We propose a multi-factor term structure model to capture an essential feature observed 

in interest rate cap market，namely, stochastic skew, and extend the benchmark LI-

BOR market model by incorporating the Wishart process. Analytical pricing formula 

for caplets is derived and expressed in terms of characteristic functions. MC simulation 

shows that the Wishart model is accurate and efficient for practical uses. The essence of 
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the Wishart model is that while the diagonal oleriients of the Wishart process generate 

volatility smilc/skew over maturities, the non-diagonal elements offers extra flexibility to 

control the volatility skew. In contrast, while the multi-factor Heston model has been 

fixed for long-term and short-term volatilities, it does not have any other state variable 

or parameter to control volatility skew. Through numerical example, the flexibility of 

modeling stochastic skew of the Wishart model is demonstrated to bo superior to the 

multi-factor I leston model. A calibration exercisc is carricd out to show that the two-

dimensional Wishart model performs better than the two-factor Heston model in fitting 

the implied volatility siirfacc in one day. Finally, we estimate the two-dimensional Wishart 

model and the two-factor Heston model with a time series of implied volatility surfaces 

and results shows that the two-dimensional Wishart model outperforms the two-factor 

Ilcston model, where the better pricing performance of Wishart model over the Heston 

model can be attributed to the better modeling of stochastic skew by the Wishart model. 

.45 



Chapter 3 

Stochastic Skew in Currency Option 

Market 

This chapter provides the empirical evidence of stochastic skew in the EUR/USD ciirrciicy 

option market. To model mean-reversion, stochastic volatility and stochastic skew, wc 

formulate the currency option pricing model with the Wishart proccss and derive the pric-

ing formula of vanilla currency optiomi, whose implementation is provided and coiitniat 

with MC simulation. Also, wc extends tho model to includo pure jump coiiipoiieiii with 

Poisson arrival and jump size of arbitrary distribution, generalizing the single-volatility 

framework of O'Hara and Pillay [64]. Numerical example with market term structure of 

futures prices shows that the Wishart model provides additional freedom to better cap-

ture stochastic skew than the multi-factor Heston model. 
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3.1 Empirical Evidence 

In this scction, we provide a. description of data and methodology of civideridiig stochastic 

skew in the EUR/USD c.urronr.y option mark(义. 

To show I he p rose n CO of stocha^stic skow in curroncy option market, wc collect quotes 

of the dollar price and the currency option of Euros from l-Jan-2008 to 31-0ct-2010. The 

option quotes have 8 fixed time to maturities, namely, 1，2，3, 6, 9，12，18 and 24 months. 

We also collect quotes of 10-delta risk reversal (RIO) of all maturities, which is the differ-

ence between the implied volatilities of a 10-dolta call option and a 10-delta put option. 

IIcuco, the risk reversal is a measure of the slope of the implied volatility curvc. Figure 

3.1 shows that, for all maturities, tho risk reversal (skew) is stochastically time varying, 

similar to the observation of Carr and Wu [21]. Hcncc, the empirical ovidonco strongly 

suggests that a currency option pricing model should be flexible enough to capture not 

only mean-reversion and stochastic volatility, but also stochastic skow. 
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3.2 The Model 

III til is see t ion, wc goiuiralizc the two-factor I leston mo(ld of Wong and Zhao (77j by mak-

irig use of the Wishart. pi.ocoKS. We rl(uiv(； tho cliaracteristic function of log-currency value 

with tlio fiituros-pricc calil)rat,(;fl charact,(eristic function and provide Uic pricing forinifla 

for European ciirrcncy call option. 

With the same notations for matrix operations a»s in tho provious chapter and th(� 

Wishart, pn)c(\ss given by the dynamics in (2.1), let S(, bo the; underlying ciirmncy for 

which the risk-ncutral process is postulated as 

Si = e x p ( v V � 

dX, - {e{t) - KX, - + (3.1) 

c/E, = [pQ^Q + MEt + + ^/^tdWtQ + QT(r7M/,)T\/^， 

where (;he constant k is the rneari-reversion spoxjcl for the log-ciirrcncy value, tho doteriniTi-

istic function 0{t) represents the (iqiiilibrium moan level of the log-currcncy-value against 

time and the correlation structure, between Wi, and Zi is given in (2.3) in the previous 

chaptcr 
tJ 

• Z, = HZ, + vX, - • , 

where 13, is a matrix Brownian motion indcpondcnt of Wt. 

Remark: The proposed nioclol enibraces many existing models a,s special casns. When 

n = 1, it is reduced (,o the iriodcl of Wong and Lo (76); when n — 2 and matrices M, 

Q and R are diagonal, it is nuluced to the model of Wong and Zhao [77]； further, when 
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0{t) = r, the risk-free rat(i, and k =-- 0, the proposed modol is rcducod to the two-factor 

H est on model of ChristofFersen et ai [25]. 

3.2.1 The Characteristic Function 

As in the previous chapter, we exploit the affine nature of the Wishart process to compute 

the characteristic function of the log-currciicy value to piicx，currency options. Denoie 

the cliaractoristic function of the log-currciicy value XT as 

(̂.7；, E , T； u) 4 E ^ [ O X P ( i u A v ) I A 、 - X-, E , = I；], (3.2) 

where E^ . dciiotos the expectation under Uio probability measure Q, T = T — ^ > 0 

and i = y/~l. The following proposition holds. 

Proposition 3.2.1. If X,. follows l;hc dynamics in (3.1), thoii the characteristic function 

for XT in (3.2) is given by 

u) = exp ( T r ( / I (T; F 6(T; U)X + (3.3) 
f 

whore the functions A{T] a), 6(r; u) and C(T; U) satisfy 

Airyu) = H{T;u)-^Gir;u) (3.4) 

b{T] u) = itû -KT (3.5) 

c(r;u) = m 厂外：T - 仙丄s 
./o 

- • T R ( l n " ( T ; W) + M' 'R + — E—町）/?(?)’ (3.6) 

.50 



wh(;ro C(r; il) and // (r; u) arc matrix functions (with / / ( r ; yz) invc.rtiblo) satisfying 

^ ( G{T- u) / / ( r ; u) ) (3.7) 

/ 、 / M -2Q'i、Q \ 
= I G'(t; u) //(T; “）) f ,�’ � ， 

、 d 、 , 乂 ( 一 T … ） I “ 一 ( M l 十 乂 

with initial conditions H(0; ii) — I„ and G{0; it.) = 0„. 

Proof : Please refer to Section C.l of Appendix C. • 

Since the matrix ciifTcrential equation (3.7) involves exp(—/cr) and oxp(—2/cr) as tho 

only r-dei)(irKlenl, fiiiiciioiis, we can use the. classical fourth-order RuiigoKuttH. iiiotliod 

to solve it accurately and efficiently (please refer to Section D.l of Appendix D). 

Now, w(i oxtoiicl the dynamic of Xi in (3.1) by including a stochaatic jump coriiporiciit 

as follows 

‘ 广 、 

= dXt - mXdt 十 jA (3.8) 
»=i 

where Ji is a compound Poissoii proccss, which is aiisunioci to be independent of Wt 

and Ztj in which Nt is a Poisson proccss with constant intensity A and i = 1, 2, • • • 

are i.i.d. random variables with probabilit.y fiensity function f{x). Denote in — — 

l)f{dx). 

Corollary 3.2.1. The charactoristic function of x!'/^ in (3.8), conditional on JK”�— x 

and E/ = E, is given by ’,• 

>I^(."(x，S，r; u) 二 Gxp(Tr(/l(T; i/.):C) + b{r\u)x + c(r; f/)) ’ 
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whore V4(T; U) and b(r; u) are defined in Proposition 3.2.1, and, 

C{T; A) 二 iu 厂 9{T - � - inAm( l — e—民丁） 
Jo 

- | T i (ln //(r; 'u) + M' ' r + ^ ( 1 - 广 + A{u)r, 

where A(u) = A - i)f{dx). 
Proof: Please refer to Appendix Section C.2 of Appendix C. • 

With Corollary 3.2.1, our model can be (•onsidorod •cis a goncralizaticjii of tlic model 

proposed by O'llara and Pillay [64] in which M’ Q and R arc scalars, tho jump size is 

i.d.d. normally distributed with moan fi and variance 

With the characteristic function of tlio log-currency value obtained in Proposition 

3.2.1’ tho probability density function of tho log- (nuToncy value can bo th(m compuiod 

by the inverse Fourior traiislbnii of tho corresponding characteristic function. Figure 3.2 

shows that, when correlation coefficients Rn and R22 are taken negative (rcsp. positive), 

the distribution of the logarithm of 1-yoai- currcncy value has fatter (rcsp. thinner) left 

tail and thinner (rcsp. fatter) right tail, which corresponds to a down ward (rcsp. up-

ward) sloping implied volatility curve. On the other hand, Figure 3.3 shows that, WIKHI 

the mean-reversion coefficient K iiicroa«c\s, the distribution of the logarithm of 1-ycar cur-

rency value becomos less divspcrswl, which coiTOsponds to the fact that the currcncy valuo 

readies it equilibrium value faster and oxpoiiciices less variation. ‘ 
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3.2.2 Super-calibration to Currency Futures Prices 

Since currcnc^y futur(，s arc actively traded, it is important to (insure that the curroncy 

option priccs derived arn consistent with the currency futures priccs. First of all, under 

risk-neutral measure, the relationship between spot pricc and currcnt futures pricc with 

maturity T is given by 

It is interesting to note that the first term of the function c(r; —i) in (3.6), which is an 

integral with th<; tirno-clopendent mean reversion level 0{t), can be absorbed into the term 

structuro of futures priccs so that the characteristic fiiiictioii can bo, rc-wiittc3n without 

the knowledge of tho functional form of 0(t). 

Proposition 3.2.2. If Xt follows the dynamics in (3.1)，then the characteristic function 

for Xt calibrated to the cur rent futures price F'r(t) is given by 

FT(0) = oxp^i?/In f r ( 0 + Tr(Ayl(T; +AC(T;'</))， 

where 

AA{T\ U) — A{t\u) — \uA{t\ —i) 

A c ( r ; u) = II{T- il) - \u\n H{t] 一i) + 似丁7"(1 — . 

with A(r; It) and 7/ (r ; u) solved in Proposition 3.2.1. 

Proof: Please refer to Appendix Section C.3 of Appendix C. • 
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3.2.3 Pricing Formula of Vanilla Options 

A currency call option with strike price K and niatuiity T has the payoff 

max{67- — A', 0}. 

Tliereforc, similar to the previous chapter, by the approach of Carr and Mad an [22], tho 

price of currency call option with strike price h\ maturity T and domestic risk-free rate 

厂 ， d e i i o t ( i d as C[K，T), can be expressed as 

for some constant a > 0. The above integral is approximated by Simpson's rule: 

C(K^T) « ^ — — - — — ( ^ f u ： 1 . ； ： ( 广 ) ) � , (3.10) 

• TT “ (a + + 1 十 

where TV is tho number of grid points for the interval [0,7"], ” = • � I j == Jv and 

. ‘ \TJ for j = 0,N - 1 
Wi = 

讲+ (-1 严)” for 7 = 

The implementation of the fast Fourier transform can be found in Carr and Madan [22] 

so it is omitted for brevity. 

3.3 Simulation Study 

In this section, to investigate the accuracy and efficiency of our model in which a numerical 

ODE solver is used, we compare the option prices computed by the analytical pricing 

formula 

(3.9) arid by Monte Carlo simulation (which involves a slight modification of 

Scction D.3 of Appendix D). For the numerical integration (3.10), the number of grid .56 



point is yV = 64, the grid size is 77 = 0.25 and the damping coefficient is a = 3. For the 

parameters of the model, d — 0.1, K 二 0.25，5o = 1, ^ — 5, 

(—0 .50 0.00 \ ( 0.10 0.05 \ 
M 二 , 

� 0 . 0 0 -0 .05 ) ‘ � 0 . 0 5 0.05, 

( - 0 . 0 4 —0.02 \ ( 0.50 0.20 \ 
y - 0 . 0 2 - 0 . 0 4 y � 0 . 2 0 0 . 5 0 y 

In Table 3.1, the 0.5-year, 1-year，1.5-yoa.r and 2-year call option prices are computed 

by analytical formula (3.9) (labeled as "AF") aiirJ MC simulation (labeled a.s "MC" )with 

100,000 sample paths and time step of 1/100, where CPU times arc also reported. As » 
shown in the tabic, the model priccs arc very close to simulated prices and the CPU times 

for analytical formula are much less than those for MC simulation. Thus, the simulation 

study demonstrates that the analytical formula is correct and efficient. 
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3.4 Model Properties 

In this section, we demonstrate the flexibility of the Wishart modol on modeling the 

stochastic skew over tho inulti-fa<;tor Ileston model in the currency option market. 

3.4.1 Stochastic Correlation 

The instantaneous corn;latiori Ixjtwccn tlie shocks to the log-currency and to the variance 

dynamics for the Wishart model, which determines the skew of implied volatility curve, 

is given by taking Uj{t) = I,, in Expression 2.23. Thus, the instantaneous correlations 

under the Wishart and multi-factor Hoston modol arc coiincctcd by 

21)-Wis = 2SV-[I.« , f^V2Q'22 y.12 … 1 、 

t “外 v ^ ^ r r W T E W T o p F ‘ • (3.丄 1) 

Again, the above relation shows that, when compared with the multi-factor Ileston modol, 

the Wishart model contains extra parameter /?,2 and proccss Ej^ that offer extra flexibil-

ity to model stochastic skew. 

•V 

3.4.2 Numerical Example 

On 31-Dec-2009, the spot pricc of the 1 EUI^s 1.4405 USD and the futures prices arc 

shown below. 
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Maturity Futures Pricc (USD/EUR) 
1-month 1.440437 
2-rrionth 1.440354 
3-moiith 1.440260 
(j-m()iith 1.439749 
9-moiitli 1.438766 
12-month 1.437908 
18-month 1.437360 
24-month 1.438791 

With Corollary 3.2.1，the form of 9{t) is not important when the term structure of futures 

priccs is available. Consider again the ease for n — 2. The other inodcl parameters are 

given by K = 0.25, = 5, 

. ( - 1 0 . 0 0 0.00 \ ( 0.20 0.00 \ 
M = Q = 

、 0 . 0 0 - 0 . 0 5 j 、0.00 0.20 

, (十 0 . 1 0 \ ( 0.05 ‘ \ 
n = E o = . 

� 0 . 0 0 +0.10 j � E；^ 0.05 y 

In order to show that the process Hp and parameter R口 offer our model extra flexibility 

to control the volatility skew when corxipared with the two-factgi- lloston model, wc con-

sider three different cases, where the first ease is (R12, Sj^) = (—O.̂ IO, 0.04), the second 

ca.se is (/?.i2, = (—0.40，一0.04) and the third case is (Rrj, Si^) = (0, ()). Now, we rdui. 

the case that (Ru, EQ )̂ = (0,0) to the twofactor Heston model. ‘ 

Figure 3.4 displays the implied volatility curves goiiorat.od hy the throe ccuscs, wliero 

the lilies with crosses, stars and dots rcproseiit the curvcs generated by our riiodol with 

(/•fi2’i;J2) = (-0.40,0.04), ("i2，Si2) = (-0.40, -0.04) and = (0,0) (the two-

factor Ilostoii model), respectively. When compared with that of the two-factor Ii(iatoii 

.00 



rriocid with n̂"̂ ) = (0, 0), the implied caplet volatility skews for the Wishart model 

with (/?i2，S(i,2) = (一0�0 ’0.(M) (resp. (/?�2,E;)2) = ( -0 .40 , -0 .04) ) are more negative 

(resp. more positive), and that the effect of twisting is diininishing as time goes by, 

bccausc of (;lic mcari-rcvcrsion of Wishart proccss. The tcrni structure of the iinplitxl 

volatility skcw^ in Figure 3.5 further confirms the conclusions which are made from Fig-

ure 3.4. In other words, the Wishart model offers extra flexibility to control the volatility 

skew without affecting the volatility level. The significance of the above experiment is 

that suppose the two-factor Heston model have a good fit to the short-term volatility by 

the process S ” and long-term volatility by the process Ep with suitable (lagnni of c.orre-

1 at ions to the log-curroncy proccss, tho Wishart modol provides another parameter R�2 to 

fit the variation of skew that is not captured by the short-term and long-term volatilities. 

• 

'The Hkew of the implied volatility curve for a particular maturity is defltied aa thu difforencu bulwcon Ihe 

Black's Vipliccl volatilities at the right-end point and the Icft-ond point of that volatility curve. \ ‘ 
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) 
= 

(0
,0

)).
 

兰 l ! l e l o >  p o l l d E I  

1
6 

> J I I ! l e l o >  f j s l d l u l  

/ # 

39
2 

39
1 

3.
39

 

38
9 

A | ! | I 一 e l o >  p a ! l d E I  

0
.3

6
3
 

0
.3

6
2
 

I 
0

.3
6

1
 

1
 

0
.3

6
 

~ 
0.

35
9 

0 
35

8 

3  3  3  3  

n -  o  G  o  

A
l ! l ! l e l o > P B ! l d E I  

3
3

9
 

0S
9

 

0
 
2

9
9
 

>
<

0
 2

9
7
 

>
 

0
.2

9
6
 

•
i 

0
.2

9
5
 

0
.2

9
4
 

0
.2

9
3
 

0
.2

9
5
 

0
.2

9
4
 

0
.2

9
3
 

I 
0

.2
9

2
 

>
 

0
.2

9
1
 

•o
 

I 
0

.2
9
 

0
.2

8
9
 

0
 2

9
7
 

0
.2

9
6
 

0
.2

9
5
 

f 
0

.2
9

4
 

>
 

0
 2

9
3
 

f 
0

.2
9

2
 

0
.2

9
1
 



6 
8 

10
 

12
 

14
 

16
 

18
 

20
 

22
 

24
 

M
at

ur
ity

 (
m

on
th

) 

Fi
gu

re
 3

.5:
 T

he
 te

rm
 st

ru
ctu

re
 o

f i
m

pli
ed

 v
ola

til
ity

 sk
ew

 ge
ne

ra
ted

 b
y 

th
e 

W
ish

ar
t m

od
el 

(lin
es

 w
ith

 c
ro

ss
es

 re
pr

es
en

t t
he

 

ca
se

 of
 (H

I2
, E

Ĵ
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3.5 Summary 

Wc pr()i)OS(5 a (.ummcy (>i)U(m pricing 川o(i(�l to siiiiultaiioously capturo the thrive essential 

featiir(\s obscuvcd in the ciirrciicy option markets: iricaii-revcrsioii, stochastic volatility 

and vSloclui.sl,ic skew. Using tho iion-diagonal clcinciits of inatricas iii thci Wishart, process, 

our model offers extra controls on the skew as compared with the multi-factor lieston 

model. Analytical solutions are derivod for the (.haractciistir ruiictions and vanilla Euro-

pean options, which enable our frairicwork to be implemented accuratcly and efficiently 

for practical ius(», aw shown by MC simulation. Tlirough a iiurnorical example with Icuiii 

structure of futures prices, the flexibility of iriodeliiig stochastic skew of tho Wishart model 

is domoiistratcd to be superior to tlio multi-factor Hcstoii iiiodol. 
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Chapter 4 

Conclusion and Discussion 

This thesis investigates (,hc application of tho Wishart proccss in iriterosl rate cap pricing 

and cuiTcncy option pricing prohloms in oidor to capture SUK�.hasUc skew present, in both 

niark(it:K. 

First, to pricc intorcst rate c.aps consistent with stochastic skew documented in a set 

of cap volatility data, we incorporate the Wishart proccss into the LIBOR market modol 

and derive accurate and efficient pricing formula for caplets based on freezing approxi-

nmtioii and U.a扎sform UidiriiqiUiH so the LIBOR iriaik(;(. modol with Wishart proccss can 

bo implcunontcd easily in prar.ticc. Most importantly, wc show that, when compared with 

the riuilti-factor Ilcston modol, the. Wishart model hâ s an additional degree of I'rccdoin 

to model stochastic skew after the volatility factors are fixed. Finally，calibration and 

cstiiiiatioii results show tliat the better pricing pcnforniaiice of Wishart model ovvx tho 

two-factor Il(\s(,()ii model can be aUi.il)ut,(Kl to t]i« hvlUn modeling of stocluustic skew by 

(ho Wishart modol. 

.65 



Socond, wc incorporato the Wishart procoss in a currency option pricing model to 

price curroncy options consistent with stoduustic skow docuincntod in a sample of risk 

reversals, together with iiican-rcvcrsion and stochastic volatility. Closed-form solutions 

for (aiaracloristic function and vanilla option prico arc derived, in addition, our model can 

be cxtondod to includc Poisson shocks, thereby giving it frocdoin to iricorporato jumps in 

the currency dynamics. Using a term structure of currency futures prices, the flexibility 

of modeling stochastic skew of the Wishart, model is doinonstratcd to bo superior to tlie 

multi-fa('丄or Heston model. 

As a final remark, given a fixed set of model parameters, that the non-diagonal ele-

ments of the Wishart process affect only the skew and do not affect the level of volatility 

curve makes the Wishart process able to separately fit the skew and level; in contrast, in 

the multi-factor Heston model, (any change in level of volatility curve eventually affects the 

skew, mid vice versa. This is the main point wo emphasize in this thesis. One may argue 

that, for the calibration to one day's market data, the multi-factor Heston model lia.s al-

ready performed very well and the Wishart model only performs slightly better; however， 

it docs not mean that the Wishart model does not havo any advantage but simply nicaiis 

that the Wishart model perforins iia good aiJ rmilti-factor Heston model in tho calibration 

of one day's vanilla option data. To highlight the strength of the Wishart model over 

the multi-factor 1 lest on model, wc investigate the model porfonnaiico by in-samplc and 

out-of-samplc estimation using time series of interest rate cap data, and results show that 

the flexibility of modeling stochastic skew indeed make the Wishart model perform better « 
than the multi-factor Host on model. 
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The advantage of the Wishart model can bo iiiado dear in pricing cxotic options (see 

Da Fonscca and Grasselli [28] and Da Fonseca et al. [29, 30] for a related discussion) 

consistently with a modd capablc of modeling stochastic volatility as well as stochastic 

sl«jw. In other words, even though soinetiirvcs the Wishart model performs similarly with 

the multi-factor Heston model in fitting vanilla option data of one day or many days, 

t)ie ability of Wishart modol to capture some "stylized facts" in iho market, which are 

deteriniiiants of exotic option pric:as but cannot be reproduced by the multi-factor Heston 

model, grants the Wishart model the strength in pricing cxotic options. Therefore, wc 

suggest that future rcsoarch can compare the pricing porformancc of sonic cxotic options 

by the Wishart model and the multi-factor Ileston model. 

% 
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Appendix A 

The Wishart Distribution and The 

Wishart Process 

The name “Wishart” is used in honor of John Wishart [75], who, in 1928，first formulated 

the Wishart distribution. In statistics, the Wishart distribution, which is defined over 

symmetric, nonncgativc-definitc matrix-valued random variables, is a generalization to 

multi-dimension of the chi-square distribution, or, in the caae of non-integer degrees of 

freedom, of tho gamma distribution. Tho Wishart distribution is the sampling distribution 

of the rnaxiinurii-likelihood estimator (MLE) of tho covariaiicc matrix of a multivariate; 

normal distribution with zero means and, in Bayosian infcrcncc, is the conjugate prior 

of the inverse of tho covariance matrix (the precision matrix) of a multivariate normal 

distribution. Indeed, the Wishart proccss (2.1) considered in this thesis is closely related 

to the (non-central) Wisliart distribution so that the Wishart proccss can bo coiisi(ierod 

as a model for stochastic covariance dynamics. 

.68 
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Suppose that {Xi , . . .，Xk} is a set of independent random vcctors in where n < k, 

with multivariate normal distribution A/"(0，E). Then, the distribution of the random 

variable defined by 

is a Wishart, distribution with k degrees of fixxidoin, deiiotocl by WA:(0, S). Moreover, the 

distribution of the random variable defined by 
k 

where jjLi G M", is a non-ccntral Wishart distribution with k degrees of freedom, denoted 

by Wfc(M，S) with /i — J^jL, /ii/i/ , whose probability density function and Laplacc trans-

form (or characteristic function) can be found in Anderson [5). The above result can he 

extended to any real k > n — 1. « 

Now, wc state tho relationship between the Wishart proccss and the Wishart distri-

bution. If tho random matrix proccss {Ilt}t>o ha.s tho dynamics in (2.1), then, condi-

tional on the random matrix Ei, for h > 0，IVwi ha« a non-ccntral Wishart distribution 

Wfi{F{h)i:tF{h)'^\ G{h,)), whore 

F(/i) = exp^/ iM) , 

G{h)=义 exp (.SM) Q'^ Q exp (sM'^) ds. 
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Appendix B 

Mathematical Derivations for 

Chapter 2 

B . l Proof of Proposition 2.2.1 
¥ “ 

Given the money market account 

Bit) = exp^y^ r(s)ds)， 

the Radon-Nikodym^ derivative of Q乃+�with rcspcct to Q is, for t G [0,Tj], 

= 尸 州 ( 稱 + i W 
- B{t)/B(0) ( 

so that 

rriTj^i (i) K ) 

‘ 70 

、 
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In the derivation below, wc apply the two identities 

n 

TV (乂丨./?) = 召” 

and the fact that dWi^dWf^^ = dt if and only if i — k and j = Z, and equals zero otherwise. 

L e t � . ’ • � d e n o t e covariance. By Girsanov's Theorem, 

二 dZt - � T r (Vj+i{t) ’ 必 〉 

= 必 - � T r ( ( v ^ V i + i O O ) i 必 ) ， 必 〉 

= 必 - [ 〈 亡 〜 暴 对 ' ’ 财 一 •”„ 

= d Z t - \[y/^tVj^i{t)\kidl] 
, /C 1 y • t t I TX 

r * -

.71 
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Similarly, 

\ rriTj^.it) / 

= d W t -〈TV {t)y/^tdZt^, dWt) 

= d W t — � T r ( V j + i � -r r i i W i n - ))，dWt) 

二 dWt - (Ti- (Vj^ 1 {t) y/EtdWtR^^^, dWt^ (since B and W arc independent;) 

fc，/==i ,—…”“ 

=dWt - y/^tVj,l{t)Rdt. 

The dynamics of forward rate under is obtained by putting (2.6) into (2.4) and tho 

dynamics of the Wishart process under is obtained by putting putting (2.7) into 

(2.1). 

B.2 Proof of Proposition 2.2.2 

Since Wishart process is a matrix affine process, the characteristic function of Xtj is 

exponentially affine in the state variables (see Duffie and Kan [32] and Grasselli and 

Tebaldi [42]), 

= cxp(Tr(yl(7";w)E) + 6(r; u)a; + c(r; u) ) 

屯(a:’ E, 0; ?/) = exp(iwa:) ’ 

72 
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so that y4(0; u) — 0„, 6(0; n) = \u and c(0; u) — (). Our strategy is to apply the Fcynman-

Kac argument to obtain a set of ordinary differential equations for each of the functions, 

Tho joint infinitesimal generator of (X, E) can be expressed in the form of 

1 

where D = n is a matrix differential operator. The first line and second line 

are the infinitesimal generators of the log-forward LIBOR process and the Wishart process 

(sec Bru [18]) under Q乃+»，rcspcctivcly. Qij in the last line of Equation (B.l) is derived 

as follow. In fact, Qijdt is the (i, j)-th element of 

jgQTj+i [Tr ( t / j • � RT) ( y ^棚 /厂…Q + Q^ldWp-"' rx/S；) I不’ S / 

k�l=1 

= 巧 ⑷ / ? 仏 ] Qdt 4- V^tdt 
L k,l—l,...,n L J k,l—l,...,n 

=T,tUj{t)RQdt -f CfR^Uj{t)T.tdt. 

73 
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Taking E, 二 E yields 

= ^ ( 隅 ^ “ 孙 ’ 丨 ‘ 卞 丨 “ 丨 ’ 妒 “ “ 柳 乂 ‘ ‘ ) ^ 

= Y 1 ( 隅 . ⑴ 糊 、 ' 嘉 十 [ 叫 ⑴ 糊 
k.l^l 

= 2 T r (!："“” 

Now, applying the F(�,ynman-Kac argument on the charactcriatic function (2.13) by 

using the joint infinitesimal generator (B.l) gives the following partial differential equation 

for the characteristic function 

By rearranging the terms, 

0 = - T r ( 去 — 一 去 c (T ; '“） 

‘ +"Tr(QTCM(7•； u))， ^ 

and identifying the coefficients of E and x and the constant terms respectively on both 

.74 
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sides, with t = T, — r, wc obtain tho following system of ODEs: 

-^A{ t ; u) 二 — l)Uj{T, - r f + ^Kr; 十‘（7} - r ) 
ar 2 • 

+ - T ) ' � + 2b{T- u)i/j{Tj - T)RQ^A{r-, u) 

-h2A(r-u)Q'^QA{T-,u) (B.2) 

- () (13.3) 
ar 
去 二 /?Tr(QTQ/\(T;u))， （ B . 4 ) 

with t.ho initial conditions 

• yt(0;u) = (B.5) 

h{0\u) = iu (B.G) 

c(0;u) = (). (B.7) 

The solution to Kquation (13.3) with initial condition (B.G) is 

h{T\ u) — \u. 
t 

Consider Equation (B.2). By Radon's loiiirna (see Frciling [35]), let 

G(T\it) =r. H{T\u)A{r\u), 

with H{t\ u) irivortiblc, where G(0; u) = 0„ and //(0; w) = I„. With Kquation (B.2), 

‘ differentiating both sides with respcct to r yields 

= ( ^ / / ( r ; i2))/l(r; n) + / / (r ; u) [^\u{m - l)t/,(7} — rf + A(r; (T； - r) 

+ {Tj - r f + TmUjiTj - t)RQ^ A{r-u) + 2V4(T; u)Q'^^QA(r\u) 

=C7(r;w)A/7，+,(7) 二 T) + hu(\u - l)JJ{T-u)UjiTj - rf 

+ ( 丢 + 2 G ( r ; n ) Q T Q + - r f + 舗八7) — T)RQ^)A{T; a), 

7r) 
* 

» 

t 



一 J 

so that 

0 - ( - 去 + ( 办 ; … ' ( 了 ： ; 去 一 卜 l ) / / ( T ; A ) " 讽 - T ) 2 ) 

+ + 2G(r;u)Q''g + - rf 十 2\uUj(J) - r)RQ))A{r; u), 

and, then, identifying the coefficients of A{t]u) and the constant terms rosi)oct,ivcly on 

holh sidoH yield the following system of ODEs 

‘ - ( 7 ( T ; . “ ) M ' � i ( 7 ) - r) + im(i'u - 1) / / (r ; //)(/；(T̂  — r f 
‘ = -2G{Tva)Ci'Q — 77(r; u) • (7^ — t ) t I- 力(7; - r)"C》， 

The above system of ODEs can be r(vwritten cus follow: 

— ( G { T v a ) U{Tva)) 
( � � ( M"^川(7} — r) -2Q飞Q � 

=(C{r-,u) lliTVii) ) - (m'^-^ ^' (T,- - r^ + - t)Rq) j ‘ 

where (7(0; u) = 0’, aud H{Q\u) = I“. TlKiniforc, A(T\ U) is solvcul. J?inaUy，consider 

Equation (B.4) 

= + " (T ; W) ( M ' ^叫了广 R) ' � + 2izz明)一 T 购 ) ） 

, x ( Q T Q ) - 丨 ） 

. = - 夸 1 Y ( / / (T ; U)-】 十 - T)T + 2\uUj{Tj — T)RQ). 

Tho solution of C(T; U) can bo obtained by dircctly integrating from • to r using initial 

condition (13.7). 
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B.3 Proof of Corollary 2.2.1 

For r E (T,-,r,,il, - r ) - � / 广 and M^Vf I (T, - T) 二 M[”��so the matrix differen-

tial equation (2.16) now has constant coajjicients and, thorcforc, Iuls dosed-foim solution 

c;xpn\ss(Hl fus matrix exponential in (2.19). Tho solution for A in (2.18) is obtained in l.lio 

final step of recursion and the solution for c in (2.21) is obtained by integration on each 

interval (r,, I . 

/ 

i 

« 

* 
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Appendix C 

Mathematical Derivations for 

Chapter 3 

c . l Proof of Proposition 3.2.1 

The general procedure is largely similar to tluit in Soctioii B.2 of Appendix B; how(想•’ 

the syst(，m of ODEs for the rhm.act.oi isUc fiiiictioii now bccoiiios: 

4-Air-a) = H(T； u)ib{r; u) - + A{r; u)M + ( M ! � + 2/;(T; U)IIQ) /1(T; U) 
(IT 2 \ Z 

4-2/1 (r; u) 

~l){r\ a) — —K,b(T\ u) 
dr 

u) = e{T - T)b(r\n) + 仲 ' « ) ) ， 
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with initial coriflilioiis • 

/;((); il) — lu. 

c{{)\ a) 二 a ‘ 

Tlic solution of A{T; ii), h(T; u) and C(T] ii) can be s()lv(ul using similar techniques in Sec-

tion B.2 of. Appendix B. 

i.-r-'f-

. > 「 ‘ 
. \ 

c . 2 Proof of Proposition 3.2.1 

Rewrite dX(/�tis • ‘ 
Nr 

. . . dxy^ = dXt 
t-1 

where dXt = dXt 一 mXdt. Now, 

a>(J)(:r’E’T;iO = EQ|exp(iu;4'))|A、(.,）= a;，E, = S 
‘ r / / 

‘ ‘ = F J ^ cxpQ'u (叉r + Y1 •八))=工.，I：^ = I： 

秦 t-i 
Nr 

= E ^ [oxp(inXr) � = x , E, = s ] E^ [cxp(iw( ^ ^ 
‘ “ 1=1 

The last line is obtained by using tho indopondcncd of the compound Poisson procoss and 

the proccss Xr- The first expectation' in the last row can be derived from Proposition^ 

3.2.1 by simply n^pUunng d{t) with 6(t) 一 mX and t;ho socond one is just tho characteristic \ ^ ^ 

function of the compound Poisson proc.oss, whidi is given by 
t. ' /V . • 

, E^ [cxp (in 丨人)]oxp(Ar 乂 (e 丨""— l ) f ( d x ) ) . 
. ‘ ‘ 79 , • 
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.C.3 Proof of Proposition 3.2.2 

Tho cnirroiil futures price with maturity T is given by 

, FrU ) E Sr X, - x, E, E 
F 

\ =中（a:，S,T; — i) 

= c x p ( T i ( a ( t ; - i ) E ) + 6(r; -\)x + c(r; - i ) ) . . / 

‘ whore A{T\ —i) is solved iii Proposition 3.2.1 and 
書 

B(T； - i ) - T 

‘ C(T; - i ) = j : 0{r - …丄S — \pTi (\u / / ( T ; —I) + M飞T 4 -長 ( 1 — e-^RC/). 

Rcarrang(nnont. of tcriUvS yields 

� 0 { t - = 111 Fr{i) - i v ( / i ( r ; - i ) S ) - 厂片丁 + /:/(r; 一i) 

Now, substituting tho above expression into tho cluutuaoristic function (3.3) yields 

FtW) = + hixe-耗T 

-f-m[lii Fr(l) 一 TI (>1(T; 一 I ) E ) — xe.-""- ‘ 

- . " ( T ; —I) + M'I，T + 芸 ( 1 一 E -

- i / 3 T r ( l u //(T; u) + M'^V + -

=- - cxp( I « III /':/,(/) + u) — iuA(T； - O ) ^ ) 

/ / (T;n) - iulnN(T； 一 i ) + 一 iw))) . 
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Appendix D 

Numerical Methods 
o 

o 
D. i The Runge-Kutta Methods 

In the numerical solution of differential equations, the Taylor-series method is simple to 

iuiplcuKint but has the drawback of requiring higlior order derivatives and some error 

analysis prior to implonicnt.ation. To circunwcnt these problems, ihc family of Ruiigo-

Kutta methods iniitalos the Taylc)r-soi i(\s nicthod by means of eleven- (X)iiihiiiations of the 

values of the first derivative through the repeating use of chain rule of differentiation. 

Consider the general (non-linear) ordinary differential equation (ODE) 

= fit, x{t)), 

where .7:(a) € C"^". The interval [a, b] is partitioned into N subintorvals [tk-\, /-A], whcin; 

k — 1，...，/V with (0 ~ a and /‘/v = b-八 mmiciiical motliod for ODE approximates t.hc 

value of with a tiine-slcpping advancx^ procedure of the form 

.Tfc+i = . . . ， h o , .To), 
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starting from x(U)), where /u- 二 1 i — tk' Here the map 少 depends on the specific nii-

iiiorical method applied. 

Now, the g(m(，i,al class ol /;i-stage lUiiigc-Kutta methods arc characterized by the real 

miiiilxns (lij, hi, for i � j = 1,. . . , m, and c, = Yl'jL\ "•«./， 

rn ‘ 
v, = Xk + kk ̂  + Cjhk, Yj), 

广 1 

for i = 1,.. . , m’ and, 
TM 

. Xfc , 1 = Xk -f hi, biJV丄 + cjik, V；), 

where Yi, foi i = 1’，•.，m，are the intermediate stages. The associated coefficients are 

iisimlly displayed with the so-call(;d Butcher tableau as follows: 

('l (Ml … "iTM 

-̂m (Irn 1 •‘ • ĵutm 
bi ... � 

o 

If (Hj = 0, for j > i, thou the intcnriodiate stages Yi can be evaluated recursively and the 

method is explicit. In that case, the zci.o Uij coefficients (in the upper triangulai' part of 

the tableau) arc oinitlod for clarity. With this notation, tho 4-stagc fourth-order niotiiod 
4 

Rungc)-Kutta method applied in curroncy option pricing is given by 

0 
1 丄 
2 2 

i 0 i 
•2 ^ 2 

I 0 0 1 
1 2 2 1 
G n G 6 
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while the 7-stagc sixth-order RuiiRo-Kutta method applied in cap pricing is given by 

0 
n - y / n 5 - N / 5 

10 10 

10 10 10 
-ir)+7%/5 - i + x/T) irt-is/fi 

10 20 '1 10 
r.-v/s n i 15-f 7v/5 

10 (iO � ‘ n r»o 
r»-\/5 5-t-v/n f飞 丄 -5 ) 

10 (50 I'2 «i 10 
1 丄 n -r>r.+2r)N/n -2�>-7v^ r> iV^ 
！: 6 12 12 2 

Very briefly, the 77?,-()rdcr Riingc-Kutta method is callcd an explicit one-step m.c.1.hod and 

‘ i n v o l v e s local t/ru/ncation CTTOT of orcicr in so, as a one-stop method, it is convergent. 

Moreover, it is stTongly stable. For the efficiency of implementation, we fix the stepsize; 

however, to imposts error control, adaptive, algoritliiiis, ibr cxaniplo, tlio Rung(，-Kutt.a-

Kohlhcrg Method, which vary stepsi'/c to ac(:ommo(hU:() local peculiarities in the solution 

should bo implemented. More results can bo found m Chapter 5 of Burden and Fair OH 

20] or Chapter 7 of Allen and Isaacson [1]. 

D.2 Approximation of Matrix Exponentials 

We quote some ea«y-t,o-imploniout inotliocls fioin Molor and Van Loan [03] for thv, com-

putation of matrix (exponential. Suppose that, A is a square matrix with complex oiil.ri(\s. 

The exponent,ial of matrix A, denoted as oxp^/l^, is formally defined hy tho convorgnnt 

power series 
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The most intuitive way to compute exp(A) is to truncate the above power series into 

a finite sum; however, a large number of terms have to be compute in order to assure a 

, certain degree of accuracy and, thus, this method is computationally expensive. 

Alternatively, the simplest way to compute exp ( / I ) is to use the eigenvalue decompo-

sition. Suppose that the matrix A is decomposed AS A = DP, where D is the diagonal 

matrix of the eigenvalues of matrix A antl P contains the columns of the corresponding 

eigenvectors of matrix A. Then, wo have 

cxp � = p - ^ e x p ^ D ^ P , 

and exp(_D) is simply the diagonal matrix of the exponentiated diagonal elements of D. 

This method gives the exact answer; however, the theoretical difficulty occurs when A 

does not have a complete set of linearly independent eigenvectors and is thus defective. In 

this case, there is no invertible matrix P of eigenvectors and the algorithm breaks down. 

An example of defective matrix is 

Another solution is to invoke a numerical ODE solver. Since e x p ( M ) is the solution 

to the ODE � 

= Ax{t) 

x{0) = 

it is straightforward to consider compute the solution by a numerical ODE solver, adap-

tive or non-adaptive, single-step or multi-step, implicit or explicit. One example is the 
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Rungc-Kiitta methods. However, an obvious disadvantage is the cost, of intensive coinpu-

tatiori. 

The last method is the combination of Pacic approximation and the mothod scaling 

and squaring. This method exploits the fundamental equality 

. = ( � x p ( / V / 7 7 ) . 

First, choose, the srnalkist integer j such that 

• Ml 丨口-1， 

where ||A|| 二 max"上il二i ||Ar|| and ||x|| = (E二 i I而P )^ Now, let m 二 2广、The {p. q) 

Pad6 approximation of the matrix exp(y4/m) is given by 

Rj^iA/in)=[�(�m)广 TV叫(v4/m)， 

where 

物 ' " ) = § ( 二 ) S 二 ) ! ( -• , 

释 ) = i j ^ ^ l ^ i ^ f - y -

It is shown that 

[ "列 ( A / m ) r " = e x p ( / l + E ) ’ 

where 

丨丨厂11 < 

- 2 P + " - M p + f/)!(p + g + l ) ! ’ 
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that is, the above approximation makes an error bounded by a small number. The combi-

nation of Pade approximation with scaling and squaring is implemented in MATLAB by 

the function expm. The code in expml.m implements scaling and squaring and the (6, 6) 

Pade approximation. 

D.3 The Simulation of Forward Rates in the Wishart model 

To simulate forward raters in tho Wishart model, wc apply the casy-to-implemerit and 

efficient OU-discretization schcme proposed by Gauthier and Possaniai' |37] with being 

positive integers. With a simple change of probability measure, it. can be exteiulecl to all 

values of > n + 1, but it cannot be used when G (n — 1, 7z -f 1) \ {n} . 

The Relationship between OU Process and Wishart Process 

Let € N and let : t > 0}i<m<^ be independent OU processes in R" which follow 

the dynamics 

dXm, = MXrn^dt + Q^ 

where : t > 0}i<m</3 are independent vector Brownian motions in IR", M and Q 

arc some real-valued square matrices of order n. Then, the matrix process defined by 

m=l 

follows the dynamics 

dTn = ( " Q T Q 十 M^t + + y/^tdWtQ 卞（;?T((m,0'iV^， 
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where is a square matrix Brownian motion. Note that 

ft 

rn—\ 

T h e Simulation Procedure of Forward Rates 

Under the T^i-forward ineaijure, the log-forward rate follows the dynamics 

1 f t ^ A i rt+At 

/

f+Af 

Ti i^Uj (s) s/^AB, VX — 叫 ， 

where Bi and Wi are independent matrix Brownian motions. The stochastic integrals in 

the above expression can he approximated ais follows: 

/

t十/IW 卢 广f+A* 

TV(叫6 ’ )v^rW，/?Ty, = T I ( J 2 / 
m = l 力 

0 

j广''1Y(^Uj{s) y/^sdD,x/l„ - RK^^ds �A^(0’ j : … — 

� z fTr(^(Uj{t -h At)T.t+AtUj(t + At) 

where {c„î t4.A/ }i<m</3 are vectors in R" of independent standard normal random variables 

for the time interval [f ’ t + At] and Z is a standard normal random variable. 

Here is the simulation procedure: 

Step 1: Partition the interval [0, Tj] into N equal siibiiitcrvals {f j , U^ i such that 
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to = 0, ti十 1 == ti 卞八6 and At = Tj/N. 

Step 2: To initialize the simulation, an eigenvalue decomposition on the symmetric 

positive definite matrix S,,) yields 
n 

m—1 

where A,n arc the eigenvalues and 0„‘ are the corresponding eigenvectors of Et�. Thus, 

the initial state of the voclor OU process is, for m 二 1’...，久 

— 11 <m<Ti \/Kn^^rn• 

Step 3: To generate the OU process, for k — 1,..., py 

whore {em,£i+i}i<m</9 are vectors independent standard normal random variables in R" 

for the time interval U+i]. 

Step 4: The Wishart process is generated by 

— 乂m，ti+i 乂，L，t,_+i. 
m—1 

Step 5: To generate log-forward rate under the Wishart model, 
p 

In,- = 111 LiiU) - + + 不…二“十i 妒 ' ) 

m=l 

Step 6: Repeat Steps 3 to 5 for t = 1 , . . . , N — 1. 
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