
Fast Pattern Matching and its

Applications

O U Y A N G , W a n l i

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Electronic Engiiu、(、ring;

The Chinese University of Hong Kong

January 2011

UMI Number: 3492004

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
一 —
Dissorlalion PublisKmg

UMI 3492004
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

題獻/Dedication

獻給我的父母和妻子段立麗

To my parents and my wife Dxian Lilt

11

致謝

在博士論文即將完成之際，謹允許我借此向架助、鼓動和支持過我的老師、朋友和家

人致以深深的敬意和衷心的感謝。

首先要感謝的是我的博士論文導師丨甚偉權教授。堪教授學識淵博，讓我在自由寬鬆

的環境下進行研究。我在攻讀博士學位期間取得的點滴進步都離不開洛教授的悉心指

導。而洛教授嚴謹的治學態度和孜孜不倦的工作作風，更是讓我受益終身。

同時要感謝的是圃像與視訊處理賁驗室的王曉剛教授、Thierry Blu教授、顏慶義

教授和徐!FL達教授。他們對各種學術問題的真知灼見以及從不同角度給我提出的建

議，同樣給我很大架助和啟發，他們的建議為我的研究提供了很大架助。

我也要感謝資驗室的伙伴們。他們是陳麗芝、陳蔑中、程邦勝、崔春揮、董潔、馮

志強、金欣、李超、李宏亮、李傑、李鬆南、劉強、劉雨、麥振文、馬家廉、馬林、

潘漢傑、孫德慶、王萌、魏振宇、薛峰、楊文铜、姚劍、張帆、張茜、張任奇、張

偉、趙叢、趙瑞和Y. C. Woiigo共同的研究興趣讓我們這些年$^£人走到一起，從他們

身上我學到了很多。和他們在一起科研和學習，讓我感到充實而快樂，在寶驗室度過

的逭些日子必將成為我非常美好的回憶。

另外，很多國際友人也為我的論文提供了各方面的 K 助。 Y a c o v Hel-Or教授

和Hagit Hcl-Or教授提供了他們關于Generalized G C K論文和他們兩篇論文的源程

序。Stcfaiio Mattoccia教授和Fe(ieria) Tomhar i博士提供了他們寅現 IDA算法的源程

序和圖像數據，并對我的硏究提出了有益的建議。A i i t o n i o Tormlba和CSAIL提供

了 象數據庫，Raiiier Koster和the Institute for Clinical Radiology and Nuclear

Medicine of the Lukas Hospital Neuss提供了醫學圖像數據庫。NASA提供了遙感圃像

數搛庫。

請允許我把最真擎的謝意獻給我的家人，他們是我的堅資後盾。父母數十年的辛勤

培 *，為我漫長求學生涯提供無限的支持。同時我也要感謝出生不久的兒子，他的出

生給我帶來数不清的歡樂。而我的妻子段立11總是默默地支持我，她温柔的双臂是我

人生的避風港，让我能在风雨中栖息又再度遠航。

111

Acknowledgements

At this moment, I would like to express niy gratiludo towards professors, colk^agiies,

friends, and family. This thesis would not have boon possibU^ without their support.

First and foremost, 1 would like to thank rny th(\sis advisor Prof. Wai-Kuen Cham

for his supervision. Prof. Cham is a learnod scholar. He lu化 given m(、enormous

freedom to pursue my own interests. My (ivery little stop in res(»arrh is not arhi(、vahle

without his guidance. His serious attitude on academic resc^arch is a benetit for my life

and always inspires me to do research work like him. I am indebted to him more than

he knows.

Also, it gives me great pleasure to thank Prof. XiaoGaiig Wang, Prof. Thierry Bin,

Prof. King-Ngi Ngan and Prof. Hung-Tat Tsui, who are faculty members of our Lab,

for their useful suggestions and illuminations on my research work.

I must surely express my appreciation to iriy collcgucs and freinds in IVP lab. They

are, Laichi Chan, Zhenzhong Chen, Bangsheng Cheng, Chunhui Ciii, Jie Dong. Chi

Keung Fong, Xin Jin, Chao Li, Hongliang Li, .lie Li, Songiian Li, Qiaiig liii, Yu Liu,

Chun Man Mak, Kalim Ma, Li ma, Hanjie Pan, Deqiiig, Sun, Mong Wang, Zhenyii

Wei, Feng Xue, Wcnxiaii Yaiig, Jiaii Yao, Fan Zhang, Qian Zhang，Rcnqi Zhang, Wei

Zhang, Cong Zhao, Rui Zhao and our lab technician Yuk Chung Wong.

And I wish to acknowledge Prof. Yacov Hcl-Or and Prof. Hagit Hel-Or for providing

the thesis on generalized GCK and their code implementing GCK and WHT, Prof.

Stefano Mattoccia and Dr. Foderico Tombari for providing their code implcm(mtiiig

IDA, image datasets and helpful discussion, Prof. Antonio Torralba and CSAIL for tlic

use of the MIT database, Prof. Raiiier KosU;r and the Institute for Clinical Radiology

and Nuclear Medicine of the Lukas Hospital Neiiss for the use of the medical image

database, and NASA for the use of the remote sensing image database.

Last but not least, my sincere gratitude goes to my parents for all their tireless

efforts in bringing me up and their unlimited love and support. To my lovely new-born

IV

ACKNOWLEDGMENTS

son, thank you for bringing me happiness. Words fail mc to express my appreciation to

my wife Lili Duan whose dedication,

always my safe harbor that comforts

love and persistent support. Her gentle arms are

iiic in difficulties and enabl(\s me to sail further.

摘要

本論文以提高模板匹配的計算效率為目標。

首先，本文提出一種應用于滑動窗口的沃尔什-哈達瑪變換 (WHT)快速算法。該算

法可以用于實現快速的模板匹配。

其 次 ， 提 出 對 已 有 等 價 于 全 搜 索 的 模 板 匹 配 經 典 算 法 的 分 析 和 比 較 。 受 到

該 分 析 的 啟 發 ， 本 文 提 出 一 組 新 的 變 換 。 該 組 變 換 被 稱 為 克 羅 內 克 - 哈 達 瑪

變換 (KHT)。WHT是KHT的成員，基于格雷碼核 (GCK)的變換是KHT的子集。因

此，KHT提供了更多的表示數據的選擇。然后本文提出KHT算法。該算法比GCK算

法更快。所有的KHT都可以使用KHT算法來進行計算。基于KHT，我們找出一組稱

為Segmented KHT(SegKHT)的變換。通過將輪入數據分為L,,段，SegKHT需要的計算

復雜度是快速KHT算法的1/L ,。賁驗表明提出的算法明顯加速模板匹配的速度并且比

經典算法快。

I 然后，本論文提出條和(Strip Sum)與正交哈爾變換(Orthogonal Haar Transform)。

條和只需要一個加法即可計算一幅圖像任意長方形區域中的像素和。之后，本文提

出新的正交哈爾變換。將條和和正交哈爾變換用于模板匹配后，新的快速算法只需

要 固 加 法 即 可 將 大 小 為 A ^ l X iV2的二維輸入數據映射到個正交哈爾變換基。

支搏向量機是一种被被廣泛應用的分類方法。直接計算支搏向量機在需要高運算效

率的應用中是不理想的。為了降低運算復雜度，本論文提出具有基于剪枝的變換域的

支撐向量機。前面提出的模板匹配快速算法被用于計算支撐向量機。在路人識別的資

驗中，該算法具有很高的運算效率。

VI

Abstract

This thesis aims at improving t,h(； computational efficioncy in pattern matching.

Firstly, this thesis proposes a fa«t algorithm for Walsh Hadariiard Transform (WHT)
�

on sliding windows which can be used to implement pattern matching efficiently.

Then this thesis analyzes and compares state-of-the-art algorithms for full search

equivalent pattern matching. Inspired by th(； analysis, this thesis develops a new fam-

ily of transforms called the Kroiieckcr-Hadarnard Transform (KHT) of which the GCK

family is a subset and WHT is a member. Thus, KHT providers more choices of trans-

forms for representing images. Then this thesis proposes a now fast algorithm that is

more efficient than the GCK algorithm. All KHTs can be computed efficiently using

the fast KHT algorithm. Based on the KHT, this thesis then proposes the segmented

KHT (SogKHT). By segmenting input data into Lg parts, the SegKHT requires 1/L«,

the computation required by the KHT algorithm in computing basis vectors. Experi-

mental results show that the proposed algorithm can significantly axxx;lerate the pattern

matching process and outperforms state-of-the-art methods.

After that, strip sum and orthogonal Haar trausform are proposed. The sum of

pixels in a rectangle can be computed by one addition using the strip sum. Then

this thesis proposes to use the orthogonal Haar transform (OHT) for pattern matching.

Applied for pattern matching, the fast OHT algorithm using strip sum requires 0(log u)

additions per pixel to project input data of size N\ x N2 onto u 2-D OHT bases.

Experimental results show the efficiency of pattern matching using OHT.

Support vector machine (SVM) is a widely used classification approach. Direct

computation of SVM is not desirable in applications requiring computationally efficient

classification. To relieve the burden of high computational time required for computing

SVM, this thesis proposes a transform domain SVM (TDSVM) using pruning that

computes SVM much faster. Experimental results show the efficiency in applying the

proposed method for human detection.

Vll

Publications

Journal Papers

• Wan l i Ouyang and Wai Kuen Cham, "Fâ st algorithm for Walsh Haclaraard
�

transform on sliding windows," IEEE Trans. Pattern Anal. Macfi. Intell.,

32(1):165-171, Jan. 2010.

• Wan l i Ouyang and Wai-Kuen Cham, “ The KTonecker-Hadamard Tfunsfonn for

Fast Pattern Matchiruf', Submitted to IEEE Trans. Pattern Anal. Mach. Intel I..

• Wan l i Ouyang , Fcdcrico Tombari, Stefano Mattoccia, Luigi Di Stcfano, and

Wai-Kuen Cham, “Performanai Evaluation- of Pall Search Equivalent Pattarri

Matching Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell, Minor revision.

Conference Papers

參 Wan l i Ouyang , Renqi Zhang and Wai-Kuen Cham, "Fa«t pattern matching

using orthogonal Haar transform," In Proceedings of 2010 IEEE International

Conference on Computer vision and pattern recognition (CVPR2010), Saii Pran-

sisco, USA, .Tun. 13-18, 2010.

Vlll

Nomenclature

Abbreviations .

ID Oiie-Dimcnsioiial

. 2 D Two~Dimensional

3D Throe* Dimensional

CC Cross Correlation

DOT Discrete Cosine Transform

DFT Discrete Fourier Transform

DTFT Discretc-Time Fourier Transform

FFT Fast Fourier Transform

FS Full Search

GCK Gray Code Kernel

IDA Incremental Dissimilarity Approximations

KHT Kronccker Hadamarci Transform

KLT Karhurieii-Lo(ive Transform

LDA Linear Discriiniiumt Analysis

LPP Locality Preserving Projection

LRP Low Resolution Pruning

NCC Normalized Cross Correlation

OHT Orthogonal Haar Transform

PCA Principal Component Analysis

PSNR Peak Signal-to-Noise Ratio

SAD Summation of Absolute Difference

ScgKHT Segmented Kronecker Hadairiard Transform

SIFT Scale Invariant Feature Transform

SSD Summation of Squared Difference

SVM Support Vector Machine

WHT Walsh-Hadamard Transform

IX

於）

»和）
—#

z

B{N,P)

Gm

K

L

W

L,

N

Nm

Ns

Np

O

P

R

T

U

ly

Notations

M(")

V(uxyv)

. V ，

WHT matrix of size N

Trarisforrii matrix of size U x N

Segmented KHT matrix of size N x N

Identity matrix

I^oft matrix used in KHT

Right matrix used in KHT

Transposition of matrix V

WHT basis voctor

Input vector of size N

Template represented by voctor of size N

Tho j th candidate window represented by voctor of size N

y(") = -(yv) Projection value voc t̂or of size U

亏、u、j、= . Projection value vector at the jUi window of size U.

The ith transform ba.sis voctor having size N

zth SegKIIT transform basis vcctor of size N

z/lh basis voctor of matrix S/

Vth basis voctor of matrix S^

c i (Wj) = „ -(N/'lj + yV)

— X 丨 Xyj

Any voctor

Number of operations required for computing J) basis vectors of size N

= Nm , where Nm is the transform size of WHT matrix

Number of input elements, e.g. the image size for 2-D i in ago

Size of left matrix S/

Lp norm of a vcctor, e.g. p = I is absolute sum of oloinonts in tho voct.or

Size of identity matrix T/,, used in SogKHT

size of input vector x

Transform size of WHT matrix M

The size of KHT matrix in SegKIIT

Tho number of partitions used in IDA algorithm

Big O notation for computational complexity

Partition of given set

Sizo of left matrix S^

Threshold for pattern matching

Size of projection value vector ；【乃

Number of candidate windows

NOMENCLATURE

Si

S

V'

T
m

二

q

/
f
\
 /
l

\

 t
 V

T
x
 T
x

€

T
y

S
 T

y

NOMENCLATURE XI

(InU)' cInU) = Xj 二 Tj+N

flow

fj,

h

i
I

'f八N、i、fj

工j

x%y

A<S>B

X

丨间Ip
l|V|l,，

Lower bound function

Describe how two WHT basis vectors arc a-related

Small integer used as the parameter in t he LJ^P algoril.hiii

Index of hâ sis vcictor in Iransforin matrix

i'NMhJ) = y{N/A,i,j) — y{N/4,tJ f N)

7:Ui projection value at the jth window for window size N

j th olonient in vector x

Modulo opcmUon, which is j; modulo y

Kronocker product of matrix A and B

Absolute value of x

Ljy norm of vector z

Induced /々 ，norm of matrix V

Contents

Dedicat ion

Acknowledgments

Abstract

Publ icat ions

Nomenc la tu re

Contents

�

List of Figures

List of Tables

1 In t roduc t ion

111

Vll

Vlll

IX

XV

XX

XXll

1

】.l Motivation and Objectives 1

1.1.1 Measures Used in Pattern Matching 2

1.2 Fast Pattern Matching Algorithms 3

1.2.1 Full search approach 3

1.2.2 Fast Fourier 'lYansfonn 4

1.2.3 IncroiTicrital Dissimilarity Approximations Algorithiii ‘ 4

1.2.4 IVaiisforni Domain Pattpni Matching G

Thesis Outline 9

2 Fast A lgo r i t hm for Walsh Hadarnard Transform on Sl iding W i ndows

2.1 Introduction
I

2.2 Walsli Hadairiard Transform on sliding windows

2.2.1 Definitions 、

2.2.2 Previous WHT Computation Methods

2.3 Fast Algorithm for WHT on Sliding Windows for window Sizes 4 arid 8

2.3.1 Fast Algorithm for Window Size 4

2.3:2 Fast Algorithm for Window Siz(? 8 ^

Xll

CONTENTS XI11

2.4 Fast Algoritiini for WHT on Sliding Windows for Window Si/c N 18

2.4.1 The Algorithm 18

2.5 Computational Requinnnoiit of tlie Proposed Fast Algorithms for VViii-

‘ flow Size N • 21

2.5.1 When All Projection Values Arc Computed 21

2.5.2 When Not All Projection Values Are Computed 21

2.6 Experiinenlal Results 22

2.7 ‘Summary 23

2.8 Appendix A: Proof foi, (2.16) 25

3 Performance Eva lua t ion of Full Search Equivalent Pa t tern Ma tch ing

A lgor i thms 29

3.] Introduction 29

3.2 A Unifiocl Framework for Pat,tern Matching Algorithms 30

3.2.1- The Lower 13ouiiding Function for IDA 32

3.2.2 Th(、Low(;r Bounding Function for LR.P, PWHT, GCK and FWHT 33

3.2.3 Further Analysis on PaUoni]VIaU:liing using lYarisforinaliori . . 35

:U Computational Analysis of Algorithms IDA, PWHT, PCCK, FWHT and

LRP • : 37

3.3.1 Computational Analysis for IDA - 38

3.3.2 Ccjrnpiitational Analysis for LRP 39

3.3.3 Analysis for PWHT, PGCK and FWIIT 41

3.3.4 Now Tormiiiation Condition 42

3.4 Per fori nance Evaluation 小 1

3.4.1 Datcisot 44

3.4.2 Evaluation Critorioii 45

3.5 B^xpcriincnUil results 46

3.5.1 Experiment on Images Without Noiso 4G

3.5.2 Expcriiiiont on Imagos with Gaussian Nois(、 47

3.5.3 Experiment for Blurred Images ’. 49

3.5.4 Experiment for JPEG Compressed liriagos 50

3.5.5 Analysis of the Experimental Rosiilts whoii SSD is USCKI 52

3.5.6 Analysis of the Experimental Results for Trarisfbnii Domain Pal-

‘ torn Matching Algorithms 54

3.5.7 Exporiinontal Results when SAD is Used 57

3.5.8 Termination Strategy Comparison 59

3.6 Discussions 59

3.G.1 Summary of the evaluation results 59

3.6.2 Miscellfinoous properties of the evaluated algorithms 61

3.7 Summary 61 1 -

XIV CONTENTS

3.8 Appendix A: Proof of Thmrcrri 3.1 " . . . 62

4 The Kronecker-Hadamard Transform for Fast Pa t tern Ma t ch i ng 64

4.1 lilt rocluct ion 64

4.2 The Kroneckor-Haclaiiiard Transform 65

4.2.1 The WHT 65

4.2.2 Definition of ID KHT 66

4.2.3 Properties of KHT 68

4.2.4 Definition of a-index and Being a "^-related 69

4.3 The Fast KHT Algorithm 72

4:3.1 The Fast KHT Algorithm for ()rder-4 WHT 72

4.3.2 The Fast KHT Algorithm for Order-.V KHT 73

4.3.3 High Dimensional KHT 76

4.3.4 Ordering KHT Projection Values 76

4.4 The Segmented KHT 78

4.4.1 The Definition of Segmented KHT 78

4.4.2 Fast Segmented KHT Algorithm 80

4.4.3 Relationship Between GCK and SogGCK 83

4.5 Advantage of KHT 84

4.5.1 Transform Coding Gain on Statistical Model 85

4.5.2 Example 1 of KHT - SegKHT 86

4.5.3 Example 2 of KHT - Kronockcr Product, of Haar Transform and

WHT 86

4.6 Experimental Results 88

4.6.1 Dataset and Algorithms Used for Pattern Matching Experiment 88

4.6.2 Experiment 1 - Different Image-Pat torn Sizes 90

4.6.3 Experiment 2 - Different Pattern Sizes and Different Noise Levels 91

4.6.4 Experiment 3 - Parameters 92

4.7 Summary 94

4.8 Appendix A: Proof for Theorem 4.4 95

4.9 Appendix B: Proof on the Generalized GCK 97

4.10 Appendix C: The KHT algorithm for D dimensional KHT 97

4.11 Appendix D: Proof of Theorem 4.2 99

4.12 Appendix E: Proof that the GCK algorithm can be used for KHT . . . 103

5 T h e Or thogona l Haa r t ransform and its App l i ca t ion in Full Search

Equ iva lent Pa t t e rn Ma t c h i n g 107

5.1 Introduction 107

5.1.1 Rectangle Sum and Integral Image 107

5.1.2 Overview , 108

CONTENTS XV

5.2 The Fafti Algorithm for Computing Red angle Sum 109

5.2.1 Computation of Rectangle Sum by Strip Sum 109

5.2.2 Computational Complexity Analysis I l l

5.2.3 Buffering Strip Sum 113

5.3 The Orthogonal Haar Transform 113

5.3.1 The Proposed Orthogonal Haar Transform 113

5.3.2 The Fast, OHT Algorithm 114

5.3.3 OHT for Pattern Matching 116

5.3.4 Comparison of OHT with Other Trarisfonns 117

5.4 Exjd êr i iiieiit a 1 R(\sul Is 118

5.4.1 Dataset and Algorithms Used for Pattern Matching Exp(»riiiirnrs 118

5.4.2 Expcriineut 1 - Pattern Matching Algorithms on Dilfcieni Sizes 120

5.4.3 Experiment 2 - Pattern Matching Algorithms on Different Pat-

tern Sizes and Different Noise Levels 120

5.4.4 Experiment 3 - Influence of Parameter (122

5.4.5 Experiment 4 - Energy Packing Ability of OHT and WItT . . . 122

5.5 Summary 121

5.6 Appendix A: Proof of Thoorern 5.1 124

6 Fast Transform Doma i n Linear Suppor t Vector Mach ine using Prun-

ing 126

6.1 Introduction 126

6.2 Linear SVM as a Pattern Matching Problem 127

6.2.1 Fast Pattern Malching using Enhanceci Bounded Correlation . . 127

6.3 Transform Domain Support Vector Machine using Week Upper Bound . 128

6.3.1 The Overall Scheme of Transform Domain SVM using Priming . 128

6.3.2 Transform Domain Support Vector Machinc 129

6.3.3 The-、Week Upper Bound Fiinctioii 131

6.4 Application of TDSVM to Human Detect ion 132

6.4.1 Human Detection using Histogram of Oriented Gradient 132

6.4.2 Our implementation of Transform Domain SVAI for HOG 133

6.4.3 Computational Analysis 134

6.4.4 Experimental Results on INRIA Datasets 135

6.5 Summary 138

7 Conclusions 139

7.1 Contributions of the Thesis 139

7.2 Future Work 141

Bibl iography 143

List of Figures

1.1

2.1

2.2

Pattern matdiing in image 'couple'.

Tree stnictwre for Walsh-Iiadamard Transform in seqiiency order. . . . 12

Signal How diagram of the Bottom up algorithm for window size equal '1. 15

2.3 Signal flow diagram of the bottom up algorithm for order-JV scqiicncy

WHT 20

2.4 Two different projection orders 23

2.5 The percent ago of time required by our algorithm with respect t o GCK

algorithm when different number of projection values arc computed,

where Snake stands for the snake order and IF stands for tho iiicroasiiig

frequency order. The experiment is implemented on a 2.13GHz PC using

C on windows XP system with compiling environment VC 6.0 24

3.1 WHT basis vectors in sequency order. White represents the value +1

and grey represents the value —1 35

3.2 Speed-ups in execution time for images without noise when SSD is used.

X-axis corresponds t.(j datasels SmleA — 1，Scale2 - 1,…，Sc(lIc4 — 4 in

Tabic; 3.8 47

3.3 Speed-ups in execution time for images without noise when SAD is used.

X-axis coiTesponds to datasets Smlel — 1, Scale2 - 1，...，ScairA — 4 in

Table 3.8 47

3.4 All image from the datasot and its distorted images. 1st row: the original

image and its images with Gaussian noise levels G(l) to (7(4); 2iid row：

images with blurring levels B{1) to B(5); 3rd row: images with .JPEG

compression quality levels .7(1) to J(5). ‘ 49

3.5 Speed-ups in execution time for images with Gaussian noise when SSD

is used 50

3.G Speed-ups in number of operations for iiiuxges with Gaussian noise when

SSD is used 51

3.7 Speed-ups in execution time for blurred images when SSD is used. . . . 52

• 3.8 Speed-ups in number of opcrajbioiis for blurred images when SSD is used. 53

XVI

LIST OF FIGURES x v i i

3.9 Speed-ups in oxociition time for .1 PEG roniprcssod images VVIHMI SSD is

used 54

3.10 Spciod-iips ill number of operations for JPEG coinpiossc^d images W IKMI

SSD is used

Speed-ups ill execution time for images with Gaussian iioisr when SAD 3.11

3.12

3.13

3.14

4.1

4.2

4.3

is used.

Speed-ups in execution time for blurred inuigos when SAD is u s e d . . .

Speed-ups in execution time for .JPEG coniprosscd images when SAL) is

used

Comparison of termination strategies for JPEG coiiipressed images us�

ing SSD. P G C K and F W H T : results using the pr()pos(、d strategy;

PGCK/ye/-Or and FWHT"d—Or: results using Hol-Or and Hcl-Or's

strategy in

55

57

58

59

GO

69

()rdcr-.8 WHT bâ sis wctors in soquciicy order aiul dyadic order. \Vliit(、

represents the value +1 and grey ro})reseiits the value -1. Nornializatiou

factor of basis vectors is skipped 6

Relationship among WHT, GCK, generalized GCK, SogKllT and KHT.

ScgKIIT, which will be introduced in Section 4.4, is a subset of KHT

that can not be represented by GCK or generalized GCK

Utilization of the KHT algorithm for obtaining the other proj(:cti(m val-

ues from the 0th projection value. The number i in circle denotes the ith

projection. The rectaiiglcs denote projection values in ditt'cront window

positions. The signs are skipped for th(、summation operations in this

figure 75

4.4 Snake order and increasing frequency order proposed in [2] for WHT.

Numbers ticriote the order. Arrows denote the compulation dcpoiKienrc.

Projection value 1 is computed from 0 in both orders 77

4.5 The ordering 2D 8 x 8 WHT for fast KHT algorithm. Numbers denote

the order. Solid arrows denote the computation dependoncc using the

KHT algorithm while dashed arrows denote tht; computation dependence

using the GCK algorithm. For example, projection values 4, 5 and 6 arc

computed from 0 by the KHT algorithm while 32 is coinpiit(d from G by

the GCK algorithm 78

4.6 The order-iV SegKHT that can be computed by segment ing input win-

dow into Lii subwindows having length Ns and then doing orcifT-ZV; KHT

on the L, subwindows.^ 81

x v n i LIST OF FIGURES

4.7 Coiiipiitiiig orckn- yV SegKHT on slkliiifî windows. For goiioral

SegKHT projection value vectors ；̂！/'、’力 and 亏、J"^、、share L^ — 1 KHT

-project ion value vectors. Arrows in the figure point out the L^ - 1

shared KHT projection value voclors. For the cxainpU^ in (4.41), we

have L., = 2’ N , 二 4 ami 二 8 82

4.8 The linear relationship among or(k，r-8 SegWHT and order-8 VVIIT, e.g.

rft(«,。）= vf'"^ + ifi(«’” = vi''"^ — <7，i). Wliit(、represents the

value +1，grc\y represents the value —1 and vertical strips ropresent the

value 0. Normalization factors of basis vectors arc skipped 84

4.9 The coding gain G/ c of the DCT, KHT and WHT on difierent (:()i’r(、la-

lion coefficicnits p ranging from 0.1 to 0.95. The left figure is for input

window size N = 256 and the right figure is for N = 1024. KIITl and

KHT2 are in the form of = Ig ③ M (�a n d V。、）= M (� 8) ̂ j；只

respectively 87

4.10 Th(、percentage of energy extracted a.s a function of the miiiiber of ad-

ditions per pixel required by WMT and KHT for input data having si/o

N 二 256. In tlio experiment, wc sol p = 0.9 for Markov process input,

(lata in (4.47). KHT is in the form of V。、）= S/ O-O M(8) S。when; S,

is the two scale N/8 x N/8 Haar wavelet transform matrix and S’’ = I卜 88

4.11 Time speed-up over FS on datascts 51 — 54 for different algorithms

measured by normal scale (left) and log scalc (rif/ht). The bars for each

clataset from left to right correspond to algorithms FFT, WHT, GCK,

IDA, WHTkHT and SegKHT 91

4.12 Time speed-ups jMclded by different algorithms over FS for Gaussian

noise (upper row), image blur (middle row) and JPEG compression (bot-

tom row) in different, iioiso levels and different sizes of image-patt(Tii pairs

ill pattern matching. Label of bars are the same â s Fig. 4.11 92

4.13 False-positives (%) for noises G{l)-G{4) in dateuset 54-56 92

4.14 The time spood-up over FS yielded by SegKHT with different L,̂ and

GCK oil dataset S4 with noise G(l)-G(4) 94

4.15 The percentage of remaining windows an a function of the number of

projections (a) and the number of operations required by transform (b)

. on datasct 54 with Noise G(4) 94

‘ 4 . 1 6 (a) The speed-up over FS as a function of e on the left figure and (b)

the transformation tiriie in seconds a.s a function of c on the right fig-

ure, Experiments are done on dathvset 54 with Noise G(4). c denol州

the percentage of remaining window below which FS is used for pat-

tern iriatchiiig, e.g. 2 and 10 in t he X axis coricspcmd to 2% and 10%

respectively 94

LIST OF FIGURES xvii

X
5.1 F^xainples of rectangle red, whore reel —、j\、j2、‘ N?)，j\ is t ho hor-

izontal position and j.2 is ihe vortical position of tho uppor left ronicr.

Ni is the width and N2 is tho height of tli(、roclanglo. ,/i is (ho width

and J2 is the height of the image 108

5.2 Strip sum and roctangle sum on the imago. Only (>i»r addit ion is rccpiircd

to coriiputx; r.s.(j卜 j2，八'1,八2) from the dat a st I'urlviro hss using (5.6). . . 110

5.3 Reel angle sums sharing the same height N?. Th(、t wo r(，（、t angle sums

can use the same strip sum for c:onij)Utation 110

5.4 (a): The 2D 4 x 4 OHT basis; (b): the 2D 8 x 8 OHT basis. W'hit.o rcp-

ros(»nts valno +1, grey ropr(^soiits value —1 and vortical strips re})r(\s(Mi(

vahie (). The immhers for 4 x 4 OHT bfiisis dcMiote tlio order when t,h(、y

are computed in jiattern matching 114

5.5 2D 4 X 4 transforms: (a) the proposed OHT, (I.)) convrtit ioiial Haar

transform, ((:) WIIT. White represents +1, groy roprcKscMils —1 ；viui gm、n

vortical strips represent 0. Tho iiiimbws for 4 x 4 OHT basis denote t he

order when they are coiHput;ed in pattern matching 118

5.6 Speed-up in execution time over F、S on dati^sets .S'l — 6'4 for diHorcni

algorithms measured by normal scale (Left) arid log scale (right). The

bars for eax'h dataset from left to right correspond to algorithms WHT,

GCK, IDA, OHT/ and OHT5 121

5.7 Speed-ups in execution time (upper row) and speed-ups in iiiiiiibor of

operations (bottom row) yielded by ciiffcrerit algorithms owr FS for dif-

ferent noise levels and sizes of iniagfj-pattern pairs in paUerii matching.

121

5.8 Speed-up of OHT over IDA and GCK at 4 noise levels for datahct 5-1 in

‘ pattern rnat.chiiig. Left: spowl-up in execution time; nglii: sp(?()d-up in

number of operations 122

5.9 (a) The overall execution time in seconds as a function of f. on the left

figure ami (b) the transformation time in scconds iiî a function of e. on

• the right figure. Experiiiicnts arc done on datfisct S:L with N()is(、G(‘1).

c denotes tlip pc^rcent.age of rciriaiiiing window below which FS is used

for pattern niatcliing, e.g. '2 and 10 in Uie、X axis correspond to 2% and

10% respectively 122
1

5.10 Transformation using WHT and OHT. WIIT is in Hcqucncy order and

OHT is in the order illustrated in Fig. 5.4. The energy is given as the

average percentage of the actual energy between paUcni and window.

All values are the average over 4,567,500 window-pattern pairs 123

XX LIST OF FIGURES

0.1 (a) the SVM classification hyperplaiic w^ x — = 0, where a testing

sample is classified as positive class when it is in tho upper left part of tlio

hyporplane while the sample is classified as negative class when it is in tho

bottom right part of tho hyperplane; (b) tho classification hyperplano

using the strong upper bound; (c) the classification hypcrplane using

the week upper bound, where samples on the right part of the piano

are pnmed and daasificd as the negative class and the white rectangle

is the positive sample that is iiiisdrussified as the negative cVass in tho

pruning step; (d) after most samplers arc pruned in the pruning step,

t.lie remaining ‘samples undergo FS using the; original liyperplaijo. Tlio

hyperplaiKi is a lino sin(-e w(» have x = [.ri xoY in this figure. Black

squares donoto positive testing samples and white circles clmiotc negative

testing samples 131

6.2 Original imago (left) and its HOG-image (right). Each 16 x 16 block on

the original image is represented by a 36 x 1 descriptor on tho HOG-imagc.133

6.3 DET curves for FS and different implementations of TDSVM 137

_

List of Tables

1.1 Traiisfonn clornain pat torn inaiching 7

2.1 Fast, Algorithm wlujn Window Size is 4 15

2.2 Fast, Algorithm vvlioui Window Sizo i‘s 8 U)

2.3 Coiijpiitation of All Orclcr-S Projection Values in Window j +2 17

2.4 Computation of Ordor-iV WHT 20

2.5 Numbers of Adclitioiis Rnquirnd by the GCK Algorithm and Ui(、Pro-

posed Algorithm for All Projection Values of Ordor-N WHT 21

2.6 Computation of order-N WHT When Not All Projection VahK\s arc.

Required. •’ 22

3.1 Abbreviations and references of compared algorithms

3.2 Unified framework .for [)atterri matching using lower bound. : 31.

3.3 Diffcrenco for algorilhins in the uiiifiod framework in Table 3.2. I 'WHT,

PGCK and FWHT share the. same column 'PKs' 33

3.4 Number of operations required by the algoritliiiis. I)\\'HT, PGCK and

FWHT share the sarne row 'PKs'. LRPg/t/ conipulos t he t raiisforniatioii

in a sliding manner for all pixel locations; LRPcan coinput^H the transfor-

niation for N'can candidate windows at iteration k. LRP,̂)"/ and L R P職

share the same row "LRP"‘ for the iiuinhcr of powor-p operations. In

this table, =-、、Nj^Si‘ The nuiiihor of comparison operations

is applicable to IDA, PWHT, PGCK, FWHT and LRP 39

3.5 Numbers of additions and powor-p operations required by tho algorithms

in tho Rcjoction and FS steps. PWHT, TGCK and FVVIIT sluirc the

same row.'PKs'. LRPsid and LIlPc«n Hliare tlie Hame row "LRP"' for th(；

number of power-p operations. \ . • 40

3.6 Procedure and corresponding number of operations required by IDA for

computing the lower bounding function 41

3.7 Procedure aiid corresponding coiiipiilatioh roquircKl by PWHT, GCK

an(] FWHT for

computing tho lower l)ouiiding function 42

3.8 Datasets used in the experiments 44

3.9 Hardware environment used in tlie experiments 46

XXI

XXll LIST OF TABLES

3.10 Best overall algorithms as for iiieasurod (;xo(:ut,ion times for difforoiit

(list.urbarico ffw.tors and inaU^hiiig measures G1

4.1 Tlio a-iiulox for (iyadi(.-()rd(、r(-;d Wl lT basis v(;(tor 7】

4.2 Syinbols and ten vis (lefincci for KHT. The ScgKHT matrix v i 〜）will ho

defined in Section 4,4 71

4.3 Computation of order-TV KHT using the KHT algorithm 74
t

4.4 Datiisots and corresponding sizes of images and patterns us()d in l,h(!

experiments 89

5.1 Pseudo-code showing t.lio utilization of strip sum for computing rectMngle

sums sharing the same height N'z I l l

.0.2 The steps CIIKI iminbor of operations rcKjuirccl by strip sum met liod t()

- obtain r rcctaiiglo sums 112

Tho juldilions {adds) and iiK'rnory folcli operations {M-op) per |)ix(.l

roquirod for corni)uting r rcctangle sums having N u m " diiicrcnl h(、ight,s

and' Nurnw differoiit widths 112

5.4 The steps and number of operations roqiiirecl to ol)taiii u OUT projection

values 1IG

5.0 Datasots and corresponding sizes of iiiiages and patterns used in the

oxpcrirnoiits 119

6.1 The]jruiiing scheme for TDSVM using upper bound 129

6.2 Numl)or of operations required l)y difForeiit approaches for difiereiit im-

age. sizes, whcMO = J4 = 令 . " F S A/M" donotoK the number

of additions or rimltiplications required by FS. Tlic niiinher of additions

and multiplications required by FS is the sanio and thus share tho same; •

“ row. This is similar for FFT. For TDSVM, the rows "TDSVM A” and

"TDSVM M" respectively doiioto the number of additions and iimltipli-

cations required. Wo assume thai 83% candidates arc oliiriiiiatcd in tlio

pruning stop for TDSVM 135

？'V:-

in..,

Chapter 1

Introduction

1.1 Motivation and Objectives

Pattern matching, also known as template matching, is the task of seeking a given

pattern in a given image as illustrated in Figure 1.1. The pattern matching task can be

regarded as a degenerated pattern recognition problem where we classify a candidate

window fus a non-pattern class or a pattern class.

Pattern matching is widely adopted for tasks such as industrial inspection (quality

control, (Icfect detection) and fiducial-based pick-aiid-place. It is also used in signal

processing, computer vision, image and video processing. It has found applications in

image compression manufacturing for quality control [3], image based rendering

object detection [6], super resolution |7], texture synthesis |8], block matching in motion

estimation [2; 9], image denoising |10-12], road/path tracking [IS], month tracking |14],

imago matching |15], image alignment [16] and action recognition |17]. In many such

applications, however, a main problem is the high computational time required by

pattern matching. This problem is even more severe when dealing with video data

ill which pattern matching is done for a large amount of images. This thesis aims at

dealing with this problem and proposes many fast pattern matching algorithms.

Image

Candidate

window

Matched

window

Pattern

Figure 1.1: Pattern matching in image 'couple'.

26 CHAP. 1. INTRODUCTION

1.1.1 Measures Used in Pattern Matching

Suppose an Ni x N2 pattern has to be sought, in a given ,/i x J2 image of J — ./卜,2

pixels a.s shown in Figure 1.1. The pattern will be compared with caiididalo windows

of similar size in (he imago. The Full Scardi (FS) algorithm computes a similarity or

dissimilarity measure between the pattern and all its cqually-.si'/od amdidate wnidoms

til at can be extracted out of the image. Wc represent, l,he paltorn (loinplaic) as a

length-N vector x广）and the candidate windows whore subscripts -i and -̂；

denote template and winclpw respectively, j = ()’1，...，W - 1 and N = N\ N-z- For

oxainple, if a 16 x 16 pattern is searched iti a 256 x 250 image, w() havo N = 256，

J = 65536 and W = (256 — l(i + 1)2 二 58081.

There arc several ways to evaluate the similarily or dissimilarity l)et,weon the i>aU(、rii

and the candidate window. These arc represented by clifFerciit iiialdiiiig mtiâ ur(、s

that can bo used for the comparison. In particular，wo denote fus , xS/f''"̂)̂ the

distance between and xjj^,力，which measures the dissimilarity l)f;twcon and

交ii^’力.The smaller is the more similar arc xj^^ and xSĵ '-̂ ^ There are

two different situations in pattern matching: 1) detect all candidate windows having

< T, for a given threshold T; 2) find the window that leads to Uio

niiiiimum value of c/(x|")，Xi(ĵ ，力）among all candidate windows. In this thesis, wo

consider mainly situation I, whore x'lĴ '-'̂ is said to match xj〜）when c/(xj/^)’ xij '̂’力）< T.

As illustrated later, the algorithms for situation 1 can be ofusily modified to deal wilh

situation 2.

There are researches using similarity or dissimilarity measures that make) pattern

matching robust to rotation, affine transformations, occlusion and illumination varia-

tions. For example, the SSD between the pattern descriptors and the candidate window

t

descriptors is used as dissimilarity measure in [18-22]; Hamming distance is used as the

dissimilarity mcaimre in [23); normalized cross correlation (NCC) is usod as similarity

measure in [24-26].

In this thesis, we will consider a class of matching mo£LSur(\s that find a vast use in

template matching applications, i.e. those derived from a distance mcfuiure based on

the Lp norm. The Lp norm of length-TV vector z = [2 0 , ’ . . • ’ z/v—1广 is defined a.s:

iiziip = (k o r + 「 ' + . . . + (1.1)

§ 1.2. Fast Pattern Matching Algorithms

Based on tlie 厂p norm, the dissimilarity bctwoon and xlf̂•力 can be measured as

||x|〜）—xî '̂ ^Wp. If]) = 1, then the distance is the sum of absolute difforciicos (SAD),

while p — 2 yields the sum of squared (liffercnces (SSD). As pointed out in [1], though

thoro are arguments against the SSD as a dissimilarity meajsiire for images, it is still

widely adopted due to its simplicity. Discussions concerning the use of'the SSD as a

similarity metric can be found in |27~29]. On the other hand, SAD is computationally

more efficient than SSD. In the followings, we introfluco some existing algorithms that

use SSD arid SAD as t,he dissimilarity rnoa.suro.

1.2 Fast Pattern Matching Algorithms

Since the FS algorithm is uiiacceptably slow in most applications, many faster ap-

proaches have been proposed in literature |1; 26; 3()--45j. The algorithms can be grouped

into full search nonequivalent algorithms and full soarch equivalent algorithms. Full

search noneqidvaleni algorithms yiold coriiputatioiial savings by reducing the search

space [36- 38] or by approximating patterns and windows using polynomials [39 -41] or

linear combination of simple features [42].

Conversely, exhaustive (or FS-equivalent). algorithiiis accelerate the pattern iiiatch-

ing process and, at the same time, yield exactly the- same result as the FS. In the

caso of a dissimilarity-based search, a simple approach is known as Partial Distortion

Elimination (PDE) [43] and its high efficiency consists in terminating the evaluation

of the current dissimilarity iricasure an soon as it rises above; the current minimum.

Another approach suitable to dissimilari 1;y-based soarchc^s consists in defining a rapidly

computablo lower bounding function of the adopted distortion measure, so as to check

quickly one or more sufficient conditions to skip iiiisriiatcliod positions without carry-

ing out the heavier computations required by the evaluation of the actual dissimilarity

measure. Examples of such an approach include the algorithms in |1; 30 33; 44\ 45]. *

1.2.1 Full search approach

With the FS approach, the distance between the pattern and cach candidate

window 力 ， i . e . 阮 (" ） - 力 f o r j: = 0’ …，W - 1，is measured. If P广）-

< T、then the window î iĴ ,力 is considered as a matching window, otherwise；
“ , ‘

it is considered as a mismatched window.
c

4 CHAP. 1. INTRODUCTION

看

When SSD is used, the FS requiroii about, 2NW additions and NW iniilli[)lications.

When SAD is used, the FS requires about 2NW additions and N W absolute value

operations.

1.2.2 Fast Fourier Transform

The FFT-based approach 梦 n be used only with tho SSD. As pointed on I in [lil], the

SSD function can be written as

• llxS^^ -越！^叫丨^ = 11x^11^ + W ^ m — 2. <i^l�),4",")〉， （1.2)

where < 广)，54",力 >=(尺))7，义L"’力 is tho inner product between 艾广'）and 交tf'，力.

The FFT facilitates efHcicint computation of the inner product < > in (] .2).

As poir^ed out in [46], the FFT-based approach requires about GJlofj-2J additions
、，

and 6 J / 0 . 9 2 p l i c a t i o n s for computing the inner product. After thai, W additions

are required to obtain 2 < > from < 4f"，力 > for j = 0 ,1 , . . . , VK - 1.

To compute the term 力 a t each pixel location, J multiplications are required

for squaring pixd values, AW and ^W additions arc required respectively by the box-

filtering technique [47] and the integral image approach [48] for summing up the squared

values 11 交 力 111 = Z] , 广-(N’j 八：iw jaY for 7 = 0, • • • , W - 1. The aiiiouiii, of r.om-

putatiori needed to obtain l | x 广 i s negligible. Finally, 2W additions are needed for

summing up the three terms in (1.2). In summary, the FET basc^ approach requires

at least 6,Jlog2J + 7W additions and (iJlog2J + J multiplications.

1.2.3 Incremental Dissimilarity Approximations Algorithm
«

The Incremental Dissimilarity Approximations (IDA) technique relies on partitioning

the"pattern vector, x[")，and oax̂ h candidate vector,交 1!̂ ’力，into a certain number of
I

sub-vectors in order to determine a succession of pruning conditions characterized by

increasing tightness and computational weight. Given an A^-ciirneiisional vector, IDA

establishes a partition, P , of the vector into Np disjoint sub-vectors (not uccessarily

with the same number of components). In particular, it defines a partition of set

{1,2, . . . N] into Np disjoint sub-sets Pi, . • •.，Pn,” where P = {Pi, P2, • • •, fWp},

= Pa。Pb = ^V«#6，a，feel，3，... ,Np, 1 < Np < N.
• * »

Given P, IDA defines the partial Lp-norm of vector xj^^ and xiif̂ ’*̂) limited to the

§ 1.2.3. Incremental Dissimilarity Approximations Algorithm

sub-vector associated with Pm € P as:

= (Z I工。"广)、 (1-3)
nePrn

‘ 几 = (E 丨工UM,"IT;， (1-4)
nePrn

in window where xt̂ n is the nth element in pattern and Xu),j,n is the nth element

xliJ^'j). In addition, IDA defines the partial Lp-dissimilarity between x̂』、）
«

limited to the sub-vector associated with Pm 6 P as: __

交 … = E h . n � ’ „
nePm

and 4；"」)

(1.5)

Then, by virtue of the triangular inequality applied on corresponding sub-vectors

IDA establishes the following Np inequalities:

II 交S�)-交L"’力 irp八 > I l l x r i U p . — = l,..,yvp (1.6)

and summing up both members of the inequalities attains a lower bound of the function

measuring the dissimilarity between and idii^’力：

Np

II 交广)-4!^ ’叫 I? > E —II 交 叫 k p j p . (1.7)

This inequality provides a sufficient condition that allows for pruning those candi-

dates which cannot represent a matching position. In fact, if the lower-bound of the

dissimilarity function exceeds the threshold T that discriminates between matching and

mismatching candidates:

El丨丨艾广)丨丨 P 几 - • (1-8)

m-

then, from (1.7) and (1.8), cannot be a matching pattern.

Moreover, should (1.8) not be satisfied, rather than computing from scratch the

term ||x^)—xii^,》||g，IDA obtains another pruning condition baised on a tighter lower-

bound by considering a sub-vectors pair and replacing in the left-hand term of (1.8) the

difference between the partial Lp-norms with the corresponding partial. Lp-dissimilarity.

This process can be iteratively applied to all the Np sub-vectors pairs resulting from

6 CHAP. 1. INTRODUCTION

尸，SO as to determine up to Nf> sufficient conditions that can be sequentially clicrkecl

when matching each candidate vector In particular, the tightness of the lower-

bounding function can be further increased by taking the next s\il>vectors pair and.

again, replacing the difference between the partial Lp-norms with the corresponding

partial Lp-dissirailarity. These Np conditions are based on the following succession of

increasingly tighter lower-bounds:

Np

<
m= 1

< II文r - x，)iiPp,p, + E 111义《,)ik,—"交。!„./，,.,广 <
m = 1

q ! 义 ; 〜 ） — 叫 + Pi〜）-义兄力（pj

Np

Np

(1.9)

Hence, throughout the matching process, each vector xif」）undergoes checking

a succession of sufficient conditions. Should the last condition be not verified, the

process ends up in computing the dissimilarity l|x广)—xJj^'^^Hp simply by replacing the

difference between the partial Lp-norms with the corresponding partial Lp-dissiniilarity

of the last sub-vectors pair.

1.2.4 Transform Domain Pattern Matching

The transformation that projects a vector x ⑷ 6 onto a linear subspace spanned

by U{« N) basis vectors (乂。)，... V (�1) can be represented as follows:

^iP) = 二 . . • (IJO)

where 义 is matrix transposition, vector of length N is called input window, vector

歹(u) of length U is called projection value vector, the U elements in vector are

called projection values and is a. U x N matrix that contains U orthogonal

basis vectors of length A/̂ for i = 0，…，17 —1. When V (… … i s a square matrix,

i.e. C/ = TV, we denote it as V (") . The transformation is called projection in [1; 35 .

Basis vector is called projection kernel in [1] and called filter kernel in [32 .

The following inequality is proved in [1] when the u basis vectors in are

§ 1.2.4. Transform Domain Pattern Matching

orthonormal:

where = V("…艾!〜）’：^̂ ",)) = V(“"）交Jf"^).

(1.11)

If - 力||2 > T, then we have p 广 ） - 力 | | 2 > T from (1.11), and so we can

safely prune candidate window xif̂ '-̂ ^ from set can • In this way, - yw'^^W'^ > T

is a sufficient rejection condition for rejecting mismatched window. Denote the set, of

candidates as set can, which initially contains all candidates. For each iteration of t/,

where u increases from 1, and are projected onto transform domain using

and the rejection condition is checkcd for the remaining candidates in setcan-

Finally, after Nmaxu number of such iteration, the remaining candidate windows in

set can undergo FS for finding out the matched windows. This procedure is sumrnarizoci

in Table 1.1. Such pattern matching approach is FS equivalent. The u basis vectors in

肚e selected from the U orthonormal vectors ⑴ . . . i n

Overall procedure:

Initially, setcan contains all candidate windows

入ID ’
F o r u = 1 t o Nmoxu'A

For x ^ " ^) in setcan' {Step a.l \ Step a.2;}

}
The remaining candidate windows undergo FS.

Step a . l : and xî î ，)）arc projected to ol>-

tain and … 力 respectively.

Step a.2: If | | v (似 — V(uxyv)近

T, then is removed from set,

>

I" can.

Table 1.1: Transform domain pattern matching

The main advantage of using transformation is that it is more efficient computing

_ y (u x | | 2 than c o m p u t i n g 一 i ^ L 八 a n d a small number of

projection values can eliminate a large number of mismatched windows. According to

]],pattern matching using Walsh Hadamard Transform (WHT) as the transformation

is dmost two orders of magnitude faster than FS and can help deal with illuminatiori

effect and multi-scale pattern matching. Sometimes, the pattern to be matched may not

8 CHAP. 1. INTRODUCTION

be rectangular, Ben-Yehuda et al. helps Gray-Code Kernels (GCK) and WHT to deal

with this problem by segmenting the pattern into dyadic compoiioiits in [35]. Becausc

of these advantages, transform domain pattern matching has found applicat ion in block

matching in motion estimation for video coding [2; 9], tracking [13; 14], feature point

based image matching [15], texture synthesis [49] and augmented reality [50 .

As analyzed in [1], the computational efficiency of transform domain pattern iiuilch-

ing is dependent on two factors: 1) the cost of computing transformation; 2) tho abil-

ity of the rejection condition — yw'̂ ^W'̂ > T in rejecting misiiiatchecl windows

and thus saving the computation required afterwards, which is determined by the en-

ergy packing ability of transformation. The energy packing ability corresponds to the

ability of a transformation in compacting energy from the input data into as small

number of projection values as possible, i.e. the ability in using small u to obtain

large — The larger is ||y《⑷—Yw'̂ ^W ,̂ the more powerful is the rejec-

tion condition | 一 欢’力 Ip > T in pruning mismatched windows. In summary, the

transformation should be computationally efficient in packing ericM-gy.

Hel-Or and Hel-Or find in [1] that WHT is efficient for transform domain pattern

matching. Their algorithm requires 2N 一 2 additions for obtaining all WHT projection

values in each window of size N. Following this work, a number of algorithms have been

proposed for computing WHT. The GCK algorithm proposed in [32l« requires a similar
«

4

number of additions as [1] when all projection values are computed and requires fewer

number of additions when only a small number of projection values are computed.

Meanwhile, new families of transforms that ean be efficiently computed by fast

algorithms are also proposed. The GCK [32]which has WHT on sliding windows
«. I

as a member, is a family of transforms that can be computed efficiently by the GCK

algorithm. The generalized GCK [51], which is a superset of GCK, can be computed
«

efficiently by-the approach in [51]. Among the families of the GCK and the generalized

GCK, the most efficient transform domain pattern matching uses WHT. However, the

transformation takes.the main computational time in pattern matching. Thus the high

computational requirement of transformation is still the bottleneck of efficient transform

domain pattern matching. Therefore, it is desirable to to perforin the transformation

more efficiently. ‘ ‘ ‘ ‘

.3. Thesis Outline

1.3 Thesis Outline

This thesis focuses on fast pattern matching algorithms. Human detection will be used

as the application of the proposed algorithm.

In Chapter 2，this thesis proposes a fast algorithm for WHT on sliding windows

which can be used to implement pattern matching efficiently. The computational re-

quirement of the proposed algorithm is about 1.5 additions per projection value per

sample.

After developing the fast algorithm in Chapter 2, this thesis proposes an analysis and

comparison of state-of-the-art algorithms for full search equivalent pattern matching

in Chapter 3. Our intention is that the datasets and tests used in our evaluation will

be a benchmark for testing future pattern matching algorithms, and that the analysis

concerning the state-of-the-art algorithms could inspire new fast algorithms.

The GCK family which has WHT on sliding windows as a nieinber is a family of ker-

nels that can perform image analysis efficiently using a fast algorithm such as the GCK

algorithm. The GCK has been successfully used for pattern matching. In Chapter 4,

this thesis develops a new family of transforms called the Kroiiecker-Hadamard Trans-

form (KHT) of which the GCK family is a subset. Thus, KHT provides more choices of

transforms for representing data. Then this thesis proposes a new fast algorithm that

is more efficient than the GCK algorithm. The proposed fast KHT algorithm requires

4 additions per pixel for computing 3 basis vectors independent of transform size and
•i

dimension. All KHTs can be computed efficiently using the fast KHT algorithm. Based

on the KHT, this thesis then proposes the segmented KHT (SegKHT). By segmenting

input data into Lg parts, the SegKHT requires only 4 additions per pixel for computing

3Ls basis vectors. Experimental results show that the proposed algorithm can signifi-

caritly accelerate the full-search equivalent pattern matching process and outperforms

state-of-the-art methods.

Chapter 5 proposes strip sum on the image. The sum of pixels in a rcctangle can

be computed by one addition using the strip sum. Then this thesis proposes to use

the orthogonal Haar transform (OHT) for pattern matching in Chapter 5. Applied for

pattern matching, the algorithm using strip sum requires O(logii) additions per pixel

to project input data of size N\ x N2 onto u 2-D OHT basis. Experimental results show

the efficiency of full search equivalent pattern matching using OHT.

34 CHAP. 1. INTRODUCTION

Support vector machines are widely used for classification applications. Direct

computation of support vector machines (SVMs) is not desirable in applications re-

quiring computationally efficient classification. To relieve the burden of high roinpu-

tational time required for computing SVM, this thesis proposes a transform domain

SVM (TDSVM) that computes SVM much faster in Chapter 6. Experimental results

show the efficiency in applying the proposed method for human detection.

Finally, in Chapter 7, the contributions of this thesis are summarized and the future

research directions are discussed.

Chapter 2
<

Fast Algorithm for Walsh Hadamard Transform on
Sliding Windows

2.1 Introduction

Pattern matching, also named as template matching, is the procedure of seeking a given

pattern in a given signal data. For pattern matching in images, the pattern is usually

a 2D image fragment which is much smaller than the image. It has been found thai

pattern matching can be performed efficiently in Walsh Hadamard Transform (WHT)

domain [1). In pattern matching, signal vectors obtained by a sliding window need to

be compared to a sought pattern. Hcl-Or and Hel-Or's algorithm [1] requires 2N - 2

additions for obtaining all WHT projection values in each window of size N. Note

that one subtraction is considered to be one addition regarding the computational

complexity in this chapter. Their algorithm achieves efficiency by utilizing previously

computed values in the internal vortices of the tree structure in Fig. 2.1. Recently, the

Gray Code Kernel (GCK) algorithm [32] which utilizes previously coiripiited' values in

the leaves of tlie tree structure in Fig. 2.1 was proposed. The GCK algorithm requires

similar computation as [1] when all projection values arc computed and requires less

computation when only a small number of basis vectors arc computed.

In this chapter, we propose a fast algorithm for WHT on sliding windows. Instead

of performing o r d e r - W H T by means of order-A^/2 WHT and N additions in the

tree structure, which is the technique adopted in [1), the proposed algorithm computes
暑

order-AT WHT by means of order-iV/4 WHT and iV + 1 additions. In this way, the

proposed algorithm can obtain all WHT projection values using about 3A^/2 additions

per window. In the computation of partial projection values for sliding windows, the

proposed algorithm requires only 1.5 additions per basis vector for each window. As

shown by experimental results in Section 2.6, the computational time required by the

11

2 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

proposed algorithm for computing 10 or more projection values is aho\it 75 per con I of

that of the GCK algorithm.

The rest of the chapter is organized as follows: Section 2.2 defines tor ins and symbols

used in this chaptcr. Then, the WIIT algorithm in [1] is briefly introduced. In Scction

2.3, we introduce two examples of the proposed algoritlim. Section 2.4 illustrates tlio

proposed algorithm for ID order-N WHT. The algorithm computes order-TV WHT

using order-4 and order-N/i WHT. In Section 2.5，the number of additions required

by tho proposed algorithm is derived. Soctioii 2.(3 gives the experimental result of 、

motion estimation in video coding application, which utilizes tlie proposed algorilhii)

for computing 2D WHT on sliding windows. Finally, Scction 2.7 prcsents summary.

2.2 Walsh Hadamard Transform on sliding windows
I .

2.2.1 Definitions
*

• I
I = «
• * • ‘ • •

Consider J input signal elements where n 二 0 ， ， 1 ， 一 1，which will bo divided

into overlapping windows of size N (J > N).- Let the j th input window be:

iTj+yv-il?,，for - N (2.1)

A ID order-A^ WHT transforms N numbers into N projection values. Let M (") ho an

order-TV WIIT iimtrix and

T (2.2)

N二2

A M

A/=8

n 1

n -ij ii -1-1 n
+ A

Figure

[1 1 1 1 - 1 - 1 -1 - 1] / |1 丨 - 1 -1 1 1 -1 -1]

11 [1 1 -1 -1 -1 -1 I 1] ‘

1： lYce structure for Wklsh-Hadainard lYansform in sequcncy order.

2.2.2. Previous WHT Computation Methods 13

wlierc M ⑷ is an N x N matrix，lii(乂” for i = 0，

vector having length N and

N 二 2(】M、CM =0,1,2,

Lot y{N,i,j) for i = (), 1, •. . ’ •/V - 1; J. = 0’ 1’.. • ’.

value for the j th window and

，yv — 1 is the 2th WHT basis

• (2.3)

N be the ith WHT projection

(2.4)

In [32], ri^(N'i) and y(N, i,j) are called the zth projection kernel and projection result,

respectively.

Let 亏、N，j、be the projection value vector containing all order-A^ WHT projection

values at the j th window and

y ("’j.)
2/(AM，j)

= 陶) 二

y(N,N-1,3)

For example, when iV = 4，we have

m 剛

m(",】)T

(2.5)

y

2/(4,0,j)

2/(M，j)

2/(4,2,j)

2/(4,

= M � ⑷) =

1 — 1 -

1 - 1 1

2.2.2 Previous WHT Computation Methods

OL j

^•j+i m(4,”'

'工j十2

^j + '-i .

(乂力.（2.6)

In [1], I lei-Or and Hel-Or proposed a fast algorithm that computes 力 from

and using (2.7): 、

y(yV/2, LV2J ’ j)十认m、Li /2J、 j + N/2), i%4 二 0 or 3，
y i ^ ^ h j) = < (2.7)

y(iV/2, [i/2\ J) - y{N/2, [i/2\ J + N/2), i%4 = 1 or 2,

where % is the modulo operation and the floor function.

As shown in Fig. 2.1，their algorithm first computes WHT projection values for
M 1
i
m

14 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

window size N being 2, which arc then used to cornpute WHT projocLioii values for •

window size being 4, and so on. The computation starts at I ho root and movers down

the tree until t,ho projection values represented by the leaves aro (x)niput,wl using (2.7).

The algorithm in [1] requires one addition per window along oax:h node of the tree in

Fig. 2.1. The GCK algorithm [32] utilizes previously computed order-TV projcjction

values for computing the current order-iV jjrojoction value. When a small number of

projection values are computed, the GCK algorithm requires two additions per window

for each projection value, while the algorithm in [32] requires 0{\ogN) aflditiori.s. VVlion

all projection values are computed, both the algorithms in [1] and [32] require about

2N additions.

A new fast algorithm, which is more eflicicnt than those reported in [1] and [32], is

proposed in this chapter. I l can cfficieiitly cornpute order-TV WIIT on sliding windows, »

i.e., y{N,iJ) for i = 0，1’.. . ’ 尸一 1(尸 S TV) and j = ()’ 1,2， . . .J - N.

2.3 Fast Algorithm for WHT Dn Sliding Windows for window Sizes 4 and

8

i •

This section gives examples of computing order-TV WHT on sliding windows of sizes

N — i ami 8 using the proposed algorithm.

2.3.1 Fast Algorithm for Window Size 4

The proposed algorithm and the GCK algorithm [32] for window size being 4 are

described in Table 2.1. ,The proposed algorithm computes y (” "）（the WHT project,ir)n

values in window j + 1) using y(4丨力(the computed projection values in window j) , as

shown in Table 2.1. Except for t;hc Otli projection value y(4,0, j + 1), the GCK algorithm

utilizes the previous order-4 projection values to compute the curreiit order-4 projection

value.

Define d ^ U) as: » .

. cLnU) = Xj 一 Xj^N. (2.8)

We can see from Table 2.1 that the WHT projection values in window j + 1 can be

§ 2.3.2. Fast Algorithm for Window Size 8 15

Xi XrJ X/*2 X;f3 Xi>4 Proposed algorithm GCK algorithm

V(4,0,/) 1 1 1 1

=J/(4,0, j) - xi+x,.A =1/(4,0,/) — ATM 1 1 1 1 =J/(4,0, j) - xi+x,.A =1/(4,0,/) — ATM

V(4,2J) 1 - 1 - 1 1

y(4, 2, j)+x,-XrA = y(4,0,/) — 0 , / + 2) - .,/(4, 1,;) 1 1 - 1 - 1 y(4, 2, j)+x,-XrA = y(4,0,/) — 0 , / + 2) - .,/(4, 1,;)

y(4,1") 1 1 - 1 - 1

= y(4, 'i, j)~xi+xr4

.V(4,2,;>2)

=y(4, 1, 1) — y(4, 1, /+2) — y(4,1, j+1) V(4,2,/’+l) 1 - 1 - 1 1 = y(4, 'i, j)~xi+xr4

.V(4,2,;>2)

=y(4, 1, 1) — y(4, 1, /+2) — y(4,1, j+1)

V(4,3,/) 1 - 1 1 - 1

=-1/(4, 3, /> XI-X,>4

y{4,3"十 2)
= y(4, 3,j) -1/(4, 2,))—y(4, 2, j-^2) V(4,3,/>1) 1 - 1 1 - 1 =-1/(4, 3, /> XI-X,>4

y{4,3"十 2)
= y(4, 3,j) -1/(4, 2,))—y(4, 2, j-^2)

Table 2.1; Fast Algorithm when Window Size is 4.

coiiipiitod from those in window j and Therefore, wc have

‘ : (/ (4 ’ 0 ’ j) ‘

2 / K I ’ 川 ） - 2 / (4 . 2 , j)
+

y(4,2, j + i) " (4 , l ’ j)
1

-山 (j)

2/(4，3J + 1) -2 / (4 ,3 , j) 山 (j)

(2.9)

arid Fig. 2.2 shows the signal flow diagram.

Thus, after obtaining (化) ’ the proposed algorithiii obtains 歹 (化 b y five additions

as shown in (2.8) and (2.9), whereas the algorithm in [32] requires six additions and

the GCK algorithm requires eight additions.

2.3.2 Fast Algorithm for Window Size 8

The proposed algorithm and the GCK algorithm [32] for window size of 8 are described

ill Tabic 2.2. The proposed algorithm computes for j = 0 ,1 , . . . J - 8, which is

the WHT projection value vector in window j + 2，using which is the computed

projection value vector in window j .

Projection
Window 0
山(0)

y(4,0,0)

>'(4,1.0)
>'(4.2,0)

Projection Projection
Window 1 Window 2

山(丨）^ cl4{2)

^ . ^ > ' (4 , 1 . 2)

'>'(4,3,1) - y(4,3,2)

义0

Xi

X5

山(0)=义0-义4

山（1)=̂ ：|-义5

Figure 2.2; Signal How diagram of the Bottom up algorithm for window size equal 4.

16 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

XI Xt'i Xl'f. Jf xi'f X!^' Proposed algorithm GCK

y(8.0,j) y(s. 0,/+2) y(8Mhi)

y(8,2,j)

y(8,\,h2)

y(8, i".+2) y(8. i,;+2)
=y(8. 0,;-2)--yrg, 0, r2)~ y(8, 1, ;-2)

y(8, hj) y(8, 2,/+2) y(8, 2,j*2)

y(8,3,/)
V(8,3 小 1)

y(8, 3,/+2)
！

3
 ,

oo,

 ̂

1
-

^

‘2)- y(8. 2,j-2)

V(8、,j)
y(8, 4,;+2)
叫 J (8 , 4,j)+XrXi't'Xi->i+X,'

y(R. 4, /、2)
- 3 , r\) -y(8.

m
•2) y(8, 4,

y(8,6,})

小 2)

y(8, 5,y+2)
-yfS, 6,j)-xr*-XM+xi>i\-x,<'t

y(8, 5,/+2)
4,;-2) -y(/?, a) -y(8, i-2)

y(8,5,j) y(8. 6,;+2)
5,/)+x/-x"卜X/.K+jr/.' •'y(8, 6,1) -y(8,5,j)~y(8,5,i*2)

y(8, 7,j) y(8, 7,j+2)
口y(8, 7,j)-X(+xi'i+xi*H-xh

y(8,7,i-*2)

7,i-2) 6, j -2)-y(8, • 2)

Table 2.2: Fast Algorithm when Window Si/.c is 8.

Def ine t N / ^ i b j) for i 二 0 ’ . . • ’ N/4 一 1, 0’ 1’ ...，./ - 5 /V /4 aa:

tN/^ihj) = - y{N/A,iJ + N).

For N = ' 8 , wc have

(2.10)

^2(0,.7) 2 / (2 , 0 J) - 2 / (2 , 0 、

亡 2 (l , j) y (2 ’ i J) 2 / (2 , 1 ， ‘ ； " + 8)

(2 . 1 1)

Prom (2.4) and then (2.8)，we have

t2{0,j)

t2{lj)

1 1 1 I

1 - 1 1 - 1

1 一 1

工j -工j+8

a:j+9 -
M (2)

工’ J + 8

â jH 9

dsU)
(2.12)

As given by (2.12), t2[i,f) is the ith order-2 W H T projection value of [r4(j) rig(.7 4-1)]'厂.

According to Table 2.2 and (2.12), W H T projection value vector in window j -f- 2 can

§ 2.3.2. Fast Algorithm for Window Size 8 17

Step a - X"、-XM.

-One addition is required.

Step b h(0,/) • |1,1 n dH(J+l)]\

h(hj)'ih-i]ids(j),ds(/->i)r.

-Two additions arc required. Note that ci»(j) was obtained

during computation of ?8(;'+1) in Step a.

Step c

‘(-ir'{>'(8./.y)-/2(v.7)}./ = 0.3.4.7 ,

[(-ir{M8,/-(-l)'.7l-/2(v.7))./-1.2.5.6

where v //4j .
-Eight additions arc required in this step for i = 0, 1, ..., 7.

y(S,i.j + 2)

Table 2.3: Computation of All Order-S Projection Values in Window j + 2.

be computed from those in window j as well as (2(、 j)朋 follow:

2/(8,0,j ,•+2) -hioj)

2/(8,1,J 1+2) -2/(8’ 2 J) "2(0")

2/(8,2,： / + 2) 2/(8’ 1 J) -,‘2(0’ j)

2/(8,3,： /+2) -!/(8， 3>j) + 她 j)

？y(8,4,： i + 2) 4，j)
1

r2(l ’ j)

2/(8,5,： i + 2) 2/(8，C 丨’力 -力2(1’ j)

2/(8,6、 i + 2) 1 (8 、 5，j) hihj)

2/(8,7,： / + 2) y(8,7 -t2(lj)

(2.13)

In summary, (2.13) can be Tepresented by

y(yv,z,j-f 2) =
{-\r''[y{S,iJ)-\-t2{vJ)l 7： = 0,3,4,7

1 广十i>(8’?: 一（ —l)S j) + <2(”’j)r’ i= 1,2,5,6,

(2.14)

where v = [z/4

Table 2.3 gives the three steps for computing y(8J —2) from 歹(8,：/) as well as

and the corresponding number of operations required.

Therefore, the proposed algorithm requires 11 additions, whereas the algorithm

in [32] requires 14 additions for obtaining the eight projection values in The

GCK algorithm requires 16 additions.

18 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

2.4 Fast Algorithm for W H T on Sliding Windows for Window Size N

2.4.1 The Algorithm

Let D (") be the order-N" rf3vorso-identity, matrix, i.e.，clonicMits at tlie rrvors(}-(liagonal

positions are 1 aiid 0 at, others. For example, D('”.is

D ⑷ 二

0 0 0

0 0 1

0 1 0
/

I 0 0

The equation below is

J)
j)

2/W8Z + 2, j)
？X琴+ 3， j)

3)

j)

t y(N,8i + 6, 3)

y(N, 82 + 7, j) _
for 7: == 0，1，... N/S

M ⑷ 04x4

0^x4 D ⑷ M ⑷ (2.16)

y(7V/4,2z,j-f 7V/4)

y(N/4,2iJ + 2N/4)

7y(Ar/4,2i,j + 3iV/4)

y (A74 ’2 i+ ' l , j)

2/(iV/4,2z + l , j - f A^/4)

2/(Ay4，27: + l，j + 2A74)

y{N/4,2i-\-\J-\-'SN/4)

I

Hence, order-N WHT is partitioned into N/4 groups of order-4 WHT. Utilizing the

method in (2.9) for each of the order-4 WHT in (2.16), WHT projection values in

window j -f 7V/4 can be computed using projection values in window j as well as

(2.15)

2.4.1. The Algorithm 19

fyv/4(2z, j) and iyv/4(2i +^1) j) as follows:

2/(/V’8i + 0 ’ j + N/4) yiN, Si + oj)

• «

y(N、8i+l、j + " / 4) • 、‘/4(2i + 0 ’ j) ‘

y{N;Si + 2J + N/4)

y{N,Si + 3J 丨 + N/4)
4 4-

iyv/.i(2i + 0 , j)

y (華 + 4，j ‘+ N/4)
«

丁

�“ 2 i + l ’ i)

y{N,Si + 5，J 丨 + N/i) i • / ‘ I ⑶ + l ’ j)

丨 + N/4) iyv/4⑵ + l，j).

'"(^^8i + 7，j f + N/4) :(/(.’7V,8i 十 7,j). 二〜/4(22 + l，j)

(2.17)

where t 華 j) is defined in (2.10). Equation (2.17), which is for order-A^ WHT,

becomes (2.13) when = 8.

Let us first consider,the computation of in (2.17). Utilizing the in

(2.8), we define 、 ‘ . • ‘
•

\

S N / ” 、 = m j U d j + 1)，…，cInU + AV4 - l)r厂=义、N/�’]、-交(N"、”.�、').(2.18)
• • . ‘

From (2.4)，(2.10), and then (2.18), we have
� / -

、 • tj,r/4(iJ) = y(N/4,iJ) - y{N/4,iJ + N) ‘

. , • ‘ = [交(yv/4’j)—、艾(/v/4’jH-/v),j-

(2.19)

Equation (2.19) shpws that j) is the ith projecti6h ‘value of the order-A^/4 WHT

of SN/、j、. When N = S, (2.19) becomes (2.12).

、’ The signal flow diagram in Fig. 2.3 depicts the computation of order-TV WHT
“ I ‘

using (2.17)-(2.19). Table 4 describes the computation of 护N、j+N/4、fiom 八 and

the corresponding number of operations as well as memory required. Since at most size

2J memoryJs required for the proposed algorithm at each step, the memory required
f 0 «

for the proposed algorithm is 23、which is the same as the GCK algorithm.
• - • , ‘

This.chapter focuses on ID WHT.Jiowever, it is easy to extend the proposed ID

WriT algorithm to higher dimensions. For example, when the 2D WHT of size N x N

20 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

Size 2.7 memory is required for

J — 1. Note that Xi will not be

Overall procedure:

For each j {Step a;}

For each i: {

For each j { Step 6; }

For each j { Step c; }

}
Step a: Compute dj\f{j) = Xj — Xj+N. This step provides the (̂〜“，力 in (2.18) for

the computation of in Step b.

Analysis'. One addition per window is required

storing and the input data xj for j = 0, . .

used in the following steps.

Step b: Compute ，j) = m (八 T h i s step provides the f/v/4

in (2.17) for the computation of + A^/4) in Step c. We can use the GCK

algorithm in [32] for computation.

Analysis: 7V/2 additions per window are required for the N/A values of f /v/‘i(Li/4j , j)

from 3(寧，力 for given j. As stated in [32], size 2.7 memory is required by GCK.

Step c:. Obtain y{N,iJ using (2.17). Note that the y{N,iJ) in (2.17) is

computed previously. ,

Analysis: N additions per window are required for, the N values of i. Size J memory

is required for storing the 亡;v/4(厂 J) for j = 0, . . . , J — I which are computed in

Step 6; size^O{N) memory is required for storing projection values y{N/4, z, a) for

J < tt < j + N/4, required in the right hand side of (2.17) for the given i. Since we

have N《J most cases, the memory requirement is less than 2J in this step.

Table 2.4; Computation of Order-N WHT.

is computed, our algorithm in Table 2.4 can first use GCK for computing the WHT of

• .. • ‘ .

size N X 7V/4 in Step 6, and theri, use ̂ Step c to obtain the projection values of size

•N X N. In this way, we require 1 addition in Step a, N'^/2 additions in Step 6，and N'^
.- . •

additions in Step c, i.e., l.SA/"^ Edit ions in all. In this way, the proposed algorithm

Projcclion
Window j

t ^ M i J) ‘

y(N,Sij)

y(N,Si+lJ)

y(N,Si+2J)

y(N,SMJ)
»

tNMi2i+\J)

y(N.^iUJ)

y(N,ii+5J)

y(N.Si-¥6J)

y(NSi-^lJ)

• • • • • • • • •

Projeciion
Window j+N/4

is/42iJ+N/4)

y(N,%iJ+N/4)

y(N.Si-\-\J+N/4)

y(N,^i+2J+N/4)

y(N.SMJ+N/4)

y(N.Si-\AJ+N/4)

y(N.Si+5J+N/A)

y(N.Si+6J+N/4)

Xj+2

Xj+3

Xj+N

dN<j)y

dN{j+l) —

-fr：

tit 从.+W4)

~ t w A O S

w
H
T

m
一

w
H

tm{OJ+\)
w
H

一 W l j + l)
/

… …
T .

m

F igu re 2.3; Signal Bow diagram of the bottom up algorithm for order-N sequcncy WllT

2.5. Computational Requirement of the Proposed Fast Algorithms for Window Size N 21

Size 4 8 16 32 N

GCK 8 16 32 64 IN

Proposed 5 11 25 49 3W2+1

Table 2.5: Numbers of Additions Required by the GCK Algorithm and the Proposed Algorithm

for All Projection Values of Ordcr-N WHT.

requires 1.5 additions per wiridow per projection value independent of dimension. In

comparison, the GCK algorithm requires two additions per window per projection value

independent of dimension. In Section 2.6, we will show the experimental result that

uses the fast algorithm for 2D WHT.

2.5 Computational Requirement of the Proposed Fast Algorithms for Win-

dow Size N

2.5.1 When All Projection Values Are Computed

Let the total number of additions for obtaining 歹 b e B(N、N). According to the

analysis in Table 2,4, we require one addition in Step a, N/2 additions in Step b, and

N additions in Step c. So, we have

B{N,N) = 1 -f A^/2 + iV = 3 N / 2 + 1. (2.20)

The number of additions required for the GCK algorithm and the proposed algo-

rithm is summarized in Table 2.5, which shows that the proposed algorithm requires

about '6N/2 additions, while the GCK algorithm requires 2N additions. The number

of additions required by our algorithm for order-4 and orcier-8 WHT are 5 and 11,

respectively, because we can use direct computation instead of the GCK for calculating

tN/Aihj) in the Step b of Table 2.4. For example, if iV = 4，then 力/v/4(i, J) = fUU) and

no computation is required in Step b of Table 2.4 for obtaining

2.5.2 When Not All Projection Values Are Computed

In many applications, not all projection values are required. In this part, we analyze the

computational requirement when only the first P projection values are computed for

window size N. Specifically, we shall derive the number of additions for the computation

of y{N, OJ),y{N, 1, j) , . . . P - I J) for j = yV/4,7V/4 + 1 , . . . , J - iV. Here, we

shall not consider the case when j < N/4 because the computational complexity is

22 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

The overall procedure and the three steps arc the same as that in Table 2.4. Tlic

only difference is that, the total number of i is P now.

Analysis:
Step a: 1 addition.per window is required in this step.

Step b: 2 •「尸/41 additions are required in this step using the GCK for the「/)/41

values of t;y/4(L《/4j J) '

Step c: if P%4 = 2 (for example P is 2 or 6), for :the computation in (2.17), the

proposed algorithm needs to compute 4. [/V4Jv+ 2, j) for y{N, 4 • | P/4J + 1，j +

W/4)； So P + I additions are required if the P%4 = 2; Otherwise, P acldiUons arc、

required. ，

Table 2.6: Computation of order-N WHT When Nol All Projection Values arc Required.

negligible as T V 《 J iii most cases. A zoropadding approadi dealing with the cases

when j < N/4 is introduced in [2]. . •

Let the number of additions per window required to obtain y{N, i j + A74) for

i = 0，... ’ 一 1; = 0 , 1 ’ . . .，— 57V/4 be Bn{P)- Tabic 2.6 lists the steps and the
遍

corresponding number of additions required. As shown in Table 2.6, wo require one

addition in Step a, 2 •「戶/4"| additions in Step b, and at most 尸 + 1 additions in Step c.

The number of axiditions required for obtaining P projection values in order-iV WHT

using the proposed algorithm as given in Table 2.6 has the following inequality:

B{N, P) < 1 -f 2 • l'P/41 + P + 1 <「3/)/2"l + 3. (2.21)

The computation required is about 1.5 additions / pixel/kernel using the proposed algo-
»

rithm.

2.6 Experimental Results

To investigate the computational efficiency of the proposed algorithm for pattern match-

ing in practical applications, block matching in motion estimation is utilized. Block

matching in motion estimation using fast WHT was carried out on the firsf200 frames
« -

of a video sequence "tempete" which has a resolution of 352 x 288. The experiment

considers the execution time required for obtaining different numbers of WHT projec-

tion values^ which ranges from 1 to 20. The proposed algorithm is compared with the

algorithm in [2], which utilized the GCK algorithm. ‘

In a similar experiment reported in [2], two projection value computation orders

2.7. Summary 23

were used. They are the "snake order" and "increasing frequency order." Fig. 2.4

shows the ordering of the first 20 projection values of these two orders. The percentage

of the time required by the proposed algorithm with respect to the GCK algorithm is

given in Fig. 2.5. The proposed algorithm outperforms the GCK algorithm when the

number of projections is greater than 5. As the proposed algorithm computes three

or four projection values together to save computation, whereas the GCK algorithm

does not, so the percentages of computational lime saved by the proposed algorithm in

comparison with the GCK algorithm depends on the number of projections. Generally,

the proposed algorithm achieves a higher saving when most projection values to be

computed can take advantage of this property. This is why, when the rminbor of

,projection values approaches 13 and 16 for snake order, the proposed algorithm requires

the least percentage of time compared with the GCK algorithm. When the number of

projection values is less than five, the proposed algorithm requires more computational

time because projection values cannot be grouped together for computation. Therefore,

we would suggest the use of the GCK algorithm when the number of projection values

is less than five.

2.7 Summary

This chapter proposes a fast computational algorithm for Walsh Hadamard Transform

on sliding windows; which requires about 1.5 additions per projection value per window.

The computational time of the'proposed algorithm is about 75 percent that of the

GCK algorithm. In cases where not all projection values are needed, the proposed

algorithm can outperform the GCK algorithm when the number of projection values is

five or above. The proposed algorithm achieves its high efficiency in the computation

of order-A/̂ WHT by using order-4 and order-N/4 WHT. This chapter provides fast

0 1 8 9
3 2 7 10
4 5 6 11
15 14 13 12
16 17 18 19

0 2 5 10 16
1 3 7 12 18
4 6 •9 14
8 11 13 19
15 17

(a) Snake order (b) Increasing frequency order

Figure 2.4: Two different projection orders.

24 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

algorithm for ID WHT. In the future, wc are going to seek an even faster algorithm.

We will alsojry to see if there exists a superset of GCK that can be computed by a

constant number of additions per window per project ion value iridopeiKlont of l.hc size

and dimension of the transform.

150

4x4 Snake
8x8 Snake
16x16 Snake

50
0 5

\>f

10 15 20

(a) Snake order

4x4 IF
8x8 IF
16x16 IF

^ 150

50
0 5 — f o 15 20

(b) increasing frequency order

F igure 2.5; The percentage of time required by our algorithm with respect to GCK algorithm

when different number of projection values are computed, where Snake stands for the snake

order and IF stands for the increaaing frequency order. The experiment is implcmcntficl on a

2.13GHz PC using C on windows XP system with compiling environment VC 6.0.

§ 2.8. Appendix A: Proof for (2.16) 25

2.8 Appendix A: Proof for (2.16)

This appendix provides the proof for (2.1G). Except for this appendix, sequency order

is used for representing WHT. In this appendix, dyadic-ordored WHT will be utilized

for proving (2.16). Natural order-/V WHT can be represented by:

M ⑷ = M ⑵ 帳 剛 (2.22)

where ® is the Krohcckor product {A <2) B is a mp x iiq matrix composed of the m x n

blocks {ai jB)) and

M ⑵ = (2.23)

Both sequency and dyadic orders [52] are the reordering form of the natural order for

WHT. Here wo denote M『）as the order-TV sequency-orderod WHT matrix; denote

(N)

M^^ as the order-iV dyaciic-ordercci WHT matrix and:

M (AO
D

迅(/V’0) ^(/v.l)
m 厂J m " m

(N.N-l)
D (2.24)

where is the ith WHT basis vcctor. The binary vector representation of i in

(2.24) is |zi, 1-2,...，Icm 1 ‘ ， w h e r e arc 0 or 1 for A: = 1，...，G m and:

= 2。、广】 + + ... + 丨 + K; M (2.25)

For dyadic-ordered WHT, for,6 = 0，...，a — 1，a = 2’ 4，8’...，TV, we have:

(2.26)

Let iZ and iP be indices of sequency-ordered and dyadic-ordered WHT respectively.

As pointed out in [52), the relationship between the binary vector representation of

26 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

and iD

where [W^D.ZIGM

1 0 ... 0

1 1 ... 0 (2.27)

According to (2.27), if 广•灼 = 《 • (" ” . 、 w h o r e //，//) < a, a : 2、t hen

is only decided by i【）.So we have:

m ；i： (2.28)

Denote f(b,a,i) as:

a

i is an even number

6, k i is ail odd number,
(2.20)

The 6f in (2.28) is decided by both and 6,):

= f{[Wn,z]h'\a,
I) — (2.30)

where the size of [Wp^z] is l()g2 a x log2 fl-

it is obvious that /[/(6, a, i), a, z) = 6, so wo have:

(2.31)

击 c a n be represented an follows using (2.26), (2.28) and (2.31);

(2.32)

According to (2.32)，we have:

Z (2.33)

2.8. Appendix A: Proof for (2.16) 27

Therefore, yz{N,ai + b,j) can be represented as follows:

yy入N、ai 十 /,，jj = {rfi(广他"州 0

rn (a，/(fc’M)
z

rn (/V/a’i)

rh (A7a,t)
Z

(2.34)

rii

z
• • • •

yy人N/a、i、j + N -N/a]

卞.

28 CHAP. 2. FAST ALGORITHM FOR WALSH HADAMARD TRANSFORM ON Sl.IDING WINDOWS

The following equation is valid using (2.34):

yz(N’2aiZ + 0,j)

yz(N,2ai^I J)

yz{N,2ai^^ + a - I , j)

yz{N,2ai^ + a J)

十 l ’ j)

I

Ml?)

D ⑷

• * * ‘

yzWa、2iZ、j + N - N/a：,

yy\Nla、2iZ +] ’ j)

•拟(A>.，2'/:z+ + 八7")

yz(N/a,2i/^ + 1, j + N - N/a]

y7AN/a、2iZ、j.+ N/a)

D ⑷

+ N -N/a)

y z (N / a 、 2 i Z j)

VyAN/a,2i'^ I, j + N/a)^

I J-}-N - N/a]

(2.35)

Equ . (2.16) is valid when a = 4 in (2.35).

Chapter 3

Performance Evaluation of Full Search Equivalent
Pattern Matching Algorithms

3.1 Introduction
� *

In the previous chaptor, wo propose a fast WHT algorithm. The fast WHT algorithm

c^n be applied for FS equivalent pattern matching. Recently, there are many FS equiv-

alent algorithms proposed |1; 30 -33; 44; 45). Motivated by the intense research activity

rcccntly developed in FS equivalent pattern matching, this chapter aims to coinparo

an(i analyze state-of-the-art FS-equivalciit algorithms for pattern matching in different

conditions. For this aim, this chapter selects the following five algorithms which are

recent and have been shown to yield notable speed-ups against the FS appivoadi.

1. Alkhansari's Low Resolution Pruning (LRP) algoHtlm】[30];
V

2. Tombari et al's Increasing Dissimilarity Approximation (IDA) algorillim [31];

3. Hel-Or and Hel-Or's projoctioii boused algorithm (PWHT) using Walsli-Hadamard

Transform (WHT) [1);

4. Ben-Artzi and Hcl-Ors' projection based algorithm using GCK (PGCK) |32]；

I

5. Ouyang and Cham's projection based algorithm using fast WHT (FWHT) [33].

Table ；J.l summarizes the compared algorithms together with tlie corresponding

abbreviations. In addition to tlio FS, the Fast Fourier Transform (FFT) approach is also

used fLS a benchmark of comparison (in particular, we use the OpcnCV implementation

For the purpose of comparing algorithms, we consider both execution time and com-

p)utational complexity of the algorithms. In particular, the execution time is evaluated

29 ‘

CHAR 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
30 , ALGORITHMS

LRP IDA PWHT - PGCK FWHT FFT

[30] .[31] [1] [32] [33] [53]

Table 3.1; Abhrev'mtions and rcfercnccs of compared nlgoriihms

over different platforms sincc it haus some dependencies on the hardware diaractcrisUcs,

'while the computation complexity is more general. Moreover, though execution time

has been used for showing the computational efficiency of IDA, PWIIT, PGCK and

FWHT in [1; 31-33], computational analysis of these algorithms is i)ot available yot.

Hence, this chapter analyzes the computational complexity of IDA, PWHT, PGCK,

FWHT. .

Our intention is that, the clatasets and tests used in our evaluation will be a bench-

mark for testing future pattern matcliiiig algorithms, and that, this analysis conccrniiig

the perfoniiance of statcj-of-t.he-art algorithms could inspire now fâ st algorithms. The

datasets and the code to carry out the experinieuts arc; available online ‘.

This chapter is organized as follows. Section 3.2 presents a uiiifieci framework

that call represent all evaluated algorithms for further analysis. Based on this uiiificd

framework, the computational complexity of evaluated algorithms is analyzed in Scctiori

3.3. Then, the algorithms are compared quantitatively using the datasets described in

Section 3.4，which accouiit for different sizes of images arid patterns as well as for

distortions caused by different types of noise. The testing environment and evaluation

criterion will also be described in Section 3.4. Section 3.5 illustrates the experimental

results. Finally, Section 3.6 presents a discussion and draws conclusions.

3.2 A Unified Framework for Pattern 'Matching Algorithms

In this section, we first introduce a unified framework for fast FS-equivalciit pattern

matching. The links and differences among the algorithms coiiiparod in this chapter

are then analyzed within this framework.

As highlighted in Table 3.2, the proposed framework consists of two steps:

• Step a: Mismatching candidate windows are eliminated from seican- This step is

.ca l led rejection step.

• Step b: The remaining candidate windows in setcan undergo FS for finding out

^The website will bo available after acceptance of the paper

3,2. A Unified Framework for Pattern Matching Algorithms 31

Overa l l procedure:

Initially, seican contains all candidate windows xĵ ，力；

Step a (Re jec t ion Step) :

For k\— 1 to NMaxk''

{Step a.l\ Step a.2\ Step a.3.}

Step b (FS-Step):

For each candidate window 51{！^、j、in set can'-

{ Use 11艾广）一 〜’叫 I;; to find out if 力 matches

Step a . l :

For 又 i n seican' {Obtain fiowi^J)-}

Step a.2:

For in set can' {If then remove x^J^」）from set can •}

Step a.3:

Nk = k; if Condrer is true, then goto Step b.

Table 3.2; Unified framework for pattern matching using lower bound.

the matching windows. This step is called FS-step.

In this framework, both FS and FFT directly evaluate the distance — xi

for all candidate windows to find the matching windows. This corresponds to skipping

the rejection step and starting from FS-step in Table 3.2. The FFT approach is only
V

different from FS in the computation of — 名. ‘

On the other hand, algorithms IDA, LRP, PWHT, PGCK and FWHT start from

the rejection step. The rejection step is an iteration of k, where k increases from 1，

and comprises three sul>steps. In Step a.】,a lower bounding function fiow(^d) is

evaluated such that p 广 ） - > In Step a.2, if funv[k、j) > T, then

p 广 ） - > T and we can safely prune 力 from 肌’ fiau,(kj) > T being

the rejection condition. In Step a.3、the loop of k terminates when a given termination

condition, denoted clS COridTer, ivS satisfied. Throughout the rejection step, each candi-

date window undergoes checking of a succession of rejection conditions f i aw ik j) > T

in each loop of fc, until either it is pruned or the rejection step finishes. There are two

conditions under which Step a terminates: I) k reaches a sufficient number which is

denoted as NmuxIc'、2) the percentage of remaining candidate windows in iteration /c +1,

denoted HLS PercaiV\ is below certain threshold denoted as e. The second termination

condition, corresponding to Condrer in Step a, 3、is a strategy used by Hel-Or and

Hel-Or in [1] becauso it turns out faster to directly calculate the actual distance than

CHAR 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
32 , ALGORITHMS

evaluating the lower bound when the remaining candidates in set (.an arc very few. N^

records the actual number of loops of k run in the rejection step. In our experinicnls,

Condrer is used for PWIIT, PGCK and FWHT. Condrar is always sot as true and

Step a.3 is considered to be skipped for the ot her algorithms.

The advantage of using fiow(k、j) is that it is more efficient to compvito

than to compute — |\p and a small number of iteration k in the rejection

step can eliminate a large number of mismatching windows.

The unified framework can be straightforwardly modified to find the window that

has the minimum ||x广）—交lî ,力 among all caricliclatc windows. In such a case, the

threshold T is not a constant but represents the best dissimilarity score found so far in

the kth loop.

‘ . T h e differences among the algorithms are simimarizcci in Table 3.3. FS, IDA and

LRP are applicable for any dissimilarity measure based on the Lp-iiorm {p > 1), while

recent pat'tern matching works using FFT，PWHT, PGCK and FWHT are based only

on L2-norm. However, in Section 3.2.3, wo show that pattern matching using PWHT,

PGCK arid FWHT cari be based on Lp-norm forp > 1. FS and FFT includc only Step a

while the others include both Step a and Step b. The N^axk is iiol. applicable for FS and

FFT; the IDA algorithm has NMaxk — tho LRP algorithm has Nmaxk = log^j N ;

PWHT, PGCK and.FWHT have NMaxk = N. Ccmdrnr =尸已？’义卞*) < e is used for

PWHT, PGCK and FWHT. , .

The FS-equivalent algorithms considered in the chapter achieve high efficiency by

using a lower bounding function, fiow(J^’j), that eliminates mismatching candidates

early. Hence, the methods for estimating these lower bouiids accurately affoct the FS-

equivalent algorithms. In the following, wc recall the lower bound estimation methods

used by IDA, LRP, PWHT, PGCK and F W H T . ‘

3.2.1 The Lower Bounding Function for IDA
» . '

The lower bound'used by IDA is •

h M) = E II 交广)-交 叫p丄 I 阮 (、 , /) 厂 II 交 (M p J , ’ . (3.1)

§ 3.2.2. The Lower Bounding Function for LRP, PWHT, GCK and FWHT 33

Methods FS FFT IDA LRP PKs

[53] [31] [30] [1; 32; 33]

Norm h L2 Lp Lp L2

.Steps b a-b

^Maxk N/A Np N

C ondTer N/A N/A N/A P e r ^ ' U e

flaw N/A Eqn(3.1)

Tab le 3.3; Difference for algorithms in the unified framework in Table 3.2. PWHT, PGCK

and FWHT share the same column 'PKs

where the left term is the partial Lp-dissimilarity between and xiil̂ .力 and the

right term is an estimation of the remaining Lp-dissimilarity. Let us denote the mod-
f •

ulo operation by %. When partitioning a set of size N into Np subsets, we constrain

that N%Np = 0 and the subsets P„ for n =]，...，Np have the same size, i.e. N/Np.

Thus the candidate window is equally partitioned into Np subwindows having the same

size. The method presented in [31] does not imply this constraint, but this constraint

normally makes IDA computationally more efficient and facilitates computational com-

plexity analysis. Thus the constraint is used in this chapter, as it is also the case of the

experimental results reported in [31

3.2.2 The Lower Bounding Function for LRP, PWHT, GCK and FWHT

Algorithms WHT, GCK, FWHT and LRP make use of the following lower bounding

function: ‘

flmvi^J)= ||Y(u(fc)x/V)||P

where V("⑷ 乂“）二 [W)，… ’ ⑷，…’ •(咖)—”

(3.2)

for i 二 0，1，... ,u{k) - 1 is the ith row of the matrix (於）乂�），•⑷ is the ith

bfiSis vector in V ("⑷x ") ’ and u{k) is the number of basis vectors chosen for transform

domain pattern matching in the kth loop of the rejection step.

L R P

The LRP algorithm is best explained using Kronecker product which is denoted as

(8>. If A is a Ui X Q i matrix (a„,,„2) and B is a C/2 x Q2 matrix (�“,7,12)，then A 0 B

CHAR 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
34 , ALGORITHMS

the following U\U2 x Q1Q2 matrix:

A 0 B =

ao.oB

^ii.oB

ao.iB

0-1,iB

au、 B

ao,Qi - i B

—i，Qi B

(3.3)

Denote the 1 x (N/u) matrix with all elements equal to 0 and 1 as Oix(N/ii)肌(i lix(iV/u)

respectively. The transform matrix for the LRP algorithm proposed in 130] is given by:

l i x (N / ' u) O i x (y v » … O i x (y v / u)

Olx(N/u) llx(/V/«) .. . Oix(/V/u)
(3.4)

l i X U _0 lx (A7u) O l x (N / u) . . . l] x (N / u) ,

t

where ||I„ (8» 1\x{n/u)\\p 二 /u)�p-…p. For example, when u 二 2 , = 4’ we have:

1 0 1 1 0 0
圳 1 1]=

0 1 0 0 1 1
(3.5)

The LRP matrix in (3.4) contains only Os and Is. Thus the projection of input data

onto LRP basis vectors requires only additions. For candidate windows in the images,

transformation using LRP is computed by summing pixel values in a.rectangle. As for

the lower bound in (3.2), the ⑷父“）in (3.2) is given by the in (3.4), where

u(k) = u = and h can be any small integer number. The experiments in [30] use

/i = 4.

P W H T , P G C K and F W H T

Let M(〜）=lm("’o), • •. ,m("，"-i)r厂 be the N x N WHT matrix. The 4 x 4 WHT

matrix is as follows:

M ⑷ =
m。,i)7.

- 1 - 1

(3.6)

§ 3.2.3. Further Analysis on Pattern Matching using Transformation 35

Since the elements in WHT basis vectors contain only 1 or —1，projection of input

data onto WHT basis vectors requires only additions and subtractions. When N = S,

the 8 row vectors in M(8) are shown in Figure 3,1. The WHT in (3.6) and in Figure

3.1 arc in sequcncy order. For sequency-ordered WHT, the spatial frequency extracted

by the basis vector increases as the index i of basis vectors increases. Wo liave

||jy[(u(fc)x;v)||2 二 N for WHT matrix.

The transform matrix for the GCK in [32] can be represented as follows:

V (八 ） = 均 S (用 (3.7)

where is the NJR x N/R WHT matrix and S⑶ can be any /? x /? orthogonal

matrix. We have ||V(u⑷x/v)= N/R for the GCK matrix in (3.7),

Considering the general lower bounding function defined in (3.2), we can select

basis vectors of the V"(紅）乂�in (3.2) from the LRP matrix in (3.4), from the WHT

matrix M^^) or from the GCK matrix in (3.7). For example, if TV = 4，/c 二 2 and

u(k) = fc = 2, then we can select the first 2 WHT basis vectors ift⑷⑴ and ifi(4’” in

(3.6) for constructing the matrix = [rft⑷。)rfi⑷”]‘厂 and use this matrix as the

V (• 刚 ill (3.2).

3.2.3 Further Analysis on Pattern Matching using Transformation

The definition of induced matrix p-norms is as follows:

I V (" ⑷ X A O | | P

||：£| IP
(3.8)

VsUf
1

Sequency order
0 i 1 1 1 1 1 1 1 1
1 " I I I 丨 .H: ’|. H -1

, 2
^ 3
, 2
^ 3 1 I 1']，…1 1 1

4 1 1 - 1 1 1 '1 1
5 1 1 1 J 1〜1 1 1 1

6 ‘‘‘卜二，…1 I I i
7 1 I I L i 1 1 1 1

F igu re 3.1; WHT basis vcctors in sequcncy order. White represents the value +1 and grey

represents the value —1.

CHAR 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
36 , ALGORITHMS

And from (3.8) it follows that when V("⑷父“）丰 0:

丨丨||V(称AO||p . (丄…

As pointed out in [30], the lower bound in (3.2) is derived from (3.9) by replacing th(、

z in (3.9) with 5i\N、-艾(仏

^w lip 乙 ||V(u(A-)x〜）||J； — • 、 �力 . (3.10)

The following inequality about L2 norm is shown in

iixr-xL^'^-^iii=113^111

> (v M 小 次 " ^ J f c v (" ⑷ ⑷ X 冲) - i (V (" ⑷ x�)cip丄） (3.11)

=flowikj)-

where 赴 丄 = — 艾 、 ： j) . xhe f iowi^J) in (3.10) is used for LRP while the fio,,{kJ)

in (3.11) is used for PWHT, PGCK and FWHT. Let us now consider the L2 norm, if the

basis vectors in V(奴⑷xN) ^^ (3.11) are orthonormal, then we have ||V…⑷乂」、）"�二 i

ill (3.10) and (v…⑷x")V("⑷乂〜广)—！ = ⑷ in (3.11). Under this condition, both

(3.10) and (3.11) yield the following relation:

P广）一 > ||V (u⑷X�) (交广）—艾L乂= U k , J 、 - (3.12)

The inequality in (3,10) is more general than that in (3.11) bocause: 1) tlio inequality

in (3.11) is only applicable for L2 norm while the inequality in (3.10) is applicable for

Lp norm for p > 1; 2) (知 i s required to have rank u{k) for the inverse matrix in

(3.11) while this is not required in (3.10).

The following theorem describes the relationship between LRP and WHT:

Theorem 3.1 When the w = 2" basis vectors in vjjĵ /^’）are the first sequency-ordored

WHT basis vectors, we have the LRP transform matrix:

*

v i -) = I“<S>lixW«), (3.13)

such that: 1) the subspace spanned by the u basis vectors in ⑵ is equal to the

subspace spanned by the u basis vectors in V、二j^、.、2) for any length-A^ input vector

§ 3.3. Computational Analysis ot Algorithms IDA. PWHT, PGCK. FWHT and LRP ^

X，if the basis vectors in and are normalized to have 乙2 norm equal to

1，then = ^xll'2； 3) the transformation V[^二)x requires at least

Zu/2 additions per pixel while the transformation V^";广)x requires 3 additions per

pixel when computed on sliding windows.

The proof for Theorem 3.1 is provided in the appendix. The more is the energy packed,

the more are candidates can be eliminated by the rejection step. Theorem 3.1 states

that the u = 2" sequency ordered baais voctors in vjjj,/^^ and the u basis vectors in

vK广）== lu lix(/v/u) are the same in sn])space spanning and energy'packing abiK

ity. However, the larger is u, tlie more computationally efficient is the transformation

交 ' h a n
V L f i J) 入 L i m u V yy yyy. A .

The algorithms PWHT, PGCK ajid FWHT were proposed for the Lo norm only.

Recently, WHT have been used for motion estimation in [2; 9] based on Li norm, but the

algorithms are not FS-equivaleiit. Actually, we can see from the analysis in (3.10) that

the basis vectors selected from WHT and GCK are also applicable for FS-equivalent

pattern matching using Lp norms for p > 1 as dissimilarity meai>ure. .

3.3 Computational Analysis of Algorithms IDA, PWHT, PGCK, FWHT

and LRP

Execution time was used for assessing the computational cfTiciency of IDA, PWHT,

PGCK and FWHT in |1; 31-33). But literature lacks a computational analysis of these

algorithms. Since execution time varies with hardware, the execution time measure-

ments in [1; 31-33) cannot provide an accurate comparison of the four algorithms. In

this section we analyze the computational complexity of IDA, PWHT, PGCK, FWHT

and LRP by counting the number of operations required by each algorithm. The num-

• ber of operations required by the algorithms is summarized in Table 3.4, those required

in the rejection step and FS-step are listed separately in Table 3.5.

To recall the notation already introduced, the 7Vi x N2 pattern ha»s N = N1N2 pixels,

the J\ X J2 image has J = J1J2 pixels and W candidate windows. At eadi iteration

of k for k — 1,2, . . . in the rejection step, soirie candidate windows arc eliminated

and the remaining ones will be considered in the next loop. Wc denote the number of

candidates examined at iteration k in Step a as Ncal and the number of candidates

examined in the FS-step as Ncan^. Initially, k == 1，all candidates are examined arid

CHAR 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
38 , ALGORITHMS

we have N^h —

In the computational analysis, subtractions are given the same weight, a»s additions.

The computation of certain terms depends on the computation of the Lp norm in

(1.1), which in turn is related to the computation of and {/z. The operations

for computing |2|卩 and《z are called here power-/; operation and root,-/) ()pf?ratioii

respectively. When p = 2, power-p operation computes the square of z, i.e. and

Toot-p operation computes the square root of 2, i.e. y/z. When ;; = 1, power-/? operation

computes absolute value of z, i.e. \z\, and root-;; operation does nothing.

The terms related to the pattern x^^) arc computed once and for all at initiali/ation

time and hence not considered in the computational complexity sinco the associated

complexity is negligible cornpaiecl with the other computations. As a coriiinon sioi)

for algorithms IDA, PWHT, PGCK, FWHT and LRP, Step a.2 of Tabic 3.2 chocks

condition fiow[k,J)〉T for the N^^N candidates at iteration K, which requires NCAL

comparison operations. The computation required by Step a.S of Table 3.2 is negligible.

The remaining steps in Table 3.2 that require analysis are Step a. I of the Rejection

step, which computes the lower bounding function //ow(人几 and the FS-step. In the

following, we analyze the computational complexity of those t wo stops for each of the

considered algorithms.

3.3.1 Computational Analysis for IDA

The computation of the lower bounding function for IDA is illustrated and analyzed in

Table 3.6. When A: = 1, which is Case 1 of Table 3.G, the lower bounding functiun in

(3.1) is given by:

Np

f u M) = E I II艾广)llp八I — P i i "叫 {3.H)

m=l

When /c > 1, i.e. Case 2 of Table 3.(), the lower bounding function is:

flUKj) = f “ k — + -交i；"叫lJU
(3.15)

As a summary of Table 3.6, IDA requires iW + 2NpW + [(錄 + 2)Mai

additions, J + NpW + ^{Ek：^' N总) power-p operations and W root-p operations

§ 3.3.2. Computational Analysis for LRP 39

r

Methods 、 Number of additions

FS、 2NW

FFT 6Jlog2J + 7W

IDA 4Vy + 2 A W 2 : + 2 R S 1 + : N=、

LKPsid 2 j + 十蕭』î,)

k

LRPcan 2 J + 5 ： (2A滥 + + 2NN【、

k

PKs B(yv，TVfc’ MO + 2 TViSl 十 2NN、丄tP

k

Methods Number of power-p operations

FS NW

FFT 6Jlog2J + J

IDA

Np — \ . J -

/V" h Np

. L R P

k

PKs

k

Methods Number of root-p operations

IDA ly

Methods Number of comparison operations (in Stop a.2)

/ i^can

Table 3.4: Number of opomtiom required by the nlgorithms. PWHT, PGCK mid FWIIT

share the same row 'PKs'. LRPsid corn pules the Iransfornmtion in n sliding manner for all

pixel locations; LRPcan computes the transformation for Ncah cnndidute windows at iteration

k, LRP aid and LRPcan share the same row "LRP" ‘ for the number of power-p operations. In

this table, A^^flp = h^'^'^^NcSi- The iminber of comparison operations is applicable to IDA,

PWHT, PGCK, FWHT and LRP.

for obtaining tlie lower bounding function.

In the FS-step, IDA computes only the Lp norm dissimilarity for pixels in
«r

subwindow restricted by partition P/Vp • This siibwindow contains pixels

candidate window. Thus，the FS-step requires - additions and

operations.

the Ifkst

for oacli

power-/?

3.3.2 Computational Analysis for LRP

As pointed out in [30], LRP requires Ylk ['^"^lrp + (" —] 口1 additions and J^fc (A ^ r)

powor-p operations for obtaining the lower bounding function, where A^j^p

In the FS-step, LRP requires additions and NN^^n^ power-;; operations.

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
40 ALGORITHMS

Methods Number of additions

Ilojoctiori Step FS-slop

IDA
"广 1 2N

k 二2 1)
/V 厂 c a n

LRP,/,i 2./ + 十 3M/)

k 、

LRP c a n

k

2 迷

PKs

k

Methods Number of power-/) oporations

Retortion Sie]) FS-stop

IDA ,/-卜 T V , 約 ‘ Z 乂 S
fc

工v(,、.）
N,>賺

LRP / > 八 Uti)
k

八』�C(l7l

PKs

k

Table 3.5: Numbers of n/JcJjtions and power-p opmathns required by the nJgorithins in (he

Rejection and FS steps. PWHT, PGCK and FWHT sluirc the same row 'PKs\ LRPsid nnd

LRPcan share the same row “LRP”' for the number of power-p operations.

The sliding t _ fo rmat i。n V _ > < � i i ^ , W in

is actually the sum of pixel values in rectangles when LRP is used for images. This

transformation is computed by hierarchical suinriiation on the entire image in [30],

which requires (h — 1) J additions at each iteration k.

Alternatively, the integral image method initially requires about 2.1 additions for

constructing the integral image and then additions for each iteration k for com-

puting the sliding traiisfonnatioii over the iniagc. This approach is clnnot.ofi aw

LRP.,/t/ is aclvaiitagoous over the hierarchical suniinalion proposed in [30] hocaviso t.lu»

computation required by LRP,/^/ is iiidopoiiderit of h.

As another alternative way, wc may compute the traiisforiiiatioii for tlio N^ial can-

didates instead of computing it for the entire image, which would require

additions for each k using the integral imago method. This approach js donot(Kl as

LRPcan-

§ 3.3.3. Analysis for PWHT, PGCK and FWHT 41

Case 1: k =

a.1.1: for each pixel Xu},a in the image: {Obtain ⑴,al"}.

** J powen.-p operations are required for J pixels.

a.1.2: for j=() to - 1

{ for m = l to Np {Obtain 乂力 ||p,/)„r} }•

** = (^ ^ defined in (1.4) is obtained by two stops:

nel'rn

1) sum up in the rectangle restricted by ，where lias

been obtained as 摩 i n the previous step; 2) obtain tho pih root of the sum.

additions are required for obtaining tho sum in the W reel angles using tho box

filtering technique 147]. W root-;; operations are required for obtaining the pih root

of the W sums,

a.1.3: for j = 0 to W - 1

{ flUU) = En^o-' I II 交 广 — II 又 力 }•
** NpW power-/) operations, 2NpW additions are required.

Case 2: k > I:

a.1.4: for Ncan candidates xii^’力 in set can'

{Co川putcHI交广）-交叫丨丨;,尸r} ^

** II义•广）—二“& fLs ciefiiied in (1.6) is tho L^ norm of U^igth-^ v(、(,tor. ^ ^ ^ ^ ^
〜(fc> N 、

additions arid 识、，power-/; operations arc required at iteration k.

a.1.5: for candidates xŜ Ĵ ’力 in setcan： {
f l U k J) 二 久• — U . H I I 交 ! -式 " "力 - I P 广 交
}

** 2Ncan tiddiUons are required at iteration k for summing up the thn^e tonus tiuit

have been computod previously.

Table 3.6广 Procedure and corresponding number of operations required by IDA for cowputing

the lower bounding function.

3.3.3 Analysis for PWHT, PGCK and FWHT

Tlx) lower bounding function for PWHT, PGCK and FWHT is coniputed tis:

flou人k,,j、二 flUk- -\J) Hr 交广）一 l) . ' 4 ; " ’ ” r (3.10)

where k 二 1，2，...，TV/t，floutish j) = ()• ^k records the actual number of iterations

run in the rejection stop. The procedure and number of operations roquimi to ol)-

lain the lower bounding function is reported in Table 3.7. Lot Nf^^ W) be the

number of operations required by PWHT, PGCK or FWHT to obtain 〜）

for W candidates. PWHT |1] lia« two different approaches to compute the trarisfor-

Illation: top-down and bottom-up. We have , N^, W) — WN^ log N in the worst

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
42 ALGORITHMS

a. 1.1: for N^n windows xijî ’力 in setcan-

{ Obtain }.

** A^/f, W) additions ai.(、re(iuired for ol)Uiiuiiig for all c aiidi-

dates, where is one of its cleinents.

a.1.2: for N怨I windows in setcan

{ Obtain 厂於V) — id,；^,.’ }•

** N^n additions aiicl Ncal power-/; oporatioiis are rotjuiro.d at iloralioii k.

a.1.3: for NcSi windows xf̂ Î ’力 in setcan-

** Ncan additions arc required at, iteration k for summing up the two tcniis Uiat.

have been coiiipulocl previously.

Table 3.7; Procedure and corresponding computHtion raqiiitvd by PWIIT, GCK Hiid FWII'I'

for computing the lower bounding function.

caao and B(N, N^；, W) = 2WN^ in the bo.sl ease for top-down PWIJT. For Ix)! toin-iip

PWHT, B{N, NK、W) = N N 总 in the worst cfusc and B(N, NK、W) = JLK

the best case. As for PGCK and FWIIT, B(N,Nf,,W) = 2WNk and -

•SWNk/2 respectively. As a summary of Tabic 3.7’ PWHT, PGCK and FWHT need

B(N、Nk、W) + 2 & Ncmii additions and Ylk

power-p operations in order to cal-

culate the lower boiincling function.

In the FS-step, 2NNcnn^ additions and NNcai'P povver-p operations aro nw^ded by

PWHT, PGCK and FWHT.
3.3.4 New Termination Condition

As illustrated before, the termination condition in [1] has been used by PWHT and

PGCK for early termination of the rejection step, which corresponds to the Ccmdrps

at Step a. 3 in Table 3.2. Let the computation required for the FS-step be Cps and the

computation required for iteration + l in the H j ictiori step be C⑵丨).The idea Ixjliiiid

the strategy in [1] is that the rejection s&ji should bo terminated whcui it is more dIici(Mi(,

to directly calculate the actual distance of the remaining auididalos in the FS-stdj)

than to continue the compulation in the rojeclioii step, i.e. when < G^tJ^). Tlio

strategy i^ropos(id in [1] terminates the rejection step when the pcrceutag() of roniainiiip;

candidate windows checkod in iteration /c + 1, i.e. Per̂ can̂ \ is below a certain thmsliold

e. Hence, in the absence of a computational analysis, setting a threshold e is intuitively

a simplified version of the comparison Ci.,s < ĈJt二‘）. However, t,hc coniputalioiial

S 3.3.4. New Termination Condition • 43

analysis carried out in Section 3.3.3 allows us to.devise a novel and principled approach

to tlio oarly termination strategy.

The computation required in iteration /c -f 1 of tin? rcjoction stop is:

= { 例 仏 & +]’ 阶 ） - 风 乂 、 十 a d d , ‘
(3.17)

,N⑶ pcmer-p, N⑵” cmp}，

where “add” stands for additions, “power-p” stands for power-/; operations and "cmp"

stands for comparison operati^nis. If wo terminate the rejection step before onloring

iteration k + 1，Uio compulation required in tlie FS-Stej) is:

“ 二 { 2 IVN⑶ ” .(MiNNj：!；,”) pow(;r-p}. (3.18)

Tims, tlio first, termination condition, which is denoted a.s Conch、”、、is true when

> C r s , i o. when the computational complexity of iteration A:十]of the rejection

step is greater than the computational complexity of the forthcoming FS-stcp.

At iterations k and /r + 1 of the rejection stq), there arc mspcctivoly
N ^ . and

/

Ncun ” candidates undergoing the rejection scheme. On one hand, tlic kih iteration of

the rejection step eliminates Ncal — ̂ can ‘̂ candidates from tlio sot of candidates and

thus saves the computation required in FS-step for those N^an — Ncan ‘̂ candidates;

oil the other hand, iteration k of rejection step itself needs computation. The second

termination condition, which is denoted as CWc/'/'er•丨 2, is truo when the con ipu tat ion

required by the kth iteration in the rejection step is greater than the computation saved

by excluding N 总 — N ⑶ ” candidates from calculating their actual distances in the

F'S-slep.

As a simple example of Cond'jer)、when Nca^ = Ncan 二 n!^:�、—...，we have 110'

computation saved by the rejection step. Thus CondTar,'! is truo in this ctiae. In this

example, the rejection step should be termiiiatod because it (cannot efficiently rojoct

any candidates although it requires some amount of computation.

In summary, the-new termination strategy based on computational analysis consists

in terminating tlie rejection step if Condrer, 1 is true or C^ndrer,'! is true. The former is

true when the computation required for the iteration /c + 1 of the rejection step is greater

than the coriiputajLion required for the FS-step. The latter is true when the computation

required by iteration k of the rejection stop is greater than the computation it saves. In

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
44 ALGORITHMS

Dataset, Image

vsize

J Pattern

size

N

Scalel — 1 160 X 120 19200 16 X 16 25G

Scale2 - 1 320 X 240 ‘ 76800 16 X 16 256

Sr缺 2 - 2 320 X 240 76800 32 X 32 1024

640 X 480 307200 16 X 16 256

Scale:、- 2 640 X 480 307200 32 X 32 1024

SaileS - 3 640 X 480 307200 、64 X G4 4096

ScaleA — 1 1280 X 960 1228800 16 X 16 256

Srxile4 - 2 1280 X 960 1228800 32 X 32 1024

ScalcA — 3 1280 X 960 1228800 64 X 64 4096

ScalcA - 4 1280 X 960 1228800 128 X 128 16384

5ca/e5 — 1 2560 X 1920 4915200 16 X 16 256

Sailed — 2 2560 X 1920 4915200 32 X 32 1024

5m/fi5 — 3 2560 X 1920 4915200 64 X 64 4096

Scale.f) — 4 2560 X 1920 4915200 128 X 128 16384

Table 3.8; Datascts used in Lhc experiments.

the following experiments, this new terminat ion strategy is used for PGCK

unless specified otherwise. Wc will also compare the original slratogy in

proposed strategy in Section 3.5.8.

and FWriT

1] with tlic

3.4 Performance Evaluation

3.4.1 Dataset

111 order to evaluate the performance of the compared algorithms, 14 datasets containing

different sizes of patterns and images arc used. As shown in Table 3.8, the (lalai>ot.s arc

denoted as Scalen\ — n-z for 7ii = 1’ 2’3，4, 5,71.2 = 1,.. . ,4, where 7/1 corresponds to

image size and 112 corresponds to pattern size. For example, datii^ots Scalc2 — 1 and

Scale2 — 2 have the same image size 320 x 240 but different, pattern sizes.

The experiments include a total of 150 groyscale images chosen among three databases:

MIT [54], medical [55], and remote sensing [56]. The MIT database is mainly coricenifxl

with indoor, urban, and natural environments, plus some o})jcct categories such as cars

and fruits. The two other databases arc composed, respectively, of iiiediail (radio-

graphs) and remote sensing (Laiidsat satellite) images. The 150 images liavo heeii

subdivided into five groups of 30 images, eacli group being characteri/ed by a size of

images in S-cnlel 一 1, Saile2 一 I, Scaled - l,5m/e4 - l,5m/e5 - 1’ (i.e. 160 x 120,

320 X 240, 640 x 480, 1280 x 960, 2560 x 1920). For each image, 10 patterns were

§ 3.4.2. Evaluation Criterion ‘ 45

randomly solcctcd among those showing a standard deviation of pixel intensities higher

than a.threshold (i.e., 45) for each dataset. Datasets having the same image size share

the same images but have different patterns in both size and location. For example,

dalasets Scale2 — 1 and Sc(dc2 — 2 share the same 30 imagers having size 320 x 240 but

have different patterns in size and location. So oach dataset contains 300 image-pat tern

pairs. Since we have H datasets, there arc 4200 iiiiage-])attern pairs in all. This dataset

is originated from that in [31] arid ox tended in this chapter to include more sizes of

patterns.

3.4.2 Evaluation Criterion

111 the experiirieiits, we will examine the evaluated algorithms using both SSD and SAD

as Iho (lissiiriilarity iiietLSuro belwoeii pattern and candidate window. Given a patiL»iii

having N pixels, the SSD threshold, Ts'sd, ami SAD threshold, Tsa!)、are set as follows:

Tssd = 1.1 .SSD,nin + N,
. ‘ (3.19)

• • TsaD = 1.1 • SADrnin + N.

where SSDmin and SADmm aro respectively the SSD and SAD between the pattern

and the best matching window. If the SSD (SAD) between any candidate window in

the imago arid the pattern is below the threshold, the candidato window is regarded to
t

match the pattern.

Wc dcvolopod the code for IDA and FWHT since we are authors of these algorithms.

The code for Hel-Or and Hel-Or's PWHT [1] is from the authors' website [57], with

some small modifications introduced by us to deal with large pattern. The code for

PGCK [32] is boused on the code provided by Hel-Or and Hel-Or, which was previously

used for motion estimation in [2] and wa.s modified by us for pattern matching task.

Finally, we wrote the cocio for LRP according to the algorithm described in [30). All of

tlie algorithms are written in C, compiled with VC 6.0 and run on windows XP systems

as singlo-thread tasks. The parameters for PWHT use the default values in『)7]，the

parameters for IDA are the same tus in [31]. The parameter k for LRP is chosen to be

4，which is the same as in [30].

Since all the evaluated algorithms find the same matching windows as the FS,

the only concern is computational efficiency, which is aasessed here in terms of both

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
46 ALGORITHMS

Environment CPU Memory size

Envl Intel c6re 2 (6400) 2.13GHz 3G

Env2 Intel Pentium 4 2.8GHz IG

Env3 Intel Xeon 3GHz 2G

EnvA AMD Athlon 64 X.2 2.21GHz 3G

Table 3.9: Hardware environment used in the (^xpcnnicnts.

i

execution time and required number of operations. In particular, results are mca^siired

as speed-ups over the FS algorithm in terras of execut ion time and number of operations.

As an example, the speed-up of IDA over PS in exociitioii time or in number of operation

is measured as the execution time or number of operations required by FS divided by

that required by IDA. As listed in Table 3.9, wc have measured the execaitioii tiiiio on

3 Intel CPUs and 1 AMD CPU with different memory sizos. If not differently specified，

the reported speed-ups in execution time are averages of the speed-ups inctusiinKl in

each of the 4 eiivironmonts. As an example, the speed-up of IDA in oxocution tiino is

、
the average of the speed-ups of IDA over FS measured in llic 4 eiwironmeiits.

I

111 Section 3.3.2, two different implementations of the LRP algorithm were iritro

duced. LRP-s/d computes the transformation in a sliding in aimer on the entire image

while LRPcan computes the transformation for N怨 i candid ate windows at loop /c. Both

implementations were evaluated in the experiments. ‘

3.5 Experimental results

3.5.1 Experiment on Images Without Noise

In this expcrinioiit, wc evaluate algorithms on the datasots cioscribod in Tabic 3.8, which

correspond to different sizes of images and patterns.

The speed-ups in execution time yielded by the evaluated algorithms using SSD as

the dissimilarity measure are shown in Figure 3.2. In this experiment, the algorithms

can be ordered from fastest to slowest as follows: 1) PGCK, 2) FWHT, IDA, and

LRPcan, 3) LRP,,/d’ 4) PWHT, 5) FFT. PGCK is faster than FWHT because very few

(less than 4) basis vectors are computed in this experiment. The experiiucnlal results

in [33] also show that FWHT is slower than PGCK when the number of basis vectors

'used is less than 4. With tlie exception of dataset ScaleA - 4, whore FFT is faster than
«

PWHT, FFT is always slower than the other evaluated algorithms.

1-1 2-1 2-2 3-1 3-2 3—3 4-1 -2 4-3 4-4

200

2-1 2-2 3-1 3-2 3-3 4-1 4-2 4-3 4-4

F i gu re 3.2; Speed-ups in execution time for images without noise when SSD is used. X-axis

corresponds to ciatasets Scalel - \ ,Scale2 -】，...，Scalt4 — 4 in Table 3.8.

F igu re 3.3; Speed-ups in execution time for images without noise when SAD is used. X-axis

corresponds to daiasets Scalel — I, Seale2 — 1，…、Scaled — 4 in Table 3.8.

The speed-ups in execution time using SAD are shown in Figure 3.3. PGCK and

IDA are the fastest in this experiment, with IDA faster than PGCK in datasots Scalel -

1，Scale2 — 1，Scale'l — 2，Scale'i — 2 and ScalcA — 4. Order ing of the other algorithms

is similar to that attained using SSD (Figure 3.2).

3.5.2 Experiment on Images with Gaussian Noise

In this experiment, 4 different levels of iid zero mean Gaussian noise are added to

each image of the datasets described in Table 3.8. The 4 Gaussian noise levels having

variances 325, 650, 1300*and 2600 - for 8-bit.pixel value aro referred to as G{2),

G(3) and C(4) respectively. Figure 3.4 shows an image from the datascl in Table 3.8

and its distorted images with noise levels G(l) to (7(4), where the 640x480 distorted

images have PSNR 23.23, 20.4, 17.7 and 16.1 when compared with the original image.

The speed-ups in execution time using SSD for this experiment are shown in Figure

^Corresponding to 0.005, 0.01, 0.02 and 0.03 on normalized pixel intensities ranging within [0, 1).

> LRPsid
^ ― LRP

• PWHT
- P G C K

• FWHT
K FFT

§ 3.5.2. Experiment on Images with Gaussian Noise 47

500

o
 o

o
 o

o

5

1
-

0

00

00

00

s
d
n
丨
龙
9
d
s

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
48 ALGORITHMS

3.5. Each sub-figure in Figure 3.5 corresponds to a dataset in Table 3.8. In Figure 3.5,

the top row corresponds to the smallest image size and bottom row corrosponds to t,h<、

largest image size; the leftmost column corresponds to the smallest paMorii size and

the rightmost column corresponds to the largest pal tern size. This is similar for Figure

3.6 - Figure 3.13.

As shown in Figure 3.5，the speed-up of FFT over FS is indcpcMKlcnt of tlie noise level

while the speed-ups of the other fast algorithms decrease a»s the noise level increases

from G(l) to G ⑷ ’ so that FFT turns out to be in most cases the fastest method

when the noise level is very high, i.e. G ⑷ in Figure 3.5. At the lower noiso levoLs

LRP^/^i is in most cases the fastest algorithm, and quite close U) the fa^stcst in othor

cases. FWHT turns out factor than PGCK. This is because in this cxpcrinioiit more

than 5 basis vectors are required for rejecting mismatched candidate windows, wheio

FWHT is faster than PGCK in computing the transformation. PGCK is faster lhaii

PWHT in most cases because PGCK is more efficient than PWHT in computing the

transformation. FWHT is faster than LRP when noise is low and pattern size is small

especially when image size is large. When the number of required bfusis vectors is large,

LRP outperforms FWHT in computing the transformation, which is proved in Thoorcni

3.1. IDA preforms well when pattern-size is 16 x 16, i.e. Scale! — 1，Srule2~ 1，Scale'S —

1, ScaleA — 1, and has similar perfoniiaiice as PWHT in ot her raises.

“The speed-ups in number of operations using SSD are shown in Figure 3.G. It is

clear that the range of the execution time speed-ups in Figure 3.5 is reduced by 3 to

5 times compared with that of Figure 3.6, hence the speed-ups in execution time for

all algorithms but the FFT are significantly worse compared to the respective speed-

ups in number of operations. Numerical discrepancies between speed-ups in number of

operations and speed-ups in execution time are not surprising for a number of reasons,

which include computational analysis weighting equally different kinds of operations,

the level of optimization of algorithm implementations, the impact of memory access

(e.g. hit rate and miss penalties of cache memories). Nevertheless, the important point

here is that, disregarding the Y-axis difference, Figure 3.6 is similar to Figure 3.5, with

the ordering of the algorithms being similar in both Figures. In particular, LRFgid is

the fastest in most cases, followed by LRPcan, FWHT, PGCK, IDA and FFT.

§ 3.5.3. Experiment for Blurred Images 49

F igure 3.4; An image from the dataset and its distorted images. 1st row: the original iinfigc

and its images with Gaussian noise levels G{1) to G{4); 2nd row: images with blurring levels

n(l) to B(5); 3rd row: images with JPEG compression quality levels J (l) to J(5).

3.5.3 Experiment for Blurred Images

In this experiment, 5 different levels of Gaussian low pass filter are used for blurring each

image of the datasots described in Table 3.8. The 5 blurring levels, which arc rcfcrmi

to as B{1), B(2), B{3), B(4) and B(5), correspond to Gaussian low pass filter having

standard deviation a = 0.2,0.9,1.6,2.3 and 3. Figure 3.4 shows an image from the

dataset in Table 3.8 distorted with blurring levels B(l) to B(5), where the distorted

640x480 images have PSNR 27.79，27.18, 25.36, 24.14 and 23.49 respectively when

corn pared with the original image. In practice, blur is typically introduced by changes

of camera focus or by application of simple denoising techniques.

The speed-ups in execution time using SSD for this cxpcrimoiit, arc shown in Figure

3.7. FFT, FWHT and LRP^id are the three fastest algorithms. FFT is the faistost for

image size 160 x 120 with blurring levels B(2) to B(5) and for image sizes 320 x 240

and 640 x 480 with blurring levels B(4) and B(5), FWHT is the fastest, for datasots

Scale4 — 1 and Scaleb — 2 with blurring levels 13(1) to 13(2) and for dataset Scaled - 1

with blurring levels 3(1) to B{3), LRP.s/d is the fastest in other cases. FWHT is faster

than PGCK; PGCK is faster than PWHT. IDA is faster than PGCK for pattern size

16 X 16 and has similar speed-up as PGCK in other eases.

G(2)
— i n r . . — ^

0<3) 0(4)

I ju ••w r

：：：：：̂-̂ I “ I T
m J qT

Q(3> 0(4) 0(1) Q<2) G(3) 0(4) G(1) G(?) GO)

1501

, 』 卜 基 』 羞 ； ； ^ ： ： ： ： ^ ^
G(M G(2) Q(3) Q(4) 0(1) 0(2) Q{3) G(4) 0(1) G(Z) Q<3) G(4) 0(1) G

V 、•《

G(2) G<3| G ⑷

F igure 3.5; Speed-ups in execution time for images with GHUSsian noise when SSD is iisod.

The speed-ups in number of operatioiiH are shown in Figure 3.8. It, can be seen that,

the orcicr of algorithm from the fastest to the slowest in number of operations is similar

to the order in execution time. The main difference is that the algoril lims, except FFT,

have greater speed-up in number of operations than speed-up in execution time.

3.5.4 Experiment for JPEG Compressed Images

In this experiment, 5 different JPEG compression quality levels are used for each image

of the datasctsi described in Table 3.8. The JPEG compression quality levels, whidi

are referred to as .7(1), .7(2), .7(3), J(4) and .7(5), correspond to quality measure

QJPG = 90, 70, 50, 30 and 10 respectively , where higher QJPC nieaiis higher quality.

Figure 3.4 shows an image from tlie dataset in Tabic 3.8 distorted with compression

quality J (l) to J(5). QJPC = 90, 70,50, 30 and 10 correspond to the com pressed images

having PSNR 39.88, 34.93, 33.10, 31.52 and 28.22 respectively when compared with the

15
IDA
PWHT

FWHr
F n

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
50 ALGORITHMS

/

H

a<

§ 3.5.4. Experiment for JPEG Compressed Images 51

S(1) G(2) GO) G<4)

-T> LRP^

+ LOP …
，一——IDA

PQCK
0 FWH7
« FFT

、、
_ V � � � - � i

G(l) 0<P) 0(3) 0(4)

200

a JS

500, > 、、
(1) Q(2> G(3) G(4) j (l) G(2)

4：：
G(3)

、、永.

5(1) Q(2) Q(3) Q(4) G(2)

f

、、；

$
 0(3) Q(4)

Figure 3.6: Speed-ups in number of operations for linages with Gaussian noise when SSD is

used.

original 640x480 image in Figure 3.4.

The speed-ups in execution time using SSD are shown in Figure The perfor-

mance of FFT algorithm is independent of compression quality while the speed-up of

other fast algorithms decreases as the image quality decreases from J (l) to ,7(5). We

can see that almost all the algorithms cmtperfomi the KFT algorithm with an exception

that PWHT is outperformed by FFT in dataaots Scaled — 4 and Scaleb - 4. PGCK

and FWHT are the fastest or close to the fastest in most cases for pattern size IG x 16

and 32 x 32. L R P隱 and FWI IT are the fastest in most cases for pattern size 64 x 64

and 128 x 128.

The speed-ups in number of operations using SSD are shown in Figure 3.10. It can

be seen the order of algorithm from the fastest to the slowest in number of operations is

similar to the order in execution time. The main difference is that LRPcan in Figure 3.10

obviously requires fewer operations than other algorithms and the algorithms except

ScaJe4-1

8(t) B<2) B(3) H(4) »('&)
Scalo&-l

I ^ … . 9 « ' fi

8(1) ^ r "ws)

LHP此

I np如
• IDA
PWHT

hWHI
FFT

B(2) B(3) B(4) B(5)

Sc«lo3

%

100

0

i

8 (n “ f l (2) b J ^ " ! ^) " 0(5)

‘ -S^""., 总
i (1 ~ B(2) B(3) UH) B(b)

F igure 3.7; Speed-ups in execution time for blurred images when SSD is used.

FFT have greater speed-up in number of operations than speed-up in execution time.

3.5.5 Analysis of the Experimental Results when SSD is Used

The experimental results in Figure 3.2 - Figure 3.10 show some roniinoii properties of

the evaluated FS-equivalont algorithms. 1) With pattern size fixed, the speed-ups over

FS achieved by the fast algorithms increase by loss tliari 2 as image size J increases by 4，

e.g. from Saile2 — 1 to Scxilc'S—1 and from ScxbleS-1 to ScaleA- 1. 2) With image size

fixed, the speed-ups increase by about 2 to 4 a.s pattern size N increases by 4，e.g. from

Scale2 — 1 to Scale2 — 2. 3) the speod-up for FFT is independent, of distortions such as

Gaussian noise, blur and JPEG conipressioii. 4) The speed-up for IDA, PWHT, PGCK,

FWHT arid LRP decrcsusea as the distortion level increases, e.g. from G(\) to G(4),

because the difficulty in efficiently rejecting mismatching windows for those algorithms

increases. 5) Except FFT, tiio oWiering of the evaluated algorithms from the fastest

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
52 ALGORITHMS

K.

B(3>

{j 3.5.5. Analysis of the Experimental Results when SSD is Used 53

20̂

B(') “ 0 (3) ~ i i (4) B (5)

Scalo3-?
60:.

4、；、.

8(iV U(3)0(4)B{5)

'""J -.1、、、

50(心、卞-^‘..i
二 : t r r J b z f e ^
B(l) n(2) 8(3) m4) U(5)

100

i；.

300

)00i> Xz.、-
8(1) B(2) B(3) B<4) Oib)

^ 〜 - ‘ “

、灰- 3

1500小
Sca)o4-

3(1) B(2) B(3) B<4) n(b) 5 (1) B(?) B<3> B(4) B(5)

— • i
>(!> 0(?) B(3) B(4) B(S> 6 (t) U(2) B(3) B ⑷ B(b) (1) B(2) B(3) B(4) B(5) 8(1) B(5 11(2 丨 IJ(3) B(4) H(5)

F igure 3.8; Speed-ups in number of operations tor blurred images whan SSD is used.

to the slowest in number of operations is similar to that in execution time. 6) The

spoocl-up in execution time is close to the speed-up in number of operations for FFT

while the spmi-iip in oxccution time is nmcli smaller than the speed-up in number of

operations for other algorithms, with the roâ ôn stated in the last paragraph of Section

3.5.2. 7) Despite Uie Y-axis difference, the comparative porfoniiarices in iiiiiiibor of

operation and in execution time for PGCK, FWHT, IDA and LRP arc similar for the

same disturbance factor. The irnjjlenioiitations of PGCK, FWIIT, IDA and LRP liavo

similar programming styles although they can be further optimized.

The fastest algorithm is different under different conditions. First, we consider using

wSpeed-up in oxccution t’iim' as the criteria. PGCK is the fastest for clataset without

noiso. FWHT is the fastest when pattern is small, image sizo is large and noise level

is low, FFT is tho fastest when noise is high, LRP ŝ/rf is the tkstcst in other cases

for datascts with Gaussian noise and blur, PGCK and FWHT are tlie fastest when

—

J(3) J(4) J(5)

I B P c t
IDA

U PWHT
« POCK
0 fWHT
•K FFT

I
f
卿

、
二

-

i

？
T

M

-」
n

I —

3 (l ~ J(3) JH) J(5) J(l) J(Z) J<3) J(4) J(!>)

3(llJWJWJ(H)

2001

？^Si ，、

、友‘、

J(l) .1(2) Jt3) j(' l) J(S)
Scalo4 3

noo nooi

+

tool

3(1) -K^^ J(3)

IUOU r

f L " ’>--- ‘

J> i B_ ZJSTZl： ‘•ft
J ⑷ J{1) J(?) .I(3» J ⑷ j(!))

500'

V w ： > ： B ' • n , . . . y

3 (1) m J (3) J(4) J(5) 3(1)

^ -fr

B _-二 H , B ’ __if
"3(2) JoT J(4) .!(&>

Figure 3.9; Speed-ups in cxccution time for JPEG coniprossod inmgv.s when SSD is used.

pattern size is small or noise level is small while 1111\.肌 is the fcistost in other causes

for datasets with JPEG compression. Sccond, we consider using speed-up in iminbor

of operations as the criteria. LKPgid requires the least riunihor of operations in most,

cases for datascts with Gaussian noise and blur. LRP,;„„ requires tho least nuriiher of

operations for datasets with JPEG compression.

3.5.6 Analysis of the Experimental Results for Transform Domain Pattern Match-

ing Algorithms

The higher is the distortion level, the more are basis vcctors roquirod for ofikiriitly

rejecting inisinatching windows, and the more is tho coinput atioii required l)y Iraiisforiii
«

domain pattern matching algorithms in computing tiie transforrnalion. Thus the speed-

up for PWHT, PGCK, PWHT and LRP decreases 朋 the distortion level increases.

The dataset Scalel — 1 with Gaussian noise in Figure 3.5 is taken as an example for

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
54 ALGORITHMS

(2)

'I

1(4)

/
L
r
L

o
 V

 ̂

o

5

§ 3.5.6. Analysis of the Experimental Results for Transform Domain Pattern Matching Algorithms 55

Qt a__
J(1) J(H) J(3) j(4) j(b)

M?) J(3) J(4) J(5)

ScaJftU \

n C ^ - u ' - -Jt . • • , J L - , - • . . i t , ,

J(l> J(2) J(3) Jt4>
v

J(5)

100

0* J ") J(2) J ⑶ J ⑷ J{5)

Sculo& 1
100

bO t … r -
•̂： ：̂ -

3(1 厂

3001

100
—

1(1) M?) J(3) J ⑷ J ⑶

300

1

r

j
.

J{4) J(5)

— 一 J t - - . . •嘸.Jt•一 —-異 Q ^ 蓽 •廑 I —

J(1) J(2) J(3) J(4) J(i,) J(l) J(2) J(3) J(4)

；
o
/

.

^
—

」
•

ScMiua

J(b)

(1) J(?) J(3) J(4) J(5>

ScaloS-?

？00*

100

- 水

J (" J ⑵ J(3) J(<t) J(!>) J(1) J(2) J(3) J(<») J(5) J(l) J(2) J(3) J(4) J(b)

Figure 3.10; Speed- iips in number of operations for JPEG coriipresscd iirmgcs when SSI) is

used.

illustration. When the distortion levd increases from G(l) to G(4), the average number

of ba«is vectors required by PGCK increases from about: 7 to about 23 and the execution

time spoecl-up of PGCK over FS (locroa«os from about; 9 to about 2.5.

PCCK is tlic fastest for datascts without noiso in Figure 3.2 and for (iatruwts having

low noise and small pattern size in Figure 3.9 because very few (less than 4) basis voctors

arc required for efliciently rejecting mismatching windows in t hese cases. In other caaes,

LRP and FWI iT aro faster than PGCK in computing Uaiisibnimtioii. Thus LRP and

FWIIT are faster than PGCK for most eases in Figure 3.5- Figure 3.10. As illustrated

ill Section 3.2.3, the more arc basis voctors required for rejection, tlie more efficient

is LRP compared with PWIIT, PGCK and FWHT in computing the trMiisformalion.

Thus LRP performs incroasingiy hotter compared with PWHT, PGCK and FWHT as

Uic noise bo(X)iiies larger from G'(l) to C(4) in Figure 3.5 and 3.6, from /：?(]) to /i(5)

in Figure 3.7 and 3.8 or from J (l) to J(5) iu Figure 3.9 and 3.10； •

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
56 ALGORITHMS

LllPg/rf i)(汗forms better than L R P議 fus the noise becomes larger from (7(1) to

G{4) ill Figure 3.5 and 3.6, from /?(!) to /?(「)) in Figure 3.7 and or from ./(I)

to .7(5) ill Fijgurc 3.(J and 3.10. At loop k of the rojcctioii stop, LRP、、/,/ ami LRPra,,

rdquire 6vv and Mî additions respectively for computing IraiisforDiatioii. If

‘ (k) . . .
t,he noi/jc increases, then Ncau at loop k incix^ascs bocauso the (lifticnilty of rej(K'tioii

step in rejecting candidate windows increases.

As n!^、 increases, Uio J/z广

additions required by LRPc„„ increase while tlie additions requin^d by LRP.s/Yy

kcĤ ps unclumged. Iloiicc, LRP,s/rf is inrmawingly eflicioiit Llian LHP細 in coinputing

the trarisfonnation and in compiling tlir pattern matching. Assume h — 4, k — 2.

arul a IG X IG j)atlern i.s s(wdK，d in a.256 x 256 imago, we have; N — 250, J — 65536

and Â cun = W = (256 - IG + 1)- 二 58081. Assume n U I = 10 in the first oxanipl(\

then LRPsid requires = 174243 additions and LRP^’ , requires 3/?(人• '̂ NrjSn =

3 X 4(2-1) X 10 = 1.20 addiUons in computing transformation at, loop k 二 2. Tlius

LRPr/iri is more efficient
than UU^sld

in computing transformation for this example. In

this situation, the rejection stop/is so cfFicieiit that‘ Nrln — Ncan —「)8071 inisniatchocl

candidates arc eliminated al. the first loop of k. Situations similar t,o this oxainplo

usually happen when noise level is small. In the second cxaiuple, assume NcH iiK.i.(、fLs(、s
t

from 10 in tho first example lo 1 \ W/\2 in Miis example, tlioii LRP.,/,/ icquires 3VV’

‘ additions and LRl)ca’i requires 3 x

X 1 l i y / 1 2 == ll lV" additions for comput ing

transformation in loop k = 2. Thus LRP^ui is more "cflicicnt than LR.I\;a„ in computing

transforniatioii for this example. In this situation, the rejection stop is so iiietficiont that
only Nr]in - Ncan = lV/12 cancHdatcs are eliminated "at the first loop of k. Situations

/ -

similar to Ibis example usually happen when larger noises are added.

Comparofl with other transform doiiuiiii pattorn matching algoritliins, LRI\.„„ per-

forms relatively worse in cxocution time ill an in nviiiibor of operation. Tlio inaiii r(，ason

for this phenomenon is that LRPctm juiiipily coiiipuies the traiisfonnatioii foi; tlio rc-.

. • i
inaiiiing candidates, which results in higher miss pciiallicvs of cache memories than tlie
other approaches, e.g. LRP.,/山 tliat coiiiputo the traiisfonnatioir in sliding window
manner.

60

3(1) Q(2) Q(3)

Scalo4-2

5(1) 、 Ĝ) ""QOV

！S.
•A

LRP
can

IDA
PWHT
PQCK
FWHT

Scalo2-2

100

Scalo3-

Q (” G ⑵ Q(3) Q(4

200

100

5(1) G(2) G(3) 0(4) G(1) Q(2) G(3) G(4)

Scaioi

1 (1) 0(2) G(3) G ⑷

F igure 3.11; Spvcni-ups in cxocution time for images with Gaussian noise wiwii SAD is used.

\ »

The experimental results for low pass filter blurrwi images in Figure 3.12 show that

the algorithms honi the fa»stost to the slowest for pattern size 16 x 16 can be ordered tus:

1) IDA, 2) LRP,/d, 3) LRPcan, 4) PGCK and FWHT, 5) PWHJ . The order for other
pattern sizes is: 1) LRP.,/,/ or LRP can, 2) IDA, 3) PWHT, PGCK and FWHT, where

\ »

LHP<;an is t.lie fiustcst for datascts Scale'S - 3, ScalcA - 2, ScalcA -- 3 and ScalcA — 4

with noise levels 7i(l) and B{2) while LRl̂ ^/r/ Ls the fastest for other caaes.

§ 3.5.7. Experimental Results when SAD is Used ' 57

3.5.7 Experimental Results when SAD is Used

For the cxi)crirnenis in this sect-ion, spocd-iips in oxcciition time are evaluated using

SAD as the dissimilarity measure. Tlie perturbations correspond to tlioso iiitrochiced

in Section 3.5.2 - Section 3.5.1. Since t,ho FFT approach cannot be.applied when SAD

is usc(J, it does not appear in the figures. ‘

Figure 3.11 shows the results for images with Gaussian noise. IDA is tho fastest

for pattern si'/o 16 x 16 while LRP(、an and LRP^s/(i arc the fastest and liavo similar

perforinanco in other rases.

(4：

-

. - o — L R P 卿

-»• - - . IDA
n PWHT
• PGCK

C FWHT

F igure 3.12: Speed-ups in rxof;ij//ofi time for hJunvd inmgos when SAD is used.

The cxporimental results for JPEG (:omi)r(\ss(、d iinagefc； in Figure 3.12 show that

IDA is the faiitost, for pattern size 16 x 16. IDA is also the fastest, for quality levels .7(1)
«

and ,7(2) in all datasets except that it, is outporforiiied by LRPf.„„ for .7(2) in Scalr'S - 3

and ScxileA： — 4. Otherwise, when pattern size is larger than 16 x 16 aiul m)is(、level is

high, LRPcan is tho fastest in most, cases. ,

111 sumiliary, IDA is the fastest in execution time when pattern size is 16 x 10

while LRP.s/ri is the faatcst in larger pattern sizes for dataset .with Gaussian noise and

Gaussian low pass filter. LRPcan is tlie fastest for large pattern size and high noise level
r

while IDA is the fastest in otlier cases for JPEG comprosscd iinages. The comparative

perforirianco of'LRPs/d, LRPcan and IDA using SAD is siimlar to that using SSD for

the' three noise types. PWIIT, PGCK JUKI FWIIT arc iiiefficierit in the experiments

when SAD is used and performs better whcji SSD is used.

N

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
58 ALGORITHMS

、
0 • i —
J(1) J(2) J(3) J(4) J(5)

ScaloP-
40

Scalo3-

LRP ‘

【》 PWHT
- P Q C K
C, FWHT

Z
H
?

、

s

t

 A
-

叩

M

Q. 二
J(») J(2) J(3) J(4) J(5)

Scalo3-2
4 0

F igu re 3.13: Speed-ups in cxecutJon time for JPEG coniprcssvd images whvii SAD is used.

3.5.8 Termination Strategy Comparison

In this oxpcriinent, we compare the proposed tonnination stiato^gy with the stratx»gy

in [1]. 1)GCK and FWIIT arv. used as the testing algorithins. SSD is used the

clissiinilarity inetLSure. The images with JPEG compression quality levels J(1) to .7(5)

aa introduced in Section 3.5.4 for the datasets in Table 3.8 arc used as the testing

datasets. The spcod-ups are average of the speed-ups in the environments introduced

in Table 3.9. The experimental results in Figure 3.14 show that PGCK/FWHT using

tlie proposed termination strategy is faster than PGCK/FWHT using the strategy in |1]

when.pattern size is larger than 16 x 16.

3.6 Discussioris
• ‘ 、 , ‘ •

3.6.1 Summary of the evaluation results

First, wo coiisidcr execution tirno as the criterion when SSD is used as the dissimilarity

moiusurc. PGCK is the fastest for datasot without noise. FWHT is the fastest when

、

§ 3.5.8. Termination Strategy Comparison 59

00 [
I

丨o4 ^ ^ ‘‘ ‘-•

Jd) J(2) J(3) J(4) J(5)

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
60 ALGORITHMS

5(1)'

15

」
o
l

J<2) J(3) J ⑷

Scale?-’

J(!>)

J<2) J(3) J(*) J<S)

0U_

ts,.

<0 ,

3Q.

20

I'QCK
KWHT
PCir�j
F-win̂

J(t) J(2) .1(3) j (4 | J(5)

ISO

々

J(?) J(3) J(<») J(5) J(l) J(?) J(3) .1(4) J(5) J(1) J(?) J[.1) .1(4) J(5)

？no

100

J(1) J(2 丨 J<3> J(4) J(5) J(1) J(2) J(3) J(4) J(5) J(l) J(2) JO) J(4) J(b) .1(1) J(2) J(3) J ⑷ .i(b)

F igu re 3.14: Comparison of termination strategies for JPEG com pressed images using SSD.

PGCK and FWHT: results using the proposed strategy; PGCJK/M_<•)，. and FWHT//ei-Or：

results using Hel-Or and IJeJ-Or's strategy hi [Ij.

pattern is small, image size is large and noise level is low, FFT is the fastest when

noise is high and LRPa/d the fastest, in other cases for dat,a»s(is with Gaussian noise

and blur. PGCK and FWHT arv the fa»stost when pattern si/o is small or noise level is

small while L R P 咖 is the fastest in other cases for datasots with JPEG coinpressioii.

Second, we consider execution time as the criterion when SAD is used as the dis-

similarity measure. IDA is the fastest in execution time when p aUm i size is 16 x 16

•while LRPs/fi is the fastest in larger pattern sizes for dataset with Gaussian noise and
* V

Gaussian low pass filter. LllPoan、is the fastest for largo：pattern size and high noise

level while IDA is the fjusiesi in other axscs for JPEG compressed iniagos.

Tabic 3.10 suniiiiarizes the aforenientioiied results.

Finally, we consider computational complexity based on number of Dperations cus

the criterion. The tests performed with SSD reported that LRP.,/rf requires the smallest

number of operations for dataset distorted by Gaussian noise and blur, while LRPcan

§3,6.2. Miscellaneous properties of the evaluated algorithms 61

No Disturbance Gaussian Noise Blur JPEG compression

SSD PGCK LRP / FWHT / FFT LRP / FWHT / FFT LRP / PGCK / FWHT

SAD PGCK / IDA LRP / IDA • LRP / IDA LRP / 丨DA

Table 3.10: Best overall algorithms as for measured cxccutJon times fur different disturhnnco

factors and matching measures.

requires the smallest number of operations for dataset with JPEG compression.

3.6.2 Miscellaneous properties of the evaluated algorithms

Although this chapter mainly focuses on the coniputatioiial efiiciency of tlie compared

algorithms, wc list the miscellaneous properties of these algorithins so thai suitable

choicc of algorithm can be made for specific applications:

1. PWHT，PGCK arid FWHT can help deal with illumination cfiect wliile FS, IDA,

FFT and LRP cannot. This property of PWHT is used in wiclo btuselino imago

matching [15].

2. LRP, PWHT, PGCK and FWHT can help deal with multi-scale paUern matching

when tiio size of candidate window are the integer inultiplos of the size of the

pattern or vise ver§a while FS, IDA and FFT cannot,

t

3. Sometimes, the pattern to be matched may not bo roctaiigular, the method pro-

posed by Ben-Yehuda et at. in [35] helps PWHT, PGCK and FWHT to deal with

this problem by segmenting the pattern into multiple dyadic components. The

. irregularity of pattern will have no irifiuence on FS, will liave small influence on

- IDA and will have much influence on algorithms FFT, LRP, PWHT, PGCK and

FWHT that require input data size to be a ‘ for a = 1,2,...，/)= 1 , 2 , —

3.7 Summary

In this chapter, we have presented execution time evaluation and computational com-

plexity analysis of recent FS-equivaJciit algorithms. The algorithms have been compared

* t

considering different sizes of images and patterns in presence of Gaussian noise, imago

blur and JPEG compression. Our experimental results show clearly that the fastest

algorithm is different under different conditions. Nonetheless, experimental evidence

suggests also that, overall, LRP may be considered the best performing algorithm, for

• CHAP. 3. PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING
62 ALGORITHMS

it turns out to be the fastest in most cfuses. This nicely agrees with t he theoretical

analysis developed in Theorem 3.1, which proves why LRP is fast'er than other ro-

ccnt approaches that use WHT for Iransforni domain pattern inatcliiiig in most cases.

Throughout, this chapter, we have disciissod the motivations underpinning the iclalivc

merits and limits of the considered algoriUinis iiii(ier the different working conditions,

so as to possibly inspire the denvelopment of new methods in (,ho ac.livc rcsoarcli field

of fast full search equivalent pattern matching. Inspired l)y this analysis, wc proposocl

new algorithms in Chaper 4 and Chapter 5.

3.8 i Appendix A: Proof of Theorem 3.1

Theorem 3.1 When the w = 2" basis vectors in V^;,工）are the first seqiK îicy-ordored

WHT basis vectors, we have the LRP trans form matrix:

^ u w ^ (3.20)

such that: 1) the subspace spanned by the u basis vectors in 二）is equal to the

subspace spanned by the u basis vectors in ；̂ 2) for any length-.V input vector

X，if the basis vectors in y^^jip^ and are normalized to iiave L-z iioriii equal to

]，then = II^L/j/^^^lli' 3) the transformation requires at least

3w/2 additions per pixel while the transformation V(,》y)x requires 3 additions per

pixel when computed on sliding windows.

Proof: The following equation for sequoncy ordered WHT is proved in [33):

where f (h, a, i)=
b, i is an even number,

- 1 — i is an odd number.

(3.21)

When a = u,i = 0 in (3.21), wo have:

m (风 = iii()v，《.O f/,) = ^(u.6)⑧ j^(‘�7“’o) (3.22)

§ 3.8. Appendix A: Proof of Theorem 3.1 63

Since ri^Wu’。）=lix(/v/u), we have the follows from (：>.22):

‘ = M ⑷ 效 二 （ M ⑷ ⑧

(3.23)

Comparing WHT matrix in (3.23) and LllP matrix in (3.20), we have:

V WIIT — V IJiF
(3.24)

According to (3.24), the orthogonal baisis vectors in V(“；二.）can be represented by

orthogonal basis vectors in 广）and vise versa, so the subspace spanned by the u

basis vecotrs in vj》工）is equal to the subspace spaimecl by the u basis vectors in

v('uxyv)
、LHP •

We can nonimlize the orthogonal basis vectors in V(广：广）and have orthonormal

(uxN)
ba.sis vectors in ~~(V^n)~. Wo can normalize the orthogonal basis vectors in V}、""’

W^LHP丨丨2
Y (u x / V)

and have orthonormal ba îis vectors in T ^ ^ “ • The orthonormal basis vectors in
丨IV(二)丨丨2

y(uxN) y (u x ^)
~ a n d the orthonormal basis vectors in ff^)~ arc spanning the same sub-
W^WHT 1丨2 W L̂RP 丨丨'2
space, so we have the follows for any input vector x:

II V 二 = I I 、 严 x | | : i (3.25)

where = ^ and | | = N. Thus when orthogonal basis vectors are

normalized to bo orthonormal, the energy extracted from x using the basis vectors in

V冗广）is the same as that using the basis vectors in vf̂ jjyy .̂̂ .

Consider the computational complexity, al least 3u/2 additions per pixel are re-

quired for the transformation V [^ ⑶ x using the FWIIT algorithm in |33]; the trans-

formation V(广厂工)x is actually the sum of pixel values in rectangles on sliding windows

which can be computed by 3 additions per pixel using tho integral image method [48

a

Chapter 4

The Kronecker-Hadamard Transform for Fast
Pattern Matching

4.1 Introduction

The Gray-Code Kernels (GCK) family which has Walsh Iladaiiiarc] Transform (WHT)

on sliding windows as a mcriiber is a family of kernels t hat can perform image analyyis

efficiently using a fast algorithm such as the GCK ？tlgorithin [32]. The GCK has been

successfully used for pattern matching. In this chapter, we develop a now family of

transforms cailed Kronecker-Hadamarcl Transform (KHT) of which the GCK and WHT

arc special cases. A fast KHT algorithm is also developed for KHT, which roquiros 4/3

additions per datum per basis vector independent of transform sizo and diinorisioii. All

KHT, like GCK and WHT, can be computed efficiently using the fast KHT algorithm.

The fast KHT algorithm assumes that one projection value on all window positions

have been computed by otiier approaches. This assumption is the same as that of

the GCK algorithm. Limited by WHT or GCK, fast algorithms such £us the GCK

algorithm, our previous algorithm in [33] and the KHT algorithm require more than

one addition to compute one basis vector. We find thai a subset of KIIT, which will

be called Segmented KHT (ScgKHT), can be computed using a fast algorithm that is

more efficient than the fast KHT algorithm. By segmenting input data into L^ parts,

the fast SegKHT algorithm requires 4/(3L.s) addition(s) per datum per basis vector.

For example, when Lg is 8，the SegKHT requires only 1/6 addition per datum per basis

vector. SegKHT is a subset of KHT that cannot be represented by GCK. The KIIT and

SegKHT because of their fast algorithms can be applied in real time applications such

as pattern matching, object detection, feature extraction, texture analysis/synthesis.

The rest of the chapter is organized as follows. Section 4.2 introduces KHT. Section

4.3 illustrates the fast KHT algorithm. Scction 4.4 introduces tiie SegKHT and its fast

• , 64

%

§ 4.2. The Kronecker-Hadamard Transform 65

algorithm. Section 4,5 analyzes the advantage of KMT over WlIT and GCK using two

examples. Section 4.6 gives the experimental results. Finally, Soctioii 4.7 presents the

summary.

4.2 The Kronecker-Hadamard Transform

4.2.1 The WHT

ID order-7V]VI WHT transforms TVM iiurnbers into N从 projection values. Lot M(〜）

be an ordcr-A^M WHT matrix and:

M (�M) 二 ifi(AWM), • . . ĵ CNM.A'M-I)

_ I V I (〜 / ‘ 々
72 (4.1)

where M⑴=1，M (N m) is an. Nm x Nm matrix, for im 二 0’ . . . ’ TVm — 1

is the ZMth WHT basis vector having length TVm. i f i (� ’i s the iMth row of

in (4.1). When Nm = 8, Fig. 4.1 shows the order-8 WHT in dyadic order and

soquency order. The dyadic order and the sequency order are diffcront methods for

ordering WHT basis vectors [58]. For example, the rft(�m,2) for dyadic-ordered WHT

is the for seciuoncy-orclcred WHT. For seqiiency-ordered WHT, tho extracted

spatial fn?quency increases as the index ZM of basis vector 击（~M“M) inereiiscs. The

relationship between dyadic-ordered and sequency-ordered WHT is detailed in |52j. For

ease of explanation, dyadic-ordercd WHT will be used in the followings of this chapter

if not specified.

WHT has long been used for image representation under numerous applications.

More discussions on applying WHT for pattern matching are available in [Ij 51; 59 .

F igure 4.1: Order-8 WHT basis vectors in sequency, order and dyadic order. White represents

the value i-1 and grey represents the value —1. Normalization fnctor of basis vectors is skipped.

/

66 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

4.2.2 Definition of I D KHT

The Kronocker-H^idamard Transform (KITT) is best explained using Kroiiockor product

which is denoted an 0 . If A is a L̂ i x Qj matrix (a’…„」and B is a U.i x Q2 matrix

«,m2)，then A ③ B is a U、U2 x Q1Q2 rnatrix as follows:

A 0 B :

tto.oB

ai.oB

"0,1 B

(Wx - i ,oB a/；! B

r/i^g, _ iB

" ‘" i-i ’Qi - i B

•2)

Kroneckor product has been successfully used for designing algoritliins sucli as Strasson's

matrix multiplication [GO] and fast DCT algorithms ((il). Mor(3 infonnal.ioii on Kio-

neckcr product can be found in [G2].

•Let matrices Si e ami Sr € R'《x〃 be:

S , = 01 01

Sf —总）5 • • • 5 愁，
厂

Define the ID order-TV KHT matrix of S/, WHT matrix M (�a n d S, a.s:
‘ 科

二 S/(g)M(〜）

where N = LNmR、

(4.4)

(4.5)

subscript denotes the left matrix, > denotes the right matrix and V(乂0 for i =

0，...,JV - 1 denotes the ith KHT basis vector given by gf')，m^^M-'M) and 4…a.s

follows: •

= ^U)⑧ ift(NM.iM) g(ir (4.6)

If matrices A i , A2 and A3 have sizes Ui x Qi, U2 x Q2 and Un x Q：^ rospoc'tivcly,

then A i (2> A2 0 A3 is aii U\U2Uô x QiQzQz matrix. S/, IV[(八m) and S^ have sizes

L X L, Nm X Nm and R x R respectively, so the KHT matrix V(八）is an N x N matrix,

where N == LNmR. For example, let S/ =
1 2

3 4
M (� ） =

7^2
and Sr =

S 4.2.2. Definition of 1D KHT 67

Hence,

V('” = S/(8)M ⑵ 卵，

1 1 2 2 >(4,0)7-

1 1 - 1 2 - 2

N/2 3 3 4 4

3 - 3 4 - 4 州) 了 .

(4.7)

Consider J input olomcnts Xj for j “ 0,

lapping windows of size N (J > N). Lc?t

0’ 1，…’ J — /V be:

1 , . . . , J — i, which are divided into ovor

the jih Iciigtli-ZV input window for j -

；(Nj) _ .
^w 一 丄” N’ (4.8)

For ID pattern m a t c h i n g ，力 are sliding ('ari(/i(lat,o windows which will bo compared
• . I

with the givoii pattern x|�）.Let y{N,i,j) for i = 0 ,1 , . . . , N - 1; j = ()’ 1’ •..，J — TV

b() the iih KHT projocUon valuo for the j th window and

(4.9)

In other words, y{N,i,j) is the projection of the jt l i input, window x[！defined in

(4.8) onto the ith KHT basis vector defined in (4.G). Let 严j、he the projection

value vector containing all order-N KHT projection values at Uic ji\\ window and

y'(^j) = v(A^)X'WJ)

y(NA)j)

y(NAj)

v(^.o)'"

^(N.yv-i)'

(4.10)

\

68 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

For example, the projection value vector for ilu! V(〜）in (4.7) is:

1 1 2 2 •V】

I 1 - 1 2 - 2
丄.“ 1

:V(4’2,力 72 ：厂 3 4 4 丄,卜2

"(4’ 3，:/) 3 一3 4 - 4

(' 1 . 1 1)

4.2.3 Properties of KHT

»

Denote the NxN identity matrix by lyv. The following property shows how to construct,

the N orthonornial basis vectors in tlio NxN KHT matrix for the traiisforiii domain

pattern matching introduced in Scction 1.2,4.

Property 4.1 For the KHT iti^rix V(") = S / ^ ⑧ s , (idim、(l in (‘l.,l)’ if both

Si and Sr arc orthogonal, i.e. S/S/ and Ŝ -S/ 二 1/“ then llie KHT matrix \/、n、

is orthogonal.

Proof: The following prop(;rti(3S'^f Kroriockcr product arc us(、d for this proof:

(A(^B)(C!8)D) = (A C) 0 (B D) ,

(A 0 n f = A".⑧ B'厂.

(4.12)

(4.13)

If S/S/ = I/, and S^S/ = I " , Ui(m wc have

=(Sijs> M (�M) 0 s,)(S/ 0 M("M) (g) Sr)丁

=(St M("M) ^ s,)(S'/' 0 s；̂')

, * = (SiSj) (g) (M(�m)M("M)'',) ^ ‘

‘ = J - L ^ I n m = I / v ,

Hence M例、
like order-N WlIT, is orthogonal and contains N orlhonoriiial baisiis vov-

tors.
— t *

% , • �
« ^ r

The ID GCK proposed in [32] can be represented as follows:

' 、 : ’ ’•:' ‘ : 圾 Sr ; (4.14)

S 4.2.4. Definition of o-index and Being -related GO

Figure 4.2: llolHtionship among WHT, GCK, gf^nomlized CCK, ScgKHT mul KHT. ScgKHT,

which will hv introduced in Soclion J. J, is a subset, uf KHT tlmt ctiiiuot. be represented by CC/\

or gciicrHlizcd GCK.

wlioro I V I ^ ^ M) is the Nm X Nm WHT matrix, S^ is a R x /? nmtrix and N = Nm^-

Sr is related to Ui(、“seed” vectors in [32]. Tlio gonoralizo(i GCK]jropose(l in 1厂)1

dcfiiiccl iui：

IS

V (") =
1 (Ik

1 -dk
c^SrjLk e Z (‘1.15)

Tlu、relationship among WHT, GCK, gcMicrali/ed GCK and KHT is (Ic^sciibcnl in Fig.

4.2. WHT is a iiieniher of the GCK with S,. = I| in (1.11), GCK is a subsoi of the

KHT with S, = I】for KHT matrix V (… = S , M(Nm) ^ s,. in (‘1.4). GCK is also a

subsol of generalized GCK. Generalized GCK and KHT are difroront. sots of trans forms

that are both supersets of GCK.

2.4 Definition of rv-index and Being .a^-related •

Lot, tlio row index of an order-TVm WHT inatrix M (�m) |)o ？:m, The l)inary scquoiKx^

-1 . . . 以 y . . .rti ^^o] for Qy e { 0 , 1 } a n d 9 = 0 , . . . , 6 ' m -

of iM, where

is called t lie cv-iiulox

iM = ac, M- + . • . 十 … 2 �N m = 2 � (4.1(3)

Thus tlie tt-iiiciox is the binary roprosoiitation of im-

Let. i议，，i}^) aii(i be four possible values of /"m . If the fv-indices of ij^)，，ij^)

and i})̂ ar(? only difi'cioiit at cty and a,乂+1’ then we say lhal: 1) WHT basis vectors

® m('…‘‘

(3)m('丨

® m (丄 i” ''

i/(lM，.)）

//(lG’2’j)

/y(16,3,j)

入u； … ？/(16，4’j)

2/(16,5, j)

？；{16；6,.7)

？X16，7’j.)

t -

Some WHT basis voctors r f i (� ’ — a n d their rv-indicos for jVm= 1, 8 arr givcMi in

Table 4.1. For example, tlie a-iiidicas [00], [01], [10] and |11) of 0, 1，2 aiul 3 ar(、only

diffennit at f>o and , thus WHT basin vectors ii'i(4,())’ iVi('“2) juul 丄 a r c

rv^-rclrtto'd at, 0. The a-inclims [OOO], |()1()1, |10()1 and |110] of (), 2, '1 ami (5 m<、only

difTereiit at a i and thus iii(8’o)’ rii(8,2)，and are a,*"-rt、laUMl al 1.

As an example for. a^-rdatod KHT projection values, W I K M I S / E I V I (A ' M) =

M ⑷ arut Sr € we have:

70 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

击 (�, ， ! ？) ， i n i ^ M , i M) and rii(�M’'(rJ)) are a'--rolal(Hl al <7; 2) Ui(、corrospoiKl-

ing KHT projocl,ion. values .y[N、i(、、\j\, y[N、i(、、、j), y{IV, i^'^Kj) and y{N\ r(、pi.(、-

seiiUxl a»s follows arc a'^-relaUxi at, (f：

,(0)’ / \
'M ‘

J) 'm I

i⑵, J) m (� , i⑵V

认N、
/⑶

J) \ 'M ‘

-11) '1.1

Note that the basis vect;or.s •C7(a'’，（”））gonorating y(N,i、”、、j"} for n — 0,1,2,3 in (4.1'

have the same and the same si''^ but. diflcnint, in(八'M，，(m>). Wit hout losing ftonc

alit-y, let. .the '̂ M ‘ '̂ M ‘ '''M 肌(1 '̂ M (4.「）b(、rej)roseiit(xl by: ,

\
/

 u.

 \
l
/

\
m
/

)
/

t
/

\
/

\
/

o

1

o

f

0
-
1

o

1

T
s
 T
s

 T
s

 T
s

 T
s

 T
s

 ̂
s

®
 S
J

 ®

®

®

®

公

\
/

%
/

)
/

)
/

)
/

v
l
/

\
/

0
0
0
0
0
0
0
0
.

T
s
 T
s

 T
s

 T
s

 T
s

 T
s

7
8

T
s

o

 .
 1

r

,0：

. 1 :
,2 %

^
s
/
.

⑷
t
r
r

9

20

2"

2()

ao2

0 .2

0
2̂ -f-

2"

f 0 • 2 ''

2"

2 " -

2̂ 'M

二〔>:<VM

^
^
 M
 /
l
\

 M
 M

 /
I
V

 M

.2.4. Definition o1 o-index and Being -related 71

Basis veck)r [1 M 1厂 fl 1 -1 -If fl -1 1 -If (1 -1 -1 1]'

m

a-indcx 网 l()l| 1101 MM

Basis vcclor [1 1 11 1 1 1 1)' [1丨丨卜卜1 -1 -丨1丁

m 錢

a-index [0001 腳 1

Table 4.1: I hc a-indcx for dyndic-ordeied WIJT basis vcclor.

t Meanings

x!：•“
The input window starting at Xj having length N\

[. V / . • T / , 1 ’ • . . 1 X ” N . •

ID Nm^Nm WHT matrix. ,

The /mIH WHT basis vcctor having length N^^.

Y (AO ID KHT matrix V"''̂ = S, ® M''""' where S/

and Sr are L^L and R^R matrices respectively.
yWA The (th KHT basis vcctor having length N.

•.，
The SegKHT matnx V'̂ ^ ®\、Ns、：

yiNri.J) ^
y{N. ij) = <’(N.'、r j<Jv./> 丁“。/th ordcr-A' KHT

yiNri.J) ^
projection value at theyth window.

a-indcx of /、,
Sequcncc [^ aoj, which is the binary

representation oI./.m: 'm 二 a,. . 2''"'' •... tao2".
I ' M 1

iil'‘、“'>，iii'、,.々 •丨'，

arc â -rclatccl at ̂

rhc n-indices of /'j" . , and /；；> arc only

d i f f e r e n t a t a ^ , a n d | .

Table 4.2: Symbols and tcrnis defined thi KlIT. The ScgKlIT inntiix Vi〜）will he (Idincd in

Suction 4.4.

where WHT biusis vectors ifi(‘i,())’ ifi('i|i)’ iii(‘i,2) are related at 0. .v(lG，（)，j)，

7/(10, 2, j) , ^(K), 4, j) and ；(/(!(), G, j) in (4.22) arc a~-rolaU'cl siiicr th(、y can bo i.(、pn;-

.s(Milod as follows:

/y(16,0 .J)
/ •niO.o)

jy(i6,2 J) m(‘").

？7(16，‘1 J) m(.⑶

？/(16,6 J) \

X (/V.J) (.1.23)

where i(o)=:()’ 7:⑴二2’ i⑵=4, i⑶二G, 7:；̂；):()’ 4 ^ = 1 i ⑵ - 2 【M M — ‘ … ’ -.M——。M 二3 for (4.17)-(4.21).

Similarly, 7y(16,1, j) , :y(16,3,i), ?y(16,5,j) and t/(16, 7, j) in ('1.22) arc related. Tahk、

1.2 summarizes the main definitions used for KHT.

72 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

4.3 The Fast KHT Algorithm

This soclion gives an example of competing ID ord(.，r-4 WIIT on sliding windows iisiii-}̂ >

the proposed KHT algorithm in Section 4.3.1，and then doscrilx^s t.lio Kil l algoritInn

for II) order-yV KHT and liigh cliiiioiisional KHT.

4.3.1 The Fast KHT Algorithm for Order-4 WHT

If Sf = Sr 二 T|, then KHT matrix V。” is the order-.V WHT iiialrix M(入丨.WIHM.

N — 4," wo haw:

严) 二

丨’ 1 1 1 1 丄7

hj) 1
；=：_

1 1 - 1 - 1 •'•.7+1

2/(4, 2，j)
2 1 - 1 1 - 1

？y(4’ 1 - 1 — 1 1 1 3

Lei A(4, j) = j) - ?/(4,0,j 十 1). Equation (4.21) iiiiplios tliat:

:V(4’()，j)1(4’(),j + l)

i/(‘1,3,j)十 y(4,l’:/ + 1)

t y (4 , 2 , j) - f . v (4 , 2 , j - M)

y (4 , l , j) ~ j y (4 , 3 , ; / + 1)

(•Tj — Tj+l 卜工,•-•2 + + -T 厂,-2

(•Tj - - + J'j+a)卜(工j+i I- Xj.̂ 2

2 (X J - .T J I-I -I- X J - , . 2 — :C J + 3) + (. 7 : J今 1 — X J M 2

{^j + .Tj " 一 •i'j+2 - Xj |.a)-(:Cj (1 — ‘rj+2

• Tj - : ' •

工 j - \ 4

•Tj — -Ij » 4

- 斤 I

2

"(4， o’ j) ‘ - V i ' l -f 1)

-.'7(4， + 1)

".V(4, -f 1)

-.v{ i, ,()’j 卜1)

Hence, A(4,；/) relates the projection values in window

implies

'1.21)

- 卜 +

工j 13 — l)
(4.25)

+ .r J • 4)

A(4,j)

•A(4，J)_

and j 十 1. Î (|\iati()ii {'1.25)

1/(4, l , j 4 1)

2 / (4 , 3 , j f I)

1 (4 ’ 3 ’ j)

- 2 / (4 , 2 , j)

:V (M ’ j)

A (4 ’ j)

- A (4 , j)

(4.26)

When wo compute the projection values in window j f 1 (m sliding windows, the

projection.values in'windows 0，1, ...•，j Imvo been coiiipiitcd. Given ？y(4,(), j + 1), the

KHT algorithm: 1) computes A(4, j) iks A(4, j) = ?y(4,(), j)-;//(-'l,0, j-hl) by 1 addition;

§ 4.3.2. The Fast KHT Algorithm tor Order-A' KHT 73

2) uses A(4, j) and projection values in window j for computing tlic 3 projection values

in window j + 1 by 3 additions using (4.26).

The GCK algorithm in |32) computes the WHT projection values in window j + 1

from the projection values in window j and j — 1 as follows: ‘

•V(4’3，j + l)=:i/(4，l，j)i(4，l,j|l)i(4，3,j)，

('1.27)

(4.28)

(4.29)

Given 2/(4,0, j + 1), the GCK algorithm will: 1) compute the 1st projection value^

i.e. ；1/(4,1, j + 1), from the 0th projection values t/(4,0, j — 1) and /y(4,(), j + 1) by 2
»

additions in (4.27); 2) cornputo the 3rd projection value from the 1st, projccUcm values
I

hy 2 iiclditions in (4.28); 3) roini)utc the 2ii(l projection valuo from (ho 3rd projection

values by 2 additions in (4.29).

4.3.2 The Fast KHT Algorithm for Order-/V KHT

The theorem below is proved in the appendix.

Theo rem 4.2 If four order-N KHT projection values y{N, 二 �)m (�’

for 7) = 0 , . . . , 3 as defiiiod in (4.9) are a'-^-rclated at g, where arc rep-

rosoiitod in (4 .18)- (4 .21)，has length L and 欢 h a s length R, tlien we have:

(4.30)

(4.31)

(4.32)

i⑴，, j + /?4) -viN, i，".i)-

i⑵ ’ . •j + Ra) = i⑵，j) + 从N、:

J / W i⑶，, j + _y、N、i 丨⑴， j、R�

where lU == 2。从 •化、

A(yv, j、lu) 二 i八N、7:(o) , j) - y (y v , i(o)，j + /?4).

Table 4.3 shows the steps and corresponding ninnber of additions required using The-

orem 4.2 to coiiiputo the 3 projection values y(N、iPi\j + Jl\) for n = 1,2,3 from
f -

y[N、iM̂ 、、j + R.]). The computation in (4.30) c'c)rre5)̂0iicls to the example in (4.20),

where N=4、i⑴)=U，i⑴=1，i⑵=2，i⑶=3，"(4，i，j) for i 二 0，1,2,3 aro cv'-̂ -related at 0

(thus g = ())’ G M = 2, 1, so R4 = .1 = 1 and A(7V,j, /?,,) = A(4 , j) .

Theorem 4.2 sliows how to compute the other 3 projection values from y(N、i、奶、j +

R/\). The following corollary shows that wc can compute y[N、i^、j + R4) from one of

74 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

Step a y i N , j+R.i) is provided by oilier approaches.

-The compulation required is not couiued.

Step h = y i N , j) - y i N . R,)

-One adcJilion is required.

Step c y i N , j+R,) = _ 、 j , R ,) - y{N, P\ j) , •

y i N , 項 N 、 j ， R O - y { N , /⑵.几

>iN.广、0+«4) = m ,川, j) - A(A/ , j , R,).

-Three additions arc required. Note thai y{N, j) for

/»=0, ..., 3 arc obtained during previous computaiion.

Table 4.3: ConipuUUioi) of order-N KHT using the KHT Hlgorilhiu

the other 3 projection values:

Corollary 4.3

A(iV,j, /?‘iHy(yV’i(:”，j) +?y("，i(i)，j + lU)'

=""("，i(i),j) — ' " W 种， j +几1)

M.33)

AM)

Equation (4.33) is derived from (4.32); (4.34) is from (4.30). The computation of y(乂J)

using (4.30)-(4.34) is named as tlic fast KHT algorithm. Hero is a summary of the

fast KHT algorithm. If one of the 4 cv'̂ -related projection values ?:(")，./ + R,\) for

n = 0 , . . . , 3 is provided, then wo can: 1) use tliis provided projection value lo obt.aiti

A(4, j , by 1 addition using (1.32) or (4.34); 2) obtain the other 3 projection values

by 3 additions vising (4.30), (4.33). Therefore, the KHT algorithm requires 4 additions
ft

for obtaining 3 projection values, i.e. 4/3 additions per window per projection value

independent of KHT size N.- In comparison, the GCK algorithm recjuircs 2 additions

per projection value and the algorithm in [33] requires 3/2 additions. k
t

The GCK algorithm，Uie algorithm in [33] and the KHT algorithm a^ssuriK、that

one projection value is provided on all window positions. Let.' the iiunilxir of addit ions

per window r(;quirc<l for computing this projociion value ho B\. The GCK algorithm

requires 2(w — 1) + B] midilions per window for obt aining u projection values and tlio - - ‘ •

KHT algorithm rciquims A{u- l)/3 + additions. Noniially, this provided projection
r -

value is the dc component for 2D WHT and can be computed using box-techniquQ [47]

by /?! = 4 additions per window or using integral image [48] by B\ = 3 additions per

.3.2. The Fast KHT Algorithm for Order-N KHT 75

. 厂 t J ‘.

@.口..母

j-^J . _
• O C D .

I ^
a

A(16, ; -1 , I)

AJ
w .

D - O 」

t

欲 ① ! 」 . [」 — : • . . 0

(7) ： The ilh projection @ : Summation {sign skipped)
门 : P r o j e c t i o n values in different window positions

Figure 4.3: Utilization of the KHT algorithm for obtaining the other projection vaJues from

the 0th projection value. The number i in circle denotes tbejth projection.. The rectaugJes
denote projection values in different window positions. The signs are skipped for the suwniation
operations in this figure. ~

window. Since Bi is a constant and is.relatively small compared with the computation

required by u when u is large, B\ is,skipped in [32] and in the follow!ngs of this chapter.

Generally, if we are provided with one of the TVM projection values in window j ,

i.e. y{NJJ) = 1 矛'）(2) l i i (� ’' M) gj")]了义[f") for ZM = 0, . . . , A^m - 1, then we can

efficiently compute the remaining Nm — 1 projection values. As a special case, when

s/ = I i , Sr 二 I i ’ KHT is WHT and we have 乙 二 = 1. Using order-16 W H T as an

example, we show in Fig. 4.3 how to obtain all projection values in window j with the

0th projection value provided:

1) Since the 0th, 4th, 8th and 12th WHT projection values having a-inclices [0000],

[0100], [1000] and [1100] respectively are a^-related at 2，i.e. g = 2, the KHT algorithm

computes the y(16,4, j) , y(16, 8, j) and ^(16,12, j) from the y(16,0’ j) , which is shown

in Fig. 4.3. In this case, we have g — 2 and /? = 1 for these 4 W H T projection values,

AT = 16 and Gm == 4 for order-16 WHT , so we have the followings from Theorem 4.2:

y (i6 ,8 , j)

2/(16,12, j)

- y (1 6 , 1 2 , j - l)

-2/(16,8,7-1)

2/(lM， j — l)

+
A (1 6 , j - l , l)

A (1 6 , j - l , l)

- A (1 6 , j - l , l)

• where. R = = 1，

A(16 , j - 1，l)=y(16,0,j - 1) - 2/(16,0,j). (4.35)

76 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

2) The projection value j/(16,4, j) obtained in the previous step can be used to

obtain the projection values y(.16,5，几 i/(16,6, j) and y(W,7，j) because, these 4 pro-

jection values are a^-related at g 二 0，which is shown in Fig. 4.3. In this casp, wo havo

.9 = 0, = 1, N = 16, G M = 4 and the followings from Theorem 4.2:

"y{i6,i 5，j) -2/(16,7,： / - 4) A(16, j -•4,4)

讽 丨 = -y(16，6、 十 A(16 , j -•4,4)

7，j) 2/(16,5, j - 4) -A(16 , j -4 ,4)

where = 24—0—2 二 4，

A(16, j 一 4 ,4)^ (16 ,4 , j - 4) — 3/(16,4,7).. (4.36)

3) The remaining projection values are similarly obtained.

、The GCK algorithm iii [32] is specific for GCK. In the appendix, we prove that the

GCK algorithm in [32] is also applicable for KHT.

4.3.3 High Dimensional KHT

In this section, we skip the size denotation of matrices for simplicity. D dimensional

separable KHT can be represented using Kronecker product as follows:

[Vi O • •. 0 Vd、® . . . ® WD]ve.c{X)

=[Vi • • • ® (Si, ® Mrf 0 S r J ® • • • V,:,j7;er(X),
(4.37)

where V^ = S/^ (g) M^ Sr^ for ti = 1，...，D is the KHT matrix in dimension d, S/^

is the left matrix, M ^ is the WHT matrix, Sr^ is the right matrix and vec{X) is the D

dimensional input X that is arranged as a ID vector.

We have illustrated the KHT algorithm in I D case where the input window is a

_

vector. The KHT algorithm can be used for computing KHT of higher dimensions, e.g.

2D for images. And the computation, required is 4/3 additions per projection value

per window independent of dimension and size. Detailed information is provided in

Appendix C.

4.3.4 Ordering Projection Values

The Gray-code sequence (GCS) is proposed in [32] to order the GCK projection values

so that the current projection value can be efficiently computed from the previously

computed projection values using the GCK algorithm. To order 2D projection values,

0—t 9i

Increasing Snake order
frequency order

Figure 4.4: Snake order a^ci increasing frequency order proposed in /2/ for WHT. Numbers
denote the order. Arrows denote the computation dependence. Projection value 1 is computed
from 0 in both orders.

Moslie and Hel-Or propose two orders for computing GCK on images in (2). They are

the snake order and increasing frequency order. Fig. 4.4 shows the two orders for the

first 20 21) WHT projection values. The increasing frequency order is more efficient in

packing energy while the snake order is more efficient in memory requirement.

For efficient computation of ID KHT, the KHT projection values can be arranged

in sequency order, i.e. in ascending order of the iiimiber of zero crossings of the basis

vectors. To efficiently compute projection values using the KHT algorithm for 2D natu-
s

ral images, we can use the order shown in Fig. 4.5. For this order, 16 projection values

form a group. Groups are arranged in an increasing frequency order and projection

values within a group have a fixed order. This order for larger sizes of WHT or KHT

can be similarly obtained. In the experimental results, we show that the KHT algo-

rithm using this order is faster than the GCK algorithm using the increasing frequency

order.

When specific projection values are required, we recommend constructing the GCS

first and then examining the a^-related projection values in the GCS for using the KHT

algorithm.

.3.4. Ordering KHT Projection Values ‘ 77

W IB

4：《
191 V"；

• J 1

6-41.^1

78 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

F igu re 4.5: The ordering 2D 8 x 8 WHT for fast KIIT algorithm. Numbers denote the order.

Solid arrows denote the compulation dependence using the KHT algorithm while dashed arrows

denote the computation dependence lising the GCK algorithm. For example, projeclion values

4, 5 and 6 are computed from 0 by the KHT algorithni while 32 is computed from 6 by the

GCK algorithm. 、

4.4 The Segmented KHT

4.4.1 The Definition of Segmented KHT

Define the order-iV Segmented KHT (SegKHT) matrix of identity matrix I “ and

KHT matrix as follows:

V ^) 二 [,!_，...

= I I ， 0 V("，）

V W 0

0

V (A，,”

0

0

V

(4.38)
0

0

V("甚

where Ls — 2,3,4,. . . is the segmentation parameter, N = LsNs、式、’” for i 二

0 , . . . , N — 1 is the zth SegKHT basis vector having length N and subscript. is iisod

for denotation related to SegKHT. The order-iV SegKHT matrix is an N x N matrix.

Property 4.1 shows how to make the KHT matrix V("，）in (4.38) orthogonal. Arid it;

is easy to see from (4.38) that V”）is orthogonal if is
orthogonal. Thus we can

«

make V("，）orthogonal to obtain orthogonal SegKHT matrix and apply SegKHT for

transform domain pattern matching introduced in Section 1.2.4.

The SegKHT matrix defined in (4.38) can be considered as the KHT matrix defined

§ 4.4.1. The Definition of Segmented KHT ^

in (4.4) as follows:

v y ^) 二 I乙，⑧ V(队）

二 I/” <g>(S/0M(‘VM)⑧ Sr)
• (4.39)

= (I / . . , 0 S /) «) M (- 〜 M) S r

This KHT matrix is the Kronecker product of left matrix S/j = (I/” ^ S/), WHT

matrix M(WM) and right matrix Sr. Thus ScgKHT is a subset of KHT. KHT is used

for designing new transforms and the fafit KHT algorithm; SegKHT is a subset of

KHT that has accelerated computation based on the proposed fast KHT algorithm.

However, SegKHT cannot be represented by GCK matrix

that is in the form of V (… =

M(〃M) (g) Sr. The relationship among GCK, KHT and SegKHT is described in Fig.

4.2. •

Let yi^'^^ for j = 0,...，W — 1 be the SegKHT projection value vector containing

all projection values at the jth window and

= 0 , j) , . . . , VsiN. N 一 (4.40)

where y s i N , i J) =

了 54"’)) is

the zth SegKHT projection value for the j th window.

When the KHT matrix V(〜，）of SegKHT matrix is a WHT matrix M(队）’ we call

it the Segmented WHT (SegWHT). For example, when Ls = 2, N, = 4，TV = 8 and

V ⑷ = M ⑷ in (4.38), we have an order-8 SegWHT matrix as follows:
VW = l2 ③ M⑷ :

M ⑷ 0

0 M ⑷
(4.41)

80 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

•2 Fast Segmented Algorithm

The jth input window of length N can be reproscntod by L.s subwiiidows of lengt h A,.,

as follows:

艾(N，])

工J 「 1
入11;

工j+1

= 入liJ

Tj + ZV — l-
+ - 1) iV,)

Xw _

From (4.38), (4.40) and (4.42), the SegKHT project.ion value vector can be rcproseiited

by Lg KHT projection value vectors as follows:

• v ⑷ 0 0

0 0

0

入ti.

(4.43)

V (队 队 ）

(凡 (“ 一 ” .

i

 J

J

y

where xĴ Ĵ ’力 is the j th input window having length N{= L^Ns) and xif^"''^ is tlio

jfth input window having length Ng； yi^'^^ is the SegKHT projection value vector at

the j th window and 没、Nad、is the KHT projection value vector at the jt h window, hi

(4.43), we segment the length-iV input window x ^ f i n t o lengtli-iV, siibwiiidows

力，..。•̂ (Ĵ ，、j.H。-華，、and then do order-TV^ KHT on these L , subwindows. This

procedure is shown in Fig. 4.6. In this procedure, the projection for a window is

decomposed into projection for its subwindows.

According to the result in (4.43), obtaining the SegKHT projection value vector

9、sN、j、in the j th window is equivalent to obtaining the Lg KHT projection value vectors

forn = 0，..'.，/々-l. Similarly，obtaining 风 队）in the window

is equivalent to obtaining L., vectors for n = 1,. •. ’ / 、 , ， w h e r e the L^ 一 1

vectors y("，’J"» ""，）for n = 1 , . . . , - 1 have been computed previously in y•广’and

only f、N，’j+L>̂N，、ig not computed previously. Fig. 4.7 shows the relationship between

�,））and 队）.When we compute 5̂ .̂ ’】+�.'），we need only obtain J+L.N.,)

§ 4.4.2. Fast Segmented KHT Algorithm 81

Input

window

Segmented

subwindows

for n-0,\,...Lr

N=L.N,
Segme

KHT projeclion ScgKHT

value vectors projection

产—。 value vector

forn=0,l”..L,-l

rr*—

Ordcr-A/,

KHT

N, N,

UN,

Ordcr-/VSegK!IT

F igure 4.6: The order-N ScgKHT that can he computed by s(?g7nei】f.in总 input window into

La subwindows having length N^ and them doing order-N^, KHT on the L^ subwindows.

l)y about 4N^/3 additions using the KHT algorithm. Thus the fast SogKHT algorithm

n>qiiiros about 4Ns/3 additions to obtain N(— Ln^s) ScgKHT projoction values per

window, while the GCK algorithm requires 2N additions and the algorithm in (33

requires /2 additions for obtaining N GCK projection values. On average, the fast

SegKHT algorithm requires 4/{3Ls) addition(s) per projection value.

As ail example, wo have the followings for the order-8 SegWHT in (4.41):

M ⑷ 0 「s?⑷•）1
入w

- ⑷ ） “

0 M ⑷ 入

(4.44)

M ⑷ 0 入li； '^('Ij-d)"

0 M ⑷ 御 + 8)

入to

(4.45)

The relationships in (4.44) and (4.45) are examples for (4.43), where V (队）= M ⑷ ’

Ls = 2, Ns = 4 and TV = 8. According to the result in (4.44) and (4.45), obtaining y!8’J)

is equivalent to obtaining ；^(�'J) and 力.Similarly, obtaining 歹产 … i s equivalent

to obtaining ^nd 57(4.J+8)，where …has been obtained in y .^力.This

example is shown in Fig. 4.6. If we compute ⑴ on sliding windows: 1) its 4

elements in vector 歹 M) have been computed when we compute yi^'^^ ； 2) its other

4 elements in can be computed by about 16/3(= 4 • 4/3) additions using the

KHT algorithm. Thus the fast ScgKHT algorithm requires about 16/3 additions for

obtaining the 8 projection values in 5^1,,")’ i.e. 2/3 additions per projection value on

Example

Computed

previously

Computed in

current window

Figure 4.7; Copiputing order N SegKHT on sliding windows. For general ease, ScgKIlT

projection value vectors and share L^-l KHT projection value vnctors. Arrows

in the figure point out the L„ — 1 shared KHT projection value vectors. For the example in

(4.41we have L, =-2, Ns ^ ^ and N ^ 8. ‘

average. The KHT algorithm requires 4/3 additions per projection value.

Since tlie memory storing y(�'’力 arc regarded a« SegKHT projection values at Lg

different input winclow positions, (�，’力 will bo ac;cesscd multiple tirno ŝ, which improves

memory utilization and saves memory access time when these data arc fouiid multiple

times in the data cache.

For input window having length N",- the Lg basis vcctors proposed in [30] can bo

represented by SegKHT basis vcctors while SegKHT contains the other N — / � basis

vectors that cannot be repfesentod in [30]. The method in [35] segiiKuits non-rectangular

patterns into certain number of rectangles aiming at dealing with non-rectangular pat-

tern matching; the SegKHT segments rectangular pattern into Lg rectaiiglcs aiming at

improving the computational efficiency. The SegKHT is inspired by the Incremental

Dissimilarity Approximations (IDA) algorithm [31], in which Tornbari et al. achieve

computational efficiency by segmenting input data into several parts. The IDA al-

gorithm determines a succession of rejection conditions characterized by increasing

rejection ability and computational complexity. The differences between SegKHT and

IDA are as follows: 1) the IDA is not transform domain pattern matching algorithm

while SegKHT is used for transform domain pattern matching; 2) the IDA segments

82 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

General
yth SegKHT

projection value

vector f (广•力

Computed

previously l‘,N产 N

Compuled in

currcnt window

m i

w^Mm
3礼

— , y ‘ 一 _ .

塑 — 一 膠

台—— ； i.J>
M

TJ)
,01.

！ >

§ 4.4.3. Relationship Between GCK and SegGCK ‘ ^

input window into subwiiidows and usos tho triangular inequality on subwindows as

the rejection condition while the SegKHT aims at computing transformation on slid-

irig windows efficiently; 3) as will be shown in the experimental results, the pattern

matching using SegKHT is faster than IDA.

4.4.3 Relationship Between GCK and SegGCK

“When the KHT matrix of tlio SegKHT matrix in .(‘1.38) is a GCK matrix, we call this

SegKHT the Sogmeni(id GCK (SegGCK). Note that th« GCK matrix is in the form of

V(〜）=M(WM)场 s,., wlier(3 JJ； the TVM X NM WHT matrix and S,. is a Rx R

matrix. Let % be the modulo operation. Denote the spaco spanned by the u basis

vectors in matrix 〜）尸 . . . m (" ’ " - 】)] 7 ， b y .9pan(V("x")). The following

theorem describes the links between GCK and SegGCK:

. ‘
Theorem 4.4 If 乙‘，GCK basis vectors in yl jcK^^ can be ropresontccl a»s:

. 二 丄,“.0 0 4")，for is = 0,.

where is fixed, N = NmR. Nm%Ls = 0’/L’ 二（),...

rh(�M’.）are in dyadic order or sequency order, then we

vectors in ^^se^l^K so that:

l ‘s —1, (4.4G)

^ - 1 and WHT vectors

can find Lg SegGCK basis

1. — n (V 忿 恐 = —iniy、》⑶、.

2. Vx, " V 二 又

3. 4/(3Ls) additions and 4/3 additions per ba«is vector per window are required for

computing ^segCC^K^ and V^'^^^^x respectively, thus the computation required

for SegGCK is 1/L, of that required for GCK.
f

• ' *

The proof for the theorem above is provided in Apjxmdix A. According to the

W^GCK^^^W"" 二 Theorem 4.4, u GCK and SegGCK basis vectors pack

the saino energy and r(?ject. the same mismatched candidates when u — /v.s, 2L；,, 3/^.,,...

for transform domain pattern matching in Table 1.1. Theorem 4.4 can be used for

WHT ami SogWHT when we set gf") = I] in (4.46). We use the example in (4.41) for

illustrating the relationship between GCK and SegGCK. Fig. 4.8 shows that all brder-8 *

WHT basis vectors can be linearly represented by SegWHT basis vectors. For example,

84 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

Index ScgWm V (ijy
Rclalinn WHT m (8.0'

jninniMni^^^rxTiJZJ ^ fa]:.工 l：”. ,j.」』

.训丨丨丨丨丨丨丨丨丨丨丨ŷJix̂î- u u k ^

譚 Lj. ' j v I
r IA Ĵ hi “
tiimmmm

工 1 3 I T J

.r-TTTr-rrnnniinjaiJir^t

[mniiiinnn! "FX ,i=3i ^ ^

I T

Index
—i 一

0_

T
T -

Za^.

Figure 4.8; The linear rclatidiiship among ordcr-8 ScgWHT and ordcr-8 WHT, e.g. ni<8’o)=

•po) —Vis,…，= - White represents the value +1’ grey represents the value

一 1 and vertical strips represent the value 0. Normalization factors of hasis vcctors arc skipped.

when /c 二 0, w() have 1;lic / � = 2 dyadic ordc r̂ecl WHT vectors ifi(H,r” and rft^’"’ \vhci(，

g<r“）= 二 0，1，乙《 = 2,/?. = l , i Y = N m - 8 and Nm%L, - 8 % 2 二 0 in (' U (” .

And wo Hclcct L.,(二 2) S(沿WHT vcctors v f and《8’…in (4.41). Orlhonornial WHT

basis vectors rfi(8’o) and rft(8’" can he linearly roprosciit(^cl l>y orllionormal SogVVH'J'

ba^is vectors vf'^^ ancl vf'^K Thus .s’pan([rft(8’"）…「）= and

Vx,丨丨[rft(8’()）=丨丨l48’()）7l8，4)f’i^||2. As for computation, the fast: SegKHT

algorithm computes the ScgWHT basis vectors by about 2/3 additions per basis vector

per window as we have illustrated for (4.44) and (4.45). The KHT algorithm coiiiputos

the WHT basis vectors by 4/3 axJditions per window. Thus the computation required

for SegWHT is 1/L,(= 1/2) of tliat roquirod for WHT.

4.5 Advantage of K H T

We shall analyze the advantage of KHT by illustrating that the application of KHT

ill the transform domain pattern matching can achievc better j)erforniarico coin pared

with WHT, the GCK and the generalized GCK.

As introduced in Section 1.2.4, transform domain pattern matdiing requims thai

the transformation should be computationally efficient in packing energy.

As a comparison of the gcnoraliz^ GCK and the GCK, the generalized GCK n—

quires more operations for obtaining projection values than the GCK. In the Appendix
t

13，we prove that if the generalized GCK matrix is not a GCK matrix, then the basis'

vectors in the generalized GCK matrix' are not orthogonal to each other. As mentioned

in [32], nonorthogonal transfonii requires significantly more computation for evaluating

the rejection condition. Thus the GCK socms to bo the right choice from?the gener-

alized GCK for transform domain pattern matching. Compared with the GCK, tlie

§ 4.5.1. Transform Coding Gain on Statistical Model 85

KHT provides more choices of orthogonal transforms t hat can bo computed efficiently.

Among the families of tho GCK and the generalized GCK, Ihc most ofiicient trans-

torn i domain pattern matching reported uses WHT bccauso: 1) WHT has good oriorgy

packing ability; 2) tlie computation of WHT requires only 2 additions per projection

value using the GCK algorithm.

In tho followiiigs of this section, wc find two subsets of KHT that: 1) cannot ho

represented by CCK; 2) can ho more compiitat,ioimlly efficient in packing eiK r̂gy and

so is more cfiicient in pattern matching than WHT. ,

WHT requires thai Iho size of input data N should be power of 2. To coniparo with

WMT, wc restrict N to be power of 2 in the following examples.

4.5.1 Transform Coding Gain on Statistical Model

Transform coding gain on statistical model is a commonly used criterion for rncfusuriiig

energy packing ability [63; 64). Let the vector … b o a one dimensional, zero-moan,

unit-variance, first-order Markov process [65] with adjacent element correlation f) and

covarianco matrix Cov(x(w))，where

Cov(x,(")) = is：丨义("）.x‘(")''l

P

A/ — 1 N •

jy、‘ p'^

and i[？[•] denotes expected,value. The coding

the covariance matrix where

y'(/V) 二 V(") 乂 (“)，

Cov (严卜E .丨严) .严) ' , 1

W("))o’o .

P

1

pN-.、

gain

�N — \

、N

、N.
{'\A1)

of a transform V (…is defined on

"‘(5^("))yv-i‘".-

(4.48)

Coding gain G'rc is given by

GTC
E 二 (严)) n , n

L/N
(4.49)

86 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

where /?(y("))n,n reprosonts the variance of the nth projection value. The larger is the

coding gain, the greater is the (;riergy packing ability of the (.rarisforniation.

4.5.2 Example 1 of KHT - SegKHT

The first example we choose is the SegKIIT wliich is the Kronockcr product of identity

matrix I/" and WHT matrix M(〜）as follows:

V (〜）二 I I , M (�M) 朴， w h e r e N 二 乙、."\1. (4.50)

The SegKHT matrix above is a KHT rnalrix whore Si 二 I/” and Sr = Ii but is not

a GCK matrix. This SegKHT is bettor than WHT becaiisc: I) ai； analyzed in Soction

4.4.2, computation of the SegKHT is more efficient than coiiipiitatiori of WHT; 2) as

will be analyzed in the followiiigs of this section, the SegKHT in (-150) is almost the

same as WHT in energy packing ability. In Soction 4.6, we use experimental results to

show that this SegKHT is more efficient than WHT in pattern matching. ‘

Wc use coding gain to measure the energy packing ability. The coding gain of the

DCT, KHT and WHT for two difreront sizes as a function of correlation coefficients p

are shown in Fig. 4.9. ,Tlio sizes N — 25(> and TV 二 1024 can bo considered as Ki x 16

patterns and 32 x 32 patterns I'ospecUvely. The DCT is used fks a benchmark, which is

known to have better energy packing ability than WIIT. It can be seen from Fig. 4.9

that the coding gain of SegKHT in (4.50) and WHT arc almost overlapping with oacli

other. Thus the SegKHT in the form of KHT V ^) = Ig 0 M (N M) ’ which is not, GCK,

hais almost the same energy packing ability as WHT. The KIIT = M("M) (g, is

not a good choice for pattern matching because its coding gain is obviously worse than

both WHT and SegKHT. Although the DCT has bettor energy packing ability, it is loss

efficient than WHT in pattern matching because of its relatively high coinputatioiuU

complexity.

4.5.3 Example 2 of KHT - Kronecker Product of Haar Transform and WHT

The second example of KHT is in the form of = where N = LNm,

S/ is a L X L two scale Haar wavelet transform matrix and 8^ = 1]. We shall show that

this KHT is also bettor than WHT. For example, the Kroiieckcr product of two s6a\e

Correlation CoefficienI Correlation CoefficienI

F igu re 4.9: The coding gain GTC of the DCT, KHT and WHT on different correlation coef-

ficients p ranging from 0.1 to 0.95. The left figure is for input window size N = 256 and the

right figure is for N = 1024. KlITl and KHT2 are in the form of V(〜）=：la <8> and

V("> = % la respectively. •

Haiir wavelet transform matrix of size 4 x 4 and order-2 WHT M(2) is as follows:

V(8x8〉=

1 1 1 1

1 1 - 1 - 1

1 - 1 0 0
0 0 1 - 1

0 (4.51)

For the experimental results shown in Fig. 4.10 , wo choose V (〜 ） = w h e r e

N — 256 or 1024，S/ ij? an N/^ x 7V/8 two scale Haar wavelet transform matrix and S^ =

Ti. For this kind of KHT, basis vectors for = 0 , . . . , L— 1 will be Haar-

like features and can bo computed efficiently by integral image in j48]. Thus projection
t

values corresponding to those basis vectors will act a.s the first projection value and

the other projection valiK3S can be computed efficiently from the first projection value

using the KHT algorithm.

The percentage of energy packed into the first u projection values for the statistical

model introduced in Section 4.5.1 is measured by:

」 一 EnJo MF)n,n

(4.52)

Analysis on this measure is presented by Kitaj ima [66] ami by Yip and Rao [67]. In

our experiment, wc sot correlation coefficient p as 0.9, which is a reasonable setting for

images.

The percentage of energy extracted as a function of the number of operations per

pixe】 required by different transforms is shown in Fig. 4.10 for input data having size

N — 256. To evaluate this percentage as a function of the number of operations, we first

WHT
KHT1
KHT2
DCT

§ 4.5.3, Example 2 of KHT - Kronecker Product of Haar Transform and WHT . 87

o

5

o

0

5

1

U
!
B
6
 6
u
!
p
o
3

50 100 150 200 250 300
Additions per pixel

F i gu re 4.10; The pcrcentagc of energy extracted as a function of the number of additions per

pixel required by WHT and KHT for Input data having size N ~ 256. In the experiment, we set

p = 0.9 for Markov proccss input data in (‘1.47). KHT is in the form of V(〜）^ Si 0 M(8) ® S 。

where S/ is the two scnie N/S x N/S Ham. wavelet transform matrix and Sr — I i .

4.6 Experimental Results

This section evaluates the pcrfoniiance of KHT algorithm and SegKUT by comparing

thera with FS and the other FS oquivalcnt algorithms in pattern matchiiig. All of the

experiments were implemented on a 2.13GHz PC using C on windows XP system with

compiling environment VC 6.0. Sum of squared difference (SSD) is used for inea^siiring

the dissimilarity between pattern and candidate windows.

4.6.1 Dataset and Algorithms Used for Pattern Matching Experiment

To investigate the computational efficiency of the proposed SegKHT for pattern match-

ing, we shall compare the following FS equivalent algorithms with FS:

• 1) FFT: the FFT-bafied approach in OpeiiCV [53];

• 2) IDA: the IDA algorithm in [31];

• 3) WHT: the WHT algorithm for WHT in []];

• 4) GCK: the GCK algorithm for WHT in [32);

• 5) WHTA-Z/T： the proposed K H T algori thm for W H T ;

KHT
WHT

88 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

find the minimum number of projection values u required l)y diflcrcmt. Irarisfonnat ions

for packitig thc3 same percentage of cnorgy, and t hen evaluate the number of aclditioiis

required for computing these u projection values for difrennit tranaformat.ions.- It can

be seen that this KHT can cxtract eiiorgy from input data using imidi fewer number

of additions compared with WHT.

r.

•
•
:

o
 o

 o

 I

o

8
 6

 4

p
a
G
B
J
l
x
a
 /
B
j
a
u
a

 B

%

0

0

0

0

20

§ 4.6.1. Dataset and Algorithms Used for Pattern Matching Experiment 89

Dataset Image Size Pattern Size

SI 160 X 120 16 X 16
S2 320 X 240 32 X 32

S3 640 X 480 64 X 64

54 1280 X 960 128 X 128

55 1280 X 960 64 X 64

SG 1280 X 960 32 X 32

Table 4.4; Datasots and corresponding sines of images and patterns used in f hj? experiments.

• 6) SegKHT: the proposed KHT algorithm for SegKHT.

The code for WHT is available online [57] and the code for IDA is provided by the

authors of [31]. The parameters for WHT use the default values in |57] arid those for

IDA are chosen according to [31]. For GCK, wc choose the scquency-ordered WHT

and the code is based on the code used for motion estimation in [2]. WHT/"/?, is in

the order introduced in Fig. 4.5.

As explained in [1], when the percentage of remaining candidate windows is smaller

than certain number, denoted as e, it is more efficient to use FS for finding the matdied

windows instead of using transformation. In the experiments, the default setting is

€ = 0.02% and Lg = S for SegKHT. According to the authors' source code for WHT

in [57], we set e = 2% as default value for WHT and GCK. We will give variations of

L., and e in Section 4.6.4.

Table 4.4 shows the 6 datasets used for evaluating the performance of the com-

pared algorithms. The dataset includes different sizes of patterns and images. Our

experiments include a total of 120 images chosen among three databases: MIT [54],

medical [55], and remote sensing [56]. The MIT database is mainly concerned with

indoor, urban, arid natural environments, plus some object categories such as cars and

fruits. The two other databases contain radiographs and Landsat satellite images. The

120 images have 4 resolutions which are 160 x 120, 320 x 240, 640 x 480 and 1280 x 960.

Each resolution has 30 images. The OpenCV function 'cvResize' with linear interpola-

tion is used for producing the desired resolution of images. For each image,】0 patterns

were randomly selected among those showing a standard deviation of pixel intensities

higher than a threshold (i.e., 45). Six datasets 51 to with image and pattern sizes

given in Table 4.4 were formed. Each dataset has 300 image-pattern pairs. Datasets

51 to S4 are the same as those in [311. Datasets 55 and 56 are to investigate the effect

90 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

of pattern size in pattern matching.

In the experiments, if the SSD between a candidate window and the pattern is

below a threshold T, the candidate window is regarded to match the pat tern. Similar

to the experiment in [31], the thrcsliokl T for TV] x Ao pattern is set as:

T - 1.1 . SSD„nn + ApV2, (4.53)

where SSDmin is the SSD between the pattern and the best matching window.

Since all the evaluated algorithms find the samt matching windows rs the FS, the

only conceni is computational efficiency which is measured by execution time in the

experiments. The lime speed-up of algorithm A ovor algorithm B is measured by Ui(-、

execution time required by B divided by that required by A. As an example, the time

speed-up o f 泽 K over FS is measured as the execution time required by FS divided by

that required by GCK. The larger is the speed-up, the faster is GCK compared with

FS.

All necessary preprocessing like the time required for transformation on pattern

has been included in all experiments. The fast KHT algorithm and the GCK algo-

rithm require that one projection value on all window positions has been computed

by other approaches. This projection value is the do component in the experiment

and computed using the box-technique [47] by 4 additions per window position. The

computation required for dc component has been included in all experiments for the

related algorithms.

4.6.2 Experiment 1 一 Different I mage-Pattern Sizes

In this experiment, we compare the time speed-ups yielded by the considered algorithms

in pattern matching on the datasets 51 — 54 which have different sizes of iniage-patteni

pairs. The time speed-ups yielded by GCK, IDA and SegKHT over the FS in pattern

matching for each dataset are shown in Fig. 4.11. It can be seen that, SegKHT outper-

forms the other compared aljprithms in the four different datasets.

s

FFT
IDA
WHT

23GCK

r ISogKHT

F igure 4.11: Time speed-up over FS on datascts SI — 54 for different algorithms measured by

normal scale fleflj and log scaJe (right). The bars for each dataset from left to right correspond

to algorithms FFT, WHT, GCK, IDA, WHTkHT and ScgKHT.

4.6.3 Experiment 2 - Different Pattern Sizes and Different Noise Levels

To evaluate the performance of algorithms on the variation of pattern sizes with image

size unchanged, we shall ox amine the experimental results on dataset,s 54-56. In 54-

S6y the image size is always 1280x960, but the pattern size changes from 128x128 to

32x32. Moreover, we add 3 different kinds of noises having 4 noise levels to each image.

The 4 Gaussian noises G(l) , G{2), G(3) and G(4) range from low noise to high noise and

have variances being respectively 100, 200, 400 and 800, where the 512 x 512 distorted

"couple" images have PSNR 28.1, 25.1, 22.1 and 19.2 respectively when compared with

the original image in Figure 1.1. The 4 different, levels of Gaussian low pass filter are

used for blurring each image, which are referred to as B(l}, B(2), B(3) and B(4),

correspond to Gaussian low pass filter having standard deviation cr二0.2，0.9, 1.6 and
I

2.3, where the 512 x 512 distorted "couple" images have PSNR 27.79, 27.18, 25.36 and

24.14 respectively. The 4 different JPEG compression quality levels, which are referred

to as J (l) , .7(2), J(3) and J(4), correspond to quality measure Q j p c = 90,70,50

and 30 respectively, where higher Qjpc means higher quality. They correspond to

the 512 X 512 distorted “couple” images have PSNR 39.88, 34.93’ 33.10 and 31.52

respectively.

The SSDmin in (4.53) is the SSD between the undistorted pattern and the distorted

pattern. The distorted pattern and the distorted image have the same noise, e.g. G(l).

Since the threshold T in (4.53) is a bit greater than this SSDmin, the distorted pattern

will always be found as a matched window if we put it into the image. Therefore, the

miss rate is 0. The false positives using the threshold in (4.53) are not greater than

0.0025% in S4-56 for the 4 noise levels in 3 different noise types. Fig. 4.13 shows the

false positives for Gaussian 'noise in datasets 54-56.

§ 4.6.3. Experiment 2 一 Different Pattern Sizes and Different Noise Levels 91

m 0。 J
00.

100

iOO

！00

92 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

SOr 200 r - — 1 6 0 0 r

MiiJ M L l
G(1)Q(2)G<3)G<4) G(1)G(2)G(3)G(4)

S5
150 丨

100

j L i j i i i
B(1)0<2)B(3)B(4|

S5

100

J(1) J(2) J(3) J(<)

" f .：

Mii
J(1N(2) J(3) J(4>

S5

100

i i i l i u .
G(1)G(2)G(3)G(4)

S4

muL
B(1)B(2) 0(3)8(4)

S4

幽 .
J(1)J(2) J(3) J(4)

SA

Figure 4.12: Time speed-ups yielded by different algorithms ovor FS for Gnussian noise (upper

row), image blur (middle row) and JPEG compression (bottom row) in different noise levels

and different sizes of image-pattern pairs in pattern niatching. Label of bars arc the same as
Fig. 4.11.

艺 0.002

0.001

卜 S 6 |
I 0 S5
I - * - S4

r

，
i
s

5 (1) G(2) G(3) G(4)

Figure 4.13: Fah{(—positives (%) for noises C{\)-G{4) in datfuspt Si-S()

Fig. 4.12 shows the speed-ups of examined fast algorithms over FS in different sizes

of patterns and different levels of noises. It can be seen that SegKHT is the fastest

and WHT transform using the KHT algorithm is faster than WHT transform using the
^ t

GCK algorithm. The extensive experimental results of Tombari etc. in [31] have shown

that FFT is faster than IDA and WHT for datasct S4 when the noise level is high.

Our experimental results for dataset 54 also show that FFT is faster than WHT, GCK

and IDA when noise level is high. However, SegKHT still outperforms FFT except for

B(3) and B(4) in dataset 54.

4.6.4 Experiment 3 - Parameters

Experiments 1 and 2 use the default setting introduced in Section 4.6.1. This section

investigates the influence of the parameters Ls and e on the performance of pattern

matching. *

§ 4.6.4. Experiment 3 - Parameters • 93

Fig. 4.14 shows the influence of L^ on time speed-up of SegKIIT over FS in dataset

54. In this experiment, SegKHT under different settings of Lg always outperforms

GCK in pattern matching. And we can find thai the speed-up increases as Ls increasovs

from 4 to 8 while speed-up decreases as Lg increases to 32 and 64. Both 8 and 16 are

good choice of Lg. 8 is chosen as a default setting because the best setting of L., is 8 in

most cases although 16 is slightly better than 8 for noise level G ⑴ . H e r e is an analysis

of the result in Fig. 4.14. The computational efficiency of transform domain pattern

matching is detmnined by both the energy packing ability of transformation and the

efficiency in computing transformation. Since the SegKHT requires 4/(3iL.s) addition(s)

per projection value, the larger is L.s, t he more efficient is the transformation. However,

the energy packing ability degrades as L., iiicreaises. In the extreme, when Ns — 1, the

SegKHT matrix is simply identity matrix I/^.,. In this caso, no compulation is required

for computing projection values, but the energy packing ability of SegKHT is the worst.

Fig. 4.15(a) shows the number of remaining windows after each projection for GCK

and SegKHT with different L^ on dataset S4 with Noise G(4). It can bo seen that as

Ls increases, the rejection power of SegKHT decreases. For Ls being 4 and 16, the

rejection power of SegKHT is close to WHT. As L^ increases to 64. the rejection power

is seriously affected, which explains why Ls — 64 is less efficient than L^ = 16 in Fig.

4.14. Thus the decision of Ls is dependent on the trade-off between energy packing

ability of projection values and the computation required for obtaining these projection

values. As shown in Fig. 4.15(b), SegKHT using the SegKHT algorithm requires much

fewer operations than WHT using the GCK algorithm in rejecting the same number

of candidate windows. This results in better performance of SegKHT compared with

GCK in Fig. 4.14.

As introduced in Section 4.4.3, it can be inferred from Theorem 1.4 that u ID

GCK and SegGCK basis vectors reject the same mismatched candidates when ii —

Ls,2Ls, 'SLs, ‘ . . for transform domain pattern matching in Table 1.1. This can bo

similarly used for 2D transforms. Thus we can see from Fig. 4.15(a) that SegKHT

reject very similar amount of candidate windows at certain projection number, e.g. 16

for Ls 二 16，64 for Ls = 64.

As explained in [1], when the percentage of remaining candidate windows is smaller

than certain number e, it is more efficient to directly use SSD for finding the matched

GCK
ScflKHTM

0.002 0.02

94 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

G(1) Q(2) G(3)

Figure 4.14; The tiina speed-up over FS yielded by ScgKHT with cliffrmit Ls ami GCK on

dataset S4 with noise G(l)-G(4).

S5
1 0 '

.、《64
WHT

10'

5 0 1 0 0 1 5 0

Projection number
(a)

1 0 "

WHT

1 0 0 2 0 0 3 0 0 4 0 0

Operations used for transform
(b)

'k

Figure 4.15; The percent age of remaining windows as a function of the iiiintbrr of prnjcc I ions

(a) and the number of operations required by tmnsfonn (h) on daUisct 54 wit h Noise C(i).

windows instead of using transformation. Fig. 4.1G{a) shows the influoiice of e for

both GCK and SegKHT on dataset S4 with Gaussian noise G(4). It can bo s(3en that

2% is better for GCK while 0.02% is bettor for SegKHT. Fig. 4.16(b) shows that the

computation of SegKHT is obviously faster than the computation of GCK for difi'erent

situations of e.

I

4.7 Summary

This chapter develops a family of transforms called Kroiiec.kcr-Hadaiiiard traiisfonn

(KHT) that can be used for fast pattern matching using fast KHT algorithm. Wc

then find that a subset of KHT, which is called Segmented KHT (SegKHT), (an be

Figure 4.16: (a) The speed-up over FS as a function of e on the left figures and (h) the

tra/isfonimtio!】 tjuje in seconds as a function of c on the right figure. Experiments are done on

dataset 54 with Noise G(4). e denotes the percentage of remaining window below which FS is

used for pattern matching, e.g. 2 and 10 in the X axis correspond to 2% and 10% respectively.

600

4 0 0

200

5 0

00

5 0

5 4.8. Appendix A: Proof for Theorem 4.4 95

computed using a fast algorithm that is more efficient than 1.1 le faist KHT algorithm.

The advantages of KHT and SegKHT are suinrnarizcd as follows.

• KHT is a unified roprosoiitation of Walsh Had am aid Transform (WHT) and Gray-

Code Konids (GCK).

• To achieve computatioiml efficiency, a fast KIIT algorithm is proposed. The KIIT

algorithm which requires 4/3 addit ions per daliim per basis vector is Ikster than

any known fast GCK algorithm.

• By segmenting input data into Lg parts, the fast computation of SegKHT requires

4/(3L.s) a(idition(‘s) per basis vector. SegKHT is a sul)set of KIIT thai cannot be

represented by GCK.

• The coiiipiitatioiial cost of fast KHT and fâ st SegKHT algorithms aie iiidcix'iKlent.

of the t ransform size and dimension.

• Basis vectors of KHT are orthogonal to each otiicr, so arc the basis vectors of

SegKHT.‘

This chapter describes KHT and SegKHT in the context of transform domain pat-

tern matching. However, pattern matching is only an example application. The prop-

erties of KIIT and SegKHT make them attractive for many applications whidi require

transformation on sliding windows such fus imago based rendering, image compression,

super resolution, object detection, texture synthesis, block matching in mot ion ostima-

tioii, image denoising, action recognition, wide baseline image matching, and more.

4.8 Appendix A: Proof for Theorem 4.4

This appendix provide proof for Theorem 4.4.

Proof: Restricted to Iho cicfinil-ion of WHT, L.s is a power of 2 value. Wo first

96 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

prove it when GCK is dyadic ordered WHT, then generalize it for GCK. The 厂.、dyadic-
t

ordered WHT basis vectors 〜 ’ 知 f o r = 0 ,1 , . . . , ~ 1 can hr roprosc-'iiied hy:

m

论队k!‘广“

-(M(qi/”l !^(I im(A..”⑴厂

二 M(,"̂ ,)(I/,，⑩ rii(队’矿），

i.rvi)

’k)''

where N = L-s凡，the L^ cJyaxlic-ordorod WHT bâ sis vcctors for

0 ,1 , . . . , — 1 oil the loft-hand side of (4.54) is represented by linear coiiibinat ioti ()f

the Lg SegWIIT basis vectors in I , " (^^^(队’"” on the right-liaiul side of (1.51) and tho

orthogonal matrix M(7”）describcis this linear coinl)iiiation rolatioiiHhip. Hence, Ui() L^

dyadic-ordered WHT basis vectors can be linearly represented by Ls order-iV ScgWHT

basis vectors and vise versa. The proof for sequoncy-orcierod WHT is similar.

Considering GCK, wc have the follows from (4.54):

V GCK —

�(N,kL，+l)'‘

V

从 1) ' 厂

%於，

(4.55)

= M (“) (I , ” 0 = M("，)v忍g)^’
4

where sf'"^ has length R, N = N^R, N,^ = NmR/^s, tho L^ dyadic-ordercd orihonor-

mal GCK basis vectors in V[么:’&〜）on the left-hand side of (4.55) are reprosciitdd by

linear combination of the L,, orthoiiorinal ScgGCK basis vectors in V ^ ; 义 o n tho

right-hand side of (4.55) ami the orthogonal matrix describes this linear com-

bination relationship. Therefore, we have: f i p a n i y 、 ⑶ = 2) Vx,

V [； 冗 〜 = 交|丨2， “

S 4.9. Appendix B: Proof on the Generalized GCK 97

As lor the computational complexity, SegCCK basis vectors can ho coniijuted by

4/{3L.s) additions per basis vector por window using the fast, algorithm in Section

4.4.2 and the GCK basis vectors are computed by about 4/3 additions using the KHT

algorithm.

4.9 Appendix B: Proof on the Generalized GCK

In (his appendix, wo prove thai if the generalized CCK is not the GCK then the basis

vectors of generalized GCK are not ort hogonal to (，adi othor.

Proof: If the goiioralized GCK is not the GCK, lh(ni 3g, (j £()，... , 6 'M - 1, such

that (ig 土 1. Wc prove that V(/, g 6 (),. . . , Cm — 1, if (ig 牛 土 1 Uicn we can find

two basis vectors thai are not oriliogonal to each otlier. Consider the following two

geiioralizod CCK basis vcctors:

-a,

where s/̂ == 士 “f^

(4.56)

(4.57)

(4.58)

and Sr is a basis vector in Sr. We have follows for Iho two hasls vectors in (ISG):

= (S,, «/、§;.丨)'厂(尚,③[1 -

= (s7,’4,)«(|l s i l l
4.59)

Nolo that I 间 = 0 or = () in (4.59) corresponds to V(乂'”）= = Q,

which is not useful and thus not considered to happen for generalized GCK bâ sis vcctors.

If ag 丰 士 1, then [1 - (ay)2j + 0 and + o. Thus the two bfLsis vector in

(4.56) are not orthogonal to each othor.

4.10' Appendix C: The KHT algorithm for D dimensional KHT

Consider D dimensional input, window X(NJ)，where N = [TV! . . . NqY denotes the

size and j = |.7i,... ^juY denotes the position. Elements of are denoted as

X Ji ni,...,j/)+n/), for na = 0 ,1 , . . . , iV^ - 1, c/ = D. To make it short, we denote

98 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

X(似)a t position j as X i.

Four D dimensional projection values ?7(N, j) for r» — 0. 1,2, 3 can 1M、rcprc-

sentod as follows:

？ 乂 二 E (. .4 ' ; ! :r j、+k,, ‘ . . , j ,”k,” (4.60)
’…,kij

where wg) for d = 1，..., D is tlio k(jih element of the KHT baais vccl.oi. at diiii(;ti.sioii

d. For exaaiiple, ID KHT can bo roprcisented follows corresponding to (4.60):

V(N’i(”、,n - 乂 ; V , 力 . ： 茫 (. 1 . 6 1)
k-.O

Wc define tlio a-index for D diiiKMUsioiuil KHT a‘s • • • • • • who re —

fi^M -1 • • •(《ĉ •. • is the r>；-index for the basis vector in dimoiision d, ZVm,/ =

and Ofg) = {0,1} for = 0 , . . . , GM^ — 1- Four D dimensional projection values in

(4.60) arc ri^-rclatod at g^ if these four projection values have Uu，saino KHT basis

vector on all dimensions except dimension d and the Q-indices of their basis voctors

ill dimension d are only dilferoiil at and 二二i. Thus the four projection values

represented in (4.GO) have the same vĵ :;) . . . vjj;) for n 二 0,1,2, 3 cxcepl tliat tlicy have

different, v̂ /̂ J. And wc can consider the operation rolatod lo "[;')，...’?〈.:) without kd

in (4.60) as a linear function f and hav(̂ :

= /(1>1：)巧1+&1,.」"‘〜))， (4.02)

Denote the input data sliding = positions at dimension d from cur rent

position j 助 X2, where X2 = X(Nj"^)，j2 = [j i , . . . , jd + . •. ’ j/jf尸.Wo have

2/(N，？n)’l2) = /(X]”I::)a,:/i"a-i,".’jd+/�+fc“.j«+A,/))’ (4.63)
kd

.11. Appendix D: Proof of Theorem 4.2 99

Using Corollary 3, wo have:

I >
k.,

k.,

� .

(2)
v) 'x.

,3,1 ^ k,i.

⑴

J

u

,J./ + lu

I + /?..

. (2) .
(4.G4)

v ^ (1)

/

J.I

Since the f in (4.G2) is a linear function, wc lmv(，tho follows from (4.()2) by pulling /

for c!ach t(?riTi in (4.64):

？/(Î ，i询,j') — W r U彻， = y (N > ' ” J) -l

+ y(N’i切 J ,) = — :v(I^’i.⑶’ j*2)
(4.65)

The relationship in (4.65) for D dimciisional KIIT corrcisponds to the rolatioiisliip for

ID KHT in Corollary 3. Thus the KHT algorithm for D (liirioiisional separable KUT

is independent of dirnerisioii and size.

4.11 Appendix D: Proof of Theorem 4.2

Thcorc'.m J^.2 II' four order-N KHT projection values y、N, i(")’ j)=[<”）⑧ rh^ '̂̂ -'M^) 0

for n = 0 , . . , , 3 as dofiiiod in (11) ar(； related at, ry, where

represented in (20)-(23), has length L and 欢「）has length /?, then wv have:

arc

y(N、i(、\j + R �

^/(^^《⑶，j十/“)

- ⑶ ’ j)

2/(A^i⑴，j) +
A(/V’ j ’ /M

^ { N J J U)

whoro =

A(yv’ j、lU} = A�例 ’ j) - y(A^ 2(0) ’ j + 11

(4.66)

(4.67)

(4.G8)

Proof:

Wc first prove the computation in (4.GG)-(4.68) when KHT projection values have

the form = where 矛'）liâ s length L4,)

has length 4, ,̂:”）has length R�’ N = R/\. In this form, we have g = 0，JVM = 4

- 肌 i⑶、j + IU)

1 1 —1 - 1

y(N、i⑶,f)十."(;v，i⑴，

= { ([《 ‘ ' � [1 -1 -1 1

According to the definition of C(…” and y(/V, wo liavo

厂⑧[1 1 1 Il0s1.，r,}乱八'.力

={
2/(/V’i(o)，j + / ^ {肖

sf')'厂 0 11] 0 0 4 " ” } ^{N^IUj)

1
1

n

1
1

1
1

s

/
^
s
w

t

 :

r
\

1
1

；(AN fu,j)
'•XJ) ‘

Thus we liavo

A(;V, j , R,) = y(7V,7:(o)，j) - + R,)

{ ([沖 1 1 1) 0

Similarly:

•//(AM⑵’力 + y(N,i(2),j + R4)

={ ([-1 1 -1) 0

('1.70)

0 (K) |1 1 八 N » /<4J)

(4.71)

0 sf')''.(» [1 - 1 1 -1]]) ® 4“ ' . } 4 "〜)，

(4.72)

⑧ m(4,i)7’ ⑧

m⑷2广⑧

义m (切⑧4， '

(4.G9)

0 s 1 i]) <8 »4 “ ' } e—…)，

(4.73)

+ 0

(4.74)

124 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

for WHT ba.sis voctor i f t (�a n d

If the basis vectors in (4.71)-(4.74) are nqual, then we have {4.66)-(4.G8) when KHT

projection values have the form y(N,i(’i\j) = ⑧ m(么43；)) The

w
r
 ̂

—
.

^

 I
I

•
1

i

'
t

-
t

】s
)
s

 T
s

 I
s

w v

§ 4.11. Appendix D: Proof of Theorem 4.2 101

followings prove that the basis vectors in (4.71)-(4.74) are equal. The bâ sis vectors
ji yr t^ yr

in (4.71)-(4.74) share the right KroTUickor product of ^r ，i.e. ’ this part is

skipped.

Lot《''）be reprosontecl as [.sq s\ H2 . . . ’‘*>•“ i j ' . For (4.71), we have:

u

I
J

1
1

1
1
 «

T

\
p
/

^
s
/

1 1] 0 J I , ' 」

= 1 ^ 0 , 50, .50, .So’ .Si, 6.1’ .S'l , … ’ .s“ —1’ 1, 0

— 0 , .S(), .S'o, .S'o, .So, .S'l, .S'l, .S'l, 6'], ... , 67.4-1 , .9 “一

= 1 6 0 , 0, 0, 0，.S'l - .So, 0, 0, 0’ .S2 - -S1, ... ,0,

l?or (4.72), we liave:

0 -f 0 ⑧ l l -1 1 —1

.、、)’ —A’0’ S()’ -.S'o, ,<̂ 1’ -.Sl, .S'l, - . S] , …’ .SL.广 1，-A7.., -1, 0

+ [()’ 50, -.So, .So, -'so, 6.1， .Sl, -.S'l, ... , - f ^ U -]

.So, 0, 0，0，A'l - 6,0, 0, 0, 0, 6-2 — 6.1’ ••.，()’ -67.4-

於')〜0 1 - 1 1 - 1

0 矛 (8) l l 1 1

For (4.73), wo have:

肖 ' ') 、 l l 1.

So, 6 . 0 ， - 6 0 , .Sl, Sl, -.S), —6,1

0 《 ') ' (S) |1 1 1 1

0 1 - 1

0, .So, •So, .S'o, Sl •A'l -.S.i, A'l

0 ， 0 , 0 , S l - S o ’ 0 , 0 ， 0 , S2 - Su …，0’一6丄‘广1

0 111 0 1
1

1

1

1
 %

T

\
w
/

力
s
z

o

For (4.74)，we have:

sf ‘广 ^ 1 0 -f I
J

1
i
 ¥

(4.75)

1 1

01

1 —1

(4.76)

(4.77)

=[l9()’ - A.O’ S “ -A'l, .S'l, ...，-5/.4-1, S/.4-I, 0 .

+ 10， .知，6,0’ -•So, -So ’ A'l, Sl, _’”，….-f iU" 1» -.U4-I) (4.78)

=[50, 0, 丨 0, 0, .Sl —A.()’ 0’ 0’ (〕 ， - ... ,0，一 S “一 1,

二 . sf>' r ③ [1 1 1 11 0 — 十 0 矛‘)7 1 1 1] .

102 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

Thus, we have; tlie followings when KHT projection values have tlio form ？y(/V,

7:W， J) - 认 N 、 i + lU)

二 认 N 、 i⑶, 、：j) 十 y("， j + JU)

= 认 N 、 ？：⑵、 } + lU)

= i⑶、 i 十 lU)

(,1.79)

Considering the general caac wlien KHT lias tlic form of ？y(7V, j) = (sj''^

③ we have the followings:

= ® » … ® m('二〜-')(X) m(2,o) m(2.o) m(2,、"…③…0 m(2’…'m ‘) ® 4“），

--= sj''^ (8) m("M’⑶）⑧

〜（i(2)) 二 §{“）公 r r i (�

= 卞 ' ） ® . . . ③ m (2 , 〜 - .) 0 ③ 击 (2 , 1) ③ ĉ . . . m(2’。(..M- •) 4^) ,

(4.80)

Denote vcct'or s/._j having length L and vector ŝ ^ having length 2(;从-钱-'”1 iis

follows:

Then we have:

S/2 = 肖 r i ^ (2 � o) 0 . . . (8) ri^('2,a/»-i)，

Sr, = m (2 � i H 2) (g)...⑧ mC-^.^CM-i)圾 4 “

(4.81)

_ s/, (g) rft ⑷

⑴)r

〜 (押 广 s/2 (g) rft(…2, .%

�(i ⑶ 广 _ s/2 ③

，TM

『TM

《U

S/2 M j 0 s ta (4.82)

Since •(",“〜）for n = 0,1,2,3 in (4.82) are in the form shown in (4.69). Wo can set

U = i?.4 == 2GM-g-2R in (4.69) and use the relationship in (4.79) to derive the

§ 4.12. Appendix E: Proof that the GCK algorithm can be used for KHT 103

follows:

A(iV,j,/?4) = y(iV,i(o)，j) — ⑶,j 十 /?4),

=y(A^沪)，j) + y (^^z⑵ ’ j + 凡l)，

= y (A ^ i ⑴ ’ j) - y (^ ^ i ⑶ ’ J • + /il)•

Then we have the Theorem 4.2 proved using (4.83) for deriving (4.G6)-(4.68),

(4.83)

4.12 Appendix E: Proof that the GCK algorithm can be used for K H T

This appendix prove that the GCK algorithm can be used for KHT. In order to represent

the GCK algorithm, we define the a-relatiori for 2 basis vectors and projection values.

If the Q-indices of ijJJ and ijjj) for zjjj^, i}^) = 0,1, . . . Nm ~ 1 are only different at ctg,

then we say that: 1) WHT basis vectors rii(〜丨i(iS))and are a-related at g\ 2)

the corresponding KHT projection values y{N, and y(</V’i⑴，j) having the same

and the same 涂”）are a-related at g, where y[N, 2(")，j) for n = 0,1 are represented

as follows:

Without losing generality, we let the iJJj and in (4.84) be represented by

. . + a 州 2 州 + 0. + .. +ao2^

4Ji) - . 针 i2计 1 + 1 • 2沒+ag一i2经-1 +• • • +ao2°.

(4.84)

(4.85)

(4.86)

The following Theorem is equivalent to say that GCK algorithm can be used KHT:

Theorem 4.5 If KHT projection values y{N, for n = 0,1 as defined in (4,84)

128 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

related at g with i ^) represented in (4.85) and (4.86), tlien we have the followings:

y[N、i、o、、j + R2) = — l2/(/V’i⑴ J) + 2/(iV，7:⑴,j + Ro)].

y(iV，i(i),j + R2) = [1力V，i(o), J.) - j + R2)\ - ⑴,j) ‘‘

where R is the length of vector gf'，）in (4.84)，R2 = 广.̂凡

(4.87)

'Proof:

This proof is very similar to the proof for Theorem 4.2 in Appendix D. We first

prove the computation in (4.87) when 2 Q-related KHT basis vectors have the form of

广 ® M⑵(g)於『r，where 矛'）has length L2 and 欢•『）has length Ro. This special

case has TVm = 2 for WHT basis vector ift。VM’i(M>). In this form, we have：

“ s f ’ ^ m(2，o)T

s f

According to the definition of (乂” and y{N, i,j) we have

{ 广 (g i [l l j 0

T
s
/

I

I

\
)
/

2

+

•
z

0 [1 1 0

Thus we have:

么 N，j，R2

= { ([肖 ") 、 [1 1 1 o] - [o 矛 ') 、

2/(iV，<(i)’j) + y(Ar“(i)，j. + 7幼

= { (H 〜 - 0 + 0 牙‘广 0(1 - 1]

(4.88)

(4.89)

)^$s1^“)T}4iv+/w)， (4.90)

Let 肖“）be represented as [sq si S2 • • • ,3^2-1]^. We have the followings for the

§ 4.12. Appendix E: Proof that the GCK algorithm can be used for KHT 105

basis vectors in (4.90):

duy
11 0

Si ,S‘2、

<50， 0

0 於 ⑧

Ail)'^
11 0 +

SL2-1，s/�-i’ u

0 (4.91)

=l.i»'0，—.低《1，—Sl，A’‘2, —.S丨2 ’ … ’ 6-^2-1, -67.2-1 0

+ [0’ SQ, 一 6 0， 6 . 1 ’ -Si , 82、-S2，…，，U2_1’ 5/.2--1

=[so, 0, Si - So’ 0’ 52 - Si, 0，…’ 0, -.S'La-l

於 广 (1 0 0 於)

According to (4.91), basis vectors in (4.90) are equal and we have the followings when

KHT has the form of 矛‘广 % M ⑵ ^ 了：

Ayvj,/?2 = y(^^i(o)’ j) - yij^j⑶’ j + R2) = "(^^i⑴， j) + ?y(^^z⑴，j + 彻) . (4 . 9 2)

Considering the general case, we have the followings:

= � m俱ao) g) . . .⑧ rii(‘2’ag-i)⑧ 1^(2,1) ^ 0

Denote s/2 and ŝ -j as follows:

(4.93)

Sr2 = m (2 ,�+ 1) (8)...(g) m(2’"GM-i) ® 4 “

(4.94)

Then we have:

(4.95)

106 CHAP. 4. THE KRONECKER-HADAMARD TRANSFORM FOR FAST PATTERN MATCHING/

Since f 竹 二 0,1 in (4.95) are in the form sliovvn in (4.88), we can use the

relationship in (4.92) to derive the follows:

= - y(N,i(o),j + R2) 二 + y(N,i。)、j + R^). (4.96)

Then we have this Theorem proved using (4.9G) for deriving (4.87).

Chapter 5

The Orthogonal Haar transform and its Application
in Full Search Equivalent Pattern Matching

5. Introduction

Many image processing applications require extracting information from images using

filters, transforms or projection kernels.- To extract information in a computationally

efficient way, fast approaches such as integral image method [68], summed area table

method [69], boxlct method [41], fast Walsh Hadamard transform (WHT) algorithms (1;

33]，fast Gray-Code Kernels (GCK) algorithm [32]，fast intersection kernel algorithm

[70] and fast integral histogram algorithm [71] have facilitated research in tracking,

pattern matching, texture mapping, face detection, object detection, etc. Motivated by

these works, this chapter aims at improving the computational efficiency in extracting

information from images.

5.1.1 Rectangle Sum and Integral Image

The sum of pixel values within a rectangle, which is named as rectangle sum in this

chapter, is a commonly used feature for images. Rectangle sums and Haar-like features

have been widely used for a lot of applications, e.g. object detection (G8; 72-74], object
、

classification [75], pattern matching [20; 31; 76], feature point based image matching [20

arid texture mapping [69]. Porikli utilizes the integral image method to design a fast
<

algorithm for computing the histogram in [TlJ. Since the work in [69] from 1984, it has

been considered that at least 3 additions are required to obtain the rectangle sum using

the summed area table in [69; 77] or the integral image method in [68]. Note that one

subtraction is considered to be one addition regarding the computational complexity

in this chapter. .

107

108
CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH

EQUIVALENT PATTERN MATCHING

This section illustrates the integral image following [68; 76; 77]. The suiniiied area

table in [69] is very similar to the integral image. Denote the pixel value at position

{jiJ'z) of a J i X J2 image as a：(力’ j.2), where 0 < j\ < J\ - I and 0 < .；2 < ,h : 1. The

integral image ii{j\,j2) is defined as:

IJ

J\ -lJ-2-

U\j2) 二 : r (") ‘
=0 u=0

It is reported by Viola and Jones that the integral image

using two additions per pixel [08]. As shown in Fig. 5.1,

specified by:

‘ rect {jij2,NuN2),

(5.1)

in (5.1) can be constnirtod

a roctanglc in an image is

(5.2)

where j\ and j2 denote the upper left position of the rectangle, N\ and N2 dfmote the

size of the rectangle, 0 < j i , i i + 7Vi < J i - 1;0 < 32,32 + < h - 1； iVi, > 0.

Denote rs{rect) as the sum of pixels within the rectanglc specified by the rect in

(5.2). The integral image method in (68) computes rs{rect) from integral image using

3 additions as follows:

(5.3)

Lienhart and Maydt propose an algorithm that computes the sum of pixels within t he

45° rotated rectangle by 3 additions in [77j using similar iiiothod as the integral image

method.

5.1.2 Overview

This chapter proposes a fast algorithm that computes the sum of pixels in a rectangle

by one addition using the proposed strip sum. Then we propose the Orthogonal Haar

ji + -1 h 4-N2--1

rs{reci)= > , >；
U=ji v-n

n{j\ 十 Ni、j2 + N.2、 十"(ii hi'i)

—ii(Ji、h + - f Â i ̂ k)

J,

J2

‘卞
J2

— ； ^

1 t 1 ‘卞
J2
"2::

rect
Image x(j , j2)

F igure 5.1; Examples of rectangle rect, where rect = (j i , ^11-^2), j\ is the horizontal

position and j2 is the vertical position of the upper left corner, N、is the width and N2 is the

height of the rectangle. Ji is the width and J2 is the height of the image.

§ 5.2. The Fast Algorithm for Computing Rectangle Sum 109

transform (OHT) which can be computed using strip sum. When computed on sliding

windows, the proposed algorithm requires O(log'u) additions per pixel to compute u

OHT basis vectors. OHT is then used for FS oquivalont pattern matching. ExjDerimen-

tal results show that pattern matching using OHT is faster than existing FS equivalent

algorithms. The method was initially introduced in |78j. We expand this idea here,

well as introduce more oxperirnontal results and thwrolical analysis on the relationship

between OHT and other transforms.

The chaptor is organized as follows. Seclion 5.2 presents the strip sinri and then

analyzes the computation and memory required by strip sum for computing rectangle

sum. Section 5.3 proposes the OHT and analyzes its computational complexity. Section

5.4 gives experimental results. Finally, Section 5.5 presents conclusions.

5.2 The Fast Algorithm for Comput ing Rectangle Sum

In this section, the fast algorithm for computing rectangle sum is introduced and ana-

lyzed regarding computational complexity and memory requirement.

5.2.1 Computation of Rectangle Sum by Strip Sum

Define horizontal strip sum /t.s.s(ji, j2> ̂ 2) as:

ji-l ja-t-ZVa - •

hss{ ju j2 ,^2) = 工(u，”). (5.4)
U = 0 U=j2

Hence, hss{j\^j2, N2) has tho upper right corner (ji - l，j2) and height N2. Figure

5.2 shows the hss{ji + ^2) and hsfi{j\j2, ^2) defined in (5.4). .72, ̂ 2)

can be obtained by one addition per pixel as follows using the integral image n{j\,j2)

defined in (5.1):

ji — 1 ja + Na — 1

hss{juj2.N2) = X I 对"，…

. U=0 1»=J2

ji-1 ja + ZVa-l (5.5)

u=0 v=0 71=0

• = ii(ji，j2 f N2) 一 ii(J、，j'i).

We can compute rectangle sums r\s(ji’力，TVi，A^ and rs{j\,j2, 7V(, N2) (N\ + N{)

CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH
110 EQUIVALFNT PATTERN v/IATCHlNG

(0,0)
Jl

N2
\ .

I hss(MN「，J^‘

(o , o)UA
/V,

"2

hss(jij2, Ni)

mrnmm

Figure 5.2; Strip sum and rcctangJc sum on the image. Only oJic ndditioii is rnc/uircd to

compute rs{ji,j2, A**!, N2) from the data structure kss using (5.6).

F igure 5.3; Roctanglo sums sharing the same height N2. Thb two icctangle sdiiis can tisc the

same strip sum for computation.

(5.0)

from strip sums as follows using (5.3) and (5.5): w
< ‘

M:h、h,N“N2")

. = [i i U i + Nuj2 -I N2) - n(ji + Â，.?2)1

一 [nUi，32 + N'z) - n{3\,32)\

=hss{ji + Nuj2{N2) - h.ss{juj2^ A2),

： rs{juj2,N[,N2) 、

‘ ' = h s s (M -+ N\、h、-N2)厂 h.ss[ji ’ j.2、N2).
• . -

- V ‘

As shown in (5.6), only one addition is required to compute rs{j\,j2, N\, N2) from the

strip sums h8s{j\ + Ni , j2, N2) aiicj liss{ji,j2^ ^2)- Fig. 5.2 shows this computation.

The rs{ ju j2 ,N i ,N2) and j2,M,7V2) ill ,(5.6) have the same height N2 but • *

have different width (TVi 丰 N[). They both use the Iiss{j\j2, for computation.

Fig. 5.3 shows the relationship between and rs(ji，j'』，A/"!’ A ^ . Thus

one strip sum hsfi(J\、j2、N2、is utilized for computation, of two rectangle sums having

sizies TV! X N2 and N[x N2 in (5.6). In general, if the data structiiro

5.2.2. Computational Complexity Analysis 111

haij been provided on all pixel locations j2), we can use lissiji.j-), N2) to obtain

rectangle sums having any width N\ ami the fixed height N2 at any pixel position by

0110 addition. This procedure of using strip sum for computing reclangUi sum is shown

in Table 5.1. Strip sum is also applicable for 45° rotated rectangles introduced in |77).

1. Temphsi is a l-D array buffer o f size J]. N2 is a fixed value. yS

is the row index and j、is the column index

2. f o r 0 to 72 - 1
3. Compute the hss(j^j2, N{) for 0< j\<Jr 1 at the /^th row from

integral image using (7) and store them into Temp,,、,.

4. f o r ； t o J\-]
5. Compute rs{j、、ji、N、’ Nj) using (8) for rectangles having

any N、. The hss(j\,j2、Ni) and tvis(j、+N、，j~i、Ni) in (8) are
stored in Temp^u-

6. end o f for y")^ to

Table 5.1; Pseudo-code showing the utMization of strip sum for computing rcctnnglr sums

sharing the same height N2.

fiHti is iisod for rectangle sums having the same height N2 in (5.G). Similarly, in

order to use strip sum for rcctanglo sums having the same widt h N\, we define the

vertical strip sum vss{j\,j2, N]) as:

J\ \ — I j2-1

w.s.sC?•丨,j2，N、、-:、 ^ x{u, v).

u^ji i;=0
(5.7)

And wo can use the same vss for computing rectangle sums having any height N2 and

fixed width N\ as follows:

二 難(J、’j2 十 N2’N\

where

—細(力’《7'2’̂/丨）， (5.8)

5.2.2 Computational Complexity Analysis
*

The overall algorithm ami the computation required by strip sum for computing one

rectangle sum is as follows:

1. prepare tlic integral image by 2 additions per pixel;

-f

2. prepare tho strip sum using (5.13) by 1 addition per pixel;

3. obtain the rectangle sum from strip sum using (5.0) by 1 addition per pixel.

CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH
112 EQUIVALFNT PATTERN v/IATCHlNG

1. prepare the integral imago by 2 additions and 4 memory fclch oporaliori.s (M-ops)

per pixel;

2. prepare the min{Num\y, Nwn//} strip sums using (5.5) or (5.8) by

mi l l {Numw , Nuraji} additions and 2miii{ Nuin j i} M-ops per pixel;

3. obtain the r rectangle sum from strip sum using (5.6) or (5.8) by r additions and

2r M-ops per pixel.

Tablo 5.2: The steps and nunibvr of opcrHlions required by strip sum inctJiod lo obtfiii)

rectangle sums.

Box Integral image Strip sum

Adds 4r 2+3r 2+min(/V«//Jw, Num,i)+r

M-ops 6r 4+4r 4+2 min丨yVwmtv, Nuni,i} +2r

Table 5.3; The fukiitions (adds) and mewory fetch operations (M-op) per pixel required for

computing r rectangle sums having Numij different heights and Numw different widths.

't

For general case, wo suppose there are r (iifTerent sizes of roclangic sums coriipuled

on cach P B ^ L position. Suppose L,hesc r rectangle S U I U H liavc Niunw (lifr(，r(、iit, widths

and Nun in different heights. As illustrated in Tabl(? 5.1, one horizontal strip sum is

requirojcl for rectangle sums sharing the same height. Hence, Nmtiu horizontal strip

sums are required for computing r rectangle sums liaving Nunin (lifFerent heights. Al-

ternatively, we can computo these r rcctangle sums using Numw vertical strip sums.

Therefore, m\n{Numw^ Nuviji] strip sums are required for computing these r rect-

angle 由mns. The overall algorithm and the computation required for coni])utiiig r

rectangle sums is shown in Table 5.2. In summary, the strip sum method requires

2 + mm{Numw^^umii} + r additions and 4 + 2min{iV'u7/ivv, Namh] + 2r nioniory

fetch operations (M-ops) per pixel for computing r rectangle.sums.

The box technique in [47] requires 4r additions and 6r M-ops per pixel for computing

r rectangle sums. The integral image method in [68] requires 2 + 3r additions and

4 + 4r M-ops per pixel, where 2 additions and 4 M-ops aro used for preparing the

integral image, 3r additions and 4r M-ops arc used for computing r rectangle sums

from integral image using (5.3). The computational complexity for different i net hods

is compared in Table 5.3.

§ 5.2.3. Buffering Strip Sum 113

5.2.3 Buffering Strip Sum

Wlion r rectangle sums having Nmrin different heights anv conipiitcd for a ,J\ x J2

image, size J\ J^Nuniif memory will be required if all of the Num h horizontal strip

sums are stored in memory. Actually, buffering strategy can be usod to reduce the

memory required.

We use the computation of rectangle sums having the same height N2 but different

widths as the example for illustrating the buffering strategy. The procedure of memory

usage is described in Table 5.1. Suppose the roctanglo sums at the 0th row are obtained.

When we use (5.G) for compviting roctanglo sun is rs{j], 0, N], N2) having any width TV]

at row 0, we need only the strip sums hss{j], 0,7V2) and hss{ji + N\, 0, N'2) at row 0,

but need not the strip sum at other rows. Thus we can computo the strip sums at

row 0 and store them using a buffer Temp ha a having size J\ at Stop 3 in Table 5.1,

but need not store the strip sums at other rows. As the row index increases from 0

to 1，the strip sums in row 0 is not required any more. And we can reuse the biifTer

Temp/tas for storing trip sums in row 1，which is then used for computing rectangic

sums in row 1. Therefore, size J\ memory for TempkHs is required to store strip sums

in this example ais j2 increases from 0 to J2 — I. In general, if r roctanglo sums having

N urn I { different heights are computed, size J、Num" inemory is required to store the

Numu strip sum buffers, where Nurrij-i < J2- Thus the meinory required by the strip

sum using buffering strategy is smaller than or equal to image size J1J2.

5.3 The Orthogonal Haar Transform

5.3.1 The Proposed Orthogonal Haar Transform

Fig. 5.4 shows the proposed 20 4 x 4 and 8 x 8 OHT. The OUT for other sizes can

be similarly derived. Normally, the basis for 2D image is called basis imago. Since

2D image can bo represented by ID vector, e.g. 2D candidate window and pattern are

represented as ID vectors 力 and respectively, basis image is called basis vector

in this chapter so that the 2D window represented by ID vector is projected onto basis

vector instead of basis image. It is easy to see that the OHT basis vectors in Fig. 5.4

are orthogonal to oach other. We can normalize the basis vectors and have orthoiiormal

OHT basis vectors. Thus OHT can bo applied for transform domain pattern matching

CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH
114 EQUIVALFNT PATTERN v/IATCHlNG

Values for basis vectors

• 1 ED 0

B H W
a -

(a)

ESU
H
m
1

m
SE
m
圓

iin
醒

mmm
M M

_ _ 翻
H i i i E
i f f i l 醒

i t a i i i M i i
(b)

•
s
l i
腿
1 1

ffi

M
隨
H

隨
•1

a

H

•
I

F igure 5.4: (a): The 2D 4 x 4 OUT basis; (b): the 2D 8 x H OUT basis. WliiU^ represents

value -hi, grey represents value —1 and vertical strips represent valua 0. The numbers for 4 x ‘1

OHT basis denote the order when they arc computed in pattern matching.

shown ill Table 1.1.

The GCK algorithm requires 2u additions for obtaining u GCK projection values.

If we dircctly use the integral image for computing Haar-likc features as the imple-

mentation in OpeiiCV [53]，7 additions are required to obtain a Haar-like feature and

about 7u additions are required for obtaining u OHT projection values. Hence, direct

use of integral image method makes OHT less efficient than WHT and GCK in comput-

ing transformation. In the followings, we propose a fast OHT algorithm that requires

*
0(log?i) additions for obtaining u OHT projection values.

5.3.2 The Fast OHT Algorithm

The 2D 4 X 4 OHT in Fig. 5.4 is used as an example to illustrate the fast OUT

algorithm. In the proposed algorithm, the IG 4 x 4 OHT basis vectors are considered

to bo 1 rectangle sum, i.e. basis vector 0，and 4 Haar-like features having the following

different sizes:

1. basis vector 1 has size 4 x 4 ;

2. basis vectors 2 and 3 have the same size 4 x 2 , i.e. width 4 and height 2, but

different positions;

3. basis vectors 4 to 7 have the same size 2 x 2 but different positions;

basis vectors 8 to 15 have the same size 2 x 1 but different positions.

s 5.3.2. The Fast OHT Algorithm . . 115

Since the basis vectors having the same size but different positions are the; same Haar-

like feature having different poffitions on the image, they can be simultaneously obtained

by cornpiiting one Haar-like feature in a sliding window manner on the image. Haar-

liko features can be obtained from rectangle sums by 1 addition. Thus the 4 Haar-like

features having different sizes can be obtained from the roctanglo sums by 4 additions.

The 16 basis vectors arc computed from r — b rectangle sums having different sizes:

4 X 4, 4 X 2，2 X 2，2 X 1 and 1x1，where we have N u m u — 3 different heights: 4,

2 and 1. According to the analysis in Table 5.3, we need 2 + 3 + 5 = 10 additions

for obtaining tho \i\\i\{Numw ̂ ^umu} == 3 strip sums and r = 5 rectangle sums. In

summary, the proposed method requires 14 additions per pixel for computing these

16 Haar-like features, where 4 additioi:!，are used for obtaining liaar-liko features from

rectangle sums and 10 additions arc used for preparing strip sums arid rectangle sums.

As another example, the 64 8 x 8 OHT basis vectors in Fig. 5.4 are considered to

be 1 rectangle sum and 6 Haar-liko features having different sizes. The 64 basis vectors

are computed from r = 7 rectanglc sums having different sizes: 8 x 8，8 x 4，4 x 4, 4 x 2,

2 X 2, 2 X 1 and 1x1 , where we have Numu — 4 different heights: 8, 4，2 and 1. Prom

the 16 4 X 4 OHT basis vectors to the 64 8 x 8 OHT basis vectors, Nurnh increases by

1, the number of Haar-like features and the number of rectangle sums having different

sizes increase by 2.

Generally, when the N\ x N\ input data is projected onto the first u = 4", n = 0,1,...

OHT bases, there arc 1 rectangle sum and log2 u Haar-like features having different

sizes. There are r = log,』u + 1 rectangle sums having different sizes: Ni x Ni, N] x ^^

爭 X 令，令 X 牛， … ，珠 X 贪 . A n d we have Numu = 0.5/0.92+ 1. The steps

for computing OHT and the corresponding number of operations required are shown

in Table 5.4. In summary, the proposed method requires 4 + 2.51og2U additions for

obtaining u OHT projection values. When u = 16, we have the example for the 4 x 4

OHT. *

As for memory required in computing OHT, only the strip sum having one height

need be stored. For example, when we compute the 0th 4 x 4 OHT basis vector, the

horizontal strip sum having height 4 is stored. Then we compute the 1st basis vector

using the horizontal strip sum having height 2，while the horizontal strip sums having

height 4 for the 0th basis vector are not required and are not stored any more. To

CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH
140 EQUIVALFNT PATTERN v/IATCHlNG

1. prepare the integral imago by 2 additions per pixel;

2. obtain the Nmriu — 0.blog2U + 1 strip sums from integral
image using (5.5) by {).bLog2U + 1 additions per pixel;

3. obtain the r = log2 u + 1 rectangle sums from strip sum »jsing
(5.6) by log2 w + 1 acklit.ions per pixel;

4. obtain I,he log2 u Haar-like feat,urns from rectanfilo sntns by
log2 u additions per pixel.

Table 5.4: TJia stops and number of opcraihns required to obtnin u OUT projection vahios.

further save memory，we can use the biifTering strategy in Section 5.2.3 ami rcxjuirc J\

memory for storing strip sum.

5.3.3 OHT for Pattern Matching

Since OUT bases have varying norms, normalization is required for obtaining SSD.

Because the normalization factors arc power of 2 for energy, normalization can be

computed by shift operations, which ha»s tlie same cost as addition. This normaliza-

tion is computed for the partial SSD of the remaining candidates, i.e. �〜 ） — •

€ set can, but not for OHT on the entire image, i.e.

- - — ‘ -

for j = 0 ,1 ,2 , . . . , W — 1. For u = 4" OHT bases, there are log2 u different uoriiializa-

tion factors. In worst case, the normalization requires log2 u shifts per pixel when no

candidate is rejected at all. This.normalization procedure requires few coinpiitatioii in

practical cases where many candidates are rcjectcd in early stages.

OHT can be computed in two ways: sliding window or random accoss. We choose

one of the two ways that require less imputa t ion for pattern matching. For example,

if wc want to project 500 candidate windows onto the first basis in a 256 x 256 image,

OHT can be computed on the 500 candidate windows with the aid of integral image.
、 ‘

However, the GCK algorithm has (,o compute the transformation in a sliding window

manner on the entire image siich that GCK is computed for about'256^ windows instead

of for the remaining 500 candidate windows. This kind of situation occurs when only a

small nimiber of candidates are remained to be examined in transform domain pattern

matching. The corners method introduce in [59] for WHT can compute the WHT for

the remoiniing 500 candidate windows. The corners method requires 0(N) additions

for obtaining one WHT basis while the OHT algorithm require 0(1) additions for one

§ 5.3.4. Comparison of OHT with Other Transforms 117

OHT basis.
¥

5.3.4 Comparison of OHT with Other Transforms

•p

The following theorem describes the links between WHT and OHT:

Theorem 5.1 If the 2D N\ x N2 WHT bases are in the same order as OHT bases,

then: 1) the subspace spanned by the first u — = 0,1,... WHT bases is equal to

the subspace spanned by the first u OHT bases; 2) the first u orthonormal WHT bases

and the first u orthonormal OHT bases extract the sanio energy from any input data;

3) the computation for the u WHT bases requires 3u/2 + 1 additions per window while

the computation for the u OHT bases requires 4 + 2.5 log2 u additions.

The proof for the theorem above is provided in the appendix. We use the 4 x 4 OHT

and 4 x 4 WHT example in Fig. 5.5 for illustration. Let the ith 2D WHT basis vector

be represented as v[5/)〃7̂ . Let the' ith 2D OHT basis vector be represented aa qhT'

We have the follows for the first u = 4 WHT and OHT basis vectors in Fig. 5.5:

V ⑴

1
^WHT

^WHT

。⑵ VwfJT

-•lv)//7、-

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 — 1

[MO)' 1

VQHT

VOHT

S7 ⑶
L Vo//7-J

(5.9)

where the first 4 WHT bases can be linearly represented by the first 4 OUT bases and

vice versa. Thus the subspaxL-e spanned by the first 4 orthogonal WHT bases is equal

to the subspace spanned by 4 OHT bases. The WHT bases are orthogonal to each

other and can be normalized to be orthonormal bases, so are the OHT bases. Thus the
. . . <

energy extracted from input data'by the first 4 orthonormal WHT bases is equal to that

extracted by the first 4 orthonormal OHT bases. As for comp^utational complexity, the
\

fastest WHT algorithm in [33] requires 3u/2 + 1 = 25 additions to compute the u = IQ

WHT bases, the proposed fast OHT algorithm requires 14 additions to compute the 16

OHT bases. .“

The conventional Haaf transform (HT) is different from the OUT proposed in this

chapter. Fig. '5,5 shows 2D 4 x 4 OHT, HT and WHT. In appendix A, wc prove that

the first u == 4” conventional HT bases and the first u proposed OHT bases span the

same subspace. However, it is more efficient .computing the OHT than computing the

conventional HT. For example, OUT bases 2 and 3 can be obtained at the same time
g

%

when cornpu^d on sliding windows. However, the conventional HT bases 2 and 3 are
« » 、 .

F igu re 5.5: 2D 4 x 4 transforms: (a) the proposed OHT, (b) convnntional HaJir transform,

(c) WHT. White represents '-hi, grey represents —1 and green vertical strips represent 0. The

numbers for 4 x 4 OHT basis denote the order when they are computed in pattern niHtchwg.

The elements in OHT only contain 1, -1 and 0. The elements in GCK |32] can ho

real numbers. GCK [32] and generalized GCK [51] are better lhan OUT in representing

a larger set of basis vectors that can be computed efficiently. Efficient computation of

GCK and generalized GCK requires that they are computed in sliding window manner.

OHT is more efficient than GCK when computed on sliding windows. Another advan-

tage of OHT over GCK and generalized GCK is in random access, i.e. when computing

(fi-ansformation for isolated windows as analyzed in Section 5.3.3.

5.4 Experimental Results

This section evaluates the performance of pattern matching using OHT by comparing

it with FS and the other FS equivalent algorithms in pattern matching. All-of the

experiments are implemented on a 2.13GHz PC using C on windows XP system with

compiling environment VC 6.0. Sum of squared difference (SSD) is used for measuring

the dissimilarity between pattern and candidate windows,
ft

5.4.1 Oataset and Algorithms Used for Pattern Matching Experiments

The fast, algorithms compared with FS are as follows:

1. WHT: the WHT algorithm in [1);

2. GCK: the GCK algorithm for WHT in [32];

3. IDA: the recently proposed IDA algorithm in [31

CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH
118 EQUIVALFNT PATTERN v/IATCHlNG

required to be computed independently and the computation of HT basis 3 is more

complex than OHT basis 3.

f
f
i
f
f
l
®

i
l
^
I
u
m

關
圓
園
國
“

3
田
_
圍

R
B
I

_ .S i

m
•11

i

_
1

_
欄

m
••供

m
•11

i

_
1 m

§ 5,4.1. Dataset and Algorithms Used for Pattern Matching Experiments 119

DatavSet Image Size Pattern Size

SI 160 X 120 16 X 16

52 • 320 X 240 32 X 32

S3 640 X 480 G4 X 64
54 1280 X 960 128 X 128

55 1280 X 960 64 X 64

56 1280 X 960 32 X 32

Table 5.5: Datasets and corresponding sizes of images and used in the experiments.

4. OHT/： the integral image for OHT;

5. OHT5: the strip sum for OHT.

The code for WHT is available online [57] and the code for IDA is provided by tho

authors of [31]. The parameters for WHT use the default values in [57] and those for

IDA are chosen according to [31]. For GCK, we choose the sequency ordered WHT and

the code is based on the code used for motion estimation in [2]. In the experiments,

we examine the overall computational efficiency of different algorithms instead of any

single step if not specified. Thus all preprocessing, e.g. calculating integral image and

strip sum，are included for evaluation.

As explained in [1], when the percentage of remaining candidate windows is Sirialler

than certain number, denoted as e’ it is more efficient to use FS for finding the matched

windows instead of using transformation. In the experiments, the default setting is

e = 0.02% for OHT. According to the authors' source code for WHT in [57], wo sot

e 二 2% a»s default value for WHT and GCK. We will give variations of e in Section

5.4.4.

Table 5.5 shows the 6 datasets used for evaluating the performance of the com-

pared algorithms. The dataset includes different sizes of patterns and images. Our

experiments include a total of 120 images chosen among three databases: MIT |54],

medical [55], and remote sensing [56]. The MIT database is mainly concerned with

indoor, urban, and natural environments, plus some object categories such as cars and

fruits. The two other databases contain radiographs and Landsat satellite images. The

120 images have 4 resolutions which are 160 x 120, 320 x 240, 640 x 480 and 1280 x 960.

Each resolution has 30 images. The OpenCV function 'cvResize' with linear interpola-

tion is used for producing the desired resolution of images. For each image, 10 patterns

were randomly selected among those showing a standard deviation of pixel intensities

CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH
120 EQUIVALFNT PATTERN v/IATCHlNG

higher than a threshold (i.e., 45). Six datasets 51 to 56 with image arid pattern sizes

given in Table 5.5 were formed. Each clataael has 300 iiuago-pat lorn iwiirs. Data.sots

51 to 54 are the same as those in [31 j. Datasets 55 arul 56 arc to inyostigatc the、(̂ ficct

of pattern size in pattern matching.

In the experiments, if the SSD between a candidate wiudow and the pattern is holow

• a threshold T, the candidate window is regarded to match the pattern. For N\ x N2
• I

patterns, the threshold T is set as:

\.l-SSDrrnn^NiN2, (5.10)'

where SSDmin is the SSD hetweeii the pattern and the best matching window fouiui

by FS.

5.4.2 Experiment 1 - Pattern Matching Algorithms on Different Sizes

In this experiment, we compare the speed-ups yielded by the considered algorithms

in pattern matching on datasets 51 - S4 which have different sizes of iniage-paiU^rn

pairs. The speed-up in execution time or speed-up in operation for algorithm A over

algorithm B is measured by the execution time or the number of operations required by

D divided by that required by A. Thus the speed-up in execution time yioldod by GCK

over FS is the execution time required by FS divided by the time required by GCK

in pattern matching for a given clataset. The larger is the speed-up, the faster is the

algorithm. There are 300 image-pattern pairs tested for each dataset. The speed-ups

in execution time yielded by GCK, IDA and OHT over the FS in pattern matching for

each dataset are shown in Fig. 5.6. It can be seen that OHT outperforms the other

compared algorithms for the 4 datasets. To compute OHT, strip sum rqquircs about

.50% the execution time of integral image. Pattern matching using strip sum for OHT

requires about 50%-60% the time of that using integral imago for OHT.

%

5.4.3 Experiment 2 - Pattern Matching Algorithms on Different Pattern Sizes

and Different Noise Levels
*

To evaluate tbe performMice of algorithms on the variation of pattern sizes with image

size unchanged, we shall examine the experimental results on datasets 54-56. In 54-

56, the image size is always 1280x960, but the.pattern size changes from 128x128

Figure 5.6: Speed-up in oxccution lima over FS on daiascts Si - 54 for different algorithms

measured by normal scale (Laft) and log scale (right). The bars for cach datasct from left to

right correspond to algorithms WlIT, (JCK, IDA, OUT/ and OHTs-

800

NI1 N2 N3 N4 N1 N2 N3 N4
S4 S5

2500

N1 N2 N3 N4
S4

N1 N2 N3 N4
S5

m
N1 N2 N3 N4

|WHT
IGCK

] O H T ,

] O H T s

• GCK
• IDA
• OHT 丨

• O H T s

N1 N2 N3 N4

F igure 5.7; Speed-ups in execution time (upper row) and speed-ups in number of operations

(bottom row) yielded by different algorithms over FS for different noiso Icvf^Js and sixes of

imagch-pattern pairs in pattern matching.

to 32x32. Moreover, 4 different levels of iid zero-mean Gaussian noise wore added to

each image. The'4 Gaussian noises N2, N'S and /V4 range from low noise to high

noise and have variances being respectively 100, 200, 400 and 800. They correspond to

PSNR 28.1, 25,1, 22.1 and 19.2 for the 512x512 image "Lena".

Fig. 5.7 shows the speed-ups in execution time and speed-ups in number of opera-

tions yielded by examined fast-algorithms over FS in different pattern sizes and different

noise levels. It can be seen that OHT is the fastest. Fig. 5.8 shows the speed-ups in

execution tinie and speed-ups in number of operations yielded by OHT over IDA and

GCK on dataset 54. As shown in Fig. 5.8 on dataset 54, the speed-ups in execution

time yielded by OHT over IDA and GCK are about 4 to 15 and 8 to 10 respectively,

the speed-ups in number of operations yielded by OHT over IDA and GCK are about

5 to 24 and 19 to 24 respectively. The speed-up in number of operations for WHT is

§ 5.4.3. Experiment 2 - Pattern Matching Algorithms on Diflerent Pattern Sizes and Different Noise
Levels 121

500

000

500

'•m

0.002 0.02 0.2 2 10

K
 T

c
 H

G

 o

0.002 0.02 0.2 2 10

Figure 5.9: (a) The overall execution time in sccoiids as a function of t on the left, figure

and (b) the transformation time in seconds as a function of e. on the right figure. Experiments

arc done on datasei 54 with Noise G(4).

which FS is used for pattern watching, e

respectively.

€ denotes the percentage of renmining window hehw

.g. 2 and 10 in the X axis correspond to 2% find 10%

not provided because the bottom up approach of WHT method in [1] is too complex

for analysis.

5.4.4 Experiment 3 一 Influence of Parameter e

As explained in [1], when the percentage of remaining candidate windows is siiiallor

than certain number e, it is more efficient to directly use SSI) for [indiiig tli(、inatcliod

windows instead of using transformation. Fig. 5.9(a) shows the influence of c for both

GCK and OHT on dataset 54 with.Gaussian noise G{4). It can be seen that 2% is

better for GCK while 0.02% is better for OHT. Fig. 5.9(b) shows that the computation

of OHT is obviously faster than the computation of GCK for different situations of e.

5.4.5 Experiment 4 - Energy Packing Ability of OHT and WHT

Experiments 1, 2 and 3 evaluate the execution time required for the whole pattern

matching procedure. Here, we evaluate the (Micrgy packing ability of OHT and WHT.

As analyzed in [1], the computational efficiency of transform domain pattern matching

122
CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH

EQUIVALENT PATTERN MATCHING

] G C K

N1 N2 N3 N4 N1 N2 N3 N4
r

Figure 5.8: Speed-up of OHT over IDA and GCK at 4 noise levels for daliLset 54 in pat tern

matching. Left; speed-up in execution thiw; right.; speed-up in nuinhcr of opcifitiuns.

o
 o

 o

 o

 o

o
 o

 o

 o

8

6

4

2

s
f
D
U
O
Q
a
s
 u
!

 e
u
j
!
j

 L
U
J
O
i
w
u
E
J
l

o
 o

 o

 o

 o

o
 o

 o

 o

8

6

4

2

S
I
3
U
0
0
9
W
 u
!

|
一
扣
」
9
>
0

§ 5.4.5. Experiment 4 - Energy Packing Ability of OHT and WHT 123

is dependent on two factors: 1) the rejection power of projection valwes, which is

dependent on the energy packing ability of transformation; 2) the cost of computing

transformation. In summary, transform domain pattern matching requires that the
4

transformation should be computationally efficient in packing energy.

We examine the criorgy parking ability of OUT and WHT on dataset 51 in Table

5.5. This dataset contains 300 image-pattern pairs, i.e. 4,567,500 wiruiow-pattern

pairs of size 16 x 16. The SSD hetwecm the window and pattern were computed. The

percentage of energy packed by the first w basis vectors is mca.surod by:

FER^''^ = E
| | V (一 广) - 力 | | 2

I 丨又

(5.11)

where [〜 ） 一 i s the partial energy packed by transrurrnatioii

V("x/v) and — is the actual energy.

Fig. 5.10(a) shows the P E R ⑷ in (5.11) as a function of tlio iiuiiibor of bases u.

The results are tho average over the 4,567,500 pattern-window pairs. It can be seen

that OHT is close to WHT in packing energy. These results, however, do not exhibit

the runtime required in extracting energy. Fig. 5.H)(b) shows the in (5.11) as

a function of the number of operations per pixel required to obtain tho partial energy

||Y(uxAr)-(N) _ y(uxyv)^(Nj)||2_ It can be seen that OUT can extract energy from

input data using much fewer number of additions compareti with WHT.

•D 1 0 0

WHT
OHT

Number of bases
(a)

Number of operations per pixel
(b)

F i g u r e 5.10; lYansfonnation using WHT and OHT. WHT is In saqiwncy order and OHT is

in the order illustrated in Fig. 5.4. The energy is given as tho average percentage of the actual

energy botweon pattern and window. All values are the nveirnge over 4,567,500 window-phttern

pairs.

CHAP. 5. THE ORTHOGONAL HAAR TRANSFORM AND ITS APPLICATION IN FULL SEARCH
124 EQUIVALFNT PATTERN v/IATCHlNG

5.5 Summary

This chapter utilizes into.gral image to obtain the dal.a st.nicM m.(、strij) siuii using ono

addition per pixel. Then the strip sum is used for computing the Huin of pixds williin

a rectangle, which is called rectangle sum, using our addition indopondont, of UK、si'/f、

of the rectangle. The rectangle sum can be regarded Uic (i(、(X)niponont of t he

rectangle if wc skip the. normalization factor. The roctarigle sums are huiklirig bricks
t

for Haar-lik(^ features. We show that strip sum can bo used for computing ()【1'「. It.

is easy to use strip sum for computing the Haar-like features proposod in [42; 18; 77 .

Then we propose to use the OUT for sliding trausform. Existing ffLSt algorithms for

computing transformation on sliding windowK |1; 32; 33] require ()(u) additions for

projecting input data having size N onto u 2D basis. The OHT can pr()j(、(,t input data

onto u 2D baiiis by Odogu) additions using the strip sum. For exainj)lr, WIKMI u - N,

OHT requires O(log N) axidilioiis for projc('t,ing input data having size N onto N

basis vectors. Experimental results show that tho proposed algorithm can significantly

accelerate the FS-equivalciit patt ern matching process and outperforms s(,at{̂ -()f-t,ho-art

methods. Strip sum and OHT have potential application in foaturo oxt.rartion, block

matching in motion estimation, texture synthesis and analysis, super rosoliiUon, image

based rendering, image denoising, objoct detection, tracking, and more.

5.6 Appendix A: Proof of Theorem 5.1

Theojv.m 5.1: If the 2D x N2 WHT bauscs are in the same order as OUT bases,

then: 1) the subspacc spanned by the first u = = 0,1,... WHT bases is oqual to

the siibspacc spanned by the first u OHT bases; 2) the first u orthononnal WHT basos

and the first u orthoiiorrnal OHT bases extract the same energy from any input; data;

3) the computation for the u WHT baaos requires 3u/2 + 1 additions per window while

the computation for the u OHT bases rnquims 4 + 2.5 logg u additions.

Proof: For ID IIT and WHT, it is proved in [79] tliat the first u 二 2", n : 0, 1,2,.. .

ID WHT basis vectors can be linearly represented by the first 11 ID HT ba.sis vw.tors

when these basis vectors are ordered by their frequencies (number of sign changes).

Since both I f r arid WHT are separable transformations，the first u - 4", 7i = 0,1,2, . . .

2D WHT bases ran be.linearly represented by the first u 2D HT bases when ordered

§ 5.6. Appendix A: Proof of Theorem 5. 125

as shown in Fig. 5.5. Thus we have:

V {uxN)
wnT ^Wll'J'Jri ^ HT (5.12)

HT HT (顶tains the first u 2D MT bfuses, 义)

contains the first w 2D WIIT bases, rank u matrix DJ^^ ！厂厂 represents the linear

r(!9at ion ship between HT and WHT. It is easy to find that the first u = convontional

HT bases can bo represoiitod by the proposed OHT bases tus follows:

V {u \ N) 一 I飞（jix u) r(uxN)
HT ^ H l\OU r ^ OH T

1 0 0 0 0

0 I, 0 0 0

0 0 厂 0 0

0 0 0 1.1 0

0 0

0 0

0 0

0 M

0

0

⑷
OUT

0

/

(
,
M

1

GUI

vO‘x/v)
-V our ‘

(5.13)

wliero M;;?,.,, [n Ĉ
U® 11 li

11

is the Kronockor product, is the ri x ji identity iriatrix. Considering (5.12) and

(5.13), we have: ,

V(ux/V) — |̂ (uX7x) p.(tixu) V(飞…
V f J/ f / r f i — tin^ ftrrxJ Lin^ r\ i / r r V r \ i / ' r win w i n \ H T ^ H I \ Q I I T " OUT (5.14)

^̂ , where both ⑶,『厂 and D//7'q//7' lias full rank u、V(二!p conlaiiis the first u 2D

OHT bases. Thus the subspace spanned by the u WIIT ba,scs is equal to the subspace
f

spanned by the u OHT bases. The WHT bases arc; orthogonal to eacli other and can
‘ ‘ . 、 ‘ ‘

he norriializod to bo orilionorrnal, so arc OHT •bases. Thoreforo, we can conclude that:

1) the subspace spannod by the first u WHT basis vectors can spanned by the first

u OHT basis vectors; 2) the energy extracted by the first u orthorioniial WHT bakis

can also be extracted by the iirst u OHT orthoiiornml baaes; 3) the algorithm in [33

requires 3n/2 4- 1 additions per window for obtaining u 2D WHT bases, the approach

introduced in Section 5.3.1 requires 4 + 2.5 log2 u additions per window for obtaining u

2D OUT bases. .

Chapter 6

Fast Transform Domain Linear Support Vector
Machine using Pruning

6.1 Introduct ion

Support Vector Machines (SVMs) are widely used learning systcmH in roal world paUrm

recognition and data mining applicfilions such as object rocognition, human detection,

text categorization, hand-written characlcr recognition, imag<: classification and bioiii-

formatics. Many object classification and detect ion systems rely on binary dassificaLioii

using SVM, deciding whether an object is in a given window or not. To localize the

object, sliding window approach is widely used. Bui this strongly iiicrci^scs Uic com-

putational cost, bccause the classifier function liafi to be evahiaiod over a large set oC

candidate subwindows.

Suppose given a set of training samples, cach marked as belonging to one of two

classes, SVM can be trained from the training samples and then used to decido which

class new testing samples belong t,o. The linear SVM can be re{)mseiitod as follows:

< w, X > --6 > 0 X G ci,
(6.1)

< w , X > < 0 => X €

where x 二 [:ri X2 . . . i'/vj^ is the input .sample, C| and (>2 arc two difrorciit, classes,

< w, X 〉 = "^7x，denotes matrix transposition, < w ,x > ~h = () is the hyperplario

for determining whether x e c\ or x € C2, w is the normal vector perpendicular to the

hyperplane and h is a trained constant,. In this chapter, wc only analyze the two-class

problem although the proposed approach is applicable for multi-class problems. In the

followiiigs, class ci is called positive class and class c-i is called negative class. Sample

X is called positive sample if x € c\ and is called negative sample if x G (：2.

126

§ 6.2. Linear SVM as a Pattern Matching Problem 127

Direct evaluation of tlie terms in (G.l) is called full search (FS) in this chapter. For

FS, if w^ X — > 0, then x E C], otherwise, x E C-Z- FS requires N multiplications and

N additions for each testing sample. Though accurate, FS is not jireforrecl in ap])li-

cations requiring great classification speed ospocially when N is largo. To relievo the

burden of high computational time required for computing SVM, many fast algorithms

are proposed [80-82] for kernel SVM. Fast algorithms for kernel SVM, however, are

not applicable for linear SVM. In this chapti?r, we propose a transform domain SVM

(TDSVM) using pruning that computes linear SVM much faster.

The chapter is organizod as follows. Section G.2 introduces a now viewpoint that

considers SVM as pattern matching problem. Section presents the TDSVM using

priiiiiiig. Section 6.4 api)lios TDvSVM for human dotoction. Finally, Section 6.5 i)rosciit.s

conclusions.

6.2 Linear SVM as a Pattern Matching Problem
t

Pattern matching, also named as template matching, is the procedure of seeking a given

pattern in given signal data. Suppose an N\ x N2 pattern is to be sought in a giv(m

imago. The paUmi will ho compared with candidate; windows of similar size、in the

image. We represent the pattern as vcctor x̂ having length N = /Vi/V� and represent

the N⑴ud candidate windows as Xuind having length TV, where subscripts 7 and •職(i

denote template and window respectively. The

inner product bctwoon X(and x̂und̂ i.o.

< Xi, Kxand >=艾J^nm(“ can bc used for measuring the similarity between Xt and Xumd-

The value is also called cross-correlation in |26; 46]. The greater is x/ Xwnd̂

the more similar are xt and Xyjnd- For a given threshold 6, if x? 而 > 6, then the

candidate î umrf is considered to match pattern Xt, otherwise, it is considered aa a non-

rnatching candidate. The condition x,厂x,贿/ > b for matching Xt and ic-nmd in pattern

matching is equivalent to the condition w^ x — 6 > 0 for classifying x aa positive class

usiiig SVM ill (6.1) if w = xt and ^wnd 二 x. From this viewpoint, the fast algorithms

for pattern matching in [24-26; 4G] can be used for SVM.

6.2.1 Fast Pattern Matching using Enhanced Bounded Correlation

The Enhanced Bouiidod Correlation (EBC) algorithm proposed by Mattoccia ot al. [26

defines a partition of set {1,2,... N] into Np disjoint sub-sets P\,…，P/Vp, where

138SHAP. 6. FAST TRANSFORM DOMAIN LINEAR SUPPORT VECTOR MACHINE USING PRUNING

1 S S TV, /) 二 {/^i，P2’...，rv；^}，U二川 二 {1,2’. . . y v } ， n p,)=必’v"

v,u,v e 1，2,...，Np.Given P, EBC defines the partial L^-norm of vector Ht and

limited to the sub-vcctor associated with Pm € P as:

. 二 （ l lxwII ' i .P. = (E (6.2)
‘ nG /'m ne l\n

where xt̂ u is t,he nth element in xi and x^nd,u is the rith dement in x̂ md-

By virtue of the Cauchy-Schwarz inequality applied on corrosponding sub-vectors,

EBC establishes the following inequality.

N Np

X? X«;nri = ^ ^UiXvmd,n < ^ 11交i 1 |'2’/)J|艾imuilb’P爪=/即,KAK?(文nmrf)’ (“.3)

n—1 m=l

where fup,EBc{^wnd) is the upper bounding function for x j Sly,nd in EBC. If fup,EHci^wnd) <

b, then x/ î .Tid < b and -x^und can be safely considered as the non-inatchiiig candidate.
1

Moreover, should (6.3) not, be satisfied, rather than directly computing x/ us-

ing FS, EBC obimris successive pruning condition brLsed on a tighter upper-bound by

considering sub-vectors pairs. EBC gives the same r(\s\ill fus FS in pattern matdiirig.

6.3 Transform Doma in Support Vector Mach ine using Week Upper Bound

In this section, the overall scheme of TDSVM using pruning is introduced, then details

for the scheme, including TDSVM and week upper bound fuiirlion, are presented.

6.3.1 The Overall Scheme of Transform Domain SVM ^using Pruning

s

Denote the set of candidates as set can ̂ which initially contains all candidate) samples.

The proposed TDSVM using pruning consists of two steps: pruning step and FS step.

The pruning step comprises two sub-steps: in Step a.l, an upper bounding function
i

/up(x) is evaluated such that w'^x < fup{^) in most cases; in Step a.2, if /up(x) < 6,

then we classify x as negative class and prune it from setcam /up{x) < b boing the

pruning condition. After the pruning step, the remaining candidate windows in setcau

undergo FS for finding out the candidates that belongs to positive class in the FS step.

The advantage of using /np{x) is that it is more efficient computing /„p(x) than

computing w'^x and the pruning condition /up(x) < b can eliminate most negative

samples. This pruning scheme lies in the fact that there arc more negative testing

§ 6.3.2. Transform Domain Support Vector Machine 129

Initially, setcan contains all candidates x;

Prun ing Step: For x in setcan'- {

Step a . l : Obtain /up(x);

Step a.2: if /«p(x) < b, then classify x as the negative class and prune

X from setcan •}
FS Step: The remaining candidates in setcan undergo FS.

Table 6.1: The pruning schcrne for TDSVM using upper bound.

samples than positive testing samples or vise versa. For oxainplo, the; number of hiinian-

absent (negative) windows is much larger than the rnimber of hiiimin-cxLsting (positive)

windows in human detection. When most negative samples are pruned in the pruning

step, there are only very small number of candidates in setcan for the FS step and thus

computation is greatly saved.

6.3.2 Transform Domain Support Vector Machine

The transformation that projects a vector x 二 [；r! 0:2 . . . x/v]^ onto a linear subspacc

spanned by U basis vectors •(乂0)’ (.肌 be represented as follows:

yr(C/) 二 y(1/X/V)- 二 . . v(/V’(7-l)j7,交 (6.4)

T ’ 、

where • is matrix transposition, vcctor x of length N is called input sample, vector

⑵ of length U is called projection value vector, the U elements iii vector f、。、are

called projection values and V (… … i s a x N matrix thai contains U basis vectors

-NX) of length yV for ?: = 0 ’ . . .，— 1. The transformation is also called projection

ill [1; 35]. Basis vcctor is also called projection kernel in [1 .

Denote z^^) as the projection of w onto �）’ i . e . 抄 、 = \ (X) … W h e n

V("xAO is orthogonal, i.e. 厂v(/Vx/v) = j〜，where In is an N x N identity

matrix, wc have:

於N、T亏、N) = (V("…w)厂(V(〜xyv)艾）：• ‘ / ’ (v(/Vx/V,v(〜x/V))义 二《T-、

wl讀 '2(〜）=V(歸)Vi^

亏m 二 v (" : .N).

^N-t/)

y ⑵

^{N-U) y{{N-U)xN)-

(6.5)

138SHAP. 6. FAST TRANSFORM DOMAIN LINEAR SUPPORT VECTOR MACHINE USING PRUNING

And we have the follows from (6.5):
— •

w ' ^ i c = 厂 〜 ） = + (6 . 6)

Suppose we have an upper bound function fup’i for , i.e. ") <

J up, 1, an upper bound function in the transform domain fnp:n) for w ' x can bo obtained

as follows from (6.6):

w'^x = zf)'厂 + ^N-W;、、n-U、< + f 一 二 “ : r ,) . (6.7)

For tlie w^ X in (6.7), contains the main information,必u、'亏、N-u) contains

the remaining information. The 办 … ' i n (0.7) is obtained by computation while

the 糾-【jy -u) is estimated using the upper hound function fup,i •

The yi^) in (6.7) can also bo considered as projoctiiig w onto llio suhspaco ^

spanned by the basis vectors in and then coinputc tho following inner product,:

< w ' , x〉二< v (" x y v) • 艾 〉 二 < v (" > ^ �) x > = < #")，：^(") > ,

(6.8)

where w ' is an approximation of w using V (U X N)

To ensure that the framework in Table G.l finds the same result, as FS，the upper

bound function fup,TD{^) in (6.7) should satisfy that w^x < /UP,7'D(X), Vx, because if

/UP (x) < b’ then w^x < b and x can be safely classified as negative CULSS in the pruning

step. This upper bound function can bo obtained using oxax't inequalities such

the Cauchy-Schwar'/ inequality used in (6.3) for EBC. Upper bound function obtained

from mathematically ensured inequalities is called strong upper bound in this chapter.

However, Cauchy-Schwarz inequality is a very strong condition such that the equality

holds if and only if W = ax for any constant a, which does not happen for most SVM

'applications. Thus the strong upper bound tends to be too large to efficiently eliminate

negative samples in the pruning step.

•The example in Figure 6.1 is used for illustrating the TDSVM. Assume that there is

a hyperplane to correctly classify the testing samples in this example, which corresponds

to Figure 6.1. The input sample x is assume to have length 2，i.e. x = [xi 0:2)^. In

TDSVM, we project the w onto the subspacfe spanned by the basis vector … =

F igu re 6.1; (a) the SVM cJassWcatlon hyperpiane w ^ x — 6 = 0, where a testing sample is

classified as positive class when it, is in the upper left part of the hyperpiane while the sample

isjlilassified as negative class when it is in the bottom right part of the hyperpiane; (b) the

classification hyperpiane using tho strong upper hound; (c) the classification hyperpiane using

the week upper bound, where samples on the right part of the plane arc pninad and classified

as the negative class and the white rectangle is the positive sample that is misclassified as the

negative class in the pruning step; (d) after most samples are pruned in the pruning step, the

remaining samples undergo FS using the original hyperpiane. The hyperpiane is a Una since

we have x = \x\ in this figure. Black squares denote positive testing samples and white

circles denote negative testing samples.

1 0] and have the follows for (6.8):

. < w , x 〉 = < [1 {)f[\ 0]w,x > = w^X], (6.9)

Computing the approximated inner product < w', x > = w\Xi is more efficient than

computing < w , x > = w\X] + W2X2. To obtain tho same result as FS using the fupj'p

ill (6.7) for the pruning scheme in Table G.l, we have to find a hyperpiane that: 1)

is orthogonal to w'; 2) will not inisclassify positive samples as negative class, which

corresponds to the strong upper bound. To meet, these requirements, the hyperpiane

is not able to prune any negative samples for the example shown in Figure 6.1 (b).

6.3.3 The Week Upper Bound Function
»

Re-investigating the scheme in Table 6.1, we find that the only mistake that makes

the scheme produce different result from FS is: a positive sample x is misclassified as
rt

negative class by the pruning condition /up(x) <6 in Stepa.2. Data that are classified

as negative class by FS will never be misclassified. Hence if 几p(x) > b for all positive

samples, then the output is the same as FS. Instead of finding the upper bound that

has /^p(x) > b for all positive samples, we can find the following week upper bound

such that fup[义)> b for most positive samples, say 99% positive samples;

fup,nU^.b) = 严 + fupM^)> (6.10)

§ 6.3.3. The Week Upper Bound Function 131

138SHAP. 6. FAST TRANSFORM DOMAIN LINEAR SUPPORT VECTOR MACHINE USING PRUNING

where fupjiewC^’ b) is required to satisfy the inequality /up’riew(x, 6) > ^ for Per posit ive

training samples x and fup,w{^) is a constant thai, satisfies this requirement. For exam-

ple, if Per = 100%, then we choose a fup,wW such that, all positive training samples

will stay in setcan and undergo the FS step; if Per = 99%, then 99% positive training

samples will stay in setcan and undergo the FS step. Since the training sanipk^s arid

testing samples have similar structures, about Per positive testing samples will stay in

setcan and undergo the FS step.

For the example in Figure 6.1, we relax the strong upper bound function and require

that only very small number of positive samples arc inisclassified as negative class in

the pruning step. Thus we have a week upper bound fup^wW and a nrw liypcrplanc

w'^j^ + /up,ty(6) — = 0 in Figure G.l(c). Using this new liyperplano, most negative

samples are pruned from setcan with the cost that a positive sample, which is the white

rectangle in Figure 6.1(c), is inisclassified as negative class. Since possibility of this

misclassification is small, it has little influence on the classification error rates. Finally,

the FS step will classify the remaining candidates using the original liyj)erplarie as

shown Figure 6.1(d), where most negative samples are pruned by the pruning step.

6.4 Application of T D S V M to Human Detection

6.4.1 Human Detection using Histogram of Oriented Gradient

Human detection using Histogram of Oriented Gradient (HOG) gLs the descriptor and

SVM as the classifier has been proved to bo powerful [83). And it is recently integrated
I

into OpenCV [53]. We give a short description of this algorithm following [84j. Each

detection window is divided into cells of size 8 x 8 pixels arid each group of 2 x 2 cells

is integrated into a block in a sliding fashion, thus blocks overlap with each other.

The distances between horizontally or vertically adjacent blocks are 8 pixels. Each cell

consists of a 9-biii Histogram of Oriented Gradients (HOG) and each block contains

a concatenated vector of all its cells. Each block is thus represented by a L2-norm

normalized lerigth-36 feature vector that is called HOG descriptor. Each 64 x 128
»»

detection window with width 64 and height 128 is represented by 7 x 15 blocks, giving

a total of 3780 features per detection window. Thus the input sample x has lengtli

N = 3780. These features are then classified by a linear SVM aa shown in (6.1).

Since HOG using SVM is time consuming, many researchers investigated how to

6.4.2. Our implementation of Transform Domain SVM for HOG 133

Original Image

F igu re 6.2; Original image (left) and its HOG-image (right). Each 1 6 x 1 6 block on the original

imago is represented by a 36 x 1 descriptor on the HOG-iinagc.

accelerate I he procedure. Wojek et al [85] implement HOG on a powerful GPU. TDSVM

requiros fewer operation and is also highly parallel, hence can be、efficiently used for

GPU. Zhu et al use the cascaded HOG for classification in [84] which is much fa.ster

than HOG. The differences between TDSVM and the cascaded HOG in [84] are:】)the

week upper bound for positive samples can be obtained from positive training samples

in a few seconds while the training for cascaded HOG in [84] requires a few days; 2) the

cascaded HOG is an application of boosting to HOG, TDSVM is a fast algorithm for

SVM that can be used for HOG; 3) choice of week upper bound using (6.10) is different

from the Adaboost training for cascaded HOG; 4) TDSVM obtains pniiiing condition

in transform domain while the cascaded HOG obtains week classifier directly from

features; 5) instead of replacing cascaded HOG, TDSVM can be used for it bccause the

week classifiers of the cascaded HOG are linear SVMs evaluated by FS.

a

6.4.2 Our implementation of Transform Domain SVM for HOG

Given an image which is called original image’ we can extract HOG descriptors from

it. The HOG descriptors are arranged by a 2D array that is called HOG-image. A

16 X 16 block in the original image is represented by its 36 x 1 HOG descriptor in the %

HOG-image; relative positions for blocks in the original image cormsponds to relative

positions for HOG descriptors in the HOG-image. Each 64 x 128 detection window on

the original image corresponds to a 36 • 7 x 15 window, which is called HOG-winclow,

on the HOG-image. For a Ji x J2 original image, we have a ^ ^ ^ x 令 HOG-image.

Detection on the original image corresponds to computing SVM classifier for each sliding

HOG-window on the HOG-image. An example is shown in Figure 6.2.

The proposed transform is best explained using Kronecker product which is denoted

138SHAP. 6. FAST TRANSFORM DOMAIN LINEAR SUPPORT VECTOR MACHINE USING PRUNING

as 0 . If A is a C/i X Q^ matrix (以…’打，）and B is a U2 x Q2 matrix (/)’"，,"12), then A B

is the following U]U2 x Q1Q2 matrix:

A (2)B：

«o,oB ao.iB

«i,oB ai , iB

叫 i-i，oB

…’ Q i - I B

B

(6.11)

Denote the I x N matrix with all elements equal to 0 and 1 as Oix'v and 1 j x r(冲er-

tively. Denote the 252 x 15 lIOG-window as X(i5x;2r)2)，the two sdected t ransforms aro

as follows:

Y(5X126) _ y(5X 15)15X252)yOx252) ' ^

Y(r)x63) _ y(5X 15)^{15X2r)2)y (63y 252)‘

(0.12)

(6.13)

where 严 叫 = h 达 lix3, V ; 尸 6 x 鄉 = 厂 ③ ⑧ /^g in (6.12) and V , f x•爛=

/y % lix4 h in (6.13). The t,ransf()rms for the 252 x 15 HOG-wiridow represented by

vector X of length N = 3780 can bo represented as follows:

歹("）二 歹(630) = (vj尸6x252)⑧ y(5x15)j- = y(630x3780).

^{V) 二 = (v(63X2,52) 二 yOinx.lTSO),

(6.14)

(6.15)

6.4.3 Computational Analysis

For a J i X J2 original image, we have a ^ ^ x 令 HOG-image. Denote the sizo of

HOG-image as J3 x 山，where J3 = J4 = The FS requires about 3780./.̂ ；4/36

additions and 3780J3.7/i/36 multiplications. We can also use the FFT approach in |4G

to compute the inner product < w , x > on sliding windows. As pointed out in [46), the

FFT-bascd approach requires about 6J3.//1 log2(J3./4) additions and 6J3 J4 \og2U:\J'\)

multiplications.

The computation required by TDSVM for the transfonn in (6.14) is a.s follows: 3)

the transform for obtaining the y(630) (6.14) can be computed by 3.73.74 additions
f

using integral image [68]; 2) construction of the integral image requires about 2./3J4

additions; 3) given y(630)，the upper bound function < > +/“",(/))，which

is used for the pruning step in Table 6.1, can be computed by 63OJ3J4/36 additions and

§ 6.4.4. Experimental Results on INRIA Datasets 135

r J\ X J2 original image 256 X 256 512 X 512 1024 X 1024

FS A/M 10573^4 3,870,720 15,482,880 61,931,520

FFT A/M QJ:iJ4log2{J3JA) 3,355,345 15,190,851 67,841,291

TDSVM A 1,487,462 5,949,850 23,799,398

TDSVM M 17.5J3./4 + 'SlSOMan^ 1,303,142 5,212,570 20,850,278

Table 6.2; Numbrr of operations required by different approaches for different image sizes,

where J3 = = "FS A/M" denotes the number of additions or multiplications

required by FS. The iiunihcr of additions and multiplications required by FS is the same and

thus share the same row. This is similar for FFT. For TDSVM, the rows "TDSVM A" and

"TDSVM M" respectively denote the number of additions and multiplications required. Wlr?

assume that 83% candidates are elirninatod in the pruning stop for TDSVM.

63OJ3J/i/36 multiplications. 4) finally, the FS step requires

3780/viî ^S’）additions and

multiplications for the remaining Ncan candidates in sat can- In summary,

the TDSVM using the transform in (6.M) requires 5J3山 +630,73山/3G十3780八么~产）ad-

ditions and 630J:J 山 /36 + 3780/vi二：力

multiplications. The TDSVM using the transform

in (6.15) can be similarly analyzed.

Table 0.2 compares the proposed TDSVM using (6.14) with FS and FKT for origi-

nal images having different sizes. It can be seen that FFT requires similar operations

compared with FS becausc the sliding HOG window has a horizontal stride of 36 pixels

on the HOG-irnago. Tlie speed-up of TDSVM over FS is about 3 when 83% candidates

are pruned from setcan in the pruning step. The speed-up of TDSVM over FS in exe-

cution time or in operat ion is measured as the execution time or number of operations

required by FS divided by that required by TDSVM in computing SVM.
6.4.4 Experimental Results on INRIA Datasets

In this experiment, the INRIA training and testing dataset provided by Dalai k IViggs

online [86] for their HOG paper [83] arc used as the datasets for training and testing.

The experiments are implemented on a PC with 2.13GHz CPU and 3G memory using

single threaded C++ on windows XP system with compiling eriviroriirieiit VS2005. The

default SVM classifier provided by Dalai & lYiggs in [87] arc used as the classifier for

FS.

We investigate the experimental results using the following approaches:

1) FS, the original implementation in OpenCV (53], which is faster than Dalai's

in 丨871;

138SHAP. 6. FAST TRANSFORM DOMAIN LINEAR SUPPORT VECTOR MACHINE USING PRUNING

2) direct TDSViM, the TDSVM without, upper hound, i.e. ami /；=()30

in (6.10);

3) TDSVM630,2.7r)’ the TDSVM with f沖,u>W = 2.75 + h and U = G30 in (6.10);

4) TDSVM315’2.75，the TDSVM with fup,wW = 2.75 + b and U = 315 in (G.IO);

5) TDSVM:“5 , ‘ i “0A the TDSVM with UpAb) = 2.4 + 0.26 + b and U 二 315 in

(6.10).

G) TI;)SVM315,2 the TDSVM with fup^wih) 二 2.20 十 0.2/) + b and U 二 315 in

(6.10);

TDSVM ⑵ 0,2 75 and TDSVM-3ir"2 75 arc different, in the iiuiiil)cr of project ion values

U used for y(") in (6.1.1) and {6.15); T D S V M 3 1 " a n d difFor-

ent incrempnt, of week upper bound fup,w{̂ >) for same increment of /;; TDS VM"̂ '''̂ '''̂

and arc different in the week upper bound fnp,w{h)-

The Detection Errm- Tradeoff (DET) curves arc shown in Figure ().3 on a log-log

scale, i.e. miss rate (l-Rccall or 7’ru<-/;:::%L;vc") versus false positive per window

(FPPW). Lower FPPW or miss rate corresponds to better rcvsults. According to the

results, direct TDSVM performs obviously worse than FS and TDSVM using we(，k up-

per bound. For the same upper bound function fup,w{b) = 2.75 + /), the TDSVM_ ’2"5

that uses 630 projection values performs better in DET than the TDSVM,、15,2.75【hat

uses 315 projection values. For the same 315 projection values, the TDSVM315,2 小+。2b

that has larger upper bound performs better in DET than tho TDSVIVl'”。’'』2'，t hat,

uses smaller upper bound.

When fup,wW = 2.75+ 6 and >?(") 二 TDSVM performs closo to FS in DET.
I

The miss rate improvement of FS over TDSVM is less than 0.1% at 10"', lO"'^ and

10一2 FFPW. In this about 83% negative windows are eliminated and only about

0.0088 positive samples are misclassificd as negative class in the pruning stop. Under

this setting, the speed-up in execution time of TDSVM over FS is about 2.6. When 83%

candidates are eliminated at the pruning step, it is shown in Table 6.2 that ihc speed-up

in operation of TDSVM over FS is about 3，whidi is close to the 2.6 in execution time.

The time required for integral image and transformation has been included into the

time and operation required by TDSVM in all experimonls. The integral image and

transformation requires about 10% the execution time of the whole TDSVM process.

When fup,w{b) = 2.4 + 0.26 + b and = y(3i5)，TDSVM also performs closo to

FS
Direct TDSVM
TDSVM63。,2.75

TDSVM31 5.2.75

TDSVM315.2 2+0.20b

1 0 "

r
10—。 10' 10-』 10"' 10"

False positives per window (FPPW)
10̂

Figure 6.3. DET curves for FS and (Marant implementations of TDSVM.

FS in DET. About 80% negative windows are eliminated in the pruning step at 10—2

FPPW, The miss rate improvement of FS over TDSVM is 0.44% at 10—2 FPPW, 0.62%

at 10一3 FPPW and 0.53% at 10一� FPPW. Under this setting, the speed-up in execution

time of the proposed approach over FS is about 3.2 at 10—2 FPPW and about 4.5 at

10-4 FPPW. The speed-up in operation of the proposed approach over FS is about 3.5

at 10-2 FPP\V and about 5.5 at 10"'̂ FPPW.

If we allow more degradation of miss rate at the san^e FPPW. compared with FS, the
i

speed-up can be further increased. By setting fup,wW — 2.2+0.26+6 and (…=^^⑶已）’

the miss rate improvement of FS over TDSVM is about 1.5% at the 10一2 FPPW and

10—4 FPPW. The speed-up in operation of the proposed approach over FS is about 4.7

at 10-2 FPPW and about 7 at 10"'' FPPW. ‘

We also investigated the TDSVM using the strong upper bound of EBC introduced

in Section 6.2.1 for the same transform in (G.12). The computation required by EBC
«

for the upper bound function in (6.3) and the computation for TDSVM in (6.10) are

the same for the same transform. We find thai the strong upper bound provided by

EBC in (6.3) can only eliminate less than 1% negative samples for the default SVM

classifier provided by Dalai when FPPW ranges from 0 to 0.85. EBC using (6.3) is

proved to be very efficient when both w and x arc image data for pattern matching

in [26]. However, when x is the HOG descriptor with non-negative elements and w

§ 6.4.4. Experimental Results on INRIA Datasets 137

10。

0
 o

1
 1

3
E
J
 S
S
!
芝

138SHAP. 6. FAST TRANSFORM DOMAIN LINEAR SUPPORT VECTOR MACHINE USING PRUNING

is the SVM classifier with both positive and negative elements, EBC pcrfonns not, so

good because the inequality used in (6.3) is too strong in esimating thr u|>{)(t hound for

SVM. EBC contains further scccussivc pruning steps, which requires more computat ion

in the pruning step and thus is not fair to be compared with t.lio TDSVM using wock
m

upper bound. 、

6.5 Summary ^

This chapter proposes a fast algorithm for computing the support vcctor nuu:hirin

(SVM). Given an SVM classifier, the proposocl transform domain SVM approximate the

SVM using a subspace. Then an uppor bound function is used for officioiiUy pruning

large number of negative samples. When applied for human dotoctioii using Histograiii

of Oriented Gradients (HOG), the proposed algorithm accolcratovs the compulation of

SVM. With time saved for computing SVM, more sophisticated descriptors can be used

for increasing the classification performance at the same computatioiiiil time.

Chapter 7

Conclusions

Many image processing and computer vision applications rt^quiro comparing a given

pattern with all candidate windows. In many such applications, however, a main prob-

lem is the high computational time required l)y pattern matching. This thesis aims at

improving the computational efficiency in pattern matching.

7.1 Contributions of the Thesis

111 Chapter 2，a fast algorithm is proposed for Walsh lladaiiiard Transform on sliding

windows. This algorithm can be used to iinploniont pattern matching officiontly |33 .

The computational requirement of the proposed algorithm is about 1.5 additions per

projection vector por sample. The proposed algorithug achieves its high efficiency in

the computation of order-A^ WHT by using order-4 and order-N/4 WHT.

After developing the fast Walsh Hadamard Transform (WHT) algorithm in Chapter

2, Chapter 3 proposes an analysis and comparison of state-of-the-art algorithms for full

search equivalent pattern matching (88]. Our intention is that the datasets and tests

used in our evaluation will be a benchmark for testing future pattern matching algo-

rithms, and that the analysis coiiccM'ning the state-of-the-art algorithms could inspire

new fast algorithms. We also propose extensions of the evaluat(Kl algorithms and show

that they outperform the original algorithms.

The Gray-Code Kernels (GCK) family which has WHT on sliding windows as a

member is a family of kernels that can perform image analysis efficiently using a fast

algorithm such as the GCK algorithm. The GCK has been successfully used for pattern

matching. In Chapter 4，we develop a new family of transforms called the Kronecker-

Hadaniar(i Transform (KUT) of which the GCK family is a subset. Thus, KHT pro-

vides more choices of transforms for representing images. Then wo propose a new fast

139

140 , CHAP. 7. CONCLUSIONS

algorithm that is more efficient than the GCK algorithm. The proposed fast. KIIT

algorithm requires 4 additions per pixel for computing 3 ba.sis vcctors iiidcpondcnt of

transform size and dimension. All KHTs can be computed efficiently using the fant

KHT algorithm. Based on the KHT, we then propose the segniontcd KIIT (SogKHT).

By segmenting input data into Lf, parts, the SegKIIT requires only 4 axlditioiis per

pixel for computing 3L., baijis vectors. Experimental results show that the proposed al-

goritliiii can significantly ac-.cclerate the full-search equivalent pattern matching process

and outperforms statc-of-tlie-fu t met hods [89]. KHT and SogKHT were; doscri])od in

the context of transform domain pattern matching. However, pattern iiiatcliing is only

an application example. Tho properties of KHT and SegKIIT rnako tliern aUracUvc

for many applications which require traiisfonuation on sliding windows such as image

based rendering, image compression, super resolution, object detection, texture syn-

tliesis, block matching in motion estimation, image donoising, action recognition and

wide baseliuo image matching.

After that, strip sum is proposed in Chapter 5. Tlic sum of pixels in a rccianglc,

which is called rectangle sum, can be computed by one addition using the strip sum.

The rectanglc sum can be regarded as the dc componeiit of Uic rectaiiglo if we skip

• . .i
the normalization factor. The rectangle sums are building bricks for Haar-liko features.

We show that strip sum can be used for computing OUT. It is easy to use strip sum
. ‘

for computing the Haar-likc features proposed in [42; 48; 77). Thou we propose to use

the OHT for sliding transform. Existing fast algorithms for computing trarLsJonnation

oil sliding windows [1; 32; 33] require 0{u) additions for projecting input data having

size N onto u 2D basis. The OUT can project input data onto u 2D btusis by 0{\ogu)

additions using the strip sum. Experimental results show that the proposed algorithm

call significantly accelerate the FS-equivalent pattei \ matching proccss and outperforms

state-of-the-art methods [78]. ； ^

Finally, transform domain SVM (TDSVM) using pruning is proposed in chapter

6. Given an SVM classifier, the proposed transform domain SVM approximate tlie

SVM using a subspace. Then an upper bound function is used for efficiently pruning

large number of negative samples. When applied for human detection using Histogram

of Oriented Gradients (HOG), the proposed algorithm accelerates the computation of

SVM. With time saved for computing SVM, more sophisticated descriptors can be used

§7.2. Future Work m

Tor increasing the classification performance at the same computational time.

7.2 Future Work

Some suggestions for future work are listcul below:

1. Apply the proposed fast algorithms to more applications. Transform domain

pattern matching has found application in block matching in motion estimation

for video coding [2; 9), tracking |13; 14), feature point based image matching

[15]； texture synthesis [49) and augmented reality [50]. We developed many fast

algorithms for transforni domain pattern matching and applied the algorithm

trf) (..omputing SVM. In the future, we can use the proposed algorithm for more

applicatioiiH.

2. Apply the proposed fa«t algorithms for pattern matching that is invariant to

rotation and affiiie distortion. Currently, the proposed algorithms are applied

when SSD and SAD are used as the measure for matching. It is clearly shown

in [1] that WHT 'is able to deal with scale, illumination and Gaussian noise

distiirbariccH. Our oxpcrimental results in [89] show that WHT ami KHT are

able to deal with image blur and JPEG compression. Since WHT is used for

normalized cross correlation (NCC) in [90], our proposed algorithms arc naturally

applicable for measures using convolution, e.g. NCC. The approach in [15], has

oxteiulod WHT for cloaling with rotation and affine transform. Research on using

our proposed algorithms for rotation and afHno distortion is an interesting research

topic. .

3. Design more efficiont feature extraction algorithms. W(3 have designed fast algo

rithiri for obtaining the sum of pixels in a rectangle and for computing Haar-like

features. The design of efficient feature extraction algorithms is a future work.

4. Combine the algorithm with hardware requirement and design hardware specific

algorithms. Our proposed algorithm is analyzed theoretically and implemented on

PC. However, the computational officicncy of the proposed algorithm to specific

hardware environment is unclear and can be studied further.

5. Find the subset of KHT that is more efficient that WHT in compacting energy

142 CHAR 7. CONCLUSIONS

from input data. Currently, we Find that the Segmented KHT is more efficient

than GCK ill computational efficiency with some loss of energy packing ability.

However, there are applications where computational efficiency is less important

than energy pacing ability. Thus the subset of KHT that is more efRcicnt in

compacting energy from input data can be used for these applications.

r

Bibliography

|1] Y. Hel-Or and H. Hcl-Or, "Real time pattern matching using projection kernels," IEEE
lYajis. Pattern Anal. Mack. fnteU” vol. 27，no. 9，pp. 1430-1445, Sept . 2005. xvii, 3, 6，7，

8, 11’ 12，13, 14, 29, 30, 31, 33, 36, 37, 41, 42, 44, 45, 59, 60’ 65, 88, 89, 93, 107’ 118, 119,

122, 124, 129, 140’ 141

[2] Y. Moshe and H. Hel-Or, "Video block motion estimation based on Gray-code kernels," in

IEEE lYans. Image Process., vol. 18，no. 10，Oct. 2009, pp. 2243-2254. xvii, I, 8, 22，37，

45, 77, 89’ 119, 141
參

|3) M. S. Aksoy, O. Torkul, and I. H. Cedimoglu, "An industrial visual inspection system that

uses inductive learning," Journal of Intelligent Manufactming, vol. 15, no. 4, pp. 569—574，

2004. 1 ,

(4] A. Fitzgibbon, Y. Wexler, and A. Zisserrnan, "Image-based rendering using image-based

priors," in ICCV、vol. 2’ 2003’ pp. 1176- 1183. 1

|5] T. Liiczak and W. Szparikowski, “A siiboptimal lossy data compression based on approxi-

mate pattern matching," IEEE Trans, Information Theory、vol. 43, no. 5, pp. 1439-1451,

1997. 1
、

[6] R. M. Dufour, E. L. Miller, and N. P. Galatsaiios, "Template matching based object

recognition with unknown geometric parameters,，’ IEEE Trans. Image Process., vol. 11,

no. 12, pp. 1385-1396, Dec. 2002. 1

[7) W. Freeman, T. Jones, and E. Pasztor, "Example-based super-resolution," IEEE Computer
Graphics and Applications, vol. 22，no. ！pp. 56 65, Mar./Apr 2002. 1

[81 A. Kfros and T. Leung, "Texture synthesis by non-parainetric sampling," in ICCV, Sept.

1999, pp. 1033 1038. 1

|9] C. Mak, C. Fong, and W. Cham, "Fa.st motion estimation for H.264/AVC in Walsh

Hadamard domain," IEEE 'lYam. Circuits Syst. Video Technol.、vol. 18，no. 5, pp. 735-745,

Jun. 2008. 1，8, 37, 141

|10] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising," in

CVPR、vol. 2, Jim. 2005’ pp. GO 65. 1

[11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian，"Image dcnoising by sparse 3-d

transform-domain collaborative filtering," lEEK Trans. Image Process.y vol. 16，no. 8，pp.

, 2080 2095, Aug. 2007. 1

|12) II. Zhang, W. Ouyang, and W. Cham, “Image deblocking using dual adaptive fir wiener

filter in the DCT transform domain," in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Prvcessing (TCASSP), 'IViwaii, April 19-24 2009，pp. 1181-1184. 1

[13j Y. Alon, A. Ferencz, and A. Shashua, “Off-road path following using region classification

and geometric projection constraints’” in CVPH, vol. 1，Jun. 2006，pp. 689 696. 1,8，141

[14] Y. Shina, J. S. Jua, and E. Y. Kim, "Welfare interface implementation using multiple facial

features tracking for the disabled people," Pattern Recognition Letters, vol. 29, no. 13’ pp.

1784- 1796，Oct. 2008. 1, 8, 141 ‘ *

143

144 BIBLIOGRAPHY

[15] Q. Wang and S. You, "Real-time image matching based on multiple view kernel projection,"

in CVPR, 2007. 1’ 8’ 61, 1.41

[16] S. Wei and S. Lai, “Robust, and efficient imago alignment ba^cd on relative gradient, niatcli-
ing," IEEE 'lYansa. Image Processing, vol. 15, no. 10, pp. 2936 -2943, Oct,. 2006. 1

[17]' X. Wii, "Template-based action recognition: Classifying hockey players inovrmont,," Mfxs-

ter's thesis, The University of British Columbia, 2005. 1

[18] D. Lowe, "Distinctive image features from scalo-iiivarian kcypoiiiLs," hit 'I J. Computer

Vision, vol. 60, no. 2, pp. 91-110, 2004. 2

[19] K. Mikolajczyk and C. Schinid, "A performance evaluation of local descriptors," IEEE
T.Yans. Pattern Anal. Mack. Intell., vol. 27，no. 10，pp. 1615-1630, Oct. 2005. 2

[20] H. Bay, T. Tuytdaars, and L. Gool, "Surf; Speeded up robust features," in ECCV、vol. 1’

2006, pp. 404-417. 2，107

(21|'V. Lepctit and P. Fua, "Keypoint recognition using randomized trees," IEEE 'JYaiis. Pat-

tern Anal. Mack. InteU.、vol. 28, no. 9, pp. 1465 -1479, Sept. 2006. 2

[22] J, Zhang, M. Marszalek, S. Lazebnik, and C. Schrnid, "Local features and kernels for

classification of texture and objcct categories: A coiiiprchoiiaivc study," Int 7 J. Computer

Vision, vol. 73, no. 2，pp. 213 238, 2007. 2

[23] O. Pele and M. Wermaii, "Robust real-time pattern matching using bayosian sequential

hypothesis testing," IliJEE 'lYans. Pattern Anal. Mach. Intell.、vol. 30, no. 8, pp. 1427 1443,

Aug. 2008. 2

[24] L. D. Stefano and S. Mattoccia, “Fast template matching using bounded partial correla-

tion," Mach. Vis. AppL, vol. 13, pp. 213-221, 2003. 2, 127

[25] ， "A sufficient, condition based the cauchyschwarz inequality for eHicienl template

matching," in Prvc. IEEE Int. Conf. Image Processing, vol. 1, Sep. 2003, pp. 269 -272. 2,

127 “

[26] S. Mattoccia, F. Tombari, and L. D. Slefano, "Fast full-search equivalent template match-

ing by enhanced bounded correlation," IEEE lYans. Image Process., vol. 17, no. 4, pp.

528-538, Apr. 2008. 2, 3，107，127, 137

[27] B. Girod, Whats Wnmg with Mcan-Squar-ed Error? MIT Press, 1993., di. 15. 3

[28] S. Santini and R. Jain, "Similarity measures," IEEE 'IVans. Pattern Anal. Mach. Intell.,
vol. 21，no. 9，pp. 871-883, Sept. 1999. 3

[29]' A. Ahumada, "Computational image quality metrics: A review," in Proc. Soc. Infonnation
Display Jntl Symp., vol. 24，1998’ pp. 305-k)8. 3

[30] M. G. Alkhansari, “A fast globally optimal algorithm for teniplato matching using low-

resolution pruning," IEEE lYaris. Image Process., vol. 10’ no. 4，pp. 526-533, Apr 2001.

3,‘29，30, 33, 34, 36, 39, 40, 45, 82

[31] F. Tombari, S. Mattoccia, and L. D. Stefano, “Full search-cquivalcnt, pattern inatclnng

with incremental ciiBsiinilarity approximations," IEEE Dmis. Pattern Anal. Mach. Intell.、
vol. 31，no. 1, pp. 129 -141，Jan. 2009. 3, 4, 29, 30, 33, 37, 45, 82, 88, 89, 90, 92, 107，118,

119, 120

[32] G. Ben-Artz, H. Hel-Or, and Y. Hcl-Or, “The Gray-code filter kernels," IEEE 'JYans.

Pattern Anal. Mach. Intell., vol. 29，no. 3，pp. 382-393, Mar. 2007. 3, 6, 8, 11，13, 14, 15,

17, 20’ 29，30, 33, 35, 37, 45, 64, 68, 69’ 73, 75, 76, 84，88’ 107，118, 124，140

[33| W. Ouyang and W. Cham, “Fast algorithm for Walsh Hadaniord transform on sliding

windows," IEEE l\uns. Pattern Anal Mach. Intell., vol. 32, no. 1’ pp. 165-171, Jan.

2010. 3, 29, 30. 33, 37, 46, 62, 63，64，74, 81’ 107，117, 124, 125, 139, 140

BIBLIOGRAPHY 145

|34l G. .1. VaiiderBrug and A. llosenfeld, "Two-stage template matching," IEEE 'Iraris. Corn-
put., vol. C-26, no. 4, pp. 384-393, Apr. 1977. 3

(35] M. Ben-Yehuda, L. Cad any, and H. Hel-Or, "Irregular pattern matching using projections,"
ill Proc. 12th Inl 'I Conf. Image Processing (fCIP), vol. 2, 2005, pp. 834 -837. 3, 6, 8，61，
82, 129

[36] A. Goshtasby, 2-D and 3-D Image Registration for Medical, Remote Sensing and Industrial
Applications. New York: Wiley, 2005. 3

[37j 13. Zitova and J. Fliisser, "Image registration met.hods:a survey," Image Vis. Cornput.,
vol. 21，no. 11, pp. 977-1000, 2003. 3

[38] W. Krattenthaler, K. Mayer, and M. Zoiler, “Point correlation: A roducod-coat template

inatching technique," in Proc. 1st IEEE Int. Conf. Image Processing, vol. 1, Austin, TX,

1994, p. 208212. 3

[39) K. Bricchle and U. D. Hanebcck, “Template matching using fast normalized cross

correlation," in Proc. SPIE AeroSense Symp,、vol. 4387, no. 1. SPIE, 2001’ pp. 95 102.

[Oiil.ine|. Available: http://link.aip.org/link/?PSI/4387/95/l 3

|40) P. S. Heckbert, "Filtering by repeated integration," in Proc. SIC-GRAPH, 1986, pp. 315-

321. 3

|41] P. Simard, L. Bottou, P. Haffner, and Y. L. Cun, "Boxlets: A fast convolution algorithm

for signal processing and neural networks," Adv. Neural Inf. Process. Sysl.、vol. 1], pp.

571-577, 1999. 3, 107

142] F. Tang, R. Crabb, and H. Tao, "Representing images using noiiorthogonal Haar-like

bases," IEEE Truns. Pattern Anal. Mach. IntelL, vol. 29’ no. 12, pp. 2120-2134, Dec.

2007. 3, 12.1, 140

|43] C. D. Bei and R. M. Gray, "An improvement of the minimum distortion encoding algorithm

for vector quantization," IEEE Trans. Commun., vol. COM-33, no. 10, pp. 1132-1133, Oct.

1985. 3

|44] W. Li and E. Salari, "Successive elimination algorithm for motion estimation," IEEE
Trans. Image Process., vol. 4, no. 1，pp. 105—107，Jan. 1995. 3, 29

[45] H. S. Wang and R. M. Mersereau, “Fast algorithms lor the estimation of motion vectors,"

IEEE Trans. Image Process., vol. 8，no. 3，p. 435439, Mar. 1999. 3, 29

[46| J. Lewis, "Fast template matching," in Vision Interface 95、Quebec City, Canada, May

15-19 1995, pp. 120-123. 4, 127, 134

(47| M. J. McDonnell, "Box-filtering techniques，” Comput. Graph. Image Process., vol. 17，pp.

65-70，1981. 4’ 41, 74’ 90, 112

[48) P. Viola and M. Jones, "Robust real-time face detection," Ini 'I J. Computer Vision, vol. 57’

no. 2, pp. 137-154, 2004. 4，63, 74, 87, 124, 140

|49| Y. Hel-Or, T. Malzbendcr, and D. Gelb, "Synthesis and rendering of 3d textures," in

Texture 2003 Workshop accomp. ICCV 2003” 2003, pp. 53-58. 8’ 141
蛰

[50] Q. Wang, J. Mooser, S. You, and U. Neumann, "Augmented exhibitions using natural

features," Int'l. J. Virtual Reality,, vol. 7，no. 4，pp. 1-8, 2008. 8, 141

[51] G. Ben-Artzi，"Gray-code filter kernels (GCK)-fast convolution kernels," Master's thesis,

Bar-Ilan Univ.,，Ramat-Gan, Israel, 2004. 8, 65, 69，118

|52] W. Cham and R. Clarke, “Dyadic symmetry and Walsh matrices," JEE Proceedings, Pt.F.,
vol. 134, no. 2, pp. 141-145，April 1987. 25’ 65

(531 ；，"http://sourceforge.net/projects/opencvlibrary." 29, 30’ 33, 88, 114，132, 135

http://sourceforge.net/projects/opencvlibrary

146 BIBLIOGRAPHY

[54] ，"http://people.csail.init.edu/torralba/images." 44, 89, 1H)

[55] , "wwAV.data-compression.info/corpora/lukascorpus." 44, 89, 119

[56]——"http://zuhi.ssc.nasa.gov/mrsid." 44, 89, 119

[57] , "www.faculty.idc.ac.il/toky/software/softwaxc.htm." 45, 89, 119

[58] Y. Geadali and M. Corinthios, "Natural, dyadic, and sequency order algorithms and pro-

cessors for the Walsh-Hadainard transform," IEEE Trans. Computers, vol. C-26, no. 5,

pp. 435 - 442, May 1977. 65

[59] H. Schweitzer, R. F. Anderson, and R. A. Deng, “A dual bound algorithm for very fast

and exact template-matching," IEEE lYans. PattcTn Anal. Mack. Intel I.、Accepted. 05,

‘ I IG

[60] C.-H. Huang, J. II. Johnson, and R. Johnson, “A lensor product formulation of sir assents

matrix multiplication algorithm," Appl. Math Letters, vol. 3, no. 3, pp. 104- 108, 1990. (JG

[61] E. Feig and S. Winograd, “Fast: algorithms for ihe discrete cos IMP transforrii,'' IEEE 'lYans.

Signal Processing, vol. 40, no. 9，pp. 2174- 2193, Sept. 1992. GG

[62] A. Graham, Kronecker Products and Matrix Calculus: With Applications. 605 THIRD

AVE.’ NEW YORK, NY 10158: JOHN WILEY & SONS, INC.,, 1982. 6G

[63] A. Soman and P. Vaidyanathaii, "Coding gain in paraiiriitary analysis/synthesis systems,"

IEEE Trans. Signal Processing, vol. 41，no. 5, pp. 1824-1835, May 1993. 85

[64] H. Malvar and D. Staelin, "The lot: lYaiisform coding without blocking effects," IEEE

7YansacUons on Acoustics Speech and Signal processing, vol. 37, no. 4, pp. 553-559, April

1989. 85

[65] A. Jain, "Advances in mathematical models for image processing/' Proceedings of the
IEEE、vol. 69，no. 5，pp. 502-528, May 1981. 85

[66] H. Kitajima, "Energy packing efficiency of tlie hadainard transform," IEEE Trans. Com-
,munications, vol. 24, pp. 1256-1258, 1976. 87

[67]• P. Yip and K. Rao, "Energy packing efficiency for the generalised discrete transform,"

IEEE lYans. Communications, vol. 26, pp. 1256-1262, 1978. 87

[68] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple feat ures,"

in CVPIi, 2001，pp. 1:511-1:518. 107, 108, 112’ 134

[69] F. Crow, "Sumnied-area tables for texture mapping," in Proc.lJth Ann. Goaf. Computer

Graphics and Interactive Techniques, 1984, pp. 207—212. 107, 108

[70] S. Maji, A. C. Berg, and J. Malik, "Cla^jsification using intersection kornol support, vector

machines is efficient," in WEE Conf. CVPR, 2008. 107

[71] F. Porikli, "Integral histogram: A fast way to extract histograms in cartesian spaces."

in IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), vol. 1，2005, pp.

829-836. 107

[72] P. Viola, M. Jones, and D. Snow, "Detecting pedestrians using patterns of motion and

appearance," in ICCV、2003, pp. II:734-11:741. 107 •

[73] O. Tuzel，F. Porikli, and P. Meer, "Pedestrian detection via classification on ricinannian
manifolds," IEEE Trans, Pattern Anal. Mach. Intell, vol. 30, no. 10，pp. 1713-1727, Oct.
2008. 107

[74] Q. Zhu, M.-C. Yell, K.-T. Cheng, and S. Avidan, "Fâ st human detection using a cascade

of histograms of oriented gradients," in CVPR 2006、2006，pp. 1491-1498. 107

http://people.csail.init.edu/torralba/images
http://zuhi.ssc.nasa.gov/mrsid
http://www.faculty.idc.ac.il/toky/software/softwaxc.htm

BIBLIOGRAPHY 147

[75] C. Lampert, M. Blaschko, and T. Hofrnann, "Beyond sliding windows: Object localization
by efficient subwindow search," in CVPR、2008, pp. 1-8. 107

(76] H. Schweitzer, .1. W. Bell, and F. Wu, "Very fast- template matching," in ECCV, 2002，pp.

358-372. 107, 108

{77] R. Lienhart, A. Kuranov, and V. Pisarevsky, "Empirical analysis of detection cascades of

boosted classifiers for rapid object detection," in DA GM 25th Pattern Recognition Sympo-
sium, 2003, pp. 297-304. 107，108, 111, 124, 140

[78] W. Ouyang, R. Zhang, and W.-K. Cham, "Fast pattern matching using orthogonal Haar

transform," in Proc. IEEE conf. Comper vision and Paiieni recognition (CVPR)、2010,

109,140

[79] B. Fino, "Relations between haar and walsh/hadarnard transforms,

IEEE, vol. 60, no. 5, pp. G47-648, 1972. 124

Proceedings of the

[80] S. Koerthi, O. Chapelle, and D. DcCoste, "Building support vector machines with reduced

classifier complexity," The Journal of Machine Learning Research, vol. 7, pp. 1493-1515,

2006. 127

[81] C. J. C. Burges and B. Scholkopf, "Improving the accuracy and speed of support vector

learning machines," in Proc. the 9th NIPS Conference、1997, pp. 375 -381. 127

[82] B. Scholkopf, C. J. C. B. S. Mika, P. Knirsch, K. R. Muller, G. Raetsch, and A. J. Smola,

"Input space vs. feature space in kernel-bauseci methods," IEEE Trans. Neural Networks,
vol. 10，pp. 1000 1017, 1999. 127

[83] N. Dalai and B. Triggs, "Histograms of oriented gradients for human detection," in IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 2005. 132, 135

(84| Q. Zhu, M. Yeh, K. Cheng, and S. Avidan, “Fast human detection using a cascade of

histograms of oriented gradients," in Proc, IEEE Conf. Computer Vision and Pattern
Recognition, CVPR, 2006. 132, 133

[85] C. Wojek, G. Dorko, A. Schulz, and B. Schiele, "Sliding-windows for rapid object class

localization: A parallel technique," in In Proc. 30th DA GM sym. Pattern Recognition.

Berlin, Heidelberg: Springer-Verlag, 2008，pp. 71 -81. 133

[86] ；，"http://pascal.inrialpes.lr/data/human/." 135

[87] N. Dalai, "http://www.navncetdalal.corn/software." 135

|88) W. Ouyang, F. Tombari, S： Mattoccia, L. I). Stefano, and W.-K. Cham, "Performance

evaluation of full search equivalent pattern matching algorithms," IEEE 'lYans. Pattern

• Anal Mach. IntelL, Under review. 139

[89| W. Ouyang, R. Zhang, and W. Cham, "The Kronecker-Hadamard transform for fast pat-

tern matching," IEEE 'lYans. Pattern Anal. Mach. Intell., Under review. 140, 141

|90] W. Pan, S. Wei, and S. Lai, "Efficient NCC-based image matching in Walsh-Hadarnard

domain，” in ECCV, D. Forsyth, P. Torr, and A. Zisserrnan, Eds., 2008. 141

http://pascal.inrialpes.lr/data/human/
http://www.navncetdalal.corn/software

