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Abstract of thesis entitled: 
Bayesian Decision Theoretical Framework for Clustering 

Submitted by CHEN，Mo 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in July 2011 

In this thesis, we establish a novel probabilistic framework 
for the da ta ciusteiing piobleiri from the perspective of Bayesian 
decision theory. The Bayesian decision theory view justifies the 
important questions: what is a cluster and what a clustering 
algorithm should optimize. 

We prove tha t the spectral clustering (to be specific, the nor-
malized cut) algorithm can be derived from this framework. E-
specially, it can be shown that the normalized cut is a non-
parametric clustering method which adopts a kernel density es-
t imator as its density model and tries to minimize the expected 
classification error or Bayes risk. 

By the Bayesian decision theoretical view, we propose sever-
al extensions of current popular graph based methods. Several 
data-dependent graph construction approaches are proposed by 
adopting more flexible density estimators. The advantage of 
these approaches is tha t the parameters for constructing the 
graph can be estimated from the data. Tlie constructed graph 
explores the intrinsic distribution of the data. As a result, the 
algorithm is more robust. It can obtain good performance con-
stantly across different data sets. Using the flexible density mod-
els can result in directed graphs which cannot be handled by tra-
ditional graph partitioning algorithms. To tackle this problem, 



we propose general algorithms for graph partitioning, which can 
deal with both undirected and directed graphs in a unified way. 
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在本论文中，我们从贝叶斯决策论的角度出发，对数据聚 

类问题建立了 一个概率框架。从贝叶斯决策论的视角我们对以 

下重要问题作出了解释：什么是类簇，一个聚类算法应该对什 

么进行优化。 

我们证明了谱聚类算法（具体地说正规化切算法）可以由 

所提出框架导出。特别的，可以证明，正规化切算法是一种使 

用核密度估计作为概率密度模型的，试图最小化期望分类错误 

率的非参数聚类方法。 

从贝叶斯决策论出发，我们给出多种对现在基 f图的聚类 

算法的扩展。多种使用了更加灵活的概率密度估计的数据驱动 

的建图方法被提出。这些方法的优势在于在建图过程中的所有 

参数由算法自动由数据中估计出来。所建的图考察了数据的内 

在分布，从而使算法更加鲁棒，对不同类型数据都能得到很好 

的性能。使用更加灵活的概率密度估计方法的结果是所建的图 

有可能为有向图。传统的谱聚类方法不能处理有向图。我们进 

一步提出了更为一般的图切分算法，使得我们可以统一的对有 

向图和无向图进行切分。 
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Chapter 1 

Introduction 

Clustering is one of the most widely used techniques for ex-
ploratory data analysis. Across all disciplines, from social sci-
ences over biology to computer science, people try to get a first 
intuition about their data by identifying meaningful groups a-
mong the data points. Clustering is the unsupervised classifi-
cation of patterns (observations, data items, or feature vectors) 
into groups (clusters). The clustering problem has been ad-
dressed in many contexts and by researchers in many disciplines; 
this icfljects its broad appeal and usefulness as one of the steps 
in exploratory data analysis. In general, cluster analysis is the 
organization of a collection of patterns (usually represented as a 
vector of measurements, or a point in a multidimensional space) 
into clusters based on certain goodness measurement. Intuitive-
ly, patterns within a valid cluster are more similar to each other 
than they are to a pattern belonging to a different cluster. The 
variety of techniques for representing data, measuring proximity 
(similarity) between data elements, and grouping data elements 
has produced a rich and often confusing assortment of clustering 
method^. 

Clustering is useful in several exploratory pattern-analysis, 
groupinjg, decision-making, and machine-learning situations, in-
cluding i data mining, document retrieval, image segmentation, 
and pattern classification. However, in many such problems, 
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there is little prior information available about the Idata, and 
the decision-maker must make as few assumptions labout the 
data as possible. It is under these restrictions that clustering 
methodology is particularly appropriate for the exploration of 
interrelationships among the data points to make an assessment 
(perhaps preliminary) of their structure. 

The term “ clustering" is used in several research communi-
ties to describe methods for grouping of unlabeled data. These 
communities have different terminologies and assumptions. It is 
important to understand the difference between clustering (un-
supervised classification) and discriminant analysis (supervised 
classification). In supervised classification, we are provided with 
a collection of labeled (pieclassificd) patterns; the jproblem is 
to label a newly encountered, yet unlabeled, pattern! Typical-
ly, the given labeled (training) patterns are used to' learn the 
descriptions of classes which in turn are used to label a new 
pattern. Contrary to data analysis methods such as regression 
or classification for clustering there exists no ground truth. We 
wish to consider the common situation in which clustering takes 
place without having any significant prior knowledge about the 
subject data set. In the case of clustering, the problem is to 
group a given collcction of unlabeled patterns into meaningful 
clusters. In a sense, labels are associated with clusters also, but 
these category labels are data driven: that is, they are obtained 
solely from the data. The very reason for performing clustering 
is that we want to discover a structure in the data which we 
did not know about before. If a clustering algorithm does not 
achieve good results we do not know whether the reason is that 
the algorithm performs poorly or whether there is just no group 
structure in our data. 

In this thesis, we focus on graph based methods for data 
clustering (e.g. spectral clustering). These methods first con-
struct a similarity graph from the given data, thei; partition 
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the graph into disjoint subgraphs to obtain the clustering re-
sult . C o m p a r e d to the traditional algorithms such as k-means 
or single linkage, graph based methods has many fundamental 
advantages. Results obtained by these methods often outperfor-
m the traditional approaches, spcctral clustering is very simple 
to implement and can be solved efficiently by standard linear 
algebra methods. 

Spectral clustering goes back to [22], in which the authors 
first suggested to construct graph partitions based on eigenvec-
tors of the adjaccncy matrix. In the same year, Fiedler [26 
discovered that bi-partitions of a graph are closely connected 
with the second eigenvector of the graph Laplacian. and he sug-
gested to use this eigenvector to partition a graph. Since then, 
spcctral clustering has been discovered, re-discovered, and ex-
tended many times in different communities，see foi example 
64, 69，9’ 34, 40, 74, 3, 70, 33j. A nice overview over the his-

tory of spectral clustering can be found in [51]. In the machine 
learning community, spectral clustering has been made popular 
by the works of [67. 61, 54]. Subsequently, spectral clustering has 
been extended to many non-standard settings, for example spec-
tral clustering applied to the co-clustering problem [19J, spec-
tral clustering with additional side information [42] connection-
s between spectral clustering and the weighted kernel-k-means 
algorithm [20], learning similarity functions based on spectral 
clustering [2], or spectral clustering in a distributed environ-
ment [45]. Relations between spectral clustering and (kernel) 
principal component analysis rely on the fact that the smallest 
eigenvectors of graph Laplacians can also be interpreted as the 
largest 'eigenvectors of kernel matrices (Gram matrices). Two 
different flavors of this interpretation exist: The authors of [7 
interpret the affinity matrix as a kernel matrix, the authors in 
65] interpret the Moore-Pcnrose inverses of Laplacian matrix as 

a kernel matrix. Both interpretations can be used to construct 
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(different) oiit-of-sample extensions for spectral clustering. Con-
cerning application cases of spcctral clustering, in the last few 
years such a huge number of papers has been published in vari-
ous scientific areas that it is impossible to cite all of them. We 
encourage the reader to query his favorite literature data base 
with the phrase "spcctral clustering" to get an impression no 
the variety of applications. 

The success of spectral clustering is mainly based on the fact 
that it does not make strong assumptions on the form of the 
clusters. As opposed to k-means, where the resulting clusters 
form convex sets (or, to be precise, lie in disjoint convex sets of 
the underlying space), spectral clustering can solve very general 
problems like intertwined spirals. Moreover, spectral clustering 
can be implemented efficiently even for large data sets, as long 
as we make sure that the similarity graph is sparse. Once the 
similarity graph is choscn, we just have to solve a linear prob-
lem, and there are no issues of getting stuck in local minima or 
restarting the algorithm for several times with diffeient initial-
izations. However, we have already mentioned that choosing a 
good similarity graph is not trivial, and spectral clustering can 
be quite unstable under different choices of the parameters for 
the neighborhood graphs. So spectral clustering cannot serve as 
a “black box algorithm” which automatically detects the cor-
rect clusters in any given data set. But it can be considered as 
a powerful tool which can produce good results if applied with 
care. 

In the field of machine learning, graph Laplacians are not 
only used for clustering, but also emerge for mariy other tasks 
such as semi-supervised learning (e.g., [13] for an overview) or 
manifold reconstruction (e.g., [4]). In most applications, graph 
Laplacians arc used to encode the assumption that data points 
which are close should have a similar label. One other way to 
interpret the use of graph Laplacian is by the smoothness as-
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sumptions they encode. A function f which has a low value 
of f ^ L f has the property that it varies only a little bit in re-
gions where the data points lie dense (i.e., the graph is tightly 
connected), whereas it is allowed to vary more (e.g., to change 
the sign) in regions of low data density. In this sense, a small 
value of fTLf encodes the so called cluster assumption in semi-
supervised learning, which requests that the decision bound-
aiy of a classifiei should lie in a legiori of low density. With 
this intuition one can use the quadratic form 产Lf as a reg-
ularize! in a transcluctive classification pioblem. An intuition 
often used is that graph Laplacians formally look like a contin-
uous Laplace operator (and this is also where the name “ graph 
Laplacian" comes from). This intuition has been made precise 
in the works [5, 48, 37, 38, 6, 36, 30]. In general, it is proved 
that graph Laplacians are discrete versions of certain continuous 
Laplace operators, and that if the graph Laplacian is construct-
ed on a similarity graph of randomly sampled data points, then 
it converges to some continuous Laplace operator (or Laplace-
Beltrami operator) on the underlying space. Belkin [5] studied 
the first important step of the convergence proof, which deals 
with thiG convergence of a continuous operator related to dis-
crete gijaph Laplacians to the Laplace-Beltrami operator. His 
results jwere generalized from uniform distributions to general 
distribiJtioiis by [48]. Then in [6], the authors prove pointwise 
convcrgpnce results for the unnormalized graph Laplacian us-
ing the iGaJussian similarity function on manifolds with uniform 
distribirtion. At the same time, Hcin et al. [37] prove more gen-
eral results, taking into account all different graph Laplacians, 
more general similarity functions, and manifolds with arbitrary 
distributions. In [30], distributional and uniform convergence 
results are proved on manifolds with uniform distribution. The 
paper [36] studies the convergence of the smoothness functional 
induced by the graph Laplacians and shows uniform convergence 
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results. 
Apart from applications of graph Laplacians to partitioning 

problems in the widest sense, graph Laplacians can also be used 
for completely different purposes, for example for graph drawing 
47, 17]. In fact, there are many more tight connections between 

the topology and properties of graphs and the gr^ph Laplacian 
matrices than we have mentioned in this tutorial. T ôw equipped 
with an understanding for the most basic properties, the inter-
ested reader is invited to further explore and enjoy the huge 
literature in this field on his own. 

Despite this popularity of clustering, clustering is a difficult 
problem. Little is known about theoretical properties of clus-
tering. One of the main reasons is that it is very difficult to 
evaluate the quality of a partition of some given data set. There 
is no general agreement for what criterion should be optimize in 
order to clustering gcnci al data. Diffcrcnccs assumptions and 
criteria are proposed in different communities to address the 
problem of clustering on the domain specific data ^ets. However 
these assumptions and criteria are mostly ad-hoc. There is no 
theoretical ground to justify what is the right way to do cluster-
ing. The lacking of a theoretical framework for clusteiing makes 
the transfer of useful gcneric concepts and methodologies slow 
to occur. 

In this thesis, we adopt the probabilistic approach to model 
the clustering problem. Clustering can be viewed as assigning 
labels to samples in a given data set. This label assigning action 
is a decision making procedure under uncertainty. Probabilistic 
approach is a nature choice for modeling uncertainty. Bayesian 
decision theory which is built upon the probability theory is a 
theory that provides a theoretical ground for decision making 
problem. Bayesian decision theory deals with situations where 
decisions have to be made under a state of uncertainty, and its 
goal is to provide a rational framework for dealing with such 
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situations. 
The decision theory for supervised learning problems is well 

established. Starting from this point, we fiist establish the de-
cision theory for clustering problem. Then, we propose a novel 
probabilistic view of those graph based algorithms. In our frame-
work, constructing the graph can be seen as a implicit way to 
model the density of the data using nonparametric density esti-
mator. And various partition criteria (e.g. normalized cut) are 
somehow related to the Bayes risk, which the expccted classi-
fication error is, given a partition. From this new perspective, 
we generalize the graph based clustering methods to use more 
general .graph construction approaches using more flexible den-
sity estimators, which better explores the intrinsic distribution 
of the data. As a result, better clustering result can be obtained. 
.Using the flexible density models can result in directed graphs 
which cannot be handled by traditional graph partitioning al-
gorithm. We propose general algorithms for graph partitioning 
which can deal with both undirected and directed graphs in a 
unified way. 

The rest of the thesis is organized as follows: 

• In Chapter 2, we review the probabilistic density model-
ing methods used in this thesis including: mixture models, 
nonpalr ametric density model and Bayesian nonpar ametric 
models. We derive the Bayesian decision theory for clus-
tering problems from the Bayesian decision theory for clas-
sification problems. 

• In Chapter 3, we develop the Bayesian decision theoretical 
spectral clustering algorithms. 

• In Chapter 4，we develop the isoperimetric cut algorithm 
for graph bipartitioning problem. 

• In Chapter 5, we develop the random walk hitting time 
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based algorithm for multiway graph partitioning problem. 

® Finally, in Chapter 6, we summarize the ideas of the thesis 
and point to directions of future work. 

• End of chaptcr. 



Chapter 2 

Bayesian Decision Theory for 
Clustering 

Summary 

In this chapter, we review the Bayesian decision theory 
for classification problem and the nonparametric tech-
nique for density modeling. We then derive the Bayesian 
decision theory for clustering problem which is the cen-
tral th^eory the rest of the thesis is based on. 

Bayesian decision theory is the fundamental statistical theory 
to the problem of decision making under uncertainty. This ap-
proach is based on quantifying the tradeoff between various de-
cisions using probability and the costs that accompany such de-
cisions. Here we briefly review the well established Bayesian 
decision theory for the classification problem [24, 8, 35, 28, 52 . 
Then we introduce the nonparametric density models for densi-
ty estimation. Based on these models, we derive the Bayesian 
decision^ theory for the clustering problem. 



CHAPTER 2. BAYESIAN DECISION THEORY FOR CLUSTERING 10 

2.1 Bayesian Decision Theory 

Suppose we have an input sample vector x, and our goal is to 
predict t given a new value for x. Foi the classification problem, 
t represents class label which takes value from the set {Ci}k-
The joint probability distribution p(x, t) provides a complete 
summary of the uncertainty associated with these variables. De-
termination of t) from a set of training data is an example 
of inference. In a practice, we must often make a specific predic-
tion for the value of t, oi moie geiieially take a specific action 
based on our understanding of the values t is likely to take, and 
this aspect is the subject of decision theory. 

We are interested in the probabilities of the classes given the 
sample, which are given by Using Bayes' theorem, these 
probabilities can be expressed in the form 

p(x| 嚇 ） 
t
 X = p ( x ) ‘ 

where the evidence p(x) is given by 

二 E 咖 ⑷ 顺 ) . 
k 

Note that any of the quantities appearing in Bayes' theorem 
can be obtained from the joint distribution p(x, t) by either 
marginalizing or conditioning with respect to the appropriate 
variables. We can now interpret p(t) as the prior probability for 
the class k, and p{t\'x.) as the corresponding posterior probabil-
ity. If our goal is to minimize the chance of assigning x to the 
wrong class, then we should choosc the class having the higher 
posterior probability. We now justify this approach, and we also 
discuss more general criteria for making decisions. 
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2.1.1 Bayes Decision Rule 

Suppose that our goal is simply to make as few niisclassifications 
as possible,. The probability of misclassification rate is given by 

I 

‘ p{X) 二 j p{\x)dx : J p(A|x)p(x)fix, 

where p(入）is the probability that a error occurs and p(入|x) is 
the probability that a sample x is misclassified. If we ensure 
that p(A|x) is small as possible for every x, the integral must be 
as small as possible. 

We need a rule that assigns each value of x to one of the 
available classes. Such a rule will divide the input space into 
regions R^ called decision regions, one for each class, such that 
all poirfs in Rk are assigned to class Ci. The boundaries be-
tween dicci^ion regions are called decision boundaries or decision 
surfaces. Note that each decision region need not be contiguous 
but could comprise some number of disjoint regions. A mistake 
occurs when an input vector belonging to class Ck is assigned to 
classes other than Ck which are denoted by Ck- The probability 
of this occurring is given by 

k 

p(Cfc|x)p(x)(ix = ^ / (1 -p(Cfc|x))]9(x)c?x, 
Hk k J 兄k 

(2.1) 

which is callcd Bayes error. 
We are free to choose the decision rule that assigns each point 

X to one of the classes. Clearly to minimize p(入）we should ar-
range that each x is assigned to whichever class has the smallest 
value of the integrand in (2.1). Thus, for a given value of x we 
should assign it to class Ck if p(x, Ck) has the largest value. From 
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the product rule of probability we have p(x,Ck) = p{Ck\yi)p{'K). 
Because the factor p(x) is common to all terms, we can restate 
this result as saying that the minimum probability of making a 
mistake is obtained if each value of x is assigned to the class for 
which the posterior probability p(C"|x) is largest. 

Therefore, the rule that minimize the probability of misclas-
sification rate is 

C* — argmax[p(C/c|x)J, (2.2) 

which is called Bayes decision rule. Under this decision rule, the 
ty / 

expected error is 

p(A|x) = mm[p{Ck X 

It is easy to see that minimizing p{X) is equivalent to maxi-
mizing the probability of being correct which is written as 

/c 

p{Ck\x)p{x.)d:sL. 
T权k 

Since the equation p(7)+_p(A) = 1 always holds, the the decision 
rule (2.2) also maximizes the probability of being correct. 

2.1.2 Bayes Risk 

For a general treatment, we introduce a loss function, also called 
a cost function / (x)) , which is a single, overall measure of 
loss incurred in taking any of the available decisions or actions 
/(•) when the state of nature is t. Our goal is then tg minimize 
the total loss incurred 

E{\) = / \{tJ{yi))p{yL, t)dxdt. 
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In the classification problem, both t and / ( x ) are taking dis-
crete values. Therefore, the value of A is taken from a matrix, 
which is called loss matrix. 

Suppose that, for a new value of x, the true class is Ck and 
that we assign x to class Cj (where j may or may not be equal 
to k). By doing so, we incur some level of loss that we denote 
by A/ej, which we can view as the k, j element of a loss matrix. 

The optimal solution is the one which minimizes the loss func-
tion. However, the loss function depends on the true class, which 
is unknown. For a given input vector x, our uncertainly in the 
true class is expressed through the joint probability distribution 
p(x, Ck) and so wc seek instead to minimize the average loss, 
where the average is computed with respect to this distribution, 
which is given by 

剛 二 i m j XkjP{^,Ck)dx. (2.3) 
n 

Each X can be assigned independently to one of the decision 
regions Rj . Our goal is to choose the regions Rj in order to 
minimize the expected loss (2.3), which implies that for each x 
we should minimize XkjP(x，Ck). As before, we can use the 
product rule p(x, Ck) ~ p(C^.|x)p(x) to eliminate the common 
factor 0f p(x). Thus the decision rule that minimizes the ex-
pected loss^ is the one that assigns each new x to the class j for 
which tjtie truantity 

‘ �� - X ) 

k 
is a minimum. This is clearly trivial to do, once we know the 
posterior class probabilities p(Cfc|x). 

In the classification problem, on spccial loss function which 
is of particular interest is the zero-one loss function. It has 
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elements X^j = 1 一 ^kj where 

Ikj 
二 J 1 k = j 

0 k ^ j . 

again, the ex-The risk corresponding to this loss function is 
peeled misclassification rate. 

Wc classify a sample as belonging to class Cj if 

X ] A/c.7p(A:|x) — — lki)p{Ck\-K) - 1 ^ IkjPiCk X 

is a minimum. This suggest that we should choose class Cj for 
which 

is the smallest. Therefore, Minimizing the expect loss will min-
imize the misclassification rate. 

2.1.3 Generative VS. Discriminative 

We liave broken the classification problem down into two sepa-
rate stages, the infcrcncc stage in which wc use trainijng data to 
learn a model for and the subsequent decision stage in 
which we use these posterior probabilities to make optimal class 
assignments. 

For the classification problem, the key idea is to model the 
posterior for each class. Then classifying samples is simply to 
apply the Bayes decision rule. There are two distinct ways to 
accomplish this goal called discriminative and generative ap-
proaches. 

In generative approach, we first detenniiie the class-conditional 
densities for each class Ck individually. Also separately 
infer the prior class probabilities p{Ck). Then use Bayes' theo-
rem to find the posterior class probabilities p(C/e|x). Equivalent-
ly, we can model the joint distribution p(x, t) directly and then 
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normalize to obtain the posterior probabilities. Generative ap-
proach explicitly or implicitly models the distribution of inputs 
as well as outputs, because by sampling from them it is possible 
to generate synthetic data points in the input space. 

In discriminative approach, we find a function / (x ) , called a 
discriminant function, which maps each input x directly onto a 
class label. Actually, the decision rule 

C* = argmax[p(C^|x) 

is exactly such a function. Therefore, the discriminative ap-
proach can be viewed as directly modeling the posterior p{Ck\'x) 
without modeling the generative density 

The decision function can be obtained by minimizing follow-
ing risk 

则 c y 二 [狐/(x))p(x|CfcMx 
Jx 

or for discrete problem 

E 刚 二 h A ( C � x ) M x | C , ) . 

I 

2.2 Nonparametric Density Models 

As non-parametric methods make fewer assumptions, their ap-
plicability is much wider than the corresponding parametric 
methods [41, 68]. In particular, they may be applied in situ-
ations where less is known about the application in question. 
Here we give brief introduction to the nonpar ametric models 
which will be used in this thesis. 

Let us suppose that observations are drawn from certain un-
known distribution with the probability density function 
in certain rf-dimensional space, which we shall take to be Eu-
clidean.! We wish to estimate p(x). Let us consider some small 
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I 

region 7Z containing x. The probability mass associated with 
this region is given by 

/ p(x)dK. 
Jn 

Suppose that we have collected a data set comprising n ob-
servations drawn from p(x). Because each data point has a 
probability P of falling within 7Z, the total number K of points 
that lie inside 7Z will be distributed according to the binomial 
distribution 

7 7 ! 

B m 附 ) ： - 尸 r K 

The mean of points falling inside the region is E[K/n] = P , 
and the variance around this mean is var[J^/n] = P(1 — P)/n. 
For large n, this distribution will be sharply peaked around the 
mean and so 

K - nP. (2.4) 

If, however, we also assume that the region TZ is sufficiently 
small that the probability density p(x) is roughly constant over 
the region, then wc have 

(2.5) 

where V is the volume of IZ. Combining (2.4) ^nd (4.3), we 
obtain our density estimate in the form 

咖 - ； I - (2.6) 

We can exploit the result (2.6) in two different ways. Either we 
can fix K and determine the value of V from the data, which 
gives rise to the K-nearest-neighbour technique discussed short-
ly, or wc can fix V and determine K from the data, giving rise to 
the kernel approach. It can be shown that both the i^-nearest-
neighbour density estimator and the kernel density estimator 
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converge to the true probability density in the limit as long as 
following conditions hold 

lim V — 0, lira K oo. lim K/n = 0. 
n~¥oo n >oc n—oc 

2.2.1 Kernel Density Estimator 

In statistics, kernel density estimator (KDE) is a nonparametric 
way of estimating the probability density function of a random 
variable. We begin by discussing the kernel method in detail, 
and to start with wc take the region to be a small hyper-
cube centered on the point x at which we wish to determine the 
probability density. In order to count the number K of points 
falling within this region, it is convenient to define the following 
function 

K(u) ^ ( ； …，式 (2.7) 
[ 0 otherwise, 

which represents a unit cubc centered on the origin. The func-
tion k{\i) is an example of a kernel function, and in this con-
text is also called a Parzen window. From (2.7), the quantity 

— y^i)/h) will be one if the data point x^ lies inside a cube 
of side h centered on x, and zero otherwise. The total number 
of data points lying inside this cube will therefore be 

n 
X — X . . 

K 二、 Ki 
h 

Substituting this expression into (2.6) then gives the following 
result for the estimated density at x 

咖 4 亡 宁 ) ’ （2.8) 
广1 

where 观 have used V — /i^ for the volume of a hyper cube of side 
h i n d dimensions. Using the symmetry of the function ^(u), we 
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can now re-interpret this equation, not as a single cube centered 
on X but as the sum over n cubcs centered on the n ciata points 
X: We can choose a smoother kernel function, and a common 
choice is the Gaussian kernel 

— y � 1 ( l|x —y 
h ) (V^)" � 2h? 

which gives rise to kernel density estimator 

1 
•Kx) = h / ^ w > exp( 

X — X , 
(2.9) 

where h represents the standard deviation of the Gaussian com-
ponents. Thus our density model is obtained by pUcing a Gaus-
sian over each data point and then adding up the contributions 
over the whole data set, and then dividing by n so that the 
density is correctly normalized. 

The parameter h plays the role of a smoothing parameter, 
and there is a trade-off between sensitivity to noise at small h 
and over-smoothing at large h. Again, the optimization of h is 
a problem in model complexity. 

We can choose any other kernel function k{u) in (2.8) subject 
to the conditions 

• ) > 0 

J K{ii)du 1, 

which ensure that the resulting probability distribution is non-
negative everywhere and integrates to one. 

Here, we show how to using kernel density estimator to solve 
classification problem. For a multi-class classification problem, 
the estimate of the density associated with each class is 

/ ^ � 1 v ^ / X — X,. 2 
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where d is the dimension of the input samples and n^ is the num-
ber of samples in class k. We assume that the prior distribution 
of t is given by 

We dan use the Bayes' theorem to obtain the posterior prob-
ability of the class membership 

p{Ck X 二 
p{^\Ck)p{Ck) Ejev,咖 一 

If we wish to minimize the probability of misclassification, 
this is done by assigning the test point x to the class having the 
largest posterior probability. 

2.2.2 Nearest Neighbors Density Estimator 

We ret平n to our general result (2.6) for local density estimation, 
and insteai^ of fixing V and determining the value of K from the 
data, we consider a fixed value of K and use the data to find 
an appropriate value for V. To do this, we consider a small 
sphere centered on the point x at which we wish to estimate 
the density p(x), and we allow the radius of the sphere to grow 
until it contains precisely K data points. The estimate of the 
density p{x) is then given by (2.6) with V set to the volume 
of the resulting sphere. This technique is known as K nearest 
neighbors (KNN). The value of K now governs the degree of 
smoothing and that again there is an optimum choice for K 
that is neither too large nor too small. 

The KNN technique for density estimation can be extended 
to the problem of classification. To do this, we appl}^ the KNN 
density estimator to each class separately and then make use 
of Bayes' theorem. Let us suppose that we have a data set 
comprising n^ points in class Ck with n points in total, so that 

几k — If we wish to classify a new point x, we draw a 
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sphere centered on x containing precisely K points irrespective 
of their class. Suppose this sphere has volume V and contains 
Kk points from class Ck- Then (2.6) provides an estimate of the 
density associated with each class ‘ 

碰 ) = ( 2 . 1 0 ) 

Similarly, the unconditional density is given by 

( , K 

while the class priors are given by 

nk 

(2.11) 

p(Cfc) 二 n 

We can use the Ba3,es’ theorem to obtain the posterior proba-
bility of the class membership 

p{Ck X 
p{x\CkHCk) K, 

K 

If we wish to minimize the probability of misclassification, this 
is done by assigning the test point x to the class which has 
the largest value of K^/K. Thus to classify a new point, we 
identify the K nearest points from the training data set and 
then assign the new point to the class having the largest number 
of representatives amongst this set. 

Although the nonparametric density estimator (both KDE 
and KNN) are suffered from the curse of dimensionality (due 
to ]/), using them to do classification is not such a bad idea. 
The posterior is normalized by the evidence which makes V 
vanish. Therefore, the convergence rate of the classifier is not 
exponential any more. ‘ 
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I 

2.2.3 A n Alternative Mixture Model View 
I 

Assume that the nonparametric density estimator has the gen-
eral form 

1 “ 
ITL 

X, 

where the data set X is viewed as a set of parameter of the den-
sity model. For example the Gaussian kernel density estimator 

1 
= — ^ ^ > cxp( ^ ^ J 

can be see,!! as a mixture model [53J with n component, each 
componentj p ( x | x j is a Gaussian distribution with mean x^. 
These n components can be further grouped to K components 
as 

k 
where the conditional density for each component is given by 

1 

and the prior is given by 
rik 

Xj. 

p{Ck) n 

2.3 payesian Decision Theory for Clustering 

Here, we try to formulate the Baycsian decision theory for the 
clustering problem from the well established decision theory for 
the classification problem. 

The basic assumption made in this thesis is that the samples 
in the data set are independent and identically distributed ac-
cording certain underlying probabilistic distribution. The den-
sity of this distribution is j)(x). Intuitively, the distribution has 
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to be a mixture model, i.e., p{x) = ^^k 兀沒 f c ) . If it is not, 
there would not be any cluster structure in the data. For exam-
ple, if the samples of the data set are drawn from a Gaussian 
distribution, there is no clear boundary to separate the data into 
disjoint groups. As a result, there is no point to perform clus-
tering on such a data set. We call those distributions which can 
not be represented as a mixture model as atom distributions. 

2.3.1 Bay OS Error for Clustering 

To formalize the intuition, we assume that the sampled and their 
labels follow the joint distribution p(x, t), where t is a discrete 
random variable taking values from set {Ck}k- Assume there are 
K intrinsic clusters in the data. Then marginalizing the random 
variable t we have 

K 

p(x) = }_^p(xlt)p(t) = )^p(xlCk)p(Ck), (2.12) 
t k=i 

where — 7i>，which is a mixture model. 
If we already have the density model (2.12), as discussed pre-

viously, the optimal partitioning that minimize the Bayes error 
is to assign each sample x with label 

C* 二 argmax[]?(C/u|x). 

This is indeed the case for clustering data using Gaussian 
mixture model. In the Gaussian mixture model, the density 
function is obtained by fitting the pai ameteis to maximize the 
likelihood. Then, the clustering result can be obtained by assign 
each sample x to the cluster with maximal posterior. The second 
step minimizes the Bayes error given that the density model is 
already known. 

However, this approach makes very strong assumption. It 
assumes that the data can be modeled by a mixture of K atom 
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distributions and the number of intrinsic clusters is the number 
of atom components. However, the assumption made here is too 
strong to be practical. Most data sets we are dealing with are 
not so simple. They usually have more complex structures. 

Fortunately, a wonderful result we can utilize is that any 
data (no matter what intrinsic distribution they are from) can 
be appiloximately modeled by mixture models. We denote the 
mixture model as 

p(x) - X a y p 剛 ， (2.13) 

where m < n and eachp(x|^j) is an atom distribution. However, 
the intrinsic number of clusters K in general is not equal to m. 
We have K < m < n. Then the clustering problem becomes 
grouping or partitioning the m atom distributions in (2.13) to 
K supper components in (2.12) where the conditional density of 
each supper component is 

a. 

TTfc 
) 
71 

where li^ : YljcVj, The joint distribution is 

We denote the partitioning as 0 -= {V/；；}/；；, where Vk is the 
index set for those atom distributions which are grouped into 
the kth component. This grouping step does not change the 
density model of the data set. We can see that 

K K 

K m 
a. 

k^i jm 
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After the grouping the m atom distributions into K compo-
nents, we can treat the K components as classifier of a K class 
classification pioblein. The classification iunc tioii is 台imply the 
decision rule 

/ ( X ) - a r g m a x [ p ( C ^ | x ) . 

where the posterior is given by 

vifik X 

The expectcd loss (Bayes risk) with respect to the partition-
ing n is 

/ 7 
If zero-one loss is used, the expected loss is equal to Bayes error. 

Then we can formulate the clustering pioblem as finding the 
optimal partitioning O : {Vk}k which minimizes the Bayes risk. 
In other words, we should solve the following optimization prob-
lem 

r r : argmin Eq{X). 

n 
However, the optimization problem is ill posed. The integral 

over the whole sample space is intractable to evaluate. Even 
we are able to evaluate the integral, the optimization over al-
1 possible partitioning is a hard combinatorial problem which 
is NP-complete. In order to have a practical algorithm which 
utilizes the decision theory, various approximations have to be 
made to derive a tractable model. For example, we can approx-
imate the integral by the empirical summation over samples. It 
is also possible to derive upper bounds for the Bayes risk which 
are easy to be optimized which is similar to the SVM in the 
classification problem. 

In the following chapters, we will utilize the Bayes clustering 
theory derived above and use different approximation methods 
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and different density models to develop practical algorithms for 
data clustering. 

• End of chapter. 



Chapter 3 

Decision Theoretic Spectral 
Clustering 

Summary 

In this chapter, we propose a novel probabilistic view 
of the spectral clustering algorithm. In our fiiamework, 
the spectral clustering algorithm can be seen as assign-
ing optimal class labels to samples that minimizes the 
nonparametric kernel density estimation based Bayes er-
ror. From this perspective, we obtain an insight of how 
to construct a graph in order to make spectral clustering 
performances better. We generalize the spectral cluster-
ing to using more general graph construction methods, 
which may result in directed graphs. In order to clus-
ter the vertices of the directed graph, we propose a di-
rected graph partitioning algorithm. The partitioning 
result can be efficiently obtained by eigenvalue decom-
position. 

26 
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I 

I 
3.1 Introduction 

I 
Spectral clustering [12, 54, 61, 67, 81，44j is graph based and 
widely used for general data clustering. Compared to the tra-
ditional algorithms such as k-means or single linkage, spectral 
clustering has many fundamental advantages [78, 77]. It does 
not make strong assumptions about the global structure of the 
data. Instead, local similarities between local sample points are 
considered and a global decision is then made to divide all data 
points into disjoint sets according to some criterion. Therefore, 
these methods can potentially deal with data sets whose clusters 
are of i];Tegular shapes. Results obtained by spectral clustering 
often perform the traditional approaches. Spectral clustering 
is also very simple to implement and can be solved efficiently by 
standard linear algebra methods. 

Given a set of data points { x / } f i，， a n intuitive goal of 
clustering is to divide the data points into several groups such 
that points in the same group are similar and points in different 
groups are dissimilar to each other. A nice way of representing 
the data is in form of the similarity graph C : ( V , E a c h 
vertex % in this graph represents a data point x^. Two vertices 
are connected by an edge with weight w…Here the edge weight 
represents the similarity between two data points x^ and Xj. 
Note thbt the similarity is a symmetric measurement, i.e., w” = 
Wjt. Therefore the similarity graph G is an undirected graph. 
The problem of clustering can now be reformulated using the 
similarity giaph: we want to find a paitition of the graph such 
that the edges between different groups have very low weights 
(which means that points in different clusters are dissimilar from 
each other) and the edges within a group have high weights 
(which means that points within the same cluster are similar to 
each other). A met a algorithm of spectral clustering is shown in 
1. To be able to formalize this intuition we first introduce some 
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Algori thm 1 Met a algorithm of spectral clustering 

1. Construct a graph G from the data X = [x丄=i，. .’n 
2. Obtain K eigenvectors of certain matrix of the graph G 
3. Discretize the eigenvectors to obtain the cluster membership indicators 

basic graph notation and briefly discuss the kind of graphs we 
are going to study. 

3.2 Spectral Clustering 

3.3 Graph N o t a t i o n 

Spectral clustering is a graph based clustering algorithm which 
first builds a graph G from a given data set X ——_ 
and then partitions the graph into disjoint subgraphs to obtain 
the clustering result. 

Let G — (V, E) be an undirected graph with vertex set V 
{r, I'； i .,，„,, In the following we assume that the graph G is 
weighted, that is each edge between two vertices Vi and Vj carries 
a non-negative weight w^j > 0. The weighted adjacency matrix 
of the graph is the matrix W — [t̂ ijk—i，...，n. If Wij = 0, it means 
that the vertices Vj and Vj are not connected by an edge. If G 
is an undirected, we require Wij = Wji. For a directed graph the 
edge weights Wij and wji might be different. The degree of a 
vertex Vj G V is defined as 

(k = � W i j 

The degree vector is defined as d 二 …，几.The degree matrix 
D is defined as the diagonal matrix with the degrees di,... ,dn 
on the diagonal. The graph (皿normalized) Laplacian matrix is 
defined as 

L = D-W. I , 
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It can be proven that for every vector y G we have 

yTLy =舍 1 ) 2 , 

Therefore L is symmetric and positive semi-definite matrix. The 
smallest eigenvalue of L is 0，the corresponding eigenvector is 
the constant one vector 1. Note that the unnormalized graph 
Laplacian jioes not depend on the diagonal elements of the ad-
jacency matrix W. Each adjacency matrix which coincides with 
W on all off diagonal positions leads to the same unnormalized 
graph Laplacian L. In particular, self-edges in a graph do not 
change the corresponding graph Laplacian. The graph Lapla-
cian and its eigenvalues and eigenvectors can be used to describe 
many properties of graphs, see [56, 57 . 

Given a subset of vertices 乂 C V, we denote its complement 
by A. For convenience we introduce the shorthand no-

tation 2 6 A for the set of indices {%\Vf G A}. For two not 
necessarily disjoint sets B C V we define 

W{A, B)^ } w 
teAjcJS 

In this paper, we use e X to denote an input sample 
vector and ^ E V to denote the corresponding vertex on the 
graph. Xk C X denotes a subset of samples of X and V^ C V 
denotes the subset of vertices corresponding to Xk. w” is the 
weight of the edge from vertices ito j. A multi-class partitioning 
is to partition the vertex set into K disjoint subsets such that 
uf^iV^ = V, which means V,门 V) - 0 and Uf=i H = V. The 
corresponding samples are then clustered as U^^^Xi 二 X. We 
denote the K-way partitioning as F — {VAjfc:!，^k- Without 
ambiguity, sometimes wc also denote the partitioning as F = 
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3.3.1 Graph Construction 

The first step of spectral clustering is to construct a graph from 
the input vector form data. There are several popular construc-
tions to transform a given set of data points into a 
graph. When constructing similarity graphs the goal is to mod-
el the local neighborhood relationships between the data points. 
Here we consider three widely used methods for construction 
graph. 

The fully connected graph: Here we simply connect all 
points with positive similarity with each other. As the graph 
should represent the local neighborhood relationships, this con-
struction is only useful if the similarity function itdelf models lo-
cal neighborhoods. An example for such a similarity function is 
the Gaussian similarity function w” 二 Gxp( — — x̂ -
where the parameter controls the width of the neighborhoods. 
In this method, there is a free parameter a need to be set by 
the user. 

The neighborhood binary graphs: Here the goal is to 
connect vertex Vi with vertex Vj if Vj is among the neighbors 
of Vf, Either the i^T-ncarcst-neighbor (KNN) or e-neighborhood 
can be used to determine the neighborhood. However, the 
nearest-neighbor method can lead to a directed graph, as the 
neighborhood relationship is not symmetric. There are two ways 
of making this graph undirected. The first way is| to simply ig-
nore the directions of the edges, that is we connect Vi and Vj 
with an undirected edge if V/ is among the K nearest neighbors 
of Vj or if Vj is among the K nearest neighbors of Vi. The result-
ing graph is what is usually called the k-nearest-neighbor graph. 
The second choice is to connect vertices v̂  and Vj if both Vi is 
among the K nearest neighbors of 巧 and Vj is among the K 
nearest neighbors of Vi. The resulting graph is called the mutu-
al iT-nearest-neighbor graph. After connecting the appropriate 
vertices we simply set the edge weights to be 1. Later we will set 
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for a more general formulation of spectral clustering, the sym-
metry condition is not necessary. In this method, there is a free 
parameter for the neighborhood (K or c) need to be set by the 
user. 

The neighborhood weighted graph: Here the graph struc-
ture is conkructed in the same way as The neighborhood binary 
graphs except that the edge weight is set to w” = exp(—||xi — 
x^lP/(2cr^)). This method can be seen as a combination of the 
first two methods. Some time it leads to better results than 
others. However, in this method, there are two free parameters 
need to be set by the user. 

All graphs mentioned above are regularly used in spectral 
clustering. To our knowledge, theoretical results on the question 
how the choice of the similarity graph influences the spectral 
clustering result do not exist. In this paper, we will show that 
how these methods affect the results of spcctral clustering. 

3.3.2 Multi-class Normalized Cut 

After obtaining a graph, the problem of clustering is trans-
formed to a graph partitioning problem. The normalized cut 
bi-partitioning algorithm is first pioposed in [67], which is later 
generalized to multi-class normalized cut by [81]. The multi-
class normalized cut algorithm is to minimize following criterion 

We define the iiornialized association criterion as 

Apparently, whore nc(r) f nc(r) — 1. llieiefore minimizing the 
normalized cut criterion is equivalent to maximizing the normal-
ized association criterion. 
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3.3.3 Relaxat ion Optimization 

Let Zfc G {0,1}'^ be the binary indicator vector for the kih cluster 
and 7j = [ẑ Ja： ]̂, ，k be the indicator matrix. The normalized 
cut criterion can be rewritten as 

Therefore normalized cut problem can be formulated as fol-
lowing combinatory optimization problem 

. 1 A zfLzfc 
min ——7 

z]，补 K f - ^ (3.3) 

s.t. ZA e {0,1}", k 二 

Unfortunately, solving for the exact solution of this discrete op-
timization problem is NP-hard [80]. Instead of solving (3.3) 
directly, we try to solve a relaxed problem of (3.3). 

Define the scaled partition matrix [12, 81 

F - Z、7」TDZ)部, 

Since Z^DZ is a diagonal matrix, the columns of F are the 
columns of 7」scaled by the inverse square root of the degree. 
Clearly we have 

F T D F 了 {Z^Dzy^ l^z^DZ{Z^Dzy^! ' ^ = 1. (3.4) 

Given a scaled part it ion matrix F, we can restore the corre-
sponding Z by 

Z = Dg(dg ”2[FFT))F, (3.5) 

where M = Dg(v) denotes constructing a diagonal matrix M 

from the vector v and v = dg(M) denotes extracting the diag-
onal elements of matrix M to form a vector v. 
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Substituting F to (3.3) and relaxing F to take real values 
that satisfy the constraints F丄 DF — / . we have a convex opti-
mization problem as: 

mill ^ t T ( F ^ L Z ) ( � 
F K � . ) (3.6) 
s.t. F ^ D F 二 1. 

By the Rayleigh-Ritz theorem [50] it can be seen immediate-
ly that the solution of this problem is given by the vectors F* 
achieved by solving the following generalized eigen-decomposition 
problem 

L Z ' -= DF^A, (3.7) 

where A contains the eigenvalues of the above eigen 
system. It can be easily seen that F* and A that satisfy 

{I 一 P)F' - F 'A, (3.8) 

also satisfy (3.7). Denote the normalized Laplacian as 

K = i r i / 2 L z r " 2 

Let U ~ [uk]k be the matrix that Uk, k — ..., K are the eigen-
vectors of Ln. It can also be shown that F"^ 二 D— — a l s o 
satisfy (3.7) and (3.30). 

The global optimum of the problem is not unique but a sub-
space spanned by the columns of through orthonormal ma-
trices. hei^R he du K X K matrix. If F^ is a feasible solution to 
(3.28), ^o is the subspace: 

{F'R\ R^R = I}. (3.9) 

Furthermore, they have the same objective \^alue. Therefore, a 
feasible solution remains equally good w.r.t. the problem (3.28) 
with arbitrary rotations and reflections of F*. The optimal ob-
jective value of (3.28) provides an lower bound to the problem 
in (3.3). 



CHAPTER 3 DECISION THEORETIC SPECTRAL CLUSTERING 34 

3.3.4 Discretization 

After obtaining the matrix F^, we can recover by substituting 
F* back into (3.27). However, 7: is still a real valued matrix. In 
order to obtain the clustering result, we need to find the discrete 
solution Z. One way to do that is to find a discrete Z that is 
close to the subspacc (3.31). This can be done by solving such 
a problem. 

mill UZ, R) 了 Z - Z'R 
Z R \ J 

s.t. 2“ 0 , 1 }腳， 2 1二 1 . (3.10) 

RTR L 

The details of how to find a minimum of (3.10) can be found 
in [81]. Other discretization approaches [2, 61, 82, 81] are also 
possible to perform the discretization. 

3.4 Decision Theoretic View of Normalized 
Cut 

I 

In this section, we establish the relationship among nonparamet-
ric density estimator. Baycs risk and spectral clustering. Assume 
that we have the density model for the data set. If partitioning 
n = ,K is given, we can treat the problem as a clas-
sifying problem. We then can calculate the probability that a 
sample in class Ck is misclassified by the density model which is 
given by 

pit + G Ai), 
which is also the expccted misclassification rate (or Bayes risk 
with zero-one loss). 

The clustering problem can then bo seen as finding a good 
partitioning which makes the following average of the expected 
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misclassification rate as small as possible 
K 

K 綱 二 l l ^ P ( 《 仏 ( 3 - 1 1 ) 

We call (3.11) the Bayes clustering risk. Here, we show that for 
a given density estimator, the Bayes clustering risk is equivalent 
to the normalized cut criterion. 

3.4.1 K D E Based Bayes Clustering Risk 

Assume that the graph is constructed using Gaussian kernel, 
where the graph weight is set as 

— X 
î M 二 e x p ( — ( 3 . 1 2 ) 

Also assume that the density model of the data set is given 
by following kernel density estimator 

1 
P(x) = , ) ^ �丄 e x p ( — ( 3 . 1 3 ) 

I 
which � n be reformulated as mixture model 

I ‘ p(x) 二 ） 

k 
where the conditional density for each cluster is given by 

2 

P(xlCk) 二 ( E exp ( - X )， (3.14) 

and the prior is given by 

(3.15) n 
Base^ on the density model and the graph construction method 

given above, we have following lemmas 
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Lemma 3.4. 

Proof. 

K 

p(x e Xk) - Y^pi^i) 二 

K 

p{-K,\Ci)p{Cj) 

nj 1 

im 
cxp( 2(j2 

K 

nio-J^'Y 
1 

exp(-
Xr/ X/-

''eVfr /:] jcVi 

Wo 

20-2 

where Wij = exp( xJp/(2cr^)) 

摩 , V ) . 

• 
It is worth noting that here the W{Vk, V) = X îeVfcj.eV 切�j 

includes all Wî , which is equivalent to constructing a graph with 
self loops. For the case of Gaussian kernel, the edge weights for 
the self loops are Wj, = 1. 

Lemma 3.4.2. 

WiVk^k] 
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Proof. 

p(x e X k . t ^ C k ) - > 办”t f Ci) 
ĈVfc 

i^Vk l^k lEVk l-^k 
X, — X ' ni I 

exp(-

X,- X 
i �k l—k ， 、 ” … y jGVi 

1 2 

• 
From the lemmas, we are ready to show that the Bayes clus-

tering risk is equivalent to the normalized cut criterion which is 
given by fcillowing proposition 

Propo祖 i on 3.4.3. 

A(n) 二 nc(n). (3.16) 

Proof. 

^ K 1 ^ p{x e Ck)p{t ：^ Ck) 

— 1 ^ p j ^ e ^ k . t ^ C k ) — 1 { 哪 , T ^ f c ) — 
l h ~ 办 ^ 拟 — 一元 fe m ： ^ 二 nc(叫• 

！ • 

I 
The proposition concludes that the partitioning, which min-

imizes the normalized cut criterion on a graph with self loops 
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constructed by the fixed bandwidth kernel function, is a par-
titioning that imiiDinzes the average expected misclassification 
rate where the conditional density of cach class nlodeled by 
the kernel density estimator. 

3.4.2 K N N Based Bayos Clustering Risk 

Assume that the graph is constructed by KNN approach. De-
note A/'(x) as neighborhood set of x. The graph weight is set 
as 

1 x^ G A/'(x,) 
^ij = 0 otherwise. 

Also assume that the density model of the data set is given 
by following KNN density estimator 

Kx) - ‘ ， (3.17) 

which can be reformulated as mixture model 

k 

where the conditional density for each cluster is given by 

KxiCO = 為 (3.18) 

and the prior is given by 

piCk) = ， . (3.19) n 
Based on the density model and the graph construction method 

given above, we also have similar results 

Lemma 3.4.4. 
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Proof. I 

t^Vh I^Vl 
1 D 

nV ^ u nV 
錢jeV 

• 
It is worth noting that here the W(V“V) — X^^ev^jev 

includes all w以,which is equivalent to constructing a graph with 
self loops which have weights W^ 一 1. 

Lemma 3.4,5. 

I 

Proof. 

p(yiGXk,t — Ck) - P(x” t Cy 
T巩 

LEVK L^K ？eVfc /拜 

I ： - 广 去 歸 似 

• 
I 

From tl^e lemmas, we can easily verify that the proposition 
(3.4.8) still holds. Therefore we can see that that the partition-
ing, which minimizes the normalized cut criterion on a KNN 
graph with self loops, is a partitioning that minimizes the aver-
age expected misclassification rate where the conditional density 
of each class is modeled by KNN density estimator. 

(3.20) 
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3.4.3 General Nonparametric Density Estimator Based 
Bayes Clustering 

Assume the nonparametric density estimator has the general 
form 

p(x) 一 p(xiX) — - > p(x 
n 

X' 

where the data set X is viewed as a set of parameter of the den-
sity model. For example the Gaussian kernel density estimator 

飞 n 2 
养 ; ( 3 . 2 1 ) 

can be seen as a mixture model with n atom, each atom p(x|xj) 
is a Gaussian distribution with mean x^. These n components 
can be further grouped to K components as 

k 

where the conditional density for each component is given by 

1 
> ‘ (3.22) 

Uh “jeVfc 

and the prior is given by 

piCk) 二’, (3.23) 
n 

Assume cach atom can be represented in the general form of 

where �( x , x") is a multivariate kernel. Note that, ！in general 
the kernel might not be symmetric, i.e. /̂ -̂(x ,̂ xy) = x^). 
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Therefore the kernel can be data dependent. However, we do 
require 

�( x , x j ) > 0 

J K j (x, xj)(ix — 1 

so that p(x|xj) is valid density function. Assume that we con-
struct a, graph by setting the graph weight as 

U ) �一 �( X / , X,). 

Based on the density model and the graph construction method 
given above, we have following lemmas 

Lemma 3.4.6. 

TX 

Proof. 

n 
？GVa iCVl J(EV 

1 : 
n ^^ n 

I^VI jgV 
• 

Again, here the W{VK,V) 二 EIEV“:]CY 叫J includes all UH” 

which is equivalent to constructing a graph with self loops. 

Lemma 3.4.7. 

n 
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Proof. 

'GVa L^K LEVK //fc 

Til 1 r
 J

 ̂

 

x
z
片
 

丄
一
叫
 

？
一

 
n
 

「

J

H
 

I

 一
 

/̂ o ( X j , YIR 

N — N 
'^Va JEVK 

• 
Therefore, wc establish the equivalency between the Bayes 

clustering risk and normalize cut 

Proposit ion 3.4.8. 

綱 = n c ( n ) . 

Proof. 
. K 

綱 i X 秦 … 询 1 ‘ nc(n) 
^ ^ P(xeAV) i ^ Z - I4/(V.,V) 

• 
Note that if uniform kernel is used for the atom (the kernel 

function is the same for all atoms), we have 

pM^j) - 一 ( x , X j ) , 

where V is & normalized constant satisfying 

V ^ J 
Then it can be easily seen that the previous lemmas can rewrit-
ten as 
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Lemma 3.4.9. 

叫二 ^ i m . v ) . 

Lemma 3.4.10. 

p(x C,) :^W{Vk,Vk). 

Then after normalization, the normalization constant is can-
celed. Note the normalization grows exponential w.r.t. d. In 
general the nonparamctric density cstimato] might suffer from 
the dimensionality curse. In order to make the estimator consis-
tent, we require that n increase exponentially w.r.t d {V oc h'^). 
However, the consistency of spectral clustering does not has this 
requirement since V is canceled by the normalization. There-
fore, spectral clustering docs not suffer from the dimensionality 
curse. 

It is also easy to see that, the normalized cut on a graph 
withoutj self-loops can be viewed as minimizing the leave-one-
out cross ^jalidation Bayes clustering risk. 

I 

3.4.4 Discussion 

The analysis given above does not depend on the choice of the k-
ernel density estimator. However, the analysis does suggest that 
in order to obtain a good clustering result, one should construct 
the underlying graph in a way that it reflects the underlying 
true data distribution. 

Therefore, one can use a more general form of kernel func-
tions and prior to construct the graph in order to model the 
true depisity of the data. Location dependent kernels, such as 
the adaptive bandwidth kernel, can also be used to improve the 
graph construction, which allows the bandwidth to vary from 
one observation to another. It gives the flexibility of using a 
smaller bandwidth (hence reduces the bias of the estimate) in 
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regions where there arc many observations, and a larger band-
width (hence reduces the variance of the estimate) in regions 
where there are relatively few observations. However if one uses 
it in a consistent way, one should properly normalize the kernel 
function when computing the edge weights. 

We can also use domain specific kernel function for different 
data types. For example, for data of binary code, one can use 
Bernoulli density function. For data of positive integer features, 
Poisson or multinomial density function can be used. 

In general, partitioning a graph by minimizing the normalized 
cut criterion can be seen as clustering the data in the feature 
space by minimizing the Bayes clustering risk if proper connec-
tion between the graph construction method and the nonpara-
metric density estimator is established. 

Given the Bayes risk view, we bridge the originally unrelated 
two steps of spectral clustering: graph construction and graph 
partitioning. We ran treat the spectral clustering a$ a unified 
problem. The normalized cut algorithm is to minimize the Bayes 
clustering risk while the data distribution is modeled by cer-
tain nonparamctric density model. However, in order to make 
the normalized cut meaningful, the graph has to be constructed 
properly reflecting tlie underlying data distribution. 

It is worth noticing that constructing a graph to minimize the 
normalized cut criterion dose not necessarily lead to good clus-
tering result. It is similar to the classification problem in which 
choosing a classification function by minimizing the training er-
ror is not a good idea. It often leads to over fitting. We can 
always construct a graph which has zero normalized cut ratio. 
One extreme example is that we can construct a graph with on-
ly self loop, and then any partitioning will minimize the Bayes 
clustering risk. Minimizing the leave-one-out version of error 
still has the same problem. We can construct a graph that each 
sample only links to one other sample in the data set. On this 
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I 

graph, one still can obtain zero normalized cut ratio with an 
arbitrary bad partitioning. 

Therefore, it docs not make sense to simultaneously optimize 
normalized cut criterion, the graph construction and partition-
ing. One can first fit a good density model before the partition-
ing. Or one can optimize the normalized cut with respect the 
graph construction by restricting the complexity of the function 
that is used. A regularized version of normalized cut criterion 
might serve this purpose. 

3.4.5 Normalized Cut on General Graphs 

From the derivation above, the Bayes clustering risk does require 
the graph to be an undirected one. For example, in the KNN 
graph c^on讲ruction method, a sample point x?，of which Xj is 
among the K nearest neighbors, is not necessarily among K 
nearest neighbors of x^. Previously this problem is solved by 
perform a post process step to force the mutual neighborhood. 
However, this post process step is not nccessary. Here, WG derive 
a general spectral clustering algorithm which can work on both 
directed graphs and undirected graphs. 

3.4.6 Spectral Relaxation 

Let G 二 (V, be a directed graph with vertex set V = ,n 
Denote w” > 0 as the weight of a directed edge from vortices v̂  
to Vj. Ijhe weighted adjacency matrix of the graph is the matrix 
W = [vJ^ijji j^i,^ In general, wc do not require w” ~ Wĵ . The 
(out) degree of a vertex v̂  ^ V is defined as 

- �� w ? ] � 

The degree vector is defined as d — 孔.The degree 
matrix D is defined as the diagonal matrix with the degrees 
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(ii, , . on the diagonal. For two not necessarily disjoint sets 
人召 C V we define 

W{A,B) - w 
ICA,]CB 

U. 

Let G {0.1}" be the binary indicator vector for the kth 
cluster and 7�—[zi \ i — 丄 ， b e the indicator matrix. We have 

(3.24) 

and 
W{Vk.Vk} = ^ l W z , . (3.25) 

From (3.24) and (3.25) we have 

r ziDil — 

where P = D Then the normalized cut criterion can be 
rewritten as 

K J 
n 剩 丄“於 

1 f ^ z j D j l -P)z, 
K z f D z , 

Define the scaled partition matrix 

where 7j — [z/̂ j/c, k 二 1 . … ， S i n c e Z ^ D Z is a diagonal 
matrix, the columns of F are the columns of 7j scaled by the 
inverse square root of the out degree. Clearly we have 

FTdF - [ZTDZ)部zTDZ{ZTm)部=I. (3.26) 

Given a scaled partition matrix F, we can restore'the corre-
sponding Z by 

(3.27) 
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I 
I 

I 

where M 二 Dg(v) denotes constructing a diagonal matrix M 
from the vector v and v =• dg(M) denotes extracting the diag-
onal elements of matrix M to form a vcctor v. 

Substituting F to (3.3) and relaxing F to take real values 
that satisfy the constraints F^DF 二 7, we have a convex opti-
mization problem as: 

min lic(F) = ~tT(F^D(I - P)F) , � 
F �） K \ � (3.28) 
s.t. F^DF — I. 

The global optimal solution F^' of this problem is achieved by 
solving the following generalized eigendccomposition problem 

D[I — P)F* 二 (3.29) 

where A = Dg([AjJj^)，k = - • - , K, contains the eigenvalues of 
the above eigensystem. It can be easily seen that F* and A that 
satisfy 

( / — P ) F ' = (3.30) 

also satisfy (3.7), . The smallest eigenvectors corresponding to 
the smallest eigenvalues of matrix I — P are also the eigenvectors 
corresponding to largest eigenvalues of matrix P. Since P is 
stochas^fic matrix, it has real value eigenvectors according to 
Perron-|Frqbenius theorem. 

The global optimum of the problem is not unique but a sub-
space spanned by the columns of F本 through orthonormal ma-
trices. Let R he Si K X K matrix. If F* is a feasible solution to 
(3.28), so is the subspace: 

{F'R\ R^R 二 /}. (3.31) 

Furthermore, they have the same objective value, i.e., nc(F*) 二 

}ic{F*R). Therefore, a feasible solution remains equally good 
w.r.t. the normalized cut objective with arbitrary rotations and 
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reflections of F^. The optimal objective value of (3.28) provides 
an lower bound to the problem in (3.3). 

After obtaining the relaxed solution of normalized cut, we 
have to discretize the real value solution to obtain the class 
indicators. Many discretization approaches [81, 2, 20，61, 8 2 

are proposed to perform the discretization. In this paper, we 
adopt the one in [81] to generate the clustering results. 

3.4.7 Local Scaling Directed Graph Construction 

In this chapter, we use a variable bandwidth KDE to construct 
the graph from a data set. The variable bandwidth KDE is 
given by 

勝 t ^ K i ^ 、 , ( 3 . 3 2 ) 

J=1 3 3 

where the bandwidth hj depends on the context information of 
Xj. It is well known that with a fixed bandwidth, the kernel es-
timate tends to oversmooth at the main part and undersmooth 
at the tail part of the distribution. This is the basic motiva-
tion for considering a variable bandwidth KDE, which allows 
the bandwidth to vary from one observation to another. It gives 
the flexibility of using a smallei bandwidth (hence reduces the 
bias of the estimate) in regions where there are many observa-
tions, and a larger bandwidth (hence reduces the variance of the 
estimate) in regions where there are relatively few observations. 

The local bandwidth h] is set to be the distance between 
Xj and its /cth nearest neighbor. The parameter k is selected by 
cross validation. The k with which the variable bandwidth KDE 
(4.5) has the largest leave-one-out likelihood on the given data 
set is used in our algorithm. According to the previous analysis, 
by using the variable bandwidth KDE, the edge weight of the 
constructed graph is w” — Here, the Gaussian ker-
nel is used. The edge weight of the constructed graph between 
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X, and X. is 
OC 7 OC ‘ 2 

Notice that, in general, Wij is not necessarily equal to Wp 
Therefore, the constructed graph is a directed graph. 

3.5 Exiperiments 

In this section, we present the clustering results obtained by 
the proposed local Gaussian based digraph spcctral clustering 
(DSC) algorithm on a number of synthetic and the real data 
sets. We also compare our DSC algorithm with K-means, the 
NJW [61j, and the self-tuning spectral clustering (STSC) [82: 
algorithms on the real data sets. We conduct experiments on 
the following real data sets: 

• USPS-All: This data set consists of images of 10 handwrit-
ten digits. Each category contains 500 samples selected 
randomly from the USPS database. 

I 

• USPS^5: All the samples are fiom digits 2, 3, 5，6, and 8 in 
U^PSfAll. 

• UMist-All: This data set consists of face images of 20 dif-
ferent persons. 

• UMist-10: The data are from UMist data set belonging to 
classes 1 to 10. 

• IRIS: The data are from the UCI repository comprising 3 
classes of 50 instances each, where each class refers to a 
type of iris plant. 

More details of the data sets are summarized in Table 5.1. 
To elvaluate the performances of the clustering algorithms, 

we compuie the following two performance measures from the 
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Table 3 1 Descnptions of the data sets uhed iii the experiments 

Dataset K. d n 
USPS-AIl -10 5000 
USPS-5 5 256 2500 

UMist-Alf 20 10304 575 
UMist-10 10 10304 265 

IRIS 3 4 150~ 

Table 3 2 Clubtcrmg results by the four algorithms 

Method Measure USPS-All USPS - 5 UMist-All UMist-10 IRIS 

K-meaiis 
El 101 
NMT 

0 5448 
0 4569 

0 3600 
0 4491 

0 5339 
0 6726 

0 5208 
0 6131 

0 1067 
0 7582 

NJW 
E] roi 
NMJ 

0 4912 
0.6091 

0 4180 
0 6075 

0 4035 
0 8139 

0 3019 
0 8528 

0 1000 
0 7908 

STSC 
E n or 
NMI 

0 7084 “ 
0 2843 

0 4704 
0 3064 

0 5426 
0 6291 

0 5321 
0 5919 

0 0600 
0 8334 

DSC 
E n 01 
NMI 

0.4582 
0 5610 

0.1832 
0.6343 

0.3652 
0.8411 

0.2151 
0.8954 

0.0333 
0.8551 

clustering results- normalized mutual information (NMI) and 
minimal clustering ciror (Error). The NMI is defined as 

/(2;，y) 
NMlOr,")- (3.33) v w w w 

where I{x, y) is the mutual information between x and y, and 
H{x) and H{y) arc the entropies of x and y respectively. Note 
that 0 < NMJ{x,y) < 1 and NMl{x,y) = 1 when x = y. The 
larger is the value of NMI, the better is a clustering result. 

The clustcimg error is defined as the minimal classification 
error among all possible permutation mappings defined as: 

Error 一 min(l > perm(cj)) 
n 

(3.34) 
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where 队 and Cj are the true class label and the obtained clus-
tering result of respectively, d{x, y) is the delta function that 
equals I if x — y and 0 otherwise. 

The ^clustering results by the four algorithms, K-means, N-
JW, STSC, and DSC, are summarized in Table 5.2. The DSC 
algorittim obtains the smallest errors in all the cases, and pro-
duces the largest NMI values on all the data sets except one. 
These results demonstrate that the DSC can achieve good per-
formances consistently on real world data sets. 

3.6 Conclusion 

We have established the relationship among Bayesian decision 
theory, nonparametric density models and spectral clustering. 
We are ablp to bridge the original unrelated two steps of spectral 
clustering lalgorithm to one unified approach. From this new 
perspective, we gain the insight on how to construct a graph 
for clustering purpose. Other extensions for spectral clustering 
are also possible. For example, we can also use mixture models 
or Bayesian nonparametric models to model the data density. 
This preprocess step will dramatically decrease the size of the 
graph. Even better, the parameters of the graph weights can be 
automatically determined. We will investigate this approach in 
our future work. 

• End of chapter. 



C h a p t e r 4 

Isoper imetr ic Cu t on Density 
Graphs 

Summary 

In this chaptei, we propose the probabilistic view of 
isoperimetiic cut on a graph constructed by using a cer-
tain kernel function. From this probabilistic perspective, 
the algorithm can be seen as assigning optimal class la-
bels to samples that minimizes the nonparametric ker-
nel density estimation based Bayes error rate of a two 
class problem. We then propose to construct graphs us-
ing variable bandwidth kernel density estimators, which 
naturally results in directed graphs. A directed graph 
encodes the local density information of the data. In 
order to cluster the vertices of the directed graph, we 
propose an algorithm which performs isoperimetric cut 
on a dircctcd graph. The cut solution can be obtained 
efficiently by solving a system of linear equations. 

52 
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4.1 Jntroduction 

Due to the success of spectral clustering methods [54, 61, 67, 
81, 44], graph based clustering algorithms are of great interests 
recently. These methods first compute the pairwise similarities 
of the data to construct an undirected graph. Then the glob-
al clustering result is obtained by partitioning the vertexes of 
the graph into disjoint sets according to some criterions. One 
advantage of these methods is that they do not make strong as-
sumptions about the global distribution of the data. Therefore, 
they can potentially deal with data of irregular shapes. 

Despite the success of the spectral clustering, there are still 
some pifot^ems. First, from a theoretical perspective, it is still 
unknown what a good graph for clustering task is. Therefore 
how to construct a graph for better performance is still a open 
problem. Second，from practical perspective, it is still a hard 
problem to perform eigen-decomposition on a very large affinity 
matrix. Therefore how to perform the graph based clustering 
algorithm on very large data set is another problem which we 
cannot ignore. 

In this chapter, we first present a novel probabilistic view of 
the graph based algorithm. We show that the isoperimetric ra-
tion of a graph constructed by a kernel function is equivalent to 
the Bayes risk of a where the distribution of the data is mod-
eled by I kernel density estimator. From this viewpoint, we can 
see that in order to obtain a good clustering result, one should 
construct a graph reflecting the underlying density of the data. 
Therefore, we propose to construct a graph by using variable 
bandwidth kernel density estimators which naturally results in 
a directed graph. The digraph effectively explores the local den-
sity of the data. 

The isoperimetric cut (IsoCut) digraph bipartitioning algo-
rithm [16] is proposed to cut the constructed directed graph 
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into two disjoint parts by minimizing a the isoperimetric ratio. 
We also provide a random walk view of the IsoCut algorithm. 
By adopting the random walk view, we can handle both the 
directed and undirected graph partitioning problems in a uni-
fied framework. Finding the exact solution of this combinatorial 
problem is NP-hard. However, an approximate solution can be 
efficiently achieved by solving a sparse linear system of equa-
tions. Given a data set, the clustering result is then obtained 
by iteratively cutting the constructed digraph into disconnected 
subgraphs. 

4.2 Probabilistic View of Isoperimetric Cut 

In this scction, we revisit the isoperimetric constant, the spectral 
clustering algorithm, and kernel density estimation. Then we 
establish the relationships among them. 

4.2.1 The Isoperimetric Constant on Manifolds 

The isopciimctiic c oust ant is originally defined by Chccgcr [14 
in Riemannian geometry [43]. Let A^ be a d!-dimensional closed 
Riemannian manifold. Vol(6') be the volume of a d-dimensional 
submanifold S, and Vol(dS) be the volume of the boundary 
dS^ which is a (d — 1)-dimensional submanifold. The Cheeger 
isoperimetric constant of A4 is defined as 

, . , V o l 卿 
h = inf . 

s Vol � 

Intuitively, the Chccgcr isopcrimctric constant defines the small 
bottleneck boundary of the manifold which separates part of the 
manifold from rest of it. 
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4.2.2 The Isoperimetric Constant on Graphs 

In the context of an undirected graph, 5 is a subset of the ver-
tices in the graph. The boundary of S is defined as dS “ ^ 
S, j G S}. Then the isoperimetric constant hg is [55, 18 

I 飞 . V o l 卿 ，"、 
I I … 尸 “ ^ ^ ， （‘1) 

I  

where Vo\{dS) - Tn[s，:je-sM:r Vol(約TncSjcv 叫]and Vol(60 < 
Vol(y)/2. wij is the weight of edge a” computed from the sam-
ple pair Xi and x � b y Wi] = Gxp( x,||2/(2cr2)). 

The isoperimetric constant of an undirected graph satisfies 
ho G [0,1], and is strictly positive iff the graph is connected. In 
31，32], the authors propose an algorithm that minimizes the 

graph isoperimetric constant to solve an image segmentation 
problem. 

The spectral clustering algorithm proposed in [67，44] is a 
graph bi-partitioning algorithm which minimizes the normalized 
cut criterion 

I 

I' ‘ . 1 fYol{dS) Yol{dS)\ , “ � 

I 
I 

As shown 'in [44, 18], the algorithm also minimizes the upper 
bound of the graph isoperimetric constant. 

4.2.3 A Bayesian Decision Theory on Manifolds 

Here we analyze the isoperimetric cut algorithm from the Bayesian 
decision theoretic perspective. 

In the application of data clustering, we assume that the data 
X 二 {x山=i’...，n are indecently sampled from a underlying dis-
tribution with the probability measure P(x) from A4. Assume 
that is a subset of indices of the samples in X and S is the 
submaiiifolds enclosing the samples {xi\i e 5}. We denote the 
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labels of the sample set G S} as Cs and others as The 
volume of S is 

V o l � -f dPix) =- f p(^)dx, 
J s Js 

where is a probability measure on M satisfying J ^ dP(x)= 
1. p{x.) is the corresponding probability density function. 

The probability that samples in region S are misclassified is 
P{Cg\'x e S) which can be rewritten as 

G S, Cs) 
聯 介 考 I f f 1 -

P(x e SO 

where 

and 

P{Cs\^ e S). 

P{x e S') - / 
Js 

Js 
Evaluation of these integral are intractable. However we can em-
pirically approximate 尸 ( (^x G S) by summation over samples. 
We adopt following approximations 

'S 

and 

s 

TNCVPI^^ ) 

丨Os) 
伦 Os’) 

Then we following approximation 

J,p{^\Cs)P{Cs)d X 

X 

越 s)P(Cs) 
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Here, we utilize the the same approximation used in the non-
parametric density models 

Jn ^ 
I 

where is a small region on the manifold. 

(4.3) 

4.2.4 Bayesian Decision Theoretic View 
for Isoperimetric Cut 

We assume the density function is modeled by a kernel density 
estimator given by 

；p(x; 
1 

exp(-
X — X, 

2h? 
(44) 

The density function can be written as a mixture model of two 
components as 

p{Cs)p{MCs) i p{Cs}p{^\Cs)., 

where the conditional density functions arc 

and 
_ p ( x | � 二 

1 

S hV^ 

1 
S hV^ 

exp(-
X — X. 

exp(. 

2/i2 

X — X 

J^s 
The priors are 

I P{Cs) 二 | 5 | / n , P ( C s ) = - 同 / n , 
I 
I 

Substituting the conditional density functions and priors into 

P(Cslx P(Glx e S) 
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and define 

we have 

^(C^lx e 5) -

2h? 

哪 , S ) __ W{S, g) 
W{S, V) 二 

V o l 卿 

V o l � 
二 h{G). 

where W(A, B) = YIi^AjgB Then we can see that the 
Cheeger isoperimetric constant which can be equivalently writ-
ten as 

h 二 mmP(C^-|x e S) 

is the minimal misclassification rate. 
Therefore, the cut what minimizes the isoperimetric ratio on 

the graph constructed by Gaussian kernel is the partitioning that 
minimizing the misclassification rate, As shown in Pig.4.1, the 
optimal boundary which minimizes the isoperimetric constant 
cuts through the low density area and separates the manifold 
into two disjoint parts with large volumes. 

It is worth noting that the above analysis does not depend 
on the choice of the kernel density estimator. However, the 
analysis does suggest that in order to obtain a good clustering 
result, one should construct the underlying graph, i.e., the kernel 
density estimator, to rcflcct the data distribution. In general, 
the constructed graph is not necessarily an undirected graph. 
For example a data dependent kernel may result in a directed 
graph. Therefore, wc have to develope a general isoperimetric 
cut algorithm which can deal with both directed and undirected 
graphs. 
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Figure 4 1 A boundaiy that miii]mize& the ibopenmetnc constant 

4.3 Isoperimetric Cut on General Graphs 

In this section, we first introduce variable bandwidth kernel den-
sity estimator based directed graph construction methods. Then 
we propose the random walk isoperimetric cut algorithm to par-
tition the vert exes of the graph into disjoint subsets. We also 
analyze the IsoCut algorithm from different viewpoints. 

4.3.1 Local Scaling Directed Graph Construction 

The first step of spectral graph clustciiiig methods is to con-
struct a grgiph from a vector data set. The edge weights are usu-
ally confiputed by the Gaussian kernel exp( — — Xj 
However, as indicated in [59], for ccrtain data sets, say, multi-
scale data, the Gaussian kernel with a single uniform scaling 
parameter a is not informative enough for modeling the pair-
wise relations. The constructed graph is not able to capture the 
underlying data distribution. As a result, the intrinsic clusters 
of the data may not be obtained by partitioning the graph. 

1 Without ambiguity, in this section, x or x^, is used to denote a sample vector 
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b 

Figure 4 2 The local denbity alTectb the lelationhliipb between bample pairs 

Instead of selecting a single scaling parameter, several papers 
suggest to compute the edge weights by incorporating local infor-
mation in various ways. The authors of [15] propose to estimate 
local Gaussian distributions to construct a directed probabilis-
tic graph. The authors of [83] construct the graph using coding 
length. However, these methods are very time consuming which 
limits their practical use. The authors of [82] suggest to replace 
the uniform of the Gaussian kernel with a location dependent 
scalc but they do not provide a piincipal justification 
why the edges should be constructed this way. 

Consider the data shown in Figure 4 2 The Euclidean dis-
tances d{a, b) and d{a，c) are equal Then the similarities com-
puted by the fixed bandwidth Gaussian kernel are the same. 
However with the context data points around sample a, appar-
ently a is more likely to belong to the same cluster as b than 
as c. Here the local density of the data distribution is impor-
tant for modeling the relationships between the sample pairs. 
This intuitive example motivates us to use a location dependent 
method to construct the graph 

In this paper, we incorporate the nonparamctric density esti-
mation view to use a variable bandwidth KDE to construct the 
graph from a data set. The variable bandwidth KDjE is given 
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by … 
1 一:r - X, 

勵 二 L ^ K k f ) , (4.5) 
J J 

where the bandwidth hj depends on the context information of 
Xj. It is well known that with a fixed bandwidth, the kernel es-
timate tends to oversmooth at the main part and undersmooth 
at the tail part of the distribution. Thib is the basic motiva-
tion for considering a variable bandwidth KDE, which allows 
the bandwidth to vary from one observation to another. It gives 
the flexibility of using a smallci bandwidth (hoiicc i educes the 
bias of the estimate) in regions where there are many observa-
tions, and a larger bandwidth (hence reduces the variance of the 
estimate) in regions where there are relatively few observations. 

In this chapter, the local bandwidth h] is set to be the dis-
tance between Xj and its H h nearest neighbor. The parameter 
k is selected by cross validation. The k with which the variable 
bandwidth KDE (4.5) has the largest leave-one-oiit likelihood on 
the given data set is used in the IsoCut algorithm. According to 
the previous analysis, by using the variable bandwidth KDE, the 
edge weight of the constructed graph is w,j — Here, 
the Gaussian kernel is used. The edge weight of the constructed 
graph between Xj and x. is 

〒 各 e M 
fXj I tZ/ J 

K � 2/z2 )-

Notice that, in general, w” is not necessarily equal to w於, 

Therefore, the constructed graph is a directed graph. 

4.3.2 Isoperimetric Cut on Directed Graphs 

After constructing a graph from the data by using KDE, we have 
to partition the graph into disjoint subgraphs in order to obtain 
a clustering result of the original data. However, in general 
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the graph can be cither directed or undirected. Uniform treat-
ment of both graphs is needed. In this section, we generalize 
the isoperimetric so that we are able to treat the isoperimetric 
problem of undirected and directed graphs in a unified way. 

A directed graph G 二 (V, E) consists of a finite set of vertices 
V ^ V together with a subset of edges e ^ E CV xV, An edge 
e” of the directed graph is an ordered pair from vertex v̂  to 
vertex v] associated with the edge weight Wt.” The degree of 
vertex is d̂  = 

For a given weighted directed graph, there is a natural ran-
dom walk on the graph with the one step transition probability 
from v̂  to its adjacent Vj defined as p^j : w飞“d” Also define 
•Kt = d j h d i as a prior of cach vertex. For all sample pairs, 
wc have the stochastic matrix /) — [Pij\ir, — 1，…，I巧 sat-
isfying 1)1 — 1. where 1 is a vector with all entries being 1. 
For background reading on random walks in general we refer to 
62, 11], and for random walks on graphs we recommend [1，49 . 

For a finite state irreducible Markov chain on a graph with 
the transition probability matrix P, define the volume of the 
boundary of the vertex (state) set S as the sum of the weighted 
transition probabilities: Vol(55') = 及兀Vol(<95*) is 
also the probability with which a random walker jumps from S 
to its complement set S Also define the volume of S as Vol(S')= 
Y^^^s TTi- Vol(iS) is the probability with which the random walker 
occupies a vertex in S. Then the isoperimetric constant of the 
random walk is dcfiiiod as 

hn - inf mm ^ (4.6) 
s Vol � 5 L ( s � 

The constant hj^ is the minimal probability of the random walk-
er jumping from the vertex set S to its complement set S in 
one step if the current state is in S, i.e., min^^ — It 
represents the probability bottleneck on the state space of the 
random walk process. 
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Define an indicator vector z 6 {0,1}", where 

之z = 
1 Xi G 5' 
0 X, G S. 

Then t t c volume of the boundary can be rewritten as 
I 

Vol(浙） -Y^nip从z i - z , f — P)z , 
、：I 

and the volume of the vertex set S becomes 

where 11 is a diagonal matrix of the elements of the stationary 
distribution vector, i.e., H — diag(7r). 

Finally the isopcrimetric constant of the random walk can be 
rewritten as 

, . , V o l ( W ) . 7/11(7 — P)z 
I : ¥ " W T = ， " " " T O T " " . (4.7) 

This definition of the isopcrimctric constant in terms of the ran-
dom walk is consistent with the definition (4.1) for an undirected 
graph. Given an undirected graph with the adjacent matrix W, 
we have the natural random walk with the transition probability 
P — , where Z> is a diagonal matrix with each entry on the 
diagonal being the degree of each vertex, i.e., D 二 diag(VKl). 
This Markov chain is reversible. The stationary probability of 
the random walk is proportional to the degree of each vertex. 
Substituting P 二 D'^W and H -= D/trace(/J>) to (4.7), we have 
(4.1). 

The matrix L = I P in (4.7) is also referred to as the random 
walk Laplacain [39], which has a good asymptotic convergence 
property. It has been shown that for a non-uniform measure 
on the submanifold the operator L is guaranteed to converge 
to the weighted Laplace—Beltrami operator. However the graph 
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Lapacian and normalized graph Laplacian [18j do not have this 
property. 

Our goal is to design a graph partitioning algorithm to mini-
mize the isoperimetric constant. In fact, directly minimizing the 
isoperimetric constant is infeasible. The exact solution to this 
discrete optimization problem is NP-hard [21, 32 . 

In order to solve the partitioning problem, we relax the binary 
definition of z so that it can take nonnegative real values. Then 
the problem is transformed to 

min - P)z 
z T (4-8) 
s.t. z 他 二 / . 

By introducing a Lagrange multiplier A, we turn (4.8) into a 
constraint free optimization problem 

Q(z) = - -

Taking the derivative of Q(z) w.r.t. z, and setting it equal to 0, 
we have 

2n(/ - p)z - ni. 
Therefore, the problem of finding the solution z that minimizes 
Q(z) reduces to solving a linear system 

( / - P ) z = l , (4.9) 

where the scalar parts are dropped since only relative values are 
useful. 

The matrix L 二 i - P is singular since LI = 0. Therefore, 
the linear system (4.9) is ill posed. To achicve a unique solution 
of (4.9), we need extra constraints. 

As we assume the transition matrix P is irreducible, the di-
rected graph associated with P is strongly connected. We can 
designate an arbitrary vertex Vg to be included in S, i.e., Zg = 0 
[vq is called the ground vertex in the rest of this chapter), which 
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is equivalent to removing the gih row and column of L (the re-
maining matrix is denoted by Lq). and the gih row of z (the 
remaining vector is denoted by ZQ) in (4.9). Then the linear 
system 

Lozo = 1 (4.10) 

is well posed, which can be efficiently solved by the conjugate 
gradient method. The solution ZQ is a nonnegative real-valued 
vector. The bi-partitioning result can be obtained by threshold-
ing ZQ. Vert exes with an Zi below the threshold are placed in 
S. We use z to collectively refer to ZQ and the designated value 
of Zg 二 0. Several thresholding strategics can be applied. For 
example, the jump cut which chooses a threshold that separates 

I 

vertices on either side of the largest jump in a sorted z, and the 
criterion c\it which chooses the threshold that gives the lowest 
value of the isoperimctric ratio. 

To achieve a multi-class clustering result, the algorithm is re-
cursively applied to the subgraphs with the smallest isoperimet-
ric constants, until the number of subgraphs reaches a predefined 
value. 

There are several ways to choose the vertex Vg, such as ran-
domly picking a vertex. In this chapter, wc choose the vertex 
with the maximal stationary probability. This strategy is based 
on the heuristic that a vertex with a high stationary distribution 
is the one with high probability that a random walker jumps to 
it. Such a vertex is likely in the interior of a cluster but not on 
the boundary. Empirically, we have found that, as long as Vg is 
not aloilig the ideal boundary, a reasonable partitioning with a 
small isoperimetric ratio can be produced. 

4.3.3 A Random Walk Hitting Time View 

The expected hitting time h(j\i} is defined as the expected num-
ber of steps that a random walker, starting from the vertex (s-
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tate) Vi — Vj, will take to reach the vertex (state) Vj for the first 
time [Ij. It can be easily verified that the expected hitting time 
satisfies the following recurrence relations 

I hulz) -11 EiiP^khcm, z / j . 口'iiJ 
Let ho be the vcctor with cach entry being the expected hitting 
time h(gji) from any vertex v“i / 仏 to the ground vertex Vg 
and Pq be the matrix obtained from the transition matrix P by 
removing the gi\i row and column. Then we can write (4.11) in 
a matrix form as ho = 1 + Pg^o, which is equivalent to (4.10). 
We can see that the approximate solution of the isoperimetric 
cut problem given by the linear system (4.10) is the expected 
hitting times h{g\i) from vertices Vj G V to the ground vertex 
Vg. From this expected hitting time viewpoint, we have some 
insights into the isoperimetric cut algorithm. 

First, we can easily see that if the ground vertex Vg is selected 
such that for any other vertex Dj,i • g, there exists a path from 
Vi to Vg, then the linear system (4.10) is well posed, even if the 
graph is not strongly connectcd. 

Second, wc can examine the connectivity properties of the 
partitions obtained by thresholding ZQ obtained from solving 
(4.10). Wc will prove that the partition containing the ground 
vertex (i.e., the set S) must be connected, regardless of how 
a threshold (i.e., cut) is chosen. The strategy for establishing 
this is that every vertex has a path to the ground vertex with a 
monotonically decreasing expectcd hitting time. Note that the 
partition not containing the ground vertex may or may not be 
connected. 

Lemma 4.3.1. For every vertex, Vi, there exists a path to the 
ground vertex {v^.v^• • • , Vg), such that Zi> z^ > z^ - ••> 
when LqZq 一 1. 
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Proof. By the definition of the expected hitl ing time, each non-
grounded vertex has a value 

= 1 f P^jZj. (4.12) 

For a vertex set S CV^ denote the boundary vertex set of S as 
Sb C V, such that St 二 G E, e S.Vj ^ S}. Then for 
any vertex we can explicitly explicitly construct a path to 
the ground vertex Vg with nonincreasing expected hitting time 
by the following procedure: 
1) Start with S ~ {v^}. 
2) Repeat adding Vj G Sh to S such that z] < min Vvj. G S 
by (4.12), until Vg e Si,. 
Step 2) is feasible, because for every vertex v^ G S) there exists 
a path from v^ to Vg. • 

Propos i t ion 4.3.2. If the set of vertices, V, is strongly con-
nected, for any a, the subgraph with vertex set M C V defined 
by M = {v^ G Vjz/, < a} is connected when z^ satisjics LqZq 二 1. 

Proof. Since V is strongly connected, for any Vg e V^ G 
• g there exists a path from v^ to Vg. Then from Lemma 

4.3.1，all Vj G M are connected to Vg. Therefore the subgraph 
M is connected. • 

The irel^itionship between the expected hitting time and the 
isoperimetric problem also explains why the expected hitting 
time, as a proximity measure, performs very well in the ranking 
and retrieval tasks [66]. The small expected hitting time be-
tween the query and a sample in the database implies that they 
are likely of the same class in the clustering sense. 

4.4 Experiments 

In this section, we conduct experiments on a number of bench-
mark d^ta sets to evaluate the proposed random walk isoperi-
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metric cut (IsoCut). Five recent and related algorithms are 
compared to show the effectiveness of the IsoCut algorithm, 
including Kmeaiife, iterative normalized cut (NCut) [67], NJW 
61], self-tuning graph construction based normalized cut (StN-

Cut) [82], and the self-tuning graph construction based NJW 
(StNJW). The parameters in these algorithms are all tuned 
to ensure the best results in terms of the normalized mutu-
al information evaluation. Furthermore, we analyze the com-
putational efFicicucy of IsoCut algorithm compared with eigen-
decomposition based approaches such as NCut, where the exe-
cution times of the algorithms with different numbers of samples 
and different numbers of neighborhoods are examined. 

To evaluate the performances of the clustering algorithms, 
we compute the following two performance measures from the 
clustering results: normalized mutual information (NMI) and 
minimal clustering error (Enor). NMI is defined as 

N M I ( x , y ) 物 ） 
v w m ^ y 

where / (x , y) is the mutual information between x and y, and 
H{x) and H(y) arc the entropies of x and y respectively. Note 
that 0 < xNMl(x,y) < 1 and NMI(x，y) - 1 when x 二 y. The 
larger the value of NMI, the better a clustering results. 

The clustering eiioi is defined as the minimal classification 
error among all possible permutation mappings defined as: 

1 “ 
Error 二 min(l —— n 

where y^ and c； are the true class label and the obtained clus-
tering result of x^, respectively, ^(x, y) is the delta function that 
equals 1 if x — y and 0 otherwise. 

To validate the IsoCut algorithm on real image data set and 
demonstrate the superiority of the proposed algorithm compared 
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Figure 4.3: Example images in the Scene data, 

Table 4.1: Descriptions of the image data sets used in the experiments. 

Dataset clusters dimensions objects 
Scene 8 512 2688 

UMist-all 20 10304 575 
UMist-10 10 10304 265 
UMist-5 r-0 91 140 
USPS-all 10 256 5000 
USPS - 5 5 256 2500 
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with the statc-ol-lhe-art related ones, we carry out experiments 
on three data sets. UMist, USPS, and a scenc category data 
set (Scene). UMist consists of 575 multi-view face images of 20 
different persons with vaiied poses from profiles to frontal views. 
USPS consists of 5000 images of 10 handwritten digits (0-9). 
To further exploit the databases, we randomly select 10 and 
5 classes from UMist to construct two data sets UMist-10 and 
UMist-5, and use 5 digital numbers (2,3,5,6,8) from USPS as 
another data set USPS-5 for the experiments. For UMist-5, the 
dimensions of the images are reduccd by PCA while maintaining 
99% of the total energy. The Scene data set was collected by 
Oliva and Torralba [63], containing 8 categories of natural scenes 
as shown in Fig. 4.3. We use the feature called Spatial Envelope 
63] to represent each sccne image, although other choices can 

be used. The feature is a 512-dimensional vector, capturing the 
dominant spatial structure of ihe scene. The description of the 
data sets used m our experiments are summarized in Table 4.1. 

The clustering results by the six algorithms, Kmeans, NCut, 
NJW, St NCut. StNJW, and IsoCut, are shown in Table 4.3 and 
Table 4.4, from which we can sec that IsoCut performs best in 
all the data consistently. 

Five data sets (Iris, Wine, WDBC, Sat image, and Segment) 
from UCI Machine Learning Repository are used in this exper-
iment ,which are widely used to evaluate clustering algorithms. 
The five data sets that oiigin from the problems in different 
domains. More details of them are summarized in Table 4.2. 

The comparison results are also listed in Table 4.3 and Ta-
ble 4.4. Among all the 22 comparisons, the IsoCut algorithm 
obtains the best rc&ults in 20 cases, and the second best re-
sults in another 2 eases. These comparisons demonstrate that 
IsoCut can achicve excellent performances consistently on real 
world applications with various numbers of clusters, samples, 
and dimensionalities. 
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Figure 4.4' Running time comparisons between IsoCut and NCut 

4.4.1 Computational Efficiency Analysis 

In addition to the excellent performance of the IsoCut algorith-
ru in accuracy, its computational efficiency is also an advantage 
over the related ones except Kmeans. Fig. 4.4 shows the running 
times of IsoCut and NCut, with respcct to different numbers of 
samples ai^d neighborhoods. NCut is a representative approach 
for eigeu-decomposition based algorithms, whose computation-
al complexity is similar to NJW, StNCul, and StNJW. From 
these results, we can see that the IsoGiit algorithm is much 
faster than the other four algorithms, with much smaller time 
increasing than that with NCut as the numbers of samples and 
neighborhoods grow. The algorithms are implemented in Mat-
lab, running on a 2.8 GHz Pentium IV PC with 4GB RAM. 
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Table 4.2 Descriptions of the UCT data sets ubod lu the experiments. 

Daiasct clusters dinieiisioiis objccts 
Ins 3 4 150 

Wine 3 ]3 178 
WDBC 2 30 569 

Saiimage 6 36 6435 
Segment 7 19 2310 
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Table 4.3' NMI comparihon results on the ten real data sets. The best values 
are bold 

Daiaset Kmeaiis NCut — NJW StNCut StNJW Ours 
Iris 0 7582 - 0.7571 0.7661 0 6524 0.7857 0.8449 

Wine 0 4288 0 6 2 4 0.4351' 0.3665 0.4199 0.4496 
WDBC 0.4672 -0,""5754 _ “0 5358 0 4679 0.4845 0.5868 

Satimage 0 6138 0.6749 0.6373 0.6336 0 6307 0.6932 
Segment 0.6J24 0 6465 R) 6629 0 5852 0.6801 0.7440 
UMist-all 0 6726 0 6157 0 8009— 0.5364 0.6512 0.8785 
UMist-10 —0—616:1 — 0 5769 0.8214 0.4918 05850" 0.8634 
UMist-5 0.7065 0.8903 0.8655~ 0 6384 0.6371 1 
USPS-all 0 4038 0:4517 0.5180 0.1894 0.3606 0.6880 
USPS-5 0 4469 0.5789 0.4247 0.2536 0.3197 0.6910 

Scene 0^3951 0.4100 0.4471 0.3605 0.4204 0.4695 

4.5 Conclusions 

In this chaptcr, wc propose a kernel density estimation based 
directed graph clustering algorithm. A local kernel density esti-
mation method with automatic bandwidth selection is proposed 
to construct the directed graph. This method effectively utilizes 
the local distribution information of the data. An efficient di-
rected graph partitioning algorithm is also developed which op-
timizes the random walk isoperimetric ratio by solving a linear 
system. Experimental results show that the proposed method is 
superior to several popular methods on many benchmark data 
sets. 

Viewing graph cut problem from the kernel density estima-
tion prospective opens a door to solving the graph construction 
problem. Many nonparamctric techniques can be utilized to 
boost the performance of graph based clustering algorithms. 

• End of chapter. 
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Table 4.4: Error comparison results on the ten real data sets. The best values 
are bold. 

Dataset Kmeans NCut NJW StNCiit StNJW Ours 
Iris 0.1067 0.0933 0.1000 0.4867 0.0933 0.0533 

Wine 0.2978 0.2697 0.2921 0 2921 0.2865 0.2472 
WDBC 0.1459 0.0879 0.109 0.1388 0.1248 0.0796 

Satimage 0.3310 0.2544 0.2457 0.2810 0.2737 0.2197 
Segment 0.3342 0.4004 0.2740 0.5165 0.3407 0.2922 
UMist-all 0.5339 0.5791 0.3948 0.6348 0.5739 0.2661 
UMist-10 0.5509 0 5208 0.3057 0.5849 0.5547 0.2604 
UMist-o 0.2214 0.0857 0.1214 0.3786 0.3071 0 
U S P g ^ 0.6008 0.6404 0.4882 0 8396 0.6388 0.3398 
USPS-5 0.3468 0 4140 0.4256 “0.6224 "0.4572" 0.2232 

Scene 0.5056 0.4835 0.4014 0.5443 0.4725 0.3857 



C h a p t e r 5 

Dig raph Mul t iway Cu t via 
Hitting Time 

Summary 

In this chapter, we present a clustering algorithm which 
is based on random walk hitting time on directed graph-
s. Unlike traditional graph based clustering methods, 
we do not explicitly calculate the pairwise similarities 
between points. Instead, wc form a transition matrix 
of random walk on a directed graph directly from the 
data. Our algorithm constructs the probabilistic depen-
dence relations between sample pairs by studying the 
local distributions of the data. Based on the random 
walk model, we compute the expected hitting time for 
all sample pairs, which explores the global structure in-
formation of the underlying graph. A directed graph 
clustering algorithm based on expccted hitting time is 
proposed. By utilizing the local distribution information 
of the data and the global structure information of the 
graph, our method is able to conquer some limitations 
of traditional pairwise similarity based methods. 

74 
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5.1 Introduction 

Recently, pairwise relation based clustering algorithms attract 
great attention. A successful example is the spectral clustering 
54, 61, 67, 81]. These methods have the advantage that they 

do not make strong assumptions about tlic distribution of the 
data. Instead, similarities between sample pahs are first com-
puted to construct an undirected graph of the data and then a 
global decision is made to partition all data points into disjoint 
sets according to some critcrions. Therefore, these methods can 
potentially deal with data sets whose clusters are of irregular 
shapes. 

Despite the great success of the graph based methods, there 
are still open problems: (1) How to construct the pairwise sim-
ilarities between sample points to lefloet the underlying distri-
bution of the data; (2) How to deal with multi-scale data; (3) 
How to handle the data whose clusters are defined by geometry. 
Moreover, Nadler and Galun recently pointed out that there 
are fundamental limitations of these graph based approaches 
60, 79]. According to their analysis, even with carefully tuned 

parameters, the spectral clustering algorithms still cannot suc-
cessfully cluster the multi-scale data sots. They showed exam-
ples that the clusters, which can be easily captured by human, 
cannot be properly identified by the spectral clustering methods. 

In this chapter, we show that the widely used parametric 
Gaussian kernel based similarities are not informative enough for 
modeling pairwise relations. As a result, the undirected graph 
constructed based on the similarities does not necessarily cap-
ture the intrinsic structure of the underlying data distribution. 
Therefore, the natural clusters of the data cannot be obtained 

I 

by partitioning the graph. 
From our analysis, we propose a data clustering algorithm 

based on a directed graph model. The edge weights of the graph 
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are the probabilistic dcpcndcnce relations between local sample 
points, which are constructed by exploring the local distribution-
s of the data. Such relations arc asymmetric and more general 
than the similarities used in traditional undirected graph based 
methods sincc they consider both the local density and geometry 
of the data. 

The probabilistic relations between all sample pairs natural-
ly result in a stochastic matrix, which can be considered as the 
transition matrix of the Markov random walk process on a di-
rected graph. Our new clustering algorithm works on this direct-
ed graph, which is based on the random walk model, more specif-
ically the cxpcctcd hitting time of random walk model [15, 17 . 

The random walk hitting time has a nice property: it decreas-
es when the number of paths connecting two nodes increases 
and the length of any path decreases. Informally speaking, the 
shorter the paths connect two nodes are, the more related the 
two nodes arc; strongly connected nodes are more related than 
weakly connected nodes. 

There are some other applications that consider various mea-
sures based on random walk models. For example, the paper of 
27] proposes an embedding method based on the commute time 

distance on undirected graphs for collaborative recommendation 
systems. Another paper of [10] proposes to use an angular based 
quantity for semi-supervised learning problems, which can be 
seen as a normalized version of the commute time on undirected 
graphs. 

All these approaches arc based on undirected graph models, 
with symmetric measures (similarity) between sample pairs. We 
will see later that symmetric measures cannot fully capture the 
relations between sample points. Sometimes it may even hinder 
the performance of the algorithms. 
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(a) Three Gaussians ( 1 1 1 ) (b) Thiee Gau&sians (8 11) 

Figure 5 1 Clustering results by the NJW algorithm on two multi-scale data 
sets Diffeient clusterb aie denoted by different colois 

5.2 Limitations of Pairwise Similarity Based 
Methods 

The fir就 step of pairwise relation based algorithms is to con-
struct an undirected graph foi the vector data Sample points 
are connected by undirected edges. The edge weights reflect the 
similarities between sample pairs. Usually a Gaussian kernel 
e x p ( — — Xj||2/2(j2) with a manually adjusted parameter a 
is used for setting the weights A problem of this step is how 
to choose the parameter a When it is not properly set, the 
clustering results can be poor A more severe problem is that 
a single a for all sample pairs implies that if the Euclidean dis-
tances between two pairs are the same, the two similarities are 
the same too. When the input data arc with different density 
and geometry, there may not exist a single value of a that works 
well for the whole data set. For certain data set, the intrinsic 
cluster structure essentially may not be explored by the spectral 
clustering algorithm, no matter what value of a is chosen. 

Figures 5.1a and 5.1b are two multi-scale data sets from [59], 
where 1000 sample points are generated by three Gaussians with 
variances cti 二 2 and (72 二 erg = 0.5. The point numbers of the 
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Gaussians are 1:1:1 for Figure 5.1a and 8:1:1 for Figure 5.1b. 
The best results that can be achieved by the spectral clustering 
aie shown with dilk^ieiit colois denoting the c4ustois. As indi-
cated in [59], these multi-scalc problems essentially cannot be 
solved by spectral clustering, mainly becausc it docs not explore 
the density information inherent in the data. Even though the 
parameter a has been carefully tuned, from the figure we can see 
that the spectral clustering algorithm cannot obtain satisfactory 
results on these data sets. 

When dealing with these kinds of data, exploring the local 
data distribution is very important. Consider the data shown in 
Figure 5.2a. The Euclidean distances d�a, h) and d(a，c) between 
the sample pairs (a, b) and (a, c) are the same. Then the simi-
larities computed by the Gaussian kernel are the same. However 
with the context data points around sample a, apparently a is 
more likely to belong to the same cluster as b than as c. Here the 
geometric shape of the local data distribution is important for 
modeling the relations between sample pairs. Another example 
in Figure 5.2b shows the importance of the density of the local 
data distribution that affects the relations between sample pairs. 
Although sample a lies in the middle of b and c, a is more likely 
to have the same class label as c than as b when considering the 
density of the context data. Here the local density of the data 
distribution is important for modeling the relations between the 
sample pairs. 

These two intuitive examples suggest that we should analyze 
the local data distribution when modeling the pairwise relations 
between sample points. 
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(A) Shape (BJ Density 

Figure 5 2 The local density and shape affcct liie rcldtions between sample 
pairs 

5.3 Random Walk Hi t t ing T ime Based Di-
graph Clustering 

Based on the analysis above, we propose to study the local con-
text of the data to setup the relations between local sample 
points. The relations between sample pairs are not necessar-
ily symmetric. We adopt a probabilistic framework to mod-
el the local pairwise relations to form a directed graph, and 
then compute the random walk hitting time between all sample 
pairs which explores the global information of the structure of 
the underlying directed graph. An iterative algorithm called K~ 
destinatioi|S is proposed to cluster the data based on the hitting 
time measure. 

5.3.1 Local Gaussian based Bayesian inference 

Let Xi G 2 二 1 , . . . . n, be points that we wish to assign to K 
clusters Q = ，【The good performance of a clustering 
method indicates that the label of a data point can be well 
estimated based on its neighbors. 

The data of a local neighborhood can be deemed as a s-
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ingle Gaussian. Denote N(i) as the index set of x^'s neigh-
bors. In this paper, the k nearest neighbors of x?: are used to 
compose the neighborhood N{i). Each sample x” j E N(i), 
can be thought to lie in a local Gaussian centered at x “ i.e., 
Xj �C i ) , j G N{i), where x^ and Q are the mean and 
covariance of this Gaussian. The covariance Q of the Gaussian 
can be estimated using the data of the neighborhood N{i) by the 
maximal likelihood estimation (MLE). Let X? 二 [XjJj, j E 
be a matrix with cach column being a neighbor of x^. A regu-
larized covariance matrix C-, of the local Gaussian distribution 
Qip^i.Ci) is 

a - - — — x . l ^ y + a / , 

where \N{i)\ is the cardinality of the set 7V(z), a is the regular-
ization factor, 1 is a vector with all entries being 1，and I is the 
identity matrix [35 . 

Let d, 二（X, - x, , l”(X,: — In this paper, 
wc use a modified version of the regularized covariancc matrix 
proposed in [71 J: 

A 

We write Q̂  as the abbreviation of ^(x^, Ci). Then for a 
sample point x^, the multivariate Gaussian density, with which 
Xj is generated by the Gaussian C,；), is given by 

= 卿 一 , f (5.1) 

秦 ) ⑩ 

As shown in Figure 5.3a, given the neighbor Gaussians, the 
probability that x̂ - is generated by the Gaussian 列x“ Q ) can 
be computed by the Bayesian rule: 

: ) 脱 m ) 
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For simplicity, the prior probabilities are set equal. 
P{Q^\:k.J) can be thought as the local dependence of x^ on 

x^ given the context of local data distributions when determin-
ing the cluster membership of each sample, as shown in Figure 
5.3a. It represents the dependence of x^ on x^. Also denote 
pj-i = then h p ” — 1. Notice that the probabilistic 
relations between points i and ] are not asymmctric, i.e., in gen-
eral, Pji is riot necessarily equal to p^j. Then all samples and the 
asymmetric relations between sample pairs naturally result in a 
directed graph. 

The advantage of using the local Gaussian based Bayesian 
inference to model the dependence relations between sample 
pairs can be seen from Figure 5.3. When solely using the Eu-
clidean distances to model the pairwise relations, the clustering 
boundary may not be reasonable as shown in Figure 5.3b. By 
considering the local distribution, we can obtain a satisfacto-
ry boundary as shown in Figure 5.3c. Using this approach, we 
avoid setting the bandwidth parameter a of the Gaussian kernel 
in the spectral clustering methods. Moreover, this estimation 
of local relations considers both the local density and geometry 
of the data, thus the consii uctcd gi apli loiiects the underlying 
distribution of the data set. 

5.3.2 Random Walk Hitting Time 

For all sample pairs, we have the matrix P = which has 
the property that PI — 1, i.e., P is stochastic. After obtaining 
the stochastic matrix P, we can naturally define the Markov ran-
dom walk on the directed graph associated with P. The random 
walk is defined with the single-step transition probability p” of 
jumping from any node (state) i to one of its adjacent nodes j 
where P^J — P[L —> J] is the probability of one step discrete time 
random walk transition from i io j. Then P can be regarded as 



.1 PilKj 於) ^ + j-

The recurrence relations can be used in order to iteratively com-
pute the expected hitting time. The meaning of these formulae 
is quite obvious: in order to jump from node i to node j , one 
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(b) (c) 

Figure 5 3. Advantage of using local Gaussian based Baycsian inference to 
construct neighbor relations (a) Local Gaussian based Bayesian inference, 
(b) Boundary found by luodelnig pairwise relations with the isotropic Gaus-
sian kernel (c) Boimdaiy found by modeling pairwise relations with local 
Gaussian estimation 

the transition probability matrix of the random walk process. 
The transition probabilities depend only on the current s-

tates (first-ordoi Markov chain). If the directed graph associat-
ed with the matrix 1) is strongly connected, the Markov chain 
is irreducible, that is, every state can be reached from any other 
states. If this is not the case, the Markov chain can be decom-
posed into closed subsets of states which are independent (there 
is no communication between them), each closed subset is ir-
reducible. and the procedure can be applied independently to 
these closed subsets. 

The expected hitting time h{j\i) of the random walk is the 
expected number of steps before node j is visited starting from 
node I. It can be easily verified that the hitting tinic satisfies 
the following rccurrcnce relations 

二
 w

 

I 

0 H{I 

H{J 
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has to go to any adjacent state k of node i and proceeds from 
there. 

The closed form of the hitting time in terms of transition 
matrix pxists [1]. By introducing a matrix 

I Z = — 1’ 

the matrix H with its entry H^j : h{j\i) can be computed by 

Hij 二 {^jj - 么 j ) / � ’ 

where Z^j is the entry of Z. 
As mentioned before, the hitting time from node i to node j 

has the property of decreasing when the number of paths from 
i to j increases and the lengths of the paths decrease [23]. This 
is a desirable property for representing the dependence of the 
label of one point on another for the clustering task when the 
global distribution of the data is taken into account. 

A closely related quantity, the commute time c{i, j). is defined 
as the expectcd number of steps that a random walker, starting 
from node i • )�takes to meet node j for the first time and goes 
back to i. That is, c(z, j) = h(j\i) + h(ilj). The commute time 
distance is also known as the resistance distance in the electrical 
literature [46, 23]. The commute time distance on undirected 
graphs is widely used in many applications [10, 27, 72]. However 
we argue that it is not suitable for our case. In the case of a 
directed graph, if the hitting time from node t to node j is 
small, which means node i and node j are tightly related, but 
the hitting time from node j to node i is not necessarily small. 
Such cases often happen on the points that lie on the boundaries 
of clusters, which have short hitting times to the central points 
in the s^me dusters, but often have very large hitting times from 
the central points to points close to the boundaries. So in this 
paper, we use the hitting time instead of commute time as the 
measure of pair wise relations. 
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Algorithm 2 Random walk hitting tune based digraph clustering algorithm 
Require: The data inalnx X the iimribcr of nearest neighbors k, and the 

number of cluhteis K 
for all ), I ], 2, , n do 

Form 7 e N(i), by the k nearest neighbors of x̂  
Compute Ibo rn l e f t singula] vectors U^ - [u?i， . ？c o r r e s p o n d i n g 
to the noil-zero siiigulai values of X, 二 X^ x^ '^ 
For those j with i C N{j)�compute as in (5 2) 

end for 
Compute P = with each entry p” 二― p{.QMi)/ 
Compute Z = (I P ctt^) and compute H where H” -- [Zjj — Z^j)!^^. 
Perforin the hitting time based K-destinations algorithm. 

5.3.3 K-destinations Algorithm 

After obtaining llie asymmetric hitting limes between all sample 
pairs, we are ready to apply a clustering algorithm to categorize 
the data into disjoint classcs. Since traditional pair wise relation 
based clustering algorithms often require the pairwisb relations 
be symmetric and the similarity functions be scmi-dcfinitc, such 
as the spectral clubtering [61, 67, 81], they are not suitable for 
clustering using the hitting time measure. 

In this work, wc develop an iterative clustering algorithm 
based on the asymmetric hitting time measure, which is sim-
ilar to the K-means algorithm, called the K-destinations that 
directly works on the pairwise hitting time matrix H. 

Each cluster V/ is represented by an exemplar vi, which is 
called a destination node in our algorithm. The destination node 
is selected from the samples. Intuitively, wc want to choose the 
destinations that save the walkers' (hitting) time. Therefore, we 
propose to cluster the data by minimizing the sum of the hitting 
times from the samples to the destination node in cach cluster: 

K 
- [ E 刚 i ) . 

1=1 tCVj 
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I I 
Findmg the global optimum of this criterion is a hard prob-

lem. Ixist^ad, we optimize the function in a greedy manner. 
Similar to the K-means algorithm, we iteratively minimize J by 
two steps: 

• First, we fix the destination nodes and assign each sample 
to the cluster that has minimal hitting time from it to the 
destination node corresponding to the cluster. 

• Then, in cach cluster, we update the destination node from 
the samples that minimize the sum of the hitting times from 
all samples in the duster to the destination node. 

The clustering algorithm repeats the two steps until the clus-
ter membership of each sample does not changc. It can be seen 
that the algorithm monotonously decreases the value of J in each 
iteration, so the convergence of the algorithm is guaranteed. 

5.3.4 Implementation 

In typical applications of our algorithm such as image clustering, 
the dimension d of the data can be very high. Therefore the 
computation of the Gaussian density in (5.1) is time consuming, 
where the inverse of d x d matrices is involved. Usually in the 
neighborhood, although the covariance matrix (7 — C f a / is 
of rank d) the rank of C is very low . Denoting the rank of C 
as m, we ^ave m < k �d , where k is the number of neighbors 
in the neighborhood. Let U : [nj^. I = l , . . . ， ( i , and A = 
dg([Ai]J, i = 1,…，d, where u^ and \ arc the eigenvectors and 
eigenvalues of C respectively, then 

U{A-\--l)U 
a 

T 

1 "Without ambiguity，here we ignore the subsciipt t in in ihib subsection 
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where A is a diagonal matrix with entries 

A =—— 
“ A(\ 十 A) 

Let U = [UX^ 2 — 1 , . . . , m. be a matrix formed by the eigenvec-
tors corresponding to Don-zero eigenvalues of C, which can be 
efficiently conipuiod by applying singular value decomposition 
on a d X /c matrix (see Tabic 2). Then the Mahalanobis term in 
(5.1) is 

二(X? - X 产 ( 7 - - X ) 

— 伊 ’ ( X 广 x)||2 + | | x广 xllVa, 

where A ^ dg([Aa]/). I = 1，...，m, is only a m x m matrix 
with m « d. Then the density with which x^ is generated by 

C) can be computed as 

M 

p{-KJ\G) exp —-(^ic(x”x) + [ I n A z t din {2n)) . (5.2) 

V 2 .=1 
Thus we avoid storing the d x d matrix C and explicitly com-
puting the iuveise of it, which biings us time/space efficiency 
and numerical stability. The complete algorithm is summarized 
in Table 2. 

5.4 Experiments 

In this section, we present the clustering results obtained by 
the proposed random walk hitting time based digraph clustering 
(HDC) algorithm on a number of synthetic and real data sets. 
We also comparc our IIDC algorithm with the K-means and the 
NJW [61] algorithms. 

In order to show the advantage of our HDC algorithm, we 
apply it to the data sets shown in Figure 5.1, on whicli the NJW 



(a) Thice Gausbians ( 1 1 1 ) (b) Thice Gausbidiis (8 J I) 

Figure 5 4 Clu&tcimg icsults by IIDC on the two data sets Different clusters 
are denol,ed by dilTeient coloib 

algorithm fails. Our clustering results are given in Figure 5.4. 
From the figure we can see that, by exploring both the local 
distribution information of the data and the global structure 
information of the graph, the HDC algorithm can work well on 
the multi-scale data sets. The clustering results satisfactorily 
capture the natural cluster structures of the data. 

In this scction, we conduct experiments on the following real 
data sets: 

• Iris： The data arc from the UCT repository comprising 3 
classes of 50 instances each, where cach class refers to a 
type of iris plant. 

• Wine: The data are from the UCI repository comprising 3 
different wines. This data set is used for chemical analysis 
to determine the origin of wines. 

• Satimage: The data are the 10% sampling of the UCI repos-
itory Lands at Satellite, which consists of the multi-spectral 
values of pixels in 3x3 neighborhoods in a satellite image. 

• Ionosphere: The data are from the UCI repository referring 
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to the radar returns fiom the ionosphere that is a binary 
clustering to delect "Good'" radar. 

• Segmentation： The data are from the UCI repository. The 
instances are drawn randomly from a database of seven 
outdoor images. 

• WDBC: The data are from the UCI repository that is used 
for diagnostic Wisconsin Breast Cancer. 

• UMist-5: The data are from UMist database containing 
5 classes, which are randomly selected from all the face 
images of 20 different persons in UMist database. The di-
mension of the data are reduced by principle component 
analysis (PCA) while maintaining 99% of the total energy. 

More details of the data sets are summarized in Table 5.1. 

Table 5 1 Descnptionb of the data sets used in the experiments 

Dataset K d n 
Iris 3 4 150 

Wine 3 13 178 
Satiiiiagc 6 36 644 

Ionosphere 2 34 351— 
Segmentation 7 19 2310 

WDBC 2 30 569 — 
UMifet-5 . 5 91 140 

To evaluate the performances of the clustering algorithms, 
we compute the following two performance measures from the 
clustering results- normalized mutual information (NMI) and 
minimal clustering error (Error). The NMI is defined as 

NMI(x,y) 
V W ) W ) 

(5.3) 
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Table 5 2 Error and NMI compaiison results on seven data sets The best 
values are bold 

Dataset Eiroi NMI Dataset 
K-niearib rsJW HDC K means NJW HDC 

Iris 0 1067 ""oloocT OT0267~ 7582~ 0 7661 0.8981 
Wirje ^T2978 ^ 'T]2921 04288一 0 4351 0.4544 

Satimage 0 3323 � 0 2888 0 . 2 2 9 8 � 0 6182 0 6693 0.7039 
Ionosphere 一 0"2F7f 一0顶0 0.7266^ 一 0 1349 0 4621 0.5609 

Segmentation 0 3342 0 2740 0.2521 (r6124 一 0 6629 0.7039 
WDBC 0 1459 0 1090 0.J072 0 k672 ~ •二癒 8— 0 5035 
UMist-5 0 2214 0 1214 0.0643 0 70(35— 一 0 8655 0.8930 

where I(x, y) is the mutual infoimation between x and y, and 
iT(x) and H(y) are the entropies of x and y respectively Note 
that 0 < NMI(x.y) < 1 and NMI(x, y) 二 1 when x = y The 
larger the value of NMI is, the bettei a clusteiing result is 

The clustering eiioi is defined as the minimal classification 
en01 among all possible permutation mappings defined as 

Error — min(l (5 4) 

where 队 and c? are the true class label and the obtained clus-
tering result of x^, respectively, y) is the delta function that 
equals 1 if x — y and 0 otherwise 

The clustering results by the three algorithms, K-means, N-
JW, and HDC, are summarized in Table 5 2 The HDC algo-
rithm obtains the smallest errors m all the cases, and produces 
the largest NMI values on all the data sets except one These re-
sults demonstrate that the HDC can achicvc good performances 
consistently on various real world applications 
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5.5 Conclusions 

We have proposed a random walk hitting time based digraph 
clustering algorithm for general data clustering. The pair wise 
relations of probabilistic dependence of the data arc obtained 
by local distribution estimation. A directed graph is construct-
ed based on the asymmetric relations. Then the hitting time 
measure is computed based the Markov random walk model on 
the dircctcd graph, which explores the global graph structure. 
An iterative algorithm is also proposed to work with the asym-
metric hitting time measure to cluster the data. Our algorithm 
is able to conquer some limitations of traditional pairwise sim-
ilarity based methods. Extensive experiments have shown that 
convincing results arc achieved in both synthetic and real world 
data by our algorithm. 

• End of chapter, 



Chapter 6 

Conclusions and Contributions 

Clustering is one of the most widely used techniques for ex-
ploratory data analysis. Despite the popularity of clustering, 
clustering is a difficult pioblem. Little is known about theoret-
ical properties of clustering. One of the main reasons is that 
it is very difficult to evaluate the quality oi a partition of some 
given data set. There is no general agreement for what criteri-
on should be optimized in order to cluster general data. There 
is no theoretical ground to justify what is the right way to do 
clustering. 

Graph based clustering algorithms are of great interests re-
cently. These methods first compute the pairwise similarities 
of the data to construct an undirected graph. Then the glob-
al clustering result is obtained by partitioning the vert exes of 
the graph into disjoint sets according to some criterion. One 
advantage of these methods is that they do not make strong as-
sumptions about the global distribution of the data. Therefore, 
they can potentially deal with data of irregular shapes. Despite 
the success of the graph based methods, theie are still unsolved 
theoretical and practical issues: What ib the statistical meaning 
of spectral clustering objective? I low to construct the graph in 
a data-dependent way in order to obtain robust results across 
data sets? 

Bayesian decision theory is "THE" fundamental theory for 

91 
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decision making under uncertainty. It provides a mathemati-
cal tool to guide deriving practical models to analyze data. A 
model which is consistent with Bayesian decision theory is es-
sentially consistent with probability theory and vice versa. The 
decision thcor), for supervised learning problems, such as classifi-
cation and regression, arc well established. With the guidance of 
the theory, the area of supervised learning is flourishing. Many 
theory con formal algorithms were developed which are proved 
working well in practice. However, to the best of our knowledge, 
there is still lack of such a thcorctical foundation for clustering 
problems. As a result. there is no theoretical criterion to distin-
guish which algorithms are “better” or even doing the "right" 
thing. Clustering remains an art rather than science at current 
stage. 

In this thesis we start from the very beginning, the Bayesian 
decision theory, to establish a theoretical framework for the clus-
tering problems. With the theoretical framework in hand, we 
interpret the popular graph based clustering methods from the 
perspective of decision theory. Also motivated by the theory we 
extend current algorithm to deal with data with ijiore complex 
structmOS. Wo also develop several new algoiithms to effectively 
and efficiently solve the clustering problems arisen from different 
situation. 

The contributions wc made in this thesis are as follow 

• Based on the Bayesian decision theory, we develop the the-
oretical foundation of general clustering problem. The clus-
tering problem is treated as a classification problem without 
training data. Reinterpreted by the probability language, 
wc model the clustering problems as minimizing the ex-
pected classification error with respcct to the partitioning 
of the sample space. 

• We show that the seemingly unrelated two steps (graph 
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construction and graph partitioning) of the graph based 
methods are actually related. Especially, we show that the 
normalized cut is a nonparametric clustering method which 
adopts the kernel density estimator as its density model and 
tries to minimize the expected classification error or Bayes 
risk with respect to all possible partitioning of the input 
data. 

• By adopting the Bayesian density theoretical view, we pro-
pose several extensions of current spectral clustering meth-
od^. Several graph construction approaches arc proposed to 
construct the graph in data-depenclrnt ways by using differ-
ent density estimation methods, such as variable bandwidth 
kernel density estimators. The advantage of these methods 
is that the parameters for constructing the graph can be 
estimated from the data. The constructed graph effectively 
explores the intrinsic distribution of the data. 

• Using the flexible density models can result in directed 
graphs which cannot be handled by the normalized cut 
method. We then propose more general algorithms which 
cai; deal with both undirected and directed graphs in a 
unified way. An eigcndecompositiori based clustering algo-
ritjim is proposed which generalizes the traditional spectral 
clustering to work on both directed and undirected graph. 
We also develop the isoperimetric cut algorithm to cut di-
rected graphs by solving linear systems which is computa-
tionally more efficient. A random walk hitting time based 
algorithm is also proposed to solve the multiway graph cut 
problems. 

Three clustering algorithms are developed in this thesis. These 
algorithms are designed for the clustering problems arising from 
different scenarios. They make trade-off between clustering per-
formance and computational speed. The hitting time algorith-
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m is suitable for clustering the data sets with limited samples. 
In general, it can achievc very good performance across data 
sets. However the computational demand of this algorithm is 
large, which prevents applying it on large scale data sets. The 
isoperimeteric cut algorithm on the other hand is very efficient. 
It solves a system of linear equations which can scale up to very 
large data sets. However, the constructed graph in isoperimet-
ric cut algorithm is not so informative and the multiple cluster 
structure of the graph is not explored. The spectra] algorithm 
which generalizes the traditional spcctral clustering algorithm 
achieves a good baiancc between the performance and speed. It 
can be widely used for all kinds of clustering tasks 

Although the basic Bayesian decision tlieoretidal framework 
for clustering problems is established, the work on theoretical-
ly modeling clustering problems is still very preliminary. Much 
more works need to be done along this line. For example, use the 
same methodologies as the statistical learning theory [75, 76] or 
PAC learning theory [73j for supervised learning, we can develop 
corresponding theory for clustering problems. These theories in 
essence are to develop the lower bound for the Bayes risk with 
respect to arbitrary underlying distribution from which the data 
are generated. With the Bayesian decision theory for clustering, 
we arc ready to develop these frequentist lower bounds for clus-
tering problem. The decision theory established in this thesis 
also can be extended to model the problem of scliii-supervised 
learning problems, which is another popular area lacking of the-
oretical foundation. 

Starting from the I bayesian decision theory for clustering prob-
lems, we can also develop other algorithms for specific applica-
tions where more strong assumptions can be made. The density 
view of graph based clustering methods also motivates us to 
develop more sophistries methods for constructing graphs. For 
example, we can use Bayesian nonparametric methods [58, 29 
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such as Dirichlet process mixture model [25] to build the graphs. 
In such a method, the model complexity is controlled by opti-
mizing the model evidence, the parameters of bandwidth and 
number of mixture components can be automatically learned 
from the data. 

• End of chapter. 
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