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Abstract of thesis entitled:
Bayesian Decision Theoretical Framework for Clustering
Submitted by CHEN > Mo
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in July 2011

In this thesis, we establish a novel probabilistic framework
for the data ciusteiing piobleiri from the perspective of Bayesian
decision theory. The Bayesian decision theory view justifies the
important questions: what is a cluster and what a clustering
algorithm should optimize.

We prove that the spectral clustering (to be specific, the nor-
malized cut) algorithm can be derived from this framework. E-
specially, it can be shown that the normalized cut is a non-
parametric clustering method which adopts a kernel density es-
timator as its density model and tries to minimize the expected
classification error or Bayes risk.

By the Bayesian decision theoretical view, we propose sever-
al extensions of current popular graph based methods. Several
data-dependent graph construction approaches are proposed by
adopting more flexible density estimators. The advantage of
these approaches is that the parameters for constructing the
graph can be estimated from the data. Tlie constructed graph
explores the intrinsic distribution of the data. As a result, the
algorithm is more robust. It can obtain good performance con-
stantly across different data sets. Using the flexible density mod-
els can result in directed graphs which cannot be handled by tra-
ditional graph partitioning algorithms. To tackle this problem,



we propose general algorithms for graph partitioning, which can
deal with both undirected and directed graphs in a unified way.
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Chapter 1

Introduction

Clustering is one of the most widely used techniques for ex-
ploratory data analysis. Across all disciplines, from social sci-
ences over biology to computer science, people try to get a first
intuition about their data by identifying meaningful groups a-
mong the data points. Clustering is the unsupervised classifi-
cation of patterns (observations, data items, or feature vectors)
into groups (clusters). The clustering problem has been ad-
dressed in many contexts and by researchers in many disciplines;
this icfljects its broad appeal and usefulness as one of the steps
in exploratory data analysis. In general, cluster analysis is the
organization of a collection of patterns (usually represented as a
vector of measurements, or a point in a multidimensional space)
into clusters based on certain goodness measurement. Intuitive-
ly, patterns within a valid cluster are more similar to each other
than they are to a pattern belonging to a different cluster. The
variety of techniques for representing data, measuring proximity
(similarity) between data elements, and grouping data elements
has produced a rich and often confusing assortment of clustering
method”.

Clustering is useful in several exploratory pattern-analysis,
groupinjg, decision-making, and machine-learning situations, in-
cluding i data mining, document retrieval, image segmentation,
and pattern classification. However, in many such problems,



CHAPTER 1. INTRODUCTION 2

there is little prior information available about the ldata, and
the decision-maker must make as few assumptions labout the
data as possible. It is under these restrictions that clustering
methodology is particularly appropriate for the exploration of
interrelationships among the data points to make an assessment
(perhaps preliminary) of their structure.

The term *clustering™ is used in several research communi-
ties to describe methods for grouping of unlabeled data. These
communities have different terminologies and assumptions. It is
important to understand the difference between clustering (un-
supervised classification) and discriminant analysis (supervised
classification). In supervised classification, we are provided with
a collection of labeled (pieclassificd) patterns; the jproblem is
to label a newly encountered, yet unlabeled, pattern! Typical-
ly, the given labeled (training) patterns are used to' learn the
descriptions of classes which in turn are used to label a new
pattern. Contrary to data analysis methods such as regression
or classification for clustering there exists no ground truth. We
wish to consider the common situation in which clustering takes
place without having any significant prior knowledge about the
subject data set. In the case of clustering, the problem is to
group a given collcction of unlabeled patterns into meaningful
clusters. In a sense, labels are associated with clusters also, but
these category labels are data driven: that is, they are obtained
solely from the data. The very reason for performing clustering
iIs that we want to discover a structure in the data which we
did not know about before. If a clustering algorithm does not
achieve good results we do not know whether the reason is that
the algorithm performs poorly or whether there is just no group
structure in our data.

In this thesis, we focus on graph based methods for data
clustering (e.g. spectral clustering). These methods first con-
struct a similarity graph from the given data, thei; partition
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the graph into disjoint subgraphs to obtain the clustering re-
sult.Compared to the traditional algorithms such as k-means
or single linkage, graph based methods has many fundamental
advantages. Results obtained by these methods often outperfor-
m the traditional approaches, spcctral clustering is very simple
to implement and can be solved efficiently by standard linear
algebra methods.

Spectral clustering goes back to [22], in which the authors
first suggested to construct graph partitions based on eigenvec-
tors of the adjaccncy matrix. In the same year, Fiedler [26
discovered that bi-partitions of a graph are closely connected
with the second eigenvector of the graph Laplacian. and he sug-
gested to use this eigenvector to partition a graph. Since then,
spcctral clustering has been discovered, re-discovered, and ex-
tended many times in different communities > see foi example
64, 699 34, 40, 74, 3, 70, 33j. A nice overview over the his-
tory of spectral clustering can be found in [51]. In the machine
learning community, spectral clustering has been made popular
by the works of [67. 61, 54]. Subsequently, spectral clustering has
been extended to many non-standard settings, for example spec-
tral clustering applied to the co-clustering problem [19], spec-
tral clustering with additional side information [42] connection-
s between spectral clustering and the weighted kernel-k-means
algorithm [20], learning similarity functions based on spectral
clustering [2], or spectral clustering in a distributed environ-
ment [45]. Relations between spectral clustering and (kernel)
principal component analysis rely on the fact that the smallest
eigenvectors of graph Laplacians can also be interpreted as the
largest 'eigenvectors of kernel matrices (Gram matrices). Two
different flavors of this interpretation exist: The authors of [7
interpret the affinity matrix as a kernel matrix, the authors in
65] interpret the Moore-Pcnrose inverses of Laplacian matrix as
a kernel matrix. Both interpretations can be used to construct
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(different) oiit-of-sample extensions for spectral clustering. Con-
cerning application cases of spcctral clustering, in the last few
years such a huge number of papers has been published in vari-
ous scientific areas that it is impossible to cite all of them. We
encourage the reader to query his favorite literature data base
with the phrase "spcctral clustering” to get an impression no
the variety of applications.

The success of spectral clustering is mainly based on the fact
that it does not make strong assumptions on the form of the
clusters. As opposed to k-means, where the resulting clusters
form convex sets (or, to be precise, lie in disjoint convex sets of
the underlying space), spectral clustering can solve very general
problems like intertwined spirals. Moreover, spectral clustering
can be implemented efficiently even for large data sets, as long
as we make sure that the similarity graph is sparse. Once the
similarity graph is choscn, we just have to solve a linear prob-
lem, and there are no issues of getting stuck in local minima or
restarting the algorithm for several times with diffeient initial-
izations. However, we have already mentioned that choosing a
good similarity graph is not trivial, and spectral clustering can
be quite unstable under different choices of the parameters for
the neighborhood graphs. So spectral clustering cannot serve as
a “black box algorithm” which automatically detects the cor-
rect clusters in any given data set. But it can be considered as
a powerful tool which can produce good results if applied with
care.

In the field of machine learning, graph Laplacians are not
only used for clustering, but also emerge for mariy other tasks
such as semi-supervised learning (e.g., [13] for an overview) or
manifold reconstruction (e.g., [4]). In most applications, graph
Laplacians arc used to encode the assumption that data points
which are close should have a similar label. One other way to
interpret the use of graph Laplacian is by the smoothness as-
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sumptions they encode. A function f which has a low value
of fALf has the property that it varies only a little bit in re-
gions where the data points lie dense (i.e., the graph is tightly
connected), whereas it is allowed to vary more (e.g., to change
the sign) in regions of low data density. In this sense, a small
value of fTLf encodes the so called cluster assumption in semi-
supervised learning, which requests that the decision bound-
aiy of a classifiei should lie in a legiori of low density. With
this intuition one can use the quadratic form /~Lf as a reg-
ularize! in a transcluctive classification pioblem. An intuition
often used is that graph Laplacians formally look like a contin-
uous Laplace operator (and this is also where the name “graph
Laplacian™ comes from). This intuition has been made precise
in the works [5, 48, 37, 38, 6, 36, 30]. In general, it is proved
that graph Laplacians are discrete versions of certain continuous
Laplace operators, and that if the graph Laplacian is construct-
ed on a similarity graph of randomly sampled data points, then
it converges to some continuous Laplace operator (or Laplace-
Beltrami operator) on the underlying space. Belkin [5] studied
the first important step of the convergence proof, which deals
with tiG convergence of a continuous operator related to dis-
crete gijaph Laplacians to the Laplace-Beltrami operator. His
results jwere generalized from uniform distributions to general
distribiJtioiis by [48]. Then in [6], the authors prove pointwise
convcrgpnce results for the unnormalized graph Laplacian us-
ing the iGaJussian similarity function on manifolds with uniform
distribirtion. At the same time, Hcin et al. [37] prove more gen-
eral results, taking into account all different graph Laplacians,
more general similarity functions, and manifolds with arbitrary
distributions. In [30], distributional and uniform convergence
results are proved on manifolds with uniform distribution. The
paper [36] studies the convergence of the smoothness functional
induced by the graph Laplacians and shows uniform convergence
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results.

Apart from applications of graph Laplacians to partitioning
problems in the widest sense, graph Laplacians can also be used
for completely different purposes, for example for graph drawing
47, 17]. In fact, there are many more tight connections between
the topology and properties of graphs and the gr*ph Laplacian
matrices than we have mentioned in this tutorial. T"ow equipped
with an understanding for the most basic properties, the inter-
ested reader is invited to further explore and enjoy the huge
literature in this field on his own.

Despite this popularity of clustering, clustering is a difficult
problem. Little is known about theoretical properties of clus-
tering. One of the main reasons is that it is very difficult to
evaluate the quality of a partition of some given data set. There
is no general agreement for what criterion should be optimize in
order to clustering gcncial data. Diffcrcnces assumptions and
criteria are proposed in different communities to address the
problem of clustering on the domain specific data ~ets. However
these assumptions and criteria are mostly ad-hoc. There is no
theoretical ground to justify what is the right way to do cluster-
ing. The lacking of a theoretical framework for clusteiing makes
the transfer of useful gcneric concepts and methodologies slow
to occur.

In this thesis, we adopt the probabilistic approach to model
the clustering problem. Clustering can be viewed as assigning
labels to samples in a given data set. This label assigning action
is a decision making procedure under uncertainty. Probabilistic
approach is a nature choice for modeling uncertainty. Bayesian
decision theory which is built upon the probability theory is a
theory that provides a theoretical ground for decision making
problem. Bayesian decision theory deals with situations where
decisions have to be made under a state of uncertainty, and its
goal is to provide a rational framework for dealing with such
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situations.

The decision theory for supervised learning problems is well
established. Starting from this point, we fiist establish the de-
cision theory for clustering problem. Then, we propose a novel
probabilistic view of those graph based algorithms. In our frame-
work, constructing the graph can be seen as a implicit way to
model the density of the data using nonparametric density esti-
mator. And various partition criteria (e.g. normalized cut) are
somehow related to the Bayes risk, which the expccted classi-
fication error is, given a partition. From this new perspective,
we generalize the graph based clustering methods to use more
general .graph construction approaches using more flexible den-
sity estimators, which better explores the intrinsic distribution
of the data. As aresult, better clustering result can be obtained.
.Using the flexible density models can result in directed graphs
which cannot be handled by traditional graph partitioning al-
gorithm. We propose general algorithms for graph partitioning
which can deal with both undirected and directed graphs in a
unified way.

The rest of the thesis is organized as follows:

* In Chapter 2, we review the probabilistic density model-
ing methods used in this thesis including: mixture models,
nonpalrametric density model and Bayesian nonpar ametric
models. We derive the Bayesian decision theory for clus-
tering problems from the Bayesian decision theory for clas-
sification problems.

* In Chapter 3, we develop the Bayesian decision theoretical
spectral clustering algorithms.

* In Chapter 4> we develop the isoperimetric cut algorithm
for graph bipartitioning problem.

* In Chapter 5, we develop the random walk hitting time
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based algorithm for multiway graph partitioning problem.

® Finally, in Chapter 6, we summarize the ideas of the thesis
and point to directions of future work.

 End of chaptcr.



Chapter 2

Bayesian Decision Theory for
Clustering

Summary

In this chapter, we review the Bayesian decision theory
for classification problem and the nonparametric tech-
nique for density modeling. We then derive the Bayesian
decision theory for clustering problem which is the cen-
tral th*eory the rest of the thesis is based on.

Bayesian decision theory is the fundamental statistical theory
to the problem of decision making under uncertainty. This ap-
proach is based on quantifying the tradeoff between various de-
cisions using probability and the costs that accompany such de-
cisions. Here we briefly review the well established Bayesian
decision theory for the classification problem [24, 8, 35, 28, 52 .
Then we introduce the nonparametric density models for densi-
ty estimation. Based on these models, we derive the Bayesian
decision” theory for the clustering problem.
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2.1 Bayesian Decision Theory

Suppose we have an input sample vector x, and our goal is to
predict t given a new value for x. Foi the classification problem,
t represents class label which takes value from the set {Ci}k-
The joint probability distribution p(x, t) provides a complete
summary of the uncertainty associated with these variables. De-
termination of t) from a set of training data is an example
of inference. In a practice, we must often make a specific predic-
tion for the value of t, oi moie geiieially take a specific action
based on our understanding of the values t is likely to take, and
this aspect is the subject of decision theory.

We are interested in the probabilities of the classes given the

sample, which are given by Using Bayes' theorem, these
probabilities can be expressed in the form
X| U
= PO D)
p(x)

where the evidence p(x) is given by
- Eﬂbn (4) T ) .

Note that any of the quantities appearing in Bayes' theorem
can be obtained from the joint distribution p(x, t) by either
marginalizing or conditioning with respect to the appropriate
variables. We can now interpret p(t) as the prior probability for
the class k, and p{t\'x.) as the corresponding posterior probabil-
ity. If our goal is to minimize the chance of assigning x to the
wrong class, then we should choosc the class having the higher
posterior probability. We now justify this approach, and we also
discuss more general criteria for making decisions.
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2.1.1 Bayes Decision Rule

Suppose that our goal is simply to make as few niisclassifications
as possible,. The probability of misclassification rate is given by

X)) =J p{Wdx o J p(AlX)p(x)fix,

where p(A) is the probability that a error occurs and p( AJX) is
the probability that a sample x is misclassified. If we ensure
that p(A|x) is small as possible for every x, the integral must be
as small as possible.

We need a rule that assigns each value of x to one of the
available classes. Such a rule will divide the input space into
regions R” called decision regions, one for each class, such that
all poirfs in Rk are assigned to class Ci. The boundaries be-
tween dicci®ion regions are called decision boundaries or decision
surfaces. Note that each decision region need not be contiguous
but could comprise some number of disjoint regions. A mistake
occurs when an input vector belonging to class Ck is assigned to
classes other than Ck which are denoted by Ck- The probability
of this occurring is given by

k
p(Clex)p()(ix =~ /1 (1 -p(Cfelx))]9(x)c?x,
(2.1)

which is callcd Bayes error.

We are free to choose the decision rule that assigns each point
X to one of the classes. Clearly to minimize p(A) we should ar-
range that each x is assigned to whichever class has the smallest
value of the integrand in (2.1). Thus, for a given value of x we
should assign it to class Ck if p(x, Ck) has the largest value. From
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the product rule of probability we have p(x,Ck) = p{Cklyi)p{K).
Because the factor p(x) is common to all terms, we can restate
this result as saying that the minimum probability of making a
mistake is obtained if each value of x is assigned to the class for
which the posterior probability p(C"|x) is largest.

Therefore, the rule that minimize the probability of misclas-
sification rate is

C* —argmax[p(C/c|x)J, (2.2)

which is called Bayes decision rule. Under this decision rule, the
expected error is

P(Alx) = mm[p{Ck X

It is easy to see that minimizing p{X) is equivalent to maxi-
mizing the probability of being correct which is written as

k t

~ p{Ck\X)p{x.)d:sL.

Tk
Since the equation p(7)+_p(A) = 1always holds, the the decision
rule (2.2) also maximizes the probability of being correct.

2.1.2 Bayes Risk

For a general treatment, we introduce a loss function, also called
a cost function /(x)), which is a single, overall measure of
loss incurred in taking any of the available decisions or actions
/(*) when the state of nature is t. Our goal is then tg minimize
the total loss incurred

E{) = / \{t){yi)p{yL,  t)dxdt.
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In the classification problem, both t and /(x) are taking dis-
crete values. Therefore, the value of Ais taken from a matrix,
which is called loss matrix.

Suppose that, for a new value of x, the true class is Ck and
that we assign x to class Cj (where j may or may not be equal
to k). By doing so, we incur some level of loss that we denote
by Alej, which we can view as the k, j element of a loss matrix.

The optimal solution is the one which minimizes the loss func-
tion. However, the loss function depends on the true class, which
is unknown. For a given input vector x, our uncertainly in the
true class is expressed through the joint probability distribution
p(x, Ck) and so wc seek instead to minimize the average loss,
where the average is computed with respect to this distribution,
which is given by

7] R // XkjP{",Ck)dx. (2.3)
Jn

1

Each X can be assigned independently to one of the decision
regions Rj . Our goal is to choose the regions Rj in order to
minimize the expected loss (2.3), which implies that for each x
we should minimize XKjP(x - Ck). As before, we can use the
product rule p(x, Ck) ~ p(C~.[x)p(x) to eliminate the common
factor Of p(x). Thus the decision rule that minimizes the ex-
pected loss” is the one that assigns each new x to the class j for
which tjtie truantity

‘ 0o - X)
k

IS @ minimum. This is clearly trivial to do, once we know the
posterior class probabilities p(Cfc|x).

In the classification problem, on spccial loss function which
is of particular interest is the zero-one loss function. It has
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elements X7 = 1 —"kj where

- J 1 k=
Ikj 0 kAj.
The risk corresponding to this loss function is again, the ex-
peeled misclassification rate.

Wec classify a sample as belonging to class Cj if
X1 Ale.7p(Aix) — — Iki)p{CK\-K) - 1 7 IkjPiCkX

iIs a minimum. This suggest that we should choose class Cj for
which

is the smallest. Therefore, Minimizing the expect loss will min-
imize the misclassification rate.

2.1.3 Generative VS. Discriminative

We liave broken the classification problem down into two sepa-
rate stages, the infcrcncc stage in which wc use trainijng data to
learn a model for and the subsequent decision stage in
which we use these posterior probabilities to make optimal class
assignments.

For the classification problem, the key idea is to model the
posterior for each class. Then classifying samples is simply to
apply the Bayes decision rule. There are two distinct ways to
accomplish this goal called discriminative and generative ap-
proaches.

In generative approach, we first detenniiie the class-conditional
densities for each class Ck individually. Also separately
infer the prior class probabilities p{Ck). Then use Bayes' theo-
rem to find the posterior class probabilities p(C/e|x). Equivalent-
ly, we can model the joint distribution p(x, t) directly and then
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normalize to obtain the posterior probabilities. Generative ap-
proach explicitly or implicitly models the distribution of inputs
as well as outputs, because by sampling from them it is possible
to generate synthetic data points in the input space.

In discriminative approach, we find a function /(x), called a
discriminant function, which maps each input x directly onto a
class label. Actually, the decision rule

* = argmax[p(C"|x)

is exactly such a function. Therefore, the discriminative ap-
proach can be viewed as directly modeling the posterior p{Ck\x)
without modeling the generative density
The decision function can be obtained by minimizing follow-
ing risk
ey = I IV (x))p(x|CfcMx
or for discrete problem

E NI — hA(COXx)Mx|C,).

2.2 Nonparametric Density Models

As non-parametric methods make fewer assumptions, their ap-
plicability is much wider than the corresponding parametric
methods [41, 68]. In particular, they may be applied in situ-
ations where less is known about the application in question.
Here we give brief introduction to the nonparametric models
which will be used in this thesis.

Let us suppose that observations are drawn from certain un-
known distribution with the probability density function
in certain rf-dimensional space, which we shall take to be Eu-
clidean.! We wish to estimate p(x). Let us consider some small
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region 7Z containing x. The probability mass associated with
this region is given by

[ p(x)dK.
Jn
Suppose that we have collected a data set comprising n ob-
servations drawn from p(x). Because each data point has a
probability P of falling within 7Z, the total number K of points
that lie inside 7Z will be distributed according to the binomial
distribution

11!

B m [ff ) + - J7 r K
The mean of points falling inside the region is E[K/n] = P,
and the variance around this mean is var[J*/n] = P(1 — P)/n.

For large n, this distribution will be sharply peaked around the
mean and so
K - nP. (2.4)

If, however, we also assume that the region TZ is sufficiently
small that the probability density p(x) is roughly constant over
the region, then wc have

(2.5)

where V is the volume of 1Z. Combining (2.4) “nd (4.3), we
obtain our density estimate in the form

1] N (2.6)

We can exploit the result (2.6) in two different ways. Either we
can fix K and determine the value of V from the data, which
gives rise to the K-nearest-neighbour technique discussed short-
ly, or wc can fix V and determine K from the data, giving rise to
the kernel approach. It can be shown that both the i*-nearest-
neighbour density estimator and the kernel density estimator
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converge to the true probability density in the limit as long as
following conditions hold

IimV —0, lira K 00. lim K/In = 0.
n~¥00 n >oc n—ocC

2.2.1 Kernel Density Estimator

In statistics, kernel density estimator (KDE) is a nonparametric
way of estimating the probability density function of a random
variable. We begin by discussing the kernel method in detail,
and to start with wc take the region to be a small hyper-
cube centered on the point x at which we wish to determine the
probability density. In order to count the number K of points
falling within this region, it is convenient to define the following
function

K(u) ~ ; oo R 2.7
O ([O otherwise, A 2.7)

which represents a unit cubc centered on the origin. The func-
tion k{\i) is an example of a kernel function, and in this con-
text is also called a Parzen window. From (2.7), the quantity

— y™)/h) will be one if the data point x* lies inside a cube
of side h centered on x, and zero otherwise. The total number
of data points lying inside this cube will therefore be

n
K =+ Ki ="
- h

Substituting this expression into (2.6) then gives the following
result for the estimated density at x

i 4 T ) (2.8)

C
1
where Y} have used V — /i* for the volume of a hypercube of side
hind dimensions. Using the symmetry of the function ~(u), we
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can now re-interpret this equation, not as a single cube centered
on X but as the sum over n cubcs centered on the n ciata points
X: We can choose a smoother kernel function, and a common
choice is the Gaussian kernel

—y 0 1 ( Ix—y
h ) (v 1 2h?

which gives rise to kernel density estimator

1 X — X,
Kx) = h /*w > exp( (2.9)

where h represents the standard deviation of the Gaussian com-
ponents. Thus our density model is obtained by pUcing a Gaus-
sian over each data point and then adding up the contributions
over the whole data set, and then dividing by n so that the
density is correctly normalized.

The parameter h plays the role of a smoothing parameter,
and there is a trade-off between sensitivity to noise at small h
and over-smoothing at large h. Again, the optimization of h is
a problem in model complexity.

We can choose any other kernel function k{u) in (2.8) subject
to the conditions

° ) >0
J K{indu 1,

which ensure that the resulting probability distribution is non-
negative everywhere and integrates to one.

Here, we show how to using kernel density estimator to solve
classification problem. For a multi-class classification problem,
the estimate of the density associated with each class is

[ N[ 1 vA /| x —x,. 2
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where d is the dimension of the input samples and n” is the num-
ber of samples in class k. We assume that the prior distribution
of t is given by

We dan use the Bayes' theorem to obtain the posterior prob-
ability of the class membership

MCK)p{Ck Ejev,n —
ok x — PUACKR(CK) Efevi

If we wish to minimize the probability of misclassification,
this is done by assigning the test point x to the class having the
largest posterior probability.

2.2.2 Nearest Neighbors Density Estimator

We ret*}~n to our general result (2.6) for local density estimation,
and insteai” of fixing V and determining the value of K from the
data, we consider a fixed value of K and use the data to find
an appropriate value for V. To do this, we consider a small
sphere centered on the point x at which we wish to estimate
the density p(x), and we allow the radius of the sphere to grow
until it contains precisely K data points. The estimate of the
density p{x) is then given by (2.6) with V set to the volume
of the resulting sphere. This technique is known as K nearest
neighbors (KNN). The value of K now governs the degree of
smoothing and that again there is an optimum choice for K
that is neither too large nor too small.

The KNN technique for density estimation can be extended
to the problem of classification. To do this, we appl}* the KNN
density estimator to each class separately and then make use
of Bayes' theorem. Let us suppose that we have a data set
comprising n® points in class Ck with n points in total, so that

JLk — If we wish to classify a new point x, we draw a
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sphere centered on x containing precisely K points irrespective
of their class. Suppose this sphere has volume V and contains
Kk points from class Ck- Then (2.6) provides an estimate of the
density associated with each class ‘

W) = ¢ 2 . 1 0 )
Similarly, the unconditional density is given by

(. K (2.11)

while the class priors are given by
_nk
p(Cfc) — 0

We can use the Ba3,es’ theorem to obtain the posterior proba-
bility of the class membership

p{X\CkHCKk) K,

X
p{Ck K

If we wish to minimize the probability of misclassification, this
is done by assigning the test point x to the class which has
the largest value of KA/K. Thus to classify a new point, we
identify the K nearest points from the training data set and
then assign the new point to the class having the largest number
of representatives amongst this set.

Although the nonparametric density estimator (both KDE
and KNN) are suffered from the curse of dimensionality (due
to ]/), using them to do classification is not such a bad idea.
The posterior is normalized by the evidence which makes V
vanish. Therefore, the convergence rate of the classifier is not
exponential any more. ‘
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2.2.3 IAn Alternative Mixture Model View

Assume that the nonparametric density estimator has the gen-
eral form
l 1]

X,
ITL

where the data set X is viewed as a set of parameter of the den-
sity model. For example the Gaussian kernel density estimator

1 A /\J

can be see!! as a mixture model [53) with n component, each
componentj p(x|xj is a Gaussian distribution with mean x*
These n components can be further grouped to K components
as

k
where the conditional density for each component is given by
1
X].
and the prior is given by
o{CK) rik
n

2.3 payesian Decision Theory for Clustering

Here, we try to formulate the Baycsian decision theory for the
clustering problem from the well established decision theory for
the classification problem.

The basic assumption made in this thesis is that the samples
in the data set are independent and identically distributed ac-
cording certain underlying probabilistic distribution. The den-
sity of this distribution is j)(x). Intuitively, the distribution has
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to be a mixture model, i.e., p{x) = Mk JL;)&fc). If it is not,
there would not be any cluster structure in the data. For exam-
ple, if the samples of the data set are drawn from a Gaussian
distribution, there is no clear boundary to separate the data into
disjoint groups. As a result, there is no point to perform clus-
tering on such a data set. We call those distributions which can
not be represented as a mixture model as atom distributions.

2.3.1 BayOSError for Clustering

To formalize the intuition, we assume that the sampled and their
labels follow the joint distribution p(x, t), where t is a discrete
random variable taking values from set {Ck}k- Assume there are
K intrinsic clusters in the data. Then marginalizing the random
variable t we have

K
p(x) =} _"pxIpt) = )p(xICK)p(Ck), (2.12)
t k=i
where — 7i>, which is a mixture model.

If we already have the density model (2.12), as discussed pre-
viously, the optimal partitioning that minimize the Bayes error
Is to assign each sample x with label

C* —Zargmax[]?(Clu|x).

This is indeed the case for clustering data using Gaussian
mixture model. In the Gaussian mixture model, the density
function is obtained by fitting the paiameteis to maximize the
likelihood. Then, the clustering result can be obtained by assign
each sample x to the cluster with maximal posterior. The second
step minimizes the Bayes error given that the density model is
already known.

However, this approach makes very strong assumption. It
assumes that the data can be modeled by a mixture of K atom
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distributions and the number of intrinsic clusters is the number
of atom components. However, the assumption made here is too
strong to be practical. Most data sets we are dealing with are
not so simple. They usually have more complex structures.

Fortunately, a wonderful result we can utilize is that any
data (no matter what intrinsic distribution they are from) can
be appiloximately modeled by mixture models. We denote the
mixture model as

p(x) - XaypHl, (2.13)

where m < n and eachp(x|”*j) is an atom distribution. However,
the intrinsic number of clusters K in general is not equal to m.
We have K < m < n. Then the clustering problem becomes
grouping or partitioning the m atom distributions in (2.13) to
K supper components in (2.12) where the conditional density of
each supper component is

%.

TiE

where li* : YljcVj, The joint distribution is

We denote the partitioning as 0 = §s:¥ 5, where WK is the
index set for those atom distributions which are grouped into
the kth component. This grouping step does not change the
density model of the data set. We can see that

K K

KN jm
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After the grouping the m atom distributions into K compo-
nents, we can treat the K components as classifier of a K class
classification pioblein. The classification iunctioii is &imply the
decision rule

[(X) - argmax[p(C~|x).

where the posterior is given by
vifik X

The expectcd loss (Bayes risk) with respect to the partition-
ing n is

/7

If zero-one loss is used, the expected loss is equal to Bayes error.

Then we can formulate the clustering pioblem as finding the
optimal partitioning O : {VK}k which minimizes the Bayes risk.
In other words, we should solve the following optimization prob-
lem

rr : argmin Eq{X).
n

However, the optimization problem is ill posed. The integral
over the whole sample space is intractable to evaluate. Even
we are able to evaluate the integral, the optimization over al-
1 possible partitioning is a hard combinatorial problem which
is NP-complete. In order to have a practical algorithm which
utilizes the decision theory, various approximations have to be
made to derive a tractable model. For example, we can approx-
imate the integral by the empirical summation over samples. It
is also possible to derive upper bounds for the Bayes risk which
are easy to be optimized which is similar to the SVM in the
classification problem.

In the following chapters, we will utilize the Bayes clustering
theory derived above and use different approximation methods
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and different density models to develop practical algorithms for
data clustering.

* End of chapter.



Chapter 3

Decision Theoretic Spectral
Clustering

Summary

In this chapter, we propose a novel probabilistic view
of the spectral clustering algorithm. In our filamework,
the spectral clustering algorithm can be seen as assign-
ing optimal class labels to samples that minimizes the
nonparametric kernel density estimation based Bayes er-
ror. From this perspective, we obtain an insight of how
to construct a graph in order to make spectral clustering
performances better. We generalize the spectral cluster-
ing to using more general graph construction methods,
which may result in directed graphs. In order to clus-
ter the vertices of the directed graph, we propose a di-
rected graph partitioning algorithm. The partitioning
result can be efficiently obtained by eigenvalue decom-
position.

26



CHAPWB 3 DECISION THEORETIC SPECTRAL CLUSTERING 27
I

|
3.1 In'ltroduction

Spectral clustering [12, 54, 61, 67, 81> 44j is graph based and
widely used for general data clustering. Compared to the tra-
ditional algorithms such as k-means or single linkage, spectral
clustering has many fundamental advantages [78, 77]. It does
not make strong assumptions about the global structure of the
data. Instead, local similarities between local sample points are
considered and a global decision is then made to divide all data
points into disjoint sets according to some criterion. Therefore,
these methods can potentially deal with data sets whose clusters
are of i];Tegular shapes. Results obtained by spectral clustering
often perform the traditional approaches. Spectral clustering
is also very simple to implement and can be solved efficiently by
standard linear algebra methods.

Given a set of data points {x/}fi > - an intuitive goal of
clustering is to divide the data points into several groups such
that points in the same group are similar and points in different
groups are dissimilar to each other. A nice way of representing
the data is in form of the similarity graph C : (V ,Each
vertex % in this graph represents a data point x*. Two vertices
are connected by an edge with weight w...Here the edge weight
represents the similarity between two data points x* and X].
Note thbt the similarity is a symmetric measurement, i.e., w” =
Wijt. Therefore the similarity graph G is an undirected graph.
The problem of clustering can now be reformulated using the
similarity giaph: we want to find a paitition of the graph such
that the edges between different groups have very low weights
(which means that points in different clusters are dissimilar from
each other) and the edges within a group have high weights
(which means that points within the same cluster are similar to
each other). A meta algorithm of spectral clustering is shown in
1. To be able to formalize this intuition we first introduce some
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Algorithm 1 Meta algorithm of spectral clustering

1. Construct a graph G from the data X = [xl=i-..n
2. Obtain K eigenvectors of certain matrix of the graph G
3. Discretize the eigenvectors to obtain the cluster membership indicators

basic graph notation and briefly discuss the kind of graphs we
are going to study.

3.2 Spectral Clustering

3.3 Graph Notation

Spectral clustering is a graph based clustering algorithm which
first builds a graph G from a given data set X —

and then partitions the graph into disjoint subgraphs to obtain
the clustering result.

Let G — (V, E) be an undirected graph with vertex set V
{r,v: i .... In the following we assume that the graph G is
weighted, that is each edge between two vertices Vi and Vj carries
a non-negative weight wy > 0. The weighted adjacency matrix
of the graph is the matrix W — pijk—i- ... »n. If Wij = 0, it means
that the vertices Vj and Vj are not connected by an edge. If G
is an undirected, we require Wij = Wji. For a directed graph the
edge weights Wij and wji might be different. The degree of a
vertex VJ GV is defined as

k=0 Wij
The degree vector is defined as d - ---> J1.The degree matrix
D is defined as the diagonal matrix with the degrees di,... ,dn

on the diagonal. The graph (lllnormalized) Laplacian matrix is
defined as
L = D-W. I,
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It can be proven that for every vector y G we have

yTLy =& 1)2,

Therefore L is symmetric and positive semi-definite matrix. The
smallest eigenvalue of L is O - the corresponding eigenvector is
the constant one vector 1. Note that the unnormalized graph
Laplacian jioes not depend on the diagonal elements of the ad-
jacency matrix W. Each adjacency matrix which coincides with
W on all off diagonal positions leads to the same unnormalized
graph Laplacian L. In particular, self-edges in a graph do not
change the corresponding graph Laplacian. The graph Lapla-
cian and its eigenvalues and eigenvectors can be used to describe
many properties of graphs, see [56, 57 .
Given a subset of vertices X C V, we denote its complement
by A. For convenience we introduce the shorthand no-
tation 2 6 A for the set of indices {%\VfG A}. For two not
necessarily disjoint sets B C V we define

W{A, B)" } W
teAjcJS

In this paper, we use e X to denote an input sample
vector and » E V to denote the corresponding vertex on the
graph. Xk C X denotes a subset of samples of X and V» C V
denotes the subset of vertices corresponding to Xk. w” is the
weight of the edge from vertices ito j. A multi-class partitioning
is to partition the vertex set into K disjoint subsets such that
ufrivAr = V, which means V,[]JV) - 0and Uf=iH = V. The
corresponding samples are then clustered as UM™Xi —— X. We
denote the K-way partitioning as F — {VAjfc:! > k- Without
ambiguity, sometimes wc also denote the partitioning as F =
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3.3.1 Graph Construction

The first step of spectral clustering is to construct a graph from
the input vector form data. There are several popular construc-
tions to transform a given set of data points into a
graph. When constructing similarity graphs the goal is to mod-
el the local neighborhood relationships between the data points.
Here we consider three widely used methods for construction
graph.

The fully connected graph: Here we simply connect all
points with positive similarity with each other. As the graph
should represent the local neighborhood relationships, this con-
struction is only useful if the similarity function itdelf models lo-
cal neighborhoods. An example for such a similarity function is
the Gaussian similarity function w” — Gxp(— — Xx™
where the parameter controls the width of the neighborhoods.
In this method, there is a free parameter a need to be set by
the user.

The neighborhood binary graphs: Here the goal is to
connect vertex Vi with vertex Vj if Vj is among the neighbors
of Vi, Either the i*T-ncarcst-neighbor (KNN) or e-neighborhood
can be used to determine the neighborhood. However, the
nearest-neighbor method can lead to a directed graph, as the
neighborhood relationship is not symmetric. There are two ways
of making this graph undirected. The first way is|to simply ig-
nore the directions of the edges, that is we connect Vi and Vj
with an undirected edge if  is among the K nearest neighbors
of Vjor if Vjis among the K nearest neighbors of Vi. The result-
ing graph is what is usually called the k-nearest-neighbor graph.
The second choice is to connect vertices v* and Vj if both M is
among the K nearest neighbors of 75 and Vj is among the K
nearest neighbors of Vi. The resulting graph is called the mutu-
al iT-nearest-neighbor graph. After connecting the appropriate
vertices we simply set the edge weights to be 1. Later we will set
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for a more general formulation of spectral clustering, the sym-
metry condition is not necessary. In this method, there is a free
parameter for the neighborhood (K or c) need to be set by the
user.

The neighborhood weighted graph: Here the graph struc-
ture is conkructed in the same way as The neighborhood binary
graphs except that the edge weight is set to w” = exp(—||xi —
xMP/(2cr™)). This method can be seen as a combination of the
first two methods. Some time it leads to better results than
others. However, in this method, there are two free parameters
need to be set by the user.

All graphs mentioned above are regularly used in spectral
clustering. To our knowledge, theoretical results on the question
how the choice of the similarity graph influences the spectral
clustering result do not exist. In this paper, we will show that
how these methods affect the results of spcctral clustering.

3.3.2 Multi-class Normalized Cut

After obtaining a graph, the problem of clustering is trans-
formed to a graph partitioning problem. The normalized cut
bi-partitioning algorithm is first pioposed in [67], which is later
generalized to multi-class normalized cut by [81]. The multi-
class normalized cut algorithm is to minimize following criterion

We define the iiornialized association criterion as

Apparently, whore nc(r) fnc(r) — 1. llieiefore minimizing the
normalized cut criterion is equivalent to maximizing the normal-
ized association criterion.
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3.3.3 Relaxation Optimization

Let Zic G {0,1}'~ be the binary indicator vector for the kih cluster
and 7] = [2Va: 7], -k be the indicator matrix. The normalized
cut criterion can be rewritten as

Therefore normalized cut problem can be formulated as fol-
lowing combinatory optimization problem

. 1 A zfLzfc
min  ——7
zl, #¢ K f-» (3.3)

s.t. ZAe {01}, k —/—
Unfortunately, solving for the exact solution of this discrete op-
timization problem is NP-hard [80]. Instead of solving (3.3)
directly, we try to solve a relaxed problem of (3.3).
Define the scaled partition matrix [12, 81

F - Z. 7, TD2)%,

Since Z”DZ is a diagonal matrix, the columns of F are the
columns of 7, scaled by the inverse square root of the degree.
Clearly we have

FTDF 7 {Z"Dzy""z"DZ{Z"Dzy"!'* = 1. (3.4)

Given a scaled partition matrix F, we can restore the corre-
sponding Z by
Z = Dg(dg ”2[FFT))F, (3.5)

where M = Dg(v) denotes constructing a diagonal matrix M
from the vector v and v = dg(M) denotes extracting the diag-
onal elements of matrix M to form a vector v.



CHAPTER 3. DECISION THEORETIC SPECTRAL CLUSTERING 33

Substituting F to (3.3) and relaxing F to take real values
that satisfy the constraints F /. DF — /. we have a convex opti-
mization problem as:

mill  ~MT(FMLZ) ([
F KD, ) (36)
st. FADF — 1

By the Rayleigh-Ritz theorem [50] it can be seen immediate-
ly that the solution of this problem is given by the vectors F*
achieved by solving the following generalized eigen-decomposition
problem

LZ' =DF"A, (3.7)
where A contains the eigenvalues of the above eigen
system. It can be easily seen that F* and A that satisfy

{I P - FA, (3.8)
also satisfy (3.7). Denote the normalized Laplacian as
K = iri/2Lzr"2

Let U ~ [uk]kbe the matrix that Uk, k — ..., K are the eigen-
vectors of Ln. It can also be shown that F'* -~ D——also
satisfy (3.7) and (3.30).

The global optimum of the problem is not unique but a sub-
space spanned by the columns of through orthonormal ma-
trices. hei*R he du K X K matrix. If F* is a feasible solution to
(3.28), "o is the subspace:

{FR\ RR = I}. (3.9)

Furthermore, they have the same objective \Malue. Therefore, a
feasible solution remains equally good w.r.t. the problem (3.28)
with arbitrary rotations and reflections of F*. The optimal ob-
jective value of (3.28) provides an lower bound to the problem
in (3.3).
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3.3.4 Discretization

After obtaining the matrix F”, we can recover by substituting
F=back into (3.27). However, 7. is still a real valued matrix. In
order to obtain the clustering result, we need to find the discrete
solution Z. One way to do that is to find a discrete 2 that is
close to the subspacc (3.31). This can be done by solving such
a problem.

mill UZ R) 7 Z- ZR
ZR Vo

st. 2 0,1} M0 ->2121. (3.10)
RTR L

The details of how to find a minimum of (3.10) can be found
in [81]. Other discretization approaches [2, 61, 82, 81] are also
possible to perform the discretization.

3.4 Decision Theoretic View of Normalized

Cut |

In this section, we establish the relationship among nonparamet-
ric density estimator. Baycs risk and spectral clustering. Assume
that we have the density model for the data set. If partitioning
n = K is given, we can treat the problem as a clas-
sifying problem. We then can calculate the probability that a
sample in class Ck is misclassified by the density model which is
given by
pit + G Ai),

which is also the expccted misclassification rate (or Bayes risk
with zero-one 10ss).

The clustering problem can then bo seen as finding a good
partitioning which makes the following average of the expected
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misclassification rate as small as possible

M= gl AP (L (3 -1 1)

We call (3.11) the Bayes clustering risk. Here, we show that for
a given density estimator, the Bayes clustering risk is equivalent
to the normalized cut criterion.

3.4.1 KDE Based Bayes Clustering Risk

Assume that the graph is constructed using Gaussian kernel,
where the graph weight is set as

™M~ e x p( — (3 .12)

Also assume that the density model of the data set is given
by following kernel density estimator

P(x) = ,)1’\DL exp(—(3.13)

I
which 1 nbe reformulated as mixture model

I - p(x) —)
k
where the conditional density for each cluster is given by

2

P(XICK) —  ( E exp(- X ), (3.14)

and the prior is given by

) (3.15)

Base” on the density model and the graph construction method
given above, we have following lemmas
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Lemma 3.4.
Proof.
K
p(x e Xk) - YApini) = p{-K\Ci)p{Cj)
K.
nj 1
| exp( 2(j2
Im
K exol Xt X-
nio-J™Y v /1] jevi 2
1 Wo E, V).
where Wij = exp( xJp/(2crr))

36

It is worth noting that here the W{Vk, V) = XneVfcjeV 1] ]
includes all WY, which is equivalent to constructing a graph with
self loops. For the case of Gaussian kernel, the edge weights for

the self loops are Wj, = 1.

Lemma 3.4.2.

WiVKAK]
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Proof.

p(x eXk.t* Ck)- > "t f Ci)

o
iI"Vk 1"k IEVK I-"k
ni I X, — X'
exp(-
ik I—k , . "...y JGVi
1 X X 2

From the lemmas, we are ready to show that the Bayes clus-
tering risk is equivalent to the normalized cut criterion which is
given by fcillowing proposition

PropotfHion 3.4.3.

A(n) — nc(n). (3.16)
Proof.
N K 1~ p{xe Ck)p{t - 2 CKk)
—1 "pjrerk.t"Ck) —1 (M, T~ rfc)—
/ h ~ 7 ~#f — —5x fem © A~  Zncl-

i
The proposition concludes that the partitioning, which min-
imizes the normalized cut criterion on a graph with self loops
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constructed by the fixed bandwidth kernel function, is a par-
titioning that imiiDinzes the average expected misclassification
rate where the conditional density of cach class nlodeled by
the kernel density estimator.

3.4.2 KNN Based Bayos Clustering Risk

Assume that the graph is constructed by KNN approach. De-
note A/'(x) as neighborhood set of x. The graph weight is set

as
1 X G A'(x)

"ij — )
0 otherwise.

Also assume that the density model of the data set is given
by following KNN density estimator

Kx) - “ > (3.17)

which can be reformulated as mixture model

k

where the conditional density for each cluster is given by

KxiCO = f (3.18)
and the prior is given by
piCk) = . (3.19)

Based on the density model and the graph construction method
given above, we also have similar results

Lemma 3.4.4.
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Proof. |

t"Vh VI
1 D

nv. A~ u nv

It is worth noting that here the W(V*“V) — X™evhjev
includes all w.£{,which is equivalent to constructing a graph with
self loops which have weights W* — 1.

Lemma 3.4,5.
Proof.
p(yiGXk,t —CKk) - P(x” t Cy
T
(3.20)
LEVK LK AL /5

-

I
From tl"e lemmas, we can easily verify that the proposition

(3.4.8) still holds. Therefore we can see that that the partition-
ing, which minimizes the normalized cut criterion on a KNN
graph with self loops, is a partitioning that minimizes the aver-
age expected misclassification rate where the conditional density
of each class is modeled by KNN density estimator.
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3.4.3 General Nonparametric Density Estimator Based
Bayes Clustering

Assume the nonparametric density estimator has the general
form

pO) — POQX) — - > plx

where the data set X is viewed as a set of parameter of the den-
sity model. For example the Gaussian kernel density estimator
: n 2

77 : ( 3 . 2 1 )

can be seen as a mixture model with n atom, each atom p(x|xj)
Is a Gaussian distribution with mean x*. These n components
can be further grouped to K components as

k
where the conditional density for each component is given by
1 3
> (3.22)
U‘tj]erC
and the prior is given by
piCk) :’n , (3.23)

Assume cach atom can be represented in the general form of

where [(x, x") is a multivariate kernel. Note that, !in general
the kernel might not be symmetric, i.e. (X" xy) = xN).
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Therefore the kernel can be data dependent. However, we do
require

x,xj) >0
J Kj(x, xj)(ix —1
so that p(x|xj) is valid density function. Assume that we con-
struct a graph by setting the graph weight as
u) = X/, X).

Based on the density model and the graph construction method
given above, we have following lemmas

Lemma 3.4.6.
TX
Proof.
204 "o JEV
1
n ™M n
I jgVv
[ ]
Again, here the wyvk,v) . Eiev<jcy aJfJ includes all ug”

which is equivalent to constructing a graph with self loops.

Lemma 3.4.7.
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Proof.

GVa LK LEVK llfc
! o (xj YR
n
— N
"“Va JEVK

Therefore, wc establish the equivalency between the Bayes
clustering risk and normalize cut

Proposition 3.4.8.

A=nc(n).

K \
%Iﬁ I X Z‘T—% I/EU 1 . nc(n)

A P(xeAV) iNZ- 14/(V.,V)

Note that if uniform kernel is used for the atom (the kernel
function is the same for all atoms), we have

pMry) - — (X, X)),
where V is & normalized constant satisfying

vrd

Then it can be easily seen that the previous lemmas can rewrit-
ten as
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Lemma 3.4.9.
= ~im.v).
Lemma 3.4.10.
p(x C) AW{Vk,VK).

Then after normalization, the normalization constant is can-
celed. Note the normalization grows exponential w.r.t. d. In
general the nonparamctric density cstimato] might suffer from
the dimensionality curse. In order to make the estimator consis-
tent, we require that n increase exponentially w.r.t d {V oc h'?).
However, the consistency of spectral clustering does not has this
requirement since V is canceled by the normalization. There-
fore, spectral clustering docs not suffer from the dimensionality
curse.

It is also easy to see that, the normalized cut on a graph
withoutj self-loops can be viewed as minimizing the leave-one-
out cross "jalidation Bayes clustering risk.

3.4.4 Discussion

The analysis given above does not depend on the choice of the k-
ernel density estimator. However, the analysis does suggest that
in order to obtain a good clustering result, one should construct
the underlying graph in a way that it reflects the underlying
true data distribution.

Therefore, one can use a more general form of kernel func-
tions and prior to construct the graph in order to model the
true depisity of the data. Location dependent kernels, such as
the adaptive bandwidth kernel, can also be used to improve the
graph construction, which allows the bandwidth to vary from
one observation to another. It gives the flexibility of using a
smaller bandwidth (hence reduces the bias of the estimate) in
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regions where there arc many observations, and a larger band-
width (hence reduces the variance of the estimate) in regions
where there are relatively few observations. However if one uses
it in a consistent way, one should properly normalize the kernel
function when computing the edge weights.

We can also use domain specific kernel function for different
data types. For example, for data of binary code, one can use
Bernoulli density function. For data of positive integer features,
Poisson or multinomial density function can be used.

In general, partitioning a graph by minimizing the normalized
cut criterion can be seen as clustering the data in the feature
space by minimizing the Bayes clustering risk if proper connec-
tion between the graph construction method and the nonpara-
metric density estimator is established.

Given the Bayes risk view, we bridge the originally unrelated
two steps of spectral clustering: graph construction and graph
partitioning. We ran treat the spectral clustering a$ a unified
problem. The normalized cut algorithm is to minimize the Bayes
clustering risk while the data distribution is modeled by cer-
tain nonparamctric density model. However, in order to make
the normalized cut meaningful, the graph has to be constructed
properly reflecting tlie underlying data distribution.

It is worth noticing that constructing a graph to minimize the
normalized cut criterion dose not necessarily lead to good clus-
tering result. It is similar to the classification problem in which
choosing a classification function by minimizing the training er-
ror is not a good idea. It often leads to overfitting. We can
always construct a graph which has zero normalized cut ratio.
One extreme example is that we can construct a graph with on-
ly self loop, and then any partitioning will minimize the Bayes
clustering risk. Minimizing the leave-one-out version of error
still has the same problem. We can construct a graph that each
sample only links to one other sample in the data set. On this



CHAPTER 3. DECISION THEORETIC SPECTRAL CLUSTERING 45
|

graph, one still can obtain zero normalized cut ratio with an

arbitrary bad partitioning.

Therefore, it docs not make sense to simultaneously optimize
normalized cut criterion, the graph construction and partition-
ing. One can first fit a good density model before the partition-
ing. Or one can optimize the normalized cut with respect the
graph construction by restricting the complexity of the function
that is used. A regularized version of normalized cut criterion
might serve this purpose.

3.4.5 Normalized Cut on General Graphs

From the derivation above, the Bayes clustering risk does require
the graph to be an undirected one. For example, in the KNN
graph c”onijfruction method, a sample point x2 - of which Xj is
among the K nearest neighbors, is not necessarily among K
nearest neighbors of x*. Previously this problem is solved by
perform a post process step to force the mutual neighborhood.
However, this post process step is not nccessary. Here, WG derive
a general spectral clustering algorithm which can work on both
directed graphs and undirected graphs.

3.4.6 Spectral Relaxation

Let G — (V, Dbe adirected graph with vertex set V = n
Denote w” > 0 as the weight of a directed edge from vortices V
to Vj. Ijhe weighted adjacency matrix of the graph is the matrix
W = [vJdrigji jyin In general, wc do not require w” ~ WjN The
(out) degree of a vertex V* AV is defined as

- w?] 0

The degree vector is defined as d — 7..The  degree
matrix D is defined as the diagonal matrix with the degrees
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(i,,. on the diagonal. For two not necessarily disjoint sets
A& C V we define

W{AB) - wy
ICA,]CB

Let G {0.1}" be the binary indicator vector for the kth
cluster and 70 fzi\i — [. > be the indicator matrix. We have

(3.24)
and
W{Vk.VK} = "IWz,. (3.25)
From (3.24) and (3.25) we have
r ziDil —
where P = D Then the normalized cut criterion can be
rewritten as
1, f520Dj1 Py
n 3 “ A !
# KL % zfDz,
Define the scaled partition matrix
where 7) — [zZNc, kK — 1.+ > Since Z~DZ is a diagonal

matrix, the columns of F are the columns of 7j scaled by the
inverse square root of the out degree. Clearly we have

FTdF - [ZTDZ)Z5TDZ{ZTm)Z=I. (3.26)

Given a scaled partition matrix F, we can restore'the corre-
sponding Z by

(3.27)
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where M - Dg(v) denotes constructing a diagonal matrix M
from the vector v and v =« dg(M) denotes extracting the diag-
onal elements of matrix M to form a vcctor v.

Substituting F to (3.3) and relaxing F to take real values
that satisfy the constraints FADF —— 7, we have a convex opti-
mization problem as:

min lie(F) = ATEDI - P)F)

st. FDF — 1.

(3.28)

The global optimal solution FM of this problem is achieved by
solving the following generalized eigendccomposition problem

D[l — P)F* — (3.29)

where A = Dg(JAjJj*) » k= -+ -, K, contains the eigenvalues of
the above eigensystem. It can be easily seen that F* and A that
satisfy

(/ —P)F' = (3.30)
also satisfy (3.7), . The smallest eigenvectors corresponding to
the smallest eigenvalues of matrix | —P are also the eigenvectors

corresponding to largest eigenvalues of matrix P. Since P is
stochas™fic matrix, it has real value eigenvectors according to
Perron-|Frgbenius theorem.

The global optimum of the problem is not unique but a sub-
space spanned by the columns of EA through orthonormal ma-
trices. Let R he Si K X K matrix. If F* is a feasible solution to
(3.28), so is the subspace:

{FR\ R\R — [}, (3.31)

Furthermore, they have the same objective value, i.e., nc(F*) —
Hc{F*R). Therefore, a feasible solution remains equally good
w.r.t. the normalized cut objective with arbitrary rotations and
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reflections of FA. The optimal objective value of (3.28) provides
an lower bound to the problem in (3.3).

After obtaining the relaxed solution of normalized cut, we
have to discretize the real value solution to obtain the class
indicators. Many discretization approaches (81, 2, 2061, 82
are proposed to perform the discretization. In this paper, we
adopt the one in [81] to generate the clustering results.

3.4.7 Local Scaling Directed Graph Construction

In this chapter, we use a variable bandwidth KDE to construct
the graph from a data set. The variable bandwidth KDE is
given by

Vi lA/(I'A; y (3.32)
=1 3 3

where the bandwidth hj depends on the context information of
Xj. It is well known that with a fixed bandwidth, the kernel es-
timate tends to oversmooth at the main part and undersmooth
at the tail part of the distribution. This is the basic motiva-
tion for considering a variable bandwidth KDE, which allows
the bandwidth to vary from one observation to another. It gives
the flexibility of using a smallei bandwidth (hence reduces the
bias of the estimate) in regions where there are many observa-
tions, and a larger bandwidth (hence reduces the variance of the
estimate) in regions where there are relatively few observations.
The local bandwidth h] is set to be the distance between
Xj and its /cth nearest neighbor. The parameter k is selected by
cross validation. The k with which the variable bandwidth KDE
(4.5) has the largest leave-one-out likelihood on the given data
set is used in our algorithm. According to the previous analysis,
by using the variable bandwidth KDE, the edge weight of the
constructed graph is w” — Here, the Gaussian ker-
nel is used. The edge weight of the constructed graph between
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X, and X. is
oc. ot

Notice that, in general, Wij is not necessarily equal to Wp
Therefore, the constructed graph is a directed graph.

3.5 Exiperiments

In this section, we present the clustering results obtained by
the proposed local Gaussian based digraph spcctral clustering
(DSC) algorithm on a number of synthetic and the real data
sets. We also compare our DSC algorithm with K-means, the
NJW [61j, and the self-tuning spectral clustering (STSC) [82:
algorithms on the real data sets. We conduct experiments on
the following real data sets:

» USPS-AIl: This data set consists of images of 10 handwrit-
ten digits. Each category contains 500 samples selected
randomly from the USPS database.

» USPS”5: All the samples are fiom digits 2, 3, 5> 6,and 8 in
UAPSTALIL.

* UMist-All: This data set consists of face images of 20 dif-
ferent persons.

* UMist-10: The data are from UMist data set belonging to
classes 1to 10.

* IRIS: The data are from the UCI repository comprising 3
classes of 50 instances each, where each class refers to a
type of iris plant.

More details of the data sets are summarized in Table 5.1.
To elvaluate the performances of the clustering algorithms,
we compuie the following two performance measures from the
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Table 3 1 Descnptions of the data sets uhed iii the experiments

Dataset K. d n
USPS-AIl -10 5000
USPS-5 5 256 2500
UMist-Alf 20 10304 575
UMist-10 10 10304 265
IRIS 3 4 150~

Table 32 Clubtcrmg results by the four algorithms

Method Measure USPS-AlIl USPS-5 UMist-All  UMist-10 IRIS
El 101 0 5448 0 3600 0 5339 0 5208 0 1067

K-mealis — \vr 04569 04491 06726 06131 0 7582
NI E] roi 04912 04180 04035 03019 0 1000
NMJ  0.6091 06075 08139 08528 07908

srgc  EMoOr 07084 © 04704 05426 05321 00600
NMI 02843 03064 06291 05919 08334

ose Enol  0.4582 0.1832 0.3652  0.2151  0.0333
NMI 05610 0.6343 0.8411  0.8954  0.8551

clustering results- normalized mutual information (NMI) and
minimal clustering ciror (Error). The NMI is defined as

NMmior, ™). (&) (3.33)

VWWW
where I{x, y) is the mutual information between x and y, and
H{x) and H{y) arc the entropies of x and y respectively. Note
that 0 < NMJ{xy) < 1land NMKx,y) = 1lwhen x =y. The
larger is the value of NMI, the better is a clustering result.
The clustcimg error is defined as the minimal classification
error among all possible permutation mappings defined as:

Error —— min(l " > perm(cj)) (3.34)
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where [\ and Cj are the true class label and the obtained clus-
tering result of respectively, d{x, y) is the delta function that
equals I if x —y and O otherwise.

The “clustering results by the four algorithms, K-means, N-
JW, STSC, and DSC, are summarized in Table 5.2. The DSC
algorittim obtains the smallest errors in all the cases, and pro-
duces the largest NMI values on all the data sets except one.
These results demonstrate that the DSC can achieve good per-
formances consistently on real world data sets.

3.6 Conclusion

We have established the relationship among Bayesian decision
theory, nonparametric density models and spectral clustering.
We are ablp to bridge the original unrelated two steps of spectral
clustering lalgorithm to one unified approach. From this new
perspective, we gain the insight on how to construct a graph
for clustering purpose. Other extensions for spectral clustering
are also possible. For example, we can also use mixture models
or Bayesian nonparametric models to model the data density.
This preprocess step will dramatically decrease the size of the
graph. Even better, the parameters of the graph weights can be
automatically determined. We will investigate this approach in
our future work.

* End of chapter.



Chapter 4

Isoperimetric Cut on Density
Graphs

Summary

In this chaptei, we propose the probabilistic view of
isoperimetiic cut on a graph constructed by using a cer-
tain kernel function. From this probabilistic perspective,
the algorithm can be seen as assigning optimal class la-
bels to samples that minimizes the nonparametric ker-
nel density estimation based Bayes error rate of a two
class problem. We then propose to construct graphs us-
ing variable bandwidth kernel density estimators, which
naturally results in directed graphs. A directed graph
encodes the local density information of the data. In
order to cluster the vertices of the directed graph, we
propose an algorithm which performs isoperimetric cut
on a dircctcd graph. The cut solution can be obtained
efficiently by solving a system of linear equations.

52
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4.1 Jntroduction

Due to the success of spectral clustering methods [54, 61, 67,
81, 44], graph based clustering algorithms are of great interests
recently. These methods first compute the pairwise similarities
of the data to construct an undirected graph. Then the glob-
al clustering result is obtained by partitioning the vertexes of
the graph into disjoint sets according to some criterions. One
advantage of these methods is that they do not make strong as-
sumptions about the global distribution of the data. Therefore,
they can potentially deal with data of irregular shapes.

Despite the success of the spectral clustering, there are still
some pifot"ems. First, from a theoretical perspective, it is still
unknown what a good graph for clustering task is. Therefore
how to construct a graph for better performance is still a open
problem. Second > from practical perspective, it is still a hard
problem to perform eigen-decomposition on a very large affinity
matrix. Therefore how to perform the graph based clustering
algorithm on very large data set is another problem which we
cannot ignore.

In this chapter, we first present a novel probabilistic view of
the graph based algorithm. We show that the isoperimetric ra-
tion of a graph constructed by a kernel function is equivalent to
the Bayes risk of a where the distribution of the data is mod-
eled by I kernel density estimator. From this viewpoint, we can
see that in order to obtain a good clustering result, one should
construct a graph reflecting the underlying density of the data.
Therefore, we propose to construct a graph by using variable
bandwidth kernel density estimators which naturally results in
a directed graph. The digraph effectively explores the local den-
sity of the data.

The isoperimetric cut (IsoCut) digraph bipartitioning algo-
rithm [16] is proposed to cut the constructed directed graph
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into two disjoint parts by minimizing a the isoperimetric ratio.
We also provide a random walk view of the IsoCut algorithm.
By adopting the random walk view, we can handle both the
directed and undirected graph partitioning problems in a uni-
fied framework. Finding the exact solution of this combinatorial
problem is NP-hard. However, an approximate solution can be
efficiently achieved by solving a sparse linear system of equa-
tions. Given a data set, the clustering result is then obtained
by iteratively cutting the constructed digraph into disconnected
subgraphs.

4.2 Probabilistic View of Isoperimetric Cut

In this scction, we revisit the isoperimetric constant, the spectral
clustering algorithm, and kernel density estimation. Then we
establish the relationships among them.

4.2.1 The lIsoperimetric Constant on Manifolds

The isopciimctiic coustant is originally defined by Chccger [14
in Riemannian geometry [43]. Let A" be a d!-dimensional closed
Riemannian manifold. Vol(6") be the volume of a d-dimensional
submanifold S, and Vol(dS) be the volume of the boundary
dS" which is a (d —1)-dimensional submanifold. The Cheeger
isoperimetric constant of A4 is defined as

., Vol H
h = |nfO UH.
s Vol [

Intuitively, the Chccger isopcrimctric constant defines the small
bottleneck boundary of the manifold which separates part of the
manifold from rest of it.
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4.2.2 The lIsoperimetric Constant on Graphs

In the context of an undirected graph, 5 is a subset of the ver-
tices in the graph. The boundary of S is defined as dS “ A
S,jJ GS}. Then the isoperimetric constant hg is [55, 18

l € Vol [l
| | )Il “COAA <‘1)

where Vo\{dS) - Tn[s - :je-sM:r Vol(%JTncSjcv fifland Vol(60 <
Vol(y)/2. wij is the weight of edge a” computed from the sam-
ple pair Xi and x [1 b wi] = Gxp( X,||2/(2cr2)).

The isoperimetric constant of an undirected graph satisfies
ho G [0,1], and is strictly positive iff the graph is connected. In
31> 32], the authors propose an algorithm that minimizes the
graph isoperimetric constant to solve an image segmentation
problem.

The spectral clustering algorithm proposed in [67 > 44] is a
graph bi-partitioning algorithm which minimizes the normalized
cut criteriqn

| . 1fYol{dS)  Yol{dS)\ L« 0

I

As shown 'in [44, 18], the algorithm also minimizes the upper
bound of the graph isoperimetric constant.

4.2.3 A Bayesian Decision Theory on Manifolds

Here we analyze the isoperimetric cut algorithm from the Bayesian
decision theoretic perspective.

In the application of data clustering, we assume that the data
X —§UH ... nare indecently sampled from a underlying dis-
tribution with the probability measure P(x) from A4. Assume
that  is a subset of indices of the samples in X and S is the
submaiiifolds enclosing the samples {xi\i e 5}. We denote the
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labels of the sample set G S} as Cs and others as The
volume of S is

Vol[Ff dpPix =f p(Ndx,
Js Js
where is a probability measure on M satisfyingJ”®  dP(x)=
1. p{x.) is the corresponding probability density function.
The probability that samples in region S are misclassified is
P{Cg\'x e S) which can be rewritten as

- G S, Cs)
Hﬁﬁjl\%lff 1'P(xeSO
P{Cs\» e 9).
where
P{x e §)- [/
