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Abstract

In this thesis, we study several issues involving incompressible viscous fluids with
the slip boundary conditions and the motions of fluid-solid interactions.

In the first part,we study the issue of the inviscid limit of the incompress-
ible Navier-Stokes equations on the general smooth domains for completely slip
boundary conditions. We verify an asymptotic expansion which involves a weak
amplitude boundary layer with the same thickness as in the Prantle's theory.
We improve the better regularity for the boundary layer and obtain the uniform
L"—estimates (3 < p < 6) of the remainder. Then we improved these estimates
to i/i—estimates. It is shown that the viscous solution converges to the solution
of Euler equation in C([0, T]; as the viscosity tends to zero.

In the second part, we consider the non-stationary problems of a class of non-

Newtonian fluid which is a power law fluid with p > in the half space
n+2

with slip boundary conditions. We present the local pressure estimate with the
Navier's slip boundary conditions. Using these estimates and an truncation
method, we can obtain that this system has at least one required weak solution.

Finally, we investigate the motion of a general form rigid body with smooth
boundary by an incompressible perfect fluid occupying M*. Due to the domain
occupied by the fluid depending on the time, this problem can be transformed
into a new systems of the fluid in a fixed domain by the frame attached with the
body. With the aid of Kato-Lai's theory, we construct a sequence of successive
solutions to this problem in some unform time interval. Then by a fixed point
argument, we have proved that the existence, uniqueness and persistence of the

regularity for the solutions of original fluid-structure interaction problem.
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Introduction

Many fluid motions are characterized by Stoke's law
S . uD{u)

where S is the stress tensor, D{u) is the symmetric velocity gradient, i.e.

I ( du, dujl
oM = NN .

J 2 \dx]j dxij
Assume that " is a constant, we obtain the following Navier-Stokes equations.

The continuity equation (or mass conservation equation)
dtp + div (pit) = 0, in X, T
and the conservation of momentum equation

pdtu + {pu .\, u- ji"u —0 + A)Vdivu+ Vp =f, inOx (0, T].
Here p and v denote the density and the velocity field of fluid, respectively, p is
the pressure and f is the external force. Qis the domain occupied by the fluid.
A fluid is said to be incompressible if the volume of any quantity of the fluid

remains invariant. For such a fluid,
div u = 0.
If we further assume that the initial state is homogeneous, which means

pfx, 0) = po = const.
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then
pixt) = pq.

Hence, the system describing the motion of an incompressible homogeneous

Newtonian fluid is the following incompressible Navier-Stokes equations

diu —vAu + (u.Vju + V{p/pbo) = fipo, in Ox (0-T],
divu =10 in Q X[0,T], (0.1)

uit = 0x) = uo(x), in fl,

where v = fi/po > 0 is called the kinematic viscosity coefficient. For simplicity of
presentation, in what follows we will set po — 1 and omit the external force.

Traditionally, u satisfy the non-slip boundary condition for the Navier-Stokes
equations, which is

u=2~0 on an X [0,T]. (0.2)

J. Leray and E. Hopf constructed the famous Leray-Hopf weak solution to
the Navier-Stokes system, by the Galerkin method. After J. Leray's pioneering
work [76], there have been vast literature on the well-posedness of (0.1) and
(0.2). For the system (0.1) > there are two main difficulties. One is that it is
not a standard parabolic system. The other one is that the system has strong
nonlinearity.

For the 2D case, the strong nonlinearity can be eliminated by the dissipation.
The global weak solution was proved to be strong and unique, see [76]. Actually,
it is a classical solution when 77) 0.

When the spatial dimension d — 3, the problem of well-posedness is much more
involved. From the experience of dealing with semilinear parabolic equations, it
is found that the effort to eliminate the nonlinearity only by the dissipation term
is invalid. For general large initial data, strong solutions were derived locally. In
1962, H. Fujita and T. Kato [46] obtained a unique local strong solution in

space. The proof was based on the theory of analytic semigroups and fractional
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powers of the generator. For the non-Hilbert cases, T. Kato [66] constructed
local strong solution u G C([O, TJ; fl by making use
of the LP — U estimates of the semigroup {e—T-]}*) . generated by the Stokes
operator A. For initial data uq e p > S, unique local strong solutions
were also derived, please refer to [40,52,53]. However, whether the local strong
solutions blow up in finite time or remain smooth is yet unknown. While the
initial data ug satisfies that # is sufficiently small, then unique global
solution was derived in [66]. Global well-posedness also holds for axis-symmetric
initial data without swirl. The same results as above hold for the bounded domain
and exterior domain, see [52,53,60,72]. For more information about the Navier-
Stokes system, please refer to [77] and references therein.

When the viscosity vanishes, i.e. Z = 0, the system (0.1) becomes the Euler
equations. If the domain Jl has a boundary, then the common boundary condition

is the slip boundary condition,

u-n = 0, on an, (0.3)

here n is the unit outer normal at the boundary. The boundary condition (0.3)
means that the fluid does not across the boundary.

Global well-posedness for the 2D Euler equations has been basically solved.
T. Kato [64] got a unique global classical solution by the Picard theorem in
Banach spaces. The same result was previously derived by Ebin and Marsden [39
using infinite dimensional differential geometry. If the initial data is less regular,
a class of global weak solutions were constructed. Given initial data ug with
uQ — curl Ug G LM(M?), 1 < J) < CX), a global weak solution was derived. In
particular, uniqueness can be guaranteed by the assumption that /ugis bounded
120]. For more rough initial data, some global existence results can be found

in [32°109]. The fundamental reason for global well-posedness in 2D is that the



Some Studies on Viscous Fluids 12

vorticity ¢ — curl u satisfies the following transport equation,
dtcu + (u.V)LJ = 0.

However, the vorticity equation will lose the beautiful structure when d = 3.
It's hard to predict the global well-posedness of 3D Euler equations. A local
classical solution was derived by Kato [65] and the solution was shown to be
uniqgue. Then Beale, Kato and Majda [4] proved global existence provided that
the vorticity remains bounded. The same results as those for the whole space
hold for more general domain Q, see [24,39,43,69].

In the thesis, we study one of the issue that is vanishing viscosity limits for
Navier-Stokes equations . In the case where no physical boundaries, if the the
ideal Euler system is sufficiently regular, the solutions can be approximated by
the ones to Navier-Stokes equations, we can see [27,28,39,65,67,105]. However,
in the case where there are physical boundaries, this problem is a challenging
problem due to the formation of boundary layers. The problem of the classical
non-slip boundary condition was formally derived by Prandtl in [94], in which it
was derived that the boundary layer can be described by an initial-boundary prob-
lem for a nonlinear degenerate parabolic-elliptic couple system, which is called
the Prandtl's equations. Under monotonic assumption on the velocity of out-
flow, Oleinik and her collaborators established the local existence of smooth so-
lutions for boundary value problem of Prandtl's equation in the surveyed monog-
raphy [90]. The existence and uniqueness of the weak solutions for the Prandtl's
equations was established by Xin, Zhang [119] (see [118]). In [96], Sammartino
and Caflisch obtained the local existence of the analytic solutions to the Prandtl's
equations, and a rigorous theory on the boundary layer in incompressible fluids

with analytic data in the frame of the abstract Cauchy-Kowaleskaya theory.

The usual non-slip assumption was not always accept from experimental facts.
In [87], Navier first proposal the slip with friction boundary condition i.e. the tan-

gential velocity is propositional to the tangential component of the viscous stress,
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which is now called Navier boundary condition. This boundary was rigorously
justified as the effective boundary conditions for flows over rough boundaries, we
can refer [61.

There already have been many interesting results on the vanishing limit of
solutions to (0.1) for Navier boundary conditions. For 2D case, Yudovich [120
and Lions, P.L. [77]studied the vanishing viscosity limit for the incompressible
Navier-Stokes equation with Navier's boundary conditions, more precisely, u.n =
0 curlii —~ 0 on boundary For the Navier friction conditions, Clopeau, et.al.
[26], Lopes Filho, Nussenveig Lopes and Planas [42] obtained that the solution u?
to (0.1) converges to the solution vP of Euler equations in T; L"(R?)) under
assuming initial vorticity is uniformly bound. For 3D case, Iftimie and Planas [57
have further studied the small viscosity limit for the anisotropic viscosities in half

space, with the fixed horizontal and the vertical tends to zero.

Recently, Wang, X. P., Wang, Y.G. and Xin, Z. [IlIl] study asymptotic be-
havior of solutions to (0.1) with Navier boundary conditions for variational slip
length. While in [58], Iftimie and Sueur study the boundary layer of the solution
to (0.1) with Navier boundary condition for fixed slip length in both 2D and 3D.
They obtain the Leray's weak solution of Navier-Stokes equation converges to
the smooth one of Euler equation in the space 7] and gave almost
sharp convergent rate. N. Masmoudi [85] prove the solutions to (0.1) uniformly
converges to the one of Euler equation in the spatial and time variable by the the
frame of conormal Sobolev space. However, it is difficult to obtain the conver-
gence in higher order, even in H* as mentioned in [57], but one can not obtain
the convergence in H”. For flat boundary with the following completely slip

boundary conditions,
u-n = 0 curluxn=20 ondn x [0,T]. (0.4)

Xiao and Xin [116] the convergence in H” holds on the flat boundary. Later there

are many authors obtain the 1/ theory and % [dinviscid limit in [13,14], and
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in [13], they also obtain that the convergence always holds in global time for 2D
case.

As clarified in [13] the model introduced in [116j seems to work just in pres-
ence of a domain with a flat boundary. This is due to the fact that certain surface
integral are identically zero in the flat case. In the general case these surface in-
tegrals, besides involving lower order term, are not easily handled. Consequently,
the study of the vanishing limit in a general domain under boundary conditions
0.4 represents a challenging open problem, see [14]. The difficulties and the inter-
est for this problem is also emphasized in the work of Wang, X. P., Wang, Y.G.
and Xin, Z. [111].

Our main new contribution js the viscosity limit problem of the Navier-Stokes's
equations with the completely slip boundary conditions in 3D general domain,
solving one of the questions left open in [13,116]. But it is different from [17],
here we do not need the Euler equation satisfies the boundary conditions (0.4).
In [17], the Euler is over-determined as noted in [117], the tangential of the
vorticity is not zero even if the initial datum satisfies the boundary conditions
(0.4) for general boundary. Therefore, it is interesting to study the strong solution
of Euler equation with only boundary condition (0.3) is approximated from the
strong solutions to (0.1) with completely slip boundary conditions (0.4).

In Chapter 2, we borrow the equation of the boundary layer from [58] and
improve the regularity of the boundary layer. We obtain the strong solution to
(0.1) with boundary conditions (0.4) converges to the one of Euler system in
C([0, T]; ff~(O)), provided that initial velocity is regular enough.

There are phenomena that can not be described by Navier-Stokes equations,
such as rod-climibing or Weisenberg effect, normal stress effect and earth's mantle
dynamics and so on. In the study of these models, scientist have use nonlinear
versions of the constitutive law, one can refer to [49] for details. In this context,

there are some models , that viscous force can be effective functions of the shear
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rate  |D{u)l.

The mentioned class of models as above, i.e. v = jy(ID{u)l) belong to power-
law ansatz to model certain non-Newtonian behavior of the fluid flows, and they
are frequently used engineering literature. We can refer the book by Bird, Arm-
strong and Hassager [19] and the survey paper due to Malek and Rajagopal [81].

The mathematical analysis of these models started with the work of Ladyzhenska
[73], [74], [75]. She investigated the well-posedness of the initial boundary value

problem with non-slip boundary conditions, associated with the stress tensor

(0.5)

with positive constants "O » and p > 1. In 1969, J.L. Lions [78] proved some

2n
existence results for Laplacian equation with p > /- ) and the uniqueness
n +

n+ 2
for p > under no-slip boundary conditions. In those papers, the authors
n

applied the properties of monotone operator and Minty trick theory for the stress
tensor satisfies the strict monotonicity and coercivity.

Over these years, Ladyzhenska's and Lions' work were improved and in several
directions by differen authors. In particular, for the steady problem, there are
several results proving existence of weak solution in bounded domain [34,44,45],
interior regularity [1,86] and recently regularity up to boundary for the Dirichlet
problem [6—12,30 - 31,98]. Concerning the time-evolution Dirichlet problem in a
3D domain, J. Malek, J. Necas, and M. Ruzicka [80] study the weak solution for

p > 2. Later, L. Diening et.al have a recent advances on the existence of weak

8 6
solutions in [115] for p > ~ and in [35] for P > 0 There are also many papers
0

dealing with regularity of for evolution Dirichlet boundary problems and we refer
instance to [2,3,9-12,21,22]. In the three-dimensional cube with space periodic
boundary conditions, there is a lot of literature for the well-posedness of this
model, we refer to the monograph [79] and papers [18,33].

However, there are not too many results for non-Newtonian fluid with Navier

type slip boundary conditions. In [6,39], the authors investigated the regularity of
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steady flows with shear-dependent viscosity on the slip boundary conditions. M.
BuKcek, J.Malek and K.R. Rajagopal [23] obtained the weak solution for the evo-
lutionary generalized Navier-stokes-like system of pressure and shear-dependent
viscosity on the Navier-type slip boundary conditions in the bounded domain.
In Chapter 3, we consider unsteady flows of an incompressible non-Newtonian

fluid described by the system

dtu — diYS{D(u)) + (u*Vju + Vtt - [/, in R* x (0-T)
V-u-0, in X (0,7), (0.6)
. = ug{x), in
where u is the velocity, tt is pressure and f is the force, and S{-) is stress tensor and

induced by a p—potential, for example, (0.5) is induced by a potential function.

We can impose the following slip boundary conditions

u . =0 ((SiD{u)) *n) - (n +S{D{u). n)n) | 4=o0 — 0. (0.7)

In fact, this problem corresponds to the free boundary problem for the non-
Newtonian fluids with free surface supposed invariable.

Use the different method as before, we overcome the two main difficulties
which come from the unbounded domain and the nonlinearity of stress tensor.
We regularize the convection term and obtain approximated solutions. We can
prove these solutions are regular enough. Then by -truncation method, we
obtain the approximated solutions converges to the weak solution of the problem
(0.6)with slip boundary conditions (0.7) in half space.

The last part is devoted to the study of the so-called “ fluid-rigid body" system.
Many physical phenomena involve the interactions between moving structures
and fluids. An interesting problem is the motion of a rigid body immersed in a
incompressible fluid. The motion of the fluid is governed by the classical Euler or
Navier-Stokes equations, depending on the viscosity of the fluid. And the motion

of the rigid body consisting of a translation part and a rotation part, is ruled by
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the conservation of linear and angular momentum. The force exerted on the rigid
body is from the the fluid.

In the chapter 4, we investigate the motion of a rigid body immersed by an
incompressible perfect fluid. That is, the behavior of the fluid is described by the
Euler equations, while the motion of the rigid body conforms to the Newton's law.
Assume that both the fluid and the rigid body are homogeneous. The domain
occupied by the solid at the time is 0ft)) and fI{t) = | 0[t)is the domain
occupied by the fluid. Suppose 0(0) = O and 17(0) = Slshare a smooth boundary

dO{oi dO). The equations modeling the dynamics of the system read(see also

[95])
du , = ” A .
in n@ X (0.8)
div ti = 0, in ft{t)X (0.9)
= (" + UJ X {x - h{t) . n, on dn{t) X [0,T], (0.10)
lim u(x,t) = Uoo, (0.11)
Ixl—>-00
mh" =/ pnda + frb, in [0,T], (0.12)
Jdn{t)
(Jlo)' = {x - hft) Xpnda + Trb, in [0,T], (0,13)
JdQit)
ufx, 0) = uofx) X en, (0.14)
h(Q) = 0 e R3, /M(o) = (1(0)=y G (0.15)

In the above system, u and p are the velocity field and the pressure of the fluid
respectively, f is the external force field applied to the fluid, frb and Trb denote
the external force and the external torque of the rigid body respectively, m is
the mass, J is the inertia matrix moment related to the mass center of the solid.
Suppose the density of the rigid body is p, then

m =/ pdx = | pdx
Jolt) Jo
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and

[JOIki — | pl\x- h{D\*6ki- { x - h{D)kix — h{D)i] dx.
Jm

Here h(t) denotes the position of the mass center of the rigid body and Shiis
the Kronecker symbol. ojft) is the angular velocity of the rigid body, n is the

unit outward normal to dO:(t). Assume that the center of O is the origin, i.e.,

f ydy"Oe
Jo

For the case that the fluid is viscous, there have been many results over the
last two decades. The global existence of weak solutions of the above system was
proved by [62] and [97]. For the case that the fluid-rigid body system occupies
a bounded domain, the existence of weak solutions has been treated by many
mathematicians, see [36,37,51,55,56,83].

If the rigid body is a disk in R*, T. Takahashi and M.Tiicsnak [106] showed
the existence and uniqueness of global strong solutions. Later, P.C. Santiago and
T. Takahashi [103] extended the result to general rigid body case in M?. They
also proved the local existence and uniqueness of strong solutions in E”.

It seems that much fewer results for the perfect fluid-rigid body problem were
obtained. When the solid is of C* and piecewise and the fluid, fills in M,
a unique global classical solution was obtained under some assumption on the
initial vorticity in [92]. A global weak solution was constructed in [113] when

4
the initial data belongs to p > -. Recently, C. Roiser and L. Roiser [95]
o

proved the local existence of solutions for ¢ > 2, s > [d/2] + 2 and
the solid is a ball. The key idea is to make use of the Kato~Lai theory, which was
originated in [68:.

In the chapter 4, we plan to extend the result of [95] to a more general setting.
We will deal with the case that the solid is of general form. The main idea is also
the Kato-Lai theory. The difference comes from coordinates transformation. In

our proof, different from [95], we apply another coordinates transformation to fix
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the boundary. This kind of transformation which coincides with the motion in a
neighborhood of the solid and becomes identity when far away from it, has been

used by [59,103 .

16



Chapter

Preliminaries

In this chapter, we will give some definitions and recall some fundamental

inequalities and lemmas to be used in the thesis.

1.1 Notational conventions and function spaces

In this thesis, C is always an unspecified constant that may vary from line to

line. If C depends on some special parameters xi, ¢ > X" we write

oo, Xk)-

For vector-valued functions u — {ui, U2, Ud), v = (fi, V2, Vd) of IR, define

d d
fu -V == Vu W = M diUjdiVj,

and
A . (v + 0 (wuf
div w = d . Dfu) = ~—~—,
11 7
For the vector-valued function |i of R?, define

curl u = diU2 —"2'Wi,

and denote the vector {—u2,ui) by L[,

While for the vector-valued function u of define
curl u = {d2Us —df|2, "s™i —drus, diU2 — d2Ui).

17
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In this thesis, Br{y) will denote the open ball in R” centered at y and with
radius r.

Suppose Qis adomain in R, let —=Jin /?“0) » Qt = 0 X (0, T), and denote
the closure by Q. B{0,) (B"Qx)) is the Banach space of all continuous and
bounded functions defined on O (Qt), endowed with the norm. The Holder
space C"m  {C~{dn)) is the space of all the functions uj G (B{dQ)), which
are uniformly Holder continuous in y with exponent A on O (OQ).

(1) ) » < p < +o00) arethe usual Sobolev spaces, [i/(1))].
are the corresponding Sobolev spaces with elements being vector-valued functions.
They equiv the norm || «|lp and | ¢ |ffcp respectively. In many cases, we do not
distinguish the vector-valued functions and scalar-valued functions very strictly.

In particular, denote RE(1))by /I5 Define as the closure of in

Sometimes we need the homogeneous Sobolev spaces. For 1 <p < oo,

Di+pn) = {u"}jn): VueL"(n)},

with the seminorm

If we identify the two functions ui,u2 G DA(ft) whenever —U2D"P{n) = 0O,
i.e., ui and U2 differ by a constant, we denote the quotient space by jt)i » P(fl),
with the norm | In the following text, without any confusion, we do
not distinguish the elements in DA*(Q) and D*'*(Q). Dg”(Q) is defined as the
completion of in the seminorm of D*'(Q).

Since we deal with the incompressible flow, spaces consisting of divergence

free functions are needed. - G :div = 0 in H}. And

LI(Q) is defined as

LIifl)= fue Lin) :u=0 dw =0
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D{Rl) = {u e 48 = 0 on xa= 0},
Vp(R) = {uG Df{RI) =0
VAueV2 : /' IVu Fdx <oo}, H = D(R3.)
Jrl
We define by JU || «W*m,ip) the anisotropic Sobolev spaces and norm
as follows: for km,/ " N, p>/

PR M) X R+) = lgfx, 20 GI/(nXR+) :(1+ 2" & (#&N:r,z) € "(fi x R,

l[a] <m,/9GNU{0}}
with the norm

Nolim,ip = E /1] (1+
MSmI-LLxXR+
When p = 2, for simplicity, denote 4\ J[\> | *2A1)ss  H—%n).
In Chapter 4 > without special claim, 0 is a bounded C”-smooth domain in

M7, and Q, is its exterior domain, = \ And the center of 0 is the origin.

Define

J = (ki) =/ — ykyidy.

1.2 Elementary inequalities

We start with the Young's inequality.

Theorem 1.2.1 (Young's inequality) Let 1<p,q < FE 1. For any
positive number a and b - it holds that

,aP Ifl
P q
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The Young's inequality yields immediately the well-known Holder's inequality.

Theorem 1.2.2 (Holder's inequality) Given Q an arbitrary domain in

Assume 1<pq < oo, i +- "™ 1 Ifue v G LA, then we have
J/ luvldx < B o IML_M(2)
n

Thus the interpolation inequality is shown.

Theorem 1.2.3 (Interpolation inequality) Assume 1< s,r,t < oo and

1 e e
r S t
Suppose u G n Then u G 1767, and
IMIKF ) SIMIIIrIMIiTfn). (1-2.1)

One more general of the interpolation inequality is the following one.

Theorem 1.2.4 (General interpolation inequality) Let il bea domain

and u e Then for any 0 < /3| < Kk,

where 0:$l’(am/ C = C{k, n).

The interpolation inequality is closely related to the Sobolev embedding the-

orem.

Theorem 1.2.5 (Sobolev embedding theorem) Let” be a bounded do-

main in R” Then,

(1) if kp < d, the space is continuously — embedded in p* =
dp/(d —kp), and compactly embedded in for any q < p%
(2) ifO<m<k —- <m + 1; the space is continuously — embedded

in Cr,H(U) for any /3< a.
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For functions in with some special homogeneous properties, there are

Poincare's inequalities.

Theorem 1.2.6 (Poincare's inequalities) Let ft bea hounded, connected open
subset ofM."* with a C* boundary di}. Assume 1< p < oo. Then for each function

u G WAN0) ; then there exists a constant C, depending only on d,p, SI; such that

where (li)* = average of u over
For each u G Wo'\(n) ; there exists a constant C, depending only on

such that

IMUf(fi) < )

Theorem 1.2.7 (Trace theorem) Assume il is bounded and dO, is C* then

there exzsts a hounded linear operator T : — U such that
) — wlan > ViiG*tyi > p(i)n(:7(n);
(2) ”TU”LIQI?) < C"II\/I|V"i’pJ‘[‘[ < for each u E i{)ﬁ ) ag)

with the constant C depending only on p and fl.

The following famous Gronwall's Lemma will be used frequently in this thesis.

Theorem 1.2.8 (Gronwall's Lemma) a) (Differential  Version) Let us assume
h, r are mtegrable on (a, b) and nonnegatwe a.e. in (a, h). Further assume that

y GC(la, b]) and y' < b) and that the following mequoMy is satisfied.
Y(t) < h() + rCtyt) for a.at e (a, 6).
Then

)< y{a) + / h(s) exp K d./ds 1% r{s)ds e [ab
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b) (Integral Form) Let us assume h is continuous on [a, b], r is mtegrable on

(a, b) and nonnegatwe a.e. m (a,6). Further assume that y G C([a, b]) satisfies

the following inequality:

y(t) < h{t) + | r(s)y{s)ds for a.at G (a, h).
Ja

Then
ft /ft |
y{t) < hit) + / h{s)r{s)exp /[ r(r)dT ds, t € [a b]
Ja |Js J

c) (Local Version) Let T, a, cq > 0 be given constants and let h € L(0, T) with

h>0 a.e. in [0, T\, for nonnegatwe functwn y E C"([0, T]) satisfy
y'{) <hft) +Co" for aa tG(0T).

Let to E [0, T] be such that acoHfto)tQ < 1, where

Hft) - 1(0) + f h{&)ds.
Jo

Then for all t G [0,to] there holds

m <@ + Ht ((1- acoHitrt)-* - 1),

1.3 Fundamental lemmas

When we are studying the existence of weak solutions to some partial differ-
ential equation, one often makes use of a theorem, which is the following Lax-

Milgram theorem.

Definition 1.3.1 Suppose H is a Hilhert space and B is a bilinear form on H.

B IS called bounded if there exists a constant K such that
1B{x,y)\<KlIxll-lly/

for X,y e H.
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B is called coercive if there exists a number u > 0, such that
B{x,x)>ullxf,
for all X £ H.

Theorem 1.3.2 (Lax-Milgram theorem) Let B be a bounded, coercive bilin-
ear form on a Hilhert space H. Then for every bounded linear functional F on

H, there exists a unique element f 4 H such that
Bi{x, /) = F{x) for all x e H.

The proof can be found in many books, for reference see [77].
The next lemma from [99] which is a more general result of the famous Aubin-

Lions Lemma.

Theorem 1.3.3 (Aubin-Lions lemma) Let X # B #* Y be three Banach
spaces with compact imbedding X ~ * Y. Further, let there exist 0 < 0 < 1, and

M > 0 such that

MB<M\IvII"r-"-|Ivfy, for all v G X
Denote for T > 0,
w{o,7) = 0, 7,X) nlysi'ri(0,T; YY),
with
So,8i e M, ro,ri G [l,+00],
, N 1 e e 1
(- 0)sq + dsi, — := l—,s = se .
re ro n n
Assume that sg > Qand F is a hounded set in T). If s* < 0, then F is
relatively compact in T,B) for all 1<p <p* == —1/s*. If s* > 0> then F

is relatively compact in C([0, T]; B).



Chapter 2

Asymptotic analysis for the 3D
Navier-Stokes equations with
vorticity boundary conditions on

non-flat boundaries

In this chapter, we consider the approximated problem of the solutions for
the inviscid incompressible fluid from Navier-Stokes equation in three dimensional
general smooth domain. The boundary conditions of the viscous fluid is described

by the vorticity slip boundary conditions.

24
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2 Introduction

In this chapter, we consider the vanishing viscosity limit problem from the

Navier-Stokes flow to Euler equations. The Naiver-Stokes equation is

dtu" - IyAu" + (y .V)vy + VTr*= 0, in Ox (0, T)

(2.1.1)
V.w"r = 0> in Ox (0,T),
with the boundary conditions
ti".n=0, curln® xn =0 on dQ x (0,T), (2.1.2)
and initial velocity
u"\t=o —uo{x), in fl.
Here the unknowns are the velocity x) and the scalar pressure tt"(J7,x), ug{x]
is the given initial velocity and the Euler equations reads
dtu, + WO. + Vtt" —~0->in Ox (0-°T)
V-urro, in Qx (0,T),
(2.1.3)
u™-n = 0, on dQx (0,T),
?{°0= in 0.

The main proposal of this chapter is to investigate the asymptotic expansion
of the strong solution to (2.1.1) with complete slip boundary conditions (2.1.2)
and we obtain vanishing viscosity limit results..

As in [58], we apply the following formally expansion

uMt x) = x) + ANJDunt, X, 4=) +

where u” is a smooth profile which is fastly decreasing in its last variable.
More precisely, we introduce a smooth function Lp 6 such that in

a neighborhood A of dU, one has that [JA Z— {/2> 0} 1A, ITnA = {? <
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0}n A, arin A = {f = 0} n A and normalized such that |W ]| = 1 for all
X E A. This implies that (pis the distance between x and dO, for aa G A. Without
restriction, we assume that A = {.t GO :ipfx) < rj} for a small number 77> 0.
We define a smooth extension of the normal unit vector n inside by taking
n =

As in [58, 111], we take the following ansatz:

x) = ) + v J7,X, + X, + Z/ZT(J7 > x)]
(2.1.4)
TG ,g) = 0:) + X, + vaft, - + VK{t x)
Plugging (2.1.4) into (2.1.1), we can obtain that
dzIf .71 = 0;
(2.1.5)
divxU* = —dzV - n.
As in the argument in [111], it is easy to see that p = 0.
Slight modify the proof in [58], we can prove that if x, 0) *nf{x) = 0 and
U, satisfies the following equations
dtif - d*y + + (O .Vu'+ .Vn-)Xn=0> (2.1.6)
then u™n = 0, for all {t x, z) € (0,T) x X E+.
Therefore, we can infer (u”, g, v) satisfies the following system
ur.n
dtuc - dlur + zd/if + (Uo *SJuC + W) Xn=0,
(ur . Vuc + if .Vt/0) .n = (2.1.7)
poo
Vv =n diY X, rijdrl,
Jz
with boundary and initial conditions
u*en =0, dzU, Xn=V Xu*Xn, on z=20;
(2.1.8)

u%0xz) —0.
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For the flat boundary, it is easy to prove that this profile vanishes and hence
uniform H” or > 3 estimates have been obtained. While the boundary
is not flat, the conditions (2.1.2) are related to the curvature of di}, hence the
profile u® does not vanish. Along the procedure derived by Iftimie and Sueur, we

obtain the following proposition:

Proposition 2.1.1 There exists a unique pair {u”, q) satisfies the system (2.1.7)

with the following regularity for the boundary layer
G T- Hig)n L mw

for allkeN and d¥ G T) X Q X R+).
Moreover, u' vanishes for x outside the neighborhood A and en = 0 for all

(t, X, z) G (0,T) X O X E+. Consequently, we have the limitation
sup —20[21 < C'&

provided that initial velocity uq G H”

Since the system (2.1.7) of the boundary layer is linear one. Then we prove the
higher regularity of u, for time t and last variable. We improve the uniformly
bound of the remainder to more general exponent 3 < p < 6. Therefore, we can
expect to prove the estimates of the remainder for higher order derivative. Al-
though it is not easy to obtain the uniformly bound of the remainder's derivative,
one can bound H”-norm of the remainder by Thanks to the asymptotic
expansion, we obtain the strong solution to (2.1.1) with boundary conditions
(2.1.2) converges to the one of Euler system in C([0,T]; provided that
initial velocity is regular enough.

Now, we sate our main results as follows.

Theorem 2.1.2 Let ug 6 tP for s>b, be a divergence free vector field satisfies
the boundary conditions (2.1.2), assume that u” is the strong solution of Navier-

Stokes equations, with initial velocity uq. Let u”? is the smooth solution of the
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Euler equations with the same initial data. The above boundary layer profile u”

as in Proposition 2.1.1, satisfies the following regularity for p > 2
e 140,
€ (7([o,T];H ~2,1) p Loo(0,T; /& 2,2n H .. n t h2°3).,
dtuc e T nl2o-t; h.>f n #A—L,,).
(2.1.9)

Consequently, There exists "0o) 0 small enough, such that for all 0 < i/ < z/q, we

have

sup IK —i/~boi) SCr"l+i > sup lIR%<C
IG[0,T] TE[0,T]

For all 3 <p < and C is independent of v.

From the above theorem, we can obtain the following results.

Theorem 2.1.3 Under the same assumption m theorem 2.1.2, then there exists

"0 > 0 small enough, such that for all 0 < ly < vg" we have
sup — () < Ciun, " -u N - < C2,
o<t<r

Where Ci is independent of u, i = 1,2

Remark 2.1.4 In the proposition 2.1.1, the time interval is the maximum exis-
tence time interval of the strong solution to Euler equations. However, m Theo-
rem 2.1.2 and 2.1.3, the time interval is the interval of the existence  maximum
intervals  of the strong solutions to both the Namer-Stokes and Euler equations -

does not depend on the viscosity.

2.2 Preliminaries

We now state some lemmas which will be used in this chapter.

Lemma 2.2.1 Let u € WNNi) be a vector-value function. — Then for s > 1

+ 114-1, -

28
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Proof: See [24,116]. .

Lemma 2.2.2 Let begiven u EWYN12), 1< p < +00, then there exists C > 0

such that
MP < ClWip,
for all u such that uenldn = 0, or u x —O0  Moreover,
Proaff:u seeh|that1g)' nldn = 0 or u x nldi — 0 b

Lemma 2.2.3 Let u be a smooth enough funchon such that u nldn = 0, curltt x

mdn = 0. Then uj = curlii satisfies the following equality on dO,

In  particular,

— f Acu eujdr < f |Vojlidx+ C f lofchj
Jn Jn Jdn

where t'jk denotes the totally anh-symmetric  tensor such that {(pxip)* = e’jk%jipk-

Proof: Directly compute or refer [5]. .

Lemma 2.2.4 (Hardy's Inequality) If Q C >2 IS a hounded hpschitz

domain, then

f hWpP . f /
—Jnd(x,dn)-P

Mu e C"n):

for all 3 <p —1, where d(x, dQ) is the distance between x and
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Proof: See [88] .
The following theorems show the existence of strong solutions for Euler equations

and Navier-Stokes equations respectively.

Theorem 2.2.5 Assume that Q ts a regular hounded open set o/M”. Let m and p
be given, p>l,m>I-1--. ° Then for each uq, ifuQ G divjio = 0, vg-ti —
0 on d%}, there exist T <7"'D and a unique functions u” and tt on (O, 7_') , such that
ur e c([o,fi;pr" » p(r2))nci(fo,:i"];i*m-i > p(j*)) > tte G ivA+2pin)) and

satisfying  Euler equations(2.1.3).

Proof: See [107] or [24]. .
In fact, we can check the proof of theorem 6.3 and theorem 7.1 in [116], we can
find the existence of Leray's weak solution for the whole time interval and the
existence and uniqueness of strong solutions in the "—independent time interval
hold true for general smooth boundary. Next we state the existence theorem of

strong solutions as follows

Theorem 2.2.6 Let ug G be divergence free with the boundary  conditions
(2.1.2). Then there is a time T* = T*{uo) > 0 such that the problem (2.1.1) and
(2.1.2) with initial velocity uq has a umque strong solution of u" on the interval

0, T*)  satisfying

vI" e C([0, T*)-HIn)) n L2(0, T*;
atvT
IKIli 4 00 as t-AT if T* < oo.

Let us stress that this time T = min{T, T*} is from now on assume to finite and

fixed.
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2.3 Estimates of boundary layer

In this section, we will show the estimates for the first boundary layer including
Lr—estimates in (x, z) and the estimates of time regularity.

The following lemmas will be frequently applied in the rest of paper.

Lemma 2.3.1 There exzsts a constant C independent of p such that for all vE
= X IR+), p > 1 which vanishes for x outside the

neighborhood A ofdfl,
(2.3.1)
where Lp{x) is a smooth function defined as m the previous section.

Proof: The proof of (2.3.1) is the same as Lemma 3 in [58]. We outline the
main estimates here.

[ £ ) d x —r f vP{6— sn{5l
Jn vA Jo Jadn vA

where 7s(4) is the Jacobian of the transformation 54 S—sn(5). Then
y = v4 r f
A Jo Jon

v(6,5, z) —sn{S), z)

< fE

Since dVL is smoothly compact and rj is small, we have

0 < 7mn{js(S}; 0 < s <T],S e dU} < max{'ys{6);0 < s <r,S e dQ} < +00
(2.3.2)

Therefore

Jdn Jen
For each {S,z)ednx (0,00), Sobolev embedding rj) 4 and the

above inequality implies that

< (7 f{vPA{dnVy){x,z)drx.
Jn
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Thus

The proof is completed. .
Lemma 2.3.2 Let ug e W-""iQ) with uq »n = 0, then f(x,t) - G
C([o, TI; T]; vi—i'p(n)) » where u” is the smooth solution of Euler

equations  (2.1.3).

Proof: For all tangential derivatives, we use the Lemma 2.2.4. The other deriva-
tives use the argument in Lemma 4 of [58]. In fact, in the proof of lemma 4 of [58],

we only require that en = 0 on the boundary. .
The following proposition shows the L”*-estimates of the high order derivative
for a;~variable of the boundary layer u”.

Proposition 2.3.3 Let 3 < p < oo. If ug G V1/"+2 > piwithV ~ugq = 0, and

Ugen —O0,curluo X n —0 on the boundary dQ, then
IF E T; X E+)).
Proof: We verify it by induction. Set g{x,t) = cmit/ x n, then
ge n CTIQTLir =+ » P(n).

At first, we prove it is true when |a| = 0. Multiply (2.1.6) by + e

and integrate in x and z to obtain

[ f @+ +f f (1+ 72 Ve
ff (1+ ™ K . . (4) ? + /1 o+ 224y a,}T—2pCd—
I J JnxR+
- ff 1+ = 0.

J JilxW-i-
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Since W «vP = 0 and n — 0 on the dU, the third term on the left hand side
vanishes. Integrate by part with respect to z to the last term on the same side

and the fact that the boundary condition (2.1.7) yields

L IMImap + f f 1+ gt g VvV P, —

: . f —f f (142401
J JnxR+ J JnxR+
"[f (1 + 2 A : 7N % z + f t/’”%x,’, t, 0}’dx
P J JnxM-|- Jn

=11+12+13 + l4-
(2.3.3)

Young's inequality implies that

[1i] f 1+ z'")ia,ufluT~'dxdz + f f (1+ y"Kp>ckxlz (2.3.4)
J JaxR+ J JnxR+
Due to the regularity of w. and /, we can deduce that

N2l + list< ¢ f f (1+ (2.3.5)

Now we check the last term as follows:

/

Har < 1Mp -/ K(I.,J3,0)|M:r < Cligll, /
< CllMlp (f f A+ z'""Muflur'''dxdz) !l f f lur-"dxdz)#1
e [ [ (1+ + CWgWi+ C f f (1 +

J JUXR+ J JnxM+

(2.3.6)

Then, put (2.3.4), (2.3.5 ) and (2.3.6) into (2.3.3) and choose e — ~ to obtain

= IMIls (3 K Tmap + C°
By Gronwall's Lemma, we get

sup IPle: o dp < C.
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Assume that when |a] = s < m - 1, we have that G L0, T; X
R+)), when uo G Next we verify when s = m, uo GL°°(0, T; M\ Y "(1) x
M+)) is also true.

To this end, we apply the operator d” to (2.1.6) with lal = m, multiplied by

1+ to the both sides of this equation and integrate in x and
z to obtain
= f (14
Py JIOXR+
- [ [ (1 + ZZ[(t/C .xu0 + U, . X (2.3.7)
JIf2xR+
- (1+ =/i+i2+ i3

We estimate /i. Integrate by part with respect to zto get

b=~ f F  (1+
JIQXR+

JJ

v fd, (dy)ldyT~*dyf=0dx
Jn

=-11  (1+ - hy o+ i
J Jax&+

Due to Young inequality, we can infer that

1] J JnxR+

Since = by the same argument in estimates of 14, we can

conclude that

JJInxM+

+C /] a+ + CKgix, t)]g.
JInxR+

Then the estimate for li is

h < -(1-2£) [f (l+z' | 248 ClIlMg,% , - »p +C. (23.58)
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Now we bound [2- By direct calculation, we have the following formula
xn) = (d) )X n+ (2.3.9)

where D*u) denotes a linear combination of components of u and derivatives
with respect to x of order < |Q;| of such components with coefficients components

of n and derivatives of n. Thanks to (2.3.9), we infer that

/2= f'f 1+ + vAat Xn
J JAXRA-
+ DAHU" Vn, +w* VoMO}. 1d"T""Oy'dxdz
= ff 1+ 7 { KK #0+ # -"u) + . + L0 - V, AN
I]
— - wr s w. VNC) . = Ji+ J24+ Js-
(2.3.10)
First, Let recall the Leibniz' formula
Ftuv)=Y (=) ~-~>
(a\ a
e e D, - o ..%)7},: A S —
A < = 1,e++,n). we can calculate the term Ji by above formula
Ji= [/ (1+ -uM+ u'-
J JxR+

= ff (1 + Vv (fl (dlve.v d r v+ ay «(-wc)idiu'4r'dy'drxdz
JJInxM+ N VP/

=JIl + M2

Since the terms o+ s > 1, we have

ff (1+Z) .

J JnxR+ oy

< CIW [+3J1(1 + + 1+
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For the terms of = 0, we get
Il A +TEf)I » ¢
A \PJ
J2fc,
< AMlIMUPILKI + + 1A+ 2 #F W
since 2p <
Since u en = 0 on the boundary and divu = 0, we know that
ff 1+ . vayidyT"d"u'dxdz =0 .
J Ifix e
Next, we estimate the other terms of Ju for 0 as follow
ff (1+z"") T dry.
J JnxR+ w
< + + (1 + PAIL,

Therefore, we can conclude that

c IP
5l

I <Cl(1+ y 2 it + qua+ 2058 +ip 111+ PR _dnn

We note that

W = ff (L+ 427[81Wc .0+, «FX ....nJnldyT''dy'dxdz
J -Ox1+
J2k,
I @+ E: (. u
J JOXK4-
+%1le o6>r~ ) . n nld"T'Ady'dxdz

< Clil+ [[ (1+ [WO sV (ax) «n)] n | ¢ W =z

36



/t=0,thenay .n= a n d compute the term J31 as follow

i31= f f (1+7
JJnxm+

+ 0 .vn . urDl "Jdxdz

/J /Jan.g

+ *Vn . u"Dl

<c\h\

Use the Leibniz' formula, we easily obtain J* < ClJil. Thus we have

h < ql(l + 229 P + + 20 M = — 13H,p +11(1+
(2.3.11)
Use the Leibniz' formula again we know that
[f (1 + E WdAjdrAdXidyr-'dyAdXdZ
<C- [I (1+ z~")zfd,\dyfdxdz
J JnxR”
+ ff a + « E fyumgF ) \dyr-'d>""dxdz
VI3<A X /
J3l + iz

By the regularity of f and integrating by parts for z, we have
wr o <e f f 1+
J Jq.xR+

< [ f (L+ @+ hzN")\dy\Pdxdz
J JUXM-i-
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And with integrating by parts, the regularity of d*f and Young's inequality imply

J32 <E ft) 11 (1+(2"+
J Jox'S.+

+ E (1+ z27| €aXx|2|fi>>T-2dzd-

ff
J JxR+

Therefore, choose ¢: :0 we have for |/5] >0

< + M%+[E]+im-10,0,p + | |---I¥NOP A T2)

By the assumption and Gronwall's Lemma, we finished this proof .
Remark 2.3.4 In this proof we require that ug G and p > 3. |t
IS easy to know that if ug 6 with p > 2, then the above proposition
holds. However, when p = 2, we can prove that if uqg € 7] then
ArcelLoo(0 > T;fc > m,o(QxR+))nL2(0 > - r;HMAi(f7xR+)). In fact, For m<2,

we can refer the proof m [58]. However, if m > 2 the proof is not difficult along

the proof of H?-estimates in [68] or see the following  proof.

It IS difficult to get //-estimates for {f 2;)—variable, but we get the following

estimates which are better regularity with respect to {t)-variable than [58 .

Lemma 2.3.5 If ug e n m > 2 with ug +ndn = 0, then
if e l7°(0" T; /I—>1(1) XM+)) and dtu" G T, BoJ1C o (1) X R+))

Proof: Apply the operator d* with |Q;] = m fo the equation (2.1.6) to get

dtdguC —d y + dfpd/if) + a—[(y .Vu. + urVu') X n] = 0. (2.3.13)

38
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Multiply (2.3.13) by (1 + z)dtd) . and integrate on x E+ we have

0= f f (1+ z""~)\dtdyfdxdz - [] (1+ z''")dtdydydxdz
J JnxR+ J

+ /1 (1+ z~n)dtdydSifzd,u')dxdz

J JnxR+

t f f (1+ 227 %% (y WM+ t/VMO Xn]
JJQ.XR+

= ff (1+ zA"M)\dtdyfdxdz + ini + + Ks.
JJnxR*

We will focus the estimate of Ki. In fact, integral by parts respect z, we have

¢k, -1 F f (1+ 7)[<9 ¥Xl|2ck;dz
JJdnkRE
t / . dtdydxdz —f t, O)dtd*u'(x, t 0)dx
J JnxR+ In
I (1 + + CPAMXIINO + 4dtdy% A0
- f d:g-dtdy'{x,t,0)dx.
Jn

For last term on the right, we can estimate as follows

— 1. dyg . dtdy”x, t 0)da;= —& [ + L dre
=/ dhgd.dy'dxdz~ [ f dfdigd.dydrdz

AN] JnxR+ J JflxM+

ot J dnxm+

Therefore, we can obtain the following estimate

1d
E < &m=nl7 1+ 2 2 B - 2d2gdgf(Ms
W W JnxR+ (2.3.14)

We are going to estimate K2 by Leibniz' Formula,
= ff (1

- ff (1+
J JnxR+

f f (1+ Zy w Wz YN (=)
J JnxR+ tTl VP/
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We will estimate the right terms divided by several cases.

In case of 3= 0, we have

[ f (1+ z~M)dtdyzfd~d,ifdxdz

< DR Ceua -+ + 220k

In the case of |/3] = 1, we obtain

[[ (1 + \Y/

J JgxR+ [a]

<C f (1+ 427 4l1Z (AbR"

< cif(i + + Xk (—®z 1@ +

1 1

here use the interpolation inequality W\ < ||?i|||

In the case of \P\ > 2, we get
[ f 1+ YA

JJaxm+

IJM+

<~ 1 1 (1 + + z i  TUES Blell! 11(1+ « « 4. ( —~
1 1
here apply the interpolation inequality |liijjoo < 1I"Mli,21"112,2-

Therefore, we know that
K2 < + 11MaAM A1 + + 4dtdy%,0,0- (2-3.15)

Use the same argument above and the proof of h in Proposition 2.3.3, we

easily obtain that

< C(IKERL_I" i+ 11TALL) + t~Hif - 0. (2.3.16)
Since Remark 2.3.4, we know that A C. By the Gron-

wall's lemma and Holder inequality and choose £ = we conclude that
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The proof is completed.

In fact, we can improve the regularity of dtu® for the equations (2.1.6) if initial

data is regular enough.

Lemma 2.3.6 If uge (1)) n LIi{nm),m> 2 with uq .nldn = 0, then
dtuc G 77. —(Q X R+))nL10,T; X E+)).
Consequently,

u" 6 LAN(O0,T; U, I » X E+))[] L2(OT;H: ~ 1L > 3("] x R+)).
Proof: Apply dtd", |a] = m to (2.1.6), we have

= 0. (2.3.17)

Multiply (2.3.17) by (1 + z—td) , and integral over Q x M+, we have

85 // A+ z44)ldtdyfdrdz- f [ (1+z4')dl(dtdy')dtdy'dxdz
A J InxR+ JInxR+
ff a1 + + (M
JJ
ff 1+ .Vzz" + uc . Vu*) X n]dtdydxdz —o.
(2.3.18)
First » we give the estimates when )il =0 - thus
A f f A+ 72 1w fdwm _ fFFf 1+ —)(m” Jit/dH
dc J J JnxR+
ff (1 + z"Mdtifzd,u'")dtu''dxdz-h (2.3.19)
ff (1+ 1+ uCe X n]dtu'dxdz = 0.
JInxR”
Since
- f (1+ (We)wCdy = f f (1+ z")\dAufdxdz
J J JnxM.+

J JnxR4- Jn
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It follows that

ff (1+ 2)\d, dtufdxdz

< ql(l+ + - [ dtgdtd dxdz
J JnxR+
< o+ + + il + Zhtu%\dtgfl + 2

We can calculate about the third term on the left side of (2.3.19) as follows

JJO.XR+

= [ f (1+ z~)dtfzd,u'"dtu"'dxdz
J JnxM.+

t+ [ f  (1+ z~™)fzdAu'dtu'dxdz
J JnxR+

+ Cll/llloo @)|](1+ + i1%J
< fic|| {+7 o o o+

Similar argument in Proposition 2.3.3 and above proof, It is easy to see that
[ [ (1 + _~2"at[(iio * + "c. X n]dtu''dxdz

=[] (L+ zP~ [(Xlio . VUC + v VdtuC + dtuC. Vu, + u'~Vdtun) x n] dtu'~dxdz
J Ji2xRj-

By the Gronwall's Lemma and the dtu® G [2(0, TH > - » < (1) x M+)) from the

previous lemma, we have

sup r [f {I"z")\dtd, ufdxdzat <C/‘/imJ|dtu%t)H%c,o,o_
Q<t<T s Jo  JJnxR+ 7710 .
(2.3.20)

By induction, as in argument of Proposition 2.3.3, we can obtain

sup M @) N0+ XE2(g't;h— i(fixIR+))

(2.3.21)



Some Studies on Viscous Fluids

Since 0,z) = 0, thus dMdlu™ix, 0,z) = 0, for all aj. Therefore, take limit
to both side of (2.3.13) as t — 0, we can get dfd(X{xt, Oin ae. 0 x R+
ast — 0. Therefore, we can know that last terms of the right side of (2.3.20) and
(2.3.21) are vanish.

Multiply (2.1.6) by dlu. , using Hdlder inequality and Lemma 2.3.5, we get
that

uc elL@ (0, T;H X R+)).

Apply d* to (2.1.6) and inner product by d*™" by Holder inequality and

Lemma 2.3.5, we also know that

2.4 The proof of Theorem 2.1.2

In this section, we give the LF uniform bound of this remainder and give the proof
of theorem 2.1.2. With the same arguments as [58], we obtain that the remainder

W solves the following equation:

diR" —"AIT + u™+VR" + FT - + VAT  endyv + iT endzxf + yMT ‘Va’u.

=-dtv + Auo + + 2n « WMdzu' + iyA7[vix. N -u" Vv Vu,
fU, . ndzV — .ndzV — v end™ur —utr VxUN + A » dzU, — -Jvwv « VxM

+ + R. H.S. in

diwr — dhvKM, 2&) in n.

(2.4.1)
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With the boundary condition

FT en{x) + v[t, X,0) -n(x) = 0, for x e dQ (2.4.2)
curliR™ X n + X, 0) x n+ curla;"(i> x,0) x n =0, for x G dQ.
alzz
(2.4.3)
And the initial data of R" is
x) = 0, for xen. (2.4.4)

Denote b(t>x) — x, 0) + v{t, x, 0).

In the sequel, we always use the following anisotropic Sobolev embedding.

Lemma 2.4.1 Let U(x, z) be a sufficiently regular function defined on Q,x R+,
3

3 3
2 < p< o0, m > and if p = oo-m > - A Then

(2.4.5)

Proof: In fact,

<11 (1 +L"~"ma+ J1 B +)

here we used the Sobolev embedding Hiff *

In this section, we need the following Helmholtz-Weyl decomposition of the

space
and

Lemma 2.4.2 Let the space Gp{n) = (?/ 6 : e

Jofn) = {il GLPm) :diYo = 0-li.n = 0} then

LP{n) = Gp(n) e 4An)
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and the projections of an arhtrary  vector field ufx) to the above subspaces are
defined by the formulas
Pgr= -V I VyN{x,y)-uly)dy

(2.4.6)
IPjtt —eu+ V / VyN(x.y).uly)dy,

Ja
where N(x, y) is the Green's functions with Neumann boundary conditions,  with

the following estimates:

where | < r tf dQ G and u G When p = 2, G2{")L

Proof: See [102]. .
For simplicity, we denote by P the projector on the space and decompose
IT = P/T+ (/- P)in and show first that (/ - is bounded in

independently of v.

Lemma 2.4.3 The family (I - P)ir is hounded m 1IN0 > T; 7/’ Z(1))) with1l <

p <Q, that IS,

Proof: It is easy to obtain this conclusion by using the standard V estimates

of elliptic equations, or refer [58]. .
Now we estimate the bound of independently of v. In order to avoid
estimating the unknown pressure term we need to multiply the equation of

(2.4.1), by P (| P/rJ From Lemma 2.4.2, we know that

P(IP/r 8 ) =7 + V]f WyNixy) — “|Pi?T—H “75
n

- + VQ.
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From the Lemma 2.4.2 we have the following properties

(2.4.7)
aqQ 0 do
=0 on .
dn
Integrate in x" to obtain
1 d 19
+ VQdx <Y, Bk (2.4.8)
PA't JOQ
where
Bo = iT -W,. P(|IPif
Bs = VA R" .ndov .P(|Pi?2T—TF-")da: > B4 = - R" .nd : " . -2pir)da; ,
Bs = -v”" | R".VMu”. Bg = - dtou-
Jn Jn
B7= [ Ails . = f Aflc.pEE
Ja Jn
v I A vix. FAFR' -2pir)ck ;’
Jn
B - ti" e . P(PiI?T—H")d:r » Bi2 = - V-VUA-FAFR' -?Pir)d:r -
B 3 = A e . RB; > Bu = -VA / Vendv . _2p7r)d:r >
Jn
B V . ndzif .P(PifT I > = - f if ,Va™' « F{IFR'
1 Jn
B =/ Aif e du" - Bis = -VA /1 - * F{IFR'
Jn Jift
B =f * (|P.ffT-2]Pir +  VQ)dx.
Jn

We have to estimate each of the terms in (2.4.8). We first deal with the Laplacian
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term.
—inf AIT . +  VQ)dx
JQ
Jn JQ
—lyf A(Pir)vQdr - Z | A((/ — ¥K)Qdx
Jn Jn
-+ + lis + (k

By integration by part, it is easy to obtain

di + d2=ly | —" f (WT _
Jn Jdii
-V ((curle X + —2]Pir .Vn «PiT) da
Jan
=ofii + di*

By the Young's inequality, we have

di. Ny f + " [ <+ (((/— IP)ir)|PH:F-SpffMa:
Jn Jn
22p-3)
> V-
P Jn
Since curli?" x n = curlé x n, thus
di, < !/ ((curlé X 1+ + |/ — da
‘on

Since Y < + HYWHis,! and Theorem 1.2.7, thus

"llcurle| [ p , ZONP/nir [. < "ellcurl6||d , 20 + "*||P {9 |

llasi

Therefore, by Lemma 2.4.3, we know that
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Integral by parts and the formula curl(curlu) = V(divii) - Au. Thus by (2.4.7),

we get

+ =" f curl(curlP/r) .vQdr - ly [ div(/ —P)/r «VQ
]Tl ]n
j (curlé X n)VQdx j odiv(/—
Jdci In

< llcurl& X nilf5ajVQIk' 40 + I[div(/ - ¥)R'"UAQ\y

Now we estimate the each term of the left side one by one,

Estimate of Bi -

1
.
+

= - ,(y VQ)dx

Jn
- | urVR" - + Vg)dx

By the regularity of u™ (2.4.7) and Lemma 2.4.2, it is easy to see that

We need estimate the term [3in details, we have

= - f{u~ uy?rir - — =
In Jn
:=Bill + [7712.

By the expansion, one can obtain
Biu < +"iWoo)ii(/ - + =2 + ¢

< S WPH NPT + cuFrrr + €
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Now we estimate the term Bi* as follows,
Bi2 = fdiv(K -N0)®VM") «VQdrr
Jn
t fF (VAL + m+ “r) e (] - . VQdx
JQ

< A(vAnA 4+ +"[n ®PIT : V'Qdx + (vMIWlloo + -

+ — — + || (/- P)i*lloo||V(/ - P)irlldVvQlly

Therefore, we can obtain that

Bi < CWFRWI + T + C + eullVIFRXml (2.4.9)

Estimate of B2+B4:
Since the regularity of u® and the uniform bound of dzU?, use the estimate

(2.4.7) we easily get

+ + (2.4.10)
Estimate of B3+ B5:
/183 + B5l y v 4 f + fl{l -
JQ Jn
:=Bi + B2
(2.4.11)
Since when p > 3, we know that < PI1i,3 i and < C7nLi>2-i

Use the estimate (2.4.7) once more, we have

B < cvMip/nwiMiri

< CIlIPiTlg + CpP.
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Plugging the above two inequalities into (2.4.11) to obtain

1"3 + 55| s + cvf ||V|PFfLEIH + c. (2.4.12)

Estimate of Bg

We apply equations (2.1.7) and (2.1.6) to write

-Be= [ f z)dz *n-
Jn  Jip{x)/*
f f z) ‘Vu, + .VAU'Nix, z)]tauldz | 71,
Jn Jlp{x)/s/u
(2.4.13)
+ / / . z)dz +n-
-f f z)dz *n -  F(OFR"IP-"FR")dx
Jn  J<fix)/"
:=Bqi + BQ" + BQM
Thanks to the regularity of and vP{x, t), by (2.4.7) we bound that
[i?6i|SCI|P/ni? + CIM|? > 30.
And with the help of the regularity of f and dxdzU, , we have
Next, we estimate Bg"
63l<c i i div B — m < +
Together with the above estimates of Bg", Bq", Bq", we have that
\Be\<C\\¥RX"C. (2.4.14)

Estimate of B7 + Sg + Bq -

Utilizing (2.4.7), the regularity of 7/ and u”. It is easy to see that

\B7+ "8 + B\ < CIIPi*X + C+ \/*"IMI?,2,, + 1ki?2,2 + C. (2.4.15)
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Estimate of Bio:

Since
Bo< wJdAVMA2A. 2)]: +
+ f dnvit, X (|P/rJ”2pir + VQ)da
JaQ va
=Bio, + BI102-

Due to Young's inequality, we deduce that

|BioA<C IV Vix,
vA Ja

(2.47)

Since dn[v{x,

57 is tangent to the boundary, we get that

Bio, —ly f vix, ¥ "+ VQ)dx

Jan
<v ( div[CiJ(a;0))k nO))n(|Pir|P—+
Jn

Jn

In conclusion

|Biol < climx + Wlivping IR + Cio + ¢

Estimate of Bn: Since < <NMWMIL141, thus

/bnf < /V + VWA + "} IWJT) . Vo.'u -« (iPiT 2pk "+
In

< cilno |U|p TlirN|VA||lp + VvAIKIbIVwWIbIP/r F1

+ HMWIVCHWPP{ T1 + HIF-IWIVXulWIPinir'

< @WO[1+ IMIW) + VAIIM ks, + T ML~

+HiMiwKik2A2piiPiniri+cmx

iptx)I"/v) = Lp{x)IVv)l e n + v{x, (p(x)/\/v)

51

(2.4.16)

, dnn{x) and

(2.4.17)

(2.4.18)
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18
Estimate of Bl2+ ~ BA:
=14
Apply the uniform bound of dzU, the regularity of u and a” we have

18
+Eb* 2.4.19)
1=14
Estimate of Bis: It is easy to see that A C with p > 3, since
uO-n
Mal = - / —(Hit. ne( i P/ r T  + VQdx
Jn A A
<11(1+ (2.4.20)
p
To estimate the term ”ig, since
= - | iC™u'(z)). Vu, + ur (VM Zh ) + + U oo (4) ¢ VAndz.
Jz
Then
I"gllp < gMkEi+ > ir"2'p_ < c~NIMIlw.
Therefore
(2.4.21)
Plugging all the estimates of Bi{i = 1,e¢¢,19), = 1,2,3,4) into (2.4.8),
and choose s very small, we can deduce that
d — p,o - ” i
JAWRTp+coHMPin.ii! < + C + (2 . 4, 2 2)
p-i
Since the number > 1, by the part (c) of Gronwall's Lemma, we know that

there exist a small 0 < i/q < 1, such that for all 0 < z/ < uq, and

sup WFRAWI-"cou r \\V\FR™MM[dt<C.
O<t<T Jo

The proof of Theorem 2.1.2 is completed.
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2.5 The proof of Theorem 2.1.3

In this section we consider the iif*-estiinates for the remainder R" and give the
proof of theorem 2.1.3. Since the boundary conditions of R" is not homogenous,
so Lemma 2.2.3 is not used in this estimate. To this end, we can define an new

function on the 0 x (0,T) related R”* as follows
Rit, x) =

Then we have the following conditions

ini"]
divx) = — x N~ — ) + dive(t, %), in Q,
R.n=0, on dft,
cmIR X J[==0 - on di},
R{0, x) = 0 in n.

Therefore, it is trivial to verify that R satisfies the following equations

dtR — uAR + -VR+R-  Vur+ AR * ndMv+ R * nd™u"" + *sJAR » - Y

=RHS + dth~ uAh + 2 + bW + VA .ndv + be-nduC + . Oli:
(2.5.1)

By the 77 bound of we know that if 0 < i/ </Q

< C,3<Pc<6b (2.5.2)
(2.5.3)
HALjik(o » rL22)) + ||div/?|li,oc(o,r;L2(fY) < (2.5.4)

From (2.5.2)-(2.5.4) and Lemma 2.2.2, we know that

li?]]2,2< |IVcurm||2 + Ciy-i

Therefore, it suffices to estimate the bound of ||curli?|| £00("0,T;L2(n))
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Apply the operator curl to (2.5.1) and set curli? = u, then we have

prws — vau + curio” . ¢ ) + curl(i?
VAcurl(i? endzv) + curl(it! endzU?) + o VX'
(2.5.5)
=cuilR.H.S + emWib - z*Acurlb + curl(i/ +Vb) + curl(6 e
+ v-curl(6 .ndzv) + curl(fe . ndzU?) + v2curl(6 « - ?/).
Multiply (2.4.9) by o and integral on il, we get
q 12
— | Auyj cudx = | cml{R.H,S.) ecida: + * Ei (2.5.6)
fi Ji
V—_L

First, we estimate the Laplacian term on the left hand side. Due to Lemma 2.2.3

and Theorem 1.1.7, we have

—jy j AUJ- udx —z/ / —"/ [n -Vuj) -ojda
Ja Jn Jon (2.5.7)
> {I-£)iy/ - cPiug 2

Next we bound the term on the right hand side of (2.5.6) one by one.

El = f curl(w" «VR) euidx= [ curl((y — . VR) < ujdx [ curl(n®° . VR) ,ojda;
Jq Jn Jn
cuii(7/ « VR)ujdx + curl(t; e VR)ujdx + i/ cuil{fR"VR)ujdx
Jn Jn Jn
+ [ curl(?i° «VR) .ujdx = Ji +J2 + J3 + J4.
Jn
Since ¢cjx n = 0 on integral by parts, then
[Ji] = * VR)cmlujdx| < VALK (M) Vi2I12] ciirk;]]
< I 0?2°2%MI_ + ChiuUi~r"" + JrHIcurlcAlli
1321 < 2|[H|6]|V/?]|3]|curla;]|2 < AvMVRIINIVuilll

J = /  cuilu'VR
= N < + + ° -
[lcurlfL0|U|W ||2LMLJ3,X ”fu&l(lfl%jujd)%)lw— [lcurk/s | [z/
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It is more complicated to estimate the term J3, from(2.5.2) for /p = 4,

1331 <171 f R" «VRemludx] < H|/r||4]/VIN|4] ciirlu;]]|2
Jn

< cuo + VbIMVul — + ifi[ja; + VB[||[|Vu;[|2

Since Lemma 2.3.3-Lemma 2.3.6 and 0 < ly < ug, therefore, we obtain the esti-

mate of E-i as follows

(2.5.8)

It is easy to estimate the term E2'

\E2\ = 1 / curl(i? *Vu”) ecjd™ < / LjeWulujdx +

/ R *Vcurk® «a;d
Jn Jn Jn
EIRER Y + VcurkOllsMb
S + 11 g M+

<Cllyjiil -+  Ciy-
(2.5.9)
Let me compute the term E3,
H3= VA [ curl(i® *ndzv)dx
Jn

=lwv / R .ncrnidzVLodiX + / V(R +n) x dzvuo”x )
Ju J

=Ki+K2.

Now we estimate Ki,K2 respectively

IK2I = ]/ V(R. n) X d*ujdx
n

< W+ (Re n)|blI5-£]I6]M|3 < VR7ZIMIZ IIV{R . n)||2]|Va;][|
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IKi]| < v» R ncemixdzVLudx + s R endlv X nujdx

R encurla® (ndiYxU")ujdx + VN R . ndzdiyxut X nujdx

VAIIR|[6]|curL(ndivX)[[2]|a;||3 + VA[|/?||6]]ri X

N

Cy/M\\WWVRW\2{\\cuMndiy,u" )\\2 + |in x d,div,u")\\2)MI\\Vuj

N

Hence, we can obtain that

E3SC + Cv-A + Cligilll + eiyllWujll

We now calculate the the integral E4

E4 = | clil(R « ndzu")ujdx

In
—/ V(R -+n) X dzU%dx + R + ncmixdzu’udx
Jn Jn
[
+ u”r X n) - ujdx.
Thus, since < C, we have
< n)l2M2  + lIRhllem\,d,u%lujl\2
+ R endu” «(n x uj)dx
VA Ja

1
R . ndlurl . (n x uj)dc

Integral by parts, we obtain

75 —\Vz/ / R« Vxu"cvLilujdx < « M lbllcurMb

56

(2.5.10)

(2.5.11)
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Since dib{x,t) = dtv{t, x, 0) + —dtu"{t,  x, 0), hence

[|5fCurl6(x, H)lI2 = lidtcurla:v(t, x, 0) + x, 0)]|2

Therefore, we can bound Eqg as follows,

el < I1g0url&0OM)I[2IMb < (11401 + iflzic(i» i) + (2.5.12)
Integral by parts, then E? —~ | A”b ecurlcjda;. Whence
Jn

BHM I U + 10220+ (3 1+(1)
(2.5.13)

As the argument in the estimate of Ei, one follows that

f ciirl((u" - u?) «Vb) .wdrc + f curlO. . V6) * ujdx
Jn Jn
< - e )*V6) ecurkjch

< cV cu I d V -Vb -« curlcjda;

R" -Vb- curlcudx

< VAIKIU|VE[|2|lcurM2 + iMi;|I6]1V6]|3||curla;]]|

+ + " f R-Vh- cmlujdx
Jn

< eullcuMl AC{llurjml

We estimate the last term of right side above,

R" -Wb- curltjda:
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Since plU + WbWH* < CJji/||i > 2 > i"—5 » thus

(2.5.14)

It is easy to verify that Eg as follows

|9 = (curl6 . - beVcurlw®) « uadx (2.5.15)

Since en = 0, we easily obtain

| 710 + 11 + 1w/ X, 0)diVati")curl6(jdx + / v{t, x, 0)dzu’cuilujdx

/ beVxu” - curltjdx

(2.5.16)
It remains to estimate the term / cuilfR.H.S) < ujAx. Set
Jn
14
cmli{R.H.S) eujdx =
Where
Di = — curl(#n) .wdr, D, curlAu”™  udx,
Jn
wdx, D4 = curl(2n «Vxdzu" ojdLr>
Jn Jn
D5 =jy curl(A“v(:r’ eudx, Dg —— - Vxv] udx,
Jn . Jn
D7 = — curl(v *WO) . cjdx, D8 = . ndzv) ujdx,
Jn
Dg = —v” | curl(?;. ndzV) .cjda;, Dio = — / curl(i;. ndzU?) ujdx?
Jn Jg
Di = — 2 . VxuC) -cudx, D12= | curl(A(™ . dzu") (jax*
Jn Jn
D12, = I curl(?;. Varti, . Lodx, Du = -7=  i"z’Q x n) ujdx.

Jn vAr Jdn
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As in the argument in the estimate of Eq, we can infer

(2.5.17)

Integral by parts and the regularity of u®, we have the following estimates,

\D2| = curlAt/ -to <C+||a;]
D3l = VA A%u’emlujdx (2.5.18)
. . 1
Since curia ; [2ne *xdzU”] = 2curln ¢ V&dzU, — 2n, —2n - X n
thus
(2.5.19)
Since
A hfi =0, &)+ 2 LM % ) o+ B X
+> (1 %)
Therefore, we can estimate the Lk to obtain
A, vt x 2 curlwdx <V V.
nix) (4)4), ACB
+ 2- . A - X ,
curlcjda: (2.5.20)

BIMIU, +Z 3 M + ndivxdzu'~  curlchda:

S 7 MIUo + MIS’I’i"—+IVMIL.

By Theorem 2.1.2, it is easy to see that

Del CUTH{U" “Vxv) =0jdx SCIMii + Il | curMli- (2.5.21)
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Directly compute, it is easy to see that

< cM2. (2.5.22)

From the regularity of / and integral by parts, we have
u-n ,
[78 — A A e emlujdx
(2.5.23)

< |[[/ITUMki > o]|curM2 < o-..H|V. II,.

Integral by parts and the uniform bound of dzU* and A(p, we also obtain that

3
1J 1A < + 7+ (2.5.24)

where C depends only on Next, we must estimate the last term
D14. Since curl[Va;(?] = dzVxg x n, thus, we have

1
\Du (dz’xQ X n) - ojd

(2.5.25)

scv4||uCl|g’2,. + IMIg-

In addition, by the Lemma 2.3.3-Lemma 2.3.6, we know the following inequality

(_jdt + 1-123mn([f IVepd : . < ClIM + C(I#IC||?'1 > 1+ + 1)1 1.
J JnxM. +
(2.5.26)
Since||latwC||?i, i+ w111, e+ 1 is bound in L\O,T), by the part (b) of Gronwall's
Lemma, for the 0 < "0 < 1 as in section, such that for all v € (0, we have
Imi,2<IRh2-7\\blll,2<Cu-
Since
M X 0T AR+ @ d k
poo
and vt x"z) = n |/ xAr})d7]. Thus from Lemma 2.4.1, we know that

l1gE “#)]112 < [MI,220+ “M|0'2'0.
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Consequently, we have got for any 0 < i/ < i/q

sup
O<t<T
"t

Thus the Theorem 2.1.3 is proved.

(2.5.27)
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Chapter 3

The existence of weak solution
for a class of non-Newtonian fluid
with slip boundary on the half

space

In this chapter,we consider the non-stationary problems of a class of non-

3n
Newtonian fluid which is a power law fluid with p > ) in the half space with
n +

slip boundary conditions. We construct the approximation solutions to some aux-
iliary problem by regularizing the convection term. Using the difference method,
we improve the regularity of weak solution to this regularized problem. Further-
more, the existence of approximation solutions is obtained by these regularity
estimates and Galerkin method. Applying the the local pressure estimate with
the Navier's type slip boundary conditions, and an L@®—truncation method, we
can prove the sequence of approximation solution converges to the required weak

solution for origin system

062
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3.1 Introduction

In this chapter, we consider unsteady flows of an incompressible fluid described

by the system

dtu — div.9(D(u)) + {u*Vju + Vtt — /> in R x (0°T)
V eu = 0, in X (0,T), (3.1.1)
ult=o = uo(x), in M7,

where u is the velocity, w is pressure and f is the force, and S{-) is nonlinear
stress tensor, which defined in Definition 3.1.1. We can impose the following slip

boundary conditions
u.nk=o 0 ((5(D(ii)) *n) - (n .S{D[u) .n)n)|lj=. = O. (3.1.2)

In fact, this problem corresponds to the free boundary problem for the non-
Newtonian fluids with free surface supposed invariable.

In this problem (3.1.1), there are two main difficulties. At first, allowing for a
non-constant viscosity always brings new complications to analysis, as the equa-
tion now becomes nonlinear in the leading term and the boundary conditions
are not clear. Other obstacle comes from the domain is not bounded. In the
unbounded domain, some required compact results do not always hold. In these
years, there are few results in unbounded domain to non-Newtonian fluid. For
example, M.Pokorny consider the existence of weak solution for the Cauchy prob-
lem in [93] and P. Galdi et.al(see [50], [84], [16]) obtained the existence theorems
of the steady flows for shear-rate liquids in exterior two-dimensional domains.
Here, we show how to generalize these existence results to half space in R”.

To overcome these difficulties, we begin to investigate the regularization of
the convection term to obtain a new system. Fix a positive number e > 0 and

cut the mirror reflection of the vector if by a characterized function on the ball
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{ic E M" : < -}. Then we can find a sequence of smooth functionsjue} which
is divergence-free and converges to the function u in suitable function spaces.

Therefore, for any £ > 0, we will get the following system

dtu - awS{D{u)) + {ue. VJu + Vtt= /- »in E” x (0, T)
e 11=0 in M~ X (0,T), (3.1.3)
= uo(”), in K+-
Hence, the convection term of the system above becomes more regular. It is
convenient to obtain the regularity, uniqueness and existence of the solutions for
above system.

To avoid the complication of the boundary conditions, we choose the stress

tensor induced by a p—potential as the following definition:

Let be the vector space of all symmetric n x n matrices " = (. . * We
n
equip M#{""with scalar product ~ :r] = ~ %ijVij and norm = D772,
Definition 3.1.1 Let p > 1 and let F : M+, {0} — IR+ ~{0} be a convex

function,  which is C* on the E+ - { -} > such that F{0) = 0, F'(0) = 0. Assume

that the induced function $ : M{ZEM+ |J{0}, defined through = F{B)),
satisfies
Y.{djkdIm~?)iB)CjkCim > 71(1+ Z | cf’ (3.1.4)
jklm
+ (3.1.5)
for all B.C G M/L{] with constants 71,72 > 0. Such a function F, resp. is

called a p—potential.

We define the extra stress S induced by F, resp./l> > by

S(B) = VLnb(B) =F{BY) B_
J
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for all B e M#J 1 {0} From (3.1.4), (3.1.5) and Fl0) = 0, it easy to know that

S can be continuously extended by 6'(0) = O.

As in the [33] and [79], one can obtain from (3.1.4) and (3.1.5) the following

properties of S.

Theorem 3.1.2 There exist constants ci, @ > 0 independent al71,72 such that

for all B,Ce there holds
5(0) - O, (3.1.6)
#lB) —S”icrm” —cy > Ci7i(l + + —cf?
+ (3.1.7)
IS{B) —5'(C)| < C272(1 + + — (3.1,8)
\S{B)\<c2j2{l + \B\'y-"\B\. (3.1.9)

Therefore, we will obtain the equivalent conditions:

duo. 0 12 3.1.10
X3~ ks - - )- G.1.10)

Prom these conditions, we extend the external force term / and initial velocity
UQ to whole spare by mirror reflection method and change (3.1.3) into a Cauchy
problem. Hence we show the existence, Uniqueness and regularity of the solutions
in (3.1,3). By the local Minty method, we prove the following existence theorem

to problem (3.1.1) with (3.1.2), or (3.1.10).

Theorem 3.1.3 Let UQ£f VpH H with boundary conditions (3.1.10) and S is
induced by a p—potential function from Definiton 3 1.1. Then there exists a

weak solution u G 1/0, T, Vp)n H) to system (3.1.1) with(3.1.2).

3.2 Preliminaries

In this section, we will give some assumptions, function spaces and definitions for

weak solutions. We will show the Korn's type inequality for unbounded domain
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and construction of the basis with boundary conditions (3.1.10).

Definition 3.2.1 Let - < p < o0, under the assumption of Definition 3 1.1.
Let f e or f e LP{O,T;Vp*), which is the dual space of Vp, and

UQ E H with «UQ= 0 in the sense of distribution. A vector function v G

T, H n T; Vp) IS called a weak solution to (3.1.1) if the following
identity
- {/ Y- dt4))dxdt+ J/Q t D{u) -u*u): D(l)dxdt
(3.2.1)
=/ / .()dxdt + | wo - (/)(0)dx
JQ st
holds for all = G x [0,T]) with div(/> ~ 0, ()f3xs’ = 0; and suppcj) C

X [0,T).

In this chapter, we will consider the following auxiliary problem

diu - divS{D{u) + (u-V)u + Vtt=/, m QRx (0, T)

V-7i = 0, in nji X (0,T),
aui au2

wl3=0 -~ =-~=0 on (0,T), (3.2.2)
axs axi

u=20 on r~x (0,T),

wlt=0 = (L in Mji.

Where TI" — QRH {X* — 0} and F» = QR fl SBR. The corresponding definition

of weak solution in (3.2.2) is following,

Definition 3.2.2 Lel‘g <p< ,under the assumption of Definiton  3.1.1

Let f e or f e L'MO,T] where (Vi(Oij))* is the dual space of
1/ '¢i_R)> and UQG L™ (0") with V +UQ = 0 in the sense of distribute. ~ A vector
function u G T; LM(Qjj)) n T; is called a weak solution to
(3.1.1) if the following identity

[u. [ {S{x, t, D{ii)) — u [Ju) : D{Odxdt
J

ar (3.2.3)

= f f erdxdt + f Uo-
JQr MR
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holds for all ( 6 X [0,T]) with div™ = 0O, = 0, and suppC C

Next, we show the Korn's type inequality and construct the basis in

with boundary conditions (3.1.10).
Lemma 3.2.3 There exists a constant C depending only on p such that

I\ull, < cliDiu)ll,

for all uG
Proof: Use the method of [50], since satisfies the condition of Theorem 3-2
in [70]. .

Now we consider the following problem

Ati + Vp = f, in VLR
e ew= 0, in Qi?,
dui
Us = 0, -~ =0 on Fp. (3.2.4)
ax* 3
n = 0 rL

Definition 3.2.4 By a weak solution of the problem (3.2.4)85 mean a function

ufx) G V2{i"R) such that
{D{u),D{v)) = {f,v), Wve V4inn)

Theorem 3.2.5 Assume that (/,v) is a linear functional on the space V2{"r)-

There exists a unique weak solution u G to problem (3.2.4)

Proof: See|[82 100 .
The following lemma concerns the well-posedness of problem (3.2.4) in VA(fifl)[]

W~'7ifIR). The proof can be found in [82].
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Lemma 3.2.6 Assume f G then there exists a unique solution {u{x),p(x))
to problem (3.2.4) such that u G V2{"r)|] Moreover, the followmg es-

timates hold:

+ iivpiligan) < C (11300 (1)+ (3.2.5)
€ <c (L)) +  IMIvhA7h)) »

where C is independent of u, f.

With the aid of previous lemma, one can prove the following proposition

Proposition 3.2.7 The eigenvalue problem

- Au + Vp —Xu, in HR
V «li =0, m
dui au2 1
= 0, — = — =0 on Tji,
0x3 dxz
li=0 on r”,
AGM, uG admits a denumberable positive eigenvalue {A"} clustering

at infinity Moreover, the corresponding eigenfunctions {a’} are m
and associate pressure fields Pi G Finally, {a?} are orthogonal and

complete in HUIR) and V2{"R)

Proof: The mapping A : f——> u defined by lemma 3.2.6 is linear and
continuous from H{flji) onto into Since QR is bounded, by
Rellich Theorem, we know that A is compact. It is easy to

know that operator A is a positive symmetric and self-adjoint operator on

Therefore, A possess an sequence of eigenfunctions ck:

Aai = Xittt c> 0,A"> 0, Xi 00 a.sk”* oo

By lemma 3.2.6, we can get for each i, there exists with the estimates (3.2.5).
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3.3 The construction of approximate solutions

To obtain a sequence of approximate solution for the problem (3 1.1), fix £> 0
and define a cutoff function ip* by
if kl < &

T =
0, elsewhere.

Define a reflection as follows;

{UIXI. X2, X3),U2(XX, X2, X3),U3(X1, X2, X3)) if 0:3>0;
u [X (3.3.1)

Therefore, we have obtain the following proposition

Proposition 3.3.1 Let u 6 T; IN(M?)) P L0, T;H). J" be the standard
modifier on R” denote Ue- " = + * Mi"eU*}, where P is the projector on the
iyi'2(1)#:)to V2[nR), then u.”ne with JLL”Mo =nd f div(iAFH®
u) *u = 0. Moreover, there exists a subsequence u”?, —. Uee u as € 0
m the T; "IN(M™)) for all p > 1, and WUr{e)llw"2 < CAMNlull2, where C is

independent of e.

Proof: From the properties of the modification and Cantors diagonalization ar-
gument, this proposition holds provided that u in the space T;
ase”™ 0. It is clear from the proof of lemma 3.4 in [82]. .
Now we will study the following problem
‘dtu - dwS{Du)) + (li"4)e V)u + Vtt = /" in E~ x (0, T)
Ve =0, in M~ X (0, T),
AL fiid (3.3.2)

A=A =9 3=0}x(0,T),
08 9x3 on {x Fx( )

ult’Q = uofx), in

L3 =0,
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The goal of this section is to prove the existence of a strong solution to the
problem (3.3.2) provided that e > 0 is fixed. Now we give the definition of the

strong solution for the problem (3.3.2) as follows

Definition 3.3.2 We say a couple {u, tt) = {u” tt*) Is a strong solution to prob-

lem (3.3.2) if
uelLD (0T, n 170 T; wfo'cP(iJ)) n /(0> t; vy n IO t; H)

5 elL2(o ,T;4c_); 7L G"(~ » T ;<

(3.3.3)

where p' = ~~"—-1 and satisfies the weak  formulation
p -

ﬂ_ljg)_( }Eﬂ/ A 3_: Dfip)dx + I (Ti*)M - ifdx &"D

=/ 7rdive/,da; + 1 f(pdx
Jwl Jml

holds for all ip G and almost all t G (0, T), at same time, the boundary

conditions hold in the sense of trace.

At first, we provide some definitions and recall a well-known result. Given

any bounded domain C
Definition 3.3.3 For any Q'CC 0, weput 5{n', Q)= dist((r, dn | {xg - 0})
Definition 3.3.4 For any Q'CC O, andg :0O ~, E* we set

"xk9){x) = 9(x + Xek) - g{x)y xGO',0< A< nk = [-3

where ei, 62,63 is the canonical base ofR". We shall omit the dependence on where
the meaning is clear.

For a give second order tensor D, set Sym{D) = [D” + D).

Lemma 3.3.5 For any u E and 0 < |A] < 5{p!, Q) it holds

IPA Hp , < AR, o2
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The following theorem and lemma show that the regularity and uniqueness of the
weak solutions to the problem (3.3.2).

9 /
Theorem 3.3.6 Let -<p < 2, f elPfQt)} uq GV CIH satisfies the boundary
conditions (3.1.10) , and S given by a p-potential from Definition 3.1.1. If for
any £) 0>u & 1/(0>T; Up)nL@) (0, T; H) is the weak solution for problem (3.3.2),

then this solution is also a unique strong solution to problem (3.3.2) such that

IMIi°°(o,r;ini2( [2))ni>(o'r;M 2'p(fy)) < <7(-, [0'] >ug, /, T), (3.3.5)
r [ (1+ ID{u)ly-"\VD{u)\Mxdt < \nluoJ.T). (3.3.6)
Jo Jtt' ~
[o]
lgllimADx{f +11&@4)@4)ILi"r;iA(w s Viy > 12), o,/ :r).
(3.3.7)

Proof: We extent the UQ and force term f to the whole space by the reflection
defined in (3.3.1). Denote these functions by u”®, /*.

We begin to consider the Cauchy problem as follows
‘dtv. —dwS(D{v)) + (vr,(s) + Vtt = /*>in R*x(0-T)
Vov = 0, in (3-3.8)
= in

Prom [93], There exists a weak solution u G 7/(0 - T; V(R ) n

to problem (3.3.8), then u G X R™). If p > 2 then p' < Z > and
u <

Uy() ® u £ U' ((0,t) X Ba), since G From the proof of Theorem 2.6

in [115], we know that

IMliy((0 » t)xs,) = %AW LP'm)xBa) + WA+ PlLP'm)xBa) +1)

where C only depends on P, T, f, UQ, a.
For any set cc and for any p > 0 such that 0 < p < 0), Set

Vip= {x * n; dist(;r > < p}. Now fixr < Q), there exists a ball Ba, such
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that fl C Ba Let us choose a cut-off function r/ such that 7= 1on fA>77 =0 in

(J

| 0 <r< 1Tand [V < —, < N in 02r, where the constant C
depends only on the geometry of dil.

If |JA] < r, it results that G L’ (€0, T) x Nisr)[]17(0, T; Wl >” (1)3r)) »
but it is not divergence free. Take A_A A/ )as a test function in the equation
(3.3.8)1, we obtain

(ut, + (S(D(u)), +  Cs@).Wu,
=(vr, + (/,

Set

J3 = Vu, A_x{r/"Axu)),
J4 = (vr,div(A_A(77'AAN))),

Clearly, Ji =22 RA ; A0 .Let I,(u) = f {IMDiu)(x+Xek)IMD{u)\r-"\v*xD{u)\'dx.
J2 ~2 S{D{u))A_xsym{Axu (g) }Vri)dx — f rI?’Ax{S(D(u)))AxD{u))dx
= J21- J22.

Since (3.1.6) »

J22 > Ci7i [/ (1 + \D{u){x + Ae™Ol + \D(u)\y-"\r]JA"D{u)\""dx = CijIx{u),

13211 <
Thus

< Al [1IVr:|s?/m(AAI @ VTrfIIILP ...+ \\rlsym{AxVur 0 V77)||LP{f23,)

< oo+ Mo 7

r r \Jn2r /
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Since r]V{Axu) = V{r]Axu) — (") *Axu, thus

a \7]V(A, u)\Pdx < CURTTI#+ Cp \7]D(Axu)fdx
/ r \Jn2r

However, by the Holder's inequality we have

1 2-p

folr"m ) < la@* f/ (1+ IDiufx + Xek)l + [Ty 2
'n2r / \Jn2r /
Hence
/ICA2
J2 < .(4) lzy(#r) v + Ch(u)HI + TR ) — CTFhiu
IVWKH] + Ch(u)HI + Mm3e) — CcTMU
< A2c(irw|,r'e)(L+ 11 « & — (Ci7i - e)hlu).

M = KJ> AAC2A 5 AT < 1AL D] ftr i
< wnwmr FI I 4@ ) + F )
< IOSADAN {WFCin. A + WAMWU%sr) +1) + i

From the estimates for pressure, divergence-free and the method above, we have

™M1 <2
d
B AI M
ClA|
< (IMII'p'ov) + 1) + =W
Now we estimate the term J3. In fact,
JiA= rj"*AxUn”s)  VaAxudx-2 "(AP(4) . VAAwl'Adx
Jfisr Jjr

=J31 +J32
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. 9 6p 3p . .
Since - < p< 2,then2<g¢g-= < p* by the Holder inequality,we
5 bp—0 6—p

have

J3l -

c

32 < - | 16 U7AAUL1111AA?N LLP (M3)

It is implies

Since 2 < g < p* from the following interpolation inequalities

IMIm 5] | (*M1/1 -

where 6 = %——~ = AN Therefore, we have

p—©6 2p

where

Qi=(1- da = 0<acx<l/,

5p — 6 2p

Since

74
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It infer that
331 <> IMK > T3 B TATT+I IW I TIJ(t) 117 A A 155 (S1(4)*+ A)
<&Mk srsBEALCL+ Lo DL Z AN ) 7 4) &

By Young's Inequality, we have

iJsl < gIMIL » ,T;H)|A|(i+&HF (I + |IVi(I,+(Qu3L'l+Zj§Q2)5'

Then choose 6 and 5' satisfy the following identities

From these identities, we can obtain a —(Ej}ﬁ; . P)e Since p > g,thus
p_

O<a<1l1 (1+ + QsM = 2and < 1. Therefore,

Combined these relations about Ji, *¢+,J5, we can conclude that

jd"h"Mr"r) +(Cni - A(u)
A CA2 (1+livuirip(...r) + IMIZ (fH) +11/11=,(H J (3.3.9)
s Mg R AL+ e (EBe)
Since (1 + + = 2 and set
'W = J|Mh. 'nH) (1+ 11+ (0—)
(3.3.10)

—C@+ + + W2 27 HD)

where C does not depend on A, u. Hence (3.3.9) can be rewritten

el E OHIB+ (W - Aé’

FOoBFII?22\:,
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Since p > 0 is easy to know that ~ ~ < 1. Whence by Young's inequality, we
z

have

Z1LF111%+ « ~ -

by the Gronwall's Lemma, we have

< A I "@Wexp "(r)ydr ds exp / r(s)ds.

Assume that UQ E V, then we have for all t G [0 T]

S OTT e FYSTIT20) + "+ r() exp (— Y r(T)dr)ds exp i(s)ds.

(3.3.11)
Ciji
Choose e= é“ and from (3.3.10),(3.3.11), we have for any t £ [0,T
-4 w4 + / m < c (3.3.12)
where {u) = | (1+ 2IDW}\Y-MDiVu)\*dx and C depend on auvQ!l, T r

Jfir
Since
r nu)+ /Vhilpch.)
Jo Jo Jo

for all ¢ G [0,T], thus \WLP{o,T-w¥p(ar)) < C. Multiply (3.3.8)i by rfut and
integral on the we have

<2/ 1 +"KDO))"BZ W\ *Vwiutdx (3.3.13)

+2Z T™WZer]Utdx+ / f «ij utdx.

J ilSr J Nisr
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1 1
Since P H——< 1> by Holder inequality, one can
p

f IWS(D{u))7jutldx < «( ® @ | 1 # or )

Jfisr

[/ ttvt2-ijutdx + / f e rj'’utdx < C\\Vrj + " H i E[] + fhinajlvAthiisr-)-

By Young's inequality, we can obtain that

where K depend only on p, a, uq,/, r, [[V«/[1p(k3x(o,t))-

In fact, from this proof, we can see that the bound depends on the mea-
sure of O and O! Hence, we have if the radius of the ball B is fixed, then
I < C, therefore, we can see that u E CP{B® for almost t ¢
[0,T]. We use the following argument ( see [50]) to know that u{xt) 0 for
almost); G (0, T), as — 00. Let the radius B be one, suppose that there
exist £ > 0 and a sequence {xn} C R” with lim —> 00, such that for al-
most £ 6 (0,T), u(xnt) > e. By the continuity of t), then we get that if
la;—Xnl < = min{l. A then u(xt) >Z Without loss of generality, we

Ly
assume that \xi — Xj\ >2 provided that /i _ j thus

iy i

f ([ lufdx)dt >V / (] lufdx)"dt = +0o0.
Jo JRA j Jo  Jsixj)

and this contradiction the fact v G 1~(0, T;

From the fact u{xt) 0ae. tG(0,T), as 00 and estimate (3.3.12),
we can conclude that the weak solution is unique. Actually, assume that u,v
are that weak solutions of problem (3.3.8), then set e ~ u —v and multiply the

difference of the equations of v and v by e. After integral on the we have

{dte, e) + ) —A(IAW), D(u) - Dfv)) + Cs()e - v 'vd, e)- 0.
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This reduces to
<Xt €li2(R3) + (S(D(n)) —S(D(v)), D{u) - D{v)) = |(e”(@).W > e)] (3.3.14)

Since B5&) > UuE) G and the support of , are contained in Bi.

Hence, from the inequality (4.2.16), we have that
@-u,e)<l—=@W15sE)|[|e|b(,) < C|Vru|lioo(o T;L2(Bp)]|lle]li2(,).
Use the Gronwall's inequality in (3.3.13), we have e= 0, i.e. u = v. Define

U* = (uixi, X2,-Xs), U2(X1,X2, -X3), -Usixi, X2, -X3)
™™ = 7r(xi, X2, —2:3), Vx G MA.

Then by the method in [15], the couple (u*, tt*) is also a solution to problem
(3.3.4) a.e. in R x (0, T). Hence by the uniqueness, we know that uv* = wu.

From the regularity of v and Sobolev imbedding theorems u(x) is a continuous
function on Bj. for any r > 0, so that from U3{x) = —us{xi, X2, —a"s) we know
that ti3|a;3=0 = 0. Analogously Ui{x) = Uixi, X2—J13), Vx € = 1, 2), satisfy
the conditions (3.1.10) in the sense of trace.

By takeing into account the properties of regularity of u{x)y and Theorem
7.1 of [15], we know the solution uff) to problem (4.2.4) is simply the restric-
tion of u*t) to the half-space M+, and |[V"/|[i>(R;Ix(0 > r)) < C'lIVif|]iP(R*x(0,T)),

< Since if is a weak solutions to problem (3.3.2),

therefore, we can obtain the following estimates

MUo, T;H) + < WIlr + MG; "(BAx( - > T)), (3.3.15)
from these estimates, we know that C, K depend on a,r, ug,/, do not de-
pend on u. The theorem is completely proved. .

By the minor modification of the proof in theorem above, we can obtain the

regularity results in the case p >2.
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Lemma 3.3.7 Letp>2fe Qr) , Wo G satisfies the bound-
ary conditions (3.1.10) , and S given by a p-potential from DefimUon 3.1.1. If
for any E > 0, u e /I/(O, T; Vp)fl T; H) is the weak solution for problem
(3.3.2), then this solution is also a unique strong solution to problem (3.3.2) such

that

rf {i + |D{u)lY-"\VD(u)\'dxdt <
./O e

—) + [IW)[[L«>( = 2 ) ) < i) wo/,T)
IMb(( > » T)xfff < Q), lirl - 45,1, T)

Prom these regularity estimates presented in Theorem 3.3.6 and lemma 3.3.7, we
can obtain the existence of unique weak solution to problem (3.3.2) stated by the

following theorem.

Theorem 3.3.8 Let p > e I/ (QYI]L. ~Qr) uqg E VHH, and S given
by a p-potenhal from Defimtion 1 Then for any e > 0; there exists a unique
weak solution for problem (3.3.2) Uge T; Vp)nL'"{0,T] H) and satisfies the

inequality  (3.3.15), there, the constant C is independent of e.

Proof: From the proof in Theorem 3.3.6, it is easy to see that the weak solution

is unique. We will use standard Gaierkin method to prove its existence.

Let
(0] (00]
AN (Jd Oli= 1 G M+ :[if] <
R=1 R=1
Fix > 0, we consider the auxiliary problem (3.2.2) for the initial u> —

and external force term /H-=Xfiji(I)/. As in [82], we know
that UQ UQ inV NH, R4 oo and/" / in
Choose the sequence {af} is the eigenvector of the operator A as in Proposi-

tion 3.2.7, then {af} is a basis WM QR)nV2(QR}. We look for the weak solution
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to (3.2.3) of the form

For simplicity, in the clear meaning setting, we omit the superscript R. Therefore,

Ck,m[t) solve the following system of ordinary differential equations

E(fm > ak) + (S(D{u*)),  Dfak))—(~(4)> JlUm,  Vafc) = (/, Mc)-  (3.3.16)

Due to the continuity of S) u’ (s9m the local-in-time existence follows from Caratheodory
theory. The global-in-time existence will be established by the following a-priori
estimates.

Multiply the equations (3.3.16) by Cfc[( > then sum over k and integral on (0’ £).

We easily obtain

thhinn)+J/V... = (/,xO+IW — (3.3.17)
o
Hence
S < mow F WEM3IXOT)
(3.3.18)
From (3.3.16) and (3.3.18), we infer that N C(-R, e, M)
It follows from these estimates, and Aubin-Lions Lemma, we have
u ..u weakly in Z/(0, (3.3.19)
weakly* in L~(0,T; (3.3.20)
weakly in T; ; (3.3.21)
u. strongly in I5Q7)) qge [1,%F (3.3.22)
S{D(u®)) - weakly in i/(1)H x (0, T)). (3.3.23)

From these properties, it is easy to see that

ut dic) + (S% Dfak)) - (Urj(e) .Vafe,u) = (/, a). (3.3.24)
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Multiplying both sides of (3.3.24) by Ck > m and summing over k we find

{uuUm) + (4 » D[U a1 —. u) = (/,un). (3.3.25)

Let us pass to the limit form o0 o0 in to this relation. By the convergence

properties (3.3.19) and (3.3.21), we know that as m — oo

f  {utUm) f {UUU) = -
Jo JO
)] ST - FI\SR,. D{uy).
Jo Jo Jo Jo
Since
e . vir, U) - (UMe) . Vu, u)= (U54)® u) . «(Ur  — u)dx
JL1
From (3.3.21) and (3.3.22),we know that u”4) ® ~ G 171fli x (0> T)) whenever
9 fT
p = Hence / (Ur(£) *Vum, u) 0 as m ™ o0, since W'(e) .Vw, u) =0.
5 Jo

Siibtracting(3.3.25) by (3.3.17), passing to limit as M oD, we get
lim S{D{u*)),D{um))dt=" f {S/,D{u))dt 3.3.26
J6{{{)){)) JO{ {u)) ( )

By the monotonicity property (3.1.7), we can write the following inequality

fis{D. (y) — (Diunr) — > 0, (3.3.27)
Jo
For any @3 G i/(0,T; Thus, pass to the limit as m goes to infinity into

this relation and using (3.3.21), (3.3.23)and (3.3.26), we have

w

[(}P—S{D{<l))),D{u) — D™)dt > 0, (3.3.28)
Jo
For all 43 e LP(O,T; Kp(Jl)), Take N = u — c> Oemd e 77(0° T, we
have that
Jo

Letting e 0 and using the continuity of S, we arrived at

- S{D{u), D@)dt >0,Vpe il(0, T: Vp(n)
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Choose —ipin place of Lp, we get

["(#F-S(D{u)),sfdt<0ve i/(0, T; (2))
Jo
This implies that S = S(D(u)) a.e. fin x (0,T). Thus the existence of weak
solution uR to problem (3.2.2) is proved.
Next we must consider the limits as R tend to oo. Now we choose a sequence of
real number {Rn : N eN} increasing to infinity. We set un = u? and extend
uv to zero outside fus to obtain a function still denote uv G T; H N

T; Vp) and satisfies the following a-priori estimate

Asup™ ThiviUW + hN\W\Lp(o,T-y,) < Noll?/ + M| —(K3x(O - T) K. (3.3.29)

Clearly, K is independent of N and Take RN > - large enough, since G

CS°(Bi), then A UN G x (0,T)). From (3.3.29) and interpolation
. , 1

inequality we have ||iiWe)iv 0 *"7v||1p’ @3 x(o, 1)) ~ K). let "K = Therefore,

from the equations (3.3.25) we obtain

By the Aubin-Lions Lemma, we know that there exists a subsequence un® u
in //iilRX (0,T)), thus UN*— u a.e. in E* x [0,T].
We choose /G x [0,T)) with diYcp = 0 c/slif=0 = 0, and supp0 C

Rl X [0,T). There exists a number K = K{(j) > 0 such that G = supp0 g

QNK X[0,T) for k > From the formula (3.2.2). we can obtain the following
identity
-/ Aun, -<di(l))dxdt + / S{x,t,D{uN,)) : D{(l))dxdt
e iii} ‘ (3.3.30)

—/qiUrfie),Nk ® UNK) « D{())axat = /  Uq+ 4>{0)dx.

From the estimate (3.3.29), we know that um v in S(x, t, pumk) A

S in the space //( Q) and li"(ayAMc ® mkIL2(Q) < CAluoll%, by Vitali's theorem,
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we have as A" 00

/ (uiVfc = dt(p)dxdt —A / (n + dt(/))dxct,
JQ JQ

Jé {uNk ® uj*k) '» D{(f))(ixdt 60 [u#] 0 u) : Df(p)dLxdt.
From these convergence and the formula (3.3.30) » we know that
f {S{x, t : D{(*)dxdt [ (S: D{(P)dxdt.
JQ JQ
One need to check that S(x, t, D{u)) = S a.e. in x [0 T). It suffice to prove

that

f iS{x, t D{un%) : D{(l)dxdt | (S(D(u) : D{<p)dxdt.
JQ JQ

Indeed, observing that for any R* > RNK the solutions UN satisfies the hypothe-

ses of Theorem 3.3.6 and lemma 3.3.7 with Q —#7/{ and fixed a set such that

cca' x (0,r)ccnw~nx (0,7) wegetthat v» £ i/(0, T; and
+ 1|V'wivJ|LP(n'x(0,r)) < in the case I<P<2-
s o
+ I[VVju2(n'x(0,r)) < in the case p>2.

From the boundedness above and the Aubin-Lions lemma we obtain that
VuN, Vu in X (0,r)), VUN, — Vu ae. in G.

Therefore, Sfx, t D(uNk)) [ (T.,J7° D)) a.e. in G, then by the Vitali's theorem,

we get as c — (X)

f ({Stx, t D(mJ) — (S(D(u) : D(4>)dxdt =

JQ

f {(Stx, T, DIUNJ) —(S(D{u)) :D((})dxdt — O.
JG

Whence, this proves the theorem.
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3.4 The proof of Theorem 3.1.3

In this section, for brevity, assume that / = 0, we will give the proof of theorem
3.1.3.
To this end, we still need a lemma which presents the local estimate of the

pressure with slip boundary conditions.

Lemma 3.4.1 Let G CC 5G X [0, TIf (r > 1) with . =0

and u G L@ T;77(G)]” with V eu = 0 (in the sense of distribution) Suppose

that
nT}(f) ucifidxdi + / / rf{)S : Vcpdxdt = 0 (3.4.1)
. J Ja JG
holds for all if G CMG) with V «ip= 0, * JLI¥j=0 = 0 and 7]e T) Then
tkere e’s a umue funcUon . e L@ (0, T;LMW ) ff f A 0, such
JG
that
—/  (ut) - u(0) e(pdx+ / S :Wifdx = | TT@)e . "dx (3.4.2)
JG JG JG

holds for all ip G CNG) with (penja3=0 = 0. Moreover,

WIL™{0,T,L-{G)) < CXIWL™(0> T,1/(@) + [[5[IL” Q1) (3.4.3)
where C dependent only G, r and T.

Proof: Let aft) = / u <ipdx and _ = S : for ip e CHNG) with

JG JG
(f *nja;3=0 = 0. From the formula (3.3.1) and Fubini's Theorem, one yields

- m/dt = (3r]dt.
fo fo

Since S GUIG x [0>r]) thus a G and -~(a) = -(5. By the Sobolev
t

a
Imbedding theorem, we know that a is continuous in the interval [0, T] and

[(u(t) —n(0)) *(fdx+ f f S : Vifidx = 0
JG JO JG

,denote Sft) = f S{s)ds, t e [0,T] By the Fubini's Theorem,
Jo

f (Ut - uf0) eipdx-l- [ Sft) :Vepdx = 0>
JG JG
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From the Proposition 1in [50], there exists a unique function 7r(i) € U(G) with

/ 7T{H}dx = 0, such that for any (p6 C*{G) with +n[33=0 = 0 such that
'G

-/ (u@) - u(0)) | S-.e(Mdx = [ Tr(i)V +irdx. (3.4.4)
JG JG JG

In additions, there exists a constant C > 0, depending only on r,n, and G

(see [6])such that
[TtTALrG) < C(\luft) - + TIFIUkD)) *
Choose any v 6 | '(G) - there exists a function ip G DA{G) such that

Ver=yuy—yn fuda—V—wvg

L&L  JG
see [20]. Thus (3.4.4) implies
/ 7ifyvax = / T T (4 — — / {uft) - ?/0)) «'i)dx + / S :V~da;.
JG JG JG JG

Since the function on the right side above is continuous, so also the function on
the left. Consequently, 7r(t) G L*{o,T] L*Q)). By the Holder's inequality, one

easily verifies the following a-priori estimate

Remark 3.4.2 From this proof, we can conclude other estimates for local pres-

sure TT as follows
IV i"Gx (0 T)) < <A(|M|2/(Gx(0,r)) + [IS'[IL(GX[0,T]))-

The proof of Theorem 3.1.3: Let Ue e r/(0,T;Vo{RI) n fl)

denote the weak solution to the approximate system (4.1.12) from the Theorem
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3.3.8, and we have there exists a constant K > 0 only depending on the initial

data,
BT 12 + |WellLP{0,T;Vp) - K- (3.4.5)

By (3.1.9) and interpolation inequalities, we obtain that

(3.4.6)
\ 3.4.7
Wi—(Q) ik (34D
1 .
where — H~— = 1. Prom the boundedness (3.4.5)-(3.4.7) and Proposition 2>
P P
there exists a sequence of with — 0 as It —oo and functions u G

1/(o, T- I"p(R™)) n L@ (oT; H) and S GI/(Q) such that as k » oo

ugk U, weakly*in L~(0,T; H)
Ue”a u, weakly in T; 1"p(RYy),
(3.4.8)
weakly  1/(Q),
p(w+2)
Urek)® Us in LAM[Q).
Then the identity
/Q (u - dt(f))dxdt + 5Q (S-uu): D(*)dxdt Uo - (f>{0)dx (3.4.9)
holds for any <p G x [0, 7)) with «.0 = 0and ()-nja,3=0 — 0. For simplicity,
sometimes we denote Uk = u™, Sk = S(xt, To end this proof, we must

prove that S = Sfx, t, D{u)) a.e. in M+ x [0, T]. As in the [79], it suffices to prove

that as k ~ oo

{5{x,t,D{uk))-S(x,t,D{u))) : iD{uk) - D(u))dxdt 0 (34.10)
'Gx[5,T-S]

T
for all bounded compact set G C M+ and any 0 < 6 < —
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If (3.4.10) holds, for any cutoff function GG ()i x (0,T)), then

f{S S{x t,D{v))) e« {D{u} — 2Z2)Bthd -
Jgq

11§~ Sk tD(uk) : {Dfu) — Dfi)))mxdt
Q

—[{Sfx,  tDfuk) — Six, t D{u)) : (Dfuk) —  Dfu)) dxdt
e
+ Jg {S{x, t, D{uk)) — S{x, t,D{v))) : (Dfuk) - D{v))mxdt
— h +h + h
By the (3.4.8) and (3.4.10), we know k -4-o(i - 1,2) as 0o. From (3.1.7) » it

shows that /s > 0. By local Minty Trick theorem (see the appendix of [115]), we
know S = S{x,t,D{u)) a.e. in IR+ x (0,T).

Next, we will prove that (4.3.9) by some truncation method. As in [44]
or [23] > Let/ = + + + |S{x,t, D{u))){\D{uk) + D{u)|). The
following lemma shows that the properties of g on R* x (0, T), its proof can be
found in [44] for steady case and in [23] for the unsteady case.

n
Lemma 3.4.3 ” > o0 -thereexists L < ~ and there is a subsequence
and sets E* = {{x, t) G x (0, T) : < luk- ul < L} such that
/ g"dxdt < T}. (3.4.11)

Denote Q* —. GM~AX(0,r) :lukul < L} andij* = {uku) (1- min ( 2N ANV
Then we can prove that the following proposition described the required proper-

ties of ipk.
Proposition 3.4.4  (1)i" e 10> T; vp)fl LB (o, T;E) and

x(0,r) < L;

(Z)ljJAJ 0 in
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3k — Qin 1/(0> T; for all 1< s<
(4) 1< and
|divYf;’ iP(RXo > r)) < Crj, [VANiP(Rtx(o- T)) < Ci],

where C is independent of k and XQ* denotes the characteristic  function of

the set Q%;

Proof: It is easy to see that (1) and (2) hold. By the simple calculation and
(3.4.11), we know that (4) hold. Now we check that (3). Indeed, since e A
LP{G) is compact for all G CC RJ, it follows that A 0in T; LMGY))
and there exists a subsequence which denote A Qae. in Gx (0,7T) := GT-

Therefore, for p < s < 00,

I 1hYd— < I iriWx(. 'T))[ | fird 51 < MmiUo.) < 0(1).
JGx JGt

For 1 < s < p, we have

r VAN A ) AT -
iMdxdt < 1" IMfdxdt . Gt <K G'T
cT /
Let < 6small enough, by Vitali's theorem we have " Oin 17/0, T;
for all 1 < s < p. Hence, we proved (3). .

Consider the following problem

= —in E~*;
CZ;A =0, on {X3 = (0}
k 0, as i —
Then there exists a unique solutions with the form ( 82 101
0 N(x,y. dhnp%,{)&y e M
where
Ni{x,y) withr* = (yifls> —{h) Wy G M:

LLTil R - y*
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By the theorems on the singular integrals (see [104]), we have the following esti-

mates
e 27 110 9 240 T);
(3.4.12)
< < On.
For any bounded with smooth boundary set G C , we can choose another

set G CC G' CC R+, and any positive number » > 0. Define smooth, functions
7 G f-) and CG CJ'(G') suchthat 0g r I in T —X)andt =1

in 0<C< 1linG and =1in G Let/ = rC(/ - V~"), then

Use the Lemma 3.4.1 for &kand ISk —™fc) ® UKIILMG%x(0,T)} < C, where C

only depends on G/ and r=mini— ~ < 2 we have there exist TT"
p—1 6
with vanish mean value such that

(S(x,t,V(uk))-S) ;o VAdxadt
IG'
=/ {uk — u, dtO*"/t
JGT
(3.4.13)
—/  {uBf ® Uk_ uz> u)Vdxdt
JGT
+ f (" - 7r){V - Adxdt.
k
for all ~ G C"iQ x (0,T)) with ~ e = 0 holds and the estimate Utt" -

< C.

From Remark 3.4.2 and (3.2.1), it follows that

ITWliix > T,-1", < C,

where C does not only depend on k. By Aubin-Lions Lemma, we easily obtain

that UK Ua.e. in G x T —3S) = GST-
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Take (& as a test function in (3.4.13) , we have

P
/ S{x,t,D(uk))
JO

- f S :Vipdxdt - f « - u, (fiY)dt

JQ Jo
+ f (7r7-7r)(V-/)dxd”
JQ

=+ 2+ I+ cu

From proposition 3.4.4, we can know that Di 4 0 as kK * o0o. Since ||V ¢

5 8
= Ihze(fc) . < C, where a = ~p > 1 provided that p > -

and C is independent of k. Therefore,
Ds < |V «{ustk) ® Uk — u ® _ Vz*)\dxdt
< CWij* - = o) as k”* oo.

From the argument above, it is easy to see that

D4 < - 7r]|L-(Gy||V ¢ HI = 0(1)
In fact, since « . = rVC (W& — + ?),thus from Proposition 3.4.4(3) and
(3.4.12), we have
Now estimate the term D2, Let w = Uk—u G T; Vy, then by lemma 3.4 [82]

there exist a sequence Wn G (7°°(0, T; D(R”)) with divu;» = 0, and such that
ni — w' in 1/0, T, WMiG))) and Wn2 win 1/(0, T; Vp). One have
Jo

-lim f «,rCK((l - min(I~, 1) - VZ)dt = DA + D2,.
n”*oo /n L
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Let
if kni <L
12 it W > L,
Therefore, we know that
"T
= lim f f <tCK(1 ~ 1))ddt
JL4(1)Jo Jn L
=lim | f {rCFn{xt)ydxdt - lim [ f T'CFJx,t)dxdt
Jo Jn —(1)Jo Ja
< OCIG'IL"
Since divwn = 0 so0
p p
D2, = - lim f f {wCVz")dxdt = lim f f (wtVCiz* —  z"))dxdt
Jn Jo JQ
< JIA IKIir(O'IW-i, (G)|IVC(ZF1-~" ) lljy(o'T;wi,"(G"))
< JM™ O IKT/0 > TWAMG)) IV (Alizy (6, TXGY)

-0(1).
So far, we can conclude that
fip
f f Sfx, t D{uk) : Dfip")dxdt < o(l) + Crj, as k — oo.
Jo Jul
It following that
"T
f f  S{x, t D{uk)) : D) Tfdt
Jo JRI
< f [ S{xtD{uk)) : D{Vz")rCdxdt
Jo JRI

- [ f  Six tD{uk) : ((I —Vz») (g +C)Td:rdZ + 0(1) + CTJ

Jo Jm.1
Since [ [ S { x ,t D{uk)) : D{Vz")TCdxdt <X||VV]|z,P(Q)<C7/from (4.12):
Jo JmI
and
pr r
ff S(x t D(uk): (& - 0 VCO)rda:d* < = 0(1).

Jo JmI
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Therefore, we have
"T
[ f  S{x t D(uk)
Jo 7R3
where C is independent of k, r]

On the other hand,

92

Dfili")TCdxdt < C77 + o(1) as k

[ f S(x,t,D{uk)) rCeMZz
Jo JRI
/
Uk- ul |
= f  S{xtD(uk)) D(u 1—mm ( Ll
JjQk
Uk - u ) )
+ JIQ A S{x,t.D(uk)) sym . )® V|?ifc — TTjdxdt
(S{x, t, D(uk)) — S{x, t, D(u))) D{uk — u)T(dxdt
+ / S{xt, D(u) Dfuk - u)TCdxdt
Jar
t Dk) Diuk —u) mm ™ Y gajan
f ( g% —
+ / t, D{uk)) sym (T)<8) —ul ) rrjdxdt
= + J2+ J3+ J4
uro-u )
where sym ),0 V\L‘Ik — U\IJ ISthe symmetric part of |
~ r

Clearly, since D[Uk)1 D{u)

in If (Q), thus J2 ~

proposition 3 4 4, we can compute that

13| + |=/4] < f \S(xXD{uk))
JEA

+L

<

/ \S¢x, t D{uk))

Oas A" o0 As in (4)of

D{uk-u)\dxdt

Dfuk -  u)ldxdt

f ghxdt + L f /drdf <ri-|-KL

<Cr)

Consequently,

/ i, D(uk) - S{x, t D{u)) Dfuk - u)T(dxdt

< o(l) + Cry, as fc oo

(3 4 15)
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Since Uk u a.e. in x (6, T —6) and G, d are arbitrary, thus we know that
Uk u a.e. in . Hence, choose a sequence which still denote {uk} satisfying
jiCli.\ Q"] < 2——for all A6 N. Thus there exists kge N such that 24 < and

one can find

=ko-j-I
Setting M = [J {G'T1 Q"), from (3.4.5)-(3.4.6) we have

fc —fco+ |
/ (K:c-t D{uk)) - S(x, t, D(u)})) :D{uk - wT(dxdt < Cr. (3.4.16)
M

J
Whence (3.4.15) and (3.4.16) infers that
/  {S{x, t D(uk)) —S{x, t, D{u)) :D{uk — u)TCdxdt < o(l) + Crj, as A-> oo.
JG't
(3.4.17)
From (3.1.7), it implies

/ t, D{uk)) - S{x, £ D(u)) :Dfuk - u)xdt 0, as k 00.
JGST

This proves the main theorem.
Remark 3.4.5 We can assume that f € LPY0, T:V*) N LANQ). Then all esti-

mates (3.4-5)--(3.4'7)  also depend on |[/|i,p'©T-v)nL2(Q)- In the proof of (3.4.10),
T

we must estimate the term 1 (/, Indeed it is easy to obtain it as follows;

Jo

ru. &t < r{f,r(:{uk-u))di-r if, rfuk - umm

f(], <o,

1)dt

The first term on the right vanishes as k 0o, while the second term is estimated
analogously as J3 and J4. Finally, the third term is small thanks to (3.4-12).

Therefore - we  obtain
n
[<o(i)+c7T7.
Jo

It shows that this term can not change the statement of the main theorem.
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12
Remark 3.4.6 I/fp > 5 use the the theorem 1.2, of [15], we extend the basis ak
to whole space. Then apply the argument in [33], we can obtain the weak solution

IS a unique glohal-in~time  strong solution for the problem  (3.1.1).

9 12
However, if s < p < Y use the basis obtained above and the argument

m [33], one can get a unique local-m-time  strong solution to the problem (3.1.1),

hut we cannot know whether the weak solution is the exact strong  solution.



Chapter 4

Smooth solutions for motion of a
rigid body of general form in an

incompressible perfect fluid

In this chapter, we investigate the motion of a general form rigid body with
smooth boundary by an incompressible perfect fluid occupying Due to the
domain occupied by the fluid depending on the time, this problem can be trans-
formed into a new systems of the fluid in a fixed domain by the frame attached
with the body. With the aid of Kato-Lai's theory, we construct a sequence of suc-
cessive solutions to this problem in some Mform time interval. Then by a fixed
point argument, we have proved that the existence, uniqueness and persistence

of the regularity for the solutions of original fluid-structure interaction problem.

95
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4.1 Introduction

In this chapter, we investigate the motion of a rigid body immersed in an
incompressible perfect fluid. The behavior of the fluid is described by the Euler
equations, while the motion of the rigid body conforms to the Newton's law.
Assume that both the fluid and the rigid body are homogeneous. The domain
occupied by the solid at the time is 0ft) and Qft) — | O(t) is the domain
occupied by the fluid. Suppose O{0) = O and 11(0) = ft share a smooth boundary
dO{ov dfl. The equations modeling the dynamics of the system has been in the
introduction, see (0.8)-(0.15)

To solve such a problem, we must fix the region occupied by the fluid. For
simplicity, we assume that / = 0,Wwo = 0, frbo —0 and Trb — 0.

Generally, it is natural to adapt a ideal by attaching the coordinates system
to the rigid body. Let Qft) be a rotation matrix associated with the angular

velocity oj(t) of the rigid body, which is the solution of the following initial value

problem:
S (4.1.1)
Q(0) = /d
Here
0 -673
A(uj)= @ o U
| —1)2 0

and /d is the identity matrix. Then the domain 0(f) is defined by

Of{t)"{Qit)y*h{t):yeO(0)}.

Set
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xXQt)y  +  hit), e/, )= + WL 0,
ply, Y)=p(Qitly +  hit)), hit) = f Qfsfh{s)ds,
J=J{0), ofyt) = Q(tfy

where Qft) is given in (4.1.1) and Q{t)* is the transpose of Qff).

After the transformation, an equivalent system is obtainded as follows:

d
dl; + [{u-h' -6 Xy) eVju +"~ X +Vp=20, in OX|[0,T], (4.1.2)
div ii — 0, in U X [0,T], (4.1.3)
uen = (" LIXy) *n, on du X[0'T. @19
mh" = / pndT - muft) x hli), in[O,r; 4 1.5)
Jan (4.
Joj"n /  y XpndV + {Juft) x Cjit), in[0 > r: (4.1.6)
JdQ
- Uo, yen, (4.1.7)
h(0) — 0 ~'(0) = Ig, d;(0) = Wo. (4,1.8)

The new problem is a fixed boundary problem now. However, there is a term

X+ V)]u, whose coefficient become unbounded at large spatial distance. For
the 2D case, the difficulty was overcome in [92] by assuming that Uqg belongs to
some weighted space. However, the 3D case is much more complicated, since
vorticity does not satisfy a transport equation any more. To avoid this term,
we will use another change of variables. The new transformation coincides with
Q{t)ly + h{t) in a neighborhood of the solid and becomes identity when far away
from it.

More precisely, fix a pair of functions (I(t), (j(t)), let
(4) = / |I[s)ds, t e [0,T], (4.1.9)

Vix, ) = lit)+ uit) x(x- hit), 0,t)G X[0, T (4.1.10)
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which is a rigid body movement.
Choose a smooth function ~ : KA E with compact support such that ~a: )=

1in a neighborhood of O, and set

Then introduce the functions W and A,
VAOTr, t)y=82Z@4) X Or —hit)) + | Z (5 (4.1.11)

Alx,t) = ipV + X w. (4.1.12)
It is easy to check that A satisfies the following lemma.
Lemma 4.1.1 (1) A{x, t) = 0, if x is far away from  Oft);
2) = hi{t)+uft) X (x- hft) in 0t) x [0,TI;
(3) div A =0 in R x [0,T];
(4) For all t e [0,T1,A(-,") is a function. Moreover, for every
Se N-JAC: > IF NUE3) < sTHRYL  + lic; @)/
(5) For all x e M", the function A(x, °) is in provided that e

(7°[0,T].

Next, consider the vector field X[y, ) which satisfies

l

= A{X(y.0).1), te(0,TI

dt (4.1.13)

Lemma 4.1.2 For every y G M* the initial-value  problem (4.1.13) admits a
unique solution X{y, °) : [0, T] —> E”, which is a C” function on [0,T]. Moreover,

the solution has the following properties:
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(1) For all t e [0, T]the mapping y h-}X{y,t) is a diffeomorphism from
O onto 0ft) and from O onto 0(t).

(2) Denote byY(,t)  the inverse ofX(-{). Then for every x G the mapping

t t) IS C, continuous and satisfies the following initial value problem -
dv{x, s]
ds (4.1.14)

Y{x, 0) - o GM"

Where Jx is the Jacobtan matrices of X{y, t).

(3) For every xy G R" and for every t G [0, T], the determinants of the

Jacobian matrices Jx of X{y,t) and Jy ofY(x, t) both equal to 1, ie.,

(4.1.15)
For the proof of Lemma 4.1.2, please refer to [103
Let
T= J1)° v = JY(X(y.0).Qu(X(y.).0),
q{y,)=p{X{y,t),t). _ =Qitfhit), (4.1.16)
m =Qt f , Rt = Q)'ujft).
Denote
axk axk
(4.1.17)

193 34

ok - f

Now one can transform the original system (0.8)-(0.15) into the following
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system, which is a fixed boundary problem, (see [103])
av .
M Nv + G-Vg = 0, in0 X P-T] (4.1.18)
m
div » —0, in Q [0,T], (4.1.19)
Wy, n = {L{) + R® xy)-n, on af x Ol (4.1.20)
mL{t) = / gnda —mR{t) x L{tl in 0,T (4.1.21)
Jan
JRYt) = yx qnda + jR{t) x R{t), in 0'T (4.1.22)
Jda
My, 0) = uofy), yen, (4.1.23)
H{0) = 0, L(0) = Jo, RO} = ¢jQ. (4.1.24)
where
. IR
— & W dy] + H rfifE dt + dtdy,
avr
(4.1.25)
9yj
Our main result is following theorem.
5
Theorem 4.1.3 Suppose that s > i ug G and uo-n = (/o+ "o xy)-n on
i

dO,. Then there exist some Tq > 0 and a solution (v, q,L, R) of (4.1.18)-(4-1-24)

such that
Ve Vq E

and

Such a solution is unique up to an arbitrary function of t which may be added to

g. Furthermore, TQ does not depend on s.

100
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4.2 Preliminaries

4.2.1 Kato-Lai Theory

In this scction we reccive briefly Kato-Lai theory and introduce some notations.
One is referred to [68] for more details. Let V, H, X be three real separable Banach
spaces. We say that the family {V, X} is an admissible triplet if the following
conditions hold.

{1) V.C H C X, the inclusions being dense and continuous.
1

(2) /1 is a Hilbert space, with inner product (s, )h and norm || . |[ij = (e, *)jj.
(3) There is a continuous, nondegenerate bilinear form on V x X > denotely (- --) »
such that
{v, u) = {v, UH, forall Gy and u EH. (4.2.1)
Recall that the bilinear form {v, u) is continuous and nondegenerate when
[ (—lIscimmMIx;
{vAu) = 0 for all li G X implies d = 0;
{v, 1= Ofor all f 6 X implies u = 0.
A map A : [0T] x H & X is said to be sequentially weakly continuous if

Aftn, Vn)j Af{t v) in X whenever tn] tand Vnyv in H.

We are concerned with the Cauchy problem

diu

A +AM L) 0, >0, v0)=vo. 4.2.2)

The Kato-Lai existence result for abstract evolution equations is as follows.

Theorem 4.2.1 Let {v,HX} be an admissible triplet Let A be a sequentially
weakly continuous map from [0°T] x H into X such that

vA{tyv) >m~rMn)  for t G[O,T]v GV,
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where [3(r) > 0 is a continuous nondecreasing function for r > 0. Then for any

VQ A H there is atime Tq > 0,T < TQ, and a solution v of (4-2.2) in the class
veCUJo, T];:n)ncUJo, T]-x).

Moreover, one has
I M@4)IkS 74) 53G[0,T] »

where 7 solve the ODE

7'@=2/3(7@) > 7(0) = Wwowh

4.2.2 Admissible triplet and some properties for coeffi-

cients

We'd like to construct the admissible triplet and show some useful properties for
the coefficients which in the(4.1.18)-(4.1.24).

Suppose 5 is a domain in R*. LA(tS) is the space of L~-integrable functions
with the standard inner product - [-(*?). By the way, we will not distinguish
the scalar function spaces and the corresponding vector-valued function spaces.

s is a nonnegative integer, then
H(S) = LIS) : ITw G V a, s.t |g] < s},
with the inner product
K vwhr{S) = E (J5~D. )I5<5)
[«|<s

and the homogeneous Sobolev space given in Chapter 1.

Let BR{X) denote the ball centered at x and with the radius R. QR :=
Jji
Q. n BR{0). Let p= where 101 stands for the volume of O. Hence p is the

density of the solid. Let X = be endowed with the inner product,

(¥)FJ'('2(”>‘ZD(4H@J+ o (40 (o
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Define

X" = {ueX :diw =0in M\ 3 ae]R3:st,u=l+uxyin O}

which is a closed subspace of X.
Remark 4.2.2 For every u e X%,

and suppose u = | tox y on O, in fact, |

and (jj are uniquely determined by the vectors. The fact has been proved, see [25]

or [112]. In what follows - we will denote I, u by lu, oJu-

Let Hs~ {u * X | G be endowed with the scalar product

(u, V)ff,, = (u, + p(u, V)L2(0)-

Vsis the space of functions v 4 Hs such that belongs to T>fA), where A is the

elliptic operator Af = A~ (—1)i¥with Neumann boundary conditions, and

X>yl) C 132). y* jg endowed with the scalar product

As in [95], we introduce a bilinear form on V* x X:

/ \
[V.U)— z (— 1)Wi}3~,u

+ L 2(0).

It was proved in [95] that the tripletjX, Hg, V/} is admissible.

Lemma 4.2.3 Let Gf {u e su=Vgi, giG and

Gl = {ue :divu- 0in IRCJu =Vgs in n g GLL(O),

u={()in O and / (/)x ydy = / q2n X yda>
Jo Jdo J

Then (1) X*, G| and G* are mutually orthogonal and
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104
It means that for every u € LANEM);

J ui + Vgi + Vq2, yEQ
uly) =

0 0 , N
GX, e G?e G/ (4.2.3)
y + + yeo

Suppose ui — lui + iOui y-y in O, then there exists some constant C independent
of u, such that

(4.2.4)
(2)Define  the projector P which maps L"(R”) fo X*. In fact,

P maps Hs mito
Hs continuously

for any s > 0.

Proof: (1) has been proved in [112].

Now we verify that (2) holds.

For every
u e Hs{s > 0), it suffices to prove that
with some C independent of u.
In fact, g satisfies the following equations:
Ag = div u, in
(4.2.5)
=a-n - (Jui + ojui Xy) -n, on dQ,
dn
Let
=VX

> X mib

where ~ is a cut-off function defined in the previous section.
in 0 and (pen =

Clearly, div ¢:2 = 0
(lui + ojui x y) *n on dQ Therefore, (4.2.5) can be rewritten,

Aq div u — (f), in Q,

aq .
{u —if) ,n, on dVi.
an

(4.2.6)

The solution to the system (4.2.6) is closely related to the Helmoltz-Weyl
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decomposition. As proved in [47],

livgl | B)< Cllu - MMU.(0)

< H# =S + HHIFHASN))
(4.2.7)
— 1Mk,
which completes the proof of Lemma 4.2.2. *

The following lemma is to give the bounds of the coefficients which appear in

the system (4.1.18)-(4.1.24).

Lemma 4.2.4 Assume that v is a function in T: X") and s is a nonneg-
ahve integer. Suppose there exists M > () such that < M. Let
A, X,y, QjTQMT be defined as in the previous section by replacing |, to by ly, LUy.

Then for every i G [0, T], the following estimates hold:

(4.2.8)
< Cfs T]Q < (4.2.9)
B (Yi~. Cr3) < C(s,T,Mj, < C(s° T MO, (4.2.10)
Ir{-, : ontrtes) < c(s, 7. My, (4.2.11)
where G"* s the inverse of G.
Proof: For everyj = 1:>2o0r 3-let z(y, t)— '
dyj’
"y, 0) = e”
where Cj is the j-th. vector of the basis of Then
Ay, 1) =+ (4.2.12)

ax
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It follows from Gronwall's lemma that |z{y, < (7(T, M*).

Since det(Jx) = 1, then JY = [J) ), where J4 is the cofactor of Jx- Hence

WJy{X{:t), O\ <C{T, M)
Furthermore,
DeSnote D~ = From (4.2.12) and Leibniz' formula, one can deduce that
/! a [dA|
A DH Hzds, bl <'s
- -
Following the preceding process, one can get the estimates (4.2.8)-(4.2.11). .

Next lemma is about the Lipschitz continuity of the coefficients with respect

to v

Lemma 4.2.5 Assume that the assumptions of Lemma 4-2.3 hold for v| i = 1,2

Let Kt) = kifty — 1720), uifi) = uift) — X = X' - X\ Y = yr -

y o) = A(X'(y 1) )-A(X (Y t) . t), G = (g0 = (" - f), 9

aqlj - G-1 = —(G2)-i>and >, = Tt],—1%. Then for every
Jyef0-T]>

M L-(0,T)) (4.2.13

iin- ) (4.2.14

11 , (4.2.15

, (4.2.16

[1#(.'t)]],c~(K3) < C(s,T,M,) (||//|[Uoo(o,T) + IMIi, - " ), (4.2.17

[[IG—i(. » £)I1hhsm_ < (11|U-(O0,T) + [|M]1-(O,T)) » (4.2.18

Ir(, J3-+-(M3) <« C(5,T,M,) (]|%oo(0, r) + IM|I" , t)) . (4.2.19
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Proof: Prom the initial problem (4.1.1), we infer the following estimate

Q) —Q2@Il < C(n,Mo)suvlujls)-ujls)\. (4.2.20)

[07t]
By simple calculate we have
— (Y < a(To, Mo) spiipﬁ(ulw — @1 + @ — @0, (4.2.21)
W7 - M/2]| > (I < C(To, Mo) sup(|Zi(4)—Ils)l + — @), (4.2.22)
[0-1]

where V\W' are defined by (4.1.10),(4.1.11). Since A(:r,t)=IhV + «#bx W,

thus for
Ax, t) = t) - ) —
aQ"mx —hi))V' + T)H)VeCQiT¥ - hit))W'
aQ"mx - hig)Hv' - Q"maQ"mx - ) F

From (4.2.20)-(4.2.22), we have (4.2.15).

Xf{t) =AIX1t), t)-AIXIt), t)

X(0) —_ 0.
It follows that
X @) =1 s) - + A(X'(s), 5))d5
Jo
X < flAIXIs),s)-AlX'(sls)lds” fA{Xls),s))d s. (4.2.23)
Jo Jo

Since
[Ai(Xi@,s)-Ai(X2@ , 51 111H)I,
f A{Xls)"s))ds < C(Mo,To)sup(|Ks)| + [a;@])
Jo %)

Apply Gronwall's Inequality to (4.2.20), we have

[0-1]
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Since =/ AN — n ds, use the

avi Jo V /il dyi dx diji /
above argument and inequality (4.2.15), then

I—1 <C(To,Mo)sup(|/| + |a;.
oyi [o]

By iterating the same process, we can easily obtain that (4.2.13) and (4.2.16).
From lemma 4.1.2 (2), we have the inequalities (4.2.14) and (3.14), and thus

(4.2.18) and (4.2.19) also holds. .

4.3 fP-estimates of Vg

5 ~

In the following text, s > sq = Given a function v e T; Hg H X*),
which satisfies that < MQ. We shall give the //"-estimates of Vg, a
solution to the following system,

div (g A" “FHy=-div(i\“ + Nv), in

A .. dq /1 f | f |

grrA—rii+ — [ gnder en+ J | yXgnda Jxyen

A ayj Im Jdn / \Y JdQ J

={Mv + Nv) enlLjy Xlven — X W) X yen, on dQ.

(4.3.1)

Here g Mv and Nv are given asin (4.1.17) and (4.1.25), replacing h, ujby  tUy.
For every fixed t G [0,T], the matrix G = (gM) = JyJy? so G is positive
definite. Denote Xy, t) 3> 0,{i = 1,2,33) the eigaenvalues of the matrix (jfj).

Since det(y~J=1, thus TTA*= land V A - V / > 0. Let 70 — sup
ti tt U a0 3

then we have 870 > Xi > 7 ~ for every i = 1,2,3. By virtue of Lemma 4.2.3,
(370)2
there exist constants Ci(T, MQ) and C2(T, Mq),

Ci(T,MO)<|A,[<C2(T,MO), z—1,2,3.



Some Studies on Viscous Fluids 109

Next, we shall use the Lax-Milgram theorem to prove the existence of the
solutions of (4.3.1), and then we give iJ*-estimate of this solution. For simplicity,
the vector-valued functions ly, are denoted by foj respectively.

Set a bilinear form B and a linear functional F on as follows, for every

4 nry dq dy + . gnda nda
i) % 1 E E L 7 \Jdn \Jdn
-m

+ U y X gnda y X rlnd(j
'dii

Ffr]) = - / {Mv + Nv) «Vrdy + {UJA X Q < ijnda
Ja Jda

J~lJodv X uj") Xy e 7lnda
'dn

Note that

3/3

Bfe E E" + — ( f gndcr ) + Jiy w
il 1 7l \JdQ ) (4.3.2)

> Ci(T,Mo)[[Vg||i2Bd mLI + Juww

where LI —— (/ “ndcr ), it?=J]. /| yx gnda

_ w J Jan

J is also a positive definite matrix, then there exists some constant a > 0 such
that

wl < Jw .w < alwl

Combining the above inequality and (4.3.2), one gets that B is coercive.

On the other hand,

I drj
’ )
% Y L2((1)
Then along the line of the proposition 3.3. 113], one can easily verify that

the bilinear form B is bounded.
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Now we turn to the functional F.

{Mv + Nv) . V7]dx
/

< [IMVNVIIL2%n)  « [V77|U2(0)

. (4.3.3)
< C (|JA]li*,00(fY) + 11 IF||loo(Q) + I 1) +
Ay, IMILC] @ [
/o {0) X | — [~y X ()] X y} . rindeT
hft
<Cillll + W) f  Irilda
Jon (4.3.4)

From the above estimates, it follows that F is bounded. By Lax-Milgram

Theorem, there exists a unique g G )'*(0O) such that

B(q,” )= F(rj), "€

Furthermore,
(4.3.5)
Let
Li = — / gnda, w = !y X gndcT.
HlJon Jdn
Then according to (4.3.5),
[~il < C(T,Mo,n), H < C(T,Mo0,Q). (4.3.6)
Now we consider the Neumann system which is equivalent to (4.3.1) -
div ' =-diviMv + Nv] in
ayj
E Tii= My + Nv) en—fcu X1) +n
dyj

+ \j~™MJuj Xcj)] Xyen —Li n —(w Xy) n, on dQ.
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To estimate one needs to estimate the terms  ||diy{Mv-1~Nv)

and [~ (#h+&fn [ [ fEs——).

. fdYy | \

[1:= div(( ot W

i f s dxk

- 2T ok av + E dvj dvi
Y ook oy % dy . .
2 1 ip—i(1) [ ip-i(n)
yE °
/12: =
/

< C (lIrll ¥ fz 3)I|All ¥sook3) + I Tt

Hence,
(4.3.8)
Denote
r A (sr "M~ an [ anXfcl Lan \
Then
My + N) _fay . | y ny
— [Mv v) en _ VW en + /a-
Xodhoy
P3|l __ ﬁﬂf CWhWHs"a)
< C ...OO(KI)|IA| iTscofx3) + 11 Iylin’'s,00(*3)11 Allies,00(K3))

o[ liffsuy + Ifr | lir%(K3) Ibllij.(o) 1471

(4.3.9)
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To estimate v) =Vv en we shall use the method in [24,95].
) .dy .
Since ———ht"Y) -n = 0 on dQ, one can easily get that
JL
+f) .Vv.n < C ([|JAII?22>_+ 1) (1+ IbllI#f)).(4.3.10)
Combining (4.3.9) and (4.3.10), one has

-{Mv + Nv). nilT “41) < C(T, Mo)(l + wm,. (4.3.11)

The other terms can be estimated as follows:

W [J-¥Wu] xuplxy — nildF @) < (7(0,39 Mo < C{T, Mo), (4.3.12)

[[“+ ~#)y#“1@T +» Mo) (4.3.13)

X1)yenilF @ < CJL itOMIZI < C(T, Mo), (4.3.14)

K@) X ?2) . nil f: < C{oRWwW < C7(T,Mo). (4.3.15)

Choose some r > 0 such that supp(®) C BL, and a cut-off function *i,

1, if lyl < 2r,

0. if Iyl > 3r.
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Hence, pi —t¢ig solves the following equation

{3

w15 HM S B,

+E in BAr\ O,

Kdyj dy*  dy, dyj
5 . ,
E 5r//=—{Mv + Nv) en - uXlen

+ X0:) xy-n —L-n —wxy-n, on dO,

on dB/"r-
(4.3.16)

By virtue of the regularity theory for elliptic equations [100

n

Y op dyj
E dh dq + dN dg
dyj dy* dyi dyj
hJ-- L(B4N0)

+ - (Mv + Nv) Tl % + J—Vi) X0:).n

+ \{Li +wxy)
[ —)+ | W EHl
(4.3.17)

where /ii(-, ) can be chosen an increasing function with respect to both variables.

In fact,
dg's dd N
' : A g
3. M1z dyj Q.Z‘ .2 \dyj ay, dy* dyj
(4,3.18)
Combining the above estimates, one gets
E (4.3.7)

<C{T, Mo,r) + ||9]|755AR) + 1)
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Choose some particular g such that

/ dy = 0.
JB4rl0 )y

114

It is reasonable, since g is still a solution to (4.3.7) after added by any constant.

By Poincare's inequality,

< C{TMor)  {IgIHNB,AB.r) + LV? WA (firAN) + 1)

(4.3.20)

It implies that high order regularity of g can be controlled by the lower order

regularity. Therefore, using this method by choosing appropriate r, we can get

that for every R > 0, such that O Q BR,

1IVgks ()< C{T, Mo, R){1+ IHK).

Fix some R big enough. Choose some smooth cut-off function

if < IR,

if ...> R

Since g = 5ij outside Br, hence
div(G .Vg) = Ag.
Let p2 = 61, then
Ap2 = "2{-diY(Mv  + Nv)) + VAVg + A&g /.

Therefore,

/ is estimated as follows,

< C (Ildiv(Mi; + NVIIHs-"n) + " V d T & 41 + IKIL

<C{T,Mo,R,0){1 +  |\VI|HU

(4.3.21)

such that

4.3.22)

(4.3.23)

'<\v\<R))

(4.3.24)
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Hence
< Mo, R, 0O){1 + (4325)
(4.3.21) and (4.3.25) give that

(4.3.26)

4.4 Construction of approximate solutions

In this section, we will construct a sequence of approximate solutions. First, for
vMt) G Hs, denote rit) — Zp?; "(4)> M) ~ Solving the following initial
value problem

d |F(_Zd): (4)) xv >
at (4.4.1)

One can get a solution

Define

1) @)r—""4))  hfr=/
and

= QZFJIM) + (r[t)u/lt)x(x- h W

@rw X (M) + Ty Q" (0,
where " is a cut-off function given in section

Let A" = f + Hence one can define t),t),g -~
Corio:, given in (4.1.17) and (4.1.25). Suppose that is the solution

to the following system,

ot daq. .
div = + TV in f]

A 5 1 |
£ + 1 g'nda  en + B/ yX g"da Xy-°n
- 0 g Jadn
=—(M"i;" +iV'A;" -n —cj" Xr .n + xa")] xy n, on dil.

(4.4.2)
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Now define an operator v) as in [95] to use Kato-Lai Theory,
'dY A by-
- hQ (P VPt +
dt J y dt
p r. +
1 n ’ 1 W
P In S . +P[ 1 « X [J7-1— X X y)
dyj
..f | |
+P o — / q*nda — [ y X Xy
|2 Jon | Jdn J .
(4.4.3)
where the operator Q = / —P.
Consider the following Cauchy problem,
0,
(4.4.4)
fE) =
where vo » Hgn X*.
For simplicity, denote
. dq’
(7 = + P2/ w99
dt dyj
Kik=I . dxk dtdyj J
+ ] Pt =
T
d

lJ_o:"-1 X r-F(JUIr-1 X WA-1) X y
m

-{lo —/ g*"nAa - (J-i/ yx g*'nda) xy
JI\ JdQ \ Jdn y

and assume Mq = ¥ ;0HE[] and M* = 2ji;0|ljy,, and there exists some T > 0 such
that for all k <m
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At first, we prove when 5 = SQ, there exists a Tq > 0, < Mg.

Therefore, we have

+ <R+ + + J5

Then we estimate them term by term. Staring from the easiest one -

J5 < Wn*'-"UMH.
< cwl-'WhMH.
(4.4.5)
< c L?-if + + + UJ
\ =y ITh | Mk
<C(To,Mo0)||Hk.
By Lemma 4.2.2 and Lemma 4.2.3,
iVg-—11 | HBEE)|MK (4-4.6)
J3 is also easy to estimate since there is no derivative of v or 1>
J3<C{To,M0)\\V\\ff, (4.4.7)

Now the most difficult term& Ji and J2 are left, since there is derivative of v

PI;. Since
Ji = EEI (4.4.8)
la|<s ai<a i= vVoodt /
When ai = (0,0,0), since
- fdV- ay "/
div + 1PV 0, and + en =0 o0n
¥ dt \ dt

.adY)Jl-
L + ) VAMGAVEE=() .
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Therefore, we assume that laill > 1. Consequently,

( oyn—1 pAT-
dt
< dYJ/l,
L2(ri)
at LH9.)
Hence,
Ji <C(To,Mo)||t;||I,". (4.4.9)
J2 < + ClIIFA-¥v]IIL22n)IIVIIL %io)
av _
ot ITiNkJKIIT5 0)
<CiTo,Mo)\Ivl1%.
To estimate we can a function (j) satisfies
A(f) = div VFv, in n
dt /
af)_ fdy
+ P7/ VP?;. n. on dn
dn dt

As in the procedure of estimating Vg(or refer to [95]), we have
R<C{TO,MO){1 + WAH)WAH.
Therefore, we have

(4.4.10)

By the Kato-Lai theory, there exists T" > 0>and G ™, X)
satisfying the Cauchy problem (4.4.4) > and we have

(4.4.11)
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where 7 (4) is given by

yw = c(To,Mo) (i + 7W), 7 (o)Hk)11L

Suppose

I7Wi<4|kllk = W , ViG[0,To].

Thus we know that T{fE=To which is independent of n.
Along the previous proof and the estimates of Vg, for general s > SQ,it is

easy to prove that

IKS, ")kl <c¢fTo, | K — + 1K-ik)(i +IMko )(i + IMW >
(4.4.12)
where r) is bounded if r is bounded. Therefore, use the above argument, we

obtain that there exists T <TQ that is independent of n such that

< M* for all n.

For n = 1, we choose VA= "Uqg] ~ IQ, UM = LOQ. Following the preceding
process, one can construct a solution v* to (4.4.4). By iterating the same steps,

a sequence of approximate solutions {i;"} can be derived.

4.5 The convergence of approximated solutions

In this section, we show that {"U"} converges to a solution of the system (4.1.18)-
(4.1.24).

According to the estimates in the last section,
(4.5.1)
< Ml, (4.5.2)

E (43.7)
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Since P is a bounded operator on Hs, - and it commutes with dt, then

< Ms, (4.5.4)

< M4, (4.5.5)

Hence there exists some function v G (7VJ([0, T];1s) such that for any big RQ,
v"™ v in L) rA3) (4.5.6)

Fv"  Ft; in L@(0,T;lls). (4.5.7)

By the Aubin-Lion's lemma,

(4.5.8)
Pz;¥T—P” in (4.5.9)
(4.5.9) implies that
4 in CJ[O0,T], (4.5.10)
Aoy in CIO,T], (4.5.11)
and
r{t) ) = Qkv in C[O0,T]. (4.5.12)
In fact, uift) = Q()upy.
While (4.5.3) tells that there exists some function g such that
Vg" - Vg in (4.5.13)
/  g"ndV / gndV in (4.5.14)
Idn Jan
/ yx q dT 4 | yxgndV in (7[0,T; (4.5.15)
ho. Jan

In fact, ~ is a solution to the system (4.3.1). It can be seen by taking the limit

of (4.4.2).
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Prom all the convergence results (4.5.1)-(4.5.15) and Lemma 4.2.4, it follows

that
vt + Aft v) = 0,
(4.5.16)
?;0) —vo,
where
fay (BY
Ait, V)= + Fv -W-Q |n VP?;
dt \ dt )
+ P o
13
/ 3
+ P ! + F (0 X1+ Jiy Xio) Xy)
/1
-P lo — / gnda — J~ 1 X gnda® x
\'m Jdn \ yxa Y

Next, we shall prove that d is a solution of the systems (4.1.18)-(4.1.24). The
— Fv{t), for all t G [0,T]. In fact,

proof starts with the observation that v{t)
Applying Q to each term in (4.5.16) and taking the inner product with Qv{t) in
X yields
H1
(4.5.17)
. ) /ay A\
Note that div + =0 inn and Nt PI - n —0on an, then
'm at y
(Qvit), QA{tv))x=[Qv{t),In
- / Qv " - VQv(") dy (4.5.18)
Jn
=0
Since VQ — Pi*o - it tells that QVQ= 0. Hence - for every t G [0, T], Qv(t) = 0
Therefore, (4.5.16) can be written as
av
~ + FlinfMv  + iVM+ G » Vg)]+
P Jo( X1 — Xco) Xy (4.5.19)
y X gnAa) Xy

1
— / gnda —(J"
'dfi

lo
Jan
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Taking the inner product in X with a test function cf) G X, one has

/ v Mv + Nv G-\Vg) .

ml' gnda .I/N+ m(c x 1) . I/ +
'00. (4.5.20)
JLO' « ULph—J J-JGJ Xcu) « UJe — JU- y X qnda  to/,
=0.
For every function « e with supp((/)) C Q, and div 0 = 0 in R”"

(4.5.20) yields
/ (v' + Mv + Nv G-Vg) . (Ay = 0,

After the theory of Hodge's decomposition, there exists a function p such that

VpeL”(0,T] H'-\n)) and

VA My ANy AGeVgAVp =0innX[0T (4.5.21)

From the identification of g and (4.5.21), one knows that for every t G [0 T]

Ap = 0, in n,
a
P =0, on dU.
. dn

The above system has only constant solutions, thus

=0 in nx [0, T (4.5.22)
Now taking some test function (f)(x) € X such that (f){y) = I//s in O” then

ml

gnda eI/h+ (mcux ) - = 0.
\Jdn
Since U is arbitrary,
ml" = / qgnda —cj x (4.5.23)
JdoO.
Similarly, taking some test function 4x) G X such that 1) x yin O,
then
~ - _ f
Juj'. —J{~MJGi X U))e — J_1 1/ yXagnda) .";R=0.

Jan
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Thus

Ja/ —~ I y X gnda + Jw x lj. (4.5.24)
Jdn

4.6 Uniqueness and continuity with respect to
time

In this section, we will use Lemma 4.2.4 to prove that the solution of the system
(4.1.18)-(4.1.24) is unique and then get the continuity in Hg with respect to time.
Assume that there exist two solutions € CW(0, T]; Hs)i1T C~(0~-T]; X)

to the system (4.1.18)-(4.1.24) then

v] + + N + GMNVg? =0, in Qx [0T], (4.6.1)
+ M4 + NV + GMNVg”? -0, in Ox [0, T] (4.6.2)
Since G”, G are positive definite matrices, thus let HM = and H™ =

1. Multiplying (4.6.1) and (4.6.2) by H* and H] respectively, and denote

K = MAX{J|ZIjIX)O » RK), WAILAO, T- H)}-
Subtracting the two equations and taking inner product in with function
vl — then one gets
0= (HVv]— - 4 (r e~ 228
+ (fEi(MV +iVV) - + N, 21 VA- vYL2in)
=J1+ /2 + 33,

Denote ", ujyi, 152, by h,uh2)@ 2 respectively. Since
div(i;i - —0 in n,

and for i = 1,2,

/ q’nda ~ mi[ + mui x Ii,
Jan

/ y X (fnda = Jul —Juji x ah
Jdn
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then
h =1 «(gl - : — ~dy

Jn

=f (q"- - vY ¢ nda
Jan

=/ (— — - h) enda+ [/ {g"- - X yenda
Jon Jdn

=mfh  —I12)" (h — k) + mfudi x h - UJ2 " k) .[h — k)

+ J(Cdi — U2) . @l — U)2) —fJA X @il —JUJ2 X UJ2) . (P11 — 1)

=2 XEI1"— + 5 EHN—A). ("1
+ m(cdi XIli - UJ2 XI12) (i - h) —{Joji X cji - Ju2 x 0J2) . {oji — W .
(4.6.3)
We estimate the term /i as follows.
=(H1" ?2-ilVy - 15y
'L2(2) (4.6.4)
. :J| + h'
From the definition of G, we easily know that
=(Jjadx/\£J1— V. — "2)1{5(4)
= (<W-A ) %Dv —V Lt o)
rdj”
L21)
Therefore,
-v')\\Ln)--C{T,K) sup O -0 (4.6 .6)
2 cit At sefof]
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/ |
< C{T, K} sup (|li —z2+ —E1)  sup 111/(5)-ZJ2(s)||"fH (4.6 7)
\s€[0,t] y s0-1 . ,
< C sup
h = {{H» - +iVvV), — [ L2
+ (JE(AFfV —iWV + jAr —NV), — 732 5(%) (4.6.8)
e= hi +J32.
Clearly,
131 < I HA1-{F2||55 4 p/V + - he |
< C(T.K) sup [|li-y + —Ca2 - 11— (4.6.9)
<C{T.K) sup
sG[0,1]
h2 =(H-2(AfV - MV +iW - N [ 129
{dy} av! dY’dvAr \
Hi + 1L — 4 2 #
dt dyj A dyj dt dyj A dyj y
/[ 2f /[ r ~ A 1—
AV ckA + dxk dtdy) ) —r - T #ifc dtdyj L2(n)

= JAL + J32+ A33-

(4.6.10)
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As in Lemma 3.3, one can obtain

|Jd§||ﬂ(}’—‘"[“)| ({(ryﬁ-‘*ﬁ&;j:ﬁ%

Oy 11

+
dxk dtdyj |

A Z1 -
dxk dtdy];J ~  dxk didyj A
dYk
dt ITM—) + I|r;f]|] I At
+ lioo(fi) 4, Ih(w — i3]
ay, dxl af a’"Xk
, 11"1|—) + . (1)
dxk dtdyj =) dtdyj )
Lo axi \
dxk dtdyj
17321 < C sup
(4.6.11)
Similarly, one can get that
J33 < C sup | —*M2]| (s) (4.6.12)
se[o,t]

It remains to estimate the last term J31. In fact,

J31 —  JIx» XAt — 1/
\ dt dt oy )
.ay?
=[jxA -hvA-y)- W+ + V). Viy - g TV
dy
1331l < ¢
QY \
+ ‘dt + tonCZ(Vl - VI\), JX2(VA -
av
+
LAi*r)

(4.6.13)
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Since — < Clivt — whence
Iifiil| < Csupll? ;A (4.6.14)
From Lemma 4,2.4,we have the following inequality

d d d
A 1/5601 — 1R F + moth - k4 MU= (02) + ("1 —2)1

M

It follows that

—")im  + mh - b2+ vp)) . (1)

<C f sup |EA@W—@IliZzE3)dr

Since X” is diffeomorphism and(Jo;) . uj > , thus
l..1 - < Cof sup IR1 - (4.6.15)
Jo T&[0,s]

Assume that any 6 G [0,t], From (4.6.15), we have

k' - vYmmW < Col/ sup IM—" ‘| |=Z&s
JO Telo's]
< [/ sup [i; —V 172(183)(r)ds
Jo tgM

It shows that for any t G [0, T]

sup | M - “Hg"(1) <C [ sup [;1-
Te[%,t] Jo r6[0s]
by Gronwall's inequality, v — ?2 a.e. in [0,T] x E”. Uniqueness, as in [95

implies that

From (4.4.12), we know that

From the uniqueness and the continuity on the time, T can be extended to To

which does not depend on s.
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