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Abstract 

I n this thesis, we study several issues involving incompressible viscous fluids w i th 

the slip boundary conditions and the motions of fluid-solid interactions. 

In the first part,we study the issue of the inviscid l imi t of the incompress-

ible Navier-Stokes equations on the general smooth domains for completely slip 

boundary conditions. We verify an asymptotic expansion which involves a weak 

amplitude boundary layer w i th the same thickness as in the Prantle's theory. 

We improve the better regularity for the boundary layer and obtain the uni form 

L^—estimates (3 < p < 6) of the remainder. Then we improved these estimates 

to i/ i—estimates. I t is shown that the viscous solution converges to the solution 

of Euler equation in C([0, T] ; as the viscosity tends to zero. 

In the second part, we consider the non-stationary problems of a class of non-

Newtonian fluid which is a power law fluid w i t h p > in the half space 
n + 2 

w i t h slip boundary conditions. We present the local pressure estimate w i th the 

Navier's slip boundary conditions. Using these estimates and an truncat ion 

method, we can obtain that this system has at least one required weak solution. 

Finally, we investigate the motion of a general form rigid body w i th smooth 

boundary by an incompressible perfect f luid occupying M^. Due to the domain 

occupied by the fluid depending on the time, this problem can be transformed 

into a new systems of the f luid in a fixed domain by the frame attached w i t h the 

body. W i t h the aid of Kato-Lai 's theory, we construct a sequence of successive 

solutions to this problem in some unform time interval. Then by a fixed point 

argument, we have proved that the existence, uniqueness and persistence of the 

regularity for the solutions of original fluid-structure interaction problem. 



摘 要 

本論文研究了有關具有滑動邊界的不可壓流體和流體輿固體相互作用的主 

题. 

在論文的第一部分，我們主要研究的是粘性消失極限問题.利用Navier-

Stokes方程的強解漸近展開式，研究其具有與Prandl’方程的相同寬度的邊界 

層 .通過研究邊界層的方程來提高邊界層的正則性 .當3 < P S 6時，我們 

得到了展開式餘項具有 i /一致有界.於是，我們能得到的估計,從而我得到 

了Navier-Stokes方程的強解在空間C([0,:r];昨))收驗於Euler方程的強解. 

在論文第二部分，我們得到具有滑動邊界壓力的局部估計，利用正則化粘性 

項，構造逼近方程的解,然後，利用截斷的方法，我們證明了逼近解收驗非牛 

頓流體方程的弱解. 

論文的最後部分，我們處理理想流體輿剛性固體的相互作用方程，我們利 

用Kato-Lai理論和不動點方法.得到了此方程的局部光滑解的存在唯一性. 
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Introduction 

Many f luid motions are characterized by Stoke's law 

S 二 uD{u) 

where S is the stress tensor, D{u) is the symmetric velocity gradient, i.e. 

I ( du, duj\ 
DM = ^ + ^ • 

J 2 \ d x j d x i j 

Assume tha t " is a constant, we obtain the fol lowing Navier-Stokes equations. 

The cont inui ty equation (or mass conservation equation) 

dtp + div (pit) = 0, i n X (0, T 

and the conservation of momentum equation 

pdtu + {pu . \!、u - ji/^u — 0 + A )Vd i v u + Vp = f , i n O x (0, T ] . 

Here p and u denote the density and the velocity field of f luid, respectively, p is 

the pressure and f is the external force. Q is the domain occupied by the fluid. 

A f lu id is said to be incompressible i f the volume of any quant i ty of the fluid 

remains invariant. For such a fluid, 

d iv u = 0. 

I f we further assume that the in i t ia l state is homogeneous, which means 

p{x, 0) = po = const.. 
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then 

p{x,t) = pq. 

Hence, the system describing the mot ion of an incompressible homogeneous 

Newtonian f lu id is the fol lowing incompressible Navier-Stokes equations 

dtu — vAu + (u . V)u + V{p/po) = f/po, i n O x (0，T], 

d iv u = 0, i n Q X [0,T], (0.1) 

u(t = 0,x) = uo(x), in f l , 

where v = f i /po > 0 is called the kinematic viscosity coefficient. For s impl ic i ty of 

presentation, in what follows we w i l l set po — 1 and omit the external force. 

Tradit ional ly, u satisfy the non-slip boundary condit ion for the Navier-Stokes 

equations, which is 

u = 0 on a n X [0,T]. (0.2) 

J. Leray and E. Hopf constructed the famous Leray-Hopf weak solut ion to 

the Navier-Stokes system, by the Galerkin method. A f te r J. Leray's pioneering 

work [76], there have been vast l i terature on the well-posedness of (0.1) and 

(0.2). For the system (0.1)，there are two main difficulties. One is that i t is 

not a standard parabolic system. The other one is that the system has strong 

nonlinearity. 

For the 2D case, the strong nonlinearity can be el iminated by the dissipation. 

The global weak solut ion was proved to be strong and unique, see [76]. Actual ly, 

i t is a classical solut ion when 力〉0. 

When the spatial dimension d — 3, the problem of well-posedness is much more 

involved. From the experience of dealing w i t h semilinear parabolic equations, i t 

is found tha t the effort to eliminate the nonl ineari ty only by the dissipation te rm 

is invalid. For general large in i t ia l data, strong solutions were derived locally. I n 

1962, H. Fu j i ta and T . Ka to [46] obtained a unique local strong solut ion i n 

space. The proof was based on the theory of analytic semigroups and fract ional 
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powers of the generator. For the non-Hilbert cases, T. Kato [66] constructed 

local strong solution u G C([0, T] ; f l by making use 

of the LP — U estimates of the semigroup {e—亡]}^》。generated by the Stokes 

operator A. For in i t ia l data uq e p > S, unique local strong solutions 

were also derived, please refer to [40,52,53]. However, whether the local strong 

solutions blow up in finite t ime or remain smooth is yet unknown. Whi le the 

in i t ia l data uq satisfies that 股3) is sufficiently small, then unique global 

solution was derived in [66]. Global well-posedness also holds for axis-symmetric 

in i t ia l data wi thout swirl. The same results as above hold for the bounded domain 

and exterior domain, see [52,53,60,72]. For more information about the Navier-

Stokes system, please refer to [77] and references therein. 

When the viscosity vanishes, i.e. z/ = 0, the system (0.1) becomes the Euler 

equations. If the domain Jl has a boundary, then the common boundary condit ion 

is the slip boundary condition, 

u-n = 0, on an , (0.3) 

here n is the unit outer normal at the boundary. The boundary condit ion (0.3) 

means that the fluid does not across the boundary. 

Global well-posedness for the 2D Euler equations has been basically solved. 

T. Kato [64] got a unique global classical solution by the Picard theorem in 

Banach spaces. The same result was previously derived by Ebin and Marsden [39 

using infinite dimensional differential geometry. I f the in i t ia l data is less regular, 

a class of global weak solutions were constructed. Given in i t ia l data uq w i t h 

ujQ — curl Uq G L^(M^), 1 < J) < CX), a global weak solution was derived. I n 

particular, uniqueness can be guaranteed by the assumption that luq is bounded 

120]. For more rough ini t ia l data, some global existence results can be found 

in [32’ 109]. The fundamental reason for global well-posedness in 2D is that the 
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vort ic i ty cj 二 cur l u satisfies the following transport equation, 

dtcu + (u . V)LJ = 0. 

However, the vort ic i ty equation wi l l lose the beautiful structure when d = 3. 

I t 's hard to predict the global well-posedness of 3D Euler equations. A local 

classical solution was derived by Kato [65] and the solution was shown to be 

unique. Then Beale, Kato and Ma jda [4] proved global existence provided that 

the vor t ic i ty remains bounded. The same results as those for the whole space 

hold for more general domain Q, see [24,39,43,69]. 

I n the thesis, we study one of the issue that is vanishing viscosity l imits for 

Navier-Stokes equations . I n the case where no physical boundaries, i f the the 

ideal Euler system is sufficiently regular, the solutions can be approximated by 

the ones to Navier-Stokes equations, we can see [27,28,39,65,67,105]. However, 

in the case where there are physical boundaries, this problem is a challenging 

problem due to the formation of boundary layers. The problem of the classical 

non-slip boundary condit ion was formally derived by Prandt l in [94], in which i t 

was derived that the boundary layer can be described by an ini t ial-boundary prob-

lem for a nonlinear degenerate parabolic-elliptic couple system, which is called 

the Prandtl 's equations. Under monotonic assumption on the velocity of out-

flow, Oleinik and her collaborators established the local existence of smooth so-

lutions for boundary value problem of Prandtl 's equation in the surveyed monog-

raphy [90]. The existence and uniqueness of the weak solutions for the Prandtl 's 

equations was established by Xin, Zhang [119] (see [118]). I n [96], Sammartino 

and Caflisch obtained the local existence of the analytic solutions to the Prandtl 's 

equations, and a rigorous theory on the boundary layer in incompressible fluids 

w i th analytic data in the frame of the abstract Cauchy-Kowaleskaya theory. 

The usual non-slip assumption was not always accept f rom experimental facts. 

I n [87], Navier first proposal the slip w i th fr ict ion boundary condit ion i.e. the tan-

gential velocity is propositional to the tangential component of the viscous stress, 
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which is now called Navier boundary condition. This boundary was rigorously 

justi f ied as the effective boundary conditions for flows over rough boundaries, we 

can refer [61 . 

There already have been many interesting results on the vanishing l imi t of 

solutions to (0.1) for Navier boundary conditions. For 2D case, Yudovich [120 

and Lions, P.L. [77]studied the vanishing viscosity l imi t for the incompressible 

Navier-Stokes equation w i th Navier's boundary conditions, more precisely, u.n = 

0 cur l i i 二 0 on boundary For the Navier fr ict ion conditions, Clopeau, et.al. 

[26], Lopes Filho, Nussenveig Lopes and Planas [42] obtained that the solution u^ 

to (0.1) converges to the solution vP of Euler equations in T ; L^ (R^) ) under 

assuming in i t ia l vort ic i ty is uniformly bound. For 3D case, I f t imie and Planas [57 

have further studied the small viscosity l imi t for the anisotropic viscosities in half 

space, w i t h the fixed horizontal and the vertical tends to zero. 

Recently, Wang, X . P., Wang, Y.G. and Xin, Z. [ I l l ] study asymptotic be-

havior of solutions to (0.1) w i th Navier boundary conditions for variational slip 

length. Whi le in [58], I f t imie and Sueur study the boundary layer of the solution 

to (0.1) w i th Navier boundary condition for fixed slip length in both 2D and 3D. 

They obtain the Leray's weak solution of Navier-Stokes equation converges to 

the smooth one of Euler equation in the space T] and gave almost 

sharp convergent rate. N. Masmoudi [85] prove the solutions to (0.1) uniformly 

converges to the one of Euler equation in the spatial and t ime variable by the the 

frame of conormal Sobolev space. However, i t is difficult to obtain the conver-

gence in higher order, even in H^ as mentioned in [57], but one can not obtain 

the convergence in H^. For flat boundary w i t h the following completely slip 

boundary conditions, 

u-n = 0 curlu x n = 0 on dn x [0,T]. (0.4) 

Xiao and X i n [116] the convergence in H^ holds on the flat boundary. Later there 

are many authors obtain the 1 / theory and 妒’口 inviscid l imi t in [13,14], and 
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in [13], they also obtain that the convergence always holds in global t ime for 2D 

case. 

As clarified in [13] the model introduced in [116j seems to work just in pres-

ence of a domain w i th a flat boundary. This is due to the fact that certain surface 

integral are identically zero in the flat case. I n the general case these surface in-

tegrals, besides involving lower order term, are not easily handled. Consequently, 

the study of the vanishing l imi t in a general domain under boundary conditions 

0.4 represents a challenging open problem, see [14]. The difficulties and the inter-

est for this problem is also emphasized in the work of Wang, X. P., Wang, Y.G. 

and X in , Z. [111]. 

Our main new contr ibut ion is the viscosity l imi t problem of the Navier-Stokes's 

equations w i th the completely slip boundary conditions in 3D general domain, 

solving one of the questions left open in [13,116]. But i t is different f rom [17], 

here we do not need the Euler equation satisfies the boundary conditions (0.4). 

I n [17], the Euler is over-determined as noted in [117], the tangential of the 

vort ic i ty is not zero even i f the in i t ia l datum satisfies the boundary conditions 

(0.4) for general boundary. Therefore, i t is interesting to study the strong solution 

of Euler equation w i th only boundary condition (0.3) is approximated from the 

strong solutions to (0.1) w i th completely slip boundary conditions (0.4). 

I n Chapter 2, we borrow the equation of the boundary layer f rom [58] and 

improve the regularity of the boundary layer. We obtain the strong solution to 

(0.1) w i th boundary conditions (0.4) converges to the one of Euler system in 

C([0, T] ; f f ^ (O)) , provided that in i t ia l velocity is regular enough. 

There are phenomena that can not be described by Navier-Stokes equations, 

such as rod-cl imibing or Weisenberg effect, normal stress effect and earth's mantle 

dynamics and so on. In the study of these models, scientist have use nonlinear 

versions of the constitutive law, one can refer to [49] for details. In this context, 

there are some models , that viscous force can be effective functions of the shear 
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rate \D{u)\. 

The mentioned class of models as above, i.e. v = iy(\D{u)\) belong to power-

law ansatz to model certain non-Newtonian behavior of the fluid flows, and they 

are frequently used engineering l i terature. We can refer the book by B i rd , A r m -

strong and Hassager [19] and the survey paper due to Malek and Rajagopal [81]. 

The mathemat ical analysis of these models started w i t h the work of Ladyzhenska 

[73], [74], [75]. She investigated the well-posedness of the in i t ia l boundary value 

problem w i t h non-slip boundary conditions, associated w i t h the stress tensor 

(0.5) 

w i t h posit ive constants " 〇， a n d p > 1. I n 1969, J.L. Lions [78] proved some 
2n 

existence results for Laplacian equation w i t h p > l-\ and the uniqueness 
n + 2 

n + 2 
for p > under no-slip boundary conditions. I n those papers, the authors 

n 

applied the properties of monotone operator and M in t y t r ick theory for the stress 

tensor satisfies the str ict monotonic i ty and coercivity. 

Over these years, Ladyzhenska's and Lions' work were improved and in several 

directions by differen authors. In part icular, for the steady problem, there are 

several results proving existence of weak solution in bounded domain [34,44,45], 

inter ior regular i ty [1,86] and recently regulari ty up to boundary for the Dir ichlet 

problem [6—12,30，31,98]. Concerning the t ime-evolut ion Dir ichlet problem in a 

3D domain, J. Malek, J. Necas, and M. Ruzicka [80] study the weak solut ion for 

p > 2. Later, L . Diening et.al have a recent advances on the existence of weak 
8 6 

solutions in [115] for p > ~ and i n [35] for P > There are also many papers 
o 0 

dealing w i t h regular i ty of for evolution Dir ichlet boundary problems and we refer 

instance to [2,3,9-12,21,22]. In the three-dimensional cube w i t h space periodic 

boundary conditions, there is a lot of l i terature for the well-posedness of this 

model, we refer to the monograph [79] and papers [18,33]. 

However, there are not too many results for non-Newtonian f lu id w i t h Navier 

type slip boundary conditions. In [6,39], the authors investigated the regular i ty of 
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steady flows w i t h shear-dependent viscosity on the slip boundary conditions. M. 

BuKcek, J.Malek and K .R. Rajagopal [23] obtained the weak solut ion for the evo-

lu t ionary generalized Navier-stokes-like system of pressure and shear-dependent 

viscosity on the Navier-type slip boundary conditions in the bounded domain. 

I n Chapter 3, we consider unsteady flows of an incompressible non-Newtonian 

fluid described by the system 

dtu 一 diYS{D(u)) + (u • V)u + V t t - / , i n R ^ x (0，T) 

V - u - 0 , i n X (0,T), (0.6) 

、 = uq{x), i n 

where u is the velocity, tt is pressure and f is the force, and S{-) is stress tensor and 

induced by a p—potential, for example, (0.5) is induced by a potent ial function. 

We can impose the fol lowing slip boundary conditions 

u . = 0 ， ( ( S i D { u ) ) • n) - (n • S{D{u)). n)n)丨奶=o 二 0. (0.7) 

I n fact, this problem corresponds to the free boundary problem for the non-

Newtonian fluids w i t h free surface supposed invariable. 

Use the different method as before, we overcome the two main difficulties 

which come f rom the unbounded domain and the nonlinearity of stress tensor. 

We regularize the convection te rm and obta in approximated solutions. We can 

prove these solutions are regular enough. Then by - t runcat ion method, we 

obta in the approximated solutions converges to the weak solut ion of the problem 

(0.6)wi th slip boundary conditions (0.7) in half space. 

The last part is devoted to the study of the so-called “ fluid-rigid body" system. 

Many physical phenomena involve the interactions between moving structures 

and fluids. A n interesting problem is the mot ion of a r ig id body immersed in a 

incompressible fluid. The mot ion of the fluid is governed by the classical Euler or 

Navier-Stokes equations, depending on the viscosity of the f luid. A n d the mot ion 

of the r ig id body consisting of a t ranslat ion par t and a rotat ion par t , is ruled by 
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the conservation of linear and angular momentum. The force exerted on the r ig id 

body is f rom the the fluid. 

I n the chapter 4, we investigate the mot ion of a r ig id body immersed by an 

incompressible perfect f luid. Tha t is, the behavior of the f lu id is described by the 

Euler equations, whi le the mot ion of the r ig id body conforms to the Newton's law. 

Assume that bo th the f lu id and the r ig id body are homogeneous. The domain 

occupied by the solid at the t ime is 0{t), and f l { t ) = \ 0 [ t ) is the domain 

occupied by the f luid. Suppose 0(0) = O and 1^(0) = SI share a smooth boundary 

dO{oi dO). The equations modeling the dynamics of the system read(see also 

[95]) 

du , 〜 „ ^ 

div t i = 0, 

= (h' + UJ X {x - h{t))) . n, 

l i m u(x,t) = Uoo, 
\x\—>-oo 

mh" = / pnda + frb, 
Jdn{t) 

(Jlo)' = {x - h{t)) X pnda + Trb, 
JdQit) 

u{x, 0) = uo{x) 

h(0) = 0 e R3, /^/(o) = ⑴ ( 0 ) =吻 G 

I n the above system, u and p are the velocity f ield and the pressure of the f lu id 

respectively, f is the external force field applied to the f luid, frb and Trb denote 

the external force and the external torque of the r ig id body respectively, m is 

the mass, J is the inert ia ma t r i x moment related to the mass center of the solid. 

Suppose the density of the r ig id body is p, then 

in n ⑷ X (0.8) 

in f t { t ) X (0.9) 

on dn{t) X [0,T] , (0.10) 

(0.11) 

in [0,T] , (0.12) 

in [0,T] , (0,13) 

X en, (0.14) 

(0.15) 

m = / pdx = I pdx, 
Jo{t) Jo 
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and 

[J{t)]ki 二 / p[\x- h{t)\^6ki - { x - h{t))k{x 一 h{t))i] dx. 
Jm 

Here h(t) denotes the position of the mass center of the rigid body and S^i is 

the Kronecker symbol. oj{t) is the angular velocity of the rigid body, n is the 

unit outward normal to dO:(t). Assume that the center of O is the origin, i.e., 

f ydy^Oe 
Jo 

For the case that the fluid is viscous, there have been many results over the 

last two decades. The global existence of weak solutions of the above system was 

proved by [62] and [97]. For the case that the fluid-rigid body system occupies 

a bounded domain, the existence of weak solutions has been treated by many 

mathematicians, see [36,37,51,55,56,83]. 

I f the rigid body is a disk in R^, T. Takahashi and M.Tiicsnak [106] showed 

the existence and uniqueness of global strong solutions. Later, P.C. Santiago and 

T. Takahashi [103] extended the result to general rigid body case in M?. They 

also proved the local existence and uniqueness of strong solutions in E^. 

I t seems that much fewer results for the perfect fluid-rigid body problem were 

obtained. When the solid is of C^ and piecewise and the fluid, fills in M^, 

a unique global classical solution was obtained under some assumption on the 

ini t ia l vort icity in [92]. A global weak solution was constructed in [113] when 
4 

the ini t ia l data belongs to p > - . Recently, C. Roiser and L. Roiser [95] 
o 

proved the local existence of solutions for c/ > 2, s > [d/2] + 2 and 

the solid is a ball. The key idea is to make use of the Kato~Lai theory, which was 

originated in [68:. 

In the chapter 4, we plan to extend the result of [95] to a more general setting. 

We wi l l deal w i th the case that the solid is of general form. The main idea is also 

the Kato-Lai theory. The difference comes from coordinates transformation. In 

our proof, different from [95], we apply another coordinates transformation to fix 
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the boundary. This k ind of transformation which coincides w i th the mot ion in a 

neighborhood of the solid and becomes identity when far away from it , has been 

used by [59,103 . 



Chapter 

Preliminaries 

I n this chapter, we w i l l give some definitions and recall some fundamental 

inequalities and lemmas to be used in the thesis. 

1.1 Notational conventions and function spaces 

I n this thesis, C is always an unspecified constant tha t may vary f rom line to 

line. I f C depends on some special parameters x i , • • ‘，x̂ ^ we wr i te . • •, Xk)-

For vector-valued functions u — {ui, U2, • Ud), v = ( f i , V2, Vd) of IR、define 

d d 
{u • V)v == Vu : Vv = ^^ diUjdiVj, 

and 
A . 、 ( v ^ ) + (yuf 

div w = d 、 D{u) = ~~—. 
口 1 么 

For the vector-valued funct ion l i of R^, define 

curl u = diU2 — ̂ 2'Wi, 

and denote the vector {—u2,ui) by 以丄. 

Whi le for the vector-valued funct ion u of define 

cur l u = {d2Us — d饥2, ^s^ i — drus, diU2 — d2Ui). 

17 
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I n this thesis, B r { y ) w i l l denote the open bal l i n R'^ centered at y and w i t h 

radius r. 

Suppose Q is a domain in R、 l e t 〜=Jin /?“0)，Qt = 0 X (0, T ) , and denote 

the closure by Q,. B{0,) (B^Qx)) is the Banach space of al l continuous and 

bounded functions defined on O ( Q t ) , endowed w i t h the norm. The Holder 

space C^m { C ^ { d n ) ) is the space of al l the functions uj G (B{dQ)), which 

are un i formly Holder continuous in y w i t h exponent A on O (OQ). 

“ ⑴ ) ， < p < +oo) are the usual Sobolev spaces, [ i / ⑴ ) ] 、 

are the corresponding Sobolev spaces w i t h elements being vector-valued functions. 

They equiv the norm || • ||p and || • ||fc’p respectively. In many cases, we do not 

dist inguish the vector-valued functions and scalar-valued functions very str ict ly. 

I n part icular, denote 貼⑴ ) b y //气 Define as the closure of in 

Sometimes we need the homogeneous Sobolev spaces. For 1 <p < oo, 

Di，p(n) = { u “ } j n ) : VueL^(n)}, 

w i t h the seminorm 

I f we ident i fy the two functions ui,u2 G D^'^(ft) whenever — U2\D^'P{n) = 0, 

i.e., u i and U2 differ by a constant, we denote the quotient space by jt)i，P(fl), 

w i t h the no rm | • I n the fol lowing text, w i thout any confusion, we do 

not dist inguish the elements in D^'^(Q) and D^'^(Q). Dq^ (Q) is defined as the 

complet ion of i n the seminorm of D^'^(Q). 

Since we deal w i t h the incompressible flow, spaces consisting of divergence 

free functions are needed. 二 G : d iv = 0 i n H } . A n d 

L I ( Q ) is defined as 
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D{Rl) = {u e ：奴3 = 0 on .xa = 0} , 

Vp(Rl) = {uG D{Rl) = ()}"•."议， 

V^{ueV2： / lVu『dx < o o } , H 二 D ( R 3 _ ) 
JrI 

I I - I I L 2 

We define by 爪 ’ | | • \\k^rn,i,p) the anisotropic Sobolev spaces and norm 

as follows: for k,m,l ^ N , p>l 

环,/c’m"’p⑷ X R + ) = \g{x, z) G I / ( n X R+) : (1 + ？”全《趁乂;r, z) € " ( f i x R, 

|a| < m , / 9 G N U { 0 } } 

w i t h the norm 

\\9\\im,i,p = E / / • ( 1 + 

M S m 则 - 拟 x R + 

When p = 2, for simplicity, denote 14̂、爪，丨，2⑴)as H一气n). 

I n Chapter 4，without special claim, 0 is a bounded C^-smooth domain i n 

M^, and Q, is i ts exterior domain, = \ A n d the center of 0 is the origin. 

'o 
Define 

m = I dy. 
Jo 

J = (Jki) = / — ykyi)dy. 
JO 

1.2 Elementary inequalities 

We start w i t h the Young's inequality. 

Theorem 1.2.1 (Young's inequality) Let 1 < p,q < 

positive number a and b，it holds that 

,aP Ifl 

一 P q 

— + - 二 1. For any 
P q 
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The Young's inequali ty yields immediately the wel l-known Holder's inequality. 

Theorem 1.2.2 (Holder's inequality) Given Q an arbitrary domain in 

Assume 1 < p,q < oo, i + - ^ 1. If u e v G L^(^), then we have 
~ ~ P q 

/ \uv\dx < 關 • |M|_M(f2)‘ 
Jn 

Thus the interpolat ion inequality is shown. 

Theorem 1.2.3 (Interpolation inequality) Assume 1 < s,r,t < oo and 

1 e i-e 
r s t 

Suppose u G n Then u G 17例,and 

I M I k 卞） S I M I I 仰 r I M I i T f n ) . (1-2.1) 

One more general of the interpolat ion inequali ty is the fol lowing one. 

Theorem 1.2.4 (General interpolation inequality) Let il be a domain 

and u e Then for any 0 < \/3\ < k, 

where 0 =早，am/ C = C{k, n). 
k 

The interpolat ion inequali ty is closely related to the Sobolev embedding the-

orem. 

Theorem 1.2.5 (Sobolev embedding theorem) Let ̂  be a bounded do-

main in R^. Then, 

(1) if kp < d, the space is continuously embedded in p* = 

dp/(d — kp), and compactly embedded in for any q < p*; 

(2) ifO<m<k — - < m + l； the space is continuously embedded 

in Cr,曰(U) for any /3 < a. 



Then 

y{t)< y{a) + / h(s) exp 
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For functions in w i t h some special homogeneous properties, there are 

Poincare's inequalities. 

Theorem 1.2.6 (Poincare's inequalities) Let ft be a hounded, connected open 

subset ofM.'^ with a C^ boundary di}. Assume 1 < p < oo. Then for each function 

u G W^'^(O)； then there exists a constant C, depending only on d,p, SI； such that 

where (li)^ = average of u over 

For each u G Wo'^(n)； there exists a constant C, depending only on 

such that 

IMUf(fi) < )-

Theorem 1.2.7 (Trace theorem) Assume il is bounded and dO, is C^ then 

there exzsts a hounded linear operator T : — U , such that 

(1) 二 w|an，ViiG^tyi，p(i l )n(:7(n); 

(2) \\Tu\\L.i9n) < C ÎM|v î’p州 < for each u E 妒，罗⑶ 

with the constant C depending only on p and f l . 

The fol lowing famous Gronwall 's Lemma w i l l be used frequently in this thesis. 

Theorem 1.2.8 (Gronwall's Lemma) a) (Differential Version) Let us assume 

h, r are mtegrable on (a, b) and nonnegatwe a.e. in (a, h). Further assume that 

y G C([a, b]) and y' < b) and that the following mequoMy is satisfied. 

y'(t) < h(t) + rCt)y(t) for a.a.t e (a, 6). 

e [a, b r{s)ds ！Xp s
 

d
 

\

/
 r

 

d
 

K
 

5
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b) (Integral Form) Let us assume h is continuous on [a, b], r is mtegrable on 

(a, b) and nonnegatwe a.e. m (a, 6). Further assume that y G C([a, b]) satisfies 

the following inequality: 

y(t) < h{t) + I r(s)y{s)ds for a.a.t G (a, h). 
J a 

Then 
ft / f t \ 

y{t) < h{t) + / h{s)r{s)exp / r ( r ) d T ds, t € [a, b]. 
Ja \Js J 

c) (Local Version) Let T, a, cq > 0 be given constants and let h € L(0, T ) with 

h>0 a.e. in [0, T\, for nonnegatwe functwn y E C^([0, T ] ) satisfy 

y'{t) < h{t) + C o " �f o r a’a, t G (0 ,T ) . 

Let to E [0, T] be such that acoH{to)°'tQ < 1, where 

H{t) - / (O) + f h{&)ds. 
Jo 

Then for all t G [0,to] there holds 

m < 糊 + H(t) ( ( 1 - acoHitrt)-^ - 1 ) . 

1.3 Fundamental lemmas 

When we are studying the existence of weak solutions to some par t ia l differ-

ential equation, one often makes use of a theorem, which is the fol lowing Lax-

M i l g ram theorem. 

Definition 1.3.1 Suppose H is a Hilhert space and B is a bilinear form on H. 

B IS called bounded if there exists a constant K such that 

\B{x,y)\<K\\x\\-\\yl 

for X, y e H. 
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B is called coercive if there exists a number u > 0, such that 

B{x,x)>u\\xf, 

for all X £ H. 

Theorem 1.3.2 (Lax-Milgram theorem) Let B be a bounded, coercive bilin-

ear form on a Hilhert space H. Then for every bounded linear functional F on 

H, there exists a unique element f ^ H such that 

B{x, / ) = F{x) for all x e H. 

The proof can be found in many books, for reference see [77]. 

The next lemma f rom [99] which is a more general result of the famous Aubin-

Lions Lemma. 

T h e o r e m 1.3.3 (Aubin-Lions l emma) Let X ^ B ^ Y be three Banach 

spaces with compact imbedding X ^ ^ Y. Further, let there exist 0 < 0 < 1, and 

M > 0，such that 

MB<M\\v\\'^-'-\\vfy, for all v G X. 

Denote for T > 0,’ 

W{0,T) := (0, T., X) n l ys i ' r i (0, T ; Y), 

with 

So, S i e M, r o , r i G [ l , +oo ] , 

, , ^ 1 i-e e 1 
(1 - 0)sq + dsi, — : = 1——,s : = se . 

re ro n n 

Assume that sg > Q and F is a hounded set in T ) . If s* < 0, then F is 

relatively compact in T ; B) for all 1 < p < p* ：二 一1/s*. If s* > 0，then F 

is relatively compact in C([0, T]; B). 



Chapter 2 

Asymptotic analysis for the 3D 

Navier-Stokes equations with 

vorticity boundary conditions on 

non-flat boundaries 

In this chapter, we consider the approximated problem of the solutions for 

the inviscid incompressible fluid f rom Navier-Stokes equation in three dimensional 

general smooth domain. The boundary conditions of the viscous fluid is described 

by the vort ic i ty slip boundary conditions. 

24 
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2 Introduction 

In this chapter, we consider the vanishing viscosity l imit problem from the 

Navier-Stokes flow to Euler equations. The Naiver-Stokes equation is 

dtu" - lyAu" + ( y . V)vy + VTr" = 0, in O x (0, T ) 

V.w"^ = 0， in O x (0,T), 

wi th the boundary conditions 

ti" . n = 0, curln^ xn = 0 on dQ x (0,T), 

(2 .1 .1 ) 

(2.1.2) 

and in i t ia l velocity 

u''\t=o 二 uo{x), in f l . 

Here the unknowns are the velocity x) and the scalar pressure tt"(力,x), uq{x] 

is the given init ial velocity and the Euler equations reads 

dtu。+ (wO . + Vtt^ 二 0， i n O x (0，T) 

V - u ^ ^ O , in Q x (0,T), 

u ^ - n = 0, on dQx (0,T), 

？仁0 = in 0 . 

(2.1.3) 

The main proposal of this chapter is to investigate the asymptotic expansion 

of the strong solution to (2.1.1) w i th complete slip boundary conditions (2.1.2) 

and we obtain vanishing viscosity l imi t results.. 

As in [58], we apply the following formally expansion 

u乂t, x) = x) + ^JDu^t, X, 4=) + 

where u^ is a smooth profile which is fastly decreasing in its last variable. 

More precisely, we introduce a smooth function Lp 6 such that in 

a neighborhood A of dU, one has that 门 A 二 {(/;? > 0}门 A, IT n A = {(/? < 
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0} n A, a r i n A = { f = 0} n A and normalized such that | W | = 1 for all 

X E A. This implies that (p is the distance between x and dO, for a: G A. Wi thout 

restriction, we assume that A = {.t G 0 : ip{x) < rj} for a small number 77 > 0. 

We define a smooth extension of the normal unit vector n inside by taking 

n = 

As in [58, 111], we take the following ansatz: 

x) = rr) + v^t/(力,X, + X, + z/ZT(力，x)] 

TT' '(亡,a;) = 0：) + X, + vq{t, -
(2.1.4) 

+ VK{t, x) 

Plugging (2.1.4) into (2.1.1), we can obtain that 

dz l f . 71 = 0; 

diVxU^ = —dzV • n. 

As in the argument in [111], i t is easy to see that p 三 0. 

(2.1.5) 

Slight modify the proof in [58], we can prove that i f x, 0) • n{x) = 0 and 

u。satisfies the following equations 

d t i f - d ^ y + + (uO . V u ' + . Vn。）X n = 0， 

then u''-n = 0, for al l {t, x, z) € (0 ,T) x x E+. 

Therefore, we can infer (u^, q, v) satisfies the following system 

dtuc - dlu^ + 
u^ . n 

zd/if + (u。• SJuC + . Vu^) X n = 0, 

(u^ . Vuc + if . Vt/O) . n = 
poo 

v = n d i Y X , ri)dr], 
J z 

wi th boundary and in i t ia l conditions 

(2.1.6) 

(2.1.7) 

u^ • n = 0, dzU。X n = V X u^ X n, on z = 0; 

u%0,x,z) 二 0. 

(2.1.8) 
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For the flat boundary, i t is easy to prove that this profile vanishes and hence 

un i fo rm H^ or > 3 estimates have been obtained. Whi le the boundary 

is not flat, the conditions (2.1.2) are related to the curvature of d i } , hence the 

profile u^ does not vanish. A long the procedure derived by I f t imie and Sueur, we 

obta in the fol lowing proposit ion: 

Proposition 2.1.1 There exists a unique pair {u^, q) satisfies the system (2.1.7) 

with the following regularity for the boundary layer 

G T- H御)n T; H购) 

for allkeN and d乂 G T ) x Q x R+) . 

Moreover, u'^ vanishes for x outside the neighborhood A and • n = 0 for all 

(t, X, z) G (0 ,T ) X O X E+. Consequently, we have the limitation 

sup 一？/0||丄2叫 < C"会’ 

provided that initial velocity uq G H^ . 

Since the system (2.1.7) of the boundary layer is linear one. Then we prove the 

higher regulari ty of u。for t ime t and last variable. We improve the uni formly 

bound of the remainder to more general exponent 3 < p < 6. Therefore, we can 

expect to prove the estimates of the remainder for higher order derivative. A l -

though i t is not easy to obta in the uni formly bound of the remainder's derivative, 

one can bound H^ -no rm of the remainder by Thanks to the asymptot ic 

expansion, we obta in the strong solution to (2.1.1) w i t h boundary conditions 

(2.1.2) converges to the one of Euler system in C( [0 ,T ] ; provided that 

in i t ia l velocity is regular enough. 

Now, we sate our main results as follows. 

T h e o r e m 2 . 1 . 2 Let uq 6 tP for s>b, be a divergence free vector field satisfies 

the boundary conditions (2.1.2), assume that u^ is the strong solution of Navier-

Stokes equations, with initial velocity uq. Let u^ is the smooth solution of the 
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Euler equations with the same initial data. The above boundary layer profile u^ 

as in Proposition 2.1.1, satisfies the following regularity for p > 2 

e 1/^(0, 

e ( 7 ( [ o , T ] ; 丑 、 2 , 1 ) p 丄 0 0 ( 0 , T ; i /知厂 2 ， 2 n H … n t ； h‘2’3)., 

dtuc e T； n l 2 ( o， t ； h…，丄 n 丑一―丄，。). 

(2.1.9) 

Consequently, There exists "o〉0 small enough, such that for all 0 < i/ < z/q, we 

have 
sup I K — i / ^ l b o i ) S C r " l + i ， s u p \\R%<C 

IG[0,T] TE[0,T] 

For all 3 < p < and C is independent of v. 

From the above theorem, we can obtain the fol lowing results. 

T h e o r e m 2 . 1 . 3 Under the same assumption m theorem 2.1.2, then there exists 

"0 > 0 small enough, such that for all 0 < ly < vq^ we have 

sup — (⑴ < C i u ^ , l l i i" - u ^ - < C2, 
o<t<r 

Where Ci is independent of u, i = 1,2 

Remark 2.1.4 In the proposition 2.1.1, the time interval is the maximum exis-

tence time interval of the strong solution to Euler equations. However, m Theo-

rem 2.1.2 and 2.1.3, the time interval is the interval of the existence maximum 

intervals of the strong solutions to both the Namer-Stokes and Euler equations， 

does not depend on the viscosity. 

2.2 Preliminaries 

We now state some lemmas which wi l l be used in th is chapter. 

Lemma 2.2.1 Let u € W '̂̂ (ri) be a vector-value function. Then for s > 1 

+ 114-1」-
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P r o o f : See [24,116]. • 

Lemma 2.2.2 Let be given u E Vt̂ i’於(12), 1 < p < +oo, then there exists C > 0 

such that 

M P < C\Vu\p, 

for all u such that u • n\dn = 0, or u x — 0 Moreover, 

for all u such that u • n\dn = 0， or u x n\dii 二 0 P r o o f : See [17,116] • 

Lemma 2.2.3 Let u be a smooth enough funchon such that u • n\dn = 0, curltt x 

n\dn = 0. Then uj = cur l i i satisfies the following equality on dO, 

In particular, 

一 f Acu • u j d x < f \ V o j \ ^ d x + C f l o f c b j 
Jn Jn Jdn 

where t^jk denotes the totally anh-symmetric tensor such that {(pxip)^ = e^jk^jipk-

P r o o f : Direct ly compute or refer [5]. • 

Lemma 2.2.4 (Hardy's Inequality) If Q C 

domain, then 

f hWP … f I 
—Jnd(x,dn)-P 

for all (3 < p — 1, where d(x, dQ) is the distance between x and 

>2 IS a hounded hpschitz 

Mu e C^n): 
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Proof: See [88] • 

The fol lowing theorems show the existence of strong solutions for Euler equations 

and Navier-Stokes equations respectively. 

T h e o r e m 2 . 2 . 5 Assume that Q ts a regular hounded open set o/M^. Let m and p 
3 

be given, p>l,m>l-\--. Then for each uq, ifuQ G divjio = 0, vq-ti — 
P _ 

0 on d^}, there exist T <T and a unique functions u^ and tt on (0, T) , such that 

u^ e c( [o, f i ;pr"，p(r2))nci ( [o, : i " ] ; i^m-i，p( j^))， t t。G iv^+^^pin)) and 

satisfying Euler equations(2.1.3). 

Proof: See [107] or [24]. • 

I n fact, we can check the proof of theorem 6.3 and theorem 7.1 in [116], we can 

find the existence of Leray's weak solut ion for the whole t ime interval and the 

existence and uniqueness of strong solutions i n the "—independent t ime interval 

hold t rue for general smooth boundary. Next we state the existence theorem of 

strong solutions as follows 

T h e o r e m 2 . 2 . 6 Let uq G be divergence free with the boundary conditions 

(2.1.2). Then there is a time T* = T*{uo) > 0 such that the problem (2.1.1) and 

(2.1.2) with initial velocity uq has a umque strong solution of u" on the interval 

0, T*) satisfying 

v!" e C([0, T*)-H\n)) n L2(0, T*; 

dtvT 

I K I l i 4 00 as t - ^ T if T* < oo. 

Let us stress that this t ime T = m i n { T , T * } is f rom now on assume to f ini te and 

fixed. 
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2.3 Estimates of boundary layer 

I n this section, we w i l l show the estimates for the first boundary layer including 

L^—estimates in (x, z) and the estimates of t ime regularity. 

The fol lowing lemmas w i l l be frequently applied in the rest of paper. 

Lemma 2.3.1 There exzsts a constant C independent of p such that for all v E 

= X IR+), p > 1 which vanishes for x outside the 

neighborhood A of d f l , 

(2.3.1) 

where Lp{x) is a smooth function defined as m the previous section. 

P r o o f : The proof of (2.3.1) is the same as Lemma 3 i n [58]. We outl ine the 

main estimates here. 

[ 寧 ) d x 二 r f vP{6 一 sn{5)l 
Jn v^ Jo Jdn v^ 

where 7 s ⑷ is the Jacobian of the transformation 5 ^ S — sn(5). Then 

I 寧 ) = v ^ r f 
Jn v^ Jo Jon 

v(6,5, z) — sn{S), z) 

Since dVL is smoothly compact and rj is small, we have 

0 < 7mn{js(S}; 0 < s <T],S e dU} < max{'ys{6);0 < s <rj,S e dQ} < +00 

(2.3.2) 

Therefore 

Jdn Jen 

For each {S, z ) e d n x (0,00), Sobolev embedding rj) 4 and the 

above inequal i ty implies that 

< (7 f { v P ^ { d n V y ) { x , z ) d x . 
Jn 
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Thus 

The proof is completed. • 

Lemma 2.3.2 Let uq e W'-^^'^iQ) with uq • n = 0, then f ( x , t ) - G 

C([0, T ] ; T ] ; vr—i’p(n))，where u^ is the smooth solution of Euler 

equations (2.1.3). 

P r o o f : For al l tangent ial derivatives, we use the Lemma 2.2.4. The other deriva-

tives use the argument in Lemma 4 of [58]. In fact, in the proof of lemma 4 of [58], 

we only require tha t • n = 0 on the boundary. • 

The fol lowing proposit ion shows the L^-estimates of the high order derivative 

for a;~variable of the boundary layer u^. 

P r o p o s i t i o n 2 . 3 . 3 Let 3 < p < oo. If uq G V1 / " "+2，p� )with V • uq = 0, and 

Uq • n — 0, curluo X n — 0 on the boundary dQ, then 

IF E T ; X E+) ) . 

P r o o f : We veri fy i t by induction. Set g{x,t) = cmit/^ x n, then 

g e n C7i([0,T];ir"+i，P(n)). 

A t f irst, we prove i t is t rue when |a| = 0. Mu l t i p l y (2.1.6) by + 以c 

and integrate in x and z to obta in 

[ f (1 + + f f (1 + ？ V • 

f f ( 1 + 产 K • • ⑷ ? + / / (么 + 么2糾)/ . a , 斗 T 一 2 以 C d — 
J J J JnxR+ 

— f f (1 + = 0. 
J JilxW-i-
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Since W • vP = 0 and • n 二 0 on the dU, the th i rd term on the left hand side 

vanishes. Integrate by part w i t h respect to z to the last te rm on the same side 

and the fact tha t the boundary condit ion (2.1.7) yields 

王兰 I M I m a p + f f (1 + ,脈权 Cj V P , — 

= - f [ — f f (1 + z ^ ^ X . 
J JnxR+ J JnxR+ 

- - [ f ( 1 + 2 A : 么 狄 之 + f t ) \ u % x , t , t , 0 ) \ d x 
P J JnxM-\- Jn 

= 1 1 + 1 2 + 1 3 + l4-
(2.3.3) 

Young's inequali ty implies that 

| I i | f l (1 + z ' ' ' ) i a , u f l u T ~ ' d x d z + f f (1 + y ” K p > c k x l z (2.3.4) 
J JaxR+ J JnxR+ 

Due to the regulari ty of w。and / , we can deduce tha t 

II2I + lis I < C f f (1 + (2.3.5) 

Now we check the last term as follows: 

/ 
II4I < II^IIp / K(工,力,0)|M:r < C\\g\\, / 

< CII^IIp ( f f (1 + z ' ' M u f l u r ' ' ' d x d z ) I f f \ur-'dxdz)坤 

< e [ [ ( 1 + + CWqWI + C f f ( 1 + 
J JUxR+ J JnxM+ 

(2.3.6) 

Then, put (2.3.4), (2.3.5 ) and (2.3.6) in to (2.3.3) and choose e 二 ^ to obta in 

；去 I M I l • ⑶ K 『 m a p + Ĉ . 

B y Gronwall 's Lemma, we get 

sup ||?/||a，o，o’p < C. 
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Assume that when |a| = s < m - 1, we have that G L⑴(0, T ; x 

R+)) , when uo G Next we verify when s = m, u。G L°°(0, T ; M^、劝’”⑴ x 

M+)) is also true. 

To this end, we apply the operator d^ to (2.1.6) w i th \a\ = m, mult ip l ied by 

(1 + to the both sides of this equation and integrate in x and 

z to obtain 

= [ f (1 + 
P咖 JJOXR+ 

- [ [ ( 1 + 之二[(t/C . x/uO + U。. X (2.3.7) 
JJf2xR+ 

- f [ (1 + = / i + i2 + i3 

We estimate / i . Integrate by part w i th respect to z to get 

h = - f f (1 + 
JJQxR+ 

J J 

+ f d , { d y ) \ d y T ~ ^ d y % = o d x 
Jn 

= - 1 1 (1 + - h , + / i , 
J Jax&+ 

Due to Young inequality, we can infer that 

J J J JnxR+ 

Since = by the same argument in estimates of I4, we can 

conclude that 

JJnxM+ 

+ C / / (1 + + C K g i x , t)|g. 
JJnxR+ 

Then the estimate for I i is 

h < - ( 1 - 2 £ ) [ f ( l + z ’ | 么 抖 C I M g , 饥 , 。 ， p + C. (2.3.8) 
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Now we bound l2- By direct calculation, we have the fol lowing formula 

x n ) = ( d 》 ) X n + (2.3.9) 

where D^{u) denotes a linear combination of components of u and derivatives 

w i t h respect to x of order < |Q;| of such components w i t h coefficients components 

of n and derivatives of n. Thanks to (2.3.9), we infer that 

l 2 = f f (1 + + V ^ ' 
J JnxR^-

X n 
'nxR^ 

+ D^'Hu''. Vn。+ w。• Vo^^O} . Id^T'^Oy'dxdz 

= f f (1 + ？ ” { K K -权0 + # - ^^xu')] + • + 权 0 • V,^ '^) 
J J 

一 • Vu^ + u。. V^c) . 二 Ji + J2 + Js-
(2.3.10) 

First , Let recall the Leibniz' formula 

『 ( u v ) = Y (二) 〜 - 〜 ， 

(a\ a' 

• e D。- 。二 • .爲 )— y = � ̂  - — 
A < = 1, • • • , n). we can calculate the te rm Ji by above formula 

J i = / / (1 + -u^ + u ' -
J JflxR+ 

= f f ( 1 + V ( f \ ( d 【 u c . v d r v + a y • 《 - 〜 c ) i d ^ u ' ^ r ' d y ' d x d z 
JJnxM+ ^ VP/ 

= J l l + -̂ 12-

Since the terms of /3 > 1, we have 

ff (1+z'') • 
J JnxR+ ^ \py 

< CIW【+3JI(1 + + 11(1 + 
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For the terms of = 0, we get 

// (1 + 产)E ft)奴• •《-
^ \PJ 

„2fc、 

< ^ l l ^ l U p I K i + + 11(1 + 之 盖 辆 

since 2p < 

Since u • n = 0 on the boundary and d ivu = 0, we know that 

f f (1 + • vayidyT^d^u'dxdz 
J Jfix 股+ 

= 0 . 

Next , we estimate the other terms of J u for 0 as follow 

f f ( 1 + z ' ' ) T d^y. 
J JnxR+ W 

< + + 11(1 + 以II; 

Therefore, we can conclude that 

I i l l < C | | ( 1 + y ” 会 t^cilf,!’” + (711(1 + 之 収 爪 列 + i ’ p +11(1 + z ' ^ . d ^ ^ l 
2k\i„,c IP J2k、 

We note tha t 

\M = f f (1 + 么2”[勒奴c . “0 + , • 无 … . n ] n \ d y T ' ' d y ' d x d z 
J -'0x1+ 

/ / (1 + 
J JOXK4-

J2k、 E © ( 权 . 
U 

+劣 I /。• 6 > r 〜 ） . n nld^T'^dy'dxdz 

< C\Ji\+ [ [ (1 + [(wO • V ( a x ) • n)] n | 《 权 之 



71 = 0, then a y . n = = a n d compute the term J31 as follow 

i31 = f f (1 + ^ 
JJnxm+ 

+ ifO . V n - u^'Dl ' ) d x d z 

= [ f ( … J J n x M . + 
‘ n ) 

+ • V n . u'^Dl 

<c\h\ 

Use the Leibniz' formula, we easily obtain J^ < C\Ji\. Thus we have 

h < q | ( l + 么2”*以C|『外p + + 么从 二 一 1 过|+i，p + 1 1 ( 1 + 

(2.3.11) 

Use the Leibniz' formula again we know that 

[ f (1 + 作 w 
< C - [ [ (1 + z ^ ' ' ) z f d , \ d y f d x d z 

J JnxR^ 

d ^ j d r ^ d x i d y r - ' d y ^ d x d z 

+ f f ( 1 + 么 E ft)咖妒从c ) \ d y r - ' d > ' ' d x d z 
V / 3 < A 乂 / 

：二 J3I + JZ2 

B y the regular i ty of f and integrat ing by parts for z、we have 

IJ31I < c f f 二(1 + 
J Jq.xR+ 

<c [ f (1 + (2" + l)z^'')\dy\Pdxdz 
J JUxM-i-
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A n d w i t h integrat ing by parts, the regular i ty of d ^ f and Young's inequali ty imp ly 

J32 < E ft) / / (1+(2^+ 

J JQx'S.+ 

+ E f f (1 + z 2 ” | 《 a X | 2 | f i > > T - 2 d z d -
J JflxR+ 

Therefore, choose £： = we have for |/5| > 0 
o 

< + \\^%+[E]+i,m-\0\,O,p + 丨丨…III外0’P ^ 工？） 

By the assumption and Gronwall 's Lemma, we finished this proof • 

Remark 2.3.4 In this proof, we require that uq G and p > 3. It 

IS easy to know that if uq 6 with p > 2, then the above proposition 

holds. However, when p = 2, we can prove that if uq € 门 then 

^ceLoo(0，T;^fc，m,o(QxR+))nL2(0，:r;HM^,i(f7xR+)). In fact, For m<2, 

we can refer the proof m [58]. However, if m > 2，the proof is not difficult along 

the proof of H^-estimates in [58] or see the following proof. 

I t IS dif f icult to get / / -est imates for {t, 2;)—variable, but we get the fol lowing 

estimates which are better regulari ty w i t h respect to {t,之)-variable than [58 . 

Lemma 2.3.5 If uq e n m > 2, with uq • n\dn = 0, then 

if e /7°(0’ T; //一，1 ⑴ X M+)) and dtu" G T; //&，爪’。⑴ x R+)) 

P r o o f : App l y the operator d^ w i t h |Q;| = m to the equation (2.1.6) to get 

dtdguC — d y + d 胁 d / i f ) + a 二 [ ( y . V u 。 + u ^ V u ' ) X n ] = 0. ( 2 .3 .13 ) 
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Mul t i p l y (2.3.13) by (1 + z狄)dtd》。and integrate on x E + we have 

0 = f f (1 + z ' ' ^ ) \ d t d y f d x d z - [ [ (1 + z ' ' ^ ) d t d y d y d x d z 
J JnxR+ J J 

+ / / (1 + z ^ ^ ) d t d y d S i f z d , u ' ) d x d z 
J JnxR+ 

+ f f (1 + 之 2 ” 线 勒 ( y . W ^ + t / V ^ O X n] 
J JQ.XR+ 

= f f (1 + z ^ ^ ) \ d t d y f d x d z + i ^ i + + Ks. 
JJnxR^ 

K 、 二 工 f f (1 + 产)丨<9，乂|2ck;dz 
J JnxM-L 

We w i l l focus the estimate of K i . I n fact, integral by parts respect z、we have 

J JnxR+ 

+ / / . dtdydxdz — f t, 0)dtd^u'(x, t, 0)dx 
J JnxR+ Jn 

/ / 滅 ( 1 + + C P ^ ^ X I I ^ O + 4 d t d y % A 0 

- f d:g-dtdy'{x,t,0)dx. 
Jn 

For last te rm on the r ight , we can estimate as follows 

一丄 d;g . dtdy^x, t, 0 )da ;= 一昏丄 + 丄 d工• 

= / / d ^ g d . d y ' d x d z ~ [ f d t d ^ g d . d y d x d z 
^^ J JnxR+ J JflxM+ 

CLt J Jnxm+ 

Therefore, we can obtain the fol lowing estimate 

1 d 
尼 < 云 云 / 7 ( (1 + 之 2 知 释 - 2 d 2 g d 躺 ( M s 

W W JnxR+ 

We are going to estimate K2 by Leibniz' Formula, 

= f f (1 + J 

- f f (1 + 
J JnxR+ 

二 f f ( 1 + Z 狄 赋 uCz Y^ ( 二 ) 

J JnxR+ t T l VP/ 

(2.3.14) 
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We wi l l estimate the right terms divided by several cases. 

I n case of /3 = 0, we have 

[ f (1 + z ^ ^ ) d t d y z f d ^ d , i f d x d z 

< 1爪《^⑶ 11(1 + + 之2(朴 

I n the case of |/3| = 1, we obtain 

[ [ ( 1 + V 

J JqxR+ 问 

<C f (1 + 么2”么II线《AbR" 

< c i | ( i + + 圣达《一权参 11(1 + 

1 1 

here use the interpolation inequality \\u\\^ < ||?i||| 

I n the case of \P\ > 2, we get 

[ f (1 + Y ^ 
JJaxm+ 

JM+ 

< ^ 1 1 ( 1 + + 之 好 •冗氏 以 c | | ! 1 1 ( 1 + • • 么 《 — 〜 

1 1 
here apply the interpolation inequality ||ii||oo < Il'^lli,2ll'"ll2,2-

Therefore, we know that 

K2 < + 11^11^1,^-1,1 + + 4 d t d y % , o , o - (2-3.15) 

Use the same argument above and the proof of h in Proposition 2.3.3, we 

easily obtain that 

< C(|K欧饥_ i’ i + I I 权 1 ) + 也〜帥，0. (2.3.16) 

Since Remark 2.3.4, we know that ^ C. By the Gron-

wall's lemma and Holder inequality and choose £ = we conclude that 
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The proof is completed. • 

I n fact, we can improve the regulari ty of dtu^ for the equations (2.1.6) i f in i t ia l 

data is regular enough. 

L e m m a 2 . 3 . 6 If uq e ⑴ ) n Ll{n),m> 2 with uq . n\dn = 0, then 

dtuc G 77、一(Q X R+))nL\0,T; x E+) ) . 

Consequently, 

u" 6 L ^ ( 0 , T ; U 、 饥 ， X E + ) )门 L2(o’T;丑、饥，3(^] x R+) ) . 

P r o o f : A p p l y dtd" , |a| = m to (2.1.6), we have 

= 0. (2.3.17) 

M u l t i p l y (2.3.17) by (1 + z〜td》。and integral over Q x M+, we have 

县 / / (1 + z ^ ^ ) \ d t d y f d x d z - f [ (1 + z ^ ' ) d l ( d t d y ' ) d t d y ' d x d z 
^^ J JnxR+ JJnxR+ 

f f (1 + + ( M 计 
J J 

f f (1 十 . Vzz^ + uc . Vu^) X n]dtdydxdz 二 0. 

(2.3.18) 

First，we give the estimates when |0；| =0， thus 

^ f f (1 + 之 ’ I 如 f d 油 _ f f (1 + 一 ) ( 如 ” 力 t / d 油 
dc J J JnxR+ 

f f (1 + z ' '^)dt i fzd,u ' ' )dtu ' 'dxdz-h (2.3.19) 

f f (1 + , ••？/ + uC • X n ]d tu 'dxdz = 0. 
JJnxR^ 

Since 

- f [ (1 + ( 如 c ) 如 Cd 油 = f f (1 + z'"')\dAufdxdz 
J J JnxM.+ 

J JnxR4- Jn 
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I t follows tha t 

f f (1 + z^^)\d,dtufdxdz 

< q | ( l + + - [ [ dtgdtd^dxdz 
J JnxR+ 

< c||(l + + + C||(l + z'')htu%\\dtg{l + z'')-

We can calculate about the t h i r d te rm on the left side of (2.3.19) as follows 

J JQ.XR+ 

= [ f (1 + z^^)dt fzd,u ' 'dtu ' 'dxdz 
J JnxM.+ 

+ [ f (1 + z ^ ^ ) f z d A u ' d t u ' d x d z 
J JnxR+ 

+ CII/II loo ⑷)||(1 + + 1I2 

< 如c||《+i’。，。+ 

Similar argument in Proposit ion 2.3.3 and above proof, I t is easy to see that 

[ [ ( 1 + _^2”at[(ii。• + ^c . X n]dtu' 'dxdz 

= [ [ (1 + z狄、[(这li。. VuC + u^. VdtuC + dtuC. Vu。+ u'^Vdtu^) x n] dtu'^dxdz 
J J i2xRj-

By the Gronwall 's Lemma and the dtu^ G【2(0, T;丑奸i，。，。⑴ x M+)) f rom the 

previous lemma, we have 

sup r [ f {l^z'')\dtd,ufdxdzdt <C^limJ\dtu%t)\\ 
Q<t<T ，， Jo J JnxR+ 力]0 • 

(2.3.20) 

By induct ion, as i n argument of Proposit ion 2.3.3, we can obtain 

2 
fc,o,o-

sup 11 线 ⑷ III,爪’0 + 这复2(q’t;h一’i(fix!R+)) 

(2.3.21) 
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Since 0, z) = 0, thus d^dlu'^ix, 0, z) = 0, for al l a,j. Therefore, take l im i t 

to bo th side of (2.3.13) as t —̂  0, we can get dtd(乂{x,t, 0 i n a.e. 0 x R+ 

as t —̂  0. Therefore, we can know that last terms of the r ight side of (2.3.20) and 

(2.3.21) are vanish. 

M u l t i p l y (2.1.6) by dlu。, using Hdlder inequali ty and Lemma 2.3.5, we get 

tha t 

uc e L ⑷ （ 0 , T ; 丑 、 X R + ) ) . 

App ly d^ to (2.1.6) and inner product by d^u^^ by Holder inequal i ty and 

Lemma 2.3.5, we also know that 

2.4 The proof of Theorem 2.1.2 

I n th is section, we give the LF un i form bound of this remainder and give the proof 

of theorem 2.1.2. W i t h the same arguments as [58], we obtain tha t the remainder 

W solves the fol lowing equation: 

dtR" — "AiT + u"" • VR" + FT • + v^iT • nd,v + iT • ndzxf + y^IT ‘ Va^u。 

=-dtv + Au。+ + 2n • W^^dzu' + iyA^[v{x. '^)] -u'' -V^v-v Vu。 

fU。. ndzV — . ndzV — v • nd^u^ — u^. VxU^ + A • dzU。— -Jvv • Vx^^ 

+ + R . H . S . i n 

d i W r — d h v K M , 學 ） in n . 

(2.4.1) 
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W i t h the boundary condit ion 

FT • n{x) + v[t, X, 0) - n(x) = 0, for x e dQ (2.4.2) 

curljR^ X n + x, 0) x n + curla;”(i，x, 0) x n = 0, for x G dQ. 
a/zz 

(2.4.3) 

A n d the in i t i a l data of R" is 

x) = 0, for xen. (2.4.4) 

Denote b(t，x) — x, 0) + v{t, x, 0). 

I n the sequel, we always use the fol lowing anisotropic Sobolev embedding. 

Lemma 2.4.1 Let U(x, z) be a sufficiently regular function defined on Q, x R+, 
3 3 3 

2 < p < o o , m > and if p = oo，m > •^，Then 

(2.4.5) 

Proof: In fact, 

< 1 1 ( 1 + L ^ m a + 力 股 + ) 

here we used the Sobolev embedding H讯 ^ • 

I n this section, we need the fol lowing Helmholtz-Weyl decomposition of the 

space 

L e m m a 2 . 4 . 2 Let the space Gp{n) = {？/ 6 : e and 

Jp{n) = { i / G LP{n) : diYv = 0，li. n = 0}，then 

LP{n) = Gp(n) e 从n) 
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and the projections of an arhtrary vector field u{x) to the above sub spaces are 

defined by the formulas 

P g ^ = - V I VyN{x,y)-u{y)dy 
(2.4.6) 

IPjtt 二 •u + V / VyN(x,y).u[y)dy, 

Ja 

where N(x, y) is the Green's functions with Neumann boundary conditions, with 

the following estimates: 

where I < r tf dQ G and u G When p = 2, G2{^)丄 

Proof: See [102]. • 

For simplici ty, we denote by P the projector on the space and decompose 

I T = P / T + ( / - P ) i n and show first that ( / - is bounded in 

independently of v. 

L e m m a 2 . 4 . 3 The family (I - P ) i r is hounded m 1/^(0，T; ̂ /丄’罗⑴)）with 1 < 

p <Q, that IS, 

P r o o f : I t is easy to obtain this conclusion by using the standard V estimates 

of el l ipt ic equations, or refer [58]. • 

Now we estimate the bound of independently of v. I n order to avoid 

est imat ing the unknown pressure te rm we need to mu l t ip ly the equation of 

(2.4.1), by P ( | P / r 广 F r o m Lemma 2.4.2, we know that 

P ( | P / r 广 把 ） = 广 + V f VyN{x,y) ‘ | P i ? T —丑“办 
Jn 

：二 + VQ. 
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From the Lemma 2.4.2 we have the fol lowing properties 

dQ 
dn 

= 0 on dQ. 

Integrate in x^ to obta in 

1 d 19 

P^'t JQ 

where 

(2.4.7) 

+ VQ)dx < Y , Bk, (2.4.8) 

Bo = i T - W。P( | IP i f 

Bs = V^ R" . nd,v . P(|Pi?T—丑")da:， B4 = - R" . nd：^ . 

Bs = - v ^ / R" . V^u^. 
Jn 

B7= [ Ai/。. 
Ja 

Bq = - dtv-
Jn 

= f A,权c.p葬 
Jn 

V / A 
Jn 

vix. F^FR' 

B 

B 

B 

B 

B 

- / t i " • . P ( | P i ? T —只 " ) d : r， Bi2 = - V-VU^-F{\FR' 

3 = ^ • • 尺")d3；， Bu = -V^ / V • nd,v . 
Jn 

V . ndzif . P(|Pir广卞工， = - f if , Va^u' • F{\FR' 
1 Jn 

=/ Aif • d.u'' • 
Jn 

= f • (|P.ffT-2]Pir + VQ)dx. 
Jn 

Bis = -V^ / 1； • • F{\FR' 
J ft 

-2pir)da;， 

-2pir)ck；’ 

- 2 Pir )d : r， 

_2p7r)d:r， 

We have to estimate each of the terms i n (2.4.8). We first deal w i t h the Laplacian 
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term. 

— i ^ f A / T . + VQ)dx 
JQ 

Jn JQ 

— lyf A ( P i r ) V Q d r - z/ / A ( ( / — ¥)K')\/Qdx 
Jn Jn 

： = + + lis + (k 

B y integrat ion by part , i t is easy to obta in 

di + d2 = iy I —" f (WT _ 
Jn Jdii 

- V ((curl6 X + 一 2]Pir . V n • P i T ) da 
Jan 

=ofi i + di^ 

B y the Young's inequality, we have 

di.^iy f + " [ •((/一 lP ) i r ) |P丑下 -Sp f fMa : 
Jn Jn 

2(2p - 3) 
> V-

P Jn 
Since curl i?" x n = curl6 x n, thus 

d i , < / ((curl6 X 1 + + | / — da 
'on 

Since 船 < + H^^ '̂Hi.s,! and Theorem 1.2.7, thus 

"||curl6|丨p，如llP/nir丄 < "•l|curl6||J，如 + " ‘ | | P 們 丨 “ 

llasi 

Therefore, by Lemma 2.4.3, we know tha t 
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Integral by parts and the formula cur l(cur lu) = V (d i v i i ) - Au. Thus by (2.4.7), 

we get 

+ = " f c u r l ( c u r l P / r ) . V Q d r - ly [ d i v ( / — P ) / r • V Q 
Jn Jn 

j (curl6 X n)VQdx j d i v ( / — 
Jdci Jn 

< l|curl& X n i l仍a j V Q l k ' ,如 + l |d iv ( / - ¥ ) R ' ^ U A Q \ y 

Now we estimate the each te rm of the left side one by one, 

Estimate of Bi： 

= - , (y - • + VQ)dx 
Jn 

- / u^VR" • + Vg)dx 
Jn 

By the regular i ty of u^^ (2.4.7) and Lemma 2.4.2, i t is easy to see that 

We need estimate the te rm 13in details, we have 

= - f {u"- u y ^ i r • — /(权"— 

Jn Jn 

:=Bi l l + 历 12. 

By the expansion, one can obtain 

Biu < +"iWoo)ii(/ - + 們I〜2 + c 

< 只卞 III IIP丑"IIp丁 + C\\FR^\\l + C 
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Now we estimate the te rm Bi^^ as follows, 

Bii2 = f d i v ( K - 収 0 ) ® V M " ) • V Q d r r 
Jn 

+ f ( V ^ t / + m) + “ / r ) . • ( / — . VQdx 
JQ 

^ ( v ^ n ^ + + " / n ® P i T ： V ' Q d x + (v^l lWl loo + -< 

+ — 一 + | | ( / - P ) i^1 |oo | |V( / - P ) i r I I J V Q l l y 

Therefore, we can obta in that 

Bi < CWFR'Wl + 『转 + C + eu\\V\FRXml (2.4.9) 

E s t i m a t e o f B 2 + B 4 : 

Since the regulari ty of u^ and the un i form bound of dzU^, use the estimate 

(2.4.7) we easily get 

+ + (2.4.10) 

E s t i m a t e o f B3 + B5： 

I B 3 + B5I y v ^ f + f | ( / -
JQ Jn 

： =B i + B2 
(2.4.11) 

Since when p > 3, we know that < 以 1i,3，i and < C7||n1i，2，i 

Use the estimate (2.4.7) once more, we have 

Bi < cv^iip/nwiMiri 

< C l l P i T I g + CpP. 
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Plugging the above two inequalities into (2.4.11) to obtain 

1^3 + 55I s + c v f | | V | P f f 1 吾 II目 + c . 

Estimate of Bq： 

We apply equations (2.1.7) and (2.1.6) to wr i te 

50 

(2.4.12) 

-Be= [ f z)dz • n • 
Jn Jip{x)/^ 

f f z) ‘ Vu。+ . V^u'^ix, z)]tau}dz . 71. 
Jn Jlp{x)/s/u 

(2.4.13) 

+ / / • z)]dz • n • 

— f f z)dz • n • F(\FR''\P-^FR'')dx 
Jn J<f{x)/^ 

: = B q i + BQ^ + BQ^. 

Thanks to the regularity of and vP{x, t), by (2.4.7) we bound that 

| i?6i|SCl|P/ni? + ClM|?，3,0. 

A n d w i t h the help of the regularity of f and dxdzU。, we have 

Next, we estimate Bq^ 

1̂ 63! < c i i d i v 為 二 咖 < + 

Together w i t h the above estimates of Bq^ , Bq^ , Bq^ , we have tha t 

\ B e \ < C \ \ ¥ R X ^ C . (2.4.14) 

Estimate of B7 + Sg + Bq： 

Ut i l iz ing (2.4.7), the regularity of 7/ and u^. I t is easy to see that 

\B7 + ^8 + B,\ < C l l P i ^ X + C + \ /^ IMI?,2,。+ l k i ? 2 , 2 + C. (2.4.15) 
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E s t i m a t e o f Bio： 

Since 

Bio < w J ^ V M ^ . ^ ) ] : + 

+ f dn(v(t, X, • ( | P / r 广 2 p i r + VQ)da (2.4.16) 
JdQ V^ 

= B i o , + B 102-

Due to Young's inequality, we deduce that 

\BioA<C IV Vix, 
v^ Ja 

(2.4.7) 

Since dn[v{x, ip{x)l^/v)\ = Lp{x)l\/v)\ • n + v{x, (p(x)/\/v) , dnn{x) and 

片” is tangent to the boundary, we get tha t 

Bio, 二 ly f v{x, 广 ¥ 丑 " + VQ)dx 
Jdn 

< v ( div[CiJ(a;’0)汰 n O ) ) n ( | P i r | P — + 
Jn 

Jn 

I n conclusion 

\Bio\ < c\\mx + 沙 l i v p i n 曼 I I 震 + Ci^p + c. 

E s t i m a t e o f Bn： Since < <^1^^111,4,1, thus 

|5n| < / V + VW^ + " 科 lyJT) . Vo.'u • (iPiT广2p及"+ VQ}dx 
Jn 

< c i | n 。 | U | p 『 | i r N | V A | | p + v ^ l K l b J V w I b J P / r 『 1 

+ H M W I V c ^ H W P P 們 『 1 + HI 丑 I W I V x u l W l P i n i r ' 

< (11权0丨1 + I M I W ) + V ^ l l ^ l k s , ! + I M I i ^ r 

+ H i M i w K i k 2 A 2 p i i P i n i r i + c m x 

(2.4.17) 

(2.4.18) 



2.4.19) 

E s t i m a t e o f Bis： I t is easy to see tha t ^ C w i t h p > 3, since 

uO-n 
l^ial = - / ——(础. n • ( i P / r 广 + VQ)dx 

Jn ^ ^ 

<11(1 + (2.4.20) 

p 

To estimate the te rm ^ ig , since 

= - / iC^xu'(z)). Vu。+ u^. ( V M 动 ) + + u。• • ⑷ • V^ndz. 
J z 

Then 

\\^xq\\p < q M k 卵 +， i ^ 2 ’ p _ < c ^ l M l w . 

Therefore 

(2.4.21) 

Plugging al l the estimates of B i { i = 1, • • • , 19), = 1 ,2 ,3 ,4) into (2.4.8), 

and choose s very small, we can deduce tha t 

d ，_ — p ,,o - „ 丨丨 

j^WRTp+coHMPin.ii! < + C + ( 2 . 4 , 2 2 ) 

p - i 
Since the number > 1, by the part (c) of Gronwall 's Lemma, we know tha t 
there exist a small 0 < i/q < 1, such tha t for al l 0 < z/ < uq, and 

sup WFR^Wl-^cou r \ \ V \ F R ^ \ ^ \ l d t < C . 
0<t<T Jo 

The proof of Theorem 2.1.2 is completed. 
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18 

Estimate of B12 + ^ B̂： 
=14 

App ly the un i form bound of dzU。the regulari ty of u and a^, we have 

十 E b * 
1=14 

18 
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2.5 The proof of Theorem 2.1.3 

I n th is section we consider the iif^-estiinates for the remainder R " and give the 

proof of theorem 2.1.3. Since the boundary conditions of R!̂  is not homogenous, 

so Lemma 2.2.3 is not used i n this estimate. To this end, we can define an new 

funct ion on the 0 x (0, T ) related R^ as follows 

R{t, x) = 

Then we have the fol lowing conditions 

inl^] 
d i v x ) = — x ^ — ) + div6(t, x), i n Q, 

R . n = 0, on dft, 

cmlR X 几==0， on di}, 

R{0, x) = 0 in n. 

Therefore, i t is t r i v i a l to verify that R satisfies the fol lowing equations 

dtR — uAR + -VR+R- Vu^ + ^R • nd^v + R • nd^u"" + •sJ^R • •乂 

=R.H.S + dth ~ uAh + ？ + bVu^ + V^b . nd,v + b • nd.uC + . •①li: 
(2 .5 .1 ) 

By the 17 bound of we know that if 0 < i/ < /̂Q 

< C, 3 < P < 6 

II叫|i/»(o，r;L2⑵）+ ||div/?||i,oc(o,r;L2(f^)) < 

From (2.5.2)-(2.5.4) and Lemma 2.2.2, we know that 

lli?||2,2< |lVcurm||2 + C i y - i 

Therefore, i t suffices to estimate the bound of | |curli?|| £,00(̂ 0,T;L2(n))' 

(2.5.2) 

(2.5.3) 

(2.5.4) 
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App ly the operator curl to (2.5.1) and set curl i? = u , then we have 

DTUJ — UALU + c u r i o " . •尺）+ curl( i? • 

V^cu r l ( i ? • ndzv) + curl (it! • ndzU^) + • Vx^'^) 

=cuilR.H.S + cmWtb - z^Acurlb + curl(i/ • Vb) + curl(6 • 

+ v ^ c u r l ( 6 . ndzv) + curl(fe . ndzU^) + v ^ c u r l ( 6 • •？/). 

M u l t i p l y (2.4.9) by co and integral on i l , we get 

(2.5.5) 

d 
12 

— I Auj • udx = I cml{R.H,S.) • cjda: + ^ Ei (2.5.6) 
'fi Jfi 

V一丄 

First , we estimate the Laplacian te rm on the left hand side. Due to Lemma 2.2.3 

and Theorem 1.1.7, we have 

—jy j AUJ • ujdx — z/ / — " / [n - Vuj) • ojda 
Ja Jn Jon 

> { l - £ ) i y / - CP\\UJ l2 
(2.5.7) 

Next we bound the te rm on the r ight hand side of (2.5.6) one by one. 

El = f curl(w" • VR) •ujdx= [ c u r l ( ( y — . VR) • ujdx [ cur l (n° . VR) , ojda; 
Jq Jn Jn 

cu i i (7 / • VR)ujdx + curl(t; • VR)ujdx + i/ cuil{R''VR)ujdx 
Jn Jn Jn 

+ / curl(?i° • VR) . ujdx := J i + J2 + J3 + J4. 
Jn 

Since cj x n = 0 on integral by parts, then 

|Ji| = • VR)cm\ujdx\ < v ^ l K ( 力 ⑴ ) | | V i ? | | 2 | | c i i r L ; | | 

< I I … I ? ’ 2 ’ i I M I _ + C h i U i ^ " ' + J ^ H I c u r l c ^ l l i 

IJ2I < ^||H|6||V/?||3||curla;||2 < 4vM\VR\\l\\Vuj\\l 

IJJ = / cuilu^VR 
• udx I u。• Vujujdx = l l cu r l权0 |U |W^ | |2 |M |2 < | |cur l (u loo + 1)IMI_ + ||curk/。|【z/-



Some Studies on Viscous Fluids 55 

I t is more complicated to estimate the te rm J3, from(2.5.2) for ；p = 4, 

IJ3I <1^1 f R" • VRcmludx] < H | / r | |4 | |V / ^ | |4 | | c i i r lu ; | |2 
Jn 

< CU\\LO + Vb\\l\\Vu\\l + i / i | |a; + V6||| | |Vu;||2 

Since Lemma 2.3.3-Lemma 2.3.6 and 0 < ly < uq, therefore, we obtain the esti-

mate of E-i as follows 

(2.5.8) 

I t is easy to estimate the term E2' 

/ Lj • Wu^ujdx + / R • V c u r k ° • a;d 
Jn Jn 

\E2\ 二 I / cur l ( i? • Vu^ ) • cjd^l < 
Jn 

引 I•权 + V c u r k O l l s M b 

S + I I 偏 M + 

<C\\uj\\l + Ciy-\ 

Let me compute the term E3, 

五3 = V ^ / cur l ( i^ • ndzv)dx 
Jn 

=\/v / R . ncrnidzVLodiX + / V{R • n) x dzvuo^x ) 
Ju J 

: = K i + K 2 . 

Now we estimate K i , K 2 respectively 

IK2I = / V(R. n) X d^vujdx 
Jn 

< V^ll•(尺• n) |bl l5- t ; | l6|M|3 < V R 7 I M I倉 \ \ V { R . n)||2||Va;||| 

(2.5.9) 
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|Ki| < v ^ 
= 

R. ncmlxdzVLudx + sf^ 

R • ncurla^ (ndiYxU'^)ujdx + V^ 

R • ndlv X nujdx 

R . ndzdiYxu'^ X nujdx 

< V^| |R| |6 | |curL(ndivX) | |2 | |a; | |3 + V^||/?||6||ri x 

< Cy / ^ \ \VR\ \2 { \ \ cuMnd iy ,u ' ) \ \ 2 + ||n x d , d i v , u ' ) \ \ 2 ) M l \ \ V u j 

Hence, we can obtain tha t 

E3SC + Cv-^ + C\\oj\\l + eiy\\Wuj\\l 

We now calculate the the integral E4 

E4 = I c\ii\(R • ndzu'^)ujdx 
Jn 

—/ V(R • n) X dzU^udx + R • ncmlxdzu^udx 
Jn Jn 

+ i
 u'^ X n) • ujdx. 

Thus, since < C, we have 

< • n)\\2M2 + \\Rh\\cm\,d,u%\\uj\\2 

+ 
V^ J a 

R • nd'^u^ • (n x uj)dx 

1 
R . ndlu^l . (n x uj)dc 

Integral by parts, we obta in 

I五5 —\/z/ / R • Vxu'^cvLilujdx 

(2.5.10) 

(2.5.11) 

< •乂IbllcurMb 
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Since dtb{x,t) = dtv{t, x, 0) + —dtu''{t, x, 0), hence 

||5fCurl6(x, t)ll2 = lldtcurla:v(t, x, 0) + x, 0)||2 

Therefore, we can bound Eq as follows, 

l^e l < I I如u r l & 0 M ) l | 2 l M b < ( I I如 + i | l如c( l l i， i ) + (2.5.12) 

Integral by parts, then E? 二 j A^b • curlcjda;. Whence 
Jn 

獨 H M I U + II …l?’2，i) + ⑶ I I•⑴ 

(2.5.13) 

As the argument in the estimate of E i , one follows tha t 

f c i i r l ( (u" - u^) • Vb) . wdrc + f curlO。. V6) • ujdx 
Jn Jn 

< 

< 

- li。）• V6) • cu rk j cb 

d
 

T
n
 

u
 

c
 

V
 

c
 

V -Vb • curlcjda; 

R" -Vb- curlcudx 

< v ^ | K I U | V 6 | | 2 | l c u r M 2 + i^||i;|l6|lV6||3||curla;|| 

+ + " f R'-Vh- cmlujdx 
Jn 

< eu\\cuM\l ^ C { \ \ u r j m l 

We estimate the last te rm of r ight side above, 

R " -Wb- curltjda: 
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Since p l U + \\b\\H^ < C||i/||i，2，i"—5，thus 

(2.5.14) 

I t is easy to verify tha t Eg as follows 

I 丑9| = (curl6 . - b • Vcur lw°) • udx (2.5.15) 

Since • n = 0, we easily obtain 

I 五 10 + 丑 11 + 丑 121 < V^ / X, 0)diVa;ti'^)curl6(jdx + / v{t, x, 0)dzu^cuilujdx 

/ b • Vxu'^ • curltjdx 

I t remains to estimate the te rm / cui\{R.H.S) • ujAx. Set 
Jn 

14 

cm\{R.H.S) • ujdx = 

Where 

(2.5.16) 

D i = — c u r l (如） . w d r , 
Jn 

D, cur lAu^ 

Jn 
wdx, D4 = cur l (2n • Vxdzu" 

Jn 

D5 == jy c u r l ( A “ v ( : r ’ • udx, Dq 二一 • Vxv] 
Jn • Jn 

D7 = — curl(v • W O ) . cjdx, D8 = . ndzv) 
Jn 

Dq = — v ^ / curl(?;. ndzV) . cjda;, Dio = — / cur l ( i ; . ndzU^) 
Jn Jq 

Dii = 一 Z . VxuC) • cudx, D12 = / cur l (A(^ . dzu'^) 
Jn Jn 

D12, = / curl(?;. Va^ti。. Lodx, Du = -7= i^z^xQ x n) 
Jn v^ Jn 

udx, 

ojdLr， 

udx, 

ujdx, 

ujdx^ 

(jjdx^ 

ujdx. 
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As in the argument in the estimate of Eq, we can infer 

(2.5.17) 

Integral by parts and the regulari ty of u^, we have the fol lowing estimates, 

\D2\ = cur lAt / - to <C+| |a ; | 

\D3\ = V^ A^u^cmlujdx (2.5.18) 

Since curia；[2n • ^xdzU^] = 2curln • VxdzU。— 2n, — 2n • x n 

thus 

1 

(2.5.19) 

Since 

A. h{i = 崎 , 榮 ) + 2 榮 . 她 榮 ) + 擎 榮 

+ > ( 1 ， 榮 ） 

Therefore, we can estimate the Lk to obtain 

9 

n{x) 

A. v{t, X curlwdx 

+ 2-
⑷⑷、 AC/9 

< V V 、 

• A — — X , 

curlcjda: 

⑶ M I U 。 + 臺 ⑶ M + 

(2.5.20) 

ndivxdzu'^ • curlc^da: 

s 列 M l U o + MlS’i’i"—+IVMI!. 

B y Theorem 2.1.2, i t is easy to see tha t 

Del CUT1{U'' ‘ Vxv) • ojdx S C l M i i + 圳丨 curMli- (2.5.21) 
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Direct ly compute, i t is easy to see that 

< C M 2 . 

From the regulari ty of / and integral by parts, we have 

u'-n 

(2.5.22) 

丨乃8| 二 , ^ ^ • cmlujdx 
(2.5.23) 

< | | / I U M k i， o | | c u r M 2 < o - … H | V 。 I I , . 

Integral by parts and the uni form bound of dzU^ and A(p, we also obta in that 

13 

I J ] A | < + (7 + (2.5.24) 

where C depends only on Next , we must estimate the last t e rm 

D14. Since curl[Va;(?] = dzVxq x n, thus, we have 

1 
\Du (dz^xQ X n) • ojd 

scv4 | |uC| |g ’2 ,。+ IMIg-

(2.5.25) 

I n addi t ion, by the Lemma 2.3.3-Lemma 2.3.6, we know the fol lowing inequal i ty 

_d 
dt + (1 - 1 3 咖 [ f IVcpd：. < C l l ^ l l i + C(||如C||?’1，1 + + 1 ) ^ 1 . 

J JnxM.+ 

(2.5.26) 

Since||atwC||?’i，i + 丨⑷丨丨^丄，㊀ + 1 is bound in L \ 0 , T ) , by the part (b) of Gronwall 's 

Lemma, for the 0 < "0 < 1 as in section, such tha t for al l v € (0, we have 

\mi,2<\\Rh2-^\\b\\l,2<Cu-

Since 

^ • 乂 (力’ A 榮 ) + ③ d 兆 

poo 
and v(t, x^z) = n / x^ r})d7]. Thus f rom Lemma 2.4.1, we know tha t 

I I 龍 “ 青 ) ] | | 2 < |M|I,2’0 + “ M | 0 ’ 2 ’ 0 . 
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Consequently, we have got for any 0 < i/ < i/q 

sup 
0<t<T , 、 

' t (2.5.27) 

Thus the Theorem 2.1.3 is proved. 



Chapter 3 

The existence of weak solution 

for a class of non-Newtonian fluid 

with slip boundary on the half 

space 

In this chapter,we consider the non-stationary problems of a class of non-
3n 

Newtonian fluid which is a power law fluid w i th p > in the half space w i th 
n + 2 

slip boundary conditions. We construct the approximation solutions to some aux-

i l iary problem by regularizing the convection term. Using the difference method, 

we improve the regularity of weak solution to this regularized problem. Further-

more, the existence of approximation solutions is obtained by these regularity 

estimates and Galerkin method. Apply ing the the local pressure estimate w i th 

the Navier's type slip boundary conditions, and an L①—truncat ion method, we 

can prove the sequence of approximation solution converges to the required weak 

solution for origin system 

62 
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3.1 Introduction 

In th is chapter, we consider unsteady flows of an incompressible f lu id described 

by the system 

dtu 一 d iv .9(D(u) ) + {u • V)u + Vtt 二 /， i n R ^ x (0，T) 

V • u = 0, i n X (0 ,T ) , (3.1.1) 

u\t=o = uo(x), i n M^ , 

where u is the velocity, vr is pressure and f is the force, and S{-) is nonlinear 

stress tensor, which defined in Def ini t ion 3.1.1. We can impose the fol lowing slip 

boundary conditions 

u . n k = o 二 0， ( ( 5 ( D ( i i ) ) • n) - (n . S{D[u)) . n)n)|则=。二 0. (3.1.2) 

I n fact, this problem corresponds to the free boundary problem for the non-

Newtonian fluids w i t h free surface supposed invariable. 

I n th is problem (3.1.1), there are two main difficulties. A t f irst, al lowing for a 

non-constant viscosity always brings new complications to analysis, as the equa-

t ion now becomes nonlinear in the leading te rm and the boundary conditions 

are not clear. Other obstacle comes f rom the domain is not bounded. I n the 

unbounded domain, some required compact results do not always hold. I n these 

years, there are few results in unbounded domain to non-Newtonian fluid. For 

example, M.Pokorny consider the existence of weak solut ion for the Cauchy prob-

lem in [93] and P. Gald i et.al(see [50], [84], [16]) obtained the existence theorems 

of the steady flows for shear-rate l iquids in exterior two-dimensional domains. 

Here, we show how to generalize these existence results to half space in R^. 

To overcome these difficulties, we begin to investigate the regularization of 

the convection t e rm to obta in a new system. F ix a positive number e > 0 and 

cut the mir ror reflection of the vector if by a characterized funct ion on the bal l 
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{ic E M^ : < - } . Then we can f ind a sequence of smooth funct ionsjue} which 

is divergence-free and converges to the funct ion u i n suitable funct ion spaces. 

Therefore, for any £ > 0, we w i l l get the fol lowing system 

dtu - dwS{D{u)) + {ue. \/)u + Vtt = /， i n E ^ x (0, T ) 

• .11 = 0’ in M^ X (0,T), (3.1.3) 

= uo(^), i n K+-

Hence, the convection te rm of the system above becomes more regular. I t is 

convenient to obtain the regularity, uniqueness and existence of the solutions for 

above system. 

To avoid the complication of the boundary conditions, we choose the stress 

tensor induced by a p—potential as the fol lowing definit ion: 

Let be the vector space of all symmetric n x n matrices ^ = (。、• We 
n 

equip M拟 " "w i t h scalar product ^ : r] = ^ ^i jVij and norm = : 77)2. 

D e f i n i t i o n 3 .1 .1 Let p > 1 and let F : M+」{0} — IR+ ^ { 0 } be a convex 

function, which is C^ on the E+。{•}，such that F{0) = 0, F ' (0 ) = 0. Assume 

that the induced function $ : M德M+ |J{0}, defined through = F{\B\), 

satisfies 

Y . { d j k d l m ^ ) i B ) C j k C i m > 7 1 ( 1 + 孕 | c f ’ (3.1.4) 
jklm 

+ (3.1.5) 

for all B,C G M几饥 with constants 7 1 , 7 2 > 0. Such a function F, resp. is 

called a p—potential. 

We define the extra stress S induced by F, resp.少，by 

S{B) = VLn少(B) = F'{\B\) B 
丨Bj 
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for al l B e M彻 \ { 0 } From (3.1.4), (3.1.5) and F\0) = 0, i t easy to know tha t 

S can be continuously extended by 6'(0) = 0. 

As i n the [33] and [79], one can obtain f rom (3.1.4) and (3.1.5) the fol lowing 

properties of S. 

T h e o r e m 3.1.2 There exist constants ci, C2 > 0 independent a/71,72 such that 

for all B,Ce there holds 

5 (0 ) - 0, (3.1.6) 

似 B ) — S ^ i c r m ” — c y > C i7 i ( l + + — Cf^ 12 

+ (3.1.7) 

\S{B) — 5'(C)| < C272(1 + + — (3.1,8) 

\ S { B ) \ < c 2 j 2 { l + \ B \ ' y - ^ \ B \ . (3.1.9) 

Therefore, we w i l l obta in the equivalent conditions: 

duo. 
1 X3-- dxs 

= 0 = 1，2). (3.1.10) 

Prom these conditions, we extend the external force te rm / and in i t ia l velocity 

UQ to whole spare by mir ror reflection method and change (3.1.3) into a Cauchy 

problem. Hence we show the existence, Uniqueness and regular i ty of the solutions 

in (3.1,3). By the local M i n t y method, we prove the fol lowing existence theorem 

to problem (3.1.1) w i t h (3.1.2), or (3.1.10). 

T h e o r e m 3.1.3 Let UQ £ Vp H H with boundary conditions (3.1.10) and S is 

induced by a p—potential function from Definition 3 1.1. Then there exists a 

weak solution u G 1/(0, T; Vp) n H) to system (3.1.1) with(3.1.2). 

3.2 Preliminaries 

I n this section, we wi l l give some assumptions, funct ion spaces and definitions for 

weak solutions. We wi l l show the Korn's type inequali ty for unbounded domain 
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and construct ion of the basis w i t h boundary conditions (3.1.10). 

D e f i n i t i o n 3 . 2 . 1 Let - < p < oo, under the assumption of Definition 3 1.1. 

Let f e or f e LP{0,T;Vp*), which is the dual space of Vp, and 

UQ E H with • UQ = 0 in the sense of distribution. A vector function v G 

T; H) n T; Vp) IS called a weak solution to (3.1.1) if the following 

identity 

- { u - dt4))dxdt+ / t, D{u)) - u ^ u ) : D((l))dxdt JQ JQ 

= / / . (I)dxdt 十 / uo • (/)(0)dx 
JQ 时 

(3.2.1) 

holds for all • G x [0,T]) with div(/> ^ 0, (f)3\xs^o = 0； and suppcj) C 

X [0 ,T) . 

I n this chapter, we w i l l consider the fol lowing auxi l iary problem 

dtu - divS{D{u)) + (u • V)u + Vtt = / , m QR x (0, T ) 

V-7i = 0, in nji X ( 0 ,T ) , 

dui du2 
U3 = 0, - ~ = - ~ = 0 

dxs dxi 

u = 0 

w|t=o = (丄: 

on (0 ,T ) , 

on r ^ x (0 ,T ) , 

in ^Iji. 

(3.2.2) 

6 
Definition 3.2.2 Let - < p < 

5 - ^ 

Where T]^ — Q R H {X^ — 0} and F ^ = QR f l SBR. The corresponding def ini t ion 

of weak solut ion in (3.2.2) is following, 

,under the assumption of Definition 3.1.1 

Let f e or f e L'^{0,T] where (Vi(Oij))* is the dual space of 

l/̂ (ri_R)， and UQ G L^(O^) with V • UQ = 0 in the sense of distribute. A vector 

function u G T ; L^ (Qj j ) ) n T ; is called a weak solution to 

(3.1.1) if the following identity 

[u . / {S{x, t, D{ii)) — u � u) : D{Odxdt 
Jqr 

= f f • ^ d x d t + f Uo • 
JQr ^^R 

(3.2.3) 



Some Studies on Viscous Fluids 67 

holds for all ( 6 X [0,T]) with d iv^ = 0, = 0, and suppC C 

Next , we show the Korn's type inequali ty and construct the basis in 

w i t h boundary conditions (3.1.10). 

Lemma 3.2.3 There exists a constant C depending only on p such that 

\\Vu\\, < C\\Diu)\\, 

for all u G 

P r o o f : Use the method of [50], since satisfies the condit ion of Theorem 3-2 

i n [70]. • 

Now we consider the fol lowing problem 

Ati + Vp = f , i n VLR 

• • w = 0, 

Us = 0, 

n = 0 

dui 
dx^ 

i n Qi?, 

- ~ = 0 on Fp. 
加3 

r L 

(3.2.4) 

Definition 3.2.4 By a weak solution of the problem (3.2.4)驟 mean a function 

u{x) G V2{i^R) such that 

{D{u),D{v)) = { f , v ) , Wv e V^inn) 

T h e o r e m 3 . 2 . 5 Assume that ( / , v) is a linear functional on the space V2{^r)-

There exists a unique weak solution u G to problem (3.2.4) 

Proof: See [82 100 • 

The fol lowing lemma concerns the well-posedness of problem (3.2.4) i n V^(f i f l )门 

W^'^ i f lR) . The proof can be found i n [82]. 
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Lemma 3.2.6 Assume f G then there exists a unique solution {u{x),p(x)) 

to problem (3.2.4) such that u G V2{^r)门 Moreover, the followmg es-

timates hold: 

+ i i vp i l巧如）< c ( I I J i i 丑⑴ + (3.2.5) 

(叫 < c (ll/lli(彻(彻）+ IMIvh^^h))， 

where C is independent of u, f . 

W i t h the aid of previous lemma, one can prove the fol lowing proposit ion 

P r o p o s i t i o n 3 . 2 . 7 The eigenvalue problem 

一 Au + Vp — Xu, in HR 

V • l i = 0, m 

dui du2 1 
= 0, — = — = 0 on T j i , 

0x3 dxz 

l i = 0 on r ^ , 

A G M, u G admits a denumberable positive eigenvalue {A^} clustering 

at infinity Moreover, the corresponding eig en functions {a^} are m 

and associate pressure fields Pi G Finally, {a^} are orthogonal and 

complete in H(JIR) and V2{^R) 

P r o o f : The mapping A : f ——> u defined by lemma 3.2.6 is linear and 

continuous f rom H { f l j i ) onto into Since QR is bounded, by 

Rell ich Theorem, we know that ^ is compact. I t is easy to 

know tha t operator A is a positive symmetric and self-adjoint operator on 

Therefore, A possess an sequence of eigenfunctions ck: 

Aai = Xittt /c > 0, Â  > 0, Xi 00 a.s k ^ 00 

B y lemma 3.2.6, we can get for each i , there exists w i t h the estimates (3.2.5). • 
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3.3 The construction of approximate solutions 

To obtain a sequence of approximate solut ion for the problem (3 1.1), fix £• > 0 

and define a cutoff funct ion ip^ by 

似工）= 

i f k l < 去; 

0, elsewhere. 

Define a reflection as follows; 

{UI(XI. X2, X3),U2(XX, X2, X3),U3(X1, X2, X3)) i f 0：3 > 0； 

u [X. (3.3.1) 

Therefore, we have obta in the fol lowing proposit ion 

Proposition 3.3.1 Let u 6 T; l^(M^)) P L°°(0, T; H). J" be the standard 

modifier on R^, denote Ue，” = + * ^{il^eU*}, where P is the projector on the 

i y i ’ 2⑴丑) to V2[nR), then u.^n e with .几L^^o =“nd f div(iA明® 

u) • u = 0. Moreover, there exists a subsequence u^、二 Ue’e u as € 0 

m the T ; " l^(M^)) for all p > 1, and \\Urj{e)\\w^2 < C^\\u\\2, where C is 

independent of e. 

P r o o f : From the properties of the modif icat ion and Cantors diagonalization ar-

gument, th is proposit ion holds provided that u in the space T ; 

as e ^ 0. I t is clear f rom the proof of lemma 3.4 i n [82]. • 

Now we w i l l study the fol lowing problem 

‘dtu - dwS{D(u)) + ( l i ”⑷• V)u + V t t = / ’ in E ^ x (0, T ) 

V • = 0, in M^ X (0, T ) , 
^ . 他 (3.3.2) 

以3 = 0, ^ = ^ = 0 on { x 3 = 0 } x ( 0 , T ) , 
<90̂3 9X3 

u\t^Q = uo{x), in 
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The goal of this section is to prove the existence of a strong solut ion to the 

problem (3.3.2) provided that e > 0 is fixed. Now we give the defini t ion of the 

strong solut ion for the problem (3.3.2) as follows 

Definition 3.3.2 We say a couple {u, t t ) = {u^, t t ^ ) IS a strong solution to prob-

lem (3.3.2) if 

u e L � ( 0 , T； n 17(0，T; wfo'cP(iJ)) n 1/(0，t； v y n l⑴(0，t； H) 

5 e L 2 ( 。 , T ; 4 c_);冗 G " (。，『 ; < _ . 

(3.3.3) 

where p' = ~~^―• and satisfies the weak formulation 
p - 1 

f ^^dx + / : D{ip)dx + I (Ti*) - - ifdx 
九 3+ 况 人 3+ M (3.3.4) 

= / 7rdivc/;da; + / f(pdx 
Jwl Jml 

holds for all ip G and almost all t G (0, T), at same time, the boundary 

conditions hold in the sense of trace. 

A t f i rst, we provide some definitions and recall a well-known result. Given 

any bounded domain C 

Definition 3.3.3 For any Q' CC 0, we put 5{n', Q) = dist((r, dn \ {xg - 0}) 

Definition 3.3.4 For any Q' CC O, and g : O ~、E^ we set 

{^x,k9){x) = 9(x + Xek) - g{x), x G O ' , 0 < A < n),k = l---3 

where ei, 62, 63 is the canonical base ofR^. We shall omit the dependence on where 

the meaning is clear. 

For a give second order tensor D, set Sym{D) = [D” + Dj^). 

Lemma 3.3.5 For any u E and 0 < |A| < 5{p!, Q) it holds 

||AA，H|p，fi/ < |A|||奴，fc||p’f2’ 
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The fol lowing theorem and lemma show tha t the regulari ty and uniqueness of the 

weak solutions to the problem (3.3.2). 

9 / 

Theorem 3.3.6 Let -- < p < 2, f e LP'{Qt)} uq G V Cl H satisfies the boundary 

conditions (3.1.10) , and S given by a p-potential from Definition 3.1.1. If for 

any £〉0，u & 1/(0，T; 1/p) nL⑷ (0 , T ; H) is the weak solution for problem (3.3.2), 

then this solution is also a unique strong solution to problem (3.3.2) such that 

IMIi°°(o,r;i^i’2(【2'))ni>(o’r;M^2’p(fy)) < <7(-, |0'|，uq, / , T ) , (3.3.5) 

r [ (1 + \D{u)\y-^\VD{u)\Mxdt < \nluoJ.T). (3.3.6) 
Jo Jft' ^ 

o 1 
l l g l l i m ^ D x 們 + 1 1 否⑷⑷ ) l l L i ’ r ; i A ( w s Viy，r2), 权o,/，:r) . 

(3.3.7) 

P r o o f : We extent the UQ and force te rm f to the whole space by the reflection 

defined i n (3.3.1). Denote these functions by u^, / * . 

We begin to consider the Cauchy problem as follows 

‘dtv — dwS(D{v)) + (vr,(s) • + V t t = / *， i n R^ x (0，T) 

V-v = 0, i n (3-3.8) 

= in 

Prom [93], There exists a weak solution u G 7/(0，T; V^p(]R”）n 

to problem (3.3.8), then u G x R^). If p > ^ then p' < 字，and 
U <J 

Uy(£) ® u £ U' ( (0 , t ) X Ba), since G From the proof of Theorem 2.6 

i n [115], we know that 

IMIiy((o，t)xs„) = ^ihW LP'm)xBa) + W^ + f*\\LP'm)xBa) + 1 ) 

where C only depends on P, T, f , UQ, a. 

For any set CC and for any p > 0 such tha t 0 < p < O), Set 

Vtp = { x ^ n； d i s t ( ; r ， < p} . Now fix r < Q), there exists a bal l Ba, such 
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tha t fl C Ba Let us choose a cut-off funct ion r/ such that 77 三 1 on f̂ ，77 三 0 in 
C (J 

\ 0 < ri < 1 and |V7^| < —, < ^ in 02r, where the constant C 

depends only on the geometry of d i l . 

I f |A| < r , i t results tha t G L'((0,T) x ^ i s r )门"(0, T ; WqI，”⑴3r))， 

but i t is not divergence free. Take A_入入从)as a test funct ion in the equation 

(3.3.8)1, we obtain 

(ut, + (S(D(u)), + Cs⑷.Vu, 

= ( v r , + ( / , 
Set 

J3 = • V u , A_x{r/^Axu)), 

J4 = (vr,div(A_A(77'AA^))), 

Clearly, J i = 芸 R A ； ^ 以 叫 . L e t I , ( u ) = f {l^\Diu)(x+Xek)\MD{u)\r-'\v^xD{u)\'dx. 

J2 二 2 S{D{u))A_xsym{Axu (g) r}Vri)dx — f r]^Ax{S(D(u)))AxD{u))dx 

：二 J21 - J22. 

Since (3.1.6)， 

J22 > C i 7 i / (1 + \D {u ) { x + Ae^OI + \ D ( u ) \ y - ' \ r ] A ^ D { u ) \ ' ' d x = C i j J x { u ) , 

IJ21I < 

Thus 

< |A| [||Vr;|s?/m(AAii ③ V T r f l l l L P … + \\r}sym{AxVu^^ 0 V7^)||LP{f23,) 

< 彻 + 剛 ( 7 
r r \Jn2r / 
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Since r ]V {Axu ) = V { r ]Axu ) — ( • " ) • Axu , thus 

a \7]\/(A,u)\Pdx < • 収 I I l 彻 + Cp 
/ r \Jn2r 

\7]D(Axu)fdx 

However, by the Holder's inequali ty we have 

1 2 - p 

f I " 顺 汉 释 ) ‘ < / a ⑷ * f / (1 + \Diu){x + Xek)\ + 剛斷)2 
'n2r / \Jn2r / 

Hence 

/ C A 2 
J2 < …⑷）||zy(彻r) + Ch(u)Hl + 巧知)）一 C卞hiu 

V 
llVWk彻 + Ch(u)Hl + 而 3 。）一 CTMU 

< A 2 c ( i r w | , r ’ e) ( 1 + I I • 权 — (C i7 i - e)h[u). 

\M = KJ，A-;^(”2A；^劝I < 11/11 的 他 収 

< \Mh{u)H^ + I I 如 ） + + ；) 

< lOs^DA^ {WfCin.^^ + W^^WU^sr) + 1 ) + 胁 

From the estimates for pressure, divergence-free and the method above, we have 

1̂ 41 < 2 

d 
⑶ A I M 

C|A| 

< ( I M I l ' p ' o v ) + 『沖+1) + 〜 W 

Now we estimate the te rm J3. I n fact, 

J达= rj'^AxUn^s) • VaAxudx-2 "(̂？⑷• V^l^wl'^dx 

J fisr J 彻 r 

: = J 3 I + J32 
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9 6p 3p 
Since - < p < 2, then 2 < q = < 

5 bp — 0 6 — p 
have 

p*, by the Holder inequality,we 

J3I = 

c 
^32 < - I 11L6 117/AA'U 1 1 1 1 A A " ? ^ 11 LP (^3.) 

I t is implies 

Since 2 < q < p*, f rom the following interpolation inequalities 

IMIm 引丨 《 * M 1 / 1 ， 

where 6 = ^——~, = ^^. Therefore, we have 
5p — 6 2p 

< 1 

where 

Q i = (1 - d)a = 0 < a < l , 

5p — 6 2p 

Since 
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I t infer that 

IJ3I <， I M k， ,T ;用 | A | 1 +叫 |W | | i J ( t ) | l”A； ^… I笠 (知⑷ * + 么 ) 

< 含 M k ’ ， r ; 丑 仏 ( 1 + I I • 以 I I 二 仏 ) 力 ⑷ 掩 

By Young's Inequality, we have 

(I+Q3+孕 Q2)5' 
iJsl < g lM lL，,T;H) |A | ( i+糾矿 ( l + l l V i , ( 叫 

Then choose 6 and 5' satisfy the following identities 

From these identities, we can obtain a —(丘沪 一 P) • Since p > ^,thus 
7p — 12 5 

0 < a < 1, (1 + + Q s M = 2 and < 1. Therefore, 

Combined these relations about J i , • • • , J5, we can conclude that 

d 
j ^ h ^ M r ^ r ) + ( C ' n i - 入 ( u ) 

^ CA2 (1+I ivu i r ip (… r ) + IMI 二 (阳r) +11/11 二,(阳 J 

+ ^ M l 靖 刑 | A | ( 崎 ' ( l + II•《寧3。） 

(3.3.9) 

Since (1 + + = 2 and set 

r W = J | M h 。 ’ n H ) (1 + 11•《啊一) 

_ 二 C (1 + + + ll/�z：々 知)). 
where C does not depend on A, u. Hence (3.3.9) can be rewritten 

(3.3.10) 

• I 宇 H i 獨 + ( 如 -

講 ) 确 宇 l l ? 2 \ : 。 . 

u 
A2 
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Since p > is easy to know that ^ ^ < 1. Whence by Young's inequality, we 
0 z 

have 

丢 I 丨 宇 1 1 1 獨 + ( 〜 - 學 

A 
by the Gronwall 's Lemma, we have 

< 
A / " ⑷ e x p ' ( r ) d r ds exp / r (s)ds. 

Assume tha t UQ E V, then we have for al l t G [0，T] 

< II•权SIII2叫)+义("⑷+ r⑷)exp(—义 r(T)dr)ds exp 

C i j i 

i(s)ds. 

(3.3.11) 

Choose e = -~~ and f rom (3.3.10),(3.3.11), we have for any t £ [0,T 
8 

II•奴 叫 ⑷ + / m < c. (3.3.12) 

where I{u) 二 / (1 + 2\D(u}\Y-^\DiVu)\^dx and C depend on a, UQ, / , T, r. 
Jfir 

Since 

r nu) + /VhiIpc^.) 
Jo Jo JO 

for al l t G [0, T ] , thus \\u\\LP{o,T-w^'p(ar)) < C. Mu l t i p l y (3.3.8)i by r f u t and 
integral on the we have 

< 2 / I • " 风 D O ) ) ” 以 Z 'w (̂e) • Vwfutdx (3.3.13) 

+ 2 Z 7rV?7 • r]Utdx + / f • ij'^utdx. 
J ilSr J ^isr 
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1 1 
Since - H——< 1，by Holder inequality, one can 

2 p' 

f \VvS(D{u))7jut\dx < ( 彻 ⑷ | l 她 r ) 

J fisr 

/ ttVt? - ijutdx + / f • rj'^utdx < C\\Vrj + " H i 印 + fh^'inajlv^th^iisr-)-

B y Young's inequality, we can obtain tha t 

where K depend only on p, a, uq, / , r, || V«||lp(k3x(o ,t))-

I n fact, f r om this proof, we can see that the bound depends on the mea-

sure of O and O!. Hence, we have i f the radius of the bal l B is fixed, then 

II < C, therefore, we can see that u E CP{B�for almost t € 

[0,T] . We use the fol lowing argument ( see [50]) to know that u{x,t) 0 for 

almost力 G (0, T ) , as — oo. Let the radius B be one, suppose that there 

exist £ > 0 and a sequence { x n } C R^ w i t h l im —> oo, such tha t for al-

most t 6 (0 ,T ) , u(xn,t) > e. B y the cont inui ty of t), then we get that i f 

I a; 一 Xn\ < S = m i n { l . then u(x,t) > W i t h o u t loss of generality, we 
ALy Z 

assume that \xi — Xj\ > 2 provided that i _ j thus 
rjy rji 

f ( [ \ufdx)^dt > V / ( [ \ufdx)^dt = +oo. 
Jo JR^ j Jo Jsixj) 

and this contradict ion the fact u G 1^(0, T ; 

From the fact u{x,t) 0 a.e. t G (0 ,T ) , as 00 and estimate (3.3.12), 

we can conclude tha t the weak solution is unique. Actual ly, assume tha t u,v 

are tha t weak solutions of problem (3.3.8), then set e ~ u — v and mu l t ip ly the 

difference of the equations of u and v by e. Af ter integral on the we have 

{dte, e) + 权)）一 ̂ ( I ^ W ) , D(u) - D{v)) + C s ⑷ • - v^) ’ V d , e) - 0. 
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This reduces to 

e||i2(R3) + (S(D(n)) — S(D(v)), D{u) - D{v)) = | (e ”⑷ .W，e) | (3.3.14) 
<Xt 

Since li巧(£)，u”(£) G and the support of , are contained i n B i . 

Hence, f rom the inequality (4.2.16), we have tha t 

⑷ - u , e)| < I 〜 ⑷ 巧 s 去 ) | | e | b ( , ) < C||V^u||ioo(o，T;L2(Bp)|||e||i2(,). 

Use the Gronwall 's inequality in (3.3.13), we have e = 0, i.e. u = v. Define 

U* = (ui(xi, X2, -Xs), U2(X1,X2, -X3), -Usixi, X2, -X3) 

TT* = 7 r ( x i , X 2 , —2:3), V x G M^. 

Then by the method in [15], the couple (u*, tt*) is also a solution to problem 

(3.3.4) a.e. in R ^ x (0, T ) . Hence by the uniqueness, we know that u* = u. 

From the regulari ty of u and Sobolev imbedding theorems u(x) is a continuous 

funct ion on Bj. for any r > 0, so tha t f rom U3{x) = —us{xi, X2, —â s) we know 

tha t ti3|a;3=o = 0. Analogously Ui{x) = Ui(xi, X2,—冗3), Vx € = 1, 2), satisfy 

the conditions (3.1.10) in the sense of trace. 

B y takeing into account the properties of regulari ty of u{x), and Theorem 

7.1 of [15], we know the solution u{t) to problem (4.2.4) is simply the restric-

t ion of u*(t) to the half-space M+, and ||V"i/||i>(]R;Jx(o，r)) < C'llVif||iP(R^x(o,T)), 

< Since if is a weak solutions to problem (3.3.2), 

therefore, we can obtain the fol lowing estimates 

MUo,T;H) + < W l l r + ll/IG；'(明x(。，T)), (3.3.15) 

f rom these estimates, we know that C, K depend on a,r, uq, / , do not de-

pend on u. The theorem is completely proved. • 

By the minor modif icat ion of the proof in theorem above, we can obtain the 

regular i ty results in the case p >2. 
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Lemma 3.3.7 Letp>2,fe (Qr) f^ ，Wo G satisfies the bound-

ary conditions (3.1.10) , and S given by a p-potential from DefimUon 3.1.1. If 

for any E > 0, u e / / (O , T; Vp) f l T; H) is the weak solution for problem 

(3.3.2)，then this solution is also a unique strong solution to problem (3.3.2) such 

that 

r f {i + \D{u)\Y-''\VD(u)\'dxdt < 
•/o e 

一 ) + |_W)||L«>(。，r题)）< 吼 彻，/, T) 

IMb((。，T)x們 < Q), | i r|，鄉, / , T) 

Prom these regulari ty estimates presented in Theorem 3.3.6 and lemma 3.3.7, we 

can obta in the existence of unique weak solut ion to problem (3.3.2) stated by the 

fol lowing theorem. 

T h e o r e m 3 . 3 . 8 Let p > e l / (Qt)门丄 ^(Qr)，uq E VHH, and S given 

by a p-potenhal from Defimtion 1 Then for any e > 0； there exists a unique 

weak solution for problem (3.3.2) Ug e T ; Vp)nL'^{0,T] H) and satisfies the 

inequality (3.3.15), there, the constant C is independent of e. 

P r o o f : From the proof in Theorem 3.3.6, i t is easy to see that the weak solution 

is unique. We w i l l use standard Gaierkin method to prove its existence. 

Let 
oo oo 

^ ( J O/i = I J G M+ : |;r| < 
R=1 R=1 

F ix > 0, we consider the auxi l iary problem (3.2.2) for the in i t ia l u泛 二 

and external force te rm /丑= X f i j i (工 ) / . As i n [82], we know 

tha t UQ UQ inV N H, R-^ oo a n d / ^ / in 

Choose the sequence { a f } is the eigenvector of the operator A as in Proposi-

t i on 3.2.7, then { a f } is a basis W^'^(QR)nV2(QR}. We look for the weak solution 
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to (3.2.3) of the form 

U. 
R 

For simplicity, in the clear meaning setting, we omit the superscript R. Therefore, 

Ck,m[t) solve the following system of ordinary differential equations 

丢(权m，ak) + (S(D{u^)), D{ak))—(〜⑷，饥Um, Vafc) = ( / , ^fc)- (3.3.16) 

Due to the continuity of S) u”〔s:~),m, the local-in-time existence follows f rom Caratheodory 

theory. The global-in-time existence wi l l be established by the following a-prior i 

estimates. 

Mu l t i p l y the equations (3.3.16) by Cfc’爪，then sum over k and integral on (0’ t). 

We easily obtain 

hmWhinn) + / V … = ( / , x O + I W 一 ( 3 . 3 . 1 7 ) 
Jo 

Hence 

… 丑 ) ⑷ + < IWoWl + ll/lli'(M3)x(0,T) 
(3.3.18) 

From (3.3.16) and (3.3.18), we infer that ^ C(-R, e, M). 

I t follows from these estimates, and Aubin-Lions Lemma, we have 

u …u 

u. 

weakly in Z / ( 0 , 

weakly* in L ~ ( 0 , T ; 

weakly in T ; ; 

strongly in 巧 Q ^ ) ) q e [ 1 , 字 

S { D ( u ^ ) ) - weakly in i / ⑴丑 x (0, T) ) . 

(3.3.19) 

(3.3.20) 

(3.3.21) 

(3.3.22) 

(3.3.23) 

From these properties, i t is easy to see that 

ut, dfc ) + (S^, D{ak)) - (Urj(e) . Vafe, u) = ( / , a^). (3.3.24) 
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Mul t i p l y i ng bo th sides of (3.3.24) by Ck，m and summing over k we find 

{ u u U m ) + ( 妒 ， D [ U 』 — . u) = ( / , u ^ ) . (3.3.25) 

Let us pass to the l im i t f o r m ^ o o in to this relation. By the convergence 

properties (3.3.19) and (3.3.21), we know that as m —> oo 

f {ut,Um) f {UUU) = -
Jo JO 

广 j 广广 (炉， f \ § R , D { u y ) . 
Jo Jo Jo Jo 

Since 

(U”(e) . Vli^, U) - (U从e) . Vu, u)= (U巧⑷③ u) . •(U^ — u)dx 
J如 

From (3.3.21) and (3.3.22),we know that u”⑷ ® ^ G 17'{flji x (0，T)) whenever 
9 f T 

p > Hence / (Urj(£) • Vum, u) 0 as m ^ oo, since (w”(e) . Vw, u) = 0. 
5 Jo 

Siibtracting(3.3.25) by (3.3.17), passing to l im i t as M CXD, we get 

l i m [ {S{D{u^)),D{um))dt=^ f {S^,D{u))dt (3.3.26) 
m—oo JQ JO 

By the monotonic i ty property (3.1.7), we can wr i te the fol lowing inequali ty 

f \ s { D 、 《 y ) — ( D i u ^ ) — > 0, (3.3.27) 
Jo 

For any 屯 G i / ( 0 , T ; Thus, pass to the l im i t as m goes to in f in i ty into 

this relat ion and using (3.3.21), (3.3.23)and (3.3.26), we have 
rp 

[(炉—S{D{<l/)),D{u) — D(^))dt > 0, (3.3.28) 
Jo 

For all 屯 e LP(0,T; Kp(Jl)), Take ^ = u - c> 0 emd e 77(0，T; we 

have tha t 

Jo 

Let t ing e 0 and using the cont inui ty of S, we arrived at 

- S{D{u)), D⑷)dt >0,V(pe i / ( 0 , T; Vp(n)) 
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Choose —ip in place of Lp, we get 

广 ( 炉 - S ( D { u ) ) , 嚇 d t <0,V^e i/(0, T ; ⑵ ） 

Jo 

This implies that S^ = S(D(u)) a.e. fin x (0 ,T ) . Thus the existence of weak 

solution uR to problem (3.2.2) is proved. 

Next we must consider the l imi ts as R tend to oo. Now we choose a sequence of 

real number {Rn ： N eN} increasing to infinity. We set un = u^^ and extend 

UN to zero outside FLUJ^ to obtain a funct ion st i l l denote UN G T; H) n 
T; Vp) and satisfies the fol lowing a-prior i estimate 

^sup^ I h i v l U W + hN\\Lp(o,T-y,) < Noll?/ + ll/l丨二(K3x(O，T) K . (3.3.29) 

Clearly, K is independent of N and Take RN > - large enough, since G 

CS°(B i ) , then ^ UN G x (0 ,T ) ) . From (3.3.29) and interpolat ion 
‘ ， 1 

inequali ty we have ||iiWe)’iv 0 '"7v||lp'(m3 x(o,t)) ̂  K). let "K = Therefore, 

f rom the equations (3.3.25) we obtain 

By the Aubin-L ions Lemma, we know tha t there exists a subsequence un^ u 

i n I / i i l R X (0 ,T ) ) , thus UN^ — u a.e. in E ^ x [0,T] . 

We choose 小 G x [0 ,T)) w i t h diYcp = 0，c/̂ sl对=o = 0, and supp0 C 

R\ X [0 ,T) . There exists a number K = K{(j)) > 0 such tha t G = supp0 g 

QNK X [0, T ) for k > From the formula (3.2.2). we can obta in the fol lowing 

ident i ty 

- / {un, • dt(l))dxdt + / S{x,t,D{uN,)) ： D{(l))dxdt 
々 而 ‘ (3.3.30) 

—/ iUrjie),Nk ® UNk) • D{(l))dxdt = / Uq • 4>{0)dx. JQ 

From the estimate (3.3.29), we know tha t UN^ U in S(x, t, D{UMK) ^ 

S i n the space l / ( Q ) and lii"⑷’A f̂c ⑧ mklL2(Q) < C^\\uo\\%, by Vi ta l i 's theorem, 
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we have as A: ̂  oo 

/ (uiVfc • dt(p)dxdt —^ / (n • dt(/))dxdt, 
JQ JQ 

/ {uNk ® uj^k) '• D{(f))(ixdt / [u制 0 u) : D{(p)dLxdt. 
JQ JQ 

From these convergence and the formula (3.3.30)，we know tha t 

f {S{x, t, : D{(^)dxdt [ (S: D{(P)dxdt. 
JQ JQ 

One need to check that S(x, t, D{u)) = S a.e. in x [0，T). I t suffice to prove 

tha t 

f iS{x, t, D{un^)) : D{(l))dxdt I (S(D(u)) : D{<p)dxdt. 
JQ JQ 

Indeed, observing tha t for any R ^ > RNK the solutions UN satisfies the hypothe-

ses of Theorem 3.3.6 and lemma 3.3.7 w i t h Q 二如仄 and fixed a set such tha t 

G C Q ' X (0, T ) C C N X (0, T ) , we get tha t U^ E i / ( 0 , T ; and 

+ l|V'wivJ|LP(n'x(o,r)) < in the case \<P<2-
s o 

+ l | V V j U 2 ( n ' x ( 0 , r ) ) < in the case p > 2 . 

From the boundedness above and the Aubin-Lions lemma we obtain tha t 

VuN, Vu i n X ( 0 , r ) ) , VUN, — Vu a.e. in G. 

Therefore, S{x, t, D(uNk)) 厂(工,力，D(u)) a.e. in G, then by the V i ta l i ' s theorem, 

we get as /c —> (X) 

f ({S{x, t, D(mJ) 一 (S(D(u))) : D(4>)dxdt = 
JQ 

f {(S{x, T, D(UNJ) — (S(D{u))) : D((}))dxdt — 0. 
JG 

Whence, this proves the theorem. • 
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3.4 The proof of Theorem 3.1.3 

I n this section, for brevity, assume that / = 0, we w i l l give the proof of theorem 

3.1.3. 

To this end, we st i l l need a lemma which presents the local estimate of the 

pressure w i t h slip boundary conditions. 

Lemma 3.4.1 Let G CC 5 G x [0, T]f ' (r > 1) with • = 0 

and u G L⑷(0，T; 77(G)广 with V • u = 0 (in the sense of distribution) Suppose 

that 

n T } ( f ) ' u • ifidxdi + / / r]{t)S : Vcpdxdt = 0 (3.4.1) 
„ J JQ JG 

holds for all if G C^{G) with V • ip = 0, ^ •几|勒=0 = 0 and 7] e T) Then 

tkere e^ts a um,ue funcUon . e L ⑷ ( 0 , T ; L 观 ） 碰 f ^ 0, such 
JG 

that 

—/ (u(t) - u(0)) •(pdx+ / S : Wifdx = / TT⑷ • . '^dx (3.4.2) 
JG JG JG 

holds for all ip G C^{G) with (p • n|a:3=o = 0. Moreover, 

\W\\L°-{0,T,L-{G)) < CXIW|L~(O，T,I/(g)) + ||'5'||L''(Gx[0,T])), (3.4.3) 

where C dependent only G, r and T. 

P r o o f : Le t a{t) = / u • ipdx and _ = S : for ip e C^iG) w i t h 
JG JG 

(f • n|a;3=o = 0. From the formula (3.3.1) and Fubini 's Theorem, one yields 

- f m/dt = f (3r]dt. 
Jo Jo 

Since S G UiG x [0，r])，thus a G and - ^ ( a ) = -(5. By the Sobolev 
at 

Imbedding theorem, we know that a is continuous i n the interval [0, T] and 

[(u(t) — n(0)) •(fdx+ f f S : Vifidx = 0 
JG JO JG 

,denote S{t) = f S{s)ds, t e [0,T] B y the Fubini 's Theorem, 
Jo 

f (u(t) - u{0)) •ipdx-\- [ S{t) : Vcpdx = 0， 
JG JG 
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From the Proposit ion 1 in [50], there exists a unique funct ion 7r(i) € U(G) w i t h 

/ 7T{t)dx = 0, such that for any (p 6 C ^ { G ) w i t h • n|3^3=0 = 0 such that 
' G 

- / (u( t ) - u(0)) / S-. • ( ^ d x = / 7r( i)V • i^dx. (3.4.4) 
JG JG JG 

I n addit ions, there exists a constant C > 0, depending only on r, n, and G 

(see [6]) such tha t 

IItT� llLr(G) < C(\\u{t) - + II列L啦))• 

Choose any v 6 厂 '(G)，there exists a funct ion ip G D^{G) such tha t 

V • ^ = -u — y ^ f uda: — V — vg 
L&L JG 

see [20]. Thus (3.4.4) implies 

/ 7r{t)vdx = / T T ⑷ 二 一 / {u{t) - ？/(O)) • 'il)dx + / S : V^da;. 

JG JG JG JG 

Since the funct ion on the r ight side above is continuous, so also the funct ion on 

the left. Consequently, 7r(t) G L°°{0,T] L^{Q)). By the Holder's inequality, one 

easily verifies the fol lowing a-pr ior i estimate 

• 

Remark 3.4.2 From this proof, we can conclude other estimates for local pres-

sure TT as follows 

IW|i "Gx(0，T ) ) < < ^ ( | M | 2 / ( G x ( 0 , r ) ) + | |S' | |Lr(Gx[0 ,T]))-

The proof of Theorem 3.1.3: Let Ue e r/(0,T;Vp{Rl)) n f l ) 

denote the weak solution to the approximate system (4.1.12) f rom the Theorem 
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3.3.8, and we have there exists a constant K > 0 only depending on the in i t ia l 

data, 

II权,丨丨2 + \We\\LP{0,T;Vp) - K-

B y (3.1.9) and interpolat ion inequalities, we obtain tha t 

W l — ( Q ) 认 

(3.4.5) 

(3.4.6) 

(3.4.7) 

1 
where — H~ — = 1. Prom the boundedness (3.4.5)-(3.4.7) and Proposi t ion 2， 

P P 

there exists a sequence of w i t h — 0 as /c — o o and functions u G 

1/(0, T- l^p(R^)) n L�(0，T; H) and S G l/(Q) such that as k ^ oo 

u •Sk U, weakly* in L ^ ( 0 , T ; H) 

U e ^ 」 u , weakly in T ; l ^p (Ry) , 

weakly l/(Q), 
(3.4.8) 

p(w+2) 

Ur^{ek)③ Usf̂  i n L ^ ^ [ Q ) . 

Then the ident i ty 

/ (u • dt(f))dxdt + / (S-u^u): D(^)dxdt 
'Q JQ Uo • (f>{0)dx (3.4.9) 

holds for any <p G x [0, T)) w i t h • . 0 = 0 and (/)-n|a,3=o 二 0. For simplici ty, 

sometimes we denote Uk = u^^, Sk = S(x,t, To end this proof, we must 

prove tha t S = S{x, t, D{u)) a.e. in M+ x [0, T]. As in the [79], i t suffices to prove 

tha t a,s k ^ oo 

'Gx[5,T-S] 
{S{x,t,D{uk))-S(x,t,D{u))) : iD{uk) - D(u))dxdt 0 (3.4.10) 

一 T 
for all bounded compact set G C M+ and any 0 < (5 < —. 
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I f (3.4.10) holds, for any cutoff function G C。⑷(监工 x (0,T)) , then 

f {S- S{x, t, D{v))) •• {D{u} — Z)�)她d之， 
Jq 

= l \ § - S(x, t, D(uk))) ： {D{u) — D{i)))mxdt 
JQ 

—[{S{x, t，D{uk)) — Six, t, D{u))) : (D{uk) 一 D{u))^dxdt 
JQ 

+ f {S{x, t, D{uk)) — S{x, t, D{v))) : (D{uk) - D{v))mxdt 
JQ 

— h + h + h-

By the (3.4.8) and (3.4.10), we know k -4- 0(i - 1,2) as oo. From (3.1.7)，it 

shows that /s > 0. By local Minty Trick theorem (see the appendix of [115]), we 

know S = S{x,t,D{u)) a.e. in IR+ x (0,T). 

Next, we wi l l prove that (4.3.9) by some truncation method. As in [44] 

or [23]，Let / = + + + \S{x,t, D{u))\){\D{uk) + D{u)\). The 

following lemma shows that the properties of g^ on R ^ x (0, T) , its proof can be 

found in [44] for steady case and in [23] for the unsteady case. 

'n 

Lemma 3.4.3 ” > 0，there exists L < ~ and there is a subsequence 

and sets E^ = {{x, t) G x (0, T) : < \uk - u\ < L} such that 

/ g'^dxdt < T}. (3.4.11) 

Denote Q^ 二 G M ^ x ( 0 , r ) : \uk-u\ < L} and ijj^ = {uk-u) ( 1 - min ( l ^ ^ ' ^ l ^ i V 

Then we can prove that the following proposition described the required proper-

ties of ipk. 

Proposit ion 3.4.4 (1)喻^ e 1/(0，T; Vp) fl L�(0, T; E) and 

x(0,r)) < L; 

(2)功A」0 in 
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(3)喻k — Q in 1/(0，T; for all 1 < s < 

(4) 'I < and 

|div劝’iP(RXo，r)) < Crj , |V^NiP(Rtx(o，T)) < Ci], 

where C is independent of k and XQ^ denotes the characteristic function of 

the set Q^; 

P r o o f : I t is easy to see tha t (1) and (2) hold. By the simple calculat ion and 

(3.4.11), we know tha t (4) hold. Now we check tha t (3). Indeed, since 股 ^ 

LP{G) is compact for all G CC R J , i t follows that ^ 0 in T ; L^(G')) 

and there exists a subsequence which denote ^ 0 a.e. in G x (0, T) := GT-

Therefore, for p < s < oo, 

/ I 功 Y d — < I I 們 i r i W x ( 。 ’ T ) ) [ 丨們 ^ d 力 < MmiUo.) < 0(1). 

J Gx J Gt 

For 1 < s < p, we have 

r / r . 
li^^l'dxdt < “ … … / l^^fdxdt G^t ’ <K G^T 

'GT / 
Let < 6 small enough, by V i ta l i ' s theorem we have ^^^ 0 in 1/(0, T ; 

for al l 1 < s < p. Hence, we proved (3). • 

Consider the fol lowing problem 

= 〜 i n E ^ ; 
dz^ 
dn 
k, 

= 0 , on {X3 = 0}， 

0, as \x\ — 

Then there exists a unique solutions w i t h the fo rm ( 82 101 

0 N(x,y、dhnp%,{)&y € M 3 

where 

N{x,y) 
I . T i l |2； - y* 

with^* = (yi,仍，—仍)，\/y G M： 
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B y the theorems on the singular integrals (see [104]), we have the fol lowing esti-

mates 

II•之"IIl.啦 們 Iẑ  邻 T); 
(3.4.12) 

< < On. 

For any bounded w i t h smooth boundary set G C , we can choose another 

set G C C G' C C R+ , and any positive number ^ > 0. Define smooth, functions 

丁 G f-) and C G CJ ' (G ' ) such that 0 g r 口 i n T —芸）and t 三 1 

in 0 < C < 1 in G' and 三 1 i n G. Let / = r C ( / - V ^ ^ ) , then 

Use the Lemma 3.4.1 for 包k and \\Sk — ̂ r̂̂ fc) ® Uk\\L^{G'x(o,T)} < C, where C 

only depends on G', and r = m i n i — ~ < 2, we have there exist TT^ 
p — 1 6 

w i t h vanish mean value such that 

(S(x,t,V(uk))-S) : V^dxdt 
IG' 

(3.4.13) 

=—/ {uk — u, dtO^^^t 
JG'T 

—/ {u明 ® Uk _ u 公 u)V^dxdt 
JG'T 

+ f (tt^ - 7r){V • ^dxdt. 
k 

for al l ^ G C ^ i Q x (0 ,T ) ) w i t h ^ • = 0 holds and the estimate Utt^ -

< C. 

From Remark 3.4.2 and (3.2.1), i t follows that 

II W l l 沖 ， T , - 1 ’ 。 < C, 

where C does not only depend on k. By Aubin-Lions Lemma, we easily obtain 

tha t UK U a.e. in G x T — S) := GST-
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Take (/?& as a test funct ion in (3.4.13) , we have 

fT 
/ S{x,t,D(uk)) ： 

JO 

- f S : Vip^dxdt - f « - u, (fi^)dt 
JQ JO 

- / V • {Ue{k) — 

90 

(3.4.14) 

+ f (7r^-7r)(V-/)dxd^ 
JQ 

： = + L>2 + 巩 + cu. 

From proposi t ion 3.4.4, we can know that Di ^ 0 as k ^ oo. Since | |V • ⑧ 

5 8 
= Ihze(fc) . < C, where a = ~p > 1 provided tha t p > -

and C is independent of k. Therefore, 

Ds < | V • {us(k) ® Uk 一 u ® _ Vz^)\dxdt 

< CWi/j^ - = o(l) as k ^ oo. 

From the argument above, i t is easy to see that 

D4 < - 7r||L-(Gy||V • 知 = 0(1) 

I n fact, since • . = r V C •(劝& — •？ ) , thus f rom Proposit ion 3.4.4(3) and 

(3.4.12), we have 

Now estimate the te rm D2, Let w = Uk — u G T ; V y , then by lemma 3.4 [82] 

there exist a sequence Wn G (7°°(0, T ; D ( R ^ ) ) w i t h divu;^ = 0, and such tha t 

ni — w' i n 1/(0, T; W^^'iG')) and Wn ^ win 1 / (0 , T ; Vp). One have 

rjp 

Jo 

- l i m f « , r C K ( l - m i n ( l ^ , 1)) - Vz'))dt = D^, + D2,. 
n^oo /n L 
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Let 
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i f k n i < L； 

去丄2 i f W > L, 

Therefore, we know that 
"T 

= l i m f f < t C K ( 1 ~ l)))ddt 
几4⑴Jo Jn L 

= l i m I f {rCFn{x,t)ydxdt - l im [ f T'CFJx,t)dxdt 
Jo Jn 竹—⑴ Jo Ja 

< 0C\G't\L'\ 

Since divwn = 0，so 
rp rp 

D2, = - l im f f {w'^rCVz'')dxdt = l im f f (w'tVCIz^ — z^))dxdt 
Jn Jo JQ 

< J l ^ lKl| ir(0’IW-i,(G'))| |VC(之知-^”） l l jy(o’T;wi, '(G')) 

< J ™ IKI|i/(0，T;W-MG'))||V(《勺|lzy(。，TxG') 

- 0 ( 1 ) . 

So far, we can conclude tha t 
fjp 

f f S{x, t, D{uk)) ： D{ip'')dxdt < o ( l ) + Crj, as k — oo. 
Jo Jul 

I t fol lowing tha t 
"T 

f f S{x, t, D{uk)) ： D⑷T恤dt 
Jo JRl 

rp 

< f [ S{x,t,D{uk)) : D{Vz^)rCdxdt 
Jo JRl 

- [ f Six, t, D{uk)) ： ( ( / — Vz^ ) (g) •C)Td:rdZ + 0(1) + CT] 
Jo Jm.1 

rji 

[ [ S { x , t, D{uk)) ： D{Vz'')TCdxdt 
Jo JmI 

< X | | V V | | z , P ( Q ) < C 7 / f r o m (4.12): Since 

and 
pT r 

< = 0(1). 

rjp 

f f S(x, t, D(uk))：((妙& - 0 VC)rda:d^ 
Jo JmI 
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Therefore, we have 
"T 

[ f S{x, t, D(uk)) D{ilj^)TCdxdt < C77 + 0(1) as k 
Jo 7R3 

where C is independent of k, r] 

On the other hand, 

[ f S(x,t,D{uk)) 办 C c M Z 
Jo JRl 

= f S{x,t,D(uk)) D(u 
jQk 

+ I S{x,t,D(uk)) sym JQ^ 

/ ( Uk - u\ \ 
1 — m m L ，丄 

'Uk - u 
、 L 

)⑧ V|?ifc — TTjdxdt 

(S{x, t, D(uk)) — S{x, t, D(u))) D{uk — u)T(dxdt 

+ / S{x,t, D(u)) D{uk - u)TCdxdt 
JQ^ 

t, D(uk)) D{uk — u) m m f\uk - u\ 
r^dajd^ 

+ 
f ( qj^k 一 
/ t , D{uk)) sym (——-——)<8) — u\ ) rrjdxdt 

L 

= + J2 + J3 + J4 

where sym 
.u^ -u 

) 0 V\uk — u\ IS the symmetric part of 
\ L ' \ ~ \J ‘ r \ L 

Clearly, since D[Uk)」D{u) in If (Q), thus J2 ^ 0 as A: ^ 00 As in (4)of 

proposi t ion 3 4 4, we can compute that 

1«/3丨 + |=/4| < f \S(xXD{uk)) D{uk-u)\dxdt 
JE^ 

+L / \S{x,t,D{uk)) D{uk - u)\dxdt 

< f g^dxdt + L f / d r d f <ri-\-KL 

<Cr) 

Consequently, 

/ i , D(uk)) - S{x, t, D{u))) D{uk - u)T(dxdt < o ( l ) + Cry, as fc 00 

(3 4 15) 
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Since Uk u a.e. in x (6, T — 6) and G, d are arbitrary, thus we know that 

Uk u a.e. in Q . Hence, choose a sequence which st i l l denote { uk } satisfying 

jC/j. \ Q''] < 2—〜for al l A; 6 N . Thus there exists k g e N such that 2一知 < and 

one can find 

oo 

k=ko-j-l 
oo 

Sett ing M = [ J {G'T \ Q^), f rom (3.4.5)-(3.4.6) we have 
fc 二 fco + l 

/ (风:c，t, D{uk)) - S(x, t, D(u)}) : D{uk - u}T(dxdt < Crj. (3.4.16) 
J M 

Whence (3.4.15) and (3.4.16) infers tha t 

/ {S{x, t, D(uk)) — S{x, t, D{u))) : D{uk — u)TCdxdt < o ( l ) + Crj, as A; -> oo. 
JG't 

(3.4.17) 

From (3.1.7), i t implies 

/ t, D{uk)) - S{x, £, D(u))) : D{uk - u)(lxdt 0, as k oo. 
J G ST 

This proves the main theorem. 

Remark 3.4.5 We can assume that f € LP'{0, T;V*) n L^iQ). Then all esti-

mates (3.4-5)--(3.4'7) also depend on ||/||i,p'(oT-v*)nL2(Q)- In the proof of (3.4.10)， 
fT 

we must estimate the term I ( / , Indeed it is easy to obtain it as follows; 
Jo 

「 U . 鼻 t < r { f , r ( : { u k - u ) ) d i - r i f , r({uk - u)mm l))dt L 
rp 

f 〈 / , < • • . 
Jo 

The first term on the right vanishes as k oo, while the second term is estimated 

analogously as J3 and J4. Finally, the third term is small thanks to (3.4-12). 

Therefore，we obtain 
rp 

[ < o ( i ) + c 7 7 . 
Jo 

It shows that this term can not change the statement of the main theorem. 
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12 
R e m a r k 3 . 4 . 6 I f p > use the the theorem 1.2, of [15], we extend the basis ak 

5 
to whole space. Then apply the argument in [33], we can obtain the weak solution 

IS a unique glohal-in~time strong solution for the problem (3.1.1). 
9 12 

However, if - < p < —, use the basis obtained above and the argument 
5 0 

m [33], one can get a unique local-m-time strong solution to the problem (3.1.1), 

hut we cannot know whether the weak solution is the exact strong solution. 



Chapter 4 

Smooth solutions for motion of a 

rigid body of general form in an 

incompressible perfect fluid 

I n this chapter, we investigate the motion of a general form rigid body w i th 

smooth boundary by an incompressible perfect fluid occupying Due to the 

domain occupied by the f luid depending on the time, this problem can be trans-

formed into a new systems of the fluid in a fixed domain by the frame attached 

w i th the body. W i t h the aid of Kato-Lai's theory, we construct a sequence of suc-

cessive solutions to this problem in some 皿 f o rm time interval. Then by a fixed 

point argument, we have proved that the existence, uniqueness and persistence 

of the regularity for the solutions of original fluid-structure interaction problem. 

95 
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4.1 Introduction 

I n th is chapter, we investigate the mot ion of a r ig id body immersed i n an 

incompressible perfect f luid. The behavior of the fluid is described by the Euler 

equations, while the mot ion of the r ig id body conforms to the Newton's law. 

Assume that bo th the f lu id and the r ig id body are homogeneous. The domain 

occupied by the solid at the t ime is 0{t), and Q{t) — \ 0(t) is the domain 

occupied by the fluid. Suppose O{0) = O and 11(0) = f t share a smooth boundary 

dO{ov dfl). The equations model ing the dynamics of the system has been in the 

introduct ion, see (0.8)-(0.15) 

To solve such a problem, we must fix the region occupied by the f luid. For 

simplici ty, we assume tha t / = 0, Woo = 0, frb — 0 and Trb — 0. 

Generally, i t is natura l to adapt a ideal by attaching the coordinates system 

to the r ig id body. Let Q{t) be a rotat ion mat r i x associated w i t h the angular 

velocity oj(t) of the r ig id body, which is the solution of the fol lowing in i t ia l value 

problem: 

響 = • ⑷ _ , 、 

dt (4.1.1) 

Q(0) = Id. 

Here 
0 -6^3 

A(uj)= CJ3 0 —Ul 

I —⑴2 0 

and Id is the ident i ty matr ix . Then the domain 0(t) is defined by 

O { t ) ^ { Q i t ) y ^ h { t ) : y e O ( 0 ) } . 

Set 
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x^Q(t)y + h{t), 

p{y, t)=p(Q{t)y + h{t),t), 

J=J{0), 

•Sfe/，力)二 + W仏 0， 

h{t) = f Q{sfh'{s)ds, 

oj{y,t) = Q(tfuj 

where Q{t) is given in (4.1.1) and Q{t)'^ is the transpose of Q{t). 

Af ter the transformation, an equivalent system is obtainded as follows: 

du 
+ [{u-h' - 6j X y) • V]u + ^ X + V p = 0, 

dt 

d iv i i — 0, 

u • n = (h' LJ X y) • n, 

mh" = / pndT - mu{t) x h\t), 
Jdn 

Jbj'^ / y X pndV + {Ju{t)) x Cj{t), 
JdQ 
= Uo, 

h(0) 二 0’ ^ ' (0) = Iq, d;(0) = Wo. 

in O X [0,T], 

in U X [0,T], 

on dU X [0’T. 

in[0,r； 

in[0，r: 

yen, 

(4. 

(4. 

(4. 

(4. 

(4. 

(4. 

(4, 

1.2) 

1.3) 

1.4) 

1.5) 

1.6) 

1.7) 

1.8) 

The new problem is a fixed boundary problem now. However, there is a te rm 

X • V)]u, whose coefficient become unbounded at large spatial distance. For 

the 2D case, the di f f icul ty was overcome in [92] by assuming that Uq belongs to 

some weighted space. However, the 3D case is much more complicated, since 

vor t ic i ty does not satisfy a transport equation any more. To avoid this term, 

we w i l l use another change of variables. The new transformat ion coincides w i t h 

Q{t)y + h{t) i n a neighborhood of the solid and becomes ident i ty when far away 

f rom i t . 

More precisely, fix a pair of functions ( l ( t ) , ( j ( t ) ) , let 

⑷二 / l[s)ds, t e [0,T], (4.1.9) 

V{x, t) = l i t ) + uit) x ( x - hit)), 0 , t ) G X [0, T (4.1.10) 
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which is a r ig id body movement. 

Choose a smooth funct ion ^ : K.̂  E w i t h compact support such tha t ^(a：)= 

1 in a neighborhood of O, and set 

Then introduce the functions W and A, 

V^Or , t)=魯Z⑷ X Or — hit)) + 丨二(力 

A{x,t) = ipV + X W. 

I t is easy to check tha t A satisfies the fol lowing lemma. 

(4.1.11) 

(4.1.12) 

Lemma 4.1.1 (1) A{x, t) = 0, if x is far away from 0{t); 

(2) = h!{t)+u{t) X ( x - h{t)) in 0(t) x [0 ,T ] ; 

(3) d iv A = 0 in R^ x [0 ,T ] ; 

(4) For all t e [0,T1,A(-,^) is a function. Moreover, for every 

S e N，||A(•，力)||沪’叫股3) < s,T){\l{t)\ + Ilc；⑷I)/ 

(5) For all x e M^, the function A(x, •) is in provided that e 

(7°[0,T]. 

Next, consider the vector field X[y, t) which satisfies 

dt 
= A{X(y,t),t), te(0,Tl 

(4.1.13) 

Lemma 4.1.2 For every y G M^, the initial-value problem (4.1.13) admits a 

unique solution X{y, •) : [0, T] —> E^, which is a C^ function on [0, T ] . Moreover, 

the solution has the following properties: 
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(1) For all t e [0, T],the mapping y h-)- X{y,t) is a diffeomorphism from 

O onto 0{t) and from O onto 0 ( t ) . 

(2) Denote byY(,,t) the inverse ofX(-,t). Then for every x G the mapping 

t t) IS C、continuous and satisfies the following initial value problem， 

dY{x, s] 
ds 

Y{x, 0) - or G M^ 
(4.1.14) 

Where Jx is the Jacobtan matrices of X{y, t). 

(3) For every x,y G R^ and for every t G [0, T ] , the determinants of the 

Jacobian matrices Jx of X{y,t) and Jy ofY(x, t) both equal to 1, i.e., 

For the proof of Lemma 4.1.2, please refer to [103 

Let 

工=场’力)， 

q{y,t)=p{X{y,t),t). 

m = Q(t 彻 , 

Denote 

v(y,t} = JY(X(y,t),t)u(X(y,t),t), 

_ = Q i t f h i t ) , 

R{t) = Q(t)^uj{t). 

dxk dxk 

舞 * 自 警 t - I f 

(4.1.15) 

(4.1.16) 

(4.1.17) 

Now one can transform the original system (0.8)-(0.15) into the following 
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system, which is a fixed boundary problem, (see [103]) 

dv 
m 

Mv^ Nv + G -Vq = 0, 

d iv 1̂  — 0, 

v{y, t).n = {L{t) + R(t) x y ) - n , 

mL'{t) = / qnda — mR{t) x L{t\ 
Jdn 

JR'{t) = yx qnda + jR{t) x R{t), 
Jda 

'^(y, 0) = uo{y), 

H{0) = 0, L(0) = lo, R(0} = cjQ. 

in 0 X [0，T], 

in Qx [ 0 , T ] , 

on dfl X fO, Tl 

0 , T i n 

i n 0 ’ T 

yen, 

where 

一 & 况 dy] + 知 r力左 dt + dtdy, 巧: 

dVr 

9yj 

(4.1.18) 

(4.1.19) 

(4.1.20) 

(4.1.21) 

(4.1.22) 

(4.1.23) 

(4.1.24) 

(4.1.25) 

Our ma in result is fol lowing theorem. 

5 
T h e o r e m 4 . 1 . 3 Suppose that s > uq G and uo-n = (/o + ^o xy)-n on 

Zi 

dO,. Then there exist some Tq > 0 and a solution (v, q, L , R) of (4.1.18)-(4-l-24) 

such that 

V e Vq E 

and 

Such a solution is unique up to an arbitrary function of t which may be added to 

q. Furthermore, TQ does not depend on s. 
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4.2 Preliminaries 

4.2.1 Kato-Lai Theory 

I n this scction we reccive brief ly Kato-La i theory and introduce some notations. 

One is referred to [68] for more details. Let V, H, X be three real separable Banach 

spaces. We say that the fami ly {V, X} is an admissible t r ip le t i f the fol lowing 

conditions hold. 

{1) V C H C X, the inclusions being dense and continuous. 
1 

(2) / / is a Hi lber t space, w i t h inner product (•, •)h and norm || . || i j = (•, •)j j . 

(3) There is a continuous, nondegenerate bilinear fo rm on V x X，denote by〈•，-〉， 

such tha t 

{v, u) = {v, U)H, for al l G y and u E H. (4.2.1) 

Recall tha t the bil inear fo rm {v, u) is continuous and nondegenerate when 

丨 〈 — I s c i m m M I x ; 

{v^ u) = 0 for al l l i G X implies d = 0; 

{v, I t�二 0 for all f 6 X implies u = 0. 

A map A : [0,T] x H ^ X is said to be sequentially weakly continuous i f 

A{tn, Vn) j A{t, v) i n X whenever tn ] t and Vn」v in H. 

We are concerned w i t h the Cauchy problem 

d/u 

^ + A(t, t;) 二 0, ̂ > 0 , v(0) = vo. (4.2.2) 

The Kato-La i existence result for abstract evolution equations is as follows. 

T h e o r e m 4 . 2 . 1 Let {v,H,X} be an admissible triplet Let A be a sequentially 

weakly continuous map from [0，T] x H into X such that 

(v,A{t,v)) > m^fn) for t G [0,T],v G V, 
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where /3(r) > 0 is a continuous nondecreasing function for r > 0. Then for any 

VQ ^ H there is a time Tq > 0, T < TQ, and a solution v of (4-2.2) in the class 

veCU[o,T];n)ncU[o,T]-x). 

Moreover, one has 

I 卜 ⑷ 临 S 7⑷，力G[0,T]， 

where 7 solve the ODE 

7 ' ⑷ = 2 / 3 ( 7 ⑷ )，7 ( 0 ) = WvoW'h. 

4.2.2 Admissible triplet and some properties for coeffi-

cients 

We'd like to construct the admissible t r ip le t and show some useful properties for 

the coefficients which in the(4.1.18)-(4.1.24). 

Suppose 5 is a domain i n R^. L^(tS) is the space of L^-integrable functions 

w i t h the standard inner product (•,。【。(̂？). B y the way, we w i l l not dist inguish 

the scalar funct ion spaces and the corresponding vector-valued funct ion spaces. 

s is a nonnegative integer, then 

H'(S) = L\S) : I T w G V a, s.t. |q;| < s} , 

w i t h the inner product 

K v)h^{S) = E (乃、D、 )巧<5) 

|«|<s 

and the homogeneous Sobolev space given i n Chapter 1. 

Let BR{X) denote the bal l centered at x and w i t h the radius R. QR := 
j j i 

Q. n BR{0). Let p = where \0\ stands for the volume of O. Hence p is the 

density of the solid. Let X = be endowed w i t h the inner product, 

( ¥ ) 尸 " ( 如 ⑷ 彻 + ( 如 ( 咖 
JQ JO 
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Define 

X^ = {ueX : divu = 0 in M^ 3 a; e ]R3，s.t., u = I + u; x y in O}, 

which is a closed subspace of X . 

R e m a r k 4 . 2 . 2 For every u e X^, and suppose u = I to x y on O, in fact, I 

and ( j j are uniquely determined by the vectors. The fact has been proved, see [25] 

or [112]. In what follows，we will denote I, u by lu, oJu-

Let Hs~ {u ^ X \ G be endowed w i t h the scalar product 

(u, v)ff,, = (u, + p(u, V)L2(O)-

Vs is the space of functions v ^ Hs such that belongs to T>{A), where A is the 

el l ipt ic operator Af = ^ ^ ( 一 l ) i 圳 w i t h Neumann boundary conditions, and 

X>(yl) C IJ2). y^ jg endowed w i th the scalar product 

As i n [95], we introduce a bil inear form on V^ x X: 

/ \ 
[v.u)— Z (一 1 ) W 炉 〜 , 以 

+ 丄 2 ( 0 ) . 

I t was proved i n [95] that the t r i p l e t j X , Hg, V^} is admissible. 

Lemma 4.2.3 Let Gf {u e : u = Vgi, qi G and 

Gl = {ue : d iv u - 0 in IR�，u = Vgs in n, q。G L L ( O ) , 

u = (j) in O, and / (/) x ydy = / q2n X yda> 
Jo Jdo J 

Then (1) X*, G\ and G^ are mutually orthogonal and 



Aq = d iv u, in 

dn 
=a-n - (Jui + ojui X y) -n, on dQ, 

(4.2.5) 

Let 

= V X 

where ^ is a cut-off funct ion defined i n the previous section. Clearly, div (/：? = 0 

in 0 and (p • n = (lui + ojui x y) • n on dQ Therefore, (4.2.5) can be rewri t ten, 

Aq = d iv (u — ( f ) , i n Q, 

dq (4.2.6) 

dn 
= { u — i f ) , n, on dVl. 

The solution to the system (4.2.6) is closely related to the Helmoltz-Weyl 
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It means that for every u € L^(E^)； 

, 、 ui + Vgi + Vq2, y EQ 0 0 , 、 
u(y) = G X , e G? e Gl (4.2.3) 

y + + yeo 

Suppose ui — lui + iOui y- y in O, then there exists some constant C independent 

of u, such that 

+ (4.2.4) 

(2)Define the projector P which maps L^(R^) to X * . In fact, P maps Hs mto 

Hs continuously for any s > 0. 

P r o o f : (1) has been proved in [112]. Now we veri fy that (2) holds. For every 

u e Hs{s > 0), it suffices to prove tha t 

w i t h some C independent of u. 

I n fact, q satisfies the fol lowing equations: 

叫 l b X
 

1
 

丄

I

 2
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decomposition. As proved in [47], 

| j V g |丨歸 )< C\\u - ^ IU . ( o ) 

< 丑 气 + IIHI丑气n)) 

〜 I M k , 

which completes the proof of Lemma 4.2.2. 

(4.2.7) 

• 

The fol lowing lemma is to give the bounds of the coefficients which appear in 

the system (4.1.18)-(4.1.24). 

Lemma 4.2.4 Assume that v is a function in T; X^) and s is a nonneg-

ahve integer. Suppose there exists M年 > 0，such that < M年.Let 

A, X , y , Qij TQ^^T be defined as in the previous section by replacing I, to by ly, LUy. 

Then for every i G [0, T ] , the following estimates hold: 

(4.2.8) 

< C{s,T,]\Q, < (4.2.9) 

II以”(.,圳浙〜。C(r:3) < C ( s , T , M j , < C(s，T，MO, (4.2.10) 

||r{-, ；OIIt^作3) < C(s, T, M,), (4.2.11) 

where G"^ is the inverse of G. 

P r o o f : For every j = 1，2 or 3，let z(y, t)— 
dyj' 

^(y, 0) = e ” 

where Cj is the j-th. vector of the basis of Then 

Ay,力）=+ dx 
(4.2.12) 
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I t follows f rom Gronwall 's lemma that \z{y, < (7(T, M* ) . 

Since de t ( Jx ) = 1, then JY = [J》), where J^ is the cofactor of Jx- Hence 

\Jy{X{;t),t)\<C{T, M*). 

Furthermore, 

Denote D ^ = From (4.2.12) and Leibniz' formula, one can deduce tha t 

t
 /

 -、
 

5
 

^
 

a 
D曰 

/dA\ 
曰zds, bl < s 

Following the preceding process, one can get the estimates (4.2.8)-(4.2.11). • 

Next lemma is about the Lipschitz cont inui ty of the coefficients w i t h respect 

to V. 

Lemma 4.2.5 Assume that the assumptions of Lemma 4-2.3 hold for v\ i = 1,2. 

Let l{t) = ki{t) — 1^2(i), uj{i) = uj^i{t) — X = X^ - X^, Y = Y^ -

y Hy,t) = A ( X ' ( y , t ) , t ) - A ( X ' ( y , t ) , t ) , G = (g^ = (ff'''' - ff''''), 9” = 

glj - G-1 = — (G2)-i，and r^，, = T t ] , — 1%. Then for every 

力 e[0，T]， 

, (4.2.13 

, (4.2.14 

, (4.2.15 

, (4.2.16 

| | # ( . ’ t ) | | , c ^ ( K 3 ) < C ( s , T , M , ) (||/|Uoo(o,T) + IMI i,，”） , (4.2.17 

||G—i(.，£)||h^s’m_ < (||/|U-(O,T) + ||^||l-(O,T))， (4.2.18 

l l r ( 、 力 … ( M 3 ) < C ( 5 , T , M , ) (||%oo(o，r) + I M | l ’， t ) ) . (4.2.19 

M L-(0,T)) 

i i n -

1 t) 
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P r o o f : Prom the in i t ia l problem (4.1.1), we infer the fol lowing estimate 

\\Q\t) — Q2⑷II < C(n,Mo)suv\uj\s)-uj\s)\. 
[ 0 ’ t ] 

(4.2.20) 

B y simple calculate we have 

— (叫 < a(To, Mo) Siip(|/1 ⑷ — ⑷ I + ⑷ 一 ⑷ ( )， ( 4 .2 .21 ) 
[0，t] 

liW^i - M/2||，(叫 < C(To, Mo) s u p ( | Z i ⑷ — l \ s ) \ + — ⑷ I ) , (4.2.22) 
[0，i] 

where V\W' are defined by (4.1.10),(4.1.11). Since A ( : r , t ) = 功 V + •妙 x W , 

thus for 

A(x, t) = t) - t) 二 

aQ'^^mx — h\t)))V' + 卞 ) V e C Q i 卞 - h\t)))W'-

aQ'^mx - h\t)))v' - Q'^maQ'^mx - _ ) 妒 . 

From (4.2.20)-(4.2.22), we have (4.2.15). 

X'{t) = A \ X \ t ) , t ) - A \ X \ t ) , t ) 

X ( 0 ) 二 0. 

I t follows that 

X ⑷ = / s) - + A ( X ' ( s ) , 5))d5 
Jo 

\X{t)\ < f \ A \ X \ s ) , s ) - A \ X ' ( s \ s ) \ d s ^ fA{X\s),s))d 
Jo Jo 

s. (4.2.23) 

Since 

| A i ( X i ⑷ , s ) - A i ( X 2 ⑷ , 引 1 1 1 耶 ) | , 

f A{X\s)^s))ds < C(Mo,To)sup( |Ks) | + |a;⑷ | ) 
Jo fo,幻 

Apply Gronwall's Inequality to (4.2.20), we have 

[0，i] 
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Since = / ^ — — ^ ds, use the 
dvi Jo V 加 dyi dx diji / 

above argument and inequali ty (4.2.15), then 

I — I < C ( T o , M o ) s u p ( | / | + |a;|). 
oyi [o,f] 

By i terat ing the same process, we can easily obta in that (4.2.13) and (4.2.16). 

From lemma 4.1.2 (2), we have the inequalities (4.2.14) and (3.14), and thus 

(4.2.18) and (4.2.19) also holds. • 

4.3 fP-estimates of Vg 
5 ~ 

I n the fol lowing text , s > sq = Given a funct ion v e T ; Hg H X * ) , 

which satisfies tha t < MQ. We shall give the //^-estimates of Vq, a 

solut ion to the fol lowing system, 

div ( g ^ ^ “ 奈 ) = - d i v ( i \ “ + Nv), i n 

^ .. dq / I f \ f \ 
�g ^ ^ ^ — r i i + — / gndcr • n + J / y x qnda ] x y • n 

^ dyj \m Jdn / V JdQ J 

=—{Mv + Nv) • n L j y X Iv • n — x w^) x y • n, on dQ. 

(4.3.1) 

Here g^^, Mv and Nv are given as in (4.1.17) and (4.1.25), replacing h', uj by tUy. 

For every f ixed t G [0, T] , the mat r i x G = (g^^) = JyJy^ so G is posit ive 

definite. Denote Xi{y, t) > 0, {i = 1,2,3) the eigenvalues of the mat r i x ( j f j ) . 
3 3 3 

Since d e t ( y 勺 = 1 , thus TT Â  = 1 and V Â  - V / > 0. Let 70 二 sup 
ti tt U 鄉 3 

then we have 870 > Xi > 7 ^ for every i = 1, 2,3. By v i r tue of Lemma 4.2.3, 
(370)2 

there exist constants C i ( T , MQ) and C2(T, Mq), 

C i ( T , M O ) < | A , | < C 2 ( T , M O ) , z 二 1,2,3. 



Then along the line of the proposition 3.3. 

the bilinear form B is bounded. 

113], one can easily verify that 
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Next , we shall use the Lax-Mi lgram theorem to prove the existence of the 

solutions of (4.3.1), and then we give iJ^-estimate of this solution. For simplicity, 

the vector-valued functions ly, are denoted by l,oj respectively. 

Set a bil inear fo rm B and a linear funct ional F on as follows, for every 

彻 和 E E"” dq drj 
+ 

1 

L-'m 
饥 \Jdn 

qnda 
\Jdn 

^nda 

+ J- y X qnda y X r]nd(j 
'dii 

F{r]) = - / {Mv + Nv) • Vrjdy + {UJ^ X Q • ijnda 
Ja J da 

'dn 
J~\JoJv X uj^) X y • 7]nda 

Note tha t 

3 / 3 

B f e 和 E E " 
£
 

1
 

> C i (T ,Mo) | |Vg | | i 2關 ^mLl + Jww 

+ — ( f gndcr ) + Jiy • w 
饥 \JdQ ) (4.3.2) 

where L\ — — ( / ^ndcr ) , it? = J ] . / y x qnda. 
_ w J Jdn 
J is also a positive definite matr ix , then there exists some constant a > 0 such 

tha t 

\w\ < Jw . w < alwl 

Combining the above inequali ty and (4.3.2), one gets that B is coercive. 

On the other hand, 

L2(⑴ 

drj 

% 9yj 
I
-
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Now we t u r n to the functional F. 

{Mv + Nv) . V7]dx 
I 

< \\Mv^Nv\\L2^n) • ||V77|U2(O) 

< C (||A||i^i,oo(f^) + II JF||loo(Q) + II ⑴）+ 

+l|r||L-(fi)). IMIffi�• � 

/ {⑴ X I — [J~^{Juj X ( j) ] X y} . rjndcT 
hft 

<Ci\u\\l\ + \uj\') f \ri\da 
Jon 

(4.3.3) 

(4.3.4) 

From the above estimates, i t follows tha t F is bounded. By Lax-Mi lg ram 

Theorem, there exists a unique q G I)^'^(O) such tha t 

Furthermore, 

Let 

B(q,”）= F ( r j ) , ” € 

(4.3.5) 

Li = — / qnda, w = 
肌Jon 

/ y X qndcT. 
Jdn 

Then according to (4.3.5), 

l ^ i l < C ( T , M o , n ) , H < C ( T , M o , Q ) . (4.3.6) 

Now we consider the Neumann system which is equivalent to (4.3.1)， 

d iv 
dyj 

=-div{Mv + Nv] i n 

E ：dq 
dyj 

Tii = -[Mv + Nv) • n — {cu X I) • n 
(4.3.7) 

+ \ j ~ ^ { J u j X cj)] X y • n — Li • n — (w X y) • n, on dQ. 
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To estimate one needs to estimate the terms \\diy{Mv-\~Nv) 

a n d丨卜（她+时n丨丨丑s — — ) . 

/ l : = d i v ( ( 

= f 8 

< 
3 广 

y 。 
2•，J，左二 1 

/ 2 : = 
3 o y已 

fdY \ 
dt 

\ 
Vv 

dXk dv. 

dxk 

dtdxk dy^ dyj 
+ 

ip—i ⑴） 

E dvj dvi 
% dy] 

丨 ip- i(n) 

/ 

< C (| |r| | 评 股 3)||A|| 评s’oo(k3) + II 丑 

Hence, 

(4.3.8) 

Denote 

r ^ ( s r ^^^ a n 丄 a^Xfcl 丄 ^ ^ \ 

Then 
f dY \ 

— [Mv + Nv) • n 二 + • Vv • n + /a-
乂 d力 y 

P3|| — 如) < CWhWHs^a) 

< C …OO(K3)||A|| 评 s,oo(股 3) + II Jylln^s,00(̂ 3)11 Allies,oo(K3)) 

•丨 l i f f s 叫 + l | r 丨 li^ 納(K3) Iblli j.(o) II 幻 II 

(4.3.9) 
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To estimate 

.dY 

v) -Vv • n we shall use the method in [24,95]. 

Since (———h t^) - n = 0 on dQ, one can easily get that 
CJL 

+ f) . Vv . n 

Combining (4.3.9) and (4.3.10), one has 

< C (丨|A||?^，_ + l ) (1 + I b l l 坤 ) ) . ( 4 . 3 . 1 0 ) 

-{Mv + Nv). n i l丑“如）< C(T, M o ) ( l + \\V\\H.). (4.3.11) 

The other terms can be estimated as follows: 

II [J-\JuJ xuj)]xy n i l 好 去(如）< (7 (0 ,均 M 。 < C{T, Mo), (4.3.12) 

丨丨“ • 〜 如 ) 如 “ I 谓 T ， M o ) ， 
(4.3.13) 

X I) • n i l 开 ⑷ < C 队 itOMlZI < C(T, Mo), (4.3.14) 

IK⑶ X ？/) . n i l 丑 < C{n,R)\w\ < C7(T,Mo). (4.3.15) 

Choose some r > 0 such that supp(^) C BL, and a cut-off function ^ i , 

I

I
 

1, i f \y\ < 2r, 

0， i f \y\ > 3r. 
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Hence, p i 二芒ig solves the fol lowing equation 

d iv 
{ 3 

I dpi 
dyj =-秘v(M” +到+ E 答 dVz dyj 

+ E Kdyj dy^ dy, dyj 
i n B^r \ O , 

E 5
 5
 

rii = -{Mv + Nv) • n - uj X I • n 

+ X 0；)] xy-n — Li-n — w x y - n , on dO, 

By vir tue of the regulari ty theory for el l iptic equations [100 

on dB/^r-

(4.3.16) 

、
 

y
 

"
y
 % dyj 

E 
hJ--

+ II - (Mv + Nv) • Till丑”去_ + J—V⑴ X 0；) . n 

d^i dq + d^i dq 
dyj dy^ dyi dyj 

L(B4r\0) 

+ \\{Li + w x y ) 

丨扩― ) + I W 印 , 

(4.3.17) 

where / i i ( - , •) can be chosen an increasing funct ion w i t h respect to bo th variables. 

I n fact, 

E 
•h3: 

dg'3 aa 
办z dyj 

+ 
乙 \dyj dy, dy^ dyj 
2•’ •？: 

(4,3.18) 

Combining the above estimates, one gets 

<C{T, Mo, r ) + ||g||巧扔A⑵ + 1) 
E (4.3.7) 
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Choose some part icular q such that 

(4.3.20) 

/ q{y)dy = 0. 
JB4r\0 

I t is reasonable, since q is st i l l a solut ion to (4.3.7) after added by any constant. 

By Poincare's inequality, 

< C{T,Mo,r) {\\q\\H^iB,r\B.r) + 11 V ? 11L̂  (fi^A^) + 1) 

I t implies tha t high order regulari ty of q can be controlled by the lower order 

regularity. Therefore, using this method by choosing appropriate r , we can get 

that for every R > 0, such that O Q BR, 

l l V g k s ⑴ < C{T, Mo, R){1 + I H k ) . (4.3.21) 

F ix some R big enough. Choose some smooth cut-off funct ion such tha t 

= 
i f < I R , 

i f … > R. 

Since g^̂  = 5ij outside B r , hence 

d i v ( G . Vg) = Aq. 

Let p2 = 6仏 then 

Ap2 = ^2{-diY(Mv + Nv)) + V^Vg + A&g / . 

Therefore, 

/ is estimated as follows, 

< C ( | |d iv(Mi； + Nv)\\Hs-^n) + " V d 丑 剑 剑 + IkIL 

<C{T,Mo,R,0){1 + \\V\\HJ. 

(4.3.22) 

(4.3.23) 

'<\v\<R)) 

(4.3.24) 
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1
 

1
 

Hence 

< Mo, R, 0){1 + 

(4.3.21) and (4.3.25) give that 

(4.3.25) 

(4.3.26) 

4.4 Construction of approximate solutions 

I n th is section, we w i l l construct a sequence of approximate solutions. First , for 

v^{t) G Hs, denote r\t) — Zp?；"⑷，^^(i) ~ Solving the fol lowing in i t ia l 

value problem 

dt 

One can get a solut ion 

d 『 ( 艺 ） = ⑷）xv， 
(4.4.1) 

Q(0) = Id. 

Define 

and 

功“二 ⑷(冗—""⑷))’ h竹=/ 

= Q零几(t) + ( r [ t ) u / \ t ) x ( x - h 观 

= ⑷ r w X ( 卜 剛 ） + 丨 ： 、 力 Q , " ( 0 ， 
2 

where ^ is a cut-off funct ion given in section 

Let A " = f + Hence one can define t ) , t ) , .g”，、 

《，ri，:, given in (4.1.17) and (4.1.25). Suppose that is the solut ion 

to the fol lowing system, 

‘ “ dq. 
div =一 + TV^P ;̂"； i n f ] 

n
 a

-

A
 i
r
f
 

1
1

 
g
 

+
 

5
 
o
 

\ 
q^nda • n + 尸 / y X q'^nda 

Jdn 
X y • n 

= — ( M ’ i ; " + i V ’ ^ ; ” - n — cj" X r . n + x a;")] x y n, on dil. 
(4.4.2) 



丄 o；"-1 X r 
\m 

- 尸 ( J U / ^ - I X W ^ - I ) X y 

- { l o —/ q^-^nAa - ( J - i / y x q^-^nda) x y 
爪 JdQ V Jdn y 

and assume Mq = 2||7；0||丑即 and M* = 2||i;o||jy,, and there exists some T > 0 such 

that for all k < n̂  
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Now define an operator v) as in [95] to use Ka to -La i Theory, 

'dY A 
dt J 

• 卜 Q ( b y -

V dt 
VPt ; + 

p 

p 

r . + + 

I n 

+ P 

\
 

1
 

I
 n

 
1
 

f
 s’

 dyj 
+ P [ 1 。 X 广 - 1 — X X y) 

…f \ \ 
-o 一― / q'^-'nda 一 广 y x x y 

\ ^ Jon \ Jdn J . 
(4.4.3) 

where the operator Q = / — P. 

Consider the fol lowing Cauchy problem, 

0, 

作） = 

(4.4.4) 

where vo ^ Hg n X* . 

For simplici ty, denote 

( 产 = dt 
+ P?/ •I'J.N- dq' 

dyj 

Kj,k=l 、 
dxk d tdy j J 

£
 

1
 

I
 

t
r
 

r
i
d
 

J
 

+
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A t first, we prove when 5 = SQ, there exists a Tq > 0, < M q . 

Therefore, we have 

+ </2 + + + J5 

Then we estimate them te rm by term. Staring f rom the easiest one， 

J5 < Wn^'-'UMH. 

< cwl^'-'WhMH. 

< c |L?-i| + + + 
\ ITh 

UJ 丨 M k 
(4.4.5) 

< C ( T o , M o ) | | H k . 

B y Lemma 4.2.2 and Lemma 4.2.3, 

iVg-—1|| 丑嘴)|Mk (4-4.6) 

J3 is also easy to estimate since there is no derivative of v or •一 1， 

J3<C{To ,Mo) \ \ v \ \ f f . (4.4.7) 

Now the most dif f icult term& Ji and J2 are left, since there is derivative of v 

PI;. Since 

Ji = EEI 
la|<s ai<a i= V dt / 

(4.4.8) 

When a i = (0 ,0 ,0) , since 

d iv 
f d V -

\ dt 
+ 1PV 0, and 

/dY n - l 

\ dt 
+ • n = 0 on 

.dY 几-
+ . V^^^d^v幽=0. 
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Therefore, we assume that \ai\ > 1. Consequently, 

oyn—1 ( _ _ + p^" -

< 

dt 

dY几 

dt LH9.) 
L2(ri) 

Hence, 

J i <C(To,Mo) | | t ; | | l , ^ . (4.4.9) 

J2 < + C\\F^-'¥v]\\L2^n)\\v\\L^io) 

dv 

<CiTo,Mo)\\v\\%. 

dt l l i N k J k l l 巧 o) 

To estimate we can a funct ion (j) satisfies 

A(f) = d iv 

d(f) _ fdY 
dn 

dt / 
V F v , i n n 

dt 
+ P7/ VP?;. n. on dn 

As in the procedure of estimating Vg(or refer to [95]), we have 

I2<C{TO,MO){1 + \\V\\H)\\V\\H. 

Therefore, we have 

(4.4.10) 

By the Kato-Lai theory, there exists T" > 0，and G T^; X) 

satisfying the Cauchy problem (4.4.4)，and we have 

(4.4.11) 



Some Studies on Viscous Fluids 119 

where 7 ⑷ is given by 

y w = c(To,Mo)(i + 7 W ) , 7 ( o ) H k ) l l L 

Suppose 

l 7 W i < 4 | k l l k = W , V iG[0,To] . 

Thus we know that T作=To which is independent of n. 

Along the previous proof and the estimates of Vq, for general s > SQ, i t is 

easy to prove that 

I K 力 , ” ) k l < c{To, I K — + I K - i k ) ( i + I M k 。 ) ( i + IMW， 

(4.4.12) 

where r) is bounded if r is bounded. Therefore, use the above argument, we 

obtain that there exists T <TQ that is independent of n such that 

< M * for all n. 

For n = 1, we choose V^ = "Uq,广 ~ IQ, UJ^ = LOQ. Following the preceding 

process, one can construct a solution v^ to (4.4.4). By iterating the same steps, 

a sequence of approximate solutions { i ; " } can be derived. 

4.5 The convergence of approximated solutions 

In this section, we show that {"U"} converges to a solution of the system (4.1.18)-

(4.1.24). 

According to the estimates in the last section, 

< Ml, 

(4.5.1) 

(4.5.2) 

E (4.3.7) 
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Since P is a bounded operator on H s , 丑 a n d i t commutes w i t h dt, then 

< Ms, (4.5.4) 

< M4. (4.5.5) 

Hence there exists some funct ion v G (7切([0, T];丑s) such that for any b ig RQ, 

v"" ^v in L ⑴(0，r;丑3)， 

Fv"" Ft; i n L ⑷ ( 0 , T ; I I s ) . 

B y the Aubin-Lion's lemma, 

Pz;打—P” i n 

(4.5.9) implies tha t 

4 in C [0 ,T ] , 

^ Q{t) in C [0 ,T ] , 

and 

r { t ) l{t) = Q(t)kv in C[0 ,T ] . 

I n fact, uj{t) = Q(t)upy. 

Whi le (4.5.3) tells tha t there exists some funct ion q such that 

V g " - Vq i n 

/ q'^ndV / qndV i n 
Idn Jan 

/ y X q、dT 4 / y x qndV i n (7[0,T； 
ho. Jdn 

(4.5.6) 

(4.5.7) 

(4.5.8) 

(4.5.9) 

(4.5.10) 

(4.5.11) 

(4.5.12) 

(4.5.13) 

(4.5.14) 

(4.5.15) 

I n fact, ^ is a solution to the system (4.3.1). I t can be seen by tak ing the l im i t 

of (4.4.2). 
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Prom all the convergence results (4.5.1)-(4.5.15) and Lemma 4.2.4, i t follows 

that 

where 

vt + A{t, v) = 0, 

？;(0) — vo, 
(4.5.16) 

Ait, v)= 
fdY 

dt 
+ Fv -Vv-Q In 

(BY 

\ dt ) 
VP?; 

+ P 

+ P 

- P 

l o 
\3 
/ 3 

f

 

>
 

N
/
 

/ 1 

dyj 
+ F 

lo — / qnda 一 J~ 
\ m Jdn V 

(oj X / + J_i[Juj X io) X y) 

1 y x qnda^ x y 

Next, we shall prove tha t d is a solut ion of the systems (4.1.18)-(4.1.24). The 

proof starts w i t h the observation tha t v{t) 二 Fv{t), for al l t G [0,T] . I n fact, 

App ly ing Q to each te rm in (4.5.16) and tak ing the inner product w i t h Qv{t) in 

X yields 
H 1 . 

(4.5.17) 

Note tha t d iv 
'm 

+ =0 inn and 
/dY \ 

^ + Pi； • n 二 0 on a n , then 
at y 

(Qv{t),QA{t,v))x=[Qv{t),ln 

二 / Qv 
Jn 

= 0 

+ • VQv(^) dy (4.5.18) 

Since VQ 二 Pi*o，it tells that QVQ = 0. Hence，for every t G [0, T ] , Qv(t) = 0 

Therefore, (4.5.16) can be wr i t t en as 

dv 
~ + F[ln{Mv + iV^ + G • V g ) ] + 

P lo ( X I — X co) X y 

1 

(4.5.19) 

lo — / qnda — (J" 
Jdn 'dfi 

y X qnAa) x y 
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Taking the inner product in X w i t h a test funct ion cf) G X^, one has 

/ {v' Mv + Nv G • Vq) . 

ml' 
'00. 

qnda . I小 + m(cj x I) . I小+ 

JLO' • UJ小—J J-\J(jJ X cu) • UJ• — ] J- y X qnda 

(4.5.20) 

to小 

= 0 . 

For every funct ion • e w i t h supp((/)) C Q, and d iv 0 = 0 in R ^ 

(4.5.20) yields 

/ (v' + Mv + Nv G • Vg) . (fAy = 0, 

After the theory of Hodge's decomposition, there exists a funct ion p such tha t 

V p e L ^ ( 0 , T ] H ' - \ n ) ) and 

v' ^ Mv ^ Nv ^ G • Vq ^ Vp = 0 in n X [0,T (4.5.21) 

From the ident i f icat ion of q and (4.5.21), one knows that for every t G [0，T] 

Ap = 0, in n , 

dp 
、dn 

= 0 , on dU. 

The above system has only constant solutions, thus 

= 0 in nx [0, T (4.5.22) 

Now tak ing some test funct ion (f)(x) € X such that (f){y) = I小 in O^ then 

ml' 

Since U is arbi trary, 

qnda • I小 + (mcu x I) • = 0. 
\Jdn 

ml' = / qnda — cj x 
JdO. 

(4.5.23) 

Similarly, tak ing some test funct ion ^{x) G X such tha t =⑴杀 x y in O, 

then 

_ — — _ f 

Juj'. — J{J~^{J(jj X Uj)) • — J_1 / y X qnda) . ̂ ；於=0. 
Jdn 
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Thus 

J a/ 二 I y X qnda + Jw x l j . (4.5.24) 
Jdn 

4.6 Uniqueness and continuity with respect to 

time 

I n this section, we w i l l use Lemma 4.2.4 to prove tha t the solut ion of the system 

(4.1.18)-(4.1.24) is unique and then get the cont inui ty in Hg w i t h respect to t ime. 

Assume tha t there exist two solutions € CW([0, T] ; Hs)门 C^([0，T]; X) 

to the system (4.1.18)-(4.1.24) then 

v] + + N^v^ + G^Vq^ = 0, in Qx [0,T], (4.6.1) 

+ M^j^ + NV + G^Vq^ - 0 , in O x [0, T]. (4.6.2) 

Since G^, G^ are positive definite matrices, thus let H^ = and H ^ = 

1. Mu l t i p l y i ng (4.6.1) and (4.6.2) by H^ and H ] respectively, and denote 

K = MAX{||?;I||I/X)(O，R;K), \\V^\\L^(O,T-,H)}-

Subtract ing the two equations and tak ing inner product i n w i t h funct ion 

v ! — then one gets 

0 = {H'v] — - ) + (•一 一 • 〜 一 幻 2 ) 歸 ） 

+ ( 丑 i ( M V + i V V ) - + N、2\ V^ - v^)L2in) 

: = J 1 + /2 + J3， 

Denote l^i, ujyi, I幻2, by h,uh,l2)�2 respectively. Since 

d iv ( i ; i - 二 0 in n , 

and for i = 1,2, 

/ q^nda ~ ml[ + mui x l i , 
Jdn 

/ y X (fnda 二 Jul — Juji x a;̂ , 
Jdn 
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then 

h = / • ( g l - . — ^ d y 
Jn 

= f (q^ - - v^) • nda 
Jdn 

= / (一 — - h ) • n d a + / {q^ - - x y • n d a 

J on Jdn 

=m{h — I2)'. (h — k) + rn{uJi x h - UJ2 ^ k) . [h — k) 
+ J(cJi — U2)' . (cJl — U)2) — {J^l X Cl；! — JUJ2 X UJ2) . (^1 一 叱） 

= 全 去 I“ — + ；丢的一⑷ ) . ( ^ 1 —吻） 

+ m(cJi X li - UJ2 X I2) • ( / i - h) — {Joji X cj i - Juj2 x 0J2) . {oji 一 喊 . 

(4.6.3) 

We estimate the te rm / i as follows. 

=(丑1”？ - i / V y - 巧 叫 

：=J i + h-

'L2⑵ 
(4,6.4) 

From the def ini t ion of G, we easily know that 

=(JjaJx八幻 1 一 V — ” 2 ) 仍⑷ 

= (<W-A，知 V — V LHn) 

r d j ^ 

L2⑴） 

(4.6.5) 

Therefore, 

-v ' ) \ \Ln) - -C{T,K) sup � - � ( 4 . 6 . 6 ) 
2 cit ^ ‘ se[o,t] 
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/ \ 
< C{T, K) sup ( | / i — Z2I + —购 I ) sup 111 /(5) -幻2 ( s ) | | "仰(4.6 7) 

\s€[0,t] y se[0，t] 、 , 

< C sup 

h = {{H^ - + i V V ) , — 

+ ( 炉 ( A f V — i W V + j^i^i 一 N 

• = hi + J32. 

丨L2网 

V ) , — 7；2、 L2(f]) 

Clearly, 

(4.6.8) 

I/31I < I丨丑 1 - 仔 2 | | 巧 ⑷ p / V + - 爛 

< C(T,K) sup [|/i - y + — CJ2I] • I I — 

<C{T,K) sup 
sG[0,t] 

(4.6.9) 

h2 =(丑2(AfV - MV + iVV - N 

{dY} dv! , dY^dv^^ 
丨丄2關 

Hi + ” 丄 丄 一 幻 2 裡 
dt dyj ^ dyj dt dyj ^ dyj y 

/ 2 f / r ^ ^ 1— 
^ V “11 ；k ^ + dxk dtdyj 广 ） — r - i T 彻fc dtdyj 

'•= J^l + J32 + ^33-

vl-vf 
L2(n) 

(4.6.10) 
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As i n Lemma 3.3, one can obtain 

I J d 引 I 炉 丨 “ ) I ( { ( r y 譬 树 澄 < 

巡哩” 11腔丝 
3 

126 

！ 哩 V + + 一 ^ 

dxk dtdyj j dxk dtdy] J ^ dxk dtdyj ^ ^ / 

I I M — ) + l | r ; f | | 項 
dt 

幻 1 -

dYk 
dt 

+ lioo(fi) dt 
II (W — 關 

dY, d'xl 
dxk dtdyj 11”1 |—) + 

a斤 d^Xk 
dxk dtdyj ⑴) 

十 
dy^ d'Xl 
dxk dtdyj 

1̂ 321 < C sup 

Similarly, one can get tha t 

\ 

J33 < C sup |卜1 一^^2||| (s) 
se[o,t] 

(4.6.11) 

(4.6.12) 

I t remains to estimate the last te rm J31. I n fact, 

J31 — Jx^ 
\ 

= [ j x ^ 

IJ31I < c 

dt 
.dY 

dt Jx^ (t； — 1/ 

.dY^ 
— -hv^-v^)- W + + V^) . V i y -

卵） 

Jx如 — y 

dY 

\ dt 

+ 

+ 

(QY^ \ 
‘ + • • J j c 2 ( v l - V^), Jx2(v^ - V^ 

dt 

dv 

L^i^r) 
(4.6.13) 
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Since — < C\\v^ 一 whence 

I而 l | < Csupll?；^ 

From Lemma 4,2.4,we have the fol lowing inequali ty 

(4.6.14) 

d d d 
石丨|/义1(”1 — 1̂ 2)1112 网 + m—\h - kr + ；̂  [ U (的一⑴ 2)) • (^1 — ^2)1 

dt dt 

M 

I t follows that 

— ”2)临2� + m\h - h? + -吻)）.（的-购） 

<C f sup 丨|幻1 ⑷ — ⑷ l l i 寧 3 ) d r 

Since X ^ is diffeomorphism and (Jo;) . uj > , thus 

I…1 - < Co f sup I卜1 -

J o T&[0,s] 
Assume tha t any 6 G [0, t], From (4.6.15), we have 

(4.6.15) 

I k ' - vYmmW < Co / sup |卜1 — ”‘丨丨复管)(T)ds 
JO Te[o’s] 

< / sup ||i； —V 1^2(183)(r)ds 
Jo t g M 

I t shows tha t for any t G [0, T ] 

sup |卜1 - “股 ” ⑴ < C / sup ||7；1 -
Te[0,t] Jo r6[0,s] 

by Gronwall 's inequality, v^ 二 ？;2 a.e. in [0, T ] x E^. Uniqueness, as in [95 

implies that 

From (4.4.12), we know tha t 

From the uniqueness and the cont inuity on the t ime, T can be extended to To 

which does not depend on s. 
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