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Abstract 

The comparison of treatments to detect possible treatment effects is a very im-

portant topic in statistical research. It has been drawing significant interests from 

both academicians and practitioners. Important research work on treatment com-

parisons dates back several decadcs. For treatment comparisons, the following three 

cases are very common: the comparison of two independent treatments; the com-

parison of treatments with repeated measurements; and the mviltiplc comparison 

of several treatments. For different cases, the involved research issues are usually 

different. In many fields of study, the level of measurement for responses of the 

treatments is ordinal. Many examples can be found in areas such as biostatistics, 

psychology, sociology, and market research, where the ordered categorical variables 

play an important role. 

In this thesis, we focus on the the comparison of treatments with ordered cate-

gorical responses. The three cases of treatment comparisons will all be studied. The 

main objective of this thesis is to develop more effective comparison methods for 

treatments with ordinal responses and to address some important issues involved in 

different comparison problems. Our major statistical approach is to consider ordinal 

responses as manifestations of some underlying continuous random variables. 

This thesis consists of three main parts. In the first part, we consider the mod-

eling of treatments with longitudinal ordinal responses by a latent growth curve. 

On the basis of such a latent growth curve, we achieve a comprehensive flexible 

model with straightforward interpretations and a variety of applications including 

treatment comparison, the analysis of covariates, and equivalence test of treatments. 

In the second part, we consider the comparison of several treatments with a con-

trol for ordinal responses. By considering the ordinal responses as manifestations 

of some underlying normal random variables, a latent normal distribution model is 

utilized and the corresponding parameter estimation method is proposed. Further, 

we also derive testing procedures that compare several treatments with a control 



under an analytical framework. Both, single-step and stepwise procedures are intro-

duced, and these procedures are compared in terms of average power based on a 

simulation study. In the last part of this thesis, we establish a unified framework for 

treatment comparisons with ordinal responses, which allows various treatment com-

parison methods be comprehended using a unified perspective. The latent variable 

model is also utilized, but the underlying random variables are allowed to have any 

member of the location-scale distribution family. This latent variable model under 

such a specification of underlying distributions subsumes many existing models in 

the literature. A two-step procedure to identify the model and produce the param-

eter estimates is proposed. Based on this procedure, many important statistical 

inferences can be conveniently conductcd. Furthermore, the sample size determina-

tion method based on the latent variable method is also proposed. The proposed 

latent variable method is compared with the existing methods in terms of power 

and sample size. 

Ill 



通過對處理的比較來檢測可能存在的處理效應是統計研究中一個非常重要的課題。這-問 

題已經引起了理論研究人員和實際應用人員的廣泛興趣。對於處理比較的重要研究可以追溯到 

幾十年之前。它包括以下三類重要的類型：對兩個獨立處理的比較；對重複觀測處理的比較； 

以及對多個處理的多重比較。對於不同的類型，它們所包含的研究問題通常是不一樣的。在很 

多的研究領域，對處理的響應變量通常採用有序分類的度量尺度。在許多領域，例如生物醫 

學、心理學、社會學、以及市場研究中都能發現大S的實例，而且有序分類響應變量在這些領 

域中都扮演著重要的角色。 

在本論文中，我們將重點研究具有有序分類響應變量的處理的比較問題。對於處理比較的 

二種重要類型都有研究。本論文的目標是對具有有序分類響應變量的處理提出更爲有效的比較 

方法，同時註意解決在不丨司類型的研究中所包含的問題。我們的一個主要的統計方法是把有序 

分類響應變量看作是某些潛在連續變量的一種表現。 

本論文主要由三部分構成：在第一部分，我們主要研究用潛成長曲線來對重複觀測的具有 

有序分類響應變量的處理的建模問題。我們構建的潛成長曲線模型具响i非常直觀的解釋。基於 

這一模型，我們可以進行多種的分析和應用，這包括處理比較、協變量分析、以及處理等價性 

檢驗等。在論文的第二部分，我們主要考慮多個處理對一個控制處理的多重比較問題。通過把 

有序分類變量看作是潛在正態變量的一種表現，我們構造了正態潛變量模型並提出了相應的參 

數估計方法。基於這-正態潛變量模型，我們給出了用來比較多個處理對一個控制處理的若十 

檢驗過程，包括tf.步檢驗過程和逐步檢驗過程。並通過隨機模擬，對這些檢驗過程在檢驗的平 

均功效方面進行r比較分析。在論文的第三部分，我們狗具有有序分類響應變量的處理的比較 

問題提出了一個統一的分析框架。在這一框架下，可以對各種不同的處理比較方法從一個共同 

的角度來認識。我們仍然採用潛變量模型的分析方法，但是允許這些潛變量具有位置-尺度分佈 

族中的任意分佈。具有這種分佈假定的潛變量模型包括了許多這一背景下的重要模型。爲了模 

型的識別和參數估計，我們提出了一個兩步估計過程。基於這一估計過程，很多重要的統計推 

斷可以很方便的進行。此外，我們還給出了基於潛變量模型的樣本量的確定方法。對於我們提 

出的潛變量方法，我們從檢驗的功效和樣木量的大小兩個方面與已有的方法進行了比較。 

IV 
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Chapter 

Introduction 

1.1 Background and Li tera ture Review 

Treatment comparison is a very important topic in statistical rcscarch, since in many 

practical studies, the comparison of treatments to detect possible treatment effects 

is usually one of the most important issues. In many fields of study where precise 

measurement is not possible, the responses of the treatments are usually measured 

in an ordinal scale. For example, in a medical study, the recovery status of the 

patients may be evaluated as "good," "satisfactory," "bad," and "very bad". In 

many other area, such as psychology, sociology, and market research, the ordered 

categorical variables also play important roles. 

Different methods of analyzing ordinal categorical data are available in the lit-

erature. Classical methods include those used to compare the ordinal responses ob-

tained from two independent samples, such as the log-linear-type row effect model 

and the Mann-Whitney statistic (Agresti, 1984); those that investigate the associa-

tion between two ordinal categorical variables that arc cross-classified into a contin-

gency table, such as the uniform association model and the mean response model 

(Agresti, 1983); and those that analyze the effects of covariates, such as the linear 

logistic model for dichotomous data suggested by Cox (1970) and the proportional 

odds or proportional hazards models discusscd by McCullagh (1980). 

For treatment comparison, the following three cases are common: 
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TCI: the comparison of two independent treatments; 

TC2: the comparison of treatments with repeated measurements at different time 

points; and 

TC3: the multiple comparison of several treatments. 

For different cases, the emphases of research are usually different, In this thesis, we 

are interested in the comparison of treatments with ordered categorical responses. A 

brief literature review of the three cases of treatment comparison for ordinal response 

is given as follows. 

TCI: the comparison of two independent treatments. 

The comparison of two independent treatments (or a treatment and a control) 

should be the most fundamental task in treatment comparison study. When the re-

sponses of the treatments are continuous, the classical t test can be used to examine 

the mean difference between two treatments based on the normality assumption. 

The Wilcoxon-Mann-Whitney (WMW) test (Wilcoxon 1945, Mann and Whitney 

1947) may be the most popular nonparametric method that is used to investi-

gate the effect between two treatments with ordered categorical responses. As a 

distribution-free method, the WMW test is also widely used to compare treatments 

with continuous responses. A comprehensive study of the WMW test is given by 

Lehmann (1975). 

For ordered categorical response, it is in many cases reasonable to consider the 

ordinal response as the manifestation of an underlying continuous variable (see e.g. 

McCullagh, 1980; Anderson，1984). The proportional odds model proposed by M o 

Cullagh (1980) has been widely adopted in the literature. To compare treatments 

with ordered catcgorical responses, Whitehead (1993) proposed to use the log-odds 

ratio as a measure of mean treatment effect under the proportional odds assump-

tion, and used the WMW test to investigate the treatment effect. By considering 

the ordinal response as the manifestation of underlying normally distributed random 

variable, Poon (2004) proposed a method to examine the possible treatment effect, 
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which can be conveniently attributed to either location effect or dispersion effect 

based on the latent variable model. 

TC2: the comparison of treatments with repeated measurements. 

When the treatments are measured in a longitudinal manner. Besides the treat-

ment effects, the time effects or the growth trends of the treatments effects becomes 

another interest of study. For the study of longitudinal data, some important work 

has been achieved, which usually focuses on measuring the association between the 

responses and the covariates (see e.g. Liang and Zeger, 1986; Zegcr and Liang, 1986; 

Prcntice, 1988). 

The commonly used methods for modeling longitudinal ordinal categorical re-

sponses can be broadly categorized into three classes. The first class comprises 

marginal models that focus on the modeling of marginal probabilities. The most 

popular are the cumulative-type models (Agresti, 1999, 2002; McCullagh, 1980) such 

as the cumulative probit and cumulative logit models. The second class includes the 

Markov chain transitional models, which focus on the modeling of transition prob-

abilities (Kalbfleisch and Lawless, 1985; Chan and Munoz-Hernandez, 2003). The 

third class prefers to use the latent variable model for such longitudinal ordinal re-

sponses (see e.g. Qu, Piedmonte, and Medendorp, 1995; Todem, Kim, and Lesaffre, 

2007), where the time dependent effects are measured by the correlation structure 

of the underlying continuous variables. 

TC3: the multiple comparison of several treatments. 

Multiple comparison of treatments has a long research history. Two main types 

of multiple comparisons arc usually studied in the literature, the comparison of 

several treatments with a control (see e.g. Dunnett, 1955; Dunnett and Tamhane, 

1991，1992), and the pairwise comparison (see e.g. Tukey, 1953; Hayter, 1984, 1989). 

A wealth of multiple comparison procedures are also available, see e.g. the excellent 

review books by Hochberg and Tamhane (1987), Hsu (1996). 

In multiple comparison, a fundamental task is the control of family-wise error 

(FWE), which is defined as the probability of rejecting any true null hypothesis. 
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Both single-step and stepwise procedures have been proposed in order to improve 

the power of tests, see e.g. the step-down procedure proposed by Holm (1979), and 

the step-up procedure proposed by Hochberg (1988). There are several possible defi-

nitions of power in the literature on multiple comparison. Horn and Dunnett (2004) 

discussed several different definitions, such as, all-pairs power, any-pair power, per-

pair power, and average power. The existing multiple comparison procedures usually 

focus on the comparison of treatments with continuous responses. Little work has 

been done on the multiple comparison of treatments with ordinal responses. 

In treatment comparison, the determination of sample size to achieve a speci-

fied power level is also an important issue, especially in the planning stage of an 

experiment. In the literature of comparing two treatments with ordered catcgori-

cal responses, several sample size determination methods have been proposed. For 

example, Whitehead (1993) provided a sample size formula that is derived based 

on the WMW test with the alternative specified as proportional odds. Zhao, Ra-

il ardj a, and Qu (2008) gave the sample size calculation for the WMW test with the 

alternative specified as the probability of one treatment being superior to the other. 

However, for the case of multiple comparison of treatments with ordinal responses, 

little work on sample size determination has been done, 

1.2 The Objective and Outline 

Our study focuses on the comparison problem of treatments that have ordered cat-

egorical responses. The aforementioned three eases of treatment comparisons will 

all be studied in this thesis. The main objective of this thesis is to develop effec-

tive comparison method and to address some important issues involved in different 

comparison problems. The main idea of our methods is to consider the ordered cate-

gorical responses as manifestations of some underlying continuous random variables. 

On the basis of such latent variable model, the treatments with ordinal responses can 

be characterized by the corresponding underlying distributions, and many statistical 
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inferences can be conducted conveniently. 

A brief summary of the subsequent chapters is outlined as follows. 

Chapter 2: In this chapter, wc consider the use of the latent growth curve model to 

analyze longitudinal ordinal catcgorical data that involve measurements at different 

time points. By operating on the assumption that the ordinal response variables 

at different time points are related to normally distributed underlying continuous 

variables, and by further modeling these underlying continuous variables for different 

time points with the latent growth curvc model, we achieve a comprehensive and 

flexible model with straightforward interpretations and a variety of applications. We 

discuss the applications of the model in treatment comparisons and in the analysis 

of the covariate effects, Moreover, one prominent advantage of the model lies in its 

ability to address possible difference in the initial conditions of the subjects who 

take part in different treatments. Making use of this property, we also develop a 

new method to test the equivalence of two treatments that involve ordinal responses 

obtained at two different time points. A real data set is used to illustrate the 

applicability and practicality of the proposed approach. The results described in 

this chaptcr have been summarized in the paper by Lu, Poon, and Tsang (2011). 

Chapter 3: In this chapter, we consider the multiple comparison of several treat-

ments with a control for ordered categorical responses. A motivation for our research 

is the study on the behavior of the WMW test. Our study finds that the level of the 

WMW test can not be preserved when the treatments differ in dispersion. We pro-

pose an alternative approach that can address this issue. By considering the ordinal 

responses of different treatments as manifestations of some underlying normal ran-

dom variables, a latent normal distribution model is utilized and the corresponding 

parameter estimation method is proposed. Under the latent variable model frame-

work, wo derive testing procedures that compare several treatments with a control. 

Both single-step and stepwise procedures are introduced, and these procedures are 

compared in terms of average power based on simulation study. Multiple testing 

procedures for practical application are also suggested. Data from clinical trials arc 
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used to illustrate the proposed procedures. The results described in this chaptcr 

have been summarized in the paper by Lu, Poon, and Cheung (2011). 

C h a p t e r 4: The theoretical method proposed in Chaptcr 3 is generalized to a more 

general case. The latent variable model is also utilized to analyze ordinal data in this 

chapter, but the underlying variables are allowed to have any distributions belong-

ing to the location-scalc family. On the basis of the proposed two-step estimation 

procedure, the locations and scales characterizing different treatments can be freely 

estimated. Consequently, many statistical inferences can be conveniently conducted 

based on the proposed methods. This analysis framework for ordinal data includes 

the mostly adopted models, such as the ordinal logistic model and the ordinal pro-

bit model, in the literature as special cases. Based on such an analysis framework 

the existing treatment effect measures for ordinal responses can be interpreted in a 

unified manner. Two important latent variable methods for treatment comparison, 

the LNorm method and the LLogis method, are detailed illustrated for the com-

parison of two treatments with ordinal responses. The corresponding sample size 

determination methods are also proposed, which can accommodate the difference 

in the scalcs of different treatments. The proposed methods are compared with the 

existing methods in terms of power and sample size by both numerical study and 

real example. 

Chapter 5: This chapter concludcs the thesis by listing some possible areas for 

future research. The improvement of the two-step estimation procedure proposed 

in Chapter 4 is also discussed as a remark. 



Chapter 2 

Latent Growth Curve Modeling of 

Longitudinal Ordinal Responses 

2.1 Introduct ion 

In this chapter, we consider the modeling and analysis of longitudinal ordinal re-

sponses that involve measurements at two different time points. We are specifically 

interested in the analysis of the type of data presented in Tabic 2.1，which is taken 

from Agresti (1989). In a double-blind clinical trial, an active hypnotic drug and a 

placebo were randomly administered to two independent samples of patients with 

insomnia. Each individual was asked at the start and end of a two-week treatment 

period the question: "How quickly did you fall asleep after going to bed?" The 

responses were classified into one of four categories; “< 20," "20-30," "30-60," and 

"> 60" (in minutes). For this data set, several research questions are of interests, 

including 

(Ql) whether the initial conditions of the subjects receiving the two different treat-

ments arc the same; 

(Q2) whether there is a significant efficacy difference between the active drug and 

the placebo; 

(Q3) the direction and extent of the treatment effect of the active drug; and 

(Q4) whether the two treatments are equivalent. 

7 
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Treatment 
Initial 

occasion 
Follow-up occasion 

Treatment 
Initial 

occasion < 20 20 - 30 30 - 60 > 60 
Active drug < 20 

2 0 - 3 0 
3 0 - 6 0 

> 60 

7 4 1 0 
11 5 2 2 
13 23 3 1 
9 17 13 8 

Placebo < 20 
20 - 30 
3 0 - 6 0 

> 60 

7 4 2 1 
14 5 1 0 
6 9 18 2 
4 11 14 22 

Table 2.1: Time to fall asleep (in minutes), by treatment and occasion. 

In this chapter, we proposed the use of the latent growth curve model (LCM) to an-

alyze the data. The proposed method can provide answers to all these questions in 

a comprehensive manner, while commonly used existing methods can only address 

some of these questions. 

The commonly used methods for modeling longitudinal ordinal categorical re-

sponses can be broadly categorized into two classes (Chan and Munoz-Hernandcz, 

2003). The first class comprises marginal models that focus on the modeling of 

marginal probabilities. The most popular are the cumulative-type models (Agresti, 

1999, 2002; McCullagh, 1980) such as the cumulative probit and cumulative logit 

models. The second class includes the Markov chain transitional models, which fo-

cus on the modeling of transition probabilities (Kalbflcisch and Lawless, 1985; Chan 

and Munoz-Hcrnandez, 2003). In this chapter, we propose the use of the latent 

growth curvc model (LCM). The use of LCM in analyzing continuous variables has 

been widely discussed in the literature (Duncan et al., 1999; Bollen and Curran, 

2006), but its use in modeling and analyzing ordinal categorical data has received 

little attention. 

Like for the probit model, we assume that the ordinal response variables at differ-

ent time points are related to normally distributed underlying continuous variables. 
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By using the LCM to further model the underlying continuous variables for differ-

ent time points, we achieve a comprehensive and flexible model. This model has 

easy and straightforward interpretations, can be applied to analyze various types of 

mcdical data, can effectively compare the effects of two treatments whether or not 

the initial conditions of the subjects who receive those treatments are the same, and 

can be implemented in a number of easily accessible software programs. The gen-

eral model framework facilitates different model generalization directions, and the 

model also has a variety of applications. We discuss the use of the model in treat-

ment comparisons and in covariate analysis, and we also examine its applications in 

equivalence tests. 

Establishing the equivalence of a newly developed treatment to a standard treat-

ment is of interest in many medical studies. Equivalence can be established by show-

ing that the responses to the two treatments differ by an insignificant and clinically 

acceptable amount. This method is particularly useful when a newly developed 

treatment is less expensive, easier to administer, or has fewer side effects. Statisti-

cal methods for the inference of equivalence treatments are widely available in the 

literature (e.g., Dunnett and Gent, 1977; Nam, 1997; Lui and Cumberland, 2001; Liu 

et al., 2002; Lui and Zhou, 2004; Wang et al, 2006; Tang and Poon, 2007). More 

specifically, Lui and Cumberland (2001) developed an equivalence test for ordinal 

data with matched-pairs that can be organized in a contingency tabic, and used the 

marginal proportions to assess the equivalence of two treatments. Tang and Poon 

(2007) considered two independent treatments with ordinal responses, and used a 

latent normal distribution approach to establish the equivalence of two treatments. 

However, these methods focus on comparing the responses of two treatments, and 

fail to address possible differences in the initial conditions of the test subjects. In 

other words, these methods are not optimal if they are used to analyze data with 

measures of initial conditions, such as the data given in Tabic 2.1. Based on the pro-

posed LCM, an equivalence test for ordinal responses, which can effectively address 

possible differences in the initial conditions of subjects, is developed. The data set 
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in Table 2.1 is analyzed as an illustration. 

The structure of this chapter is as follows. In Section 2.2, we introduce a latent 

variable growth curve for modeling ordinal responses with measures at two different 

time points, and discuss the maximum likelihood estimation method. In Section 2,3, 

we discuss how the model can be used in a flexible and effective manner to compare 

two treatments. In Section 2.4, we discuss further applications of the LCM. We 

also generalize the basic model to analyze the effects of covariates and develop a 

procedure for the statistical inference of equivalence tests. Scction 2.5 concludes 

this chaptcr with a discussion. 

2.2 Latent Variable Growth Curve Modeling of 

Ordinal Da ta 

Let y:t be the observed ordinal variables for individual i at time 力，i = 1，2,... , T. 

We operate on the assumption that it is related to an underlying continuous variable, 

yu, via a latent variable model given by 

Vit = k iff Tk—i < Vit < Tk, (2.1) 

where k — 1 , 2 , . . . , i \ , —oo = tq < 7\ < 丁2 < … < tk-i < tk = +oo. With K 

response categories, there are K — 1 threshold parameters, Tk^k = 1, 2,…，/( — 1, 

Although dealing with different numbers of response categories at different time 

points is theoretically straightforward, it is sensible to assume that the total number 

of response categories are the same at different time points when the same variable 

is measured repeatedly. To examine the trend in the ordinal variable, we consider 

that the underlying continuous variables at different time points t can be described 
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by a latent curve model (LCM) that is given by the following set of equations. 

Trajectory equation: yu = q;̂  + XtPi + cu 

Intercept equation: ai = fia + (ai (2.2) 

Slope equation: A = 1̂ /3 + Cpi 

This set of equations represent a very general model and it is nccessary to impose 

constraints on the relevant parameters to identify the model. This point will be 

further addressed. In these equations, the parameters ai and (3�a re the random 

intercept and random slope for individual jia and fip are the mean of the intercepts 

and the mean of the slopes, respectively, and are fixed-effects parameters that are 

the same for all individuals; e^, and (氏 are random errors; and At is a time 

indicator that is a constant to which different values can be assigned to produce 

growth curve of different shapes that are linearly or nonlinearly dependent on time, 

For example, in the case of the linear LCM, Xt equals i — 1 for all t. 

For the data in Table 2.1, which involves analysis of medical data with an initial 

measurement and after-treatment measurement of the test subjects, we have T = 2, 

Ai二0, and A2 = 1. As a result, a linear growth curve for individual i can be 

obtained from (2.2), which is a straight line connecting the points (0，cq + en) and 

(1, a-i + Pi e � ) in the 2-dimensional plane {t, ya) and is presented in Figure 2.1. 

The linear growth curvc for individual i, i = l ， . . . i V has intercept a^ + en and 

slope I3i + — and each individual has his/her own linear curve. However, 

statistical inference on the population growth curve that is determined by the mean 

of intercepts /i^ and the mean of slopes (ip enables an examination of the existence 

of treatment effects. 

Omitting individual index i, the general model (2.2) with T = 2, Ai=0, and 

A2 = 1 can be expressed in matrix form: 

Y yi 

y2 
=A?7 -f e = 

^ 1 0 a ‘ j 

� 1J 、P 
十 

1 / 
(2.3) 
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Figure 2.1: Growth curves 

and 

V = 
a 

二〜+ c = 
Ma 

+ 
‘(a ^ 

\ 仲 J 
1 

\ C/3 / 
(2.4) 

where F is a 2 x 1 vector with measures yi and y2 at the two time points, A is a 

2 x 2 constant matrix of factor loadings, ry is a 2 x 1 vector of two latent factors, e 

is a 2 X 1 vector of residuals, ji” is the vector of factor means, and (" is a vector of 

residuals The two factors are, respectively, the intercept and slope of the growth 

curve. Equations (2.3) and (2.4) give the reduccd form of Y\ 

y = + 0 + (2.5) 

With the commonly used assumptions that the distribution of e is jY(0, and that 

C is N{0,屯)，the mean and covariance matrix of Y are, respectively, given by 

/iy = A/i^ and 

Ey = A 屯 A' + e . 

(2.6) 

(2.7) 
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For simplicity and clarity of presentation, we denote the two diagonal elements of 

^̂  that correspond to the intercept and the slope by ipaa and 卯，respectively, and 

the off-diagonal element by ipap-

Let the observations in a sample with size N for y*^ and y:) be organized as 

frequencies in. a, K x K contingency table, and let Nj^^k^ denote the number of eases 

that fall into the {ki, A:。）cell of this contingency table. Let Tk, k = 1， 2 ’ . . .， - 1， 

be the thresholds for the variables yl and y^, and let 9 be the vector that collects all 

of the unknown parameters, including the thresholds and the unknown parameters 

in fly of (2.6) and Sy of (2.7), then, the maximum likelihood estimates (MLE) of 

unknown parameters can be obtained by maximizing the following log-likelihood. 

lnL=^C + T^l�FYNk:kM 沉 (2.8) 

where C is a constant, and 

tticjM 二 P�yi = = h) = / (f)2{u,v;fiY,^Y)dudv, (2,9) 

where v] I^y, Sy ) is the density of the bivariate normal distribution with mean 

/iy and covariance matrix T^y It is worthy of note that , as ordinal categorical 

variables do not have an origin and unit of measurement, not all of the parameters 

in 0 are identified, and hence constraints must be imposed to identify the model. 

We impose constraints to allow easy interpretation of the model parameters. 

The MLE of the model parameters can be obtained by maximizing the log-

likelihood. As the model in (2.5) takes the form of a factor analysis model, statistical 

software programs used to analyze factor analysis models can be used accordingly 

to produce the parameter estimates. For example, we use the Mx program (Neale et 

al., 1999) to find the MLE. Mx is chosen because it is available in the public domain 

for free downloading, which enhances the accessibility of the proposed method to 

practitioners. 

As the factor analysis model is a special case of the structural equation model 

(SEM), other methods that are available in the SEM literature for analyzing SEM 
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Mx Results LISREL Results 
Par. Est. Std Err t value Par. Est. Std Err t value 
Ma (T / / Ma 0* / / 

-1.016 0.135 -7.550 I^P -0.990 0.071 -13.976 
•(xa r / / 'ipaa r / / 

1.012 0.201 5.044 0.986 0.189 5.206 
冲a(3 -0.626 0.096 -6.527 •al3 -0.628 0,091 -6.921 

* fixed parameters 

Tabic 2,2: Estimates of the model parameters for the active drug group 

with ordinal catcgorical data can also be applied to produce the estimates of the 

model parameters. For example, a two-stage method can be implemented in the very 

popular SEM computer software packages PRELIS (Joreskog and Sorbom, 1999) 

and LISREL (Joreskog and Sorbom, 2004) to produce these estimates. The first 

stage involves the use of PRELIS to produce consistent estimates for the threshold 

parameters and the elements in ^y and Ey, and the second stage involves the use 

of LISREL to produce weighted least squares estimates of the unknown parameters 

on the right hand sides of (2.6) and (2.7). 

We used the proposed model to analyze the data on "Active drug" in Table 2.1, 

and we fix /î ； = 0 and ipaa = 1 to identify the model. The MLE produced by 

Mx and the two-stage estimates produced by PRELIS and LISREL are presented 

in Table 2.2, from which it can be seen that the two sets of estimates arc very 

close. More specifically, the estimates for jip are both, negative with large t-values. 

The results indicate that fip is significantly different from 0, and hence we can 

conclude that the drug has a significant effect. The estimates (standard errors) of 

the thresholds generated by Mx are-1.359 (0.158), -0.519 (0.112), and 0.229 (0.115), 

respectively. The estimates of the thresholds given by PRELIS are -1.277, -0.616, 

and 0.266, respectively. Note that PRELIS does not produce the the standard errors 

of the estimates of these thresholds. 
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2.3 Comparing Two Treatments 

Using the LCM, statistical analysis can be easily and effectively conducted to com-

pare the two different treatments. Let Y*^^^ 二 (yj"(丑），只))'be the observed ordi-

nal variables at the two time points for a reference treatment group, and V^*(乃= 

( 2 / 产 ) ， b e those for the new treatment group. Similar to (2,1)，we assume 

that all four variables in y*(用 and y * � are related to the continuous variables in 

y (用 二 and Y(乃=(?/{『)’？/�了))' via the threshold model for the same set 

of thresholds —oo 二丁q < 丁丄 < t? < …< Tk-i < tk — +oo. The assumption of 

equal thresholds is employed to facilitate ease of interpretation, and this assumption 

is a tenable one when the test subjects' responses are assessed by the same group of 

clinicians using the same set of criteria. To comparc the two groups, two LCMs of 

the forms in (2.3) and (2,4) are fitted simultaneously. More specifically, for g — R, 

the reference group, and g 二 T，the treatment group, wc have 

yia) 

and 

必) 

r /5 )= 

= A " � + e � 二 
M 

S9) 
二 2 

a � ] I f^a / ,⑷\ a � ] 
= / � ) + c � -

f^a + Sa 
Ag) 

V � / " ⑷ 1 
= / � ) + c � -

nis) 
\ � J 

Sa 
Ag) 

V � / 

(2 .10 ) 

(2 .11 ) 

The MLE of the model parameters can be obtained by maximizing a likelihood 

function that aggregates two components, each of the form in (2,8)，and is con-

tributed by a group. To impose identification constraints that facilitate treatment 

comparisons, we fix the origin and unit of measurement for y^^ (or equivalently 

a⑶）by assuming that has mean zero and variance 1. In other words, it is 

assumed that /xL均 二 0 and the first diagonal element, ip̂ cS of 屯(均，equals 1. With 

these constraints and the assumption of the same thresholds across all variables, the 

model is identified, and all of the parameters are estimable. 

Wc used the Mx program (Nealc et al., 1999) to implement the analysis. The Mx 

program code used to analyze the data in Table 2.1 is given in Appendix A-1, and 
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the results arc presented in Table 2.3. The thresholds, and hence their estimates, 

are assumed to be the same for all four of the variables. We therefore have three 

threshold parameters. The estimates (standard errors) of the three parameters are 

-1.319 (0.152), -0.563 (0.109), and 0.242 (0.115), respectively. The value of the 

maximum log-likelihood is given by Lq — —18.002. 

We also used PRELIS and LISREL to produce the two-stage estimates for the 

model parameters, and the results arc also shown in Table 2.3. They arc close to 

those produced by Mx. The estimates of the thresholds are -1.277, -0.616，and 0.266, 

respectively. 

From the results in Table 2.3, we can draw similar conclusions from the es-

timation results produced by Mx and LISREL. For example, all parameters are 

statistically significant except the one for the mean of the intercept of the treatment 

group. The t-value for j i � ? that are produced by Mx and LISREL are 0.291 and 

0.494 respectively. The results indicate that the initial conditions of the subjects in 

the two treatments have no significant diffcrcnce. This is consistent with what is 

expected becausc subjects have been randomly allocated to the two treatments. 

A graphical representation of the estimated latent growth curves will also assist 

in the interpretation. Figure 2.2 presents the two estimated latent growth curves 

based on the Mx results. The intercepts of the two curves are close — CT， 

=0.046)， thus suggesting that there is little difference between the initial 

conditions of the subjects in the two groups, The estimates of the slopes in both 

groups are negative (pjf) 二 一1.003，jJ^P = —0.645), which suggests that both 

treatments will result in the subjects taking less time to fall asleep. The magnitude 

of the linear curvc slope for the placebo group is smaller, which indicates that the 

downward trend in this group is smaller than that in the treatment group. 
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Active Drug 

Before Treatment 
{Time 0 ) 

After Treatment 
(Time 1 ) 

Figure 2.2: The latent growth curve for the active drug and placebo treatments 

Different hypotheses on the intercepts and slopes of the two linear curves can be 

tested to assess whether various effects are significant. Several typical tests are as 

follows 

Test 1: i^ i ) : (Jp = 0 vs.丑1(1) : f j P ^ 0. 

This test is used to examine the means of the intercepts of the two groups, that 

is, to examine whether the initial conditions of these groups are the same. From 

the Mx results in Table 2.3, we know that the estimated value of i i ( J � i s 0.046 

and not statistically significant. A likelihood ratio test can also be constructed 

to test the hypothesis. By imposing the constraint j J ^ �二 0 and maximizing the 

log-likelihood, the value of the maximum log-likelihood is given by Li = —18,045. 

As —2(Li — Lq) — 0.086, comparing the value to the chi-squared distribution with 

1 degree of freedom will reproduce the aforementioned conclusion that the initial 

conditions of the two groups, in terms of the means of the intercepts, are the same. 

Test 2: :"丄T) = Q and 二 1 vs. H?�: at least one of the equalities does not 
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hold. 

This test is used to examine whether the initial conditions of the two groups, in 

terms of the means and variances of the intercepts, are the same. A likelihood ratio 

test can be used. The value of the maximum log-likelihood with the constraints 

JIF^ = 0 and = 1 is given by L) = -18.233. As —2(L2 — Lq) 二 0.462, 

comparing it to the chi-squared distribution with 2 degrees of freedom docs not lead 

to the rejection of the null hypothesis, thus suggesting that the initial conditions of 

the two groups are the same. 

Test 3: 幻:ij!f = tJP vs.丑f) : 4 用 — � . 

This test examines whether there is any treatment difference by testing whether 

the means of the slopes of the growth curves are the same in the two groups. A 

likelihood ratio test can again be used. The value of the maximum log-likelihood 

with the constraint f i � � �= j J - p is given by L3 = —20.585. As —2(1/3 — ^ 0 ) = 

5.165, comparing it to the chi-squared distribution with 1 degree of freedom suggests 

that the means of the slopes of the growth curves for both groups are significantly 

different. In other words, the effects of the two treatments are different. 

Test 4： : /ip) = j j p and 斗 ( 总 = v s . jH[产:at least one of the equalities 

does not hold. 

This test examines whether there is any treatment difference by testing whether 

both the means and the variances of the slopes of the growth curves are the same for 

both groups. Hq^^ can be regarded as a more stringent hypothesis than H��because 

it requires not only the locations of these slopes, but also the dispersions of their 

distributions, to be the same in the two treatments. Again，a likelihood ratio test 

can be used. The value of the maximum log-likelihood with the constraints Hq^^ : 

( J f �= / i f ) and 妙 洁 ） = i j j f ^ is given by L4 = -20.597. As -2{U —乙0) = 5.190, 

comparing it to the chi-squared distribution with 2 degrees of freedom provides a 

p-value of 0.075, thus suggesting that the result is marginal. With a Type-1 error of 

0.1, either the mean or the variance of the slope of the growth curve for the reference 

group, or both, is significantly different from that of the treatment group. In other 
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words, the two treatments have different effects. However, with a Type-1 error of 

0.05, we cannot conclude that there is a significant treatment difference. 

It is worthy of note tha t as the slope of the growth curve represents the rate of 

change, Tests 3 and 4，which use the slopes of the two treatment groups as the basis 

for detecting a treatment difference, have the nice feature that their results are valid 

no matter the initial conditions (i.e., the intercepts) of the two groups are the same 

or not. 

Other types of tests that serve different purposes can also be constructed. For 

example, one may be interested in testing whether the variances of the slopes of the 

two groups are the same. Moreover, if the hypothesis H ? ) or H ^ � i s not rejected, 

that is, when the initial conditions of the two groups can be regarded as the same, 

then a more restricted model with equal initial conditions for the two groups can be 

used as the alternative model to achieve greater power in testing for the presence 

of treatment difference. Table 2.4 provides a summary of the aforementioned tests. 

The various test results in this tabic have provided dear answers to the first three 

research questions (Q1 to Q3, Section 2.1). It leads to the conclusion that the initial 

conditions of the subjects in the two treatment groups are the same and the cfFects of 

the two treatments are different. That is, over the two-week treatment period, there 

is, on average, a more significant downward trend in the time taken to fall asleep in 

the active drug group than in the placebo group. These results are sensible. As the 

patients with insomnia were randomly assigned to the activc hypnotic drug group 

and the placebo group, the initial conditions of the subjects in these groups should 

not be different. It is worthy of note that , although the conclusion of the existence 

of a treatment difference is only marginal in Test 4, it becomes clear in Test 8 that 

this difference is significant. These results demonstrate that by making use of the 

finding that the initial conditions of the two treatment groups are the same to for-

mulate a more restricted model in the alternative hypothesis, it becomes possible to 

achieve a test with greater power. This example also demonstrates that the use of 

the LCM allows various hypotheses with simple and straightforward interpretations 



Lo - -18.002 
Li 二 -18.045 
Lo = 一 18.233 

Ls = 一 20.585 
L4 = -20.597 

Ls = -22.956 
Lq - -23.487 
L7 = -22.962 

Lg = -23.548 

一 2 (1/1 — Lq 

一 2(1；2 —— LQ 

— — LQ 

—2(1/4 — Lq 

-2{L, — Li 
— 2[LQ — 1/2 
-2{Lr — L i 

-2(£'8 — L2) 

0.086 0.769 
0.462 0.794 

5.165 
5.190 

9.822 
10.508 
9.833 

10.629 

Table 2.4: Summary of tests 

to be set up and tested in a systematic efficient and easy manner. 

2.4 Other Applications of the LCM 

Scction 2.3 summarizes the way in which the LCM can be used to comparc two 

treatment groups. In effect, the use of the LCM to model and analyze the type of 

data presented in Table 2.1 facilitates the further examination of many topics that 

are relevant to treatment comparisons. We explore two major topics in this section: 

Analysis of covariate effects and statistical inference for equivalent treatments. 

2.4.1 Analyzing the Effects of Covariates 

Analyzing the effects of covariates is important in many mcdical studies. For exam-

ple, gender, age, race, etc. are usually included in an analysis as covariates to further 
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explain the response variables. We further generalize the LCM model in (2.2) to 

incorporate time-invariant covariates or explanatory variables. We consider a model 

in which the covariates have a direct influence on the random intercepts and slopes. 

These covariates may be dummy-coded categorical variables or measured variables 

on an interval scale. More specifically, an LCM with time-invariant covariates can 

be obtained by generalizing the model in (2.2). It can be expressed as follows 

Trajectory equation: 

Intercept equation: 

Slope equation: 

Vit = + XiA + €it 

ai = I2a + 'JalXli H + Tafĉ f̂c, + Ccri (2.12) 

Pi = l̂ p + l^iXii H h IpkXki + Cm (2.13) 

In these equations, 

C/3i. Similar to (2.3) 

xii, X2i,…jCCki are covariates that arc independent of (ai and 

and (2.4), the matrix form, for this model can be written as 

y = A?7 + e 

r] - /i^ + r x + C, 

(2.14) 

(2.15) 

where 

r 二 
7al la2 

7/31 7̂ 32 

lak 

7卵 

^ki 

The reduced-form model is given by 

y = A ( � + r x ) + AC + e, 

and the mean and covariance matrix of Y are, respectively, given by 

(lY = + r / ix) , and 

Sy 二 A ( r S x r ' + + G, 

( 2 . 1 6 ) 

(2.17) 

(2.18) 
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\ f^x 

\ 
and 

S = cov 
Y 

X 

(2.19) 

(2.20) 

Prom (2.16), we have cov{Y^ X) = AFEx, and hence the mean and covariance matrix 

of all of the observed covariates and the underlying continuous variables are given 

by 
/ \ / 

A ( � + r > x ) 

、 时 , 

F A ( r E x r ' + 寧 ' 十 e , A I T X 、 

\ , � Sxr'A' Ex J 

Estimates of the model parameters can be implemented in popular SEM software 

packages with appropriately designed programs codes. 

As an illustration, wc analyze the data in Tabic 2.1. We introduce a dummy 

variable that represents the two treatment groups into the LCM as a time-invariant 

covariate to test the possible difference between the two groups. This model is given 

by 

Uit ^ + XtPi + 

a p Ma + l a K + Cm, and 

A = + IffX^ + Cpi, 

(2.21) 

(2.22) 

(2,23) 

where X^ is a dummy variable that takes a value of 1 if subject i is in the active 

drug group and of 0 if it is in the placcbo group. Based on a simple statistical test, 

we can check whether there exists any significant difference between the groups. 

We also used the Mx program to find the MLEs of the parameters in the LCM 

with covariates. The Mx input script can be found in Appendix A-2. It should 

be noted that , for the Mx data input, we transformed the data in Tabic 2.1 into 

the values of two ordinal catcgorical variables, say Yi and >2, where Yi denotes the 

ordinal categorical response at t ime 1 with categories 0, 1, 2 and 3, and Y2 is the 

ordinal catcgorical response at time 2 with the same categories. A new dummy 

variable, say X, is added as the third variable m the ordinal data file The results 

are reported in Table 2.5. 
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Mx Results LISREL Results 
Par. Est. Std Err t value Par. Est. Std Err t value 
Ma 0* / / I^oc 0* / / 

-0.558 0.114 -4.879 伸 -0.785 0.052 -15.133 
la -0.037 0.178 -0.211 7a -0.008 0.089 -0.087 
7" -0.465 0.181 -2.568 7/3 -0.268 0.092 -2.912 

V̂ aa r / / •aa r / / 
0.831 0.124 6.674 iw 0.859 0,150 5.715 
-0.513 0.074 -6.960 -0.468 0.071 -6.541 

* fixed parameters 

Tabic 2.5: Parameters estimates in the LCM with a dummy variable covariate 

Using the results in Table 2.5, we can investigate the differences between the two 

groups by studying the magnitude and significance of the coefficient of the dummy 

variable X，which takes a value of 0 for the placebo group and of 1 for the drug 

group. First, for the latent intercepts, the difference between the placcbo group and 

the active drug group is very small (7a = —0.037) and is not statistically significant 

(the t value is —0.211), thus suggesting that the initial conditions of the subjects in 

the two groups are the same. For the latent slopes, the difference between the two 

groups is —0.465 and statistically significant (the t value is —2.568), which suggests 

a significant treatment difference. There is also a significant treatment effect for the 

placebo group — —0.558 with t value = -4.879), even though the treatment is 

a placebo. This significant placebo effect suggests that it is also worth exploring 

the possibility of establishing equivalence between the placcbo and the active drug, 

which we do in the following section. 

The PRELIS and LISREL two-stage results are also reported in Table 2.5. The 

conclusions based on the two-stage estimates are consistent with those based on the 

Mx MLE estimates. 

In this subsection, we introduced the method to incorporate time-invariant co-

variatcs into the LCM. As a typical case, by incorporating a dummy variable indicat-

ing different treatment into LCM as covariate, wc can conveniently draw inferences 
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about whether there are significant differences between two treatments. For the 

original data presented in Table 2.1 of the example, we draw completely consistent 

results when we use this method and the method described in section 2.3. Specifi-

cally, the active drug and placebo have the same initial conditions; after a two-week 

treatment, the active drug shows significant treatment difference with the placebo. 

By using appropriate dummy variables, the method can be applied to compare more 

than two groups. 

2.4.2 Inference for Equivalence Treatments 

The tests discussed in Section 2,3，which are used to compare two treatments, have 

focused on examining whether the values of the parameters that represent the two 

treatment groups are the same. In many medical research studies, such criteria 

are found to be too stringent, For example, when there is a new drug that is less 

expensive than or has fewer side effects than an existing drug, consensus has been 

reached in the medical field that the primary objective is not to show that the 

two drugs are equally effective, but to show that the new drug is equivalent to a 

standard drug. That is, the difference between the parameters that characterize 

the two treatments is less than a small, pre-defined margin. Simply speaking, for 

a given A, if the effectiveness of a standard reference drug and a new treatment 

are represented by two continuous random variables with location parameters / i � 

and /u(”，then the equivalence of these two drugs, in terms of the difference in their 

locations, is assessed by testing the following hypothesis. 

丑 0 : " � —/ i � A or /i ⑵一 M 尺 v s . H i : — A < / i ( T ) — / i ( ^ < A ’ 

(2.24) 

Equivalence can be concluded at Type-1 error level a for a given A value if Hq is 

rejected, that is, when the 100x {l — 2a)% confidence interval [Dl , Du] for — / i � 

falls entirely within [—A, A], 
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In the literature on equivalent tests, the ratio of the means has also been widely 

used in assessing the equivalence of two treatments. For a given S, the equivalence 

of two drugs in terms of this ratio is assessed by testing the following hypothesis. 

//o : / / " ) / " ' � S 5 or > 1/6 vs. : < / / ” / m 阅 < lAl (2.25) 

In this ease, equivalence can be concluded at Type-1 error level a for a given <5 value 

if Ho is rejected, that is, when the 100 x (1 — 2q )̂% confidence interval [Rl, Ru] for 

/ i�/ y只） f a l l s entirely within 1/5]. 

When the LCM is employed to analyze ordinal response data, hypotheses in the 

forms of (2.24) and (2.25) can easily be constructed based on the means of the slopes 

of the LCMs to examine the equivalence of two treatments. More specifically, we 

use a hypothesis in the form of (2.25) to examine the equivalence of the slopes of 

the growth curves. As an illustration, we seek an answer for the research, question 

Q4 (see Scction 2.1) by examining whether the placebo is equivalent to the active 

drug for the data set presented in Table 2.1 by testing the following hypothesis 

Ho ： M f V/i^ ^ ^。r I^P/^f^ > V ^ vs. I h . . 5 < i J p / � <1/5. (2.26) 

Following the common practice (see, e.g. Tang and Poon, 2007), we set 5 = 0.8. 

The 95% confidence interval [0.388, 0.898] for f J p / i i f � f o r the data set in Tabic 2.1 

does not fall entirely into the interval [6,1/5] = [0.8，1,25]. In other words, the 

hypothesis that the placebo is equivalent to the active drug is rejected. 

As the tests for the same initial conditions (Tests 1 and 2 in Table 2.4) are 

not rejected, we again find the 95% confidence interval for f i ^ P / u n d e r the 

constraints HQ^^ : / i f ) 二 0 and ipS2 — 1, which is the null model in Test 2. As 

the resultant interval [0.418, 0.807] does not fall entirely into the interval [5 ,1 /5)= 

[0.8，1.25], we come to the same conclusion and reject the hypothesis that the placebo 

is equivalent to the active drug. 
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2.5 Conclusion 

In this chapter, we propose the use of a latent growth curve to model and analyze 

ordinal categorical data that involve measurements at two different time points. 

There are several prominent advantages to using such an approach. First, the model 

has easy and straightforward interpretations and can be represented graphically, 

thus enhancing its accessibility to practitioners. Second, it can be generalized to 

conduct many different types of analyses that are important in medical and other 

studies. For example, we have discussed how the model can be used to compare 

treatment effects, to incorporate and analyze covariates, and to establish treatment 

equivalence. Many other generalizations are also possible. Third, as the initial 

conditions and the effects of the treatments are represented by the intercept and 

slope, respectively, in a comparison of two treatments or in the establishment of 

their equivalence, statistical tests based on intercepts and slopes can be constructed 

accordingly to examine the possible difference between initial conditions and to 

test the significance of the treatment effect. The results derived from testing the 

treatment effect remain valid, even though the initial conditions are not the same. 

Moreover, if the same initial conditions can be established for the participating 

subjects, then tests with greater power can easily be formulated by using a more 

restricted alternative model. Fourth, the latent growth curve model is a special case 

of the SEM, and hence, with appropriate specifications, the estimates of the model 

parameters can be obtained using a variety of widely accessible SEM computer 

programs. Wc have provided a sample program for implementing the procedure in 

Mx, which can be downloaded in the public domain, thus enhancing the accessibility 

of the proposed approach. Finally, many generalizations of this model are possible. 

The availability of numerous software programs, and their continuous development, 

further enhances the accessibility of the newly developed methods. 

Our discussion has focused on analysis of a data set that involves measurements 

of two different time points. When a study involves measurements at more than two 
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different time points, the model can easily be generalized to analyze the longitudinal 

data of a study that involves measurements at more than two time points. In this 

case, not only the linear, but also the non-linear growth curve can be analyzed. 

We have discussed the comparison of two treatments. The generalization of the 

method to a comparison of three or more treatments represents an interesting topic 

for further study. 

The approach of the analysis of variance and covariance models is commonly used 

for treatment comparisons. These models are in general applicable to variables that 

are continuous in scale, and cannot be directly applied to analyze ordinal categorical 

data. As well established statistical methods can be used to analyze the class of 

analysis of variance and covariance models, how these models can be generalized 

to analyze ordinal categorical variables represents an interesting topic for further 

research. The use of covariates in these models will also facilitate the analysis of 

initial conditions. 



Chapter 3 

Multiple Testing of Several 

Treatments with a Control 

3.1 Int roduct ion 

In the previous chapter, we considered the modeling and analysis of longitudinal or-

dinal responses that involve measurements at two different time points. By modeling 

the longitudinal ordinal responses using the latent growth curve, not only the initial 

conditions of the two treatments but also the trend and extent of the treatment 

effects can be compared. In this chapter, we will consider another very common 

treatment comparison issue: the comparison of several treatments with a control 

For the comparison of several treatments with a control, one important task is 

the control of the family-wise error (FWE) at preassigned value a , which is defined 

as 

FWE = P(reject any true hypothesis) < a. 

Another important task is to improve the power of the testing procedure. In the 

literature of multiple comparison, there are several possible definitions of power 

(see Horn and Dunnett, 2004), such as any-pair power, all-pairs power, and average 

power. Let m be the number of false hypotheses in a multiple testing, and Z饥 be 

the random number of rejected false hypotheses. Then, the several different power 

can be defined as 

29 



Chapter 3 Multiple Testing of Several Treatments with a Control 30 

• any-pair power: Pany=^{Zm > 1) 

• all-pairs power: Paii=P(Zm ~ m) 

• average power: P娜=Ei^Zm)/m = Yh^i ^i^m > t)/m 

Many multiple testing procedures, both single-step and stepwise procedures, have 

been developed. Some of them will be detailed discussed in Section 3.5.2. 

In this chapter, we focus on the comparisons of several treatments to a con-

trol that have ordered categorical responses. To compare two treatments with or-

dered categorical responses, a very popular approach is to adopt the logistic regres-

sion model with the proportional odds assumption (McCullagh, 1980). Then, the 

Wilcoxon-Mann-Whitney (WMW) test (Wilcoxon, 1945; Mann and Whitney, 1947) 

can be applied to test for equality of treatment efficacy. Score statistics can be used 

for the WMW test (Whitehead, 1993). However, our study (see section 3.3) finds 

that this existing method can not preserve the type I error when the two treatments 

have different dispersions, This motivates us to find new testing method that can 

accommodate the difference in the dispersions of the treatments. 

In this chapter, we will develop new testing method for the comparison of several 

treatments with a control that have ordinal responses. Our interest lies in compar-

ing the mean efficacy (the location parameter) of treatments, that is, in exploring 

whether a treatment is better than the control on average, amid the possibility of 

having different variances among the treatment groups. Our analysis is based on 

the latent variable model, that is, the ordinal responses are regarded as the mani-

festations of some underlying continuous random variables. Within this framework, 

we will demonstrate that the proportional odds model approach may yield too large 

a probability of rejecting a true null hypothesis that tests the equality of treatment 

means when the proportional odds assumption is invalid. A two-step estimation 

procedure is proposed for the parameter estimation of the latent variable model in 

Section 3.4. Multiple comparison procedures are proposed in Section 3.5, including 

both single-step and stepwise procedures. The evaluation of power by a simulation 
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study is also offered in Section 3.5. Clinical examples to illustrate the implementa-

tion of our procedures arc given in Section 3.6. Some technical proofs are given in 

the Appendix B. 

3.2 The Latent Variable Model 

Suppose that there are (7 + 1 treatments, and n^ ('/: = 0 , 1 , . . . , C) patients re-

ceive treatment i where subscript 0 (z = 0) denotes the control treatment. The 

responses of the subjects receiving treatments are classified into one of the cat-

egories Ci, • • • , Ck- The ordinal responses for treatment i are considered to be 

manifestations of a continuous latent variable Xi which has a normal distribution 

with mean fii and variance cf , i = 0 , . . . , G. The use of latent variables provides 

a useful framework in which to model categorical responses. Many studies have 

used latent variables in the social sciences (see Lee, 2007, and references therein). 

However, the application of latent variables to compare treatments in clinical stud-

ies with ordered categorical data is less developed. To model ordinal categorical 

responses, Anderson and Philips (1981) incorporated the notion of latent variables 

into their formulation of the logistic model for prediction and discrimination, mainly 

using the variables to assist interpretation. Latent variable models have also been 

applied to analyzing clustered ordinal data (see Qu, Piedmonte, and Medendorp, 

1995，and references therein). Bekele and Thall (2004) used latent variables and the 

Bayesian approach to model toxic responses in their dose-finding study in a phase 

I trial of gemcitabine for the treatment of soft tissue sarcoma. Their method was 

more recently extended to model ordinal data nested within categories (Leon-Novelo 

et al, 2010). A common feature of the aforementioned models is that the variances 

of the treatments are either assumed to be identical or fixed at specified ratios. 

Now, we outline our proposed latent variable model, which is more flexible and 

allows for heterogenous variances across different treatments. We assume that the 

ordinal categorical variable falls into category C^ if and only if the latent variable 
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Categories 
Treatment Ci C2 • . C x Total 
Control noi no2 • . noK no 
Treatment 1 nil 几12 • • riiK ni 

Treatment G noi nG2 . . r i G K no 

Table 3.1: Ordered categorical data of a clinical trial. 

satisfies Tk—i < X^ < Tk. For the convenience of comparing treatments, the thresh-

olds Tfc, /c = 1 , . . . , AT — 1, arc assumed to be the same across all treatments, where 

To = —oo and tk = oo. This assumption is also reasonable in practicc because the 

subjects of different treatments are usually evaluated according to the same criterion 

and measured with the same dcvice. 

Let riik be the number of patients receiving treatment i, with outcomes classified 

into category Ck- Furthermore, let P{Tk-i < S Tk) be Tr̂ fc, the probability of a 

patient's outcome falling into category Ck with treatment i. Then，with rcspect to 

treatment l, we have 

K K 

" ^ n . k = n^, = z = 0 , . . . , G. 
fc=l k=l 

In addition, let N = n^ be the total sample size. The ordered categorical data 

at the end of a clinical trial can be summarized in Table 3.1. 

The log-likelihood function for the samples of the (7 + 1 treatments is given by 

G K 

= 兀乂叩 (3.1) 

where 

,n、 1 ( i ( > —叫)2\， 

’ Tk-

0\ Cr, 
(3.2) 
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$(•) is the c.d.f. of the standard normal distribution and d = {t'.Oq)' is a vec-

tor containing all of the unknown parameters, with 丁' — (ri, • • • , tk-i) and O'q — 

(Mo,…，l^G, CJ"o，…，OQ)-

Denote rji — m 一 /io for i = 1 , . . . , G as the difference in treatment efficacy 

between the treatment i and the control, i 二 1,…，G, Without loss of generality, 

assume that a positive value of rji implies that treatment i is more effective. We are 

interested in testing the null hypothesis 

Hi : rii 二 Q (3.3) 

against the two-sided alternative 

丑;：77… (3.4) 

for i == 1 , G simultaneously. As one-sided tests are straightforward generalizations 

of two-sided tests, we consider only two-sided tests for simplicity. 

3.3 The Proport ional Odds Model 

The proportional odds model is frequently employed in clinical studies. For example, 

Diem et al. (2006) used it to study the effects of ultralow-dose transdermal estradiol 

on postmenopausal symptoms in women aged 60 to 80 years. In another study that 

evaluated immunogenicity in vaccine trials, Pedrono et al. (2009) recommended the 

proportional odds model based on clinical relevance and statistical power. 

Now, we outline the proportional odds model and the testing procedure that 

compares one treatment to a control {G = 1). Let 7认= t T j i + • • • + lUk be the 

cumulative probabilities for treatment i, i = 0^1; k = - • • , K. Then, the log-odds 

ratios can be defined by 

- - - {？ f ^ } ' 。 - - 1 ， . "， " . 關 

The proportional odds model assumes that 71 : 72 = • • • = 7^-1 = 7 where 7 is the 

common odds. To test whether the treatment and the control have the same effects, 
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the null hypothesis is i^o : 7 二 0. Here，we follow the testing procedure given by 

Whitehead (1993). The efficient score statistic is 

where 

and 

1 K 
z = j\i 几 ifc(乙— ^ok), 

k=l 

Lok ^ riQi H h no(fc-i), for k = 2, 

(3.6) 

K, 

Uok : no(k+i) H h noK, for A; = 1, • • • - I, 

are the lower and upper cumulative responses of the control，respectively. In addi-

tion, take Lqi = Uqk = 0. To test the null hypothesis, the test statistic is Z / \ / V , 

where 
y — noniJV 1 — (npk + n u ^ (3 7) ^ _ ^ /npfc + nifc 

N 

For a given significance level a, the null hypothesis will be rejected if 

吳 > 知 ( 3 . 8 ) 

where is the upper a/2 probability point of the standard normal distribution. 

The remainder of this section demonstrates an undesirable consequcnce of the 

above test when the proportional odds assumption fails to hold. As indicated by 

Peterson and Harrell (1990), clinical examples of non-proportional odds are not 

difficult to find, and they used a coronary artery disease data set to illustrate that 

the proportional odds model is not appropriate. Dark, Bo Hand and Whitehead 

(2003) also discussed the problem of using the proportional odds model for clinical 

trials where the validity of the proportional odds assumption is questionable. In 

fact, the popular test for the proportional odds assumption is quite conservative, 

Dark, Bolland and Whitehead (2003) used the numerical example extracted from 

the National Institute of Neurological Disorders and Stroke t-PAstroke study to 

consider the proportional odds assumption. The estimated odds ratios computed 

from the data do not support the use of the proportional odds model even though 

the p-value is 0.134 for the x^ test. 
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Now, let us refer to the latent variable model given in Section 3.2. Without loss 

of generality, take G — 1. Consider the ordinal responses of the two treatments, 

denoted by Yq and Yi, as manifestations of some underlying continuous normal 

variables, denoted by Xq �N{pQ,al~) and Xi �N { p i , o f)， r e s p e c t i v e l y . 

Nonhomogeneous treatment groups exert a significant influence on the WMW 

procedure. To illustrate, consider the following simple case with equal mean cfficacy 

for the treatment and the control such that Xq ~ <7幻 and Xi �N { p � c r j ) , 

Furthermore, let 1 < s < /T where Ts~i < fJ- < 丁s- For simplicity, assume equal 

sample size for the two treatments, denoted by n. Hence, the total sample size is 

N = 2n. Now, assume that af 0. Therefore, the observations Yi will fall in 

the category Cs with probability approaching to 1. Then, with respect to the test 

statistic Z j ^ / V in (3.8), we have 

1 n^ 
Z a ’ 几(M — 购 ) = 尉 — 耐 ) ， 

n-n-2n '^.nofc + n^ 3 

rC —丄 

where m = and - 1 - Since 

[1 - X T — ) 1 < 二 y ， 3(2n + l)2L f ^ � N zj_3(2n + l)2 
fc—丄 

Z Z 
> = . (Ki — 

Vv ~ Vv 
Then, wc have the following lemma. 

L e m m a 3 .1 For the MWM test procedure, the probability of rejecting the null 

hypothesis converges to 1 if ^ K2. 

Note that the difference, Ki — plays an important role in this lemma. It can 

also be regarded as a measure of the skewness of the ordinal variable. The only case 

where — — 0 is when ji —广丁^ . That is, when the mean fi falls exactly in the 
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middle of the category. Otherwise, the probability of rejecting the null hypothesis 

will be more inflated than the size of the test. 

To substantiate the argument that the size of the test is much larger than the 

nominal value for the MWM test when the treatments have different variances even 

when the means jiQ and fii are identical, wc perform a small simulation study. 

Note that the difference in variances implies the violation of the proportional odds 

assumption. For the simulation study, the ordinal data of the two treatments are 

generated based on the latent variable model, where the thresholds (7"i，…,tk-i) 

are fixed at ( — 1.5, —0.5,0.5,1.5). With respect to the latent normal variables, we 

fix (Jo = 1 and = (i\ = /i, but several choices of /i and ai are used. The level 

of significance is chosen to be 0.05. With 10,000 replications, the estimated rate of 

rejection of the null hypothesis (proportion of rejection of the null hypothesis) is 

tabulated in Table 3.2. The findings are divided into the following three cases. 

(A) Effect of sample size n. We take /i = 0.8 and ai — 3, representing the case of 

heterogeneous variances. Hence, the proportional odds model fails to be valid. 

All reported estimated rates of rejection exceed the level of significance (0.05)， 

and as n increases, the departure from the nominal value increases, reaching 

0.6061 for n = 1000. 

(B) Effect of the difference between cri and ao. Several selected values of ai are 

employed. = 1 is the case of equal proportional odds. As expected, the 

estimated rate of rejection is close to the level of significance. However, the 

rate increases rapidly as ai — (Jq increases. 

(C) Effect of the difference between /i and the center of the thresholds. Both ai 

and n are fixed, which shows that the value of /i also plays a role in the inflation 

of the estimated rate of rejection, as indicated in the expression of Ki 一 K2’ 

As moves farther from the center of the thresholds, the effect of fi becomes 

quite significant in the inflation of the estimated rate of rejection. 
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Case A Case B Case C Case D 
/i 二 0.8 ,cTi = 3 二 1，n = 500 CTl = =5，n = 500 = =1，n = 500 

n E (Ji E M E /X E 
100 0.1074 1 0.0507 0.0 0.0762 0.0 0.0504 
200 0.1832 2 0.2769 0.2 0.1011 0.2 0.0495 
400 0.2968 3 0.5483 0.5 0.2217 0.5 0.0474 
800 0.5222 5 0.8374 0.8 0.5708 0.8 0.0502 
1000 0.6061 7 0.8996 1.0 0.8327 1.0 0.0483 

Table 3.2: Estimated rejection rate {E) of the null hypothesis 

(D) When the two treatments have both equal means and equal variances, the 

estimated rates of rejecting the null hypothesis are around the nominal level 

0.05. 

In conclusion, the simulation study indicates that for non-prop or tional odds 

cases, the chance of rejecting the null hypothesis using the MWM testing procedure 

could be quite large even when the two treatments have the same mean. This indi-

cates the problem of the proportional odds model that have not been addressed in 

the literature, providing a strong justification for us to search for alternative statisti-

cal procedures to compare treatment means when the proportional odds assumption 

fails to be valid. 

3.4 Pa ramete r Est imation of the Latent Variable 

Model 

The latent variable model given in Section 3.2 contains many unknown parameters, 

and various approaches can be employed to find the parametei estimates. We suggest 

an estimation method that is easy to implement and is convenient for the further 

development of multiple comparison procedures. 

When the thresholds and all the parameters characterizing the underlying ran-

dom variables are unknown, the model with the log-likelihood function given by 
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(3.1) is not identifiable (Poon, 2004). There are different ways to achieve model 

identification. One can impose constraints on the location and scale of the underly-

ing variable, such as by fixing its mean at 0 and variance at 1, or alternatively one 

can impose constraints on the thresholds. In the current context, a better strategy 

is to impose constraints on the thresholds at preassigned values, because the latent 

means and variances that characterize different treatments are our focus. We now 

propose the following two-step estimation procedure. 

1. Determine the values of the thresholds: let Xq ~ jV(0，1), and use the responses 

of the control treatment to determine the values pre-assigned to the thresholds. 

2. Obtain the estimates of the means and variances tha t characterize all avail-

able treatments: with the thresholds fixed at the values obtained in step 1, 

estimate the means and variances of the latent variables of all treatments 

. . .， / i f ? , ctq , • • • , (7q) under the constraint that the thresholds are the same 

for all treatments. 

Assuming Xq �i V ( 0， l ) and using the responses in the control treatment to 

find the pre-assigned values of the thresholds will produce an estimate of jUg tha t 

is extremely close to zero and an estimate of ctq that is extremely close to 1, which 

serves to fix the locations and scales of the latent variables with reference to those 

of the control treatment. The values of /î  and of of other treatments can then be 

compared to the control in a relative sense. For example, if the estimate of /ij is 

greater than 0, the mean difference of the zth treatment and the control is greater 

than 0. 

Note tha t treatments other than the control can be chosen in step 1 to produce 

the threshold estimates. For instance, we can let the distribution of Xi be iV(0,1) 

and proceed with the suggested method. Although this will have no effect on the 

test results, it is not convenient in terms of interpretation. For example, the location 

parameter of a treatment will then represent the difference between the treatment 
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and the chosen treatment in step 1, rather than the difference between the treatment 

and the control. 

In multiple comparisons with continuous response, a general assumption is that 

the samples of different treatments are independent and have a common variance 

(Dunnett, 1955; Dunnett and Tamhane, 1991，1992). Our proposed model can 

easily accommodate the common variance assumption, it is equivalent to assume 

that X ��i V { 0 , 1 ) , and �1 ) , z = 1, • • • , G. 

The log-likelihood function for step 1 of the two-step estimation procedure is 

K 

Li{t) -^nofclog(7rofc(r ) ) (3.9) 
k=l 

where r = (ri, • • • , r ^ - i ) ' is the vector containing all unknown thresholds, and 

厂fc 1 1 
7rofc(T)= / - - ^{rk-i). (3.10) 

Based on (3.9) and (3.10), we can derive the MLEs of the thresholds in closed form 

as follows. 

h = i((noi + • • • + nofc)/no)’ k = , K — 1, (3.11) 

where 击一i(.) is the inverse c.d.f. of the standard normal distribution. 

The structure of the log-likelihood function for step 2 is the same as (3.1), but 

in which the thresholds are fixed values and only 6q are unknown parameters. The 

MLEs of the unknown parameters in step 2 cannot be expressed in a dosed form. 

Therefore, numerical methods have to be applied. One possibility is to use the 

widely available free software Mx developed by Nealc et al. (1999) to obtain the 

estimates in the model. 
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3.5 Multiple Testing of Several Trea tments with 

Control 

3.5.1 Test Statistics 

Let fj^ — — fiQ be the MLE of 77” /: 二 1, - - -，G, and Var(i%) be the corresponding 

variance. To derive the test statistics for testing the G null hypotheses stated in (3.3) 

simultaneously, we need to evaluate the variances and covariances of fj”i = 1 , G . 

Theorem 3,2 When the sample size is large, we have 

Varifi^) = • i = 0, • • • , G, 
Th 

(3.12) 

where 

Sifii, cFi) = a^) 

+ 
仏,crj 一 5q{P” o\) . a, 

(3,13) 

and 

二 f ： 丄 W ^ ) - 树 
(̂ O(MuA) T^ik CTi 

CM/̂ ” d == f ： 丄 . [ 树 U ) — 树 

X[(n — - ( r . - i — 識 丁 

<Ji (Jz 
i f 1 T -

(^t) = Y] [(Tfc — ~~~ 

The probability n丄 is given by (3.2), and 4> is the p.d.f. of the standard normal 

distribution. Note that for the control group with z = 0, /io = 0 and ctq = 1, we 

have 

Var(M = — . ^(0,1) (3.14) 
no 
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From the proof of Theorem 3.2 (see the Appendix B), for i + j, jl^ and fij arc 

independent. Thus, we have 

2 1 
Var�=Varift, - Ao) = ^ •《仏，〜）+ — • ^(0,1). (3.15) 

Til Uq 

The following theorem provides the formula to computc the correlations among the 

test statistics. 

Theorem 3.3 When the sample size is large, we have 

Cov(fj^,fjj) - —(5(0,1), i ^ j , = 1 , . . . ,G', (3.16) 
no 

Corr(A,fl；) 二 b�” (3.17) 

where 1 
6, = ~, ：. 

V <5(0,1) 

The proof of Theorem 3.3 is also given in the Appendix B. The estimate of the 

variances and covariances of � ” / 二 1, can be obtained by replacing 6 in (3.15) 

and (3.16) by the MLE of 0. Then, the test statistics are 

Z. = = I I " � ， (3.18) 
\Jv 肌 ifh) + 

i = 1,..., G. Further, under the null hypotheses these test statistics are distributed 

approximately as multivariate normal with, mean 0 and correlation matrix {〜}， 

where p” = 1 for i = j, and p^j = 6办 for i ^ j as given by (3.17). 

3.5.2 Multiple Testing Procedures 

Both single-step and stepwise testing procedures can be used to simultaneously test 

the G null hypotheses (3.3) against the two-sided alternatives (3.4). All testing 

procedures to be introduced in this chapter satisfy the usual requirements that the 

familywise type I error rate (FWE), the probability of making at least one type I 

error, is being controlled at a pre-specified level, say a. 
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For single-step procedures, each null hypothesis Hi is rejected if the correspond-

ing test statistic Zi is larger than a single critical value. Two popular single-step 

testing procedures are examined here. 

Bonferroni Procedure (B) 

Based on the Bonferroni Inequality, if \Zi\ is larger than Z a j i G � t h e n the null 

hypothesis is rejected. The Bonferroni procedure is extremely simple to implement 

becausc each test statistic is compared to a single critical value obtained from a 

standard normal distribution. However, this procedure is quite conservative as G 

increases. The power of the test drops substantially as compared to the other 

multiple testing methods to be introduced. 

Dunnett Single-step Procedure (DSS) 

For multiple comparisons to a control, the widely used Dunnett procedure (1955) 

is a single-step procedure that compares the test statistics to the critical value da’G) 

which satisfies the following equation. 

P(\Zi\ < i 二 1,.. .’G) = 1 - a . (3.19) 

As the test statistics have a multivariate distribution with a product correlation 

structure (3.17), the computation of the critical value da,G is relatively simple. The 

algorithm is given by Dunnett (1989) and selected values arc tabulated by Bechhofer 

and Dunnett (1988). 

Compared to single-step procedures, stepwise procedures provide more powerful 

testing tools to compare treatments with a control. Here, we discuss two stepwise 

testing procedures. 

Hochberg Procedure (H) 

For each hypothesis Hi, let the observed test statistics be Zi, then the p-value of 

the test for Zi is 

Pi = P{\Zi\ > N ) . (3.20) 
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For 12；!I, |:2|’ …，I之g|’ let the ordered values be r i > r2 > • • • > r^. Further, let the 

ordered ？5-values be p(i) < 沪⑶ < • • • < p(g)，and the corresponding hypotheses be 

H⑴，H{2),…，H ĝ)- The Hochberg procedure (1988) is as follows. If FWE is being 

specified at level a, the testing begins by comparing 'p問 to a. If p(G) < a , then 

all hypotheses are rejected. If not, then is accepted and we continue to test 

H(^g-i) by comparing the p-value P{g-i) to a /2 . If ^(g-i) < q:/2, then all hypotheses 

Hi are rejected. Otherwise, is retained and we proceed in a similar 

manner sequentially, comparing to a/(G — 1) when H�i�is being tested. The 

Hochberg procedure is a step-up procedure, testing the least significant hypothesis 

first and continuing with the more significant hypothesis sequentially. This proce-

dure does not utilize the information of the correlations among the test statistics 

and is generally less powerful than those that incorporate correlation information in 

their testing procedures. However, the Hochberg procedure is very simple to imple-

ment and more powerful than the single-step procedures (as discussed in the next 

section). 

Dunnett and Tamhane Step-down Procedure (DTSD) 

To use the Dunnett and Tamhane (1991) step-down procedure, it is required 

to compute •••) da^o- The critical value da�i , i == 1,..., G, depends on pij. 

The implementation of the DTSD procedure is much simplified by using the average 

correlation 

E Ai (3.21) 
to obtain the critical constants. This approximation is quite satisfactory unless there 

is a severe imbalance of sample sizes (Cheung and Chan, 1996). 

The DTSD testing procedure is a step-down procedure based on the closure 

principle of Marcus, Peritz and Gabriel (1976) that begins by comparing r i to da’G ‘ If 

ri < da’G, then all hypotheses are retained without further testing. If not, then H � 

is rcjcctcd and we continue to test 丑⑵ by comparing the r) to (ia’G-i. In general, 

H[i) is tested by comparing n to da,G-i+i- If n < da,G-i+u ，丑(i+i),…，丑(G) arc 
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retained and the test stops. Otherwise, is rejected and the test continues with 

In the literature, there are variations similar to the aforementioned testing pro-

cedures. For example, Rom (1990) modified the Hochberg procedure and suggested 

a step-up procedure that is slightly more powerful. However, the improvement is 

far from substantial. Another example is the Dunnett and Tamhane (1992) step-up 

procedure. Even though it yields slightly higher power than the DTSD procedure, 

the computation of the necessary critical values is quite complex (Kwong and Liu, 

2000). Hence, for practical purposes, wc believe that the procedures introduced 

here are adequate. Next, the power of the four testing procedures introduced in this 

scction are compared. 

3.5.3 Power Comparison: a Simulation Study 

There are several possible definitions of power in the literature on multiple testing. 

Horn and Dunnett (2004) discussed several different definitions, such as, all-pairs 

power, any-pair power, per-pair power, and average power (the proportion of false 

hypotheses that are correctly rejected). In this section, we report a simulation 

study that compares the four testing procedures (B, DSS, H，and DTSD) in terms 

of average power. 

For our simulation study, the ordinal data of different treatments are generated 

based on the latent variable model with thresholds fixed at ( — 1.5, —0.5, 0.5,1.5), and 

the latent variables are assumed to be Xq �i V ( 0， 1 ) and X^ �N [ j j , ” 1 ) , ？: = 1 ， … , G . 

The estimation of parameters follows the two-step estimation procedure given in 

section 3.4, and the required information for evaluating the variances and covariances 

of fjt is given in Theorem 3.2. In the simulation, wc focus on the behavior of the 

average power of each testing procedure for different sample size configurations and 

different true/false configurations, 

1. The average power for different sample size configurations 
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(a) no=ni=80 (b) no=50, n|=150 

Figure 3.1: Average power of H, DTSD, DSS, and B. 

For illustrative purposes, G is chosen to be 5 and let = fii — fiQ — A for all 

I — 1，…，5. The simulated average power is computed for a wide range of A. Two 

different patterns of sample size configurations are selected: (a) no = tii = • • • = 

ris = 80 and (b) no = 50, ni = ’ . . = ns = 150. Note that the correlations among 

the test statistics arc higher for the second pattern from (3.17), and we expcct that 

the DTSD procedure performs better than the H procedure becausc it utilizes the 

correlation structure information in its testing algorithm. The estimated average 

power is evaluated based on 100,000 replications. Figure 3.1 presents the average 

power of the four different procedures for the selected sample size configurations. 

To produce an informative comparison (Figure 3.2), using the B procedure as the 

baseline, the percentage increase in the simulated average power is computed for the 

H, DTSD, and DSS procedures. 

The important findings are summarized as follows. 

(a) The procedures H, DTSD, and DSS have uniformly higher average power than 

the B procedure because the B procedure is quite conservative. 
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(a): no=n|=80 (b): no=50, n丨=150 

0.0 0,4 0,6 0.0 0.4 

Figure 3.2: Increase in average power of H, DTSD, and DSS as compared to B. 

(b) Stepwise procedures 

In fact, it is easy to 

！ generally more powerful than single-step procedures, 

that the DTSD dominates the DSS procedure due to 

the critical values being used > dc G). The H procedure is 

also more powerful than the DSS procedure except when A is very small (less 

than 0.1 for equal sample sizes, and less than 0.2 for the ease in which the 

sample sizes are unequal). 

(c) Correlations among the test statistics play an important role in the differences 

of power among the various procedures. Let us compare the increase in power 

given in Figure 3.2 for the two different sample size configurations. For the 

equal sample size configuration, the average correlation of the test statistics 

is about 0.5, whereas it is about 0.75 for the unequal sample size case. It is 

worth noting when comparc Figure 3.2 (a) with Figure 3,2 (b), the relative 

power of the H procedure as compared to the DSS and the DTSD procedures 

decreases substantially because the H procedure docs not utilize the correlation 

information of the test statistics. 
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(d) In summary, we propose to use the DTSD procedure which performs rela-

tively better than the other procedures unless the correlations among the test 

statistics are only moderate. In those eases, the H procedure can serve as an 

alternative due to its simplicity. 

Similar findings can be obtained using the other concepts of power and are thus 

not reported here. When A 二 0，all the procedures introduced here were found 

to control the FWE at level a, including the cases when ai ^ ao, i = 1, -

according to our simulation study. This is an expected result and hence the findings 

are not tabulated. 

2. The average power for different true/false configurations 

It will be informative to study the influence of the true/false configurations to 

the power, since the number of false hypotheses are usually unknown in the practical 

applications; especially in the case to determine the sample size that guarantee a 

specified power, people have to look for the least favorable configuration (LFC) 

where the power attains its minimum. 

For illustration, we still take G = 5, and lot A : 0.2 for false hypotheses, We 

assume all treatments have equal sample size and no = n^ = 500. Based on 100,000 

replications, Figure 3.3 presents the average power of the four testing procedures for 

different true/false configurations. 

Prom Figure 3.3, the single-step procedures (B and DSS) will have equal average 

power for different true/false configurations; the stepwise procedures (H and DTSD) 

will attain their minimum average power when only one false hypothesis, and the 

average power will increase when the number of false hypotheses are increasing. This 

behavior of the average power for different true/false hypotheses is quite different 

from that of the all-pairs power, which is defined as the probability of rejecting 

all false hypotheses. Figure 3.4 gives the plot of the all-pairs powers of the four 

testing procedures under the same simulation setting as in Figure 3.3. It can be 

found that the stepwise procedures will attain their minimum all-pairs power in 

some intermediate value of F (the number of false hypotheses), and the single-step 



Chapter 3 Multiple Testing of Several Treatments with a Control 48 

2 3 

F=number of false hypotheses 

Figure 3.3: Average power of H, DTSD, DSS, and B for different true/false config-
urations. 

procedures will have downward trend as the increase of F. 

3.6 Examples 

3.6.1 Example 1 

This example is extracted from Pujii and Itakura (2009). A randomized, double-

blind, placebo-controlled study was conducted to compare the efficacy of intravenous 

prctreatment with fentanyl 50 fig, fentanyl 100 fig, and lidocaine 40 mg, preceded by 

venous occlusion, for reducing pain on the injection of propofol in Japanese surgical 

patients. Patients were interviewed to assess pain intensity on injection using a 

4-point verbal rating scale (0—none, l=inild, 2=moderate, 3—severe). The ordinal 

categorical observations of the four treatments are given in Table 3.3. 

Based on our two-step estimation procedure, the thresholds are fixed at (fi, f2, fs) 

/ 



F=number of false hypotheses 

Figure 3.4: All-pairs power of H, DTSD, DSS, and B for different true/false config-
urations. 

=(-0.9674, 0.0837, 0.9674), the estimated means (Ao,... , ih) = (0.0, -0.2617,-

1.5478, -1.6096), and the estimated standard deviations ((Tq, ‘ • • , a^) = (1.0, 1.0313, 

1.7616, 1.5482), To simultaneously test the difference between each treatment and 

the control, the hypotheses are 

H, : jj,, - iiQ ^ 0 vs. H[ : / i广 " 0 — 0’ = 1 , 2 , 3 , 

with familywise error rate a = 0.05. Using tho procedures given in scction 5, the 

test statistics {zi,z2, z^) : (-0.9320, -2.9070, -3.2059), and the corresponding two-

sided p-values (Pi,P2,P3) = (0.3514, 0.0036, 0.0013). The average correlation of the 

test statistics for this example is p — 0.2209. The critical values for the ordered 

test statistics in the DTSD procedure arc 1.9600，2.2321, and 2.3808. All of the 

testing procedures given in the previous section produce the same conclusion. That 

is, fentanyl 100 网 and Lidocaine 40 mg are able to reduce the pain, while fentanyl 

50 ag is ineffective in reducing the pain compared with a placebo. 

Chapter 3 Multiple Testing of Several Treatments with a Control 49 

N 
•c 



Chapter 3 Multiple Testing of Several Treatments with a Control 50 

Grading of pain Sample 
Treatment 0 1 2 3 size 
Placebo 5 11 9 5 30 
Fentanyl 50 jig 7 13 6 4 30 
Fentanyl 100 fig 19 5 4 2 30 
Lidocaine 40 mg 20 5 4 1 30 

Table 3.3: Incidencc and intensity of pain on injection of propofol 

For this example, we can consider the estimates of the log-odds ratios based on 

(3.5) when we compare each treatment with the control separately. For example, 

when wc compare fcntanyl 100 fig with the placebo based on the observations in 

Tabic 3.3, the estimated log-odds ratios k = 1,2,3, are 2.16, 1.25, and 1.03, 

respectively, indicating that the adoption of the proportional odds assumption may 

be questionable. 

3.6.2 Example 2 

This example is taken from Koo et al, (2006). In a prospective, randomized, double-

blind, placebo-controlled study to reduce the pain of propofol injection, 240 patients 

representing for elective surgery were randomly allocated into eight groups. The pain 

scores of the patients were assessed using the verbal rating scale (0—no pain, 1—mild 

pain or soreness, 2二moderate pain, and 3=severe pain). Various treatments were 

compared to the control (saline). The observations are presented in Table 3.4. 

Based on our two-step estimation procedure, the thresholds are fixed at ( n , fz, fs) 

=(-1.1108, 0.1679, 1.5011). The estimated means (Jlq,…，/i7) 二 (0.0, -1.0290，-

1.1878, -0.8117, -0.7029, -1.6391, -0.2154，-0.4331)，and the estimated standard de-

viations (ao, • • • , 5-7) - (1.0, 0.9101, 1.0187, 0.8547’ 1.1993, 2.0072, 0.9296, 1.6641). 

We simultaneously test the following hypotheses 

Hi ： IM — /io = 0 vs. //• : fii - /io 0, i = 1, • • • ,7, 

with FWE = 0.05. Based on the estimated values of the parameters, the test 
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Intensity Treatment 
of pain S L KlOO K50 KIO M KP Pre 
None (=0) 4 14 16 11 11 18 4 10 
Mild (二 1) 13 13 11 15 12 7 18 10 
Moderate (=2) 11 3 3 4 6 3 6 6 
Severe (—3) 2 0 0 0 1 2 2 4 

S=saline, L=lidocaine, K100=ketam.me 100 pig/kg, K50二ketamine 50 ^ig/kg, 
K10=ketamine 10 j-ig/kg, M=midazolam premedication, KP=ketamine 100 l^g/kg in 
propofol solution following saline 2 ml, Pre=pretreatment with ket amino 100 fig/kg 
3 min before the injection of propofol. 

Table 3.4: Incidencc and intensity of pain on injection of propofol 

statistics (尉’ •..,么7) = (-3.6558, -3.8281, -3.0520，-2,2262，-2.8878, -0.7982, -1.1145), 

and the corresponding two-sided p-values ( p i , … . P j ) — (0.0003, 0.0001, 0.0023， 

0.0260, 0.0039, 0.4248, 0.2651). To conduct the multiple testing procedures, the 

ordered p-values or test statistics should be compared with the corresponding critical 

values. To derive the critical values for the test statistics, the average correlation 

can be calculated based on the estimation results and equations (3.17) and (3.21). 

For this example, the average correlation is — 0.3706. The critical values for the 

ordered test statistics in the DTSD procedure are 1.9600, 2.2237, 2.3675, 2.4653, 

2.5390, 2.5978, and 2.6465. 

For this example, all four multiple testing procedures give the following consis-

tent testing conclusions. Compared to the control in terms of pain reduction, only 

treatments L, KlOO, K50, and M are significantly different. Among the effective 

treatments, KlOO and L are the most effective treatments and have similar efficacy 

from an examination of their corresponding p-values. 

Even though the testing conclusions are the same with these four procedures, it 

is easy to recognize that on average that is not the case. For example the critical 

constants for the stepwise comparisons for the DTSD procedure are 1.9600, 2.2237, 

2.3675, 2.4653, 2.5390, 2.5978, and 2.6465, while the critical constant being used to 

test every hypothesis in DSS is 2,6465. Therefore, on average, it is easy to see that 
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the DTSD procedure rejects more hypotheses than the DSS procedure. 

3.7 Conclusion 

In this chapter, we consider the problem of multiple comparison with a control with 

ordinal responses. The WMW test that relies on the proportional odds model to 

analyze ordered categorical responses may produce undesirable results when the 

proportional odds assumption fails to be valid. As indicated by our simulation and 

theoretical justification, the violation of the proportional odds assumption will lead 

to top high a probability of claiming a difference in treatment efficacy when in fact 

there is none. 

To rectify this problem, an alternative method is proposed. By considering the 

ordinal responses as manifestations of underlying continuous variables, we suggest 

the latent variable model, which facilitates comparisons of the moan efficacy of treat-

ments and accommodates the possibility of heterogeneous variances among different 

treatments. Both single-step and stepwise multiple testing procedures are examined, 

and the major contributions of the proposed methods are as follows. 

(a) Even though the proportional odds model has been widely applied, as many 

authors have indicated, the proportional odds assumption may not be valid. 

The undesirable consequence of the invalid proportional odds assumption is 

demonstrated in Section 3.3. The inflated probability of rejecting the true null 

hypothesis about the equivalence of treatment efficacy provides major support 

for our motivation to seek alternative methods of analyzing ordinal categorical 

data in such circumstances. 

(b) The latent variable model approach is proposed in this chapter to comparc 

several treatments with a control. The two-step estimation procedure is given 

for the identification and estimation of the latent variable model. 

(c) To conduct multiple testing, the test statistics are derived. In particular, 
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we derive the formulae for the correlations among the test statistics that are 

necessary for the testing procedures. 

(d) Based on the developed test statistics, several multiple testing procedures are 

introduced for the comparison of several treatments with a control. The merits 

of these procedures are compared and discussed and we recommend the use of 

the DTSD procedure which performs better than the others, especially when 

the correlations among the statistics are large. 

We proposed the use of a two-step procedure to estimate the model parameters. 

The procedure is easy to implement and is acccssible to users. Besides the two-step 

procedure, we have also explored the performance of another iterative approach 

(see Algorithm 5.1 in Chapter 5). Our findings indicate that this iterative method 

converges extremely fast and the final estimates are extremely close to the estimates 

obtained with the two-step procedure. Hence, for computational simplicity, the 

two-step procedure is sufficient to provide satisfactory estimates. 



Chap te r 4 

A Unified Framework for 

Treatment Comparisons 

4.1 Introduction 

In this chapter, we continue to study the comparison of treatments with ordered 

catcgorical responses. We established a unified framework that allows various pro-

cedures be recognized from a common perspective. 

The comparison of two independent treatments (or a treatment and a control) 

should be the most fundamental task in treatment comparison study. The Wilcoxon-

Mann-Whitney (WMW) test (Wilcoxon 1945, Mann and Whitney 1947) may be 

the most popular nonparametric method used to investigate the effect between two 

treatments that have ordered categorical responses. As a distribution-free method, 

the WMW test is also widely used to compare treatments with continuous responses. 

A comprehensive study of the WMW test is given by Lchmann (1975). 

When the responses have continuous distributions, it has been well recognized 

that the WMW test can provide an exact test of location when the two populations 

are identical in scale (see e.g. Wetherill, 1960), Wetherill (1960) pointed out that the 

difference in dispersion and the skewness of the distributions may have significant 

effect on the behaviour of the WMW test. The research of Prat t (1964) also showed 

that the level of the WMW test can not be preserved when the populations differ in 

54 
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dispersion. However, when the responses are ordinal, there is difficulty in directly 

interpreting the location and dispersion of the responses. 

For ordered catcgorical response, it is in many cases reasonable to consider the 

ordinal response as the manifestation of an underlying continuous variable (see e.g. 

McCullagh, 1980; Anderson, 1984). The most popular assumption for the distribu-

tions of the underlying continuous random variables is either normal distribution or 

logistic distribution. On the basis of such a latent variable model, it is convenient to 

interpret the location and dispersion of the ordinal responses, and many statistical 

inferences can also be conveniently conducted. The proportional odds model pro-

posed by McCullagh (1980) has been widely adopted in the literature. To compare 

treatments with ordered categorical responses, Whitehead (1993) proposed to use 

the log-odds ratio as a measure of mean treatment effect under the proportional 

odds assumption, and used the WMW test to investigate the treatment effect. By 

considering the ordinal response as the manifestation of underlying normally dis-

tributed random variable, Poon (2004) proposed a method to examine the possible 

treatment effect, which can be conveniently attributed to either location effect or 

dispersion effect based on the latent variable model. 

As we have studied in Section 3.3，the level of the WMW test with the alter-

native specified as proportional odds may approach to 1 when the underlying two 

distributions differ significantly in dispersion, even when they have the same loca-

tion. This finding, similar to Wetherill (1960) and Pratt (1964), indicates that the 

WMW test for ordered categorical responses can provide effective test of location 

only when the two treatments have identical scale in terms of the latent variable 

model. 

In the planning stage of an experiment, it is a very important issue to determine 

the required sample size to detect a significant treatment effect. In the literature of 

comparing two treatments with ordered categorical responses, several sample size 

determination methods have been proposed. For example, Whitehead (1993) gave 

a sample size formula that is derived based on the WMW test with the alternative 
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specified as proportional odds. Zhao, Rahardja, and Qu (2008) gave the sample 

size calculation for the WMW test with the alternative specified as the probability 

of one treatment being superior to the other. Although these methods used differ-

ent measures to quantify the treatment effect, they can be interpreted in a unified 

framework (see Section 4.2). 

It should also be widely recognized that the sample size determination meth-

ods are closcly related to the corresponding testing methods. In other words, the 

assumptions for the testing methods should also be satisfied when corresponding 

sample size determination methods are utilized. As the WMW test can provide 

exact test of location difference only when the two treatments have identical scales, 

the sample size determination methods (Whitehead, 1993; Zhao, Rahardja, and Qu, 

2008) that are based on the WMW test might be questionable when the two treat-

ments have difference scales (see the study in Section 4.6). This motivates us to 

find new testing and sample size determination method that can accommodate the 

difference in the scalcs of the two treatments. 

In this chapter, we propose a general analysis framework for the latent vari-

able model, which can be conveniently utilized to compare treatments with ordi-

nal responses. The underlying continuous random variables are allowed to have 

distributions in a large family, the location-scale distribution family. This family 

contains some very important distributions, such as normal distribution, logistic 

distribution, and Cauchy distribution. Thus, our latent variable model will cover 

the mostly adopted latent variable models in the literature, the latent normal dis-

tribution model and the latent logistic distribution model, which usually have good 

interpretations and applications. 

Based on such latent variable model, different treatment effect measures for or-

dinal responses can be considered in a unified manner. A two-step procedure is 

proposed for the identification and estimation of the latent variable model, where 

the location and scale parameters that characterize different treatments can be freely 
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estimated. Based on the proposed latent variable method, further statistical infer-

ences arc also provided. Subsequently, new sample size determination method that 

can accommodate the scale difference in different treatments is proposed. The newly 

proposed method is compared with the existing methods in the aspects of power and 

sample size determination. The problem of the existing sample size determination 

methods is also investigated in real example and numerical study. 

4.2 A Unified Consideration of the Treatment Ef-

fect Measures 

Suppose we observe two independent treatments with ordinal responses. The ordinal 

responses of the treatments are classified into one of the K ordered categories Ck, 

k = 1, • •. , K. Let TTjfc be the probability that the ordinal response of treatment 

i falls into category Ck, i = 1,2, k — I, - • • , K. Let 飞k 兀订 + ‘ • • + T̂ ik be the 

cumulative probability of treatment i up to category k, k = … , K — I. 

Following the arguments of McCullagh (1980) and Bartholomew (1980), we may 

consider the ordered categorical responses as manifestations of some underlying 

continuous random variables. In this chapter, we assume the underlying continuous 

random variables have cumulative distribution function F{x] /x, a), which belongs to 

the location-scale (L-S) family. If F is a member of the L-S family, then G{x)= 

F{p + a x � i s also a cumulative distribution function of the member of the L-S family. 

So, we may consider the cumulative distribution function F(x-, 0,1) with location 0 

and scale 1 as the standard distribution in the L-S family, and simply denote it by 

Fo{x). The probability density function of Fo(a;) will be denoted by fo(x). The L-S 

family includes many important distributions, such as the normal distribution, the 

logistic distribution, and the Cauchy distribution. These distributions usually have 

good properties and wide applications. For example, if F{x] /i, a) is the cumulative 
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logistic distribution function with location /i and scale a, then 

F � x ; /i, a ) = 1 , 一 a n d F � ( > )= 

The inverse function of Fq{x) is the usual logit function. Specifically, for 7 G (0,1), 

Fo-1(7) 二 logit(7) = l o g ( - ^ ) . 
1 - 7 

Treatment i is related to the distribution function F{x; a^) by a set of thresh-

olds Ti < ' ' • < Tfc—i, which have the same (but unknown) values for both treat-

ments, such that 

7 认 二 厂 i 二 1,2, fc 二 1，...，7̂  —1， (4.1) 

where Fq{x) = F{x] 0,1) is the standard distribution function of the L-S family. 

Equivalently, (4.1) can be written as 

Fo—1(7认）二 in - AO/cv 

Here, can be regard as a link function, which can be expressed in the following 

general form 

link(7,fc) 二 {Tk —…)/V” i = 1’ 2，A; = 1，…，— 1. (4.2) 

If the covariates of treatment i are considered, we only need to let = (3丁乂“ where 

x^ is the covariate vector and (3 is the coefficients. 

A special case is that the two underlying continuous distributions have equal 

scale parameters. Suppose cxi = (72 二 <7，then in this case, 

= 认）-(n — (4.3) 

Then the treatment effect between treatment 1 and treatment 2 can be expressed 

as 

A/e = link(72fc) — link(7i/J 二（/ii _ 内)/(7 = A, A; = l，-.,，/( —1. (4.4) 
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This unified L-S framework is general enough to align many popular models for 

analyzing ordinal categorical variables. The proportional odds model of McCullagh 

(1980) is a special case of (4.3) with the "link" taken as the logit function (or 

equivalently, Fq taken as the standard logistic distribution function). The treatment 

effect in terms of log-odds ratio, denoted by A � i s given by 

A妨=logit(72fc) — logit(7ift) 二 log ( 二 绍 = ( M l - (4,5) 

This is also the model with common log-odds ratio assumption used by Whitehead 

(1993), where the common log-odds ratio, denoted by is defined as 

A一二 log ( 彻 ; ) - �; ) f o r all 

The afore discussion allows us to have a new interpretation of the proportional 

odds model. The proportional odds model is a special case of the latent variable 

model in (4.1), and is obtained when (a) the distributions are logistic; (b) the 

logistic distributions for all treatments have equal scales. This interpretation for 

the proportional odds assumption has also been mentioned by Peterson and Harrell 

(1990). The test of the proportional odds assumption can be conducted based on the 

two interpretations. In fact, they can be conveniently performed by the tests (I) and 

(II) respectively in Section 4.3.2. The test of interpretation (b) is crucial, because the 

violation of this assumption will lead to questionable inference results (see the study 

in Section 4.6). The existing test methods for the proportional odds assumption did 

not depend on such an interpretation (see e.g. Brant, 1990; SAS Proc Logistic). 

Thus, our testing method based on the new interpretation of proportional odds 

model provides a useful supplement to the significance tests for the proportional 

odds assumption. 

When FQ in (4.1) is taken as the standard normal distribution function $ (or 

equivalently, taken the "link" in (4.2) as probit function), we obtain the latent 

normal distribution model of Poon (2004). Note that the model based on (4,1) or 

(4.2) is not identifiable. Some constraints must be imposed to the parameters to 
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achieve model identification. Poon (2004) gave a maximum likelihood estimation of 

the unknown parameters with some constraints imposed. Based on Poon's (2004) 

model, the treatment effect can be attributed to either location effect or dispersion 

effect. When the underlying normal distributions have equal variance, say cr, the 

treatment effect, denoted by Anorm, can be directly given by 

Anorm = ^"'(jlk) — = ("2 — JM)卜, (4.6) 

The Wilcoxon-Mann-Whitney test is also a widely used method to compare two 

treatments with ordered categorical responses. This WMW test interprets the treat-

ment effect as the probability of one treatment being superior to another treatment. 

Specifically, let Yi be the ordinal variable corresponding to treatment 1，and Y2 

be the ordinal variable corresponding to treatment 2. Then, the treatment effect 

measure, denoted by A^y腳，is given by 

A醒叫= P { Y , < n ) + 0.5P(yx = Fs) (4.7) 

The equivalence of the two treatments corresponds to l̂ wm-w — 0.5. Let 71 = 

( 7 1 1 , . . ‘，7i(x-i))' and 7 2 = (721, • • • ’ 72(k—i))'. The treatment effect measure 聊 

can also be expressed as (Ryu and Agresti, 2008) 

八職 W = 71^72 + 0.5(1 + J1(K~1) — 72(K~-I)), (4.8) 

where 
^ 0 0.5 0 0 \ 

-0 .5 0 0.5 0 

D = 

0 … 0 -0 .5 0 0.5 

0 … 0 0 —0.5 0 , 

Thus, the treatment effect measure /\wmw is expressed as a function of and the 

7认 can be linked with the underlying distribution in the form of (4.3). When the 

parameter form of the underlying distribution is specified, the estimate of l̂ wmw 
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can be derived based on the maximum likelihood method. Note that the WMW 

test does not depend on a specific form of the underlying distribution, but it can 

provide exact location test only when the underlying distributions have equal scale 

parameters. 

4.3 A Framework for the Analysis of the Latent 

Variable Model 

4.3.1 Model Estimation 

The latent variable model is widely used for the analysis of ordered categorical 

responses, see e.g. Anderson and Philips (1981), Qu, Piedmonte and Medendorp 

(1995), Bekele and Thall (2004), Todem, Kim, and Lesaffre (2007), Leon-Novelo et 

al. (2010). A common feature of these models in the literature is that the scalc 

parameters of the underlying distributions are either assumed to be identical or 

fixed at some specific values. We now outline our proposed latent variable model as 

follows, which is more flexible and allows for heterogeneous scales across different 

treatments. 

Following the idea of the above section, we still relate the observed ordinal re-

sponse with a underlying continuous random variable with distribution belonging 

to the L-S family. We generalize the two-treatment model and consider G inde-

pendent treatments with ordinal responses. We continue to assume that treatment 

i = 1，•. •，（7，is related to the underlying random variable Xi with distribution 

F(x\ fii, ai) through a set of thresholds Ti < • • - < tk-i as in (4.1). Or equivalently, 

the ordinal response of treatment i falls into category Ck, k — 1, • • • , K, if and only 

if Tfc-i < Xi < Tk, where tq = —oo and t k = oo. We again assume a common set of 

thresholds for all treatments. 

Let rii be the total number of subjects receiving treatment i) and riik be the 

number of subjects receiving treatment i with outcomes classified into category Ck-
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In addition, let N = ly be the total sample size. Then, the log-likelihood 

function for the samples of the G treatments is given by 

q k 

L⑷二 兀认⑷)， （4.9) 

where 

Ui Oi 

Here, Q — (t', ^q)' is a vector containing all the unknown parameters, with t'= 

( t i , … ， t k - i ) a n d O'Q = ( / i i , … , / i G , c r i , • • • . c f g ) -

Under the specification of the latent variable model, the dispersion effect of the 

G treatments can be investigated by testing the following null hypothesis 

Hq ： ai = • • • = (To- (4,10) 

Similarly, the location effect of the G treatments can be investigated by testing the 

null hypothesis 

HQ : fti =…二 flG. (4.11) 

Here, the parameters (li and cr̂  that characterize different treatments are our 

interest of study. However if all the parameters involved in (4.9) are unknown, the 

latent variable model is not identifiable. Following the arguments as in Section 3.4， 

we propose the following two-step procedure to identify the model and produce 

parameter estimates. 

Step 1. Determine the values of the thresholds: let Xs �F{x\0,1), 1 < s < G, and 

use the responses of treatment s to determine the values of the thresholds. 

Step 2. Obtain the estimates of the location and scale parameters that characterize 

different treatments: with the thresholds fixed at the values obtained in step 

1，estimate jM and (ĵ , i — 1, • • • , G. 

This two-step estimation procedure with the thresholds determined by treatment 

s is equivalent to specify treatment s as a reference with location 0 and scale 1 for 
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treatment comparison. Note that such specification of treatment s as a reference is 

achieved not directly through fixing the parameters of treatment s but by fixing the 

thresholds. This will avoid the estimation of the complicated correlation structure 

between the thresholds and the other parameters, and thus make following inferences 

more convenient. The treatment comparison as stated in (4.10) and (4.11) can then 

be performed in a relative sense. We have derived a theoretical result that the 

selection of different treatment to determine the thresholds in step 1 has no effect 

on the testing results for large sample size (see Lemma 4.1). A simulation study 

is also conducted to study the performance when the sample size is small. It is 

found that the testing results are almost the same when use different treatments to 

determine the thresholds in step 1, and the difference is negligible. Without loss of 

generality, in this chapter, we use treatment 1 (s—1) to determine the thresholds. 

The log-likelihood function for the step 1 estimation procedure is 

k 

Li{r) = ^risk log(7rsA:(T)), 
fc=i 

where 

TT诚(r) 二 Fo(rfc) — Fo(rfc_i). 

The MLE of r can be given in closed form by 

(4.12) 

A J^-I^RISI H 1- N S K . 

Tk = FQ ( )， k = l,'-- -1. (4.13) 

The log-likelihood function for the step 2 estimation procedure can be written 

as 
g k 

L2{eo) 二 X I XI"认 log(兀认(仇))， (4.14) 
1—1 k^l 

where 

T T i f c ( 礼 ） = - i ^ ( Z k l ^ ) . (4.15) 
CTi Cfi 

The MLE of Oq, denoted by §0, involved in (4.14) can not be derived in a closed 

form. Numerical methods must be applied. The score function and the Fisher infor-

mation matrix of the log-likelihood function (4.14) are derived in the Appendix D. 
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So, the Newton-Raphson method can be applied efficiently to obtain Gq. From the 

Appendix D, we can also derive the variances of the estimates in a closed form. 

Specifically, 

Vm = — • cr,)’ / = 1, •• • , G, 
Til 

where, 

仏 “ �A fn \ 1 

and 
如0 ” crj — 6o{iJ,„ a,) • a. 

1 K 1 
丄 — 丄 H fTk — n fTk-1 ~ 

二:£ 丄 . [ / o ( ^ ) — M ^ ^ ^ ^ ) ] 
沉tk Cr, 0\ 

(4 16) 

(4.17) 

— 一 (Tk-i 一 

似 / i ” � ) = £ 丄 . [ ( r , — - ( n - i -
二 TTifc � 

In these expressions, n̂ k is given by (4.15), and fo(^) is the p.d.f. of standard 

distribution 

Note that, under the two-step estimation procedure, for the treatment s with 

fig 0 and (7s ==： 1, wc have 

= —.(^(0,1). (4.18) 

In the context of comparing only two treatments, the MLE of 么霞爪 in (4.6) can 

be obtained via the aforementioned framework, with the Fq in (4.15) chosen as the 

standard normal distribution. For the estimation of A— and A 丽 切 , i f we do not 

relate the ordinal responses to latent continuous variables, the likelihood function 

can be simply given by 

2 K 
L = ^ ^ n ^ f c log{7rifc) 

1—1 k~l 
2 k 

log(7 f̂c — 7z(fc-i)) (4.19) 
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where 7̂ 0 二 0 and jiK = 1. The MLE for 卞k are % = (tin H hUn^J/ni, i = 1,2, 

k = 1, - • • ,K - 1. By applying the relationship between 么丽切 and 7jfcS as in (4.8), 

we can derive the MLE of A漏切 as 

K k-l K 
^wmw = —1 几 u + 0.5 .(几1 叱)一1 nikn2k-

k-=2 1=1 k=l 
This is the usual WMW test statistic (see e.g. Ryu and Agresti, 2008; Zhao, Ra-

hardja, and Qu, 2008). If we consider the relationship between the common log-odds 

ratio A log and the 7认 s as in (4.5) under a proportional odds assumption, the MLE 

for Aiog can be derived as (Dark, Bolland, and Whitehead, 2003) 

Aiog = Z/V, 

where the detailed expression for Z and V will be given in Section 4.4.1. 

If wc specify a latent variable model and use (4.1) in the likelihood function 

(4.19), the distribution of treatment responses will have convenient location and 

scale interpretations, and the corresponding treatment effects can be expressed by 

the parameters of the underlying distributions. Based on our proposed estimation 

procedure, the estimates of 7认s in terms of the parameters of the latent variable 

model can be given by 
/V A 

lik = i-1,2, k ^ l r -
o-i 

Thus, from (4.8) and (4.5), we can derive the estimates of A穩yj and Aiog, respec-

tively, based on the latent variable model. In fact, the common log-odds ratio 

can be directly estimated based on the new interpretations on the proportional odds 

model. More specifically, we may specify the logistic distributions for the underlying-

random variables X“ i — 1,2，and assume them have equal scales. On the basis 

of the two-step estimation procedure, this equal scale assumption is equivalent to 

assume Xi � 1 ) and X2 �L ( / i 2 , 1 ) , where L(•，•) denotes the logistic distribu-

tion, Prom (4.5) and the two-step estimation procedure, the the common log-odds 

ratio Aipg can be directly derived as 

^log = ih — {h. 
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So, this framework for the analysis of ordinal data via the latent variable model 

subsumes the existing methods. The validation of the existing methods usually 

depends on the equal scale assumption. This framework can give convenient inter-

pretation and estimation of the location and scale of the treatments with ordinal 

responses. Moreover, some further statistical inference can be conducted based on 

such framework and will be detailed illustrated in the following subsection. 

4.3.2 Statistical Inference 

On the basis of the proposed latent variable model and the estimation procedure, 

many statistical inferences can be conducted conveniently. 

(I). The goodness-of-fit test 

To test the goodness-of-fit of the proposed model, the classical Pearson chi-square 

statistic that compares the observed cell counts and the model-based expected cell 

counts can be given by 

… 冗 詹 . (4.20) 

The deviance statistic also compares the observed cell counts and expccted cell 

counts, but gives the test statistic in the form of a likelihood ratio test. 

g k 
riik 

n而 

g k g k 

=—2 J ] X I Thk log7r,fc((9) + log ^ 
1=1 k^l k=l ^ 

(4.21) 

These test statistics are distributed as central chi-square with degrees of freedom 

df—G(K — l) — (p—2), where p is the dimension of Since in the two-step estimation 

procedure, the location and scale parameter of treatment s are actually fixed, p~2 

can be regard as the effective dimension of 0. If the value of the test statistic exceeds 

the corresponding upper a critical value, the specified underlying distribution should 

be rejected. It should be noted that if G(K — 1) < p —2, the model is not identifiable; 
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and if G{K — 1) = p — 2，the model is perfect fitted. Only when G{K - 1) > p - 2, 

the test of goodness-of-fit becomes sensible. 

In the analysis framework, we use the underlying L-S distribution family to model 

the ordinal responses. Although other distributions are also the alternatives, the L-S 

family can usually provide adequate model fit, since the values of the thresholds, 

the locations, and the scales can be 'adjusted' in a very flexible manner to fit the 

ordinal data according to the maximum likelihood principle. 

(II). The test of dispersion effect 

When the underlying distributions are properly specified, the dispersion effect 

among the G treatments can be investigated by testing the null hypothesis (4.10). 

In this case, we may consider the following restricted log-likelihood function in the 

step 2 estimation procedure. 

g k 

U i d i ) = E E n 认 k)g;(7r 认(6>i))， (4.22) 
i=l k=l 

where, 

a a 

Here, a is the common scale parameter in (4,10), and 9i — (/ii, •. • , /jiq, a)' is the 

vector containing the unknown parameters. The score function and the Fisher in-

formation matrix for the likelihood function (4.22) are given in the Appendix D. So, 

it is easy to obtain the MLE of Oi. Then, the following likelihood ratio test can be 

utilized to test (4.10), which will asymptotically have a chi-square distribution with 

degree of freedom df=(? — 1. 

g k . 

LRT = -2L2(0i) + 2L2(4) = n 认 l o g ^ ^ ^ , (4.23) 
i=i fc二 1 ^ik{Oo) 

/s A. 

where 6i and Oq are the MLEs of 9i and Oq involved in (4.22) and (4.14), respectively. 

(III). The test of location effect 

To test the null hypothesis (4.11), a overall likelihood ratio test as in (11) can 

also be adopted. However, this overall test can not provide further information on 
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pair wise location effects between any two treatments. For this purpose, we may 

adopt the following multiple testing strategy. 

From the asymptotic theory of maximum likelihood estimation and the analysis 

in Scction 4.3.1, under suitable regularity conditions, for 1 < / j < G, 

A厂 A广 i^i — 
聊,1) 

So, we may use the following statistic to test the location effect between treat-

ment I and j. 

Z” 二 , " � "J — ’ (4.24) 

where (jJ with a hat denotes that the value of .) is evaluated based on the 

estimates of r,仏，and o\. From the consistency property of MLEs and Slutsky's 

theorem, Z” will also converges in distribution to iV(0,1) under the null hypothesis 

(4.11). 

The null hypothesis (4.11) can be tested by some multiple testing procedures 

based on the statistics given in (4.24). For example, the multiple testing of several 

treatments with a control can be conducted as in Chapter 3. In addition, the pairwise 

comparison can also be conducted by testing all pairwise treatment effects. In these 

multiple testing procedures, the correlations among the test statistics arc usually 

veiy informative. They can be derived conveniently. Specifically, for all unequal z, 

J, and / ’ 

Corr(Z小 Za) = 1/小子:H:�+ 工 + 1)， a风…, c r �+ nj , 
‘nt cr^S{fij，(Tj) ?v ，a^) 

and Corr[Z”, Z^ty) — 0. 

(IV). Model selection 

The underlying continuous distributions in our discussion are limited to the L~S 

family. A nature question is how to selcct the most suitable distribution from this 

family for a given ordinal data set. For this issue, we may use the model selection 
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criteria, such as AIC and BIG, to determine the suitable underlying distribution. 

This two criteria can be given by 

AIC = -21og-likelihood^„^(0) + 2dim(^) 

BIC = -21og4ikelihood_J0) + logiV . dim(0)， 

where diin(0) denotes the number of parameters in B, and N is the total sample 

size. 

The general idea behind these criteria is to penalize the maximum log-likelihood 

function by the complexity of the model. The BIC clearly has a stronger penalty 

for complexity. Since our model has the same complexity (the same number of 

unknown parameters) for different underlying distributions, The usage of AIC or 

BIC as a model selection criterion is equivalent to the use of the deviance statistic 

(4.21). Note that the second term in (4.21) is corresponding to the log-likelihood 

function of the saturated model. So, we suggest to use the deviance statistic (4,21) 

as a criterion to select the proper underlying distribution. For example, if the 

deviance statistic for the latent logistic distribution model is larger than that for 

the latent normal distribution model, it is more appropriate to use the latent normal 

distribution to model the observed ordinal data. 

At the end of this section, we want to point out that the testing results of the 

treatment effects (the dispersion effect and location effect) based on test statistics 

(4.23) and (4.24) will not be influenced by the selection of different treatment to 

determine the thresholds in step 1, This result can be summarized in the following 

lemma. The proof of the Lemma 4.1 is given in Appendix C. 

Lemma 4.1 When sample size is large, the different selection of treatment s in step 

1 of the two-step estimation procedure has no effect on the testing results. 
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Treatment C2 .‘ • CK Total 
Treatment 1 nil ni2 •. ,• riiK ni 
Treatment 2 n2i ^22 ‘ ’ • n2K n2 
Total Si 5*2 ‘ • • SK N 

Table 4.1: Ordinal data of two treatments organized in contingency table 

4.4 The Power and Sample Size Determination in 

the Comparison of Two Independent Treat-

ments 

In this section, we consider the comparison of two treatments with ordinal responses 

by utilizing the proposed latent variable method. The corresponding sample size 

determination based on the latent variable method is also proposed. This newly 

developed method is compared with the existing methods in terms of power and 

sample size determination. 

We first outline two existing testing and sample size determination methods for 

the comparison of two treatments with, ordered categorical responses. The ordered 

categorical observations can be organized in Table 4.1. 

4.4.1 The Existing Methods 

1. The Wilcoxon-Mann- Whitney test (WMW) 

The WMW test quantifies the treatment effect by the competing probability 

given in (4.7). The null hypothesis that indicates there is no difference between the 

two treatments is given by 

Hq : ^wmu) ~ 0-5 

The WMW tests the null hypothesis by constructing a z-statistic 

^wmw — 0-5 nr/r, 1� 
= - T - ^ r �# ( 0 , 1 ) , 

^Ho K^wmw ) 
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where 

K k-l K 

^wmw =(几1几2)一 1 ^ n2fc • ^ nil + 0.5 • (nin2)-i ^ niijisk, 
fc—2 I 1 1 

and 

玲 腳 ) = — 12N{N - l)mn2 经 "《— S k � 

is the variance of A^mw under the null hypothesis (Lehmann, 1975, p.20), where 

Sk = nifc + n2fc, /c = 1, •. .，K, 

Wc only consider the two-sided alternative hypothesis. The null hypothesis will 

be rejected with significance level a, if 

\̂ wmw — 0.5j > Zal2 . ^HQ{^wmw) 

where z…2 is the upper |-level significance point of standard normal distribution, 

To consider the sample size determination issue, let 

nr. 几 2fc ri2k nih nik , ni = Nt, 712 二 iV 1 —力)，Pk =——=h-7, Qk = 一 = and 
n2 A'(l — t) Til Nt 

Sk = riik + n2k = N{tqk + (1 — t)pk]. 

For given significance level a and power 1-/3, the sample size N for two-sided 

hypothesis can be obtained by solving the following equation 

/ - \ 2 / . \2 
I 么wmw — 0.5 \ I 0-Hai^wmw) \ 

= Z a / 2 + — ’ 
\ Crffol^tumuj) / \ Crffo(Awmu) / 

where crHa[&wmw) is the standard deviation of A^mw under the alternative hy-

pothesis. Zhao, Rahardja, and Qu (2008) used the assumption that cjHaiAwmw)= 

o-Hoî wmw)^ and derived the sample size formula for the WMW test as follows. 

/V — ( 之 + 即 — + . . 9 � 
觀叫= 1 2 � 1 - � ) ( A _ J 2 ’ （4.25) 

where A觀叫=Pk + 0.5 J^�=i PkQk^ which is expressed in terms of the 

cell proportions. 

2. Whitehead (1993) testing method (Whd) 
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Whitehead (1993) proposed a method to measure the treatment effect in terms 

of log-odds—ratio based on the proportional odds assumption. That is, (4.5) holds 

true for k = I, K — I. Here we denote the treatment effect measure based 

on Whitehead (1993) method by Ayjhd, Specifically, the common log-odds ratio is 

defined by 

V7lfc(l -J2k)j 
The null hypothesis of no treatment effect is given by 

Ho : A—d = 0. 

Whitehead (1993) gave the test statistic Z that follows approximately normal 

distribution with mean A^hdV and variance V, where 

1 K 
^ 二 八厂丄 1 "-ifcl̂ Sfc — 

and K 
y 二 n讽 N E §

 3(iV + l)2 

In the expression of Z, L2k and U2k are the lower and upper cumulative totals of 

treatment 2，which can be calculated by 

=几21 H h n2(fc-i), for A; = 2, • • • and 

Ihk = ri2(k+i) + • • • + n2K, for /c = 1, • • • - I , 

with L21 ~ U2K = 0. 

For a given significance level a , the null hypothesis will be rejected if 

|Z丨 > • Za/2-

Whitehead (1993) pointed out that this test statistic is essentially the MWM test. 

So, the power of this test should be identical with the power of the WMW test. 

Our simulation study (see Table 4,2 in Section 4.4,3) further verifies this argument. 
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Dark, Bolland, and Whitehead (2003) derived that the MLE of the common log-odds 

ratio Am is Z/V. 

The power of the test against the alternative Ha : ^whd = ^whd 0 is given by 

power = P[\Z\ > • z^j2\Ha) - 1 - / 3 . 

This reduces to ^a/2 + Z 日 2 
八a 
^whd 

We still suppose n: 二 N , t and n2 = N • {1 - t), 0 < L < 1. Let pk =暂.T h e n , 

the sample size formula can be given by 

N叨M = 3 如 + ^ r (4,26) 
t . U - 广 ( 1 - 湾 ） 

Theoretically, the sample size formula (4.26) should produce the same result as 

(4.25) for given data set, since they are essentially derived from the same test statis-

tic. Our calculations (see Table 4.3 in Section 4.4.3, and Table 4.6 in Section 4.6) 

also verify this point. 

4.4.2 The Latent Variable Method 

In this subsection, we will give a detailed illustration of the latent variable method 

in the comparison of two treatments with ordinal responses. The corresponding 

sample size determination method based on the latent variable model is also pre-

sented. We focus on the detection of the location effect between two treatments 

while accommodate the heterogeneous scales in the treatments. 

From the arguments in Section 4.3.1 and the Appendix C, the comparison of 

treatments is actually in a relative sense on the basis of the analysis framework. 

Without loss of generality, we may assume the true underlying distributions of the 

two treatments are F{x] ^i, ai) = F{x] 0,1) for treatment 1 and F[x] fi2-, 1̂ 2) for 

treatment 2. We will discuss two important latent variable models, the latent normal 

distribution model and the latent logistic distribution model, and denote this two 
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methods by LNorm and LLogis, respectively. The corresponding quantities for the 

two methods are distinguished by adding subscript norm and logis, respectively. 

Thus, the null hypothesis of no location effect can be given by 

Ho • ̂ norm = "2 — Ml = 0 if F{x； (M, (Ji) = N(jli, 0"̂ ), i = 1, 2, 

or, 

Hq ： Aiogis 二 fi2 - fH 二 0 if F(X', M'i, cTi) = cr̂ ), i = 1,2, 

where iV(.,.) and L(-, •) denote the normal distribution function and the logistic 

distribution function respectively. 

From (4.24), we can test the null hypothesis by constructing the following z-

statistic 

知 ^ ^ ^ 二 . ^ 一 知 〜 卵 ’ 1). (4.27) 

Thus, the null hypothesis will be rejected with significance level a, if 

IA2 - All > 

If the alternative hypothesis is specified as Ha ： = 112 — f^i — ^norm + 0 for 

the LNorm method, and ; = /i2 — /ii = ^logis + • for the LLogis method. 

Then, the power of the test against the alternative is given by 

power = P(|A2 一 All > = l~ (5. 

This reduces to _ 

{Za/2 + 印 二 
^Aa-Ai 

We still denote rii 二 Nt,几2 = N(1 — t), 0 < t < 1. Then, the required sample 

size to detect a significant location effect equal to A � w i t h power 1 — P can be 

calculated by 

二 ( 一 〒 _ ， 1 ) ] ， . LNorm’, (4.28) 
H-̂  — ^JK^norm) 
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AWs 二 ( 一 二 - 幅 if L L - s . (4.29) 

A special case of the above discussion is that the two treatments have equal scales. 

For this special case, the treatment effect is completely attributed to location effect, 

and it is equivalent to assume underlying distributions are F(x; /ii, 1) for treatment 

1 and F{x; 1) for treatment 2 under the analysis framework. Thus, for this equal 

scale case, the calculation of Nnorm and Niogis can also be performed by (4.28) and 

(4.29), respectively, only with the replacement of by 1 in the formulae. 

The implementation of formulae (4.28) and (4.29) depends on a prior study of 

the two treatments and the derivation of the estimates of r , /i2, and G2- Usually, in 

the design stage of an experiment, it is difficult to derive the estimates of fi) and (72. 

For this case, we may take the equal scale assumption, and let /i2 = A® by noticing 

that A" — /i2 — /ii with /ii = 0 under the analysis framework. Therefore, we propose 

the following sample size determination formulae for the case no prior information 

available. 

^ — ( 之 a/2+印)2[力二,讯，1) + ( 1 — 力 ) # 0 , 1 ) ] 
(4.30) 

jTj Oa/2+^)2M(Af。。“，l) + (l — f)A0，l)l , 
A W 广 啦 — 魏 ’ 愚 释 (4,31) 

The sample size formulae (4.30) and (4.31) only require the ccll proportions of treat-

ment 1 (to determine the thresholds), which usually serves as a reference or control 

treatment and it is relatively easy to derive these cell proportions. However, the de-

termination of Nyjrnw and N叨hd depends on the cell proportions of both treatments, 

which is not so convenient to implement. 

The sample size formulae (4.28) and (4.29) are derived by specifying treatment 1 

as a reference with underlying distribution F(x] /ii, ai) = •F(;z;; 0，1). The sample size 

formulae that were derived by specifying treatment 2 as a reference should produce 

the same results as (4.28) and (4.29), respectively. A theoretical proof can be simply 

worked out by following a similar argument as in Appendix C. Since it is a intuitive 

result (also verified by calculation), we do not present the details here. 
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Finally, we want to point out that, when the underlying variables have equal 

scalcs, this newly developed LLogis method is actually the Whd method, which 

is derived based on an alternative interpretation of the proportional odds model 

Specifically, when the two treatments have equal scales, Aioĝ s 二 —A—d, and these 

two methods have the same power of test (see Table 4.2) and almost the same 

sample size results (See Table 4.3). A combination with the discussion at the end of 

Section 4.4.1 implies that these three methods, the WMW, the Whd, and the LLogis 

method arc equivalent in terms of power and sample size determination, when the 

treatments have equal scales, 

4.4.3 The Comparison of Different Methods 

1. Power comparison: a simulation study 

A simulation study is conductcd to compare the power of the four testing meth-

ods, WMW, Whd, LNorm, and LLogis. The underlying distributions, F{x-, fi^, cr), 

are assumed to have equal scalc parameters for the two treatments and belong to 

the L-S family. The true underlying distributions (TUD) chosen for the simulation 

are normal (N(仏’ a) with mean (î  and standard deviation cr), logistic ( L ( / i � a ) with 

mean /û  and scalc cr), and Cauchy (C(仏’ a) with location /ij and scale cr). The 

thought behind these choices is to include average-tailed and heavy-tailed distribu-

tions. When continuous deviates are generated from theses distributions, we can 

derive the ordinal data for different treatments based on the latent variable model 

and a set of fixed thresholds. In our simulation, the true thresholds used to generate 

ordinal data are set as (-1.5,-0.5,0.5,1.5) for all three types of true underlying distri-

butions. We assume the two treatments have equal sample size rii — n �— n. The 

nominal significant level is fixed at a — 0.05. The powers of different testing meth-

ods are presented in Table 4.2, including the estimates of the type-1 errors (marked 

with asterisk). All these simulation results are based on 100,000 replications. 

From the simulation results, we find that the four testing methods can control 
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TUD Size 
n 

Power (Type-I error— 1 Size 
n LNorm LLogis Whd WMW 

N(0,1) N(0,1) 1000 0.0498* 0.0499* 0.0495* 0.0495* 
N(0.2,2) N(0.2，2) 1000 0.0508* 0.0514* 0.0511* 0.0511* 
N(0，1) N(0.1,l) 1000 0.5348 0.5195 0.5180 0.5180 
N(0,1) N(0.2,l) 500 0.8460 0.8346 0.8331 0.8330 
N(0，1) N(0.2,l) 200 0.4654 0.4526 0.4501 0.4489 
N(0.1,2) N(0.4,2) 500 0.6008 0.5997 0.5996 0.5996 

L(0,1) L(0,1) 500 0.0472* 0.0481* 0.0478* 0.0477* 
L(0.1,2) L(0.1,2) 500 0.0485* 0.0482* 0.0493* 0.0492* 
L(0，1) L(0.1,l) 1000 0.2289 0.2353 0.2347 0.2345 
L(0，1) L(0.2,1) 500 0.4178 0.4307 0.4300 0.4298 
L(0，1) L(0.3,l) 500 0.7312 0.7442 0.7448 0.7447 
L(0.1,2) L(0.4,2) 500 0.2596 0.2603 0.2605 0.2604 

C(0,1) C(0,1) 500 0.047(r 0.0467" 0.0467* 0.0464" 
C(0.2,2) C(0.2,2) 500 0.0460* 0.0458* 0.0465=^ 0.0465* 
C(0,1) C(0.1,l) 1000 0.1884 0.2090 0.2086 0.2085 
C(0,1) C(0.2,l) 500 0.3326 0.3800 0.3801 0.3792 
C(0,1) C(0.3,l) 500 0.6421 0.7097 0.7102 0.7097 
C(0.1,2) C{0.4,2) 500 0.2806 0.2916 0.2910 0.2908 

Table 4.2: The power of different testing methods. 

the type-1 error at 5%. The simulation results on the power verify our argument that 

the three methods, WMW，Whd, and LLogis have almost the same power. Another 

important yet intuitive finding is that the LNorm method will be more powerful 

when the underlying variables have average-tailed distributions, and the other three 

methods will be more powerful when the underlying variables have heavy-tailed 

distributions. This finding can serve as a rough criterion in selecting the underlying 

distribution for the model by observing the distributions of the ordinal responses. 

2. Sample size comparison: an accurate calculation 

The sample size formulae of different methods are function of the significance 

level a, allocation ratio t, power 1 and the treatment effect A. In this section, we 

conduct a calculation to study the sample size determination of different methods, 

where the treatment effect is measured by the location parameters of the underlying 
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distributions. The underlying distributions are still assumed to have equal scales. 

Without loss of generality, we assume this identical scale is 1. 

Since both the LLogis method and the Whd method depend on the underlying 

logistic distribution assumption and the LNorm method depends on the underlying 

normal distribution assumption, while the WMW test does not depend on a spe-

cific form of the underlying distribution, here we only consider the usage of logistic 

distribution and normal distribution as the underlying distributions. Specifically, 

we set N{0,1) and 1) as the underlying normal distributions, and L(0,1) and 

Z/(A, 1) as the underlying logistic distributions. Thus, the common treatment effects 

are measured by A. When the values of the thresholds (set as (-1.5,-0.5,0.5,1.5) in 

our calculation) are specified, the cumulative probabilities 7ifcS can be calculated 

based on the underlying distributions. Then, we may calculate the different treat-

ment effect measures, A„orm> �ogis, ^whd-> and A藝切,and the resulting sample size 

of different methods. 

When the underlying distribution is specified as normal distribution, we only 

consider the sample size based on the LNorm method and the WMW method; and 

when the underlying distribution is logistic distribution, we only calculate the sample 

size base on the LLogis method, the Whd method, and the WMW method. Because 

only in these cases the corresponding treatment effects can be derived exactly. The 

calculation results are presented in Table 4,3. 

Prom the calculation results in Table 4.3, when the underlying distribution is 

specified as logistic, these three methods, LLogis, Whd, and WMW produce very 

close sample size results. The sample sizes derived by LLogis and Whd are almost 

the same, and they are a little less than the result derived by the WMW method. 

When the true underlying distribution is normal, the required sample size of the 

LNorm method is also a little less than that of the WMW method. This means 

that the latent variable method is more efficient that the WMW method, The same 

result can also be drawn from the power comparison in Table 4,2. 
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Retinopathy status 
Group None N on-prolifer ative Advanced Total 
Non-smoking 
Smoking 
Total 

191 (66.32%) 
197 (60.62%) 

388 

42 (14.58%) 
76 (23.38%) 

118 

55 (19.10%) 
52 (16.00%) 

107 

288 (100%) 
325 (100%) 

613 

Table 4.4: Retinopathy category by smoking status for 613 diabetic patients. 

4.5 A Real Data Example 

We consider a six-year follow-up study by Bender and Grouven (1998) where 613 

type-1 diabetic patients were studied for associations between retinopathy status 

(RS) and smoking (SM), adjusted for the known risk factors, diabetes duration (DD), 

glycosylated hemoglobin (HlC), and diastotic blood pressure (DBP). Ratinopathy 

status is defined by three ordered categories: 0=no retinopathy; 1=non-proliferative 

retinopathy; and 2=advanced retinopathy or blind. Smoking status is a binary 

variable which equals to 1 if the patient smoked during the study and 0 otherwise. 

This real data example is also studied by Rabbee, Coull, and Mehta (2003) and 

Zhao, Rahardja, and Qu (2008), respectively, where both of them focus on only 

the effect of smoking on the retinopathy status without controlling for the other 

covariates. The data set they considered are displayed in Table 4.4. Rabbee et 

al. (2003) use an approximate and improved power function of Whitehead's (1993) 

test statistic to study the example, and show that the power for the given sample 

size is too low to detect a significant treatment difference. Rabbee et al. (2003) 

suggested that a larger sample size should be used in the planning stage of this 

study, while they did not give a clear sample size formula for their method. Zhao 

et al (2008) studied the power and required sample size for this example using the 

WMW test. The WMW test on the data is not significant with a p-value > 0.3. The 

total sample size for some different alternatives of the WMW test based on nominal 

power requirement are also calculated in their paper. 

In this section, we give a study of the retinopathy data using our proposed latent 
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variable method. For this data set with two treatments and three categories, the 

model is perfect fitted. It is not sensible to consider the model selection by the 

dcviance statistic (4,21). Thus, in this scction, we give the analysis results based on 

both the LNorm method and the LLogis method. We add subscript norm or logis 

to the quantities to distinguish the estimation results of the two methods. 

We consider the Non-smoking group as treatment 1 and the Smoking group 

as treatment 2 in the estimation. Prom the step 1 procedure (with 5 = 1), we 

get the estimates of the thresholds, Tnorm — (0.4212, 0.8743) and Tiogis ~ (0.6776, 

1.4437). Prom the step 2 procedure, we obtain that Oô norm ~ (Ai,斤i，A2, = 

(0.0, 1,0, 0.2529, 0.6249) and 一s = (Ai, "2,夕2) = (0.0, 1.0, 0.4083, 0,6244). 

The values of the —2 times log-likelihood are given by —2 • Z/2(成，norm)二 1109-43 and 

- 2 . L 2 … = 1109.43. 

We conduct the testing of the following two null hypotheses 

Hqi : a2 = cTi = (7， and, i/02 : — /ii = 0. 

The likelihood ratio test (4.23) can be used to test Hqi. The values of the —2 

times log-likelihood with the constraint <72 二 巧 = a are given by —2 • ̂ 2(^1,norm) 

=1116.89, and —2 •无2(么彻“）：1116.51. Thus, we have LRTnorm = 7.46 and 

LRTiogis ^ 7.08. The comparison of these values with the critical value of the chi-

squared distribution with 1 degree of freedom (the corresponding p-values less than 

0.01) implies that the null hypothesis Hqi should be rejected with high significant 

level. This phenomenon of unequal dispersions of the two groups has not been 

accommodated or observed in any of the analysis in the literature. 

Since this two treatments have significant dispersion effect, we use the test statis-

tic (4.27) that involves the dispersion information for the test of Hq2. After calcu-

lation, we derive that Znorm — 2.079 and Ziogis ~ 2.119 with the corresponding 

p-values Pnorm 二 0.038 and piog%s — 0.034, respectively. However, if we use for-

mula (4.27) under the equal scale assumption (replace by 1 in the formula), the 

corresponding results are Znorm = 1-868 with pnorm = 0.062, and Zi—s 二 1.904 
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Effect 
么 norm 

^norm Nnorm Effect 
么 logis 

Nla gis Nio �gis Effect 
么 norm ti t2 ti t2 

Effect 
么 logis h t2 h t2 

0.15 3165 3045 4220 4164 0.2 4468 mi 6081 6008 
0.20 1780 1712 2285 2248 0,3 1986 1910 2573 2532 

0.2529 1113 1071 1379 1353 0.4083 1072 1031 1328 1303 
0.30 791 761 953 933 0.45 882 849 1077 1055 
0.35 581 559 683 667 0.50 715 688 858 840 
0.40 445 428 512 499 0.60 496 477 580 566 
0.50 285 274 318 309 0.70 365 351 417 406 
0.80 111 107 124 121 1.0 179 172 198 192 

Table 4.5: The determination of sample size for the real example 

with, piogis ~ 0.057. Different conclusions will be drawn if we take significant level 

a — 0.05. This means that the dispersion information is very useful in the testing 

of the location effect. In other words, neglecting the dispersion difference in the two 

groups and simply comparing the location difference will lead to misleading results. 

Now, we consider the sample size determination based on the LNorm method 

and the LLogis method. Since the equal scale assumption has been rejected, we use 

the formulae (4.28) and (4.29) that utilize the information from the prior study. As 

a comparison, the results based on formulae (4.30) and (4.31) are also presented. In 

the calculation, the observed proportions of the Non-smoking treatment, (66.32%, 

14.58%, 19.10%), are used to determine the thresholds. Table 4.5 presents the 

required sample size for the two methods to detect a significant location effect A 

with significance level a = 0.05 and power I — (3 — 0.8. For each case, we consider 

two different allocation ratios, t i = 0.4698 (288/613) from the data and t) — 0.5 for 

balance allocation. 

For the results presented in Table 4.5，it is interesting to notice the sample 

size highlighted by italic type, which are calculatcd based on the full information 

obtained from the observed samples. To achieve a power equal to 80%, the required 

sample size for the LNorm method is 1113, and the required sample size for the 

LLogis method is 1072. From the testing and sample size results of the this example, 
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it is more suitable to adopt the LLogis method for this data set. This sample size 

is much less than the sample size given by Zhao et al. (2008), where the required 

sample size is 二8390 from formula (4.25) that is also calculated based on 

the observed sample. Note that in Zhao's calculation, the observed proportions in 

smokers and non-smokers are only accurate to two places of decimals. If we correct 

these proportions to 4 decimal places as displayed in Tabic 4.4, we are surprised to 

find that the required sample size becomes A^u;mu;=6058 with This 

finding indicates that the sample size formula of the WMW test is very sensitive to 

the slight changes of the cell proportions for this example. 

In the calculation for this example, if we take the Smoking group as a reference 

(to determine the thresholds in step 1), we will derive the same testing and sample 

size results as what have been presented. If we apply the Whd method to the real 

data in Table 4.4, we derive that A^hd = —0.1462 and N^hd — 6002. 

4.6 Further Study on Sample Size Determination 

From the study of the example in Section 4.5, the determined sample sizes by the 

latent variable method and the WMW method (or Whd method) are markedly dif-

ferent. The reasons may be attributed to the significant difference in the dispersion 

effect between the two treatments. In this section, further numerical study is con-

ducted to examine the behavior of the sample size formulae of different methods 

when the two treatments have different scales. 

The required sample sizes for different methods are calculated when the ordi-
nal responses of the two treatments are given. The ordered categorical data of the 
two treatments are generated based on the latent variable model with given spec-
ification of the true parameters. The specification of the true parameters includes 
F{x] /ii, (Ji), F{x] /i2, (72)，(ti, • • • , Tif一 1)，the total sample size N, and the allocation 
ratio t. More specifically, the cell count of treatment i, z = 1, 2, in category Ck, 
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/c = 1 , … , K ) is derived by 

nik = round{N • t. [F(Tfc;购，ai) — F{rk-i] fiuai)]), 

n2k = round(N • [I - t) • [F{rk\ "2, (^2) — ^(n-i； /i2,�)])， 

where round{-) denotes the round off function. In our calculation, we fix iV = 600 

and t = 0.5, and different choices of other parameters are considered. 

For given ordinal responses of the two treatments, the estimates of the treatment 

effects of different methods, A職yj, Lyjhd, Lnorm, and Kiogis are first calculated. 

Based on the estimation results of the treatment effects, the required sample sizes, 

N丽奶 N^hd, Nnornn and Niogis are calculated by formulae (4.25)，(4.26), (4.28), and 

(4.29), respectively, with a = 0.05, I— p = 0.8, and A" being assigned at the values 

of the estimated treatment effects. The calculation results are reported in Table 4.6. 

From the results in Table 4.6, some important findings are summarized as follows. 

(a) Consider the case that the center of the thresholds depart from zero to a side 

and (Ti > (72 as indicated by case (A) and (C), In this case, as the true location 

difference /i2 —/Ui increases, the sample size N切hd and N^mw increase very fast, 

reaching extremely large value for some larger location difference. This finding 

obviously contradicts our basic knowledge that it should require less sample 

size when the true location effect to be detected increases. 

(b) Consider the case that the ccnter of the thresholds depart from zero to a side 

and (Ti < (72 as indicated by case (B) and (D). In this case, the the calculated 

sample sizes for N^hd and N^mw become too small. We can believe that the 

calculated sample size N^hd and Nwmw are also questionable for this case. 

(c) Comparing the results in case (D) and (E) indicates that the position of the 

thresholds will have a significant influence on the sample size N^hd and Nyjrmv 

when 02- The calculation in case (F) further substantiates this argument. 

This means that the skewness of the ordinal responses also have a significant 

effect on the sample size formulae and Nwmw. 
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(d) When the underlying distributions F{x; jii, cji) are normal, the estimated treat-

ment effcct Anorm IS vGiy close to the true mean difference (",2 - when 

the underlying distributions are specified as logistic distributions L{jjl” cTj), the 

estimated treatment effect hiogis is also very close to the true mean difference 

(/i2 — iii)/(Ji. Prom case (G), when the underlying distributions are logistic 

and (7i — (72 = (J, the estimated treatment effect Kiogis is very close to — 

and they are both close to the true mean difference (/i2 — /ii)/(J as indicated 

in (4.5). In this case, the four sample size determination methods have similar 

results. 

In all these calculations, if we exchange the labels of treatment 1 and treatment 

2, that is, taking treatment 2 as reference, it is obvious that all the values of the 

treatment effect measures will be different from what are presented in Table 4.6. 

However, the corresponding calculated sample sizes are the same. 

Obviously, the ordinal data sets in cases (A) to (F) violate the proportional odds 

assumption. The score tests (SAS Proc Logistic) are significant for cases (A) to (E) 

with very small p-values. However, the score tests for case (F) are not significant 

with p-values larger than 0.3, The likelihood ratio test (4,23) based on LLogis 

method give consistent testing results with the score test. 

In conclusion, the numerical study indicates that the sample size determinatiorL 

methods based on the Whd method and the WMW method will be quite question-

able when the two treatments have different scale parameters, especially for the case 

that the center of the thresholds departs far from zero. The problem of this two 

sample size determination methods has not been addressed in the literature. The 

proposed analysis framework for ordinal data based on the latent variable model 

can provide convenient test on equal scale assumption and give the estimates of the 

thresholds. The proposed sample size determination methods based on the latent 

variable model provides good modification for these cases. 
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4.7 Conclusion 

In this chapter, we proposed a unified framework for the analysis of the latent 

variable model, where the underlying random variables may have any distributions 

belonging to the L-S family. On the basis of the proposed two-step estimation 

procedure, the locations and scales characterizing different treatments can be freely 

estimated. Subsequently, many statistical inferences can be conveniently conducted 

based on the proposed method. This framework subsumes the mostly adopted latent 

variable models in the literature, such as the latent normal model and the latent 

logistic model. Moreover, this unified framework facilitates the generalization to 

multiple treatments. 

Based on such an analysis framework for the latent variable model, the usual 

treatment effect measures for comparing the treatments with ordinal responses can 

be interpreted in a unified manner. Typically, a new interpretation of the pro-

portional odds assumption is given. The corresponding testing methods for the 

assumption based on such interpretation are also provided. Moreover, based on the 

latent variable model, the crucial assumption on equal dispersion for the WMW 

method and the Whd method can be conveniently examined. 

Two important latent variable methods for treatment comparison, the LNorm 

method and the LLogis method, are detailed illustrated for the comparison of two 

treatments with ordinal responses. The corresponding sample size determination 

methods are also proposed. The proposed LLogis method is equivalent to the White-

head (1993) method when the two treatments have identical scales. However, when 

the treatments have different scales, the existing sample size determination meth-

ods will be quite questionable. This problem has not been widely recognized in the 

literature. Our proposed sample size determination method can accommodate the 

difference in the scales of different treatments. 



Chap te r 5 

Future Research 

In this thesis, we have developed several statistical methods for the comparison of 

treatments with ordered categorical responses. We mainly addressed three types 

of treatment comparison issues (TCI, TC2, and TC3) as illustrated in Chapter 1. 

On the basis of the latent variable models, the proposed methods have easy and 

straightforward interpretations, and many further statistical inferences can be con-

veniently conducted. Based upon the present work, here we list several possible 

topics for future research. 

(I) The modeling of longitudinal ordinal responses with more than two repeated mea-

surements 

In Chapter 2，we have developed a flexible modeling method for longitudinal or-

dinal responses with measurements at two time points. This method can be gener-

alized to analyze the longitudinal data with, more than two repeated measurements. 

In this case, not only the linear, but also the non-linear growth curve can be an-

alyzed. Because of the appearance of the high dimensional correlation structure, 

the computational burden for the likelihood method will increase. In this case, the 

Bayesian method based on MCMC sampling can serve as an alternative. 

(II) The pair wise comparisons with ordinal responses 

In Chapter 3，we considered the multiple comparison of several treatments with 

a control. In multiple comparison, the pairwise comparison is another interesting 

topic of study, see e.g. Tukey (1953); Hayter (1984, 1989); Cheung and Chan (1996); 
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Cheung, Wu, and Quek (2003). For treatments with ordered categorical responses, 

we have derived the variances and the correlation structure of the mean treatment 

effects in a closed form. So, we may conduct pairwise comparison for tteatments 

with ordinal responses by constructing the corresponding simultaneous confidence 

intervals. 

(III) The covariates-adjusted treatment comparisons 

In Chapter 4，we have built a general framework for treatment comparison. 

The present work can be regarded as the analysis of variance (ANOVA) for ordinal 

responses. Further extension of the proposed analysis framework for latent variable 

model is possible, such as the inclusion of covariates in the model. Such covariates-

adjlisted treatment comparison, which can be regarded as the analysis of covariance 

(ANCOVA) for ordinal responses, deserves further research. In future studies, some 

important issues should be addressed, such as variable selection and the specification 

of the functional form, as illustrated in Tutz (2003), Leon, Tsiatis, and Davidian 

(2003), and Schacht, Bogaerts, Bluhmki, and Lesaffre (2008). 

(IV) The sample size determination in multiple comparisons for ordinal responses 

When the responses of the treatments are continuous, the sample size determi-

nation for multiple comparison procedures (MCP) has been derived, see, Hayter 

and Tamhane (1991), Liu (1997), Dunnett, Horn, and Vollandt (2001), and Kwong, 

Cheung, and Wen (2009). So, it is a natural requirement to consider the sample size 

determination of the MCPs for ordinal responses. 

For the topic of sample size determination, its objective is to determine the 

smallest total sample size for each MCP to guarantee the specified power requirement 

for given design. The designs of experiments that are usually considered in such 

study are the balance allocation design and the square-root allocation design. Some 

other designs of experiments are also possible. 

(V) The design of experiments 

The optimal design of experiments aims to optimize some function of the informa-

tion obtained in the experiment. For model-based experimental design, a standard 
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and appropriate measure of information is the Fisher information matrix. For ex-

ample, Perevozskaya, Rosenbcrger, and Haines (2003) considered tlie optimal design 

for treatments with ordinal responses based on the proportional odds model. Since 

we have derived the Fisher information matrix in a closed form, the optimal design 

for treatments comparison with ordinal responses can be considered. 

The response-adaptive design targets the optimal allocation under multiple ob-

jectives, which usually include both the power objective and the ethical objective 

(assign more patients to better treatments). Since the optimal solution of adaptive 

design is often a function of unknown parameters, the sequential randomization pro-

cedures are usually adopted. Most attention has been focuscd on binary responses 

and continuous responses in the literature. For example, Rosenberger et al. (2001), 

Hu and Rosenberger (2003), Tymofyeyev, Rosenberger, and Hu (2007) considered 

the response-adaptive design for binary response experiments; Zhang and Rosen-

berger (2006) and Zhu and Hu (2009) considered the response-adaptive design for 

continuous experiments. Little work has been done on adaptive design for ordi-

nal response. Based on our proposed analysis framework for ordinal responses, the 

adaptive design for ordinal responses can be exploited. 

Remark: 

In Section 4.3.1, wc proposed the two-step estimation procedure for the general 

latent variable model. The advantage of this estimation procedure is obvious. Based 

on this two-step estimation procedure, the location and scale parameters character-

izing different treatments can be freely estimated. However, this estimation method 

may be criticized, since the thresholds are estimated only based on one treatment. 

A better method is to estimate the thresholds based on the overall likelihood. 

Following the suggestion of Professor Anthony Hayter, We propose the follow-

ing iterative algorithm, where the two-step estimation procedure proposed in Sec-

tion 4.3.1 will serve as the initial step (Step 0) in the algorithm. 
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Algorithm 5.1: 

• Step 0 (SO): 

SO-1: Determine the values of the thresholds based on treatment 5, and let 

；G �F ( : r ; ( U ) , I g s � . 

50-2: Obtain the estimates of the location and scale parameters that charac-

terize different treatments, with the thresholds fixed at the values determined 

in step SO-1, 

• Step 1 (SI): 

51-1: estimate the thresholds based on the overall likelihood, with the location 

and scale parameters fixed at the values obtained in step SO-2. 

Sl-2: estimate the location and scale parameters with the thresholds fixed at 

the values determined in step Sl-1. 

• Step 2 (S2): 

repeat Step 1 (SI) with the corresponding parameters fixed at the previous 

latest sub step. 

Our calculation shows that this iterative algorithm converges extremely fast. 

Usually it achieves convergence in Step 1 (Si), and the Step 2 (S2) will have no 

effect in the sense that the updated values of the parameters are nearly the same 

when compared with those obtained by Step 1 (SI). A prominent advantage of 

this algorithm is that, for different selection of treatment s in Step 0 (SO), this 

algorithm will produce exactly the same testing results. Moreover, it is not difficult 

to find that this algorithm actually achieves a full maximum likelihood estimation 

of all parameters involved in the latent variable model by a conditional maximum 

likelihood method as illustrated in Meng and Rubbin (1993). Nevertheless, we want 

to point out that the values of the test statistics that are obtained based on this 

iterative algorithm are extremely close to those obtained by only Step 0 (SO). So, 
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for the comparison of only two treatments or the multiple comparison with control 

(as in Chapter 3), the two-step estimation procedure is sufficient. The advantages 

of this iterative algorithm may be more prominent when it is adopted to perform 

more complicated inferences, such, as pairwise comparison or the covariates-adjusted 

treatment comparisons. 

The estimation of the thresholds based on the overall likelihood that is mentioned 

in the algorithm is given as follows. Consider the general latent variable model 

proposed in Section 4.3.1. The overall log-likelihood function for r = (ri, • • •，tk-i)' 

is 
g k 

E X ] �“ o g (兀认⑷)， (5.1) 

where 

^ . . ( r ) = — (5.2) 
(Ji (y% 

with and being fixed parameters. Under regularity conditions, the expected 

(Fisher) information matrix is given by 

dL{t) dL(t) 

First note the score function of (5.1) is 

dL{T) 1 (rhk . Jk -
dn 

V^ 丄 �hk fc+1 � r f 'k - H'l^ , 1 r , 1 /r ON 
= 〉 /q( )> /^二1,...，_^—1， （5,3) 

where fo{x) is the pdf of the standard distribution function Fq(x). 

Then, consider the diagonal elements of I(t). From the scorc function, 

, G 1 / \2 

dTk dTk S � 2 ylTik 乂 CTi 

+ y ^ ——E (！^ —叫叫)-几“印))几(Tfc _ 鄉 ) 一 川 . 
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= f 丄广E j n l J + _ 2(n — fh�+。 
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From the property of multinomial distribution, the above equation 

g . 
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Now, we consider the off-diagonal elements of /(r), iox \ <K 
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Note that the expectation involved in the above equation will equal to 0 if \h — l\ > 1. 

For the case = / + 1, 
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For the case h = I — 1, & similar expression for 丑 c a n be derived. Thus, 

we derive the form of the Fisher information matrix / ( r ) . Numerical method can 

be applied to obtain the MLE of r and the corresponding covariancc matrix. 
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Appendix A 

rhe Mx Input Script for LCM 

A p p e n d i x A-1: 

！Sample Mx input program for LCM 

！For data set of active drug 

！To get the results i n Table 

#define nvar=2 ！ No of 

#de;f ine nthd=3 ！ No of 

#define nlat=2 ！ No of 

#define nl=119 ！ No of 

#define n2=120 ！ No of 

#NGroups 3 

Group 1: parameters 

Calculation 

Begin Matrices; 

T Full nvar nthd 

L Full nvar nlat 

K Full nlat 1 

E Symm nvar nvar Fix 

F Symm nlat nlat 

G Full nlat 1 

D Symm nvar nvar Fix 

and placebo in Table 2.1 

2.3 and the LO test 

variables 

thresholds 

latent variables (L.Vs) 

observations in active drug group 

observations in placebo group 

Threshold matrix, invariant across groups 

Factor loading matrix 

Mean vector of L.Vs for drug group 

Error variance matrix for drug group 

Covariance matrix of L.Vs for drug group 

Mean vector of L.Vs for placebo group 

Error variance matrix for placebo group 
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H Symm nlat nlat 

0 Full 1 nthd Fix 

End Matrices； 

Specify T 

1 2 3 

I 2 3 

Specify L 

0 0 

0 0 

Specify K 

0 

4 

Specify F 

0 

5 

Specify G 

I I 

7 

Specify H 

12 

8 9 

Matrix T 

- 1 0 1 

- 1 0 1 

Matrix L 

1 0 

Covariance matrix of L.V's for placebo group 

The operation matrix 

Matrix K 

0 
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0 

Matrix E 

0 

0 0 

Matrix F 

1 

0 1 

Matrix G 

0 

0 

Matrix D 

0 

0 0 

Matrix H 

1 

0 1 

Matrix 0 

End 

Group 2: Active drug 

Data NI= nvar NO=nl 

CTable 4 

7 4 

4 

1 0 

11 5 2 2 

13 23 3 1 

9 17 13 8 

Matrices =Group 1 

Threshold T-(L*K*0); 

Covariance 氺 
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Option RS 

Option SErrors 

End 

Group 3: Placebo group 

Data NI=nvar N0=n2 

CTable 4 4 

7 4 2 1 

14 5 1 0 

6 9 18 2 

4 11 14 22 

Matrices=Group 1 

Threshold T-(L*G*0)； 

Covariance L*H*1'+D; 

Option RS 

Option SErrors 

End 

A p p e n d i x A-2: 

！Sample Mx program for LCM with covariates 

！For data set of active drug and placebo in Table 2 

#define nvar=3 ！ No 0 f variables 

#define nthd=3 ！ No 0 f thresholds 

#define nlat=2 ！ No 0 f latent variables 

#define n=239 ！ No 0 f observations 

Ordinal data analysis 

DAta NI=nvar NCNn NG=1 

ORdinal_data file=rawdata.txt 

Begin Matrices； 

T Full nthd nvar Free 
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L Full 2 2 

X Full 1 1 Fix 

S Full 1 1 Fix 

N Full nlat 1 

K Full nlat 1 

E Symm 2 2 Fix 

F Symm nlat nlat 

0 Full nthd 1 Fix 

End Matrices; 

Specify T 

1 1 4 

2 2 4 

3 3 4 

Specify L 

0 0 

0 0 

Specify K 

0 

5 

Specify F 

0 

6 7 

Specify N 

10 

11 

Matrix T 

-1 -1 .5 

0 0 . 5 

1 1 .5 

mean of x 

Variance of x 

Gamma vector 

The mean vector of L.Vs 

The error variance matrix 

The covariance matrix of L.Vs 

The operation matrix 
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Matrix L 

1 0 

1 1 

Matrix K 

0 

0 

Matrix F 

Matrix 0 

Matrix X 0.4979079 

Matrix S 0.251046 

Matrix N 

0 

0 

Begin Algebra; 

M=(L*(K+N*X)_ X 

氺(F+N 氺 S*N，)氺LZ+E 

S氺N,氺 

End Algebra; 

Threshold T-M; 

Covariance C; 

Option func=l.E-10 

Option SE 

End 

Fixed at the 

Fixed at the 

estimate of the mean of x 

estimate of the variance of x 

S : 
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Appendix B 

The Proof of Theorem 3.2 and 

Theorem 3.3 

Proof of Theorem 3.2 

The log-likelihood function for step 2 of the two-step estimation procedure can 

be written as 
g k 

L{e,) = (B.l) 
1=0 k=l 

where 

M e . ) = - (B.2) 

and 00 二（jMh … , M g j ctq, • • • , (To)' is the vector containing all unknown parameters. 

Under regularity conditions, the expected (Fisher) information matrix is given by 

A B 

B' C 

where A，B, and C are (C? + 1 ) x (G + 1 ) matrices with expressions given as follows, 

(a) Matrix A: 

First consider the diagonal elements of A. From (B.l), 

dL{Oo) 2 — r^ Uik diTik^ — ̂ ^ i k diT^ky + y^ r^h nu dn也 dix^i 
dfh ^ 7hk dfh 台 Thk dlh ^ T^ih djj^ dfi, ’ 
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Then, by equation (B.2) and the properties of the multinomial distribution, we have 

dfh 

— ^ diT.k.2 I y^ Ejn^hnu) dw论 dn^i 

^ (兀A)2 dfh ^ ThhTiu dfi, dih 

二 ^ (ŷ t̂TT认(1 - TT.fc) + gTr.fc 2 j y ^ + di^h diiu 

台 (7hk)2 djii ^ ThhThl dfL^ d f i � 
k 

+ — ^ ) — n - — n m - — ~ ) 一 n )]} 

t j ? ‘ ‘ ‘ � 
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Now, consider the off-diagonal elements of A. For i ^ j. 

djjj 

k r, k 

(B.3) 

_ 几tk rijk ^TTjfc, 

二 ， h H 化一〜）一 0 广 。 一 … ) ] ) ] 
(7^(72 (JJ (JJ (JJ (Tj 

= 0 . 

The above equation equals 0，because tq = —oo and tk = oo hy definition. 
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(b) Matrix B: 

First, consider the diagonal elements of B. We have 

,dL{eo) dL(Oo), 
El-

k 
di^i da^ 

= E 
E(jhkf diT.k dn认 

+ E 
E(jhhr\i) d-K^h diui 

ijhkY do\ ‘ j^i nihThi dlh 
k 

- E 
一 Tiik) + n̂ Trffc)召兀化 dir化 

9仏 da^ 
h^l 

'�—rhThh兀u + dn仇 dng 

djjk da, 

k jRT JK 
r v ^ 丄 dihk diT出 . i 、 r v ^ <971•认 u Y ^ ^TTjfcn 

k 
n't rV^ 

〜3台兀认 (h 

\{Tk - - (n-i — cr. 
n. 

(B.4) 

For the off-diagonal elements of B, wc have 

-dL{eo) dL(9o), 
dfh 
k 

ddj 

= E r[V^ 几认加tk 1 r y ^ rijk T̂Tjfĉ  

？,几1 

k 

巧 k 
k 

{[E(树 

k 

Tk — /i 

(J, 
H 

Tk-

(h 
))] 

- i ^ M C - ^ ) — (n-i - f ^ M ^ ^ ^ ^ m 

Tk - (•h 
- ( ^ 0 — "J W 

To — /ij 
)1 

= 0 . 

Matrix C: 
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the inverse of the expected 

Thus, the matrices A, B, and C can be expressed as: 

^ = . 1 ， i = -
0-； 

fl 

B d i a g { ^ • » = 0, • 

C = d i a g { ^ • hiPi^c^i)^ ^ = 0, • 

From the results of block matrix decomposition, 

information matrix can be expressed as 
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The ^th diagonal element of C is 

-aL(0o) 口 

k 
I
飞

 

V
 

- + E 
h^l 

Eixhhrki) dTUh dir^i 
TVihThi da^ 

< 兀ik CTi CTt 

k 

n. 

The off-diagonal elements of C are  
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(B.5) 

da\ 
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加J 

fc=i 
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cr,. A 
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where S'^ = (C - BA~'^B). As all submatrices of I{6o) are diagonal, it is easy to 

obtain /"^{Oq). After simplification, we have the following results: 

n^ 62- do - df 
1 

Var(a,)=丄 
n, 82 - 5Q- 51' 

of So , 5^ 

Th S2 — 5o • Sf 

For simplicity, in these expressions we replace (h) with d” r = 0,1，2, and the 

detailed expressions for arc given in (B.3)，(B.4), and (B.5), respectively. 

Proof of Theorem 3.3 

Let 力J 二 fi�— /},o, = 1 , . . . , G. Prom the proof of Theorem 3.2，for i • j , and 

/ij are independent. Thus, we have 

= C o v { f i ^ - Ao, Aj - Ao) 

=Covijl” fij) — Cov(fi,, jlo) — Covijlo, jij) + Var(fio) 

=Var{flo) 

- < 5 ( 0 , 1 ) . 
no 

Note that the above equation is true for any i j , and the result does not depend 

on the subscripts i and j . This completes the proof of Theorem 3.3. 
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Appendix C 

The Proof of Lemma 4. 

Note that the two-step procedure proposed in Section 4.3.1 by using of a specific 

treatment, say treatment s, in Step 1，actually rescales the original (unknown) un-

derlying distributions. More specifically, suppose �F { x ; cjJ, z = 1，• • •，G， 

are the original latent variables of different treatments, and (ri, • • • , Tk-i) are the 

original thresholds. We denote the rcscaled underlying variables and parameters 

by X” �F ( x ; i — 1’ • •.，G，and ( r ^ � ’ … ,t ^ I i ) , respectively, when 

the thresholds are determined by treatment s in step 1. The 

procedure rescales the underlying distributions by performing 

formation. 

two-step estimation 

the following trans-

a, 

This reduce to 
(s) — fh — l̂ s (S) — 

队 = - , cr,=— 
CTs (Js 

Since h(.) is a monotonic increasing function, this transformation docs not change 

the ordering of the efficacies of different treatments. 

Note that in the above transformation, the cell probabilities, i — 1, - • • , G, 

k 二 1,... , K, always keep unchanged. Thus, the test of the dispersion effect by the 

LRT (4.23) will not be affected by this transformation. 
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Now, we consider the test of the location effect. Under this transformation, the 

test statistics can be written as 

么3 二 

where [ ‘ i s the estimate of 力 a f ) ) . The expression of crf^) 

has the same form as with Tk, fh, and a^ in (4.17) replaced by r^^，fj!f�, 

and a\(s)，respectively. Under mild regularity conditions, the MLEs, fi!f \ aj® ,̂ and 

rjf^ are consistent estimates of //广，cr̂ "®)，and r^^^, respectively. Prom the formula of 

Taylor expansion, Zĵ ^ can be written as 

对 ) = , 十礼 

I 十 Kn, 

where Rn will converge in probability to zero. In the above second equality, we use 

the result that (5(s)(;Li!s)’ c r ^ ( … ) = I n fact, closer inspection of the expression 

and 丄s) (乂s)，cr!力=(52(/Lii，(Xj). The parameter <7�will be canccled eventually 

in the expression of 沪)(/4^^)’ cr!�). This result means that, for large sample size, the 

selection of different treatment to determine the thresholds in step 1 has no effect 

on the testing results. 
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Appendix D 

The Score Function and Fisher 

Information Matrix for the 

Likelihood Function (4.14) and 

(4.22) 

Appendix D-1 

We consider the score function and the Fisher information matrix of the likeli-

hood function given in (4.14). Wc only outline the main results here. A detailed 

derivation has been given in Appendix B where the underlying distribution is speci-

fied as normal distribution. Based on a similar arguments, the following results can 

be derived when the underlying distribution belongs to the location-scale family. 

The score function of the likelihood function (4.14) is 

K K 
<9^2(^0) n^k diTik 1 r / T j t —/^h .Tk-i - jits. 

dfh 台 T^ik djJn (7^ 台 TTik ‘ Cr, 

谷乙 2(权 0) 1 n,k R. ( 、r,T"fc—1—/ii 
二 —；；；̂ — M0/。(^；^) — — Mz)/o( )1, <9cr, al ^ Thk o-i 

where tt认 is given by (4.15) and fo{x) is the probability density function of Fq{x). 

Under regularity conditions, the expected (Fisher) information matrix is given 

115 



by � 

�A B 

B' C 

where Oq — ( / i i , . . . , f i g , cti, - • • , o-q)'; A^ B, and C are G x G matrices with expres-

sions given as follows. 

The diagonal elements of matrix A is given by 

rdL2{9o).2 几I f f 1 r . /Tfc - Ml. -
尉 = ；；：2{̂  - fo{ ^ )] } == di-h of � � � 2 从 

The diagonal elements of matrix B is given by 

.抓 2(仇）dL2(9o), 
El- dfi^ do\ 

k 

< ^ Thk CTi (h 

• [ ( r . - 戲 - (n—i 一 

The diagonal elements of matrix C is given by 

-dL2ieo),2 E[- da,. 
k 

A ^ 贝ik o-^ cr, 

Further calculation shows that the off-diagonal elements of matrices A, B, and 

C are all equal to 0, So, it is easy to derive the inverse of the cxpected information 

matrix. After simplification, we have the following results: 

a. 

n, 02 — Oq • of 
Cj4 1 

Varia,)=丄 
！
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.a,
 

n
 Cov(Jl”d\) 二一-

Ur do - On ' or 
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礼2(权1). 
da 

g k 

[{t,—仏)/。(^^) — (n—1 -
(7 a 
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For simplicity, in these expressions we replace 5八(1” ̂ i) with r = 0,1, 2. 

Appendix D-2 

The score function of the likelihood function (4.22) with the constraint cti = 

• • • = (Jg = o" is 

dL2{0i) 1 s^Thk 丁k — —仏 1 
~ 5 — = —— z ^ 一 M ) — M )， 

9仏 CT ^ TT^k cr (7 

i—1 k~l 
Under regularity conditions, the expected (Fisher) information matrix is given 

by . . 

" 沿 �p r M l l 礼 胸 飞 

The elements of the matrix I{Oi) arc given by 
aL2(6>i) 2 n̂  1 … f fTk-i — fh�飞 

dUOi) 
djji^ da 

力 f ： 丄 . W ^ ) -
—ir^ 兀tk cr a 

•[(r. 一 — ( r . - i — 

(J a 
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This is the end of the thesis. 
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