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Abstract of thesis entitled: 

Variable Selection for General Transformation Models 

Submitted by LI, Jianbo 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in June 2011 

General transformation models are a class of semiparametric survival models. The models 

generalize simple transformation models with more flexibility in modeling data coming 

from statistical practice. The models include many popular survival models as their spe-

cial cases, e.g., proportional hazard Cox regression models, proportional odds models, 

generalized probit models, frailty survival models and hetcroscedastic hazard regression 

models etc. Although the maximum marginal likelihood estimate of parameters in general 

transformation models with interval censored data is very satisfactory, its large sample 

properties are open. In this thesis, we will consider the problem and use discretization 

technique to establish the large sample properties of maximum marginal likelihood esti-

mates with interval censored data. 

In general, to reduce possible model bias, many covariates will be collected into a 

model. Hence a high-dimensional regression model is built. But at the same time, some 

non-significant variables may be also included in. So one of tasks to build an efficient sur-

vival model is to select significant variables. In this thesis, we will focus on the variable 

selection for general transformation models with ranking data, right censored data and 

interval censored data. Ranking data are widely seen in epidemiological studies, popula-

tion pharmacokinetics and economics. Right censored data arc the most common data in 

clinical trials. Interval censored data are another type common data in medical studies, 

financial, epidemiological, demographical and sociological studies. For example, a patient 

visits a doctor with a prespecified schedule. In his last visit, the doctor did not find 

occurrence of an interested event but at the current visit, the doctor found the event has 



occurred. Then the exact occurrence time of this event was censored in an interval brack-

eted by the two consecutive visiting dates. Based on rank-based penalized log-marginal 

likelihood approach, we will propose an uniform variable selection procedure for all three 

types of data mentioned above. In the penalized marginal likelihood function, we will 

consider non-concave and Adaptive-LASSO (ALASSO) penalties. For the non-concave 

penalties, we will adopt HARD thresholding, SCAD and LASSO penalties. ALASSO is 

an extended version of LASSO. The key of ALASSO is that it can assign weights to ef-

fects adaptively according to the importance of corresponding covariates. Therefore it has 

received more attention recently. By incorporating Monte Carlo Markov Chain stochas-

tic approximation (MCMC-SA) algorithm, we also propose an uniform algorithm to find 

the rank-based penalized maximum marginal likelihood estimates. Based on the numeric 

approximation for marginal likelihood function, we propose two evaluation criteria -- ap-

proximated GCV and BIC — to select proper tuning parameters. Using the procedure, 

we not only can select important variables but also be able to estimate corresponding 

effects simultaneously. An advantage of the proposed procedure is that it is baseline-free 

and censoring-distributiori-free. With some regular conditions and proper penalties, we 

can establish the v^-consistency and oracle properties of penalized maximum marginal 

likelihood estimates. We illustrate our proposed procedure by some simulations studies 

and some real data examples. At last, we will extend the procedures to analyze stratified 

survival data. 

Keywords: General transformation models; Marginal likelihood; Ranking data; Right 

censored data; Interval censored data; Variable selection; HARD; SCAD; LASSO; ALASSO; 

Consistency; Oracle. 
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摘要 

庇義變換模型是一類半參数生存模型。該模型在数據建模靈方面極大地推俄 

了線性變換模型.，很多常兒生存分析模型可看作是它的特例。例如：比例風險Cox 
迴歸模型，比例勝算迴歸模型，廣義probit模型，脆弱性生存模型，異方差生存模 

型等等。旌於區間刪失败據，雖然庾義變換模型中參数的極大逍際似然估計已經非 

常的好，但是它的大樣本性質目前仍然是一個空白。在本文中，我們將考旗這個問 

题並通過離散化技術建立基於區間刪失数據的極大邊際似然估計的大樣本性質。 

為了減小模型.可能存在的偏，通常我們會把盡可能多的協變量包含到所考慮 

的模_型中來，從而建立了一個髙維模型。然而這樣做也有可能把一些非顯著變量也 

考庙進來,j從而可能會給ji型帶來更大的偏。所以建立一個有效模型的任務之一就 

是變量選擇"•。在本文中，我們將考慮摆於秩数據右刪失败摅和區問刪失数據的庙 

義變換模型的變量選擇問题。連於秩的懲罰邊際然方法，我們對這三種類型數據 

提出一個統一的變量選擇程序。在邊際懲罰似然函數中，我們主要考慮非凹懲罰函 

数(LASSO, SCAD和HARD)和Adapt ive —LASSO(ALASSO)懲罰函數。盛於蒙特卡羅馬 

爾可夫鏈隨機近、以算法，我們為廣義變換模型的變rf選擇提出了一個有效的隨機近 

似算法。通過對邊際似然函數的数值近似，我們遁提出了兩個最優懲罰參數的選擇 

標•準一一近似GCV和mc�在一定的規則條件下，我們可以建立懲罰極大邊際似然 

估計的一致性和oracle性質。最后，我們把所提方法推廣到了分層生存数據硏究 

中。 

闢鍵詞4廣義變換模型；邊際似然；秩數據；右刪失数據；區間刪失数據；變量 

選擇；SCAD; LASSO； HARD； ALASSO；—致性；Oracle。 
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Chapter 

Introduction 

Simple transformation models [21] can flexibly and concisely rcflect the relationship be-

tween survival time or duration time and its corresponding covariates. The models include 

many popular survival models as their special cases. Simple transformation models have 

been widely used in economics, biostatistics, pharmacokinetics, financial risk manage-

ments and many other areas. Gu, et al. (2005) [40] extended the simple transformation 

models with more generality and proposed a class of general transformation models and 

corresponding rank-b'ased maximum marginal likelihood estimation procedure. They also p 
proposed a three-stage MCMC stochastic approximation algorithm to find the rank-based 

maximum marginal likelihood estimate. In general, to reduce possible model bias, many 

covariates are collected into a model. At the same time, some non-significant variables 

may be also included in which, in turn, may enlarge model bias. Motivated by this, in this 

thesis, we will consider variable selection for general transformation models with ranking 

data, right censored data and interval censored data. 

1.1 Simple Transformation Models 

Let T e R^ he the survival time variable and Z € R^ be the corresponding covariate 

vector. The simple transformation models [21] are given by 

h{T) = Z'^/3 + e (1.1) 

where h(,) is an unknown link function and usually assumed to be a monotonically in-

creasing function, 0 is a. p-*dimensional regression parameter vector and £： is a random 
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error with known cumulative density function F(-). 

Models (1.1)，actually, are semi-parametric because of the "nuisance" parameter k{-). 

They can flexibly capture the relationship between survival time and its corresponding 

covariates. They include many popular models as their special cases. For example, when 

F(-) is the standard extreme value type-I cumulative density function, models (1.1) reduce 

to proportional hazards Cox regression models [17, 18]; when P(') is the standard logistic 

cumulative density function, models (1.1) reduce to proportional odds regression models 

7] and F(-) is the standard normal cumulative density function, models (1.1) become 

generalized probit regression models [12，66, 67 . 

Because of the model flexibility, many authors have proposed lots of effective estima-

tion procedures fo^ 0 in (1.1) with i^hcensored or censored data. Dabrowska and Doksurn 

(1988) [21] proposed a partial likeliHof^d method. Murphy et al. (1997) [52] gave a max-

imum semiparametric likelihood approach. Other methods include maximum marginal 

likelihood [48], rank approximation [20，55], profile likelihood [15], generalized estimating 

equation [13, 16, 30，31，72], nonparametric maximum likelihood [76, 77] etc. Although 

the approaches above can estimate 0 efficiently, most of them need to estimate "nui-

sance" parameter /i(-). This loses the baseline-free property enjoyed by proportional haz-

ard regression models. Although maximum marginal likelihood and estimation equation 

methods do not depend on baseline function, they need to estimate censoring cumulative 

density function. Gu, et al. (2005) [40] extended the model (1.1) and proposed a class 

of general transformation models. In their paper, they proposed a rank-based maximum 

marginal likelihood estimation procedure to find the rank-based maximum marginal like-

lihood estimate. An advantage of their estimation procedure is that it is baseline-free and 

censoring-distribution-free. Comparing with the approaches mentioned above，it should 

be a preferable alternative for the statistical inference of survival data. 

1.2 General Transformation Models 
H � 

It can be easily shown that the simple transformation models (1.1) arc equivalent to 

⑷ 制 到 （1.2) 
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where Sz(t) is the conditional survival function of T given covariate vector Z\ So{t) is the 

unknown baseline survival function with Z = 0; g~^{t) = 1 — F(t) and F(t) is defined 

in (1.1). Relaxing the special structure of covariates and random error term in simple 

transformation models (1.1) or (1.2), Gu, et al. (2005) [40] proposed a class of general 

transformation models. The general transformation models, in terms of survival function, 

are given by 

Sz{i)^^{So(t) ,Z,(3) (1.3) 

wliore 5o(-) and Sz(t) are the same as the ones in (1.2); /3 is a parameter vector in-

cluding regression parameters with respect to Z and model transformation parameters in 

^(u, V, w) (if applicable); v, w) is assumed to be known and satisfies that $(0, w, w)= 

0 and < (̂1, V, ？i；) = 1 for any v and w. To conduct statistical inference conveniently, they 

also assume the following restrictions on 4>(u, v, w): 

• It is an increasing continuous function with respective to u for any v and w; 

• It is first-order and second-order difFerentiable for u and w respectively for any v. 

General transformation models (1.3) are noii-trivially more general than the models 

(1.1) or (1.2). Models (1.3) include not only the simple transformation models, but also 

frailty models, heteroscedastic hazard regression models [42] and other important survival 

models. More examples please refer to Gu, et al. (2005) [40] and therein. They are also 

a class of semi-parametric models because of "nuisance" parameter So{t). 

Gu, et al. (2005) [40] proposed a rank-based maximum marginal likelihood estimation 

procedure for (3 in models (1.3) with interval censored data. The estimation procedure 

is free of baseline survival function and censoring distribution, enjoyed by partial like-

lihood approach. In their paper, they gave a three-stage Markov Chain Monte Carlo 

stochastic approximation (MCMC-SA) algorithm to find rank-based maximum marginal 

likelihood estimates (MMLE). Through many simulation studies, they empirically showed 

that MMLE 'may be consistent and distributed asymptotically normally. Huang (2005) 

43] established the asymptotic properties of MMLE by discretization technique and mar-

tingale methods. However, his proofs are not very rigorous and he only considered no 

censoring case. Wu (2008) [71] gave a rigorous proof for the asymptotic properties of 

MMLE with right censored data by similar discretization technique. In her thesis, she 
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also considered general transformation models with time-varying covariatcs and general 

transformation model with measurement error. Ni (2008) [53] considered the misspeci-

fied general transformation models and mixed-effect general transformation models with 

ranking data. Based on maximum marginal likelihood estimation method of Gu, at al. 

(2005) [40], he proposed a quasi maximum marginal likelihood estimation procedure for 

0 in misspecified general transformation models. By discretization technique, he showed 

that quasi maximum marginal likelihood estimate (QMMLE) is consistent and distributed 
V. 

asymptotically normally. Based on the asymptotic properties, he also proposed Wald test, 

Lagrange multiplier test and information matrix test for QMMLE. At last, he also estab-

lished large sample properties of MMLE in mixed-effect general transformation models 

with ranking data. For the interval censored data, the theoretical properties of MMLE 

have been not studied because of its complicated censoring mechanism. This is one of our 

interests in this thesis. 

Zeng and Lin (2007a, b) [76，77] proposed another class of general transformation 

models defined by, in terms of cumulative intensity function, 

A(t\Z) = G( f R*(s) exp{Z{sf/3)dA(s)) (1.4) 
Jo 

where G{-) is a continuously differentiable and strictly increasing function with G(0) = 0 

and G(oo) = oo, is an indicator process, /3 is a regression parameter vector and A(-) 

is an unspecified increasing function. Zeng et al. (2009) [75] and Zeng and Lin (2010) 

78] also extended the models (1.4). The models are not the direct extension of simple 

transformation models (1.1) or (1.2) because models (1.4) do not include generalized 

probit models, a nature and important transformation models, as their special cases. 

While models (1.4) also include proportional hazard regression models, proportional odds 

regression models and corresponding time-varying covariate models, it can not deal with 

interval censored data as like models (1.3). 

1.3 Variable Selection Methods 

Similar to the context of ordinary linear regression, to reduce possible model bias in the 

analysis of survival data using general transformation models (1.3), we usually collect 
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as many covariates as pos^ble into the models. However, at the same time, some non-

significant covariates may be also included in, which, in turn, may enlarge model bias. 

Therefore it is meaningful to select important covariates in all the pre-collcctod covariates 

by some variable selection procedure. 

Many variable selection approaches have been proposed for ordinary linear regression 

models and some of them have been extended to the contcxt of survival data analysis. 

Fan and Lv (2010) [27] ovcrviewed the variable selection methods in details. The popular 

variable selection methods are usually conducted by minimizing penalized sum of squared 

error or maximizing penalized log-likelihood function. So, in the sense, choosing a variable 

selection method is equivalent to choose an adequate penalty function 7Ja(.). To make the 

minimization of penalized sum of squared error or maximization of penalized log-likelihood 

function an effective variable selection procedure, the penalty function should be irregular 

at origin, that is, > 0 [25]. 

In classical model selection procedure, Lo-penalty function with the form of Px{0)= 

XI(6 + 0) (called entropy penalty in Wavelet studies [3, 23]) has a nice interpretation of 

best subset selection and admits nice sample properties [6]. However, the computation is 

infeasible in high dimensional statistical endeavors [27 . 

The nature generalization of Lo-penalty is L^-penalty (0 < ^ < 2) with the form of 

Pa(I^I) 二 [35], which bridges the best subset penalty (Lo-penalty) and La-pciialty. 

Obviously, Lo-penalty enjoys variable selection feature while L2-penalty can give stable 

estimates. Tibshirani (1996) [69] proposed a Lppenalty function, a special case of Lq-

penalty, called LASSO, with the form of 

P x m ) = m (1.5) 

Tibshirani (1997) [68] extended the LASSO penalty to consider variable selection for 

Cox's regression models by maximizing penalized partial likelihood function. The variable 

selection method with LASSO penalty is actually a shrinkage one. So its corresponding 

penalized estimate can be not taken as the final estimate. 

For a good penalty function, Fan and Li (2001) [28] gave three conditions for its 

corresponding penalized estimate, that is, 

• Sparsity: The resulting estimator automatically sets small estimated coefficients to 
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zero to accomplish variable selection and reduce model complexity; 

• Unbiasedness: The resulting estimator is nearly unbiased, especially when the true 

coefficient ffj is large, to reduce model bias; 

• Continuity: The resulting estimator is continuous in the data to reduce instability 

in model prediction. 

From the penalty (1.5), we can see that when the tuning parameter A is very large, 

the effects with large values will be heavily penalized and shrunk to some extent. So the 

penalized estimate with LASSO penalty may suffer from relative large bias. Zou (2006) 

82] proposed an extended version of LASSO, called Adaptive-LASSO (ALASSO), with 

the form of 

px{\e\) = XT\e\ (1.6) 

where the weight r is chosen by data adaptively. When the true value of 9 is large, it will 

assign smaller weight to d, otherwise it will assign larger weight to 6. Usually r = for 

some 7 > 0, where 0 is a consistent estimate of 6. The parameter 7 can be a prespecified 

positive real number or can be seen as a tuning parameter, which can be selected on a grid 

of points by BIG, GCV or other evaluation criteria. Zou (2006) [82] showed the consis-

tency and oracle properties of penalized estimates with ALASSO penalty in the context 

of ordinary linear models and generalized linear models. Following the penalty (1.6), we 

can reduce the penalty for large effects and obtain consistent estimates. Note that when 

9 is very close to 0，the penalty will become very large. Consequently, the corresponding 

estimate will go to 0 very fast. Zhang and Lu (2007) [79] applied ALASSO with 7 = 1 

to select important variables in Cox's regression models by penalized partial likelihood 

approach. They also gave the proof of consistency and oracle properties of penalized esti-

mates with ALASSO penalty. Lu and Zhang (2007) [51] studied variable selection method 

with ALASSO penalty for proportional odds model by penalized maximum marginal like-

lihood approach. However, they did not gave the proofs of large sample properties of 

corresponding estimate because of the complicated marginal likelihood function. We will 

solve the problem using the general transformation models (1.3) in Chapters 2，3 and 4 

with ranking data, right censored data and interval censored data respectively. In this 

thesis, following Zhang and Lu (2007) [79] and Lu and Zhang (2007) [51], we also see 7 
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as a prespecified positive real number and take 7 = 1 in all the simulation studies and 

applications of variable selection methods with ALASSO penalty. However, we will give 

the oracle properties of penalized estimates with ALASSO penalty for any 7 > 0. 

Fan (1997) [24] proposed another penalty function - HARD thresholding penalty func-

tion with the form of 

� Pxm) = x'-{\e\-x)'i(\e\<x) (1.7) 

This penalty was improved by Antoniadis (1997) [2]. The penalty does not overpenalize 

the effects with large values. In the penalized least squares, when design matrix X is 

orthonormal, best subset selection and stepwise deletion are equivalent to the penalized 

least squares with HARD thresholding penalty. However, this states does not hold in other 

cases [25]. Fan (2002) [25] summarized that the estimates with both the Lq- and HARD 

thresholding penalties do not satisfy the three mathematical conditions mentioned above. 

Fan (1997) [24] proposed a penalty function with corresponding estimates satisfying the 

conditions “ smoothly clipped absolute deviation (SCAD) penalty with the form of 

p'xW = A < A ) + y 一 - 》 > A)} ’ (1.8) 

for some a > 2 and 6 > 0. Based on Bayesian statistical point of view, Fan and Li 

(2001) [28] suggested a = 3.7. In this thesis, we also take the value for a. Fan and Li 

(2001) [28] showed that the penalized estimates with SCAD penalty enjoy consistency 

and oracle properties in the context of linear models. Fan and Li (2002) [25] extended 

the variable selection methods with SCAD penalty to Cox's regression models and frailty 

Cox's regression models. They also proved that the penalized estimates with SCAD and 

HARD penalties enjoy oracle properties and they are also consistent in the context of Cox 

regression models. ” 

Figure 1.1 displays the plot of non-concave penalty functions — LASSO, HARD and 

SCAD. Prom the figure, we can see that both SCAD and HARD thresholding do not 

overpenalize 0 with large values since it is a constant when is very large while LASSO 

would assign large penalty to such effects. In addition, SCAD penalty is smoother than 

HARD and hence SCAD can produce continuous sparse estimates. On the other hand, 

we can also find that when 6 is very close to 0, all the three methods can shrink 9 to 0 

very fast. 
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Plots of Penalty Function 

Figure 1.1: The plot of non-concave penalty functions. 

Other variable selection methods also include Bayesian variable selection [29，49] and 

Dantzig selector [4, 11] etc. Fan and Li (2006, 2010) [26，27] gave an overview of the 

variable selection methods following penalized least squares and penalized log-likelihood 

methods. 

Since the penalty functions are irregular at origin, some approximations of penalty 

functions should be needed for the stability of variable selection procedure. Fan and Li 

(2001) [28] proposed a local square approximation method for penalty functions and the 

method has been used widely in the context of variable selection. In this thesis, we also 

follow the method to approximate all the penalty functions. 

Another key of variable selection is the choice of the proper tuning parameter A. 

Many selection criteria for A have been proposed by various authors and the criteria are 

widely used in model selection and variable selection. Among the criteria, k-fold cross 

validation (k-fold-CV), BIG and generalized cross validation (GCV) are most popular 

([1，10，19, 28, 36，69, 70, 82]). However, in the context of survival analysis, there are no 

closed forms for k-fold-CV, BIG and GCV. Craven and Wahba (1979) [19] proposed an 

approximated GCV for the selection of degree of spline functions. Fan and Li (2002) [25], 

Lu and Zhang (2007) [51], Zhang and Lu (2007) [79] and others applied the approximated 

GCV in the context of survival analysis to select tuning parameters. In our studies, we 

will also use the approximated GCV to select proper tuning parameter A for ranking data 
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and right censored data while we will propose a BIC-type criterion to select the proper 

tuning parameter for interval censored data. 

In this thesis, we mainly consider the variable selection with HARD, SCAD LASSO 

and ALASSO penalties for general transformation models (1.3). We will conduct the vari-

able selection procedures by maximizing the following rank-based penalized log-marginal 

likelihood function 

Q09) 二 — (1.9) 
1=1 

where is the log-marginal likelihood function for model (1.3), n is the number of 

observations, A > 0 is the tuning parameter or penalty parameter and p is the number 

of regression parameters with respect to covariates Z in (1.3). Note that the parameters 

in penalty term of (1.9) are the partial components of (3 in (1.3) when (3 contains model 

transformation parameters. 

The rest of this thesis is organized as follows. In Chapter 2，we study the variable 

selection methods for general transformation models with ranking data. We will propose 

an effective algorithm to implement the procedure. With proper penalty function, we 

establish the consistency and oracle properties of penalized maximum marginal likelihood 

estimate (PMMLE). We also further extend the proposed variable selection procedures 

into the stratified general transformation models. Some simulation studies and Hong 

Kong horse racing data analysis will be used to illustrate our proposed variable selection 

procedures. In Chapter 3, we consider the variable selection for general transformation 

models with right censored data. The algorithm used for ranking data case will be used to 

implement the variable selection procedures. The \/n-consistency and oracle properties 

for right censored data will be established. We use some simulation studies and PBC 

data analysis to illustrate the proposed procedures for right censored data. In Chapter 

4，we will firstly study the asymptotic properties of rank-based maximum marginal like-

lihood estimate of parameters in general transformation models with interval censored 

data, based on which we further study the variable selection for the models with interval 

censored data. At last, we make some conclusions and present some further studies in 

Chapter 5. 

• End of chapter. 



Chapter 2 

Variable Selection for General 

Transformation Models with 

Ranking Data 

Ranking data are widely seen in epidemiological studies, population pharmacokinetics 

and economics. In this chapter, we will consider variable selection for general transforma-

tion models with ranking data by non-concave (SCAD, HARD thresholding and LASSO) 

and ALASSO penalty. The variable selection procedures will be done by maximizing 

rank-based penalized log-marginal likelihood function. Based on MCMC stochastic ap-

proximation (MCMC-SA) algorithms in Gu, et al. (2005)[40] and Gu and Kong (1998) 

39], we propose a three-step MCMC-SA algorithm to implement the variable selection. 

Wc also establish consistency and oracle properties for penalized maximum marginal like-

lihood estimates. We illustrate the proposed procedures by some simulation studies and 

Hong Kong horse racing data analysis. 

2.1 Penalized Log-marginal Likelihood 

Denote T G as the failure time variable and Z £ R^ 33 the corresponding covariate 

vector. It is assumed that T and Z are modeled by the general transformation models 

(1.3). In this Chapter, we assume that P only contains the regression parameters for easy 

presentation of our proposed variable selection procedures. It does not add any (difficulties 

10 
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when P includes model transformation parameters, which should be not penalized in 

variable selection procedures. 

Let {Zx}JLi be n i.i.d. copies of the population Z �二 (厂 i，/*?,... , Vn)^ be the 

observed ranking vector and = {(力1，亡2，... , ̂ n)^ ： ta^ < ta�< ••• < } be the 

set of underlying failure times consistent with the ranking where a, is an antirank, 

that is, ai = j if and only if r] = i. Denote as the underlying failure time for zth 

individual, T„ 二（7\，7̂ 2’...，^；广 and Z„ = (Z】，？?，…，ZnF. Then the rank-based 

marginal likelihood function for models (1.3) with ranking data is given by 

p ri n 
= / ( - 利 制 � I ) ,么 ， 約 n ^ o � 

J “ i=i i=i 
P n n 

(2.1) 

•^刀n 1=1 … 

where (j){u,v,w)=帥and V^ = {(1^1,^2,- • • /u„) : 0 < < < • ' ' < � „ < 1 

The last equality of (2.1) holds because of the simple transformation Ui 二 1 — 

Following (2.1), we can get the rank-based penalized log-marginal likelihood function as 

follows 

cm 二 m - n 2 ^ p x ( m ) (2.2) 
. 1=1 

where £(/3) = log(L„(/3|7?.n, Z^)) and is a penalty function, which is irregular at 

origin. Then the rank-based penalized maximum marginal likelihood estimate (PMMLE) 

of 13 can be obtained by maximizing (2.2) with respect to /S. With proper penalty function 

Pa(.)， s o m e components of will be zero, then they will disappear in selected models, 

which reaches to the purpose of variable selection. 

2.2 Consistency and Oracle Properties 

In this section, we will study the consistency and oracle properties of PMMLEs with 

non-concave and ALASSO penalties. Some regular conditions should be needed. 

(Al) Suppose that /3 € 6 , a compact subset of the Euclidean space RF and the true 

value /3o is an interior of 9 . The covariate vector Z is exogenous and assumed to be 
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bounded, equivalently, there exists a constant Mi > 0 such that P( | |Z | | < M 

where and hereafter 

V satisfying \\v\\ < Mi, 

I denotes the Euclidian norm. And for all w e e (0,1) and 

d(j){u, V, w] 
dw 

d'^(f)(u, w] 
dwdw^ 

exist and are continuous with respect to w G B. 

(A2) For any v satisfying ||t;|| < Afj, there are functions Fi (u, v) and f 2(14, i;), inte-

grable with respect to u over (0，1) such that 

V, < F\{u, v), ||(/)33(w, 川 < F"2(w，I；) for all w e G 

(A3) Denote 二 ^ ^ and f/ = 1 - 5o(T). For any /3 e B, 

m = E^o W l - f / , ^ , ^ ) } , 

>1(/3) = £>�{t/;2(1 — [ / ， Z , 卢 ) } , 

i m = E^, 
d 

dpT 讽 l - ( / ， z , 的 

exist and it is assumed that A{Po) is positive definite. Here and below a^ for a column 

vector a means aa了. 

Obviously under conditions (A1)-(A3), it can be easily shown that = B(/3o). 

(A4) For any P 6 O加,where O �i s a neighborhood of 卢0 in B, there exists a positive 

real number M2 such that ||B(/3)|| < M2. 

(A5) The function v, w) is continuous with respect to u e (0,1) and satisfies 

Lipschitz condition with respect to u in any closed subset of (0,1). That is, for any set 

L, R] C (0,1)，there exists a finite number M3(乙，R), which is related with L and R, such 

that 

\\l){ui,v,w) — 7p(u2,V,w)l\ < Mz\ux - U2 

holds for all Ui,U2 G [L,7?], ||t;|| < Mi, and w £ O^^. 

(A6) The function -^ipiu, v,w) is continuous with respect to u G (0,1) and satisfies 

Lipschitz condition, that is, there exists a positive real number M4, for all UuU2 6 (0,1), 

V < Ml, and w G Op^ such that 

dip{ui^v^w) dip{u2^ V, w] 
dw^ duF 

< M4 Ui — U2 
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(A7) For any fixed discretization (for the discretization technique and corresponding 

related notations, please see the Section 2.3 of Ni (2008) [53]), there exists N such that 

when n > N、 

E/3Q 
d 

d0T 
Sn{0) 

d 
Sn,m{0) for all (3 e 

where Sn{P) and - - ^ S n ( l 3 ) are the score function and Fisher information matrix with 

respect to the marginal likelihood function (2.1). Sn,m{P) and — are the 

versions of Sn(f3) and which can be found in the Section 2.3 of discretized 

Ni (2008). ’ ‘ 

Denote ？= 1 - 5o(r,) and u„ = (u\,u2,. • • , then 5'„(/3) and can be 

given by 

Sn{f3) 一 ？X" Zf, /9)p(u„; P Tin, Zn)du (2.3) 
i 二 I •̂队 

E卢[VKl — t / ” 么,到I尺 

and 

dSn{0) 

二 > E, 
t=i 

+ E, 

d 

di3T 多n 

多n - S.m 
(2.4) 

= 、 E / 
t=:l 

d 

dpT - Ui, Zi,/3) J^n + Var" 

where 

P(Un； ； 摩 " ， = 树 1 — (2.5) …Zn: 

is the conditional density function of U = (Ui,U2, •. • , Un)^ given the ranking and 

covariates Z„. Therefore the expectations and variance in (2.3) and (2.4) are respective to 

the density function (2.5). The subscript /3 here and below means that the expectations 

and variance in (2.3) and (2.4) are under the regression parameter (3 to distinguish from 

the true value, /3o, of /3. , 
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(Al) is a regular condition for models (1.3) whereas (A2) essentially allows the intcr-

changeability of order for differentiation and integration or sum. (A3)-(A7) are sufficient 

conditions for asymptotic normality of Sn(/3o) and the uniform convergence of 

in (9仇，which will be used to prove the oracle properties of PMMLEs. The condition 

(A5) is weaker than the Lipschitz condition and it is used to show that 5„(/3) can be 

approximated by a discretizcd score function Sn,m(P)- The inequality in condition (A7) 

should hold for j3 = /3o otherwise, use of the discretized data will be better. Moreover, 

when j^STi(j3) enjoys some continuity in O p � the inequality can be satisfied. 

With proper penalty functions and above conditions, wc can show that the PMM-

LEs are \/n-consistent and perform as well as the oracle estimates. For the easy pre-

sentation of variable selection procedure, without loss of generality, we partition /3o == 

Iho, • •. , Ppo)^ 二 (fiJo^ 02{)Y such that /3io contains all the nonzero components of 

Pi and 卢20 = 0 contains all the zero effects. We also assume that the length of /3\q is 

s. In addition, we declare that j3] consists of first s components of (3 while p2 includes 

the remaining ones of (3 such that we also have the corresponding partition for that is, 

f3 = 
J 

2.2.1 Results of Variable Selection Methods with Non-concave Penalties 

To avoid confusion in notations, here we declare that 0n in this section is PMMLE of 

j3 with non-concave penalties while in the next section it becomes PMMLE of (3 with 

ALASSO penalty. Therefore, in this section, px(-) can be any one of functions (1.8), (1.7) 

and (1.5) and in the next section px(-) is the function (1.6). 

Denote ^ 

= m^y^Jl^jol) ：/^jo 0} (2.6) 

, = (2.7) 

Theorem 2 .1 (Consistency) Under the conditions (Al)-(A7), if -> 0, then there 
A A, . 

exists a local maximizer /3n of Q(0)such that ||/9„ — /3o|| 二 Op(n-i" + a„). 

l^om Theorem 2.1, we can see that the PMMLE is \/^-consistent when a„ 二 
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Denote 

bxn = (PA„(li^io|)sign(Ao),--- ,pL(lAol)sign(Ao)) 、T 

and 

S�=diag(p;(n(|A。|)，pUj/知。I)’ …’P'UIAol))， 

where A„ means that the value of tuning parameter in penalty function varies as the 

sample size n. The following theorem presents the oracle properties of PMMLE with 

nonconcave penalties. 

Theorem 2.2 (Oracle) Under the conditions of Theorem 2.1 and 

l i^^if l i j i l 恕 ⑷ • “ � 0 , 

if An —> 0, \/nXn — oo and a„ = then with probability tending to 

consistent local maxirnizer = in Theorem 2.1 must satisfy 

(i) (Sparsity) 02n 二 0; 

(ii) (Asymptotic Normality) 

the y/n-

+ - /3io + (Bi + SaJ—�b; D 
(.2.8) 

where Bi the upper leading s x s submatrix of B(j3q). 

Remark 2.1: Obviously for HARD thresholding and SCAD penalty functions, if 

An -> 0, then for sufficiently large n, a„ 

oo and A„ —>• 0, we have 

0，6a„ = 0 and 二 0. Therefore, if 

- 卢 10) - A N{0, B；') and 02n 二 0. 

This implies that with proper tuning parameter A, PMMLEs with HARD and SCAD 

penalties enjoy oracle properties. It is as like that we have known /？之 二 0 in advance 

when we estimate ffi. 6 n th6!other hand, for LASSO penalty function, a„ == then the 

conditions y/nXn —> oo and a^ = in Theorem 2.2 contradict. So PMMLEs with 

LASSO penalty can not enjoy oracle properties. 

2.2.7 Resul ts of Variable Selection Method with Adaptive - LASSO Penalty 

In this section, we present the consistency and Oracle properties of PMMLEs with 

ALASSO penalty (1.6). 
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Theorem 2.3 (Consistency) Under the conditions (Al)-(Ai), if >/nXn 二 0(1), then 
A A 

there exists a local maximizer /3„ of Q(/3) with A LASSO penalty satisfies ||/3„ — /3o|| = 

Op(n-"‘2). 

This theorem shows that, with proper tuning parameter An, the PMMLEs with ALASSO 

penalty enjoy >/n-consistency. 

Theorem 2.4 (Oracle) If y/nX^ — 0 and 
—> oo for some 7 � 0， t h e n under 

• A 

conditions of Theorem 2.3, the maximizer in Theorem 2.3 must satisfy: 

(ij (Sparsity)白2n = 0; 

�( i i ) (Asymptotic Normality) 
Vn{$xn - /?io) - A B；^) a s n —00， (2.9) 

where Bi is defined in Theorem 2.2. 

From the Theorem 2.4, we can see that, with proper tuning parameter A„, the PMM-

LEs with ALASSO penalty also enjoy oracle properties as if we have known which effects 
% 

are equal to 0 in advance when we estimate f3\ in models (1.3). 

2.2.3 Proof of Theorems 
> 

In this section, we will prove Theorems in Section 2.2.1 and 2.2.2 under regular conditions 

(A1)-(A7). Without loss of generality, we suppose that the continuous baseline cumulative 

density function Fo(t) = 1 — So{t) satisfies Fo{t) = 0 for i < 0 and Fo(t) is strictly 

increasing in (0,00). Before proving the Theorems 2.1-2.4’ we firstly introduce some 
« i 

Lemmas. 

Lemma 2.1 Under the conditions (A1)-(A6), we have 
% 

^ Sn(l3o) N{0,A{Po)) as n —> 00 (2.10) y/n 

where A(0) is defined in condition (A3) and " A " means convergence with distribution. 

Lemma 2 .2 Under the assumptions (A1)-(A7), it holds that 

二 二 剛 as n - ^ 0 0 (2.11) 
n op^ 

uniformly for all /3 € O^q, where 召(/?) is defined in condition (A3). 
I 

Lemma 2 . 3 Under conditions (Al) - (A7), there exists a sequence of /3„ satisfying 

Sn{0n) = 0 such that as n ~ > 0 
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r 
⑴ 0n ^ 00 

(ii) v^o^n-队）4yv(o，A(/3� )-1) . 

This Lemma shows that the maximum marginal likelihood estimate of 0 is consistent and 

distributed asymptotically normally. 

Following the arguments for misspecified general transformation models with ranking 

data in Section 2.3 of Ni (2008) [53], one can prove Lemmas 2.1-2.3 without adding any 

difficulties. Therefore we omit the details here. 

Proof of Theorem 2.1 Let q;„ 二 n一i" + a„. It is sufficient to show that for any 

given 1 — £ > 0, there exists a large constant C such that 

P < sup Q(/3o + a^u) < Q(/3o) ^ > 1 -
[\M=c J 

Based on that 7�„(0) = 0 and pAn (^) > 0 for ^ > 0, we have 

-[Q(f3o + O^nU) - 0(/3o)： n 

(2.12) 

< - + - E{l3o)] - ^IpxAlPjO + O^nUjl) — VX.Woi 
(2.13) 

By Lemmas 2.1 and 2.2，for any 13 e {l3 : 0 = /3o a:„u, | |u | | = C}, we have 

1 
n m ~ m ) 

n 

T 

(0 — M — — /3ofB(Po){0 - /3o){l + Op(l )} 

= - > -l3of[B(0o) + Op{l)](P -/3o), + Op(n-^/'^)..\\/3 - Po 

(2.14) 

= 一 B(M + Op{l)]u + u 

Note that D{/3o) is a positive definite matrix. The order for first term in the last equality 

of (2.14) is C'̂ otn and for second one is a^C. Therefore, for a sufficiently large C, the 

second torrn is dominated by the first term in the last equation of (2.14). On the other 

hand, by Taylor's expansion, the second term of (2.13) is bounded by 

+ a 队 ||ii||2 = Ca^{y/s + bnC). 

If bn — 0，the second term of (2.13) is dominated by the first term of (2.14). Thus, for 

a sufficiently large C, (2.12) holds, which means that there exists a local maximizer for 
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Q(/3) in the ball {/3 : 0 = /3o + q:„w， \\U\\ < C} with probability at least 1 — r � 0 . 

Therefore, there exists a local maximizer /3„ such that — /3o|| = O r 如 - 、 口 + • 

Proof of Theorem 2.2 (i) It is sufficient to prove that 

max {Q((/3『，/3『厂： 

for any constant C and any given satisfying 一卢loll = Of)(ji_�"). 

Prom Lemma 2.1 and \\I3 -卢oil = i " ) ’ 

Sn{0o) + - 0o)\\ + Op{\\l3 - 00 

(2.15) 

Sn{f3) 

二 

Sofor l ) , ( 5 - f 2 ) , - - - ’ p 

dcm 

(2.16) 

a f t 

二 nA„{-A；；VA�ftl)sign(ft-) + Op丨 

(2.17) 

y/nXn 

where SnjiP) is j t h element of 5„(/3). Since liin inf„_^oo Um infV—o+P'a > 0, and 

0，the derivative and 一吕j have the same sign. Therefore (2.15) holds. 

(ii) From a„ = 0 ( n - 1 " ) and Theorem 2.1，there exists a local yn-consistent maxi-

mizer, /3in, of satisfying 

dcm 
dpj 

二 0 for j 二 1,2， (2.18) 

Set /3„ 二 and 5i„(/3) as the upper leading s x s submatrix of then 

0 = dcm 
0 0 1 

dcm + d'QW 
dMPi 

(Pin - /3lo) 

二 知 (A) ) - nb入n + 
dSrM 
dMPi 

(2.19) 

where (3* = (/3f*,卢『*)『lies on the line segment between j3n and j3o； (jd：) = diag(p'二 (| AI)， 

, p U I A I ) ) ' From Theorem 2.1 and Lemmas 2.1-2.2，（2.8) holds. This com-

pletes the proof. • 
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Proof of Theorem 2.3 Similar to the proof of Theorem 2.1, let a„ = n一i". it is 

sufficient to show that for any given 1 — e > 0, there exists a large constant C such that 

Note that 

n 

P { sup Q(/3o + anu) < ^ > 1 - ^^ 
l|u||=C 

Q[(3o + C^nU) - Q{0o) 

(2.20) 

< - + anU) - e m ] — A„ + C n̂Ujl " | f t � | ) / | f t | ' 
(2.21) 

1 

By Lemmas 2.1-2.2, for any € :卢二 /So + ĉ nU 

- [ m —《A))] 
n 

�TdSn(M 

U ==C"}’ we have 

n 
{P-0o){l + Op(l)} 

(2.22) 

二 - 臺 ( / 3 — 0of[B(l3o) + Op(l)](/3 — M + Op(n-"2) . ||/3 一 A) 

二 - “ 乂 卿 0 ) + 0户 ( l ) ] i i + O p ( n - 〜 M | ) 

Note that B(J3q) is a positive definite matrix. The order for first term in the last equality 
< 

of (2.22) is C^Qf^ and for second one is ct^C. Therefore, for a sufficiently large C’ the 

second term is dominated by the first term in the last equality. On the other hand, by 

Taylor's expansion and Lemma 2.3, 
1 

and hence the second term of (2.21) is bounded by Ca^, since 

OinKl^llUjl/lPj 
i=l 

— /—^n sjn 
Un 

and 

灿 一 " 2 入 „ 0 / ) � =C n 一 尸 ( 1 ) < C a l O p { l ) 

y/nX 二 C^l). 

Therefore, the second term of (2.21) is also dominated by the first term of (2.22). Thus, 

for a sufficiently large C � ( 2 . 2 0 ) holds, which means that there exists a local maximizer 
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in the ball {0 : /3 — /3o a^u, {|u{| < C) with probability at least 1 — e > 0. Therefore, 
A • *** 1 ! r\ 

there exists a local maximizer Pn such that \\l3n - PoW = 口 

Proof of Theorem 2.4 (i)Similar to the proof of Theorem 2.2，it is sufficient to prove 

that 
Q m . O ' V ) = max { Q { { 0 ( \ 0 i y ) } (2.23) 

for any given j3] satisfying ||/3i — l3io\\ = O p ( n — a n d any constant C. 

Since - = 

Sn(m = + — (3o)\\ + Op{\\(3 - 00 • dpT 

= O p ( v ^ ) 

From Lemma 2.3，for j = s + 1’ <s + 2’ 

dcm 
dfti 

SnM - nAn 

,p, we have 

sign ( f t ) 

Pi 

= 轉 + 華 ） 

where Snj(0) is jth element of 5„(/3). Since ”(飞+”“入打-> oo as n ->> oo, the derivative 

a斌)and - p j have the same sign. Therefore (2.23) holds. 

(ii) From Theorem 2.3，there exists a local y^-consistent maximizer, of ’ 0了 )」 

satisfying 
dQ{0) 

二 0 for j 二 1,2, (2.24) 

Set $n = 0Tny and denote 5i„(/3) as a vector consisting of the first s components 

of 5„(/3), then 

0 = 
⑷
o
p
 

I

I
 

a
 + d'cm 

T 

ds^m 

sign(/3io) sign(/?2o) 

(/3i„ - 卢 10) 

sign(AK)) 

A 

T 
(2.25) 

+ (/3i„ - M - - 卢 10) dpidpj 

where jS* = {0^*^02*) lies on the line segment between and /3o. From \ /n \n 0， 

Pi A /3io, Theorem 2.1 and Lemmas 2.2-2.3, (2.9) holds. This completes the proof. • 
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2.3 Implementation 

In this section, we propose an uniform algorithm for our proposed variable selection 

procedures by incorporating the MCMC-SA algorithm in Gu, et al. (2005) [40] and Gu 

and Kong (1998) [39 . 

Through quadratic Taylor's expansion for (2.2)，maximization of (2.2) can be reduced 

to a local quadratic maximization problem, which leads to a modified Newton-Raphson 

algorithm. Note that there are high-dimensional integrations included in the and 

first-order and second-order derivatives of £(J3). Moreover, the marginal likelihood 

function Z„) is also a high-dimensional integration and has no closed expression. 

Thus we should use some approximation methods to estimate Sn(/3) and Because 

of Monte Carlo error, the Newton-Raphson algorithm may be very hard to converge. 

To overcome the difficulties, we will combine the three-stage MCMC-SA algorithms in 

Gu, et al. (2005) [40] and Gu and Kong (1998) [39] to maximize the penalized log-

marginal likelihood' function (2.2) with respect to 0 . The basic idea is as follows: The 

first two stages of three-stage MCMC-SA algorithm of Gu, et al (2005) [40] are used 

to generate the initial estimate of /3; Then we.update the estimate of 0 by developing 

MCMC-SA algorithm in Gu and Kong (1998) [39]. In the updating procedure, we not 

only can select significant variables but also can estimate corresponding effects; Finally, 

the third stage of three-stage MCMC-SA algorithm is used to calculate the variance-
A  

covariance matrix of Three-stage MCMC stochastic approximation algorithm and 

corresponding notations are listed in Appendix A. 

Another difficulty is that the penalty function in (2.2) is irregular at origin and may not 

be secondly differeritiable at some points. Following Fan and Li (2001, 2002) [25，28], we 

will approximate the penalty functions by local quadratic approximation method. Given 

an initial value Pq that is close to the maximizer of penalized log-marginal likelihood func-
- » 

tion (2.2), when PjQ is not very close to 0，the penalty [px{\Pj\)]' is locally approximated 

by • 
\ p x { \ m ' = PA(l f t l )s ign(f t) « • 。 丨 ( 2 . 2 6 ) 

， A 
otherwise, set = 0. As a consequence, for pj « fijQ, 

PjO 

pxm) ^pxdMh l\p'xmo\)/\MW]-Pjo) 
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and 

\pxi\m"-p'xi\Pjo\)/\pjo 

Next we give the standard deviation formula of the rank-based penalized maximum 

marginal likelihood estimate. Denote V e ( 0 ) = -響 and = Then, at 

the {k + l ) th step in the Newton-Raphson algorithm, the penalized marginal likelihood 

estimate of denoted by /S(矢+1)，can be updated through 

where 

and 

少/c+i) 二 - [yS《少fc)) + n E ； ^ (岁 - [ • 《 少 巧 + 

hxiP) = ^x{l3)f3. 

(2.27) 

Thus at convergence, Var{0ri) can be estimated by following sandwich matrix, 

(2.28) 

This formula is consistent with Theorems 2.2 and 2.4, which performs very well for mod-

erate sample size. 

With a proper tuning parameter A, the rank-based penalized maximum marginal like-

lihood estimates can be found by the following three-step MCMC-SA algorithm. 

Step 1 With Gibbs sampling procedure for ranking data, run the first two stages of the 

three-stage MCMC-SA algorithm and generate the off-line average estimates of f3 

and r，denoted by 0 and f , where T is the Fisher information matrix with respect 

to (2.1). Denote U as the last sample of U from Gibbs sampling procedure in this 

‘ step. 

Step 2 Set Uom = U. Following' the first step in the first stage of three-stage MCMC-SA 

algorithm, for fixed k, generate m samples from (2.5) - Uk = (U)t,i, Ujt,2, •..，Uk,m) 

with Uk,i = (t4,i’i，队,i’2，... , Uk^i^nY. Take p and f as the initial values of 0 and 

r in this step. With proper tuning parameter A and the current value � ’ update 

妒+1) by running 

1\十1 + 73“/(4(')，u,) + ⑷） - r； 
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岁/c-M) = + I•例妒) ;U,) ] 

where 
-1 rn o 

t=i 
1 

例 二 一 ；^//(卢’ Ufc’,)， 

n 

i=l 

and 73/t = 矢？二 with c G (0.5,1). The updating step will terminate when ( 知 — 

�丨| is less than a pro-specified small positive real number, for example, 10"'^. With 

proper penalty function, this step not only can select important variables but also 

can estimate corresponding effects. 

Step 3 The variance of the nonzero penalized estimates can be obtained by calculating 

with the third stage of three-stage MCMC-SA algorithm. 

Gibbs Sampling for Ranking Data: 

Without loss of generality, we assume the components of U„ 二（t/!’ f/2’ …， " „ ) �h a s 
# 

been sorted in advance in ascending order with their corresponding covariates Z„ ordered. 

Then the ranking vector is Tin = (1,2, • • •，n广.Here (7, — 1 - So(Ti). Then Ut has the 

survival function <^(1 — u, Zi,/3). Define 

Then the density distribution of U^ condition on U^ € (2.5). Moreover, for fixed 

Uj,s ( j + i), Ui has the distribution function 1 一 - u, and it is restricted in 

(f/i_i’ t/i+i) with Uo=0 and Un+i 二 1. 

* Given Z„, we can generate a sample of U„ from the stationary probability (2.5) through 

the following Gibbs sampling procedure. Let U^ 二 (̂ 7i’fc，f/2’fc, • •.,队,a尸 be the current 

sample of Un. Then the next sample U 广 can be generated as follows, 

0. Set j = 1; 

1. Set uj = 1- 4>(1 - ^一i,fc’ Zj,/3)- and u卜 1 — - Uj+i，k, Zj, /3) with Uq = 0 and 
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2. Generate u* from Uiiif[uJ, uj] and set Uj’k+i = 1 -巾—'（l — u*, Z], (3), where 

<^-i(u’i;，— is the inverse function of with respective to u. 

3. If j < n, then j = j + 1 and go to step 1，otherwise stop. 

Remark 2.3: Following Craven and Wahba (1979) [19] and Fan and Li, (2002) [25], 

the proper tuning parameter A can be selected by an approximated generalized cross-

validation (GCV) statistic. Following second order Taylor's expansion, 

m = m ) — - M - — mtv2 邸 - z?。). 

Let V^ii/Bo) = XTX as the Cholesky decomposition, then £[(3�can be approximated by 

1 
m)—云[X{f3 - f3o) + [X(f3 一 f3o) + X-�.W(A))j + o{\\l3 — 0o 

I 

Then when /3 is very close to Pq, the maximization of the penalized marginal likelihood 

function (2.2) can be reduced to the local quadratic minimization of 

T 

2 
y - XPY[Y - X ^ ] + n > mm) (2.29) 

i=l 

where Y = + Then at convergence, P can be estimated by the 

ridge estimate 卢„ = [V^(/3n) + y- So the degree of freedom for selected 

model can be approximated by 

e(A) - t r | + nEA(/3n) VH�白几 

The approximated GCV criterion can be defined by 

(2.30) 

GCV(A) 二 
n 

(2.31) -e(A)/n]2 

where £{I3) can be approximated by the following important sampling procedure. 

Intuitively, the GCV inflates the negative log-marginal likelihood by the factor involv-

ing the degree of freedom e(A). Large value e(A) will cause more inflation of the negative 

log-marginal likelihood. 

Approximation of C(/3) with ranking data: 

To approximate £(J3), we firstly approximate ( 冷 Z „ ) . Note that when Z^ = 0, 

Po(Un;7e„) = n!/(u„ GPn； (2.32) 
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is the baseline conditional density function of U„ given 尺„. Multiply and divide the 

integrand in (2.1) by the density (2.32), then the marginal likelihood (2.1) carl be rewritten 

as a conditional expectation with respect to the baseline density (2.32), namely, 

L „ ( 晰 „ ’ Z n ) - - : E 
71! 

PO 7^„，Z„ (2,33) 

Therefore Z„) can be approximated by important sampling. Specifically, we 

first generate Mq simulated samples Ui 二（ f / i , i， • •. ^hn)'^ of U from (2.32) by virtue 

of Gibbs sampling procedure with Z^ = 0 and then Z„) can be estimated by 
Mq 厂 n -

n! Mq 
J : 

The score function 5„(/3) and the Fisher information matrix /„(/3) = — ̂ r S n � P � c a n be 

correspondingly approximated by 
1 1 Mo 

Sn{(3)= n\ MQ 
ij-

(解n，Z „ : 

and 

U0) 

1 
n! Mq 

+ Sl{/3) 

Mo 

i=l 

d 

dpT 
u: 

4 障 „ ’ Z „ : 

(2.34) 

Then we can use Z„) and /„(/3) to approximate (2.31). Given covariate sample 

Z„, to assess the selected models efficiently, the same simulated samples of U„ will be 

used to approximate (2.31) regardless of the values of P and A. 

2.4 Extension to Stratified General Transformation Models 

The general transformation models (1.3) and corresponding variable selection procedures 

can be easily extended into stratified case. 

Denote 5oi(t) as the baseline survival function in the zth stratum and then the stratified 

general transformation models can be defined by 

for i = l’2，...，7V. (2.35) 
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where the assumptions about ^(u, v, w) and P are the same as the ones for (1.3). More-

over, due to the difference of external environments, the baseline survival function Soi{0) 

may vary across strata. 

Suppose that are rii i.i.d. copies of Zi in ith stratum, i = 1，2，…,N. Denoted 

Ti� j as the underlying failure time of jih individual in zth stratum, 7Zi as the observed 

ranking in the zth stratum. Then the marginal likelihood function Li{0\Zi, TZi) in zth 

stratum has the same form as (2.1) for general transformation models (1.3). Consequently, 

the marginal likelihood function for (2.35) is given by 

N 

L{i3\z,n) = 

i=l 

where Z = (Zi，Z2，…，Z")’ Z* = {”“，么门，...and 7Z = ，7^/v). Fol-

lowing the variable selection methods for non-stratified general transformation models 

(1.3)，we can easily develop the variable selection procedures and corresponding oracle 

properties for the stratified general transformation models. The variable selection pro-

cedures for stratified general transformation models (2.35) can be also implemented by 

slightly modified algorithm discussed in Section 2.3. Here we omit it. The stratified gen-

eral transformation models and corresponding algorithm will be used to analyze the horse 

racing data set in Section 2.5.2. 

2.5 Numeric Studies V 
In this section, we illustrate our proposed variable selection procedures by three simu-

lation examples and one real data application. Firstly we conduct some simulations for 

three special models of general transformation models with ranking data — proportional 

hazard regression model, proportional odds regression model and generalized probit trans-

formation model. Then we apply proposed variable selection procedures to analyze Hong 

Kong Horse Racing Data through stratified generalized probit model. 

According to Tibshirani (1997) [68], we use median of mean squared error (MMSE) 

— /9o) 一 Pq) over 100 runs to evaluate the efficiency of the proposed variable 
t 

selection methods, where E is the population covariance matrix of regressors and it can 

be estimated by covariate sample. 
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2.5.1 Simulation Examples 

In this example, 100 data sets consisting of n = 100 and 200 observations are simulated 

from the models 

Sz(t) = ^ S o ( t ) , Z , P ) (2.36) 

where — u, v, w) — h~^{h{u) + v^w) and takes standard extreme value sur-

vival function, standard logistic survival function and standard normal survival func-

tion, which correspond to proportional hazards models (PH), proportional odds mod-

els (PO) and generalized probit models (GP) respectively; So{t) 二 Z e R^ and 

/3 = (0.8，0，-0.8,0,0,0.8,0,0, —0.8广.All the elements of Z follow the standard normal 

distribution independently. 

We run ti?e three-step MCMC-SA algorithm with the following parameter setting: For 

the first two stages of the three-stage MCMC-SA algorithm, we take m = 100, Kq = 100, 

Cj = 0.3 and C2 = 0.6 while for the second step in our three-step MCMC-SA algorithm, 

we take C3 = 0.9. The tuning parameters in the variable selection procedures are selected 

by approximated GCV (2.31). For the approximation of GCV (2.31), we will generate 

Mo = 20000 samples from the conditional baseline density function (2.32). 

MMSE is used to assess the efficiency of the proposed variable selection methods. 

MMSEs based on 100 simulations are listed in Table 2.1. The average numbers of se-

lected zero coefficients are also reported in Table 2.1, in which the columns labeled as 

"correct" present the average number of zero effects detected correctly by our proposed 

procedures, while the columns labeled "incorrect" give the average number of coefficients 

erroneously set to be 0. Tables,, 2,2, 2.3 and 2.4 summarize the estimation of nonzero 

effects in PH, PO and GP models. The estimation results include the bias (Bias), sam-

ple standard deviations (SStd) and mean of estimated standard deviation (MStd). For 

PMMLE, MStd's are calculated from (2.28) while MStd's for oracle estimates are calcu-

lated based on the inverse of Fisher information matrix at oracle estimates. When one 

variable with true nonzero effect is excluded from the selected model; its estimate and 

corresponding estimated standard deviation are set to be 0.‘ 

Based on Table 2.1 and MMSE, it can be seen that the variable selection methods 

with SCAD, HARD thresholding and ALASSO penalties perform similarly and they also 

perform as well as the oracle estimates in the three models while the method with LASSO 
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Table 2.1: Variable Selection results for PH，PO’GP models with ranking data under n = 100,200 

n = 100 n = 200 

Aver. no. , o f 0 Cocf. Aver, no, . o f 0 Coef. 

Models Penalty MMSE correct incorrect MMSE correct incorrect 

PH HARD 0.125 4.475 0.000* 0.087 4.841 0.000 

SCAD 0.077 4.670 0.003 0.028 5.000 0.000 

LASSO 0.675 4.680 0.004 0.638 4.922 0.000 

ALASSO 0.083 4.375 0.005 0.039 4.793 0.000 

Oracle 0.103 5.000 0.000 0.092 5.000 0.000 

PO HARD 0.254 4.931 0.070 0.065 4.863 0.010 

SCAD 0.192 4.888 0.060 0.065 4.932 0.011 

LASSO 0.939 4.670 0.080 0.820 4.822 0.034 

ALASSO 0.215 4.007 0.004 0.069 4.574 0.000 

Oracle 0.117 5.000 0.000 0.057 5.000 0.000 

GP HARD 0.067 4.678 0.000 0.027 4.728 0.000 

SCAD 0.062 4.630 0.000 0.024 4.860 0.000 

LASSO 0.461 4.525 0.000 0.441 4.940 0.000 

ALASSO 0.079 4.373 0.028 0.029 4.829 0.018 

Oracle 0.044 5.000 0.000 0.024 5.000 产’ 0.000 

Note: 0.000*s indicate that the corresponding values are less than 0.0005. 

penalty suffers from relatively large MMSE. Moreover, from the average number of zero 

coefficients, all the methods can select about the same correct number of significant vari-

ables for both n 二 100 and n = 200. On the other hand, in all the settings, the values of 
I 

MMSE decrease as the increasing of sample size. So the performance of variable selection 

methods will improve according to MMSE when sample size increases. 
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Table 2.2: Summary of estimation results for nonzero effects in PH model with ranking data 

under n = 100,200 

» n = 100 Tl = 200 

Penalty (h "9 Pi "3 "9 

HARD Bias -0.1380 0.1164 -0.1433 0.1366 -0.1489 0.1423 -0.1433 0.1404 

SStd 0.0946 0.1105 0.1051 0.1037 0.0731 0.0730 0.0671 0.0855 

MStd 0.1175 0.1178 0.1158 0.1179 0.0779 0.0780 0.0788 0.0783 

SCAD Bias -0.0528 0.0328 -0.0554 0.0338 -0.0293 0.0167 -0.0331 0.0373 

SStd 0.1325 0.1251 0.1262 0.1172 0.0759 0.0869 0.0856 0.0928 

MStd 0.1082 0.1075 0.1066 0.1090 0.0728 0.0733 0.0725 0.0716 

LASSO Bias -0.4402 0.4429 -0.4527 0.4478 -0.4404 0.4342 -0.4306 0.4434 

SStd 0.0898 0.0803 0.1008 0.0992 0.0619 0.0520 0.0604 0.0574 

MStd 0.0878 0.0865 0.0847 0.0868 0.0611 0.0613 0.0602 0.0611 

ALASSO Bias -0.1450 0.1526 -0.1471 0.1500 -0.1590 0.1411 -0.1523 0.1451 

SStd 0.1084 0.1191 0.1652 0.1187 0.0709 0.0743 0.0747 0.0775 

MStd 0.1169 0.1151 0.1152 0.1165 0.0778 0.0785 0.0778 0.0778 

Oracle Bias -0.1293 0.1246 -0,1294 0.1484 -0.1388 0.1450 -0.1373 0.1427 

SStd 0.1079 0.1042 0.1030 0.0951 0.0661 0.0777 0.0677 0.0759 

MStd 0.1246 0.1294 0.1246 0.1220 0.0814 0.0821 0.0816 0.0815 

Tables 2.2，2.3 and 2.4 show that the biases of PMMLE with SCAD, HARD thresh-

olding and ALASSO penalties are as small as that of oracle estimates and the Biases can 

be reasonably ignorable in the three model settings. However, the biases of PMMLE with 

LASSO penalty are relatively larger. 

To test the accuracy of sandwich formula (2.28) in Section 2.3，we compare the sample 

standard deviations with the means of estimated standard deviation from (2.28). Note 

that SStd is the sample standard deviation. Without considering Monte Carlo error, it 
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Table 2.3: Summary of estimation results for nonzero effects in PO model with ranking data 

under n = 100，200 

、 n = 100 n = 200 

Penalty A Aj A 33 "6 A) 

HARD Bias -0.0379 0.0395 -0.0633 0.0884 -0.0152 0.0127 -0.0210 0.0209 

SStd 0.1626 0.2477 0.2245 . 0.2768 0.1463 0.1351 '5.1661 0.1590 

MStd 0.1903 0.1804 0.1824 0.1851 0.1273 0.1276 0.1272 0.1276 

SCAD Bias 补0 4 9 9 0.0516 -0.0664 0.0314 -0.0334 0.0013 -0.0208 0.0083 
• _ 

SStd 0.2787 0.2701 0.2676 0.2390 0.1507 0.1536 0.1610 0.1329 

MStd 0.1674 0.1752 0.1710 0.1779 0.1200 0.1207 0.1200 0.1237 

LASSO Bias -0.4980 0.4827 -0.5157 0.4878 -0.4527 0.4640 -0.4557 6 . 4 7 5 9 

SStd 0.1702 0.1898 0.1788 0.1745 0.1395 0.1417 0.1324 0.1275 

MStd 0.1111 0.1104 0.1062 0.1123 0.0846 0.0835 0.0849 0.0835 

ALASSO. Bias -0.0359 0.0478 -0.0554 0.0562 -0.0107 0.0297 
9 

-0.0274 0.0076 

SStd 0.1879 0.1793 0.2310 0.1860 •0.1395 0.1376 0.1422 0.1475 

MStd 0.1894 0.1904 0.1859 ‘0.1885 0.1273 0.1268 0.1265 0.1263 

Grade Bias 0.014 -0.0086 0.0347 -0.0084 0.0154 -(y)236 0.0116 -0.0003 

SStd 0.1881 0.1872 0.2167- 0.1908 0.1449 0.1517 0.1315 0.1589 

• MStd 0.2007 0.2020 0.2006 0.2030 0.1390 0.1398 0.1385 0.1384 

can be seen as the true standard deviation. From Tables 2.2, 2.3 and 2.4, we can find that 
- J, 
all the means of estimated standard deviation are reasonably close to their corresponding 

> " ‘ . ‘ 

sample standard deviations in all the settings/ Moreover, the values of MStd, SStd and 

their difference decrease as the increasing of sample size. This shows that when the sample 
size increases, the performance of sandwich formula (2.28) will improve significantly. 

� -
‘ I n a word, for the general transformation models with ranking data, the variable se-

I • 
lections with SCAD, HARD thresholding and ALASSO penalties outperform the method 
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Table 2.4: Summary of estimation results for nonzero effects in GP model with ranking data 

under n 二 100,200 

n = 100 n = 200 

Penalty /3i 卢1 (h P9 

HARD Bias 0.0250 -0.0426 0.0258 -0.0315 0.0116 -0.0046 0.0108 -0.0093 

SStd 0.1162 0.1356 0.1382 0.1548 0.0940 0.0834 0.0820 0.0850 

MStd 0.1213 0.1237 0.1245 0.1225 0.0777 0.0777 0.0777 0.0778 

SCAD Bia8 0.0426 -0.0424 0,0267 -0.0408 0.0115 -0.0093 0.0069 -0.0050 

‘ 
SStd 0.1871 0.1822 0.1894 0.1559 0.0848 0.0937 0.0903 0.0834 

MStd 0.1109 0.1103 0.1099 0.1102 0.0727 0.0730 0.0731 0.0731 

LASSO Bias -0.3423 0.3378 -0.3471 0.3512 -0.3377 0.3264 -0.3446 0.3483 

SStd 0.0986 0.0929 0.0968 0.1198 0.0895 0.0801 0.0879 0.0772 

MStd 0.0927 0.0925 0.0914 0.0918 0.0636 0.063G 0.0636 0.0637 

ALASSO Bia^ -0.0415 0.0164 -0.0286 0.0262 -0.0170 0.0184 -0.0357 0.0257 

SStd 0.2023 0.1703 0.2032 0.2010 0.1196 0.1220 0.1137 0.1174 

MStd 0.1313 0.1310 0.1313 0.1316 0.0878 0.0861 0.0828 0.0863 

Oraclc Bias 0.0279 -0.0141 0.0165 -0.0087 0.0075 -0.0252 0.0231 -0.0192 

SStd 0.1296 0.1132 0.1277 0.1251 0.0873 0.0857 0.0974 0.0907 

MStd 0.1342 0.1331 0.1328 0.1302 0.0836 0.0841 0.0848 0.0837 

with LASSO penalty according to MMSE and estimation. Moreover they also perform 

as well as the oracle estimates. We also concluded that the standard error formula can 

perform very well for moderate sample size. 

2.5.2 Horse Racing Data Analysis 

In this section, stratified general transformation models and proposed variable selection 

procedures are applied to analyze the horse racing data in Hong Kong. The data set dates 
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from September 9，2007 to July 3，2008. A total of 730 races were recorded and there 

were 5 � 1 4 horses involved in each race. For each race, only the ranking as racing results 

and some characteristics of participating horses, jockeys and trainers were recorded. The 

data set includes 20 variables listed in Tables 2.5. 

The aim of this application is to select important variables for interpreting the race-

track betting markets and to investigate the extent to which publicly available information 

is efficiently incorporated into the payoff of a race, which has been studied by many au-

thors [8，9，37，38, 41, 50，65]. Because of the factors such as weather, pace, time (afternoon 

or evening) etc, the baseline survival function in general transformation model may be 

different for each race. Therefore, the stratified general transformation models should be 

considered. In this application, we use the generalized probit transformation models with 

strata to analyze the data. Variable selection methods with Hard thresholding, SCAD, 

LASSO and ALASSO penalties are used to select important variables. We run the pro-

posed three-step MCMC-SA algorithm with the same programme parameter setting as 

simulation studies to conduct the application. The tuning parameters are selected by 

approximated GCV (2.31). 

Before implementing the variable selection procedures, we first standardize the covari-

ates. The results are summarized in Tables 2.6，2.7 and 2.8. In the tables, "Est." and 

"Std" stand for the parameter estimates and corresponding estimated standard devia-

tion calculated from (2.28). The last columns in these Tables list Z-values (the ratio of 

estimate and standard deviation) for the parameter estimates. By use of approximated 

GCV, the tuning parameters A for variable selection methods with Hard Thresholding, 

SCAD, LASSO and ALASSO penalties are 0.021, 0.031，0.022 and 0.0003 respectively. To 

compare the efficiencies of proposed variable selection methods, the maximum marginal 

likelihood estimation approach is also used to analyze the data set and the corresponding 

standard deviation are taken as the inverse of information matrix. Table 2.6 summa-

rizes results for MMLE and SCAD; Table 2.7 displays results for LASSO and ALASSO 

penalties. The summarized results for HARD penalty are given in Table 2.8. 

From Tables 2.6, 2.7 and 2.8，Zi is the most important factor and it is selected by all 

the four procedures. Moreover, the Z-value of Zi gets larger in the selected models. We 

also find that while the Z-value of Z n is very small according to MMLE, it is selected 
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Table 2.5: The interpretation of variables considered in the horse racing application 

Variables Interpretations 

Z5 

^ 

Zio 

Zn 

Z12 

Zi3 

而4.1 

ZiQ 

Zu 

Zn. 

Relative strength of the horse by the public; 

Average horse speed rating; 

Number of Barrier trials since last race; 

Number of days between last race and current race; 

Age of the horse; 

Horse speed rating in last race; 

Logarithm of horse body weight, truncated at 1200 lbs; 

Weight carried change from last race; 

Weight carried by the horse in current race; 

Logarithm of weight allowance of the jockey; 

Barrial draw, centered within race; 

Jockey place percentage; 

Logarithm of place betting percentage in last race; 

Distance of the race; 

Interaction between Z7 and Z13.5； 

Number of today's race on the same surface; 

Interaction between Z\\ and Z14.5； 

Indicator whether the race was held in Happy Vally 

Interaction between Zn and Z15.5； 

Interaction between Zu and Logrithm of Z13.5； 

Indicator whether the race was held in all weather track; 

Interaction between Z\\ and Z17.5 

Numeric value of the hardness of the racing surface; 

Interaction between Z7 and Z18.5； 

Interaction among Zn, sqrt(Zi4.5) and Z15.5. 
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Table 2.6: Summary of estimation results for horse racing data (I) 

Parameters 

MMLE SCAD 

Parameters Est. Std Z-value Est. Std Z-value 

3� 0.9814 0.036G 26.7846 1.0310 0.0316 32.6226 

-0.2486 0.0409 -6.0784 -0.2024 0.0349 -5.7977 

"3 0.0488 0.0241 2.0256 0 — 一 

At -0.0025 0.0004 -6.9410 -0.0020 0.0003 -6.2021 

-0.0102 0.0096 -1.0642 0 - -

"G -0.0972 0.0238 -4.0902 -0.0992 0.0236 -4.1996 

P7 0.7763 0.2322 3.3425 0.7251 0.2314 3.1328 

"8 -0.0057 0.0023 -2.4366 -0.0056 0.0020 -2.7495 

-0.0118 0.0026 -4.5364 -0.0078 0.0022 -3.4235 

Ao -0.0599 0.0203 -2.9569 0 — 

Al 0.0544 0.1228 0.1230 0 — — 

Pu 0.3119 0.1893 1.6473 0.4282 0.1751 2.4453 

fin 0.0111 0.0165 0.6683 0 — 

f^u -0.0004 0.0001 -2.5267 -0.0003 0.0003 -2.4317 

-0.0013 0.0059 -0.2195 0 一 
— — 

A 6 -0.0384 0.0250 -1.5356 
N 

0 — 

/017 -0.0176 0.0391 -0.4512 -0.0018 0.0010 -1.9160 

卢18 -0.0153 0.0115 -1.3275 0 一 — 

A 9 -0.0982 0.0409 -2.4011 -0.0840 0.0409 -2.0521 

"20 0.0152 0.011 1.3361 0 — 

by all the four procedures and its Z-value increases in all the selected models. That is, 

following the procedures, the interaction between Barrial draw and logarithm of Distance 
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Table 2.7: Summary of estimation results for horse racing data (II) 

Parameters 

LASSO ALASSO 

Parameters Est. Std Z-value Est. Std Z-value 

0.9575 0.0286 33.4373 1.0139 0.0314 32.2416 

02 -0.1020 0.0224 -4.5440 -0.2299 0.0353 -6.5184 

03 0 — 0.0502 0.0233 2.1524 

P4 -0.0022 0.0007 -3.1198 -0.0025 0.0010 -2.4510 

(h 0 — 0 — --

0 - — -0.0897 0.0235 -3.8221 

0 一 — 0.6412 0.2223 2.8847 

-0.0037 0.0020 -1.8355 -0.0056 0.0022 -2.5250 

09 -0.0055 0.0022 -2.4713 -0.0114 0.0026 -4.3118 

A o -0.0305 0.0122 -2.5083 0.0581 0.0198 -2.9363 

A l 0 — — 0 一 一 

Pu 0 一 — 0.2755 0.1772 1.5546 

Pu 0.0275 0.0110 2.5099 0 一 — 

0 __ 
一 -0.0003 0.0010 -0.2980 

^15 0 — — 0 — . 

Pie -0.0001 0.0010 -0.1150 •G — 

-0.0022 0.0010 -2.1830 -0.0020 0.0010 -2.0430 

A s 0 . 0 0 0 2 0.0010 -0.1530 -0.0081 0.0087 -0.9301 

Pl9 -0.0022 0.0040 -0.5400 -0.0862 0.0397 -2.1733 

^20 0 一 — 0 — , — 

of the race may be an important factor to interpret the horse race betting market even 

if its Z-value is also small based on MMLE. In addition, following MMLE, Z5, Zn , Z13, 
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Table 2.8: Summary of estimation results for horse racing data (III) 

HARD HARD 

Parameters Est. Std Z-value Parameters Est. Std Z-value 

A 0.9926 0.0321 30.8979 Pu 0.1007 0.1224 0.8230 

-0.2477 0.0354 -6.9901 0.3567 0.1890 1.8866 

P3 0.0515 0.0240 2.1416 Pis 0 — — 

-0.0025 0.0003 -7.9626 Pu -0.0004 0.0003 -1.1163 

0 — — Pl5 0 一 — 

-0.1015 0.0237 -4.2821 (3is -0.0309 0.0214 -1.4463 

"7 0.8036 0.2315 3.4710 /3i7 -0.0338 0.0015 -0.8724 

"8 -0.0058 0.0022 -2.5947 ^18 、 
0 

1 
— 一 

P9 -0.0119 0.0026 -4.5031 -0.1 l i s 0.0410 -2.7243 

^10 -0.0636 0.0202 -3.1462 A20 0 一 一 

Zi5, Zi8 and Z20 are not significant and they are also excluded from the selected model by 

at least two methods. Therefore, the six covariates should be considered as unimportant 

factors and they can be excluded from working model. For most of the other covariates, 

there are no substantial difference about Z-values between MMLE and PMMLEs. That 

is, they are also important for interpreting the racing betting market. 

Overall, the results from all the procedures strongly show that many public available 

informations have not been incorporated into public betting and the horse racing betting 

markets are, in general, not efficient in the semistrong form. This is in line with the earlier 

results reported in the literature listed at the beginning of this section. 

• End of chapter. 



Chapter 3 

Variable Selection for General 

Transformation Models with Right 

Censored Data 

Right censored data are the most common data in survival analysis. For the right censored 

data, the failure time is only observed when it occurs before some censoring time. In this 

chapter, we consider variable selection for general transformation models (1.3) with right 

censored data by non-concave (SCAD, HARD thresholding and LASSO) and Adaptive-

LASSO penalties. We conduct variable selection procedures by maximizing rank-based 
F 

penalized log-marginal likelihood function. We will use the three-step MCMC-SA al-

gorithm in Chapter 2 with Gibbs sampling procedure for right censored data to find 

the rank-based penalized maximum marginal likelihood estimates (PMMLE). With some 

conditions and proper penalties, we can also show the consistency and oracle properties 

of PMMLEs. We illustrate the proposed procedures by some simulation examples and 

Primary Biliary Cirrhosis Data analysis. 

3.1 Penalized Log-marginal Likelihood 

Let T e R^ he the survival time variable, Z e R^ be the corresponding covariate vector 

and C e R+ be the censoring time variable, independent of T given Z. In this Chapter, 

we mainly concentrate on the right non-informative censoring with finite discrete support 

3 7 
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on {ci, C2,…,c,} and Ci < C2 < - • • < Cg. Let Y = min(T, C) be the event time until the 

occurrence of some interested event and S = I{T < C) be the censoring indicator. Assum-

ing that (T, Z) are modeled by the general transformation models (1.3). Similarly to the 

ranking data case in Chapter 2，we assume that 0 only contains regression parameters not 

any transformation parameters. Otherwise if there are transformation parameters in 

such parameters should be not penalized in rank-based penalized log-marginal likelihood. 

Let (3o be the true value of (3 and we partition /3o = (JSJq，PJo)̂  such that /？！。contains all 

the nonzero effects and ^20 二 0. In this chapter, we also consider the four type penalty 

functions (1.8)，(1.7), (1.5) and (1.6) defined in Section 1.3. 

Let {y；, Zi, be n i.i.d. copies of (y, Z, 6), Denote kn 二 X]二i (̂ i as the total 

number of uncensored times, as the partial ranking among the k^ uncensored failure 

times an the specified observations between each pair of uncensored observations, and 

as the complete ranking of underlying failure times T„ 二（Ti,!^，... , G i v e n 7^*, 

let Sn be ranking set containing all possible complete ranking and 

二 {(ii，之2’.. •，之n) : ti, <ti^ < < U^^, t j > i t , , f o r j e A , a n d 0 < r < A:„} 

be the failure time set consistent with where v is the label of the rth ordered un-

censored survival time and C i ^ s the set of labels corresponding to those observations 

censored in interval …）w ^ t f i ^ i �= 0 and Tj^^^, = 00. Then given the partial rank-

ing IZ^ and covariates Z^ 二（Ẑ i，Z2，...，-̂ n), the rank-based marginal likelihood function 

for the models (1.3) with right censored data is given by 

L n ( 0 \ K . Zn) = Pr(尺„ e <Sn|Z„) = Pr(T„ € C„|Z„) 

r n n 

JUn^Dn 

where <l)(u,v,w) 二 孙 叫 > ’ = (Ui’ti2，... and 
刀„ 二 {(Wi’W2，• • • ,iin) : Wii < < • • • < Ui…Uj > Wir，for j e and 0 < r < 

is the set of uniform (0,1) vectors consistent with The last equality in (3.1) holds 

because of the simple transformation Ui = 1 — SqIU). With the marginal likelihood 
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function (3.1)，the rank-based penalized log-marginal likelihood function is given by 

Q(/3) = £ ( / 3 ) - n ) ^ p , ( m (3.2) 
1=1 

where = log(Ln(/9|7?.*, Z„)), A is a penalty tuning parameter and pxi') is a penalty 

function, which should be irregular at origin for the purpose of variable selection. We can 

obtain the penalized maximum marginal likelihood estimate (PMMLE) of denoted by 

Pni by maximizing (3.2) with respect to (3. With proper penalty function PA(.)，some 

components of will be zero and they do not appear in selected models, which achieves 

the purpose of variable selection for the model (1.3) with right censored data. 

3.2 Consistency and Oracle Properties 

In this section, we establish the oracle properties of PMMLEs with our proposed variable 

selection procedures for right censored data. We first describe some regular conditions. 

(AO) P{C > Cs) > 0 and ^ A c (c > 0), as n )• oo. 

(Al) Suppose that /3 € 9 , a compact subset of the Euclidean space Rp and the true 

value Pq is an interior of 6 . The covariate vector Z is exogenous, and assumed to be 

bounded, equivalently, there exists a constant Mi > 0 such that P( | |Z | | < Mi) = 1. Arid 

for all u e (0，1), ||i;|| < Ml and w e G, 

d(p{u,v,w) d'^(t){u,v,w) 
03(U，”，w) 二 如 M u , V, W) 二 - 紀 ’ 

exist and are continuous with respect to w E O. The condition holds with v, w) 

replaced by ^(u, v, w) 

(A2) For any v satisfying ||v|| < Mi, there are functions Fi(u, v) and F2(u,v), inte-

grable with respect to u over (0’ 1) such that 

• \\(f>s{u,v,w)\\ < F\{u,v), | | ( ^ 3 3 ( u , < F2[u,v), for all w € G. 

This condition also holds when v, w) is replaced by w, w). 

(A3) Denote V ^ K = M ^ . v ^ w ) = d^{u,v,w)/dw, = ^ ^ 

and U = Fo(T) with F o � = 1 一 S o � .F o r any 0 G O^^^ an neighborhood of /3o in 8 , 

E彻[VKl - U,Z,f3)l E 仇 - and E ^ g �卜树二卢 ) j exist. These expectations 
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also hold with ip(u,v, w) replaced by 屯(u，v,w) and the covariance-variance matrix 

Vii/3) = Var彻hHl - Fo(y), Z�0)6 + 例 1 一 Fo(Y). Z, (3){\ - S) 

is positive definite at /3 = Pq. 

Denote 

• ) = - E , �I + - … 

(3.3) 

d/3T d0T 
(3.4) 

From conditions (Al)-(A3)，it can be easily shown that V\{l3o) — V2(/3o)-

(A4) E仇[少2(1 — F o ( C ) , Z, 0o)] exists and there exists a constant M2 > 0 such that 

m a x { E 彻 [ 功 2(1 — t / ， Z ’ A ) ) ] , E 彻 [妒 ( 1 - /7, , — Fo(C), Z, ^o)]} < M^ 

(A5) The function ijj{u, v, w) is continuous for u G (0,1) and satisfies Lipschitz con 

dition with respect to u in any closed subset of (0,1). That is, for any [L, R] c (0,1) 

there exists a constant R), dependent on [L, R], such that for all ui,u2 G [L, R 

V < Ml and w G O3、 0> 

!>，w) — 1p(u2, ^̂  S Mallii — U2 

This condition holds when v^ w) is replaced by ^(w, v, w). 

(A6) The function 鄉⑶’叫)satisfies Lipschitz condition with respect to u and this 

condition holds when v^ w) is replaced by ^(w, u, w). 

(A7) For any discretization (please refer to Section 2.3 in Wu (2008) [71]), there exists 

N such that when n �N � 

E /9o 
d 

d/3T 
Sn(0) 

d 
dpT SnAP) 

where 5n(/3) and — ̂ ^ ^ are the score function and Fisher information matrix with 

respect to marginal likelihood function (3.1); Given m discretization points for failure 

time variable, 5n,m(/3) and —巧浮卢)are the discretized versions of 5„(/3) and — 

The formula and meanings of discretized score function and Fisher information matrix 

can be found in Section 2.3 in Wu (2008) [71]. 5„(/3) and ^ ^ ^ arc given by 

Sn{^) = Y 

二 
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dSrM 
dpT 

E/ 
i=l 

^ n } + Var^ 岁n (3.6) 

where _ = 氏 叫 � + (1 — E ; ¥ ( i e Cj) and 

p(uni7e；, z „ ) = / ( 二 / y �n 州 - 叫 、 z ” 0) 
L „ (晰;，Z „ : 

• — «. 

is the joint conditional density function of Ui = I - 5o(Tt) for i = 1,2， 

(3.7) 

n，given 71； 

and Z„. Thus all the expectations and variance in (3.5) and (3.6) are respective to the 

density (3.7). 

Under condition (A2), we can show that 

n 

= > E/ 
-=i 

(3.8) 

1=1 
VKI - U“ Zi, m + Uj, Zi, e c, 麥n 

Conditions (Al) and (A3) are the regular conditions for the models (1.3) while (A2) 

allows the interchangeability of order for differentiation and integration or sum. (AO) and 

(A4)-(A6) can be used to prove the asymptotic normality of score function 5n(/3o)- (A6) 

and (A7) will be used to prove the oracle properties of PMMLEs. The inequality 

E '00 
d 

Sn{0) 
d 

dpT Sn,m{0) 

should hold for (3 = Pq, otherwise, use of discretized data is better than use of original 

data. 

3.2.1 Results of Variable Selection Methods with Nonconcave Penalties 

We first present the results of variable selection methods with non-concave penalties. 

Denote 

= max{p'An(|i0j�|) : fto # 0} and bn = max{|p';;j |^jo|)| ： # 0}， 

where p\{') can be any one of (1.8), (1.7) and (1.5). Then we have, 
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Theorem 3.1 (Consistency) Under conditions (A0)-(A7), if bn ^ 0 as n -> oo, then 

there exists a local maximizer /3„ of Q{P) such that ||/3„ —卢oil = + a„). 

From this theorem, we can see that with proper tuning parameter as long as 

a„ = 0(n一 1/2)，there exists a y^-consistent penalized maximum marginal likelihood 

estimate of /3o-% 

To present the oracle properties, denote 

and 

bA„ = (pU|/5i�l)sign(AQ)，p';J|爲。丨)sign(/?2�),...，pU|A�|)sign(A�))T 

Then we have Theorem 3.2 (Oracle) Assume that the penalty function satisfies 

that 

li烈?fP'A"�/An〉 
If Xn 0, \/nXn oo and a„ 二 •(n_L/2)，then under the conditions of Theorem 3.1, with 
probability tending to 1, the y/n-consistent local maximizer : iTi Theorem 

t 

3.1 must satisfy: 

(i) (Sparsity) 02n = 0 ; . 

(ii) (Asymptotic normality) . 

M v + — /3i0 + (V̂  + ^ x j - ' h j — N{0, V) (3.9) 

where V is the upper leading s x s subrnatrix o / d e f i n e d by (3.4). 

Remark 3.2 Prom HARD thresholding and SCAD penalties, we can see that if A„ 

0，then for sufficiently large n, a„ = 0, 二 0 and = 0. Therefore, when A„ -> 0 

and \/nXn oo, we have ‘ 

and = 0. 

That is, with proper tuning parameter, PMMLEs with HARD and SCAD penalties enjoy 

the oracle properties. They perform very well as if we have known /32 = 0 in advance when 

we estimate However, for LASSO penalty, a„ = A„ then the conditions an = 0(n—"2) 

and y/nXn — o o in Theorem 3.2 contradict. So PMMLEs with LASSO penalty can not 

enjoy oracle properties. 
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3.2.2 Results of Variable Selection Method with Adaptive-LASSO Penalty 

In this section, we present the consistency and Oracle properties of PMMLEs with 

Adaptive-LASSO penalty (1.6). 

Theorem 3.3 (Consistency) Under the conditions (A0)-(A7), if x/nA„ = 0(1) , then 
A A 

there exists a maximizer /3n of Q{/3) with ALASSO penalty such that ||/3„ — Po\\ = 

O /如 - 1 / 2 ) . 
A 

This theorem shows that, with proper tuning parameter the PMMLEs with 

ALASSO penalty enjoy v^-consistency. 

Theorem 3.4 (Oracle) 0 and n^^+'^^/'^Xn —> oo for some 7 > 0, then under 
八 

conditions of Theorem 3.3，the local maximizer /Bn must satisfy: 

(i) (Sparsity) $2n = 0; 

(ii) (Asymptotic Normality) 

~ / 3 i o ) A as n~>oo, (3.10) 

where V is defined in Theorem 3.2. 

Based on the Theorem 3.4，we can see that, with proper tuning parameter A„, the 

PMMLEs with Adaptive-LASSO penalty also enjoy oracle properties as if we have known 

which effects are equal to 0 in advance when we estimate 

3.2.3 Proof of Theorems 

In this section, we prove the Theorems 3.1-3.4 in Sections 3.2.1 and 3.2.2 by similar 

method to that in Section 2.2.3. Before proving the Theorems, we also introduce some 

Lemmas as follows. All the proofs of Lemmas can be found in Section 2.3 of Wu (2008) 

71 . 

Lemma 3.1 Under the conditions (A0)-(A6), 

- ^ S n i M ^ N ( O M 0 o ) ) as n — > 0 0 (3.11) 

where Vi[p) is define by (3.3). 

Lemma 3.2 Under the assumptions (A0)-(A7), it holds that 

A as r w o o (3.12) 
n op^ 
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uniformly for all (3 6 O卢。，where V2(0) is defined in (3.4). 

Lemma 3.3 .Under the conditions (AO) - (A7), there exists a sequence of satisfying 

Sn{0n) = 0 such that as n ——> 0 

(i) 0n 二 A); 、 

(ii) v^ ( /3„ - /3o ) 
I 

This Lemma shows that the maximum marginal likelihood estimate of (3 in general trans-

formation models with right censored data is yn-consistcnt and is distributed asymptot-

ically normally. 

Proof of Theorem 3.1 Let = + a„. It is sufficient to show that for any 

given 1 - 6： > 0, there exists a large constant C such that 

P < sup + oi^u) < 0(/3o) } >l-e. 
[\M=c 

Baiiod on that ] )� ‘ (0) = 0 and px„ (9) > 0，we have 
4 

1 

(3.13) 

n Q(A) + C^nU) - Q(/3o) 

S 

<-Wo + C^nU) — ei/3o)] — + (V^ijl) — PAndftol) 
(3.14) 

By Lemmas 3.1 and 3.2，for any G {/3 : 二 /3o + ||it| | 二 C}, we have 

n
 
1
 -
 n
 

m 一 m ) 

^ ^ {P - 0o) - \{0 - l3oVV2{m/3 - /3o){l + 0 " (1 ) } 
(3.15) 

二-押-0of\V2{l3o) + O A i m — M + Op(n—i") • II 卢 - A ) 

二 一 
2 

T VMA)) + Op{l)]u + 

Note that is a positive definite matrix. The order for tho first term in the last 

equality of (3.15) is C^a^ and for second one is Therefore, for a sufficiently large 

C, the second term is dominated by the first term in the last equation of (3.15). On the 

other hand, by Taylor's expansion, the second term of (3.14) is bounded by 
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If f)n —> 0，the second term of (3.14) is dominated by the first term of (3.15). Thus, for a 

sufficiently large C, (3.13) holds, which means that there exists a local maximum in the 

ball {/3: 0 = 00 It < C} with probability at least 1 — e > 0. Therefore, there 
八 八 》/、 

exists a local inaxiniizcr such that ||/9„ — A) 11 二 ' + a„). • 

Proof of Theorem 3.2 (i) It is sufficient to prove that 
m a x 響？；/?‘!,)'’） 

tor any given 

/3, satisfying ||/3, - / 3 i o | | = Op(ji部、and any constant C . 

From Leniiiias 3.1-3.2 and (|/3 — /3o|| 二 0̂ (̂71—1/2)，^̂  have that 

(3.16) 

d(3'i� (3.17) 

So for j ,s + l”s + 2 ’ . . . ,p 

dcm 
dp] 

(3.18) 

whore 5„j(/3) is j t h element of Since lim inf„_^oo lim iiif�—，o+(以)/An > 0, and 

— 0, the derivative and - p j have the same sign. Therefore (3.1G) holds, 

(ii) From a„ = and Theorem 3.1, there exists |^local >/n-consistent rnaxi-

mizcr,白uu of satisfying 

dcm 
dp] 

二 0 for j 二 1’2， (3.19) 

Set $ri = 0^)'' and S\n{f3) as the vcctor consisting of the first .s components of 

Sn(P), then 

0 二 
dcm 

d/3, 
dcm + 

d/3i 和 A) dl3id/3 {0n - M 

二 SiniPo) — ribx^ + 
dSniP) 
dp郝T 

(3.20) 

where 0* = (J3j\ lies on the line segment between and /9o； = diag(p'j(^ 

Pa„(I/̂ 2|)» ‘ • • From Theorem 3.1，Lemma 3.1 and 3.2, (3.9) holds. This com-

pletes the proof. • 
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Proof of Theorem 3.3 Similar to the proofs of Theorem 3.1 and 2.3，let = 

It is also sufficient to show that for any given 1 — e > 0, there exists a large constant C 

such that 

Note that 

P < sup Q{0o + < Q{l3o) > 1 - •̂ 
l!u||=c 

—[Q(/9o + — Q(j3o) 
71 

(3.21) 

<-im^ + — ^(j3o)] - An + an〜I 一 (3.22) 

n 
u, A 

By Lomnias 3.1 and 3.2, for any G {/? : 二 î o + (^nU, ||ix|| = C), we Have 

n
 1
 -
 
n
 

m — m ) 

Sn(f3o){f3 - /3o) + - — /3o){l + O p ( l ) } 
(3.23) 

二 一 y ^ S — + O p i l W — J%) + Op("一 . 11/3 — j3o 

= - 鳴 ） + Op{\)]u + 

Note that V"2(A)) is a positive definite matrix. The order for first term in the last equality 

of (3.23) is C'^a^ and for second one is a^C. Therefore, for a sufficiently large C, the 

second term is dominated by the first term in the last equality. On the other hand, by 

Taylor's expansion and Lemma 3.8, 

1 , 1 ,7sigii(约 0) 

Pjl'' Ifto +1 Wj - Pjo)opiPj - Pjo) 
fto 

1 + 
\ / n 

and hence the second term of (3.22) is bounded by Co;^, since 

\fn 
+ u. 

O 尸 ( 1 ) 

and 
\f 

VnA = 0 ( l ) , 
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Therefore, the second term of (3.22) is also dominated by the first term of (3.23). Thus, 

for a sufficiently large C, (3.21) holds, which means that there exists a local maximizer 

in the ball {0 : (3 = /3oanU, |{u|| < C) with probability at least 1 — 5 > 0. Therefore, 

there exists a local maxiinizer /3„ such that —卢o|| = Or (几一 "2). • 

Proof of Theorem 3.4 (i)Similar to the proofs of Theorem 3.2 and 2.4, it is sufficient 

to prove that 

二 max ( Q ( 对 ’ ， ( 3 . 2 4 ) 
丨_丨弘 

for any given /3i satisfying - /3io|| 二 0户(几一"2) and any constant C. 

Since 11/9 - i^oll = 0p(n-^/2), 

|5„(/3)|| = ||S„(/3a) f 

= 0 , 如 " 2 ) 

dl3T 

So from Lemma 3.3, for j 二 s + 1，s + 2 

dcm 
OPj 

Snj(0)-nXn 

p, we have 

sign(ft) 

— \ / n O p ⑴ -

where SnjiP) is j t h element of Since —> oo as n —>• oo, the derivative 

and —pj have the same sign. Therefore (3.24) holds. 

(ii) From Theorem 3.3，there exists a local 0z-consistent maximizer, of , ) � : 

satisfying 
dcm 

dPj 
= 0 for j = 1,2, (3.25) 

Set 二 0 fn, Ô  y and denote 5i„(/3) as a vector consisting of the first s elements of 

5„(/3), then 

0 = §
 

--

<
5
 1
 

/
I
V
 Q
Q
 

Q
兴
 

df3� 
+ d'Q(l3) 

T 

•00 

df3idf3{ {$iu - 0io) 

dSU/3 

sigii(/?2o) sign(Ao) (3.26) 
01 P2 M 

+ 
dMPi T O în - /3io) - — /3io) 
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where /3* 二（/3'P, 02 Hes on the line segment between $ and /9o； ^Anl^i) = 

• • ‘ ’P^JndAil))- From y/nXn — 0’ 或—卢lo，Theorem 3.3，Lemmas 3.1-3.3, 

(3.10) holds. This completes the proof. • 

3.3 Implementation 

From (3.2)，the first term of penalized log-marginal likelihood function involves a high-

dimensional integration and the integration has no closed form. So it is very difficult 

to directly maximizing (3.2) with respect to /3. Note that the difference between the 

integrations (2.1) and (3.1) is only the integration region because of the different data 

type. Therefore, by virtue of following Gibbs sampling procedure with right censored 

data, we can use the three-step MCMC-SA algorithm in Chapter 2 to find PMMLEs for 

right censored data. In the variable selection procedures, we also use approximated GCV 

(2.31)，to selection proper tuning parameter A. In the approximated GCV (2.31)， 

for the right censored data can be also approximated by an important sampling method. 

Gibbs Sampling with Right Censored Data: . 

Let U„ = {U\,U2, • • ‘，Un)'^ be n independent random variables and U�has the survival 

function - u, Zi, (3). Given 7Z:’ define 

S = { ( l A , l / 2 ， . ’ . t / ” < L / : 2 < . - < " i , „， " j 2 K r ， f o r j e 二r and 0 < r < A:„}. 

Then the density distribution of U„ condition on U^ G is (3.7). Moreover, for fixed Uj,s 

( j + z), if Ui is not censored and i = zjt, Ui has the distribution function 1 - $ ( 1 - u , Zj, /3) 

and it is restricted in …，t/ij^+J; Otherwise if Ui is censored in “，"‘a：")，Ui also has 

the distribution function 1 - - u, Zi ,0) but it is restricted in [f/“，1). 

Given and Z„，we can generate samples of U„ = (f/i, U-zr • •，Un)!' from the sta-

tionary probability (3.7) through the following Gibbs sampling procedure. Let U^ 二 

[Ui’k,U2�k,... ,Un�k)T be the currcnt sample of U„. Then the next sample U^^' can be 

generated as follows, 

0. Set j 二 1; 

1. if 6j = 1 and j = v 

Set uj 二 1 一 4>(1 - and uj = 1 - ^ ( 1 - LA…，k,Z�,0), 
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else if Sj = 0 and j 6 二” 

Set uj = 1-少（1 - lAr，k, Zj,/3) and u] = 1 

with Hq == 0 and u^^^ = 1; 

2. Generate U* from Unif[ii~, t/j"] and set Uj，k+i = 1 - (1 — U*, where 

is the inverse function of ^(w, v, w) with respcct to u. 

3. If j < n, then j = j + 1 and go to step 1. Otherwise stop. 

Approximation of £ij3) with right censored data: 

To approximate we first approximate L„(/3|7?.*, Z„). Similar to the ranking data 

case, we can express the marginal likelihood function , Z„) as an expectation 

with respect to some one probability and then use important sampling procedure to 

approximate , Z„). From (3.7), we can easily find that 

Po(un\K, z„ = 0) = G (3.27) 
c 

is the conditional baseline density function of given and the baseline covariates 

Zn = 0, where c is the total number of all possible rankings in 5„. Following Lam and 

Leung (2001) [48], we can easily find that 

do ) 办>0) (山 � / �> u ) 

j=l J /=1 l j = l 
< 

where di is the number of the event times censored in [tf,，亡i…）and c/ 二 (n—/ + dj 

(I > 1) is the number of individuals at risk just prior to t � . Note that here we include 

the case that there may be event times censored before t “ . So the total number of all 

possible rankings in «S„ is slightly different from that in Lam and Leung (2001) [48] but 

they are same when we eliminate the individuals censored before t � f r o m our data set. 

Multiply and divide the integrand in (3.1) by (3.27), the marginal likelihood function can 

be expressed as 

(3.28) 
.1=1 • 

where Ep�means that the conditional expectation (3.28) is respective to the density (3.27) 

given 7?.* and Z„. Hence the important sampling procedure can be used to approximate 
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Lri(j3l7Z*, Zn). Assuming that … ， a r e the M�s imulated sets of U„ 

from (3.27) by above Gibbs sampling procedure with the baseline covariatcs Z„ = 0, then 

Zn) can be approximated by 

Mo f n 1 
二 � ‘ g 1 n 树1 - 队 卢 ） [ (3.29) 

t—1 Vh— 1 ) 

Based on the Mq simulated sets of U„, we can also similarly approximate the corre-

sponding score function 5„(/3) and Fisher information matrix — N o t e that the 

approximations of S„(卢）and are independent on c, which can be easily seen 

from (3.5) and (3.6) in Section 3.2. Based on above approximation procedure, we can 

further approximate GCV (2.31) for each tuning parameter A. Given the covariatcs Z„, 

to efficiently assess the selected models, the same M�s imula ted sets of U„ will be used 

to compute the approximated GCV (2.31) regardless of the values of (3 and A. 

3.4 Numeric Studies 

In this section, we illustrate our proposed variable selection procedures by three simulation 

examples and one real data application. With right censored data, we firstly conduct 

simulations for proportional hazard regression models (PH), proportional odds regression 

models (PO) and generalized probit transformation models (GP), which are special models 

of general transformation models (1.3). Then we apply the procedure to the analysis of 

Primary Biliary Cirrhosis (PBC) Data through generalized probit model. 

According to Tibshirani (1997) [68], we use median of mean squared error (MMSE) 
A m A . 

{0 — / 3o) te(卢一 /3o) over 100 runs to evaluate the efficiency of the proposed variable 

selection methods, where E is the population covariance matrix of regressois and can be 

estimated by covariate sample. 

3.4.1 Simulation Studies 

In these simulation studies, 100 data sets consisting of n = 100 and 200 observations are 

simulated from the models 

S z ( t ) = ^ S o { t ) . Z , f 3 ) (3.30) 
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l^ble 3.1: Variable Selection results for PH, PO and GP models with right censored data under 

Cr = 25% 

c v : : 2 5 % n = 100 n = 200 

Aver. no. of 0 Coef. Aver. no. of 0 Coef. 

Models Penalty MMSE correct incorrect MMSE correct incorrect 

HARD 0.091 4.500 0.000 0.054 4.780 0.000 

SCAD 0.094 4.730 0.003 0.048 4.970 0.000 

PH LASSO 0.620 4.610 0.005 0.594 4.880 0.000 

ALASSO 0.089 4.630 0.010 0.064 4.820 0.000 

Oracle 0.068 5.000 0.000 0.046 5.000 0.000 

HARD 0.334 4.450 0.023 0.096 4.880 0.003 

SCAD 0.374 4.730 0.110 0.103 4.830 0.035 

PO LASSO 0.776 4.640 0.015 0.716 4.770 0.003 

« ALASSO 0.277 4.570 0.065 0.095 4.820 0.015 

Oracle 0.190 5.000 0.000 0.084 5.000 0.000 

HARD 0.094 4.620 0.000 0.081 4.490 0.000 

SCAD 0.079 4.620 0.000 0.028 4.970 0.000 

GP LASSO 0.604 4.747 0.005 0.608 4.947 0.000 

ALASSO 0.081 4.880 0.000 0.030 5.000 0.000 

Oracle 0.058 5.000 0.000 0.029 5.000 0.000 

Note: 0.000*s indicate that the corresponding values are less than 0.0005. 

where — u,v,w) = h~^(h{u) + v'^w) and 5o{t) = e — � F o r we consider three 

cases: (i) standard extreme value survival function, (u) standard logistic survival func-

tion and {Hi) standard normal survival function; Then (3.30) correspond to proportional 

hazards regression models, proportional odds regression models and generalized probit 

models respectively; Z E R^ and Z、follows standard normal distribution independently; 
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Table 3.2: Variable Selection results for PH, PO and GP models with right censored data under 

Cr = 10% 

Cr = 1 0 % n = 100 n = 200 

Aver. no. of 0 Coef. Aver, no. of 0 Coef. 

Models Penalty MMSE correct incorrect MMSE correct incorrect 

HARD 0.084 4.550 0.000 0.044 4.800 0.000 

SCAD 0.081 4.730 0.000 0.045 4.980 0.000 

PH LASSO 0.502 4.600 0.000 0.450 4.730 0.000 

ALASSO 0.095 4.540 0.029 0.064 4.820 0.000 

Oracle 0.065 5.000 0.000 0.034 5.000 0.000 

HARD 0.182 4.550 0.010 0.093 4.770 0.003 

SCAD 0.114 4.480 0.000 0.053 4.960 0.000 

PO LASSO 0.642 4.420 0.005 0.612 4.590 0.000 

ALASSO 0.248 4.700 0.065 0.088 4.900 0.010 

Oracle 0.119 5.000 0.000 0.059 5.000 0.000 

HARD 0.072 4.520 0.000 0.029 4.840 0.000 

SCAD 0.066 4.840 0.000 0.026 4.980 0.000 

GP LASSO 0.535 4.67 0.000 0.515 4.926 0.000 

ALASSO 0.063 4.930 0.000 0.025 5.000 0.000 

Oracle 0.056 5.000 0.000 0.026 5.000 0.000 

P = (0.8，0，—0.8,0,0，0.8，0，0’ —0.8)^; For each special models, we generate censoring 

times from corresponding models (3.30) with < (̂1 - w) = h~\h{u) + v^ w + /io). By 

choosing the proper values of /xq, we consider two censoring ratios (Cr) — 10% and 25%. 

We run the three-step MCMC-SA algorithm in Chapter 2 with Gibbs sampling for 

right censored data in Section 3.3 to conduct the simulation studies. We will take the 

same programme parameter setting in the algorithm as the simulation studies in Section 
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Table 3.3: Summary of estimation results for nonzero effects in PH model with right censored 

data under CV = 25% 

Cr = 25% n == 100 n = 200 

Penalty Pi 历 卢1 A3 P9 

HARD Bias -0.0712 0.0464 -0.0546 0.0838 -0.0855 0.0835 -0.0575 0.0671 

SStd 0,1222 0.1389 0.1348 0.1234 0.0914 0.0949 0.0837 0.1046 

MStd 0.1417 0.1416 0.1395 0.1377 0.0914 0.0915 0.0923 0.0914 

SCAD Bias -0.0731 0.0866 -0.0580 0.0583 -0.0768 0.0819 -0.0924 0.0763 

SStd 0.1316 0,1465 0.1623 0.1322 0.0912 0.0910 0.0847 0.0832 

MStd 0.1347 0.1344 0.1341 0.1353 0.0901 0.0885 0.0894 0.0898 

LASSO Bias -0.3911 0.3798 -0.4003 0.4000 -0.3791 0.3735 -0.3765 0.3877 

SStd 0.1290 0.1239 0.1275 0.1281 0.0817 0.0755 0.0882 0.0864 

MStd 0.0826 0.0838 0.0819 0.0821 0.0598 0.0605 0.0600 0.0596 

ALASSO Bias -0.0770 0.0858 -0.0821 0.0877 -0.0960 0.0787 -0.0937 0.0966 

SStd 0.1543 0.1454 0.1397 0.1246 0.0911 0.0963 0.1005 0.1053 

MStd 0.1337 0.1301 0.1316 0.1310 0.0898 0.0887 0.0892 0.0880 

Oracle Bias -0.0965 0.0919 -0.0887 0.0930 -0.1016 0.0892 -0.1120 0.0946 

SStd 0.1500 0.1605 0.1697 0.1509 0.1131 0.1104 0.1022 0.1171 

MStd 0.1356 0.1386 0.1372 0.1380 0.0927 0.0928 0.0933 0.0930 

2.5.1. We use MMSE to assess the efficiency of the proposed variable selection methods. 

The approximated GCV (2.31) is applied to select tuning parameter A on a grid of points. 

For the approximation of approximated GCV (2.31)，we choose Mq = 20000. 

The MMSE's with Cr 二 25% and Cr = 10% based on 100 runs are listed in Tables 3.1 

and 3.2 respectively. In Tables 3.1 and 3.2，we also report the average number of correctly 

selcctcd zero coefficients, labeled as "correct", and the average number of coefficients 

erroneously shrunk to 0, labeled as "incorrect". Based on 100 simulations, Tables 3.3-3.8 
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Table 3.4: Summary of estimation results for nonzero effects in PH model with right censored 

data under CV = 10% 

Cr = 10% n = 100 n = 200 

Penalty 卢1 ‘ (h "6 "9 /5i P3 Ai P9 

HARD Bias -0.0291 0.0680 -0.0541 0.0713 -0.0875 0.0631 -0.0688 0.0737 

SStd 0.1236 0.1196 0.1257 0.1272 0.0787 0.0813 0.0779 0.0787 

MStd 0.1259 0.1256 0.1278 0.1259 0.0840 0.0829 0.0835 0.0842 

SCAD Bias -0.1088 0.0578 -0.0908 0.0622 -0.0715 0.0651 -0.0718 0.0589 

SStd 0.1284 0.1306 0.1580 0.1252 0.0823 0.0818 0.0944 0.0922 

MStd 0.1240 0.1239 0.1225 0.1230 0.0829 0.0822 0.0828 0.0841 

LASSO Bias -0.3644 0.3527 -0.3580 0.3436 -0.3476 0.3335 -0.3313 0.3426 

SStd 0.1130 0.1087 0.1064 0.0959 0.0761 0.0724 0.0767 0.0654 

MStd 0.0828 0.0838 0.0831 0.0839 0.0590 0.0599 0.0596 0.0597 

ALASSO Bias -0.0681 0.0732 
* -0.0695 0.0694 -0.0820 0.1005 -0.0874 0.0972 

SStd 0.1300 0.1298 0.1343 0.1299 0.0910 0.0890 0.0854 0.0843 

MStd 0.1298 0.1259 0.1271 0.1263 0.0818 0.0808 0.0810 0.0808 

Oracle Bias -0.0821 0.0603 -0.0751 0.0686 -0.0608 0.0641 -0.0753 0.0910 

SStd 0.1078 0.1325 0.1239 0.1313 0.0739 0.0816 0.0834 0.0881 

MStd 0.1306 0.1282 0.1329 0.1295 0.0846 0.0857 0.0850 0.0847 

give the estimated bias (Bias), sample standard deviations (SStd) and mean of estimated 

standard deviation (MStd) (based on the formula (2.28)) for nonzero estimates in 卢 

Note that when one covariate among Zi, Z3, Zq and Zg is excluded from selected models, 

its effect estimate and corresponding estimated standard deviation are set to be 0. 

Prom Tables 3.1 and 3.2, the variable selection methods with SCAD, HARD and 

ALASSO penalties outperform the method with LASSO penalty and they also perform 

as well as the oracle estimate in terms of MMSE in all the settings. Moreover, all the 
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Table 3.5: Summary of estimation results for nonzero effects in PO model with right censored 

under CV = 25% 

Cr = 25% n 二 100 n = 200 

Penalty fti "6 A fh "9 

HARD Bias 0.0611 -0.0647 0.0755 -0.0571 0.0089 -0.0257 0.0398 -0.0217 

SStd 0.2738 0.2789 0.2555 0.2998 0.1492 0.1879 0.1765 0.1880 

MStd 0.2131 0.2127 0.2166 0.2111 0.1414 0.1472 0.1426 0.1468 

SCAD Bias -0.0910 0.0354 -0.0427 0.0305 -0.0242 0.0022 0.0008 0.0219 

SStd 0.2585 0.2003 0.2392 0.2518 0.1860 0.1989 0.1102 0.1375 

MStd 0.1825 0.2010 0.1896 0.1925 0.1391 0.1434 0.1401 0.1395 

LASSO Bias -0.4222 0.4332 -0.3847 0.4484 -0.4103 0.4386 -0.4199 0.4240 

SStd 0.1657 0.1870 0.1785 0.1805 0.1297 0.1193 0.1328 0.1467 

MStd 0.0976 0.0947 0.1026 0.0939 0.0743 0.0718 0.0729 0.0717 

ALASSO Bias -0.0341 0.0347 -0.0255 -0.0018 -0.0054 0.0402 -0.0085 0.0560 

SStd 0.2761 0.2929 0.3005 0.2907 0.1473 0.1954 0.1860 0.1924 

MStd 0.2131 0.2127 0.2166 0.2111 0.1393 0.1367 0.1381 0.1375 

Oracle Bias -0.0110 0.0136 -0.0424 0.0096 -0.0426 0.0126 -0.0458 '0.0357 

SStd 0.2573 0.2763 0.2479 0.2899 0.2019 0.1883 0.1866 0.1753 

MStd 0.2169 0.2216 0.2239 0.2209 0.1477 0.1499 0.1481 0.1496 

methods can select about the same correct number of significant covariates in all the 

models. In addition, we can also find that the values of MMSE in all the settings decrease 

as the increasing of sample size, which shows that the performance of all the methods will 

improve when sample size get larger. 

Based on Tables 3.3 - 3.8, in all the models, the Biases based on SCAD, HARD and 

ALASSO penalties are as small as oracle estimates while the Biases based on LASSO are 

relatively far away from 0 comparing with oracle estimates. This shows that PMMLEs 
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Table 3.6: Summary of estimatibn results for nonzero effects in PO model with right censored 

under CV = 10% 

Cr = 10% n = 100 n — 200 

Penalty 0 � /36 "9 Pi fh Pe 39 

HARD Bias 0.0084 -0.0097 0.0180 -0.0020 0.0258 0.0145 -0.0163 -0.0041 

SStd 0.2193 0.2404 0.2204 0.2066 0.1531 0.1572 0.1565 0.1412 

•MStd 0.1947 0.1985 0.1924 0.2018 0.1356 0.1340 0.1351 0.1363 

SCAD Bias 0.0071 0.0055 -0.0393 0.0441, -0.0134 0.0024 -0.0087 -0.0020 

SStd 0.2510 0.2662 0.2816 0.2889 0.1675 0.1545 0.1461 0.1393 

MStd 0.1937 0.1909 0.1860 0.1850 0.1303 0.1315 0.1310 0.1343 

LASSO Bias -0.3849 0.3813 -0.4102 0.3803 -0.3782 0.3824 -0.3808 0.3666 

SStd 0.1823 0.1705 0.1998 0.1507 0.1328 0.1202 0.1245 0.1404 

MStd 0.1020 0.1037 0.0979 0.1055 0.0755 0.0759 0.0758 0.0767 

ALASSO Bias -0.0779 0.0856 -0.0473 0.0379 -0.0339 0.0409 -0.0228 0.0135 

SStd 0.3095 0.2870 0.2454 0.2932 0.1663 0.1731 0.1817 0.1796 

MStd 0.1711 0.1706 0.1770 0.1765 0.1259 0.1283 0.1272 0.1270 

Oracle Bias 0.0020 -0.0330 0.0176 -0.0007 0.0090 -0.0019 -0.0266 -0.0128 

SStd 0.1956 0.2091 0.2041 0.1963 0.1643 0.1388 0.1272 0.1495 

MStd 0.2041 0.2078 0.2081 0.2000 0.1429 0.1439 0.1458 0.1408 

with SCAD, HARD and ALASSO penalties outperform PMMLE with LASSO penalty 

and they also perform as well as the oracle estimates in terms of estimation. Note that 

SStd is the sample standard deviation. Without considering Monte Carlo error, it can 

be seen as the true standard deviation. The Tables display that all the MStds for all the 

penalties arc reasonably close to their corresponding SStd. Moreover the values of SStd, 

MStd and their differences decrease as the increasing of sample size. This tells us that our 

proposed standard deviation formula works very well for the right censored data and its 
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Table 3.7: Summary of estimation results for nonzero effects in GP model with right censored 

under CV = 25% 

Cr = 25% n = 100 n = 200 

Penalty 09 (h 决 

HARD Bias 0.0194 -0.0426 0.0343 -0.0486 0.0165 -0.0130 0.0280 -0.0279 

SStd 0.1401 0.1590 0.1472 0.1561 0.1432 0.1418 0.1364 0.1460 

MStd 0.1372 0.1409 0.1388 0.1409 0.1452 0.1465 0.1449 0.1464 

SCAD Bias 0.0404 -0.0279 0.0422 -0.0212 0.0309 -0.0183 0.0226 -0.0093 

SStd 0.1495 0.1533 0.1533 0.1538 0.0960 0.1077 0.0938 0.1005 

MStd 0.1386 0.1386 0.1385 0.1379 0.0901 0.0905 0.0901 0.0904 

LASSO Bias -0.3951 0.4131 -0.4051 0.4154 -0.3897 0.3900 -03979 0.3858 

SStd 0.1217 0.1030 0.1204 0.1141 0.0908 0.0802 0.0753 0.0793 

MStd 0.0749 0.0740 0.0741 0.0748 0.0534 0.0537 0.0534 0.0540 

ALASSO Bias -0.0209 -0.0023 -0.0199 0.0260 -0.0146 0.0124 -0.0222 0.0052 

SStd 0.1542 0.1517 0.1448 0.1559 0.0979 0.0975 0.0861 0.0987 

MStd 0.1245 0.1282 0.1265 0.1267 0.0843 0.0872 0.0838 0.0859 

Oracle Bias 0.0466 -0.0125 0.0148 -0.0182 0.0155 -0.0223 0.0178 -0.0174 

SStd 0.1444 0.1505 0.1455 0.1156 0.1025 0.0938 0.0928 0.1025 

MStd 0.1380 0.1385 0.1372 0.1355 0.0912 0.0917 0.0909 0.0930 

performance will increase when sample size increases. In a word, our proposed procedures 

with SCAD, Hard thresholding and ALASSO penalties can produce satisfactory results 

in terms .of estimation and variable selection for right censored data. 

‘ All interesting finding is that there is almost no difference about MMSE and the 

number of selected variables for the two censoring ratios. Moreover, Bias, MStd aM 

SStd in all the settings are also similar too. This empirically indicates that our proposed 

variable selection procedures do not dependent on censoring distribution. Therefore our 
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Table 3.8: Sumiliary of estimation results for nonzero cffects in GP model with right ccnsored 

(lata under CV : 10% 

Cr = 10% 71 = 100 n = 200 

Penalty Ih (h As A) Ih 1^9 

HARD Bias 

SStd 

MStd 

0.0248 -0.0300 0.0353 -0.0387 

0.1471 0.12CG 0.1468 0.13G0 

0.1269 0.1277 0.1274 0.1309 

0.0154 0.0019 0.0200 -0.0081 
/ 

0.0847 0.0866 0.0852 0.0918 

0.0831 0.0830 0.0825 0.0840 

SCAD Bias 

SStd 

MStd 

0.0103 -0.0354 -0.0032 -0.0084 

0.1342 0.1196 0.1508 0.1291 

0.1307 0.1321 0.1285 0.1306 

0.0191 -0.0064 0.0068 -0.0142 

0.0890 0.0913 0.0935 0.1052 

0.0851 0.0855 0.0847 0.0855 

LASSO Bias 

SStd 

MStd 

-0.3649 0.3633 -0.3565 0.3G22 

0.1129 0.1061 0.1225 0.1142 

0.0757 0.0758 0.0762 0.0765 

-0.3443 0.3521 -0.3571 0.3495 

0.0771 0.0803 0.0735 0.0769 

0.0534 0.0537 0.0534 0.0540 

ALASSO Bias 

SStd 

MStd 

0.0091 0.0123 -0.0011 0.0003 * 

0.1320 0.1462 0.1342 0.1565 

0.1182 0.1200 0.117G 0.1189 

-0.0163 0.0130 -0.0079 0.0247 

0.0914 0.0915 0.0817 U.U860 

0.0797 0.0810 0.0802 0.0804 

Oracle Bias 

SStd 

MStd 

) 

0.0089 -0.0226 -0.0088 -0.0170 

0.1146 0.1483 0.1237 0.1326 

0.1301 0.1346 0.1322 0.1330 

0.0031 -0.()()86 -0.0010 -0.0073 

0.0801 0.1003 0.1004 0.0790 

0.0963 0.0975 0.0954 0.0961 

proposed procedure may allow informative censoring. • 

3.4.2 Primary Biliary Cirrhosis Data Application 

In this section, we apply our proposed variable selection procecluios to analyze Frimai^ 

Biliary CirrhoHiH (PDC) Data , gathered in the Mayo Clinical trial in primary biliary 

cirrhosis of liver conducted between 1949 and 1984. A more detailed account plea^je refer 
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Table 3.9: Covariatcs for PBC data and their interpretation 

Covariates Interproiatioii 

7ri 

Zi:) 

知 

^Ifi 

1̂7 

Tieatinciit code, 1 mcaius D-penicillamiiio and 2 placebo; 

Age of patients,in years; 

Sex, 0 means male and 1 female; 

0 111 cans absence of ascites and 1 presence of ascites; 

0 means absence of hepatomegaly and 1 prcsonco of hepatomegaly; 

0 means absence of spiders and 1 presence of spiders; 

0 means no edema, 0.5 untreated or successfully treated and 

1 edema despite diuretic therapy; 

Soruin bilirunbin (iiig/dl); 

Serum cholcstcrol (ing/dl); 

Serum albumin (mg/dl); 

Urine copper (ug/clay); 

Alkaline phosphotasc (U/liter); 
t 

Aspartate aminotransferase, once cfillcd SGOT (U/iiil); 

Triglyccridos, (mg/dl); , 

Platelet count per cubic ml/10000; 

Protlirombine time,- (seconds); 

Histologic stage of disease (needs biopsy), graded 1,2,3,4. 

to Dickson c.t al. (1989) [22]. In this data set, 424 PB^ patients' information wa« col-

loctcd and 312 among them agreed to participate in the randomized trial. Howovor, we 

only consider 276 observations without missing values in our application and 111 patients 

(.lied before the oiid of follow-up. The information of clinical, biochemical, soiok)gical 

and histological nieaijurcrnonts for cach PBC patient were collccted and they arc listed in 

Table 3.9. Through Cox regression model, Tibshirani (1997) [68] analyzed this data set 
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Table 3.10: Summary of results for PBC data analysis by MMLE and LASSO (I) 

MMLE LASSO 

Covariatc EST STD Z-value p-value EST STD Z-value p~ value 

-0.0168 0.1621 -0.1034 0.9176 - - -

0.0001 0.0000 2.7203 0.0065 u.uooo 0.0000 3.9232 0.0001 

而 -0.3290 0.2375 -1.3853 0.1660 -

0.3858 0.3G17 1.0666 0.2861 0.1265 0.0306 4.1324 0.0000 

0.0321 0.1874 0.17M 0.8639 - - -

0.2903 0.1891 1.5347 0.1249 0.0000 0.0000 3.5133 0.0004 

Zi 0.7132 0.3551 2.0082 0.0446 0.5663 0.0982 5.7G43 0.0000 

Zs 0.0524 0.022(5 2.3230 0.0202 0.04G8 0.0071 G.5807 0.0000 

Z^J 0.0003 0.0004 0.9009 0.3676 - - -

-0.3704 0.2269 -1.6325 0.1026 -0.1969 0.0411 -4.7853 0.0000 

0.0021 0.0010 2.1874 0.0287 0.0014 0.0003 5.2391 0.0000 

0.0000 0.0000 0.3523 0.7246 -

0.()03G 0.0015 2.3(i37 0.0181 0.0000 0.0000 3.0742 0.0002 

-0.0005 0.0013 -0.3587 0.7198 - -

0.0001 0.0009 0.1200 0.9045 • - -

0.1726 0.0877 1.9684 0.0490 0.0545 0.0125 4.3563 0.0000 

^17 0.3555 0.1230 2.8904 0.0038 0.1533 0.0282 5.4443 0.0000 

by the variable selection methods with LASSO and best-subset penalties. In his paper, 

the method with best-subset penalty selected all the significant variables except Serum 

albmiim in maximum partial likelihood estimation. Although the variable selection pro-

cedure with LASSO penalty shrunk most of non-significant effects to 0，it also shrunk 

some significant cffccts to some extent. Zhang and Lu (2007) [79] considered variable 

selection for this data set using Cox regression models and Adaptive-Lasso penalty. Tlioy 
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Table 3.11: ^iimmary of results for PZiC data analysis by HARD and SCAD (II) 

HARD SCAD 

Covariate EST STD Z-value value EST STD Z-value p-value 

2：! - - - — - - • 

Zi 0.0001 0.0000 3.2323 0.0012 0.0001 0.0000 3.34G0 0.0008 

Zs -0.1G53 0.2288 -0.7223 0.4701 -

0.7873 0.3017 2.6096 0.0091 -

- - - - -

- - -

Zi - - - 0.9275 0.2974 3.1189 0.0018 

0.0692 0.0201 3.4414 ().()()()6 O.OGOl G.0180 3.3403 O.U(K)8 

Z9 - - - -

- - -0.4067 0.2136 -1.9037 0.0570 

0.0027 0.0010 2.8183 0.0048 0.0028 0.0009 3.0896 
/ 

0.0020 

- - - - - -

0.0042 0.0015 2.8257 0.0047 0.0037 0.0015 2.5124 0.0120 

Zi4 -0.0007 0.0012 -0.5979 0.5499 - -

- - - -

0.2153 0.0805 2.6760 0.0075 0.2028 U.U815 2.4877 0.0129 

Zn 0.42G3 0.1085 3.9298 0.0001 0.3979 0.1048 3.7975 0.00010 

also selected all the significant variables except Serum albumin in maximum partial likeli-

hood estimation. The aim of this application is to study the dopcndence of survival time 

on the seventoon covariates listed in Table 3.9 and to select important variables through 

our proposed procedures using the generalized probit model given by (1.3). In the model, 

Z = (Zi，Z2, • • • ’ Z17), ^(1 — u, V, w) = (h{u) -^ v^w) and (•) is the standard normal 

survival function. 
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Table 3.12: Summary of results for PBC data analysis by ALASSO (III) 

Covariate EST STD Z-vahie p-value Covatiate EST STD Z-value p-value 

- - - - -0.3400 0.1676 -2.0285 0.0425 

0.0001 0.0000 3.1793 0.0015 0.0024 0.0008 2.9752 0.0029 

- - - -

- 0.0031 0.0013 2.4576 0.0140 

- - -

- - - - - - -

Zi 0.8590 0.2713 3.1667 0.0015 0.1634 0.0704 2.3227 0.0202 

Zs 0.0587 0.0166 3.5423 0.0004 Zu 0.3672 0.1015 3.6162 0.0003 

- - - -

We conduct variable selection for this data set using our proposed variable selection 

procedures with SCAD, HARD Thresholding, LASSO and ALASSO penalties. The pro-

gramme parameter setting also follows the simulation studies in Section 2.5. We use 

approximated GCV to select proper tuning parameter A. We summary the results in 

Tables 3.10, 3.11 and 3.12 including estimate (EST), standard deviation (STD), Z-value 

(Ratio of estimate and corresponding standard deviation) and p-value. To compare the 

variable selection results, we also present rank-based maximum marginal likelihood esti-

mate (MMLE) in the Tables. 

Based on MMLE, we can sco that Age, Edema, Serum bilirunbin, Urine copper�Aspar-

tate aminotransferase^ Prothrombine time and Histologic stage of disease have significant 

impacts on survival time. LASSO with A = 0.01 shrinks most nonsignificant effects to 

0, for example, Treatment, Sex etc. At the same time, it also shrinks some significant 

effects to 0，for example, Age and SCOT. This result is in line with the method with 

LASSO penalty in Tibshirani (1997) [68] and Zhang and Lu (2007) [79]. Hard threshold-

ing with A — 0.08 can also select all the significant variables cxcept edema. While it also 
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select some non-significant MMLEs, they are also non-significant in selected model ex-

cept ascites. SCAD with A = 0.53 and ALASSO with A = 0.0024 select all the significant 

MMLEs except Serum albumin, which agree with the best-subset results of Tibshirani 

(1997) [68] and the ALASSQ results of Zhang and Lu (2007) [79；. 

From the Tables, we can see that treatment and sex do not influenco the patient's 

survival probability. Wc also can get an obvious conclusion that the older a patient is and 

the later stage he is at, lower survival probability he suffers from. 

• End of chapter. 



Chapter 4 

Variable Selection for General 
J 

Transformation Models with Interval 

Censored Data 

Interval censored failure time is another type of survival data. This type data often occur 

in medical studies, financial, epidemiological, demographical and sociological studies. Its 

main feature is that we only know that the failure time falls in an interval but we can not 

observe it exactly. A typical example of interval censored data is the human immuiiodefi-
a 

ciency virus (HIV) infection times. In this case, the determination of HIV infection time 

is usually based on regular blood testing. Therefore, for a patient, who was HIV negative 

at the beginning of this study, if we found that his blood indicates positivity at one test-

ing, then his exact infection time was censored by an interval bracketed by the last HIV 

negative testing date and this HIV positive testing date. However, we can not observe 

his exact HIV infection time. When the right bound of the censoring interval is infinity, 

right censorship can be seen as a special case of interval censorship. Sun (1998) [62] and 

Zhang and Sun (2010) [80] summarized analysis methods of interval censored data. Sun 

(2006) [63] discussed the statistical inference for interval censored data systematically. 

There is a large volume literature on the study of regression analysis for interval cen-

sored failure times and many efficient inference procedures have been proposed. Fiiikel-

stein and Wolfe (1985) [33] developed a semiparametric regression model and a maximum 

likelihood approach for the analysis of interval censored failure times; Finkelsteiri (1986) 

6 4 
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32] studied the interval censored data through proportional hazards Cox's models and 

maximum likelihood; Satten (1996) [58] proposed a rank-based analysis method for pro-

portional hazard regression models with interval ccnsored data. Huang (1996) [44] pro-

posed an efficient estimate of parameters in proportional hazards regression models with 

interval censored data; Huang and Wellner (1997) [46] established asymptotic properties 

of the proportional hazards regression models with interval censored data. Some other 

regression models are also proposed for the analysis of interval censored data, for example, 

proportional odds models (Huang arid Rossini, 1997 [45]; Sun, et a/., 2007 [64]), Acceler-

ated failure time models (Rabinowitz et al. 1995，[57]), linear spline models (Kooperberg 

and Clarkson,' 1997[47]), logistic regression models (Sun, 1997 [61]), simple transforma-

tion models (Younes and Lachin, 1997 [73]; Zhang et al., 2005 [81]), additive hazards 

models (Bacchetti and Quale,.2002 [5]; Zeng et al., 2006 [74]; Chen and Sun, 2010 [14]), 

general transformation models (Gu, et aL, 2005[40)) etc. Gu, et al. (2005)[40] proposed 

an efficient three-stage Monte Carlo Markov chain stochastic approximation (MCMC-SA) 

algorithm to find rank-based maximum marginal likelihood estimate of parameters in gen-

eral transformation models with interval censored data. Although the maximum marginal 

likelihood estimate is very satisfactory, its large sample properties are open. This problem 

will be one of our interests in this Chapter. 

In our knowledge, we found very few discussions on the dimension reduction or vari-

able selection for regression model with interval censored data cxccpt for model selection 

considered by Sinha et ai (1999) [60]. Since the generality of interval censored data, 

we will study variable selection for general transformation models with interval censored 

data through rank-based penalized maximum marginal likelihood approach, in which we 

also consider Hard, SCAD, LASSO and ALASSO penalties. 

In this Chapter, we first prove the asymptotic properties of rank-based maximum 

marginal likelihood estimate and then based on it, we further study the oracle properties 

of rank-based penalized maximum marginal likelihood estimate for unstratified interval 

censored data. Similar to the discussion in Section 2.4, we can easily extend the variable 

selection procedure to analyze stratified interval censored data. For the ease of proof, we 

also assume that the interval censoring is non-informative. Some simulation studies will 

be given to illustrate the proposed variable selection procedures. 
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4.1 Marginal Likelihood and Penalized Log-marginal Likelihood 

Denote T € as a failure time and Z E W ^ the corresponding covariate vector. Let 

(L, V] be the censoring interval. Then we have L < T < V. Obviously, when V̂  二 oo, the 

interval censoring reduces to right censoring, when L = 0, it reduces to left censoring and 

when L = V, the censoring disappears and the failure time T can be observed exactly. It 

is also assumed that T and the censoring interval (L, V] are independent given Z, which 

means that 

P{T <t\L = l,V = v,L <T < V, Z) = P{T <t\l<T < v, Z) (4.1) 

This independence assumption is to say that an interval (L, V] gives no more than the 

information that T is simply bracketed by two observed values ([63]). This assumption 

has been used by Self and Grossman (1986) [59], Oiler et al. (2004) [54], Zhang et al. 

(2005) [81] arid Sun (2006)[63]. In this study, we assume that L and V have continuous 

cumulative density function and satisfy P[L < K) = 1. ' 

We assume that T and Z are modeled by models (1.3). In the variable selection 

procedures, we also assume that fB only contains regression parameters not any model 

transformation parameters. Otherwise if there are model transformation parameters in 

f3、such parameters should be not penalized in penalized log-marginal likelihood. Let (3q 

be the true values of f3 arid we partition 卢�二（/^?0， s u c h that contains all the 

nonzero effects and 020 — 0. In this chapter, we also consider the four penalty functions 

(1.5), (1.6), (1.7) and (1.8) defined in Section 1.3. 

Suppose that{Z,-, (L,, KJlILi is a sample of size n from (Z, (T, V]}. Denote 

A = = (4.2) 

as the set of indices of observations that must occur after the ith observations and 

B厂 I R . V ] 仏 J 二 I,-.. , N , J # I 、 ( 4 . 3 ) 

as the set of indices of observations that must occur before the ith observations. Note that 

if Li = Vj and i + j, the ith observation must occur after the jth observation. Denote 
* 

Cn = {t= (ti’t,2’-. • ’艺„)' : t] < ti,j e B” U < Zfc’A： e v4”i 二 1，2’-.. ,ri} 



CHAPTER 4. VAR1AL3LE SELECTION Willi INTERVAL CENSOIIFA) DATA 6 7 

as the set of times consistent with the order restrictions in the observed data. Let = 

(ri, r2, • • • , be the complete ranking of underlying failure times TVs. It is obvious 

that Ti < Tj if j G Ai and r, > Tj if j e Bi. 

Denote T„ 二（7\’了2，…，了„)，Z„ = (Zi，Z2，...，ZJT and as a ranking set that 

consists of all possible ranking Tin of T„. Then the rank-based marginal likelihood based 

on interval censored data is given by 

^nli^l^n, Z„) = PiUn G - P (T„ G C J Z J 
^ n n 

= ( - 1 ) " / l lcP{So{U),Z,,l3)lldSo{U) (4.4) 
n/ 

=1 

where Vj w) is the same one in (3.1); the third equality holds because the simple 

transformation Ui = I — S��)；X>„ is the corresponding collection of uniform (0,1) vectors 

consistent with the order restrictions in Cn, namely 

u. Uj < Ui,j e Bi, Ut < Uk, k € A^^ i — 1,2, 71} 

Denote 二 1 一拟7；)，Mu, ^^ w) 二 v, w) = m = Z„)) 

and as the smallest cr-algebra generated by tS„ and Z„. Differentiating (4.4) with re-

spect to /3, we can easily get the score function as follows 

S，M = 

/ L 树 1 —Uf，么，/9)P(U， (4.5) 

: E � { t / ; ( 1 -队 Z , ， 洲 式 } 

where 

(4.6) 

is the conditional density of U„ 二（f/! , t/〗，• •. , Un) given Then we can obtain the 

by /3„, by 
V 

rank-based maximum marginal likelihood estimate (MMLE) of (3�denoted 

solving 

S n m = 0. (4.7) 
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Gu et al (2005) [40] proposed a three-stage Monte Carlo Markov Chain stochastic approx-

imation (MCMC-SA) algorithm to find and corresponding covariance matrix. Under 

some regular conditions, we will prove large sample properties in next Section. 

Based on (4.4)，we have the rank-based penalized marginal likelihood function as 

follows 

Q{f3) = m - n^PxiWi (4.8) 

where Px(') is a penalty function, which should be irregular at original for the variable 

selection procedure (Fan and Li, 2002 [25]); A is a penalty tuning parameter. The pe-

nalized maximum marginal likelihood estimate (PMMLE), denoted by /3„, of (3 can be 

obtained by maximizing the penalized log-marginal likelihood function (4.8) with respect 

to /3. With a proper penalty function Pa(.)，some components of will be zero and they 

will not appear in selected models, which achieves the purpose of variable selection for 

the model (1.3) with interval censored data. 

Remark 4.1 From (4.4), the marginal likelihood function only depends on the ranking 

of underlying survival times instead of "nuisance" parameter So{t) and censoring distribu-

tion. So the rank-based maximum marginal likelihood estimate and penalized maximum 

marginal likelihood estimate arc also bascline-free and of censoring-distribution-free. 

Remark 4.2 Denote v, w) = v, w)/dw and define 

f{Uu U2,V,w) 二 
<J>(1—Ui ,V,w) — <^{l—U2,V,w) 1 ‘ 2 

U, V, w U\ = U2 = u 

and 

U 广 = 

max{[/j : j G Bi} jB, ^ 0 

0 = 0 

m'\n{Uj : j G Ai} Ai ^ 0 

1 二 0 
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then we have 

Q 4>(l - U, Zu 0)du 

Therefore the score function Sri(/3) can be expressed â j follows, 

n 

t=l 
n 

(4.9) 

(4.10) 

二〉 j E 卢 / ( "「，乙？’ Z”/3)| 多n 

i=l 

.2 Consistency and Oracle Properties 

In this section, we first studyTEe asymptotic properties of rank-based maximum marginal 

likelihood estimate, denoted by /3„, and then we further explore the consistency and oracle 

properties of rank-based penalized maximum marginal likelihood estimates, Before 

discussing them, let's give some regular conditions. 

(AO) Given covariate vector Z�T and the censoring interval (L, V] arc independent 

(or the interval censoring is non-informative), that is, the equality (4.1) holds. 

(Al) Both the censoring interval bounds L and V are continuous random variables 

with support on [0, oo) satisfying 

P(L < I,) 二 1 and P{\V ~ L\ < e \ L <T <V,Z) > 0 for any ^ > 0. 

(A2) Suppose that /3 € 0 , a compact subset of the Euclidean space RP and the true 

value /3o is an interior of 0 . The covariate vector Z is exogenous, and assumed to be 

bounded, oquivalcntly, there exists a constant Mi > 0, such that P( | |Z | | < M]) = 1. And 

for all u G (0,1), ||i;|| < Mi and w eS. 

d(p{u,v,w) d'^(p{u,v,w) 
03(u，V, w)= ———hsiM,'�) dw dwdvjT 



CHAPTER 4. VAR1AL3LE SELECTION Willi INTERVAL CENSOIIFA) DATA 7 0 

exist and are continuous with respect to w G 6 . The condition holds with v, id) 

replaced by 巾(u，i;，u；) 

(A3) For any v satisfying ||t'|| < Mi, there are functions Fi{u, v) and F2(u, (j), iiite-

grablc with respect to u over (0,1) , such that 

|gf)3(iv"’""�|| < 厂1('“，̂ 0， 11 < F2(u,v), for all iv G B. 

This condition holds when (f){u, v, w) is replaced by v, w). 

(A4) Denote U = i - Sq(T), for any (3 € Op�, an neighborhood of (3q in B, — 

/ 7 ’ Z ’ / 3)]，E彻— C/,Z,/3)] and E仇[-哪;;^^，卢丨]exist. 

(A5) Denote Ui and U2 as any two copies of a sample from U. For any 0 G (29̂ 3�， 

E 卢 o [ / ( " i ， f / 2 ’ Z ’ / 3 ) ] ， a n d E仇 [ -壶 / ( " i， f / 2，Z ’ e x i s t . The as-

sumption also holds when U\ and U2 are replaced by Fq{L) and Fq(V) respectively. De-

note 

l,i(/3) = Var^{/(Fo(JL),F�(V,)，Z"/3)} (4.11) 

and it is assumed that Vi{(3o) is positive definite. 

Remark 4 .3 Define 

d 
V'ziP) 二 E卢。 

W 
f{Fo{L),FoiV),Z,0) (4.12) 

Then under the conditions (A2)-(A5), it is eaijily to show that Vi(/3o) = V-iiM-

(A6) There exists a constant M2 such that 

(A7) The function ip(u,v,w) is continuous for u 6 (0，1) and satisfies Lipschitz con-

dition with respect to u in any closed subset of (0,1). That is, for any [ £ , C (0, 1), 

there exists a constant IZ), dependent on [£, 7^], such that for all u 1, U2 G [£, 7^], 

？,1 < Ml and w e Op^, 

- ll)[U2,V,w)\\ < Mslui - U2 . 

This condition also holds when il)(u, v, w) is replaced by f(u:i，U4, v, w) with respect to one 

in [£, 71] and another fixed in (0,1) among u^ and u^ {u-^ # ^4). 

M2 
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(A8) The function 剛 i s continuous for u G (0，1) and satisfies Lipschitz condition 

with respect to u. That is, there exists a constant AU such that for all txi, 1x2 G (0,1), 

< Ml and w e 

dip{u\,v, w) dip{u2, V, w) 

dw'r dw'^ 
< U\ — U,2 

This condition also holds when 讽u, v, w) is replaced by /(W3，U4, v, w) with respect to one 

in IZ] and another fixed in (0,1) among 7/3 and U4 (U3 / u^). 

(A9) For any discretization (refer to next Section), there exists N such that when 

Tl > N� 

E 
d 

d0 T S M > E 
d 

where Sn,m{0) is given by (4.21) in the next Section. 

Conditions (AO) and (Al) are the restrictions for the interval censored data considered 

in this Chapter. (A2) is the regular condition for the models (1.3) while (A3) allows the 

iriterchangeability of order for differentiation and integration or sum. Conditions (A4): 

(A9) are used to prove large sample properties of maximum marginal likelihood estimate 

and penalized maximum marginal likelihood estimate. The inequality 

E^o 
d � 

-~^Sn、m{P、 

should hold for P = /3o, otherwise, use of discretized data is better than use of original 

data. 

4.2.1 Asymptot ic Properties of MMLE 

Theorem 4.1 Under conditions (A0)-(A9), there exists a root f3n of Sn{P) such that 

(i) (Consistency) 

• 二 "0 as n 0 0 ; 

(ii) (Asymptotic Normality and Efficiency) 

v ^ {0n - 0o) A 7 V ( 0，V 
- 1 

where V = Viif3o) = 

This theorem will be proved in Section 4.2.4. 
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4.2.2 Results of Variable Selection Methods with Non-concave Penalties 

Denote “ 

(I n 

、二(卢I) = I),Pa,. (1/^.1),. . . , 人I)} 

and 

where px(-) is o m � o f' ( 1 . 5 ) , (1.7) and (1.8). Thoii we havo, 

Theorem 4.2 (Coiisislency) Under conditions (A0)-(A9), tj —> 0 as n oc, thru, 

if Hire exists a local rnaxinnzer of Q(0) such that ||/3„ - /3o|| = ()r(fi ”上 I )• 

Remark 4 . 4 From this tlieoierii, we can see that with a pi.oprr t.uiini^, paraiiH'tcr A„, 

as long as = ( ) ( 7 厂 t h e r e exists a v^-coiisistont rank-busod priialized maximum 

marginal likelihood estirnato. 

Theorem 4 . 3 (Oracle pi.oi)(M,t,y) Assume that the penalty function ".�.(•) sat/Lnjies that 

litii inf liiii '\ni'p\ �0 . 
n ->oo fi •O f ‘“ 

//A„ 0, y/iiXn -> oo and (iji ~ 0{n "勺，thtm under the conditions of Thtxn,"n J^.2, with 

probability tendiny to 1, the \Jn-consistent local muxiTiiizar : /^-j,,)' m Tfmm'm 

4.2 must satisfy: 

(i) (Sparstly) 02n = 0; 
i 

(ii) (A syrup to tic iioruiahtyj 

\A:(V-+ - + (V + :Ca..(/3,O))-'6A„(/3H))} — A^(O.V) (.1.13) 

wfmc V is the upper leading s x 5 sulnnatrix of defined by (4.12). 

R e m a r k 4 . 5 Noto tliat with Hard and S C A D penalties, il" — ()，tiion lor a sufli-

ciently large n，a„ 

^ M m = 0 and b . „(/3io) 二 0. 'I'lioreforo, when A„ —> 0 and 

— 00, wc havd 
- /3,o) • > "(0，V—') and = 0. 
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That is, with propoi tuning paraineler, PMMLEs with H A R D ami SCAD penalties enjoy 

the oraclo property aiui they porforni vory well a,s if we have known (3‘2 = 0 in advance 

wlioii wo est.iinale f3\. However, for LASSO penalty, — A„. Tl i (�coiul i l iu i i s A„ = 

aiKi > oo ill riieonun 4.3 will contradict. So PMMLK with LASSO 

})eiially can not enjoy Diat'lc properties. 

4.2.3 Results of Variable Selection Method with Adaptive-LASSO Penalty 

Theorem 4.4 (ConsisU'iicv) Under the condiLi'ons (AO)-(A9), if y/nA„ - (){I), then 

then, cxtsh a local maxim izvr 0” of Q{/3) with A LA SSU penalty such that H/:̂ ,, — Ail I ~ 

()p{n 丨 

This llu'oirni t,(�ll‘s us that, with proper A„, the PMMLKs 或，with Adaptiv(^l.ASS() 

j)oiialty is yn-roiisistiMit. 

Theorem 4.5 (Oracle) If s/nXn > 0 ami —> oo for some ) > 0, then 

under conditions of ThcoiTiu 4-4f 肌pTohatnlity tcndnu} to J, the local inaxnnizvr 

with A LASSO penalty must satisfy: 

(i) (Sparsity) $2n 二 0; 

(ii) (Asymptotic N(miiality) 

- /3,„) . ' V ( 0 , V ~ ' ) “.s “ — oo, (1 .11 ) 

whnr V is t.kr siutic as one ni Thc.omti J^.2. 

BastMl on Tli(Mm�m 1 . 5 , � v ( � c a n see that, with pmpiT tlining parainctor A„, l^MMLEs 

with Adaptive-LASSO ponallv also enjoys oracle propertirs ius if \v(�have known which 

effects are (Mjual to 0 in advance whoii we est imate 卢卜 

4.2.4 Proof of Theorems 
T 

III this Section, w(�give the proofs of Theorems in Sections 1.2.1-1.2.3 by (liscretizatioii 

Icchriiqiic. Without loss of genorality, we assuiiic that th(�Imisdim' cuniiilalivc density 

luiK'lion F()(t) — 0 for I < 0 ami is strictly incroiusing in (0, oo). First Iy, we descrilx? 1 IK; 

disc rot izati6n technique for interval censored data. 
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BfUsed oil tlu! condit ion (AG), thcro exist two posit ive real numbers C and R such that 

K彻[||V-，(1 一 "，/，"()川2 . I[V < C)\ < c / 9 , 

K彻[||V,(1 — L'，Z，/«||2 . / ( " � 7 ^ ) 1 < t-/9， 

EdJI/(/'l)(/")，Fo(V’)’Z，A)ir/([ < >01 /9’ 

, 1 ( L > < 5/9, 

(4.15) 

K/3o ||/(/'i)⑷，厂o(V'),Z，A): 

For above e, C and IZ�l,hm�oxists a positive intpgor iiiinibor "/.u such (hat when m > 川(), 

w'v can have a partition of [0, oo): I) = /(j < t\ < / ,厂• • , /„, < /,„ h — 乂、such that ihcK 

exist two iniinbers I and r satisfying 

/ V � 厂 ( 丨 一 丨 ( ' 尺 ) 

cind 

max 
0 < j < m 

'oitj^i)- Fait,)\ < 】
 

f
 

H.IG) 

l)(�liiu� 

'厂(”1)二~ if < T < O n , J 二 in 

Thon we get (iiscrotizeci versions oC T, L and \ ' with t ho (•.oimiion dist i il)u( ion support 

at /.Q J i , • • • , /.,„. Wv (liMiote the discretizecl versions of L and \ ' as L("i) and \ ' (”'） . Then 

'y，(m) /少”）and V^"') satisfy 

人 ( " ' ） < < (‘1.1 7 ) 

Define "("'):厂0('厂(’")），UuMi we can also obtain tho discretizcHl version of U 二 f'o(7’) 

with the distribution ‘support at, Uo, , • • •，"…’ w h e n � w ,- 厂 ( “ / , ) . At the same l ime, we 

also got the following coiiclusions based on the partition: 

"(〃')| 二 IFo(T) 一 厂0(7—))丨 < max { | / 她 
U<j<r;j 

丨厂()(/,)-厂u("”丨))1 < iTiax {|Fu(/,) - FoUjii)!} < , , , 
Ovj<m OiV7 

厂o(/.”丨 
々 

< 
3 A/；, 

•1.18) 

/ • ’o(r)-厂o (V'("')) | < max {\F,(tj) -
0<j<in 

< 
3A/, 

The probability mass i'uiK'.t ion of�/ (川）can be oxpn^ssed cus 

— Uj.Z.P) 二 P("(”'）-二 UjlZ) = (I>(1 i�/Z�0�—中（1 -
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Suppose { ( L , , V',]}"^, iuc n i.d.d. copies of (L, V), then V - '̂"^]}" ,̂ arc also n 

i.d.d. copies of [ / 少 " ) ， . 

Let 7v„i,„ 二（'厂(广)，r;"̂ )’.. • , rn"'^)^ (1 <。("'）< min(777,71)) h ( � t he comple te ranking of 

underlying 7;(…）’s. From the form of the discrctizcd censoring intervals (4 .17) , the ranking 

of T",("丨)’s have the fol lowing properties: 

(1) If both Lj and Vj aro in the saino discrctizcd interval [“-"“1)， t l ion ‘厂广“）=L广‘）二 

、;(”'）=Ik- Honco th(�cl iscrot ized failure l ime 7"，("丨）is observed exact ly at 

� If both the reiisoring intervals (L,，\ and (/。，I j) (z + j ) fall in t ho same dis(:r(�ti'/<"i 

interval Mioii L(/") 二 1;(〃‘）= L；"'̂  
:m) tha i is. I)()lh 7: and 

T，、、occur nxac.tly at “•，which moans r\' 

� If L, and (V： < L,, that is, r. < i\) fall in 1,人-’/)t—1), tlieii 人广。二 1,广）二 / 人 S o 

,(/") < 7,(川】 

('1) If L, and \ ) < L,，that is, r] < r,) fall in cli fie rent discretizeci intervals, then 

厂y") < r”")，that is, thoir relative ranking will be the sanu; in both and 

Basod on above pmpert ios , when n > ni, some d i s f io t i zod fa ihue l i incs 111 ay h ( � o b -

served exact ly and soriip discrctizod failure liiiios may tie with oacli other. When soino 

discretizod failuro t imes are tied, we will assign thoin the s a m e rank. 

Similar to (4.2) and (1.3)，dcHiie /、("'）二 {j :、〈(…）< L(厂)，j 二 1，... ’ n，j / i} and 

B (m) 
{ j ： i f‘）< i r ^ j = 1 n j • / } . If k 6 / ' lj"'\the cliscrotized failure t im(� 

7’人(”i) occur ait(�i . tho tK,cun.(�iice of T/"'^ mid at most they occur s inmltaneoi is ly at thoir 

coininon l)(川iids of their discrotized m i s o i i i i g intervals. Similarly, if k � D \ 7’，）fails 

before tho occuitoikh' of 7:("') and at most thoy occur s imultai ioously at their coiniiion 

b o u n d s of their (liscretized coiisoriiig intervals. Denote 

i M - = 

and 

m a x { " j 

0 

n i i n { " 

1 

j e bI"'^ } 广) 

R(…）= 0 

J e 才 '） / 0 

.4 0, 
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Consequently, if T/"'^ can be observed exactly, we have �一 = 严 )丨 

厂 o ( K ( ’ . . 
Define the event as 

Sn = {For any i, i 二 0,1，• • •，m，there exists at least one of T广)，s 
‘ (m) 

(1 < j < n) observed exactly at ti, equivalently, T j ' —ti}. 

Following the condition (Al), for fixed m, when n is large enough, the probability of 

wUl be 1. Specifically, 

Let pj = P{tj < L < T < V < and p — miiio<j<ra Pj. Then following the 

condition (Al), pj > 0 and hence 0 < p < 1. Denote e � a s tlie event that there is no 

observed death at t j for discrctized failure times, equivalently, that there is no censoring 

interval (L, V] falling in [tj, /j+i). Consequently, P{ej) 二（1 - Pj)". Note that 二 

Ui<j<j„ej. Then wc have that 

P⑵ < ；L 八c。）= ^ ( 1 一 巧广 < m( l - vT = moxp{-n(5}, (4.20) 
i=l t=l 

where d 二 In Thus convergences to 0 with the rate 0 (e - " ) as n goes to 

infinity. Therefore, for fixed m, when the event En occurs, knowing the ranking of observed 

discretized failure times is equivalent to the knowledge of their exact discretized failure 

times. For the interval censored discretized failure time there must exist two positive 

integers i\ and i2 (1 < z'l, Z2 < n and ix.i'i ^ i) such that = T } � � a n d V,/爪）=t};�) 

since thorc is at least one discretized failure time occurring at any one point among 

{“}So，that is, the rank of the discretized interval censored failure tiino satisfies that 

r!「）< r!爪）< Hence 爪�-二 and U!爪=厂。（K/广)）under the occurrencc 

of £*„. 

Denote Sn,m as a set that consists of all possible rankings 7Zn,m consistent with 

{ [ / 卞 I ) ， a n d .̂ Ti,Tn 站 the smallest (x-algebra generated by and Z„. Sim-

ilar to Sn(j3), the score function based on discretized failure times is given by 

n 
Sn,rn(/Bj = - Z,, (4.21) 

t=l 

Where 作 ， 二 "杀;々：；二彻• 
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Under the condition (A3), for the true value /3o of we have 

E彻[例1 一 ^Z，A))] 

{E[^{1 - U, Z, /3o) |Z]} 

二E�o V)(l - U, Z, "0)0(1 — U, Z, 0O}DU 

(4.22) 

= 0 

ami 

E 卢 " ⑷ ， • 

:E /So 

\ t [少3(1 - Ui,Z,f3o)-少3(1 —叫+1，乙 A))l 
(4-23) 

:E卢c 

i =0 

乞[$(1 一 u��Z,/3o) - < (̂1 一 u“i,Z,⑴ 
i=0 

--/3n 

=0. 

Thus both {^(1 - Ui, Zi,/3o)}[Li and {4>*{l 一 ，么，A))}r=i are i.i.d. random variables 

with mean being 0. 

Consequently, we can conclude that E 仇 = 0 and E 彻 二 0, which 

means that we can get the rank-based maximum marginal likelihood estimate of /3 by 

solving Sn(f3) = 0 or 二 0. In this Chapter, we denote as the rank-based 

maximum marginal likelihood estimate of (3. We can prove that is consistent and 

distributed asymptotically normally later. 

Denote (5,- 二 J (T产、—=T产)+) as the indicator whether the discrctized failure time of 

zth individual was observed exactly and 6 = /(!/("‘）= V⑷） a s the indicator whether the 

discrctized failure time 了 c a n be observed exactly. Similar to (4.10), Sn,m{l3) can be 
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also rewritten as 

Sn,m{P) 
(4.24) 

[r{i - 1 / ” 人 m + 爪)-|-’z“/3)(i — 
i = l 

where ALA爪、for a discretized variable [ / � means that 二 if U �爪、 = u 

Under the occurrence of Eni Sn,m(P) will become a sum of i.i.d. random variables. 

Denote ‘ 

Sn,m{l3) ^ N I ' U I I⑷，7八、m + AF�(vf^))’ (3){l - (5:) 

i=\ 

Next, we introduce some Lemmas based on above discretization technique. 

Lemma 4.1 If the assumptions (A0)-(A7) hold, then for any £ � 0， t h e r e exists a 

constant mo independent of n such that for any m > m^ 

E '/9o 
1 
n 5n(/3o) - Sn，m(0O) < e (4.25) 

uniformly for all n. 

Proof: Following (4.22) and (4.23), for any i (z. ; 1，2，...，72)’ 

E^o = 0 and E ^ 。 卜 — C / 广 / 3 o ) 

And then we have 

1 “ 

0. 

n 

- - E 
n 

E /3o 

< < E n 00 \ ^fio 

E
 

1

1

 n
 

— u” ZuM - — (4 叫,Zi, A))) 

1=1 
n 

V 

-^n V ,爹，“ 

= - E { E / 3 o I W i — ( A , z ” / 3 u ) - V / ( 1 - t / 广 U i ， A ) ) 
71 . - � 1=1 
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The last equality is due to that - UuZi,(3o) - — 爪)，Zn A ) ) } : arc indepen-

dent with mean zero. 

On the other hand, 

E^o - - 作 - Z i ， A ) 川 2 } 

=E"�{llVKl - U“Z”0o、—功*(1 -

+ E 卢。 { | |训 1 - U “ Zi^fSo) - — 

{ i h ^ l - U 丄 00、—功— U ” , 2 , , /90川2如，>尺)} 

= ^ i t + A2i + A 3t 

When Ui G [£,7^], from condition (A7), we can easily get that 

v^l — - 一 "广 " ) ’ Z “ / 3 o川 2 < M!(盖 9 

So Alt < f . By (4.15) and the property of Riemann integral, when m is large enough, it 

is easily obtained that 

Thus 

E�o{lh/^*(l-"广)，么，/3�川 < • 

力 < {Ml-U.^Zi^ffoWliu^KC)} 

4e 

~9 
(4.26) 

Similar to (4.26), we can reach A î < y . Hence when mo is large enough and for any 

m > mo, 

E 00 n 
< e 

holds uniformly for all n. • 

L e m n ^ 4.2 If the assumptions (A0)-(A8) hold, then when mo is large enough, for 

any fixed m > mo, . 

“ 1 

y/n 
—> 0 as n -> oo (4.27) Sn,m{0o) - Sn,m{0o)\\ 

t -

Proof: Since when the event Sn happens, we will know the exact values of observed dis-

cretizcd failure times U!爪),s and the bounds of censoring intervals for censored discretized 
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failure times. Moreover = and U:爪、+ 二 乂广）for any censored discretized 

failure times t/严)’s. Thus following the form (4.24) of Sn,m(/3), wo have 

E/3O 

< 

\ /n 
1 

y/n 

y/n 

SnAM —良,m(/3) 

5n.m(/3o) - Sr^,m{0) 

2V1/2 
1/2 

(4.28) 

n SnAPom + 2E Po 
n 

Sn,m(m) 
l/‘2 

P识:‘ 
1/2 

Based on the proof of Lemma 4.1，the form (4.21) of Sn,m{0) and the condition (AG), 

when mo is large enough, for any fixed m �m o , we have 

n Sn�rr 

[ 卯 - 义 A ) ) ‘ 
r 

- " ( " ) ’ Z , / 3 o ) - -树1 一 [;,Z，A)) 

—U, Z,/3o) 2] + 2E"o [ 州 -

(4.29) 

<2e + 2hU 

ill which the first inequality holds because — t/)”')，Z"二i arc i.i.d. with mean 

being 0. 

Obviously, {^(1 - t/f")，Z,,~5, + /(Fo(Li’，AFo(K(”i)),Z,,A))(l —�）}二 are i.i.d. 

raiidorri variables with mean being 0，we have 

E 
n 

[||/OP()(/>)),A凡(V(-))，Z，/3O)||2(1 —叫 +E卢。[| |於— 

二 E 彻 [ | | / ( F o ( L ( 叫 ) ， Z 、 0 0 ) - / ( F o ( L ) , FO(V), Z、/3o) 

- l - / ( F o ( L ) , F,(V), Z , / 3O )|P (L - S)] + E ^ , — "(-)，Z，/5o川 

<2E^o (爪))’ Z、/3O) - / ( F o ( L ) , F o ( V ) , Z , /3o)\\'{l 一 S)] 

+ 2E彻[丨|/(尸o(L)，FoOO，之，A))丨|2(1 - 州 + E彻 [ I h / a i — “(乂Z，/3� ) | |" 

Based on the condition (A8), when < V(爪)，similar to the proof of Lemma 4.1, we 
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have 

二E仇[| |/(Fo(L(-)), Z, 0o) - Fo(V), Z, (3o) 

+/(i^o(i>^))，Fo(V), Z, A)) - f(Fo(L), Fo(V), Z�/3o)||'] 

[ I | / ( F o ( L � ) ,( 叫 ) ’ Z, /3o) — m(L—)，Fo(K) ,Z , /3o) 

+ [||/(/^o(乙(叫)，Fo(V), Z, /3o) — /(Fo(L), Fo(V), Z�0o)\\^] < 4e 

When L ( 爪 ) = 爪 ) ’ from the arguments of (4.29), we have 

E^o - f/(")，A)川2] < 2 e + 2M2 

(4.30) 

Thus under the condition (A6) and (4.15), we have 

E 00 n 
< 8c 4- 2M2 

Combining (4.29) and (4.31), we have 

E /9o 
\/n 

Sn,m{M — Sn,n{l3) < 20e + 8M2 

(4.31) 

From that P{Sn) goes to 1 for fixed rn > rriQ as n goes to infinity, the proof is completed. 
• 

Lemma 4 .3 Under the conditions (A0)-(A8) and a large enough number niQ for any 

m !> mo, we have 

E 卢0 n Sn,m{0o) - SniM < e (4.32) 

uniformly for all n. 
— 〜 

Proof: Since both and 5„(/3o) are the sum of i.i.d. random variables with 
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mean being 0，we have 

E Po 

=~E 
n 

^ {Sn,miM — Sn(0o)) 

十( / (Fo(4")) ,A^(K(’，^，/3o)- /(Fo(/ j ,_) ,Fo(K)，4，A)))( l—W 

E { e 一 I ('必�1 - "”，Z“ Po) - /(Fo(L.), Fo(V；), Z” 0o))么 

二 E仇 

+ E 

(/(尸0(4"))，AFo(K("))，么’ 00�— /(Fo(L,), Z” A))) (1 —氏: 

- f /(�Z，/5o) - f(Fo(L),Fo(V),Z,Po)lfs 

A f M V ^ ) ) , Z、/3O) - /(Fo(L), FO{V), Z、M - S) 

(4.33) 

When 二 1 / � and a large enough number mo, similar to the proof of Lemma 4. 

for any rri > mo, we have 

E^o [妙 * ( 1 一 "(")，R乙、0O) - /(F�(L)，FO{V), Z、A)川 

二E仇 [ \ \ r ( l - "(”i),Z，/3o) - /{Fo(L) ,Fo(K) ,Z , /3o) | f / (V < C) 

+ E 卢 。 - /(凡⑷，î o(V)，Z，A)川 2 / ( £ <L<V <n) 

<e 

When L(爪)< (爪)，from (4.30) we have 

E /3o / ( F o ( L ( ’ ， ) ) ， Z , /3o) 一 /(Fo(L), FO(V), Z, M < 4e 

This completes the proof of the Lemma. 口 

Since Sn{0o) is a sum of i.i.d. random variables with mean 0 and variance matrix 

V\(/3O), from Lemmas 4.1-4.3, we can easily obtain the following Lorn ma. 

Lemma 4.4 Under conditions (A0)-(A8), 

Sn(Po) 二 7V(0，V î(A)))’ as n oo. 
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where Vi(/3) is defined in (4.11). • 

It is very easy to obtain that the Fisher information matrix baijed on the interval 

censored data {(L,-, is given by 

E 0 
i = l 

- V a r / 

d 
00' 
n 

广，Z”/3) 
(4.34) 

and the Fisher information matrix based on discretized interval censored data V;(爪 

is given by 
Q 

- ~^Snjn�l3� 

d 二、 E, 

Var. 

df3T r n — (y!”i)人m + 彻 产 卜 ’ 圳 吧 ？ “ 柳 — 么 : 岁n 

’麥N、 

(4.35) 

Lemma 4.5 Under the conditions (A0)-(A9) 

1 R\ 

— . - — S r ^ i P ) ^ V2{0) as n ^ o o n up 

holds uniformly for all P 6 O仇’ where 卢）is defined by (4.12). 

Proof: For the proof of this Lemma, we will do it by two steps, that is, tho first 

step is to prove that ^Din{/3) ^ V2{0) as n oo and the next step is to prove that 

A 0 as n — oo. ‘ 

« A V m as n oo. 

Under condition (A8) and the inequality (4.18),'wo can easily obtain that 

1 
E 

71 
DUP) - 0 as m oo (4.36) 

holds uniformly for all n and any (3 G Op^. ‘ 

For the fixed m and a large enough integer n, P[Sn) — 1，that is, the exact values 

of for observed discretized failure times and the bounds of censoring intervals for 
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censored discretized failure times will be known. Therefore, under conditions (A7)-(A8) 

and (4.18), we have that 

^ r d 
n n 

— + /(Lf")-，AV广)+，乙，洲 1 - 5,)\ I A 0 

(4.37) 

holds uniformly for any (3 G O彻 and fixed m as n —> cx). 

Under conditions (A7)-(A8) and ( 4 . 1 ^ it can be easily obtained that 

“ d T
T
 "
I
 

=
W
 .H

 
1

 一

 
^
 

1
-
 n

 

一
 

00 
T n i - L/!爪么，m + /(乙 一’ Ai//爪)+, z ” m 一 ⑴ 

8 A o 
(4.38) 

ri 二 t d(3T 
1=1 � ‘ 

holds uniformly for any (3 6 O加 and all n as m oo. 

Note that Xl二! [ / ( ^ i , V；, Zj, /?)] j is a sum of i.i.d. random variables. By Weak 

Convergence Laws of Large Numbers, 

i f ^ / — 丄 
I dpT 

f{L,,V„Z„l3)]} UV2{f3) as n - > oo (4.39) 

holds uniformly for any (3 e O " � . Combing (4.36) - (4.39), A V2{(3) as ri 一）oo. 

(ii) ^D2n{0) A 0 a s n — o o 

This can be done by proving 

Ep^ -> 0 as n -> oo 

Following condition (^9), for fixed positive integer m, there exists a positive integer 

N�when n > N, wc have 

n 

1
1

 n
 

DU0) - (4.40) 

holds for any 0 G O加. 

From (4.36)，it is obvious that 

1 
— 0 as m — oo (4.41) 

holds for all n and any (3 G O^Q. 

From the definition of S^ in (4.19), we can see that 
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that is, 

I 

+ /(f^L!叫_),AF�(V广)+)’Z,，/3)(l Je, 

Note that for all uj,v e {uq, ui,U2y • . . , u^}, | |Z| | < Mi and p G Z " � w i t h Z " � b e i n g 

a bounded closed neighborhood contained in (9执"there exists a finite number M(m), 

which is related to m, such that 

ip*(u,Z,f3) < M{m) and f{l, v,Z,l3) < M{m). 

Following the inequality (4.20), wc have that 

E^o \ ) < < nM''{7n)me 0 as n — oo (4.42) 

holds uniformly for all fixed m and any 0 G 2 ^ � . 

Combing (4.41) and (4.42)，we have ^D2n{0) A 0 as n — jo. • 

Proof of Theorem 4.1 We can show � by a straightforward extension of Foutz 

(1977) [34], considered by Ni (2008) [53] and Wu (2008) [71]. The proof of (u) can be 

easily completed by Taylor's expansion of Sn{0) around the true value /3o of (3. • 

(z) Note that the Lemmas 4.1- 4.3 still hold when is replaced by That is, 

can be asymptotically approximated by By Weak Convergence Laws of Largo 

Number, we have 
1 o 

(4.43) 
1 p 
-5„(/3o) ~> 0 as n oo. 
n 

By Condition (A2), we know that • • - ^ S n l ^ ) exists and is continuous with respect 

to P in an open neighborhood of /3o； 

Following Lemma 4.5, • •奋S n ( j 3 ) is negative definite with probability going to 1 as 

71 —> oo and 
d-

;Sn(l3) A V2(/3) as n - > o o 
n dpT 

holds uniformly.for any 0 in an open neighborhood of Following Ni (2008) [53] and 

Wu (2008) [71], this completes the proof of (i). 
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(u) By Taylor's expansion of 5„(/3) around /3o, we have that 

d 
( 瓦 - 0 o ) = n Sn{0) 1 Sn(0o) x/n 

(4.44) 

~ p 
where 0* is between /3„ and 0o- Following the proof of (z), we also have that jS* 13o 'ds 

n goes to infinity. Combing Lemmas 4.4-4.5 and (4.44)，the asymptotic normality of Pn 

is obtained. • 

Discussion of proofs for Theorems 4.1-4.4 

Based on Lommas 4.1-4.5 and Theorem 4.1, the proofs of Theorems 4.2-4.5 are vary 
\； 

similar to that of Theorems 3.1-3.4 and Theorems 2.1-2.4. Thus we omit thern here. 

4.3 Implementation 

From (4.4), we can see that the marginal likelihood function is a high-dimensional inte-

gration. It is impossible to get the closed expression for L„(/3|«S„, Zn). Therefore, it is 

difficult to directly maximize (4.8) with respect to On the other hand, the marginal 

likelihood function (4.4) has the same form as (2.1) and (3.1) except the integration region 

T>n because of the rank restriction in T„. Therefore for the interval censored data, we 

can also use the three-step MCMC-SA algorithm in Chapters 2 with the Gibbs sampling 

procedure for interval censored data in Appendix B to maximize (4.4). 

Theoretically, the approximated GCV (2.31) can be also used to select tuning parame-

ter A ill the variable selection procedures for interval censored data. The similar approxi-

mation methods for rank-based log-marginal likelihood function, score function and Fisher 

information matrix for right censored data is also used to approximate Z^), 

Sn(0) and --^SnilS) with interval censored data. The approximation, (卢|«S„，Z„)，of 

Ln{l3\Sni Zji) with interval censonxl data has the form of (3.29) exccpt the constant c and 

the samples Ui�j. In this case, we can sample Ui�j from (4.6) by virtue of Gibbs Sampling 

procedure for interval censored data in Appendix B. c is total number of all the possible 

rankings consistent with the censoring intervals {(!/“ However, c also increases 

dramatically with the increasing of sample size n. Moreover, the computation of c' is 

very time-consuming especially when many censoring intervals are overlapped with each 

other. Since the complication of interval censoring, it is very difficult to develop a general 
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procedure to find c. To avoid calculating c and motivated by Wang et al. (2007) [70], 

we propose another criterion, BIC, to select the proper tuning parameter A. The BIC 

criterion is defined by 

BIC 二 - 2 log(L„(i9|5„, Z„)) + e(A) log(n) (4.45) 
• 

where e(A) is the degree of freedom for the selected model and has the same form of 

(2.30) with V'^^(^) replaced by based on (4.4). We can select the proper tuning 

parameter A by minimizing (4.45). Note that given the censoring intervals {(L,, 

^ is a constant for all A and 0. Consequently, the logarithm of 吉 has the additive form 

ill (4.45). Oil the other hand, following the approximation method in Scction 3.1, the 

approximation of is independent on the constant So in the approximation of 

BIC, we can omit the term - 2 log(^) and this will not affect the selection of a proper 

tuning parameter A. The same samples of U„ are also used to approximate £(f3) regardless 

of the values of /3 and A. 

4.4 Numeric Studies 

In this section, we will conduct some simulation studies to illustrate our proposed variable 

selection procedures for general transformation models with interval censored data. In the 

simulation studies, we also consider three special models of general transformation models 

(1.3)- proportional hazards Cox's regression model (PH), proportional odds regression 

model (PO) and generalized pro bit model (GP). 

We use the average proportion of overlapped censoring intervals to measure the cen-

soring degree and the average proportion of overlapped censoring intervals is defined as 

follows. For zth censoring interval, the proportion of censoring intervals overlapped with 

it is given by 

Pi = 1 , n 
where #( . ) means the number of elements in the set Ai or B�defined by (4.2) and (4.3). 

n 
Then the average proportion of overlapped censoring intervals is given by p = 乙 . 

Following Sattcn (1996) [58], we will generate a censoring interval for each failure time 

by an independent renewal process which begun at time 0 with log-normally distributed 
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Table 4.1: Variable selection results for PH, PO and GP models with Light interval censoring 

Light n = 100 

Models Penalty MMSE correct incorrect 

HARD 

SCAD 

PH LASSO 

ALASSO 

Oracle 

HARD 

SCAD 

PO LASSO 

ALASSO 

Oracle 

HARD 

SCAD 

GP LASSO 

ALASSO 

Oracle 

Aver. no. of 0 Coef. 

().0G7 

0.063 

0.456 

0.081 

0.060 

4.600 

4.446 

4.070 

4.382 

5.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.196 

0.277 

0.660 

0.207 

0.124 

4.717 

4.308 

4.160 

4.297 

5.000 

0.040 

0.056 

0.015 

0.005 

0.000 

0.090 

0.086 

0.563 

0.077 

0.054 

4.450 

4.460 

4.293 

4.021 

5.000 

0.000 

0.000 

0.000 

0.000 

0.000 

n = 200 

Aver. no. of 0 Coef. 

MMSE correct incorrcct 

0.053 

0.050 

0.389 

0.040 

0.035 

4.853 

4.958 

4.550 

4.826 

5.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.071 
羣.、• 

0.095 

0.552 

0.177 

0.060 

4.G41 

4.333 

4.480 

4.780 

5.000 

0.019 
秦 

0.006' 

0.000 

0.003 

0.000 

0.032 

0.028 

0.441 

0.029 

0.025 

4.740 

4.890 

4.910 

4.890 

5.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Note: 0.000*8 indicate that the corresponding values are less than 0.0005; ALASSO means 

Adaptive-LASSO. 

increments. We consider two censoring cases -light censoring and heavy censoring -

by proper choice of mean and coefficient of variation for the increment. The average 

proportion of overlapped intervals for light censored data is about 11% and it is 56% for 

heavy censoring. The BIG. criterion (4.45) without the term —2 log(^) is used to select 

tuning parameter A. In the approximation of BIC criterion, Mo = 20000. 
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Tablo 4.2: Variable selection results for PH, PO and GP models with Heavy interval censoring 

Heavy n = 100 n = 200 

Aver. no. of 0 Coef. Aver, no . o f 0 Coef. 

Models Penalty MMSE correct incorrect MMSE correct incorrect 

HARD 0.103 4.417 0.000 0.060 4.815 0.000 

SCAD 0.074 4.657 0.000 0.044 4.963 0.000 

PH LASSO 0.692 4.050 0.000 0.583 4.744 0.000 

ALASSO 0.160 4.135 0.000 0.113 4.757 0.000 

Oracle 0.085 5.000 0.000 0.067 5.000 0.000 

HARD 0.533 4.130 0.033 0.161 4.740 0.038 

SCAD 0.506 4.600 0.053 0.125 4.738 0.051 

PO LASSO 0.808 4.310 0.028 0.680 4.640 0.000 

ALASSO 0.378 4.000 0.017 0.173 4.640 0.003 

Oracle 0.230 5.000 0.000 0.099 5.000 0.000 

HARD 0.130 4.883 0.002 0.051 4.992 0.000 

SCAD 0.112 4.470 0.000 0.057 4.960 0.000 

GP LASSO 0.464 3.900 0.000 0.436 4.560 0.000 

ALASSO 0.196 4.080 0.000 0.065 4.110 0.000 

Oracle 0.097 5.000 0.000 0.048 5.000 0.000 

In this simulations, we generate 100 data sets consisting of n 二 100 and 200 censor-

ing interval observations from the general transformation models (1.3) with w)= 

g~^{g{u) +v'^ w). In the models, 1 - 9~^(u) takes standard exponential distribution func-

tion, standard logistic -distribution function and standard normal distribution function, 

which correspond to the proportional hazards regression models, proportional odds regres-

sion models and generalized probit models. All the covariates in Z £ R^ are generated 

from standard normal distribution independently and the baseline survival function is 
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Table 4.3: Summary of results for nonzero effects in PH model with Light interval censoring 

Light n = 100 n = 200 

Penalty (h 39 /3i Ai I3G " 9 … 

HARD Bias -0.0578 0.0501 
命 

-0.0517 0.0665 -0.0854 0.0893 -0.0980 0.0948 

SStd 0.1248 0.1217 0.1147 0.1224 0.0731 0.0726 0.0769 0.0712 

MStd 0.1165 0.1174 0.1150 0.1158 0.0799 0.0794 0.0800 0.0797 

SCAD Biai5 -0.0671 0.0368 -0.0594 0.0484 -0.1013 0.0870 -0.0958 0.0941 

SStd 0.1103 0.1164 0.1310 0.0958 0.0833 0.0682 0.0841 0.0723 

MStd 0.1178 0.1169 0.1156 0.1182 0.0795 0.0784 0.0798 0.0795 

LASSO Bias -0.3177 0.3347 -0.3279 0.3463 -0.3197 0.3196 -0.3089 0.3187 

SStd 0.1073 0.1083 0.0982 0.1010 0.0926 0.0807 0.0812 0.0835 

MStd 0.0830 0.0819 0.0823 0.0815 0.0593 0.0590 0.0594 0.0595 

ALASSO Bias -0.0802 0.0806 -0.0815 0.0812 -0.0911 0.0756 -0.0897 0.0721 

SStd 0.1038 0.1064 0.1009 0.1120 0.0756 0.0734 0.0777 0.0805 

MStd 0.1154 0.1146 0.1147 0.1153 0.0780 0.0785 0.0786 0.0786 

Oracle Bia.s -0.0832 0.0649 -0.0660 0.0598 -0.0649 0.0617 -0.0709 0.0710 

SStd 0.1167 0.1106 0.1041 0.1263 0.0807 0.0824 0.0686 0.0789 

MStd 0.1164 0.1144 0.1174 0.1162 0.0802 0.0799 0.0794 0.0796 

So(t) = Qxp{-t}. We take the true value of /3as/3 = (0.8，0.0’ -0.8，0.0,0.0’ 0.8’ 0.0，-0.8)^, 

that is, there arc five zero effects included in the models. 

We run the three-step MCMC-SA algorithm in Chapter 2 and Gibbs sampling for 

interval censored data to conduct the simulation studies. We will adopt the same pro-

gramme parameter setting as the simulation studies in Section 2.5.1. We use median of 

mean squared error (MMSE), defined in Section (2.5) or (3.4), to assess the efficiency of 

the proposed variable selection methods and BIC (4.45) to select tuning parameter A on 

a grid of points. 
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Table 4.4: Summary of results for nonzero effects in PH model with Heavy interval censoring 

Heavy n = LOO n 二 200 

Penalty A 伪• A) A fh • A) ’ 

HARD Bias -0.0755 0.0515 -0.0324 0.0515 -0.0924 0.0707 -0.0778' 0.0857 

SStd 0.1465 0.1275 0.1597 0.1430 0.0914 0.0956 0.1073 0.0903 

MStd 0.1449 0.1440 0.1491 0.1465 0.0981 0.0967 0.0975 0.0976 

SCAD Bias -0.0408 0.0498 •^0.0577 0.0595 -0.0854 0.0773 -0.0696 0.0809 

SStd 0.1207 0.1272 0.1373 0.1456 0.0942 0.0919 0.0812 0.0927 

MStd 0.1436 0.1456 0.1443 0.1449 0.0968 0.0974 0.0980 0.0976 

LASSO Bias -0.3828 0.3592 -0.3989 0.3818 -0.4116 0.4055 -0.4217 0.4040 

SStd 0:1059 0.1003 0.1092 0.0908 0.0730 0.0700 0.0830 0.0834 

MStd 0.0910 0.0924 0.0897 0.0913 0.0602 0.0607 0.0596 0.0603 

ALASSO Bias -0.1333 0.1336 -0.1461 0.1428 -0.1397 0.1426 -0.1435 0.1434 

SStd 0.1247 0.1333 0.1321 0.1413 0.0948 0.0833 0.0893 0.0911 
t 

MStd 0.1443 0.1447 0.1452 0.1440 0.0976 0.0983 0.0968 0.0967 

Oraclc Bias -0.0748 0.0816 -0.0984 0.1174 -0.1076 0.1067 -0.1015 0.1070 

SStd 0.1351 0.1250 0.1343 0.1329 0.0824 0.0826 0.0917 0.0832 

MStd 0.1448 0.1432 0.1433 0.1423 0.0954 0.0969 
1 

0.0959 0.0955 

MMSE, the average number of zero effects correctly detected, labeled by "correct" 

and the average number of nonzero effects wrongly excluded from models, labeled by 

"incorrect" are reported in Tables 4.1 and 4.2. The results of nonzero effect estimates 

are given in Tables 4.3 - 4.4 for PH, in Tables 4.5 - 4.6 for PO arid in Tables 4.7 - 4.8 

for GP, including bias (Bias), sample standard deviation (SStd) and mean of estimated 

standard deviation (MStd). In the Tables, MMstds for PMMLEs are calculated based on 

the covariance matrix formula (2.28) while MStds for oracle estimates are the inverse of 

Fisher information matrix at MMLE. 
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Table 4.5: Summary of results for nonzero effects in PO model with Light interval censoring 

Light n = 100 n = 200 

Penalty - Pe 01 fh 

HARD Bias -0.0090 -0.0570 0.0529 -0.0234 -0.0034 -0.0117 0.0030 0.0006 

SStd 0.2687 0.2840 0.2473 0.2588 0.1881 0.1271 0.1839 0.2014 

MStd 0.1779 0.1841 0.1875 0.1856 0.1283 0.1319 0.1298 � 0.1274 

SCAD Bias -0.0101 -0.0492 -0.0012 -0.0268 0.0412 -0.0212 0.0135 -0.0387 
1 

SStd 0.2761 0.2511 0.3061 0.2993 0.1394 0.1304 0.1804 0.1754 

MStd 0.1796 0.1866 0.1773 0.1806 0.1331 0.1321 0.1302 0.1311 

LASSO Bias -0.3731 0.3621 -0.393G 0.3703 -0.3450 0.3679 -0.3443 0.3606 

SStd 0.2264 0.1815 0.1943 0.1970 0.1429 0.1425 0.1603 0,1534 

MStd 0.1047 0.1083 0.1037 0.1059 0.0792 0.0778 0.0787 0.0778 

ALASSO Bias -0.0809 0.0555 -0.0889 0.0663 -0.1583 0.1161 -0.1439 0.1552 

SStd 0.1920 0.2214 0.2536 0.2140 0.1662 0.1607 0.1646 0.1843 

MStd 0：1668' 0.1687 0.1626 0.1677 0.1081 0.1414 0.1391 0.1571 

Oracle Bias 0.0302 -0.0099 0.0393 -0.0154 0.0136 -0.0186 0.0133 -0.0143 

SStd 0.2181 0.2189 0.1991 0.1862 0.1359 0.1391 0.1291 0.1466 

MStd 0.1948 0.1918 0.1925 0.1940 0.1326 0.1327 0.1322 0.1322 

From Table 4.1，for the light interval censoring case, we can see that the four variable 

selection methods can correctly select about the same number of significant covariates 

for each setting. Moreover, we also find that the number of covariates selected by all 

the methods will get closer to the true number 5 as sample size increases. According to 

MMSE, the variable selection methods with SCAD, HARD and Adaptive-LASSO penal-

ties outperform method with LASSO penalty in all the settings. PMMLEs with S C A D , , 

HARD and Adaptive-LASSO penalties also perform as well as Oracle estimatei^'as if we • ^ 
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Table 4.6: Summary of results for nonzero effects in PO model with Heavy interval censoring 

Heavy n = 100 n = 200 

Penalty fh "6 "9 Pi As P9 

. H A R D Bias 0.1090 -0.0589 0.0315 -0.0910 0.0128 -0.0527 0.0740 0.0197 

SStd 0.3398 0.3989 0.3905 0.2801 0.2477 0.2249 0.2306 0.2753 

MStd 0.2511 0.2393 0.23G4 0.2479 0.1635 0.1666 0.1660 0.1576 

SCAD Biaa 0.1390 -0.0148 0.0926 -0.0639 -0.0074 -0.0442 0.0152 -0.0016 

SStd 0.3206 0.3709 0.2910 0.3208 0.2671 .0.2028 0.2425 0.2818 

MStd 0.2453 0.2263 0.2447 0.2398 0.1560 0.1655 0.1601 0.1601 

LASSO Bias -0.4686 0.4089 -0.4213 0.4208 -0.3987 0.4052 -0.3953 0.4066 

SStd 0.2029 0.2073 0.1926 0.1776 0.1378 0.1313 0.1443 0.1422 

MStd 0.1001 0.1113 0.1100 0.1114 0.0857 0.0858 0.0857 0.0847 

ALASSO Bias -0.0800 0.1570 -0.0957 0.0890 -0.1452 0.1276 -0.1072 0.1242 

SStd 0.2826 0.2897' 0.2920 0.2653 0.2167 0.1968 0.1610 0.2000 

MStd 0.2049 0.1938 0.2046 0.2045 0.1257 0.1269 0.1295 0.1265 

Oracle Bias 0.1364 -0.0963 0.0677 -0.0699 0.0660 -0.0390 0.0549 -0.0776 

SStd 0.3081 0.2983 0.2566 0.2702 0.1897 0.1656 0.2001 0.2039 

MStd 0.2575 0.2542 0.2555 0.2524 0.1705 0.1696 0.1717 0.1714 

have known the significant variables in advance. Based on the Table 4.2, the variable 

selection procedures for heavy interval censoring case can perform as well as that for light 

interval censoring case. 

In Tables 4.3 - 4.8, Bias, SStd and MStd based on 100 simulations are reported for 

each setting. In our simulations, if a significant covariate is excluded from the models, 
» 

its estimate and estimated standard deviation will be set to be 0. SStd is the sample 

standard deviation of estimates based on 100 runs, which can be seen as the true value of 
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Table 4.7: Summary of results for nonzero effects in GP model with Light interval censoring 

Light n = 100 n = 200 

Penalty Pi "3 决 09 A A) 

HARD Bias 0.0521 -0.0641 0.0581 -0.0594 0.0233 -0.0200 0.0108 -0.0323 

SStd 0.1606 0.1G57 0.1395 0.1512 0.0859 0.0872 0.1103 0.0921 

MStd 0.1216 0.1238 0.1235 0.1217 0.0824 0.0823 0.0816 0.0827 

SCAD Bias 0.0499 -0.0369 0.0620 -0.0422 0.0121 -0.0097 0.0167 -0.0077 

SStd 0.1480 0.1346 0.1667 0.1910 0.1012 0.0899 0.1027 0.0886 

MStd 0.1206 0.1213 0.1202 0.1191 0.0822 0.0814 0.0813 0.0810 

LASSO Bias -0.3234 0.3334 -0.3389 0.3159 -0.3614 0.3704 -0.3574 0.3621 

SStd 0.0900 0.0978 0.1010 0.1012 0.0810 0.0786 0.0825 0.0847 

MStd 0.0816 0.0810 0.0808 0.0818 0.0583 0.0578 0.0583 0.0581 

ALASSO Bias 0.0236 -0.0470 0.0212 -0.0373 -0.0082 0.0019 -0.0167 -0.0001 

SStd 0.1512 0.1424 0.1423 0.1470 0.0934 0.0958 0.0961 0.0955 

MStd 0.1247 0.1239 0.1244 0.1237 0.0805 0.0815 0.0802 0.0807 

Oracle Bias 0.0328 -0.0371 0.0211 -0.0254 0.0213 -0.0236 0.0255 -0.0216 

SStd 0.1450 0.1344 0.1373 0.1182 0.0884 0.0915 0.0922 0.1000 

MStd 0.1210 0.1240 0.1220 0.1214 0.0838 0.0830 0.0845 0.0838 

standard deviation of 尽‘.MStd is the sample mean of 100 estimated standard deviation 

based on the variance formula (2.28). So the difference between SStd and MStd should be 

reasonably small if the variance formula works very well. From Tables 4.3, 4.5 and 4.7，in 

the light interval censoring, all the Biases of PMMLEs with HARD, SCAD and ALASSO 

penalties are reasonably as small as Oracle estimates for each situation. Since LASSO 

method is a shrinkage one, the estimates based on LASSO penalty suffer from relatively 

large bias and they can not be used as an efficient estimate. MStd in all the settings 

based on 100 runs are very reasonably close to their corresponding SStd. Moreover, the 
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Table 4.8: Summary of results for nonzero effects in GP model with Heavy interval censoring 

Heavy n = 100 Ti 二 2 0 0 

Penalty /?! Ih fh (h Ai Aj 09 

HARD Bias 

SStd 

MStd 

0.1154 -0.1126 0.1022 -0.1086 

0.1974 0.1867 0.1886 0.1977 

0.1554 0.1577 0.1582 0.1562 

0.0664 -0.0799 0.0492 -0.0545 

0.1152 0.1207 0.1258 0.11 GO 

0:1031 0.1030 0.1028 0.1030 

SCAD Bias 

SStd 

MStd 

0.0750 -0.1030 0.1038 -0.1182 

0.1763 0.1834 0.1898 0.1922 

0.1571 0.1597 0.15C7 0.1597 

0.0C57 -0.0687 0.0547 -0.0592 

0.1164 0.1254 0.1134 0.1447 

0.1032 0.1039 0.1032 0.1037 

LASSO Bias 

SStd 

MStd 

-0.3029 0.3255 -0.3203 0.3080 

0.1219 0.1258 0.1178 0.1310 

0.0981 0.0965 0.0973 0.0975 

-0.3183 0.3180 -0.3102 0.3251 

0.1025 0.0875 0.0939 0.1015 

0.0671 0.0674 0.0674 0.0669 

ALASSO Bias 

SStd 

MStd 

0.1173 -0.1244 0.0947 -0.1034 

0.2366 0.2031 0.2009 0.2122 

0.1538 0.1562 0.1560 0.1578 

0.0141 -0.0351 0.0298 -0.0050 

0.1409 0.1280 0.1460 0.1203 

0.1199 0.1185 0.1186 0.1187 

Oracle Bias 

SStd 

MStd 

0.1196 -0.0907 0.1012 -0.0843 

0.2027 0.1916 0.1709 0.1691 

0.1587 0.1584 0.1575 0.1573 

0.0820 -0.0650 0.0711 -0.0620 

0.1310 0.1315 0.1180 0.1151 

0.1037 0.1032 0.1036 0.1041 

values of SStd, MStd and their difference decrease when sample size increases. Hence, 

Tables 4.3, 4.5 and 4.7 suggest that the variance formula can also perform very well 

for interval censored data and its performance will improve when sample size increase. 

In a word, PMMLEs with SCAD, HARD and Adaptive-LASSO penalties can perform 

as well as Oracle estimate in terms of estimation and variable selection for tho general 

transformation models with light interval censoring. Prom Tables 4.4，4.6 and 4.8，we can 

also find the similar conclusions for heavy interval censoring case as that for light interval 

censoring case. 
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Therefore the simulation results are consistent with oracle properties given in Section 

4.2. An interesting finding is that although the proposed variable selection procedures 

for light interval censoring performs bettor than heavy interval censoring case in terms 

of variable selection and estimation, the difference is very small. This may be the reason 

that the proposed procedures are only dependent on the ranking of observations and have 

nothing with censoring distribution and baseline distribution. So we believe that the 

proposed procedure should be efficient for the informative censoring case. 

• End of chapte r . 



Chapter 5 

Conclusions and Further Studies 

In this thesis, wc considered the variable selection for general transformation models with 

ranking data, right censored data and interval censored data. Tho variable selection pro-

cedures are done by maximizing rank-based penalized log-marginal likelihood function. 

Wc mainly considered four penalty functions -HARD, SCAD, LASSO and A LASSO. We 

also proposed a three-step MCMC-SA algorithm by developing the three-stage MCMC-SA 

algorithm in Gu, et ai (2005) [40] and MCMC-SA algorithm in Gii and Kong (1998) [39 . 

Through the variable selection procedure, we not only can select important variables but 

also can estimate the corresponding effects simultaneously except method with LASSO. 

Tho approach with LASSO penalty would not give a consistent estimate for large coeffi-

cients when regularization parameter A is large although it can produce sparse solution. 

When A is too small, LASSO can not produce sufficiently sparse models. So PMMLEs 

with LASSO penalty can be not seen as an efficient parameter estimate. One advan-

tage of the proposed procedures is independent of baseline distribution and censoring 

distribution, which is enjoyed by partial likelihood method [25]. Therefore our proposed 

procedures may allow the informative censoring. This guess has been empirically illus-

trated by simulation studies. » 

In Chapter 2，we studied the variable selection for general transformation models with 

ranking data. With proper penalty function, we established ^/^-consistency and ora-

cle properties of penalized maximum marginal likelihood estimate under some regular 

conditions. We proposed a three-step MCMC-SA algorithm for the variable selection 

procedures with ranking data by developing the three-stage MCMC-SA algorithm in Gu, 

9 7 
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et al. (2005) [40] and the MCMC-SA algorithm in Gu and Kong (1998) [39). Based on 

Newtoii-Raphson iterative formula, wc proposed a covariance matrix formula. Simulation 

studies showed that this formula is very effective. Wc also extend the procedures into 

stratified ranking data. At last, we applied the variable selection procedures to analyze 

Morig Kong Horse Racing data. Ip Chapter 3，we considered variable selection for gen-

eral transformation models with right censored data. We also present the consistency 

and oracle properties. Simulation studies illustrated that the proposed variable selection 

procedures can also perform very woll for right censored data. We also applied the procx�-

dure to the analysis of PBC data and reach to the similar conclusions as done by others 

previously. In Chapter 4, wo considered the variable selection for general transformation 

models with interval censored data. We also proved the asymptotic properties of rank-

based maximum marginal likelihood estimate with interval censored data by discretization 

technique, based on which wo further gave the >/n-coiisistency and oracio properties for 

the rank-based penalized maximum marginal likelihood estimate. 

From (3.1) and (4.4), we can see that marginal likelihood function is the probability of 

complete ranking given the censored data. That is, the marginal likelihood is independent 

of censoring distribution. So the proposed variable selection procedure can also deal 

with the right informative censored or interval informative censored survival data. In 

microarray gene data, the dimension of covariate increases as the increasing of sample 

size and generally p >> n. In this setting, our proposed procedure can not work. Thus 

variable selection for high-dimensional data should be also considered. All the aspecfs 

will be studied in our subsequent research. 

• E n d of chapter . 
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Appendix A 

Three-stage MCMC-SA Algorithm 

The three stage Monte Carlo Markov Chain stochastic approximation (MCMC-SA) algo-

rithm is given in Gii et al. (2005) [40) and we present it again as follows, Its ideas are: In 

stage I, a large gain oenstant sequence are used in stochastic approximation to force the 

estimates to move quickly into a small neighborhood of the estimate,4. In stage II，the 

off-line average method of Polyak and Juditski (1992) [56] to obtain the MLE. In stage 

III，a new Markov chain is run based on the parameter obtained in stage II so that the 

variance estimate can be obtained. Specifically, « 

Stage I Choose a positive integer m and A'o and set an initial value an initial matrix Fq, 

an initial data Uo,m and k = I, then iterate the following step 1 and step 2 until 

k = 

Step 1 For fixed k, set Ujt,o 二 Uk-i,M- For i = 1，2，…，m, generate \Jk,i from the tran-

sition probability ([4,1-1, ) with stationary distribution p(u„;尺„，Z„); 

Step 2 Update the estimate /3 by 

r t̂ = r V i + 7iA:(7o(/3fc-i;Ufc) - r , _ i ) , 

• 二 付 ( A t - i ; U A ) ， 

If 

where Uĵ  二 (U)t,i，Ua:’2，... ,U;t.m), U/t’, = (C/k,t,iMk.t, ^k.t.n) with i = 

9 9 
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2’ … ， m ， 

m 

1 Q 
m ‘•‘ op^ 1=1 

n 
H{J3�u，）= J2_j,Z],(3l 

^ik = + 10), C\ is arbitrary real number in the range of (0,1/2) and K 

is determined by 

K 
A', = inf^ A' > A'r sign(/3. — < 0.1 

( 
Stage I I Following the a^jige I, take the final values /3，1�and U of the stage I as the initial 

values of the stage II and iterate the same step 1 and step 2 of the stage I with 

A: 二 1’ 2，" . ， a n d replacing 7 u by 他 = + 10) with c'2 G (1/2,1). K2 is 

determined by 

^ /\2 = nifi^k : Afc < 0.0001} (A.l) 

where 

A , 二 二 仏 + tracc(f-l,Efc)//c 

. H k = Hk-x + u,) - Hk-i)/k 

with Tq = 0, Hq = 0 and Pq = 0. Efc is an estimate of the Monte Carlo error and it 

can be estimated by the sample covariance of Uj ) , j 二 1，2，…,A:}. After 

K2th iteration, the off-line average is used our final estimate of 

Stage I I I Choose a large M and run the same Markov chain M iterations with the fixed value 

The variance estimate of (3 is taken to be the inverse of ^nl/̂ /Cz； U,), 

where 

「n(卢；Un) = 
d 

di3T 
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Remark /3o, Fq, m and Kq in stage I can be chosen rather arbitrary. Only Cj 6 

(0,1/2)，will p go quickly towards p . An initial data Uo,m can bo obtained as follows for 

the three type of data: 

• For ranking data: 

We firstly generate a sample of size n from uniform distribution over (0,1) then order 

it such that it is consistent with Then the ordered sample can be taken as the 

initial values of U; 

• For right censored data: 

Suppose we have observed event times Y 二（】,!，i,2，…，Vn)̂, then the initial data 

Uo rn can be taken as 

, U 
max;Li{y；} + l / n ' 

For interval censored data: 

Suppose we have censoring interval observations { ( [“ V^]}^:” then the initial data 

Uo rn can bo taken as 

Uo,m’i 二 ^ — , ^ = 1,2, 
maxf^i {[/,-} + 1/n 

where = Li + a, (Vi — 

over (0，1). 

Li) and is a random number from uniform distribution 

• E n d of chap te r . 



Appendix B 

% 

Gibbs Sampling Procedure for 

Interval Censored Data 

This procedure is given in the appendix of Gu et ai (2005). We present it here 

Let Y 二（Ki, …,Yn) be n independent random variables each is restricted to 

Assume Yi has survival function — y, Zi,(3). Define 

again. 

(0 ,1 ) . 

e { { Y u Y 2 r • - . Y n V ： Y f < >； < i = l , 2 , 

whore 

= 

rz} 

max{Yj : j e Bi} Bi • 0 

0 B, = 0 

and 
min{y} : j e .4,} yl, / 0 

1 A, = 0 

where Ai and Bi are defined by (4.2) and (4.3). It is easy to see that the distribution of 

Y conditional on y G £： is the conditional distribution defined by (4.6). Moreover, 

conditional on all other Yj(j + i) fixed, Yi follows the distribution function 少(1 — y�Z“ 

restricted to the interval {Yf, 

Following the Gibbs sampling idea, the following three steps give an irreducible Markov 

chain with stationary distribution p(，/3). Let Yk — (K产，F�矢，.•. , V^Y be the current 

values of Y. Then, to generate next value V^+i from •), the sampling procedure 

proceeds as follows. 
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Step 0. S e t �= 1; 

Stop 1. Set V；— 二 1 — 4>(1 — and K+ = 1 —巾（1 — 

Step 2. Generate U ” ] f rom�/n i / [V; - , V;+]. Set V；於= 1 — — U ” �人 where 

(w, y, w) is tho inverse function of «I>(?x, v, w) in terms of the first argument. 

Stop 3. If i < n, then i ~ i -h 1 and go to Step 2. Otherwise stop. 

• End of chapter . 
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