
Uncertain Data Management

CHANG, Lyun

A Thesis Submitted in Partial Fulf i lment

of the Requirements for the Degree of

Doctor of Philosophy

in

Systems Engineering and Engineering Management

The Chinese University of Hong Kong

August 2011

UMI Number: 3500820

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Ot58«rtation Publishing

UMI 3500820

Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor. Ml 48106- 1346

Thesis Committee

Professor Hong Cheng (Chair)

Professor Jeffrey X u Yu (Thesis Supervisor)

Professor Anthony Man-Cho So (Committee Member)

Professor Xuemin L in (External Examiner)

To my parents, Qiyuan Chang and Yumei Huang, who brought me to the world.

ABSTRACT

Uncertain data management has received a lot of attentions recently due to the fact

that data obtained can be incomplete or uncertain in many real applications. Ranking

of uncertain data becomes an important research issue, the possible worlds semantics-

based ranking makes it different f rom the ranking of deterministic data. In the tradi-

tional deterministic data, we can compute a score for each object, and then the objects

are ranked based on the computed scores. However, in the scenario of uncertain da-

ta, each object has a probability to be the true answer (or the existence probability),

besides the computed score. A probabilistic top-k ranking query ranks objects by the

interplay of score and probability based on the possible worlds semantics. Many defi-

nitions have been proposed in the literature based on the possible worlds semantics.

In this thesis, we explore the issues of uncertain data management in several differ-

ent aspects. First, we propose a novel linear time algorithm to compute the positional

probability, the computation of which is a primitive operator for most of the ranking

definitioDS. Our algorithm is based on the conditional probability formulation of po-

sitional probability and the system of linear equations. Based on the formulation of

conditional probability, we also prove a tight upper bound of the top-k probability of

tuples, which is then used to stop the top-k computation earlier. Second, we study

top-k probabilistic ranking queries wi th joins when scores and probabilities are stored

in different relations. We focus on reducing the jo in cost in probabilistic top-k rank-

ing. We investigate two probabilistic score functions, namely, expected rank value

and probability of highest ranking. We give upper/lower bounds of such probabilistic

score functions in random access and sequential access, and propose new I /O efficient

i

algorithms to find top-k objects. Third, we extend the possible worlds semantics to

probabilistic X M L ranking query，which is to rank top-k probabilities of the answers

of a twig query in probabilistic X M L data. The new challenge is how to compute

top-k probabilities of answers of a twig query in probabilistic X M L in the presence

of containment (ancestor/descendant) relationships. We focus on node queries first,

and propose a new dynamic programming algorithm which can compute top-k prob-

abilities for the answers of node queries based on the previously computed results

in probabilistic X M L data. We further propose optimization techniques to share the

computational cost. We also show techniques to support path queries and tree queries.

Fourth, we study how to rank documents using a set of keywords, given a contex-

t that is associated wi th the documents. We model the problem using a graph with

two different kinds of nodes (document nodes and multi-attribute nodes), where the

edges between document nodes and multi-attribute nodes exist with some probabil-

ity. We discuss its score function, cost function, and ranking wi th uncertainty. We

also propose new algorithms to rank documents that are most related to the user-given

keywords by integrating the context information.

摘要

在许多实际的应用中，所釆集到的数据都是不确定性的，例如噪音或者误差

所致。随着处理技术的进步，现在越来越多的人直接对不确定性数据进行处

理。在所有对不确定性数据进行管理的方方面面中，对数据进行排序显得至

关重要。不管是在数据处理的中间过程中，还是最后选取特定元组返回给用

户，都需要对数据进行排序。由于不确定性数据所特有的概率特性，使得现

有的确定性数据排序算法不能用于不确定性数据。在传统的确定性数据排序

中，我们只需要先对每个元组算出它的分数，然后按照分数排序即可。然而

在不确定性数据中，每个元组不但有一个分数，还有一个不确定性，而这个

不确定性是由概率来表示的。不确定性数据的top-k查询是基于可能世界模型

的。在这个模型中，每一个元组的概率是用来确定可能世界的概率，而元组

的分数是用来确定一个可能世界中不同元组之间的相对排列。在已有的研究

中，基于可能世界模型，人们提出了不同的排序定义。
/

在这篇论文中，-我们从不同方面对不确定性数据的管理进行了研究。首

先，我们提出了一个条时间复杂度的算法来计算位置概率。简单来说，位

置概率就是一个元组在所有的可能世界中排在某一个特定位置的概率。值得注

意的是，现有的不确定性数据排序都需要先算出位置概率。所以我们的快速

位置概率算法可以加快不确定性数据的排序。我们算法的主要思想是条件概

率和解线性方程组。基于条件概率，我们进一步证明了一个top-k概率的上界，

而且这个上界是可达的。基于这个上界，我们可以提前结束排序算法而不影

响结果的正确性。第二，我们考虑到基于某种原因，元组的分数和概率可能

存在于两个数据库表格中。我们研究不确定性数据的top-k查询，同时也考虑

到数据库表格的联接。我们的研究方向主要是要避免对两个表格中的所有数据

i i i

IV

进行联接操作。为了这个目标，我们证明了两种排序定义中最后用于排序的

不确定性分数的上下界。同时对于一个top-k查询，我们提出了外存算法。基

于这些上下界，我们的外存算法不需要读取两个表格中的所有数据。第三，

我们把这些基于可能世界模型的排序定义扩展到概率XML数据。由于XML数

据是半结构化数据，它是用一个树的模型表示的。两个元数据之间可能有祖

先/子孙的关系，对排序算法提出了新的挑战。我们首先研究一个点的查询，

并提出了新的动态规划算法来计算XML节点的top-k概率。基于XML的树型结

构，我们进一步对动态规划算法进行了优化。同时我们也研究了路径查询和一

般树查询。最后，我们研究了上下文敏感的基于文档的关键字查询。在这种

查询中，除了文档之外，我们还有上下文。而这种上下文是用图来表示的，每

一个图节点上都附有文本属性。我们建立一个图来表示所有的相关数据，即

把每一个文档看成一个节点，它的属性就是文档的内容。然后把这些文档节点

连接到上下文的图的节点，而这种连接是不确定性的。在这种模型下，我们

提出了打分函数，然后讨论了不确定性排序，并提出了新的算法。

A C K N O W L E D G E M E N T S

It is almost impossible to express my gratitude to my adviser, Jeffrey Xu Yu, in a

couple of words. First of all, he guided me to the world of academic research. Through

his bril l iant insights, and gentle guidance, he has helped me formulate the problems of

this thesis and solve them. He has always been encouraging me to do the best I could.

I have leamt many things about research and l i fe from him. I have learnt that, it w i l l

be pleasant to do things i f you really like it. His attitude towards work and life w i l l

influence me in my future.

I am very grateful to all my outstanding committee members. Hong Cheng, An-

thony Man-Cho So, and Xuemin Lin. I would like to thank them for their help and

comments on my research and thesis.

I would also like to thank my collaborator’ Lu Qin, who shared many great ideas

with me, and helped me a lot when I was a beginner in doing research. He has fought

together wi th me through many days and nights to finalize conference paper submis-

sions. Without his support, none of my achievements would be possible.

During my stay at CUHK, I have made some great friends, and l i fe would not

have been the same without them. I have had the pleasure to know Bo Chen and

D i Wu. We have spent so much time together at the university gym. To Bo Chen,

it was always wonderful to have your support in the hiking activities. To D i Wu, it

was a pleasure to run with you. I would also like to thank all the people who shared

my l i fe in CUHK: Yang Zhou, Wenting Hou, Binyang L i , Zheng Liu, Jiefeng Cheng,

Miao Qiao, Yuanyuan Zhu, Weiyang Liu, Lidong Bing, Zhiwei Zhang, X in Huang,

Ronghua L i , Xiaofeng Yu, Zhenglu Yang, Bo Hu, Qi Pan, Bo Jiang, Lanjun Zhou,

V

VI

and Ke Zhou. I remember our happy hours in exploring the beautiful places in Hong

Kong country parks, to get to the top of innumerable hil ls, and to see the beautiful

sandy beaches, reservoirs, and white-flower Derris. I also remember our happy times

together every day, in the canteen, in the swimming pool, in the fitness room, and in the

play ground. Finally, my special gratitude to the department of Systems Engineering

and Engineering Management at C U H K , I feel extremely fortunate to have studied at

such a wonderful place.

Most of all，I am grateful to my parents, Qiyuan Chang and Yumei Huang. It is

your love and support that give me strength and bravery to overcome every dif f iculty

I met in my PhD life.

CONTENTS

Abstract i

Abst ract in Chinese Hi

Acknowledgements v

Contents vi i

L is t of Tables x

L is t of Figures xi

1. In t roduc t ion 1

1.1. x-Relation Model and Possible Worlds Semantics 4

1.2. Contributions 6

2. Background and Related W o r k 9

2.1. Uncertain Top-k Semantics 9

2.2. Uncertain Database Models 12

2.3. Join Query in Uncertain Database 13

2.4. Probabilistic XML 14

2.5. Top-k Queries in Deterministic Data 15

3. Fast Comput ing Posit ional Probabi l i ty and Top-k ProbabUity 17

3.1. Introduction , 广 17

v i i

Contents v i i i

3.2. Existing Solution 18

3.3. A New Novel Algor i thm 21

3.4. Top-k Computation 26

3.5. Performance Studies 29

4. Probabi l ist ic Rank ing over Relations 31

4.1. Introduction 31

4.2. Problem Statement 33

4.3. Bounding Ranking Functions 36

4.3.1. Ranking Function RE 37

4.3.2. Ranking Function PHR 43

4.3.3. Ranking Function with Exclusive Relationship 46

RE Function 47

PHR Function 50

4.3.4. Discussions 51

4.4. I /O Efficiency 52

4.4.1. Random Access on Relation P 53

4.4.2. Sequential Access on Relation P 55

4.4.3. Sequential and Random Access 58

4.5. Performance Studies 59

5. Query Rank ing in Probabi l ist ic X M L Data 66

5.1. Introduction 66

5.2. P X M L and P X M L - R A N K 68

5.3. Node Query 73

5.3.1. New Containment Issues 74

5.3.2. An Overview of Our Approach 76

5.3.3. An Example 79

5.3.4. Algorithms 84

5.4. Path Query and Tree Query 91

Contents IX

5.4.1. Discussions on Tree Query 92

5.5. Performance Studies ^ . 95

5.5.1. Test-DBLP 97

5.5.2. Test-Mondial 99

5.5.3. Test-XMark 100

6. Context-Sensit ive Document Rank ing 102

6.1. Introduction 102

6.2. Problem Statement 105

6.3. Related work 107

6.4. The Score Function 108

6.5. Ranking with Uncertainty ' • 112

6.6. Query Processing 117

6.6.1. Local Context Generation 118

6.7. Performance Studies 120

6.7.1. Case Study for Query 95 123

6.7.2. Case Study for Query Qq 125

6.7.3. Multi-attribute Graph 127

7. Thesis Conclusion 128

7.1. Future Directions 129

Bib l iography 130

L IST OF TABLES

1.1. Temperature Readings from Sensor Network 2

1.2. Speed Moni tor ing in Traffic Network 2

3.1 Multi-alternative x-Relation 19

3.2. Parameters and Default Values 29

4.1. A n Example Relation (SP) 33

4.2. Two Rankings 34

4.3. Two Relations and P) 35

4.4. £；[|7|] - R e Bounds for Tuple Oi (independent) 40

4.5. Bounds of RE{oi) in Ran/Seq Access 41

4.6. PHR Bounds for Tuple OI (independent) 44

4.7. Bounds of PHR(Oi) in Ran/Seq Access 45

4 . 8 .丑 [| / |] — RE Bounds for Tuple OI (independent/exclusive) 49

4.9. Upper/Lower Bounds in 3rd and 4th Iteration 57
*

4.10. Parameters for A l l Testings
•

5.1. Consecutive Computing rĵ ^- for h = 0^(64), CL>(e5) 89

5.2. Queries Used for A l l Datasets 96

5.3. Parameters Used for Testing 97

6.1. Keyword Queries 122

L I S T OF F I G U R E S

1.1. x-Relat ion Data ‘ 5

3.1. Computational Cost 25

3.2. Computing p i j 30

4.1. Re Bound Changes for 03 and 05 42

4.2. Real Data 61

4.3. Un i fo rm Distr ibution 61

4.4. Normal Distr ibution 62

4.5. Positive Correlated 63

4.6. Negative Correlated 64

4.7. Phr Testing 65

5.1. XML, PXML, and Twig Query 69

5.2. PXML Subtrees 70

5.3. L is t v.s. XML Tree 75

5.4. A n Overview of Our Approach 76

5.5. Computing p i j 78

5.6. A n Example 80

5.7. Cut the Tree into Several Parts 82

5.8. Computing r j^- 87

5.9. C o m p u t i n g H-PROB (7>’ cpi+u k) 88

5.10. Convert a Node wi th I Children to a Complete Binary Tree 90

xi

List of Figures xii

5.11. Handling Mult ip le Path Results in a Single Node 91

5.12. APXMLTree '92

5.13. Compute top-/c probabilities for a Subtree Answer 94

5.14. Testing DBLP Dataset 98

5.15. Testing Mondial Dataset 99

5.16. Testing XMark Datasets 101

6.1. Movie Reviews & Movie Records 103

6.2. Example 106

6.3. x-Relation Model 113

6.4. The System Architecture 117

6.5. Execution Time 123

6.6. Least Rank Position to Include the Top-k (1 to 10) Documents 124

6.7. (Discounted) Cumulative Gain for gs 124

6.8. (Discounted) Cumulative Gain for qe 125

6.9. Top-1 Document wi th Context 126

6.10. (Discounted) Cumulative Gain for q^ and qe 127

CHAPTER

I N T R O D U C T I O N

Uncertain data management is an import issue in sensor network, information extrac-
%

t ion [68], data cleaning, data integration [13], and market decision making. Due to

the nature o f measuring and storage, most information obtained is either incomplete

or uncertain. Direct ly modeling, storing, and analyzing uncertain data has regain the

public interests f rom researchers during the last ten years. Among the different aspects

of uncertain data management, ranking is o f particular importance due to the nature of

humans to make things in order. In this thesis, we focus our attentions to the ranking

o f uncertain data. First o f all, we illustrate two motivating examples.

Example 1: In a sensor network deployed in a habitat, each sensor records and re-

ports temperature o f the surrounding environment. There are totally five sensors,

s i , S 2 , … , S 5 , deployed in three locations. A , B，and C. Each sensor reading comes

w i th a confidence value Conf., wh ich is the confidence (or interpreted as probabil i ty)

that the reading is valid. Tab. 1.1 shows the temperature sensor readings at a given

sampling time. For example, for the first reading, sensor s i reports, at 02:12am, Feb.

4th 2009, that the temperature at location A is 24 degree Celsius. A question posted

on the readings can be, “what are the two wannest locations?". •

Example 2: I n a traff ic-monitor ing system, radars detect cars' speeds automatically.

Several radars are deployed in different locations along several highways. The car

identif ication (e.g., by plate number) is performed by a human operator or OCR of

.Chapter J. Introduction 2

RID Loc. Time Sensor Temp. Conf.

A 04/02/09 02:12 Si 24 1.0

R2 A 06/02/09 02:12 Si 30 1.0

Rs B 05/02/09 04:13 32 29 0.6

R4 B 05/02/09 04:15 S3 26 0.4

Rs C 06/02/09 03:16 54 28 0.5

Re C 06/02/09 03:20 S5 27 0.5

Table 1.1: Temperature Readings from Sensor Network

plate number images. Tab. 1.2 shows a snapshot of the speed readings. The special

attribute “Conf.” in each tuple indicates the probability that the whole tuple gives

correct information. For example, at 08:12, a radar records that the speed of the car

with plate number X-321 is 120 km/h at location L i . Based on the speed readings, we

can rank the cars by their speeds. We can also pose a constraint to rank only the cars

that have traveled between ‘‘08:00’，and ‘‘09:59，’. •

TID Loc. Time PlateNo Speed Conf.

T i Li 08:12 X-321 120 0.7

T2 Li 08:32 Y-256 100 0.6

Ts L2 08:13 Y-256 70 0.4

T4 Ls 09:05 X-224 80 0.4

Ts U 08:56 X-224 90 0.5

Te U 10:20 W-341 102 1.0

Table 1.2: Speed Monitoring in Traffic Network

In the above two examples, although the score of a tuple (temperature in Exam-

ple 1, and speed in Example 2) is deterministic, the tuples are probabilistic. There are

multiple sources that contribute to data (or tuple) uncertainty. First of all, the instru-

ment (sensor or radar) used to measure data may failure duo to technique or energy

.Chapter J. Introduction 19

issues. Second, uncertainty may be involved during postprocessing of the raw data.

For example, in the traffic monitoring system, the plate numbers are extracted f rom

images by human operator or OCR, where the probability of getting the right plate

number depends on the quality of the images.

In real applications, the probabilities of objects (or tuples) are computed based

on particular applications. For example, in [68], Michelakis et al. provide a proba-

bilistic framework for handling the uncertainty in rule-based information extraction.

Specifically, for each extraction task, they build a parametric exponential model of

uncertainty that captures the interaction between the different rules, where the ex-

ponential form follows from maximum-entropy considerations. Beskales et al. [13]

model possible repairs in a duplicate detection problem as possible worlds of repair

uncertain database. Each possible repair has a probability, which is determined by

the parameter of a clustering algorithms, and the result of a query over the uncertain

data is combined from query results over each possible repairs. We consider two re-

al datasets in our performance studies, where the details of obtaining probability of

tuples are discussed in Sec. 4.5 and Sec. 6.7.

Unl ike the traditional deterministic data where ranking is based solely on the s-

core, in uncertain data, each tuple has both a score and a probability. In order to rank

uncertain data, both tuples' probabilities and scores need to be factored in the inter-

pretation of ranking. This effectively introduces two interacting ranking dimensions,

the interplay of which decides meaningful ranking semantics. For example, it is not

meaningful to rank a top-scored tuple wi th insignificant probability as top-1 result.

Also, i t is not meaningful to rank a tuple wi th highest probability and low score as

top result. Moreover, combining scores and probabilities into one measure w i l l lose

valuable information that can be used to get more meaningful answers conforming

wi th the probabilistic query models as illustrated below.

.Chapter J. Introduction 20

1.1. x-Relation Model and Possible Worlds Semantics

In the literature o f uncertain data modeling, a lot of uncertain database models have

been proposed [3，29, 7]. Among them, the a;-Relation model is most popularly used

in answering rank queries [3, 93]. In the i -Re la t ion model, an cc-Relation contains a

set of independent x-tuples (called generation rules in [86,45]) . A n x-tuple consists of

a set of mutually exclusive tuples (or called alternatives) to represent a discrete prob-

ability distribution of the possible tuples the x-tuple may take in a randomly instanti-

ated instance. In an x-tuple, each alternative t has a score score{t), and a probability

p{t) that represents its existence probability over possible instances. In the x-Relation

model, the alternatives o f x-tuples are assumed to be disjoint. In the fol lowing, we

denote an x-Relat ion as an rr-tuple as r , and call an alternative a tuple, denoted as

t.

Example 3: Fig. 1.1(a) shows an x-Relation which consists of three x-tuples, t i =

{ t i j t a } , T2 = { t 2 } , and T3 = { (4} . The x-tuple t i indicates a probabil ity distribution

over ti and wi th probabil i ty p(ti) = 0.3 for its true content to be t i , wi th probability

p(t3) = 0.5 for its true content to be and wi th probability 1 — p(ti) — p(t^) = 0.2

for none of t \ and ta to be the true content. •

The relations in Example 1 and Example 2 conform to the x-Relation model.

Consider Tab. 1.1，tuples R^ and R4 form an x-tuple because they report different

temperatures for location B at almost the same time. Therefore, the x-Relation of

Tab. 1.1 consists o f four x-tuples, {T{, Tg, r ^ } , wi th r{ = r^ = { /?2} ’ =

{-R3, /E4}, and T^ = {i?5, i l f i } . For the speed readings in Tab. 1.2, the constraint is

that the same car can not appear at two different locations wi th in 20 minutes, then the

x-Relation consists of four x-tuples, with r" = { T i } , t!^ = r!^ = {T4，了5}’

andTj ' = {T6} .

Possible Wor lds: In general, an x-Relation, is a probabil ity distribution over a

set o f possible instances {/1，/2’ … } . A possible instance, / , ’ maintains zero or one

alternative for every x-tuple r ^ X. The probability of an instance Ij’ P r (/ j) , is

.Chapter J. Introduction 21

X-tuple tuple score prob

n ti 100 0.3 n

t3 80 0.5

T2 t2 90 1.0

T3 U 70 0.8

(a) rc-Relation

Possible world (/) Pr(/) top-2

(1 - p{ti) - p(t3))pfe)(l - p{U)) = 0.04 亡2

(1 一 P(tl) - p(t3))p(t2)p(t4) = 0.16 力2，U

{tut2} p(ti)p(t2)(l-p(t4)) =0.06 亡1，亡2

p(ti)p(t2)p(t4) = 0.24

{^2,^3} P(t3)p(i2)(l-p(ti))=0.10 i2, ts

亡3，亡4} p(t3)p(t2)p(t4) = 0.40

(b) Possible Worlds

Figure 1.1: re-Relation Data

the probability that i - tuples take certain or none alternative in such that P r (/ j) =

r i tG/ j X 一 P r (r)) where r ^ I j means x-tuple r takes no alternative in

I j and P r (r) = X^ te rP⑷ . The entire set of possible instances of an rr-Relation, /Y,

denoted as pwd{X), is the set of all the subsets Ij (C X) with probability greater than

0 (Pr (/ ,) > 0).

Example 4: Fig. 1.1(b) shows the total 6 possible worlds for the x-Relation in

Fig. 1.1(a). The possible world { t i , ^2} means that, TI takes the alternative ^i, T2 takes

the alternative 亡2，and T3 takes none. The probability of this possible world becomes

p (t i)p (t2) (l — p(t4)) = 0.06. Note that the sum of the probabilities of all the possible

worlds is equal to 1. 口

Positional Probabi l i ty: Several probabilistic top-/c semantics have been proposed

recently under the rr-Relational model [86，94, 45’ 53]. One fundamental concept

Chaptdr 1. Introduction 6

underlying all these ranking semantics is the positional probability, p i j , which is the

probability of a tuple, t i , to be ranked at the j - th position across the entire set of

possible worlds [86，93], i.e.,

Pij 二 Pr(/) (1.1)

where 屯 j (/) denote the tuple with the j - th largest score in an instance I of the pos-

sible worlds. We wi l l show how tfte different ranking semantics are connected to the

positional probability in Chapter. 2. It is important to note that all these probabilistic

ranking semantics need to compute the Pi、j values for all ti ^ X and j = 1，... , /c,

and computing p i j is the dominant cost in such probabilistic ranking queries.

Example 5: Consider the rr-Relation shown in Fig. 1.1(a) and the possible worlds

shown in Fig. 1.1(b), the probability for 亡2 to be ranked at the first place is p2’i =

0.04 + 0.16 + 0.1 + 0.4 = 0.7, and the probability for t^ to be ranked 2nd is ^3,2 =

0.1 + 0.4 = 0.5. The tuple t i has the highest score 100 but with a low probability 0.3，

which is less than p2,i = 0.7, the probability of t】to be ranked top across possible

worlds. O

1.2. Contributions

Due to the inherent uncertainty in real world data, and that ranking is a fundamental

process in analyzing data, we study several aspects of uncertain data ranking. In a

nutshell,

1. We present a linear time algorithm to compute the positional probability, and

propose a tight upper bound for top-k probability.

2. We study top-k probabilistic ranking queries with joins when scores and proba-

bilities are stored in different relations.

3. We extend the possible worlds semantics to ranking twig query results of a

probabilistic XML.

.Chapter J. Introduction 7

4. We study context sensitive document ranking, where the connection between

documents and the underlying multi-attribute graph is uncertain.

We w i l l now briefly describe these points.

In Chapter. 3, we focus on the fast computation of positional probability, p i j ,

which is defined as the probability of a tuple U to be ranked at the j-th position across

possible worlds. Among the different ranking semantics studied in the literature, most

of them need to compute the positional probability. The cost of computing positional

probabilities is the dominant cost. We propose a new novel algorithm that computes

such probability efficiently based on conditional probability and the system of linear

equations. We prove the correctness of our approach, and show that the time com-

plexity is linear. Based on the formulation of conditional probability, we prove a tight

upper bound of the top-k probability of tuples, which is then used to stop the top-k

computation earlier. The content of this chapter can also be found in [19].

In Chapter. 4, we study top-k probabilistic ranking queries with joins when s-

cores and probabilities are stored in different relations. The existing probabilistic

ranking queries have an implicit assumption that both scores based on which object-

s are ranked and probabilities of the existence of the objects are stored in the same

relation. However, we observe that, in general, scores and probabilities are highly

possible to be stored in different relations, e.g. in column-store database, data inte-

gration, and data warehouse. We focus on reducing the jo in cost in probabilistic top-k

ranking. We investigate two probabilistic score functions, namely, expected rank value

and probability of highest ranking. We give upper/lower bounds of such probabilistic

score functions in random access and sequential access, and discuss the advantages/
f

disadvantages of random and sequential accesses. We propose new I /O efficient algo-

rithms to find top-k objects wi th probabilistic ranking functions, using random access,

sequential access, and the combination of random and sequential access by taking

the advantages from both random/sequential access. We have published these results

in [22].

.Chapter J. Introduction 24

In Chapter. 5，we study probabilistic XML rank query, which is to rank top-k

probabilities of the answers of a twig query in probabilistic XML data. The new chal-

lenge is how to compute top-k probabilities of answers of a twig query in probabilistic

XML in the presence of containment (ancestor/descendant) relationships. The existing

dynamic programming approaches to compute top-k probabilities over a set of tuples

cannot be directly applied, because in the context of probabilistic XML any node/edge

may possibly have impacts on the top-k probabilities of answers. In our study, we

consider all the three issues, namely, ranking, probability, and structures. We focus

on node queries first, and propose a new dynamic programming algorithm which can

compute top-k probabilities for the answers of node queries based on the previously

computed results in probabilistic XML data. We further propose optimization tech-

niques to share the computational cost. We also show techniques to support path

queries and tree queries. The contents of this chapter has also been published in [20].

In Chapter. 6, we study how to rank documents using a set of keywords, given

a context that is associated with the documents. The uniqueness of the problem is

that the documents to be ranked are associated with sets of interrelated multi-attribute

tuples called context, which contains additional information that assists users to rank

the relevant documents with some uncertainty. We model the problem using a graph

with two different kinds of nodes (document nodes and multi-attribute nodes), where

the edges between document nodes and multi-attribute nodes exist with some proba-

bility. We discuss its score function, cost function, and ranking with uncertainty. We

also propose new algorithms to rank documents that are most related to the user-given

keywords by integrating the context information. We have published these results

in [18, 21].

CHAPTER 2

B A C K G R O U N D A N D RELATED W O R K

2.1. Uncertain Top-k Semantics

Due to the two interacting ranking dimensions of uncertain data, i.e., score and prob-

ability, several ranking semantics have been proposed in the literature to compute the

top-/c answers by the interplay of score and probability, based on the possible worlds

semantics.

U-Topk and U-kRanks Query: Soliman et al. are the first to study the ranking is-

sues in probabilistic data under the possible world semantics [86]’ and propose two

probabilistic ranking queries: Uncertain Top-k query (U-Topk query) and Uncertain

k Ranks Query (U-kRanks query). A U-Topk query returns the k tuples that are most

l ikely to be top-k tuples in possible worlds. A U-kRanks query returns, for each rank

position j ranged from 1 to k, the tuple ti that most likely to be ranked at jth position

across possible worlds, i.e., the answer to a U-kRanks query on an a>Relation X is

a vector (tj，...，tj), where V- = argmaxt‘ pij for j = 1，... , k, (see the definition

of positional probability, pi，j, in Chapter. 1.1). Consider the rr-Relation and its possi-

ble worlds shown in Fig. 1.1, the top-2 results based on U-topk query semantics are

{̂ 2，亡3} which has probability 0.5 to be the top-2 answer across possible worlds, and

the top-2 results based on U-kRanks query semantics are (^2,^3) where p2,i = 0.66

and p3,2 = 0.5. Y i et al. [92, 93] improve the performance of the U-Topk and U -

9

Chapter 2. Background and Related Work ^ 26

kRanks queries using a dynamic programming approach. Soliman et al. also study

ranking aggregate queries in probabilistic data based on these two semantics in [87].

Top-k P robab i l i t y : Hua et al. [44, 45] study a PT-k query, which returns the set o f

tuples whose top-k probabilit ies are above a user-specified threshold. Le t tkp(ti) be

the top-Zc probabi l i ty o f a tuple, t i , which is the marginal probabil i ty that U is ranked

top-A: in the possible worlds [44]，

k

t kp { t i) = P r (/) = Y . V i . 5 (2.1)
I Gpwd(Af)、tietopk(J)

where U G topk(I) means that the tuple U is ranked as one o f the top-/c tuples in

the instance / . Three approaches, namely, dynamic programming method, sampling

method, and poisson approximation based method, are proposed in [45] to answer

such PT-k queries. W i t h similar idea o f PT-k query, Zhang and Chomick i [94] return

the k tuples w i th highest top-k probabilit ies for a top-k query, which is called the

Global Top-k query. For an a;-Relation X^ the answer to a Global Top-k query is a

set o f size /c, { t j , • • • , t j } , which satisfies t k p { t j) > tkp{t) for any j ==!,••• ,k and

t • { i j , • • • Consider the x-Relation and its possible worlds shown in Fig. 1.1’

The top-2 probabi l i ty for the four tuples are, tkp(ti) — 0.3, tkp{t2) — 1.0’ tkpQts)=

0.5, and tkp{ t4) = 0.16. Therefore, the result for a Global top-2 query is {^2,^3}-

Jin et al. [53] study the U-Topk/U-kRanks/Glpbal- topk queries in an uncertain stream

environment under a sl id ing-window model, and design both space- and time-eff icient

synopses to continuously monitor the top-k results.

Expected R a n k : Cormode et al. [28] propose the expected rank query, and rank tuples

based on their expected rank values. The expected rank value o f a tuple t i，REiU), is

defined as fo l lows,

RsiU) = ^ P r (/) • rankiiU) (2.2)
iepwd{x)

where T a n k j { t i) is the rank o f a tuple o‘ in a possible instance I’ i.e., the number o f

Chapter 2. Background and Related Work ^ 11

tuples in I whose scores are larger than TI,

rank J {U)=
G I I scoTe{tj) > score{ti)}\, i f U E / ;

I , otherwise.

Note that the top tuple has rank 0. In essence, the expected rank considers the rank

of a tuple as a random variable, and ranks a tuple based on the expected vallic o f the

random variable. Consider the rr-Relation and its possible worlds shown in Fig. 1.1，

the rank o f t i in the first possible wor ld is 1，and the expected rank values of the four

tuples are, R B (t i) = 1.36, = 0.3, ii丑(亡3) = 1.46, and Re{M、= 1.8. L i et

al. [59] compute the top-/c answers in the scenario of uncertain distributed data based

on the expected rank semantics, where subsets o f the tuples are distributed at different

places.

Probabi l i ty of Highest Rank : The probability for a tuple U to be ranked at the first

place is defined as fol lows.

P H R { U) = ^ P r (/) (2 . 3)

le^dix) ‘
uei

rankj(ti)=0

I t ranks tuple, t i , based on the summation of the probability o f the possible instances

where U appears and is ranked at the first place (rank 0). In [12], Beskales et al.

compute the probabil i ty o f highest rank for each object, where the rank is defined

on the distance between it and the query object, and then report the k objects wi th

highest such probabilities. Similarly, in [72, 64], the authors retrieve k objects f rom

an uncertain spatial database, that have the highest probability to be a skyline point.

Others: L i et al. [61] propose two parameterized ranking functions to rank uncertain

data. In [85, 36], the authors study ranking tuples whose scores are uncertain. In [76]，

Re et al. find the k most probable answers for a given general SQL query. In this

scenario, each answer has a probability instead o f a score, which intuitively represents

the confidence of its existence, ranking is only based on probabilities.

Chapter 2. Background and Related Work ^ 12

2.2. Uncertain Database Models

In recent years, there have been a lot o f probabilistic databases designed, which in-

clude, Tr io system [3, 11], Myst iQ system [29, 77], SPROUT system [71], M a y B M S

system [8, 7], ORION system [23], PrDB system [81], and M C D B system [51].

The Tr io system [3] designs a model for incomplete and probabilistic databas-

es based on maybe-tuples, X-tuples, and lineage expressions, searching for a balance

between expressiveness and simplicity. The x-Relation model we used in this thesis

is similar to the model used in the Tr io system [3]. T\iple-independent probabilis-

tic databases are discussed by Dalv i and Suciu [29], motivated by queries wi th ap-

proximate predicates which introduce an independent event for every potential match.

However, queries over uncertain databases are hard in general. Even on a totally inde-

pendent probabilistic database, answering a general SQL query is #P-complete [29],

specifically, i t is #P-complete to compute the existence probabil ity o f a result. The

SPROUT system [71] is also a tuple-independent probabilistic database. They con-

sider the conjunctive queries without self-joins that are known to be tractable on any

tuple-independent database, and queries that are not tractable in general but become

tractable on probabilistic databases restricted by functional dependencies. They study

optimizations that push or pul l our operator or parts thereof past joins, and propose

an efficient secondary-storage operator for exact computation of queries on tuple-

independent probabilistic databases *

In MayBMS [7], they represent uncertain database by U-relations, which is a

succinct and purely relational representation system. U-relations support attribute-

level uncertainty using vertical partitioning. The ORION system [23] designs a model

for continuously moving objects, which represents the possible locations o f object by

probabil ity distribution functions. In PrDB [81]，they use graphical models, which is a

probabilistic modeling technique developed,within the statistics and machine learning

community, to model uncertain data. PrDB captures more complex models (correlat-

ed tuples and attributes) and allows compact representation (shared and schema-level

Chapter 2. Background and Related Work ^ 13

correlations). They show how query evaluation in PrDB translates into inference in

an appropriately augmented graphical model. The M C D B system [51] manages un-

certain data based on a Monte Carlo approach. I t represents uncertainty v ia " V G

funct ions", wh ich are used to pseudorandomly generate realized values for uncertain

attributes. By storing parameters, and not probabilit ies, and by estimating, rather than

exactly computing, the probabi l i ty distr ibution over possible query answers, M C D B

can easily handle arbitrary jo in t probabi l i ty distributions over discrete or continuous

attributes, arbitrari ly complex SQL queries, and arbitrary functionals of the query-

result distr ibution such as means，variances, and quantiles.

2.3. Join Query in Uncertain Database

Join queries in uncertain database have been studied in [24, 84，35, 4]. Cheng et

al. [24] first study probabil ist ic threshold j o i n queries. I n [24], the j o i n attributes have

uncertain values, which are represented as probabil i ty distr ibution functions (pdfs).

Two tuples are jo ined w i th a probabi l i ty wh ich is defined as the probabi l i ty that the
I

two pdfs choose the same value. They propose the concept o f a;-bounds, where x is a

constant probabi l i ty number between 0 and 1. The idea is to have a series o f x-bounds
for some data structure (e.g., each data page), for various x values between 0 and 1， * •

and then tries to prune the whole data structure during query processing to save costs.
%

Singh et al. [84] study the same prdbabil istic threshold j o i n query, but on categorical

data. They propose two index structures for eff iciently searching uncertain categorical

‘ da ta , one based on the R-tree and another based on an inverted index structure* Using % f w » ••
these structures, they f ind j o i n results efficiently.

f
Ge [35] study the semantics o f uncertain jo in , and formalize, two kinds of j o i n

I • ^
operations on uncertain datia, ifamely v- jo in and d- jo in, which are each useful for

» * ‘

different applications. They devise ei^c ient query processing algorithms for the two

j o i n operations using； probabi l i ty theory•‘ Specifically, for v - jo in operation, they use
V * *

probal?ility bounds that are based on the moments of random variables to either early

Chapter 2. Background and Related Work ^ 14

accept or early reject a candidate v- join result tuple. They also devise an indexing

mechanism and an algorithm called Two-End Zigzag Join to further save I /O costs.

For d-join operation, they first reduce the problem to a special forrn of similarity jo in

in a multidimensional space, and then design an efficient algorithm called condensed

d-join and an optimal condensation scheme based on dynamic programming. Agrawal

et al. [4] study the problem of f inding jo in results in an uncertain database. They

study how to get the “ top-k” results by confidence, or how to obtain results sorted by

confidence. They address the problem of processing all the queries when sufficient

memory is not available, minimizing retrieval cost. Although they consider the jo in

issues in a top-k query, they treat each probability attribute as an ordinary numeric

attribute, and rank the answers based on the aggregated probabilities. Above all, all

these jo in queries do not involve the possible worlds semantics and the top-k ranking

semantics discussed previously.

2.4. Probabilistic XML
« «

The topic of probabilistic XML (PXML) has been studied recently. Many models have

been proposed, together wi th the complexity analysis of query evaluations. Nierman

et al. [70] first introduce a simple probabilistic XML model, ProTDB, which is a prob-

abilistic tree database with probabilistic types, independent and mutually-exclusive.

Hung et al. [46, 47] model the probabilistic XML as directed acyclic,graphs, wi th

probabilities defined on sets of children, therefore supporting arbitrary distributions

over sets of children. Keulen et al. [90] use a probabilistic tree approach for data in-

tegration, where its probability and possibility nodes are similar to independent node

and mutually-exclusive node, respectively. Abiteboul et al. [2] propose a "fuzzy trees”

model, where nodes are associated with conjunctions of probabilistic event variables.

They also give a fu l l complexity analysis of query and update on the "fuzzy tree" in

[82].
Cohen et al. [25] incorporate a set of constraints to express more complex de-

Chapter 2. Background and Related Work ^ 31

pendencies among the probabilistic data. They also propose efficient algorithms to

solve the constraint-satisfaction, query evaluation, and sampling problem under a set

of constraints. In [55], Kimelfeld et al. summarize and extend the probabilistic XML

models previously proposed，the expressiveness and tractability of queries on differ-

ent models are discussed. They also study the problem of evaluating twig queries

over probabilistic XML that may return incomplete or partial answers with respect to

a probability threshold to users in [57]. L i et al. [62] study the problem of top-k key-

word search over probabilistic XML data, which is to retrieve k SLCA results with

the k highest probabilities of existence, and propose two efficient algorithms. A l l the

above work focus on the probabilistic XML models and XML queries. The ranking

issues, especially possible worlds semantics based ranking, are not addressed in these

works.

2.5. Top-k Queries in Deterministic Data

Top-k queries in deterministic data have been studied extensively. A detailed survey

can be found in [50]. In general, i t is to find the top-k answers with respect to a user

specified score function by joining and aggregating multiple inputs(or relations).

The top-k algorithms by Fagin et al. are the most influential [32’ 33]. They con-

sider both random access and/or sequential access of the lists of base scores, where

each list of a base score can be viewed as a separate relation. There are many work-

s considering the scenario that random access is not supported by the underlying

sources. The No Random Access (NRA) algorithm [33], the Stream-Combine al-

gorithm [39], and the L A R A - j algorithm [66] answer a top-k query by sequential

accesses on the lists of base scores. The J* algorithm [69], algorithms in [49], and

the family of PBRJ algorithms [80] retrieve the jo in answers with top-k scores，using

sequential access on the base relations. Marian et al. propose Upper and Pick algo-

rithm to answer top-k queries, when sequential access is provided and also controlled

random accesses is provided [67]. But, these work consider deterministic data, and

Chapter 2. Background and Related Work ^ 32

can not be directly applied to probabilistic data. In probabilistic ranking, each tuple

has both a score and a probability, the tuples are ranked based on the possible worlds

semantics.

CHAPTER 3

FAST C O M P U T I N G POS IT IONAL

P R O B A B I L I T Y AND TOP-K

P R O B A B I L I T Y

3.1. Introduction

The probabilistic top-k queries based on the interplay of score and probability, un-

der the possible worlds semantic, become an important research issue that considers

both score and uncertainty on the same basis. In the literature, many different proba-

bil istic top-A; queries are proposed. As discussed in Chapter. 2.1，most o f the ranking

semantics need to compute the positional probability, p i j ’ which is the probability of

a tuple ti to be ranked at the j-th position across the entire set of possible worlds. The

cost of computing p i j is the dominant cost and is known as where n is the

size o f dataset. In this chapter, we propose a new novel algorithm that computes such

probabil i ty efficiently based on conditional probabil ity and the system of linear equa-

tions. We prove the correctness o f our approach, and show that the time complexity

is 0(kn). Based on the formulation o f conditional probability, we prove a tight upper

bound of the top-k probabil i ty of tuples, which is then used to stop the top-k computa-

t ion earlier. We confirm the efficiency by comparing our approach wi th the up-to-date

heuristics and find that our approach can be at least 3，000 times faster.

The remainder o f this chapter is organized as fol lows. In Sec. 3.2, we review

17

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

the existing solution to compute the positional probability. We propose a new novel

algorithm and prove its correctness in Sec. 3.3. In Sec. 3.4，we propose an algorithm to

compute the top-k results based on the top-k probability. Finally, performance studies

are reported in Sec. 3.5.

3.2. Existing Solution

We discuss p i j computing for a given k and an x-Relation X = {亡1，…,in} sort-

ed in the descending score order. For simplicity and without loss of generality, in

the fo l lowing discussions, we further assume there are no tie scores in X such that

score{ti) + score{tj) for any U • tj in Af. Note that all algorithms including our

algorithm to be discussed can deal w i th tie scores wi th minor modification for com-

p u t i n g p i j .

Y i et al. [93] showed that the t ime complexity of computing p i j for all U ^ X

and J = 1, • • • , k is 0{kn'^). We introduce it in brief below.

Given an x-Relation X = { t i , • • • , i n } sorted in the decreasing score order. Let

X i — {ti, • ‘ • ,ti} denote a reduced x-Relation on the largest i tuples (based on score),

together wi th the projected (exclusive/independent) relationship between tuples. I t is

obvious that p i j is the same to be computed either on A" or X i , under the rr-Relation

model. Formally, let Pr(T|A:'i) be the existence probability of an x-tuple r wi th respect

to X i as fol lows.

Pr(T|Ar,) = ^ Pit) (3.1)
teT,teXi

Then，Pr(r) = Pt{t\X),

We highlight the main idea of computing p i j in 0 { k n ^) [93] below. First, con-

sider a special case, where every x-tuple contains only one tuple (single-alternative),

or equivalently, all the tuples are independent. Then, pi, j is equal to the probability

that a randomly generated possible wor ld f rom X i contains U and there are j tuples

in total. In other words, p i j is the sum of the probabilities of the possible worlds that

contain U and there are exactly j — I tuples taken f rom the set — { i i , • • • , U-i}.

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

n { t i (0 . 3) " 4 (0 . 4) }

T2 02(0.5), ^8(0.2)}

{亡 3 (0 . 5) " 6 (0 . 5) }

丁 4

Table 3.1: Multi-alternative x-Relation

Let r i j denote the probability that a randomly generated possible world from 不 has

exactly j tuples, then P i j = p{ti) . For the totally independent case, the set

o f all n J values can be computed efficiently by the fol lowing dynamic programming

equation, in time complexity 0(kn).

t j

v{U) • n-i.i-1 + (1 - piti)) • ri_i,

(1 - P ⑷） T i 一 1’力

0，

if 2 > J > 0

if i > J = 0

if 2 = J = 0

otherwise.

(3.2)

Second, consider the case where some x-tuples may contain multiple tuples (multi-

alternative). The noticeable difference is that pi、j • p{ t i) • r i _ i j _ i in the multi-

altemative case’ because an x-tuple contains multiple-alternatives that are mutually

exclusive. When it needs to compute p i j for a tuple t i ’ the a>tuple that contains U
*

may have other alternatives been computed already. It needs to remember whether an

alternative of an rr-tuple has already been computed in X i ^ i using a set denoted S. Let

S = { t i , … , T g } be the set of a;-tuples, that have at least one alternative computed in

A U i already, wi th probability Pr(rz|A' i_i) for 1 < Z < s (Refer to Eq. (3.1)). When
4

t i appears and the x-tuple r® that contains U has already appeared in S, i t computes

Pi,j as pij = p{ti) • r^ j . i . Here, rj for 1 < z < s and 1 < j < A:, need to be

recomputed based on S = { t i ’ . . . , Ts} with Pr(ra:|A^i_i) = 0 using Eq. (3.2), and

takes 0 (s . k) time. In the worst case, i t takes 0{i • k) to compute pij for a specific i.

The time complexity to compute pij values, for I < i < n and I < j < k/is 0{kn^).
Example 1: Consider an a;-Relation, X , in Table 3.1 with four x-tuples, {ri,r2,7*3，T4}

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

and 8 tuples { t i ’ • . . , ta}- Each x-tuple contains two tuples (alternatives). We assume

score{ti) > score{tj) if i < j，and give the probability of each tuple U, p{ti), in the

corresponding parentheses. For example, t i has two tuples ti and 亡4 where p(ti) = 0.3

and = 0.4. Let k = 2. We show how to compute Pij for all tuples ti，for

1 < i < Sand j = 1,2.

Let all 8 tuples in X be sorted in the decreasing score order, and let S be the set

of x-tuples that have multi-alternatives in ^ i - i . Initially, ； tb == 0, «S = 0.

First, consider t i which is the tuple that has the largest score, and «S = 0 implies

that t i has no preceding alternatives. Because r f)。= 1 and r 。 = 0, thus =

= 0.3 and pi,2 =P(“）.rf)’i = 0. = { t i } . Based on Eq. (3.1)，the current

existence probability of t i in is Pr (r i |A ' i) = = 0.3. S is updated to be 5 =

{ t i } , because the x-tuple t i contains t i that has been computed. For simplicity, we

use S = {7*1(0.3)} to indicate that S contains r i whose current existence probability

is 0.3.

Second, consider the second largest score tuple which has no preceding

alternatives computed, because the x-tuple T2 that contains t i does not appear in

S = { r i (0 .3) } . Because r ; ’。= 0.7 and r i , i = 0.3’ thus P2.1 = P(i2) . = 0.35 and

P2’2 = 0.15. X2 = {^1,^2}- Based on Eq. (3.1)，the current existence probability of T2

in X2 is Pr(T2|A:̂ 2) = = 0.5. S = (0.3), 7*2(0.5)}.

In a similar fashion, the third largest score tuple 亡3 is computed which has no pre-

ceding alternatives in S, Because r'2’o = 0.35 and r'2,1 = 0.5, thus p3,i = 0.5 • 0.35 =

0.175 and p3,2 = 0.25. = {亡1，右2’ 亡3}. Based on Eq. (3.1), the current existence

probability of ra in ATg is Pr(T3|;k^3) = p f e) = 0.5. S = {7"i(0.3), T 2 (0 . 5) , T3(0.5)}.

Fourth, consider the fourth largest score tuple ^4. Note that the current S =

{t"i(0.3), 7*2(0.5)’ T3(0.5)}. But because tuple has a preceding alternative ti in x-

tuple Ti which appears in S already, the existence probability of Pr(ri|A:3) = 0 is

reset. Therefore, S is updated to be 5 = { t i (0) , T2(0.5), T 3 (0 . 5) } . In order to compute

rJo and r ^ ” all the r [j values, f o r i = 1,2 and j — 0, l,、need to be recomputed as well

based on the updated S. Because r[0 二 1,『i 1 二 〇，『i 0 二 0-5, r j i = 0.5’ r^o = 0.25，

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

and Tg 1 = 0.5, thus = pit4)'r'^ Q = 0.1 andp4，2 = 0.2. X4, = {ti,t2, ^4}. Based

on Eq. (3.1), the current existence probability of TI in is Pr(ri|A:^4) = p (t i) +

p{t4) = 0.3 + 0.4 = 0.7. Therefore, S = {7"i(0.7),T2(0.5)，7"3(0.5)}，which w i l l be

used in the next iteration. 、

The same procedure repeats until all p、j for a lHj € A:' and j = 1,2 are computed.

•

Note that, between consecutive computations of P i j and P i+ i j , some r'̂ j com-

puting cost can be shared [45, 93]. Hua et al. [45] also studied several heuristics to

fast compute p i j but in the worst case it is ‘

3.3. A New Novel Algorithm

In this section, we propose a novel 0{kn) algorithm using a newly introduced condi-

tional probability Cij given below,

Ci，j = Pr(Exactly j tuples appear in {^ i , • • • ,ti} | i^+i appears) (3.3)

to fast compute p i j . Consider a general multi-altemative case. Let X i = { ^ i，… , U }

be the set computed already. Now, we consider 亡⑷，a s s u m e i i + i appears. Among the

tuples computed already in there may exist several tuples in X i that are contained

in the same rr-tuple that contains U+i. Those tuples need to be removed in order to

compute for t i+ i , as we discussed in the previous section by setting the existence

probability to be zero. Eq. (3.3) is the conditional probability of having exactly j

tuples in X i = { t i ^ - " ,力 ‘ } after removing those tuples in X i that are contained in the *
same x-tuple that contains tj+i，given U+i appears. I t is interesting to note that

OL

Pij — Pr(力i appears). Pr(Exactly j-1 tuples appear in {^ i , • • • ，U-i} | U appears)

= p (t i) . C i - i j - i (3.4)

And the problem becomes how to compute Cij efficiently. Note that there is no obvi-

ous relationship between Cij and C j - i j (refer to Eq. (3.2)). However, we observe that

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

there is a similar relationship between a j and Vi j . Let r̂ ： be the x-tuple that contains

t i+ i . Then, the relationship between Cij and r i j becomes as follows.

(1 — Pr(T:̂ |A：；)) . Q•力 i f i = 0;
= 、

(1 一 . Ci,j + . \fj > 0;
(3.5)

Lemma 3.3.1: Eq. (3.5) correctly computes r i j , given Cij. •

Proof Sketch: Assume that Cij forO < j < A;—1 are correct as defined, the probability

that a randomly generated possible world has exactly j tuples from Xi is conditioned

by the appearance of U+i. Let r̂ ； be the rc-tuple that has U+i, and p denote

There are two cases.

First, t i ^ i has no preceding alternative, equivalently p = 0. Then the two parts

in the conditional probability Cij are independent, Cij = Pr(Exactly j tuples appear

in {<1，. • • ’ t i }) ’ where the latter part of the equation is actually r i j . Hence, Eq. (3.5)

correctly computes ri、j’ given that Cij are correct.

Second, t^+i has some preceding alternatives, equivalently p > 0. Assume that

S — {7*1，•• • , TsjTx} is the set of x-tuples that have alternatives appearing in Xi —

{ti, • • • , ii}, where Pr(r/|A^i) > 0 for all ti e S. Then is the probability that

a randomly generated possible world f rom { t i , …， r ^} (== S \ {ra；}) has exactly j

:fc-tuples、and Vi j is the probability that a randomly generated possible world from

{ t i , • • • ,Ta,Ta；} has exactly j x-tuples. Hence, Eq. (3.5) is correct based on the same

idea shown in Eq. (3.2). •

Given Cij we can compute r i j using Eq. (3.5). The reverse also holds such that,

given T i j j we can compute Cij correctly by the system of linear equations defined

in Eq. (3.5). A general system of linear equations with n equations and n variables

needs time O(n^). But the system of linear equations defined by Eq. (3.5) is in a
r

Special form, there are only two diagonals of the coefficient matrix which are non-

zero, so it can be solved in 0{n) time [58]. In our problem，there are k linear equations

with k variables, it can be solved in time 0(/c), using Ci,o = — p) and Cij —

(j\j 一 p • Cij_i)/(1 - p) where p = Pr(Ta:|;k；), for I < j < k — 1. Note that

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

0 < PT{rx\Xi) < 1. In addition, given Cij，n+i,】 can also be computed using Eq. (3.5),

by replacing with where r^ is the x-tuple that contains t i+ i .

Algor i thm 1 CondProb(«S, U j - i . t j)

Input: the probability for rE-tuples S = {Ti(Pr(ri)),...，rg(Pr(r3))}

Output:
凡-1 = {ri-1,0,...，ri-i^k-i} and a tuple U.

ri,j-i and jhj , for I < j < k.

1: Let Tx be the a;-tuple that has U;

2: p i— Pr(T"a；) if 7"i(Pr(Ti)) appears in «S otherwise 0;

II compute Ci_ij and j)i、j for 0 < j < fc — 1

3: a-if l <r- ri-i’o/(l - p)\

4: for j 1 to k - I do

5： Ci-ij — (r i_ i j - p . CX_ij_i)/(1 - p)；

6: end for

7: pij <r- p{ti) • C i - i j - i , for 1 < j < k;

U compute Vij for 0 < j < k — I

8: p^ p-\-p(ti)\

\0 — (1 一 P) . Ci_i,o；

for 7 4 - 1 to A; do

r i j (1-p)' Ci-ij + p . Ci-ij-i；

end for

if To： then

else

update S by changing Pr(Ta；) to be p;

end i f

return (5, {ri,o,. •.，n .^- i } . {pi.i, • . . ,Pt,A：})；

The algorithm to compute r ^ j and p i j values for a tuple t i is shown in A l -
AH

gorithm 1. It takes three inputs, namely, the tuple t i , the r ^ - i j values, and a

set of x-tuples, 5 = { t i , . . . ’了忍}，that have been computed with their probability

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

Pr(Ti) = I t first computes p (l ine 1-2). Then, it computes the Ci_ij val-

ues by solving a system of l inear equations defined by Eq. (3.5) (l ine 3-5), and com-

putes the p i j values (l ine 6). I n l ine 7-10，it computes the V i j values using Eq. (3.5).

Final ly, i t updates the probabil i ty Pr(ra：) (l ine 11-14). Note that, in our algorithm, the

only values needed to compute p i j values are r i _ i j values and Pr(Ta；丨 A^i一i).

Theorem 3.3.1: Algorithm 1 correctly computes the Pij values with time complexity

ofO{k). •

Proo f Sketch: I t is obvious f rom the discussions above. •

I n order to compute all p ^ j , we enumerate al l U G which is sorted in the

descending score order, such as s c o r e ⑷ > score{tj) if i < j as given below.

A l g o r i t h m 2 PositionalProbabilitiesQ

2

Let 5 = 0;

Let IZo = {ro.o, ^>,1，…，ro./s-i} where t-qj, for 0 < j < /c - 1, are computed;

f o r i = 1 to n do

(<S, TZi, V i) 一 CondProb(<S, 7^ i_ l , t i) \

output Vi = {pi , l ,pi ,2, • • . ’ Pi,fc};

end f o r

I t is obvious that the t ime complexity to compute all pi、j is 0{kn).

Fig. 3.1(a) illustrates the existing 0{kn^) approach to compute r ^ j in the stage i

based on the stage i-1. Note that the stage i is the z-iteration to compute for the z-th

largest score tuple in X i . On the left side in the stage i - 1 and the stage i、it indicates

that some rc-tuple (marked by •) contains several tuples (alternatives). On the other

hand. Fig. 3.1(b) illustrates our 0(kn) approach to compute u j , using Ci j , i n the

stage i based on the stage i-1. The shaded parts in Fig. 3.1(a)(b) indicate the equations

needed to compute, and the difference between the two shaded regions confirms the

significant cost saving o f our approach.

Examp le 2: Consider the example x-Relat ion in Table 3.1. We show the steps o f our

algori thm to compute pij. Let k = 2. We denote the sequence o f rc-tuples that have

(b) Our New O(fcn) Approach

Figure 3.1: Computational Cost

been scanned as S. Initially, Â o = 0* = 0, ro,o = 1 and 7*0,1 = 0.

First, consider t i which is the largest score tuple. I t has no preceding alternatives,

P r (T I) = 0’ co.o = 1 and co.i = 0. Then, p i , i = . co,o = 0.3 and pi,2 = 0. After

computing 亡 1, — { t i } , S = { r i (0 . 3) } , and we have 7*1,0 = (1 — P r (r i)) • co,o = 0.7

and ri,i = (1 - P r (n)) . cq.i + P r (r i) • Co.o = 0.3.

The second largest score tuple £2 has no preceding alternatives, Pr(7"2) = 0’

Ci,o = n.o = 0.7 and ci , i = 0.3. Then, P2.1 = ？ ⑷ . c i , o = 0.35 and p2,2 = 0.15.

After computing ±2、X2 — { t i , t2 }» S = { r i (0 .3) , r2(0.5)}, and in addition we have

r2,o = 0.35 and 7*2,1 = 0.5.

The third largest score tuple has no preceding alternatives Pr(T3) = 0, C2,o =

0.35 and C2’i = 0.5. T h e n ， = • C2,o = 0.175 and ^3,2 = 0.25. After

stage 丨-1 stag*

(a) The Existing Oikn^) Approach

(t i S C i i i j J -

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

^
O
T
O
U

 l
e
u
o
n
d
E
O
O

tai

〇

〇

}
S
8
 l
e
u
o
l
^
e
^
l
d
E
S

〇

f

…

〇

q
d
f
i
^
x

…

〇

f

0
…

4
,

—̂J—

a
l
d
n
^
-
x

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

computing ts, A：̂ = {t i ’ 亡 2 ’ 亡 3 } ’ S = {Ti(0.3),T2(0.5)，T3(0.5)}，and in addition we

have 7"3,o = 0.175 and『3,1 = 0.425.

The fourth largest score tuple has a preceding alternative that is contained in

x-tuple Ti which appears in S. Therefore, p — Pr(Ti|A:""3) = 0.3，ca,。=『3,0/(1 — p) =

0.25’ C3’1 = (7̂ 3,1 — P.C3,0) / (1-P) = 0.5’P4’i = p (t 4) . C 3 , o = 0.1 and^4,2 = 0.2. Af ter

computing t“ = {ti,亡2» 亡3，亡4}, ^ = { r i (0 . 7) , r2(0.5), T3(0.5)}, and in addition we

have『4,0 = 0.075 and t ^ i = 0.325.

The same procedure repeats unt i l all p i j for all U E： X and j = 1, 2 are computed.

•

3.4. Top-k Computation

Algor i thm 1 returns the set o f p t j , which can be used to compute the top-/c probabil i ty

o f a tuple, e.g. tkp{ti) = A naive way to get the top-k result is to first

compute the top-Zc probabilit ies for al l tuples, then report the top-k tuples w i th respect

to their top-fc probabilit ies. In the fo l lowing; we w i l l f irst discuss an upper bound, and

then propose an early stop condition，which avoids to retrieve al l the tuples.

L e m m a 3.4.1: Let {ii，• • • .Uy" •} be the order we scan the tuples, or equivalently it

is the decreasing score order, and Tij is defined as above. Then tkp{ti^i) < 『i^，

for all 2 > 1. This upper bound is also tight for an arbitrary sequence of tuples. •

Proof Sketch: Let Tx be the x-tuple that have t i + i , and p = Pr(Tx|A'i). Note that p

may be zero, or equivalently U+i has no preceding alternative. By Eq. (3.5), sum up

the njX E i l o = E i ^ o - V • 一 1. We have

tkp{ti+i) = J2j=iPi+iJ

= P I U + I) • J Z J Z L CIJ

< (i - p) - E - r o ^ j
/

E f c — 1 „ ^ ^
i=0 - P • Ci j

< Z) t o — p • = I D t o ri、j

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

f

where the third inequality holds because PT{Tx\'^i) 4- p i U ^ i) < 1, as t i + i is an alter-

native of x-tuple So t kp { t i + i) < T i j . When p { t i + i) = 1，Vi(Tj\Xi) = 0, the
I »

above inequalities hold w i th equality, and therefore t k p (t i ^ i) = Y2j=i 〜 . H e n c e this

upper bound is tight. •

L e m m a 3.4.2: YljZo are in decreasing order, i.e., r i j > YljZo for

any i > \ . •

Proof Sketch: There are two cases, U+i has preceding alternatives or not.

First, i f t i + i does not have preceding alternatives, then r i+ i ,) can be computed

by Eq. (3.2). Summing up we have XI》二 r ^ + i j = J^jZq T i j - p“i+i)ri，fc—i <

r i j . Second, i f t i + i has preceding alternatives, assuming U ^ i is in the x-tuple r^,

then Pr(Ta.|A^) > 0. Assume that { n , •..，t̂ ：, . . •，Ts} is the set of x-tuples that have

alternatives in {ii，. • . , ti}, wi th probability Pr (r |A^) . Then { t i , • • • , r^, • • • , r^} is

also the set o f x-tuples that have alternatives in { t i , . •，• , ^ i+ i } , and their proba-

bi l i ty is Pr(T|;V"i+i), w i th Pr(7"|Afi+i) = Pr(T|A；) for all x-tuple r except T^, which

has Pr(ra:|Af»+i) > P i {Tx \ ^ i) . ' L^ t r•丨)be the probabil ity that a random generated

possible wor ld f rop i { n , . . . , r̂；, • • •，rs}/ra：, wi th probabilities Pr(T|A^i)，has exactly

j x-tuples. The relationship between Vij and r、)’ or between Vi^ij and r ^ j , is the

same as Eq. (3.2) or Eq. (3.5). Then J2jZo T i j = Yl jZo 一 . r、k- i ,

and E - ^ o = - P r (T x l ^ i ^ i) • 一 i . So E•；o n+i.,- < E , t o as

Pr (T , |A ;+ i) > Pv{T:,\Xi). •

Theorem 3.4.2: If all the top-k pro4mbilities of the current top-k result, e.g. from
%

the set { t i , • • •，ti}, are greater than or equal to Yl^Zo then we can stop, and

guarantee that any potential results in {ti+i, •. • , tn} can not be in the top-k result.
I V

•

With Theorem 3.4.2，we can develop an algorithm to compute the top-/c tuples

wi th respect to their top-/c probabilities, which is shown in A lgor i thm 3. It initializes

in l ine 1-5, and up Bound denotes the upper bound of the top-Zc probabilities of the

remaining tuples (l ine 5). Whi le the stop condition is not satisfied 〜6)，it retrieves

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

A l g o r i t h m 3 Top-k (k)

I n p u t : an integer k, specify the top-k value.

O u t p u t : top-/c tuples.

1: Let { t i ,…，T-m} be the set of all the x-tuples;

2: Initialize Pr(Ti) ^ 0, for 1 < z < m ;

3: top-k 0;

4: Initialize ro = 1 and r^ = 0 for 1 < j < fc — 1;

5: upBound 卜 YljZo ^y’

6: while top-klk].tkp < up Bound do

7: t <r- Next{)\

8: Tj.pj CondProh{{Fi{Ti),…，Pr(T爪)}，{ro,…，rfc_i}, t)\

9: tkp{t) Ei=iPi；

Insert t into top-k'、

upBound -(— Tj；

end while

return top-k;

10

11

12

13

the next largest score tuple (l ine 7), computes its iop-k probabil ity, inserts i t into the

top-A; set (l ine 8-10)，and update the upper bound (l ine 11). The top-A: set is maintained

as a min-heap w i th size o f /c, top-k[k].tkp (l ine 6) is the m in imum top-k probabi l i ty

in the min-heap. When inserting a new tuple associate wi th its top-k probabi l i ty into

min-heap, i f its top-k probabi l i ty is smaller than that at the top o f the min-heap, we do

not need to insert it. Otherwise, we replace the top tuple o f the min-heap w i th the new

tuple and update the heap structure.

T h e o r e m 3.4.3: Algorithm 3 correctly returns the top-k tuples with highest top-k

probabilities. The top-k generator takes time 0{l • {k + log{k)), where I is scan depth,

or equivalently the number of calls Next{). •

Proo f Sketch: The correctness directly fo l lows f rom the above discussions.

The t ime complexity o f 0{l'{k-\-log{k)) does not take NextQ into consideration.

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

The init ial of line 1-5 takes constant time. Each call of CondProbQ (Algorithm 1) takes

0{k) time, based on Theorem 3.3.1. Line 9, 11 take time 0{k). Line 10 takes time

0{log{k)), due to the min-heap of size k. Line 6-11 are only executed I times, so the

total time complexity is 0{l . {k + log{k)). •

3.5. Performance Studies

We have implemented our algorithm in Visual C++. We compare our CondProb algo-

rithm, denoted CP，for computing p i j , with the heuristics proposed in [45] which are

RC (rule-tuple compression only)’ RC+AR (RC with aggressive reordering), and R-

C+LR (RC with lazy reordering). The heuristics proposed can improve the efficiency

but they are algorithms in 0(A:n^), where n is the number of tuples and k is the top-A:

value. The executable code and data generator used in [45] are downloadable、We

use exactly the same synthetic dataset as used in [45], which is also included in the

package.

Parameter Range Default

TTiem-p 0.1,0.3,0.5,0.7,0.9 0.5

P 0.1,0.3, 0.5, 0.7； 0.9 0.3

k 200, .400, 600, 800, 1000 200

\rule\ 5’ 10’ 15’ 20’ 25 10

#tuj)le 20000, 40000, 60000, 80000, 100000 20000

#rule 500, 1000, 1500, 2000，2500 2000

Table 3.2: Parameters and Default Values

The parameters and default values are shown in Tab. 3.2. Here, mem-p is the

expectation of the membership probability of tuples, p is the threshold specifying the

minimum top-/c probability of the result tuples returned, k is the top-A: value, \rule\ is

the average number of tuples in a rule (x-tuple),勢 tuple is the total number of tuples.

' h t tp : / /www s fu j p e i / S o f t w a r e / P T K L i b . r a r

http://www

grrrr:© o …-二…o o

cp cp • p —S
500 1000 1500 2000 250

(f) Vary #rule

S
8

IK

0.2 0.3 0-<4 0.5 0.6 O.
(d) Vary p

5 1 0 1 5

(b) Vary \rule\

2 5

100K

S
8

IK

1 K

0 . 1 0 . 3 0 . 5 O .

(a) Vary mem-p

S
S

100K
1 K

10
0.1

(c) Vary k

(e) Vary if tuple

RC -ft-

o-

1
H

a -s & -El

Figure 3.2: Computing p i j

and #rule is the total number o f rules (x-tuples).

The experimental results are shown in Fig. 3.2. In all figures, the shape of the

curves for all the four algorithms are al l similar, our CP algorithm is 3, 000 times faster

than RC+LR on average, and 30，000 times faster than RC on average.

Chapter 3. Fast Computing Positional Probability and Top-k Probability IS

K
O

O-&
C
R
R
P

R
A
^
C

„

^ —O-

-

e—

C
R
R
P

R
A
^
C

S
S
 I
F

^
R

i
 O-

•Q"

C
R
R
P

R
J
V
C

5
c

R
R

C
R
R
P

R
J
V
C

c
c
 涂

0

I
P

I

i

j

！
4

I

I

-
1

•
S
S
T

1
1

CHAPTER 4

PROBAB IL IST IC R A N K I N G OVER

RELAT IONS

4.1. Introduction

Probabilistic top-k ranking queries have been extensively studied due to the fact that

data obtained can be uncertain in many real applications as discussed in Chapter. 2.1.

A probabilistic top-k ranking query ranks objects by the interplay of score and proba-

bi l i ty, w i th an impl ic i t assumption that both scores based on which objects are ranked

and probabilities o f the existence of the objects are stored in the same relation. Howev-

er, we observe that, in general, scores and probabilities are highly possible to be stored

in different relations, e.g. in column-store database [1, 48，7], data integration [76],

and data warehouse [16].

I n a column-store database, unlike the tuple-based approach taken in convention-

al relational DBMSs, information is stored in column relations. For example, one

column relation stores object identifier and object scores, and another column relation

stores object identifier and object existence probability. I t is reported that column-

oriented DBMSs can perform much better than conventional relational DBMSs in

many real applications such as business intelligence applications [1]. Column stor-

age has been successfully used for many years in O L A P (Online Analyt ical Process-

ing) [88], and is also adapted to perform OLTP (Online Transactional Processing)

31

Chapter 4. Probabilistic Rankipg over Relations 48

recently『73]. As another example, in a data warehouse, data are stored in a fact table

and a collection of dimension tables using a star schema. The object identifiers and

the probability o f the existence of the objects may be stored in the fact table or a di-

mensional table, whereas the scores based on which users want to rank objects may be

stored in another dimension table. In such an environment, it needs to jo in different

relations into one relation to have both score and probabil ity together, and to apply one

of the existing approaches to probabilistically rank the objects, which can be costly.

Consider a data warehouse that stores textual information，e.g. reviews, shape,

price, weight, about products extracted f rom online shops and forums. The fact table

stores the probabil ity of each fact (e.g. review) to be true, and the shape, price and

weight information w i l l be stored in other dimensional tables. In order to analyze

such kinds of uncertain information, users may want to rank the facts based on a

user-specified score function by combining shape, price, weight, and text information.

These scoring attributes and the probability attribute are stored in different tables. Also

the users may want to specify selection constraints on the facts that should be ranked,

e.g. specify the areas where the products are sold, the countries where the products

are made，the time interval the facts are extracted. Users are interested in different

portions of the whole data, and also in different ranking criteria. In such cases, it is

dif f icult to materialize data for all possible queries.

In this chapter, we study top-k probabilistic ranking queries wi th joins when

scores and probabilities are stored in different relations. To the best of our knowledge,

this is the first work in probabilistic ranking under possible worlds semantic that take

j o in issues into consideration. Our work is different f rom the existing work on rank

joins which deal w i th deterministic data [50, 80]. The main difference is that, for

deterministic data, the score of an object can be computed by itself, whereas, for

probabilistic data，the probabilistic score of an object cannot be computed by itself,

and needs to be computed based on scores and probabilities o f other objects.

The main contributions of this chapter are summarized below. We study top-

ic probabilistic ranking queries when scores and probabilities are stored in differen-

Chapter 4. Probabilistic Rankipg over Relations 33

OID score prob

o\ 100 0.3

02 95 0.15

03 90 0.4

04 85 0.1

OB 80 0.45

06 75 0.2

07 70 0.2

Table 4.1: An Example Relation (SP)

t relations, and focus on reducing the jo in cost in probabilistic top-k ranking. We

investigate two probabilistic score functions, namely, expected rank value [28] and

probability of highest ranking [12]. We give upper/lower bounds of such probabilis-

tic score functions in random access and sequential access, and discuss the advan-

tages/disadvantages of random and sequential accesses. We propose new I/O efficient

algorithms to find top-k objects with probabilistic ranking functions, using random

access, sequential access, and the combination of random and sequential access by

taking the advantages f rom both random/sequential access. We conduct extensive per-

formance studies, and confirm the effectiveness of our approaches.

The remainder is organized as follows. Section 4.2 gives out our problem state-

ment. In Section 4.3, we discuss bounding schema for two top-k probabilistic ranking

queries. In Section 4.4, we propose algorithms to find the top-k answers wi th respect

to the probabilistic ranking function, with random and/or sequential accesses. Exper-

imental studies are reported in Section 4.5.

4.2. Problem Statement

In uncertain data, each tuple Oi contains both a score {score{oi)) and a probabili-

ty (p(oi)), which play different roles in probabilistic ranking. The score{oi) is used

Chapter 4. Probabilistic Rankipg over Relations 34

rank tuple R E

1 03 1.02

2 01 1.05

3 05 1.17

4 02 1.4475

5 06 1.56

6 07 1.6

7 04 1.615

rank tuple P H R

1 01 0.3

2 03 0.238

3 05 0.144585

4 02 0.105

5 04 0.0375

6 06 0,035343

7 07 0.0282744

(a) Rank with RE (b) Rank with PHR

Table 4.2: Two Rankings

to define the relative rank of tuples in a possible instance, whereas p{oi) is used to

measure the probabil ity in all possible instances. In the fol lowing, we discuss proba-

bil istic ranking based on a probabilistic score function that combines both score{oi)

andp(ot) , denoted as pscore(oi). Both RE (Equ. (2.2)) and PHR (Equ. (2.3)) are such

probabilistic score functions.

Based on the probabilistic score function RE, a Top-k Expected Rank Value (Top-

kERV) query returns top-k tuples with lowest RE values. Based on the probabilistic

score function PHR, a Top-k Probable Highest Ranking (Top-kPHR) query returns

top-k tuples wi th highest PHR values.

Table 4.1 shows a relation wi th 7 tuples {01,02, • •. ’ 07}. A tuple Oi is associated

wi th a score iscore{oi)) and a probability (p(oi)). For example, tuple 03 has a score

value, scor6(03) = 90，and a probability p(03) = 0.4. Assume an x-Relation X has

7 x-tuples {TI ,T2，…,Ty}, and each x-tuple has only one alternative tuple Oi in

Table 4.1. The ranking based on RE and PHR are shown in Table 4.2.

A l l the existing work assume that there is an x-Relation X which contains both

score and probability. However, in real applications, the scores and the probabilities

may be stored in different relations. As an example, the same information stored in

relation S P (Table 4.1) may be stored in two separated relations, S and P、as shown

Chapter 4. Probabilistic Rankipg over Relations 35

OID score

oi 100

02 95

03 90

04 85

05 80

06 75

07 70

OID prob

05 0.45

03 0.4

01 0.3

06 0.2

07 0.2

02 0.15

OA 0.1

(a) Relation S (b) Relation P

Table 4.3: Two Relations (5 and P)

in Table 4.3 where 5 P = 5 M P.

A naive approach to compute a probabilistic ranking query, when score and prob-

ability are not stored in the same relation, is to jo in the relations followed by applying

an existing approach to compute the probabilistic ranking query in the relation. But

this naive approach wi l l incur both high computational cost and I/O cost, because it

needs to jo in the whole relations.

Problem Statement: In this chapter, we study how to compute a probabilistic rank-

ing query (Top-kERV or Top-kPHR) by reducing the total I/O cost, when score and

probability are not stored in the same relation. We aim at computing the top-k tuples

by accessing tuples as least as possible.

In the following, we discuss our approaches using the two relations, S and P,

as shown in Table 4.3. We consider two access methods, namely, random access and

sequential access.

• For the random access，it assumes that the relation S is sorted in descending

order based on the scores. It sequentially accesses the tuples in relation S one-

by-one. When it accesses a tuple Oi in relation 5 in an iteration, it obtains

the score value (score (。《)）from the same tuple in relation S、and obtains the

probability of the tuple o ,̂ p(Oi), in relation P using a SQL selection with the

Chapter 4. Probabilistic Rankipg over Relations 52

same O ID o “ which results in a random access of relation P.

• For the sequential access, it assumes that both relation S and relation P are

sorted in descending order based on the scores and probabilities, respectively.

I t sequentially accesses the tuples in relation S and relation P fo l lowing the

descending order of score and probability, respectively. In every iteration, it

accesses an additional tuple f rom relation S and an additional tuple f rom relation

P , respectively. For example, as shown in Table 4.3，in the first iteration, it

accesses the tuple identif ied by OI f rom S and the tuple identified by 05 f rom

P ; in the second iteration, i t accesses the tuple identified by 02 f rom S and the

tuple identified by 03 f rom P.

In summary, we consider that the relation S is accessed sequentially in descend-

ing score order, which is the access method used in all the existing algorithms when

both scores and probabilities are stored in the same relation [86，93，45，28]. The two

access methods, namely random/sequential accesses, are about how to access relation

P.

The key issue is how many tuples it needs to access in order to compute Top-

kERV/Top-kPHR using random access and sequential access. We show that we do

not need to compute the exact pscore values (R E values and PHR values) wi th the

assistance of upper bounds and lower bounds for pscore values. We can compute

Top-kERV/Top-kPHR by its relative orders.

4.3. Bounding Ranking Functions

A probabilistic ranking query ranks a tuple, €>“ wi th a score function pscore(oi). I t

is worth noting that the probabilistic score function pscore(o^) is completely different

f rom those score functions that can be evaluated by the tuple in question and is inde-

pendent from other tuples. In other words, the probabilistic score function pscore(oi)

needs to be evaluated depending on the score{oi) and p(Oi) for the tuple Oi itself

as well as score(oj) and p{oj) for the other tuples Oj. I t becomes very important to

Chapter 4. Probabilistic Rankipg over Relations 37

identi fy characteristics of the probabilistic score function pscore，especially the mono-

tonicity, upper bounds, and lower bounds.

hx this section, first, for simplicity, we focus on independent case such that in

an x-Relation X , every rc-tuple has only one tuple (alternative). Then we w i l l discuss

mutual ly exclusive case. We assume that all the scores are of different values, it is

straightforward to extend to tie scores. We use the notation in a way that the tuples,

o i , • • • , are in descending score order such that score{oi) > score(oj) i f i < j .

4.3.1. Ranking Function RE

Assume the tuples o i，…,On are in descending score order, and they are totally in-

dependent. The expected size o f possible instances is 丑[丨/|] = ^ p (o j) for all Oj in

relation P, and the probabilistic score function R s i p i) can be simpli f ied as fol lows.

RE{oi) = Pr(/) • ranki{oi)

lEpwd{X) .
=Y1 PrOO . rankj(oi) + P r (/) • |/|

OiEl Oi^I

P(oi) • ̂ p(oj) + (1 - p(oi)) • J 2 p (o j)

i - 1
P(Oi) • ̂ p(Oj) + (1 - p(Oi)) . - p(Oi))

(4.1)

i=i
1-1

= 丑 [m i - P(oi) • {E[\I\] - ^p(oj) - p(oi) + 1)
j=l

The details and correctness o f Eq. (4.1) are given in [28]. Eq. (4.1) suggests that we

cannot simply compute R s i p i) even i f we have already known its score{oi) and p{oi) ,

because i t requests us to know p(oj) for those tuples that score(oj) > score{oi). In

order to find the top-k tuples without accessing al l tuples, we need to bound the RE

value for each seen or unseen tuple. Before discussing bounds, we first prove the

monotonicity o f RE below.

L e m m a 4.3.1: The RE function, on which the Top-kERV query is based, is a monotone

function, i.e. for any two tuples Oi and Oj, if score{oi) > score(Oj) andP(OI) > p(OJ),

then RE{oi) < RE{oj) and Oi ranks higher than Oj. •

Chapter 4. Probabilistic Rankipg over Relations 38

Proof Sketch: We simplify p{oi) as pi in the fol lowing proof. Consider RE⑷—

R s i o j) . We have

REM 一 RE(Oj)

= P i + (1 一 — Pi) - Pj Pj)(丑[|/Il - Pj)
1 = 1 1 = 1

1 - 1 j-l
=(Pi - Pj) Y^Pl-巧 - 丑 - Pj) + (Pi - Pj)(Pi + Pj - 1)

i j — l
=(Pi 一 —丑丨丨 1丨]+ PJ - 1) - PjJ^Pi

1=1 l=i
< 0

where the last inequality holds because Pi ^ £"[1/1] and pi > p j . Therefore,

Rs io i) < R s i o j) and Oi ranks higher than Oj. •

We can bound B>E(Oi)，under the random access and sequential access of relation

P respectively, where relation S is accessed sequentially in descending score order.

We denote the upper and lower bounds as R ^ and 滩 " \ I t is reasonable to assume

that JE?[|/|] is available in advance, because 丑 [| / |] = for all Oj in relation P.
\

Random access on relat ion P: For a tuple 0“ we obtain its score score{oi) when

accessing relation S in descending score order and obtain its probability p(oi) using a

SQL selection to access relation P randomly at the same time. Because relation S is

sorted in descending score order, we know the probability p{o j) for all tuples whose

scores are larger than that of the tuple Oi in question (score(oj) > score{oi)).

For each seen tuple Oj，we can compute its exact R s i o j) value by Eq. (4.1).

Assume that Oi is the last seen tuple after retrieving the tuples O i , … ， F o r the

unseen tuples o, we can lower bound RE{O) by the fol lowing equation.

rb{O) = p(o) • Y 1 咖) + (1 - ^^⑷)• J Z 咖）
acore{oj) > acore{o) Oj 弟。

> P{o)>' X^p (o j) + (1 — p{o)) . E p (O j) (4.2)

i
=X^咖）

Intuitively, it is lower bounded by the expected size of the possible worlds generated

Chapter 4. Probabilistic Rankipg over Relations 55

by the tuples { o i ’ . . . , o i) . Note that for the Top-kERV query the smaller RE value

the better.

Example 1: Consider relation S and relation P in Table 4.3. Assume the first three

tuples in relation S have been retrieved. We get all the scores for o i , 02，and 03，and

also get the probability for the three type by random accesses on relation P. The set

of seen tuples is {oi(100, 0.3), 02(95, 0.15), 03(90,0.4)}，where each entry represents

Oi{score{o i)^p{o i)) .丑 [| / |] = 1.8. Based on Eq. (4.1), we have Re{o \) = 1.05,

RE{O2) = 1.4475, and RB{OZ) = 1.02. The lower bound for any unseen tuple o is

滩 == 0.3 + 0.15 + 0.4 = 0.85. •

I t is diff icult to bound RE{O) tight, i f we do not know all the tuples OJ whose

scores are larger (3core{oj) > score{o)). In other words, all the unseen tuples may

have larger scores or none of them have larger score.

Sequential access on relat ion P: In this scenario, each time we retrieve one entry

f rom S and P in descending score and probability order respectively. For each seen

tuple, we may know its score and/or probability. In other words, we may not know

both score and probability for every seen tuple. However, in the sequential access，

unlike the random access, we have one additional piece of information, the upper

bound of all the unknown probabilities, denoted as p. I t is the last retrieved probability

from relation P.

Let 'HB denote the set of seen tuples that we know their scores, and let H，a denote

the set of seen tuples that we know their probabilities but do not know their scores.

In other words, we know score{oi) for those tuples Oi G 1-ia and p(Oi) only for those

tuples Oi € Furthermore, the tuples Oi that we know both score{oi) and p(oi)

are also kept in TIS. In particular, we have TIA = U 况7，where 'HF contains the

tuples that we know both score and probability, and H j contains the tuples we only

know their score. In summary, we need to bound RE for the tuples in H ^ , H j ,

and those tuples we have not seen. For the tuples in H j " , we need to get both the lower

bound and the upper bound, to f ind the top-k tuples earlier. For the other tuples, we

only need to get its lower bound, because its upper bound can be very loose, and we

Chapter 4. Probabilistic Rankipg over Relations 40

Set s P Type Bounds for 丑[|/|j 一 Re

《 lower p{oi). - E j<i pioj) - Y： j<i P + i)
Oi^-Ht Oi^UJ

nt / upper PiOi) • iE[\I\] — E i<x P{Oj) - f 1)
o-ient

nj / X upper P'(E{\I\]-Y： j<i p{oj) + 1)
OiEUt

X / upper p{oi) •(五[m] — E。斤 -”(。‘）+1)
u X X upper

Table 4.4: E[\I\] - RE Bounds for Tuple (independent)

can not determine any of the other tuples to be in top-k results at this step. I f the upper

bound RE o f any tuples in T i f is no larger than the lower bound of all the other tuples,

then this tuple can be determined in the top-k results. In order to bound RE, we need

the fol lowing information.

For the tuples in with known score and probability，we need both lower bound

and upper bound of Re- Consider Eq. (4.1). When p(oi) is known, the formula can be

simplif ied to the form of R s i o i) = p{o j) -hc \ where c > 0 and d are constants.

The lower bound and upper bound are obtained by replacing those unknown

wi th 0 and p respectively.

For those tuples in H j wi th known score only, we need to compute its lower

bound. I t is lower bounded by E[\J\] — P .(丑[|/|] _ YLJ<I,OJE'HT + 1).

For those tuples Oi € ？ w e need its lower bound, which can be obtained in

a similar way as discussed above. I t is lower bounded by 丑[|/|] — p(oi) •(丑 [| / |]—

Y lo jen t P^'^^y " + 1). Similarly, we can lower bound for the unseen

tuples by 丑[|/|] 一 p.(丑[m] - P(Oj) + 1).

In a summary, the bounds for tuples in different sets are listed in Tab. 4.4. Where

the S e t column is the name of the set that the tuple belongs to, and U denotes the

set of unseen tuples. The S and P columns means whether we know the score and

probability for the tuple respectively. We show bounds for 丑 [| / |] — /2s(ot) in Tab. 4.4.

A l l the lower bounds for — 丑⑷ become upper bounds for 五⑷，and upper

Chapter 4. Probabilistic Rankipg over Relations 41

Tuple Randomly Access P Sequentially Access P Tuple

R'rioi) R7ioi) R7ioi)

01 1.05 1.05 1.05 1.05

02 1.4475 1.4475 1.05 -

03 1.02 1.02 0.96 1.08

05 - - 1.0575 -

unseen 0.85 - 1.17 -

Table 4.5: Bounds of Rs i o i) in Ran/Seq Access

bounds for — Rs ip i) become lower bounds for Rs io i) .

Example 2: Assume that we have retrieved 3 tuples from both relation S and rela-

tion P in Table 4.3’ respectively. Then，TI^ = {oi(100，0.3)，02(95’ -)，O3(90’0.4)}

and n ^ s = {o5(—,0 .45)}. Tis can be further partitioned into = {oi (100, 0.3),

03(90,0.4)} and = { o 2 (9 5 ’ -) } . “-, ’ means the value of that field is un-

known. Here，p = p(o i) = 0.3，which is the last probability we have seen.

丑 [| / |] = 1.8. For tuple o i ’ no tuple has a larger score. p(o i) = 0.3, and then

RE{OI) = 1.8 — 0.3 X (1.8 — 0.3 + 1) = 1.05. For tuple 02，tuple oi is the on-

ly tuple with a larger score, and we do not know the probability of 02. We com-

pute its lower bound, which is 运边(02) = 1.8 — 0.3 x (1.8 — 0.3 + 1) == 1.05.

For tuple 03, tuple Oi and 02 are the tuples with a larger score, and = 0.4.

RE(03) = 1.8 — 0.4 X (1.8 - 0.3 一 p(02) — 0.4 + 1) = 0.96 + 0.4 x p(02), then

R'^ ios) = 0.96 + 0.4 X 0.3 = 1.08 and 丑运叫(03) = 0.96. For tuple 05, we do not

know its exact score, and only know that the tuples in Ti^ are wi th a larger score.

Hence, = E[\I\] — pM x (丑[|/丨]-p(oi) 一 p(o2) 一 p(03) - p M + 1) >

1 . 8 - 0 . 4 5 x (1 . 8 - 0 . 3 — 0 - 0 . 4 - 0 . 4 5 + 1) = 1.0575，with a lower bound 1.0575. For all

the unseen tuples Oi,丑，(Oi)=丑[|/|1 一萝x (丑[|/|]一p(0i)-p(02) — p(03) + l) > 1.17,

with a lower bound 1.17. •

Tab. 4.5 summarizes the bounds for seen and unseen tuples, after three iterations

Chapter 4. Probabilistic Rankipg over Relations 42

of random/sequential accesses on relation P respectively. The Rsioi) for oi, 02, and

03, are exact values in random access，which is tighter compared to the bounds in

sequential access. But the lower bound for unseen tuples in random access is looser,

i.e. = 0.85，whereas B}『{p、= 1.17 in sequential access, which is tighter.

Fig. 4.1 shows the [lower bound, upper bound] interval for tuple 03 and 05 in

every iteration f rom 1 to 7. As we get more information, the lower bound goes non-

decrease, and the upper bound goes non-increase, eventually we get the exact RE

values.

s
p

 目

0
«

s
p

 目

o
g

s
p
o
n
o
m

(a) 03 (random)

l
o
m

(c) 05 (random)

(b) 03 (sequential)

Figure 4.1: Re Bound Changes for 03 and 05

(d) 05 (sequential)

L e m m a 4.3.2: Our bounding scheme is correct.

The bounding scheme is correct based on Lemma 4.3.

•

Chapter 4. Probabilistic Rankipg over Relations 43

4.3.2. Ranking Function PHR

I f the tuples o i , • • • , o^ are in descending score order and are totally independent, the

PHR^OI) function can be simplified as below.

1-1

PHR{Oi) = v{Oi) X Y [{ 1 - p{Oj)) (4 .3)

I t is the product of the nonexistence probability of tuples Oj that have a larger score

than the score of Oi and the probability of tuple Oi itself. We prove that Phr is a

monotone function in the following.

Lemma 4.3.3: The PHR function, on which the Top-kPHR query is based, is a

monotone function. For any two tuples, Oi and Oj, if score{oi) > score{oj) and

p{oi) > p{oj), then PHR{oi) > PHR、Oj). •

Proof Sketch: As all the tuples are totally independent, the fol lowing equation holds.

PHR{Oj) _ p{Oj)

Here, the first part p {o j) /p {o i) < 1 because p(oi) > p{oj) , and the second part is

no larger than one too. Therefore the probabilistic score function PHR is monotone,

PHR(pi) > PHR{oj), i f score{oi) > score(oj) and p(oi) > p(oj). •

Let the upper and lower bounds of PnRioi) be P品 (Oi) and respective-

ly. We consider random and sequential accesses on relation P respectively.

Random access on relat ion P: In this scenario, we get the probability for each seen

tuple by a random access on relation P . For any seen tuple we know its exact PHR

value. For all the unseen tuples we can upper bound it by n) = i (l — P(Oj))’ where Oi

is the last accessed tuple from relation S. Note that this upper bound is tight, because

an unseen tuple Oi+i may have probability 1.

Example 3: Consider relation S and relation P in Table 4.3. Assume the

first three, tuples in relation S have been retrieved. The set of seen tuples is

{oi(100,0.3), 02(95’ 0.15), 03(90, 0.4)}. Based on Eq. (4.3)，we have P H R { O I) = 0.3，

Chapter 4. Probabilistic Rankipg over Relations 44

Set s p Type Bounds for PHR

NT / lower P{OI) • n J<I (1 - P{OJ)) • n J<I (1 - P)
OI^Ht OIEUT

NT / upper pioi) • n j<i (1 -p{oj))
oient

X upper P'U j<i (1 - p (o j))
OiGUt

X / upper

U X X upper P-r io^e-H+Cl - p (o j))

Table 4.6: Phr Bounds for Tuple Oi (independent)

P H R { O 2) — 0.105, and P H R { O Z) = 0.238. The upper bound for any unseen tuple, o, is

= (1 - 0.3) • (1 — 0.15) • (1 - 0.4) = 0.357. This upper bound is achieved

by giv ing the unseen tuple wi th highest score a probabil i ty 1. That is, 04 is estimated

to have a probabi l i ty 1. •

Sequent ial access on re la t ion P: In this scenario, in every iteration, we retrieve

a tuple f rom relation S and a tuple from relation P in descending score/probability

order respectively. We know the score and/or probabil i ty for the retrieved tuples f rom

both relations. Let p denote the last retrieved probabil i ty f rom P.

For a tuple Oi G 凡 ’ all the tuples o j such that score{oj) > score{oi) are in Tia

already. We compute PnRio i) using Eq. (4.3). However, because the probabil i ty for

some tuples may be unknown, we need to upper bound and lower bound PhFtipi)• I f

p{oi) is unknown, then we upper bound it by p，and lower bound it by 0. For each tuple

Oj involved in Eq. (4.3) to compute PnRio i) , the upper/lower bounds of (1 — p(o j))

are 1 and (1 — p) respectively.

For a tuple Oi G H � s ’ we upper/lower bound PnR^Oi) value. Note that its lower

bound is 0. A l l the tuples in 1-Ls have a score larger than score{oi). We upper bound

P h r ^ o i) by mul t ip ly ing p{oi) and (1 — p{o j)) for all the tuples in Hs as discussed

above. Note that there may exist some tuple Oj that has a larger score than o, but has

not been retrieved f rom relation S yet. Similarly, we upper bound PHR{O) for the

Chapter 4. Probabilistic Rankipg over Relations 45

Tuple Randomly Access P Sequentially Access P Tuple

PHW P'moi) PHW p'moi)

01 0.3 0.3 0.3 0.3

02 0.105 0.105 0.21 -

03 0.238 0.238 0.28 0.196

0 5 - - 0.189 -

unseen 0.357 - 0.126 -

Table 4.7: Bounds of PnRioi) in Ran/Seq Access

unseen tuples by multiplying p and (1 — p{oj)) for all the tuples in 凡 as discussed

above.

In a summary, the bounds of PHR for tuples in different sets are listed in Tab. 4.6.

Example 4: Assume that we have retrieved 3 tuples from both relation S and rela-

tion P in Table 4.3, respectively. Then, US = {oi(100, 0.3), 02(95，-), O3(90，0.4)}

and 7 i � 8 = { o 5 (- , 0.45)}. Us can be further partitioned into = {oi(100, 0.3)，

03(90,0.4)} and H' = {o2(95’ 一）}. Here, p = 0.3，which is the last probability

we have seen. In the following, we compute upper bounds and lower bounds for all

the partial/full seen tuples. For tuple ou no tuple has a larger score. p(o i) = 0.3,

then P H R { O I) = p(o i) = 0.3. For tuple 02，tuple Oi is the only tuple with a larger

score, but we do not know the probability of 02. Phr{o2) — P(02) x (1 — p(oi)),

then P^r{o2) = P X (1 - p{oi)) = 0.21 and = 0. For tuple 03, tu-

ple oi and 02 are the tuples with larger scores, and ^(03) = 0.4. P H R { O ^) =

P(03) X (1 - p (o i)) X (1 - p (o 2)) = 0.4 X (1 — 0.3) X (1 -p (o2)) = 0.28 x (1 —p(02))’

then 尸 晶 (0 3) = 0.28 and P}^ (o3) = 0.28 x (1 - p) = 0.196. For tuple 05，we

do not know its exact score, but we know that the tuples in 凡 are with a larg-

er score. So = ^(05) x (1 - p(oi)) x (1 - p(02)) x (1 - ^(03)) <

0.45 X (1 - 0.3) X (1 - 0) X (1 - 0.4) = 0.189, with an upper bound 0.189. For all

the unseen tuples 0“ P^^ (o i) = p x (1 -p(oi)) x (1 — p(02)) x (1 — p(03)) < 0.126,

Chapter 4. Probabilistic Rankipg over Relations 46

with an upper bound 0.126. •

Tab. 4.7 summarizes the bounds for seen and unseen tuples, after three iterations

of random/sequential accesses on relation P respectively. The PnRioi) for oi , 02，

and 03, are exact values in random access, which is tighter compared to the bounds

in sequential access. But the upper bound for unseen tuples is a little looser, i.e.,

P^ j i i o) = 0.357, whereas P^^ (o) = 0.126 in sequential access, which is tighter.

Lemma 4.3.4: Our bounding scheme is correct and tight among all possible bounding

schema provided that relation P is sorted in descending probability order. •

Proof Sketch: The correctness of our bounding scheme directly follows from Lem-

ma 4.3.3. For the tightness, we assume that a tuple may have zero probability. There

does not exist any other bounding scheme (without random guess) that is more tight

than ours. Based on Eq. (4.3), the lower bound is achieved, when all the tuples with

a larger score has probability p; and the upper bound is achieved when all the tuples

with larger score has probability 0. Note that the upper bound and lower bound are

achievable individually. 口

4.3.3. Ranking Function with Exclusive Relationship

In the previous section, we discussed the bounds for RE and PHR respectively，assum-

ing that all the tuples are independent. In this section, in a general, we discuss bounds

for RE and PHR in an x-Relation with exclusive relationships.

Let Oi o Oj denote that tuple Oi and oj are mutually exclusive, i.e. they belong to

the same x-tuple r , Oi € r and Oj G ��and let OiOOj denote that tuple Oi and oj are

from different x-tuples (independent). Note that Oi and oj are different tuples. Let TQ.

denote the x-tuple that Oi belongs to, i.e., To. = {oj | Oj o Oi} U {o i } .

Chapter 4. Probabilistic Rankipg over Relations 63

RE Func t ion

Assume the tuples o i ’ . . . , On are in descending score order，the RE{oi) wi th exclusive

relationship is as follows.

RsiOi)

= 种 E 咖) + (1 - P⑷)•(〒：丄Y+E咖))
Oj^Oi ,j<i ^ OjOOi

= P (o i) • (Y ^ p i o j) - 咖)) + m 咖 ） (4.4)
j<i OjOOi、j<i OjOOi

+ (1 - p⑷）.{E[\I\] - p{0,) - 為)) .

= E [\ I \] - p { o i) . (£；[|/|] - ^p(o^) -p(oO + l)+p(oi) . Y .
j<i OjOOi J>i

where the first equation is f rom [28]. Compared wi th RE in the independent case,

there is one extra term p{oi) . E。,•。“：/>‘ P(oj) '

When randomly accessing relation P , the lower bound for the unseen tuples is

R s i o i) > which is the same as Eq. (4.2). However, the R s i o i) for the

seen tuples can not be bounded tightly. Even though we have retrieved all the tuples

wi th higher score and their probabilities’ we sti l l do not know those tuples in the same

x-tuple wi th Oi, i.e., the term YLo^ooi j> iP(P j) is unknown.

When sequentially accessing relation P, the bounding scheme is more compli-

cated compared to that discussed in Section 4.3.1. In Section 4.3.1，p(Oi) for unknown

probabil i ty is bounded by 0 < p{oi) < p. But, when mutually exclusive exists, i t is

upper bounded by

m i n { p , 1 - ^ P(0 j } }
0j00i,0jentun^B

When X^oj。o‘’oje"HtuK�� 〉 1 一跃 p(ot) must be less than p. In order to bound

RB{oi) when mutually exclusive exists, we reorganize Eq. (4.4) in the granularity of

x-tuples. I t is possible to get better bounds, because Y lo j ^ rP^^ j) — 1. Eq. (4.4) is

Chapter 4. Probabilistic Rankipg over Relations 48

reorganized as fol lows.

Rsioi)

=丑[m] - p{oi) •阅 m] +1 - ；E 咖）-p ⑷ - I Z 咖)）

,, :Ki o口 (4.5)

=对m] — p{oi) •(别/ii + p{oj))
rG^y OJET Oj€TOI
Oi^T j<i

The x-tuples are independent, so are their bounds. For the term YlojeT,j<i Pi^j)^

the lower bound is obtained by replacing all the unknown p{o j) wi th 0，i.e.,

E o j E T , o j T h e r e exist two possible upper bounds. One is to replace

all of the unknown p {o j) w i th p, i.e., I2ojeT,ojent + P • K ^ i ^ r \ oj e

、j < z}|, where | • | is the size of a set. The other is one minus the summa-

tion of the probabilities for tuples in r that has a larger score than score(oi), i.e.,

1 - The upper bound is the min imum of the two.

Similarly, for the term JD。斤丫。‘ p (O j) � i t s lower bound can be obtained by replacing

all the unknown p (o j) wi th 0’ i.e., Y2ojeTo.,ojeHtun^s the upper bound can be

obtained by replacing all the unknown p (o j) for tuples in T•。‘ w i th p，if we can get the

size information about x-tuple TO‘，otherwise, it can only be tr iv ial ly upper bounded

by 1. By combining the corresponding lower bounds and upper bounds for each term,

we get the lower bound and upper bound for Eq. (4.5).

In a summary, the bounds of •E"[|/|] — RE for tuples in different sets are shown in

Tab. 4.8.

Example 5: Consider the two relations S and P in Tab. 4.3, assume there is a mu-

tually exclusive relationship between tuple oi and OQ, i.e. t i = {oi, oe}. and the

other tuples are independent. The x-tuple information can be possibly maintained

in relation S’ in an additional column named XBD. The tuples identif ied by unique

O I D share the same X I D i f they belong to the same x-tuple. In addition, we ad-

d an additional column called Xcnt which records the number of alternatives an x-

tuple has. Wi th this additional column Xcnt, we can achieve tighter bound. It is

achieved by the fo l lowing information. For example, when retrieving OQ f rom rela-

Chapter 4. Probabilistic Rankipg over Relations 49

Set s P Type Bounds for JE;[|7|] - R e

N T / upper P(OI) •(丑[|J|] + 1 - � ,J C I — j)

nt / lower P(0i) •(丑[|/ |1 + 1

-EreAT niin{X； OJGT p(oj)-h p • \{OJ e T \ OJ G U:、j <
��� T OJENT

j<i

1 一 T . o i e r ^ O I E N T — EOJGT.O^G-H.,

+P. (ko, 1 - \{oj 0 Oi 1 OJ G NT U N-.s}\ — 1), 1}) / X upper niin{p, 1 - E ojooi p(oj)}
OJENTUN-..^

•(五[MI + 1 - EREA' E O,ER P{OJ) - E 0.00. p{OJ))
OI^-R O^ENT OJENTUH-.,

i<i
T^—is X / upper P(Oi) •(五[M] + 1 - E p(oj) - E � J E T � , p(oj))

u X X upper

Table 4.8: £*[丨/丨]—Re Bounds for Tuple Oi (independent/exclusive)

t ion S by sequential access，we get the information that all the alternatives of x-tuple

Ti have been retrieved, because TI has only two alternatives and the other alterna-

tive Oi has been re t r ieved .丑 [| / |] = 1.8. Af ter three sequential accesses on both

S and P , US = {oi(100,0.3)，02(95，一)，O3(90’ 0.4)} , U � s = {o5(-，0.45)}’ and

p — 0.3. We also know that tuple 02 and 03 have no other alternatives f rom the same

x-tuple, and there are more alternatives f rom the x-tuple that contains o i . For tuple Oi,

RE{Oy) = E[\I\] 一 pMiE[\I\] + 1 一 = 0.96 + 0.3 PiOj),

where Yhojero^ p(Oj) is lower bounded by p(oi) = 0.3 and upper bounded by

p(oi) -hp = 0.6. Then i l ^ (o i) = 1.05 and i?賢(oi) = 0.96 + 0.3 x 0.6 = 1.14.

For tuple 02, Re{P2) = 一 p{o2){E[\I\] — p (o i) — p(02) + 1)，and then

丑 运 边 (0 2) = 1.8 - 0.3 X (1.8 — 0.3 + 1) = 1.05. For tuple 0 3 ， = 0.96

and 貧(03) = 1.08. For tuple 05, = 1.0575. And = 1.17 for

Chapter 4. Probabilistic Rankipg over Relations 50

unseen tuples. •

In this example, although we know both score and probability for oi and oj has

the highest score, we can not get the exact RE;(OI)�because there may exist some

tuples with a smaller score and in the same x-tuple where oi belongs to.

PHR Funct ion

Assume the tuples Oi, • • • , On are in descending score order, the Pf//?(ox) with exclu-

sive relationship is as follows.

PHR{Oi) = p{Oi) X n (1 - Z J 咖) ） (4.6)

which is the multiplication of the existence probability of Oi and the nonexistence

probabilities of other tuples with higher score. Note that, the multiplication is in the

granularity of x-tuple, because the tuples from an x-tuple are mutually exclusive.

When randomly accessing relation P , we only need to upper bound the unseen

tuples. Let Oi be the last seen tuple, the Phr for unseen tuples can be upper bounded

by r w (i - Eo,Gr.i<iP(Oj))-

When sequentially accessing relation P in descending probability order, we need

both upper and lower bounds for seen tuples. In Eq. (4.6), i f p(oi) is unknown, then the

upper bound is min{p, 1 — J2ojooi and the lower bound is 0. For each unknown

p(oj) in the second part of Eq. (4.6), we replace it by 0 for the upper bound, and by p

for the lower bound. I f the lower bound is negative, then its lower bound is 0.

For each Oi 6 H-^a whose score is unknown, we upper bound it by P ^ U ^ i) =

p{oi) X r ireA^o办 f - ^ojer,ojent For the unseen tuples, we can upper bound

it by _
min{罗，1 _ E 片 t u片，，p (O j) }

驶 1 - y - > 1 1 (1 - 咖) ）

Chapter 4. Probabilistic Rankipg over Relations 51

4.3.4. Discussions

In this section, we discuss two issues. One is the advantages and disadvantages related

to random/sequential access. The other is the bounding scheme for other possible top-

ic probabilistic ranking queries.

Random vs Sequential access: We discuss the advantages and disadvantages of the

bounds for random and sequential accesses. Consider at the iteration i , we distinguish

the whole set o f (seen or unseen) tuples into two sets I-L3 and l-i-^s U U.

When randomly accessing relation P, we retrieve the probabil ity by a random

access each time we retrieve the corresponding tuple f rom relation S. 7i�s = 0 and

Hs = 'Hj". For tuples Oi G 广，we can get the exact pscore(oj) values, both upper

bound and lower bound are pscore(oi) which is absolutely tight. But, for tuples Oi 6 U、

we do not know any information about the score and probability. Then, the upper

bound for pscore(oi) can be arbitrarily loose.

When sequentially accessing relation P , we have additional information p, which

is the upper bound for al l the unknown probabilities. We can upper bound pscore(oi)

for tuples Oi 6 7i�a U U more tighter than that in random access. But, among tuples

Oi G 7^3, the probabil i ty for some tuples may be unknown, we can only bound it by 0

f rom below and p f rom above. The lower/upper bound for pscore(oi) is a l i t t le looser

than that in random access.

In summary, wi th random access on relation P, we can get better bounds of

pscore(oi) for tuples in Tis. Wi th sequential access on relation P , we can get better

bounds o f pscore(oi) for tuples in H-^s U U. But, we can not get better bounds for

both tuples in Hs and tuples in l~i�s U U at the same time, in either random access or

sequential access.

The bounds fo r other funct ions: There are also other probabilistic ranking functions

used in the literature, e.g., top-k probabil ity [45], or the probabil i ty for a tuple to be

ranked at the j -th position in possible worlds [86]. The same approach in the literature

can be used to bound pscore in random access, because it is the same as to process in

Chapter 4. Probabilistic Rankipg over Relations 52

the same relation. However, i t is very di f f icul t to find an upper bound or nontr iv ial

lower bound (other than 0) for these probabil istic ranking functions, in sequential

access of relation P. Below, we discuss why i t is di f f icul t to find an upper bound for

the probabil i ty that a tuple ranked at the j - t h position in possible worlds.

Suppose we have done 4 sequential accesses, and we have = { o i (1 0 0 , p i) ,

02(95,P2)i 03(90,^3), 04(85,0.4)} , where Pi is short for p{o i) and is unknown. We

only know that p i , p2，and ps, are in the range of [0,p], where p is the last seen

probabil ity. Then the probabil i ty for 04 to be ranked at the second place in possible

worlds is as fol lows.

P{04) • (P l (l - P 2) (l - P 3) + P 2 (1 - P l) (l - P 3) + P 3 (1 - P l) (l - P 2))

which is 0.4 • (3piP2P3 一 '^PiP2 一 "^PiPs 一 2p2P3 + Pi + P2 + P3). I t is a polynomial of

degree 3, it is hard to get the upper bound. A very loose upper bound is 0.4 • {SpiP2P3 +

Pi +P2 +P3), where pi ’ P2，P3 is replaced by p. This upper bound can be very loose, and

can be arbitrarily large when there are more than 3 tuples wi th unknown probabil ity.

Even worse, in order to get such upper bound, it takes 0 { 2 ^) t ime in order to compute

the probabil i ty for a tuple to be ranked at the second position, where n is the number

o f probabilit ies that are unknown.

4.4. I/O Efficiency

We discussed the bounding schema for both RE and PHR in Section 4.3. In this sec-

tion, we discuss two algorithms for random access and sequential access o f relation P

respectively for Top-kERV queries when all x-tuples are independent. I t is straight-

forward to extend the algorithms to support the general mutual ly exclusive case, and

i t is straightforward to extend the algorithms to compute probabil i ty o f highest rank

queries using the bounding scheme o f PHR instead of RE- We also discuss how to

combine the advantages from both random/sequential access.

Chapter 4. Probabilistic Rankipg over Relations 53

A l g o r i t h m 4 PRR(5, P , k)

Input: re lat ion S, relat ion P , and a n u m b e r k

Output: Top-k tup les in sorted order based on RE-

i n i t i a l i ze a pr ior i ty queue o f s ize k, Q , to be emp ty ;

while less than k tuples reported do

(ot, Si) next{S)\

{oiyPi) — find{P,Oi)\

c o m p u t e R B { o i) us ing Eq . (4 .1) ;

insert (O i ， i n t o Q\

c o m p u t e the l ower b o u n d o f all the unseen tuples as

while less than k tuples reported do

let Oi be the tup le w i th largest R E i p i) in Q .

i f Rs io i) < 啤边ip) then

report Oi as the next tup le in the top-k answers;

delete Oj f r om Q ;

else

break;

end i f

end while

end while

4.4.1. Random Access on Relation P

The algorithm for random access on relation P is similar to the algorithms for proba-

bil istic rank queries in a single relation.

A lgor i thm 4 shows the detailed steps of computing Top-kERV queries. I t takes

three inputs: a relation S which is sorted in descending score order, a relation P, and

a number k. I t uses a prior i ty queue Q o f size k which is init ial ized to be empty

(l ine 1). I t outputs the top-k answers in a whi le loop (line 2-14), and w i l l stop when

top-k answers are output. In the whi le loop, i t gets the next pair (oi, Sj) from relation S

Chapter 4. Probabilistic Rankipg over Relations 5 4

where Si = score{oi) (l ine 3). The score w i l l be the largest among those unseen tuples

in relation S、because relation S is sorted in descending score order. Then, i t obtains

p{oi) by cal l ing find、P、Oi) w i th the O I D Oi by a random access (l ine 4). I t computes

R s i p i) using Eq. (4.1) (l ine 5), and inserts the pair (oi, RE{o i)) into the pr ior i ty queue

Q where tuples are sorted in ascending Rsipi) order (l ine 6). I f its size exceeds k

when inserting a pair into Q, we delete the pair w i th the largest RE value f rom Q.

I t also computes the lower bound for al l the unseen tuples denoted as using

the bounding approach discussed in Section 4.3.1 (l ine 7). A l l the tuples Oi in Q w i th

RE{o i) < can be determined to be the top-k answers (l ine 8-14). Note that

in A lgo r i t hm 4 the numbers o f tuples retrieved f r om relation S and relation P are the

same.

E x a m p l e 6: Consider the two relations, S and P , in Table 4.3. Let k = 2. A lgo r i t hm 4

executes as fo l lows. In the first two iterations, (o i , 100) and (o i , 0.3), and (02, 95)

and (02,0.15), are retrieved f rom relation S and relation P. In the third iteration,

(03,90) and (03,0.4) are retrieved. We have Re{oi) == 1.05，Rb {o2) = 1.4475’ and

Re{o2) = 1.02. The lower bound is computed as B}『(p、= 0.85. A l l these •RB(OI)，

RB{O2), and RB{OZ) are larger than the lower bound Therefore, no tuples

can be determined to be in the top-k answers in this iteration. In the fourth iteration,

we retrieve 04 f r om both relations: (04, 85) and (0 4 , 0 . 1) . i?丑(04) = 1.615. The

lower bound computed is = 0.95. N o tuple can be determined to be the

top-k answers. I n the fifth iteration, we retrieve 05 f rom both relations: (05 ,80) and

(05,0.45). RE{O^) = 1 . 1 7 . The lower bound c o m p u t e d is = 1.4. R E M

and Re(oi) are smaller than 滩边(o)’ then 03 and oi can be determined to be the top-2

results. ^

Theorem 4.4.1: Algorithm 4 correctly finds the top-k tuples with respect to RE, yvith

sequential access on relation S and random access on relation V. 口

Proof Sketch: For all the seen tuples ou we can compute R s i p i) exactly by Eq. (4.1).

For the unseen tuples 0，it can be lower bounded as A l l the tuples output

Chapter 4. Probabilistic Rankipg over Relations 55

by A lgo r i t hm 4 are guaranteed to be no larger than (l ine 10). Then it is

guaranteed to be in the top-k answers. •

4.4.2. Sequential Access on Relation P

Because random access usually is much expensive compared to sequential access, in

this section, we consider sequential accessing relation P provided that relation P is

sorted in descending order in terms of probabil i ty, as we l l as sequential accessing

relation S wh ich is sorted in descending score order.

We sequentially access relation S and relation P. In every iteration, we retrieve

{oi, Si) f r om relation S, and {oj^pj) from relation P , update p to be p)，where p is

the upper bound for all the unseen probabil it ies. We update 凡 and which may

require j o in ing (oi, 5i) and (O j ,p j) w i th the existing retrieved tuples in 凡 and Ti-^s-

We also update the upper bound and lower bound for al l the seen tuples, and compute

the lower bound for al l the unseen tuples R}『ip) . Let Oi be the tuple wi th smallest

lower bound among al l seen tuples. I f R ^ { o i) is no larger than all the other lower

bounds, then tuple Oi can be determined to be the next tuple in the top-k answers.

A lgo r i t hm 5 shows the detailed steps. We explain i t using an example.

Examp le 7 : Consider the two relations，S and P, in Table 4.3. Let k = 2. A l -

gor i thm 5 executes as fo l lows. In the first iteration, (o i , 100) and (05，0.45) are

retrieved f rom relation S and relation P (l ine 2-3). p 二 0.45 (l ine 4). Here,

U s = { (o i (1 0 0 , -) } a n d n , ^ = { (0 5 (—， 0 . 4 5) } ’ w h e r e e v e i ^ e n t r y i n U s a n d T U s

represents Oi{score(ot),)) . In the second iteration, (02, 95) and (03，0.4) are re-

trieved f rom relat ion S and relation P. p = 0.4. Here, H3 = { (o i (100 , 一）’ 02(95, —)}

and l~L�s = {(osC—, 0.45), 03(—’ 0.4) } . The upper bounds for R e o f all the seen tuples

are 丑(| J |) , no tuples can be the top-k answers.

In the th i rd iteration，after retrieving (03,90) f rom relation S and (oi，0.3) f rom

relation P ’ we update U s and H � s (l ine 5). Here, Us = { (o i (100 ’ 0.3)’ 02(95，—)’

03(90,0.4)} and U � s = {(05(-，0 .45)}. Note that the entry 03(-，0.4) is deleted f rom

H，s and its probabi l i ty is added into 03(90,0.4) in Hs. The same is applied to o i .

Chapter 4. Probabilistic Rankipg over Relations 56

Algorithm 5 PRS(5, P，k)

Input: relation S、relation P，and a number k

Output: Top-k tuples in sorted order based on RE-

while less than k tuples reported do

(oi, Si) <— next{S)\

{oj.pj) — next{Pf,

V — Pj •’
update Tia and 'H-.j；

for all the tuples Oi G 'Hs, compute its upper bound and lower bound R ^ { o i) and

compu te the lower bound for all the tuples in Ti-^s and all the unseen tuples;

while less than k tuples reported do

let Oi be the unreported tuple in H g with smallest lower bound;

if FCj^{oi) is no larger than all the other lower bounds then

report Oi as the next tuple in the top-k answers;

else

break;

end i f

end while

end while

The upper bounds and lower bounds in the third iteration are shown in Table 4.9. The

tuple w i th smallest lower bound is 03 such that 运讼（03) = 0.96. Its upper bound

(i?芸P(03) •= 1.08) is larger than the lower bound of 02 because = 1.05，so we

continue for the next iteration.

In the fourth iteration, after retrieving (0 4 , 8 5) f rom relation S and (oe, 0.2) f rom

relation P、we have Hs = {o i (100, 0.3), 02(95，-), 03(90, 0.4)，04(85,-)} and TUs =

{o5(—, 0.45), 06(—, 0.2)} . p = 0.2. We recompute the upper bounds and lower bounds

RE for the seen tuples, as shown in Table 4.9. The lower bound RE value for the

tuples in I-L-.3 is 滩切(05) = 1.0575，and the lower bound for the unseen tuples is

Chapter 4. Probabilistic Rankipg over Relations 57

Tuple Iteration 3 Iteration 4 Tup le

R'rioi) R7ioi) R'r(oi)

01 1.05 1.05 1.05 1.05

02 - 1.05 - 1.3

03 1.08 0 .96 1.04 0 .96

04 - - - 1.38

05 - 1.0575 - 1.0575

06 - - - 1.42

unseen - 1.17 - 1.38

T a b l e 4 . 9 : Upper /Lower Bounds in 3rd and 4th Iteration

= 1.38. The tuples w i th smallest lower bound is 03, and its upper bound 1.04

is no larger than any other lower bounds. Therefore, 03 can be determined to be the

top-1 answer, although its exact Re{o3) is sti l l unknown. Then the unreported tuples

wi th the smallest lower bound is o i , and its upper bound 1.05 is no larger than any

other unreported lower bounds. We can report Oi as the top-2 answer. •

Compare Example 6 and Example 7. For random access on relation P , we report

the top-2 answers after retrieving 5 tuples f rom relation S and 5 tuples f rom relation

P. For sequential access on relation P , we can determine that tuples 03 and oi must be

in the top-2 answers, in the fourth iteration. I t is does not only incur less expensive to

conduct sequential access, but also retrieve less number of tuples compared to random

access on relation P.

Theorem 4.4.2: Algorithm 5 correctly computes the top-k tuples based on RE, with

sequential access on both relation S and relation P. •

Proof Sketch: The correctness o f A lgor i thm 5 directly fol lows f rom Lemma 4.3.1 and

Lemma 4.3.2, and the correctness o f the non-random access algorithms in [33, 80]. •

I t is important to note that our sequential access is similar to the scenario dis-

cussed in [33, 80]. For each seen tuple, there is an upper bound and lower bound of

Chapter 4. Probabilistic Rankipg over Relations 58

Rs io i) . I f R ^ ^ i o i) < then tuple Oi is guaranteed to rank higher than Oj.

For the unseen tuples，RE{O) is guaranteed to be less than or equal to some lower

bound value. However, both work reported in [33，80] are for deterministic datasets

and cannot be directly applied to probabilistic query processing.

4.4.3. Sequential and Random Access

In Section 4.4.1 and Section 4.4.2，we discussed algorithms to find the top-k answers,

wi th either random access or sequential access on relation P. We also discussed the

advantages and disadvantages of these two access methods in Section 4.3.4. It is hard

to get better bounds of pscore(oi) for both the seen tuples and unseen tuples.

In this section, we discuss conducting both sequential and random access at the

same time, to util ize both advantages of random access and sequential access. We

can add random access of relation P into the framework of A lgor i thm 5，which is

designed for sequential access only. In some iteration in Algor i thm 5 (line 3), instead

of sequentially retrieving the next tuple from relation P’ we issue a random access to

find the probability for the tuple in Hs with the largest score and unknown probability.

Then, the bounds for all the tuples wi th smaller scores w i l l become tighter. Note that,

when a random access is issued, the p value w i l l not be changed to the probability

retrieved. Below, we give an example to show how random access helps bounding in

sequential access.

Example's： Consider the two relations, S and P, in Table 4.3. Let k � 2. Assume the

probability of 05 is changed to 0.5, i.e., ^(05) = 0.5.丑 [| /1] == 1.85. After conducting

four sequential accesses on relation S and relation P respect ively,凡 二 { o i (100，0.3)，

02(95, -) , 03(90,0.4), 04(85, ") } , TUs = {o5(-，0 .5) ,06(- ,0 .2)}，and p = 0.2.

Then the upper bounds and lower bounds are as follows. For tuple oi , RE{OI) 二

1.085. For tuple 02, B }⑵02) = 1.34. For tuple 0 3 ， 也 （ 0 3) = 0.99, and =

1.07. For tuple 04’ 广 (0 4) = 1.42. For tuple 05’ 运叫(05) == 1.025. For tuple og,

R^S'^IOE) = 1.56. For unseen tuple 0，Re'^(o) = 1.42. The upper bound of 03, which

is the tuple wi th smallest lower bound, is larger than the lower bound of 05. Then no

Chapter 4. Probabilistic Rankipg over Relations 59

tuple can be determined to be in the top-k answers in this iteration.

I f , in the fourth iteration, we issue a random access on P in-

stead of sequential access to the probabil ity of 02. Then, 凡 =

{o i (100, 0.3), 02(95, 0.15), 03(90, 0.4), 04(85, -) } , = {05 (- , 0 . 5) } , p = 0.3.

Note that p is larger than that of sequential access. The set of upper bounds and lower
«

bounds are as fol lows. For tuple Oi, RE^OI) = 1.085. For tuple 02，丑£(02) = 1.49.

For tuple 03, RE{O^) = 1.05. For tuple 04, = 1.25. For tuple 05,

Rs'^ ios) = 1.1. For unseen tuple o , = 1.25. Then, tuple 03 can be deter-

mined wi th the highest rank, and tuple Oi wi th the second highest rank. •

4.5. Performance Studies

We conducted extensive performance studies to get top-k answers using the two

pscore functions, namely RE and PHR- We tested three algorithms, namely Random,

Sequent, and Hybrid. A l l the three algorithms sequentially access relation S, and ac-

cess relation P as the names imply. Random randomly accesses relation P , Sequent

sequentially accesses relation P , and Hybrid may sequentially and randomly access

relation P.

We use both real datasets and synthetic datasets. For the real datasets, we ex-

tracted several sets of x-tuples f rom the International Ice Patrol (HP) Iceberg Sight-

ings Database (h t t p : / / n s i d c . o r g / d a t a / g 0 0 8 0 7 . h t m l) which is a database

that collects the activities of the iceberg in the North Atlantic. The data are col-

lected through airborne Coast Guard reconnaissance missions and information f rom

radar and satellites to monitor iceberg danger near the Grand Banks of Newfoundland.

There are some imprecise information for each record which is recorded as the confi-

dence level according to the source o f sighting. The 6 confidence levels are converted

to confidence probabilit ies 0.8，0.7, 0.6，0.5, 0.4，and 0.3 respectively. Each dr i f t ing

activity may be recorded several times by several types o f sources. The x-tuples are

the records that are obtained at the same time and the same location. We collect-

Chapter 4. Probabilistic Rankipg over Relations 60

P a r a m e t e r R a n g e De f a u l t

k 5, 10’ 20’ 30’ 50 20

size 1 , 2 , 3 , 4 , 5 (x lO /c) 3

xsize 1 ,2 , 3’ 4 . 5 3

mean 0.4’ 0.5, 0.6, 0.7’ 0.8 0.6

Table 4.10: Parameters for A l l Testings

ed records f rom 1998 to 2007 and generated 17, 505 x-tuples which contain 50, 879

tuples. For each x-tuple r , we normalize the probabilities for each tuple o G T as fol-

lows, p(o) = ^ 广"^(:}(。/) • rnax {con / (o ') | o ' e r } , where conf(o) is the confidence

probabil i ty for the tuple o. For each tuple extracted, we set its score to be the num-

ber of days dri f ted because it is important in determining the status o f icebergs. We

extracted 5 datasets f rom the whole dataset, which are sized 10，000, 20,000，30，000，

40’ 000 and 50,000 in terms of tuples respectively.

For the synthetic datasets, we have four types of distributions for the probabilities

of x-tuples in the datasets, namely, uni form distribution, normal distribution, positive

correlated distribution and negative correlated distribution. For the uni form distri-

bution, given a mean value 0 < ave < 1，suppose d = min{ave, 1 — ave}, all

probabilit ies o f x-tuples are distributed uniformly in the range [ave — d, ave + d]. For

the normal distribution, for a mean value ave, all probabilities of x-tuples fol low the

normal distribution 7V"(ave, 0.2). For the positive and negative correlated distribution,

the probabilit ies and the scores form a correlated bivariate wi th correlation 0.8 and

—0.8 respectively.

The parameters used and their default values for both real and synthetic data are

given in Tab. 4.10. k is for the top-k value in a top-k probabilistic query, size is

the number o f units for the dataset, where each unit contains 10，000 tuples, xsize is

the average number of tuples in each x-tuple in the dataset. mean is the mean value

under a certain distribution discussed above. The k and size parameters are used for

both real and synthetic datasets, whereas xsize and mean parameters are used for the

Chapter 4. Probabilistic Rankipg over Relations 61

s
Hyrtold 1/3 X-Hybrld 1/2 Hybrid 1/1 Hybrid 2/1 Hybn

10

(a) Vary k (b) Vary k (c) Vary size

1M

_ 0 10OK

1 0 K

H y b r i d ~ &
i a a u e n t —

Figure 4.2: Real Data

g _ 一 一 . 一 a - - — B - - — s

10 2 0

(a) Vary k

(c) Vary xsize

1M

•&5
^ 100K

1 0 K

1M

^ 1 0 0 K

1 0 K

H y b r i d — - Q -
e a u a n t

(b) Vary size

H y b r i d ~ ~ B
e q u e n t ^

(d) Vary mean

Figure 4.3: Uniform Distribution

synthetic datasets only. When varying a certain parameter, all the other parameters are

fixed to their default values. We report the I/O cost follow the same approach given

in [83]. The cost is measured in unit, one sequential I/O contributes one unit, and one

random I/O contributes 5 units. A l l algorithms are implemented in Visual C++, and

all tests were conducted on a 2.8GHz CPU, 2GB memory and 80GB disk space PC

running Windows XP.

Exp-1 Real Datasets for RE: The testing results for RE using the real datasets are

shown in Fig. 4.2. In Fig. 4.2(a), we also test the Hybrid algorithm with different ac-

cessing patterns between the random access and the sequential access. In our testing.

H y b r i d i / j means that the Hybrid algorithm performs i sequential accesses fol-

Chapter 4. Probabilistic Rankipg over Relations 62

S 1 0 0 K

1 0 K

(a) Vary k

(c) Vary xsize

1 0 K

1 0 K

(b) Vary size

(d) Vary mean

Figure 4.4: Normal Distribution

lowed by j random accesses alternatively. From Fig. 4.2(a), H y b r i d i / j performs

well when i < j , and there is no much difference between different Hybrid algorithm-

s with i < j regarding the cost. Because H y b r i d 1 / 1 performs well among these

variants, we use H y b r i d 1 / 1 as Hybrid to conduct our testing below. In Fig. 4.2(b),

when k increases, the numbers of tuples visited for all the 3 algorithms increase be-

cause the top-k answers for all the 3 algorithms are incrementally generated. Random

and Sequent have similar costs. Hybrid is much better than both Random and Sequent.

One of the bottlenecks for Sequent is that, although the lower bounds of RE for the

unseen tuples increase in every iteration, the set of seen tuples with both scores and

probabilities is small. Note that the seen tuples with both scores and probabilities

have an upper bound, and thus can satisfy the stop conditions. When random access

is integrated into sequential access, the number of seen tuples with both scores and

probabilities increases. Thus Hybrid can stop in an early stage. In Fig. 4.2(c), when

the number of tuples in the datasets increases, the cost for both Random and Sequent

increases, but it decreases for Hybrid. The reason is that, in the same iteration the

upper bound of RE for the seen tuples with both scores and probabilities tend to be

smaller in a dataset with a larger size, where p{oi) tends to be larger. Hybrid is also

Chapter 4. Probabilistic Rankipg over Relations 63

^ 1 0 0 K

1 0 K

H y b r i d s =

Q — — •

5 1 0 2 0

(a) Vary k

2 3

(c) Vary xsize

H y b r i d ~ Q ~
a q u Q n t

尸！飞

1 0 0 K

1K

I M

^ 1 0 0 K

1 0 K

(b) Vary size

H y b r i d

•giSi .js^—.yly 二丄
(3 Q B——B——E3

. 5 . 6

(d) Vary mean

Figure 4.5: Positive Correlated

much better than both Random and Sequent.

Exp-2 Synthetic Datasets for RE: We tested all the three algorithms for RE using

synthetic data. For each of the four probabil ity distributions, namely, uniform, normal,

positive correlated, and negative correlated, we vary k、size, xsize, and mean, to test

the performance for each algorithm. The results are shown in Fig. 4.3, Fig. 4.4，Fig. 4.5

and Fig. 4.6 respectively.

Under the uni form distribution, Fig. 4.3(a) shows that when k increases, the cost

for all the 3 algorithms increases, Hybrid does not perform as good as in the real

dataset, because in the real dataset, some of the first several tuples tend to have high

probabilities, which make the upper bounds of RE for those tuples small, and thus

output in early iterations. In Fig. 4.3(b), when the number of tuples in the dataset

increases, the cost for all the three algorithms increases, Hybrid is between Sequent

and Random. Fig. 4.3(c) shows that when xsize increases, the cost for all the 3 algo-

rithms increases. Sequent performs badly when xsize is small, because the average

probabil ity for each tuple in each x-tuple is large. In this situation, p w i l l be large in

each iteration, thus the lower bound for unseen tuples w i l l be loose. In addition, when

the average probabil i ty for tuples is large, the lower bound for RE in Sequent is small.

Chapter 4. Probabilistic Rankipg over Relations 64

1M

1 0 K

1 0 K

Hybr id

dj 由~~~bli

5 1 0 2 0

(a) Vary k

(c) Vary xsize

1 0 K

100K

1 0 K

(b) Vary size

H y b r i d s

. 5 . 6

(d) Vary mean

Figure 4.6: Negative Correlated

Thus the performance is bad. On the other hand, the lower bound for the unseen tuples

in Random increases faster, which makes it perform good. In Fig. 4.3(d), when the

mean value increases, the cost for all the 3 algorithms decreases, Hybrid algorithm

decreases faster. As shown in Fig. 4.4，The algorithms under the normal distribution

perform similar as in the uniform distribution, Sequent does not perform well in the

normal distribution, because there are not many tuples with very high probabilities or

very low probabilities.

Fig. 4.5 and Fig. 4.6 show the distributions in two opposite situations, positive

correlated and negative correlated. In the positive correlated data, the tuples with

large scores tend to have high probabilities, whereas, in the negative correlated data,

the tuples with large scores tend to have low probabilities. The curves are all similar

to those in the normal distributions. The performance for all testings in the positive

correlated data is much better than those in the negative correlated data. In the positive

correlated data, the lower bound of RE in Random increases fast in the first several

iterations, because the first several tuples tend to have a large probability. For the

same reason, the upper bound of RE for each tuple in Sequent decreases fast in the first

several iterations. For Sequent, the number of tuples with both scores and probabilities

Chapter 4. Probabilistic Rankipg over Relations 65

- f f l — ®

10
(a) Vary k

2 3

(b) Vary size

Figure 4.7: PUR Testing

in the positive correlated data is much larger than that in the negative correlated data.

It makes it faster in the positive correlated data.

Exp-3 Real Datasets for PHR: We tested the PHR function in the real dataset for all

the 3 algorithms. The results are shown in Fig. 4.7. When either k or size increases,

the cost for all the 3 algorithms increases. Random and Hybrid have similar perfor-

mance, and is much better than Sequent. This is because，the upper bound of PHR in

the Random algorithm decreases fast. For example, even i f all of the first 30 tuples

have very low probability, say 0.1, the upper bound for the unseen tuples after 30 iter-

ations becomes (1 — 0 . 1严 = 0 . 0 4 which is very small. This means that we can output

the top-k answers in an early stage.

CHAPTER 5

Q U E R Y R A N K I N G IN PROBAB IL I ST IC

X M L DATA

5.1. Introduction

T w i g q ue r i e s o ve r t r ad i t i o na l X M L d o c u m e n t s h a v e b e e n ex tens i ve l y s t ud i ed [15]. T h e

resu l t o f a t w i g q u e r y ove r an X M L tree is a set o f sub t rees . I n o rde r to r a n k t w i g

query results, some IR strategies are incorporated with other factors to score each

subtree [34，79，5]. There are some works conducting keyword search over an ordinary

XML tree [26’ 40], and reporting the top-k results. In [14，56], the authors treat XML

trees as X M L graphs, and assign weights to the nodes a n d edges o f X M L graphs, where

the weight of a node indicates its importance and the weight of an edge represents the

s t reng th o f its s e m a n t i c c o n n e c t i o n in t he X M L tree. A l l these w o r k s are d e a l i n g w i t h

t r a d i t i o n a l (o r o r d i n a r y) X M L trees.

Probabilistic XML (PXML) have been extensively studied recently as discussed

in Chapter. 2.4. The issues studied widely cover the PXML models [70，46, 47], se-

mantics, data integration [90], constraints [25], expressiveness [2’ 82], query evalua-

tion, query tractability [55], and complexity analysis. In this chapter，we study a new

research issue, and we study PXML rank query, (Q, k), which is to rank top-k proba-

bilities of the answers of a twig query Q in PXML data. The new challenging is how

to compute top-A: probabilities of answers of a twig query Q in PXML in the presence

66

Chapter 5. Query Ranking in Probabilistic XML Data 83

m

of containment (ancestor/descendant) relationships, where an answer of a twig query

can be judged using any score function as studied in [34，79，5]. In the presence of

the ancestor/descendant relationships, the existing dynamic programming approaches

[92，93，44, 45] to compute top-/c probabilities over a set of tuples cannot be directly

applied, because in the context of PXML any node/edge may possibly have impacts on

the top-Zc probabilities of answers. To the best of our knowledge, i t is the first work

which studies ranking of twig query results in the context of PXML.

We study three types of PXML-RANK queries, (Q, /C), where Q can be a node

query (JA)、a path query { / /A / /B) , or a tree query { / /A[. / /C\ / /B) . In our study, we

consider all the three issues, namely，ranking, probability, and structures. The main

contributions of this chapter are summarized below. First, we focus on node queries,

and propose a new dynamic programming algorithm which can compute top-/c prob-

abilities for the answers of node queries based on the previously computed results

in PXML data. Our algorithm considers the containment issue (ancestor/descendant)

as well as the top-/c probability and the score ranking (score functions) issues. We

further propose optimization techniques to share the computational cost. Second, we

show that our techniques can be used to support any path queries, and certain tree

queries efficiently without enumerating all the possible worlds. We give conditions on

the tree queries, and discuss our approaches. Third, we conduct extensive performance

studies using both real and large benchmark datasets, and confirm the efficiency of our

algorithms.

The remainder of this chapter is organized as follows. Section 5.2 reviews the

definition of probabilistic X M L , and gives our problem statement. In Section 5.3, we

discuss the technique details of answering a PXML-RANK node query, and in Sec-

tion 5.4, we discuss how to extend the algorithms of node query to process all path

queries and certain tree queries. Experimental studies are given in Section 5.5.

Chapter 5. Query Ranking in Probabilistic XML Data 68

5 . 2 . P X M L a n d P X M L - R A N K

An XML document can be modeled as a rooted, unordered，and node-labeled tree,

T x (y x , E x) , w h e r e V x r ep resen t s a set o f X M L e l e m e n t s (n o d e s) , a n d E x r e p r e sen t s

a set of parent/child relationships (edges) between elements in XML. In an XML tree，

a n o d e is a s s o c i a t e d w i t h a v a l u e X i w h i c h b e l o n g s t o a t y p e (t a g - n a m e) X , d e n o t e d as

Xi G X. A n XML tree is weighted i f nodes and edges in the XML tree, Tx{Vx^ Ex)、

a re a s s o c i a t e d w i t h n o n - n e g a t i v e w e i g h t s , d e n o t e d as i (; “ i ») f o r v € Vx a n d We{e) f o r

e S E x , r e s pec t i v e l y . I n t h e f o l l o w i n g , a n X M L t ree is a w e i g h t e d X M L t ree u n l e s s

o t h e r w i s e s p e c i f i e d .

A probabilistic XML (or PXML for short) defines a probability distribution over

XML trees. Following the model given in [70], which is the PrXML—,隱} mod-

el in [55], in this work, we define a PXML, Tp(Vp, Ep)’ over a weighted XML tree

Tx{Vxy E x) . Here, Vp is a set of nodes Vp = Vx u VD, where Vx is a set of ordinary

nodes that appear in an XML tree, and VD is a set of distribution nodes (e.g. indepen-

dent, mutually exclusive). Consider a node it, which has a set of child nodes, Vu, in an

XML tree T x . In PXML, T>，the ordinary node, u, may have several distribution nodes，

as its chi ld nodes, which specify the probability distributions over the disjoint subsets

of the children of u’ Vu. And Ep is a set of edges Ep = Exx O EXD U EDD U EDX

where Exx is a set of edges that appear in E x �E X D is a set of edges from Vx nodes

to VD nodes, EDD is a set of edges from VQ nodes to VQ nodes, and EDX is a set of

edges f r o m VD nodes to Vx nodes. Below, we call an Exx edge an ordinary edge,

and an edge in EXD U EDD U EDX a distribution edge. A positive probability is only

associated with an edge, e 6 EOD U EDX, denoted as pe{e). Note that a node in Vx

h a s a n o d e - w e i g h t， a n d a n e d g e i n E x x U E D X is a s s o c i a t e d w i t h a n e d g e w e i g h t . i

Example 1: A n XML tree，T'x、is shown in Fig. 5.1(a). There is a D-typed node d,

two A-typed nodes (ai and a2)’ four 从typed nodes {hi for 1 < i < 4)，and two C-

t y p e d n o d e s (c i a n d C2). A P X M L tree , T'p、based o n t h e X M L t ree T、, i s s h o w n i n

'For simplicity, we assumed that default weights

Chapter 5. Query Ranking in Probabilistic XML Data 69

八

3 2

入

b 2

(a) XML

b3

b4
0

A

/ \
B C

(b) PXML (c) Twig Query

Figure 5.1: X M L , P X M L , and Twig Query

Fig. 5.1(b). In T'p、d has an independent distribution node as its child, which specifies

that its two chi ld nodes, a i and are independent. The probabilities of having ai and

(22 are 0.3 and 0.2, as indicated in the incoming edges to a i and <22�respectively. In a

similar fashion, there are other four independent distribution nodes. A node-weight,

say Wv{d), in T'x can be specified as the node-weight associated wi th in Tp, and

an edge-weight, say We(d, ai) can be specified in the incoming edge to ai in Tp. •

A P X M L tree, Tp, is a compact representation of probabil ity distribution over a

c o l l e c t i o n o f X M L trees, T x ^ , T ^ a , • ••，which is genera ted i n t w o steps.

First, we traverse the P X M L tree, Tp, in a top-down fashion. When we visit an in-

dependent distribution node, indu which has I children, we divide Tp into 2' subtrees

where each o f them has a subset of the I children. When we visit a mutually exclusive

distribution node, m u x i , which has I children, we divide Tp into I subtrees where each

o f them has one child. We repeat the same procedure for each of the divided subtrees

recursively, and obtain the set o f P X M L subtrees, where every connected P X M L sub-

tree shares the same root node o f the P X M L tree. Let Tp be one P X M L subtree. The

probabil i ty o f Tp, denoted as P r (Tp) , is computed in Eq. (5.1).

P 卿 = = r U v / ; P r W (5.1)

Chapter 5. Query Ranking in Probabilistic XML Data 70

0 . ^
a i

ind

C1

0.3
b 2

(a)

d

ind

C2

(b)

lindl

\ 0 . 5 0 . ^

b3
？1

ind
n ft

ind
U.D

b4
0.3

b2

C1 C2

b4

(c)

Figure 5.2: P X M L Subtrees

Here, i f is an ordinary node, Pr (u) = 1. I f u is a distribution node, Pr (u) is

computed as follows. Let n be a mutually exclusive node, and suppose u has I children.

There are only two cases, selecting one of I children or none because it is mutually

exclusive. For the former, is the probabil ity associated with its outgoing edge

to the selected child node. For the latter, it is one minus the summation of all the

I existence probabilities. Let u be an independent node. Suppose u has n children,

U i , i i2, • • • Un, o u t o f I c h i l d r en in tota l i n the P X M L tree T p , … U n , U n + i , . . . u i .

FT{U) is computed by mult ip ly ing the existence probability associated with UI, for

1 < Ui < Uji, and the absence probabil i ty (one minus the existence probabil i ty) for Ui

for Un <Ui < Ui.

Fol lowing the first s tep, for the P X M L tree (Fig. 5 . 1 (b)) 4 i n t e rmed i a t e P X M L

the root node. Three are shown in Fig. 5.2 in addition to the P X M L subtree which

contains the root node d only. Then, 6 P X M L subtrees w i l l be generated f rom the

P X M L subtrees Fig. 5.2(a)(b), respectively, and 36 P X M L subtrees w i l l be generated

f rom the P X M L subtree Fig. 5.2(c). In tota l , 49 P X M L subtrees w i l l be generated.

Second, for each of the P X M L subtrees, Tp, where Pr (Tp) > 0，we construct an

X M L tree, d eno t ed as tree(Tp), b y r e m o v i n g a l l d i s t r i bu t i on nodes /edges a n d connect-

Chapter 5. Query Ranking in Probabilistic XML Data 71

ing two ordinary Jiodes i f there are distribution nodes/edges in between. The entire

set of such X M L trees for a P X M L tree is then uniquely identified. We denote it as

pwdiTp) = {Tx,, ， . . . } . The probabil i ty of Tx, is given by

P r (T x J = Y ^ P r (T p J (5.2)
tree(Tp̂ .)=Tx.

b e c a u s e the s a m e X M L tree T ^ . c a n b e c on s t r u c t ed f r o m severa l P X M L sub t rees , Tp..

The set pwd{Tp) f o r m s the p o s s i b l e w o r l d s o f the p r o b a b i l i s t i c X M L (P X M L) , 7>，and

i t sat is f ies t he c o n d i t i o n t ha t YLrx^epwcHTp) = 1.

A t w i g q u e r y is a f r a g m e n t o f XPATH quer i es tha t c a n be rep resen ted as a q u e r y

tree, QiV, E). Here, V = (Vi, V2, - •‘ ’ K i) is a set of nodes representing types (tag-

names), and is a set of edges. A n edge between two typed nodes, for example, A and

Dy is e i t he r a s soc i a t ed w i t h a n XPATH ax is ope ra t o r / o r / to represent A / / D o r A!D.

Given an XML tree Tx, the former is to retrieve all A and D typed nodes that satisfy

the ancestor/descendant relationships, and the latter is to retrieve all A and D t y p e d

nodes that satisfy parent/child relationships. We call the former / -edge and the latter

/-edge in short. As a special case, the root node in the query tree has an incoming

/ - o r / - e d g e to represen t a n XPATH que ry , / / A o r j A、suppose the roo t n o d e is A-

typed. The answer o f a n-node tw ig query, Q{V, E), against an XML tree Tx, is a set

o f connected subtrees, where a connected subtree consists of n nodes { v i . v ^ r ' ' , Vn)

in Tx, for Vi € Vi (1 < i < n), that satisfy all the structural relationships imposed

by Q’ and the minimal additional nodes/edges connecting the n nodes as a connected

subtree. A n example of an XPATH query is Q = j j A \ . I I C \ I I B (Fig. 5.1(c)). In this

work, we consider three classes o f tw ig queries: (1) node query, (2) path query, and

(3) tree query. For example, j j A, H Aj! B、and f j j j C\ll B are examples of node query,

path query, and tree query, respectively.

A t w i g que ry , Q，against a P X M L tree, Tp、can b e p r o ce s sed b y i g n o r i n g the

existence of the distribution nodes/edges in Tp. The result is a set of XML trees,

M (Q，Tp) = {(^1, • . . , <Pn}' Let Lpi be an XML tree in the result for a tw ig query.

The score of ipi, denoted as uj{ipi)^ <?an be computed using any score function as stud-

Chapter 5. Query Ranking in Probabilistic XML Data 72

Algorithm 6 P X M L - R A N K (T > , Q , k)

Input: a PXML tree Tp、a twig query Q’ and an integer k.

Output: XML trees, • • • , ipM’ with top-/c probabilities s.t.

f>Opi) > > P(<pm)-

M tw igQuery (Q , Tp) ;

sort M = • . .，(/?7v} in the non-increasing order o f their scores;

M <R- P-RANK (Tp, K, M) ;

remove all ipi from A i if p((pi) = 0;

sort Ai in the non-increasing order of their top-/c probabilit ies (p((pi));

return M :

ied in [34，79，5]. For sirhplicity we define it as the total sum of its node/edge weights,

i.e. Lu(cpi) = X^uevi '^v(u) + The top-Zc probability of <Pi, p((pi), is given

below.

= YL P 八 Tx) (5-3)
Tx^epwd(Tp)

<PietopkiTxj)

Here, Txj is one XML tree in the possible worlds of the PXML tree Tp {pwd{Tp)), and

the probability of T x ” Pr(Txj.), is computed using Eq. (5.2). The probability of (pi

in the possible world, T x ” is Pv{Tx j) i f (fi is contained in T x j and the score of ipi’

u){(pi), is at least the k-th largest value in Tx j (^ i € topk{Tx j)) . It is important to note

that several answers may appear in one possible world simultaneously. The p{(fii) is

defined as the sum of such probability for every possible world where ipi is contained.

Problem Statement [Top-k P X M L Ranking (P X M L - R A N K)] : Let Tp be a P X M L tree

with possible worlds pwd{Tp). A PXML-RANK query, (Q, k), is specified by a twig

query, Q, and a positive number k, against Tp. It ranks the top-k probabilities for the

answers, (pi, that satisfy the twig query Q.

The algorithm for processing a PXML-RANK query, {Q, k), is outlined in Algo-

rithm 6. First, it obtains a set of XML trees, M 二 { f ^ I ， . . . , V^N}. that satisfy Q,

against Tp (line 1). It can be done over an XML tree which virtually treats every dis-

Chapter 5. Query Ranking in Probabilistic XML Data 73

tribution path between two ordinary nodes in Tp as an edge between the two ordinary

nodes. Any efficient existing algorithms that process twig query can be adapted [75].

Second, it sorts M in the non-increasing order using the scores, such as ^pi appears be-

fore ipj on the sorted M i f > (line 2). Third, it calls P-RANK to compute

the top-Zc p robab i l i t i e s f o r a l l answers in M (l i ne 3) . P-RANK returns A4, w h i c h is a set

of pairs (Lpi, for every answer ipi in M . Finally, it removes all answers � f rom

A i i f their top-Zc probabilities are zero (pi^pi) = 0) (l ine 4)，and sorts A i in the non-

increasing order of their top-/c probabilities [p{ipi)) (line 5). Such M is returned in

line 6. It is worth noting that P-RANK is a time-consuming task in computing PXML-

R A N K quer ies . Given a set o f answers , { (^ i , (^2, • ‘ •，</^;v}，a na ive a pp roach needs to

compute p{ipi) by enumerating all the possible worlds, pwd iTp) , using Eq, (5.3).

Below, we w i l l first discuss how to process node queries (e.g. / /A), and then

based on our techniques to process node queries we w i l l discuss how to process any

path queries (e.g. / /A / /B) , and certain tree queries (e.g. / /A [. / /C] / /B) .

5.3. Node Query

In this section, we discuss processing PXML-RANK queries，(Q, /C), where Q is a node

query in the form of //A. A node query is to find all A-typed nodes in PXML Tp

to be ranked. Let the answer set M be M = {c/?i, ip2、• • •，V^yv} which is processed

by twigQuery(Q, Tp) in line 1 of Algor i thm 6. Note that, here, an answer ipi is an

ord i na ry n o d e i n P X M L tree Tp.

I n the f o l l o w i n g , w e first i n t r oduce s o m e ex is t i ng a l g o r i t hms for p rocess i ng rank-

i ng quer ies i n a s im i l a r bu t d i f ferent set t ing a nd d iscuss the ir de f ic ienc ies for process-

i ng P X M L - R A N K quer ies , f o l l o w e d by d i scuss ions o f o u r n ew approaches .

Chapter 5. Query Ranking in Probabilistic XML Data 74

5.3.1. New Containment Issues

In [45], Hua et al. discussed how to answer ranking queries in x-Relation uncertain

data. In the x-Relation model, there is a set of independent x-tuples where an x-tuple

consists of a set of mutually exclusive tuples (called alternatives). Each tuple in an

x-tuple is associated with a score and a probability. A possible world is generated by

choosing at most one tuple from each x-tuple. Under the x-Relation model’ to process

a ranking query, algorithms based on dynamic programming are proposed. The main

issue is how to compute the probability that a tuple, to be the j-th largest ranked

tuple in possible worlds, denoted as p i j . Assume all tuples are sorted in the decreasing

order based on their scores, { (i ， • •. , In}- The existing algorithms compute p i j , for

I < i < N and I < j < k, where k is the top-/c value. First, consider every x-tuple has

exactly one alternative, or equivalently, all the tuples are independent. The probability

that ti ranks j-\h in a randomly generated possible world from the sorted tuple set

{ t i , … ’ t i } is Pi J = P r (i i) • r i - i , j 一 1. Here, Pr (t i) is the existence probability of

tuple t i . ri、j is the probability that a randomly generated possible world from the tuple

set { t i �… , t i } has exactly j tuples, and can be computed by the fol lowing dynamic

programming equations.

' P r ⑷ • T i ^ i j - i + (1 - P r ⑷)) • ri—i’j if z > j > 0;

1 i f i = j = 0; (5.4)

0 otherwise.

With the above equations, all r ^ j can be computed for 1 < i < N and j ==

0,1，…,/c — 1, based on the previous values, namely, and ^^―],》When x-

tuples represent multiple alternatives, the same dynamic programming equations can

be applied with additional tuple transformations [45].

L ike the x-Relation model, in our PXML model, we consider independent and/or

mutually exclusive nodes, as well as the scores and top-/c probabilities. Unlike the

x-Relation model, we consider one additional criterion, containment. In other word-

s, for a node query, an answer ipi can be an ancestor/descendant of another answer

ipj in the PXML tree Tp. The additional criterion makes it diff icult to apply the

Chapter 5. Query Ranking in Probabilistic XML Data 75

L is t w i t h T u p l e s X M L Tree w i t h N o d e s

• • ... • ④ 〇

® The c u r r e n t resu l t
• Resu l t w i t h s c o r e la rger t h a n the cu r ren t resiHt
O Resu l t w i t h s c o r e n o la rger t h a n the current resu l t

Figure 5.3: List v.s. XML Tree

<

existing techniques [93, 45, 94] to solve the problem in our setting, even for node

queries. Fig. 5.3 illustrates the main differences. First, in an x-Relation model, the

tuples, { t i , t 2 , • • • , tr^}, themselves are the context in which the top-/c probabilities

are computed. The current n ’ j for the sorted set of tuples { i i , • • • U - \ , t i } can be

computed by the previously computed 一 i and 7\� i�] for the sorted set of tuples

{ti, ^2) • • • ̂ i - i } - Note that all tuples are sorted based on their scores in a decreasing

order. Every time for computing ri、j the algorithm only needs to consider an addition-

al tuple ti. The tuples { t i + i , • •. , i； }̂, which have smaller scores than the current tuple

t i , are not needed in the x-Relation model, because they do not affect T i j computing.

However, in our problem setting, it becomes invalid that the nodes which have smaller

scores than the current node are not relevant. As shown on the right side of Fig. 5.3，

a node ("o") with a smaller score than the current node ("©") under consideration can

be an ancestor or descendant of the current node. The existence/absence of every node

may have impacts on the current node.

Remark 5.3.1: The top-k probabilities for answers, {v^i, • • . , need to be

determined in the context of the entire PXML tree. •

Chapter 5. Query Ranking in Probabilistic XML Data 76

• n ⑴ S t e p 1: Dynamic Programming step 2: Compute probabilities

X Node O Answer Node 银 Current Answer • Large Score Node 0 Shrinked Tree Root

Figure 5.4: An Overview of Our Approach

5.3.2. An Overview of Our Approach

We outline our basic ideas for processing node queries in Fig. 5.4. We w i l l discuss

how to extend the basic ideas to process path queries and certain tree queries, and our

optimization techniques later. Let the set of answers, M , be M 二 {(/Pi, • • • , � �

which is processed by twigQuery(Q, Tp) in Algori thm 6. A l l such answers in M are

identified in the PXML tree Tp. It is shown in Fig. 5.4, in the initial stage, where tree

nodes (not answers) and answers in Tp are indicated as " x " and “o，，，respectively.

Then, we compute j)i、j for every answer ipi G M , for 1 < j < k. The answer ipi to be

computed at an iteration is called the current. For the current ipi, we compute pi、j in

two steps, computing a r i j - l i k e variable (step 1) and computing p i j (step 2).

In step 1，given the current answer ipi (indicated as " © “ in Fig. 5.4), the r^ j - l i ke

variable we compute is t^I'^^• There exist main differences between r、」and 厂二二*)•

Recall that r ^ j is the probability that a randomly generated possible world from the

sorted tuple set { i i , . . . , U) has exactly j tuples. In Eq. (5.4), V i j is computed for

the current tuple U using the answers that have a larger score than U's by uti l izing the

sorted tuple set, {ti, • • •,艺 i-i}， in the decreasing order of the scores. The value of i

in V i j means the position of the i - th tuple itself on the sorted tuple set. In our problem

setting, there does not exist such a sorted set. In order to simulate the sorted set, in

other words, the set of answers that have a larger score than the score of the current ipi

(u){ipi)), the superscript of r二)）is introduced. Also，because the sorted tuple set does

not exist, the indicator of i used in 7\ for x-Relation model needs to be reconsidered.

Chapter 5. Query Ranking in Probabilistic XML Data 77

In our model, instead of i, we use a subscript ^pi to indicate a subtree in PXML tree

Tp rooted at node ipi. The meaning of j in T•二^ remains unchanged. In summary,

《(!？）is the probability that a randomly generated possible world from the subtree of

the PXML Tp rooted at ipi has exactly j answers whose score is larger than the score

of cpuu){ipi).

In addition, there is a new issue on containment. For computing 二，)，we need

compute all nodes v ^ Tp including the answers in M as well as the current node ipi

itself. For this purpose, we introduce a general variable r j) where v is o. node in the

PXML tree Tp and /i is a score. We compute r二for every node v 6 Tp、based on

the score using dynamic programming. It is important to note that r二j•广)can

be computed based on the subtrees of the subtree rooted at v in Tp. Upon completion

of the computation, r二’严 are known for every node (including the current) and for

0 < j < k — 1. An answer (pi ^ M is marked as “ • ” in Fig. 5.4, i f it has a larger score

than the current's (uj{(pi) > uj{(pi)).

In fact, up to this stage, 斤）computed is local, since it is computed based on

the subtree rooted at (fi and is not computed in the entire PXML tree Tp globally. Note

that there is a path from the root of PXML tree Tp to the current tp、as indicated by

in Fig. 5.4. The needs to be computed globally under the condition that

the path ®，，must exist. The condition of the existence of such a path "—>•©" may

affect some other which in turn affect r^ l j ' ^ for the current (fi.

In step 2，based on the condition that the path must exist, we compute

global 二(二‘）and pij for the current ipi for 1 < j < k. This is done by condensing

the path into a node indicated as " 0 " in Fig. 5.4. In other words, the PXML

tree Tp is virtually transformed into another PXML tree Tp where the path in

Tp becomes a node “ 0 ” in Tp and all nodes that are connected to the nodes along

the path in Tp are connected to the node " 0 " in Tp. It is worth noting that the

global and therefore pi^j can be computed using the same dynamic programming

because the subtree rooted at ipi is the entire PXML tree. Fig. 5.5 illustrates the main

idea. The left tree is Tp where the path “~»®” consists of an ordinary node (ord),

Chapter 5. Query Ranking in Probabilistic XML Data 78

- O r d
M u x _

O C u r r e n t R e s u l t

^ The pa th t ha t m u s t appea r

Figure 5.5: Computing p i j

a mutually exclusive node {mux), an independent node ind, and the current node �

(the root of the subtree (marked 4)). The right tree is Tp. The subtree (marked 2)

and its incoming edge are removed, because the mux node implies that the subtree

(marked 2) cannot exist. The subtree (marked 3) in 7> is directly l inked to the root

node in Tp w i th the same probability. The ord node is treated as an independent node

wi th probabil i ty one to the subtree (marked 1)，which is connected to the root node in

丁p.

We also use p、j to denote the probability that (pi ranked j-{h according to their

scores in a randomly generated document. Finally, given p i j , can be computed

using the fo l lowing Eq. (5.5) instead of Eq. (5.3).

= E L I Pi, (5.5)

Below, we discuss how to compute in a conditional probabil i ty viewpoint. Sup-

pose M' is the set of answers where every (/?/ 6 M' has a larger score than ipi such as

> u{(pi)) . The probabil ity of v î to appear in the top-/c answers, can be

formulated as fol lows.

Pr((^i appears in the top-Zc answers)

= = P r (i p i appears and at most /c-1 answers in M ')

= P r ((/ ? i appears) x Pr(at most /c-1 answers in M ' | ipi appears)

In [25] Cohen et al studied probabilistic XML wi th constraints (con-

Chapter 5. Query Ranking in Probabilistic XML Data 79

straint satisfaction, query evaluation, and sampling), and the computation of

Pr(at most k-1 answers in M' | (pi appears) can be transformed to a constraint sat-

isfaction problem. The constraint satisfaction problem can be specified by modifying

the PXML Tp as follows: along the path from the root to (pi, for each edge {u, u), (i) if

u is a distribution node, then change the probability v) to one, (i i) i f u is a mu-

tually exclusive node, then remove other children and the corresponding subtrees. Let

the modified PXML be T'p. Then, Pr(at most k-1 answers in M' | ^pi appears) is equal

to the probability that a random generated XML tree from T'p satisfies the constraints

that it contains at most k-1 answers in M'. Cohen et al. show that the constraint

satisfaction problem is polynomial time solvable, and propose an algorithm to solve

it. In this work, we compute p{(pi)y for I < i < N for the fol lowing main reasons.

Although the constraint satisfaction problem is polynomial time solvable, it is pro-

posed for general constraints, and is still time-consuming. For a different {pi, there is a

different T'p、and the algorithm [25] needs to compute p((pi) individually. Instead wc

mainly consider how to share the costs of computing different p(cpi)'s using specific

constraints as discussed above.

5.3.3. An Example

In this section, from a different viewpoint (conditional probability viewpoint), we

explain how to compute p((pi) using an example. Suppose (f>i is the current answer

and M' is the set of answers where every ipi € M' has a larger score than ipi such

as {ijj(}pi) > uj{ipi)). The probability of ipi to appear in the top-/c answers can be

formulated as follows.

Pr(ipi appears in the top-k answers)

= a p p e a r s and at most k — 1 answers in M ')

= Y l j Z o appears and exact j answers in M')

==51)》二 Pr((pi appears) x Pr(exact j/' answers in M ' \ (pi appears).

Chapter 5. Query Ranking in Probabilistic XML Data 80

67(93)

e6(94)

e i (99) 62(98) 65(95) 63(97) ei (99)

e4(96)

65(95)

(a) A PXML T'p (b) A random document T"义-

Figure 5.6: An Example

Here, Pr((^i appears) can be easily computed by multiplying all probabilities, Pe()，

along the path from root node of the PXML tree Tp to ^pi (“—©”) . The conditional

probability of Pr(exact j answers in M' \ (pi appears) is computed upon the condensed

new PXML tree Tp.

Fig. 5.6(a) shows a PXML Tp that specifies the relationships among E-products

(丑-typed). There are 7 E-products Ci for 1 < z < 7. An E-product has a score

(indicated in the brackets) as its performance. There are some uncertainties. The

distribution node indi implies that ey is a part of e^ with probability 0.6 and is a part of

64 with probability 0.7. The two are independent. The distribution node m u x i implies

that either ee is used in ei with probability 0.4 or is used in 62 with probability 0.5,

but cannot be used in both. The two are mutually exclusive to each other. Suppose

a PXML-RANK query (Q, k) is issued against Tp (Fig. 5.6(a)), where Q = //E and

k — 1. The set of E-products to be ranked is M = {e i , 62, 63, 64, 65, eo, e?} which

is computed using twigQuery(Q, Tp) in Algori thm 6. Note that M is sorted in the

decreasing order of the scores (performance indicators). Next, all E-products in M

wi l l be ranked based on top-/c probabilities, p(ei), for 1 < z < 7, against the possible

words pwd{Tp).

One of the possible worlds (e.g. XML tree T々）is shown in Fig. 5.6(b). T ^

is with the conditions that ee and 64 coexist under the independent node i nd i , 65 is

Chapter 5. Query Ranking in Probabilistic XML Data 81

present alone under the independent node ind》, and Ci is present under the mutually

exclusive node m u x i . The probability of T ^ is Pt{T'x) 二（0.4 x 0.6) x ((0.9 x (1 -

0.8)) X 0.7) = 0.03024 where 0.4 is the probability of the subtree rooted at ee, and

(0,9 X (1 — 0.8)) is the probability of the subtree rooted at e^ in T、、respectively. It is

infeasible to compute p(ei) using Eq. (5.3) because it needs to enumerate all possible

worlds pwd{Tp) and summarize the top-/c probabilities for Ci to be ranked top. Note

that the size of possible worlds can be exponential. Instead we efficiently compute

^(e^) using Eq. (5.5).

There are several obvious cases. (1) Cy has the smallest score (93) in M . The

o n l y po s s i b l e w o r l d f o r e? to b e r anked top is the X M L tree w i t h cy on l y , " (e ?) 二

(1 - 0.6) X (1 — 0.7) = 0 12. (2) ei has the largest score in M . I f it appears in a

possible world, it w i l l be ranked top p(ei) = 0.6 x 0.4 = 0.24. (3) 62 is ranked top if

and only i f ei does not appear in the possible worlds where 62 appears. Note that ej

and 62 are mutually exclusive. In other words, i f 62 appears, then Ci wi l l not appear.

p (e2) = 0 . 6 X 0 . 5 = 0 . 3 . (4) 65 c an no t be r anked top , b e c au se i t s ances to r 64 has a

higher score than 65, and whenever 65 appears 64 wi l l always appear. = 0.

Next consider a PXML-RANK query (Q, k) against T'p (Fig. 5.6(a)) where Q

is the same //E but k = 3. The set of answers to be ranked is the same M 二

{ c i , 62, 63, 64, 65, 66, 67}. We discuss computation of top-/c probability, /^(ee), for e^ to

be ranked top-/c. Let CQ to be the current with ci;(e(3) = 94, The E-products that have

larger scores than cj(e6) = 94 are M " = {e i , £2, 63, 64, 65} which we call h-answers.

Consider e^. The P X M L tree T'p can be divided into several parts, P, T\，and T2,

as shown in Fig. 5.7. Here, P represents >©" which must appear because CQ must

appear. Obviously, Pr(e6 appears) = P r (P appears) = 0.6. We have pie^) = Pr(P

appears and at most 2 h-answers appear) = P r (P appears and exact j h-answers

appear) = ^^，一。Pr(P appears) x Pr(exact j h-answers appear | P appears). Note

that P r (P appears) = 0.6. We explain how to compute

Pr(exact j h-answers appear | P appears) (5.6)

for 0 < j < 2 below. Recall that, given the current ee, in our notation, the probability

Chapter 5. Query Ranking in Probabilistic XML Data 82

Figure 5.7: Cut the Tree into Sc veral Parts

that exact j answers f rom M^ appear-in the subtree rooted at v is denoted as •广)=

r ^ j . For simplicity, we use r ^ j below.

Case-1 (J = 0): Eq. (5.6) equals to Pr (0 h-answer in appears) x P r (0 h-answer in

T \ appears). For the first part, i t is r^u i i .o- The only situation that 0 h-answer appears

in the subtree rooted at m u x i (7 \) is that none of ei and 62 appears. Since ei and 62

are mutual ly exclusive, we have Vmuxxfi = — pe{ rnux i ,e i)— p d m u x i , 62) = 1.0 —

0.4—0.5 = 0.1. The second part is equal to Pr(the absence of edge (incfi，e4))+Pr(the

existence of edge (i n d i , 64)) x t^^^q = (1.0 — 0.7) + 0.7 x t^^^q. Here, rg^.o = 0

because 64 must appear when considering the subtree rooted at 64, so the second part

is 0.3 + 0.7 X 0 = 0.3. Combin ing the two parts, Eq. (5.6)，for j 二 0，equals to

0.1 X 0.3 = 0.03.

Case-2 (j = 1): Eq. (5.6) equals to Pr (0 h-answer in T\ appears) x P r (l h-answers

in T2 appear) + P r (l h-answers in appear) x Pr (0 h-answer in T2 appears). Note

that Pr (0 h-answer in T\ appears) = 0.1 and Pr (0 h-answer in T2 appears) = 0.3 are

computed in Case-1.

Here, P,r(l h-answer in 7\ appears) = Tmuxui- The only situation that 1 h-answer

in the subtree rooted at mux\ (Ti) appears is that either ei appears or 62 appears. Since

ei and 62 are mutually exclusive, we have P r (l h-answer in T2 appea rs)= mux I.

Chapter 5. Query Ranking in Probabilistic XML Data 83

Pe{mux i ,e i) + pe(mwxi, 62) = 0.4 + 0.5 = 0.9.

Also P r (l h-answer in T2 appears) = Pr(the existence of edge (m d i , 64)) x

re4,i = 0.7 X『64,1. The only situation that 1 h-answer appears in the subtree rooted

at 64 (T2) is that 0 h-answer appears in the subtree rooted at i n d i , i.e., r^^^i =

It means that neither 65 nor 63 appears, i.e. 7"ind2,o —• (1 — 几<^2, 65)) x (1 —

Pe(277,^2,63)) = (1 一 0.9) X (1 - 0.8) 二 0.02. Then, we have P r (l h-answer in T\

appears) = 0.7 x 0,02 = 0.014.

Therefore, Eq. (5.6), for j = 1，equals to 0.1 x 0.014 + 0.9 x 0.3 = 0.2714.

Case-3 { j = 2): Eq. (5.6) equals to Pr(0 h-answer in T\ appears) x Pr(2 h-answers

in T2 appear) + P r (l h-answer in appears) x P r (l h-answer in T2 appears) + Pr(2

h-answers in T\ appear) x Pr(0 h-answer in T2 appears) = 0.1 x Pr(2 h-answers in

T2 appear) + 0.9 x 0.014 + Pr(2 h-answers in T\ appear) x 0.3. The probabilities for

j < 2 are computed already in Case-1 and Case-2.

Here, Pr(2 h-answers in 7\ appear) = rmux 1,2- To have 2 h-answers appear in

the subtree rooted at m u x i , both ei and 62 must appear. This is impossible because ei

and 62 are mutually exclusive. We have Pr(2 h-answers in 7 \ appear)—厂職0：1,2 = 0.

On the other hand, Pr(2 h-answers in appear) = Pr(existence of edge

(m d i , 64)) X 7-64,2 = 0.7 X 7-64,2- The only situation that 2 h-answers appear in the

subtree rooted at 64 is that 1 h-answer appears in the subtree rooted at i n d i , i.e.,

re4,2 = Tind-i,!' I t mcans that either (a) 65 appears but 63 does not appear or (b) 65

does not appear but 63 appears. We have ri„d2,i = pe(ind2’ 63) x (1 — peiind^, 65)) +

(1 - Pa(ind2, 63)) X pe{ind2, 65) = 0.9 x (1 - 0.8) + (1 — 0.9) x 0.8 = 0.26. We have

Pr(2 h-answers in T2 appear) = 0.7 x 0.26 = 0.182. Therefore, Eq. (5.6), for j = 2，

equals to 0.1 x 0.182 + 0.9 x 0.014 + 0 x 0.3 = 0.030».

Wi th all the three cases, ^(ee) = P r (P appears) x Pr(exact j h-answers

appear | P appears) = 0.6 x (0.03+0.2714+0.0308) = 0.19932. For the PXML-RANK

query {//E, 3) against TP (Fig. 5.6(a)), the ranking is shown below.

P M P(e3) P(e7) P(e5) P(e2) P (e i) P(e6)

0.7 0 .56 0 .37924 0 .35784 0.3 0 .24 0 .19932

Chapter 5. Query Ranking in Probabilistic XML Data 84

Algorithm 7 P - R A N K (T>，k, M)

Input: a PXML Tp, an integer k , and a sorted set of twig query

answers M = { (p i , . . . s.t. > • >

Output: {ipup{ipi)), for 1 < 2 < TV.

for i <- 1 to N do

H-PROB (Tp, ifi、k)\

P < - path(Tp,(^i);

Tp — PATH-CONDENSE (Tp ,

v' •(— TOOt{Tp)\

H-TOPK {v\ k, u}{ipi), childrenOu'));

s c oun t (P) ;

P — rUepMe);
Pi,j <r- 0，for 1 < j < s;

2

3

4

5

6

7

8
9

10

11

12

13

P i j — P • C / T - L i ' for s -f 1 < j < /c; ,，j-vfc

end for

return { (vn’ /^O^i)) ’ . . . , (w , p (w)) }；

5.3.4. Algorithms

The algorithm to compute P-RANK for node queries is given in Algor i thm 7. It

takes three inputs. The PXML tree Tp, the top-/C value /C, and a set of answers

M = {(^1, (p2j • • • , ̂ n} which is sorted in the decreasing order of their scores a;(-).

For each ipi (the current), in a for-loop, it processes the fol lowing tasks. It computes

its local r^ f^ i) using dynamic programming (line 2). I t identifies the path from the

root of Tp to the current (pi (“—©”）’ and assigns it to P (line 3). Then, it virtual-

ly reconstructs Tp to Tp by condensing the path P into a node which is the root of

Tp, (line 4-5). I t computes the global in line 6 using dynamic programming

where children(z/) indicates the children of the root node v'. In order to compute pi、j

where i implies (/?“ it counts how many nodes on the path P (“—®”）that are with a

Chapter 5. Query Ranking in Probabilistic XML Data 85

Algorithm 8 H - P R O B (Tp, ip, k)

Input: a PXML Tp(Vp, Ep), an answer ip、and an integer k.

Output: r二(广 for G Vp and 0 < i < A: - 1.

f o r every G V p in the post-order traversing order d o

i f I； is a leaf node then

4 - 0 , f o r O < j < A : - l ;

i f is an answer with > h then

else

,0

end i f

else

let (v i , … , 1； / } be the set o f children of v in Tp\

H-TOPK - - ,1；/})；

end if

end for

return r二(j^);

score greater than (line 7). The algorithm computes P i j (line 8-10), and then

computes in line 11.

We explain H-PROB (used in line 2, Algori thm 7). The H-PROB algorithm is

given in Algor i thm 8. It takes three inputs, the PXML tree Tp, the current answer ip、

and the value of k. The main task of H-PROB is tS^compute local r j】where h = ij{ip)

in a bottom-up fashion. For non-leaf nodes, it further calls H-TOPK (Algorithm 9) to

compute using dynamic programming. The H-TOPK algorithm takes four inputs to

compute r j j , for 0 < j < k. Here，h is the score of the current ip, v is the non-leaf

node in question, • •. , vi} are the children of v. It assumes that r j . ^ , for 1 < z <

Z, have already been computed. (Note that the H-PROB algorithm uses a bottom-up

traversal to compute.) There are several cases handled in the H-TOPK algorithm: (1) v

Chapter 5. Query Ranking in Probabilistic XML Data 86

is a mutually exclusive distribution node (line 1-3)，(2) v is an independent distribution

node (line 4-11)，and (3) v is an ordinary node (line 12-20).

Algorithm 9 H-TOPK (D, /C，/I, . . •

8

9

10

11

12

13

14

15

16

17

18

19

20

2

2

2

2

2

2

2

2

i f V is mutually exclusive then

— E L I M v , Vi).《j、forO< j < / c

< 0 — < 0 + (l -ELlPe(”，W));

end if

i f V is independent then

for z 1 to / do

K,o — K,o + (1 —
end for

}h

、j、for 0 < j < A:

Ji
uo ,3

B!i^jJorO<j <k

for i 1 to Z — 1 do

VI+I, „ for 0 < J < /c -

end for
M

ut. for 0 < j < /c -

end i f

if V is ordinary then

^0,3
to I for i <—

‘ t i t , J厂乙

end for

for 0 < j < /c -

do

=0

if V is an answer with > h then

’!}，- — r j j 1, for 1 < 7 < A:-
V,J tij 一 —1, 一 J 一

to ^ 0;

else

end i f

end if

return ri

UL, i’ for 0 < j < /c

Chapter 5. Query Ranking in Probabilistic XML Data 87

V

V l V2

(a) 2 children

(• A
V \ ； \ V,

/ / \ \
V i V2 …

/\
八 V 3

V i V2

(b) I children

Figure 5.8: Computing r^^

Below, we explain the case when v has 2 children (/ = 2): {vi,v2} (Fig. 5.8(a)).

Note that both j and r J ^ j have been computed.

I f I； is a mutually exclusive node, for j > 0，Vi and V2 can not appear simultane-

ously. r j j can be computed in two cases, either with the subtree rooted at Vi or with

the subtree rooted at V2. That is, r^j = Pe{v, Vi) • j + Pe{v, V2) • F o r j = 0, it

needs to consider an additional case that none of the two subtrees are selected. o is

computed as follows. rJo = p^{v,v2)).

I f V is an independent node, the existence of Vi is independent f rom each other

where i = 1^2. v chooses either t>i’ or V2, or both, or none. Let B^.j be the probability

t ha t a r a n d o m l y gene r a t ed X M L tree, f r o m the b r a n c h (?;, Vi) w h i c h cons i s t s o f the e d g e

Vi) and the subtree rooted at Vi, contains exactly j answers wi th score greater than

h. When j > 0’ Bl^^j = Pe{v,vi) . r^、” and, when j = 0，B。,。= Pe(v,vi) . < . 0 +

(1 — Pe(y, ^t)) . Then, r ^ j includes the cases that, in a randomly generated XML tree,

one branch, say (v, Vi), contains exactly s (< j) answers wi th a score greater than h,

and the other branch, say t»2)，contains exactly j — s answers wi th a score greater

than h, and is computed as r^ = J]二= 。 .召工】一， f o r 0 < j < A; - 1.

I f is an ordinary node, i t can be computed by treating as an independent

node, i.e. v has two independent children Vi and wi th probability vi) = 1

and PEIVY V2) = 1，which means that both edges must exist with probability one. First

compute f l ^ j by treating i; as an independent node, i.e. f ^ j = Yli=o . 《 j — i . Note

that in this case S么 3 = r ^ . I f v itself is an answer with score greater than h, then

Chapter 5. Query Ranking in Probabilistic XML Data 88

m u x i
O . y ^ \ 0 . 5

e i (99) 82(98) 65(95) 63(97)
• s

‘ I

I , Nodes changed
、 z

Figure 5.9: Computing H-PROB (T•尸，(̂ i+i, K)

r^j —尸J’j—1 for 0 < J < /c — 1 and r^Q = 0，otherwise = f^ - for 0 < j < k — I.

We design our algorithm for handling general I children of a given node v. I f

V is an independent node or an ordinary node, in order to compute we need

to consider how many exact answers out of j answers are from which subtrees by

enumerating all the sequences, Zi, • • • , i i , such that â = j for any fixed j G

{ 0 , … , k — 1 } . We handle I children of a given node v’ i f it is an independent/ordinary

node, by transforming the node v with I children into a left-deep binary subtree, as

shown in Fig. 5.8(b). There are 21 — 1 nodes in the transformed binary tree in total,

{i；!,.. • •' ’ v}. Here, vi, • •. , Vi are leaf nodes, Ui has two children (？；!

and 1)2)，Ui, for i〉1，has two children (u^—i and t̂ i+i)，for 2 < z < / — 2. The

node V has two children ui_2 and vi. I f v is an ordinary node, then i t i �… ,u i—2 are

ordinary nodes with weight 0. I f v is an independent node, then Ui, • • • , ii/_2 also are

independent nodes, the probability /9e(f, Vi) is specified on the incoming edge to Vi.

A l l other edges have probability one. I t can be verified that the transformed left-deep

tree w i l l give the same result. The H-TOPK algorithm (Algorithm 9) is designed using

the left-deep binary tree, where vi is treated as uq and v is treated as uz- i .

Chapter 5. Query Ranking in Probabilistic XML Data 89

for " = 0； for h = u

node (v) j -Q •7 = 1 J = 2 j - 0 J. = 1 j = 2

e i 0 1.0 0 0 1.0 0

62 0 1.0 0 0 1.0 0

63 0 1.0 0 0 1.0 0

64 0.2 0.8 0 0 0.2 0.8

es 1.0 0 0 1.0 0 0

ee 0.1 0.9 0 0.1 0.9 0

e? 0.2024 0.4952 0.3024 0.138 0.2264 0.3332

muxi 0.1 0.9 0 0.1 0.9 0

indi 0.2024 0.4952 0.3024 0.138 0.2264 0.3332

ind2 0.2 0.8 0 0.2 0.8 0

Table 5.1: Consecutive Computing rjf for h = u{e4),uj{es)

Opt im iza t ion - I : As indicated in the P-RANK algorithm, it needs to call the H-PROB

algorithm for every answer tpi in M = { (^ i , …， ^ n } , which is sorted in the de-

creasing order o f the scores. The cost of computing using dynamic programming is

costly. In fact, the cost can be shared between successive calls of H-PROB, e.g., H-

PROB (Tp, (pi, k) and H-PROB (Tp, ^ i + i , k). Consider the same PXML-RANK query

(/丑 , 3) against the PXML tree Tp (Fig. 5.6(a)). Table 5.1 shows the results of

when computing the two consecutive answers, 64 and 65. It shows that most values

when computing r ^ j for 65 remain unchanged，given computed for 64. The possi-

ble change part is highlighted in the dot rectangles in Fig. 5.9, which is along the path

f rom the root to the previous answer. A lemma is given below.

Lemma 5.3.1: Let H-PROB (Tp, Y?I’ k) and H-PROB (Tp, k) be two consecutive

executions, for two answers, ipi and ipi+i in the sorted answer set M. When ^

uj(}fi^\), the values and r二^+丄)are identical for the nodes that are not on

the path from the root ofTp to the node ipi. When — for all nodes,

‘vj — ' vj •

Chapter 5. Query Ranking in Probabilistic XML Data 90

level 0

. V M 1 M2 l e v e l 1

力IW « A
a • • •«• ••_ ••着

V2 V 3 . . . V | / \ 乂

VIV2V3 … V | level f loggl l

Figure 5.10: Convert a Node wi th I Children to a Complete Binary Tree

The P-RANK and H-PROB algorithms only need to be slightly changed to adapt

the optimization-I.

Op t im iza t i on -N : As stated in Optimization-I, for two successive H-PROB (7 > , � �k)

a n d H-PROB (T p , v? i+ i � / c) , o n l y the r二 j f 。 v a l u e s fo r t hose nodes i； o n a cer ta in pa th

change. For each such a node v，suppose it has I children vi,V2, - • • , vi. i f v is an

independent node or an ordinary node, we have to spend • I) time to compute
M vj using H-TOPK. When I is large, the cost can be large. In the fo l lowing, we show

that we can reduce i t to 0(/c^ . log(/)) . We construct a complete binary tree B wi th

d =「log2 /"I + 1 levels, where the root is at level 0 and the p- th level has HP nodes for

0 < p < d. The root of B is ^^ the non-leaf nodes are independent nodes marked ui,

and the leaf nodes are - - , vi under nodes in level rf — 1 as shown in Fig. 5.10.

The probabil i ty associated with the edge between v and Vi is reserved for the edges

incoming v i in B. Other newly added edges have probabil i ty 1. I t can be proved that

r二 jp) on the new tree is equal to those on the original tree. Ut i l iz ing the complete

binary tree, we only need . log(Z)) to compute v without affecting other nodes

because the depth o f the new tree is 0 (l og (/)) and in the path f rom v to vi, the degree

of each node is at most 2.

Chapter 5. Query Ranking in Probabilistic XML Data 91

9 3 ^ 4

a i
N

a i 32 32

32 32
气1

b i b i
1

b2 b2

、 92 93 .
Figure 5.11: Handling Mult iple Path Results in a Single Node

5 . 4 . P a t h Q u e r y a n d T r e e Q u e r y

In this section, we discuss other twig queries, namely, path queries, / /A / /B , and tree

queries / /A[. / /C] / /B. Our techniques can efficiently process any path queries. Con-

sider a P X M L - R A N K query {//A//B, /C), against the P X M L tree Tp (Fig. 5.1(b)). The

answers are a set of paths, M = { a i —> 6i, ai —>> 6i —>• 62, a2 63, a2 — — > 64}.

In our problem setting, the existence probability of a node is equal to the probability

of the path from the root to the node, because the existence of a node depends on the

existence of its ancestors. Therefore, we can compute the top-/c probability for an an-

swer of a path query, as to compute the last node of the answer. Taken ai —> 61 —> 62

as an example, we can compute its top-/c probability as to compute the top-/c probabil-

ity for 62. Our techniques can be used for processing any PXML-RANK queries (Q, k),

where Q is a path query.

We further explain how to process when several answers that have the same

lowest node, using an example. Suppose that there are four answers to be ranked,

M = {<^1, ip2、(/?4}, where an answer ipi is shown in the rectangle in Fig. 5.11 over

the data path in PXML tree on the left side in Fig. 5.11. Here, the two answers, (pi and

share the same lowest node 61, and the other two answers, <̂ 3 and ip^, share the

same lowest node 62. When processing top-A: probabilities for the four (path) answers,

we virtually add four additional nodes to represent the four (path) answers as indicated

Chapter 5. Query Ranking in Probabilistic XML Data 92

d
ind

a i 3 2

0.8 O.^XolaNO.S
b 4

0. 0.

C1

ind ind ind
0 3 0.7

C4

Figure 5.12: A PXML Tree

along the path on the left side in Fig. 5.11. Here, bi has two additional virtual children

indicated (pi and (^2，and 62 has two additional virtual children <̂ 3 and Lp、. Wi th the

additional virtual nodes，we can process top-/c probabilities using the same techniques

we discussed for processing top-/c probabilit ies for node queries.

5.4.1. Discussions on Tree Query

However, i t is di f f icul t to efficiently compute any PXML-RANK queries (Q, k), where

Q is an arbitrary tree query, even for k = 1. We explain it using an example. Consider

the PXML tree in Fig. 5.12，and a PXML-RANK query, (Q, k) where Q = / / A l / / B] / / C ,

and k = I. There are 10 answers. For simplicity, we use a 3-tuple to indicate a

resulting subtree for the PXML-RANK query. One resulting subtree is RI = (AI, 61, CI).

There are other 9 resulting subtrees rooted at 02 wi th any one of the three bi’ for

2 < z < 4, and any one of the three c) , for 2 < j < 4. As one example, consider

r2 = (a2, 62, C3) where 02 has three children {62, 6 3 , 6 4 } , 62 is in the subtree rooted at

62 and C3 is in the subtree rooted at 6 3 . The fact states that our dynamic programming

techniques cannot be used to efficiently compute top-/c probabilit ies even for r i over

the 10 subtrees. I t is because that we cannot compute r^^^j based on the values of r ^ . j ,

for 2 < z < 4, that are obtained for the children. Any combinations are possible, and

Chapter 5. Query Ranking in Probabilistic XML Data 93

we need to enumerate all possible w o r l d s . ‘

We give conditions. A general PXML-RANK tree query, (Q, /C), can be computed

in polynomial time i f one of the conditions are satisfied. The conditions are imposed

on the set of answers, M = • •.，仰}，to be ranked, which is generated by

twigQuery(Q, Tp) in Algorithm 6. The conditions can be checked when processing

twig queries without high overhead. Below, for a given tree query Q’ we'call a path

in Q a primary path and denote it as PQ. For example, //A//B is a primary path of

/ /A \ . / /C] / /B. Note that an answer ipi can be a subtree.

1. The edges of results do not overlap with each other, ipi n (^j = 0 for i < j.

2. Every edge, e', of every answer ipi 6 M、which is not on the primary path Pq、

must be associated with Pe(e') = 1. (An ordinary edge, e'，is considered as an

edge with pe(e') = 1).

3. Let i f i and (pj be two different answers. Suppose Pi and p j are the path线 in ipi

and IFJ that match PQ、respectively. There exist two subtrees JI = (FII — ft and

7 j = ipj — p j where (pi = Pi U 7i and (pj — Pj U 7). I f there exist a node Vi on

the path pi that is a descendant of a node Vj on the path p j , then and must

be identical.

As an example, consider the PXML tree, Tp in Fig. 5.1(b), and the twig query

Q = //A[.//C]//B (Fig. 5.1(c)). The answer set M = {(^1, (^2, where TPI =

{ (a i , 6 i) , (a i , c i) } , ip2 = { (a i , 61), (61,62), (a i ,C i) } , ips = {(02，63), (̂ 2̂，C2)}，and

(̂ 4 = {(02, &3), 3 A) ’ (^2, C2)}. Let PQ = I/A//B. The four answers, IPU for 1 <

z < 4, do not satisfy the first and the second condition. But they satisfy the third

condition. For example, consider ipi and (^2�Pi = (ai , ^1) and p2 = (仅 1 �6 2) ;

and 7 i = (ai , Ci) and 72 = (a i , Ci). There exist 61 on /?i that is a descendant of a node

a i on/32. 7 i = 72.

The conditions allow us to compute a PXML-RANK tree query using our dynamic

programming techniques. In brief, when either the second or the third condition is

satisfied, we can compute top-/c probabilities for a subtree ^pi as to compute top-/c

Chapter 5. Query Ranking in Probabilistic XML Data 94

Figure 5.13: Compute top-/c probabilities for a Subtree Answer

probabilities for the lowest node of IPI on the primary path PQ in the same way of

processing path queries. Processing a tree query, when the first condition is satisfied,

is complicated, because some nodes of a subtree answer v?, can be ancestors of another

subtree answer ipj. We discuss our main ideas below, due to the space l imit .

Let M = (^2, . . . } be a set of the subtree answers to be ranked, and let ip

be the current subtree. We call a subtree answer ipi a h-answer i f it has a larger score

than the current's. For each ipi, we use root{(pi) to denote the root of ipi, P^^. to denote

t h e p a t h f r o m t h e r o o t n o d e i n t h e P X M L tree t o root{ipi), a n d P r ^ ^ = UeeipiPei^) i f

there are no mutually exclusive nodes in (pi, otherwise P r ^ . = 0. We use r ^ j instead

of r^j^^ for short below. First, for computing the probability P r (j h-answers appear

ip appears), we set all PeO = 1 for the edges in P^ U and remove the branches

which are mutually exclusive with any nodes in P^ U ip. We cannot simply condense

P̂ p to a node, because P^ may contain some part of other h-answers. The process of

setting peO = 1 serves the same purpose of condensing a path into a node. Second,

we compute r ^ j where a subtree answer ipi is rooted on v. Note that i ; is an ordinary

node. We condense ipi to a virtual node v' and remove the branches that are mutually

exclusive wi th any nodes in ipi (see Fig. 5.13). The true r ^ j is computed as follows:

r y j — Vyj — Pr中、X r”'、j + x 7v , j _ i , where the r^j appears on the right side

is computed on the left tree in Fig. 5.13 where every node/edge in (pi is considered

separately. The existence of the entire ipi is ensured on the right tree in Fig. 5.13. It

can be easily handled when multiple subtree answers are rooted at the same node v.

Chapter 5. Query Ranking in Probabilistic XML Data 95

5.5. Performance Studies c

We conduct extensive experiments to test the performance of our algorithms. We

have implemented our PXML-RANK algorithm. The main algorithm to be tested is

P-RANK. We have implemented P-RANK without Optimization-I and Optimization-II,

the P-RANK algorithm using Optimization-I, and the P-RANK algorithm using both

Optimization-I and Optimization-II. We denote them as pRank，pRank-l and pRank-ll,

respectively. A l l algorithms were implemented in C++. We conducted all the experi-

ments on a 2.8GHz CUP and 2GB memory PC running XP.

We use two real datasets, DBLP (h t t p : / / d b l p . u n i - t r i e r . d e / x m l /)

a n d M o n d i a l (h t t p : / / w w w . i n f o r m a t i k . u n i - f r e i b u r g . d e / - m a y / l o p i x /

l o p i x - m o n d i a l . h t m l) ’ a n d the syn the t i c X M L b e n c h m a r k dataset X -

Mark (h t t p : / / m o n e t d b . c w i . n l / x m l /) for testing. For XMark, we also

genera te m a n y datasets w i t h d i f f e ren t s izes. F o r e a ch X M L dataset used , w e genera te

the c o r r e s p o n d i n g P X M L t ree，us ing the s a m e m e t h o d as used i n [55]. W e v is i t

the nodes in the original XML tree from top to bottom. For each node v visited,

we randomly choose some distribution nodes with random types and probability

distributions to be the children of v’ then for the original children of v, we choose

some of them to be the children of the new generated distribution nodes. We control

the pe r cen t age o f the d i s t r i bu t i on n odes to genera te d i f f e ren t P X M L trees f o r e ach

dataset .

In answering a PXML-RANK query, we first compute all answers using a modified

twig pattern matching algorithm based on [75]. The algorithm we use can process the

entire P X M L tree in a streaming m a n n e r , and therefore does not need to keep the entire

PXML tree in memory. Then we prune nodes, v, on the PXML tree i f the subtree rooted

at V dose not effect the ranking, and get another projected PXML tree. We run our

three algorithms pRank, pRank-l and pRank-ll, to compute top-A: probabilities for all

results over the projected PXML tree i f they satisfy one of our conditions. For each test,

we record the time and space consumption of all algorithms. The time consumption

http://www.informatik.uni-freiburg.de/-may/lopix/
http://monetdb.cwi.nl/xml/

Chapter 5. Query Ranking in Probabilistic XML Data 96

ID Query Result

D1 dblp//book[.//author]/key 1,684

D2 dblp//article[.//title//sub]/key 2，928

D3 dblp//proceedings[key]//series[href] 5,909

D4 dblp//incollection[key]//author 8,842

D5 dblp/article[.//cite[label]]//key 13,785

M l mondial//river[.//located[country]/province][id]/name 237

M2 mondial//city [country] [.//population/year] [latitude]//province 705

M3 //country [.//province[name][population]/city [id]] [capital]/total_area 2,595

M4 mondial/organization[established] [headqj/members [type] 5,226

M5 mondial//organization[.//members[type]/country][name]/abbrev 7,505

X I site//category[.//text/bold]//id 712

X2 site//description//keyword/emph 1824

X3 //namerica//item[.//parlist//listitem//listitem]/id 3,043

X4 //closed_auctions/closed_auction//itemref[item] 5,850

X5 //open_auctions/open_auction[id]//author[person] 7,200

Table 5.2: Queries Used for A l l Datasets

consists the query processing time fo generate all the results, the projection time and

the time for computing top-/c probabilities for all results. The main space consumption

is caused by maintaining r ^ j values. For pRank, r二(J‘）values for a node Vi can be

released when r二j•广)has been computed where v is the parent of Vi. For pRank-l and

pRank-ll, in order to share the computational cost, r二：广)values need to be kept for

computing …)• pRank-ll consumes more memory because Optimization-II needs

to maintain complete binary trees.

For the DBLP dataset, the original XML tree has 13, 318, 516 nodes with 41 d-

ifferent tags and the maximum depth of 6. We range the percentage of distribution

node f rom 10% to 50% and generate 5 different PXML trees. The queries used for the

DBLP dataset are listed in Tab. 5.2 from D1 to D5, with combination of both 丨丨 and

Chapter 5. Query Ranking in Probabilistic XML Data 97

Parameter Range Default

DistNode(All) 10%, 20%, 30%, 40%, 50% 30%

Top-fc (Al l) 10, 20’ 30，40’ 50 30

Query(DBLP) D1，D2, D3, D4, D5 D3

Query (Mondial) M1，M2, M 3 ’ M 4 ’ M5 M3

Query(XMark) X I , X2，X3’X4, X5 X3

Node Number(XMark) 0.5, 1’ 1.5, 2, 2.5 (X10®) 1.5

Table 5.3: Parameters Used for Testing

/ operators. We l ist them in increasing order o f result size. The parameters used for

testing D B L P dataset are listed in Tab. 5.3, where DistNode means the percentage of

distr ibution node. For the Mond ia l dataset, the or iginal XML tree has 70’ 459 nodes

w i th 51 dif ferent tags and the max imum depth o f 5. The queries used and parameters

w i th default values are l isted in Tab. 5.2 from M l to M 5 and Tab. 5.3 respectively. For

the X M a r k datasets, we generate 5 different datasets w i th dif ferent sizes for testing.

There are 77 dif ferent tags w i t h the max imum depth o f 12 for each of the generated

XML tree息.We set the percentage o f distr ibution node to be 30% and convert them to

the corresponding PXML tree. The number o f nodes for each PXML tree is shown in

the last row o f Tab. 5.3. The queries used and parameters w i th default values are listed

in Tab. 5.2 from X I to X 5 and Tab. 5.3 respectively.

Test-DBLP

Fig. 5.14 shows the testing results over D B L P datasets. F rom Fig. 5.14(a) and 5.14(b),

we know that when the percentage of distr ibution nodes increases, both the t ime and
、

memory consumption fo r the three algorithms marginal ly increase. pRank-l l is more

than 300 times faster than pRank although cost about three times more memory than

pRank. pRank-l is more than 10 times faster than pRank although cost about 2 times

more memory than pRank. Fig. 5.14(c) and Fig. 5.14(d) show that when the number

o f results increases, the t ime and memory used for the three algorithms do not nec-

(d) Vary Query (c) Vary Query

(e) Vary Top-/c (f) Vary Top-fc

Figure 5.14: Testing DBLP Dataset

essarily increase. It is because the increasing of the number of results dose not mean

that the size of the projected PXML tree to be tested also increases. The time for all the

three algorithm is influenced by both the number of results and the size of the project-

ed PXML tree. The memory consumption for all the three algorithms reflects the size

o f the projected tree. In Fig. 5.14(e) and Fig. 5.14(f), we can see that, when k increas-

es, the time for all the three algorithms w i l l increase. The memory consumption for

pRank-l and pRank-ll w i l l increase linearly wi th k，while the memory consumption

for pRank is not influenced by k. pRank-ll is also much more faster (about 100 times

faster) than pRank although cost some more memory (not larger than 8 times more).

The performance of pRank-1 is between the other two algorithms.

M

J
12

10

0.5

s
s

(a) Vary DistNode

k

a
n
喻

(b) Vary DistNode

p R a n k
p R a n k - l —

p R a n k
，(Rank-丨 3
R a n k - "

Chapter 5. Query Ranking in Probabilistic XML Data 98

4

2

0

8

6

4

2

1

1

1

(
g
j
^
y
o
o
l

E
l
s

(d) Vary Query (c) Vary Query

1 0

M1 M2 M3 M4

(a) Vary DistNode (b) Vary DistNode

• R a n k m -
p R a n k - l © -

p R a n k - l i ~ ~

(e) Vary Top-Zc (f) Vary Top-fc

Figure 5.15: Testing Mondial Dataset

5.5.2. Test-Mondial

Fig. 5.15 shows the performance of the three algorithms over the Mondial dataset.

Fig. 5.15(a) and Fig. 5.15(b) show that when the percentage of distribution nodes

increases, the time and memory consumption for all the three algorithms w i l l increase.

pRank-ll is more than 100 times faster than pRank, and is 2 times faster than pRank-

I. The memory consumption of pRank-ll and pRank-l are almost the same and are 3

times more than pRank. In Fig. 5.15(c) and Fig. 5.15(d), when the number of results
*

increases in the Mondial dataset, the size of the projected tree w i l l also increase (which

is reflected by the increasing of memory consumption), so the time for all the three

algorithms w i l l increase. Fig. 5.15(e) and Fig. 5.15(f) show that when k increases, the

Chapter 5. Query Ranking in Probabilistic XML Data 99

2

2

1

1

0

0 0 *

1 0 s
i

I
I
I
-

e
n
^
 s

s

00

10
s§

Chapter 5. Query Ranking in Probabilistic XML Data 100

t ime for all the three algorithms w i l l increase. The memory consumption for pRank-

I and pRank-ll w i l l increase linearly whi le the the memory consumption for pRank

remains the same. Comparing to the D B L P dataset, in the Mondia l dataset, the time for

pRank-1 is more similar to pRank-ll, because in the D B L P dataset, we can always find

nodes wi th very large number o f children in the projected PXML tree, for example the

root node tagged “DBLP”，which w i l l decrease the efficiency o f pRank-l, whereas, in

the Mondia l dataset, the degree of each node is not large which makes the advantages

of opt imizat ion-I I less obvious.

5.5.3. Test-XMark

Fig. 5.16 shows the performance of the algorithms on the X M a r k datasets. Fig. 5.16(a)

and Fig. 5.16(b) show that when the number of distribution nodes increases, the time

and memory consumption for all the three algorithms w i l l also increase. Fig. 5.16(c)

and Fig. 5.16(d) show that when the number of result increases，the t ime for all the

three algorithms w i l l increase i f the size of the projected P X M L tree (memory con-

sumption) increases. Otherwise, the t ime is influenced by the size o f the projected

P X M L tree. F i g . 5 . 1 6 (e) a n d F i g . 5 . 1 6 (f) s h o w the p e r f o r m a n c e o f the three a l g o r i t hms

when increasing k, which are similar to that in the D B L P dataset. In Fig. 5.16(g) and

Fig. 5.16(h), when the size of the data (Node Number) increases, the t ime and mem-

ory consumption for all the three algorithms w i l l increase, because when the size of

the da t a increases , b o t h the n u m b e r o f resul t a n d the s i ze o f t he p ro j ec ted P X M L tree

w i l l increase. The t ime used for pRank-ll is about 100 times faster than pRank, and

the t ime used for pRank-l is about 30 times faster than pRank for all experiments on

the X M a r k datasets. The memory consumption for pRank-l is similar to the memory

cost for pRank-ll, and is at most 5 times the memory consumption for pRank for all

experiments on the X M a r k datasets.

0.2 0.3

(a) Vary DistNode (b) Vary DistNode

1

I

12
10

X I X 2 X 3

(c) Vary Query (d) Vary Queiy

(e) Vary Top-fc

1 0

(f) Vary Top-k

.5 2 . 0 2 . 2 . 5

(g) Vary Node (X10®) (h) Vary Node (X10®)

Figure 5.16: Testing XMark Datasets

P̂R
pRank)K
R a n k - I o 一�

p R a n k
pFRank-l

p R a n k - M

p R a n k 来 .
p R a n k - l ©——

p R a n k - l l ——a——

^ ^
fir w 解

PPRF
p R a n k
R a n k - l

Chapter 5. Query Ranking in Probabilistic XML Data 117

5

4

3

2

ank
•ik-l
k-ll

良ai

s
s

S
B

ooo

too
1 0

0 0 0

1 0 0

1 0

S
B

s
s

CHAPTER 6

CONTEXT-SENSIT IVE D O C U M E N T

R A N K I N G

6.1. Introduction

Keyword search is an important issue in the information retrieval area [9] and has been

widely and extensively studied over decades. Most of the existing keyword search

approaches return a set of documents wi th ranking that is most important and relevant

to a set of user-specified keywords. However, in many real applications, the documents

may not be the only data source, and there are other forms of interrelated data for the

same application domain. In this chapter, we study a new ranking problem that is to

rank documents, in particular, when users cannot find any documents that contain all

the given keywords from the set of documents itself, or when users can possibly find

more relevant documents by exploring the documents as well as the interrelated data.

In other words, we consider how to effectively use the additional relevant information,

that may be maintained in a database, to rank documents. We explain our motivation

using an example.

Fig. 6.1 shows a collection of reviews (documents) on the left side about movies.

There are three movie reviews with review titles, namely, "Ocean's Twelve", "Seven",

and "Twelve Monkeys". In the movie review entitled "Ocean's Twelve", it wrote "...

those things make the film truly great ...’，. These movie reviews are about movies

102

Brad Pitt

David M i l l s)

r -I 如a t t Damon)

Reviews (Documents)

Ocean's Twelve
"...those th ings make
the f i lm t ru ly great..."

Seven
" . . .Brad Pitt gives
another great . . . "

Twelve Monkeys

great DVD

JL5_
- — —

0.2

'o's'

0.5,

~0~3~

Movie Title

(-Ocean's 12

(< Ocean's 11

< Se7en >
(Seven)

' (1 2 Monkeys >
/
(Tv
\

i/eedledum'
Monkey

)、
y

•

Figure 6.1: Movie Reviews & Movie Records

which can be maintained as tuples in a multi-attribute table, consisting of the movie

title and other possible attribute values as illustrated in Fig. 6.1 on the right side (refer

to I M D B h t t p : / /www. i m d b . c o m / i n t e r f a c e s) . The names of directors or

actors or actresses may not appear in the movie reviews or even iS^the movie title, but

they appear in some tuples in some tables in the I M D B movie database that are linked

to the movie titles via relationships such as movies directed by directors, and movies

played by actors/actresses, based on the primary keys and foreign key references.

We call such interrelated information maintained in multi-attribute tables a context

to which the movie review is directly/indirectly related. The relationship between a

movie review (document) and a movie title (or simply movie) maintained in a multi-

attribute table is with uncertainty. Such uncertainty may be caused by missing titles,

or mismatching of the discussions in the body of movie review, or different movies

with the same title. For example, the movie review entitled "Ocean's Twelve" may

not exactly match the movie title ‘‘Ocean's 12” maintained in the multi-attribute table.

In Fig. 6.1, there is a l ink between a movie review and a movie in a table, where such

uncertainty is indicated as a probability.

Suppose a user wants to know something "great" about the actor "Brad Pitt", by

issuing a 2-keyword query, “great’’ and “Brad Pitt”，against the collection of movie

^ \ Chapter 6. Context-Sepsitive Document Ranking 103

^ \ Chapter 6. Context-Sepsitive Document Ranking 104

reviews. The movie review entitled "Seven" wi l l have the highest score, followed by

movie review on “Twelve Monkeys" and "Ocean's Twelve". Suppose that the user

issues a keyword query with two additional keywords, "Matt Damon" and "David

Mills，，’ the movie reviews and their rank wi l l remain the same, since none of the

reviews contain the additional two keywords. As observed from Fig. 6.1, there is

information about "Matt Damon" and/or “David Mi l l s ” indirectly linked to the movies

and the movie reviews, as a part of structural information, which are not effectively

used to answer users' keyword queries. Furthermore, assume a 2-keyword query is

“great” and "David Mi l ls" . Without the context, there are no documents containing

the two given keywords. With the context as shown in Fig. 6.1, it is highly possible to

find movie reviews on movies the two keywords are most related.

The main issue we study is how to rank documents using a set of keywords, given

a context that is associated with the documents. The main contributions of this chapter

are summarized below. First, we study a new ranking problem to rank documents for

a given set of keywords. The uniqueness of the problem is that the documents to be

ranked are associated with sets of interrelated multi-attribute tuples called context,

which contains additional information that assist users to rank the relevant documents

with some uncertainty. Second, we model the problem using a graph Q with two

different kinds of nodes (document nodes and multi-attribute nodes), and discuss its

score function, cost function, and ranking with uncertainty. Third, we propose new

algorithms to rank documents that are most related to the user-given keywords by

integrating the context information. We also conducted extensive experimental studies

to show the effectiveness of our approaches using a real dataset.

The remainder of this chapter is organized as follows. Section 6.2 gives the

problem statement, followed by discussions on related work in Section 6.3. We discuss

score functions and ranking in Section 6.4 and Section 6.5, respectively. In Section

6.6, we give an overall system architecture, and discuss how to rank with uncertainty.

Experimental studies are given in Section 6.7.

^ \ Chapter 6. Context-Sepsitive Document Ranking 105

6.2. Problem Statement

We consider a set of documents, DA = { c ^ i �• • • }• In addition, we assume there ex-

ists a context, C, which is considered as a multi-attribute graph GR(V, E) that specifies

the knowledge about documents. A multi-attribute graph GR is capable of represent-

ing all the tuples in a relational database, where a node represents a tuple, and an edge

between two nodes represents a foreign-key reference between the two corresponding

tuples. A l l nodes (tuples) in the same relation are said to have the same type. There

exists a set of specific >l-typed nodes in GR(V, E), VA (C V) which are explicit ly

l inked to the documents in DA- A document may be linked to several A-typed nodes,

and an ^ - typed node may be related to several documents. To integrate the set of doc-

uments, DA, and the multi-attribute graph, GR{V, E), we consider a weighted graph

Q{VY S). Here, V = V U DA, and S = E U ED where ED is a set of pairs, (di, VJ),

i f di is related to an A-typed node Vj. We call a node in D a a document node, and a

node in GR a multi-attribute node. We assign edge-weights to edges in the subgraph

GR{V, E) o f Q based on [54，30]. In detail，for a foreign key reference f rom u to v,

the edge weight for (ix, v) is given as Eq. (6.1), and the edge weight for {v, u) is given

as Eq. (6.2).

w ^ i i u . v)) = 1 (6.1)

= +A^in(…） （6.2)

where N in(v) is the number o f nodes that refer to v. We assign the edges in E q wi th a

non-zero weight which is a normalized similarity score computed as given in [6]. We

consider the weight assigned to (dj, Vj) G Ed as the probability that di is related to Vj.

A document node, di, may be related to several different multi-attribute nodes, Vj and

Vky wi th probabil ity distribution, prob(£ii, v j) and prob(di, Vk), respectively. However,

the probabil ity must satisfy ^ ^ ^ prob(cii, < 1 in order to form a distribution.

Example 1: Fig. 6.2(a) shows a graph G{V, £) . There are two documents in

DO = { d i , <^2}，and a multi-attribute graph GFT{V^ E) illustrated in the dashed rectan-

^ \ Chapter 6. Context-Sepsitive Document Ranking 106

• 0.5 Oi V1
\ 0 . 4 ^ \ 0 . 4 ^

0.3 • 3 V3

(a) A Sample Graph

te d2

(b) Local Contexts

Figure 6.2: Example

gle. There are two types o f nodes in V , namely 0 and V，where the former consists

o f {01,02,03}，and the latter consists of {t<i，V2，"̂ 3，Ui}. The edges between two n-

odes in GR show how the multi-attribute nodes are interrelated. The edge (d i , o i) and

{d i , 02) show that d i is related to oi and 02 wi th probabil i ty distribution, 0.5 and 0.4,

respectively. The edges (^2, 02) and (^2, 03) show that 而 is related to 02 and 03 wi th

probabil i ty distribution, 0.6 and 0.3’ respectively. There are three distinct keywords

appearing in Q\ a, b, and c. The keyword a appears in multi-attribute nodes v i and

t>2, the keyword b appears in the multi-attribute node 1；4，and the keyword c appears in

document nodes d i and d。. •

Problem Stateiqent: Finding top-A: documents for an /-keyword query, Q =

{ w i , w 2 , . . . , w i } , against graph G-

The ranking is based on the fo l lowing consideration. First, i f a document node

itself contains al l the /-keywords, it should be ranked higher. I f a document node, di.

^ \ Chapter 6. Context-Sepsitive Document Ranking 107

does not contain all the ^-keywords, it is ranked based on di and its associated local

context (which w i l l be introduced next) that all together contain all the /-keywords.

Also, because a document di may be related to several local contexts that contain

all the keywords individually, it needs to identify a local context that w i l l make the

document di ranked high. The selection o f such a local context is done by considering

all possibilities. ,�

6.3. Related work

Fuzzy object match ing: In the data integration and data cleaning, fuzzy object match-

ing is a central problem, which is to reconcile objects f rom different collections that

have used different naming conventions. Fuzzy object matching is also known as

record linkage, de-duplication or merge-purge [6，42, 27]. For text documents，edit

distance [89] and Jaccard similarity on q-grams [38] are commonly used as the sim-

i lari ty score function. Eff icient algorithms for computing the similarity scores are

discussed in [10, 91]. The basic approach of fuzzy object matching is to first com-

pute a similar i ty score between pairs o f objects, and then classify objects into matches

and non-matches using a threshold [6]. As the popularity o f probabilistic databases，

in [76], Re et al. propose to convert these similarity scores into probabilities, which

represent the confidence of matching between these two objects, and store them di-

rectly in a probabilistic database.

Keyword Search in RDBs: Keyword search in relational databases has been studied

extensively recently. I t provide users an easy way to get insights o f the underling

RDB. Most o f the works concentrate on finding min imal connected tuple trees f rom an

R D B [14，43, 65’ 30]. There are two approaches, based on the representation o f data.

One accesses data directly using SQL, where the data is stored in an R D B [43, 65].

The other materializes an RDB as a graph, then al l the operations are on the graph [14,

30]. As an exception, there is work on finding communities, which is a multi-center

induced subgraph，on a materialized graph based on a keyword query [74].

^ \ Chapter 6. Context-Sepsitive Document Ranking 108

A l l the works above only consider one single database. L i et al. [60] propose

keyword search over heterogeneous data，e.g. unstructured data (e.g. web pages,

l inked together through hyper l inks), semi-structured data (e.g. X M L) , structured

data (e.g. Database). But in their work, there is no connection between different

datasets, they are different connected components in a whole graph. Sayyadian et al.

in [78] propose a system Ki te to answer a keyword query over mult iple databases. Ki te

combines schema matching and structure discovery techniques to find approximate

foreign-key jo ins across heterogeneous databases. In their work, the confidence of

foreign-key jo ins i n a result contributes l inearly to the final score.

6.4. The Score Function

Given an Z-keyword query Q = {WI,W2,. • . �t w / } , we first discuss a concept, called a

local context, for a document node di in Q to be possibly ranked. A local context is

a connected tree in Q, denoted as T{V, E). The local context contains one document

node, DI，that can also l ink to a connected rooted tree, A(T/, E)^ as a subgraph in GR.

Note that GR C Q. We say that the local context T supports the document DK. A

connected tree A (y , E) specifies an interrelated tuple structure among tuples that is

related to the document node DI. The root o f E) is an A-typed node, say VJ,

and the probabil i ty for di to l ink to Vj is prob(c^t, Vj). A keywprd w is contained in

T (V , E) � i f i t appears in the document node di or in any multi-attr ibute node in the

corresponding E). A local context, T{V, E), contains /-keywords based on an

“ o r ” semantics. In other words, a local context for a specific document node dk may

not contain all the required Z-keywords. For example, a document node di may not l ink

to any typed node in 仏 or a document node di may l ink to an A-typed node, Vj ’ but

there does not exist a connected tree A (V , E) , rooted at Vj、containing the required

keywords that do not appear in DK. In such cases, the corresponding T{V, E) does not

contain all the required keywords. On the other hand, for a given document node di,

there may exist more than one connected trees，for example, two trees A) and A t

^ \ Chapter 6. Context-Sepsitive Document Ranking 109

rooted at Vj and Vk. Each of the trees contains all or some of the required keywords

that do not appear in di. We treat it as two local contexts. In order to select one of

them as the local context for di, we define a score function, denoted score{T^ Q).

In the fol lowing we use T and U as local contexts interchangeably. Here, T means

a general local context, whereas U means a local context for a specific document node.

Example 2: Reconsider Fig. 6.2(a). Given a 3-keyword query, Q = {a, b, c } , we

show the six local contexts, ti，for 1 < i < 6, in Fig. 6.2(b). Among them, the local

contexts, ti,亡2, and support document d i , and the local contexts,亡3，t^, and tg,

support document • Assume score(ti, Q), for 1 < z < 6, are the scores, which

we w i l l discuss in detail. For document node di、with probability 0.5 the score is
I

score{ti,Q), with probability 0.4 the score is s c o r e (亡 2 �a n d with probability 0.1

the score is score{t^^ Q). •

As shown in Example 2, there are local contexts with only a document node di

i f 1 — J2vj pi'ob(cit, Vj) > 0. For example, for document d i , the local context t^ is

with probability 1 — 0.5 — 0.4 = 0.1; for document d j , the local context t^ is with

probability 1 — 0.6 — 0.3 = 0.1. In the fol lowing, we denote the probability of a local

context, t' for a document di as prob(i '). It is equal to prob((ii, Vj) i f the edge ⑷，Vj)

appears in the local context and it is prob(di) = 1 — Ylvj pi'ob((ii, Vj) otherwise.

Score Function for Local Context: We discuss score functions to score a local con-

text for a document below, and w i l l discuss ranking documents in local contexts, in

the next section, which is based on the scores and probabilities of having such scores.

Recall that a local context t' consists of a document node di which may l ink to a

connected tree A : rooted at a multi-attribute node Vj. There are two main components

in our score function to score a local context t'. One is related to the keywords it

contains. The other is how to evaluate the cost of using a connected tree A) . The

connected tree A j is needed i f i t contains some keywords that are missing in the

document node di. However, there is a cost to use such a connected tree A j to include

more keywords. I t is because that there may be a A j which is very relevant to d^ and

there may be a A j which is not very relevant to di.

^ \ Chapter 6. Context-Sepsitive Document Ranking 110

First, for the first component, we consider a local context T as a virtual document

[63, 65], and treat all local contexts as a supporting-set, where each local context

can be scored using an IR-style relevance score, wi th respect to the /-keyword query

Q = {wi,W2,…,wi}. I t is defined below [65].

Q) = [1 + / ; (= (" ； £))) . i n (狐 ） (6 . 3)
weTnQ U 一 s j 十 s • avrff

Here, iw € T 门 Q indicates the subset of keywords of Q appearing in T. tfu,{T) is the

term frequency, e.g. the number of occurrences of the keyword w in the local context

T ; i d f ^ = dUiVoc)，where df^{Doc) is the document frequency, e.g. the number of

virtual documents that contain the keyword w and N is the total number of the virtual

documents; (1 — s) + s . ^ ^ is the length normalization, where CLIT is the document

length of the local context T , avdl is the average document length among the whole

virtual document collection, and s is a parameter. We also consider a completeness

coefficient for scorejR{T, Q), denoted as complete{T, Q), which specifies how im-

portant for a local context to contain a keyword. The more keywords contained the

better.

complete(T, Q) = ——. (6.4)
作 . ‘ e Q (M 吼 J ,

Here, /(iL>t, T) is an indicator function, it equals to 1 i f and only i f local context T

contains keyword Wi and 0 otherwise. The value of complete{T, Q) is in the range

0，1]. cqpy?iete(T, Q) is equal to 1 i f all the keywords appear in T. The intuition

behind the completeness function is that, i f more (distinct) keywords appear in a local

context, then i t should be ranked higher; i f the number of (distinct) keywords appeared

is the same, then the more discriminative (larger ln{idf^)) the keyword it contains the

higher it ranks.

Second, for the second component, we define i t to be the total distance between

the document node di and the nodes in A j that contain the key\\ords in a local context

T [41].

costst(T,Q) = dis{di, node{w)) (6.5)
u;6V(A;/)nQ

^ \ Chapter 6. Context-Sepsitive Document Ranking 111

w h e r e ' y (A j) denotes the set of nodes in T that appear in A) , node{w) denotes the

node in A^ that contains the keyword w, and dis、a、b) is the distance between two

nodes in the local context based on the edge weights.

Combining the two components, the score of a local context, T , with respect to a

query Q = {wiyW2,…’ is given as follows.

score(T, Q) = a • complete(T, Q) • scoreiniT, Q)

- { I - oi) ' costst{T,Q) (6.6)

where o； is a parameter in the range of [0,1], that specifies the relative importance

of the two factors. A local context, T , is ranked higher i f its score score(T, Q) is

larger, which implies that either its textual component score scoreJR{T, Q) is larger

or its structural component cost costat{T^ Q) is smaller. In our formulation, a local

context does not necessarily include all the /-keywords, even though more keywords

is demanded to increase the completeness factor complete(T, Q). As indicated in

Eq. (6.6)，if we include one more node in a local context that contains a keyword, i t

increases the IR-styled score (Eq. (6.3)) and completeness factor (Eq. (6.4))，but it also
» 0

increases the cost (Eq. (6.5)). Increasing the IR-styled score or completeness factor

implies that the local context is more related to the query Q、which makes the final
- » IK

score (Eq. (6.6)) larger (higher rank). Increasing the cost implies that the local context

(connected tree) becomes larger to include more multi-attribute nodes (or keywords),

which makes the final score (Eq. (6.6)) smaller (lower rank).
Example 3r Consider the graph Q as show in Fig. 6.2(a), {a, 6, c} are keywords. » *
Document d i discusses Oi wi th probability 0.5. I f this possible matching pair (d i , Oi)

% ‘ "
* *

is a true m ^ c h , we should find the best local-context that describes (supports) d i .

Context t i in Fig. 6.2(b) is a context wi th matching pair (d i , o i) that supports d i .

There also exists other contexts support dx wi th matching pair (d i , o i) besides t i , for

example, the subgraph induced by nodes { d i ’ O i } or { d i , o i , For simplicity, we
急 ‘

use node set to denote the subgraph induced by it. I t is easy to see that context ⑷，oi)
� •

has the smallest structure cost costau as i t includes no multi-attribute graph edges. But

^ \ Chapter 6. Context-Sepsitive Document Ranking 112

i t also has the smallest IR score scoreJR and completeness score complete, as it only

includes one keyword "c’，. I f we include one more node v i , the context { d i , o i ,

w i l l have a larger score, because it contains two keywords “a，’ and "c" , the increase of

IR score and completeness factor compared to { d i , o i } is larger than the increase of

structure cost of including one more edge (o i . v i) . The context t i has the largest score

(Eq. 6.6) among all the contexts that support d i wi th matching pair ⑷，oi). So i f the

matching pair (d i , oi) is true, we should say that the score of di is score(ti). Then the

score o f di is score{ti) wi th probability prob(t i) = 0.5. •

6.5. Ranking with Uncertainty

In the previous section, we discuss our score function to score a local context. In this

section, we concentrate on ranking. We adopt ranking wi th uncertainty probability as

discussed in [86，93, 45], where x-Relation model is used. In the x-Relation mod-

el [3，93]，there is a set o f independent x-tuples (called generation rules in [86, 45]),

where an x-tuple consists of a set of mutually exclusive tuples (called alternatives),

represents a discrete probabil ity distribution o f the possible tuples i t may take in a

randomly instantiated data. Each alternative t has a score and a probability，where

P r (t) represents its existence probability over possible instances.

Example 4: Fig. 6.3(a) is an x-Relation, consists of two x-tuples, TI =

{ t i (0 .5) , t2(0.4) ,^5(0.1) } , and ts = {^3(0.6)，（4(0.3)，力6(0.1)}. The x-tuple t i de-

note a probabil ity distribution over t i ’ t 2 and 亡5，with probability 0.5 it takes t i , wi th

probabil ity 0.4 takes ±2、and wi th probability 0.1 takes t^. •

I n our problem setting, the local contexts confirm to the x-Relation model. The

set o f local contexts that support the same document forms an x-tuple, and an x-

tuple specifies that the local contexts belong to i t are mutually exclusive. Intuitively,

an x-tuple supports one document wi th mutually exclusive evidences. And the local

contexts that support different documents are independent.

^ \ Chapter 6. Context-Sepsitive Document Ranking 113

di Oj prob{di,OJ) TX

di 01 0.5 h

02 0.4 t2

— 0.1 亡5

d2 02 0.6 亡3

03 0 .3

— 0.1 亡6

f
Possible wor ld (/) P r (J)

0 .30

0 .15

{tute} 0.05

{t2,t3} 0 .24

{t2,U} 0.12

{t2,te} 0 .04

{t3,t5} 0 .06

仏 " 5 } 0.03

仏 " 6 } 0 .01

(a) x-Relation (b) Possible Worlds

Figure 6.3: x-Relation Model

Example 5: For the graph in Fig. 6.2(a), there are six local contexts

{ t i , t2, ts, t4, ts, ^e}, as shown in Fig. 6.2(b). The score distribution for the documen-

t d i is {(5Core(i i) , 0.5), (scqre(t2),0A), (score(t5), 0.1)}, because ^5} is the

set of local contexts that support the document di . The score distribution for the docu-

ment d2 is {(score(ta), 0.6), (score(t i) , 0.3), {3core{tG), 0.1)}, because {^3, t^, te} is

the set of local contexts that support the document Here, for example, t i and t2 are

mutually exclusive because they are about the same document d i , and t i and t^ are

independent because one is about the document d i and the other is about the document

d2. Fig. 6.3(a) shows the six possible local contexts. Here, prob(di, Oj) is the proba-
%

bil i ty of the local context, or in other words, the probability that di discusses about Oj.

The 9 possible worlds, with non-zero probability, are shown in Fig. 6.3(b), together

wi th their probabilities. The possible world {ts,亡e} means that, wi th probability 0.01,

the two document nodes，di and d2 are not related to any of the three multi-attribute

nodes, 01，02, and 03. The possible world {^1,^3} means that, wi th probability 0.3, d i

is related to oi , and d。is related to 02. Note that the sum of the probabilities of all the

possible worlds is equal to 1. •

^ \ Chapter 6. Context-Sepsitive Document Ranking 114

In our problem setting, an x-tuple specifies a probability distribution on the score

for a document. In each possible world, it maintains exactly one local context from

each x-tuple, then the size of a possible world w i l l be exactly the size of DA, i.e.

| / | = \ D A \ for V / e pwd{？And each possible world corresponds to a possible

linkage between a document node in DA and an A-typed multi-attributed node in GR.

Expected Score: Several top-/c definitions in the x-Relation model have been pro-

posed recently based on the possible worlds semantics [86，93, 45，53，28]. Before

we discuss the top-k probability and the expected rank, we first study a straightfor-

strategy of getting score for documents deterministically which is not based on

、
the pb^sible world semantics. As we have shown, an x-tuple specifies a probability

distribution on the score for documents. I t is natural to define the score of a document

as the expected score of the local contexts that support it. The expected score of a

document is defined as follows, EScore{di) = ^ scoreiT, Q) . prob(T) (6.7)
T-.doc{T)=di

where score{T, Q) is the score of local context T against query Q (refer to Eq. (6.6)),

and prob(T) is the probability of local context T. Recall that, prob(T) = prob(di, Vj)

i f {di, Vj) appears as an edge in T, and prob(T) = 1 一 Y^、prob(cii, Vj) i f T consists of

a single node di. I t is natural to use the expected score to rank documents. However,

one drawback of the expected score is that the expected score is sensitive to the score

values, high score value with low probability can result in high expected score. The

possible worlds based uncertain ranking is insensitive to the exact score values, and it

only.depends on the relative order among the local contexts.

Example 6: For the graph Q in Fig. 6.2(a) and a query Q = {a, 6，c}, there are six local

contexts as shown in Fig. 6.3(a) which supports the two documents. The expected

score of di and d】are, EScore{di) = 0.5 • score(ti, Q) + 0.4 • score(^2, Q) + 0.1 •

score{t5, Q), EScore{d2) = 0.6. score(t3, Q) +0 .3 . score{t4, Q) + 0 . 1 . score{te, Q).
. •

Top-k Probability: The top-A: probability of a local context, T , denoted as tkp{T), is

^ \ Chapter 6. Context-Sepsitive Document Ranking 115

the marginal probability that it ranks top-/c in the possible worlds, given as below.

tkp(T) = ；^ P r (/)

Iepwd{X),Tetopk{I)

where T G topk{I) means that the local context is ranked as one of the top-/c local

contexts in the instance I. A n d the top-k probability of a document is defined as below.

tkp{di) = tkp{T) (6.8)
T-.doc{T)=di

The top-k probability of a documents is the summation of the top-k probability of the

local contexts that support the document. Note that YlT-.doc[T)=di P^ob(T) = 1 and the

prob(T) has been considered in tkp{T).

Example 7: Consider the six local contexts in Fig. 6.3(a)，assume the local contexts in

decreasing score order are t i , ts,亡2�亡4�亡6，亡5. That is document d] in the local context

Iq has a larger score than d i in the local context have a larger score

than {^5, te}. Among { t i , ^4},亡 1 is the most compact, then it has the largest

score.

Now, we consider the top-1 probability. tkp{ti) = 0.30 + 0.15 + 0.05 = 0.5，

which is the summation of the probability of the first three possible worlds in

Fig. 6.3(b). tkp{t2) = 0.12 + 0.04 = 0.16. Note that the local context 力2 ranks

the second place in the possible wor ld {亡2，^a}. thp(t5) = 0，because i t ranks the first

place in no possible world. Therefore, the top-1 probability o f the document d i is

tkp(di) = tkp(ti) + tkp(t2) + tkp{t^) = 0.66. Similarly, we can get tkp{d2) = 0.34.

Comparing tkp{di) and tkp{d2), we can see that document di is more l ikely to be

ranked higher than d】.It is interesting to note that, without the multi-attribute graph

GR、d2 is ranked higher than d u because we assume that the local context ig ranks

higher than t^. Also, consider the expected score (Eq. (6.7))，then both ranking orders

are possible, because it is sensitive to the actually score values, and different score

values wi th the same relative order w i l l result in different ranking orders. •

Expected Rank The rank of a local context T in a possible world I is defined to be

the number o f local contexts whose score is lager than scoTe(T^ Q) (so the top local

^ \ Chapter 6. Context-Sepsitive Document Ranking 116

context has rank 0), i.e., ranki{T)=収 G I | score{Tu Q) > scoTe{T,Q)}\. The

expected rank of a local context is defined as fol low.

ERankiT) = > ranki{T) • P r (/)
lGpwd{X),TeI

i t. The expected rank of a document is defined as below.

ERank{di) = ^ ERank{T)
T:doc{T)=di

(6.9)

The expected rank of a document is the summation of the expected rank values of the

local contexts that support the document. I t means the expected rank position for the

document di in a randomly generated possible world. Note that the smaller the value

ERank{di) the higher it ranks.

Example 8: Fol lowing Example 7，consider the six local contexts in Fig. 6.3(a), as-

sume the local contexts in decreasing score order are ii�亡3�亡2，艺4，亡6，亡5. We consider

the expected rank. ERarLk{ti) — 0，because i t ranks at the first place in the first

three possible worlds in Fig. 6.3(b). ERank { t2) = 0.24, because it ranks at the

second place in the possible wor ld {<2,亡3} and ranks at the first place in other pos-

sible worlds. E R a n k i t s) = 0.06 + 0.03 + 0.01 = 0.1, because it ranks the second

place in the last three possible worlds. So the expected rank value of document d i is

ERank{di) = ERank{ti) + ERank[t2) + ERank{t^) = 0.34. Similarly, we can

get ERank(d2) = 0.66. Comparing ERank{di) and E R a n k [d 2) � w e can see that the

document d i ranks higher than based on the expected rank semantics. Note that the

smaller expected rank value the higher it ranks. The ranking is the same of that based

on top-1 probabil ity in Example 7. 口

^ \ Chapter 6. Context-Sepsitive Document Ranking 117

G l o b a l C o n t e x t

D o c u m e n t s

R e s u l t s

Figure 6.4: The System Architecture

6.6. Query Processing

Given an /-keyword query, Q, against a graph Q^ we first generate the set of local

contexts, T = {<i�亡2, •. • } , where a local context tx, scored score{tx, Q) , contain-

s a unique document node, dj，and has a probabil ity prob(T), which means that the

local context T: supports that document DI has a score SOCRE{TXY Q) w i th probabil ity

prob(T). I f the document node oJi is an isolated node in Q, then there is a local context

in T that contains only one node d^ wi th probabil i ty one. Each local context supports

one document，given the set o f local contexts, the score o f documents is a probabil-

i ty distribution. Af ter getting the local contexts, documents are ranked based on the

probabil i ty score distribution. We integrate the information to rank top-k documents.

A n overview of the system architecture is shown in Fig. 6.4. A user submits an

/-keyword query Q = {WIYW2J. • • , WI} and K’ and rank the top-A: documents under a
4

global context GR. AS a preprocess step, it constructs the graph Q by l ink ing each doc-

ument DI € DA to several high similar A-typed multi-attribute nodes in GR. There are

two main components in the system, namely. Local Context Generator (ConGen) and

Top-k Generator (TopKGen). Here, ConGen generates the local contexts incremental-

ly in the decreasing order o f the score function (Eq. (6.6)) for a user-given /-keyword

query Q — … , W I) . I t is important to emphasize that ConGen generates the

^ \ Chapter 6. Context-Sepsitive Document Ranking 118

local contexts one-by-one in the decreasing order o f the score function； which means

that the local context ranked higher w i l l be generated earlier. TopKGen w i l l process

the local contexts in the decreasing score order by iteratively call ing ConGen to obtain

a generated local context in one iteration.

Example 9: Consider Fig. 6.2(a), the subgraph in the dotted box is a multi-attribute

graph, di and are two documents, a user submit a keyword query Q = {a , 6，c}.

The system first bui ld probabilistic linkages between DA and GR to form a graph

G as in Fig. 6.2(a). Then the local context generator w i l l generate six local con-

texts, i i,…，艺4 as shown in Fig. 6.2(b) and two other contexts w i th documen-

t node only, d i and d2. Af ter getting the set of contexts, we get a distribution

of the scores for each document, e.g. the score distribution for document d i is

{{score{ti), 0.5), {score{^2), 0.4), {score{di), 0.1)}, because {^ i , £2, is the set of

contexts that support document d i . Finally, we can rank the documents based on their

score distributions. •

6.6.1. Local Context Generation

A naive way to compute a local context is to start f rom a pair o f a document node and

the corresponding A-typed multi-attribute node, {di, Vj) , w i th prob((it, Vj) > 0，extend

the local context by finding the shortest distance f rom the node v j to a node containing

a keyword in Q. A node containing a keyword w i l l be included as a part of the local

context i f i t increases the score (Eq. (6.6)) or in other words makes the rank of the

local context higher. A l l the local contexts are then sorted in the decreasing order and

returned to TopKGen c%e-by-one in every iteration on demand.

We propose an incremental algorithm, which generates the local contexts incre-

mentally one by one in the decreasing order of the score, and we do not need to com-

pute all the local contexts. There are two main issues. First, the number o f possible

pairs, {di, V j) � i n graph Q, can be very large. Second, graph Q itself can be very large.

For the first issue, we do not need to compute all the possible local contexts. A

^ \ Chapter 6. Context-Sepsitive Document Ranking 119

local context containing (di, Vj) is upper bounded by the fol lowing upper bounded

score,
l n (l + \n { t f ^ {d i) + 1))

- • ^ (, 3 、 . In(狐)• （ _
w€Q 〈丄 SJ十S 出

\

The upper bound is given based on the fol lowing reason. When a keyword is newly

included in a local context, it w i l l increase the term frequency by one’ and also increase

the structural cost non-negative. In the ideal situation, the multi-attribute node Vj

contains all the keywords in the /-keyword Q, the local context score of ⑷，Vj) wi l l

be exactly as the Eq. (6.10). I f the upper bound score (Eq. (6.10)) is smaller than

the best score of the currently computed local contexts (refer to Eq. (6.6))，then the

next computed local context with the highest score wi l l be taken from the currently

maintained local contexts. For the second issue, when computing a local context

containing (dj, v j) , we find the nearest multi-attribute node that contains a certain

keyword, which takes time when graph Q is large in size. It is impractical to compute

all shortest distances between a document and a multi-attribute node containing a

keyword. Instead, for a keyword, w, we compute the shortest distance to every multi-

attribute node, starting from those nodes that contain the keyword, w. The shortest

distance is computed to the extent that it increases the score of the local context, or it

can also be computed on demand. We only need to scan the graph GR of graph G, once

for a keyword by starting from a virtual node that connects to all nodes containing the

keyword. .

The incremental algorithm is outlined in Algorithm 10. Here, D is the set of doc-

uments, assume that they are ordered in the decreasing upper bound score (Eq. (6.10))

(line 1). And the computed local contexts are maintained in a max-heap H (line 2).

D and /f .will be initialized only on the first executien (line 1-2). When / / = 0, we

assume that the top element in the heap'H.topQ has a negative infinity score. Every

time we get the next local context, if the top local context in H has a score greater

than the upper bound score of the top document in D, then the top local context in H

wi l l be the next highest score local context. Otherwise, the top document in D needs

to be inserted into H , and this step repeats until we ensure that the next highest score

^ \ Chapter 6. Context-Sepsitive Document Ranking 120

Algorithm 10 Next(Q)

Input: a keyword query Q = {wi,w2ywi}.

Output: output the next high scored local context.

2

3

4

5

6

7

8

9

10

let D be the list of documents, accessed in the decreasing of estimated score;

let H be a max-heap that stores intermediate local contexts (i f -f- 0 initially);

while not D.emptyQj and D.topi) > H.top{) do

di D.next{)\

for each possible (di, vj) pair do

compute the local context containing (di, v j) with the best score;

insert the local context into H\
\

end for

end while

return H.next{).

local context is the top result in H (line 4-7). We return the top local context in H as

the next highest score local context (line 8).

ff

6.7. Performance Studies '

We have implemented six algorithms, based on different ranking semantics, to find

the top-fc documents with the help of a multi-attribute graph G- The six algorithms

are denoted as: ERank, tkp, EScore, OptProb, OptScore, and DocOnly. The

first three, ERank’ tkp, and EScore’ are ranking based on the expected rank, top-k

probability, and expected score as discussed in Section 6.5, respectively. OptProb

and Opts core are two heuristics to choose the score of a document as the score of the

local context in the corresponding supporting set (x-tuple) with the largest probability

and score, respectively. DocOnly is to rank the documents based on the IR-score only,

without a multi-attribute graph. A l l the algorithms were written in Visual C++ 2003.

We conducted all the experiments on a 2.8GHz CPU and 2GB memory PC running

XP.

I.

^ \ Chapter 6. Context-Sepsitive Document Ranking 121

For testing the algorithms, we use the real datasets, for both documents and

multi-attribute graph. For the documents, we use the movie review dataset, and we

crawled 330,201 reviews about different movies f rom the Amazon website (h t t p :

/ /www . amazon . com). For the multi-attribute graph, we use an EMDB movie

database (h t t p : / /www . i m d b . c o m / i n t e r f a c e s) . The multi-attribute graph is

created in the same way as used in the literature of keyword search in R D B [74]. That

is, we create a node for each tuple in the database, and there is a directed edge f rom n-

ode u to 1) i f and only i f there is a foreign key reference from u to v. In our experiments,

we use 6 tables f rom I M D B database using the fo l low schema: Mov ie (Mid , Name),

Genre(Mid, Genre), Director(Did, Name), Direct(Mid, Did), Actor(Aid, Name)，and
V、

Play(Aici, M id , Character), where primary keys are underlined. The numbers of tuples

of the 6 tables are: UOJFT, 148/<：, 62K, 113K, b77K, and 1410/^，respectively. In the

resulting graph GR，there are 2，423，262 nodes and 6，394, 016 edges. The similarities

between the matchings of movies in I M D B and movie reviews are calculated using

the methods given in [76].

We evaluate the ranking accuracy of our algorithms using a (discounted) cumula-

tive gain measure [52] based on human judgements. The (discounted) cumulative gain

measure is widely used in measuring ranking accuracy of top-k queries [17, 37，31].

The other measures, l ike precision, recall, and mean average precision, are inadequate

in our problem setting for the fo l lowing reasons. First, these measures assume that

each document is either "definitely relevant" or "definitely irrelevant" to a keyword

query, whi le a document can be relevant to some degree. Second, they need to know

or retrieval al l the relevant documents, whi le the number o f relevant documents can

be very large, and on the other hand, users are only interested in a few highly relevant

documents.

In order to calculate the (discounted) cumulative gain, first, for a keyword query

Q’ a relevance value is assigned to each document. We use the relevance value be-

tween 0 and 4 (4 denoting high relevance, 0 denoting no relevance). Let 7\ denote the

relevance value o f the document at the 2-th position returned by a top-k query. The

^ \ Chapter 6. Context-Sepsitive Document Ranking 122

Query Keywords Size

survive, murdered 2

Q2 marine , v ideo 2

Q3 ducks, vista, disney 3

94 civi l , war, peace 3

Q5 capta in , excellent, mus ic , sea 4

96 adventure, webster, fantastic, robert 4

Q7 michae l , fan, f reedom, range, endure 5

Q8 menager ie , star, hunter, west, river 5

Table 6.1: Keyword Queries

CGi =

DCGi 二

cumulative gain at rank position i，CGi, is computed by summing the relevance value

from position 1 to
Ti, i f 2 = 1

C G i ^ i + T i , i f i > 1

Discounted cumulative gain is defined similarly by incorporating rank-based discount

factor. In our evaluation, we discount the relevance value of a document by the loga-

ri thm of its rank. The discounted cumulative gain at rank position i, DCGi’ is defined

as below.

‘ i f 2 = 1

D C G i - i + r i / l og2Z , i f i > 1

For the keywords, we pick up 8 keyword queries qi to q^ with relevant keywords

of size varying from 2 to 5. The keywords selected cover a large range of selectivity,

as shown in Tab. 6.1. According to the keyword frequency in documents, the query

in decreasing average keyword frequency order is 97, gs, gs, (I 2 ,彻，9 6 » 仍，where

q-j has the keyword frequency 0.04 and q^ has the keyword frequency 0.007. Consider

the multi-attribute graph, the query in decreasing average keyword frequency order is

qQ, 95, 94, qgy g2�93, Qu where qj has the keyword frequency 0.0009 and qi has the

keyword frequency 0.00003. Specifically, the query QQ has a low keyword frequency

in the documents, but has a high keyword frequency in the multi-attribute graph. The

Figure 6.5: Execution Time

query qj has a high frequency in both components of the dataset, and the query has

median keyword frequency in both components.

The execution time of top-30 query of keywords from qi to q^ are shown in

Fig. 6.5. As Expected, DocOnly tak^s the least amount of time, because it only uses

the document data, while other algorithms use the additional multi-attribute graph

which is complex than the plain text data. The other algorithms take almost the same

amount of time. These algorithms need to compute the local contexts with best score,

which is the dominating cost.

6.7.1. Case Study for Query q^

We evaluate the ranking accuracy of the keyword query q �= { " c a p t a i n " , “excellent，，,

"music，，，“sea，,} in Tab. 6.1. For this query, we expect to find some reviews regarding

excellent musical movies which are about sea and a captain. Most of the algorithms

find the most relevant movie review in a top-1 result, which is a review about the

movie "The Bounty (1995)". We run all the six algorithms for a top-30 query, and

obtain 30 documents for each algorithm. Then, we assign relevance values (0-4) to all

these documents. Also, top-10 documents are selected in the rank order.

Based on the top-10 documents picked, we get a Precision-Recall style figure for

each algorithm as shown in Fig. 6.6. We report the least number of results needed to be

returned by the algorithms to contain the top-Zc documents, for k ranged f rom 1 to 10.

A l l the algorithms report correctly the top-1 document, except the OptProb algorithm-

^ \ Chapter 6. Context-Sepsitive Document Ranking 123

Figure 6.6: Least Rank Position to Include the Top-k (1 to 10) Documents

(a) Cumulative Gain

(b) Discounted Cumulative Gain

Figure 6.7: (Discounted) Cumulative Gain for QQ

Because the top-1 document includes all the keywords of 95, and the multi-attribute

graph do not provide any informative information o f this document for this keyword

query. Overall, the uncertainty aware ranking algorithms (ERank, tkp, EScore)

perform better than other heuristic algorithms.

Fig. 6.7 shows the cumulative gain and discounted cumulative gain for the top-10

documents returned by these algorithms. Dif ferent f rom Fig. 6.6, the three algorithms:

ERank’ tkp, EScore have very similar cumulative and discounted cumulative gains,

because in the cumulative gain measure different documents wi th the same relevance

^ \ Chapter 6. Context-Sepsitive Document Ranking 124

8

m

2

8

4

0

6

2

6

3
 2
 2

 2

 1

 1

n
o
 泊
；
S
O
 J
 ̂
l
u
F
H

(a) Cumulative Gain

8
0

(b) Discounted Cumulative Gain

Figure 6.8: (Discounted) Cumulative Gain for q^

value are indistinguishable. Although the ranking between documents with the same

relevance value are different for the algorithms, they result into the same (discounted)

cumulative gain. Consistently, the uncertainty aware algorithms ERank, tkp, EScore

perform better than the other algorithms.

6.7.2. Case Study for Query QQ

We evaluate the ranking accuracy of the keyword query QQ — {"adventure", "webster",

"fantastic", “robert，,} as shown in Tab. 6.1. This query intents to find the reviews for

fantastic movies, either the genre of the movie is adventure or the review categorizes

i t as an adventure movie, and "webster" and ‘‘robert” are either character names or

actor/director names. We run all the six algorithms for top-30 query, and obtain the 30

documents for each algorithm. We assign the relevance values (0-4) to all these docu-

merits. One different characteristic of q^ from q^ is that, while the relevant document

for gs* contains a lot of keywords in Q^, the keywords of QQ mostly appear in the multi-

attribute graph. Only very few long documents contains some (not all) keywords in

^ \ Chapter 6. Context-Sepsitive Document Ranking 125

2
0
8
6
4
2
0
8
6
4
2
0

2
2
1
1
1
1
1

8
 •

^ \ Chapter 6. Context-Sepsitive Document Ranking 126

Road to Avon iea

. . . bu t overal l , a fantast ic
s h o w 丨 w o u l d recommend
to anyone ...

〔Play: Character Robert R u t h e r f o r 》

Movie
、 A v o n i e a (1989)；

-^Genre: A d v e n t u r ^

^ l a y : Character Hank Webs te^

Figure 6.9: Top-1 Document wi th Context

96�and other documents only contain one out of the four keywords.

Fig. 6.8 shows the cumulative gain and discounted cumulative gain for top-10

documents returned by these, algorithms. Dif ferent f rom Fig. 6.7，tkp performs better

than ERank and EScore, because most part o f the score of a local context comes

f rom the multi-attribute graph for qe. Note that, although the multi-attr ibute graph

w i l l increase the structure cost, i t also increases the IR-score and completeness factor.

The probabil i ty of a local context has more impacts on the documents ranking. The

uncertainty aware algorithms ERank，tkp, and EScore perform better than other

algorithms. The Opt Score algori thm works badly in the scenario o f QQ such that only

one document is relevant in the top-10 results.

Fig. 6.9 shows the top-1 result returned by ERank、tkp, and EScore. In this

case, the document contains only one keyword "fantastic". The multi-attr ibute graph

provides other keywords for the documents, and the relationships between these key-

words and the document to be ranked is very tight. This top-1 result can not be found

by DocOnly，as i t contains only one keyword. OptProb and Opt Score can not find

this top-1 result either, because there exist other local contexts wi th a larger score but

lower probabil ity.

(a) CG for qs (b) DCG for Qs

TRANK

DpcOnly
if

(c) CG for qe (d) DCG for qe

Figure 6.10: (Discounted) Cumulative Gain for <?5 and QQ

6.7.3. Multi-attribute Graph

We also test the influence of the multi-attribute graph to the rank accuracy of key-

word queries. We create another multi-attribute graph, G'R、by removing the table

Genre(Mid, Genre) f rom I M D B , where the keyword "music" used in the query q � and

“adventure，，used in the query QQ appear in this table. Fig. 6.10 shows the (discounted)

cumulative gains for Q^ and Q^ respectively using the multi-attribute graph G'R. AS

observed, wi th less information of the multi-attribute graph, for the query q^, CGq de-

creases from 21 to 18, for the query 彻，the performance degrades much fast than that

o f QB. For the query 彻，DCGio decreases f rom 9.2 to 7.2, where it only decreases 0.2

for the query qs. Another point is that tkp, OptProb, Opt Score are more sensitive to

the multi-attribute graph, because for the query q^, those three algorithms return very

few relevant answers.

^ \ Chapter 6. Context-Sepsitive Document Ranking 127

S

ERan ESCORE —O—
OptProb — 口

C^tScor

I

ERANS £
EScora —O—

OptProb •
OptScora
OocOnly c5ocOnly —H • ^̂ ―-n̂ nrT̂

u
o
j
s
p
a
i
j

CHAPTER 7

THESIS C O N C L U S I O N

In this thesis, we explored several issues of uncertain data management. First, we pro-

posed a novel linear t ime algori thm to compute the positional probability. Based on

the positional probabil ity, we also proved a t ight upper bound of the top-k probabil i ty

o f tuples, which is then used to stop the top-k computation earlier. Then, we studied

top-k probabil istic ranking queries w i th joins when scores and probabilit ies are stored

in different relations. We investigated two probabilistic score functions，and gave up-

per/lower bounds o f such probabilistic score functions in random access and sequen-

t ial access. We also proposed new I /O efficient algorithms to find top-k objects. Third,

we extended the possible worlds semantics to probabilistic X M L rank query. We pro-

posed a new dynamic programming algorithm which can compute top-k probabilities

for the answers of node queries based on the previously computed results in proba-

bi l ist ic X M L data. We also shown techniques to support path queries and tree queries.

/

Then, we studied context sensitive document ranking, which ranks documents using a

set o f keywords given a context that is associated w i th the documents. We model the

problem using a graph wi th two different kinds o f nodes (document nodes and mult i -

attribute nodes), where the edges between document nodes and multi-attribute nodes

exist w i th some probabil i ty. We discussed several probabil istic top-k definitions, and

proposed new algorithms to rank documents that are most related to the user-given

keywords by integrating the context information.

128

Chapter 7. Thesis Conclusion 129

7.1. Future Directions
、

Whi le we have addressed some computational questions that arise in uncertain data
•

management, this hardly ends the quest for the holy grail of uncertain data ranking

and management. Rather, it opens up some natural directions for future research.

First, in Chapter. 4，we have studied probabilistic ranking over relations. We

proposed several lower/upper bounds o f the ranking functions, which can be used to

terminate the top-k computation very efficiently. We also find that, the hybrid method

performs much better than the traditional sorted access or sequential access in terms

of lO. Among all the existing main memory algorithms, they access the tuples in

decreasing score order, which is similar to our sequential access method. I t would be

interesting to see the performance of our hybrid algorithm on a main memory resident

single relation uncertain data.

Another direction is to study uncertain ranking wi th selection predicates. A l l the

existing work study snapshot uncertain ranking where all the underlying data are con-

sidered. However，usually, users are only interested in subsets of the underlying data

by issuing a ranking query wi th selection predicate. For the future work, we can study

how to get the top-k results efficiently when a selection predicate is provided. A naive

solution w i l l be that, we first select the relevant tuples to form an uncertain database,

and then run any existing algorithm ontop of it. But this w i l l be time consuming, since

different users have different selection predicates. 、

A l l the existing work only consider static data, they answer queries f rom scratch

without indices. I t would be interesting to study continuous top-k query, where in-

sertions and/or deletions are allowed, or updates of the score and/or probabil ity are

issued. Wh i le answer the query starting f rom scratch is not efficient, indices or syn-

opses can be bui ld to maintain the ranking structure efficiently.

Besides the ranking issues of probabilistic data, more and more work start to

extend their problems to the scenario of uncertain data, e.g. skyline on uncertain

data, nearest neighbor and reverse nearest neighbor in uncertain data, finding heavy

Chapter 7. Thesis Conclusiop 130

hi t ters a n d q u a n t i l e s i n u n ce r t a i n da ta , f i n d i n g frequent i t emse ts from u n c e r t a i n da ta .

I t w o u l d b e in terest t o s t udy o ther d a t a ba se quer i es or da t a m i n i n g tasks in t he s cena r i o

o f u n ce r t a i n da ta .

T h e r e is a n i n t r i n s i c c o n n e c t i o n b e t w e e n p r i v acy p rese rv i ng d a t a p u b l i s h i n g a n d

p r o b ab i l i s t i c da t abases . G e n e r a l l y , t he da t a p u b l i s h e d after p r i v acy p r e s e r v i n g encod-

i n g represents a set o f p o s s i b l e w o r l d s o f t he o r i g i n a l da ta . O n e d i r e c t i o n o f f u t u re

w o r k s w o u l d b e to represen t the a n o n y m i z e d d a t a i n p r ob ab i l i s t i c d a t a ba se a n d an-

swe r que r i e s o n t he a n o n y m i z e d da t a u s i n g t he p o s s i b l e w o r l d s b a sed s eman t i c s , o r

u s i n g t he ex i s t i ng w o r k s i n p r obab i l i s t i c d a t a b a s e l i tera ture to g u i d e the a n o n y m i z a -

t i o n p rocess .

B I B L I O G R A P H Y

[1] Daniel J. Abadi, Samuel Madden, and Nabi l Hachem. Column-stores vs. row-

stores: how different are they really? In Proc. ofSIGMOD'08, 2008.

[2] Serge Abiteboul and Pierre Senellart. Querying and updating probabilistic infor-

mation in xml . In Proc. ofEDBT'06, 2006.

[3] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shub-

ha U. Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A system for data,

uncertainty, and lineage. In Proc. ofVLDB'06, 2006.

[4] Parag Agrawal and Jennifer Widom. Confidence-aware j o in algorithms. In Proc.

ofICDE,09, 2009.

[5] Sihem Amer-Yahia, N ick Koudas, Am61ie Marian, Divesh Srivastava, and David

Toman. Structure and content scoring for xml. In Proc, ofVLDB'05, 2005.

[6] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. El iminat ing

fuzzy duplicates in data warehouses. In Proc. ofVLDB'02, 2002.

[7] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. Fast and

simple relational processing o f uncertain data. In Proc. of ICDE’08，2008.

[8] Lyublena Antova, Christoph Koch, and Dan Olteanu. From complete to incom-

plete information and back. In Proc. ofSIGMOD'07, 2007.

[9] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
T

Wesley, 1st edition, May 1999.
131

Bibliography 132

[10] Roberto J. Bayardo, Y im ing Ma, and Ramakrishnan Srikant. Scaling up all pairs

similari ty search. In Proc. of WWW'07, 2007.

[11] Omar Benjelloun, Anish Das Sarma, A lon Y. Halevy’ and Jennifer Widom.

ULDBs : Databases wi th uncertainty and lineage. In Proc. ofVLDB'06，2006.

[12] George Beskales, Mohamed A . Soliman, and Ihab F. Dyas. Eff ic ient search for

the top-k probable nearest neighbors in uncertain databases. PVLDB、1(1), 2008.

[13] George Beskales, Mohamed A . Soliman, Ihab F. Ilyas，and Shai Ben-David.

Model ing and querying possible repairs in duplicate detection. PVLDB,

2(l) :598-609, 2009.

[14] Gaurav Bhalotia, A rv ind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and

S. Sudarshan. Keyword searching and browsing in databases using banks. In

Proc. ofICDE’02，2002.

[15] Nicolas Bruno, N ick Koudas, and Divesh Srivastava. Holist ic tw ig joins: optimal

X M L pattern matching. In Proc. ofSIGMOD’02，pages 310-321, 2002.

[16] Douglas Burdick, Prasad M . Deshpande, T. S. Jayram, Raghu Ramakrishnan,

and Shivakumar Vaithyanathan. O L A P over uncertain and imprecise data. VLDB

7., 16(1)，2007.

[17] Christopher J. C. Burges, Tal Shaked, Er in Renshaw, A r i Lazier, Mat t Deeds,

Nicole Hamil ton, and Gregory N. Hullender. Learning to rank using gradient

descent. In Proc. ofICML'05, 2005.

[18] L i j un Chang, Jeffrey X u Yu, and L u Qin. Context-sensitive document ranking.

In Proc. ofCIKM'09’ 2009.

[19] L i j un Chang, Jeffrey X u Yu, and L u Qin. Fast probabilistic ranking under x-

relation model. CoRR, abs/0906.4927, 2009.

Bibliography 133

[20] L i j un Chang, Jeffrey X u Yu, and L u Qin. Query ranking in probabilistic xml

data. In Proc. ofEDBT'09，2009.

[21] L i jun Chang, Jeffrey X u Yu, and L u Qin. Context-sensitive document ranking.

‘ J. Comput. Sci. Technol.、25(3):糊 ^57, 2010.

[22] L i j un Chang, Jeffrey X u Yu, L u Qin, and Xuemin Lin. Probabilistic ranking over

relations. In Proc. ofEDBT'lO、2010.

[23] Reynold Cheng, Dmi t r i V. Kalashnikov, and Sunil Prabhakar. Evaluating prob-

abilistic queries over imprecise data. In Proc. of SIGMOD'03, pages 551-562,

2003.

[24] Reynold Cheng, Sarvjeet Singh, Sunil Prabhakar, Rahul Shah, Jeffrey Scott Vi t-

ter, and Yuni Xia. Eff icient j o i n processing over uncertain data. In Proc. of

CIKM’06’ 2006.

[25] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Incorporating constraints in

probabilistic xml. In Proc. ofPODS’08, 2008.

[26] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. Xsearch: A

semantic search engine for xml. In Proc. ofVLDB’03，2003.

[27] W i l l i am W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison

of string distance metrics for name-matching tasks. In Proc. ofIIWeb'03, 2003.

[28] Graham Cormode, Feifei L i , and Ke Yi . Semantics of ranking queries for prob-

abilistic data and expected ranks. In Proc. ofICDE'09’ 2009.

[29] Nilesh N. Da lv i and Dan Suciu. Eff icient query evaluation on probabilistic

databases. VLDB J” 16(4), 2007.

[30] Bo l in Ding, Jeffrey X u Yu, Shan Wang, L u Qin, Xiao Zhang, and Xuemin L in .

Finding top-k min-cost connected trees in databases. In Proc. ofICDE'07, 2007.

Bibliography 134

[31] Zhicheng Dou，Ruihua Song, Xiaojie Yuan, and Ji-Rong Wen. Are click-through

data adequate for learning web search rankings? In Proc. of CIKM'08, pages

73-82，2008.

[32] Ronald Fagin. Combining fuzzy information from multiple systems. J. Comput.

Syst. Sci。58(1):83-99，1999.

[33] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms

for middleware. J. Comput. Syst. Sci” 66(4), 2003.

[34] Norbert Fuhr and Kai GroBjohann. Xirql : A query language for information

retrieval in xml documents. In Proc. ofSIGIR'Ol、2001.

[35] Ungj ian Ge. Join queries on uncertain data: Semantics and efficient processing.

In Proc. oflCDE'll, pages 697-708，2011.

[36] Tingjian Ge, Stanley B. Zdonik, and Samuel Madden. Top- queries on uncertain

data: on score distribution and typical answers. In Proc. of SIGMOD'09, pages

375-388, 2009,

[37] Xiubo Geng, Tie-Yan Liu, Tao Qin, Andrew Arnold, Hang L i , and Heung-Yeung

Shum. Query dependent ranking using k-nearest neighbor. In Proc. ofSIGIR '08^

2008.

[38] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukr-

ishnan, and Divesh Srivastava. Approximate string joins in a database (almost)

for free. In Proc. ofVLDB'Ol、2001.

[39] Ulr ich GUntzer, Wolf-Ti lo Balke, and Werner KieBling. Towards efficient multi-

feature queries in heterogeneous environments. In Proc. oflTCC'Ol, 2001.

[40] L in Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. Xrank:

Ranked keyword search over xml documents. In Proc. of SIGMOD '03, 2003.

Bibliography 135

[41] Hao He, Haixun Wang, Jun Yang, and Phil ip S. Yu. Blinks: ranked keyword

searches on graphs. In Proc. ofSIGMOD'07, 2007.

[42] Maur ic io A . Hernandez and Salvatore J. Stolfo. The merge/purge problem for

large databases. In Michael J. Carey and Donovan A. Schneider，editors, Proc.

ofSIGMOD'95, 1995.

[43] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in

relational databases. In Proc. ofVLDB’02’ 2002.

[44] M ing Hua, Jian Pei, Wenjie Zhang, and Xuemin L in . Eff iciently answering

probabilistic threshold top-k queries on uncertain data. In Proc. of ICDE’08、

2008.

[45] M ing Hua, Jian Pei，Wenjie Zhang, and Xuemin L in. Ranking queries on uncer-

tain data: A probabilistic threshold approach. In Proc. ofSIGMOD'08, 2008.

[46] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Probabilistic interval xml.

In Proc. ofICDT'03、2003.

[47] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Pxml: A probabilistic

semistnictured data model and algebra. In Proc. ofICDE’03, 2003.

[48] Stratos Idreos, Mart in Kersten, and Stefan Manegold. Self-organizing tuple re-

construction in column-stores. In Proc. ofSIGMOD’09、2009.

[49] Diab F. Ilyas, Wal id G. Aref , and Ahmed K. Elmagaraiid. Supporting top-k jo in

queries in relational databases. VLDB J.’ 13(3), 2004.

[50] Diab R Ilyas, George Beskales, and Mohamed A . Soliman. A survey of top-

k query processing techniques in relational database systems. ACM Comput.

Surv., 40(4)，2008.

[51] Ravi Jampani, Fei Xu , M ingx i Wu, Luis Leopoldo Perez, Christopher M . Jer-

maine, and Peter J. Haas. Mcdb: a monte carlo approach to managing uncertain

data. In Proc. ofSIGMOD,08, pages 687-700, 2008.

Bibliography 136

[52] Kalervo Jarvelin and Jaana Kekalainen. Ir evaluation methods for retrieving

highly relevant documents. In Proc. ofSIGIR'OO, 2000.

[53] Cheqing Jin, Ke Yi , Le i Chen, Jeffrey X u Yu, and Xuemin L in . Sl id ing-window

top-k queries on unceratin streams. In Proc. ofVLDB'08, 2008.

[54] Vanin Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi

Desai, and Hrishikesh Karambelkar. Bidirectional expansion for keyword search

on graph databases. In Proc. ofVLDB'05, 2005.

[55] Benny Kimelfe ld, Yur i Kosharovsky, and Yehoshua Sagiv. Query efficiency in

probabilistic xml models. In Proc. ofSIGMOD,08、2008.

[56] Benny Kimel fe ld and Yehoshua Sagiv. Twig patterns: From xml trees to graphs.

In Proc, ofWebDB'06, 2006.

[57] Benny Kimel fe ld and Yehoshua Sagiv. Matching twigs in probabilistic xml . In

Proc. ofVLDB'07, pages 27-38, 2007.

[58] David C. Lay. Linear Algebra and Its Applications (3rd Edition). Addison

Wesley, July 2002. *

[59] Feifei L i , Ke Yi , and Jeffrey Testes. Ranking distributed probabilistic data. In

Proc. ofSIGMOD'09, 2009.

[60] Guoliang L i , Beng Chin Ooi，Jianhua Feng, Jianyong Wang, and L izhu Zhou.

Ease: an effective 3 - in - l keyword search method for unstructured, semi-

structured and structured data. In Proc. ofSIGMOD,08’ 2008.

[61] Jian L i , Barna Saha, and A m o l Deshpande. A unif ied approach to ranking in

probabilistic databases. PVLDB, 2(1):502-513. 2009.
*

[62] Jianxin L i , Chengfei L iu , Rui Zhou, and Wei Wang. Top-k keyword search over

probabilistic xm l data. In Proc. ofICDE,ll、pages 673-684, 2011.

Bibliography 153

[63] Wen-Syan L i , K . Sel^uk Candan, Quoc Vu，and Divyakant Agrawal. Retrieving

and organizing web pages by " in format ion uni t" . In Proc. ofWWW'Ol, 2001.

[64] X iang L ian and Le i Chen. Monochromatic and bichromatic reverse skyline

search over uncertain databases. In Proc. ofSIGMOD'08, 2008.

[65] Y i Luo, Xuemin L in , Wei Wang, and Xiaofang Zhou. Spark: top-k keyword

query in relational databases. In Proc. ofSIGMOD'07, 2007.

[66] Nikos Mamoi i l is , M a n Lung Yiu, K i t Hung Cheng, and Dav id W. Cheung. Ef f i -

cient top-fc aggregation of ranked inputs. ACM Trans. Database Syst., 32(3): 19,

2007. ,

[67] Am61ie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-A; queries over

web-accessible databases. ACM Trans. Database Syst., 29(2), 2004.

[68] Eirinaios Michelakis, Rajasekar Krishnamurthy, Peter J. Haas, and Shivakumar

Vaithyanathan. Uncertainty management in rule-based informat ion extraction

systems. In Proc. ofSIGMOD'09, pages 101-114,2009.

[69] Apostol Natsev，Yuan-Chi Chang, John R. Smith, Chung-Sheng L i , and Jef-

frey Scott Vitter. Supporting incremental j o i n queries on ranked inputs. In Proc.

of VLDB'01, 2001.

[70] Andrew Nierman and H. V. Jagadish. Protdb: Probabilistic data in xml . In Proc.

ofVLDB'02, 2002.

[71] Dan Olteanu, Jiewen Huang, and Christoph Koch. Sprout: Lazy vs. eager query

plans for tuple-independent probabil istic databases. In Proc. of ICDE'09, pages

640-651, 2009.

[72] Jian Pei, B in Jiang, Xuemin L in , and T idong Yuan. Probabil istic skylines on

uncertain data. In Proc. ofVLDB'07, 2007.

Bibliography 138

[73] Hasso Plattner. A common database approach for ol tp and olap using an in-

memory co lumn database. In SIGMOD'09, pages 1-2，2009.

[74] L u Qin, Jeffrey X u Yu’ L i j u n Chang, and Yufei Tao. Querying communit ies in

relational databases. In Proc. ofICDE’09、2009.

[75] L u Qin, Jeffrey X u Yu, and Bo l i n Ding. TwigList: Make tw ig pattern matching

fast. I n Proc. ofDASFAA'07, 2007.

[76] Christopher Re, Ni lesh N . Da lv i , and Dan Suciu. Ef f ic ient top-k query evaluation

on probabil ist ic data. In Proc. ofICDE'07, 2007.

[77] Christopher Re and Dan Suciu. Managing probabil ist ic data w i t h myst iq: The

can-do, the could-do, and the can't-do. In Proc. of SUM,08, 2008.

[78] Mayssam Sayyadian, H ieu LeKhac, AnHa i Doan, and Lu is Gravano. Eff ic ient

keyword search across heterogeneous relational databases. In Proc. ofICDE'07,

2007.

[79] Torsten Schlieder and Holger Meuss. Querying and ranking x m l documents.

Proc. ofJASISTOl, 53(6), 2002.

[80] Kar l Schnaitter and Neokl is Polyzotis. Evaluating rank jo ins w i th opt imal cost.

In Proc, of PODS'08, 2008.

[81] Pri thviraj Sen, A m o l Deshpande, and Lise Getoor. Prdb: managing and ex-

p lo i t ing r ich correlations in probabil ist ic databases. VLDB J.、18(5): 1065-1090,

2009. .

[82] Pierre Senellart and Serge Abi teboul . On the complexi ty o f managing proba-

bi l ist ic x m l data. I n PODS、2007.

[83] M icha l Shmueli-Scheuer, Chen L i , Yosi Mass, Haggai Roitman, Ral f Schenkel,

and Gerhard Weikum. Best-effort top-k query processing under budgetary con-

straints. In Proc. ofICDE’09，2009.

Bibliography 139

[84] Sarvjeet Singh, Chris Mayf ie ld, Suni l Prabhakar, Rahul Shah, and Susanne E.

Hambrusch. Indexing uncertain categorical data. In Proc. of ICDE'07, pages

616-625, 2007.

[85] Mohamed A . Sol iman and Ihab R Ilyas,. Ranking w i th uncertain scores. In Proc.

ofICDE，09, pages 317-328, 2009.

[86] Mohamed A . Soliman, lhab F. I lyas, and Kev in Chen-Chuan Chang. Top-k query

processing in uncertain databases. In Proc. ofICDE'07, 2007.

[87] Mohamed A . Soliman, Ihab F. I lyas, and Kev in Chen-Chuan Chang. Probabilis-

t ic top- and ranking-aggregate queries. ACM Trans. Database Syst., 33(3), 2008.

[88] Michae l Stonebraker, Daniel J. Abadi , A d a m Batkin, Xuedong Chen, M i t ch

Cherniack, M igue l Ferreira, Edmond Lau, Amerson Lin，Samuel Madden, El iz-

abeth J. O 'Ne i l rPa t r i ck E. 0 ’Nei l，Alex Rasin, Nga Tran, and Stanley B. Zdonik.

C-store: A column-oriented dbms. In Proc. ofVLDB'05, pages 553-564, 2005.

[89] Esko Ukkonen. On approximate string matching. In FCT, 1983.

[90] Maur ice van Keulen, Ander de Keijzer, and Wouter A l i nk . A probabil istic x m l

approach to data integration. In Proc. ofICDE'05, 2005.

[91] Chuan X iao , We i Wang, Xuemin L i n , and Jeffrey X u Yu. Eff ic ient simi lar i ty

jo ins for near duplicate detection. In Proc. of WWW'08, 2008.

[92] Ke Y i , Fei fe i L i , George Kol l ios, and Divesh Srivastava. Eff ic ient processing of

top-k queries in uncertain databases. In Proc. ofICDE’08，2008.

[93] Ke Y i , Fei fe i L i , George Kol l ios, and Divesh Srivastava. Eff ic ient processing o f

top-k queries in uncertain databases w i th x-Relations. IEEE Trans. KnowL Data

Eng., 20(12), 2008.

[94] X i Zhang and Jan Chomick i . On the semantics and evaluation o f top-k queries

in probabil ist ic databases. In Proc. ofDBRank'08, 2008.

