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Abstract 

In text mining, being able to recognize and extract named entities, e.g. Lo-

cations, Persons, Organizations, is very useful in many applications. This 

is usually referred to named entity recognition (NER). This thesis presents 

a cascaded framework for extracting named entities from text documents. 

We automatically derive features on a set of documents from different fea-

ture templates. To avoid high computational cost incurred by a single-phase 

approach, we divide the named entity extraction task into a segmentation 

task and a classification task, reducing the computational cost by an order 

of magnitude. 

To handle cascaded errors that often occur in a sequence of tasks, we in-

vestigate and develop three models: maximum-entropy margin-based (MEMB) 

model, isomeric conditional random field (ICRF) model, and online cascaded 

reranking (OCR) model. MEMB model makes use of the concept of mar-

gin in maximizing log-likelihood. Parameters are trained in a way that they 



can maximize the "margin" between the decision boundary and the nearest 

training data points. ICRF model makes use of the concept of joint training. 

Instead of training each model independently, we design the segmentation 

( 

and classification models in a way that they can be efficiently trained to-

gether under a soft constraint. OCR model is developed by using an online 

training method to maximize a margin without considering any probability 

measures, which greatly reduces the training time. It reranks all of the pos-

sible outputs from a previous stage based on a total output score. The best 

output with the highest total score is the final output. 

We report experimental evaluations on the GENIA Corpus available from 

the BioNLP/NLPBA (2004) shared task and the Reuters Corpus available 

from the CoNLL-2003 shared tasks, which demonstrate the state-of-the-art 

performance achieved by the proposed models. 
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摘要 

在文本挖掘中，能夠識別和提取實體名稱，例如：地點，個人，組織，在 

許多應用中非常有用。這通常被稱為命名實體識別（NER)。本論文提 

出一個梯級框架去從文本中提取實體名稱。我們會自動用特點模板去取 

得文件中的不同特點。為了避免一次性運算所涉及的龐大運算成本，我們 

將命名實體提取任務劃分為分割任務和分類任務，減少了運算成本的數 

級。 

為了處理序列任務中常常發生的梯級錯誤，我們探討和發展出三種模 

型：最大熵餘邊基礎（M E M B )模型，同分異構體條件隨機場（ ICR 

F )模型，在線梯級重排序（0 C R )模型。M E M B模型是在最大熵模 

型中加入了餘邊的概念，將對數似然最大化。參數進行培訓的目的，是為 

了將邊界和最近的訓練數據點的餘邊最大化。I C R F模型是運用聯合訓 

練的概念，每個任務的訓練不是獨立的，我們將分割模型和分類模型的 

訓練，設計成可以在一個軟約束下一起有效地訓練。0 C R模型是運用在 

線訓練方法，將餘邊最大化，而不考慮任何或然率，大大減少了訓練時 
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間。在某一階段中，它重排所有從上一個階段輸出的可能。最後，用總得 

分最高的答案作為最終的輸出。 

我們報告了在G EN I A語料庫作實驗的結果，這一語料庫可在B i 

o N L P / N L P B A ( 2 0 0 4年〉的共同任務中取得。我們也報告了 

在路透社語料庫作實驗的結果，此語料庫可從CoNLL — 2 0 0 3 的 共 

享任務中取得。實驗結果展現了目前最先進模型的性能表現。 
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Chapter 

Introduction 

In text mining, the vast amount of data and the great variety of induced 

features are two major bottlenecks when looking for important information 

from text data. This thesis focuses on the task of extracting information from 

sequence data. For example, a noun-phrase (NP) chunking task may involve 

a part-of-speech (POS) tagging task. These two tasks are usually cascaded, 

i.e. a POS tagger is used to get the POS tag of every word, followed by a 

noun-phrase chunker to segment and identify a NP chunk. 

Named entity recognition involves processing structured or unstructured 

documents and identifying a sequence of words that refers to named entities 

such as people, places, and organizations. It is a fundamental task in natu-

ral language processing (NLP). NER tasks were first introduced in the sixth 

Message Understanding Conference (MUC-6) and quickly evoked interests 



in the NLP community. NER tasks have also found mention in the Confer-

ence on Computational Natural Language Learning (CoNLL) in recent years. 

These conferences provided the benchmark for named entity systems in many 

information extraction tasks. 

NER is considered to be a simple problem for human beings. It is in-

tuitively simple that proper names can be identified with ease. However, it 

is hard for a machine to recognize proper names in an unstructured text. 

One may think that words having initial letter in capital are proper nouns; 

this is right but only to a limited extent. One may also think that using 

a dictionary one can identify most of the named entities because they are 

proper nouns. This is wrong because named entities evolve continuously as 

time passes by; it is impossible to add all named entities or proper nouns 

into a dictionary. As human beings we do not need a dictionary to recognize 

an unseen building with a name such as "The Fortune Building". 

The difficult issues in NER often involve semantic ambiguity. A proper 

noun may have different meanings under different contexts. Consider the 

phrase "The Pentagon". When should it be considered a location, and when 

is it an organization? When should we treat "May" as a month name, and 

when as a person name? It is not easy to decide the sense without looking 

at the whole sentence. 

Extracting named entities automatically is useful in many important ap-



plications such as information retrieval, question answering, and machine 

translation systems. In biological text archives, a named entity recognition 

system can automatically extract important medical named entities such as 

DNAs, RNAs, and proteins. In a question answering system, named en-

tities are the key to directly answering questions that involve "who" and 

"where" and helpful in indirectly answering questions that involve "what" 

and "when". 

While the most straightforward and easiest way to build a NER system 

is to directly process each feature and entity type, it also comes with a 

huge computational cost. For example, a direct application of a conditional 

random field (CRF) requires 0{NaN^) time for each iteration in training, 

where N。is the number of entity types and Na is the number of features, 

which is usually in the range of 1 to 10 millions. Moreover, many probability 

models use exponential families to estimate the probability for each training 

instance. A direct use of each feature means that we have to perform this 

expensive exponent operation for each feature. 

Typically a NER system has two sub-tasks: the first is identification of 

phrases in unstructured text, and the second is classification of these phrases 

into a set of predefined categories of interest, such as person names, or-

ganization names, and locations. Organization names may include compa-

nies, committees, and associations. Locations may include cities, countries, 
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streets, and buildings. 

Generally speaking, in many real world problems, information extraction 

tasks are cascaded together to achieve a final goal. Recently there has been 

a lot of related research into this area [44] [15] [17]. In a large-scale data 

mining or information extraction system, a major task is divided into two 

or more sub-tasks. Each task aims at a specific goal to accomplish one part 

of the major task. For example, an initial task of a noun-phrase chunking 

system may be to get the part-of-speech (POS) tag of every word. The result 

of a sub-task is passed on to the next sub-task for processing. 

Usually the initial tasks are responsible for generating some low-level 

features for representing an instance. They may be in the form of attribute-

value vectors or classification categories. The reason for doing this is to turn 

the complex knowledge, which is very rich in its original form, into a simpler 

form that an information extraction system can handle. 

"Cascaded errors" often occur in a sequence of tasks. This refers to an 

error made in the early stage of a system that is passed on to the next stage 

for processing. Based on this incorrect result, the next stage of the system 

produces another incorrect result, which is passed on to the next stage. In 

this way, an error is amplified in a chain of sub-tasks. 

Generally, in order to avoid cascaded errors, one can formulate the prob-

lem such that different sub-tasks are solved together. This ̂ approach is suit-
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able for small problems where the search space of combined sub-tasks is 

tractable during training. This totally eliminates the possibility of cascaded 

errors because it tries to assign values to variables simultaneously. How-

ever, this approach is computationally very expensive because usually the 

search space is exponentially increased. Therefore some approximate infer-

ence algorithms [46] [53] [34] have to be applied to reduce the inference time. 

Other approximate inference algorithms include Markov chains Monte Carlo 

(MCMC) sampling [16] and Gibbs sampling [14 . 

1.1 A Motivating Example 

In this section, we illustrate the idea of cascaded approach in the context of a 

noun-phrase chunking problem, modeled as a sequence labeling problem [41 

Suppose the input sentence in I0B2 format is 

“ “ 0 0 

On IN 0 0 

the DT B-NP B-NP 

comptroller NN I-NP I-NP 

side NN I-NP I-NP 

, , 0 0 

you PRP B-NP B-NP 



're VBP 0 0 

developing VBG 0 0 

and CC 0 0 

making VBG 0 0 

work NN 0 B-NP 

financial JJ B-NP B-NP 

controls NNS I-NP I-NP 

governing VBG 0 0 

a DT B-NP B-NP 

$ $ I-NP I-NP 

6 CD I-NP I-NP 

billion CD I-NP I-NP 

budget NN I-NP I-NP 

. . 0 0 

In a humanly readable form, this sentence is actually: 

On [the comptroller side], [you],re 

developing and making work [financial 

controls] governing [a $6 billion budget]. 

The words between "[“ and “]" indicate a noun-phrase that we need to 

extract. A useful sub-task for this noun-phrase chunking system is to give 
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each word a part-of-speech (POS) tag by a POS tagger 

IN DT NN NN , PRP VBP 

VBG CC VBG NN JJ 

NNS VBG DT -MP CD CD NN . 

With the help of the POS tags, the next stage of the noun-phrase chunking 

system can extract noun-phrases more easily than without the POS informa-

tion. 

A rather subtle problem is that the POS tagger is not trained to optimize 

the performance of the noun-phrase chunker in the next stage. In fact, for the 

above sentence, even when all POS tags are given correctly to the chunker, 

the chunker would make a mistake on the word "work". The output of the 

chunker is 

On [the comptroller side], [you]‘re 

developing and making [work] [financial 

controls] governing [a $6 billion budget]. 

In other words, training a POS tagger to correctly give a POS tag to 

the word "work" actually does not pay off in this case because it cannot im-

prove the overall system performance. Worse still, this may imply sacrificing 

accuracy of POS tags of other words. 



When this happens, there is a double loss: (1) we fail to extract the noun-

phrase correctly because of the chunker performance, and (2) our chunker 

would have extracted the correct noun-phrase with regard to other words 

with correct POS tags, but failed to do so because our POS tagger sacrifices 

this part of accuracy for accuracy in some words that the chunker cannot 

benefit from. In this way, cascaded errors occur unnecessarily. 

1.2 Improvements: where do they come from? 

To improve the performance of named entity extraction, we consider the 

following ideas. 

1.2.1 Margin-based improvement 

Traditional modeling makes use of probability for parameter estimation. It 

aims at maximizing the probability over a set of training data. In margin-

based training, parameters are trained such that they can maximize the "mar-

gin" between the decision boundary and the nearest training data points. In 

other words, parameters given by a margin-based method are more robust 

in the sense that it helps improve the performance on the set of data points 

that are very close to the decision boundary. 

We make use of this concept of "margin" in our Maximum Entropy Mar-
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gin Based (MEMB) model. 

1.2.2 Joint-training-based improvement 

When each model in a system is separated in a cascaded manner, the models 

are trained independent of each other. It is hard to predict the performance 

of the whole system since in the training stage, the goal is not to optimize 

the performance of the whole system but each of the sub-task instead. 

•Another major disadvantage is that a certain amount of effort may be 

wasted in training. A model in an early stage of a system may be spending 

effort in training to optimize its performance on a subset of training instances. 

However the model in the next stage of the system may not be able to take 

advantage of the correct results on this subset from the earlier stages due to 

imperfect modeling or lack of resources. In other words, some of the effort 

may be wasted. Worse still, it may harm the performance of another subset 

that can be handled well in the next stage. In this way, the performance of 

the whole system is hurt. 

We make use of this concept of joint training in our Isomeric Conditional 

Random Field (ICRF) model. 
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1.2.3 Reranking-based improvement 

Another compromise approach is to rank the possible outputs [42] (e.g. give 

each possible output a score) from an earlier stage and pass the outputs to 

the next stage. At the next stage all possible outputs are evaluated and 

assigned scores. The best output with the highest total score is the final 

output. 

We make use of this concept of reranking in our Online Cascaded Rerank-

ing (OCR) model 

1.3 Research Contributions 

In this thesis, we formulate the entity extraction problem as a supervised 

learning task, and propose a cascaded framework for extracting named enti-
% 

ties from unstructured text [4]. We develop three models for this framework. 

One is a "maximum-entropy margin-based" (MEMB) model that introduces 

the concept of "margin" into a maximum entropy model. The second is an 

isomeric conditional random field (ICRF) model that links two conditional 

random fields via a marginal distribution. The last model is an online cas-

caded reranking (OCR) model that uses online training and reranking to 

yield the best answer out of a list of candidates. 

Essentially, the cascaded framework addresses two main issues in sequence 
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labeling problems: 

Long Training Time: Traditional approaches that depend on maxi-

mum likelihood training method are slow even with large-scale optimization 

methods such as L-BFGS. .This problem worsens with the sheer volume and 

growth rate of literature. In this thesis, we propose to use a cascaded frame-

work that greatly red\ices training time. 

Large Memory Space: The total number of features used to extract 

named entities from documents is very large. For example, to extract biomed-

ical named entities, we often need to use extra features in addition to those 

used in general-purpose domains, such as prefix, suffix, punctuations, and 

more orthographic features. We need a large memory space to store them 

and that also worsens the fifst problem. By employing a cascaded framework 

that divides the named entity recognition task into a segmentation task and 

a classification task, we can alleviate this problem. ‘ 

‘However this framework introduces cascaded errors in prew t̂ical applica-

tions: 

Cascaded Errors: While we try to divide a sequence labeling task into 

cascaded tasks, errors in early tasks may propagate to latter tasks. They 

•amplify the errors in subsequent tasks and result in poor final performance. 

, I n this thesis, we propose three models to solve the above problems: 

11 



1.3.1 M E M B Model 

Our cascaded framework divides the entity extraction task into a segmenta-

tion task and a classification task. We use a unified model, which we call 

the "maximum-entropy margin-based" (MEMB) model, to solve both tasks. 

This model considers errors made between a correct and an incorrect output 
* 

during training. In the segmentation task, we reduce the training cost by 

grouping named entities of interest into one class. Note that this also helps 

segmentation of named entity types which are sparse in training data. The 

same MEMB model is used in the classification task as well. 

This approach can be used across domains and requires only an error 

measure function. The error measure function can be as simple as counting 
0 

the number of errors made, which usually does not require a domain expert, 

or only takes a relatively short time for a domain expert to come up with. In 

particular, we view "error" as a fundamental concept in every domain and, 

therefore, it can be represented in both the standard representation scheme 

in a domain and an entity extraction system. Our method does not need to 

adjust the set of features and the training data does not need to be prepared 

again. Usually the extra efforts involved in calculating the error measure can 
/ 

be executed by the system automatically. 

One of the main contributions of this thesis is as follows. By using the 
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proposed cascaded framework, we can reduce the training time by an order 

of magnitude - from 0{NaN^) to 0{NaNc). A unified model, which we 

term as the "maximum-entropy margin-based" model, is used to boost the 

extraction performance in this framework. We demonstrate this improvement 

in named entity extraction tasks using corpuses from shared tasks. In fact, 

our approach has reached state-of-the-art performance and has outperformed 

all other systems in the JNLPBA shared task. Details of experimental results 

and comparisons are also given. 

1.3.2 ICRF Model 

The second model that we have developed in this thesis is called the isomeric 

r 

CRF (ICRF) model. Recently, probabilistic graphical models [25] [35] [38] [46 

for sequence data have become the predominant formalism for information 

extraction problems. They deal well with uncertainty and achieve state-of-

the-art performance. 

Following the current research trend, we put the cascaded framework 

in a probabilistic context and investigate the possible causes for cascaded 

errors [3]. We explore a way of joint training, using probabilistic graphical 

models, without adding huge computation costs. Instead of using a margin 

in training our model, we develop a new training algorithm for this cascaded 

13 



framework that considers the relationship of probability distributions in the 

two tasks. Our proposed approach achieves performance comparable to state-

of-the-axt systems in real world problems. 

To improve efficiency, we also investigate an efficient method for training 

our model. This method uses a parallel implementation of parameter estima-

tion. The idea is to analyze and divide a parameter estimation problem for 

the whole model into independent parameter estimation problems for each 

training instance. Our experiments showed that this could reduce running 

time by lOx or more. 

1.3.3 O C R Model 

This online cascaded reranking (OCR) model actually makes use of the con-

cept of margin for parameter estimation and inference. It also uses a rerank-

ing method to correct errors in the first task by examining a candidate's score 

in the second task. 

In this model, we use a linear combination of features and use the resulting 

decision boundary to classify each candidate into a suitable class. We can 

completely ignore the probability framework but the inference method is 

i 

exactly the same as in previous models. 

Because it does not involve any probability modeling and there is no 
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need to use any gradient descend methods, we can use an online training 

method [5, 2] for parameter estimation, which is very fast. The advantage 

of using this online training method is that it can avoid huge computation 

costs involved in other margin-based methods such as those used in Support 

Vector Machines (SVM) for structured classification. This online training 

method improves a parameter value whenever a new data point is available. 

The updating formula is simple and fast. However due to its algorithmic 

nature, parallel implementation is not possible. 

In other words, the margin-based training help reduce errors in each of the 

tasks. Furthermore, we generate a list of TV-best candidates in the first task, 

which contains the top-TV candidates having the highest score, in descending 

order. We examine each candidate's score in the second task. The candidate 

that has the highest total score in the two tasks is chosen as the best output. 
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Chapter 2 

Background and Related Work 

This chapter presents some of the related work and background which are 

necessary for understanding the modeling and algorithms in later sections. 

2.1 B ackground ^̂  

A general CRF model can be described by 

P“y|x) = exP[^(、x，y)] (2.1) 

where 0 =(没i, 02,...，没m) is the training model parameter, Zelx) = J^y'ey exp[0 . F(x, 

is the normalization factor. 

In fact, this formulation implies that the joint probability distribution 

P0(x,y) is proportional to exp[0 • P(x, y)]. Thus we can write 

P0(x,y) = Acexp[6>.F(x,y)] (2.2) 
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where k. is just a scale factor, k may also be absorbed into 0. 

P0(x,y) = exp[0'.F'(x,y)] (2.3) 

where = < 没，log/c > and F' =< F, 1 >. Bearing this in mind can help 

understand the isomeric CRF approach in later chapters. 

In a typical text mining task, features to be used in a system are usually 

determined manually. For example, in a noun-phrase chunking task, we 

observe a sentence x where each word Xi has a label yi E {B, I，0} to indicate 

a word is the "beginning", "inside", or "out" of a noun-phrase respectively. 

Thus a feature may be defined as 

1 if Xi is the word “boy”, 

/(X’ = and Vi is the label "B" (2-4) 

0 otherwise 

A shorthand notation for the above feature is (xi = boy, yi = B). Here, 

feature value is 1 if a feature is present, and 0 otherwise. Since manually 

writing all these features is not feasible, a possible solution is to this problem 

is to define a set of feature templates and let the computer generate the 

features automatically. Two feature templates are shown below as examples. 

Al: (xuVi) (2.5) 

A2: (2.6) 
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When these two feature templates work on the following labeled sentence, 

would like to thank my advisor 

y ： B 0 0 0 0 B 

features generated by each template are: 

Al i^i = I’ 

{xi = would, 

(xi — like, 

2/i = B) 

yi = 0) 

yi = 0) 

(2.7) 

(2.8) 

(2.9) 

A2 : (xt_i = START, 

I
 

I
I
 1

 

I
 i

 
X
 

/
r
 L
\
 

[xi^i = would, 

工 i = I, 

Xi = would, 

Xi = like, 

2/t = B) 

2/i = 0) 

yi = 0) 

(2.10) 

(2.11) 

(2.12) 

where "START" denotes the start of a sentence. This reduces the problem of 

exactly defining a set of features to that of defining a set of feature templates. 

In some cases, users may want to^define^a threshold to remove some features 

that occur rarely, in order to reduce the number of features. An alternative 

to using a threshold is using a x^ test on the features as in [39]. This feature 
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template technique is used in programs such as [24], [36], and [32 

2. Maximum Likelihood Principle 

In early works of CRFs, model parameter w is usually learned by the maxi-

mum likelihood (ML) principle [27，41], which yields a conditional probability 

distribution for the data being considered. The best decision for the current 

task is then made with respect to this conditional probability distribution. 

To estimate model parameter w, we maximize log-likelihood C over the 

set of training data T = {xi, yi}: 

Pw(r) = 

=nPw(yi|xi)P0(： 
i 

c = logPw(T) 

= ^ l o g P w ( y i l x i ) 
i 

+ E l o g P “ X i ) 

arg max L = arg max ̂  log Pw (yi 

w w ‘ 

= a r g max ^ w - F ( x i , y i ) 
w i 

- ^ l o gZw (X i ) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

where Q is the paraineter for ？C = {xj}, and y — {yi}. Pei^) is 

dropped in the maximization because it does not involve w. 
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c 

In practice, we need to add regularization terms to the log-likelihood to 

avoid overfitting. Assume a Gaussian prior [45] with mean 0 and covariance 

w 
arg m£Lx:£ = arg max — (2.19) 

2(72 

+ ̂ [w-F(xi,yi) -logZ(xi) 
i 

After a CRF is trained, it can be used for finding the best output sequence 

y for an input sequence x. 

、 y = argmaxPw(y'lx) (2.20) 
y' 

=argmaxw-F(x ,y ' ) (2.21) 
y' 

2.1.2 Max-margin Principle 

Another training approach is to estimate model parameters from the mech-
» 

anism used in the decision phase. Parameters are estimated by the max-

、 

margin (MM) principle [47’ 33], which chooses parameters that give the 

largest "margin" to minimize empirical risks on the training data. 

Formally speaking, for each training instance (x,y) and each possible 

predicted output sequence y' ^y for x, we require that 

w . F(x, y) - w . F(x, y') > L (2.22) 

where L is a margin that we specify to reflect the level of confidence of making 
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a correct decision in this model. Note that in this paper a "margin" means 

the functional margin [11], not the geometric margin. In training, we try to 

find w by 

mm 
w 

2 
(2.23) 

such that V(x, y) and Vy' / y 

w.F(x’y)-w.F(x，y' ) > L (2.24) 

Another way of looking at this problem is to find w by minimizing the 

regularized empirical risk function: 

arg nun 
w 

•
1
 

•
1
 

S
T
 

w
 

X
7
 

I
 (2.25) 

m^[w . F(Xi, + L]} 

2.1.3 Discriminative Models 

Let us assume that we can generate, store, and add a new feature into our 

featursĵ ,space Z、and also can efficiently retrieve all activated features in Z 

for an instance. Now our learning model must be able to handle well the 

enormous number of features and the possible correlations between them. 

We choose to use a log-linear model with discriminative training to address 

the difficulties. We aim to learn the conditional distribution: 
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Pr(y|x;A) = e xP [ t . F i y ) ] (2.26) 
Z(x; A) 

where A = (Ai, A2,..., Am) is the training model parameter, F(x, y ) = 

(/i(x, y)，...，/m(x，y)) is the feature vector for instance (x, y), and Z(x; A ) = 

Yly'ey exp[A . F(x, y')] is the normalization factor. 

Log-linear models are widely used in maximum entropy modeling. Pa-

rameters A are optimized such that E\[f{x,y)] = J5[/(x,y)], where is 

A 

the expectation parametrized by A and E[-] is the empirical expectation. The 

log-linear models can be shown to have maximum entropy over the training 

instances. 

In discriminative training, a conditional distribution Pw(y|x) is modeled 

directly. This allows more freedom to the model to adjust its parameter w 

and fit training instances {(x,y)}. By comparing models 

尸 y ; w) = P,(y; w)P^(x|y; w) (2.27) 

Pd(x, y; w) = Pd(x; wOPd(y|x; w) (2.28) 

where (2.27) is used in generative training and (2.28) is used in discriminative 

training, it is easy to see that there are fewer constraints for discriminative 

training as parameter w does not need to account for marginal distribution 

Pd(x; which can be parametrized by another parameter 

Another advantage of modeling the conditional distribution directly is 
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the flexibility of adding a large number of possibly correlated and diversi-

fied features without degrading the performance as in generative training. 

For example, conditional random fields (CRFs) have been shown to perform 

better than hidden Markov models (HMMs) , its generative counterparts. 

2.2 Related Work . 

2.2.1 Feature Selection Methods 

The traditional feature selection problem is closely related to our feature 

abstraction problem. Two main types of feature selection methods are widely 

used: wrapper methods and filter methods. In wrapper methods, the learning 

algorithm is used to estimate the performance of a subset of features [22, 

1]. This approach can usually generate a small number of features that are 

suitable for the learning algorithm being used. However, it is slow because the 

learning algorithm must be used iteratively. In filter methods, the features 

are selected independent of the learning algorithm being used. They use 

statistical tests or mutual information to "filter out" redundant features [26， 

23]. However, filter methods usually work on discrete classes only. 

Feature induction [31] with conditional random fields [27] has been-used 

effectively for text mining. It makes use of a pseudo-likelihood to estimate 

23 



the impact on performance of adding a new feature. This estimation is done 

iteratively to select a new feature to be added from a set of proposed new 

features. The model is then trained by applying a few BFGS iterations before 

the next iteration. 

2.2.2 Parameter Estimation Methods 

CRFs [27], since'being introduced to solve sequence labeling problems, have 

shown good performance in learning tasks such as noun-phrase chunking and 

named entity recognition [41, 31, 49，40]. CRFs can be extended to semi-

CRFs [38], where an element in a sequence (e.g. a word in a sentence) is 

generalized to a segment in a sequence (e.g. a named entity in a sentence). 

Most of the early work followed the maximum likelihood principle in train-

ing and used the L-BFGS method, a limited-memory quasi-Newton method 

for conducting large-scale optimization, in parameter estimation because of 

its fast convergence rate. 
n -

There is another training approach that is based on the concept of "mar-

gin" .For example, a perceptron-Uke algorithm is used in training a hidden 
« r 

Markov model (HMM) [8]. For structured classification, [47] presented a 

margin-based general framework known as the maximum margin Markov 

network. The parameter estimation problem is solved with an approach sim-
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ilar to SVM, where a dual problem is formulated and optimization methods 

analogous to sequential minimaj optimization (SMO) for SVMs are used. A 

• 勢 

formal SVM treatment for structured classification is ^so presented in [50]. 

A margin-based approach to parsing is presented in [48]. It uses a com-

mon approach used in SVMs for solving the dual problem in training. There 

is another line of research that focuses on online training methods. For exam-

ple, [33] proposed an online margin-based training method for parsing. This 

type of training method is fast and has the advantage that it does not need 

to form the dual problem, though theJ performance may be inferior. Detailed 

descriptions of these algorithms, e.g. Margin Infusfed Relaxed Algorithm 

(MIRA), and online passive-aggressive algorithms, can be found in [10, 9 . « -
• • 

In this thesis we treat the purely margin-based approach as a method 

for estimating parameters. Actually, we can view the parameters estimated 
1 

by the margin-based principle as "the parameters that can give a distribu-

tion with margin-based characteristics over the training set.” As mentioned 

in [41], the best objective value (i.e. the log-likelihood) in maximum likeli-
f > 

hood training does not necessarily give the best learning results. Therefore, 

we can treat the margin-based approach as an alternative method for train-

ing. 
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2.2.3 Cascaded Methods 
) 

/ 

‘ To handle multiple tasks simultaneously, Dynamic Conditional Random Fields 

(DCRFs) [46] use factorized probabilistic models for segmentation and label-

ing. The model is formulated such that joint training is performed to optimize 

the overall system performance. However since exact inference is intractable 

in a DCRF, some approximate inference algorithms have to be used [13] [53 . 

Our isomeric CRF approach tries to achieve the same joint training without 

using an approximate inference algorithm. The speed is faster when existing 

well-developed algorithms for a linear-chain CRF are reused. Because we 

formulate each sub-task as a linear chain CRF, it is more flexible to give 

each sub-task its own feature template to best solve the problem. 

Another approach is to employ a joint decoding method [42]. In a dual-

layer CRFs approach, an N-best list is generated to avoid enumeration of 

all possible segmentations. This re-ranking technique has been used success-

fully in many NLP applications, such as speech recognition [43] and NP-

bracketing [20]. This approach is more suitable for problems where two 

separately trained CRFs are to be used together in a cascaded way to solve 

a single task. 

A more complete and interesting study is described in [44]，where compar-

isons between cascaded training and testing、joint training and testing, and 
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joint testing with cascaded training were presented and their performances 

were evaluated on a dataset of email seminar announcements. The objective 

of this study was to transfer regularities learned from a well-studied sub-

task to a new related task. Therefore their focus was on how to perform 

joint-decoding of separately-trained models. 

For joint inference on database records and serai-structured sources, read-

ers can refer to [37], which proposes a joint approach to information extrac-

tion, where segmentation of all records and entity resolution are performed 

together in a single integrated inference process. 
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Chapter 3 

Problem Description 

This chapter presents the text mining problem in a machine learning con-

text. We start by describing the general supervised learning setting and then 

discuss some examples and applications. Then we move on to discuss how a 

text mining problem is cast ^ a supervised learning problem. 

In many text mining tasks, a set of training data is given and the problem 

can be cast as a supervised learning problem. We follow [51] to describe the 

general setting of our learning problem as follows. 

« 

Def i n i t i on 1 The goal of the general .learning problem is to minimize the 
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following risk function R{w). 

R{w) = J Q{f{x,y);w) dP(/(:r’2/)) (3.1) 

where 

Q{f{x,y)]w) is a loss function on f{x,y) (3.2) 

f{x,y) describes the pair (x, y) (3.3) 

X is an observation (3.4) 

y is the answer for x (3.5) 

w is the parameter for Q(.) (3.6) 

P{f{x^y)) is the unknown probability (3.7) 

distribution of f[x,y) 

and f {xi,yi),... ,/(xn,2/n) from P{f{x,y) are given. 

Prom the above formal definition, we can see that the machine learning prob-

lem handles the problem of finding the parameter w that can minimize risk 

R(w)’ i.e. to minimize the number of prediction mistakes on f(x,y) from 

distribution P{f{x,y)), under the condition that P{f{x,y)) is unknown but 

a set of samples {/(xi,2/i)} is given. Usually w parametrizes and enables a 

model to predict the answer for x. Thus loss function Q{') can be calculated 

by comparing the predicted answer with the true answer y. That is why Q{-) 

is also parameterized by w. For example, in regression problem, if we are 
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using a quadratic equation ax^ -4- -f c, the loss function is 

y)\ (a, b, c)) = (2/ - (ax^ + bx-h c))^ (3.8) 

where we use L2 norm as our loss metrics and represent the pair (x, y) directly 

by an identical feature function. 

This general setting of machine learning problem assumes that the feature 

function f{x,y)^ which is used to describe the pair (a;,?/), is available or 

given. Technically speaking, even without a proper feature function f{x, y) 

to describe the pair (re,?/), a machine learning problem can still be solved. 

However, this is not true in many real world applications. Often there are 

uncertainties involved in choosing /(x, y). For example, should we represent 

numerical values in log-scale? Should the values be normalized? If yes, what 

are the upper and lower bounds? Should we represent discrete values by 

binary variables? Researchers need to resort to trials and errors, to make 

judgments. Results may be different from time to time for different datasets. 

This is one of the reasons why many machine learning systems does not give 

satisfactory performance on real-world data. 

Strictly speaking, if the definition of f{x^y) is chajiged, for example by 

using a slightly different set of features, then it becomes a different machine 

learning problem. The old and new problem may or may not have useful rela-

tionships between their parameters, performance, or convergence rate. This 
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Error 

Generalization Error 

Figure 3.1: Generalization error versus fitting error 

makes comparisons among different mining systems difficult because they 

may differ in machine learning algorithms and also in terms of features used. 

This scenario is further complicated if there are more training parameters 

used in the systems. 

In general, the feature selection problem affects the learning performance 

in two ways. 
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Figure 3.2: A dog or many cats? 

3.1 Linear Combination of Features 

Linear combinations of features are widely used in many learning algorithms. 

For example, in support vector machiiies (SVMs) and maximum entropy 
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mm 

subject to Ci(w • f{xi) — b) > 

l < i < n 

F(x w ) = 

.(3.9) 

(3.10) 

(3.11) 

(3.12) 

SVM 

MaxEnt 

In these approaches, part of the models involve a linear combination of fea-

tures, as follows. 

Wifi + W2f2 + • • • + Wnfn (3.13) 

where fi represents the presence of feature i. 

In the following, we give an example to show why this linear combination 

of features is inadequate for text mining problems. Suppose we are using only 

word features and need to distinguish that "Carnegie Mellon" is a person 

name, and "Carnegie Mellon University" is an organization name. We use 

normalized weights to represent the probability of a word to be a person 

name, i.e. 0 < Wi < 1. Suppose further that from the training set, we can 

see that fi = "Carnegie" and /2 = "Mellon" appear more often as a person 

name and their weights are : Wi = 0.8 and W2 = 0.7. fz = "University" can 

be a place name, or an organization name but can never be a person name: 
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so its weight w^ = 0. The score for these two named entities 

Score (Carnegie Mellon) 

=^^1/1 + ^2/2 = 0.7 + 0.8 

=1.5 

Score (Carnegie Mellon University) 

二 w j i + 11)2/2 + wsfs = 0.7 + 0.8 + 0 

=1.5 

They both get the same score and are regarded as person names (or NOT 

person names, depending on the decision criteria or threshold). This problem 

emanates from the fact that the sum of individual features does not necessar-

ily reflect properties of conjunction of the features. A more extreme example 

would be the word "not" that can negate the meaning of a phrase. 

One remedy to this problem is to use conjunction of features f i j to repre-

sent that features i and j appear together. In the above example, the features 

become /i,2 = (Carnegie, Mellon) with 1̂ 1,2 = 0.9 and /i,2,3 = (Carnegie, 

Mellon, University) with 1̂ 1,2,3 = 0. Given the above features and a proper 

representation of the named entities by these features, i.e. use only /i,2 

i 

for "Carnegie Mellon" and only /i,2’3 for "Carnegie Mellon University", the 
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scores become 

Score(Carnegie Mellon) (3.20) 

= m,2fi，2 (3.21) 

=0.9 (3.22) 

Score(Carnegie Mellon University) (3.23) 

=m,2,3/1,2,3 (3.24) 

= 0 (3.25) 

3.2 Model Selection 

The model selection problem in machine learning tries to solve the problem 

of over-fitting. The linear combination of features also contributes to this 

problem. More details of the model selection problem can be found in [51, 54 . 

Suppose a family of models A4 can be specified by its structure with a 

scale parameter k. For example, a model can be described as "fc-th order 

polynomial", i.e. afcX̂ H Hai工+ ao. The scale parameter k gives an order 

of complexity of different models under the same structure. This complexity 

can be roughly regarded as a measure of the number of possible mappings 

that a model can give. A model of larger scale k includes models of smaller 

scale denoted by M /̂ M^. As shown in Figure 3.1 (adapted from [54]), 
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when k is increased, the fitting error on the training set decreases while 

the generalization error decreases to a minimum point and then increases 

again. Our goal is to select the model with the best k* so as to minimize 

the generalization error but what we can observe is the fitting error on the 

training set. There are many approaches to choose k*, including regular-

ization, cross-validation, minimum description length (MDL) principle and 

Akaike's information criterion (AIC) criterion, etc.. One notable approach 

is the structural risk minimization (SRM) strategy that makes use of the 

concept of KC-dimension [51]. 

It is tempting to think that the number of parameters in a model can 

represent its complexity. For example, a linear model has a lower complexity 

than a higher order polynomial. However, with the fact that a simple sinu-

soidal y = AsinTx with only two parameters A and T can fit any set of data 

points, the number of parameters in a model clearly is not the best indicator 

of the model's complexity. 

This problem is further complicated in text mining tasks because of the 

rich feature sets that are available for text. These features may or may not 

be fully derived from the text document in the given data. For example, 

paxt-of-speech (POS) information, prefix, suffix, lemma form, base type, and 

domain lexicon. Even if we fix our model to be a linear model, when we add 

more features to our model, we may not be sure how much complexity we 
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Figure 3.3: A square with four Figure 3.4: Four lines but not a 

lines square 

are "adding" to the model. As shown in Figure 3.1，the over-fitting problem 

may easily occur if we add too much complexity but we also face the risk of 

under-fitting if we do not add enough complexity. Because of the nature of 

text (as compared to other learning problems that involve numerical values 

only) and that some features may come from sources (e.g. a domain lexicon) 

out of the scope of the given text documents, it is harder to evaluate the 

complexity of the model, i.e. choosing k* becomes a harder problem. 

3.3 Our Model Requirements 

In this section, we outline the requirements for our learning model: 
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Large number of features. Because there can be an enormously num-

ber of conjunctions of features generated, the learning model we use must be 

able to handle the large number of features, say, at least millions of features. 

Correlated features. Since a basic feature may appear many times in 

other conjunctions of features, there are correlations between these conjunc-

tions of features. Our learning model needs to handle the correlations well 

and not to let these correlations degrade the performance. 

Parameter estimation for conjunction of features. Each conjunction 

of features is expected to occur less frequently than its constituent basic 

features. According to the law of large numbers, in general reliability of 

conjunctions of features is less than that of basic features. The parameter 

estimation process is required to address this difference. 
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Chapter 4 

Modeling 

4.1 Maximum-entropy Margin-based (MEMB) 

Model 

4.1.1 Proposed Framework 

We propose a cascaded framework for extracting named entities in scien-

tific text. The framework consists of two modules: a segmentation module 

(SEG) and a classification module (CLASS). Each module uses the same gen-

eral model that considers the probability and the margin for the data being 

t 

considered, which we term the "maximum-entropy margin-based" (MEMB) 

model. . 

In the SEG module, we segment the text and identify entity candidates 
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Figure 4.1: A schematic representation of our cascaded framework for ex-

tracting biomedical named entities (NEs). Both the SEG and CLASS mod-

ules use the MEMB model. 

without identifying their types. The SEG module is performed by grouping 

all entity types of interest into one super-type . In the CLASS module, each 

entity candidate is classified into one of the entity types. One advantage 

of using this cascaded approach is that segmenting the text and identifying 

entity candidates are relatively simpler problems, as different types of named 

entities share common features in the context of scientific text. Another 

advantage is that we can select features that are suitable for each module. 

While combining the two modules into a single phase is possible, the large 

number of features involved may sometimes degrade the performance. This 

phenomenon has been observed in many tasks. In particular, in the context 
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of named entities, [39] reported that a conditional random field (CRF) using 

only orthographic features gave better performance than using a complete 

set of features that included semantic features. The third advantage is that 

with the reduced number of features due to both the selected features for 

each module and the reduced number of output labels, the computational 

cost is substantially lower and thus the training time for our approach is 

significantly shorter than when combining the two sets of features. 
C' 

In the following, we first describe our notations and present the general 

MEMB model in our framework. Then we present the details of its applica-

tion to extracting named entities in scientific text, which includes the training 

algorithm and the decision algorithm with analysis in later chapters. 

4.1.2 Notations 

In the SEG module, each sentence in text is represented by a sequence x. 

The named entities in x can be segmented with the help of a segmentation 

sequence y. We assume there is only one correct segmentation y for each 

sentence x. The SEG module is required to give the correct output sequence 

y upon an input sequence x: 

There is a feature vector Fg = (Fi, F2,..., Fm), where m is the number of 

features, that associates each sentence x and each segmentation sequence y, 
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i.e. Fs = Fa(x, y). This is commonly known as joint feature representation or 

combined feature representation of inputs and outputs in the support vector 

machine (SVM) literature [50]. We denote the inner product of two vectors 

a and b as a • b. 

In segmenting named entities in text, x is a sequence of words that forms 

a sentence, while y is represented as a sequence of labels. Each label is an 

element in a label set CL We use the I0B2 notation to identify a segment in 

a sentence, i.e. = {I,0,B}, where B represents a word that is the start of 

a named entity, I represents a word that is inside a named entity (but not 

the start), and 0 represents a word that is not part of a named entity. For 

example, an RNA named entity is in the following sentence: 

MTIIa mRNA levels increased signif icantly . 

B I O 0 0 0 

We combine the words with the labels B and I together and identify 

"MTIIa mRNA" as a segment of a named entity. Note that in this I0B2 

notation, a label 0 can be followed only by 0 or B but not I. 

In general, there are far more 0 tags in training data. Therefore if there 

are no special clues on a word, our model will give a 0 tag to the word. 

In the CLASS module, each input sequence x is an entity candidate ob-

tained from the SEG module. For example, x = "EBV genome". The output 
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y is reduced to a single label y that represents the type of the named entity 

X. The feature vector becomes F。= Fc(x, t/) accordingly. 

4.1.3 A General Model for Segmentation and Classifi-
r 

cation 

Our general model is a maximum entropy model with a margin incorporated. 

For ease of exposition, we restrict our discussion to the SEG module. This 

analysis can be similarly extended to the CLASS module with each sentence 

X and each segmentation sequence y being replaced by a named entity can-

didate and an entity type respectively. The general model can be described 

by 

p 称 ; A ) = exp[A.F(x,yO + E(y,yO] _ 
彻 ; A ) 

where A = (Ai, A2,..., Xm) is the training model parameter, Z(xj； A ) = 

exp[A • F(Xi’y) + is the normalization factor, and 

丑(yi，y')= 

Err (yi ’ y') in training 

(4.2) 
0 in decision 

^rr(yi, y') > 0 is an error measure function of yi and a possible output 

y' with equality when y_ — y!., A traditional conditional random field 

(CRF) [27] model can be obtained by setting E{y\,y') = 0. 
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4.1.4 Weighted Error Measure Function 

In order to allow the flexibility to reflect the importance of the error measure 

function, we use a weighted error measure function as follows: 

|y| 
Err{y、y') = K:^I{yi—y'J (4.3) 

1=1 

where k. is the weight for the error measure function. From our empirical re-

sults, a weighted error measure function usually gives better results compared 

to a non-weighted one (i.e. n = 1). 

4.1.5 Training: Optimization Problem 

Training the parameter A is intractable in general. Consider a sentence x of 

length p with I0B2 notation where the number of possible labels for a word 

is 3. The total number of possible outputs y' for sentence x is where p is 

usually in the range of 10 to 20. Note that if one sentence is long, the total 

training time will be dominated by that sentence because of the exponential 

increase in the number of possible y' for that sentence. Enumerating all 

possible y' is computationally expensive and generally impractical. Thus we 

follow the assumptions that are commonly made in a sequence labeling model 

and use a modified version of the forward-backward algorithm for the MEMB 

model. We assume first-order independence on the output y for the set of 

features F(x’y) and write F(x,y) as the sum of features at all positions of 
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sentence x. 

|x| 

F(x，y) = (4.4) 

i=l 

where |x| is the length of sentence x, and f = (/i，/2，...，/m). Each fk is 

a feature function defined at position i of sentence x. More precisely, it is a 

binary function of the whole sentence x, the previous label yi-î  the current 

(i.e. the i-th) label, and the position i. For example, it can be defined as 

1 if Xi is the word genome, 

and 2/i_i is the label B (4.5) 

0 otherwise 

In our experiments, we observed that some features appeared only a few 

times in the whole training corpus. After testing on smaller training sets, we 

decided to filter out these features to speed up the training process. W e set 

our cutoff number to be 3. Finally nearly 3 million features were used. 

W e further assume that the error measure function Err{y, y') is decom-

posable. This measures the error between two segmentation sequences y and 

y' by directly counting the number of mismatched labels. 
|y| 

ETT{y,y') = Y.I{y,^y[) (4.6) 
i=l 

where I{x) = 1 if rr is true, and 0 otherwise. • 

W e formulate the parameter estimation problem as an optimization prob-

lem. Assuming each sentence xi and its segmentation sequence y! is inde-
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pendently drawn from an underlying unknown distribution, we estimate the 

parameter A by maximizing the conditional likelihood over a set of training 

data T = {(xi,yi)}. 

P^iT) = n^A(yi|xi)P.(xO (4.7) 
�‘ i 

where 6 is the parameter for the marginal distribution P0(Xi). (See [45] for 

a detailed explanation and the advantages of using a different parameter 6 

to parameterize the marginal distribution of Xi). The probability is typically 

represented as a log-likelihood C{A) for optimization [45]. The convexity of 

the form is helpful in parameter estimation. 

/:(A) = logPl(r) (4.8) 

=J]logPl(yi|xO + 5]logP,(xO (4.9) 
i i 

The problem is now transformed to searching for the parameter A that can 

give the maximum log-likelihood over the set of training data. 

arg max£(A) = arg max 7 A • F(xi, yj) — log ̂ A(xi) 

A A ^ 

Note that P0(Xi) is dropped in the maximization because it does not involve 

A. The above formulation is similar to that in a linear-chain C R F except 

that the normalization factor Zj(xi) contains an additional term Err(y\^y') 

in it, i.e. if Erriyi^y')三 0, it is reduced to a linear-chain CRF. W e need to 
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modify the C R F training procedure to account for this additional term. To 

perform maximization, we need to get the gradient of £(A). 

V£(A) (4.10) 

= V F f x vl ^y'ey^W.y)^  

i 

where Y is a random variable that takes a value.in the output space 乂 and 

<fpj(Y|xi)F(Xi’ Y ) is the expected F(xi, Y ) under the distribution Pj(Y|xi). 

The major difficulty in our optimization process is the computation of the 

gradient V£(A) that leads to the problem of finding the expectation <^pj(Y|xoF(xi, Y). 

To efficiently calculate the expectation, we make use of the first-order inde-

pendence assumption in Equation (4.4) and the decomposability of the error 

function E'rr(y,y') in Equation (4.6). A variant of the forward-backward 

— 

algorithm can be employed. 

4.1.6 Forward-backward Algorithm 

W e first define two sets of variables that will be useful in computing the 

expectation: forward variables OLp{q) to represent the joint probability that 

the word at position p is labeled as q, and the words from position 1 to 

p appear; backward variables Pp{q) to represent the conditional probability 

that given the word at position p is labeled as g, the words from position 
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(p + 1) to the end appear. Let ？/p be the correct label at position p. Each 

variable can be recursively calculated by the following equations: 

v'en 

Mq) = 州 约 

‘ y'en 

where ao(.) and P\x\{') are both initialized to 1. With the two sets of vari-

ables, we can efficiently compute the normalization factor Zj(x) and the 

expectation <^pj(Y|xi)F(xi, Y). 

丨“丨 
= (4.11) 

9=1 

。I(Y|xi)FA:(Xi’Y) (4.12) 

�k y ^ 

Note that with the help of the forward and backward variables, the number 

of operations is changed from being exponential in the length of a sentence x 

(i.e. to being linear in |x|. The objective value £(A) and the gradient 

V £ ( A ) can be calculated efficiently with the normalization factor Zj(x) and 

the expectation £pi(Y|x‘)F(Xi，Y) provided. With these two pieces of infor-

mation, we can use the L-BFGS algorithm [28], which is a limited-memory 
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quasi-Newton method for conducting large-scale nonlinear optimization, to 

estimate the parameter A. Tl^ L-BFGS algorithm has a fast convergence 

rate and has been shown to achieve good performance in estimating param-

eters for maximum entropy models [29]. 

In practice, we need to add regularization terms to the log-likelihood to 

avoid overfitting. Assume a Gaussian prior with mean 0 and covariance a^/, 

|A £(A) = ^ A . F ( x i , y O - l o g Z X ( x O 
2a2 

2 

The role of regularization terms is particularly important in our model. If we 

consider Equation (4.22), it is easier to satisfy these constraints with large 

values of 入i. That means a parameter A with a larger norm is preferred 

without regularization, which usually gives an overfitting model. In our 

experiments, a smaller a (i.e. a heavier penalty for a larger norm) tends 

to give better performance. 

4.1.7 Grid Search for a and k 

In order to give appropriate values for the regularization parameter a and 
* 

the error weight k、we propose a grid search algorithm to find the appropriate 

parameter values. The idea is to split the training data into a training set 

and a validation set and divide the two-dimensional search space for a and k 
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into large grids. In each grid, we use the center of the grid to train the model 

on the training set and test it on the validation set. W e choose the grid that 

gives the best performance and continue to divide it into smaller grids. This 

process is repeated until there is no improvement on the performance or the 

performance is satisfied. The algorithm is presented in Algorithm 1 
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Algorithm 1 Grid-search for a and k. 

1： INPUT: ‘ search range for a: [era, aj and k: [hia, K,b 

2: while true do 

3: set ( 7 饥 = 中 ， = 中 

4: set = 2 ^ ， (7̂ 2 = ^ ^ 

5: set /ĉ i = = ^ ^ ^ 

6： MaxP — —oo 

7： for p = 1 to 2 do 

8： for g = 1 to 2 do 

9： Train the model on the training set with parameter [amp, 

0: Test the model on the validation set and get performance P 

1： if P > MaxP then 

2： MaxP = P 

3： a = amp and k, = K.mq 

4: end if 

5： end for 

6： end for 

7: terminate if no improvement 

8： (7q = min (cTa, a), at, = max{(75, a) 

9： K.a = min(ACa) ^b = max(/tf„ «) 

20： end while 
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4.1.8 Inference 

W e divide the named entity recognition task into a segmentation task and a 

classification task. In the segmentation task, a sentence x is segmented and 

possible segments of named entities are identified. In the classification task, 

the identified segments are classified into one of the possible named entity 

types or rejected. 

In other words, in the segmentation task, the segments in a sentence x 

are identified by 

Ys = argmaxws . Fs(x,y') (4.13) 

where Fs(-) is the set of segment features and Wg is the parameter for seg-

mentation. 

In the classification task, the segments (that can be identified by ys) in 

a sentence x are classified by 

Yc = argmaxwc . Fc(x,ys,y') (4.14) 

y' 

where Fc(-) is the set of classification features and Wc is the parameter for 

classification. 

First-order Independence 

In this cascaded framework, the number of possible labels in the segmenta-

¥ 

tion task is Ns, For example, AT̂  = 3 in the I0B2 notation. In the classifica-
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tion task, the number of possible labels is Nc which is the number of entity 

types. Following the first-order independence assumption, the m a x i m u m to-

tal number of features in the two tasks is 0{max{N^, which is much 

smaller than the single-phase approach where the total number of features is 

0((NsNc)”. 

Another potential advantage of dividing the N E R task into two tasks is 

that it allows greater flexibility in choosing an appropriate set of features for 

each task. In fact, adding more features may not necessarily increase the 

performance. [39] reported a system using a subset of features outperformed 

that using a full set of features. 

Adapted Decision Algorithm for M E M B Model 

In M E M B model, the decision algorithm is an adapted training algorithm 

that reflects the unavailability of the true output yi； in other words, we do not 

know the true output yi and thus no information between yj and a possible 

output y' is known. 

Zdecision(Xi; A ) 

where A is the model parameter that we get from the training stage, Zdedsioni'̂ W A ) = 

Ey'e;yexp[A • F(x“y')] is the normalization factor. 

For convenience, we write Prtrainin5(y'|xi; A ) as Pj(y'|xi) and Prdecision(y'|xi; A ) 
f 

、 ‘ 
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as PjP(y'|xi), and similarly for the normalization factors -Strain(̂ i； A) and 

Zdeciaionî i] A) as Zj(xi) and Z^(xi) respectively. In the decision stage, we 

extract the named entities in the input sentence Xi by finding the output y 

with the highest probability Pj? (y'|xi) with parameter A. 

y = arg mfiL>cPyf(y'|xi) (4.16) 

y' 

In case there is a tie, we assume there is an ordering in y for choosing y, 

such as the number or the maximum length of named entities. The same 

operation can be performed in the log space. Equation (4.16) can be written 

as 
« 

y = arg max logP^(y'|xi) (4.17) 

y' 

=arg max A • F(xi,y') (4.18) 

y' 

N o w we are ready to investigate the design and significance of the -error 

measure function Err{y\^y') in the training model. Suppose in training, for 

a training instance (xi,yi) the model gives the highest probability correctly 

to Yi, i.e. y = yi, 

m ^ logPKy'lxi) (4.19) 

= A • F(xi, yi) + Err{yu y{) (4.20) 

=A.F(xi,yi) (4.21) 
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where Err{y\, yi) = 0 by definition. W e can conclude Vy': 

A - F(xi,yi) > A . F(xi, y') + Err{y,,y') (4.22) 

A . F(xi, Yi) - A . F(xi,yO > Err{yu y') (4.23) 

This is analogous to training the parameter A with margin ErT{y\^y') in 

margin-based training (although A may not necessarily give the maximum 

margin in our case). W h e n the training model gives the highest probability 

to the output Yi for the input Xi, it also gives at least a margin defined by 

ETr{y\yy') between all possible y' ^y and y! for the input xj. 

This analysis can be applied to the CLASS module in a similar manner. 

4.2 Isomeric CRF ( ICRF) Model 

Based on the cascaded modeling framework, we further investigate the cause 

of cascaded errors. To simplify our discussion, suppose we have two sub-

tasks to perform. (The following discussion can be extended to N sub-tasks 

trivially.) In the following discussion, we also change our notation to indicate 

that we are now focusing on the ICRF model when necessary. 

The first sub-task aims at predicting Y based on X、and the second sub-

task is to predict Z based on X and Y. W e can put the above problems into 

a probabilistic framework as follows. 
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The foundation of cascaded approach comes from the chain rule of prob-

ability: 

P ( Y ， 别 幻 = ( 4 . 2 4 ) 

一 P{X,Y) P ⑷ (… ) 

= P(Z|X, Y)F{Y\X) (4.26) 

(Note: in some problems, P{Z\X,Y) = P(Z|y)) In practice, the probability 

distributions for P(Z|X, Y) and P(y|X) in a cascaded approach will be mod-

eled by different probabilistic models. They may differ in the model families 

used or the feature representations. Furthermore, each model will have its 

own parameters. Therefore, a more precise description will be: 

PCK,割;0 = P(足 y，幻 
P ⑷ 

- m . y ) m ) 

- P e { X , Y ) Q^{X) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

where is a model family for the relationship between Z and (X, Y) 

with 6 being its parameter, and Q(.|.) is a model family for the relationship 

between Y and X with <t> being its parameter. 
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The above transformation actually imposes a constraint : 

Pe{X,Y) = Q^{X,Y) (4.31) 

under the parameter values {9,4) for the two probability distributions. The 

difference between a separately-trained approach and a jointly-trained ap-

proach is presented schematically in Figure 4.3 and Figure 4.2.' 

Prom here, we will need a specification for the model families in order 

to proceed. A natural choice for the conditional probability distributions 

above will be a conditional random field (CRF) model [41], where X is an 

observation and ("K, Z) is the answers that we are going to predict. 

In a sequence labeling problem, Y and Z correspond to different tags that 

we are interested in. For example, X is a sentence consisting of a sequence 

of words, y is a sequence of P O S tags corresponding to every word in the 

sentence, and Z is a sequence of NP-chunking tags for identifying N P chunks 

in the sentence. 

4.2.1 Markov Properties 

To see why we want to model two conditional distributions instead of the 

original conditional distribution, we turn our attention to the practical imple-

mentation. One typical requirement for a C R F model F{U\V) to be tractable 

in its inference stage is to assume a first-order [12] independence of U, i.e. if 
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Figure 4.2: A schematic representation of a jointly-trained framework for 

information extraction. The two models are jointly trained. Each model is 

optimized in a way that the overall system performance is maximized. 

U —< Ui,U2,... ,Un >, then P{ut\v,ut-i,..., wi) = P{ut\V,ut Theoret-

ically speaking, our model does not prohibit the use of higher-order CRFs. 
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Figure 4.3: A schematic representation of a separately-trained framework for 

information extracting. The two models are separately trained and cascaded 

together to solve a single task. The performance of each model is not opti-

mized to benefit each other. Cascaded errors can easily occur which leads to 

poor overall system performance. 
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However in practice, a higher-order model needs a lot more data to estimate 

its parameters and a bigger cost for training (e.g. longer training time and 

larger memory space). 

If we model the conditional distribution P(y, ZjX) directly, the random 

variables (K, Z) together have to satisfy this Markov property. However, if 

we model the two conditional distributions separately, in each model only 

one random variable is required to satisfy this first-order independence as-

sumption. This implies that we can make use of more information from Y 

in Y) to predict Z without adding too much computation load. 

4.2.2 Template Specification 

When we specify a C R F for a sequence labeling problem, we need to spec-

ify different feature functions to be evaluated on an instance X. However, 

manually specifying each feature function for a large-scale problem is time-

consuming and not scalable. This is usually done by specifying a template 

that will be turned into a set of feature functions. 

By modeling two conditional probability distributions instead of one, it 

will be more flexible for each model to choose its own specific template for 

its own modeling goal. The number of features also grows with the square of 

the number of values for a random variable. In other words, if ?/ G z E 
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and there are m\y\^ features for y and m\Z\'^ for z，then in one single C R F 

there will be approximately m{\y\ + features.. This actually means 

there will be fewer total number of parameters in a cascaded approach. 

4.2.3 Training Time 

T w o important efficient algorithms that are used as inference algorithms in 

a C R F are the forward-backward and viterbi algorithms. The time com-

plexities of both grow linearly with the square of the number of states. As 

stated in the previous section, the greater number of states in a single C R F 

approach will suffer a longer training time in a cascaded approach. 

4.2.4 Joining two CRF Models 

Following the description in the previous section, suppose we have two CRFs 

defined by 

PB{z\x,y)= 
exp[0 • F(x,y, 

Q<p{y X ) = 
exp[(/>-G(x,y) 

W e can then define an isomeric C R F to be 

Ra(2/’z X ) = 
exp[A • H(: 

Z x M 

(4.32) 

(4.33) 

(4.34) 

(4.35) 
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where A = < >, H = < F’G >, and Zx{^,y) = Z0(x， 

Claim: Under the assumption that the term exp[(/> • G(x, y)] and the nor-

malization factor Z0(x，y) are equal, the distribution Rx(y, z|x) recovers a 

conditional distribution for (y, z) conditioned on x. 

Proof: W h e n exp[(/) • G{x, y)] = ^^{x, y), the distribution IlA(y，z|x) can 

be written as 

exp[A . H(x, y, z)] exp[0 • F(x, y, z)] exp[0 • G(x, y) 

Z x M 

exp[0-F(x,y,z)]Z0(x,y) 

exp[<9-F(x,y,z)]Z0(x,y) 

而(X，y) Ey'e;v 而(x，y' 

exp[0 . F(x,y,z) 

Hy'ey Ez'62 exp[(9 . F(x, y'、z 

= R(y’z|x) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

where in the second last line we cancel out the factor ̂ ^(x, y) and substitute 

for the definition of Z0(x，y') in the summation term. 
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4.2.5 Joint Training for an isomeric CRF 

As in the case of a general C R F , we define the log-likelihood of ’ z|x) 

to be 

£(A) (4.41) 

= logRA(y,z|x) (4.42) 

= logP0(z|x,y)Q^(y|x) (4.43) 

= e • F(x,y, z) 一 log Ze{x, y) + G(x，y) — log (4.44) 

= A . H(x, y, z) - log y) (4.45) 

If we look at the last line, the log-likelihood for an isomeric C R F looks 

exactly the same as a general C R F . That is why we term it an isomeric 

C R F . W e also have to add the constraint exp[(/). G(x, y)] = ^^(x, y) for each 

training instance in the optimization process. However as in the case of other 

machine learning algorithms (e.g. support vector machines (SVMs)), a hard 

constraint is rarely satisfied in real-world problems. Therefore we use a soft 

constraint approach to implement the constraint exp[(/) • G(x, y)]=而(x’y) 

by adding a penalty term 专=|f G(x,y)l-iogZ,(x.y)|̂  to the log-likelihood 

C{X) (4.46) 

= e . F(x, y, z) — log y) + 0 . G(x’ y) — log (4.47) 

+ 步.G{x, y)] — log y)|2 (4.48) 
2 
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where C is the penalty cost for the violation of the constraint. Note that 

by this constraint, the two C R F models P and Q are linked together. For 

example, if we try to ma:ximize solely the log-likelihood of P without con-

sidering Q, the resulting inconsistency between P and Q will show up as 

a non-zero difference D. Therefore, the optimization process has to adjust 

the C R F model Q to match the C R F model P in order to reduce the dif-

ference D. When the two C R F models are "consistent", the log-likelihood 

is also maximized with the difference D being minimized. The penalty cost 

C controls the tolerance for this inconsistency and usually depends on the 

characteristics of the data. 

W e seek to maximize the log-likelihood £(A) over training instances (xi, yi, z： 

by performing a gradient ascent. The gradient is broken down into two parts, 

corresponding to the parameter 6 and </>. 

VbC{X) (4.49) 

= - (1 + CD)£:p,(z|x,.yoF(xi,yi,Z) (4.50) 
t 

(4.51) 

= + CD)G(x“ yi) 一 £:Q,(Y|x.)G(xi, Y ) (4.52) 
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where 斗）is the conditional expectation: 

、(z丨•)F(x丨’ y“ Z ) = “ … 冗 二 (4.53) 

丨)G(X丨，Y)=〜>工 J V,/:(A) (4.54) 

The expectation term S(') can be calculated efficiently by the forward-

backward algorithm, in the case of a linear-chain C R F . The total gradient can 

be obtained by concatenating the two gradients Va>C(A) = < V0£(A), S/ •以X)〉 

W e use a Gaussian prior for the parameters 6 and 0. Thus we also need 

to add the regularization terms ̂ ^^ and ^ ^ ^ to the log-likelihood £(A). As 

such, we also need to add the term and to the total gradient 

which corresponds to the gradients of the regularization terms. 

For each training instance (xj, y!’ Zi), we calculate the normalization term 

Z, the conditional expectation €{•) and thus the log-likelihood C. After we 

get D for this instance, we scale the corresponding parts of the gradients in 

VeC{X) and Vtf,C{X). W e use the L-BFGS algorithm for doing this large-

scale optimization because it has been proved to perform well and achieve 

state-of-the-art performance in many real-world problems. 

In this formulation, we achieve joint training without the need of using 

an approximation inference algorithm such as belief propagation. All the 

existing efficient algorithms (e.g. forward-backward algorithm, viterbi, L-

BFGS) for a linear-chain C R F can be reused. Because joint training with 
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the soft constraint implies that both C R F models have to output its predicted 

values with the highest score in order to get maximum system performance, 

we can simply use viterbi algorithm on both models in the testing stage. 

4.2.6 Parallel Training for an isomeric CRF 

To further improve the speed of training an isomeric C R F , we propose a 

parallel training algorithm to do parameter estimation for an isomeric C R F . 

The main idea is to structure the problem of estimating parameters for the 

4 
whole training set into a sub-problem of estimating parameters for one train-

ing instance. By making use of the multi-core technology on a C P U or the 

G P U architecture on a graphics card, we can easily achieve a speedup of lOx 

or more. 

If we look at the derivation of the gradient of the log-likelihood for an 

isomeric C R F , 

VeC{X) (4.55) 

= Y ^ F(xi, Yi, Zi) - (1 + CD)£p,(z|x,.yoF(xi,yi, Z) (4.56) 
i 

•0/:(A) (4.57) 

= + CD)G(xi, Yi) — £Q,(Y|xoG(xi, Y ) (4.58) 
t 

we can see that for each training instance Xi the calculations are independent 

of each other. This insight is valuable and it suggests that a parallel training 
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algorithm is possible. W e present a parallel training algorithm for an isomeric 

C R F as follows. 、 

For each training instance (xi,yi,Zi), we need to calculate the following 

values: . 

1. the weighted sum of feature functions in P: Se = 0 - F(xi, yi, Zj) 

2. the weighted sum of feature functions in Q: S^ = ^ - G(xi, yi) 

3. the normalization factor Z in P: Ze(xi,yi) 

4. the normalization factor Z in Q: Z<p{x.i,y\) 

5. the expectation with respect to P: £pgF 

6. the expectation with respect to Q: £QgG 

After we divide the calculations in the above manner, we can assign one 

thread to each of the training instance and perform calculations in parallel. 

The details of this parallel training algorithm for an isomeric C R F is pre-

sented in Algorithm 2. The keyword pardo means a dedicated thread is to 

run the enclosed statements sequentially. 
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Algorithm 2 Parallel Training for an isomeric C R F  

1： INPUT: N training instances {(xi,yi, Zi)}, no. of threads M 

2： for 2 = 0 to N - 1 do 

3： Assign training instance {(xi,yi, Zj)} to thread (z mod M) 

4： end for 

5： while not converged do 

6： while not all threads done do 

7： pardo 

8： Calculate Sg, Zg, SpgF, Eq^G 

9： Calculate f =(〜一。广尸 

0： Calculate V^ = F - (1-f CD)£p,F 

1： Calculate = (1 + CD)G - Sq^G 

2: Calculate Ci Se + S^ - Ze - Z^,-h C • ^ 

3： Calculate Vi =< V^, V^ > 

4: end pardo 

5： end while 

6： Calculate • = )̂‘ Vi 
« 

7： Calculate £ = ^ ^ 

8： Perform L-BFGS optimization with objective value L and gradient V 

9： end while 

68 



4.3 Analysis of the constraints on the proba-

bility distributions in M E M B and ICRF 

In both M E M B and ICRF models, our knowledge from a set of training data 

is represented by a probability distribution. If we can form this distribution, 

then our system can use decision theory to arrive at rational decisions. In 

other words, we need to assign a probability to each possible event. It is 

impossible to get the probabilities of all "possible" events in many real world 

problems. Some probabilities can be- inferred from the training data or past 

experience but for many of them there may not be enough data or past 

experience to determine the "real" probabilities. The idea behind M E M B 

and ICRF models is to construct a single probability distribution over all 

possible outcomes, given certain constraints that we know from training data 

or past experience. ‘ 
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4.3.1 Constraint Sets and Distributions 

To begin our analysis, let be a sample space and V̂ 2’ • •.，功n be a set of 

functions on S. The set of constraints in our model can be expressed as: 

C 二例也⑷ ] = " 1， (4.59) 

E[ij2W\ = /i2, (4.60) 

..., (4.61) 

E[^m{X)\ = /im} (4.62) 

where im is a value depending on the training data. 
•. 

W e want to find a probability distribution P such that it makes the 

best possible prediction of future data. That is, this probability distribution 

P should be the "most likely" to happen given our constraints. To find 

such a P, we would adopt the principle of majcimum entropy. The entropy 

of a probability distribution P is defined as — log P{X). In our case, the 

P that maximizes the entropy given our constraints would be the "most 

likely" distribution. The entropy measures the inherent randomness in P 

and log P{x) actually describes the goodness-of-fit of a data instance x under 

P. 

In the most simplest form, there are no constraints in our model P. 

Therefore £ = Xi,a;2,... ,xjt and the P with maximum entropy is given by 

P{xi) = l/k. for all Xi. It is easy to" see that the resulting entropy is log/c. 
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From this uniform distribution, we can infer that all other more skewed 

distributions give less entropy. In other words, data drawn from S with a 

more skewed distribution tends to be more regular than the uniform distri-

bution, In the limiting case, P[xi) = 1 and P{xj) = 0 where i ^ j, the 

entropy of P is 0. When a skewed distribution is more far away from the 

uniform distribution l//c, the entropy decreases. 

As another example, if we change our sample space £ to (—oo, oo) and 

add two constraints as follows: 

E[X] = /i (4.63) 

- Var[X] = 0*2 (4,64) 

the distribution that gives the maximum entropy becomes the normal distri-

bution with mean and variance cr̂ . 
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4.3.2 Constraints in Sequence Labeling Problems 

For a sequence x we can define a set of feature functions /i(x)，/2(x)’ …，/m(x: 

W e can express our constraints in the following form: 

E[/2(X)]=他 

E[fm{^)] = Mm} 

or simply in vector form: 

C = {£*[f(X)] = u} 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

Therefore we can represent a constraint set for a set of sequence data as 

C = C(f , u). The set of probability distributions that satisfies our constraints 

in a sequence labeling problem is = {P | Ep[f(X) = u]}. 

However in real-world problems, we do not have the luxury to know the 

exact expected value for every constraint. Instead we use the empirical av-

erage values of the feature functions observed on a large training set of data. 

Therefore we assume that 

= (4.70) 

To be more precise, in real-world problems, we need to deal with the set of 

empirical constraints Ce(f, u). Our goal now becomes getting the distribution 
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Pm that maximize the entropy subject to the constraints Ce{f, u) which can 

be derived from a training data set. 

W e argue in the following that the set V is in the following form 

Pm{x)= 
Z ( W ) 

exp[w . f(: (4.71) 

where w = • • • is the parameters for a Pm, and Z(w) is a 

normalization factor Z(w) = exp[w • f (x). 

Let $ be a distribution that satisfies the constraint Ce(f, u) and $ + Pm-

The entropy of ̂  is 

< log Pm{X) 

二 w • f(x) — log Z{w] 

= — w . log Z{w) 

= — w . u — log Z{w] 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

However we also notice that 

H{P^) = EpJ-log Pm{X) 

= • f(x) - logZ(w) 

= - w . Ep^[f(x)] - log Z(w 

= — w • u — log Z(w) 

(4.77) 

(4.78) 

(4.79) 

(4.80) 
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Therefore we can conclude H{Pm) > //($) and Pm is the distribution that 

satisfies the constraints Ce(f, u) with maximum entropy. 

4.3.3 Stirling's Approximation 

In this section we further analyze the relationship between the number of 

features and the set of probability distributions under our constraints. 

Let us define frequency distribution a 

Oi= (Q;i,a2,...,Qffc) if = 1 (4.81) 
i 

Let the number of training instances to be n and n、is the number of y! 

occurs in the training set {A!, 3^}. Clearly we can define a, = rii/n so that 

Q is a frequency distribution. For convenience, we denote ai(A', = rii/n. 

W e can see that the constraint Ce(f, u) is satisfied if 

aJi(X，Y) + a2/i{X, Y ) + … + Y ) = im (4.82) 

ai/2(X, Y ) + a2/2(X，Y) + … + a M X , Y ) = /i2 (4.83) 

... (4.84) 

An(X，Y) + c^2/m(X, Y ) + … + aj爪(X, Y ) = Mm (4.85) 

Now we can define the set of training data with frequency distribution a 
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to be 

T"(a) =T>i’a2，...’Q:fc) (4.86) 

= {0^，;y)|aG^，:y) = a} (4.87) 

W e can count the number of distinct possible sets of training data by multi-

nomial combinations: 

、ni’n2，. •.、nk ‘ 

n\ 
ni!n2!... n/J 

By using Stirling's approximation below: 

Inn! « nInn — n + In \/27rn + 0(— 
V 

(4.88) 

(4.89) 

(4.90) 
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W e can transform the multinomial combination 

lnT"(a) = In 
n! 

n\\n2\... 71/c! 

« n In n — n -f In \/27rn + 0(— 
n 

一 (InTil! + In712! + . . . + In71̂ !) 

= n In n — n + In V^irn + 0( 
n 

(ni Inrii — rii + In \/27rni + 0 ( — ) ) 
ni 

(n2 In 712 - n2 + In y/2-11712 + 0{—)) 
n2 

一 (Tifc In rik - rifc + In y/2mik + 0 ( — ) ) 
rik 

=(rii + 712 + . •. + Tifc) In n — (Til In Til + In 712 + 

, n , n 
=Til In h In 一 

n\ 712 

n 
+ Uk In h c 

Tlk 

=—n y ^ at In Qi + -
— n 

=nH{a) + c 

T"(a) « exp[n//(a) + 
n 

(4.91) 

(4.92) 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

+ Tlk In Tlk) + c 

(4.99) 

(4.100) 

(4.101) 

(4.102) 

(4.103) 

Let the set of all training data sets that satisfy constraint C(f, u) be F. 

If ai and 0:2 are two frequency distributions such that T"(q:i) and T^(q;2) 

satisfy C(f, u), then T^(q;i) and T"{a2) are subsets of r. When we look at 
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the number of elements in each set and compare them, we find that the ratio 

T^(ai)|| — exp[nH{ai) 4- ^ 

Tn(a2)|| exp[ni/(a2) + 

w exp{—nc) as n increases 

(4.104) 

(4.105) 

where we assume H{ai) < H{ct2) and c〉0. 

As n increases, the number of elements in set T"(q:2) is exponentially more 

than than that in set T"(ai). If a2 is the frequency distribution that satisfies 

constraint C(f, u) and have the maximum entropy, there will be exponentially 

more training data sets corresponding to this frequency distribution. In 

other words, almost all possible sets have frequencies a? which is 

very close to the maximum entropy frequencies. This phenomenon is also 

termed "concentration phenomenon". Because almost all possible data sets 

are "typical" for this frequency distribution, it is reasonable to take it as our 

“best guess" for the model of our data without any other knowledge. 

4.4 Online Cascaded Reranking Model 

4.4.1 Online Learning 

Most of the early work followed the maximum likelihood principle in train-

ing and used the L-BFGS method, a limited-memory quasi-Newton method 

77 



for conducting large-scale optimization, in parameter estimation for its fast 

convergence rate. 

There is another training approach that is based on the concept of "mar-

gin" .For example, a perceptron-like algorithm is used in training a hidden 

Markov model ( H M M ) [8]. For structured classification, [47] presented a 

margin-based general framework known as maximum margin Markov net-

works. The parameter estimation problem is solved in an approach similar 

to that in an S V M , where a dual problem is formulated and optimization 

methods analogous to the sequential minimal optimization (SM〇）for S V M s 

are used. A formal S V M treatment for structured classification is also pre-

sented in [50 . 

A margin-based approach to parsing is presented in [48]. It uses a common 

approach that is used in S V M s for solving the dual problem in training. 

There is another line of research that focuses on online training methods. For 

example, [33] proposed an online margin-based training method for parsing. 

This type of training method is fast and has the advantage that it does 

not need to form the dual problem though the performance may be a bit 

丨 - . A — k P t h e s e a — 

e.g. Margin Infused 

Relaxed Algorithm (MIRA), and online passive-aggressive algorithms, can 

be found in [10, 9]. 

W e wish to point out that in this thesis we treat the margin-based ap-78 



proach as a method for estimating parameters. Actually, we can view the 

parameters estimated by the margin-based principle as "the parameters that 

can give a distribution with margin-based characteristics over the training 

set". As mentioned in [41], the best objective value (i.e. the log-likelihood) 

in maximum likelihood training does not necessarily give the best learning 

results. Therefore, we can treat the margin-based approach as an alternative 

method for training. 

A similar analysis exists in the simple classification case for S V M s that 

draws the connection between log-likelihood and margin loss in standard 

textbooks. Our work is different in that we focus on the context of CRFs 

and how we make use of this connection to improve the performance of 

existing methods with a length-adaptive margin. 

4.4.2 Updating Parameters 

W e propose to estimate the parameter w in an online manner. In this O C R 

model, parameters are estimated by margin-based training, which chooses 

the set of parameters that attempts to make the "margin" on each training 

instance greater than a predefined value. In the online training setting, the 

parameter w is updated iteratively. In each iteration, we draw a training 

instance from the training set and update the parameter w . In this thesis, 
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we consider the online passive-aggressive (PA) algorithm [9]. In the 亡-th 

iteration with the parameter Wt and the training instance xt, this algorithm 

tries to solve the following problem: 

Wt+i = argmin - w — Wt 
W 2 

such that ^(w; (xt, yt)) = 0 

where ̂ (w; Xt) is a hinge loss function defined as follows: 

(4.106) 

^(w;xt)= 
0 if 7t > 7 

7 — 7t otherwise 

(4.107) 

W h e n the training data is not linearly-separable, we need to introduce a 
. I 

slack term and a user-defined aggressive parameter C > 0 in Equation (4.106). 

C controls the penalty of the slack term and the aggressiveness of each up-

date step. A larger C implies a more aggressive update and hence a higher 

tendency to over fit. 

1(1 other words, this user-defined aggressive parameter C also accounts 

for the case where the training data is not linearly-separable. Finally the 

parameter Wt is updated by: 

wt+i = Wt - rt[F(xt,yt) — F(xt,yt； 

^(wt;(xt,yt)) 
where Tt — min < C, 

(4.108) 

(4.109) 
F(xt,yt)-F(xt,y\) ‘、 

This algorithm is "pa^ive" in a sense that the parameter Wt is not updated 

、 
when the margin 7t is larger than 7. The performance is justified by its 
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relative loss bound on the training data that also bounds the number of 

prediction mistakes on the training data. The main idea is that the per-

formance cannot be much worse than the best fixed parameter chosen in 

hindsight. See [9] for a detailed proof. 

In this method, it is important to choose an appropriate value for 7. 

Following most of the work in margin-based training, we choose it to be a 

function of^he correct output sequence y and the predicted output sequence 

y. 

7(y,y)= 
0 if y = y . 

(4.110) 

El=i[[2/i + Vi]] Otherwise 

where [[2;]] is 1' if z is true, 0 otherwise. 

The major computation difficulty in this online training comes from find-

ing the best output y. It is in general an intractable task. W e follow the 

usual first-order independence assumption made in a linear-chained C R F 

model and calculate the best score using the Viterbi algorithm. 

This approach has two major characteristics: 

、 • It does not take the average over all parameters in the end as in the 

averaged perception algorithm. 

• Shrinking technique that is commonly used in S V M s can be easily 
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added to reduce training time. 

Because of the online setting and the simple update formula, the training 

time can be substantially reduced. In our experiments, the training time of 

the online algorithm is generally at least three times faster than that of the 

L-BFGS algorithm. 

4.4.3 Inference: Viterbi Algorithm 

W e apply the parameter A that is determined in the training stage to the 

decision model. In probability context, we get the best output sequence y 

for an input sequence x by maximizing the conditional probability PyP{y|x). 

In general it is an intractable task to enumerate all possible y. W e make use 

of the first-order independence assumption and get the output in a dynamic 

programming fashion. The decision procedure is a Viterbi decoding algo-

rithm. Note that because the exponential function is a monotonic increasing 

function, there is no need to take the exponential function when searching 

for the maximum probability. Instead, comparing the indexes is enough (i.e. 

e^ > e^ iff X > y). This can save decoding time and allow post-processing to 

be incorporated into the decision stage if needed. The algorithm is outlined 

in Algorithm 3. 
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Algorithm 3 Viterbi decoding 

1： BestS\p][q] = — oo Vp, q 

2: BestPrevLabel\p] [q'] = —0 , Vp, q 

3： for p = 1 to |x| do 

4： for q € ^ do 

5： MaxS = -oo 

6： Max Prev Label = 0 

7： for e f l do 

8： S = BestS\p — l][q'] + A . f(xi, q, p) 

9： if 5 > MaxS then 

10： MaxS = S 

11： MaxPrevLabel = q' 

12： end if 

13： end for 

14： Best Prev Label \p] [q] = Maoo Prev Label 

15： BestS\p][q] = MaxS 

16： end for 

17： end for 

18： Label[\^\] = argmaXg Best5'[|x|][q' 

19： for p — |x| to 2 do 

20: Label\p — 1] = BestPrevLabel\p][Label\p 

21: end for 

22： return Label 
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4.4.4 Reranking 

To avoid the errors that are propagated in the cascaded framework, we use 

the classification results to correct the segmentation results. Our derivation 

is similar to [42]. However, we avoid dealing with the probability directly. 

Supposing the probability can be expressed in a maximum entropy model, 

we can decompose the conditional joint probability into two components: 

(YcYS) = argmaxP(y;^，y;|x) (4.111) 
(y 么.yi) 

=argmaxP(y;^ ’|y; ’x)P(y:W (4.112) 

=argmaxwc . Fc(x,yg,yc) + Wg . Fs(x,y;) 

Searching for the best pair (yc, Ys) among all of the possible configurations 

for a sentence x is an intractable task. In practice, searching among the 

top-N segmentations is enough, where N is small, say N < 10. Usually, the 

scores for the segmentation candidates near the end of the TV-best list are 

so low that the classification scores cannot change their ranks to the top. 

The N-best list can be obtained efficiently via an A* search [6]. This greatly 

reduces the computational cost, but approximates well the performance of 

joint training and decoding. 
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Chapter 5 

Experiments 

5.1 Text Mining Tasks 

Text mining datasets are usually large in scale and the features are not 

fixed nor given. For example, in a noun-phrase chunking task, we observe a 

sentence x where each word Xi has a label yi G {B, I, 0 } to indicate that a 

word is the "beginning"，"inside"，or "out" of a noun-phrase respectively. 

Consider the following sentence: 

time x(t) y(t) 

0 1 B 

1 would 0 

2 like 0 

3 to 0 
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4 

5 

6 

7 

a 

movie 

0 

B 

I 

0 

If we want to do sequence labeling, e.g. in the form {x{t)^x{t — l)) => y{t), 

we need to add a temporary auxiliary attribute x{t — 1). 

time x(t) y(t) x(t-l) 

0 

would 

2 like 

3 to 

4 

5 a 

6 movie 

7 

B START 

0 I 

0 would 

0 like 

0 to 

B 

a 

0 movie 

where START denotes the start of a sequence. 

For example, if (x(t) = movie, 一 1) = a) y{t) = I is a useful 
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template riile to our classifier, then it will be transformed into a feature: 

1 if x{t) is the word "movie", 

and x{t - 1) is the word "a"， 

and y{t) is the label ."I" 

0 otherwise ‘ 

A shorthand notation for the above feature is {xt = movie, Xt-i = a, yt = I): 

Here the presence of a feature is indicated by the feature value of 1，and 0 

otherwise. That is, it is a binary feature. 

Our experimental results are evaluated by the Fi-measure defined as 

^ = S (5.1) 

where P is the precision and R is the recall. This exact-match scoring method 

doubly penalizes incorrect boundaries for an output as false negatives and 

false positives. To allow comparisons with the results in previous shared 

tasks, we use the same evaluation script from each of the shared task, which 

reports on the precision, recall, and the Fi-measure on the evaluation data. 

In this thesis, we apply our M E M B , ICRF, and O C R models on the 

following text mining tasks. 
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5.2 Biomedical Named Entity Recognition Task 

In this biomedical named entity recognition task, we are required to recognize 
• . ‘ 

five types of biomedical named entities: D N A , R N A , cell line, cell type and 

protein. 

5.2.1 Dataset Description: BioNLP-2004 

Types Training % Evaluation % 

D N A 9,534 18.58 1,056 12.19 

R N A 951 .41.85 118 1.36 

cell jine 3,830 7.47 500 5.77 

cell-type 6,718 13.10 1,921 22.18 

protein 30,269 59.00 5,067 58.50 

Total 51,302 100.00 8,662 100.00 

Table 5.1: Number of different biomedical entities in the corpus for the Coling 

2004 shared task (JNLPBA). 

In this experiment, we use the G E N I A corpus from the C O L I N G work-

shop (BioNLP/NLPBA 2004) ̂  The G E N I A corpus consists of 2000 M E D -

LINE abstracts of the G E N I A version 3 corpus with named entities in I0B2 

format. There are 18,546 sentences (492,551 words) in the training set and 

^http://research.nii.ac.jp/-colliGr/workshops/JNLPBA04st.htm 
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3,856 sentences (101,039 words) in the test set. In this real dataset, the dis-

tribution of entity types are not even. The performance of the less evenly 

entity types is less accurate in general. 

Each word is tagged in a way as described in the previous section, except 

that the tags are for biomedical named entity classes instead of phrase chunks. 

The named entity classes are: D N A , R N A , cell line, cell type and protein. 

There is no P O S information provided in this corpus. Our task is to extract 

all the required named entities in the test set. The evaluation is done by 

the evaluation script provided by the C O L I N G workshop (BioNLP/NLPBA 

2004) shared task, which reports on the precision, recall, and the Fi-measure 

on the test data. 

5.2.2 Experimental Setup for BioNLP-2004 

Experimental Setup: M E M B for BioNLP-2004 

W e try to reproduce the features described in [39] and use them as our 

domain knowledge attributes. The P O S attributes are added by the G E N I A 

tagger^. T w o lexicons for cell lines and genes are drawn from two online 

public databases: Cell Line Database^ and BBID^. 

^http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ 

^http://www.biotech.ist. imige.it/cldb/cname-tz.html 

^http://bbid.grc.nia.nih.gov/bbidgene.html 
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To help our discussion, we define "atomic features" as those features 

that are based on the input sentence x only. By the first-order independence 

assumption, the final set of features is a combination of those atomic features 

with at most two class labels 2/i—i，2/i € H where yi一 i is the previous label for 

the 2-th word, and yi is the label for the current word. 

Unigram (ly一2)，（if;-i)’ (wo), 

Bigram (W-2 1)，(w-i Wo), 

{WQ Wi), {Wi W2) 

Trigram (t^—2 仙 - 1 uJo), 

{w.i Wo Wi), 

{wo Wi W2) 

Table 5.2: Word features used in the experiment (JNLPBA): wq is the current 

word, W-i is the previous word, etc. 

Our features are commonly used in text mining tasks. A simple feature 

selection was used where features appeared less than 3 times in the training 

corpus were removed. 

SEG Module Features 

The atomic features used in the S E G module include word features, ortho-
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graphic features, part-of-speech (POS), and two lexicons. The word features 

include unigram, bigram, and trigram (e.g. the previous word, the next 

word, and the previous two words), while the orthographic features [39] in-

clude capital letter, dash, punctuation, and word length. Word class (WC) 

features similar to [7] are also added, which replace a capital letter with "A"， 

a lower case letter with "a"，a digit with “0”，and all other characters with 

“_”• Similar brief word class {BWC) features are added by collapsing all con-

secutive identical characters in word class features into one character. For 

example, for the word NF-kappa, WC = AA_aaaaa, and BWC = A_a. These 

are listed in Tables 5.2 and 5.3. The P O S features are added by the G E N I A 

tagger^. All these features except the prefix/suffix features are applied to the 

neighborhood window [z — 1, zH-1] for every word. T w o lexicons for cell lines 

and genes are drawn from two online public databases: Cell Line Database® 

and BBID7. The prefix/suffix and the lexicon features are applied to position 

i only. All the above features are combined with the previous label yi-i E H, 

and the previous and current labels (j/t-i,2/i) G n x Q to form the final set 

of features Fs(x,y). Because only three labels (i.e. B, I, 0) are needed, 

the total number of features is 0{3'^Na) or 0{Na) where Na is the number of 

atomic features. 

^http://www-tsujii.is.s.u-tokyo•ac.jp/GENIA/tagger/ 

^http://www.biotech.ist.unige.it/cldb/cname-tz.html 

^http://bbid.grc.nia.nih.gov/bbidgene.html 
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W e remove features that occur fewer than five times in the S E G module 

to reduce the computational cost. The total number of features is abt)ut 2.3 

million. 
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Word features as in Table 5.2 

Prefix/suffix U p to a length of 5 

Word Class WC 

Brief Word Class BWC 

Capital Letter "[A-Z][a-z] 

[A-Z]{2,} 

[a-z]+[A-Z]+ 

Digit [0-9] + 

~ [一0-9]* [0-9] [-0-9]*$ 

["0-9] • [0-9] [0-9] [-^0-9] *$ 

^[0-9]+$ 

[0-9] + [. .] [0-9, .] + 

[A-Za-z]+[0-9]+ 

[0-9] + [A-Za-z] + 

Dash [- ]+ 

卞 ] + 

[-]+$ 

Punctuation 

Word length length of the current word Xi 

Table 5.3: Features used in the J N L P B A experiment. The features for Cap-

ital Letter, Digit, Dash, and Punctuation are represented as regular expres-

sions. 

CLASS Module Features 

In the C L A S S module, the model only needs to determine the correct entity 
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type for a given named entity candidate. The output sequence consists of one 

element only, i.e. y G {protein, cell-type, cell—line, D M , RNA}. The 

atomic features mentioned are combined with each possible label y to form 

the final set of features Fc(x, y). These features are applied to each named 

entity candidate x from the S E G module. The total number of features 

is 0{NcNa) where Nc is the number of entity types. The total number of 

V'' 

possible features in the C L A S S module is less than that in the S E G module. 

W e can afford to remove fewer features. Features that occu^ fewer than three 

times are removed, with a resulting total of about one million features. 

Experimental Setup: I CRF for BioNLP-2004 

In this experiment, we treat Y as the segmentation tags and Z as the named-

entity tags. In other words, the C R F model Qti,{Y\X) predicts segmentation 

tags Y based on the input sentence X and Pe{Z\X^ Y) predicts the named-

entity tags Z based on the input sentence X and the predicted segmentation 

tags Y. 

In the first task, we need to identify all segments that are named entity 

candidates. W e pre-process the original training data and replace all named 

entity types with type E N T (i.e. Entity). In the second task, we needed to 

categorize each segment into 5 different entity types: D N A , R N A , cellJine, 

cell-type, protein. W e also used a richer set of features to capture the charac-
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teristics of the relationships between segments and entity types because there 

were more different segments and named entity types. Because our isomeric 

C R F is flexible in choosing different feature templates in different stages, we 

experimented with different feature templates. The features we used in this 

experiment are presented in Table 5.2 and Table 5.3. 

Experimental Setup: O C R for BioNLP-2004 

The setup for this experiment is very similar to that in M E M B . The fea-

tures used are shown in Table 5.2 and 5.3. W e decompose an entity tag 

into a segmentation tag and a classification tag. For example, "B-DNA" 

is decomposed into "B-ENT" in the segmentation task and " D N A " in the 

classification task. 

Because we cannot enumerate the results for all N、we choose N to be 
、 

10 and performed online training to generate our models in the two tasks for 

this BioNLP-2004 dataset. After that we use re-ranking to choose the best 

candidate which has the best overall score. 

Our focus in this set of experiments is the use of online training method 

to increase speed and reranking method to increase accuracy. The programs 

were developed based on the same basic framework. All of the experiments 

were run on a Unix machine with a 2.8 G H z C P U and 16 G B R A M . 
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5.2.3 Experimental Results and Discussions: BioNLP-

2004 

Types Train. Eval. C R F + C R F M E M B ICRF O C R 

Data % Data % Fi Fi Fi Fi 

D N A 18.58 12.19 66.13 70.15 67.61 69.08 

R N A 1.85 1.36 67.48 69.08 69.92 69.88 

cellJine 7.47 5.77 56.33 60.15 58.14 59.04 

cell-type 13.10 22.18 72.90 75.06 73.43 75.30 

protein 59.00 58.50 73.08 74.13 73.84 73.65 

overall 100 100 71.09 72.94 72.00 72.54 

Table 5.4: Comparisons (in % ) of our models with the baseline C R F + C R F 

model on BioNLP experiments. The M E M B model has the best performance 

in extracting biomedical named entities. 

Experimental Results and Discussions: M E M B for BioNLP-2004 

In the S E G module, our approach achieves an F\ of 77.56%. The recall is 

of particular importance in the S E G module because it directly limits the 

number of correct answers that our approach can give. The main results of 

our experiments are summarized in Tables 5.5, 5.6, and 5.9. 

W h e n we compare the S E G module recall (80.45%) with the results re-
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Experiments Recall Precision t 

D N A 82.95 96.16 89.07 

R N A 87.29 93.64 90.35 

cellJine 77.80 96.53 86.16 

cell—type 78.81 98.50 87.57 

protein 83.96 96.27 89.69 

overall 80.45 74.86 77.56 

Table 5.5: Results (in % ) of the S E G module 

Experiments Recall Precision 

D N A 85.04 91.63 88.21 

R N A 81.36 91.43 86.10 

cell-line 79.20 73.88 76.45 

cell-type 87.61 95.19 91.24 

protein 97.89 94.06 95.94 

overall 92.77 92.77 92.77 

Table 5.6: Results (in % ) of the CLASS module on fully correct segmentation 

data 

ported in the J N L P B A shared,task in Table 5.7, it is clear that subsequent 

good classification results will yield a good overall Fi. W e also compare the 

segmentation results with a C R F that uses the same set of features in Ta-
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ble 5.8. Generally, the M E M B model shows a greater relative loss reduction 

on Fi for sparse entity types such as R N A . Because the fraction of differ-

ent entity types differs in the training data and the evaluation data, some 

discrepancies are also found in D N A and celLtype. 

System Recall Precision 

Cascaded M E M B 75.66 70.40 72.94 

Zhou and Su, 2004 75.99 69.42 72.55 

O C R 73.83 71.30 72.54 

ICRF 74.39 69.76 72.00 

Okanohara et al., 2006 72.65 70.35 71.48 

Kim et al, 2005 72.77 69.68 71.19 

Finkel et al., 2004 68.56 71.62 70.06 

Settles, 2004 70.30 69.30 69.80 

Table 5.7: Comparisons (in % ) with other systems on the overall perfor-

mance. All other systems except (Okanohara et al., 2006) employ different 

deep knowledge resources. 

To test the performance of the CLASS module, we prepared a set of 

testing data with all the entities correctly segmented and used it to evaluate 

the module. The overall accuracy is 92.77%, which is higher than the reported 
( 

classification results (90.54%) by a simple maximum entropy model in [21 
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Types Train. Eval. C R F + C R F M E M B rel. loss 

Data % Data % Fi Fi red. on Fi 

D N A 18.58 12.19 88.32 89.07 6.42 

R N A 1.85 1.36 88.89 90.35 13.14 

cellJine 7.47 5.77 85.94 86.16 1.56 

celLtype 13.10 22.18 87.21 87.57 2.81 

protein 59.00 58.50 89.59 89.69 0.96 

Table 5.8: Comparisons (in % ) with C R F model on the segmentation perfor-

mance. Generally, the M E M B model shows a higher relative loss reduction 

on Fi for sparse named entities. Small discrepancies are found when there is 

a large difference between the fraction of the named entities in the training 

data and that in the evaluation data , for instance, D N A and cell-type. 

The detailed results are depicted in Table 5.6. With the performance in 

the two modules now available, we can get a rough estimate of the final 

extraction performance as shown in Table 5.9. Note that if the CLASS 

module accuracy is 100%, the final extraction performance is identical to the 

segmentation performance, i.e. Fi = 77.56%. 
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M E M B ICRF O C R 

Exp. R P R P Fi R P 

Segment. 80.45 74.86 77.56 N / A N / A N/A 80.13 73.68 76.77 

Class. 92.77 92.77 92.77 N / A N / A N/A 92.76 92.76 92.76 

Est. 

overa.ll 74.63 69.45 71.95 N / A N / A N/A 74.32 68.34 71.21 

D N A 69.98 70.31 70.15 67.99 67.23 67.61 68.66 69.51 69.08 

R N A 72.88 65.65 69.08 72.88 67.19 69.92 73.73 66.41 69.88 

cellJine 64.60 56.27 60.15 63.60 53.54 58.14 60.40 57.74 59.04 

cell-type 69.34 81.82 75.06 67.05 81.16 73.43 70.07 81.38 75.30 

protein 80.40 68.76 74.13 79.61 68.84 73.84 77.66 70.04 73.65 

overall 75.66 70.40 72.94 74.39 69.76 72.00 73.83 71.30 72.54 

Table 5.9: Overall results (in %) of our models. The first two rows show the 

performance of the individual module. The S E G module (Segment.) achieves 

Fi = 77.56%. The CLASS module (Class.) performance (92.77%) is based 

on the fully correct segmented testing data. The following rows show the 

actual extraction performance (segmentation followed by classification) for 

each type of entity, achieving an overall Fi = 72.94%. 

The results show that our proposed approach outperforms all the systems 

in the J N L P B A shared task. Their approaches include the Support Vector 
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Machine (SVM), the Hidden Markov Model (HMM)，the Maximum Entropy 

Markov Model ( M E M M ) and the Conditional Random Field (CRF), which 

use deep knowledge resources with extra costs in pre-processing and post-

processing. For example, the best system, (Zhou and Su, 2004), used name 

alias resolution, cascaded entity name resolution, abbreviation resolution and 

an open dictionary (around 700,000 entries). Their major framework is a 

S V M framework. Besides a simple set of features, including word and or-

thographic, they also use a very rich features set that includes semantic and 

morphological features, part-of-speech, dictionaries, and so forth. In-domain 

P O S information was also used to extract biomedical named entities. (Set-

tles, 2004) used 17 lexicons that include Greek letters, amino acids, and so 

forth. (Finkel et al., 2004) used gazetteers and web-querying. Although our 

system outperforms the best system, (Zhou and Su, 2004)，we believe it can 

be further improved, since our cascaded approach does not prohibit the use 

of these deep knowledge resources. 

W e also compare our results with a recent work in [35] that uses a semi-

C R F based on a feature forest without using deep knowledge resources such as 

gazetteers or post-processing. Their system performance is only slightly lower 

than that of (Zhou and Su, 2004) and our system, and also outperforms the 

other systems. Another recent work by [21] uses a similar cascaded approach 

as ours by using two different models in the two phases. They use additional 



information from the G E N I A 3.02p version corpus to train their C R F . A 

simple maximum entropy model is used in classification. Post-processing is 

needed to correct the final results. Their reported classification performance 

is 90.54%, which is lower than our approach. Since they did not report the 

segmentation performance, we can only compare the final results in Table 5.7. 

One interesting point to note is that our actual extraction performance is 

higher than the estimated performance as shown in Table 5.9. W e believe the 

reason for this is that a large number of same features are used in both the 

S E G and C L A S S modules. Therefore the entity candidates from the S E G 

module are those that are "sensitive" to the given features, and the same is 

also likely to happen in the CLASS module, giving a better final performance 

than estimated. 

Experimental Results and Discussions: ICRF for BioNLP-2004 

As shown in Table 5.9, our ICRF model performance on BioNLP data is 

slightly worse than that of M E M B model. However, we can see in Table 5.4 

that it is significantly higher than that of the baseline model C R F + C R F . 

W e notice that the performance on entity types that show big differences 

in distributions in the training and evaluation data tend to be worse. For 

example, the entity type D N A has about a 6 % difference in the distributions 

of the training data and the evaluation data and its Fi-measure is about 



2.54% worse than that of M E M B model. The same also happens for the 

entity types celLtype and cellJine that show a difference of about 9 % and 

2 % respectively and their performance is about 2% worse than that of the 

M E M B model. 

W e also compare our results with other published work in Table 5.7. 

ICRF model is ranked third among all models. It is better than all other 

models except the M E M B model and (Zhou and Su, 2004). In the case of 

(Zhou and Su, 2004), its performance is only 0.55% lower in Fi-measure. 

Experimental Results and Discussions: OCR for BioNLP-2004 

Table 5.10 shows the Fi-measure in our experiments. ® Our performance 

of the single-phase C R F with maximum likelihood training is 69.44，which 

agrees with [39] who also uses similar settings. The single-phase online 

method increases the performance to 71.17. By employing a cascaded frame-

work, the performance is further increased to 72.16. Finally, with reranking, 

some errors are corrected, and the performance reaches 72.54, which can be 

regarded as on par with the best system in the J N L P B A shared task. 

The experimental evidence for using a small value of N in reranking can 

8 We are aware of the high Fi in [52]. We contacted the author and found a serious bug 

in their feature template. We reported it to the author in June 2007. Later Professor Chun-

Nan Hsu helped report that in NIPS 2009 [18] and Machine Learning Journal 2009 [19]. 



Experiments no. of features training time F, rel. err. 

red. on F\ 

single-phase C R F + M L 

C R F + Online 

8,004,392 

8,004,392 

1699 mins 

116 mins 

69.44 

71.17 5.66% 

two-phase Online 

+ Cascaded 

seg: 2,356,590 

class: 8,278,794 

14 + 15 

= 2 9 mins 

72.16 8.90% two-phase 

O C R seg: 2,356,590 

class: 8,278,794 

14+15 

= 2 9 mins 

72.54 10.14% 

Table 5.10: The number of features, training time, and F\ that are used in 

our experiments. The cutoff thresholds for the single-phase CRFs are set 

to 20, whereas that of the O C R approach is set to 5 in both segmentation 

and classification. The last column shows the relative error reductions on f\ 

(compared to C R F + M L ) . 

be seen from Figure 5.1. W e try to look for the correct segmentation from 

the •/V-best segmentation list. If it exists in the TV-best list, then we treat 

it as a true positive. Our results show that for N = 11，the segmentation 

performance reaches Fi = 91.58. A further increase of N does not gain much 

in performance. 

W e also experimented with different values of N in reranking. The results 

are plotted in Figure 5.2. The best performance occurs at TV = 2. Larger 



values of N give more opportunities to correct the segmentation errors, but 

sometimes additional errors are also introduced. Therefore, the increase in 

performance fluctuates when N is increased. 

Perfonnance of segmentation against N 

70 

0 4 10 12 

Figure 5.1: Performance of different values of N in segmentation. The F\-

measure is calculated based on the TV-best list from segmentation. 

Training Time: Referring to Table 5.10，the training time of the O C R 

approach is substantially shorter than that of all of the other approaches. 

In the single-phase approach, training a C R F by maximum likelihood (ML) 
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Performance of rerankiTig against N 
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•Figure 5.2: Performance of different values of N in reranking. 

using the L-BFGS algorithm is the slowest and requires around 28 hours. 

The online method greatly reduces the training time to around two hours, 

which is 14 times faster. By employing a two-phase approach, the training 

time is further reduced to half an hour. In the O C R approach, the reranking 

time during testing is negligible up to TV = 11，so we do not report it. 

Memory Requirement: Table 5.10 shows the number of features that 

required by the different methods. For methods that use the single-phase 



approach, because the full set of features is too big for practical experiments 

on our machine, we need to set a higher cutoff value to reduce the number 

of features. With a cutoff of 20 (i.e. only features that occur more than 20 

times are used), the number of features can still go up to about 8 million. 

However, in the two-phase approach, even with a smaller cutoff of 5, the 

number of features can still remain at about 8 million. 

5.3 General Named Entity Recognition Task 

In this general named entity recognition task, we are required to recognize 

four types of named entities: persons (PER), locations (LOG), organizations 

(ORG), and names of miscellaneous entities (MISC) that do not belong to 
i 

the previous three groups. 

5.3.1 Dataset Description: CoNLL-2003 

In this experiment, we used the dataset in the CoNLL-2003 shared task®. 

This dataset comes from the Reuters Corpus There are 14,987 sen-

tences (204,567 words) in the training set and 3,466 sentences (51,578 words) 

in the test set (testa). The named entity tags are in the form of "B-X", 
, 

V.广' 
where "X" is a named entity type. For example, the tags include "B-PER", 

®http://www.cnts.ua.ac.be/conll2003/ner/ 

^°http://tree.nist.gov/dat a/reut ers/reut ers.html 
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"I-MISC", “0”，etc. The distribution of each entity types in the training 

data and the evaluation data is shown in Table 5.11. Part-of-speech (POS) 

tags and noun-phrase (NP) tags are also provided in this dataset. Each word 

is labeled with its P O S tag and its N P tag. The auxiliary attributes used in 

the experiments are given in Table 5.12 and 5.13 . The evaluation is done by 

the evaluation script provided by the CoNLL-2003 shared task that reports 

on the precision, recall, and the Fi-measure on the test data. It was used in 

the feature induction experiments in [30]. 

Types Training % Evaluation % 

L O G 7,141 • 30.47 1,837 30.91 

MISC 3,461 14.77 923 15.53 

O R G 6,231 26.59 1341 22.56 

P E R 6,600 28.17 1,842 30.99 

Total 23,433 100.00 5,943 100.00 

Table 5.11: Number of different general named entities in the corpus for the 

CoNLL-2003. 



Word features 

Wo 

Prefix/suffix' from length of 2 to 4 

Capital Letter 一[A-Z]Ca-z]+ 

"[A-Z] + 

作[A-Z] + [a-z] + [A-Z] + [a-z] 

Digit .* [0-9] • * 

P O S part-of-speech tags from Brill's P O S 
* 

tagger (provided along with the 

CoNLL-2003 dataset) 

Table 5.12: Features used in the first sub-task of CoNLL-2003 experiment. 

The first sub-task was to predict the correct phrase tag (including verb 

phrase, adjective phrase, conjunction phrase, etc) for every word. There-

fore more diversified features were used in this sub-task. The features for 

Capital Letter, Digit are presented as regular expressions. 

5.3.2 Experimental Setup for CoNLL-2003 

Experimental Setup: M E M B for CoNLL-2003 

W e used different auxiliary features in our experiments to represent the do-

main knowledge that we need to capture. All features that we used in this 
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Word features 

Wq 

Prefix/suffix from length of 2 to 4 

Capital Letter "[A-Z][a-z]+ 

Digit .*[0-9].• 

P O S part-of-speech tags from Brill's P O S 

tagger (provided along with the 

CoNLL-2003 dataset) 

Phrase phrase tags 

Table 5.13: Featiures used in the second task of CoNLL-2003 experiment. W e 

deliberately tried to use a different feature template for the second sub-task. 

With the phrase tags given from the previous sub-task and fewer entity types 

(MISC, L O G , P E R , ORG), we reduced our feature templates to allow faster 

training. The features for Capital Letter are presented as regular expressions. 

experiment are shown in Table 5.12 and Table 5.13. 

All these features serve as our "atomic features" which involve only the 

input sentence x. They will be combined with the class labels yi-\^yi to from 

the final feature set that will be used in our model. 

Following our previous description of our M E M B model, we will describe 
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SEG Module Features and CLASS Module Features below respec-

tively. The number of features that should be included actually depends on 

our computation power. 

SEG Module Features 

The S E G module features that we used in the experiment include word fea-

tures, prefix/suffix, capital letter, digit, and part-of-speech(POS). The word 

features include unigram and bigram (e.g. the previous word and the next 

word), while the orthographic features include capital letter and digit. The 

P O S features are provided in the CoNLL-2003 data. 

All the above features are combined with the previous label ？/t_i € 

and the previous and current labels (yi-i,2/i) G Q x O to form the final set of 

features Fg(x, y). Because only nine labels (for the 9 different phrases) are 

needed, the total number of features is 0(9^TVa) or 0{Na) where TV。is the 

number of atomic features. 

W e remove features that occur fewer than five times in the S E G module 

to reduce the computational cost. The total number of features is about 1.3 

million. 

CLASS Module Features 

In this module, for a given named entity candidate, we need to determine the 

correct entity type. Our model needs to choose an entity type out of the 4 

possible choices L O G , MISC, O R G , and P E R . The output sequence consists 
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of one element only. The atomic features mentioned in the previous section 

are combined with each possible label y to form the final set of features 

Fc(x, y). These features are applied to each named entity candidate x from 

the S E G module. The total number of features is 0[NcNa) where N。is the 

number of entity types. The total number of possible features in the C L A S S 

module is less than that in the S E G .module. W e can afford to include all 

features , with a resulting total of about 1.4 million features. 

Experimental Setup: ICRF for CoNLL-2003 

In this experiment setup, we treat Y as the phrase tags and Z as the named-

entity tags. In other words, the C R F model predicts phrase tags 

Y based on the input sentence X and Vq{Z\X^ Y) predicts the named-entity 

tags Z based on the input sentence X and the predicted phrase tags Y. 

This is a large scale experiment with many sentences in both the training 

and testing sets. In the first task, we not only needed to identify noun-phrases 

(NP) but also other phrases such as verb phrases (VP), adjective phrases 

(ADJP), etc. In the、second task, we needed to categorize each phrase into 

4 different entity types. W e also used a richer set of features to capture the 

t 

characteristics of the relationships between phrases and entity types because 

there were more different phrases and named entity types. Because our 

isomeric C R F is flexible in choosing different feature templates in different 
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stages, we experimented with different feature templates. The features we 

used in this experiment are presented in Table 5.12 and Table 5.13. 

Experimental Setup: O C R for CoNLL-2003 

Similar to ICRF, we treat Y as the phrase tags and Z as the named-entity 

tags in this experiment setup. However the score given by a N-best candidate 

in the first task will be combined with the score given by the best candidate 

in the second task to give the overall score. The features used were similar 

to those used in the ICRF experiment except that in the second task the 

phrase tag results from the first task would be used as features too. 

Because we cannot enumerate the results for all TV, we choose N to be 

10 and performed online training to generate our models in the two tasks for 

this CoNLL-2003 dataset. After that we use re-ranking to choose the best 

candidate which has the best overall score. 

Note that in order to perform reranking, we need to assign scores to 

candidate answers in the first and second tasks. In other words, we get a 

score for the phrase tag assignments for the whole sentence in the first task 

and also a score for the named-entity tag assignments for the whole sentence 

in the second task. As such, the overall score is also on a sentence level. 
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5.3.3 Experimental Results and Discussions: CoNLL-

2003 

Experimental Results and Discussions: M E M B for CoNLL-2003 

Experiments Recall Precision M E M B Fi ICRF Fi O C R F i 

Segment. 93.84 94.71 94.28 N / A 93.41 

Class. 89.86 89.86 89.86 N / A 87.87 

Est. overall 84.32 85.11 84.72 N / A 82.07 

L O G 89.38 92.09 90.72 88.90 91.17 

MISC 85.16 90.45 87.72 86.31 85.70 

O R G 82.10 86.69 84.34 81.59 82.67 

P E R 92.02 89.73 90.86 90.01 90.27 

overall 87.90 89.90 88.89 87.23 88.17 

Table 5.14: Overall results (in % ) of our model. The first two rows show 

the performance of the individual module. The S E G (Segment.) module 

achieves Fi = 94.28%. The C L A S S module (Class.) performance (89.86%) 

is based on the fully correct phrase testing data. The following rows show the 

actual extraction performance (phrase extraction followed by classification) 

for each type of entity, achieving an overall = 88.89%. 

The main results of the experiments are summarized in Table 5.14. 
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In the S E G module, our approach achieves an Fi of 94.28%. Generally 

.speaking, if the S E G module achieves a good result, the overall performance 

will then depend on the performance of the CLASS module. 

To test the performance of the CLASS module, we prepared a set of test-

ing data with all the phrases correctly identified and used it to evaluate the 

module. The overall accuracy is 89.86%. With the performance in the two 

modules now available, we can get a rough estimate of the final extraction 

performance as shown in Table 5.14. Note that if the CLASS^module accu-

racy is 100%, the final extraction performance should be very close to the 

S E G module performance, i.e. Fi = 94.28%. 

W e also note that our actual extraction performance is higher than the 

estimated performance. W e believe the reason for this is that in the S E G 

module the phrases (instead of the actual segmentation) are being extracted. 

W h e n a phrase cannot be recognized by the S E G module, it is also likely 

that it cannot be recognized by the CLASS module either. Therefore the 

performance is not hurt substantially. 

Experimental Results and Discussions: ICRF for CoNLL-2003 

The results of this experiment is presented in Table 5.15 and Table 5.16. 

The phrase tag accuracy were on par with a difference of only 0.02%. The 

General Entity Recognition tags is slightly better in the isomeric C R F ap-
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Types C R F + C R F M E M B Diff isom. C R F Diff O C R Diff 

P Acc 96.38 96.74 +0.36 96.40 +0.02 96.34 -0.04 

G E R Acc 97.39 97.86 +0.47 97.57 +0.18 97.78 +0.39 

L O G 88.09 90.72 +2.63 88.90 +0.81 91.17 +3.08 

MISC 85.04 87.72 +2.68 86.31 +1.27 85.70 +0.66 

O R G 79.80 84.34 +4.54 81.59 + 1.79 82.67 +2.87 

P E R 89.71 90.86 +1.15 90.01 +0.30 90.27 +0.56 

Overa.ll 86.27 88.89 +2.62 87.23 +0.96 88.17 +1.90 

Table 5.15: Comparisons with the traditional CRF-hCRF approach on the 

CoNLL-2003 dataset. The top 2 rows indicate the phrase (P) tag accuracy 

and the General Entity Recognition (GER) tag accuracy in percentage (%). 

The next four rows show the measures for different entity types: Location 

(LOG), Miscellaneous (MISC), Organization (ORG), and Person (PER). The 

last row gives the overall G E R Fi measure and repreents the final rank of a 

system. 

proach, with an accuracy of 97.57% which is 0.18% better than the cascaded 

i 
approach. In this case we would expect that the Fi measures would be nearly 

I 
I • 

the same. However the overall Fi measure is about 1% higher in the isomeric 

C R F model. Furthermore, if we look at the Fi measures of the individual 

named entity types, we find a greater difference between the C R F and ICRF 
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Types C R F + C R F M E M B Diff isom. C R F Diff O C R Diff 

P Acc 96.38 96.74 +0.36 96.40 +0.02 96.34 -0.04 

A D J P 65.66 68.92 +3.26 66.29 +0.63 64.15 -1.51 

A D V P 82.68 84.76 +2.08 82.38 -0.30 81.30 -1.38 

C O N J P 30.77 66.67 +35.90 42.86 +12.09 40.00 +9.23 

INTJ 85.19 93.10 +7.91 89.29 +4.10 86.21 + 1.02 

N P 92.32 93.79 +1.47 92.27 +0.45 92.63 +0.32 

P P 98.35 98.11 -0.24 98.18 -0.17 98.01 -0.34 

P R T 94.28 92.36 -1.92 94.28 0.00 93.60 -0.68 

S B A R 87.79 87.32 -0.47 84.96 -2.83 86.26 -1.53 

V P 95.08 95.33 +0.25 95.23 +0.15 95.18 +0.10 

Overall 93.36 94.28 +0.92 93.30 -0.06 93.41 +0.05 

Table 5.16: Comparisons with the traditional CRF+CRF approach on the 

phrase extraction performance. The top row indicates the phrase (P) tag 

accuracy in percentage (%). The next 9 rows show the Fi measures for dif-

ferent entity types. The last row gives the overall extraction performance on 

the first sub-task. Note that in the isomeric C R F approach the overall phrase 

extraction performance is lower than the serparately trained model. However 

the final system performance of the isomeric C R F approach is better. 
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approaches. For the named entity types "MISC" and "ORG", both F\ mea-

sures were more than 1% higher in the isomeric C R F approach. It shows 

that the two sub-tasks in the isomeric C R F approach are better "integrated" 

so that the overall system performance is improved. 

With reference to Table 5.15, a greater difference can be seen in the 

first task which is the phrase recognition task. W e see that the phrase tag 

accuracy was about the same with a difference of only 0.02%. However 

when we break down the individual Fi measures, we can see that the F\ 

measure for "CONJP”、and "INTJ" were exceptionally higher in the isomeric 

C R F approach, with a +12.09% and a +4.10% increase respectively. W e 

conjecture that these two phrase types are helpful in doing general named 

entity recognition tasks. 

( 

McCallum conducted an experiment with manually-prepared templates 

一 

with lexicons and also one with single word features. Surprisingly, the 

manually-prepared templates with lexicons got the lowest performance 73.3% 

Fl while in the experiment using simple single word features, the performance 

was 80% Fl. Our ICRF gets 87.23% Fl, which axe better than that of the 

experiment using manually-prepared templates or the single word features. 

However our performance is worse than the feature induction method that 

used a lexicon for the named entities. W e think that the difference in per-

formance may be due to the use of lexicons that provides additional domain 118 



knowledge. 

Our training time using a single-threaded approach was 106 minutes and 

that using a mutli-threaded approach with 16 threads was 9 minutes. 

Experimental Results and Discussions: O C R for CoNLL-2003 

In this experiment, we get Fi = 88.17%. In the segmentation task, the phrase 

tag accuracy is 96.34%, which is slightly lower than the baseline {CRF+CRF) 

approach. In the classification task, the G E R tag accuracy is 97.78%, which 

is better than the baseline approach. 

W h e n we analyzed the segmentation results, we found that the segmen-

tation result for C O N J P was 9.23% higher than that of the baseline results, 

which agreed with the results of M E M B and ICRF. However the segmenta-

tion result for INTJ does not show a sharp improvement as other approaches 

do. 

W e noted that the re-ranking stage of O C R did not help improve the 

segmentation results as we expected. After we%nalyze the 10-best segmen-

tation results, we found that many of the correct segmentation occurred at 

the 1-best or 7-best to 10-best segmentation candidates. W e believe that the 
« 

re-ranking stage could not correct segmentation results in which the correct 

segmentation occurs near the end of a A^-best list. 

The training time for the segmentation task was 93s and that for the 
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classification task was 381s. In total it was 474s. It achieved the fastest 

training time among all models. 

5.4 Other Experiments 

5.4.1 Parallel Training Experiments 

W e also tested the speed up gained by the parallel implementation of the 

isomeric C R F approach. The parallel framework can be implemented on a 

multi-core C P U which supports multi-threading or a G P U graphics card. 

The speed test was done on the CoNLL-2000 dataset with different num-

ber of training instances. The same set of feature templates used in the 

previous experiments were used. The test was done with a single-threaded 

implementation and a multi-threaded implementation with 16 threads. The 

experiments were run on a machine with 2x Xeon X5570 2.93GHz and 48G 
a 

Ram. The results are shown in Figure 5.3. 

Generally the training time grew linearly with the number of training in-

stances. The average speedup was 12.67x over this dataset. The termination 

condition was that the objective did not improve more than 0.5% for three 

times. W e noted that there were cases that the training time was shorter 

when the training size was bigger. However the speedup stayed constantly 



between 12x and 13x. 
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Figure 5.3: Speed up of isomeric C R F using a parallel implementation. Using 

the same feature templates in the CoNLL-2000 experiment, we repeated the 

experiment with different number of training instances, from 1000 to 8936. 

The multi-threaded approach used a total of 16 threads. O n average, the 

speedup is 12.67x. 
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Chapter 6 

Conclusions 

W e have presented a cascaded framework for extracting named entities with 

automatically generated features. Three named entity recognition (NER) 

models based on different principles are investigated. The maximum-entropy 

margin-based ( M E M B ) model is designed to make use of the concept of mar-

gin in a maximum entropy model. It measures the error between the original 

tags and the predicted tags of a named entity and incorporates it in training. 

The isomeric conditional random field (ICRF) model is designed to allow 

efficient joint training with a soft constraint. The segmentation and classi-

fication models communicate with each other through different representa-

tions of a joint probability: The online cascaded reranking (OCR) model uses 

online training to conduct parameter estimation so that its margin is maxi-

mized. The segmentation ranks its top-N candidates with scores and passes 



this N-best list to the classification which gives a score to each candidate and 
) 
f 

chooses the candidate with the highest total score to be the final output. A 

theoretical analysis of the constraints on the probability distributions in the 
It 

M E M B and ICRF models is given. By using Stirling's approximation, we 

prove that almost all possible data sets are typical for an empirical frequency 

distribution. 

W e have evaluated the three models on two publicly-available datasets, 

namely the G E N I A Corpus in the BioNLP/NLPBA (2004) shared task, and 

the Reuters Corpus in the CoNLLf-2003 shared task. Experimental results 

show that our proposed models are effective. Our models outperform the 

baseline model and achieve state-of-the-art performance. A parallel imple-

mentation of the ICRF model is also evaluated and achieves a lOx speedup. 

A future direction is to investigate how a "margin" can be used efficiently 

in a joint training fashion. Margin-based training usually gives robust pa-

rameter values and joint training allows different stages of a system interact 

with each other. Another direction is to explore parallel algorithms that can 

help training and testing. With the advent of multi-core C P U s and GPUs, 

researchers can be less worried about the running speed and focus more on 

the characteristic of a problem and its proper modeling. Furthermore, we 

expect that we will be able to perform extensive experiments on other text 

mining tasks such as semantic labeling that usually has more than 10 labels 
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and need to employ more language resources which requires more feature 

functions to be defined either manually or automatically by a template. 
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