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Abstract 

The objective of this thesis is to develop a multiview system that can 
synthesize photorealistic novel views of the scene captured by sparse 
cameras distributed in a wide area. The system cost is largely reduced 
due to the small number of required cameras, and the image capture 
is greatly facilitated because the cameras are allowed to be widely 
spaced and flexibly placed. The key techniques to achieve this goal 
are investigated in this thesis. 

The first part of this thesis presents a convenient and flexible calibra-
tion method to estimate the relative rotation and translation among 
multiple cameras. A simple planar pattern is used for accurate calibra-
tion and is not required to be simultaneously observed by all cameras. 
Thus the method is especially suitable for widely spaced camera array. 
In order to fairly evaluate the calibration results for different camera 
setups, a novel accuracy metric is introduced based on the deflection 
angles of projection rays, which is insensitive to a number of setup 
factors. 

The second part of this thesis studies the invariant local features that 
have been successfully applied to wide baseline matching. However, 
most existing feature detectors cannot represent and match the image 
structures near surface boundaries because the image neighborhood 
usually contains background or multiple foreground surfaces. These 
boundary features, though not many, are useful for describing the 
object contour. Scale and affine invariant Fan feature is proposed, 
which is able to represent and match these boundary structures and 
meanwhile has good invariance to scale, viewpoint and background 
changes. 



In the th i rd part, we present a novel image-based rendering method 
based on the global propagation of a bag of invariant features. Our 
method is able to generate visually pleasant free-view navigation of 
the focused object, from a very small number of images taken from 
quite different viewpoints, The bag of invariant features, including 
the Fan feature, brings good robustness to significant scale and view-
point changes between wide baseline images. The global propagation 
enables dense feature correspondences even for low textured surfaces, 
The feature-based method has been successfully extended to render 
moving object from multiview video sequences. 



摘 要 

本論文的0標是設計一套有效的多視角系統方案，用少量分步在 

廣域的相機來捕獲感興趣的場景，帶來逼真的多視角視覺體驗。 

由於只需要很少的相機來捕獲場景，該方案大量地減少了系統開 

銷；又由於能夠靈活隨意地佈置這些相機，該方案也極大地簡化 

了圖像捕獲的過程。本論文將深入討論這個多視角系統中用到的 

核心技術a 

本論文的第一部分提出了一個方便靈活的相機校正方法來估 

算多個相機之間相對位移和旋轉。該方法借用一個平面的網格圖 

來達到精確校正的R的。因為不要求所有相機同時觀察網格圖， 

該方法特別適用於分步在廣域的相機陣列。此外，為了能公平地 

評估不同相機設置的校正結果，本文介紹了 一種基於投影射線偏 

差角的準確度度量方法。由於該度量方法對很多相機的設置因素 

都不敏感，因而能為不同的相機校正結果提供一個公平的測量。 

本論文的第二部分贯點研究了局部不變特徵。這種圖像特徵已 

經被成功地應用於長基線匹配。然而目前大部分特徵探測器都無 

法表徵和匹配那些靠近物體邊緣的圖像結構。這主要是因為這些 

結構的圖像鄰域往往都含有背景或是多個前景表面。儘管這些邊 

界特徵的數量並不可觀，但是對於物體輪廓的表徵卻起著非常贯 

要的作用。為此，本文提出了尺度和仿射不變的扇形特徵來提取 

和匹配這些邊界的圖像結構。這種新型的扇形特徵對尺度，視角 

和背景的變化具有很好的不變性。 

本論文的第三部分闡述了一種新型的基於不變特徵全局性傳 

播的圖像這染方法。該方法僅需要輸入極少的不同視角的圖像， 

即可實現對聚焦對象的自由視角導航。由於使用了包括扇形特徵 

在内的不變特徵包，該方法對圖像中顯著的尺度和視角變化也具 

有很好的魯棒性。而全局性特徵傳播技術即使對於低紋理的物體 

表面也能夠生成密集的特徵對應。此外，這種基於不變特徵的清 

染方法也能夠成功地根據多視角視頻來清染移動的物體。 
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Chapter 

Introduction 

1.1 Motivation and Objective 
Multiview imaging system has attracted considerable attention recently due to its 
increasingly wide range of applications and the decreasing cost of digital cameras. 
One of the most important research topics is Vir tual View Synthesis (VVS) that 
brings various interesting entertainment services such as three-dimensional tele-
vision (3DTV), virtual reality, computer games, art and cinema, etc. VVS aims 
to synthesize the virtual images that would have been seen from novel viewpoints 
other than those of the input images. This technique has already been applied to 
films such as "The Matr ix" . I t allows a director to modify a scene by changing 
the viewpoint without the trouble and expense of reshooting it. I t is also the 
key component of 3DTV that would allow a spectator to watch a show from any 
desired viewpoint. 

The Image-based or Video-based view synthesis technique, also named Image-
based or Video-based Rendering ( IBR/VBR), is able to generate novel views 
purely based on input images or videos, without any prior geometrical model. 
This technique becomes more and more popular due to its flexibility and general-
ity, and is the focus of this thesis. Based on conventional photos, a description of 
scene content in terms of geometry can be derived based on matching techniques. 
From this more abstract scene description, rendering techniques are able to create 
novel views of the recorded scene. Though IBR has been intensively researched 
recent years, there are still many new and challenging issues to be addressed, In 
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particular, most IBR approaches require the imaging system to capture the scene 
or object using a large number of cameras and usually generate novel views that 
cannot depart much from the camera array positions. A densely sampled cam-
era array is expensive and requires a lot of manual efforts to set up. Moreover, 
processing a large number of input images requires large data storage and high 
memory cost. On the other hand, in the past few years there is an increasing 
demand for IBR from the images acquired using simple devices such as family 
photographs. One of the interesting applications would be to produce 3D photos 
from a small set of pictures easily captured by common consumer cameras. 

The goal of this thesis is to develop a multiview rendering system that is built 
up by a very sparse camera array, yet is able to synthesize photorealistic vir tual 
images observed from novel viewpoints. Since our system requires only a small 
number of input views, the cost of the equipments can be largely saved and the 
effort of calibration and synchronization can be significantly reduced, which makes 
our system much more practical and flexible. However, the wide spacing between 
cameras (views) also brings many challenges in synthesizing photorealistic views: 
The pattern for accurate camera calibration cannot be simultaneously and clearly 
observed by widely separated cameras; The strong photometric and geometric 
changes wi l l make it much more difficult to establish correspondences between 
wide baseline images; Smooth and low-texture regions wi l l be more difficult to 
match as opposed to dense camera array systems where interpolation can already 
produce sufficiently accurate results. In this thesis, we aim to address all these 
problems and enable image-based rendering from sparse views. 

In the following parts of this chapter, we first present a brief overview of 
previous research works related to the topics studied in this thesis, including 
camera calibration in Section 1.2, invariant local feature in Section 1.3 and image-
based rendering in Section 1.4. The outline of this thesis is then given in Section 
1.5. 

1.2 A Quick Glance of Camera Calibration 
Most of the methods for estimating the 3D structure of a scene through image 
analysis require an accurate a priori knowledge of the acquisition system's model. 
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The parameters of this model can be estimated through a process called cam-
era. calibration, which is based on the analysis of image features of one or more 
views, The parameters of the model basically include the intrinsic parameters 
that characterize the projection of 3D points onto the image plane of camera, 
such as camera focal length, principal point and lens distortion^, and the extrin-
sic parameters that denote the coordinate system transformations (translations 
and rotations) from the 3D world coordinates to the 3D camera, coordinates, or 
between multiple camera coordinates. On the other hand, the targets that orig-
inate the image features can be “art i f icial", e.g., planar patterns that have been 
intentionally added to the scene, or "natural", e.g., natural object features such 
as vertices or corners. The use of the targets gives rise to two main approaches 
to the calibration problem. One that relies on additional images of the artificial 
pattern with fully or partially known geometry falls into the category of pattern-
based calibration. The second approach extracts the natural features from the 
captured images themselves and tries to estimate both the scene geometry and 
model parameters, which is therefore called self-calibration. 

1.2.1 Pattern-based Calibration 
Pattern-based calibration usually assumes that an object (mostly a pattern) wi th 
precisely known geometry is present in the input images, and computes the cam-
era parameters consistent wi th a set of correspondences between the features 
defining the pattern and their observed image projections [11]; [140]. I t is of-
ten used in conjunction wi th positioning systems such as a robot arm [118] or 
a turntable [30] that can repeat the same motion wi th high accuracy, so that 
object and calibration chart pictures can be taken separately but under the same 
viewing conditions. 

Pattern-based calibration can be used regardless of scene texture and view 
separation, but i t is difficult to design and build accurate calibration patterns 
clearly visible from all views, especially when the camera views are wide apart. 
This is particularly true for 3D patterns [140], which are desirable for uniform 
accuracy over the visible field, but remains a problem even for printed planar 

中lease refer to Section 2.2 
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grids [15(3]’ where the plates that the paper is laid on may not be quite flat, 
and for laser printers [7] that are sometimes surprisingly inaccurate. In addition, 
the robot arms or turntables [30] used in many experimental setups may not be 
exactly repetitive. In fact, even a camera attached to a sturdy tr ipod may be 
affected during experiments by vibrations from the floor or thermal effects. These 
minor factors may not be negligible for modern high-resolution cameras. 

I t is necessary to mention the most commonly adopted pattern-based meth-
ods, including those of Tsai [140], Heikkila & Silven [54] and Zhang [1 厂 ) ( ; ] . T h e s e 
methods are all based on the pinhole camera model and include terms for mod-
eling radial distortion. 

Tsai's calibration model [110] assumes that some parameters of the camera, 
are provided by the manufacturer, to reduce the init ial guess of the estimation. 
I t requires n features points (n > 8) per image and solves the calibration problem 
wi th a set of n linear equations based on the radial alignment constraint. A second 
order radial distortion model is used while no decentering distortion terms are 
considered. The two-step method can cope with either a single image or multiple 
images of a 3D or planar calibration grid, but grid point coordinates must be 
known. 

The technique developed by Heikkila & Silven [54] first extracts init ial esti-
mates of the camera, parameters using a closed-form solution and then a non-linear 
least-squares estimation employing a the Levenberg-Marquardt algorithm is ap-
plied to refine the interior orientation and compute the distortion parameters. 
The model uses two coefficients for both radial and decentering distortion, and 
the method works with single or multiple images and with 2D or 3D calibration 
grids. 

Zhang's calibration method [150] requires a planar checkerboard grid to be 
placed at different orientations (more than 2) in front of the camera. The devel-
oped algorithm uses the extracted corner points of the checkerboard pattern to 
compute a projective transformation between the image points of the n different 
images, up to a scale factor. Afterwards, the camera interior and exterior param-
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eters are recovered using a closed-form solution, while the third- and fifth-order 
radial distortion terms are recovered within a linear least-squares solution. A 
final nonlinear minimization of the reprojection error, solved using a Levenberg-
Marquardt method, refines all the recovered parameters. Zhang's approach is 
quite similar to that of [13<S], which requires at least 5 views of a planar scene. 

1.2.2 Self-Calibration 
Self-calibration estimates both the scene geometry and the camera parameters, 
which are consistent with a set of correspondences between scene and image 
features [105]; [52]. In this process, the intrinsic camera parameters are often 
supposed to be known a priori [09]. A final bundle adjustment stage is then 
typically used to fine tune the positions of the scene points and the entire set of 
camera parameters in a single non-linear optimization [139]. 

In a typical self-calibration system for example [105], natural features may first 
be found as "interest points" such as blobs and corners in the input images, before 
a robust matching technique such as RANSAC is used to simultaneously 
estimate a set of consistent feature correspondences and camera parameters. 

Some approaches propose to improve feature correspondences for robust cam-
era calibration [80]. However, reliable automated self-calibration systems are 
hard to design, and they may fail for scenes composed mostly of objects wi th 
weak textures (e.g., human faces). In this case, manual feature selection and 
pattern-based calibration are the only viable alternatives. 

A few researchers have proposed using scene information to refine camera cal-
ibration parameters: Lavest et al. [68] propose to compensate for the inaccuracy 
of a calibration chart by adjusting the 3D position of the markers that make it 
up, but this requires special markers and software for locating them with suffi-
cient sub-pixel precision, The calibration algorithms proposed in [55] and [150 
exploit silhouette information instead. They work for objects without any texture 
and are effective in wide baseline situations, but are l imited to circular camera 
motions. 

Basically speaking, automated self-calibration methods tend to work well for 
close-by cameras in controlled environments and may be ineffective for poorly 
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textured scenes and widely separated input images, 

1.2.3 Estimation Methods 
A more specific classification of camera calibration methods can be made accord-
ing to the parameter estimation and optimization technique employed. 

Linear techniques are quite simple and fast, but generally cannot handle lens 
distortion and need a control point array of known coordinates. They can include 
closed-form solutions, but usually simplify the camera model, leading to low 
accuracy results. The well-known DLT [1], which is essentially equivalent to 
an Essential matrix approach, exemplifies such a technique. 

Non-linear techniques, such as the extended collinearity equation model forms 
the basis of the self calibrating bundle adjustment. A rigorous and accurate 
modeling of the camera interior orientation and lens distortion parameters is 
provided [l(>] through an iterative least-squares estimation process. 

A combination of linear and non-linear techniques where a linear method is 
employed to recover init ial approximations for the parameters, after which the ori-
entation and calibration are iteratively refined [32]; [140]; [148]; [54]; [150]. This 
two-stage approach has in most respects been superceded for accurate camera 
calibration by the bundle adjustment formulation above, which is also implicit ly 
a two-stage process. 

1.3 Recent Advances on Invariant Local Fea-
tures 

Image representation and understanding is to handle the passage from pixels to 
semantic content of the image. Global approaches based on color or texture distri-
bution analyze the image as a whole. Unfortunately, they are not robust against 
occlusions, background clutter and other content changes, which are introduced 
by arbitrary imaging conditions. An efficient approach which provides a possible 
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solution to these problems is based on local invariant features. The local features 
are local image structures formed by pixels of high intensity variation. These 
local structures convey more information due to signal changes, and hence are 
more representative for the image. 

Local features have been widely used in quite varied applications, such as wide 
baseline matching for stereo pairs [9]； [87]; [14 i], model based recognition [36]; 
79]; [100]; [1 ！ 1], object retrieval in video [L23]; [124], visual data mining [125], 

building panoramas [17], and object categorization [24]; [29]; [34]. In all these 
applications, the most crucial requirement for the local features is that they should 
correspond to the same pre-image for different viewpoints, i.e., their shape is not 
fixed but automatically adapts, based on the underlying image intensities, so that 
they are the projection of the same 3D surface patch. Since the local features 
are extracted independently of viewing conditions, they are named invariant local 
features. 

Basically, a feature is represented by a small local neighborhood in the image 
and is defined by the coordinate of a keypoint, the size and the shape of a local 
structure. These can be affected by different image transformations which most 
frequently are rotation, scaling, perspective deformations as well as changes in 
pixel intensities. A feature detector should first provide the accurate location of 
keypoints detected in transformed images; otherwise the point neighborhoods do 
not correspond to each other. The scale, namely the size of a point neighborhood 
is the second important parameter to estimate. Finally, each structure has a 
specific shape which can be deformed under arbitrary viewing conditions. The 
problem is to determine the shape of the point independently of these conditions. 

1.3.1 Scale Invariance 
The scale of a local structure is related to the resolution at which the structure is 
represented in an image. The resolution is determined during the acquisition of 
images by the parameters of the camera or the scanner, and cannot be artificially 
increased, although it can be decreased by smoothing and sampling. The scale is, 
in fact, the factor of relative change in the size of a local structure represented in 
two images wi th different resolution. Therefore the term scale is always related 
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to the resolution at which the structure is presented. Given a local structure, 
there exists a minimal resolution, below which the structure is meaningless and a 
maximal resolution, which depends mainly on the constraints defining the local 
character of the structure. The problem is to select the appropriate scale at which 
the structure is most representative. Without the property of scale invariance the 
complexity of a matching algorithm is high in the case of significant scale changes. 

Gaussian Scale Space 

In the discrete domain of digital images the scale parameter is also discretized, 
Thus, the scale space representation is a set of images represented at different dis-
crete levels of resolution. Koenderink [(>4] showed that the scale space must satisfy 
the diffusion equation for which the solution is a convolution, with the Gaussian 
kernel. Furthermore he showed that this kernel is unique for generating a scale 
space representation. The uniqueness of the Gaussian kernel was concerned with 
different formulations by Babaud [(>], Lindeberg [74] and Florack [1U]. These re-
sults lead to the conclusion that the convolution with the Gaussian kernel is the 
best solution to the problem of constructing a multi-scale representation. The 
bi-dimensional Gaussian function is defined by: 

( 1 , 1 ) 

Different levels of the scale space representation are generally created by con-
volution with the Gaussian kernel: 

L(x;cr) = G(a)* / (x) (1.2) 

with I the image and x = [x, yY' the point location. The Gaussian kernel is 
circularly symmetric and parameterized by one scale factor a. A coarse scale 
image is obtained by smoothing the fine scale image. This operation is repeated 
on consecutive coarser levels to obtain the multi-scale representation. The scale 
factor must be distributed exponentially as ĉVi = in order to maintain a 
uniform change of information between successive levels of resolution. 
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Normalized Gaussian derivatives 

A feature can be extracted at different resolutions by applying an appropriate 
function at different scales. The detection functions are mostly based on Gaussian 
scale space derivatives, as the linear derivatives of Gaussians are suitable for 
modeling the human visual front-end. The aim of the scale space analysis is to 
explore an image representation on a wide range of scales in order to extract the 
salient information. 

In general, the derivatives at different scales can be computed by smooth-
ing the image with the Gaussian kernel and differentiating the smoothed signal. 
Another option is to convolve the image with a derivative of a scaled Gaussian 
kernel. Al l these methods are equivalent. Given any image function /(x), the 
mth derivative can be defined by: 

“ 1 = 次 1 8:d、G、a、* 了(X) (1-3) 

Specifically, for an image, we have ii = x and i) = y. 
The amplitude of spatial derivatives, in general, decreases with scale due to 

the response being smoother on a larger scale. In the case of the structures present 
at a large range of scales, e.g., a step-edge, we would hope to have the derivative 
constant over scale. In order to maintain the property of scale in variance the 
derivative function must be normalized with respect to the scale of derivation. 
The details of scale invariance properties are described in [75] ； [77]. The scale 
normalized derivative D of order m is defined by 

A i = 丄 d (1.4) 

,where a ^ is the necessary normalization factor to achieve scale invariance. 

Automatic scale selection 

Automatic scale selection and the properties of the selected scales have been 
extensively studied by Lindeberg [77]. The idea is to select the characteristic 
scale, for which a given function of the input signal attains an extremum over 
scales. For a particular descriptor, a scale can be named characteristic if the 
descriptor computed at this scale conveys more information comparing to those 
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at other scales. Because of this saliency, the characteristic scale is much more 
reliable to be repeatedly detected under different viewing conditions. 

The scale selection operators for computing the scale function of signal are usu-
ally constructed from the combinations of several Gaussian derivatives. C horn at 
et al. [21] show that the gradient operator is appropriate for selecting the char-
acteristic scale of local features and is robust to noise in the image. 

Squared Gradient a)十 L ^ x ; a)) (1.5) 

The magnitude of the gradient is naturally invariant to rotation and the phase 
can be used to determine the dominant orientation in the local feature. 

The Laplacian of Gaussian (LoG) function is circularly symmetric and has 
been successfully used by Lindeberg [77] for blob detection and automatic scale 
selection. 

Laplacian of Gaussian o"^|La;x(x; a) + Lyy(x; cr)! (1.6) 

The Difference of Gaussian (DoG) operator used by Lowe [cSO] is an approxi-
mation of the Laplacian of Gaussian and allows accelerating the computation of 
a scale space representation. 

Difference of Gaussian |L(x; ka) — Z/(x; a)\ (1.7) 

A more sophisticated approach is to select the scale for which the trace and 
the determinant of the Hessian matrix assume a local extremum [76]. 

max(|trace(i7)|) and max(|det(J^)|) (1.8) 

The Harris corner detector [50] is based on the same idea, but uses the components 
of the second moment matrix jj, instead. 

Harris Function det(/i(x, cr)) — a trace^(/i(x, cr)) (1.9) 

Recently, Mikolajczyk and Schmid [02] propose a new feature detector that 
combines the reliable Harris detector and the Laplacian based scale selection. 
Their Harris-Laplace detector uses the Harris function (1,9) to localize points in 
each level of the scale space representation. Next, i t selects the points, for which 
the LoG attains a maximum over scale. 

10 
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The comparative evaluation on these scale selection operators [91] suggests 
that the LoG operator^ achieves the overall best performance in detecting scale 
invariant features. 

1.3.2 Affine Invariance 
One of the most frequent image transformations introduced by arbitrary viewing 
conditions is the perspective transformation. The real images generally represent 
scenes containing partially smooth objects. The smooth surface can be approx-
imated by a piecewise planar surface. The planar surface undergoes perspective 
transformation when viewed from different angles. Finally, the perspective trans-
formation can be locally approximated by affine transformation. An affine inva,ri-
ant detector can be seen as a generalization of the scale invariant detector. In the 
case of affine transformation the scaling can be non-uniform, which is different in 
each direction. 

Tuytelaars and Van Gool [141] proposed two approaches for detecting image 
features in an affine invariant way. The first one, Edge-based Region (EBR), 
starts from corners and uses the nearby edges. The first step is the extraction of 
Harris points, which limits the search regions and reduces the complexity of the 
method. Two nearby edges, which are required for each point, additionally l imit 
the number of potential features in an image. One point moving along each of 
the two edges together with the Harris point determines a parallelogram. The 
points stop at positions where some photometric quantities of the texture covered 
by the parallelogram go through an extremum. The second method, Intensity-
based Region (IBR), is purely intensity-based and starts wi th extraction of local 
intensity extremum. Next, they investigate the intensity profiles along rays going 
out of the local extremum. A marker is placed on each ray in the place, where 
the intensity profile significantly changes. Finally, an ellipse is fitted to the region 
determined by the markers. 

Lindeberg and Garding [78] developed a method to find blob-like affine fea-
tures using an iterative scheme in the context of shape from texture. The al-
gorithm explores the properties of the second moment matrix to estimate the 

I closely followed by its approximation DoG 

11 
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affine transformation of local patterns. Specifically, they propose to extract the 
key points using the maxima of a scale space representation and to iteratively 
modify the scale and the shape of the point neighborhood. This approach was 
later implemented in the domain of matching and recognition by Baumberg [9 . 
He extracts interest points at several scales using the Harris detector and then 
adapts the shape of the regions to the local image structure using the iterative 
procedure proposed by Lindeberg. Mikolajczyk and Schimid [92] further improve 
the method by iteratively modifying the location, scale and the neighborhood of 
the keypoint, such that both the keypoint and its neighborhood are extracted 
in an affine invariant way. The resulting features are called Harris Affine if the 
Harris detector is employed for keypoint extraction or Hessian Affine if Hessian 
matrix is used instead. 

A Maximally Stable Extremal Region (MSER) [87] is a connected component 
of an appropriately thresholded image. The word “ extremal" refers to the prop-
erty that all pixels inside the MSER have either higher or lower intensity than 
all the pixels on its outer boundary. The “ maximally stable" in MSER describes 
the property optimized in the threshold selection process. The extremal regions 
have a number of desirable properties. Firstly, a monotonic change of image 
intensities leaves the regions unchanged, since it depends only on the ordering 
of pixel intensities that is preserved under monotonic transformation. Secondly, 
continuous geometric transformations preserve topology-pixels from a single con-
nected component. Thus after a geometric change locally approximated by an 
affine transform, homography or even continuous non-linear warping, the trans-
formed extremal region wil l stil l be an extremal region. The covariance matrix 
analysis [120]; [100] can then be employed to normalize both the original and the 
transformed extremal regions to uniform shape and size. Thirdly, an extremal 
region is stable because its support is ensured to be virtually unchanged over a 
range of thresholds. Finally, since no smoothing is involved, both very fine and 
very large structure is detected, enabling multiple scale selection. 

12 
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1.3.3 Local description and Similarity Measure 
Once the local features are identified, in the image, their properties must be 
captured by descriptors. There are many possibilities to describe the local im-
age structures. The description is necessary for comparing and finding similar 
structures. The problem is to compute a complete representation that is simul-
taneously compact and easy to manipulate. The description should be invariant 
to possible photometric and geometric image transformations. Given the affine 
invariant features, we can compensate for the affine geometric deformation and 
compute an affine invariant descriptor. However, the invariance to rotation and 
illumination changes must also be handled in the process of description, In ad-
dition, a reliable similarity measure is required in every application related to 
matching. The similarity measures are generally determined by the type of de-
scriptors. 

The simplest descriptor is a vector of image pixels. Cross-correlation can then 
be used to compute a similarity score between two descriptors. However, the high 
dimensionality of such a description results in a high computational complexity 
for matching. Yet the region can be subsampled to reduce the dimension. 

Distribution-Based Descriptors 

These techniques use histograms to represent different characteristics of appear-
ance or shape. A simple descriptor is the distribution of the pixe】 intensities 
represented by a histogram. A more expressive representation was introduced by 
Johnson and Hebert [60], where the proposed spin image is a histogram of the 
point positions in the neighborhood of a 3D interest point. The spin image was 
recently adapted to images [70], where the two dimensions of the histogram are 
quantized pixel locations and the intensity value. 

Lowe [SO] proposed a scale invariant feature transform (SIFT), which com-
bines a scale invariant feature detector and a descriptor based on the gradient 
distribution in the detected regions. The SIFT descriptor is represented by a, 3D 
histogram of 4 x 4 gradient locations and 8 orientations. The contribution to 
the location and orientation bins is weighted by the gradient magnitude. The 
quantization of gradient locations and orientations makes the descriptor robust 

13 
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to small geometric distortions and small errors in the region detection. To obtain 
il lumination invariance, the descriptor is normalized by the square root of the 
sum of squared components. 

Gradient location-orientation histogram (GLOH) [93] is an extension of the 
SIFT descriptor designed to increase its robustness and distinctiveness. The his-
togram is computed at a log-polar location grid with three bins in radial direction 
and 8 in angular direction. The central bin is not divided in angular directions. 
The gradient orientations are quantized in 16 bins. 

Geometric histogram [4] and shape context [10] implement the same idea and 
are very similar to the SIFT descriptor. Both methods compute a histogram 
describing the edge distribution in a region. These descriptors were successfully 
used, for example, for shape recognition of drawings for which edges are reliable 
features. 

The size of the descriptors can be further reduced by Principle Component 
Analysis (PCA) [bl]. For example, PCA-SIFT [6：̂] descriptor is a vector of image 
gradients in x and y direction computed within the support region, The gradient 
region is sampled at 39 x 39 locations, therefore, the vector is of dimension 3042. 
The dimension is reduced to 36 with PCA. 

Basically, the Euclidean distance is used to compare the histogram descrip-
tors, including SIFT, GLOH, PCA-SIFT, shape context, and spin images. The 
measure is easy to compute and has been widely used in matching [93 . 

Other Descriptors 

A set of image derivatives computed up to a given order approximates a point 
neighborhood, The properties of local derivatives (local jet) were investigated by 
Koenderink and van Doom [fio]. Florack et al. [39] derived differential invari-
ants, which combine components of the local jet to obtain rotation invariance. 
Freeman and Adelson [42] developed steerable filters, which steer derivatives in a 
particular direction given the components of the local jet. Steering derivatives in 
the direction of the gradient makes them invariant to rotation. Baumberg [9] and 
Schaffalitzky and Zisserman [112] proposed using complex filters derived from the 
family K{x, y, 0) — f{x,y) exp(20). where 9 is the orientation. For the function 
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f(x, y), Baumberg uses Gaussian derivatives and Schaffalitzky and Zisserman ap-
ply a polynomial. These filters differ from the Gaussian derivatives by a linear 
coordinates change in filter response domain. 

Generalized moment invariants have been introduced by Van Gool et al. [143] 
to describe the multispectral nature of the image data. The moments characterize 
shape and intensity distribution in a region. They are independent and can 
be easily computed for any order and degree. However, the moments of high 
order and degree are sensitive to small geometric and photometric distortions. 
Computing the invariants reduces the number of dimensions. These descriptors 
are therefore more suitable for color images where the invariants can be computed 
for each color channel and between the channels. 

The Mahalanobis distance is usually employed to measure the similarity of 
abovementioned descriptors, including differential invariants, steerable filters, 
complex filters and moment invariants. In order to compute the Mahalanobis 
distance, one need to first train the covariance matrix from adequate image sam-
ples. 

1.3.4 Outlier Filter 
The descriptors and the similarity measure are necessary but not sufficient to 
obtain correct point-to-point correspondences. The correctness of the correspon-
dences has to be verified by an additional algorithm that takes into account a 
global and local geometric relation between the images. 

Various outlier rejection approaches have been proposed by inferring the global 
spatial transform of local features [28]; [80]. These global filters, however, have 
two major problems; 1) they cannot deal wi th non-rigid deformation, and 2) they 
are sensitive to high number of outliers in the correspondence set. To overcome 
these problems, the use of semi-local geometry information has been explored in 
the literature. Schmid and Mohr [115] use a fixed number of local features around 
a given feature to determine its semi-local structure, A similar method has been 
proposed in [19], where the typical features are combined with shape context 
to describe the spatial configuration of neighboring feature points. Semi-local 
constraints are also used by Tuytelaars and Van Gool [141], where an iterative 
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method rejects mismatches based on homographies between matches of semi-local 
features. Carneiro and Jepson [19] also propose an efficient pair-wise grouping 
method. The pair-wise relation is measured by the consistency of scale, distance 
and heading between a pair of matches. The three consistency measures are then 
combined together to present robustness to the scaling, translation and rotation. 
In this way the method makes full use of the available information provided by 
typical scale invariant features such as SIFT [80], 

There are a few works focusing on designing special geometric filters for the 
state-of-the-art affine invariant features. Lazebnik et al. [09] propose to measure 
the geometric consistency of triples of matches. The local affine geometry is 
estimated only by keypoint locations, but the consistency measure takes into 
account the shape and size information by examining the variation of major and 
minor axes. The early contraction [36] measures the pair-wise consistency of affine 
geometry to identify outliers. However, this filter only applies to intersecting 
regions, but is suitable for match propagation. 

1.4 Overview of Image Based Rendering 
Image-based rendering (IBR) refers to techniques and representations that allow 
3-D scenes and objects to be visualized in a realistic way without full 3-D model 
reconstruction. IBR uses images as the primary substrate. The potential for 
photorealistic visualization has tremendous appeal, and it has been receiving in-
creasing attention over the years. Applications such as video games, virtual travel, 
and E-commerce all benefit from this technology. Recently proposed methods for 
IBR are described and discussed in [J 21]. In this section we give a brief overview 
on IBR techniques. 

1.4.1 Matching 
For any IBR system that relys on geometric information, matching is the key 
technique to infer the 3D structure from 2D images. Wi th cameras calibrated, 
we can compute 3D points by triangulating the 2D correspondences between 
images. In terms of image acquisition, matching can be classified as narrow 
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baseline matching and wide baseline matching. In wide baseline matching, the 
viewpoints of input images are widely separated. This configuration can benefit 
the accuracy of triangulation and reduce the system cost, but brings difficulties 
like significant change of image content and severe occlusion. The most successful 
technique that enables wide baseline matching is invariant local features. Please 
refer to Section 1.3 for detailed introduction. 

The narrow baseline matching, or dense stereo, has been intensively studied 
over the years and has achieved its maturity. Basically the input images are 
densely sampled and hence only small differences exist between neighboring im-
ages. Therefore, dense depth map can be estimated to represent the 3D scene 
instead of a sparse set of correspondences as in wide baseline matching. Dense 
stereo algorithms consist of three fundamental elements, namely the representa-
tion, the objective function, and the optimization technique. The representation 
refers to how the images are used to decide depth or disparity: independent pix-
els [ir)(S], voxels [109], rectangular local windows [102], lines and contours [19], or 
segments [ 159]. The objective function specifies the weighting of the data term rel-
ative to the regularization term, and indicates how occlusion is handled. Finally, 
optimizing the objective function can take various forms, such as winner-take-all, 
dynamic programming [101], graph cuts [12], and belief propagation [132]. For a 
comprehensive survey on dense stereo techniques, please refer to [111]. 

1.4.2 Image Based Rendering 
Over the past decade, there emerged a number of techniques to synthesize new 
images of novel views from images. Figure 1,1 lists some main techniques accord-
ing to how much geometric information is used: wi th no geometry, with implicit 
geometry and wi th explicit geometry. These techniques are briefly introduced as 
follows. 

Concentric mosaics are a generalization of cylindrical panoramas that allows 
the viewer to explore a circular region and experience horizontal parallax and 
lighting effects [5H]. In this case, instead of using a single cylindrical image, 
slit cameras are rotated along planar concentric circles. A series of concentric 
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Less Geometry More Geometry 

Rendering with No 
Geometry 

Light Field 

Plenoptic Stitching 
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Rendering with 
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Relief Texture Mapping 

View Morphing 

Rendering with 
Explicit Geometry 

View-dependent 
Texture Mapping 

Figure 1.1: Overview of IBR techniques 

manifold mosaics [104] are created by composing the slit images acquired by each 
camera along their circular paths [53]. Thus, a cylindrical panorama is equivalent 
to a single mosaic for which the axis of rotation passes through the camera's 
center of projection. In a set of concentric mosaics, all slit images associated to a 
given column are acquired at the same angle. The use of slit images significantly 
reduces the amount of data required to approximate the plenoptic function [2] 

Plenoptic stitching [3] is a clever technique that gives the viewer the ability to 
explore (walkthough) unobstructed environments of arbitrary sizes and shapes. 
In order to provide appropriate sampling for most viewpoints in the environment, 
an omnidirectional video camera is moved over a grid. Along these paths, the 
position and orientation of the camera are tracked and stored in synchrony wi th 
the corresponding video frames. The intersections among the several paths define 
image loops. Each loop is segmented as part of a pre-processing step, During a 
walkthrough, the image loop containing the current viewpoint is used to recon-
struct the desired view. 

The light field [71] is a function that describes, for any given point, the ra-
diance perceived in a particular direction in free space, which is equivalent to 
the definition of plenoptic function [2]. Light field and lumigraph [16] rendering 
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create novel views of scenes or objects by resampling a database of images repre-
senting a discrete sample of the plenoptic function. In this representation, a ray 
is parameterized by its intersections with two parallel planes. 

A layered depth image (LDI) [119] is an image wi th depth that supports 
multiple samples (color and depth information) per sampling ray. Each element 
of the image consists of an ordered list of samples. LDIs can be warped in 
occlusion compatible order. In this case, as a "pixel" is ready for warping, all 
samples along the corresponding ray are warped. The sample furthest from the 
novel center of projection (COP) is warped first and the closest is warped last. 

Relief texture mapping is an extension to conventional texture mapping that 
supports the representation of 3D surface detail and view-motion parallax [103]. 
This effect is achieved by pre-warping the so-called relief textures and mapping 
the resulting images onto flat polygons. Relief textures, in turn, are parallel 
projection images wi th depth. The use of parallel-projection images with depth 
greatly simplifies the pre-warping, and the rendering of complete 3D objects. 
The construction process of a relief texture is that the corresponding surface 
is orthogonally projected onto a reference plane and depth is measured as the 
per-pixel distance from the plane to the sampled point. 

From two input images, view morphing technique [IK)] reconstructs any view-
point on the line linking two optical centers of the original cameras. Intermediate 
views are exactly linear combinations of two views only if the camera motion 
associated wi th the intermediate views is perpendicular to the camera viewing 
direction. If the two input images are not parallel, a pre-warp stage can be em-
ployed to rectify two input images so that corresponding scan lines are parallel. 
Accordingly, a post-warp stage can be used to un-rectify the intermediate im-
ages. Scharstein [113] extends this framework to camera motion in a plane. He 
assumes, however, that the camera parameters are known. 

Texture maps are widely used in computer graphics for generating photo-
realistic environments. Texture-mapped models can be created using a CAD 
modeler for a synthetic environment, For real environments, these models can 
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be generated using a 3D scanner or applying computer vision techniques to cap-
tured images. Unfortunately, vision techniques are not robust enough to recover 
accurate 3D models, In addition, it is difficult to capture visual effects such as 
highlights, reflections and transparency using a single texture-mapped model. To 
obtain the visual effect of a reconstructed architectural environment, Debevec et 
al. [26] used view-dependent texture mapping to render new views, by warping 
and compositing several input images of an environment. A three-step view-
dependent texture mapping method was also proposed later by Debevec et al. 
27] to further reduce the computational cost and to have smoother blending, 

This method employs visibility pre-processing, polygon-view maps, and projec-
tive texture mapping. 

1.4.3 Rendering from Sparse Views 
IBR technique is closely related to the camera layout of a multiview system. A 
few typical and well-known multiview systems are shown in Figure 1.2, Basi-
cally they use the small baseline camera setup, and as a result can capture a 
large number of reference images to provide adequate overlap between neighbor-
ing views for accurate depth estimation. However such a densely sampled camera 
array not only is expensive but also requires a lot of manual efforts to set up. 
Besides, rendering from a large number of images also demands extensive data 
storage and has high memory cost. Furthermore, In the past few years, there is 
an increasing demand for rendering new scenes from images acquired using simple 
devices such as family photographs [12b]; [112]. The wide baseline configuration 
[128] is a good solution to overcome the problems of small baseline setup and to 
meet the demand for the newly emerged applications. Instead of using a densely 
sampled image sequence, the novel views of the scene is synthesized from a small 
number of images taken from very different viewpoints, as shown in Figure 1.3. 
However, the wider spacing between cameras also brings more challenges in pro-
ducing locally consistent geometries and hence photorealistic views. Especially, 
the strong photometric and geometric changes between widely separated images 
make it much more difficult to establish correspondences. 

20 



1.4 Overview of Image Based Rendering 

Stanford immersive television 
mmmmhmimmmm 

(b) CMU 3D dome 

(c) MSR-Asia multiview system (d) Nagoya University multiview system 

Figure 1 2 Typical multiview system 

Recently, local invariant features [()5], [93] have been successfully used to 
address the problem of wide baseline matching For modeling and rendering 
purpose, however, a sparse set of matches obtained by invariant features is inad-
equate for producing a satisfactory 3D representation One strategy to generate 
dense matches between wide baseline images is to introduce the mvariance of 
local features to the general dense matching framework designed for small base-
line setup Tola et al proposed to replace the commonly used correlation 
windows by a fast and robust descriptor, called DAISY They then fed it to a 

13 pro-standard graph-cut based depth estimation algorithm Bradley et al 
posed a multi-scale window-based stereo algorithm where the horizontal scale of 
the correlation window is made adaptive to the local surface orientation 

Besides, many efforts have been made to address the problem by growing re-
gions or surfaces starting from a small set of extracted features or seed points 
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(a) Densely sampled multiview images 

(b) Sparsely sampled multiview images 

Figure 1.3; Multiview images. 

67]; [48]. Strecha et al. [ 12(S] develop a dense matching algorithm for multiple 
wide-baseline images. A sparse set of init ial depth estimates is propagated to 
dense depth map by an inhomogeneous time diffusion process. Lhuillier et al. 
[72], [73] present a quasi-dense approach to establish surface reconstruction us-
ing a greedy match propagation method. Yao et al. [ 153] further improve this 
propagation method by introducing the clustering-based photo-consistency and 
the data-driven depth smoothness. Furukawa et al. [43] propose to represent the 
scene by a dense set of rectangular patches that cover the surfaces visible in the 
input images. Their algorithm starts from a sparse set of matched keypoints, and 
repeatedly expands these to nearby pixel correspondences before using visibility 
constraint to filter away false matches. The most relevant previous work is [35]； 

[3“]，where Ferrari et al. propose to refine the matches of affine invariant features 
by maximizing the similarity function in the 6D affine space. Later they employ 
the match refinement to propagate more feature correspondences using the init ial 
matches as the propagation attempts, which has proven to be successful in the 
application of simultaneous object recognition and segmentation 
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1.5 Thesis Outline 
This thesis aims to develop a multiview rendering system using a very sparse 
camera array. Accurate multi-camera calibration is an inevitable and important 
step towards the efficient use of a multiview system. An efficient and flexible 
multi-camera calibration method is presented in Chapter 2, which is especially 
suitable for sparsely distributed cameras. Since the input views are widely sep-
arated, invariant local features are needed to deal wi th the severe occlusion and 
strong photometric and geometric changes between images. In Chapter 3，scale 
and affine invariant Fan feature is proposed to complement the bag of features 
for wide baseline matching. The complete feature-based sparse view rendering 
scheme is discussed in Chapter 4, where the affine consistent outlier filter and 
the global match propagation technique ensure correct and quasi-dense feature 
correspondences for sparse view modeling and rendering. In the following, the 
contents of each chapter are briefly described. 

In Chapter 2, we present an efficient external calibration technique for a. typi-
cal multi-camera system. The technique is very handy in practice using a simple 
planar pattern. Based on homography, three different pair-wise estimation al-
gorithms, including two-Step, three-Step and non-linear algorithms are proposed 
to recover the rigid rotation and translation between neighboring cameras. By 
registering the accurate and reliable partial calibrated structures, the complete 
calibration of a multi-camera system can be accomplished. The planar pattern is 
not required to be observed simultaneously by all the cameras, which makes our 
method more practical and flexible for general calibration purpose. Traditional 
accuracy measure depends very much on the actual system setup. In order to 
give fair assessments to the calibration results of different camera systems under 
different working conditions, a novel accuracy metric is introduced based on the 
deflection angles of projection rays, which is insensitive to camera focal length, 
baseline length, scene depth and image resolution. Experimental results using 
both simulated and real data are presented to verify the validity and performance 
of the proposed method, 
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Invariant local features have proven to be very successful in scene represen-

tat ion and image matching for wide baseline camera setting. However, most 

existing feature detectors assume no surface discontinuity wi th in the keypoints' 

support regions, and hence have l i t t le chance to match the keypoints located on or 

near the surface boundaries. These keypoints, though not many, are salient and 

representative. In Chapter 3, we show that they can be successfully matched by 

using the proposed scale and affine invariant Fan features. Specifically, the image 

neighborhood of a keypoint is depicted by multiple fan sub-regions, namely Fan 

features, to provide robustness to surface discontinuity and background change. 

These Fan features are made scale invariant by using the automatic scale selec-

t ion method based on the Fan Laplacian of Gaussian (FLOG). Affine invariance 

is further introduced to the Fan features based on the affine shape diagnosis 

of the mirror-predicted surface patch. The Fan features are then described by 

Fan-SIFT, which is an extension of the famous SIFT (Scale Invariant Feature 

Transform) descriptor. Experimental results of quantitative comparisons show 

that the proposed Fan feature has good repeatability that is comparable to the 

state-of-the-art features for general structured scenes. Moreover, by using Fan 

features we can successfully match image structures near surface discontinuities 

despite significant scale, viewpoint and background changes. These structures 

are complementary to those found by the tradit ional methods, and are especially 

useful for describing weakly textured scenes, which is demonstrated in our exper-

iments on image matching and later on object rendering in Chapter 4. 

In Chapter 4，we present a novel object rendering method based on match-

ing affine invariant features. Our method is able to synthesize photorealistic 

novel views of sti l l or moving objects from a very small number of images taken 

from quite different viewpoints, which reduces the system cost and facilitates the 

capture procedure. Matching the state-of-the-art affine invariant features brings 

good robustness to significant scale and viewpoint changes between wide baseline 

images. The resulting correspondences usually have a lot of mismatches. We thus 

introduce an efficient filter to reject false matches based on the consistency of lo-

cal affine geometry. Since the ini t ial matches are too sparse to cover the object 

surface for modeling purpose, we propose to refine and propagate the matches by 
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optimizing a global function that takes into account both the appearance simi-
lar i ty and the geometric consistency, so that a dense set of correct matches can 
be produced even for weakly textured surfaces. Finally, a 3D mesh model of the 
object surface can be constructed, based on which novel views can be synthesized 
in good quality by a double weighting texturing algorithm. This feature-based 
rendering scheme can be efficiently extended to render moving objects by a new 
technique of tracking the affine invariant features across successive frames and 
accordingly updating the mesh model. Experiments on a few real image and 
video datasets demonstrate the feasibility of the proposed method. 

The thesis is concluded in Chapter 5，where the contributions of this thesis 

are summarized and the future research directions are discussed. 
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Chapter 2 

Plane-based External Camera 
Calibration 

2.1 Introduction 
Camera calibration has always been an essential component of photogrammetric 
measurement. A vast amount of the vision algorithms in practical use assume 
pre-calibrated cameras. Traditional photogrammetric calibration [31] employs 
reference grids and determines the intrinsic matrix K using images of a known 
object point array (e.g., a checkerboard pattern). Commonly adopted methods 
are those of Tsai [110] and Zhang [ 156]. These methods are all based on the 
pinhole camera model and include terms for modeling radial distortion. Tsai's 
calibration model assumes that some parameters of the camera are provided by 
the manufacturer, to reduce the init ial guess of the estimation. I t requires n 
features points (n > 8) per image and solves the calibration problem with a set of 
n linear equations based on the radial alignment constraint. This method can cope 
with either a single image or multiple images of a 3D or planar calibration grid, 
but grid point coordinates must be known. Zhang's calibration method requires 
a planar checkerboard grid to be placed at different orientations (more than 2) 
in front of the camera. The extracted corner points of the checkerboard pattern 
are used to compute a, projective transformation between the image points of the 
n different images, up to a scale factor. Afterwards, the camera intrinsic and 
extrinsic parameters are recovered using a closed-form solution, while the third-
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and fifth-order radial distortion terms are recovered within a linear least-squares 
solution. A final non-linear minimization of the reprojection error, solved using 
a Levenberg-Marquardt method, refines all the recovered parameters. Zhang's 
approach is similar to that of Triggs [138], which requires at least 5 views of a 
planar scene. Recently, the plane-based calibration method has been developed 
by Malm et al. [83]; [8'l], where additional constraints are introduced by stereo 
setup or pure translation scenario. Another category of camera calibration is the 
multitude of so-called self-calibration algorithms developed during the last decade 
89] ； [33] ； [r>()] ； [81]; [137]; [15]; . These methods do not use a calibration object 

and only rely on the rigidity of the 3-D scene and on different assumptions on the 
intrinsic parameters, such as fixed parameters throughout the image sequence. 
While the self-calibration is very flexible in practical use, it cannot always obtain 
accurate and reliable results because there are many parameters to estimate while 
the available constraints are so limited. 

Virtual immersive environment usually requires multiple cameras distributed 
in a wide area to capture scenes of considerable extent. A complete multi-camera 
calibration is an inevitable and important step towards the efficient use of such 
systems. For this purpose, many multi-camera calibration methods [131]; [J 42]; 
[133] have been developed based on factorization and global constraints. Usually 
the whole projection matrix P is estimated instead of distinguishing intrinsic and 
extrinsic parameters. The method proposed in [142] relies on the planar pattern 
and assumes it to be visible to all cameras. Its applications are limited and 
unsuitable for wide baseline cases. Other approaches such as [ 133] and [7] using 
a laser pointer or virtual calibration object are more flexible, but usually involve 
elaborate feature detection and tracking, or have some particular requirements on 
the camera setup (e.g., focusing on the same scene) or the calibration environment 
(e.g., dark room). 

In many practical multi-camera systems designed for real-time 3D video ac-
quisition, the cameras have fixed intrinsic parameters such as the focal length, 
the principal point and various distortion parameters. By taking into account 
this fact, it is reasonable and wise to perform the internal camera calibration 
beforehand for individual camera. Once the multi-camera network has been set 
up again in a new environment, we only need to estimate the poses of different 

27 



2.1 Introduction 

cameras, i.e., their relative locations and orientations, and register them together 
in a world coordinate system. This is generally referred to as external camera 
calibration. The separation of the internal and external calibration benefits both 
the accuracy and efficiency of parameter estimation. Specifically, in the presence 
of noise, there wil l be less compensating effect between the internal and external 
parameters, leading to more accurate results of model fitting. Moreover, since 
fewer parameters are to be estimated, it wi l l in general have lower computational 
complexity, especially much faster convergence of non-linear optimization. A few 
works [107]; [20]； p8] have focused their efforts on the external camera calibra-
tion, where the intrinsic and distortion parameters are estimated beforehand and 
regarded as fixed. In [107], Zhang's method [156] is applied to estimate the po-
sitions and orientations of the model planes relative to the camera. Using this 
information, rigid transforms between two cameras are then determined through 
an arbitrarily chosen plane. Besides, a RANSAC (RANdom SAmple Consensus) 
[37] procedure is applied to remove possible outliers. A more elaborate approach 
is presented in [20], where virtual calibration object is used instead of the planar 
pattern. A structure from motion algorithm is employed to compute the rough 
pair-wise relationship between cameras. Global registration in a common coor-
dinate system is then performed using a triangulation scheme iteratively. The 
method proposed in [58] estimates the pair-wise relationship based on the epipo-
lar geometry. Translation and rotation between two cameras are recovered by 
decomposing the associated essential matrix. 

In this chapter, we present an efficient plane-based external calibration method 
to estimate the relative pose between two neighboring cameras. The technique is 
simple to use, only requiring the cameras to observe a planar pattern placed at a 
few different locations and orientations. Generality in the camera position is of-
fered, only reasonable overlap in F〇V (field of view) between neighboring cameras 
is required. Based on homography [52], three different pair-wise estimation al-
gorithms are proposed to recover the rotation and translation between cameras. 
They a.re named Two-step, Three-step and Non-linear. The three algorithms 
impose the orthogonal constraint of rotation in different levels and accordingly 
achieve different calibration accuracy. The validity of the proposed method is 
verified through experiments with both simulated and real data. We also show 
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that accurate pair-wise pose estimation can be reliably employed to register mul-
tiple cameras. In addition, a new evaluation metric of calibration accuracy is 
introduced. I t takes into account the impact of both the camera potentials and 
the stereo setup on the calibration results, specifically including the image res-
olution, the focal length, the scene depth and the triangulation. Such a metric 
is based on the deflection angle between the projection rays and called Relative 
Deflection Angle (RDA). I t is convenient to take the RDA measure since i t does 
not require any prior knowledge of the true 3D coordinates of control points. 
Moreover, compared wi th traditional metrics, RDA is much less sensitive to the 
aforementioned factors and as a consequence can provide fairer assessments on 
the accuracy of calibration results for different cameras and working conditions. 

This chapter is organized as follows. Section 2,2 presents the camera model 
and the basic equations from homography that constitute the foundation of our 
calibration method. Section 2.3 describes the details of the three pair-wise pose 
estimation algorithms. Section 2.4 introduces the proposed RDA metric and 
discusses its properties. Experimental results on synthetic data and real images 
are presented in Section 2.5 to demonstrate the proposed method. Section 2.6 
concludes this chapter. 

2.2 Basic Equations 
In this section, we briefly introduce the pinhole camera model and the two-view 
homography that provide the basis for our calibration method. 

2.2.1 Pinhole Camera Model 
Let M = [X, Y, Z Y represent the coordinates of any visible 3D point in the 
world coordinate system. Its projection onto the image plane is denoted by 
m 二 [u, 1；]'̂ . The homogeneous coordinates of M and m are represented by 
M — [X, Y, Z�1] and m = 1]. Based on the widely accepted pinhole camera 
model,the relationship between a 3D point M and its image projection m is given 
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by _ 
� � fu 1 

= K[R|t]M, wi th K = 0 jv Vo 

0 0 1 
( 2 . 1 ) 

where = indicates "equal up to scale". P is called the projection matrix. R and 
t are the rotation and translation that relate the world coordinate system to the 
camera coordinate system. K is the camera intrinsic matrix, wi th (uo,vq) the 
coordinates of the principal point, fu and f^ the scale factors in the image u and 
V axes, and 7 the parameter describing the skew of the two image axes. 

Common cameras usually have visible lens distortion, especially the radial 
components. Please refer to [148] for a detailed introduction of distortion model. 

2.2.2 Two-view Homography Induced by A Plane 
Suppose two cameras capture a planar pattern simultaneously as shown in Figure 
2.1. Let m i and m2 denote the projections of the same 3D point M on the plane 
TT onto the camera 1 and camera 2，respectively. Their homogeneous coordinates 
m i and m2 are related by a homography induced by the plane 

m2 = H m i (2.2) 

where H is the 3 x 3 homography matrix. 
To give an explicit expression of the homography H , let C I and C2 denote 

the coordinate systems of camera 1 and camera 2, respectively, and let K i , K2 be 
their intrinsic matrices. Here let R and t represent the rotation and translation 
from C I to C2 as shown in Figure 2.1. Without loss of generality, we choose C I as 

the world coordinate system. Thus the projection matrices for the two cameras 
are P i = K i [ I | 0 ] and P2 = K2[R|t ] . The world plane tt is defined by 

n j M + d^ = 0 (2.3) 

where n̂ r is the unit vector in the direction of the plane normal, and d^ is the 
distance from C l origin to the plane tt. 

Since m ! is the projection of M onto camera 1, we have n i i = s P i M = 
s K i [ I | 0 ] M = s K i M . The 3D point M should also satisfy the plane equation 
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Planar pattern 

R2t2 

Homography H 

Figure 2.1: Homography between two views. 

(2.3). This determines the unknown scale s = — njK^^mi/c^Tr- Substitude M 二 

K「 imi /s into m2 = PgM = K2[R|t]SS = K2(RM + t), we can deduce 

m2 - K2(RKi" imi + st) - K2(R 一 t . (2.4) 

Let n — xiTr/dTy denote the plane normal. According to (2.2) and (2.4), we 
have 

AH = K2(R - t • nT)K] (2.5) 

where A is an unknown arbitrary scalar. 

2.3 Pair-wise Pose Estimation 
We apply Zhang's method [156] to do the intrinsic calibration for each individual 
camera. Thus only the external calibration is necessary every time the cameras 
are moved and refocused to capture new 3D video. Planar pattern such as a 
checkerboard is widely used in calibration due to its flexibility and convenience. 
The main drawback of using the planar pattern lies in the fact that it is difficult 
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to make it visible to all cameras. However, we only use the planar pattern to 
estimate the relative relationship between two neighboring cameras. I t is practical 
to make the pattern visible to both cameras, because in most multi-view systems 
two neighboring cameras generally have sufficient common Field Of View (FOV). 
As for global registration, the transform from one camera to another can be 
easily computed by chaining those associated neighboring transforms together. 
I t is argued that the chaining procedure is prone to errors. However, accurate 
and stable pair-wise calibration can benefit the accuracy of transform chaining. 
This wi l l be demonstrated by the experiments presented in sub-section 2.5,3. 

An easy way to do the pair-wise (R, t ) estimation is to utilize the single cam-
era calibration results. Zhang's method [15(>] can also recover the positions and 
orientations of the model planes relative to the camera, such as (R i , t j ) and 
(R2,t2) in Figure 2.1, Using this information, (R, t ) between two cameras can 
be determined through an arbitrari ly chosen model plane. Ideally, (R, t ) between 
cameras should be invariant irrespective of the plane through which they are com-
puted. However in the presence of noise, the (R, t ) estimates computed through 
different planes actually differ from each other. Simply using these estimates may 
result in very unstable calibration results, since the accuracy of corner detection 
highly depends on the plane location and orientation. This wi l l be verified later 
in our simulations. 

Based on homography (2.5), we propose a robust pair-wise estimation method 
to recover the relative relationship between two cameras using multiple stereo 
images. First, homography H is estimated by point correspondences，and then 
follows the calculation of the unknown scale A and the plane normal n. Finally, 
(R, t ) between two cameras can be estimated by three different algorithms: Two-
step, Three-step and Non-linear method. 

2.3.1 Homography Estimation 
W i t h sufficient point correspondences, the homography matr ix H can be com-
puted based on (2.2). The algorithm described in [infj] is applied to estimate the 
homography. As shown in Figure 2,1, each image pair, one view from camera 1 
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and the other from camera 2, leads to a homography H . Suppose there are to-
tal ly P image pairs and then we can estimate P homographies H , (i = 1, 2 , . . . P) 
induced by different planes. 

2.3.2 Calculation of n and A 
The plane normal n also varies wi th the moving pattern, thus P different stereo 
views lead to P different normals n: ( i 二 1’ 2，…P). To compute each plane 
normal w i th respect to the C I coordinates system, Zhang's method [156] is first 
employed to estimate the plane position and orientation (R i , t i ) relative to C I , 
where the plane tt is now assumed on Z = 0 of the world coordinate system, as 
shown in Figure 2.2, 

Let us express R i by means of its column vectors R i = [R! R2 R3]. I t can be 
easily shown that the th i rd column vector R3 is a unit vector in the direction of Z 
axis of the world coordinate system, that is to say R3 = Also the translation 
t i is the origin of the world coordinate system w.r.t the C I coordinates system. 
Since R3 is orthogonal to the plane tt, the distance from C I origin to the plane 
can be computed by d̂ r — | t i | cosO^t — |R3|| t i | cos Oh = R j t i , where denotes 
the angle between R3 and t i . Therefore the plane normal n can be calculated by 
R3 and t i as 

n = = ns/injti) (2.6) 

The collineation matr ix ( R — t • n ^ ) in (2.5) has an important property that 

its median singular value is equal to one [J 57]. This can be employed to compute 

the unknown scalar A. Let us define G = AK2"^HKi . From (2.5)，we have 

G = A i q i H K i = R - t . nT (2.7) 

Let (cTi, (72,0-3) denote the singular values of matr ix K2 ^ H K i in descending order 
(cTi > (72 > 0"3 > 0). Since the collineation matr ix G = A K ^ ^ H K i has median 
singular value equal to one, we have 

AfJa = 1 (2.8) 

Note that matr ix K i , K〗and H are known, so we can compute A by (2.8) and 

then recover the matr ix G. 
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Figure 2.2: Geometry between the model plane and camera center. 

2.3.3 (R,t) Estimation 
I t is straightforward to derive from (2.7) a linear equation (2.9) to solve the 
rotation R and translation t. Here vec(X) denotes the vectorization of matrix 
X formed by stacking the columns of X into a single column vector, I3 and I9 
denote 3 x 3 and 9 x 9 identity matrices, respectively, and (g) denotes the kronecker 
product. 一 

-vec(R) -n (8)Ic =vec (G) (2.9) 

9x12 
12x1 

9x1 

As each model plane introduces a normal n, 
Gj , by stacking P equations we have 

homography H^ and thus a matrix 

- n i ( g ) 

-n尸(g)l3 、 

vec(R) 

12x1 

vec(G] 

vec(Gp； 

( 2 . 1 0 ) 

9Pxl2 9 P x l 

Because of noise in the data, the computed matrix R does not in general satisfy 
the orthogonal property of a rotation matrix. Thus the best orthogonal matrix R ' 
should be solved to approximate the original R using a method described in [1 厂)7]. 
However, the orthogonal approximation causes a severe problem here. The (R,t) 
solution of equation (2.10) is best in the least square sense. After orthogonal 
approximation, the obtained (R', t) no longer fits this equation well and may 
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result in erroneous calibration results. Therefore it is necessary to impose the 
orthogonal constraint R J R = I in the (R, t ) estimation procedure so that the 
matrix R is as close to orthogonal as possible, consequently less deviation wil l be 
caused by orthogonal approximation from R to R'. 

2.3.3.1 Two-Step Method with Implicit Orthogonal Constraint 

In this section, we first derive an implicit constraint imposed in vector t based on 
homography and the orthogonal property of matrix R. Then a Two-step method 
is proposed to estimate the pair-wise (R,t), where the implicit orthogonal con-
straint is imposed making the R solution closer to orthogonal. 

Implicit orthogonal constraint 

Following (2.7), we have 

R = G + t n 
gj + tinT 
芭2丁 + 細 T 
g3丁 + 亡 3nT 

where t = [ti 力2 力3]丁 and g j (i = 1,2,3) are the three row vectors of G. The 
three row vectors g^ + Un^ = 1，2，3) form an orthonormal basis of i.e., we 
have 

(g7 + + t .n) 二 1 (z, J G [1,2,3]; j ) 

Note that g ^ n 二 ！！丁呂̂ ( i = 1,2，3)，we then have 

g f g i + f^n^n + - 1 

[ g j g j + Utju'^n + Wgj + tjH^gt 

{2.'\l-a)xtj/ti-^(2.ll-h)xtJtj makes 

(a) 
(b) e [1,2,3 
(c) 

(2 .11 ) 

7(g； g 广 1) + 子(g: & — 1) + I n + f^n丁Sj + tjn ‘ g j - 0 

Together with (2.11-c), we can eliminate the terms involving n in (2.11) and derive 
the equation (2.12) with a single unknown quantity k^j — U/ t j . (2.12) is one of the 
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necessary conditions to guarantee the orthogonality of R. Also note that (2.12) 
no longer involves the normal n. As a consequence, less noise disturbance wil l be 
introduced for estimating the ratio of t elements. 

= - ( g j g . — 1) +�(g7gt — 1) {h3 e [1,2,3]; (2.12) 

Similarly, if we define n = [ni n<2 几3]丁 and G = [g^ g'2 g'3] with g'̂  (t — 1,2,3) 
the three column vectors of G, we wil l have R = [g、+ r i i t g'2 + n2t g、+ ngt. 
and can derive the equation (2,13), which is another implicit orthogonal constraint 
on matrix G and normal n. (2.13) could be employed to examine the input data 
Gj and n^ (z = 1 ,2 , . . . , P). Those severely violate this constraint should be 
rejected as outliers, making the estimation more robust to very noisy data. 

2g ' :g, - - 1 ) 4 - ^ ( g ' ^ g； — 1) e [1,2,3]; I ^ 3) (2.13) 

Tlj Til 

Two-s tep method 

The proposed Two-step method is based on the implicit orthogonal constraint 
derived above. At the first step, we gather P such equations as (2.12) corre-
sponding to G^ (z — 1, 2 , , . . , P) and compose simultaneous quadratic equations. 
Solving this problem by least square metric, we obtain the uniform ratio of the 
three elements of t vector t i : t2 ： ts = 1 : ^21 : &31. Thus the original 3-DOF 
(Degree of Freedom) t vector is reduced to a single scale s as 

hi 
hi 

(2.14) 

Based on (2.14), we then rewrite (2.9) as (2,15). At the second step, we 
solve the simultaneous linear equations generated by stacking P such equations 
as (2.15). Once s is estimated, vector t is readily computed by (2.14). 

The Two-step method imposes the implicit orthogonal constraint (2.12) and 
(2.13) in the estimation explicitly, while keeping the problem linear. (R,t) esti-
mated by this method not only conform to the homography geometry, but also 
satisfy the orthogonal constraint R ^ R 二 I much better. Still R is not perfectly 
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orthogonal and further orthogonal approximation is necessary. However, less de-
viation wil] be induced by the approximation, because R is much closer to its 
orthogonal approximation R'. 

3c(G) = vec(R) - N (g) 
- V ‘ 
9x1 

- 1 -

k21 S = I 9 - n ( g ) 

- 1 “ 

& 2 1 

. h i _ 

vec(R) 
s (2.15) 

9x10 
10x1 

2.3.3.2 Three-Step Method 

By good external calibration, we mean that (R,t) should not only conform to 
the homography geometry, but also satisfy the orthogonal constraint R ^ R — 
I. Though such a calibration result cannot be obtained completely by a linear 
method, i t is possible to improve the two-step method through several additional 
linear optimization steps to further impose the orthogonal constraint of rotation. 

As we know, in three dimensions a rotation can be defined by a single angle of 
rotation 0, and the direction of a unit vector v = [x, y, , about which to rotate. 
According to Euler's rotation theorem, the 3 x 3 rotation matrix R has one real 
eigenvalue equal to unity, and the unit vector v is the corresponding eigenvector, 
i.e., 

Rv = V (2.16) 

I t follows from (2.5) and (2.16) that 

Gv = V 丁 

n • V (2,17) 

If we know the matrix Gj, n^ (z = 1 ,2 , . , . , P) and t, vector v can be estimated by 
solving the linear equation (2.18), which is the accumulation of P such equations 
as (2.17), 

" G i - I + t Hi 
V = 0 (2.18) 

G p - I + t - n j 

According to Eckart-Young-Mirsky (EYM) theorem, the solution to (2.18), in 
matrix form as Bv = 0, is the right singular vector of B associated with its 
smallest singular value. 
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To recover the rotation matrix, we further estimate the parameter 0 based on 
the rotation representation (2.19), where v indicates the 3 x 3 skew symmetric 
matrix corresponding to v 

R = vv' + vv ) COS 0 -h V sin 0 (2.19) 

In order to guarantee a linear optimization, we estimate two parameters cos Q and 
sin 9 instead of the single 9 and the constraint cos^ 0 + sin^ 6* = 1 is not imposed 
in the estimation. Experimental results show that the computed cos 6 and sin 没 

basically satisfy this constraint. 

A t this step, we may retain the original result of vector t, or we can refine i t 
together with cos 9 and sin 0 while sti l l keeping the optimization problem a linear 
one. In order to achieve robust results, we choose the latter scheme to estimate 
c o s s i n 9 and vector t together by linear equation (2.20), which is derived from 
(2.7) and (2,19) 

vec(I — vyT) vec(v) — n 0 ] 

By stacking P such equations, we have 

cos 6 
sin 6* 

t 
vec(G — vv (2.20) 

vec(I — vvT) vec(v) 一n! 0 1 cos 0 
sin 6* 一 

vec(Gi — "VV 丁） 

(2.21) 
vec(I — vvT) vec(v) —np I t vec(Gp — v v ” 

/ 

9Px5 5x1 9Px l 

Based on the above description, the Three-step method is outlined as follows: 

[ .Use Two-step method to compute the init ial estimation of t 

Estimate vector v based on (2.18) wi th t fixed 

Estimate parameters cos 0, sin 0 and refine t together based on (2.21) wi th 
V fixed. W i t h cos 6*，sin 9 and v already computed, the rotation matrix R 
can be recovered by (2.19). 
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2.3.3.3 Non-linear Method 

If we expect the estimated matrix R to be orthogonal without further orthogo-
nal approximation, we should impose the constraint R^R = I explicitly in the 
maximum likelihood estimation and i t turns out to be a constrained non-linear 
minimization problem 

min V ||G, - R + t subject to R^R = I (2.22) 
i 

，where the optimum is in the sense of the smallest sum of Frobenius norms. 
We may use the Lagrange multiplier to solve the constrained problem, but a, 

better choice is to utilize the angle-axis representation of rotation. As mentioned 
before, a rotation matrix in three dimensions can be represented by a unit vector 
V = [x, y, and an angle 0 as 

cos(9 + (1 — cos(9);r2 (1 — cosO)xy — {sm9)z (1 - cos B)xz ~ (sin Q)y 
R(v,0) (1 - cos^)xj/+ (sin0)2； cos^ + (1 - c o s ( 1 - (sin6')x 

(1 - cos0)a:2； - {sm9)y (1 - cos6)yz + (sin9)x cos 0 + (1 — cos^)^^ 
(2.23). 

We can substitute this compact representation to the minimization term of (2,22), 
and solve the non-linear problem with the Levenberg-Marquardt algorithm as 
implemented in Minpack [97]. The required initial guess of (R,t) can be obtained 
by the Two-step or Three-Step method described before. Experimental results 
show that matrix R estimated by the non-linear method is already orthogonal. 
Hence it avoids the problem caused by orthogonal approximation. 

2.4 Accuracy Measure Based on Relative De-
flection Angle 

Measurement based on 3D reconstruction error [140] is widely used to evaluate 
the calibration accuracy. However, this metric needs the prior knowledge of the 
true 3D positions of test points which is usually unavailable in common multi-view 
capturing systems, especially for those composed of off-the-shelf cameras. On the 
other hand, many factors actually can contribute to a small reconstruction error 
besides the accurate calibration. For example, accurate detection of the control 
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points can lead to good measures by this metric, but i t can be achieved by; (1) 
using lens wi th larger focal length so that the array of pixels focus on a smaller 
area of the scene; (2) reducing the distance between the scene and the cameras 
to take a close look; (3) directly increasing the image resolution. Besides, one 
can always increase the baseline between two cameras to reduce the triangulation 
uncertainty, which wil l make the reconstruction more accurate. In conclusion, 
this measurement depends very much on the actual system setup, such as camera 
focal length, baseline length, scene depth and image resolution. A good evaluation 
metric should be insensitive to these factors so as to give fair assessments to the 
calibration results of different camera systems under different working conditions. 
In [32], this metric is modified as the depth error from triangulation divided by 
the actual depth for the purpose of reducing the impact of scene depth. The 
factor of camera potential is further taken into account in the NSCE (Normalized 
Stereo Calibration Error) criterion [M8] so that the focal length and resolution 
of the digital camera wil l not benefit the measurement. While all these metrics 
require the true point position to compute the reconstruction error, the wide 
baseline stereo setup can still result in good measures as long as the triangulation 
is involved. To address these problems, we propose to measure the calibration 
accuracy based on the relative deflection angle (RDA). I t is defined as 

RDA = (2.24) 

where 9err denotes the deflection angle caused by calibration inaccuracy and 6sya 
denotes the deflection angle due to system error. In a stereo setup, one camera 
is chosen as the reference, e.g., the camera 2 is chosen as the reference camera in 
Figure 2.3. Both O r̂r and Ogys are computed for the reference camera. 

The error angle 没err is defined as the included angle Z Q C 2 M in Figure 2.3, 
where C2 represents the pinhole of camera 2, i.e., the origin of the C2 coordi-
nate system; Q denotes the 3D control point and M denotes its 2D projection 
on the image plane of camera 2. By ideal projection, the three points should 
be collinear. In practice, a deflection angle Z Q C 2 M wi l l exist due to the cal-
ibration error. The projection ray C2Q is recovered by chaining the transform 
( R i , t i ) from Q to C i (the origin of C I coordinate system) and the transform 
(R，t) from C I to C2. The two transforms are estimated by the external camera 
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Rl ,t! 

Figure 2.3: Definition of Figure 2.4： Definition of 

calibration. Before computing the backward projection ray C2IVI, un-distortion 
should first be performed according to the distortion parameters estimated. The 
position of M in the image plane is then determined by corner detection, and the 
3D coordinate of M with respect to C2 can be easily figured out as we have the 
intrinsic parameters. We can see that the computation of Z Q C 2 M involves the 
intrinsic matrix, the distortion parameters and the relative transform between 
the two cameras. Therefore the deflection angle O r̂r integrates the errors from 
both internal and external calibration. The mean value E[9err] over all the con-
trol points can be reasonably utilized to reveal the inaccuracy of stereo camera 
calibration. 

The digitization noise of camera may cause some inherent uncertainty of the 
projection [148] which is modeled by the system deflection angle dsys in this 
thesis. Consider a pixel rectangle of size du x d^ as shown in Figure 2.4, uniform 
digitization noise in the rectangle has a standard deviation sd = + 
This digitization error corresponds to the uncertainty of the projection of a 3D 
point onto the image plane, which can be measured as the angle of the deflected 
projection rays, as shown in Figure 2.4. Let / be the camera focal length and 
assume that the focal length has a much larger scale than the pixel size. The 
system deflection angle is defined to be 

- t a n ( 沒 • ^ 赴 = + (2.25) 

where fu = f /du and fy = f /dy. We can see that Osys is associated with the 
image resolution and the camera focal length. 
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The proposed RDA metric (2.24) is much less sensitive to the digital image 
resolution and the camera focal length because these two factors have similar 
effect on both the numerator and denominator, For example, if the cameras 
wi th high resolution are used, the digitization uncertainty Osys and the resulting 
inherent error of corner detection wi l l be reduced in a similar way. Accurate 
corner detection means less data noise，thus the calibration error Oerr wi l l also 
decrease accordingly, keeping the RDA measurement unchanged. Thus the RDA 
metric sti l l provides a fair and meaningful calibration evaluation regardless of 
the changing camera parameters. Moreover, both the scene depth and the stereo 
triangulation wi l l not affect the two rays C2Q and C 2 M , and of course the camera 
characteristics. As a result, these factors should have l i t t le impact on the RDA 
metric as well. Note that taking a close look does not reduce the uncertainty of 
corner detection on the image plane measured in Euclidean space, i.e., wi l l not 
benefit the deflection angle Oerr- Above analysis is based on the ideal case that 
the digitization uncertainty is the only concern for corner detection. However, in 
practice there are many other factors that affect the corner detection, including 
the detection algorithm itself. The actual performance of RDA metric wi l l be 
discussed in sub-section 2.5.2. 

2.5 Experimental Results 

2.5.1 Simulation on (R,t) Estimation 
This simulation is to evaluate the performance of different (R,t) estimation algo-
rithms, especially their sensitivity to data noise. We consider the scenario that 
two cameras capture a planar pattern wi th 9 x 12 50mm square corners. The 
cameras are assumed to be distortion-free and their intrinsic matrices are speci-
fied to be the same wi th two of our digital cameras which are internally calibrated 
by Zhang's method. Total 30 different plane poses are used for calibration, where 
the 30 different translations and rotations from the plane to the first camera 
are manually specified. Then the second camera is translated and rotated by t 二 

[—1010, —110, 160]t and R = [0.9397 -0.0179 0.3416; 0 0.9986 0.0523; -0.3420 — 
0.0492 0.9384] wi th respect to the first camera such that the two cameras are 
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Figure 2.5. Relative estimation error ||R — R||/||R||. 

widely separated and can simultaneously capture the plane. The translation t 
and rotation R are referred to as the ground t ruth for later evaluation. We then 
add zero mean uncorrelated Gaussian noise to the image projections of the con-
trol points (square corners on the plane) from a standard deviation of 0.1 pixels 
up to 0.9 pixels in step of 0.1. The relative estimation errors ||t — t||/||t|| and 
||R — R||/ | |R|| are used to measure the calibration accuracy, where (R, t) are 
the estimates and (R,t) are the ground truth. The results of 50 simulations are 
summarized in Figure 2.5 and Figure 2.6, where the curves show the mean values 
of errors and the length of vertical line segments indicates the standard deviation 
of error at each noise level. The vertical line segments are horizontally shifted for 
clear display. Non-linear methods initialized by two-step and three-step methods 
are indicated by NL-2-Step and NL-3-Step, respectively. 

The results of Zhang's method [156] are also presented for comparison. Note 
that Zhang's method uses a non-linear minimization to estimate the intrinsic 
parameters of a camera together with the rotations and translations of different 
plane poses relative to the camera. Here, the external calibration is to recover 
the fixed rotation and translation (R,t) between two cameras rather than the 
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Figure 2.6: Relative estimation error ||t — t||/||t|| 

plane poses. To this end, we can compute a (R,t) estimate for each plane pose 
by simply chaining the rotation and translation of the plane relative to camera 1 
and those relative to camera 2, In our simulation, we have tried all 30 different 
plane poses independently and the results shown in Figure 2.5 and 2.6 present 
their overall performance. In comparison, the algorithms proposed in this thesis 
compute a single estimate of (R,t) by efficiently combining all the plane poses. 

Figure 2.5 and Figure 2.6 clearly show that our methods, including two-step, 
three-step and non-linear methods, perform much better than simple chaining of 
the plane poses obtained by Zhang's method, in terms of both the accuracy and 
the stability. In addition, the results also demonstrate that combining multiple 
stereo images in an efficient way does benefit the external camera calibration. By 
imposing the implicit orthogonal constraint, two-step method can already pro-
vide a calibration much better than Zhang's chaining. The performance is further 
improved by the three-step method and it should be emphasized that such an im-
provement is significant for highly noisy data. As expected, the non-linear method 
initialized by three-step achieves the best calibration results, closely followed by 
the non-linear method initialized by two-step and the three-step method. We can 
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see that, compared with two-step, the three-step method is a better initialization 
for non-linear method, and its performance is already very close to that after the 
non-linear optimization. If computation is a concern, the three-step method wil l 
be a nice approximation of the non-linear method since i t only involves solving a 
few linear equations. 

2.5.2 Test on RDA Metric 
The proposed RDA metric is tested on different camera setups using real data. 
Two cameras are placed focusing on the checkerboard pattern with 9 x 12 50mm 
square corners. In the first experiment, the baseline of the two cameras is kept 
I m fixed. We change the distance of the pattern from the cameras as well as the 
pattern orientations. The distance between the pattern and the baseline midpoint 
is selected as roughly 2m, 2.5m, 3m and 3.5m. In the second experiment, the 
camera setup is varied in terms of the baseline length, which is roughly set to 
0.6m, 0.8m, I m and 1.2m. Accordingly, the distance between the pattern and the 
baseline midpoint is slightly adjusted such that the distances from the pattern 
to the two cameras are the same and kept unchanged. The pattern is placed in 
different orientations to obtain multiple stereo images. In the last experiment, we 
change the camera focal length while keeping the baseline length and the viewing 
distance fixed as I m and 2m, respectively. The focal length of the reference 
camera is adjusted to 50mm, 45mm, 40mm and 35mm. For all three experiments, 
the non-linear method initialized by three-step is applied to estimate the external 
parameters. 

For comparison, we apply another error metric to measure the calibration 
accuracy, in addition to RDA. Let {x^ } and {x^ } be the two set of original control 
points detected in the first and second views, respectively. We then employ the 
optimal triangulation method [51] to compute two set of image points {x^ } and 
{x^ } that are consistent wi th the estimated fundamental matrix and closest to 
the original control points. The mean square distance MSD defined in (2.26) wi l l 
be used as the second error metric to measure the calibration results, where N is 
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Viewing RDA Change ratio MSD Change ratio 
distance (m) of RDA of MSD 

2.0 0.9173 - 0.0150 ~ 

2,5 0.9862 0.0751 0.0267 0.7800 
3.0 1.1438 0.1598 0.0435 0.6292 
3.5 1.4170 0.2389 0.0860 0.9770 

Table 2.1: Accuracy measures for different viewing distances 

Baseline RDA Change ratio MSD Change ratio 
length (m) of RDA of MSD 

1.2 0,9150 - 0.0131 -

1.0 0.9173 0.0025 0.0150 0.1450 
0.8 0.9395 0,0242 0.0181 0.2093 
0.6 0.9531 0.0145 0.0228 0.2547 

Table 2.2: Accuracy measures for different baseline lengths 

Focal RDA Change ratio MSD Change ratio 
length (m) of RDA of MSD 

50 0.9173 - 0.0150 -

45 0.9643 0.0512 0.0194 0.2933 
40 1.0332 0.0715 0.0240 0.2371 
35 1.0824 0.0476 0.0277 0.1541 

Table 2.3: Accuracy measures for different focal lengths 
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(a) The control units computer, switch 
synchronizer and harddisk array 

(b) Five Prosilica GC650C cameras 

Figure 2.7: Our multiview system, 

the total number of control points used in calibration. 

MSD 二 

1 
2N 

N 

Xi, — Xi + Xi X. (2.26) 

Experimental results on different camera setups are summarized in Table 2.1, 
Table 2.2 and Table 2.3. To see the change of the RDA measures, we compute 
the change ratio as (RDA^-RDA^„ i ) /RDAi_ i , where RDA^ and RDAi—i indicate 
two successive RDA measures when the camera setup is changed. Similarly we 
compute the change ratio of MSD. From Table 2.2 and Table 2.3, we can observe 
that the RDA metric presents good invariance to the variation of baseline length 
and focal length, whereas the MSD measures benefit a lot from small digitization 
uncertainty (large focal length) and accurate triangulation (wide baseline). In 
case of different viewing distances in Table 2,1, though there is a clear increasing 
trend of RDA as the viewing distance increases, the RDA measures are still 
relatively stable compared with the MSD results. 

2.5.3 Multi-camera Calibration 
In this experiment, the proposed pair-wise (R,t) estimation methods are applied 
to calibrate a multi-camera system, and the calibration results are then evaluated 
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0 4 

⑷ （b) 

Figure 2.8: Different setups of multi-camera system. 

by the proposed RDA metric. For comparison, simple chaining of Zhang's results 
[丄56] and Svoboda's multi-camera calibration method [133] are applied as well. 

Real images are captured by our multiview system composed by five Prosil-
ica GC650C cameras, as shown in Figure 2.7. The intrinsic parameters for the 
five cameras are estimated individually beforehand using Zhang's method. Our 
task now is to recover the external relationship among different cameras. To this 
end, A checkerboard pattern wi th 9 x 12 50mm square corners is used for provid-
ing control points. Undistortion is performed on the captured images before the 
detection of control points. Two different system setups are tested as sketched 
in Figure 2.8. In the first case 2.8(a), the five cameras are placed focusing on 
the same scene. Tested calibration methods include three-step method (3-Step), 
non-linear method initialized by three-step (NL-3-Step), chaining of Zhang's re-
sult (Zhang) and Svoboda's multi-camera calibration method (Svoboda). In the 
second case 2.8(b), the five cameras are placed looking at different scenes, only two 
adjacent cameras have sufficient common FOV. In this case, Svoboda's method is 
inapplicable, hence we only compare the results of 3-Step, NL-3-Step and Zhang. 
In both cases, the cameras are indexed from 0 to 4 sequentially, thus there are 
totally four neighboring pairs: (0-1), (1-2), (2-3) and (3-4). For each pair, 30 
different plane poses are captured for calibration. 

As we have neither the ground t ruth of the external parameters nor those 
of the control points w.r.t the camera coordinate system, we apply the proposed 
RDA metric to measure the calibration errors. To investigate the error introduced 
by the chaining of pair-wise (R,t) estimation, we emphasize the calibration results 
of camera pairs: (0-2), (0-3) and (0-4). For methods of 3-Step, NL-3-Step and 
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Q 
Qi 

(a) (b) 

Figure 2.9; RDA results of different multi-camera calibration methods. 

Zhang, (R,t) between (0-2), (0-3) and (0-4) pairs are computed by chaining the 
(R,t) results across the neighboring pairs (0-1), (1-2)，(2-3) and (3-4). 

The results of different calibration methods for camera setup 2.8(a) and 2.8(b) 
are shown in Figure 2.9. Two important observations should be noted. First, we 
can see from both Figure 2.9(a) and 2.9(b) that 3-Step and NL-3-Step achieve 
much better RDA measures than Zhang for (0-2)，(0-3) and (0-4) camera pairs, 
which demonstrates that accurate pair-wise (R,t) estimation does help suppress 
the error accumulation of transform chaining. Second, as shown in Figure 2.9(a), 
when few transform chainings are performed, 3-Step and NL-3-Step methods out-
perform Svoboda's method in terms of calibration accuracy. However, we can see 
a trend that the calibration errors of 3-Step and NL-3-Step wi l l exceed that of 
Svoboda when more chainings are involved. The reason is that Svoboda's method 
does not have the problem of error accumulation in transform chaining. In addi-
tion, when the cameras do not focus on the same scene points, e.g., setup 2.8(b), 
tradit ional methods such as Svoboda's are not applicable, while our method stil l 
works. This shows the flexibil ity and universality of pair-wise chaining. 

2.6 Conclusion 
In this chapter, we present a convenient and efficient method to calibrate a typ-
ical multi-camera system. Relative relationship between neighboring cameras is 
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recovered by the proposed pair-wise pose estimation method. Three different 
algorithms are proposed based on homography. By imposing the implicit or-
thogonal constraint, Two-Step method can already obtain accurate calibration 
results. The performance can be further improved by the Three-step and non-
linear methods. As the orthogonal constraint is fully imposed in the non-linear 
method, i t achieves the best calibration results in terms of robustness to data 
noise, as demonstrated by the simulation results. Our Experiments also show 
that multiple cameras can be reliably registered by chaining the accurate pair-
wise poses estimated by the Three-Step and Non-linear methods. Such a way is 
more flexible and universal than the traditional multi-camera calibration meth-
ods, where all the cameras are required to capture the same control points. In 
case that there is no ground t ruth of the coordinates of 3D control points relative 
to the cameras, which is usually the case for a common multi-view capturing 
system, the RDA metric proposed in this thesis can be employed to provide a fair 
and meaningful evaluation of the calibration results for different cameras under 
different working conditions. 
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Chapter 3 

Scale and Affine Invariant Fan 
Features 

3.1 Introduction 
Local image features have proven to be very successful in wide baseline matching 
and object recognition (155] as well as many other applications. Their robustness 
to partial visibil ity allows for successful matching even in severe cluttered scenes. 
Their good discriminative property provides high confidence in recognition. Ba-
sically the feature-based schemes consist of two steps. First, the keypoints and 
their associated support regions are extracted from the image. Together they are 
referred to as features. Second, the descriptors are composed to summarize the 
features' appearance such as the shape and texture. For extensive investigation 
and comparison on feature detectors and descriptors, one can refer to [95]； [93 . 
The major problem of designing local features is how to obtain the invariance 
under different viewing conditions. 

There is a considerable body of previous research on scale invariant features. 
In the early eighties, Crowley et al. [22]; [23] proposed to search for local extrema. 
in the 3D scale-space representation. A local 3D extremum, (x, y, a), in the scale 
space indicates a local feature with the key point located on (x, y) and the region 
extent (window size) determined by the scale parameter a. In [77], Lindeberg 
proposed a systematic methodology for automatic scale selection. The basic idea 
is to select the characteristic scales, for which a given function attains extrema 
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over scales. The scale is characteristic in the sense that i t responds to some salient 
signal change in the image and consequently can be repeatedly detected under 
different viewing conditions. Lindeberg proved that the scale-normalized Gaus-
sian derivatives are good choices to compute the multi-scale function. Specifically, 
he suggested to use the scale-normalized Laplacian-of-Gaussian (LoG) to detect 
blob-like features. Later, Lowe [79] proposed the Difference of Gaussian (DoG) 
as the approximation of scale-normalized LoG to accelerate the computation of 
scale-space representation. In detailed experimental comparisons, Mikolajczyk 
91] found that the scale-normalized LoG produces the most stable features com-

pared to a range of other Gaussian derivative functions, such as squared gradient, 
Hessian and Harris corner function. Actually, a number of feature detectors [<)1], 
[92], [80] have adopted the scale-normalized LoG to select the characteristic scales, 
Other methods like MSER (Maximally Stable Extreme Regions) [87], EBR (Edge 
Based Region) and IBR (Intensity Based Region) [111] use different approaches to 
achieve scale invariance, yet the similar idea is using the salient intensity changes 
to indicate the characteristic local structures. Kadir et al. [02] proposed a differ-
ent scale selection method, where local complexity is used instead as a measure 
of saliency and the salient scale is selected at the entropy extremum of the local 
descriptors. 

To achieve rotation invariance, the common method is to describe the fea-
tures using some rotationally invariant image measures, such as the generalized 
moments [9(5], the local jets [65] and RIFT [70]. In Lowe's SIFT [79], the free 
rotation is determined by estimating the dominant gradient orientation. 

As an important step towards viewpoint invariance, affine invariance is highly 
desired for local features. Actually affine transformation is sufficient to locally 
model the image distortion arising from viewpoint changes, provided that (1) 
small surface patches can be thought of as being comprised of coplanar points; 
(2) perspective effect can be ignored at a local scale. In the mid nineties, Lin-
deberg et al. [78] developed a method to detect blob-like affine features in the 
context of shape from texture. I t explores the properties of the second moment 
matr ix and iteratively estimates the affine transformation of local patterns. This 
shape estimation method was later used for matching and recognition by Baum-
berg [9]. He used a multi-scale Harris detector to extract the keypoints and then 
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Figure 3,1: What kind of extra keypoints can be matched by using Fan features? 

employed the iterative procedure proposed by Lindeberg to adapt the shape of 
the point neighborhood to the local image structure. Mikolajczyk and Schimid 
9'2] went a step further by iteratively modifying the location, scale and the neigh-

borhood of a keypoint, such that both the keypoint and its associated support 
region are extracted in an affine invariant way. Apart from the second moment 
matrix, the covariance matrix (or region moments) is also widely used for affine 
invariant image normalization [120], as is employed by [87]; [100]; [41] to cope 
wi th geometric deformation introduced by viewpoint change. 

However, the basic assumption for affine invariant features [95] does not hold 
for the keypoints located on or near the object boundaries. Conventional meth-
ods such as SIFT [79], Harris & Hessian Affine [92] and MSER [S7] probably fail 
to match these keypoints because the point neighborhood cannot be modeled by 
a single planar surface due to depth discontinuity. Figure 3.1 gives an example of 
these keypoints such as the 3D corners and junctions (red circle), the keypoints 
along the boundaries (golden square) and the keypoints close to the boundaries 
(green dots). Note that, for those “green dots", conventional methods may adapt 
their support regions to small or highly deformed ones that do not cross the sur-
face boundaries. However, small regions are usually not distinctive enough for 
reliable matching, and the highly deformed regions basically have low repeata-
bi l i ty of detection under significant viewpoint changes. Therefore, it is difficult 
for conventional methods to match these “ green dots". In [127], SIFT has been 
improved by incorporating the object boundary information to guide anisotropic 
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smoothing. The "green dots" can now be saved because the background clutter 

can be eliminated providing the accurate object boundaries. However, in practice 

i t is nontr ivial to obtain the object boundaries, especially from a single image. 

This is why in [127] stereo disparity map is employed, which, however, cannot be 

obtained as the prior information in applications such as wide baseline matching. 

The basic idea to address the problem of surface discontinuity is straightfor-

ward. That is to divide the keypoint neighborhood into multiple sub-regions, 

each of which can now be reasonably assumed to represent a planar surface or 

just background. The sub-regions are described separately and all attached to the 

keypoint as independent signatures. As long as one of them exists in both views 

and can be matched successfully, the correspondence of the keypoints can be es-

tablished accordingly. This is i l lustrated in Figure 3.1, where the two upper-left 

box corners in image (a) and (b) can be matched according to the corresponding 

upper box surfaces bounded by the red lines and the blue arcs. Similar ideas are 

shared by a few works, including 3D singularity [144] [145], EBR [14i], Edge-

based feature [9i] and Edge descriptor [90]. The major differences lie in (1) how 

to select the anchor points wi th high repeatability; (2) how to divide the point 

neighborhood into sub-regions that represent meaningful surfaces; (3) how to 

make the sub-regions scale and affine invariant so that they can be consistently 

extracted in different views. 

Regarding (1)，3D singularity [144]; [145] and EBR [141] only aim at the well 

formed edge corners and junctions like the "red circles" in Figure 3.1，which are 

salient as argued in [1 11] [145] but are rare in natural images. On the contrary, 

edge features [91]; [9ti] focus on extracting the keypoints along the boundaries 

such as the "golden squares" in Figure 3.1. Edge-based feature [94] selects edge 

points as keypoints as long as the LoG filter detects characteristic scales. As a 

result, the features may be duplicated and not distinctive enough. Edge descriptor 

90] chooses anchor points along the edge where the scale envelopes attain their 

extrema. The extrema are salient and stable under viewpoint changes, but the 

computation of scale envelope highly relies on the continuity of edges which is 

difficult to guarantee in different images, and hence may hinder the features' 

repeatability. In comparison, we propose a unified framework to extract and 

match both the edge corners and junctions and other salient points along the 
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edges. The keypoints are selected from the edges that are efficiently and carefully 
detected to favor accurate surface boundaries. The repeatability of keypoints is 
guaranteed by a multi-scale selection scheme where the edges are not involved. 

Regarding (2) and (3)，the method of region extraction in [144]; [145] total ly 
relies on the complete and straight edges that are usually difficult to detect in 
natural images. The EBR feature [1̂ 11] is more practically designed by incorpo-
rating both edges and textures to detect scale and affine invariant regions. Yet 
the continuity of edges is sti l l required for feature extraction, As a consequence, 
the matched EBR features are found to be quite limited. On the other hand, 
edge features [94]; [90] extract only scale invariant half-regions. In [LM]，a sin-
gle LoG scale is selected for both the two half-regions, which is not reasonable 
because the two regions are supposed to represent different surfaces wi th inde-
pendent extents (or one of them is background). The scale selection is improved 
in [90], where the two sides divided by the edge can have different LoG scales. 
However, continuous edges are required again to guide the scale selection. In this 
chapter, we propose to divide the point neighborhood into multiple regular fan 
sub-regions, namely Fan features, by a method of edge association which does 
not rely on the continuity and completeness of edges. To achieve scale invariance 
for each Fan feature, we propose the Fan Laplacian of Gaussian (FLOG) filter to 
select its characteristic scales. Support for FLOG is given in terms of theoretical 
investigation and real image experiments. To cope w i th geometric deformation, 
affine normalization is further applied to the Fan features, where the affine shape 
is diagnosed from the mirror-predicted surface patch. This in general gives us a 
better shape estimation result than the tradit ional way. Note that both the scale 
selection and the affine normalization are based on textures, rather than edges. 

Finally, the scale and affine invariant Fan features are described by the Fan-
SIFT, an extension of the famous SIFT descriptor. Fan grids are carefully de-
signed to replace the square grids used in SIFT. Strong gradients arising from the 
region boundaries are efficiently suppressed by a boundary mask. In addition, 
local Gaussian weighting is introduced to each fan grid, to reduce the boundary 
effect of strong gradients shifting across the neighboring grids. 

The remaining parts of this chapter are organized as follows. Section 3.2 de-
scribes the FLOG based scale selection method. Section 3.3 presents the method 
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to extract scale and affine invariant Fan features. Section 3.4 introduces the 
Fan-SIFT descriptor and Section 3.5 discusses the matching strategy based on 
Fan features. The experimental results are given in Section 3.6 and Section 3.7 
concludes the chapter. 

3.2 Automatic Scale Selection By FLOG 
In order to achieve scale invariance for fan sub-regions, a novel automatic scale 
selection method is proposed based on FLOG. In this section, we first give the 
definition of the FLOG kernel and prove its transformation property under uni-
form scaling, which is emphasized in [77] as the fundamental requirement on a 
scale selection mechanism. We then describe the FLOG based scale selection 
method and demonstrate its feasibility using some simple image patterns. 

3.2.1 Scaling Property of FLOG Response 
The standard LoG kernel in the polar coordinate system is defined in (3.1), where 
(J is the standard deviation of Gaussian. 

2 — o 2 

崎 小 。 ） （3,1) 

The FLOG kernel can be interpreted as the standard LoG normalized by a factor 
of and bounded within a fan domain D = { ( r , 6)\r > 0, 9i < 6 < 62}- Formally 
it is defined in (3.2). 

- 〜 咖 ) = [ 2 ， ” = (3.2) 

Figure 3.2 shows an example of the FLOG kernel. We can see that FLOG 
preserves the isotropy of LoG within the fan domain. When the fan domain 
expands to the circle domain, the FLOG kernel becomes exactly the same with 
the scale-normalized LoG [77]. In this sense, FLOG is an extension of the scale-
normalized LoG. Next, we investigate the behavior of the integration of FLOG 
and input signal under uniform scaling. 
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Figure 3.2: FLOG kernel wi th included angle equal to 45°. 

Consider two 2D signals f and f , where f is obtained by uniformly scaling 
the spatial variables of /，i.e., 

(3.3) 

W vT = 4 工 yV 

Accordingly, in the polar coordinate system, it holds that 

r{T\e') = f{r,e), r' = sr, 0'= 0 

(3.4) 

(3.5) 

Suppose that the scale parameters are transformed by the same factor in the two 
domains, i.e., 

a' = sa (3.6) 

According to (3.1) and (3.2), we then have 

s 
(3.7) 
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By equations (3.5)，(3.6) and (3.7), we can derive that 

y^/(工'，?/) • FLOGeMx\y';a')dx'dy' 

二 广 r . F L O G e 仇 ( t ' & r 
JOx 

广 fOO 

Joi Jo 

j j fi^^y) • FLOG0,e^{x,y;a)dxdy 

= s 

,where 

D = {{r,e)\r >0, ei<e <02}, D' = {{r',0')\r' >0, 9'< O^} 

I t is rewritten as 

j J / � x ' , y') • FLOGo.e. a') 办‘ = j J fix, y) • FLOGe 仇{x, y-a) dx dy 
D 丨 D (3.8) 

This means that the integration of FLOG and the input signal, called FLOG 
response, is equal in the two domains, provided that the spatial positions and the 

scale parameters are related according to (3.4) and (3.6). Let's look at the FLOG 

response as a function of the scale parameter a. Based on above derivation, if the 

image pattern is rescaled by a constant scaling factor s, then the scale at which 

the F L O G response assumes its extrema wi l l be mult ipl ied by the same factor. 

Here, to guarantee the scale invariance, cr̂  is introduced to normalize the FLOG 

kernel, which is consistent wi th the scale-normalized LoG [7' 

3.2.2 FLOG-based Scale Selection 
As suggested in (3.8), the FLOG response can commute w i th the size change. 

This gives us a solution to detect the characteristic scales for a given sub-region 

attached to a keypoint. First, according to the fan shape of the sub-region, 

we choose a FLOG kernel w i th two appropriate directions 9i and Q2- We then 

compute the multi-scale FLOG response centered on the keypoint, i.e., the corner 

of the fan sub-region. Finally, the extrema of FLOG response are detected and 
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the corresponding scale parameters are chosen as the characteristic scales of the 
fan sub-region. Ideally, if the image pattern within the sub-region undergoes 
uniform scaling, the characteristic scales selected by this method before and after 
the scaling wil l indicate consistent image contents. 

Intuitively, the characteristic scales can be repeatedly detected because they 
respond to salient signal changes. To see how the extrema of FLOG response 
capture the salient signal changes, let us consider a simple fan step signal: 

. . f 1 0 < r < ro, < 0 < 
— \ 0 otherwise 

The extrema of its FLOG response can be found as follows: 

基 广 厂 A M ) • 凡 O G W r ’ 代 < 7 ) r d r d “ 0 冷 二 r。/\/^ (3.9) 

We can see that the scale parameter a that makes the FLOG response attain its 
extremum is related to the distance from the step signal change, i.e., r。，by a 
factor of 1/ \ /2. 

In Figure 3.3, the scale selection method is tested using some fan image pat-
terns. For comparison, both the FLOG kernel and the scale-normalized LoG ker-
nel are applied. Suppose that we are only concerned wi th the extent of the fan 
patterns. Thus we compute the multi-scale responses using the two kernels cen-
tered in the fan corner. The scale parameter is set as cr = {k = 1,2,..., 20). 
The scales detected by LoG and FLOG are represented by the red circles and 
green arcs, wi th their radius equal to the detected a. The two directions for 
FLOG kernel are specified manually, as indicated by the two blue lines. 

As we can see in Figure 3.3(a) and 3.3(d), when no clutter exists around the 
fan corner, both two kernels can correctly reflect the extents of the fan patterns. 
Specifically, the scales detected by the two kernels are exactly the same, roughly 
l / \ / 2 of the fan radius. However, when other patterns coexist, LoG attempts to 
find some uniform scales for the whole point neighborhood, leading to undesired 
or inaccurate scales as shown in Figure 3.3(b) and 3.3(e). In comparison, FLOG 
only concerns the given sub-region. Signal changes elsewhere wi l l never affect the 
scale selection for the target sub-region. Therefore identical scales are repeatedly 
detected despite the nearby clutters, as we compare the Figure 3.3(a) and 3.3(b) 
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LoG 

FLOG 

(a) (b) (d) 

Figure 3.3: Automatic scale selection for fan image patterns. The first row shows 
the scales detected by the scale-normalized LoG {red circle) and the FLOG (green 
arc). The second and the third rows present the corresponding multi-scale re-
sponses computed using the scale-normalized LoG kernel and the FLOG kernel, 
respectively. The horizontal axis is the parameter k {a = The vertical 
axis is the integration response. 

and Figure 3.3(d) and 3.3(e). In Figure 3.3(c) and 3.3(f), considerable errors of 
direction estimation and keypoint localization are introduced. As we can see, 
these errors have l i tt le influence on the extents detected by FLOG, except for a 
new scale arising in Figure 3.3(f) because an additional signal change is included 
in the fan sub-region. However, if there is no salient signal change within the 
region, the FLOG response may not present any extremum and could be more 
sensitive to errors and noise, which is true for LoG as well. 

More experiments are conducted on real images. To test the proposed scale 
selection method under uniform scaling, we first took a picture of a box wi th 
clutter background as shown in Figure 3.4(a), and another three pictures of the 
same box but wi th clean background at different scales, i.e., the 2nd, 3rd and 4th 
pictures wi th scale times 1.2, 1.7 and 2.5 compared to the 1st picture, respectively. 
The fourth picture is given in 3.4(b). I t is downscaled for the purpose of display. 
We then apply both LoG and FLOG to the four pictures to detect the scales for 
the six box corners indicated by A ~ F as shown in Figure 3.4. The keypoints and 
the directions for FLOG are specified manually. To evaluate the performance, we 
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(a) Scales detected in the 1st picture with clutter background 

• * jf f . I 

(b) Scales detected m the 4th picture with clean background (downscaled 
for display) 

Figure 3 4 Detect the scales of corners using FLOG (green) and LoG(red) 
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3.2 Automatic Scale Selection By FLOG 

True Scale Change Ratio (y^joi = 1 . 2 cTa/cTi = 1.7 0"4/(71 = 2 . 5 

Corner 
LoG F L O G LoG FLOG LoG FLOG 

A 1.44 1.2 1.728 1.728 2.986 2.488 
B 0.695 1.0 1.0 1.439 1.441 2.073 
C 1.2 1.2 1.728 1.728 2.488 2.488 
D 1.44 1.2 2.074 1.728 3.583 2.488 
E 1.728 1.2 2.488 1.439 3.583 2.488 
F 1.44 1.0 2.074 1.439 2.986 2.073 

Average Error 0.292 0.067 0.363 0.144 0.705 0.138 

Table 3.1: Scale change ratio detected by LoG and FLOG 

compute the ratio of the scale detected in the 2nd, 3rd and 4th picture to the 

scale detected in the 1st picture, i.e., ratio = ai/ai {i = 2，3，4), where ai is the 

scale detected in the zth picture. The ground t ru th of the three ratios should be 

1.2, 1.7 and 2.5，respectively. In case of multiple scales detected for a corner, we 

choose the best one to compute the scale change ratio, i.e., choose the scale that 

leads to the ratio closest to the true ratio. 

The results are summarized in Table 3.1. As we can see, FLOG performs 

much better than LoG in the sense of recovering the true scale changes between 

the pictures. The detailed results of the scales selected by the two kernels are 

shown in Figure 3.4. The red circles and green arcs indicate the scales detected 

by LoG and FLOG, respectively. Basically, the scales detected by FLOG are 

consistent in the two images, while most of the scales detected by LoG capture 

different image contents due to background clutter or the presence of mult iple 

surfaces, 

In Figure 3.5, we investigate the sensitivity of FLOG to the directions. For 

each corner in the first picture, three direction combinations are tested: the origi-

nal combination of accurate direction (没i，6*2) and two combinations of inaccurate 

directions {Oi — 10。，6>i + 10。）and (6>i + 10。，— 10。）. The detected scales corre-

sponding to the three combinations are indicated by green, red and blue arcs in 

Figure 3.5, respectively. We can see that in most cases the same scales are de-

tected for the corners regardless of the change of directions, except for some small 
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H H I 
•‘ 'nalffSHBi 

Figure 3.5: Scales of corners detected by FLOG with different combinations of 
fan directions. 

scales arising from weak signal changes, e.g., the corner F. Of course, different 
scales may be detected when the image content bounded by the two directions 
varies a lot, e.g., the corner E. Basically the proposed method has good tolerance 
to the estimation error of directions. In practice, i t is applicable to estimate the 
fan directions for FLOG according to meaningful image edges that represent the 
object contours. 

3.3 Scale and Affine Invariant Fan Feature 
In this section, we describe how to extract from images the Fan features that are 
invariant to scale and affine change. Basically i t consists of four steps' (1) key-
point detection； (2) edge association; (3) scale selection; (4) affine normalization. 
In the following sub-sections, the details of each step are described. 

3.3.1 Keypoint Detection 
As the Fan features are specially designed for the keypoints located on surface 
boundaries, a natural choice wil l be to extract the keypoints from image bound-
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iV(e) 二 lie 

At each scale a^, we select a subset Sk of the salient edge points as the candidate 

keypoints by performing the non-maximum suppression as 

S k ^ { e e E \ H(e，afc) > Ve G iV(e)} (3,11) 

Note that the keypoints that represent the same local structure but are detected at 

different scales may shift a l i t t le from each other. We believe that the more scales 

a local structure survives, the more stable i t is. We then track each candidate 

key point across scales, t ry ing to find its affinities at different scales and group 
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aries [85]； [82]. However, for the sake of accurate localization and computational 

efficiency, we use a canny edge detector [18] wi th two improvements. First, in 

order to guarantee the accurate localization of edges and keypoints, the intensity 

gradients are computed at a fine scale. However, many clutters wi l l arise from, 

detailed textures at the fine scale. Therefore, the texture suppression technique 

[17] is employed before doing non-maximum suppression. Second, after hysteresis 

thresholding, there are usually many short and weak edge fragments. An edge 

cleaning procedure is then introduced to eliminate these fragments, as we believe 

that strong and long edges are more likely to represent object boundaries. The 

cleaning algorithm starts at each edge endpoint and tracks the edge fragment 

unt i l arriving at another endpoint or a junction. The score of the tracked edge 

fragment is measured as the sum of the gradient magnitudes of all the associated 

edge points. Fragments w i th score less than a threshold are eliminated from the 

edge map. To achieve better results, the edge cleaning procedure is repeated a 

few times, w i th the threshold increased a l i t t le bit at each time. Typically 2 or 3 

iterations are sufficient. 

Keypoints should present good repeatability under various imaging conditions. 

Here, we propose a multi-scale selection scheme to select salient keypoints from 

the edge points. Let E denotes the set of edge points detected in the image. Let 

H{e, cTfc) denotes the Harris measure [50] of an edge point e G E' at the scale 

(7k = erg一 1 (/c 二 1,2，..., i ^ ) . The spatial neighbor of e is defined as 
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3.3 Scale and Affine Invariant Fan Feature 

Figure 3.6: Results of edge detection and key point extraction for two wide base-
line images. 

them together as a single representative key point. Specifically, for a key point 

Pfc G Sk detected at scale its affinity pfc+i at the next scale is defined as 

Pfc+i 二 a r g | | x — pkh subject to ||x - pkh < D2 (3.12) 

I f pk+i exists, i t wi l l be removed from the set Sk+i，and we then t ry to find Pk+2 
for Pfc+i, Otherwise, the tracking is stopped and we obtain a group of keypoints 
{Pm’Pm+i, • •.，Pm+n}- TMs group of keypoints wi l l be combined into a single 
representative p^^, i.e., the one detected at the finest scale, and its saliency is 
measured by n + 1, i.e., the number of consecutive scales it survives. The tracking 
wi l l be performed for each candidate keypoint p G (k = 1,2,..., K) unt i l all 
the keypoints have been removed from the candidate sets. Finally, we keep those 
representatives whose saliency is not smaller than T. In our experiments, the 
above parameters are empirically set to ao = 1.4, K — = 3. The distance 
measure D i and D2 are efficiently implemented by 7 x 7 and 3 x 3 windows, 
respectively. Figure 3,6 shows an example of the edges and the keypoints detected 
in two wide baseline images. We can see the high repeatability of the keypoints. 
Note that a few keypoints may not have associated edges or characteristic scales 
(see sub-section 3.3.2 and 3.3.3) and hence are removed later, 
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3.3.2 Edge Association 
For each keypoint, nearby edge fragments are associated to guide its neighborhood 
division. Inspired by [82], we first approximate each edge fragment by one or 
several straight line segments, as represented by the dotted lines in Figure 3.7. 
Then the correlation score between the keypoint p and a line segment wi thin the 
local window W is calculated by (3.13), where c?(p, Ik) is the Euclidean distance 
of the keypoint p from the line segment ‘ The parameter 5 is used to control the 
distance tolerance and is set to a small number such that the score drops fast as 
the distance increases. A Gaussian weighting (7(x — p; a) is introduced centered 
on p to emphasize the edge points near the keypoint. 

Scorek = Y . —P;a).exp(—(i(p，W752) (3.13) 

Line segments wi th high scores are chosen to associate wi th the keypoint. In 
practice, as the t ru ly related line segments usually have salient scores, a sim-
ple thresholding is sufficient. Finally, a line emitt ing from the keypoint is f i t ted 
to each associated line segment, indicating a division direction. Accordingly, 
multiple sub-regions are constructed around the keypoint. An example of edge 
association is shown in Figure 3.7. The three green dotted lines are the line seg-
ments associated to the yellow keypoint. Accordingly, the keypoint neighborhood 
is divided into three sub-regions indicated by the red lines. 

In our experiments of wide baseline matching, we choose to discard those sub-
regions whose included angles are larger than 200°, because most of them capture 
either the background or multiple physical surfaces. Background sub-regions 
probably have no correspondences since the content of background could change 
a lot in wide baseline images. As for the regions comprised of multiple surfaces, 
we cannot use a single affine transform to model its geometric deformation. By 
removing these regions, there wi l l be less clutter in the final feature matching. 

3.3.3 Scale Selection 
The characteristic scales for each sub-region are automatically selected by FLOG 
as described in Section 3.2. As more than one scale can be detected for a sub-
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3.3 Scale and Affine Invariant Fan Feature 

Figure 3.7: Edge association. The yellow dot represents the keypoint. By edge 
association, the three line segments (green dotted lines) are associated to the 
keypoint. The estimated division directions are indicated by the three red solid 
lines through the yellow dot. 

region, multiple scale invariant Fan features with different extents and from dif-
ferent sub-regions can be extracted for a single keypoint. For discrete implemen-
tation of the FLOG kernel, we face the problem of finite sampling approximation. 
In our experiments, the mask size of FLOG is set heuristically to 1 + ceil{3a). 
To restore the zero mean property for the discrete FLOG mask, all the positive 
coefficients are uniformly scaled such that their sum equals to the absolute sum 
of all the negative coefficients. Of course, this procedure wi l l slightly distort the 
mask shape. By experiments we find that it usually leads to more distinctive ex-
trema of FLOG response, but has l i t t le influence on the scales where the extrema 
are detected. 

Figure 3,8 gives some examples of the scale invariant Fan features detected 
in wide baseline image pairs. The scales selected by LoG are also displayed for 
comparison. We can observe that the Fan features together wi th their FLOG 
scales can be detected consistently between widely separated views, whereas the 
scales selected by LoG are largely affected by nearby clutters. As suggested in 
(3,9), Figure 3.3 and Figure 3.8, in general the region extent detected by FLOG 
is shrunk compared to the location of salient signal change. To make the Fan 
features more distinctive, the detected sub-regions should be further enlarged to 
include the signal changes. However, large regions may lose the local properties 
such as the local planarity and the robustness to occlusion. In our experiments, 
the extents of all the sub-regions are enlarged by three times. 
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Figure 3.8: Scale invariant Fan features detected in real images taken from quite 
different viewpoints. The red lines are the division directions estimated by edge 
association. The scales selected by FLOG and LoG are indicated by the green 
arcs and the blue circles, respectively. 

3.3.4 Affine Normalization 
In addition to the scale change, fan sub-regions may suffer geometric deformation 
when observed from different viewpoints. Under the assumption that each sub-
region represents a locally planar surface, such a deformation can be modeled by 
an affine transform and hence can be addressed by affine normalization. This wi l l 
make the scale invariant Fan features further possess affine invariance. 

The second moment matrix [78] ； [M]； [02] can be used to measure the affine 
deformation of an isotropic structure. This method works well for a circular 
support region, but is not suitable for a fan sub-region. Indeed, other sub-regions 
attached to the keypoint should never be involved in estimating the affine shape 
of the concerned sub-region, because they are supposed to represent different 
physical surfaces. 

On the other hand, the covariance matrix [120]; [100]; [87] has also been 
successfully employed to diagnose the affine shape. For an image region S wi th 
arbitrary shape, the local image moments M ” , the region centroid Xc and the 
covariance matrix C can be computed by (3.14), (3,15) and (3.16), respectively, 
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where I{x, y) denotes the image intensity at (x, y). 

Mi, -JL y) dx dy (3,14) 

X, ：无，切丁 = [Mio/Moo, Moi/Moo (3.15) 

C = M20/M00 —护 M i l / M o o - x - y 
Mn/Moo -x-y M02/M00 — t 

(3.16) 

Let Aa and X^ be the largest and smallest eigenvalues of the covariance matrix C, 
respectively. Let Va and Vh be the two corresponding eigenvectors. A n important 
property of C is that its v^ and Vf, indicate the serai-major and semi-minor 
axes of the elliptical (affine) shape of S, and A^ and A^ are proportional to their 
squared lengths. I f A^ Af,, which is usually the case in practice, we can use the 
affine transformation given in (3.17) to project the anisotropic image pattern to 
an isotropic one. Here, A denotes the affine transform matrix, x and x are the 
image coordinates before and after the affine transformation, respectively, s is a 
scaling factor. In this chapter, i t is decided to normalize sX: "。to 1，such that 
the image pattern is only expanded in the direction of V5. 

X =• A(x — Xc A； 
-1/2 

0 

0 
A「"2 V, X - X. (3.17) 

Note that the affine normalization is performed centered on the estimated 
region centroid x。that is definitely not the position of the keypoint to which 
the fan sub-region is attached. As shown in Figure 3.9(a), directly computing the 
covariance matr ix on the fan sub-region wi l l give us a diagnosis of the affine defor-
mation centered on the region centroid, i.e., the red dots in Figure 3.9(a). Affine 
normalization based on this shape estimation, as indicated by the green ellipses 
in Figure 3.9(a), cannot accurately compensate the true deformation centered on 
the yellow colored keypoint. Figure 3.9(b) shows the considerable differences of 
the normalized sub-regions detected in the two images h and I2 w i th significant 
viewpoint change. Here the fan directions are represented by the red and blue 
lines, and the region extent determined by the FLOG scale is indicated by the 
green arcs. Figure 3.9(c) shows the corresponding affine shapes in the original 
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(b) (c) 

Figure 
tected 

3,9: Traditional affine 
in two images / i and 

normalization applied to the fan sub-regions de-
I2. (a) Original image patches for affine shape 

diagnosis; (b) Normalized image patches; (c) Corresponding affine shapes in the 
original images 

images, where we can also observe that the sub-regions are inconsistently detected 
m the two images. 

Here we introduce a simple and efficient method to address this problem. First 
recall that the covariance matrix relies on the anisotropy of the region pattern 
to estimate the affine shape (similar principle for the second moment matrix). 
Suppose that a sub-region represents an incomplete planar surface attached to a 
keypoint, in comparison wi th a circular feature whose support region is a complete 
surface around the keypoint. To estimate the affine shape of a sub-region attached 
to a keypoint, we propose to predict the image pattern of the missing surface part 
by mirroring the known sub-region with the keypoint as the center, as shown 
m Figure 3.10(a). For a mirror-predicted image patch, its region centroid is 
guaranteed to locate on the keypoint, and hence the affine shape diagnosed by 
the covariance matrix, as indicated by the green ellipses in Figure 3.10(a), can give 
us a better estimation of the local geometric deformation around the keypoint. 
The improvement in affine normalization can be clearly observed as we compare 
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(c) 

Figure 3 10: Improved affine normalization applied to the fan sub-regions detected 
in two images I ! and h - (a) Mirror-predicted image patches for affine shape 
diagnosis, (b) Normalized image patches; (c) Corresponding affine shapes in the 
original images 

Figure 3.9(b) and (c) w i th Figure 3.10(b) and (c), where the appearances of the 
two sub-regions normalized by using the mirror prediction are much more similar 
than using the tradit ional way. 

In addition, there are a few sub-regions whose fan angles are larger than 180°. 
For these fan regions, we clip them into half circles before performing the mirror-
prediction, so as to guarantee the good localization of region centroid. That is 
to say, the clipped parts wi l l not be used for diagnosing the local affine shape. 
Recall that the maximal fan angle is restricted to 200°. The regions clipped out 
are tr iv ia l compared to the remaining parts. As a consequence，the clipping wi l l 
not affect much the affine shape estimation. 

An iterative estimation method similar to [92] can be employed to further im-
prove the scale and affine normalization of Fan features. To save computations, 
however, we adopt a single scale selection plus affine normalization, and we found 
that it works well in the experiments. To conclude the whole section, the pro-
posed method can efficiently extract consistent sub-regions from two images wi th 
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significant viewpoint change, and normalize the regions to present quite similar 
appearance, which is essential for feature description and matching. 

3.4 Fan-SIFT Descriptor 
The well known SIFT descriptor [80] is an invariant and stable representation of 
region appearance by a weighted histogram of gradient locations and orientations. 
I t performs best in the context of matching and recognition [93]. The Fan SIFT 
descriptor proposed in this section is an extension of the SIFT descriptor for 
describing the fan sub-regions. The technical details are given below. 

First, the intensity gradients are computed in the normalized image patch 
generated by the method described in Section 3.3, as shown in Figure 3.11. The 
smoothing scale Og for computing the gradients is chosen as Ug = kas\ /d/2t i , 
where Os is the FLOG scale, Q is the fan angle of the normalized sub-region, and 
the control parameter k is set to 1/3 in our experiments, so as to preserve the fine 
texture details for high discrimination. Following [80], the gradients are weighted 
by a global Gaussian function centered on the key point to provide the robustness 
to occlusion to some extent. 

As can be observed in Figure 3.11(a), there are always strong gradients around 
the sub-region boundaries. These gradients actually depict the region shape 
rather than its inner texture. To suppress these boundary gradients, we introduce 
a boundary mask defined in (3.18), where x is the sample position and dis('x) is 
the minimal distance from x to the two boundaries. The threshold t<i is set to 
1 + Zdg by taking into account the diffusion of Gaussian smoothing for computing 
gradients. The threshold e\ is simply set to €2/2. Unlike the one in [127], our 
suppression is only performed on samples very close to the region boundaries, 
such that the inner texture can be well preserved for the purpose of discrimina-
tion, Figure 3,11(b) shows the relevant gradients after the boundary suppression. 
Gradients outside the sub-regions are eliminated as well. 

Maskx 
0 
1 

cp(如(X) 
exp(cfes(e2—ei)-

dis{x) < ei 
dis{x) > €2 
,otherwise 

(3.18) 
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Figure 3.11: Computation of Fan-SIFT descriptor, (a) Gradients computed in the 
normalized image patch, (b) Relevant gradients after global Gaussian weighting 
and boundary suppression. Gradients outside the sub-regions are also eliminated, 
(c) Fan-SIFT descriptors (normalized histogram with 72 bins). 

Next, fan grids are introduced to distribute the gradients into 9 discrete lo-
cations, as shown in Figure 3.12. The width of the fan region is 3 times of the 
FLOG scale, i.e., w = Sov The radius of the three fan rings are set to a = w/3, 
b 二 2wand c = w, and the fan angles for each ring are equally divided, such 
that all the fan grids have the same areas\ i.e., all the discrete locations have the 
same number of gradient samples. To achieve rotationally invariant description, 
a coordinate system is aligned to the direction from the fan vertex to the region 
centroid, which is unique once the keypoint and the fan region are determined. 
In this way, we avoid estimating the dominant gradient orientation as the SIFT 
does. Gradient orientations are then computed in this coordinate frame and are 
quantized into 8 bins. 

Matching gradients while allowing for shift is the key idea that leads to the 
success of the SIFT descriptor [93]. To further improve the tolerance of gradient 
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Figure 3.12; Design of fan grids for Fan-SIFT descriptor 

shift, a local Gaussian weighting is introduced to each individual fan grid centered 
on its centroid. The scale of the local Gaussians is determined as ai = ^as \JdI2t:、 

such that the area of the fan grid Sf is equal to the area of a circle wi th radius 
of 2(71. The local Gaussian weightings can suppress the gradients near the grid 
boundaries and consequently reduce the influence of the strong gradients shifting 
across the neighboring grids to the descriptor. 

Finally a histogram of gradient locations and orientations is buil t in a way 
similar to [80]. Note that for each gradient sample, its contribution to the his-
togram is weighted by its gradient magnitude, the boundary mask, the global and 
the local Gaussian weightings. Based on the histogram, a vector w i th 9 x 8 = 72 
dimensions is composed as the Fan-SIFT descriptor. The descriptor is further 
normalized into a unit vector to compensate for affine changes in i l lumination. 
Figure 3.11 illustrates the computation of Fan-SIFT descriptors for the two Fan 
features in different images. As we can see in Figure 3.11(c), the two Fan-SIFT 
descriptors can be reliably matched. 

3.5 Matching based on Fan Features 
The similarity of two Fan features is measured by the Euclidean distance between 
their descriptors. The nearest neighbor distance ratio [80] ； [93] is employed to 
match the descriptors. Specifically, two descriptors and Vb are matched if 

— v ^ l l / l l v ^ — Veil < t, where the descriptors yq and v ^ are the first and 
second nearest neighbor to v^ . The threshold t is set to 0.8 in our experiments. 

To obtain the tentative correspondences of key points based on the matching 
of Fan features, we introduce the following strategy. Two keypoints p i and p2 are 
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2.5 Experimental Results 

matched as long as one of the Fan features attached to p i can be matched to one 
of those attached to p2. This is based on our assumption that each fan sub-region 
represents a local physical surface attached to the keypoint. As a result, any one 
of them can be used as the signature of the keypoint. 

To automatically reject false matches, we apply a global and a semi-local 
outlier filter. The global one is the epipolar test [52] using RANSAC [37]. Matches 
that violate the estimated epipolar geometry wil l be removed. The semi-local 
filter is based on the consensus of neighboring local affine transforms. Please 
refer to Section 4.3 for more details. This affine consistency filter can be applied 
to any affine invariant features such as Affine Hessian & Harris [92], MSER [8 
EBR k IBR [J 11] and the proposed Fan feature. 

3.6 Experimental Results 
To evaluate our method, we compare the proposed Fan feature wi th Harris Affine, 
Hessian Affine [92]； [95] and EBR [141], all of which have been efficiently imple-
mented^ and are publicly available. Different features basically capture different 
image structures. The Harris and Hessian features detect corner-like and blob-
like structures within object surfaces [93]. Both EBR features and Fan features 
are extracted from edges. EBR arises from well-formed edge junctions, while Fan 
feature aims at both edge junctions and the salient points along edges. Through 
the following experiments, we show that not only does the Fan feature possess 
good invariance property that is comparable to the state-of-the-art features [9-")], 
but also i t can successfully match image structures near surface discontinuities, 
and hence contributes to the variety of the bag of features. 

3.6.1 Repeatability under Scale, Viewpoint and Lighting 
Change 

In this sub-section, we follow the standard test [95] to evaluate the repeatability 
and accuracy of Fan features under scale, viewpoint and lighting changes. The 

^http://www,robots.ox ac uk/~vgg/research/affine/ 
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(a) Graffiti sequence 

(b) Boat sequence 
I「》<?»» 

(c) Leuven sequence 

Figure 3.13: Standard test images. 

Graffiti, Boat and Leuven sequences are shown in Figure 3.13, and the test re-
sults for the three sequences are shown in Figure 3.14, Figure 3.15 and Figure 
3.16, respectively. The image pairs in these sequences can be related by a single 
homography. Thus we can measure the accuracy of two corresponding features 
by the overlap of their elliptical regions which are mapped onto the same image 
by the known homography. The support region of a Fan feature is deemed as 
a complete ellipse in this test. Following [95], the region size is normalized to a 
radius of 30 pixels prior to computing the overlap measure, and two features are 
considered as a correspondence if the overlap error is smaller than 40%. The re-
peatability score is computed as the ratio between the number of correspondences 
and the smaller of the number of features extracted in a pair of images 

Figure 3.14(a) shows that for the Graffit i scene, the Fan feature has better 
repeatability than Harris Affine and EBR under viewpoint changes. Though 
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Scale changes 

(a) Repeatability score 

• Hams—Affme 
‘Hessian-Affme 

Scale changes 

(b) Number of correspondences 

Figure 3.15: Test of scale (+ rotation) in variance for Boat sequence. 
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Figure 3.14; Test of viewpoint invariance for Graffit i sequence. 
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2.5 Experimental Results 

Hessian Affine performs the best for small and median viewpoint angles, Fan 

feature exceeds i t in the case of large viewpoint changes. The test result for scale 

invaxiance in Figure 3.15(a) is slightly different. The repeatability of Fan feature 

falls below Harris Affine for small scale change, yet sti l l better than EBR. And the 

gap between Hessian Affine and Fan feature becomes larger for small and median 

scale changes. Similar results can be observed in Figure 3.15(a) for linear l ighting 

changing. We can conclude that the Fan feature has comparable repeatability to 

the state-of-the-art feature detectors. On the other hand, the invariance of the 

feature under the studied transformation is reflected in the slope of the curves, 

i.e., how much does a given curve degrade wi th increasing transformations. In 

this sense, the Fan feature has outstanding invariance to scale, viewpoint and 

l ighting changes compared w i th the other features. 

Figure 3.14(b), Figure 3.15(b) and Figure 3.16(b) indicate that the correspon-

dences of Fan features are much fewer than those found by the other features. 

This is because the Fan features are essentially extracted in a smaller number 

due to the strict selection through several steps (See Section 3.3). But we note 

that i t st i l l contributes a, lot to the match quantity in case of significant image 

changing. In addition, like all edge-based features, Fan feature performs worse 

for purely textured scenes such as the Wal l and Bark sequences [95]. For this 

kind of scenes, Fan feature is therefore not recommended. 

3.6.2 Scale, Viewpoint and Background Invariance 
Images used in the standard test [95] are mostly of planar scenes w i th no back-

ground change or clutter. Experiments presented in this sub-section wi l l further 

take into account the background variation around the surface discontinuity, in 

addition to the scale and viewpoint changes. Figure 3.17 shows the test images、 

The first group (SO〜S4) is used to test the scale invariance. At tempt is made to 

match SO—SI, S0-S2, SO—S3 and S0-S4. The scale changes of the four image pairs 

are 1/1.2& (k = 1,2,3,4) successively. The second group (V0~V4) is used to test 

the viewpoint invariance. We t ry to match the image pairs of VO—VI，V0-V2, 

V0 -V3 and VO—V4，where the viewpoint changes are approximately 15, 30, 45 

^ All images are with resolution of 300 x 200. 
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35 4 45 
Decreasing light 

35 4 45 

Decreasing tight 

(a) Repeatability score (b) Number of correspondences 

Figure 3 16: Test of lighting in variance for Leuven sequence. 

Figure 3.17: Test images wi th different scales and viewing angles 
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Number of matches (+ correct — false) 

+ Harris Affine 
a — Hams Affine 

+ Hessian Affine 
O — Hessian Affine 

+ Fan 
A — Fan 
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Number of matches (+ correct — false) 

o 

Harris Affine 
Harris Affine 
Hessian Affine 
Hessian Affine 
Fan 
Fan 

臾-’� � - - r -
15 3 0 4 B 

Viewpoint change (degree) 

(a) scale & background invanance (b) viewpoint & background invanance 

Figure 3 18- Performance of different features on invariance test. 

and 60 degree. A l l the image pairs have quite different backgrounds, so as to test 
the background invariance in the meantime. Note that the 3D box in the test 
images provides sufficient surface textures to raise Harris and Hessian features 
Meanwhile i t is well structured for extracting edge-based features like EBR and 
Fan feature. 

As the image pairs can no longer be related by simple homographies, we 
now focus on the performance of actual feature matching based on the feature 
descriptors. Through our experiments, the standard SIFT descriptor is used to 
describe the Harris Affine, Hessian Affine and EBR, while the Fan feature uses 
the Fan-SIFT descriptor instead The similarity measure based on Euclidean 
distance and the strategy of nearest neighbor distance ratio (t—0.8) are adopted 
to init ial ly match these features. We then apply the semi-local filter (Section 4 3) 
to reject false matches. 

Test results are presented in Figure 3.18, where the solid marks indicate the 
number of correct matches and the hollow ones indicate the false matches As 
EBR generates few matches for small scale and viewpoint changes and totally fails 
in case of large changes, it is not plotted in Figure 3.18. From the results we can 
see that when there is only slight change in scale or viewpoint, Harris and Hessian 
Affine produce more correct matches than Fan feature This again indicates that 
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2.5 Experimental Results 

Fan feature may contribute less to the match quantity in case of small image 
changes. However, when these changes become more significant, Fan feature 
tends to preserve more correct matches than Harris and Hessian Affine, which 
also suggests that the Fan feature has better invariance under scale, viewpoint 
and background changes. 

In Figure 3.19, some typical matching results are shown for visual comparison, 
where the key points are represented by the red dots and their associated support 
regions are represented by the green ellipses. False matches are indicated by red 
ellipses instead. Note that the support region of Fan feature is only a fan part 
of the ellipse which can be distinguished by the clear image edges. As we can 
see in Figure 3.19(a), (b) and (c), the key points extracted by Harris and Hessian 
Affine are quite different from those by Fan feature, while EBR find few matches 
as shown in Figure 3.19(d). Hessian Affine generally extracts image blobs. Harris 
Affine detects image corners, but has l i t t le chance to match the corners on or near 
the object boundaries, because their support regions probably contain different 
backgrounds. Note that for a keypoint near the object boundary, Harris and 
Hessian Affine may adapt its support region to a small or highly deformed one 
to avoid crossing the surface boundary. However, such features are usually less 
distinctive or unstable under scale or viewpoint change. In comparison, Fan 
features are specially designed to save the keypoints on or near surface boundaries, 
As shown in Figure 3.19(c), most keypoints matched by Fan fea-tures are located 
on the box boundaries, including the 3D box corners. Since the keypoints are 
extracted from edges, some of them may arise from salient surface textures. In this 
case, even when the keypoints are close to the surface boundaries, they can sti l l 
be matched by Fan features provided that one of the sub-regions is distinctive 
enough and does not cross the surface boundary. Similar observations can be 
found as well in the image matching results presented in the next sub-section. 
In conclusion, the Fan feature is complementary to the classical circular features 
such as SIFT [80], Harris Affine and Hessian Affine [92]. 
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(a) S0-S2 by Hessian Affine 

RP 

(b) S0-S2 by Hams Affine 

rfj i f、 

(c) S0-S2 by Fan feature 

iHa 

(d) SO-S4 by Fan feature 

Figure 3 19 Selected matching results from the test on scale k background in-
variance 
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、* # * 

* ^ • —•"̂ ilygiT.Wiiw Ml. ijrf g'a* 

(a) Fan feature (correct/false = 31/4) 

Figure 3 20 Test on 
lack of texture 

(b) Harris & 

Church 

Hessian Affine (correct/false = 20 /3 ) 

(300 X 450) viewpoint change + scale change + 
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2.5 Experimental Results 

(a) EBR (correct/false = 8/4) 

Figure 3.20: Test on Church (300 x 450): viewpoint change + scale change + 
lack of texture (continue) 

3.6.3 Wide Baseline Image Matching 
More matching examples are presented to demonstrate the ut i l i ty and effective-
ness of Fan feature for matching structured scenes wi th significant scale, viewpoint 
(pose) and background changes between images. The image contents vary from 
man-made objects such as buildings and pencil bags, to natural creatures like 
birds and butterflies, and most of them have annoying background clutters. 

The matching results are visually shown in Figures 3.20, 3.21, 3,22 and 3.23, 
where the image resolution, the number of correct and false matches and the 
major difficulties in matching the images are annotated as well. The results of 
Fan feature are compared with EBR and Harris & Hessian Affine which is an 
efficient combination of both Harris Affine and Hessian AfRne^. EBR fails for the 
image pairs in Figure 3.21 and Figure 3.22, and hence is not displayed there. As 
we can see, the Fan feature consistently outperforms the other features in terms 

[http / / w w w robots ox ac uk/~vgg/research/affine/ 
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(b) Harris & Hessian Affine (correct/false = 9 /0) 

Figure 3 21 Test on Butterfly (400 x 300) pose change + background clutter + 
homogeneous texture 

of the number of correct matches I t is necessary to point out that besides the 
strong image changes, the test objects do not possess many distinctive textures, 
which result in only a small number of correspondences Since the textures at 
small scales are not distinctive enough, the support regions need to be enlarged to 
increase the discriminating power Large Harris and Hessian features, however, 
are very likely to cover surface discontinuities and as a consequence cannot be 
matched in case of changing viewpoints or backgrounds In comparison, there 
IS less risk of crossing surface discontinuity by matching large sub-regions This 
IS also why a few Fan features survive in Figure 3 23(a) and (b), while Hams 
and Hessian Affine fail to pass the semi-local filter In this sense, Fan feature is 
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(b) Harris & Hessian Affine (correct/false 二 11/2) 

Figure 3.22: Test on Yoga (600 x 450): significant viewpoint change (about 75。） 

+ scale change + background clutter + lack of texture 

superior in matching the weakly textured surfaces under changing viewpoints or 
backgrounds. 

Another important observation is that the matched regions found by Fan 
feature is complementary to those found by other features, which is true even for 
EBR in Figure 3.20. Key points on surface boundaries are successfully matched 
by Fan features despite the changing viewpoints and the background clutter. In 
comparison, most matched Harris and Hessian features are far away from the 
surface discontinuities. Their support regions are restricted within the object 
surfaces, unless the covered backgrounds have l i t t le change between the images. 
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(d) Pencil Bag (450 x 300) viewpoint change + scale change + 
deformation 

clutter + non rigid 

(b) Toucan (300 x 200) pose change + background clutter + lack of texture 

Figure 3 23 Correspondences established by Fan features, where Harris & Hes-
sian Affine fails 

Feature + Descriptor Run time (sec) Number of features 
Fan feature + Fan-SIFT 1 95 354 

Harris Affine + SIFT 5 48 1374 
Hessian Affine + SIFT 3 62 926 

Table 3 2 Computation time of feature extraction and description for the leftmost 
image in Figure 3 20 
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3.6.4 Computational Complexity 
The extraction and description of Fan features involve a number of steps. The 
edge detection is performed at a single scale, and is slightly slower than the 
standard canny edge detector due to additional texture suppression and edge 
cleaning. The Harris measure is computed at 5 scales, but only for the edge 
points, so is the non—maximum suppression (NMS). Keypoint tracking is only for 
the edge points that survive NMS. Basically the keypoint selection is very fast 
and the number of detected keypoints is typically much smaller than Harris and 
Hessian Affine, For each keypoint, we then perform edge association (Sub-regions 
larger than 200 degree are discarded), scale selection (12 scales are explored), 
affine normalization and Fan-SIFT description. There is no iteration of scale and 
shape adaptation as is used in Harris and Hessian Affine, 

Table 3.2 gives the computation time measured on a Core Duo T2400 l,83GHz 
Windows laptop, for the leftmost (300 x 450) image shown in Figure 3.20. I t 
also gives the number of features extracted from this image. Though the run 
time may change depending on the image content, the table gives a reasonable 
indication of typical time consumption. Note that the Fan feature is implemented 
without any optimization. In addition, because the Fan features are extracted 
in smaller quantity and the Fan-SIFT descriptor has lower dimensions, matching 
Fan features is much faster than matching Harris and Hessian Affine. 

3.7 Conclusion 
In this chapter, scale and affine invariant Fan features are proposed to match 
the keypoints located on or near surface boundaries. Mult iple Fan features are 
attached to a single keypoint to provide robustness to image content change 
around depth discontinuity (including the background change). For each Fan 
feature, its characteristic scale is selected based on the proposed FLOG kernel. 
Its affine shape is diagnosed from the mirror-predicted surface patch. In this 
way, the Fan features can be consistently extracted from two images despite scale 
change and geometric deformation. Fan-SIFT descriptor is then introduced to 
depict the feature's texture content. The Fan features are not extracted in a large 
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quantity because the keypoints are carefully selected to guarantee the saliency 
and repeatability. Experimental results show that the Fan features have good 
repeatability for structured scenes and have superior in variance to strong scale, 
viewpoint and background changes. Moreover, the Fan feature is complementary 
to traditional circular features, especially for describing the surfaces that are 
weakly textured or close to the object boundaries. In the next chapter, we wil l 
show that the combination of Fan features and Harris & Hessian Affine features 
provide us a good init ial set of correspondences for rendering the object by wide 
baseline images. Adding Fan features into the bag of features may also benefit 
other applications like object recognition and image retrieval. However, i t is out 
of the scope of this thesis. 
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Chapter 4 

Feature-based Object Rendering 
from Sparse Views 

4.1 Introduction 
Image-based rendering (IBR) is to use a collection of images capturing the same 
scene or object from different viewing positions for synthesizing the virtual image 
which would be seen from a new viewpoint. IBR techniques have many potential 
applications, such as virtual reality [108] and free viewpoint television [丄34], In 
this chapter, we are interested in developing an IBR system that is able to render 
the focused objects of interest from a very small set of widely separated images 

In terms of scene representation, strategies for IBR can be divided into three 
categories according to how much geometric information is involved. They are 
rendering wi th no geometry, rendering with implicit geometry like correspon-
dence, and rendering with explicit geometry. Two of the best-known rendering 
techniques that require no geometry are light field [71] and lumigraph [4“], whose 
success comes from the usage of a large number of densely sampled images, On 
the other hand, a natural approach for IBR is to explicitly compute a 3D model 
of the scene or object. Virtual images can then be synthesized by projecting the 
reconstructed 3D model onto novel views. Typical examples are texture mapped 
rendering of stereo reconstructions [L11]; [15]; [130]; [ 1 -H], volumetric techniques 
[57]; (i3()]; [147]; [122], space carving [117); [G6]; [SH]; [14], and surface evolu-
tion [30]; [!()(>]; [44] ； [154], These approaches in general require fewer images yet 
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higher computational load. Implici t geometry techniques typically use the view 
dependent geometry to guide the selection of color at each pixel in the novel view. 
Recent works [50] ； [3<S] ； [151]； [159] using Implicit geometry have demonstrated 
high efficiency for rendering complex scenes. Using view dependent geometry may 
introduce unpleasant flicking during rendering. Techniques such as the spatial-
temporal view interpolation [1 16] have been proposed to ensure the temporal 
continuity and produce flicker-free rendering. We refer the reader to [118] for a 
more thorough discussion of the related techniques. 

The camera setup of an IBR system plays a crucial role in determining its 
applications and designs. Previous works mainly focus on the small baseline 
setup, where there are a large number of reference images that provide adequate 
overlap between neighboring views for accurate depth estimation or 3D recon-
struction. Such a sequence of images can be acquired either by recording video 
of the scene or the object [厂)2] which, however, are l imited to static ones, or by a 
densely sampled camera network [119] that is expensive and inconvenient to set 
up. Besides, rendering wi th a large number of images also means the requirement 
of large data storage and high memory cost. In the past few years, there is an 
increasing demand for rendering new scenes from images acquired using simple 
devices such as family photographs [126] ； [11 '2]. Furthermore there is a wide class 
of applications where the images are not taken for the purpose of modeling, but 
reconstruction or rendering is desirable afterwards [126]; [ 1 2 8 ] ; [ 丄 A l l these 
applications introduce the wide baseline configuration, where the novel views are 
synthesized from a small number of sti l l images taken from very different view-
points. However, the wider spacing between the cameras brings more challenges 
in producing locally consistent geometries and hence photorealistic views. This is 
because the large occlusions become more of an issue and the strong photometric 
and geometric changes make it much more difficult to establish correspondences 
between widely separated images. 

Recently, local invariant features [95] ； [93] have made wide baseline matching 
possible, and hence the viewpoints can be put further apart, Basically, in wide 
baseline matching the local invariant features are first extracted independently 
from two images, and then characterized by invariant descriptors, based on which 
the correspondences are finally established. Thanks to the intense research works 
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done these years, the local features have been developed to be invariant not just 
to translation, but also to rotation [118], scale change [77]; [80] and affine defor-
mation [02]; [(S7]; [141], which are very common in wide baseline images. Please 
refer to Section 3.1 for detailed introduction of recently proposed invariant fea-
ture detectors and descriptors. Based on the correspondences between two widely 
separated images, multiview matching algorithms [1 12] [5] have been proposed to 
track the correspondences across multiple wide baseline images. 

For modeling and rendering purpose, however, a sparse set of matched fea-
tures obtained by these methods is inadequate for producing a satisfactory 3D 
representation. Recently, Tola et al. [135] propose to replace the commonly used 
correlation windows by a fast and robust descriptor, called DAISY, They feed 
it to a graph-cut based depth estimation algorithm, which is reported to pro-
duce dense depth maps with good quality in wide baseline stereo. Besides, a few 
techniques have been developed to address the problem by growing regions or 
surfaces starting from a small set of extracted features or seed points [(>7] ； [48]. 
Strecha et al. [128] develop a dense matching algorithm for multiple wide baseline 
images. A sparse set of initial depth estimates is propagated to dense depth map 
by an inhomogeneous time diffusion process. Lhuillier et al. [72] ； [73] present 
a quasi-dense approach to establish surface reconstruction using a greedy match 
propagation method. Yao et al. [15；')] further improve this propagation method 
by introducing the clustering-based photoconsistency and the data-driven depth 
smoothness. 

Furukawa et al, [4 3] propose to represent the scene by a dense set of rectan-
gular patches that cover the surfaces visible in the input images. Their algorithm 
starts from a sparse set of matching keypoints, and repeatedly expands these 
to nearby pixel correspondences before using visibility constraint to filter away 
false matches, The most relevant previous work is [3厂)];[36], where Ferrari et 
al. propose to refine the matches of affine invariant features by maximizing the 
similarity function in the 6D affine space. Later they employ the match refine-
ment to propagate more feature correspondences using the init ial matches as the 
propagation attempts, which has proven to be successful in the application of 
simultaneous object recognition and segmentation. 
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Figure 4 1: The framework of the proposed feature-based image rendering scheme 

In this chapter, we present a wide baseline IBR method based on the affine 
invariant features. Fig. 4.1 shows the framework of the proposed feature-based 
rendering scheme The inputs include a small set of wide baseline images that 
capture the object from different viewpoints and a reference silhouette of the 
object defined in one view. We start from a sparse correspondences of affine 
invariant features obtained by init ial matching, and then produce a quasi-dense 
set of accurate matches by iteratively filtering outliers and propagating new ones. 
Finally a triangular mesh model is constructed, based on which view dependent 
texture mapping is performed to synthesize novel views of the object. This IBR 
scheme has also been extended to video-based rendering (VBR) for applications 
like free-view TV. The contributions of this work includes: 1) propose a novel 
and efficient geometric filter to remove mismatches of affine invariant features 
based on the pair-wise affine consistency; 2) present a global match refinement 
and propagation method that takes into account both the appearance similarity 
and the geometry consistency, and hence can successfully deal wi th the low-
texture regions for which the local method [36] usually fails; 3) introduce a double-
weighting texture blending algorithm that is able to provide realistic and smooth 
free-view navigation. 4) present a video based rendering scheme by tracking the 
affine invariant features across successive frames. While there are a number of 
modeling and rendering methods proposed in recent years, our rendering system 
stands out because of the following desired features: (1): I t requires few images 
(even two) to work and only needs the silhouette from one view to define the 
object of interest, which largely reduces the user effort; (2) I t is robust to the 
photometric and geometric changes arising from strong wide baseline images; (3) 
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i t is able to deal w i th low-texture surfaces that are common for general scenes or 

objects; (4) I t can be efficiently extended to render moving object. 

The rest of this chapter is organized as follows. Section 4.2 introduces the 

affine invariant features used in our method and the init ial matching step. Sec-

t ion 4.3 proposes the pair-wise affine consistency measure and the outlier filter 

based on it. Section 4.4 presents a global method to refine and propagate affine 

invariant features. Section 4.5 discusses the tr iangulation and the view-dependent 

rendering algorithm. Section 4.6 extends the feature-based scheme to video-based 

rendering. Section 4.7 shows the experimental results of the proposed method in 

rendering sti l l and moving objects, and Section 4.8 concludes the chapter. 

4.2 Affine invariant Features and Initial Match-
ing 

One of the major difficulties in wide baseline stereo is the significant geometric 

deformation and i l lumination change. Local invariant features [95] ； [93] have 

been shown to be a very successful tool to address these problems. The features 

are extracted locally to handle clutters and part ial occlusions, and are carefully 

normalized to achieve the scale, rotat ion and affine invariance. These properties 

make them very suitable for our task. In this chapter, we employ three kinds 

of invariant features that capture quite different image regions, so as to cover 

the object surface to the greatest extent for guiding the match propagation later. 

The Affine Harris features [92] mainly represent the texture corners, the Affine 

Hessian features [92] tend to depict the image blobs, and the Fan features (please 

refer to Section 3.3) [25] are used to describe the part ial surfaces near the object 

boundaries. A l l these features are extracted in a way invariant to rotation, scale 

change and local affine deformation, and are called affine invariant features in 

this thesis. 

An affine invariant feature has ell iptical support region and can be repre-

sented by f 二 [X, a，6，0, 0，V], where x is the image coordinates of the feature's 

keypoint, a and b are the lengths of the semi-major and semi-minor axes of the 

94 



4.3 Affine Consistency and Outlier Filtering 

feature's elliptical region, o indicates the orientation of the major axis, 0 repre-
sents the region's dominant orientation which for instance can be estimated by 
gradient histogram [80], and v is the feature descriptor that summarizes the re-
gion appearance. The Affine Harris and Affine Hessian features are described by 
the well-known SIFT descriptor [80], which is a stable texture representation by 
a weighted histogram of gradient locations and orientations. The Fan features 
are described by the Fan-SIFT descriptor (please refer to Section 3.4), which is 
an extension of the SIFT descriptor to fan-shaped regions. Both the SIFT and 
Fan-SIFT descriptors are normalized into a unit vector and only the gradients 
are taken into account in the description. Therefore, the descriptors are also 
invariant to linear il lumination change. 

In the reference image Ir, the affine invariant features are extracted only from 
the object region defined by the given silhouette, For the other target images It、， 

the features are detected in the entire image space. Then the init ial matching 
aims to find for each feature f/? in Ir its correspondence f^ in It- In this stage, 
the similarity of two features is simply measured by the Euclidean distance of 
their descriptors; 

= ||VR — VTII (4.1) 

And the nearest neighbor distance ratio (please refer to Section 3.5) is employed 
to establish the init ial correspondences between the reference and target features. 

4.3 Affine Consistency and Outlier Filtering 
Though the similarity measure (4.1) based on feature descriptors is widely used 
as the benchmark of feature matching [93], i t only relies on the region appearance 
that may not be sufficiently discriminative to ensure correct matches, especially 
for smooth regions wi th low textures. In this section, we propose an efficient 
geometric filter to further remove the mismatches from the correspondence set by 
making use of the remaining information provided by an affine invariant feature, 
i.e., (x, a, 6, o, 9). We first introduce the pair-wise affine consistency by taking 
into account both the neighborhood correlation between the features and the 

� O n e or two target images m our experiments 
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/ 

Unit circle Unit circle 

Rotation 

R 

Figure 4.2: Local affine transform estimated from 
invariant features [95 

correspondence of affine 

consistency of local affine geometry between the matches. We then present an 
iterative algorithm to efficiently filter out the false matches based on the affine 
consistency measure 

4.3.1 Local Affine Transform from a Match of Affine In-
variant Features 

Let S r and S t denote the support regions of two matched features f/? and f^ , 
respectively. The two regions can be centered on (0,0) by Sr — x丑 and St — xq ,̂ 
where xr and x ^ are the coordinates of the corresponding keypoints. Since 
{aR, On) and [clt，bT, Ot) are available, we then can normalize their elliptical 
shapes into unit circles by affine transforms M.^ and M ^ , respectively. As shown 
in Figure 4.2, the two unit circles are now related by a pure rotation R [95] which 
can be determined by the dominant orientations of f / j and f^, i.e., Qr and 9t • 
Therefore, the two regions can be related by (4.2), which actually is an affine 
transform that can be represented by (4.3) in homogeneous coordinates. 

S'T - XT - M:^^RMr{SR — Xji) (4.2) 

Af A 
0 w h e r e A = MZ^KMr, t = x t — Axr (4.3) 
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4.3 Affine Consistency and Outlier Filtering 

Figure 4.3: Normalized spatial distance between two features 

4.3.2 Pair-wise AfRne Consistency 
An affine transform is sufficient to locally model the image distortion arising from 
viewpoint changes [95]. Suppose that two neighboring features are located on the 
same surface which is approximately planar. Their support regions will undergo 
similar affine transforms when the viewpoint changes. These two features are 
called affine consistent, and they wil l support each other to survive the proposed 
geometric filter. 

Let (f鸟，f孕）G f ] (/c = 1 , . ..，iV) be a target match in the correspondence set 
r^. Let denote the affine transform that relates their support regions S'̂  and 
辟 . L e t (fĵ ，终）G n /c) be a nearby match whose support regions are 
and 路 . T h e pair-wise affine consistency measure AC{k, I) between the match 
(f鸟，俘）and (fj^, is defined as 

AC{k, I) = • 尝 ̂  二 ( 4 . 4 ) 

The first term of AC{k, I) measures the neighborhood correlation between 
the two features f矣 and f^ in the reference image. The spatial distance between 
the two features not only depends on the location of their keypoints, but also 
is normalized according to the size and shape of their support regions. The 
normalized spatial distance between the two features f鱼 and f^ is computed by 
(4.5). 

二 1 4 - x i ^ / ( f + d 丨” （4.5) 
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4.3 Affine Consistency and Outlier Filtering 

Here d/̂ i denotes the distance from the keypomt x ^ to the intersection of the 
elliptical region and the ray from x ^ and through xj^, as illustrated in Figure 4 3 
I t can be easily computed by (4 6) 

d 以 = + (6&in<^fc〒 （4 6) 

,where 小以=—x^) — and ori{ ) is the vector orientation c/伙 is similarly 
defined 

If fj^) = 1，the support region of f鱼 wi l l be tangential to that of f j j 
In case of dis{fk,fiR) < 1, the two regions wi l l share some overlaps, and when 

fj^) > 1，they wil l have no intersection Simply by thresholding the nor-
malized distance, we can determine the neighboring features in a way adaptive to 
the features' region size and shape In general, neighboring features with small 
d is{ i^, fj^) (e g , smaller than 1) wil l have high probability to undergo similar lo-
cal affine deformations when the viewpoint changes Thus, i t is reasonable to use 
the first term of AC{k^ I) for measuring to what degree the two reference features 
f鸟 and fji are spatially correlated and accordingly how reliable the two matches 
(f^, f^) and (f]j, f j .) can support each other to pass the geometric filter 

The second term of AC{k, I) is to measure the consistency of the local affine 
geometry estimated from the two matches (f鱼,f孕)and (f|j, fp) Ideally, if the 
two reference features f^ and fj^ undergo the same affine transform, we wil l have 

= Af〖5j^ = Sir In practice, however, the two regions and 路 

wil l differ from each other, as shown in Figure 4 4 Here the difference of the two 
regions is used to measure the inconsistency of the affine transforms Af& and Af^ 
Specifically, the difference between and Sip is quantified by their overlap 
in image area In (4 4)，S!̂  n Af'^S'jj is the intersection of the two regions, which 
IS then normalized by their union Sj^UAf^Sj^ The overall AC value ranges from 
0 to 1 A large AC{k, I) value indicates that the two matches (f乌，终)and (fj^, fj-) 
are not only spatially correlated but also affine consistent, and hence are very 
likely to be a pair of correct matches 

4.3.3 Outlier Filter based on Affine Consistency 
Given the correspondence set SI wi th N candidate matches, we first build the 
NxN A C matrix whose entries are AC{k,l) (kj G [1, ，iV]), where AC{k, I)= 
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4.3 Affine Consistency and Outlier Filtering 

Figure 4.4: Inconsistency of local affine geometry 

0 a k = I. The AC score for a match indexed by k is calculated by 

ACk = Y ^ A C { k J ) (4.7) 
I 

In general, AC{k, I) + AC{1^ k) due to the asymmetry of the second term in (4.4). 
However, in practice the two values are usually very close, thus we can reasonably 
assume symmetric A C matrix to reduce half of the computations. To further 
reduce the computations, we only evaluate the AC measures for neighboring 
matches wi th dis{f^, fj^) < thi^. The AC measures of far away match pairs have 
very small values and contribute l i t t le to the AC scores anyway. 

Next, we iteratively remove the inconsistent matches from 0 and meanwhile 
update the A C matrix. The algorithm is outlined as follows. 

1. Compute the AC scores for all matches in the current set by (4.7) based 
on the current A C matrix; 

2. Remove from Q all the matches (f^, f^) whose ACfc = 0, and update the 
A C matrix by deleting the corresponding rows and columns; 

3. For the remaining matches in 0 , find the one wi th the smallest AC score, 

i.e.’ ACmin-

4. If ACmin > tk2'之,stop. Otherwise, remove the match and update the A C 
matr ix accordingly, then go to step 1. 

Hhi is set to 2 in our experiments. 
"Hh2 is set to 0.1 in our experiments. 
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4.3 Affine Consistency and Outlier Filtering 

Figure 4.5 Wide baseline Images. Top row shows the frames 1 and 3 of the 
Merton sequence Bottom row shows the frames 1 and 5 from the Wadham set 

Matches wi th no support are directly rejected as mismatches because isolated 
correct matches are very rare in practice. Furthermore, the worst match in terms 
of AC score is the most probable mismatch in the remaining correspondence set. 
Removing this match from the A C matrix wi l l largely reduce the AC scores 
of other nearby mismatches with similar wrong affine transforms, but has l i tt le 
influence on the AC scores of nearby correct matches. As a result, the nearby 
mismatches are more likely to be filtered out in following iterations 

We evaluate the proposed geometric filter in two applications- wide baseline 
matching and non-rigid motion. We use Affine Harris and Affine Hessian [92] 
to extract the affine invariant features. The init ial matches are generated based 
on the SIFT descriptors. We then apply the proposed geometric filter to reject 
the outliers, resulting in the final correspondence set For comparison, we also 
present the results of Hough clustering using the same configuration in [(SO], which 
IS an efficient and effective mismatch rejection step based on the global spatial 
configuration 
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(a) Results for Merton 
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(b) Results for Wadham 

Figure 4.6: Inlier ratio of the final correspondence sets obtained by Hough clus-
tering and the proposed geometric filter. 

Wide Baseline Matching 

Images used in this experiment are displayed in Figure 4,5. They are available 
at the Oxford's Visual Geometry Group's webpage. The performances of dif-
ferent filters are assessed in terms of the proportion of inliers within the final 
correspondence set. An inlier is considered to be a match that conforms to the 
ground-truth epipolar geometry (the deviation of the feature key point from the 
epipolar line is within 4 pixels). Figure 4.6 presents the proportion of inliers in 
terms of the set size for different filters. The variation of the set size is obtained 
by changing the nearest neighbor distance ratio in the initial matching. As we 
can see from Figure 4.6, the proposed filter achieves higher inlier ratio than the 
Hough clustering throughout the varying set size. 

Non-rigid deformation 

We now consider more difficult cases, where the model and test images present 
significant non-rigid deformation and severe clutters. The matching results are 
visually shown in Figure 4.7 and Figure 4.8, where (a) is the init ial matching 
result, (b) and (c) shows the final correspondences obtained by the Hough clus-
tering and by our geometric filter, respectively. The green ellipses plotted in (b) 
and (c) indicates the features' support regions. As we can see, the proposed fil-
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4.3 Affine Consistency and Outlier Filtering 

(a) initial matches (219) 

(b) By Hough clustering (14) 

(c) By the proposed filter (48) 

Figure 4 7 Matching for the Michelle model [如]Case 1 
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4.3 Affine Consistency and Outlier Filtering 

(b) By Hough clustering (29) 

(c) By the proposed filter (55) 

Figure 4.8: Matching for the Michelle model [36]: Case 2 
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4.4 Global Refinement Sz Propagation for Affine Invariant Features 

ter can preserve much more correct matches than the Hough clustering, despite 
the considerable non-rigid motion from the model image to the test image. Also 
note that there exist a large number of mismatches in the init ial correspondence 
set, which demonstrates the strong power of the proposed filter in dealing wi th 
extensive clutters. One can also refer to [19] for their results on the same image 
set. The Affine Harris and Hessian features combined wi th our filter can pro-
duce more correct matches distributed in wider regions of the object compared 
wi th their methods. In addition, the runtime of the proposed filter (implemented 
in non-optimized Matlab code) measured on a Core Duo T2400 1.83GHz lap-
top is around 1.02s and 1,68s for case 1 in Figure 4.7 and case 2 in Figure 4.8, 
respectively, which is very efficient. 

4.4 Global Refinement & Propagation for Affine 
Invariant Features 

The success of the match propagation [3G] encourages us to apply this method to 
sparse view rendering, where the init ial matches obtained are stil l quite l imited 
and sparse even when combining the three types of features. In practice, how-
ever, we found that this method works well for the textured regions, but usually 
fails to generate accurate correspondences for smooth regions without any salient 
textures. Some examples are given in Figure 4.9, where the red dots in (a), (b) 
and (c) show the keypoints detected in the reference image, their ini t ial corre-
spondences found in the target image and the refined results by Ferrari's method 
35]，respectively. The green ellipses show the support regions of the features that 

fail to be accurately matched by their refinement method, and the yellow lines 
indicate the regions' dominant gradient orientations. As we can see, most of these 
regions are not highly textured. As a consequence, the local appearance alone is 
not sufficiently powerful to guide the refinement. In this section, we propose a 
global method to refine and propagate the affine invariant features by incorpo-
rating the local appearance wi th the pair-wise affine consistency. The improved 
method can now successfully handle the smooth regions that occur frequently in 
object rendering. 
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Figure 4.9: Some matching examples where the global refinement method out-
performs the local method, (a): features in the reference image; (b), (c), (d): 
corresponding features in the target image; (b): ini t ial correspondences; (c): re-
sults by local refinement [35]; (d): results by global refinement. 

4.4.1 Global Function for Match Refinement 
Our global refinement method is based on the observation that the surface orien-
tations change smoothly except for the case of depth discontinuities. This inspires 
us to impose some smooth constraint on the local affine transforms of nearby fea-
tures. The original method of match refinement [35] tries to find for each match 
of features the best affine transform individually. We now attempt to simultane-
ously find the optimal set of affine transforms for all the matches by maximizing 
the global function defined in (4.8)，where (f^, f^) e ^ (k — 1,,.,, N). The three 
terms in (4.8) are described below. 

N 

F m ' } ) = I 
/c 二 1 

+ 

+ 

A i f > p ( - 沉 (讳， A f 吻 
t ^ ^ 
k=l ‘ 

(4 8) 

N M^ 
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4.4 Global Refinement Sz Propagation for Affine Invariant Features 

The first and the second terms are defined similarly as in [35]. They are 
used to measure the appearance similarity of the two matching regions S^ in 
Ir and S 年 = i n It that are related by the affine transform Af知.The 
first term measures the intensity similarity and the second term measures the 
color similarity. Together they are called the data. term. NCC is the widely 
used normalized cross-correlation between the regions' intensity patterns, and 
is normalized to [0,1]. DL is the average pixel-wise Euclidean distance in the 
CIE-L*a*b* color space [152], which is better for measuring the color similarity 
than the RGB space from the perceptual standpoint. The three color bands 
are also normalized independently to achieve the i l lumination invariance to some 
extent. The equivalence between Euclidean and perceptual distances holds for 
small distances only, while the larger distance only indicates that the colors are 
perceptually different. By taking into account this fact, we choose the exponential 
measure ranging from 0 to 1 for the color term, where the control parameter 7 is 
set to 50 through our experiments. 

The major improvement of the global method lies in the introduction of the 
th i rd term, i.e., the smoothness term, in the global function (4.8). In case 
of a smooth region (or a very small region) for which the local appearance is 
not discriminative enough to guide the correct match refinement, regulariza-
tion can be achieved by further maximizing the affine consistency of the nearby 
matches. To this end, the predefined pair-wise affine consistency measure AC(k, I) 
is conveniently employed to regularize the set of affine transforms { A f " } in the 
global function. Besides, i t is reasonable to use the normalized spatial distance 

f j j for defining the neighborhood of an affine invariant feature f鸟 in the 
reference image, so that both the keypoint distance and the shape and size of the 
support regions are taken into account, 

However, choosing all the nearby features for regularization may result in some 
over-smooth problem just as in the dense stereo. Features that are close in the 
image domain may belong to quite different physical surfaces (e.g., those around 
the surface discontinuities). Thus the corresponding affine transforms between 
two views can be completely different and uncorrelated. As smoothing across the 
depth discontinuity is highly undesired, we need to carefully select the associated 
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features for regularization. For the purpose of selective regularization, we define 
for each match (f^, f^) G its affinity set as 

屯切 = { ( 4 4 0 G n (Z fc) I dis[龟,fiR) < thu AC{k,l) > ths} (4.9) 

Basically,屯& is a sub-set of the nearby matches of ( f^, f^) wi th fj^) < 
thi in the reference image. By requiring AC(kJ) > th^, the matches in the 
sub-set 屯& are associated wi th the affine transforms that are very similar to 
that of the match (f^, f^), and hence they are called the affinities of ( f^, f^). 
In a sense, only the nearby matches wi th similar affine transforms are used for 
regularization. Thus two matches from the two surfaces wi th quite different 
orientations are naturally excluded from each other's affinity set. Note that if the 
init ial matches are not totally erroneous, but a l i t t le inaccurate, the AC measure 
can be confidently used for indicating the init ial affinity relationship. 

In order to determine the affinity set, we use a simple thresholding on AC 
measures instead of cluster algorithms to speed up the process. Actually, we 
further l imit the size of 屯& to save computations, since a small number of reliable 
affinities are sufficient to regularize the transforms. Thus the smoothness term 
in the global function (4.8) is composed of the weighted sum of the AC measures 
between a match ( f ^ ,终)and its M ^ closest affinities. The strategy of choosing 
the weights w^ wil l be discussed in the next sub-section. Here note that the 
weights are normalized such that w^ = 1. Thus the smoothness term also 
ranges in [0,1], 

Finally, the two Lagrange parameters Ai and A2 in (4.8) are experimentally 
set to 2 and 1，respectively. 

4.4.2 Implementation of the Global Optimization 
The match refinement is now an expensive global optimization problem over a 
large set of affine transforms {k = 1, • • •, N). To make this problem 
tractable, we decompose the global optimization into the iterations of sequential 
maximization problems, each of which can be formulated as the maximization of 
the function defined in (4,10) over the 6D space of a single affine transform 
A f ^ , wi th the associated affinity transforms {Af^ | f j .) G fixed. The 
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Figure 4.10: A typical case of /(Af^) over the space of {tx,ty) with fixed 
(sa；, Sy,6, h), where the gradient descent algorithm starting from (0,0) fail to 
reach the global maxima at (—8,12). 

value of / ( A f ” (ranging from 0 to 4) provides a combined evaluation of a match 
(f為，f妾）in terms of both the appearance and the local geometry. Apparently, 
the choice of the weight u/ in (4.10) should reflect the confidence of using the 
affinity (fj^,终）for regularization. Thus, a natural choice of vJ' in the current 
iteration is the f value of (fj^, fj.) in the last iteration. As the smoothness term 
is not available before the first iteration, the initial weights are set to the data 
term only. Then the weights are updated according to the f values after every 
iteration. 

2 7 I它句k 
(4.10) 

Now the sub-problem is to maximize over the 6D affine space (tx,ty,Sx,Sy,9^h), 
where (tx, ty) is the 2D translation, (s^, Sy) are the scales in x and y directions, and 
6 and h are the rotation and shear, respectively, which is similar to the individual 
local refinement [35] except for the introduction of the smoothness term. The 
original similarity function [35] generates highly non-convex spaces with frequent 
and diverse foldings. That is the reason why they propose a step-wise searching al-
gorithm instead of using the gradient descent. Though an additional smoothness 
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term is introduced to the proposed /(Af^) function, its behavior over the affine 
space is similar to the similarity function [；]5]. Figure 4.10 shows a typical case of 
/ ( A f ” over the space of [t^^ty) with (ŝ；, Sy, 6*, h) fixed, which presents a highly 
non-convex appearance. Actually, we have implemented an inverse compositional 
algorithm [8] for the maximization problem, but unfortunately the algorithm fre-
quently gets stuck in 皿desired local maxima. On the other hand, full search of 
the affine space is too expensive to evaluate. W i th these considerations, we adopt 
the step-wise searching algorithm [35] to do the job. Note that in one iteration, 
only one step is made in the 6D space of A f ^ to approach the maxima of /(Af”， 

i.e., only one of the 6 parameters, which brings the largest increase to /(Af”，is 

updated in an iteration. It is unnecessary to fully maximize the f ( A i ^ ) in one it-
eration because the affinities of Af紀 may also change through iterations and they 
wil l affect the regularization of i.e., affect the smoothness term of f(Af^). 
We find that this modified step-wise algorithm performs much better than the 
gradient descent and generally produces satisfactory results in our experiments. 

The order of the sequential maximization may take a crucial role in the be-
havior of the optimization because of the smoothness term imposed. Therefore, 
we need to carefully set the priority of the individual refinements. On one hand, 
matches with smaller / values should have higher priority, because they are more 
likely to be inaccurate matches that badly need to be regularized by others nearby. 
On the other hand, matches with high f values are probably correct and accurate, 
and as a result can be reliably used for regularizing other nearby features, which 
means that matches with reliable (high f value) affinities should be given prefer-
ence in the individual refinements. Based on these considerations, the priority of 
a match or equivalently its associated affine transform is quantified by the mean 
/ value of its affinities over the f value itself, as in (4.11). After every iteration, 
the priorities of the matches are updated according to their current f values, and 
a. new order is determined for the sequential maximizations in the next iteration. 
Besides, in order to guarantee and accelerate the convergence, we stop examining 
a match (f^, in following iterations if the associated transform A f ^ makes no 
change in one maximization attempt. Such a match is called a stable match. 
Finally, we only keep the stable matches that are good enough, specifically those 
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Convergence of the global optimization Performances of the global optimization 

«With priority update 
^ With fixed order 

Number of Jterations Number of iterations 

(a) (b) 

Figure 4.11: Performances of the global optimizations using different order strate-
gies. 

with / ( A f ” 

p r i o r i t y ( A f ^ ) - 匸 “ ) (4.11) 

Figure 4.11 presents a performance comparison of the global optimizations 
with and without the priority update. The results are obtained by applying the 
global refinement to the 87 init ial matches shown in Figure 4.9(a) and (b), and 
they are typical for other test images. From Figure 4.11(a) and (b), we can see 
that a reasonable order of sequential maximizations can enhance the convergence 
of the global optimization in terms of the speed and the achieved convergence 
value. One can also note that the differences are not that salient, meaning that 
the algorithm is not very sensitive to the order. The convergence of the whole al-
gorithm typically takes 10 to 15 iterations though the number of init ial matches 
may vary a lot. Also note from Figure 4.11(a) that the number of unstable 
matches drops quickly, which means that the computations keep decreasing pro-
portionally through iterations. I t is reported [35] that the local method typically 
takes 3 to 10 iterations for each match. Let N be the number of matches to 
be refined and let us approximate the curve in Figure 4.11(a) by a straight line. 
Thus the global method takes 5N to 7.5iV evaluations of 尸 over the bounded 

^ths IS set to 2 1 in our experiments 
2 A combined measure of similarity and affine consistency 
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4.4 Global Refinement Sz Propagation for Affine Invariant Features 

6D space, while the local method takes 3N to IQN evaluations of the similarity 
over the same space. Since evaluating the similarity is much more expensive than 
evaluating the affine consistency, the global and local methods wi l l have similar 
computational cost. 

In Figure 4.9(c) and (d), we select some features for a visual comparison of the 
matching results refined by the local and global methods, where we can clearly 
see the improvements brought by the global method in terms of the accuracy of 
key point location and region shape. 

4.4.3 Global Match Propagation of Inner Boundary 
Features 

The match propagation aims to generate more feature correspondences from the 
ini t ial seed matches. The basic idea is that if two adjacent features f鱼 and f ^ 

in the reference image are located on the same physical surface, they wi l l be 
mapped onto f^ and f j . in the target image It by similar affine transforms. Let 
0 be the set of seed matches and Tr be a set of newly added features in the 
reference image Ir. Recall that each match ( f^, f^) G © is associated wi th an 
affine transform A f^ . Thus, Ferrari et al. [3()] proposed to choose for each new 
feature fj^ e Fr the best affine transform from the seed matches B in terms 
of the similarity function, which is called the best propagation attempt and used 
to generate the init ial match of f另，i.e., f ^ G I V in the target image It w i th 
S^ — Af'^S^. Then this init ial match ( f^, iJf) is further refined to generate more 
accurate correspondence. For more details, please refer to the early and major 
expansion in [36]. 

The target application of this work is object rendering rather than recognition 
or segmentation for pi(i]. There are several additional issues worth noting. First, 
since we t ry to construct a mesh model, which is coarse but sufficient to render 
the whole object defined by the given silhouette, we need to produce not only 
the matches of features within the object but also the matches along the object 
contour. These two kinds of features are named the inner and boundary features. 
As shown in Figure 4.12(a)，the inner features are uniformly sampled within the 
object silhouette. They have circular support regions of radius R and are spaced 
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by R to densely cover the object. The odd and even rows offset one other by R as 
well. The boundary features are extracted in a way to capture the shape of the 
object silhouette, as shown in Figure 4.13. Specifically, the object contour is first 
approximated by a few straight line segments, and then a boundary keypoint is 
either selected as the intersection of two adjacent segments or uniformly sampled 
along a segment. The support region of a boundary feature is also bounded by 
a circle of radius R, but it covers only the region within the object silhouette, 
Actually some inner features cross the object silhouette as well, thus their support 
regions should also exclude the parts outside the silhouette. Here, the choice 
of the parameters, i.e., the region size and the sample rate, trades the mesh 
quality for computational cost. They could be adaptively selected according to 
the complexity of the target object or simply determined based on the users' 
desires. 

Second, as mentioned before, smooth regions are ubiquitous for general ob-
jects, for which the local refinement usually fails to yield accurate matches due 
to the poor discriminative power of local appearance. To address the problem, 
we employ the combined f measure (4.10) to select the best propagation attempt 
instead of using the purely appearance-based similarity measure [35]. To refine 
the init ial matches, we then apply the proposed global refinement method by tak-
ing into account both the appearance likelihood and geometry consistency. The 
detailed algorithm of global propagation is given as follows: 

Initialization 

For each feature f^ G Tr, initialize its match f^ G IV by following three steps: 

1. Find the nearby seed matches as the candidates. Specifically the candidate 
set is defined as 

$ - = { ( f 》， f ? ) e e | c M f A , f S < i 〜 } 

2. For each candidate match (f^, f^) G define an propagation attempt 
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(a) Inner features in Ir (b) Boundary features in I ft 

(c) Inner features in It (Global) (d) Boundary features in It (Global) 

Inner features in It (Local) ( f) Boundary features in It (Local) 

Figure 4.12: A comparison of the global and local match propagation. 
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Figure 4.13; Boundary features sampled along the object contour, 

(f另，fpfc) with Sf = Then evaluate the quality of { f ^ J f ) by 

/(fS，f? 
k� + + ； D L ( 邱 ， 

2 … … 7 

lE'i''' 

,where the affinity set 屯& (4.9) is selected from the seed matches B only; 

3. Find the best propagation attempt as the initialization of match (f^, f^). 

Propagation 

1. Initialize the matches of inner features Qj with the support of the initial 
matches f lo , i.e., 9 / — fiio. Refine Q/ by maximizing the global function 
F({Af^}) (4.8) over the space (f鱼’俘）G Qj； 

2. Initialize the matches of boundary features Q b wi th the support of both Q q 

and Q/, i.e., ©^ = Qo U Q/. Refine by maximizing the global function 
over the space (f鱼,fj) G Since the boundary features are sparsely 
distributed without sufficient overlap, the matches in are also used to 
regularize i.e., the affinity set ^^ for a boundary feature is selected 
from Slg U r^o U i l j instead of Q b -
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4.5 Triangulation and Texture Mapping 

The performances of the global match propagation are visually shown in Fig-
ure 4.12. To demonstrate the improvements, we also present the results of the 
local propagation [36] for comparison. Figures 4.12(a) and (b) show the inner 
and boundary features sampled in the reference image Jr. Figures 4.12(c) and 
(d) show the corresponding features in the target image It obtained by the global 
propagation, and Figures 4,12(e) and (f) present the propagation results by the 
local method. Note that only good matches are kept and shown in Figure 4.12. 
We can observe that the features in It propagated by the global method present 
more smoothly changed facets thanks to the smoothness term imposed. The reg-
ularization also improves the accuracy of the keypoint location and the region 
shape, especially for the features in the smooth regions, such as the girl's arms, 
head and left leg. Another observation is that the benefits of regularization to 
the boundary features are more salient than to the inner features. This is because 
the local appearance of boundary features is generally less discriminative than 
the inner features, as the regions outside the silhouette are excluded from the 
features' support regions. 

4.5 Triangulation and Texture Mapping 
In the target application, the input images are captured from widely separated 
views. Thus i t is impractical to require that all the features are consistently 
detected in all the input images. A match in two images is sufficient to compute 
a 3D keypoint wi th the cameras calibrated. Matches across more views in general 
produce more accurate 3D keypoints. Given a set of 3D points that lie on the 
object surface, one can define an exponential number of surface triangulations 
that fit the data. By taking into account the sparsity of features in wide baseline 
stereo and the possible non-smoothness of the object surface, we employ the 
image consistent surface triangulation [98] to find a particular mesh surface that 
is closest to the true object surface in the sense that the appearances of the meshes 
are most consistent across different views. Specifically, this method compares the 
re-projected images of the predicted surface with the actual images and uses this 
measure to select between competing triangulations and so overcome the surface 
ambiguity problem. The space of triangulation is fully searched by using edge 
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4.5 Triangulation and Texture Mapping 

(b) 

Figure 4.14: Triangulation result, (a): the 3D mesh model; (b): the triangular 
meshes projected onto the reference image. 
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Figure 4.15: Double weighting, 
weighting. 
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view-based weighting; (b): facet-based 

swaps. An example of the triangulation result is given in Figure 4.14, where (a) 
presents the 3D mesh model and (b) shows the triangular meshes projected onto 
the reference image. 

To synthesize a novel view, two input views that are closest to it are selected 
as the reference views. If more input views are involved in rendering, the novel 
view may present undesired blur, because our mesh model is not as detailed as 
the one reconstructed by dense depth map in narrow baseline case. Recall that 
a 3D plane defines a homography between two views [52]. For each triangular 
mesh, i.e., a 3D facet, we map the textures from the two reference views onto 
the novel view using the respective local homographies, and then blend the two 
mapped textures together by a double weighting scheme. 

The first weighting depends on the geometric relationship between the novel 
view and the reference views, and is the same for all the meshes. The weight of 
one reference view is set inversely proportional to the included angle between the 
novel viewpoint and the reference viewpoint, e.g., the angle d̂  for the reference 
view 1, shown in Figure 4.15 (a). I t is thus called view-based weighting and is 
crucial to the smooth transition of successive viewpoints^ 

Otherwise, there will be annoying flicker when experiencing the novel view navigation. 
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4.6 Extension to Video Rendering 

Figure 4.16: The framework of the proposed feature-based video rendering scheme 

The second weighting is adapted to different mesh, facets, namely facet-based 
weighting. Given a facet, the weight of one reference view is set inversely pro-
portional to the angle between the facet normal and the line connecting the facet 
center and the camera center, for instance, the angle &{ for the reference view 
1, shown in Figure 4.15 (b). By employing the facet-based weighting, we can 
preserve for each individual facet more texture details from the reference view 
that gives a frontal observation of it. 

4.6 Extension to Video Rendering 
The proposed feature-based image rendering scheme can be efficiently extended 
to generate free-view video from two or more synchronized sequences captured 
from quite different viewpoints. The user's additional effort is sti l l to provide 
the object silhouette in the reference view only at the first frame. Figure 4.16 
shows the framework of the proposed feature-based video rendering scheme. In 
the following sub-sections, we wi l l discuss the related key techniques, including 
feature tracking, silhouette transfer and model update. 
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4.6 Extension to Video Rendering 

4.6.1 Feature Tracking across Frames 
Feature tracking is based on the consistency across time and is performed in a way 
similar to the match refinement (Section 4.4.1). For each view, given a feature 
at frame t, attempt is made to find an affine transform A f ^ that maps f/^ to its 
correspondence at the next frame t + 1, i.e., ff^^ = Af^f/^. Since it is reasonable 
to assume that the images change l i t t le between successive frames, we start from 
the identity transform and search for the best transform in the 6D affine space 
to maximize the similarity function, similarly defined as the data term of (4.10). 

stm{Af^) = — + Ai exp( ^ ^ ― ( 4 . 1 2 ) 
2 7 

Compared to the step-wise search algorithm in match refinement, here we 
first perform a full search to find the best translation {t^j ty) in a relatively large 
search range wi th constant {s^, Sy, 0, h) = (1,1,0,0). We then keep the translation 
fixed and adjust the remaining four parameters in a very small range. Such a 
modification is based on the observation that in general case translation is the 
dominant local transform across frames, especially in case of fast movement. Thus 
we search for the translation much more carefully and at the same time allow for 
a small amount adjustment of scaling, shear and rotation for general purpose, 
even non-rigid deformation. Also note that actually the translation estimation 
is fast despite the large search range because no interpolation is required. This 
modification to the search algorithm thus saves a lot of computations for feature 
tracking and significantly accelerates the object rendering in successive frames. 

Unfortunately, the local appearance again may be indiscriminative for weakly 
textured regions, and consequently the maximum of the similarity function in 
the 2D space of {tx,ty) may fail to indicate the best translation. Figure 4.17(b) 
shows a typical case, where the region of the boundary features has few textures, 
and the corresponding similarity function presents multiple local peaks wi th very 
close values. In comparison, for a region with sufficient textures shown in Figure 
4.17(a), the similarity function is well behaved, i.e., the best translation is clearly 
suggested by a discriminative peak. 

To address the tracking problem for the poorly textured features, we pro-
pose to predict their translations based on the well textured affinities, and then 
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Figure 4 
regions. 

(b) For a region with insufficient texture 

17: Similarity function over the translation space (t^ for different 

suppress the similarity values of the translations far away from the prediction 
so that a salient peak can stand out discriminatively just as in Figure 4.17(a). 
Specifically, the translation estimation becomes a two-pass process. In the first 
pass, we only determine the translations for the well textured features, for which 
there is no other peaks within 95% of the highest peak in the similarity func-
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4.6 Extension to Video Rendering 

tion. In the second pass, we find for each remaining feature (poorly textured) the 
well textured affinities for the purpose of translation prediction. Since we have 
already known the 3D positions of the features' keypoints, we can conveniently 
use the 3D distance between the keypoints to measure the affinity relationship 
of the features, which is also a clever and efficient way to take into account the 
possible depth discontinuity. Here the affinities of a poorly textured feature are 
chosen as the three well textured features that are closest to it in terms of the 3D 
keypoint distance. Then the prediction is computed as the weighted sum of the 
translations of the affinities. The weights are set inversely proportional to the 3D 
keypoint distances and their sum is normalized to one. 

4.6.2 Silhouette Transfer across Views and Frames 
In order to continuously render the object, we need to track the features across 
frames in all the input views. Recall that we need the object silhouette to define 
meaningful support regions for the features close to the boundaries, and we only 
know the silhouette in the reference view at the first frame. Therefore, we have to 
transfer the object silhouette to other target views and across successive frames. 
To compose the silhouette in a target view, we map all the triangular meshes of 
the reference silhouette image onto this view by local homography of the mesh 
facet. Similarly, once the features have been successfully tracked across frames, we 
can generate the reference silhouette at the next frame by mapping the triangular 
meshes using local affine transform estimated from the matches of the three mesh 
vertices. 

4.6.3 Model Update 
As the object moves over time, some of its surfaces wi l l be occluded and some 
wil l appear from occlusion, which means that the object model has to be updated 
across frames. Some features and their correspondences tend to have less similar 
appearances because the corresponding physical surfaces are gradually occluded 
due to the object movement. These features should be removed from the corre-
spondence set by checking the consistency of appearance across views. To capture 
the newly appearing object surfaces, we apply [110] to refine the boundaries for 
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2.5 Experimental Results 

the silhouette image transferred from the last frame based on the image clue, 
colors. We then add more boundary features to depict the new object contour, 
and apply the propagation method to find their matches in other views. Finally, 
as the correspondence set changes, the triangulation should be updated as well to 
generate the new object model. Note that successive frames change l i t t le in prac-
tice. We can update the model every few frames to save a lot of computations, 
while having l i t t le influence on the rendering quality. 

4.7 Experimental Results 
The proposed method is tested on a few real image datasets that are fully cali-
brated. In practice, one can always make a tradeoff between the modeling accu-
racy and the manual effort by using precise pattern-based calibration or conve-
nient self-calibration. 

Yoga sequence (659 x 493): Figures 4.18(a), (b) and (c) show the three widely 
separated input images in this dataset. The angular spacing between two ad-
jacent views, (a)-(b) and (b)-(c) is more than 50 degree. One can observe the 
distinct backgrounds in the input images, which inherently have few correspon-
dences across views and consequently have l i t t le chance of being accurately recon-
structed. Our effort is thus only to reconstruct and render the focused foreground, 
i.e., the girl doing yoga here. Even for the foreground, we can only partially re-
construct the object surface due to the scarcity of the input views. To this end, 
we choose the middle image Figure 4.18(b) as the reference image wi th the ref-
erence silhouette provided in Figure 4.18(d). The intermediate results of this 
experiment, including match propagation and triangulation, can be found in Fig-
ure 4.12 and Figure 4.14，respectively. Figures 4.19(a) and (b) show two typical 
vir tual views of the foreground generated by the proposed method. The complete 
rendering results of a look-around sequence can be found in the supplementary 
material^ Despite the difficulties of widely separated views, scarce input images 
and weakly textured surfaces, the synthesized images are of high fidelity and the 
look-around sequence presents natural and smooth visual transition across views, 

Llittp://www.eecuhk.edu.hk/~chcui/ 
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(c) ⑷ 

Figure 4.18: Inputs of Yoga sequence, (a), (b), (c): the three input images; (d): 
the silhouette of the reference image (b). 

including the lighting. One may note from the look-around sequence that the vir-
tual images observed from the leftmost and rightmost viewpoints appear a l i t t le 
weird. This is because of the incompleteness of the object model. As we can see 
from Figure 4.18，the leftmost and rightmost parts of the object, e.g., the girl's 
back in 4.18(a) and her left face in 4.18(c), inherently have no correspondences 
between images. 

For comparison, we also present the rendering result of Yoga produced by 
PMVS [43] in Figure 4,19(c) (a ful l sequence of their results can be found in the 
supplementary material at the website). PMVS works wi th at least three input 
images. In this experiment all three silhouette images are provided for PMVS 
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(e) (f) 

Figure 4.19: Rendering results of Yoga sequence, (a), (b): two virtual views syn-
thesized by the proposed method; (c): results by PMVS [43] wi th three silhouette 
images; (d): image of ground truth, (e): the virtual image of (d) generated by 
the proposed method; (f): the difference image between (d) and (e). 
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2.5 Experimental Results 

to achieve its best quality. From Figure 4.19(c), we can observe a few patches 
missing or inaccurately located and we believe that the main reason is the three 
abovementioned difficulties in this dataset. In this sense, the rendering results of 
our method are visually much more pleasant. 

In Figure 4.19(d), an additional view is captured by our camera and used as 
the ground truth. Figure 4.19(e) shows the virtual image of the object synthe-
sized by our method, which is observed from the same viewpoint as in Figure 
4.19(d). The difference between the virtual image and the ground t ru th image 
is shown in Figure 4.19(f), where the darker the image the smaller the length of 
the color difference vector^ As we can see, besides the differences arising from 
some unmatched object boundaries, there are only a few very detailed differences 
that can hardly be observed. The main cause of these errors is that the features 
are sparsely sampled and hence the mesh model is not sufficient fine. Densely 
sampling more features in match propagation can surely improve the rendering 
quality of the details. 

Girl sequence (659 x 493): In this experiment, only two wide baseline images 
are provided as inputs, as shown in Figures 4.20(a) and (b). The three difficulties 
mentioned above in Yoga sequence also exist here. Moreover, the object surface 
of Gir l is more complex and there are a number of self-occlusions, e.g., the girl's 
right arm is occluded by the duck toy in Figure 4.20(a), Figure 4.20(c) shows the 
reference silhouette that defines the object of interest, Figure 4.21(a) shows the 
triangulation result projected onto the image in Figure 4.20(b). Figures 4.21(b) 
and (c) are two novel views of the object synthesized by our method. For a 
complete look-around rendering sequence, please refer to the relevant video in the 
supplementary mater ia l . One may note from Figure 4,21(a) that the girl's right 
arm is modeled by an inaccurate triangular facet due to the occlusion in Figure 
4.20(a). However, thanks to the facet-based weighting in our rendering scheme, 
the textures from Figure 4.20(a) contribute l i t t le to the texture blending of the 
arm. Therefore the virtual images of the arm are free of color contaminations 
as shown in Figures 4.21(b) and (c). The comparison to the ground t ru th is 

^This measure is more sensitive than intensity difference, 
^http: / / www.ee.cuhk.edu.hk/~chcui/ 
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^ • l l l l l l • 

Figure 4.20: Inputs of Girl sequence, 
silhouette of the reference image (b). 

(b): the two input images; (c): the 

presented in Figures 4.21(d), (e) and (f). The noticeable differences are either 
some object boundaries that are not included in the reference silhouette, e.g., the 
edges along the girl's legs and arms, or some small self-occlusions that cannot be 
simply modeled by the large-scale triangular facets. 

Chtyhall sequence (768 X 512): The original Cityhall sequence [128] consists of 
seven images of size 1536 x 1024. In this experiment, we choose only two of them 
as the input images shown in Figures 4.22(a) and (b), and downsize the images 
to one fourth of the original size. Different from Yoga and Girl, the Cityhall 
scene is highly textured and the two input images present strong scale change 
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(d) (f) 

Figure 4.21: Rendering results of Gvrl sequence, (a) the triangulation result 
projected onto the reference image; (b)，(c): two virtual views synthesized by 
the proposed method; (d), image of ground truth, (e): the virtual image of (d) 
generated by the proposed method; (f): the difference image between (d) and (e). 
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(a) (b) 

Figure 4.22: Inputs of Cityhall sequence, (a), (b): the two input images. 

(b) (c) 

Figure 4.23: Rendering results of Cityhall sequence, (a): the triangulation result; 
(b), (c): two virtual views synthesized by the proposed method. 
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and perspective transformation. This time the whole image of Figure 4.22(a) is 
defined as the object of interest. Our method is then used to generate a vir tual 
sequence that shows the visual transition from the viewpoint of Figure 4.22(a) 
to that of Figure 4.22(b) (please refer to the relevant video in the supplementary 
material). Figure 4.23(a) shows the triangulation result projected onto the image 
in 4.22(b). Figures 4.23(b) and (c) show two typical novel views synthesized by 
our method. I t can be observed that most of the annoying distortions come from 
the occluded parts which cannot be matched and hence are simply modeled by a 
few coarse and inaccurate triangular facets. The visual quality of the remaining 
parts is quite satisfactory. Most of them are free of unpleasant artifacts even 
when the object of interest contains a lot of detailed textures and we have only 
two input images wi th significant viewpoint change. 

To conclude, though our method may fail to capture very accurate details due 
to the coarse mesh model used^，it is capable of generating realistic synthetic views 
from a very small set of strong wide baseline images. The sparsity of features, 
however, can simplify the 3D representation and reduce the data storage and 
memory cost. 

Yoga video sequence (659 x 493): Another advantage of the proposed feature-
based scheme is its easy and efficient extension to video rendering. We test the 
proposed feature-based video rendering scheme on the Yoga multi-view video 
sequences. The girl doing yoga was photographed from four different viewpoints 
simultaneously. The obtained four video sequences are synchronized. Three of 
them are used as the input video sequences and the left one is used as the ground 
t ru th for evaluation. The viewpoints of the three input sequences are shown in 
Figures 4.18(a), (b) and (c). The viewpoint of the ground t ru th is shown in Figure 
4.19(d). Figure 4.24 present the video rendering results, where the color images 
are the synthesized images of successive frames generated by our method, and the 
grey images show the color differences between the vir tual frames and those of 
ground truth. As can be observed in Figure 4,24, the quality of video rendering is 
close to the image rendering results in Figure 4.19. In Figure 4.25, the rendering 

iQf course finer mesh model can be constructed by propagating more features with the 
price of more computations. 
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Figure 4 24 Rendering results of Yoga Video Sequence Color images the vir tual 
images of successive frames synthesized by the proposed method Grey images 
the diffeience between the virtual images and the ground t ru th 
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Figure 4.24: Rendering results of Yoga Video Sequence (continue). Color images: 
the vir tual images of successive frames synthesized by the proposed method. Grey 
images: the difference between the virtual images and the ground truth. 
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Frame index 

Figure 4.25: Rendering quality of successive frames 

quality of successive frames is further quantified by the mean length of the color 
difference vectors over the whole object region. We can see a slight rising trend of 
the difference in successive frames mainly due to the accumulated errors of feature 
tracking. However, the deterioration of rendering quality is relatively slow and 
thus acceptable, which demonstrates the ability of our method in dealing with 
large motions and small non-rigid deformation for video-based rendering, 

4.8 Conclusion 
In this chapter, we have proposed a feature-based rendering scheme that can syn-
thesize high quality novel views of the focused object from strong wide baseline 
images. Few images are required by the proposed method, so that the effort 
of capture can be largely reduced for users. We have shown that even two or 
three images are sufficient to generate a sequence of intermediate virtual views 
despite the difficulties of significant photometric and geometric changes between 
the widely separated images. Specifically, first, a bag of affine invariant features 
is employed to establish the init ial sparse correspondences. An efficient geomet-
ric filter is then proposed to remove those erroneous matches based on the local 
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4.8 Conclusion 

affine consistency. We then propose the global match refinement and propagation 
to refine the init ial matches and propagate more correspondences of inner and 
boundary features that densely cover the surface of the object. By imposing the 
affine consistency of affinities in the global function, our method can successfully 
deal wi th the features in weakly textured regions, where the local appearance is 
not sufficiently discriminative to guide correct matches. Finally, a double weight-
ing rendering scheme is introduced to synthesize the novel views based on the 
3D mesh model constructed from the matched features. We have also extended 
the proposed feature-based image rendering scheme to free-view video synthesis 
based on feature tracking and model update. The efficient 3D representation by 
sparse features can surely help reduce the burden of data storage and memory 
cost for video applications. 
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Chapter 5 

Conclusions 

Mult iv iew image-based rendering techniques have been intensely studied over the 

past few years. A number of high-quality algorithms have been developed to 

synthesize more realistic novel views wi th fewer cameras required. The work 

presented in this thesis focus on the development of a mult iview system that is 

able to generate photorealistic novel views based on a very small set of widely 

separated images. Such a system has a number of desirable features, including 

low cost in system setup, flexibil ity and convenience in image capture, but also 

has a number of technical difficulties arising from the wide baseline setting, which 

have been discussed in this thesis. The contributions of the research work are 

summarized below and several directions for the future work are presented at the 

end of the chapter. 

5.1 Contributions 

5.1.1 Plane-Based Multi-Camera Calibration 
In Chapter 2，we present an efficient plane-based multi-camera calibration method. 

Based on homography, we propose to estimate the pair-wise pose between neigh-

boring cameras by using mult iple images of different plane poses, Three different 

algorithms are introduced, including Two-Step, Three-Step and the non-linear 

methods w i th the orthogonal constraint imposed in different levels. Experimental 

results show that the combination of multiple images does enhance the accuracy 
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and stability of parameter estimation, especially for noisy data. The non-linear 
method initialized by the Three-Step results achieves the best performance, and 
the Three-Step method has a close performance with much lower computational 
complexity. The complete calibration of multiple cameras is achieved by register-
ing all the pair-wise calibrated structures. Since only two neighboring cameras 
are required to simultaneously observe the pattern, our method is more practical 
and flexible for general calibration purpose, especially suitable for calibrating the 
widely spaced multi-camera system. 

5.1.2 Accuracy Measure by Relative Deflection Angle 
In Section 2.4 we present a novel accuracy measure, namely Relative Deflection 
Angle (RDA), to fairly evaluate and compare the accuracy of calibration results 
for different camera setups. The new metric is based on the deflection angles 
of projection rays, which take into account both the calibration inaccuracy and 
the inherent system errors. Compared with the mean-squared-distance measure, 
the RDA metric is much less sensitive to image resolution, camera focal length, 
baseline length and scene depth, which is validated by the experiments on different 
camera setups using real data. 

5.1.3 Automatic Scale Selection for Corners & Junctions 
In Section 3.2, we t ry to address the problem of automatic scale selection for image 
corners and junctions. Image neighborhood of these features usually contain the 
background or multiple foreground surfaces, thus cannot be correctly described 
by a single scale. Fan Laplacian-of-Gaussian (FLOG) kernel is proposed, which is 
capable of selecting the appropriate scales for independent image partitions that 
can represent meaningful physical surfaces attached to the corner or junction. 
Support for the proposed method is given in terms of theoretical investigation 
and experiments on real images. 
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5.1.4 Scale Sz Affine Invariant Fan Feature 
In Chapter 3, we propose the scale and affine invariant Fan feature to represent 
and match the image structures near surface discontinuities, for which most exist-
ing feature detectors probably fail because they assume no surface discontinuity 
wi th in the features' support regions. Our method is to divide the support region 
into multiple regular fan sub-regions, namely Fan features, each of which is sup-
posed to represent a local smooth surface or background and is used as a distinct 
signature for matching purpose. In particular, we first propose a multi-scale de-
tector to locate the salient keypoints on image edges, The image neighborhood of 
a keypoint is then divided into multiple Fan features based on edge-association, 
to provide robustness to surface discontinuity and background change. The Fan 
features are made scale invariant by using the automatic scale selection method 
based on FLOG (Section 3.2)，and further made affine invariant based on the 
shape diagnosis of the mirror-predicted surface patch. Finally, we extend the 
SIFT descriptor to describe the image content of a fan-shaped region, which is 
called Fan-SIFT. Experiments of quantitative evaluation show that the Fan fea-
tures have good repeatability under significant scale, viewpoint and background 
changes for general structured scenes and especially the low textured scenes. 
Moreover, our experiments on image matching and object rendering (Chapter 4) 
have demonstrated that the Fan features can contribute to the variety of the bag 
of features, especially because it can successfully detect and match those salient 
image structures near surface boundaries between wide baseline images. 

5.1.5 Geometric Filter for Affine Invariant Features 
Even though the invariant features can be extracted w i th high repeatability de-
spite the strong viewpoint change between wide baseline images, their local ap-
pearance alone usually does not bring enough discriminative power to support a 
reliable matching, resulting in a relatively high number of outliers in the corre-
spondence set. In Section 4.3, we present a novel and efficient geometric filter 
for general scale and affine invariant features. The proposed method detects 
the mismatches by examining the consistency of local affine geometry between 
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neighboring matches of affine invariant features. In particular, a pair-wise affine 
consistency measure is introduced by taking into account the consensus of both 
the key point location and the region size and shape. Experimental results show 
that the proposed geometric filter not only achieves a higher inlier ratio than 
the standard Hough clustering, but also presents superior robustness to severe 
clutters, significant viewpoint changes and non-rigid deformation. 

5.1.6 Image-Based Rendering from Sparse Views 
In Chapter 4, we present a novel image-based rendering method based on affine 
invariant features, which is capable of synthesizing photorealistic novel views from 
a‘ very small number of wide baseline images, and hence can reduce the system 
cost and facilitate the image capture. In wide baseline setting, correspondences 
established by the invariant features are in general too sparse to cover the object 
surface for modeling purpose. In Section 4.4 we propose to refine and propagate 
the ini t ial matches by optimizing a global function that takes into account both 
the appearance similarity and the geometric consistency, so that a quasi-dense set 
of correct matches can be produced even for weakly textured surfaces. Finally, 
a 3D mesh model w i th moderate degree of details can be constructed from the 
quasi-dense set of correspondences, based on which novel views can by synthesized 
in good quality by a double weighting texturing algorithm descried in Section 
4.5. Experiments on difficult image datasets show that the proposed rendering 
method can generate visually pleasant free-view navigation using only two or 
three widely separated images as inputs, which outperforms the state-of-the-art 
object modeling and rendering method. 

5.1.7 Video-Based Rendering from Sparse Views 
In Section 4.6，we extend the feature-based image-based rendering scheme to ren-
der moving objects from wide baseline video sequences. To take advantage of the 
temporal coherence, an efficient two-pass tracking algorithm is proposed to match 
both the key points and their support regions across successive frames. The two-
pass design enables successful tracking of low-textured surfaces and also accounts 
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for the non-rigid deformation. To minimize the additional user effort, we intro-
duce the silhouette transfer to automatically identify the object boundary across 
different views and successive frames. To deal wi th the surface variation arising 
from object movement, the mesh model is adaptively updated by removing the 
inconsistent correspondences that cover the occlusions and adding new boundary 
features to depict the newly appeared surfaces. The feasibility of the video based 
rendering method is demonstrated by our experiments on real video sequences. 

5.2 Future Work 
This section concludes wi th a brief discussion of the future work. 

• Improvement to Fan features: Though the Fan features possess good invari-
ance to scale and viewpoint changes, the features are not extracted in a fully 
scale and viewpoint invariant manner. Actually we have chosen to make 
a few approximations and assumptions to largely reduce the computations 
of feature extraction. The method can surely be improved by further tak-
ing into account the scale and affine invariance through the whole pipeline. 
Firstly, the edges are now detected in a single fine scale to preserve de-
tails and ensure accuracy. Multi-scale edge detection may benefit some 
large scale edges and produce more valuable features, but wil l definitely 
wi l l increase the computations. Secondly, the FLOG-based scale selection 
assumes known fan boundaries which are determined by edge association. 
However, the edge itself is not scale invariant. This requires a more sophis-
ticated method to detect scale invariant fan regions, e.g., to simultaneously 
estimate the scale and fan directions by examining the FLOG response in 
a 3D space of scale and two fan directions, but wi th the cost of much more 
computations. Finally, to fully achieve scale and affine invariance for fan 
regions, we could iteratively perform scale selection and affine normaliza-
tion like the Harris Affine and Hessian Affine features. The question is how 
to make a good tradeoff between the invariance and the complexity. 
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5.2 Future Work 

Improvement to feature-based rendering: Firstly, we have not explicitly 
addressed the problem of self-occlusion in wide baseline stereo. Occluded 
regions have no chance to be matched and hence their 3D information is 
not available. In order to render a complete object, we now simply model 
them by connected triangular facets which of course are not accurate and 
probably wil l result in unpleasant artifacts in the virtual images. To address 
the problem, one way would be to infer the 3D information of occlusions 
by combining both the image clues and the estimated geometry. Another 
method would be purely image-based. We could rely on texture synthesis 
using a large set of training data to render the occluded regions. Secondly, 
the computational expense of the global refinement and propagation is sim-
ilar to the local method. The processing time depends on the number and 
size of the features. In video applications, refinement and propagation are 
performed only for the first frame. The processing of remaining frames can 
be accelerated by using feature tracking instead. We intend to develop some 
fast algorithms for refinement, propagation and tracking to speed up the 
whole rendering system. 
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