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Speaker recognition (SR) refers to the process of automatically determining 

or verifying the identity of a person based on his or her voice characteristics. In 

practical applications, a voice can be used as one of the modalities in a multi-

modal biometric system, or be the sole medium for identity authentication. The 

general area of speaker recognition encompasses two fundamental tasks: speaker 

identification and speaker verification. 

Mel-frequency cepstral coefficients (MFCCs) are widely adopted in speech 

recognition as well as speaker recognition applications. They are extracted to 

primarily characterize the spectral envelope of a quasi-stationary speech seg-

ment. It was shown that cepstral features are closely related to the linguistic 

content of speech. Besides the magnitude-based cepstral features, there are re-

sources in speech, e.g, the phase and excitation source, are believed to contain 

useful properties for speaker discrimination. Moreover, in real situations, there 

are large variations exist between the development and application scenarios for 

a speaker recognition system. These include channel mismatch, recording appa-

ratus mismatch, environmental variation, or even change of emotional/healthy 

state of speakers. As a consequence, the magnitude-based features are insuffi-

cient to provide satisfactory and robust speaker recognition accuracy. There-

fore, the exploitation of complementary features with MFCCs may provide one 

solution to alleviate the deficiency, from a feature-based perspective. 
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摘 要 

説話人識別（Speaker Recogni t ion)是通過説話人的聲音特徵來自動識別其身份的。它可單 

獨用於身份驗證，或作爲多模態生物識別系統中的一個模態。説話人識別一般包含兩种工 

作模式：説話人辨認（Speaker Identification)及説話人確認/認證（Speaker Verification)� 
MFCCs是一種廣泛應用於語音識別及説話人識別的特徵參數。該參數表徵了具有准平 

穩特性的語音信號的頻譜包絡，研究發現它與信號所傳遞的語言信息有密切關係。除了這 

類與幅度相關的倒譜特徵向量以外，語音信號中還包含了其他關乎説話人身份的重要信 

息，例如，相位和聲源信息。而且，一個説話人識別系統往往需耍應用在與其訓練條件存 

在很大差別的環境下，這些差別通常來自信號的傳輸媒介，錄音設備，背景環境，甚或説 

話人木身的情緒及健康狀況。因此，單單倚靠與幅度相關的語音特徵難以提供令人滿意及 

穩健的説話人識別準確度。這使得借助於提取能夠補足MFCCs的特徵參數來提高識別性 

能成爲改善這一現狀的重要途徑。 

AM-FM信號建模是一種近年來應用於描述及分析語音信號的技術。根據其模型，一個 

多成分信號首先被分解，然後通過信號解調，每個單一成分的即時组絡和頻率分量實現分 

離。我們由此生成與相位或聲源相關的調製特徵參數來彌補MFCCs在這些方面的不足。 

借助這種多頻帶解調與分析的思路，我們提出了一個從語音及聲源信號中提取說話人特徵 

參數的新方法：將構成一個語音信號的主要頻率分量抽取出來並從中取得可用於辨別說話 

人的特徵參數，稱之爲 averaged instantaneous frequency of speech (SAIF);另外，將作爲聲 

源信號中主耍成分的有關幅度分量和頻率分量抽取並生成特徵向量averaged instantaneous 
envelope/frequency of residue ( R A I E / R A I F ) �這些參數描述聲音特徵的能力經由特定實驗以 

及說話人識別系統驗證，他們與M F C C s之間的互補性也通過系統混合時的得分得到肯 

定。 

對於實際應用中由於缺乏準確的特徵參數而造成的說話人認證準確率降低，我們提出 

了一種feature mapping的方法來提高特徵參數的穩健性，進而解決這個問題。通過對受到 

背景噪聲及傳輸媒介影響的特徵向量進行深入研究，我們發現這些千擾因素導致向量中參 

數的短時分佈發生畸變。試驗表明我們的方法可以改善這種趨勢。經由在麥克風及電話語 

音數據庫上開展的不匹配環境下的說話人認證實驗證明，本文所提出的穩健特徵提取方法 

有效地提高了系統辨識成功率。 
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AM-FM signal modeling is a technique that has been used in characterizing 

and analyzing speech properties recently. In the framework of AM-FM mod-

eling, the multi-component signal is first decomposed, each single-component 

signal is then described by the instantaneous envelope and instantaneous fre-

quency quantities. It is motivated in our work to capture the relevant phase and 

vocal excitation related modulation features in complementing with MFCCs. In 

the context of multi-band demodulation analysis, we present a novel parame-

terization of speech and vocal excitation signal. A pertinent representation for 

most dominant primary frequencies present in the speech signal is first built. 

It is then applied to frames of the speech signal to derive effective speaker-

discriminative features, namely the averaged instantaneous frequency of speech 

(SAIF). The source-related amplitude and phase quantities are also parameter-

ized into feature vectors, which are referred to as the averaged instantaneous 

envelope/frequency of residue (RAIE/RAIF). The speaker-distinguishable infor-

mation conveyed by the proposed features is evaluated through a set of specif-

ically designed experiments. The application of the features is also assessed in 

the context of a standard speaker identification and verification system. Com-

plementary correlation between MFCCs and the modulation features is revealed 

by system fusion on score level. 

In order to alleviate the problem of severe degradation of speaker authenti-

cation performance under mismatched conditions due to inadequate and inaccu-

rate speaker-discriminative information, a method of feature mapping that can 

build a more robust representation for each stream of parameters in the feature 

vector is proposed. Through extensive observations on features when experi-

encing additive noise or unexpected communication environments, it is found-

that these adverse effects can distort the short-term distributions of the speaker 

parameters. It is also noted that by mapping each feature stream to a target 

distribution over a specific time interval, their robustness to environmental or 

channel mismatch can be enhanced. Through speaker verification experiments 

on microphone and telephone data, it has been proven that the proposed robust 

feature extraction front-end can consistently reduce the equal error rate. 
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Chapter 

Introduction 

Being capable of distinguishing among different people from their voices in what-

ever environments is a highly desired ability for machines operated for biometric 

authentication. This kind of application that uses a machine to recognize per-

son from the spoken phrases is called automatic speaker recognition. It is an 

important biometric issue, as well as a fundamental research problem in speech 

processing. Speaker recognition systems work in two modes: identification and 

verification/authentication. 

Studies indicate that good performance can be achieved if a well-trained 

speaker recognition system operates in an environment similar with that under 

which it is developed. However, various kinds of difference between the training 

and test scenarios, which as a result cause the so-called mismatched condition, 

exist ubiquitously in actual applications. The poorly performed systems to a 

concern degree suffer from this mismatch. A typical example for it is when a 

system is trained from clean data and tested by noise- or channel-corrupted 

speech. Robust speech processing techniques that emerge therefore attempt to 

minimize the latent mismatch and maintain the performance of speech process-

ing systems such that they can operate under various types of environment. 

This chapter reviews the basic knowledge in speaker recognition research 

first, and then introduces the difficulties and challenges a speaker authenti-

cation system faces in practical applications. Motivation, objectives and the 

organization of this thesis is presented in the end. 



Chapter 1. Introduction 

1.1 Speaker Recognition 

Whenever people speak an utterance, they deliver not only a message that car-

ries meaning, but also information about themselves as an individual. The same 

utterance spoken by any two persons will sound different, this is because the 

process of speaking involves extensively the neural, physiological, anatomical 

and physical systems of a specific individual in a concern circumstance. The 

speaker-specific characteristics in the speech signal can provide information rele-

vant to the speaker's anatomy, physiology, linguistic background and emotional 

condition, etc. This information can be captured and processed by listeners and 

human-computer interfaces to describe and characterize speakers. 

An important application of speaker recognition technology is forensic, to 

identify the persons involved in the voice record for criminal purposes, since it is 

a basic and essential way to exchange information through telephone conversa-

tions for the two parties. Ordinary persons will benefit from speaker recognition 

technology as well. Nowadays, biometric authentication systems are required 

in more and more areas, e.g., in remote access to database, telephony banking, 

e-commerce, etc. Usually, biometric systems recognize a person by using distin-

guishing traits. As a performance biometric, human voice cannot be forgotten 

or misplaced, like other physiological characteristics. Experts have predicted 

that in the future, telephone-based services with integrated speech recognition, 

speaker recognition, and language recognition will pose a potential supplement 

or even replacement to the human-operated service. In fact, the focus of speaker 

recognition research over the years has been tending towards such telephony-

based applications. In addition, speaker recognition techniques also involve in 

indexing broadcast programs or annotating recordings, which is therein termed 

as speaker diarization. It is an extension of the speaker recognition techniques in 

multiple speakers case. Besides, research on socially assistant robotics nowadays 

began to introduce human-robot communication in virtue of speech interface to 

the robotic systems [1 . 

Speaker recognition systems, at another point, can be divided into text-

dependent and text-independent ones. In text-dependent systems, the test ut-
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terances are fixed, or known beforehand. In text-independent systems, there 

is little constraint on the words allowed to use by a speaker. Thus, in train-

ing and test stages, the utterances could be completely different in content, 

thus the recognition system should take into account this phonetic mismatch. 

It is seen that the text-independent recognition is more challenging than the 

text-dependent task. 

In practical applications of speaker recognition, variations in the acoustic 

environment and technical factors, such as, recording, transmission, as well as 

intra-speaker variation, such as health condition, mood and aging, bring unde-

sirable effects to the speaker recognition performance. In general, any variation 

between two recordings of the same speaker is known as session variability [2 . 

All classes of speaker recognition task, identification or verification, text-

dependent or text-independent, own specific advantages and disadvantages. In 

practice, a proper choice among them depends on the application. Two mod-

ules are generally included in all systems, they are feature extraction and feature 

matching. Feature extraction is the process of parameterizing speech waveforms 

into vectors of specific types of coefficients. The extracted vectors are of much 

smaller dimension compare with the original data samples. The resultant fea-

ture vectors are used to represent relevant speaker. Feature matching refers to 

the procedure of comparing the extracted features with the ones that stored 

beforehand. 

Speaker recognition has been studied as early as 1960s, the first study was 

carried out to learn how human recognize speakers and the reliability of human's 

recognition performance [3], [4], [5]. With the development of computer technol-

ogy, 1970s saw the invent and arising interests in automatic speaker recognition 

by computer systems. In this stage, Fourier transform, linear prediction and 

cepstral analysis techniques have been employed in generating speech features. 

Long-time average of these parameters were used as speaker representative mod-

els. 

Around the 1980s, dynamic time warping (DTW) [6], vector quantization 

(VQ) [7] techniques have been proposed, which greatly push forward the de-
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velopment of current speaker recognition system. Cepstral features, i.e., the 

mel-frequency cepstral coefficients (MFCCs) [8], linear predictive cepstral coef-

ficients (LPCCs) [9], and also line spectrum pairs (LSPs) [10], [11] were pro-

posed and have obtained the most widely use until today. Also at this time, the 

dynamic features were suggested for use [12 . 

In the 1990s, sophisticated statistical techniques, such as, Gaussian mixture 

model (GMM) [13], support vector machine (SVM) [14], [15], has been used 

to train speaker models. Background score normalization techniques, i.e., co-

hort background model [13] and universal background model (UBM) [16] were 

developed for robust verification of speaker identity. 

Through the years, many efforts have been made to explore new and alter-

native speaker representatives, however, up to date, most of the state of the art 

systems still adopt MFCC to produce their benchmarks. 
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1.2 Difficulties and Challenges of Speaker Au-

thentication 

Provided that the state-of-the-art speaker authentication techniques perform 

well in laboratory simulations, they have to face many difficulties when applying 

in actual applications. Generally speaking, nowadays, the primary challenges 

ahead are arisen from the followings. 

• Sparse data source and unstable acquisition environments 

Speaker authentication that involved in biometrics, access control and forensic 

applications usually based upon various sorts of data source, among them, those 

using mobile devices is becoming a convenient and important way to security 

control for remote services such as telephony banking and e-commerce. Such 

applications constitute quite challenging pattern recognition problem, basically 

owing to sparse data samples and unstable acquisition environments. The spar-

sity of available data set will lead to poorly-trained model for a speaker. Mean-

while, inconsistence of data quality that exists among acquired speech samples 

affect the ultimate performance as well. Similar rules also apply to the testing 

stage, where in some places the testing duration is kept as short as possible. 

Given plenty of developing data source, we can have reliable and satisfactory 

accuracy achieved. Take the NIST Speaker Recognition Evaluation (SRE) for 

instance, recently, more and more sites tend to employ corpus-based approaches 

such as joint factor analysis (JFA), etc, to completely model all sorts of session 

variability [2], without identifying case by case the influential factors involved. 

However, in practice, the corpus-based approaches might not be suitable solu-

tions in realistic cases, where conditions may very well fall outside the applying 

scope of the approaches. 

• Unexpected operation scenarios 

Most of the times, a speaker authentication system is operated under unex-

pected environments other than where it was developed. This may include the 
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ambient noise, reverberation and echo induced by the room acoustics, linear and 

non-linear distortions introduced by the acquisition process, bandwidth filtering 

and distortion involved by transmission channel, and others. These mismatches 

between the development and operation scenarios lead to inconsistence and an-

noyance to the acoustic patterns of individual speakers. Under these rigorous 

circumstances, concern degree of robustness to the undesirable effects that sur-

round is considered indispensable. 



Chapter 1. Introduction 

1.3 Scope of Research and Thesis Outline 

In this thesis, we concentrate on exploiting novel and efficient speaker-distinctive 

parameters for robust speaker recognition purpose. Therefore, we will focus 

more on the feature extraction module of a speaker recognition system, but less 

on the subsequent matching process. 

It is known that Mel-frequency cepstral coefficients (MFCCs) have been 

most commonly used in both speech recognition and speaker recognition sys-

tems. They are extracted to primarily characterize the spectral envelope of 

a quasi-stationary speech segment. It was shown that cepstral features are 

closely related to the linguistic content of speech. Besides the magnitude-based 

cepstral features, there are resources in speech, e.g, the phase and excitation 

source, are believed contain useful properties for speaker discrimination. More-

over, in real situations, there are large variations exist between the development 

and application scenarios for a speaker recognition system. As a consequence, 

the magnitude-based features are insufficient to provide satisfactory and robust 

speaker recognition accuracy. Therefore, the exploitation of complementary fea-

tures with MFCCs may provide one solution to alleviate the deficiency, from a 

feature-based perspective. 

AM-FM signal modeling is a technique that has been used in characterizing 

and analyzing speech properties recently. In the framework of AM-FM mod-

eling, the multi-component signal is first decomposed, each single-component 

signal is then described by the instantaneous envelope and instantaneous fre-

quency quantities. It is motivated in our work to capture the relevant phase and 

vocal excitation related modulation features in complementing with MFCCs. In 

the context of multi-band demodulation analysis, we present a novel parame-

terization of speech and vocal excitation signal. The speaker-distinguishable 

information conveyed by the proposed features is evaluated through a set of 

specifically designed experiments. The application of the features is also as-

sessed in the context of a standard speaker identification and verification sys-

tem. Complementary correlation between MFCCs and the modulation features 

is revealed by system fusion on score level. 
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As far as the challenges existing in practical applications are concerned, 

a postprocessing step of feature enhancement is thought essential in order 

to provide robust speaker-distinctive features. Via observing and identifying 

the adverse effects endured by the concerned speaker representatives in 

mismatched-noise and -channel conditions, we decide to condition the short-

term distributions of the parameter streams to a more robust representation, 

in order to maintain their characteristics in various kinds of environments. 

This thesis is organized as follows: 

• We in Chapter 1 first introduce the scope and methodologies of speaker 

recognition research. The problem to solve, objectives to achieve, as well 

as difficulties to tackle in this research are stated thereafter. Our opinion 

on this subject, the perspectives adopted and solutions submitted are also 

presented. 

• Chapter 2 delivers the technical issues involved in speaker recognition 

research. Besides a review on speaker modeling and matching techniques, 

we give a particular close look at the feature extraction front-end, in which 

the derivation, physical meaning, applying fields of the primary types of 

speech parameters developed have been introduced systematically. 

• Chapter 3 focuses on an important issue encountered when putting a 

speaker recognition system to use in actual applications, that is, its ro-

bustness to the potential mismatch with where it was developed. We 

are especially concerned for the variations caused by ambient noises and 

transmission channels in this study. 

• In Chapter 4，a study is made on characterizing a speaker's vocal ex-

citation pattern through modeling the corresponding voicing signals by 

amplitude-frequency modulation parameters. A novel parametrization 

method is raised to capture the essential source-related features from con-

cerned sequences of instantaneous parameters. The extracted features are 
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then evaluated by theoretically designed experiments as well as examined 

by speaker recognition simulations on real database. 

參 Chapter 5 is dedicated to derive phase-related distinctive features for 

speaker recognition purpose. After looking into the amplitude-frequency 

components that present in speech signals, a method is proposed to iden-

tify and quantify these primary components. A pertinent representation 

for these most dominant primary frequencies present in the speech signal 

is then built and applied to frames of speech signal to derive effective 

phase-related features. Extracted parameters are passed to systematic 

inspection as well as evaluation in recognition tasks. 

• To provide a valid solution to the robustness problem we raised at the 

beginning of this thesis, in Chapter 6, a feature enhancement approach 

is attached as a post-processing step to the feature extraction front-end 

of a speaker authentication system. Through speaker verification experi-

ments under mismatched noise and channel conditions, it is observed that 

the proposed robust feature extraction front-end consistently reduces the 

equal error rate. 

• Chapter 7 concludes the findings and output of this research first, and 

then give suggestions as future directions in proceeding this work. 



Chapter 2 

Fundamentals in Speaker 
Recognition 

Automatic recognition of speaker identity has been a goal of research for many 

years. One of its objectives is to decide which particular voice model from a 

known set of voice models best characterizes a speaker; this task is referred to as 

Speaker Identification (SID). In the different task of Speaker Verification (SV), 

the goal is to decide whether a speaker corresponds to a particular known voice 

or to some other unknown voice. Speaker recognition systems have already been 

employed in applications where a sole medium for identity authentication, e.g., 

telephony banking, is needed; or as one modality in a multi-modal biometric 

system. 

This chapter introduces the fundamentals of speaker recognition, with an 

emphasis on text-independent recognition. In Section 2.1, an overview of the 

state-of-the-art speaker recognition system is given. The basic physiology of 

speech production, human auditory system as well as digital speech model will 

be given in Section 2.2. Section 2.3 focuses on attributes of human voice which 

avail ourselves of distinguishing among different speakers, the common pre-

processing of speech signals are indicated thereafter. Section 2.4 categorizes 

the primary parameter sets employed in speaker recognition systems into five 

classes and makes a review on them. Speaker modeling, as an essential com-

ponent in this classification problem is introduced in Section 2.5. Different 

10 
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recognition tasks that are being dealt with in this research are described in Sec-

tion 2.6 together with their corresponding performance evaluation. Section 2.7 

summarizes the salient points covered in this chapter. 

11 
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2.1 Speaker Recognition System Overview 

speaker recognition involves identifying the person talking rather than what is 

being said, the speech signal must be processed to extract measures of speaker 

variability instead of being analyzed by segments corresponding to phonemes 

or pieces of text one after the other. For speaker recognition, only the identity 

of individual speaker will be classified based on an input of test utterance. 

Both automatic speaker verification and speaker identification use a stored 

database of reference patterns (templates) for N known speakers. Both involve 

similar analysis and decision techniques. Verification is simpler because it only 

requires comparing the test pattern against one reference pattern and it involves 

a binary decision: Is there a good enough match against the template of the 

claimed speaker? The error rate for speaker identification can be much greater 

because it requires choosing which of the N voices known to the system best 

matches the test voice or "no match" if the test voice differs sufficiently from 

all the reference templates. Figure 2.1 depicts a systematic block diagram of a 

speaker recognition system using pattern recognition approach. The three basic 

steps in a pattern recognition model are (1) parameter measurement (in which 

a test pattern is created), (2) pattern comparison, and (3) decision making. 

Reference 
patterns 

} r 
Recognized speaker Speech‘ Parameter Test pattern Pattern Decision rule 
Recognized speaker 

measurement comparison Decision rule 

Figure 2.1: Pattern recognition approach to speaker recognition 

The first step in a speaker recognition system, whether for identification or 

verification, is to build a model of the voice of each target speaker, as well as a 

model of a collection of background speakers, using speaker-dependent features 

extracted from the speech waveform. For example, the oral and nasal tract 

length and cross-section during different sounds, the vocal fold mass and shape, 

12 
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(a). Speaker identification system. 

(̂ In̂ t spee^ Feature Similarity Decision extraction Similarity Decision Verification result \ 
(Accept / Reject) J 

Reference 
model (^^reshol^ 

(b). Speaker verification system. 

Figure 2.2: An overview of a speaker recognition system. 

and the location and size of the false vocal folds, if accurately measured from 

the speech waveform, could be used as features in an anatomical speaker model. 

We call this the training stage of the recognition process, and the associated 

speech samples used in building a speaker model is called the training data. 

During the recognition or testing stage, we attempt to match (in some sense) 

the features measured from the waveform of a test utterance, i.e., the test data 

of a speaker, against speaker models obtained during training. The particular 

speaker models we match against, i.e., from target and background, depends on 

the recognition task. An overview of these components of a speaker recognition 

system for the verification and identification tasks are given in Figure 2.2 [17 

13 



Figure 2.3: The speech chain. 

Figure 2.3 illustrates the speech chain - a spoken message travels from the 

speaker to the listener [18]. The speech chain consists of three events: the 

production of speech sounds through the vocal apparatus of the speaker, the 

travelling of the acoustic signal through the air and, finally, its reception by the 

ear of the listener. The brain of the speaker controls the production of speech 

sounds and the brain of the listener analyzes the signal and converts it into 

meaning. 

14 
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2.2 Physiology of Speech and Hearing 
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Nasal Cavity 

Vocal Tract 

Oral Cavity 
Vocal Cords 

Tongue 
Trachea 

Air 

Figure 2.4: The human vocal system. 

2.2.1 Speech production mechanism 

One of the important links in the speech chain is speech production, the spe-

cialized movements of our vocal organs that generate speech sound waves. A 

simplified view of speech production is given in Figure 2.4, where the speech 

organs are divided into three main groups： the lungs, vocal cords, and vocal 

tract. Airflow is necessary for sound to be generated. The lungs act as a power 

supply and provide airflow to the vocal cords stage of the speech production 

mechanism. The vocal cords consist of ligament and muscle, and are adjustable 

under muscle control. The cartilage surrounding the vocal cords provides sup-

port. The opening that allows air to pass through the vocal cords from the 

trachea to the larynx is called the glottis. Depending on the absence and pres-

15 
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ence of vocal cord vibration, the airflow from the lungs is modulated into either 

a periodic puff-like or a noisy airflow source to the third organ group, the vo-

cal tract. The vocal tract gives the modulated airflow its “ color" by spectrally 

shaping the source. Sound sources can also be generated by constrictions and 

boundaries, not shown in the figure, that are made within the vocal tract itself, 

yielding in addition to noisy and periodic sources, an impulsive airflow source. 

Following the spectral coloring of the source by the vocal tract, the variation 

of air pressure at the lips results in a travelling sound wave that the listener 

perceives as speech. 

Principal components in speech production 

Speech differs from breathing in that at some point in the path you set the air 

in rapid motion or vibration. There are two principal components in speech 

production: 

• Excitation - “ creates" a sound by setting the air in rapid motion. 

• Vocal tract - "shapes" the sound. 

The excitation of speech has three forms： 

• Phonation： vibration of vocal cords. The result of the vibrating excitation 

is a quasi-periodic release of air, the fundamental frequency of the vocal 

cord opening/closing cycle becomes the fundamental frequency (FO), or 

equivalently, pitch of the resulting sound. 

• Frication: turbulent air flow. The excitation is set up by forcing air past 

a constriction at some point in the vocal tract. 

• Plosive: closure at some point in the vocal tract, followed by a release of 

air. 

There are then three general categories of the source for speech sounds: pe-

riodic^ noisy, and impulsive^ although combinations of three sources are often 

16 
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present [17]. Examples of speech sounds generated with each of these source cat-

egories are seen in the word "shop", where the "sh", "o", and "p" are generated 

from a noisy, periodic, and impulsive source, respectively. Such distinguishable 

speech sounds are determined not only by the source, but by different vocal tract 

configurations, and how these shapes combine with periodic, noisy, and impul-

sive sources. Also defined in this production process are the speech properties 

that characterizes a speaker. 

A widely used model for speech production is based upon the assumption 

that the vocal tract can be represented as a concatenation of lossless acoustic 

tubes [19]. The tube is closed at the glottis end and open at the mouth end. 

The modes of vibration of the vocal tract is resonances. In speech, the resonant 

frequencies are called formant frequencies. 

Relation between excitation and the vocal tract 

It is shown that the vocal tract modeled as a uniform tube can be represented 

with an all-pole transfer function. In terms of the LTI system model, the ex-

citation is the input function x{t), the vocal tract acts as the system function 

H(e—�, and the speech is the output s{t). The shape of the resulting spectrum 

is given by iJ(e加).In a simplified model for phonated sounds, the glottal pulses 

of x{t) form an impulse train, with interval T between pulses. This appears in 

the speech spectrum as pulses at frequency intervals 1/T, shaped by the 丑 (e ) ” 

envelope. This system is not time-invariant, but for a short time interval of 

10-30 msec, it can be viewed as a "piecewise" LTI system, where h{t) is the 

impulse response. Thus, for a specific segment of speech, its excitation and 

vocal tract is related in the following manner: 

s{t) = x{t)^h{t). (2.1) 

Speech analysis systems typically assume all-pole filters are identical to tube 

models for all speech sounds. 

17 
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2.2.2 Auditory system: hearing and perception 

The other important link in the speech chain is speech perception, which pro-

cesses the received speech sound. The sound waves are first collected by our 

outer ear, and then amplified, in some frequencies. In this way, the vibrations 

of air are translated to vibrations of the tympanic membrane. This kind of 

vibration will be translated to oscillations of liquid in the inner ear by the mid-

dle ear. In the inner ear, the cochlea transforms mechanical vibrations into 

nerve impulses, and then to the brain. The processing in the inner ear obeying 

the "Place Theory": basilar membrane vibrates in response to sound; point of 

maximum vibration (i.e., displacement) depends on the frequency of the sound. 

Movement of basilar membrane translates mechanical signal to electrical signal. 

2.2.3 Digital speech model 

Section 2.2.1 introduces the physiology of speech production. It is possible 

to relate these physiological features with the speech signal model by deriving 

rather detailed mathematical representations for the acoustics that involved 

in the speech production process. It is seen that sound is generated in three 

ways, and that each mode results in a distinctive type of output. The vocal 

tract imposes its resonances upon the excitation so as to produce the different 

sounds of speech. This is the essence of modeling speech waveform in a digital 

manner. 

Vocal tract 

The resonances (formants) of speech correspond to the poles of the transfer 

function V{z). An all-pole model is a very good representation of vocal tract 

effects for a majority of speech sounds; however, the acoustic theory tells us 

that nasals and fricatives require both resonances and anti-resonances (poles 

and zeros). In these cases, we may include zeros in the transfer function or 

we may reason with Atal [20] that effect of a zero of the transfer function can 

be achieved by including more poles. In most cases, this approach is to be 
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preferred. 

where {ak, k = 1,2,... ,p}, p and G are the order and gain of the filter, respec-

tively. These are time-varying parameters that determine the speech model. 

Since the coefficients of the denominator of V{z) in Equation 2.2 are real, 

the roots of the denominator polynomial will be either real or occur in complex 

conjugate pairs. A typical complex resonant frequency of the vocal tract is 

sk,sl = -cTfc 士 j27rFk. (2.3) 

The corresponding complex conjugate poles in the discrete-time representa-

tion would be 

zk.zl = 土沖冗凡 r 

二 e-叫Tcos{27TFkT) 士 (2.4) 

The bandwidth of the vocal tract resonance is approximately 2ak and the center 

frequency is 

Radiation 

In obtaining a discrete-time representation of the speech signal, the radiation 

effects brought by the pressure at the lips is usually considered. A reasonable 

approximation to the radiation effects is obtained with a first order backward 

difference, 

R{z) = R o { l - z - ' ) . (2.5) 

This radiation “load" can be cascaded with the vocal tract model V{z) as 

depicted in Equation 2.2. 

Excitation 

As we have known that the majority of speech sounds can be classed as either 

voiced or voiceless, to generate an appropriate input to the vocal tract radiation 
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system, the excitation generally can produce either a quasi-periodic pulse wave-

form or a random noise waveform. In the case of voiced speech, the impulse 

train generator produces a sequence of unit impulses which are spaced by the 

desired fundamental period. This signal in turn excites a linear system whose 

impulse response g{n) has the desired glottal wave shape. A gain control, Ay, 

controls the intensity of the voiced excitation. Concerning the choice of the 

form of g{n), Rosenberg [21] found in a study of the effect of glottal pulse shape 

on speech quality that the natural glottal pulse waveform could be replaced by 

a synthetic pulse waveform of the form 

9{n) = - [ l - cos{7m/Ni) 

=cos[K�n — Ni)/2N2 

= 0 

0 < n < iVi 

Ni<n<N^ + N2 

otherwise. 

(2.6) 

Source-filter model 

In practice, the speech sound waves are always sampled to a digit format in 

storage and transmission. In the digital model of speech signals, the glottal 

source and formants are often interpreted as excitation and resonance properties 

of the linear system; and the essence of the model is that the vocal tract imposes 

its resonances upon the excitation so as to produce the different sounds of 

speech. It is simply that a valid approach to representation of speech signals is 

in terms of a “source-filter" model [19] such as depicted by Figure 2.5. 

Parameters 

Excitation Time-varying linear Itnii, filter IIP Speech output 

Figure 2.5: The source-filter model of speech production. 

The important features in the acoustic theory of speech production, as the 
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sound generation, propagation, and radiation can in principle be solved with 

suitable values of the excitation and vocal tract parameters to compute an 

output speech waveform. Figure 2.5 shows a general block diagram which is 

a typical representative of numerous models that have been used as the basis 

for speech processing. These models all have in common that the excitation 

features are separated from the vocal tract and radiation features. The vocal 

tract and radiation effects are accounted for by the time-varying linear system. 

The linear filter that characterizes the model is to deliver the resonance effects 

that we have discussed in Section 2.2.1. The excitation in the system is a signal 

that is either a train of (glottal) pulses, or random noise [22]. The parameters 

of the source and filter are chosen so that the resulting output has the desired 

speech-like properties. 

To produce a speech-like signal, the mode of excitation and the resonance 

properties of the linear filter must change with time, yet, the properties of 

the speech signal change relatively slowly with time. The nature of this time 

variation can be seen from the short time stationary characteristics of speech 

signal [19]. For many speech sounds, it is reasonable to assume that the general 

properties of the excitation and vocal tract remain fixed for periods of 10-30 

msec. Thus, the source-filter model involves a slowly time-varying linear system 

excited by an excitation signal whose basic nature changes from quasi-periodic 

pulses for voiced speech to random noise for unvoiced speech [19 . 
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2.3 Speaker-distinctive Characteristics 

A speaker recognition system, at its most elementary level, comprises a col-

lection of algorithms drawn from a wide variety of disciplines, including signal 

processing, statistical pattern recognition, among others. Although variations 

resulting from different recognizers exist, the greatest common denominator for 

all recognition systems is the signal processing front-end, which converts the 

speech waveform to some type of parametric representation for further analysis 

and processing. 

There are a variety of voice attributes that characterize a speaker. Speech is 

a complicated signal produced as a result of several transformations occurring at 

several different levels: semantic, linguistic, articulatory, and acoustic [17]. Dif-

ferences in these transformations appear as differences in the acoustic properties 

of the speech signal. Speaker-related differences are a result of a combination 

of anatomical differences inherent in the vocal tract and the learned speaking 

habits of different individuals. In speaker recognition, all these differences can 

be used to discriminate between speakers. 

Human perception of speech sounds is a complex process, to measure the 

speech waveform into representative features, the consideration of the human 

auditory properties is essential, and the preprocessing techniques used will 

largely affect the feature extraction output. In this section, we will first out-

line the fundamentals of human-being in perceiving speaker identity. Some 

inevitable analysis and preprocessing approaches are introduced thereafter. 

2.3.1 Human vocal attributes 

The voice has various attributes, these are chiefly frequency^ harmonic structure, 

and intensity. 

Fundamental frequency 

The immediate result of vocal cord vibration is the fundamental tone of the 

voice, which determines its pitch. In physical terms, the frequency of vibra-
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Figure 2 6 Waveform and spectrograms of a speech signal 
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tion as the foremost vocal attribute corresponds to the number of air puffs per 

second, counted as cycles per second (cps or Hertz). 

This frequency is controlled by a combination of effects, both stable and 

variable factors. The stable determinants of the individual voice range depend 

on the laryngeal dimensions as related to gender, age, and body type. The 

smaller a larynx, the higher its pitch range. Within this individually fixed 

range, variables that influence the pitch of a given phonation include: tension 

of the cord, force of glottal closure indicated by the glottal resistance, and 

expiratory air pressure. During speech, we continually alter the tension and 

length of the vocal cords, and the air pressure from the lungs, until we get the 

desired frequency. The range of vocal cord frequencies used in normal speech 

extends from about 60 to 350 cps, or more than two octaves [18 . 

As a measurement of frequency, FO is recorded at several locations along 

an utterance, considering its change over time. Such measurements are un-

doubtedly somewhat correlated, but in addition to the average value, they also 

contain information about the pitch contour, which has been used for speaker 

recognition by Atal [23]. An illustration of pitch contour is given in Figure 

2.6(b). 

Harmonic structure 

A second attribute of vocal sound, harmonic structure, depends on the wave-

form produced by the vibrating vocal cords. Like any musical instrument, the 

human voice is not a pure tone (as produced by a tuning fork); rather, it is com-

posed of a fundamental tone (or frequency of vibration) and a series of higher 

frequencies called upper harmonics. As long as the harmonics are precise multi-

ples of the fundamental, the vocal will sound clear and pleasant. If nonharmonic 

components are added, increasing degrees of roughness, harshness, or hoarse-

ness will be perceived in relation to the intensity of the noise components in the 

frequency spectrum. 

The primary harmonic structure is radiated into the vocal tract then. The 

shaping of the vocal tract determines the modulation of the voice through res-
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onance and damping. As a general rule, a long and wide vocal tract enhances 

the lower harmonics, producing a full, dark, and resonant voice. Conversely, 

shortening and narrowing of the vocal tract leads to higher resonances with 

lightening of the voice and the perceptual attributes ranging from shrill and 

strident to constricted and guttural. 

Intensity 

Vocal intensity, the third major vocal attribute, depends primarily on the am-

plitude of vocal cord vibrations and thus on the pressure of the subglottic 

airstream. The greater the expiratory effort, the greater the vocal volume. 

Another component of vocal intensity is the radiating efficiency of the sound 

generator and its superimposed resonator. The larynx has been compared to 

the physical shape of a horn. This construction is most efficient in acoustical 

practice, as seen in the shape of wind instruments, car horns, sirens, loudspeak-

ers, etc. A well-shaped, wide, and flexible vocal tract enhances the projective 

potential of the voice. Conversely, a morphologically narrow, pathologically con-

stricted, or emotionally tightened throat produces a muffled, constricted sound 

with poor carrying power. The inborn automatic reflexes of laughing and yawn-

ing illustrate the resonator action of the vocal organ. Together with a widely 

opened mouth, flat tongue, elevated palate, and maximally widened pharynx, 

the larynx assumes a lowered position with maximally elevated epiglottis. This 

configuration is ideal for the unimpeded radiation of the vocal cord vibrations 

so that the resulting sound is loud and bright, with a gaily ringing quality; 

it is the sound of happy laughter. The opposite is present with the painfully 

tight-throated, choked sobbing of someone crying in despair. Generally, the 

resonant effects of the vocal tract on the harmonic structure is reflected by 

the spectral envelope of a speech segment. Individual formants usually present 

themselves with a peak in the spectrum. In Figure 2.6(c), the formants are 

reviewed through the spectro-temporal spectrogram display. 
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Voice quality 

Apart from the variable influences of the vocal tract on the momentary vocal 

resonance according to training and intention, the resonator exerts a constant 

influence on the vocal quality by shaping its individual characteristics. The 

anatomical shape and the physiologic flexibility of the vocal tract serve to mold 

the individual vocal personality in at least two ways: by its inborn shape and 

by the learned behavior of using it for communication. Perceived characteristic 

“acoustic coloring" of voice that derived from a variety of physiological features 

forms clusters of identifiable voice types. Modal voice, breathy voice, pressed 

voice, creaky voice, tense voice, harsh voice, nasal voice are all examples of 

different voice types. 

In English, apart from distinguishing voiced and voiceless sounds, voice 

quality does not make linguistic contrasts, but conveys information about the 

speaker. In some languages, differences in voice quality or pitch trajectory are 

used to convey linguistic meanings. Languages and dialects have characteristic 

voice qualities; personal voice quality enables a listener to recognize a particular 

individual. Furthermore, the quality of someone's voice also conveys emotions 

and attitudes. 

Any individual's mother tongue shapes his articulatory behavior into certain 

patterns, which remain audible in all languages that he learns after puberty and 

constitute one aspect of the so-called foreign accent. The ability to recognize 

a given speaker solely by the quality and inflection of his voice is the basis of 

efforts to produce "voiceprint" that should be as unmistakably identifying as 

fingerprints are. 

2.3.2 Signal processing front-end 

In the process of feature extraction of a speaker recognition system, there are 

some common signal processing techniques that are essential as the prepro-

cessing steps of speech signal [24]. While, some perceptual cues and auditory 

findings are useful for speech analysis, for example, the auditory frequency scales 
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Figure 2.7: Signal processing front-end for feature extraction - a glance. 

that employed in multi-band energy analysis. Besides, spectral analysis mod-

els, such as filter-bank model, LP model of short-term speech spectrum are 

viewed as important parametric representations of speaker's vocal tract-related 

characteristics, they are therefore considered as the core of this kind of feature 

extraction front-ends [25 . 

Preprocessing steps 

1. Preemphasis 

The digitized speech signal, s(n), is put through a low-order digital system 

(typically a first-order FIR filter), to spectrally flatten the signal so as to reduce 

the dynamic range. A first-order filter is used in our work: 

H[z) = 1 - 0.97^" (2.7) 

Figure 2.8 shows the magnitude characteristics of 11[6側）.It can be seen 

that at / = 1 (half the sampling rate) there is a 36dB boost in the magnitude 

over that at / = 0. 

2. Frame blocking 

Speech signal is quasi-periodic in voiced 

short-time stationary within 10 — 30 msec. 

signal should be framed into short segment 

segment, and it can be viewed as 

Hence, the preemphasized speech 

before further processing. In this 
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Figure 2.8: Magnitude response of the 1st-order high-pass filter for pre-emphasis. 

step, the signal is blocked into frames of N samples, between two adjacent 

frames, there is an overlap of M samples. Figure 2.9 illustrates the blocking 

into frames for the case in which M = (l/2)iV. 

N 

M 

M 

N 

Figure 2.9： Blocking of speech into overlapping frames (N = 2M). 

3. Windowing 

To minimize the signal discontinuities at the beginning and end of each frame, 

usually there is a windowing process applied. A typical window used for the 

speech front-end parametrization is Hamming window, which has the following 

form, 

w(n) = 0.54 - 0.46 cos( 
27rn 

N 
^<n<N- (2.8) 
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Figure 2.10: A bank of triangular filters at the Mel frequency scale. 

In hearing sounds, human ears map the acoustic frequency, / , to a "perceptual" 

frequency scale. A most popular approximation to this type of mapping in 

speaker recognition is known as the mel scale: 

mel[f) = 2595%io(l + 
700 

(2.9) 
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Non-linear frequency scale warping 

Human ears resolve frequencies non-linearly across the audio spectrum and em-

pirical evidence suggests that designing a front-end to operate in a similar non-

linear manner improves recognition performance. There are many non-linear 

frequency scales that approximate the sensitivity of the human ear [26]. For 

example: 

• The Mel frequency scale 

• The Bark frequency scale 

• The Equivalent Rectangular Bandwidth (ERB) scale 

• The Mel frequency scale 
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The mel scale attempts to map the perceived frequency of a tone, or pitch, 

onto a linear scale. It is often approximated as a linear scale from 0 to lOOOHz, 

and then a logarithmic scale beyond lOOOHz. A bank of triangular bandpass 

filters that spaced along the mel scale is shown in Figure 2.10. This set of filter-

bank is always employed in parameterizing speech signal into subband energy 

quantities. 

• The Bark frequency scale 

Another important perceptual approximation in human hearing is Bark fre-

quency scale. The Bark scale ranges from 1 to 24 Barks, corresponding to the 

first 24 critical bands of hearing [27]. The center-frequencies and band widths 

of the Bark bands are to be interpreted as samplings of a continuous variation 

in the frequency response of the ear to a sinusoid or narrow-band noise pro-

cess. That is, critical-band-shaped, masking patterns should be seen as forming 

around specific stimuli in the ear rather than being associated with a specific 

fixed filter bank in the ear. The Bark scale is defined above in terms of frequency 

in Hertz versus Bark number. 

• The Equivalent Rectangular Bandwidth (ERB) scale 

Moore and Glasberg [28] have revised Zwicker's loudness model. The modifi-

cation replaces the Bark scale by the equivalent rectangular bandwidth (ERB) 

scale. The ERB of the auditory filter is assumed to be closely related to the 

critical bandwidth and is defined analytically, thus, it is also more smoothly 

behaved than the Bark scale data. 

At moderate sound levels, the ERB in Hertz is defined by 

ERB �=0.108/ + 24.7, (2.10) 

where f is center-frequency, normally in the range 100 Hz to 10 kHz [28]. The 

ERB is generally narrower than the classical critical bandwidth. 

The ERB scale is defined as the number of ERBs below each frequency [28], 

that is, 

ERBS[f) = 21.4/o^io(0.00437/ + 1). (2.11) 
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Figure 2.11: An overlay of the normalized Bark and ERB frequency warping. 

An overlay of the normalized Bark and ERB frequency warpings is shown in 

Figure 2.11. The ERB warping is determined by scaling the inverse of Equation 

2.11，evaluated along a uniform frequency grid from zero to the number of ERBs 

at half the sampling rate, so that DC maps to zero and half the sampling rate 

maps to TT. 

Auditory filter banks 

Auditory frequency scale warping is closely related to the topic of auditory 

filter banks which are non-uniform bandpass filter banks designed to imitate 

the frequency resolution of human hearing [29]. Classical auditory filter banks 

include constant-(5 filter banks such as the widely used third-octave filter bank. 

More recently, constant-Q filter banks for audio have been devised based on 

the wavelet transform, including the auditory wavelet filter bank [30]. Auditory 

filter banks have also been based more directly on psychoacoustic measurements, 

leading to approximations of the auditory filter frequency response in terms of 

a Gaussian function [31], a "rounded exponential" [32], and more recently the 

gamma-tone (or ” Patterson-Holdsworth”) filter bank [33]. The gamma-chirp 
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Figure 2.12： 20-channeled Gamma-tone filter banks. 

Spectral analysis models 

• Bank-of-filters model 

The overall structure of the bank-of-filters model is shown in Figure 2.13. The 

sampled speech signal, s(n), is passed through a bank of Q bandpass filters, 

giving the signals 

s^{n) = s ( n ) * hi{n), <i<Q 
M,-

m s n — m] (2.12) 

where we have assumed that the impulse response of the i仇 bandpass filter 

is hi{m) with a duration of M^ samples; hence, we use the convolution rep-

resentation of the filtering operation to give an explicit expression for 

32 

Chapter 2. Fundamentals in Speaker Recognition 

filter bank further adds a level-dependent asymmetric correction to the basic 

gamma-tone channel frequency response, thereby providing a yet more accurate 

approximation to the auditory frequency response [34]. Figure 2.12 illustrates 

the magnitude response of an 20~channeled Gamma-tone filter bank. 
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Figure 2 13 Bank-of-filter spectral analysis model 

the bandpass-filtered speech signal The purpose of the filter-bank analyzer is 

to give a measurement of the energy of the speech signal in a given frequency 

band [22] And the model output Ei, t = 1, , Q will be useful in the feature 

parametrization process in later discussion 

• LP analysis model 

The basic ideal behind the LP model is that a given speech sample at time n, 

s(n), can be approximated as a linear combination of the past p speech samples, 

such that 

s{n) ^ ais{n — 1) + a2s{n — 2) + + — p), (2 13) 

where the coefficients ，a�， , are assumed constant over the speech anal-

ysis frame We convert Equation 2 13 to an equality by including an excitation 

term, Gu{n), giving 

s(n) = — A;) + Gu{n] (2 14) 
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where u{n) is a normalized excitation and G is the gain of the excitation. By 

expressing Equation 2.14 in the 2;-domairL we get the relation 

(2.15) 
hr-

leading to the transfer function 

邓） 

GU{z) 1 - ELi Aiz] 
(2.16) 

The interpretation of Equation 2.16 is given in Figure 2.14, which shows the 

normalized excitation source, u{n), being scaled by the gain, G, and acting as 

input to the all-pole system, H(z) 二 to produce the speech signal, s{n). 

H(z) and A{z) are named LP filter and LP inverse filter, respectively. Based on 

our knowledge that the actual excitation function for speech is essentially either 

a quasi-periodic pulse train (for voiced speech sounds) or a random noise source 

(for unvoiced sounds), the appropriate synthesis speech model, corresponding 

to the LP analysis, is as shown in Figure 2.15. Here the normalized excitation 

source is chosen by a switch whose position is controlled by the voiced/unvoiced 

character of the speech, which chooses either a quasi-periodic train of pulses 

as the excitation for voiced sounds, or a random noise sequence for unvoiced 

sounds. The appropriate gain, G, of the source is estimated from the speech 

signal, and the scaled source is used as input to a digital filter {H{z)), which 

is controlled by the vocal tract parameters characteristic of the speech being 

produced. Thus the parameters of this model are voiced/unvoiced classification, 

ti{n) V 
1 一 1 

• f \ rt ) • • 

G 

Figure 2.14; All-pole LP speech model 
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pitch period for voiced sounds, the gain parameter, and the coefficients of the 

digital filter, a^ [20]. These parameters all vary slowly with time. 

Pitch period 

Impulse train 
generator 

V/U switch 

Vocal tract parameters 

Random 
noise generator 

<n) 

Time - varying 
digital filter } 一 

Time - varying 
digital filter 

G 

Figure 2.15: LP-based speech synthesis model 

As an inverse process of the LP synthesis, the LP analysis model is illustrated 

by Figure 2.16. It is due to the fact that the spectra of pulse trains and random 

noises are both flat, the all-pole filter H{z) actually determines the spectral 
I 

envelope of the speech signal. Thus, the purpose of the LP analyzer is to give a 

representation of the speech spectral envelope in a set of prediction coefficients, 
Ojjci k — 1, . . . , 

w w 
w-

LP coefficients: a^ 
Prediction error: e{ri) 

LP order - p 

Figure 2.16; The LP analysis model. 
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Energy, delta and acceleration coefficients 

Usually, to augment the spectral parameters derived from filter-bank or LP 

analysis model, an energy term can be affiliated to the feature vector. The 

energy of an analysis frame is computed as the log of the frame energy, that is, 

for speech frame of samples s(n), n = TV — 1, 

N-l 

E = log^ s\n). (2.17) 

n = 0 

The basic static parameters of the speech spectrum provides a good rep-

resentation of the local spectral properties of the signal for the given analysis 

frame. However,an improved representation can be obtained by extending the 

analysis to include information about the temporal cepstral derivative (both 

first and second derivatives, which are also termed as delta and acceleration 

coefficients). The delta coefficients are computed using the following regression 

formula 
^ E t i ^ m ^ ^ (2.18) 

where dt is a delta coefficient at time t computed in terms of the corresponding 

static coefficients Ct-e to Q+e. 6 is the delta window. The acceleration coeffi-

cients can also be obtained by applying the same equation. Since Equation 2.18 

relies on past and future speech parameter values, some modification is needed 

at the beginning and end of the speech. Usually a replica of the first or the last 

vector is used to fill the regression window in this case. 
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2.4 Review of Feature Representations 

The function of the measurement phase of a speaker recognition system is to per-

form a number of characterizing measurements on the voice pattern under test. 

An ideal speaker-discriminative feature representation is expected to [35] [36]: 

• have large inter-speaker variability and small intra-speaker variability, 

• be reasonably robust to background noise and distortions, 

• occur naturally and frequently in normal speech, 

• be easily measurable, 

• be stable over time or not be affected by the speaker's health/mood, 

• be difficult to mimic. 

Dimension of the feature vector should also be relatively low. For statistical 

speaker modeling method, such as the Gaussian mixture models, the number 

of required training samples for reliable density estimation grows exponentially 

with the dimension of feature. This problem is known as the curse of dimen-

sionality [37]. The computational savings are also obvious with low-dimensional 

features. 

Differences in voices stem from two broad bases: organic and learned differ-

ences. Organic differences are the result of variations in the sizes and shapes 

of the components of the vocal tract: larynx, pharynx, tongue, teeth, and the 

oral and nasal cavities. Since the resonances of the vocal tract and the char-

acteristics of the sound energy sources depend upon just these anatomical fac-

tors, organic differences lead to differences in fundamental frequency, laryngeal 

source spectrum, and formant frequencies and bandwidths. Learned differences 

are the result of differences in the patterns of coordinated neural commands 

to the separate articulators learned by each individual. Such differences give 

rise to variations in the dynamics of the vocal tract such as the rate of for-

mant transitions and coarticulation effects. Naturally, many speaker-dependent 

characteristics are affected by both of these factors. 

37 



Chapter 2. Fundamentals in Speaker Recognition 

There are much efforts that have been devoted to exploiting different mea-

surement schemes for speaker-distinguishable characteristics delivered by speech 

utterances throughout the years. Wolf in [36] has categorized the measurement 

schemes of speaker-dependent parameters into three main classes. Kinnunen et 

al. [38] lately made a survey and summarized the primary speech features that 

have been employed for speaker recognition purposes. Besides the classical and 

leading features, some recently derived parameter sets have also been included. 

The features are generally labeled as five clusters from the viewpoint of their 

physical interpretation. Their physical meanings and the typical processing 

approaches applied are briefly described as follows: 

• Short-term spectral features 

0 Describing the short-term spectral envelope, is an acoustic correlate of 

timbre, as well as the resonance properties of the vocal tract. 

0 Auditory frequency warping, bank-of-filters model, LP spectral analysis, 

dynamic coefficients appending, etc. 

• Voice source features 

• Characterizing the glottal flow. 

• Pitch determination, pitch-synchronous analysis, pitch-epoch localiza-

tion, etc. 

• Spectro-temporal features 

• Interpreting speaker properties in flexible time-frequency resolutions. 

0 Subband energy separation, multiple frequency band demodulation, etc. 

• Prosodic features 

0 Including pitch, intonation, duration and rhythm, usually span over tens 

or hundreds of milliseconds. 

• FO tracking, dynamic coefficients appending, etc. 

• High-level features 
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0 Attempting to capture conversation-level characteristics of speakers. 

• Speech recognizer, statistical language modeling, etc. 

Generally speaking, short-term spectral and voice source features are rela-

tively easy to extract, and there is no need for huge amount of data. Up until 

now, the short-term spectral features have always dominated the front-end of 

the leading speech, speaker, even language recognition systems. Besides the 

stable performance provided, their low demand on computational cost makes 

the real-time application feasible. However, the biggest challenge they are faced 

is the parameter degradation in presence of background noise and in channel 

mismatch conditions. Prosodic and high-level features are believed to be more 

robust, but less discriminative and easier to impersonate. High-level features, 

since connecting with the personalized lexicon and recording the idiolectal pat-

tern of individual speakers, are less affected by the variation in noise or channel 

conditions. The high-level speaker-related characteristics are whereas difficult 

to extract, and there will be a lot of training data needed in the feature ex-

traction process. Thus, it is hard to apply this genus of features into real-time 

recognition tasks considering their delay in making the decisions. To conclude, 

there does not yet exist globally "best" feature but the choice is a trade-off 

between speaker discrimination, robustness, and practicality. 

2.4.1 Short-term spectral features 

In early 1980s, Mel-frequency cepstral coefficients (MFCCs) [8] were introduced 

by Davis et al. for speech recognition and then adopted in speaker recognition. 

This set of parameters exploits auditory principles, as well as the decorrelat-

ing property of the cepstrum. In addition, the mel-cepstrum is amenable to 

compensation for convolutional channel distortion. As such, the MFCCs have 

proven to be one of the most successful feature representations in speech-related 

recognition tasks. The extraction of MFCC static coefficients is illustrated by 

Figure 2.17. 

As another principal spectral analyzer for speech signal, the LP coefficients 
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Figure 2.17: Mel-frequency cepstrum and their delta, delta-delta coefficients. 
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{ak} are rarely used as features directly, but they are transformed into ro-

bust and less correlated features such as linear predictive cepstral coefficients 

(LPCCs) [9]. Alternatively, line spectral pair (LSP) [10], [11], and perceptual 

linear prediction (PLP) coefficients [39] are all describing the characteristics of 

spectral envelope of individual speakers. 

2.4.2 Voice source features 

Voice source features characterize the glottal excitation signal of voiced sounds 

such as glottal pulse shape and FO. It is long believed that voice source features 

carry speaker-discriminative information. Besides FO, which delivers message 

about the rate of vocal cords vibration, the other vocal source-related parame-

ters mainly focus on the glottal pulse shape. Glottal pulse shape solely is the 

most important aspect of speech in the way it affects our perception of voice 

quality. Mathematical representations, among which the Liljencrants-Fant (LF) 

glottal pulse model [40] is the most commonly employed, were built for derivative 

of glottal pulse airflow. Primary indexes in recording the pulse shape include 

pitch period，open quotient, glottal closure instant, etc. 

The glottal features are not measurable due to the vocal tract modulating 

effects. LP inverse filtering is usually employed to distinguish the glottal source 

from those effects by the vocal tract, such as those reported in [41], [42]，[43], 

44]. Other methods used include the closed-phase covariance analysis on the vo-

cal cords close portions [45]. In [42], the glottal flow parameters were employed 

as the speaker identification features, while, speaker-dependent parameter sets 

were usually parameterized by analysis methods like auto-associative neural 

network [46], pitch-synchronous wavelet transform [43], cepstral analysis [45], 

[44], Hilbert transform [47], etc. 

As reported by many, speaker recognition systems seldom depend solely 

on the vocal source features, since they are not discriminative as vocal tract 

features. Nevertheless, their complementarity with the vocal tract parameters 

are broadly identified, thus, fusing these two information sources can improve 

accuracy [43], [47]. Another advantage of the vocal source features lie in their 
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less affiliation with the phonetic content of spoken utterances. Therefore, they 

require less on the phonetic balance and amount of training data set [46 • 

2.4.3 Spectro-temporal features 

Spectro-temporal details that capture formant transitions, formant-harmonic 

interactions of a voiced interval of speech signal are useful speaker-specific in-

formation. Furui in 1981 [12] has come up with a way to incorporate some 

temporal information to the cepstral features, i.e., to add the dynamic and ac-

celeration coefficients. This method has been found successful and widely em-

ployed in speech related recognition applications up until now. Apart from this 

and other similar approaches like regression line fitting [22] which all target on 

the Fourier analysis based features, time-frequency processing front-ends were 

brought in for extracting features with flexible spectro-temporal resolutions in 

recent years. To name a few representatives, there are time-frequency princi-

pal components [48], data-driven temporal filters [49], temporal discrete cosine 

transform [50], pitch-synchronous wavelet transform [43], modulation analysis 

[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], etc. It is worth mentioning 

that the spectro-temporal feature extraction method has also extended their 

capability to exploit vocal source features, for instance, in works of Zheng et 

al. [43], and Wang et al. [61]. Like the vocal source features, fusion of these 

features with the cepstral coefficients are still necessary in recognition systems. 

2.4.4 Prosodic features 

Prosody refers to non-segment al aspects of speech, including for instance syllable 

stress, intonation patterns, speaking rate and rhythm. Prosody dislikes the 

short-term spectral features first in that it always span over long segments like 

syllables, words, and utterances. Then, prosody-related features usually convey 

speaker-specific information about the speaking style, language background, 

sentence type and emotions. 

The first and foremost prosodic parameter is FO. It reflects the vibration 

condition of the speaker's vocal cords, which not necessarily depend on the spo-

42 



Chapter 2. Fundamentals in Speaker Recognition 

ken context, but its range, variation pattern are speaker-dependent. Since FO 

is a one-dimensional feature, it is non expected to be very discriminative math-

ematically. Therefore, different kinds of FO-related feature vector has been 

proposed throughout these years. Atal in [23] has used pitch contour for iden-

tifying speakers in early 1970s. FO dynamics is another important form, which 

models both the local and long-term temporal variations of FO [62], [63]； [64]. 

2.4.5 High-level features 

It is found that speakers differ not only in their voice timbre, speaking style, but 

also in their lexicon, i.e., idiolect. Doddington [65] in 2001 initiated the research 

on high-level conversional features, the idiolect, for speaker recognition. This 

kind of high-level modeling converts each utterance into a sequence of tokens 

where the co-occurrence patterns of tokens characterize speaker differences. To 

list a few, the tokens accounted include words [65], phones [66], prosodic gestures 

63], [64], and articulatory tokens, e.g., articulation manner & place [67 . 
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2.5 Speaker Modeling Techniques 

In speaker recognition systems, speaker models are constructed from the ex-

tracted features. When enrolling a speaker into the system, a model of the 

voice, based on the extracted features, is generated and stored. Then, to iden-

tify or authenticate a speaker, the matching algorithm compares/scores the 

incoming speech signal with the model of the claimed speaker. 

There are two types of models: template models and stochastic models. 

• Template models 

The simplest template model consists of a single template x, which is the model 

for a frame of speech. The match score between the template x for the claimed 

speaker and an input feature vector Xi from the observation (a collection of 

feature vectors from the unknown speaker) is given by d{xi, x). The model for 

the claimed speaker could be the centroid (mean) of a set of N training vectors 

_ 1 N 
无 二 ] ^ ^ 而 . (2-19) 

1=1 

Many different distance measures between the vectors Xi and x can be expressed 

as 

d{xi,x) = {xi — x Y W ( x i - x) (2.20) 

where is a weighting matrix. If W is an identity matrix, the distance is 

Euclidean] if W is the inverse covariance matrix corresponding to mean x, then 

this is the Mahalanobis distance. The most popular method to compensate for 

speaking-rate variability in template-based systems is known as Dynamic Time 

Warping (DTW) [6]. Another form of template model uses multiple templates 

to represent frames of speech and is referred to as Vector Quantization (VQ) 

codebook modeling [7]. And a new method combining the strengths of the 

DTW and VQ methods is called Nearest Neighbors (NN) [68]. 

• Stochastic models 

Using a stochastic model, the pattern-matching problem can be formulated 

as measuring the likelihood of an observation given the speaker model. One 
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way to represent the speaker is to model the distribution of feature vectors 

that extracted from the speaker's speech using a Gaussian mixture density, this 

is regarded as GMM-based speaker model [13]. In recent years, GMM-based 

speaker modeling have been applied widely, and it consistently produced state-

of-the-art performance. 

The basis for both the identification and verification systems is the GMM 

used to represent speakers. For a D-dimensional feature vector denoted as cc, 

the mixture density for speaker s is defined as 

M 

p ( 求 側 ⑷ . (2-21) 

The density is a weighted linear combination of M component uni-modal Gaus-

sian densities, 6f(cc), each parameterized by a D x 1 mean vector, /if, and a 

D X D covariance matrix, E®; 

K � = , � � J 灿 9 X e x p { - i ( x — — /<)}• (2.22) ( 2 7 r )巧 巧 |i/2 ^ ^ 2 

The mixture weights, p ,̂ furthermore satisfy the constraint Vl — 1. Col-

lectively, the parameters of speaker s's density model are denoted as As = 

Maximum likelihood speaker model parameters are estimated using the iter-

ative Expectation-Maximization (EM) algorithm [69]. Generally five iterations 

are sufficient for parameter convergence. 

The Gaussian components can be considered to be modeling the underly-

ing broad phonetic sounds which characterize a person's voice. The following 

characteristics of GMM justify its effectiveness in modeling speakers: 

1. The GMM can be viewed as a hybrid between two effective models for 

speaker recognition： a uni-modal Gaussian classifier and a vector quantizer 

codebook. The GMM combines the robustness and smoothness of the 

parametric Gaussian model with the arbitrary density modeling of the 

non-parametric VQ model. 

2. The GMM can also be viewed as a single-state HMM with a Gaussian 
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mixture observation density or an ergodic Gaussian observation HMM 

with fixed, equal transition probabilities. 
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2.6 Performance Evaluation of Speaker Recog-

nition System 

This section first describes the different tasks that speaker recognition research 

nowadays are mainly involved in, and then the associative evaluation metrics 

are introduced. 

2.6.1 Speaker recognition tasks 

Identification system 

The identification system is a straight-forward maximum-likelihood classifier 

[13]. For a reference group of S speakers W = { 1 , 2 , . . . , S} represented by 

models Ai, A2,.. ., Xs, the objective is to find the speaker model which has the 

maximum posterior probability for the input feature vector sequence, X = 

{cc i , . . . , ccy}. The minimum error Bayes' decision rule for this problem is 

s = argmax^Pr(A,|X) = arg (2.23) 

Assuming equal prior probabilities of speakers, the terms Pr{Xs) and p{X) are 

constant for all speakers and can be ignored in the maximum. Using logarithms 

and the assumed independence between observations, the decision rule becomes 
T 

s = arg m̂ ax ^ \ogp(xt|A^), (2.24) 

in which p{xt\Xs) is given in Equation 2.21. A block diagram of the speaker 

identification system is shown in Figure 2.18. 

G M M - U B M verification system 

• Log likelihood ratio detector 

Speaker verification problem requires a binary decision (detection) based on 

two hypothesis, i.e., the input voice came from the claimed speaker, hypothesis 

Hq, or not from the claimed speaker, hypothesis Hi. Cast in a hypothesis 

testing framework, for a given input utterance X = { cc i , . . . , xt} and a claimed 

identity, the choice is between Hq and Hi： 
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Feature Vectors 
XO- X1,…，Xm-1 

Target Models 

Figure 2.18: GMM-based speaker identification system. 

Hq : X is from the claimed speaker. 

Hi : X is not from the claimed speaker. 

In this hypothesis test, an implicit assumption is that X contains speech 

from only one speaker. Thus, the task can be termed single-speaker detection. 

The optimum test to decide between the two hypotheses is a likelihood ratio 

test given by 

v{xm 
(2.25) 

> 9 accept Hq 

< 6 reject Hq, 
\ 

where i — 0,1, is referred to as the likelihood of the hypothesis Hi 

given the utterance X. The decision threshold for accepting or rejecting Hq is 0. 

The basic goal of a speaker verification system is to compute the two likelihoods, 

and then determine a decision threshold to accept or reject the identity claim 

[70；. 

For an utterance X = {cc i , . . . , xt} and a claimed speaker identity with 

(2.26) 

corresponding model 入c, the likelihood ratio is 

Pr(X is from the claimed speaker) — Pr{Xc\X) 
Pr{X is not from the claimed speaker) Pr{Xc\X) 

Applying Bayes' rule and discarding the constant prior probabilities for 

claimant and imposter speakers, the likelihood ratio in the log domain becomes 

(2.27) 
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The term is the likelihood of the utterance given it is from the 

claimed speaker and p{X\Xc) is the likelihood of the utterance given it is not 

from the claimed speaker. The likelihood ratio is compared to a threshold 6 

and the claimed speaker is accepted if A(X) > 6 and rejected if A{X) < 9 as 

described by Equation 2.25. 

• Universal Background Model (UBM) 

The GMM-UBM system use a single, speaker-independent background model to 

represent p(X|A(5)，which is termed as the Universal Background Model (UBM) 

[16]. UBM is a large GMM trained to represent the speaker-independent distri-

bution of features. There is no objective measure to determine the right speaker 

population or amount of speech to use in training a UBM. But empirically, it is 

preferable to select speech that is reflective of the expected alternative speech 

to be encountered during recognition. This applies to both the type and the 

quality of speech, as well as the composition of speakers. In training the UBM, 

the GMM mixture parameters are computed from the statistic estimates of the 

training data. 

• Bayesian adaptation of speaker model 

In the GMM-UBM system, we derive the target speaker model by adapting the 

parameters of the UBM using the speaker's training speech and some model 

adaptation methods. Maximum a Posteriori (MAP) [71], [72] and Maximum 

Likelihood Linear Regression (MLLR) [73] are the two model adaptation meth-

ods that perform the best. In this thesis, we adopt the Bayesian adaptation 

approach, i.e., the MAP estimation. Unlike the standard approach of maxi-

mum likelihood training of a model for the speaker independently of the UBM, 

the basic idea in the adaptation approach is to derive the speaker's model by 

updating the well-trained parameters in the UBM via adaptation. The updating 

is achieved by combining the old statistics from the UBM mixture parameters 

with the new statistic estimates that are extracted from the target speaker's 

training data. 
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Feature Vectors 
XO, Xi, XM-1 • A(X) 

IfA(X) > 9, Accept 
IfA(X) < e. Reject 

Figure 2.19: GMM-based speaker verification system. 

A block diagram of the GMM-UBM speaker verification system is shown in 

Figure 2.19. 

2.6.2 Performance evaluation metric for different tasks 

To compare the performance of different speaker recognition system, stan-

dard evaluation metrics are indispensable. The evaluation processes are task-

oriented, and are derived from the classification mechanism of the recognition 

task. 

Speaker Identification (SID) 

Speaker identification is the task of deciding, given a sample of speech, who 

among many candidate speakers said it. This is an iV-class decision task, where 

N is the number of candidate speakers. 

It is straightforward to use the identification error rate, IDER, as the per-

formance measure of speaker identification task: 

IDER = 
number of misidentified trials 

total number of identification trials 
X 100% (2.28) 
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Speaker Verification (SV) 

Speaker verification is a detection task, it can be viewed as involving a tradeoff 

between two error types: false acceptance (FA) and false rejection (FR). Gen-

erally, a decision threshold is selected such that the false acceptance rate equals 

to the false rejection rate, and this error rate is usually referred to as equal error 

rate (EER) [74；. 

51 



Chapter 2. Fundamentals in Speaker Recognition 

2.7 Summary 

As an introduction to speaker recognition system, in this chapter, we first in-

troduce the motivation, formulation as well as the tasks under the framework of 

automatic speaker recognition. Then, we addressed the principal components 

needed when establishing a speaker recognition system, and an overview of the 

system setup was given. The speaker-discriminative feature extraction, as the 

core of our work, was discussed in detail, a literature review in the pertinent re-

search area was made then. Subsequently, the pattern classification approaches 

that used in speaker identification and verification tests were presented system-

atically. Finally, performance evaluation metrics, as dispensable elements in 

speaker recognition tasks, are described respectively. 
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Chapter 3 

Robustness of Speaker 
Recognition System 

Reliable performance is expected from speaker recognition systems that operate 

in real-world applications. This requires their robustness against environmen-

tal noise and handset/channel mismatch. State-of-the-art speaker identification 

and verification systems can perform well in clean and perfect conditions, how-

ever, the severe degradations resulted from various mismatches or insufficiency 

of distinguishable acoustic attributes prevent them from performing as sole in-

dicator in rigorous identity authentication applications. 

This chapter focuses on the methods for enhancing the robustness of a 

speaker recognition system. The adverse effects that need to be dealt with 

include those resulted from background noises, transmission channel variations, 

training and testing data mismatch etc. Essential robust speech processing 

techniques required in the three main parts of a recognition system, viz, feature 

extraction front-end, discriminative speaker model training, and score normal-

ization will be described in Section 3.2 through Section 3.4, respectively. 

An overview of the interference sources for speech communication, and a 

general framework of the compensation processing approaches employed in the 

feature, model and match-score domains are given in Figure 3.1. In this section, 

we shall focus on the two adverse scenarios highlighted in gray as shown in Fig-

ure 3.1，namely speech signals with background additive noise and transmission 
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channel with convolutive noise. While, the three compensation methods colored 

in light green in the figure will also be discussed in greater detail. 

Figure 3.1: Interference sources and compensation processing approaches in ro-

bust speaker recognition. 

The relationship between primary speech signal and interference source in 
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this two scenarios are formulated respectively as: 

• Additive noise corruption: y{n) = s[n) + d{n) 

• Convolutive channel distortion: zin) = s(n) <S> c(n] 

55 



Chapter 3. Robustness of Speaker Recognition System 

3.1 Different Scenarios of Environmental-

robust Speaker Recognition 

Development stage: 
1. Clean condition; 
2’ Wideband data; 
3. High-quality 
recording microphone; 

etc. 

Operation stage: 
1. Backgroimd noise; 
2. Band-limiting; 
3. Distorting 
transmission channel; 
....etc. 

Degree of 
contamination, 

e.g., SNR 

V 

Development stage: 
1. Background noise; 
2. Band-limiting; 
3. Transmission 
channel; 
…，etc. 

Operation stage: 
Identical or comparable 
with the development 
stage. 

Figure 3.2: Robustness scenarios faced in speaker recognition system realization. 

In order to deploy speech technologies for practical applications, environ-

mental robustness is an important issue that needed to be addressed. Figure 

3.2 outlines the two conditions in which robustness of a speaker recognition 

system is expected and deemed absolutely necessary. It is generally assumed 

that speaker models are built in ideal conditions as described in the left-hand 

side of the figure. However, it is well known that a speaker recognition system 

often fails to maintain reasonable performance as the acoustic conditions of its 

operating environment depart from the ones that were used for the training. 

This phenomenon is observed not only for applications in which the system is 

used in very noisy environments, but also for those with more subtle changes 

in the acoustic environment that cause no problems for human listeners. It 
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is observed that the huge the inconsistence between the acoustics of the test 

utterances and the training data, the severer degradation will occur. 

The right-hand side of Figure 3.2 gives a slightly different story. It is found 

that the system is operating in a similar or even identical acoustic environment 

with that of the development phase, however, undesirable factors enter into 

the environment, in whatever way. With the deterioration of the environmental 

conditions, the system performance get impaired as well as that in the first case, 

although, they usually differ in degradation degrees. Comparison of the two 

scenarios reveals that mismatch in acoustic conditions inflicts the largest damage 

on a speaker recognition system, however, their consistence still can hardly 

maintain the original performance if environment degrades. This is therefore 

thought to be due to the decline of the discriminative power possessed by both 

the speaker models and the testing data and the resultant ambiguity in speaker 

boundaries. 

In the following sections，we will focus on compensation algorithms devel-

oped to eliminate the effects induced by various environmental and transmission 

factors. There is no clear owner affiliation of them to either of the above men-

tioned scenarios, rather, they are flexibly and widely engaged in for robust 

speaker discrimination purposes. Another important issue that should be ad-

dressed on employing the compensation methods is the tradeoff exists between 

the quantity of unreliable information that can be removed from the speaker 

features versus the speaker specific information that can be preserved, to achieve 

optimal recognition. As it is noted in [75] that, for clean speech using the same 

microphone for recognitions, many of the enhancement techniques may actually 

reduce system performance. 
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3.2 Robust Feature Extraction 

Speaker-specific parameters are the input for a speaker recognition system. 

When speech signals corrupted with background noise, or transmitted by an 

unknown handset/channel are taken as the source for the feature extraction 

front-end, undesirable factors inevitably penetrate into the feature vector out-

put, which directly leads to performance degradation of the system. It is thus 

seen that in order to investigate and mitigate the adverse effects environmental 

noises or transmission channels lead to a speaker recognition system, studies 

about their effects on the pertinent speaker-discriminative parameters will play 

an indispensably significant role. 

The topic of robust feature extraction pertains to at least two aspects, they 

are, to have the speech signal “cleaned" first, and then to perform feature ex-

traction on the enhanced signal; besides, to transform speech signals into certain 

forms and identify the most speaker-specific components therein, then extract 

them exclusively out from contaminated speech utterances. The essence of the 

first strategy lies in the efficacy of speech enhancement algorithms employed 

for recovering or reconstructing the speech signals. The more speech proper-

ties essential for discriminating different speakers are retained in the processed 

speech, the more beneficial the subsequently extracted speaker characteristics 

are for the recognition accuracy. 

3.2.1 Feature enhancement 

In many speech communication settings, the presence of background interference 

causes the quality or intelligibility of speech to degrade. In a quiet environment, 

information exchange between a speaker and listener is easy and accurate even if 

the two persons are not allowed to see each other, however, a noisy environment 

always reduces the listener's ability to understand first what is said, and then 

who is speaking. When extending beyond interpersonal communication, speech 

can be transmitted across telephone channels, loudspeakers, or headphones, etc, 

which largely profits from the sophisticated modern communication network. 
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Inevitably in transmissions are some forms of data conversion, i.e., quantiza-

tion, compression, amplification, etc. All these detrimentally affect the quality 

of speech signals. The quality of a speech signal can be perceptually judged 

by human-beings as in interpersonal dialogues. Besides, in many recognition-

related applications where they are responsible for providing accurate phonetic 

or speaker-specific clues, all are determined on recognition performance. 

Generally speaking, the purpose of enhancement algorithms is to reduce 

background noise, improve speech quality, or suppress channel or speaker inter-

ference. Other applications include suppression of distortion from voice coding 

algorithms, suppression of a competing speaker in a multi-speaker setting, en-

hancing speech as a result of a deficient speech production system, e.g., speakers 

with pathology or divers breathing helium-oxygen mixture, or enhancing speech 

for hearing-impaired listeners. It is seen that the possible applications of speech 

enhancement are really broad. The success of an enhancement algorithm de-

pends on the goals and assumptions made in deriving the approach. Determined 

by the specific application, a system may be directed at one or more objectives, 

such as improving overall quality, increasing intelligibility, or reducing listener 

fatigue. Speaker recognition system operating in the presence of background 

noise mostly take speech enhancement algorithms for robust feature extrac-

tion by including them into the signal processing front-end. The enhancement 

sector is expected to remove the more the better noise-dominant components, 

while retain as much as possible speaker-specific speech properties in the utter-

ances. Our selection for a speech enhancement algorithm is determined by the 

discrimination power reflected by the denoised features in speaker recognition 

applications. 

Many approaches have been taken for robust speaker recognition purposes 

in the past years, each attempting to capitalize on specific characteristics or 

constraints, all with varying degrees of success. There are a number of ways 

in which speech enhancement systems can be classified. A broad grouping is 

concerned with the manner in which the speech is modeled. They can also be 

partitioned depending on whether a single-channel or dual-channel (or multi-
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channel) approach is used. For single-channel applications, only a single mi-

crophone is available. Characterization of noise statistics must be performed 

during periods of silence between utterances, requiring a stationary assumption 

of the background noise. Usually only a single channel is available in situa-

tions such as telephone or radio communications. In dual-channel algorithms, 

the acoustic sound waves arrive at each sensor at slightly different times, be-

cause one is usually a delayed version of the other. In our discussion of speech 

enhancement algorithms, we shall concentrate on methods that assume 

• noise distortion is additive; 

• noise and speech signals are uncorrelated; and 

• only one input channel is available. 

Through the many years, linear and nonlinear compensation techniques have 

been proposed, with applications to feature, model and match-score domains, 

respectively. Some of the techniques were first developed in speech recognition 

research. Automatic speech and speaker recognition systems under noisy condi-

tions were found more reliable if a speech enhancement scheme incorporated as a 

preprocessing stage. Examples of the feature compensation methods include the 

well-known spectral-subtractive type algorithms [76], [77], [78], [79], [80], [81], 

Wiener and Kalman filtering [78], [82], [83], [84], [85]. Boll initiated the spec-

tral subtraction method in late 1970's [76], and pointed out its usage in speech 

and speaker recognition applications. In the following three decades, there are 

continuous efforts pushing forward and refining this method by overcoming its 

shortcomings and combining with other skills, to list a few representatives, for 

instance, spectral subtraction using oversubtraction was proposed by Berouti et 

al. [77], Mcaulay et al. in 1980 proposed a soft-decision noise suppression filter 

78], nonlinear spectral subtraction [79], multi-band spectral subtraction [86], 

masking property of human auditory systems was taken into accounts by Virag 

in [80], MMSE-based algorithm [81], etc. Spectral-subtractive type algorithms, 

among others, are most widely applied for speech and speaker recognition pur-

poses, especially for denoising spectral-based parameters [87]. This type of 
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Figure 3.3: Spectral magnitude estimator: A glance. 

Wiener filters are employed under the assumption that the signals analyzed 

are stationary. It generally assume a model of the clean spectrum and attempted 

to estimate the parameters of the model. The Wiener filters are considered to 

be linear estimators of the clean signal spectrum, and they are optimal in the 

mean-square sense. The Wiener filters can also be extended to handle nonsta-

tionary signals and noise with the use of Kalman filters. Kalman filters can 

be viewed as sequential mean-square estimators of a signal embedded in noise. 

Several speech enhancement methods based on Kalman filtering were proposed 

and made contribution in improving the robustness of speech recognition and 
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algorithms generally take phase information less important for speech quality, 

thus only estimate the spectral magnitude quantity. It is therefore considered 

proper way to estimate the magnitude-based spectral features. Methods falling 

into this category usually share a similar implementation mechanism as shown in 

Figure 3.3. This sort of frequency-domain estimators measure the clean speech 

spectral magnitude for (1) spectral feature extraction front-end of automatic 

speech/speaker recognition, and (2) speech synthesis protocol where the noisy 

phase components are recombined with a standard overlap-add procedure. 
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Figure 3.4: Two approaches of robust feature extraction. 

speaker tracking systems, e.g., [84], [88. 

As an essential component of robust speech processing, many works are 

devoted to estimating noise in various environmental conditions. The pri-

mary noise estimation algorithms include subband-based recursive method [89]， 

histogram-based method [89], quantile-based method [90], and minimal-tracking 

algorithms [91 j, [92]. These noise estimators are in general applied prior to the 

feature extraction as a preprocessing procedure, and they are reported have 

reduced the error rates of various recognition tasks together with efficient en-

hancement method. 

3.2.2 Discriminative feature design, transformation and 

normalization 

Figure 3.4 shows two schemes taken for robust feature extraction. Other than 

the first strategy of feature enhancement which was introduced in Section 3.2.1, 

discussion in this part centers on another handling approach, that is, to trans-

form the noisy speech signals into some domains, usually not the conventional 

Fourier frequency domain, and then to dig out those noise-free but speaker-

specific properties for representing the specific speaker's identity. In this second 
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(a) (b) 

Figure 3.5: 2D pictorial illustration of noise/channel effects on feature vector 

space - scaling, rotation, and translation: (a) the spatial distribution of the clean 

vectors; (h) the spatial distribution of vectors of noise and/or contaminated 

speech. 

scheme, the involved transfromation/compensation methods either claim their 

ability of mitigating noise's effects in a way or can identify the speaker-related 

components easily. Successful examples in this category actually have long been 

applied in removing the effects caused by transmission channels, for example, 

the cepstral mean subtraction (CMS) [9], [93], [94], [95], cepstral attributes 

normalization [96], [97], [98], and relative spectral (RASTA) [95], [99 . 

When the speech signal is contaminated by a distorting channel or noise 

from the environment, the feature vectors are found to be rescaled, rotated, 

and translated. This can be seen in Figure 3.5. 

In practice, CMS and other techniques previously mentioned have been 

found to offer enhanced robustness of speaker-recognition systems. Referring 

to notations used in Section 2.3.2, we note individual cepstral coefficients by q. 

After doing CMS to normalize the channel, and performing cepstral littering to 

reduce the noise effect, the corrected cepstral coefficients are then denoted by 

Ci- It can be represented as 

Cj — 11){ Ci — C-i. (3.1) 

The generalization of the relationship can be written as an affine transform 
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Figure 3.6: Block diagram of discriminative feature and classifier design ap-

proach. The speech signal is corrupted by a number of environmental factors, 

which the approach attempts to compensate for by adapting the artificial neural 

network (ANN) feature transform and speaker recognition classifier based on an 

estimate of speaker recognition performance. 

given by 

c' = Ac + b, (3.2) 

where c' is the cepstmm of the degraded speech and c is the cepstrum of the 

original clean speech. This becomes a similarity transform when the matrix A is 

diagonal and the vector b is zero. It implies that a degraded, spectrally similar 

set of cepstral vectors would undergo the same transformation. The concept of 

using an affine transform to correct the distortions of the cepstral coefficients 

caused by the channel and noise interferences has been proposed in [93], [100 . 

Furthermore, nonlinear spectral magnitude normalization [101] is another repre-

sentative among various feature transformation methods. From another point of 

view, transforms that are capable of decomposing speech signal with multiple 

time-frequency resolution also claim denoising capability, e.g., wavelet trans-

form [43], [102], [103], they are sometimes combined with the parametrization 

schemes mentioned in Section 2.4 of Chapter 2 for alternative acoustic param-

eters. 

With the advent of discriminative training techniques, model learning has 

become a task of maximizing class separability rather than a likelihood func-
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tion. However, this progress is limited by the type of features used in the recog-

nition design. Although cepstral-based features are widely used in the field, 

their design criterion is not consistent with the objective of maximizing speaker 

recognition rates. Integrated feature and model design under a single training 

objective clearly provides an additional benefit over conventional systems and 

remains a challenging problem in speaker recognition research. Integrated fea-

ture and model design through discriminative training has been the subject of 

several recent studies [104], [105]. Block diagram of discriminative feature and 

classifier design approach mentioned in [105] is shown in Figure 3.6 as a model 

for this type of methods. As it is shown, the feature extractor contains two 

parts: an initial feature analysis and a nonlinear feature transformation. The 

feature analysis is used to convert the speech signal into a collection of feature 

vectors. These features are then processed by the nonlinear feature transforma-

tion before being passed on to the speaker recognition classifier. The feature 

transformation is implemented as an artificial neural network. During the fea-

ture design phase, the speaker recognition classifier is also implemented as a 

neural network. Like the feature transformation sector, the classifier is trained 

to reduce the effects of nonlinear handset distortions on speaker discrimination. 

However, after the feature design phase, other classifier types can be used to 

carry out the speaker recognition task. 

Other methods derived to normalize the feature vectors include feature warp-

ing [95], [106], short-time Guassianization [107], etc. 

Compensating the features rather than the models has the advantage that 

the transformed parameters can be used with models of different nature and 

complexity, and also for different tasks. 
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3.3 Matching-score Normalization 

It has been widely observed in the literature that handset variability that 

brought by different microphone handsets, causes significant performance degra-

dation in speaker recognition systems. Channel compensation in the front-end 

processing addresses linear channel effects, but there is evidence that handset 

transducer effects are nonlinear in nature and are thus difficult to remove from 

the features prior to training and recognition. Because the handset effects re-

main in the features, the speaker's model will represent the speaker's acoustic 

characteristics coupled with the distortions caused by the handset from which 

the training speech was collected. The effect is that log-likelihood ratio scores 

produced from different speaker models can have handset-dependent biases and 

scales. This is especially problematic when trying to use speaker-independent 

thresholds in a system, as for most of the state of the art systems. A hand-

set compensation technique H-norm in the score domain which normalize the 

distribution of the scores by removing the mean and scaling by the standard 

deviation was proposed [108]. 

Other prevalent score domain normalizations include Z-norm [109] and T-

norm [110], which are concentrated on removing the biases or effects caused by 

speaker, linguistic content, etc. These two normalizations are sometimes used 

simultaneously, where the Z-norm is used to characterize the response of each 

speaker model to a variety of (impostor) test segments, followed by T-norm 

to compensate for the variations of the testing segments, such as duration and 

linguistic content. 

Recently, a new compensation method use Mento-Carlo method to normalize 

matching score was described as D-norm [111]. The D-norm is based on the use 

of Kullback-Leibler (KL) distances in an speaker verification context. This new 

method has revealed itself with comparable effectiveness with the Z-norm, but 

excels at requiring no additional speech data nor external speaker population. 
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3.4 Speaker Model Compensation 

In recent years, the efforts towards eliminating the mismatches in environmen-

tal noise, channel characteristics, as well as those induced by the speaker him-

self/herself have emerged from either enhancing acoustic features or normalizing 

the match-score. 

For robust speech recognition tasks that under noisy conditions, the parallel 

model combination (PMC) method has been proposed. With the assumption of 

available statistics of environment, it targets to mitigate the mismatch between 

training and test conditions by first building an HMM model for the undesirable 

environmental factors, and then combining it with the original clean speech 

model for an environmental matched one in the testing. It was raised in the 

field of speech recognition [112], and was employed on text-dependent speaker 

recognition tasks [113] with some success. Similar techniques focus on noise 

compensation include Jacobian environmental adaptation [114 . 

Besides, there was a new perspective that tends to show out all these unde-

sirable effects together with other known or unknown factors by a single term 

session variability [115]. New algorithms arising therefrom attempted to directly 

model session variability in the model space without discrete categories and with 

less restrictive data labeling requirements. It is proposed to incorporate session 

differences into the way a speaker is modeled within a speaker recognition sys-

tem, in both the training and test phases of the system. In [115], the presented 

approach does not perform speaker adaptation in a subspace adopting a more 

traditional GMM-UBM structure and obviating the need to train a speaker sub-

space transform and significantly reducing training complexity. The necessity 

to constrain session variability modeling to a low-dimensional space is also em-

phasized. Prior to this work, there were a few model-based techniques, e.g., 

speaker model synthesis (SMS) [116], feature mapping [117], etc. Kenny et al. 

proposed a joint model of inter-speaker and inter-session variability lately [2 . 

Eigenchannel MAP was proposed in [118] as a model of inter-session variabil-

ity, and in [119] eigenvoice MAP was taken as model of inter-speaker variability. 

The proposed analysis model was also applied on GMM [2]. Channel adaptation 
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and inter-speaker variability were studied in [120], [121] and [122], respectively. 

Concerning the cross-channel degradation, recently, a method named Nuisance 

Attribute Projection (NAP) was proposed [123], [124'. 
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3.5 Summary 

This chapter reviews the literature on robust speaker recognition fields span-

ning from the classical algorithms to the most up to date techniques. The 

methods surveyed are grouped in three categories, which cover the main pro-

cessing stages of a speaker recognition system, i.e., the speaker-specific feature 

extraction/enhancement, the discriminative model training, and the matching-

score normalization. Methods that pioneered and of crucial importance in each 

areas are first looked into with greater details, with their numerous followers 

cited thereafter- From another point of view, we focus on compensation meth-

ods that are essentially dealing with nonspeaker factors, such as the session 

variability caused by background noise, channel mismatch, handset variability, 

etc. 
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Chapter 4 

Characterization of Individual 
Speakers with Distinctive Vocal 
Excitation Features 

Although reckoned as one dimensional quantity, speech processing touches upon 

a number of areas, physiological, psychological, psychoacoustic, auditory, cogni-

tive, linguistic, etc. A general model for speech signal can be extremely difficult 

if perfect solution is expected in all aspects. A few speech models took shape 

throughout the years, each leaning to a specific application area. As one ap-

plication among others, speaker characterization for the sake of discrimination, 

involves a few signal processing techniques, e.g., Fourier spectral analysis, lin-

ear prediction modeling, multi-band signal decomposition, etc. These analysis 

models each offer useful speaker-specific parameters for distinguishing different 

speakers. 

Vocal excitation contributes in personalizing a speaker's voice. The contin-

uous vibration of the vocal folds produces voicing source for speech production, 

and personal patterns for characterizing the speaker as well. The quasi-periodic 

motion of relevant vocal organs brings periodicity to the excitation signal, while 

the puise-like epoch shapes vary among people as well. Classical voicing models 

either fit the waveform point-by-point for an accurate approximation, or trans-

form it into other domains, e.g., Fourier spectral domain, for picking out the 
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primary harmonic structure. The pitch harmonics of interest mostly locate in 

the lower frequency region of a voice signal, while the higher frequency part ap-

pears to be noise-like, making the included personal attributes less concerned. 

If view the problem at another angle, all components in the voicing signal are 

produced by the set of vibration activities, they as a whole should be account-

able for delivering the inherent properties of a speaker. For the study of interior 

speaker-specific characteristics, a voicing model that considers systematically 

most primary elements is essential. 

In this chapter, we make a study on characterizing a speaker's vocal exci-

tation pattern through modeling the corresponding voicing signals. In Sections 

4.1 and 4.2, different types of voice models are introduced. Section 4.3 discusses 

issues related to the modeling of source signals with AM, FM parameters. The 

excitation related modulation properties are studied with the help of multi-band 

demodulation method, and source-related amplitude and phase quantities are 

parameterized into feature vectors in Section 4.4. Evaluation of the proposed 

features is carried out first through a set of designed experiments on artificially 

generated inputs, and then by simulations on speech database in Section 4.5. 

Section 4.6 summarizes the work in this chapter. 
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4.1 Excitation Waveform Modeling 

Analyzing speech signals by separating the vocal source- and vocal tract-related 

properties is a frequently used method. As we have mentioned in Chapter 

2 that source-related parameters can characterize a person's vocal attributes, 

where the time domain parameters usually care about the glottal pulse-related 

properties, and the spectral characteristics concern the harmonic structure and 

FO-dependent features. Likewise, the establishment of source excitation mod-

els has been considered as one of the important issues in synthesizing natural 

sounding voices. Features that might be useful in designing a source excitation 

model for synthesizing natural sounding speech and identifying vocal disorders 

are selected and summarized in [125]. It is thought that if based upon an estab-

lished voicing source model, with all the controlling parameters known, one can 

alter the vocal properties easily by tuning those parameters. In this process, the 

usefulness of the parameters in different applications can be evaluated according 

to relevant metrics. For instance, in characterizing a speaker's vocal attributes, 

where the ultimate objective is speaker identifiability, the modeling parameters 

that are able to affect speaker individuality are viewed predominant. 

In this study, we investigate the aspects of voicing source modeling that 

related to vocal fold vibratory patterns. Our purpose is neither to develop new 

voice source models for synthesizing natural sounding speech, nor to perceptu-

ally study the vocal source-related characteristics. We target to exploit speaker-

distinctive features from a pertinent voicing model, that is, parameterize the 

physically sounding model parameters into speaker representatives. The retain-

ing of physical meaning for the features and their potential in reconstructing 

the voice source claim novelty for this method. Study on speaker-discriminative 

source feature derivation in this part considers following three steps: (1) select 

proper source excitation model to use; (2) parameterize model parameters into 

feature vectors; and (3) analyze whether the feature vector could identify a 

speaker's vocal characteristics through observing their expressiveness for a set 

of typical vocal properties. 
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4.1.1 Voicing source model 

Quite a few source excitation models have been designed to function in syn-

thesizing natural sounding voices, which include but are not restricted to the 

following: Fant's [40], [126], Klatt's [127], Childers's [128], etc. Considering we 

need to model the excitation signals first, and then measure the model parame-

ters' expressiveness for relevant vocal properties owned by the signals, a model 

mathematically formulated in the time-frequency domain will be desirable. 

Reviews in Chapter 2 deals with the subject of speech production, where 

it tells us that the quasi-periodic vibration of the vocal folds first produces 

excitation for a voice speech, and when passing it through the vocal tract. 

The excitation resonates with the vocal tract at several frequencies, thus al-

ters the magnitude of speech components over frequency span of the sound. 

The speech signal is therefore known as an oscillatory signal, where the vocal 

tract is viewed as an oscillating system. Modulation theory is applied to speech 

signal successfully in dividing and demodulating these resonances. Meanwhile, 

properties of the excitation signal is looked into via observing either its peri-

odic pattern shown in the waveform or the harmonic structure exhibited by its 

spectrum. Pitch periodicity, pitch epoch shape, and certain details embedded 

are the principal temporal patterns considered. Additionally, in the frequency 

domain, people concern the primary FO and its harmonics. These are important 

and essential characteristics of an excitation signal indeed, however, regarding 

the generation of excitation signal, our views are as follows: first, there must 

be some time-frequency patterns exist in the signal; second, these patterns may 

be the primary components of the signal; third, these components will be the 

elements of an appropriate excitation model. 

Significant observations was made on the amplitude and frequency modula-

tions present in speech formants through speech signal analysis. If these modu-

lations are removed, noticeable deterioration on speech quality and the specific 

speaker's vocal properties will occur. This phenomenon was reported in many 

research work on speech coding and synthesis [129]. It reveals the perceptual 

importance of modulations in speech formants, and motivates the introduction 
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of relevant modulation models into speech decomposition, especially for voiced 

sounds. To list a few of the associated models, there are sinusoidal speech model 

by Mcaulay et al. [130], harmonic plus noise model (HNM) by Stylianou [131], 

AM-FM modulation model in a series of works by Maragos, Kaiser, Quatieri, 

Potamianos et al. where [129] and [132] are the primary ones, and the recently 

proposed Quasi-harmonic model (QHM) [133], etc. Strictly speaking, AM-FM 

model and QHM model are both derived from the sinusoidal model. 

4.1.2 Sinusoidal modeling of excitation signal 

Sinusoidal excitation model represents the excitation signal waveform as a sum 

of sine waves. Ever since the classical source-filter speech production model, 

where the voiced excitation is generated as a periodic pulse train, the har-

monicity of excitation signals are broadly taken in speech processing. It is 

therefore motivated to formulate the voiced excitation by means of Fourier se-

ries decomposition in which each harmonic component corresponds to a single 

sinusoid. 

In sinusoidal model, the excitation waveform e{n) of a segment of voiced 

speech signal s{n) is represented as a sum of harmonically related complex 

exponentials, where these components assume unit amplitudes and zero initial 

phase. The model can be expressed mathematically as follows, 

K{n) 

e{n)= (4.1) 
k=i 

where Qfc(n) is the instantaneous phase of the kih harmonic component in this 

excitation, and K{n) is the number of harmonics present at time instant n. 

Both parameters vary with time. 

Under the assumption that the excitation waveform is purely composed of 

harmonics, the instantaneous frequencies, fjJji), are interrelated in the following 

manner, 

fk{n) = kfoin), (4.2) 
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where fo{n) is the estimate of fundamental frequency which also varies with 

time. 

In applications like speech analysis, synthesis, transformation, etc, a com-

plete speech model is sometimes founded on this representation of excitation 

signal. An additional time-varying linear filter is usually introduced to model 

the combined effect of the transmission characteristics of the vocal/nasal cavity, 

as well as the radiation at the mouth opening and also the glottal pulse shape. 

4.1.3 Harmonic plus noise model for speech 

Harmonic plus Noise Model (HNM) has attracted much attention after the 

pioneering works by Griffin et al. [134] and Abrantes et al. [135]. In HNM, 

it is assumed that a speech signal s{n) is composed of a harmonic part h{n) 

and a noise part n{n). There exists a time-varying frequency delimiter Fm{n) 

in the spectrum dividing the a voiced speech signal into two bands, where 

the lower band of the spectrum refers to the harmonic part, while the upper 

band represents the noise part. The harmonic part, /i(n), which accounts for 

the periodic structure of the voiced speech signal in HNM, is formulated by a 

sum of harmonically related sinusoidal components with discrete time-varying 

amplitude and phase quantities as that shown in Equation 4.3, 

K { n ) 

h{n) = ^ Ak(n)cos [efc(n)], (4.3) 
k=i 

where Ak(n) and Ok(n) are the amplitude and phase quantities of the kth 

harmonic component, respectively. K{n) is the number of harmonics present 

in the harmonic part at time instant n. Similar with the sinusoidal model, the 

instantaneous frequency in the HNM, i.e., /^(n), also equals to k times of the 

fundamental frequency /o(n). 

In addition to the unvoiced frame which requires a noise-like formulation, 

Stylianou in [131] accounted the friction noise and the period-to-period fluctua-

tions produced by the turbulence of the glottal airflow as the causes for the noise 

part n(n) of a voiced sound. He meanwhile pointed out that, the noise part in 
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a voiced signal usually behaves like a high-pass signal which exhibits certain 

energy distribution of the related frequency content, as well as a time-domain 

structure of the signal. 

Thus, to describe the noise part n(n) in speech s(n), a time-varying AR 

envelope is used to shape the frequency content, while its time-domain structure 

is determined by a piecewise linear energy-envelope function. In Equation 4.4, 

n(n) is produced by first filtering a white Gaussian noise u(n) by a time-varying, 

normalized all-pole filter h(n, r), and then shaping the result by an energy 

envelope function e(n), 

n(n) = e(n) [h{n, r) 0 u{n)]. (4.4) 

Finally, the speech signal in the form of HNM is expressed as follows, 

s{n) = h{n) + n(n). (4.5) 

4.1.4 Parameters estimation 

In estimating the parameters of sinusoidal excitation model, the stationary hy-

pothesis applies within a frame. For the case that the frequencies are strictly 

harmonically-related, i.e., fk{n) = /c/o(n), a high-performance pitch detector is 

necessary. The amplitude and phase values can be obtained by linear interpo-

lation along time within a specific frame [136]. Provided accurate fundamental 

frequency estimation, this approach leads to good frequency estimates, thus the 

mean square error between the original signal and the sum of harmonics can be 

small. 

In conditions where the sinusoids are not multiples of the fundamental fre-

quency, a peak-picking algorithm [130] is usually taken to estimate the frequency 

of each underlying sine wave. This algorithm is operated in the frequency do-

main, where the peaks in the periodogram are first located, and then the ampli-

tudes and phases at the frequencies of these peaks are obtained by evaluating 

the short-time Fourier transform (STFT). The STFT-based method prefers long 
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frames for sufficient spectral resolution, this limits the use of this class of meth-

ods when the pitch-period, amplitude and phase quantities vary rapidly. 
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4.2 AM-FM Representation for Excitation Sig-

nal 

In this section, the rationales and details of representing vocal excitation signals 

of voiced speech sound with AM-FM model are introduced. Various examples 

are used in delivering this idea. 

4.2.1 Fundamentals of modulation 

Strictly speaking, a band-limited signal does not exist in reality, however, most 

of the signals closely approximate the band-limited signals. Natural signals, 

since most of their energy is carried by components lying within a certain fre-

quency interval, are usually considered to be band-limited for practical reason. 

For a band-limited signal / (n) , in the frequency domain where / (n) 

F(e側we have 

= I/I > fm. (4.6) 

where /爪 is the maximal frequency of / (n) . 

A narrow-band signal, whose bandwidth is sufficiently small, can be viewed 

as a monocomponent amplitude and frequency modulating (AM-FM) signal, 

among the frequencies spanning over the signal spectrum, there is one frequency 

assuming a majority of the signal energy. Specifically, this frequency component 

in the time domain corresponds to an exponential signal. The two determining 

parameters in an exponential signal is the amplitude and frequency. In a me-

chanical system, where the vibration activity is usually described by a sinusoid, 

the extent of the activity is decided by the amplitude, while the rate of vibra-

tion is indicated by the instantaneous frequency quantity. In a communication 

system, the amplitude modulation (AM) essentially transmits the information 

signal by multiplying it with a sinusoidal signal at the carrier frequency. When 

the carrier frequency varies, its variation can be used to transmit another mes-

sage, this is called frequency modulation (FM). The frequency modulation refers 

to narrow-band FM in this thesis. 
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4.2.2 Description of AM-FM modeling 

It is known that in producing a voiced sound, the vibration of vocal folds is 

essential. The successive vibrations cause the generation of a quasi-periodic 

signal, which excites the vocal tract system to shape the frequency elements 

contained in the excitation signal. The whole process is articulation. An analogy 

between the vocal folds' oscillation in phonation and a spring's movement in 

mechanical activities indicates some likeness in their behaviors. The voice range 

of a person is largely determined by the structure of his/her vocal organs, while 

in mechanics, a spring's scope of action is restricted within a bound that depends 

on its material, texture and other specifications. 

The existence of inter-person distinction in phonation- and articulation-

related organs forms the primary and crucial evidences for speaker recognition 

research, which is by nature a biometric pattern matching task. Individual 

speakers are discerned by the joint work of vocal folds as well as other vocal 

organs, like vocal/nasal tract. The excitation signal which is yielded from vocal 

folds' oscillation before the resonation by vocal tract, conveys primary speaker-

specific traits about the oscillations occurring in the vocal folds. 

Simple harmonic motion: an example 

We can get a thorough understanding of the fundamentals of vibration theory 

by studying the simple mass spring damper model, which is an example of 

simple harmonic oscillator. In fact, a mechanical structure even complex can 

still be modeled by summing a set of simple mass spring damper representations. 

Similar oscillators can be found in many places, for example, in an RLC circuit. 

The second-order differential equation in Equation 4.7 describes the motion 

of a mass m suspended by a spring of force constant k, as shown in Figure 4.1. 

h 
x + = (4.7) 

m 

where x = d^x/dt^. 

The displacement x{t) produced by the mass-spring is an undamped linear 

oscillating signal formulated as follows, 
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Figure 4.1: Simple harmonic motion of a mass spring oscillator. 

x{t) = Acos{u)t + (j))., (4.8) 

where the parameters A and uj are the amplitude and frequency of the oscilla-

tion, respectively, cf) is the arbitrary initial phase. 

The total energy of this vibration consists of two parts, i.e., the kinetic and 

potential energy, they together equal to [mx^ + kx^)l2 = It is 

therefore found to be proportional to the squared product of amplitude and 

frequency. 

Representing excitation signal in AM-FM model 

Conventional studies on extracting vocal source-related characteristics for 

speaker recognition purposes, as we have reviewed in Section 2.4 of Chapter 

2, were in a degree connected with either pitch-periodicity, or the relevant har-

monic structure properties, but consider less about the inter-correlation among 

the multicomporients existing in an excitation signal. Excitation waveform mod-
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eling approaches, on the other hand, consider more about the components con-

tained in an excitation signal, as described earlier in this section. A common 

approach of getting these inclusive components are through nonlinear signal 

decomposition. After some kind of modifications or other processing steps, 

these components together can re-synthesize the excitation signal under the 

framework of, for example, the sinusoidal modeling. This is popular in various 

applications like speech modification and speaker transformation. 

A monocomponent AM-FM signal is described by Equation 4.9 [132], 

x{n) = A{n)cos [e(n)], (4.9) 

where A(n) denotes the instantaneous amplitude of the mono-component signal 

and 0(n) denotes its instantaneous phase. 

In practice, mulhcomponent AM-FM signals are present everywhere in nat-

ural sounds, including human speech. As we have mentioned about the pitch-

periodicity property of the vocal excitation signal for a voiced speech, it is 

proper to interpret it as a multi-component AM-FM signal. The advantage 

of this approach lies in: first, it is a complete description of the signal rather 

than only noting some parameters, like the pitch-period or FO; second, it is 

convenient to represent the inclusive components in terms of their time-varying 

amplitude and frequency quantities, rather than fitting the waveform or spec-

trum; third, it is easy to investigate the individual components for capturing 

useful information. It is known that in many applications, there is great interest 

in analyzing the input signal by decomposing them into time-varying amplitude 

and frequency components. Depending on the fields applied, the estimation of 

amplitude-frequency modulation parameters plays essential but different roles. 

For instance, in speech coding, the accurate recovering of the speech signal is the 

ultimate goal; while in voice transformation, either in altering the speech prop-

erties or changing the speaker identity, before re-synthesizing the speech signals 

through the inverse model, the voices are converted by tuning their amplitude 

and frequency parameters. 
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4.2.3 Estimation of modulation parameters 

Before introducing how to estimate the AM-FM model for the excitation signals, 

let us get familiar with its physical meaning by making analogy with mechanic 

vibration. In the initial work by Kaiser [137], an alternative “ energy" calcu-

lation method, other than in traditional signal processing literature where the 

energy of a signal refers to the mean of magnitude squares of the exponentials 

present in the signal, was mentioned. With the traditional method, two acoustic 

signals with the same amplitude but different frequencies, say, 2cos(107rn) and 

2cos(10007rn), assume equal energy. However, it was revealed in mechanical ex-

periments that the energy required to generate the acoustic signal 2cos(10007rn) 

is much greater than that for the other signal which is of a lower frequency. 

In the case of harmonic motion, as in the production of an excitation for 

a voiced speech segment, the vocal folds vibrate to produce a fundamental 

sinusoidal oscillation. As revealed earlier through the example in Section 4.2.2， 

the energy required to generate an oscillating signal is given by the square of 

the product of the signal's amplitude and frequency [137]. This type of energy-

calculation method is very useful in analyzing single component signals, like 

linear oscillators. In a quite complicated process, given the activity function can 

be expressed as products of simpler functions, its energy function can also be 

determined in this way. This is the case for most classes of signal in the world, 

including speech signals. Modulation-type process which is usually found in 

speech production, underwater acoustic signal generation and many other places 

typically belongs to this class of process. Therefore, this method is applicable 

to the quantitative analysis of energy distribution among different amplitude-

frequency components that indwell in the production process of voiced speech. 

AM-FM structure of oscillatory signals were taken used extensively in com-

munication systems for transmitting information. Teagers through a series of 

pioneering works in, e.g., [138], [139], initiated the research on exploring rel-

evant amplitude-frequency modulation patterns in speech resonances. Other 

researchers in this area, like Maragos et al. [132], also made effort to induce 

this method an appropriate tool for speech analysis. Owing to evidences for 
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the existence of modulation phenomena in speech production process, Teager's 

energy operator is found to be a useful tool for analyzing and estimating the 

characteristics of the existing amplitude and frequency modulation patterns in 

a vocal excitation signal 

Teager's energy separation algorithm 

• Algorithm description 

Teager's energy separation algorithm takes use of a nonlinear differential oper-

ator to detect modulations in AM-FM signals Through the example AM-FM 

signal defined in Equation 4 9, we look into and identify the information trans-

mitted by the AM and FM part of the signal as in Equation 4 10, 

x{n) = A{n)cos [9(n 

=A{n)cos VtcU + Vim ^ q{r) + 4> 
L 厂二 1 • 

and we have the instantaneous phase defined by 
n 

e ( n ) = f^n q � + 小 

(4 10) 

(4 11) 

The concerned AM-FM signal x(n) is transmitted at the carrier frequency 

r2c with time-varying amplitude signal A{n) and angle signal 0 (n) To identify 

the instantaneous frequency components contributed to S{n), we further ob-

tain a time-varying instantaneous angular frequency (IF) signal Q{n) by taking 

backward difference on 6(n) between two consecutive instants as in Equation 

4 12 

n{n) = e (n) - e (n 一 1) 

= ( 4 12) 

It IS clearly seen that at each specific moment n, there is a frequency devi-

ation from the carrier Qc assumed by the IF signal Q{n) In commu-

nication systems, this quantity is used to carry the message when transmitting 
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through FM scheme. Since it is always true that \q{n)\ < 1, the maximum fre-

quency deviation actually depends on a constant ilrn- Without loss of generality, 

Qrn is normalized to be one in our analysis. 

The Teager energy separation algorithm can efficiently estimate the ampli-

tude and frequency modulating signals based on an “energy-tracking" operator, 

which is named Teager Energy Operator (TEO). The TEO takes nonlinear pro-

cessing for a discrete-time signal as shown in Equation 4.13, 

屯d [^(n)]全[x\n) — x(n — l)x{n + 1)1 /T (4.13) 

where the subscript d in the operator implies the discrete-time domain. T is 

the sampling period, and in the remainder of this thesis, T = lis assumed, thus 

we can discard it from the expression of This operator was first introduced 

systematically by Kaiser to track the energy of simple harmonic oscillators [137]. 

If apply a continuous version of this operator, i . e . ,审亡 ) ] — [ x { t ) Y —x{t)x{t), 

on the simple harmonic motion mentioned in Equation 4.8, we can get 

—Aujsin{(jjt + </>) 2 — Acos{ujt + cj)) — Au?cos{ujt + (p) 

=(Aufsin�{cut + (^) + (Acofcos'^ {cut + cp) 

=(‘尸， (4.14) 

which is identical with the total energy of the oscillator we obtained over there. 

For time-varying amplitude and frequency modulation signal, like that de-

scribed by Equation 4.10, this operator is also revealed very useful, as shown 

below in Equation 4.15， 

A{n)cos 6(n = 屯 d A{n)cos ( Qcn + ^m^ q{r) + (p 
. V / 

A(n)r2(n)-

(4.15) 

The next goal in the parameter estimation process is to separate the instan-

taneous envelope |A(n)| from the instantaneous frequency r2(n) in the output 

of the TEO. This step of computation is called discrete energy separation algo-

rithm (DESA). 
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For this bandlimited AM-FM signal, we have 

cos Q{n] + 屯d [-A(n)l < cos^ [e(n)l —屯 cos 9(n] 

(4.16) 

The unsolved part in this equation is ^^(cos 6(n) ). By reformulating the 

signal representation as x{n) = A{n)cos(^Ylr=i + (f) first, and then go 

through some derivation steps omitted here, we get an approximate solution for 

it, that is, 

\ 
J 

cos COS ( ^̂  Cl[n) + (p e ( n 

Then, we have 

where there is an assumption about A{n), that is 

w sin (4.17) 

0(n) — siv? 

Thereafter, we get 

sin 

2 
sin 风n - - ； 

(4.18) 

(4.19) 

(4.20) 

By combining Equations 4.18 and 4.20, we eventually get the solutions for 

the instantaneous envelope |y4(n)| and angular frequency f}(n) as follows, 

pa 恤 ( n ) 丨 

1 ^^ x(n)—x(n—l) 
� 2 ‘ 

V x(n) J 

(4.21) 

and 

Q(n) ^ arccos (4.22) 

This algorithm applies to band-limited signals. It can estimate instanta-

neous frequencies up to 1/2 the sampling frequency, i.e., 0 < < tt. For 

multicomponent AM-FM signals that encountered in practical applications, a 

band-pass filtering process is needed before demodulation. 
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Figure 4.2: An example AM-FM signal, its time-varying amplitude and fre-

quency quantities: (a) signal x{n), (h) amplitude A{n), and (c) instantaneous 

frequency il{n)/7v. 

Figure 4.2 visualizes these three time-varying sequences, where the upper 
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Example: signal demodulation 

In order to have a direct-viewing experience on the separation algorithm de-

scribed above, we would like to make some observations on the separation results 

through an example. 

The signal for demonstration is a mono-component signal which has a stan-

dard AM-FM representation x{n) = i4(n)cos[6(n)]. Instantaneous frequency of 

the signal varies linearly to time, the amplitude function contains a sine wave 

and DC component, they are defined respectively as follows, 

A(n) = 0.75 + 0.25cos(7rn/50), 

J 0.157rn + 7r(n — 100)74000 , n = 0 , . . . , 200， 

I 0.207rn - 7r(n - 200)^/4000 + 7r/2, n = 2 0 1 , . . . , 400. 
e(n] 

(4.23) 

(4.24) 
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Figure 4.3: Teager energy operator output for the AM-FM signal and the esti-

mated amplitude, frequency parameters: (a) ^d x{n) , (b) estimated amplitude, 

and (c) estimated instantaneous frequency. 

Figure 4.2 and Figure 4.3 display the courses of modulation and demodula-

tion one after another. Results achieved by the DESA method can be revealed 

by comparing the corresponding parameters between them as well. 

Other approach: Hilbert transform 

Hilbert transform separation algorithm (HTSA) is another main tool applied to 

signal demodulation. Unlike DESA which, uses a nonlinear differential operator, 
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layer shows the AM-FM signal x{n), the lower two columns record the instan-

taneous amplitude A{n) and angular frequency quantity 0(n)/7r, respectively. 

In the process of separating the amplitude and frequency components for 

signal cc(n), we put it to the Teager's energy operator in Equation 4.13, and 

then get the amplitude and frequency parameters by Equations 4.21 and 4.22, 

respectively. As a result, the operation output in these steps are illustrated in 

Figure 4.3. 
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the HTSA involves a linear integral transform in the computation. In detecting 

the envelope and frequency elements of a real-valued modulation signal, HTSA 

as a first step constitutes an analytical signal from it, and then get the corre-

sponding modulus and phase derivative as the estimates of the amplitude and 

frequency part. 

x{n) • 

Hilbert 
� transformer 

V J 

• x{n) 

xin) 

analytical signal 

z{n) = x{n)+jxin) 

Figure 4.4: Creation of an analytical signal from a real-valued signal. 

For a causal and real-valued AM-FM wave x{n) = A{n)cos[G{n)], its Hilbert 

transform is noted to be 全(n), then an analytical signal z{n) is derived from 

them by following the process shown in Figure 4.4. The analytical signal z{n) 

can be alternatively represented by its modulus r(n) and phase ^(n) as z{n)— 

x{n) jx{n) = r[n}e讽吃 These two variables can be worked out by Equations 

4.25 and 4.26 as 

r{n) = Y^ + x^{n) 

0(n) = arctan x{n, 
x[n, 

(4.25) 

(4.26) 

The envelope and instantaneous frequency of the signal x{n) in the HTSA 

are found closely related with these two sequences in the following manner, i.e., 

A{n)\ ^ r(n) and 0(n) = 0(n) - (f){n — 1). 

In [140], Potamianos and Maragos who proposed the energy-tracking based 

method, made a systematical comparison on the above two types of signal de-

modulation method, for general synthetic AM-FM signals as well as genuine 

speech resonances. The time-varying envelope and instantaneous frequency es-

timates were evaluated in terms of estimation error. Strong evidences were 
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provided to conclude that, the smoothed energy operator approach is compa-

rable with the Hilbert transform approach for speech applications, in terms 

of estimation error, but the energy operator approach wins in computational 

complexity and faster adaptation due to its instantaneous nature. In addition, 

an advantageous feature is found for DESA： it produces the energy required to 

generate each mono-component AM-FM signal. This is favorable for us to inves-

tigate the vibrations yielded by the vocal folds for possible speaker-distinctive 

patterns. 
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4.3 Characterizing Voicing Source by Modula-

tion Parameters 

It is hard to exactly separate the real voicing source from a speech segment 

and to employ it in all sorts of applications. There are some representatives for 

vocal excitation signal have been raised. Preference to them may depend on 

the type of work to be conducted. As the interest of this thesis lies in achieving 

understanding and exploiting distinct features to distinguish different speakers, 

we are not concerned with many other respects that much. An expedient way 

for us is to take use of the LP residual signal to provide the speaker-specific 

source-related characteristics. Thus, the discussion of excitation signal in this 

section refers to the LP residual signal. 

4.3.1 Effects of band-pass filtering and periodicity 

In the previous section, an AM-FM signal x{n) — 4(n)co<s[6>(n)]= 

A(n)cos[r2c几 + q(y) + (f>] was used to explain the signal demodulation al-

gorithm. It was defined as a signal of fairly narrow bandwidth in the frequency 

domain, thus can be viewed as a mono-component signal. In practice, a voicing 

source signal always contains a sum of such AM-FM signals, thus to track the 

envelope and the frequency modulation of it, we need to separate the signal prior 

to demodulation. In addition to the need of band-pass filtering, voiced source 

signals share another common characteristics, namely pitch periodicity. Effects 

caused by the presence of pitch periodicity in the excitation signal and that due 

to band-pass filtering in the course of processing are two of the main problems 

need to be tackled when estimating the instantaneous envelopes and frequencies 

in the source signals. Potamianos and Maragos in [140] have mentioned similar 

problems in estimating parameters for speech resonances as well. 

Effects of band-pass filtering 

It is shown by many that a voiced speech signal is composed of several reso-

nances, every single resonance is extracted by a band-pass filter centered around 
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the formant frequency, and thought to be of AM-FM structure. Although no 

resonation occurs in the voice production process, the vibration of vocal folds 

yields quite a few mono-component signals that are of AM-FM type. This 

can be found from the very basic method of expression for an LP residual sig-

nal, i.e., the Fourier spectrum. If look into the spectrum from the lower to 

the higher frequency region, it is found that the signal contains a bundle of 

various frequency components, either the pitch harmonics, the transition from 

harmonically-related elements to the non-harmonic zone, or the noise-like re-

gion. 

Before applying the demodulation algorithm to an excitation signal, we must 

have the individual AM-FM element picked out through band-pass filtering. 

Gamma-tone filters, which are generally used to model auditory filters, as men-

tioned in Chapter 2, fit our need well. Mathematically, a gamma-tone filter 

is a linear filter described by an impulse response as the product of a gamma 

distribution and sinusoidal tone, as that expressed in Equation 4.27. 

g{t) = at�N-%-減 cos�27iU + </>), (4.27) 

where a is an arbitrary factor used to normalize the peak amplitude to unity, 

N is order of the filter, b is the bandwidth that determines the duration of the 

impulse response, fc is the center frequency and (j) is the phase of the sinusoidal 

tone. A fourth-order filter is found to fit best with a wide range of human 

masking data, thus is frequently employed in auditory models. Figure 4.5 illus-

trates the impulse response of a fourth-order Gamma-tone filter whose center 

frequency and bandwidth are 1000 Hz and 125 Hz, respectively, and with zero 

phase offset assumed. 

Considering the filtering process during signal decomposition, its effects on 

the re-synthesized signal was discussed in [140]. The updated estimates of am-

plitude and instantaneous frequency, after taking into account the filter response 

parameters, are mentioned. Because our focus is on analyzing the inclusive sig-

nals and extracting useful cues from them for speaker discrimination purpose, 

we will not pore deeply on this matter at most of the time, expect in the dis-
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filter response 

0.015 0.02 
t (time) 

Figure 4.5: Impulse response of a Gamma-tone filter. 

cussions of Section 4.3.3. 

Effects of pitch 

Let us start from observations made on synthetic signal. Given two composite 

sinusoidal signals where each composed of two sine waves as follows: 

• 5i(n) = cos{27Tfin/fs) + cos(27r/2n//^) 

• S2(n) = cos(27r/3n//,) + cos(27rf4n/f,) 

where = IQHz, f � = 20Hz, fs = 80Ez, / ‘ 二 90丑0，and f , = 100•丑二 Their 

waveforms and spectra 

respectively. 

shown in the left and right column of Figure 4.6, 
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waveforms spectra 

n (sample) f(Hz) 

Figure 4.6: Waveforms and spectra of the composite sinusoidal signals si{n) 

and S2{n). 

Then, the estimated envelopes and instantaneous frequencies of the two 

signals are depicted in Figure 4.7, where the corresponding waveforms are shown 

in magenta for the purpose of reference as well. This figure gives evidence of 

the effects caused by the fundamental frequency of a periodic signal in the 

course of demodulation. It is found not easy to smoothly track the envelope 

and instantaneous frequency quantities for composite sinusoids where common 

fundamental frequency exists. This is actually the main problem encountered 

by the formant- or pitch-trackers which are based upon signal demodulation 

algorithms. Referring to the two signals si(n) and 82(71) here, it is indicated 

that 5i(n) is with lower frequency, and S2{n) is its higher frequency counterpart, 

the main points we have learnt from Figure 4.7 are summed up as follows: 

• For both Si(n) and S2(n), the instantaneous frequency estimates keep 

closed to their real centers, except for the peaks due to periodicity. 

• In Si(n), the envelope can reveal the signal period; while, in the scenario 

93 



600 
n (sample) 

20 
600 

(sample) 

envelopes instantaneous frequencies 

200 

400 
(sample) 

600 
n (sample) 

Figure 4.7: Envelopes and instantaneous frequencies of the composite sinusoidal 

signals s! (n) and S2 in). 

4.3.2 Observations on real speech data 

The above mentioned phenomenon that caused by the fundamental frequency 

is referred to as the pitch effect when processing speech or excitation signals. A 

segment s{n) of speech sound / i / uttered by a female speaker and its residual 

signal e(n) by LP analysis are shown in Figure 4.8, note that they are both nor-

malized to the range [-1，1]. The residual signal is decomposed into 10 channels 

with a bank of Gamma-tone filters whose center frequencies and bandwidths 

are listed in Table 4.1. 
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taken by S2(n)，the envelope indicates exactly wave cos(27rfon/fs) , where 

/o = lOHz is found to be the greatest common divisor of the two frequen-

cies included. 
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speech signal 

n (sample) 

LP residual signal 

200 400 600 800 
n (sample) 

Figure 4.8: Speech segment /i/ and its LP residual signal from a female speaker. 

Table 4.1: Center frequencies and ERB bandwidths of a 10-channeled Gamma-

tone filter bank spaced on [100Hz, 4k Hz] (in Hz). 

k 1 2 3 4 5 6 7 8 9 10 

fc{k) 3046.8 2308.5 1736.5 1293.5 950.4 684.6 478.7 319.2 195.7 100 

ERB{k) 353.8 274.0 212.2 164,4 127.3 98.6 76.4 59.2 45.8 35.5 

Figure 4.9 manifests the IF estimates in these subbands of residual signal. 

The five curves in the left column corresponds to the k = 1 , . . . , 5 subbands, 

while those with k G [6,10] are shown in the right. It is clearly seen that in 

almost all subbands where excitation activity occurs, there are peaks present. 

Most peaks present themselves roughly at the pitch period in this observation, 

which is a vivid illustration of the pitch effects that take place in real speech. 
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Figure 4.9: Instantaneous frequency estimates in different suhhand signals. 

4.3.3 Discussion on excitation signal re-synthesis 

The two factors affecting the estimation of pertinent envelopes and instanta-

neous frequencies in an LP residual signal have been introduced. For signal 

reconstruction, it is necessary to accurately estimate the AM-FM model pa-

rameters and get rid of any consequences from these effects. With the purpose 

of extracting speaker-distinctive features from the amplitude and frequency es-

timates, it is not a necessity to have the mentioned effects entirely compensated. 

Nevertheless, a brief study on them will be adequate. 

Scenario 1: effects by band-pass filtering 

Suppose each subband of the excitation is a mono-component AM-FM signal 

x{n) 二 A(n)cos[0(n)], as that laid out in Equation 4.9. We may rewrite it in 

the following form, 

x{n) = A{n)cos n^n + (j){n) 二 — A2{n)sin{ncn). (4.28) 
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Similarly, there is 

A{n)sin � n + (j){n) = A i ( n ) + A2{n)cos{Q.c'^] (4.29) 

Referring to formula asinx 士 bcosa: — + b^sin{x 士 arcton(6/a)j, we can 

get the solutions for and as below, 

-為 (n ) 
A{n)\ = \/[Ai{n)]'^ + [A2{n)Y, 4>{ji) = arctan 

A, in] 
(4.30) 

The Gamma-tone filter centered at carrier frequency fc that present in Equa-

tion 4.27 will transform to the representation g{n) = a ( 芳 一 + 

(f)) in the discrete time domain. It can be rewritten as the product of a low-pass 

filter gi{n) and a sinusoidal tone signal cosiflcTi) = cos{^如卜机�as follows, 

9{n) = gi{n)cos{ftcn] (4.31) 

The filtered signal x{n) = x{n)^g{n) is still of AM-FM structure as denoted 

by Equation 4.32, where the carrier is flc, 

x{n) = A{n)cos + ^(n)]. (4.32) 

Under this condition, it is approximately found that 

x{n) = {Ai(n)cos(r2cn) — A2(n)sin{^lcn)} (g) [gi{n)cos{^cn) 

(4.33) -2 Ai{n) 0 gi[n) cos(l]c几)一 - 乂 2 ( 几 ) ® gi(n) siniVlji] 
2 J 

The envelope and ^(n) of x(n) are therefore estimated by Equations 

4.34 and 4.35. 

(4.34) 

^(n) arctan 
.A2(n) (S>g“n) 
Ai(n) (g> gi(n] 

(4.35) 
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Scenario 2: peaks by pitch effects 

Most peaks present in the envelopes and instantaneous frequencies in some 

bands of the speech signal are due to the pitch effect. This actually provide 

cues for pitch determination. Because the involving of a bank of band-pass 

filters, this method is categorized to be a time-frequency domain pitch esti-

mation approach, it is widely employed in speech segregation and harmoiiic 

enhancement researches [141], [142]. Inevitably, there exist discontinuities and 

disturbing noises caused by errors in parameter estimation, they are ought to 

be removed in a proper way, without affecting the real underlying frequency 

components. Then the primary frequency components can be extracted subse-

quently. There are methods can take up this task. We have achieved this via 

smoothing the estimate sequences, detailed description is represented in Section 

4.4.1. 

98 



Chapter J,.- Characterization of Individual Speakers with Distinctive Vocal 
Excitation Features 

4.4 Analysis for Extracting Source Features 

Cepstral coefficients are widely used in recognizing phonemes and discriminat-

ing speakers, such as Mel-frequency cepstral coefficients (MFCC). Good perfor-

mance has been achieved using this type of features, however, it is found that 

they have bias towards the content of the speech unit [143], and are sensitive 

to the environmental variations. This motivates the exploration of new features 

that can offer assistances to the conventional cepstral coefficients in practical 

applications. Features derived for capturing the LP residual characteristics are 

proven complementary information source to the vocal tract based parameters, 

as revealed by the survey on source parameters in Chapter 2. 

Recently, the modulation property of the vocal tract system has been in-

volved in discriminating individual speakers. For example, the spectral cen-

troids that depends on the FM of signals by Paliwai et al. in [144], average 

of instantaneous frequencies weighted by amplitudes by Dimitriadis et al. in 

[55], etc. Published results indicate that the information captured by the FM 

features can offer assistance to enhancing recognition performance when jointly 

used with the conventional amplitude-based features. However, most of these 

features focus on the temporal modulation properties of the formants in the 

vocal tract system, and exclude the excitation characteristics. The sinusoidal 

model [130], on the other hand, fits the speech waveform by composing a set of 

sinusoids which are harmonically related to the fundamental frequency of the 

speech signal. This method is primarily employed for pitch tracking [145], and 

is used in excitation coding technique. Other models were proposed, but mostly 

take advantage of the modulation properties of the excitation source and pay 

little attention to their speaker discrimination potentials. 

In this section, we attempt to explore the speaker-relevant characteristics 

of the modulation phenomena in the excitation source of speech. Unlike the 

synthesis and coding systems, whose focus are speech intelligibility, waveform 

matching or transmission load, our method concentrates on characterizing the 

slow temporal (envelope and frequency) modulations in the LP residual sig-

nal, by using multi-band analysis and the nonlinear signal processing method. 
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We propose a new set of modulation features, which are estimated from the 

multi-band AM-FM model of the residual signal. The parameters are noted as 

Averaged Instantaneous Envelope of Residues (RAIE) and Averaged Instanta-

neous Frequency of Residues (RAIF), respectively. In a multi-stream speaker 

recognition system, these features are used as the complementary speech fea-

tures to MFCG. 

4.4.1 Characteristics of modulation parameters 

As an initial observation on the envelope and instantaneous frequency estimates 

for a set of subband signals from the LP residual signal in Section 4.3，we 

mostly mentioned the problems came across and say less about other aspects. 

In this section, we will dig into and fetch out the important excitation-related 

characteristics present in the estimates. As a further investigation, study aimed 

to distinguishing the essential components from others are conducted for the 

sake of speaker discrimination. 

Let us have a close examination on the estimates of modulation parameters 

in a single subband first, for instance, the 8th subband of the LP residual signal 

shown in Figure 4.8. By looking up Table 4.1，it is found that the center 

frequency /c(8) = 319.2Hz. The waveform, instantaneous envelope, frequency 

estimates of the signal are given in Figure 4.10，additionally exhibited are the 

mean values of the two instantaneous sequences which are marked in magenta. 

Observations on primary IE, IF components: 

• The primary frequency of the subband signal is quite clearly delivered 

by the IF estimate, except for those peaks mentioned before in Section 

4.3. This frequency might be accounted as one of the most essential and 

significant characteristics when indicating an AM-FM signal. 

• The frequency deviation of the IF from the carrier frequency, about 100 

Hz in this case, records the variation of the instantaneous frequency in an 

AM-FM signal. 
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0.0033 

subband signal and instantaneous envelope (IE) 
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0 
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subband center frequency 
IF mean value 
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A A A 

200 800 
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Figure 4.10: An example subband signal，its IE, IF estimates and the corre-

sponding mean values. 

• The envelope represents the absolute amplitude of the AM-FM signal, 

it roughly can be viewed as a primary measurement of the amplitude 

modulation modulus. 

Attaining the primary IE, IF elements: 

As also illustrated in Figure 4.10，the mean values of the IE, IF sequences 

are evaluated over a time window. To be precise, the smoothing process is 

described as follows: 

• Step 1 - Removing interruptions by smoothing: to eliminate the 

peaks due to pitch effects and other disturbing noises present. Without 

losing too much temporal characteristics of the sequences, a 21-point me-

dian filter is chosen to conduct the smoothing work. 
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• Step 2 - Retaining principal elements by taking average: to retain 

the primary values for the sequences, their means value are taken within 

a proper window size. 

4.4.2 Source features derivation 

In Figure 4.11, a flow chart of the vocal excitation modulation feature extraction 

is shown. Besides, the composition of the source-related RAIE, RAIF parame-

ters, as well as a complex set of them, parameter set RAIEF are exhibited. 

The process of computing the RAIE and RAIF features is summarized as 

follows: 

1. Voicing decision: The RAIE and RAIF features are extracted from voiced 

speech only. The voicing status is detected using Talkin's Robust Algo-

rithm for Pitch Tracking [146'. 

2. LP filter estimation: To obtain the prediction filter coefficients {a^}, k 二 

1,2 , . . . for yielding the LP residual signal. 

3. LP inverse filtering: The residual signal e{n) is obtained for each frame by 

taking LP inverse filtering. A voiced segment is divided into overlapping 

frames with 30 msec duration and 10 msec frame shift. To diminish intra-

speaker variation, the amplitude of the residual segment is normalized to 

the range of [—1,1. 

4. Filter bank filtering: Applying a bank of K Gamma-tone filters on the 

residual signal e(n) to produce the subband signals. The center frequency 

fc{k) ranges from 4 kHz to 80Hz with k increase from 1 to K. 

5. Multi-hand demodulation-. Teager's energy separation algorithm is em-

ployed in obtaining the instantaneous envelope (IE) sequence and 

the instantaneous angular frequency 驚 / (n ) (IF) on a frame basis for each 

subband signal. 

6. Smoothing of the IE and IF sequence: A 21—point median filter is applied 

to remove the abrupt impulses in the frames of IE and IF sequence. 
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Figure 4 11 Block diagram for the extraction of RAIE, RAIF and RAIEF fee 

tvre vectors 
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7. Frame averaging of the smoothed IE and IF: An averaging operation is 

done on the smoothed IE and IF sequences for the frames in each sub-

band. In this step, we remove the fluctuations of the IE and IF sequences, 

and track the amplitude and frequency of the most significant frequency 

components in each subband frame by frame. 

At the end of the above procedures, the K dimensional feature vectors RAIE 

and RAIF are derived. Given one particular frame, the RAIE and RAIF vec-

tors are viewed as the amplitude and frequency distributions of the principal 

components over the frequency bands. The RAIE and RAIF feature vectors are 

described as 

RAIE 二 {RAIE �,RAIE[2),RAIE{K)}, 

and 

RAIF = {RAIF{l),RAIF{2),,. .,RAIF{K)}. 

In order to include both RAIE and RAIF-related parameters in one single 

vector, we create another set of features, that is, the RAIEF vector, whose 

composition is demonstrated through Figure 4.11. 

The speech data used in the experiments of this paper are sampled at 8 

kHz, and thus the speech has the highest frequency of 4 kHz. Since there 

is no strict derivation to determine an optimal subband number K, and the 

frequency resolution by the 20-channel Gammatone filterbank can separate the 

harmonically related frequency components for the data we used, we consider 

to use A!" = 20 here. 

4.4.3 Feature analysis 

The RAIE and RAIF features derived above are considered to have captured 

the amplitude and frequency characteristics of the principal components of the 

different subbands. In this part, we would like to evaluate these parameters by 

examining some typical speech properties. These properties cover the variation 

in F.O，the difference in pitch epoch shape, and the relevant excitation details 
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existing between the adjacent pitch epochs For this purpose, we have first 

synthesized four signals to assume the desired pitch-related characteristics, they 

are noted as ei(n) through 64(71), respectively The detailed specifications about 

these signals are listed in Table 4 2 

Table 4 2 Specifications of the synthetic excitation signals (fs = 8kHz) 

FO {Hz) Epoch shape Details? 

ei(n) 86 2 Impulse No 

62 (n) 172 4 Impulse No 

63 (n) 172 4 Triangular pulse No 

64 (n) 172 4 Triangular pulse Yes 

Moreover, the FO value of the synthetic signals and center frequencies of 

some band-pass filters are settled specially, as shown below 

/c(18) = = 172 AHz /c(15) - 2 IFO 九(13) = 3 2F0 

Then, a set of experiments are designed specifically to evaluate the features 

in the following three aspects 

• Pitch variation 

FO IS one of the most primary properties in distinguishing different speakers 

by human ears B S Atal in [23] used pitch contour to identify speakers, and 

there have been pitch-related features proposed throughout the years for similar 

purposes, as we have reviewed in Chapter2 In this experiment, we generate two 

impulse trains to approximate the pitch-periodicity of the excitation signal By 

taking these different pitched signals as input, we intend to see whether the AIE 

and AIF feature vectors can produce discriminative information 

In Figure 4 12, there are two impulse trams which are denoted as ei(n) 

and 62 (n), respectively Their waveforms are shown on the top row 62(71) has 

chosen FO to be 172 4Hz, which is the same as /c(18) (center frequency of the 

18th filter)，it is equivalent to 2 1 times of /c(15) and 3 2 times of /c(13) fe{k) 
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Figure 4.12: AIE and FM for artificial excitation signals with different FO: 

ei(n) and 62(71). 

decreases as k increases. The FO of signal ei(n) is set to be half of 62(n). On 

the middle row, the AIE of ei(n) and 62(n) are illustrated. It is observed that 

in the lower frequency region, for 62(n), the k = 18,15,13 frequency bands 

have small peaks for AIE values, and there are no peaks for ei{n). In the 

high frequency region, most k in 62(11.) give much higher AIE values than ei(n), 

and the AIE values of ei(n) are more evenly distributed among different fc's. 

On the bottom row, the FM values are revealed to have different distributions 

over k for ei{n) and 62(71). As another expression of the primary frequency 

in a subband indexed by k, FM component alternatively delivers the deviation 

of AIF{k) from fc{k). While it is found that the FM is in general small for 
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Figure 4.13: AIE and FM for artificial excitation signals with different epoch 

shapes: 62 (n) and 63(71). 
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62(n), at subbands k = 18,15,13, it tends to be very close to zero. Differs from 

what ei{n) behaves, 62(71) shows presence of greater negative FM in the higher 

frequency bands, 

• Pitch epoch shape 

Aside from the pitch period variation among speakers, it is believed that the 

shape of the pitch epoch and the details between adjacent epochs also play roles 

in discriminating different speakers. As we have briefly surveyed in Section 4.1, 

the shape of pulse is essential parameter in almost all voicing source models. In 

this experiment, these properties will be focused on separately. 
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In Figure 4.13, in addition to signal 62(n), another signal 63(72) and their 

AIE, FM vectors are illustrated in the three rows, respectively, where both 

signals share the same F0= 172.4 Hz. For the comparison between 62(71) and 

63(71), it is revealed that although they have the same FO value, their difference 

in pulse shape makes their AIE vectors differ a lot. We observe that the lower 

frequency amplitude is emphasized in 63(77-), and the peaks at A: 二 18,15,13 

bands are also more prominent for 63(71) than that for 62(n). With regard to 

the FM components on the bottom row, both signals exhibit peaks around the 

three bands concerned, however, the larger FM values for 63 (n) in the higher 

frequency bands indicate the drop of energy in these bands. 

• Details between epochs 

Figure 4.14 displays another set of synthetic pulse trains 63(n) and 64(71) 

sharing a same FO. The comparison between them focuses on the effects of the 

embedded details among the epochs. It is seen that the AIE peaks present in 

63(n) at k = 18,15,13 appear for 64(77.) as well, but the enlarged amplitudes for 

64(71) in the higher frequency bands, compare with that for 63(71), are obviously 

resulted from the additional noise. Likewise, on the bottom row that refers to 

FM components, it is found that the noise has brought greater effects for bands 

centered above 1000 Hz than for others. This is actually consistent with our 

observations from Figure 4.13 in that the noise in a way reduces the FM in some 

bands, possibly in the higher frequency region. 

Indicated by the above experiments and compared with the conventional 

spectral analysis results, we can see that the AIE vector can reveal the amplitude 

modulation information in different frequency bands which is absent from the 

flat spectrum of the excitation signal. On the other hand, AIF provides phase-

related information for vocal excitation. 
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Figure 4.14: A IE and FM for artificial excitation signals with and without details 

between adjacent epochs: 63(71) and 64(71). 
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4.5 Evaluation of Excitation Modulation Fea-

tures in Speaker Recognition 

In this section, we will evaluate the proposed features RAIE and RAIF as the 

complementary parameters to the MFCC features through speaker identification 

(SID) and speaker verification (SV) experiments on a speech database CU2C. 

The standard MFCC features we used contain 39 components: the log energy, 

12 static coefficients, and their dynamic and acceleration coefficients. 

4.5.1 Speech database: CU2C 

CU2C is a dual-condition Cantonese speech database developed for speaker 

recognition research at the Chinese University of Hong Kong [147] in 2005 

(http: / / d sp . ee. cuhk. edu. hk/html/cuothers. html). It contains parallel 

data collected under two different acoustic conditions: the wideband desktop 

microphone and public fixed-line telephone channel. In the recording process, 

each speaker was asked to read the same materials twice under the two record-

ing conditions, one after the other immediateiy. These two kinds of data can 

be used separately to develop different applications. Thus, it provides a proper 

platform for the study of channel effects in speaker recognition systems. We 

use part of CU2C, which contains the speech data from 50 male speakers. Each 

speaker has 18 sessions of recordings which were made over a time span of 4-9 

months. There are 6 utterances in each session. Three sub-corpora with dif-

ferent contents are provided in CU2C: ID numbers, digit strings and sentences. 

We use the digit strings sub-corpora, where each of the utterance contains a 

sequence of 14 randomly generated digits. The utterance length is about 5 to 6 

seconds. The original sampling frequency of the microphone data was 16 kHz, 

and they were down-sampled to 8 kHz to be used in this work. The telephone 

data were sampled at 8 kHz. Noisy speech data are generated by digitally 

adding white Gaussian noise signals to the CU2C utterances at controlled SNR 

level. The noise signals are taken from the NOISEX-92 Database [148 . 
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4.5.2 Experimental set-up 

For all speakers, 6 out of the 18 sessions are used to train the speaker models, and 

the remaining data are used for performance evaluation. The standard approach 

for UBM-GMM training is adopted. Separate systems are built based on MFCC, 

RAIE, RAIF, and RAIEF, respectively. The features RAIE, RAIF and RAIEF 

are used as complementary counterparts of MFCC, respectively, in the three 

sets of experiments. The score-level fusion technique is used to combine the 

contributions of the systems by MFCC and one of the source-related parameter 

set. The final decision is determined by the overall combined score. In the 

identification tasks, the log-likelihood score of each test is a linear combination 

of the log-likelihood scores from the MFCC and RAIE/RAIF/RAIEF features, 

with weighting parameters ium and wr (i.e., L = WmLm + wrLr). Meanwhile, 

in the verification tasks, the fusion is performed on the log-likelihood ratio 

scores, that is, A = wmXm + wrXr. In both tasks, Wm and wr are related 

by wm 4- Wr = 1. The weighing strategy is described as follows: initially, let 

Wm = 0, and wr = 1. Next, we empirically increase Wm by a step of and 

repeat this for 50 times, with wr = 1 一 wm satisfied. Finally, we identify the 

optimum parameter set [ w m ^ w r ] with the best recognition results. 

For SID and SV tasks, the identification error rate (IDER) and equal error 

rate (EER) are used as the primary performance indicators, respectively. 

4.5.3 Experimental results 

In this part, the proposed vocal excitation moduiation feature sets RAIE, RAIF, 

RAIEF will be evaluated in terms of their individual speaker discriminative 

power as well as their complementarity with the the conventional MFCC fea-

tures. Factors in extracting the source-related modulation parameters will be 

studied through experiments as well. 

• Benchmark results 

The individual performance of the MFCC and RAIE, RAIF parameter sets 

in clean environment under the protocols of speaker identification and verifica-
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tion are shown in Table 4.3, respectively. Their results are therefore used in 

the baseline system to provide the benchmark record, where the MFCC fea-

tures are of 39-dimension and the RAIE, RAIF feature vectors each contains 20 

parameters, respectively. 

Table 4.3: Speaker recognition performance of individual feature sets: IDER & 

EER (in %). 

feature configuration IDER EER 

MFCC 2.44 1.52 

RAIE-卵 40.72 13.17 

RAIF一洲 35.11 10.42 

• Results by fusing with MFCC 

The fusion of MFCC features with either RAIE or RAIF parameters leads to 

improved performance over the MFCC-alone speaker recognition system. Table 

4.4 gives the results of the proposed two sets of source-related parameters after 

combining with MFCC. For reference, the averaged weighting parameter sets 

wm, in getting these results are given in bottom row of the table. 

Table 4.4: Speaker recognition performance of combined feature sets: IDER & 

EER (in %). 

feature combination IDER EER 

MFCC+RAIE—忍 2.39 1.49 

MFCC+RAIF一洲 2.28 1.24 

[WM • • � [0.65 : 0.35] [0.63 : 0.37] 

• Effects of feature dimension 

In Table 4.5, the recognition performance of feature sets RAIE, RAIF with 

an increased subband number 40 are evaluated. An additional parameter set 

RAIEF with the same vector dimension is examined as well. The set of RAIEF 
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feature is composed of the RAIE and RAIF parameters under dimension 20 sce-

nario, where the vector composition of it can be found in Figure 4.11. Averaged 

weighting parameter set [wm , wr] in getting these results are given in bottom 

row of the table as well. 

Table 4.5: Effects of feature dimension on speaker recognition performance: 

IDER & EER (in %). 

feature configuration/combination IDER EER 

RAIE—卯 27.28 9.46 

RAIF J (9 19.67 8.01 

RAIEF一卯 22.50 8.17 

MFCC+RAIE一伪 2.44 1.44 

MFCC+RAIFJf 2.06 1.27 

MFCC+RAIEF_^ 2.17 1.36 

[mi ^OR] [0.58 : 0.42] [0.63 : 0.37] 

4.5.4 Analysis of results 

• Recognition accuracy analysis 

From the SID and SV results shown in Table 4.3, the performance of indi-

vidual features RAIE and RAIF are far from comparable with those of MFCC 

features. With score-level fusion with the MFCC features, these two sets of 

20 dimensional parameters achieve some improvements over the MFCC-only 

scenario, as shown in Table 4.4. When the dimension of the feature vectors, 

i.e., the number of frequency band for signal demodulation, becomes 40, their 

combinations with MFCC in Table 4.5 indicate enhanced performance than the 

lower dimensional cases. 

• Effects of feature dimension 

When looking through either feature RAIE or RAIF in terms of their in-

dividual performance, it is found that both of these parameters have attained 

improved results after their dimension was doubled. The enhancement might 
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37.97 

RAIEF RAIE RAIF RAIEF 

S I D result • S V result 

Figure 4.15: Effects of feature dimension on experimental results. 

However, the case of RAIEF is dissimilar with the above two. On one 

hand, its dimension is the same with both and RAIF_40, however, the 

subband number in signal decomposition is still 20. On the other hand, it is a 

complex of the RA1E_20 and RAIF—忍sets. Although the two 20 dimensional 

features are found not effective no matter in individual or combination scenarios, 

their complex can attain considerable enhancement in both cases. 

• AIF vs. AIE 

As we can see from Figure 4.16 that the performance of the three feature 

configurations: AIE, AIF and AIEF that applied the excitation signals tend 
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be examined by comparing the corresponding IDERs and EERs indicated in 

Table 4.3 and Table 4.5. In Figure 4.15, there are two subfigures exhibiting 

the relative reduction of IDER and EER caused by increasing the dimension of 

the feature vectors. Figure 4.15(a) illustrates the improvement over the results 

of RAIE—忍 ?̂ assumed by and RAIEF, respectively. Similarly, in Fig-

ure 4.15(b), the improvements achieved by RAIF_40 and RAIEF are measured 

based on the benchmark results of RAIF 20. 
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RAIE RAIF RAIEF 
feature set 

RAIE RAIF RAIEF 
feature set 

Figure 4.16: Results of RAIE, RAIF and 

viduaUy and combining with MFCC for : 

merits. 

RAIEF features when employed indi-

(a) SID experiments; (h). SV experi-

• Feature complementarity analysis 

Concerning the combined SID and SV results recorded in Tables 4.4 and 

4.5, the averaged weighting factor wr is around 0.35 � 0 . 4 2 in both experi-

ments. This reveals the high complementary relationship between the MFCC 

and RAIE/RAIF features in representing the acoustic characteristics of an in-

dividual speaker. 
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to behave similarly for SID and SV tests. A same trend is observed in both 

the individual results of these three feature sets and their performance after 

fusing with MFCC, that is, the parameter set AIF outperform the other two, 

and the set AIEF shows superiority than that of AIE in terms of recognition 

performance. 
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4.6 Summary 

This chapter aims to explore the vocal excitation source properties in terms of 

the temporal modulations in both amplitude and frequency. The study to char-

acterize individual speakers' vocal excitation pattern indwelling is conducted un-

der the framework of multiple frequency-band decomposition and modeling. In 

extracting useful excitation-related modulation parameters from the LP residual 

signals, the amplitude and frequency components are separated over the time, 

their distribution across the multiple bands are then parameterized into feature 

vectors. It is observed via the designed experiments on synthetic signals that 

the proposed features are capable of capturing the vocal differences in terms of 

FO variation, pitch epoch shape, and relevant excitation details between epochs. 

Subsequently, these spectrotemporal parameters are evaluated through simu-

lations on real database. It is found that (1). multi-band amplitude and fre-

quency modulation parameters are capable to capture the time-frequency vocal 

excitation characteristics; (2). modulation-related source parameters are com-

plementary with the relevant vocal tract features; and (3). speaker recognition 

accuracy provided by the spectral-based features can be further improved by 

combining the proposed source features in a multi-stream recognition system. 
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Chapter 5 

Speaker Discrimination using 
Phase Information of Speech 
Signal 

Auditory experiments show insensitivity of human ears to phase information 

in perceiving phonetic content of speech signal. However, the discarded phase 

information may provide useful acoustic cue for identifying individual speaker, 

this is especially useful for speaker recognition systems operated with degraded 

magnitude in adverse conditions. This chapter is therefore motivated to derive 

phase-related features for reliable speaker recognition performance. A pertinent 

representation for most dominant primary frequencies present in the speech sig-

nal is first built. It is then applied to frames of the speech signal to derive 

effective speaker-discriminative features. Through a set of specifically designed 

experiments on synthetic vowels, it is observed that the proposed features are ca-

pable of differentiating the inclusive formants, pitch harmonics from other com-

ponents, and expressing the vocal particularities in various-shaped formants. 

By combining with standard cepstral parameters, these phase-related features 

have shown to evidently reduce the identification error rate and equal error rate 

in the context of Gaussian mixture model-based speaker recognition system. 

In Section 5.1, representations characterizing the vocal tract resonances are 

reviewed at first. With attempt to derive phase-related speaker representa-
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tives, in Section 5.2, we employ the set of frequencies that dominate in the 

primary components as a representation of speech phase, which then in Section 

5.3 is evaluated in its capability of delivering potential speaker-discriminative 

properties. Finally in Section 5.4, the pertinent representation is applied on a 

frame-by-frame basis in the front-end to be assessed under speaker recognition 

protocols. Section 5.5 summarizes the chapter. 
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5.1 Vocal Tract Resonance Characterization 

An efficient and compact representation for the speech properties that keep 

stationary within a period of time is of distinct importance for distinguishing 

different speakers as well as for speech recognition. Similarly as we have done in 

the previous chapter to build a model for conveying the excitation-related vocal 

attributes, we are going to explore the concerned vocal tract characteristics here 

through an adequate manner of expression. There are a variety of approaches, 

such as, linear prediction analysis, formant and bandwidth tracking [149], [150], 

articulatory models [151], [152], etc, have been developed for characterizing 

vocal tract properties, most of them are focused on capturing the concerned 

characteristics of formants, which are resonances of the vocal tract. The speech 

modeling method that models the pole frequencies of speech signal or transfer 

function of the vocal tract based on source-filter model is referred to as formant 

synthesis [153 

frequency (Hz) frequency (Hz) 

F\ =400 Hz 

F 0 = 100 i/z F2 = 800 Hz 

F3 = 1200 Hz 

Fl = 400 Hz 

FO = 200 Hz F2 = 800 / /z 

F3 = 1200i/z 

Figure 5.1: Interaction between the excitation source and formants. 

The human vocal system generally comprises of an excitation generator and a 

set of band-pass filters. The excitation generator operates in at least two modes; 

pitch-controlled oscillator, or a noise generator, while the vocal tract exhibits 

resonant modes that emphasize some frequencies and simultaneously suppress-

ing others. Each formant is usually modeled with a two-pole resonator which 
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Figure 5.2: Formant structure expressed by the frequency response of an all-pole 

model. 

Another essential attribute that marks the spectral envelope of a voiced 

speech sound is the frequencies and bandwidths of the primary formants, as 

illustrated by Figure 5.2. 

120 

Chapter 5. Speaker Discrimination 'using Phase Information of Speech Signal 

enables both the formant frequency (pole-pair frequency) and its bandwidth 

to be specified. Acoustically, it is the formants that make the vowels sound 

different one from another, and in pronouncing a same vowel, inter-personal 

differences in the anatomical properties such as the length and cross-section of 

the tube of air that comprises the vocal tract, shape the voices with discernable 

attributes. Figure 5.1 depicts the interaction between the excitation source and 

the formants in generating an exemplary vowel. The two sounds are determined 

to share identical formant frequencies Fl, F2, F3, but excited by different funda-

mental frequency FO, which as a result, exhibits discernable excitation-formant 

interaction behaviors. 
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5. Conjugate pole-pair model 

The formants are viewed as the resonances in vocal tract system. In representing 

a resonance spectrally, autoregressive (AR) model is a frequently used method. 

For speech signal processing, the two poles in a second-order formant AR model 

usually constitute a conjugate pair that located within the unit circle [19]. A 

typical complex resonant frequency of the vocal tract is 

sk^sl = -ak±j2nFk. (5.1) 

While, the corresponding conjugate poles represented in the discrete time would 

be 

Is Is 
271 (5.2) 

Center frequency of the kth. resonance is F^, the bandwidth is approximately 

2ak- In the z transform domain, the bandwidth is determined by the radius of 

the poles, i.e. 

Tk = exp[— 
Is 

while, the angles of the conjugate poles from the origin are 

Ok 

(5.3) 

(5.4) 

Therefore, the transfer function of a specific formant in terms of the conju-

gate pole pair ought to be expressed as in Equation 5.5, 

Rkien = 
1 

1 — 2rfcCos6"fce 卞 + -(rfceJ�)e-•？1 [1 - (rfce—"办)e—•？̂  

(5.5) 

Accordingly in the time domain, the resonance is noted as 

n{n) = r\ sin 
sinOk u{n). (5.6) 

Obviously, Equation 5.6 can be approximated alternatively as product of an 

amplitude and sinusoid as follows [57], 

rk{n] 
sinOi 

cos TV 
(5.7) 
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5.1.2 AM-FM representation 

Taking up the formulation of kth formant of the vocal tract system in Equation 

5.2, given an impulse-train to excite it, it will lead to a bandlimited signal •Pfc(n), 

which can be represented by 

Fj,{n) = A,,(n)expi^j e , (n ) (5.8) 

with the formant being characterized by two sequences: 

• Ak{n) ~ Amplitude of formant; 

• ©/s(n) - Phase of formant. 

In practice, the vocal tract system has long been known as a modulation 

system, where individual resonances modulate the vocal excitation at separate 

frequencies, which as a result present peaks in the spectrum and affect the phase 

properties. The formant signal as we have denoted in Equation 5.8 is a bandlim-

ited signal centering around the formant frequency and spanning approximately 

over the formant bandwidth. Being a similar case to the vocal cords' vibration 

studied in Chapter 4, the resonant voice caused by resonation of vocal tract 

with the excitation source at a specific frequency follows the law of AM-FM 

modulation as well. Therefore, the bandlimited resonant signal is viewed as 

a mono-component AM-FM signal. Message conveyed here is revealed consis-

tent with that in Equation 5.7 too, in that the formulation is determined by 

sequences of amplitude and phase quantity. 

As far as the time-varying property of a speech signal is concerned, the am-

plitude and phase of a resonant signal are deemed to be time-variant sequences. 

Referring to the expression in Equation 5.7, these sequences could subsequently 

be delivered by the following terms: 

测 = i (5.9) 

Ok(n) = (n + l ) 0 f c - � (5.10) 

Thus, we can rewrite Equation 5.7 to be r/,(n) = in a sim-

ilar manner with that in Equation 4.9. When making equal the phase quantity 
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of Equations 4.11 and 5.10, i.e., (n + 1)0^ — •7r/2 二 Q ^ c � n + Ylr=i + we 

get 

= + (5.11) 

where Q.c{k) denotes the carrier frequency (center) of the AM-FM signal, and 

qk{n) records the deviation of the instantaneous frequency from the center. 

(p is initial phase offset. The frequency of the formant here is obviously an 

instantaneous quantity, thus, by employing the formulation of mono-component 

AM-FM representation in Equation 4.9, we literally replace with symbol 

and obtain the resonant AM-FM signal expression as 
n 

rfc(n) = Ak[n)cos[VLc{k)n + (j)]. (5.12) 
r=l 

In practice, quite a few works on formant modeling/tracking and formant 

synthesis techniques have taken advantages of representing the vocal tract res-

onances by means of AM-FM form. 

5.1.3 Observations on synthetic vowels 

A specific formant in the vocal tract system is usually determined by its center 

frequency and bandwidth. Alternatively in the time domain, the corresponding 

resonant signal is delivered by instantaneous envelope and frequency quantities 

under the framework of AM-FM modeling. Therefore, we could take advantage 

of resonant signal modeling to deliver concerned vocal tract-related character-

istics of a person. 

In order to have a good idea of resonance modeling by AM, FM parameters, 

we inspect the concerned practice on two synthetic vowels at different perspec-

tives. As for the exemplary vowels, scrutinies on them are made for both the 

vowel as a whole and their constitute parts, i.e., the individual resonant sig-

nals. The course of amplitude-frequency separation as introduced in Chapter 4 

is followed, with relevant observations in spectral, temporal domains reported 

therewith. 

Let us see waveform of the synthetic vowels in Figure 5.3 at first. The 

specification by which the vowels are generated are subsequently tabulated in 
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Table 5. 

(a) 

0 
\ A A A A A , 八 f \ 八 八 八 

V \.l V 丨 > 
J\l 
V/ V 

J ’ 1 

, 1 
1/ 1/ 1/ 丨 
_ 1 _ 

n (sample) 

Figure 5.3: Waveform of synthetic vowels： (a) /%/ and (h) /a/. 

Table 5.1: Specifications of the synthetic vowels (fg — 16kHz). 

FO {Hz) Fl, F2, FS (Hz) bwl,bw2,bw3 (Hz) 
/ i / 275 270, 2290, 3010 50 

/ a / 275 730, 1090， 2440 50 

124 



- 1 0 - 1 0 
0 2 4 6 8 0 2 4 6 

frequency (kHz) frequency (kHz) 

Figure 5.4: Formant structure of the synthetic vowels /%/ and /a/. 
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In Figure 5.4, the synthetic vowels are depicted through AR modeling. For-

mants inclusive are present in the form of spectral peaks. Via applying separate 

band-pass filters on signals Si(n) and S2(n), which centered around the predeter-

mined formant frequencies with a constant Q factor Q^ = F^/hw^ = 9 ， = 1,2，3， 

we pick out a set of three resonant signals for each vowel. Spectral model of 

these segmented formants are demonstrate in Figure 5.4 as well. Additionally 

in the time domain, they take the form of resonant signals as shown in Figure 

5.5, where the resonant signals are noted as ri(n), r2(n) and r办respectively. 
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n (sample) n (sample) 

Figure 5.5: Waveform of resonant signals ri{n), r2{n), and r3(n) segmented 

from synthetic vowels /i/ and /a/. 

The algorithm for decomposing the vibratory excitation signals into cor-

responding envelope and instantaneous frequency sequences, as described in 

Section 4.2, is found fit for the resonant signals as well. By applying the DESA 

demodulation algorithm for a mono-component AM-FM signal that described 

therein, we consequently have captured frequencies that dominate the reso-

nances 厂2⑷，厂3(几）respectively, on a segment basis and have separated 

them from the envelopes thereafter. In Figure 5.6, those extracted sequences 

are laid out, where the upper- and lower-row illustrates the sequences of instan-

taneous envelope (IE) and instantaneous frequency (IF), respectively. 

Observations we make for the extracted IE, IF quantities are given out in 

following paragraphs. 
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Figure 5.6: Instantaneous envelopes and frequencies of the resonant signals. 
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Observations on primary IE, IF components: 

• The primary frequency of resonant signals is quite clearly delivered by 

their IF estimates with little disturbance. For specific resonant signals, 

mean value of the detected frequency quantities is thereafter found quite 

close to the predefined spectral centers. 

• The envelope represents the absolute amplitude of resonant signals, it in 

general can be viewed as a primary measurement of intensity for specific 

formants, as well as exhibits the relative strength relation among formants. 
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instantaneous frequency (IF) 
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5.2 Representing Phase Information by Instan-

taneous Frequencies 

Considering the difficulty of extracting useful information from the phase spec-

trum of speech, an alternative representation for phase is explored for speaker 

recognition purpose. In this section, we are inspired to employ the set of fre-

quencies that dominate in the primary components as a representation of speech 

phase. 

5.2.1 Identifying primary speech components 

In the source-filter speech production model, a periodic impulse sequence is 

filtered with a glottal filter to produce the periodic part of the excitation sig-

nal, while the non-periodicity and the turbulent content are obtained by adding 

an additional white noise source. The resulting signal excites the vocal tract 

system, which is characterized by its formant structure. As pointed out by 

O'Shaughnessy that the spectral formant and harmonic structure models only 

spectral behavior of these speech properties [154], the spectro-temporal charac-

teristics of the primary speech elements should be addressed instead. 

A typical formant in the vocal tract system is formulated as a mono-

component AM-FM term A{n)cos[Q{n)], as elaborated in the earlier section. 

Besides the principal formants, the formant structure possesses a number of 

other components, for instance, the spread of spectral envelope and transitions 

between formants, etc. A pitch harmonic can also be interpreted as an AM-FM 

component. However, besides the formants, the pitch and its principal har-

monics, there are other primary components that result from the interferences 

among all different harmonics and from the interactions within the vocal tract. 

Speaker-discriminative properties of a speech signal is therefore being possessed 

by these components. A speech signal can thus be written as a linear combi-

nation of amplitude and frequency modulated components which we called the 
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Ak{n)cos Sk{n) + 77(71] (5.13) 

Ak(n)coS' 

primary components, 

sin)= 

where Ak(n) denotes the instantaneous amplitude of the kth primary compo-

nent and 9fc(n) denotes its instantaneous phase. With the backward difference 

between and B/j(n — 1)，the instantaneous frequency (IF) sequence is 

defined as = Oc(/c) + 办(n) = + quip), where fs is the sampling 

frequency, qk{n) is the frequency modulation (FM) component. r]{n) takes into 

account additive noise and errors of modeling, especially errors due to the finite 

summation. This model has also been described as the elementary waveform 

speech model [130 . 

Depending on the application, the number of primary components required 

for processing may vary. For coding purposes, synthesis-by-analysis coders 

based on the sinusoidal representation use a fairly large number of primary com-

ponents, even for unvoiced sounds. But in the representation of vocal properties 

of speaker, the relevant components are usually identified with the formants and 

pitch harmonics. 

In Figure 5.7, the primary AM-FM components extracted from multi-bands 

of a speech segment as well as the corresponding carriers are illustrated. For a 

clear presentation, the carriers are displayed in dash, and the tracked AM-FM 

components are in real line. Each arrow in the plane expresses an AM-FM 

element, where its length stands for the mean value of segmental amplitude and 

the horizontal distance from origin indicates the averaged frequency quantity. 

The carriers are of unit amplitude for all frequency bands, while their frequencies 

are delivered by , k = 1,2,... ,K. When taking the kth. subband for a close 

inspection, a space is discerned between the carrier and the detected center, it 

is therein noted as the FM component that measures the deviation of dominant 

frequency from carrier. 
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Wh carrier /cth primary component 

average{Aj^ («)} x cos{average{Q.,^ («)}«] 

frequency 
carrier: IF: 

FM： a ^ - a x k ) 

Figure 5.7: A pictorial illustration for primary speech components under AM-

FM framework. 
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5.2.2 Representing frequencies present in speech 

The phase of the primary components in a speech signal may not be well-

captured by its short-time phase spectra. The instantaneous frequency quanti-

ties that derived from the multi-band amplitude and frequency demodulation, 

can essentially get hold of the phase variations in a speech signal, which in-

spires the usage of the set of dominant instantaneous frequencies as the phase 

representation of speech. 

Let us examine the instantaneous frequency (IF) component in capturing 

the dominant frequency present in an AM-FM signal. Taking inspection on 

the synthetic vowels mentioned in Section 5.1.3 at first. This is conducted 

by means of analysis-by-synthesis method, where we initially determine a few 

formant-descriptive resonant signals with predefined centers and bandwidths, 

and then pick out the underlying frequencies included therein to testify the 

model. Table 5.2 lists the results acquired in the course of processing applied 

on the synthetic vowels. 

Table 5.2: Formant frequency estimation results for synthetic vowels /%/, /a/, 

and /u/: symbols A, B, C stands for the formant frequency，frequency estimate 

and the estimation error rate, respectively. 

F1 F2 F3 

N 
A 270 Hz 2290 H z 3010 Hz 

N B 281 Hz 2212 Hz 3014 Hz N 
C 41 % 3 4 % 01 % 

/a / 

A 730 Hz 1090 Hz 2440 H z 

/ a / B 830 Hz 1099 Hz 2430 H z / a / 

C 13 7 % 08 % 0 4 % 

M 
A 300 Hz 870 Hz 2240 H z 

M B 278 Hz 828 Hz 2157 Hz M 
C 73 % 48 % 3 7 % 

It is found that the IF in most scenarios referring to might be well taken as 

an estimate of the center frequency present. Capability possessed by the IF in 
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Figure 5.8: Subhand signals and their instantaneous frequency sequences from a 

male speaker. The subbands are of ERB bandwidth, with their center frequencies 

).O.OStt; (b). O.IStt; (c). O.SItt; (d). O.GItt. (tt is the Nyquist frequency) are 

In Figure 5.8, a voiced speech segment is inspected in four frequency bands. 

In each band, the band-passed signal and its IF sequences are shown in the 

upper and lower row, respectively. Two sets of IF sequences are presented for 
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identifying primary frequency components owned by an AM-FM speech signal 

is therefore exhibited. 

To clearly investigate the implicit rationale behind representing speech phase 

by sequences of frequencies in a multi-band speech processing approach, we then 

move the experiments forward to real speech data. Considering that a speech 

signal always contains quite a few primary frequency components that spanning 

over its bandwidth, we apply a bank of Gammatone filters on the test data first. 

(a) (b) 
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each subband, which are marked by a solid line and a dashed line, respectively. 

As previous studies [155] found that the abrupt impulses presence along the 

time line should be avoided in examining the dominant frequency component, 

we have therefore obtained the dashed line as a smoothed version of the solid 

one by extrapolation. 

Distributions of the IF sequence in 40 Equivalent Rectangular Bandwidth 

(ERB) bands across the frequency range [80 Hz, 4000 Hz] have been worked 

out. It is found that in a band which captures either the pitch harmonic or 

formant, the standard deviation of the IF from its mean value is pretty small 

(e.g., O.OStt for (d) being the highest among those referred to in Figure 5.8). 

Thus, the mean value of the smoothed IF sequence within a short time interval 

is of high confidence to be used as the frequency estimate in a specific subband. 
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5.3 Phase-related Modulation Parameters 

Short-time Fourier analysis provides important magnitude characteristics for 

speech, however, since it cannot effectively capture the phase variation in speech, 

it is hard to quantify the phase spectrum and distinguish useful components con-

tained therein. Previous studies on speech synthesis and coding have employed 

the multi-band demodulation framework to analyze and quantify speech com-

ponents in terms of instantaneous amplitude and frequency [130], [131]. Esti-

mation of the primary form ants and pitch tracking also involved the multi-band 

decomposition of speech signal in the frequency domain [145], [149]. Frequency 

modulation related parameters of speech signal have been used for identifying 

phonemes and speakers [55], [57], [144], [156]. These researches inspire the 

exploration of proper representation for phase information in speech signals. 

5.3.1 Instantaneous frequency-based features 

The phase-related parameter set that derived by using the multi-band demodu-

lation method is noted as Averaged Instantaneous Frequency of Speech (SAIF). 

The process of extracting the SAIF parameters is illustrated in Figure 5.9 and 

summarized as follows. 

1. Voicing decision: The SAIF features are extracted from voiced speech 

only. The voicing status is detected using Talkin's Robust Algorithm for 

Pitch Tracking [146；. 

2. Filter bank filtering: Applying a bank of K Gamma-tone filters on the 

voiced signal v{n) to produce the subband signals. The center frequency 

fc(k) ranges from 4 kHz to 80Hz with a k increase from 1 to K. 

3. Multi-hand demodulation: Teager's energy separation algorithm is em-

ployed in obtaining the instantaneous angular frequency ^ / ( n ) (IF) on a 

frame basis for each subband signal. 

4. Smoothing of the IF sequence: A 21-point median filter is applied to re-

move the abrupt impulses in the frames of IF sequence. 
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5. Frame averaging of the smoothed IF: An averaging operation is done on 

the smoothed IF sequence for the frames in each subband. In this step, we 

remove the fluctuations of the IF sequences, and track the most significant 

frequency component in each subband frame by frame. 

Speech signal s(n) 

⑴ 

Voicing 

decision 
Voiced segment v(n) 

Filterbank 

filtering 
(2) 

Averaged 
Instantaneous 

Frequency of Speech 
(SAIF) 

Multi-band 
demodulation (3) 

Frame 
averaging 

(5) 

Smoothing 

(4) 

Instantaneous 
frequency Q,(n) 

Instantaneous 
amplitude A(n) 

K 

SAIF vector 

Figure 5.9. Block diagram for the extraction of SAIF features. 
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5.3.2 Feature analysis 

Vocal properties that distinguish different speakers are essentially carried by the 

interrelated formants and harmonic structure. In this part, we will show that 

the SAIF parameter set is able to capture these typical speech properties. 

• Formants, harmonics and their interactions 

The major primary components of a voiced sound include the pitch compo-

nent and some of its first harmonics. However, they are ignored by most of the 

classical algorithms which pre-emphasize the signal. The other primary compo-

nents encompass naturally the formants of a speech signal. In this experiment, 

we use a vowel synthesized at 8 kHz sampling frequency with the specifications 

listed hereunder: 

• FO = 172.4 Hz = /c(36) 

• F1 = 773.8 Hz = /c(22), F2 = 1161.8 Hz = /e(17), F3 = 2446.2 Hz = 

fc{7) 

Moreover, the FO value of the synthetic signals and center frequencies of 

some band-pass filters are settled specially, as shown below: 

/c(36) = K) = 172.4iJ0 /c(30) 二 2.LP0 /^(26) = 3.2F0 义(23) = 

Figure 5.10 shows the primary components in the synthetic vowel 5i(n) 

in terms of averaged amplitude and FM values in the upper and lower rows, 

respectively. To help identifying those excitation-related components captured, 

corresponding amplitude and frequency values from the excitation signal are 

also shown. When k decreases, the subband center frequency fc{k) increases. 

It is observed that with smaller /^(fc), the primary components mainly capture 

the first several harmonics of FO, which can be evidently seen from the small 

peaks in the amplitude and valleys in FM around the 36th, 30th and 26th 

subbands. This observation is consistent with what we have reported in [61] 
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Figure 5.10: Amplitude and frequency of primary speech components: formants, 

harmonics and their interactions. 
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that the subband which exactly gets hold of a pitch harmonic will result in 

a peak amplitude and a valley-bottom FM value among the others nearby. 

With the center frequency increasing, firstly, the higher order FO harmonics 

are coexistent with the emerging formants, for instance, the 23rd and 22nd 

subbands contain the F1 and the 4th FO harmonic simultaneously. Gradually, 

the formants begin to dominate, which can be seen from the prominent peaks 

in amplitude around the 17th and 7th subbands. Likewise, when the dominant 

frequency in a subband exactly matches a formant, its FM tends to go to zero. 

Therefore, we can see that the primary frequency components in speech can 

track not only the phase variation among frequencies, which is absent from 

the power spectrum, but can also give rise the essential vocal characteristics 

conveyed by the excitation source. 
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1 formant bandwidth = 200 Hz 
i formant bandwidth = 10 Hz 
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k (subband index) 

Figure 5.11: Frequency of primary speech components: formant bandwidth effect. 
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• Formant bandwidth effect 

As indicated by the classical synthesis model that the vocal characteristics 

of a formant depend not only on its central frequency but on its bandwidth as 

well. It is almost without exception that the formants can characterize fairly 

well different voiced phones. But when uttering a similar voiced sound, speakers 

may also differ in formant bandwidth. In Figure 5.11, the SAIF parameter sets 

of speech signals Si(n) and S2(n) are displayed. The specifications of §2 � are 

the same with that of Si{n) except the formant bandwidth, which is 10 Hz for 

si(n) and 200 Hz for S2(n). To be focused, we take F3 for further inspection. 

It is clearly revealed that the transition around the formant frequency, e.g., 

7th subband is quite different for Si{n) and S2(n). The stronger formant that 

resulted from the narrower bandwidth in si(n) exhibits greater influence on 

its neighbors. These particularities of formants that determine the formant 

structure are legibly retrieved from the derived parameter set. 
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5.4 Performance of Phase Information for Dis-

criminating Speakers 

In this section, we will evaluate the proposed feature SAIF as the complementary 

parameters to MFCC features through speaker identification (SID) and speaker 

verification (SV) experiments on a speech database CU2C. The standard MFCC 

features we used contain 39 components: the log energy, 12 static coefficients 

and their dynamic and acceleration coefficients. 

5.4.1 Experimental set-up 

For all speakers, 6 out of the 18 sessions are used to train the speaker models. 

For the remaining data, 6 sessions are used as development data, while the 

last 6 sessions are employed in performance evaluation. The standard approach 

for UBM~GMM training is adopted. Two separate systems are built based on 

MFCC and SAIF, respectively. Score-level fusion technique is used to combine 

the contributions of the two systems and produce the final decision. For the 

identification tasks, the log-likelihood score of each test is the linear combination 

of the log-likelihood score Lm from MFCC and Ls from the SAIF features, i.e., 

L — wmLm + wsLs, where wm and ws are the weights on MFCC and SAIF, 

respectively. Meanwhile, in the verification tasks, the fusion is performed on 

the log-likelihood ratio scores Xm and \s’ i.e.，A — Wm\m + 吻As. In both 

tasks, Wm and ws are related by wm + ws = 1. The optimal values of wm and 

Ws are determined such that they achieve the best identification /verification 

performances for the development data. This is done by exhaustive search with 

a step size of 0.02, over the interval of [0，1]. 

For SID and SV tasks, the identification error rate (IDER) and equal error 

rate (EER) are used as the primary performance indicators, respectively. 
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5.4.2 Experimental results 

The proposed phase-related parameter set SAIF is about to be examined from 

a few perspectives based on their performance in dependant experiments. 

• Benchmark results 

Performance of the MFCC and SAIF parameter sets in clean environment 

under the protocols of speaker identification and verification are shown in Table 

5.3, individually. Their results are therefore used in the baseline system to 

provide the benchmark record, where the MFCC features are of 39-dimension 

and the SAIF feature vectors containing 40 parameters. 

Table 5.3: Speaker recognition performance of individual MFCC, SAIF features 

under clean environment: IDER & EER [in %). 

feature configuration IDER EER 

MFCC 2.44 1.52 

SAIF—洲 6.33 3.72 

4.78 2.70 

• Effects of frame length 

The SAIF feature vectors are extracted from fix-length frames of speech 

signals. In Table 5.4, the recognition performance of the SAIF features that 

extracted with doubled and tripled size of frame are evaluated. 

Table 5.4: Effects of frame length on speaker recognition performance: IDER & 

EER (in %). 

feature configuration IDER EER 

SAlF_bil_40 6.39 3.64 

SAIFJrilJO 9.22 4.54 
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• Supplementing cepstral features MFCC 

The fusion of MFCC features with either SAW JO, SAW—bd—40 or 

SAIFJnl_40 parameters leads to improved performance over the MFCC-alone 

speaker recognition system Table 5 5 gives the results of the above three sets 

of phase-related parameters after combining with MFCC For reference, the av-

eraged weighting parameter sets [wm, m getting these results are given in 

bottom row of the table 

Table 5 5 Performance by fusing SAIF features with MFCC IDER & EER (in 

%) 

feature combination IDER EER 

MFCC+SAIFJf 1 83 1 16 

MFCC+SAlF_hlJO 1 89 1 21 

MFCC+SAlFJnlJO 1 78 1 33 

Ws] [0 63 0 37] [0 69 0 31] 

When there is white noise present in the speech data, the SAIF parameters 

manifest similar recognition accuracy with the MFCC features in both SID and 

SV experiments For example, with SNR = 10 dB training/test data, the EERs 

of SAIF JO and MFCC features are 3 99% and 4 03%, the IDERs are 8 00% and 

8 33%, respectively Feature combination in this scenario yields 2 61% EER and 

5 44% IDER, where the improvements over MFCC are 35 24% and 34 69% for 

SV and SID, respectively 

• Combining with source-related characteristics 

It IS interesting to investigate the complementary effects between the 

SAIF—伪 features and the source-related parameters RAIE_讽 RAIF_朴 in dis-

criminating different speakers The feature vectors RAIE_^/7 and were 

proposed and evaluated in the previous chapter Individual performance of 

RAIE一补 and RAIF_^C have already been reported in Table 4 5, however, they 
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are given below in Table 5.6 again for the purpose of convenient reading. Av-

eraged weighting parameter set [wr, ilî ] in getting these results are given in 

bottom row of the table as well. 

Table 5.6： Performance by fusing SAIF features with source feature sets RAIE， 

RAIF： IDER & EER (in %)• 

feature configuration/combination IDER EER 

RAIEJO 27.28 9.46 

RAIF JO 19.67 8.01 

5.33 2.69 

RAW JO+SAIF JO 4.61 2.65 

[wr ： Ws] [0.56 ： 0.44] [0.25 : 0.75] 

5.4.3 Analysis of results 

• Recognition performance 

In Table 5.3，it is found that the SAIF features perform well in both SID and 

SV tests. The best performed SAIF parameter set that listed in Tables 5.3 and 

5.4, i.e., S i s of comparable dimension with MFCC, while it provides 

phase characteristics for individual speaker that are independent to the magni-

tude information carried by MFCC. With a simple linear combination method, 

25.00% and 23.68% relative reductions in IDER and EER have been achieved, 

respectively. Under additive noise, the SAIF feature set is found to show com-

parable or even higher robustness than MFCC. Besides, combination of the two 

information sources under both scenarios can offer noticeable improvements. 

• SAIF features: in scrutiny 

SAIF parameter set quantifies frequencies of the relevant primary compo-

nents within a time interval of speech signal, where it depends on two factors: 

the number of primary components involved and the frame duration for pa-

rameter estimation. For our data, the primary SAIF_40 feature set involves 
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Figure 5.12: Effects of frame length on experimental results. 

• Complementary effects in fusion 

Since the SAIF features are carrying phase-based information of speech sig-

nals, to exert its potential in distinguishing speakers, sources of speech informa-

tion that are of complementary effects with SAIF are necessary. The underlying 

143 

Chapter 5. Speaker Discrimination 'using Phase Information of Speech Signal 

40 subbands and 30 msec frame length. To observe the effects of the two fac-

tors on the usability of the SAIF parameters in delivering phase characteristics 

of speech signal, we further derive three sets of SAIF parameters: SAIF—忍̂ ?, 

where the density of the Gammatone filters is reduced by half; SAIFand 

SAlFJril一40, where the frame length is doubled (i.e., 60 msec) and tripled (i.e., 

90 msec), respectively. It is indicated that the can take account most 

of the principal frequencies present, and these frequencies are relatively stable 

within a duration of 30-60 msec. This implies that the phase characteristics 

quantified in this manner possess reliable speaker-discriminative power. The 

effects of frame length on the global performance of MFCC-SAIF combinations 

may be reflected by Figure 5.12, where the relative reductions therein produced 

based on the MFCC baseline in SID and SV tests are numerically marked. 
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RAIE 

- - - M F C C benchmark 
individual result 
result from fusing with M F C C 

RAIF 
feature set 

SAIF RAIE RAIF 
feature set 

SAIF 

Figure 5.13: Results of SAIF，RAIE and RAIF features when employed individu-

ally and combining with MFCC for : (a) SID experiments; (b). SV experiments. 

complementary effects exist in SAIF's fusion with the magnitude-specific MFCC 

features are found pretty good, as demonstrated through experimental results in 

Table 5.5 and illustrations in Figure 5.12，respectively. Even so, it is intriguing 

to inspect the supplement RAIE, RAIF parameters, as another important in-

formation source in speech, could offer to SAIF. By referring to the benchmark 

and relevant results recorded in Tables 5.3, 5.5 and 5,6，it is noted that the 

SAIF-RAIF fusion can offer some assistance to improve the SAIF-only results, 

but the support received herein is much smaller than that from fusing with 

MFCC. While, fusion SAIF-RAIE is revealed ineffective in this case. Figure 

5.13 gives a comparison on performance of the three sets of modulation pa-

rameters RAIE, RAIF, and SAIF when working individually or together with 

MFCC, respectively. 

From another point of view, put aside the assistance from MFCCs, SAIF 

could produce better results in comparison with the other two sets of modulation 

parameters. Furthermore, the combination of SAIF and RAIF provides the 

optimal performance we could get from the application of AM-FM framework 
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on speech signals. 

• SAIF vs. RAIF 

When inspecting the effectiveness of the AIF parameter set derived from 

the residual signal or speech signal, i.e., the RAIF and SAIF features, it is 

found that the SAIF outperforms the other part, as indicated by Figure 5.13. 

Although under quite similar flow path in generation, the phase-related param-

eter set that capturing primary frequencies present in speech signals apparently 

show higher discriminative power in discriminating different speakers. Taking 

them individually first，it is possible that a part of harmonics that conveyed 

by the RAIF set is also captured by the SAIF vectors, where the latter then 

take advantage of both vocal excitation- and tract-related attributes and win. 

Regarding the complementary employment with MFCC, the SAIF features are 

obviously of greater predominance than RAIF. Finally, the usefulness of effec-

tively extracted phase characteristics of speech is confirmed. 
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5.5 Summary 

Magnitude feature-oriented front-ends provide information for understanding 

the speech content, but neglect the potential of using phase information as 

speaker representatives. Considering the difficulty of extracting useful inforrria-

tion from the phase spectrum of speech, an alternative representation for phase 

is needed for speaker recognition purpose. In this chapter, we are inspired 

to employ the multi-band instantaneous frequency quantities as the speaker-

discriminative parameters. Through analytical comparisons and simulation re-

sults, it is revealed that the proposed features are capable of: (1). capturing the 

formant and pitch related vocal differences among speakers; and (2). offering 

consistent complementary assistance in recognizing speakers to spectral features 

under both clean and additive noise scenarios. 
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Chapter 6 

Performance Evaluation on the 
Robustness of Modulation 
Speaker Features 

Phase information provide useful acoustic cue for identifying individual speak-

ers. Speaker verification employing the instantaneous phase-related features 

that perform well in clean or matched noise/channel conditions degrades dra-

matically when encounter unexpected communication environments. These ad-

verse effects can distort the short-term distributions of the speaker parameters. 

It is observed that by mapping each feature stream to a target distribution over 

a specific time interval, their robustness to environmental or channel mismatch 

is enhanced. Through speaker verification experiments on microphone and tele-

phone data, it is observed that the proposed robust feature extraction front-end 

consistently reduces the equal error rate. 

In this chapter, with attempt to characterize and discriminate different 

speakers in various environmental and communication scenarios, we first study 

the additive and convolutive noise effects on the phase-related SAIF parameter 

set in Section 6.1. The mechanism of feature mapping method, its implemen-

tation flowchart, and new perspectives needed in order to treat the modulation 

parameters are introduced in Section 6.2. Enhanced speaker features from dis-

tribution mapping are evaluated subsequently in terms of their speaker verifi-
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cation performance under mismatched conditions in Section 6.3. Section 6.4 

summarizes this chapter. 
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6.1 Environmental Effects on Phase-related 

Parameters 

It is always expected that a pattern classification system like speaker verification 

system, can consistently produce accurate results no matter operate under what 

conditions in the world. Nevertheless, speaker representatives such as the cep-

stral coefficients have been revealed to perform unreliably in presence of noise 

or unexpected channels. It is highly desirable if the phase-related parameters 

which named averaged instantaneous frequency of speech (SAIF) could offer 

some assistance to compensate for the deficiency. In attempt to work out an 

efficient solution under the circumstances, it is essential to investigate the unde-

sirable effects endured by speech parameters that may cause by the mismatched 

training-test scenarios. 

The effects resulted from various environmental variations such as noises and 

channel variability that degrade the cepstral features, have been discussed ex-

tensively with regard to speech/speaker recognition and language identification, 

for instance, in [38], [157], [158]. We have made a study on their robustness to 

additive noises for the purpose of speaker recognition in a previous work [103 . 

Therefore in this section, we will focus on observing and analyzing the alter-

ation of statistical characteristics for the SAIF parameters regarding specific 

noise effects. 

6.1.1 Speaker distinction under adverse conditions 

In the previous chapter, the set of phase-related SAIF parameters are found use-

ful in complementing the MFCC features with clean microphone data in speaker 

recognition tasks. Our pilot study on speech data corrupted by additive noise 

and those over a telephone network reveals that this set of SAIF parameters 

can still help enhancing the MFCC-based speaker verification performance, if 

matched training and test data are used. Detailed results can be found in Figure 

6.1，where the individual performance of SAIF features under both clean and 

matched channel/noise training-test conditions as well as its combination with 

149 



Chapter 6. Performance Evaluation on the Robustness of Modulation Speaker 
Features 

MFCC parameters in speaker verification task are demonstrated. 

18 

15 

M F C C 
SAIF 
MFCC+SAIF 

tel- -OdB 
training—test scenario 

Figure 6.1: Speaker verification performance under clean and matched chan-

nel/noise conditions: EER (in %). 

Table 6.1: Speaker verification performance under mismatched noise/channel 

conditions: EER (in %). 

Training data Test data MFCC SAIF—仲 MFCC + SAIFJf [WM • Ws] 

Mic,: clean Tel. 18.94 24.67 18.35 [0.72 : 0.28] 

Mic.: clean Mic.: lOdB 17.41 23.47 15.93 [0.62 : 0.38] 

However, performance of the speaker recognizers using these acoustic fea-

tures degrades dramatically in presence of mismatched conditions, e.g., an unex-

pected transmission channel or environmental noise. Take those shown in Table 

6.1 for instance, where the results of MFCC, SAIF features that produced under 

two conditions are shown. The clean microphone data is used for training in 

all scenarios. The test data in the noise mismatch condition are with Gaussian 

noise at lOdB SNR level, while telephone data are used for channel mismatch 
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tests. It is seen that the MFCC and SAIF features are severely deteriorated, 

their joint contribution yet cannot offer adequate help to improve the condi-

tions. Therefore, it is essentially needed to exploit speech parameters that are 

speaker-specific and robust to noise, channel or transducer effects for speaker 

verification systems operating in actual applications. 

6.1.2 Observations on noise contamination 

The pertinent phase representation of a speech signal as we built in an ear-

lier stage, gets hold of the dominant frequencies of primary AM~FM speech 

components. In order to make clear the noise effects on concerned speech pa-

rameters, we make an observation on the frequency components owned by the 

contaminated speech segment as well as the noises. 

Figure 6.2 illustrates additive noise corruption on the amplitude and fre-

quency modulation parameters of a speech segment. The corruption by Gaus-

sian noise is at two different SNR levels, which are separately shown in Figure 

6.2(a) and (b). Columns in Figure 6.2(a) and (b) each, from left to right, 

corresponds to the segment of clean speech s{n), noisy speech y{n) and the 

contaminating noise d{n), respectively. For a specific segment, the waveform, 

averaged instantaneous envelope (AIE) parameters, and frequency modulation 

(FM) parameters across subbands are displayed in the three rows from the top 

down. The concerned characteristics of AIE and FM components from speech 

signals have been discussed in Chapter 5. In the rightmost columns of Figure 

6.2(a) and (b), as for the corrupting noises, it is found that their energy dis-

tribution over the subbands is more or less alike their spectra in the frequency 

domain, which is widespread among frequencies yet rich in high frequency com-

ponents. The FM components of noises tend to be close to zero for most bands. 

These distinct attributes of noises render transformations on the parameters of 

speech, which present in the central columns accordingly. Therefore, the AIE 

from the noisy speech segment is revealed visibly different from the clean one, 

as well as the FM parameters. It is found that the AIE component in bands 
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Figure 6.2: Speech segment, averaged instantaneous amplitude and frequency 

quantities from a male speaker under additive Gaussian noises: (a) SNR = 

lOdB and (h) SNR = OdB. 
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that affected is capturing content from both speech and noise, which resultantly 

increase its amplitude; while for the case of frequency modulation, the noise in 

many bands generally tends to diminish the distance between the dominant 

frequency and the carrier, which results in decreased FM components. On the 

other side, when the contamination getting worse, like moving from case in 

Figure 6.2(a) to case in Figure 6.2(b)，the noise effects become heavier, but 

basically in similar manners. 

It is difficult to quantify the amplitude-frequency modulation under noise 

conditions strictly, however, considering the short-term distributions of related 

parameters, the remaining parts in this section further observes the concerned 

effects by noises. 

6.1.3 Additive noise effects 

In Chapter 5, a primary component of a speech signal is represented as an 

AM-FM signal Ak{n)cos{[Qc{k)n + I ]二 i&(” ) ] } (Equation 5.13). In addition, 

we found that the frequency of a primary component in a voiced speech signal 

is relatively stable for a short time interval, thus, we use an estimate of the 

dominant instantaneous frequency in a specific subband as the phase-related 

quantity, from which the SAIF feature vector is constructed. Accordingly, for 

the kth primary speech component Sk(n), where the dominant frequency is 

i.e., the kth parameter in the corresponding SAIF vector, the bandwidth, 

spectral envelope of Sk(n) are all determined by its amplitude sequence A^(n). 

This founding leads us to scrutinize the noise effects on the primary frequency 

components of a speech signal by viewing them as AM signals with fixed carriers, 

i.e., 

Sk(n) = Al{n)cos{nin). (6.1) 

In Figure 6.3, a drawing is given to convey this idea. 
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Dominant frequency of a subband Bandwidth, spectral envelop of a 
signal relatively stable for a short subband signal depends on the 

time interval amplitude 

AM - FM component of speech 

Take the estimate of dominant frequency, i.e., Q.̂ , as 
instantaneous frequency in the concerned subband. 

AM component 

Figure 6.3: An illustrative AM representation for an AM-FM speech component. 

In speech coding, usually the summation of a large number of AM-FM com-

ponents are used to model the portion of unvoiced speech, because it is consid-

ered that a noise-like signal consist of numerous narrow-band frequency compo-

nents. Similarly, under additive noise d{n), for a particular speech component 

with amplitude sequence Al{n) and frequency estimate Ql, usually there are 

several affecting noise bands. Figure 6.4 visualizes the general effects of ad-

ditive noise on a speech component. It is seen that most of the narrow-band 

noise components deviate from the carrier Thus, all the amplitudes and 

frequency quantities in the noise signal will affect the measurement of the dom-

inant frequency of a speech component. These slowly-varying noise components 

around Q.̂ . generally have the effect of reducing the variance and distorting the 

distribution of the /cth SAIF parameter. 
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additive noise 

Ai 

k 

Figure 6.4: Additive noise effects on kth frequency component of a speech signal. 

(Al(jQ) is the Fourier transform of the amplitude sequence in the kth subband 

of speech, Afi^jO) is the Fourier transform of the amplitude sequence of one 

narrow-band noise signal centered at ilf) 

6.1.4 Convolutive noise effects 

In telephone network, the speech signal s(n) is transmitted through a channel 

with, impulse response c(n). Following the formulation of Equation 6.1, if we 

assume Cfc(n) = A 讽 n — nQ, the transmitted AM signal Sfc(n) is noted by Zk(n) 

as in Equation 6.2, 

Zkin) = Skin) (g) Ck{n] (6.2) 

= I ^ A l A l i n - nl)Y l^cos{nin - nint)^ 

It can be found that the assumed channel response generally has the effect of 

changing only the amplitude of a speech component. However, in real commu-

nication systems, where the channel models are much more complicated than 

that we assumed, and there are usually some forms of additive noise exist, thus, 

the estimation of the instantaneous dominant frequency might be affected 

inevitably. 
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6.2 Robust Feature Extraction 

There are a number of methods have been proposed to deal with either the addi-

tive noise effects in the spectral domain or to compensate for the linear channel 

effects in the cepstral domain. These methods have shown their effectiveness in 

enhancing the discrimination power of the cepstral features in speech recogni-

tion applications. Among them, cepstral mean subtraction (CMS) [9] is found 

to be the most popular one in suppressing the linear channel effects. Modulation 

spectrum analysis [159] aimed to determine the relative importance of the spec-

tral components under mismatched channel conditions in speaker verification 

system, however, with limited robustness to additive noise. Distribution nor-

malization of single cepstral features over a short interval by removing its mean 

and scaling its standard deviation has been proposed as an extension to the 

CMS method in speaker detection tasks [160], and robust speech recognition 

applications [97]. Peiecanos et al in [106] proposed a novel feature mapping 

approach that had demonstrated improvements for speaker verification over 

a number of enhancement methods such as CMS, modulation spectrum pro-

cessing, short-term windowed CMS and variance normalization. This feature 

mapping method warps the distribution of each cepstral feature stream to a 

standard normal distribution over a specified time interval. 

Although the phase-related features SAIF are proved useful in complement-

ing the magnitude-based MFCC features in clean and matched noise conditions, 

their performance is inadequate in mismatched conditions. Feature enhance-

ment methods that developed for cepstral features are obviously not fit for SAIF, 

and there are very little efforts have been made to understand the undesirable 

noise or channel effects on phase-related parameters. Considering the difficulty 

of detecting and quantifying the noise/channel distortions for phase param-

eters, it is ideal if an enhancement approach requiring no precise distortion 

model can be applied to SAIF features. Through looking into the distributions 

of individual SAIF parameters, it is found that their uni-modal nature makes 

feature mapping a proper post-processing for them, in order for improved im-

munity to environmental or transmission variations. We are therefore inspired 
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to investigate the robustness of this approach across different recording/channel 

environments other than what the system is developed 

6.2.1 Mechanism of feature mapping 

The feature mapping method aims to construct a more robust representation 

of each feature distribution It is achieved by conditioning and conforming the 

individual feature streams such that they follow a specific target distribution 

over a window of speech frames In [106], the observed cepstral feature dis-

tribution over a specified speech interval is mapped so that the accumulated 

distribution is similar to a target distribution The procedures in this process 

are summarized as follows 

1 Frame windowing a sliding window is used to isolate N frames of speech 

features where the nth frame that in the window center is the current 

frame Step 2) to Step 4) repeat each time the sliding window shifts by 1 

frame sequentially 

2 Feature sorting for each windowed stream from a K dimensional feature 

set, the feature values are sorted descendingly to assume the rank from 1 

to N Each stream is mapped independently, where the current stream is 

noted as the kih, 1 < k < K 

3 Cumulative distribution matching find the relative position for the fea-

ture in the kth stream of the nth frame in the target distribution It is 

achieved by matching the cumulative integration of the measured feature 

distribution fm{^) with that of the target distribution ft{y) in the manner 

shown by Equation 6 3 

[fm{x)dx = r ft{y)dy, (6 3) 
J x=l J y = l 

where u, v are the ranks of the current feature in the measured and target 

distributions, respectively 
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4. Feature revaluing: find the absolute feature value of the parameter that 

ranked the z;th in the target distribution. 

Figure 6.5 illustrates the procedures in mapping the feature frames of a 

specific type. 

Original feature vector 

K streams 

H-3ct \L-2a n-a p. n+o ^+20 11+30 
Target distribution 

N frames 

Frame 
windowing 

Feature 
sorting 

Cumulative 
distribution matching 

Feature 
3-valueing Mapped feature vector 

Figure 6.5: Flowchart of the feature mapping approach. 
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6.2.2 Normal distribution warping 

Feature mapping is carried out on features so as to construct a more robust 

representation for each stream of feature distribution. Figure 6.6 illustrates 

how to condition the distribution of a feature stream such that it will observe a 

target distribution. Thus, in the implementation of feature mapping, the first 

step is to choose an appropriate target distribution for the features. 

Onginal feature value 

mm 

mm 

max-

Feature value 

max 

Mapped feature vaJuc 

Figure 6.6: Mapping of features according to a target distribution. 

MFCC features are known to be multi-modal, thus the ideal target for a 

MFCC feature is ought to be of some form that consist of multi-modal Gaus-

sian components. However, under various channel and noise interference, this 

distribution might be corrupted. For an efficient mapping scheme, it is usu-

ally assumed that the target speech features conform to a specific distribution 

shape, like single mode Gaussian distribution shown in Figure 6.7. This normal 

distribution warping scheme has been applied to cepstral features in speech, 

conceptually similar to the histogram equalization processing that frequently 

used in image analysis. 
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1-1-3 o M.-2G \x-a j i + a \i+2o fi+3a 

Figure 6.7： A normal distribution with mean /i and standard deviation a. 

6.2.3 New perspectives for modulation parameters 

Rather than MFCC, the underlying distribution of the SAIF parameters has not 

been inspected so far. Since SAIF parameters bear implicit physical meaning, it 

is necessary to observe and measure their source distributions prior to assigning 

targets for them. 

Considering that parameters in a certain SAIF feature set are derived from 

a series of frequency bands, for example, 40 for SAIF—讽 in examining the gen-

uine distribution of SAIF parameters, statistics should be made across various 

frequency bands independently. Figure 6.8 inspects their histogram statistics in 

four frequency regions, through sub-figures noted from (a) to (d), which corre-

sponds to the low-, medium- and high-frequency regions, respectively. In each 

sub-figure, histograms of four streams of SAIF parameters are exhibited, the 

statistics are made over an utterance which contains 564 frames in total. It 

is found that the individual parameter in a SAIF set, which records the most 

dominant frequency in certain subband of the speech signal, might well be of 

single Gaussian distribution in nature. Besides, the center and spread of fea-

tures varies, from one stream to another, and they are observed to be related 

with the center frequency and bandwidth of concerned subband of speech signal. 
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Figure 6.8: Histogram statistics of certain streams of SAIF features over an 

utterance: (a), k = 1 , . . . ,4，(b). k = 10, . . . , 13； (c). A; = 20，...，23, and (d). 

/c — 37 , . . . , 40 (k as subband index). 

The SAIF features is therefore being mapped so that their distributions 

are of single Gaussian distributions. For MFCC, all the feature streams share 

the standard normal distribution as their target in the mapping, as in [106 . 

While, for the SAIF features, parameters in different subbands are treated in-

dependently. For the SAIF stream from the kth subband, the target mean and 

standard deviation are chosen to be the center frequency and one third 

of the corresponding filter bandwidth, respectively. 

In Figure 6.9, SAIF feature vectors under clean, lOdB and OdB SNR noise 

conditions as well as the ones after mapping are shown. It is found that prior to 

the mapping process, difference among the three sets of parameters is relatively 

large in the high frequency region, although it is small in other regions. As for 

the mapped ones, their difference among all the frequency bands is small. It is 
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Figure 6.9: Original and mapped SA IF feature vectors from dean and additive 

noise condition (with SNR = lOdB and SNR 二 QdB). 
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therefore thought that the feature mapping approach can establish more robust 

distributions for individual feature streams. 
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6.3 Performance Evaluation of Robust Fea-

tures 

In this section, we evaluate the robust MFCC and SAIF parameters that ex-

tracted by the proposed front-end through speaker verification experiments on 

a dual-conditional speech database CU2C. The additive noises are from the 

database NOISEX-92 [148]. The standard MFCC features we used contain 39 

components: the log energy, 12 static coefficients and their dynamic and accel-

eration coefficients. 

6.3.1 Experimental set-up 

For all speakers, 6 out of the 18 sessions are used to train the speaker models. 

For the remaining data, 6 sessions are used as development data, while the last 

6 sessions are employed in performance evaluation. The standard approach for 

UBM-GMM training is adopted. Speaker models are trained from clean speech 

data, while two parallel sets of test data are used, one set is microphone data 

with additive noise, the other is telephone data. For both speaker model training 

and verification tests, we used the MFCC and SAIF features that extracted as 

described in Chapter 5. 

Two separate systems are built based on MFCC and SAIF, respectively. 

Score-level fusion technique is used to combine the contributions of the two 

systems and produce the final decision. For the verification tasks, the log-

likelihood ratio score of each test is the linear combination of the log-likelihood 

ratio score Xm from MFCC and Xs from the SAIF features, i.e., A = wm^m + 

wsXs, where wm and W3 are the weights on MFCC and SAIF, respectively. 

wm and ws are related by wm + ws = 1. The optimal values of wm and ws 

are determined such that they achieve the best verification performance for 

the development data. This is done by exhaustive search with a step size of 

0.02, over the interval of [0,1]. Equal error rate (EER) is used as the primary 

performance indicator. 
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6.3.2 Experimental results 

The speaker verification experiments are carried out in the mismatched 

noise/channel conditions, where the additive noise is at SNR : lOdB level. 

• Results from original features 

The performance of the MFCC and SAIF features that achieved under mis-

matched channel/noise conditions are referred to as benchmark in the following 

evaluation. MFCC features used are of 39-dimension and the SAIF feature vec-

tors containing 40 parameters, respectively. Relevant results have already been 

reported in Table 6.1. 

• Results with mapped features 

Feature mapping could be applied over the whole utterance or over a rel-

atively small window below one second. Having a long normalization window 

is thought to limit the robustness to noise/channel variation, while, a shorter 

window may reduce the compensation effectiveness to the feature distribution. 

The feature vectors sum up to 1 sec ~ 3 sec in length for most of the utterances 

in our evaluation data set. Thus, we implement the feature mapping with four 

kinds of window size. Figure 6.10 shows the speaker verification results of the 

mapped MFCC and SAIF features under two types of mismatch conditions, i.e., 

clean microphone training data with SNR = lOdB test data, and telephone test 

data, respectively. The weight of SAIF in the combination, i.e., ws is found to 

vary in the range 0.64 � 0 . 6 6 and 0.40 � 0 . 5 0 for the mismatched noise and 

channel conditions, respectively. 
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Figure 6.10: Speaker verification results with mapped feature sets under mis-

matched noise/channel conditions. 
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6.3.3 Analysis of results 

• Recognition performance 

As shown in Table 6.1，the training and test data mismatch in either envi-

ronmental noise levels or transmission channels prevent feature set SAIF from 

providing adequate complement to MFCC in speaker verification experiments. 

By importing a mapping approach that can alter the original feature distribution 

as a post-processing step in the front-end, the robustness of both sets of parame-

ters are enhanced. Through comparing the results in Table 6.1 and Figure 6.10, 

it is clearly revealed that for both mismatch conditions: (1). performance of 

individual MFCC and SAIF features is improved; and (2). combination of the 

magnitude-based and phase-related parameters demonstrate visible advantage, 

to put it concretely, the overall improvements achieved over the MFCC bench-

mark are 41.30% and 81.05% for the noise and channel mismatch scenarios, 

respectively. 

• Feature mapping effectiveness 

Through a comparison of individual feature's performance under the two 

mismatch scenarios, it is found that the mapping method generally offers more 

assistance in enhancing channel robustness of the features, especially for MFCC, 

where the EER is reduced by 77.03% relatively on an average than the 57.68% 

relative reduction by SAIF. While, generally speaking, this method is fit well 

for them both. Besides, for the additive noise effects, the SAIF features are 

observed to get more benefit than MFCC from the mapping, where the EER is 

averagely reduced by 38.69% for SAIF than by 3.33% for MFCC. 

As an implementation issue, the results reveal that a sliding window size 

covering 100 frames (approximated 1 sec in length) may be a proper choice for 

speech data which are similar with ours. To illustrate the observations clearer, 

the individual parameter set MFCC, SAIF, as well as their combination are 

independently treated that each is measured based on its own baseline result 

that indicated by Table 6.1. The details are shown in Figure 6.11, where in 

comparing with the individual MFCC and SAIF features, their combination is 
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Figure 6.11: Relative reductions of EER (with window size = 100 frames) under 

the channel/noise mismatched conditions (in %). 
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revealed to make the most of the effectiveness from introducing the feature map-

ping approach into the front-end of a speaker verification system. Ultimately, 

the usefulness of robust phase-specific parameters in distinguishing speakers is 

confirmed. 
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6.4 Summary 

In order to improve the cepstral feature-based speaker verification system in 

tackling the training-test mismatches caused by environmental/transmission 

variations, a robust feature extraction front-end is proposed. The front-end 

is primarily capable of producing instantaneous phase-related parameters from 

a speech signal that are proven containing complementary speaker characteris-

tics with the cepstral features. It can also conform the distribution of speaker 

feature into a representation that is more robust to either additive noise effects 

or transmission channel variations. Theoretical analysis about the undesirable 

environmental effects on the phase parameter sets are given, and evaluation re-

sults under speaker verification protocol in various mismatched scenarios using 

the enhanced features confirm the effectiveness of the proposed method. 

168 



Chapter 

Conclusion 

7.1 Discussion and Conclusion 

In this thesis, an efficient yet effective solution to the robustness problem of 

speaker authentication system has been provided from a feature-based perspec-

tive. In this course of study, a series of work has been conducted, where the 

main steps taken are as follows. 

• Identify and extract useful vocal characteristics 

Other than the signal magnitude, there are complementary information sources 

in speech samples that possess speaker-distinguishable characteristics. It is, 

however, intriguing to identify a proper and effective way to take advantage 

of these essential vocal properties. The central question is to derive primary 

components contained in segments of speech through penetrating their inner 

structure with a suitable tool. This tool should take account of the typical 

attributes of speech signals, and makes the separation of target components 

from others easy. 

We take an analysis-by-synthesis approach to achieve this. It is adopt-

ing from the successful cases of speech synthesis/coding in which the speech 

segments are scrutinized through decomposition across various subbands. We 

decide to extract the instantaneous quantities of envelope and frequency in dif-

ferent subband signals through multi-band amplitude-frequency demodulation 
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algorithm. The sequences from the decomposed LP residual signals are found to 

possessing vibration patterns of voicing source; while, information of constituent 

formants can also be deduced from the reconstructed speech, segments. 

• Design effective feature forms 

The next step ahead is to develop appropriate forms to parameterize the identi-

fied vocal characteristics into vectors, which are essential for the sake of speaker 

recognition. 

It is found that for a particular speech segment, the envelope and instanta-

neous frequency sequences record the critical amplitude and frequency along the 

time line in each subband. This amplitude-frequency interrelation is therefore 

carrying relevant internal time-frequency characteristics. Besides the amplitude 

information, in each subband of the speech signal, the sequence is dominated 

by a primary frequency component that appears as the center in general. These 

dominant frequencies across all bands together constitute a new representation 

for speech. It is an unique and novel form for the concerned vocal properties, in 

that it seizes the temporal variation as well as their distribution across various 

frequency regions. 

• Inspect and analyze feature contents 

In order to examine the capability of the novel feature sets in capturing im-

portant speaker-dependent properties, a series of experiments are specifically 

designed for that purpose. For the excitation-related RAIE and RAIF feature 

vectors, they are examined in their ability of catching the FO and principal 

pitch-harmonics, differentiating from varied pitch epochs, and detecting details 

present between epochs. The phase-concerned SAIF feature sets are evaluated 

to reflect formant-related characteristics, such as, harmonic-formant interaction, 

formant bandwidth effects, etc. 

It is validated by experiments that the RAIE vectors are highly correlated 

with the averaged amplitude of signals that reside within specific frequency 

regions, which are absent from the spectrum of excitation signal. Parameters 
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in RAIF and SAIF vectors record the primary frequencies present in subbands 

of LP residual signal and speech signal, respectively. 

• Evaluate features in discriminating speakers 

The derived feature vectors are examined through speaker recognition tasks on 

speech database under clean environment. With the benchmarks produced by 

the conventional MFCCs are 2.44% IDER and 1.52% EER，the newly proposed 

features achieve the following results: RAIE with 27.28% IDER and 9.46% EER, 

RAIF with 19.67% IDER and 8.01% EER, SAIF, which outperforms the other 

two, attain 4.78% IDER and 2.70% EER. The thus performed features turn out 

offer considerable assistance to improve the MFCC-based baseline performance, 

among which, the optimal results are obtained by the SAIF with 1.83% IDER 

and 1.16% EER, where the relative improvements are 25.00% and 23.68%, re-

spectively. In this way, the present speaker discrimination system is noticeably 

enhanced in terms of feature effectiveness. 

• Enhance robustness of features 

Considering the severe degradation occurs when speaker authentication facing 

mismatched training-test scenarios, it is expected that feature extraction front-

end of a system should produce the required, robust features. In our work, this 

is achieved by building a more robust representation for each stream of features 

in the vector sets independently. At the very beginning, we choose to observe 

and identify the adverse noise's effects on the short-term distribution of feature 

streams, it is then found that at most of the times, the centers are moved 

and the standard deviations decreased. A warping-based method is raised to 

maintain the distribution of parameters as consistent as possible before and after 

any ambient interruptions such as background noise or distorting transmission. 

Eventually, a robust feature extraction front-end which including a vocal source-

and phase-related feature extractor and a feature enhancement post-processing 

module is submitted as a solution to the problem raised in the beginning of this 

thesis. 
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In speaker authentication experiments carried out at this stage, under the 

noise- and channel-mismatch scenarios respectively, we achieve improvements 

over the benchmarks from 17.41% to 10.22%, and from 18.94% to 3.59%. 

We summarize the work conducted in this thesis by the following points: 

1. In attempt to derive excitation-specific speaker features to complement 

MFCCs, the vocal attributes related with the vibrations of a speaker's vo-

cal cords are exploited. The goal is achieved by applying multi-band AM-

FM demodulation on excitation signals. The advantage of this approach 

lies in: first, it is a complete description of the signal rather than only 

noting some parameters, like the pitch-period or FO; second, it is conve-

nient to represent the inclusive components in terms of their time-varying 

amplitude and frequency quantities, rather than fitting the waveform or 

spectrum; third, it is easy to investigate the individual components for 

capturing useful information. Experimental results prove the application 

of this AM-FM modeling technique on deriving excitation modulation fea-

tures, is not only a novel method but successful for the purpose of speaker 

characterization. 

2. Apart from pitch-harmonics, the formants and other constituent elements 

in a voiced speech signal are found to follow the law of AM-FM modulation 

as well. They are interpreted as the primary components in a multicom-

ponent AM-FM speech model, where there exists a sequence of dominant 

frequency in each component. The phase-specific speaker-discriminative 

properties of speech is therefore being possessed by these primary frequen-

cies that present in the signal. Feature vectors derived from them achieve 

pretty good recognition performance. It verifies that phase information 

in speech signals contain speaker-dependent cues, if given well-developed 

extraction approach, they can be parameterized into effective speaker pa-

rameters. 

Besides, the phase-related information in the speech signal, compared with 
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other modulation parameters, are more effective for discriminating differ-

ent speakers. This is revealed by the performance on their own as well as 

combination with the cepstral features MFCCs. 

3. The complementary application of MFCCs and modulation features pro-

vide a speaker recognition system with higher accuracy than using MFCCs 

alone in clean and matched conditions. A feature enhancement method 

that deployed as a post-processing for the front-end of a speaker recog-

nition system can produce robust features which are able to noticeably 

alleviate the degradation of system performance in mismatched scenarios. 

It is clearly shown that feature-based solution to robust speaker authenti-

cation problem is feasible and efficient 
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7.2 Contributions of This Thesis 

This work has either initialized or pushed forward relevant research in the fol-

lowing aspects: 

First of all, in attempt to prompt a source signal model for delivering useful 

excitation-related amplitude and frequency parameters, we have made a system-

atic review covering relevant works through recent years. These works mostly 

come from research fields such as speech coding, synthesis and analysis, etc, 

which are looked into in this thesis for the potential usage on source modeling, 

rather than for their original purposes. It is expected to provide researchers 

unfamiliar to this area a brief introduction. 

Secondly, we introduce an idea to investigate the speaker-discriminative 

power of speech properties through analysis-by-synthesis approach. Traditional 

speaker representatives mostly focus less on reconstruction by a closed form. 

Nevertheless, a summation-based re-synthesis from the concerned parameters 

provide a new and proper channel for inspecting the features in terms of their 

content and capability of retaining the inclusive vocal attributes. 

Thirdly, it is shown in this research that the phase information in speech 

signals not only can be employed as speaker representatives, but also convey 

some degree of robustness, given a proper way to extract and quantify them. 

Fourthly, efforts are made to develop a novel feature extraction front-end 

which includes two successive modules, the first module is responsible for ex-

tracting effective source- and phase-related parameters, while the other is ca-

pable of conditioning the feature vectors into more robust representations that 

are easier to maintain in whatever conditions. 

Finally, the newly derived feature sets not only show advantages in clean 

and matched conditions, but provide considerable improvements to the baseline 

system under various noise/channel mismatch. 
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7.3 Suggestions of Future Work 

Toward the ending of this thesis, we give out some suggestions to extend our 

work in future. 

• Flexible feature forms 

More flexible feature forms can be adopted. We have employed a 

parametrization to record a fixed bands of amplitude and frequency parame-

ters. Actually, through a closer look at the feature vectors, it is found that 

some streams of the features are more distinguishable and less affected by in-

terruptions. A weighting scheme of some proper manner among the streams 

in a vector or a selecting criterion may help to produce features with higher 

efficiency. 

• Generating features from unvoiced segments 

Apart from the voiced segments of speech which are taken use in extracting 

vocal source- or phase-related parameters, we consider to refine the method to 

include the remaining unvoiced parts. Given that we generate features from 

instantaneous amplitude and frequency sequences, the rapid-varying character-

istics therein can be captured with a smaller and variable analysis window. 

Besides, we have known from the summation-based speech coding scheme that 

a large number of subbands are involved in modeling unvoiced segments, it is 

possible to introduce more subbands than that for the voiced in delivering the 

inclusive properties owned by these segments. 

The speech corpus employed in simulating speaker recognition tasks in this 

thesis is CU2C, information about it was briefly described in Chapter 4. In 

comparison with other data sets, this dual-conditional database additionally 

plays a distinct role, that is, to provide a platform for investigating channel 

effects on speaker recognition systems. This particularity has been well taken 

in our work. However, the evaluation of speaker features utilizing this database 

may be limited in terms of number of speakers and text-constraint of data (only 
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digital numbers contained). It is considered beneficial if we build our system on 

a larger-scaled data set in future. 

The method we proposed in this thesis can also be applied in several other 

problems, two of them are listed as below for reference. 

1. Source signal modeling: We have talked about the derivation of 

amplitude- and frequency-specific source parameters through multi-band 

decomposition procedures. It therefore makes the other side of this prob-

lem possible, that is, to establish a waveform modeling approach through 

the concerned amplitude-frequency characteristics. This idea is also in-

spired by the sinusoidal speech representation, where a summation of sinu-

soids is involved to build a speech waveform model. If putting the relevant 

vocal tract properties aside, the summed sinusoidal model can be used for 

delivering source signal waveform. 

2. Phonetic class determination: A set of primary frequencies dominat-

ing a speech signal in various subbands are taken as an expression of 

speaker's phase characteristics. In our pilot study, it is found that this 

type of representative which captures frequency components present in 

a segment of speech signal, not only convey speaker-specific information, 

but behaves quite differently for various phonetic classes. It is easy to un-

derstand that the inner time-frequency organization of different phonetic 

classes are distinct for one and other class, for instance, vowels usually 

rich in low frequency frequency components which covering as low as the 

fundamental frequency and harmonics, while, high frequency components 

are sometimes absent, for the fricatives, its noise-like structure determines 

that plenty of high frequency components are predominant. As an exten-

sion to this task, considering the phase-related modulation features are in 

general characterizing the phase properties of formant-structure informa-

tion in speech signals, they are thought applicable to speech recognition as 

well. Further study in this direction will provide us with new perspectives 

on exploitation of speech properties in future. 
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