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Abstract
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Concepts and Applications
Submitted by ZHOU, Yu
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong
in September 2011

~

Following its development by Benoit Mandelbrot, fractal has been used in a
large number of studies of a wide variety of geographical phenomena exhibiting
complexity. Fractal makes the study of highly irregular and complex structures
and processes that defy traditional mathematical analysis feasible. One of the
most popular uses of the fractal is to draw attention to the variance of structures
and processes across multiple scales (e.g. scaling behavior). The concept of a
power-law, which is expressed as a straight linc in a double-logarithmic plot. is
the most characteristic scaling behavior of fractal to measure sclf-similarity in-
variant across multiple scales. Howcver, the single fractal dimension falls short
in capturing scale-invariant geographical phenomena for the characterization of
their non-linear variation across a wide range of scales. The concept of mul-
tifractal was, therefore, introduced to give a more complete description. The
fractal dimension was extended to the generalized fractal dimensions. The main
objective of this thesis is to improve the theoretical formulation of Multifractal
Analysis (MFA) along a number of directions, and to make applications to inves-
tigate the self-similarity, long-range corrclation or multifractality of some real-life
geographical phenomena for substantiation.

Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctua-
tion Analysis (MF-DFA) have become the most popularly used because of their
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effectivencss and casy implementation.  Actually, MEF-DFA is based on DFA,
which is designed to caleulate the Hurst exponent, H, through the power-law
between the square of fluctuationg and the corresponding scales. I7 aims at quan-
tifying the long-range correlation of a process and can be related to the fractal
dimension. The generalized Hurst exponents h(g) can be obtained by studying
the scaling behavior of the gth moment of the fluctuations. On the conceptual
level, MF-DFA and DFA (the base of MF-DFA) arc explored in this thesis.

Two problems of DFA and MEF-DFA in this study are: firstly, oscillations in the
fluctuation function and significant errors in the crossover locations; and secondly,
the negative influence of periodic trend on the scaling behavior in DFA. The Mul-
tifractal Moving-Window Detrended Fluctuation Analysis (MF-MWDFA) and
the more general Multifractal Temporally Weighted Detrended Fluctuation Anal-
ysis (MF-TWDFA} are formulated as a solution of the first problem. The second
problem is solved by a pre-detrending method on the basis of Empirical Mode
Decorﬁposition {EMD) for the climination of the effect of the periodic trend in
DFA. Furthermore, some classical relationships of the exponents in MF-DFA are
revisited. This study will rectify the incorrectness of existing resnlts found under
some situations, and proposc modified relationships to obtain the appropriate
characterizations.

In terms of applications, the efficacy of the improved DFA is shown by two
real-life examples, namely: temperature variations and sunspot activities. A
substantial systematic analysis of the temporal and spatial patterns of the earth-
quake process is studied at length. As a complement to the inter-event spatial
and temporal distance, the epicenter motion direction is investigated by DFA.
The scaling behaviors under different conditions (e.g. the threshold magnitudes,
boundary effect, random removal of some events, and different seismic zones) are
also investigated. At the small scale, there is a general scaling behavior indicating
the random process and independence of the different sensitive testing conditions.
In the large scaling range, the long-range correlation appears. Furthermore, the

behavior on the dependence of different conditions is uncovered.
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This thesis, therefore, gives a rigorous and systematic study of geographical

phenomena in multiple temporal and spatial scales.
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Chapter 1

Introduction

1.1 Basic Concepts and Introduction of Fractal

and Multifractal

Ever since the development of fractal by Mandelbrot (1982}, this concept has
been usecd in a range of applications in a large variety of geographical phenomena
exhibiting complexity. Fractals makes the study of highly irregular and complex
structures feasible, it also enables the study of those processes that defy tradi-
tional mathematical analysis (Feder, 1988; Mandelbrot, 1982). Although a strict
definition of a fractal is hard to give, Falconer {1990) suggested that it scems best

to regard a fractal as a set F that has propertics such as:
¢ F has a fine structure (i.e. is detailed on arbitrarily small scales);

e It is too irregular to be easily described in traditional Inclidean geometric

language;
¢ F often has some form of self-gsimilarity {perhaps approximate or statistical};

o Usually, the 'fractal dimension’ of F {defined in some way) is greater than

its topological dimension; and,

o In most cases of interest, F' is defined in a very simple way (perhaps recur-

sively).



Among these propertics, self-similarity is the most important concept which is
used in fractal. ‘This concept means that a fractal is a shape made of parts similar
to the whole in some way (Mandelbrot, 1982}, It is not difficult to find examples
of fractal-like behavior in nature. In some examples self-similarity in nature can
be detected by human eyes; er example, in a von Koch curve, which is shown

below in Fig. 1.1 However, the self-similarity of observed objects is not usually

Figure 1.1: von Koch curve,

able to be detected by sight alone. In these cases the self-similarity exists in the
statistical sense. Two well-known numerical examples of this sort of self-similarity
are illustrated in Fig. 1.2. The first is fractional Brownian motion (fBm) and the
second is fractional Gaussian noise (fGn) (they are given as non-stationary and
stationary examples, respectively).

In the geographical world there are a large number of temporal and spatial
examples which exhibit self-similarity. This thesis will study self-similarity in a
number of geographical cases (such as temperature variation, sunspot variability,
and the epicenter distribution) in addition to the numerical examples. Some of
the research objects are presented in the illustrations below without a detailed

description in order to give some intuitional impression of the nature of this re-
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Figure 1.2: Numerical examples of non-stationary and stationary cases, fBm (upper panel)
and fGn (bottom panel).



search project. The daily mean temperature records and monthly mean sunspots
are shown in Fig. 1.3. The seismic examples are also offered in the way of spatial
distribution and time series in Figures 1.4 and 1.5.

Theoretically, if the self-similarity exists (at least in a statistical sensé) then

there is a corresponding formula which is given as:
M,(F) ~ ¢ 5701, (1.1)

Where s is the considered scale and M, is the corresponding measurement. This
formula is called the power-law and it is represented as a straight line in the
double logarithmic plot. Then Dy is determined from the invariance across mul-
tiple scales in the power-law, and it is named as a fractal dimension of explored
structures or processes. Three common fractal dimensions are: the Hausdrofl
dimension, the box-counting dimension, and the packing dimension (Falconer,
1990; Feder, 1988). Given a set F, covering it hy 'halls’ whose sizes cquld be
different but have to be less than s, then the corresponding d~measure‘-Mdr, is
defined as the infimum (e.g. the minimal values of all possibly obtainable cov-
erings). The Hausdroff dimension is the value of d leading the limit of My,,
cofresponding to the vanishing diameter or size s of the ’balls’ used to cover the
set in changing from the infinite to zeros (Falconer, 1990; Feder, 1988). With
regard to the box-counting dimension: by using boxes with size s to cover the
set F, and setting the measure M, as the number, N,, of balls with a non-empty
intersection of the set F, then the box-counting dimension can be obtained from
the power-law N, ~ s~ P¢ (Feder, 1988). Alternatively, the packing dimension
could be obtained by locating the centroid of the non-overlapped boxes which are
used to cover F, the points of F {similarly to the definition of Hausdroff dimen-
sion) (Falconer, 1996). All three fractal dimensions are defined to measure the
degree of complexity. Generally speaking, the larger values of fractal dimensions
indicate a higher degree of complexity. Among the three fractal dimensions, the
box-counting dimension has become the most popular fractal dimension which

is used in rcal computation due to the simplicity of its calculation. Compared



daily mean air-temperature in Hong Kong
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Figure 1.3: Daily mean temperature in Hong Kong from 2005 to 2007 (upper panel}, and
the monthly number of sunspots during the period 1749 to 2009 (with 3123 months) (bottom

panel).
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with the traditional topological dimension Dy, only taking the integer values Dy
(which can be either integer or fraction) could give a more accurate measurement
of the investigated processes. The larger value of Dy corresponds to a higher de-
gree of complexity and irregularity. Thus Dy provides a route to handle complex
and irrcgular structures and processes.

There are some other related concepts which enable us to understand complex-
ity and irregularity besides the fractal dimension. For example, the long-range
correlation was proposed by Hurst (1951) and it can also be determined by the
concerned power-law. This correlation is related to the auto-correlation function
which decays following a power-law rather than decaying exponentially [Rybski
et al., 2006, 2008). The positive or negative long-range correlation means that the
current pattern would be more likely to be maintained or broken in the future.
The Hurst exponent (H) is an important exponent which was first proposed by
(Hurst, 1951) to quantify this long-range correlation. Furthermore, a relationship

between D; and H has been established as (Falconer, 1990):
D_(=DT+1—H, (1‘2)

Here Dr is the topological dimension of the support of the fractal.

However, the fractal dimension falls short in capturing scale-invariant geo-
graphical phenomena (such as temperature variations, sunspot activities, and
the changed direction between successive earthquake events) which require an
infinite number of scaling exponents instead of one single dimension for the char-
acterization of their non-linear variation across a wide range of scales. Thus,
it is necessary to introduce the concept of multifractal by considering the mul-
tiple gth order moments of the concerned measurce (or fluctuation) rather that
just analyzing a single order moment in the fractal analysis. Consequently, in
this generalized conceptual framework the fractal dimension Dy and Hurst ex-
ponent H have been extended to a generalized fractal dimension D(q) (Feder,
1988) and a generalized Hurst exponent hA(g) by Kantelhardt et al. (2002). In a

one-dimensional situation (e.g. for time series study) Kantelhardt ct al. (2002)



established the relationship connecting D{g) to h(g) as:

(q)=D(g) - (L —¢)=q hig) ~1, (1.3)

Where 7(g) is the mass exponent in the partition function based multifractal
formalism (Halsey et al., 1986). Hence, the multifractal analysis (MFA) can be
performed with the gencralized Hurst exponent h{g) as a bridge.

The rescarch problems involved in this thesis will be concluded and presented

in the following section based on the discussion above.

1.2 Research Problems

This thesis has two sections, which are: conéeptual discussions and applica-,
tions. The core aim of this thesis is to analyze the different fractal and multifrac-
tal properties of the numerical examples, geographical structures, and processes.
The research problems are presented below.

On a conceptual level, five probleins will be discussed:

1. Selection of the most appropriate method for exploring the frac-
tal and multifractal properties of geographical problems. There
are many algorithms which have been developed for fractal and multifrac-
tal analyses. Each method has its advantages and disadvantages. Selec-
tion of which method is to be used should be based on a complete review
and careful comparison of the existing popular methods. Since the long-
range correlation and generalized Hurst phenomena are related to fractal
and multifractal analysis, they should be included in this thesis. Among
the fractal and multifractal analysis, the most important task is to study
the power-law; however, there are some trends in geographical phenom-
ena which have a negative influence on the scaling behavior of fractal and
multifractal analysis {e.g. the global warming in temperature records and

~ the periodic trend in soﬁle of the geographical records such as the 11-year-

cycle in sunspot series and the annual cycle in a streamflow series). The
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capability of Detrended Fluctuation Analysis (DFA} (Peng et al., 1994) to
eliminate the influence of these kinds of non-stationary trends makes it the
preferred method to be used to study the long-range correlation of geo-
graphical processes in this thesis. A description of the detailed comparison
between DFA and other algorithms, together with relevant discussions, will
be given in the following chapters. From this comparison it was found that
the Multifractal Detrended Fluctuation Analysis (MF-DFA) (Kantclhardt
et al., 2002) and its basis (i.e. DFA) are the preferred methods for MFA in
this thesis. However, despite their numerous advantages DFA and MF-DFA
are not entirely perfect methods. After careful investigation two significant

disadvantages of DFA and MF-DFA have been identified in this thesis, they

are:

2. Handling of oscillations in the fluctuation function. One disadvan-
tage of DFA and MF-DFA are the oscillations in the fAuctuation function
and significant errors in crossover positioning which are introduced in ac-
tual implementations due to the removal of local estimated discontinuous
polynomial trends in DFA and MF-DFA. Such strong fluctuations can lead
to difficulty in estimating the scaling exponents from power-law and de-
tecting the possible crossover points. Usually, the crossover points indicate
a phase change in the underlying dynamics across the scales (Hu et al.,
2001). Therefor*tection of the crossover points is very helpful for us to

understand the studied processes.

3. Handling of periodic and qguasi-periodic trends. The other disad-
vantage of DFA and MF-DFA is the negative influence of periodic trend on
the scaling behavior of DFA. Previous studies have shown the possibility of
spurious crossover points which are caused by the periodic or quasi-periodic
trends (Hu et al., 2001). To obtain the genuine scaling behavior, it is nec-

essary to handle these kinds of trends.

4. Correcting the classical relationship connecting h(g) to 7{(g). A



potential problem in a classical relationship connecting h(g) to 7{g) as ex-
pressed in Eq.(1.3) in MF-DFA for one-dimensional case. Through this
relationship, the conventional MFA based on 7(g) can be performed from
an MF-DFA aspect. A large number of studies have employed this rela-
tionship in their MFA (sec for example in Kimiagar et al. (2009); Movahed
and Hermanis (2008); Movahed et al. (2006); Telesca et al. (2004c, 2005));
however, in this thesis our investigation shows that this relationship has
a potential problein in that a correction of this important réiationship is

expected.

5. Correcting two relationships of two-dimensional MF-DFA. Poten-
tial problems in two relationships of MF-DFA for study in two-dimensional
space: h(g) = H for fBm and, generally, h(g = 2) = H. Since the inception
of MF-DFA, the focus has been placed on signals in one-dimensional space.
Gu and Zhou (2006) recently extended MF-DFA to higher dimensions and
also related the generalized Hurst exponent, h(g), in higher dimensions to
the original Hurst exponent H. These two relationships have also been ex-
tended by Gu and Zhou (2008) to two-dimensional versions; however, these

relationships again appear to be invalid from the empirical and numerically

experimental perspectives.

There are three problems with regard to the role of applications, tempera-
ture variations, sunspots activities, and the general scaling law in the directional

analysis of epicenter migration which are briefly introduced as follows:

1. The long-range temporal correlation and critical scales of tem-
perature variation. Recently, much attention has been given to the
long-range temporal correlations of atmospheric phenomena (Pattantys-
Abrahdm et al., 2004). Temperature, as an important indicator reflecting
changes in the atmosphere, has also attracted considerable interest (Eichner
et al., 2003; Fatichi et al., 2009; Fraedrich and Blender, 2003; Koscielny-
Bunde et al., 1998; Lennartz and Bunde, 2009; Orun and Kocak, 2009;

10



Pattantyﬁs—.f\brahém et al., 2004; Talkner and Weber, 2000). In terms of
the critical scales of temperature activitics, there are some well-known scales
in climatology (e.g. the 'general weather regimes’ or 'Grosswetterlagen’, the
monthly and seasonal scale corresponding to the usual scale of El Nifio, the
climate anomaly, and seasonal scales); however, only the weekly scale has
been uncovered by the DFA in previous studies. Does this then mean that
the other scales in the temperature variation are unimportant? Or, is this

due to the drawback of the use of DFA and MF-DFA?

2. The long-range correlation of sunspots activities without the in-
fluence of 11-year cycle. Due to the negative influence of periodic trend
on the scaling behavior obtained by DFA, Movahed et al. (2006) and Hu
et al. (2009} have derived two totally different results using DFA for the
same sunspot time series. This conflict has arisen because different methods
have been selected to handle the effect of the 11-year cycle. The question

then is, whose results capture the nature of the sunspots activities?

3. A systematic analysis of the temporal and spatial patterns of
earthquake process. Most previous studies have almost always focused
on the event-betweenness temporal and spatial distance; however, in com-
parison the directional information has attracted considerably less interest.
From this perspective, we would like to see if any natural mechanism could
be found for the better understanding of earthquake processes. Three cata-
logues of directional information will be investigated in this thesis (i.e. south

China, southern California, and the experimental microshock database).

Among these three problems the first two are actually employed to test the
efficiency and capability of the modified DFA and MF-DFA when handling the

real-life data and, in particular, those corresponding to the second and third

research problems in the conceptual part.
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1.3 Research Objectives

On the basis of the above discussions on the research problems, this thesis
can be seen to render a rigorous and systematic study of geographical phenomena
in multiple temporal and spatial scales. In order to do this the discussions on
conceptual level will be used as the basis of the case studies. On the conceptual
level, this study will aim at making some improvements in methodology and
clarifying some problematical relationships. The objectives of the case studies
are to test the validation of the modified methods and better understand the

complicated temporal-spatial geographical structures and processes from some

new research aspects.

The objectives of this thesis can be outlined as:

1. This thesis will select the most appropriate methods to be used for the frac-
tal and multifractal analyses according to the specialities of the geographical
problems (such as the influence of noises or trends). The preferred methods
which are used are expected to capture the natural complexity and charac-
teristics of the concerned geographical processes and structures, which are’

usually covered by unknown noises or trends.

2. This thesis will attempt to reduce the strong fluctuation in scaling behavior
of DFA and MF-DFA in order to obtain a better scaling law for estimating
the scaling exponents and positioning the crossover points. Modificd meth-
ods are expected to improve the performance of DFA and MF-DFA. Then
the improved DFA and MF-DFA are going to be used to detect the critical
scales in temperature variations. Although these scales are already known

as important scales in climatology, they are not revealed by conventional

DFA and MF-DFA.

3. This thesis will develop a new method to not only remove the periodic
or quasi-periodic trends but also to maintain the intrinsic scalings of the
studied processes. This newly-developed method will be compared with

existing methods in handling a challenging problem (i.e. the long-range
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correlation of sunspot activities withont the influence of the 11-year cycle).
The results obtained by the proposed method are going to be compared
with the inconsistent results which are reported in several previous studies
(Hu et al., 2009; Movahed ct al., 2006). The real long-term memory of

sunspots records may then be determined.

. This thesis will demonstrate the invalidity of the relationships in MF-DIFFA
in one- and two-dimensional space from empirical, experimental, and theo-
retical aspects. The corrected relationships will be proposed via the formal
and empirical derivations. Their validation will then be tested by con-
structed numerical experiments. This study’s hope is that these corrected

relationships will provide more accurate routes to grasp the nature(s) of

processes.

. This thesis will perform a dircctional analysis in a more systematic casc
study of epicenter migration. The directional information here is particu-
larly noteworthy in epicenter migration, from either seismological or math-
ermnatical aspects; however, to date little academic attention has been given
to this topic. This thesis’s study of this aspect will be able to offer a sup-

plement for a better understanding of complicated earthquake processes.

1.4 Research Significance

In this thesis the methods for the fractal and multifractal analysis, especially

the DFA and MF-DFA, are going to be carefully investigated. It will first make

sorne improvements and corrections to the development of a methodology. It will

then detail a number of examples of the application of this theory in real-life

geographical problems.

The following achicvements exemplify the research significance of this thesis:

¢ Conceptual aspect:
1. This thesis will thoroughly review the mainstream algorithms for frac-

13



tal and multifractal analyses. The advantages of the DFA and MF-
DIA for analyzing the geographical structures and processes will also
described.

. An cnhanced version is proposed against the strong fluctuations, espe-
cially at large scales, in the scaling behavior of the DFA and MF-DFA.
A better scaling law can be obtained using this new method. This
improvement can ensure the better performance of DFA in the com-
putation of the scaling exponents and detection of crossover points.
These exponents and crossover points are helpful for understanding

the effects of the complicated dynamics across multiple scales.

. An adaptive method for estimating and eliminating the periodic trends
is employed in this thesis in order to avoid the negative influence of
such trends on the outcome of DFA and MF-DFA. When comparcd
to the existing popular methods the proposed method is equivalent
in removal of the periodic trends, but it is considerably more easy to
implement. Its good performance in analyzing the numerical examples

is shown 1in this thesis.

. The incorrectness of a classical relationship connecting h(g) to 7(g¢) in
one-dimensional MF-DFA is pointed out. Such a relationship has been
applied in a significant number of previous studies; however, its vali-
dation has been found to be limited in some special situations. This
study will formally propose a new relationship and demonstrate its
correctness using numerical experiments and empirical studies. This
corrected relationship extends the classical relationship to a more gen-
eral version and, therefore, it could be of great benefit to the MFA

using MF-DIA.

. Extending the one-dimensional MF-DFA, Gu and Zhou (2006) gave
two relationships: h(g) = H for {Bm in the two-dimensional space and
k(g = 2) = H, in their development of the two-dimensional MI"-DFA;

however, these generalized relationships are inconsistent with that in
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one-dimensional space. With the aid of numerical cxperiments, this
thesis will suggest the more logical and reasonable relationships which

can well calculate the Hurst exponent using the two-dimensional MF-

DFA.
o Applications:

1. In the application of improved DFA and MF-DFA in exploring the
long-range correlation of temperature variations, compared with the
results of conventional DFA and MF-DFA, a better scaling law is ob-
tained and consequently two more critical scales which have been rec-
ognized in climatology are detected. Such performance, prior to that
of conventional DFA and MF-DFA, substantiates the imnprovement of

the modified versions.

2. The adaptive periodic-trend-remove method facilitates the climination
of the negative influcnce of an 11l-year cycle in the study of sunspot
activities. The real aspect of long-range correlation of sunspots activi-
ties is uncovered on the basis of this method. In addition, the incorrect

selection of parameters in the application of Movahed et al. (2006} is

also found.

3. In terms of the earthquake process, although some work has already
been done by others about the epicenter motion focus on the waiting
time and jump distance between two successive carthquake events, the
temporal and spatial distance alone can not determine the temporal-
spatial position of the epicenters if we consider the epicenter motion
under the polar coordinates. Thus, we can take the changed motion
direction between two events into consideration as a supplement work
to the current studies in earthquake process; this could shed a light
on our understanding of the epicenter motion. By exploring the long-
range correlation of the changed direction series a universal scaling

behavior can be found to exist in the first scaling range, while non-



universal behavior in the sccond scaling range reflects the different

geological structures.

1.5 Organization of the Thesis

This thesis is organized as follows: the research framework is given in chap-
ter 2. In chapter 3, DFA and MF-DFA are selected as preferred methods to
be used on the basis of the review and comparison of the exiting methods for
fractal and multifractal analysis (their disadvantages and incorrectness are also
pointed out here}. Against the weakness and problems of DFA and MF-DFA,
the corresponding improvements and correctness are proposed in chapter 4. The
numerical experiments are also constructed in chapter 4 in order to test these
improved methods and corrected relationships. Applications in two real-life ex-
amples, namely temperature variation and sunspots activities, are presented in
chapter 5 in order to show how the improved DFA and MF-DFA work. Chapter 6
systematically analyzes the occurrence of earthquakes. Finally, this thesis will be

summarized in chapter 7.
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Chapter 2

Research Framework

Following the introduction of the research problems, objectives, and signifi-
cance in the previous chapter, the framework for this study is proposed in this

chapter.

2.1 Introduction

Almost all geographical structures and processes are highly complicated and
irregular and, therefore, they go beyond the capabilities of conventional mathe-
matical analysis. This study intends to analyze these geographical structures and
processes, and to do so it will introduce the concepts of fractal and multifractal
analysis. Consequently, this study will render a rigorous and systematic study of
geographical phenomena at multiple temporal and spatial scales. This study will
develop an overall framework which integrates both: discussions on the concepts
of fractal and multifractal analysis, and the application of fractal and multifractal
analyses in a number of case studies. The structure of this framework is presented
in Fig. 2.1.

In this thesis the discussion of the concepts and case studies is organized
according to the structure of this framework. After selecting the most appropriate
method to be used for the fractal and multifractal analyses of the geographical

problems, this study then worked on the weakness and problematic relationships
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of these methods. Numerical experiments, theoretical discussions, and empirical
derivations are employed to analyze and handle these weaknesses and problems.
‘The improved methods are then applied to two challenging geographical problems
to test their efficacy. The application part includes, but is not limited to, the
above two examples. A systematic study on earthquake migration is presented

in this thesis as part of the application of the theory in a number of case studies.

2.2 The Research Framework

The research framework which is illustrated in Fig. 2.1 shows that two main
sections are included in this study, namely: ’concepts’ which focuses on the dis-
cussions on methodology, and the ’application’ of the geographical problems in
the case studies.

In terms of concepts, the discussion will firstly focus on how to sclect the
appropriate algorithms for fractal and multifractal analyses by taking the special
features of the geographical problems into account. On the basis of this, DFA and
MF-DFA have been selected as the preferred methods to be used in this thesis for
fractal and multifractal analyses. However, two disadvantages and two problems
of the use of these methods have been identified. As shown in Fig. 2.1, there are
four further sections corresponding to the problems in DFA and MF-DFA (the
improvements and corrections are proposed in these sections, respectively).

The first disadvantage of the use DFA and MF-DFA are the strong fluctua-
tions in their scaling behavior. This is especially problematic at large scales duc to
insufficient statistical samples. This study will employ the idea of the moving win-
dow technique to ensure that there are enough samples to provide stable results.
In addition, the autocorrelation which is commonly seen in geographical processes
are also considered to enhance the performance of DFA and MIF-DFA for better
scaling behavior using the idea of Geographical Weighted Regression (GWR).
Since what is studied here is time series, the correlation considered is temporal
and the modified DFA and MF-DFA are called Temporal Detrended Weighted
Fluctuation Analysis (TWDFA) and Multifractal Temporal Detrended Weighted

18



Figure 2.1: The framework for multifractal analysis in this thesis.



Fluctuation Analysis (MF-TWDJIA). Numerical experiments with known fractal
and multifractal propertics are constructed in this thesis for testing the validation
of TWDFA and MF-TWDFA. An insignificant difference to the expected results
in this study shows that the TWDFA and MF-TWDFA work very well. Fur-
thermore, the performance of TWDFA and MF-TWDFA in this study’s analysis
of temperature records is better than that of DFA and MF-DFA. Consequently,
scaling law with less fluctuations could be obtained. As a result, two more critical
scales, which are masked by the strong oscillations in the outcome of DFA| are
detected from the better scaling law of TWDFA.

The second weakness of DFA and MF-DFA occurs when analyzing the series
with periodic trends. Empirical Mode Decomposition (EMD) is applied here as
the pre-processing to climinate these trends for DFA and MF-DFA. EMD is an
adaptive and data-driven method which can decompose the series into many com-
ponents with different dominant frequencies. The denoised series can be obtained
by removing the component(s) corresponding to the targeted periodic trend(s).
The EMD-based method is also tested in this study with the designed experi-
mental data. It is then employed to study the controversial issue of long-range
correlation of sunspot time series arising from the use of different pre-detrending
methods employed to handle the prominent 1l-year cycle. By comparing the
results of this study with that of previous studies, it is suggested that the incon-
sistent results could contribute to the incorrect selection of the parameters for the
implementation of the detrending algorithm. The conclusion of the long-range
correlation of sunspots activities should be about 0.72.

This study will demonstrate the incorrectness of using numerical experiments
and theoretical discussions with regard to the two problematic relationships in
MPF-DFA established to connect different fractal exponents in one- and two-
dimensional space. It will then present the corrected relationship for the one-
dimensional case through a formal study taking the universal multifractal for-
malism as a bridge. A suggested relationship for the problem in two-dimensional

space is given on the basis of empirical derivation. Several kinds of numerical
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experiments are then constructed to test these improvements and their correct-
ness. The corrected relationships are of great benefit to profile the fractal and
multifractal properties of the complicated processes using DFA and MF-DFA.

In addition to the applications in the above geographical problems, this thesis
will complete a systematic analysis of the temporal and spatial patterns of the
earthquake process in order to better understand the earthquake process. For
this purpose, a new analysis perspective is proposed in order to study the scaling
behavior of epicenter migration in south China, scuthern California, and a acous-
tic emission database using DFA. The ol)taillt’a‘(w’g behavior shows a basic
structure which contains both the common property of earthquake process and
the local seismic characteristics of the study areas. Different conditions are sct
to test the sensitivity of the obtained scaling structure, considering the effects of
threshold magnitudes, random removal, and the boundary of study area.

It should be noted from the framework that numerical experiments will be
employed frequently in this thesis. This is due to the fact that we can construct
experimental examples with known or expected properties in these numerical
experiments. The performance and capability of the studied methods can then

be evaluated by comparing the calculated results with the expected results.

2.3 Summary

This chapter has illustrated the framework which will be used in this thesis.
The framework itself has two main sections: the first section describes the the-
oretical concepts and the second section describes their application in a number
of case studies. Some interactions can be found between these two main sections
from the framework which is illustrated in Fig. 2.1. These discussions on the re-
search issues can build the basis for the case studies. Meanwhile the applications
of proposed methods in geographical proi)lems can be used to show their effi-
ciency and to benefit our understanding of the nature of the geographical world.
The next chapter will expand on these ideas by following the research framework

which is proposed here.
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Chapter 3

Review of Relevant Methodology

and Discussions

This chapter will first review the relevant methods for fractal and multifractal
analysis. Through comparing these methods, this thesis will give DFA and MF-
DFA as preferred methods for fractal and multifractal analysis of geographical
problems. In this thesis MF-DFA, and its basis DFA are going to be investigated
systetﬁatically from‘ several aspects, including two of the disadvantages of DFA
and two classical relationships in MF-DFA. The corresponding improvements and
corrections are proposed after the discussions of methodology in chapter 4.

From the inception of MF-DFA and rescaled range (R/S) analysis the focus of
their academic study has been placed on signals in one-dimensional (1D) space.
Recently, MF-DFA has been extended to higher dimensions and it has also been
related to the generalized Hurst exponent, h(g), in higher dimensions to Hurst ex-
ponent H (Gu and Zhou, 2006). Alvarez-Ramirez et al. (2008) have also extended
R/S analysis into two-dimensional (2D) space. Alvarez-Ramirez et al. {2008)
. employed numerical experimints to compare the two-dimensional MF-DFA and
two-dimensional R/S analysis, and they also extended the relationship between
H and the scaling exponent obtained from R/S analysis of the two-dimensional

case. To avoid confusion, this thesis will call the one-dimensional (MF-)DFA and
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R/S analysis (MF-)DFA and R/S analysis, and that in the two-dimensional space
the two-dimensional (MF-)DFA (2D (MF-)DFA) and two-dimensional R/S (2D
R/S} analysis.

3.1 Methods of Fractal Analysis

This section will first describe the fractal analysis, including calculation of |
box-counting dimension and the algorithms for calculating the Hurst exponent
for long-range correlation analysis.

Fractal analysis aims at characterizing the self-similarity (at least in a sta-
tistical sense) of the analyzed processes. The self-similarity exhibits in the for-
mula as the power-law between the measures M,(F) and corresponding scales s,
M,(F) ~ ¢-s~P7. The most common method to calculate the fractal dimension
D; is the box-counting algorithm, which considers the power-law between the
nuinber of boxes in the fractal supports having non-empty intersection to the
fractal F and the corresponding box size.

The concept of fractal was proposed by Mandelbrot (1982) for studying the
length of a coast. Since the inception of this concept, fractal properties have been
found in a large variety of geographical phenomena and appears to be a natural
structures of many things in the world.

In general, the fractal nature of geography have been studies by Goodchild and
Mark (1987), Lam and De Cola (1993) and Gao and Xia (1996). The complexity
of structures and processes in physical geography, and the way to solve the spatial
scale problems have also been investigated via the concept of fractals (Atkinson
and Tate, 2000), and Richards (2002).

In particular, fractal has been employed to study many real-life phenom-
ena, such as the extraction of the multiscale features of remotely sensed images
(Emerson et al., 1999; Lovejoy et al.3 2001; Marghany et al., 2009; Myint, 2003;
Pachepsky and Ritchie, 1998; Parrinello and Vaughan, 2002; Qiu et al., 1999),
especially the integrated system calléd Image Characterization and Modeling Sys-
tem (ICAMS) developed for fractal analysis of remote sensing data (Qua;:trochi
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et al., 1997), the structure, shape and the size of the cities (Batty, 2008; Batty
and Longley, 1994), the fractality of the earthquake process (Goltz, 1997; Harte,
1998; Hirabayashi et al., 1992; Hirata, 1989; Kagan, 1981; Kagan and Knopoff,
1980; Lei and Kusunose, 1999; Sadovskiy et al., 1984; Takayasu, 1990), the het-
erogeneity and complexity of the spatial point pattern (Buczkowski et al., 1998;
Cola, 1991; Kyriacos et al., 1994; Vere-Jones, 1999), and the fractal properties of
rainfall process (Kantelhardt et al., 2006; Leung, 2010; Lilley et al., 2006; Olsson,
1995; Peters et al., 2001; Tessier et al., 1996), hydrological process (Koscielny-
Bunde et al., 2006; Leung, 2010; Neuman, 2010; Pandey et al., 1998; Tessier et al.,
1996; Zhang et al., 2008, 2009).

The concept of long-range correlation is also given here as a relative property
to fractal. One of the most important purposes of time series analysis is to develop
suitable models and to obtain accurate prediction based on the known record. To
achieve this task, one core ingredient is to capture the self-dependence or auto-
correlation in the series (Doukhan et al., 2003}, The long-range correlation is a
very important and common dependency concept in time series, from which the
understanding of time series for prediction can be improved. Given a time series
{zx}{,, after extracting the mean, < z >= 7-\1?22';-1 Ty, 88 Ep = Txy— < z >, the
auto-correlation function of {Zx}, separated by s, C(s), can be considered as

(Bashan et al., 2008):

< ikjk%s >

Cls) = < 72 > (N~3)<a:k

MZ

ZiTpps- (31)

Then if {zx} is an uncorrelated series, C{s) = 0 for positive s. If there is some
finite ¢, making C(s) to decrease exponentially as C(s) ~ exp(—s/t.), {z:}i,
can be described by short-range correlation. For those series which have diverges

t. = [~ C(s)dz, long-range correlations can be defined if the power-law can be

found in the scaling behavior of C(s) as

C(s) ~ 77, (3.2)
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The scaling exponent ~ lies from 0 to 1. Although long-range correlation can
be described from the auto-correlation function, the potential power-law Eq.(3.2)
might fail to be found due to the unknown noises or trends. Thus, the scaling
exponent -y might be difficult to determine directly from auto-correlation function.
Consequently, it is necessary to develop indirect but effective methods to uncover
the long-range correlation and Hurst phen;)menon.

Many methods have been proposed to handle the long-range correlated pro-
cess. For example, Hurst (1950) put forward rescaled range analysis to study the
water levels of reservoir on the Nile River. More importantly, he gave an impor-
tant exponent, generally known as the Hurst exponent, H, to quantify long-range
correlation of signal series. Fluctuation Analysis (FA) was proposed by Peng et al.
(1992) to study the long-range correlations in nucleotide sequences on the hasis
of the numerical representation, random walk model. Following this, Peng et al.
(1994) developed DFA to determine the fractal scaling properties and long-range
correlation in both stationary and non-stationary time series. Detrending is one
key step when implementing DFA, whereby the polynomial regression is employed
to estimate the local trend. According to the different order, m, employed, DFA
can be denoted as DFAm. Tagqu et al. (1995) subsequently gave the direct re-
lationship between the scaling exponent of DFA and the Hurst exponent H for
fGn. Movahed et al. (2006} and Movahed and Hermanis {2008) later proved the
relationship between h and H for the fBm and fGn. Studies have also been made
on some properties of DFA, such as: the effect of non-stationarities (Chen et al.,
2002), trends (Hu et al., 2001), and extreme data loss (Ma et al., 2010} on DFA,
the relation between DFA and power spectral density analysis (Heneghan and
McDarby, 2000) and the comparative study of DFA and some other correlation
analysis methods (Bashan et al., 2008; Xu et al., 2005). In addition, inspired by
the idea of R/S analysis and DFA and utilizing the capability of moving average
to capture the low-frequency trends of the signals, Alessio et al. (2002) presented
the Detrending Moving Average (DMA) technique to reveal the scaling behaviors

by estimating H. The power spectrum technique, which was employed to analyze
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the scaling properties of the rainfall series (Fraedrich and Larnder, 1993) and tem-
perature serics (Talkner and Weber, 2000), is another method which is devoted
to estimating the Hurst exponent. The Structure Function (SF) (also called var-
iogram in spatial statistics) and its many -modiﬁcd versions are important tools
which are used in the geophysical or geographical fields (Balankin ct al., 2009;
Davis et al., 1994) when some scaling exponents related to A are to be estimated.

Finally, this thesis will make the comparisons among these methods. The
preferred method to be employed in this thesis can then be determined on the
basis of these discussions. In order to facilitate this discussion some popular
methods for fractal and multifractal analyses are briefly introduced in the next

section.

3.1.1 Box-Counting Dimension

As mentioned in the first chapter, the box-counting dimension is the most
popular fractal dimension which is used in real computation because of its sim-

plicity of calculation. The box-counting dimension for fractal F with support R"

can be defined as follows:

Given a scale s, the support R™ can be covered by a set of R™ boxes as:
(mys, (mq + 1)s} X -+ x (mgs, (Mg + 1)s], (3.3)

Where m,, - - -, m,, are integers (for example, the boxes are intervals for R while
squares for R2?). Using N,(F) to denote the number of boxes with non-empty

intersection to fractal F.

The upper limit D ;(¥) and inferior limit D +(F) can then be calculated as:

B 1 log N,(F)
Dy(F) = ]1[‘?_?{1).1[) oz s (3.4)
D,(F) = liminf log N,(F) (3.5)

=0 —logs

If the limit of “E*(5) exists, we have Dy(F) = D/(F). Then the Dy can be
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obtained.

When compared with another two common fractal dimensiong {i.c. the Haus-
droff dimension (Falconer, 1990; Feder, 1988) and packing dimensicn (Falconer,
1990; Feder, 1988)) the box-counting dimension is much easier to be used when

handling the practical problems by coding and computing with the aid of com-

puter.

3.1.2 Rescaled Range (R/S) Analysis

The R/S analysis and the Hurst exponent, H, are firstly proposed to explore
the persistence of the storage capacity of water reservoirs on the Nile River by
Hurst (1951). Based on the description of R/S analysis given by Hurst (1951), for
a given time series {xx}&_,, Yar = {yx} can be constructed as the M-dimensional

sample subvectors of {z,}i,, here M = sN and s € (0, 1). Then define

1 M
gs = 3 ks (36)

Wi
z=Y (vk— ), (3.7)

k=1
max z; — min z;
(R/S), = o minn (3.8)
(L (e — 5s)2/ M)
For s € (Smin, Smex), if we have

(R/S), ~ 5", (3.9)

then we can obtain H as the Hurst exponent. According to the value of H,
{z)} is considered as long-range anti-correlated if 0 < H < 0.5; uncorrelated
if H = 0.5; and long-range correlated if H > 0.5. After obtaining the Hurst
exponent, the degree of the prediction of studied series could be assessed. For
example, if a series is characterized by H = 0.5, then nothing can be done for
the prediction due to the total randomness indicated by the value of the Hurst

exponent. However, if H = 1, the studied series is a definite linear process and
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the future of the series is under control and is completely dependent on what
happened in the past. Thus the study of the long-range corrclation measured by
the Hurst exponent is very helpful for establishing a prediction model.

Many applications of R/S in different research fields can be found: such as in
economical studies by Cajueiro and Tabak (2008) and Muniandy et al. (2001), in
bioinformatics by Wang et al. (2008), in environment problems by Tarafdar and
Harper (2008), in geophysics by Chamoli et al. (2007); Jimenez et al. (2006); Li
et al. (2002); Peters et al. (2001), and in theoretical discussions by Chamoli et al.

(2007) and Rangarajan and Ding (2000).

3.1.3 Two-Dimensional (2D) R/S analysis

Recently, the R/S analysis has been generalized to the 2D space by Alvarez-
Ramirez et al. (2008). For the 2D R/S analysis, we just nced to construct a
sub-surface instecad of the one-dimensional subsequence. Given a two-dimensional
surface X with size N, x N, and scale s. Consider a sub-matrix Yy, p, = {v.;}
with size M, x M., M, = sN, and M, = sN, respectively. We can obtain the
following R/S statistic (Alvarez-Ramirez ct al., 2008):

M, M.

R N (3.10)

i=1 j=1

(R/S), = max, ; Zi:l Zf——-l(yk.l — ¥,) —miny; Z:c=1 Zfﬂ(?}k,t - ?}s)‘
(oM oM (g — 5602/ (M M)}/

According to Alvarez-Ramirez et al. (2008), as s increases from 0.025 to 0.5, the

(3.11)

R/S statistic follow the power law:

(R/S)s ~ 5. (3.12)

The Hurst exponent H can then be derived for the two-dimensional situation
(Alvarez-Ramirez ot al., 2008). In 2010, Raoufi (2010) employed the 2D R/S
analysis to study the fractal property of indium tin oxide (ITO} thin films.
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3.1.4 Fluctuation Analysis (FA)

Peng et al. (1992) proposed FA to study the long-range correlations of nu-
cleotide sequences based on random walk model. In IFA, firstly the 'net displace-

ment’ of the walker, {zx}L_,, after s steps is computed as (Peng ct al., 1992):

y(s) =z (3.13)

The fluctuation function F'(s) can be defined as the difference between the average

of the square and the square of the average,

F%(s) = [Ay(s) — Ay(s))?

= [Ay(s)]? - [By(s)], (3.14)

here Ay(s) equals y(so+ 5) —¥(so). The bars means the sy indicating all possible

positions of {zx}{",. The Hurst exponent, H, can be obtained if thc power-law,
F(s) ~ s (3.15)

can be found.

However, since there usually are some noises in the DNA sequences, Peng
and the co-workers improved the detrending procedure into the FA for better
estimating the long-range correlation of the DNA sequences (Buldyrev et al.,

1993; Peng et al., 1994).

~
3.1.5 Detrended Fluctuation Analysis (DFA) }

To handle the 'nucleotide heterogeneity’, a key step, detrending, was intro-
duced into FA and then DFA was consequently proposed by Peng et al. (1994).

DFA can be performed in the following steps:
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e Step 1: Determine the 'profile’
Y(i) = Z[:m-— <z>),i=1,---,N. (3.16)
k=1

Here, < z > means the average of {xz;}. It is remarked in Kantelhardt et al.
(2002) that the subtraction of the mean < z > is not compulsory since it

would be eliminated by the detrending procedure in Step 3.

e Step 2. For each given positive integer s, the 'profile’ can be divided into
N, = int(N/s) non-overlapping local windows/segments with equal length
s. Here int(-) is a function which takes the integer part of a number. Since
N/s may not be iﬁtogcr, there might be a short part of the 'profile’ remained
uncovered. To make use of the information containing in this slack, the same
procedure can be repeated starting from the opposite end of the series.

Hence, 2N, local windows are obtained altogether.

e Step 3 For the vth of the 2N, local windows, the variance can be determined

as:

F2(v,5) = %z{Y[(v — 1)s+1] - (i)},

forv=1,---,N,; (3.17)

Po,9)= 23 AYIN = (0= N)s+il -,

=1

forv=N;+1,---,2N,, (3.18)

where y, is the fitting polynomial representing the local trend in the vth lo-
cal window. If we use m to denote the order of y,, then the one-dimensional

DFA can be denoted as one-dimensional DFAm.
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e Step 4: Obtain the fluctuation function as:

AL
F(s) = {2N, > FHv,s)}' /% (3.19)

e Step 5: Determine the scaling behavior of F(s) by analyzing the log-log

plots of F(s) versus s. If

F(s) ~ s". (3.20)

Here, h can be related to the classical Hurst exponent H by:

h, for 1D stationary case;

H = (3.21)

h —1, for 1D non-stationary case.
According to the value of H, {z\} is considered as long-range anti-correlated
if 0 « H < 0.5; uncorrelated if H = 0.5; and long-range correlated if
H > 0.5. Thus, H is a very useful index for extracting the feature of a time

series from the perspective of long-range dependence.

In reality, DFA has been successfully applied in many fields such as sunspot
serics (Hu et al., 2009; Movahed et al., 2006), carthquake processes (Balasco
et al., 2002; Tclesca et al., 200%a, 2005), temperature series Eichner et al. (2003);
Koscielny-Bunde et al. (1998); Pa.tfa.ntytis—ﬁbmhém et al. (2004), DNA sequence
(Peng ct al., 1994), streamflow (Matsoukas et al., 2000; Zhang et al., 2008, 2009)
and the geomagnetic storm and solar flare indices {Yu et al., 2009).

L

3.1.6 Detrended Moving Average (DMA)

Moving average technique is a classical way to estimate the low-frequency
trend. Based on this éharacteri‘stic, Alessio et al. (2002) proposed the DMA in
which the trend estimated by the moving average pfocedure at different scales
takes the place of that calculated by polynomial regression in DFA. Generally,
the procedure of DMA consists of the following main steps (Alessio et al., 2002;
Xu et al., 2005): ‘
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Step 1. Detect the local trend of the profile Y (i) with scale s in series

employing moving average

Y, (i) = % S V(- k). (3.22)

Step 2: Subtract the estimated trend Y,(:) from the integrated profile Y (),
then the residual C,(z)

Cyi = Y (i) - Y,(i). (3.23)

Step 3. The fluctuation function of DMA F(s) then can be determined as

N
F(s) = J e P ¢10] (3.24)

=3

Step 4. Determine the scaling behavior of Fy(s) by analyzing the log-log

plots of Fy(s) versus s if

F(s) ~ s, (3.25)

DMA attracted much attention covering the financial time series (Carbone
et al., 2004a), biological analysis (Shiogai et al., 2010), and theoretical discussion
(Arianos and Carbone, 2007, Carbone et al., 2004b; Serletis, 2008; Xu et al.,
2005).

3.1.7 Fourier Power Spectral Analysis

Since the signals considered in real computation is discrete, the Fourier power

spectral of given series {z;}V_, can then be expressed as:

N-1
Bf)= N2 mpepen?E (3.26)
k=D
Then
S(f) = 12N (3.27)
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is the power spectrum of {z;}. If the power-law can be found as:

S(f)y ~1/f7, (3.28)

the scaling exponent 3 is determined. Generally, the relationship between £ and
h of DFA is given by Heneghan and McDarby (2000) as 8 = 2h — 1. Hence, 8

could be related to the long-range correlation analysis.

3.1.8 Structure Fluctuation (SF)

In the turbulent study, SF analysis is a very popular method to explore self-
similarity. Given a non-stationary series {z,}{_, with stationary increment, the

ST is defined as:
< |Az(s)|? >=< |zr4s — 2k|* >~ 583, {3.29)

The scaling exponent ((2) is related to H for fBin as {(2) = 2H (Davis et al.,
1994).

3.1.9 Preferred Method

Generally, the R/S method and box-counting algorithm can be used oniy for
the analysis of the stationary time series. The SF is also subject to the stationary
assumption. In fact, however, most of the geophysical series are non-stationary
and are contaminated by various trends. Some of the trends still remain unknown
because of the complicated intrinsic and extrinsic dynamic systems that the series
has formed.

Fortunately, the detrending step included into the DA procedure enables it
to partly handle the non-stationary series as well as the stationary series. With
respect to the performance of the power spectrum method in estimation of H
exponent, significant fluctuation of power spectrum, in particular that of low-
frequency range, can usually mask the scaling regions and lead to difficulty when

%
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directly estimating of the slope in the double-logarithmic plots (Matsoukas ct al.,
2000; Tsonis et al., 1998; Weber and Talkner, 2001). In contrast to the spectral
analysis, FA is a more systematic procedure (Talkner and Weber, 2000) with
small finite size effects and a smoother fluctuation function (Tsonis ct al., 1998).
Although FA works better than spectral analysis to estimate the long-range corre-
lation, it cannot avoid the effect of the trend (such as global warming) as pointed
out by Koscielny-Bunde et al. (1998). As to the DMA, Xu et al. (2005) com-
pared the performance of DFA and DMA, the scaling curves obtained by DFA1
are claimed to be more stable over much broader scale ranges when compared
with DMA, which suggests a better fitting range can be obtained to quantify the
correlation property. In addition, Bashan et al. (2008) pointed out that the DMA
has the similar performance with the DFA technique if the trends within the stud-
ied series are weak. However, the DFA method is still the best choice, particularly
when the trends within the studied series remain unknown before analysis. Ac-
tually, the trends of the s.eries are often unknown. In this sense, the DFA method
has the potential to fully recognize and diagnose the trehds within the serics by
using different orders of detrending polynomial (Bashan et al., 2008). Due to the
foregoing advantages and its simplicity to implement, DFA is the prominent pri-
ority in the aha.lysis of the scaling properties of the series amongst the alternative

methods for analyzing geographical processes.

3.2 Methods of Multifractal Analysis

Because of the insufficiency of fractal analysis to capture the heterogeneity
of complex and irregular processes with a single fractal dimension (Grassberger
and Procaccia, 1983), multifractal analysis is ecmployed in this thesis in order to
give a full description of complicated scaling behaviors over multiple time scales.
By taking into the gth order moment of the measure or [luctuations account,
the fractal dimension D; and Hurst Eaxponent H are extended to a generalized
fractal dimension D(g) (Mandelbrot, 1982) and a generalized Hurst exponent h(q)
(Kantelhardt et al., 2002). The Dy and H are two special cases of D(g) and h{g).
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D(q) and h(q) with different values of ¢ reflect the measures and fluctuations
with different degrees. The parts with high density measure or a large fluctuation
will dominate the gth order moment when the positive values of g are taken into
consideration. However, for the negative values of ¢, what is reflected in the scal-
ing behavior is the information related to the small density, or fluctuation parts
of structures and processes. In an extreme situation, the D{300) corresponds to
the information of those parts with largest or smallest density and fluctuations.

Usually, the D{g) and h(q) monotonous decreases with ¢ increases (Kantclhardt
et al., 2002).

3.2.1 Partition Function-Based Formalism

Halsey et al. (1986) proposed the partition function-based formalism tech-
nique, which is the most commonly used method, to extract the multifractality
of studied objects. The basic procedures can be enumerated as:

Given a measure g with support E C R™, the partition function can be

represented as:

Z(@)= ) (B q€R, (3.30)

#1{Bm )#£0

Where B,, is a box of a given side £ covering the support E:
B = (mys, (my + 1)3] x -+ - X (mns, (Mg, + 1)s],. (3.31)

If power-law Z,(q) « s7'9) is existing, we can get the 7(g) using following equation:

_ i log Z.(q)
GRS 032
And generalized fractal dimension D{q) can be calculated by
D(g) = .ql(_‘?_)l for q # 1, (3.33)
D(g) = lim Zis forg=1 (3.34)
20 1ns’ ! )
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where Zi, = 37,0 #(B) In 1(B). The multifractal spectrum can then be ex-

pressed as:

alg) = diqr(q), (3.35)
o) = galq) —r(g). (3.36)

Usually, in the real calculation, a(g) can be obtained by:

Zp(s};&o [1£(B)]? In 2(B)
Zs(g}lus

a(g) = lim (3.37)

D(y) for a large positive g reflects the fractal property of the dense regions, while
D(qg) for negative g quantities reflects the situation for the sparse regions. D(+o0)
and D(—o0) are two extreme dimensions indicating the most and least clustering
of distribution, respectively. Specifically, D{0) is the conventional fractal dimen-
sion Dy. D(1) and D(2) corresponds to the information dimension and correlation
dimension (Falconer, 1990). D(0), as the geometric measure, shows the extent
of fractal distributing in the supﬁort. D(1) and D(2) depicts the non-uniformity
and global clustering degree of data, respectively (IEnescu et al., 2005). MFA
is a useful way to characterize the spatial heterogeneity of both theoretical and
experimental fractal patterns (Grassberger and Procaccia, 1983). In fact, some
applications in the spatial analysis can be found. Vere-Jones (1999) has discussed
the fractal dimension of the point pattern in fixed spatial region and fixed inter-
val of time respectively theoretically. Buczkowski et al. (1998) used the modified
box-counting method designed by Kyriacos et al. (1994) to measure the regu-
lar and random distributed objects. While Cola (1991) analyzed the multiscale

spatial autocorrelation of point data.
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3.2.2 Multifractal Detrended Fluctuation Analysis (MF-
DFA)

Given a time series, {z:}1, of length N with compact support, the MF-DFA

method consists of five main steps (KKantelhardt et al., 2002), all steps except the

4th onc are the same as those of DFA. In MF-DFA, the 4th step takes the gth

instead of 2nd order moment of fluctuations into consideration as:

e Step 4: Obtain the gth order fluctnation {unctlion as:

anN, “
Fi(s) = (g P2 )2}, (3.38)

where g can be any real number.
Then in step 5, h(g) can be considered in the following way:

e Step 5: Determine the scaling behavior of Fy(s) by analyzing the log-log
plots of Fy(s) versus s for each g. Generally, we only use s varying from

m+2to N/4. If
' Fy(s) ~ @, (3.39)

h{q) called the generalized Hurst exponent could be obtained. Specifically,
for ¢ = 2, the MF-DFA are actually DFA and h{g = 2} is  in DFA.

The values of h(g) for different ¢'s can be employed to quantify the property of
the parts of series with different degrees of fluctuations. The h(g) corresponding
to large g reflects the property of large fluctuations while that to small g connects
to small fluctuations. Specifically, the h(q) of the positive and negative infinite q
correspond to the maximum and minimum fluctuations respectively. According
to the dependence of the A(g) on ¢, the multifractality could be detected. If A(g)
is independent/dependent on ¢, then there is the monofractality /multifractlity.
F ig: 3.1 exhibits the dependence of h(g) on ¢ for two examples, namely fractional
Gaussian noise and temperature record. It is shown that h{g) almost remains
constant for all gs for the former while varies significantly for the latter, which

indicates their different multifractal properties.
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Figure 3.1: h(q) for fractional Gaussian noise and temperature record against ¢.

According to Kantelhardt et al. (2002), if the time series {zx}}_, is stationary,
positive and normalized, then it is not necessary to detrend in step 3. Thus the

DFA can be replaced by the standard fluctuation analysis as:
F2alv,5) = [Y{vs) = Y((v~ )s)I" (3.40)
Then, combining Eq.(3.38) and Eq.(3.39), we can obtain:
2N,
S 1Y (ws) = Y((v—1)s)|? ~ s7@71, (3.41)
v=}l

To relate the one-dimensional MF-DFA to the box-counting formalism, Kantel-

hardt et al. (2002) gave the partition sum of the analyzed time scries as:

Nis
Zy(s) =Y Ips(v)|* ~ 579, (3.42)
v=1
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where

us

ps(v) = Z o = Y{vs) = Y({v - 1)s). (3.43)

k=(v—1)s+1
From the above two equations, they cstablished the relationship to relate the

partition function formalisin and MEF-DFA together as:

T{q) = gh{g) — 1. (3.44)

Based on 7(q), the generalized fractal dimension D{g) and the singular spectrum

can be derived as follows:

D)= 12 (3.45)
g—1
a=7(q) and f{a)=qgx— 7(q). (3.46)

With Eq.(3.44), D(q) and the singular spectrum can be expressed via h(g) as:

D(g) = P 1

3.47
q_]_ ' ( )

o= h(g) +gh'(g) and f(a)=glo—hA{g)]+1. (3.48)

Such relationship (Eq. 3.44) has been employed to study the scaling behaviors
of time series in different fields of research (Kimiagar et al., 2009; Movahed and
Hermanis, 2008; Movahed et al., 2006; Telesca et al., 2004¢, 2005). _

Actually, there are some other methods for multifractal analysis, such as the
wavelets transform modulus maxima (WTMM) (Muzy et al., 1994, 1991) and
empirical mode decomposition based arbitrary order Hilbert spectral analysis
(EMD-HSA) (Huang et al., 2008). Compared to WTMM and EMD-HSA, the
algorithm of MF-DFA is much easier to implement. Moreover, the systematic
discussion and comparison of the performance of WTMM and MI-DFA on frac-
tal and multifractal analysis was made in Oswiecimka et al. (2006). Simulated
numerical series and real-life examples were employed for comparison. Then, Os-
wiecimka et al. (2006) claimed that MF-DFA works in a more automatic way

while WTMM should be applied with care when applied to analyze real data.
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3.2.3 2D MF-DFA .

The procedure of the 2D MF-DFA is very similar to that of the MF-DFA.
Based on the description by Gu and Zhou (2006), for each given s, we can first
divide the two-dimensional surface, denoted by a matrix X (i, j) with size M x N,
into M, x N, non-overlapping sub-surfaces X, ., with size s x 5, where M, =
int(M/s) and N; = int(N/s}. The profile u,,, = ). 3. Xu.(2,7) can then be
obtained in cach X, ,. Subsequently, we can eliminate local trend from every
ity by using one of the following local surfaces as the pre-specified polynomial

detrending function :

fyw(t, 1) = ai + bj + ¢, (3.49)

iy w(i, §) = ai® + bj + ¢, (3.50)

Ty (i, 1) = aij + b +cj + d, (3.51)
Ui, §) = ai* +bj* + ci + dj + e, (3.52)
tiyw(i,3) = ai® + bj* + cij + di +ej + f, (3.53)

here a, b, ¢, d, ¢ and f are free parameters to be determined. Then for each

sub-surface, we can have a residual matrix:

Eu,w(iaj) = uv,w(i:j) - ﬁu,m(isj)' (354)

The variance of the residual matrix is obtained as:

Fly,w,s) = 226uwz} (3.55)

i=l j=1

Subsequently, the two-dimensional gth order fluctuation function, F(s), becomes

Fo(s) MN ZZF“’ (v, w, )} (3.56)

v=] w=1
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By varying s from 6 to min{M, N)/4, if the power law Fy(s) ~ s"® exists, we
can obtain the generalized Hurst exponent h{g) for the two-dimensional surface.
Gu and Zhou (2006) also gave without proofs the relationship between h(g) and

H for the 2-dimensional f3m as:

h(q) = H, (3.57)

and the relationship between h{q = 2} and H as:

h{g=2) = H. (3.58)

3.3 Several Problems in DFA and MF-DFA

Although the DFA is the preferred method for the fractal analysis, and DFA
and its extended version, MF-DFA | have been applied to solve problems in many
fields such as astronomy (Anh et al., 2007, 2008; Movahed et al., 2006; Yu et al.,
2009), hydrology (Movahed and Hermanis, 2008; Zhang et al., 2008, 2009}, me-
teorology (Talkner and Weber, 2000), seismology (Telesca et al., 2004a,c, 2005;
Varotsos et al., 2002, 2003) and electrics (Kimiagar et al., 2009), we still have
to investigate them systematically before applying to the geographical processes.
Firstly, we study the basis, DI'A, since its disadvantages could also bring negative
influence on MF-DFA. And then the incorrectness in MI-DIFA would be discussed

in this section.

3.3.1 Strong Fluctuation in Scaling Behavior

Detrending is the key step in DFA. As to the concept of trend, it is hard to give
an exact definition. However, there arc generally two approaches for estimating
the trend: one employs regression and the other uses the moving mean of data
(Wu et al., 2007). In DFA, it treats the polynomial fits of the time series in local
windows as the local trends to be handled in the detrending step of the algorithm.

It should be noted that ordinary linear or high order regression can be used in
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the detrending step. In finding the best-fit curve, all points in a local window
take on the same regression parameters regardless of their location in the window.
However, it has been argued, particularly in geographical studies (Tobler, 1970),
that points near in space should be more related than points some distance away.
The same argument can also be applied to points in time series. It is natural to
cxpect points near in tiine in a time scries to be more related, c.g. have sinilar
values, than points some distance apart. Change of temperature over time is
a typical example. As pointed out by Eichner et al. {2003), 'the persistencc of
weather states on short terms is a well-known phenomenon: a warm day is more
likely to be followed by a warm day’. With respect to DFA, points locating at the
end (beginning) of a local window of a time series should have stronger correlation
with points closer to them, even though they are located at the beginning (end)
part of the local window next (before) to it. That is, with reference to a point,
points at greater distance within the same local window might not be as related as
those in another local window right next to it. The implication then is that points
should be weighted according to their position in the time series. Furthermore,
Alvarez-Ramirez et al. (2005) pointed out in their study that as the removal of
local trends in DFA is based on discontinuous polynomial fitting, oscillations in
the fluctuation function and significant errors in crossover locations might be
introduced. It is very common to see that the linear relationship in the log — log
plot of the fluctuation function F(s) versus the scale s is very poor when s is
large.

Besides, the non-overlapping window considered in the step 2 of DFA might
lcad to the insufficient samples for calculating the fluctuation function of DFA,
especially for the large scales. For example, if s = N/4, only the fluctuation in
four window could be taken into account. As a results, the static on the basis
of the insufficient samples may attribute to the unstable scaling behavior with

strong fluctuation, particularly at large scales.
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3.3.2 Influence of Periodic Trend

In the geographical phenomena, the periodic or quasi-periodic trend s com-
mon to see, such as the annual cycle in temperature and streamflow records, and
the famous 11-year-cycie in sunspot series. Usually, the existence of crossover
in the scaling behavior of DFA can imply a transition from one to another state
of underlying correlation. In the analysis of the real-life examples, the crossover
points gencrally indicate the change of the scaling behavior of a process. And
scales marked by such crossover points usually have a critical and significant
physical meanings. For example, the crossover points in the study of tempera-
ture records could be detected around one week, one month and one season, which
uncover different properties of persistence in the climate systems, such as more or
less similar temperature records found in successive days but significant difference
in the days separated by seasons. The significance of these detected scales can
generally be confirmed by the climatological studies. However, some trends can
lead to the crossover which has nothing to do with state transition of dynami-
cal properties of the underlying process, for example the spurious crossover time
scales due to periodic or quasi-periodic trend (Hu et al., 2001; Nagarajan and
Kavasseri, 2005). Thercfore, handling this kind of trend is very much critical for
obtaining the genuine scaling behavior of a time scrics.

In fact, many methods have been designed to remove the periodic or quasi-
periodic trends from time series. According to Wu et al. (2007), there are two
commonly used methods for cstimating the trend of time scries/signals. They
are the linear regression method and the moving average method. Other than
that, there are some more complicated trend extraction methods, like the higher
order regression analysis, Fourier-based filtering (Nagarajan and Kavasseri, 2004),
singular-valuc decomposition (SVD) (Nagarajan and Kavasseri, 2005} and the
adaptive detrending methods (Hu et al., 2009). Details about these methods
(except the adaptive detrending in Hu et al. (2009)) and their comparison can be
found in Kantclhardt (2008) and Bashan et al. (2008).

The lincar regression method may be inappropriate or physically meaningless

43



for real-life problems, especially under nonlincarity and non-stationarity. With
regard to the moving average mcthods, a pre-determined time scale, like that in
Alessio et al. (2002) and Alvarez-Ramircz et al. (2008), is required before the
trends are estimated. Higher order regression analysis and Fourier-based filtering
are often based on the stationarity and linearity assumptions, and some pre-
determined function forms, sitch as polynomial, sine or cosine functions, for higher
order regression and Fouriersbased filtering. Besides this, there are no physically
justifiable foundations supporting the pre-specified function formns (Wu et al.,
2007). Using the SV method one has to determine the number of singular valucs
to be removed. The Fourier-based method is faced with similar problem, that is
how many of the frequencies should be removed. The adaptive detrending in Hu
et al. (2009) is based nn the l‘egr(}ssian analysis. Thus the order of polynomial and
the time seale have to be determined when h{lplementing these trend extracting
methods.

What should be emphasized is that the definition of trend is debatable. For
example, the periodic trend in financial series is considered an important compo-
nent rather than noise which should be removed during the analysis (Wu et al,,
2007). If the periodic trend dominates the series, the scaling information of other
components would be masked. 'To investigate the scaling behavior of those non-
periodic components, the dominant part has to be removed. Thus, to give a
complete description of the scaling behavior, in the study of the temperature
variations, we analysc the scaling behavior of series with anmal cycle and series
after removal of the annual cycle. However, for the same sunspot time series,
Movahed et al. (2006} and Hu ¢t al. (2009} derived two totally different results
using DFA on the basis of two different ways to remove the eflect of the 11-year
cycle. Specifically, Movahed ct al. (2006) applied the Fourier truncation method
whercas Hu et al. (2009) developed an adaptive detrending method. Further-
more, Hu et al. (2009) claimed that the Hurst exponent obtained in Movahed
et al. (2006) is incorrect because an inappropriate detrending method, namely

Fourier truncation, was used. Therefore results in Movahed ¢t al. (2006} are con-
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sidered an artificial outcome of Fourier truncation rather than a real property
of the sunspot serics. Unlike Hu et al. (2009), Nagarajan and Kavasseri (2004}
showed that the Fourier-based method is & conventional but effective method for
removing periodic trends. The question then is which method is appropriate for
handling the 11-year cycle? On the basis of the above discrepancy, how to remove
the 11-year cycle thus becomes a key issue in the study of the sunspot time serics

using DFA. It triggered us to adopt another angle to get to the bottom of this

problem.

3.3.3 Problematic Relationship in MF-DFA

Though the MI*-DFA lla;.re become popular over the years, there seem to
be some problems in the relationships of the exponents given in these papers. In
the development of MF-DFA, Kantelhardt ct al. (2002) established a relationship,
which has been extensively applied®ever since, between MF-DFA and the standard
partition-function-based multifractal formalism as: 7(q) = ¢gh(q) — 1 for positive
and stationary time sé:ries. This relationship has been employed as a basis for
multifractal analysis in a good number of studies (sce for example (Kimiagar
et al., 2009; Movahed and Hermanis, 2008; Movahed et al., 2006, Telesca et al.,
2004c, 2005)). However, our investigation shows that such relationship has a
potential problem. It might at least be incorrect for So;ne signal like fGn.

Since the concept of the Hurst exponent, H, and the relationship between
h(q) and H are the critical issues, they are briefly reviewed here first. The scaling
exponent 4, which is determined by the Fourier powc;r spectrum E(f) = f~7, is
employed to describe many processes. Thus Hurst exponent can also be defined
using 3. On one hand, a definition of the Hurst exponent, H, of fBm and fGn
requires different relations to connect these exponents according to the underlying
processes as H = (8 —1}/2 for fBm and H = (#+1)/2 for fGn (Barton and Poor,
1988; Mandelbrot and Ness, 1968). Then H lics between 0 and 1 for both fBm and
fGn. On the other hand, there is a different definition of the Hurst exponent, H,

of fBms and fGns given as H = (8- 1}/2 (Flandrin, 1992; Mandeclbrot, 1982). In
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this definition, H varies from -1 to 0 for fGn and from 0 to 1 for fBm. We denote
this definition of I/ as H, in the following discussion. The following statement
gives the reasons that the former definition ought to be the one adopted in M-
DFA. As mentioned above, MF-DFA becomes DFA if ¢ = 2. Heneghan and
McDarby (2000) pointed out that H = (8 + 1}/2 for {Gn and # = (f — 1)/2 for
fBm and proved that the relationship between the DFA exponent 2A4(2) and the
power spectrum scaling exponent, 8, is § = 2h(2) — 1. That is to say h(2) = H
for fGn and h(2) = H + 1 for fBm. With this definition of H, the relationships
between H and DFA scaling gxponent A(2) for fGn and fBm have been confirined
'by anqutica.l calculation. Taqqu et al. (1995) analytically calculated that the
DFA scaling exponent h equg.ls H for' fGn. Furthermore, Movahed et al. derived
the relationship (2} = H + 1 for {Bm (Movahed ct al., 2006} and h(2) = H for
fGn (Movahed and Hermanis, 2008). These research results can be employed to
support that the scal.ing exponent h(2) obtained by MF-DIA should be related
te H rather than H,. In addition, Kantelhardt et al. (2002) gave the relationship
between H and 8 as H = (8+1)/2 for the stationary long-range correlated series.
So in MF-DFA, the former definition of the Hurst exponent is adopted. And in
this thesis, we just consider the former definition of Hurst exponent.

Here, we would like to point out the incorrectness of relationship between 7(q)

and h(q) from the theoretical and numerical points of view.

The Theoretical Issue

It should be observed that for positive, stationary, and normalized time scries
{zx}.,, if no trend has to be climinated, then Step 3 will not be performed. In

such case, Step 1 of MF-DFA should then be compulsory. 1f so,

v

Y (us) = Y((v - 1)s) = 3 (me— <z >), (3.59)

k={v—1)s+1
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instead of E£q.(3.43). And even if {z:}| is a positive serics, Tx— < z > might

still be negative. Without loss of generality, we can suppose:

vE

> (z— <2 >)>0, (3.60)
k={v—1)a+1
(v+1)s
Z (tpx— <z >) <0 (3.61)
k=vs+]
and
vs (v+1)s
Y. m- <) > ) (@ <z )l (3.62)
k=(v—1)a+1 hk=vs+1
Then, even if
utlds va
{m— <z >0 2 (o= <2 >l erns (3.63)
it is still possible to have
{v+i)s vs
Y (m—<z>)<| Y (a—<z>)| (3.64)
k=(v-1)s+1 A={y—1}s+1

Just take the fGn as an example. Fig.3.2 depicts an enlarged plot of part of
the fCn. Wo transform {z} upwards for |min(z)| + 1 to ensure that the new
series, {Z}, is positive, and then replace it using {Z— < & >}. Mathematically,
{&¢~ < & >} = {x— < z >}. Then we obtain a positive, stationary series. Given
s = 3, it is easy to see that Eq.(3.60)-Eq.(3.64) arc valid. However as is well

known, if y is a measure defined on sets A and B, then

ADB (3.65)

l'nust be followed by

p(A} 2 j(B). (3.66)

That is to say |p,(v)} in Eq.(3.42) cannot be treated as a measure defined on the

times series {zx}_, since it does not possess the basic property of a measure.
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Figure 3.2: An enlarged plot of part of the fGn (z— < z >), for s=3.

Howcever, when the box-counting algorithm, for example, is used, it is necessary
to have a measure defined on a set. Then, the partition-sum function based on
|ps{v)}} is not proper. Now that IEq.(3.43) is incorrect, the relationship in Eq.(3.44)
which is obtained by combining Eq.(3.41), Eq.(3.42) and Eq.(3.43), might also
be incorrect, at lcast for {Gns. In the following subsection, we employ numerical

experiments to support our arguments.

Numerical Experiments

We first substantiate our view on the problematic relationship between 7(g)
and h{q) cstablished in Kantelhardt et al. (2002) with a scries of numerical exper-
iments. In order to numerically obtain the relationship between 7(g) and h(q),
we have to calculate 7(g) and h(g) first. To be consistent, we consider in here
the stationary, positive, and normalized time series following the assumption in
Kantelhardt et al. (2002). As it is well-known, fGn is the stationary increment

of fBm. Thus we construct our numerical examples using fGn to calculate T(g)
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and h(g) by the fixed-size box-counting algorithm in Halsey ct al. (1986) and
MF-DFA in Kantelhardt et al. (2002) respectively. The procedure to construct
our examples is presented in detail as follows:

In the experiment, we first used MatLab to synthesize 10 fBms with length
2% 41 for each assigned Hurst exponent H whose values range from 0.1 to 0.9
with stel; size 0.1. For each fBm, we obtained a corresponding fGn, {G}}, with
the same H. As the fixed-size box-counting algorithm is based on the partition-
sum function, it is nccessary to keep all elements of the series non-negative. Thus,
we replaced the original {Gr} with {Gx — min{G) + 1}, where min(G) denotes
the miniinum value of serics {Gy}, so that we could transform {G,} into a pos-
itive series which still is stationary. Moreover, the detrending step in MF-DFA
cnsu;es that the vertical translation holds the same H as that of {Gx}. Without
confusion, we still use {Gx} to denote the vertically shifted fGns in the following
description. To calculate T(q) and h(q), we let g increase from -5 to 5 with step
size 1. Applying the box-counting algorithm (Halsey et al., 1986), we computed
7(q) for each series {Gy}. After normalizing the transformed series, we applied
the fixed-size box-counting algorithm to get 7(g). The almost unvaried values of
averaged D(g) shown in Table 3.1 indicate the monofractality of these vertically

shifted fGns. Whereafter, we calculated h(q) using MF-DFA. It should be noted

Table 3.1: Averaged D(q) of vertical shifted {Gns for different H aud g values

g=-0 g=-4 q=-3 q=-2 =-1. q=0 g=1 g=2 g=3 g=4 q=35
T=0.1 | 1.0310  1.0310 1.0310 1.0310 1.0310 10310 10310 1.0310 1.031¢ 10310 1.0310
=02 | 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310
H=0.3 | 1.0311 L0311 1.0310 1.0310 1.0310 1.0310 1.0810 1.0310 1.0310 1.0310 1.0310
H=0.4 | 10311 10311 1.0311  1.0311  1.0311 10318 10310 10310 10310 10310 1.0310
H=05 | 1.0311 1.0311 1031t 1.0311 1.0311 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310
=06 | 1.0311 1.0311 10311 1.0311 1.0311 1.0310  1.0310 10410 1l.0310 1.0310 1.0310
H=0.7 } 1.0414 1.0314 1.0313 1.0312 1.0311 1.0310 1.0310 1.0309 1.0308 1.0307  1.0307
H=08 | 1.0321 1.0319 10317 1.0315 1.0313 10310 1.0308 1.0306 1.0304 10302 1.0300
H=09 1 1.0349 1.0341 1.0334 1.0326 1.0318 1.0510 1.0303 1.0295 1.0287 1.0280 1.0272

that these normalized transformed fGns are stationary, positive, and normalized
series satisfying totally the assumption in {(Kantelhardt et al., 2002) to in the
derivation of the relationship between 7(q) and h(g), c.g. Eq.(3.44). Since the
Hurst exponents of fGn here are all positive as emphasized in the introduction,

MF-DFA is directly performed without employing the double sumimation tech-
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Figure 3.3: Relationships between h(q) and T(g) for numerical examples with I1=0.1 to 0.9.
(from top left to bottom right).

.nique as suggested by Kantelhardt et al. (2002). Step 3, detrending, of MF-DFA

is able to keep h(g) of {Gx} a constant when a constant is added to each element

Gy of the series. Now, we could obtain 7(g) and h(g) for cach H. And then

the average values of ten D{(g) and h(g) for each H are compared. The figures

are shown in Fig.3.3. Apparently, the actual curves of 7(g) versus gh(g) do not

follow the expression stipulated by Eq.(3.44). The deviations are actually rather

drastic.

From Fig.3.3, one can observe that the curves poorly fit the linear relationship

when H < 0.3. As H increases, however, the curve of 7(g) versus gh(q) is getting

more and more like the straight line: 7(g) = gh(g) — 1. Table 3.2 gives the slopes

and intercepts of the linear fits of these actual curves. From this table, we can

see that the linear fit is close to 7(¢) = gh(g) — 1 only when H = 0.9. However,

there is a significant difference between the actual curve and 7(q) = gh{g) — 1
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Table 3.2: Slopes and intercepts of the linear fits of the curve of 7(q) and gh{q) for different
If values in Fig.3.3

H  slopes of the linear fits intercepts of linear fits

0.1 6.0839 -0.5593
0.2 4.2370 -0.7178
0.3 3.1375 -0.8149
0.4 2.4383 -0.8663
0.5 1.9604 -0.9184
0.6 1.6609 -0.9382
0.7 1.4240 -0.9504
0.8 1.2560 -0.9656
0.9 1.1264 -0.9995

when H < 0.8, especially for small H. This numerical counter example shows
that the relationship between 7(g} and h(g) stipulated by Eq.(4.2) established by

Kantelhardt et al. (2002) appears to be incorrect.

3.3.4 Problematic Relationship Between H and h(q) in the
2D MF-DFA

Gu and Zhou (2006} claimed that H can be obtained via Eq.(3.57) for two-
dimensional fBm and Eq.(3.58). For the two-dimensional R/S analysis, however,
H is calculated using the power law (sec Eq.(3.12)). Alvarce-Ramirez ct al.
(2008) claimed that the two-dimensional R/S analysis is equivalent to the two-
dimensional DFA1 (two-dimensional DFA which eliminates local trend using pla-
nar sub-surface), e.g. 2H = h(2). They also generated two-dimensional fBm to
carry out numerical experiments using both the two-dimensional R/S analysis
and two-dimensional MF-DFA to support their claims, However, the relation-
ships obtained in these two separate studies are contradictory: ie. H = A(2) in
Eq.(3.58) versus 2H = h(2) in Alvarez-Ramirez et al. (2008). Since H is a con-
stant for a given two-dimensional signal, either one of these relationships has to
be wrong or they are both wrong. Such contradiction compels us to numecrically

investigate the relationship and make a conjecture about the real one.
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&
Problem of the 2D R/S Analysis in Alvarez-Ramirez et al. (2008)

The 2D R/S is studied in Alvarcz-Ramirez et al. (2008) via the two-dimensional
fBm. Since the one-dimensional R/S analysis is only suitable for the stationary
time series, and the two-dimensional fBm used in Alvarez-Ramirez et al. (2008) is
a well-known non-stationary process, it is questionable that R/S can handle the
non-stationary fBm just because it is generalized to the two-dimensional space.
To satisfy our curiosity, we repeated the experiment of Alvarez-Ramirez et al.
(2008) and found that the same results cannot be obtained although the same
software FRACLAB 2.03 (http://fraclab.saclay.inria.fr/} was employed to syn-
thesize the two-dimensional fBm. Fig.3.4 and Fig.3.5 show our results obtained

by the 2D R/S analysis.
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It can easily be observed that no matter what the size of the surface is,

256 x 256 or 512 x 512, the slopes of all these plots are approximately 2 instead
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of the pre-specified H values, i.c. 0.2, 0.5 and 0.8; or 2/{. Thus H obtained from
the power law in Eq.(3.12) Alvarez-Ramirez et al. (2008} should be incorrect,
at least for the two-dimensiounal fBm. Thus, the two-dimensional R/S analysis

should still be an improper method to estimate H on non-stationary surfaces.

Problem of the Relationship of H and A(g) in Gu and Zhou (2006)

The relationship between H and h{q) for the one-dimensional MF-DFA is
well-known. In brief, H = h{g = 2} for stationary time serics, whereas H =
h{g = 2) — 1 for non-stationary series as shown in Eq.(3.21). The problem is
when MF-DFA is extended to the two-dimensional space, can the relationships,
like Eq.(3.57) for the two-dimensional fBm and Eq.(3.58), be obtained without
considering the property of stationarity? We provide in here some numerical
experiments for their verifications.

As mentioned above, two-dimensional fBm and two-dimensional fGn arc fa-
mous non-stationary and stationary process respectively. Thus we used these two
processes to investigate the relationship between H and h(q = 2) for stationary
and non-stationary processes in two-dimensional space.

| We generated 20 two-dimensional fBms with size 512 x 512 and assigned
valie of H ranging from 0.1 to 0.9 with step size 0.1. According to McGaughey
and Aitken (2002), the mixed second partial derivative 0?/dzdyF(z,y) of the
two-dimensional fBm is the two-dimensional fGn. Therefore, we can get one
two-dimensional fGu from cach two-dimensional B using the following approx-

imation equation:

2

Jx0y

By(z,y) = [Bu(z,y) — Bu(z — 1,y)] - [Bu(z,y — 1) ~ Bu({z — L,y - 1)),

(3.67)
where By denotes two-dimensional fBm, and z and y are integers. For this
pumecrical study, we obtained 20 two-dimensional fBms and 20 two-dimensional
fGns for each H, which varies from 0.1 to 0.9 with step size 0.1. We performed the

experiments following exactly the procedure given by Gu and Zhou (2006). We



employed Eq.(3.49) and Eq.(3.53) as the detrending function. We found it difficult
to cstablish any relation from applying Eq.(3.49). By detrending via Eq.(3.53),

however, we obtained certain relationship depicted in FFig.3.6 and Fig.3.7.
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Figure 3.6: Results of 2D MF-DFA for 2D fGn with H = 0.1 to 0.9 (from top left to bottom
right).

Table 3.3 gives the average values of h(2) for the 2D fGn and fBm for each
H. It is casy to read the invalidation of Eq.(3.57) for the two-dimensional fBm

and Eq.(3.58) from Table 3.3.

3.4 Summary

This chapter first reviewed the popular methods which are used in fractal

analysis. DFA has been selected for use in this study based on the results of
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Table 3.3: Averaged values of A(2) of the two-dimensional MF-DFA using 2D {Gn and 2D

fBm with different H values

H  averaged h(2) of 2D fGn

averaged h(2) of 2D fBm

0.1 0.12856729 2.02598325
0.2 0.21972847 2.15956748
0.3 0.31424202 2.27278913
0.4 0.40323210 2.38832299
0.5 0.50254354 2.50397095
0.6 0.60270936 2.59705262
0.7 0.69889756 2.692566248
0.8 0.80237260 2.78993299
0.9 0.89712406 2.89163698

this review. The concepts of multifractal analysis have been introduced for use

in this study because of the limitations of fractals in the analysis of the real-

world data; therefore, a generation of DFA (i.e. MF-DFA) is chosen for the MFA.
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Two weaknesses of DFA have been identified by previous studies, namely: the
strong fluctuation in the scaling behavior of DFA and MF-DFA, and the negative
influence of periodic and quasi-periodic trends. In addition, two problematic rela-
tionships of MF-DFA are also claimed on the basis of theoretical discussions, the
numerical experiments, and the empirical analysis. Therefore, these theoretical
issues will need to be discussed in further detail before we can ;Lpp]y the DIFA

and MF-DFA in the geographical problems.



Chapter 4

Methodological Investigation of
DFA and MF-DFA

This chapter will focus on the methodology issuc. On the basis of review
in chapter 3, there are two disadvantages in DFA and two potential problematic
relationships appearing in MF-DFA. In addition, introducing the ideas from other
research fields should be a appropriate way to improve the performance of the
methods in analyzing the geographical problems. This chapter is organized by
describing the corresponding improvements and corrections first, and then testing

their capability using numerical experiments.

4.1 Improvement of DFA

Two disadvantages of DFA, strong fluctuation in scaling behavior and influ-
ence of periodic trend, have been pointed out in chapter 3. Now we would like to

give our proposal to handle them in this section as follows.
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4.1.1 Strong Fluctuation in Scaling Behavior
Moving Window Detrended Fluctuation Analysis (MWDFA)

Detrending is a key step in DFA. However, the current way for detrending as
described in step 3 in DFA procedure may result in strong fluctuations in scaling
behavior as introduced in chapter 3.

To avoid such problem, we propose a method that can take into consideration
local relationships of points in time series in the detrending procedure of DFA.
On the basis of this principle, the moving-window DFA (MWDFA} aud the more
gencral temporally-weighted DFA (TWDFA) are proposed in the following of this
section to improve the detrending procedure in DFA| and the performance of DFA
in general. The proposed model is then evaluated through numerical simulations.
Note that the relationship between the Hurst exponent and h of DFAL has been
proved (Movahed and Hermanis, 2008; Movahed ct al., 2006; Taqgep et al., 1995),
the local trend estitnated by linecar regression in the detrending step of DEFA is
our main focus in the following discussion.

Suppose that the ith point belongs to the vth local window and the scale s
still s. In step 3 of DFA, as pointed out above, the local trend at the ith point
Y (1) is determined by y,(2). However y,(i) is determined by the points in its local
window rather than by those points, which might be outside the window, ncarer
to it. To account for such local effects, it is thus more reasonable to determine
1»(3) using the nearby points. To achieve this, we need another way to cstimate
the local trend instead of using y,(¢) in the conventional DFA. We propose to
estimate Y (1) by using the fitting polynomial Y (i) in cach local window consisting
of points {j : [¢ — j] <= s}. Then for Y (i}, we can get the corresponding Y ()
from using the moving window (MW3), defined as {5 : |i — j| <= s}. Fig.4.1
gives a graphical illustration of the concept. That is, to capture the local cffeet,
we move the fixed-size window along the scries for detrending. Therefore, ,(2)
by Y (3) in step 3 of DFA (Eq.(3.17) and (3.18)), the modified F%(v, s) and F(s)
can be obtained. That is, Eq.(3.17) and (3.18} can be respectively redefined as
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Figure 4.1: Two local moving windows (MW) along the air-temperature series and the cor-
responding fitting polynomial Y in these woving-windows

equations:
Fiu,s) = %Z{Y[(‘U —Ds+1 = Y{(v—1)s+4))2 (4.1
i=1
forv=1,--- N
F*v,5) = éiz:l:{Y[N —(w—N)s+i - Y (N — (v~ NJs+ )}, (4.2)

forv=N,+1, --,2N,;

where Y(z) is the value of the fitting polynomial of MWi at point 4. Similar to
MF-DFA, from varying s we can also see if the power-law exits between F(s)
and s so that h can likewise be obtained. We call this wmodified method the

moving-window detrended fluctuation analysis (WMDFA).
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Multifractal Temporally-Weighted Detrended Fluctuation Analysis (MF-
TWDFA)

In ordinary linear regression (OLR), parameters of the regression model are
universal over the whole data space. Given n observations (yi; Zi, Zi2, . .., Tip),(i =

1,2,...,n), the OLR can be expressed as:

n~

p

Yi = ﬁu“!‘zﬁk-’!?ik“*'gh i=12,...,m, (4.3)

k=1 ;

here Bi(i = 1,2,...,p) are the parameters. However, this uniformity may not
reflect the spatial or temporal non-stationarity in real-life situations. That is, the
parameters might not be able to capture local effects due to proximity in space
or time. With respect to space, some methods have been proposed to consider
spatial non-stationarity or spatial drift into OLS, see for example Anselin (1988,
1990). In more general terms, Anselin (1988) have also studied the following

varying-parameter regression model:

1

P
Yi =ﬁio+2ﬁik$fk+5h 1=12,...,n, (4.4)
k=1

"where fi; are parameters which can vary in the data space. Geographically
weighted regression (GWR) is actually a kind of varying-parameter regression
model taking the'same form as that of Eq.(4.4) (Leung et al., 2000). By the
varying parameters, the local uniformity in the spatial distribution can be well
captured. Very recently, the GWR has been extended to the geographically
and temporally weight'ed regression (GTWR) to study the heterogeneity in the
spatial and temporal processes (Huang et al., 2010). Parameters in GWR can be
estimated using the weighted léast—squares approach. To take into consideration
the local effect in time series, the idea of the varying-parameter model in general
and the GWR. and GTWR in particular is employed to handle local effects in DFA
in our analysis (Zhou and Leung, 2010b). Moving window regression (MWR) can

be treated as the special case of GWR (Lloyd, 2007). When estimating Y ()
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with a given MWi, MWR gives equal weight (generally, 1) to each point of MWq,
while GWR allocates different weights (w;;) according to the distance between i
and j (7 €WMi). Of course, for the general varying-parameter regression model
in Eq.(4.4), w;; can be defined in different ways according to the situations of
the geographical problems. To estimate the varying parameters for the model in
Eq.(4.4) it the context of time serics, we give the expressions for the moving-
window method and the CWR ncthod as follows (Lloyd, 2007):

In the MWi, the Atting polynomial can be expressed as: .
Y () = fold) + Bili)i +e, (4.5)
and 8(i} = (Bo(3), 51(i))7 can be obtained by solving:
B = (T'WEHT) " T"W(5)Y, (4.6)

where T is a 2 x N inatrix;

(11

1 2

\1 N

and
( U 0 v 0 \
. 0 Wyg  + e 0
wa=1 ' . (48)
K 0 0 - uyn / .

If we choose MWR model at scale s, w;; can be defined as:

1, if |i —j| <5,
0, otherwisc.

For GWR, on the other hand, the width of the weighted fungtion affects the re-
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gression model more significantly, whereas the type of the weighted function does

not scem to have as an important effect. Thus, we can define wy; as follows (Lloyd,
2007):
[L- (5P, ifli-jl<s,

Wij = (4.10)
0, otherwise.

Similar to the procedure of MWDFA, A(q) can likewise be obtained under these
two schemes. Since we define w;; in terms of distance between two points in time
1 and j in a time scries, the proposed method can aptly be called temporally-
weighted detrended fluctuation analysis (TWDFA).

Actually, if we let the order of the fitting polynomial be zero, then what
we obtain is the mean in each moving window. Comparing with the detrending
moving average (DMA) (Alessio et al., 2002) which uses the mean in each moving
window as the trend of corresponding point {the description of DMA can be
referred to the relative content in chapter 3}, MWDFA and :l‘WDAF arc actually
one kind of combination 'gr)f DFA and DMA too. One advantage of MWDFA
and TWDFA taking the l\nuving window technique is that sufficient windows
for calculating the fluctuation function can be obtained. Thus a more stable
scaling behavior could be obtained in the statistical sense. Conscquently, the
strong fluctuation could be mich relieved. The performance of the modified DFAs
arc checked by the experimental numerical examples in the succeeding sections.
Similar to the extension of DFA to MF-DFA, the MWDFA and TWDFA can also
be generalized to multifractal MWDFA (MF-MWDFA) and multifractal TWDFA
(MF—TWbFA) by considering the gth order moment of fluctuations. It is casy to

notice that MWDFA and TWDIA should correspond to the special case ¢ = 2.
" Thus the testing of MWDFA and TWDFA could be included in the testing of

their multifractal versions.

Numerical Experiments

Since MF-WMDFA can be treated as a special case of MF-I'WDFA, we just
need to compare the performance of MF-TWDFA to that of MF-DFA, whose
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Figure 4.2: A{g) of the binomial multifractal series with length 10'2 and a ranging from 0.7
{upper left-hand panel) to 0.85 (lower right-hand panel).

Firstly, the simulated multifractal series are employed for testing the perfor-
mance of MP-TWDFA by calculating h(q) and studying the multifractality, as
well as comparing these results with MF-DFA. We generated the binomial mul-

tifractal model (Feder, 1988), which was also employed by Kantelhardt et al.
(2002), {xx}52"" as:

Ty = a“(k_”(l - a)“"“"‘_"{k_”, -+4.11)

where the parameter ¢ and satisfies 0.5 < @ < 1, and n{k) denotes the number

of digits equal to 1 in the binary representation of k. Theoretically, A(g) can be

expressed as:

Inja? + (1 — a)?)
q1n(2)

hig) = % _ (4.12)
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Based on Eq. (4.12), the singularity spectrum f(ea) vs. « can be obtained. In this
thesis, we set a = 0.7, 0.75, 0.8, 0.85 with length N = 10'2. h{g) obtained by
MF-DFA and MF-TWDFA is presented in Fig. 4.2, from which it can be observed
that two methods can obtain almost the same h{g) for binomial multifractal series.

Fig. 4.3 depicts the singularity spectra of these binomial serics. We can sce
these spectrum obtained by MF-DFA and MF-TWDFA are very similar though
the multifractality is a little overestimated, if the spread of these singularity
spectra is employed to measure the multifractality of serics.

It is well known that fGn and fBm arc stationary and non-stationary time
series respectively. To compare the performances of MF-DFA and MF-TWDFA
for long-range correlation analysis (e.g. here we just to consider the special case
g = 2, MWDFA and TWDFA), we used FRACLAB 2.03 developed by INRIA
(http://www.irccyn.cc-nantes fr/hebergement/FracLab) to generate 50 fGns and
50 fBms with length 500, 1000, 1500, 2000, 2500, 3000 and set the Hurst cx-
ponent ranging from 0.1 to 0.9 with step size 0.1 to calculate h(2) for testing.
The numerical results of onc fBm and one fGn with H = 0.8 arc depicted in
Fig. 4.4. The close agreement with the straight line with expected slope around
0.8 confirms the validity in using the TWDFA to study the scaling behavior of
statioﬁary and non-stationary scries. The less strong fluctuation in the scaling
behavior of TWDFA than that of DFA could be observed in Fig. 4.4. Since DFA
has already been tested as a stable mcthod for the correlation analysis, we com-
pare the results of TWDFA with DFA directly. Defining Ah(g) as the difference
between A(g) obtained by DFA and TWDFA, the AA(2) results listed in Table 4.1
demonstrate that for f{Gns and {Bms with different Hurst exponents and lengths,
TWDFA and DFA have equivalent performance in the correlation analysis. The
high similarity in results of the two methods indicates that our proposed method
is as effective as the extensively used MF-DFA in calculating /. However, we can
observe from Fig. 4.4 that the plots of MF-TWDFA arc smoother than that of
MPF-DFA. It can thus help us to find the hidden crossover point(s), particularly

at large scale s, that cannot be found by conventional MF-DFA because of the
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Table 4.1: Averaged AR(2) of MF-TWDEA and MI-DEFA
values of the Hrust exponent H and lengths

using fGns and Mms with different

Ah{2) 2 o(AN(2))
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strong fluctuation at large s. Such advantage is demonstrated and quantitatively

measured in the real-life problem to be discussed in the next chapter.
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Analytical Calculation

To give a solid basis of the validation of our proposed modification, the analyt-
ical calculation is given in this subsection. The relation between h(2) obtained by
MF-TWDFA and Hurst exponent of fGns, H, is derived in this subsection using
the basic ideas in Arianos and Carbone (2007): Movahed and Hermanis (2008},
Movahed et al. (2006); l'aqqu et al. (1995). We show that the exponent A(2) of
the power-law F2(s) ~ sM? equals H of the analyzed fGns (e.g. the example

¢ = 2 of the Eq. (3.39)). It is shown that I'2(s) bchaves as:

Ns
(s) = 1:’,—2172(”‘.5)
* u=1

~ Oyt (4.13)
where F*(v, s) is defined as:
l < :
FYo,s) = =) V() = Y. ()1, 14
(v, %) S;w (i) = Y, (0)] (4.14)

and Cyy 15 a function of H, Y, and Y’,. denote the value of Y in the wth segment
and the estimated value in the MWi respectively. Then for ¢ = 2, what we have

to prove actually is:
1 Ns
Fs) = FZ:F2('U,SJ
- Z Z — Y,
= ‘,N ZZ[Y - Yu(i)}?

= (Y@ - Y@OP),
~ C”SQH. (415)

It should be noted that for fGn xz,, the profile Y () is a fBin signal.

In TWDFA, the fitting function Y in MWi can be expressed as Y (1) = a(3) +
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b(3)i, here a(i) and b(i) can be calenlated from Iy, (4.6) as:

i+ 0 . +Ozs j 8. ~ s :
b(i) = - Z; i galyi' if Z;.—.iz—ams“’ﬁ }+ Z;iz—qﬂ,s“‘u L;:;?—\yw Jwi, Y (4)
(?') - i+fo3 i+l a t+fy s TR ] !
Z:j:i-(hs Wi, EJ —i— a,sJ "'”u - (E =i ylsjufrj)
[ P 4 . -0y 2 4028 . +0 .
ali) = E;'::igals 7wy Z}m-'-qels wi; Y (j) — E; :‘2—5814 Juh; E‘ i ‘a,«, Juwi, Y (7)
- i-+02 5 -+ +4 )
z;:;z—aﬂls u}iJ E; 12 “0] = .} u lj (Z; 212_‘01 .\‘ju'}‘_?)
(4.16)

To simplify the problem, we set wy; = 1 and §; = 03 == ¢. 'Then TWDI'A changes
to MWDFA. We believe the scaling behavior of the fluctuation function log(£2(s})
verse log{s) should be mainly maintained since the scale s bring more inflnence to
the regression than the weight wy; (Lloyd, 2007). Therefore, for example, a(fs+1}
and b(fs + 1) in MW(8s + 1) is cqual to the normal regression parameters in this
local window and can be expressed as (Movahed and Hermanis, 2008; Movahed

et al., 2006; Taqgqu ct al., 1995):

_2263+1 -ZZOH—I}/(J (20s + ]_)Z“orrljy(j)

bds+1) =
(0s +1) (265 + 1) 20 g2 - (200 )2
XY - 320 + NSV S5
(2()5 +1)3/12 '
2ns+1 2 2ﬂq+1 293+1- 28541 }
a(fs + 1) = Z (26‘?}- 1)2203+1 QZJ (122}a§f .12 i
28s+1
o1 L b(Bs+ 1) (205 + 1)
T JZ Y () - 2 - (4.17)

Using the above two equations and taking the self-similarity of {Gn and fBm

into consideration, {[Y (i) — Y (i)]?) can be written as follows:

(Y@ -Y@H = (Y@s+1) - Y(#s+ 1))

= ([Y{(8s+1)—a{fs+ 1)~ b{fs+1)- (95‘ + 1%
2V (B + 1) S st Y
20s + 1

(Ew‘ﬁl Y(? )
(265 + 1)

&

(Y(@s+1) —

—Y{fs +1)b(fs + 1) +
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ZJU.‘)'{’I Y b 0‘, + l) l
{205 + 1) + b (s + 1)

). (4.18)

In the proof of the relation between the DFA scaling exponent and H in
Movahed and Hermanis (2008) and Taqgqu et al. (1995), they assume that s is
large enough. Thus, we make the same assumption in onr proof also. It is then
easy to see Ve > 0, (C)fs + ()* ~ CFs*. Employing this relation and mserting

the expression of b into Eq. (4.18), it becomes:

(rG) -VOPR & (7(0s + D)

9 (320 Y (5)d)’
<_ UI‘:.‘,h )

[—]89.‘:}+1‘2()252) 208 +1 20541 o

oo DIRLCD D
j=1 -

:f‘! }_r(08+1)a293+] o
B >y

=i

+{(

(—16Y (0s + 1)0FS® + 24Y (0s 4 1)0at) "

a 166955 L Y (j

(-1208s% + 46451 + 0p2s2) s+ 1

+( 1686 58 ( Z }f(J))E)
7=1
= (Y*#s+1))
+i<(220s+1 Y ()7))
16 0[:
¢ 205+1
{(—186s + 120%5%) 20541
) 3
3=1
31’(95 +1) !
’ S Z Y(4)s

+(( 16Y(03 -+ 1)0050-{-24}/ 0" i‘]. 04 4 20\+1Y
168655

—126%5% + 4815 + 96%s 2 2051
( Z Y (5))%

166655 (4.19)

It shoukl be noted that Y (3) is the fBm produced by the fGn. Then there are
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some propertics as follows Movahed and Hermanis (2008); Taqou et al. (1995):

A

Y{i) = 7, (4.20)
s +1 . 2l 201 v )
PR — (205 + I)AI . (29.‘1) 5
(; Ve~ om TH A1 (4:21)
2051 .
o 2 + 1)2.‘{-!—4
Y1) = { L - -—
( Z (17 MEERUED T iy
1—=1
(29.‘;]2H+4 1
= (1l - 4.22
4{H + 1)( (H + 2)(2H 1))‘ (1.22)
205 1 W41 " P
. .\ (20s 4 1Y% 2 1
Y Y(1)7) = -
(J};l f.?)g (1)) 1 ey
(293)21!{& 2 1
= - : 4.23
4 (H + 1 2{!-1-1)' ( )
2005 +1 . Y
. (205 + 1)}H+2 (204)11+2 .
Y = = . 41.21
(Zl (7)) T T (a.21)
20x+1
, (205 + DHHT - (294)H0)
Y = = 4.25
2054 1 . 0
‘ (29.‘\' + 1)2H+.! (205)2”+.
Ynyh = = . 4.26
((g G 2H +2 IH + 2 (4.26)
Then with the assumption s is large enough, we can obtain:
(Y@ =YD ~ Cpl8s)* ~ Cps®”, (1.27)
here CH 1s:
021 gl+1
Cy — - 1 .
" Sy Hi1 (428)

Then the validation of the MF-TWDFA has been tested above through the

numnerical experiments and analytical calenlatinn.

4.1.2 Influence of Periodic Trend

The negative iuﬂu];:m:u of the periodic trend on the scaling behavior in DFA
has been mentioned in the chapter 3. The effect of periodic trend can be shown

in the following example. A stationary scrics with Hurst exponent / = 0.9 with
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length 3123, is constructed by applying the Fourier liltering method described in
Maksc el al. (1996). This series and its scaling beliavior are shown in Fig. 4.5.
After superimposing a quasi-periodic trend, a typical scaling behavior of DFA
under the influcnce of this kind of trend as indicated by Hu et al. (2001) and the
superimposed series could be found in Fig. 4.0

Since only the polynomial trend is considered m the detrewcling step in DFA,
the influence of periodic trend cannot be eliminated totally. Then some pre-
detrending processing scemns to be necessary before DFA. There are some methods
proposed to handle the periodic trend, such as higher order regression analysis.
Fourier-based filtering (Nagarajan and Kavasseri, 2004), SVD (Nagarajan and
Kavasseri, 2005) and the adaptive detrending methods (Hu et al., 2009). However,
their disadvantiages and the different results from them (for example difference
hetween Movahed et al. (2006) and Hu et al. (2009} using DFA on the same
sunspot series) tripgered us to adopt another angle to get to the bottom of this
problem.

In Hu ct al. (2009), empirical mmode decomposition (EMD) (ITuang et al., 1998)
is considered an inappropriate method to extract trends from sunspot tinte sertes.
Nevertheless, EMD is proposed to handle nonlinear and nou-stationary signals.
EMD is a totally data-driven adaptive method without any a prior assumptions
about the function forms, time scale, slationarity or linearity (Huang et al., 1998;
Wu et al., 2007). It can extract many basic components, called intrinsic mode
functions (IMFs), from the original signal to detail the structural information.
It looks like the Fourier decomposition or wavelet methods. However, the IMFs
with different dominant frequencies are with physical meanings that canuot be
conveyed by the Fouricer or wavelet methods (Rilling et al,, 2003; Sinclair and
Pegram, 2005). In fact, EMD has been employed to study the cycle of sunspot
time series of the monthly record from 1848~1992 and 1894~2003 respectively (Li
et al., 2(}07} Xu et al., 2008). Compared with the conventional analysis, many
periodic c‘;)mponents with real physical meanings can be found using EMD. It

is claimed in Li et al. {2007); Xu et al. {2008) that the IMFs can correspond to
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some well-known cycles of solar activities, such as the cycle observed in solar wind
with quasi-period of about 1.3~1.4 years (Richardson et al., 1994), quasi-biaunual
oscillation (QBO) about 25—30 months {Naujokat, 1986), 11l-year cycle, Hale
period of 20-24 years (Wilson, 1988), double Hale period (Fairbridge and Hillaire-
Marcel, 1977) and possible Gleissherg period of around 80 years {Gleissberg,
1944).

In order to compare the performances of different periodic-trend-removing
methods, we firstly introduce them briefly, especially the Fourier truncation and
the adaptive detrending methods which cause the contradictory results by Mova-

hed et al. (2006) and Hu et al. {2009}, and the EMD-hased methods proposed by

us in following.

Fourier Truncation Method

Generally, one scrics can be treated as an combination of many components
in the sinus and cosinus forms with different frequencies. Fourier transform can
decompose the given scrics to these components. These components can be em-
ployed to reconstruct the original series using inverse Fourier transform. If per-
form the Fourier transforin on the series {x; }2_,, then a scries with equal length

= (N . i P
{:rj}jnl can be obtained as:

N
By= a0 (4.29)
i=k

And {:i':j};v:l can be employed to reconstruct the original series via the inverse

FFourier trausform as below:
N .
P (1/N)Z§;jw;,0“”“‘“)_ (4.30)
=1

Here wy = et2™/N s an Nth root of unity. For cach 3, E; corresponds certain
component with certain frequency. The larger j corresponds the higher frequency.

Then if climinate £;, e.g. set ; = 0, the information of this component will be
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removed in the reconstructed series. Movahed et al. (2006) removed the first 50
terms of the Fourier transforms of sunspots series. That means all the frequencies
smaller than the one corresponding to @5, was eliminated. T'hen Movahed ct al.
(2006) found the crossover points existing in the scaling behavior of the original
sunspots series disappeared in the log — log plot of the detrended serics. And they

claimed the affect of the around 11-year cycle of sunspots series was removed.

Adaptive Detrending Method

In 2009, Hu et al. proposed this data-driven method to estimate the local
trend of given series. And then apply it on removing the around 1l-year cycle
fromy Lhe sunspots series to obtain the scaling plot without the influenco of this

cycle. Brief description of the adaptive detrending method can be given as (Hu

et al., 2009):

e Step I: Divide {z\})_, into segments of length 2n + 1. ‘The continuous
segments share n + 1 common points. The last seginents might consist of

points less than 2n + 1.

e Step 2 Then for the jith scgment, o fitting polynomial of order K can be

obtained and denoted as ;r.IU) with{=1,2,---,2n+1.

e Step 4. Now, the trend for the overlapped region can be defined as:

e b-1 @ -1 gy
‘rlc - (]' - T ‘ !j|~n n &y

C 1=1,2,---,n+L (4.31)

Here, overlapped segments and teraporal dependence of the neighboring points are
considered to avoid any jumps or discontinuities around the ends of neighboring
segments. In addition, two parameters, the segment length, 2n+ 1, and the order
of fitting polynomial, /&, should be consider to estimate the local trend. As Hu
et al. (2009) claimed, the length of segment can bhe sct according to the scale
of considered trend. And K can be determined by the variance plot {detailed

information can ke referred to £he Fig. 2 in Hu et al. (2009)).



Empirical Mode Decomposition (EMD)-Based Method

EMD is an empirical, intuitive, data-driven and adaptive method that makes
no requirements on predetermined basis function and stationarity or lincarity
assumption about time serics (Huang et al., 1998; Wu et al., 2007). The concept
of IMF plays a key role in EMD analysis. An IMI is a function satisfying: 1)
the difference between the nnber of extrema and that of zero-crossings is one
at most, and 2) the mean value of the envelope of cither the local maxima or
local minima is zero (Wu et al,, 2007). Given an original time series/signal,

X = {z(1)}, the method of EMD can he summarized as follows (Huang et al.,

1998; Wu et al., 2007):

e Step 1. Identify all local extrema and connect all local maxima and minima

with cubic spline to obtain the upper and lower envelope, ENV ., and

ENV uin, respectively;

e Step 2 Calculate the average envelope M using M = (ENV 0, +ENV 5, /2
and obtain h through h = X — AM;

e Step 3 Determine whether or not h is a IMF. If it is not a IMF, repeat step
1 and step 2 on h until the envelops have zero-mean under certain stopping

criteria, which is the name sifting process by Huang et al. (1998). If his a

IMF, take L as the fivst component, IMF;

e Step 4 Perform step 1 and step 2 on X — IMF, to extract the second
component IMF2. Repeat the procedure until all & IMFs are extracted
from the original series X.

Based on the algorithmm above, we have X = Zle IMFE; 47, where r 1s the residual
from which no more IMI's can be extracted. In the present study, the stopping
criteria of the sifting process proposed by Rilling et al. (2003) is employed to
guarantce globally small fluctuations in the mean while taking into account locally
large cxcursions. The EMD implemented in this thesis employed the Matlab
codes written by G. Rilling and P. Flandrin from Laboratoire de Physique CNRS
& ENS Lyon (France): http://perso.ens-lyon.fr/patrick.flandrin/emd.html.
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These extracted IMI's are usually physical meaningful. Then it cnable us to
consider the influence of these components and their combinations on the scaling
behavior of analyzed series. Then, the procedure of EMD-based method can be

summarized as follows (Zhon and Leung, 2010a):

s Siep I Employ EMD to decompose the analyzed series to IMEFs and r, with

imcreased dominant frequencies which can be estimated by Fourier power

spectrui;

e Step 2 Select the corresponding components according to the frequencies
of periodic trends and requirements of discussion, like studying the eifect

of different components on the scaling behavior;

e Step 31 Remove the selected components and sum the others remained to

obtain the detrended series.

Numerical Experiments

To test the reliability of our proposed methods, two well-controlled numerical
experiments with some known properties are designed to check and compare the
EMD-based method, Fourier truncation, and the adaptive detrending method.
By comparing the outputs of these three methods with the expected results, their
performances can be quantitatively evaluated. We first construct a stationary
series with known Hurst exponent without crossover points in its scaling behavior.
Different trends are then superimposed onto this serics. These three detrending
methods are subsequently perforined in order to remove the effects of these trends.
By studying the scaling bchavior of the detrended series, we can cvaluate the
capabilities of the methods by evaluating their differences with the expected Hurst
expouent.

The first experiment is the example shown in Figs. 4.5 and 4.6. The superim-
posed periodic trend is actually the cycle extracted by EMD which corresponds
to the 1l-year cycle, from sunspots serics. We then employ Fourier truncation,

adaptive detrending method and EMD-based methods with settings determined
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by the added periodic trend, e.g. removing the first 70 and 18th~70th terms
of Fourier trahsforms coeflicients, setting length of segments, 2n + 1. and choos-
ing order of detrending polynomial, K, as 2n + 1 = 61 and K = 2 respectively
Hu et al. (2009), and setting the removed IMFs as the 5th and 6th ones. The
visualization of EMD results, and the scaling behavior of the scries after remov-
ing Z?=5 IMF; and Z?=5 IMF; + r are shown in Fig. 4.7. The results of Fourier
truncation and adaptive detrending method are shm‘vn in Fig. 4.8.

This numerical experiment shows that none of the three methods can totally
remove the effect of the added trends. DBesides, a crossover point appears at
the position similar to the sunspots serics. All slopes estimated for the first
scaling range are around 0.92, which is the expected value. The fluctuations
of the series by removing the first 70 Fourier transform coeflicients and by the
adaptive detrending method on the larger scales remain almost unchanged, which
means the information of scales larger than the crossover points is lost in the
detrending procedure. However, the exponents obtained from the EMD-based
method and Fourier truncation in the other setting are 0.94 (Fig. 4.7) and 1.08
(Fig. 4.8) respectively, which are roughly close to the expected value, 0.92. It can

.- be observed that considerable, although not all, information on the larger scales
f

L

are maintained after detrending by these two methods.
In the first numerical experiment, the cycle of the sup:erimposed periodic trend
is not very exact. In the second numerical ex'perimcnt, a pe.riodic trend with exact
scycle equalling 500 (first row of plots in the upper panel of Fig. 4.9) is superim-
posed onto the constructed scries. Results obtained by the similar experimental
procedure are depicted in Fig. 4.9. It shows the EMD results and the comparison
between the scaling behaviors of the original and detrended series. And, Fig. 4.10
depicts the results of Fourier truncatién and the adaptive detrending methods.
Again, all thrée detrending methods are unable to completely remove the effect
_of the added periodic trend since there are the crossover points in all results. And
the scaling behavior on scales larger tilan the cros.sover points are different from

the expected pattern. We conjecture that the original structure of the series ony
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rclative large scales might be destroyed during the detrending procedure. With
the appropriately selecte_:d paramcters, however, the three methods can obtain the
results close to the expected value, 0.92, for the relatively small scaling range.
Thus, selection of the relevant parameters becomes significant. For EMD-based
mecthods, we only choose the components with relevant frequencies mostly from
11 ~ 13 IMFs. However, for Fourier truncation method, we have to face large
. amount of the Fourier cocfficients. In this numerical experimcnf., the dominant
frequency of the added trend should be 1/500 month™!, which corresponds to the
Gth and 7th (:()efﬁcicllts because 3123/500 =~ 6.4. However, after removing the
6 ~ 35th or 1 ~ 35th coefficients, the Fourier method can result in the correct
scaling exponent. With regards to the adaptive detrending method, Hu et al
{2009) gave their rules to select the parameters, n and K. In this experiment, n
can be gbtained by 2n+1 = 251 depending on the cycle of the trend. According
to the variance method suggested in Hu et al. (2009), K should be sclected as 2
(Fig. 4.11). However, it can be seen in the right panel of Fig. 4.10 that the result,
1.19, when K = 2 is significantly different from 0.92. While the exponent 0.94,
which is closer to 0.92, is obtained when K = 6.

As a summary of these two numerical experiments, the three detrending meth-
ods appear to be effective in detrending the effect of periodic trends on the rel-
atively small scales for the further analysis of MF-DFA if the parameters are
appropriately selected. For larger scaling range, however, it is difficult to remove
the offect of periodic trends completely. The pseudo-crossover-points might ap-
pear because of the possible changes of the scaling structure in large scaling range
during the detrending process. Generally, the IMFs do have meaning, physically.
Thus the crossover points unraveled by the EMD-based method are usually in-
trinsic to the structure of a series. However, the crossover points obtained by
Fourier truncation and the adaptive detrending method are generally artifacts
of the selected parameters, such as frequencies to be removed and the length of
segment for detrending. Although with appropriate parameters, these two meth-

ods can obtain results similar to that of the EMD-based method, it seems that
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Figure 4.11: Selection of K by the variance method in 1u et al. (2009)

the EMD-based method is a more natural way for the study of intrinsic scaling
behaviors. Furthermore, its parameters selection procedure is much easier. With
regard to the situation on scales larger than the crossover points, the adaptive
dctrehding method almost wipe out all information, while the EMD-based and
the Fourier methods manage to keep considerable information even though the
results are a bit off the expccted pattern. It should be noted that by comparing
Fig. 4.7, Fig. 4.9 with Fig. 4.8, Fig. 4.10, the EMD-based method leads to results,
including the slopes and crossover points, similar to that of the Fourier method.
However, the results obtained by the adaptive detrending method, though still

acceptable, differ rather significantly from that of the other two methods.
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4.2 Correction of Problematic Relationships in

MF-DFA

(i) In the development of the one-dimensional MF-DFA, Kantethardt et al,
(2002) established a relationship, which has been extensively applied ever since,
between the onc-dimensional MF-DFA and the standard partition-function-based
multifractal formalism as: 7(q) = gh(g) — 1. However, its incorrectness has been
shown in our investigation from theoretical and experimental aspects in chapter 3.
Based on the universal multifractal formalism proposed and developed by Lavallee
ct al. (1993); Lovejoy et al. {2008); Schertzer and Lovejoy (1987), the relationship
between h(g) and 7(g) can be established as h(g) = qh(q) — qH’ —ll, which was
firstly suggested by Yu et al. {2009) without detailed analysis in their study of
the daily rainfall in the Pearl River basin of China. We would like to discuss this
relationship in detail in_this section.

(ii) Extending on the one-dimensional MF-DFA, Gu and Zhou {2006) gave
two relationships: h(g) = H for fBm in the two-dimensional space and h{g =
2) = H, in their development of the two-dimensional MF-DFA. The invalidation
of their relationships has also been pointed out in chap‘éer 3. Instead, we pro-
pose a postulated relationship as follows: H = h(2) for the 2D fCn, and £(2) -
2 for the 2D fBm. in this section.

4.2.1 Problematic Relationship Between h(¢) and 7(q} in
MF-DFA

In this subsection, we focus on the stationary, positive, and normalized time
series in our discussion. In the universal multifractal formalism, there are three
parameters «, C) and H', called the multifractal index, the codimension and
the nonconservation parameter respectively (Lovejoy et al.,, 2008). Comparing
the codimension multifractal formalism based on K(g) and ¢(v) (Schertzer and
Lovejoy, 1987) with the dimension multifractal framework based on 7(g) and f(a)

(Halsey et al., 1986), we can observe that some relationships have already been
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established, particularly

m(¢) = (¢ — DD = K(q), (4.32)

where D is the dimension of the observing space (for time series, D = 1) (Halsey
et al., 1986; Lovejoy et al., 2008). Besides, there is an interesting relationship for

g > 0 in Seuront ct al. (1999):

CT
C(g) = ¢H' = —(4" - q), (4.33)

with

K1) = —2=(a" - a), (434

and (g} is the exponent obtained from the structure function Sg(s) =< |74y, -
2|2 >~ 54 (see Davis et al. (1994) for more details about the structure function

and ¢{g)). According to Koscielny-Bunde et al. (2006),

¢(q) = ¢h{y) — g, (4.35)
and then
ghlq) = g +¢(g) = (H' + 1)q — K(q). (4.36)

It should be noted that if ¢ = 1, then according to Eq.(4.34) K(¢ = 1) = 0,
Eq.{4.36) becomes

h(1) = H' + 1. (4.37)

Combining Eq.(4.32) and Eq.(4.36), we can obtain for ¢ 2 0 (Zhou et al., 2011}
7(q) = gh(q) —qH' - 1. (4.38)

Thus, the original relationship in Eq.(3.44), 7(¢) = gh{q) — 1, differs from the one

we derived in Eq.(4.38) by —gH'.

On one hand, if the two equations are compared using the vertically shifted
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fCn, which were employed to check the original relationship Fq.(3.44), with
Eq.(3.45) we can then find for ¢ = 0, both Eq.(3.44) and Eq.(4.38) lead to
7(0) = —1 so that D(0) =_%€_[—'ll = =1 = 1. Since experimental examples are
monofractal, D(g) = c;onstant and h(g) = H (H is the Hurst exponent of the
vertically shifted fGn here, which could be any value of 0.1, 0.2, - - -, 0.9) so that
D{¢q) = D(0) = 1 and 7(q) = D{¢)(g — 1) = ¢ — 1. However, the right hand
side of Eq.(3.44), qh(q) — 1, equals gff — 1. Thus, Eq.(3.44) is valid ouly for
H = 1. Based on Eq.(4.37), we obtain H = H — 1. Then we can calculate the
right hand side of Eq.(4.38), gh(q) — ¢H’ — 1, and it indeed equals 7(g) since
gH —g(H ~1) -1 =¢gH — gH + ¢ — 1 = g — 1. Thus Eq.(4.38} should be the
correct relationship for the vertically shifted fGn.

On the other hand, we investigate the two cquations using the binomial cas-
cade model. Lovejoy et al. (2008) described the nonconservation parameter ' as
H’ = ( meaning that the sct can be modeled as a pure multiplicative process, i.e.
the set can be conserved from scale to scale. According to Lavallee ot al. (1993),
the multiplicative processes were first developed as models of turbulent cascades.
An example of such multiplicative process in two dimensional space is depicted
in Figure 8.6 in Lavallee ct al. (1993) which is actually a cascade model in two
dimensional space. Therefore, the binomial cascade model is just the one which
satisfics the H' = 0 condition. Actually, the equation (19) and (20) in Kantel-
hardt et al. (2002) ensure ~(1) = 1/¢—Infa? + (1 = a)?]/(gIn(2})y=1 = 1 -0 =1,
which indicates H' = h(1) — 1 = 0. Under this situation, Eq.(3.44) and Eq.(4.38)
become identical.

Though our proposed relationship in Eq.(4.38) is established on the basis of
non-negative g, the analysis and conclusion of the two examples above are actually
independent of the sign of g. That means the new relationship is also valid for
negative ¢ in terms of the above two examples. Thus we think the generalized
relationship in Eq.(4.38) should be valid for all g. We would like to discuss this
problem from the cmpirical points of view.

Take the vertically shifted fGn with Hurst exponent Hy, which could be any
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value of 0.1, 0.2, -+, 0.9, as an cxample, it is known that the vertically shifted
fGn is monofractal (Mandelbrot, 1982). Then its generalized fractal dimension
" D(g) = D =1 and h{g) = Hy. As given by lalsey et al. (1986), 7(¢) =
D{q) - (? —1) = ¢ — 1. However, gh(g) — 1 = ¢qHy — 1. Then Eq.(3.44) docs
not hold unless Hy, = 1. Therefore, the validity of the relationship Eq.(3.44) is
questionable. Empiric.ally, 7(q) should be 0 for ¢ = 1 to ensure D(1), which comes
from D(1) = 7(g)/{g — 1)|4=1, finite. Therefore, there should be one additional
term, A(g), in Eq.(3.44) to ensure 7(1) = 0. It is casy to obtain A(1) = k(1) — 1
for g = 1if set 7(1) = h(1)— A(1)—1 = 0. Then we can further derive the formula
of A(g) from the special situation, the fGn, as mentioned above. It is already
known that 7(g) = ¢ — 1. Then if gHo ~ A(g) — 1 is expected to be equal to ¢ — 1,
it can be obtained that A(g) = ¢ - (He — 1). Taking into account that h(g) = Hy
for Gn and A(1) = A{1) — 1, the new relationship can be cstablished empirically
as 7(q) = ghlg)~gq-(R(1)—1)~1 = gh{q) —qH' — 1. Therefore, it is reasonable to
say that the original relationship, Eq.(3.44) proposed in Kanteihardt et al. (2002),
only holds for the special situation, H' = 0 or h(1) = 1, of the general relationship
in Eq.(4.38). And Lovejoy et al. (2008) pointed out that there is always the case
in geophysical phenomena and turbulence that the observable have H' # 0, like
H' > 1 for temperature and pressure in the verticals and H' = —0.35 for rain
rate in time on (clirfna.te) scales larger than one month (Tessicr ct al., 1996}.

In addition, the numefical examples are employed again to check the new
relationship we just obtained as Eq.(4.38). The illustrative figures of 7(q) versus
qh{g)—gH’ arc shown in Fig.4.12. The linear fits of actual curve conform with the
expected relationship 7(g) = gh{q) — ¢H' — 1 very well. The slopes and intercepts
of the linear [its iln Table 4.2 arc very close to the 1 and -1 respectively which
solidly support our new relationship.

Since H' seems to be similar to the Hurst exponent, H, its meaning needs
to be discussed here. What should be emphasized herc is that altho\ugh for
some cases, H' and H are numerically equal, these two exponents have differeﬁt

physical meanings. It is already known that (2} = # — 1 Davis et al. (1994).
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Figure 4.12: Relationships between A(g) and 7(g) for numerical examples with Ii=0.1 to 0.9
(from top left to bottom right).

Table 4.2: Calculated right side of the new relationship Eq. (4.38) for munerical examples
with different J7 values in 1Vig. 4.12

H  cocflicient of gh{q) ~ ¢H' intercepts of linear fits

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0114
1.0126
1.0134
1.0129
1.0156
1.01567
1.0166
1.0172
1.0203

-(.9526
-0.9562
-0.9612
-0.9626
-0.9727
-0.9743
-0.9737
-0.9785
-1.0032

89



=

For monofractal cxample, such as fBm, there is 7(g) = D - (¢ — 1) and h{q) = H,
then from Eq.(4.32), we can obtain K{g) = 0. Thus according to Eq.(4.33) and
Eq.(4.38), there is ((g) = qH’. Specifically, for ¢ = 2, we have 2H' = #—1. Then
H = ’67_1- whi‘ch is the Hurst exponent from another definition in Flandrin (1992);
Mandelbrot (1982), H,. However, for the multifractal examples, K{(q} = D - (g —
1}~ 7(q) should not always equal zero. Then A’ should be ﬁ—;l— + %21 = M+ %31
For the case K(g) # 0, H' is different from H numerically. Actually, H' is the
nonconsgervation parameter in the universal multifractal formalism, and f" = 0
means that the set can be modeled as a pure multiplicative process, i.e. the set
can be conserved from scale to scale. While H is the Hurst exponent which can
be cmployed to measure long-range correlation of series, and H = 0 indicates the
strong long-range anti-correlation. It is not uncommon to sce they have different
values. Take the binomial multifractal model as an example, H' = (} as mentioned
above. However, H = h(2) = 1/2—In(a® + (1 —a)?)/(21n 2} according to Eq. (20)
in Kantelhardt ct al. (2002). Then it obviously is not equal to 0.

Based on this new relationship (Eq.(4.38)), instead of Eq.(3.48), we can further

obtain the singular spectrum, o and f{a), as follows:

@ = 470 = ) + q;—;h(q) -, (4:39)
flay=qx—7(q) = g{a — h{g) + H') + 1. (4.40)

Therefore, H' should be estimated before we calculate the multifractal spectrum

using A(g) of the MF-DFA.

4.2.2 Problematic Relationship Between H and h(g) in the
2D MF-DFA

In chapter 3, the problem in the relationship between H and A{g) in the

two-dimensional MF-DFA has been shown. It has been recognized that the 2D

R/S analysis should still be inappropriate for 2D non-stationary process. And

the Eq.(3.57) for the two-dimensional fBm and Eq.(3.58) given by Gu and Zhou
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(2006} is also problematic.

Actually, some relationship could be read from Table 3.3. Looking carcfully
into Table 3.3, it could be found that except for the situation H# = 0.1 for the 2D
fBin, the empirical results appear to suggest the following relationship between

H and h(2):

h(2),” for the 2D {Gn;
H = (4.41)

h(2) — 2, for the 2D fBm.

According to Movahed and Hermanis (2008), 1D DFA gives inaccurate results.
for strongly anti-corrclated time series when H is close to zero. Thus the result
obtained for H = 0.1 for 2D fBm imnay be due to the weakness of the method in
capturing strong anti-correlation of signals. Besides, 2D fGns and fBms are the
most common classical stationary and non-stationary examples respectively. In
summary, for the 2D situation, we postulate that the relationship between the
Hurst exponent A and k(g = 2} should be as follows:

- h(2), for the 2D stationary signal; (4.42)

h{(2) — 2, for the 2D non-stationary signal.

Such relationship is actually in synchrony with that of the 1D situation (Movahed

et al., 2006) (see Eq.(3.21)}). This reinforce our belief in the validity of the above

conjecture. This, however, has to be verified by further theoretical investigation.

4.3 Summary

In this cha,i)ter, we present the results of the methodological issues. Against
the mentioned two disadvantages of DFA and MIF-DFA, corresponding modifica-
tions have been proposed. For the strong oscillations of scaling law, the moving
window techniques and the idea of GWR are employed to develop the TWDIFA
and MF-TWDFA. They have been tested by the numerical experiments. Fur-
thermore, to give a solid basis of the developed modifications, the analytical

calculations have been presented too. The negative influence of the periodic and
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quasi-periodic trends on the scaling behavior of DFA and MF-DFA are overcome
by introducing the EMD. A EMD-based method is suggested to estimate and
remove the periodic trend befor(; DFA and MF-DFA. Its good performance, es-
pecially at the small scales, has been demonstrated by the numerical examples.
With regard to the problematic relationships, the corrected relationships are sug-
gested on the basis of the formal study and empirical analysis. The results based

on them closing to the expected confirm the correctness of our corrections.

-
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Chapter 5

Application to Real-life :

Geographical Examples

As shpwn in the discussions in chapter 4, the modified DFA axd pre-detrending
processing is indeed able to improve the performance of DFA and MF-DFA when
handling the constructed numerical examples. In this chapter, they are applied
in the real-life geographical examples to study the temperature variation and
long-range correlation in sunspots series. Some discussion on and interpretation
of the results are also presented. Through the applications in the geographical

examples, the efficiency of the modified DFA and pre-detrending processing could

be confirmed.

5.1 Performance of Multifractal Temporally-Weighted
Detrended Fluctuation Analysis (MF-TWDFA):
Application in Air Temperature Study

One of the most important tasks in climatology is to understand the nature
and limits of climate variability (Pelletier, 1997; Tsonis et al., 1998, 1999). In
_ general, the climate dynamic process is nonlinear (Tsonis et al., 1999).

In recent decades, especially the last ten years, nonlinear analysis of climate
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data has attracted much interest in the academic community. Tsonis et al. (1999}
investigated the extratropical atmospheric circulation from a unique insights of
”random walk” on the basis of height anomalies. Peters et al. (2001) claimed that
the rainfall event is similar to a variety of nonequilibrium relaxation processes. Yu
et al. (2011) proposed a multifractal framework to study the daily rainfall series
by different muitifractal methods. As to the river streamflow or runfall, they have
also analyzed them through different nonlinear techniques, such as multifractal
analysis (Kantelhardt et al., 2006; Koscielny-Bunde et al., 2006, Pandey et al.,
1998; Tessier et al., 1996) and the frequency distribution (Zhang and Singh, 2007).
The technique of embedding time series to the phase space, power spectrum and
the return map were employed by 'I'ziperman et al. (1995) to examine the chaotic
structure in the series from the El Nifio-Southern Oscillation prediction model of
Zebiak and Cane (1987).

Temperature is one of the most common and important measures to signify
the climate (Ashkenazy et al., 2008). Therefore, many researches focus on the
temperature records. Ashkenazy et al. (2003) showed the nonlinearity of temper-
ature series for the time scales 1-100 kyr by the magnitudes correlation analysis
of temperature increments, which was first proposed and applied to the analysis
of human heartbeat series by Ashkenazy et al. (2001). The nonlinearity of tem-
perature records was also pointed out by Bartos and Janosi (2006} and confirmed
by Ashkenazy et al. (2008) through studying the asymmetry of temperature. An-
other hot topic is the determination of the trend in temperature record (Fatichi
et al., 2009; Rybski et al., 2006, 2008), which is closely related to global warming.

Since the complicated dynamics of climate are effective on a large varicty of
time scales (Weber and Talkner, 2001), the study of the dynamics process on
different scales is meaningful. The exact relationship between the scales involved
can be studied by the scaling law {T'sonis et al., 1999). One of the most significant
scaling behaviors on different scales is the scale invariance, which is a law that
incorporates variability and transitions over the whole scaling range and usually

is a result of nonlinear dynamics (Tsonis et al., 1998). Long-range correlation
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proposed by Hurst (1951), as one property of timc series, can be determined
by the scaling law. This correlation refers to the auto-correlation function which
decays following a power law rather than exponentially (Rybski ot al., 2006, 2008).
The positive or negative long-range corrclation means the current pattern would
be more likely to be maintained or broken in the future. The Hurst exponent
(H) is an important index for measuring long-range correlation of a scries (Hurst,
1951). An advantage of the MF-DFA is that it can cstimate H even if the time
series is affected by non-stationary trends. With regard to temperature variation,
short-time persistence of weather is well known in the literature (Eichner ct al.,
2003; Orun and Kocak, 2009). The trend is more likely to be maintained in the
short run. Besides, a weekly scale corresponding to the average duration of the
so-called 'general weather regimes’ or 'Grosswetterlagen’ is a typical timescale
for weather change (Eichner et al., 2003). Although the relevant physical process
of climate systems on short-term scales are well understood, much less is known
about the temperature fluctuation on larger time scales, such as llarger than a
month (Talkner and Weber, 2000). Then they indicated that the long-range
correlations should be detected by the analysis of correlation structure as the first
step to improve our understanding of climate on large scales. However, the long-
range correlation of the temperature series at larger scale is more difficult to define
because of the influence of different processes and trends such as the circulation
patterns, global warming (Kurnaz, 2004), urban growth (Eichner ct al., 2003), and
the El Nifio southern oscillation (one of the most pronounced phenomena. whose
variation is on the scale of months to seasons (Bunde et al., 2002}}. Although the
difficulty to define the long-range correlation in temperature series, understanding
long-range correlations in atmosphere is of fundamental interest physically and
practically (F‘r:,edrich and Blender, 2003; Pattantyds-Abraham et al., 2004).
Generally, the crossover points appearing in the scaling behavior of DFA and
MF-DFA are expected to indicate the critical scale range of the analyzed process.
Besides the crossover point at about 10 days found by Eichner et al. (2003), the

long-range correlation on the scale longer than 10 days is measured by H around
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0.65 according to the universal persistence law {Koscielny-Bunde et al., 1998), the
power law for the continental land air temperature (Lennartz and Bunde, 2009)
and the results for coastal cities, including Hong Kong {Eichner et al., 2003).
As a contrast, the point of view of non-universal atmospheric persistence 15 held
by some other researchers (Orun and Kocak, 2009; Pa.ttantyﬁs—!l\brahzim et al.,
2004). Somewhat related, DFA is also applied to study the problem of global

warming (Lennartz and Bunde, 2009).

5.1.1 Results

As discussed in chapter 3, temperatures of adjacent dates are generally more
similar than that at points distant in time. The detrending process should thus
take this natural phenomenon into account. To verify our arguments, we em-
ployed the mean daily temperature data obtained by the Hong Kong Observatory
(http://www.hko.gov.hk/hko) from January 1, 2005 to December 31, 2007. The
resulting time serics is of length 1095 (see Fig.5.1).

daily mean air-temperature in Hong Kong
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Figure 5.1: Daily mean temperature in Ilong Kong from 2005 to 2007
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The results obtained by the DFA and the TWDI'A are shown in Fig.5.2. Plots
of the results obtained by the two methods exhibit similar scaling behaviors.
Generally, the scaling behavior of DFA at large scale, such as around s = N/4, is
hard to determine because of the great fluctuation. However, TWDFA has less
fluctuation, even when the scale range is increased to around s = N/2, where the
scaling behavior seems to be maintained quite well. To illustrate this advantage
of TWDFA, we make the semi-log plot of its fluctuation function up to the scale
s = N/2 = 548 while only to s = N/4 = 273 for DFA. Based on the same
reasons, Fig. 5.5 is plotted in the similar way. As expected, it can be observed
that the TWDFA obtains a much smoother plot of log,o F'(s) vs log,, 5, especially
when s is large (see the part with s larger than 100}, It is ilnpossible to detect the
crossover points by the DFA in this example. However, in the plot of the TWDFA|
three crossover points can be respectively unraveled at s = 30; at s = 190; and
at s = 360. In real life, the three crossover points correspond to the time scales
of around "one month”, "half a year” and the "whole year” respectively. The
slopes, which mean the Hurst exponents, in difterent time regions are 0.9197,
1.5966, 0.7651 and 0.0175 f()l" the respective time scales: "under thirty days”,
"one to six months”, "six months to one year” and "over one year”, indicating
different properties of long-range correlation.

As pointed out by many researchers and us in chapter 3 that periodic trends
will generally affect the analysis results of the DFA and MF-DFA (Hu et al., 2009,
2001; Kantelhardt et al., 2003; Movahed and Hermanis, 2008; Movahed ¢t al,,
2006). Periodic trend and scasonal trend, for example, might affect the scaling
beha.vior of river runoff and prgcipitation in hydrology. In this empirical analysis,
we employed the method applied to remove the seasonal trend in the hydrological
series (Kantelhardt et al., 2003} and the study of the temperature series (Eichner
et al., 2003; Koscielny-Bunde et al., 1998; Pattantyis-Abraham et al., 2004) to
first eliminate the annual trend of temperature. Denoting the temperature series
as {T;}, we consider the departure AT; = T; — T: where T is calculated for each

calendar year i by averaging over all years. Then the detrended temperature
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Figure 5.2: MF-DFA and MF-TWDFA results of Hong Kong daily mean temperature from
2005 to 2007

series can be obtained (see the upper pancl of Fig. §.3). The bottom panel
of Fig. 5.3 illustrates the profile of detrended series with the trends cstimated
by DFA and TWDFA. It should be observed that obvious discontinuous points
mentioned by Alvarez-Ramirez et al. (2005) as irregular jumps can be found at
the ends of the fitted straight line of cach segment of DFA (see step 2 of DI'A for
this kind of segment). However, this kind of irregular jumps can be avoided by
the moving window technique of TWDFA, as shown by the solid sinooth curve
in the bottom panel of Fig. 5.3. Since the TWDFA trend is an obvious signal
with relatively long time period, TWDFA ought to be a high—pz;ss filter as DA
and DMA. This conclusion is supported by the power spectrum of the signal
before and after removing the TWDFA trend (Fig. 5.4). It is confirmed that
the estimated trend is dominated by low frequencies. In addition, for relatively
high frequencies, the power density of residuals is almost the same as those of
the detrended series. Because of the strong fluctuation of the power spectra, the

crossover points are difficult to be detected. Then only two scaling exponents,
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Figure 5.3: Detrended daily temperature series in Hong Kong from 2005 to 2007 (upper
panel) and its profile with the local trends estimated by DFA and TWDFA (bottom panel)
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Figure 5.4; Power spectrum of the profile of detrended daily temperature serics, the trend
estimaled by TWDFA and the detrended profile. For beller illustration, the power spectrum

of the profile of daily temperature scries and the detrended profile have been shifted vertieally
upwards by 3 (from setting log,, S(f) as log,p{10% - §(f)) which is equal to log,, S{f) + 3) and

similarly downwards by 4 at log,, scale respectively.
B, of each power spectrum for relatively low and high frequencies are estimmated
by S(f) ~ f# (S(f) is the power spectrum density) and accordingly denoted
in Fig. 5.4. It can be observed that the 8 corresponding to the relatively low
frequencics are relatively similar for the profile of detrended daily temperature
and the TWDFA-estimated trend (2.0058 vs. 2.6339). While the A’s of the profile
and detrended profile series estimated by the slope of relatively high frequencies
are much closer (3.3812 vs. 3.2442). The cxperimental results support our above
conjecture that the TWDFA method should work as a high-pass filter. However,
since the great fluctuation of the power spectra can usually be found in real-life
applications such as the temperature example in this thesis, the estimated slope
should bé very uncertain. Then DFA and TWDFA are reccommended for the
calculation of the scaling exponent.

We then performed the TWDFA and the DFA on this detrended series, and

the result is shown in Fig. 5.5. It can be observed that the results of DFA
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Figure 5.5: DFA and TWDFA results of the detrended daily temperature series in Houg Kong
from 2005 to 2007

and TWDTA exhibit similar scaling behaviors. However, besides the common
crossover point at the location around s = 14, TWDFA manages to find an-
othcr two crossover points locating at s = 30 and s = 90, which can hardly be
deciphered by the DFA that exhibits much stronger fluctuation. The two ad-
ditional crossover points correspond to one month and one scason in real time.
However, the half-ycar and onc-year crossover points detected without removing
the annual trend disappeared when such trend is removed. The slopes in the
four time-scale regions divided by these three crossover points are 0.9752, 0.5698,
0.7113 and 0.4469 respectively. In addition, the TWDFA result again seems to be
smoother than that of DFA. In order to quantitatively confirm that the TWDFA
method indeed obtain a better linear relationship for estimating the power-law of
scaling behavior, we employ the root mean squared fluctuation (RMSF) around
the regression line to measure the goodness of linear fit. Obviously, the perfect
fitting corresponds to RMSF=0. The RMSFs in the scaling ranges divided by
the crossover points detected by TWDFA for DFA and TWDFA are listed in Ta-
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hle 5.1. The symbol ” —" in Table 5.1 indicates that RMSE at this range cannot be

Table 5.1: Rool mean squared fluctuation around the regression line depicting the scaling
behiavior by DFA and TWDFA on the original and anmal-cycle-remaoved temperature series

original temperature series snnual-cycle-rernoved temperature series
<30 days 30190 days  190~360 days >360 doys | <14 days  14~30 days  30~80 days  >90 days
TWDFA 0.01997 0.01958 0.02281 (LU0N42 0.02171 0 on20r (L.00G44 0.00601
DFA (.05074 0.08597 0.03273 - 0.02698 0.02800 4.03580 0.05230

obtained because of the maximum studied scales N/4 = 250 < 360. It is obvious
that all RMSFs of TWDFA arc much less than that of DFA. Therefore, TWDFA
is able to obtain much h/(:ft;t}r lincar relationship for estimating the correlation
propertics of time series and can reduce the uncertainty due to great fluctuation
around the regression line. The results are generally reasonable. If temperature
sories is observed at the scale less than two weeks, the slope (0.9752) indicates
that the variation of temperature more likely maintains the same local trend. At
a slightly larger scale, the variation of temperature appears to be maintaining the
same pattern, but with the possibility of having random sudden changes! This
is an interesting discovery, since the Hurst exponent in this scale region, 0.5698,
is even smaller than that at the region from onc month to three months (ie.
one season), 0.7113. This discovery indicates that the variation of temperature
is more stable at the one-month-to-one-season scale region than that at the two-
to-four-week region. On the other hand, the Hurst exponent at the scale Jonger
than one scason is 0.4469, suggesting a anti-correlation in this time region. This
means that the variation of temperature is most distinguishable at scale longer
than a season when the annual trend has been removed. IFrom the numerical
examples, the fluctuation function of MF-DFA and MF-TWDFA gencrally ex-
hibit similar scaling behavior. Thus periodic trends should have similar cffect
on MF-TWDFA method in general. This effect can be unraveled by comparing
the locations of the crossover points and the corresponding slopes in Fig. 5.2 and
Fig. 5.5. The crossover points located at 190 days and 360 days of the origi-
nal series disappear in the annual-cycle-removed results. These two scales just

correspond to the half and one cycle of the annual periodic treild. The 14-days
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crossover point can be newly detected in the annual-detrended series. In order to
further discuss the effect of the annual trend on the scaling behavior of fluctua-
tion function of TWDFA, the power spectrum (see Fig. 5.6) of the original series

and the annual-cycle-removed series are employed. The frequency of the annual

power spectrum of Fourier transforms

10 . — e —— -
——&-— griginal temperature series

& ——— temperature without annual cycle| |

B=1.9903

0 $=0.0059 =1.6447
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=}
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107 - 10 10 10

Frequency (day")

Figure 5.6: The power spectrum of the original series and the annual-cycle-removed series.
The power spectrum of the original series have been shifted vertically upwards by 3 at log,,
scale for convenience of comparison and observation.

cyele corresponds to 1/365 = 0.0027(day '), which indicates approximately the
5th and 6th terms in the power spectrnrf;. In Fig. 5.6, it is clearly seen that the
power spectrum density of the first several, especially the first 10, terms marked
by squares are much larger than the dotted ones. However, for higher frequencies,
the two spectra have similar va..lucs. The difference of the 8’s for the lower and
higher frequency ranges of these two series indicates that the scaling behavior at
higher range are more similar to each other (1.9003 vs. 1.6447) compared with
their obvious different behavior at the lower range (2.2692 vs. 0.0059). Based
on the above observations, it is safe to draw the conclusion that the change of
the location of the crossover points at relatively large time scale are mainly due

to the annual-cycle-removing procedure. Because of the complicated properties
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of real-life temperature series, it cannot be ensured that effect of periodic trend
leads to the undetectability of the newly-appeared 14-day crossover points in the
scaling behavior of the original serics.

Furthermore, a clear lincar relationship can be maintained even when s is
nearly int(N/2) = int(1095/2) = 547. The experiment thus shows that by the
proposed method, we can obtain more information relating to the scaling behavior
of the temperature time serics. And, it supports our theoretical arguments.

As to the multifractality of the temperature series, MF-TWDIA is preformed
on the annual-cycle-removed series. Similar to MF-DFA, if h(g) obtained by MF-
TWDFA depends obviously on g, then it indicates that the series is multifractal.
Fig. 5.7 illustrates that the h(g) varies with g, and its significant dependence on
g suggests that the multifractality exists in the temperature series. The bottom

panel of Fig. 5.7 also supports the multifractality suggested by the h{g)-¢ plot.

5.1.2 Interpretations and Discussions

The climatological interpretations of the crossover points are that the weekly
scale should correspond tothe average duration of the so-called ”general weather
| regimes” or " Grosswetterlagen” which is the typical time scale for weather changes,
e.g. about 1 week (Eichner et al., 2003). The two-week crossover point can be
found by both the MF-DFA and the MF-TWDFA. In fact, Eichner et al. (2003)
found the 10-day crossover point using DFAQ. They also indicated that the order
of the regression polynomial used for detrending could affect the location of the
crossover points. This location will increase, i.e. larger crossover time scales, as
the order m increascs. Given that we employed the lincar fitting (m = 1> 0) in
the rletrcr:ding step in MF-DFA and MF-TWDFA, our crossover point appears
to coincide with the finding of Eichner et al. (2003), which means that both the
two-week and 10-day crossover points actually correspond to a typical Grosswet-
terlagen. At the time scale of less than two-weeks, the short—terrw)ersistence
dominates so that the Hurst exponent is alnost 1 {exactly, 0.9752) which coin-

cides with the statement made in Eichner et al. (2003); Orun and Kocak (2009)
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T,
about the 'minimum skill’ forecast. With regard to the one-month and one-season

crossover points wi.lich arc only found by the MF-TWDFA, but failed to be un-
raveled by the (MF-}DIA studies of such temperature series (Eichiner et al., 2003;
Fatichi et al., 2009; Fraedrich and Blender, 2003; Koscielny-Bunde et al., 1998;
Lennartz and Bunde, 2009; Orun and Kocak, 2009; Pattantyﬁs—f-‘\brahzhn et al.,
2004; Talkner and Weber, 2000), since the weather changes after the Grosswot-
terlagen, the air-temperature, an important indicator of weather change, should
. most likely change compared to that in the one-day-to-two-week scales. Therefore
it is reasonable to find a weaker long-range correlation in this regime (H = 0.5698
vs 0.9752). However, the variation of temperature should maintain the same trend
within the same season. Thus, it is natural that we can find the the exponent H
increases to 0.7113 in the one-month-to-one-season scale region indicating persis-
tence in temperature variation.

Comparing with the universal persistence law found by Koscielny-Bunde et al.
(1998) and the study of Eichner et al. (2003) which both suggested the exponent
should be around 0.65 at the scale larger than 10 days, we can find 0.7113 is
slightly larger than 0.65. It should be noted that on the scale of months to seasons,
one of the most pronounced phenomena is the El Nifio southern oscillation event
which strongly affects the weather over the tropical Pacific (Bunde et al., 2002;
Eichner et al., 2003). Ding et al. (2002)‘p0inted out that temperature anomaly
occurred in Hong Kong during the El Nifio years. Besides, El Nifo could also
lead to drier conditions in parts of Southeast Asia and Northern Australia which
might also affect the temperature in these arca. As 2006 and 2007 are the El
Nifio years, our discovery from the serics suggests that the long-range correlation
of temperature is slightly stronger than the average situation on the scale of
months to seasons, corresponding to the typical scale of El Nifio (Bunde et al.,
2002; Eichner et al., 2003). It is plausible that the warming process because of
the El Nifio events might keep the temperature on a stable trend. On the cven
larger time scale, the plots of the MF-DFA become too fluctuated to estimate

its Hurst exponent which however can still be estimated by our proposed MF-
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TWDFA method. In larger time scales, temperature is influenced by different
processes and trends, like the circulation patterns and global warming, the long-
term correlation becomes more difficult to define {(Kurnaz, 2004). In the time
scale covering seasons, we find the scaling behavior of temperature changes to
slightly anti-correlated (0.4469 < 0.5) but is not much different from 0.5 that
indicates a random process. It means that the variations of temperature is most
distinguishable in this regime which corresponds to the variation of temperatures
among seasons. On the other hand, results obtained by (MF-)DFA suggest that
the scaling behavior of the temperature series on the scale region larger than
one season still follows the previous trend even after the annual trend has been
removed (Eichner et al., 2003; Koscielny-Bunde et al., 1998; Orun and Kocak,
2009; Pa.ttantyﬁs—ﬁbrahém et al., 2004). This clearly contradicts our conventional
understanding of seasonal variation of temperature. The difference might be due
to different ways of detrending. However, our conclusion appears to be more
reasonable End comprehensible. Actually, the importance of the monthly and
seasonal crossover points has already been pointed out by Ding et al. (2002)
using several different statistical rﬁethods supporting their significance.

- In terms of prediction, the value of the Hurst exponent, almost 1, indicates
that the future temperature in weekly scales is predicable and reliable. Actually,
the weather forecast is with great accuracy in practical implementation. However,
in the weeks-to-month scales and the scales larger than one season, it is hard to
perform the prediction due to the randomness indicated by the l—&t exponent,
close to 0.5. The prediction of temperature in the one-month-to-one-season scales
is also possible though it is more difficult compared with that in the weekly scales.
Thus, the study of the long-range correlation is very helpful in recognizing the
underling dynamics of process and is beneficial to evaluating the possibility in

establishing a accurate prediction model.
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5.2 Performance of EMD-Based Pre-Detrending
Processing: Application in Sunspot Series

Sunspot is the relatively lower temperature part of the solar surface that
looks like black regions {Liou, 2002}. 'The number of sunspots varies greatly dur-
ing different periods. It might stay relatively high over some periods but drop
to almost zero a few years later. Since the famous 11-year cycle appearance of
sunspots was discovered by Schwabe in 1841, it has bcen confirmed by many
researchers through long-term observations and studies (Gnevyshev, 1977; Mous-
sas et al., 2005: Schatten and Sofia, 1987). Besides, some other solar cycles have
been found in succession, such as the cycle of solar wind, quasi-biannual oscilla~
tion (QBQ), Hale period and possible Gleissberg period (Li et al., 2007; Xu ct al.,
2008). Many geophysical phenomena and atmospheric processes are significantly
influenced by the sunspot activity (Liou, 2002; Moussas ct al., 2003). Thus it is
meaningful to study the property of the sunspot time series.

As mentioned in chapter 3, some debates on the long-range cor.relation of
the sunspot series exist. Differcnt pre-detrending processing techniques for han-
dling the periodic trend, such as the dominate 11-year cycle, lead to the different
long-range correlations property (Hu et al., 2009; Movahed et al., 2006). We
proposed the EMD-based method to handle this kind of trend., Its validation
and the comparison to the Fourier truncation and adaptive detredning methods
have done by numerical experiments. In the numerical experiments in chapter 4,
for the small scales the three pre-detrending methods appear to be effective in
detrending the effect of peric;dic trends if the parameters are appropriately se-
lected. For larger scaling range, however, some difficulties exist. Generally, there
are definitive physical meaning in the IMFs. Thus it seems to be more intrinsic
the crossover points unraveled by the EMD-based method. In contrast, Fourier
truncation and the adaptive detrending methods work in a artificial way, espe-
cially for the selection of parameters, such as frequencies to be removed and the

length of segment for detrending. Besides, the EMD-based methods parameters
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selection procedure is much easier. With regard to the situation on scales larger
than the crossover points, the adaptive detyending method almost wipe out all
information, while the EMD-bésed and the Fourier methods manage to keep con-
siderable information even though the results are a bit off the expected pattern.
To compare these pre-detrending processing in the real-life example to get the
bottom of the discrepancy between Movahed ot al. {2006) and Hu et al. (2009},

all of them are also counsidered in the following discussion.

5.2.1 Basic Results

We analyzed the monthly number of sunspots during the period 1749~2009
with 3123 months from SIDC’s website (http://sidc.oma.be/sunspot-data/} used
in Movahed et al. (2006) (to.the year of 2006) and Hu et al. (2009). The down-
loaded data is our original time series, henceforth referred to as “original data” or

"original series”. From Fig. 5.8, the 11-year cycle is very obvious. Applying the
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Figure 5.8: The monthly sunspot time series.
EMD method to the sunspot time series, eight IMFs and one r can be obtained
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(Fig. 5.9). As discussed in the introduction, different IMFs correspond to differ-
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Figure 5.9: Results of the EMD on the original sunspot series, IMF; to r (from top to
bottom).

ent well-known cycles of sunspot activities. Therefore, we apply DFA to analyze
the series by reducing the IMFs or 7 one by one so that we can study the influence
of each of them on the scaling behavior of the sunspot time series. As depicted in
Fig. 5.10, there are roughly two groups of scaling behavior. We denote the series,
including the original data, with relatively steep slopes (slope>1) group 1, and
the others group 2. The scaling properties of the series within each group are
similar. We discover that IMFs is the critical component that decides the scaling
property of the sunspot time series. When IMF; is removed, the series becomes
group 2 right away and exhibits totally different scaling behavior from the original
data. For the serics, S_i_, IMF;, a crossover point at s = 1017 = 57.5440 ~ 60
can be identified. The slopes to the left and right of ';his point are 0.69 and
0.28 respectively. The position of the crossover point and the left slope are very
similar to the result obtained by Hu et al. (2009). While the series 0 IMFY

has property similar to the original series with Hurst exponent larger than 1 (see
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Figure 5.10: Scaling behavior of sunspot time series by removing the components one by one,

Movahed et al. (2006) for more digcussion on the results obtained from the orig-
inal series}). As observed in from Fig. 5.11 {upper panel), S0 o IMF; + r fits the
original data, z, very well. Besides, the 11-year cycle should be also eliminated
in z — (5 IMF; +7) = S1 IMF;. To confirm it, we calculate the power
spectrum of the detrended series and compare it with the original series. From
Fig. 5.12, we can see that the powers of the detrended series, Z;‘:l IMF,, for the
frequencies around the 11-year-cycle frequency, c.g. ﬁ = 0.0076 month™!, are
significantly less than that of the original series. Such difference quantitatively
indicates that the 11-year cycle has been removed. As a whole, our results, up to
here, are very similar to that obtained by Hu et al. (2009). This is a validation
of their results from the angle of EMD.

In addition, we remove each component from the original time series once,
and study the respective scaling behavior afterwards. From Fig. 5.13, we can

also discover the remarkable effect of IMFs. Though not as strong as the effect

of IMF;, IMF; also affects the scaling behavior of the serics. The others have
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Figure 5.12: Compare the power spectra of the detrended series (31, IMF;) and the original
series. The vertical straight line corresponds to the frequency of the 11-year cycle, 0.0076.

almost indistinguishable influences on the scaling behavior. Two crossover points,
10'16 ~ 29 and 10297 ~ 117, can be identified, as shown in Fig. 5.13.
| However, by removing these two most remarkable components, i.e. removing
IMFs and IMFg from the sunspot time series, the original time series (Fig. 5.8)
is transformed into the time series in Fig. 5.14. Here the 11l-year cycle becomes
less obvious, although some other irregular cycles can still be found.

To compare with the effect of the 11-year cycle on the fractal property of
sunspot time series, we empioy DFA to study the original and this detrended
series, the resu‘lts are depicted in Fig. 5.15. As the DFA results of the original
series have already been discussed in Movahed et al. (2006)‘ and Hu et al. (2009),
we now focus our analysis on the detrended series. A crossover point. of the time
series can be found in Fig. 5.15. Its position is 10*7® = 58, which is very close to
60 obtained by Hu et al. (2009). Two different slopes are discovered on the two
sides of the crossover point. The left slope is 0.72 which is similar to the result,

0.74, of Hu et al. (2009). However, the right slope, 1.49 is much larger than that
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obtained by Hu et al. (2009). It can also be observed that the scaling behaviors of
Z‘::l IMF; and :z:—z;,, IMF; at the time scale s < 60 are very close, 0.69 vs 0.72,
to each other. However, if s increases Eeyorld this crossover point, two different
béhaviors are observed, 0.28 vs 1.49. Generally, the maximum scale on which
the scaling behavior can be studied is N/4 (N is the length of series) since the
fluctuation usually becomes too strong to obtain the reliable scaling behavior on
even the larger scales because of the insufficient local windows (Kantelhardt et al.,
2002). It is interesting to find in this real-life example that the fluctuations of
r— Z?=5 IMF; and the original data, z, approach the same value at the maximum
time scale, s = N/4 = 3123/4 ~ 781 months. Then the information of the
sunspots series on the larger scales seems to he maintained considerably. Take
the difference between Y4 IMF; and z — Y_;_IMF; into consideration, it is
reasonable to draw the conclusion that the components with dominant frequencies
lower than those of IMF;, and IMF;; determine the fluctuation of the series at scales

larger than 60 months.
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5.2.2 Further Discussion

To affirm our results above, we study the problem from the Fourier-based angle
in this subsection. We employed the Fourier transforms to investigate the cight
IMFs. Since the concerned 11-year cycle corresponds to the frequency 1/132 =
0.0076 per month and the interval of the two successive discrete frequencies is
1/3123 = 0.0003, consider what we would like to find is the rough correspondence,
we think it olight to be fine to transform these components to the coefficients
with equal length to extract the rclevant frequencies for our further analysis.

The respective power spectra of them are depicted it Fig. 5.16 and Fig. 5.17.
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Figure 5.16: Power spectra of the IMI's of the original sunspot series using Fourier transfori,
IMF; to IMF, (from top to bottom)}.

It should be noted that the abscissa of Fig. 5.16 and Fig. 5.17 is the frequency
expressed in number per month. Generally, the components, IMI's, decomposed
by EMD have their physical meaning. In the sunspot series study, Li et al
(2007) systematical studied some relations between these IMFs and some solaf
active cycles. On the basis of the power spectra, these IMI's obtained in this
thesis arc attempted to corresplond to certain solar cycles. IMFs are analyzed

one by one as follows: For IMF}, it is hard to observe any kind of cycle because
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of its uniform distributed power spectrum density. Since the dominant frequencies
distribute around 5—10 months, i.e. 150—-300 days, IMF. should correspond to
the around 153-day cycle, which is found by Rieger et al. (1984) in ~y-ray flares
and Cane et al. (1998) from interplanetary magnetic fields. With regard to IMF3
and IMF,, the dominant frequencics corresponding to 10—20 months and 25-30
months suggest that the 1.3—1.4 years periods and QBO might be included in
these two IMFs. T'he 11-year cycle should be denoted as i = 0.0076 per
month. Obviously, the dominant frequency of IMF5 and IMFg is around 0.0076.
‘Thus they should be both related to the 11-year cycle of sunspots. In addition,
some frequencics with relative large amplitude can be found between 0.003 and
0.004, ie. the periods about 21—27 years, in power spectrum of IMFg. That
means IMFg might also include the Hale period with 22-years cycle. The rclative
dominant frequencies of IMF7 around 0.002, i.e. 42 months, ought to include the
double Hale period (Fairbridge and Hillaire-Marcel, 1977). These discovers are
similar to results of Li et al. (2007). However, the length of series considered in
this study is more than 260 years, which is much longer than 110 and 55 years
researched by Li et al. (2007). Then much longer cycles might be found in our
study. Actually, the power spectrum of IMFy has a peak at around 0.001. Then
it should indicate the Gleissberg period with nearly 80 years cycle (Gleissberg,
1944), those frequencies with less amplitudes around it should be related to some
other kinds of solar centenary period varying in the range from 65 to 130 years
(Nagovitsyn, 1997). Therefore, IMF; to IMFg should correspond to the 153-day
cycle of y-ray flarcs and interplanetary magnetic fields, the 1.3—1.4 years periods,
QBO, 11-years cycle, Hale, double Hale and Gleissberg period respectively. And
the effect of those periods on the scaling behavior of sunspots series can be studied
through the summation of selected IMFs.

According to many studics, the effect of the 11-year cycle has to be eliminated
to avoid the production of spurious crossover points. Coincide with our above
analysis, IMF5 and IMF; are also the most influential components manifesting the

effect of the 11-year cycle. Then what should be removed from the original series?
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ZL,) IMF; +7 or just Zf:r, IMF,7 In our opinion, if we only consider the cffect of
the 11-year cycle, we should remove only IMF; and IMF, from the original data.
However, if we want to study the scaling behavior without the irregular cycle,
which should be the combination of such periods mentioned above and be shown
in Fig. 5.14, we should just keep E?ﬂ IMF;. What we would like to emphasize
is that the EMD-based method can preserve the scaling behavior at larger scale.
On the other hand, the adaptive detrending method removes all information at
scale larger than a pre-determined time scale.

What is puzzling is the invalidation of the Fourier-based method, like the
Fourier truncation employed by Movahed et al. (2006}, since the Fourier-based
method should be a simple but effective method to handle periodic and quasi-
periodic trends. ‘Theorctically, the 11-year cycle should be climinated using the

combination of some sine and cosine function with some frequencies. The dif-
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Figure 5.18: Scaling behaviors of the original and the Fourier truncation series (removing the
first 50 terms of the Fourier transform of the sunspot time series) using MF-DFA.

ficulty is to decide how many sine and cosine function terms should be chosen.
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Thus, the significant differences among the scaling behaviors obtained by the
Fourier method (Movahed ct al., 2006), the adaptive (letrendiné method (Hu
et al., 2009}, and the EMD-based méthod need further cross comparison. To
compare, we repeated the Fourier truncation and also truncated the first 50 low-
est frequencies. In the practical implement of Fourier transform, what we can
obtain are the coefficients corresponding to :he discrete frequencies. Specifically.
these first lowest frequencies removed should be i - ﬁ month *, ¢ = 1,---, 50,
Intercstingly, the scaling behavior discovered is so different from that presented in
Movahed et al. {(2006), as shown in Fig. 5.18. The crossover point at 10'7® = 60,
which corresponds to the 50th frequency of the Fourier transfowrm of the sunspot
time series, is the same as that obtained by Hu et al. (2009) and our EMD-based
method. The scaling behavior on the left of this point with slope 0.85 is totally
differenﬁ from what Movahed et al. (2006) obtained, and slightly different from
the EMD-based method obtained in this study. The fluctuation at larger scales
remains almost constanf, with slope near zero. This is reasonable since infor-
mation beyond 6-0 months has already been removed by the Fourier truncation.
Fig. 5.19 is. a supplement to the explanétion of the Fourier truncation. It can
be observed that Fourier truncation provides a close fit of the original data and
there are no obvious cycles in the residuals.

What remains is the question why there is still a difference between the re-
sults obtained the Fourier truncation and that by Hu et al. (2009} and us (the
EMD-based method)? It should be observed that the slope to the left of the
crossover pcﬁnt, 0.84, in Fig. 5.18 is close to the slope of the sunspot serics, 0.86,
by removing IMF5 at smaller scale. Thus, the reason for the difference should
be that the EMD-based method and method of Hu et al. (2009) are adaptive so
that the trends removed might contain hoth larger and smaller frequencies. On
the oth_ér hand, the Fourier method can completely remove all selected frequen-
cies. Since the residuals of the EMD-based and the method of Hu et al. (2009)

contain less information of higher frequencies, the slopes are slightly less than

that obtained by Fourier truncation. To substantiate this argument, we remove
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Figure 5.19: Fitted series using Fourier truncation method in comparison with original series
(upper panel) and the residual of the fit (bottom panel).
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20 more frequencies, e.g. the first 70 frequencies of the Fourier transform of the
sunspot series. Then the fluctuation at scale range larger than 45 mounths should
remain constant. The result can be observed in Fig. 5.20. The slope is 0.69 and
the crossover point is at 10*% == 48 months as expected. Fourier truncation is
further employed to deal with the situation by considering only the effect of the
11-year cycle. Thus the period (frequency ') around 1l-year corresponding to
the 23rd term of the Fourier transform should be removed. Here, we also try
to remove the 18~70 terms. The results is also illustrated in Fig. 5.20 visually.
The crossover point is 1017® = 60 months which is similar to what is shown in
. Fig. 5.10 and Fig. 5.15. Furthermore, the scaling behaviors on both sides of the
crossover point are also similar to the results of the EMD-based method which
just removes IMF;5 and IMFg in Fig. 5.15, 0.72 vs 0.72 and 1.47 vs 1.49 for the
left and right sides of the crossover point respectively. Our above conclusion that
fluctuation at larger time scale is mainly determined by the lower frequencies is
affirmed again. Here, in comparison with the behavior of the scries by removing
the first 70 terms, we can see the first 17 terms of the Fourier transform increase
the fluctuation at the same time scale {can be compared in Fig. 5.20). Neverthe-
less, the choice of the removed terms of Fourier truncation is a problem which
cannot. be avoided.

To recapitulate, we summarize the experimental results concerning the slopes

and crossover points in Table 5.2

Table 5.2: Summary of experimental results.

analyzed series left slopes position of crossovers right slopes corresponding figure
removing IMFy 0.86 29 (months) 1.56 Fig. 5.13

1, IMF; 0.69 60 (months) 0.28 Fig. 5.10, Fig. 5.15
removing IMFy and IMFg 0.72 60 {months) 1.49 Fig. 5.15
removing 1~50th Fourier terms 0.84 60 (months) C .02 Fig. 5.18
removing 1~70th Fourier terms 0.69 48 {months) 0.01 Fig. 5.20
removing 18~70th Fourier terms 0.72 60 (months) 1.47 Fig. 5.20
result in Hu et al. (2009) 0.74 60 (months) =3()

By means of DFA, the influence of these components or their combinations
on the scaling behavior of the sunspot time series has been studied. For the scale

range less than 60 months, we have discovered property, H = 0.73, similar to
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that of Hu et al. (2009), inconsistent with that of Movahed et al. (2006) when
the dominant frequencies of less than 60~! month™! is removed. However. our
result show that if we just want to study the fractal property of the sunspot
series without the cflect of the ll-vear cycle, then the slope of this time range
changes to 0.69. For time range larger than 60 months, as all information 1s
eliminated by adaptive detrending, the fluctnation maintains constant, i.e. the
slope is close to zero. However the EMD-based method obtains the slopes 00.28
and, 1.48 respectively. Then, we have repeated the Fourier truncation methods.
which should be effective to periodic or quasi-periodic trends, but invalidated by
Hu et al. (2009). Interestingly, we have discovered that this method is actually an
effective mean to handle time series with periodic and quasi-periodic trends, such
as the sunspot serics in this study. However, some difficulties are still encountered
in choosing the appropriate frequencies. Applying Fourier truncation with the
chosen ﬁcquency, we can ohtain results very close to what are attained by the
EMD-based approach under two detrending situations. And it is reasonable that
one frequency might contain both noise and useful information, which cannot be
extracted by the Fouricr-based method. Like what is shown above, the removal of
the first 50 and 70 terms leads to different results. Another discovery in this study
is the position of the crossover point. We have found out that the crossover point
changes with different numb‘er of removed terms in the Fourier-based method.
Thus, it is the artifact rather than the true reflection of the intrinsic situation. We
have further shown that the adaptive detrending is also a good method although
it requires a priori determined function forms and time scale for detrending.
And the information of the scale larger than the pre-specified scale is all reduced.
Even there is useful information contained in these frequencies, we cannot extract
themn by the Fourier-based methods. Besides, compared with what is attained by
adaptive detrending and Fourier filtering, the components obtained by the EMD
method are usually reasonable with real physical meaning. Although, as it was
obtained through the numerical experiments, this exponent might be inaccurate,
the EMD-based method can at least partly reflect information contained in the
e
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series on large scales, which, as suggesied by the first experiinent in chapter 4,

can be of considerable use in the study of the scaling behavior of the series.
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Figure 5.20: Sceling behavior of the original and Fourier truncation series (removing the first
~ 70 and 18th~70th terms of the Fourier transform of the sunspot time series) using ME-DIA.

5.3 Summary

This chapter showed how the TWDFA, MF-TWDFA and EMD-based method
wor;( in handling the real-life problems. TWDFA and MF-TWDFA could ensure
the better scaling behaviors of the temperature records compared with conven-
tional DFA and MF-TWDFA. Consequently, two critical scales, monthly and sea-
sonal scales, which cannot be found by the conventional DFA, have been found in
the annual-detrended temperature series by the proposed model. The EMD-based
method handles an challenging problem, the long-range correlation of sunspots
activities. On removing the effects of these periods obtained by EMD, the natural

long-range correlation of the sunspot time series can be revealed. TParticularly,
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with the removal of the 1l-year cycle, a crossover puoint located at around 60
months is discovered to be a reasonable point separating two different time scale
ranges, H = 0.72 and H & 1.49. And on removing all cycles longer than 11
years, we have H = 0.69 and H = (.28. The three cycle-removing methods -
Fourier truncation, adaptive detrending and the proposed EMD-based method
— are further compared, and possible reasons for the different results are given
as the incorrect sclection of parameters when employing the Fourier truncation.
It islseen that three methods should be cquivalent when eliminating the peri-
odic trends, especially at small scales. However, EMD-based method is preferred
because of its capability to maintain the information at large scales and the con-

venience when determining the parameters.
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Chapter 6

Application to Earthquake

Problems

6.1 Introduction

The occurrence of earthquakes in a given area is a complicated spatio-teinporal
process (Bak et al., 2002). A better understanding of the pattern of carthquake
occurrence is conducive to the study of the dynamics of earthquake processes.
Fractal analysis and MFA are known as the mathematical formalisin which is
able to: handle complex dynamic structures (Feder, 1988; Mandelbrot, 1982),
and characterize the heterogeneity of fractal patterns (Grassberger and Procac-
cia, 1983). Actually, Takayasu (1990) pointed out that ’earthquakes have so
many different fractal propertics that they belong to the most interesting {ractal
phenomena’. The fractality and multifractality of the earthquake process has
been discovered and measured by many researchers (Goltz, 1997; Harte, 1998;
Hirabayashi et al., 1992; Hirata, 1989; Kagan, 1981; Kagan and Knopoff, 1980;
Lei and Kusunose, 1999; Sadovskiy et al., 1984; Takayasu, 1990). Therefore, this
study will focus on the applications of fractal and multifractal analysis in this
research field.

The spatial distributions of epicenters or hypocenters are known to be fractal

1
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(Hirabayashi et al., 1992; Hirata, 1989; Kagan, 1981; Kagan and Knopoff, 1980;
Sadovskiy et al., 1984). For cxample, Sadovskiy et al. (1984) gave the capacity
dimension using the box-counting method. Kagan and Knopoff (1980), Hirata
(1989) applied the correlation function or integral method (Grassberger and Pro-
caccia, 1983) to calculate the correlation dimension. Multifractal analysis using
a fixed-size box-counting algorithm (Halsey et al., 1986) has been performed by
Hirabayashi et al. (1992). Meanwhile, Harte (1998} used the Hill estimator to
estimate the correlation dimension of epicenters and hypocenters from four earth-
quake catalogues. Harte (1998) found that the point pattern of shallow and deeper
earthquakes in Japan were more tightly clustered than those in New Zealand. In
this paper Harte {1998) discussed the affect of the amount of data and bound-
ary. A characteristic scale of around 13 kin was found by Lei and Kusunose
(1999), who suggested that it is a common feature of the heterogeneity of the
crust. Some laws abont epicenter location are also relative to fractal statistics,
such as the famous Gutenberg-Richter (GR) Law (Gutenberg and Richter, 1949;
Stein and Wysession, 2003; Turcotte, 1997) which states that the size distribution
of carthquake is scale-free. Davidsen and Paczuski (2005) and Abe and Suzuki
(2003) studied the power-law of the distribution of the distances between two
successive events using finite size-scaling and a modified Zipf-Mandelbort Law,
respectively. And, Molchan and Kronrod (2005) discussed the spatial scaling of
the seismicity rate using the California data.

With regard to the temporal aspect, there have been many studies of the frac-
tality, multifractality, and nonlincarity from a number of different perspectives
(Balankin et al., 2009; Console and Murru, 2001; Gardner and Knopoff, 1974;
Casperini and Mulargia, 1989; Lennartz ct al,, 2008; Li et al., 2002; Livina et al,,
2005; Marsan et al., 2000; Mega et al., 2003; Shcherbakov ¢t al., 2005; Shlien
and Nafi Toksoz, 1970; Teclesca ct al., 2004a,b, 2005). Shcherbakov et al. (2005)
stated that, 'the occurrence of an earthquake is an outcome of complex nonlincar
threshold dynamics in the brittle part of Earth’s crust.” Omori’s Law (Omori,

1894) is used to express the correlation of the main shock and aftershocks. Mean-
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while, carthquake {requency has been studied by many rescarchers. The Gener-
alized Poisson (GP) model is an example of this kind of model (Console and
Murru, 2001; Gardner and Knopoff, 1974; Gasperini and Mulargia, 1989; Shlien
and Nafi Toksoz, 1970). However, Mega ct al. (2003} discovered the iuter-cluster
corrclation by studying a catalog of seismic events in California using Diffusion
Entropy (DE), which is used to study the memory in time series {Grigolini et al.,
2001). The waiting times hetween earthquakes (also called the return time or the
int‘cr—oncurrcnce time) is another popular topic in the field of temporal analysis
(scc for example the review by Saichev and Sornette (2007)). The scaling func-
tion fitting by a generalized gamma distribution was found by Corral (2004) to
be relative to the statistic of the return time in cach local bin. Lindman et al.
(2005) showed that a characteristic kink in observed waiting time distribution
could not separate the correlated and uncorrelated earthquakes. The strong de-
pendence of the recurrence time on the previous times was found by Livina et al.
(2005). In the same year, Carbone et al. {2005) found the unified law for the
inter-occ}rrcnce time. Long-range corrclation (also called long-run correlation or
long(-term) memory) was found in waiting tine using R/S analysis (Goltz, 1997;
Jimenez et al., 2006) or by using MF-DFA (Balankin et al., 2009; Lennartz et al.,
2008; Marsan et al., 2000; Telesca et al., 2004b). R/S analysis and MF-DFA
have also been applied to analyze the temporal distribution of earthquakes in
North China (Li et al., 2002) and in the earthquake-related series (‘Iclesca et al.,
2004a, 2005). In terins of the waiting times of aftershocks, a model based on a
non-homogeneous Poisson process has been established to quantify the scaling
behavior by Sheherbakov et al. (2005). Attempts at finding the carthquake pre-
cursors are to be found in the study by Goltz (1997). In addi)ioh, the precursors
in two practical cases were cxplored by Huang et al. (2061) and Huang (2008)
in the M=7.2 Kobe carthquake and the M==8.0 Wenchuan earthquake using the
Region-Time-Length (RTL) algorithm.

Generally, carthquakes which happen in same seismic zone ought to be related

to each other and follow the same generating mechanism. Sorting the earthquake
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events according to the time when they strike, the earthquake spatial and tempo-
ral distribution can be regarded as the results of motion of 4 point. It should he
noticed from the above reviews that in order to simplify the earthquake problems
many rescarchers have expressed the earthquake process in the form of a tune
series by extracting the spatial and temporal distance between two successive
earthquake events. The serics which they subsequently obtain contains the corre-
sponding earthquake infornmtiog. This kind of ordered series can be treated and
analyzed as a special time scrie::;. Many recent studies have focused on the general
rules governing these series, for example: the idea of universal jumps by Corral
(2006), the betweenness spatial distribution by Davidsen and Paczuski (2005),
the power-law distribution of large earthquake times by Mega et al. (2003), their
universality by Corral (2004), Bottiglieri et al. (2010), Davidsen and Goltz (2004),
and earthquake memory by Livina ct al. (2005). Taking intr; account the spatial
and temporal dimensional perspectives simultaneously, Bak et al. (2002); Chris-
tensen et al. (2002) proposed a unified scaling law to depict the multidimensional
nature of carthquakes and suggested a universal mechanism which is followed by
all earthquake processes. 'The long-tange correlation can also be found in Abe
and Suzuki (2003); Corral (2006); Davidsen and Paczuski (2005).

It is not cnough to wholly profile the occurrence of the earthquakes only con-
sidering the events-betweenness distance and time. On one hand, seismologically
speaking it is more likely to sec the epicenters locating beside the fault lines,
which are usually along some directions; hence, the direction which the epicen-
ters migrate along should contain meaningful scismological information. On the
other hand, mathematically spegﬂcing, with aid of the idea of polar coordinate it
can be seen that if we want to determine the position of an event temporally and
spatially then the relative information of the waiting time, distance and direction
of this earthquake event to the previous event arc required. However, despite
the seismological and math‘cmatical importance, no work on the direction of the
epicenter’s migration could be found within the search of the previous literature

which was conducted at the start of this study and, thercfore, this study aims to
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analyze this undeveloped property.

In addition to the real-life earthgnakes catalogues, there are some simulative
experiments which are designed to facilitate the understanding of the earthquakes;
such as, the Aconstic Emission (AE) of rock fracture being analogous to the real-
life microshocks. With regard to the probability density function of the waiting
time of AE series using different materials, Davidsen et al. (2007) found that
they are indistinguishable (rom that of earthquakes in California which was pre-
sented by Corral (2004). Thus, Davidsen et al. (2007) claimed that the rock
fracture process should be the same as the earthquake process. In order to draw
a comparison between these two views, the data from the two real-life earth-
quake catalogues (i.e. south China and southern California coveriug the period
from 1970 to 1995) as well as that from the previous rock fracture experimnents
(Ying et al., 2009) are employed in this study for the changed dircction analysis.
The rock fracture experimental data was obtained from R. P. Young’s research
group at the University of Toronto. Experiments were performed by W. Ying
and presented in her thesis Laboratory Simulation of Reservoir-induced Seismic-
ity https://tspace.library.utoronto.ca/bitstream/1807/24919/1/Ying_Winnie W-
L_201006_PhD thesis.pdf. Somewhat similar to the concept of epicenter, the pro-
jection of locations of microshocks in rock fracture recorded in three dimensional
space on one selected two-dimensional surface arc considered in this study, which

will still name them as epicenters.

6.2 Epicenter Migration

Given a series {X;} recording the locations of N epicenters sorted in the nat-
ural temporal order, the motion direction from the (7 — 1)th to ith epicenter can
be represented as 7. = X, — X,-,. Although the locations of epicenters are rep-

“resented by the latitude and the longitude, this would bring little difference if we
treat thein under the Cartesian coordinate system for the local area (such as south
China and southern California.j. The changed direction & can then be obtained

from cvery three successive epicenters as 8;-, = arccos(; - Fiy /(||| - [|Fi-111))-
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In this way {6;} with length N — 2 can be obtained for a given series {X,}. This
study will consider the foreshocks, mainshocks, and aftershocks together. This
is the same technique that is used in the analyses of the studies by Bak ct al.
(2002); Christensen et al. (2002); Corral (2004, 2006); Davidsen and Goltz (2004);
Davidsen and Paczuski (2005); Livina et al. (2005).

For the obtained series {6}, the Detrended Fluctuation Analysis (DFA) is
chosen in order to study its scaling. DFA is proposed to be employed as a tech-
nique to investigate the long-term correlation of the non-stationary, as well as
the stationary, time series (Peng et al.,, 1994). This capability is the reason why
the DFA 1s so popularly used in scaling analysis of time serics. In their investiga-
tion of atmospheric variability, Koscielny-Bunde et al. (1998) reported a universal
scaling law of long-term temperature records by analyzing fourteen metcorolog-
ical stations around the world employing DFA. Following this study, Govindan
ct al. (2002) and Fraedrich and Blender (2003) used DFA to study the tempera-
ture series generated by the clitnate models under different scenarios and found a
different scaling pattern from that of the observational records. In addition, DFA
has been employed in seismology Currenti et al. (2005); Telesca et al. (2001a,b,
2003, 2008).

The 1970-1995 earthquake catalogue of south China contains 13,663 M2 1
events. In this study the events with Niz 1 which were recorded in southern Cal-
ifornia during the same period have been downloaded from http://www.data.scec-
.org. The basic patterns of the cpicenter distribution in these two study areas are
visually presented below in Figs. 6.1 and 6.2:

The scalings curves for the two areas which were obtained by using DFA
(Fig. 6.3) exhibit a similar pattern consisting of two power-law parts, as can
be seen in the figures below: The first part yields' a slope around 0.5, which is
indicative of a random process. The second part exhibits a significant positive
long-range correlation with a slope equal about 0.75. A slight difference exists
between the two scaling behaviors in the location of the crossover point separating

the two scaling ranges. Since the lengths of the analyzed series for the two areas
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FFigure 6.1: Distribution of cpicenters in south China from 1970 to 1995.

are different, the positions of the crossover points are represented by their relative
position in the series (with the investigated scaling range of each catalogue divided
into 60 equal intervals at the logarithmic scales). The crossover points are located
the 37th and 45th interval for south China and southern California, respectively.
After obtaining the double power-law scaling behavior, the sensitivity analy-

sis is performed from three aspects, namely: the effects of threshold magnitude,
incompleteness, and the edge of the sltudy area. This study is first concerned with
. the possible effects of the magnitude range used in the analysis, data incomplete-
ness and boundary of the studied area on the DFA results. Sensitivity tests were
conducted to test whether these factors should substantially modify the scaling
behavior. In order to determine the effect of the threshold magnitude, events
with magnitude less than a threshold value are removed from the catalogues and
subjected to the DFA. The sc:aling curves using different threshold magnitudes
are also shown in Fig. 6.3. The resulting curves retain the two-part scaling struc-

ture for all threshold values. The slope of the first scaling range remains at 0.5,
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Figure 6.2; Distribution of epicenters in southern California during the period 1975 to 1995,
which is part of our study period. (This figure is adopted from Godano et al. (1999).)
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Figure 6.3: The scalings of the catalogues with different threshold magnitudes of south China
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tion of threshold magnitudes takes into consideration that there should be sufficient earthquake
events left to ensure the statable results of DFA. The solid straight lines are estimated by linear
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while the slope of the second scaling range decreases with an increasing threshold
magnitude approaching and fluctuating around the value 0.5. Thus, in this study
the double power-law scaling behavior seems more apparent for small events.

For testing the effects of data incompleteness, a portion of events were ran-
domly removed and the reduced catalogue was re-analyzed using DFA. As shown
in Fig. 6.4, no significant modification to the scaling pattern is noted when up
15% of the events are removed. When a greater percentage of events was removed,
the sl(;pe of the sccond scaling range begins to decreasc.

The effect of arca boundary on the scaling behavior was also studied by con-
fining the data set Lo events located beyond a certain distance from the edge of
the study area in the DFA. The threshold distances used were set at 8%, 10%,
15% and 20% of the width or length of the area. As shown in Fig. 6.5. the con-
finement of data to within a certain distance from the edge reveals no significant
modification in the scaling pattern. The above studies show that the scaling be-
havior is highly insensitive to the threshold magnitude, data incompleteness and
proximity of events to the boundary of the study area. The scaling behavior is.
therefore, a property of the seismicity of the area and possibly bears pertinent
information on the dynamics of the seismicity of the arca.

Since Davidsen et al. (2007) suggested that rock fracture is similar to the
carthquake process, this study will perform the DFA on the series {6;} obtained
from the rock fracture experiment on sandstone. The upper panel of Fig. 6.6
shows that the scaling is independent of the choice of the surface of projection,
and no crossover point can be found in the rock fracture process {c.g. the slopes
for the epicenters on three surfaces are about 0.5 in the whole scaling range).
We may then select their projections on one of three surfaces and preform the
randomly-removal and boundary-zooming-in analysis. The right panel of Fig. 6.6
shows that the scalings are maintained the slopes about 0.5 1;1 all different analysis
conditions. Hence, the scaling pattern of rock fracturc is different from that of the
epicenter in two real-life earthquake catalogues. Only the power-law with slope

0.5 could be found for rock fracture processes comparing with the two-part-scaling



35 ; . . . . .
South China

25

log, F{s)

1.5F

4 T T T T T T T T

Southern California

3.5F

log : UF(s)
0
ot

1 1

0.5 1 15 2 2.5 3 35 4 45 5
v Iogws
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vertically for the sake of better illustration.
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Figure 6.7: The scalings of {¢;} cbtained from shuffled {X:} for south China and sonthern
California are obtained by DFA. These scalings are shifted vertically for the sake of better
illustration.

pattern with slope about 0.5 and 0.75 for sbuth China and southern California,
respectively.

The scries {6;}, describing the change in the migration direction of epicenter
location, theoretically provides information different from that of the spatial and
temporal distance ({7} and {D}) between successive earthquake events. This
study has quantitatively studied the relationship among the three series {0}, {1},
and {D}. First to be investigated was the dependence of {8;} on the temporal
order of earthquake events. By shuffling the temporal order of {X',} the epicenter
distribution is still kept; however, as shown in Fig. 6.7, the two-part scaling
pattern of {#} is found to diminish and a single power-law with slope about 0.5

appears for both study areas. Therefore, the two-part scaling pattern is closely
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related to temporal order of events but it has little relationship 1o the spatial
distribution of epicenters. The correlation cocfficient, C', of the pairs of {#}. {11,
and {D} are calculated. For south China the computed Crg, Crp, and Cap
are about 0.02, 0.12, and 0.2, respectively. For southern California the results
are around 0.001, 0.07, and 0.2 and for rock fracture they are nearly 0.03, 0.004,
and 0.26, correspondingly. Hence, {#}, as a new perspective of analysis 1s almost
indcpendent of the waiting time, but it is sightly corrclated to the bhetweenness
distance. This researcher feels that this should be happening because both {0}
and {D} arc extracted from the locations of the epicenters, even though the
correlation cocflicient, between them is still low. Therefore, this study holds that
the {#} contains the new information which can e reflected by neither {T"} nor
{D}.

As a supplement to the previous studies on the spatial and temporal distance
between two successive earthquake cvents, this thesis will propose a new analy-
sis perspective focusing on the direction of earthquake migration. The changed
direction is first extracted from the locations of epicenters and is denoted by the
angles, {6;}, between two migration directions. The DFA 1s then employed to
investigate {#;} for the catalogues of south China and southern California with
earthqﬁake events holding minimum magnitude 1. The same scaling structure
consisting of two ranges is found for both catalogues.

The analysis above reveals the characteristic scaling behavior of the change
in direction of carthquake migration. From this the following inferences can be
made. Firstly, the scaling curves for both catalogues comprise two parts: the first
range is dominated by the power-law slope 0.5 while the second range is about
0.75. The positions of the crossover points are diflerent for the two catalogues.
These diflcrences probably contain information pertaining to local seismicity. See-
ondly, only the slope of the second scaling range changes with the threshold mag-
nitude used in the analysis, the slope of the first scaling range remains at 0.5 for
all threshold magnitudes. Thirdly, the location of the crossover points is found

to depend on the length of analyzed series {}. For further comparison, a simi-
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lar analysis iz made on simidated microshock process. Consequently, the whole
scaling renge is dominated by the power-law scaling with slope 0.5, The simple
composition of the material nsed in the rock fracture experiment may be able to
explain this difference.

The scaling structure reveals a basic pattern of earthquake migration with
respect to the temporal order of carthquake events. From an average view, the
crossover point indicates a critical scale for the study area. The carthquake events
within this scale migrate randomly. However, if the obscrvable scale is beyond
the critical one then the memory of migration appears. From the directional
analysis of earthquake migration, the pattern can be interpreted to consist of
several clusters of earthquake events with an average size which is quantified by
the critical scale. Within a cluster, the migration direction of carthquake events
can be considered random; however, the migration direction of the clusters ex-
hibits a control by some underlying factors. L'hese factors may be related to
the fault pattern in an area and the tectouic factors governing the recurrence of
earthquakes. Such proportion and the randomness in each cluster is maintained
under all conditions considered here, only the slope in the second scaling range
decreases with the increasing threshold magnitudes approaching the value 0.5.
However, the extent of the decrease for two catalogues is different. Such difter-
ence may be attributed to the difference in fault pattern in the two arcas: the
fault system in south China shows a rectangular pattern while that in sonthern
California shows a anastomosing pattern. The earthquakes are more likely to
happen on fault lincs. Conceivably, the change in epicentral migration direction

is relatively larger in a rectangular fault system than that in an anastomosing

system.

6.3 Summary

In summary, a universal scaling pattern of earthquake migration is revealed by
directional analysis. The analysis in this study suggests that the real-life earth-

quake migration at scales less than the critical scale actually follows a random
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process; however, a positive long-range correlation appears at large scales. Such
correlation and the critical scale is highly insensitive to the random-removal or
the effect of boundary of the analyzed area but it is related to the threshold mag-
nitudes. However, the positive long-range correlation at large scales approaches
to randomness as the threshold magnitudes increase, even though there are some
fluctuations around the random status.

With regard to earthquake migration, the migration direction, spatial and
temporal between-event distance depict the seismic process from different per-
spectives. Shonld the unified scaling law be established ou the basis of combi-
nation of the these three parameters, which is similar to what have been done
hy Bak et al. (2002) to combine the G-R Law, Omori Law, and the epicenter
distribution together? Actually, as we have shown, since the new parameter, mi-
gration dircction, the waiting time and the betweenness distance have very little
dependence on one another, it would not make too much of a difference even if
we combine them together. Then, in future study, we would like to investigate
these paramcters separately to ensire a complete description of the carthquake

migration and the simplicity to perform the analysis.

142



Chapter 7

Conclusion

The results of this thesis are summarized in this chapter. The main results

will be presented first.

7.1 Main Results

This thesis aims to render a rigorous and systematic study of geographical
phenomena in multiple temporal and spatial scales with the nid of fractal and
l;mltifract.al analyses. To achieve Uhis the study first worked on a conceptual level.
A number of theoretical issues have been discussed, and the academic debate on
thesc has been reviewed. The corresponding works have heen proposed to refine
the framework of the fractal and multifractal analyses which will be conducted
in this study. After building a solid basis, this study applied the fractal and
multifractal analyses in the geographical case studies. Some of the significant
properties of these geographical processes has been uncovered.

On the basis of the reviews of the mainstream algoritiuns for fractal and mul-
tifractal analyses, taking the speciality of the geographical problems into consid-
eration, the DFA and MF-DFA were selected as the preferred methods to be used
in this study due to: their simple procedure, small finite size elfect, stable scaling
behavior, and their capability to study the structures and processes disturbed by

unknown trends or noises.
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Despite their many advantages, DFA and MF-DFA are not entively prefect
methods. In this study, after elaborative investigation two weakness of DFA
and MF-DI'A, and two problematical relationships of MF-DFA have been identi-
fied, and corresponding improvements and corrections have been suggested. This
study has proposed TWDFA and MF-TWDFA to obtain better scaling behavior
with less fluctuations. An EMD-based method was also developed as a pre-
processing in order to eliminate the negative influence of periodic treuds on the
results of DFA and MIF-DFA. Two problematic relationships in one- and two-
dimensional space were corrected based on the previons studies, which are both
theoretical and experimental in nature. These corrections can be employed to
reveal accurate relationships in the formalism of multifractal analysis for general
situations.

DFA, MF-DFA aud their modified versions arc applied in this study of eo-
graphical problems. The better performance of improved DFA and MF-DFA is
shown in two of the case studies, which are: temperature variation and sunspot
activity. A natural mechanism of carthquake process has been revealed in this
study based on the scaling analysis from a new perspective using DFA. The con-

clusions of this analysis arc bricfly described below.

7.1.1 TWDFA and MF-TWDFA

It has been argued that points nearer in time are more related than points
some distance apart. Correspondingly, we have proposed a locally detrended
mechanism for MF-DFA, and the model is called MF-TWDFA in general and
MF-MWDFA in particular. The theoretical arguments have been supported by
numerical simulations and a real-life problem. Specifically, this study has demon-
strated that MF-TWDPFA can indeed improve the linear relationship between the
fluctuation function F,(s) and the scale s. Therefore, crossover point(s) can be
effectively detected. In particular, it is casier to detect scaling behavior for large-
range scales which cannot he detected by the conventional MF-DFA otherwise.

With this technical advantage, we managed to find the crossover of timescale
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from one month and one season in the temperature series clusive as regards de-
tection by the conventional MF-DFA. The weckly scale seems to correspond to
the ’general weather regimes’ or "Grosswetterlagen’ in climatology. The monthly
and seasonal scale might correspond to the usual scale of Bl Nino, the climate
anomaly. The significance of these two crossover points is echoed by the results
obtained by other researchers via the statistical and wavelet methods (Ding ot al.,
2002). On the basis of these two crossover points, we further found that sudden
changes of temperature arc more likely to happen at the weekly rather than the
monthly scale. And the cffect of the El Nino events on the loug-tange correla-
tion of tempc;ature of Hong Kong in the corresponding timescale region is also
reflected. Besides, the scaling behavior of the temperature series of Hong Kong
on a scale longer than one season unraveled by the MF-TWDIFA appears to be
more reasonable and interpretable.

To rccapitulate, a locally detrended mechanism for MF-DFA has been pro-
posed, namely the MF-TWDFA in general and the ME-MWDFA in particular.
The proposed methods can also be treated as a kind of combination of MEF-DFA
and DMA since the moving-window technique has been adopted for improving the
estimation of local trends. The validation of the relation between the MWDFA
and TWDFA scaling exponent and the Hurst exponent has been shown in the ap-
pendix. Besides, simulated numerical experiments are also employed to validate
the proposed methods. Equivalent performances of MF-TWDIA and MF-DFA
on the corrclation property and multifractality nature of these constructed serics
are confirmed. Besides, we argue that a better linear relationship can be obtained
using MP-TWDFA. Therefore, the crossover points, which indicate changes in the
correlation propertics of time series at different scales (Hu ct al., 2001) and draw
much attention in the applications of ME-DFA (Eichner et al., 2003; Talkner and
Weber, 2000), are more casily detected and located. In addition, the uncertainty
due to the large fluctuations around the regression line (Lennartz and Bunde,
2009) can be reduced by the proposed methods. Compared against the results

of conventional MF-DFA, this kind of uncertainty, especially at large scales, as



shown in the real-life application, can indeed be reduced. RMSFE is employed to
quantitatively support this advantage. Another benefit gained from this technical
advantage is that the scaling behavior, which usually cannot be detected because
of the great fluctuation for a range targer than N/4, at the scale range up to N/2
can still be studied in this application. Furthermore, the conclusion drawn on the
basis of the newly detected crossover points scems to bear more physical meaning.
The use of MF-MWDFA and MF-TWDFA is in particular more reasonable when

linear regression is employed as the basis for detrending,.

7.1.2 EMD-Based Mcthod

The EMD method has been employed to decompose the sunspot tine scries
into eight IMFs and one r. As regards their physical meanings, IMF, to IMFj
should correspond to the 153-day cycle of y-ray flares and interplanctary magnetic
fields, the 1.3-1.4 year periods, QBO, the 11-year cycle, and the Hale, double Hale
and Gleissberg periods respectively. This study explored the influence of these
components or their combinations on the scaling behavior of the sunspot time
series using DFA. For the scale ranges less than 60 months, the finding is similar
to that of Hu ct al. (2009) while is inconsistent with that of Movahed et al. (2006),
provided the dominant frequencies of less than 607! /month is removed. For time
range larger than 60 mouths, compared with the complete loss of the information
" in the results of Hu et al. (2008), the EMD-based methoed obtains the slopes 0.28
and 1.49 respectively. This result indicates that the scaling behavior can still be
found for the series with the 11-year cycles removed on the larger scales. The
slope greater than 1 suggests that this detrended series scems to be non-stationary
and with Hurst exponent 0.48. Although, as it was obtained through a numerical
experiment, this exponent might be inaccurate, the EMD-based method can at
lcast partly reflect information contained in the series on large scales, which, as
suggested by the first experiment, can be of coilsiderable use in the study of the

scaling behavior of the series.

Two numerical experiments have also been performed to test these three de-
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trending methods, None of them can completely remove the influences of the
added periodic trends. Although spurious crossover points appear, the effect of |
the periodic trends on relatively small scales can be satisfactorily Iuliminatcd by
the three methods. While almost all information on the large scales 1s removed
by the adaptive detrending method, the other two methods can partly maintain
—- even considerably in the first experiment — the information contained in the
serics. It shonld be noted that if appropriate parameters are sclected, the results,
including the scaling behavior and positioning of the crossover points, obtained
by the EMD-based and Fourier methods can be very similar, which can also be
found in the sunspot scrics analysis. However, the determination of the setting
for the EMD-based method is much easier and more natural than for the other
two moethods.

In sutnmary, the EMD-based method is strongly recommended since it is a
totally data driven and adaptive method. In general, mostly 11-13 IMFy are
obtained by EMD. It is very convenient to study the cffect of each component
compared with the large number of terms of the Fourier-based method. And it
is reasonable to draw the conclusion that H = 0.72 and 1.49 for two different
time scale ranges divided by a crussover point located at about 60 months if the
11-year cycle is removed, and H = 0.69 and 0.28 for time ranges divided by the

crossover point of 60 months with all cycles longer than 11 years removed.

7.1.3 Problematic Relationship in 1D MF-DFA

MF-DFA is a generalized version of DFA developed for the purpose of charac-
terizing the fractal and multifractal properties of stationary and non-stationary
signals. Kantethardt et al. (2002) established the relationship for stationary, posi-
tive series in Eq.(3.44) which connects h(q) to 7(g) for MF-DFA. This relationship
has been used in a large number of researches. We have shown in this study that
Eq.{3.44) is in fact valid only under the special situation H' = 0. Qur argument
has also been substantiatcd by mumerical experiments and theoretic derivation

which suggest that the generalized relationship between A(g) and 7(g) should be
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7(q) = qh(g) — ¢H' ~ 1 instead of the one stipulated in Eq.(3.44) for the station-
ary, positive time series. The singular spectrum, e and f(a), based on fi(g) have
also been proposed in Eq.(4.39) and Eq.(4.40) respectively to replace the existing
ones stipulated in Eq.(3.48).

To recapitulate, this study has conceptually argued and experimentally demon-
strated one problem in MF-DFA. That is the relationship between h(g) and 7(q)
in MF-DFA. A modified relationship on the plausible form about this problem

has been suggested.

7.1.4 Problematic Relationship in 2D MF-DFA

In the extension of MF-DFA to two-dimensional space by Gu and Zhou (2006).
some corresponding relationships of the exponents have also been extended.

In this thesis, we have casted doubt on the validity of two relationships in Gu
and Zhou {2006}, which connect the Hurst exponent H to h{g = 2) in Eq.(3.58) in
Gu and Zhou (2006). Such relationships not only lack the theoretical derivations,
they also contradict some empirical understandings. Specifically, (i) establish the
correct relationship between H and h{g = 2) is critical for obtaining accurate
Hurst exponent from the scaling exponent h(g) of 2D MF-DFA. However, the
original one in Eq.(3.58) is not in synchrony with the 1D situation. Based on
our numerical experiments, we have brought forth a new relationship, Eq.(4.42),
which appears to be more natural and logical, and is in synchrony with the 1D
situation. In addition, we have also shown by numerical experiments that it is
incorrect to use 2D R/S analysis Alvarez-Ramirez et al. (2008) to analyze non-
stationary surfaces.

In summary, we have conceptually argued and experimentally and empirically
demonstrated the problematical relationship of the exponents in 2D MF-DFA. A

more logical and reasonable relationship was conjectured by us.
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7.1.5 Universal Scaling Structure of Epicenter Migration

1

This study has proposcd a new parameter, which is the # independence of
the previous cvent-betweenness spatial and temporal distance, in order to cap-
ture the directional information of carthquake migration. Common findings for
two of the case studies (i.e.. south China and sonthern California) can be used
to uncover the natural mechanisms of the earthquake process. Firstly, a double
power-law scaling pattern is revealed through the directional analysis using DFA.
Secondly, the scaling exponents of two scaling range are equal 3.5 and 0.7, re-
spectively. Meanwhile, the whole scaling range is dominated by the slope 0.5 for
the microshock data. A critical scale could be indicated by the crossover point
dividing two ranges. Our analysis in this study suggests that some clusters are
formed during the earthquake migration, with averaged size characterized by the
critical scale. The directional independent events can be identified within each
cluster; however, a positive correlation exists outside the clusters. Thirdly. this
correlation and the critical scale is highly inscnsitive to the randomly-removal
or the effect. of boundary of the analyzed area. but it is related to the threshold
magnitudes. The double power-law scaling pattern becomes less apparent when
threshold magnitude increases. Fourthly, as the threshold value increases, the
slopes at large scales approach 0.5 even though there are still some fluctuations
around 0.5. The slight differences between the results of the two areas are the
relative locations of crossover points and the different extent of the decrease of
the slopes in the second scaling range, hinting at the different geological structure
of south China and southern California (e.g. in the differing structures of the two
fault systems). For southern California, the crossover point appears at the scale
0.75=45/60, with scaling range normalized to 1. In the same study area, a kink
could be found in Fig. 4 of Bak et al. (2002), and a crossover point separating the
power-law is to be found at the left side to another scaling range in Figs. 1 and 2
of Davidsen and Paczuski (2005). Interestingly, the scales indicated by the kink
and crossover point are both about 0.75 provided the scaling range normalized to

1. Thus, this scale should contain the special scismical information for southern
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California.

{

7.2 Research Limitations and Suggestions for

Further Research

In spite of great efforts which have been made in this study to improve the
DFA and MF-DFA and so better understand the carthquake process. there still
are some limitations to this research. Some sugpgestions for further research hased

on these limitatious are also listed here.

1. Although the improvement of the TWDFA and MEF-TWDI'A is apparent
they are, however, computationally expensive because the time distance
matrix W, nceds to be computed. How to develop a fast algorithm for the
proposed analysis is once problemn which needs to be addressed by further
research. In addition. choosing a suitable w,, for ME-TWDFA, although not
unique to the proposed model, is another topic that needs to be investigated

further.

2. Although the scaling behavior at small scales could be maintained woll
during the procedure of the EMD-based method to climinate the perniodic
trend, its original scaling pattern at large scales is affected (as shown in the
numerical experiments). Therefore, a better algorithm to keep the informa-
tion at all scales is required in order to better rednce the influence of the

periodic trend.

3. In the discussions on the relationship in 2D MEF-DFA| a conjecture was tade
in this thesis as to the corrected relationship; however, this new relationship
was suggested on the basis of numeric experiments and cmpirical derivation.
Solid mathemnatical study, such as the formal study or analytical calculation,
is so far lacking in this study because of the research limitations. It is to be
recornmended, therefore, that further research should conduct an in-depth

investigation from the theorctical aspect.

150



4. With regard to the exploration of the earthquake process. a very interesting
pattern of the scaling behavior has been found for diflerent earthquake cat-
alogues, which suggests the a natural mechanism of earthegnakes has been
revealed. Some interpretations of the geophysical aspects of this has been
offered; however, the scismical meaniug of the findings of this study deserves
further careful study. Further research should be conducted in cooperation
with a geophysicist. In addition, we plan to apply the directional analy-
sis to areas other than south China and southern California to check the

universality of the scaling behavior obtained in this study.

5. Considering the fractal nature of the earthquake process, it 1s recommended
to perform further fractal and multifrat;tal analyses on the carthquake wave
records, which should contain more instantaneous information. Such infor-
mation is expected to provide a more subtle profile of earthgnake activity.
In particular, some special features are expected to be extracted from this
information that is recorded before strong events which will shed some light

on short-time earthquake prediction.
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