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Abstract 

Instructional explanation is deliberately designed for the purpose of teaching, 

and serves as responses to various queries from teachers, students, or queries about 

the nature of a domain in a school subject matter. The present study aimed to 

identify the features of quality instructional explanation that might serve as proximal 

indices of students' learning outcome. To do so, the study, firstly, developed an 

instrument to assess the quality of instructional explanations. Secondly, it examined 

how quality of instructional explanation would affect students' learning outcomes. 

Finally, the study investigated whether the teachers' backgrounds, such as 

mathematics knowledge for teaching or years of teaching, might yield high-quality 

of instructional explanation. 

The data source of the current study was from the project "Has curriculum 

reform made a difference? Looking for change in classroom practice" (Ni, Li, Cai, 

& Hau，2009). Thirty-nine teachers (20 teachers using a reform-oriented curriculum 

vs. 19 teachers utilizing a conventional curriculum) and their 2,239 students were 

included. All 39 classes had completed videotapes of lessons teaching new 

knowledge on the content of number. Teachers' instructional explanation was 

examined in terms of its structural features and quality. Quality of instructional 

explanation was evaluated on the three dimensions, accuracy (truthfulness), richness, 

and coherence. Student learning outcomes were measured with regard to cognitive 

(calculation, simple problem solving, and complex problem solving) and affective 

learning outcomes (self-reported interest in learning mathematics, classroom 

participation, views of mathematics, and views of learning mathematics). 

The results indicated that the Chinese mathematics teachers scored high on the 



indices of accuracy (truthfulness) and coherence in instructional explanation. Their 

scores on the dimension of richness were relatively lower. Moreover, we found that 

a teacher's performance of instructional explanation was relatively stable across 

lessons. A few relationships were found between teachers' background factors (i.e., 

teaching age, educational level, mathematical knowledge for teaching, and belief 

towards mathematics) and their use of instructional explanation. Curriculum in use 

affected the quality of teachers' instructional explanation. For example, the teachers 

who used the reform-oriented curriculum were more likely to encourage students to 

use mathematical language, use multiple solutions and multiple representations than 

their counterparts of non-reformed classes. The teachers of non-reform classes were 

more inclined to use accurate teaching language and make connections with general 

concepts and principles than their peers of reform classes. 

Teachers' instructional explanations were found to affect student learning 

outcomes. However, the effects differentiated across students' learning outcomes. 

We observed more effects on students' cognitive achievement than on affective 

achievement. Moreover, the effect of instructional explanation on student learning 

was moderated by curriculum in use, students' SES, and prior achievement. The 

effect appeared more obvious in the nonreform classes than the reform classes. 

This study was significant in three respects. It has contributed to an 

understanding of the instructional features of Chinese mathematics classes and their 

relationship with student learning. Moreover, it has provided a useful tool for 

reserach and practice in matheamtics education. Finally, the results have some 

implications for teacher education. 



摘要 

教学性解释指的是课堂对话中，师生为了解决学科疑问而共同建构的一种 

解释。本研究试图通过教学性解释，识别影响学生学习的敏感性变量。自编工 

具评价教学性解释的质量。考察教学性解释与学生学业成就的关系，并探讨教 

师哪些背景因素有助于生成高质量的教学性解释。 

本研究数据源于项目“课程改革的成效一教师课堂教学实践变化”（Ni,Li, 

Cai,&Hau,2()09)�39名小学五年级数学教师及其2239名学生参与研究。其 

中，20位教师来自新课程组，19位教师来自原课程组。对上述教师课堂观察 

录像，取他们的数论新授课进行分析。考察教师教学性解释的结构特征和质 

量。并从三个维度评价教学性解释的质量：准确性、丰富性和连贯性。学生学 

业评估包括两方面：认知成绩（计算、简单问题解决和复杂问题解决)、学生 

对数学学习的看法和态度（学习兴趣、课堂参与、数学观、数学学习观）。 

结果表明，中国小学数学教师课堂教学性解释的准确性及连贯性得分均较 

高。丰富性得分略低。并且，教师教学性解释的表现相对稳定。研究还发现， 

教师背景因素（如教龄、学历、数学知识和数学观）与其教学性解释关系甚 

微。课程影响教学性解释的质量。新课程教师在解释过程中，更多鼓励学生使 

用数学语言，运用多种策略及多元表征。原课程教师更注重使用准确的教学语 

言和联系一般性数学概念及原理。 

教师教学性解释影响学生学业表现。但其效应因不同学业成就变量而异。 

我们观察到，教学性解释对学生认知成绩的影响甚于其对学生数学态度的效 

应。课程、学生SES及原有成绩在教学性解释和学生学业表现关系中起调节 

作用。例如，较之与新课程组，教学性解释在原课程班级出现更多显著效应。 

本研究有助于我们理解中国数学课堂的教学特征以及教师教学与学生学习之间 

的关系。此外，它为我们进行数学教育相关研究及实践提供了有用的工具。研 

究结果也将对教师教育带来一定启示。 

iii 
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Chapter 1 Introduction 

For more than a decade, researchers and educators in various regions have been 

concerned with how classroom discourse affects opportunities to learn, student 

thinking, and student learning. In school mathematics, influential documents such as 

the National Council of Teachers of Mathematics's (2000) Professional Standards 

for Teaching Mathematics and Principles and Standards for School Mathematics, 

and Decision of the Reform and Development of Basic Education (2001) issued by 

the Chinese government, have called for teachers to emphasize communication that 

allows students to develop conceptual understanding of mathematics. Such 

communication consists，in large part, of encouraging students to present conjectures; 

pushing students to both explain and justify their conjectures to their peers, and 

otherwise promoting debate and discussion of ideas. And these forms of instruction 

are often characterized in different ways by the key phrases such as "discourse-

intensive" (Cazden, 2001), "extended discourse" (Schleppenbach, Perry, Miller, 

Sims, & Fang, 2007), "authentic discussion" (Hadjioannou, 2003; 2007)，and 

"authentic instruction" (Newmann & Wehlage, 1993; Newmann, Marks, & 

Gamoran, 1996). 

Although the communication and instruction as indicated above are well 

advocated, the researchers have also suggested that the conversations about 

mathematical ideas (as opposed to the genre of Initiation-Response-Evaluation) 

provide a necessary, but not sufficient, foundation for high-level talk (Kazemi & 

Stipek, 2001). The merits of learning-by-talking cannot be taken for granted (Sfrad 

& Kieran, 2001) because using a particular form of discourse does not necessarily 

result in a particular kind of instruction and further bring about the desired learning 



outcomes (Cazden, 2001). Instead, how the discourse is used and constructed, that is, 

the specific content of the discourse in instruction，may be a more important factor 

when taking students' academic development into account (Murphy, Wilkinson, 

Soter, Hennessey, & Alexander, 2009). 

In this context, the current study investigated the teacher use of instructional 

explanation, which was operationally defined as the explanations that are embedded 

in teachers' instructional talk with students. They are co-constructed by the teacher 

and students to respond to various queries in primary mathematics. The explanations 

are presented in the format of extended discourse, in which a teacher poses 

continued and follow-up questions after a student provides an answer. Instructional 

explanation was chosen as the focus of the present study for three reasons. Firstly, it 

is recognized as a legitimate part of the instructional landscape (Leinhardt, 2001). 

And explanation is ubiquitous in teaching (Chi, Siler, Jeong, Yamauchi, & 

Hausmann, 2001; Perry, 2000). Secondly, use of instructional explanation can be a 

critical aspect of the teaching repertoire (Renkl, 2002; Leinhardt & Steele, 2005). 

And an investigation of instructional explanation with the format of extended 

discourse helps to better describe and understand a teacher's performance as a whole. 

As various components contained in the instructional explanation, such as the 

teacher's questioning and response to student answers. Finally but not the least, such 

kind of classroom discourse is consistent with the merits of the advocated teaching 

practices. Therefore, it is important to examine whether use of instructional 

explanation with identified features, would bring about desired student learning 

outcomes. 

Concerning the construct of instructional explanation (IE), the researcher, firstly, 



developed an instrument to evaluate its quality. The quality indicators of IE were 

mostly consistent with the advocated practices, and they were well established in the 

western literature. The study aimed to identify whether these advocated features of 

classroom discourse in general and instructional explanation in specific might serve 

as proximal indices of students' mathematics learning outcome in Chinese 

classrooms. To do so, the study, firstly, developed an instrument to assess the quality 

of instructional explanations observed in 110 Chinese elementary mathematical 

lessons of 39 teachers. Secondly, it examined whether or not the identified features 

of instructional explanation would affect students' mathematics learning outcomes in 

Chinese classrooms. And finally, the study investigated the relationship between 

teacher knowledge, belief and their use of instructional explanation. 

Results of the study would make three specific contributions to the literature. 

Firstly, the findings of the study helped understand the classroom instruction in 

China. Secondly, the results helped understand the relationship between 

mathematics teaching and learning in Chinese classrooms. And finally, the 

developed instrument provided a useful tool for research and practice in 

mathematics education. 

In the chapters that follow, the thesis is organized into four parts. Firstly, the 

literature of the research on instructional explanation was reviewed. Then, the 

research methodology was explained. Next, results of the study were displayed and 

discussed. And finally, general discussions and conclusions were presented. 



Chapter 2 Literature Review 

This literature review includes five parts. Firstly, the background of the research 

on instructional explanation was introduced. Then, the significance of instructional 

explanation was discussed. Next, the criteria for the evaluation of instructional 

explanation was described and synthesized. After that, the relationship between 

instructional explanation and teacher knowledge for teaching mathematics and 

beliefs about mathematics was explicated. And finally, based on these works, the 

research questions and hypothesis were formulated. 

I Background of the Research 

For a long history, the topics of educational psychology centered on issued of 

learning, but did not include teaching (Gage, 1963). Affected by the dominance of 

behaviorism in research as well as the political stimulation that the U.S. government 

issued relevant educational policy to improve the quality of school education (e.g., 

National Defense Education Act, 1958), the study of teaching became a new 

enterprise within educational psychology (Gage, 1963; Shulman, 1986/1990). The 

interest was primarily in identifying general characteristics of teacher behavior that 

were systematically related to significant improvement in student knowledge and 

understanding. Research of this type on teaching was also known as "criterion-of-

effectiveness" paradigm (Gage, 1963, 1978)，or teaching effectiveness approach 

(Shulman, 1986), or "process-product" program (Brophy & Good, 1986; Dunkin 

& Biddle，1974). This paradigm dominated the study of teaching, and reached its 

peak in the late 1960s and early 1970s. Apparently, all these research focus on 

teaching and learning, rather than the teaching itself. 



Following the shift from the focus on learning to teaching on learning, there has 

been another shift since 1980's being developed in educational psychology, that is, 

interest is primarily in identifying domain-specific, rather than domain-general, 

characteristics of effective teaching. The content, or substance, of a subject matter 

being taught and learned, which lad dormant for a long period and was dubbed as 

the problem of "the missing paradigm", returned to its proper place in research 

programs on teaching (Shulman, 1986/1990). This shift was prompted by the 

consistent finding that high performance of both human and AI systems was 

constrained by domain specific knowledge (e.g., Chi, Glaser, & Farr, 1988), A series 

of studies was conducted that documented the ways in which the subject matter 

taught influenced the kinds of representations teachers used in their teaching. 

Variations in teachers' knowledge, belief about their subject matter, and how to teach 

it significantly influenced the quality of pedagogy and further their students' 

learning (Grossman, 1990; Staub & Stem, 2002; Speer, 2008; Baumert et al, 2010; 

Shechtman, Roschelle, Haertel, & Knudsen，2010). 

Spoken language is the medium by which much teaching takes place and in 

which students demonstrate to the teacher much of what they have learned (Cazden, 

1986, p.432). To date, classroom discourse, defined as the language that teachers 

and students use to communicate with each other in the classroom (Nuthall, 1998), 

has become a central topic of research on teaching. Researchers and educators have 

concerned about how classroom discourse would affect opportunities to leam, 

student thinking, and consequently student learning. Among the literature on 

classroom discourse, the most robust form of classroom talk documented has been 

characterized by that the teacher asks a question, a student responds, and the teacher 

follows through with a comment, often evaluative in nature. This forms of discourse 



or stable discourse genre is called Initiation-Response-Evaluation (I-R-E) (Mehan, 

1979; Cazden, 1988) or Initiation-Response-Follow up (I-R-F) (Sinclair & 

Coulthard, 1975; Wells, 1993) sequence, as well as that labeled as "triadic 

dialogue" (Lemke, 1990). It is believed that IRE/F sequence associates with direct 

instruction of skills or the elicitation of so-called known-information questions, 

and contributes to more accurate transmission of information (Hicks, 1995; Macbeth, 

2003). This discourse genre allows a teacher simultaneously maintain a high degree 

of control in the classroom, probe students' current conceptual understandings, and 

orchestrate a description of those concepts using students' as well as the discipline's 

words to bring them toward grasping a set of clearly specified concepts (Polman, 

2004) . Also, it can be seen as a "cultural tool" (Polman & Pea, 2001) that is 

familiar to teachers from their own childhoods and familiar to most students after a 

couple of years in school. Thus, teachers and many students using IRE/F may 

understand well the norms of the speech genre (Bakhtin, 1986) which they are using 

in interaction with one another in classroom. They know what sorts of roles they are 

expected to play, what steps follow one another, what to say，how to say, and when 

to say it. 

However, along with the emphasis on conceptual understanding, critical thinking, 

and problem solving complemented to knowledge and skills acquisition in school 

education, as well as the development and well-acceptance of the constructivism 

and social cultural framework, learning is regarded as an active process of 

knowledge construction and meaning making in the course of interaction, and 

classroom discourse is a mediator of students' learning. IRE/F is therefore viewed 

inadequate for achieving the new teaching goals. Other classroom discourse genres, 

in contrast to IRE/F, therefore, have been advocated. These forms of instruction are 



often characterized in different ways by the key phrases such as "discourse-

intensive" (Cazden, 2001), "extended discourse" (Schleppenbach, Perry, Miller, 

Sims, & Fang, 2007), "authentic discussion" (Hadjioarmou, 2003; 2007), and 

"authentic instruction" (Newmann & Wehlage, 1993; Newmann, Marks, & 

Gamoran, 1996). Though they differ in some ways; there are key overlapping 

components which emphasize considerable and substantive interaction about the 

ideas of a topic, opportunity for students to articulate ideas and opinions, making 

connections across knowledge as well as connections to the real-life, and deep and 

conceptual understanding of the knowledge. The teachers' role in the classroom 

discourse becomes more one of an "orchestrator" or facilitator of discussion. They 

deliberately pose more authentic questions, create instances of uptake, withhold or 

skip their evaluation of students' response, in order to give the floor for a much 

longer period of time for students to present conjectures, as well as to explain and 

justify their conjectures or opinions to their peers (Nystrand, 1997; Nystrand, Wu, 

Gamoran, Zeiser, & Long, 2001; Cazden, 2001). The students become active agents 

in the process of learning, engaging in verbal conjecturing that is subject to public 

questioning. It is believed that such kind of classroom discourse allows students 

more opportunities to engage in the learning process, develop conceptual, or so-

called higher level, understanding of the subject matter, and foster students' interest 

in learning (Hiebert & Wearne, 1993; Ball, 1991; Lampert, 1990; Cobb, Yackel，& 

McClain, 2000 ； Walshaw & Anthony，2008). 

It is the latter kinds of classroom discourse that the current study aims to explore. 

The bulk of the research on discourse in such "nontraditional lessons" (Cazden, 

2001) has focused on the description of the communication as truly central. 

However, the studies often involved only one teacher or a few teachers, and few of 



them examined whether the so-called higher level, nontraditional talk contributes to 

students' learning outcome in a direct way (e.g., Leinhardt & Steele, 2005; McClain 

& Cobb, 2001; Schleppenbach et al., 2007). Also, as some researchers pointed out, 

the merits of learning-by-talking cannot be taken for granted (Sfrad & Kieran, 2001), 

because using a particular form of discourse does not necessarily result in a 

particular kind of instruction and further bring about the desired learning outcomes 

(Cazden, 2001). Instead, how the discourse is used and constructed, that is, the 

specific content of the discourse in instruction, may be a more important factor when 

taking students' academic development into account (Murphy, Wilkinson，Soter， 

Hennessey, & Alexander, 2009). 

In this context, the researcher of the present study had made an initial effort to 

examine some features of classroom discourse and its relationship with student 

achievement in the Chinese mathematics classrooms. The pilot study involved 45 

lessons of 15 teachers and 932 students. According to Perry and colleagues' 

definition of "extended discourse"- continued questioning and discussion after an 

answer was provided (Schleppenbach et al., 2007), the researcher firstly identified 

the episodes of extended discourse. She then applied Leinhardt's framework of 

instructional explanation to analyze specific content of the identified episodes. 

These include connection with mathematics and the real situation, use of examples, 

use of multiple representations, new information building, explanation, and errors 

identification and address (Leinhardt, 2001, 2010; Leinhardt & Steele, 2005). The 

results turned out that, first, there existed variability in terms of numbers of extended 

discourse across the lessons and teachers. In addition, seventy-four percent of the 

identified episodes of extended discourse were associated with explanation, 10.53% 

with representations, 8.19% with error identification and 7.02% with use of 



examples. Secondly, number of extended discourse was not shown to be related to 

students' mathematical achievement in both basic knowledge and skills and 

affective outcomes. However, the number of explanation in the identified extended 

discourse was found to associate with most of the dimensions of students' learning 

outcome. 

These results were consistent with the previous finding that using a particular 

form of discourse did not necessarily result in a particular kind of instruction and 

further brought about desired learning outcomes (Sfrad & Kieran, 2001; Cazden, 

2001).It is the specific content embedded in extended discourse that makes 

difference in students' learning and development. Due to the largest percentage of 

explanation in number of identified extended discourse and its effect on student 

mathematical achievement in the pilot study, the researcher decided to shift the 

focus from the frequency of extended discourse to instructional explanation which is 

embedded in extended discourse. Instructional explanation embedded in extended 

discourse is considered to provide a legitimate and researchable teaching moment as 

component. Leinhardt put it this way (2001); 

If we choose one instructional moment to explore carefully, the criteria necessary for identifying 

a researchable teaching moment must be clear. The researchable teaching moment should be 

commonly recognizable as being a legitimate part of the instructional landscape; it should be a 

generally agreed-upon critical aspect of the teaching repertoire-that is, doing it well should 

matter; it should involve all the major actors in the drama of the class-teachers, content, and 

students; and it should have the potential to be reflective of differences among subject matter 

areas, reflective of responsiveness to the unique features of a given student group, and reflective 

of differences in teaching approaches. It should be a commonplace of the instructional landscape 

(Leinhardt, 2001,p.338). 
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Instructional explanation embedded in classroom discourse satisfies all the 

criteria described above, which will be justified further in the sections below. In 

addition to its theoretical significance, there is a great need for the investigation of 

the features of instructional explanation in Chinese mathematics classrooms from a 

practical perspective. 

More specifically, in 2001, mainland China embarked on a major reform of the 

9-year compulsory education with the publication of the Guidelines on Curriculum 

Reform of the 9-year Compulsory Education (Ministry of Education, 2001). In 

comparison with the previous curriculum reforms, the latest one calls for a 

fundamental change, not only in the methods of teaching but also the way in which 

students learn (Li & Ni，2011; Ni, Li, Q., Li, X‘, & Zhang, 2011). In particular, the 

aim of this reform is to divert the focus away from the transmission of knowledge by 

teachers and to move towards the construction of knowledge by students. 

Specifically, it calls for classroom instruction to provide space for more active 

participation of students in providing explanations, conducting arguments, and 

reflecting on and clarifying their thinking. Of the advocated forms of instruction, 

provision of explanation, especially engaging students in the process of explanation, 

is given unprecedented emphasis and attention in classroom teaching. Consequently, 

learning about how instructional explanation is carried out and unfolded over 

classroom period, what the quality of explanation looks like, as well as what is the 

relationship between quality of explanation and students' learning outcomes become 

significant for both educational research and practice. 

In the current study, we were interested in exploring what were the features of 

explanation that might bring about positive effect on students' achievement gain in 
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mathematics, in other words, what features of quality instructional explanation 

might serve as proximal indices of students' learning outcome. In addition, we were 

also interested in learning about what was the relationship between teachers' 

background factors, such as years of teaching experience, mathematical knowledge 

for teaching, and their use of high-quality explanation in classroom instruction. 

In the following sections, the literature on instructional explanation was 

organized into three parts. Firstly, the researcher discussed the significance of 

instructional explanation. Next, the criteria for evaluating the quality of instructional 

explanation in mathematics pedagogy were presented. Finally, the discussion 

centered on the relationship between teachers' knowledge, belief and their use of 

instructional explanation. 
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II the Significance of Instructional Explanation for 

Classroom Teaching and Learning 

1. Explanation and Instructional Explanation 

Explanations are ubiquitous and diverse in nature (Keil, 2006). For example, 

within months of uttering their first words, children ask "why", and by 3 years of age, 

children can provide explanations for things that happen (Wellman, Hickling, & 

Schult, 1997). As adults, we may frequently seek the explanations of why the prices 

are going up steadily, how filial piety is formed in China, and why Bruce Lee is 

immoral in audiences' hearts. Philosophically, explanation has been understood in a 

number of ways. For example, Aristotle identified four causes, or “modes of 

explanation", that pick out different aspects of an answer to a why-question: the 

efficient, final, formal and material causes (Achinstein, 1983; Lombrozo, 2006; also 

see Table 1 for examples about the four causes). Most of the scholars understand 

explanation from a functional perspective. Specifically, they regard explanation as a 

process of unifying disparate phenomena (Kitcher, 1981), identifying the causal or 

statistical relevance of mechanisms (Hempel & Oppenheim, 1948; Salmon, 1989), 

and a merely pragmatic virtue offering a narrative designed to account for an effect 

(van Fraassen, 1980). It is notable that, although explanations seem to be a large and 

natural part of our cognitive lives, at the moment, there is neither a satisfying formal 

account of explanation nor agreement about the important informal criteria for good 

explanation, producing what one review casts as ‘an embarrassment for the 

philosophy of science，(Newton-Smith, 2000; Keil & Wilson, 2000). However, based 

on various views, explanation can be generally defined as answers to some sort of 

actual or implied query (Leinhardt, 2001). 
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Table 1 Aristotle's Four "Causes" or Modes of Explanation (Lombrozo, 2006, p.465) 

Cause or mode of 
explanation  

Description Example 

Efficient The proximal mechanisms of change A carpenter is an efficient cause of a 
bookshelf. 

Final The end, function or goal Holding books is a final cause of a 
bookshelf. 

Formal The form or properties that make something Having shelves is a formal cause of a 
what it is bookshelf 

Material The substance of which something is Wood is a material cause of a bookshelf. 
constituted. 

Instructional explanation, distinct from other types of explanation, is deliberately 

designed for the purpose of teaching, and serves as responses to various queries from 

teachers, students, or texts in a school subject. It is usually embedded in the teachers' 

verbalized instructional talk with students (Dagher & Cossman, 1992; Stigler & 

Hiebert, 1999), it can also be presented in the format of written explanations though 

(Coleman, Brown, & Rivkin, 1997; Wolfe & Goldman, 2005). As a legitimate part of 

classroom instructional landscape, there are two kinds of way towards instructional 

explanation. One is that, instructional explanation is conceived of prefabricated 

information that is provided by teachers or tutors, and learners passively receive 

without engagement in the activities of explanation (Renld, 2002; Cromley & 

Azevedo, 2005; VanLehn, Siler, Murray, Yamauchi, & Baggett, 2003). Conversely, 

the other scholars view instructional explanation as a useful vehicle for engaging in 

meaningful learning. The information in instructional explanation is constructed and 

worked out by the teacher and the students together (Hardy, Jonen, M.'oller, & Stern， 

2006; Klahr & Nigam, 2004). Examples are provided below to illustrate the teacher-

provided explanation and teacher-student co-constructed explanation. 
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Example 1 Instructional explanation provided by the teacher 
1. Teacher： Why 0 does not have a reciprocal? Firstly, 0 can not be a denominator. 

Secondly, 0 multiplying any number will get 0. Therefore, 0 does not have a reciprocal. 
Understand? 

2. Students (together): Yes. 
3. T: Right. So 0 does not have a reciprocal. (Ms Wu and her fifth-grade students in a 

dialogue on reciprocal, transcription lines 48-50.) 

Example 2 Instructional explanation co-constructed by the teacher and students 

1. Teacher: I have a question for you: the reciprocal of 0 is 0? 
2. Students (together): Wrong. 
3. Teacher: Why do you say it is wrong? Tell me the reason. Jia, would you like to say 

something? 
4. Jia: 0 can not be a numerator as well as a denominator. 
5. Teacher: So your conclusion is what? 
6. Students (together): Wrong, the sentence is wrong. 
7. Teacher: This sentence is wrong. In other words, 0 does not have reciprocal. Or 0 cannot 

be denominator. Ok, are there any different opinions? Zhang? 
8. Zhang: Because 0 does not have a reciprocal, the sentence is incorrect. 
9. Teacher: Yes, so I am asking why 0 does not have a reciprocal. Well, you please. 
10. Xia: Because by multiplying any number, 0 will not get 1. Therefore, 0 does not have a 

reciprocal. 
11. Teacher: Yes, she did an excellent job. And she gave an answer according to the concept 

of reciprocal. That is, if one multiplies the other and their product equals 1, then we say 
one is the other's reciprocal. We know that 0x0=? 

12. Students (together): 0. 
13. Teacher: It does not equal to 1. So 0 does not have a reciprocal. Do you all understand? 
14. Students (together): Yes. (Ms Yan and her fifth-grade students in a dialogue on 

reciprocal, transcription lines 122-137) 

In the current study, instructional explanations (IE) are specifically referred to 

the explanations that are embedded in teachers' instructional talk with students. 

They are co-constructed by the teacher and students to respond to various queries in 

primary mathematics. The explanations are presented in the format of extended 

discourse, in which a teacher poses continued and follow-up questions after a 
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student provides an answer, and the explanations are finally generated based on an 

open discussion with a relative clear closure (see the second example above). 

2. The Significance of Instructional Explanation for Classroom 

Teaching and Learning 

Instructional explanation is significant in two ways. One is that, explanation is 

ubiquitous in teaching. The other is that explanation is found to make difference in 

students' learning. 

2.1 Explanation is Ubiquitous in Teaching 

Explanation is ubiquitous. It is found that, in naturalistic one-to-one tutoring, 

53% of tutor statements and 37% of tutee statements were explanations. Moreover, 

in constrained tutoring, that is, even when the tutors were explicitly asked not to 

give explanations, 4% of their utterances were providing explanations, and 23.2% of 

student statements were explanations generated by themselves (Chi, Siler, Jeong, 

Yamauchi, 8c Hausmann, 2001). Explanations are also the core of teachers' lectures 

in classroom teaching. For example, it has shown that in U.S. classrooms, especially 

in mathematics instruction, almost all new content was introduced through teacher 

explanation (Barr, 1988). 

Explanation is also prevalent in Chinese classroom teaching. According to 

Perry's study of explanations of mathematical concepts involving 160 teachers (40 

Chinese teachers，40 Japanese teachers, 80 U.S. teachers) (Perry, 2000), the 

percentage of activities (e.g., question-and-answer, seatwork, evaluation, 

explanation, choral responses, mental calculation, and teacher gives directions) that 

included explanation was 52%, 47% and 40% respectively for the Japanese, Chinese 
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and U.S. fifth-grade classrooms. For the Chinese classrooms, most of the 

explanations were provided by the teachers, and about one forth was co-constructed 

by the teachers and the students. Li and Ni (2009) investigated 32 primary 

mathematics teachers' classrooms in a city of the South China, and they found that 

67.65% of teacher questions were posed to request for student-generated explanation 

and analysis in expert teachers' classes，whereas 35.61% in the novice teachers' 

classrooms. Also, as indicated in the above section, 71.4% of the identified episodes 

of extended discourse were associated with instructional explanation which was co-

constructed by the teacher and students in our pilot study. 

2.2 Linking Instructional Explanation to Students' Learning 

Explanation poses advantages in learning. In philosophy, accounts of 

explanation, no matter how different they may be, agree that explanation is 

intimately related to understanding, and good explanations succeed in producing 

understanding (Friedman, 1974; Kitcher, 1989; Trout, 2007). Empirical research in 

education and cognitive science also suggests that explanation, either students' self-

explanation or instructional explanation provided by the others as well as that co-

constructed by the teacher and students, play a key role in students' learning (Chi, 

Bassok, Lewis, Reimann, & Glaser，1989; Renkl, 2002; Leinhardt & Steele，2005). 

For the specifics of the reviewed empirical studies, please see Appendix 1. 

2.2.1 Self-explanation 

Self-explanation refers to the explanation generated to oneself (Chi et al., 1989). 

Studies show that, when learners were asked to provide explanations to themselves, 

they learned more effectively. This phenomenon is known as the self-explanation 

effect，initially discovered by Chi and her colleagues (Chi, et al , 1989). In their 
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experimental study, they analyzed the self-generated explanations from talk-aloud 

protocols that "good" and "poor" students produced while learning procedural skill 

from examples provided in a physics text. Eight college students, who first studied the 

prose sections of an introductory physics text, were then asked to explain (on a 

voluntary basis) whatever they understood from reading a sequence of action 

statements from three worked-out solution examples. The result showed that, "good" 

students {n=A) who were subsequently more successful at solving problems at the end 

of the chapter (averaging 82% correct in the posttest) were the ones who 

spontaneously generated a greater number of self-explanations while studying the 

examples (15.3 explanations per example). Moreover, these explanations, which were 

guided by accurate monitoring of students' own understanding and misunderstanding, 

were refined and expanded the conditions for the action parts of the example solutions, 

and were related these actions to principles in the text. However, "poor" students {n=A) 

did not monitor their learning accurately, and averaged 46% correct on the posttest 

and generated only 2.8 explanations per example. The self-explanation effect has been 

replicated in other laboratories, all in the domain of learning a procedural skill (e.g., 

applications of principles of electricity and magnetism to the Aston mass spectrometer, 

Ferguson-Hessler & de Jong, 1990; algebra word problems, Nathan, Mertz, & Ryan, 

1994). 

Chi and her colleagues extended that finding, showing that self-explanation could 

also be facilitative when it was explicitly promoted in the context of learning 

declarative knowledge from biology text on the human circulatory system (Chi, de 

Leeuw, Chiu, & LaVancher, 1994). In this study, 14 eight-grade student were merely 

asked to generate explanation after reading each line of a passage, and 10 students in 

the control group read the same text twice without the prompt to self-explain. All of 
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the students were tested for their knowledge about circulatory system before and after 

reading the text. The result indicated that the prompted group had a greater gain from 

the pretest to the posttest. Moreover, within the prompted students, who generated a 

large number of self-explanations (the higher explainers), learned with greater 

understanding than those who generated fewer explanations. 

Till now, the self-explanation effect has been documented in a broad range of 

domains, such as conceptual change in five-year-old children's understanding of 

number conservation (Siegler, 1995; 2002), 3.5-year-old children's acquisition of 

false belief understanding (Amsterlaw & Wellman, 2006), and college students' 

improvements in Chinese reading comprehension (e.g., prose learning, Yang & Weng, 

2008; Chinese science explanatory texts, Jing & Lu, 2009). The effect has also been 

reported under various settings, including regular classroom instruction and laboratory 

environments, as well as reading from text and computer-assisted learning (Cong, 

2007; Williams & Lombrozo, 2010; Aleven & Koedinger, 2002; Chi et al., 1994). It 

was found that the greatest benefit of self-explanation is in transfer and generalization 

to problems and inferences that require going beyond the material originally studied 

(e.g., category learning, college students, Williams & Lombrozo, 2010; mathematics 

learning, college students, Ren, 2008; mathematical problem-solving, grade 9 students, 

Cong, 2007). In addition, the results from comparative group studies also suggested 

the advantage of self-explanation on learning in comparison with alternative strategies, 

such as thinking aloud, reading materials multiple times, or receiving feedback in the 

absence of explanations (Chi et al.，1994; Wong, Lawson, & Keeves，2002; Rittle-

Johnson, 2006). 

It is notable that, although self-explanation makes difference in students' learning, 
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the literature also indicated that learning through self-explanation was not easy to do. 

Not all students generated explanation spontaneously. There were considerable 

individual differences in students' ability to self-explain (Chi et al.，1989; Renld, 1997, 

2002). Some studies indicated that few students were good self-explainers (Renkl, 

Stark, Gruber, & Mandl, 1998). The challenge therefore is to support students who are 

not inclined to self-explain or are not good at generating effective self-explanation. 

For this, some researchers turn to investigate instructional explanation and its relation 

to students' learning (GroBe & Renld, 2006; Stark, Kopp, & Fischer, 2011) 

2.2.2 Instructional Explanation 

A number of studies examined instructional explanation, which is provided for 

others, and its relationship with students' learning. For this, there were two lines of 

studies. One was conducted in laboratories, and instructional explanation was 

provided either by the experimenter or by the computer (Renkl, 2002; Cong, 2007). 

The others were carried out in classroom. Instructional explanations in these studies 

were often co-constructed by the teacher and students (Leinhardt & Steele, 2005; 

Leinhardt, 1993). 

A. Instructional Explanation Provided by the Others 

The studies conducted in the laboratories were mostly computer-based, where 

provision of instructional explanation was in the form of written feedback and 

presented by default. For example, Alexander Renld in the University of Freiburg, 

investigated the effect of instructional explanation on students' computer-supported 

example-based learning (e.g., mathematics), and searched for methods to improve the 

effect of instructional explanation on students' learning in his laboratory (Renld, 2002; 

Schworm & Renkl, 2006; Berthold & Renkl, 2009, 2010; Wittwer, Nuckles, 
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Landmaim, & Renkl, 2010). In one of his studies, RenkI examined the effect of 

instructional explanation on learning from worked-out examples from the domain of 

probability calculation. By worked-out examples, they consist of a problem 

formulation, solution steps, and the final solution itself. In the study involving 48 

student teachers, the participants were assigned into two groups: the experimental 

group with instructional explanation and the control group without the provision of 

instructional explanation. Specifically, after all the participants read the worked-out 

examples, finished the new examples and were provided the complete and correct 

solution steps sequentially, there was an "Explanation" button installed in the 

experimental group. The screen of explanation presented the rationale of the solution, 

such as "the multiplication principle of probability is used to solve the present 

problem, that is p (A and B) = p (A)*p (B)". In the program version of the control 

group, it was not possible to read any explanation or help. The result indicated that the 

experimental group outperformed the control group in far transfer {ch 0.57) and the 

effect did not depend on prior knowledge. There was no significant difference in 

terms of near transfer. By far transfer, it refers to the test that required the 

participants to solve problems that were not structurally similar to the worked 

examples in the learning phase. For near transfer, the problem structural was similar 

between the test and the worked examples. 

Most of these experimental studies were conducted based on a well-structured 

domain, such as mathematics and science (e.g., physics, chemistry, and medicine). 

And the participants were mainly consisted of college students. On the basis of 21 

such studies regarding instructional explanations in example-based learning on 

computer, Wittwer and Renkl (2010) carried out a meta analysis，and they found that 

the benefits of instructional explanations for example-based learning per se were 
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minimal {d=0.\6), and the effect was affected by the other factors, such as type of 

outcome measure, learning domain, type of instructional explanation and provision 

manner of instructional explanation. For example, instructional explanations were 

found more helpful for acquiring conceptual knowledge (<i=0.36) than for acquiring 

procedural knowledge, and yielded a significant effect size in studies with 

mathematics as a learning domain ((i=0.22). 

B. Instructional Explanation Co-constructed by Teacher and Students 

The other researchers investigated instructional explanation and students' 

learning in regular classroom teaching. Distinguished from the experimental studies 

in laboratories, most of such studies used a descriptive approach. 

Gaea Leinhardt of the University of Pittsburgh, known for her "expert-novice 

contrast" approach for research on teaching, conducted series of studies on 

instructional explanation in mathematics classrooms (Leinhardt, 1987，1989). 

Leinhardt selected the teachers for her study whose students had exceeded expected 

achievement scores in standardized mathematics test for 3 consecutive years. These 

would be the "experts" to whom she contrasted the "novice" teachers, usually the 

student teachers who were in their last semester of study program and were actively 

engaged in student teaching. Then, she conducted meticulous observations in the 

classrooms of these teachers, recording everything the teachers said and did over long 

periods of time, in order to establish the rhythms of routine and repeated strategies 

they employed in their teaching. Leinhardt also interviewed the teachers before and 

after each videotaped lesson regarding their mathematical knowledge and 

observational patterns or routines, using such analytic methods as "semantic nets" to 

plot those patterns. Here, semantic nets contain the presented concepts and 
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connections between them across lessons in teacher statement as well as in students' 

statement, which allow researchers and others to readily “see，, what was cognitively 

available in the lesson as a whole and how all the ideas were interrelated (Leinhardt, 

1987). In this manner, she documented the way in which the expert mathematics 

teachers differed from the novice teachers—in mathematical knowledge, the quality 

of their explanations, and other aspects of their competence in mathematical pedagogy. 

For example, Leinhardt found that when teaching functions and graphing, the expert 

teaches were able to foster meaningful connections between function and graphing 

while a novice one tended to miss the opportunities (Stein, Baxter, & Leinhardt, 1990). 

Also, on a sequence of subtraction lessons, the experts explicitly explained to their 

students the conditions for the use of the concept of regrouping. Conversely, the 

novice teachers were not able to provide the explanation adequately. 

In a recent study, Leinhardt and Steele (2005) traced a 10-lesson unit on functions 

and their graph taught by Magdalence Lampert (professor of University of Michigan, 

and mathematics teacher in primary school) to a 5th-grade classroom. They used this 

trace to help analyze and systematize the complexity of classroom discourse in 

general and co-constructed instructional explanations in particular. The analysis 

showed that Lampert’s instructional dialogues served two purposes: they developed 

co-constructed instructional explanations of the key mathematical concepts (e.g., 

origin, ordered pair, absolute value), and they allowed the class to navigate a 

meaningful path through the relevant mathematics. Although they clearly did not have 

enough data on Lampert's students to link her teaching, they offered four examples of 

student behavior to suggest that the students were learning important information 

about mathematics. The examples included the students' ability to remember the main 

ideas from the previous lessons, and to solve all of the public errors. Students were 
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also able to share their insights, emerging reasoning, and justifications. In addition, 

the students were not only able to give many different reasons in support of an idea 

but also to do so in collaboration with one another. 

Similar to the findings revealed in Leinhardt's study, the co-constructed 

instructional explanation was found important in terms of its motivational 

consequences for student learning. Firstly, the process of inquiry, discussion and 

meaning making fostered students' interest in learning, irrespective of what was a 

subject matter (Hickey et al, 2001; Favero, Boscolo, Vidotto, & Vicentini, 2007). In 

contrast, the instruction, that teachers dominated the classroom discourse, and not 

allowed for critical and independent opinions, arouse anger and anxiety in children, 

and hence, undermined intensive academic engagement and learning interest (Assor 

& Kaplan，2001; Assor, Kaplan, Kanat-Maymon, & Roth, 2005). Also, the 

interactions between students and teachers in classroom discourse contributed to 

students' self-efficacy (Pintrich & Schimk，2002; Nie & Lau, 2010). It also helped 

students to experience agency and autonomy in their own learning by providing them 

with more opportunities to explain and justify their ideas, as well as to make choices 

(Yackel & Cobb, 1996; Whitenack & Yackel, 2002). Finally, the co-constructed 

instructional explanations are important because they "carry" the overall pedagogical 

messages of the classroom through both style and stance and because they contain 

critical elements of legitimacy, modality, and function from the discipline, and thus 

shape students' deposition towards a subject matter as well as their view of learning 

the subject matter (Leinhardt & Steele, 2005; Lampert, 1990). 

For example, in mathematics classrooms, the teacher or the text authority 

contributed to the development of students' view of mathematics as predetermined 
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and unarguable truths, which they either did or did not understand, but not the 

discipline to which they could possibly contribute or to question (Schoenfeld，1992; 

Hamm & Perry, 2002). Likewise, the studies also showed that when the teachers 

shared responsibility and authority by means of explicit negotiation, adaptation, and 

intervention (e.g., overlapped their speech with students' response), it helped students 

to learn what counts as a mathematical explanation, as well as what counts as a 

different, sophisticated and efficient mathematical solution (Forman, Mccormick, & 

Donato, 1998; Yackel & Cobb, 1996). 

Compared to the explanation generated to oneself — self-explanation, the 

instructional explanation received from the others (e.g., the computer, the 

experimenter) as well as co-constructed by the teacher and students, revealed potential 

advantages. One of the advantages is that the instructional explanation is more likely 

to display knowledge in a correct, complete and coherent form, which makes 

difference in students' learning. By contrast, students' self-explanation is not always 

correct, clear, or complete (Renkl, 1997; Leinhardt, 1993, 2001, 2010). Another 

advantage lies in the role of instructional explanation played in intervention when 

learners face impasses and cannot generate explanations autonomously to solve 

problems. This argument was supported by a series of studies (Sanchez, Garcia-

Rodicio, & Acuna, 2009; Schworm & Renkl, 2006). For example, Wittwer and Renkl 

(2010) found that instructional explanation showed a larger effect size in conceptual 

knowledge and mathematic learning，as both might be more difficult and induce more 

uncertainty for learners when they were left alone. 

Related to this issue, instructional explanation is also helpful when the learners 

cannot monitor their own comprehension precisely and are not aware of their needs 

-24 -



for explanatory support. For instance, Renlcl (2002) reported that there were a number 

of students in the explanatory support condition who did not request instructional 

explanation as many times, even though they actually needed them. These students 

had low prior knowledge, and they rarely used the explanatory support or generate 

sufficient explanation to themselves, which caused detrimental effect on their learning 

(Chi et al., 1989). Similar results were also arrived at in the study by Aleven and 

Koedinger (2000). Additionally, many students were also inclined to be miscalibrated 

with respect to their understanding; that is, they thought they understood in far more 

detail than they really did. This bias, the "illusion of understanding" also hindered 

their learning (Keil, 2006; Chi, de Leeuw, Chiu, & LaVancher, 1994). These studies 

suggest the deficiency of learner's meta-cognitive skills and the potential benefits of 

instructional explanation in such situations. 

2.2.3 Self-explanation and Instructional Explanation 

Some empirical studies compared effects of self-explanation and instructional 

explanation (GroBe & Renld，2006; Cong, 2007; Sanchez, Garda-Rodicio, & Acufia, 

2009). For example, involving 170 student teachers as the sample, GroBe and Renkl 

(2006) found that both self-explanation and instructional explanation enhanced 

students' procedural knowledge in mathematics learning. And the effect did not differ 

significantly between students' self-explanation and the instruction explanation. 

However, the instructional explanation yielded a larger effect in learning conceptual 

knowledge, which asked the learners to discuss the advantage and disadvantages of 

solution methods and the like. Likewise, based on 165 grade-9 students working on 

probability problems, Cong (2007) found that self-explanation facilitated students' 

near transfer and far transfer, but the condition of self-explanation combined with 

instructional explanation was found more effective. Here, instructional explanation 
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was presented as feedback after students' generation of incorrect self-explanation. 

Also, study by Schworm and Renkl (2006) revealed that instructional explanation was 

perceived more helpful by the participants (student teachers); however, it was the self-

explanation led to the best learning outcome. What is more, the instructional 

explanation reduced student teachers' efforts to generate self-explanation and thereby 

their performance in instructional design of geometry and physics. These studies 

verified the benefit of self-explanation and instructional explanation on students' 

learning. Meanwhile, they suggested the potential advantages and disadvantages of 

both under certain conditions. To be specific, based on the empirical studies 

mentioned above, it seems beneficial to join self-explanation and instructional 

explanation. However, the timing issue, i.e., provision of the instructional explanation 

before or after students' self-explanation (e.g., Schworm & Renkl, 2006; Cong, 2007)， 

becomes a significant determinant of students' learning outcome. 

In order to find ways to join self-explanations and instructional explanations in a 

way that combines their respective advantages, Renkl (2002) proposed what is called 

"SEASITE" (self-explanation activity supplemented by instructional explanation) 

principles for the design of instructional explanations, including as much self-

explanation as possible, as much instructional explanation as necessary, provision of 

feedback to reduce the learners' illusions of understanding, provision on a learner's 

demand, progressive help, and focus on principles in terms of the content of 

instructional explanation. 
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3. The Mechanism of the Explanation's Effects on Student Learning 

Why is the process of explaining helpful for learning, and especially for deep 

learning: acquiring knowledge and understanding in a way that leads to its retention 

and use in future contexts? Researchers, motivated by philosophical theories, 

cognitive science and learning theories, have generated a number of proposals about 

the mechanisms that underlie explanation's beneficial effects on learning. These 

include the meta-cognitive benefits of engaging in explanation (such as prompting 

learners to identify and fill gaps in their knowledge), explanation's integration of new 

information with existing knowledge, explanation's constructive nature, and its role in 

dynamically repairing learners' mental models of particular domains (Chi et al , 1994; 

Chi, 2000; Siegler, 2002; Crowley & Siegler, 1999). Generating explanations may 

also guide learners to interpret what they are learning in terms of unifying patterns or 

regularities and promote the discovery of broad generalizations (Friedman, 1974; 

Kitcher, 1981; Williams & Lombrozo, 2010). Given the diversity of the processes that 

can underlie learning, it is likely that explanation influences learning via the multiple 

mechanisms (Nokes & Ohlsson, 2005). 

The works above indicate that explanation, either self-explanation or instructional 

explanation, contributes to students' learning. However, research also suggests that 

the quality of explanations, rather than the source of explanation (self vs. other), is the 

key (Rittle-Johnson, 2006). In the following sections, the focus of the literature 

review turned to the criteria for a good explanation. 
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Ill Criteria for the Evaluation of Instructional Explanation 

in Teaching Mathematics 

In this section, the review consists of two parts. First, we focused on the criteria 

for assessing quality of instructional explanation based on the literature from the 

perspectives of scientific philosophy, communication, and pedagogy respectively in 

the western. And then, we reviewed and summarized the distinctive features of 

instructional explanation that made effective teaching in Chinese mathematics 

classroom. 

1. The Scientific Philosophy Perspective 

Carl G Hempel and Paul Oppenheim (1948) published their seminal essay 

"Studies in the Logic of Explanation." Almost everything written on the nature of 

scientific explanation in the following years derives directly or indirectly from that 

essay. According to their deductive-nomological model, an explanation could be 

divided into two major constituents, the explanandum and the explanans. The 

explanandum is that which is being explained, and the explanans is that which does 

the explaining. That is, the explanandum is the "X" in "Why X?", and the explanans 

is the (an) answer to the explanation-seeking why question. If a proposed explanation 

is to be sound, its constituents have to satisfy certain conditions of adequacy, which 

may be divided into logical and empirical conditions. The logical conditions of 

adequacy include, first, the explanandum must be a logical consequence of the 

explanans; second, the explanans must contain general laws, and these must actually 

be required for the derivation of the explanandum; and finally, the explanans must 

have empirical content, i.e., it must be capable, at least in principle, of test by 
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experiment or observation. The empirical condition of adequacy refers to that the 

sentences constituting the explanans must be true. The explanans has not only to 

satisfy some conditions of factual correctness, but also to be highly confirmed by all 

the relevant evidence available. Although their model creates a lot of controversy in 

the philosophy of science (Salmon, 1989)，the criteria they proposed for a sound 

explanation, especially for the explanans, are significant, and was echoed from the 

empirical research of effective instructional explanation. 

Researchers also identified other important dimensions to guide the evaluation of 

explanation, including simplicity, relevance, consilience and coherence (Keil, 2006; 

Lombrozo, 2007; Thagard, 1989). For example, it was found that simplicity is used as 

a basis for evaluating explanations and for assigning prior probabilities when 

unambiguous probability information is absent (Lombrozo, 2007). Simplicity here 

means that the explanans should be as small as possible, and the explanandum should 

be as big as possible. Relevance could be recognized in their simplest and most 

straightforward forms. In other words, the speakers should be informative, which 

corresponds to the relation maxim of Grice's Cooperative Principle (Grice, 1975). 

Additionally, explanations are more appealing when they use diverse forms of 

evidence for initial causes as William Whewell (1847) argued for the notion of 

"consilience". Coherence speaks of the different elements of an explanation working 

in concert to achieve an internally consistent package. And it has also been defined in 

terms of constraint satisfaction (Thagard, 2000; Thagard & Verbeurgt, 1998), which 

means a set of elements is coherent to the extent that each element in a set positively 

constraints other ones, or be negatively constraining, that is, they contradict or 

causally block other elements. What is more, coherence is related to a notion of 

systematicity, the extent to which elements form a tightly interconnected, mutually 
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supporting relational structural. In Trout's view (2007), coherence consists of three 

features: completeness, plausibility and consistency. 

2. The Communication Perspective 

Explanations concern transaction and create trajectories (Keil, 2006). They often 

take place in and take the form of conversation, even within one mind. If explaining is 

considered a communicative activity, then "explanations are constrained by general 

rules of conversation" (Hilton, 1990). Based on the Cooperative Principle, that is 

"Make your conversational contribution such as is required, at the stage at which it 

occurs, by the accepted purpose or direction of the talk exchange in which you are 

engaged" (p.45), Grice (1975) proposed four conversational maxims. The first is 

quality. That is not saying things that are untrue; e.g., if I need sugar as an ingredient 

in the cake you are assisting me to make, I do not expect you to hand me salt. The 

second is quantity, which means not saying more or less than is required; e.g., if you 

are assisting me to mend a car, when I need four screws, I expect you to hand me four, 

rather than two or six. The third is relation, referring to that one does not say things 

that are extraneous. The last is manner, be brief, be orderly, and avoid obscurity and 

ambiguity. Though Grice is interested in the informal logic underlying everyday 

conversations, his framework provides important insights into the quality of 

classroom discourse in general and instructional explanation in particular (Needels, 

1988; Forman & Larreamendy-Joerns, 1998; Rodrigues & Thompson, 2010; Nunn, 

2006). 

Based on Grice's four criteria, Needles (1988) identified six communicative logic 

variables to indicate the quality of classroom discourse (Table 2). Involving a sample 

of 10 sixth-grade science teachers and their students, Needles examined the quality of 
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classroom discourse measured with the criteria and its relationship with students' 

performance. The results showed negative relationships between violations of the 

communicative logic and high-aptitude students' percentage-correct response on the 

targeted learning tasks. 

Table 2 the Application of Grice's Criteria in Needles' Study 

Grice (1975) Needles (1988) 
Criteria Variables 

Quality incorrect use of words 

incorrect causal relationships 

Quantity omission of necessary definitions 

omission of causal factors 

Relation irrelevancy 

Manner confusing syntax 

Definitions 
Discourse containing self-contradictions or 
semantically anomalous statements 
Discourse that reverses a cause-effect relationship or 
attributes a cause to the wrong factor 
The use of a technical word without providing its 
definition 
Mention of an effect without adequately explaining 
important causal factors or the direction of the effect 
The presentation of information unrelated to the 
content being taught 
Obscure referents, or presented information in an 
incomplete manner  

Both the perspectives of scientific philosophy and communication proposed 

criteria for the evaluation of explanation. However, it is notable that most of the 

criteria had little to do with teaching and learning. As a consequence, it might be 

worthwhile to try to specify what features seem to be characteristic of particularly 

effective explanation in pedagogy. 

3. The Pedagogy Perspective 

Here, the pedagogy perspective is specifically in the case of mathematics. As a 

legitimate part of pedagogy, the effectiveness of instructional explanation depends 

not only on the principles of explanation from the perspective of scientific 

philosophy and communication, but also on their fidelity to the essential features of 

a subject matter and to the learners (Ball, 1993; Lampert, 2001; Shulman & Quinlan, 
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1997). A large body of research, theoretically and empirically, touches on the 

distinguishing characteristics of effective instructional explanation. 

For example, Gaea Leinhardt, by conducting comparative studies of explanation 

in mathematics and history, has identified seven aspects with respect to the 

instructional explanation (Leinhardt & Steele, 2005; Leinhardt, 1993, 2001). First, 

there is a significant object of inquiry or problem within the domain. Also, the 

instructional explanation must contain a useful set of examples and non-examples 

that exemplify the concept being explored. Third, appropriate representations must 

be available for both teacher and student to use. New information must be built on 

prior knowledge, intuitions, and inquiries. Fifth, the core principles of the concept 

must be clearly marked on completion of the explanation. Sixth, the conditions of 

use, or boundary conditions, for the concept must be established. Finally, the nature 

of errors must be resolved. Wittwer and Renkl (2008), by focusing exclusively on 

learning by receiving instructional explanations from a variety of empirical research, 

proposed four guidelines for conducting the instructional explanations effectively. 

They are (a) to be adapted to the learner's knowledge prerequisites; (b) to focus on 

concepts and principles; (c) to take into account the learners' ongoing cognitive 

activities but (d) not to replace learners' knowledge-construction activities. In 

addition, Heather Hill, collaborated with Deborah Ball and other researchers, has 

developed measures of mathematical knowledge for teaching and the mathematical 

quality of teaching (Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 2008; 

Hill, Schilling, & Ball, 2004). As a synthesis of these works, the pedagogical criteria 

of instructional explanation in teaching mathematics are deliberated below. 
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3.1 Richness of Mathematics in Instructional Explanation 

Lots of research indicated that the substantial content embedded in classroom 

discourse is a much stronger predictor of students' learning when compared with the 

format and structural of the interaction (Murphy, Wilkinson, Soter, Hennessey, & 

Alexander, 2009; Perry, 2000). In mathematics class, richness of mathematics, such 

as teachers' use of mathematical language, emphasis of general concepts and 

principles (e.g., additional principle in probability), multiple solution methods and 

multiple representations, allows students to build a conceptual mathematical base as 

well as connections within and among different components of mathematics. 

Teacher's use of mathematical language is regarded as both highly variable and 

also a key feature of the mathematical quality of classroom instruction (Hill et al.， 

2008). The amount of day-care teachers' math-related talk was found to significantly 

related to the growth of preschoolers' conventional mathematical knowledge over 

the school year (Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006). 

Language constructs meaning for students as they move toward modes of thinking 

and reasoning characterized by precision, brevity, and logical coherence in 

mathematics (Marton 8l Tsui, 2004). Effective teachers share with their students the 

conventions and meanings associated with mathematical discourse, representations, 

and forms of argument, so as to fine-tune students' mathematical thinking and 

enculturate students into the mathematics (Yackel & Cobb, 1996; Wood, 2002; 

Khisty & Chval, 2002). 

Numbers of studies, which used different terminologies, such as conceptual 

explanation, declarative explanation, rule-based and principle-based explanation, 

found that explanations, focused on general concepts, rules and principles, helped 
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learners move beyond specific learning tasks and acquire the knowledge that can be 

flexibly applied to new problem-solving situations and, thus, deepen understanding 

in a knowledge domain (King, 1994; Hohn & Momes, 1997/1998; Roscoe & Oii, 

2007, 2008). For example, Berthold and Renkl (2010) showed that prompts or 

training for focused processing regarding the central principles and concepts of 

explanation were especially effective to foster learning outcomes in computer-

mediated instructional communication settings. Likewise, Fuchs and her colleagues 

conducted a classroom-based experiment to explore methods for helping students 

generate conceptual mathematical explanations during peer-mediated learning 

activities. The results revealed that，the group that was trained to offer elaborated 

and conceptual mathematical explanations, asked more participatory, procedural 

questions (e.g., "what minus what", "can you do that", "what do you need to do"), 

and provided more conceptual explanations 10 weeks after the training. Moreover, 

the students of such group performed much better than their peers who were trained 

to provide explanations that were elaborated but did not touch on the mathematical 

concepts (Fuchs, Fuchs, Hamlett, Phillips, Karns, & Dutka, 1997; Fuchs, Fuchs, 

Kams, Hamlett, Dutka，& Katzaroff, 1996). 

Also, comparing, reflecting on, and discussing multiple solution methods have 

been a central tenet of the reform pedagogy in mathematics for the past 20 years 

(Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 2005). The experimental 

studies indicated that comparing and contrasting alternative solution methods helped 

students differentiate the important features such as the shortcut step, the efficiency of 

methods and, hence, facilitate conceptual and procedural knowledge in solving 

algebra equation and arithmetical problems (Schwartz & Bransford, 1998 ； GroBe & 

Renkl, 2006; Rittle-Johnson & Star, 2007). Furthermore, cross-cultural comparative 
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studies revealed that teachers in high-performing countries such as Japan and Hong 

Kong often have students produce and discuss multiple solution methods (Stigler 

Hiebert, 1999). 

Likewise, appropriate representations must be available for both teachers and 

students to use, especially when teaching and learning mathematics or the hard 

sciences (Leinhardt, 2001). In those domains, the representations can include 

operational representations or diagrammatic representations (White, 1993). For 

appropriateness and effectiveness, representations must connect in relevant and 

explicit ways to the explanations being developed, because representations in and of 

themselves speak nothing and they may even cause split-source effect which impairs 

learning if students do not understand the connections (Berthold & Renkl, 2009; 

Ainsworth & Van Labeke, 2004; Ainsworth, 2006; Sweller, 2005). 

Similarly, instructional explanations must contain a useful set of examples and 

nonexamples, which exemplify the concepts being explored. For learning to occur, 

the examples need to encapsulate a range of critical features and should be unpacked, 

with the features that make them an example clearly identified. Studies indicated 

that examples constitute a fundamental part of effective teaching in well-structurald 

domains such as mathematics (GroBe & Renkl, 2007; Renkl, 2005; Paas & van Gog, 

2006). Examples connect prior information with new information. They can help to 

demonstrate the legality of a principle or even to show when a concept does not 

apply; and they can be used to clarify a core query, that is, to help students see 

exactly what the question is (Rissland, 1991; Atkinson, Derry, Renkl, & Wortham， 

2000). 
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3.2 Tailoring Instructional Explanation to Students' Needs and Engaging 

Them into the Process of Explanation 

For Confucius, there is a famous saying that "I hear and I forget, I see and I 

remember, I do and I understand". Although rich mathematics contains great 

resources for students, this is not sufficient. Instructional explanation must tailor to 

students' needs and further actively engage students into the process of explanation, 

because the success of instructional explanations depends not only on the sender and 

his or her ability to provide good explanations but also on the recipient learners 

(Cohen, Raudenbush, & Ball, 2003; Berthold & Renkl, 2010). 

For example, Webb and colleagues found that level of elaboration in explanations 

provided to tutees affected their learning outcomes. The highest level of explanation 

received correlated positively with students' arithmetic and mathematical reasoning 

skills. However, a follow-up constructive activity that student engaged in, such as 

explaining how to solve problems using concepts stated or implied in the 

explanations received, showed a larger effect on learning (Webb, Troper, & Fall, 

1995; Webb & Mastergeorge, 2003; Webb, Ing, Kersting, & Nemer, 2006). 

Furthermore, Neber (1995) found that the quality of the explanation itself was not 

significantly related to students' knowledge acquisition; but it made difference in 

students' learning when students integrated the information of the explanation into 

their ongoing problem-solving activities. Consequently, although instructional 

explanations provide students with learning opportunities, they result in effective 

learning more likely only if they encourage students' productive engagement 

(Wittwer & Renkl，2008). 

On this issue, the researchers stress the importance of adaptive instructional 
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explanation in order to meet the students' needs (Wittwer & Renkl, 2008; Wittwer, 

Nuckles, Landmann, & Renkl, 2010). For a provided explanation to be adaptive, 

some studies considered the timing issue (explanations presented on learner demand) 

or the combination of timing and cognitive dissonance (explanation presented after 

errors or impasses). For instance, Webb and her colleagues suggested that 

instructional explanation should be relevant to the learners' particular 

mi sunder standing or misconception (Webb, 1989; Webb & Palinscar, 1996). Only 

then might explanations close gaps in the learners' understanding, remove 

misconceptions, address errors, and foster connections between new information and 

prior knowledge (Webb & Mastergeorge, 2003). Additionally, the errors could 

trigger reflection, self-explanation, and discussion that, in turn, lead to greater 

procedural flexibility and a better understanding (VanLehn, 1999; GroBe & Renkl, 

2007; Siegler, 2002). The significance of this issue is also evident in the consistent 

positive effects of the self-explanation on learning (Kittle-Johns on, 2006; Chi, et al., 

2001). Because self-explanations are out of the students' needs and carried out by 

the students themselves; besides, self-explanations are constructed out of the 

learner's prior knowledge and much more timing; hence, they are adaptive and 

effective (Renkl, 2002). 

Related to adaptive instructional, many studies also suggested the moderate effect 

of individual factors on the link between classroom discourse and student learning. 

According to Lubienski (2000a, 2000b，2002) and Harris and Williams (2011), 

higher SES students were more likely to participate in the whole-class discussion 

actively, they expressed confidence in their abilities to make sense of the 

mathematical discussion and problems, and believed that the discussions exposed 

them to different mathematical ideas. However, lower SES students tended to say 
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they were confused by conflicting ideas in the discussion. They desired more 

specific direction from the teacher, and wished the teacher just tell them "the rules" 

so they could have more time to practice. Also, more of the low SES students said 

they were unsure of what they were supposed to be learning in open discussion in 

classroom. 

In a study of 118 university students, GroBe and Renkl (2007) found that, a 

mixture of correct and incorrect solutions in worked examples fostered far transfer 

performance only for "good" learners who had favorable prior knowledge; if 

learners had poor prior knowledge, providing correct solutions only was more 

favorable. Kroesbergen and colleagues (2004) also revealed that recent reforms in 

mathematics instruction requiring students to construct their own knowledge may 

not be effective for low-achieving students. In their study, they compared the effects 

of small group constructivist and explicit mathematics instruction in basic 

multiplication on low-achieving students' performance and motivation (aged 8-11 

years). They found that the math performance of students in the explicit instruction 

condition improved significantly more than that of students in the constructivist 

condition. 

In addition to SES and prior achievement, sex is another key variable. Some 

scholars argued that girls were particularly likely to benefit from teaching methods 

that emphasize students' personal construction of mathematical ideas through 

problem solving and cooperative group work (e.g., Becker, 1995; Boaler, 1997; 

Isaacson, 1990). However, a study on elementary school children showed that when 

solving problems，girls were more likely than boys to use the given, standard 

algorithms as opposed to invented strategies (Fennema, Carpenter, Jacobs, Franke, 
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&Levi，1998). 

3.3 Effective Teaching in Chinese Mathematics Classroom 

Chinese students have excelled in many international assessments of 

mathematics achievement. For example, the newly released PISA 2009 showed that 

students in Shanghai and Hong Kong ranked top 1 and 3 respectively in 

mathematics among 65 countries and regions. A large number of comparative 

studies attempted to explore the factors that contribute to the high performances of 

Chinese students, and they identified some distinguished features characterizing 

classroom discourse in Chinese classrooms. Specifically, in comparison with their 

counterparts from U.S., Chinese teachers developed a better understanding of 

subject matter content, and they were more likely to demonstrate their flexible 

representation of such understanding in their classrooms (e.g., Ma, 1999). In 

classroom instruction, Chinese mathematics teachers were shown to be more likely 

to use explanations that were based on mathematical principles (such as place value 

or de- and recomposing 10) which are generalizable across problems (Perry, 2000). 

They focused more on mathematical rules, procedures and reasoning in the extended 

Q   

discourse (Schleppenbach^et a l , 2007). They tended to use a variety of well-

presented and carefully sequenced examples to help students acquire concepts and to 

provide immediate feedback to students (Zhang <& Zhou, 2003). They requested 

more mathematical statements and explanations from their students (Miller, Correa, 

Sims, Noronha, & Fang, 2005), and placed substantial emphasis on students' errors, 

and used errors to prompt student discussion of mathematical concepts. While U.S. 

8 Extended discourse is a particular discourse practice, which refers to questioning and discussion led 
by the teacher after students provides a correct response. It is essentially an I-R-E sequence that the 
teacher has extended typically by withholding evaluation of an answer and instead asking the student 
follow-up questions (Schleppenbach et al., 2007, p.382) 
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teachers chose to give a direct answer or tended to neglect to address the errors 

(Schleppenbach, et al., 2007; Wang & Murphy, 2004; Stevenson & Stigler，1992). 

Existing studies also revealed that coherence, mostly defined as logical 

connection or consistency of the structural of instructional content, is a salient 

characteristic of mathematics classroom instruction in China (Wang & Murphy, 

2004; Stigler & Hiebert, 2004; Stigler & Perry, 1988; Lopez-Real, Leung, & Marton, 

2004). For example, using the video data from the TIMSS study, Hiebert et al. (2003) 

and Leung (2005) pointed out that lessons in Hong Kong are more coherent than 

those in other countries. In particular, Leung indicated that "90% of the Hong Kong 

lessons are judged to be thematically coherent, with the remaining 10% moderately 

thematically coherent". Bryan and colleagues (Bryan, Wang, Perry, Wong, 8c Cai, 

2007) compared and contrasted the similarities and differences of teachers' views of 

effective mathematics teaching and learning from Australia, Mainland China, Hong 

Kong, and the United States. They found that, of the four groups of teachers 

interviewed, only teachers from Mainland China (n=9) and Hong Kong (n=12) 

explicitly addressed the issue of having a well-structurald, coherent lesson for 

effective teaching. A typical statement for mainland Chinese teachers is that: "An 

effective lesson should have all the steps [of instruction] closely serving for the 

essential content points. ..so that students can actively participate in each step." 

In addition to the highlight of the thematic coherence, a few studies also revealed 

that the Chinese mathematics teachers emphasized coherence in terms of classroom 

discourse (Wang & Cai，2007; Chen & Li, 2010). For example, in their interview of 

9 Chinese mathematics teachers, Wang and Cai (2007) found that the interviewee 

believed that the effective lesson should have a coherent structural, which included 

following consecutive processes: introducing, explaining, questioning, practicing, 
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and summarizing. Likewise, based on four consecutive lessons from a teacher of a 

key elementary school in the eastern part of China who had over 10 years of 

teaching experience, Chen and Li (2010) analyzed the teacher's instruction content 

and process as well as the teacher's use of classroom discourse. The teacher was 

found to make explicit transitions from one activity to another, made causal links to 

previous knowledge both within a single lesson and across the sequence of lessons 

to help students learn fraction division in a logically progressive way. 

The previous works help describe the effective teaching in Chinese mathematics 

classroom. However, there are some caveats that should be noted. Firstly, most of 

the results were arrived at based on cross-cultural comparative case studies, and thus, 

the generalization of the conclusions was limited. Secondly, when conducting the 

research, the researchers did not make a direct link between the teachers' classroom 

practice and students' learning outcome. Therefore, the conclusions that labeled 

those practice as features of effective mathematics instruction in mainland China are 

questionable. More empirical research is needed to verify those conclusions. 

Based on the literature reviewed above, there are two insights regarding the 

criteria to evaluate the quality of instructional explanation. On the one hand, 

explanation itself as well as its evaluation is complex, as they are described and 

perceived in the multiple perspectives. On the other hand, there are communalities 

about what make good explanations across the different perspectives, which is 

summarized in Table 3 below. 
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Table 3 Common Criteria for Good Explanation across the Different Perspectives 

Criteria Truthfulness Richness Coherence 
Perspective Scientific 

Philosophy 
The explanans must be true 
(Hempel & Oppenheim, 
1948) 

Communication/ Quality (Grice, 1975) 
Speech Act Theory 

Pedagogy 

The explanans must 
contain general laws 
(Hempel & 
Oppenheim, 1948) 

Errors identification and 
correction; correct 
information in explanation 
(Leinhardt, 2001, 2010; 
Renkl, 1997; Siegler, 1995) 

Quantity, relation 
(Grice, 1975) 

Mathematical 
language, general 
concepts and 
principles, multiple 
solutions and 
representations 
(Marton & Tsui, 2004; 
Webb & Mastergeorge, 
2003; Silver et al., 
2005; Leinhardt, 2001) 

The explanandum must 
be a logical 
consequence of the 
explanans (Hempel & 
Oppenheim, 1948); 
Completeness, 
plausibility and 
consistency (Trout, 
2007) 

Manner (Grice, 1975) 

Logical connection or 
consistency of the 
structural of 
instructional content 
and classroom 
discourse (Stigler & 
Hiebert, 2004; Zhang 
& aiou, 2003; Chen & 
U 2010) 

Based on the works, three criteria including truthfulness, richness, and coherence 

are identified to evaluate the quality of explanation in mathematics classroom 

teaching. However, it should be noted that, just like two sides of the same coin, 

overemphasis of the truthfulness, or richness or coherence may produce undesirable 

effect under some conditions. For example, it is well-accepted that coherence is a 

distinguished feature of Chinese mathematics classroom instruction and it 

contributes to Chinese students' high performance in mathematics. However, the 

profound coherence may also reduce ambiguity tolerance, a condition for creativity 

(Lubart, 1999; Mills, 1959), in students' style of thinking. Likewise, several studies 

also indicated that Chinese students sought accuracy and correctness at the expense 

of development of their sense of adventure, another condition for creativity. For 

example, Cai found that Chinese students chose to give up when confronting 
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uncertainty in complex problem solving, while their counterparts, U.S. students, 

tended to write something on the test, even they did not know the answers to the 

problems (Cai, 1997，1998). Likewise, the overemphasis of richness of the 

mathematical content may take cognitive load to the limits of working memory 

capacity, and thus hinders student learning (Sweller, 2006; Kalyuga, 2010). 

Therefore, we should bear the possible caveats of the criteria above in mind. 

In the previous sections, we have discussed what makes a good and high-quality 

instructional explanation. Next, we would turn to the discussion centering on the 

teacher background factors that may relate to their use of high-quality instructional 

explanation. In particular, we focused on the factors of teacher knowledge and belief 

and their effects on instructional explanation. 
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IV Instructional Explanation and Teacher Knowledge and 

Belief 

It has been generally accepted that teachers' belief and knowledge play an 

important role in their pedagogy. In this section, we review studies of both 

elementary and secondary school teachers to gain a broader view of how teachers' 

belief and knowledge may impact on the teachers' use of instructional explanations. 

What a teacher knows impacts on classroom instruction. During the past decades, 

researchers have spent much time defining the necessary components of the required 

knowledge base for teaching. For this, Lee Shulman conducted series of seminal 

works (1986, 1987). In one of his paper entitled "Knowledge and teaching: 

foundations of the new refonn，，(1987), he proposed that the teacher knowledge 

included seven categories: content knowledge, general pedagogical knowledge, 

curriculum knowledge, pedagogical content knowledge, knowledge of learners and 

their characteristics; knowledge of educational contexts, and knowledge of 

educational ends, purposes, and values, and their philosophical and historical 

grounds. Many researchers have followed his framework and conducted a large 

body of studies on teacher knowledge, and its relation to teaching (e.g., Gossman, 

1990; Bromme, 1994; Ball, 1990, 1991). 

Many studies have shown that the quality of instructional explanations is related 

to teacher content knowledge. Ma's pivotal study (1999) of Chinese and US teachers 

examined the relationship between the teachers' subject-matter knowledge and their 

instructional practices, including the quality of explanations. It was found that, 

Chinese teachers had more in-depth understanding of arithmetic concepts and tended 

44 



to use explanations that include basic principles to help students make connections 

between different mathematical topics. However, US teachers who had mostly 

procedural knowledge used procedural and computational practices in the course of 

instructional explanation. Likewise, due to the different levelS of mathematical 

knowledge, Chinese teachers were found to be more capable of providing coherent 

instruction than their peers in other countries based on the video data from the 

TIMSS study (Stigler & Perry, 1988; Leung, 2005). Teachers' subject matter 

knowledge was also found to affect other areas in mathematical pedagogy. For 

example, the missing of key mathematical ideas of functions and graphing was 

found to relate to a narrowing of a fifth grade teachers' instruction in three ways: the 

lack of provision of groundwork for future learning in this area, overemphasis of 

limited truths, and missed opportunities for fostering meaningful connections 

between key concepts and representations (Stein, Baxter, & Leinhardt, 1990). 

To provide effective teaching, it is also crucial that the teacher has deep 

understanding of the knowledge in pedagogy, especially the ability to assess and 

diagnose learners' thinking, capabilities, and understanding (Ball, Thames, & Phelps, 

2008; Shepard, 2001; Carpenter, Fennerma, & Fmnke, 1996). There is evidence 

suggesting that, more successful teachers possess more knowledge about typical 

misconceptions that students might have in a certain domain and are better able to 

monitor students' understanding and adapt their goals and practice for diverse 

students (Hogan, Rabinowitz, & Craven, 2003).They knew when to "step in and 

out", provided adaptive explanations, responded constructively and patiently to 

errors, and showed a sensibility for directing the discussion to ensure that important 

mathematical ideas were being developed (Ball, 1991; Femiema, Franke, Carpenter, 

& Carey, 1993; Lampert & Blunk, 1998; Hill，Blunk, Charalambous, Lewis, Phelps, 
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Sleep, & Ball，2008; Baumert, et al‘，2009). On the other hand, less effective 

teachers, even who had high level of domain knowledge, overestimated students' 

understanding required to solve algebra problems (Nathan & Petrosino, 2003), To be 

specific, the teachers tended to view symbolic reasoning and mastery of equations as 

a necessary prerequisite for word equations and story problem solving, which was in 

contrast with students' actual performance patterns. Also, they used a rule-based 

explanation, repeating the rule even when students continued to make mistakes 

(Tirosh, Even, & Robinson, 1998). 

The research also showed consistent associations between teacher beliefs and 

their practices. The findings indicated that, teachers who believed that students learn 

mathematics by constructing their own understanding in the process of solving 

problems, assumed a proactive role in classroom discourse. They actively engaged 

students in activities that assisted them to construct mathematical concepts, 

requiring reasoning and creativity, gathering and applying information, discovering, 

and communicating ideas (Wood, Cobb, & Yackel, 1991; Yackel & Cobb，1996; 

Larapert, 1991; Thompson，1992; Peterson, Fennema, Carpenter, & Loef, 1989; 

Stipek, Giwin, Salmon, & MacGyvers, 2001). In contrast, teachers who viewed the 

mathematics as collections of static, objective, and well-structurald knowledge, and 

knowing mathematics means being skilful and efficient in performing procedures 

and manipulating symbols without necessarily understanding what they represent, 

tended to transmit the facts, rules and procedures directly (Stigler 8c Hiebert, 1997; 

Thompson, 1992; Wood, Cobb, & Yackel, 1991). With respect to the use of 

explanation, Putnam (1992) found that a teacher with this belief was more likely to 

explain a problem to the students by telling them what to do, stressing the steps of a 

procedure, or stating a rule. The teacher also believed that learning "why'，would 
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only confuse the students. Although most of the studies were not directly related to 

instructional explanations, these studies offer important insights into understanding 

the relationship between teacher belief and their use of explanation in classroom 

teaching. 

Several studies examined teachers' beliefs regarding students' abilities to learn 

mathematics. For example, Ma (1999) showed that even though a teacher may have 

conceptual understanding of a topic, she might choose to take a procedural direction 

when teaching if she perceived that the student was not capable of reaching 

conceptual understanding. Similarly, Levenson, Tsamir, and Tirosh (2010) 

investigated sixty-one Israeli elementary school teachers' preferences for 

mathematically based (MB) and practically based (PB) explanations (Figure 1). It was 

found that although teachers generated more MB explanations than PB explanations 

on their own, they chose to use mostly PB explanations in their teaching. Because 

they believed that PB explanations would be most convincing to their students. 
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MB Explanation: Using the multiplicative identity 
We know that every number times one is equal to itself: 2/4x 1 = 2/4. But three-thirds is 

equal to one whole: 1=3/3. If we multiply 2/4 by 3/3 we get 2/4x3/3 = 6/12 

2/4x1 = 2/4 but 2/4x3/3 = 6/12 

Therefore, 2/4=6/12 

PB Explanation with illustration 
Mom gave David and Miri identical chocolate bars. David's bar is divided into 4 equal 

pieces. David ate 2 pieces. 

David lite 2 t j u l ^ ^ 4 pieces 
Miri's bar of chocolate is divided into 12 equal pieces. Miri ate 6 pieces. Each of the 
children ate the same amount of chocolate. Therefore, 2/4二6/12. 

Miri al 6 out of 12 pieces 

— m y i i 

Figure.l MB and PB Explanations for Why 2/4=6/12 (Levenson, Tsamir, & Tirosh， 

2010，p347) 

Taken together, the findings suggest that teacher knowledge and beliefs may play 

an important role in giving effective explanations. Deficits in such pedagogical 

knowledge and belief might explain why explanations are often not used 

appropriately and effectively and therefore, hinder students' learning (Chi, et al., 2001: 

N'uckles, Wittwer, & Renkl，2005; Perry, 2000; VanLehn, et al., 2003; Webb & 

Palinscar, 1996). 
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The previous works suggest that explanations (self-explanation and instructional 

explanation) play an important role in students' learning. And researchers have 

proposed some criteria for the evaluation of good or high-quality of instructional 

explanation from various perspectives. The findings also indicate that use of 

instructional explanation is affected by teacher knowledge and belief. These works 

help understand the instructional explanation's function, its evaluation, as well as the 

factors influencing its use. However, there are three limitations with this body of 

research. 

Firstly, although explanation is ubiquitous in teaching and it makes difference in 

students' learning, little is known about the situation of instructional explanation in 

Chinese mathematics classrooms. For example, what is the feature of instructional 

explanation in Chinese mathematics classes? How is the quality of instructional 

explanation? Some cross-cultural comparative studies investigated instructional 

explanation in Chinese classes. However, most of these studies were based on cases, 

and the investigation of the explanation focused on the quantity (e.g., frequency, 

length) or one or two aspects of quality (e.g., connections between knowledge, 

procedural vs. declarative knowledge) (e.g., Perry, 2000; Ma, 1999; Schleppenbach et 

al , 2007). More research is needed which should systematically examines both the 

quantity and quality of instructional explanation in Chinese mathematics classrooms. 

Secondly, it is noted that when examining the effect of explanation on learning, 

most of the empirical studies focused more on the source of explanation (self vs. 

others vs. co-constructed) than on the quality of explanation (Rittle-Johnson, 2006). 

Further, when investigating the quality of instructional explanation, the researchers 

paid much attention to the static and discrete parts of the instructional explanation. In 
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particular, a number of such studies concerned with the effect of the explanation 

constructed based on procedures or general principles on students' learning (Berthold 

8l Renkl, 2009; King, Staffieri, & Addgais, 1998). Therefore, more systematic studies 

are needed to delve more deeply into the interrelations between different aspects of 

instructional explanation and their relative importance to learning (Wittwer & Renkl, 

2008). 

Also, it should be noted that most of the experimental studies focused on students' 

cognitive learning outcomes, and non-cognitive achievement was kept out of the way. 

This is especially unfortunate because it is clear that both cognitive and motivational 

factors are relevant to successful learning and thus, research on instructional 

explanations needs to look into its effect on affective outcome of learning as well 

(Brown 1992; Berthold & Renkl，2010). 

Furthermore, as mentioned in the previous sections, although the cross-cultural 

comparative studies found some distinguished features of effective teaching in 

Chinese mathematics classrooms (Perry; 2000; ScMeppenbach et al., 2007). Most of 

the studies did not make a direct link to students' learning outcome, and thus, future 

research is needed to fill the gap. 

Finally, when exploring the effect of explanation on learning, few studies took the 

explainers' background information into account, such as knowledge and belief. 

However, many other studies have shown that previous knowledge not only affected 

the number of explanations generated, but also the quality of the explanations (e.g., 

accuracy), which further affected students' performance on their cognitive 

performance (Chi et al.，1989; Renkl, 2002). Using grade 10 mathematics teachers 

and students as sample, Baumert and colleagues (2010) also found a substantial 
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positive effect of teachers' pedagogical content knowledge on students' learning gains 

that was mediated by the provision of cognitive activation and individual learning 

support. Similarly, the research also indicated that the individual's prior belief had an 

impact on generating explanations (Lombrozo, 2006). As a consequence, some 

researchers suggest that the roles of knowledge and belief should not be neglected 

when examining the relation between explanation and learning (Perry, 2000; 

VanLehn et al., 2003; Wittwer & Renkl, 2008). 
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V. Research Questions and Hypothesis 

Based on the previous literature review and the noted limitations of the literature, 

the present study was expected to add to existing research in the following ways. 

Firstly, it would contribute to the understanding of the feature of instructional 

explanation in primary mathematics class in mainland China. Secondly, it would 

provide new evidence concerning the relationship between instructional explanation 

and students' cognitive and affective learning outcomes in mathematics. Thirdly, it 

would address the relationship between the quality of instructional explanation and 

teachers' mathematical knowledge for teaching and their views of mathematics. 

The conceptual framework of the study is presented in Figure 2. 

Teacher knowledge and belief Instructional explanation Student learning Teacher knowledge and belief Instructional explanation p Student learning 

Figure2. Relationship between Teacher Knowledge and Belief, Instructional 
Explanation and Student Learning 

More specifically, the relationship between instructional explanation and 

student achievement is depicted in Figure 3 below. 

Figure 3. Relationship between Instructional Explanation and Student Learning. 

In Figure 3, the structural features of instructional explanation refers to the 
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number of identified episode of IE, the number of turns, and the number of students 

involved in an episode of IE. Quality of instructional explanation refers to the three 

evaluation criteria: truthfulness, richness, and coherence of instructional explanation 

(see Appendix III for the evaluation criteria). Students' cognitive achievement 

consists of the skills of mathematical calculations, the skills of carrying out 

mathematical explanations and communications. Affective outcomes include self-

reported interest and dispositions towards learning mathematics. The specifics about 

these variables are explained in the methodology section. 

The research questions are as follows: 

1. What would be the cognitive features of instructional explanation in the primary 

mathematics classrooms in mainland China? More specifically, how often would 

the instructional explanation occur in the primary mathematics classrooms? 

What would be the structural features of the identified instructional explanation 

episodes (e.g., the number of turns, students involved in an episode of 

instructional explanation)? How would the quality of teacher instructional 

explanation in terms of the evaluation criteria? 

2. What would be the relationship between the instructional explanation and 

students' cognitive and affective learning outcomes in mathematics? To be 

specific, how would the structural indicators of instructional explanation (e.g., 

the number of episodes of instructional explanation, the number of turns as well 

as students contributed to one episode of instructional explanation) affect 

students' cognitive achievement and attitude towards mathematics? How would 

the quality of instructional explanation influence students' achievement in 

mathematics? Would the effects be consistent or differentiated across students' 
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cognitive and affective learning outcomes? Would the effects be moderated by 

students' SES and prior achievement? 

3. What background factors (e.g.，curriculum in use, years of teaching experience, 

years of implementing the new curriculum, and educational level) might account 

for the variation in the use of instructional explanation by the teachers? How 

would the teachers' mathematical knowledge for teaching and their views of 

mathematics affect their use of instructional explanation in terms of both 

quantity and quality? 

Based on the reviewed literature, the following hypotheses were postulated. 

1. The cognitive features of instructional explanation 

The features of instructional explanation include two parts: quantity and quality. 

For the quantity, it refers to the structural features such as the number of identified 

episodes of IE，the number of turns and the number of students involved in an 

episode. The number of turn is the unit of a successive series of exchanges. And it 

refers to the sequence of words or actions by a group member bracketed by the 

words of another group member(s). Turns unaccompanied by words (e.g., writing "3 

X 40” were also counted as speaker turns (Chiu, 2008). Here, both turns and 

students involved were begun to count as the teacher or the student asked 

explanation-seeking question (e.g., "why", "how do you think about that"). Quality 

of IE refers to the three evaluation criteria: truthfulness, richness, and coherence. 

Hypothesis 1-1 Empirical studies indicated that, Chinese mathematics teachers 

developed a better understanding of subject matter content, and they were more 

capable of organizing instructional content in a coherent manner (Ma, 1999; Stigler 
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& Hiebert, 2004; Stigler & Perry，1988). Besides, Chinese teachers placed emphasis 

on mathematical richness in classroom instruction. They focused on mathematical 

rules, procedures and reasoning, and were more likely to ask students to produce and 

discuss multiple solution methods (Schleppenbach,et al. , 2007; Stigler & Hiebert, 

1999). However, studies also revealed that some Chinese teachers focused on the 

diversity of solution methods, but without paying enough attention to the 

optimization of a solution (Yu, 2003; Huang, 2005). Consequently, it was expected 

that the Chinese teachers would score higher on the dimension of truthfulness and 

coherence, compared to their scores on the dimensions of richness. Their 

performance on the dimension of richness would be more differentiated between the 

teachers. 

Hypothesis 1-2 It is expected that the structural indicators of instructional 

explanation would correlate to the quality indicators. In particular, numbers of turns 

and numbers of students contributed to an episode would positively correlate to the 

dimension of richness and coherence of instructional explanation. For example, the 

more turns and students involved in an episode, the more likely that teacher would 

use more mathematical language and pose more responsive follow-up questions. 

2. Relationship between instructional explanation and students' 

learning 

Students' learning refers to the cognitive and affective learning outcomes in 

mathematics. Cognitive learning outcome included calculation, simple problem 

solving, and complex problem solving. Affective learning outcome contained self-

reported learning interest, classroom participation, views of mathematics, and views 

of learning mathematics. 
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Hypothesis 2-1 It was expected that the structural features of instructional 

explanation (e.g., turns, students involved in an episode), would positively correlate 

to students' cognitive and affective learning outcomes. For example, the number of 

students involved in the IE presumably would affect students' expressed interest in 

learning mathematics, classroom participation, views of mathematics and views of 

learning mathematics. 

Hypothesis 2-2 The measured quality of instructional explanation was expected to 

associate with students' cognitive achievement (Atkinson，2002; Stark et al., 2011). 

Additionally, the truthfulness, richness, and coherence of IE was expected to 

positively correlate to the students' affective outcomes, such as learning interest, 

classroom participation, views of mathematics，and views of learning mathematics 

(Leinhardt & Steele, 2005). 

Hypothesis 2-3 We assumed that the effect of instructional explanation on student 

learning would be moderated by students' SES as well as by prior achievement. 

According to the previous research, high SES students were more likely to 

participate in the classroom discussion. They benefited more from the discussion of 

different ideas (Lubienski, 2000; Harris & Williams，2011). Also, in a study of 

university students, GroBe and Renkl (2007) found that, a mixture of correct and 

incorrect solutions in worked examples fostered far transfer performance only for 

"good" learners who had favorable prior knowledge; if learners had poor prior 

knowledge, providing correct solutions only was more favorable. 
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3. Relationship between background factors and instructional 

explanation 

Hypothesis 3-1 Curriculum in use would affect the features of the identified episode 

of instructional explanation. Specifically，because the new curriculum has 

encouraged classroom instruction to engage more students in the classroom 

discourse, the classes using the new curriculum were expected to have more turns 

and students involved in the instructional explanation. Out of the same reason, since 

the new curriculum has advocated multiple solutions and multiple representations, 

the reform classes would score higher on the dimension of richness. However, the 

curriculum in use would not affect the truthfulness (accuracy) and coherence of 

instructional explanation. Years of implementing the reform, would correlate 

positively to the quantity of instructional explanation, such as turns and students 

involved in an identified episode. Additionally, teachers' experience of 

implementing the reform would contribute to their quality of instructional 

explanation. It was because the longer the teachers involved in using the new 

curriculum, the more likely they would lead an open discussion and engage more 

students in the construction of the explanation. Years of teaching experience was 

expected to affect the dimension of truthfulness. The experienced teacher would be 

more able to anticipate, identify and address the students' errors and misconceptions. 

Hypothesis 3-2 Teachers' mathematical knowledge for teaching affected their use of 

instructional explanation in both structural features and quality. Specifically, the 

teachers, who had a better understanding of mathematical knowledge, would be 

more likely to co-construct the explanation with students, elaborate sufficiently and 

engage more students in explanation for a specific query. They would also score 

higher on the scale of the truthfulness, richness, and coherence of instructional 
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explanation. 

Hypothesis 3-3 Teachers' belief of mathematics influenced the use of instructional 

explanation. Teachers, who held an open view towards mathematics, would be 

inclined to generate the explanation with students, would encourage more students' 

participation in the discussion. In addition, these teachers were more inclined to 

construct rich and coherent explanations with their students. There was an 

expectation that teachers' belief of mathematics would not affect the truthfulness of 

instructional explanation. 
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Chapter 3 Methodology 

1. Study Sample 

The data source of the current study was from the project "Has curriculum 

reform made a difference? Looking for change in classroom practice" (Ni, Li, Cai, 

& Hau, 2009). The participants of the project included 58 fifth-grade teachers and 

their 3,415 students from 20 schools, in a city of central China. There were 32 

teachers with 1,959 students who used a reformed curriculum, and 26 teachers with 

1,456 students who used a conventional curriculum. All the teachers were video 

taped in three consecutive lessons, except three teachers who had two lessons only, 

and thus 171 lessons were generated, including 96 lessons with the new curriculum 

and 75 lessons with the conventional curriculum. The instructional content of the 

teachers contained both number and geometry. 

For the current study, 39 teachers (20 reform teachers VS. 19 non-reform 

teachers) and their 2,239 students (male, 1,237; female, 1,002), were included. The 

teachers were selected based on two criteria: firstly, all these teachers had lessons 

teaching new knowledge involving only with the content of number, such as 

division of fraction, divisor, multiple, and prime numbers. This helps to minimize 

the impact of instructional content on the teachers' practice. Secondly, all the 

teachers had complete videotapes of no less than two lessons, which guaranteed the 

representativeness of the teachers' performance of the classroom practice. The 

background information of the 39 teachers was provided in Appendix 11. 

2. Measures 

The measures included three major sections. One was for assessing students' 
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learning outcomes. The second part measured teacher's mathematical knowledge for 

teaching as well as their belief of mathematics. The third part was for evaluating the 

quality of instructional explanation. The measures of student learning outcomes and 

teacher backgrounds were done in the project "Has curriculum reform make a 

difference" (Ni, et al., 2009). The part for assessing the quality of instructional 

explanation was carried out in the present study. The measures are described below. 

2.1 Measures of Student Learning Outcome 

It was conceptualized that student learning outcomes in mathematics as 

including the cognitive aspects such as the skills of mathematical calculations, the 

skills of carrying out mathematical explanations and communications, and the 

affective aspects as interest in and dispositions towards learning mathematics. 

It is noteworthy that the measures of students' mathematics achievement were 

administered to the students on three occasions over a period of 18 months. The first 

administration took place in the first term of fifth grade, the second at the beginning 

of sixth grade and the last one at the end of sixth grade. In the current study, the first 

time achievement were controlled for as the students' prior knowledge, and the third 

time performance were treated as the dependent variables. 

2.1.1 Cognitive Measures of Mathematics Achievement. 

The cognitive measures of mathematics achievement contained the three parts: 

calculation, simple problem solving and complex problem solving. The first two 

parts, containing all MC questions, were developed based on the four cognitive 

processes identified by Mayer (1987; 2003) that are involved in solving math word 

problems. These are: translation, converting word sentence into a numerical 

representation of the described situation; integration, selecting and combining 
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information into a coherent representation of the given problem; planning, breaking 

down the problem to be solved by steps; and execution, carrying out mathematical 

operations. There were a total of 32 multiple-choice questions, six items for each of 

the first three dimensions and 14 items for the execution (calculation) dimension. 

The items of the first three dimensions were grouped as routine or simple problem 

solving and those of the last dimension as calculation. The classification was done 

based on the understanding that the items for execution merely required calculations, 

whereas the items for the other three dimensions called for interpreting the problems 

or indicating steps for getting answers to the problems but no any calculation was 

required. These items were intended to assess the Two Basics, that is, basic 

mathematical concepts and basic mathematical calculations. 

Three separate common factor analyses were conducted on the student responses 

from three administrations of the measures to examine the assumed dimensions (Ni, 

et al. 2011). Except for the dimension of planning whose items showed low loadings 

on any factors, a relative clear structural was shown for the other items. Across the 

three data points (the students were assessed for three times), the total variances 

explained by the 4-6 factors ranged from 40-48%, and communities from 10% to 

12%，which was reasonable. Based on the results, all the items were retained except 

for the planning items for the present study. The retained items were grouped into 

the two categories, calculation and routine problem solving as explained above. 

For the part of complex problem solving, a total of 12 open-ended tasks were 

developed. In responding to the open-ended tasks, students were required to show 

their solution processes and provide justifications for their answers. An example of 

open-ended question is as this "Ming and Fang, high school students, take a part-

time job. Ming earns 15 RMB per day and Fang earns 10 RMB per day. 1) How 
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many days do Ming and Fang have to work respectively so that they will earn the 

same amount of money? Show how you found your answer. 2) This problem has 

more than one answer. Find another answer and explain." Detailed description of the 

open-ended problems can be found in Cai (1995, 2000), 

The responses to the open-ended questions were evaluated with the scoring 

rubric of 0-4 point scale, not acceptable (0)，minimal (1), satisfactory (2), good (3) 

and excellent (4). The raters included elementary school mathematics teachers and 

graduate students in educational psychology or in mathematics. Two raters 

independently scored five percents of the student responses. The inter-rater 

agreements were 0.876，0.891，and 0.880 respectively for the three administrations 

of the open-ended questions (Ni, et al., 2011). 

The correlations between the three measures of mathematics achievement, 

calculation, simple problem solving, and complex problem solving, ranged from 

0.42 to 0.46 for the first time, and from 0.40 to 0.43 for the third time. The 

correlations between the three times of assessment were 0.31-0.34 for the measure 

of computation, 0.32-0.37 for simple problem solving, and 0.50-0.58 for complex 

problem solving (Ni, et al., 2011). 

2.1.2 Affective Measures of Mathematics Achievement. 

Four facets of affective mathematics achievement (Li, 2004) included 1) 

students' perceived interest in mathematics (e.g. "Mathematics interests me because 

I find it stimulating to solve a math problem."), 2) students' perceived participation 

in math classroom (e.g., "I feel anxious when I sit in a math class.”)，3) students' 

ideas about what mathematics is about (e.g., "Mathematics is about numbers and 

their computations."), and 4) students' views of learning mathematics as a process of 
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reasoning and reflection (e.g., "I sometimes stick to my own thoughts even though 

my thoughts were wrong because of the fear to reveal my weakness.，，)，The 

questionnaire included 35 items to measure the four aspects. It used a likert scale of 

five levels, "strongly disagree," disagree," "not sure," "agree," and strongly agree." 

For the three administrations of the questionnaire with the sample of students, Alpha 

for the scale of interest ranged from 0.87 to 0.92; for classroom participation from 

0.80-0.85; for views of mathematics from 0.65-0.72; and for views of learning 

mathematics from 0.61 to 0.70. The test-retest correlations for the four scales were 

0.56-0.70 for the scale of interest, 0.57-0.68 for classroom participation, 0.48-0.59 

for views of mathematics, and 0.48-0.58 for views of learning mathematics (Ni, et 

al , 2011). The correlations between the four scales of mathematics achievement, 

interest，classroom participation, views of mathematics, and views of learning 

mathematics ranged from 0.31 to 0.59 for the first time and from 0.48 to 0.62 for the 

third time. 

2.1.3 Measure of Student Family Socioeconomic Status. 

The students' parents were asked to complete a questionnaire which required 

information about the family's social economic status. The indicators of the social 

economic status included family income, father and mother's educational levels, and 

father and mother's occupations. The index values for the indicated occupations by 

the parents were calculated according to the Standard International Socio-economic 

Index of Occupational Status (Ganzeboom, De Graaf, Treiman, & De Leeuw, 1992). 

Through a factor analysis, the parents' income, occupations, education levels were 

aggregated into the latent variable, SES, which was standardized to be used in the 

data analyses (Ni, et al., 2011). 
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2.2 Measures of Teachers' Knowledge and Belief 

The teacher measures were consisted of three parts, that is, teachers' 

mathematical knowledge for teaching, teachers' belief of mathematics, and their 

demographic information. 

2.2.1 Measure of Teacher Mathematical Knowledge for Teaching 

The teachers were administrated the Measures of Teachers' Mathematics 

Knowledge for Teaching, which was originally developed by Hill, Schilling and 

Ball (2004). There are 14 multiple choice items related to mathematics knowledge 

and pedagogy. The Alphas for the two aspects were ranged from 0,71 to 0.84 (Ni, et 

al., 2009). 

2.2.2 Measure of Teacher Belief towards Mathematics 

Four items were used to measure how the teachers viewed about mathematics. 

They are 1) 'The domain of mathematics has been changing and developing", 2) 

“The mathematical knowledge is always decided, and the answers to the question 

are predetermined", 3) "Mathematics is calculation and computation with a set of 

number and symbol", and 4) "Doing mathematics is carried out step by step based 

on the logic". The Alpha coefficient is 0.68. All the items used a 5-point Likert scale 

ranging from 1 (strongly disagree) to 5 (strongly agree). 

2.2.3 Measure of Teacher Background Information 

Six items were employed to examine the teacher's demographic information, 

including sex, years of teaching, years of implementing the new curriculum, years of 

teaching mathematics, educational level, and the major of an undergraduate of 

associate degree. 
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2.3. Measures of Quality of Instructional Explanation 

2.3.1. Identifying Episodes of Instructional Explanation 

A. How to Define an Episode of Instructional Explanation 

Instructional explanations occur in instructional episodes. Technically, it is 

necessary to identify episodes of instruction in order to locate instructional 

explanation in time and space. We called this as episodes of IE. 

We referred to any exchanges on an identified content involving instructional 

explanation as an episode, which should not be confused with the term “turns” that 

we will explain later. To qualify as an episode of IE, a teaching episode must satisfy 

two conditions. First, the episode must have begun with a teacher-initiated question 

or with a student-initiated question that is accepted by the class for a continued 

discussion, and the episode focuses on explanation-seeking for the question by the 

teacher and the students. Second, the episode is presented with the format of 

extended discourse-continued questioning and discussion after an initial answer is 

provided. More specifically, a student's answer to the question may serve as the 

beginning to a large discussion about specific mathematical concepts, algorithms, 

principles, rules, and reasoning needed to the initial question (Schleppenbach et al.， 

2007). Therefore, an episode must contain at least two substantive student responses 

to the initial explanation-seeking question. 

Take three episodes for example below to illustrate what counted as an episode 

of instructional explanation in the present study. In Example 1, an explanation was 

requested for providing the rationale for an answer. The teacher and her students 

were discussing the least common multiple. Student 32 answered that "the least 

common multiple of 4 and 5 was 5". The teacher withheld evaluation and instead 
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asked the follow-up questions to work out an explanation. In Example 2，the 

explanation focused on understanding concepts, terms, or theorems. Here, the 

teacher and the students were trying to understand "what does it mean by “一律 

折"？ Like Example 1, the teacher raised a question, followed up, and finally 

generated an explanation with her students together. In both examples, there is a 

focus query, and the query is unfolded in the format of extended discourse. 

Therefore, example 1 and 2 were counted as an episode of instructional explanation. 

In contrast, in Example 3，the teacher initiated the question—"why the reciprocal of 

1 is 1?". However, the discourse was not substantially extended after the student Cai 

provided an explanation. The condition of the extended discourse was not satisfied, 

that is, to contain at least two substantive student responses, and thus this was not 

counted as an episode of IE. 
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Example 1 Providing the Rationale for an Answer 

Teacher: What is the least common multiple of 4 and 5? 
2. Student 32: Their least common multiple is 5. 
3 • Teacher: Could you explain that? 
4. Student 32: Oh, I made a mistake. It should be 20. Because they are relatively-prime 

relationship. Their product is 20, so it should be 20. 
5. Teacher: What is the relationship between these two numbers? 
6. Students (together): Relatively-prime. 
7. Teacher: Relatively-prime relationship. So their least common multiple equals to these 

two numbers' ？ 

8. Students (together): Product. 
9. Teacher: 4 multiplied 5 equals to what? 
10. Students (together): 20. (Ms Li and her fifth graders in a dialogue on least common 

multiple number, line 174-183) 

Example 2 Understanding Concepts, Terms, or Theorems 

1. Teacher: Ok, the textbook tells us that all have been marked down by 20% (—律乂V折). 

What does it mean by “一律八折”？ Wang? 
2. Wang: It means all clothes were 20 percent off. 
3. Teacher: You please? 
4. Student 9: It means that the goods, which originally worth lORMB, is 8RMB now after 

the 20 percent off. 
5. Teacher: 20 percent off from what? 
6. Student 9: It was 20 percent off the original price. 
7. Teacher: How can we express 20 percent off either? Can you use another way? 
8. Student 9: We can also use 8/10. 
9. Teacher: 8/10 of what? 
10. Student 9: The current price is 8/10 of the original price. 
11. Teacher: So 20 percent off is based on what? 
12. Student 9: Based on the original price. 
13. Teacher: Right. The current price is based on 8/10 of the original price. (Ms Wang and 

her fifth-grade student in a dialogue on fraction division, transcription lines 79-91) 
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Counter-example 3 

1. Teacher: Why the reciprocal of 1 is 1? Give a reason please, Cai? 
2. Cai� Because the reciprocal of 1 is 1/1, 1/1:1. 
3. Teacher: Yes, all understand? 
4. Student (together): Yes. (Ms Yan and her fifth-grade students in a dialogue on 

reciprocal, transcription lines 117-121.) 

In the current study, instructional explanation included giving mathematical 

meaning to terms, ideas or procedures, meaning of steps, or solution methods, such 

as how a term be understood, why a procedure works, why a solution method makes 

sense, and why an answer is true or false. In most cases, the explanation-seeking 

questions were posed, as in, "Can you explain that?" or "Why do you do that?" or 

"What do you think?" or “Tell me the reason please." or "How could you explain 

it?" or "Why you think it is false?" or "What do you mean?" or “ What does it 

mean?". The mere descriptions of steps (first I did x, then I did y) or simply 

providing definitions without attached meaning were not be counted as episodes of 

instructional explanation. 

B. How to Determine the Beginning and the Ending of an Episode 

The end of an episode may be marked differently, depending on an initial 

question asked as well as the specific purpose of a context. Mostly, an episode was 

indicated in end when the aim of the explanation had been realized and the teacher 

moved to another topic. In general, an episode of IE began only after a student gave 

a complete answer, which was followed with the explanation-seeking question. The 

criteria for identifying an episode of instructional explanation were designed to 

capture the extended discussion about explanation to one question, not all 

interactions between the teacher and students. 
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It is important to note that the kind of classroom discourse examined in this study 

was mainly verbal, spoken discourse. However，students' written answers and the 

teacher's written responses on the black-board would also be included in the study 

of IE, since the frequency of that situation was high in Chinese mathematics classes. 

Moreover, the students' written answers on the board made an important part to 

know about students' mathematical thinking, and provided a good learning 

opportunity for teachers and students to discuss. Also, the teacher's written 

responses explicitly reinforced the "important", "difficult", and "hinge" of the 

teaching materials. 

2,3.2. Developing an Instrument to Evaluate the Quality of the Instructional 

Explanation 

Three dimensions were identified for the evaluation of the quality of instructional 

explanation. They were truthfulness, richness, and coherence. Their definitions and 

intentions are provided below respectively. Subsequently, the criteria and the items 

for each dimension have been developed that are explained afterwards. 

A. Items Development 

We started our work for high-quality instructional explanation in primary 

mathematics classroom in China. For this purpose, three sources had been depended 

on when we were developing the items, including the existing literature, the existing 

scales or observational protocol of similar nature, and classroom transcription 

materials from the videotaped lessons of the 39 teachers. 
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As discussed in the previous sections, a converging set of criteria has been derived 

from the perspective of scientific philosophy, communication, and pedagogy. We have 

particularly referred to a number of literatures on instructional explanations in 

teaching and learning mathematics (Leinhardt & Steele, 2005; Stein Sc Kucan, 2010; 

Wittwer & Renkle, 2008), quality of instruction (Hill, et al.，2008), effective teaching 

(Muijs & Reynolds, 2001), and productive discussion in the subject matter of 

mathematics (Stein, Engle, Smith, & Hughes, 2008), as well as authentic instruction 

in general (Newmann & Wehlage，1993; Newmann, et al., 1996). The purpose was to 

identify the research-based indices for the scale of truthfulness, richness, and 

coherence to evaluate IE in mathematics. Also, as education is embedded in the 

culture, we also referred to the literature with respect to effective teaching in the 

Chinese mathematics classrooms. Most of the reviewed studies were conducted under 

the cross-cultural settings. The results helped us to capture the unique features of 

effective pedagogy in mathematics teaching and learning in China. 

We have also searched several standardized protocols for observing the 

characteristics of instruction (or videotaped records of instruction). Most of them were 

designed for the mathematics and science classes. For example, the Coding Rubric for 

Measuring the Mathematics Quality of Instruction (Hill, Ball, Bass, & Schilling, 2006; 

Hill, 2010), the Reformed Teaching Observation Protocol (RTOP; Sawada & Pilbum, 

2000), Inside the Classroom Observation and Analytic Protocol (Horizon Research, 

2000), MCC Classroom Observation Protocol for Mathematics, the Classroom 

Assessment Scoring System for Secondary Settings (CLASS-S), and Protocol for 

Language Arts Teaching Observation (PLATO). These instruments, in complementary 

to the literature as described above, have helped us to cross-validate which key index 

makes a high-quality classroom instruction in general and instructional explanation in 
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particular. Notably, of these instruments, the work of Hill and her colleagues seemed 

much more plausible for our reference in two ways (Hill et al.’ 2008). First, the 

measure has been designed especially for the mathematics quality of instruction, 

which is closer to our purpose in the current study. And secondly, the covered content, 

as well as the definition of each indicator, are more specific and detailed, which helps 

to decrease the bias when coding segments of the transcription materials. For example, 

the measure includes some of the items about richness of mathematics, working with 

students and mathematics, errors and imprecision, as well as student participating in 

meaning-making and reasoning. Under each dimension, the intention is specified, and 

items are developed accordingly with well-defined criteria for rating "low", "mid", 

and "high". 

However, the instrument for the current study is distinguished from Hill's works 

in some ways. More specifically, in this study, the instrument was developed to 

describe and evaluate the quality of instructional explanation. However, the 

Mathematical Quality of Instruction (MQI, Hill et al., 2006) instrument is intended to 

capture a range of teacher work with mathematical content, curriculum materials, and 

students. MQI consists of five sections, including instructional formats and content, 

knowledge of mathematical terrain of enacted lesson, use of mathematics with 

students, mathematical features of the curriculum and the teacher's guide, and use of 

mathematics to teach equitably. Therefore, the content of MQI is much broad, when 

compared to the specific focus on IE of the scale developed and used in the current 

study. Further, in choosing the five sections, Hill and colleagues aimed to not only 

evaluate the mathematical quality of a lesson, but also to provide information on the 

factors that might affect mathematical quality, including particularly the mathematical 

content and curriculum materials with which teacher were working. Obviously, for the 
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present study, the latter purpose of Hill and her teams was not in the consideration in 

developing the instrument. Accordingly, the related dimensions and items were 

excluded from the scale for the present study. 

Finally, we also studied the transcription materials from the videotapes of the 

teachers' lessons carefully and purposely. The materials not only contributed to 

revealing whether the indices from the literature were appropriate and effective to 

reflect and distinguish levels of the quality of instructional explanation among the 

teachers, but also pointed to some important issues to be resolved, concerning the 

content and validity of the present scale. 

Built on these works, 11 items were being developed for evaluating the quality of 

instructional explanation. Specifically, 3 items were identified for the scale of 

truthfulness, 4 items for that of richness, and 4 items for that of coherence. It is 

worthwhile to point out again that most of these items were well established from the 

existing literature regarding effective mathematics teaching and learning, and they 

were applicable to most of mathematics classrooms. 

Following that, our focus then turned to specifying the rating criteria for each item. 

When developing the rating criteria, several considerations were taken into account. 

First, the rating criteria were expected to capture the difference among individual 

teachers to the largest extent. Second, the differences captured by the rating criteria 

were expected to be significant for mathematical teaching and learning. For example, 

whether a teacher uses various mathematical languages for conveying content, and 

whether a teacher engages the students in the use of mathematical language, should 

make difference in student learning. And third, the rating criteria across the items 

were expected to be consistent. All the items use a 4-point Likert scale ranging from 1 
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(low) to 4 (high). In general, 1 point implies that the teacher does not perform well on 

his/her own, and he/she also does not engage students into the concerned learning 

process. A 2-point indicates that the teacher does either aspect. A 3-point implies that 

the teacher does both. And a 4-point refers to high performance in both aspects. The 

instrument is attached in Appendix III. 

B. Pilot Study 

We were interested in identifying the proximal factors that would affect students' 

mathematics achievement, particularly mathematics problem solving. Accordingly, 

based on the change in their students' performance in solving open-ended problems 

and the affective measures from the first to the third time of the assessment, 8 

teachers were selected for a pilot study. Notably, all the students of the 8 classes 

changed positively on the measure of complex problem solving. In particular, the 

improvement of 4 classes was above the average level of the 29 classes, and the 

other 4 classes were below the average level. Among the former, two of the classes 

showed improvement on the affective measures, whereas the other two had 

decreased scores on the measures. The pattern was the same for the other group of 

the 4 classes. Thus, 8 classes were divided into 4 groups accordingly. By contrasting 

the quality of instructional explanations from the 8 teachers, we piloted the 

instrument to see how it worked. 

The quality of the instrument was examined. We requested 4 experts in 

mathematics education for comments on the instrument. Inter-rater agreement was 

obtained on identifying IE episodes and ratings the quality of these episodes 

respectively. To begin, the researcher identified all the episodes of IE. Another 

independent coder then examined 25% of these episodes. In this case, the 
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independent coder examined 87 of the 346 episodes. Simple agreement between 

coders for the identification of episodes was .96. 

To determine the reliability of ratings on the quality of the instructional 

explanation episodes, the researcher invited 3 fifth-grade mathematics teachers and 

1 Ph. D student of educational psychology. They participated in a full-day workshop 

for 3 consecutive Saturdays in which the researcher trained them to use the scale. At 

the last day of the workshop, the researcher and the teachers coded 48 episodes 

independently. In order to avoid the sequential effect, the episodes were arranged in 

different orders for the raters. The inter-rater agreements were 70.83%-100% for the 

ratings of the episodes on the 11 items of the instrument. Intra-rater reliability was 

also computed after 1 week. It was conducted on the basis of 87 episodes, including 

47 episodes from the reform classroom and 40 episodes from the non-reform 

classroom. The episodes were selected randomly from both groups, and arranged in 

different orders. The intra-rater agreements were 90%-99%^. 

Notably, we made revisions in the 4 items for the dimension of richness in the final 

coding. Specifically, each item was divided into two sub-items, which aims to explicitly 

examine 1) whether the teacher him/herself is able to use mathematical language, to make 

connections with general concepts and principles, to use multiple solutions as well as 

multiple representations; and 2) whether the teacher is able to engage the students in the 

four indicators of richness. However，the results showed that use of multiple solutions and 

multiple representations were constructed by the teacher and students together for most of 

the time. Therefore, the correlation between the sub-items was 0.96 and 0.94 respectively 

for these two indicators, multiple solutions and multiple representations. Therefore, we 

combined the scores of the sub-items for the two indicators. 
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3. Data Analysis 

To test the hypotheses posed by the current study, descriptive statistics and 

multi-level regression analysis would be used. And we conducted the data analysis 

with statistical packages of SPSS 18.0 and HLM 6.02. The procedures of the 

analysis are explained in the chapters on results of the study. 
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Chapter 4 The Cognitive Features of Instructional 

Explanation in the Chinese Mathematics Classrooms 

The present study aimed to identify the features of quality of IE that might serve 

as proximal indices of student learning outcome. To do so, the study, firstly, 

investigated the cognitive features of IE in the Chinese mathematics classrooms. 

This chapter first describes the observation of the structural features and the quality 

of IE in the mathematics classrooms. It then presents the results about relationship of 

the teacher background factors and their use of IE for another chapter. 

As a caveat, the researcher reminds the readers that the development of the scale 

and the statistics presented in this thesis are exploratory in the sense that they are 

presented as a basis for the discussion of one of the critical incidences of classroom 

teaching-instructional explanation, of a particular discourse structural (i.e., extended 

discourse-initiation-response-follow-up ). But by no means can these statistics 

results be generalized to Chinese lessons or teachers in general, because there were 

only 110 elementary mathematical lessons with the instructional content of number 

from 39 teachers in the current study. The content of the lessons were confined to 

the number, such as division of fraction, least common multiple, and divisor and 

multiple. 

1. Results 

1.1 The Cognitive Features of Instructional Explanation 

In all, we identified 346 episodes, with 181 occurring in the reform classes and 

165 in the non-reform classes. To obtain a general picture of instructional 

explanation used in the lessons, we measured the quantitative and qualitative aspects 
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of instructional explanation. For the quantitative aspect, we examined the structural 

features such as the number of episode of instructional explanation, the turns, and 

the number of different students / whole class involved in an episode. The measured 

quality aspects refer to the truthfulness, richness and coherence of instructional 

explanation. 

We began our analysis by an examination of an individual teacher's scores on 

the variables across lessons. The results did not show a significant difference 

between the lessons within teacher in most of the variables. This implies that a 

teacher's performance in terms of the measured aspects of IE was relatively stable 

across lessons. However, the range of the identified numbers of episodes (4 to 15) 

was large among the teachers. We selected 9 longest episodes for each teacher, 

which is the medium of the distribution. This helped to minimize the errors from the 

numbers of episodes. Finally, we had 304 episodes, with 160 occurring in the 

reform classes and 144 in the non-reform classes. 

Notably, we conducted descriptive statistics on the basis of 346 and 304 episodes, 

respectively. The results were similar to a large extent. In the following section, the 

researcher would present the results based on the 304 episodes. 
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Table 4 Descriptive Results of the Cognitive Features of Instructional Explanation 
Variables Mean SD Min Max 

Quantitative Indicator 
Structural Number of episodes ^ 8.87 2.79 4 15 
features Turns 13.60 3.71 7.40 23.33 

Individual students involved 2.30 1.03 .60 5.67 
Whole class involved 3.26 1.20 1.25 6.33 

Qualitative Indicator 
Truthfulness Accurate mathematical knowledge 3,94 • 16 3.25 4.00 

Accurate teaching language i � 3.91 • 13 3.50 4.00 
Student error identification and address ̂  3.37 .60 1.00 4.00 

Richness Mathematical language i�used by the 
teacher 

2.41 .35 1.50 3.11 

Mathematical language encouraged for 2.54 .34 1.83 3.20 
students to use 
General concepts and principles used by 2.63 .50 1.00 3.22 
the teacher 
General concepts and principles 2.80 .42 1.40 3.33 
encouraged for students to use 
Use of multiple solutions 1.48 .49 1.00 2.56 
Use of multiple representations 1.48 .42 1.00 2.71 

Coherence Relevant and well-organized topic 3.99 •03 3.83 4.00 
Clear teaching language 3.84 .17 3,33 4.00 
Follow-up question 2.93 .26 2.33 3.40 
Response to student answers 3.18 •58 1.75 4.00 

Notes: a. the number of episodes was calculated based on 346 episodes, b, the statistics was 

based on 22% of the 304 episodes, since 78% was coded as not applicable. 

As shown in table 4, on average, each teacher had about 9 IE episodes. The 

variability between the teachers was large, ranged from 4 to 15. When the teachers 

used instructional explanation, they would encourage around two individual students 

and the whole class students engaging in the generation of IE. 

With respect to the quality of instructional explanation, the results turned out as 

expected. The Chinese teachers had extremely high performance in the indices of 

truthfulness and coherence. The variance was quite small, which could be seen from 

Teaching language refers to all of the verbal and written language a teacher uses in classroom 
instruction. 
n Mathematical language specifically refers to mathematical terminology, theorems, formulas and the 
like. 
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the minimum and maximum of the variables. Specifically, when constructing 

instructional explanations, they were able to provide accurate mathematics 

knowledge, to present with precise mathematical language, and to identify and 

address student errors appropriately. They were also able to organize the explanation 

relevantly and clearly, as well as to interact with the students coherently. For 

example, the teachers responded to student answers positively and consistently. The 

teachers had relatively lower scores on the dimension of richness, especially for the 

use of multiple solutions and multiple representations. We observed that the teachers 

rarely made comparisons or connections between multiple solutions purposefully 

and explicitly. The variability on the measures between the teachers was also 

relatively larger. 
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Table 5 Correlation Matrix of the Indicators of Quality of Instructional Explanation 

1. Accurate 1 
mathematics 
knowledge 
2. Accurate .05 1 
teaching language 
3. Student error 51** .23 1 
identification and 
address 
4. Mathematical .17 .26 .42* � 
language used by 
the teacher 
5. Mathematical .08 .09 .12 .28 j 
language 
encouraged for 
students to use 
6. General concepts .15 .38 45* .67 .04 
and principles used 
by the teacher 
7. General concepts .05 .32 .26 .43** .11 
and principles 
encouraged for 
students to use 
8. Use of multiple -.01 -.26 .14 iq 52'* 
solutions 
9. Use of multiple .15 -.19 -.15 . 06 .31 
representations 
10. Relevant and .40* .26 -.27 _.o3 .09 
well-organized 
topic 
11. Clear teaching .01 .25 -.09 -.06 -.20 
language 

12. Follow-up .34* .10 .08 .24 .54" 
question 
13. Response to .10 .22 .31 .64** .35* 
student answers 
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Table 5 displays the correlations among the scores on the 13 items assessing 

quality of IE. As can be seen in Table 5, for the dimension of truthfulness, when 

generating instructional explanation, teachers' providing accurate mathematics 

knowledge was positively correlated with their identification and address of student 

errors. And teacher's accuracy in teaching language was not necessarily related to 

their mathematics knowledge and identification and address of student errors. This 
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could be true in classroom instruction. For instance, in Example 1 below, the 

teacher's teaching language was accurate. However, she did not address the 

student's error (0 in itself is 1) appropriately and thoroughly. Also, the mathematics 

knowledge provided was not true at the end of the dialogue, saying that 0 could not 

be in a fraction. Because 0 could make the fraction like 0/2，it just could not be 

denominator. And the teacher did not detect and address the errors. Conversely, in 

Example 2，the teacher provided accurate mathematics knowledge and the students 

did not make any errors. However, there were trivial errors in teaching language. It 

should be "dividing 1 into 6 equal sections" instead of "dividing 1 into 6 sections” . 

Example 1 Inappropriate Address of Student Errors in IE 

1. Student 9: A whole number, if divided by another number, than the result equals to this 
whole number multiplies its reciprocal. However, the zero is not the case. 

2. Teacher: Why the zero is not the case? 
3. Students (together): (the students made quick response) Because zero did not have 

reciprocal. 
4. Teacher: Well, go on please. 
5. Student 9: Because 0 in itself is 1. 
6. Students (together): (the students refuted the studnet9's answer) No, it is wrong. 
7. Teacher: So zero did not ？ 

8. Students (together): Zero did not have reciprocal. 
9. Teacher: And it could not be ？ 

10. Students (together):Fraction.(Ms Yang and her fifth-grade students in a dialogue on 
division of fraction, transcription lines 50-59) 

Example 2 Inaccurate Teaching Language in IE 
1. Teacher: Look at these two numbers, 1/6 and 1/5. Which one is bigger? And why? 
2. Student 9: 1/5 is bigger. Because 1/5 means dividing 1 into 5 sections and we took one of 

the sections. However, 1/6 means that 1 is divided into 6 sections. Therefore, 1/5 is bigger. 
3. Teacher: Can anybody give a better explanation? It sounds not so complete. 
4. Student 10: 1/5 means that 1 is divided into 5 sections and 1/6 is divided into 6. In other 

words, the sections of 1/5 are less than that of 1/6. So its size is bigger. 
5. Teacher: I see. You means that 1/6 is divided 1 into 6 sections’ and 1/5 is divided 1 into 5 

sections. If we took one of the sections, 1/6 is smaller than 1/5. (Mr Zhang and his fifth-
grade students in a dialogue on least common multiple, transcription line 25-29) 
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The distinction of accuracy of mathematical knowledge and teaching language is 

illustrated in the following examples. In Example 3, the teacher provided inaccurate 

mathematical knowledge, saying that “0 does not have a reciprocal, so it can not be 

a numerator". The error was not detected and corrected. Also, she did not recognize 

the error of student 14 in the discourse. Both helped to point out the gap in 

mathematical knowledge of the teacher. The teaching language was clear of the 

errors. Conversely, in Example 4’ the teacher's mathematical knowledge was 

accurate based on the discourse. However, an error occurred in the blackboard 

writing and the teacher detected and corrected the error immediately. It was 

considered as the error of teaching language. 

Example 3 Inaccurate Mathematical Knowledge in IE 
1. Teacher: Dividing a number equals to multiplying this number's reciprocal. Just now she 

said zero should be excluded. Why zero should be excluded? You please. 

1. Student 12； Because zero does not have a reciprocal. 

3. Teacher: Zero does not have a reciprocal. Right? Ok, you please. 

4. Student 13: Because 1 xO equals to 0, and no matter which number multiplying 0 equals to 0. 

5. Teacher: No matter which number multiplying 0 equals to 0，so 0 does not have a ？ 

6. Students (together): Reciprocal ！ 

7. Teacher: You please. 

8. Student 14: Because 0 does not have a reciprocal Any number multiylyins 0 equals to 0. 

Teacher: Is it right? 

9. Students (together): Yes ！ 

10. Teacher: Because 0 does not have a reciprocal，it can not be a numerator. (Ms Yang and 

her fifth-grade students in a dialogue on division of fraction, line 102-112) 
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Example 4 Inaccurate Teaching Language in IE 
1. Teacher: Just now some students tell me that they have already known what is reducing 

fraction. Could you tell me what is simple fraction in your own words? 
2. Student 15:1 think if the greatest common divisor of the numerator and denominator is 1, then 

the fraction is a simple fraction, 
3. Teacher: Oh, this is his understanding. What about you? 
4. Student 16: Both the numerator and the denominator of a simple fraction are relatively prime 

numbers. 
5. Teacher: Ok, good, he said much better. 
6. Student 17: The fraction whose numerator and denominator are relatively prime numbers is 

identified as a simple fraction. 
7. Teacher: Great, anything else? Can any one give an example to illustrate what is a simple 

fraction? You please. 
8. Student 18: 1/2 is a simple fraction. 
9. Student 19: 3/4. 
10. Student 20: 1/3. 
11 • Teacher: Does the fractions of this kind have a great number? 
12. Students (together): Yes ！ 

13. Teacher: What is the characteristic of these fractions? 1 / 2 � 3 / 4 � 1 / 3 and the like. What is the 
characteristic of these numbers? 

14. Student 21: Their numerators and denominators are relatively prime number. 
15. Teacher: Then it means that their common divisor is what? 
16. Students (together):! ！ 

17. (Board writing: In the simple fraction, the numerator and denominator is 1) The fractions 

of this kind are identified as the simple fractions. Read after me please. The numerator and 
denominator of the fraction，begin. 

18. ( Students read the board writing aloud together) 
19. Teacher: It should be the common divisor 1. (Addins the “the common divisor oV* to the 

sentence) Ok, one more again please ！ 

20. Students (together): The common divisor of the numerator and denominator is 1. 
21. Teacher: The fractions ！ 

22. Students (together): The fractions are identified as the simple fractions. (Mr Zhang and his 
fifth-grade students in a dialogue on reducing fraction, line 25-46) 
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On the dimension of richness, teacher using more mathematical language was 

related to making more connection with general concepts and principles both for 

teachers and for students. Students encouraged to use more mathematical language 

by a teacher, was positively correlated with the use of multiple solutions. And there 

was a high correlation between the teacher's and students' making connection with 

general concepts and principles, suggesting that many of the connections were made 

by the teacher and students together. Use of multiple solutions was unrelated to use 

of multiple representations. 

On the dimension of coherence, it was found that the higher level of a teacher's 

follow-up questions was related to the teacher's better response to student answers, 

indicating the consistency of teacher's interaction with their students in the process 

of instructional explanation. There was no significant correlation between a 

teacher's interaction with the students and his/her complete and clear teaching 

language as well as with the teacher's well-organized teaching content. 

In addition to the intra-correlations between the items within each dimension of 

evaluation criteria，the results also showed that a teacher's provision of accurate 

mathematics knowledge was positively associated with his/her well-organized 

teaching content and level of their follow-up questions. And a teacher's accurate 

teaching language was positively correlated with his/her making connection with 

general concepts and principles. Also, a teacher's better identification and address of 

student errors was related to his/her more use of mathematics language and of 

connection with general concepts and principles. A teacher's use of mathematical 

language was positively associated with his/her response to student answers. A 

teacher's follow-up questions and response to student answers helped to lead 
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students' use of more mathematical language. Moreover, a teacher's making 

connection with general concepts and principles was positively correlated with their 

response to student answers. A teacher's use of multiple solutions was negatively 

correlated with his/her complete and clear teaching language. And it was positively 

associated with the teacher's response to student answers. 

Table 6 Correlations between the Measures of Quantity and Quality of Instructional 
Explanation («=39) 

Number of 

episodes 

Turns Individual students 

involved 
Whole class 

involved 

1. Accurate mathematics • 17 •06 -.09 .09 
knowledge 

• 17 •06 -.09 

2 .Accurate teaching language .12 .07 -.01 .12 

3.Student error identification and .28 .24 .11 .20 
address 
4.Mathematical language used by .33* .51** .22 .48** 
the teacher 
5 .Mathematical language .21 .46** .71** -.15 
encouraged for students to use 
6.General concepts and principles .44** .33* .14 .37* 
used by the teacher 
7.General concepts and principles .31 .22 .16 .16 
encouraged for students to use 
8.Use of multiple solutions .16 .50** 73** .03 

9.Use of multiple representations .07 .15 .14 -.02 

10.Relevant and well-organized .08 •05 .04 -.05 
topic 
11 .Clear teaching language -.20 -.13 -.35* • 11 

12.Follow-up question .16 .33* .40* -.11 

13 .Response to student answers .18 •46** .45** .12 

Note: *p<.05. ***;?<.001 

Associations between the structural features and quality of IE were also examined 

(see Table 6). The results indicated that, the structural features of instructional 

explanation were not associated with the indices of the truthfulness. However，there 

was a significant correlation between the structural features and the indices of 

richness and coherence. Specifically, the more frequent instructional explanations 
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occurred, the more likely that a teacher used mathematical language and made 

connections with general concepts and principles. The turns of an episode was 

positively correlated with the use of mathematical language both for the teacher and 

students, teacher's making connection with general concepts and principles, use of 

multiple solutions, the level of teacher's follow-up questions, teacher's response to 

student answers. Besides, the number of individual students contributing to an 

episode was positively associated with student use mathematical language, use of 

multiple solutions, the level of teacher's follow-up question and teacher's response 

to student answers. And the number of individual students involved in an episode 

was negatively correlated with a teacher's complete and clear teaching language. 

Moreover, the whole class involved in an episode was positively associated with a 

teacher's use of mathematical language and making connection with general 

concepts and principles. 

1. 2 Teachers' Background Factors and Use of Instructional Explanation 

In order to examine the association between the variables of IE and those of 

teachers' demographic factors，the Pearson correlation was conducted. As shown in 

Table 7, there was no significant relationship between the two sets of variables in 

general. However, the teacher's educational level was positively correlated with 

their provision of accurate mathematics knowledge, and it was negatively correlated 

with use of multiple solutions. Moreover, teacher belief about mathematics was 

negatively associated with the number of episodes, that is, a teacher, who viewed 

mathematics as static and fixed, was less likely to generate instructional explanation 

with the extended form. The results also indicated that years of teaching experience 

were negatively correlated with the use of clear and complete teaching language. 
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Table 7 Correlations between Teachers' Demographic Factors and the Measures of 
Instructional Explanation («=39) 

Variable Teaching 
age 

Reform 
age a 

Educational 
level 

Teacher 
knowledge 

Teacher 
belief 

Quantitative Indicator 
Number of episodes b -.02 
Turns -.04 
Individual students involved .04 

Whole class involved -.03 
Qualitative Indicator 
Accurate mathematics knowledge .03 

Accurate teaching language -.27 

Student error identification and address . 11 

Mathematical language used by the teacher -.10 

Mathematical language encouraged for -.07 
students to use 
General concepts and principles used by the -.21 
teacher 
General concepts and principles encouraged -.25 
for students to use 
Use of multiple solutions -.04 
Use of multiple representations .05 
Relevant and well-organized topic .07 
Clear teaching language -.40* 
Follow-up question -.14 
Response to student answers -.13 
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Notes: a. the sample of the correlation between reform age and feature of IE is conducted within 
the reform group, b. the correlation between number of episode and feature of IE is conducted 
with 346 episodes. 

To assess the effect of curriculum used in the classrooms on the teachers' IE, one-

way ANOVA was conducted. As can be seen in Table 8, there was no significant 

difference in the indices of quantity of IE between the reform and non-reform 

teachers. On the indices of quality, the reform teachers had significantly higher 

scores than non-reform teachers on leading students to use mathematical language, 

use of multiple solutions, and use of multiple representations. This finding was 
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consistent with the previous analysis with 58 teachers using another coding 

framework. While the non-reform teachers had a significantly higher scores than the 

reform teachers on accurate use of teaching language, as well as making connection 

with general concepts and principles both for the teacher and for students. Moreover, 

we found no significant difference between the two groups in the indices of 

coherence. 

Table 8 Means and Standard Deviations of Reform and Non-reform Teachers on the 
Measures of Instructional Explanation 

Variables Reform teachers 
{n = 20) 

Mean SD 

Non-reform 
teachers {n =19) 
Mean SD 

F 

Quantitative Indicator 
Number of episodes a 9.05 2.50 8.68 3.13 .16 

Turns 13.89 3.35 13.29 4.12 .25 

Individual students involved 2.57 •77 2.03 1.21 2.78 

Whole class involved .19 .04 .17 .06 •31 

Qualitative Indicator 

Accurate mathematics knowledge 3.93 .20 3.95 • 13 .13 

Accurate teaching language 3.85 .14 3.97 .06 11.75** 

Student error identification and address 2.99 1.24 2.36 1.67 1.84 

Mathematical language used by the teacher 2.38 .39 2.44 •30 .29 
Mathematical language encouraged for 2.68 .32 2.40 .31 7.59** 
students to use 
General concepts and principles used by 2.44 .61 2.83 .24 6.77* 
the teacher 
General concepts and principles 2.63 •51 2.98 .14 8.31** 
encouraged for students to use 
Use of multiple solutions 1.65 ,53 1.29 .38 6.10* 
Use of multiple representations 1.63 .34 1.33 .45 5.53* 
Relevant and well-organized topic 3.99 .04 4.00 .00 1.91 
Clear teaching language 3.81 .16 3.88 .17 1.88 
Follow-up question 2.99 .27 2.86 .23 2.89 
Response to student answers 3.10 .63 3.27 .53 .85 

Notes: a. the comparison of number of episode is based on 346 episodes. 
*/?<.05. **/K.01. ***/7<001 
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2. Discussion 

The results reported in this chapter are concerned with the two research questions. 

The discussion is therefore organized in the way accordingly. Firstly, we discuss the 

cognitive features of IE displayed in the mathematics classrooms, as well as the 

relationship between the teachers' background factors and their use of instructional 

explanation. We then address the issues about the structure of the scale for the 

evaluation of quality of instructional explanation. 

2.1 The Cognitive Features of Instructional Explanation in the 

Mathematics Classrooms 

2.1.1 Structural Features of Instructional Explanation in the Classrooms 

The features of instructional explanation in the classrooms were examined in 

terms of its structural features and quality. For the structural features, the descriptive 

results showed a large variance of the number of episodes as well as the average 

turns per episode among the 39 teachers. About 2 different individual students 

engaged in the process of IE per identified episode, which was consistent with the 

finding of the previous study (Schleppenbach et al., 2007). The teacher also involved 

the whole class in the generation of the IE, and the frequency was 3 per episode on 

average. The statement of the whole class involved in the explanation was rich, such 

as computation (e.g., that equals 4), simple answer (e.g., true or false), indication of 

understanding and /or agreement (e.g., yeah), reasoning (e.g., 0 multiplying any 

number will get 0, so 0 does not have a reciprocal), and rule / term recall (e.g., it is 

based on the rationale of integer division) (Schleppenbach et al., 2007). 
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2.1,2 Quality of Instructional Explanation in the Mathematics Classrooms 

Consistent with the hypothesis, it was found that the Chinese mathematics 

teachers scored high on the dimension of truthfulness and coherence. In the process 

of instructional explanation, they were able to provide accurate mathematical 

knowledge, use concise and accurate mathematical language, identify and address 

student errors correctly, organize the explanation in a good manner, as well as lead a 

coherent interaction with the students. The findings go beyond the previous research 

that mainly relied on a few cases to provide evidence about the feature of Chinese 

mathematics teachers' instructional practices. 

Two reasons, among others, presumably account for the results. Firstly, the 

Chinese teachers' good performance in terms of truthfulness and coherence were 

presumably affected by their pre-service experiences. Mathematics, as a main school 

subject in the basic education system, has been attached with great importance in 

mainland China (Li, 2008). For example, mathematics is one of the compulsory 

subjects in the National Matriculation Test. And there was a widespread saying that 

"math, physics and chemistry are the strongest power to the world" (xuehao 

shulihua, zoubian tianxia dou hupa) in the 20^ century. These factors presumably 

motivated the teachers to build solid mathematics knowledge before they began their 

teaching careers. Likewise, the teachers' views of a good or effective mathematics 

lesson had been shaped largely by their learning experiences (Correa, Perry, Sims, 

Miller, & Fang, 2008; Wilson, 1990). As Lortie (1975) suggested that, teachers 

might unintentionally acquire culturally shared beliefs about teaching and learning 

in childhood, when potential teachers were students and participated in an 

"apprenticeship of observation." 
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Secondly, the organizational features in China also highly support the teachers in 

their classroom instruction. Here, the supportive factors were discussed from three 

levels, including the level of nation, school, as well as individual teachers. Notably, 

all these levels were inter-related and connected, rather than independent and 

separated. 

At the national level, the well-organized and detailed curriculum materials, 

including the textbooks, teacher manuals and exercise book, play an important role 

in teachers learning about subject matter as well as instruction (Ball & Cohen, 1996; 

Lloyd & Frykholm, 2000). In addition to the curriculum materials, there are also 

other accompanied resources, such as national teaching journals which teachers can 

contribute articles to share their experience, and exemplary lesson (i.e., a lesson plan 

with a videotape), which help the teachers to improve their teaching (Huang & Li, 

2009; Wang & Cai, 2007). 

At the school level, the teaching research group and lesson preparation group, 

also contribute to the quality of teachers' instructional practices. Teachers are 

organized to discuss general issues of teaching, observe and analyze instruction for 

one another in teaching research group. As a sub-organization of the teaching 

research group, the lesson preparation group provides an opportunity for teachers to 

study the curriculum materials, plan lessons and units together, and share teaching 

experiences on a regular basis (Paine & Ma, 1993; Wang & Paine, 2003). 

At the level of individual teacher, two factors were associated with teachers' 

performance in classroom teaching. Firstly, we argue that it is the human nature that 

the individuals want to do a good job on his or her position. Based on informal 

communication with the frontier teachers, it was found that almost all the teachers 
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desired to improve their teaching and further facilitated students' learning. Secondly, 

the quality of their instructional practice also affected their promotion and 

development. There are municipal and national teaching skill competitions in China 

(teaching a lesson and explaining the design of the lesson). Teachers' participation in 

this kind of activities would be helpful for their promotion (Huang, Peng, Wang, & 

Li, 2009; Huang & Li, 2009). 

Compared with the high scores on the dimensions of truthfulness and coherence, 

the scores on the dimension of richness were a little lower. And the result revealed 

that the teachers actively engaged the students into the use of mathematical language 

and connection with general concepts and principles. The findings concurred with 

the earlier work that indicated that there were some student-centered features within 

a tightly teacher-controlled class, and students' participation was valued and a lot of 

encouragement was given as well in Chinese classes (e.g., Lopez-Real, Mok, Leung, 

& Marton, 2004; Mok, 2006, 2009). However, we also observed that, in the 

1 0 

teachers' discourse with students, they paid more attention to social scaffolding 

than to analytic scaffolding (Williams & Baxter, 1996; Baxter & Williams, 2010). 

The teachers focused on engaging more students to participate in the classroom 

discourse and on providing more opportunities for students to speak in the classes. 

Their scaffolding of mathematical ideas was relatively insufficient and thus the 

discourse was not extended substantially to some extent. For instance, when using 

multiple solutions and representations in IE, the teachers rarely made comparisons 

or connections between the solutions and representations explicitly and purposefully. 

Take the following episode for example, a teacher was discussing why “4/7+3 = 

12 Social scaffolding refers to the scaffolding of norms for social behavior and expectations regarding 
discourse. And analytic scaffolding means the scaffolding of mathematical ideas for students. 
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4/7x1/3” with her students. In the dialogue, she actively invited more students to 

engage in the discussion by repeatedly asking "you please"(你来说一说)，Although 

there were some follow up questions to respond to student answers, it is obvious that 

this teacher put more attention to the students' participation than to the mathematical 

content. After their discussions, the teacher did not end up with a summary or 

highlight of the various explanations for “4/7+3=4/7x1/3”，which was significant for 

students' understanding. 

Example Follow-up Questions to Engage More Students in IE. 

1. Teacher: I found that XX's solution is different. Could you share with us? Your arithmetic formula 

is different from the others. 

2. Student 19 � Not much difference, my formula is 4/7+3=4/7x 1 /3=4/21. 

3. Teacher: 4/7 is divided by 3, why do you multiply 1/3? 
4. Student 19： As shown above, 4/7+3 means dividing 4/7 into 3 sections and we took one of the 

sections. Also, 4/7 multiplied 1/3 means dividing 4/7 into 3 sections and we took one of them. So 

their answers were the same. 

5. Teacher: Great, who can say again? You please? 
6. Student 20: I have another solution. I am thinking that why we need to multiply the denominator. 

Because when we were learning multiplication of fractions, we multiplied the numerator by the 

integer. Now this is division of fractions. It means dividing the denominator into several sections, so 

we multiply the denominator. 

7. Teacher: Ok, this is your understanding. You please. 
8. Student 21： I am trying to make sense what he said. The denominator multiplied 3 means it was 

reduced by 3 times. 

9. Teacher: The denominator multiplied 3. What reduced 3 times? 

10. Student 21 � The result was reduced by 3 times. 

11. Teacher: Did you multiply 7 by 3? 

12. Student 21： Yes, if the denominator 7 multiplied 3, than the result was reduced by 3 times. 

13. Teacher: So again，it was dividing 4/7 into 3 sections equally. We have one more explanation 
now. Well, you please. 

14. Student 22: I found a pattern. In all these arithmetic, if it was division, then we used the number to 

multiply the denominator, and we got 21 in this task. The numerator 4 in 4/7 is not needed. 

15. Teacher; The numerator 4 is not needed when multiplying. We multiplied by 7. Your opinion is 

similar to that of student 20, right? Ok, why the denominator should multiply 3? Why did you do 

that? Who have figured out? Would you like to say something? (continued) 
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16. Student 23： As said by student 21，4/7 divided by 3 means that 4/7 was reduced by 3 times. If the 

denominator multiplied 3，then the result would be reduced by 3 times accordingly, 

17. Teacher; Right Actually it was reduced 4/7 by 3 times. How many sections are there if we divided 

4/7 equally? 

18. Student： 3! 

19. Teacher: 3. OK, XX, can you explain one more time please? 4/7+3=4/7x1/3，why are they equal 

to each other? Could you explain by your figure? 

20. Student 24； 4/7 multiplied 1/3 means 1/3 of 4/7. And 4/7+3 means divided 4/7 into 3 sections, and we 

got one of the sections. So they are the same. 

21. Teacher; Good. Who can say once again? XX. 

22. Student 25： Our explanation is the same with the student 24. 

23. Teacher: OK, who would like to say a little more about this question. XX. 

24. Student 26： 4/7x1/3. 

25. Teacher: What does it mean? 

26. Student 26: It means 1/3 of 4/7. 

27. Teacher: That is right. 

28. Student 26:1 still feel different. 4/7x 1/3, 1 x4 equals to 4. Therefore, 3x7 is ok. 

29. Teacher: En, like the method of XX. You got it, too. Well, you please. 

30. Student 27:1 think that 3 can be seen as 3/1. 

31. Teacher: 3 can be seen as 3/1, right? 

32. Student 27： And then we multiplied its reciprocal. 4/7x1/3 equals to 4/21� 

33. Teacher: Multiplied 1/3. 3 is seen as 3/1. So the result would be 4/21. XX found that divided a number 

equals to the number multiplied its reciprocal. Is this finding right or not? Ok, we have known that 

dividing 4/7 into 3 sections equally, means what is 1/3 of 4/7? So they are equal to each other. 

(Miss Wang and her fifth-grade students in a dialogue on division of fraction, line 110-142) 

2.2 The Relation of Teachers' Background Factors with Instructional 

Explanation 

Comparable to many studies that have found little correlation between teacher 

demographic variables and teacher mathematical knowledge, the use of the features 

of linguistic pedagogy (i.e., specialized and general academic vocabulary, discourse 

structural, mathematical examples, and evaluative comments)，as well as classroom 

quality (i.e., instructional support like content imderstanding, analysis and problem 
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solving, and quality of feedback; classroom organization) (Hill et al. 2005; Izsak, 

Orrill, Cohen & Brown, 2010; Bailey, Chang, Heritage, & Huang, 2010; Malmberg, 

Hagger, Burn, Mutton, & Colls, 2010), we also found relatively few teacher 

background characteristics that were related to the teacher's use of IE in terms of 

structural features and quality. Also, the teachers' mathematical knowledge for 

teaching and teachers' views of mathematics were not shown to be associated with 

their use of IE statistically, which was out of our expectation. One exception was 

that the more teachers viewed mathematics as fixed and static, the less likely that 

they generated instructional explanation with their students. 

However, the results revealed the effect of curriculum in use on the quality of 

instructional explanation. Specifically, the reform teachers were more likely to lead 

students to use mathematical language, multiple solutions and multiple 

representations. These results were attributed to the impact of the new curriculum 

reform in mainland China, which advocated students' more engagement in 

classroom discourse. And the new curriculum supported more use of multiple 

solutions and multiple representations (Li & Chang, 2007; Li, et al., 2011). When 

using multiple solutions, we discovered that both groups focused on the solutions' 

diversity, without paying enough attention to the optimization of a solution. This 

finding extended the previous research that revealed that some of the reform 

teachers overly pursued an active atmosphere in lessons and did not further discuss 

the efficiency, advantage, as well as disadvantage for multiple solutions (Yu, 2003; 

Huang, 2005). We also observed that, in the classes using the new curriculum, the 

teachers tended to encourage the students to select a solution that they liked to solve 

a problem, which was not the case for the non-reform classes. The results also 

showed that the non-reform teachers were more inclined to use accurate teaching 
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language, as well as to make connections with general concepts and principles. The 

reason presumably is because the classes implementing the conventional curriculum 

paid more attention to mathematical rigor. Larger sample size is needed in future 

studies to valid the conclusions. 

2.3 The Structure of Quality of Instructional Explanation 

As stated by Douglas (2009): "Classroom instruction is a complex enterprise that 

occurs at the intersection of teachers, students, and texts within the surrounding 

classroom, school, and community environments. Progress in studying the 

complexity of classroom instruction on a large scale relies on our ability to pose 

research questions at the appropriate levels of analysis and to attempt to answer the 

questions using rigorous methods" (p.518). 

In the current study, we did the exploratory work to look into the quality of 

instructional explanation in the Chinese mathematics classes. For this, we developed 

the instrument to evaluate the quality of instructional explanation. The instrument 

contained the three dimensions, truthfulness, richness, and coherence, based on the 

literature of what constitutes good explanation. And the indices for the dimensions 

were mostly generated from the literature of effective teaching in general and 

effective mathematics teaching in particular. Here, quality is more about the content 

of an explanation. The evaluation was based on the teacher's overall performance in 

the process of generating instructional explanation, rather than a specific and discrete 

words or sentence. Also, we focused the evaluation on teachers, rather than on 

students. 
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2.3.1 Correlations between the Items within a Dimension 

It was of interest to note that not all of the indices showed significant 

correlations with one another. Specifically, the teacher's provision of accurate 

mathematics knowledge was found to be positively associated with their 

identification and address of student errors. However, both of them were unrelated 

to the teacher's accuracy in teaching language. Presumably, the first two were 

mostly constrained by the teacher's subject matter knowledge and pedagogical 

knowledge, but the latter was more fluctuant and affected by factors like task 

conditions, individual teacher's instructional habits and dispositions. This result was 

corroborated with the finding that a teacher's provision of accurate mathematics 

knowledge was positively associated with his/her well-organized instructional 

content and level of follow-up questions. 

For the dimension of richness, we did not find a significant correlation between the 

use of multiple solutions and multiple representations, which was consistent with the 

result of our previous analysis with 171 lessons of 58 teachers (Ni, et al., 2009). In 

this study, the use of multiple solutions exclusively focused on specific content. 

However, by multiple representations, it was considered as carriers of knowledge and 

thinking tools (Cai & Lester Jr.，2005). It concerns more the forms to present the 

content. Take two examples for instance, in Example 1, the teachers led the students 

to use two different solution strategies to answer whether 54 could be divided by 3 

exactly. In Example 2, the teacher and her students used two kinds of representation, 

including mathematical example as well as life example, in order to illustrate what 

means by "reciprocal". Notably, confined to the instructional content of the number, 

in the current study, most of the representations were presented in the forms of the 

words and number, rather than figures, hands-on manipulatives, and the like. 
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Example 1 Use of Multiple Solution Strategies in IE 

1. Teacher： Could 54 be divided into 3 with no remainder? 

2. Students (together):： Yes! 

3. Teacher： Why? Zhang please ！ 

4. Student Zhang: Because 54 divided by 3 equals 18，and there is no remainder, so it 

could be divided by 3 exactly, (solution strategy 1) 

5. Teacher： Could you make use of the features of the number that could be divided into 3 

with no remainder to explain the question? Li? 

6. Student Li: 5 adding 4 equals 9’ and 9 could be divided by 3 exactly, so 54 could be 

divided into 3 with no remainder, (solution strategy 2) 

7. Teacher： Is it Right? 

8. Students (together):Yes ！ (Ms Shui and her fifth-grade students in a dialogue on features 

of the number that could be divided into 3 with no remainder, transcription line 109-116) 

Example 2 Use of Multiple Representations in IE 

1. Teacher � Well, sit down please. Let me tell you what is reciprocal. We called two 

numbers whose product equals 1 as reciprocals. Could anybody say a little bit about what 

means by "reciprocal", Zhou? 

2. Student Zhou: Mutual, each other is reciprocal. 

3. Teacher： Mutual, each other is reciprocal Who can give an example, Chen? 

4. Student Chen: For example, 2/3 is the reciprocal of 3/2, and 3/2 is the reciprocal of 2/3. 

5. Teacher� Chen used the data to show his understanding. Let's use a life examyle to 

illustrate the meaning of "mutual". 

6. Student 15: Just say I and Xu are desk mates. I cannot say I am the desk mate. It should 

say that I am the desk mate of Xu. 

7. Teacher： Um, what about Xu? 

8. Student Xu: She is my desk mate too. 

9. Teacher： So you are ？ 

10. Students (together): Desk mates for each other (hiiwei tongzhuo). 

11. Teacher： Is it right? 

12. Students (together): Yes. (Ms Li and her fifth-grade students in a dialogue on reciprocal, 

transcription line 88-100) 

In order to better capture the differences in the use of IE among the teachers, the 

indicators on the dimension of richness were sub-divided into two aspects: a teacher 

his/herself using rich mathematics and the teacher encouraging his/her students to use 
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rich mathematics. The results indicated that the two aspects were highly correlated on 

the scale of making connections with general concepts and principles, use of multiple 

solutions, and multiple representations. However, it was not the case for the scale of 

the use of mathematical language. This suggests that a teacher's use of mathematical 

language was independent of his/her leading students' use of mathematical language. 

Two inter-related reasons, among others, might account for the results. Firstly, 

compared to the use of mathematical language, making connection with general 

concepts and principles, the use of multiple solutions and multiple representations 

were of higher cognitive demanding for the students. This may allow more probability 

for the teacher to scaffold (Nathan & Kim, 2009). Secondly, the curricular objectives 

also motivated the teachers to engage the students when making connections with 

general concepts and principles, using of multiple solutions and multiple 

representations, because most of these issues were explicitly identified as "important", 

"difficult", and "hinge" in the teaching manuals (Paine & Fang, 2006; Li, 2005). 

Existing studies on instructional coherence tended to be concerned with whether 

or not the teaching content in a lesson being connected or integrated, such as the 

studies ofTIMSS (Stigler & Hiebert, 2004; Leung, 2005). According to Stein and 

Glenn (1982), a good mathematics lessons is like a story. It is more than just a 

sequence of events. Each event must be organized and interconnected such that the 

story has a beginning, middle, and end, as well as a consistent theme that runs 

throughout the lesson with a clear scheme. Besides, the characters of the story, the 

teacher and their students, interacted in a coherent way so as to promote the 

development of the story. Therefore, the instructional coherence examined in the 

studies not only refers to the particular instructional content, but the dynamic 

classroom discourse. A few studies had done the seminal works in this respect (e.g., 
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Chen & Li, 2010; Seidel, Rimmele，& Prenzel, 2005). In the current study, the 

coherence was measured in terms of its content and the teacher's interaction with 

students. The latter aspect included the teacher's follow-up question and response to 

students' answers. A Moderate correlation was found between these two aspects. 

However, there was no significant correlation between the well-organized and 

relevant content and the quality of teacher's interaction with the students. In other 

words, they were relatively independent aspects of teachers' instructional practices, 

each contributing their own unique role. More research is needed that will explore the 

relation between these two aspects in future. 

2.3.2 Correlations of the Items between the Dimensions 

The results showed a moderate and high correlation among some of the indices of 

the evaluation criteria. And there was some overlap among the dimensions of 

truthfulness, richness, and coherence. For example, the teacher's provision of more 

accurate mathematics knowledge was related to their well-organized instructional 

content, and higher level of follow-up questions. Also，when the teachers identified 

and addressed student errors, they were more likely to use more mathematical 

language, as well as to make connections with general concepts and principles. 

Moreover, the more responsive to students' answers, the more likely that the 

teachers used mathematical language, made connections with general concepts and 

principles, as well as multiple solutions. 

2.3.3 Issues Raised by the Correlation Results 

Taken together, the results revealed that there was some overlap among the indices 

of three dimensions of the evaluation criteria. Within dimension, some indices were 

independent of each other. The results have two implications. On the one hand, they 

contribute to the understanding of the relationship among the components of IE. On 
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the other hand, as a scale, a lot of works are still needed in future research. Ideally, 

most of the indices should be correlated to each other. Moreover, the intra-correlation 

of the items within a dimension should be larger than the inter-correlations across the 

items of various dimensions. 

Confronted with such a complex construct, this is a challenging work, including 

the development of the items and the rating criteria as well as the conduction of rating. 

Take the dimension of richness for example, it included the use of mathematical 

language, connection making with general concepts and principles, the use of multiple 

solutions and multiple representations. If we look at the rubric, all of them were 

related to richness of mathematics, and there was one common factor across these 

four items. However, they were also measuring the different but key aspects of 

mathematics teaching and learning. The aspects could be independent of one another, 

and their effects on student learning probably would vary (also see the results of the 

followed study in the next chapter). It was also not easy to define the indicators of the 

instrument and use the rubrics. For example, what counts as mathematical language, 

general concepts and principles, multiple solutions and representations? Was there a 

general criterion to evaluate the quality of a teacher's use of mathematical language, 

general concepts and principles, multiple solutions and multiple representations? Do 

the criteria make sense in both theory and practice? How differentiated were the 

scales ranged from 1 to 4’ especially the zone between 2 and 3? Could the scale apply 

to each identified episode of IE fairly? To what degree that different individuals 

viewed the same thing when using the rubric? All these questions need to be dealt 

with when developing and applying the instrument. Many rounds of revision will be 

needed to make the instrument applicable for most mathematics classrooms. And 

meanwhile, the revision should be based on the theory as well as empirical studies. 
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Chapter 5 The Relationship of Instructional Explanation to 

Student Learning Outcomes 

The present study aimed to identify the features of quality of IE that might serve 

as proximal indices of student learning outcome. In this chapter, the procedure of 

data analysis is explained firstly. Then, study results are presented. And followed is a 

discussion of the results. 

1. Procedure of the Data Analysis 

Separate analyses were performed to examine the relation of student learning 

outcomes to the quantitative and to the qualitative indicators of IE respectively. The 

description of the analysis procedure below applies to the two sets of analysis. 

However, the description involves only the qualitative indicators of IE as the 

predictors of students' achievement gain as an illustration. 

Because the student data were embedded in the data of classroom level, the 

analysis was conducted with a multilevel model of 2, 239 students nested within 39 

classes to decompose the variance in student outcome measures into student and 

class level. Before the regression analysis, an unconditional model was conducted to 

compute the variance components across the two levels. The general equations for 

the two-level models are as follows, and the meaning of the equations is explained 

in the paragraph followed. 

Level-1 model at student level 

Y y i + r y 

Level-2 model at class level 

Por ？00 
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In the level-1 model, Yy is the achievement gain for a student i in class j. P� ] is 

the average score of class j. r^ is the residual variance of student i in class j. In the 

level-2 model, joo represents the mean achievement of all the students. is the 

residual variance of class j. 

In the analysis, the variables of SES, sex, and prior achievement were entered as 

controls at the student level and the variable of curriculum at the class level. 

However, at the class level, we did not put teacher's background factors, such as 

years of teaching experience, years of implementing the reform, teacher 

mathematical knowledge, and teacher belief in the equation. There were two reasons 

for this. Firstly, the current study did not aim to explore the effect of teachers' 

background qualifications on student learning. Secondly, we considered that these 

background factors affected students' learning via teachers' instructional practices. 

With these controls in place, we then examined the classroom variables of 

interest. The variables of quality of IE, including truthfulness, richness, and 

coherence, were investigated to test the relationship between the quality of 

instructional explanation and student learning. A preliminary analysis showed 

interaction effects between curriculum and teachers' use of instructional explanation. 

The interaction terms were consequently added to the equations. The equations for 

the two-level models are as follows. 

Level-1 model at student level: 

Yy 二 ( s e x ) + /?2j (SES) + ŷ sj (prior achievement) + r,j 

Level-2 model at class level: 

Por 7oo+yoi (curriculum) +702 (truthfulness) +yo3 (richness) +yo4 (coherence) +yo5 

(curriculum * truthfulness) +yo6 (curriculum * richness) +yo7 (curriculum * 

coherence) +jxoj 
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Moreover, to capture the possible moderate effect of students' SES and prior 

achievements on the effect of instructional explanation on the students achievement 

gain, the two-level models were finally as follows. 

Level-1 model at student level: 

(sex) + /?2j (SES) + (priof achievement) + r̂  

Level-2 model at class level: 

fior yoo+yoi (curriculum) +yo2 (truthfulness) +yo3 (richness) +yo4 (coherence) +yo5 

(curriculum * truthfulness) +yo6 (curriculum * richness) +707 (curriculum * 

coherence) +jioj 

2̂0+ 721 (truthfulness) +722 (richness) +723 (coherence) +724 (curriculum * 

truthfulness) +725 (curriculum * richness) +726 (curriculum * coherence) +jx2j 

(truthfulness) +y32 (richness) +733 (coherence) +734 (curriculum * 

truthfulness) +>'35 (curriculum * richness) +)>36 (curriculum * coherence) +}X3j 

In the level-1 model, Yy is the achievement gain for a student i in class j. poj is 

the average score of class j adjusted for the students' sex, SES, and prior 

achievement, y?/力 P2j, andj^j^ is the slope of student's sex, SES, and prior 

achievement respectively in class j. Xy is the residual variance of student i in class j. 

The student variables of sex and SES were entered into the model imcentered, the 

variable of prior achievement was entered using its group mean centered. 

In the level-2 model, joo represents the mean achievement of all the students, yoi, 

yo2, yo3, yo4, yos, yo6, and is the slope of curriculum, truthfulness, richness, coherence, 

curriculum* truthfulness, curriculum* richness, and curriculum* coherence, 

respectively. \ioj is the residual variance of class j.力。，yio, and 73�are the overall mean 

slopes of the classes. 721 (truthfulness) and 731 (truthfulness) represent the 

- 1 0 4 -



hypothesized effect of truthfulness on the relationship between SES, prior 

achievement and students' learning outcomes. 

At Level 2, the teacher on the class level，ŷ oj was modeled with the inclusion of 

dummy variable indicating whether the class used reform-based or conventional 

curriculum, as well as the variables of the quality of IEtruthfulness , richness, and 

coherence. The intercept was allowed to vary randomly across level two where /̂ oj 

was a random classroom or teacher effect~the deviation of classroom or teacher j ' s 

score from the overall mean, assumed to be normally distributed with the mean as 0 

and the variance as Tp. All other level-1 variables were fixed and not permitted to 

vary randomly across classrooms, as the effects of the student demographics 

variables were modeled as being constant across the classrooms. 

It is notable that because of the small sample size at the class level (/7=39), the 

variables of the structural features and quality of IE were analyzed separately. The 

equations above would be applied to the variables of structural features of 

instructional explanation as indicated at the beginning of the chapter. 

The statistical package HLM 6.02 was used to conduct the analyses. Missing 

values for the 7 outcome variables were 3, 12, 159, 121, 0, 0, 2 for the first 

assessment; and 11,2, 11,2，11,2, 16 for the third assessment. All the missing 

values were replaced with the average score of each time for the group that the 

individuals belonged to. 
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2. Results 

The descriptive statistics of the outcome measures are displayed in Table 9. Table 

10 presents the variances of the outcome measures located at the class level, 

indicating that differences in mathematics achievement between the classes were 

very small, 4.08%-! 6.39% for the cognitive outcomes and 2.1%-8.1% for the 

affective outcomes. We further computed the variances separately for the reform and 

non-reform classes. The results showed that the variances of the outcome measures 

located at the level-2 differed between the two groups, which might imply an 

interaction effect between curriculum and the indicators of instructional explanation 

on the learning outcomes. For example, the variance in the scores of the calculation 

was larger between the reform classes than that between the non-reform classes. 

Conversely, the variance in simple problem solving and complex problem solving 

were much smaller between the reform classes than that between the non-reform 

classes. 
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Table 9 Descriptive Results of the Student Learning Outcomes 

Total 

(«=2，239) 

Reform 

Group 

(«= 1,197) 

Nonreform 

Group 

(«=1，042) 

Variables Max Mean SD Mean SD Mean SD 

SES 2.48 0 1 0.22 0.98 -0.25 0.97 

Learning Outcomes 

ist Assessment 

Calculation 14 10.84 2.22 11.17 2.32 10.47 2.03 

Simple Problem Solving 12 9.26 2.43 9.30 2.42 9.21 2.43 

Complex Problem Solving 24 15.45 5.11 15.66 5.11 15.21 5.11 

Cognitive Achievement ̂  50 35.56 7.90 36.14 7.92 34.89 7.83 

Interest in Learning Mathematics 5 4.17 0.69 4.26 0.65 4.08 0.72 

Classroom Participation 5 3.71 0.89 3.72 0.87 3.71 0.92 

Views of Mathematics 5 3.68 0.57 3.66 0.58 3.70 0.57 

Views of Learning Mathematics 5 3.95 0.61 3.98 0.61 3.92 0.62 

Affective Achievement^ 20 15.52 2.15 15.61 2.11 15.41 2.19 

3rd Assessment 

Calculation 14 12.48 1.87 12.04 2.05 12.98 1.51 

Simple Problem Solving 12 10.32 1.76 10.25 1.80 10.40 1.70 

Complex Problem Solving 24 19.10 4.56 19.28 4.41 18.90 4.72 

Cognitive Achievement 50 41.90 6.52 41.57 6.61 42.28 6.41 

Interest in Learning Mathematics 5 4.01 0.84 4.08 0.80 3.93 0.89 

Classroom Participation 5 3.65 0.93 3.65 0.91 3.64 0.96 

Views of Mathematics 5 3.84 0.61 3.85 0.61 3.84 0.60 

Views of Learning Mathematics 5 3.95 0.65 3.96 0.66 3.94 0.65 

Affective Achievement 20 15.45 2.50 15.54 2.47 15.35 2.53 

Note: a. cognitive achievement equals to the sum of the measured calculation, simple 

problem solving and complex problem solving; 

b. affective achievement equals to the sum of the measured interest, classroom participation, 

views of mathematics, and view of learning mathematics. 
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Table 10 Results of Variance Component Analysis at the Class Level 
Dependent Variables Variance at Class Level 

Total («=39) 
Cognitive Achievement 6.16% 
Calculation 16.39% 
Simple Problem Solving 5.04% 
Complex Problem Solving 4.08% 
Affective Achievement 4.9% 
Interest in Learning Mathematics 8.10% 
Classroom Participation 2.1% 
Views of Mathematics 3.3% 
Views of Learning Mathematics 3.25% 

Reform Classes («=20) 
Cognitive Achievement 5.1% 
Calculation 14.82% 
Simple Problem Solving 3.1% 
Complex Problem Solving 2.4% 
Affective Achievement 7.0% 
Interest in Learning Mathematics 10.5% 
Classroom Participation 2.5% 
Views of Mathematics 4.5% 
Views of Learning Mathematics 5.4% 

Non-reform Classes («=19) 
Cognitive Achievement 7.2% 
Calculation 3.43% 
Simple Problem Solving 7.3% 
Complex Problem Solving 5.6% 
Affective Achievement 2.7% 
Interest in Learning Mathematics 4.8% 
Classroom Participation 1.8% 
Views of Mathematics 2.2% 
Views of Learning Mathematics 1.2% 

The measures of quality of IE include three dimensions containing 11 items. The 

first dimension, truthfulness, consists of measures of teachers' accuracy in provision 

of mathematical knowledge, teaching language, and identification and address of 

students' errors. The second dimension, rich mathematics, focuses on teachers' 

mathematics richness in terms of the use of mathematical language, connections 

with general concepts and principles, the use of multiple solutions, and the use of 

multiple representations. And the third is the coherence of IE in terms of content 
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organization and teachers' interaction with the students. 

Our preliminary analysis indicated that, the effects of instructional explanation on 

student learning were not consistent among the indices within a specific dimension. 

Therefore, we did not conduct the analysis on the basis of the average scores of the 

three dimensions: truthfulness, richness, and coherence. Instead, we tested for the 11 

specific measures of quality of IE concerning their influence on students' learning 

outcomes. Separate analyses were conducted with 2,239 students in total, 1,197 

students from the reform classes, and 1,042 students from the non-reform classes, 

respectively. The results indicated that the model was not convergent involving the 

variables of truthfulness for the non-reform sample. Then, we eventually used 7 

indicators of quality of instructional explanation with larger variance to the 

equations for the analyses. The 7 indicators included 5 items on the dimension of 

richness and 2 items on coherence. One item on richness, the use of multiple 

representations, was not selected, because it was negatively associated with the other 

indices of richness. 

For a convenient reading, the results are presented in order for the cognitive 

outcomes and affective outcomes below. And we presented the results based on 

2,239 students, 1,197 students from the reform classes，and 1, 042 students from the 

nonreform classes, respectively. 

2.1 Effects of Instructional Explanation on Cognitive Learning Outcomes 

Results of Table 11 based on the whole sample indicate that, students' SES and 

prior achievement had a positive effect on their cognitive learning outcomes. The 

students in the non-reform classes scored higher in general cognitive achievement, 

calculation, and simple problem solving than that of the students in the reform 
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classes. 

Both the main effect and interaction effect of the structural features with the 

factor of curriculum were significant. And it was found that the structural features of 

IE appeared more obvious effects on students' calculation and simple problem 

solving. The frequency of a teacher's use of IE only showed the significant effect on 

students' complex problem solving. The turns per IE episode had a negative 

association with students' general cognitive achievement (effect size=-0.40,;7<.01), 

calculation (effect size=-0.21,/><.01), and simple problem solving (effect size=-0.09, 

p<.01). The number of individual students involved in the instructional explanation 

had a positive effect on students' general cognitive achievement (effect size: 1,12, 

j!7<.01), calculation (effect size=0.61，p<.01), and simple problem solving (effect 

size=0.26,/><.01). The frequency of whole class students involved in the generation 

of IE also contributed to students' calculation (effect size=0.33,j!7<.01). 

If we look into the results for the reform and non-reform classes separately 

(Table 12 and 13), it was found that the effects of structural features of IE occurred 

only in the reform classes (see Table 12). Specifically, the number of IE episodes 

had a positive association with students' complex problem solving. The number of 

individual students involved in the IE positively affected students' general cognitive 

achievement, calculation, and simple problem solving. Whole class students 

involved in the explanation positively affected students' calculation. 

Notably, thought all of the effects were insignificant statistically in the nonreform 

classes, the pattern of the effects of structural features on student cognitive learning 

outcome were consistent across the two groups to a large extent, except for the effect 

of individual students involved in the generation of instructional explanation. 
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Table 11 Results of Two-level Analysis of the Cognitive Learning Outcomes 

to the Structural Features of Instructional Explanation («=2,239) 

Relation 

Cognitive Achievement Calculation 

Variable 

Simple Problem 
Solving 

Complex Problem 
Solving 

Coefficien Coefficien Coeffici 
ent 

Coeffici 
ent 

Level 1: Students («=2,239) 
Sex 
SES 

Prior Achievement 

Level 2: Classes (/7=39) 

involved 

-0.34 0.20 -0.17 0.07* 0.06 0.07 
0.27 0.13* 0.11 0.04* 0.14 0.04*** 
0.54 0.02*** 0.28 0.02*** 0.28 0.02*** 

-0.19 0.15 
0.24 0.10* 
0.52 0.02*** 

Reform -1.88 0.37 刚 -1.34 0.16= *̂* -0.33 0.10** -0.09 0.27 

Number of episode 0.13 0.08 0.03 0.04 0.03 0.02 0.11 0.05* 

Turns -0.40 0.11** -0.21 0.06** -0.09 0.03** -0.10 0.08 

Individual students involved 1.12 0.38** 0.61 0.16** 0.26 0.09** 0.17 0.23 

Whole class involved 0.45 0.25 0.33 0.10** 0.07 0.06 -0.02 0,18 

Curriculum*Number of 
episode 

0.40 0.23 0.14 0.10 0.05 0.05 0.24 0.13 

Curriculum * Turns -1.05 0.42* -0.80 0.22** -0.06 0.10 -0.15 0.30 

Curriculum* Individual 
students 

1.13 0.40** 0.62 0.17** 0.13 0.09 0.26 0.25 

Curriculum* Whole class 0.29 0.30 0.29 0.13* -0,00 0.07 -0.03 0.22 

Table 12 Results of Two-level Analysis of the Cognitive Learning Outcomes in Relation 

to the Structural Features of Instructional Explanation (reform group, n= 1,197) 

Variable 

Cognitive Achievement Calculation Simple Problem 
Solving 

Complex Problem  
Solving  

Coefficien 
t 

Coefficien Coeffici 
ent 

Coeffici 
ent 

Level 1: Students 
Sex 
SES 
Prior Achievement 

Level 2: Classes (n=20) 

Number of episode 

Turns 

Individual students 

Whole class involved 

-0.12 
0.35 
0.54 

0.25 

-0.67 

2.16 

0.67 

0.30 
0.15* 

0.02*** 

0.14 

0.16** 

0.61** 

0.34 

-0.17 
0.19 
0.32 

0.08 

-0.42 

1.22 

0.57 

0.09 
0.06** 
0.03*** 

0.07 

0.11** 

0,32** 

0.19* 

0.07 
0.23 
0.28 

0.09 
0.04*** 
0.02*** 

-0.07 
0.17 
0.49 

0.20 
0.11* 
0.03 刚 

0.04 0.03 0.19 0.07* 

-0.11 0.04* -0.12 0.11 

0.39 0.14* 0.35 0.32 

0.07 0.08 -0.07 0.24 
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Table 13 Results of Two-level Analysis of the Cognitive Learning Outcomes in Relation 
to the Structural Features of Instructional Explanation (non-reform group, «= 1, 042) 

Cognitive Achievement Calculation 

Variable 

Simple Problem 
Solving 

CoefFicien 
t 

Coefficien s.e. CoefFici 
ent 

Complex Problem 
Solving 

Coeffici 
ent 

Level 1: Students 1,042) 
Sex -0.60 0.27* -0.15 0.10 0.05 0.09 -0.38 0.22 
SES 0.18 0.22 -0.01 0.06 0.02 0.06 0.38 0.16* 
Prior Achievement 0.55 0.03*** 0.23 0.02*** 0.29 0.03*** 0.56 0.03*** 

Level 2: Classes («= 19) 

Number of episode 0.01 0.08 -0.01 0.02 0.02 0.02 0.01 0.05 

Turns -0.10 0.15 0.01 0.04 -0.07 0.04 -0.05 0.11 

Individual students -0.01 0.47 -0.00 0.11 0.12 0.12 -0.11 0.35 

Whole class involved 0.17 0.37 0.05 0.09 0.04 0.09 0.03 0.28 

Concerning the effects of qualitative indicators on the students' cognitive 

outcomes, the results showed a significant main effect of IE on students' general 

cognitive achievement, simple problem solving and complex problem solving. 

Nevertheless, no effect was found on students' calculation. Specifically, teachers' 

appropriate response to student answers in explanation, had a positive effect on 

students' general cognitive achievement (effect size=0.87, p<.05) and simple 

problem solving (effect size=0.23,/7<.05). Mathematical language encouraged for 

students to use had a positive effect on students' simple problem solving (effect 

size=0.53,;?<.01) and complex problem solving (effect size=1.23,/'<.01). 

Out of expectation, however, the results also showed that the use of multiple 

solutions had a negative effect on students' general cognitive achievement (effect 

size=-1.05,/7<.05), simple problem solving (effect size=-0.34,/7<.01), and complex 

problem solving (effect size=-0.89,;?<.01). Likewise, teachers' level of follow up 

question in IE negatively affected students' simple problem solving (effect size— 

0,49，/K.05). Teachers' use of mathematical language had a negative association 

with students' simple problem solving (effect size=-0.50,j9<.01) and complex 
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problem solving (effect size=-0.89,^<.05). 

We also found significant interaction effects between curriculum and the 

qualitative indicators of IE (see Table 14). The results indicated that qualitative 

indicators were more sensitive to student learning in the nonreform classes than 

reform classes (see Table 15 and 16). More significant effects were observed in the 

nonreform classes. Notably, although most of the effects were statistically 

insignificant in the reform classes, the patterns of the effects were consistent 

between the two groups to a large extent, such as mathematical language used by the 

teachers and students, the use of multiple solutions, level of follow-up questions, 

and teachers' response to student answers. Moreover, in the nonreform classes, 

teachers' use of general concepts and principles had a positive effect on students' 

complex problem solving (effect size=1.66，/K.05), while general concepts and 

principles encouraged for students to use had a negative effect on students' general 

cognitive achievement (effect size=-4.78,/7<.01), simple problem solving (effect 

size=-1.66,/7<.05) and complex problem solving (effect size=-3.95,/><.001). 

However, the pattern of the effect was the opposite in the reform classes though 

statistically insignificant. 

113 



Table 14 Results of Two-level Analysis of the Cognitive Learning Outcomes in Relation 
to the Quality of Instructional Explanation (/i=2,239) 

Cognitive Achievement Calculation Simple Problem 
Solving 

Complex Problem 
Solving 

Variable CoefFicien 
t 

s.e. CoefFicien 
t 

s.e. Coeffici 
ent 

s.e. Coeffici 
ent 

s.e. 

Level 1: Students 0=2,239) 
Sex 
SES 
Prior Achievement 

-0.34 
0.26 
0.54 

0.21 
0.13 

0.02*** 

-0.17 
0.11 
0.28 

0.07* 
0.05* 

0.02*** 

0.06 
0.14 
0.28 

0.06 
0.04** 

0.02 術 

-0.19 

0.24 

0.52 

0.15 

0.10* 

0.02*** 

Level 2: Classes ( � 3 9 ) 
Reform -1.47 0.51** -0.78 0.19** -0.34 0.18 -0.33 0.32 

Mathematical language used 
by the teacher 

-0.99 0.51 -0.10 0.24 -0.50 0.15** -0.89 0.34* 

Mathematical language 
encouraged for students to use 

1.27 0.80 0.07 0.43 0.53 0.18** 1.23 0.38** 

General concepts and 
principles used by the teacher 

0.96 0.99 0.46 0.44 0.11 0.28 0.39 0.55 

General concepts and 
principles encouraged for 
students to use 

-1.53 1.00 0.39 0.48 -0.50 0.28 -1.51 0.50** 

Use of multiple solutions -1.05 0.41* 0.02 0.17 -0.34 0.11** -0.89 0.29** 

Follow-up question -1.31 0.79 -0.62 0.47 -0.49 0.19* -0.58 0.36 

Response to student answers 0.87 0.41* 0.25 0.20 0.23 0.09* 0.45 0.27 

Ciirriculiim*Mathematics 
language used by the teacher 

0.32 0.18 -0.02 0.08 0.05 0.05 0.34 0.12* 

Curriculum*Mathematics 
language for the students 

-0.14 0.26 0.22 0.15 -0.08 0.06 -0.27 0.12* 

Curriculum ̂ General concepts 
and principles for the teacher 

-0.73 0.50 0.02 0.22 -0.06 0.14 -0.63 0.27* 

Curriculum*General concepts 
and principles encouraged 
students to use 

1.25 0.40** -0.20 0.19 0.32 0.12* 1.19 0.22*** 

Curriculum * Multiple 
solutions 

0.37 0.190 -0.22 0.07** 0.10 0.05 0.56 0.14** 

Curriculum* Follow-up 
question 

0.05 0.20 0.03 0.12 0.05 0.05 -0.10 0.10 

CurricuIum*Response to 0.33 0.24 0.04 0.11 0.13 0.06* 0.15 0.15 
student answers 
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Table 15 Results of Two-level Analysis of the Cognitive Learning Outcomes in Relation 
to the Quality of Instructional Explanation (reform group, «= 1,197) 

Cognitive Achievement Calculation Simple Problem Complex Problem 

Variable CoefFicien 
t 

s.e. Coefficien 
t 

s.e. CoefFici 
ent 

s.e. Coeffici 
ent 

s.e. 

Level 1: Students 
Sex 
SES 
Prior Achievement 

-0.12 
0.32 
0.54 

0.30 
0.15* 

0.02*** 

-0.17 
0.19 
0.32 

0.09 
0.06** 

0.03*** 

0.07 
0.23 
0.28 

0.09 
0.04*** 
0.02*** 

-0.07 
0.17 
0.49 

0.20 
0.11* 

0,03**: 

Level 2: Classes ( � 2 0 ) 
Mathematical language used 
by the teacher 

-0.11 0.72 -0.12 0.42 -0.36 0.15=^ 0.04 0.42 

Mathematical language 
encouraged for students to use 

0.88 1.36 0.63 0.79 0.27 0.26 0.49 0.56 

General concepts and 
principles used by the teacher 

-0.44 1.51 0.48 0.84 -0.04 0.27 -0.81 0.78 

General concepts and 
principles encouraged for 
students to use 

1.34 1.40 -0.08 0.79 0.26 0.24 1.22 0.74 

Use of multiple solutions -0.34 0.60 -0.42 0.27 -0.14 0.08 0.17 0.39 

Follow-up question -1.09 1.41 -0.38 0.89 -0.23 0.31 -0.99 0.62 

Response to student answers 1.40 0.70 0.27 0.40 0.43 0.11** 0.71 0.40 

Table 16 Results of Two-level Analysis of the Cognitive Learning Outcomes in Relation 
to the Quality of Instructional Explanation (non-reform group, n= 1, 042) 

Cognitive Achievement Calculation Simple Problem Complex Problem 

Variable Coefficien 
t 

s.e. CoefFicien 
t 

s.e. CoefFici 
ent 

s.e. Coeffici 
ent 

s.e. 

Level 1: Students 1,042) 
Sex 
SES 
Prior Achievement 

-0.60 
0.18 
0.55 

0.27* 
0.22 

0.03*** 

-0.15 
-0.01 
0.23 

0.10 
0.06 

0.02*** 

0.05 
0.02 
0.29 

0.09 
0.06 

0.03*** 

-0.38 
0.38 
0.56 

0.22 
0.16* 

0.03*** 

Level 2: Classes («=19) 
Mathematical language used 
by the teacher 

-1.88 0.78* -0.14 0.26 -0.69 0.26* -1.67 0.59* 

Mathematical language 
encouraged for students to use 

1.78 0.85 -0.26 0.35 1.01 0.28** 1.66 0.53* 

General concepts and 
principles used by the teacher 

2.35 1.30 0.36 0.35 0.23 0.51 1.66 0.74* 

General concepts and 
principles encouraged for 
students to use 

-4.78 1.46** 0.43 0.53 -1.66 0.53* -3.95 0.73*** 

Use of multiple solutions -1.86 0.59* 0.29 0.19 -0.68 0 . 2 1 " -1.85 0.45** 

Follow-up question -1.49 0.70 -0.71 0.27* -0.66 0.25* -0.16 0.42 

Response to student answers 0.31 0.40 0.18 0,15 -0.03 0.16 0.19 0.30 
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2.2 Effects of Instructional Explanation on the Affective Learning 

Outcomes 

The results of the HLM analysis with the affective learning outcomes—general 

affective achievement, expressed interest in learning mathematics, mathematics 

classroom participation, views of mathematics, and views of learning mathematics-

are presented in Table 17, 18，19. The results are based on 2,239 students of the 

whole sample, 1,197 reform group students, and 1,042 nonreform group students, 

respectively. 

Students' prior achievement showed a positive effect on students' affective 

learning outcomes. Individual SES positively affected students' classroom 

participation in mathematics classes. And curriculum in use did not show significant 

effect on students' affective learning outcomes. 

The main effects of structural features of instructional explanation on students' 

affective learning outcome were insignificant. However, a significant interaction 

effect was found between curriculum and the structural features of IE. In contrast to 

the results concerning the cognitive learning outcomes, most of the main effects on 

the affective outcomes occurred in the nonreform classes. And the results revealed 

an opposite pattern for the effects of the structural features on students' affective 

learning outcomes between the reform and nonreform classes. More specifically, in 

the reform classes, the number of turns had a negative association with students' 

general affective achievement (effect size二-0.18, ；7<.05), expressed interest in 

learning mathematics (effect size=-0.06,/><.05), views of mathematics (effect size=-

0.05,；7<.05), and views of learning mathematics (effect size=-0.05,/?<.05). 

However, the turns had a positive association with general affective achievement 
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(effect size=0.10,^<.01), expressed interest in learning mathematics (effect 

size=0.04,/?<.01) and classroom participations (effect size=0.04,/?<.01) in the 

nonreform classes. This pattern also occurred in the relationship between individual 

students / whole class students involved in instructional explanation and students' 

affective outcomes. In the nonreform classes, individual students as well as whole 

class students involved in an episode of IE were negatively associated with students' 

affective learning outcomes. However, the associations of these two sets of variables 

were positive in the reform classes, although they were statistically insignificant. 

These results suggest that the extended discourse in instructional explanation 

benefited more for the students of nonreform classes than those of the reform classes 

on the affective learning outcomes. Out of the expectation, the qualitative indices of 

IE did not show effect on the students' affective learning outcomes. 
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Table 17 Results of Two-level Analysis of the Affective Learning Outcomes in Relation 
to the Structural Features of Instructional Explanation (w=2,239) 

Affective Achievement Interest Classroom Participation Views of 
Mathematics 

Views of 
Learning 

Mathematics 
Variable Coefficien Coeffi s. 

dent 
Coefficient Coeffici s.e. 

ent 
Coeff 
icient 

Level 1: 
Students 
(«=2，239) 
Sex 0.14 0.09 0.13 0.03 0.11 0.04** - 0.05 0.02* -0.04 0.03 

SES 
Prior 
Achievement 

0.10 
0.67 

0.06 
0.02*** 

0.03 
0.59 

0.02 
0.03 *** 

0.09 
0.55 

0.02*** 
0.02 術 

0.02 

0.47 

0.01 

0.02* 

本氺 

0.02 

0.46 

0.02 
0.02 
*氺* 

Level 2; Classes 
(«=39) 
Reform 0.08 0.15 0.06 0.05 -0.02 0.05 0.02 0.04 -0.01 0.04 

Number of 
episode 

0.02 0.04 0.02 0.01 -0.00 0.01 0.01 0.01 0.02 0.01 

Turns -0.04 0.04 -0.01 0.01 0.00 0.01 -0.02 0.01 -0.02 0.01 

Individual 
students 

-0.06 0.14 -0.06 0.05 -0.04 0.04 0.04 0.04 0.02 0.04 

Whole class 
involved 

-0.02 0.09 -0.02 0.03 -0.03 0.03 0.01 0.02 0.01 0.02 

Curriculum* 
Number of 
episode 

-0.06 0.10 -0.02 0.03 -0.05 0.03 0.02 0.03 0.02 0.03 

Curriculum* 
Turns 

-0.50 0.15** -0.17 0.05* -0.13 0.04** -0.11 0.04* 
* 

-0.10 0.04* 

Curriculum* 
Individual 
students 

0.27 0.14 0.07 0.05 0.10 0.03* 0.05 0.04 0.03 0.04 

Curriculum* 
Whole class 
involved 

0.39 0.11** 0.13 0.04* * 0.11 0.03** 0.07 0.03* 0.06 0.03 
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Table 18 Results of Two-level Analysis of the Affective Learning Outcomes in Relation 
to the Structural Features of Instructional Explanation (reform group, n= 1,197) 

Affective Achievement Interest Classroom Participation Views of 
Mathematics 

Variable Coefficien Coeffi 
dent 

Coefficient Coeffici s. 
ent 

Views of 
Learning 

Mathematics 
CoefF s.e. 
icient 

Level 1: 
Students 

1,197) 
Sex 0.09 

SES 0.17 

Prior 0.67 
Achievement 

Level 2: Classes 
(«=20) 
Number of 0.00 
episode 

Turns -0.18 

Individual 0.21 
students 

Whole class 0.30 
involved 

0.12 

0.07* 

0.07 

0.08* 

0.25 

0.18 

0.11 0.04* 
氺 

0.13 0.04*=̂  -0.08 0.03* -0.07 0.03* 

0.04 0.02* 0.10 0.03** 0.05 0.01* 
氺 

0.03 0.02 

0.59 0.04* 0.56 0.01*** 0.51 0.04* 0.48 0.03** 

0.01 0.02 

-0.06 0.02* 

0.01 0.08 

0.08 0.06 

-0.02 

-0.03 

0.06 

0.06 

0.02 

0.02 

0.07 

0.05 

0.01 0.02 0.02 

-0.05 0.02* 

0.10 0.08 

0.07 0.05 

-0.05 

0.05 

0.06 

0.02 

0.02* 

0.07 

0.04 

Table 19 Results of Two-level Analysis of the Affective Learning Outcomes in Relation 
to the Structural Features of Instructional Explanation (non-reform group, n= 1, 042) 

Affective Achievement Interest Classroom Participation Views of 
Mathematics 

Views of 
Learning 

Mathematics 
Variable Coefficien 

t 
s.e. Coeffi s. 

dent 
Coefficient Coeffici s. 

ent 
Coeff 
icient 

Level 1: 
Students 

1,042) 
Sex 0.19 0.15 0.14 0.05* 0.08 0.06 -0.00 0.03 -0.01 0.04 

SES 0.03 0.09 0.01 0.03 0.07 0.03* -0.01 0.02 0.01 0.01 
Prior 0.65 0.03*** 0.58 0.04* 0.54 0.03*** 0.43 0.03* 0.43 0,03 
Achievement 

Level 2: Classes 
(«=19) 
Number of 
episode 

Turns 

Individual 
students 

Whole class 
involved 

0.05 

0.10 

-0.33 

-0.36 

0.02 

0.03*-

0.09*^ 

0.06** 

0.03 0.01 0.01 

0.04 0.01* 0.04 
* 

-0.12 0.04* -0.14 

-0.13 0.03 = -0.13 

0.01 

0.01** 

0.03*** 

0.02*** 

0.00 0.01 

0.01 

-0.01 

0.01 

0.02 

0.01 

0.01 

-0.02 

-0.05 0.01* -0.04 

0.00 

0.01 

0.02 

0.01* 
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Table 20 Results of Two-level Analysis of the Affective Learning Outcomes in Relation 
to the Quality of Instructional Explanation («=2,239) 

Affective Achievement Interest Classroom Participation Views of 
Mathematics 

Views of 
Learning 

Mathematics 
Variable Coefficien Coeffi s.e. Coefficient 

dent 
Coeffici s. 

ent 
Coeff s. 
icient 

Level 1: 
Students 
(n=2,239) 
Sex 0.14 0.09 0.13 0.03=̂  0.11 0.04 ** -0.05 0.02* -0.04 0.03 

SES 
Prior 
Achievement 

0.10 
0.67 

0.06 
0.02*** 

0.03 
0.58 

0.02 
0.03* ** 

0.08 
0.55 

0.02** 
0.02*** 

0.02 
0.47 

0.01 
0.02* ** 

0.02 
0.46 

0.02 
0.02** 

Level 2: Classes 

Reform 0.08 0.28 0.13 0.11 -0.02 0.10 0.02 0.05 -0.08 0.06 

Mathematical 
language used 
by the teacher 

0.00 0.30 -0.14 0.12 0.07 0.09 0.03 0.07 -0.03 0.06 

Mathematical 
language 
encouraged for 
students to use 

0.01 0.40 -0.03 0.15 -0.07 0.12 -0.02 0.09 0.121 0.09 

General 
concepts and 
principles used 
by the teacher 

-0.09 0.50 0.14 0.19 -0.12 0.15 -0.02 0.12 0.05 0.11 

General 
concepts and 
principles 
encouraged for 
students to use 

-0.05 0.67 -0.02 0.27 0.10 0.21 0.01 0.12 -0.22 0.12 

Use of multiple 
solutions 

-0.14 0.23 -0.03 0.09 -0.02 0.07 0.05 0.05 -0.07 0.05 

Follow-up 
question 

-0.30 0.39 -0.15 0.14 0.02 0.11 -0.02 0.09 -0.09 0.09 

Response to 
student answers 

0.00 0.26 0.05 0.10 -0.02 0.08 0.01 0.06 -0.05 0.05 

Curriculum 
* Mathematics 
language used 
by the teacher 

0.04 0.11 -0.00 0.04 0.04 0.03 0.01 0.03 -0.01 0.02 

Curriculum 
* Mathematics 
language for the 
students 

-0.11 0.14 -0.02 0.05 -0.05 0.04 -0.01 0.03 -0.05 0.03 

Curriculum 
* General 
concepts and 
principles for 

0.01 0.25 0.01 0.10 -0.07 0.08 0.01 0.06 0.06 0.06 
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the teacher 

Curriculum -0.13 0.29 -0.10 0.12 -0.09 0.09 -0.02 0.05 0.02 0.05 
* General 
concepts and 
principles 
encouraged 
students to use 

Curriculum 0.07 0.11 0.02 0.04 0.02 0.03 -0.01 0.02 0.01 0.02 
* Multiple 
solutions 

Curriculum -0.04 0.10 -0.04 0.04 0.00 0.03 -0.01 0.02 0.02 0.02 
* Follow-up 
question 

Curriculum 0.08 0.15 0.01 0.06 0.07 0.05 -0.01 0.03 0.01 0.03 
* Response to 
student answers 

Because the proportion of the variance in student achievement gains at the 

classroom level was small in comparison to the proportion at the student level, we 

also examined the effect of IE on student learning outcomes with multiple regression. 

Results of multiple regression were consistent with the results of the HLM analyses. 

In sum, we observed the significant effect of IE on student learning. In particular, 

more effects were found on the students' cognitive learning outcomes (e.g., general 

cognitive achievement, calculation, and simple problem solving) than on the 

affective learning outcomes. Moreover, curriculum was an important moderator 

between instructional explanation and student learning. The results revealed that the 

indicators of IE were found more sensitive to student learning in the non-reform 

classes than to that of the reform classes. 

2.3 Moderate Effects of Instructional Explanation on Student Learning 

Outcomes 

As indicated above, this study also aimed to explore the effect of students' 

individual factors on the link between IE and student learning outcomes. Since the 
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variables of instructional explanation were various, here, we selected the use of 

multiple solutions as an example to illustrate the relationship between students' SES, 

prior achievement, teachers' IE and student learning outcomes. The reason that we 

chose the variable of use of multiple solutions was because a few researchers had 

done some seminal works (e.g., GroBe 8c Renkl，2007; Lubienski, 2002), and these 

works would help us to make some connections and better understand the 

relationship between the variables. As the sequence of analysis above, the researcher 

firstly conducted the analysis with 2,239 students. If an interaction effect between 

curriculum and the use of multiple solutions was found, then the analysis would be 

conducted further with 1,197 reform students and 1,042 non-reform students 

respectively. The equations for the two-level models axe as follows. 

Level-1 model at student level: 

Y,j=y^oj (sex) + (SES) + ŷ sj (prior achievement) + ly 

Level-2 model at class level: 

y^oj- ？oo+7oi (curriculum) +yo2 (richness) +yo3 (coherence) +yo4 (curriculum * 

richness) +yo5 (curriculum * coherence) +jioj 

fh广 ^20+ 721 (use of multiple solutions) +^22 (curriculum * use of multiple solutions) 

+M-2J 

；1̂ 3�+ ̂ 31 (use of multiple solutions) +732 (curriculum * use of multiple solutions) 

Results of the analysis revealed a moderate effect of student's SES on the 

relationship between the use of multiple solutions and students' general affective 

achievements (effect size=0.32,j!7<.01), views of mathematics (effect size=0.07, 

p<.01), and views of learning mathematics (effect size二0.09, ；7<.01). The use of 
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multiple solutions caused more negative effects to high SES students than low SES 

students. And the effect was consistent in the reform and non-reform classes. 

We found that the relationship between the use of multiple solutions and students' 

performance on simple problem solving and general cognitive achievement was 

affected by students' prior achievement, but not for the other cognitive outcomes and 

affective learning outcomes. And the moderate effect of prior achievement was only 

found in the non-reform classes. Specifically, students' prior achievement increased 

the effects of the use of multiple solutions on student general cognitive achievement 

(effect size=0.13，/K.01), and simple problem solving (effect size=0.18,p<.01). The 

use of multiple solutions was more likely to affect high-achieving students' general 

cognitive achievement, and simple problem solving. 

3. Discussion 

The current study examined one of the critical incidents in classroom discourse— 

instructional explanation, and attempted to identify the features of IE that might 

served as proximal indices of student learning. For this purpose, the IE was 

investigated in terms of its structural features and quality. With respect to the quality, 

its indicators were mainly arrived at based on the well-established research findings of 

the empirical studies. Notably, as one of the parts in classroom discourse, the effect of 

IE on student learning was affected by many other factors, such as curriculum in use 

and students' prior achievement. Teachers' use of IE was influenced by numbers of 

factors, too. Followed is a discussion of the results. 
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3.1 Effects of Instructional Explanation on Cognitive Learning Outcomes 

As it was hypothesized, the results showed that the structural features of 

instructional explanation affected students' cognitive learning outcomes. However, the 

effects varied. More effects were found on calculation and simple problems solving. 

Specifically, the more turns per episode of IE, the more negative effects it had on 

students' general cognitive achievement, calculation, and simple problem solving. The 

number of individual students as well as the frequency of the whole class students 

involved in the generation of IE positively affected students' cognitive learning 

outcomes. The number of identified episode of IE showed no effect on students' 

cognitive learning, except for the complex problem solving. The results suggest the 

impact of the structure of IE on student learning, especially for the application of 

basis mathematics knowledge and skills. However, it did not necessarily result in 

desired outcomes for student learning. It was the students' engagement that mattered 

to student learning, no matter whether engagement in the form of individual or in 

whole class (Cazden, 2001). 

Consistent with the hypotheses, the qualitative indicators of IE showed a 

significant effect on students' cognitive learning outcome, especially on simple 

problem solving and complex problem solving, which required the skills of carrying 

out mathematical explanations and communications. This result was corroborated 

with the previous study, which revealed that reform-oriented instruction showed 

stronger relationships with open-ended measures than with multiple-choice tests than 

with procedural skills in mathematics (Le，Lockwood, Hamilton, & Martinez, 2009). 

We found that teachers' recognition and expansion of students' contribution as well as 

teacher's encouraging students to use mathematical language had a positive effect on 

students' cognitive learning outcomes. However, teachers' use of mathematical 
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language, the use of multiple solutions, and teachers' follow-up question had negative 

effects on students' cognitive outcomes, which were out of expectation. Three reasons 

presumably accounted for the results. 

Firstly, the quality of implementing these "effective" teaching practices is 

important. According to the descriptive results, we observed that the teachers scored 

ranged from 1 to 2.56 on the variable of the use of multiple solution methods, which 

meant when teachers used multiple solutions, they rarely made comparisons or 

connections between the solutions in their instructional explanation. They focused on 

the solutions' diversity, without paying enough attention to the optimization of a 

solution. The findings were also reported by other researchers (e.g., Yu, 2003; Huang, 

2005). In this case, the learners might be urged to put more cognitive effort into 

integrating many sources of information, which was detrimental to their learning 

(Sweller, 2005; Rittle-Johnson & Star，2009). Some empirical studies supported this 

argument. For example, Jitendra and colleagues compared the effect of single and 

multiple strategy instruction on third-grade students' mathematical problem solving. 

They found that, the schema-based instruction (a single strategy) was more effective 

than multiple strategy instruction^^ in enhancing students' mathematical word 

problem-solving skills at posttest and maintenance (Jitendra, Griffin, Haria, Adams, & 

Kaduvettoor, 2007). 

Likewise, although follow-up questions were posed in teachers' instructional 

explanation, most of them were not connected between one another. And they did not 

facilitate students thinking substantially (mean=2.93, range=l~4). The results were 

also found in our previous analysis with 58 teachers (Ni, et al., 2009). From the 

Multiple strategy instruction refers to the provision of different strategies without further 
connection, such as using objects, drawing a diagram, and using data from a graph. 
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transcription materials (also see the example in last section), we observed that lots of 

teachers focused on engaging more students into the discussions by asking the open 

questions like "Anything else?", "What about the other students' opinions?", "What 

do you think?", and "Who would like to say a little more about this question?". Or the 

teachers paid their attention to looking for the right answers through continued 

questions, without dealing with the students' errors (see the example below). These 

questions were not followed up with increasing cognitive demands, such as asking 

students to differentiate between responses or helping students to clarify the 

misunderstandings. Hence, like the use of multiple solutions discussed above, 

teachers' follow-up questions seemed to be ended in themselves and turned out to be 

formality. 
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Example Follow-up Questions to Look for the Right Answers in IE. 

1. Students (together): Xiao Lin saved 7 tons water in 3.5 months. How many tons did he save for 
every month on average? 

2. Teacher: He saved 7 tons water in 3.5 months, how many tons did he save for every month on 
average? Liu Yuan. 

3. Student (Liu): Divided 3.5 by 7. 
4. Teacher: Divided 3.5 by 7? We are saying every month on average. Think about it again. Who 

have different idea? Well, you please. 
5. Student 11; Multiplied 3.5 by 7. 
6. Teacher: Oh (八-八），multiplied 3.5 by 7? Think about it further. Qu. 
7. Student (Qu): Divided 7 by 3.5. 
8. Teacher: Divided 7 by 3.5. You please. 
9. Student 12: Divided 7 by 3.5. 
10. Teacher: Why divided 7 by 3.5? Ok, who can explain why we divided 7 by 3.5? Wang Hao, 

could you say something? 
1. Student (Wang): Because Xiao Lin saved 7 tons water every month  
2. Teacher: Did he save 7 tons water every month? 
3. Student (Wang): Oh, he saved 7 tons water in 3.5 month, so the water he saved every month 

is 7...". 
4. Teacher: Ok, Chen Yan. 
5. Student (Chen): Because it was divided a number into several sections, and we got one of 

them. 
6. Teacher: Oh, it was divided a number into several sections equally, and we got  
7. Students (together): one of the sections. 
8. Teacher: So we use division. Now, understand? 
9. Students (together): Yes. (Miss Li and her fifth graders on a dialogue with division of fraction, 

line 31-49) 

The issues discussed above might also explain why the turns of IE episodes had a 

negative effect on students' cognitive learning outcomes as well as on affective 

learning outcomes (though statistically insignificant). Although the teachers used 

follow-up questions and the discourse was extended, most of them were not 

substantial in mathematics and did not facilitate the students' understanding 

sufficiently. Hence, the turns of episodes did not enhance desired learning outcomes 

in students. 
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Secondly, the other factors, such as students' individual factors，might affect the 

relationship between the uses of IE and student learning. For example, our analysis 

showed that, the use of multiple solutions without comparison and connections caused 

more negative effect to high-achieving students, which might be related to expertise-

reversal effect (also the so-called redundancy effect) (Kalyuga, Ayres，Chandler, & 

Sweller, 2003; Sweller, 2005; Sweller et a l , 1998). The effect can be explained that 

learners who have already constructed problem-solving schemata might not need 

instructional guidance any more. Hence, when continuously presented with multiple 

solutions, learners have to devote their attention to redundant information, which 

might result in suboptimal learning processes. However, for the low-achieving 

students, there might be another story. The use of multiple solutions presumably was 

cognitive demanding, and thus providing one solution was more favorable (GroBe & 

Renld, 2007). 

Finally but not the least, a more deeper reason presumably was related to 

Chinese classroom cultures. In this study, the criteria for good IE did not yield the 

expected outcomes. Our previous analysis with 58 teachers and their 3,184 students 

also showed that, some reform-oriented practices, such as probing and use of peer 

assessment, had a negative effect on students' affective learning outcomes (Ni, et al., 

2009). It seems that these advocated instructional practices in western literature 

might not be necessarily effective in Chinese classes. 

In Chinese culture, there is a famous saying that "think more, do more, and talk 

less". The learners are used to listening and thinking quietly and implicitly in classes. 

Hence, the discussion-oriented instruction might make them feel pressed and thus 

turned out to be counterproductive. For example, our findings revealed that, although 

some of the identified criteria showed netative effects on student learning in general, 
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their effect appeared more obvious in the nonreform classes than the reform classes. 

Also, we observed that the nonoreform students benefited from the practices of IE 

where the teacher played most of the parts. For them, the less teacher asked individual 

students and whole class students to involve in the IE, the better they expressed 

interest in learning mathematics and classroom participation. Moreover, when making 

connections to general concepts and principles in mathematics, it showed to be more 

beneficial for the non-reform students when the connections were made by the 

teachers. The connection encouraged students to make turned out to be negatively 

related to the students' general cognitive achievement, simple problem solving and 

complex problem solving. The results, in part, were because the criteria were more 

aligned with the reform-oriented pracitce, but the students of the non-reform classes 

did not receive any training for these practices. 

The findings have also raised a few other questions. We observed that the 

variables of the similar nature did not necessarily result in consistent effects on 

student learning. Based on the correlation analysis, there was a moderate correlation 

between teachers' use of mathematical language and their making connection with 

general concepts and principles in mahtematics (r=0.67). Likewise, the correlation 

between teachers' making connection with general concepts and students encouraged 

to make connections was high (r=0.83). However, the two set variables revealed an 

opposite effect on students' cognitive learning outcomes. For example, students 

benefited from their use of mathematical language and teachers' connection making 

with general concepts and principles in classes. While teachers' use of mathematical 

language and the making connection with general concepts encouraged for students, 

showed a negative effect on students' learning. Concerning the results, it seemed more 

easier for students to use mathematical language than to make connections with 
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general concepts and principles in terms of cognitive demand. But still, why the effect 

appeared more salient in the non-reform classes? And it was also unclear why 

teachers' use of mathematical language showed a negative effect both in the reform 

and the nonrefrom classes. Answers to these questions were not clear. Future research 

is needed to address more definitively. 

3.2 Effects of Instructional Explanation on Affective Learning Outcomes 

Out of the expectation, we found no effect of the qualitative indices of IE on 

students' affective learning outcomes. Two inter-related reasons presumably accounts 

for the results. Firstly, the indicators of the instructional explanation in the current 

study concerned more about the cognitive features. And all these indicators were 

identified as proximal variables of students' learning based on measures of cognitive 

learning outcomes in the previous studies (Roscoe & Chi, 2007, 2008; Rittle-Johnson 

& Star, 2007; Leinhardt, 2001). Furthermore, explanations seem to be more 

associated with our cognitive lives. For example, according to Keil and Wilson (2000), 

there is a sense both that a given, successful explanation satisfies a cognitive need, 

and that a questionable or dubious explanation does not. However, there may be also 

possible that such affective effect was difficult to measure, as affective impact may be 

less accumulative. 

3.3 Discussing the Effects on the Context of Curriculum 

Initially, the research proposal only included 29 reform teachers. It aimed to 

make clear when investigating the relationship between instructional explanation 

and student learning. However, according to Cohen, Raudenbush, and Ball (2003), 

"Teaching is what teachers do, say, and think with learners, concerning content, in 
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particular organizations and other environments, in time"(p.l24). The 

conceptualization pushes researchers to design studies capable of providing good 

evidence about interactions among students, teachers, and content in the broader 

context of classrooms and school policies, processes, and composition. Additionally, 

the previous studies showed the important role of curriculum in the link between 

instructional practices and student learning outcomes (Ni, et al , 2009; McCaffrey, 

Hamilton, Stecher, Klein, Bugliari, & Robyn, 2001; Tarr, Reys, Reys, Chavez, Shih, 

& Osterlind, 2008). For example, McCaffrey and colleagues (2001) found that, use 

of standards-based or reform practices was positively related to achievement on both 

the multiple-choice and open-ended questions of the Stanford achievement tests for 

tenth-grade students in reform-oriented courses, whereas use of reform practices was 

unrelated to achievement in the more traditional courses. This result was consistent 

with the findings reported by Tarr and colleagues (2008). The study showed that 

students were positively impacted on the Balanced Assessment in Mathematics by 

NSF-funded curricula when coupled with either Moderate or High levels of the 

Standards-Based Learning Environment (SBLE)^" .̂ There was no statistically 

significant impact of NSF-funded curricula on students in classrooms with a Low 

level of SBLE，and the relationship between publisher-developed textbooks and 

SBLE was not statistically significant. 

Based on these works, we finally decided the research design involved 39 

teachers, including 20 teachers who implemented the reform-oriented curriculum 

and 19 teachers who used the conventional curriculum. All the classes were having 

new lessons about the number. The results indicated that, the identified indicators of 

SBLE refers to the environment that is consistent with the recommendations ofNCTM, such as 
providing opportunities for students to make conjectures about mathematical ideas, asking students to 
explain their responses or solution strategies, encouraging multiple strategies/perspectives, and 
valuing students' statements about mathematics and using them to build discussion. 
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quality of IE showed significant effects on students' general cognitive achievement, 

simple problem solving and complex problem solving. And the effects appeared 

more obvious in the classes that using the conventional curriculum than the classes 

that using the reform-oriented curriculum. Consistent with the previous studies, our 

findings suggest the interaction between curriculum, instructional practices, and 

student learning. However, the results were out of the expectation in two respects. 

On the one hand, the identified indicators of quality of IE, which were more aligned 

with the reform-oriented practices, did not show a positive effect on students' 

learning outcomes; on the other, the indicators showed more significant effects in 

the non-reform classes, and few effects were found in the reform classes. As 

discussed above, two reasons presumably accounted for the results. Firstly, the low 

quality of the implementation of instructional practices might not enhance desired 

learning processes and outcomes in students. In order to facilitate student learning, 

there was a benchmark for teachers' practices, such as Moderate or High levels of 

the Standards-Based Learning Environment as reported by Tarr's study (Tarr, et al.， 

2008). Secondly, lack of training background might make students from the non-

reform classes more fragile under the context of reform-oriented practices. 

Notably, our study also found that, curriculum type was a significant predictor of 

students' cognitive learning outcomes, which was not observed in Tarr's study 

(2008). In addition, the results showed the effect of curriculum on teachers' use of 

IE. As a whole, these results suggest that when discussing the relation of 

instructional explanation to student learning，we should not out of the context of the 

curriculimi. Otherwise, the conclusion might be misleading. 
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Chapter 6 General Discussion and Conclusions 

The present study aimed to identify the features of quality of IE that might serve 

as proximal indices of student learning outcome. In this chapter, a general discussion 

of the findings is organized into four parts. Firstly, the main findings of the study are 

presented. Then, the contributions of the study are summarized. Next, questions 

remaining are proposed. And finally, future directions are discussed. 

1. Main Findings of the Study 

This study explored the three research quesions, including 1) what were the 

cognitive features of teachers' instructional explanation in the Chinese primary 

mathematics classrooms; 2) what was the relationship between teachers' background 

factors and their use of instructional explanation; and 3) what was the relationship 

between teachers' instructional explanation and student learning outcomes. In 

response to these research questions and based on the results from the data analyses, 

we draw the following conclusions. 

1.1 The Cognitive Features of Instructional Explanation in the Chinese 

Classrooms 

In the study, the examination of instructional explanation included its structural 

features (e.g., the number of identified episodes of IE, the number of turns and 

students involved in the episode) and quality (e.g., truthfulness, richness, and 

coherence). For the structural features of Chinese teachers' instructional explanation, 

the results revealed that the variability in the number of identified episodes of IE 

among 39 teachers was not small. The range was 9 (4-15). On average, there was 14 

turns and 2 individual students involved per episode. And teachers would engage the 
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whole class students about three times in the generation of an instructional 

explanation. 

With respect to the quality of instructional explanation, we found that the 

Chinese mathematics teachers had extremely high performance on the indices of 

truthfulness and coherence. More specifically, when constructing an instructional 

explanation, they were able to provide accurate mathematical knowledge, to use 

accurate teaching language, and to identify and address student errors appropriately. 

Moreover, they provided students with relevant and well-organized topic, raised 

follow-up questions that related to student thinking, and recognized and expanded 

students' contributions. The teachers had relatively lower scores on the dimension of 

richness, but still satisfactory. They used a variety of mathematical language and 

made connections to general concepts and principles when generating instructional 

explanation. Meanwhile, they encouraged the students to use mathematical language 

and to make connections with general mathematics concepts. The teachers also used 

multiple solutions and multiple represenstations in explanation. However, we 

observed that they rarely made comparisons or connections between multiple 

solutions and representations purposefully and explicitly. 

Lastly, we found that a teacher's performance in generating instructional 

explanation, including its structural features and quality, was relatively stable across 

lessons. 

1.2 Relationship between the Teachers' Background Factors and 

Instructional Explanation 

In general, we found few relations between teachers' background factors (i.e., 

years of teaching experience, educational level, mathematical knowledge for 
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teaching, and teachers' belief towards mathematics) and their use of instructional 

explanation. However, curriculum in use made a difference in the quality of 

teachers' instructional explanation. The teachers who used the reform-oriented 

curriculum were more likely to encourage students to use mathematical language, 

multiple solutions and multiple representations than their counterparts of the non-

reform classes. On the other hand, the teachers of non-reform classes were more 

inclined to use accurate teaching language and make connections with general 

concepts and principles than their peers of the reform classes. Nevertheless, 

curriculum in use had no effect on the structural features of instructional explanation. 

1.3 Relationship between Instructional Explanation and Student 

Learning 

Teachers' instructional explanation affected student learning outcomes. However, 

the effect differentiated across students' learning outcomes. It showed more effects 

on students' cognitive achievement than on the affective achievement. Specifically, 

the structural features and quality of IE had a significant assocation with students' 

general cognitive achievement, simple problem solving, and complex problems 

solving. The qualitative indicators of IE had no effect on students' calculation. 

Neither the structural features nor quality of IE showed significant main effects on 

students' affective learning outcomes. 

Moreover, the effect of instructional explanation on student learning was 

moderated by the factor of curriculum. Specifically, instructional exlanation showed 

more significant effects in the nonreform classes than in the reform classes. 

Students' SES and prior achievement also moderated the effect of instructional 

explanation on student learning. Take the use of multiple solutions in instructional 
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explanation as example, it was found that instructional explanation had stronger 

effects on high SES and high-achieving students. When the teachers used multiple 

solutions in instructional explanation, it caused more negative effects on high SES 

students' general affective achievement, including their views of mathematics, and 

views of learning mathematics. Likewise, the results indicated that the use of 

multiple solutions caused more negative effects on high-achieving students' general 

cognitive achievement and simple problem solving. 

2. Contributions of the Study 

Results of the study are considered to make three specific contributions that are 

discussed in the following sections. 

2.1 Understanding the Classroom Instruction in China 

Based on the observation of 110 lessons of 39 teachers, this study systematically 

described the structural features and quality of instructional explanation in the 

Chinese mathematics classrooms. The findings provide the meaningful information 

for knowing and understanding Chinese classroom instruction. They will be 

discussed in terms of the strength and limitations of the classroom instruction in the 

following sections. 

Firstly, the strength of the Chinese classroom instruction was embodied in its 

quality teaching and homogeneity between the classes. The results indicated that the 

Chinese mathematics teachers scored extremely high in accuracy and coherence 

when using IE. They were able to provide accurate mathematical knowledge, to 

present with precise mathematical language, and to identify and address student 

errors appropriately. They were also able to organize IE in a relevant and clear way, 
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as well as to interact with the students coherently. The teachers' performance was 

stable across lessons. In addition, it was found that the variance between the teachers 

was very small, which helped make sure that most of the students had the access to 

the quality teaching. Moreover, the results showed that the teachers' demographic 

factors (e.g., years of teaching, educational level) had no or low correlations with 

their accuracy and coherence of IE, which again suggests the homogeneity of the 

teachers' classroom instruction in general and use of IE in specific. These findings 

complemented to the previous study, which indicated that all Chinese lesson plans 

were very similar with details in teaching contents and procedure, in comparison to 

the extreme variance of their U.S. counterparts (Cai & Wang, 2006). The factors, as 

indicated above, made two strengths of the Chinese classroom instruction. 

Secondly, the findings of the study also reveal the limitations of the instructional 

practice in Chinese classrooms. Like their peers from the other countries, the Chinese 

teachers were also confronted with the challenges under the context of curriculum 

reform. On the one hand, they were promoted to implement more reform-oriented 

practices, such as inquiry, discourse-intense and the like. Notably, most of these 

practices were not familiar to the teachers. On the other, they were required to finish 

the instructional content within the limited time. And they should make sure that most 

of the students acquired the required knowledge and skills. In front of this dilemma, 

most of the teachers showed some shortcomings in their classroom teaching. For 

example, their discourse was less substantial in mathematics on some occasions. As 

we know, most of the reform-oriented practices were proposed and advocated from 

the western countries. However, classroom teaching, as part of education, is 

embedded in a specific culture. How to make use of the Chinese effective teaching 

approaches as well as the practices advocated in the western world is a key issue for 
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the policy makers, educational researchers and the frontier teachers. 

2.2 Understanding the Curriculum Reform 

The current study was conducted in a curricular context. The findings also have 

implications for understanding and evaluating a curriculum reform. 

Firstly, the findings of the study highlighted the significance of the match 

between curriculum in use and teachers' instructional practices in curriculum 

reform. The results showed that, curriculum in use was the only factor, out of the 

other teachers' background factors (e.g., years of teaching experience and educational 

level), that significantly affected teachers' use of IE. The teachers, who used new 

curriculum, adopted more practices that are advocated by the reform, such as the use 

of multiple solutions and multiple representations in IE. Additionally, we found that 

the negative effects of IE were more obvious in the non-reform classes than in the 

reform classrooms. The reason, in part, may be due to the mismatch between 

curriculum and teachers' use of IE, because most of the indicators of IE measured in 

the study were reform-oriented. Based on these results, it is reasonable to propose that, 

when implementing and evaluating a curriculum reform, curriculum and teacher 

practice should be taken into account simultaneously. 

Secondly, the findings revealed the status of teacher practices under the context 

of curriculum reform. On the one hand, it was observed that the teachers, influenced 

by the merits of the reform, actively and purposefully provided more opportunities for 

the students to voice their opinions. On the other hand, we observed that because of 

the teachers' focus on student participation, the instructional explanations provided 

sometimes did not extend substantially in mathematics. For example, teachers used 

the strategies of repeatedly asking students' opinions (e.g., "you say it，，，"what do you 
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think", "why do you do that") and "accepting all answers" as ways of simply 

encouraging students' participation. They did not differentiate between responses and 

made appropriate connections. Also, when reading the transcription materials of the 

lessons, we observed that some teachers asked the students to discuss without giving 

specific instruction explicitly. The purpose was not clear, and the discussion was 

ended in itself. Similar findings were also reported by other researchers (e.g., Baxter 

& Williams, 2010; McClain & Cobb, 2001). And these illustrated the limitations of 

the teachers when changing their ways of teaching to respond to the curriculum 

reform. The findings also reveal the professional needs for the teachers, which can 

help them to develop a more flexible and appropriate ways of teaching. 

Finally but not the least, the findings of the study raised the issue of students' 

adjustment in curriculum reform. The negative effect of IE on students' cognitive 

outcomes was more obvious in the non-reform classes than in the reform classrooms. 

And the investigation of IE and students' affective achievement indicated that, 

students of the non-reform classrooms expressed more learning interest and 

classroom participation, as well as more positive views of mathematics and learning 

mathematics, when the teachers played more of the role in IE. Under the context of 

national curriculum reform, the non-reform teachers were inevitably affected by the 

reform. This could be seen from the result that the teachers, irrespective of the 

reform classes or non-reform classes, actively encouraged the students to engage in 

the generation of IE. Confronted with the teachers' reform-oriented (i.e., discourse-

intensive) practices, the students might feel the pressure and might not know how to 

react appropriately. This finding was also reported in our previous analysis with a 

sample of reform group students, as well as in the other studies (e.g., Bicknell, 1998; 

Anthony & Walshaw，2002). For example, in an investigation into elementary 
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school students' response to tasks requiring explanations, Anthony and Walshaw 

(2002) noted that many students did not know how to explain their mathematical 

ideas; indeed, several students were ill at ease with the proposition that they share 

their thinking with others. These findings suggest that, in addition to the curriculum 

development and teacher training, it is also important to pay more attention to 

students' adjustment in curriculum reform. For example, the educators should 

provide explicit guidance for students to learn when and how to contribute to 

mathematical discussions and what to do as a listener (Walshaw & Anthony, 2008). 

2.3 Providing a Useful Tool for Research and Practice in Mathematics 

Education 

The developed instrument to evaluate the quality of IE would provide a useful 

tool for research and practice in mathematics education. Specifically, the instrument 

could be used for the researchers to describe and evaluate the quality of mathematics 

classroom discourse in general and instructional explanation in particular. We argue 

that instructional explanations make a large part of the classroom discourse, and 

most of the classroom instruction is carried out by IE. Therefore, the criteria for the 

evaluation of instructional explanation, including truthfulness, richness, and 

coherence, would be also appropriate and effective for the evaluation of classroom 

discourse. Also, the instrument would also serve for mathematics teachers. It would 

help the teachers know more about his or her quality of instructional explanation, 

and thus improve their teaching. 

3. Questions Remaining 

There were some caveats that should be noted in interpreting the results of the 

study, including the issues about the scale, sample size, and the measurement. 
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In the current study, we got some unexpected outcomes in terms of the 

correlation matrix of the scale as well as the relationship between IE and student 

learning outcomes. To be specific, firstly, the correlations between the items within a 

dimension were insignificant. For example, when generating instructional 

explanation, teachers' well-orgainized content was not associated with their coherent 

interaction with the students. Secondly, some correlations of the items between the 

dimensions were out of expectation. For instance, a teacher's use of multiple 

representations was negatively associated with his/her accurate use of teaching 

language. Thirdly, the indicators within a dimension did not work in the same way 

when making a link to student learning outcomes. And thus it was not appropriate to 

combine the indicators together. These results, on the one hand, witness the 

complexity of teaching in general and instructional explanation in particular; on the 

other, they suggest some problems of the current scale to evaluate the quality of 

instructional explanation. Three issues need to be noted that are discussed below. 

The first issue is about the structure of the instrument. The current scale was less 

satisfactory in terms of its structure, which was reflected from the correlation matrix 

and regression result of the IE and student learning outcome. Also, it is obvious to 

see that some of the indicators were not differentiated, based on the descriptive 

result of the cognitive features of IE. The standard deviations were very small. 

Specifically, most of the teachers scored high on the variables of accuracy 

(truthfulness) and coherence, whereas they scored low on the variables of use of 

multiple representations overall. Although the result reflects the truth in Chinese 

mathematics classrooms, we still need to consider this issue when the instrument 

mainly serves as a reseach tool. 

The second issue is about the definitions of the criteria. It was not easy to define 
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the indicators and the rating criteria. For example, what are the general concepts and 

principles in mathematics, especially when teaching content is about numbers and 

their operation, such as division of fraction, least common multiple, and divisor and 

multiple? How to define whether a teacher's follow-up questions lead student 

thinking or not? What counts as an appropriate use of multiple solutions? Though 

we compiled the definitions based on various curriculum and teaching resources, 

such as teacher guide books, teaching plan，teacher transcription materials, and 

literature of effective teaching, there were still some limitations. 

In addition, the rating scale seems nonlinear for the indicators of richness. Take 

the use of multiple solutions for example, the scale measures two aspects of the 

practice~presence and appropriateness. From 1-point to 3-points, it concerns the 

presence of the use of multiple solutions. That is, whether a teacher uses multiple 

solutions in IE, and whether he/she engages the students in the use of multiple 

solutions. For the 4-points of the scale, the focus turns to whether a teacher uses the 

multiple solutions appropriately and effectively, such as making connections and 

comparisons between the different solution methods. Consequently, the scale is 

nonlinear from 3-points to 4-points. In this study, the teachers scored ranging from 1 

to 2.56 on the variable of the use of multiple solutions. And the result showed that 

the use of multiple solutions had a negative effect on student learning. It was 

speculated that if the teacher could use the strategy appropriately (i.e., score over 3-

points), then the direction of the relation might turn out to be the other way. This 

kind of problem also appeared in the scale of making connections of general 

concepts and principles and the use of multiple representations (see Appendix III), 

and thus further revision of the scale, as well as the research that addresses the 

relationship between IE and student learning more definitively, are needed in future. 
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The third issue concerns the implementation of the criteria. Even their 

definitions were relatively clear, it was still not easy when using the criteria. For 

example, how to evaluate a teacher's performance, when he/she asks several 

consecutive follow-up questions in an episode of IE? How to rate whether a teacher 

discusses the connections between multiple representations thoroughly or not? It is 

more cognitive demanding when doing the rating between 3-points and 4-points, 

which may increase measurement errors. In addition, we suspect that coders must 

possess high levels of mathematical knowledge, and knowledge of mathematics for 

teaching, in order to evaluate the quality of IE accurately. Confined to the 

researcher's background in the current study, bias might occur in the process of 

using the criteria. 

In addition to the problems of the scale for IE, another two caveats also should 

be noted. One limitation of the current study stems from the small sample size. 

There were only 39 teachers in this study. However, many variables were examined, 

and thus errors were likely to increase due to the complexity of the HLM models. 

Also, the content of the lessons were confined to the numbers, such as division of 

fraction, least common multiple, and divisor and multiple. The results may not be 

generalized to Chinese lessons or teachers in general. Another limitation is about the 

instruments to measure mathematics knowledge for teaching and teacher beliefs 

about mathematics. Both measures were not shown to be sensitive to differentiate 

the teachers. The measurement of Chinese teachers' mathematical knowledge for 

teaching may need to concentrate on teachers' pedagogical knowledge in teaching 

mathematics in future studies. Likewise, the measure of teacher belief should also 

consider how teachers view students' ability and how teachers view learning 

mathematics in their instructional practice. For the student measures, there was a 
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lack of alignment between the content of the achivement tests and the curriculum 

delivered in the classrooms, which probably undermined the the teacher-qualtiy 

effect size. Consequently, the measures relevant to the specific content of the local 

curricula could be more appropriate in future research. 

4. Future Directions 

4.1 The Scale to Evaluate the Quality of Instructional Explanation 

As discussed in the previous section, there were several limitations in the current 

scale to evaluate the quality of IE. Accordingly, several issues need to be considered 

in future studies. 

Firstly, with respect to the structure of the scale, more revisions are needed for 

each indicator. Specifically, how to make sure that the items under a specific 

dimension work in the same level and in the same direction? For the same level, it 

means that the indicators of IE should be parallel to each other, such as use of 

multiple solutions and multiple representations. With respect to the same direction, it 

refers to the effect of the indicators on student learning outcomes. 

Secondly, the definitions of the criteria need to be more clear and differentiated. 

For example, how to decide that whether a teacher discusses the connection of 

multiple representations thoroughly or not? How to make a decision that whether a 

teacher's follow-up questions facilitate the students' thinking or not? When reading 

the teachers' transcription materials, we observed that lots of reform teachers asked 

open questions like "Anything else?，，，"What about the other students' opinions?", 

"What do you think?", and "Who would like to say a little more about this 

question?". These questions appeared to lead the students' thinking, but actually did 
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not turn out to be good to student learning specific content and skills in the classes. 

The teacher did not synthesize or highlight the key points of these questions. In the 

non-reform classrooms，although the teachers asked many closed questions, such as 

request for the short answer or brief reasoning. The questions were unfolded step by 

step, which helped to hold the students' attentions. We did not differentiate both 

types of questions in the current scale. More revisions are needed in this regard. 

Also, since some of the scales measured both the presence and appropriateness 

of the practice simultaneously, it is suggested that the two aspects should be 

separated. But following this, some questions need to be answered ~ how to define 

the level of appropriateness of teacher practices. Should we make the decision 

according to the students' needs or the teaching goals of a specific lesson? Also， 

some practices (e.g., follow-up questions, a teacher's response to student answers) 

occured several times in an IE episode, based on what criteria should we refer to 

when rating the appropriateness? It is much more difficult to rate the 

appropriateness than the presence for a researcher. Additionally, it seems that the 

double criteria of presence and appropriateness are not applicable for some of the 

items, such as well-organized instructional content and clear teaching language on 

the dimension of coherence. Therefore, how to deal with the issues is worthwhile to 

consider in future studies. 

4.2 The Relationship between Curriculum, Instructional Explanation, and 

Student Learning Outcomes 

Consistent with the previous studies, our findings suggest the interaction between 

curriculum, instructional practices, and student learning. However, the results were 

out of the expectation in two respects. On the one hand, some of the identified 
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indicators of quality of IE did not show positive effects on students' learning 

outcomes; on the other，the indicators showed more significant effects in the non-

reform classes. Few effects were found in the reform classes. Although we 

speculated that one of the reasons might attribute to the low quality of implementing 

the instructional practices, lack of training backgrounds for the non-reform students 

under the context of these reform-oriented practices, as well as the problems of the 

scale. Still, some questions need to be answered in future studies. 

For example, the previous studies suggest that the match between curriculum 

and instructional practices/learning environment enhance desired learning outcomes 

in students (McCaffrey et al., 2001; Tarr, et al., 2008). Specifically, reform practices 

may be more effective when they are used in the context of a course that is designed 

to be consistent with the principles of standards-based reform. In the current study, 

although we found that the identified indicators of quality of IE, which were aligned 

with the reform-oriented practices, showed less negative effects on student learning 

in the reform classes than the non-reform classes. We are still not sure whether or 

not the reform teachers used the practices appropriately, then whether or not the 

results would turn out to be beneficial to student learning. According to our 

exploratory analysis, it was found that a teacher's recognition and expansion of 

students' contributions had a positive effect on students' general cognitive 

achievement, irrespective of the students from the reform or non-reform classes. 

However, the teachers' appropriate response to student contributions showed the 

positive effect on students' simple problem solving only in the reform classes. More 

research is needed that investigates the relationship between curriculum in use, 

instructional practices, and student learning in future. 
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Appendix I Empirical Studies of Self-explanation and Instructional 

Explanation with Student Learning 

Reference Types of 
explanat ion 

F o r m a t and setting Par t ic ipants Lea rn ing 
domain 

Results 

Self-explanation (SE) 
Williams and 

imbrozo (2010) 
Verbalized SE Comparative group describing items, 

thinking aloud, fiee study, and prompt 
SE 

Undergraduates Category learning 
artificial categories 
of alien robots 

Explanation promoted the mductioi 
of a broad generalization underlym 
category membership, relative to 
other strategies 

Berthold and 
-nkl (2009) 

Written SE prompt and response (principle-based 
SE, rationale-based SE, incorrect SE), 
computer-based learning environment, 
comparative group 

170 high school 
students 

Mathematics 
(probability) 

self-explanation had effects on the 
learning outcomes 

conceptual understanding was 
improved by eliciting elaborations 
directed to domains' principles, 
incorrect elaborations hindered the 
acquisition of proceduial Icnowledg 

Jing and Lu 
009) 

Verbalized SE Comparative group with vs without 
SE 

66 college 
students 

Chinese reading 
comprehension 
(science 
explanatory text) 

SE facilitated participants' 
understanding of the texts 

Ren (2008) Written SE Comparative group SE vs without SE, 
With vs without instruction 

86 college 
students 

Mathematics 
(concepts and 
problem solving) 

SE promoted near-transfer and far-
transfer, and facilitated the grasp of 
mathematics concepts The SE effei 
could be extended to 10 days later 
In particular, the SE under instructi 
led to the best learning outcome 

Yang and 
sng (2008) 

Verbalized SE Comparative group with vs without 
SE, with vs without feedback in SE 

45 college 
students 

Chinese reading 
comprehension 
(prose study) 

SE demonstrated improvements m 
prose reading and understanding 
Feedback during the SE process 
helped and enhanced the accuracy 
and effect of SE 

GroBe and 
•nk! (2007) 

Written SE prompt, comparative group 118 College 
students 

Mathematics 
(probability) 

Correct SE correlated positively wi 
learning outcomes, whereas not 
answering the SE prompts correlate 
negatively with learning outcomes 

Schworm and 
•nkl (2007) 

Wiitten SE Written prompt exemplifying-domam 
prompts, learning-domain prompts, 
mixed prompts, no prompts 
Comparative study 

72 student 
teachei s 

Argumentation 
skills 

Prompts are a suitable means to 
enhance the quality of SE Learning 
with SE IS a promising method of 
enhancing skills in ill-structured 
domains such as argumentation 

Rittle-Johnson 
006) 

Verbalized SE 
(asked by the 
experimenter) 

Pretest, intervention, immediate 
posttest, and delayed posttest (2 weeks 
later) 
Comparative group direct instruction 
vs discovery learning, 
SE vs no SE 

85 third- through 
fifth-grade 
children 

Mathematics 
(equivalence) 
procedural 
learning， 

procedural transfer, 
and conceptual 
knowledge 

Both SE and instruction helped 
children learn and remember a 
correct procedure immediately or 
over a delay SE promoted procedu 
transfer regardless of instructional 
condition 
SE did not lead to greater increase i 
conceptual knowledge 

Wong, 
iwson, and 
-eves (2002) 

Verbalized SE Comparative group, training session— 
use of SE questions, thmk-aloud 
instructions 

47 Grade 9 
students 

Mathematics 
(geometry) 

The SE group showed more frequei 
management of their study 
processing, and they were more 
active in drawing upon related 
geometry knowledge and in 
generating linking with this related 
knowledge 
The SE group achieved a statistical 
significantly higher score on a 
posttest 

0 Aleven and 
)edinger 
002) 

Written SE Regular classroom computer-based 
instruction, compaiative group SE 
group vs problem solving group 

41 high school 
students 

Mathematics 
(geometry) 

The explainers achieved better than 
their peers who did not explain step 
in regular items and reasoning item 
Also, they better explained their 



solutions and were more successful 
on transfer problems 

1 Siegler 
995) 

Verbalized SE Comparative group, training 
intervention (no more than 2 weeks) 
feedback only, feedback plus explam-
own-reasoning, feedback plus explam-
experimenter's- reasoning 
Classic Piagetian format 

97 5-year-old 
children 

Number 
conservation 

Being asked to explain the 
experimenter's reasoning produced 
considerably more learning than 
either of the other two procedures 

2 Chi, de 
euw, Chiu, La 
incher (1994) 

Verbalized SE Comparative group read the same text 
twice vs prompted SE 

28 eighth-grade 
students 

Biology 
(conceptual 
knowledge) 

The SE group had a greater gam 
from the pretest to the posttest The 
higher explainers learned with 
greater understanding than low 
explainers 

3 Chi, Bassok, 
WIS, Reimann, 
d Glaser 
989) 

Verbalized SE Pretest-knowledge acquisition (learning 
with example)-problem solvmg-posttest 

10 college 
students 

Physics (procedural 
knowledge) 

Good students generated many 
explanations, related to principles ii 
the text, guided by accurate 
monitoring of their understanding 
Poor students did not generate 
sufficient SE, monitored inaccurate 

I n s t r u c t i o n a I E x p l a n a t i o n ( I E ) P r o v i d e d b y t h e O t h e r s 
4 Stark, Kopp, 
d Fischer 
Oil) 

Written IE Lab, web-based learning environment, 
comparative group example format 
(erroneous examples vs correct 
examples), feedback format (elaborated 
feedback vs knowledge of result 
feedback) 

College students Medicine (domain-
specific conceptual 
knowledge, 
conditional 
knowledge 

Elaborated feedback supported 
conditional knowledge (knowledge 
about the conditions of application 
conceptual and strategic knowledge 
and also knowledge about the 
rationale behind the selection of 
decisions and procedures) across 
learning domain 

5 Berthold 
d Renkl (2010) 

Written IE asynchronous computer-mediated 
instructional communication settings, 
generic training intervention focused 
processing of explanations, comparative 
group 

40 high school 
students 

Mathematics 
(probability theory) 

The training group more often 
elaborated on domain principles, 
generated fewer incorrect statement 
and showed a better global quality 
regarding their focused processing 
the explanations 
The training group outperformed 
their counterparts on procedural ani 
conceptual knowledge 

6 Ismail and 
exander(2005) 

Verbalized IE 
co-constructed 
by the tutor 
and tutee 

Classroom-based experiment, training 
for 3 weeks, mutual one-to-one tutorial, 
comparative groups sequence-
questionmg-explanation (SQE, students 
received scripts and question stems), 
questioning and explanation (QE, stems 
without script), and questioning (Q, 
neither stems nor scripts) 

48 Grade 10 
students 

Physics (teacher / 
researcher-designed 
comprehension 
test) 

SQE comprehension scoies were 
significantly higher than that of QE 
and Q students The effect of SQE 
and QE extended to 4 weeks later 
The SQE and QE groups also had 
better performance in interaction in 
terms of question type and response 

7 Atkinson 
002) 

Written and 
Verbalized IE 
provided by 
the computer 

Computer-based learning environment 
incorporating an animated pedagogical 
agent, comparative group voice plus 
agent, text plus agent, voice only, text 
only, and control 

Undergraduate 
students 

Mathematics 
(proportion) 
Near transfer, far 
transfer, affective 
score 

Learners presented with an agent 
delivering explanations aurally 
(voice plus agent) outperformed th( 
control peers on measures of transfi 
Learners m the voice-plus-agent 
condition also outperformed their 
peers with textual explanations on 
affective measures (e g, interesting 
and understandable) and practice 
problems, near transfer and far 
transfer 

8 King, 
affieri, and 
ielgais (1998) 

Verbalized IE 
co-constructed 
by the tutor 
and tutee 

Classroom-based experiment, training 
explanation skills and questioning, 
mutual peer-tutonng, comparative 
group explanation only (E), inquiry 
with explanation (IE), and sequenced 
inquiry with explanation (SIE) 

Grade 7 students Science (human 
physiology) 
Teacher/ 
researcher-designed 
written test 
(cognitive, meta-
cognitive and 
attitude measures) 

Students using the SIE and IE mod( 
of peer tutoring were able to perfor 
better on inference and integration 
tasks than those of E, and the effect 
lasted 8 weeks later 
The SIE students perceived 
themselves as gaming significant 
skill over time m their ability to ask 
question appropriately when assum 
the tutor role 
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The SIE and IE students also viewe 
their tutors much more helpful and 
indicated the satisfaction with the 
learning partners' tutoring 

9 Hohn and 
oraes 
997/1998) 

Written IE Comparative groups conventional 
instruction, use of worked examples, 
worked examples and rule-based 
elaborations 

102 
undergraduates 

Programming, 
proficiency test, 
categorization task, 
grouping task 

The use of rule-based elaborations 
was more successful than either the 
use of worked examples or 
conventional instruction m 
promoting the learning outcome 

0 Fuchs， 

ichs, Hamlett, 
iillips, Karns, 
dDutka(1997) 

IE provided 
mostly by the 
tutors 

Classroom-based experiment, training 
for 18 weeks, comparative group peer-
mediated instruction (PMI)-elaborated 
help， 

PMI with training m elaborated help 
and in methods for providing 
conceptual mathematical explanations, 
control group (no PMI) 
Unit of analysis is class, not students 
One dyad per classroom (LD and AA 
students) 
AA-tutors, LD-tutees 

Grades 2-4 
students 

Mathematics 
(comprehensive 
mathematics test) 

PMI-Elaborated + Conceptual tutor 
asked more participatory, procedure 
questions and provided more 
conceptual explanations Moreover 
the achievement of PMI- Elaborate 
+ Conceptual students was higher 
than that of PMI-Elaborated studen 
which in turn surpassed that of the 
contrast group 

1 Fuchs, 
ichs，Kams, 
imiett，Dutka, 
d Katzaroff 
996) 

IE provided 
mostly by the 
tutors 

Classroom-based experiment 
Training for 23 weeks One dyad for 
each class high-achieving or average-
achieving as tutor, LD-as tutee, 

60 grade 2-4 
children 

mathematics High-achieving tutors' explanations 
were rated higher on conceptual, 
procedural, and overall quality, 
incorporated a greater variety of 
explanatory strategies, earned highs 
conceptual orientation scores, and 
resulted m better performances 
among tutees 

Ins t ruc t iona Explana t ion Co-constructed by the Teacher an d Students 
2 Leinhardt 
d Steele (2005) 

IE co-
constructed by 
the teacher and 
students 

Regular class teaching, case study, 10 
consecutive lessons 

Fifth-grade 
students 

Mathematics 
(function) 

Students got the mam idea, shared 
the explanation of a procedure, 
shared their insights and emerging 
reasoning as well as justifications, 
and moved m the mathematics spac 

3 Forman, 
ccormick, and 
)nato，(1998) 

IE co-
constructed by 
the teacher and 
students 

Regular class teaching, case study, 9 
consecutive lessons 

Sixth grade 
students 

Mathematics 
(perimeter 
problem) 

The teacher tried to share 
responsibility and authority for 
explaining and evaluating 
mathematical problems with her 
students She also used overlapping 
speech when students offered an 
alternative solution strategy 
However, the student who used the 
teacher's explanation from the 
beginning did not encounter teache 
overlapping speech Eventually all 
students employed the teachers' 
explanation 

Self-explana tion and Ins t r ict ional Explanat ion 
4 Cong (2007) Written SE 

and IE 
(feedback 
when incorrect 
SE occurs) 

Comparative group with vs without 
SE, 
SE with IE vs SE without IE 

165 grade 9 
students 

Mathematics 
(probability) 

SE facilitated near transfer and far 
transfer However, the condition of 
SE with IE as feedback was found 
more effective in near transfer and 
far transfer than that without IE 

5 GroBe and 
^nkl (2006) 

Written SE，IE IE provided by default, comparative 
group 

170 student 
teachers (Mean 
age 21 74 years) 

Mathematics 
(procedural skills 
and conceptual 
knowledge) 

No significant difference when 
learning procedural skills with 
multiple solutions, IE was better th 
SE when Jearnmg conceptual 
knowledge 

6 Schworm 
d Renkl (2006) 

Written IE, 
written and 

Computer-based learning environment, 
comparative group 

80 student 
teachers 

Instructional design 
(geometry and 

The condition "SE only" leaded to 
the best learning outcomes, the 
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vocalized SE physics) condition "IE only" is best evaluate 
by the learners IE reduced SE effoj 
and reduced learning outcomes 
The vocalized SE did not added 
explanatory value with respect to 
learning outcomes  

7 Gerjets, 
heiter, and 
itrambone 
006) 

Written IE, 
written SE 

Computer-based learning environment, 
comparative groups 

College students Mathematics 
(probability) 

IE had no effect on students' learnn 
m the modular-example conditions 
SE prompt did not have any impact 
on performance for isomorphic 
problems in the condition of modul 
examples, however, the percentage 
correctly generated SE correlated 
positively with performance m the 
condition with molar examples 

8 Webb and 
astergeorge 
003) 

Explanation 
provided by 
the tutor and 
tutee 
respectively 

Classroom-based training, 
Heterogeneous small group, 
Level of help received, level of 
immediate responses to help received, 

Grade 7 students Mathematics 
(decimal numbers) 

The help-seeking behaviors were 
important determinants of success^ 
posttest perfoi mance asking for 
specific explanations instead of 
calculations or answers or general 
admissions of confusion, persistenc 
in seeking explanations and 
modification of help-seeking 
strategies, and application of the he 
received to the problem at hand 
Important help-giving behaviors 
included providing explanations wi 
verbally labeled numbers and 
continued explaining instead of 
resorting to descriptions of numeric 
procedures  

9 Webb, 
oper, and Fall 
995) 

Explanation 
provided by 
the tutor and 
tutee 
respectively 

Classroom-based training, 
Heterogeneous small group, level of 
help received and subsequently carrying 
out constructive activity (level of 
constructive activity on current 
problem, level of constructive activity 
on the next problem)  

Grade 7 students Mathematics 
(decimal numbers, 
fraction) 

Level of constructive activity was t 
strongest predictor of achievement 
The level of help that students 
received predicted level of 
constructive activity but did not 
predict achievement directly 
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Appendix II Demographic Information of the Participating 
Teachers («=39) 

School ID Teacher ID Teaching 

2 

2 

2 

3 

3 

3 

4 

4 

5 

5 

5 

8 

8 

9 

9 

9 

10 

5 

5 

5 

2 

2 

2 

3 

3 

4 

6 

6 

6 

3 

20 
24 

10 

15 

33 

36 

46 

34 

52 

58 

35 

50 

17 

42 

45 

44 

18 

51 

54 

11 

19 

1 

47 

23 

55 

30 

13 

40 

9 

4 

3.83 

21 

[8 
[4 

8 

[4 

1 

2 

13 

[5 

23 

27 

21 

6 

13 

13 

10 

10 

15 

3 

4 

13 

4 

6 

11 

9 

6 

Reform 
age 

1.92 

3.83 

5.83 

3 

1.92 

5.42 

2 

5.92 

3.83 

2.92 

2.17 

1 

1 

1 

2 

1 

1 

5.92 

5.92 

1.83 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Educational Knowledge 
Level a 

17 

15 

21 

18 

17 

20 

13 

18 

16 

17 

Belief' 

2.50 

3 

3 

2.50 

1.50 

2.50 

3.25 

2.25 

2.75 

2.50 

22 

3 

3 

2.50 

4 

3 

3 

4 

4.25 

3 

3 

2.75 

3 

3.5 

Number of 
Video- taped 

lesson 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

2 

3 

3 

3 

3 

3 

2 

3 

3 

3 

3 

3 

3 

3 
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17 

17 

17 

18 

18 

18 

18 

19 

20 

20 

49 

32 

27 

39 

37 

5 

7 

2 

22 

6 

16 

13 

15 

18 

4 

11 

4 

5 

16 

5 

11 

15 

11 

17 

15 

16 

12 

18 

16 

16 

3.75 

2.75 

3.25 

3 

3 

3.25 

2.75 

2 

3.25 

3 

Note: a. Educational level: 3=bachelor, 4=graduate. 

b. "-" = missing value. 

c. The maximum of the teacher knowledge score was 26. 

d. the score of teacher belief was reverse counted, and the range of the teacher belief score 

was from 1 to 5. 
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I l l Criteria for the Evaluation of Quality of Instructional 

Explanation in Teaching Mathematics 

Truthfulness 

The dimension of truthfulness is assumed to capture the accuracy of the instructional 
explanation. 

1. Teacher-provided mathematics knowledge is accurate. 

The item is designed to capture any errors and imprecision of teacher-provided 

mathematics knowledge in classroom instruction (e.g., errors and imprecision in use 

of mathematical language, notation, concepts, rules, theorems, and causal 

relationships). 

Note: when coding, it should be taken the specific context into account. For example, 

whether it is the issue of mathematics knowledge or teaching language. Moreover, in 

some cases, the teacher intentionally follows up students' wrong response in order to 

show the students the consequences of that thinking. All these cases are not counted 

when coding the errors 
2 3 4 

A, teacher-

provided 

mathematics 

knowledge is not 

accurate in most of 

the segment, or the 

teacher makes 

major errors in 

key point of the 

content. And， 

B, the teacher does 
not detect and 
address the errors 

A, teacher-
provided 
mathematics 
knowledge is not 
accurate in large 
part of the 
segment. And, 

B, the teacher does 
not detect and 
address the errors 

A, teacher-
provided 
mathematics 
knowledge is not 
accurate in part of 
the segment. And, 

B, the teacher does 
not detect and 
address the errors 

A, teacher-
provided 
mathematics 
knowledge is 
accurate and clean 
of errors. Or, 

B, errors that occur 
are captured and 
corrected 
immediately or 
later within the 
segment. 

2. The teacher's teaching language is accurate. 
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The focus of this item is on whether the teacher's teaching language is accurate. 
2 3 4 

A, the teacher's 

teaching language 

is not accurate in 

most of the 

segment. And, 

B, the teacher does 
not detect and 
address the errors 

A, the teacher's 
teaching language 
is not accurate in 
large part of the 
segment. And, 

B, the teacher does 
not detect and 
address the errors 

A, the teacher's 
teaching language 
is not accurate in 
part of the 
segment. And， 

B, the teacher does 
not detect and 
address the errors 

A，the teacher's 
teaching language 
is accurate and 
clean of errors. 
Or, 

B, errors that occur 
are captured and 
corrected 
immediately or 
later within the 
segment.  

3. The teacher is able to identify and address students' errors and 
misconceptions correctly. 

This item attempts to capture whether the teacher is able to accurately diagnose the 

learner' thinking, understanding and misconceptions, and then address the errors 

and misconceptions explicitly and thoroughly. 

Notes: 1. there are three situations that we code with "NA (not applicable)" 

1) there are no student errors or misconceptions, 

2) the errors are presented as the learning tasks for discussion, 

3) it is occasional speech errors and does not cause confusion and misunderstanding; 

or the student gets the point but is not able to express in a accurate and clear 

maimer 

2. Pay attention to the teacher's behavior in the contexts of yes-no question and 

multiple choices question. 
2 3 

The students make 
errors. And the 
teacher does not 
detect and address 
the errors. 

The students make 
errors. And the 
teacher detects the 
errors. However, 
the teacher does 
not help the 
students to find 
the correct 
solution. 

A, The students 
make errors. And 
the teacher detects 
and helps the 
student to find the 
correct solution. 
However, the 
teacher does not 
deal with or 
address the errors 
directly with the 
students. Or, 

B, the teacher 

A, The students 
make errors. And 
the teacher detects 
and helps the 
student to find the 
correct solution. 
Moreover, the 
teacher deals with 
or addresses the 
errors directly with 
the students. Or, 

B, the teacher 
anticipates  
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anticipates 
common student 
errors and provides 
instruction. 
However, the 
instruction is not 
thorough to help 
the student avoid 
the error. 

common student 
errors and provides 
thorough 
instruction that 
helps avoid the 
errors. 

Richness 

This category attempts to capture the depth and range of the mathematics offered to 

students. 

Note: all the coding should be based on the content of extended discourse—dialogue 

after the first round of Q & A, 

1. The teacher exposes students to various mathematical languages. 

This item is intended to capture whether the teacher is able to use numerous and 

various mathematical language; and farther, whether the teacher is able to 

intentionally and explicitly engage students into the use of mathematical language. 

1.1 The teacher is able to use various mathematical languages. 

1 

The teacher does 
not use 
mathematical 
language. 

2 

The teacher uses 
few mathematical 
languages. 

3 
The teacher uses 
many 
mathematical 
languages. 

4 

The teacher uses 
lots of 
mathematical 
languages, and 
emphasizes key 
mathematical 
teriiis. 

1.2 The teacher leads the students to use mathematical languages. 

1 2 3 4 

The teacher does 
not lead the 
students to use 
mathematical 
language. 

(e.g., ask the 
students to give a 
simple answer, 
such as "true or 
false", or indication 

The teacher leads 

the students to use 

mathematical 

language, but not 

intentionally and 

explicitly, 

(e.g., ask the 
students to fill the 

The teacher 
intentionally and 
explicitly leads 
some students to 
use mathematical 
language. 

(e.g., ask open 
questions for 
students to use 
mathematical 

The teacher 
intentionally and 
explicitly presses 
and encourages 
more students to 
use mathematical 
language. 

(e.g., ask students 
to repeat the 
mathematical 
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of understanding 
and /or agreement, 
such as "yes or 
no") 

gap, such as 

"equals to……”） 

language) language, practice, 
read, take notes 
etc) 

2. Appropriate connections are made to general concepts and principles in 
mathematics. 

This item attempts to capture whether the teacher is able to make connections with the 

general concepts, formula, principles and rules in mathematics; and farther, whether 

the teacher is able to intentionally and explicitly lead students make connections with 

the general concepts, principles and rules in mathematics. 

Note: If the content of the episode is about general concepts and principles, then we 

rate 3 points; if the teacher further encourages the students to apply these concepts 

and principles, then we give 4 points. 

2.1 The teacher makes connection with general concepts and principles. 

1 

The teacher does 
not make 
connection with 
general concepts 
and principles. 

2 
The teacher 
connects general 
concepts and 
principles. 
However, the 
connection is not 
discussed with the 
specific learning 
tasks. 

3 

The teacher 
connects and 
discusses general 
concepts and 
principles with the 
specific learning 
tasks. 

4 
The teacher not 
only connects and 
discusses the 
concepts and 
principles with the 
current learning 
tasks, but applies 
the concepts in 
new situations. 

2.2 The teacher encourages the students to make connections with general 

concepts and principles. 
1 2 3 4 

The teacher does 
not lead the 
students to connect 
general concepts 
and principles. 

The teacher 
engages the 
students into the 
connection making 
with general 
concepts and 
principles, but not 
intentionally and 
substantially. 

The teacher 
intentionally and 
explicitly engages 
the students into 
the connection with 
general concepts 
and principles. 

(e.g., the teacher 
asks and probes the 

The teacher 
intentionally and 
explicitly press and 
encourage the 
students to connect 
the general 
concepts and 
principles. 
Moreover, the 
teacher asks the 
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(e.g., ask for repeat 
or indication of 
understanding and 
/or agreement, such 
as "yes or no，，、 

"right") 

students to make 
connection with 
general concepts) 

students to apply 
the concepts and 
principles in new 
situations. 

3. Multiple solution methods or procedures are explored and valued. 

It refers to multiple solution methods or procedures for a single problem or a given 

problem type. 

Notes: it should be noted that the focus of this item is on the content of the 

explanation. A solution does not have to be complete or correct; however, the solution 

methods or procedures should differ essentially from one another. 
1 2 3 4 

A, the teacher does 
not propose 
multiple solutions. 
And, 

B, the teacher does 
not explicitly lead 
the students to 
generate multiple 
solutions. 

The teacher 
proposes multiple 
solutions, without 
intentionally and 
substantially 
engaging the 
students into the 
generation of the 
multiple solutions. 

(e.g., ask for repeat 
or indication of 
understanding and 
/or agreement, such 
as "yes or no，，、 

"right") 

The teacher 
intentionally and 
explicitly leads the 
students to generate 
multiple solutions. 
However, the 
solutions are listed 
briefly, without 
further connection 
and comparison. 

The teacher 
intentionally and 
explicitly leads and 
encourages the 
students to generate 
multiple solutions, 
and further discuss 
the solutions 
thoroughly or make 
connections and 
comparisons. 

4. The teacher uses or requests for multiple representations to represent 
the same mathematical content. 

By multiple representations, it is referred to different ways to present ideas. For 

example, 

1) graphs, pictures, figures, and tables, 

2) algebra, equations, numeric procedures, and words. 
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3) models, material object. 

Notes: the focus of this item is on the presentation of the content. 
Key sentences: "can you see it from the figure, would you explain that according to 
the figure, explain the result with the manipulation please, look at this model, can you 
give an example for that".  

2 3
 4 

A, the teacher does 

not use multiple 

representations. 

And, 

B, the teacher does 
not explicitly lead 
the students to use 
multiple 
representations. 

The teacher uses 
multiple 
representations, 
without 
intentionally and 
substantially 
engaging the 
students into the 
process. 

(e.g., ask for repeat 
or indication of 
understanding and 
/or agreement, such 
as "yes or no，,、 

"right") 

The teacher uses 
multiple 
representations and 
intentionally 
engages the 
students into the 
process. However, 
multiple 
representations are 
described briefly, 
without thorough 
discussion. 

The teacher 
encourages the 
students to use 
multiple 
representations, 
and further 
discusses the 
relationship 
between multiple 
representations. 

Coherence 

This category captures whether the teacher herself or himself can organize the 
explanation in a complete, clear, and consistent manner; and whether the teacher can 
work with students in a coherent manner. 

1. The explanation is unfolded around the same or related question/ topic. 

This item attempts to examine whether the information contained in the explanation 

relates to each other to a high degree. 
2 3

 4 

The explanation is 
interrupted by 
irrelevant topics for 
most of the 
segment, such as 
classroom 
management.  

The explanation is 
interrupted by 
irrelevant topics for 
large part of the 
segment. 

The explanation is 
interrupted by 
irrelevant topics for 
portion of the 
segment. 

The components of 
explanation form a 
tightly 
interconnected and 
mutually 
supporting 
relational structure. 

2. The teacher's presentation is in a complete and clear manner. 

This item is intended to examine whether the teacher's presentation is complete and 

clear, which avoids obscurity, ambiguity and misunderstanding. 
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Note: due to the time limit, sometimes the teacher ends the discussion incompletely. 

However, if she / he explicitly points out that the unfinished discussion will be 

continued in the next lesson, or it is evident that the following lesson begins with the 

unfinished discussion, then we do not count it as incomplete cases 
2 3 4 

Teacher's 
presentation is 
unclear, vague or 
incomplete for 
most of the 
segment (e.g., 
overuse of 
pronouns (it, they, 
that, here, there, 
this).  

Teacher's 
presentation is not 
clear for large part 
of the segment. 

Teacher's 
presentation is not 
clear for portions 
of the segment. 

Teacher's 
presentation is 
clear, complete and 
unambiguous. 

3. The teacher poses guiding questions that relate to and lead student 
thinking. 

This item is intended to capture whether the teacher's follow-up questions relate to 

the previous students' answer, and further their thinking as to the target question. 

Note: 1) the focus of this item is on the teacher's follow-up questions (questions 

after the first "why") with respect to the key point of the instructional explanation. 

2) The rating should be based on the teacher's best performance in the episode. 

1. No connection； the teacher seems not "heard" the students' answers 

2. Not enlighten： request for simple repeat, clarification, or simple answer (e.g., 

Would you repeat again? Right? Does it make sense to you? Do you all understand?) 

3. Less enlighten： ask for filling the gap，elaboration or proposing different ideas 

e.g., equals to there any different opinions?) 
2 3

 4 

No evidence shows 
the connection 
between the 
students' answers 
and the teachers' 
follow-up 
questions. 

The teacher's 
questions relate to 
the students' 
answers, but do not 
facilitate student's 
thinking. 

The teacher's 
questions relate to 
the students' 
answers. However, 
the follow up 
questions did not 
lead student 
thinking 
sufficiently. 

The teacher's 
questions relate to 
the students' 
answers closely. 
And the follow up 
question lead 
student thinking 
step by step. 
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4. The teacher recognizes and expands students' contributions. 

This item is intended to capture whether the teacher makes response and helps 

students to work out an appropriate answer. The teacher's responses may include 

ignorance or dismiss, simple acknowledgement, repeat or restatement, and expand 

students' contribution. 

Note: 1) the focus of this item is on the teacher's response (the assertive sentience 

after the first "why" question) to the key point in the students' answer. 

Writings on the lack board is also included as the teacher's response. 

2) The rating should be based on the teacher's best performance in the episode. 
1 2 3 4 

A, the teacher does 
not recognize or 
respond to 
students' 
contributions. Or， 

B, the teacher's 
response does not 
relate to the 
previous student's 
answer. 

The teacher 
recognizes 
students' 
contributions with 
simple 
acknowledgement, 
such as "good, oh, 
right". 

The teacher 
recognizes 
students' 
contributions by 
repeating or 
restating all or part 
of the student's 
answers. 

The teacher 
recognizes 
students' 
contributions by 
elaborating and 
expanding the 
students' answers. 
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