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Abstract of thesis entitled: 
Nonlinear Output Regulation with Time-varying or Nonlinear Exosystems 

Submitted by YANG, Xi 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong 
in February 2011 

In this thesis, we investigate the global robust output regulation problem for nonlinear 
systems subject to time-varying or nonlinear exosystems. 

Output regulation problem, also known as servomechanism problem, is one of the 
central topics in control theory. The control objective is to design a feedback control law 
for the given plant so as to achieve asymptotic tracking for a class of reference signals and 
asymptotic rejection for a class of disturbance signals while maintaining the stability of 
closed-loop system. The reference or the disturbance signals are assumed to be generated 
from a dynamical system called the exosystem. Normally, the exosystem is a linear 
autonomous system, e.g. a harmonic oscillator, and the exogenous signals represent step 
or ramp signals, or sinusoidal signals contains finite number of harmonics. The extensions 
of the exosystem, from linear to nonlinear, autonomous to non-autonomous, significantly 
enlarge the categories of the exogenous signals, and more importantly, such extensions 
motivate the development of the output regulation theory in both scientific research and 
practical application. 

Paying special attention to the appearance of time-varying or nonlinear exosystems, 
our research is mainly conducted under the general framework for tackling the output 
regulation problem. In general, first we convert the output regulation problem of the 
original plant into the stabilization problem of the augmented system which is composed 
of the plant and the designed internal model. Second, we achieve the global stabilization 
of the augmented system by robust and adaptive control approaches, according to both 
parameter uncertainty and dynamic uncertainty in either plant or the exosystem. 

One of the crucial issues in output regulation problem is the design of the appropriate 
internal model. Internal model is a dynamical compensator which possesses an essential 
ability of generating all possible steady-state input information asymptotically, and it 



should not only lead to a well-defined augmented system but also ensure the stabilizability 
of the augmented system. Besides, stabilization techniques for the augmented system 
should also be carefully chosen to meet the needs in different scenarios, e.g. the time-
varying settings. Efforts are put on both sides throughout the thesis. 

The main contributions of the thesis are outlined as follows, 

1. A framework for handling the robust output regulation problem for general time-
varying nonlinear systems subject to time-varying exosystem is proposed. Especially, 
certain existence conditions of a time-varying internal model is given, and problem 
conversion can be achieved. 

As an application of this framework, we give the solvability conditions of the output 
regulation problem for the time-varying nonlinear systems in output feedback form. 
Further, when parameter uncertainties occurred in the time-varying exosystem, we 
solve the corresponding adaptive robust output regulation problem resorting to some 
adaptive control methods. These results can also be applied to the time-varying 
nonlinear systems in lower triangular form. 

2. The global robust output regulation problem for nonlinear systems subject to non-
linear exosystem is considered. A new class of internal models is introduced which 
relaxes the existence conditions of the former one. Also, this class of internal mod-
els has the merit that it is zero input globally asymptotically stable which greatly 
facilitates the global stabilization of the augmented system. 

Compared with the existing results, the new method solves the global robust output 
regulation problem without restrictions on the initial conditions or trajectory bounds 
of the exosystems, and the bound of the parameter uncertainties of the plant is not 
necessarily known. Moreover, utilizing the Nussbaum gain technique, the unknown 
control direction case can also be handled by modifying the control law. 

3. The theoretical results have been applied to several practical control problems, such 
as the global disturbance rejection problem for FitzHugh-Nagumo model with Math-
ieu equation, the synchoniztion of periodically-forced pendulum with Rayleigh equa-
tion, etc.. 
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摘 要 

本文针对受时变或非线性外部系统影响的非线性控制系统，研究了其全局鲁棒输出 

调节问题. 

输出调节问题是控制理论中的一个核心问题.输出调节问题的控制目标是对给定的 

系统模型设计一种反馈控制律，使受控系统的输出实现对一类参考信号的渐近跟踪以及 

对一类干扰信号的渐近抑制，同时保持闭环系统的稳定性.上述的参考信号或千扰信号 

统称为外部信号，并经外部系统生成.外部系统通常是不受控制作用的线性时不变系统, 

例如谐振振子.而外部信号往往是阶跃信号，斜坡信号或含有有限项谐波的弦信号.本文 

尝试将外部系统从线性时不变系统推广到时变或非线性系统.考虑到系统的时变或非线 

性特性，上述对外部系统的推广不仅将明显地扩展外部信号的种类，更重要的将在某种 

程度上促进输出调节问题的理论研究和实际应用. 

针对提出的问题，我们的研究将在输出调节问题的一般求解框架下展开.简而言之, 

我们首先设计一类称之为内模的动态补偿器，受控系统连同内模被统称为增广系统.同 

时，我们将把受控系统的输出调节问题转化为针对增广系统的镇定问题.随后，考虑到增 

广系统所具有的参数不确定性和结构不确定性，我们将利用鲁棒控制和自适应控制的方 

法,解决增广系统的全局镇定问题. 

由上述一般求解框架可以看出，解决输出调节问题的一个关键是设计合适的内模.作 

为一类动态补偿器，内模应能够渐进生成所需稳态输入信息，而作为增广系统的一部分, 

内模应能够保证增广系统的可镇定性.一个合适的内模必须兼顾上述两点要求.同时, 

输出调节问题的解决还有赖于针对增广系统的特性，选取适合的镇定方法.对此两方面 

的研究和阐述将贯穿论文始终. 

本文的主要结论概括如下： 

i)针对受时变外部系统影响的非线性时变系统，我们提出了其输出调节问题一般求 

解框架.在给出时变内模存在条件和设计方法的基础上，我们可相应地将输出调节问题 

转化为对增广系统的镇定问题. 

在此求解框架下，我们首先解决了一类具有输出反馈结构的非线性时变系统的输出 

调节问题.进而，我们考虑了时变外部系统存在参数不确定的情况.通过改进时变内模并 

借助自适应控制的思想，相应的输出调节问题可以获得解决.上述的设计方法可以推广 

到具有下三角结构的非线性时变系统的输出调节问题中. 

ii)针对在非线性外部系统影响下的非线性系统的输出调节问题，我们提出了 一类新 

的内模设计方法.经设计获得的内模避免了原有结果的若干存在性限制，同时,此类内模 

在零输入情况下具有全局渐进稳定的特性，明显有利于增广系统的全局镇定问题的解决. 

相应地，我们解决了一类具有输出反馈结构的非线性系统的全局输出调节问题.通过 

和原有结果的比较，这种设计方法避免了对外部系统初始条件或轨迹范围的限制，同时, 
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相应的控制器不需要借助受控系统的参数不确定性的信息. 

i i i )上述两类问题的理论研究结果可以应用于若干系统的实际控制问题中 .例 

如，我们考虑了当Mathieu方程做为时变外部系统时，FitzHugh-Nagumo模型的全局 

干扰抑制问题，又或当Rayleigh方程做为非线性外部系统时，周期外力作用下的单摆 

和Rayleigh方程的同步控制问题. 
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..All Sisyphus ‘ silent joy is contained therein. 
His fate belongs to him. His rock is a thing. 

Likewise, the absurd man，when he contemplates his torment, silences all the idols..’ 
There is no sun without shadow, and it is essential to know the mght. 
The absurd man says yes and his efforts will henceforth he unceasing. 
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For the rest, he knows himself to be the master of his days .. 

Albert Camus，"The Myth of Sisyphus" 
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Chapter 

Introduction 

1.1 Literature overview 

The output regulation problem, also known as the servomechanism problem, is concerned 
with the design of a feedback control law for the given plant, such that the closed-loop 
system achieves asymptotic tracking for a class of reference signals and asymptotic rejec-
tion for a class of disturbance signals while maintaining the stability. A distinguishing 
feature of the output regulation problem is that the prescribed reference or disturbance 
signals are not required to be perfectly known as long as they are generated by a known 
autonomous dynamical system called the exosystem. The formulation and solution of the 
output regulation problem thus allow for the entire classes of signals to be tracked or to 
be rejected, and account for dynamical or static uncertainties of the given plant. 

Output regulation problem is one of the central topics in control theory and appli-
cation. The rigorous formulation of the problem in state-space description can be dated 
back to mid 1970s. Francis, Davison and Wonham et al. has considered the problem 
for linear time-invariant systems [18] [22] [23] etc. The solvability conditions have been 
shown to be equivalent to the solvability of a pair of linear matrix equations, known as 
the regulator equations, by Francis [23], or to be characterized as the property of the 
transmission polynomials of the composite system which contains the plant and the ex-
osystem by Hautus [26]. An important outcome of these researches is the generalization 
of internal model principle given by Francis and Wonham [21] [22]. The internal model 
principle exhibits the essential fact that any feedback controller which solves the problem 
must incorporate the suitable copy (copies) of the exosystem to reproduce the feedforward 
information which is required to keep the regulated error output identically zero. The 
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internal model principle can also be characterized by frequency domain approach [3] [11 
For the summary of linear output regulation problem, see [96] for instance. 

Since 1980s, the researches on the output regulation problem have been extended 
from linear to nonlinear time-invariant systems. Early results have been concerned with 
the modification of internal model principle in the nonlinear settings, and for the case 
where the exogenous signals are constant signals, see Hepburn, Wonham, Huang, Rugh 
and Benendetto et al [2] [27] [28] [29] [30]. Later, Isidori and Byrnes have considered 
the problem for the known nonlinear plant with time-varying exogenous signal, which is 
generated from a neutrally stable exosystem, in the tread-setting work [42]. The center 
manifold theory enables [42] to show the necessary condition for the solvability of problem 
is the solvability of a set of partial differential equations known as nonlinear regulator 
equations. The nonlinear regulator equations can be considered as the counterpart of 
the regulator equations (Sylvester equations) given Francis [23] in the nonlinear settings. 
The solution of such nonlinear regulator equations characterizes the steady-state response 
of the systems, and also provides a feedforward control information which is necessary 
to offset the steady-state regulated error. Based on these, both state and error output 
feedback control laws can be synthesized to achieve asymptotic tracking and disturbance 
rejection while securing the local asymptotic stability of the closed-loop systems. However, 
the construction of the controller/regulator explicitly depends on the plant parameters 
therefore it has no robustness with respect to the parameter variations. 

A breakthrough in handling parameter uncertainties of the plant has been achieved 
by Huang, who first suggested that the linear internal model principle fails in nonlinear 
systems because the steady-state regulated error in the nonlinear settings is not a linear 
function of the exogenous signals. Based on this, Huang has elaborated in the seminal 
work [31] [33] a systematic solution to the robust nonlinear output regulation problem for 
the case where the solution of nonlinear regulator equations is polynomial in the exogenous 
signals, and showed the possibility to design an internal model generating all the exogenous 
signals and their higher order harmonics so as to achieve robust output regulation. This 
key idea has also been presented by Khalil [57] and Priscoli [87j independently. 

In the past two decades, considerable research efforts have been paid to the robust 
nonlinear output regulation problem with semi-global or global stability. In the original 
formulation [42], only local asymptotic stability can be achieved for the closed-loop system. 
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For this purpose, the Lyapunov linearization methods can be used. When semi-global or 
global stability requirement is imposed, the situation becomes much more complicated. In 
order to achieve the goal, restriction on the structural properties of the nonlinear plant is 
required. A major step forward in this direction has been achieved by Khalil [57] where the 
semi-global robust output regulation problem for a class of feedback linearizable systems 
with no zero dynamics has been considered. Isidori [44] has extended Khalil's work to a 
class of lower triangular systems. Then Khalil [58] has extended his work [57] to a class of 
systems whose zero dynamics possesses certain properties of input-to-state stability. Later 
on, this condition has been relaxed to global asymptotical stability of the zero dynamics 
of the corresponding error systems by Serrani et al. [101]. It is worth noting that the 
solution of the regulation problem does not require the asymptotical stability of the zero 
dynamics as first shown by Huang [34], but simply a "non-resonance" condition between 
zero dynamics and exosystem. 

The output regulation problem with global stability has been solved for a class of 
output feedback systems in [100], a class of strict feedback systems in [79], and a class 
of lower triangular systems in [64], to name a few. Huang and Chen have established a 
general framework for tackling the output regulation problem in [37], which offers great 
flexibility to systematically design the regulator to achieve global stability. Several classes 
of typical nonlinear systems was considered under this general framework, e.g, lower 
triangular systems [13], output feedback systems [15] or feedforward systems [12 , 

The latest progress on the nonlinear output regulation problem, in the personal point 
of view, lies in several prospects. One of them is the so called "non-equilibrium theory" 
which has been generalized to the case of nonlinear systems that do not necessarily pos-
sess equilibria [7] [8]. For instance, the zero dynamics of the controlled plant does not 
required to have a (global) asymptotically stable equilibrium, instead, the zero dynam-
ics together with the exosystem is assumed to have a compact attractor which is locally 
exponentially stable. As the application, some considerations have been given to the pos-
sibly non-minimum phase nonlinear plants in a series of papers [10] [68] [91]. Another 
progress regarding the transient response of the regulated plant has been given by in [67 
[80] [102] [103] [109]. The technique used in these publications is firstly introduced in 
the sliding model control framework and then by using Lyapunov redesign, Based on 
the conditional servocompensator and high-gain observer, zero regulated error output is 
achieved without degrading the transient response of the controlled plant. Last but not 



4 CHAPTER 1. INTRODUCTION 

the least, the recognition of the observability property of the designed internal model and 
its role in achieving output regulation have been clarified in [16], [47], [69], [72] [113]. 
In such philosophy, the design of the internal model is considered, partially, to be inher-
ited from the design of observer. It is worth noting that the most promising results on 
the design of nonlinear internal model, with regard to the observability property of the 
corresponding internal model (steady-state generator), can be categorized consequently. 
For instance, the linearly observable steady-state generator with nonlinear output [37], 
steady-state generator in the observability canonical form [9], and steady-state generator 
in the adaptive observer form [89] [90]. In this tread, serial results have also been given 
in [48] [70] [71] [73]. 

Vigorous activities of research in output regulation problem have been witnessed, and 
quite a few surveys and monographs have been published [4] [6] [36] [46] [85]. Besides 
the aforementioned outcomes, we would like to mention a few specific topics： nonlinear 
output regulation with uncertain linear time-invariant exosystem has been studied in [66 
[83] [84] [101] [121], the practical output regulation has studied in [32] [71] [115], output 
regulation with a switched linear internal model has been studied in [94], output regulation 
of nonlinear time-delay system has studied in [25 

Recently, some attention has been given to the output regulation problem of time-
varying systems and nonlinear output regulation problem subject to nonlinear exosystem. 
The output regulation of linear time-varying system has been considered in [39] [99] [122] 
[123] [124] which means either the plant or the exosystem is a linear time-varying system. 
In particular, [122] and [123] presents an internal model based design approach for linear 
periodic systems. The results of nonlinear output regulation with a nonlinear exosystem 
can be found in [9] [14] [20] [90] [117] etc.. A crucial issue when dealing with the nonlinear 
exosystem is how to give the testable condition for the existence of an appropriate internal 
model. 

,2 Thesis outline 

The contributions of the thesis are mainly on expanding the categories of plant and 
exosystem for nonlinear output regulation problem. Normally, the exosystem is linear 
time-invariant and it generates step or ramp or sinusoidal signals. The extension from 
linear to nonlinear, autonomous to non-autonomous of the exosystem significantly will 
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enlarge the types of the exogenous signals, and more importantly, such extension requires 
new design methodology for the internal model so as the overall controller. 

In fact, the design of the internal model and the stabilization of the augmented system 
are two essential issues in output regulation problem, and they are strongly interlaced. 
Due to the different settings of our problem, investigation on these two issues acts as 
the main theme through the thesis. To summarize the progress we have made: first, a 
framework for handling the global robust output regulation problem for general time-
varying nonlinear plants subject to time-varying exosystem is proposed. Whether the 
time-varying exosystem contains uncertain parameters or not, an appropriate time-varying 
internal model can be constructed under certain conditions, and the output regulation 
problem for the plant can be converted into the stabilization problem of a nonlinear 
time-varying augmented system. The global stabilization of the augmented system can 
also be achieved under certain assumptions, Second, global robust output regulation 
problem for nonlinear plants subject to nonlinear exosystem is considered. A new class of 
internal models is introduced, which relaxes the existence condition for the internal model 
in comparison with the former results. Also, this class of internal models has its merit 
that it is zero input globally asymptotically stable which greatly facilitates the global 
stabilization of the augmented system. These theoretical results can be applied to several 
practical control problems, such as the global disturbance rejection problem of FitzHugh-
Nagumo model subject to Mathieu equation, or the synchronization of periodically-forced 
pendulum with Rayleigh equation. 

The rest of the thesis are organized as follows. 

Chapter 2: Some fundamental concepts, control techniques and useful lemmas in non-
linear control theory are reviewed, and the general framework for handling the output 
regulation problem is summarized. These contents will be used in subsequent chapters. 

Chapter 3: A framework for handling global robust output regulation for general 
time-varying nonlinear systems subject to time-varying exosystem is proposed. As the 
application of the framework, the output regulation problem for the time-varying nonlin-
ear systems in output feedback form is solved. 

Chapter 4: The output regulation problem with uncertain time-varying exosystem is 
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further considered by modifying the framework proposed in Chapter 4. A generalized 
time-varying internal model is provided. Combined with some adaptive control tech-
niques, the adaptive robust output regulation problem is solved. 

Chapter 5: In the presence of nonlinear exoystems, a new class of internal models is 
introduced. Comparing with the former results, the existence condition for the internal 
model is relaxed, and the internal model itself greatly facilitates the global stabilization 
of the augmented system. The global robust output regulation problem for a class of 
nonlinear systems in the strict output feedback form is studied. 

Chapter 6: For nonlinear systems in the general output feedback form, along the line of 
Chapter 5, an internal model can be given to deal with the nonlinear exosystem. Unlike 
the input-filter based design in Chapter 5, an observer-based controller is proposed to 
solve the global robust output regulation problem. 

Chapter 7: Some concluding remarks are given. The possible further works are also 
presented. 



Chapter 2 

Background and Preliminaries 

In this chapter, we review some fundamental concepts, control techniques for nonlinear 
control systems and time-varying systems, and we summarize the general framework for 
tackling the output regulation problem proposed by Huang [36]’ Some useful lemmas are 
also given. These fundamentals will be helpful and be referred to in the subsequent chap-
ters. The materials shown in this chapter can be found in many textbooks, monographs 
and papers on linear and nonlinear control systems, for instance, Chen [11], Freeman 
and Kokotovic [24], Isidori [43] [45], Kailath [53], Khalil [59], Kokotovic and Arcak [60], 
Kristic, Kanellakopoulos, and Kokotovic [62], Marino and Tomer [74], Rugh [95], Sastry 
[97], Slotine and Li [110], to name a few. 

2.1 Fundamentals of nonlinear systems 

Consider the nonlinear system described by 

i = x{to) = xo (2,1) 

where x G R " is the state, t € [to, oo), and / : x IR — R"". to is the initial time and xq 
is the initial state. The components of x and f can be represented hj x = col(a;i,…，Xn) 
and f 二 c o l ( / i , , . . , / „ ) respectively. 

If the function /(a;, t) does not depend on time t explicitly, system (2,1) will reduce to 

i = 眺 x(tQ) = Xo (2.2) 

The dynamic systems in the form of (2.1) are called non-autonomous system while 
(2.2) are called autonomous system. 
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A constant vector x = x* is said to be the eqmhbnum point of (2.1) if 

Vt > t o 

i.e. whenever the state of the system starts at x*, it will remain at x* for all future time. 
Without loss of generality, we assume af = 0 is the equilibrium point of system (2.1). 

Throughout this chapter, we assume that t) is piecewise continuous in t and locally 
Lvpschitz in x^ i.e. 

\\f{x,t)^f{y,t)\\<L\\x~y\\ (2.3) 

where L is a constant called Lips chit z constant, and (2.3) holds for all {x, i) and [y, t) in 
some open neighborhood of to). Under this assumption, given any Xq, there exists 
some ti > to and a unique continuous function x : [̂ o, ti] M"' satisfying equation (2.1) 
with J：(to) = Xq. The local solution x(t) of system (2.1) over the time interval [̂ ô  ^i] is 
also called the state trajectory or system state of (2.1). 

Definition 2.1. ([59] Def.4.4, Def.4.5) 
The eqmhbrmm point x = 0 of (2.1) is 

• Stable if, for each s > 0, there is 5 = to) > 0 such that 

||;r(to)|| < ( ^ � IW力)|| \/t > to > 0 (2.4) 

• Unstable if it is not stable. 

• Uniform stable if, for each £ > 0, there is 5 = > 0, independent of to, such 

that (2.4) IS satisfied. 

• Asymptotically stable if it is stable and there is a positive constant c = c(to) such 

that x{t) 0 as t (X), for all x{to) < 0, 

• Uniformly asymptotically stable tf it is vmformly stable and there is a positive 
constant c, independent of to； such that for all ||2:(to)|| < 0, x{t) 0 as i ^ 00, 

uniformly m t; that is, for each r/ > 0，there is T ~ T{r]) > 0 such that 

|Wt)||<77, y t > t o + T{r]), V||x(to)|| < c (2.5) 
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Globally uniformly asymptotically stable tf it is uniformly stable, 5(e) can be 
chosen to satisfy = oo, and, for each pair of positive number r) and c, there 
IS T = T(?7, C) > 0 such that 

||;r�丨|<"， Vt>io + T(7?,c), y\\x{to)\\<c (2.6) 

Exponentially stable if there exist positive constants c, k, and A such that 

\\xit)\\ < V||x'{to)|| < c (2.7) 

Global exponentially stable if (2.7) is satisfied for any imtial state x{to). 

The equivalent definitions of the stability can also be characterized by comparison 
functions. 

Definition 2.2. ([59] Lemma 4.5) 
The equilibrium point x = 0 of (2.1) is 

• Uniformly stable if and only tf there exist a class K function a and a positive 
constant c, independent of to, such that 

Mt)\\ < a(||a;(to)||), yt > to > 0, V||a:{to)|| < c (2.8) 

• Uniformly asymptotically stable if and only if there exist a class KC function 
(3 and a positive constant c, independent of to, such that 

\\x{t)\\<f3{\\x{to)lt-to), Vt > to > 0, V|Wi� )| j<c (2.9) 

• Globally uniformly asymptotically stable if and only if (2,9) holds for any 
initial state x(to). 

By Lyapunov direct method, some stability criterions can be given. We not ate first 

• A function V{x) : M" ^ M is said to be positive definite if y (0 ) 二 0 and 7(0) > 0, 
\/x + 0, If V{0) = 0 and y(0) > 0, Va; ^̂  0, V{x) is said to be positive semidefinite. 

« A function V[x) : M" —> R is said to be radially unbounded if V{x) oo as 
丨I 一 oo. 
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• A function V{t^x) : R x — R is said to be positive definite if V{t,x) > Wi{x) 
for some positive definite function Wi{x). V{t, x) is said to be positive semidefinite 
if V{t, x) > 0. V{t, x) is said to be radially unbounded if V{t, x) > Wi(x) for some 
positive definite function Wi(x) and Wi{x) is radially unbounded, V{t, x) is said to 
be decrescent if x) < W2{x) for some positive definite function W2{x). 

the we have 

Theorem 2.1. ([59] Theorem 4.8) Let x = 0 be an equilibrium point for (246) and 
D C MJ^ be a domain containing x — 0. Let V : [0, oo) x D —> M 6e a continuously 
differentmble function such that 

Wiix) < V{t,x) < W2(x) (2.10) 
dv dv 
i + (2.11) 

Vt > 0 and Va; G D，where Wi{x) and W2{x) are continuous positive defimte functions on 
D. Then, x = d is uniformly stable. > 

Theorem 2.2. ([59] Theorem 4.9) Suppose the assumptions of Theorem 2.1 are satis-
fied with inequality (2.11) strengthened to 

V?̂  > 0 and \Ix € D, where Ws{x) is a continuous positive defimte functions on D. Then, 

X = 0 IS uniformly asymptotically stable. 

// Z) = R" and Wi(x) is radially unbounded, then x = 0 ts globally uniformly asymp-

tohcally stable. > 

2.2 Stabilization of nonlinear control systems 

Consider the nonlinear control system described by 

d; = f(cc,u), rc G M", ueR (2.12) 

where / ( 0 ,0 ) = 0, and f(x, u) is a smooth function of x and u. The control objective is 
to design a feedback control law u = Q;(;r) such that the equilibrium point a; = 0 of the 
closed-loop system 

x^f{x,a{x)) (2.13) 
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is globally asymptotically stable, i.e. considering V{x) as a Lyapunov function candidate, 
where V{x) is a positive definite, continuous differentiable function, its derivative along 
the trajectory of (2.13) should satisfy V{x) < —W{x), where W{x) is a positive definite 
function. Therefore a{x) is required to guarantee that 

a{x)) < — V : r G IT (2.14) 

In such scenario, roughly speaking, V(x) can be referred to as the control Lyapunov 
function. In [1], Artstein showed that the existence of a control Lyapunov function is 
equivalent to global asymptotic stabilizability of the control system (2.12), i.e., under the 
control the equilibrium point of (2.13) is global asymptotic stable. (See [62] Section 
2,1.2 for details) 

By virtue of the control Lyapunov function, we can utilize the backstepping technique 
[62] to globally stabilize nonlinear systems in certain structural forms. It is well known 
that backstepping technique is a recursive design methodology, the essential idea of back-
stepping is to consider the specified state variables as the "virtual controls" in each step 
so as to design certain intermediate control law to stabilize the relevant subsystems in 
the "top-to-bottom" manner. For instance, as shown in [62] Section 2.3.1, the nonlinear 
control system in the strict feedback form 

= fiixi) + gi{xi)x2 

= /i(>i，a^2) 

=fn~l(^l, . • • +ffn-

= f n ( 工 1 ， … + 

(2.15) 

can be globally stabilized with a state feedback control law • • • , x^) under certain 
conditions. 

In the presence of uncertain parameters, the adaptive backstepping and tuning func-
tions are employed to achieve the stabilization. For example, consider the nonlinear 



22 CHAPTER 2. BACKGROUND AND PRELIMINARIES 

control system in the parametric strict feedback form 

= 3：2 + f\{xi)d 

士n-1 + ' . • 

(2.16) 

a^n-l)^ 

where 0 is a vector of uncertain constant parameters. In each step of the recursive design 
procedure, we use the estimation ^ of (9 to get the virtual control law based on the adaptive 
control Lyapunov function, and meanwhile wc adapt 0 with certain update law 0 = t(xJ 
where t(x^) is also a recursively designed function called the "tuning function". The 
global stabilization of system (2.16) with a state feedback control law is shown in [62 
Section 4.2. 

The backstepping and tuning functions are the classical nonlinear design tools. How-
ever, considering the facts that nonlinear systems may contain both dynamical and static 
uncertainties, and some of the state variables may not be able to utilize for feedback 
design, the aforementioned methods shall be modified and some new ideas shall be intro-
duced to achieve the stabilization of nonlinear control systems. 

2.3 Fundamentals of time-varying systems 

A major part of thesis is considering the time-varying control systems. Some definitions 
and preliminaries are given in this section for further convenience. 

2.3.1 Polynomial differential operator 

Consider an ordinary differential equation with time-varying coefficients as follows. 

y � - i ( t ) y ( " 一 1) a i � y � 一 a � � y = u (2.17) 

where y : R+ ^ M, u : R+ ^ M, ？yW ^ ^ and z = 0,1, • • • , n - 1 are sufficiently 
smooth, uniformly bounded functions. 
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The state-space representation of equation (2 17) can be shown in the following form 

0 1 0 

y = 

0 0 1 

ao � ai � an-i{t) 

1 0 0 

‘ 0 - i 
y � 

3； + 
0 

U , X t7 

_ 1 _ y{n-l) 
(2 18) 

X 

Alternatively, by introducing the following definition, we can express equation (2 17) 
in another manner 

Definition 2,3. Left Polynomial Differential Operator 
An LTV left Polynomial Differential Operator (PDO) of degree n is defined by 

Pi{s, t) = an(t)s几 + �s^^—1 + + ai{t)s + a � � (2 19) 

def 
where s =羞（a!�� =0,1 , , n — 1, n are sufficiently smooth, amformly bounded 
functions, an{t) / 0 for some t G R+ And when 三 1 for all t G M+, P/(s, t) %s 
called the momc left PDO • 

By the definition left PDO, the I/O property of (2 17) or (2 18) can be simplified in 
the form of 

Pmi(s,t) = s"" - - -a,{t)s~ao{t) (2 20) 

Obviously, Pmi{s, t) IS a momc left PDO 

Compared with (2 18), another state-space description of linear time-varying systems 
often occurs as follows 

bn-l � 1 0 

y = 

hit) 0 

bo{t) 0 

1 0 0 

(2 21) 

To characterize the I /O property of system (2 21), we further define right PDO in the 
parallel manner with Definition 2 3 
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Definition 2.4. Right Polynomial Differential Operator 
An LTV right Polynomial Differential Operator (PDO) of degree n is defined by 

Pr{s,t) = s%n(t) + s ^ — � + ••• + Shif) + 6 � � (2.22) 

def 
where s = ^( ‘ ) , hi(f), i = 0,1, • • • , n — 1, n are sufficiently smooth, uniformly hounded 
junctions, bn{t) + 0 for some t G IR+. And when hnif)三 1 for all t 6 IR+, Pr(s,f) is 
referred to as a momc right PDO. • 

It can be verified that, along the trajectory of (2.21) 

y 二 Zh "⑴=bn—l{t)y + Z2. y�=基(‘一l(f)?/) + bn-2(t)y + Z3, 

？ / ⑷ - ^ ( b n - i ( t ) y ) + ••• + + bo{t)y + u 

Clearly, for system (2.21), the I/O property can be shown by 

where Pmr{s-1) is a monic right PDO. 

shi{t) - bo{t) 

Remark 2.1. Definitions 2.3 and 2.4 are slightly modified from Definitions 2.1 and 2.2 
in [114]. As shown in [114], we may extend the definitions of the left PDO or the right 
PDO to admit piecewise continuous parameters a“t) or b̂ t̂) respectively. • 

In definitions 2.3 and 2.4, it is noticeable that the sufficient smooth property of a , � 

or bi{t) is required. We could further show that, under certain addition conditions, an 
identical I /O expression can be realized either in the form of (2.19) or (2.22), which also 
implies the dynamical system (2.18) can be transformed into (2.21). The coefficients of 
these two forms are correlated, i.e. a人t) can be determined from and vice versa. 

Such relationships are insufficiently addressed in [114] by giving the operator identity 
a{t)s = sa{t) — d{t) only. For clarification and self-sustained, we can show the following 
result. 

Proposition 2.1. A momc PDO of degree n can be written either m the left form or the 
right form, if bi(t)，i — 0,1,...，n — are sufficiently smooth functions of time, 

h^{t) and their kth derivatives, /c — 1 , . . . , / with J sufficiently large, are all uniformly 
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bounded over [0, +oo). Moreover, the coefficients a^{t) can be determined from b人t)，and 
v.v. as follows 

C ^ f ) = 茫 � (2.23) 
J—I 

= i m —•^七迎计 “ 0 (2.24) 
户0 

where C^ is the hinomial coefficient, the number of k~comhination from n elements, 
a ? � � and ��� are the kth derivative o/X� and 6“力）respectively. . 

Proof: Consider the left monic PDO corresponds to the system expression (2 18), we 
note that 

y in) . � + a „ — 2 (力2 ) + ••• + (h(t)y � + aoit)y + u (2.25) 

On the contrary, the right monic PDO corresponds to the system expression (2.21), and 

y�— = 广)+ {br^—2�t)yf-�+ •••+ iMt)y)� + bo{t)y + u (2.26) 

where ( 6 � y 广 ) = § [ b [ t ) y ) . 

To show (2.23), first notice the fact that for any sufficiently smooth function b{t) G M 

_ y ) � : � � \ z = 1’ 2，… (2.27) 
fc=0 

By using (2.27), equation (2.26) can be expressed as 

" � 二 E fe 嘱�+" = E ( i：�r � + -
户。n-1 , 尸 � ' = � n-1 n-1 (2-28) 

£ (亡 广 ) ( 彻 ⑷ ) = E ( E c 

On the other hand, equation (2.25) can be expressed as 二 XT^qI (h{t)y�i�+ u’ Com-
pare the right hand sides between (2.25) and (2 28) and match the coefficient of the zth 
derivative of y in (2.28) with those of the ith derivative of y in (2 25) gives 

� = E cr吟-”�=E 《-〜） 
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since b,(f) and its kth derivatives, k = 1 , . . . , / with I sufficiently large, are all uniformly 
bounded over [0, +oo), so ai(t) is uniformly bounded over [0, +oo). 

To show (2.24). we will utilize the following fact 

a � 二 ; — l ” ( a W _ H ) (2.29) 
k=Q 

The proof of (2.29) is given by induction. 
First, it can be seen that a { f ) y � — ( a � y ) � — a � 

Next, suppose (2.29) holds, then 

a ⑷ ? / = ⑷)⑴—御⑴ 

= V ) 咖 ( “ + 1 ) - E � - 1 ) ' ( … 咖 “ ） 

k^O k=0 
= ( 7 ? ( - 1 ) � ( 0 ( � ) � y )(叫 + ••• + (7广(-1广(�(—(0")(卜"+1) + 

一 C；。(一l)�(a⑴⑷“)⑴ C r — 1 广 -乂⑴“广— 

Since 
1 ) V 。 ) (％ ) _ = a?+ i ( -1 )V。)(％ 广+1) 

c 广 ( — 1 广 — 1 ( - 1 广 1 = - 1广 

so 

？ + 1 

m=0 
By induction, we verify that (2.29) holds. 

By using (2.29), equation (2.25) can be expressed as 

一 = ^a“t)y(”+u = g ( E C : ( - 1 ” ( 々 ( 彻 ( 2 . 3 0 ) 

j=0 t=0 7—0 

On the other hand, equation (2.26) can be expressed as y � 二 ^^二（6“彻)⑷ + u. 

Compare the right hand sides between (2.26) and (2.30) gives 

_ = —ly� ”� (2-31) 



define k + j = m, then j ^ m — k and 

n~l 

W力)二 1 广 ⑷ 
m—k 

which is actually (2.31). o 

2.3.2 Controllability, observability and canonical forms 

Consider the following linear time-varying system 

± = A(t)x + B(t)u 
. ) “ (2,32) 

y = C{t)x 

where x ^W", u gMJ', y G E"̂  are the state, input and output respectively, C{t) 
are matrices of appropriate order compatible with x, u, y and are assumed to be at least 
continuous on E. 

The complete solution of (2.32) with initial state Xq at to is given by 

x[t) = [ ^{t,T)B{T)u{r)dT, t > to 
J to 

where r) is the state-transition matrix associated with A{t) and is defined by ^{t, r)== 
•X"� X—i(r), where X(t) is any nxn matrix solution of the homogeneous system x = A{t)x 
with det X{t) + 0, Vt. X{t) is called the fundamental matrix for A{t). 

Next, we clarify the "controllability" of system (2.32). 
Recall the definitions given by Kalman [54], for system (2.32), a state xq is said to 

be controllable at time Iq if there exists a control function u(t)^ depending on i；。，Iq and 
being defined over some finite closed interval [力o, ti], such that x{ti) = 0 If this is true 
for every state Xq, we say that (2.32) is completely controllable at time to. If this is true 
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since az(t) and its kth derivatives, /c = 1 , . . . , / with I sufficiently large, are all uniformly 
bounded over [0,+oo)，so b人t) is uniformly bounded over [0, +oo). 

(2.31) is equivalent to (2.24), i.e. 6„_々）-
of fact, in (2.24), define n — i = k, then i = n — k and 

a⑴ (t). As a matter 

0 CI hit 
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for every to, we say simply that (2.32) is completely controllable. In particular, (2.32) is 
completely controllable at time to if and only if the controllability gramian M(力o,力i) 

M(io, k) 二 广 $(力0’ r)dT (2.33) 
J to 

is nonsingular for some ii > to. 
The definition of uniformly completely controllable for system (2.32) is also given by 

Kalman [54]. We are more interested in the case when B{t), C(t) are uniformly 
bounded. As in [106]，(2.32) with uniformly bounded coefficients is uniformly completely 
controllable if there exists some 6 > 0 such that for all t, M{t — 5, t) > ai{S) > 0, where 
ai((5i) is a positive constant determined solely by 5. 

The observability of system (2.32) can be defined in the dual manner. Especially, the 
observability gramian is given by 

h ) = r ^^{r, h)dT (2.34) 
J to 

By using the terminologies given by Kailath [53], we say a SISO time-varying system 
similar to (2.18) is in the observability canonical form with the triple (A ( /； ) , &(t), c(t)), 
where b{t) being some sufficiently smooth vector, and 

Mt) 
_ 0 /n—i 

_ ao{t) a i ⑷ … C L n - l i t ) . 

and a, SISO time-varying system similar to (2.21) is in the observer canonical form with 
the triple (F(t), g(t), where g{t) being some sufficiently smooth vector, and 

h{t) = 

-bn-l{t) 
In-1 

m = 
In-1 

_ bo(t) 0 

System in either of these two canonical forms with bounded coefficients is uniformly 
completely observable. 

Remark 2.2. These concepts and criterions are also shown in several publications with 
some differences in terminologies or definitions, e.g. Kalman [55] [56], Silverman et. al. 
[104] [105] [108], and Weiss [116] to name a few, and also in some classical textbooks like 
Chen [11], Kailath [53] and Rugh [95]. To maintain the coherence, we follow those given 
by Kalman and Silverman. • 



2.4, THE GENERAL FRAMEWORK FOR TACKLING OUTPUT REGULATION PROBLEM 19 

2.4 The general framework for tackling output regulation prob-
lem 

In this section, we will review some essentials of nonlinear output regulation problem. For 
consistency of the thesis, we formulate the problem and introduce the general framework 
for handling the problem based on [36]. This general framework includes three steps. 
First, the concept of steady-state generator is introduced. Steady-state generator is some 
dynamic system which can produce partial or whole solution of the regulator equations 
virtually. Second, the internal model is defined based on the steady-state generator. 
Attaching the internal model to the given plant yields the augmented system. More im-
portantly, the stabilizability of the augmented system implies the solvability of the output 
regulation problem of the original plant, Third, different techniques are implemented due 
to the structural properties of the augmented system, so that the stabilization of the aug-
mented system is achieved. It can be seen that this framework provides a systematical and 
flexible design procedure for solving global robust nonlinear output regulation problem. 

Consider the nonlinear plant described by 

X = f ( x , u, V, w) 
� ) (2.35) 

e = h{x, u, V, w) 

where i; € is the state, u G M"̂  is the input, e G is the error output, w E M"̂ " denotes 
the uncertain constant parameters of the plant, and v G MĴ " represents the exogenous 
signals which is generated by the following system 

V = a{v) (2.36) 

It is assumed that all functions in (2.35) and (2.36) are globally defined, sufficiently smooth 
and satisfy / ( 0 , 0 , 0 , w ) — 0 and /i(0,0，0, i/;) = 0 for all w E Also, we assume that 

Assumption 2.1. The equilibrium of ezosystem (2.36) at v = Q is Lyapunov stable, and 

all the eigenvalues of have zero real parts. • 

Briefly, the global robust output regulation problem can be stated as follows: to design 
a feedback control law in the form of 

… “ e ， ⑶ (2.37) 
C = 

where both Uk and gu are sufficiently smooth function vanishing at the origin, such that 
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• the solution of the closed-loop system composed of (2 35) and (2.37) exists and is 
bounded for all initial states (xq, C o , ^o) and all w G 

• the error output e asymptotically approaches zero, i.e. lim e = 0. 
f—+00 

To solve the problem, a standard assumption is posed in the first place. 

Assumption 2.2. There exists globally defined，sufficiently smooth functions x{v, w) and 
W) with x(0, 0) = 0 and u(0, 0) 0 satisfying the following equations 

0 = w),u{v, w),u, w) 

for all V e 股〜and w € IR". • 

Equations (2.38) are called the regulator equations. It is known that the solvability of 
the regulator equations is a necessary condition for the solvability of the output regula-
tion problem. The solution of the regulator equation exhibits the steady-state behaviors 
x(w, w) for the composite system (2.35) (2.36) when asymptotic regulation achieves, and 
also provides the necessary steady-state feedforward information ii(v, w) necessary for the 
controller to achieve asymptotic regulation. Nevertheless, u(i;，u>) cannot be used directly 
due the uncertain quantities (v, w). We need to introduce the concept of steady-state 
generator and internal model to asymptotically provide the information of w). 

Definition 2.5. Generator ([36] Def.6.1) 
Let F :V xW where V and W are some open neighborhoods of the origin of 
and , respectively, and I %s some integer, be a smooth function vanishing at the ongm 
The function F is said to have a generator if, for somo integer s, there exists a triple 
{6,a,(5), where 6 : V x W W, a . W ^ W, and 13 :W are sufficiently smooth 

functions vanishing at the ongm，such that, for all trajectories v(t) G V of the exosystem 
(2.36) and all w eW, 

d9{v,w) ( �� 

d 十—) 
If V = IR"�W = , then the triple {6^ a, (3} is called a global generator of F(v, w). 

Let the triple {6,/3} be a (global) generator of F(v,ui). If, in addition, the lineariza-
tion of the pair {p{6)^a{0)} at the origin is observable, the the triple {6*, a, /?} is called a 
hvearly observable (global) generator of F{v,ui) > 
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Definition 2.6. Steady-State Generator ([36] Def.6.2) 

Let Qo M} be a mapping for some integer 1 < / < n + m. Under Assumption 

2.1 and 2.2, the composite system (2.35)-(2 36) is said to have a (global) steady-state 

generator with output go{x, u) if the function Qo w), u(t；, w)) has a (global) generator. 

The composite system is said to have a (global) steady-state generator with output u) 

with linear observability if the function go{x{v, w), u(i', w)) has a (global) generator with 

linear observability. • 

It can be seen that when go{x, u) = col(j;, u), the steady-state generator reproduces 
the whole solution of regulator equations, and when u) = u, it reproduces partial so-
lution. Without loss of generality, we assume go{x, u) — col(asi, • •, , Xd, u) in the following, 
where 0 < d <n, and correspondingly, we call 

— a(0[u,w)) 
dt V h (2.39) 

go {-k{v,w),u{u,w)) = (3{e{v,w)) 

a partial (full) steady-state state generator if 0 < d < t? or a steady-state input generator 
if d = 0, 

Definition 2.7. Internal Model ([36] Def.6.6) 
Under Assumption 2.1 and 2.2, suppose the composite system (2.35) (2.36) has a (global) 

steady-state generator with output go{x, u) Let 7 : ^s+^+m+p a sufficiently 

smooth function vanishing at the origin. Then we call the following system 

'n = l {v^9oix,u) ,e) (2.40) 

an internal model of the composite system with output go{x, u) if 

(For convenience, we always use the notation ^{rj^ x, u, e) instead of ^ir], go{x, u), e) ) • 

Now we are ready to show the "problem conversion"，i.e., to convert the output regula-
tion problem for the original plant (2.35) into the stabilization problem for the augmented 
system. 
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Attaching the internal model (2.40) to the given plant yieids the following augmented 

system 

(2.41) 

w) 

= e) 

—h{x, u, V, w) 

coordinate and 

z = L • • •. d 

Xi = x^ — w), i = d + 1,' • • 5 n 

fj ~ rj — 9 

u = u- [ . . • 爪(7]) 1 = u - Puirf) 

gives a new system denoted by 

= f ( x , f j , u , v , w ) 
= f j . U, V, w) (2.42) 

= f j . ？i, V, w) 

where 

U, 1 =AO’' u, V, w) 

u, ？ =.八(>，' U, V, w) 

U, t =7(r?,a ;,w’e)-

M 无,fh u, ？ =h{x, 1 i, V, w) 

X

 u
 

？
 
5
 

^
 
)
 

7
 u
，
 

/
I

 “
 

A
 oa

 /
u
v
 

5
 A
 

I

 _
 

• � d 

= ( i + 1, • • • , m 

For system (2.42), the origin {x, fj) = (0,0) is the equilibrium point of the unforced 
augmented system, and at the origin, the error output is identically zero. This argument 
can be verified by showing that, for system (2.42) the following hold 

/(0，0,0，tsw;) = 0 

7(0,0,0,^J,u;) - 0 (2.43) 

h{0,0,0,v,w) = 0 

for all trajectories v(t) E V C IR几幻 of the exosystem, and all w eW G 
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Proposition 2.2. The output regulation problem of the original plant (2.35) can be con-
verted into the stabilization problem oj the augmented system (2.42), i e , if there exists 
a control law 

u = Us{xi, • • • 
• _ — (2.44) 

where�G IR"•之 and Ug and gs are sufficiently smooth functions vanishing at the ongm) 
such that, the solution of the closed-loop system composed of (2.42) and (2.44) e^xists 
and IS hounded over [0, oo), and the equilibrium point of the closed-loop system is globally 
asymptotically stable jor any imhal states and all v £ V and w G W. Then the following 
control law 

u 二 Pu{r}) + Us{xI - A W , • • • ’工d — Ai(")，‘，e) 

f] 7(r7,a;,7i,e) (2.45) 

t = gs{xi - AW,...，〜-Ai(")，C,e) 

solves the global robust output regulation problem for the original plant (2.35) subject to 
exosystem (2.36). « 

2.5 Some useful lemmas 

In this section, some lemmas which will be frequently cited in the forthcoming chapters 
are introduced. 

Lemma 2.1. Barbalat's Lemma ([59] Lemma 8.2) 
noo 

Let 0 : E —> R 6e a uniformly continuous function on [0, oo). Suppose that lim / �{jJdT 
, Jo 

exists and is finite. Then, (pit) —> 0 as t ^ oo. • 

Corollary 2.1, 

If the differentiahle function � has a finite limit as t oo, and is such that (p(t) exists 
and w bounded, then (j){t) —> 0 as t ^ oo. • 
Theorem 2.3. LaSalle-Yoshizawa Theorem ([62] Theorem A.8) 

Consider the nonautonomons system 

X - f(x,t} (2.46) 

where f : R x IR+ — M" is locally Lipschitz in x uniformly in t 
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Let X — Q be an equilibrium point of (2.46). Let V . M" x M.+ IR+ be a continuously 
differenhable function such that 

. dV dV 

V力 > 0，\/x G where 71 and 72 are class /Coo functions and W is a continuous function. 
Then, all solutions of (2.46) are globally umformlyy bounded and satisfy 

lim W{x) = 0 
t—00 

In addition, if W{x) is positive definite, then the eqmhbnum x = 0 ts globally uniformly 
asymptotically stable. • 

Lemma 2.2. Changing Supply Functions Technique ([111]) 
Consider the nonautomovs control system 

X 二 fix, u, t) (2.47) 

where x G R", u G R. Suppose there exists a continuously differenhable (C^) function 
U(xj t) satisfying < U{x^ t) < a(||a:||) for some class K-00 functions «(•) and di{-), 
such that，along the trajectory of system (2.4V 

(2.48) 

for some class JCoo function a(‘) satisfying < 00, and some smooth 
positive definite function 6{u). 

Then given any smooth function A(x) > 0, there exists a contmuously differenhable 
function t) satisfying 迅(||a:||) < t) < (5:i(||;r||) for some class Kqo functions 
这i(-) and ai(-), such that, along the trajectory of system (2.47) 

" V ， ) < -A�||:r||2 + 6 i { u y (2.49) 
iJj' 

for some smooth positive function Si{u). • 

Corollary 2.2. 
Consider the uncertain nonlinear system 

x = f {x ,y , t , f i ) (2.50) 
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where x € R"； y € M； /i E E C with E being any compact subset is some uncertain 
parameters. Suppose there exists a C^ function t) satisfying a(||a:||) < t) < 
adl^jl) for some class /Coo functions a(-) and such that, along the trajectory of 

system (2.50), ^^^^ < —a(||;r||)+(57(y)，where a{-) 2s some known /Coo function satisfying 
< oo, 6 is some unknown positive constant，and 7(-) is some known 

smooth positive definite function. 
Then given any smooth function A(x) > 0, there exists a C^ function V{x, t) satisjymg 
a^dlxll) < V(x, t) < aidl^ll) for some class Koo functions ai(-) and such that, 
along the trajectory of system (2 50), < — + 5j{y)y'^, where 6 is some 
unknown constant, and 7(.) is some known smooth positive funchon . 

Lemma 2.3. Dominating Functions ‘ Inequality f|36] Lemma 7.8, 7.9) 
Let f - . r xW xW ^R be C^ function，where ji G 5] with S being a compact subset of 
W Then there exist smooth functions Fi • — E and F2 : E"" R such that 

\f ix ,y , l i )\<F, (x ) + F2{y) (2,51) 

for all e E", and G S. 
If y, (i) satisfies / (0 ,0 , /i) = 0 for all / i G S； then Fi{x) and Faiy) satisfies 

Fi(0) 二 0 and 尸2(0) = 0. • 

Corollary 2.3. By Taylor theorem，there exist a constant c, smooth positive definite 
functions (pxi') and (j)y(-) such that, for Lemma 2.3, F认x) < Ci||x||(/>^(2；) for all x E 
F2(y) < C2\\y\\(l)y{y) for all 2： G R" (2 51) thus turns into 

\f{x,y,f,)\<c(\\x\\M^)^\\yUyiy)) (2.52) 

for all E K几，and fx e I： 

If the bound of compact set S is known, the constant c can be determined, (2.52) thus 
tarns into 

1/(^,2/,^)I < {\\x\\M^) + \\y\\cl>y{y)) (2.53) 

Moreover, we can further show that from (2.52), 

f { x , y . f i ) < p { \ \ x f U x ) + \\y\\%iy)) (2.54) 

where > 0 and > 0 are some known smooth fanctions, p > 0 is some unknown 
constant • 

• End of chapter. 



Chapter 3 

Output Regulation of Time-Varying 
Nonlinear Systems 

In this chapter, we address the global robust output regulation problem for time-varying 
nonlinear systems subject to time-varying exosystems. Along the line of [36], some modi-
fications are made due to the time-varying properties of the systems, and a framework for 
handling such kind of problem is introduced. Further, the output regulation problem is 
solved for a class of time-varying output feedback systems with a time-varying exosystem. 

3.1 Introduction 

The output regulation problem has been extensively studied since the 1970s for both 
linear time-invariant systems [18] [22] [23], and nonlinear time-invariant systems [5] [33] 
42 44 57 etc 

Recently, some attention has been given to the linear time-varying systems [39] [99 
122] [123] [124] meaning either the plant or the exosystem is a time-varying system. [39 

summarizes the main results regarding the output regulation for linear time-invariant 
systems as given in [96], and extends them to the linear time-varying systems in a parallel 
manner, and shows the solvability of output regulation problem for linear time-varying 
systems relies on the solvability of a differential Sylvester equation, in contrast with the 
solvability of a Sylvester equation in the time-invariant scenario. [122] and [123] show the 
similar solvability condition, and, in particular, present an internal model based design 
approach for linear periodic systems. 

26 
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The time-varying systems exhibit distinct properties in comparison with the time-
invariant systems. Even in the linear settings, more rigorous classifications and specifi-
cations on "controllability" or "observability" are posed for time-varying systems than 
time-invariant systems as shown in Section 2.3. Moreover, time-varying systems provides 
richer categories of signals. When a finite-dimensional linear time-invariant systems serv-
ing as the exosystem in the nonlinear output regulation problem, i.e. v 二 Aiv, it is 
usually assumed that all eigenvalues of Ai are simple with zero real parts, so the periodic 
solutions of the exosystem are simple sinusoidal signals which contain finite number of 
harmonics. For instance, consider the constant harmonic oscillator 

V-i = (jJV2, V2 二 

where lo is some constant, then for any initial condition (I'lo, ^20), the solutions are 

VI{t) = cos{ut)viQ + sin(cc；力)1；20， V2{t) = - sin(6<;t)'Uio + cos{ujt)v2o 

On the contrary, when time-varying systems serving as the exosystem, they produce 
periodic or aperiodic solutions not merely the simple sinusoidal signals. For example, 
consider a periodically time-varying oscillator, 

Vi = a sin(t)i'2, 二 —(7 sin(t)i;i 

where a is some constant, then for any initial conditions (vio, "̂ 2̂0)’ the solutions are 

vi (t) = cos ((J COS t)vio — sin (a cos t)V20, V2(t) — sin (a cos t)vio + cos (a cos t) 1)20 

Obvious, the exogenous signal contains infinite number of harmonics. 

As a consequence, the time-varying nature of the system distinguishes the output 
regulation problem from time-invariant case for at least two reasons. First, it is difficult 
to characterize the existence condition for a (time-varying) internal model, second, special 
requirement is in need to achieve global stabilization or regulation. 

3.2 A framework for handling the problem 

In this section, we first describe the output regulation problem for time-varying nonlin-
ear systems. The basic assumption for solving the problem is posed, and the concepts 
like steady-state generator and internal model are introduced. Next we show the output 
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regulation problem can be converted into a stabilization problem of the time-varying non-
linear augmented system which is composed of the plant and the internal model. Further, 
we give the existence condition for the steady-state generator, so that the appropriate 
internal model can be designed based upon such steady-state generator. 

3.2.1 Problem descriptions and problem conversion 

Consider the general time-varying nonlinear plant described by 

e = x^ V, w) 
(3.1) 

where x G M"" is the state, e G is the regulated error output, u e is the control 
input, w G denotes the constant uncertain parameters of the plant, and v € 歡“” is the 
exogenous signal representing a class of reference and/or disturbance which is generated 
by a time-varying exosystem 

V = a{t,v) (3.2) 

The functions f{t, x, u^ v., w), f , w) and a{t, v) are assumed to be sufficiently smooth 
in their arguments satisfying f[t. 0,0,0, w) = 0, h{t, 0,0, w) = 0, and a(t,0) = 0. Also, 
it is assumed that the solution of the time-varying exosystem (3.2) exists and is bounded 
for alH > io > 0 and for all vq. 

The control objective is to find the output feedback control law in the following form 

… 赢 e) (3.3) 

where e) and ( , e ) are sufficiently smooth functions vanishing at ((, e)= 

(0,0)，such that, for any initial time to > 0, any initial condition (rr。，Co), and any 
constant parameters w G W^'", 

• the solution of the closed-loop system composed of (3.1), (3.2) and (3.3) exists and 
is bounded over [ to, +oo ); 

• the regulated error output e uniformly asymptotically approaches zero. 

Like the nonlinear time-invariant case, we first pose a standard assumption. 
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Assumption 3.1, There exist globally defined sufficiently smooth functions x(t, v, w), 

u(t, V, w) with x(力，0, w) = 0 and u{t, 0,w) = 0 for all w G M"^ and all t > to > 0, such 

that 

(3.4) 

0 = h{t, V, w) 

where £„(t，^;)x(t’ v, w) - + v) for all {t, v, w) eR+ x IR打” x E^^-. • 

Remark 3.1. In analogy to the time-invariant case, we call equations (3.4) the (time-
varying) regulator equations associated with the composite system (3.1) (3.2), and the 
solution of the regulator equations (3.4) provides a steady-state input u(t, v, w) under 
which the closed-loop system has a steady-state trajectory v, w) at which the steady-
state error output is identically zero. 

However, since u(t, f , w) depends on the unmeasurable quantities as v, w, it cannot 
be used for feedback control directly. Instead, we need to reproduce it by the dynamics 
called steady-state generator which is independent of the model uncertainty w and the 
exogenous signal v. The concept of the (time-varying) steady-state input generator is 
introduced as follows. _ 

Definition 3.1. Steady-State Input Generator 
Under Assumption 3.1, the composite system (3.1)-(3.2) is said to have a steady-state 

input generator if) for some integer l) there exists a triple a, (3}, where'd : ]R+ x E"'̂  x 
— R � a : R+ X I R � 4 and P : R+ x W are sufficiently smooth functions 

satisfying 0 ,w) = 0 for all t >0, such that, 

秦 ， ) ) 

u(t, w) — (5(t, 'd{t, V, w)) 
(3.5) 

for allv e IR"�w; e 

In the case that both a{t, 'd) and i!)) are linear in i9，i.e., there exist continuously 
differential matrices and r{t) such that 
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(3.5) reduces to 
di9(t, V, w] 

dt \ … … (3.6) 

we call (3.6) a linear steady-state input generator. 

Corresponding to a steady-state input generator, we can further introduce the concept 
of the internal model as follows. 

Definition 3.2. Internal Model 
Suppose the composite system (3.1) (3.2) has a steady-state input generator (3.5). We 
call the following system 

f] = j{t,r],u) (3.7) 

where 7(力,rj, u) is a sufficiently smooth function for all (t, rj, u) G R+ x X an internal 
model with output u if 

= a{t ,^{t ,v ,w)) (3.8) 

Remark 3.2. A steady-state input generator itself can be viewed as an internal model. 
However, this particular internal model cannot make the augmented system stabilizable 
because it does not affect the given plant. An internal model should be carefully conceived 
so that the augmented system is stabilizable in a desirable sense. 

For time-invariant systems, there are extensive studies on the construction of the 
various internal models [5] [9] [33] [37] [84] [88]. For time-varying systems, this issue has 
not been adequately addressed. However, if a linear steady-state generator of the form 
(3.6) has the property that there exist sufficiently smooth matrices F{t) and G{t) such 
that 

糊=F(t.) + G(t)r(f) (3.9) 

then it can be verified that 

力=F(f)r] + G{t)u (3.10) 

is an internal model with output u. In particular, if F{t) is a constant Hurwitz matrix, 
then (3.10) reduces to the so-called canonical linear internal model proposed in [123]. _ 
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Attaching the internal model (3.7) to the given plant (3.1) yields the following aug-
mented system 

X = f{t’ X, U, V, w) 

i) = -f{t,r],u) (3.11) 

e = h{t, X, V, w) 

Performing on (3.11) the following coordinate and input transformation 

X — X ~ V, w) 

gives a new system denoted by 

fj 二 7] — l9(t，V, w) (3.12) 

u — rj) 

击= f { t , x , f j , u , / j ) 

(3.13) 

e = x^ 7?, /i) 

where ji = (f , w) and 

7 = - a(t，i9) 

h /i(t, X, ？J, w) 

It can be easily verified that system (3.13) satisfies 

0 = /(t ,0,0,0, / i) 

0 = % 0 , 0 ’ / i ) 

for all t > t o > 0 , all trajectories v{t) e and all w e M"^. 

(3,14) 

(3,15) 

Proof: From the expressions of the coordinate and input transformation (3.12), it is 
evident when x = fj = u = 0, we have 

X = x{t, V, w), 7] = ^{t, V, w), U ~ u(t, V, w) 

Under these conditions, comparing the plant (3.1) and the regulator equations (3.4), we 
could find their right-hand sides are identical, thus the first equation of (3.15) holds 
directly, so does the third one. 
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Under the same circumstances, it can be seen that 

fj = T] — = ？7, u) — 1?) 

=，{t. V, w),u{t, V, w)) — a(t, •d{t. V, w)) 

Resorting to the definition of internal model (3.8), it can be guaranteed that fj ~ 0. 

Thus the origin (x, fj) = (0,0) is an equilibrium point of the unforced augmented 
system (3.13) for all trajectories of the exosystem. o 

Remark 3.3. As shown above, the augmented system (3.13) has the property that the 
origin {x, fj) = (0, 0) is the equilibrium point of the unforced augmented system for all 
trajectories of the exosystem, and, at the origin, the error output e is identically zero. 
Therefore, if we can find an output feedback control law of the form 

— 幅 ( 3 . 1 6 ) 

where us{t, e) and gs{t, ^^ e) are sufficiently smooth functions vanishing at e) = (0, 0) 
such that (3.16) globally asymptotically stabilize the equilibrium point of the augmented 
system (3.13), then the following control law 

？i = P{t,Tf} + us{t丄 e) 

f] = (3.17) 

solves the output regulation problem of the original plant (3.1). • 

Till now, we have shown that, like the time-invariant case, the output regulation 
problem of the time-varying systems can also be converted into a stabilization problem of 
an augmented system composed of the given plant and the internal model if an appropriate 
internal model exists. However, for time-varying systems, the issue of the existence of the 
internal model may be much less tractable than the time-invariant case. So far. the 
existence issue of internal model is only studied for the special case where both the plant 
and the exosystem are linear periodic [122] [123]. 

3.2.2 On the existence and design of time-varying internal model 

Next, we will propose an existence condition for the steady-state input generator in the 
time-varying settings. Such condition can be viewed as an extension of the one given in 
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[37]. Consequently, an appropriate internal model can be defined based on the steady-
state input generator. A special case of this steady-state input generator will lead to the 
canonical linear internal model proposed in [123]. (For further convenience, we assume 
m = 1 for the rest of this chapter.) 

Definition 3.3. 
Let X{t, V, w) R+ X I R " x R"••幻—> R 6e a sufficiently smooth function with v{t) generated 
by the exosystem (3.2). If v, w) satisfies a hnear differential equation of the following 
form 

d}X ,�S-^X 
~ ^ 〜 ⑷ 一 a ! ⑷ 结 - a o � X = 0 (3 18) 

dt" …dt 
where a“t) : —股，t = 0 , 1 , are sufficiently smooth functions of time, then 

V, w) Ls said to be m the kernel of the left momc polynomial differential operator 
P{s, t) oj degree I， 

P[s,t) = s'' - ai{t)s - a o � 

where s 
def 

dt 

Assumption 3.2. There exist a sufficiently smooth function X(t, v, lu) which is in the 
kernel of some left momc polynomial differential operator of degree I, and a continuously 
differentiable function F : R+ x —> E such that 

i{t,v,w) =-r It, X,X dtH ) 

where u{t,v,w) is the solution of the regulator equations (3.4)-

Proposition 3.1. Under Assumption 3.2, there exists a steady-state generator of the 
form (3.5) with 

where 

i9(t, V, w ) = m 
d o � 

h-
ai � (H—i(t) 
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The proof is straightforward and is omitted. 

Remark 3.4. Assumption 3.2 is an obvious extension of the condition in [37] which 
deals with nonlinear time-invariant systems. A special case of Assumption 3.2 is that the 
function u(t, v, w) itself is in the kernel of some left monic polynomial differential operator 
of degree I. Then Assumption 3.2 reduces to the following. 

Assumption 3.3. There exists an integer I such that along the trajectory of exosystem, 
for all (t,v,w) G M+ X R""” x 脱打 the function \i(t,v,w) satisfies 

dJu ..dn ,,、 
+ a,{t)-^ao{t)n 

where ai{t), i = 0 ,1 , . . . , / — 1 are sufficiently smooth functions of time. • 

Under Assumption (3.3), we can always take Vit, i^) = F^ where F = [ 1 0 … 0 ], 
i.e., we can obtain a linear steady-state input generator as follows. 

dt V」、，，乂 (3.19) 

u(力,V, w) = T'd{t, V, w) 

In what follows, we say that the triple F} constitutes a linear steady-state input 
generator. . 

Remark 3.5. Existence of internal models for nonlinear output regulation problem has 
been extensively studied. The first condition is given in [33] where a linear internal model 
is constructed under the assumption that ii(v,u)) is a polynomial in v and the exosystem 
is linear time-invariant. Later a condition similar to (3.19) is proposed in [5]. It is shown 
in [35] that the condition proposed in [5] is equivalent to the condition that w) is a 
polynomial in v and the exosystem is linear. Recent results on the existence of nonlinear 
internal models can be found in [9] [37] [88]. More recently, condition similar to (3.19) 
has been given in [123] w.r.t the linear periodic systems. However, in the time-varying 
settings, condition (3.19) may not be satisfied even if the solution w) of the regulator 
equations is a polynomial and the exosystem is linear. • 



3.2’ A FRAMEWORK FOR HANDLING THE PROBLEM 29 

It is shown in Remark 3.2 that it is possible to obtain a canonical linear internal 
model of the form (3.9) once a linear steady-state generator of the form (3.6) is available. 
In fact, since the pair (<l>, F) is in the observability canonical form [53], by a Lyapunov 
transformation r = (3.19) can be transformed into the observer canonical form 
as follows. 

drit, V, w] 
(3.20) 

where 

⑷= 
m 

h-i 
⑷= 

m 
_ boit) 0 ••• 0 

and No if) is the observability matrix of the pair ⑷，F。)，The relation between (3.19) 
and (3.20) holds as 

+ N : 稱 t ) 職 = r = r � 

and the coefficients 6“力）can be obtained from a入i) as given in Section 2.3. 

bUt) = = (3.21) 
J — " 

where a f 么 + � � denotes the jth derivative of a“出(,)，and Ĉ i—州 denotes the number of 
distinct combinations of order j from I — i j elements. 

By assuming hi{t) are uniformly bounded, and let — + b{t)To where 

‘ 0 ‘ 
T,, 

‘ ‘ 

= ’ m = 
0 … 0 bo{t) 

(3.22) 

Also, let Lq = ( • • • , Iq be such that F =金 b — LqFo is Hurwitz, and let 
G{t) = Lo + b{t). It can be verified that 亞 = F + G (力)T h u s , by Remark 3.2, the 
following linear time-varying system 

f] = Ft/+ G{t)u 

is an internal model corresponding to the steady-state input generator (3.20). 

(3.23) 
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3.3 Applications for time-varying output feedback systems 

Having described the framework for handling the output regulation problem for time-
varying nonlinear systems in the last section, we can see that the successful implementa-
tion of the framework depends on two issues. First, the existence of a desirable internal 
model, and second, the stabilization of the augmented system (3.13). As neither of these 
two issues is tractable even for a general time-invariant system, in this section we will 
focus on a class of time-varying nonlinear systems in the output feedback form. 

3.3.1 System with unity relative degree 

Consider the following SISO time-varying nonlinear system. 

y = g(t,z,y,v,w) -\-b{w)u (3.24) 

e 二 y — q{t,v,w) 

where (2：, y) G M"' x R is the state, w G M is the control input, e G M is the error output, 
b{w) > 0, and other notations follow those of (3.1). System (3.24) is called time-varying 
output feedback systems with unity relative degree. The output regulation problem for 
the special case of (3.24) where the functions / ( t , y, v, w)^ g[t, z,y,v,w), q{t, v, w) and 
a{i, v) do not explicitly depend on the time t is studied in [120]. 

For system (3.24), Assumption 3.1 can be reduced to the follows. 

Assumption 3.4. There exists a globally defined sufficiently smooth function z : R+ x 
M̂ ^ X E^- 4 E" with z{t,0,w) = 0 such that 

Ca{t,v)Z{t, V, W) = /(t, z(t, V, w), q{t, V, w),v, w) 

for all (t, V, lu) G R+ X x • 

Under Assumption 3.4, denote y(t, v. w) = v, lu), and let u(t, v, w) — 
(Ax(t’”)y(“ 化 — z(力，D, w), y(t, V, w)’u,w)). Then z(力，v, w), y{t, v, w), u(t, v, w) 
are the solution of the regulator equations associated with composite system (3.24) -(3.2). 

Further we assume that the steady-state input u(t, f , w) satisfies Assumption 3.3. 
Then we can find a triple {‘！?. ^(t), F} that defines the linear steady-state input generator 
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(3.19). Moreover, under the Lyapunov transformation r = (3.19) can be trans-
formed into observer canonical form (3.20). Thus, we can obtain a linear internal model 
in the form of (3.23). As a result, we can put the augmented systems as follows. 

i = f{t,z/y,v,w) 

7) = Ft] + G(t)u (3.25) 

y = gii, z,y,v,w) + h(w)u 

Performing the coordinate and input transformation 

乏=z z — z(t,u，w), e = y - y{t,v,w) 

fj 二 T] — N^^d = 77 — T, U = U — ToTj 

gives 

！ = f(t,z,e,fj) 

r) = /2(t,f / ,u,/i) (3.27) 

e = g{t, z, fj, e, + h{w){u + IV)) 
where = (v, w) and 

j\t,2,e,ii) = f{t, z + z(t, q{t, v, w), v, w) — f{t,z{t,v,w),q{t,v,w),v,w) 

g{t,乏，e, 11) g{t,z + z(力,v,w),e-\- q{t, v, w) 一 g{t, z(t , u, w), q{t, v, w)，v，w) 

f2(t,7j,U,f2)=F7J + G(t)(u + rol7) 

Since (3.27) is not in lower triangular form, performing another transformation 

f j ^ y - b - ' ' ( w ) G ( t ) e (3.28) 

gives 

,二 + 乏’ (3.29) 

e =歹e(t，乏，巧，e,/i) + b{w)u 

where, for simplicity, g stands for g{t, z, e, ji) and 

Mt, e , = b-'{w) {FG{t)e 一 G{t)e 一 G⑴歹） 

9e{t,乏,e, fj, /i) = + b{w)rofj + ToG{t)e 

System (3.29) takes the same form as system (13) in [120] except that the functions 
/，J2, and Qe depend on t explicitly. To stabilize system (3.29), we need two additional 
assumptions. 



30 CHAPTER 3. OUTPUT REGULATION OF TIME-VARYING NONLINEAR SYSTEMS 

Assumption 3.5. For any compact subset S C x ••�there exists a C^ function V^ 
satisfying < Vz{t^ z) < q;(||̂ ||) for some class K<yo functions a(-) and a{-), and for 
any /x G S， along the trajectory of the subsystem 玄=/(力，乏，e, ii), 

where a{-) is some known class Koo function and is locally quadratic, i.e., 
stip(a—i(>s2)/s) < oo, 6 is some unknown positive constant, and 7 ( . ) is a known 

smooth positive definite function. • 

Assumption 3.6. There exist a bounded function % : E for some k > 0, and 
smooth functions /2(乏,e, x) and Qeiz^ fj, e, x) vanishing at {z, e) = 0 such that, 

(3.30) 

for all t>0, and any /x G S. 

Remark 3.6. Assumption 3.5 is obtained by slightly modifying Assumption 3 of [120] 
to accommodate the time-varying case. Under Assumptions 3.5, by changing supply 
functions technique [111], for any smooth function A(乏）> 0, there exists a Ĉ  function 

z) satisfying 迅（||到|) < 力，乏）< q;i(||̂ ||) for some class /Coo function 由（•）and 
ai(-), such that along the trajectory of 乏 subsystem, V î < — + for 
some positive number Ji and some known continuous function 7i(') > 1. • 

Remark 3.7. Assumption 3.6 is introduced to take care of the fact that both ,,2 and ĝ  
are time-varying. In fact, by Lemma 7.8 in [36], under Assumption 3.6，for all 乏 G R”: 
e G M and i > 0, /2 satisfies 

I I / 2 I I < I I / 2 I I < c i ( 1 / ^ , ( ^ ) 1 1 ^ 1 1 (3.31) 

(3.32) 

where ci,c" > 0 are some real constants, Z = col(^,tj), 乏(‘）> 1,功ei(') > 1,劝々（’）> 1, 

ipe(') > 1 are some continuous functions. Under Assumptions 3.5 and 3.6, let Vi(t, Z ) = 
dVn + 2ff Pif] where Pi is the positive definite matrix satisfying PiF + F'^Pi = —I and 
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d IS some positive constant Then it can be shown that along the trajectory of (z, fj) 

subsystem, 

V̂ i < - \ \ Z f + 52i2{e) (3 33) 

where 62 is some positive number and 72( ) is some known smooth positive definite func-
tion 

Assumption 3 6 is not restrictive as it may appear to be It is satisfied if t enters 
the functions � 2 and ĝ  through some bounded functions such as sinusoidal functions In 
particular, it is always satisfied if the given system is a periodic system Also, similar 
bounded conditions are commonly used in the control problem of time-varying nonlinear 
systems [49] [50] [61] [63] . 

By (3 33), we can obtain the following results 

Theorem 3.1. Under Assumptions 3 3, 3 4, 3 5 and 3 6, there exists a smooth function 

p{e) > 1 such that the following control law 

7/ = F77 + G{t)u 

u 二 —/cp(e)e + FoV (3 34) 

k = p{e)e^ 

solves the robust output regulation problem of plant (3 24) with exosystem (3 2) • 

Proof: Under the stated assumptions, (3 33) holds Applying the changing supply func-
tions technique to (3 33) shows that, for any smooth function A(Z) > 0, there exists a C^ 

function V^ satisfying ttgdl^ll) ^ 2 ) < 0；2(||̂ ||) for some class /Coo functions ) 
and «2( ), sue that along the trajectory of (z, fj) subsystem 

(3 35) 

for some positive number 6e and some known continuous function 7e( ) > 1 
Let 

V = + — k f (3 36) 

where k is some positive constant Then using (3 32), we have, along the trajectory of 
the augmented system (3 29), 

V^ < + + + — bkp{e)e' + hk{k — k) 
/ , / c 1 \ (3 37) 

< — ( a ( Z ) — fM^)) II别2 + 已 � + f 0 e ( e ) + - - bkp(e] 



30 CHAPTER 3. OUTPUT REGULATION OF TIME-VARYING NONLINEAR SYSTEMS 

By choosing A(Z) > 1 + 守妙乂2)，p{e) > and k > 6—1(4= +警 +悬)， 

we have 

l / < -||Z||2 (3.38) 

From (3.36) to (3.38) and by LaSalle-Yoshizawa Theorem, it can be concluded that the 
trajectory of the closed-loop system from any initial state is bounded and limt_,oo Z 二 0. 
The boundedness of e and e implies k is bounded and uniformly continuous. By Barbalat's 
lemma, l im“oo k 二 0, which implies l im“oo e = 0. Then by Remark 3.3, control law (3.34) 
solves the robust output regulation problem. o 

3.3‘2 System with relative degree > 2 

Consider the following SISO time-varying nonlinear system. 

i = f{t,z,y,v,w) 

i i = + g从 z,y,v,w) i = 1 , . , . , r — 1 

Xr — b{w)u + gr(t, z^ y, V, w) (3.39) 

e = y — q{t,v,u)) 

where z G M"̂ —” and x 二 col(a:i, • •. , Xj.) € are the states, r > 2, € R is the input, 
y G M is the output, e G M is the error output, w € represents the uncertain constant 
parameters, b(w) > 0, and v G 股打” represents the exogenous signals generated by (3.2). 

Compared with (3.24), system (3.39) is called the time-varying nonlinear system in 
output feedback form with relative degree r > 2. All functions in (3.39) are supposed to be 
globally defined, sufficiently smooth and satisfying f{t, 0, 0, 0, w) — 0, 0, 0,0, w) 二 0 
and q{t, 0 , 二 0 for all w € . 

Due to the structure of system (3.39), the satisfaction of Assumption 3.4 also ensures 
the solution of the regulator equations associated with the composite system (3.39) (3.2) 
exists. We denote y = v^ w) = g(t, w, w), and the rest can be solved recursively as 
follows. 

= Ca�t 弟 ( t , i ! , w ) - g^{t, z{t, V, w),q{t, V, w),v, w) ？• = 1 ， … ， r — 1 

u(t,v,w) = 1 ( « ; ) ( /：。 ( � x “ t’?;，w ) — gr (t, z(t, V, w),q(t, v, w), v, w)^ 
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Also, we suppose Assumption 3.3 is satisfied. Then as introduced in Section 3.2, an 
internal model in the form of (3.23) can be built as 

力二 Fr] + G{t)u 

where r] eR^ is the state vector, F is a constant Hurwitz matrix. 

Attaching the internal model (3.40) to the plant (3.39) gives 

i = f{t,z,y,v,w) 

f] = Fri + G{t)u 

it =而+1 + gz(t> z,y,v,w) z = 1, • • • , r - 1 

ir = b(w)u + grit,z,y,v,w) 
y = 

e = y — q{t,v,w) 

Performing the input and coordinate transformation on (3.41) 

乏=2； — V, w) 

rj = ri - N~^{t)'d 二 r] _ 丁 

where r � 二 [ 1, 0, 

u — u — FoTj 

, 0 gives 

i = f{t,z,e,v,w) 

全r = b(w)(u + Fa?]) + gr(i,乏，V, w) 

where Xi — e and 

(3.40) 

(3.41) 

(3,42) 

(3,43) 

/(•) = fit, z + z(t, V, w), e + q{t, v, w) 一 f{t, z(t, v, w), q{t, v, w),v, w) 

fft(-) = z + z(t, v,w),e-h q(t, v, w),v, w) 一 认{t, z(力，v, w),q{t, v, w),v, w) 

The stabilization of augmented system (3.43) will lead us to solve the output regulation 
problem for the original plant (3.39). 



Ffj + G(t n + rjj 

—Cr(t)Xr — Cr(t) (b(w)(u + rjf) + 歹r(力,乏,6, 

By choosing Cr[t) = 6 — ⑷ ， t h e items u and f) are 
equation, i.e. 

eliminating from the above 

卜 1 d(ci(t)xi) 
Ffj-Y^ - 、 ” - Cr{t)Xr 一 Cr{t)gr{t,乏，6, V, w] 
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Due to the presence of the internal model, system (3.43) is not in any standard form 
of nonlinear system. To make the stabilization problem more tractable, illuminated by 
[51], we perform a coordinate transformation on the 77 dynamics 

fj — fj ~ Cr(t)Xr 一. .•一 Ci[t)xi (3.44) 

where the coefficients c , � are to be determined, and we have the following proposition. 

Proposition 3.2. Under (3.44)> by choosing 

Cr{t) = tr乂w)G(f) and c人t) = Fc^+l{t) 一 c^+l{t), z = r - 1, • • • , 1 

system (3.4-3) can be transformed into the following form 

去=f(t,z,e,v,w) 

X, = i = 1, • • • ,r - 1 (3.45) 
r 

电r = h{w) + + ^ +gr{t,z,e,v,w) 

r 
where go{t, z, e, v, w) = (Fci(t) — ci{t))xi — ^^ Ckifig人t,乏,e, v. w), and xi = e. • 

Proof: Under transformation (3.44), we see first 

疗 二 疗 — t = 作 + 邵 ) ( 权 + r � 动 —L jt 

X. 
dt 
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Further, by replacing fj with f] + Cj.{t)xr + • • • + Ci{t)xi, it can be seen that 

fj F[fj + - 咖二)工 � - C r { t ) X r - Cr{t)gr{t,Z,e,V,w) 

I—I 1=1 

= F{fj + t C , ⑷ + FCr{t)Xr — ^ 产 ) 一 ⑷无”―1 
t — l t = l 

— ( x r + gr-l{t, z, e, V, w)) — Cr{t)Xr 一 Cr[t)gr{t, Z, e, V, w) 

To render the coefficient of Xr being zero, obviously, by choosing cv—i(力)=Fc^{t) 

,⑷，it can be seen that 

d{c,{t)x,) 
dt .{ty 

Repeat the aforementioned procedure, all coefficients c人t) can be determined recur-
sively from z ~ r — 2 to z = 1 as = — Finally, by noticing that 
Xi = e, the fj dynamics can be expressed as 

Ffj + go(t,z,e,v,w} 

Also, due to the transformation (3.44), the Xy dynamics of (3,43) turns to be 

1=1 
Together, system is exactly in the form of (3.45). 

For system (3.45), we denote x = col( Xi^ • • • , Xr )，Siif) = b{w)ToC^{t), i = • • • 
and g' = col( ^i(-), • . . , 歹 1 ( , ) ) , then the x subsystem of (3.45) can be expressed in the 
following compact form 

X 
0 Ir-l 

X 十 
O l X ( r — 1 ) il丄 

si{t) S2{t) •• • Srit) 
X 十 

b(w) a 卞 gr{tj z, e，V, w) + b{w)rofj 
(3.46) 

For the linear part of system (3.46), i.e. 

0 Ir—l Olx(r-l) 

. W 5 2 W . . . Sr(t)— b{w) (3.47) 

e = x\ 
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since Si{t) are time-varying variables, like the transformation between (3.19) and (3.20), 
there exists a well-defined time-varying coordinate transformation x = T(t)x such that 
(3.47) can be transformed into the following observer canonical form 

dr(t) J 1 

‘ 0 -

x + 

did) 0 h{w) 

u 
(3.48) 

Performing another transformation ^ = and we have the following proposi-
tion. 

Proposition 3.3. There exists a well-defined coordinate transformation ^ = b~'^{w)T(t)x, 

such that system (3.45) can be transformed into the following form 

兔=f{t,z,e,v,w) 

it = 6+1 + +g i { t , z , e ,v ,w) i = ,r - 1 

Tofj) + di{t)(i + gr{t, z, e，v, w) 

where .氛(‘)denotes the form which 负(-)takes after transformation. Moreover, by noting 
that = the above system can be turned into the following compact form 

！ = f(t,z,e,v,w) 

fj = Ffi + Go{t,z, e,v,w) 

ii = &+1 + Gi(t, z,e,v,w) i = 1 , •. ’ r — 1 

& = ({i + Faf]) + Gr(t, z, e, V, w) 

where Go(t, z, e, v, w)=.办(t,乏，e, v, w) and Gi{t.乏,e, f , w) = 乏,e, v, w) 

(3.49) 

To stabilize the transformed augmented system (3.49) by output feedback, we follow 
the stabilization method exhibited in [86 . 

First, we introduce an observer-like dynamics to estimate the state of ( subsystem of 
(3.49) _ 

= &+1 + A,:(e - 6 ) ？: = 1 , … ， r - 1 

ir =U + Ar(e 一 ii) 
(3.50) 
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The parameters \ are chosen to ensure the matrix Ao being Hurwitz, where 

"Ai 

A 
L 

0 

The estimation error of { is denoted by ^ = ^ — and it is not hard to verify that the 
dynamics of I satisfies 

i = it+i - - i i ) + G人t, z, e, V, w) 

= — + l+i — 入 — 6 ) + G从乏，e, V，w] 

fr 二 rj) 一 A j e — 6 ) + Grit, z, e，v, w) 

= - K ^ l + rj] 一 Xr(e - 6) + Gr(t, Z, 

= 1 . 一 1 

e, V, w 

which can be put into the following compact form 

f = Aoi + BTofj + G{t, z, e, v,w)~X{e- b~\w)e) 

where B = col( 0, ••• , 0, 1 ), G(t,z,e,v,w) = col( Gi(’)，…，（?“•) 

col( Ai, • • � \ 

(3.51) 

and A = 

Now the problem turns to be similar to the one studied in [119]. By noting e = 
replacing & by its estimation z = 2, • • • , r, and attaching (3.51) to (3.49), we have the 
following system 

* = f ( t , z , e ,v ,w) 

？i = F?] + Go(t,z,e,v,w) 

e = b(w)(i2 + i2 + Gi ( t ,z , , 

L 二� 3 + 入2(e — 6 ) 

V, w e
 

\
~
/
 

\
—
/
 

1
 

I
 6

 
I
 

1
 

/
 A

 I
 ”
 

(3,52) 

L == w +Ar(e - 6 ) 

It can be seen system (3,52) is in the lower triangular form, viewing (z, as the inverse 
dynamics. Till now, both e and 么，z = 1 , … , r are available for feedback design. 

To global stabilize (3.52), certain ISS property of its inverse dynamics is required. 
Specifically, we suppose Assumption 3.5 hold 
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Also, by taking care of the the fact that GJ/) is time-varying, we introduce the fol-
lowing assumption similar to Assumption 3.6 in the first place. 

Assumption 3.7. There exist hounded function x :股—股�for some k, > 0, and 
smooth functions e, x) vanishing at (乏,e) = 0 such that for all t > 0, and any 
{v,w) e S c X R 、 

where ? = 0,1, • • • , r . _ 

Now notice the fact that both F and Ao are Hurwitz matrices, then under Assumptions 
3.5 and 3.7, we arrive at the following proposition. 

Proposition 3.4. For the following system 

I 二 fit,z,e.v,w) 

^ = + (3.53) 

1= BFofj + G{t, z, e, v,w)~X(e- b-\w)e) 

with the notation Z = col{乏,there exists aC^ function Uzit^ Z) satisfying < 
Uz{t^ Z) < a^(ll^ll) for some class /Coo functions a^(-) and a^('), such that, for any 
(v, w) e S, along the trajectory of system (3.53), 

U z i t , Z ) < - \ \ Z r ^ 6 ^ { e ) (3.54) 

holds for some positive constant S and some smooth positive definite function 7(-). 

Further, by changing supply functions technique, for any smooth function A{Z) > 0， 

there exists a C^ function Vz{t, Z) satisfying < Z) < a^dl^II) for some 
class JCoo functions and such that, for any {v^ w) G S，along the trajectory of 
system (3.53), the following holds 

Vz{t, Z) < - A ( Z ) | | Z f + 的(e)e2 (3.55) 

for some unknown positive constant 6 and some known smooth function 〒(-)> 1. • 

To stabilize system (3.52) we will utilize the backstcpping design. For this purpose, 



In the 1st step, define Vi = 

Vi = ee — eb(Ki + Wj -j- + 

< -bkp(e)e^ + Wj + UQ 

where Hq = + Gi) + 於2’ 
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we introduce some notations first. Denote ^r+i = and for z ~ 3, • • • , r let 

� I = Cz+l 一 K = "TTT 於，E^ 二 
dk ‘ de 

= ~kp[e)e, k = 

K2 二 — A2(e — 6 ) + + E1&I2 — ^wiE^ 

= - w卜 1 — - l i ) + 

h = 

4>i = ⑴ h i 丑 + (K—i 

r^ ” 1 ir^ dtit — l i (9〜一 1 ^ 

2 ^ dL db 

Then we arrive at the following theorem. 

Theorem 3.2. Under the Assumptions 3.5 and 3.7, there exists a control law 

u = Kr^ k = 6 =―小^： ( 3 . 5 6 ) 

where p(e) > 1 is some smooth function, such that the trajectory of the closed-loop system 
composed of (3.52) and (3 56) is bounded over [0, 00)； and limj—006 — 0 _ 

Proof: For simplicity, we denote b = b{w) and Gq = Go{t, z, e, v, w), b denotes the 
estimation of b{w), and h = b{w) — b denotes the estimation error. 

hen 
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In the 2nd step, define V2 = + ^wl + ^P, then 

• * 〜〜 • /\ 〜A 

V2 WiWi + bb = Vi-}- — — bb 
d hi • 

< -bkp{e)e^ +!(；【+ 11。+ {1^2 + W2 + A2(e — — -^e - -^k) - bb 

=-bkp(e)e^ + + Hq + Wi{n2 + + — 6 ) — i^i — + 6) ( 6 + 6 + — ib 

< -bkp{e)e^ +wl + Iio + u)i [1^2 + W2 + A2(e - ^^ — Ki) 
A 1 1 “ 

一 wiEiii2 — WiEiU2 + 7:{wiEif + -b'\i2 + Gif - bb 
Zi Zi 

=-hkp{e)e^ + IIo + W1W2 + Wi + K2 + A2(e — ^1) - Ki - Eib^2 + ^mE^) 

since 

K2 = -2wi — A2(e — ii) + 丑 1 祐2 — 

02 = mEib 

it is ready to show that 
V2 < ~bkp[e)e^ + W1W2 - wl - b{b + (^2)十 n� 

where Hs = Hi + Hq and Hi = + G i f . 

In the 3rd step, define V3 — + then 

Vs < -bkp{e)e^ + W1W2 ~ wl - h(b + 如、+ 1^2 + & — ^2) 

=—bkp{e)e^ + 'W1W2 — wl ~ b(b + 如、+ 
I I , , � , f � dt̂ 2 . dK,2； dK2 ̂  dK2 ^ 

+ 切 2 + - 3 + A 3 ( e — 1 � 

=-bkp{e)e^ - wl - b{b + 02) + 112 + u)2W3 

+ W2(Wi + K3 + A3(e — ^i) — E2(i + M2 + I2 + Gi) - K2 — -^b — ^ 

by using K3 and 03, it is easy to show that 

V3 < ~bkp{e)e'^ + W2Ws - w^ - wl - b(b + ^3) + Us 

where n.c! = IIo + Hi. 
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Similarly, in the lih. step, define K = V^-l + then 

K < -bkp{e)e^ + u^-iWi � ; - 砂 + 办)+ ^^ 
j=i 

where IIj — IT卜i + Hi 

In the rth step, define Vr — K - 1 + then 

r - l . 

Vr < —hkp{e)e^ + uv—luv — ̂ ^ w�—b{b + (pr) + H^ 
户 1 

where = + Hi = ITo + (r - l ) n i . 
Setting Wr = 0 and b — — c/v，then u = Kr and 

r - l 

Vr < -bkp{e)e^ + n. 

Notice the fact 

Ur = Uo + { r - i)ni 

= e 6 ( 6 + Gi) + 去 6 ? + 宁 + 

< + + + ( r - 1)62(1^ + G?) 

Under Assumption 3.7 and by Lemma 7 8 of [36], we have 

\Gi{t,z,e,v,w,)\ < \Gi{z, e,x)| < c{(t)^{z)\\z\\ ^ (l)eie)\e\) 

where c, c' are some positive constants, (pzi'), 4>e{-),私（.）and are some known smooth 
functions. Similarly, we could further show the upper bound of |n…as 

n.l < + Gi) + + (r ^ 1 爾 + G?) 

< + + - � + + — + ( r - + G?) 

= + 1 ) 悄 + (• + (”- 1)約 

+ 1 ) & + (全 + (r — 1)62)"(私(乏)丨间 + n ； 納 + ^ e ^ 
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where cv is some positive constant, and /i^(-), he{/) are known positive functions. 
Consequently, we have 

r - l 

K < -bkp{e)e^ - + c^{hz{Z)\\Z\\^ + he(e)e^) (3.57) 
户 1 

Finally, from Proposition 3.4 where is well posed as (3.55), we further define 

V{t, Z, e, / c 丄 … ， b ) = Vz(t, Z) + K + 舎(fc — W 

where ^ is a constant to be specified later. Its derivative can be calculated as follows 
r-l 

V < - A ( Z ) | | Z f + — bkp{e)e^ 
户 1 

+ c^{hz{Z)\\Z\\^ + + {k ~ k)p{e)e' 

r - l 

= - ( A ( Z ) — c^hziZ)) + (勿⑷ + c^KXe) — bkp{e))e' - ^ 

By choosing A(Z) > a^hz(Z) + 1, p{e) > max (7(e), he(e), 1) and k > (6 + c冗)/fo’ we 
have 

which shows the states of closed-loop system composed of system (3.52) and controller 
(3.56) are bounded over t G [0, +00), especially k is bounded. Moreover, since e and e are 
bounded, k exists and is bounded, so k = p{e)e^ is uniformly continuous. By Barbalat's 
Lemma, it can be concluded ^ ^ 0 as t ^ 00, which implies e —> 0 as t ^ oo. o 

Recall the internal model (3.23) and the observer-like dynamics (3.50), Theorem 3.2 
leads us directly to the solution of output regulation problem for the original plant (3.39) 
with time-varying exosystem (3.2). 

Corollary 3.1. Under Assumptions 3.3, 3.4, 3.5, 3.7, the following control law 

力=Fri + G(t)u 
A A 

Ci = + - 6 ) —1 

+ (3.58) 

U = ToV 

k = b = 一 <pr 
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solves the global output regulation problem for the original plant (3.39) with time-varying 
eocosystem (3.2). • 

3.4 Examples 

In this section, we will show the effectiveness of the proposed design by the following two 
examples. 

Example 3.1. • 

Consider the controlled FitzHugh-Nagumo model described by the following equations. 

ii = -ejZi + £ie 

Z2 ~ 一 £ 2 6 

1 (3.59) 
y = y - ^y^ - + - d{t) + u 

e = y 

where G M, z = 1,2, ^ 6 M is the output, u £ Wis the control input, d{t) represents the 
external disturbance, and 5” i = 1,2 are positive uncertain parameters. 

FitzHugh-Nagumo model is usually used to model the qualitative behavior of the neu-
rons or to demonstrate the bursting mechanism in excitable systems [93] [98], Equations 
(3.59) are taken from [120] Eq.(28). Obviously, (3.59) is in the output feedback form with 
the unity relative degree (3 24). 

The disturbance signal is denoted by d{t) = rcos(2力)t^i, where r is some unknown 
constant, and Vi is supposed to be generated from the following equations. 

iji = V2 
(3 60) 

V2 = ( — a + 2qcos{2t))vi 

where (a, q) are some known constant parameters. 
Equations (3.60) are referred as Mathieu equation, and it is the most widely known 

and most extensively treated periodically time-varying system [92]. And when g = 0, 
Mathieu equaiton will reduce to the constant harmonic oscillator. Figure 3.1 shows the 
dynamics of the Mathieu equation, 
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System Trajectory of Mathieu Equation 

10 20 30 40 

Phase Portrait of Mathieu Equation 

5 10 15 

Figure 3.1： Dynamics of Mathieu Equation 

3-D Plot of the Uncontrolled FitzHugh-Nagumo Model 

Figure 3.2: Uncontrolled FitzIIugh-Nagumo Model under Disturbance 

I t can be seen f rom Figure 3.2 tha t the uncontrol led F i tzHugh-Nagumo model {u = 0) 
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may exhibits chaotic behaviors under the disturbance d(t). 

Our control objective is to achieve globally disturbance rejection for FitzHugh-Nagumo 

model (3.59). 

The solution of the corresponding regulator equations is given by 

v^ w) = Z2(t, V, w) = 0, y{t, V, w) = 0 u(t, v, w) 二 r cos(2f)vi 

so Assumption 3.4 is satisfied. 

I t can be verified that 
d'^u 
It^ 

,.(i^u , \du , 、 
a2( t )—^ + + ĉo ⑷ u 

dt2 dt 
where 

a2 ⑷ = — 8 — 2a + 2gcos(2t), ai{t) = -16qsm{2t) 

ao{t) = — 16 + 8a 32gcos(2t) + 2agcos(2i) 

Thus, Assumption 3,3 is satisfied. So we can obtain the steady-state input generator in 

observability canonical form (3.19) w i th the pair 

0 1 0 0 

m = 
0 

r = 0 0 0 

ao{t) ai{t) a2 ⑷ 0 

Using the Lyapunov transformation r = T V q — w e can also obtain the steady-state 

input generator in observer canonical form (3.20) w i th the pair 

0 1 0 0 

Mt)= 
o
 1

 o
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1 0 0 0 

where 
h2(t) = —8 —2a + 2gcos(2t)， bi{t) = -Sqsm{2t) 

ho{t) = -16 + Sa-a^ 一 8gcos(2t) + 2aq cos(2t) 

Let and b[t) be defined as in (3,22) and choose Lq = ( 15, 35, 50, 24 )厂 Then, we 

can obtain the canonical internal model in the form of (3,23) as follows 

+ G{t)u (3.61) 
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where 

F = 

- 1 5 

— 3 5 

一 5 0 

- 2 4 

0 0 

1 0 

0 1 

0 0 

Git): 

1 5 

27 - 2<2 + 2q cos(2力） 

50 —8gsin(2t ) 

8 + 8a - a^ - 8gcos(2t)十 2aq cos(20 

At tach ing the internal model (3.61) to the plant and per forming the coordinate trans-

format ions (3.26) and (3.28), we have the augmented system in the fo rm (3.29) 

乏 1 = 一 乏 1 + £ie 

= — 幻 e 

,二 Ffi + f2 
(3.62) 

where g = e - le^ - Zi + 乏2, h = FG{f)e - G{t)e — G{t)g and ge = 9 + ^oV + r。G�e‘ 

Using Lyapunov funct ion Vz = O.bzf + i t can be seen 

= + ^ i ^ i e ) + {-£2^2 一 幻乏26) 

< (-O.beiz^ + O.Beie^) + (-O.Bea^a + O.Sese' 

< —0.5£mm|| 乏 ir+‘axe2 

where emm = min(e i ,62) and ^tnax = max(£:i,£2)- Thus Assumpt ion 3.5 is satisfied. 

Final ly, Assumpt ion 3.6 is also satisfied since bo th /之 and 仏 are periodic. Thus the 

ou tpu t regulat ion problem of the F i tzHugh-Nagumo model is solvable. We can obta in a 

contro l law in the fo rm (3.34) w i t h p(e) = 1 + e'̂ . 

S imulat ion is conducted w i t h the in i t i a l condit ions (^o, yo) = ( 0.6589, —1.3279, 2.2439 ) 

for the plant, t̂ o 二（ 一 2, 5 ) for the exosystem, and 0 for the controller. The unknown pa-

rameters are chosen as (e：!, £2, r ) — ( 5, 1.3, — 2.1 ), and the parameters of the exosystem 

〔a,g) = ( 1.6, 0.6 
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Output of the Controlled FitzHugh—Nagumo Model 

0 l / v ^ 

-5 
Output: y 

0 10 20 30 40 50 60 
States of the Controlled FitzHugh-Nagumo Model 

2 

丨《产…, 

.State: z, - - State: z, 

10 20 30 40 
The Control Input 

50 60 

I 1 f 1 I J 

0 10 20 30 40 50 60 

Figure 3.3: Closed-loop Response of FitzHiigh-Nagiimo Model 

F ig 3.3 shows the response of the closed-loop system. I t can be seen tha t the objectives 

of the robust ou tpu t regulat ion are achieved. o 

Example 3.2. . 

Consider the fo l lowing t ime-vary ing nonlinear system in the output feedback fo rm w i t h 

relat ive degree 2. 

z = —z ~ z^ + Wjesin(t) 

Xi ~ X2 + w<2yz 

±2 = W3U + 2q cos(2t)y + V2Z^ 

y = Xi, e 二 y — vi 

where (wi, 102,103) are uncertain constant parameters, and to be specific, W3 > 0. 

The exogenous signal is supposed to be generated f rom the Math ieu equation 

(3.63) 

vi = V2, = ( - a + 2qcos(2t))vi 
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The solut ion of the corresponding regulator equations are 

z( t , 1；, w) — 0, X i ( t , V, w) =1)1, X2(t, v^ w) = ii2, U(力，If, Iti) = 一-"^tf i 

for fur ther convenience, we denote 厂=—念，where r is a unknown constant parameter. 

I t can be verified tha t Assumpt ion 3.3 is satisfied w i t h 

~ = ( - a + 2gcos (20 )u 

so consequently, an in ternal model in the fo rm of (3.23) can be designed as follows. 

力二 Fr] + G(t)u ( 3 . 6 4 ) 

where 

1 
G{t) = F = 

- 2 0 

3 

2 - a + 2qcos{2t) 

The design procedure is followed those int roduced in Section 3.3.2. Especially, as 

ment ioned in Proposi t ion 3.3, the t ransformat ion ^ = h~^(w)T{t)x is defined as 

6 ^ 6 = +X2) 

and the observer-like dynamics (3.50) is chosen to be 

,1 = , 2 + 2 ( e - 《 i )， | 2 = w + ( e - 6 ) 

Also, Assumpt ion 3.5 and 3.7 can be verified. The overall control ler can be designed in 

the fo rm of (3.58) w i t h p[e) = 1 + e®. The s imulat ion is performed w i t h in i t i a l condit ions 

{zq^ .Tio, X20) = ( 3, 1.2, — 2.5 ) for the p lant , vq ^ ( — 2, 1 ) for the exosystem. The 

certain parameters of exosystem are a = 1.6, q = —0.6, and the uncerta in parameters of 

the plant is chosen to be wl = 3.3, w2 二 —2, w3 = 1.2. The s imulat ion results are shown 

by Figure 3.4 and 3.5. 



3.4, EXAMPLES 57 

State Response of the Controlled Plant 

20 40 60 80 100 

100 

Figure 3.4: State Response of the Closed-loop System 

The Tracking Performance 
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Figure 3.5: Tracking E)(、rforaiauc(? and t l ic Dynamic Gain 
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3.5 Conclusion 

I n this chapter, we have presented a framework for handl ing the robust ou tput regulat ion 

problem for t ime-vary ing nonlinear systems. This framework can be viewed as an exten-

sion of f ramework proposed in [37]. Due to the t ime-vary ing settings, the characterizat ion 

of the steady-state generator and in ternal model is modif ied, and the existence condit ions 

are also given. As the i l lus t ra t ion of the framework, we have established the solvabi l i ty of 

the problem for the class of t ime-vary ing nonlinear systems i n the ou tpu t feedback form. 

This approach can also be extended to nonlinear plant in the lower t r iangular form. 

n End of chapter. 



Chapter 4 

Adaptive Output Regulation with 
Uncertain Time-Varying Exosystems 

I n this chapter, we wi l l further address the global robust output regulation problem for 

t ime-varying nonlinear systems in the presence of uncertain t ime-varying exosystems. 

Under the framework introduced in the last chapter, we witness the "robust" issue reflects 

on the fact that the nonlinear plant is allowed to contain both statical and dynamical 

uncertainties. A n d especially, when the t ime-varying exosystem contains no uncertainties, 

a class of t ime-varying internal models is introduced to solve the problem. However, the 

appearance of uncertainties in the exosystem may jeopardize the control design as shown 

in the last section, and the former design of the internal model is not practicable. 

To cope w i th the uncertainties of the t ime-varying exosystem, some modifications w i l l 

be made based on the aforementioned framework. A generalized internal model w i l l be 

designed under addit ional assumptions. By ut i l iz ing some adaptive control techniques, 

we w i l l show that adaptive robust output regulation problem for t ime-varying nonlinear 

system is also solvable. 

4.1 Problem descriptions and preliminaries 

Consider the t ime-varying nonlinear plant 

(4.1) 
=/(亡， u, V, w) 

given for (3.1). 

5 9 
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The exogenous signal v G 脱“” is supposed to be generated from some uncertain time-

varying exosystem. In this scenario, (3.2) becomes 

V = a{t,v,a) (4.2) 

where cr e S C 脱""represents the constant uncertain parameters, w i th S being some 

subset of R 〜 . I t is assumed that a{t, v^ a) is sufficiently smooth and satisfies a{t, 0, a) = 0. 

Also, i t is assumed that the solution of the time-varying exosystem (4.2) exists and is 

bounded for all t > to >0, all in i t ia l conditions Vq, and all cr G S. 

The control objective of the output regulation problem is to f ind the dynamic output 

feedback control law in the form of (3.3), i.e. 

u = UKitX^e), i = gK(M,e) (4.3) 

such that for any ini t ia l t ime to > 0, any ini t ia l condition {xq, vq, (q)^ and any constant 

parameters (w, a) G W x S, where w denotes the uncertainties of the plant (4.1), w i th W 

and S bing some subset of and respectively, 

• the solution of the closed-loop system composed of (4.1), (4.2) and (4.3) exists and 

is bounded over [t。’ +oo); 

• the regulated error output e uniformly asymptotically approaches zero. 

In the past decade, output regulation problem wi th uncertain exosystem haven been 

considered. For instance, linear time-invariant plant w i th uncertain linear time-invariant 

exosystem has been studied in [77] [78], nonlinear time-invariant plant w i th uncertain 

linear time-invariant exosystem has been studied in [19] [66] [84] [101], and linear periodi-

cally time-varying plant w i th linear periodically time-varying exosystem has been studied 

in [123]. 

Considering the framework for tackling the output regulation problem for time-varying 

nonlinear system introduced in the last section, some definitions and assumptions need 

to be reformulated to account for the occurrence of uncertain parameters a in the time-

varying exosystem. First, the standard assumption is proposed. 

Assumption 4.1. There exist globally defined sufficiently smooth functions v, w^ a), 

u(t, V, w, a) with x(t, 0, iu,a) = 0 and u(t, 0, w,a) = 0 for all [w, a) € W^"' x and all 
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力 2 力0 2 0, such that 

(4 4) 
0 = / l ( t，X (力，V , W, c r ) , f , W^ 

for all {t,v,w,a) G M+ x X x I T ^ where C^it v a)=召切 + 
Sx(t V w a) fi \ 

Equations (4 4) are the regulator equations, and the solutions x ( 亡 , a ) and u(t, v, w, a] 
are the steady-state and steady-state input respectively Since the uncertainties a appear 

in either v, w, a) or u(t, v, w^ a), the definitions of steady-state input generator and 

internal model need to be redefined consequently 

Definition 4.1. Steady-State Input Generator 
Let u(t, V, w, a) be the solution of the regulator equations (4 4) The composite system 

(4 1) (4 2) IS said to have a steady-state input generator if, for some integer I’ there 

exists a triple a, (3), where ；股十 x E"^ x IR作"x a R+ x R几。x 彪 — M ^ 

and (5 E+ x x 一 E"^ are sufficiently smooth functions satisfying 0, w,a) = 0 

for all t > 0； such that, the following holds 

u ( t , V, w, a) = (J, V, w, a)) 

for all V eW and (w, a) e x . 

Definition 4,2, Internal Model 

Suppose the composite system (4 1) (4 has a steady-state input generator (4 5) We 

call the following system 

rj = -f{t,r],u) (4 6) 

an internal model with output u if 

7 ( t ， V , w, (7), u(t, V, w) a)) = a(t, cr, T9(t, v,w, cr)) 

Remark 4.1. A distinct feature of the steady-state input generator (4 5) posed here from 

the one defined by (3 5) is that (4 5) is allowed to contain uncertain parameters a Also, 

i t IS worth noting that the internal model is a certain dynamical system which is not 

allowed to contain any uncertainties These conflicting facts between the steady-state 
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input generator and the in ternal model require us to reconsider the possible condit ions 

under which the internal model can be constructed f rom the steady-state input genera-

tor , and how the internal model asymptot ical ly reproduces the ideal steady-state input 

in format ion u{t, v, w, a). These issues w i l l be discussed in the for thcoming section. • 

Next we w i l l restate the problem conversion to ma in ta in the in tegr i ty of this chapter. 

Similar to the procedures introduced in Section 3.2, at taching the in ternal model (4.6) 

to the given plant (4.1) yields the augmented system, and per forming the coordinate and 

input t ransformat ion 

X ~ X — x ( t , v^ w, a), fj = 7] — f , w, ( j), u = u — T], a) (4.7) 

so that the augmented system turns into 

^ = f{t,x, 

忍，") (4.8) 

W, (j), V, w, o-),v, w) 

(4.9) 

V = 7{t,x 

e = Ji{t, X 

where [ i — ( f , to, a) and 

f = f{t,x,u,v,w) — f{t,x(t 

h ~ h{t, X, V, w) 

I t can be verif ied tha t system (4.8) also satisfies 

0 = /(t，0,0,0，"） 

0—(t，0,0 ’0，/ i ) (4.10) 

0 = 地 0，0’Ai) 

Th is means the or ig in (x, f j ) = (0,0) is the equ i l ib r ium point of the unforced augmented 

system for al l t rajectories of the exosystem, and, at the origin, the error ou tpu t e is 

ident ical ly zero. Thus, as ment ioned i n Remark 3.3, i f we can find an ou tpu t feedback 

control law of the fo rm 

n = us{t丄 e), i = gsiM,已、 (4.11) 

where us�t, ^ e) and gsit, ( e) are suff iciently smooth functions vanishing at e) = (0, 0), 

that globally stabil ize the equ i l ib r ium point of the augmented system (4.8), then the 
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following control law 
u = {3[t,a,rj) + us{t,i,e) 

々 = 7 ( 力 ， ( 4 - 1 2 ) 

C = gs{t丄 e) 

solves the output regulation problem of the original system (4.1) for all trajectories v G M"̂ " 

and {w,a) € x 

Remark 4.2. I t is noticeable that control law (4.12) is not directly implementable since 

the function cr, r]) st i l l contains the unknown parameters a. Nevertheless, as wi l l 

be shown in the next section, if the function a, rj) is linearly parameterized in some 

unknown parameter vector, i t is possible to further introduce some adaptive techniques 

to solve the problem, Particularly, a new internal model compared w i th (3.23) wi l l be 

synthesized in the first place. • 

4.2 The generalized time-varying internal model 

As we emphasized in Remarks 4.1 and 4.2, in the presence of the uncertain exosystem, the 

existence condition for the internal model should be carefully discussed. In the primary 

step, the concept and the assumption introduced in Section 3.2 to characterize the steady-

state input generator wi l l be modified into the followings 

Definition 4.3. 

Let f, w, (j) be a smooth function with v{t) generated by the exosystem (4-2). If 

X{t, V, w, a) satisfies a linear differential equation of the following form 

y Y HX 
^ 一 ci�^^^ a i(力,a ) ^ — a。(力’ = 0 (4.13) 

where ai(t, a), 2 = 0 , 1 , . . . , / — 1 are smooth functions of time, then X[t, w, a) is said 

to be m the kernel of the left momc polynomial differential operator of degree I 

P{s,t, a) = s^ ~ ai-i{t, - • • • — ai{t, a)s — ao{t, a) 

where s 智劫.�. • 

Assumption 4.2. There exists an integer I such that along the trajectory of exosystem 

(4-2), for all (t, w, a) G IR+ x IR"•切 x the function u(t, v, w, a) is m the kernel of some 

left momc polynomial differential operator of degree I, i.e. 

(J^w du 
= + … + + aQ[t)a)u (4 14) 
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where ai{t, a), i — 0 , — 1 are sufficiently smooth functions of time. . 

Under Assumpt ion 4.2, we can easily obta in a linear steady-state input generator as 

V. w, a] 
follows. 

dt 
=龟(t,cryi9(t,v,w,a] 

u ( t , V, w, cr) = r i 9 ( t , V, w, a] 

(4.15) 

where 

^ { t , V, w, cr) = col ( u ( t , V, w, a du(t，v’w, 
lit dtl-l 

0 h-i ‘ 
p — 

ao(t，a) ai(f，a) . . . c r ) 
) 丄 一 

We say that the t r ip le {t?, o"), P } constitutes a linear steady-state inpu t generator. 

A n d once again, since the pair cr), P) is i n the observabil i ty canonical form, there 

exists a Lyapunov t ransformat ion r — a)-^ such tha t (4.15) can be t ransformed 

in to the observer canonical form. 

(4.16) dt 

where 

力,a) 二 

f , W, a) = ]?0丁{1, V, W, cr] 

r . = 
h-l 

- b o ( t , c r ) 0 

and the coefficients a) can be solved recursively f rom a々,(7)，which is similar to 

(3.21) 

、
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•
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a⑴ -i+j 叫一 t+j it. a (4.17) 

The t r ip le {r，<l>o(力，tr), r。} of (4.16) is also a steady-state input generator. W i t h the 

notions of po lynomia l di f ferent ial operator int roduced i n Section 2.3, i t is ready to show 

tha t u ( t , V, w, a) is i n the kernal of some r ight monic P D O Pm.r(s, t , a) of degree where 

二 s L i6“i(i，cr) s b i ( t , a ) —bo(t,a) 

Here we propose assumption on (4.16). 
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Assumption 4.3. 6, {t, a), t = - • • ,1 — 1 are uniformly bounded，analytic functions • 

Remark 4.3. We say a) an "analytic" function means hXt,a) has its power se-

ries expansions valid for all t. These requirements on b丄t,a) w i l l facilitate the proof of 

Proposition 4.1. , 

The next step is to derive a time-varying internal model corresponding to (4.16) To 

achieve so, we need to introduce some more concepts. Compared w i th Definit ion 4.1, we 

state 

Definition 4.4. 
Let the triple a, /5} be a steady-state input generator of the composite system (4-V~ 

(4 2). If there exist a continuously differential matrix M(t) : 1R+ — M^^' with q> I, and 

two sufficiently smooth functions a xW- xR"^ IRand ^ : R+ xR""^ xW R 饥 

such that 
M{t)d + M(t)(x(t, - a [t, a, 

. , , (4.18) 

then the transformatwn r = M(t)'d is called a generalized Lyapunov transformation 

on the triple {-t?, a, /?}； and the triple { r , a, /3} is called a steady-state generator of the 

composite system (4-1) (4-^) obtained from through the generalized Lyapunov 

transformation. • 

Remark 4.4. I f g = / and M{t) is nonsingular for all t G IR, then the generalized 

Lyapunov transformation becomes an ordinary one. I f both a and jS are linear in i.e., 

the steady-state input generator (4.5) takes the form 

d'd(t, V, w, a) 1/ \n/ \ 
dt V ) … ） (4.19) 

u(t, V, w, a) = r(t, V, w，a) 

then (4 18) reduces to 

. (4.20) 
r(t,c7) =T{t,a)M{t) 

for some continuously differential matrices cr), f (t, a). • 

Remark 4,5. Similar to Remark 3 5, i t is can be noted that i f a linear steady-state 

generator of the form (4 19) has the property that there exist continuously differentiable 
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matrices F{t) and G(t) such that 

(4.21) 

then 

77 = F{t)rj + G{i)u (4.22) 

is an internal model w i th output u. And if F(t) is a constant Hurwitz matr ix, then (4.22) 

reduces to (3.23) which is the so-called canonical linear internal model. • 

Recall (4.16) and let <̂>。(。cr 

0 

$6 = 

〇 

十 b{t,cr)ro, where 

(4.23) 

Let Lq = col( be such that F。二屯b — LqTo is Hurwi tz matr ix, and let 

Go{t, 0") = Z/o + b{t, a). I t can be verified that u) = i^。+ Go{t, a)!"。. 

Thus, by Remark 4.5, if a is known, the following linear time-varying system 

l) = FoT] + Go{t,(T)u (4.24) 

is an internal model corresponding to the steady-state input generator (4.16). T i l l now, 

the derivation of internal model (4.24) is similar to those given for internal model (3.23). 

However, since a is unknown, (4.24) cannot be an internal model. The following 

additional assumption on the function b{t. a) is made to guarantee the existence of an 

appropriate internal model without uncertain parameters a. 

Assumption 4.4. For each i = 0 , 1 ， — 1， there exists a smooth vector-valued func-

tion j3(t) : and vector-valued functions 6i{a):脱“"—胶^ such that bi{t^ a)— 

Assumption 4.4 indicates for each a), the uncertain parameters and the time-

varying functions are separable. Under Assumption 4.4, let 

0
 

Then a) = 6(cr)/3(t) so that Go{t, a) — + 0(cr)/?(t), i.e. Go{t, a) is linearly param-

eterized w i th respect to the uncertain parameter function B(( j ) . 
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We wi l l now construct an internal model through a generalized Lyapunov transfor-

mation. For this purpose, let /5o(t) ™ 1 and denote L人a) — col(没(z_i)“ • •. , 6'oi), and 

/3{t) = col(/?i(力)，• • • , Pp{t)) where Pi{t) is a scalar function, we have 

= LoPoit) + In ⑷剛 + … + Lp{a)眺 

Also, let 

0 0 0 _ ‘ r ^ m 

0 

0 

0 

0 

0 

0 
， G , i t ) = 

r 駕 

0 0 0 F;- . 现 t ) 

LI . . . 

(4.25) 

H g � = 

We have the following result. 

Proposition 4.1. There exists a continuously differentiable matrix M{t, a) G 

with constant rank I, such that 

概…+ 魄 = (F , + G , ( t ) I I , ( a ) ) M ( t , a) 
(4.26) 

Proof: 

Consider the following system representation wi th the tr iple (Fg’Gg(t), Hg{a)) 

x = FgX + Gg(t)u, y = Hg[a)x (4.27) 

and 

(4,28) ?7 = Fo77 + y 二 ToTi 

where the tr iple (F^, Go(t, cr), To) is defined by (4.24). 

Recall Assumption 4.3, (F^, Go{t, (j), To) are all uniformly bounded and analytical 

functions, then (4,28) is a constant rank system representation [108]. Notice system 

(4.28) is in the observer canonical form, so i t is completely observable, and the designed 

parameters Lq can be chosen to ensure i t is completely controllable. According to Theorem 

24 in [108], (4.28) is the minimal realization of the impulse response matr ix H{i, r) which 

is given by 

Hit, r) = r ) G , ( r , a), ^t, r ) = e?。(力-『） 
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By the expression of Go{t^ a) in (4.25)，it further shows 

r) - r。少(力,r)Lo/3o(r) + r。$(t，r)L 八 c7)/3 八 t) + . . . + T)Lp(jj)咖(4.29) 

since (3人.~) are scalar functions, T [ t , r )L^cr) I3 i { r ) = L f r ) r J / ? j ( r ) , so corre-

spondingly, (4.29) turns into 

叫 r)=丄『<!>〜,r)r『A)(r)+i：『⑷ r ) r j A ( r ) + - • ‘+！^卩⑷妒(t, r ) r j / ? , ( r ) (4.30) 

where r ) = Obviously, system (4.27) is a diagonal realization of the impulse 

response mat r ix / / ( i , r ) given by (4.30). 

Hgi^yj) sie uni formly bounded and analytic as the construction shows, so 

system (4.27) is also constant rank system representation. By making use of the Canonical 

Structure Theorem ([108] Theorem23), (4.27) is algebraically equivalent to the system 

representation w i th the t r ip le (F(t, a),G{t, a), H{t, cr)) which takes the following form 

_ A i 0 Fi3 一 

_ ‘ 

為1 

0 

尹22 ,23 

0 Fs3」 0 」 

Hi丨 0 H： 

where ( A i , G i , H i ) is completely controllable and completely observable, w i t h constant 

rank and has the same impulse response matr ix as (Fg, Gg{t), Hg{a)). 

By saying "algebraically equivalent" i t means there is a continuous differentiable ma-

t r i x P{t, a), w i t h de tP • 0 for al l t such that 

a) = Pit, a)FgP-' (t, a) + P{t, (t，a) 

二 P[t,a)Gg[t) (4.31) 

According to [108] Theorem 24 and 25, ( A i , ^ i ) is also a min imal realization of 

impulse response mat r ix H{t, r ) , so i t is algebraically equivalent to the min imal realization 

(Fo, Go{t, (j), To), i.e. there exists a continuous differentiable mat r i x T i ( t , cr), w i t h detTi ^ 

0 for all t such that 

Fn=T,FaTr'-\-f^T,-\ H, = ToT 

Since $。(/” cr) = -Fo + Go{i-, i t can be verified that 

T i + a) = { F n + 二 (4.32) 
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Also, define 了2(力,a) as the solution of the following differential equation 

T2 + T2<^oit, a) = F22T2 + (F21 + G2H尔I (4 33) 

and further define T{t,a) = col(ri(t，cr), T^力’ ^0’ 0)，then by (4 32) and (4 33), T{t,a) is 

solution of 

T{t, a) + T ( t , a) = …+ G{t, a)H{t, cr脚,a) (么 ^^^ 

r � = ff(t, <j)T(t, a) 

Define M{t,cr) = (j)T(t, a), by (4 31) and T(t,a) = P{t, a)M{t,a), equations 

(4 34) turns to be 

a)M{t, a) + Pit, a)M{t, a) = P{t, a) {Fg + Gg{t)Hg{a))M{t, a) 

ro = Hg(a)M(t,a) 

which shows M(t, a) is the solution of the equations (4 26) o 

Remark 4.6. The requirements on a) proposed in Assumptions 4 3 and 4 4 are 

essential for the proof Wi thout the property of constant rank system representation, there 

exists no algebraical equivalence between different representations of the same impulse 

response matr ix, and the Canonical Structure Theorem wi l l not be applicable In [123], 

similar results are proved for the case that and Gg{t) are periodic t ime-varying 

functions • 

Proposition 4.2, Let ( = M(t)(t, a)T，then the triple {C, o"), Hg{G)} is also a steady-

state input generator of the composite system (4 1) (4 ^V Remark 4 4 And by Remark 

4 5, the following system is an internal model 

T] = Fg'q + Ggi t )u (4 35) 

corresponding to the steady-state input generator {C, ^{t, cr), Hg^a)} • 

Internal model (4 35) is the generalized internal model in comparison wi th (4 24) I t is 

evident that (4 35) contains no uncertain parameters so that we can use i t as part of the 

overall controller And (4 35) maintains the I / O property of (4 24) since they share the 

same impulse response matr ix, so (4 35) reproduces the information of steady-state input 

asymptotically by its output Hg[a)rj I t is obvious that Hg{a) contains uncertainties o", 

so some adaptive control techniques wi l l be introduced to estimate H g { a \ and by tuning 

its estimation Hg{cj)^ the information of steady-state input can be given by Hg{a)r] As 

an application of this design methodology, in the next section we wi l l show the solvability 

for a class of time-varying nonlinear systems 
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4.3 Adaptive robust output regulation problem 

Consider the time-varying nonlinear systems in the output feedback form w i th unity 

relative degree (3.24) subject to uncertain time-varying exosystem (4.2), the composite 

system is 

i = f{t,z,y,v,w) 

y = + h{w)u 
(4.36J 

i) = a(t, V, a) 

e = y - q{t,v,w) 

In this scenario, Assumption 3.4 reduces to 

Assumption 4.5. There exists a globally defined smooth function z : M+ x x x 
— IR" with 0, w,a) = Q such that 

Ax(t’¥)z(力’ w) a) = fit, z(t, V, w, a),q[t, v, w), v, w) 

for all {t, V, w, c j ) e R + X X W X S . • 

Under Assumption 4.5, we have y(t, v, w) = v, w), and 

U(t, V, w，a) = b-\w) [Ca�t,v�a�y�t, V, w) — g(t, z(力，v, w, a-), y(t, v, w),v, w)) 

Then z(t, v, w, a), y(t, v, w), v^ w, a) are the solution of the regulator equations asso-

ciated w i th composite system (4.36). 

Further we assume the function u(t, v, tu, cr) satisfies Assumption 4.2. Then after 

some manipulations, we can obtain a generalized internal model in the form of (4.35). 

Attaching the internal model to the given plant (4.36) and performing the coordinate and 

input transformation 

2 ~ 2 — z(t, V. w, a), e = y — y(t‘‘v,w) 
、 二 乂 八 、 (4.37) 

V = V - ( - b~^{w)Gg{t)e, n 二 u — Hg(a)ri 

gives 

i = fit, 

舍卜 Fgfj + f办 (4.38) 

e = -\-b{w)u 
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where /x = (v, w, a) and 

/(力，乏，e，/i) = J{t,z + z,e + q,v,w) 一 f{t,z,q,v,w) 

乏，e, li) = g{t, z + z,e + q,v,w)- g{t, z, q, v, w) 

f2{t, —z, e , ⑷ = h - \ w ) (FgGg[t)e — G,{t)e — G,(t)g) 

乏,e,fj,fi) =g + b{w)Hg{a)fj + Hg{(j)Gg{t)e 

System (4.38) takes the same form as system (3.29) except the control u — u — Hg{a)r] 

depends on the unknown parameter vector Hg{c7). Therefore, we wi l l adopt the adaptive 

control technique to handle this, and the rest of the control design is similar to those 

given in Section 3.3.1. The main result is shown as follows. 

Theorem 4.1. Under Assumptions 3.5, 3.6, 4-2 4-5, there exist a smooth function p(e) > 

1 and real number 7 > 0 such that the following adaptive control law 

j] = FgT) + Gg[t)U 

' . (4.39) 
u = —kp{e)e + Hr] 

k = p{e)e^ 

where H denotes the eshmaUon of Hg{a), solves the adaptive robust output regulation 

problem for the composite system (4.36). • 

Proof: Under the stated assumptions, denote Z — col(乏，”)，it can be shown that along 

the trajectory of {z, fj) subsystem, there exists a C^ function Vi( t , Z) satisfying a j ( | |Z | | ) < 

Vi( t , Z) < a i ( | |Z | | ) for some class /Coo function and q;i(-), such that 

< + 71(e) (4.40) 

where is some positive number and 7i(-) is some known smooth positive definite func-

tion. 

Applying the changing supply functions technique to (4.40) shows that, for any smooth 

function A{Z) > 0, there exists aC^ function Vz satisfying aad l^ l ! ) < Vz(t,Z) < 麵 ( | |别) 

for some class JCoo functions 这2(') and such that along the trajectory of {z, fj) 

subsystem 

for some positive number 6e and some known smooth continuous function 7e(-) > 1. 
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Let H = Hgia) - H and let 

V = Vz + l e ^ + h { k - k f + ^ H f f (4.41) 
L I 2rf 

where k is some posit ive constant, then i t can be shown tha t along the t ra jec tory of the 

closed-loop system composed of augmented system (4.38) and the contro l law (4.39), 

hkp{e)e^ + hk{k - k ) - biife + 
7 

(4.42) 

< 一 ( A ⑶ — + (5e7e(e) + 导也 (e ) + ^ — bkp{e))e' 

By choosing 

A ( Z ) > 1 + p{e) > max (7e(e), ^e(e), 1) 

i t gives 

(4.43) 

F rom (4.41) and (4.43), the t ra jec tory of the closed-loop system f rom any in i t ia l state is 

bounded, and by LaSalie-Yoshizawa Theorem i i m “ o o | | 别 = 0 . The boundedness of e and 

e implies k is bounded and un i fo rmly continuous. B y Barbalat 's lemma, lirrii^oo ^ = 0, 

which implies l i m “ o o e = 0. So control law (4.39) solves the adaptive robust ou tpu t 

regulat ion problem. o 

4.4 Examples 

Consider again the global disturbance reject ion problem for the F i tzHugh-Nagumo model 

i i = - s i z i + £ie 

Z2 =—已2Z2 一 £26 

1 (4.44) 
V = V - I^y^ - d[t) + u 

e = y 

The system descriptions are fol lowed those given in Example 3.1, and part icular ly, d{t) 

represents the external disturbance generated f rom the fol lowing uncerta in per iodical ly 
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t ime-varying oscillator 
vi = a sin tv2 

V2 — — (7sin tv i 

d{t) = rivi + r2V2 

(4,45) 

where cj, r” i = 1,2 are some unknown constant parameters. Denote W — {(£1,62，n, r2)|£i > 

0，£2 > 0，n e M, T2 6 R } , and ^ ^ {a\a G M}. 

The solution of (4.45) w i th the ini t ial condition (ijio, '̂ 2̂0) is 

vi (t) = cos (a cos t ) tJio — sin (cr cos t) V20 

V2(t) = sin (cr cos t)vio 4- cos (<7 cos t)V20 

and thus is bounded for all t >to>Oj and all a. The dynamics of periodical oscillator is 

given in Figure 4.1 w i th vq = ( 0,2, .5 ) and a = 1.5. 

System Trajectory of Periodical Oscillator 

10 20 30 40 50 60 

Phase Portrait of Periodical Oscillator 

70 

Figure 4.1: Dynamics of Periodical Oscillator 

The solution of the corresponding regulator equations is given by z i = Z2 = 0, y = 0 

and u = riVi + r2î 2，so Assumption 4.5 is satisfied. I t is ready to verify that u satisfies 

ao(t, cr)u + a i ( t , (J 
du 

where a。(力,(J) = —Scr̂  sin t cos t, a i ( t , cr) = —1 — cr̂  sin^ t. Thus, Assumption 4.2 is satis-

fied. 
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Consequently, i t can be found tha t a steady-state inpu t generator i n the fo rm of (4.16) 

is w i t h cr) e R3X3, and 

hit, cr) = 0, bi{t, a) = —1 — a'^ sin^ t, bo(t, a) — s in t cos t 

Obviously, by denot ing /3(t) = col( 1, sin^ t, sin t cos t ), we have 62 — 0, 6̂1 = 

col( — 1, — cr^, 0 ), 6*0 = col( 0, 0, — a^ ), so Assumpt ion 4.4 is satisfied. 

Moreover, i t can be verif ied tha t other assumptions of Theorem 4.1 also hold. Thus 

the adaptive robust ou tpu t regulat ion problem of system (4.44) is solvable by a contro l 

law of the fo rm (4.39) w i t h p(e) = 1 + e^, and the in ternal model constructed in the fo rm 

of (4.35) w i t h 

Fg = block diag( F j , Fj\ i f , F : ) 

Gg{t) = col( r ^ , r ; , s i n ' t r ^ , s i n k o “ r 『） 

Hg{cr) = col( Lq, L i ⑷， 1 / 2 ⑷， L s { a ) ) 

where 

Lo = co l (6,11,6) , L i { ( t ) = c o l ( 0 , - 1 , 0 ) 

L2{a) = col(0, 0), L s i a ) 二 col(0, 0, - a ^ ) 

Some s imulat ion results are provided here w i t h the in i t i a l condit ions for the plant as 

(^0,^0) ( 0.6589, -1 .3279,0.2439 ) , ?；。= ( 0 . 2 , - 0 . 1 ) for the exosystem, and 0 for 

the control ler. The designed parameter 7 is chosen to be 10. The uncertain parameters 

are chosen as Si = 0.5, £2 = 0.5. r i = 0.3，7*2 == —2 for the plant , and a 二 1.5 for the 

exosystem. 

Figure 4.2 shows the uncontrol led F i tzHugh-Nagumo model may exhibi t chaotic behav-

iors under the disturbance d{t) which is generated f rom the uncerta in per iodical oscil lator. 

Figure 4.3 shows by the adaptive control law in the fo rm of (4.39), the global adaptive 

robust disturbance reject ion is achieved. 
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States and Output of the Uncontrolled Plant 

20 40 60 80 

3-D Plot of the Uncontrolled Plant 

100 

Figure 4,2: Uncontrolled Fitzt lugh-Nagiimo Model under Disturbance 

States and Output of the Controlled Plant 

20 30 

The Control input 

Figure 4.3' Closed-loop Response of FitzIIugli-Naguii io Model 
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4.5 Conclusion 

I n this chapter, we extend the framework proposed in the last chapter, and fur ther con-

sider the output regulat ion problem for t ime-vary ing nonlinear systems subject to some 

uncerta in t ime-vary ing exosystem. 

W i t h respect to the uncerta in exosystem, a generalized steady-state input generator 

is int roduced in the f irst place, and a generalized in ternal model can be constructed 

correspondingly. The ou tpu t of the in ternal model is l inearly parameterized i n some 

unknown parameter vector, so combining w i t h some adaptive contro l techniques we can 

solve the adaptive robust ou tpu t regulat ion problem. As an i l lust rat ion, we give the 

solvabi l i ty of the problem for the t ime-vary ing nonlinear system in the output feedback 

systems w i t h un i ty relative degree. Th is design approach can also be extended to the 

higher relative degree case and lower t r iangular systems. 

• End of chapter. 



Chapter 5 

Nonlinear Output Regulation with 
Nonlinear Exosystems I 

The global robust output regulation problem for nonlinear plants subject to nonlinear 

exosystems has been a challenging problem. One of the main difficulties lies in finding a 

suitable internal model. 

In this chapter, we first propose a new class of internal models which are amenable 

to the output regulation problem of nonlinear systems subject to nonlinear exosystems. 

Then we util ize this class of internal models to solve the global robust output regulation 

problem for nonlinear systems in strict output feedback form w i th a nonlinear exosystem. 

Both of the theoretical analysis and the numerical examples shows the improvement are 

achieved compared w i th the former results. 

5.1 Introduction 

Consider the robust output regulation problem for the nonlinear plant described by 

i = f{x,u,v,w) 
(5.1) 

e = h(x, n, V, w) 

where x G M^ is the state, u G MJ^ is the input, e G M"^ is the error output, w e 

denotes the uncertain constant parameters of the plant, and v € R彻）represents the 

exogenous signal which is generated by the following autonomous system 

V 二 a{v) (5.2) 

77 



78 CHAPTE]R 6. iNONLINEAR OUTPUT REGULATION WITH NONLINEAR EXQSYSTEMS II 

A l l functions in (5.1) and (5.2) are supposed to be globally defined, suff iciently smooth 

and satisfy / ( 〇 ’ 0 ’ 0 , w ) - 0, / i ( 0 , 0 ,0 ,w ) = 0 for al l w e R^^ . 

The control object ive is to design an output feedback control law, such that for any w e 

臉“…,any vq, and any in i t ia l condi t ion of the closed-loop system, the solut ion of the closed-

loop system exsits and is bounded, and the error ou tpu t approaches zero asymptot ical ly. 

I t is known tha t the aforementioned robust ou tpu t regulat ion problem can be handled 

by internal model design. As i l lust rated in the former chapters, this design methodology 

consists of two steps. I n the first step, a dynamical compensator called internal model 

is synthesized. The composi t ion of the given plant and the in ternal model yields the 

augmented system. The in ternal model has the proper ty tha t the stabi l izat ion solut ion 

of the augmented system w i l l lead to the ou tpu t regulat ion solut ion of the or ig inal plant. 

Thus the second step is to stabil ize the augmented system. 

The key to the success of th is design methodology is the existence of an appropr iate 

internal model, wh ich not only leads to a well defined augmented system but also ensures 

the stabi l izabi l i ty of the augmented system. Indeed, f inding the appropr iate internal 

model has been the central issue in the research of the ou tpu t regulat ion problem over the 

past two decades. When the exosystem is l inear, several existence condit ions have been 

given in [5] [33] [35]. I n par t icu lar , i t is shown in [33] tha t i f the solut ion of the regulator 

equations associated w i t h the given plant and the exosystem is polynomial , then there 

exists a linear in ternal model. A n advantage of a linear internal model is tha t i t leads to 

a simpler augmented system than a nonlinear in ternal model would. 

Nevertheless, when the exosystem is nonlinear, the solvabi l i ty of the ou tpu t regulat ion 

problem becomes much more compl icated for at least two reasons. Fi rst , few testable 

condit ions for the existence of the internal model are available even i f the solut ion of the 

regulator equations is polynomial . Second, the nonl inear i ty of the exosystem invar iably 

leads to a nonlinear or t ime-vary ing in ternal model. Thus the stabi l izat ion of the aug-

mented system becomes less tractable. I n our opinion, so far the only testable existence 

condi t ion for the internal model is given in [14] which leads to an in terna l model of the 

fo rm 77 二 M(v)rj + Nu where M{v) is some square ma t r i x and N is some column vector. 

There is no guarantee tha t the system 1) = M{v)r] is globally asymptot ica l ly stable unless 

v{t) is suff iciently small. Th is fact complicates the task of the global s tabi l izat ion of the 

augmented system. Consequently, i n [14], only the local version of the robust ou tpu t 

regulat ion problem has been studied. Recently, using the internal model of [14], some 
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attempts have been made on tackling the global robust output regulation for the class of 

output feedback systems [20] [112] [117] [125]. However, their results rely on some quite 

restrictive conditions. 

In this chapter, we w i l l propose another class of internal models of the form fj = 

Mrj + N{v)u where M is some constant Hurwitz matr ix and N{v) is some column vector. 

An existence condition for such internal model is also given. Some example shows that 

this form of internal model may exist even if the internal model proposed in [14] does not. 

A n advantage of this internal model is that i t is zero input globally asymptotically stable, 

i.e., the linear system i) = Mr] is asymptotically stable. This fact w i l l greatly facilitate the 

global stabilization of the augmented system associated w i th the output feedback system. 

In particular, applying our result to the example in [125] wi l l lead to the global solution 

of the problem. 

5.2 Problem descriptions and preliminaries 

I n this section, we wi l l summarize the framework for dealing w i th output regulation 

problem wi th nonlinear exosystem in [14]. Some standard assumptions are listed first, 

Assumption 5.1. For any initial condition vq, the solution of (5.2) exists and is hounded 

over t G [0, oo), • 

Assumption 5.2. There exist globally defined sufficiently smooth functions x(f , w) and 

w) with x(0, w) = 0 and u(0, w) = 0, such that the following holds 

0 = /l(x('U, w), u(t；, w), V, w) 

for all {v,w) e M""̂  x . 

Assumption 5.3. There exist three sufficiently smooth functions 6{v, w), v) and 

j3{9, u) vanishing at the origin, such that the following holds 

d9{v,w) ( �� 
~^——-=aiOiv, w),v] 

dt V h ^ 7 (5.4) 

u(f, w) — I3[9{v,w),v) 
for all [v, w) e E"̂ ^ x . . 
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R e m a r k 5,1. Equations (5.3) are the regulator equations. The solution of the regula-

tor equations provides the necessary steady-state behavior for the controller to achieve 

asymptotic regulation. However, the solution cannot be directly used by the controller 

because it depends on the uncertain parameter w. Assumption 5.3 further guarantees 

that the solution of the regulator equations can be generated by an autonomous system 

independent of the uncertain parameter w. The tr iple {6', a{0, v), f3{6, f ) } is called a (gen-

eralized) steady-state input generator of the composite system (5.1)—(5.2). In particular, 

when both v) and v) are linear in 6, i.e. there exist sufficiently smooth matrices 

$(?;) and 屯(D) such that a{0,v) = j3{0,v) = (5.4) wi l l reduced to 

• ( 了 ) = w), u(v, w)=屯(tJ)外巧 uO (5.5) 
at 

which is called a linear steady-state input generator. . 

The notion of the steady-state input generator wi l l further lead to the definition of the 

internal model. 

Definition 5.1. 
Under Assumptions 5.1, 5.2 and 5.3, if there exists a sufficiently smooth function 7(77, u, v) 

vanishing at the origin such that 

holds for for all ( f , w) G x R"""'，then the following system 

77 == (5.6) 

IS called a (generalized) internal model with output u. • 

Remark 5.2. The (generalized) internal model has the same asymptotic property as 

the (generalized) steady-sate generator. Moreover, notice that v appears in the internal 

model, so generally speaking, the overall controller can be termed as the dynamic output 

feedback w i th feedforward controller ([36] Chapter 5). • 

Attaching the internal model (5.6) to the given plant (5.1) yields the following aug-

mented system 
X = f{x, u, V, w) 

T] = (5.7) 

e = u, V, w) 



5.3. ON THE EXISTENCE AND DESIGN OF INTERNAL MODEL 81 

Performing on (5.7) the following coordinate and input transformation 

X = X — x(7；, ？d), u = u — l3{rj, v), fj = rj — w) 

gives a new system denoted by 

击= f { x , f i , u , f i ) 

e = h{x, fj, u, / i) 
where ji = {v, w). As usual, i t is ready to verify that , for all {v^ w) G IR"” x I R " , 

0==/—(O’O’O’aO 

0 = 7(0’0，0，/i) 

0 = / i(0,0,0,/^) 

Consequently, we have the following result. 

Proposition 5.1. If there is a feedback control law 

u = us{(,e) 

gsi^^e) 

(5.8) 

(5.9) 

where e) and gsi^, e) are sufficiently smooth functions vanishing at e) = (0,0)； 

such that (5.9) globally stabilizes the equilibrium point of the augmented system (5.8), then 

the following control law 

u = Pirj^v) + us{(,e) 

V = 7(r],u，v) 

solves the robust output regulation problem for plant (5.1). • 

As a result, we have converted the output regulation problem for the plant (5.1) into 

the stabil ization problem for the augmented system (5.8), Once the stabilization problem 

is solvable, the aforementioned output regulation problem can also be solved. 

5.3 On the existence and design of internal model 

As we have already seen, the success of the aforementioned method depends on the ex-

istence of an appropriate internal model which not only produces the steady-state input 
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in format ion, but also makes the augmented system global ly stabil izable as exemplif ied in 

the general framework. The existence of the internal model indeed relies in t u r n on the 

existence of the steady-state generator. 

The existence condi t ion of the internal model was first given i n [33] under the as-

sumpt ion that the solut ion of the regulator equations is a polynomial . Later another 

condi t ion was given in [5] which requires the solut ion of the regulator equations to satisfy 

the fol lowing equat ion 

(j} d ( f - i 
aou {v ,w) + a i — u ( v , w ) H h (5.10) 

where I is some integer and a! are some constant real numbers. A n d i t was fur ther shown 

in [35] tha t , when the exosystem is l inear, condi t ion (5.10) is equivalent to the condi t ion 

that w) is a polynomial , and bo th of these condit ions lead to a l inear internal model. 

Nevertheless, when the exosystem is nonlinear, condi t ion (5.10) is not equivalent to the 

condi t ion tha t U( 'L ' , w) is a po lynomia l any more. I n [14], a more compl icated condi t ion 

for the existence of the steady-state generator is given and is summarized as follows. For 

convenience, we w i l l assume m ~ 1 for the rest of this chapter. 

F i rs t , we pu t a{v) i n the fol lowing fo rm 

K 

a{v) = Aiv + ‘ ^ Akvak{v) (5.11) 
fc=2 

> 2 and some matrices A^ G I R " •， ^ h e funct ions — M are 

and sat isfying ak(0) = 0. 

is a po lynomia l in v. B y Lemma 3.1 of [14], there exists a set of real 

• - , r , such tha t 

for some integer K 

suff iciently smooth 

Assume w) 

numbers â ^ z = 1, • 

= aou + a i £A i vU H + (5.12) 

Moreover, assume there exist some matrices sat isfying 

洲 ( J : ) 如 = 顿 � k 二 2广、K (5.13) 

where ^{v^ w) 二 col(u, jCaiv'^, . ••，T h e n let 

0 / -
， r 二 1 0 ••• 0 

CLq Cli ' ' ' Gŷ  L J 
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and (j){v) = Ylk=2 叫⑷,it can be verified that the following system 

di3 
dt 

�zj,w) == + (/)(v))i9(v,w), u = ri9(v,w) (5.14) 

is a (generalized) steady-state input generator w i th output u. Corresponding to this 

steady-state input generator, an internal model can be constructed as follows 

77 = ( M + T(l){v)T-^)r] + Nu (5.15) 

where (M , N) is any controllable pair w i th M e 股“"being Hurwitz, N e I T " , and T is 

the nonsingular solution of the Sylvester equation 

- M T + A T 

Such solution T always exists since T) is observable. 

As mentioned in Section 5.1, the result of [14] may have two drawbacks. First, the 

condit ion (5.13) may be restrictive as wi l l be shown in Example 5.1. Second, the internal 

model (5.15) is not zero input asymptotically stable which hinders the global stabilization 

of the augmented system. In view of these two facts, we generalize condition (5,10) to 

the following one. 

Assumption 5.4. There exist some integer I and sufficiently smooth scalar functions 

ai(v), i — 1, • • • , I, such that 

S-'u 

where u stands for u{v, w] 

a o (咖 + 斯 ⑷ 芸 + ai-i{v) 
dt^' 

(5.16) 

Under Assumption 5.4, let 

•d = col 
du 

i t can be verified that 

_ 0 h-i ‘ 
r 一 

ao{v) aiiv) •. a / - l O ) _ 
1 丄 一 

(M 
Hi 

Ti；)’ u == w] (5.17) 

steady-state input genera-Thus, the tr iple {t^, constitutes a (generalized) linear 

tor w i th output u. 

We wi l l now show that condition (5.16) may be satisfied by some example when con 

di t ion (5.13) cannot be satisfied. 
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Example 5.1. 

Consider the following nonlinear plant 

z = —z — z -h e 

y = u + z y — wy V2Vz 

e = y -vi 

where w is an uncertain constant, and the exogenous signal v(t) is generated by the 

following nonlinear exosystem 

V = A i v + A2va2(v), where a2(v) = 1)3, 

0 0 0 0 

0 0 0 0 
0 0 0 1 

0 0 - 1 0 

Ao 二 

0 0 0 

- 1 0 0 0 
0 0 0 0 

0 0 0 0 

The steady-state input is u( i j ’ w) — wvi , and condition (5.12) holds w i th = cioU, 

ao 二 0, and ？9(v, w) = u(v, w) ~ wvi. I t can be seen that (5.13) holds only if we could 

find $2 such that 

d'd(v^ w] 
dv 

A2V = w] WV2 = 切幻 1 

Obviously, does not exist, so the method introduced in [14] can not proceed. 

However, we can see that Assumption 5.4 holds w i th 

cPu , � � , ^ dVL 

i = 3 顿 ) u + ( — 

Thus a steady-state input generator of the form (5.17) exists. o 

What makes Assumption 5.4 more interesting is that i t guarantees the existence of 

an internal model which is zero input globally asymptotically stable as shown by the 

following result. 

Theorem 5.1. Under Assumptions 5.1, 5.2 and 5.4, given any Hurwitz matrix M G 
，there exists a column vector N(v) G IR�1 such that the following system 

7) = M77 + N{v)u (5.18) 

is an internal model with output u for (5.1). 
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Proof: Let us f irst show tha t there exist suff iciently smooth scalar functions bo(v)，bi(v). 

• • •, 6 / _ i ( f ) and an I dimensional suff iciently smooth vector funct ion r{v, w) such tha t 

dr 
dt 

where 

= 

u = rvr 

r . 

(5.19) 

0 

I n other words, system (5.19) is a state space real izat ion of the di f ferent ial equat ion 

(5.16), For this purpose, denote r = [ n … t " , 严 . T h e n (5.19) leads to the fo l lowing 

sequence of equations 

U = T i 

du 
It 

bi^i(v)u-h T2 

(fvL d f \ \ , , � 

= + V 2 W U + T3 (5.20) 

d}-
dti-

V )u) H + 6i(?j)u + 丁I 

and another di f ferent ial equation in u (v , w ) of order I as follows 

Su d}-
dt^ dti-

v)n) + 
d 

(5,21) 

Let 6(0(2；) = w i t h i) = a{v), and C^ the number of d ist inct combinations of 

order i f rom n elements. Then we have, for n 二 1，2，- • •, 

dp 
(5.22) 

Using (5.22) on the r ight hand side of (5.21) and match ing the coefficients of the zth 

derivat ive of u ( f , w) i n (5.21) w i t h those of the ith. derivative of u ( f , w) in (5,16) gives 

.i+j^l-i+ji^^ (5,23) 

Thus, w i t h bi{v) given by (5.23) and r = [ n •. • r i obtained f rom (5.20), system 

(5.19) is indeed a state space real ization of the di f ferent ial equat ion (5.16). 
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Now note tha t the ma t r i x $。(”）can be wr i t t en i n the fo rm of 二 屯̂^ + b{v)rc 

where 
0 

h 
I
-

\
—
/
 

W W 

Since ($5, r。）is an observable pair, for any control lable pair ( M , TV) w i t h M G IR^z being 

Hurwi tz , N E K〜1, the Sylvester equation 

T中b 二 MT + Nr� 

admits a unique nonsinguiar solut ion T [84]. 

Let 0{v, w) = Tr{v, uj), then, 

0 - 二 $沒(?；)|9, u = r。T—i6> = m (5-24) 

where $0(1;) = T$。(?;)T—1 and 屯 = F ^ T ' ^ tha t is, the t r ip le ^ f f ( v ) , ^ } consti tutes 

another l inear steady-state inpu t generator. 

Let N ( v ) — N + Tb(v) . Then we can show (5.18) is the in ternal model corresponding 

to (5.24). I n fact, 

§ = M e + N { v 、 w = ( i v + T 6 ( > ) ) r v r - 1 ) 0 
(5.25) 

Thus, by Def in i t ion 5.1, (5.18) is a (generalized) internal model w i t h ou tpu t u correspond-

ing to (5.24). o 

Remark 5.3. I f al l a 办)are independent o f f , b{v) and hence N{v) are also independent of 

V‘ Thus the internal model (5.18) reduces to the canonical l inear in ternal model proposed 

in [84]. W h a t makes (5.18) interesting compared w i t h (5.15) is tha t the internal model is 

zero input global ly asymptot ica l ly stable. _ 

5.4 Global output regulation for strict output feedback systems 

I n this section, we w i l l apply the aforementioned internal model to solve the global robust 

output regulat ion problem for nonlinear systems in str ict ou tpu t feedback fo rm subject 

to a nonlinear exosystem (5.2). 
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Consider the following nonlinear plants 

X = ’{w)x + G{y, V, w) + Di{u, w) + g{w)u 

y 二 H{w)x + K{y, V, w) + Ehiv, w) (5 26) 

e = y — q(v,w) 

where col(x, y) G is the state, y E M is the output, q(v,w) € R is the reference 

trajectory, e e M is the error output, u eRis the input, w G 耿“'"represents the uncertain 

constant parameters, and all the functions in (5 26) are supposed to be sufficiently smooth 

and satisfy G{0,v,w) = 0 ， = 0’ D^(0,w) = 0, i = 1,2, q(0,w) = 0 

When the exosystem is linear, global robust output regulation problem of the system 

(5 26) IS studied m [15] [100], and when the exosystem is nonlinear, the same problem is 

considered in [125] However, the solution in [125] can only be obtained for sufficiently 

small in i t ia l condition vq Here we wi l l provide a global solution for the same problem as 

in [125] w i th arbi trar i ly large ini t ia l condition vq For this purpose, let us first make the 

following assumption 

Assumption 5.5, The system (5 26) has a umform relative degree r >2, i e , for all w G 
R � , H { w ) g { w ) = H{w)F{w)g{w) = = H(w)F''^{w)q{w) 二 0 and H{w)F'-'^{w)g{w) 

-

Under the above assumption, like in [15] [100] [125], we can attach a dynamic filter to 

(5 26) 

— —XiXi + 2 = I j , T 

u 二 晰 

wi th \ > 0, and perform the following change of coordinate 

z = X — D{w)x — h{w)y 

on (5 26) and (5 27) to obtain the following extended system 

2； 二 F{w)z + G{y, V, w) + Di{v, w) 

y = H{w)z + K[y, u, w) + D2(仏 w) + b{w)xi 

工 I = -K^i + 2 = 1， , r 

e = y - q(v,w), u = Xr+i 

(5 27) 

(5 28) 
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where z G 丄，̂  G E and G M, and &(>) 二 ii{w)P"~-2�w)g{w) • 0. Other functions 
are defined in [125], I t can be seen that if the output regulation problem of the system 

(5.28) is solvable, the same problem of the system (5.26) is also solvable. 

The extended system (5.28) is now in lower triangular form where both error output 

e and the filtered input Xi are available for feedback design. 

Three more assumptions are needed. 

Assumption 5.6. For all w 6 , F{w) is Hurwitz. • 

Assumption 5.7. There exists a globally defined sufficiently smooth function z(v, w) with 

z(0, w) = 0 such that the following holds 

dz(v, w] 
•a(v) = F(w)z(v, w) + G(q(v, w), v^w) + w, 

dv 
for all {v,w) e x E " - . . 

Under Assumptions 5.5 5.6 5.7, let 

yiv.w) = q{v,w) 

^liv^w) = - H{w)z{v,w) - K{y{v,w),v,w) - Z^sO，^;)) 

w) = w) + w), i = 2, • • • , r 

u{v, w) = Ca'Kr{v, w) + w) 

where Cay{v, w) and CaXi{v, w) represent the Lie derivative of y{v, w) and , w) along 

a( f ) , respectively. 

Denote w) = x^+I^T) , Then it can be seen that Z(ZJ’W) ’ y ( I ; , w), 
7 = 1 ,…， r + l , constitutes the global solution of the regulator equations. 

Assumption 5.8. There exist some integer I and sufficiently smooth scalar functions 

aAv), i = •' , I such that 

(fxi , \ ,�c?xi , . d! 
= a o ( v ) x i + ai[v)^ ^ h ai_i[v)-

LXl 
dti ) …dt 卜丄、丨 dti-i 

where Xi stands for Xi('u, w). • 

Under Assumptions 5.8, we can find a (generalized) steady-state input generator in 

the form of (5.25) w i th x i as output as follows. 

e{v,w) =-^o{v)e{v,w) = {M + N{v)^)e{v,w) 
(5.29) 

w) = , w) 



6 2 GLOBAL OUTPUT REGULATION FOR GF.NERAL OUTPUT FEEDBACK SYSTEMS 89 

Correspondingly, an internal model w i th output Xi of the form (5.18) can be con-

structed as follows. 

力二 Mrj + N(v)xi (5.30) 

Now let 

Pi{e) = w 

(mv: 

PiiO^v] 

89 
dP2(0,v) 

M^W + + ^2/32(0, V： 
09 �� , dv 

dPi—lie,… d(3i-i{e,v) , 、 I \ . 、 
—————^0{v)e + —————a{v) + ViA-i (… - 4 , r + 1 

Attaching the internal model (5.30) to the given plant (5,28), and performing the input 

and coordinate transformation 

乏=Z — z ( f , w), 

f] = r]-e{v,w), 

leads to the following augmented system 

乏 = F ( w ) z + G(e, V, w) 

e = y - qiy.w) 

Xi^Xi- A ( ^ ) 

=2, r + 1 

where 

fj = Mfj + N{v){'^f] + ；Ti) 

e = H(w)z + K{e, v, w) + b(wX切fj + xi) 

Xi = -AiXi -h X2 -

-XiXi + Xi+I -

drj 
df3i{r],v 

drj 

N{v)xi 

N{v)xi I = 2, 

(5(6, V, w) = G(e + q(v, w) — G[q{v, w) 

k{e, V, w) = K(e + q{v, w) — w] 

Performing another transformation 

v,w) 

(5.31) 

(5.32) 

fj = fj — N{ii)b—i{w)e (5.33) 
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on (5.32) turns the augmented system into the following lower triangular form 

2 二 F(w)2 + G{e, V, w) 

f} = Mf] + f{z, e, TJ, w) 

e = b(w)xi + fo(乏,fhe,v,w) 

Xi = —Ai^i + 

+ -

輪 ） 
drj 

(5.34) 

drj 

N{v)xi 

N{v)x] = 2 , 

where u = x^^+i and 

/(乏,e, V, w) = MN{v)b-\w)e — iV�{v)b-\w)e — N{v)b-\w) {H{w)z + K(e, v, w)e] 

fo{z,力，e, V, w) = H{w)z + K{e, v, w) + + N{v)b'~^{w)e) 

System (5.34) can be put in the following more standard form 

Z = Fo(Z ,e ,v ,w) 

e = fo(Z,e,v，w) + b(w)xi 

Xt = A(e, V, T]) + i = …，r 

(5.35) 

where Z = col(乏,fj) and 

F{w)z + (5(e, D, w) 

_ + /(乏,€, V，W) 

Since F{w) is Hurwi tz for all w due to Assumption 5.6, and M is also a Hurwi tz matr ix, 

by Lemma 3.1 of [120], there exists a C^ function U{Z) satisfying < U{Z) < 

for some class /Coo functions a^(-) and a^(-), such that for any (f , w) G M"” xM"^, 
along the trajectory of Z subsystem, the following holds 

(5.36) 

for some known smooth positive definite function 7(‘）and some positive constant 5 de-

pending on w and Vq. AS a result, by the standard backstepping technique, i t is possible 

to show that (5.35) can be globally stabilized. 
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More precisely, let 

= CCj — 1 
de 

-

~ dk" 
= —kp{e)t k = p{e)e^ 

= —2wi — h + K , - + bEiXi 

02 = —wiEiXi 

2 (5.37) 

and for i = 2, • • • , r , let 

r I 1 C.2 , L c. - , ^ di^iL . DK^ . 
〜 1 = —Whi — w广 + K 广 + + 〉 + + 丁r] + -^v 

2 ^ ox. dh dr] ov 

(f^i+i = -w^E^Xi + (p^ 

where b denotes b{w), b denotes the estimation of b{w), b = b — b. We have the following 

main result. 

Theorem 5.2. Under Assumptions 5.1 and 5.5 5.8, there exists a control law of the 

following form 

u 二 Kr+i (e ’T i , •. • l3r+i{r},v) 

T] = Mr] + N{v)xi 

k = p{e)e 

h = 0 r+ i (e ,x i , • ’.，2V,?7，v) 

such that the trajectory of the closed-loop system composed of (5.28) and (5.37) exists and 

IS bounded over t G [0, oo), and the error output e tends to zero asymptotically. • 

Proof: Let us first show, under Assumptions 5,1 and 5.5 5,8, there exists a control law 

of the form 

u = Kr+i： k ~ /9(e)e^, b 二 (pr+i (5,38) 

where p{e) is a sufficiently smooth function, such that the trajectory of the closed-loop sys-

tem composed of (5.35) and (5.38) exists and is bounded over t E [0, oo), and lim^-^oo e ~ 0. 

For this purpose, note that, due to (5.36), by changing supply functions technique, 

given any smooth function A(Z) > 0, there exists a C^ function V^ satisfying < 

Vz < for some class Koo functions a^(-) and such that along the trajectory 
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of Z-subsystem of (5.35), the following holds 

V z < - A i Z ) \ \ Z f + S j i e ) e ' (5.39) 

for some unknown positive constant 6 and some known smooth function 7(e) > 1. 

Let K = Then 

Ke = e(fo + b— - kp{e)e)) < -bkp{e)e^ + + He 二 e/o + _ 

Let Vi = Ve + ^wf + •炉，then 

么二 l^e + WiWi — bb 

< ~'hkp{e)e^ wj -h + wi (/i -\-W2 + 1^2- /^i) — bb 

=-bkp{e)e^ + wjJ + He + Wi(/i + + 妨一 i^i) — + bxi) - bb 

< -hkp(e)e^ +w\ + T{e + Wi (/i + + - i^i) 

+ \{w,Erf + ^-fl ~{h + b)w,E,x, - ih 

二 -bkp(e)e^ + He + -fg WiEiXi - b) + W1W2 

+ m + fx + K2-K1 + ^w^E''^ 一 bEiXi) 

using the expressions of K2，02 gives 

• 1 
< -hkp{e)e^ - w^ + w^w2 + 6(02 一 S) + I I i , H i = He + Hq, Hq - - / o 

Let V2 = VI + then 

= 14 + W2W2 

< -bkp(e)e^ - 10^ + W1W2 + b{(p2 - 6) + I I i + Waiji + + ^2) 

since K2 depends on (e,无1, rj, v, 6, /c), the derivative of 1^2 can be expressed as 

1^2 = E2e + + 丁 T] + 丁 V + + K2 
dxi or] ov db 
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thus we have 

< -hkp{e)e^ - wj + WiW2 + 6(02 — S) + IIi 

1 fr , I IP f-p , L - \ 加2: . OK + W2 h + + -丑2(/o + bxi) — T^Xi — — dx 
2 : UI<o2 . Ut\2 . 加2 i — K、 

df] dv db 
-b 

< -hkp{e)e^ WiW2 + 一 S)十 11] 

+ + - (6 + b)W2E2Xi 

2 二 . 〜2 . j- jy \ 
— 

/ dK2: dK2 . OK 
b 

using the expressions of 03 gives 

V2 < -bkp{e)e^ W2Ws + 6( - W2E2X1 c{)2 - b) II2 
2 ~ . 

--hkp(e)e^ + W2W3 + ^(^63-6) +n2, 02 - Hi + Ho - He + 2no 

Let Vi = 1 + ^wf and repeat the above procedure gives 

K < 一bkpiey + + +1 -b) n , = He + iUq 

Set Wr-^i = 0 so that 代 = x^-^i = u. Under the control law (5.38), we have 
r 

Vr < -bkp(e)e^ — ^ w] + (5.40) 

Next, let k = k ~ k w i th k being a positive constant to be specified later, and define 

1/ - V̂ z + K + (5.41) 

by (5.39) and (5.40), 

V < + — bkp(e)e^ + + bkp(e)e^ — bfy(e)e^ 
产 1 

r 

= - A ( Z ) | | Z f - X X + Sj{e)e^ - bkp(e}e^ + 

Since U^ 二 Xle + rr io = + + and fo{Z, e, v, w) satisfies /o(0, 0,v,w) = 0, 

using Lemma 7.8 of [36] and Taylor Theorem, i t is possible to show that 
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where p i > 0 is a constant, and (pziZ)^ are some smooth functions w i t h 小丄e) known. 

Now choosing 

p{e) > max (7(e), 0e(e)), A{Z) > M^) + 1, ^ > + Pi)/b 

gives 

… 亡 切 J 

This implies the t ra jec tory of the closed-loop system composed of (5.35) and (5.38) is 

bounded over t G [0, 00). Since e and e are bounded and k = k exists and is 

bounded, so tha t k is un i fo rmly continuous. By Barbalat 's Lemma, ^ ^ 0 as t —̂  00, 

which implies e —> 0 as t — 0 0 . 

The proof of Theorem 5.2 is completed by not ing Proposi t ion 5.1. o 

Remark 5.4. The above contro l law is good for the case where b{w) > 0 for a l l w. The 

der ivat ion of the contro l law is quite similar to tha t shown in [65]. A similar control 

law can be obtained for the case where b{w) < 0 for al l w. The case where the sign of 

b(w) is unknown can also be handled by in t roducing the Nussbaum gain technique [82: 

as detailed in [65]. • 

Remark 5 .5. I n the above contro l law，k is called the dynamic gain [40] [41] which is 

introduced to account for the case where w and vq are arbi t rary. I f the w and Vq belong 

to some known compact subsets, respectively, there is no need to employ the dynamic 

gain technique. I t suffices to use a suff iciently large stat ic gain k determined by the 

boundaries of the compact subsets. -

5.5 Examples 

Example 5.2. • 

Consider the example given i n [125 . 

i ==—之 + 2wv2y + w) 

y = wz -V2y + xx^ D2{v, w) 
(5.42) 

Xi = —Xi + u 

e 二 y — Vi 
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where 
D i { v , w) ~ v\ + 2(1 — w)viv2 

D2(ii, w) — V1V2 -i-V2 — wv\ — Vi 

The exosystem is Van der Pol oscillator 

Vl = V2 

V2 =—巧 + (1 - VI)V2 

System (5.42) is already in the form (5.26). A state feedback control law was given in 

[125] that can solve the output regulation problem of (5.26) under the assumption that 

v i I < 2.7072 and < 1, Here, using our approach, we wi l l solve the output regulation 

problem of (5.42) for any w and any v. 

As derived in [125], the solution of the regulator equations is 

z(v, w) = vi, y{v, w) = vi, yii[v,w) = vi, u{v,w) ^ vi-\-V2 

Since w) = vi, i t can be verified that X i ( 2 j , w ) satisfies 

(f h ci 

So Assumption 5.8 is satisfied. 

The steady-state generator in the form (5.19) can be obtained w i th r 。 = 

- 1 1 
<J>o = 

—1 — V1V2 0 

which leads to the following internal model 

(5.43) 

1 0 and 

力 = 

_ —2 1 3 
( 5 . 4 4 ) 

一 1 0 -V1V2 

Attaching (5,44) to the plant (5.42), and performing the transformation (5.31) and 

(5.33) gives the following augmented system 

乏=一乏 + 2wv2e 

- 2 1 

- 1 0 
V 

e = xi + fo{z,fi,e,v,w] 

圭 1 = -4xi + u 
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where 

—6 — V1V2 + 3V2 

-3 — V^ V2 ~~ 2ViV2 — v\v2 

/o(乏,77, e, V, w) = wz - V2e + 巧1 + 3e 

6 — 

Zw 

— WV\V2 

By Theorem 5.2, a contro l law of the fo rm (5.37) can be obtained as follows 

u = p2{r],v) 

f] =• Mr] + N{v)xi 

k = p{e)e^ 

= 2771 +7^2 

w i t h 

where p{e] 

Wi = Xi — Ki. 

= —kp{e)e 

E. 
Oki 

K, 
Oki 

k.2 = -2wi + 4.x I + Ki 

k 二 p(e)e2 

wiE^ + Eixi 

Simulat ion is conducted w i t h the in i t i a l condit ions for the plant being (2:0, yo, 2:10)= 

(0.5.0,2, —0.5) (as used i n [125]). and the in i t ia l condit ions for the controller being zero. 

Note tha t , unl ike [125], where 卜丄丨 < 2.7072 and < 1 are required, our control law 

works for any in i t i a l condi t ion vq and any w. Figure 5.1 5.3 show the s imulat ion results 

w i t h Vq = (4, —4), w 二 1.5. 
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Phase Portrait of Van der Pol Oscillator 

2 3 4 

Figure 5,1: Phase Portrait of Van der Pol Oscillator 

State Response of the Controlled Plant 

20 40 60 80 

State Response of the Van der Pol Oscillator 

100 

—-exosignal; v1 exosignal; v2 mtmmm 
ti y . ' J iJ L L 

20 40 60 80 100 

Figure 5.2: Dynamics of the Controlled Plant and Exosystem 
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The Tracking Performance 

20 40 60 

The Dynamic Gain 

80 100 

Figure 5.3: IVaeking Performance and the Dynamic Gain 

5.6 Conclusion 

I n this chapter, we have first proposed a new class of in ternal models for the ou tpu t 

regulat ion problem for nonlinear systems w i t h nonlinear exosystems. A n advantage of 

this class of the internal models over the exist ing ones is tha t i t reduces to a l inear t ime-

invariant stable system which is global ly asymptot ica l ly stable when the input is set to 

zero. Th is advantage has been taken to give a complete solut ion to the global robust 

ou tput regulat ion problem for nonlinear systems in str ic t ou tpu t feedback fo rm w i t h a 

nonlinear exosystem. 

• End of chapter. 



Chapter 6 

Nonlinear Output Regulation with 
Nonlinear Exosystems II 

In this chapter, we wi l l further consider the global robust output regulation problem for 

nonlinear systems in general output feedback form w i th a nonlinear exosystem. 

6.1 Problem descriptions and preliminaries 

Consider the global robust output regulation problem for the following nonlinear system 

X, = g,{z,y,v,w) i = l ，. . . ’ r —1 
(6.1) 

Xr = b{w)u^ griz,y,v,w) 

y = e = y - q{v,w) 
wi th a nonlinear exosystem in the form of (5.2), i.e. 

V = a{v) (6.2) 

where z € 『，x = col(xi , • • • , Xj) G are the states, e e M is the error output. 

w e represents the uncertain parameters of the plant, b{w) > 0 and the relative 

degree r > 2. I t is supposed that the state trajectory v{t) generated by (6.2) exists and is 

bounded over t G [0, oo). The functions f{z, y, f , w) and g人z, ？/, v, w) are globally defined 

sufficiently smooth and satisfying /(O, 0, 0, w) = 0,认(0，0, 0，w) 二 0 for all w G 

The control objective is to design an output feedback control law, such that, for 

any w e 股“砠，any Vq, and any in i t ia l condition of the closed-loop system, the solution 

99 
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of the closed-loop system exists and is bounded, and the error output approaches zero 

asymptotically. 

Remark 6.1. A well-known "output feedback form" of nonlinear systems is given by [62] 

[74] 

(6.3) 

where 
〇 

0 0 

a = 

h = col( O,--- ,0,6, 6
 

r == n — m 

As shown in [52], system (6.3) can be transformed into 

i = F{w)z + gQ(y,w) 

=工2 + gJyy,w) i = I,--. 

Xr = bmU + 2；! +gr(p,w) 
(6.4) 

Obviously, system (6.4) is a subclass of system (6.1), so is (6.3). Especially, when (6.3) 

is min imum phase, i.e., b^s"^ + ' . . + 6is + 6。is a Hurwitz polynomial, the corresponding 

system (6.4) is min imum phase too, i.e., the F(w) 6 jg 汪 Hurwitz matr ix. 

The output feedback system (5.26) we studied in the last chapter can also be trans-

formed into (6.3) by a (global) change of coordinates under certain conditions given in 

75] [76]. This implies (5.26) is also a subclass of system (6.1). 

So we call system (6.1) the general output feedback system, and comparatively, system 

(5.26) or (6.3) are termed as strict output feedback system. 

The output regulation problem for strict output feedback system w i th a linear exosys-

tem has been considered in numerous papers, e.g. [15] [19] [100]. In these researches, i t 

is always assumed that the zero dynamics of the corresponding system is a linear stable 

system, i.e. by assuming that the matr ix F{w) in (6.4) is Hurwitz for all w. However, 

the zero dynamics of system (6.1) is not linear in • 

Remark 6.2. As shown in Section 5.4, the structural property of (5.26) leads us to a 

dynamic filter based approach. By extending the given plant (5.26) w i th a input filter, 
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an extended system (5.28) is achieved. Attaching the internal model to the extended 

system gives the augmented extended system, and thus problem conversion is achieved. 

I t is remarkable that the designed internal model is w i th output x i , which is a filtered 

input. However, such design has some drawbacks. I t can be seen that, if the steady-state 

input u(i;, w) is a polynomial in v and the exosystem is linear time-invariant, i t is quite 

conspicuous that x i ( i ; , w) is also a polynomial in v due to the linear structure of the input 

filter, But when the nonlinear exosystem occurs, i t may be difficult to figure out the 

filtered input in most cases, thus the internal model w i th output Xi is not accessible. We 

wi l l i l lustrate this fact by the following example. . 

Example 6.1. • 

Consider the following nonlinear system in the form of (5.26) w i th relative degree 2, 

X = X — 2y lOu 十 wviy + (9vi — lOwv^ — v\v2) 

= —2y + (9i;2 + 20 巧） (6.5) 

e = y — lOvi 

the exosystem is Van der Pol oscillator 

力 1 ； 2 = -Vl + (1 -

For further convenience, we denote the solution of the corresponding regulator equa-

tions by X = 1̂ 2，y = lOi^i and u = vi . 

Attaching the linear input-f i l ter 么 = — + u to the given plant and applying the 

coordinate transformation z = x — lO^i — 2y gives the extended system 

z ~ —z -j- wviy + (—311)1 — — lOwvl — V1V2) 

y = z + 106 + (9^2 + 20vi) ,广 M 
(6.6) 

6 = + ^̂  

e = y — lOvi 

However, unlike (6.5), now it is diff icult to solve the corresponding regulator equations 

w i th respect to (6.6), especially along the trajectory of Van der Pol oscillator, we don't 

have the solution w) in a compact form corresponding to 

Si('U, w) = ~Si(v, w) + u(v, w) = —Si(v, w) + vi 
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So the internal model (5.30) is not applicable. 

Alternatively, i f we perform the coordinate transformation 

yi = y, y2 = y - X 

i t can be seen that (6.5) turns into 

yi = -2/1 一灼 + (9f2 + 20'yi) 

y2 = - l O u — wviHi + { l l v i + 9v2 + lOwv^ + ⑷ (6.7) 

e 二 yi — lOvi 

i t is evident that system (6.7) is in the form of (6.1) and the internal model (5,18) w i th 

output u can be designed, and the output regulation problem for the original plant (6.5) 

is st i l l solvable based on the design method introduced later. o 

Remark 6.3. Inspired by the idea introduced in [38], we aim to use an alternative ap-

proach to solve the problem. Generally speaking, we design an internal model w i th output 

u in the first place, thus we have an augmented system after the input and coordinate 

transformation. Next we extend the augmented system w i th some observer-based dy-

namics BO we have the extended augmented system, and finally we solve the global robust 

stabilization problem for the extended augmented system. • 

To solve the output regulation problem for the general output feedback system (6.1), 

some standard assumptions are also in need. 

Assumption 6.1. There exists a globally defined smooth function z{v, w) with z(0, w) = 0 
such that the following holds 

Mv, w) = f{z{v, w), q(v, w),v, w) 

for all {v, w) e M '̂̂  x W. • 

Assumption 6.2. There exist some integer I and sufficiently smooth scalar functions 

ai[v), i = 1,…，I, such that 

d^u , 、 ，、 d u , 、 , 广 。 、 

^ = + a,{v)- + ••• + - U v ) ^ (6.8) 

where u stands for u(f, w). • 
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And as shown before, due to the structure of system (6.1), the satisfaction of Assump-

t ion 6.1 ensures the solution of the regulator equations exist 

z(?;, w), X i ( f , w) = q{v, w) 

= — g, [z[v,w),q{v,w),v,w), •i 二 1, ’ , r 一 1 

Also the satisfaction of Assumption 6.2 ensures the internal model in the form of (5.18) 

exist as ?7 — Mr] + N{v)u. 

6.2 Global output regulation for general output feedback sys-
tems 

In this section, we further pursue the global robust output regulation problem for the 

general output feedback nonlinear systems. 

Attaching the internal model to the given plant (6.1), and performing the input and 

coordinate transformations 

z^ z-z{v,w),无 n：厂 X 办,w), 
— (6.9) 
u 二 u — 屯T), fj = Tj — 9{v, w) 

where 屯 and 6 are defined in (5,25), we have the following augmented system 

身 = f ( z , e , v , w ) 

. (6.10) 
= (̂ Z 十屯力）+ gr(z, e, V, w) 

= Mfi + N{v){U +句 if) 

where 无i 二 e and 

/(•) = + + — f{z,q{v,w),w) 

9ti-) = z,e -h q{v,w),w) - g,{z,qiv,w),w) 

I t has been shown that the stabilization of augmented system (6,10) wi l l lead to solvability 

of the output regulation problem of the original plant (6,1). 

As the method shown in Section 3.3.2, we could perform a coordinate transformation 

on fj, 

fj ~ fj — Cr (v)Xr —…—Ci{v)Xi (6.11) 
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r — 2, 1, 0, so that 

(6.12) 

where Cr{v) = b—i{w)N[v), c^{v) — Mci+i{v) — c!么(?;)’ i = r -
system (6.10) can be transformed into the following form 

身 = f { z , e , v , w ) 

V = Mfj^ go(z,e,v,w) 

= Xi+i-\- g i {z ,e ,v ,w) i = l ,- ‘ .， r —1 
r 

^r = h[w)[u + + + g.r{z, w) 
i二 1 

where go(z, e, v, w) = Cq{v)xi - Ci(jJ)gi�z, e, v, w) and xi ^ e. 

For system (6.12), denote = b{w)'^Ci{v) and g' = col(歹i(.), • • • ,歹广_1(-)), then the 

X subsystem can be expressed in the following compact form 

X = 
_ 0 Ir—l - - 0 -

1 

• . ‘ Sr(y} _ b(w) UJ卞 V, w) + b(w)屯f) 
(6.13) 

wi th xi — e. Notice the linear part of (6.13) is in the form of (5.17), thus in light of the 

transformation between (5.17) and (5.19), we can show that, there exists a well-defined 

coordinate transformation denoted by ^̂  = T2{v,w、x, such that system (6.12) can be 

transformed into the following form 

^ = M7]-\-go{z,e,v,w) 

i i 二 d r - i+ i {v )^ i + Ci+1 + 9 i {z ,e ,v ,w) i 二 1 ,…， r — 1 

4 = di{v)^i + u-i-gr{z,e,v,w) + 屯 fj 

where gi{-) corresponds to the nonlinear terms 乐(•）after transformation. And especially, 

= b~^{w)xi = and gi{z, e, v, w) — b~^{w)gi{z^ e, v, w). 

The above system can be formed into the following compact form 

* = f{z,e,v,w) 

fj = Mf]-{~Go{z,e,v,w) 
. 、 （6.14) 

= ^t+i + Gi[z,e,v,w) 2 = 1, • • • , r - 1 

4 = fZ + Gr{z, e, V, w) + '^f j 

where Go(乏’ e, v. w) = e,v�w) and Gi{z, e, v, w) = + 氛(乏,e, v, w). Espe-

cially, Gi{z,e,v,w) = dr{v)^i + 如 ( . ) = b - ^ { w ) {dr{v)e + gi(z, e, v, w)). 
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T i l l now, the stabi l izat ion problem of the t ransformed augmented system (6.14) can 

be fur ther pursued by dynamic ou tpu t feedback, The for thcoming analysis shares some 

points in common w i t h those given in Section 3.3.2. 

First ly, we introduce an observer-like dynamics to est imate the states of ( subsystem, 

i ^ i+i + K{e - ii) i = , r - l 
义 . (6-15) 
Cr = A 办 — 6 ) 

The parameters \ are chosen to ensure the mat r i x Ao being Hurw i t z , where 

A 

—At ' 

The est imat ion error is denoted by ^ = — and i t is not hard to veri fy tha t ^ satisfies 

i=Aoi + B^fj + G(z, e, v,w)-\[e- h-\w)e) (6.16) 

where B = col(0, ’，. , 0 ,1) , G{z, e, v, w) = c o l ( G i ( - ) , . . . , GV(.)) and A = co l (A i , . •.，A^). 

Secondly, we replace & by its est imat ion i = 2, • • • , r , = e, and at tach (6.16) to 

(6.14), so we have the fol lowing system expression 

fj = Mfj + Gq{z, e,v,ui) 

i = B^fj + G{z, e, V, w) — A(e — b~^(w)e) 

e = K川)(6 + i2 + Gi (z, e, V, w)) (6,17) 

i i = L-^i + \ ( e — 6 ) i = 2，...，r 一 1 

I r = ^ + - ^ i ) 

I t can be seen system (6.17) is in the lower t r iangular fo rm by viewing (2,77, ĉ ) as the 

inveise dynamics, A n d t i l l now, bo th e and《” z = 1 ，…， r are available for feedback 

design. 

Th i rd ly , we introduce the fol lowing assumption to fur ther proceed. 
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Assumption 6.3. For any compact set S C x there exists a C^ function Vz(z) 

satisfying 这乏(||乏||) < Vz{z) < ag(||z||) for some class /Coo functions a^(-) and az{-) so 

that along the trajectory of z subsystem of (6.17), the following inequality holds for any 

( f , w) e 

where «(•) is some known class Koq function satisfying linis—o+ sup(a~^(s^)/5) < oo, 7e(-) 

is a known smooth positive definite function and is some unknown positive constant. • 

Assumption 6.3 ensures the 2 subsystem is RISS w.r.t state 乏 and input e. And the 

equil ibrium point ^ = 0 of the undriven system I == / ( 乏 i s locally exponentially 

stable if a^l") and a^i-) are locally quadratic. Under Assumption 6.3, by changing supply 

functions technique, for any smooth function A(z) > 0, there exists a C^ function Vz{z) 

satisfying < Vz{z) < such that, for any {v, w) € E, along the trajectory 

of 2 subsystem, Vz{z) < 一A(f)||乏||2 + holds for some known smooth function 

7e(-) > 1 and some unknown positive constant S .̂ 

Moreover, since both M and A^ are Hurwitz matrices, we can see that for the inverse 

dynamics of system (6.17) 

M f j + Go{z, e, V, w) (6.18) 

f = + Bmj + G(z, e, v,w) - A(e - b~\w)e) 

wi th the notation Z = coi(乏，fj, if), there exists a C^ function U(Z) satisfying < 

U{Z) < Q;^(||Z||) for some class /Ceo functions a^i') and such that for any {v, w) E 

E, along the trajectory of (6.18) the following holds 

U{Z) < -||Zf +(57(e) 

for some known smooth positive definite function 7(‘）and some unknown positive constant 

Then by using changing supply functions technique again, for any smooth function 

A{Z) > 0, there exists a function Vz{Z) satisfying a '^d l^ l l ) < ^ziZ) < 

for some class /Coo functions 这 a n d such that for any ( f , w) G S, along the 

trajectory of (6.18) the following holds 

Vz{Z) < -A(Z)||Zf + 內(e)e2 (6.19) 
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for some known smooth function 卞 ( - )> 1 and some unknown positive constant 5. 

Finally, we util ize backstepping design to achieve stabilization. For this purpose, some 

notations are introduced. For i = 1，…，r, denote 
/•s 八 A /N A A, 

. . . = Ct+i — . . . Cr+i = u 

dk ‘ de 
k) = —kp(e)e, k 

K2(e，A;，《、，= -2wi — A2(e - 6 ) + Ki + — ^mf^i 

h = mEi 我2 

吻(e, k, 6 ) = —m — W2 — X'sie - i i ) + iTg + — + ^ l i + 
2 d^i 0^2 

03 = + 小2 

A 八 ^ A A f 

A;, • • •，ĈO = — ui^-i 一 A,(e — ^1) + K “ + — 

1
 r
 V
-
1
 

+
 

(k = + 4>i-i 

Then we arrive at the following result. 

Theorem 6,1. Under Assumption 6.3, there exists a dynamic feedback control law 

& = 〜(e，/c，！i，-.. ,〜n、 
. (6.20) 
k = p{e)e^ 

so that the trajectory of closed-loop system composed of (6.17) and (6.20) exists and is 

bounded over t G [0, 00) and the error output lim^^oc e 二 0, • 

Proof: In the 1st step, define Vi(e) = and denote b{w) w i th b for convenience, then 

we have 

< -hkp{e)e^ + tt/f + + G\) 

denote e ( | e + G'^ = Ho, then 

< -kp{e)e^ + lii? + Ho 
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In the 2nd step, define (e, Wi,b) = Vi(e) + + ！炉，then we have 

= + u)i (^2 — Ki) - bb 

< -bkp{e)e^ + + Hq + w八 1^2 + + 入2(6 — Ci) 一 五i(时〜+ ^ i ) — i ^ i ) 一 bb 

=-bkp{e)e^ + ^yj + Hq + it^i (妨 + + 入2(6 — 6 ) — i ^ i ) — + C；) - bb 

< -~bkp{e)e^ + wl + Rq + w^ (妨 + W2 + X2{e-ii) - Ki) - (6 + 旬?î i五 

1 
=-hkp{e)e^ + Ho + wi'w2 + Wi [wi + + - 6) — i^i — + -wiEf) 

denote = H i , 112 = Hq + H i , and use /̂ 2，(h gives 

V2 < -bkp(e)e^ - wf + W1W2 - 6((/)2 + 6) +112 

In the 3rd step, define ^3(5, Wi,iU2, b) = Wi, b) + 臺w;•，use the similar arguments 

we have 

K3 < -bkp{e)e^ - + W1W2 —石(02 + 6) + Ha + W2 (^3 - ^2) 

< -bkp{e)e^ - wj + W1W2 — 1(4)2 十 S) + IT� 

dK2 0^2 \
—
/
 

+ W2{k3 + W3 + A3(e — eo —五2(时2 + G\) - K 2 - 心 

=-bkp{e)e'' - w^ - + (p2 + i) +^2 + 
Zi 

+ wziwi + /i3 + A 3 ( e - 6 ) - S丑2I2 - K2- — + + 
夾 2 2 

< -bkp{e)e^ - w^ - w^-h W2W3 — 6(^3 + 6) + Ha 

where lis = 112 + Hi. 

In the ith step, define V^(e，Wi，…,Wi—i,i) = V^—i(e, Wi, - • • ’ 购一2, + l^f-i^ then 

. 卜 1 ~ . 

l^i < -hkp{e)e^ - ^ + Wi—rWi - b{(j)i + 6) + 
j二 1 

where I l j 二 T^i-i + H i . 
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In the r t h step, define K (e , Wi, • • • , Wr- i ,b) = K - i ( e ,川 i , …， ^ r - 2 , b) + 全 i , then 

Vr < -bkp{e)e^ — X ]切 ? + Wr-lWr - b{(l)r + 6) + n^ 
j二 1 

where = + Hi = Hq + (r - l ) n i . 

Setting Wr = 0，i.e. u = /c, | i , • • • ’ and b = —4>” we have 

r- l 
Vr < -bkp{e)e^ - X I 切? + ^^ 

•？=1 

Notice 

= + l)na = + G{) + (r — 

Ci = (2 + Gi(z,e,v,w) 

Gi = {d^{v)e + gi(z, e, v, w)) 

i t is easy to verify that for the smooth functions and 11”(Z，e, v, w), 

G[{0,0,0,v,w) = 0, and 0, i;, lu) = 0 for any G S. 

Then by Lemma 7,8 of [36], we can show that 

for some positive constant c', some known smooth functions h'i(-) > 1, ^ 1- Further 

the upper bound of can be estimated as 

where ĉ ^ is some positive constant, and %(• ) , he{-) are some known positive definite 

functions. Consequently, we have 

K < -bkp{e)e' — E切？ + <^n{hziZ)\\Z\\' + 

As shown in (6.19) where V^ is well posed, we further define 

V = Vz(Z) + K ( e 具 … ， W r - i + kf 

where ^ is a constant to be specified later. 

(6.21) 
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The derivative of V is 
r-l 

y < —A(Z)丨I割+ 6j(e)e' — bkp(e)e' — J^w� 

j - i 

+ c^{hz{Z)\\Z\\^ + he{e)e^) + {k - k)p{e)e' 
r- l 

= — ( A ( Z ) — c^hziZ)) II别2 + (转⑷ + 嗎—bkpie)) 

Lett ing A ( Z ) > a^行z[Z) + 1, p{e) > max{7 (e) , he {e ) } and k > • 

v s — 

E 
+ Ctt)，we have 

which implies the states of closed-loop system composed of system (6.17) and controller 

(6.20) are bounded over t € [0, +00), especially k is bounded. Moreover, since e and e are 

bounded, k exists and is bounded, so k = p(e)e^ is uniformly continuous. By Barbalat's 

Lemma, i t can be concluded k ^ 0 SLS i ^ 00, which implies e 0 as t ^ 00. o 

Recall the internal model (5.18) and the observer-like dynamics (6.15), as mentioned 

in Proposition 5.1, Theorem 6.1 leads us directly to the solution of output regulation 

problem for the original plant (6.1) w i th the uncertain reference trajectory generated by 

nonlinear dynamics (5.2). 

Corollary 6.1. Under Assumptions 6.1, 6.2 and 6.3, by using the following dynamic 

output feedback control law 

力=M77 + N{v)u 

ii = i+i + Ai(e~~|i) i = , r - l 

i = (u - ^f]) + Me - ii) (6-22) 

k = p(e)e2 

the trajectory of closed-loop system composed of (6.1) and (6.22) exists and is bounded 

over t G [0, 00) and tracking error e approaches zero asymptotically as t ^ 00. • 

6.3 Examples 

In this section, we consider some examples to show the effectiveness of the proposed 

design. Our method gives the global results compared w i th the former ones. 
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Example 6.2. _ 

Consider the numerical example given in [14], where the plant is described by 

xi = Xi Wie^ + X2 

= (1 + W2)xi + sin(7iJ3ea:2) + u (6 23) 

e = Xi — Vi 

and the exosystem is the Van der Pol oscillator 

Vi = V2, "2 = — + (1 — v\)v2 (6 24) 

In [14], the output regulation problem is solved for sufficiently small in i t ia l state of 

the closed-loop system and the exosystem and sufficiently small uncertain parameters 

( w i , W ' i ), SO the result is local We intend to achieve the global results 

Notice sm(iiJ3ex2) is a sinusoidal function, by using the Taylor expansion we can express 

sin(w^ex2) = g{t)e, where g[t) is some uncertain t ime-varying function I t can be seen 

that system (6 23) is now in the form of (6 1) w i th no inverse dynamics z 

The solution of the corresponding regulator equations is given as follows 

Xi(>，^^) = TJl, = -V1+V2 . . 
(6 25) 

u( f , w) = —V2 — + (1 — vl)v2 - (1 + W2)vi 

As mentioned in [14], we denote u(t), w) = Uo(i') + w) with = 一U2 — î i + 

(1 — Vi)v2 and \ii{v,w) = —{1 -i- W2)vi By lett ing ti — Uq + l i i , we introduce an auxiliary 

system 

xi ~ Xi + Wie^ + X2 

= {1+ W2)xi + g{t)e + + ixi (6 26) 

e = xi — vi 

i f there is a control Ui solving the output regulation problem for the auxil iary system 

(6 26), then the control law u = iiq + u。solves the output regulation problem for the 

original plant (6 23) 

I t can be verified that 

=~-Ui(v,w) + (1 - vp 
dt^ ， ‘ ‘ ‘‘ dt 
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Consequently, the steady-state input generator of the form 5.19 can be derived as 

follows. 

= (1 - V I ) t i + T2 

7-2 = ( - 1 + 

and the internal model w i th output Ui can be designed as follows. 

rj = 

- 2 1 _ 3 - w? _ ^ 1 
2ViV2 —1 0 
^ 1 
2ViV2 

ui Mr] + N{v)ui (6.27) 

Attaching the internal model (6.27) to the auxil iary system (6.26) and performing the 

following input and coordinate transformation 

Xi ~ Xi — X i . X2 ̂  X2 - X2. fj 二 Tj — r , Ui ^ Ui —屯77 

fj - C2{v)x2 一 Ci{v)xi, 

the resulting augmented system is 

Xi = X2 + (e 

X2 = (ui + 辦 ) + (1 + + g(t))e 

Further, performing the input transformation (6,11) as fj 

where 

C2{v) = N{v), C i ( > ) 二 MN(v) - N�(v) 

the augmented system can be formed into 

,二 Mfj + go{e, v,w) 

击1 = 办 + (e + Wie^) 

= + ^ + ci{v)xi + C2(v)x2) + (1 + 71)2 + 9{t))e 

The transformation ^ — T2{v, w)x is given as = = ~ cJi(幻)无 1, w i th d! 

—2viV2, and by denoting do(v) — 3 — vf - 2v2 — 2vi(—vi + (1 — vf)v2), we have 

fj = Mr] + ,go(e. v, w) 
= + + + 

6 = + + ^77 + 办(e, V, w) 

V = 

where = Xi = e and 办(e, v, w) = (1 + + — di{v){e + wie' 
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Then we can show that the following control law in the form of (6.22) solve the global 

output regulation problem for (6.23). 

力=Mr] + N{v)ui 

i i = 6 + 2(e 一 l i ) 

6 - (ui - 师 ) + (e - l i ) 

k = p{e)e^ 

= 6 — Ki(-) 

f^i(-) = ~kp(e)e 

K2(-) = -2wi — (e — l i ) + E 各 + ATi — WiE^ 

where 

State Response of Controlled Plant 

10 15 20 25 30 35 40 45 50 

State Response of Van der Pol Oscillator 

10 15 20 25 30 35 40 45 50 

Figure 6.1: Dynamics of the Controlled Plant ami Exosystoiu 

I n [14], the uncertain parameters of the plant is chosen as w i = 0.1, W2 = 

W's = 0,3, and the ini t ia l states of the plant and the exosystem is taken w i th xq = ( — 

-0.2, 

0,2)， 

vq = (0.1,0). For simulation, we arbitrari ly choose, no need to be sufficiently small, the 

in i t ia l states for the plant and exosystem as Xq 二 (3, —2,1), vq — (—2,4), and wj = 3, 5, 
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W2 = 2̂  W'i = —5, and in i t ia l states for the controller are set to be zero. The results are 

shown i n F ig 6.1 6.2. o 

The Tracking Performance 

-5 
0 

30 

20 

10 

0 

10 20 30 

The Dynamic Gain 

40 50 

•_• 1 1 1 ••__ 1 

厂 
-

f 

1 1 1 dynamic gain: k 
0 10 20 30 40 50 

Figure 6.2: Tracking Performance and the Dynamic Gain. 

Example 6.3. > 

Consider the synchronizat ion problem of per iodical ly forced pendu lum w i t h Rayleigh 

equation. 

The dynamics of per iodical ly forced pendu lum under contro l can be described by 

(9 = _7々—s in 0 + a cos{ujt) + u 

The Rayleigh equation, as typ ica l a nonlinear system as Van der Pol oscil lator is, is 

given by 

X — / i ( l — + X — 0 

I t should be noted tha t the Rayleigh equation can be obtained f rom Van der Pol oscil lator 

= 0 by the subst i tu t ion y — a/Sx. Some examples w i t h Rayleigh equat ion 

as exosystem have been considered i n [20] and [112]. The dynamics of Rayleigh equat ion 

is shown i n Figure 6.3. 
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Phase Portrait of Rayleigh Equation 

Figure 6.3: Pliase Portrait of Rayleigh Equation 

The composite system of periodically forced pendulum and Rayleigh equation is as 

follows. 
Xi = X2 

±2 = — sin Xi — 7x2 + a cos{ujt) + u 
(6.28) 

Vi = V2 

1>2 = -Vi + — VI)V2 

To be specified, cos{ujt) is certain signal, /x is some certain parameter, and 7 is some 

uncertain parameter. The control objective is to render the output of the periodically 

forced pendulum y = xi to track 1 asymptotically. 

Performing a coordinate transformation y i = x i and y2 = X2 + "yxi^ (6.28) turns into 

the general output feedback form w i th relative degree r = 2 as follows. 

yi =y2 — ivi 

y2 =u — sin yi + acQs{ujt) 
(6.29) 

Vi =^V2 

V2 : Vl + - vl)v2 
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The solution of the regulator equations are 

yi{v,w) vi, y2{v,w) = jvi n{v,w) = Uo(?j) + w) 

Uo ⑷ = — v i + / i ( l — vl)v2 + sin 巧—acos{ujt) , U i ( f , w) = yv2 

Like the former example, by lett ing w — Uq + u i we introduce an auxil iary system 

' 〜 ， (6.30) 
2/2 =ui — sin yi + a cos (tot) + Uq 

Since Ui = 71^2, i t can be verified that 

, 、 ，、dui 
二 « 0 (中1 + aiiVj dt^ )丄 IV ) dt 

where 

aoO) = - 1 + —如2) ( — t^l + M l — , CLi {v) = / i ( l — vl] 

so the steady-state input generator in observer canonical form is 

十 1 = — yl)ri + T2 

子2 = —n 

and the internal model w i th output u i can be designed as 

V = 
- 2 1 

1 A 
— 1 0 

2 + " ( 1 - 《 

0 

rlpf 
Ui ^ M7] + N(V)U： 

Attaching the internal model to the auxil iary system and performing the transforma-

tions 

m = v\ -Yiiv^w) = e , 如 = y2 — y 2 0 ’ w ) 

fj = r] — T, ui = ui ~ ^77 

we have the following augmented system 

ih =饭—7e 

力2 二召1 + 屯力 + sin?；! — s in(V i + e) 

“ Mri + N{v){Ui +刘) 

Performing the coordinate transformation on 7), 

fj^V- C2iv)y2 - ci{v)yi 

(6 .31) 
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wi th C2(v) — N(v), ci(v) = Mc2[v)— “丄、”)，co(î ) — Mci{v) — we have 

,二 Mfj + go{e,v,w) 

二 y2 + gi[e,v,w) 

y2 = ui + + C2(i；)如 + ci{v)yi) +g2ie,v,w) 

where gi = - 7 6 , 如 = s i n v j - sm{vi + e)，and go = co{v)e — cj (v)g i - C2{v)g2. 

And by transformation ^ = T(v)y, where = Vi, — —d2{v)yi + ^2，we have 

节=Mf] + go{e,v,w) 

6 = 6 + + .91 

& = 召 1 + 屯 ” + + 办 

wi th 

C/2W - 2 + ^ 1 - ^ 2 ) , 

di{v) = —4 — 2 / i ( l — vl) — 2ii�—2v2){~vi + — vl)v2) 

h 二豆1, h = 92- d2{v)gi 

After introducing the observer-like dynamics to estimate we have the system in the 

following form 

f] — Mfj + Go{e,v, w) 

e ^ i 2 + i2 + G i (e , v ,w ) (6.32) 

6 + A2(e - I2) 

and finally, the following control law in the form of (6.22) 

7) = Mry + N ( v ) u i 

i i = a + 2(e — 6 ) 

4 = (ui - ^v) + ei) (6.33) 

k = p(e)e^ 
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where 八 

斯 = S - /^i(-) 

Ki(-) = -kp{e)e 

= -2 w i — (e — 6 ) + E各 + WiEl 

solves the synchronization problem. 

For simulation, we take 7 = 0.22, a; = 1, a = 2.7 for the periodically forced pendulum, 

and /i = 5 for the Rayleigh Equation. The initial states for the plant and exosystem are 
randomly chosen as 工。=(1.2, — 5 ), ？；。= ( 2, 3 ), and initial states for the controller are 
all taken zero. The results are shown in Fig6.4-6.5. 

5 
State Response of Periodically Forced Pendulum under Control 

-10 20 40 60 80 

State Response of Rayleigh Equation 

100 

20 100 

Figure 6.4: Dynamics of Periodically Forced Pendulum and Rayleigh Equation 
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The Tracking Performance 
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Figure 6,5; Tracking Performance and the Dynamic Gain 

6.4 Conclusion 

In this section, we further investigate the nonlinear output regulation problem w i th a 

nonlinear exosystem. The nonlinear system we considered in this chapter is in the general 

output feedback form, has been extended to a more general output feedback form, and 

an observer-based approach is adopted to solve the problem. 

• End of chapter. 



Chapter 7 

Conclusions 

I n this thesis, under the general framework for handling nonlinear output regulation 

problem, we have investigated: i) the global robust output regulation problem for t ime-

varying nonlinear systems subject to t ime-varying exosystem; and i i) the global robust 

output regulation problem for nonlinear systems subject to nonlinear exosystem. 

I t has been witnessed that the design of internal model plays the crucial role in achiev-

ing the goal of output regulation. A n internal model possesses an essential abi l i ty of 

generating all possible steady-state input informat ion asymptotical ly which is needed to 

enforce the regulated error output identically zeros, also i t ensures the stabi l izabi l i ty of 

the augmented system which is composed of the original plant and the internal model 

itself. The design of the internal model and the (global) stabil ization of the augmented 

system are strongly interlaced. 

The concentration on the internal model design runs throughout the thesis. In either 

problems mentioned above, the internal models are all carefully conceived due to the t ime-

varying settings or nonlinearity property of the exosytem. I t has been shown that internal 

model is based on the dynamics called steady-state generator, and the existence conditions 

for such steady-state generator are rigorously characterized in bo th scenarios, thus the 

design of an appropriate internal model is applicable. Moreover, the internal model is zero 

input globally asymptotical ly stable which great facilitates the global output regulation. 

I n addit ion, in the t ime-varying settings, a generalized internal model in proposed to deal 

w i th the uncertain exosytem case. 

The stabil ization of the augmented system, on the other hand, requires certain tech-

120 
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niques due to the specified system structural properties. We mainly focus on the nonlinear 

system in the output feedback form. In the t ime-varying case, certain conditions are pro-

posed to handle the occurrence of t ime-variant terms in plant and the exosystem. And 

in the t ime-invariant case, a comparative study between filter-based and observer-based 

design is conducted. 

The thesis wi l l be closed w i th several prospects of future research. 

• For the adaptive output regulation w i t h uncertain t ime-varying exosystem, a rel-

evant issue on the asymptotically estimation of the uncertain parameters of the 

exosystem is not ful ly addressed. Usually, this issue is referred to as the "parameter 

convergence" in the terminology of adaptive control, and i t is commonly known that 

the parameter convergence relates closely to the "persistent excitation" condit ion 

(PE condit ion) of certain signals inside the closed-loop system. 

The former work [66] links "min imal internal model" property to the PE condit ion 

of state vector of steady-state generator, and shows the satisfactory results on the 

parameter convergence when the linear t ime-invariant exosystem contains uncertain 

parameters. For t ime-varying exosystem, this is worthy of further investigation. 

The prel iminary tests and examples ful ly show the parameter convergence achieves. 

A reasonable explanation is the steady-state input , which is asymptotical ly gener-

ated f rom the internal model, contains sufficient r ich frequency contents so that the 

state of the generalized internal model (or the generalized steady-state generator) is 

persistent excitation. 

The adaptive output regulation problem can be part ia l ly regarded as adaptive con-

t ro l and identif ication of t ime-varying systems which is st i l l a challenging problem 

and only few publications addressed on this topic [81] [118]. 

® For output regulation w i t h nonlinear exosystem, the presented control strategy com-

bines dynamic output feedback and feedforward control, which render the problem 

tractable. The ul t imate aim is to use dynamic output feedback only. This requires 

further characterization of the existence condit ion of internal model which probably 

turns to be a nonlinear one. Under such hypothetical circumstance, the stabiliz-

abi l i ty of the augmented system becomes more crucial. Especially the dynamics of 

the transformed internal model is a nonlinear one, and i t together w i t h the trans-

formed inverse dynamics of the original plant is a combined one, which may contain 



122 CHAPTER 7. CONCLUSIONS 

unique or mul t ip le or none equi l ibr iums. To stabil ize the augmented system w i t h 

such inverse dynamics, we need fur ther inversigate some advanced techniques. 

• End of chapter. 
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