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A b s t r a c t 

In this thesis we study the thin-film type equations in one spatial dimension. 

These equations arise from the lubrication approximation to the thin films of 

viscous fluids which is described by the Navier-Stokes equations with free bound-

ary. From the structural point of view, they are fourth-order degenerate nonlinear 

parabolic equations, with principal term from diffusion and lower order term from 

external forces. In Chapter one wc study the dynamics of the equations when 

the external force is given by a power law. Classification of steady states of this 

equation, which is important for the dynamics, was already known. Previous 

iiuincricai studies show that there is a mountain pass scenario among the steady 

states. We shall provide a rigorous justification to these numerical results. As 

a result, a rather complete picture of the dynamics of the thin film is obtained 

when the power law is in the range (1,3). In Chapter two we turn to the special 

case of the equation where the external force is the gravity. This is important, 

but, unfortunately not a power law. We study and classify the steady states of 

this equation as well as coniparc their energy levels. Some numerical results are 

also present. 
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In t roduc t ion 

Fourth-order degenerate parabolic equations of the form 

(a(h)VAh + 6 •") 

arise in the lubricatioD approximation to thin filiny of viscous fluids which are 

described by the Navier-Stokes equation with free boundary. The air/liquid in-

terface is at height z = h{x. y. t) and the liquid/solid interface is at z = 0. The 

cocfficiont a{h) is positive in (0, oo) and vanishes at (), reflcctiiig surfacc tension 

offccts. A typical choice is a{h) = h^ + Ah'' [21, 22, 24, 25, 32 33] where n e (0, 3) 

and A > 0. The coefficient of th( sccond-order term b(h) is a continuous function 

in (0, oc). It can rcfleci additional forces such as gravity b(h) h? [23], van 

der Waals interactions b(h) I f ^ , m < 0 [33, 20, 27, 42]. or t her mo capillary 

effcctns b{h) (1 "2)2 34. 39]. ctc. One may find a wealthy iiifonnatioii from 

surveys Oron et al [33] aud Bertozzi [9] including many experimental, numerical 

and theoretic results. The analytic study of this equation was initiated in Bernis-

Friedman [8] (5 = 0), Beretta et al [7], and Bertozzi-Pugh [12, 13] and now many 

results have been obtained. 

Most attention so far has been focused on the one-dimensional case, where 

h = h{x. t) and the liquid film is uniform in the y direction: 

hf = + h{h)h, (2) 

Usually, periodic boundary condition is imposed. Note tliat (2) is of conservation 
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form, the area is preserved by the evolution 

J h{x, t)dx — J h{x, { >)dx. 

Besides, one can check directly the following dissipation relation 

E{h{xA))+ j j a{h){K,, + f{h))ldxdt = 0)) 

by introducing the energy associated to (2): 

8[h) - i / hldx — f FQi^dx 

The integrals in energy arc over one period and 

(5) 

f = r f{s)ds. 
Jo 

Although (2) is a degenerate equation, it is known that h preserves positivity 

under tlie assumption 

0 < a{h) < const. h\ h small, for some n > 3.5. (6) 

Moreover, under the further one-sided growth assumption 

f{h) < const. (1 + |/i 0, for some q < 3  

the solution starting from a positive, periodic initial function exists for all time. 

Letting X{P, A) (resp. X+{P, A)) be the subset of P/2] which consists 

of all (resp. positive) functions of period P and area A, (2) generates a flow, or 

more precisely a semi-flow, in X—(JF\ A). 

The long time behavior of the flow is dictated by its associated energy and 

its steady states. The energy dissipation relation (4) suggests its steady state h 

be defined as an element in X{P, A) where on each component of {h > 0} there 

exists a constant c such that 

h n + m = (7) 



In general, steady states satisfying (7) can be divided into following three classes: 

(i) Constant function h = A/P, which clearly always exists. 

(ii) Nonconstant positive steady state. It can been shown that such steady 

state must be periodic. Moreover, it is symmetric with respect to its maximum or 

minimum point ([28], Appendix A, B), whose minimal period is P/j, j = 1, 2, • • •. 

(iii) Droplet and configuration of droplets. A single droplet is a nonnegative 

steady state in an interval and vanishes outside. Its length may be shorter or 

equal to P . It is symmetric with respect to its midpoint and is strictly decreasing 

near its right ciidpoint. So the contact angle is wcll-dcfinccl. We may further 

group such single droplets into those with zero contact angle and with nonzero 

contact angle. A configuration of droplets is made up of at least two separate 

droplets whose interiors of their supports are mutually disjoint. 

The abundance of steady states makes the study of the long time behavior 

of (2) clifE'ereiit from other parabolic equations, the closost one being the Cahii-

Hilliard equation. Among these steady states, three types of them are most 

relevant-the constant state, positive steady states of minimal period, and droplets 

with zero contact angle. They have better regularity; indeed, they belong to 

Concerning steady states, there are two fundamental issues. First, the classifi-

cation problem, namely, given X{P, A), when does there exist a positive periodic 

steady state or a droplet or a figuration of droplets in it? If such steady state 

exists, is it unique? Or is it possible for two distinct steady states, for example, 

positive steady states have same minimal period and area? This problem has 

been studied extensively in a series of papers by Laugesen and Pugli [28]-[31 

when f(h) is a power law fi”• Based on the scaling property of the power law, it 

is solved to a large extent. As a typical case, for each q G 2, 3) and positive A, 

there exist Pd Pc, Pa < Pc such that a positive steady state of minimal period 

exists in X{P, A) if and only if < P < P^, and it is unique whenever it exists. 

A droplet with zero contact angle exists in X{P, A) if and only if P > Pa. Things 
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become more delicate in some cases. For instance, when q belongs to a certain 

narrow range between 1.750 and 1.794. there is no droplet with zero contact angle, 

instead there are exactly two positive steady states of minimal period in X[P, A) 

for some (P. A). After classifying the steady states, the next step is to investigate 

their stability. The linear and energy stability of the positive steady states are 

discussed in [29] and [30]. Then in [17], the energy stability of droplets and their 

coiiiigurations have been studied. Moreover, a compieliensive comparison of the 

energy levels of various steady states can be found in [30]. This being done, one 

moves closer to the study of the long time behavior of (2). 

Ill Chapter 1. we focus on a special long time behavior, mountain pass sce-

nario. It is guided by the extensive numerical works carried out in '31], where 

a detailed description of the mountain pass scenario among the positive steady 

state, constant state and the droplet with zero contact angle fiisl observed in [30 

is present. Let hp. ĥ  and h^ be these steady states specilied by theii maxima be-

ing attained at the origin. For g E [2,3). a perturbation of hp of the form hp + c(fi 

for robust choices of (f leads to relaxation to h while tlie opposite perturbation 

hp £(p relaxes to h(j. They also observe there are hetroclinic orbits from hp to 

he and to h(i. 

We obtain general results on the long time behavior of (2) including proofs 

of tlie mountain pass scenario and the existence of heteroclinic orbits. We will 

describe some of these results by specifying to the power law in this introduction. 

First of all, it is necessary to focus on tlie set Xe{P^ A) consisting of even functions 

in X{P, A). As f is independent of x, any translate of a (iion-const ant) steady 

state is again a steady state. However, when restricting to even functions, there 

are exactly two. We denote tlie positive steady state and droplet with zero contact 

angle whose minima are attained at the origin by h'̂  and h[i respectively. 

Theorem A. Consider (2) m the power law where q G (1.3). For each A and P 

satisfying 

q < 47r 4 I1 , (8) 
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all IP—steady states in Xe(P, A) are given among /? hp, /i^, ha and h'^ (provided 

exist). Any positive flow of (2) in A) converges to one of these steady states 

uniformly as t — oc. 

When the inequality in (8) is reversed, the constant state is no longer linearly 

stable in Xe(F, A). Furthermore, there may be other steady states such as 

positive ones of iiuii-niiniinal period as well as configurations of droplets with zero 

contact angle. The dynamics would be more and more complex as P increases 

for a fixed /I. 

Next we establish a mountain pass scenario among the steady states. Note 

that from the above discussion, for every A there exist Pd and P Pd < P such 

that hp, h(} and he coexist in X(J), A) if and only if P G {Pd, Pc) for q G [2, 3). 

T h e o r e m B. Consider (2) in power law where q 6 [2,3) and hp, h^. and h(i 

coexist in X^^P, .4). There is mi open set U in X P, A) containing hp such that 

the set {h € U : 8(h) < E{]ip)}, where S{h) is the energy of h consists of two 

components Ui and U2. Any flotu (2) starting from U\ and U2 uniformly converges 

to he and hd respectively as t 00. Consequently, there are heteroclinic orbits 

from hp to he and to hd-

For g in a narrow range between 1.750 and 1.794, it is known there are two 

positive steady states of minimal period in the same Xe{P, A), a mountain pass 

scenario will be established among these two steady states and the constant state. 

Besides, there are mountain pass scenarios among the constant state and two 

droplets in some cases, too. 

A mountain pass scenario was also observed in the normalized curve short-

ening problem. A locally convex, immersed, closed plane curve 7 which is a 

contracting self-similar solution of the curve shortening flow becomes a steady 

state for the normalized curve shortening problem. In Abresch-Langer [2] it was 

conjectured that a perturbation of the form 7 + £ > 0 small, starts a flow 
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converging to a folded circle, while 7 — £ leads to the development of cusps in 

finite time. The conjecture was affirinatively settled in Au [5] and further studied 

in Wang [40] based 011 methods very different from those used here. 

The chapter contains six sections. In Section 1.1 basic results are summarized, 

and a now result. Proposition 1.4, is proved. The significance of this proposition 

is that it shows the cj-limit sot of any flow of (2) under (6) and (1.1.3) in X+(P‘ A) 

must contain an i^^-stcady state. Essentially it enables us to avoid configurations 

of droplets with non-zero contact angle. Next, in Section 1.2 we adopt a rnin-

inax argument to prove the existence of an /i^-steady state hm. a mountain pass 

solution. More precisely, hm is characterized by 

S{hm) inf m a x ^ ( 7 ( 5 ) ) , (9) 

where r coiisiRts of all (continuous) paths between sonic fixed hi and h] in 

Xc( ,A). In Section 4 a moimtain pa ss scenario, Theorem 1.14, is proved under 

further assumptions on = 1, 2, and the energy levels. In practise we will 

take /i/s to be "strict local minima" of the energy, see (1.3.3). Local properties 

necessary for the application of Theorem 1.14 are established in Section 3. 

Ideas involved in tlie proof of Theorem 1.14 are very simple and could be 

sketched as follows. Assume that (a) the steady state in (9) is realized at some 

positive steady state hm and (b) there are no other //^-steady states with energy 

less than S(hrn) in Xe{X, P) except /?c, hd and Tlie cnix is to construct an 

admissible path 7* in V satisfying 7*(1/2) — hm and £{^{3)) < Sfjim) otherwise. 

Then the flow starting at where s E (0,1/2) is close to 1/2, converges to 

h(“ For if not, it must converge to either ha or h'̂  by (b). But then the combined 

path from he to along and then from to hd or h'̂  along the flow 

constitute an admiHsible path witli energy lower than a contradiction with 

the mill-max characterization of /i^ in (9). Similarly, flows starting from 7*(s) for 

s e (1/2,1) sufficiently dose to 1/2 converge to h^ or h'^. By the Morse lemma, 
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the same property holds for points in Ui and U2 respectively. 

In Section 1.5 we apply the general results to the power laws. Based on the 

fairly complete understanding of the clahsificatioii and stability of the //^-steady 

states as well as the global energy landscape, the dynamics of the flow will be 

discussed case by case in the range (1,3). Theorems A and B as well as other 

results will be established and tabulated. 

Further comments and some open questions concerning especially the power 

laws for q not belonging to (1,3) can be found in Scctiori 1.6. The difficulty 

extending our results to the range q G (—1 1) will be addressed. We also examine 

(6). So far the condition n > 3.5 has been imposed to preserve the positivity of 

the solution. The solution may touch down at 0 in finite time when n is less than 

3.5 and then it is necessary to consider weak solutions. 

The long time behavior of the solution of (2) for some / can be found in 

Bertozzi-Pugh [11], Tiidorascii [38], Witelski et al [41] and Zhang [44], In these 

works droplets witli zero contact are not steady states. Asymptotic behavior of 

the solution to the Cauchy problem for some thin film type equations are studied 

in Caiien-Ulusoy [15] and Carriilo-Toscani [16 

In Chaper 2. we study the steady states of the following thin film type equa-

tion; 

ht = —(("3 + Xh^h u + h'h,)^ (10) 

where A > 0 and r? e (0, 3). This equation applies to the case of thin viscous 

liquid film 011 the underside of a horizontal plane, where gravity acts as the main 

external force, e.g., the hanging droplet on the ceiling or on the bottom of a plate. 

Under a special case that A == 0 for (10), i.e., a{h) — b{h) = h'^, all steady-

states have the form 

h — c + a c o s X + bsinx. c> 0 
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constrained only by the requirement c? + b̂  < c ,̂ ensuring the nonnegativity. All 

these have a fixed rniriirriai period 27r. Oron-Rosenau [34] and Yiantsios-Higgins 

43] have studied this respectively. For stability, it is shown in [43] that a single 

zero contact angle droplet has the least energy among all configurations of zero 

contact droplets with the same area. 

When A > 0, unlike power law, the scaling property does not hold. The 

classification problem becomes more complicated. Let h be a positive steady 

state satisfying (7), where /(O) — 0, 

/ = (11) x'̂  + XT/' + A 

Multiplying (7) by ĥ , and integrating yields a conserved quantity, 

~h:i + F{h) -ch = d, (12) 

where F{x) = f^ f{s)ds and d is a constant. Denote the minimum value of h by 

a, then d = F{a) — ca. As f increases, we could define hc{a) as the unique root 

of 

fihc) = c. (13) 

Obviously, the admissible interval of a is [0 /iJ. When a = /i h he ia a 

constant state. Wlien a = h is a ()-droplet. Solving for the first derivative 

from (12), 

h,{x) — ca — F(h(x)) + ch(x}). 

We invert and then integrate to obtain the inverse function x = x(h) over a 

half-period. 

“ 1 
x(n)— V2Ja y^F{a)-ca-F{y) + cy' 

Here h € [a, /5?],wiiere p is the next root larger than ot of the equation F{x) — cx — 

F(a) — ca. Obviously, the maximum value of h is and hjc{x) > 0 from heights 

a rising to (5. Denote the minimal period and area of h by P{a, c) and A{a, c) 

respectively. We ha,ve 

, . (14) 
…y F{a) — ca — F(x) + cx 



The area A(a, c) under a period is also found by integrating the inverse function, 

A{a, c) = 2 / ‘ h{x)d'x = 2 j hxk{h)dh 
Jo J a 

= V 2 f I • (15) 
,L \/F{a) -ca- F{x) + cx 

If h is a zero contact angle droplet, i.e., a 0. The constant d in (12) vanishes. 

Analogically, the length and area of droplet h are given by (14) and (15) with 

a = 0, 

m c ) = ^ / 2 / \ (16) 
Jo \/cx — F{x) 

and 

Ai0.c) = V2 (17) 
JQ \Jcx — F{x) 

We will see that equations (14) and (15) arc footstones of Chapter 2, 

Now, consider the mapping (a, c) (P(a, c), A{a, c)) where (a, c) in the 

admissible set 

E = {(a,c) (18) 

Setting 

and 

r, = {{a,c):a = h,{c),c>0}, (19) 

r,z = { ( 0 , c ) : c > 0 } , (20) 

the boundary of the admissible set dTj is given by F̂  U r̂ ^ U {(0, 0)}. (a, c) and 

A{a, c), (n , c) E Fj, correspond the length and area of a zero contact angle droplet 

reypectively. When (a, c) e E , P(a , c) and A(a, c) correspond the minimal period 

and area of a noncoiistant positive steady state. Now the ciasyification problem 

could be restated as: Given an arbitrary choice of (Fq, ^o), does the mapping 

have any preimage (a. c) G E? If yes, is the preimage uiiique? 

Our main results in this chapter arc: 
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Theorem C. Any 'positive steady state of (2) satisfying (11) has its minimal 

period larger than 27r. Moreover, for any Pq > 

Ap C) : (a, c) G c) = Po} (21) 

is a closed interval [^1,^42] Ai < A2. When n > 2, for any Aq > 0 

{P(a , c) : (a, c) € S, c) } (22) 

is also a closed interval [Pi, P2], P < P2. 

Theorem D. There exists rt 6 [y , 3) such that when n > , t h e number of 

positive steady state of (2) and (11) in given X{P, A) is fimte" When n < n*  

the nmnhtr of posiUve sUady state is at most vnjiniiely countable. 

Chapter 2 is divided into five sections. In scctioii 2.1, wc build some basic 

results such as monotonicity and limiting properties of P{a, c) and A{a, c), and 

use them to prove Theorem C. In section 2.2, after studying some properties of 

E{a, c), we give tlie proof of Theorem D. Some propositions about comparison 

of energy levels will be given in section 2.3. In section 2.4, numerical simulations 

arc present. 



C h a p t e r 

A M o u n t a i n Pass Scenario and 

Heterocl inic Orbi t s 

1.1 Basic Results 

Consider the initial value problem for the thin film type equation 

ht + h^ih,. + f{h)% =0, n > 0, 
(1 1) 

h(.,0) = ho. 

Here the initial function is given and the solution is sought in the space 

X(P,A} = {he H^l-P/2, P/2] : h(-P/2) = h(P/2), h > 0, / h = A } 
where P and A are positive numbers and the integral is over [—P/2, P/2]. The 

set X{P, A) is endowed with the //^-norrn. Eyeiy function in X{P, A) can be 

extended to an i/jo^-function of period P. We set 

A,+( ’ A) = {h e X{P, A): h> 0}, 

and 

Xe(P, A) - {h € X{P, A) : h{-x) = h{x), X E h P / 2 , P/2]} 

11 
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We assume that f is smooth on (0, oo) and satisfies 

f{z) < C i ( l + yz > 0, for some Ci and q e (0,3). 

Later a stronger condition will be imposed 

f ( z ) < (72(1 + 1)’ Vz > 0, for some C2 and q e (0,3). (L1.3) 

For ho in yl), it is easy to show that (1.1.1) has a unique, positive 

solution h(t) for small time. The divergence structure of the equation implies that 

the area is coiiyerved under the flow, so ])[t) belongs to A). To study the 

long time behavior of the flow, the following two relations are essential The first 

is the mentioned energy dissipation relation (4). Another is entropy inequality. 

Letting the entropy of h be 

( 2 - n ) ( l —n: 

Ah) - / log/7. 

/Klog/i — 1): 

/r 

n = 2. 

we have 

AKt)) + f j {hl — m h i =Aho), (1.1.4) 

provided Hq is positive or J(/io) is finite. As every ii/"^-function is Holder con-

tinuous with exponent 1/2 it follows from this relation that (1.1.1) preserves 

positivity as long as n > 4. In fact, it could be improved to n > 3.5. The proof 

follows the analogous one for the / 0 case, see [10 

From (1.1.2), F satisfies the estimate 

F(^) + ^ > 0 , gG (0,3). 
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Using Gagliardo-Nireiiberg interpolation inequality, we have 

F{h) < C3.4 + ( I 

As q/'S < 1, one can show that the following results hold . 

Proposition 1.1. Consider the energy where f satisfies (1.1.2). 

(a) For any h in X{P, A), its H norm is bounded if and only if its energy is 

bounded. 

(b) There is a minimizer for 

inf h^X[P,A)}. 

Proposition 1.2. For each /i G A), problem (1.1.1) under (1.1.2) and 

n > 3.5 has a unique global solution which is positive for all i > 0. 

We note the following useful estimate. 

Proposition 1.3, Let h{i), I > 0 be a solution of (1.1.1) in X{P, A). Then 

hi^xA) — h{x,s)\ < > 0, 

for some constant C depending only on the upper bound of the H^-norrn of the 

solution. 

This proposition is proved in |8] without the /-term, and the proof extends 

with minor changes to include f , see [13 . 

For a solution of (1.1.1) under (1.1.2), as its //^-iiorm is controlled by its 

energy, the estimate in Proposition 1.3 holds with some constant depending on 

the upper bound of its energy. 

Propositions 1.1—1.3 extend to more general equation 

h t + ( / ‘ : + / ( " ) ) (1.1.5) 

where a is a positive, smooth function on (0 00) satisfying 

a{z) < z near 0, for some n > 3.5. (1.1.6) 
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III particular, (1.1.4) still holds where the expression of the entropy can be found 

in [8]. We refer to [8, 12, 13] for details and further discussion. 

As discussed in Introduction, positive steady states, droplets with zero contact 

angle and configurations of droplets with zoro contact angle exhaust all steady 

states which are also in //^^(R). Others steady states only belong to ( ). 

A standard argument based on (5) shows that any global solution in X{P, A) 

whose existence is asserted in Proposition 1.2 subconvcrges weakly and uniformly 

to some steady state. In general, the steady state lies in P/2, P/2] only. 

However, the following result shows that flows in A) have better regularity. 

Proposition 1.4. Consider (1.1.5) under (1.1.3) and (1.1.6). Any global solution 

h(t) of (1.1.5) in A) contains a subsequence {h{tk)} converging to an tP-

steady state h^ in X(P, A) with = inf, S{h(t)), 

We call a number c a critical value of the energy if there exists an //^—steady 

state in X{P, A) whose energy is equal to c. 

Proof. Let us first look at the entropy relation (1.1.4). By (1.1.3), we have 

/ < c , f + 

=C2J J h^'h^^r 

By choosing £ satisfying C^^/q = 1/2, we deduce from (1.1.4) that 

f l ( / 4 - C" ) < W > 0  

where C* depends on the H^-norm of the solution which is uniformly bounded. 

Setting 

m = j {hi c* , 

we rewrite this estimate as 
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/ 9^is)ds < / g'{s)ds + 2I{ho), (1 7) 
Jq JO 

where g+ and g— are respectively the positive and negative parts of g. 

Given k, we find from the energy relation some large Sk such that 

j I a{h) (hn + /(/i))' < i yt> Sk. (1 .1 .8 ) 

If 

I 9^(s)ds < 2I(ho) + iV, Vt > 0, 
Jo 

where N - + 1), then 

oo 

Jo 

which implies that the measure of the set {t G [T, T + 1] : g+(t) < 1} tends to 

as T tenda to oo. Together with (1.9) we can find sonic t^ > s^ such that 

2 1 
< 

and g^ < 1 at t^. The last inequality means < 

hand, in case there is some T such that 

rT 

p (1.1.9) 

1 + (TP. On the other 

g+{s)ds>2I{h(i)^N, 
'0 

by (1.1.7) 
fT 
/ g^{s)ds > N. 

Jo 
It follows from this estimate and g— < C* that the measure of the set I = {t e 

:0 T] ; g~{t) > 0} satisfies C*\I\ > N, hence | / | > s^ + 1 by our choice of N, 

We conclude that the set J = {t e [ŝ  , T] : g- { f ) > 0} has measure greater than 

or equal to 1. Together with (1.1.8) we find some tk > Sk such that (1.1.9) and 

g— > 0, that's, H/î  ®!!! ^ hold at .Finally by a standard argument, {h{tk)} 

subcoiiverges to an / f s t e a d y state in X(P, A). 

• 
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Proposition 1.5. Assumptions as in Proposition 1.4, suppose further that h € 

Xe(P, A) IS positive and there are only fi'mtdy many H^-steady states on the same 

energy level. Then h{t) converges to h* in A). 

Proof. If }i{t) sub converges but does not converge to h” by Proposition 1.4 we 

can find some po > 0 and Sj, Sj — oo such, that h(sj) G Bap \ ) fo r all 

j. Here po is so small that all functions in have a positive uniform 

lower bound and there are no other iif^-steady states in 1?4"0(/“ except h ,By 

Proposition 1,3, there is a tq > 0, sucli that h{sj + r ) G B p̂̂  \ p /2(/i*) for all 

T e [0, To]. As 

r^j+'^o r 2 
I I a(h) + fih))^ ^ > 0, as j — oo, 

we can extract a subsequence h{sj+Tj) ,r j G [0, tq], converging to some i/^-stcady 

state in B ^ \ i?p /2(/?*), contradiction holds. • 

1.2 Mountain Pass Solutions 

There is always a steady state of (1.1.5) in cacli X(P, A), namely, the constant 

state. On the other hand, from Proposition 1.1 another steady state arises as a 

minimizer of the energy over X{P, A). This steady state may or may not coincide 

with the constant state. And this is easily checked by using linear stability. In 

fact, as a niininiizer is never linearly unstable and the stability of the constant 

state is easily verified via linearization, sec Proposition 1.10 below. Once the 

constant state is found to be linearly unstable, the minimizer provides us with a 

second steady state. In many cases they are droplets with zero contact angle, see 

[17]. 

In the study of some semilinear elliptic problems where the zero function 

is a trivial solution, the well-known result of Ambrosetti-R abinowitz [3] finds a 

positive solution by the moimtain pass lemma. We will borrow the same idea 
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to obtain a non-constant steady state for (1.1.5). The general setting of the 

mountain pass lemma is on a Banach space, but we need to work on X[P, A), 

which carries the structure of a cone rather than a space. Instead of generalizing 

the lemma to a cone, we utilize equation (1.1.5) (under (1.1.6)) which has the 

advantage of area and positivity preserving to replace the pseudo-gradient vector 

field involved in the proof of the loinma. 

Let hi and h^ in A). Although in practise we usually take them to be 

the constant state and a droplet with zero contact angle, it is not necessary to 

specify them when formulating the result. Set 

r {7 e c([0,1]:X(F, .4)) 7(0) = "1 7(1) = "2, 7 > 0 , 5 E (0,1)}. 

It is clear that T is non-empty. 

Theorem 1.6. Consider (1.1.5) where a and f satisfy (1.1.6) and (1.1.3) respec-

tively. Suppose that there exists £0 0 such that 

for all 7 G r . Then 

max <^(7(5)) > +eo (1.2.1) 

c — inf max <5(7(5)) 
7€rse[o,i] 

is a critical value of the energy. 

For 7 E r , let 7(f, s) be the solution of (1.1.5) using 7(5) as the initial value. 

Although for each t, the curve is continuous in X(P, .4), its endpoints may 

vary. In order to obtain an admissible path, we need to modify it. 

Lemma 1.7. Let d e (ci, c), where Ci = max{<^(/ii), E{h2)}, be a non-critical 
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value of the energy. For each s € 0,1], define 

0, ) < d, 

T{s) - t, ^(7(5)) > d and s)) = d, 

00, s(^f(t,s)) > d, yt > 0. \ 

Then T{s) is continuous when it is finite and the path 7 given by 

7(7X5),,s), £{^iUs))<d, 

belongs to F for every t > 0. 

Proof. First we claim that 

T{sk) -> T(s), as Sk — s, 

when T(s) is finite. For, as d is 11011-critical, for any e > 0, 

7(rO) +e,s)< d‘ 

It follows that for all sufficiently large k, ^{{T{s) -f c, -s>) < d, so 

T { S , ) < T { S ) + €,. 

and 

Similarly. 

holds. 

lim T{s,) < r{s] 

lim T(sj,) > T{s 

It is clear that 5) G F if we can show that 7(t, s) is continuous at each 

5 G (0,1). This is trivial when s)) > d. Let's consider s)) < d and 

s)) — d separately. 



§ 1.2 Mountain Pass Solutions 19 

When s)) < d, S{'-y{t, s^)) < d for all ’ sufficiently close to s, hence 

S,)= Skh S“ — ,s) = .s) 

as sa-

When s)) - d, we lia,ve t - T{s). If Sa )) > (L 

lit, si) = 7(( Sk) = 7(^(5), Sfc) — 7(^(5), s) = 7(t s) 

as s . 5. If (7( -s>)) < d, then T{sk) < T(s), and 

W, tSk) S,) — j(T(.s), s) = s) 

as Sk — s, • 

Lemma 1.8. If c is non-critical, there exists (5 > 0 such that [c — ( <:; + Jq 

contains no critical values. 

Proof. Suppose not, there exists {c -} — c where each r/' is a critical value. Let 

hk be an /f^-steacly state with 5(Jik) = c '̂. The existence of hk is ensured by 

Proposition 1.4. 

For each h = h^, we have 

hxx + f{h) = Cj on Ij 

where {/. } are disjoint open intervals in [—P/2, P/2], so that {h > 0} = |J I^. 

As the contact angle is zero, by integration over L" 

[ 1 m = c,\iji 
Jij J Ij 

which implies 

N < 

where Ci depends on the uniform bound on h. Next, squaring the equation and 

then integrating over /,, we have 

[ + 2 f h,J{h) + [ 
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After using Cauchy-Schwai-z inequality to the middle term on the left hand side 

of this inequality, we have 

and a uniform iJ^-boimd on ĥ . is obtained by summing up all 1” By passing 

to a subsequence, we attain by a standard argument that there is an T^f^-steady 

state on the energy level c contradiction holds. • 

Proof of Theorem 1.6. Suppose on the contrary that c is not a critical value. 

By Lemma 1.8, there is no critical value in [c — 5q.c + for some (̂ ô- Pick 7 G P 

such that 

,s)) < c + <5o, 

which is made possible by the definition ol c, and consider ^/{t, s). By Proposi-

tion 1.4, for each s, t,licre exists a finite t such that ( '(/ .s)) < c — d— . By a 

compactness argument, T(s) is seen to be bounded on [0,1]. Taking d = c — So 

ill Lemrna 1,7, j(T(s). s) ~ .s') e V and 

contradiction holds. Hence c must be a critical value of the energy. • 

The translate of any steady state is again a steady state. This fact poses a 

technical problem in the proof of Theorem 1.14 below, as at one point we need to 

apply the Morse lemma where the steady state must be isolated. To cope with 

this difficulty we will confine to even functions. As the flow (1.1.5) preserves even 

functions, this restriction does not cause new complications. Let 



§ 1.3 Local Properties of Steady States 

where hi and /?2 are even. We have 

Theorem 1.9. Consider (1.1.5) under (1.1.3) and (1.1.6). Suppose that hi and 

h<2 are in A) and there exists £o 0 such that 

max > max {^(/ii), + eo 
s t [0,1] 

(1 .2 .2 ) 

for all 7 G Fe- Then 

—inf max ^(7(5)) 

is a critical value of the energy. 

1.3 Local Properties of Steady States 

We will apply Theorem 1.9 by taking hi and /;2 to be the constant state, a 

linearly stable positive state or a droplet with zero contact angle. In order to 

meet condition (1.2.2) we are led to studying the local properties of these steady 

states. 

Consider the eigenvalue problem 

(fixx + f { f l ) c p = -Xip + C 

(1.3.1) 

where is a steady state in X{P, A), c is a constant, and 

H ^ l i f E H'[~P/2,P/2] : ip{-P/2) = ip(P/2), cp = 0 

Define the Rayleigii quotient by 

7̂  
/ - f W ) 
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According to the min-rnax principle for eigenvalue problems, for instance, in 

Bandle [6], the eigenvalues of (1.3.1) are given by 

Ai = mil l { y i (p) ; 0 in i f } , 

and 

\k = max min {7Z{(p) : ̂  ^ 0 in H}, 

Denote the corresponding normalized A;-th eigenfimction by (pk, ||l2 = 1. It is 

known that {(fk] forms a complete orthonormal set in 

P/2] : ipi-P/2) ^ ifi(P/2),  

Similarly, we may consider the eigenvalue pioblem 

where 

V r̂j + f{h)(f Av? + c 

e lie, 

(1.3.2) 

and obtain eigenvalues Â  with corresponding normalized cigenfimctions .Al l 

these eigenfunctions form a complete orthonormal set in {(f E E : (p{--x)— 

Let h be a positive steady state in X{P. A), By Taylor's theorem, for each 

(f e II, h-hc^e yY+(P, A), € small, 

= m + Y / (w - f' —/ {nh+w — m— + — y/'  

> m + — — f ‘ 
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for some constant Ci. It is clear that the sign of the c^-term is important. We call 

the steady state linearly unstable in X{P, A) (resp. Xe{P, yl)) if Ai (resp. A'l) is 

negative. On the other hand, the function ip = h^ E H satisfies + / ' ( / ? > = 0, 

so 0 is always an eigenvalue with h^ as an odd cigenfimction for (1.3.1) when the 

steady state is non-const ant. In view of this, we call h linearly stable in X{P, A) 

(resp. XJJ^, A) ) if Ai = 0 and is of simple multiplicity (resp. ‘ > 0). Note that 

our definitions do not (iepwid on the linearization of (1.1.5). 

The following result is immediate [29 

Proposition 1.10. The constant state h^. G X{P, A) is linearly stable if and only 

if < 4 2, When tins holds for each sufficiently small p, there exists 

c > 0 such that 

8{he + (fi)> ^{hr) + C, V(/9 G H, llv^ll = p. 

Proposition 1.11. A positive steady state h G Xe(P, A) is linearly stable implies 

that for cach sufficiently small p, there exists e > 0 such that 

S{h + V9) > 8{h) + 6, V(/9 e He, IMI - p. 

Proof. Since h is linearly stable, 

\ ^ 

If"?. n//i \ 0\ , ^ I ‘ \ / ^ 

r / n 
< 

Furthermore, we have 

I — f — 

] f — -

\ - f — . 

/ 
1 1 

+ 
V y j J ( -

1 ) < Psup Cp 3 
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Consequently, for ^ E He, “ there exists a positive constants C2 such that 

8{h + e^) > 8[h) + C’2c2 — 

and the proposition follows. Here Ci appears in the Taylor's expansion above. 

Now we consider the droplet with zero contact angle hd in Xg(P, A). 

that its span Pq (the length of its support) satisfies Pq < P. Then hd is 

function which vanishes at P /2 with zero derivatives. 

• 
Assume 

an even 

Proposition 1.12. Consider (1.3.1) where f G 

isfying 

f > 0 on ( 0 , 0 0 ) sat-

(a) f > 0 

(b) lim  — — a 0, lim 
0 z^oo zP 

I) > 0, for some p^q £ (1,3) 

(c) r(z) > Czq-i near 0  

(d) z f ( z ) — 3/(2 ) is negative and strictly monotone. 

Let hd G Xe{P, A) with span Pq less than P. For each sufficiently small p, there 

exists some c > 0 such that 

e(h) > S{ha) + \\h - h^^ = p. 

Remark 1.1 The function f{z) = q e (1,3), satisfies conditions (a)-(d) in 

this proposition. More generally, let f{z) = az'^+ + a > OA < q < r < p < 

3. Tlieii {a)-(d) are fulfilled under the following conditions; For r = (1 — + 

a(3 - q) > { l - A ) | 6 | ( 3 - r ) , 

3 - p > A|6 | (3- r ) , 

a(3 - q)q > (1 - A)|6|(3 - r)r. 

( 3 - p ) p > A|6 | (3- r ) r . 

In particular, b could be taken to be negative. 
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Proof of Proposition 1.12. We claim that there is a small po such that hd is the 

unique minimum of the energy in {h € XJP, A) : \\h hd\\oo < po}. This is 

sufficient for the proof of the proposition. For, if not, there exists {h^}, — 

/iczlloo — Pi for some positive pi < po, such that S(Jik) — ^{hd)- Wc can find a 

subsequence, still denoted by {hk}, such that it weakly converges to some h* in 

A). But then \\h* — hdW^o = pi and S{h*) = S(hd), contradicting that h(i is 

a strict local minimum of the energy. 

To show that h^ is a strict local minimum in sup-norm, assume on the contrary 

that there exists {/ia } ha uniformly, S[hk) < S{ha)., hk E ^4). Let 

hk = h(i + e ,(pk = {hk — hd)/\\hk. — /i,/||oo, £k \\hk /̂ dlloo > 0, Sk 0 as 

k —̂  oo. Let h(i satisfy h^i^cc + fi^d) ~ c, c > 0. We have 

0 > S{ha + £k^k) - ^ { h d ) 

=-CA I + I (v^i. -

-e l 

= C € k 

/ / I ( + — (1 — 

I + f /" (>L — f i h M ) '{hd^o} 2 J \ / 

/ / o ( + s — ("")) 1 _ s) ds 

Since F'{HD + S£ F'IJID) uniformly as e^ 

equality by c^ we have 

0, by dividing the above in-

>C (fk + 
J{hd=0} 

(1.3.3) 

By passing to a subsequence if necessary, {ipf,} converges to some even (pi uni-

formly. In particular, ||y?i||cx3 = 1. As c > • and (fk > 0 on {hd — 0}, we may 

dispose the first term in the right hand side of (1.3.2), then divide both sides by 
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C}, and pass to limit to obtain 

0 > / ( ^ L — f i h M ) (1.3.4) 

Note that (pi(±Po/2) = 0. 

Oil the other hand, consider the problem 

A = mf{n{ip):ipCV} 

where 

V = \ ^ e Po/2] / ̂  = 0 

where [—Po/2, Po/2] is the support of hd. Under assumptions (a)-(c) it is known 

that A = 0 by theorem 2.2 in [17]. As ipi belongs to V, (1.3.4) shows that it is a 

minimizer of this problem. Taking first variation, we see that ^ijj, + f (J \ i ) = 

constant, in other words, (pi is an even eigeiifunctioii of the zero eigenvalue for 

the eigenvalue problem 
r 

^TX + f'Qhl)ip = —/if + C 

However, according to proposition 2.3 in [17], the zero eigenspace is spanned by 

the odd function dh^j/dx under (d). This contradiction shows that h^ must be a 

strict local minimum in sup-norm, and the proposition follows. 

• 

The local properties of the constant state and droplets just established have 

the following implication on the long time boliavior of the flow (1.1.5). See Propo-

sition 1.5 for the corresponding result for positive steady states. 

Proposition 1.13. Let h G Xe{P, A) satisfy, for each sufficiently small p, there 

exists an e > 0 such that 

^{h) > S{K) -he, \\h - /z^ll = p (resp. -/ijoo P) (L3.5) 
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Suppose h{t) is a global solution of (1.1.5) in A) such that {h{tk)} converges 

to h in IP -norm for some tk oo. Then h{t) converges to h in H^ — norm 

(resp. in sup-norm,) as t oo. 

Proof. By (1.3.5), for each p > i) we can find some tj such that 

\\h{tj) — < p, and £(h(tj)) < inf {£(h) : — = p}. 

As tlie energy decreases in time, S(h(t)) < 8{h{tj)) < inf {£"(/?,) : \\h — = p} 

for all t > tj. It follows that h(t) cannot escape from the ball Bp{h^), that is, 

—h^W < p, \/t > tj. We conclude that h(t) tends to h in i / i-norm. The 

same proof still works when the i^^-norm is replaced by the sup-norm. Simply 

observe that \im E{h(ij)) < as h{tj) tends to h* uniformly. • 
j 

1.4 Mountain Pass Scenario 

Let us return to the mountain pass solution obtained in Section 1.2. Now we take 

hi to be the constant state he and h<2 the even droplet hd‘ We denote the other 

even droplet whose minimum is attained at 0 by /? [ 

Theorem 1.14. Assume the foUowings: 

(a) For each sufficiently small p, there exists some e > 0 such that 

S{h) > yhe A), \\h - = P, 

(h) For each sufficiently small p, there exists some 6 > 0 such that 

S(h) > e{hd) + e, V/i G A), \\h — = p, 

(c) The number 

c' = inf max ^̂  (7 ( 5 ) ) 

is attained at some positive IP- steady state hm in Xe{P, A) whose maximum 

is attained at 0; 
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(d) For some S > 0, there are no iP-steady states in Xe(P, A) with energy less 

than d + 5 except h^ h' ,h hd and h'^. 

Then there exists an open set U containing hm such that 

un{heXe{P,A):8{h)<8ihm)} 

consists of exactly two components Ui and U2. All flows of (1.1.5) under (1.1.6) 

and (1.1.3) starting from Ui converge to he in H^-norm, while those starting 

from U2 converge to h(i or h'^ uniformly as t goes to oc. Consequently, there are 

heteroclinic orbits from h^ to h(‘ and to h(j or h/^. 

Proof of Theorem 1.14- The proof of this theorem is based on the construction 

of a special path 7* in F,. which satisfies E{Y{-s)) < s • 1/2 and , (1 /2) = h^r, • 

hi the first step of the construction, consider B2pQ[hrn) G Xp(P, A) : \\h — 

hm\\ < 2pq} where po is so small that (i) hm is tlie only iif'^-steady state in 

i^m) and (ii) all h in Z?2po have a uniform positive lower bound. We will 

restrict it further as wo proccccl. As a first step, wc construct a path pi starting 

at he and ending in Ba^ \ i?po/2( ,1) which satisfies ^(pi(s)) < c' and a path p‘2 

from hd or h'^ into \ po/2(/im) satisfying f (P2( ')) < c'. 

For each k, there exists 7 = 7" G Fg. <^(7“s)) < r/ + 1/k. 

7(s) as initial data to get s) which belongs to Fg for each 

Solve (1.1.5) using 

t. Consider the set 

S={se [0,1] : E\ t, 5)) > (! Mi > 0}. 

It is clear that S is non-empty and compact in (0,1). Let 

Si = inf 5, and S2 = sup S. 

Then 6 ) > i 1, 2, for all t and hence 7( Si) tends to h^ or h' by 

Proposition 1.5, If it is h' we translate the path so that it converges to hm (he 

is invariant under translation). In any case we may assume 7( si) converges to 



§ 1.4 Mountain Pass Scenario 29 

hm‘ Let 71(5) be the restriction of 7(5) on [0,5i]. As 71 (i, si) for 00, 

without loss of generality we may assume for each t there exists some s{t) € (0, Si) 

such that 7i( s{t)) e dB (Jim) {h e Xe{P.A) : \\h — = po}-

Note that depends on k. By Proposition 1.3, wc fix a tq such that 7 ( + 

r, s(t)) e \ Bp^/2{hrn) for all r 6 [0, tq]. We claim that there exist some 

/jo. LQ and t i such that 

h t o + T i < c ' . (1,4.1) 

For, if (1.4.1) does not hold, then S(71 {t + r, ’s(t))) > c for all r G [0, TQ]. There-

fore. 

j a (7 ] ) (7 i" + / ( 7 i ) ) : S < ^ ( 7 i ( M O ) ) — ^ i “ + T o , , 5 W ) ) < i . 

As 7i(i + r, s{t)), T G [0,ro], have a uniform positive lower bound, by parabolic 

regularity wc can extract a subsequence from 71 (f + ‘ s{t)) which converges in 

/ / i -norm to some i^^-steady state in B<2pQ \ Bv (d) this is impossible, 

hence (1.4.1) must hold. 

We take pi(s) Ji^'ik + S G [0,cv], a s{lo). Then pi(0) = h 

PI{Q) G \ BpQ/2(Jhti), and ^(^1(5(0 )) < c'. Furthermore, by our choice of si, 

for each s e [0, a), there exists some finite t such that s)) < c'. 

Similarly, 7( S2) converges to hm or h'^. When it is the former, we can 

obtain as above a continuous path. p2 from [l3.1], ,<3 > a , to Xe{P. A) satisfying 

P2(l) = hd, PiiP) e D-ip,, \ S{P2{P)) < and, for each s e {,6.1 . 

there exists some t such that 5)) < c'. When 7( S2) converges to /i^. by 

translating the path from j" to .x + P /2 , the translated path now converges to h ^ 

at S2 and ends at h'a. The same construction then yields a curve p2 satisfying 

• 

Next, we need to connect P2{0) to pi{a) inside below the energy 

level c' (except at h Foi this purpose we need to use the infinite dimensional 

Morse lemma. There are several versions of tliis lemma, here we follow Hofer [26]. 
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Lemma 1.15. Let € M) where U is an open set in the Hilhert space Ti 

containing 0. Assume that 0 is the only critical point of ^ in U and D^{ifi) is of 

the form “identity+compact operator” for (f e U. Let H = H~ O fC^ be the 

canonical decomposition via the spectral resolution with respect to Then 

there exists a local origin-preserving homeomorphism rj from an open subset of U 

to U and a C^-map a from a 0-neighhorhood ofH^ into H+ Vr such that 

<l>(>7(tO)=-
1 

X 2 + 1 1 
+ + tj). u = x + y + z. (1,4.2) 

A useful consequenco is, as + y) is continuous and vanishes at y = 0, 

for each small p > 0, there exists a p' such that 

Lettin" 

C = : ||.t|| + ||2 || < p, ||y|| < p'} 

where p and p' are so small that C is contained in U, the set 

A=< U,y,z) e C X + + + < 0 } 
is path-connected when dimH > 2, and, 

X + + ^{a{y) + y) < 0, x > 0 

A- = {x,y,z) G C : - - X 

are pa.th-connected when H— is one dimensional. 

To see this, simply observe wlien dim H " > 2, all “'"-slices” in A are path-

connected and, as the "vertical path" (x, tiji + (1 — t)y2,0), L e '0,1], where 

X is any point satisfying x\ G (p/2,p), connects the ' -slice to 2/2-slice in A. 

Similarly, one can show that A are path-connected when dim H " = 1. 

As a coiisequeiice of this lemma we have 
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Lemma 1.16. Under the setting in Lemma 1.15, there is an open set U contain-

ing 0 such that 

{ u e U : <P{u) < 0} 

has at most two components. 

We will use this lemma in the following way. We take 

[ 
and 

Then 

and 

n=\(pe 1 [ 772.P/2] 772) = (^(P/2), / f = 0 } 

=. - I [fifhn + — m 

zA = j j 

Now Lemma 1.1(3 applies to yield an open set U containing hm such that 

{h e U e{h) < 8{h,r,)} 

lias at most two components. 

Proof of Theorem 1.14- Continued. Now, we would like to connect pi and p2 

inside f/ fl G : ^{h) < 8{hm)}. First we restrict po further so that 

B2P0 {hrn) is contained in U. Indeed, we may simply identify U with B2p^{hm)-

Then p[{a) can be connected to h„i by a path ps in /7 A {S < ^{hm)} with 

energy less than c, except at hm- There is a similar path for P2(/?) in Un{£{h) < 

^{hm)}- By putting the paths pi~p4 together we obtain, after a rescaling so that 

a and P go to 1/4 and 3/4 respectively, a path 7 iii T̂  such that ^(7(5)) < 

d. s e [1/4, 3/4] \ {1/2} and 7(1/2) = hm. Since the set {s e [0,1] \ (1/4, 3 / 4 ) : 
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> c'} is compact, there exists a finite T such that f (7(T, -s)) < c' except 

at s = 1/2. Finally, 7(7’, is our desired path y . 

We observe that the set U fl {S{h) < E{hm)} has exactly two components. 

For, if this is not true, in the above construction one can connect to 

by a single path p^ inside U H {E{h) < S(hjn)} without touching h^- Then the 

corresponding path f would have energy less than c' everywhere, contradicting 

the definition of c!. 

Let Ui and U2 be the components of U containing : , ( l / 4 ) and (3/4) respec-

tively. As 5(7*(1/4)) < c' and the flow starting at must converge 

to h h(i or h'(i by (d). We claim that it must be h^. For, otherwise it would tend 

to hd or h'd along a sequence of time, by Propositions 1.4 and 1.13 it converges 

to hd or h'(i in norm. Nevertheless, then the path from he to (1/4) along 

7* and then along 7*( 1/4) would «ivo rise a path in Fg whose energy is always 

less than c', contradict ing the definition of c'. The same situation holds for all /?o 

in Ui, for each of them can be connected to 7"(1/4) by a path below the energy 

level c', For points in U2, a similar reasoning showH that Qows stditiiig at them 

converge to either hd or 

We point out that once there is a flow t^tarting from Hq in U2 which converges 

to hd (resp. to h' all flows starting from U2 converge to hd (resp. to h[j). For, 

by Proposition 1.12, the sets {Hq G U2 : tiie flow stditiiig at ho converges to hd} 

and {Hq G IJ2 the flow starting at ho converges to h'̂ } are open. They are 

complement to each other, so they are closed, too. 

To complete the proof, we construct a heteroclinic orbit from / „ to hd (as-

suming flows from U2 converge to hd). A similar construction yields a hcteroclinic 

orbit from ĥ ^ to . 

Let {hk} be a sequence converging to h,n with energy lower than c', By 

Pioposition 1.4, the flow hJt) starting at hi converges to h(i as t 00, Define 



the last time hk hits the boundary of ( .Since h^ is a steady state and 

h}.{t) depends on the initial data continuously, t^ oo as k co. 

Let 

hk,W = hi.{t + tk), t G [-tk, oo). 

Then = hk[h E di?" ( m) has a uniform, positive lower bound. By the 

entropy relation 

m(t))+yj (Jii; _ ell) 
I{Tik{t)) < C\ + (72 independent of k for some constants Ci and C2. For each T, 

there exists a constant Ct independent of k such that 

hk{t) > CT > 0, te[-T,T]. 

We deduce from parabolic regularity that {/î  } admits uniform bounds of all order 

in [ -T, T] X [—P/2, P/2]. By taking a diagonal subsequence {still denoted by /?,"), 

we obtain a flow /ioo(0 of (1.1.5), t £ (—oc, oc) sucli that 

hk —> /̂oQ smoothly 011 each [—T, T], 

MO) e po(M 

By assumption (d), Propositions 1.4 and 1.13, converges to he, h^ or 

uniformly as t ^ 00. It cannot be h^, for then there would be an admissible path 

below the energy level r/. If it converges to h'̂ , by Proposition 1.13, there exists 

a Ti such that /ioo ( )would stay in some n’d of h'^ for all t > Ti. But then it 

means for all large k,“ .(f + f") would stay in the same n'd for all t >Ti, which 

is impossible. Thus hoo{t) must converge to fid as —00, 

To complete the proof we show tliat hoo{t) —> hm as t —> —00. Let 

Sk = : hkit) e ae (/Vi)}, 

.4 Mountain Pass Scenario 33 
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the first time h^ hits the boundary of Also let 

Xi{k) = {t : hk(t) e dB,,f2{hrn)}^ 

and 

X2{k) = {t h,{t) G 2 (M}-

We claim that there exist some Sq > 0 and kg such that 

+ So < £{h t e t' e X2{k), k > h (1.4.3) 

For, if not, we rvxn find r̂  and in Xi(k) and X2{k) respectively such that 

/ Y • + f V y) l = ^{hkirk)) — S{h, iTl)) — 0 
’ / Ffc J 

as k oo. Moreover, 7> and r( can be chosen so that h t e (ta, r^.), belongs 

to i?2p \ By Proposition 1.4, |rfc - > tq for some positive tq 

independent of k. Arguing as in the proof of Proposition 1.5, there is an IP-

steady state in I^p \ but this is impossible by assumption, so (1.4.3) 

holds. To complete the proof let us observe by (1.4.3) that t e (s ., tf,)^ is 

confincd to the ball 3po/2(/̂ m) for all k > ko. Since /i ( ) , t 6 (0, s^] is also 

contained in the same ball, we conclude that hojj), t < 0, belongs to B2po(hm) 

and liencc converges to h^ as i — —oo. 

• 

Remark 1,2 If the mountain pass solution hm is linearly unstable, this theorem 

shows that it must have exactly one negative eigenvalue for (1.3.2) at h .From 

the expansion of (p ̂  H^ with respect to the eigenfunctioiis of (1.3.2), it is easy 

to sec that if hm + E Ui for small e > 0 if and only if h^ — U], 

Remark 1.3 Tliis theorem docs not assert that flows starting from U2 converges 

to hfi- Conceivably it may converge to / ̂ . Nevertheless, it is clear from the above 

proof that this could not happen if there exists a path connecting points in U2 to 
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kd under the energy level Wc will construct such paths in the case of power 

laws to be discussed in Section 1.5. 

Remark 1.4 Theorem 1.14 remains valid when ĥ i is replaced by hp, a linearly 

stable, positive //^-steady state in Xe(P, ^4). By Proposition .10, assumption 

(b) can be replaced by a corresponding assumption on hp. 

Remark 1.5 The following variant of Theorem 1.14 holds. Let ho be a non-

constant /f^-steady state in X P, A) satisfying, for each sufficiently small /j, there 

exists £ > 0 such that 

Sih) > e{ho) + c, V/i G Xe{P, A), \\h - ho\\ - p (or \\h — /lolU = p). (1.4.4) 

Consider 

r {7 e C ( [ 0 , : 7(0) - = K}-

Assume that c' = inf^gr max^ 6^(7(5)) is attained at some //^-steay state h^ and 

there are no other //^-steady states on the energy levels between d and Sih^) 

cxcept h ,h' ,IiQ and /?<). Then there exists an open set U containing hm such 

that {S{h) < 8{hrn)} consists of two components Ui and 62. Flows starting from 

Ui and U2 converge uniformly to HQ and h^ respectively as t oc. 

Now wc give a criterion for when a positive mountain pass solution is a steady 

state of miiiinial period. 

Proposition 1.17. Under the assumptions of Theorem 1.14, suppose that c'= 

S(hm) s realized at a positive steady state in A). Suppose that hm is of 

minimal period P/k and is linearly unstable in [—P/2k, P/2k]. Then k must be 

Proof. Let ^ be an eigenfunction of the problem (1.3.2) in [—P/2k. F/2k], k > 2. 

with a negative first eigenvalue Aj. Regarding it as an element in [—P/2, -P/2], 

A'l is also an eigenvalue of (1.3.2) in this interval. In the following we will show 

that Aj is not the first eigenvalue on [—P/2, P/2]. That means A = inf{7^((/?): 
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ip 6 lie] is also a negative eigenvalue. As there are two negative eigenvalues for 

(1.3.2), the set {h € Ihp^Xh ):8{h) < E{hm)} is path-connected, contradiction 

holds. This forces k = 1’ 

Since if is an even function and has zero mean, it must vanish at least once in 

(0, P/2k), so there are at least two zeros of (p on (0, P/2). Denote the first and 

the second ones by a and b. Define = (p(x) for x G [0,a] and 0 elsewhere 

and = "Pi^) for x e [a, 6] and 0 elsewhere. We consider the function 

i^) = a(pi + p(p2 where a and {3 are chosen so that V, € H^ with | = 1. We 

have 

= A - c 
(^  

/ + 
V Jo 

/ 

In case the second term on the right hand side of this expression is equal to zero, 

TZ{y) — Aj. As V vanishes identically on [6, P/2], by elliptic regularity it cannot 

be a miiiiniizer of the eigenvalue problem (1.3.2) and so A iy another negative 

eigenvalue. On the other hand, if the sccond term is non-zero, by switching ij) to 

—t''' if necessary, we may assume that it is negative. Again we have A < TZ[0) < 

A'l. the same conclusion holds. 

• 

5 Power Laws 

The power law is the special case of (2) given by 

\ q / X 
0, (1.5.1) 

(and f{z) — log 2 when q = 0) where it is always assumed n > 3.5 and q E ( -1. 3) 

in this section. One may consult [28] for the background on this model. For q ^ 0, 

the equation for the positive steady state is 

Hi - c 
+ = 0, 
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for some constant c. Integrating over a period shows that c is positive. For g = 0, 

the analogous equation is h^x + logh — c = Q. Setting h{x) — fxh{Xx), by suitably 

choosing /i and A to turn c into 1 we can take h to satisfy the equation 

hxx H = 0 g^o, 
q 

(and /ij-t + log/? = 0, when q = 0.) The steady state h belongs to X(P, A) if and 

only if h G X{P, A) where 

by direct computation. Suppose now h is a positive steady state of minimal 

period P whose maxinmm is attained at the origin and (minimum at ±/)/2). The 

function h(x) = h{x — P/2) satisfies the initial vaiue problem for tlie ordinary 

(liffeiential equation 

hj , H = 0, 
q (1.5.2) 

= (0,1), ^x(O) = 0. 

Any solution h is periodic with minimmn at a. We set 

where P and A are respectively the minimal period and area of the solution h 

starting at a. When a = 0, this gives a single droplet with zero contact angle 

whose span is given by P, so Bg(0) is also well-defiued. It is not hard to see that  

g(a') tends to 47r'̂  as a 1 [28]. Wc set = 4 2. 
A  

It is clear that any solution h of this problem of minimal period P and area 

A determines a positive steady state of minimal period P in X(P, A) if and only 

if P arid A satisfying 

where we have set xi^- — Using this relation, we know that there 

is a positive steady state of minimal period in X(P, A) if and only if \(P, A) e 



^ {I+ q)B 

see [28] and Abramowitz-Segmi [1 . 

The behavior of F]( a) is summarized in the following proposition. 

Proposition 1.18. There exist gi, q2, qs G (1, 2) QL < q2 < 3 such that 

(a) For q G ( - 1 1) U [2, 3), a) > 0, Vo 6 (0,1); 

(b) For q e fe, 2) > 0 Va e (0,1); 

(c) For q e (1, qi], E' a) < 0 Va G (0,1); and 

(d) For each q e (gi, q^), there exists a^ G (0,1) such that < 0 for a G 

(0, ag) and > 0 for a e (ag, 1). Moreover, Eg{0) > Eg{l) for q G 

(gi, 92) g(0) < Eq{l) for q E ( ’ Qs) and Eg{0)= 1) at q = 2. 

Proposition 1.18 (a) is proved in [29], and (b), (c) and (d) are shown numeri-

cally valid in [30], see Figures 1.1-1.3. Here and q̂  are approximately given 

by 1.750, 1.768 and 1.794. Using this proposition, one can completely answer 

the question when there are positive steady states in X{P, A), For instance, for 

q e |2,3), there is a positive steady state of minimal period in Xe{P, A) if and 
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{Eg{a) : a e (0,1)}, and there is a single droplet with zero contact angle and 

span P in X(P, A) if and only if x P, A) = Eg(0). 

There is a formula expressing in terms of the beta function we will use 

later, namely. 

r 2 / I I B 
g - 1 

V2q'2j \2q 2) 

EM I 4V37r 

g > o ’ 

0)’ 
1.5.3) 

ge 
\2\q V2 
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only if is equal to Eg[a) for some a' G (0,1) and, as Eq is strictly in-

creasing for all q in this range, it is unique. On the other hand, for q G (qi,q2), 

there is a unique positive steady state of minimal period in X P, A) if and only 

if is equal to Eq[ag) or in [47r̂ , i?g(0)) and there are exactly two steady 

states of minimal period in A) if and only if A) 

Figure 1.1: Fg(a), for q = 1.8. 2, 2.5, 3 from top. 

Figure 1.2: Eq{a), for q = 1.75. 1.76, 1.768, 1.78. 1.79 from top. 

Besides positive steady states of minimal period and droplet with zero contact 

angle, there may be other //^-steady states, that is, positive steady states of noii-
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Figure 1.3: Eq(a) for q = 1.02, 1.01. 1, 0.99. 0.98 from top. 

minimal period and configurations of droplets with zero contact angle, in the 

same Xe{P, A). In the following we show, nevertheless they cannot coexist with 

positive steady states of minimal period for q e (1, 3). 

Proposition 1.19. Consider q G (1,3). Suppose there exists a positive steady 

state of minimal period in X{P, A). There is no positive steady state of nori-

minimal period in X{P, A). 

Proof. Consider q G {̂ 3, 3) first. By assumption there is a positive steady state 

of Diinimai period in X{P, ^4), we can find some a' such that .4) — Eq{cx'). 

By the same reasoning, there is an a" such that x^PIKAjk) = Eg{a"). We have 

= h r ‘ 2 . As Eg is strictly increasing, 

As fc > 2, we obtain 

< TT̂ . 

The plotting in Figure 1.4 using (1.5.3) shows that this is impossible, 

no positive steady state of non-minimal period in X{P, A). 

Similarly, for q G [gi, ^3], 

(1.5.4) 

There is 

EM < ) -
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Figure 1.4: B,(0), for q e [0,3] 

When k > 2 , this is impossible by graph plotting, see Figure 1.5. 

Figure 1.5: Eq{aq), for q e (gi,g3) 

For q G (1, Eg is strictly decreasing. We have 

4 2 < Eqion - > 0 <  

If k > 2, E"y(0) > IOtt .̂ This is again impossible from Figure 1.4. 

• 
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Proposition 1.20. Consider q € (1,3). Suppose there exists a positive steady 

state of minimal period in X{P, A). There is no configuration of droplets with 

zero contact angle in X{P. A). 

Proof. For a configuration consisting of k many droplets with span Pj and area 

Aj respectively we have 

X ( P ” 4 ) = i?,;(0),J 1,2’ … 77’ 
k 

A. =A. 

It follows that 

As q e (1,3), by convexity, 

k A \ 3-

( 4 A . 

y 
which implies 

max{47r^ (,(0)} > x^P-A) > 

When k > 2, wc obtain again (1.5.4), which is impossible. Hciice configurations 

of droplets with zero contact angle and positive steady states of minimal period 

do not coexist. 

• 

By Propositions 1.18—1.20 there arc finitely many iif^-steady states in A'e(P, A) 

for q G (1,3), all given among he, hp, h'^, h^j and h'^. Consequently, Theorem A 

holds in view of Propositions 1.5 and 1.13. Note that in order to apply these 

results, a restriction to g > 1 is needed. 

From Proposition 1.10 we deduce the following stability result on the constant 

state. 
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Proposition 1.21. The constant state h G Xe{P, A) is linearly stable if and 

only if 

X(P.A) < ATT^ 

Under this condition, for cach sufficiently sviaU p there exists an s > 0 such 

that 

£{h) > E{hr) + 6 dB,{h,). (1.5.5) 

As an application of Proposition 3.3, we have the following stability result on 

droplets with zero contact angle. 

Proposition 1.22. Consider q G (1,3), Let h,] € XQ{P, .4) be a droplet whose 

span is less than P. For each sufficiently small p, there exists an £ Q such that 

y h e X , { P , A ) , \ \h~ha\\oc=P- (1-5.6) 

With these results at our disposal, we now discuss the dynamics of tlie pos-

itive global solutions of (1.5.1) in Xp[P. .4), We will consider four cases: q G 

:g3, 3) [q2, g's), (gi, Q'l] and (1, gi], separately. 

We begin with some general remarks. The graphs of the functions x{P', = 

E(j{l) and £"^(0) form two curves in the (P, —plane. When q G (1,3) (resp. 

(0,1)), they decrease (resp. increase) from oo (resp. 0) to 0 (resp. oo) as P —> oo. 

For every A > 0, the horizontal line passing A intersects these curves at (Pc, A) 

and {Pd, A) respectively. For P < P^, < x{Pc,A) = 47r̂ , hence the 

constant state /?(. in A) satisfies (1.5.5) by Proposition 1.21. On the other 

hand, for P > Pd. the droplet with zero contact angle and span Fd belongs to 

Xe{P,A) and (1.5.6) holds by Proposition 1.22. 

For q G [2,3), Eq strictly increases in a by Proposition 1.18. Referring to 

Figure 1.6. the lower curvc in this figure is the graph of ^.(P, A) = Eg{0) and 

the upper curve is = (/ . A s a increases, the graphs Eg (a) 
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Figure 1.6 q G (?3,3]. The upper curve is A) = Eg{l) and the lower curve is x(P’  

EM. 

foliate the region bounded by these two curves. Every point (P, A) in the inte-

rior of this region corresponds to a positive steady state with minimal period in 

Xe{P, A) (uiiiqiiely specified by its maximum attained at the origin). There are 

no steady states with minimal period in Xe(P, A) when (P, A) does not belong 

to the interior of this region. 

For F C (Pri, Pc), he, hd, h'^, hp, and h/^ coexist, and they exhaust all i^^-steady 

states according to Propositions 1.19 and 1.20. In view of Propositions 1.21 and 

1.22. Tlieorern 1.14 applies to yield a mountain pass scenario among hp, he and 

hd (or h'(f). And there are heteroclinic orbits from hp to h^ and to hj (or h'(j). 

Kt P = Pc, the f/^-steady states are h hd and As (1.5.6) holds for h^ and 

we may use the min-max schcme consisting of paths from hd to h[i to obtain 

a mountain pass scenario, see Remark 1.5. Since there are no //^-steady states 

other than the constant slate, the mountain pass solution must be h(. 

For P e (0, Pd)j he is the only ii/^-steady state in Xe{P A), It follows that 

any positive global solution (1.5.1) converges smoothly to he as t — oo. This is 

short wave stability. At P = Pd, there are three //^-steady states given by hc,hd. 
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and h'(i. It is known that 8{hc) < S(Ji(i) ([30]), so he is the global niinimizer of 

the energy. It can be shown that tlic first eigenvalue of problem (1.3.1) at h^ is 

negative as > 0. In fact, the proof is identical to the proof of the same 

property for positive steady states of minimal period in [29]. When g > 2, a short 

proof is as follows. Observing that / (2) = (q — l)(g — > 0, 

I - f{hd)h^cixs) = - ! hd^x{hdxTxx + f\hd)hd ,^) 

= ] / ( M / 4 " — = / ( M / 4 < 0. 

For £ small, the perturbation h^ix is admissible as 

/ c \ 
hd + ehfjTj = £c + h(i 1 ——hjj > 0. 

\ (i ) 

By Theorem 1.14 there are heteroclinic orbits from h(i to he. Similarly, there are 

such orbits from h'̂  to he- Theorem B holds in view of the above discussion. 

By the iimnerically confirmed result in Proposition 1.18 (b), all results valid for 

q G [2, 3) extend to q E [̂ 3, 2) except tlie assertion 011 the existence of heteroclinic 

orbits from hd to he at g — gs and P — Pj. This is because in this limiting ease  

Q) = 0 and the first eigenvalue of problem (1.3.1) at h j is 0. We leave open 

the question whether h^ is a local minimum of the energy or not in this case. 

The situation is illustrated in Table 1.1. 

p Pd {Pd.Pc) Pc 
— steady states K K, h(“ h'  he, hd, /ij, hp, h'p he, hd, h'd 

Global minimizer he he he or hd, hchKi 
Heteroclinic orbits hd — > K he — hp 4 hd 

hd < — he — h'a and MPS K - / 'c he - h'p — hd < — he — h'a 

Table 1.1 Dynamics of (1.5.1) in Xe{P, A) for q e [qs, 3). Here hi > indicates a hetero-

clinic orbit from hi to h: and h\ — hq — 3 indicates a mountain pass scenario where h is 

the mountain pass. Existence of a licteroclmic orbit from h^ or h'̂  to he is not known at g = 53 

and P = Pd- Comparison of the energy levels between h and hd is discussed in theorem 11 in 

[30,-
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For q G (g2, <i'i)- according to Proposition 1.18(d), a positive steady state 

of minimal period only exist in the region bounded by x(P, 4̂) = E^(a^) and 

A) = Eq(l). The horizontal line passing A intersects x(-P) = ^gi^g) at 

Pq-

Figure 1.7: q € The lower curve is given by x{P, A) JE!q((yq)’ Points between 

X — Eq(0) and =Eq{ag) admit two solutions hpi and hp2. 

When F < h,. is the only //^-steady state in A), and every global 

solution of (1.5.1) converges smoothly to it as t —> oo. For P E {Pq, Pa)-, there are 

exactly two positive steady states with minimal period (specified by maxima being 

attained at x = 0) hi and h], where /ipi(O) > hp2(0). By theorem 9 in [30], hpi is 

energy stable under the minierically confirmed assumption that a ^^ a (a)2 i 

strictly increases on (0,1). According to the definition of energy stability, for 

every non-zero (p G P/2, P/2] with zero mean, there exists some Cq such 

that 8{hpi + c(p) > SQipi), Vt G (0, Sq). Clearly, it implies 

f — > 0 , VV G i[—/V2’ P/2], 1 ^ = 0. 

On the other hand, by theorem 10(a) in [29], the zero eigenspace of (1.3.1) is 

spanned by the odd function dhpi/dx. It follows that 
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inf 1 1 — / ( M ? ) : W is even , 1, = 

which means that the first eigenvalue of (1.3.2) is positive. Using Proposition 

1.11, we find some p and c such that 

S{h) > 8(hpi) + £, Wi E dBpihpi). 

By Remark 1.4, we may apply Tlieorern 1.14 to conclude that hp2, h a n d h 

form a mountain pass scenario. When P = Pq, the //^-steady states are h( hp 

and h'p. Letting P Pq, we see that S[h(.) < S{hp). It is not hard to show that 

hfj is the global minimizcr in Xe(P, A). An extra argument is needed to show 

that hp is not a local minimum in this case. Indeed, pick Pk Pq and note that 

/?, 2 converges to hp in Pg/2, P(]/2]. Choose a heteroclinic orbit from 

hp2 to h .̂ where /?, 2 and h^ are respectively the unstable positive steady state of 

minimal period and constant state in Xf,{Pk7 We claim that for any small 

p > 0, there is some positive § such that 

rC 

where tk is the first time h^(t) hitting dBp(h^2)- For, if on the contrary, there is 

a subsequence still denoted by {h^} satisfying hk[tk) G dBpiJi and 

— — 0+ 

as /j —> oo. For each tk, trace back in time to get 

Sk = sup {5 < tk h%s) € <yBi/2,)(/? 2)}. 

By Proposition 1.3, fix a tq > 0 only depending on p so that s ’ H-tq < tk and 

/ / • + — 

Jsfc J 

as A; ^ 00. Arguing as in the proof of Theorem 1.14, we can extract a subsequence 

of converging to some //^-steady state in i?2p\Bp/2("p) contradiction holds. 
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Thus the claim holds. For any p small, letting A: — oo in h t^), we get h' G 

dBp(hp) with S(}i') + 6 < £{hp). This shows that hp is not a local miliimiim, and 

a heteroclinic orbit from h^ to he can be constructed in the usual way. 

When P — Pd, the H^-stcady states are h^ hd, /i^, Zip, and h'^. Viewing it as 

a limiting case P t Pd) hpi and hp2 tend to hd and hp respectively, there is a 

mountain pass scenario among hp. he and hd. The case P G {Pd c) is the same 

as in g G 3) where a mountain scenario occurs among hp, h^ and hd (or h^). 

Finally, at P = P(:, the //^-steady states are h(” hd and h'^. Same as ^ G [2,3), 

there is a mountain scenario among h^ hd and h'̂ . 

The situation is illustrated in Table 1.2. 

p Pq [Pd.Pc) Pc 
i7^-steady states he /i hp, hp ,'c, 7 he, hd, h'd, hp, hp he hd-h'^ 
Global rninimizer he he he or hpr h'pi he or hd, h'd hd, h'a 

Heteroclinic orbits 

and MPS 

hp — > he 
h'p — hc 

/ipi — hp2 he 

Ki - K2 4 "c 

hd hp —5- he 

K K — 
hd <- he h'^ 

Table 1.2 Dynamics of (i.5.1) in Xf,{P,A) for q e (q'j^q'j). 

A similar discussion covers the cases ( ] a n d (1, ] . W e omit the details 

and simply refer to Tables 1.3 and 1.4. 

P (O-P,) iPq Pc) [Pc.Pd) Pd 
if^-steady states K ha, V K "c, hjpi kpjj hp2, hp^ he, V hc-.hdji'd 
Global minimizer he he he or hpi, 1 V K hd Ki 

Heteroclinic orbits 

and MPS 

hp — K 
K — hc 

V — hp2 he 
hp, ̂  h'p^ — he hp h(. — h'p hd he —> h'^ 

Table 1.3: Dynamics of (1.5.1) in Xe(P,A) for q e (gi,g2] 

Let us now consider the following question. In the mountain pass scenario, 

for example, among hp, h^ and hd (or h'^) when q G [qs, 3), it is still not known 
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Figure 1.8: q e (^1,^2)- The lower curve is given by = E, aq). Points between 

X — EQIPG) and x = g(l) admit two solutions HPI and HP2‘ 

p Pa {Pc^Pd) Pd 
H^ - steady states h. hr. h'p, lip he- hfi, hj 
Global minimizer he he hd, K 
Heleroclinc orbits 

arid MPS 
hp he — hp hd - - he — h'^ 

Table 1.4 Dynamics of (1.5.1) in Xe{RA) for q e (l gi] 

whether tlic iieteroclinic orbit from hp goes to h^ or to h'̂ . We would like to show 

that it must be ha. As pointed out in Remark 1.3, this can be accomplished by 

showing there is a path from a point arbitrarily close to hp to h^ lying below the 

energy level c/. We shall construct such a path explicitly below for the special 

case g = 2 and a = 1/2. Wc explain why it is sufficient to ensure there are 

heteroclinic orbits from hp to h(i for all q G ((/3, 3) and a G (0,1). 

For each fixed Pq, the vertical line at PQ intersects x{P (/(O) and £'^(1) 

at Afi and Ac respectively. There is a positive steady state hp in Xe{pQ, A) if and 

only if v4 € In fact, A = so these steady states are 

§ 1.5 
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Figure 1.9: q e The upper curve is A) = Eq{0) and the lower curve is )({P, A)= 

in one-to-one correspondence with a. Each A determines Pd by a horizontal line 

as before J and there is a droplet Ji^ in X^PQ, A) with span PD < PQ. Both hp and 

h(i arc parametrized by a in (0,1). Let 

S = {A G (0,1) : There is a heterocliuic orbit from HP to HJ}. 

For HDQ with AQ E S, there exist some po and SQ such that 

)> B(ha,) + £0, V/i e Xe(Po,v4(Q'o)), \\h — h^Joc = Po 

It is not hard to show that then for sufficiently small e > 0, there exists 6 such 

that for all h^, \\k(j — hd^ || < S, 

S{h) > E{ha) + V" e A;(/->o, • ' ) ) , — Mloo = Po-

Using this property, one can easily show that the set S is open in (0,1). The 

same reasoning shows that 

5"' = {a G (0,1) : There is a heterociinic orbit from hp to h[i} 
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is also open. It follows that both S and S' are open and closed, so S = (0,1) if 

there is a heteroclinic orbit from hp to h^ for a particular a . By scaling Pq to any 

other the result holds for in every Xe(P, A). 

It also extends to all other q in (g2, 3) by a continuity argument as long as 

hp, hfi and h coexist. 

Now. let us show that the line segment connecting hp and h^ lies below the 

energy level c' when q 2 and o = 1/2. Consider 7(5) = (1 - s)hp + shd, for 

s e [0.11. We have 

g{s) =£{-f{s)) = i J (^(1 - s)hpr + skh,^ — / ((1 - + . 

We would like to show that g < c' on (0,1] at a = 1/2. Observe that g is a cubic 

polynomial, so it has at most two critical points. As hp is a steady state, s = 0 

is a critical point for g. Furthermore, g{l) = 8(h(i) < c' — 8(hp) Take 

h(i[x) = h{x] 0) and hp{x) = a) where h{x\ a') satisfies ( .S.SKg = 2) 

and is chosen so that hp and h j have the same area. By direct computation, 

/ ( O ) = / {ha - h, hp{hd — h 

hp{hd — hpf / h^xx{hd — hp) — / hdxxihd — hp] 

hp{hd — hpf + f ( c - •” )(h(i - h, 
{hd>0} 

X / {hd fhf 
{hd>0} 

(hd - hj_ (1.5.7) 

At CY = 1/2, we have g"{0) = —0.2538 < 0. It follows that g has a strict local 

maximum point at 5 = 0. In case g > c' somewhere on (0,1], g must possess at 

least two more critical values, which is impossible. We conclude that the energy 

of the path (1 — + sh(! is less than c' for all s in (0,1 . 
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A similar consideration shows that in the region q e (gi, where hpi, hp2 

and he cocxist, flows starting from U2 converge uniformly to h^ if this is so for a 

particular q and a. Let ^ 8{hpi + s{hp2 — where c' = S{hpi) = g{0) > 

^(1) = E{hp2). Apparently, g'{0) = §'(1) = 0. If / (O) < 0 and ^ > c' for some 

0 < s < 1, ĝ  has at least three critical points, two local minima and one local 

maximum, in (0,1). However, 

= {2-q){q-l) J + 5 ( V — Vi) ' ( V V ) ' > 0, (1.5.8) 

tliat is, g" is convex. This is impossible. 

By direct computation, 

/ ( o ) ( V - M {K2 - Ki 2 + to - i)h(; )‘ 

Take q = 1.77, aa = 0.1 and then a = 0.2785 so that E 1) = J^ 2), Let 

hpi(x) r; a'l) 

and hp2{x) = h{x: 0 2), where A is a constant chosen yo that hpi and hp2 have the 

same area. By theorem 9 in [30], ^{hpi) > £{hp2). We have g"(0) = —2.1697 x 

10—5 < 0 (with error < 10 7). From the above discussion, we conclude that the 

line segment connecting hp and hp2 lies below the energy level c'• 

1.6 Further Comments 

In the last section we studied the power law in the range ( 3) and a rather com-

plete understanding of its dynamics is achieved. However, this has been clone for 

P < max{Po Pd}- What will happen when P goes beyond and P(fl When 

P is not too far from max{P,, P(i}, the dynamics is the same as at inax{/). Pa}. 

Complications arise when P becomes larger, there may be other //^-steady states 

in Xe{P, A). These are positive steady states of noii-miniinal period and corifigii-

rations of droplets with zero contact angle. While the former can be completely 
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(classification in principle from Eq(a), see Figures 1.6-1.10, there are too many 

configuratioiis of droplets. The dynamics becoriics more and more complex as P 

increases. Nevertheless, from [17] we know that these additional steady states 

are all energy unstable, so it leaves the droplets ha and hf̂  as the global energy 

minimizers in X( P, A). Consequently, one may say that the most likely ultimate 

shape of the flow is a droplet with zero contact angle. 

We will not discuss the linear case q — I where explicit solutions are known. 

What happens when q G (—1,1)? At a technical level we need g > 0 or g > 1 

in Proposition 1.4 and Proposition 1.12 respectively. Nevertheless, numerical 

results in [31] indicate that the same mountain pass scenario holds as in the case 

q € [2,3). Examining the situation more closely, these two cases have different 

features. Wlien q 6 ( 1 1), c-oiifiguratioiis of droplets with zero c-out act angle 

coexist with single droplets with zero contact angle. Take a droplet with zero 

contact angle h(i with span 1 and area Aq. For ariy 0, h{x)= 2/((  

defines a droplet h with zero contact angle whose span is A and area (IAQ. JI — 

We explain how to obtain roiifiguratioiis of droplets close to hd in 

A)) for P > 1. Let /?, be the droplet with span A < 1 in ( ,/Mo) 

where fi E (0,1) is very close to 1. It vanishes in [—P/2. /2] U [A/2, P/2]. Let 

h<2 and h^ be the droplets with area equals to (1 — f.i)Ao/2 and whose maxima 

are attained at ( + P ) / 4 and —(A + F ) / 4 respectively. Then hi, J12 and h-s 

form a confi ration of droplets in XE{P, AQ). As /i 1, tlicye configurations 

converge to hd. In fact, a slightly more general construction shows that one can 

deploy many configurations of droplets in A'e(P, tIq) as long as P > 1. The 

abundance of configurations of droplets lays an obstruction to the convergence 

to hd. Speculating further, Sturmian theory tells us that the critical points of a 

solution of a second order parabolic equation do not increase in time [4], In case 

this still works for (1.5.1), we do not have to worry about positive steady states 

of non-minimal period or configurations of droplots, for they have more critical 
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points than a positive steady state of minimal period does. Results valid on 

2. 3) should be extendable to (—1.1) without niucli effort. Although numerical 

evidence shows that this is the case, an analytic proof seems to be remote. 

Figure .10: q c (—1,1). 

There are no droplets with zero contact angle when q < —1. In this case the 

solution of (1.5.1) may touch down at 0 and develop a singularity in finite time. 

In [19] an energy criterion for this to occur is given. When ^ > 3, the solution 

may blow up and touch down in finite time, see [13, 4, 37, 36] for related results. 

So far n > 3.5 lias been imposed in (1.1.6) to ensure positivity of the flow 

(1.1.5). When n is less than 3.5, a flow starting from a positive function may 

touch down in finite time. Although this fact ha8 been established for n G (0. 0.5) 

9] and [19], the most interesting cases n — 1 (thin-film) and n = 3 (Hele-Shaw 

cell) are still open. The range of the exponent n for which rupture occurs also 

varies with q in the power law. The reader is referred to [31] for many numerical 

results. Starting from [8, 9, 12, 13] and [18], people have constructed non-negative 

weak solutions in various eases. By using more precise entropy inequality, it is 
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possible to establish a mountain pass scenario and the existence of hetcroclinic 

orbits for these weak solutions for n > 2. Let us describe how this is done briefly. 

In general, the weak solution is constructed by approximations. First, consider 

the regularized problem by replacing a{z) in (1.1.5) by ac(z) which behaves like 

near 0. For example, take it to be £ > 0 small, when a = z". Denote 

the corresponding problem by (1.1.5)'. Under (1.1.3), (1.1.5)' admits a global 

solution hs{t) in A) for the same positive initial value. It can be shown 

that there exists a sequence s) such that / (t) converges to some nou-negative 

function h{t) in //i—norm for almost every t. The function h{t) e Xe{P, A)^ 

belonging to oo: P/2]) fl oo; /-/^[-F/2, P/2]). is called a 

weak solution to (1.1.5)'. The reader is referred to the above cited works for a 

precise description of the construction and various properties of the weak solution. 

Here we simply point out that the following energy and entropy estimates hold 

for a weak solution h(t). For a.e. f, 

))+£/"",l(‘+., ‘ 
and 

j hi' t) + ^ j:f + + h- 0 

where cr, 6, Ci and C2 are positive constants, S € (0, min{3/2, n — 3/2}). These 

estimates are obtained from (2.2) and (2.3) in [18] by taking 0 = 1 and to — 0 

(because ho > 0). 

When n > 2. we can choose (5 = 1 /2 in the above entropy estimate to obtain 

j ^ y f i h ) + c , ! j hi". 

A similar estimate is available when n > 3/2 and f(z) < near 0 (so that 

the first term on the right hand side of the above entropy estimate its bounded by 
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a constant multiple of t). Using this, we can repeat the proof of Proposition 1.4 

to get 

Proposition 1.23. Consider (1.1.5) under (1.1.3) and n > 2 or 1/4 < g < 3 

and n > 1.5 in the power law, any non-negative weak solution h{t) starting from. 

A) contains a subsequence {h(tj)} converging to an IP-steady state. 

Consequently we deduce 

Theorem 1.24. Under (1.1.3) and n > 2 in (1.1.6) or 1/4 < g < 3 and n > 1.5 

in the power Jaw, TJieorcjn 1.14 is valid for flows of global, non-negative weak 

solutions of (1.1.5). 

Proof. Let {h^j{t)} be a sequence of approximating solutions to the global weak 

solution h{t). Theorem 4 holds for the flows h^^ The components Ui and U2 

depend only on h and are independent of £” By Propositions 1.23, 1.10 and 

1.12, for ho in f/i, converges either to he, h(i or h/^. In case h{t) converges to 

hj or h'(i in H!, Proposition 1.12 implies tliat h^^ {t) belongs to h(i or h[j for all 

large j and t. This is impossible, so h{t) must converge to h Similarly, flows 

starting from U2 converge to hd or h'̂  uniformly. 

• 

Most results in Scction 5 can now be extended to flows comprising of non-

negative weak solutions by this theorem. 
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Classification and Energy Levels 

of S teady Sta tes for Viscous 

Thin-f i lm T y p e Equa t ion 

In this chaper, we study the steady states of the following thin film type equation: 

ht -{{h' + Xh^h + (2.0.1) 

where A > 0 and n E (0,3). Assume h is a positive steady state satisfying 

Kx + f{h) = c 

where /(O) = 0, 

/'Or) = - — = (2.0.2) 

Denote the minimum of h by a. the maximum by (3. Then F{p) — F(a) — c(B—a) 

where F[x) is the primitive of f(x) with F(0) = 0. The minimal period and area 

of K c) and A{a, c) are given respectively by 
rfi  

, (2.0.3) 
Jo. V-T (cv.) — ca — r [xj + cx 

and 
fP ^fl.y. 

• = (2.0.4) 
J a yr (q') — ca — r [x) + cx 
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the boundary of the admissible set is given by Fc U F j U {(0, 0)}. c) and 

A{a, c), (cv, c) G r̂ y, correspond the length and area of a zero contact angle droplet 

respectively. When (a, c) G E , P(a , c) and A{a, c) correspond the minimal period 

and area of a noiiconstant positive steady state. 

2.1 Monotonicity of P(a , c) and A{a, c) 

We try to investigate sonic basic properties, like monotonicity and limit values 

of P(a , c) and A{a, c). To simplify on calculations, we will change the variable 

first. Lei x = y{j3 - a) + a. From (2.0.3) and (2.0.4), we have 

and 

where 

We have 

Aia. c) = V2(/? — a) / (y(,3 - a) + a)dy, 

K[y) = yF(j3) + (1 — y)F{a) — F{;y(p — a) + a 

= - i f i - a f r ( y { 6 — a) + a,) < 0. 

From (12), it is known that /\{0) = K{1) = 0, so K{y) > 0 on [0,1 

Proposition 2.1. For (a, c) G S or a = 0 c 0 Pc{a, c) < 0. 

(2 1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

a = hJc).c>0}, (2.0.6) 
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The admissible set of (a', c) is 

E = {(a,c) : a G (0, hr), c > 0}. (2.0.5) 

Where /(/?(.) — c. Setting 

(2.0.7) 

and 

rc = { (a ,c 
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Proof. As F(d) — F{a) cQ3 - a] 

(2.1.5) 

From a direct computation, 

where 

I{y) = 2K{y) y(J3 «)(/(/?)- …+ «))• (2.1.7) 

As I{y) vanishes at ^ — 0,1 and its second derivative is given by 

i"{y) = y{P — a f f i v i P - « ) + « ) (2 .1 .8) 

where 

= (2.1,9) 

we conclude that I{y) is convex and I{y) < 0 on (0’ 1). So c) < 0 . • 

Proposit ion 2.2. c) > 0 when n > 1, c > 0. For n 0 r*) > 0 when 

n>2. 

Proof. From a direct computation, 

= y (2 .1 .10) 

where 

J{y) = y{P - a){y(P - Q') + a) [f{y{p - a) + a) ~ ] 

= W «) + c,)I(y) + ( - a ) K { : y ) (2.1,11) 

Ma = 0, J{y) = yO{I{y)+2K{y)). By (2.1.4) and (2.1.8), its second derivative 

is given by 

r{y) = r'iy) + 2K"(y) [ f y f ' m — ^ ' f i P v ) 

2.1 
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When 71 > 1, the right hand side of this formula is negative as 

x / (‘r) — 2f{x) = ( — + A(1 — n)) < 0. 

Both I(y) and K(y) vanish at i/ = 0,1, so J(y) > 0 on (0,1). Hence A-(0, c) > 0. 

When a > 0, we need a more careful estimate. Write J(y) as two parts: 

J(y) Hy{3 - «) + a)[I{y) + sK{y)) + ((2 - - a) - sa)K{y) 

= {y{l3~a) + a)j,{y) + j2{y) 

where s is a constant in [0,2] depending on a, (3. Using (2.1.8) and (2.1.4), 

J'Ky) = ( / ? - ^ f W - s f W — «) + a)]. 

So that 

f K (?/(/? a')+ 2 0 
JO 

provided 

{x -— a)f"{x) — sf'{x) < 0, for all x € [a, 8 . 

The above inequality is equivalent to 

-a)f"(x) A(3 — nX cx) … 
s > max ^ \ ^ ) = max ,——)-‘ 2.1.12) 

— f ( x ) .re[a.5] Ax + " , 

We express this maxiiimrii explicitly. 

= + (4 - + (» - 3 

Since 

(Aq' + (4 - " + (n — = (4 _ n)(3 - x) < 0 

and Aa + a^-" > 0, n)(.x a) i—reases on \a, xn] and then decreases on 

•To, +cxj). The critical point XQ satisfies 

Aa + (4 - n)cv:rf + (n — 0. 
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Therefore, 

max 

{ i p ) / " 
m ’ 

(To - a)f"{xo) 
f'M 

6 > Xq 

For the integration involving J2, we need some estimates on K(y), By (2.1.4) 

and (2.1.9), 

{J3 - < K(y) <(,5-af ^ — 

Then 

K[y) 

2 

P-OL Jo 
f y a - y ) \ 
V 2 J 

2 

ydy 

TT 
x/2(/i a 

• f W 

and similarly, 

/ ( — < 
“ - a Jo 

' 1 / ( 1 y) 
2 J 

dy 

V27T 
6 a' 

no)' 

Inserting above equations in the integral of J2 

―' My)dy 

> TT 
—a': 

Therefore 

provided 

s < 

A, -3/2J2(2/) > 0, 

- a) -

(2.1.14) 

(2.1.15) 

By (2.1.12) and (2.1.16), to show c) > 0, it suffices to verify that 

> max —… 

{6 + 2af(a)~^ / ' ( 

(2.1.16) 

(2.1.17) 
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The function [x a)f'{x)~^ is increasing as its derivative shows, 

( ( x - a O / X x r ^ ) 

/ ' —i — « ) / ' — / ( 0 

+ Xx{n — 1) + a(3 - n)) > 0 

Then, 

When n > 2, 

2(.T  

[x — a)f'{x)~2 + 2a/^(a)"2 
IS increasing. (2.1.18) 

- A ( 3 — n T" ((n + (2 — n)A) < 0. (2.1.19) :T3-n + 

So, by (2.1.19) and the increasing of (x — c / ' ( t ) — u n d e r the condition v >2, 

2ix cy)f'{x) i (x — a)f"{x) 
[x-a)f'{x)—2-\-2af'{cy) 

(x - a)f{x)-^ 

> 
- a ) f ( x ) - 2 + 2 a f ( a ) i 

2(x - a ) f ( x ) I 

2 — r { x ) f i x r ' H { x — a ) f \ x r i + 

1 - ( / > ) / , ( a 

+ —  
(x a)r{x)-'2 + 2af'{a)--2 + 

In the case < Xq, by (2.1.13), 

2{6~a)f'{f5r'2 
—max 

> 0. 

> —cy)nx 

In the case P > Xq, by (2.1.13) and (2.1.18), 

> 0. 

- cy)f'{P)- max a — a)f'{x] 

> 

ifi - + 2af(a)-5 f'{x] 

2(.To — c v ) f ( x o ) - ^ (X a)f"ixo) 

We have proved that Ac(a, c) is increasing. 

0) 
> 0. 

(2.1.20) 

(2.1.21) 

(2.1.22) 

• 
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To show the monotonicity of and c), we need the following 

lemma of Schaaf [35] for the Hamiltonian system: 

‘dx 
dt 

dy 
I   

Schaaf presents two sets of conditions and proves that the period of the solution 

y{t)) is an increasing function of the initial data x(()) if the first sot is 

satisfied, and the period is decreasing if the sccond set is satisfied: 

Lemma 2.3. Let F and G he C^ on an open interval J containing 0 with F 

and G vanishing at 0 arid nowhere else, and with F'{0) > 0 G"(0) > 0. Assume 

either that (p = F and cj) G both satisfies SA(ii) and SA(iii), or thai they both 

satisfy condition SB(ii): 

SA(ii) (jy'ix) > 0 X € J vmplies — > 0. 

SA(iii) (j) {x) = 0, X e J implies (l){x}(p"{x) < 0-

SB(ii) 0\x) > 0 x£ J implies — (jf'{x) < 0. 

Then there is a maximal interval (0, a+) C J, a'^ > 0. such that any solution 

y{t)) with initial data x(0) = a € (0, a+) and y{0) = Q is periodic with its 

orbit enclosing the fixed •point (0,0). Let P{a) be the least period of this solution. 

Then P is d/iffer-enUablc on (0, a'+) and for all a E (0, a'+) F^(a) > 0 if F and 

G satisfy SA(ii) and SA(iii), P'{a) < 0 if F and G satisfy SB(ii). 

Here wc consider a special ease, namely, the differential equation x+fi{x) = 0. 

This equation can be written as a system with F(x) = fi(x) and G{y) y. 

Although G{y) does not satisfy condition SA(ii) or SB(ii), Schaaf [35] noted 

that in this special case, her proof remains valid as long as F = /a satisfies the 

hypotheses. 

Proposition 2.4. For (o, c) G E, Pa {a, c) < 0. 
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Proof. After a translation, we may assume the steady state h attains its minimum 

at the origin, i.e. /i(0) — « e (0, he) and h'{0) = 0‘ Letting i.i{x) c — f{hc — x) 

and k — he — h where he is defined in (13), wc obtain 

k" + =0 

with /c(0) = he — a. Since /x is on J = ( oo /?(.), /i(0) = c — = 0 

and //(O) = /'(he) > 0 the lemma applies. Condition SA(iii) holds trivially as 

lj,'{jc) = f'(hc - x) > 0 on J. For condition SA(ii), 

- ” — c — x) 
(h - T 271 

= (3 — rO (( …)4((9 — 2") — — - )3-“), 
The condition n < 3 implies 5/i (j")2 — > 0 . So SA(ii) is satisfied, 

and P( = —I)\h( — a) = -P\k{0)) < 0 . • 

Proposi t ion 2.5. For (cv. c) G yl„(a, c) > 0 when r? > 1. 

Proof. Define V{x) — f j h{s)ds. Since V'{x) = h{x) > a > 0, the inverse V 

exists. Let 

k4y) hi - h(V 1 

The minimal period of k^ is obviously A{a, c). The derivative of k is 

and so 
2h"{V-\y)) 2{f{h{V~\y))) - c) 

Therefore, if wc define 

, 2(c- f ( J h f ^ ) ) , 
M ) - - " (2-1.23) 
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k^ satisfies the equation 

'+ 0 

Note that A'̂ O) = h^ a"̂  > 0, /^^O) 0 and 

,"1 hj'jh,)+c - / ( M m )  
/•ao) = = I  

We could use the lemma again. 

To simplify computation, setting i — t^ = — t h e n we have 

, ‘ - / + d o, 

= — ^ ( , ' 2 / - m ' i f ) + 3 / —3c) 

^ ( t ' r ( t ) — Qt'fit) + Ibtfit) 15/ + 15c). 

By (11), (2.1.9) and (2.1.19). 

5/ —3/i: 
1 

(5/ " 2 - -sm'iL) fit)+c){tr{t)+4/ (o)) 

•M3 — n) / “3 - n. (n + (6 — n)A   

where 

) — — — + c) 
The derivative of g{t) is given by 

m 

2A(3 — — + 5)( i) n 
3(t3—“ + A)2(nt3-» + (6 — n)A)2 

+ (6 —n)(l — n)A2:. 

When n > 1, 

{3(n — 5)(n — 1))^ — 4n{n 5)(6 n)( l n) = 5(n 5)(n — l)(n — 3)^ < 0. 

So ff'(t) < 0, g{t) < g{0) = - 3 c < 0 and then — < 0. SB(ii) 

is satisfied, and we get Aty (o, c) —2aA'{ks,{Q)) > 0. • 



p—oo (/? — 
yf{S)~yf{y{6^a) + a] 

~ lira 
>00 2(5 — cv; 

1 
=lim -(yfiP) — ' i f f W -«) + oc)) 

Z 
2 / ( 1 1 ) (2.1.24) 

Thus by (2.1.1): 

lim F(a, c) = lim V2 
c—>OC "—CO ( 

2 

dy 

dy — 2tt. 

By (2.1.2) and (2.1.24), 

lim ^ = lim V2 
r—00 u — OL /3—oc 6-a dy 

=V2 
'0 \y{^-y)) 

ydy = TT. (2 .1 .26 ) 
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The next proposition is about the limiting properties of P (a c) and c). 

Proposition 2.6. When q > 

lim P{a, c) — 2tt, lim ) = tt. 
00 ‘ r oo j j — Q 

When a 0  

lim c) = 2 / ( « ) - l i m A{a, c) = 
+ h( 1(0 ) r ft, 1(0 ) 

Proof’ Note that f\x) 1 as x — +00. By (2 3), for fixed a', 

i<{y) = l i m  
o—'oo a)^ 

{l-y)F{a)-F{y{3-a) + a\ 
3 

K{y) 
- Q ) 

+ yF 

lin: 

1 1 fY-l 
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When Q' > 0, exists. Similarly, for fixed a, we have 

Then 

lim K[y) = l i m K{y) 

=l im 

—lim 
a 

(/? - a)2 { f j - a)2 
y + (1 - y)F{a)) - F(y([3 - a) + a] 

iP  
yl{0) — y f W — «) + oC 

— a  
1 

=l im - [ y f i ^ ) - y'fiyiP - a) + a)) 
p^a Z 
yil-y)r{a) 

2 

C-^h'r 
lim P(a , (') ™ lim \pi 

= \/2 

( K { y ) \ 

2 
\y(l~y)r{a)) 

dy 

dy 

=2 / > ) - 3 

(2.1.27) 

(2.1.28) 

By (2J .2) and (2.1.27), 

lira A[a.., c) = lim \/2 K{y) y-^ 

2 

{y{0 ) + cx)dy 

\y{l--y)na)) 
ady = 27Taf\ay 

With these monotonicity and Proposition 2.6, we can prove the Theorem C. 

Proof of Theorem C. As Pr{a,c) < 0 for a > 0, for any (a, c) e £ rj) > 

oo c) = 2n. 

When I)Q > 271, by Proposition 2.6, there is some (ao, Cq) G such that 

P{ao, Co) = PQ. By Proposit ions 2.1 and 2.4, PC{a, c) < 0 and PA{oi^ c) < 0. 

From the implicit function theorem, there exists a unique continuous function 

a = />o(c) on some interval (61,62) containing CQ such that o(co) = « and 

2.1 
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0(c)’ c) = Fq on ((5 ^2). Besides, (p'p^ic) < 0, assume the maximal domain of 

(Ppq{c) is (Ci,C2). We show that C2 must be finite. In fact, since Pc{oc, c) < 0 and 

limc_.o c) +0C, linic oc ^(0. c) — 27r, there exists cj such that F(0, c^ = 
Pq. Then P{a, c) < Pq for any c > c^ and a > 0. Note that (b'p^{c) < 0, so that  

o(Ci) = and </>Po(C2) = 0, i.e. Ci) e and (</>p>o(C2), C2) G rV 

We claim that 

{(«‘ c)gE: P ( q ' . C) Po} = {(0PO(c), c) : c- G (ci’ C2)}. (2.1.30) 

In other words, {(a, c) 6 S : P(q , c) = P^} consists of only one curve, the grapli of 

tlie decreasing function (I)PQ{C), which will be called the /Vcurve in the following 

discussion. 

If not, there arc two difTeroiit curves a = <;̂ (c), c E [ci, C2] and a = (f){c), 

c G [ci, £2] in c) G S : P{a, c) — Fq}- = C2 as /) (•, c) < 0. Then 

we may find some c G (max{ci, Ci}, C2) such that <)(Co) + ^{cq). However, 

Po = P{(p(co), C'o) = P( co),Q)), contradicting to Proposition 2.4. 

Now, from continuity, Ap̂  = [Ai,A2]. Wc will prove that Ai < .Otherwise 

Aj ~ A2, meaning that for all c 6 [Ci, c^ 

Oil the other hand, from (7), 

j f {cy c) + C))jh{0p,{c) 

(2.1.31) 

Integrating above equation at c = Ci over a period PQ, we have 

F {AI/PO) <HO PO., 

contradiction holds. 

Similarly, with a further condition n > 2 stated in Propositions 2.2 and 2.5, 

we attain a same result 011 Paq. • 
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As a consequence of Theorem C, when 71 > 2, for given A, there exists P > 2TI 

such that if P > P^^ there exist no positive steady states with minimal period P 

and area A or single droplets with length P and area A. So the possible steady-

states are constant, non-minimal period positive steady states, 0-angle droplet 

whose length strictly lese than P, non-zero contact angle droplet or configuration 

of droplets. Among these, only constant state and single droplet may be energy 

stable, see [30] and [17]. To compare them, one need the result on [30], Theorem 

10: 

Lemma 2.7. Let h, P > 0. then for the constant steady state h, = h, the 

eigenvalue 
. { u ' f — 

where u is P-periodic function on R with f^ adx = 0 and u 0 is r{h)= 

( —. (h)' The T{h)-eigens'pace is spanned by sm(^) and cos(^). 

(i) If f'(h)P^ > 471^ or if f(h)P'- 47r2 and f , > 0 then the constant 

steady state is energy unstable in the direction sin( )and ± c o s ( ^ ) . 

(it) If f(h)P'^ < 47r2 or if f(h)P^ = 4 2 and f"(h) < 0, then the constant 

steady state is energy stable with respect to zero-mean perturbations of period P. 

Since h = A/P, 
— 43 pn-l 

= - — — — oc as P oc. 

When we take a larger P"' to make > 4 2’ the only possible stable 

steady state is a 0-angle droplet. Therefore we have 

Corollary 2.8. When n > 2 for given > 0, there exists P* > 27r such that 

the only energy stable steady state in X[P, A), P > P* is a O-aiigle droplet. 

To conclude this section, we give two equations relating between c), 

Pf.(a, r) and Ai(«,c) c). Define 

H(y) = —(1 y)f{a) — yf{,6) + f{y{,6 — a) + a). (2.1.32) 

2 .1 
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tlieii 

and 

Po + Pr - ^ f K{yriH{y)dy., (2.1.33) 
j —a V2 ./o 

A. + = P + ^ K{yrlH{y)(y{d — a) + a)dy (2.1.34) 
P - a V2 Jo 

Thoy are obtained from direct computations and wc omit the details. 

2.2 Counting the positive steady states 

A natural question following Tlieorem C is. e.g., if AQ G Ap^, how many corre-

sponding steady states? Along the Pq"curve in (2 30), easy to see 

=Ax(cWc),c)(/>:p (c) + p (C) C) 

- ,c). (2.2.1) 

So the uniqueness depends on the (A^Pa — A ^ / y c), isay, if it does not 

change sign in (ci.c?), A{<PPQ[C), C) is monotone in c. Obviously, such positive 

steady state must be unique. On the contrary, if it changes sign in (ci,C2), wc 

can always find some so that at least two cliffbront steady states have same 

minimal period and area. By (2.1.33) and (2.1.34), we have the expression 

2( • 
(0 — 

=I K{yr'^I{ij)ydy I K{y)-lH{y){p-a)dy 

3 
K{y) y)dy K{yY-^H{y)y{p - a)dy 

'0 
_ 3 + 2/ K{yy Hjdy / H{y){P a)dy 

JQ Jo 

—2 I K{y) hkj I K{yrll{y)dy. 
Jo Jo 

Denote it by E(a, c) for short. 

(2.2.2) 



§ 2.2 Counting the positive steady states 71 

Proposition 2.9. Assume n G (0,3), c) < 0 when c is large. 

Proof. We only prove the case n G (2, 3) here. The other case, n € (0, 2] is similar 

cxcopt for some technical modification. Wc put it in the appendix. 

From F{P) - F{a) = c{0 — a), 

lim (5c — lirn = lirii  
c—oo /(/?) - C C-.00 f ' c — 

Since f'{P) 1 as c oc-, 

lim pc = lim f ^ = 2. 
c—oo c oo J — c 

By (2.1.9), 

lirn = lim A(3 - n)— — (3 - n] 
x->oo J ) iT CO ^ ix^-'^ + A)2 ) 

We have the following limits: 

lim 
(/i  
-yni3)+yf'{y{(3-~a) + a) 

, Ĉ  (n —2)(/? — a')"—3 
y f ' m + yTW — aHa: 

lim 

= l i m 
f“oo ( n - 2 ) ( n - 3 ) ( / ? - a 

A 2), 
n — 2 

and 

h(y) 

(2.2.3) 

(2.2.4) 

lim ! o , , 
[0 — 

=lim y — y f w — ( + Q , ) — — c^Kf'iP) - f w + 
—/ (n — — aY" 
= 1 . i C ^ - a)(fW - y ' f W - gp + oQ) 

(n - l ) (n - 2)0? 
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Then by (2.1.24), it is easy to get 

lim / K{y)~HP~a)dy 
r—oo JQ 

= l i m i<{y) \ 

0 
dy 

dy 

=\/27r. 

and 

and 

lim / - a)ydy 

JO 

T 

ydy 

-TV. 

From (2.1.24) and (2.2.5), we have 

lim {p  

= l i m 

K(\y — i:y dy 

I m 

' " ( l l ) — f A(3 - n) 

•dy 

2 y' 

2v^A(3 n) 
( n - l ) ( n - 2 ) 

\ 
y) dy 

/ 

(2.2.6) 

(2.2.7) 

(2 .2 .8 ) 

c—oo ./o 

= l i m 
“ (  

0 V 

\ m 

2 
2-v/2A(3 — n) 

w - o^y 
( A { 3 — n] 

-ydy 

dy 

(2.2.9) 
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Similarly, from (2.1.24) and (2.2.4) 

CO Jq 

r i m —lim 

( y ( i - y ) \ 

{{3 - q)2) 
3 

dy 

2 ) 
A 

n-2 {y-y n — 2 dy 

2x/2A 
'n-2 0/(1 - y ) ) i {y - r ] , 

and 

/ K(y)-iH{y){l3-a)ydy  
>oo Jo 

= l i m 
/ i<{y) \ H{y) :ydy 

{ A 
(Z -\n 2 hj 

^ / ('"( 1))-— 1) , 
Jo 

So with (2.1.6), (2.2.3) and (2.2.8), 

lim (/i   
c-^oo 

4A(3 n) y)dy 

(2 .2 .10) 

(2 .2 .11) 

(2 .2 .12) 

(2.2.13) 

is a negative finite number depending on n. Using (2.1.10), (2.1,11), (2.1.24). 

(2.2.8) and (2.2.9), 

lim Ar = 2tt. (2.2.14) 

By (2.1.33), (2.2.10) and (2.2.13), 

lim (a?-a)^-" Pa 
C—OQ 

2A — 
n — 2 (n —l)(n — 2) 

2A 3 
(?/(l [(5 - n)ij — (n — l)?/""' — 2(3 — — —2) 

(2.2.15) 
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This is also a negative finite rimnber. By (2.1.34), (2.1.25), (2.2.10), (2.2.11) and 

(2.2.14) 

liin Aa 
c^oo 

lim + lini ^ ^ K{y) - i - a) + a)dy 
c—oo c—oc Jo 

- 2 — I 
P — a 

=27r — 27r = 0. (2.2.16) 

Therefore, 

lim {6 — af^^'iA.P^ — A^P,) = 2tt • lim {,6 a”— P < 0. (2.2.17) 

• 

Next we are going to check the sign of E when (o , c) is close to the boundary 

of E. 

Lemma 2.10. For any a > 0, 

lim E(a, c) 
c—hr 1(a) 

—n) 2 —3 « 2n 
Tr'fia 

12 ” •‘ « + 

In particular, when n > E(a. c) < 0 as (a,c) is close to 

Proof. Since F(J3) F(a) = c{6 — cv), we have 

lim = lim ^ lim r>fp\l 
"c-1(a) /(p) - c-^KHa) j {P)0,. 

So 

lim fX, 
6-a 

lim , = 2 / - (2 .2 .18) 



As ill above proposition, we need limits of K. H and I. By (2.1.32), 

m iirn 

= l im 
P^a 

=l im 
d^a 

a) 

- a) 

2 
yj'^-y) 2 (2.2.19) 

By (2.1.7). 

lim m 

—lim 
ft-^a 

=l im 

'S{0 — ay 

6(/3 — a 
1/(1 - y^  

— 6 

Then by (2.1.27): 

(2.2.20) 

lim / K{yrH,6 - a)dy 
••-^hc (a) Jo 

= l i m ( -
hcHa) ./o 

dy 

fy{i — y) 
'o \ 

/>) dy 

(2.2.21) 

Similarly, 

lim / - a)ydy 
—/ic (") Jo 

•/o V 

= j T T / (a 

2 /'(a') ydy 

(2.2.22) 

Counting the positive steady states 75 § 2.2 
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B), (2.1.27) and (2.2.20), we have 

lini / I<[y) ^I{y)dy 
"if (a) Jo 

= lim ( K { y ) / :dy 

'0 \ 2 / 
(/(! - y‘‘ 

6 - / » dy 

~2 
n f i a r l f i a (2.2.23) 

and 

lira / K{ijy^Iiy)ydy  
1(a) Jo 

f y { i - y ) 
\ 

1 
/ ' / > : 3 

7\/2 

1/(1 — y:  

(V2 3V2  
TT H TT 

/ v -/" ydy 

/ ‘ ― (2.2.24) 

By (2.1.27) and (2.2.19), we have 

lim r K{y)-lH{y){p-a)dy 
1(a) Jo 

= l i m 
c—hc 1(a) 

m 

\ / 

:dy 

2 V 2 / 
= -i/"(«: (2.2.25) 
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and 

lim / K{yy-2H{y)y{p- a)dy 

f f yj^-y) r'f ( yC^ — y) ^ 

/ ' ( « " / . 

Using (2.2.23), (2.2.24), (2.2.25) and (2.2.26), we obtain the limits 

lim K{yrll{y)ydy f K{yY'^H{y){6 — a)dy 
(«) JQ Jo 

(2.2.26) 

(2.2.27) 

and 

lim / K{yy-2l{y)dy / K(y)~2H{y)y{i3 a)dy 
c-^hc (a) JQ JQ 

To calculate the values of the other two terms in E{a, c), write 

(2.2.28) 

Kivr^njdy / Kiy)--^H{y){f3-a)dy- / ]dy K{y)-^.I{y)dy 
Jo Jo Jo 

- ydy f yna” H{y){6 - a)dy 

r K{v)-\dv -- f K{y)-lliy)dy 
'o P - « / Jo 

+ / I A ) - . ( ^ dy 
2 ./o V p - a j 

Some limits of higher order are needed, 

imi — ^  
c—"c-1 (P  

yr{f3)-y'ny{P-a) + a) 

(2.2.29) 

= l i m 
a 

" ( l l 2 ) / (a': 
6 

(2.2.30) 
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By above results, we get 

\/27r 
lim I K(yy ydy — . f'ia] 

= l i m ] - W - a f f \ a ydy 

(2.2.31) 

and 

lim f J - a 
/•I / 

= l i m / 
r-K Ho) J o V 

\ 
— )—3 dy 

2 y 

(2.2.32) 

For tlie last limit, wc have 

lim 
n[y){'fi-a)-2I{y) 

=l im 

no) -
['3 — nOfo/ + — 2y5 [ 13 — a) + a)) + — y'), y^^ — a) + a 

24 

6 / K 

Then 

lim ( I 
yjo 

rV2 

V̂ TT 
2{fi - a 

(2.2.33) 

K{y)- — a)dy 

48 
V 2 7 r / ( « ) - i r { a ) ) 

7 - 3 (2.2.34) 

and 

lim 
\ 

K(jj)]I{;y dy 

T 
, ( a " / (a: 

a)-\f (a: (2.2.35) 
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and 

lim ( dy 

'y(i-y) 
2 

\ \ 
6 f  

/ » - i / (a). (2.2.36) 

Putting all these limits together, 

f Kivrhdy 1 K(y)- H[y){j3 — a)dy — l' K{y)-'^dy / ' / ( - / 
Jo Jo Jo Jo 

-3 / 2 — + / ' ( a ) - i 

= V' + • Y H - 7 ( a 

So 

t t / M - K 

(2.2.37) 

lim E(a. c] 

=——7r' 
12 

/ 1 
+ 2 f 1 

V24 
1 . 

Tt 
12 
A(3-—nK 

-8 rffi -3 rll(^ \2 

-TT 

cf -2n 
3(r? - + (12 — 5?7) (2.2.38) 12 J \ ' + 

In the last line, we have used (11),(2.1.9) and (2.1.19). Obviously, When n > 

the limit is negative for all a. In other words, when n > E{a, c) is negative 

when (a, c) G S closo to upper boundary r( • 

Proposition 2.11. 

7rA(5 — n) 
4 n 

(3 — 

(4 _ n)r( 
-2n) I rur /i \ ^ VS -2n 

+ 2(5 - n){l - n)-
8-2n -2n 

(2.2.39) 

Numerically, the value is negative when n > 2.205. 
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Proof. First wc liave the following limiting behavior of f'{x) and /"{T] 

lira iim 
1 

0 n x-̂ o + A 
1 
A' 
3 — n 

X' {X -̂̂  + A)2 A 
When a = 0, K{y) = yF{[5) — So we liave 

and 

lirn =lirn 

= lim 

y . _ y f W 
0 (5 — n 

yfW — y ' f i y p ) 
(5 — n)(4 — 

,5 —'n y — y 

lim 0 " 

1 5 ^ = 1 -
>0 / ^ (4 -

y 
(4 —n)A 

We could calculate the following integrals, 

(2.2.40) 

(2.2.41) 

(2.2.42) 

]im/3  
c—0 

K{y)~2dy 

dy 

(2.2.43) 

lim c 0 

= ( ( 5 - n ) ( 4 - n ) A ) 2 / 

/ 7 rA ( 5 — n ) ) r ( ) 

V 4—n ) K -2n 

'dqj 

(2,2.66) 
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\imp- K{y)-^I{ij)dy 

'dy 

/7rA(5-~n)\^ r{ 
4 - 7 7 

• 2 n -

r{ b-n 
8 - 2 n -

(2.2.45) 

lim/T 6^0 K{yy~^I{y)ydy 

—(3 - 70((5 —n)(4 —n / — 

(3 — n: 
/ 7 r A ( 5 - n ) y r( 

V 4 — n J f ( 
- 2n' 
-2n' 

(2.2.46) 

and 

lim/i^ / K{y) -^H{y)f3dy 

^7rA(5-rr 
(3 - n r ( -2n- -2n 

3 - n 
2rJ / 

(2.2.47) 

lim 3' K{yr-^H{y)dydy 

Finally, 

'5 — 7I)^{(4 — n)Xp / — if {i-y'-^dy 

V i ^ - n f  

n  
2n/ I ^ y n - l n J 

1 Vi 
(2.2,48) 

lim “ c) 

TT (5 — n: 
4 — n 

( 3 — r ^ m : 
…r(: 

1___\2 p/ 3 7-2/f 

-2n 8 2n -2n' 

Calculating it iiuinerically. when n > 2.205 it is negative. See Figure 2,1 below. 

• 
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Figure 2.1: The term in bracket in (2.2.39) for n € (2,3). 

Lemma 2.12. There exists some UQ < S SO that when n G (no: 3) E{0, c) < 0 

for all c > 0. 

Proof. By Proposition 2.9 and Proposition 2.11, E{0, c) < 0 when c is small or 

large enough. So it suffices to show the result for c on a bounded interval t)^). 

As a = 0, 

1 
K"{y) ^ — 0 ' f m = — 

5 1 
{0yf + X 

(2.2.49) 
/ " + A 

So 

On the other hand. 

i<{y) > / W ) . :5 — n)(4 — n] 
(2.2.50) 

K'\y) — /%) > -- m . . (2.2.51) 

so 

(2,2.66) 
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By similar means, 

H"{y) /?2/ (A/)= 

> 

A(3 r?)/ - V — "  
( ( % ) “ + A)2 

X( l n ) 0 “ y h 
(2.2.53) 

so that 

In the reverse direction, 

fliv) < (4 —n)(3 —n; 

H"{y) =iri"{dy) = A(3 - n)f'{di  

(2.2.54) 

=0"f w)y' (2.2.55) 

so 

Similarly, 

H{y)>p'r{(3) 
,n -2 

2)(7I 3) (2.2.56) 

/"(!/) =Phrm = 

A(3- V - n jy“3-
(2.2.57) 

Hence. 

In the reverse direction, 

ny) < / (/?) 
t ” — y 

(5 r}){A — 71 
(2.2.58) 

/ " _ = A(3 - V 3 

- n ) V - 3 

= V (/?)l/"—3, (2.2.59) 

so 

m > 0'npy (2.2.60) 
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Witli tliese estimates, we have the following estimates: 

K~^{y)dy < 
/ ( 5 - n ) ( 4 - n 

I p ' m ) 
{y-y 5—n\- i dy 

- 1 / - (< (2.2.61) 

K~2{y)ydy > {y-y'^yhdy 

/TV' — “ : (2.2.62) 

K-Hy)I{y)dy 

< / 2 
\ P ' n P ) J ( 5 - n ) ( 4 - n ) . / o 

(y - y'rHy'"'^ - y)dy 

2V2 
(5 - n)(4 - n  

rmm— d n 

- f ' m m ] / [y — y2)iw y)dy 

(2.2.63) 

K % ) / ( " ) 

—\ P'fW 
(5 n) ̂  (4 — 71) •• 

(n-l)(n-2) 

Z?3/"( 
:n —l)(n —2) { y — / ( 5 — 77, ) )— - y ) d y 

/ ( / W ) - ; (2.2.64) 

A )/(y)y  

r w m - ' / (jj — ' t T H y ' - yhdy 

(2.2.65) 

/ K-Hy)H(y)(3dy 
io 

(n —2)(n - 3) ./o 
5- ( y)dy 

(2,2.66) 
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K-Hy)II{y)f3dy 

< 2V2 
(4 —?7)(3_?2 

/ " • 

/ {y - vTHy'-''- y)dy 

(2.2.67) 

and 

< 

K-Hy)H{y)6ydy 

2V2 

f W f ' W — Usin). (2 .2 ,68) 

Note that all di{n) = 0(1), i = as n 3. Putting things together, 

m c ) <f{l3r'f"{Pf[d,{n)de{n) — 4 ( n ) 4 ( n ; 

(2.2.69) 

where d2{n)dr{n) — di{n)d4{n) turns negative as n close to 3, see Figure 2.2. 

Figure 2.2 d2{n)dj{n) — di(n)(i4(n) for n e (2.5,3). 
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Since 

/ " ( " ) A(3 - n) : x = (3 — n)O(l) as n — 3. (2.2.70) 

there is some tiq < 3 such that for n e (no. 3) (2.2.69) is negative on bounded 

interval ((̂ i, S2). The lemma is proved. • 

Now, we are ready to prove Theorem D. 

Proof of Theorem D. Following the notations in proof of Theorem A. for any 

PQ > 27r and ^ the number of minimal period steady states in X^PQ, AQ) 

is exactly the cardinality of the set 

{rG(6i,C2) : A(0p (c),c) = ylo}. (2.2,71) 

As both P and A are analytic in parameters a and c, the /Vcurve, a = Opo(rj). ib 

also analytic by the implicit function theorem. Thus, A{(l)pg{c), c) —Aq is analytic 

in (ci- C2), too. It is known that the set of zeros of any analytic function contains 

no accumulation point uiiless the functiion is zero eveiywhere. By Theorem C, 

c) — Aq ^ 0. So the iiiiinber of steady states is at most infinitely 

countable. 

Let n* = m a x l y , r?o}. When n > t by Lemma 2.10, Lemma 2.12 and 

(2.2.1). neither of the two endpoints c!, c'2 can be an accumulation point of 

(2.2.71). So theic is only finitely many c or responding steady states. 

As for non-minimal period steady states, they are in X(PO/K, AO/K) for some 

integer k. Because minimal period of any positive steady state is larger than 2tt. 

such k is bounded from above. • 
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2.3 Energy Levels of Steady States 

In this section we investigate the phase space by comparing the values of the 

energy at the positive periodic, constant and angle droplet steady states. Let 

/?(a, c)(x) be the steady state of (7) satisfying (11) with minimum a. Then we 

have the monotonicity properties of energy. 

Proposition 2.13. The energy defined by (5) decreases in a and c for large n. 

Specifically, when n > 1, 

d 
da 

and when n >2, 

d 

S{h) = -cAa{a, c) + {ca — F(a')) “(a c) < 0 (2.3.1) 

E{h) = — c ) + (ca — F{a))P^{a. c) < 0. (2.3.2) 
dc 

Proof. As the energy is invariant under translation, we assume without loss of 

generality that h attains its minimum at the origin. Then 

/o - y f^h)—dx + -h'{P{a.,c))P^ F{h.(P{a,c)))P^ 

PO … Q 
=—c —hdx - F{a)Pa. (2.3.3) 

Jo 
On the other hand, 

AJci. c) = — / hdx = / —hdx - a Pa- (2.3.4) 
da Jo Jo da 

Putting them together to get the equation in (2.3.1). To show monotonicity, we 

use Proposition 2.4, Proposition 2.5 and the fact ca — F{a) > 0. (2.3.2) can be 

proved similarly. • 

Followirigs are the comparison results. 

Proposition 2.14 (Constant vs Positive). Assume n > 2 and E{a, c) < 0 in 

S. Let hp be the positive steady state in Aq) and he o/ o. Then 

£{hp) < S(hc). 
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Proof. Sincc n > 2, yl,. > 0, Aa > 0 and Pc < 0, < 0. So AIP\ = 

{AcP-FcA)/P^ > 0 and similarly [ A j > 0. Thus, as in the proof of Theorem 

C, there exists an .4o/Po-curve, a = such that {A/P)((I)AO/PO(C), C)= 

AQ/PQ. Easy to see = (^^c — AP^) < 0. There must be 

c*. c*, < c* sa,tisfying c*) = K and /p (c*), c*) = hp. 

Along the AQ /Po-ciirve, we have 

c)) — c( .0'p / (c) + y g + (ca — F )( i/p• + / y 

—^aPc — -^cPa   
AaP - APa 

Noting that A > aP and E{a, c) < 0, it follows 

{c{Pa - A) - F{a)F) 

& ( “ / (c) c)) < 0. 

Therefore, > 8{hp). • 

Proposition 2.15 (0-angle droplet vs Positive). Assume n>2 and E{a, c) < 0 

in S. Let hp, h^ be the positive steady state and 0-angle droplet in X{PQ, /Iq) 

respectively. Then 8{hp) < S(hc). 

Proof. When n > 2, the Ag-curve, a = (c) exists with (/4 c) = —Ac/Ao, < 0. 

There exist c*, c*, c* < c* satisfying h((pAo(c*), *) = hp and h{(l)Ao{c*),c*) = h^. 

Along the Aq-curve, 

•j~eS[K<h [cy,c)) = — + A,) + (c« — + P.) 

Therefore, > • 

Remarks: E(a, c) < 0 holds numerically when n > y . see some evidence in 

the next section. 
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For positive vs positive case, wc have no definite contusion. Suppose h* = 

/i(q*, C^) and h* — have same minimal period PQ and area ‘ By 

Theorem C, (a^cf ) and («* c*) are in the graph of /Vcurve, {(a, c) : a   

0(c)}. Along the Po-curve, 

IC P M , C)) = - + A . ) + ( c a — F{A)){P,4>'{C) + PC) 

ac 

Thus, 

+ / AidPoic) € )(]•€ =—cA 

=/ (A(c/)pJc),c)-Ao)dc. 

The sign of this difference is uncertain. 

2.4 Numerical Computations 

In this section we present some numerical work. In the following computations, 

we always take A = 1. In fact, denoting (11) by f'{x: A), it is easy to see /(x; A)= 

A ' 3 - 1 ) . Then, defining h{x) = where h is the steady state, we 

have 
( 

k . + f [ k 1) -

min h = X^'" ^a. 

Thus X'-^c: 1) = P(>,c;A) and ‘ ( A . ^ i ' , 3 ; 1) = c; A). 

So specifying A = 1 docs not influence the rnoiiotoiiicity of A and P, and the sign 

of E, either. 
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In section 2.1, we have proven that A{a, c) is increasing in c when n > 2 

and is increasing in a when n > 1. The numerical computations show that 

Ac{a, c) may be negative when n < 2. We have observed that when n < 1.26, 

Ac(a, c) turns negative as Q and c are close to zero but not vanish, and when 

n > 1.27, A (a, c) > 0. See Figures 2.3-2.6, where the x-axis and '"-axis represent 

d and /? respectively for simplifying computations. While Ai(a’ c) seems keeping 

positivity for n E (0.1). See Figures 2.7, 2.8 below. 

Figure 2.3: A^ for n = l . l .It turns negative as a and f3 are very small. 
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Figure 2.4: for n = 1.26. 

Figure 2.5: Ac for n = 1.27. 
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Figure 2.6: A^ for n = 1.5. 

Figure 2.13: £ forn = 2 5. 
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Figure 2.8: ^q for n = 0.9. 

In the proof of Theorem D, wc take r/* == min{* no}. The numerical evidence 

shows that y is enough. When n < 2.204, which obtained in Proposition 2.11, 

E{0, c) — +00 as c goes to zero. When n is larger, say, 'n > 2.4, c) seems 

increasing in c. See Figures 2,9, 2.10. 

As explained in section 2.2 the sign changing or not of E{a. c) determines 

the uniqueness of the steady state. By Lemma 2.10, when n < ,E(a, c) is 

positive as c is close to (a') for some rather small a. Other the other hand, by 

Proposition 2.9, E{a, c) turns negative as c comcs to infinity. So E must change 

sign, as Figure 2.11 shows (n = 2.2). When n goes larger, things arc different. 

Our computations suggest that E{a, c) < 0 when a > but an analytical proof 

has not been built yet. 
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Figure 2.9 £-(0. c) , rC (0.03,0.5) for n = 2.15. 2.17.2 25. 2.35 from top. 

F igure 2.10: E(0,c).ce (0.05.0.5) for n = 2.75,2.65,2.55,2.4 from top. 
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Figure 2.11: E for n = 2.2. It is positive for rather small cv and f3. The .r-axis and y-axis 

represent a and fi. 

2.5 Appendix 

Proof of Proposition 2.9 Continued, (ii) Case n = 2. By (2.1.9). 

Then we have 

lira = A. 

lim 

= l i m 
(3 oo 

= l i m 
oo 

H{y) 
ln{j3 — Q') 

+ y ' r i v i P + 
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Figure 2.12: E for n = 2 4. 

Figure 2.13: £ forn = 2 5. 
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Figure 2 14: £ for r? = 2 8 

and 

lirn 

= l i m 

m 
iP a) lii{P a 
yf - y f W - oQ + op - yjfi — a)(f —yfW + qQ) 

111(3 - a) + 1 

/3-^oo ([3 — . 

Together with (2.1.24), it is easy to get 

lim …  ln(/i — ft 

and 

Using (2.1.33) and (2.1.34), 

Inn Ar = 27V 

lim Po.{l3 - a] 
ln{3 - a] 
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and 

Therefore, 

lim •= 0. 

lim {AcPa — A A ) ) ~ ) —oo-
IniP - a] 

(iii) Case n G (1 

Since f'[x) < 1, 

a negative finite 

’ 2). 

/ (x) — X decreases on (0, oo). So f{x) — x goes to either —oo or 

number as x — oc. If the limit is — oc, then we have 

lim 
X' n-3 

/ O ) - X 
= l i m 

=i i rn 

n - 2)x 
/ ' - 1 

[n -2)(n- 3)x' 
] 

2-n 

On the other hand, as n — 2 < 0, 

lim 
X' 0 

/ O ) - X - ( 
= 0 . 

Therefore, 

lim f{x) - x ^ (2.5.1) 

where 70 is a finite negative number depending 011 n. 

When y 6 (0,1], 

lim ff(^) 
r—oo 

= l i m [y - l)f{a) yUW _ + f W - « ) + «)-?//? 
3^00 

={y l)/(>) — y^o + 7o - ya + « 

- ( 1 - ? / ) (7o- / (« ) + a ) < 0 . (2.5.2) 
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When y = 0. obviously, H{y) 0. As n € (1, 2), by (2.5.1) and (11) 

lim di,il{y) 

= l i m yf{6) — yj{y[6 - a) + a] 

:0. 

y a)(f(J3) - yf\y{fi — a) + a)) 

(2.5.3) 

Note that to show (2.5.1), only n < 2 is needed. Hence both (2.5.2) and (2.5.3) 

hold for n € (0,1]. By (2.5.3), we have 

lim 

—lim 

lim 

m 

yfW) - yfiMP cQ + a) - y{,6 - a) —yf(y(/3 - a) + a)) 
(n — — 

/3 oo (n— l)(n - 2)(P - a] 
A(3 — n] 

: n - l ) ( n —2) ( i — y). (2.5.4) 

From (2.1.6) 

Pc 0 - a ( K { y ) I{y) 
( 3 - c) Jo 

Then with (2.5.4) 

{6 a)."-1 (/? - Q'): -dy. 

lim Pc 
c“oo — < —3 

By (2.1.10), (2.1.11), (2.1.24) and (2.5.4), 

= 0 . 

lim ‘ =2^ /2 ( )  
c oo Jo V 2 y 

ydy ~ 'In. (2.5.5) 

Using (2.1.33) and the above results, 

Pa lim -
c-̂ oo yp ~ a I 3 

“ Jo — 

H{y)cly - lim Pc 
CO (p — Q') 2 

oo. 
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while by (2.1.34),(2.5.2), (2.5.4) and (2.5.5): 

lim Aa 
C-+00 

lim P + lim ^ ^ I K{y)- — a) + a) —2n 
C400 c—oo a/2 JO 

277 — 27r = 0. 

Therefore, 

^C^CX — Q C 

{6-a 
lim = 27r(—oo)= 

(iv) Case n = 1, The analogues of (2.5.4) is 

h { y ) lim 

lim 

ln(/5 - a) 
y m — y f w -«) + «)- yW — - vf'W -«) + «)) 

,“oo {(3 tt)-1 

—lim 0 …( — 3 —…+  
,6-^oc (J3 a)_2 

=2X{y — 1). 

Then, from (2.1.6) again, 

PcW - a)  lim 
a  

=1. — ,1 ( ^jy)]— hjy) 1 ^ 

~ V 2 { m - c) Jo ^ 

= 0 . 

Similarly, from (2.1.10), 

lim Ar — 271. 
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Using (2.1.33), (2.1.34) and (2.5.2), 

iim 

lim 

PaW-^)-^ 
ln( J - a) 

1 { , d - a y K[y) 
72ln(/? - a) Jo \ { 0 ~ a ) y 

H(y)dij 

and 

lim Ar. 0. 

Therefore, 

lim (A P . - - 27r(-oc) -oo . 
ln(p — a) 

v) Case n e (0.1). By (2.5.3), 

lim = 0 . 
c—oo p — a 

From (2.1.6): 

lim P,{3 — n: 

lim 
J — a m m 

y ^ i f W ) - c ) Jo oOV 
dy 

Similarly, 

By (2.1.33) and (2.1,34): 

lim Ar = 27r. 

lim Pa{l3 — a f 

= l i m K[y) 
H{y)dy - lim / ( " : - / ( - a f 

C—OO o — Q 
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and 

lim = 0 . 

Therefore, 

lim {A,Pa AaP,){';3 — Q). = 27r(-

• 
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