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Abstract of thesis outitied: 

Shrinkage Method for Estimating Optimal Expectocl Roturn of Self-financing 

Portfolio 

Submit,iod by LIU, Yan 

for the degree of Doctor of Philosophy 

at The Chinese University of I long Kong in May 2011 

By the seminal work of Markowitz in 1952, modern portfolio theory studies 

how to maximize the portfolio oxpcctcd return for a given risk, or minimize 

the risk for a given cxpcctcd return. Sincc these two issues arc equivalent, 

this thesis only focuses on the study of the optimal expected return of a self-

f inai idi ig portfolio for a given risk. 

» 

" The mean-variance portfolio optimization procedure requires two crucial 

inputs: the theoretical mean vector and the 'thcorctical covaxiancc matr ix of 

the portfolio in one period. Since the tradit ional plug-in method using the 

sample mean voctor and the sample covariancc matr ix of the historical data 

incurs substantial estimation errors, this thesis explores how the sample mean 

voctor and the sample covariancc matr ix behave in the optimization procedure 

based on the idea of conditional expectation and finds that the effect of the 

sample mean vector is an additive process while the effect of the sample co-

variance matr ix is a multiplicative process. 

A new estimator for calculating the optimal cxpcctcd return of a self-

i 



financing portfolio is proposed, by considering the joint impact of the sample 

moan vector and the sample (x)variance matr ix. A shrinkage covariance matrix 

is designed to substitute the sample covarianco matr ix in the optimization pro-

cod uro, which leads to an estimate of the optimal expcctcd return smaller than 

the plug -in estimate. The new estimator is also applicable for both p < n and 

J) > n. Simulation studies arc conductcd for two empirical data sets. The simu-

lation results show that the now estimator is superior to the previous methods. 

Finally, under certain a^ssiimptions’ we extend our rcscarch in the frame-

work of random matrix theory. 

« 
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摘要 

馬可維茨於1952年提出的現代投资組合理論主要硏究如下問題：給记風 

險，極人化期望收益；或給定期望收益，極小化風險。因為這兩個問題是等價 

命题，木文主要針對自簿資投資組合對上述第一個命題進行了研究。 

均值-方差投資組合優化现論需要兩倘：®要的輸入：--倘時段内投資組合 

的理論均值及協方若矩陣。傳統的插值方法山於使用樣本均值及樣本協方差矩 

陣來代替理論值，受到較大的估計誤差的影智。本文將最優期望收益視作一個 

整體，利用條件期塑研究樣木均值及樣本協方差矩陣在儍化過程中對其的影 

赞，發現逭pW個量的佔計誤差對於最優期望收益的作用機制分別為加和效應及 

乘積效應。 

因此，在充分考慮到樣本均值及樣本協方差矩陣的交互效應的基礎上，本 

文針對0簿資投資組合的最優期望收益提出了一種新的估計方法。本文利用收 

縮方法構建了一個穩定的協方差矩陣來代替樣本協方差矩陣，並證明利用該 

陣得到的估計值小於插值法得到的估計值。而該估計量適用於 

77 >«兩種情況。本文對兩個經\驗败據進行了模擬研究，模擬結果表明新的估計 

量與以往的估計方法相比，更接近真實值。 

最後，文章在一個傲格的败據假設下，利用随機矩陣理論擴展了研究結果。 
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Chapter 1 

Introduction 

1.1 Background Study 

As a conierstonc of modern portfolio theory, the mean variance (MV) optimiza-

t ion procedure has always been a controversial topic since its establishment in 

1952 by Markowitz [32, 33]. I t hai> achieved great merits for its contribution 

to help building up a mathematical model for investing, and in the mean time, 

i t has also received a lot of crit icism for its impracticality. 

Baiicd on the assumptions that the asset returns are normally distributed, 
4 

all the investors are rational and risk-averse and aim to maximize economic 

ut i l i ty, the mean variance optimization procedure characterizes the asset al-

location problem as a trade-off between risk and expected return, which are 

represented by the variance and mean of returns respectively. Specifically, 

there are two issues to study: inaxirniziiig the expected return given a lixed 

risk or niinimizing the risk given a fixed expected return, both of which lead to 

the formulation of the efficient frontier, arid from this, the investors can choose 

their preferred portfolios. 

‘ 1 ‘ 



CHAPTER 1. INTRODUCTION 2 

However, t,ho application of the theory is not as holpful as one might think. 

Pooplc criticizcd it because they found that they could not pinpoint the best 

portfolio on the efficient froniinr. In fact, most of the time what, they got wore 

oven inferior to the equal weighting portfolios (soc, for oxarnplo, Frankfurter, 

Phillips and Seaglo, 1971 [23]). 

Regardless of the other reasons against the MV method, such as the effi-

ciency of the market, or behavioral finance, in this thesis, we only concentrate 

oil the problem of "error maximization" (Michaud, 1989 [37]) incurred by the 

two critical inputs, the sample mean voctor and the sample covoriancc matrix, 

from a statistical perspective. Since the two optimization issues mentioned 

above arc equivalent, and the optimal expected return is an important crite-

rion i l l coiiipariiig different portfolios for the same risk, in this study, wc only 
/ 

focus on the first issue; to provide a better estimator of the optimal expected 

return under the assumption that the dimension to sample size ratio p/n is 

not ignorable. 

1.2 Modern Portfolio Theory 

1.2.1 Self-Financing Portfolio 

III this thesis, wc choose to study the self-financing portfolios. A self-financing 

portfolio is *a set of long and short investments such that the sum of their 

investment weights is zoro (Korkic and Turtle, 2002 [27]), which means that the 

purchase of a new asset must be financed by ‘the sale of an old one. Examples 

of sclf-finaucing portfolios arc hedges, swaps, overlays, arbitrage portfolios, 

long/short por t fo l ios . . 

r 
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1.2.2 Mean Variance Opt imizat ion Procedure 

Suppose that there arc totally p stocks with returns at time t given by x 二 

{xt i ,x t2, . • • , Xtp)^, and x follows a p dimensional multivariate normal distri-

bution with mean f j , and covariance matrix E. Herein, uj = {u j i ,u j2 , . •.,cjp)'^ is 

the vector of weights corresponding to the p stocks. In this thesis, short vsales 

are allowed, which moans that o / ^ i = 0. 

Since wc only focus on the analysis of optimal expccted return for a given 

risk in this study, the problem can bo dcscribcd ELS follows: 

max(P) = cji/Li， 

(JJ'^T.lj = 0-Q, 
subject to 

u ;T l = 0’ 

where F is the cxpccted return of the portfolio and uq characterizes the given 

risk. 

By Lagrange multiplier method (see, for example, Markowitz, 1959 [33]) 

the optimized maximum oxpected return is: 

1.2.3 Plug-in Me thod 

Since the true mean vector and the true covariance matrix of the returns arc 

unknown, traditionally, the portfolio analysis proceeds in two steps: 

(a) the sample mean jl and the sample covariance matrix S of returns arc 

estimated from a time series of historical returns; 

(b) then the MV problem is solved as if the sample estimates were true values. 
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f 

This "cortainty (equivalence" viewpoint is also callcd the plug- in method. And * 

the plug- in optimal oxpoctod return is: 

. r z (l^S-'^a)'^ 

二 (TQ\fii^h、S-i、ii, 

Herein, we define the function h as 

= 5 - 1 I'V^-I^ • 

The value ctq ivS a^isuiiied to be one since it does not affect the analysis. In this 

study, wc analyze at P*'^. 

1.3 Literature Review 

Many authors (sec, for example, Frankfurter, Phill ips and Seagle, 1971 [23]; 

Barry, 1974 [7j; Brown, 1976 [9]; Michaud, 1989 [37]) have realized the impact 

of this "certainty equivalence" problem. For example, in Frankfurter, Phillips 

and Seagle (1971) [23], an experiment was conducted in which the simulta-

nooiis effect of errors in estimating the moans, variances and covariances of 

returns were taken into consideration. The experimental results demonstrated 

that the impact of the estimation errors was so severe that the usefulness of 

the portfolio theory was brought into question. 

1 

More recently, Michaud (1989) [37] summarized the previous work and at-

tr ibuted the inefficiency to the reason that M V optimizers were "estimation 

error maximizors" since they had the tendency to overweight the securities 
* 

with large estimated returns, negative correlations and small variances, which 

were most likely to have large estimation errors. 
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• Sincc the success of a portfolio selection rule depends on the qualify of the 

two inputs, the sample mean vector and the sample covariance matrix (see, 

for example, Boclic, Kane and Marcus, 2010 [8])，many new estimators of the 

moan and the covariance matrix with loss estimation errors have boon designed 

to deal with this problem (see, for example, Sharpc, 1963 [40]; Elton, Gruber 

arid Pcodbcrg, 1979 [21); Klein and Bawa, 1976 [26]; Jorion, 1986 (25); Lcdoit 

and Wolf, 2003, 2004a k 2004b [28, 29, 30]). 

Index Models 

A famous estimator of the covariance matrix is the single-index model pro-

posed by Sharpe in 1963 [40], which is also known as the market model. I t is 

defined as: 

Xti = ttt H- fh工(H + t t i , 

where Xu is the return of stock i at time t, Xot is the return of the market 

index at time t, measures the sensitivity of stock i to the market index, and 

eti 〜N(0、Sf). The covariancc matrix of the single-index model is: 

F = alf3f3' + D , 

where D = ,diag((5j,..., S^), (3 = (A，... ’ PpV and a"^ is the variance of the 

market index. 

Single- index model fully considers the property of the stock market and 

greatly reduces the number of parameters to be estimated. Elton and Gruber 

(1973) [20] proved that this model was more accurate than directly estimating 

the sample covariance matrix. 

To capture more information of the market, further works extended the 

single-index model to mult i- index models, such as Cohen and Pogue (1967) 
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11] & Roll and Ross (1980) [38]. Then the portfolio problem was reformulated 

using the multi-index models (see, for example, Ross, 1978 [39]; Elton, Grubcr 

and Padborg, 1979 [21]). 

Bayesian Method 

Barry (1974) [7], Brown (1976) [9], Klein and Bawa (1976) [26] advocated a 

Bayesian approach to efficient portfolio scloction. 

Using a diffuse prior, Brown [9) showed that the Baycs diffuse method 

outperformed the plug-in method in portfolio selections. However, the set of 

investment weights on the Bayes diffuse efficient frontier are the same as the 

set of investments weights on the plug-in efficient frontier, which hampers the 

application of Bayes diffuse method (see Barry, 1974 [7]). 

Thereafter, people applied Bayesian approach using informative priors to 

the portfolio theory (see Klein and Bawa, 1976 [26]). However, the assertion 

of all the prior parameters sti l l caused problems in parameter estimation. 

Empirical Bayes Method 

Stein (1956) [41] proved that for p-dimensional multivariate normal distribu-

tion, when p > 3, the sample mean vector was not admissible relative to a 

quadratic loss function. Then he proposed a so called Jamcs-Stein estimator 

(Stein, 1961 [42]). The essence of this estimator is that i t shrinks the maxi-

mum likelihood estimators towards a common value, which leads to a uniformly 

lower risk than the sample mean vector. 

For further extensions of James-Stein estimator, see Efron and Morris 

(1971’ 1972a, 1972b, 1973, 1975, 1976) [12，13, 14, 15, 16，17). They modified 
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Jaincs-Stoin estimator and proposed an empirical Bayes approach to obtain 

estimates that are more appropriate in practical situations. 

Efron and Morris (1976) |18] also proposed empirical Bayes estimators of 

the inverse of a covariarice matrix. Such estimators shrink the sample eigen-

values towards a central value, working in the same way as the James-Stein 

estimator, and they dominate any constant multiple of the inverse sample c o 

varianco matrix in the sense of the uniformly lower risk. 

The advantage of the empirical Bayes method lies in that the prior of the 

parameters can be directly derived from the data. Under the assumption that 

the dimension to sample size ratio p/n goes to zero, Merton (1980) [35] demon-

strated that the covariance matrix was stable across time. Based on this result, 

Jorion (1986) [25] applied Stein's shrinkage estimator of mean to portfolio the-

ory and achieved better results. 

Frost and Savaxino (1986) [24] proposed an empirical Bayes approach to 

efficient portfolio selection. In their study, the informative prior was speci-

fied as "all the stocks are identical". The simulation results showed that the 

performance of the empirical Bayes method was substantially superior to the 

Bayes Diffuse investment rules. 

Shrinkage Covariance Matrix 

,Recently, portfolio managers realize that p cannot be ignored relative to n; it 

can even be larger than n, which makes the sample covariance matr ix S un-

stable or singular. And totally ignoring the covariance structure such as index 

models can also incur problems. 
V 
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To circumvent this difficulty, Ledoit and Wolf (2003, 2004a, 2004b) (28, 

29, 30] proposed a shrinkage covariance matrix under the weaker assumption 

that p/n was only bounded. I t inherits the advantage of the unbiasedriess of 

the sample covariance matrix and the combination of the highly structured 

shrinkage target makes i t stable and invertiblc. In fact, this method is an 

enhancement of the empirical Bayes approach. 

In Ledoit and Wolf (2003) [28], the shrinkage target was chosen as the 

single-index model. They proposed a consistent estimator for the shrinkage in-

tensity. By applying the shrinkage covariance matrix to the NYSE and A M E X 

stock returns, they got significantly lower out-of- sample variance than exist-

ing estimators. 

In Ledoit and Wolf (2004a) [29], the shrinkage target was choscn as the 

constant correlation model. I t gave comparable results as the single-index 

model, but had less parameters to estimate so i t was easy to implement. 

In M. Wolf (2006) [43], the shrinkage method was compared wi th Michaud's 

resampling method (1998) [36]. And i t also asked whether the combination of 

two methods could do better than either technique. However, -there was no 

evidence showing that the combination outperformed the shrinkage method. 

Random Matrix Theory 

Bai, Liu and Wong (2009a, 2009b) [2’ 3] offered a new idea on this issue from 

the view point of random matr ix theory. Using the result of Bai, Miao and 

Pan (2007) (6), they proved that when p/n — y G (0,1), the plug-in optimal 

expected return over-predicts due to the over-dispersion of the eigenvalues of 

the sample covariance matrix. They also calculated the over-prediction ratio 
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baiscd on the l imit spcctral distr ibution. This method, however, is inappli-

cable when p/n is substantial becausc the sample covariaricc matr ix becomes 

singular. 

1.4 Goal of the Study 

The joint effect of the sample mean and the sample covariaiice matr ix together 

has rarely been considered. Al though some studies have considered the Baycs 

estimators of mean and covariaricc matr ix together, their interactions usually 

complicate the issue. 

Following Bai et. al (2009a, 2009b) [2，3], this thesis focuses on the opt imal 

expected return of a self-financing portfolio. I t first exploits the jo int effect 

of the two quantities and proposes a new estimator for evaluating the opt imal 

expected return. To make the sample covariance matr ix stable and invertible, 

shrinkage covariance matrices are combined w i th the proposed estimator. 

1.5 Organization of the Thesis 

This thesis consists of five chapters and is organized as follows. 

In Chapter 1，we give the background of this study and the brief review 

of modern portfolio theory. The development of this field is also introduced 

• in this chapter. Chapter 2 is the main part of this thesis. Using conditional 

expectation, the jo int impact of the errors incurred by the sample mean and 

the sample covariance matr ix is investigated. A new estimator of the optimal 

expected return is then proposed, which is applicable for both p < n and 

p > n. In Chapter 3，simulation studies are conducted to compare the new 

estimator w i th the previous methods. The simulation results show that the 
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new estimator is better than others becauso it is much closer to the benchmark 

value. Chapter 4 consists of discussion and further research in the framework 

of random matrix theory. Chapter 5 concludes. 

r 一 



t 
Chapter 2 

Main Results 

2.1 Introduction » 

In this chapter, a new estimator for estimating the optimal cxpectcd return of 

a sclf-financirig portfolio is proposed. Since the sample mean vector and the 

sample covariance matr ix both incur substantial estimation errors, especially 

when the number of stocks is very large and the sample size is correspondingly 

. s m a l l , this chapter firstly investigates how these two inputs behave in estimat-

ing procedures using conditional expectation. Simulation studies show that 

both the inputs overestimate the optimal expected return. 

Condition on / i , a shrinkage covariance matr ix is designed to substitute 

the sample covariance matr ix in the optimization procedure, which leads to 

an estimate of the optimal expected return smaller than the plug- in estimate. 

The result is proved by the theories of part ial ordering. Then the effect of f i is 

deducted. This method behaves well bccause i t fully considers both the joint 

impact of the two inputs and the error patterns. More importantly, i t also 

avoids the problem of over shrinkage. 

I 

11 



CHAPTER 2. MAIN RESULTS , 12 

2.2 Sample Mean and Sample Covariance Matrix 

Using conditional expectation, can be expressed a»s: 

= E[E(P 丰 , 

A 

This motivates us to study the impact of S and fi on E{P*^) individually. 

Introduce the following notations: 

p " 二 / ( a E ) 二 " 「 M ^ r V ; 

Herein, P*^ is calculated using the true mean vector and the true covariance 

matrix; P*^ is calculated by plugging in the sample mean vector and the sam-

ple covariance matrix; P*^ is calculated by only plugging in the sample mean 
A rt 

vcctor, assuming that the covariance matr ix is known; and the laiit one, Pj 

is calculated assuming that the mean is known while the covariance matrix 

unknown. 

To find the pattern of the errors incurred by using ft and S, simulation 

studies are conducted based on the data sets generated from the following case 

using multivariate normal distribution. For a given p and a given n, the true 

covariance matrix E = / ; the true mean vector is generated from a standard 

normal distribution and then i t is regarded as a known value. 

For each figure reported in this section (Figures 2.1-2.4)，the variable i in 

the x-axis ranges from 1 to 20. Each i corresponds to a data set wi th dimension 

A 
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Pi and sample size n^. The relationship between pi and rii is: 

Pi 
— 二 c , 
rii , 

where = pi, n^ — m and c is a fixed constant. That is to say, in cach 

Figure, the ratio between the dimension and the sample size is the samo. The 

thcorctical optimal cxpoctcd return JR* is regarded as the benchmark value. 

2.2.1 Impact of the Sample Mean 

To study the impact of the sample moan vector on the optimal expected return, 

Jj assuiae that the true covariance matr ix E is known. Wc kiiow that for a p~ 

dimensional multivariate normal distribution with covariance matrix I and 

p > 3 (seo, for example, Stein, 1956 [41]; T. W. Anderson, 2003 [1])’ wc have 

E[p}、fi) = f j J f i + 
n 

Consider the deviation D of using the sample mean vcctor: 

D = — P*\ 

In Figure 2.1, the y-axis measures the difference D and the x-axis denotes 

the variable i. For each i, wc simulate 20 data sets wi th the same covariancc 

matrix and the same mean vector using multivariate normal distribution. For 
A _ A _ 

each data set, we have a value Pj . Then E ( P i ) is approximated by taking 

the sample average of these twenty values of P*^ as the estimate of the mean, 

see Figure 2.1. 

« 

( 
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Figure; 2.1: Difference Between and 尸孝2 

From Figure 2.1, i t is observed that the sample mean overestimates P*〗 

and the difference D fluctuates around the value of p/n. This fact is reflected 

by the following result. 

T h e o r e m 2.2.1. For a given S、 

n-
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P r o o f . 

= t v [ y i i i i f j , ) ^ 

= t r [ - + 
n 

n 

In this c£Lso, S is known to be the real covariancc matrix S so that D — 

( p - l ) / n . 

2.2.2 Impact of the Sample Covariance Mat r ix 

In this part, /x is known and only the impact of the sample covariance matrix 

is considered. The knowledge of the random matr ix theory is employed to 

investigate the effcct of S. However, some basic assumptions of the random 

matrix theory must be introduced first. 

Suppose that { x j k , j = l，...，n，k 二 l， . . . ’p} is a set of double ar-

rays of i.i.d. real random variables with mean 0 and variance cr .̂ Let Xk = 

(xijt,...，Xpk) r and X — (£Ci,... ’ x „ ) . Then the sample mean vector and the 

sample covariance matrix are defined as: 
• » 

n 
- V ^ Xk 
X = > — , 

f - r n 

1 “ 
s = -"^{Xk - x)(xk -

n — I ^―' 

The empirical spectral distribution of the sample covariance matrix S is defined 

as: 

- P 1=1 
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where 入‘ is the i th smallest eigenvalue of S and 
( 

1 if A, € X, 
l{Ai < x ) = “ 

0 otherwise. 

By Bai (1999) [5], if p / n — ?y € (0,oo), then wi th probability one, Fs(x) 

converges to the M-P law Fy(x) almost surely. The M-P law is defined as 

follows (soo, for example, Bai and Silverstein, 2010 [4]; Marcenko and Pastur, 

1967 [31]): 

Definition 2.2.1. {Marcenko-Pastur Law) The density function of the l imit 

spectral distribution Fy{x) is given by: 
/ 

, , 、 if a < x < b, 
/ y ⑷ = 

0， otherwise. 

I t has a point mass 1 - l / y at the origin if y〉1，where a = <7 (̂1 - y/y)^, 

b = "2(1 + 力 ) 2 , p i n — ye： (0, oo). If a^ = 1，it is callcd the standard M-P 

law. 

To sec the impact of the sample covariance matrix on the optimal expected 

return, we need to introduce the following lemmas. 

Lemma 2.2.1. (6'ee Lemma A.2 of Bai, Liu and Wong, 2009a). Suppose 

that • 
‘ /iTE—V 

^ a i , 
n 

and 

S = 力 — x){xk - x f , ‘ 
打—i 

where Xk = + z^ with Zk - E^/^y^t and y^ '̂s having i.i.d. entries wi th mean 
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0 and variance 1 and finite fourth moment. I f p/n y e {0,1), then 

^ an, 
n 

where 7 is defined as: 

7 = “ 和 1 ^ 1 ， 

and a = (1 —力尸，6 = (1 + ^^尸 and Fy{x) is the l imi t spectral distr ibution 

of the eigenvalues. 

The proof can be referred to Corollary 2 of Bai, Miao and Pan (2007) [6 

h Bai, L iu and Wong (2009a) [2 . 

L e m m a 2.2.2. {see Lemma 3.1 of Bai, Liu and Wong, 2009a), Under the 

assumptions of Lemma 2么1，suppose that 

i T H - l l 
^ a2, 

71 

then 

^ a27. 
n 

By replacing ^ wi th 1，and applying Lemma 2.2.1，wo obtain the following 

result. 

L e m m a 2.2.3. {see Lemma 3.1 of Dai, Liu and Wong, 2009a). Under the 

fussumptions of Lemma 2.2.1, suppose that 

l ^ E - V 
> as, n 

then 
I'^S'-V a.s. 

^ <237. n 
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The proof can be found in Bai, L iu and Wong (2009a) [2 . 

Combining Lemmas 2.2.1, 2.2.2 and 2.2.3, we conclude that for a fixed /x, 

P* is overestimated by a ratio y/7, due to the over-dispersion of the eigenval-

ues of the sample covariance matr ix. 

Simulation studios are conducted to give an intui t ive impression of the 

above results. Consider the ratio 

^ 一 p*2 . 

In Figure 2.2，the ？/-axis measures the ratio k and the x-axis denotes the 

variable i. Again, for each z, twenty data sets are simulated using the same 

covariance matr ix and the mean vector. For each data set, we have a value 
A 

of 尸2，then E(P2 ) is approximated by taking the sample average of these . 

twenty values of Pj* 朋 the estimate of the mean. 
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Figure 2.2: Ratio Between and 

From Figure 2.2, i t is seen that for a fixed /x, the overestimating ratio 

incurred by S is stable around the value 7 as p and n increase wi th i. 

2.2.3 Jo int Impact 

To consider the joint impact, we take the sample mean and the sample co-

variance matrix simultaneously. The plug-in optimal expected return P* is 

plotted against the theoretical value P*. The solid line in Figure 2.3 shows the 
A 

behavior of P* and the dash line denotes P*. 
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p/n«0.2 p / rKU 
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Figure 2.3: Plug-in Optimal Expected Return P* vs. Benchmark Value P*. 

A, 

I t is observed that as p/n grows larger, P* deviates farther from P*. How-

ever, there is no obvious pattern in Figure 2.3. 

Consider the quantity 

- 7(P - l ) / n 
一 • 
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Figure 2.4: Ratio Between E{P*^) - y(p - l)/n and jP*^. 

Since the ratio between E(F*^) — j(p — l ) / n and jP*^ fluctuates around 1， 

the value — j(p — l ) / n ) / 7 is approximately the same as P*^. 

From these numerical studies, we conclude that the effect of the mean 

, is an additive process while the effect of the sample covariance matrix is a 

multiplicative process. Both of them over predict the optimal expected return. 

I t can also be argued that the error patterns incurred by fi and S together 

cannot be ignored. 
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2.3 Estimating the Covariance Matrix . 

In this part, Ledoit and Wolf's shrinkage method (2003, 2004a, 2004b) [28, 29， 

30] is employed to construct a shrinkage covariance matr ix , which leads to an 

estimate w i th smaller errors than the plug-in opt imal expected return. The 

advantage of using the shrinkage covariance matr ix is proved by means of the 

notion part ial ordering (see, for example, Marshall and Olkin, 1979 [34]). 

2 .3 .1 Sh r inkage Covar iance M a t r i x 

The shrinkage covariance matr ix is a linear combination of the sample co-

variance matr ix and a highly structured covariance matr ix , which is estimated 

from the data set. The structured covariance matr ix is also called the shrinkage 
• * — 

target. The weight on the shrinkage target, which is called shrinkage intensity, 

- is chosen based on the criterion of minimizing the risk function. 

The shrinkage covariance matr ix is not only invertible, but also well condi-

tioned, which means that inverting i t does not ampli fy the estimation errors. 
» 

More importantly, i t inherits the advantage of the unbiasedness of the sample 

covariance matr ix. 

To avoid the singularity of the sample covariance matr ix , the Probenius 

norm is chosen to define the loss function, which is also called the L i norm 

(see Ledoit and Wolf, 2004b [30]). 

D e f i n i t i o n 2.3.1 The Li norm of a p x p symmetric mat r ix Z w i th entries 

Zij、i、j = 1，...，p and eigenvalues Aj, i = 1 , 2 , . . . is defined by: 
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2.3.2 Shrinkage Target 

Lcdoit and Wolf (2003, 2004a, 2004b) [28’ 29, 30] undertook three ways to 

specify the shrinkage target: 

(a) the identity matrix multiplied by the mean of all the eigenvalues of the 

sample covariancc matrix; 

(b) the single-index model; 

(c) the constant correlation model. 

Alternatively，we utilize the largest eigenvalue of the sample covariance matrix 

to specify the shrinkage target, which is defined as: 

where Ai denotes the largest eigenvalue of S. Then, the shrinkage covariance 

matr ix is: 

S* = a F - ^ { l - a ) S , 

where a is the shrinkage intensity. 

2.3.3 Computa t ion of the Shrinkage Intensity 

By the L2 norm, the loss* function of the shrinkage covariance matrix is: 

L(a) = l laF + ( l - a ) S - E I I ^ . 

Let Sij denote the element of the sample covariance matr ix S, (Tij denote the 

element of the true covariance matrix, and fij denote the element of F. 

The shrinkage intensity is estimated by minimizing the expectation of the 

loss function, which is called the risk function. The risk function is defined 
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and decomposed as follows: 

• ) = E (L (a ) ) 
N N 

= Y l Y l E [ 响 + (1 - 咖 j - 〜 f 
t = l j=l 
N N 

= E E -叫）+ (sij - c^ij)? 
i = l j=l 
N N 

二 a [仅 — Si^f + Var(6'i,) + - 6•‘力(s,).-〜)1 

N N 

t=i 
- Efij + Efij 一 sij){sij —〜•)] 

N N 

= X ] [仅 — Sij^ + V^T(sij) + 2aCov( / i 力 Sij) 
i= l j=l ‘ 

-2aEsij{sij - d i j ) 
N N 

= - + (1 - 2a)VaT(sij) + 2aCov(^ - , s,,)]. 
t=i j=i 

Differentiating /2(a) w i th respect to a, we get 

N N 

丑 ‘ ⑷ = E 一 - 2Var(5i,) + 2Cov(^,〜-)]， ‘ 
t=i j—i 

尺 〃 ⑷ = 广 〜 ) 2 ] . 

»—1 j—1 

Since R"(a) > 0, the risk function has a min imum value. Setting R'{a) = 0， 

we get the estimate of the shrinkage intensity a* as: 

. S i l l Y ! U - E l l i Cov (^ - , s^) 
^^ —-

E(/‘j- — Sij)〗 
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2.3.4 Preliminaries of Partial Ordering 

111 this part, we wil l give preliminary results of Lbewner partial ordering (see 

Wang, Wu and Jia, 2006), which wil l be useful in demonstrating the advantage 

of using the shrinkage covariance matrix. Suppose that A, B and C are all 

Hmn i t i an matrices. 

Definit ion 2.3.2. The Lbewner partial ordering on the set of Hermitian ma-

trices is defined as: 

(a) A < D liY B - A is positive soraidcfinite; 

(b) A < B Ui B — A is positive definite. 

Property. The partial ordering is: 

(a) reflexive: > ^ for all A; 

(b) antisymmetric: A > B and B > A are both true iff v4 = 

(c) transitive: ii A > B and B >C then A>C, 

-一 Any pair of Hermitian matrices satisfy precisely one of the following: 

. (a) none of the relations A < B, A < B, A = B, A> B^ A > D is true; 

(b) only A < B and A < B d^e true; 

事 

, (c) only A < B \s true; 、 

(d) only A = B^ A < B and A > B arc true; 

(e) only A> B is true; 

(f) only A> B and A> B Q,re true. 
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Now, some preliminary lemmas axe introdiicod to provide the foundation of 

the main theorem in this chapter. 

Lemma 2.3.1. {see Theorem 7.2.2 of Wang, Wu and Jia, 2006) Suppose 

that A and B are both 7i x n Hcrmitian matrices, Q \s n x k matrix. Then 

A>D=> Q*AQ > Q*BQ. 

Proof . By Definition 2.3.2, we know that for any x € we have x*{A — 

B)x > 0. Therefore, for any x e 

x^CrAQ - Q'DQ)x = {QxYiA - B)(Qx) > 0， 

which completes the proof. 一 

L e m m a 2.3.2. (see Theorem 7.2.3 of Wang, Wu and Jia, 2006) A > 0 and 

B > 0, then 

A > B ^ Xi{BA'^) < 1. 

Proof . By Lemma 2.3.1，we have 

A>B ^ - 2 0 

台 / - > 0 

Xi{I - A-^I'^BA-^I'^) > 0, i = 1 , . . . , n 

< 1, 

where Xi{A) denotes the i th largest eigenvalue of A. 

From Lemma 2.3.2, we have the following proposition. 
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Proposit ion 2.3.1. (see Proposition 1.2.2 of Wang, Wu and Jia, 2006) If 

A and B arc positive definite l iermit ian matrices, then 

A> D ^ > >4_、 

L e m m a 2.3.3. {see Lemma 7.2.1 of Wang, Wu and Jia, 2006) I f > Ẑ  > 0, 

then 

‘/糊）C ^ ( A ) , 

where ^{A) denotes the column space of A. 

• Proof. From Definition 2.3.2，we know that for any vector x € R^, wc have 

A>B x*Ax > x*Bx. 

I f X € 丄，where ^ ( A ) - ^ denotes the complementary space of ^ ( A ) , 

then x'Ax = 0 ==> x*Bx == 0，which means that x G ^{D)^. Thus we have 

• C 

further, 

M { B ) C ^ ( A ) . 

Lemma 2.3.4. (see Lemma 7.2.2 of Wang, Wu and Jia, 2006) If A and B 

are positive semidefinite Herinitian matrices, then 

A>B<=^ ^ { B ) C ^ { A ) , and A{A 一 B)A > 0. 

Proof . By Lemma 2.3.3 and the definition of positive semidcfiniteiiess, 

the necessary condition is obviously satisfied. 

( < = ) H e r e i n let i4+ denote the Moore-Penrose inverse of matrix A. Since 

十 is an orthogonal projection matrix to ^ ( A ) , then from ^ { D ) C ^ { A ) , 

we get 
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Therefore, under the condition that ^(B) C (A), 

A> B 一 D)AA'^x > 0, for any x 6 IT. 

“ 欢 = therefore, 

x^AA-^iA — B)AA^x > 0，for any x e BT 
« 

equates to 

. x^A{A 一 D)Ax > 0，for any x € C " , 

which concludcs the proof. 

L e m m a 2.3.5. {see Theorem 1.7.4 of Wang, Wu and Jia, 2006) K 召—0， 

C ^ 0, then BA~C is independent of the choice of A~, if and only if C 

\ 

Proof . {==>) Prom the assumption, there exist matrices X and y , s.t. 

C = AX, B' = A'Y. Therefore, 

BA-C = Y'AA-AX = Y'AX, 

while the right side is independent of A~. 

Any general inverse of A can be expressed as: 

A- ^ A- -^U - A-AUAA-, for all U. 

Therefore, 

BA-C = BA'C + BUC 一 BA'AUAA'C, for all U. 

BUC 一 BA'AUAA-C = 0，for all U., 

Let U = A~AZ, Z can be any matrix, then 

BA-AZ{C - AA'C) = 0. 



J 
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Therefore, BA'A = 0 or C = AA'C. If DA'A = 0, then DUC = 0 for all U、 
« 

which implies that = 0 or C = 0, contrary to the assumption that B # 0 

and C ¥ 0. Therefore，C = AA'C, ^(C) C Using the same method, 

we can prove that C 

By Lemma 2.3.5, we have the following proposition. 

Proposit ion 2.3.2. [see Proposition 1.7.1 of Wang, Wu and Jia, 2006) If 

— 0，then B'A-B is independent of A if and only if ^{D) C 

Lemma 2.3.6. {see Theorem 7.2.4 of Wang, Wu and Jia, 2006) If A and 

B arc Hermitian matrices, and A > 0, B > 0,' then 

A>B<=> ^(B) C ^ ( A ) , Xi(BA~) < 1’ 

‘where Xi{BA~) < 1 is independent of the choice of A~. 

Proof . Prom Lenima 2.3.3’ wc can easily get 
4 

A>B==^ c ^^[A), 

Therefore, this is equivalent to proving 

V. 

under the condition C By Lomma 2.3.4, the problem further 

.bcconies 
A{A Xx{BA^) < 1 

under the same condition. Do full rank decomposition to A. A =• LL*、heroin 

L is n X k matrix, k = r{A). Then 

. A{A 一 B)A >0<{==> U{A — B)L > 0. 
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Mult ip ly {L*L)-^ on the left side and the right side of the above inequality, 

we get 

L'{A - B)L > 0 I - T*BT > 0, 

^ A i ( T " B T ) < 0 

肖 \i{:BTT*) < 0 

<==> < 0 , 

where T 二 L(L*L)'^ and TT* = L、L*Ly^I/ = A+. 

Finally, we need to prove for any general inverse A~, 

Ai(BA-) = Ai(BA-'). 

Since ^ ( B ) C .•^(^4)，by Proposition 2.3.2,召“？乂-衫 1/2 jg independent of the 

choicc of A~. Wo have, for all 

Therefore, 

Xi{BA-) = 召 1/2) = = 

2.3.5 Theorem 

Baaed on these results, we have the following theorem. 

Theorem 2.3.1. For given (1、 

where S* = a^A^/ + (1 - a*)S. 

To prove Theorem 2.3.1, we have to prove the following theorems first. 
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Theorem 2.3.2. S—、> S*-^. 

Proof. By Proposition 2.3.1， 

5 - 1 > > 5. 

Factorize S as QNQ、where QQ' = / , A = diag{Xi,\2,... ’ Ap). 

S 竃 - S 二 a A i / + ( l 

= a { \ i l - S) 

= a Q ( A i / - A ) 0 ' 

> 0. 
t 

For notational corivcnicnce, in the following part, let A — and B = 

Theorem 2.3.3. ^{h{D)) C ^(h{A)). 

Proof. If we can find a matrix X which makes h(B) = li{A)X hold, then 

we can obtain the result. Since 

A l l T B U T 忍 I I T 
( 一 T^八 一 i ^ ) = 一 r ^ ， 

let 
WI lT 

the proof is completed. 

Theorem 2.3.4. Xi[h(B)h{A)^] < 1. 

Proof. By Lemma 2.3.2 and Lemma 2.3.6, 

Xi[h{B)h(A)-^] = Xi[h{D)h{A)-l 



CHAPTER 2. MAIN RESULTS 32 

where h{A)~ can be any general inverse of h{A). One of the general inverses 

of h {A ) is 
11T4 

i i T w iiTA 
XmBMA)-)] = 1] 

l l T D 

= 聊 — 結 ” 

. = A “ i M - i ) A “ / - 踪 ) . . 

Sincc A > B,hy Lemma 2.3.2, Xi{DA-^) < 1. / - is an idempotent 

mat r ix , therefore, the largest eigenvalue of i t is 1. Thus we have 

X,[{h{D)h{Ay)] < 1. 

Combining Theorem 2.3.2, Theorem 2 .̂3.3 and Theorem 2.3.4，we have 
A 

h{S-') > "(S—1). 

Here ( i can be any vector, taking expectation of both sides, by Lemma 2.3.6， ...y 

we have Theorem 2.3.1. ‘ 

2.4 New Estimator 

In this part, wc introduce a new estimator of the opt imal expected return. The 

jo in t impact of the sample mean vector and the sample covariance matr ix are 

taken into consideration together. Consider the following theorem. 

i « 
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T h e o r e m 2.3.5. E(P.2) can be rcdiiced in two steps as: 

二 E[E(P』丨A)1 

> E [E (A、 ( f - i )A IA ) ] 

二 E ( A T " 『 i ) / i ) 

n 

2.4.1 N e w E s t i m a t o r 
Theorem 2.3.5 is employed to construct our new estimator. Define K as 

n 

The new estimator for P* is: 

. 办 一 K , i f > K , 
、 A 

P* = < 
^ new 

y j - ” f i , otherwise. 

Herein, notice that cannot always be larger than K since we 

use one observation to replace the expectation. When is smaller 

than K、we can only use the shrinkage covariance matr ix. Al though the sample 

mean's effect is not taken into consideration for this case, the estimator is at 

least as good as Lodoit and Wolf's estimator. 

2.4.2 A l g o r i t h m 

‘ In this part, we introduce how to estimate the values of the shrinkage intensity 

‘ GL* and K. 
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Shrinkage Intensity a* 

According to our shrinkage target F = A i / , recall that the theoretical estimate • 

of a* is: 
• E f ^ i Vax ⑷ - E f ^ i Cov(/ij，〜） 

^ 一 Er=i Hk - Si^y . 
Therefore, to estimate a• ’ the values Var(s,j), Cov(fij, Sij) and E( /y — 

need to be estimated. 

Herein, the bootstrap method (see, for example, Efron and Tibshirani, 1993 

19]) is chosen to give numerical estimates of these three values. Since the 

sample covariance matr ix S is always singular in our case, and the parametric 

resampling needs the sample covariance matr ix to be invertible, i t is therefore 

not a good choice. Consequently, the non-parametric resampling method is 

used to generate different data sets based on the observations. 

Suppose that the number of resampling times is N . Each time, resampling 

is taken wi th in each asset wi th replacement, and the kth data set is generated 

as follows: 

、 广 r ⑷ T ⑷ T ⑷ 、 
-̂ 12 • • • ^Ip 

yfc) Jk) (k) 
山 21 ^ 2 2 • • • . 

T ⑷ T ⑷ T ⑷ 

y^nl . . . ^np y 

and the kth sample covariance matrix (知）is: 

M M Jk) 

,⑷ Jfc) Jfc) y^pi • • • ^pp y 

« 

^ i ‘ 
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The kth shrinkage target is: 

F ⑷=A(广)/， 

where is the largest eigenvalue of 5"⑷. 

« 

Then we get the estimates of the three values as: 

k二1 

where = and = E . l i f l ^ / N . 

Therefore, the estimate of a* is: 

” — E f ^ i T!U vkr(〜)一 E f ^ i 〜 ) 

a 7 z Z i J i U ^ i f i j - s i j r . 

Impact of the Sample Mean Vector: K 

Since the impact of the sample mean vector K depends on the true covariance 

matrix E, herein, for simplicity, we just replace £ by the sample covariance 

matr ix S. Therefore, the estimate of K is: 

n . 
In this expression, is always invertible, therefore, there is no difficulty 

in estimating K . Thus far, we have given the estimates of the two unknown 

values of the new estimator. We wil l do simulations to check the performance 

of the new estimator in Chapter 3. ‘ 

• End of chapter. 
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Chapter 3 

» ‘ 

Simulation Studies 
、 • 

3.1 Introduction 

III this chapter, simulation studies are conducted to show how the new esti-

mator behaves when estimating the optimal expected return. I t is compared 

wi th four different estimators: the benchmark value, the plug-in estimate, the 

bootstrap corrected estimate (Bai et al.，2009a, 2009b [2] [3]) and the shrinkage 

estimate (Ledoit and Wolf, 2004a [29]). The details are introduced in the sec-

ond part of this chapter. We employ two different methods to construct data 

sets: one is to use the mult i - index model while the other is to use historical 

stock returns of the American stock market to specify the true mean and the 
• « 

true covariance matr ix, from which the empirical returns are simulated using 

the multivariate normal distribution. 

Following the cbnveritiou of financial analysis (see Chan, 2010 [10]), in this 

chapter, the return on a stock i at time t is asymptotically defined as: 
參 

Xti = log Pti - log 尸“一1， 

where Pti denotes the price of stock i at t ime t. 1 

H 

36 

« . 

參 
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3.2 Comparison Estimators 

In this part, we mainly introduce the four comparison estimators and the 

corresponding algorithms. 

1. Benchmark Value (rreal) 

The benchmark value is the theoretical optimal expected return computed 

. using the true mean vector and the true covariance matrix E of the data 

set. 

» -

2. Plug-in Estimate (vpiug) 
1 

The plug-in estimate is computed iising the sample mean vector f t and the 

sample covariance matr ix S. 

3. Shrinkage Estimate (rshrink) 

The shrinkage estimate is computed by plugging in the sample mean /x and 

the shrinkage covariance matr ix S*. Following Ledoit and Wolf's work (2004a) 

29], the shrinkage target is chosen as the constant correlation model, because 

‘ i t is easy to implement. The population constant correlation model is denoted 

as $ and the sample constant correlation model is denoted as F. The constant 

correlation model is constructed as follows. 

Suppose that the elements of the true covariance matr ix E and the sample 

covariance matrix S are denoted by (Xij and Sij respectively. And the elements 

of $ and F are (pij and f i j . The population and sample correlation between 

‘ two stocks i and j are defined as: 

^ij 
• • Pij = , > 

Sij 
r- • 二 . 
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, a n d the averages of the population and the sample correlations are given by: 

2 P-i P 

^^ i=i j=t+i 
2 P-i p 

f 二 (p - l ) p S S r i j . 

Then $ and F are constructed as: 

= CTti , ‘ 

. <t>ij 二 Py/aaCTjj ’ • . 

f i i = Sii , 

, f i j = ry/SiiSjj . , . 

Under the assumption that p is fixed while n tends to infinity，the optimal 

‘ shrinkage intensity S behaves asymptotically like, a constant over the sample 

size n (see Ledoit and Wolf (2004a)' [29])，and the constant is given by: 

IT — p 
Kt — ， 

7 

where tt, p and 7 are defined as: 

p p 、 

TT = ^ ^ AsyVar [\/nSij]； 

i= l j = l 
V P 

p = Y l Y l 仏 y C o v [y/nfij，y/nsij]； 

t=i j=i 
p p 

7 = 

. where the notations AsyVar and AsyCov represent the asymptotic variance and 

the asymptotic covariance respectively. Since these three values are unknown, 

the specific algorithm for estimating them is given as follows (see Ledoit and 

Wolf (2004a) [291). 
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The consistent estimator of n is given by: 
p p 

‘‘ i二 1 j=l 

with -
1八 

升ij = - - n.}{xtj - fj)-叫}2; 

The consistent estimator of p is given by: 

二 + E E i (V?么访 + 涵)， 

with 
I « _ 

§ii,ij = - - f i f — .Sii}{(xti - fi,){Xtj - fj,) - Sij}, 

1 n _ 
谷 j j 、 i j = - 工tj. - T j f - - f i . ) ( x t j - r j , ) - Sij}] 

^ £=1 

and the consistent estimator of 7 is given by: 

i=l j=l 

Therefore, the consistent estimator of K is: 
* A A 

. TT — p " 
« = —T—； 

7 
and the estimate of the optimal shrinkage intensity is given by: 

S = max | o , m i n l||. 

4. Bootstrap Corrected Estimate (rba) 

In Bai et al. (2009b) [3], an efficient estimator using the theory of random 

matrices was developed to solve the over prediction problem. The parametric 

bootstrap technique was employed in their study. The procedure is as follows. 
I 

(a) A resample x* = ( X u . . .， ^ n ) is drawn from the p-dimeiisional raultivari-

‘ ate normal distribution with, mean vector fi and covariance matr ix S. 
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(b) The sample mean vector and the sample covariancc matrix of the resam-

plc data set is calculated denoted by Abs and Sus respectively. Then, by 

applying the optimization procedure again, wc obtain the bootstrapped 

plug-in estimate of the optimal expected return 

(c) The bootstrapped corrected return estimate is given by: 

Hw = "^plng + 一 '^plugJ-

3.3 Empirical Study 1 

To make the data set more realistic, ‘ multi- index model (see, for example, 

• Elton and Gruber, 1997 [22]) is employed to generate empirical stock returns. 

Firstly, we give a brief introduction to the mult i- index model, then the data 

set is constructed based on the information drawn from ten 'blue-chip' stocks 

of Dow Jones Industrial Index. 

3.3.1 Mul t i- index Mode l 

- In this study, we choose the number of indices as three. Then, the return on 

a stock i can be wri t ten as 
I 

Xti = Qfi + PiiXQt + A-22/Ot + Pi^ZOi + €tij 

where xot, yot and zot denote the rate of return on the three market indices; ai 

is the component of the return of stock i that is independent of the market's 

performance; and are constants which measure the expected change 

in Xti given a change in xot, yot and zot respectively; and cu is the idiosyncratic 

error term which is uncorrelated wi th Xot, yot and zot. 

• - • 

勢 
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Consider the statistical structure of the multi-index model. Assume 

xot 〜 N i j h ： 乂)、 

yot 〜N(jLy、(Tl、, 

Since the correlations between market indices cannot be zero, suppose that 

Pxy = Corr(xot,2/ot), 、 

Pyz = Corr(2/of,2oO, 

Pxz = Corr(a;ot,2ot)； 

and the covariance structure of the error terms are 

Cov(cit,Cjt) = 0, 

Covidt, e,-.,) = 0. 

Therefore, for the covaxiancc matrix of the multi-index model V, the elements 

on and off the diagonal are respectively 

K i = 0ficrl -h + plal + 5l -H 2Pnl3i2Prya,ay 

Vij = + Pi2l3j2(yl + -I- + Pi2Pjl)PXY(JX(^y 

3.3.2 Construct ing the Da ta Set 

In this part, we use the multi-index model to construct data sets of empirical 

stock returns wi th different combinations of dimension p and sample size n. 

The procedure is as follows: firstly, generate the three market indices xot, yot 

and ZQt using normal distributions; secondly, generate the values of a, 
- » 
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(h and cn also using normal distributions while generating the variance of.Cti 

using chi-squarc distr ibution. Then we get the return of stock i at t ime t as 

工 ti = cki + flijXot + /3i2yoi + Piszot + 

To specify more realistic values of the parameters of the distr ibutions men-

tioned above, prices of three market indices and ten 'blue-chip' stocks of Dow 

Jones Industr ial Index over a t ime period from January 3，2007 to December 

31，2010 are downloaded from the American stock market. The three market 

indices chosen are Dow-Jones Industr ial, S & P 500 and NASDAQ Composite. 

And the ten stocks are listed below: 

1. JP Morgan Chase k Co. Common St (JPM); 

2. Bank of America Corporat ion Com (BAG); 

3. Boeing Company (The) Common Sto (BA) ; 

4. Wal -Mar t Stores, Inc. Common St ( W M T ) ; 

5. McDonald's Corporation Common S (MCD) ; 

6. Inter Corporation ( INTC) ; 

7. Microsoft Corporation (MSFT) ; 

8. E. I. du Pont de Nemours and Com (DD); 

9. Coca-Cola Company (The) Common (KO); 

10. General Electric Company Common (GE). 

Consider the market indices first. The mean and variance of each real index, 

and the correlation structures are summarized in Table 3.1 and Table 3.2. 
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Tabic 3.1: Mean and Variance of Market Iiidiccs. 

m zot 

mean -3.22 • 10-‘『）-5.10 * lO"'' 3.91 * 上(广5 

variance 4.67 • lO"'' 5.65 * U广己 5.98 * 

Tabic 3.2: Correlation between Market Indiccs. 

Pxy Pyz Pxz 

0.9874 0.9642 0.9430 

Then the empirical returns of the market indices for a given sample size 

are simulated f rom a 3-dimeiisional mult ivariate normal distr ibut ion, w i th the 

mean vector and the covariance matr ix specified by the above two tables. 

Secondly, consider specifying the parameter values of the distr ibut ions of 

o；, and Cti. Regression analysis is applied to estimate the values of a , 

01、02y Pz and residual standard errors for each 'blue-chip' stock. The results 

arc summarized in Table 3.3、 

. (-
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Tabic 3.3: Regression Analysis of Ten Stocks Using Multi-Index Model. 

No. stock a (5i residual se 

1 JPM 0.0002 -1.3435 3.6042 -0.7147 0.0108 

2 BAG -0.0002 -2.9595 6.6935 -1.9552 0.0153 

3 BA -0.0001 2.0844 -1.1487 0.2260 0.0065 

4 WMT 0.0001 1.4873 -0.8392 0.0314 0.0048 

5 MCD 0.0003 1.3654 -0.8665 0.2143 0.0046 

6 INTC 0.0000 0.5941 -0.8572 1.3822 0.0058 
•« 

7 MSFT -0.0001 1.3333 -1.6611 1.3983 0.0056 

8 DD 0.0001 0.4785 0.5383 0.1592 0.0054 
9 

9 KO 0.0002 1.3363 -0.7314 0.0724 0.0047 

10 GE -0.0001 -0.3495 1.9441 -0.4622 0.0077 

t 

The means and variances,of a , A , (3-2 and 0s are suriiniarizecl in Table 3.4, 

from which the empirical values arc simulated. • 

/ 

Table 3.4: Mean and Variance of Parameters. 

a Pi P2 Pz ‘ 
• I , I 

mean 4.00 • 1(广5 0.4027 0.6676 0.0351 

variance 2.71 * 1(广《 2.4034 , 7.1344 0.9477 

( 

Suppose that 
6.13*10-5 

0 〜 y , 
- ^ -1 An-1 J 

n — 1 V 

\ 
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herein n = 1005, the total iiumbcr of observations. 

Oiico the values of a, ft, P'z、Ih and arc simulated, they arc regarded 

as nonrandoiri. Then the true moan vector and true covariance matrix V can 

be fixed. Thus far, we have generated all the empirical returns with the-true 

mean voctor and true covariance matrix known. 

3.3.3 Simulat ion Results 

To be general, wo consider six combinations of p and n. When p < n, we liave 

the theoretical explanation as given in Chapter 3. The new estimator is also 

applied to the caiics of p > n to get empirical results. Consider the following 

cases: p = 30，n = 50; /? = 50, n 二 iOO; p = 50, n = 50; p = 100, n = 100; 

p = 100, n = 50; p = 150, n 二 100. 

For cach cause, we simulate 100 data sets and for cach data set i, we calculate 

the values of 巧伫““ r；；̂ ,̂ /̂”‘“矢’ and r j , . The average distance is used to 
f • 

characterize the deviations of the four estimates from the benchmark value. 

Define 
、 1 100 

而 _ Too ^ ^ - 7 real |， 

1=1 
1 100 

山 二 丽 - K^al， 

i-1 
1 100 

d^ — • rpi 一 

2 QQ / J shrink real， 

1 100 

^ 二 而 . 

From Table 3.5, wc see that Vnew has the minimum average distance from 

the benchmark value in each combination of p and u. When p < n, T'j^^g is the 
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Table 3.5: Average distance of the Four Estimates. 

di d2 d'3 (IA 

p = 30, n = 50 0.0960 1.0906 0.6736 0.4321 

p = 50, n = 100 0.0617 0.8477 0.6123 0.3519 . 

p = 50，n = 50 0.0852 — 1.0386 — 

p =】00，n = 100 0.1097 — 1.1G04 — 

* p = 100, n = 50 0.0786 — 2.1276 — 

p = 150, n = 100 0.1947 -- 1.8751 — 

worst among all the estimators, rb^ performs better than rshrink. When p > n, 

the plug-in estimate and the bootstrap corrected estimate cannot be applied. 

We also observe that when p/n is substantial, the shrinkage estimate becomes 

less accurate. 

. In Figures 3.1-3.12，the y axis denotes the opt imal expcctcd return; and 

the x-ax is represents the i t l i data set. The black solid line corresponds to the 

benchmark value rvc。/; the red dashed line corresponds to the new estimator 

Tnew] the yellow dotted line corresponds to the shrinkage estimate rshrinkj the 

green dot-dashed line corresponds to, the plug-in estimate rpi^g] ai id the blue 

long-dashed line corresponds to the bootstrap corroctcd estimate r^s. 

* 

From Figures 3.1-3.6, we find that the plug-in estimate is the worst among 

al l the estimators. I t over predicts the benchmark value heavily in each data 
» 

‘set. When p < n, tho bootstrap corrcctcd estimate is closer to the benchmark 

value than the shrinkage estimate. However, i t is not as stable a^ the shrink-

age estimate over t ime, and it is not efficient when p > n. As p/n grows, ‘ 
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the shrinkage estimate deviates farther from the benchmark value. The new 

• estimator not only is much more stable than the others in each case, but it is 

also always closest to the benchmark value. 
^ > 

• ( 

t 

« 
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3.4 Empirical Study 2 

3.4.1 Constructing the Da ta Set 

In this simulation study, we first choose tliree groups of stocks from the Arneri-
' * 

can stock market and download the historical stock prices of these three groups 

during the period from January 2，2001 to December 31，2010. The number of 

stocks of them are 30, 60 and 80 respectively. Then the sample mean vector 

and the sample covariance matrix of these three data sets are calculated and 

regarded as the true parameters from which the empirical returns are gener-

ated using nrultivariate normal distribution. 

Since the market changes significantly across time, we f ix the number of 

observations n as 50 days and 100 days. Therefore, we have six combinations 

of p and n. The six cases are p 二 30，n = 50; p = 30, n — 100; p = 60, n = 50; 
» 

p = 60, n = 100; p — 80, n = 50 and p = 80, n — 100 respectively. 

3.4.2 Simulat ion Results 
\ 

Again, for each case, we simulate 100 data sets and for each data set i、wo 

calculate the values, of r ^ g ^ r r；^^ ,K ^ ^ r i n k ^ slikI We sti l l use c/i, d】、 

ds and 山 to measure the average distance between the four estimates and the 

benchmark value. Recall that di corresponds to 7\請，corresponds to r。— 

corresponds to rshrink and 山 corresponds to Th6n we have Table 3.6. 
« . ' ‘ 

> 

乂 • 

» « ‘ 

i 



CHAPTER 3. SIMULATION STUDIES 55 

Tabic 3.6: Average distance of the Four Estimates. 

d\ d2 ds 

p = 30, n = 50 0.2294 1.1195 0.6946 0.4903 

p = 30, n= 100 0.1564 0.5513 0.4582 0.2711 

p = 60, 71 = 50 0.2696 — 0.9739 — 

p = 60, n = 100 0.1652 1.0914 0.6682 0.4040 

, p = §0, n 二 50. 0.2817 — 1.1584 一— 

p = 80, n = 100 0.1402 1.8457 0.7956 0.5714. 

Prom Table 3.6，wc observe that Vneu, st i l l has the min imum average dis-

tance among al l the estimators. When the sample covariance matr ix is not 

singular, r^s is the second best estimator. Vshrink becomes worse when p/n 

grows larger. 

. Figures 3.7-3.12 demonstrate our conclusion. Moreover,厂卿 is much more 

stable than the other estimators. 

扉 

J ‘ 

1 . 
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口 End of chapter. 
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Chapter 4 

Discussion and Further 

Research 

4.1 Introduction 

In this chapter, we wil l first give a discussion of the work of Bai, L iu and Wong 

(2009a, 2009b) [2，3]. The impact of the sample mean vcctor is taken into con-

sideration and then an experiment is conducted to show the importance of it. 

Since the estimator of Bai et. al (2009a, 2009b) can only be applied when the 

sample covariance matr ix is invertible, wc introduce the shrinkage covariancc 

matr ix into the framework of their work. However, such an extension is only 

fuKilled under a strict assumption. 

4.2 Discussion 

First consider a lemma of Bai, Liu and Wong (2009a) [2 . 

Lemma 4.2.1. (see Lemma 3.1 of Bai, Liu and Wong, 2009). Assume that 

2 /1， . . .，are n independent random p-vectors of iid entries wi th mean 0 and 

variance 1. Xk = fJ- + Zk with Zk = D^^^yfc, where /i. is an unknown p-vector,' 

- 63 
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and E is an unknown p x p covariance matr ix. Also, we assume that the entries 

of yjt 's have finite fourth moments and p/n 一 y € (0，1). Suppose that 

m ' ^ E - V l ^ E - V 
a】， ^。2’ > a^. 

n n n 

Then we have 

•(a) 一卜 

X a. 
> a i7 , 

n 

(b) 

^ 027, 
- n 

(c) ^ 

l̂ C a.s. 

^ a37. n 

The proof of Lemma 4.2.1 is derived from Lemma 2.2.1, Lemma 2.2.2 and 

Lemma 2.2.3. The details are referred to Bai, L iu and Wong (2009a) [2 . 

Therefore, wc conclude that under the assumptions of Lemma 4.2.1, from 

Lemma 2.2.1, Lemma 2.2.2 and Lemma 2.2.3, we have the result that for a 

known mean vector 

二 7 … D - V (4.1) 

‘ F r o m Lemma 4.2.1，we have the result that 

- A T " ( 0 A 7"1、"(二一 1 ) " . (4.2) 

The above two results are both correct in a mathematical context, and the , 

‘ difference lies in that whether we plug in the real mean vector ^ or wc plug 

in the sample mean vector f i . Can the impact of the sample mean vector 

be ignored using l imi t theorems? Now, we use an experiment to clarify this 

problem in the framework of the portfol io theory. 

‘« 

、、 
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4.2.1 An Experiment 

In this experiment, we consider the diflerence between E(rf)’ ^{rl) and E( r | ) , 

where r j , r^ and r^ are defined as: 

r f 二 i)/x’ 

丫2 = ’ 
7 

2 "T /收一 1)A P - 1 
厂 二 . 

7 n 

Herein, r i denotes the benchmark value, 7*2 denotes the optimal expected re-

turn using Lcrnma 4.2.1 and 7*3 not only considers the impact of the sample 

covariance matrix, but also considers the impact of the sample mean vcctor. 

We design the experiment as follows. Consider two settings. Al l the data 

sets arc generated from a multivariate normal distribution. 

(a) Following Bai, Liu and Wong (2009b) [3], specify the true covariance ma-

tr ix as identity matrix I and suppose that the true mean vector comes 

from a standard normal distribution, then fixed as known. Consider two 

cases: p = 30, n = 100 and p = 60, n — 100. 

(b) Employ the true covariance matrix and the true mean vector of empirical 

study 2 in Chapter 3. We use the previous two cases, p = 30 and p — 60. 

Then simiilato 100 observations respectively. 

Herein, we do simulation ten times to provide a brief look at the differences. 

E(rJ), £(7*2) and E(r器）arc approximated by taking all the means of the ten 
» 

results. See the following two tables, Table 4.1 and Table 4.2. 

«. 
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• (a) 

Tabic 4.1: Comparison of E ( r 〒 ) ， a n d E(r奚). 

E(rjf) E(ri) E(ri) 

p = 30, n = 100 21.58 23.51 23.22 

p = 60，n = 100 61.62 63.19 62.60 

• (b) 

Tabic 4.2: Comparison of E(rJ), E(r|) and E(r^). 

E(r?) E(ri) Ejrl) 

p = 30, n = 100 0.0058 0.3734 0.0834 

； p = 60, n = 100 0.0126 0.7259 0.1359 

From Table 4.1 and Tabic 4.2, wc find that in case (a), the impact of the 

sample mean vector is not obvious. E(rJ)， 专）and E ( r l ) are very close to 

each other. However, in case (b), where the true covariancc matr ix and the 

true mean' vector come from real stock returns, the impact of the sample mean 

vector becomes important. deviates farther from 彥). 

» 

The reason for this is the impact of the sample mean is an integration 

process on E ( r i ) . The error incurred by the sample mean vector is around 

(p — l ) / n . When p < n, as p approaches to n, the value of (p — l ) / n gets 

dose to 1. The importance of this value depends on the order of magnitude of 

the opt imal expected return. The larger the opt imal expected return, the less 

important is (p — l ) / n . However, in the real stock market, such an opt imal 
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cxpcctcd return is very small. Therefore, wo cannot ignore this impact just 

from the perspective of mathematics. 

4.3 Further Research 

Sincc the new estimator b ^ c d on randoiji matrix theory cannot be applied 

when the sample covarianco matrix is singular, in this part, wc provide an 

extension of Bai, L iu and Wong (2009b) [3], usitig the shrinkage method. The 

impact of the sample mean vcctor is taken into consideration. 
、 

4.3.1 Da ta Assumptions 

Suppose that each element in the data set 

jotj 〜Nijij、(T"^) i.i.d, 

herein j = 1，2,. •. ,p，and t = 1, 2, . . . , n. p, n̂  —> oo, p/n —> ?/ 6 (0, oo); / i j 

and a j are unknown parameters. 

For oach osact Xj, assume that the sample size n is big enough so that the 

law of large numbers applies. Then j i j converges in probability to /i) and a'j 

converges in probability to a j ’ where 

‘ t = i 

and 
. • 1 " 

f二1 
Thus wc have 

工 " 7 " J . 〜 啤’ 1), aiJ n oo. 

Therefore, standardization can be used to transform the data to satisfy the 

assumption of the standard Marceiiko-Pastur (MP) law (1967) [31]. Then the 

V 
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sample covariance matrix of the standardized data becomes the correlation 

matr ix of the original data. To make the value of P々 unchanged, the voctor -

of the sample mean becomcs 

A = (AiM，...，Ap/、)t 

4,3.2 Error Correction Rat io 

In this part, the shrinkage target is specified by the identity matrix I and the 

shrinkage covariance matrix is: 

Sincc the data is standardized, wc only need to consider the standard M-P law. 

Now, the density function of the l imit spectral distribution of the shrinkage 

covariance matrix can be deduced from fy{x). Sincc' • 

S* I {\ - a*)S 

= Q [ a * / + ( l - O A j Q '， 

where QQ' = I, the empirical spectral distribution of S* is 

p 乙 ^ I - a* ̂  
t—1 

= F s ( r — ) . 
1 — a* 

Therefore the density function gy(x) of the l imit spectral distribution of S" is 

/ 、 1 - .X — a*. 

G抽 二 Y^MYT^) 

0， otherwise. 
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I f y > 1，gy{x) has a point mass 1 - 1/y at x = a*. Based on Lemma 2.2.1, 

Lemma 2.2.2 and Lemma 2.2.3, we have the following two propositions about 

the error corrcction ratio 7 for the shrinkage covariance matr ix. 

P r o p o s i t i o n 4.3.1. For p < n and for a noiirandom vector 

— U . S . , 

whore 

7 1 = / 血. 

« 

P r o p o s i t i o n 4.3.2. For p> n and for a fixed 

where 

72 = — ( 1 - - ) + / -9yix) dx. 
a y 7( l-a-)a+a-工 

For notational convcriieiicc, define 7 as 
• 

71， P < n , 
7 = < 

72, p> n. 

The quanti ty 7 is calculated by numerical methods. Proposition 4.3.1 and 

Proposition 4.3.2 are demonstrated by simulation results. 

Suppose that the true covariance matr ix E is / and the true mean vector 

f i is simulated from N(0,1) . The data set is simulated from a p dimensional 

mult ivariate normal distr ibution using E ami //. 

To verify Proposition 4.3.1 and Proposition 4.3.2’ consider the value of 

E{fjL^h(S*~^)fi)/ 'y. I t is approximated by simulating ^i^h{S*)/JL/'y ten times 、 
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•了 

and taking the sample average of these values a^ an estimate. The simulation 

results arc a.s fallows. 

Tabic 4.3: p = 25, n = 50. 

Q = 0.2 25.76 24.44 

Q = 0.5 21.44 21.80 

Q = 0.8 25.58 25.41 

Tabic 4.4: p = 50, n = 100. 

E(MT/I(»9”ax)/7 

Q = 0.2 48.22 49.50’ 

‘ a = 0.5 ^ 43.15 44.28 

Q = 0.8 50.39 49.86 

» 

Jl 
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Tah l r 4.r>: p — 50, ii = 25. 

1」(/上丨、"(‘v.)M)/7 r*'' 

a = I). 2 49.25 47.25 

"二（).r) 50.02 49.15 

^ = 0.8 54.22 53.26 

Tab l e 4.6: p = 100, n = 51). 

E ( / , t " ( ‘ S 、 ) / 7 尸" 

(i 二 0.2 95.35 92.20 

a = 0.5 97.97 98.82 

a = 0.8 100.73 99.58 

4.3.3 New Es t ima tor 

Theorem 4.3.1. As p, n —> oc, p/n — y e (0, oo), 

E ( f i ^ } i { S ' - ' ) f i ) ^ -f 广‘] 
n 

Proof . Using double expectation, 

" 二 一 i)Al 仏s - - .7 e (0, oo) 

二 ‘ 
n ‘ 

Th(，proof coniplotos. TlicreForo, the now osti i i ialor of t l io opti irui l oxpoctcd 

return can bo specilk'd ius 

p.2 — A T " ( y ) A /卜 1 
卿 7 7,. • 



CI I APT EH i. DISCUSSION AND FUHTlll'Ji RESEARCH 72 

To a,ss('ss tli(、;ujvantage of the new ostiinator, some simulation studies are (:(m-

(luL、k、(l. To bii consistent, a.ssiinie t hai llie real moan /x coinos fruiii a standard 

normal (list ributioii and the real cx)variaii(:t; matrix is /. 

Th(、siinulation results iir(、summarized in the following four tablrs. We sec 

tlull 1 lu' msults from the lunv (estimator are very (.lose to tiir real valuc-s. 

Tabic; 4.7: p 二 25，ii — 50. 

/ii、"“S、/，' —/:: 

a = 0.2 15.21 13.29 

- 0.5 17.10 IG.Gl 

Q = 0.8 l(i.87 15.80 

£ 

. Table 4.8: p = 50, n = 100. 

/ i T " ( 6 ’ 、 / 7 P,'' 

a = 0.2 51.9() 49.74 

a : 0.5 39.54 42.45 

(I = 0.8 29.94 31.42 

• 二 

- •. 
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1 “ • 

Till山、4.9: p = r>0，n : 25. 

丨 P ' ' ' 

a 二 n.2 50.83 19.05 

n = 0.5 ；37.05 44.47 

a 0.8 40.07 39.19 

Tab l e 4 .10: }) =： lOU, n =- 50. 

‘L飞 h 、 S 、 h f )心 

a = 0.2 J 12.94 1U9.()8 

tv 二 0.5 98.27 90.22 

(V = 0.8 93.94 88.49 

4.3.4 L imi ta t ions and Further Wo rk 

Although tl io simulation results of this inct l iod are closo to the boiicliinark 

value, the assuniptions arc not realistic since the stock returns cannot bo Li.d. 

random vai iahlos. Tlioreforc, tho further work is to rchix tho data assumptions 

to the gonoral ca^jo, sucli us wi th a covariance stnictiirt、. Then compute the 

onor corroctioii rat.io. Taylor expansions could bo used to approximate the 

l imi t si)0(:tral (Jistribution of tl ie shrinkage covariancc matr ix. 

• End of chapter. 



Chapter 5 

Conclusion 

In this study, w(、pruposod a now estimator for evaluating the optimal oxpoctod 

return for a large cliinonsioiial self-Iiiianciiig portfolio. 

In the iiieaii-VcOiiaiicc portfolio optimization procochiro, it is well known that 

the plug-in optimal oxpoctod retiini is not a good estimator since using the 

sample mean and tho sample covariaiicc matrix of the historical data incurs 

substantial errors. Rather than const ructing new estimators of the moan and 

tho covariance matrix that have less estimation errors, this thesis incorporates 

the iiiterac:ti()n cfi'cct of these two quanUUcs and explores how the sample mean 

and Uio sample covariance matrix behave bâ socj on tho kkm of conditional (ex-

pectation. 

It is foimci that the elFoct of the sample mean is an additive procnss while 

the efrect of tlic sample covariance matrix is a imiliiplicative process. Both of 

tlioiii over-predict the optimal expected rctuni. When tho covariance matrix 

is known, tho ovorestiiiiating value incurred by the sample momi is {p - l ] / n . 
•—-

It cannot bo ignored since tho smaller is the roturn, the iiioro it, contributes to 

Ihc total errors. 

74 
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In the iinaiicial market, the riuinber of stocks can be very large while the 

sample sizo should not be too large sinco the stock market changes significantly 

across t.imo. Therefore, p/ii is substantial and the sample covariance matr ix 

tends to be singular. This thesis used the shrinkage methods to construct a 

stable covariance matr ix which was invertible for both p < n and p > n. Par-

t ial ordering was employed to prove that the shrinkage covariance matr ix led to 

an estimate of the opt imal expcctcd return smaller than the plug-in estimate 

and wfus closer to the boiichinark value. 

The new estimator is an i inprovcmciit of the previous methods. I t is dcmon-

strated not only by theory, but also by simulation rbsults. 

Wo also extended our research in the framework of random matr ix the-

ory. However, the data gussiiinptioiis aic rcstrictod. The density function of 

the l imi t spcctral distr ibut ion of the shrinkage covariance matr ix was dcducod, 

, which was used to calculato the error correction rat io incurred by the shrink-

age covariancc matr ix. The impact of the sample mean voctor was considorod. 

Further roscarch needs to be pursued under more general tussuinptions. 

• End of chapter. 
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