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ABSTRACT 

In many text mining applications involving high-dimensional feature space, it is 

difficult to collect sufficient training data for different domains. One strategy to 

tackle this problem is to intelligently adapt the trained model from one domain 

with labeled data to another domain with only unlabeled data. This strategy 

is known as domain adaptation. However, there are two major limitations of 

the existing domain adaptation approaches. The first limitation is that they all 

separate the domain adaptation framework into two separate steps. The first 

step attempts to minimize the domain gap, and then the second step is to train 

the predictive model based on the leweighted instances or transformed feature 

representation. However, such a transformed representation may encode less 

information affecting the predictive performance. The second limitation is that 

they are restricted to using the first-order statistics in a Reproducing Kernel 

Hilbert Space (RKHS)to measure the distribution difference between the source 

domain and the target domain. In this thesis, we focus on developing solutions 

for those two limitations hindering the progress of domain adaptation techniques. 

we develop a novel model to learn a low-rank shared concept space with re-

spect to two criteria simultaneously: the empirical loss in the source domain, and 

the embedded distribution gap between the source domain and the target d o 

main. Besides, we can transfer the predictive power from the extracted common 

features to the characteristic features in the target domain by the feature graph 

Laplacian. Moreover, we cari kernelize our proposed method in the Reproducing 

Kernel Hilbert Space (RKHS) so as to generalize our model by making use of the 



powerful kernel functions. We theoretically analyze the expected error evaluated 

by common convex loss functions in the target domain under the empirical risk 

minimization framework, showing that the error bound can be controlled by the 

expected loss in the source domain, and the embedded distribution gap. 

Then we propose an improved symmetric Stein's loss (SSL) function which 

combines the mean and covariance discrepancy into a unified Bregman matrix 

divergence of which Jensen-Shannon divergence between normal distributions 

is a particular case. Based on our proposed distribution gap measure based 

on second-order statistics, we present another new domain adaptation method 

called Location and Scatter Matching. The target is to find a good feature 

representation which can reduce the embedded distribution gap measured by 

SSL between the source domain arid the target domain, at the same time, ensure 

the new derived representation can encode sufficient discriminants with respect 

to the label information. Then a standard machine learning algorithm, such as 

Support Vector Machine (SVM), can be adapted to train classifiers in the new 

feature subspace across domains. 

We conduct a series of experiments on real-world datasets to demonstrate 

the performance of our proposed approaches comparing with other competitive 

methods. The results show .significant improvement over existing domain adap-

tation approaches. 

iit: 



摘要 

在许多包含高维特征空间fi^文本挖掘应用中，有的时候为不同的领域釆集足够 

多的标•注数据会特别困难。•对付这种问题，有一种策略那就是智能地改变在 

有标注数据领域（源领域）上学习的模型，从而使其适应到其他没有标注数据 

的领域（目标领域）上去。这种策略就是机器学习中一种新型的学习模式， 

领域适应。在现有的领域适应方法中，普遍存在着两种不足。第一个不足之处 

就是基本上所有的方法都会分成两个步骤，第一步就是学习一种变换，包括 

样本加权和特征加权，使得两个领域的内在分布保持一致；第二步就在这个保 

持分布一致的空间上，训练出预测模型，从而用到另外一个没有标注数据的 

领域上去。很显然的，为了使两个领域保持一致的变换势必会人为地丢失掉很 

多有用的信息，因为第一步根本就没有用到标注的信息，从而使得训练出来 

的模型在目标领域上面表现不佳。第二个不足之处就是在衡量两个领域的分布 

差异时，己有的方法都只是在生成的希尔伯特核空间里考虑一阶统计量的差 

异，然而这个统计量还不足己去衡量两个分布的差异。在这篇论文里，我们主 

要专注于怎么样消灭这两个阻碍领域适应算法发展的栏路虎。 

首先我们研究了一个新‘辆的方法去学习一个低秩的共有概念空间，学习的 

时候主要考虑两个指标。第一个就是源领域和目标领域嵌入到这个共有概念空 

间之后的隐含分布差异会最小，第二个就是在这个空间里面，标注的信息和 

学习出来的信息误差会达到小。这样的话最终学习出来的模型就可以无缝 

隙的推广到目标领域上去。时，我们可以从挖掘的共有特征上传递很多预 

测能量到目标领域里特有的特征上去，这是通过特征的拉普拉斯图进行实现 

的。除此之外，我们可以;it’函数化我们提出的方法到生成的希尔伯特核空间 

上去，从而使得我们的模型有更好的推广性。我们还在经验风险最小的框架上 
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IV 

面理论地分析了我们这个凸函数模型在目标领域上的误差上限。这个上限表 

明它可以被源领域标注误差，以及嵌入空间里源领域和目标领域之间的差异很 

好地控制住。 

然后针对第二个不足之处，我们提出了一个对称的Stein损失函数，可 

iu同时考虑均值差异和协方差矩阵差异，并且可以将他们映射到一个统一 

的Bregman矩阵散度上去。它非常的宽泛，经典的Jensen-Shannon散度在两个 

正态分布上的值是我们提出的衡量方法的特殊情况。基于我们提出的衡量领域 

差异的指标，我们提出了方位和散度同时匹配的领域适应算法。学习过程基 

于的指标跟第一个算法一^^,挖掘出一个共同的概念空间，使得源领域和目标 

领域在新的衡量标准下分+差异最小，同时兼顾源领域的标注信息。最后用 

经典的机器学习方法，例如支持向量机，去训练最终的模型。 

我们奄1见实的数据集上面实施了一系列的实验，通过比较其他的方法去展 

示我们提出•的方法的优势。结果表明了我们的方法相对于其他领域适应算法有 

着非常明显的提高。 
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CHAPTER 

INTRODUCTION 

1.1. Motivation 

In many text mining applications involving high-dimensional feature space, it is 

difficult to collect sufficient training data for different domains. For example, 

suppose we wish to build an employment analysis system. There is a major com-

ponent that conducts text information extraction from recruitment Web sites. To 

handle a massive amount of information, we can deVejop a learning model whose 

aim is to learn information extraction patterns to extract precise job information 

related to a particular field such as job title, duty, requirement, etc, in different 

industries. A more effective training strategy is to prepare different training data 

for different industries so that tailor-made information extraction patterns can be 

learned for each industry. However, typically we may just have few experts who 

can accurately annotate the information in one specific industry like accounting. 

The learned model deployed obviously cannot perform well in other industries 

such as logistic or health care due to the distribution of the terms in each indus-

try is different. One strategy to tackle this problem is to intelligently adapt the 

trained extraction model from one industry to another industry. Another real-

world example com拜 from the email spamming system, where we know that the 

general spam filters can be trained on some public collection of spam emails. But 

when the trained spam filter is applied to an individual person or newsgroup's 
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inbox, the filtering performance may degenerate seriously. Therefore, we need 

to personalize the spam filter. Specifically, we should adapt the spam system to 

fit the person or newsgroup's own email distribution by discovering the shared 

pattern's and discriminative pa t t e rn s . " 

1.2. Domain Adaptation 

Adapting text mining models can be treated as a kind of domain adaptation 

problems. Different from the traditional statistical learning settings, which as-

sume that the training data and the operational (testing) data are drawn from 

the same underlying distribution, the operational data in domain adaptation set-

ting, sampled from one domain, has different underlying distribution with the 

training data sampled from another domain. 

Defini t ion 1. (Domain Adaptation). Given a source domain Ds and a cor-

responding learning task Ts, a target domain Dr and a corresponding learning 

task TV, domain adaptation aims to improve the learning of the target predictive 

function fri'i •) in Dj- using the knowledge in Ds and Ts, where Ds Dr and 

Ts = TV". In addition, sufficient unlabeled samples in Dr must be available when 

training. •:�, • 

The above definition indicates that domain adaptation can be regarded as a 

transductive learning algorithm which tries to make the best use of the unlabeled 

data in the target domain. Besides, the source and targfet tasks are the same so 

that one can adapt the learnt prediction I'unction in the source domain to the 

target domain through the distribution matching on the data samples. Here we 
1 ‘ 

state that Ds ^ D丁 without giving the feature space definition. Obviously, the 

setting can be divided into two cases, (1) the feature spaces in Ds and D丁 are 

different; (2) the feature spaces in Ds and D丁 are same, but the corresponding 

marginal distributions are different. Generally speaking, most of the domain 

adaptation techniques are related to case (2)，including our proposed methods 
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in this thesis. Arnold et al. investigated the difference between traditional trans-

ductive learning setting and domain adaptation in detail in [2 . 

1.3. Drawbacks of Existing Approaches 

Distinction between training and testing distribution's in a learning problem has 

been referred to as sample selection bias [37] or covariate shift (56, 57]. Sample 

selection bias actually refers to the fact that the training instances are originally 

drawn from the testing distribution, but sampled as training data with proba-

bility. Covariate shift is a particular sample selection bias which allows different 

distributions of the instances between the training and testing set, but it as-

sumes that the conditional probabilities of the label variables given an instance 

remain unchanged. There are two main approaches to.removing the bias, namely, 

instance-level approach and feature-level approach. 

Instance-level approaches [37’ 56, 57) infer the re-sampling weight of train-

ing samples by matching the distributions between training and testing sets in 

the original feature space. Huang et al. [37] proposed a Kernel Mean Match-

ing (KMM) to learn the re-sampling weights directly by matching the means 

between the source domain data and the target domain data in a Reproducing 

Kernel Hilbert Space (RKHS). Sugiyama et al.. [57] proposed a Kullback-Leibler 

Importance Estimation Procedure (KLIEP) to estimate the re-sampling weights 

directly by minimizing the Kullback-Leibler divergence between the two domains. 

Feature-level approaches [9’ 48, 49] try to learn an optimal feature represen-

tation where the marginal distributions between the data in different domains 

are closely matched. Then with the new feature representation, the performance 

of the target task is expected to improve significantly； Blitzer et al. [9] proposed 

a heuristic method to select some domain independent pivot features to learn an 

embedded space where the data coming from both domains can share the same 

feature structure. Pan et al. [48) exploited the M ^ i m u m Mean Discrepancy 

Embedding (MMDE) method to learn a low-dimensional space to reduce the 
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distribution difference between domains for domain adaptation. Their following 

work on Transfer Component Analysis (TCA) tries to learn a set of common 

transfer components across domains for reducing the distribution gap |49 . 

Both the instance-level and feature-level approaches in domain adaptaion 

try to reduce the distribution gap between the training and testing set so as to 

propagate the label information and they have been demonstrated to be effective 

in various applications. However, generally, for both kinds of approaches, they 

all separate the domain adaptation framework into two separate steps. The first 

step attempts to minimize the domain gap, and then the second step is to train 

the predictive model based on the reweighted instances or transformed feature 

representation. They do not consider these two steps in a unified framework. 

However, such a transformed representation may encode less information leading 

to an increase of the empirical loss on the labeled data. While the use of labels in 

linear discriminant analysis usually helps extract more discriminative features, 

the label information from the source domains may be also useful to learn kernels 

or extract features for better domain adaptation. 

1.4. Contributions 

1.4.1. Discovering Low-Rank Shared Concept Space 

In Chapter 3, we develop a novel model to learn a low-rank shared concept space 

with respect to two criteria simultaneously: the empirical loss in the source 

domain, an(f the embedded distribution gap between the source domain and the 

target domain. We call our method Low-Rank Shared Concept (LRSC) domain 

adaptation method. Consider again the job information extraction example. 

For the task of extracting the-job requirement information in the domain of 

accounting, the most representative terms are "qualified", "year", "experience"， 

"CPA", "CA”，"ACCA", etc. For the domain of health care, the representative 

terms shift to “qualified"，"degree", “year”’ “CCP”，"Physiology", "experience”， 
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etp. If we can extract the shared domain independeiit'features such as "qualified"， 

"year", "experience", then the learned model for extraction can be effectively 

adapted to the domain of health care. 

Our proposed framework discovers the low-rank shared concept space, where 

the empirical loss on the labeled data, as well as the distribution gap between 

the source domain and the target domain, are jointly minimized. Besides, we can 

transfer the predictive power from the extracted common features to the charac-

teristic features in the target domain by the fealure"graph Laplacian. Moreover, 

we can kernelize our proposed method in the Reproducing Kernel Hilbert Space 

(RKHS) so as to generalize our model by making use of the powerful kernel 

functions [54). Therefore, it can be applied to fit some special kinds of data, like 

graphs, strings, where linear space usually fails to model them. The proposed 

alternating optimization strategy can solve our model efficiently. Moreover, our 

model is very general in selecting the loss functions like Hinge loss and sparse 

loss, instead of the least square loss function, as the computation of the empirical 

label loss for the labeled data. 

We theoretically analyze the expected error evaluated by common convex 

loss functions in the target domain under the empirical risk minimization frame-

work, showing that the error bound can be controlled by the expected loss in 

the source domain, and the embedded distribution gap. We prove that minimiz-

ing the objective function is very reasonable for domain adaptation and it can 

lead to good prediction performance in the target domain. Our model is also 

capable of considering multiple classes and their interactions simultaneously. We 
• -I 

have conducted extensive experiments on two common text mining problems, 

namely, information extraction and document classification to demonstrate the 

effectiveness of our proposed method [16’ 62，18, 17, 69]. 
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1.4.2. Location and Scatter Matching by High-Order 

Statistics 

Even though these empirical mean based domain adaptation methods have 

achieved encouraging performance in various applications, there still exists some 

technical difficulties hindering even better results. First it is extremely hard to 

estimate the density function especially when the feature space is of high di-

mensional. Another major difficulty is how to incorporate an effective statistical 

criterion measuring distribution discrepancy into a tractable framework. Cur-

rently, most existing instance-level and feature-level approaches are restricted Lo 

the first-order statistics matching and enforce the empirical means of the training 

and testing instances be closer in a Reproducing Kernel Hilbert Space (RKHS). 

However, intuitively, they may have a considerable limitation in matching two 

probability distributions where only the first-order statistics are exactly the same. 

Moreover, for many text mining applications, it is not appropriate to ignore the 

feature dependency which can be explored by considering the document covari-

ance. Specifically, we can observe that the sample covariance matrix on text 

data with zero mean is exactly the same as the feature similarity matrix. This 

motivates us to utilize the covari ance information to evaluate the distribution 

discrepancy. First it can strengthen the distribution matching criterion instead 

of only considering the mean. The second advantage is that we can utilize the 

feature dependency to distinguish domain specific features and common features, 

and then filter such features whose similarity with other features varies greatly 

from the training data to the testing data by investigating the sample covari ance 

matrices. 

In order to overcome the limitations mentioned above, we develop a new 

non-parametric distance metric call symmetric Stein's loss (SSL) to empirically 

measure the distribution gap between two domains with finite samples [19). It 

jointly considers the empirical mean (Location) and sample covariance (Scatter) 

difference, and it can map the location and scatter information to one matrix 
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smoothly which can avoid treating them separately. More specifically, we pro-

pose an improved symmetric Stein's loss (SSL) function which combines the 

mean and covariance discrepancy into a unified Bregman matrix divergence of 

which Jensen-Shannon divergence between normal distributions is a particular 

case. In Chapter 4, we state the detailed description of our proposed model 

free distribution gap measure. Moreover, we test tlVe properties of SSL on both 

synthetic dataset and real-world dataset from different aspects, like convergence, 

sensitivity, and generalization ability. We also conduct two-sample tests on a 

real-world microarray dataset comparing with other competitive methods, such 

as t-test, maximum mean discrepancy, and so on. 

Based on our proposed distribution gap measure, the symmetric Stein's 

loss (SSL), we present another new domain adaptation method called Location 

and Scatter Matching (LSM) in Chapter 5. The target is to find a good fea-

ture representation which can reduce the embedded distribution gap measured 

by SSL between the source domain and the target domain, at the same time, 

ensure the new derived representation can encode sufficient discriminants with 

respect to the label information. Then a standard machine learning algorithm, 

like Support Vector Machine (SVM), can be adapted to train classifiers in the 

new feature subspace across domains. We also couduct a group of experiments 

on real-world datasets to demonstrate the performance comparing with other 

competitive methods. 

1.5. Thesis Outline 
t • 

The rest of the chapters in the thesis is organized _ follows: 
• 'I 

Chapter 2. Related Work: In this chapter, we review some related 

methods for domain adaptation. 

Chapte r 3. Discover ing Low-Rank Shared Concept Space for 

Adaptation: In this chapter, we present our proposed domain adaptation 

method which directly minimizes both the distribution gap between the source 
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domain and the target domain, as well as the empirical loss on the labeled data 

ill the source domain by extracting the low-rank concept siibspace. Further-

more, we apply the graph Laplacian [3) to exploit the predictive power for some 

domain dependent representative features in the target domain based on the 

co-occurrence with the shared features. 

Chapte r 4. M o d e l i n g D o m a i n Di f ference Us ing H igh -o rde r Stat is-

tics: In this chapter, we develop a new non-parametric distance metric called 

symmetric Stein's loss (SSL) to empirically measure the distribution gap between 

two domains with finite samples. It jointly considers the empirical mean (Lo-

cation) and sample covariance (Scatter) difference, and it can map the location 

and scatter information to a unified framework. A diverse set of statistical tests 

are conducted to demonstrate the properties of our proposed distribution gap 

measure. 

Chapte r 5. Loca t ion and Scatter M a t c h i n g for D o m a i n Adap ta -
I 

tion. In this chapter, we present another new domain adaptation method called 

Location and Scatter Matching (LSM), which targets at finding a good feature 

representation that can reduce ；the embedded distribution gap measured by our 

proposed criteria SSL, at the same time, ensure the new derived representation 

can encode sufficient discriminants with respect to the label information in the 

target domain. 

Chapter 6. Conclus ion and Fu tu re Works. In this chapter, we review 

the main contributions of the thesis and summarize their significance. We discuss 

some potential extensions and future research directions. 



CHAPTER 2 

R E L A T E D W O R K S 

In this chapter, we first review some traditional semi-supervised learning methods 

which didn't consider the domain difference. Then we present some existing 

methods for measuring the domain difference. Finally we describe some existing 

state-of-the-art domain adaptation techniques. 

2.1. Semi-Supervised Learning 
) 

：t 

If we ignore the domain difference, and treat the labeled source domain instances 

as labeled data and the unlabeled target domain instances as unlabeled data, 

then it is reduced to the standard semi-supervised learning (SSL) problem. We 
can then apply any SSL algorithms [73, 13] to the domain adaptation problem. 

1 
The difference between SSL and domain adaptation is that (1) the amount of 

labeled data in SSL is small but large in domain adaptation, and (2) the labeled 
«• 

data may be noisy in domain adaptation whereas in SSL the labeled data is all 

reliable. There has been some work extending semi-supervised learning methods 

for domain adaptation. Dai et al. [20] proposed an EM-based algorithm for 

domain adaptation, which can be shown to be equivalent to a semi-supervised 

EM algorithm [47] except that they proposed to estimate the trade-off parameter 

between the labeled and the unlabeled data using the KL-divergence between 

the two domains. Jiang and Zhai [40] proposed to not only include weighted 
. I: 

9 
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u • 
source domain instances but also weighted unlabeled target domain instances 

in training, which essentially combines instance weighting with bootstrapping. 

Xing et al. [63] proposed a bridged refinement method for domain adaptation 

using label propagation on a nearest neighbor graph, which has resemblance to 

graph-based semi-supervised learning algorithms. 

2.2. Measuring Domain Difference 

Recall that, in domain adaptation, the fundamental question is how to evaluate 

the difference in distribution between two domains given finite observations of 

each domain. There exists many criteria that can be used lo measure their 

distance, such as the Kullback-Leibler (KL) divergence: 

KLivtmQi^)) = i n ^ ) ^ ) ^ (2-1) 

where V{x) and Q{x) denote the marginal distribution functions of the source do-

main and the target domain respectively for data samples x. It can be observed 

that KL divergence is not symmetric. Then its symmetric form, the Jensen-

Shannon divergence was proposed to measure the distribution gap. There are 

many methods attempting to approximate KL divergence by finite samples em-

pirically. For example, in [59] authors proposed to estimate the densities based 

on datardependent histograms with a fixed number of samples from the marginal 

distributions in each bin. In [22], the authors computed relative frequencies on 

data-driven partitions achieving local independence for estimating mutual in-

formation. However, many of these estimators are parametric and require an 

intermediate density estimate, which will be very tough or even impossible when 

the dimensionality is very high, such as in large scale text mining and bioinfor-

matics applications. There are some methods trying to approximate the diver-

gence without estimating the density functioilfe. They directly used the empirical 

cumulative distribution functions or k-nearest-neighhour to approximately rep-

resent the density function. Even though the process is much easier than those 
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methods requiring density estimation, they are usually parametric and need to 

pre-set some important parameters, such as the nearest neighbour number. 
• t* 

To avoid conducting this non-trivial task, a non-parametric distance esti-

mate between distributions is more desirable. Recently, Gretton et al. [32] in-

troduced the Maximum Mean Discrepancy (MMD) for comparing distributions 

based on the Reproducing Kernel Hilbert Space (RKHS) distance. The MMD 

between the source domain and the target domain is defined as the superb value 
I 

in the set of the expected value difference betweeH''the source domain and the 

target domain, measure by a functional set. Usually we restrict the functional 

set in a unit ball in the RKHS to simplify the discussion. For real-world appli-

cations, we can only obtain finite samples in each domain. Hence we need to use 

the empirically form to calculate the MMD value, which can be formulated as 

the empirical mean value difference measured by a unit ball bounded function 

set in RKHS. MMD is very general in many applications, and easy to calculate, 

it has been proved to be powerful in two-sample t炉t problems and can lead to 

good performance in real-world applications such as tioinformatics. 

2.3. Supervised Domain Adaptation 

Many researchers try to enforce the learning processes among multiple domains 

which all have sufficient labeled data. Those supervised domain adaptation meth-

ods can be grouped into two major categories: feature-based approaches [24, 61) 

and parameter-based approaches [11, 12, 28，65, 26, 68, 23]. Daume III proposed 

the Feature Augmentation method to augment features into the high-dimensional 

space by kernel-mapping functions for domain adaptation [24). Then standard^ 

discriminative learning method will be employed in the kernel induced space. 

However the kernel-mapping function is domain dependent and not easy to gen-

eralize. Hash kernels was introduced by Weinberger et al. to extend the feature 

augmentation method to large scale problems [61], where the interference be-

tween independently hashed subspaces is negligible .with high probability, which 
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allows large-scale statistical learning in a very compressed space. Instead of trans-

ferring shared feature information among different domains, others suggested to 

transferring shared structure "prior as parameter information. Finkel and Man-

ning proposed a model to set both domain-specific parameters and global param-

eters for each feature via hierarchical Bayesian prior [28], which have been shown 
I 

to be equivalent with the domain adaptation work of [24], but it is more flexi-

ble by setting different hyperparameters leading to significant improvement on 

performance. Li and Bilmes [43] proposed a general Bayesian divergence prior 

framework for domain adaptation. They then showed how this general prior can 

be instantiated for generative classifiers and discriminative classifiers. Chelba 

and Acero [14] applied this kind of Bayesian priors for the task of adapting 

maximum entropy and maximum entropy Markov models of capitalizer across 

domains under a maximum "a posteriori" (MAP) framework. 

2.4. Unsupervise^d Domain Adaptation 

By making use of the labeled data in the target domain, supervised domain 

adaptation approaches can obtain encouraging performance as expected. How-

ever, in most situations, it is hard to prepare the labeled data for the target 
• J • ^ 

• 二二 • 

domain. Therefore, unsupervised domain adaptation approaches are more appli-

cable to the real-world applications. Generally speaking, the existing unsuper-

vised domain adaptation techniques can be grouped to two directions： feature 

level approaches which focus on changing the feature representation to reduce 

the distribution gap, and instance level approaches which focus on weighing the 

instances considering the distribution difference. 
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2.4.1. Feature level unsupervised domain adaptation 

Many works on domain adaptation try to learn k new feature representation 

which can bridge the source domain and the target domain. Blitzer et al (9 

proposed a structural correspondence learning (SCL) method to select some do-

main independent pivot features to learn an embedded space where the data 

coming from both domains can share the same feature structure. If the pivot 

features are well designed, then the learned embedded space can encode the 

correspondence between the features from the different domains. Ben-David et 

al. analyzed the error bound of domain adaptation and showed experimentally 

that SCL can reduce the domain gap [5). In [9], Blitzer et al used a heuristic 

method to select pivot features for natural language processing (NLP) problems, 

such as sentences tagging. In their following works [8], the researchers proposed 

to use mutual information criteria, instead of the heuristic collection, to choose 

the high dependence pivot features. Raina et al. [51] learned the sparse basis 

from the unlabeled data which is not necessary in the same domain as the labeled 

data. Then it represents the labeled data by those learned high-level basis for 

further classification. 

Dai et al. [20] proposed a coclustering-based algorithm to propagate the la-
I • 

bel information across different domains. Ling et al. [44] proposed a cross domain 

spectral clustering (CDSC) method which tries to seek the spectral consistence 

between the in-domain and out-of-domain structures. Xue et al. (64) extended 

the traditional probabilistic latent semantic analysis (PLSA) [36] algorithm for 

cross-domain text classification. The extended model is named Topic-bridged 

PLSA, which can integrate label and unlabeled data in different but related do-

mains, into a unified probabilistic framework. Yang et al. [66] proposed Adaptive 

SVM (A-SVM) to enhance the prediction performance of video concept detec-

tion, in which the new SVM classifier is adapted from an existing classifier trained 

from the auxiliary domain. 

A special and simple kind of feature transformation is feature subset se-
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lection without any label information. Satpal and Sarawagi [53] proposed a 

feature subset selection method for domain adaptation, where the criterion for 

selecting features is to minimize an approximated distance function between the 

conditional distributions in two domains. 
1 

I 

2.4.1.1. M M D Embedd ing and Transfer Componen t Analysys 

The simple feature re-weighting schemes may have a limited improvement in the 
• ' I 

target domain when the dimensionality of the data is high. In particular, some 

features may cause the data distribution between domains to be different, while 

others may not. Some features may preserve the structure of data for adaptation, 

while others may not. To address this problem, Pan et al. [48) proposed Maximum 

Mean Discrepancy Embedding (MMDE) for domain adaptation by embedding 

both the source and target domain data onto a shared low-dimensional latent 

space. The key idea is to formulate this as a kernel learning problem using the 

kernel trick, and to learn the kernel matrix by minimizing the distance (measured 

by MMD) between the source and target domain data! The final model can be 

solved by Semi-Definite Progr.amming (SDP). 
• I * 

After that, the embedding of data can be extracted by performing eigen-

decomposition on the learned kernel matrix, and can be further used for training 

classifiers by standard classification methods, like SVM. However, the kernel 

matrix of samples in MMDE are learned separately using the MMD criterion 

defined on the input data only without considering any labels. While the use of 

labels in linear discriminant analysis usually helps extract more discriminative 

features, the label information from the source domains may be also useful to 

learn kernels or extract features for a better domain adaptation. 

In addition, there are two main limitations associated with MMDE. First, 

MMDE is transductive and cannot generalize on unseen patterns. Second, it re-

quires to solve an expensive SDP problem. Although polynomial-time solvers are 

available, current interior-point methods are still too computationally intensive 

for large-scale SDPs in real applications. Note that only the low dimensional 
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embedding of the data is extracted from the learned kernel matrix in MMDE, 

and is then used for the training of the decision classifiers. Therefore, not all 

components from the learned kernel matrix are required to train the classifiers 

for domain adaptation. Thus, Pan et al. further pijoposed an efficient feature 

extraction algorithm, known as Transfer Component Analysis (TCA) to reduce 

the computational burden to overcome the drawbacks of MMDE. 

2.4.2. Instance-level Unsupervised domain adaptation 

Besides the feature weighting approaches, several domain adaptation methods 

suggest to apply the instance weighting technique for domain adaption in various 

applications [37, 56’ 57, 70, 27，40, 6, 21). Before we "review the instance weighting 

methods, we should first review the empirical risk minimization (ERM). The 

basis of classification task is to learn a predictiori- ifunction which can generate 

minimal expected loss where the samples contribute equally. However, in domain 

adaptation, due to the underlying distribution difference, the importance of a 

instance may change. Therefore, we should find a suitable weighting scheme to 

train the model in the source domain, so as to achievd high generalization ability. 

There exists various ways to estimate the instance weights. Zadrozny (70 

directly estimate the sample selection bias by constructing simple classificatfen 

problems. Fan et al. [27] further analyzed the problems by using various clas-

sifiers to estimate the instance weights. Huang et al. [37] proposed a two-step 

approach Kernel Mean Matching (KMM). The first step is to diminish the dif-

ference of the mean of samples in Reproducing Kernel Hilbert Space (RKHS) 

between the two domains by re-weighing the samples in the source domain using 

the Maximum Mean Discrepancy criterion. The second step is to use the stan-

daxd discriminative classification tools, like weighted SVM, to train the classifier 

in the source domain with the weighted samples. KMM can avoid performing 

density estimation which is usually difficult when the size of the data set is small 

or the dimensionality of the study space is very high. Sugiyama et al. proposed 

a Kullback-Leibler Importance Estimation Procedure (KLIEP) to estimate the 
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re-sampling weights directly by minimizing the Kullback-Leibler divergence be-

tween the two domains [57]. Dai et al. extended a traditional Naive Bayesian 

classifier for the transductive transfer learning problems [21]. Recently, Zhong et 

al. utilized the Kernel Discriminative Analysis (KDA) to make the marginal dis-

tributions from two domains closer by re-weighing the labeled data in the source 

domain for training [72]. More information on instance reweighting for covariate 

shift can be referred to [50 . 

2.4.3. Advantages of Our Model Over Existing 

Approaches 

Both existing instance-level and feature-level approaches separate the domain 

adaptation framework into two separate steps. The first step attempts to mini-

mize the domain gap, and then the second step is to train the predictive model 

based on the reweighted instances or transformed feature representation. They 

do not consider these two steps in a unified framework. Such a transformed rep-

resentation may encode less information leading to an increase of the empirical 

loss on the labeled data. While the use of labels in linear discriminant analysis 

usually helps extract more discriminative features, the label information from 
...I 

the source domains may be also useful to learn kernels or extract features for 

better domain adaptation. Our proposed method LRSC discovers the low-rank 

shared concept space, where the empirical loss on the labeled data, as well as the 

distribution gap between the Source domain and the target domain, are jointly 

minimized. Besides, we can transfer the predictive power from the extracted 

common features to the characteristic features in the target domain by the fea-

ture graph Laplacian. 

Another drawback of existing instance-level and feature-level approaches is 

that they are all restricted to using the empirical mean difference in a Repro-

ducing Kernel Hilbert Space (RKHS) to measure the distribution gap. However, 

intuitively, they may have a considerable limitation in matching two probability 
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distributions where only the first-order statistics are exactly the same. Our de-

veloped non-parametric distance metric called symmetric Stein's loss (SSL) can 

jointly considers the empirical mean (Location) and sample covariance (Scatter) 

difference. Based on our proposed SSL measure, we develop another new domain 

adaptation method called Location and Scatter Matching (LSM), which can lead 

to significant improvement over other existing domain adaptation techniques. 

2.5. Learning bounds in domain adaptation 

Some previous works focus on the theoretical analysis on conditions where the 

classifier trained in the source domain can lead to better performance in the tar-

get domain [5，4, 42, 46]. The first theoretical analysis of the domain adaptation 

problem was presented by Ben-David et al. [5, 4), who gave VC-dimension-based 

generalization bounds for adaptation in classification tasks. Perhaps, the most 

significant contribution of this work is the definition and application of a distance 

between distributions, which is particularly relevahfHo the problem of domain 

adaptation and can be estimated from finite samples for a finite VC dimension, 

as previously shown by Kifer et al. [42]. This work was later extended by Blitzer 

et al. [7] who also gave a bound on the error rate of a hypothesis derived from 

a weighted combination of the source data sets for the specific case of empirical 

risk minimization. A theoretical study of domain adaptation was also presented 

by Mansour et al. [45，46], where the analysis deals with the related but distinct 

case of adaptation with multiple sources, and where the target is a mixture of 

the source distributions. 



CHAPTER 3 

DISCOVERING L O W - R A N K SHARED 
C O N C E P T SPACE 

3.1. A Brief Introduction 

It can be observed that domain adaptation is reasonable and practical if the 

distributions between the source domain and the target domain is related. The 

relationship is mainly based on the fact that there exists a shared concept space 

in which the embedded distribution of each domain is close enough. Conse-

quently it is very reasonable to believe that a good feature representation is able 

to encode this concept space and provides strong adaptive power from the source 

domain to the target domain. On the other hand, such a changed representa-

tion may encode less information leading to an increase of the empirical loss on 

the labeled data. To cope with this problem, we try to learn the ideal shared 

concept space with respect to two criteria: the empirical loss in the source do-

main, and the embedded distribution gap between the source domain and the 

target domain. Consider the job information extraction example. For the task 

of extracting the job requirement information in the domain of accounting, the 

most representative terms are “qualified", "year"，"experience"，"CPA", "CA"， 

“ACCA”’ etc. Similarly for the domain of health care, the representative terms 

shift to "qualified", "degree", “year", "CCP", "Physiology", "experience", etc. 

18 
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If we can automatically extract the shared domain independent features such as 

"qualified”，"year”，"experience" for the specific task, then the learnt extractor 

can be effectively adapted to the domain of health care. 

In this chapter we propose a domain adaptation method which directly 

minimizes both the distribution gap between the source domain and the tar-

get domain, as well as the empirical loss on the labeled data in the source do-

main by extracting the low-rank concept aubspace. Maximum Mean Discrepancy 
•f,‘ 

(MMD) [32] is adopted to measure the embedded distribution difference between 
the source domain with sufficient but finite labeled data and the target domain 

. . . 1 

with sufficient unlabeled data. Then our objective''is to minimize the empirical 

loss and the MMD measurement with respect to the parametric family (linear 

transformation) which parameterizes the embedded feature subspace. Further-

more, we apply the graph Laplacian [3] to exploit ；the predictive power for some 

domain dependent representative features in the' 'target domain based on the 

co-occurrence with the shared features. This technique can help improve the 

performance especially when the common features are not sufficient in the target 

domain. 

3.2. Problem Definition 

In the sequel, we refer to the training set as the source domain Ds = {(工i’ 

where Xi € is the d dimensional input space, and yi is the output label. The 

total number of samples in the source domain is Mi. We also assume that the 
I. 

testing samples are available. Denote the testing set as = 丄 a n d 

Xi e IRd is the input, and the total number of samples in the target domain is n � . 

Let V{x) and Q{x) (or V and Q for short) be the marginal distributions of the 

input sets from the source and target domains resp.ectively. In general, V and 

Q can be different. For matrix notations, tr{A) denotes the trace of matrix A^ 

and matrix transpose is denoted by the superscript T. A^ is the pseudo-inverse 

of matrix A. We investigate the learning problem under multiclass setting, with 
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m decision classifiers {fiix)}]!^. Let us denote the label indicator matrix as 

Y G IRnixm，and Yu = 1 if the i-th sample belongs to the l-th class (y, = /), and 

—1 if it is labeled as others {yi + I). 

3.3. Description of Adaptation Model 

3.3.1. Basic Formulation of LRSC 

We propose a unified domain adaptation learning framework that is able to find 

the discriminative concept subspace 0 , and to learn decision classifiers //(a;)'s 

of all labels simultaneously. In particular, our proposed method minimizes the 

distribution difference between the samples of the source and target domains 

after the projection into the subspace 9 {i.e. 0工‘)，as well as the structural risk 

functional of the n\ labeled data from the source domain Ds. Similar to other 

concept extraction methods, we also let 9 be orthogonal on rows so that 0 0 ^ = 

I . As a result, our adaptation model can be formulated as an optimization 

problem as follows: 

m n i m 

min Y^ ^ � ) ’ Yii) + « + /?diste( As, D丁) 
1=1 t=i /=i ^ 

S.t. = Irxr, (3.1) 

Here, the first term is the empirical risk functional of the decision functions / " s 

on the labeled data from the source domain Ds’ and L(.) is the empirical loss 

function which can be selected according to the application. The regularizer 
I 

f2(.) controls the complexity of / “ and the last term measures the distribution 

difference between the embedding of Ds and D丁. Note that the regularization 
4 

， ”4 •• •• T 

condition on 0 is transformed into the orthogonal constraint 0 0 ‘ = / � x r . Thus • v 

there is no need to explicitly include in the objective function. Two tradeoff 

parameters, namely, a �0 and j3 > 0 ase introduced to control the fitness of the 

decision functions, and to balance the difference of distributions from the two 

domains and the structural risk functional for the labeled patterns, respectively. 
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Hence, by solving Problem (3.1), the subspace 9 and the decision functions //’s 

can be learned at the same time. 

3.3.1.1. Design of Decis ion Funct ion 

To capture the label dependency, similar to [1] [39], we define the m decision 

functions: 

力(rr) = A i 「 例 + 屯权(工)，i ^ l’...，m (3.2) 
. 、:‘':’ 

where ^ is a known feature map projecting the data from the input space X 

to a high dimensional space T . The other component 屯0 is a parameterized 

low dimensional space which aims at encoding the shared structure between 

the source domain D5 and the target domain D-f^The, weight vector e 

is defined in the projected subspace under the projection 屯 w h e r e r is the 

number of dimension in the space after the projection 屯没.fii G is the weight 

vector defined in F�where d is the number of dimension in the original feature 

space. With the parametric form in Equation (3.2) of the m decision classifiers, 

the learned subspace 屯0 can capture the intrinsic structure of label dependency 

in multiclass problems, the weight vector wi is the discriminative direction in 

the subspace 屯0 for each class. In the following, we will discuss both the linear 
decision function as well as the kernel decision function and integrate them into 

t 

a unified form. 

• Linear classifier. We can consider a simple'linear form of feature map, 

where 9 — Q is anrxd dimensional matrix, and ^o(x) = with a known 

d-dimensional vector function ^{x). Furthermore, following [1], we can consider 

a simple model 二屯(a:) = x. We now can write'-the linear predictor as: 

fi{x) = iijx + u^Qx, I = l ’ . . .，m (3.3) 

• Kernel classifier. If we consider kernel learning, and assume that the 

feature map and 屯(a;) belong to reproducing kernel Hilbert space, then 

Equation (3.2) can be kernelized. One strategy is to kernelize the predictor 

weights Hi which can be represented�as 二广2 where 二广�a re dual 
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parameters. For 屯0，first we denote the kernel matrix as K^, = (^(x,) , ^'(xj)). 

Then we introduce the empirical, kernel map as discussed in [55]: 

: AT 
• (3.4) 

where TV = m + 712. Finally we can let 屯0 = where 0 G is used 

to transform the empirical kernel vector to a r-dimensional space. Let 

denote the weight parameters in the embedded kernel siibspace for the l-ih class. 

Hence, the kernelized decision functions become: ' 

I = l， . . . ’m (3.5) 

where (j>i = [0?,(/>?，... ’杀广+打？！ G 股“‘+“�，= [t/;/，V ,̂.-. € IT, and K 

is the kernel matrix induced ty. the kernel mapping 少：K ĵ =�<1>(0；凌)， >̂(0:))�. 

K(.’a;) = [K(a:i,x),--.，K(a;…工)]丁 G 胶…+“^. Generally speaking, the kernel 

feature map $ and 屯 can be different. We simplify the computation by setting 

them to be the same. Therefore,. K(-,a;) = K�(•，:c)’ and the kernelized decision 
. . . ； 乂 

function in Equation (3.5) can be further forfnulated as: 

= + I = 1 ’ …， m (3.6) 

• Unif ied form. In order to model the linear case in Equation (3.3) and 

kernel case in Equation (3.6) into a common framework, we introduce： 

Wi 
ui + Q^i^h (linear) 

(3.7) 
(t)i + eT 论， (kernel) 

Moreover, in the following, we use two symbols, namely, u/ and vi’ where ui 

denotes 叫 in the linear case and denotes 0/ in the kernel case, and vi denotes 

in the linear case and denotes jpi'iu the kernel case. Then Equation (3.7) becomes 

Wi = ui + Q^vi for both linear and kernel cases. And we can represent the data 

in linear space and kernel space as follows: 

X = 
本， （ - a r ) (3.8) 

K(-,a;), (kernel) 



m (3.10) 
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As a result, we can formulate the predictors, linear form as in Equation (3.3) and 

kernel form as in Equation (3.6), in a unified form as depicted in Equation (3.9): 

fi{x) = wjx, I = l,...，m. (3.9) 

where 

wi = ui Q^viJ = 1’. 

3.3.1.2. Design of Loss Funct ion 
4 

For the empirical loss function on the labeled data 

L : 尺 X V̂  — K+ 

represents the loss on replacing the true label y by the predicting value f{x). 

The choice of the loss function typically depends on the application but must 

satisfy the convex assumption. We can consider the following loss functions 

•Sparse loss. L{f{x),y) = jy - /(rr)| = |1 - 7//(a:)|. 

•Square loss. L{f{x),y) = (y - /⑷尸 = ( 1 - y f { x ) f . 

•Hinge loss. L{f{x),y) = max(0,1 - yf{x)). 

•Logist ic loss. L{f{x),y) = log2(l + � ) 

for classification. Fig. 3.1 depicts the four loss functions. All of these four loss 

functions are convex with respect to the variable yf {'x) and can lead to tractable 

optimization strategy, and they have been widely used in many problems. For 

example, the hinge loss is the most common loss function in SVM, the logistic loss 

and the square loss are usually applied in regressioji. Furthermore’ the convexity 
.•• ••• 

of the loss function can lead to expectable error bound for the testing data in 

the target domain for domain adaptation problems, which will be discussed in 

detail in Section 3.4. Note that the decision function both in the kernel case and 

the linear case can be defined as in Equation (3.9)，then the empirical loss on 

the training dataset can be expressed as: 

f ^ f ^ L i w J x u Y u ) (3.11) 



yf(x) 

Figure 3.1: Demonstration of the four loss functions, x-axis is yf{x), and y-axis 

is the loss function value L(f(x),y). 

3.3.1.3. Design of Regu lar iza t ion 

Based on the parametric form in Equation (3.10) of the decision function /； as 

in Equation (3.9), we introduce the following regularizer: 

^ i f i ) = ll^/lr = w i - e ' v i 丄 . 2 (3.12) 

which controls the complexity of each classifier independently. Besides, we treat 

the learning of the classifier for each class with equal importance. Therefore we 
t \ 

set the coefficient of the regularization for each class as 1. Then the second term 

in (3.1) can be expressed as: 

m ) = \u ^ — W — 0 II F (3.13) 

where w = [i^i, • • • ’ Wm], n = [ui, • • • ’Um]，and v = 

3.3. D i s t r i b u t i o n Gap between Domains 

Recall that the last term in Equation (3.1) measures the mismatch between the 

embedding of the source and target domain. We employ the Maximum Mean 

Discrepancy criterion [32] (MMD) as the nonpararnetric measure for compar-

ing the distributions mismatch based on the Reproducing Kernel Hilbert Space 
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(RKHS) distance. Let the kernel-induced feature map be : M h->. H, where H 

is the corresponding feature space. The MMD between the source domain Ds 

and the target domain D丁 is defined as follows: 

MMD[As’Dt] = sup (EQ[(^(a;0'- Ep(<^(x)]) 

=| |Eq[<?H0] — M 0 � 

(3.14) 

n 

where x and x' represent the samples in Ds and Pr respectively, and is a 

function restricted in a unit ball in the RKHS H where (p(x) = {ip,(f){x))'n. The 

empirical measure of the MMD in Equation (3.14) is defined as: 

MMD[DS,DT = I； E E 
x'eDr xeDs 

(3.15) 
n 

Therefore, the distance between two distributions of two samples is simply the 

distance b.etween the two mean elements in the RKHS. 

Denote the gram matrix Kij = = defined on all the 

K = (3.16) 

data: ‘ 
Ks�s Ks�T 

Kt�S KT�T, 
where Ks�s�KT�T and KS�T are the Gram matrices defined on the source domain, 

target domain, and cross domain data, respectively. Then the square of the MMD 

in (3.15) can be written as 

where 

D “ = 

tr(KD), 

吉 when Xi 

(3.17) 

G Ds Q 
1 
；I? when Xi, Xj € D r 

otherwise. 

(3.18) 

It has been proved in [10] that the empirical' MMD in Equation (3.17) with-
‘ . 、： . ‘ ‘ 

out the coefficients is an unbiased estimation of the s(|uared MMD in Equa-
i • 

tion (3.14). .Moreover, it can rajpidly converge to the squared MMD when in-

creasing the number of samples in both domains. In the following, we will inves-
9 

\ » 

tigate the feature map • in both linear and kernel forms:. • 、 
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• L inear case. If (f){x) = Ox, then K = X ^ G ^ G X , where X = [xi, • • •，:Cni+„2 

• K e r n e l case. If (/>(a;) = Q屯e(工）=9K(.，rc) where 屯e(a：) is the empirical kernel 

map define^in Equation (3.4)，: then K = 

Recall that the definition of x in Equation (3.8), and denote Xj-= 

[xni+i,. • • , Xni+na] and X = [jf^, Xr], as the data matrices defined on the tar-

get domain and all input data, respectively. Then we can reformulate the gram 

matrix under both linear map ‘and kernel map as /Ĉ  二 兑 Then, the 

domain discrepancy criterion defined in Equation (3.17) becomes: 

MMD^Ds,Dr] = tiiX^G'^GXD) 

= t r ( e R e T ) . (3.19) 

where 

K = 
XDX'^, (linear； 

K D K , (kernel) 
(3.20) 

3.3.1.5. F ina l Formula t io i i 

Combining all the reformulations of the three items in Problem (3.1) as in Equa-

tion (3.11) (3.13) and (3.19), we arrive at the following minimization problem: 

m n i “ 

min L(wjxi , Yu) + a wi - Q'^vi + ^ t r ( 0 K e 
ft 111 II ‘ 』 € 

:1 i = ] 

S.t. e e 丁 = /rxr, (3.21) 

which learns both the shared subspace 0 , and the parameters u and v in decision 

functions simultaneously. 

3.3.2. Detailed Description of the Algorithm 

In this section, we present the detailed optimization strategy for solving Prob-

lem (5.9). We can apply the following alternating optimization strategy to solve 
、 J二 

the optimal solution iteratively: 
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• Solving optimal w* in Problem (5.9) with fixed (G,ti). 

• Solving optimal in Problem (5.9) witbifixed w. 

In fact, there are some other possible alternating strategies, for example, opti-

mizing {w^v) with fixed G first and then optimizing 0 with fixed {w,v). 

3.3.2.1. C o m p u t i n g w* 

In the alternating optimization strategy mentioned above and given the convex 

loss function L discussed in Section 3.3.1.2, the first step of computing optimal 

w* becomes a bound of convex optimization problems: 
ni 

{w*} = arg min L{wJx^, Yu) + q wi - Q^vi (3.22) 10/ ^―' 
1=1 

where {Q,v) are fixed. Problem (3.22) can be solved by many existing well-

established methods, such as conjugate gradient (CG), stochastic gradient de-

scending (SGD) [71] and so on. Furthermore, when we use the least square loss 

function, we can get the analytical solution for Probtem (3.22) and greatly reduce 

the computation complexity without any gradient iterations [16 . 

3.3.2.2. Stochast ic Grad ien t Descent 
I. • » • 

Stochastic gradient descent is an optimization method for minimizing an objec-

tive function that is written as a sum of differentiable functions. 
n 

L{w) = ^ Li{w) + Lo{w) (3.23) 
1=1 

where the parameter w is to be estimated and typically each summand function 

Li015=1 is associated with the i-th observation in the training data set, and LQ{W) 

is a general differential function not specific for any training samples. 

In classical statistics, sum-minimization problems arise in least squares of 

maximum-likelihood estimation for independent observations. It has been long 

recognized that local minimization is still too diffidult to obtain for some prob-

lems of maximum-likelihood estimation. Therefore, contemporary statistical the-

orists usually only consider the stationary points of the likelihood function. In 
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statistical learning theory, there is a fundamental problem called empirical risk 

minimization where is the value of loss function at the i-th example, 

and L{w) is the empirical risk. When we minimize the above function, a standard 

gradient descent method would； perform the following iterations: 

w TVL{W) = W - T ^ VLi{w) - TVLO{W) (3.24) 

where r is a step size. 

However, in other cases, evaluating the sum-gradient may require expensive 

evaluations of the gradients from all the functional values on the samples when 

the training set is enormous and there exists no simple formulas. To reduce the 

computational cost at every iteration, the true gradient of L{w) is approximated 

by a gradient at a single example: 

W ' . ^ W - R V L I I W ) - TVLO(IU) (3.25) 

As the algorithm scans through the training set, it performs the above update 

for each training example. Several passes over the training set are made until the 

algorithm converges. A typical implementations is to randomly sample training 

examples at each pass and' use 'an adaptive step size. 

The convergence of stochastic gradient descent has been analyzed using 

the theories of convex minimization and of stochastic approximation. Briefly, 

stochastic gradient methods will not converge to a global minimum unless the ob-

jective function is convex. The second order stochastic gradient descent method 

corresponding to Equation 3.25 should.be: 

w — w - r ^ V L i { w ) — r^oVLo{w) (3.26) 

where 
H{w) = V V L i H f o r i = l’...，n 之？） 

HO{W) = VVLOH 

Back to our problem defined in Equation 3.22, we will update the gradient 

in each step as follows: 

it;“t+i := XMi-t.-rVLi{wJ,Xt, Yti)xi + TBJvi (3.28) 
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Input : Data samples {(工i，yi)}?=i in source domain Ds, Qi, Vi, convergence rate upper-

bound e 
v. ^ 

Output : General classifier w! for the l-th. class ''' � 

Ini t ial ize Choosing an initial vector iuj’o; 

set t = 0. 

repeat 

1 Randomly sampling a training sample as {{xtyyt)} 
2 compute wi^t+i :=叫，t 一 (二 VtiJ^i + TO^VI 
3 set t := t+1 

4 compute r := 1/t 

u n t i l Ih/.t+i - uuî tW < e 

Figure 3.2: The outline of the adapted stochastic; gtadient descent (SGD) algo-

rithm used in our algorithm 

It have been proved that when the best update rate r is equal to l/t, the con-

vergence rate of SGD grows linearly with t. Theri'ifi our algorithm, we set the 

update learning rate r directly as l/t. The pesudocode of this SGD can be 

summarized as shown in Figure 3.2. 

It also have been investigated that the time complexity for SGD is very 

efficient given by: 

T �n l o g l o g n (3.29) 

The parameter WT of the stochastic algorithm also has been proved that it 

converges to the local optimal. Comparing the accuracies of both algorithms, it 

shows that the stochastic algorithm asymptotically provides a better solution by 

a factor (log log n). 

E[{WT 一 — ~ � 1 �E [ { W R , - (3.30) 
n log log n n 

where Wn represents the iterative value obtained by the gradient methods running 

on all n training samples. It can be seen that SGli?'can greatly economize the 

optimizing process by only involving one data sample, at the same time, it can 
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converge to the local optimum quickly, such that it can be widely applied in large 

scale text mining problems. 

3.3.2.3. C o m p u t i n g ( e * ’ ” ” 

It is easy to see that Problem (5.9) with fixed w* is equivalent to the following 

optimization problem: 
m 

min Y^ a Hii；； - + ；011(0X9"^) 
i=\ 

S.t. 00"^ = /r-xr, (3.31) 

with fixed 6 , we can optimize vi for different I individually, and we have 

> ll̂i；；!!' 一 \\ew;f (3.32) 

and vf = Qw* holds the equality. Then we can substitute the optimal v* back 

to Problem (3.31) and using the equality in Equation (3.32) to get the following 

optimization problem: 
m 

min - V a WOwjf + ；0tr(eKe"^), s.t. = /， (3.33) 
© j 

i=\ 
Using simple linear algebra, we know that 

m 
Y^ = l i eHI; = tr(eiiAz;•丁0丁) ‘ (3.34) 

Z=1 

Then with fixed w*, we can get the optimal 9* by solving 

mintr(e(/0K - s.t. 00"^ = I (3.35) 
© 

It is well known that the optimal solution of Problem (3.35) is given by the 
eigen-decomposition of PK 一 0iw*w*^. Suppose 

‘ p R - = HAH^ (3.36) 

be the eigen-decomposition of pK — yaw*w*^. If we arrange the diagonal 
elements of the diagonal matrix A in ascending order, then the rows of 0* are 

given by the first r rows of H�which corresponds to the smallest r eigenvalues 

of 
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3.'3.2.4. Overa l l A l g o r i t h m 々 

Combining all the derivations in Section 3.3.2.1 and Section 3.3.2.3 corresponding 

to the optimization strategy, we develop our Low-Rank Shared Concept (LRSC) 

domain adaptation algorithm as depicted in Figure 3.3. 

3.3.3. Prediction in Operational Setting 

After extracting the shared subspace 0 , and the weight vectors ui and vi for each 

class, one can perform prediction using Equation (3.9). However, the weight 

vector ui is learned to minimize the empirical loss of the labeled data in the 

source domain As, and may not be the discriminative direction for the testing 

data in the target domain Dr-

Recall that the subspace 0 is learned to minimize the MMD criterion in 

Equation (3.19)，and capture the intrinsic structure of data for domain adapta-

tion. Moreover, the weight vector Vi is the discriminative direction defined on 

the projected subspace 少，so the prediction on the data x for the l-lh class in 

the target domain D r can be performed by a decision classifier 

^ V7QX, (linear) 
fi{x)=vjQx= (3.37) 

(kernel) 
、 

instead of fi{x) in Equation (3.9), and Q^vi is the discriminative direction for 

the l-th class in the target domain. 

Figure 3.4 depicts the intrinsic mechanism for prediction where the green 

(lighter) circles and red (darker) circles represent .the samples in the source do-

main Ds and the target domain Df respectively. Both of the two domains 

contain two classes. By using other low-rank shared space extraction, we can 

discover the shared space which is shown as the vertical- spax:e labeled by 0a;. 

The learned classifier in the source domain is u^x^-^ v* Qx represented by the 

green dashed line (the dashed line on the left), which can be decomposed to 

two components, u^x and v^Qx. However, it can be seen the shared space is 
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Inpu t : Data samples {(a;t,yi)}?=i in source domain Ds'� 

Data samples in target domain Dq•‘� 

Linear or nonlinear feature map <E>. 

Pa rame te r s : r and trade-off coefficients 

O u t p u t : Optimal concept subspace projection 0 ; 

the corresponding adaptive classifiers in the embedded space, 

the general classifiers {lyjj^^ 
• _ 

Initialize Constructing Xi as in Equation (3.8) and /C as in Equation (3.20), set 0 = 

vi = 0, for / = 1，...，m. 

repea t 

1 for Z = 1 to m do 
with fixed (9, {v/}), solve the optimization problem: 

n\ 
{iff} = arg min L[wjxi^ Yn) + a wi — Q^vi 2 

using the stochastic gradient descent method depicted in Figure 3.2 

end 

2 Do the eigen-decomposition PK — yaw*w*^ = / /A//^(with the diagonals of A in 

ascending order), and let th^'rows of 6* be the first r rows of H. 
I 

3 Compute vi = y&wi, Z == 1 , . . . � m . 

unti l convergence 

Figure 3.3: The outline of our Low-Rank Shared Concepts (LRSC) domain adap-

tation algorithm 
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Figure 3.4: Demonstration of the prediction in operatioal setting. The green 
• • « 

i ••• I* 

dashed line on the left represent the classifier trained in D s � a n d its horizon 

decomposing component plotted as red line will be used as the classifier in Dq--

The middle Ellipse represents the shared space between Ds and D丁 

which means the other component vJ x is useless for the target domain DT. 

Therefore, our final prediction function for the target domain is v'^Qx. 

3.4. Error Analysis on Adaptation Model 

We investigate the error analysis of our proposed domain adaptation method in 

the target domain D丁 both in the linear and the nonlinear case. First, we denote 

the prediction function in D丁 for the l-th. class as follows: 

friix)= 

vfex if - 1 < vfOx < L 

1 if 1 < vfQx,^ 

- 1 iivfQx< -1, 

(3.38) 

where x is defined in Equation (3.8) and fri{x) can take fractional value when 

X is not predicted deterministically in the l-th class. Then we denote the truth 

•
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labeling function hi{x) : X —.{ — 1,1}. Let L{x) be a continuous loss function 

defined in Section 3.3.1.2. Then the expected loss of fri in D丁 is defined as: 

^rihijri) = 

Note that fsi{x) = ujx + vjQx is the proposed decision function in Equa-

tion (3.2) for the labeled data in the source domain Ds, then we also define the 

expected loss of fsi in Ds as: 

^s(hijsi) = E^rr^Ds {Hhi(x), uJx + I ' / ' e f ) . 

For simplicity, we denote Exr^Os — Ep. E i �D t = Eq, er(hi, fri) = ^rihi) and 

es(hi^fsi) = cs{hi). Based on the definition of f r i (^ ) in Equation (3.38)，we know 

that 0 < L{hi{x), fri{x)) < 1. With a mild assumption that ||L(/i/{a:), /7-/(a:)||7^ 

is bounded by a finite number 7, where H is a RKHS, we obtain the following 

theorem: 
• \ , . • X ^ « 

Theorem 1. Suppose ||x|| = 1, the expected loss of / r / in D丁 is bounded by 

er(/i/) < es{hi) + ^MMD[Ds, Dr] + 6\\uif 4- 6 (3.39) 

Proof. First we investigate the property of the loss function L[hi(x), fri{x)). We 

can denote g{hi{x)fj-i{x)) = L(/i/(x), fri{^))j where g{t) is convex continuous 

function. 

• Sparse loss: L(/i/(a;), f r M ) = l^iix) 一 frMI g ( f ) = |1 一 =J> g'(t)= 

lor - 1 � I = 1. 
• Square loss: L(/i/(x), fri{x)) = (/i,⑷ 一 / r / ⑷ 尸 g ⑴ = ( 1 - t^ g'it)= 

2it - 1) \9\t)\ < 4. •‘'• 

• Hinge loss: L{hi(x), frii^)) = max(0’ 1 — hi{x)fri[x)) g{t) — max(0,1 — 

• Logistic loss: L{hi{x) , f r i [^)) = log2( l+e-…⑷斤 '⑷ )g [ t ) = logjl l+e"^) 

We can observe that for all the above common convex loss functions, the first 
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order derivative satisfy \g'{t)\ < 4(5 where 5 is a positive scalar selected depending 

on the loss function. Then we have 

9(^0 + 0 > 9M + g'i^o)^ 

=^g{hi(x){ujxy + v^Bx)) 

> 9{hi(x)vjex) + ^9'{hi{x)vjex)hi{x)ujx 

-g{hi(x)(ujx + vJOx)) ‘,‘ 

< -gihiixWQx) + ^\g'{ki{x)v^ex)ujx\ 

^ - L{hi{x),ujx + vjex) < -L{hi(x),'6jQx)-^25\uJx 

Then recall the definitions and abbreviations above, we have 

erihi) 

= + er(hi) - es{hi) 

=es{hi) + er{hi) - Ev[L(hi{x),uJx + vJOx)] 

< es{hi) + e丁(hi) - Ev[L(hi(x),vi^ex)] + 26Y.v[\ulx\ 

< esihi) + EQ[L{hi{x), friix))] - Ev[L{hi{x), fnix)) 

+ 25Ep[\uJx\] (3.40) 

The first inequality is due to the convexity property of the loss function, and the 

last inequality holds due to the definition of fri(x) in Equation (3.38) and 

\hi(x) 一 fri{x)\ < \hi{x) - vjQx . 
、 - • . . , 

Moreover, using the Cauchy-Schwarz inequality, we Have: 

2E7.[|n/'f|] < Ev[\\uif + \\xf] = \\ui\\^ + Ev[\\xf]. 

Since |间丨=1, so that 
Ev{\ujx\) < | h | | 2 + l. (3.41) 

By the virtual of RKHS property, for any function L(x) in this RKHS, it can be 

expressed as L(x) =�1/，(/^(a;)�"^. Then, we can obtain the following bound: 
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EQ[L{hi{x)Jri{x))] 一 ErlL(hi(x),friM)] 

=EQmx),L)n]-Epmx),L)n] 

Assume ||L||7^ < 7，similar to Equation (3.14)，we have: 

〈EQ[0(a;)l - Er l (^ (x ) ] ,L }n < 7 l|EQ[0(a：)] - Ev[(p{x)]\\^ 

= 7MMD[As’Z>rj. (3.42) 

Substitute Equation (3.41) and Equation (3.42) into Equation (3.40), this com-

pletes the proof. • 

According to the expected error bound in Equation (3.39)，we can calculate 
• . 

the total expected loss for all Hie m classes in the target domain Dr 

er = 

< + + rrryMMDlAs，Dr] 
i=\ 
m Til 

= L ( M 工 i } ’ Vii) + + m7(tr(0Ke '^)i 
:i 1=1 

+ mS (3.43) 

where the last approximation is due to replacing the expected loss in D5 by the 

empirical loss. We can see the total expected loss in the target domain Dr , is 

bounded by the combinations of the total empirical loss in the source domain Ds, 

the maximum mean discrepancy value which evaluates the distribution difference 

between D丁 and Ds, and the'^egularization for all the classifiers in Ds. There-

fore, we can conclude that minimizing the objective function in Problem (5.9) 

can also minimize the expected loss in the target domain Dr . Moreover, the 

error bound established in Equation (3.43) can supply advices for setting the 
f •.. ‘ •！ .• 

trade-off coefficients ot and by estimating 6 and 7. For example, if we employ 

the hinge loss or sparse loss as our empirical loss function, we can directly set 
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a = S = 0.25. While if we use least square loss function, we will set a = (5 = 1. 

We can also set (3 = m r / M M D D 7 - ] , which is depend on the class number 

and employed kernels. � 

It-., 
3.5. Discriminative Feature Propagation 

One major problem in text mining is the sparsity of features in the high dimen-

sional space. Specifically, some discriminative features occur frequently in the 

target domain D丁 but seldom appear or even are abseht in the source domain Ds. 

For example, for the task of extracting sentences corresponding to job require-

ments from job Web sites, some common terms between the healthcare industry 

and the accounting industry may be "qualified", "year”，"experience" and so on 

as shown in Figure 3.5. However, some characteristic words are dependent of the 

job nature. For instance, "CPA", "CA", "ACCA" are discriminative terms for 

the "accounting” domain whereas "CCP"，“physiology” are discriminative terms 

for the domain of “health care". To address this issue, we develop the following 
‘ • 

feature propagation strategy. 

According to the discussion in Section 3.2，we, can extract a common feature 

set T from both domains for each specific task I by selecting the features which 

have high weight in Q'vi and also have close empirical mean between the source 

domain and the target domain. Based on the co-occurrence information in the 

target domain, we can compute the similarity between the common features in 

the set T and the remaining features (non-common features) in another set T . 

For each non-common feature, we can sum up its similarity with all the coirimoh 

features. Finally we rank all the non-common features by its similarity with the 

common feature set in descending order. By selecting the top K highly similar 

non-common terms, and combining with all the existing common features, we 

can get a set of characteristic features TcC. T i^x the target domain. 

Based on the assumption that similar features should have similar prediction 

power in the target domain, we can construct a feature similarity graph G- In Q, 
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CCP 

physiology 

o o o 

,‘ qualified 
‘ / 

I 

experience 

V. year 

CPA 

l i S ^ C A 

ACCA 
/ 

ieaithcare Accounting 

Figure 3.5: Demonstration of the feature propagation from the shared common 

features between domain healthcare and domain accounting to discriminative 

features in domain accounting 

each vertex v represents a feature, and edge weights are given by a symmetric 

matrix E G R 办 w h o s e entries E^v = (tTi/.tTv) > 0, where <•’ •�means the 

inner product, lu represents the vector of normalized occurrence in the target 

domain. Define the degree of vertex v as dy = 丑uv，then we can define the 

normalized graph Laplacian matrix: 

1 — Euv/dru li u = V and d-u 0 

—Euv/Vd-u^v if and v are adjacent 

0 otherwise. 

(3.44) 

We also define a column vector p — [p i , . . . € representing the dis-

criminative weight vector of characteristic features. Intuitively, similar features 
IV . 

should have similar weights. ,Therefore, we introduce a manifold regularizer using 

the feature graph Laplacian matrix in (3.44) as: 

pTCp = Euv Pu Pv 
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which propagates the weight of the common features to other characteristic fea-
• J 

tures via the manifold structure of the feature graph. 

Moreover, we also require the discriminative weight vector p be close to the 

discriminative direction learned for each class in the target domain. Thus, we 

arrive at the following optimization problem: 

mm Pi - Q^vi ^ + ipTCipi, (3.45) 

where the first term minimizes the difference between p； and G^v/, and the 

second term enforces that the assignment of the weight of the characteristic 

features is propagated from the common features. In addition, the optimization 

problem (3.45) can be solved according to the following lemma： 

L e m m a 3.1. Let vi be the classifier for the class I on the shared feature 

subspace 0 , therefore the corresponding optimal p/ has a closed form in term of 

0 and Vi. 

V-V4 f 

Proof. We first rewrite the objective function as follows: 

\pi 一 vi^^ ^ ^pjCipi 

= p j P I 一 2vjQpi + vjvi + jpJCipi (3.46) 
:.y•二 

= p J ( / + 一 2v^epi + vjvi 

Setting the derivation of (3.46) with respect to pi to zeros, we have: 

P/ = ( / + TC,�ieT t；,. 

This completes the proof. • 

Therefore, the prediction on the testing patterns in the target domain can be 

performed by: : 
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However, computing the matrix inversion (/ + is still computational 

intensive (with complexity 0(d^)). Note that when the predefined parameter 7 

satisfies 0 < 7 < 1, we have the following Taylor expansion: 

(/ + 7乙/广 1 = / - 7广/ + - 7 3 + … 

I 
As £1 is usually very sparse, especially when 7 is small, one can approximate 

(/ + as I — and the revised discriminative direction is: 

丁 丁 • 

PI = Q VI - ^CIQ VI, 

Then the decision function on the testing patterns in the target domain be-

comes: 

As a result, the computation of the prediction is much reduced. 

As discussed above, is the optimal discriminative direction of the l-th 

class in (5.9). From the propagation of the feature graph Q, the discriminative 

information from other charaqteristic ieatures Tc can be used to compute the 

weight vector —'yCiQ^vi to correct the discriminative direction. 

3.6. Experiments 
• 

We demonstrate the effectiveness of our proposed domain adaptation method 

by conducting experiments on a number of data sets covering two common text 

mining problems, namely, document classification and information extraction. 

r 

3.6.1. Document Classification 

3.6.1.1. D a t a Sets 

20-Newsgroup. The first dataset is derived from the 20-Newsgroup corpus for 

document classification. The original 20-Newsgroup corpus contains more than 
I. 

18,000 newsgroup articles collected from 20 different Usenets newsgroups. Table 
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3.1 depicts the newsgroups ID for identification in this thesis. We obser ve that the 

articles in some newsgroups are related to the same'topic. For example, the news-

groups rec. auto and rec. motorcycle are related to the topic car, the newsgroups 

rec.baseball and rec. hockey are related to the topic ball game; the newsgroups 

comp.sys.ibm.pc.hardware and comp.sys.mac.hardware are related to the topic 
• • -

hardware] and the newsgroups comp. windo-ws.x ah3 comp. os.ms-windows, misc 

are related to the topic OS�and so on. Therefore, the articles originated from 

the related newsgroups can be labeled by the same topic. However, there exists 

distribution shift from one newsgroup to another, even the two newsgroups are 

related. Table 3.2 shows the dataset derived and used in our experiments. There 

are six class labels, namely, car, ball gama�hardware, OS�religious�and poli-

tics. For each class label, there are two related newsgroups as described above. 

Therefore, we can treat one newsgroup as the source domain and use the articles 

contained as the labeled data. The other related newsgroup can be considered 

as the target domain and the articles contained are Regarded as unlabeled data. 

The first three datasets, namely, NGl, NG2 and NG3, depicted in the table 

consist of two class labels. For example, NGl contains the class labels car and 

ball game. The newsgroups rec. auto and rec. baseball are treated as the source 

domain. 400 'articles from each of these two newsgroups are randomly collected 

as the labeled examples, constituting a total of 800 labeled examples. The target 

domain is composed of 400 articles from each of the newsgroups rec.motorcycles 

and rec.hockey, constituting a total of 800 unlabeled data. The datasets, namely, 

NG{4-7}, contain 4 class labels in each dataset. The last two datasets, NG8 and 

NG9 contain 6 class labels. The composition of articles in each class label in 

the source and target domains is clearly shown in Table 3.2. Each article is 

represented by the vector space model and normalizisd to unit length. 

Reuters-21578. The second dataset is the Reuters-21578 corpus for docu-

ment classification. There are three top categories of documents, namely, people, 

place, and organization�in tbe corpus. We derive datasets used in our experi-

ments by treating documents from one of these class labels as the source domain 
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Table 3.1: Newsgroups ID for identification in this thesis. 

newsgroup Newsgroup newsgroup Newsgroup 

ID ID 

auto rec.auto motor rec.motorcycle 

baseball rec. baseball hockey rec. hockey 

ibm comp.sys.ibm.pc.hardware mac comp.sys. mac. hard ware 

wsx comp.windows.X wsmisc c o m p . O S . m s - w i n d o w s , m i s c 

chrsrg soc.religion.christian miscrg talk, religion, misc 

inept talk.politics.mideast rniscpt talk.politics, misc 

and labeled examples. Next, we treat the documents from another class as the 

unlabeled target domain. The three datasets derived and used in our experi-

ments are denoted by People-Place, Org-Place, and Org-People respectively. For 

example, People-Place refers to the dataset treating documents from the class 

label People and documents from the class label Place as the source and target 

domain respectively. The detailed setting can be referred to [20]. Similar to the 

20-Newsgroup dataset, each document is represented by the vector space model 

and normalized to unit length. 

3.6.1.2. Compar i son Algoi - i thms 
« 

In order to verify the effectiveness of our method, we compare with two typical 

classification methods: Support Vector Machine (SVM), Transductive Support 

Vector Machine (TSVM), and three cross domain classification methods: Ker-

nel Mean Matching (KMM) [37], Transfer Component Analysis (TCA) [49], and 

Cross Domain Spectral Clustering (CDSC) as presented in [44]. They repre-

sent supervised classification, semi-supervised classification, and recent domain 

adaptation methods respectively. 

S V M and T S V M [41] are implemented b / which are the state-

1 http: //svmlight.joachims.org 
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Table 3.2: The data collected from 20-Newsgroup for document classification 

experiments. 

Data 

set 

Domain class label Data 

set 

Domain 

car ball game hardware OS religion politicj 

NGl source auto baseball N/A N/A N/A N/A 800 NGl 

target motor hockey N/A N/A 
«•> 

N/A N/A 800 

NG2 source N/A N/A ibm wsx N/A N/A 800 NG2 

target N/A N/A mac wsmisc N/A N/A 800 

NG3 source N/A N/A N/A N/A chrsrg mept 800 NG3 

target N/A N/A N/A N/A miscrg miscpt 800 

NG4 source auto baseball ibm wsx N/A N/A 1600 NG4 

target motor hockey mac wsmisc N/A N/A 1600 

NG5 source motor hockey mac wsmisc N/A N/A 1600 NG5 

target auto baseball ibm wsx N/A N/A 1600 

NG6 source auto baseball N/A N/A chrsrg mept 1600 NG6 

target motor hockey N/A N/A miscrg miscpt 1600 

NG7 source motor hockey N/A N/A miscrg miscpt 1600 NG7 

target auto baseball N/A N/A chrsrg mept 1600 

NG8 source auto baseball ibm wsx chrsrg mept 2400 NG8 

target motor hockey mac wsmisc miscrg miscpt 2400 

NG9 source motor hockey mac wsmisc 
( • » ! 

miscrg miscpt 2400 NG9 

target auto baseball ibm WSX chrsrg mept 2400 
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Table 3.3: The data collected from Reuters-21578 for document classification 

experiments. 

Data Set # of documents in Ds # of documents in Dj-

People-Place 1079 1080 

Org-Place 1239 1210 

Org-People 1016 1046 

I 

of-the-art classification methods and have been proved to be powerful in vast 

applications, especially in text mining fields. The parameters are almost all set 

as default in the package, and we use the RBF kernel for both two algorithms. 

C D S C introduces the spectral clustering strategy to maintain the consis-

tence in both the source domain and the target domain, where the objective 

function is minimizing the cut size on all the data with the least inconsistency 

of the data in Ds , and at the same time maximizing the separation of the data 

in the target domain D7-. Intuitively, the regularization is regarded as the bal-

ance between the in-domain supervision and the out-of-domain structure. The 

parameter setting is exactly the same as report in their paper [44 . 

K M M is proposed to reduce the mismatch between the two different do-

mains Ds and D7- [37], which is a two-step approach. The first step is to di-

minish the difference of means of samples in RKHS between the two domains 

by re-weighting the samples (p̂ X̂i) in the source domain as where ft is 

learned by minimizing the MMD criterion in (3.15). 

MMD[D5,DT]= ni -H 

subjected to ft 6 [0，1] and | ^ f ' ' / ? , — tI] | < nic, where e is a small value to ensure 

that the corresponding measure Pi(x)V{x) is close to a probability distribution. 

Then the second step is to learn a decision classifier f{x) = w^(j){x) + b that 

separates patterns of opposite classes using the loss function re-weighted by ft 

in the objective. The parameter e is set as the same as reported in their paper. 
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T C A is implemented by us according to the algorithm as described in (49 

min tT{(W'^KHKW)-'W^(I + /j,KLK)W) 
IV 

S.t. W^KHKW = Im^m. 

where the global kernel matrix K is defined as 

(3.47) 

K (3.48) 
Ks,s KS�T 

Kt�S KT,T 

where K s � s � K T � T and KS,T are the Gram matrices defined on the source domain, 

target domain, and cross domain data, respectively. We can check that the 

solutions in Problem 3.47 is spanned by the eigenvectors corresponding to the m 

leading eigenvalues of ( / + FJ.KLK)~^KHK. The'.{Parameter /i is set as chosen 
R 1 

with the best performance in their report. 

We experiment with RBF kernel for feature representation or instance re-> 
weighting used by KMM and TCA, and adopt SVM for the final prediction. The 

kernel adopted in the SVM for the final prediction is a default linear kernel. 

For all those comparison algorithms, since they can only handle binary classi-

fication, we transform the multiclass problems to the 1-vs-rest problem setting 

for training [52]. For our proposed LRSC method, RBF kernel is used in our 

LRSC (kernel) with the kernel width as 0.1, and we set the parameters a and 

P according to the discussion in the error analysis in Section 3.4. Specifically, 

because we employ hinge loss, then we set a = 0.25 , = 0.1 for kernel case, 

and /? = 1 for linear case. The number of extracted concepts r is set to 30. For 

each data set, we repeated all the algorithms 10 times by randomly sampling the 

articles in each run and calculate the average performance, so as to decrease the 
. • / • • 

sampling bias. 
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Table 3.4: The performance measured by F-measure of different sets of experi-

ments in 20-Newsgroup dataset. 

Data set SVM TSVM KMM CDSC TCA LRSC 

(linear) 

LRSC 

(kernel) 

NGl 0.849 0.874 0.909 0.899 0.932 0.945 0.947 

NG2 0.716 0.732 0.779 0.782 0.806 0.847 0.841 

NG3 0.694 0.754 0.653 0.770 0.694 0.824 0.834 

NG4 0.659 0.670 0.747 0.726 0.761 0.780 0.789 

NG5 0.645 0.675 0.672 0.681 0.707 0.740 0.736 

.NG6 0.566 0.644 0.620 0.607 0.610 0.667 0.677 

NG7 0.555 0.694 0.679 0.673 0.710 0.691 0.683 

NG8 0.538 0.531 0.563 0.624 0.664 0.662 0.671 

NG9 0.475 0.542 0.559 0.599 0.613 0.643 0.660 

Average 0.633 0.679 0.687 0.707 0.723 0.755 0.760 

People-Place 0.774 0.775 0.744 0.791 0.783 0.824 0.837 

Org-Place 0.706 0.713 0.720 0.748 0.777 0.820 0.827 

Org-Pebple 0.618 0.627 0.545 0.651 0.651 0.696 0.709 

Average 0.700 0.705 0.670 0.730 0.737 0.780 0.791 

3.6.1.3. Results and Discussion 

We adopt the recall, precision, and F-measure as the evaluation metrics. Recall 

is defined as the number of aRicles that are correctly classified, divided by the 

actual number of articles in each class. Precision is defined as the number of 

articles that are correctly classified, divided by the number of all the articles 

predicted as the same class. F-measure is defined as the harmonic mean of recall 

and precision. 

F-measure 
2 X precision x recall 

precision + recall 
(3.49) 
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Results of all the methods on all data sets depicted in Table 3.2 and Table 3.3 are 

summarized in Table 3.4 with the best results shown in bold font. It can be ob-

served that the supervised method, namely, SVM, which trains only in the source 

domain and tests in the target domain always gets the worst performance among 

the seven algorithms. Semi-supervised learning method TSVM outperforms the 

supervised learning method SVM by taking advantages of the unlabeled data in 

the target domain. Since the articles in the sourc^idomain and target domain 

are related, the unlabeled data in the target domain will supply some distribu-

tion information for the training process so as to improve the prediction in the 

target domain. CDSC has been reported for the good performance in two-class 

cross-domain adaptation. Those results are verified again in our experiments 

especially when the two classes in the target domain are well separated such as 

the data sets NG{l-3}. However, for multiclass problems especially when the 

multiple classes in the target domain are not very easy to separate such as the 

data sets NG{4-9}, the performance of CDSC is not as good as that in two-class 

problems. On the other hand, our domain adaptation method can get compa-

rable results with CDSC for the well separated two-class problems and achieve 

better p^formance for all the other data sets. For both KMM and TCA, their 

strategies are to minimize the domain difference first by reweighing the features 

or samples. Then they employ standard classification model like SVM for final 

prediction. However, the first step may lose much useful information for learning 

the final predictors because it does not consider the label information. There-

fore, the performance of KMM and TCA are not as good as our proposed LRSC 

method, which minimizes the domain gap and empifical loss on the labeled data 

simultaneously. Regarding the computational time aspect, according to our al-

gorithm outlined in Figure 3.3, singular value decomposition (SVD) is the major 

computational issue with the complexity O(n^), which is also the computation 

complexity of KMM and TCA. 
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3.6.2. Information Extraction 

3.6.2.1. Expe r imen t Setup 

We conducted a set of experiments in the task of information extraction. The 

objective of information extraction is to extract precise text fragments, which 

are basically chunks of consecutive tokens, for each field of interest from a semi-

structured text document. In our experiments, we aim at extracting the job 

related information from Web pages in some recruitment Web sites. The fields 

of interest are job title, company, location, salary, post-date, education, experi-

ence, and duty. The online job advertisement documents were collected from 

different recruitment Web sites in three different domains (or industries). Ta-

ble 3.5 depicts the details of the collected data. The first, second, and third 

columns refer to the domain label, domain name, and the number of job adver-

tisements collected in the domain respectively. For each online job advertisement 

collected, we automatically segment the document into a number of text frag-

ments by considering the document object model (DOM)^ and extract the text 

contained in the text nodes of the DOM structure. Long paragraphs contained 

in text nodes are further segmented into sentences by an automatic sentence seg-

mentator for finer granularity. The fourth column of the table shows the number 

of text fragments in the domain after segmentation. Each text fragment should 

be labeled as one of the eight job fields mentioned above, or the "not-a-field" 

label. Two human accessors were invited to manually label all the text fragments 

in the three domains. If there was any disagreement on the judgment between 

the two accessors, it was resolyed by a …scussion among them. The manual label 

information is used as the ground truth in the experiments. Figure 3.6 depicts a 

sample web page with the labeled fields by the box in the accounting domain. 

In each domain, we have conducted different sets of experiments to demon-

strate the performance and compare with existing methods. We use the labeled 

training example in the source domain and the unlabeled data in the target do-

^The details of the document object model can be found in http://www.w3.org/D0M. 

http://www.w3.org/D0M
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Great work environment' 

So, if you now. •n Accountant with a CPA (or .，CPA ĉ ndidotc) 6nd live within the Tysons Cornci 

Must be authorized to work in the United States on a full-time basts for any employer. 

apply 

Figure 3.6: Sample web page showing its field labels, in the accounting domain 

Table 3.5: 

iments. 

The details of the data collected for the information extraction exper-

Domain Domain # of Job # of Text 

Label Name Advertisements Fragments 

D1 Accounting 273 7462 

D2 Logistic 202 5636 

D3 Health 201 6402 
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Figure 3.7: Comparison of the extraction performance of each job field with dif-

ferent source domain and target domain. Row ： D1-D2, A - ^ 3 , Row : 
A'. • • 

D2-DUD2-D3, 3rd Row : The fields in the x-axis from left 

to right are company, location, job title, salary, post-date, education, experi-

ence, and duty. Different color represent different comparison algorithm, blue: 

LRSC(linear), cyan: LRSC(kerney, green: TSVM, yellow: KMM, grey: TCA. 
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Table 3.6: The extraction performance of different sets of experiments. P, R, 

and F refer to the precision, recall, and F-measure respectively. 
Data Set 

Ds DT 

TSVM KMM TCA LRSC( linear) LRSC{kcrncl) 

D2 0.730 0.735 0.801 0.825 

D3 0.717 0.771 0.731 0.915 0.671 0.722 0.795 0.777 0.813 804 0 81 
D2 D1 0 82 0.772 0.766 0.914 0.800 0.798 0..786 0 0 83 

D2 D3 82 0.797 0.770 0.741 0.796 0.770 0.830 0 844 0 81 

D3 D1 0.739 0.731 0.781 0.790 0.790 0.778 0.790 0 789 0 779 81 

D3 D2 27 0.737 0.742 0.752 0.747 0.797 0.771 793 0.791 0 80 

Average 0.775 0.832 0.784 0.796 0.776 0.799 829 0.811 0 

main to learn the extraction model using our domain adaptation method. The 

learned model is then applied to the testing data in the target domain and Lhe 

performance is measured. For example, let D1 and D2 be the source and target 

domains respectively. We use the labeled training fragments in D1 and the un-
V 

labeled fragments in D2 to learn a model. Then the learned model is applied to 

predict the fields of the text fragments in D2. As can be seen, in each training, 

the total number of text fragments in the source domain and target domain is 

larger than 10,000. Since CDSC needs to compute and store the pairwise similar-

ity for any two fragments, it cannot handle this information extraction data set. 

We cannot compare with it due to memory consuiiaj^tion problem. The parame-

ters setting is similar as the setting in document classification experiments. Note 

that each text fragment is represented by the vector space model and normalized' 

to unit length. 
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Figure 3.9: The effect of the weight P on the performance of LRSC in three datasets. 

The left and right subfigures cortespond to the linear and kernel case respectively. 
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Figure 3.8: The effect of the dimensionality r on the performance of LRSC in three 

datasets. The left and right subfigures correspond to the linear and kernel case respec-

tively 
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t..: 
3.6.2.2. Resul ts and Discussion 

We adopt the recall, precision, and F-measure as'the evaluation metrics. Recall 

is defined as the number of text fragments that are correctly labeled by our 

framework, divided by the actual number of text fragments. Precision is defined 
a 

as the number of text fragments that are correctly labeled by our framework, 

divided by the number of predicted text fragmerity using our framework. F-

measure is defined as the harmonic mean of recall and precision. 

In each set of experiments, we have conducted 6 runs using different combi-

nation of the source and target domains. Table 3.6 depicts the performance of 

the experiments. In each run, we measure the recall, precision, and F-measure 

for each field. The figure in each cell of Table 3.6 is the average performance 

among the 8 fields of interest in the corresponding experiment. For example, 

our LRSC(kernel) method achieves an average precision, recall, and F-measure 

of 0.8262, 0.8563, and 0.8410 respectively in the target domain when the source 

and target domains are D1 and D2 respectively. K/[oreover, it achieves an average 

precision, recall, and F-measure of 0.8290, 0.8117, and 0.8198 on the whole six 

data sets. It outperforms TSVM, KMM and TCA, which obtains F-measure of 

0.744, 0.766 and 0.776 respectively. 

Figure 3.7 depicts the detailed comparison between our LRSC method and 

other methods, namely, TSVM, KMM and TCA. The x-axis denotes the eight 

job fields and the y-axis denotes the extraction performance measured by F-

measure. In each plot, we show the F-measure on each job field when training 

is conducted in one domain and adapting to the other two domains. Different 

colors represent different comparison methods, and one subfigure contains the 

comparison in one dataset. It can be observed that all of the four methods 

obtain similar extraction performance in the fields ôf company, location, salary 

and post-date because the text fragments which describe those fields are almost 

the same in different domains. However, for the other fields, such as education, 

title, duty, and experience, the words or phrases vary among different domains. 
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TSVM does not consider such domain difference, then its performance is the. 

worst among all the four methods as shown in the figures. KMM and TCA 

can re-weigh the features or samples so as to minimize the domains gap, but 

they do not use the label information. LRSC combines those ideas together and 

outperforms the other three methods in almost all the datasets. 
i 

3.6.3. Experimental iParameter Investigation 

3.6.3.1. T h e effect of the d imens iona l i t y r 

In this section, we investigate the effect of the dimensionality r on the domain 

adaptation performance. We select three datasets, namely, NG8, org-people, 

and D1-D2, as representatives of 20-Newsgroiip, Reuters and job information 

respectively. The left sub-figure in Figjare 3.8 depicts the performance on those 

three datasets in relation to r = 5，10，15,20，30，... , 60 for kernel LRSC. We also 

implement the same experiment for linear LRSC, which can also get similar figure 

with kernel LRSC. The result shows that our proposed method LRSC, in both 

linear and kernel case, are not"very sensitive to the change of the dimensionality 

T、which is a significant advantage for dimension reduction. 

3.6.3.2. T h e effect of the weight (3 
• • *• 

As discussed above, P is the relative weight of the domain gap between Ds 

and D r against the empirical loss on the labeled data in Ds- The higher value 

of P, the more concepts will be extracted to shrink the gap between Ds and 

D丁. Furthermore, when tends to infinity, then kernelized LRSC will become 

similar as TCA. On contrary, if we decrease the value of LRSC tends to 

learn the classifiers without paying much attention on the distribution gap. The 

extreme case is when /? tends to 0, LRSC will degenerate to the standard logistic 

regression. We fix the dimensionality r as 30, and vary p from 0.001 to 100. The 

datasets used are the same as in Section 3.6.3.1. The right sub-figure in Figure 

3.9 demonstrates the performance of LRSC with varying P for kernel case. It can 
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be observed that the best performance ^ exists in the range [O.l,!] for almost all 

the datasets. Similar conclusion can be get for the linear LRSC. 

3.6.4. Discussion 
會 

For those feature and instance weighting approaches, they all separate the domain 

adaptation framework to two steps, the first step is trying to minimize the domain 

gap, and then training the predictive model based on the learned feature or 

instance representations. They seldom consider these two steps interactively. 

For our proposed discriminative concept domain adaptation (LRSC) method, 

we can ensure the extracted concepts are shared by source and target domains, 
t 

and favored by the classifiers learned by the labele•丑;data in the source domain. 

Moreover, some extremal situations of our proposed methods can be degenerated 

to existing approaches. For example, if we tune ,the trade-off coefficient p to 
\ •• 

infinity, the extracted low-rank concepts should be mostly used for decrease 

the domain gap. Therefore, kernelized LRSC degenerates to TCA. Similarly, if 

we decrease P to zero, it is easy to see our method is the traditional logistic 

regression. ‘ i 

1 » 
•乂 



CHAPTER 4 

MODELING DOMAIN D I F F E R E N C E 
USING H I G H - O R D E R STATISTICS 

4.1. Distribution Gap Measuring Metric 

Both instance level and feature level domain adaptation approaches try to reduce 

the distribution gap between the training and testing set so as to propagate the 

label information. They have been proved to be effective in various applications. 

However, it is extremely hard to estimate the density function especially when 

the feature space is of high dimensional. Another major difficulty is how to incor-

porate an effective statistical criterion measuring distribution discrepancy into 

a tractable framework. Currently, most existing instance-level and feature-level 

approaches are restricted to the first-order statistics matching and enforce the 

empirical means of the training and testing instances be closer in a Reproducing 

Kernel Hilbert Space (RKHS). In Chapter 1，we demonstrate that those empir-

ical mean based strategies can make the domain adaptation tasks possible to 

achieve good performance. However, intuitively, they may have a considerable 

limitation in matching two probability distributions where only the first-order 

statistics are exactly the same. Moreover, for many text mining applications, 

it is not appropriate to ignore the feature dependency which can be explored 

by considering the document covariance. Specifically, we can observe that the 

56 
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sample covariance matrix on text data with zero mean is exactly the same as the 

term similarity matrix. This motivates us to utilize the covariance information 

to evaluate the distribution discrepancy. First it can strengthen the distribution 

matching criterion than only considering the mean. The second advantage is thai 

we can utilize the feature dependency to distinguish domain specific features and 

common features, and then filter such features whose similarity with other fea-

tures varies greatly from the training data to the testing data by investigating 

the sample covariance matrices. 

In this chapter, in order to overcome the limitations mentioned above, we 

develop a new non-parametric distance metric called symmetric Stein's loss (SSL) 

to measure the distribution gap between two domains with finite samples. It 

jointly considers the empirical mean (Location) and- sample covariance (Scatter) 

difference, and it can map the location and scatter information to one item 

smoothly which can avoid treating them separately. More specifically, we propose 

an improved symmetric Stein's loss (SSL) function which combines the mean 

and covariance discrepancy into a unified Bregm'ah matrix divergence of which 

J"nsen-Shannon divergence between normal distributions is a particular case. 

4.2. Improved Symmetric Stein's Loss 

Traditional domain adaptation methods try to reduce the distribution between 

Ds and Dj- by evaluating the mean vector x and x' within a unit ball in RKHS. 

However, the main shortcoming of such methods is沖at they fail to capture the 

scatter information for both domains, which is crucial for classification. We try 

to tackle the problem by considering the sample.. scatter matrix to reduce the 

distribution gap, at the same time, consider the discrepancy between the mean 

vectors in RKHS. More importantly, we can further integrate those two important 

components in one framework by extracting the shared subspace between the 

source domain and target domain. For simplici ty,-re-center the data in S by 

shifting the mean ^t/'^i to 0, that is, let x = x — x,/ni for any x in 
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both Ds and Dj-- To simplify the notation without causing confusion, we still 

use X and x' to denote the data in Ds and D丁 respectively. 

We define the tuple (u, E) as representing the location vector and sample 

scatter matrix of the data in each domain Ds and D f . Then we have： 

Us = $ Er=i âx. = ^ — - usV (4 1) 
鄉二 ; i ESi《•，Zt 二击 E S i W - - urV 

However, due to the different nature of the two domains Ds and D r , there 

may exist discrepancy between the tuples {us, S^) and (U7-, Ex). In fact, there 

are many criteria to evaluate the difference between the matrices and vectors, 

for example, the 2-norm for the vectors and F-norm for the matrices. Here we 

introduce the Stein's loss [38], denoted by •), to evaluate the difference 

between two matrices, which is originally adopted for estimating the covariance 

matrix and proved to be efficient for dominating the difference between two 

scatter matrices. 

E r ) = t r (E^Er ) - logdet(i;JIV) - d (4.2) 

As can be seen the Stein's loss, also known as Bregman matrix divergence 

is exactly the generalized likelihood ratio when both distributions in Ds and Dq-

are multivariate normal distribution. Moreover, it can be shown that Stein's loss 

is the unique scale invariant loss function for which the unbiased estimator of the 

unilorm minimum variance is also a minimum risk equivariant estimator. Scale 

invariance implies that the Bregman matrix divergence remains invariant under 

any scaling or invertible linear transformation P�since: 

B(T.s, t r ) 二 召 (PSs /^T，尸尸T) (4.3) 
I 

Furthermore, it has been shown that the Kullback-Leibler (KL) divergence 
i 

between two multivariate Gaussians can be expressed as the convex combination 

of a Mahalanobis distance between the mean vectors and the Bregman divergence 

between the two scatter matrices [25]. In the sequel, we all use p(iS) and p[T) to 

represent the probability density function p[x\us^ E5) and 'p[x\ur, ^ r ) to simplify 
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the notation without causing confusion. The KL-divergence between P{S) and 

P ( r ) is: 

KL{p{S)MT)) =Jp{SV^ch (4 4) 

where u r ) = {us — ury i l ' ^{us — ur ) is the Mahalanobis distance, 

parameterized by the covariance matrix E7-. However, the KL-divergence is 

not symmetric and the logdet item is hard to compute. Therefore we introduce 

the Jensen-Shannon divergence instead to express the distribution of the two 

multivariate Gaussians: 

j s (p � i b ( r ) ) :)•:� 

=^(KL(p(cS)ib(r)) + Kh{p{r)MS))) 
(4.5) 

= + + 去 M玛+辟(机“工）—d 
= + 4- 一 d 

Denote §[ •�• ) as the symmetric Stein's loss furfction which is defined as: 

m s . S t ) = ST) + S^)) , , 。 
(4.6) 

Hence we can represent the distribution gap between two multivariate Gaussians 

by the convex combination of the symmetric Stein's loss and the Mahalanobis 

distance between the mean vectors. However, we can see it is not trivial to 

combine them in a unified framework which is one of our goals in this paper. 

First we propose the following proposition. 
.i.»::, 

I 

Proposition 1. (i) For any d there is a 1-1 correspondence between the triple 

and matrix A 6 where w € A € IR and E € given by 

A = A{u,E,X) ... 

• , i ; ’ A ) = 
\u 

E + A^nn"̂  Xu 
(4.7) 
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(ii) For any A E V权、we have 

W Y T ^ 1 +A^ti^E-iu 
(4.8) 

It is not difficult to verify the proposition above. According to the above 

proposition, we can map the mean vector and scatter matrix to a high order 

matrix in p 糾 by a 1-1 correspondence transformation. Moreover, we can just 

use the quadratic loss between A) and A{ur, Hr, A) in the matrix group 

糾 to dominate the difference between the tuples {us, D5) and {ur, IV)’ which 

can greatly harness the difficulty of handling the mean vector and scatter matrix 

separately. In the sequel, we denote A{us, E5, A) and A{ur, S t j as As and 

Aj- respectively to simplify the notation. 

Theorem 2. The Jensen-Shannon divergence between two multivariate Gaus-

sians parametrized by {us, E5) and {uj-, E7-) can be represented by a special case 

of the symmetric Stein's loss between As and A^^ specifically, 

JS(p(5) | |p(r)) = B(yl5,/lr)lA=i (4.9) 

Proof. As defined in the Proposition 1 we have: 

Ej" —XH'^us \ (E7- + X'^uj-u^ Xu-r 
Ar = 

1
1
 

T
r
 

u
 

A
 

一入 TZJEs— 1 + A^ii jEjus y 

It follows that: 

tr(AiAr) = t r fE+Er) + X^{us 一 财 ) 丁 — ur) 
二 tr(X]�ST) + A2M 

Similarly we can get: . 

tr(yl 安 As) = tr(E+E5) + (4.10) 

According to the definition of, symmetric Stein's loss in Equation 4.6, we have: 

B{As.At) = \tv{AiAT + A^As) - d 

= i t r ( E j - E r + S^E^) + 一 d 
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Combining with Equation 4.5 and setting 入=1，the proof is complete. • 

Theorem 2 guarantees that if the distributions are multivariate Gaussian 

distribution in 股“，then our proposed symmetric Stein's loss in 股“+i not only 

considers the covariance difference but also consider the mean shift. A can be 

viewed as the tradeoff coefficient between the two .kinds of losses. Moreover, 

the state-of-the-art Jensen-Shannon divergence is just one particular case of our 

proposed distribution distance/divergence metric. 

4.3. Empirical Test on Two-Sample Problems 
r 

In this section, we present the empirical experiment, of our proposed symmetric 

Stein's loss function in various datasets, including the synthetic datasets, and 

the real-world datasets. 

4.3.1. Related Test Methods 

Various empirical methods have been proposed to test whether two random sam-

ples are generated from the same underlying distributions or not [15]. The most 

simplest method is the generalized multivariate t-test [34, 35], which assumes 

that both distributions are Gaussians with the same covariance. Kolmogorov-

Smirnov statistic and Wald-Wolfowitz test are powerful when the null hypothesis 

is the fact that the underlying distribution is P = Q for finite samples. Both of 

these two testing approaches are mo del-free univariate tests. Friedman and Raf-

sky [29] proposed to generalize to multivariate problems by counting the number 

of edges in the minimal spanning tree over the aggregated data that connects 

the points in Ds to the points in Dr- The computational complexity of the 

generalized multivariate test is 0 ( (n i + n2)^log(ni + 712)). 

Hall and Tajvidi [33] proposed to aggregate the data in both domains as 

Z = {Ds, Dj-}, and then finds the k points in Z closest to each points in Ds for 

all /c G 1, ...,ni. Among the found k closest points, we count how many of these 
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are from DT�and compare with the number of points expected under the null 

hypothesis. The shortcoming of this method is that it is very time consuming 

and can be only applied to tens of points. Another direction is to use some 

distance metric, such as L\ and 乙2 to calculate the estimated densities as the 

statistic directly. One problem with this kind of approaches is to require the 

partition of the space, and it will become difficult or even impossible for high 

dimensional problems, such as text mining and bioinformatics. 

Maximal Mean Discrepancy (MMD) was proposed based on the fact that 

two distributions are different if and only if there exists at least one function 

having different expectation on the two distributions. Consequently the maxi-

mum discrepancy between the function means can be used as the basis ol' a lest 

statistic as demonstrated in Equation 3.14. MMD can take advantage of the ker-

nel trick so that it can be applied to not only the vector space, but also strings, 

sequences and graphs. Moreover, it is easy to implement, memory efficient, and 

fast to compute. However, at̂  the same time, due to the over flexibility, it is 

difficult to choose the most suitable kernel for different datasets. 

4.3.2. Convergence to the Jensen-Shannon Divergence 

As described in Theorem 2, we have proved that Jensen-Shannon divergence can 

be regarded as a special case of our proposed SSL to measure the distribution 

gap. In this section, we present some empirical results on two synthetic datasets 

to verify the convergence of the proposed model-free estimator. 

The first synthetic dataset is composed of two zero-mean Gaussians with 

variance 1 and 2. In each round, we randomly generate n\ samples according to 

J\fifi�1) as the samples in D s � a n d also generate 712 — n\ samples according to 

A/'(0,2) as the samples for D丁. Then we calculate symmetric Stein's loss (SSL) 

B{As, Ar) with A 二 1. For each n】，we repeat the process for 100 times to 

calculate the mean value and'its associated two standard deviation confidence 

intervals. We vary the sample number ni from 10 to 100000 to investigate the 

convergence rate to the true Jensen-Shannon divergence. 
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Figure 4.1: Sample distribution on the two synthetic dataset. Left: cumulative 

density function of 7^(0,1) and Af(0,2). Right: Contour of the two Gaussian 

distributions given in Equation 4.11. 

The second synthetic dataset is generated in 2-dimensional space according 

to the following distribution functions: 

. 工卜"(0,1) 

Q(x')=Ar( 
0.5 0.5 0.1 

- 0 . 5 
> 

0.1 0.3 

(4.11) 

(4.12) 

It can be seen that both the means and covariance structures of the two distribu-
tions are different, and we can directly calculate the Jensen-Shannon divergence 

_ t • 

between P(x) and Q(工'）is 0.659. In each iteration,/we calculate SSL value with 

A = 1. 

The experiment setting for the two synthetic dataset are exactly the same, 

and the detailed results are depicted in Figure 4.2. It can be seen that SSL 

can rapidly converge to the true Jensen-Shannon divergence with the increased 

sample number. Meanwhile, from the plot corresponding to the 1 standard 

deviation confidence interval as shown by blue lines in Fig. 4.2, we can judge 

that the rapid convergence is with high confidence., 
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Figure 4.2: Performance of our proposed symmetric Stein's loss measure of the 
i • 

distribution gap on the synthetic dataset. Left: distribution gap between A/"(0，1) 

and 7V(0, 2). Right: distribution gap between the distributions given in Equa-

tion 4.11. JS in Ihe legends refer to Jensen-Shannon. 

4.3.3. Convergence tlest on covariance structure 

As discussed in Section 4.2，the properties of our proposed symmetric Stein's loss 

is that SSL can make use of the second order statistics to measure the distribution 

gap, which is much more statistical sufficient than other method only considering 

the kernel mean information. We conduct a group of experiments on synthetic 

datasets to to demonstrate this advantage. 

The left diagram of Fig. 4.3 depicts the data distribution for source domain 

Ds and the target domain Dry where we randomly generate 1000 samples ac-

cording to a Gaussian distribution given in Equation 4.13，and fix the location of 

samples in Ds as [00], then we.rotate all the samples with the angle 6 to generate 

the samples in Dr- Obviously, Ihe empirical mean for the two domains are the 

same, but the covariance structure shifts. Then we varies the angle 9 from 0 to 

TT to demonstrate the SSL and MMD value changes. Here we set the kernel of 

MMD as RBF kernel with'the kernel width a = 0.1, and we also normalize the 

10’ 10̂  10̂  10' 
Sample number 

10° 
0.4 

10 10̂  10̂  10' 
Sample number 

10' 

JS divergence 
- B - SSL mean 
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Figure 4.3： Performance of our Proposed SSL measure of the distribution gap on 
. I . • 

the synthetic dataset with shifting covariance structure. Left: samples in Ds and 

D丁 . Right: distribution gap between the distributions with angel 6 rotating. 

features to unit length. 

Q{x') = Af{ 

V{x) = J\f{ 

cos(e) -sin � 

sin(6') cos � 

0.2 0 

0 1.0 

0.2 0 

0 1.0 

c o s � s i n � 

- s i n ( 0 ) cos(0) 

(4.13) 

(4.14) 

The right diagram in Fig. 4.3 depicts the distribution gap changes with the 

angel Q rotating from 0 to tt, where we multiply the MMD value with 100 so 

as to force the MMD and SSL value in the same, scale. It is obviously that 

the SSL value can accurately measure the difference between Ds and D丁 with 

'the 0 changes and the curve plotted by green line fitted as the co5(20) function. 

However, MMD seems preferring to enlarge the difference more quickly even then 

6 is very small, such that it is not so smooth as SSL. 
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I . : . 

4.3.4. Microarray dataset 

In the current biological study, it is very essential to conduct statistical test of 

whether two microarray measurements correspond to the same subject. The 

test obtained by two different labs or on two different platforms, can be used 

lor joint analysis. We can treat such test as the basic two-sample test. If the 

test statistic rejects the null hypothesis that Ihe microarray data are generated 

from the same distribution, then we regard the two microarray datasets as non-

comparable. Conversely if the test statistic holds the hypothesis, then we treat 

them as comparable. 

We obtain two public microarray benchmark datasets from Warn at et 

al. [60]. Both of the two datasets comprise of the same set of 2166 genes, in 

other words, the dimensionality of the two datasets are all 2166. However, they 

are generated from different platforms. We conduct four groups of experiment 

on this microarray datasets based on different combinations of the platform sim-

ilarity and the hypothesis. Take the first group of experiment for example, we 

randomly select 25 samples as the source domain data, and 25 samples as the 

target domain data, both frorir the same platform without replacement, while 

the hypothesis is that the samples in the source domain and the target domain 

are generated from the same platform. Then we use different test methods to 

determine whether the test statistic holds the hypothesis. If it holds, then the 

count number add 1. We repeat the testing for 100 times to avoid the bias and 

coincidence. 

We compared SSL to the multivariate t-test, Worf et al. test and Simirnov 

et al. test using spanning tree (denoted as ST^orj and STsi-mimov)̂  and MMD. 

We set the significance level a as 0.05 for all the methods. For MMD, we employ 

the Gaussian kernel with the.JtQrnel width a — 20. 

Detailed results are reported in Table 4.1, showing the number of times SSL 

and other four methods regard two samples as generating from the same dis-

tribution when data are selected from same or different platforms. Generally 
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Table 4.1: Cross platform empirical test using microarray dataset 

Platforms Ho t-test STmor f STsivrirnov MMD SSL 

same accepted 100 93 95. 100 100 

same rejected 0 7 5 0 0 

different accepted 95 0 29 0 0 

different rejected 5 
ti 

100 100 100 

speaking, SSL and MMD can get comparative performance, both of them can 

correctly recognize whether the data samples were generated from the same plat-

form or not, thus they make no Type I or Type II error, while other three methods 

cannot distinguish the cross platform samples. Moreover, we also note that the 

sample size is relatively small (only 25 for each domain), which usually cause the 

difficulty, or even impossible to converge to the true distribution measure. The 

good performance of SSL thus significantly demonstrates its advantages. 



CHAPTER 5 

LOCATION AND S C A T T E R 
MATCHING 

5.1. INTRODUCTION 

Most of the current domain adaptation approaches only consider the first-order 

statistics to evaluate the distribution difference due to the difficulty of model-

ing high-order statistics into a non-parametric distribution metric. In order to 

overcome the limitations, we .develop another new method called Location and 

Scatter Matching (LSM) that is composed of a non-parametric distance metric 

with a good property which jointly considers the empirical mean (Location) and 

sample covariance (Scatter) difference. More specifically, based on our proposed 

symmetric Stein's loss function presented in Chapter 4，which combines the mean 

and covariance discrepancy into a unified Bregman matrix divergence of which 

Jensen-Shannon divergence between normal distributions is a particular case, we 

try to find a good feature representation which can reduce the embedded distri-

bution gap, at the same time, ensure the new derived representation can encode 

sufficient discriminants with respect to the label information. Then a standard 

machine learning algorithm can be adapted to train classifiers in the new feature 

subspace across domains. 

68 
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I 

5.2. Motivation and Illustrati'on by Synthetic 

Data 

5.2.1. Motivation of Our Approach 

As stated above, most domain adaptation techniques (either instance-level or 

feature-level approaches) try to reduce the distribution discrepancy with respect 

to a specific statistic criterion. Currently, the empirical mean is the most common 

statistics used to evaluate the distribution distance, and its non-parametric form 

MMD, has been applied in many algorithms such as MMED, KMM, TCA, etc. 

However, intuitively, just considering the first-order statistics such as the mean 

match is not statistical efficient to test the hypothesi's of distribution closeness. In 

many situations, even the empirical means both in the original feature space, and 

in the Reprgducing Kernel Hilbert Space are stric'tjLy matched, the distributions 

still differ greatly. On the other hand, if we can take the second-order statistics 

such as sample covariance into consideration, then the statistics should be more 

sufficient to characterize a probability distribution., 
• t • 
'1 • 

Another observation which motivates us to consider the sample covariance 

matrix comes from the text data property. Typically the model trained in Ds 

shows degradation in performance in D7-. One major reason is that the domain 

specific features which are very discriminative in Ds become unimportant in ^ 

D f . Then the prediction power of the common features which are discriminative 

in both domains will be decreased. In fact, the discriminative power of most 

terms in text documents may also vary slightly from domain to domain. By 

investigating the variance of the term similarity matrix from Ds to D7-, we 

can discover the domain specific terms and deal with them appropriately. One 

important observation is that the document covariance matrix is exactly the 

same as the term similarity matrix with constant permutation. Based on the 

above motivation, we try to extract a feature subsp^ce on which the documents 

can be represented so as to reduce the distribution gap characterized by both 
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I 

the mean and sample covariance. 

5.2.2. Illustration by Synthetic Data 

In order to demonstrate the shortcoming of the existing algorithms based on 

first-order statistics, such as the mean match, we generate a synthetic dataset 

to investigate in-depth the advantages of our proposed algorithm over existing, 

ones. There are 400 instances in the synthetic dataset, 200 positive and 200 

negative, in both Ds and D丁. Both domains have the same set of 400 features. 

The 200 positive instances in Ds�deno t ed as P5'200) are generated by the normal 

distribution as follows： 

尸<̂ 290 �•A/([(3e,e,0’e]’S) 

where e is all-one vector with length 100, and 0 is a null vector with length 100. 

E is a 400 x 400 identity matrix in R40o The mean of the features with identifier 

1 — 100 attain a larger value of 6. The mean of the features with identifier 

101 — 200 and 301 — 400 attain a value of 1. The 200 negative instances in the 

source domain, denoted by NSIQQ�are generated by another normal distribution 

as follows: * 

yVS2oo �A^([0，0,e’e]’I；) 

Let PT200 and NT2DU denote tTie 200 positive and 200 negative instances in the 

target domain respectively. The data distributions in the target domain are given 

as follows: 

PT200 � e , 0, 0], E), NT200 �AA([3e, 0, e, 2e], H) 

Figure 5.2.2 depicts the synthetic data in Ds and Dr . The grey level is propor-

tional to the value whenever it 'is larger than 0.1. 

It can be observed that the features with identifier 1 - 100 are very discriminative 

in Ds but not in and features with identifier 301 — 400 are very discriminative 

in D丁 but not in Ds- Features with identifier 100 - 300 are very discriminative 
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Figure 5.1: The synthetic data in the source domain (left) and in the target domain 

(right), x-axis represents the sample identifier, and the y-axis represents the feature 

identifier. 

in bothT domains. This setting is a common setting found in many text mining 

applications in which common features and domain •specific features exist. Ob-

viously the empirical mean of the data in Ds and D r is almost same. However, 

the data distribution still differs greatly from Ds tO'Qr- In fact, by constructing 

the data scatter matrix, we can find that the correlations between features with 

identifier (1-100, 301-400) and features with identifier 101-300 change greatly 

from Ds to Dr-

We have implemented two existing domain adaptation algorithms based on 

empirical mean match. One is Kernel Mean Matching (KMM) [37]. The other 

one is Transfer Component Analysis (TCA) [49]. We applied TCA, KMM, and 

our approach (called LSM) on this synthetic dataset. For both KMM and TCA, 

we investigated the linear kernel. For TCA, we varied the number of derived 

features from 4 to 20, and selected the best performance to report. For our LSM 

method, we set the number of derived features as 4. After re-weighing or feature 

extraction, Support Vector Machine (SVM) is employed as the classifier^ We 

1 http://svmUght.joachims.org 

' V 

Chapter 5. Location aiid Scatter Matching 71 

'MA 

http://svmUght.joachims.org


Chapter 5. Location and Scatter Matching ^ 72 

also applied SVM as a traditional learning algorithm in the original feature space 

on this dataset. We use precison, recall, and F-measure as the evaluation metrics 

whose definition are given in Section 3. 

The performance of each algorithm is given in Table 5.1. The trained model 

by traditional learning algorithm such as SVM gives wrong predictions lo the 

negative samples in D丁 due lo the discriminants decrease of the features with 

identifier 1-100. Overall, the performance of KMM and TCA is much worse than 

our proposed LSM algorithm because the empirical mean in this synthetic data 

cannot distinguish the distribution difference between D^ and D f . For LSM, 

after we filter such domain specific features, such as the features with identifier 1-

100, by considering the covariance matrix shift, the performance increases greatly. 

We also observe that the performance of KMM is close to SVM because the 

weights among all training samples in Ds are similar even after de-biasing. 

Table 5.1: Classification performance of the synthetic data 

peribrmarice 

Algorithms P R F1 

SVM 0.606 0.600 0.594 

KMM 0.623 0.616 0.611 

TCA 0.731 0.708 0.701 

LSM 0.935 0.935 0.935 

5.3. Location and Scatter Matching 
Given the data samples in both； source domain and target domain, and the same 

domain adaptation problem definition as described in Section 3.2. Our proposed 

LSM domain adaptation method aims to find a linear transformation (projection) 

0 € such that the discrepancy on the sample covariance matrix and mean 

vector between the source domain and target domain are minimized. In other 
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words, we try to learn an optimal representation which can decrease the distri-

bution gap between Ds and D r on high order statistics. Based on Theorem 2, 

we can jus I minimize I he following objective function: 

F{As,AT) = “ r ( ( 0 A s e T ) + e A r e T + ( e A r e T ) + G)/l 力 T) 

For high dimensional data, especially when the number of samples is less 

than the dimension, the estimation of the total covariance (scatter) matrix is 

often unreliable. The regularization technique is commonly applied to improve 

the estimation as follows: 

As + (5.1) 

However, in order to avoid extracting some noise features which are not 

important in both Ds and Dj~�we do not add the'regularizalion item for Aj--

The first reason is that it is hard to tune an optimal regularization coefficient for 

both sample covariance matrices, and the second reason is that we can reduce 

the distortion from the original. 

5.3.1. Solving the optimal transformation 6 

T h e o r e m 3. Suppose we have ensured that As is positive definite matrix in 

Equation 5.1, there exists an invertible matrix $ which can diagonalize them 

simultaneously, such that： 

T T h 丁 0 \ 
中T 二 /补 1 and 中 歪 T = = Tr (5.2) 

” V 

where Z^+i is the identity matrix in R糾，and A7- == d i ag ( / \ i , / \ 2 ,…， i s a 

diagonal matrix in which satisfies that 0 < Ai + ^ < ... < Ag + 六. 

Proof. As is a positive-definite matrix in Equation 5.1, then we can find an or-

thogonal matrix P which can diagonalize As as PAsP^ = F = diag{a\, ..,0-^+1), 

and ffi > 0 for i = l’."，d + 1 [31]. Denote 少= T ' ' ^ P ^ A r P T ' ^ , then it can be 

verified that ^ is a positive semi-definite matrix. Then there exists an orthogo-

nal matrix Q which can diagonalize 屯 as Q屯Q丁 = diag(Xi,...’ A ,̂ 0, ...’•) where 
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q = rank(Aj-) and all the diagonal elements larger than 0. Let 少 = Q � r — I 尸丁， 

then we have: 

中 A s 少 T = / d + i ， 巾 A T 屯 T 二 
Ar o\ 

= r r (5.3) 
0 0 

11' the ranking of Ai,..., Â^ dose not satisfy Aj + ^ < ... < \ 4- j-, we can 

always find a permutation matrix A to permutate the ranking so as to satisfy 

the requirement. Then <I> = can hold the hypothesis in Theorem 2. • 

T h e o r e m 4. Let be the matrix defined above and be Ihe submatrix 

spanned by the first p rows of $ where 0 < p < q and q = rank {Ar)- Then 

e = M屯p e minimizes F{As,Ar) for any non-singular matrix M e 耿口印. 

Proof. Based on the result in Eq. 5.2, we have 

QAsQ'^ = G 布 一 i ( 少 二 e e 丁 ( 5 . 4 ) 

GAre'^ = 少 T)(少 _ i )Te 丁 = QFrO^ (5.5) 

where 0 = G)少一！. Then let 0 = ( 8 1 , 9 2 ) be Ihe partit ion of 0 so tha t G j G W " 

and 02 6 we have 

SAsQ^ 二 eie；"’ SATS^ = QAt^J (s.e) 

Hence 

F{As.Ar) =y^,tT({e,ejye,ATej + {e.Arejre.e'i) 

= i t r ( 0 j - e i ( A r + A^)(ete,y) 

where the last equality is based on the conclusion that {AA^)'^' = {A'̂  y A'^, 

and its generalized conclusion that (/lAy4^)+ = (̂ 4 + )丁A+/1+ for any matrix A 

and diagonal matrix A. 

Remind that A7- = diag(Ai, .:.:，Â )̂’ then A t + A+ 二 diag(Ai + 六，...’Af/ + 六)’ 

where 0 < Ai + ^ < ... < Â  + 
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Let 01 = / ? (Ae be the SVD of Gi where R e and S e 

‘ . 
Ag G IRPxp is diagonal matrix. Then we have 9 , Gj 二 S 

that 

nAsAr) 

2 去 + 去 + … + \，+六). 

0 0 

fp 0、 

〇 0 ； 

S' . I I follows 

S' 

where SQ = S 
0 

the first p columns of the orthogonal matrix S. The 

equality holds when SQ = 

matrix. It follows that 

{w\ 
where W € M帅 is an arbitrary orthogonal 

Qi 二只 ( A e 0 ) 5 • 丁 二 0 ) = ( /?AeM/0) (5.7) 

Here we can observe that R and SQ are both arbitrary orthogonal matrices,八e 

is an arbitrary diagonal matrix. Denote M = H八目H e n c e M G is an 

arbitrary matrix. Remind that the minimal value of F{As, Aj-) is independent 

of 02) so we can let 02 be 0. Based on the definition of 6 , we can conclude that 

e = = (M 0)少=M ĵ (5.8) 

This completes the proof of this theorem. • 

From Theorem 4 we can verify that for any non-singular matrix M, M^^ can 

minimize F(Asi ^ r ) - Specifically, after the same linear transformation M龟p� the 

distribution gap between domain S and T can be minimized. The most simplest 

one is let M = /p. However, for our practical use, we need to find an optimal 

M which can fit our classification problem very well. In the following, we try to 
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find this optimal M under the Empirical Risk Minimization framework (ERM) 

proposed in [58 . 

5.3.2. Training on the optimal M 

In fact, ill practical text mining problems, many terms behave similarly in Ds 

and D丁、for example, the common non-discriminative features may vary slightly 

from Ds to Dr . We should use the label information to further filter such 

features by learning an optimal M. In order to capture the label dependency, 

we define the m decision functions as fi{x) = w^Qx where I = 1, ...,m where wi 

is the prediction weight vector for the class label I. We employ the square loss 

function £(fi�Zi�Y^i) ~ (力(x,) — Yu)̂  to measure the empirical loss on the labeled 

data in Ds. Then the total lofss can be formulated as： 

m ni 

/=1 i=l 
W^Xs — Y 

where Xs = \xi X m G is the data matrix of the source domain, 
. - i 

W = [it；!, • • • ,'^m] € Rdx 爪，Yii = 1 if the z-th sample belongs to I he /-th class, 

and 0 if it is labeled as others. 

Based on the parametric.form defined in the decision function /,，we intro-

duce lu^© as the regularizer. Recall that 0 = M^p, we arrive at the following 

minimization problem on learning the optimal M and its corresponding predic-

tors: 

mm MW F (5.9) 

It learns both the optimal linear transformation M and the parameters W in 

decision functions simultaneously. 
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5.3.2.1. Compu t i ng W* 

First, we show that the optimal W* in the optimization problem (5.9) can be 

expressed in term of M. 

Proposit ion 2. For a fixed M, the optimal W* that solves the optimization 
i. _..V、, 

problem (5.9) is 

� =( M 巾 + (5.10) 

Proof. As shown in the problem ( 5.9), we can expand the objective function in 
. t . 

terms of W and M as follows: • � 

F 

= 一 - W^M^XsV 

(5.11) 

-^triV^Y) 

Taking the derivation of Equation 5.11 with respect to W and according to 

Lagrange Condition, we have: 

W = •+ (5.12) 
/I 

This completes the proof. • 

5.3.2.2. Compu t i ng M* 
• , 

When we get the current optimal W, and we can replace W as the right part in 

Equation 5.12, then it is easy to verify that the original optimization problem 

(5.9) is equivalent to the following problem after ignoring some constant items: 

m^^ tr({M^p{XsX^ + a l ) ^ ' ^ M ^ ) - ^ M % X s Y Y ^ X j ^ j M " ^ ) (5.13) 

Denote A = + and let B = From the 

definition of €>p in the last section, we can see that is non-singular, 

so A is invertible, then problem ( 5.13) can be rewritten as follows: 

m ^ tT({MAM^)- \MBM'^) ) (5.14) 

.表广v《‘. 
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It is the well known generalized Rayleigh quotient optimization problem, and the 

solution M* is spanned by the generalized eigenvectors of B [30 . 

••、 ‘ 

5.3.3. Overall Algorithm 

Combining all the derivations in Section 5.3.1 and Section 5.3.2 corresponding to 

the optimization strategy, we develop our Location and Scatter Matching (LSM) 

domain adaptation algorithm depicted in Figure 5.2. In this algorithm, the 

firstly learn a linear transformation ©p which can decrease Ihe distribution gap 

measured by the second-order statistics parameterized by a non-singular matrix 

M. Then in the second step, we will take use of the label information to learn 

the optimal M which can leads minimal loss on the labeled data in the source 

domain. Finally in the transformed space by 6pM, we use SVM for the final 

classifier training. 

Input: labeled patterns { ( a ; , - , i n Ds\ 

unlabeled patterns in D丁、 

feature subspace clintension number p and tradeoff coefficient A. 

Output: The optimal projection matrix 0 for feature subspace, and the pre-

diction label for the data in D7-

1 Calculate the sample mean and sample covariance matrix (715, E5) and 

{ur, S t ) respectively, and map them into As and Ar according to Proposi-

tion 1. 

2 Compute 少 as stated in the Theorem 3 and construct 0p which is spanned 

by the first p rows of 

3 Compute M by solving SVD in Equation 5.14. 

4 Project the original data into the new feature space by 0 = M屯p. 

5 Use SVM to do the training and testing on the projected data. 

Figure 5.2: The outline of our location and scatter matching (LSM) algorithm 

for Domain Adaptation 
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5.3.4. Relation to Linear Discriminative Analysis (LDA) 

Linear Discriminative Analysis [30] is a classical statistical learning approach for 

feature extraction, which tries to compute an opiiimkl transformation to project 

the original data into the new feature space, where the within-class distance is 

minimized but between-class distance is maximized. Based on the labeled data 

in As, with the empirical mean us being 0, we can compute the within-class 

scatter and total scatter following [67]: 

= St = X s X ^ + a l j (5.15) 

where L = [ L i , L m ] , and Lj — Yj/y/TTj. fij is the instance number of Lhe 

j-th class, cr is the regularization coefficient avoiding the scatter matrix singular. 

Then the objective function is: 

maxtr((G«S�eT)+05"b0T) (5.16) 
e 

A 

Comparing the optimization problem in ( 5.13) derived from ERM framework and 

(5.16) from LDA, we can observe that regardless of-'the regularization coefficient 

difference (cr and a) and label matrix scale {Y and L), the major difference is 

that we have learned in ( 5.13), then the solution space of 0 is larger than 0 . 

However, we sacrifice this optimal solution in the source domain Ds to extract 

the feature space parameterized by 屯p where the distribution gap between Ds 

and DT is closer. Then the generality of the trained model in Ds should be 

increased in D丁. 

5.4. Experiments 
«JS 

5.4.1. Experiment Setup 
• I • 

We have conducted extensive experiments on several datasets to demonstrate 

the effectiveness of our approach. The datasets are.the same as the ones used in 
？-V.v: 

Chapter 3, namely, the 20-Newsgroup dataset, Reuters-21578 dataset, and the 

乂, 
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online job advertisement data^et. The detailed description of those datasets can 

be found in Section 3.6, Chapter 3. 

We compare our method with an existing method, which is a famous do-

main adaptation methods known as Kernel Mean Matching (KMM) [37]. Since 

this method can only support .binary classification approaches, multiple-class 

datasets, namely, NG{4-9} in the 20-Newsgroup dataset, and the online job 

advertisements dataset, will be transformed into 1-vs-rest binary classification 

problems. We also compare with our method LRSC presented in Chapter 3 with 

its linear form. Because LSM is based on linear transformation, it is better to 

conduct the comparison both in the linear case. In our LSM method, we set the 

value of the parameter A, which controls the contribution of the second-order 

statistics, to 10. We adopt the precision, recall, and F-measure as the evaluation 

metrics. Precision is defined as the number of instances that are correctly clas-

sified by the system divided by the total number of instances that are classified 

by the system in each class; recall is defined as the number of instances that are 

correctly classified by the system divided by the actual number of instance in 

each class. Fl-measure is defined as the harmonic mean of precision and recall 

with equal weight. .丨 

5.4.2. Results and Efiscussion 
'I 

Table 5.2 summarizes the average domain adaptation .performance of different 

methods on all the datasets. Our approaches LSRC and LSM achieve very 

promising result comparing with the existing domain adaptation method. Take 

the 20-Newsgroup dataset for example, the average precision, recall, and F-

measure of our approach LSM are 0.786, 0.773, and 0.772 respectively. LSRC can 

achieve an average precision, recall, and F-measure of 0.832，0.703 and 0.755 re-

spectively. KMM achieves aa.average precision, recall, and F-measure of 0.760, 

0.659, and 0.687 respectively；"'' The major limitation of KMM is that it just 

consider the first-order statistics and cannot well generalize the model. Besides, 

KMM separates Ihe training precess as two steps, which cannot globally take use 
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A 

of the label information. However, our approach LSM considers the second-order 

statistics between the source and target domains, leading to a better generaliza-

tion of our model. The results on the Reuters-215fS'l-hcl online job advertisement 

datasets are similar to that 'on the 20-Newsgroup dataset. It can be observed 

that our approaches LRSC and LSM can outperform KMM on all the datasets 

significantly. : 

Through comparing with KMM, we can conclude that considering second-

order statistics using covariance matrix match can obviously improve the domain 

adaptation performance. However, comparing with the other our proposed ap-

proached LRSC presented in Chapter 2, we can observe, LRSC can get compar-

ative performance with LSM as shown for 20-Newsgroup and online job adver-

tisement dataset, or it can even outperform LSM on the Reuters dataset, which 

indicates that jointly consider the label information and matching the distribu-

tion difference can greatly improve the domain adaptation results. 
> 

5.4.3. Experimental Parameter Investigation 

We have conducted analysis on the effect of the number of selected features in 

the new feature subspace in our approach. In this analysis, we have carried 
二 •• » 

out several runs of experiments with an increasing ;"flumber of selected features. 

Fig. 5.3 illustrates the effect of different number of selected features in the job 

advertisement datasets. It can be observed that the performance increases with 

the number of features at the beginning. The reason is that more information 

can be obtained from additional features for prediction when the number of 

features increases. Our approach achieves similar or slightly lower performance 

with the number of selected features after an optimal number has been reached. 

The small drop is probably due to the increase in the distribution difference 
_. ••• 

between the source domain and the target domain as the increase in the number 

of features. We have conducted the same analysis on the 20-Newsgroup dataset 
• ;：.. .J 

and the Reuters-21578 dataset. Similar observation has been found. For the 

sensitivity analysis on ' the trader-off coefficient A, when A = 1, our proposed 
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Figiire 5.3: The analysis on the effect of the number of features in the new feature 

subspace (left) and the trade-off coefficient A (right) using our approach on the online 

job advertisement dataset. Y-ajcis in both sub-figures refer to the average F-measure 

obtained. X-axis in the left and the right sub-figure refers to the number of features 
I 

and A respectively. Dl, D2, and D3 refers to the domain Accounting, Logistics, and 

Health respectively. Di-Dj refers to the setting where Di is the source domain and Dj 

is the target domain. 
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divergence metric is an approximate Jensen-Shannon divergence as proved in 

Theorem 2. With the increase of A, the divergence metric will rely more on 

the first-order statistics until there exists an optimal A which can combine the 

empirical mean and covariance well to characterize the distribution discrepancy 

so as to get the best performance. If A tends to infinity, our proposed divergence 

metric converges to the empirical mean discrepancy. ， 
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Table 5.2: The domain adaptation performance in different sets of experiments. 

NG{l-9} are datasets obtained from the 20-Newsgroup dataset for document 

classification; People-Place, Pla.ce-Org, and Or-People are data datasets obtained 

from the Reuters-21578 dataset for document classification. P, R, and F refer to 

the precision, recall, and F-measure respectively. 

Data set KMM LRSC LSM 

P R F P R F 
t 

P R F 

NGl 0.911 0.909 0.909 0.952 0.931 0.945 0.962 0.961 0.961 

NG2 0.781 0.780 0.779 0.862 0.827 0.847 0.847 0.847 0.847 

NG3 0.695 0.666 0.653 0.817 0.835 0.824 0.753 0.805 0.778 

NG4 0.747 0.749 0.747 0.775 0.793 0.780 0.803 0.808 0.803 

NG5 0.702 0.673 0.672 0.753 0.732 0.740 0.726 0.713 0.713 

NG6 0.737 0.607 0.620 0.683 0.675； 0:667 0.698 0.734 0.697 

NG7 0.748 0.658 0.679 0.768 0.664 0.691 0.777 0.720 0.740 

NG8 0.808 0.432 0.563 0.813 0.588 0.662 0.752 0.695 0.717 

NG9 0.709 0.462 0.559 0.746 0.592 0.643 0.762 0.672 0.695 

Average 0.760 0.659 0.687 0.832 0.703 0.755 0.786 0.773 0.772 

People-Place 0.752 0.747 0.744 '0.828 0.820 0.824 0.811 0.812 0.811 

Org-Place 0.739 0.717 0.720 0.813 0.832 0.820 0.751 0.749 0.750 

Org-People 0.545 0.545 0.545 0.732 0.668 0,696 0.669 0.672 0.670 

Average 0.678 0.670 0.670 0.782 0.781 0.780 丨 0.744 0.744 0.744 
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Table 5.3: The extraction performance of different sets of experiments on online 

job advertisement dataset. P, R, and F refer to the precision, recall, and F-

measure respectively. 

Data Set 

KMM LRSC LSM 

Ds DT 

KMM LRSC LSM 

Ds DT P R F P R F P R F 

D1 D2 0.895 0.680 0.735 0.814 0.845 0.825 0.834 0.849 0.837 

D1 D3 0.915 0.671 0.722 0.813 0.804 0.800 0.850 0.839 0.835 

D2 D1 0.914 0.7(56 0.816 0.866 0.789 0.807 0.853 0.802 0.814 

D2 D3 0.741 0.882 0.796 0.830 0.762 0.765 0.850 0.787 0.788 

D3 D1 0.784 0.798 0.781 0.790 0.789 0.779 0.806 0.809 0.794 

D3 D2 0.742 0.752 0.747 0.793 0.791 0.786 0.782 0.809 0.786 

Average 0.832 0.758 0.766 0.820 0.800 0.799 0.829 0.816 0.809 



CHAPTER 6 疋 E : 

CONCLUSIONS AND F U T U R E W O R K S 

In this thesis, we have developed two novel methods based on discovering shared 

concept space for domain adaptation in text mining problems. The first method 
» 丨 ^ 

is to learn a low-rank shared concept (LRSC) spads with respect to two crite-

ria simultaneously: the empirical loss in the source domain, and the embedded 

distribution gap between the source domain and the target domain. Besides, 

our model can transfer the predictive power from ；the extracted common fea-

tures to the characteristic features in the target domain by the feature graph 

Laplacian. Moreover, we can kernelize our proposed method in the Reproducing 

Kernel Hilbert Space (RKHS) so as to generalize our model by making use of the 

powerful kernel functions. We theoretically analyze the expected error evaluated 

�by common convex loss functions in the target domain under the empirical risk 

minimization framework, showing that the error bound can be controlled by the 

expected loss in the source domain, and the embedded distribution gap. 

The second method is another new domain adaptation method called Loca-

tion and Scatter Matching (LSM) based on our proposed distribution gap mea-

sure called symmetric Stein's loss (SSL). The SSL- measure is developed based 

on second order statistics, which combines the mean and covariance discrepancy 

into a unified Bregman matrix divergence of which Jensen-Shannon divergence 

between normal distributions is a particular case. The target of LSM is to find 
‘ : 

a good feature representation which can reduce the;embedded distribution gap 

85 
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measured by SSL between the source domain and the target domain, at the same 

time, ensure the new derived representation can encode sufficient discriminants 

with respect to the label information. Then a standard machine learning algo-

rithm, such as Support Vector Machine (SVM), can be adapted to train classifiers 

in the new feature subspace across domains. 

We conduct experiments' comparing our two proposed domain adaptation 

approaches with other existing approaches. The results show that both LRSC 

and LSM can significantly improve over existing domain adaptation approaches 

which only use the first order statistics to measure the distribution gap, or con-

sider the distribution matching and model training separately. 

In the future, we will investigate how the prior domain knowledge can be con-

sidered in our framework. Exploration of domain knowledge, such as structure 

information, for extracting more discriminative concepts is a possibility. An-

other direction is to extract discriminative concepts in multiple source domain 

adaptation problems. 

Although the two-sample test on synthetic datasets and real-world datasets 

demonstrate the advantages of our proposed distribution gap measure, a thor-

ough examination of its merit is needed, such as the theoretical analysis on the 

convergence. Furthermore, we�)Vill also investigate how to incorporate higher or-

der information rather than second order to measure the distribution gap more 

accurately. 
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