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Abstract of thesis entitled: 

Computational Models for Efficient Reconstruction of Gene Regulatory Network 

Submitted by ZHANG, Qing 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in July 2011 

The transcriptional regulation of genes plays vital roles in the processes of cellular 

responding to internal and external stimuli, differentiation and morphogenesis of living 

organisms. Microarray technology have been developed to detect the gene expression 

level in large scale, which enables systematic studies of gene regulatory networks to reveal 

the mechanisms that underlie the cellular processes. Reconstruction of gene regulatory 

network (GRN) is an important computational strategy used for knowledge discovery in 

system biology. 

This thesis focuses on gene regulatory network reconstruction from high throughput 

biological data. 

In the first part of this thesis, I develop a novel method-DBoMM{Difference BIC(Bayesian 

Information Criteria) of Mixture Model} to fit the gene expression profiles into a mixture 

Gaussian model and estimate the 'similarity' or 'distance' of two genes by comparing 

the likelihood scores of different models. I show that the DBoMM top-performed other 

3 existing methods, including Pearson Correlation (COR), Euclidean distance (EUC) and 



Mutual Information (MI), using the synthetic dataset. The performance was comparable 

to MI using the E.coli dataset. DBoMM can also identify condition-dependent regulatory 

interactions and is robust to noisy data. 

I then extend the mixture distribution model used for gene network inference to a 

quantitative model with predictive function, which is in need by both wet-lab experimen-

tal design and synthetic biology. By inferring the conditional distribution of related gene 

expression, we can predict the gene expression profiles under a wide range of experimen-

tal conditions, e.g., gene knock-out, gene over-expression, and transcriptional network 

rewiring. Also, by linking a new experimental condition to the known conditions, the 

model can be used to reveal the possible functional relationships between different condi-

tions. 

In the second part of my thesis, I propose a sub-space greedy search method for efficient 

Bayesian Network inference. Bayesian Network (BN) has been successfully used to infer 

the regulatory relationships of genes from microarray data. However, one major limitation 

of BN approach is the computational cost because the calculation time grows more than 

exponentially with the dimension of the dataset. This method limits the greedy search 

space by only selecting gene pairs with higher partial correlation coefficients. Using both 

synthetic and real data, we demonstrate that the proposed method achieved comparable 

results with standard greedy search method, and yet saved ！^ 50% of the computational 

time. We believe that sub-space search method can be widely used for efficient BN 

inference in systems biology. 



轉錄調控在細胞分化、形態發生及生物體對内外刺激的響應上起重要的作用。生物微 

陣列芯片技術能夠檢測大量基因在不同實驗條件下的表達情況。其産生的海量數據使 

得生物學家可以對基因的調控網絡進行系統的研究。而基因調控網絡的重構作為一種 

工具能夠從大量的基因表達數據中挖掘出最有意義的生物信息。 

本論文的主要目的是研究和發展基因調控網絡的方法。 

在本論文的第一部分，我通過將基因表達譜擬合進一個混合高斯模型並比較不同 

模型的似然度，從而發展了一個用於評估基因表達譜的相似性的新方法(DBoMM)� 

當我們用擬合的基因表達譜數據比較DBoMM和常用的方法皮爾遜相似度，歐幾里得 

距離及互信息的表現時，DBoMM的好於其它三種方法。對於真實的大腸择菌數據 

集，DBoMM有不差於互信息的表現，且明顯强於另外兩種方法�DBoMM對基因芯片 

數據中的噪聲具有魯棒性並且能夠檢測基因調控發生的條件。 

之後，我將這個用於推導基因調控網絡的混合模型擴展為一個數量化模型。通過計 

算相關基因表達譜的條件分佈概率，我們能夠預測在不同實驗條件下的基因表達譜， 

比如基因敲除，基因過表達或調控網絡重構等。而且，通過將新的實驗條件與已知的 

條件相關聯，這個模型還能夠揭示不同實驗條件的功能相關性。 

在本論文的第二部分，我提出了一個子空間貪婪搜索算法以提髙貝葉斯網絡推導的 

效率。貝葉斯網絡已經被成功的用於從基因芯片數據推導基因之間的相關性。然而， 

最大的限制在於貝葉斯網絡的計算量隨著基因的增多而成指數增長。而我所提出的方 

法通過選擇具有高偏相似係數的基因對組成搜索空間，減少了搜索量。相比標準方 

法，新方法在獲得同樣預測精度的情況下可以節省約50%的計算時間。 
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Chapter 

Introduction 

1.1 Computational methods for gene regulatory network infer-

ence 

The genome of a living organism often contains a large number of protein coding genes. 

The amounts of gene products and their temporal/spatial expression pattern are crucial 

to maintain the normal cellular functions and the survival of the living organism. The 

expression of genes can be regulated at various stages, including chromatin domains, 

transcription, post-transcriptional modification, translation and mRNA degradation etc. 

Among these, the transcriptional regulation is the major regulatory machinery for most 

eukaryotes and prokaryotes. 

At the transcription level, the expression of a gene is directly controlled by the tran-

scription factors. A living organism responds to the internal or external cues by tuning 

the expression of certain genes. For example, arabidopsis plant can respond to various 
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abiotic and biotic stress by turning on/off the expression of many genes [1]. Yeast cell in 

a sugar solution can turn on enzyme coding genes necessary to process the sugar to alco-

hol [2]. These genes and their regulatory proteins form a gene regulatory network(GRN). 

For multicellular organisms, by regulating the expression of genes in different cells, GRN 

help to shape the body of the organism [3 . 

Several notable examples have set the stage for adopting GRN models in daily labo-

ratory practice. The unprecedented link between protein mistranslation and the reaction 

to reactive oxygen species in response to antibiotics treatment was unveiled by combining 

network inference with experimental evidence in E.coli [4]. Similar approaches were used 

to unravel the complex network regulating host pathogen interactions in Salmonellaenterica 

subsp. enterica serovar Typhimurium [5] and to chart the transcriptional network of the 

archeon Halobacterium salinarum for the first time [6]. Computationally inferred in-

teractions therefore offer a useful resource for putting experimental findings into a more 

global context, by finding novel interactions and by unfolding links between the pathway 

under investigation and other cellular processes [7]. 

Figure 1.1 demonstrates the basic structure of a gene regulatory network. The signal 

(A/B) from cell/environment interact with the receptor proteins and change the function 

of these receptor proteins by altering their conformations. In general, the receptor proteins 

cause a cascade of interacting kinase proteins or other molecules to active/inactive the 

transcription factors, which then bind/unbind to the DNA sequence and influence the 

expression of genes. The control process of a gene regulatory network is illustrated in 
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Figure 1.2. Figure 1.3 shows the graph representation of a regulatory network, where the 

nodes denote proteins, their corresponding mRNAs, and protein/protein complexes, and 

the interactions between these molecules are represented by the edges. The arrow of the 

edge indicates the causal relations between two nodes and the direction of the information 

transmission. 

To uncover the GRN, modern biological technologies have been developed to detect 

the expression of mRNA and to elucidate the transcriptional regulation of genes, in-

cluding the classical qPCR [8-11] and EST method [12], and the high throughput mi-

croarray [13-19], CHIP-chip [20-22], CHIP-seq methods [23-25]. These technologies have 

produced a large number of data which enable systematic studies of gene regulatory net-

works and reveal the mechanisms that underlie cellular processes. The scientists are now 

confronted with the problem as to how to re-construct the GRN based on these mas-

sive data. In recent years, computational models have been developed to infer GRNs, 

and the most common modeling technique involves coupled ordinary differential equa-

tions (ODEs), Boolean (Continuous) networks, Stochastic, Clusters(introduction in next 

section) and Bayesian Network(introduction in next part). 

1.1.1 Coupled ODEs 

The algorithms based on ordinary differential equations (ODEs) can relate changes in 

gene transcript concentration to each other and to an external perturbation [26]. Suppose 

a GRN has N nodes, and we use Xi{t) to represent the concentrations of the ith node at t 

time. Each ODE describes one node regulation as a function of other nodes: 
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factor and the blue square corresponds to the target gene. The direction of the arrow represents the causal 

relations. 
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^ = fi{xi,X2,. . . ,Xn,8i) (1.1) 

where ^ ^ represents the transcription rate of gene i at time t, the function fi expresses 

the dependence of Xi on the concentrations of other nodes in the GRN, 6i is a set of 

parameters describing interactions among genes. Different from Bayesian Network, ODEs 

are deterministic method, and the interactions among genes represent causal interactions, 

and not statistical dependencies. To infer a gene reguatory network using ODEs, we 

should choose a functional form ji and then to estimate the unknown parameters 6i for 

each i from the gene expression data D using some optimisation technique [26]. 

1.1.2 Boolean network 

Boolean networks for modeling the gene regulatory networks are first used by Stuart 

Kauffman [27]. In a GRN modeled by Boolean network, the node in any one of two 

states: on or off, represents the gene, input or output. For a gene, “on" corresponds 

to the gene being expressed; for inputs and outputs, "on" corresponds to the substance 

being present. The edge with arrow in the network from one node to another corresponds 

to the causal link between the two nodes. The state of a node is the Boolean function of 

the states of all the parent nodes. 

Continuous network models of GRNs are an extension of the Boolean networks. Nodes 

and edges represent the same biological events in Boolean networks. However, the states 

of node display a continuous range of activity levels which can capture several properties 

of gene regulatory networks not present in the Boolean model [28]. 
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1.1.3 Stochastic gene networks 

A stochastic process is one whose behavior is non-deterministic, in that a system's sub-

sequent state is determined both by the process's predictable actions and by a random 

element. Because that gene expression can be thought as a stochastic process [29, 30], 

scientists used stochastic formalism to model gene regulatory network [31-34]. The first 

versions of stochastic models of gene expression involved only instantaneous reactions and 

were driven by the Gillespie algorithm [35]. 

Specifically, gene transcription is modelled as single step multiple delayed reactions in 

order to account for the time it takes for the entire process to be complete [36]. A set of 

reactions were proposed [37] that allow generating GRNs. 

For example, basic transcription of a gene can be represented by the following single-

step reaction (RNAP is the RNA polymerase, RBS is the RNA ribosome binding site, 

and PrOj is the promoter region of gene i) [38]: 

RNAP + Pro ,�•^‘ Pioiirl) + RBSi(T/) + RNAP(rf) (1.2) 

Except for the classes described above, based on different rules, the algorithms infer-

ring GRN can be classified into different categories. The applications, advantages and 

limitations of these network inference methods have been summarized in several excellent 

reviews [7，26, 39 . 

Prom pure data set standpoint, Bansal et.al compared several general reverse algo-

rithms including classic clustering algorithm, Bayesian networks, information-theoretic 
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approaches and ordinary differential equations and showed that reverse-engineering algo-

rithms are indeed able to correctly infer regulatory interactions among genes, at least when 

one performs perturbation experiments complying with the algorithm requirements [26]. 

Karlebach et.al [39] divided various computational models into three classes, logical 

models, continuous models and single-molecule level models. The advantages and limita-

tions of these models have been discussed. Some open questions regarding the regulatory 

networks, including how structure, dynamics and functionality relate to each other, how 

organisms use regulatory networks to adapt to their environments, and the interplay be-

tween regulatory networks and other cellular processes, such as metabolism were raised. 

Focused mainly on top-down network inference methods, Smet et.al classified these 

methods into different categories combining criteria that relates directly to the biological 

interpretation of outcome and reviewed the strategies of them [7]. 

1.2 Methods for distance measurement 

Clustering is a unsupervised learning method, and a common technique for statistical data 

analysis used in many fields, including machine learning, data mining, pattern recognition, 

image analysis, information retrieval, and bioinformatics. It has been extensively used 

in microarray data analysis to group genes with similar expression patterns [40-44]. The 

underlying assumption is that co-expressed genes may share common functional tasks and 

regulatory mechanisms. Similar expression patterns may also provide useful insights into 

various transcriptional and biological processes [44-46 . 
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The most general cluster method is hierarchical algorithms [47，48], which find succes-

sive clusters using previously established clusters. 

Different from hierarchical method, partitional algorithms typically determine all clus-

ters at once. It include k-means clustering [49] and fuzzy clustering [50]. 

DBSCAN [51] and OPTICS [52] are two typical density-based clustering algorithms. 

This algorithm can discover arbitrary-shaped clusters that are some regions in which the 

density of observed data exceed a specific threshold. 

Biclustering methods [53] are devised to find the function module. This algorithm can 

not only cluster the genes but also the conditions under which the genes show similar 

pattern [54]. 

Most clustering algorithms depend heavily on 'similarity' or 'distance' measures that 

quantify the degree of association between expression profiles [55]. The choice of dis-

tance measure for a successful identification of gene relations and regulatory networks is 

probably more important than the choice of machine learning algorithm [46, 56]. 

Two major class of methods are commonly used to measure the gene distance [56]. 

In the first method, the expression profiles of two genes are viewed as two vectors in 

some space and the distances are computed in a pairwise fashion. For example Pear-

son correlation (COR), Euclidean distance (EUC), Manhattan metric (MAN), Cosine corre-

lation (EISEN) ,Spearman correlation(SPEAR), Kendall's tau correlation(TAU) [57], etc. 

all adopt this method. The second method ignores the natural pairing of observations, 

the gene expression profiles are instead assumed to be from different probability density 
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functions. The distance of two genes is represented by calculating the distances between 

two distributions. Both Kullback-Leibler information (KLI) [58’ 59] and Mutual informa-

tion(MI) [60] belong to this class. 

COR and EUC have been widely implemented to measure the similarity of gene ex-

pression profiles [61-68], because of their simple formulas and successful application in 

conventional data-extensive research fields, such as signal or image processing. However, 

these two methods bear obvious limitations. For example, COR is based on the assump-

tion that the expression of genes are linearly related. Both COR and EUC are sensitive to 

noise effects and outliers of the expression profiles [55] and require complete gene expres-

sion profiles as input. This limits their widely the application due to the often missing 

values in microarray data. 

In contrast, mutual information (MI),a well known method in information theory [60], 

measures the dependencies of the distributions, which are assumed to produce the gene 

expression profiles. It is robust to noise, outliers and missing data and can detect any-

kind of dependence between distributions in theory [69, 70]. MI has been widely used 

to analyze gene expression data [46, 66, 70-72]. However, the measure of MI requires 

the discretization of the continuous expression values. Most discretization methods use 

histogram based procedure [70, 71，73], which, is arbitrary. And these arbitrary bins also 

can not supply any information about the relationships between different experimental 

conditions. 

In this thesis, I propose a method to measure the similarity of gene expression profiles 
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by calculating the dependence of distributions to overcome the limitations of mutual 

information method. Specially, the difference of Bayesian Information Criterions(BIC) 

between joint and marginal distribution models of two genes is used to describe the 

similarity of these two genes. The joint and marginal distributions are assumed to follow 

a bivariate and two univariate mixture Gaussian distributions respectively. We named 

this method DBoMM(Differeiice BIC of Mixture Model). Because DBoMM calculates 

the dependence of distributions, it is not sensitive to noisy, outliers and missing data. In 

addition, it does not requires the linear assumption. For each gene pair, the expression 

patterns in the samples(experimental conditions) belonging to the same distribution are 

similar. It reflects the condition-dependent relationships between genes [74, 75]. The 

inferred statistical parameters from gene expression profile can also be used to predict the 

dynamics of functionally related gene. Using synthetic dataset, we show that DBoMM 

out-performed PCC, EUC, and MI method. The performance is better than PCC and 

EUC, whereas comparable to MI when using the E.coli microarray dataset. 

Although the regulatory networks inferred by these methods provide important clues 

about the gene function in most cases, quantitative models that accurately predict the 

dynamic behavior of genes under system perturbations are required by synthetic biology, 

which, aims to re-design biological systems with desired function by rewiring the genetic 

network. 
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1.3 Quantitative model for synthetic biology redesign 

Synthetic biology is a new area of biological research that combines science and engineer-

ing. Synthetic biology encompasses a variety of different approaches, methodologies and 

disciplines, and many different definitions exist. What they all have in common, how-

ever, is that they see synthetic biology as the design and construction of new biological 

functions and systems not found in nature. 

Currently, synthetic biology focuses on altering the general process flow-specifically 

modifications to the function and behavior of the process units (transcription [76] and 

translation) and the associated process streams (DNA, RNA [77], and protein). Nu-

merous synthetic gene circuits have been created in the past decade, including bistable 

switches, oscillators, and logic gates [78-82], and possible applications abound, ranging 

from biofuels, to detectors for biochemical and chemical weapons, to disease diagnosis, to 

gene therapies. 

Technologies and algorithms introduced in the first section have produced various inter-

actions between genes and gene regulatory networks, which in theory can direct the design 

of synthetic biology. However, as an engineering discipline, synthetic biology cannot rely 

on endless trial and error methods driven by verbal description of biomolecular interaction 

networks. The challenge facing synthetic biologist is then to reduce the enormous volume 

and complexity of biological data into concise theoretical formulations with predictive 

ability, ultimately associating synthetic DNA sequences to dynamic phenotypes [83]. 

To redesign the transcriptional regulation network, we need a quantitative model able 
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to predict the gene dynamics. In this part, I developed a computational model for quan-

titative prediction of gene expression profiles based on Gaussian mixture models. In 

this model, a regulatory network inferred from various reverse engineering methods or 

experiments is first decomposed into different modules; each consisting of related genes 

(participate in the same pathway or regulatory gene pairs, etc.). In each module, the 

gene expression profiles are trained to fit a mixture multivariate Gaussian distribution 

and the estimated parameters are used to represent the gene expression levels and the 

gene relations. By calculating the conditional distribution of multivariate normal distri-

bution, the model infers the expression values of gene given that of other related genes. 

In addition, by comparing the expression profiles of genes under a new condition vs. 

known conditions, the model assigns the new condition (treatment, mutant or redesign) 

into a group of known conditions, allowing the researchers to estimate the functional re-

lationships among these conditions. We demonstrate that the proposed mixture model 

out-performed other multiple linear regression (MLR) based method developed by Carrera 

et.al [84]. This model can also be easily extended as a benchmark synthetic dataset gen-

erator for evaluation of network inference algorithm because the complex transcription 

process is represented by certain estimated statistical parameters. 

Using this model, the E.coli transcriptome profiles under knockout and over-expression 

of master regulatory genes, as well as network rewiring, were accurately estimated. This 

model may serve as a useful tool to guide both experimental design and genome-wide 

redesign of transcription regulation in synthetic biology. 
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The first part of my thesis research has two objectives: 1. to develop a new gene 

similarity measure method based on a mixture Gaussian model to overcome the limita-

tions of mutual information method; 2. to extend this method into a quantitative model 

for synthetic biology transcription regulation redesign, 

used to solve the two problems because of two reasons: 

been successfully applied in many fields; 2. it is more 

transcription regulatory relations between genes. 

The mixture Gaussian model is 

1. mixture Gaussian model has 

flexible to describe the complex 

• End of chapter. 



Chapter 2 

Methodology 

2.1 Data sets 

The gene expression dataset consists of a compendium of 445 E.coli Affymetrix Antisense2 

microarray data monitoring the expression profiles (http://m3d.bu.edu/) of 4345 genes 

[85]. The samples were collected under different experimental conditions, e.g. PH changes, 

growth phases, antibiotics, heat shock, different media, varying oxygen concentrations 

and numerous genetic perturbations. The data was normalized using RMA method [86. 

in bioconductor package. 

The gene regulation data is extracted from RegulonDB version 7 [87]. Of all the 

interactions, we removed these genes that do not match the probe sets and self-regulation 

interactions, leaving a reference network consisting of 1531 nonredundant genes and 3774 

experimentally confirmed regulatory interactions. Based on the topological structure of 

this network, 1531 genes and 3774 interactions were classified into 1156 modules. 

17 

http://m3d.bu.edu/
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SynTReN [88] is used to generate a simulated data sets with varying number of con-

ditions for a synthetic transcription regulatory network with 1000 genes. 

Dataset for noisy estimating: 

SynTReN is used to generate 5 simulated data sets with 100 conditions and 500 genes. 

The 5 simulated data sets include different portions of biological and experimental noise, 

0%, 20%,40%,60% and 80%. 

2.2 Softwares 

The R [89] codes for the inferring process are available in Appendix A.3. The R package 

mclust [90, 91] was used to train the expression profiles of genes to fit a mixture Gaus-

sian distribution. The TCA pathway figure was drawn using Cytoscape [92] with plugin 

KGMLreader. 

2.3 Model selection 

To decide the number of components in the Gaussian mixture model, Bayesian Informa-

tion Criterion (BIC) [93] is used to find a proper compromise between the likelihood and 

the number of parameters of the model. More specifically, it is defined as 

BIC = -2lnL + kln{n) 

where n = the number of data points; 

k =the number of free parameters to be estimated; 
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L =the maximized value of the likelihood function of the model. 

2.4 Multivariate Gaussian mixture model 

We use multivariate Gaussian mixture model to describe the gene relations. The joint 

probability of gene expression value is 

K 

where {gi, • • •，go} is a set of genes, tta； is the weight of the kth component and Ylk=i 冗k = 

1 , 叫 and Sfc are the mean vector and the covariance matrix of the kth component 

respectively . 

2.5 Parameter estimation 

Suppose we have a set of genes { g i , … , g o } and there are N expression data points 

{ei,…，ejv}, this data set can be represented as an N x D matrix E. We assume the N 

data points are independent from the same multivariate Gaussian mixture distribution. 

The log-likelihood of the observed data is : 

N ( K 、 

fc=] 

The training process is to find the maximum likelihood estimate of (tt,/a, X]). An 

elegant and powerful method for handling this task is the Expectation — Maximization 

(EM) algorithms [94]. 



《
 -

w
 

e
 N 

where 
N 

2.6 Dependence BIG of mixture model(DBoMM) 

The joint distribution of expression profile of two genes are assumed to follow a bivariate 

mixture Gaussian distribution. Therefore the marginal distribution of one gene's expres-

sion profile follows a univariate mixture Gaussian distribution. The mixture distribution 

can be described as: 

K 
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E step: Evaluate the responsibilities using the current parameter values 
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where iTk is the weight of the kth component, /x^ and Sfc denote the mean vector and the 

covariance matrix of the kth component respectively. 

Bayesian information criterion (BIG) [93] is used to estimate the number of distribu-

tion automatically. Expectation-maximization algorithms (EM) [94] is used to find the 

maximum BIG. 

Then the similarity of two genes' expression profiles can be written as: 

DBoMM{X, Y) = BIC(M^y) - BIC(M^) - BIC{My) 

where Mxy is the joint distribution model with minimal BIC of genes x and y, Mx and 

My respective are marginal distribution models with minimal BIC of gene x and gene y 

respectively. 

2.7 A model-based clustering method for gene similarity mea-

surement 

2.7.1 Similarity measurements 

The Euclidean distance, Pearson correlation, and mutual information (MI) are commonly 

used measures in gene expression analysis. These measures quantify a pairwise distance 

between expression profiles over n conditions that are represented by the two vectors 

X = { x i , . . .,Xn), and y ={yi,…，y^). 

2.7.2 Euclidean Distance and Pearson Correlation 

The Euclidean distance between two expression profiles is given by 
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\ ^{xi-yiY 

The Pearson correlation coefficient between two expression patterns is defined as 

where x , y denote the average patterns level. 

We used commands eucQ and cor.disQ in package bioDist under R platform [？, 95] to 

calculate the Euclidean distance and Pearson correlation coefficient. 

2.7.3 Mutual Information 

Given two random variables X, Y with respective ranges Xi G A^^ yj E Aj and probability 

distributions functions P(X = Xi)三 Pi, P(X = yj)三 pj, the Mutual information between 

two expression patterns, represented by random variables X and Y, is given by 

Pij 
PiPj 

" J 

The gene expression profiles were divided into different bins and then the mutual infor-

mation is computed. The data was treated as if they are discrete. We used mutuallnfoQ 

in package bioDist [96] and the default number of bins(lO) to calculate the mutual infor-

mation of two genes. 
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2.7.4 Measure the performance of different methods 

To evaluate the performance, we computed the precision and recall of the inferred networks 

by comparing the inferred network to the reference network. Precision is the fraction of 

predicted interactions that are correct [TP/(TP + FP)], and recall is the fraction of all 

known interactions that are discovered by the algorithm [TP/(TP + FN)], where TP is 

the number of true positives, FP is the number of false positives, and FN is the number 

of false negatives. Precision and recall were computed over a range of pruning thresholds; 

interactions with scores below the pruning threshold were removed from the inferred 

network. For E.coli dataset, we constrained the resulting network maps to include only 

the genes available in our RegulonDB control set. 

2.8 Redesign of transcription regulation using a mixture model 

2.8.1 Dataset separation Process 

In a total of 445 microarray samples, 45 (10%) were randomly selected as the test dataset 

and the remaining 400 samples were used for model training. We repeated the dataset 

separation process (bootstrap) 9 times to ensure the results were not dependent on the 

test set. 

2.8.2 Decomposing the pathway or regulation network into different modules 

The pathway and regulatory network can be represented by an undirected graph and a 

directed acyclic graph (DAG) respectively, in which the nodes and edges represent genes 
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and the relationship between genes respectively. As proposed by Segal et.al [54], a module 

is a set of genes co-regulated to respond to different conditions. Here we used module to 

represent a set of functionally related genes. Specifically, for the pathway network, the 

genes involved in the same pathway belong to the same module; and for the regulatory 

network, the target gene and all its regulator genes belong to the same module. In each 

module, we assume the gene expression values follow a mixture of multivariate Gaussian 

distribution. 

2.8.3 Comparison between predictive and experimental expression value 

In theory, the model predicts the distribution of gene expression values, which is not 

readily comparable to the experimental data. To get a concrete value for comparison 

purpose, the expected value (mean) of the mixture distribution was used as the predictive 

value. Relative error (RE) was used to validate the performance of the model. 

R E = |(ep-ee)/ee| 

where e�and ê  correspond to the predictive and experimental expression value respec-

tively. 

2.8.4 Prediction of transcriptome profiles 

Updating the parameters 

In one module, we suppose the expression values of some genes are known and we want 

to predict the expression values of other genes. Actually, this process is to infer the 



unknown ^known� p(产 nown,e 

known | 

where 

L — ,, unknown i 
"fc — MA； 十 

s (known,unknown) T 

E known 

S unknown 
k E (jfcr ,unknown) s 

-1 (known known^ 

—1 {known,unknown) 

here bk and A^ are the new mean and variance of unknown genes given the values of 

known genes in the kth distribution. In section 2.8.5，we give the detail inference process 

how to get bk and Ak. 

so the expression of becomes 

Pi^ unknown | ^known� 

p^^known'j 
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conditional distribution of the unknown genes given the values of the known genes. The 

expression values of two sets of genes were represented as e左如a n d e""*""�"""". So we can 

write the equation: 
rp/punknown ^known\ 

肌知加叫知加比” = • ， 

^an also be written like this: 

K 
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which is equivalent to 

K 

^f ̂ unknown \ ̂ known\ \ ^new t\t/^unknown \ r a \ 
p(e |e ) = 矢 N{e \bk,Ak) 

k=i 
with 

开new 
兀k p(eknown) 

then we can get a set of newly updated parameters and tt̂ ®"̂ , which describe the 

distribution of unknown genes' values given the values of known genes. 

The 7r�w is a vector describing the probabilities that this new sample belongs to each 

component. And we assign the new sample into the component with maximal probability. 

Expected values of unknown genes 

After updating the parameters, a new mixture of Gaussians which describe the expres-

sion profiles of unknown genes are obtained. To get a concrete expression values of the 

unknown genes, we calculate the expected expression values of the unknown genes using 

this equation, 

^^^unknown^ — y^^newĵ ^ 

with 冗 腳 = { 对 e w , … ， 兀 茫 w } and b = {61，…，hk). 

2.8.5 Marginal and conditional distributions of multivariate normal distri-

bution 

Assume an n-dimensional random vector 
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X — 
X2 

has a normal distribution N(x, /i, E) with 

Ml and E = Si i S12 and E = 
.S21 S22. 

where xi and X2 are two subvectors of respective dimensions p and q with p-\- q = n. 

Note that E = and E21 = 

The joint density of x is: 

/ ( X ) = / ( X I ， X 2 ) = 

where Q is defined as 

=[(xi - fiif, (X2 - "2 ) 
\Tl -Si: 15^12- "xi - M l " 

15̂ 22 — _X2 

= ( X I - - Ml) + 2(X1 - /il)T:£l2(X2 - /i2) + (X2 " " 

here 

"Xli： 1 5]i2 -1 

S2： L S22. 
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because 

28 

Ell /v-i v"—1 v*^ \ —1 v"—1 I v > — / V V*—\—1 1 

S22 /v' v'T v*—1 v* \ —1 v*—1 I v"—1 v̂ T / V \ — 1 
一 {2j22 — ^ 1 2 ^ 1 1 ^12) — 2J22 十丄 2 2 — -^12-^22 ^uJ ^12^22 

,T ，21、 

Substituting E " ， a n d E ^ ^ into to Q(:ri，X2) get: 

Q(xi,X2) = (xi - Mi)^ [Sn + SnSi2(5]22 — (xi -“丄) 

— Eri'Ei2(E22 - S faSn S12)"' (x2 - ^2) 

+ (X2 - [(E22 — (X2 — 

= ( x i - (xi - M l ) + (xi - f i j ' ' [Sr/Ei2(S22 - ( x , - ^ , ) T ^T 

-2 (X i - f l ^ f [Eri'Si2(S22 — SisSr/Sis)—'] (X2 - /X2) 
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+ (X2 - I h Y [(^22 - (X2 — 

+ [(X2 一 /i2) — - (S22-:S�2SrilSi2)— l [(X2 一 — " Ml) 

For any vectors u and v and a symmetric matrix A = AF\ 

u ̂ Au - 2u^Av + v'^Av = vFAu — u^Av - vFAv + v'^Av 

=yFA(u — v) — {u — v)'^Av — VFA{U — V)— V^A(U — v) 

—{u — VY'A{U — v) = {y — u)'^ A(v — u) 

We define 

6 = /X2 + S f 2 S n ( x i - / x i ) 

A = S22 — ^12 

and 
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Qiixi) = (xi — - /Xi) 

Q2(£Ci，X2) = [(X2 - - Sf^Sri'Cxi - [(X2 _ /X2) — ^12^11 " Ml) 

(X2 — bfA-'(x2 — b) 

and get 

Q(CCI’X2) = QI(£CI) + Q2(a3l,X2) 

Now the joint distribution can be written as: 

/ (X) = /(XI，X2) = (2冗)n/2|;s|l严[-伸1，X2)丨 

( 2 7 r ) 作 — “ 2 

= iV(xi , / i i ,Sn)iV(x2,6,A) 

The marginal distribution of Xi is 
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r 1 1 
/ l ( X l ) = J f(Xi,X2)dX2 = (2兀)n/2|Ei i| l/2e工?卜2(乂1 — — “ 』 

and the conditional distribution of X2 given Xi is 

with 

A = 5̂ 22 -

2.8.6 Multiple linear regression 

To describe the genetic regulations using a linear model, the mRNA dynamics from g€ 

Vi is given by 

^Vi = Oi + ^ bijyi + y^ y] bijkVi + h ^ . • • bijk…Wi _ crWi 
jeTF jeTF keTF jeTFkeTF leTF 

where 04 is the basal synthesis rate, the transcription regulatory coefficient of TF 

j, bijk…I the cooperative transcription regulatory coefficient of TFs j,k- • - l acting on the 

gene i and cr̂  is the degradation rate. In the steady state, the formula can be written: 
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yi = ai + PijVi ^'jkVi + •••+ XI ••• ^iok-iVi 
jeTF jeTFkeTF jeTF keTF leTF 

where the parameters can be defined: ai = ai/5i, pij — h^jbi and ^ijk-i = bijk...i/6i. 

To estimate the model parameters q；̂, Pij • • • Pijk-i, multiple linear regression [97] is 

used, which is the result of a minimization problem (least squares) defined by 

i^iJij, •..玲ijk …i) = argmin < - ai - ^ Pi^y, - ^ ^ Ajk"i ^ Y l ' " ^ Ajk".m 

I jeTF jeTF keTF jeTF keTF IGTF 

2.8.7 The schematic representation of the workflow 

A schematic representation of the workflow can be found in Figure 2.1. 

Functionally 
related 
network 
(pathway, 

inferred TRN ) 
ft 

Network decomposition Parameter learning 

j L 

Figure 2.1: A schematic representation of the prediction workflow. 
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• End of chapter. 



Chapter 3 

A model-based clustering method for 

gene similarity measurement 

3.1 DBoMM can distinguish the real interactions from the false 

ones 

We applied DBoMM to both synthetic gene expression data and the real E.coli experi-

mental data. To examine the ability of DBoMM in distinguishing the real and the false 

relations, we compared the distributions of DBoMM from the real gene interactions and 

the background ones respectively. We used the regulatory interaction network from Regu-

lonDB database [87] and the pathway network from KEGG [98-100] as reference networks. 

In the RegulonDB regulatory network, the interactions between all transcription factors 

(TFs) and all target genes (excluding those real interactions), are defined as the back-

34 
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ground gene pairs. For the pathway network, the real interactions are those between genes 

in the same pathway, and all the interactions between genes belong to different pathways 

are used as the background interactions. Figure 3.1 shows the distributions of DBoMM 

from different interaction types. As seen, the real gene interactions obviously shifts away 

from the background interactions. And the difference is statistically significant (p-value of 

t-test between the two distributions is <2.2el0-16), indicating that DBoMM can distin-

guish the real and the false gene interactions based on gene expression data. A comparison 

of distributions using other methods (COR, EUC and MI) can be found in Table 3.1 and 

3.2. The result shows MI has similar performance with DBoMM, whereas COR and EUC 

can not distinguish the real and background interactions. 

liillBitamuw 

Figure 3.1: The distributions of DBoMM from real and background interactions, (a), the real 

interactions from RegulonDB; b. the real interactions from pathway genes. 
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3.2 A comparison with EUC, MI, and COR 

The PR-curve (Precision-Recall) based on the regulatory interactions from RegulonDB 

is plotted (Figure 3.2). For E.coli dataset (Figure 3.2a), in general, the performance of 

DBoMM is comparable to that of MI, and both methods performance better than EUC 

and COR. However, EUC has better performance than DBoMM and MI when the recall is 

very low(0.04). For the synthetic dataset, DBoMM shows better performance than EUC 

and MI (Figure 3.2b). COR performed poorly using either E.coli or synthetic dataset. 

Because the regulation of gene transcription is affected by multiple factors, such as binding 

site affinity [101, 102], stability of the initiation complex [103, 104], cooperation among 

TFs, the quantity of TFs, and the time lag, etc, the direct regulatory relations between 

the regulators and target genes are noisy and not linear in most cases. This may explain 

the poor performance of similarity based COR measurement. In general, DBoMM has 

better performance than the other tested methods. 

3.3 Motif analysis 

We used DBoMM to infer a regulatory network with 60% precision using the E.coli 

dataset (Figure 3.2a). This predicted regulation network (Figure 3.3) consists of 468 

genes and 741 regulatory interactions, among which 65 are included in RegulonDB. All 

the predictive regulatory interactions can be found in Appendix A.l. We also extracted 

a regulatory network consisting 407 genes and 618 regulatory interactions with 60% pre-

cision based on MI. Of the 618 regulatory interactions, 66 can be found in RegulonDB. 
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Figure 3.2: The PR-curve based on reference network, (a). E.coli dataset and the reference 

network from RegulonDB; (b). synthetic dataset. 

424 regulatory interactions were found to be commonly shared by the two predicted net-

works, accounting for 57% and 68% of total interactions respectively. Interactions were 

only extracted from 328 known or predicted transcription factors to any of the 4,345 genes, 

enabling clear biological interpretation, assignment of direction (from transcription fac-

tors to non-transcription factor genes), and validation of the predictions. Interactions 

were also identified between transcription factors, although direction was not assigned. 

Sequence analysis was conducted to detect the possible motif bound by each regula-

tor. Not all transcription factors have enough targets to allow reliable motif detection, 

but for those that do, the motif provides a specific location for the regulatory interac-

tion. All the transcription factors predicted to regulate 5 or more operons with at least 



[ I 
TT 

Figure 3.3: The recovered regulation network with 60% precision. Pink and blue circles corre-

spond to the transcription factors and target genes respectively. The size of the circle corresponds to the 

out-degree of gene in this network. Green arrows represent the interactions including in RegulonDB. 
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a 60% confidence (28 total) were selected. For each group of operons regulated by the 

same transcription factor, we analyzed the sequences approximately 150 base pairs up-

stream of the transcription start site with the MEME multiple alignment system [105]. 

The promoter sequence of these genes can be found in Appendix A.2. Of these 28 reg-

ulators, 6 {FliA,LexA,Fnr,DnaA,Nac and PurR)h&d a known motif in PRODORIC 

(http://prodoric.tu-bs.de/) [106]. For 4 {FliA,LexA,DnaA and Nac) of the 6 MEME-

predicted motifs (67%), motifs with best matches were identified. 

FliA is a minor sigma factor responsible for the initiation of transcription at a number 

of genes involved in motility. Notably most of its targets are genes required for flagella 

synthesis. From prediction, the FliA protein regulates 52 genes that can be organized 

into 19 operons. And 40 out of the 52 genes can be validated by RegulonDB. Interestingly, 

all 19 operon promoters contain a highly significant motif almost identical to the known 

canonical FliA motif (Figure 3.4). 

LexA represses the transcription of several genes involved in the cellular response to 

DNA damage or inhibition of DNA replication [107, 108] as well as its own synthesis [109]. 

From the predicted regulation network, LexA regulate 10 genes that can be organized 

into 9 operons. The identical LexA regulatory motif can be found at the 8 out of the 9 

promoters (Figure 3.5) and 8 out of the 10 genes validated by RegulonDB. 

DnaA is the linchpin element in the initiation of DNA replication in E.coli. It initiates 

the process of replication by binding the the origin of replication (oriC). Prom the pre-

dicted regulation network, DnaA regulates 7 genes that can be organized into 6 operons. 

http://prodoric.tu-bs.de/
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Figure 3.4: Motifs Detected for transcription factor FliA. (a). The FliA regulatory motif detected 

in the promoters of 18 out of the 19 operons inferred to be FliA targets; (b). The FliA regulatory motif 

from PRODORIC database [106]. 
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Figure 3.5: Motifs Detected for transcription factor Lex A. (a). The LexA regulatory motif 

detected in the promoters of eight out of the 9 operons inferred to be LexA targets; (b). Bottom: The 

LexA regulatory motif from PRODORIC database [106]. 



Figure 3.6: Motifs Detected for transcription factor dnaA. (a).Top: The dnaA regulatory motif 

detected in the promoters of 6 out of the 6 operons inferred to be dnaA targets; Bottom: The dnaA 

regulatory motif from PRODORIC database [106]. 

Nac, “ Nitrogen assimilation control," regulates, without a coeffector, genes involved 

in nitrogen metabolism under nitrogen-limiting conditions [110]. From the predicted 

regulation network, Nac regulates 40 genes that can be organized into 26 operons. The 

identical Nac regulatory motif can be found at the 11 out of the 26 promoters (Figure 

3.7). 
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The identical DnaA regulatory motif can be found at all the promoters (Figure 3.6). 
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Figure 3.7: Motifs Detected for transcription factor nac. (a).Top: The nac regulatory motif 

detected in the promoters of 11 out of the 26 operons inferred to be nac targets; Bottom: The nac 

regulatory motif from PRODORIC database [106]. 



Part I: Gene Similarity Measurement 44 

3.4 DBoMM is robust to the noise 

A good estimator should be robust to noisy data. Because the real gene expression profiles 

are from biological experiments and it is hard to estimate the noise, we used SynTReN, an 

artificial synthetic dataset generator, to generate simulated gene expression profiles with 

various levels of noise. We plot the PR-curves of DBoMM using 5 simulated datasets 

(Figure 3.8), and found that similar performance was achieved when using datasets with 

20%,40% and 60% of noise level. The precision decreased greatly only when 80% noise 

was introduced. 

3.5 DBoMM is able to identify condition-dependent regulatory 

interaction 

The regulatory interactions between TFs and their target genes vary under different ex-

perimental conditions [54]. DBoMM can not only estimate the similarity of two genes, it 

also helps to identify the experimental conditions under which the predicted interactions 

take place. In the reference regulatory network, lexA, which is involved in the cellular 

response to DNA damage or inhibition of DNA replication, regulates the transcription of 

gene recA in SOS response [107, 108]. From Figure 3.9, lexA positively regulates recA, 

and based on the gene expression profile, the mixture model classifies the conditions into 

6 clusters. For the first cluster, the values of lexA and recA are about 8.7 and 8.5(low 

expression). When examining the samples in this cluster, we found 2 type of conditions: 
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Figure 3.8: The PR-cure of DBoMM applied to the datasets with different. 
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the recA knock-out mutants and E.coli strain MG1655 at late log phase in LB with newly 

added glucose and MgS04. It is reasonable that the expression of recA gene is low in the 

knock-out mutant. When glucose is added into the media at the late log phase, the DNA 

replication and bacteria growth resume and the expression of lexA and recA are low. 

We also checked the conditions of the 4th and the 5th clusters (high expression of lexA 

and recA) and found that they are mostly gene over-expression samples, indicating over-

expression of these genes can up-regulate the expression of lexA, which then up-regulate 

the recA. Compared to the fourth and the fifth clusters, the expression of recA gene in 

the sixth cluster are much higher when the expression levels of lexA are similar. The 

sixth cluster includes two conditions: the recA over-expression mutants and cells treated 

with norfloxacin. This indicates that norfloxacin can active the expression of recA and 

maintain the expression of lexA. In fact, it is known that norfloxacin can inhibits DNA 

synthesis in E.coli and causes an accumulation of single-stranded DNA fragments capable 

of activating the RecA protein [111-113]. 

Based on the mixture model, the DBoMM estimates the expression profiles similarity 

of two genes, and the similar conditions can be clustered together to indicate the ex-

perimental conditions under which the regulatory interaction take place. This feature is 

useful to guide experimental design and system redesign in synthetic biology. 

• End of chapter. 
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Figure 3.9: The expression profiles clustered by DBoMM. Cn represents the index of the cluster. 
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Chapter 4 

Redesign of transcription regulation 

using a mixture model 

4.1 Using inferred distribution of gene expression to represent 

the gene expression level 

It is assumed that the inferred gene expression follows a mixture univariate Gaussian 

distribution. Based on this distribution, one can obtain the probability of any possible 

expression value for this particular gene. The inferred expression value, which refers to 

the expected values of the inferred mixture distribution, was assigned to a particular gene 

so that it is comparable with the real gene expression level. A comparison between the 

experimental and the inferred values for 3 randomly selected genes is illustrated in Figure 

4.1. The possible expression values of gene “dsbE”,” hyfG” and “sgaH” follow mixture 

48 
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univariate Gaussian distributions with 4,4 and 5 components respectively (Figure 4.1a). 

The inferred values (red line) were found to be similar to the experimental values (blue 

line). Figure 4.1b gives a visual representation of the difference between the experimen-

tal and the inferred values. Again, these two values were almost the same under most 

conditions, demonstrating the good performance of this model. 
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Figure 4.1: A comparison between the experimental and the inferred gene expression 

values, a. The inferred distribution of gene expression values. X-axis: gene expression values; y-axis: 

the probability of each value. The red and blue vertical lines represent the inferred and experimental 

value respectively. The values above curves are the weight of each component, b. Experimental and 

inferred gene expression value. X-axis: experimental conditions in the test set; y-axis: expression values. 

Black and grey lines represent the experimental and the inferred values respectively. 
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4.2 The number of components has limited effects on the model 

performance 

The number of components in the Gaussian mixture model is a very important parameter 

in model learning [114-117]. In this project, to balance the fitting and the complexity of 

the model, Bayesian Information Criterion (BIC) [93] is used to automatically determine 

the number of the components. Because the number of the components can affect the 

predictive power, we arbitrarily defined the number of component (from 1-10) during the 

model training process, and compared the Relative Errors (REs) calculated from the these 

models to that from BIC. Specifically, in each learning process, the expression profiles are 

classified into the components with predefined number. 

Figure 4.2 shows the effect of component number on the model performance. In general, 

increased number of component has limited effect on the model performance when there 

is more than one component. We chose BIC to automatically determine the number 

of component because: 1. more components may cause the model's over-fitting to the 

training data; 2. when the training dataset is small, arbitrarily assigned component 

number may cause malfunction of the model. For example, we found that when the 

number of component was arbitrarily set to 10，some of the components became empty 

using a training dataset of 400 samples. In addition, the model performance was similar 

to BIC when more components were used (Figure 4.2). 
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Figure 4.2: Effect of component number on the model performance. X-axis: the number of 

components arbitrarily defined in learning process. Y-axis: left, the mean and sd of REs; right, the 

percentage(RE<0.1) of REs. Triangles correspond to the mean, sd and percentage(RE<0.1) of REs by 

BIG. 
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4.3 The training sample size has limited effect on the model 

performance 

To test the effect of training sample size on the model performance, 10 subsets of data 

containing various portions (100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% and 10%) 

of the 400 training samples were used as the training set respectively. 

From Table 4.1, best performance was achieved (RE mean and standard deviation are 

0.0379 and 0.0449, respectively) when the maximum number of training samples were 

used. Although the performance declined slightly with reduced sample size, a sound 

result was achieved even when only 80 training samples were used (Table 4.1). This 

result indicates that the training sample size has limited effect on the model performance. 

4.4 Prediction of gene expression based on its functionally re-

lated gene 

In real biological systems, it is common that one gene is regulated by two or more TFs 

in response to different developmental or external cues [118]. To estimate the predictive 

power for genes regulated by multiple TFs, the 1156 modules were grouped into 6 cate-

gories based on the number of TFs in the modules. As shown in Table 4.2, the prediction 

accuracy increases with the number of TFs in each module. This is expected because 

the model uses more inputs (TFs) to limit the inferred values. However, the model per-

formance decreased when the number of TFs was larger than 5. We presume that some 



Part I: Redesign of GRN 53 

Table 4.1: Effects of training data size on model performance. 

The first column gives the number of samples used to train the model and the portion {%) of the total 

samples is indicated in the brackets. The column "mean" and "sd" correspond to the mean and standard 

deviation of RE. The 4th column corresponds to the percentage of REs that are smaller than 0.1. 

Number of trained samples(portion) Mean Sd Percentage(RE<0.1) 

400(100%) 0.0379 0.0449 92.23 

360(90%) 0.0384 0.0455 92.03 

320(80%) 0.0386 0.0458 91.98 

280(70%) 0.0394 0.0467 91.66 

240(60%) 0.0396 0.0471 91.61 

200(50%) 0.0402 0.0477 91.35 

160(40%) 0.0422 0.0501 90.40 

120(30%) 0.0415 0.0488 90.87 

80(20%) 0.0434 0.049 90.13 

40(10%) 0.0482 0.0575 87.63 
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Table 4.2: Predictive power for genes with multiple regulators. 

The column "mean" and "sd" correspond to the mean and standard deviation of RE. The 4th column 

corresponds to the percentage of REs that are smaller than 0.1. 

Number of TFs Mean Sd Perceiitage(RE<0.1) 

1 0.0397 0.0442 0.9186 

2 0.0336 0.0408 0.9367 

3 0.0316 0.0421 0.9453 

4 0.0294 0.0367 0.9513 

5 0.0258 0.0352 0.9625 

>5 0.0292 0.0404 0.9475 

of these TFs may regulate the target gene expression under different experimental condi-

tions, whereas such information is not reflected in a given regulatory network. This may-

be one of the reasons to explain the decreased model performance when multiple TFs are 

involved. 

One unique feature of our model is that, because it is assumed that the expression of 

genes within the same module follow a joint distribution and their causal relations are 

neglected, then we can infer the expression profile of a given gene based on any functionally 

related gene, e.g TFs and their target genes. To demonstrate this feature, the inferred 

values were compared to the experimental values and, 95% of REs lays within interval 0 

and 0.2 ( Figure 4.3a). 

Genes participate in the same metabolic pathway can be grouped into one module and 

based on the expression of only one gene, we can predict the expression profiles of all the 



Part I: Redesign of GRN 55 

other pathway genes. To demonstrate this useful function, 28 known genes involved in 

the citrate cycle(TCA cycle) pathway, eco:00020 in KEGG [98, 99, 119], were grouped 

into one module. Given the expression value of a randomly selected gene (sucD), the 

expression profiles of the other 27 genes were predicted. The experimental and predicted 

expression values for selected genes in TCA cycle were illustrated in Figure 4.3b. 

(a) (b) 
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Figure 4.3: Prediction of gene expression based on its functionally related gene. a. Inference 

of TF expression profiles from their target genes, b. An application in TCA cycle genes. The framed 

green rectangular represents the genes in the TCA pathway. The yellow and green rectangular represent 

the experimental and the predicted gene expression values. 

4.5 A comparison with multiple linear regression method 

In the papers [84, 120], regression analysis is used to infer the gene expression profiles 

based on the microarray data. Carrera et.al [84] adopted a multiple linear regression 
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(MLR) method [97] to recover the kinetic parameters of gene relations. We compared the 

performance of the proposed mixture model with that of MLR using the same data. As 

shown in Table 4.3, the mixture model showed higher predictive accuracy compared to 

MLR. Similar to the mixture model, the performance of MLR increases with the number 

of regulators. 

Table 4.3: Predictive power of mixture model and MLR. 

The column "mean" and "sd" correspond to the mean and standard deviation of RE. The 4th column 

corresponds to the percentage of REs that are smaller than 0.1. The last row "overall" corresponds all 

analysis results including various number of TFs. 

Number of TFs 

Mean Sd Percentage(RE<0.1) 

Number of TFs mixture model MLR mixture model MLR mixture model MLR 

1 0.0477 0.0518 0.0543 0.056 88.62 87.20 

2 0.0412 0.0474 0.0494 0.0519 90.9 88.49 

3 0.0402 0.0476 0.0506 0.0545 91.09 88.68 

4 0.0388 0.0432 0.0464 0.0489 92.09 90.14 

5 0.0337 0.0385 0.0406 0.0469 94.17 91.78 

>5 0.0410 0.1004 0.0596 0.5572 90.85 82.56 

overall 0.0416 0.0511 0.0507 0.1600 90.83 88.28 

4.6 Infer the functional links among experimental conditions 

In the mixture Bayesain method proposed by Ko Y et al. [75], condition-dependent regu-

latory interactions can be inferred by clustering the experimental conditions under which 
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related genes show similar expression pattern into the same group. Different from their 

method, our model assigns a new experimental condition to the known condition groups, 

thereby to infer the functional links between these conditions. For each trained module, 

the experimental conditions (training samples) are grouped into different clusters based 

on expression patterns of genes contained in this module. For example, in a randomly 

selected module, the experimental conditions were grouped into 2 clusters (separated by 

dashed yellow vertical line in Figure 4.4) based on the expression patterns of the 3 genes 

(appA, arcA and appY ) in this module. This clustering provides importance clue about 

the connections of those experimental conditions. If the expression values of the 3 genes 

under a new experimental condition is used as input for the trained module, the proba-

bilities that this condition belongs to the 2 clusters can be calculated. Such information 

is useful for biologist to estimate the possible common functional links among these con-

ditions. 

Microarray samples usually include 3 replicates. To test the clustering power of the 

model, we arbitrarily set 1 of the 3 replicates as the new experimental condition and a 

total of 102 microarray samples were tested. Among them, 95 samples were correctly 

assigned into the known cluster, containing the rest of the 2 replicates (Figure 4.4). 

4.7 Redesign of transcription regulation 

Gene knock-out or over-expression are commonly used strategies for gene functional study. 

A quantitative prediction of transcriptome profile under gene knockout or over-expression 
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Figure 4.4: Cluster assignment in one example module. X-axis: samples in different experimental 

conditions; y-axis: genes in one module. The result from training data and test data was separated by 

the black line. Based on the expression profiles of the 3 candidate genes, the training dataset is classified 

into 2 clusters (components) separated by yellow lines. The "Component" represents the index of cluster 

the samples belong to. The genes above and under the "Component" are TFs and their target genes 

respectively. For the test data, correctly assigned samples are labeled in blue and wrongly assigned 

samples are labeled in white. In total, 95 out of 102 test samples were correctly assigned. Because 

different genes have different basal synthetic rate, z-score were used to normalize the gene expression 

values. 
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can be very useful for biological experimental design or regulatory network redesign. 

To demonstrate the model's predictive power in this aspect, gene knockout and over-

expression test were conducted. The same reference network described before was used 

and the 445 samples were separated into training and test datasets based on the mutated 

gene. Specifically, for a particular mutated gene, the gene expression data measuring the 

transcriptome of this mutant was defined as the test set, and other arrays as training 

set. Because some genes are directly regulated and some are indirectly regulated by the 

mutated gene, the results were separated into two sets: one contains the directly regulated 

genes, and the other contains both directly and indirectly regulated genes. 

In the reference network, gene rpoD, crp, himD, himA, fnr, fis and arcA directly 

regulate 779，265, 161，161, 146，130 and 97 target genes respectively. However, the gene 

knockout/over-expression micro array data are available for only 4 of them {crp, fnr, fis 

and arcA ). In E.coli, crp (cAMP receptor protein) is an important transcriptional dual 

regulator involved in various biological processes, such as osmoregulation [121], strin-

gent response [122], virulence [121], nitrogen assimilation [123], iron uptake [124], and 

multidrug resistance to antibiotics [125]. Fis , "factor for inversion stimulation", en-

codes a small DNA-binding and bending protein, which directly modulates transcription, 

chromosomal replication, DNA inversion, phage integration/excision, and DNA transposi-

tion [126,127]. Fnr and arcA are the primary transcriptional regulators that mediates the 

transition from aerobic to anaerobic growth through the regulation of hundreds of genes. 

The model was tested under the following system perturbation : l.crp over-expression; 
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2./is over-expression; 3. double knockout of arcA—fnr. The number of microarray sam-

ples measuring these 3 mutants was 6，3 and 22 respectively. The predicted results were 

compared to the real experimental data (Figure 4.5). As shown, the model correctly cap-

tured the expression profiles of most genes under system perturbation. This once again 

demonstrated the quantitative power of this model in guiding global TRN redesign, such 

as in the case of over-expression and knockouts of master regulators. 

Except for loss-of-function and gain-of-function study, adding new regulations has also 

been used to study the network evolvability. For example, Isolan et al. over-expressed 

plasmids pairing together wild-type promoters with ORFs coding for TF that were master 

regulators [128]. Our model was able to predict the gene expression profile under such 

transcriptional rewiring particular in the case where the rpoS and malT promoters are 

disposed together with ORFs ompR and fliA, respectively (Figure 4.6). 

• End of chapter. 
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Figure 4.5: Prediction of gene expression profiles under system perturbation, a. Directly and 

indirectly regulated gene, b. Directly regulated gene. 
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Figure 4.6: Prediction of gene expression profiles 

regulatory map. The promoters of rpoS and malT 

fliA in high-copy plasmid, respectively. 

5 10 15 

experimental expression 

in transcriptional rewiring of the wild-type 

were put together with the ORFs of ompR and 

Part I: Redesign of GRN 62 

们
t

 o
t
 
的
 

u
o
i
s
s
a
j
d
x
e
 p
a
i
o
一
p
s
j
d
 

们
t

 0
1
-

 
们
 

U
0
!
S
S
8
j
d
X
3
 p
d
l
3
!
p
8
J
d
 



Chapter 5 

Conclusion 

In this part, we describe a model-based clustering method for gene similarity measure-

ment based on their expression profiles. As proposed by Segal [43], the gene regulatory 

interactions can show similar or same pattern under different conditions. Based on this 

notion, we fit the gene expression profiles into a mixture Gaussian model. The exper-

imental conditions, under which the pattern of regulatory interactions are similar, are 

assigned into different components. Because the mixture model is a fuzzy clustering and 

"soft" classification method, the probability of each sample belonging to the components 

is used to estimate the density of the components and calculate the observed probability 

of the samples. We used BIG to describe the fitness of gene expression profiles to the 

model. The difference of BIC between the joint and the marginal distribution model of 

expression profiles is used to estimate the similarity of genes. A Gaussian distribution 

is adopted to estimate the density of the cluster. The advantage of the mixture model 

lies in its flexibility in choosing the component distributions. For example, we can use an 
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additional Poisson distribution to handle the noisy points. This method is also robust to 

the noise. 

We have successfully applied DBoMM to both E.coli gene expression dataset and 

synthetic datasets, and proved that the model achieved better performance than COR and 

EUC. DBoMM also out-performed MI using synthetic dataset and yet the performance 

was comparable to MI using the E.coli dataset, DBoMM does not request the linear 

relationships between genes and can catch both the local and the global correlations. 

Compared to the method calculating MI from expression profiles, DBoMM uses mixture 

model to estimate the probability, and can infer the experimental conditions under which 

the predicted regulatory interaction take place. 

Mixture models also can be used to calculate MI. In fact, mutual information (MI) 

is equivalent to the difference between the joint entropy and the conditional entropy. 

There are several methods to estimate the parameters of the model by using entroy of the 

mixture model [116, 129]. And the joint and marginal entropy of gene expression profiles 

under mixture distribution can be used to calculate the mutual information of genes. 

Then, we extend the mixture distribution model used for gene network inference to a 

quantitative model with predictive function. By fitting the expression values of related 

genes to a mixture Gaussian distribution, the model parameterizes a given gene regula-

tory network inferred from various network inference methods, (e.g CLR [130], Bayesian 

Network [131，132], ODE [133], ARACNE [134], mixture Bayesian network [74, 75], or 

even biological experiments) and then infers the conditional distribution of the expression 
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of one particular gene, given the expression values of any related genes. Compared to the 

model developed by Ko Y et al. [75] , which adopts similar algorithm to infer the regu-

latory network, our method can quantitatively predict the gene expression profile based 

on the learned statistical parameters and the topological structure of the TRN. We have 

successfully applied the model to accurately predict the E.coli transcriptomic response 

under various experimental conditions (average REs <0.05). Furthermore, the model also 

performs well under genetic rewirings and over-expression/knockout of master regulators. 

Except for parameterizing the gene relations in a regulatory network, the model can also 

be used to predict the expression profiles of a particular gene based on the expression of 

any functionally related genes. We demonstrated that our model can correctly predict the 

27 genes participate in the TCA cycle based on the expression of only one gene in the same 

pathway. We expect that this model can be widely used for synthetic biology system re-

design and biological experimental design. This quantitative model can also be extended 

to simulate the gene expression data for the evaluation of network inference algorithms. 

For a regulatory network derived from experiments, the learned model generally infers the 

expression profiles of genes by specifying the values of several global regulators, which are 

not regulated by other genes in this network. Compared to Bulcke et.al's method [88], our 

algorithm calculates the conditional distribution of learned mixture model and produce 

expression profiles more faithfully representing the regulatory relations between genes. In 

addition, users can flexibly set the different expression values of global regulators to simu-

late the transcriptome under different conditions, which is limited by other method [135]. 
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The model also has some limitations. For example, in principle, post-transcriptional and 

post-translational regulation also plays important roles in most of the cellular events. 

Here we neglect these effects and simply assume that the mRNA amounts measured by 

microarray is proportional to the protein amount and is the function of the TFs only. In 

addition, because the model is based on the statistical distribution of gene expression, 

limited amount of training samples may lead to the uncertainty of parameter estimate, 

which affects the predictive power. For genes not involved in the reference network, the 

model can not predict the values of these genes. The model is therefore more efficient 

when being applied to model organisms in which a large number of training samples and 

interaction relations are available. 

口 End of chapter. 
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Chapter 6 

Introduction 

Bayesian Networks (BN) have been widely adopted to infer genetic network using high-

throughput dataset [136]. A Bayesian network(BN), belief network or directed acyclic 

graphical model is a graphical model for probabilistic relationships among a set of random 

variables. These relationships between variables are described by conditional probability 

distribution, which means the expression profiles of genes are affected by their regulators 

in a GRN. Based on the Markov assumption, that is, each variable Xi is independent 

of its non-descendants, given its parent in a DAG, the joint probability distribution of 

variables can be decomposed as the product of conditional probabilities: 

N 

P (Xi,...，= JJ P (XilPa {Xi)) (6.1) 
i=l 

where Xi represent the variable; Pa (XJ represents the parents of Xi, the regulators 

of Xi in a GRN. 

To infer a GRN based on Bayesian network model from gene expression data D, we 
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must find a score function to estimate how the inferred directed acyclic graph G describes 

the data set D. So this structure learning process has been switched to search for the 

graph G that maximises the value of the score function. The score can be defined using 

the Bayes rule: 

戰巧广) (6.2) 

where P(G) either contain prior knowledge on network structure, if available, or can 

be a constant non-informative prior, and P(D/G) is a function, to be chosen by the 

algorithm that evaluates the probability that the data D has been generated by the graph 

G. The most popular scores are the Bayesian Information Criteria (BIC) [93] or Bayesian 

Dirichlet equivalence (BDe) [137]. Both scores incorporate a penalty for complexity to 

guard against overfitting of data. 

It is an NP-hard problem to find the G with the maximum Bayesian score by searching 

all possible graphs G, because the number of all possible graphs G grows exponentially 

with the increasing nodes. Therefore, a heuristic search method is used, like the greedy-hill 

climbing approach [138], the Markov Chain Monte Carlo method [139, 140] or simulated 

annealing [141-143 . 

The most commonly used score-based Bayesian Network learning algorithm is greedy 

hill-climbing, which starts from a candidate network and then iteratively moves to a 

neighbor network that leads to the largest score improvement. During this process, the 

number of changes is denoted as O (n^), where n is the number of variables. Because 

the number of possible networks grows more than exponentially with the number of the 
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variables, the cost of calculation becomes acute when BN is applied to high-throughput 

microarray data. However, most false candidate gene pairs or networks resulted from the 

search process should be eliminated in reality. For example, in a small network containing 

3 genes (namely X，Y, and Z), if X regulates Y and Z is not related to X and Y, the X-Z 

pair and Y-Z pair shouldn't be considered during the network inference. To reduce the 

computational cost, a measure of dependence between variables should be performed to 

restrict the search space before constructing the networks. 

Based on this notion, mutual information has been proposed for measure of depen-

dence between variables in network reconstruction [144]. Another simple method to infer 

the dependence between variables is to compute all the pair-wise correlations. However, 

the correlation coefficient is a weak criterion for measuring dependence because it only 

reflects marginal independence and indirect dependence. Partial correlation coefficient 

(PCC) measures the degree of association between two random variables with the effects 

of controlling random variables removed, and therefore provides a strong measurement of 

dependence [？, 145—148]. In this part, we propose a sub-space greedy search method based 

on partial correlation coefficient to estimate the dependence between variables and to re-

strict the search space. We demonstrate that our model can greatly reduce computational 

cost with minimum tradeoffs in network accuracy. 

• End of chapter. 



Chapter 

Methodology 

7.1 Generation of synthetic dataset 

Using simulation program SynTReN [88], we selected n genes (n=10, 15, 20，25 and 

50 respectively) and obtained independent datasets with 1000 observed samples, each 

contains n genes. These synthetic datasets were used to reconstruct the transcription 

network using the classical greedy search and the proposed sub-space search method. 

7.2 Selection of Real Gene Expression Dataset and Reference 

Network 

We adopted the microarray dataset comparing gene expression in Acute Lymphoblastic 

Leukemia (ALL) patients and Acute Myeloid Leukemia (AML) patients (27 ALL and 11 

AML) using Affymetrix Hu6800 GeneChipTM . The chip contains 7129 gene-specific probe 

71 
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sets representing approximately 6817 genes [149]. Using this dataset, Amira Djebbari et 

al. carried out seeded BN inference to obtain a standard network containing 41 genes [150]. 

In this study, we used their inferred network as reference to compare the performance of 

proposed sub-space greedy search method to that of the classical greedy search algorithm. 

7.3 Learning Bayesian Network 

In graphical model representation, a Bayesian network (BN) is a directed acyclic graph 

(DAG) representing a joint probability distribution (JPD) of over all variables. The 

nodes in the DAG represent the variables and edges represent the relationship between 

variables. In BN, each variable is independent of its non-descendants given its parents, and 

the relationships between variables are described by conditional probability distributions 

(CPDs) denoted as p(B|A)- the probability of B given A. 

The learning of a BN structure can be stated as: finding a network B that can best 

match D, given a dataset D { D i , . . . , Dn}. To assess the degree to which the resulting 

structure explains D, we use the score function of relative probability p (S, D). This score 

is also used by deal [151], a software package implemented in R [？]. This package includes 

several methods for analyzing gene expression data using Bayesian networks with variables 

of discrete and/or continuous types but restricted to conditionally Gaussian networks. 

BNArray [152] is another package that re-samples microarray data and construct the gene 

regulation network based on deal. In our study, deal package was used to calculate the 

CPD of gene pairs and BN scores, and BNArray package was used to re-sample datasets. 
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All of inferred networks by sub-space greedy search and classical greedy search are from 

100 bootstrap iterations with bootstrap confidence greater than 0.5 (occurring in more 

than 50% of iterations). 

7.4 Measure of Dependence 

To measure the dependence between two genes, partial 

possible gene pairs was calculated using GeneNet [148] 

ductor [153]. 

correlation coefficients of all the 

package implemented in biocon-

7.5 Structure learning using Sub-space Search Algorithm 

In classical Bayesian Network, the greedy search algorithm explores all the candidate 

networks and selects the one with the highest score during iteration until the network 

convergence. Because the arrow deletion and turning processes are based on the DAG 

which has finite edges, both processes cost only limited computational time compared to 

the arrow addition process. We therefore proposed a method to restrict the search space 

in arrow adding process by selecting gene pairs with higher PCC values. 

A detailed description of the algorithm is as follows: 

1. Based on the partial correlation coefficient (PCC) of all the possible gene pairs, 

we construct a matrix (Mp) that indicates the possible regulatory relationship between 

genes. The rows in Mp correspond to different variables (child genes) and the columns 

correspond to all the potential parents of these variables. The parent genes are indexed 
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based on their PCC with the individual variables. For example, in an Mp containing 50 

columns, the parent gene resides at the first column (Mp index 1) after the variable has 

the highest PCC with the variable. Similarly, the gene resides at the last column {Mp 

index 49) has the lowest PCC with the variable. 

2. Select an initial DAG DQ, from which to start the search. 

3. Calculate Bayes factor of DQ and select networks through the following process: 

(a) One arrow is added to DQ. Unlike classical greedy search that selects all the genes 

as the candidate parents for each child, the sub-space search method limits the search 

space by only selecting gene pairs with higher PCCs (parent genes with higher Mp index, 

e.g. 1, 2, 3, 4, 5 etc.). To avoid the possible arbitrary effects of selecting high PCC pairs 

only, user may choose to randomly include some low PCC pairs. 

(b) One arrow in DQ is deleted 

(c) One arrow in DQ is turned (reverted) 

(d) Among all the resulted networks, select the one that increases the Bayes factor 

the most as candidate the DAG (A；). If the score of D。is higher than that of DQ, DQ is 

replaced by Dc and the process is repeated from step (a). If the score of Dc is lower than 

that of DQ, the algorithm stops and DQ is the final DAG. 

4. If the Bayes factor is not increased, stop the search. Otherwise, let the chosen 

network be DQ and repeat from step 3. 

A graphical description of the sub-space search method is illustrated in Figure 7.1. 
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� XI C：̂^̂  (C) 

(b) (d) (e) 

Figure 7.1: A graphical representation of the sub-space greedy search algorithm, (a) Cal-

culation of PCC of all gene pairs using GeneNet package, (b) Construct a matrix Mp to describe the 

possible parents for each variable. The rows correspond to variables and the columns correspond to all 

their parents. The parent genes are listed in a descending order based on their PCC with the child 

genes (variables). Only higher ranking parents (e.g. in brown columns) are selected to form search space 

\dth the corresponding child variable. User-defined low PCC gene pairs (e.g. columns in orange) can be 

randomly selected in each iteration steps to avoid arbitrary effect, (c) After structure learning, if a DAG 

with an added arrow (51-52) is selected, the parent gene qq is transferred to the last column (in red) (d) 

If a DAG with a removed arrow (56-52) is selected, ge is re-transferred to the first column (in red) for the 

next search, (e) If a DAG with a turned arrow (52-6) is selected, then two transfer processes are done 

as described in (c) and (d). 
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7.6 Estimate of BN inference 

Three types of efficiencies, precision(P), sensitivity(S) and absolute efficiency(F), were 

computed to compare BN inferred network and reference network. P is the fraction of 

predicted gene pairs that are correct: P = TP / (TP + FP) and S is the fraction of all 

known gene pairs that are inferred by BN: S = TP / (TP + FN) where TP is the number 

of true positives, FN the number of false negatives and FP the number of false positives. 

F thus denotes the absolute efficiency: F = 2PS / (P + S) which is the harmonic mean 

of precision and sensitivity. 

• End of chapter. 



Chapter 8 

Results 

8.1 BN tends to select gene pairs with higher partial correlation 

coefficients 

Using the synthetic datasets generated by SynTReN [88] , a network was reconstructed 

using BN inference. Comparing the PCCs of BN-inferred gene pairs with that of all the 

gene pairs (Figure 8.1)，we found that PCCs of gene pairs resulted from BN inference 

follows normal distribution and the number of BN inferred gene pairs increases with 

increase in absolute PCC. This observation suggests that BN inference tends to select 

highly correlated gene pairs, which is consistent with the finding that real regulatory gene 

pairs often contain genes with similar expression patterns and higher PCC compared to 

the false ones. This result also highlights the rationale of our proposed sub-space search, 

which is to restrict the search space by selectively choosing gene pairs with higher PCC 

as an efficient alternative for BN inference. 

77 
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Figure 8.1: The partial correlation values of gene pairs were plotted against the percentage 

of BN gene pairs. Dashed lines: all gene pairs. Solid lines: percentage of BN gene pairs. 
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8.2 BN tends to infer DAGs with higher PCC in each iteration 

steps 

Using the synthetic datasets, a matrix (Mp) based on PCC was established to indicate the 

possible regulatory relationship between two genes. To examine if the DAGs with highest 

PCCs were selected during each iteration step, DAGs with the highest score for each Mp 

column were collected and sorted based on their scores. As shown in Figure 8.2a, most of 

the DAGs contain parent genes with higher Mp index. Because only one candidate DAG 

with the highest score is selected for the next iteration step, we monitored the distribution 

of Mp index in selected DAGs and found that majority of them contain parent genes with 

highest Mp index (Figure 8.2b). The results again demonstrated that high PCC DAGs 

are also the high score DAGs inferred by Bayesian Network. 

8.3 Comparison to classical greedy search method using syn-

thetic data 

A dataset containing 50 genes generated by SynTReN was used to infer the network 

using classical search method and the sub-space search method. By using gene pairs with 

various PCCs (Mp index 1-10，1-15, 1-20，1-25，1-30, 1-35，1-40，1-45, and 1-49), the 

results from BN inference were compared (Figure 8.3). As shown, the consumption of 

computational time increased almost linearly with the increase of parent genes. However, 

the network score reached the highest (Table 8.1) and then remained almost unchanged 
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(b) 

Figure 8,2: The distribution of sorted Mp index based DAG scores and DAGs selected in 

each iteration step. a. DAGs with the highest score in each column were collected in every iteration 

steps and sorted based on their scores. X-axis: Mp index; Y-axis: iteration steps. The color represents 

the Mp index of sorted DAGs. b. The heights of cuboids represent the scores of DAGs and cuboids in 

red means this DAG is selected for next iteration step. 
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after genes with Mp index 1-25 were used. This demonstrated that by including only 

a portion of highly correlated gene pairs, the sub-space search method achieved similar 

performance to the classical method in terms of network score while saved nearly half of 

the computational time. The highest BN score was obtained when 50% of the total gene 

pairs (parent gene indexed 1-25 out of 49) were included. 

10 20 30 40 50 

Mp index 

Figure 8.3: Comparison of BN inference results using synthetic datasets. X-axis: Mp index 

representing the portion of parent genes included, e.g. the number 20 means that parent gene resides at 

the 1st to the 20th columns after the child gene in the Mp are included; Y-axis: BN score (left) and the 

percentage of computational time consumed. 
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Table 8.1: Comparison of standard greedy search and sub-

dataset. 

greedy search using synthetic 

Mp index Score Absolute computational time (s( sconds) Relative computational time 

10 3970.72 8493.05 0.23 

15 4158.87 11705.13 0.31 

20 4141.32 15289 0.41 

25 4281.34 20711.27 0.56 

30 4246.14 23234.37 0.62 

35 4264.96 27524.41 0.74 

40 4265.18 30530.24 0.82 

45 4265.47 35182.1 0.94 

49 4272.11 37239.86 1 

8.4 Comparison to classical greedy search method using real 

dataset 

A similar comparison was done using the real microarray data (see method) and the 

results were summarized in Figure 8.4 and Table 2. When parent genes with Mp index 

1-25 were used, the inferred network achieved comparable score to that of classical greedy 

search, but cost only 66% of the computational time. Although the network score reached 

the highest when genes with Mp index 1-35 were used, the computational cost is around 

90%. Considering the tradeoffs of computational cost, it is suggested to include the top 

50% gene pairs in terms of PCC to obtain the maximum network efficiency. 

Using the absolute efficiency (F) as an estimate, the two network generated by Amira 
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Djebbari et al. [150] and our sub-space search method were compared. Because the refer-

ence network was inferred based on microarray data rather than a real network validated 

by biological experiments, we only focus the comparison on network efficiency and com-

putational time. Due to the limitation of BN that tends to over fit the data, low F values 

were observed for both networks. Despite that, the standard greedy search achieved 15% 

absolute efficiency using 100% consumption time. The sub-space search method, on the 

other hand, achieved a comparable 14% absolute efficiency at a cost of only 66% com-

putational time. In real application, users may choose to define a degree of sub-space, 

or may choose to include some gene pairs with lower PCC value to avoid the possible 

arbitrary effects of selecting only high PCC pairs. 

The advantage of restricting search space can be especially useful when large scale gene 

expression data is applied. In classical greedy search, the number of initial change O(n^) 

is first calculated and each iteration step afterwards requires 0(n) times new calculations. 

In sub-space search, however, the number of initial change is 0{kn), where k is decided by 

user-defined number of genes. Because high-throughput microarray data is often used for 

BN inference, and the large number of variables (e.g. tens of thousands of genes in human 

genome) may cause enormous increase of computational cost. By limiting the number of 

gene pairs, the sub-space search can achieve efficient network inference with much less 

computational cost with minimum tradeoffs. 



15 20 25 30 35 40 
Mp index 

Figure 8.4: Comparison of BN inference results using real datasets. X-axis: Mp index repre-

senting the portion of parent genes included, e.g. the number 20 means that parent gene resides at the 

1st to the 20th columns after the child gene in the Mp are included; Y-axis: BN score (left) and the 

percentage of computational time consumed. 
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8.5 Comparison to Pearson Correlation(COR) and mutual in-

formation (MI) 

Mutual information (MI) has been used to narrow the parameter searching space to im-

prove the efficiency of Bayesian network. In this section, we compared our method with 

other methods based on mutual information (MI) and Pearson Correlation (COR). A syn-

thetic dataset generated from SynTReN was used as benchmarks. The inferred regulation 

pairs using these 3 methods were compared to the reference network. To ensure that the 

inferred regulatory network is independent on the initial regulation structure, we ran-

domly assigned the initial gene pairs 100 times and calculated the number of times that 

any given gene pair is inferred (each pair has a score between 100 and 0). The PR-curves 

(Precision-Recall) under different Mp index were plotted by selecting different score val-

ues (Appendix B.l). To compare the performance of these 3 methods, the best predicted 

results (highest absolute efficiency) and the relative average time of each method were 

plotted under different Mp (Figure 8.5). Here the relative average time is the average 

time of 100 times divided by the maximum average time. Prom Figure 5, PCC and MI 

showed better performance and used less time than the classical method under most Mp. 

COR gave the worst result in terms of the absolute efficiency and the time spent. When 

Mp is 5，PCC achieved the highest absolute efficiency and consumed only 25% of the 

time compared to the classical method. It is reasonable because PCC can measure the 

dependence of two genes without the effect of the third gene. From this result, we can 

conclude that PCC is an efficient pre-processing method for limiting the search space in 
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Bayesian structure learning. 

• End of chapter. 
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Figure 8.5: Comparison among PCC, MI and COR. The x-axis corresponds to the different Mp 

index. "All" means the all the gene pairs obtained using to the classic method. The y-axis corresponds 

to the absolute efficiency (black) and the relative times (red). 
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Chapter 9 

Conclusion 

Greedy search is an iteration process aiming to find a local optimizing state. During the 

iteration process, an added gene pair with low PCC value may affect other real pairs 

with higher PCCs In this part, we propose a sub-space search method to reduce the 

computational time while maximally retaining the BN inference accuracy. We showed 

that this method is feasible because BN tends to infer highly correlated gene pairs and a 

portion of high PCC gene pairs can be used instead of all the gene pairs. By comparing 

with classical greedy search algorithm using both synthetic dataset and real dataset, we 

demonstrated that sub-space search method can reduce nearly half of the computational 

time with minimum tradeoff in accuracy in BN inference. This method can be widely-

applied in efficient BN modeling for systems biology discovery. 

• End of chapter. 
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Appendix 

A. l The predictive regulatory interactions 
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A.2 The 150bp promoter sequences 
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G A T T T A A C T A A C G G T T C T T C G C T G A A C A T T G G T G A A G A T G G C T A C G T T G A T A C C G A T C A T C T G A C T A T T A A C T C C T A C A G T A C T G T T G C 

G T T G A C C G A A T C T A C T G G G T G G G G G G C T G A T T G A T C C T A C C C A C G T A A T A T G G A C A C A G G C C 
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C T T A A A C A T T A G C A A T G T C G A T T T A T C A G A G G G C C G A C A G G C T C C C A C A G G A G A A A A C C G A 

> y d a N 

A T G T T G C G T A A C A G G G C C A G A A G G C T A G A C T A C A A A A T A A T G C G T T G A T G A T G G A G G C A C T G 

> n u d G 

C A A G A A C C C G C A C G C A C T G A T G C A A C A A C G G T T T A A T C C G G G G A T G A A G A T G G C G G T C T A G C A C A G G C A C T C C T T A A A T A T A A A G C C T T 

T C T G A T T G A G C A A C A G T G C G G A T A T T A T G G C A T T T T T C G C T T A T C T G C C C G T G T G T A A T T T A 

>ycicW 

G G C C T G G T G G C T A A C C C G C G A A G G C G A C A A T G G T C A A T A A C C A C T G A T A C A G G A A T A T G C T A 

> y c g R 

G G A C T T T C T C G T C A G A T C G G A A A A A G G C G A T C A G C A A A A T C A A C G A T T T G G A T G C T G A C G A G T T C C T C G A A C A C G T A G C G C G A A A T C A C 

C C T G C G C C G C A G G C T C C G C G C T A T A T C T A G A A A C T T G A G C A G G C A C T G G A C G C G A T G T A A A T 

> t o r Y Z 

C G C A T C A G G C A G C T T T A C G T T T G C A T A A C C T C A G C G C C C G T T T C C G G G C G C T A T T C A C G T C T 

T T T T C A G G C C A T T T T T A C C T T C C A T C G G A G A T G G T T C C G T A T G C G A C T C A C A G G A G A A A T C A 

C C T A T T G A C A A T T G C G T T A G G C G T C G C C T A A T A T T T C T G T G T G T T T T T G G A G T T C A T T C G A 

C G T T G T T G G A C C G A C C C G G T C T G G T T A T C A T A T C G C G C T C T T A A T T G C G G G A G G A T G T A A C A 

A C A A A T T A A A A G C A G A A A T A C A T T T G T T C A A A A C T C A C C T G C A A A A C T G A A C G G G G G A A A T A 

> y d i M 
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C A A T C G G T A G C T G C T G A A T T A T A T G C A C A C G A T C T G G A G C G G C T T T G T T A A T T T T T C C A C A G A A A G G A A T T G T C G T T G T T A C A A C A A T A 

A T G A A C G G A T G C T G A C A C A A C A T C G C T T C A C T T T T T A A A G C A C C T T T G C T A A G T A G A A C C T A 

> n h o A 

A T A G C C G G T G C G G C G T C T A T T C C A G G T T A T A A G T T G A G A A A A C C A C T A A G G G A A A C G C C T G A 

> n g A M N 

A T T T G C C C G C C G G A C G G T G T A A C A A T G C A T T C C G G C C T G C A G T G C A G G C C G G A G A T A A T C T T 

G A T T T T T C C G G C T T C A T T A A A G A A A G T T A A A A T G C C G C C A G C G G A A C T G G C G G C T G T G G G A T 

> f l g B C D E F G H I J 

G C C C C C A G C C A T T T C T A C A A C G T G A A T T G T A C C T G T C C G C A A T G A C C A T C A A C G G C A T A A A T A G C G A C C C A T T T T G C G T T T A T T C C G C C G 

A T A A C G C G C G C G T A A A G G C A T T T A A G C T G A T G G C A G A A T T T T G A T A C C T G C G G A G G A G A T A 

> m d t Q 

C A G G T A A T A C C A A T A T C A A A C C C C T G C T G C G C C A G T A A T A A C G C G C A C T C T T T G C C G A T C C C C G A A T C G G A G G C G G T A A T A A T C G C A A C 

C T G T G C C A T C G A G T T C T C C A C T T A A C G C T G A A T A A A C G T T A A G T A T A G A A G G C G C A T A T C A T 

> y d a M 

T G A T G 

A G C A A G A A A A C T G G G A G C G C C A C G C T A A G C G C A G T C G T T G A T C T C G A G A C G C A T C C G C G G C T 

T C T G C A T T A A A G T A G A T G C C A G T T T C T T T G G T C T G A T A A A T A A C G G T T A T C G G T G G C G T C A 

G C A A T A A T A G G T T A C A G T G T C A C G T T T T T T T A T C T C T T A A A G C A C G C A C T G C T T T T G C G G C T G G C C T C T T T T G C C G C A A A A T A G T C G C C C 

G T G T T T C A T T G C C C A T T T C T G C T C A T G C A T C A T C T A C A C A T C T A T C C G G A T C T G C G C A C T A 

A T C T G T A T T A A T T T A T A A G A A A G C A A C T T A A T A C C C G C A G A A T G A T T T C T G C G G G T A A G T A T 

> f d n G H I 

G C G T T T T T C T A C C G C T A T T G A G G T A G G T C A A T T T G C G A A G G C G G A T T A T T T T G T G G C A A A C A G A T G T T C T T T T T G A T T T C G C G C A A A A A 

G A T T C A G A A T T T T A C T G T T A G T T T C C T C G C G C A G T A A T A C C C C T G A A A A A A G A G G A A A G C A A 

> m a o C 

C T G C A C C T G C C A G G T T G T T T G G C A G G T G T G C C A G C T T T T C A T A C A G T G G A T G C C C T G A A A A T A G A T G T A C A C A T C A T G C A T A A T G T G A C 

A A C G T C A C A A A A C T T A G T G A A A T A A A A G G G C A A C T A T T C G C C G T T G C C C T T C A T T C A C C G A T 

> y n j H 

C G G G G C G G A T T A T C C A T C T T C A T G C C T G G C A C G T A C C C G A C T T C C A C G G G A C G T T A C A G G C A C A T G A A C A T C A G G C G C T G G T C T G G T G C 

T C A C C T G A A G A G G C G C T G C A A T A T C C G C T G G C C C C T G C T G A C A T T C C A T T A T T A G A G G C G T T 

> y b i Y W 

C T C A T A G G T G T G C T C C T G G C T C G A A A A T G A A A C C G T A A C A G T G T A A T A A C A A T G T G A C G C A G A G C A C A A A T T A T A T T T C G A A T G A A A G T 

A A G G A T G A A A T T G A T G A T G T G A A T G A T T T A G C C C G G C G A C G A C G C C G C C G G G C C G A G G A G A T 

A A C T A T C T G A T T A A T T G G G G A T A A T C A T T C C T G A C A G T G A G T C C C C A A T A C C T T G A T A T A T T C T G A A T T T T T A A T G A A A C G G C G T G T T G 

C G A T A T C T C C G T C A G G G G A A T T G A T G C A C C A T A G C G C A A A C C G A A T T A T C A A G G A T T G A T A A 

>ves 

T G A C T C A A T A T C A T A T T A T T C A A A A C T G G C T G T G G C T G G G G G C G G T T A A T T C G C T G G A A G A A G C G A C A A C G T T A A T T C G G A C A C C C G C C 

G G G T T T G A T C A C G A C G G T T A T A A A A T T C T T T G T A A G C C G C T G C T T T C C G G T A A C T A T G A A A T 

> t y n A 
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A T T A A T C T G G T T C G C T C A T A A G T A A A A A A C G G C A C C T G G T G C C G T T T T T T T G T C T G A A A C A A T 

G G C G A G G A T G A T T T T G C A G A A A T A T C A T C T G T C A A T T C A T G A A G T G G C A C A G C G T T G C G G T T : 

T T T T C C G G C G T C A G T T T G G T C T G A C G C C G G G A G A G T A C A G C G C C C G T T T T C A G G G C T A A C G T 

C C T A C A A A T C G C T C A T T C C C C A G G C C G G A T A A G G C G C T C G C A C C G C A T C C G G C G A C C A A C G T 

T T G A T T C A A C A T A A C A A T A A A A A C G G T A A G G T A C A G C C T C G T T T G T A A C A A T G A G A A G C A T A 

> y d h L 

T A C G C T G A A C C A T A A T C G C T T C C T C T T A T C A G A T A T G A G A G G A G T A T A C G C A A G A T T A G G T T 

T T T T T A T C C A A G C C C T T T G A C A A G A G G A T A A T T C A C A T C T T T T T G G C A T G T T T T G T T G C A A G C T A T T C C T G A T A A A T A A T T G C A A C A A G A 

C A T C G A G C C T T T T T C A C T G A G T T A T T A A A C A T A C T C G C G A G C G C G T A A T T T T T T T G T C C T T 

A.3 Manual of conditional distribution inferring functions 

function: construct .edges (net ,regnet) 

Description： Construct a net based on the gene pairs. 

Arguments: 

net, graph object from "graph" package. 

regnet, gene pairs (from transcription factor to target gene). 

function: modules (pairs，typ e=，，single，，) 

Description： Transform the gene pairs into module structure. 

Arguments: 

pairs, gene pairs. 

type, if this value is "single", each module will include just or 

include all the target genes with same regulators. 

function; mix_nor_distri_fit(regnet,exprs,prior=FALSE) 

Description： Calculate the parameters for each module. 

Arguments: 

target gene, otherwize, each module will 
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regnet, a module structure from function "module", 

exprs, the expression profiles of genes. 

prior, prior knoweledge of the parameters (please refer to the Mclust package for the detail), 

function: mod_con_dis.infer(mod,dat) 

Description： Infer the expression profiles based on known genes' expression in each module. 

Arguments: 

mod，the parameterized module. 

dat, the expression profiles of genes in the module. 

function: pre_specify一gene(regnetp,exprs,spe.genes) Description: Given specific gene, inferring the 

expression profiles of genes regulated by this gene. 

Arguments: 

regnetp, parameterized modules list, 

exprs, the expression profiles of genes, 

exprs.est, the specific genes. 

A n example of procedure: 

require (graph) 

require(mclust) 

reqmre(MASS) 

exprs <-read. csv (file=" expression 一 p r o f i l e s ” ) 

genepairs<-read.csv(file="regulation_relations") 

colnaines(genepairs) <-c(" TFs"，” Targets") 

reg.net�-modules (genepairs) # construt the modules based on regulation relations 

reg.net.paras<-mix_nor_distri_fit(reg.net,exprs.train) # train each module 

pre.results<-mod_con_dis_infer(mod,dat) # infer target genes' expression profiles based on the regu-

lator in each module 
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Appendix 

B.l The PR-curves (Precision-Recall) under different Mp index 

by selecting different score values 

• End of chapter. 

125 



Mp=5 
Mp=10 
Mp=15 
Mp=20 
Mp=all 

0.2 0.4 0.6 0.8 1.0 

recall 

Figure B.l: The PR-curve of the prediction result based on partial correlation. 
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B.2: The PR-curve of the prediction result mutual information. 
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Figure B.3: The PR-curve of the prediction result based on pearson correlation. 
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