
Arbitrary Block-size
Transform Video Coding

FONG, Chi Keung

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

in

Electronic Engineering

The Chinese University of Hong Kong

March 2011

UMI Number: 3491999

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy suljmhtted,

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
r .
Diaaartation Publishing

UMI 3491999

Copyright 2011 by ProQuest LLC-
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17，United States Code.

ProOuesf
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

商要

變換是一種很重要的視頻編解碼工具。它不但將圖像中像素的關聯性打

破，有效地移除當中的冗贅，從而達至壓縮視頻資訊的效果。硏究發現，

大部份的碼流都是用在變換係數編碼。如果能採用更有效的變換，減少這

部份的碼流，就能有效地改進現有的編碼效率。-直以來，視頻及圖像編

碼一般都只採用第八階的變換。直至近年，最新的編解碼標準（例如

H.264/AVC)開始採用兩種或以J i的變換來壓縮視頻資訊，例如同時採用

第四階及第八階變換來壓縮視頻資訊。此等採用多種不同大小變換的技

術，稱爲可變塊大小變換或自適應塊大小變換。有硏究指出更高階的變

換，例如第十六階，可以更有效的提高在高清視頻序列上的編碼效果。因

此’第十六階變換亦被加入到ABT系統當中。

三種不同而且全新的第十六階變換將會在本篇論文中提出，並詳細展

示，進行各種的分析，以及對現有的第十六階變換作比對。這三種新的第

十六階變換亦會在最新的解碼標準上實現，形成一個新的ABT系統，當

中第四階、第八階以及第十六階的變換都並存在系統內，可以自由選取。

而選取的方法是基於率失真優化，根據每種變換的編碼表現，每個宏塊會

選用表現最好，編碼效果最好的變換。不同的宏塊可以有不同的變換選

ii

擇。實驗證實所提出的三種換有非常良好的表現，各自有不同的表現，但

都能有效減少所需碼流，提供更佳的資料壓縮，對畫像的主觀以及客觀的

質量都有所增益。

除了用於編碼的高階變換外，本篇論文亦會牽涉一種利用變換而達致快

速模式匹配的方法一快速沃爾什搜索。這種快速搜索方法不但快捷，而且

準確。它可的準確度跟傳統的快速全搜索相約，但複雜度則大幅降低。它

亦在H.264/AVC的平台上實現，用作運動預測的工具。實驗顯示它比傳

統的快速運動估計方法更加優勝。不但作出準確估計，而且不需要煩瑣的

運算，有效地改善現有的編碼系統。

最後，本篇論文亦會簡述一些對變換係數的統計硏究。變換係數的統計

對很多圖像及視頻處理方法都很重要，這些方法都是建基於一些係數統計

上的數據與假設。若果可以對這些統計數據作出更深入準確的理解，就可

以改善圖像及視頻處理方法，例如在編碼系統上的碼流控制等。傳統上，

大都認爲係數是呈拉普拉斯分佈，包括預測殘餘的係數都有相同的假設。

本篇論文的硏究發現並不是每種預測殘餘都是呈拉普拉斯分佈。硏究發現

大部份的幀內預測殘餘都是呈柯西分佈，而幀間預測殘餘則是呈拉普拉斯

分佈的。這一發現可以更有效改善現有的視頻處理方法。

Abstract
Transform is a very important coding tool in video coding. It decorrelates the pixel

data and removes the redundancy among pixels so as to achieve compression.

Traditionally, order-8 transform is used in video and image coding. Latest video

coding standards, such as H.264/AVC, adopt both order-4 and order-8 transforms.

The adaptive use of more than one transforms of different sizes is known as Arbitrary

Block-size Transform (ABT). Transforms other than order-4 and order-8 can also be

used in ABT. It is expected larger transform size such as order-16 will benefit more

in video sequences with higher resolutions such as 72Op and 1080p sequences. As a

result, order-16 transform is introduced into ABT system.

In this thesis, the development of simple but efficient order-16 transforms will be

shown. Analysis and comparison with existing order-16 transforms have been

carried out. The proposed order-16 transforms were integrated to the existing coding

standard reference software individually so as to achieve a new ABT system. In the

proposed ABT system, order-4, order-8 and order-16 transforms coexist. The

selection of the most appropriate transform is based on the rate-distortion performance

of these transforms. A remarkable improvement in coding performance is shown in

the experiment results. A significant bit rate reduction can be achieved with our

proposed ABT system with both subjective and objective qualities remain unchanged.

Three kinds of order-16 orthogonal DCT-like integer transforms are proposed in

this thesis. The first one is the simple integer transform, which is expanded from

existing order-8 ICT, The second one is the hybrid integer transform from the

Dyadic Weighted Walsh Transform (DWWT). It is shown that it has a better

performance than simple integer transform. The last one is a recursive transform.

Order-2iV transform can be derived from order-iV one. It is very close to the DCT.

This recursive transform can be implemented in two different ways and they are

denoted as LLMICT and CSFICT. They have excellent coding performance.

These proposed transforms are investigated and are implemented into the reference

software of H.264 and AVS, They are also compared with other order-16

orthogonal integer transform. Experimental results show that the proposed

transforms give excellent coding performance and ease to compute.

Besides ABT with higher order transform, a transform based template matching is

also investigated. A fast method of template matching, called Fast Walsh Search, is

developed. This search method has similar accuracy as exhaustive search but

significantly lower computation requirement.

Prior knowledge of the coefficient distribution is a key to achieve better coding

performance. This is very useful in many areas in coding such as rate control, rate

distortion optimization, etc. It is also shown that coefficient distribution of predicted

residue is closer to Cauchy distribution rather than traditionally expected Laplace

distribution, This can effectively improve the existing processing techniques.

Publication List

1,

2.

Journal Papers

J. Dong, K.N. Ngan, C.K. Fong, W.K, Cham, “2D Order-16 Integer Transforms for HD

Video Coding;, IEEE Trans, on CASVT, vol.19, no.lO, October 2009, pp.1463-1474.

C.M. Mak, C.K. Fong, W.K. Cham, “Fast Motion Estimation for H.264/A VC in Walsh

Hadamard Domain：' IEEE Trans, on CASVT, vol.18, no.6, June 2008, pp.735-745.

Conference Papers

. C.K. Fong, W.K. Cham, “Simple Order-16 Integer Transform for Video Coding,” ICIP,

Page(s): 161-164, 2010.

. J. Dong, K.N. Ngan, C.K. Fong, W.K. Cham, ''A Universal Approach to Developing

Fast Algorithm for Simplified Order-16 ICT," IEEE International Symposium on

Circuits and Systems, ISCAS, Page(s): 281 - 284 2007.

Standard Proposals

1. C.K. Fong, W.K. Cham, Y. Liu, K.M, Cheng, “Adaptive Block-size Transform towards

AVSl.Or AVS Video Proposal AVS-M2666, Guangzhou, Dec. 2009,

7.

C.K. Fong, W.K. Cham, K.N. Ngan, Y. Liu, K.M. Cheng, “An investigation of Order-16

Transform in M2606ABT；' AVS Informative Proposal AVS-M2657, Wuxi, Sept. 2009.

C.K. Fong, W.K. Cham, K.N. Ngan, Yu Liu, K.M. Cheng, “Adaptive Block-size

Transform tovrart/s J KS 2 ^V’ AVS Video Proposal AVS-M2647, Wuxi, Sept. 2009.

W.K. Cham, C.K. Fong, Y丄’ Fong, K.N. Ngan, Y. Liu, K.M.Cheng, “Adaptive

Block-size Transform towards AVS 2.0,” AVS Video Proposal AVS-M2610, Wuxi,

Sept. 2009.

X. Mao, Y. Wang, Y. He, W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H. M. Wong,

L. Wang, Y. Huo, T. Pun, C. Cheng, “AVS 自适应块大小编码技术r AVS Video

Proposal AVS-M2372, Xiamen, June 2008.

W.K, Cham, C.K. Fong, J. Dong, K.N. Ngan, H.M. Wong, L, Wang, Y. Huo, T. Pun

“Adaptive Block-size Transform for AVS-X：' AVS Video Proposal AVS-M2284,

Lijiang, March 2008.

W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H.M. Wong, L. Wang, Y. Huo, T. Pun,

“Adaptive Block-size Transform for A VS-X and A VS-S profile：' AVS Video Proposal

AVS-M2182, Shanghai, Dec. 2007.

Pending Patents

. W . K . Cham, C.K. Fong, “DEVICES AND METHODS FOR TRANSFORMING

CODING COEFFICIENTS OF VIDEO SIGNALS;, US Non-Provisional Patent

Application Number 12/096,531, filed on June 6，2008.

’ W.K. Cham, C.K. Fong, “METHODS AND APPARATUS FOR DERIVING AN

ORDER-16 INTEGER TRANSFORM：' US Non-Provisional Patent Application Number

12/103,676, filed on April 15，2008.

. W . K . Cham, C.K. Fong, “PROCESSES AND APPARATUS FOR DERIVING

ORDER-16 INTEGER TRANSFORMS:, US Non-Provisional Patent Application

Number 12/100,358, filed on April 9, 2008.

4. W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H.M. Wong, L. Wang, Y. Huo, H.Y. Pun,

“METHOD AND DEVICE FOR ORDER-16 INTEGER TRANSFORM FROM ORDERS

INTEGER COSINE TRANSFORM^ US Non-Provisional Patent Application Number

11/950,182, filed on December 4，2007.

5. W.K. Cham, C.K. Fong, “視頻信號的編碼係數的轉換裝置及其方法:’ Chinese

Patent Application Number: 200510134530.6.

Acknowledgements

First of all, I would like to express my gratitude towards my supervisor, Prof.

Wai-Kuen CHAM, who gave me generous support and invaluable comments and

suggestions on my research throughout these years. He provided an excellent

working environment with enormous freedom to develop new ideas. His insights and

guidance brought me a lot of inspiration. Without his suggestions and advices, many

problems I encountered could be difficult to solve. His encouragement and support

gave me many chances to attend some coding standard meetings and international

conferences. These are very valuable experience in my research life.

In additions, I take this opportunity to thank Prof. King Ngi NGAN, Prof. Hung-Tat

TSUI, Prof. Thierry BLU and Prof, Xiaogang WANG of Image and Video Processing

Laboratory for providing helpful advices for my studies. I would thank Mr.

Yuk-Chung WONG for his maintenance of the computer systems in the laboratory

such that we are able to work smoothly. I would like to thank fellow students in our

group for making my academic life enjoyable. I am so grateful for their valuable

suggestions about my research. It is a pleasure to work and study with them.

Last but not least, I would like to thank my parents, my family and my friends for

their support all the time. Without their encouragement and support, I would have

never been able to complete this thesis.

Contents

List of Figures

List of Tables

Chapter 1 Introduction 1-1

1.1 Introduction to Video Coding 1-1

1.2 Histories of Video Coding Standards 1-4

1.3 Generic Hybrid Video Coding 1-8

1.4 Performance Evaluation Metrics 1-13

1.5 Video Processing in Transform Domain 1-15

1.5.1 Fast Walsh Search 1-15

1.5.2 Transform Coefficient Distribution 1-15

1.6 Thesis Scope and Contributions 1-16

1.7 Thesis Outlines 1-18

1.8 References 1-19

Chapter 2 Order-16 DCT-like Integer Transform 2-1

2.1 Introduction 2-1

2.2 The Discrete Cosine Transform 2-6

2.3 Integer Cosine Transform 2-8

2.3.1 Order-4 and Order-8 ICT 2-8

2.3.2 Order-16 ICT 2-12
xi

2.3.3 Other Order-16 Integer Transforms 2-13

2.4 Simple Integer Transform 2-15

2.5 Hybrid Integer Transform from Dyadic Weighted Walsh Transform.... 2-18

2.6 LLM Integer Cosine Transform 2-23

2.6.1 Relaxed GCT 2-23

2.6.2 The LLM Fast DCT 2-24

2.6.3 The Proposed LLMICT 2-25

2.6.4 Order-32 LLMICT 2-32

2.7 CSF Integer Cosine Transform 2-39

2.7.1 The CSF Fast DCT 2-39

2.7.2 CSF Integer Cosine Transform 2-40

2.7.3 Modified CSF Fast DCT and MCSFICT 2-41

2.8 Analysis 2-44

2.8.1 Complexity Analysis 2-45

2.8.2 DCT Distortion and Transform Efficiency 2-48

2.8.3 Transform Coding Gain 2-50

2.8.4 Computationally Optimal Transform 2-52

2.9 Conclusions 2-54

2.10 References 2-55

Chapter 3 ABT in H.264/AVC 3-1

3.1 Overview of H.264/AVC 3-1

3.2 Transforms 3-7

3.3 Quantization and Rescaling 3-9

3.3.1 Quantization 3-9

3.3.2 Rescaling 3-11
xii

3.3.3 Example 3-13

3.4 Syntax Structure 3-15

3.4.1 New Syntax Elements 3-15

3.4.2 Intra Block Syntax Structure 3-16

3.4.3 Inter Block Syntax Structure 3-16

3.5 Entropy Coding 3-18

3.6 Rate-Distortion Optimization 3-20

3.7 Experiment and Analysis 3-21

3.7.1 RD analysis (Objective Evaluation) 3-23

3.7.2 Subjective Evaluation 3-31

3.7.3 Usage of Order-16 transform 3-38

3.7.4 Gain from Order-16 transform 3-41

3.8 Conclusions 3-45

3.9 References 3-46

Chapter 4 ABT in AYS 4-1

4.1 Overview of AVS 4-1

4.2 Intra prediction 4-5

4.3 Transforms 4-6

4.3.1 ABT in AVS 4-6

4.3.2 Flexible Transform Size Selection 4-8

4.3.3 Transform Design Constraints in AVS 4-9

4.4 Quantization and Rescaling 4-13

4.4.1 Quantization 4-13

4.4.2 Rescaling 4-15

4.4.3 Example 4-15

4.5 Syntax Structures 4-20

4.5.1 Intra block 4-20

4.5.2 Interblock 4-21

4.6 Entropy Coding 4-22

4.7 Loop Filter 4-22

4.8 Experiment and Analysis 4-23

4.8.1 RD Analysis (Objective Evaluation) 4-25

4.8.2 Subjective Evaluation 4-32

4.8.3 Usage of order-16 Transform 4-39

4.9 Conclusions 4-42

4.10 References 4-43

Chapter 5 Transform Domain Pattern Matching 5-1

5.1 Introduction 5-1

5.2 Pattern Matching in Walsh-Hadamard Domain 5-3

5.2.1 Block Pyramid Matching 5-5

5.2.2 Partial Sum of Absolute Difference 5-6

5.2.3 Statistical Threshold 5-6

5.2.4 Block Adaptive Threshold 5-9

5.3 Experiments 5-10

5.4 Conclusions 5-12

5.5 References 5-13

Chapter 6 Distribution Modeling of Predicted Residue Transform Coefficient
6-1

6.1 Introduction 6-1

6.2 Distribution of Predicted Residue 6-2

6.3 Properties of Laplace Distribution 6-5

6.4 Properties of Cauchy Distribution 6-5

6.1.1. Parameter Estimation Method 1 6-6

6.1.2. Parameter Estimation Method 2 6-7

6.1.3. Parameter Estimation Method 3 6-7

6.5 Transform Coefficient of Predicted Residue 6-10

6.6 Experimental Results 6-12

6.1.4. Chi-Square Test 6-12

6.1.5. Empirical Results 6-13

6.7 Conclusions 6-14

6.8 References 6-19

Chapter 7 Summary and Future Work 7-1

7.1 Contributions 7-1

7.2.1 Order-16 DCT-like Transforms 7-1

7.2.2 Fast Walsh Search for Pattern Matching 7-2

7.2.3 Transform Coefficient Distribution 7-3

7.1 Future Work 7-3

7.1.1 Order-16 DCT-like Transforms 7-3

7.1.2 Fast Walsh Search for Pattern Matching 7-4

7.1.3 Transform Coefficient Distribution 7-5

Appendix A. Fast Algorithm for DWWT A1

Appendix B. A Summary of Fast Algorithms for Different Integer Transforms
B1

List of Figures

Figure 1-1 A comparison of different frame resolutions 1-2

Figure 1-2 A comparison of different color bit depth in a color plane 1-3

Figure 1-3 Diagram of a simple Generic Hybrid Video Encoder 1-8

Figure 1-4 An illustration of a given picture in RGB and YUV color space 1-9

Figure 1-5 An illustration of the motion predicted residue with respect to two
consecutive frames 1-10

Figure 1 -6 Different Prediction Structure. Red arrow is the unidirectional prediction.
Blue arrow is the bidirectional prediction 1-11

Figure 1-7 An example of transform and quantization 1-12

Figure 1-8 Calculation of BD PSNR (upper) and BD bit rate (lower) 1-14

Figure 2-1 Fast algorithms oforder-8 ICT adopted in (a) H.264/AVC and (b) AVS.
2-17

Figure 2-2 Fast algorithm of proposed order-16 transform (a) Tsi and (b) ..2-17

Figure 2-3 The general fast algorithm of proposed order-16 transform E///. 2-21

Figure 2-4 The LLM fast DCT algorithm 2-25

Figure 2-5 The generalized odd part of LLM algorithm 2-25

Figure 2-6 Fast 1-D Forward Transform for LLMICT-Al 2-29

Figure 2-7 Fast 1-D Forward Transform of LLMICT-Bl 2-30

Figure 2-8 The relationship among , T認I, T二 and the DCT 2-31

xvi

Figure 2-9 Fast Algorithm oforder-32 LLMICT 2-34

Figure 2-10 Waveforms of order-32 LLMICT and the OCT. The DCT is in blue,
LLMICT-Al is in red and LLMICT-Bl is in green 2-36

Figure 2-11 the proposed order-32 LLMICT-Al 2-37

Figure 2-12 the proposed order-32 LLMICT-Bl 2-38

Figure 2-13 The CSF fast DCT algorithm 2-39

Figure 2-14 The generalized CSF fast algorithm (odd part) 2-40

Figure 2-15 Modified CSF fast DCT algorithm (odd part) 2-41

Figure 2-16 Generalized modified CSF fast algorithm (odd part) 2-42

Figure 2-17 The numbers of operations of different fast transforms 2-46

Figure 2-18 The computation time of different fast transforms 2-47

Figure 2-19 The transform efficiency of different transforms 2-50

Figure 2-20 The transform coding gains of different transforms (reference to DCT).
2-51

Figure 2-21 The transform coding gain {p = 0.9) vs. the number of operation.... 2-53

Figure 3-1 Data flow of H.264/AVC encoder 3-3

Figure 3-2 Data flow ofH.264/AVC decoder 3-3

Figure 3-3 Nine intra prediction modes for 4x4 and 8x8 blocks 3-4

Figure 3-4 The intra prediction modes for 16x16 block 3-4

Figure 3-5 The variable block-size motion compensation partitions 3-5

Figure 3-6 Arbitrary Block-size Transform in H.264/AVC 3-8

Figure 3-7 Data flow of quantization and rescaling in H.264/AVC 3-9

Figure 3-8 Syntax structure for intra-block 3-16

Figure 3-9 Syntax structure for inter-block 3-17

Figure 3-10 The data flow of CAB AC 3-18

Figure 3-11 RD curves for (a) BlowingBubble (WQVGA) and (b) BaskballPass
(WVGA) 3-29

Figure 3-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p) 3-30

Figure 3-13 Subjective quality of "BasketballPass (WQVGA)", frame, coded at
QP = 32 3-34

Figure 3-14 Subjective quality of “BQMall (WVGA)", 270出 frame, coded at QP = 32.
3-35

Figure 3-15 Subjective quality of "SpinCalendar (720p)", 100^̂ frame, coded at QP =
27 3-37

Figure 3-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c)
B-frame 3-40

Figure 4-1 Data flow of AVS encoder 4-2

Figure 4-2 Data flow of AVS decoder 4-2

Figure 4-3 16x16 intra prediction in proposed AVS platform 4-5

Figure 4-4 Combinative ABT in proposed AVS platform 4-7

Figure 4-5 ABT (a) without 16x16 Transform, and (b) with 16x16 Transform.... 4-7

Figure 4-6 the dynamic range of the coefficient after adjustment 4-11

Figure 4-7 Data flow of quantization and rescaling in AVS 4-13

Figure 4-8 Intra-block syntax structure 4-20

Figure 4-9 Inter-block syntax structure 4-21

Figure 4-10 Region of the loop filter is applied 4-23

Figure 4-11 RD curves for (a) BQSquare (WQVGA) and (b) BasketballDrill (WVGA)
4-30

Figure 4-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p) 4-31

Figure 4-13 Subjective quality of "BQSquare (WQVGA)", frame, coded at QP =
45 4-34

Figure 4-14 Subjective quality of "BasketballDrill (WVGA)", frame, coded at
QP = 37 4-36

Figure 4-15 Subjective quality of "Crew (720p)", 62"�frame, coded at QP = 34,4-38

Figure 4-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c)
B-frame 4-41

Figure 5-1 Example of BPM with an 8x8 block 5-5

Figure 5-2 The probability density function ofpt{t) 5-8

Figure 6-1 (a) The intra-predicted residue and (b) the inter-predicted residue of
"Foreman" 6-3

Figure 6-2 The distribution of (a) the intra-predicted residue and (b) the
inter-predicted residue of "Foreman" 6-4

List of Tables
Table 2-1 Notation system in later sections 2-5

Table 2-2 Example of dyadic symmetric vectors 2-19

Table 2-3 Examples of E 服 w i t h high coding gain Grc 2-21

Table 2-4 Example solutions for g.. .n which can be represented in 6 bits 2-28

Table 2-5 Example solutions for g.. .n which can be represented in 5 bits 2-28

Table 2-6 Example solutions for order-32 LLMICT which satisfy (2.60) and (2,62).
2-32

Table 2-7 Example solutions for Order-32 LLMICT with (a l . . . a l6) less than 256.
2-33

Table 2-8 Example solutions for order-32 LLMICT with (a l . . . a l6) less than 128.
2-33

Table 2-9 Brief analysis of order-32 LLMICT 2-35

Table 2-10 List of Order-16 DCT-like transforms in this thesis 2-44

Table 2-11 Number of operations for different order-16 transform (1-D) 2-46

Table 2-12 Computation time for different order-16 transform 2-47

Table 2-13 DCT Distortion and Transform Efficiency 2-49

Table 2-14 Transform coding gain of different transform 2-51

Table 3-1 Bit patterns for I16flag 3-15

Table 3-2 Context model index of II6flag 3-19

Table 3-3 Context model index of CBP16 3-20

Table 3-4 Testing conditions in H.264/AVC platform 3-22

Table 3-5 Experimental Results of different transforms in H.264/AVC platform
(BD-bitrate, %) 3-26

Table 3-6 Experimental Results of different transforms in H.264/AVC platform
(BD-PSNR, dB) 3-28

Table 3-7 Delta bit rate solely from order-16 transform {BD-bitrateoi6, %) 3-43

Table 3-8 Delta PSNR solely from order-16 transform { B D - P S N R O M , dB) 3-44

Table 4-1 The Weighting Factor Difference of different transform 4-11

Table 4-2 Testing conditions in AVS platform 4-24

Table 4-3 Experimental Results of different transforms in AVS platform (BD-bitrate,
%) 4-27

Table 4-4 Experimental Results of different transforms in AVS platform (BD-PSNR,
dB) 4-29

Table 5-1 Block adaptive threshold of texture blocks and smooth blocks 5-9

Table 5-2 BD-bit rates of different VBS-ME algorithms 5-

Table 5-3 Computation time of different VBS-ME algorithms 5-

Table 6-1 pdf fitting to the predicted residue of each frame with different parame
estimation methods 6-

Table 6-2 pdf fitting to the transform coefficient C(0, 0) in different sequences. 6-

Table 6-3 pdf fitting to the transform coefficient C(l，0) in different sequences. 6-

Table 6-4 pdf fitting to the transform coefficient C(0, 1) in different sequences. 6-

Table 6-5 pdf fitting to the transform coefficient C(0, 2) in different sequences. 6-

Table 6-6 pdf fitting to the transform coefficient C(l , 1) in different sequences. 6-

Table 6-7 pdf fitting to the transform coefficient C(2, 0) in different sequences. 6-

Chapter 1 Introduction

1.1 Introduction to Video Coding

Digital Video Coding has been researched for decades. Researchers have devoted a

lot of work to this topic. However, it is still very hot in both research and industrial

area. This is because of its extremely high demand. It is getting more and more

popular and it relates closely to us. It appears in many applications in our daily life.

We watch TV every day. Digital TV broadcast is a typical example of video coding

application. Other than TV, many people like to watch movie at home. The movie

contents are stored in VCD, DVD or blu-ray disc. They all are storage media of

compressed videos. It is very popular to take video with a handheld digital video

camcorder or a digital cameras. Compressed videos are stored. People also like to

share their own videos with others through World Wide Web. We believe that

Youtube [1] is the most famous example. It allows people to share and to distribute

video through video streaming over the web. There are thousands of newly uploaded

videos and millions of watches in every day. We believe that it is one of the most

important inventions in this decade. As the bandwidth of the mobile network and the

processing power of the mobile hand set are improving, video phone call becomes

popular. Moreover, many video applications such as surveillance and professional

video editing are moving from analog to digital. These all are example of video

coding in our daily life. We can see that how frequent we meet with video coding in

different area.

Besides the high demand, why we encode or compress videos? Why not store the

videos in raw format? This is because the video data is so large that it is almost

impossible to be stored in raw format. It wastes too much resource as if we do so.

This can be investigated in several aspects:

• Spatial Resolution: The spatial resolution of the video frame is increasing, from

QCIF (176x144) in old days, to GIF (352x288), WQVGA (416x240), WVGA

(832x480) and it becomes High Definition (HD, 720p - 1280x720 and 1080p -

1920X1080) recently. It is expected that it will increase to Ultra High Definition

(UHD, 4k X 2k or even larger) in coming future.

QCIF

WQVGA

CIF

WVGA

720p

lOSOp

Figure 1-1 A comparison of different frame resolutions.

I Temporal Sampling Rate: Interlacing reduces the data rate by half. This is

very important when the processing power is limited. As technology is

improving, this is no longer the main bottleneck. Progressive video is the main

stream nowadays. It is also moving from 2 5 � 3 0 fps to 50-60 fps and even over

100 fps.

I Color Sub-sampling: Since human vision system is less sensitive to chroma

information, chroma part is usually taken at a lower sampling rate than luma part,

for example 4:2:0, This is halved the data rate of 4:4:4 color sub-sampling. As

the better picture quality is demanding, higher color sub-sampling rate such as

4:2:2 and even 4:4:4 becomes popular.

I Color Depth: Besides higher color sampling rate, higher color depth is also

demanding. Conventionally, 8-bit color depth is used. Every pixel in a single

color plane is represented using 8 bits. When higher color depth such as 10, 12’

14-bit or higher, more colors can be represented. Picture quality is improved.

8-bit (256 colors) I

10-bit (1024 colors)

12-bit (4 0 9 6 colors)

14-bit (16384 colors) H H ^ H H H H K
Figure 1-2 A comparison of different color bit depth in a color plane.

Let us take an example here. A typical HD sequence (1920x1080) at 50 fps, with

8-bit color depth, the data rate is 1920x1080x50x3x8 = 2488.32Mbps or 311.04 Mega

Byte per second. Although the storage nowadays is very large and low-cost, it is still
_ _ - 1 rx

very inefficient to store raw video. For example a 1 T-Byte (10 “ Byte, equivalent to

212 4.7G-DVD or 40 single-layered Blu-ray Discs) storage can only store a

3215-second (less than 1 -hour) long typical HD sequence. This example shows a

typical HD sequence only. A better quality video with higher resolution, higher

frame rate and higher sub-sampling rate takes more storage space and requires higher

bandwidth to transmit. They can be several times or even several ten times of a

typical HD sequence. Video coding significantly reduces the bandwidth required.

For example, MPEG-2 has a compression ratio of 1:15 to 1:30 depending on the

desired quality. Newer coding standards can offer even higher compression ratio.

It is well-known that our human vision is less sensitive to some kind of distortion, for

example, high frequency components. Our human eyes cannot distinguish the

difference in high frequency easily. This leads to lossy video coding in most codec

designs. Some video contents which are not very sensitive to our human eyes are

reduced or even discarded. These distortions are not easily perceived by us. As a

result, a higher compression but very small or even almost no visual degradation can

be achieved. This is very common in most of the video coding standards.

1.2 Histories of Video Coding Standards

Most of the state-of-the-art video coding standards are based on the generic hybrid

video coding model proposed in H.261 [2] twenty years ago. Although it is an old

coding standard, many coding tools adopted in this standard are the prototypes of the

coding tools nowadays. For example, motion estimation and compensation and

transform coding of predicted residue are still fundamental coding tools in the latest

video coding standards. Of course, many novel, power and efficient coding tools are

integrated to different standards. Significant performance improvement is offered m

every new generation of video coding standards.

• H.261 [2] is an ITU-T (International Telecommunication Union -

Telecommunication Standardization Sector) video coding standard issued in

1990. It IS designed by the Video Coding Experts Group (VCEG) in the union.

Its hybrid video coding framework is a fundamental to many other video coding

standards nowadays. Many concepts and ideas in this standard are still doing a

good job such as the concept of 16x 16 Macroblock (MB), motion compensation,

residue coding with DCT, run-length coding and entropy coding. It is an

important milestone in video coding technology,

• MPEG-1 [3] is the first international standard including both video and audio

specifications. It was developed by Moving Picture Experts Group (MPEG). It

is composed of different parts. Its part 2 is the video specification. It is based

on the H.261 standard. Its target is to compress video onto a video CD at CIF

resolution. The concept of sub-pixel motion compensation was introduced into

MPEG-1. It supports up to half pixel accuracy. To enhance the motion

estimation and prediction, bi-directionally predicted frame (B-frame) is used. It

is predicted with the forward and the backward decoded frames. It reduces the

predicted residue significantly and hence the bit rate.

• MPEG-2 [4] is the direct successor of MPEG-1. It was published in 1996. Its

Part 2 (also known as H.262) specifies the video coding requirements. It is

widely used in DVD standard. The concept of profiles and levels was

introduced to MPEG-2 standard. Profile specifies decoding capability in terms

1-5

of coding tools while level specifies the constraints on bit rates, frame rates and

frame sizes. This makes the decoder manufacturer more flexible to design

decoder for one particular application. Motion estimation is also improved,

Sub-block level motion estimation is supported such that more precise prediction

can be achieved.

H.263 [5] was proposed by VCEG and released in 1996. It is originally

designed for low-bit-rate compression for video conferencing. It has many

applications on the internet also.

MPEG-4 Part 2 (Visual) [6][8] was proposed by MPEG released in 1999. One

of the most important features in this standard is object coding. It is possible to

code arbitrarily shaped individual video objects. The decoded video object can

be moved by the user interactively on the decoder side. The sub-block motion

estimation is further improved. The partition sizes allowed includes 8x8, 8x16,

16x8 and 16x16. The motion estimation accuracy can be up to quarter pixel.

MPEG-4 Part 10 (AVC) (a.k.a. H.264/AVC) [7][8] is a joint projects between

ITU-T and ISO/IEC. It was first released in 2003. An amendment called the

Fidelity Range Extensions (FRExt) [9] was proposed in 2005. It extended the

original standard to provide higher quality video coding. Although MPEG-4

Part 10 is one part of MPEG-4, it is totally different from MPEG-4 Part 2.

Object coding in MPEG-4 Part 2 is not present in Part 10. It is the current

state-of-the-art AVC standard and it is one of the coding standards to be our

testing platform. More information will be provided in later chapter (see

Chapter 3).

• Audio Video Standard (AVS) [10] is a multimedia standard proposed by the

AVS workgroup in China in 2005. It is not only highly-efficient but also

simpler and easier to implement than H.264/AVC. Its coding performance is

only .slightly lower than f 1.264/ AVC, It is another testing platform in this thesis

(see Chapter 4).

• Video Codec 1 (VC-1) [11] is the first video compression algorithm standardized

in Society of Motion Picture and Television Engineers (SMPTE) driven by

Microsoft released in 2006. It is based on Microsoft Windows Media 9. It

supports adaptive block-size transform which supports transform block size of

8x8, 8x4, 4x8 and 4x4. Instead ofCAVLC and CABAC in H.264/AVC, VC-1

uses multiple VLC code tables for entropy coding. It also has the fading

compensation to tackle the change of brightness level in motion compensation.

Despite of the high performances of the video standards nowadays, work is still being

devoted to developing new video coding standards. For example, High Efficiency

Video Coding (HEVC, also known as H.265) [12] is being developed by the Joint

Collaborative Team on Video Coding (JCT-VC). It is a group of video coding

experts from VCEG of ITU-T and MPEG of ISO/IEC. Its target is to further reduce

the bit rate for high quality video by half, as compared to H.264/AVC. On the other

hand, AVS workgroup in China also started the project for next generation of Audio

Video Standard, AVS 2 [14] [15]. AVS2 Ad-hoc group was formed in the 27山 AVS

workgroup meeting in December 2008. It targets at HD to Super HD resolution

sequences. It will support higher color bit depth, higher frame rate and higher color

sub-sampling rate. Its FCD will be completed in 2012.

3 Generic Hybrid Video Coding

Input I
Color Spacc
Conversion

Transform and
Entropy Coding

Quanitzation
Entropy Coding

Output

Motion
EstJmation and
COHII np̂ s

Fruc HtiHtt
Inverse

Transform and
Dequanitzation

Figure 1-3 Diagram of a simple Generic Hybrid Video Encoder.

Since generic hybrid video encoder is the fundamental and our work is based on this

framework, here we are going to give a brief introduction to this encoder for readers

who are not familiar to it. Hybrid video coding is a coding algorithm integrating

motion compensated inter-picture with spatial transform coding. Generic hybrid

encoder is a close-loop encoder which predicts the incoming picture with previously

decoded pictures. The encoder can be divided into 4 different functional blocks (in

grey) as shown in Figure 1 -3. These functional blocks remove different redundancies

in the video content.

• Color space conversion (Color redundancy): Color image and video are

usually represented by 3 main color components, Red, Green and Blue, It is

known as the RGB domain. Each of these components forms a color plane.

Picture data in RGB domain usually has high correlation among these color

planes. This is the color redundancy. In order to reduce color redundancy,

picture data are usually transformed into another color domain which has a lower

correlation among its color plane. For example, YUV domain is a common

color space used in video coding. Different video coding standards may use

different color domain. However, their aims are the same - to reduce the color

redundancy. Pixel data in RGB domain are converted into a specified color

space defined in the coding standard before further process, for example, YUV.

In (1.1) the RGB to YUV conversion is shown. A color conversion example is

shown in Figure 1-4. A color image can be decomposed into the RGB color

planes and these planes are converted into YUV planes using (1.1). Y is the

luminance while U and V are the chrominance. The variations of the UV planes

are smaller than RGB planes and hence the data in UV planes have smaller

entropies. Since human vision is less sensitive to the chrominance, UV plane

may be further sub-sampled.

V 0.299 0.587 0.114
V = -0 .147 -0 .289 0.436
V 0.615 -0 .515 -0 .100

Figure 1-4 An illustration of a given picture in RGB and YUV color space

^

G

^

Motion Estimation and Compensation (Temporal Redundancy): It is very

trivial that consecutive frames look very similar. The correlations among

consecutive frames are very high. This is the temporal redundancy between

frames. To remove this redundancy, the incoming frames are predicted with

previously decoded frames with motion estimation and compensation. The

frame contents are represented by motion vectors (MV) and the predicted residue.

This dramatically reduces the video data size.

Target Frame F{t) Predicted Residue

Motion
Estimation

Motion
Estimation

Reference Frame Motion Compensated Frame
and Motion Vectors

Figure 1-5 An illustration of the motion predicted residue with respect to two
consecutive frames.

There are several inter-prediction structures. The most trivial one is the

IPPP... structure (Figure l-6(a)) which predict the current frame with

previously decoded frame. When bidirectional prediction is allowed, current

frame can be predicted by one previous reference frame and one future

reference frame. This forms a structure denoted as IBBP... structure (Figure

1 -6(b)). This structure can be extended to Hierarchical B-frame structure

(Figure l-6(c)), which is usually denoted as IbBbP....

(a) IPPP... structure

P P P

/
B , B

X

B B
/

B

/ /
B

(b) IBBP... structure

7 ：
B

>
B

. -A J V A y V 又

b

/
(c) Hierarchical B-frame structure

Figure 1-6 Different Prediction Structure. Red arrow is the unidirectional
prediction. Blue arrow is the bidirectional prediction.

Transform and Quantization (Spatial Redundancy): Although the motion

estimation and compensation reduce the video data amount, the data amount of

predicted residue can still be reduced. This can be achieved by transform and

quantization. Transform decorrelates the residue while quantization reduces or

removes the components less sensitive to our human eyes. This lowers the

spatial redundancy among the predicted residue.

Input Pixels Coefficients
！3 4

：‘
o H 1? •5 31 1 l i , Hi

4 H i W b > J 1
Jit

Ml
m

llĵ
17* ̂21 1 j Vf* Sti].l 32 42 12 < e 0 n

J 1
Jit

Ml
m

llĵ
17* ̂21 1 j Vf* Sti].l

52 M n 2 3 7 1； _BJL 取

•OJ I.L 26 ？ u 6 n •0 4 .i UC 1 _BJL 取

•OJ • Ht�.|S^ 1.114 -bi I.L
H 0 12 5 0 2 1 • 11

UC 1
J J
70 i 4 1 1

• W.T： SJ ^ .is i.frJ [X!
7 3 7 s r •J 0 1 0

UC 1
J J
70 i 4 1 1

• W.T： SJ ^ .is i.frJ [X!
i； 1 A i M

一 1 —0

UC 1

•\i -IJl !3| ！‘；! SV U7

Quantization

Rescaling

Reconstructed Pixels Rescaled Coefficients

Figure 1-7 An example of transform and quantization.

Entropy Coding (Statistical Redundancy): Finally, the transform coefficients

in the last step, motion vectors and other side information are coded with a

lossless entropy encoder. This encoder gathers the statistics of these contents

and assigns the optimal number of bits to the bit stream according to the content

and its statistics. This removes the statistical redundancy in the contents.

1.4 Performance Evaluation Metrics

To evaluate the coding performance of a coding system, the bit rate and the PSNR

are usually compared. The one offering a higher PSNR at the same bit rate or the

one offer the same PSNR at a lower bit rate is a better coding platform or coding

algorithm. However, it is very common that they do not align on the same line and

this makes the comparison difficult. As an alternative, one may compare the

coding performances by plotting the RD curves with several RD points, the PSNR

against the bit rates. The one has higher RD curve is a better one. Unfortunately,

in some cases, two RD curves may make a cross or both may be too close to each

other. It is hard to distinguish which one is the higher one. This makes the

comparison difficult. Bjontegaard proposed a method to calculate the average

difference two RD curves in [17]. This is adopted as a common method to evaluate

the coding performance in many coding standards, such as H.264/AVC and AVS.

The method proposed in [17] has 3 basic steps. First, a third order polynomial is

fitted to 4 RD points (bit rate and PSNR at 4 different QP). Second, obtain an

expression for the integral of this curve. Third, the average difference between the

curves is calculated as the difference between the integrals divided by the integration

interval. The average difference obtained using this method is usually called as BD

bit rate and BD PSNR. They are equivalent to each other.

Suppose two coding methods, A and B, are compared and B is the anchor. The

RD curves {PA and PB) are obtained from 8 RD points (4 from each method) as

shown in Figure 1-8.

RD points

^IOWTR Bit rate (in log scale)

RA(PSNR\
i?B(PSNR)

Bit rate (in log scale)

Figure 1-8 Calculation of BE) PSNR (upper) and BD bit rate (lower).

PA and PB can be expressed in third order polynomials of the rate. BD PSNR is

defined as:

BD-PSNR =
^upper

R -]? «
upper lower

(PAr)-Ps(r))dr (1.2)

Similarly, the curves can be expressed as functions of PSNR and hence the BD bit

rate is:

BD-bitrate =
P -A K

upper lower

(1.3)

The BD bit rate and BD PSNR are used to measure the performance in this thesis.
1-14

^
B
A
J
a
J
U
I

 受
 Sd

.

(
a
p
>
*
N
£

i

 (
a
p
)
"
a
N
s
d

i

1.5 Video Processing in Transform Domain

Besides video coding, there are many video processing applications in transform

domain. These applications can perform more efficiently than in pixel domain. On

the other hand, the statistics of the transform coefficients plays an important role in

many applications.

1.5.1 Fast Walsh Search
Pattern matching in transform domain is an example of video processing in

transform domain. An example is the Fast Walsh Search (FWS), which is a pattern

match algorithm in Walsh-Hadamard transform domain. It is shown that its

accuracy is almost the same as Fast Full Search (FFS) but its complexity is

significantly lower than the FFS. FWS is implemented into the H.264/AVC

reference software and acts as a fast Motion Estimation (ME) method. It is shown

that it outperforms other ME algorithms in the reference software.

1.5.2 Transform Coefficient Distribution
Statistical analysis plays an important role in many video processing applications.

Many applications make use of the statistics, especially the distribution, of the data

to achieve their works. As a result, the transform coefficient distribution analysis is

very important in many processes in transform domain. It is usually assumed that

the transform coefficients distribute in Laplace distribution. In our analysis,

however, the transform coefficients of intra predicted residue are in Cauchy

distribution rather than Laplace one.

1.6 Thesis Scope and Contributions

This thesis can be divided into three parts. The first part is the development of

DCT-like integer transform and its application in video coding. The second part is

about a fast pattern matching algorithm - Fast Walsh Search. The third part is an

analysis of the transform coefficient distribution in predicted residue.

In the first part, one of our contributions is the development of three new integer

transforms. We focus on develop order-2*^ orthogonal integer transform, especially

the order-16 transform. The proposed transforms must have integer kernels. They

are going to be integrated into existing video coding systems. They must have

good coding performances. Although non-orthogonal transform may also provide a

good performance, it is not in our scope. Besides coding performance, efficient

computation is also an important factor in designing transform in video coding

system. The transform must be separable and have fast algorithm. In this thesis,

our aim is to encode sequences with color sub-sampling rate 4:2:0 and MB size of

16x16. We apply order-16 transform to luma part of the predicted residue only.

The chroma part is coded with existing 8x8 or 4x4 transforms. However, we

expect that order-16 can also be applied to chroma part for sequences with

sub-sampling rate 4:4:4 or with support of super macro-block [18]. The proposed

transforms are implemented into the reference software of two different coding

standards, H.264/AVC and A VS. We focus on the High Profile in H.264/AVC and

the Jiaqiang (Enhanced) Profile in A VS. The objective coding performance in

these coding standards with different order-16 transforms are measured by the BD

bit rate and BD PSNR described in the previous section. The comparison in terms

of subjective picture quality will also be shown. The usage of the order-16

transform is also analyzed. Analysis shows that this usage is pretty high. It

reflects the importance of the order-16 transform in video coding.

The second part is the Fast Walsh Search. It is a pattern matching algorithm

developed by Mak and Li [19][20][21]. To speed up the matching process, we

proposed a statistical threshold to remove the mismatch candidates from the

candidate pool. We also analyze the relationship between this threshold and the

nature of the pattern. A speed-up of the process without degrading the matching

accuracy is shown in the experiment.

The third part is the analysis of the transform coefficient distribution. This is very

important to many applications in transform domain and it is usually assume to be in

Laplace distribution. However, in our preliminary study, the transform coefficients

of the intra-predicted residue are in Cauchy distribution rather than Laplace

distribution. We verified this with different video sequences. Although this study

is still in a starting stage, it is a very important to many applications such as the

transform-based post-processing, the rate control and the rate-distortion optimization

(RDO) in video coding.

7 Thesis Outlines

In this chapter, a brief introduction about video coding standards has been given.

In next chapter, the motivation of our work will be explained. Three different

orthogonal order-16 integer transforms will be proposed and demonstrated. Their

developments and the abilities will be discussed in detail. They will also be

compared with several existing order-16 transforms. These transforms are

integrated into the reference software of two different coding standards, H.264/AVC

and AVS, in Chapter 3 and Chapter 4 respectively. The implementation details will

be clearly discussed. Their coding performances will be compared. Both

objective and subjective evaluation will be shown.

In Chapter 5, a new pattern matching method, Fast Walsh Search, will be

demonstrated. It is implemented as a motion estimation method into the

H.264/AVC reference software. It is shown that its accuracy is similar to Fast Full

Search but significantly simpler. It outperforms other fast motion estimation

methods in the reference software.

An analysis of the transform coefficient distribution will be presented in Chapter 6.

Usually the transform coefficients of images are supposed to be in Laplace

distribution. The same assumption is applied to the predicted residue in video

coding. However, it is found that the intra-predicted residue is in Cauchy

distribution rather than Laplace distribution. Methods to estimate the distribution

parameters are also proposed.

8 References

Youtube, http://www,youtube.com

ITU-T Recommendation H.261: Video codec for audiovisual services at /?x64 kbit/s,

1990.

International Standard ISO/IEC 11172-2 MPEG-1 Video, 1993.

International Standard ISO/IEC 13818-2 MPEG-2 Video, 1995.

ITU-T Recommendation H,263: Video coding for low bit rate communication, 1996.

International Standard ISO/IEC 14496-2 MPEG-4 Visual, 2004.

International Standard ISO/IEC 14496-10 MPEG-4 AVC, 2005.

Iain E. G. Richardson, "H.264 and MPEG-4 Video Compression," Wiley, 2003.

D. Marpe, T. Wiegand and S. Gordon, "//.264/MPEG4-A VCfidelity range extensions:

tools, profiles, performance and application areas,” IEEE ICIP 2005, vol. 1, pp I -

593-596, 2005.

10] GB/T20090.2 information technology — advanced audio video coding standard Part 2:

Video, 2006.

11] Jay Loomis and Mike Wasson, “VC-1 Technical Overview,'' October 2007. [Online]

Available： httpy/wwwjTiicrosoftxom/windows/windowsrnedia/howto/articles/vc 1 tech overview aspx

12] HEVC, http://www.vcodex.cora/h265 .html

13] JCT-VC, http://www.itu.int/ITU-T/studygroups/coml 6/jct-vc/

14] “Next Generation AVS Video Coding Specification Version 2.0，” AVS-N1590, March

2009. [Chinese]

15] “Next Generation AVS Video Coding ‘ Call for Proposal,” AVS-Nl 591，March 2009.

[Chinese]

16] Alois M, Bock, Video Compression Systems — From first principles to concatenated

codecs, lET Telecommunications Series 53, 2009.

17] G. Bj0ntegaard, “Calculation of Average PSNR Differences between RD-curves,"

ITU-T SG16/Q6, Document VCEG-M33, April 2001. [Online] Available:

http://www.vcodex.cora/h265
http://www.itu.int/ITU-T/studygroups/coml

http.7/wftp3.itu.int/av-arch/video-site/0104_Aus/

[18] Siwei Ma and C.-C. Jay Kuo, “High-definition Video Coding with

Super-macrobloch,” Proc. SPIE Vol. 6508, 650816, January 2007.

[19] C. M. Mak, N. Li and W. K. Cham, “Fast motion estimation in Walsh Hadamard

domain,” Proceeding of International Symposium on Intelligent Signal Processing and

Communication Systems, pp. 349-352, 2005.

[20] N. Li, C. M. Mak and W. K. Cham, “Fast block matching algorithm in

Walsh-Hadamard domain，” in Proc. Asian Conference of Computer Vision (ACCV)’

pp. 712-721, Jan. 2006.

[21] Chun-Man Mak, Chi-Keung Fong and Wai-Kuen Cham, “Fast Motion Estimation for

H.264/AVC in Walsh Hadamard Domain;, IEEE Trans, on CASVT, vol. 18, no. 6, pp.

735-745, June 2008.

Chapter 2 Order-16 DCT-like Integer
Transform

2.1 Introduction
Transform coding is a very common and important coding tool in video and image

coding. It is a linear process to decorrelate pixel data. Commonly, it is in a

block-wise basis. A patch of NxN pixel data are grouped into a block and this block

of data is transformed into NxN coefficients. Most of the transforms being used in

video and image coding are orthogonal and separable. Parseval's Theorem holds

when the transform is orthonormal. This means that the total energy in (the sum of

square of) the pixel domain is the same as that in transform domain. In addition, the

variances of some coefficients are usually larger magnitudes than the others in

transform domain. The data are packed into fewer coefficients and hence

compression is achieved. In image and video coding, 2-D transform is required. It

is important that the transform is separable. If a transform is separable, it means its

2-D transform can be achieved by a column-wise and a row-wise 1-D transform

independently. This significantly reduces the complexity from O(A^) to 0{N^). The

complexity can be further reduced if fast algorithm exists.

Many different transforms for image coding have been proposed, such as Haar

transform, Walsh Hadamard Transform (WHT) and Slant transform. The optimal

one is Karhunen-Loeve Transform (KLT). It is optimally tailored to a group of

images. However, it is image-dependent. It depends on the correlation of the

image data and hence it is not very popular in image and video coding. Instead, the

well-known sub-optimal transform, Discrete Cosine Transform (DCT) [2], is

commonly used. It is very popular in many processing and coding applications.

This is because the DCT and the KLT are similar when the pixel correlation is

approaching to 1. In most natural images, the pixel correlation is very high and

approaching to 1. This makes the DCT has a coding performance very close to the

optimal KLT. The DCT is also a real, orthogonal and separable transform which can

be implemented with real numbers. A number of fast DCT algorithms have been

proposed and DCT are widely employed in many signal coding and compression.

Recently, the DCT is replaced by Integer Cosine Transform (ICT) [1]. This is

because it also has a very high coding performance similar to the DCT but only

required integer arithmetic rather than floating-point. This does not only save the

computation dramatically but also reduces the drift error during the transformation.

The transform process can be divided into two steps. The first step is a linear

transform with integer kernel. The second step is scaling with real numbers. With

the integer kernel, its transform coefficients can be computed perfectly with finite bit

length. The real scaling constants can be embedded into quantization perfectly.

As a result, this solves the problem of drift error. As a result, latest video coding

standards, such as H.264/AVC [4], AVS in China [6] and also VC-1 [7], adopted

different ICT.

In image and video coding, fixed block size, says 8x8, DCT was commonly used.

However, there is a major drawback in fixed size block based transform. It fails in

adapting to varying video signal. This is because the DCT is only sub-optimal to

stationary first order Markov random signal. Unfortunately, video signal is changing

from time to time and from space to space. As a result, this limits the coding

performance. In order to adapt to the non-stationary video signal, Arbitrary

Block-size Transform (ABT, also known as Adaptive Block-size Transform and

Variable Block-size Transform, VBT) is proposed [8][9]. Transforms of different

sizes adapt to different parts of the video picture. Smaller transform codes rapidly

changing signals while larger transform codes smoother signals. In H.264/AVC

FRExt [10], both 4x4 and 8x8 ICT are adopted to form an ABT system. Either 4x4

or 8x8 ICT is selected to transform the predicted residue in each Macroblock (MB).

It IS reported that about 10% bit rate reduction is achieved in this ABT system [9].

The addition of smaller transform benefits videos with lower resolution or rich details.

Videos with higher resolutions (known as High Definition, HD)，such as 1280x720,

1920x1080 or even higher, are becoming more and more popular. It is expected that

larger transforms can provide better coding performance to these video sequences. In

[19], It is reported that the addition of 16x16 integer transform provides gains from

0.086 to 0.471 dB for HD sequences. As a result, this becomes our motivation to find

larger integer transforms (order-16 or above), which have better coding performances

and also low computation requirements, to improve the video coding performance.

Besides ABT with larger transforms, many transform based techniques have been

proposed to improve the coding performance, such as Shape-Adaptive DCT (SA-DCT)

[10][11] in MPEG-4, (Mode Dependent) Directional Transform (MDDT) [12][13].

Despite these two techniques not in our scope, a short introduction will be given.

SA-DCT is based on pre-defined sets of 1-D DCT basis functions. It usually

co-operates Video Object (VO) coding in MPEG-4. It transforms the VO data of

irregular shape. It is not applicable to all blocks but only to 8x8 blocks with a

binary alpha mask boundary that contain one or more transparent pixels. That

means it is only applicable to 8x8 blocks along the VO boundary.

In intra-prediction, it is found that the correlation in the predicted residue along the

prediction direction is still strong. The statistics of the predicted residues are

grouped according to their prediction mode. The 4x4 directional transforms are

derived from the KLT according the residue statistics. As a result, different

prediction modes take different directional transform. This is known as

Mode-Dependent Directional Transform (MDDT) [12]. An alternative is

demonstrated in [13]. The directional transforms are selected according the RD

performance. Overhead is required to indicate which directional transform is used.

This is not only applicable to intra-predicted blocks but also the inter-predicted.

In our work, to seek for order-16 integer transform with better coding performance,

we will propose three classes of order-16 transforms in this chapter. The first one is

the Simple Integer Transform. It has a simple structure and is derived from order-8

ICT. To improve the performance, the Hybrid Integer Transform from Dyadic

Weighted Walsh Transform will be proposed. It is slightly more complex than

Simple Integer Transform. Lastly, a novel algorithm deriving order-16 ICT will be

proposed. Two different order-16 ICTs, LLMICT and CSFICT, derived by this

algorithm are proposed. Their waveforms are very close to the DCT but

implemented in integers only. These proposed transforms aim to improve to coding

performance in video coding. They are integrated into the reference software of

H.264/AVC and AVS. Their coding performances will be shown in later chapters.

Instead, different analysis will be shown in this chapter and it is shown that the

proposed transforms have properties similar to the DCT. These transforms also have

fast algorithms such that they can be computed efficiently.

Before describing our proposed transforms, let us have a brief description of our

symbol notations in the remaining of this chapter first. We are not going to describe

the notation of every symbol in detail but we are going to roughly describe how our

notation system is. This may help to understand.

Notation Description
T Orthogonal transform matrix.
E The integer kernel of T, E and K form in a pair described in (2,10).

K The 1 -D scaling matrix of T. E and K form in a pair described in
(2.10).

S 2-D scaling matrix of T. It is a combination of two 1 -D scaling matrix
K described in (2.14)

P The odd part of T.

Q The even part of T.
X Input pixel data.
F Transfonii output coefficients.

Table 2-1 Notation system in later sections

All notations have both subscript and superscript. Their superscript describes their

order while their subscript describes their nature or type. For example, denotes

_ . • • “ “ ^ ^ “ ~ 2-5

Chapter 2 - Order-16 DCT-like Integer Transform

the order-8 ICT. Its integer kernel and scaling matrix are denoted as E;^) and

respectively.

2.2 The Discrete Cosine Transform
In this thesis, we are only interested in the transforms of order-A^ = where k is a

positive integer. Without specification, N is restricted to the integer powers of 2 in

this thesis. The Discrete Cosine Transform (DCT) referring in this thesis is DCT-II

which order-TV transform process is defined as:

/ , 二 � 4 " - 电 + 1) �w h e r e c , M) = �
2N I •J 去 otherwise

(2.1)

x\ and f j are the input signal and the output transform coefficients respectively. The

transform process can be represented in matrix form:

[2
r

N
COS合 COS務 (X)S 務

曾
COS蠻 COS發

r

c o s ^ COS —

cos
COS

(2AM)7r
~ ^ ~ I

2{2N-\)K 丨X
~ T H ‘

'DCT X

COS (yy-i) (2/v-0;r ^ -

T^cr is an NXN orthogonal matrix such that:

(2.2)

t S or equivalent to � I DCT J ‘

� “i s an order-iV identity matrix. The (/,y)th element in T 义 i s equal to:

cos
IN

where c
^ otherwise

(2.3)

(2.4)

Due to the dyadic symmetry, an order-2A^DCT can be decomposed into the odd part

DCT and the even part Q f̂̂ V [23][24][25]

n(2A') _
^ DCT 〜

0(") 0
VDCT “ N

0 P(")
” N [DCT

- I .
forA^>2. (2.5)

IN is rotated by 9(f while 0/v is an order-TV zero matrix. It is proven that Q^^^T

is a scaled version of the DCT

(2.6)

As a result, the DCT has a recursive structure:

-(2/V)
•DCT

r(A/)
DCT

0 N DCT - 1
forA^>2. (2.7)

The elements in T^j^ appear more than once and hence can be represented

with a few different elements a；. The elements with the same magnitude are

represented with the same a,. We can generalize a, such that it can be any real

numbers which keep the matrix orthogonal with the structure same as T 识 . I n this

thesis, this transform is called General Cosine Transform (GCT). For example, the

order-8 GCT is shown in (2.8). Obviously, order-8 DCT is an example of GCT with

1 . � r 1 1 / 疋、1 双、1 双、1 , 7 / r �
Its elements {uq, a]...ae} = {〒， - c o s (—) , - c o s (—) , - cos (-—) , - c o s (—) ,

V8 2 16 2 16 2 16 2 16

1 .71. 1 371..

严 i) ， 广 (T) } .

T(8)
'•GC

-a, - a ,

Oo «
<34 -a^ -a^

— i t i>
a) - a, a

- … “

a. — a, ti

一《丨
„ � 以1

a j flj —a:
a^, -an -an

CI2 — - fr̂ a, - â
- � — 打 e

a, a, - fli

(2.8)

GCT has properties same as the DCT. (2.7) can be rewritten as:

r(2yv)
^GC

r ~ -
T I

"I T⑷ A 厂 〜 "1 T T
Q g c 〜 I A' ^N _ "yv I/v £/v

.1. - V _
p(Â) [GC -I - T

-N IN -
for TV > 2. (2.9)

This is an important property to derive order-16 integer transforms in later sections.

厂 is orthogonal only when both and P � a r e orthogonal.

2.3 Integer Cosine Transform
2.3.1 Order-4 and Order-8 ICT

Order-8 integer cosine transform (ICT) in existing coding systems was first proposed

in [1], It is defined that an integer transform T is an orthogonal matrix which can be

composed by a scaling matrix K and an integer kernel E.

= K E (2.10)

E is a matrix which contains only integer elements and K is a diagonal matrix with

positive real elements, which makes the basis vectors of T unity. An ICT has both

the properties of an integer transform and a GCT. It is a GCT which has an integer

kernel:

T f �
(N)
IC (2,11)

The structure of 广 is the same as T�Jp but 广 contains only integers. It also

has a recursive structure:

/C

1 T(")

0 .
0 JV
�m
ic • I s _?_v

for7V>2.
(2.12)

Order-4 ICT, T；；̂, is defined as

T；?

- < 3 , a, - a .

(2,13)

It is orthogonal for any (ao, a], fli)- 1CT4(1, 2, 1) and ICT4(2，3, 1) are adopted in

H.264 and AYS respectively. For order-8 ICT, is:

，（8)
• !C

- a .
� '4

口0

- a ,

— a, -a, -0,

-ct.

Cl'j
- a ^

(2.14)

It can be decomposed into:

n (8)
^IC

Q(;) 0 4
i (4)

IC •
(2.15)

where

Q;:) 二 “
flo - OR,

a , -

is a scaled version of T/f and (2.16)

IC
a飞 一

-a, -a,

AN —a,
(2.17)

is orthogonal for any ao, as and a6. Pfc is orthogonal if: (4)

(2.18)

so as to ensure that T)*̂ is orthogonal. To make the basis vectors have waveforms

similar to the DCT:

a, > a. > a^ > a八 and a. > a, (2.19)

The 2-D transform process of an NXN data block X is modeled as:

(2.20)

Substituting (2.11) into (2.20) to yield:

(2.21)

is the 2-D scale matrix formed by the 1-D diagonal scaling matrix

The element-to-element multiplication is represented by ©. is defined as:

(2.22)

The inverse transform can be implemented as:

X = (2.23)

In usual manner, the 2-D scaling matrix of an integer transform, S, is integrated into

the quantization and rescaling process in coding system. The transform with

integer kernel, E, can be perfectly implemented with finite bit length. The drifting

error caused by irrational transform matrix (such as the DCT) can be prevented.

ICT also has this advantage.

There are infinite many integer solutions that satisfy (2.18). As a result, there are

infinite possible cases for . However, finite sets of cii, which obtain higher

transform efficiency (See Section 2.8.2 for detail), were suggested in [1]. The higher

transform efficiency means the higher ability to decorrelate the data. This also

implies higher compression ability. In the following, we name the order-// T,(广 as

ICT/v(flo, for ease of use. The larger value range of a„ the better performance

can be obtained. The larger value range of a, also means higher precision and higher

complexity usually. To balance the compression ability and the complexity, two sets

o f a „ ICT8(8, 12，10，6，3, 8, 4) and ICTgCS, 10, 9, 6, 2, 10, 4), are chosen. They are

adopted in the latest video coding standards - H.264/AVC FRExt [5] and AVS [6]

respectively. In H.264/AVC FRExt, order-4 ICT is also used.

2.3.2 Order-16 ICT
Order-16 ICT was proposed in [14] and [15]. Its integer kernel, E l̂̂ ,̂ is defined as

「(16) l/C

"0

"14

•a,.

14 -a
-a

•tf" a,

过0

- a

— a
^ ‘ 灯 7

•«13 -

-

-TTO -

n̂

 f
f
b
 on

 a.
 — a

ft

a
a
a
-a

-f l l
1

�‘li

6
 9

 3

i
 I

 i

a
 ̂

 a

 ̂

 f
l
 ̂
 f
f

-
 -

I

(2.24)

Similar to order-8 ICT, it can be decomposed into:

-(16) L/C-
0

(8) 0,

‘IC , u - (2.25)

»�$) is the odd part of T,(广.It has a structure:

> { I 6) IC

- A ,

- A .

a , -

- A :

- A -

- c r ,

«8
(2.26)

To ensure T〉？ orthogonal, both T〉？ and must be orthogonal. The criteria

for orthogonality are:

+ a^a^ + a^a^ - a^a^ + a^a^ + a^a^ + a^a^ + a]a (2.27)

(2.28)

«�«4 + a^a^ 以7 = + -^a^a^, and (2.29)

(2.30)

Some solutions to above equations are suggested in [14] and [15], However, it is not

easy to figure out the fast algorithm for and hence that for As a result,

there is no fast algorithm proposed for order-16 ICT. This motivates us to develop

other high performance order-16 orthogonal integer transforms with fast algorithms.

2.3,3 Other Order-16 Integer Transforms
There are a number of order-16 integer transform [15]-[18] proposed in recent years.

The integer kernels of these proposed order-16 transforms are listed in (2.31) to (2.34)

respectively. With these integer kernels, their transform can be easily found

according to (2.10).

'^men — (2.31)

It has been reported that non-orthogonal transforms can give a high coding

performance [19]. The error caused by its non-orthogonality can be controlled at a

very low level with proper design of the transform. However, it may not be easy to

derive its fast algorithm because of its non-orthogonality. In this thesis, the focus is

on the orthogonal order-16 transforms with fast algorithms.

3 2

4 5

4 4

4 1

4 2

•55 -21
3 2 - 飞 2

2 9 - 4 0

2 5 - 4 4

2 1 - 4 5

1 7 - 4 2

n - 3 5

9 - 2 5

4 - 1 3

飞2

4 0

2 5

4

- 1 7

- 3 5

- 4 4

- 4 1

- 3 2

- 1 3

9

2 9

4 2

4 5

3 8

21

- 4 1

- 2 5

4

3 2

4 5

3 8

1 3

- 1 7

- 4 0

- 4 4

-29

3 2

2 1

3 2

n
3 2 1 2

2 5 - 1 8 - 4 4 - 4 4

- 4 0

- 4 2

- 1 3

2 5

4 5

3 2

- 4

- 3 8

- 4 3

- 1 7

21

- 1 7

2 9

4 4

n
- 3 2

- 9

3 5

4 2

3 5 - 4 0

- 3 5

1 7

4 5

9

- 4 0

- 3 2

21

- 4 2

- 2 9

2 5

4 3

3 2

3 5

-25
- 4 0

1 7

4 3

飞2 3 2

- n - 2 1

•38 - 2 5

4 5

- 1 7

'29
9 4 4

4 0 - 1 3

- 3 2 - 3 2

- 2 1 4 3

3 2

- 2 9

3 5

1 7

- 4 5

- 4 5 4 5

- 4 2

- 3 5

- 3 8

4 0

4 0

- 4 2

13

2 5

- 4 5

3 2

4 3

- 1 7

- 2 1

4 4

- 3 5

4 3

- 2 5

3 2

- 1 3

- 1 7

4 0

- 4 0

2 5

- 4

- 1 7

- 4 4

- 3 2

4 2

- 4 5

3 8

- 2 1

12
- 4 3

- 2 9

1 7

- 2 5

1 3

(2.33

(2.34)

16 27
2 5

2 5

1 7

28

2 5

2 7

2 7

5

28

2 7

- 5

28

2 5 - 1 4 - 1 4 2 5

3 - 2 8 2 8 - 3

1 7 7 7 - 1 7

2 1 2 5 - 2 5 2 1

1 4

2 5

2 8 飞 - 2 】 - 2 5 - 1 1

2 1 - S - 2 5 - 1 4 1 4

一 2 1 - 9 - 2 5 3 2 7

_ 16 -16 -16 16 16
2 1 - 2 8 - 11 2 7 - 3

1 4 - 2 5 5 2 1 - 2 1

9 -27 2 1 】1 - 2 5

7 - 1 7 1 7 - 7 - 7

I I - 2 1 2 7 - 2 8 9

5 - 1 4 2 1 - 2 5 2 5

:56 2 3 6 ' i16 • 144
84 2 1 6

W 2 2 7 28 2̂0 29 - 201
M 2 5 6

；48 -392

l:>6 2 5 6

124 - 2 9 6

i04 176

132 - 1 1 6

120 128

88 - 5 6

2 0 4 0

88 - 4 8

25 (

2

0

6

0

4

6

6

6

8

6

7

8

3

6

6

7
4
1
2

 7
5
5
8
5
6
2
0

I
 I

r
i

 1
3
r
l
l

-
2
4
2
 -

 I

?
-
 2

 2

I

I

-
 -
 -

 _

I
 I

6

6

0

1

I

0

7

6

8

6

6

6

4

8

6

6
 2

5
I
4
0
0
'
-
6
7
8
5
5
5
2
 7
-
I
I
7

2

2

-

2

 T
>

1
 4

r
-
1

2
 7
-
1

 1

r
i

I

-
 -

I
 I

-
 1

6
8
0
 8
8
4
6
6

 4
1
0
9
4
4

5
 6
2
r
<
"
r

‘
4
0
r
r
^

 V
J
7
6
8
2
2
8
0

32

24!

104

29

i 20

39

20
136

；56 256 256 256 256 2:>6 2^6

.04 212 2 1 6 168 88 4 8 - 4 8

2 0 4 0 4 0 - 1 2 0 -184 2 1 6 - 2 1 6

29 -116 - 2 0 飞- 2 3 2 -188 、56 56

28 -飞 20 -飞 20 -1：8 138 飞20 、20

181 -224 -67 148 2̂2 116 -116 m -176 176 犯4 64 - 256 256

172 56 488 136 -424 -296 296

；56 256 2)6 256 256 256 256

36 488 -:>6 -472 248 9̂2 -392 64 256 -256 -64 W -176 -176
48 67 -224 181 29 -203 20、 ,20 -128 -128 2̂0 --̂20 128 128
：32 - 2 0 S 1) 6 2 9 - 1 3 9 2 2 7 - 2 2 7

84 - 2 1 6 216 -184 120 - 4 0 - 4 0

68 - 2 1 6 2 7 2 - 3 0 4 3 3 6 - 3 4 4 3 4 4

56

29

23：

20 tn
：>6

92

56

96

76

16

28

56

40

4 8

E

E,

2.4 Simple Integer Transform
To balance the complexity and the compressibility, here we proposed a novel order-16

simple integer transform [20]. It was adopted into the AVS reference software [21],

It is developed from the existing order-8 ICT. Suppose an order-8 ICT with integer

kernel E;? as shown in (2.14), we can extend it into order-16 integer kernel. Here

we name them as E^/ and respectively. They are defined as:

-a, flrt -
a:

- a -

a, -a, -a.
-a,

a.
-a,
-a,

(2.35)

^ic
17(8)
.札 / r

1 7 (8)

S^Tf-

a,

a, a^

a, -CL

- f l .

(2.36)

- f la -

where H = [1 1; 1 -1] is the order-2 Hadamard Transform Matrix and ® is the

n A

Kronecker product. We can rearrange Ê ； and E ” in sequency order to become

Esi and E幻 :

Finally, normalize the integer kernels E幻 and E52 with K^i and K52 respectively.

Orthogonal order-16 Simple Integer Transforms Tsi and T幻 are formed. Here we

name the above two transform matrices to be «i . ’，《6) and T 幻 a \ . . . a e)

respectively. The complexities for these two transforms are the same for the same

given set of a,, but Tsi has a higher compressibility than Ts2- As a result, we shall

demonstrate the experimental result of Tsi only. Two different order-8 ICTs were

proposed in H.264/AVC and AVS respectively. For simplicity, the Tsi implemented

with the order-8 ICT in H.264/AVC and AVS are denoted as 飞SI-TM4 and TS/-AVS

2-16 一

a,

a , -

t
f

t
f
j t
f
 a
s

“丨

(2.37)

-fln

-a. «5

(2.38)

a-
a.
a,
这,

a
a

A.

a‘

fl丨

fl；
fl；

a-

a-

a
a

a.

a

a

a.

a,
G丨

«o

«5

fl丨

«0
«0

«5

a
a

«(
a
a-

a
a

a-
a

a
a

a.
a；

a.

fl,
a.

a

(a) H.264/AVC (b)AVS
Figure 2-1 Fast algorithms oforder-8 ICT adopted in (a) H.264/AVC and (b) AVS.

16-
•n-

Order-8 ICT 8令

WHT

(a) (b)
Figure 2-2 Fast algorithm of proposed order-16 transform (a) Tsi and (b) T幻.

respectively. They are equivalent to Ts/(8, 12，10, 6, 3, 8，4) and T幻(8, 10, 9, 6, 2’ 10，

4) respectively. Their integer kernels E幻 can be easily obtained using (2.37).

The fast algorithms for Es/ and E幻 are very simple. Each of them consists of eight

order-2 Hadamard Transforms and two order-8 fast ICT. The fast algorithms of these

two order-8 ICT are shown in Figure 2-1. The two different Simple Integer

Transforms can be derived from these two ICT.

8
 8

川

 2

 2

 3

J

3
 2

#
宇
漏
 / 3 \

X4
X6
Xl
X5
X3
X l

8
 8

 1

 4

T

1

轰_
 2

ow-

2

i
-
i

0

2

4

6

7

5

3

1

x
x
x
x
x
x
x
x

2.5 Hybrid Integer Transform from
Dyadic Weighted Walsh Transform
In Simple Integer Transform T幻，there are only 8 different levels in the odd frequency

vectors at most. However, there are 16 different levels in DCT. This means that

Simple Integer Transform only approximates the DCT with limited accuracy. In

order to make the approximation more accurate, the order-8 transform for odd

frequencies is replaced by another transform with more levels. In this section, it is

replaced by an order-8 Dyadic Weighted Walsh Transform (DWWT) which has a

maximum of 8 different levels in each basis vector. As a result, a better

approximation and hence a better performance can be achieved.

First of all，let us have a short introduction to DWWT first. For simplicity, here we

take an order-4 as an example. Consider a vector of 4 positive elements, F̂ = [a。，a],

a2, a^]. We can find its 5 dyadic symmetric [22] vector V^ 二 [£»()’ bi, bj,办3] by:

b 丨 f o r [0,1,2,3] (2.39)

and @ is the bit-wise "exclusive-or" operation. As a result we can find 4 dyadic

symmetric vectors,

Assign +/- sign to each element such that V’ . = 0 if i 本 j. This sign assignment

is not unique such that more than one orthogonal matrix for the same (ao, a], a j , a^}

can be found. In (2.40), two with different sign assignments are shown.

s K

0 do a\ ai
1 a\ cio ai
2 <33 Cl]

3 ai ao
Table 2-2 Example of dyadic symmetric vectors

a丨

a.

«2
<3e -

一以II

a, a.

。丨

-J3.I

A-:

a� (2.40)

Denote that the 4x4 matrix formed by the four basis vector F, as T 二 , the

Dyadic Weighted Walsh Transform (DWWT). Its basis vectors must be orthogonal

for any real {gq，，02，<33}. Using the same idea, it can be extended to order-2^ (for N

> 2) transform. One of the order-8 DWWT in its family is:

T �
oww

K •

A 一

A -

.办3 ‘
A
b�

b ‘

b暴

•K -A,

-办I

K
h
K

-K
-b,

-bs
b�

b]

bs
-b�

h
-h

-b.

(2.41)

Here we name the above order-8 DWWT as I^DWW in later sections for simplicity. It

is denoted as Tdww {ho..力7) when its parameters are given.

Our proposed order-16 Hybrid Integer Transform (HIT), T � /) ’ is a hybrid of two

different order-8 transform. One is the above DWWT JDWW and the other is order-8

ICT . The odd basis vectors are built by TDWW while the even basis vectors are

HIT can be expressed as:

n(t6) _ 1̂ (16)1̂ (16)
I/// 一 ^N/ Lh! (2.44)

such that is a diagonal matrix to unify the basis vectors of the integer kernel

Eg) and hence T^/^ is orthogonal. Ejjf is built by E g and EDWW, which are

the integer kernels of and respectively. ForEj^^ here we can simply

choose the integer kernel of ICTgCS, 10, 9, 6，2, 8, 4) which is adopted in AVS. For

EDWW, because of its property, there are infinite many solutions. Here we search for

different "EDWW which produce T)丄6) ^i th high coding gain GTC (see Section 2.5)

with basis norm similar to that of ICT8(8, 10, 9, 6, 2, 8, 4), These sets of EDWW are

built byT)$). T忍6) is defined in (2.42).

rfltl (2.42)

In matrix representation, it is represented as:

(2.43：

/
8
 /
s

t)

TW

,(8)

0
T(16) 1"/

shown in the following table. Besides compressibility, existence of fast algorithm is

also an important concern. The fast algorithm for Ejj；^ is achieved as shown in

Figure 2-3.

ID
Set of E DWW

Norm
GTC

ip=0.9)

E •DWM 574 4-501

E vfvm 570 4.497

^Divm (MICT) 561 4 508

E DWW4 546 4 498

E Dmvs 544 4.493

E DIVW6 540 0 9 8 6 4 4.987
Table 2-3 Examples of EOFVIR with high coding gain GTC-

Figure 2-3 The general fast algorithm of proposed order-16 transform E"/,

It is not easy to obtain a generalized fast algorithm for ^DWW but for a specific ̂ DWW-

In [19], Dong pointed out that orthogonal matrix can be decomposed into product of

simpler sparse matrices if its norm is not prime. Let the norm of ^dww be D. If

Eoww can be factorized such that ^dww = M1M2M3.. .M^-i, D can also be factorized

into d\d2...dk = D where di is the norm of M,. So if the factors of D are found, the

factors of ^dww can be easily found. However, some D are prime numbers or have

large prime factors. It is difficult to factorize these ^DWW- For these ^DWW, they can

be decomposed into simpler linear sum first. This can simplify the factors of ¥ J D W W

and provide a simpler fast algorithm for ^DWW- An example the decomposition of

^Dww\ is shown in (2.45). It is decomposed into the sum of two ^dww, ^dww{1 1, 11,

11，9，8，5，4，1) and KowwiO, 0, 0，0，0，2，0，0). The first one can be decomposed

into 4 sparse matrices.

E DLVWL

= E 脈“ 11,11,11,9,8,7,4,1)

tE^(11，11’1�,9,8,5,4，1) + E
• - 1 2 1

- 1 - 2 2
- 1 1 - 1 2

2 1 2 1 1

1
2

2
- 1 1

- \

- 3

I
1

1
1

1

講(0,0,0,0,0,2,0,0)
2 II

“ 1

1 2

2 2
1 - 1
1 1

1 1

- 麗

一 1

(2.45)

The factorizations of the Edwwi, ^dwwi and ^^owm are shown in the appendix. With

the factorization, the fast algorithm oi^oww, and hence that of E(�,6), can be obtained.

The A^-element matrix P二）is relaxed to an (A/‘/2)-element matrix P二^ . Here,

Relaxed General Cosine Transform (RGCT) is defined by replacing P^f) in (2.9)

with iiN)
RGC

，（2A0 ， 77 VRGC
•RGC IK p(A/)

R RGC,

1

- J
' �f o r TV�2. (2.47)

2.6 LLM Integer Cosine Transform
2.6.1 Relaxed GCT

The proposed order-16 transforms in previous sections are extended from order-8

transforms. The waveforms of these transform is slightly different from those in the

DCT. This lowers the coding performance. The order-16 ICT proposed in [14] is

very close to the DCT. However, it is not easy to derive its fast algorithm and no fast

algorithm has been proposed so far. As an alternative, here we proposed a novel

method to derive higher order ICT based on an existing fast DCT algorithm.

Recall that GCT in (2.9) can be decomposed into two parts, P(Jp and Q^^^.

Here we proposed to relax P^^^ to P^^c such that:

(2.46)

a a a

I：

a a

a

o.

N-2,
^N-2
I 〜 - 丨

p(/V；

Take 8 as an example, P 思 �i s

4
.

•

a
s

办
7

义
 T

^

-
 _

J

1

C
I
 J.

 ̂L̂
.

^

1

 I

1

6

t
a
i

5

7

2

4

 1
,
8

 <
-
<

«

T
o
 _c

 J
a

 7
a

c

 r
o

a

-

I

_

5
 1
.
3

7

f

I

8

2

6

^

a
 T
o

 c

 J
a

 /
a

 c

 f
l

二

I

I

4
 1
,
6

2

8

r

1

7

e

a
 t
d

 C

 J

 J

 c

！
3

I

I

-

I

>
8

4

2

7

5

X
I

A

a
 J
o

c

 J
a

c

 T
r
t
^

a

-

！

I

“2
 6
5

c
丨
办
4

山

-

-

-

-

-

2

4

5

6

7

B

f
l
-
c
,

c
 T
f
l

J

 _c

 Jn_

f
l

I
I

The next step is to find the values in P 盟 � .T h i s can be achieved by existing fast

DCT algorithms such as the LLM fast DCT algorithm proposed by Loeffler et al, [26]

and the CSF fast DCT algorithm proposed by Chen et al. [23].

2.6.2 The LLM Fast DCT
LLM fast DCT algorithm [26], which was proposed by Loeffler et al., requires only a

few multiplications. It requires only 31 multiplications and 81 additions for order-16

1 -D DCT. It is also presented in a nice butterfly structure shown in Figure 2-4. It is

divided into 5 stages from the input signal XQ 15 to the output coefficients fo 15.

Multiplications with the irrational constants shown in the figure are required.

Although only order-8 and order-16 LLM Fast DCT are proposed in [26], it is not

difficult to derived higher order fast algorithm with similar structure. As a result, we

use it in our proposed algorithm of deriving higher order ICT. This will be shown in

later section.

Figure 2-5 The generalized odd part of LLM algorithm.

Figure 2-4 The LLM fast DC丁 algorithm.

2.6.3 The Proposed LLMICT

c l 2 S�

h

/ 丨 3

/9

/ . 5

/ l

fl

/n

/5

1

X

I: I:
h

I

一

一 义 1 1

/o

h

/ 4

fn

,2

/6

/ l 4

/m

2 /3
2 R

/ 1 3

/ 9

/丨

fl

fl2 /"
k'2 r

4i

X
c l 2
-a

I V2cl2

V2c l2

4

10

10

14

T

c l 4

c I 4

i
s7

si

s3

s3

11

s7

y
i I i

I 1
if
f f

i

^
 ̂

 ̂

*I0

•̂ IJ

Chapter 2 - Order-16 DCT-like Integer Transform

Since we are going to find only the odd part, P^J^ , we focus in the odd part of the

LLM algorithm. Its generalized version is shown in Figure 2-5. The irrational

constants are replaced by variables g,.,n，r and j. It is very intuitive to take these

constant as the integer approximation of the irrational constants. For example h =

61 w 61.2442 w x cos(-|y). However, the orthogonality will be destroyed by

doing so. Instead, when the fast algorithm is expanded into matrix form, the matrix

of the odd part becomes:

j(8)
• U.M —

rj + sk
sj + rk

J
k

rj 一 sk
rk - sj

ri - si
rl — si

•iri + sl)
• (si + rl)

- (/ - /)

h + m
sh — rm

{rh - sm)
-h
-m

sh + rm
rh + sm

h-m

• (sg + rn)
•{rg + sn)

ff
K

sg - m
rg-sn

-(g —�)

g-n
(rg - sn)
(sg-rn)

•{rg + sn)
• (sg + rn)

h-m
• {rh + sm)

sh + rm
m

-h
rh 一 sm
sh - rm
{h + m)

• (si + rl

rl - s
• {ri — si

{fk - sj)
rj — sk

• {sj + rk)
rJ + sk

-ij + k)

(2.49)

Compare (2.49) with (2.48), we can find that they have the same structure and hence

»(8)

LLM is a possible solution to P^^^ . Here, we propose an orthogonal integer

transform T^f^ , called LLM Integer Cosine Transform (LLMICT) by replacing Pj'^j.

in (2.47) with

nr(2/V)—
1 LLM 一

(") 0
LLM “ N

’ N LLM
(2.50)

For ease of implementation,飞二 can be replaced by T] p when N < 8. Lastly, to

ensure orthogonal, the criteria for orthogonality (2.51), (2.52) and (2.53) have

to be satisfied for arbitrary r and 5：

(2.51)

(2.52)

(2.53)

The solution to the above equations is:

(2.54)

for some positive integer a. To make the basis vectors similar to the DCT ones,

another constraint is added:

g>h>i>J>k>l^m^n (2.55)

There are infinite sets of solutions to these two constraints (2.54) and (2,55). It is

very interesting that some of these solutions can be found recursively without

exhaustive search. If given a solution (g, h, i,j, k, /, w, n) to (2.54) and (2.55), (J+k,

iH, h+m, g+n, g-n, h-m, i-ij-k) must be a solution, too. This is because:

U + kY+ij-kY =2{f+k') = 2a (2.56)

which is also a positive integer. This means that the (J+k, J-k) pair satisfies (2.54).

Other pairs, (;+/, i-l), (h+m, h-m) and (§"+"，g - n) , also have the same property such

that (J+k, i+l, h+m, g+n, g-n, h-m, i-l, j-k) is a new set of solution.

Here some examples of (g.. .n) are shown in Table 2-4 and Table 2-5. (g...n) can be

represented in 6 bits in Table 2-4 while they can be represented in 5 bits in Table 2-5.

一

They are sorted according to their coding gain in descending order in each table.

They are named as A1 �A 7 and B 1 � B 7 .

ID 8 •t f J A I m n
A1 61

i L 59 53 49 37 31 17 7

A2 1 46 45 42 35 30 19 10 3

A3 , 4 3 42 38 34 27 21 11 6

A4 59 58 53 46 37 26 11 2

A5 I 62 59 53 46 43 34 22 11

A6 51
1

48 44
1

37 36 27 19 8

A7 49 47
L_ ———

44 41 28 23 16 8

Table 2-4 Example solutions for g…n which can be represented in 6 bits.

ID 8 h i J k / w

B1 18 17 15 15 10 10 6 1

B2 29 26 22 22 19 19 13 2

B3 20 19 16 16 13 13 8 5

B4 26 25 23 23 14 14 10 7

B5 30 27 22 22 21 21 14 5

B6 25 23 19 19 17 17 11 5

B7 29 27 25 25 15 15 11 3

Ta ble 2-5 Example so lutions for g...n which can be represented in 5 bits.

The examples in Table 2-5 can be implemented with fewer operations. However, the

coding performance will be slightly lowered. This is a trade-off between

complexity and performance.

Although r and s can be arbitrary, it is better to choose r : s ^ sin (^) : c o s (譬) «

0.4142. (r, s) can be taken as (1,2) or (2, 5) for simplicity.

Orthogonal PgL is found. Recall (2.50) and replace with ICTgCS, 10, 9, 6，2，

10, 4). Finally, in order to normalize the dynamic ranges of different coefficients,

49 -

Figure 2-6 Fast 1-D Forward Transform for LLMICT-Al.

o

Order-8 ICT

bit shifts are added to the last stage. Taking A1 and B1 as the example, their integer

transform kernels are shown in (2.57) and (2.58). Their 1-D fast transforms are

shown in Figure 2-6 and Figure 2-7 respectively.

lU

t8

m

f4

£2

no

f6

f l4

G

fl3

f9

f l5

fl

f7

fll

:<6

2
- 2

• ^

- 2

4

一 又 ;

w I i
2

- 2

E

M

49

1
1
J
變
曙
4

、

(2.57)

256 256 256 256 256 256 256 256 Zlr> 256 256 256 256 256 256"
3 3 6 3 0 4 2 7 2 2 1 6 168 88 4 8 - 4 8 - I E - 1 6 8 - 2 1 6 - 2 7 2 - 3 0 4 3 3 6 - 3 4 4
2 8 8 192 6 4 - 6 4 - 1 9 2 - 2 8 8 - 3 2 0 - 3 2 0 - 2 8 8 - 1 9 2 - 6 4 6 4 192 2 8 8 3 2 0
2 0 3 3 3 - 1 5 7 - 2 9 1 - 3 2 9 - 2 6 1 - 8 7 87 2 6 1 3 2 9 2 9 1 1 5 7 - 3 3 - 2 0 3 - 3 1 9
128 - 1 2 8 - 3 2 0 - 3 2 0 - 1 2 8 128 3 2 0 3 2 0 128 - 1 2 8 - 3 2 0 - 3 2 0 - 1 2 8 128 3 2 0
4 9 - 2 6 1 - 3 1 9 - 8 7 2 0 3 3 2 7 171 - 1 7 1 - 3 2 7 - 2 0 3 8 7 3 1 9 2 6 1 - 4 9 - 2 8 3

- 6 4 - 3 2 0 - 1 9 2 192 3 2 0 6 4 - 2 8 8 - 2 8 8 64 3 2 0 192 - 1 9 2 - 3 2 0 - 6 4 2 8 8
124 - 2 3 6 2 8 2 4 4 68 - 2 1 2 - 1 4 8 148 2 1 2 - 6 8 - 2 4 4 - 2 8 2 3 6 124 - 1 9 6
2 5 6 - 2 5 6 2 5 6 2 5 6 - 2 5 6 - 2 5 6 2 5 6 2 5 6 - 2 5 6 - 2 5 6 2 5 6 2 5 6 - 2 5 6 - 2 5 6 2 5 6
2 1 2 - 6 8 2 4 4 - 2 8 - 2 3 6 124 196 - 1 9 6 - 1 2 4 2 ^ 6 2 8 - 2 4 4 6 8 2 1 2 一 148

3 2 0 6 4 2 8 8 - 2 8 8 - 6 4 3 2 0 - 1 9 2 - 1 9 2 3 2 0 - 6 4 - 2 8 8 2 8 8 6 4 - 3 2 0 1 9 2

3 2 7 2 0 3 8 7 - 3 1 9 2 6] 4 9 - 2 8 3 2 8 3 - 4 9 - 2 6 1 3 1 9 - 8 7 - 2 0 3 3 2 7 - 1 7 1
3 2 0 3 2 0 - 1 2 8 - 1 2 8 3 2 0 - 3 2 0 128 128 - 3 2 0 3 2 0 - 1 2 8 - 1 2 8 3 2 0 - 3 2 0 128
2 6 1 3 2 9 - 2 9 1 157 3 3 - 2 0 3 3 1 9 - 3 1 9 2 0 3 - 3 3 - 1 5 7 291 - 3 2 9 261 - 8 7
192 2 8 8 —320 3 2 0 - 2 8 8 192 - 6 4 - 6 4 192 - 2 8 8 3 2 0 - 3 2 0 2 8 8 - 1 9 2 6 4

- H t 168 - 2 1 6 2 7 2 - 3 0 4 3 3 6 - 3 4 4 3 4 4 - 3 3 6 3 0 4 272 2 1 6 - 1 6 8 8 8 - 4 8

2 5 6
3 4 4
3 2 0

3 1 9
3 2 0
2 8 3
288
196

13

Figure 2-7 Fast 1-D Forward Transform of LLMICT-Bl.

Order-8 ICT

wU

xl >< «5
fD

fS

iiz

f4

f2

flO

f6

fl4

B

f l3

f9

f l5

fl

f7

f l l

¥ 岁二

(2.58)

2

5

0

0

0

5

6

0

2

0

4

0

6

5

8

5

3
2
4
4
4
3
3
3
3
2
2
2
1
 _

 _

I

I

I

 I

1

1

2

5

6

0

6

5

8

0

2

0

0

0

0

5

4

5

3
 2
 3

 2

 1

I

-

 2
3
3
4
4
4
3
2

-
 -

 -

2
3
4
5
6
8
0
4
2
2
8
3
0
0
6
1

3
 2
 2

 -

 1
2

 4
 3

 3

 1

 2

 4
 4

 3
 1

I

-

I

!

I

I

I

2

9

8

0

0

7

4

2

2

6

6

6

5

5

0

7

3
1
 2

 4
 3
 2

 -

 3
3
1
1
3
3
4
1

-

I
 -

-

-

-

-

•

I
 I

-

I

2

7

8

5

0

6

4

6

2

2

6

7

6

0

0

9

3
 1
 -

 3

 4

 1
2
 3
 3

 3

 3

 1
2

 4

 1

-
 -

 -

 -

 -

 -

 -

 -

>

•

•

I

I

2
1
4
0
6
9
0
2
2
4
8
8
0
5
6
3

3
1
2
4
1
2
4
1
3
3
 -

 2

 4
 -

 3

 2

-

-

I

-

-

-

-

-

t

-

•

眉

•

2

5

6

5

6

0

8

0

2

0

0

5

0

0

4

5

3
 -
3
3
1
4
 3
3
2
4

 -
4
2
2
2

-
 _

 -

 -

 -
 -

 -

 -

•

_

•

I

•

2

5

0

5

0

0

6

0

2

0

4

5

6

0

8

5

3

1

4 4
2
3
2
3
3
2
3
1
4

_
2

_
-

i

i

i

i

2

5

0

5

0

0

6

0

2

0

4

5

6

0

R

5

3
 4

 -

 4
2
3
2
3
3
2
3
1
4

_
2

1

-

-

-

-

i

2

5

6

5

6

0

8

0

2

0

0

5

0

0

4

5

3
 3

 3

 1
4
 3

 3
 2
 4

 4

 2

 2

 2

和

I

1

2

1

4

0

6

9

0

2

2

4

8

8

0

5

6

3

3
1
2
4
1
2
4
1
3
3

t

2

4

3
2

i

i

如

j

2
7
8
5
0
6
4
6
2
2
6
7
6
0
0
9

3
1

I

3
 4

 1
2

 3

 3

I

3
 3

 1
2
 4
 1

-

-

-

-

-

-

-

I

-

_

伸

I

•

2

9

8

0

0

7

4

2

2

6

6

6

6

5

0

7

3
1
 2
4
3
2
 3
3
3
1
1
3
4
1

仇
 __

-

-

_

2

3

4

5

6

8

0

4

2

2

8

9

0

0

6

1

3
 2
 2

I

2
 4
 3
 3

I

2
 4
 4

 3

 1

-
-
-
-
-
-

I

•

I

•

2

5

6

0

6

5

8

0

2

0

0

0

0

5

4

5

3
 2
 3
 2

 1
 -

 2
3
3
4
4
4
3
2
 _

-
-
-
-
-
-
-
-

2
5
0
0
0
5
6
0
2
0
4
0
6
5
®
 5

3
2
4
4
4
3
3
3
3
2
2
2
1

n
 •

One may wonder the relationships among the ICT proposed in [1] and [14] (i.e. J j f))

and our proposed LLMICT. Their relationship is illustrated in Figure 2-8. In [1] and

[14], the DCT is generalized to Tec and then the ICT, T/c is found as a subset in Tec-

Here, we further generalize TGC to TRGCT and a subset, TLLM, is found in TROCT- If the

members in TLLM have integer kernels, they are our proposed LLMICT or denoted as

TJLLM in Figure 2-8. The approach to derive orthogonal transforms here is different

from that in [1] and [14]. However, the fast algorithm of the ICT in [14] (order-16

ICT) may not be found easily.

Figure 2-8 The relationship among T } ^ T 仏 , T 监 and the DCT.

Despite of the order-16 ICT proposed in [14], it is not easy to derive its fast algorithm.

Instead, our proposed algorithm is based on a well-structured fast algorithm with

integer multiplication only. The proposed transform has a recursive structure such

that higher order transform, such as order-32, can be easily derived. Since the LLM

fast DCT is defined for order-2^ only，the proposed LLMICT is also defined for

order-2^ only. It is not difficult to derive the LLM algorithm for higher order fast

DCT. As a result, P监 and hence T监 can be easily found for TV > 16.

2.6.4 Order-32 LLMICT
Using the same idea, order-32 LLMICT can be found. Its fast algorithm is shown in

Figure 2-9. Here, the order-16 LLMICT for the even part is using our proposed

LLMICT-Al. In the figure, a\.. an are predefined constants. The criteria for

orthogonality are:

+ … = + ‘ = + «14 = + ‘ for some positive a, (2.59)

+ â o = + = /? for some positive P, (2.60)

Three more constraints are added to make the waveforms similar to these of DCT:

6

as

>
1

>
l

 a
.

a

>
_

>_

M

6

Q

S

>
-

a
s

>
-
>
-

2

4

1

a

«

>_
 >
1

3

1

>_
 >
1

2

a

川

>
〔
>
1

！3

9

a

>
-

(2.61)

^ 1 7 ^ ^ 2 0 ：

'•22
»sin

(2.62)

(2,63)

For simplicity, (<321, a22) are taken as (2, 1). Some solution sets for (2.59), (2.60),

(2.61) and (2.62) are shown in Table 2-6, Table 2-7 and Table 2-8.

Set «17 «18 «19 «20
1 8 7 4 1

2 9 7 6 2
3 11 10 5 2

4 11 9 7 3
5 12 9 8 1

Table 2-6 Example solutions for order-32 LLM] [CT which satisfy (2.60) and (2.62).

Se
t

«2

«3

fl4

«5

«6

«7

«8

«9

«1
0

«1
2

«1
3

«1
4

«1
5

«1
6

A
1

25
3

25
1

24
3

23
7

23
3

21
9

19
7

18
1

17
7

15
9

12
7

99

89

71

33

9
A2

17

9
17

8
17

3
16

6
16

3
15

7
14

2
13

1
12

2
10

9
86

74

67

46

19

2

A
3

21
7

21
5

21
0

20
1

19
8

19
0

17
0

15
4

15
3

13
5

10
5

89

82

55

30

6

A
4

16
5

16
4

16
0

15
5

14
4

14
1

13
2

12
0

11
5

10
1

88

83

60

45

27

20

A
5

24
8

24
5

23
6

23
5

22
4

22
0

20
5

17
9

17
2

14
0

11
5

10
7

80

77

40

11

A
6

21
2

21
1

20
3

19
6

18
4

18
1

17
3

15
2

14
9

12
4

11
2

10
7

83

64

28

19

A7

23
5

23
3

22
9

22
7

21
5

20
5

19
1

18
5

14
5

13
7

11
5

95

61

53

31

5
A8

24

2
24

1
23

9
22

3
21

4
20

9
20

6
19

3
14

6
12

7
12

2
11

3
94

38

22

1

A9

24
5

23
8

23
5

23
0

20
6

20
2

19
7

19
0

15
5

14
6

13
9

13
3

85

70

59

10

A
lO

20

2
20

1
19

8
19

4
18

3
17

4
16

7
\

16
2

12
1

11
4

10
3

86

57

41

22

9
Ta

bl
e

2-
7

Ex
am

pl
e

so
lu

tio
ns

 f
or

 O
rd

er
-3

2
LL

M
IC

T
w

ith
 (

al
..

.a
l 6

) l
es

s
th

an
 2

56
.

Se
t

«2

“3

«4

«5

fl6

«7

«
8

�

«9

«1
0

a

n

«]
2

«1
3

flj
4

«I
5

«1
6

B1

97

95

92

88

80

80

73

73

64

64

55

55

41

31

20

4
B2

12

5
12

2
1

1
5

丨

10
9

10

6

1
0
6

9
4

94

83

83

67

67

62

50

29

10

B
3

74

73

71

70

62

62

5
5

55

50

50

41

41

2
5

22

14

7

B
4

11

1

1
1
0

1
0
6

9
7

9
0

90

79

79

78

78

65

65

54

3
3

15

2

B
5

1
1
8

11
7

11

4

10
7

98

98

91

9
1

78

78

69

69

54

3
7

2

6

2
1

B
6

10
5

10

3

9
5

 ,

93

87

87

8
1

8
1

67

6
7

5
9

59

4
9

4
5

2
1

5

B
7

10

9

10
8

10

7

10
0

9
6

96

80

80

75

75

53

53

4
5

2
4

19

12

B
8

11

5

11
0

10

9

98

9
4

94

89

89

77

77

67

67

61

38

35

10

T
ab

le
 2

-8
 E

xa
m

pl
e

so
lu

tio
ns

 f
or

 o
re

 er
-3

2
LL

 M
IC

T
w

ith
 (

al
...

a]
 [6

) l
es

s
th

an
 1

28
.

Order-16 LLMICT

Figure 2-9 Fast Algorithm oforder-32 LLMICT.

J 21

Take {a\i, a\%, “19’ <320) = (8, 7, 4，1). One order-32 LLMICT A1 with {a\...a\^)=

(253,251,243,237,233,219, 197, 181, 177，159, 127,99, 89 ,71 ,33 ,9) and another

B1 with (f l i . . . a , 6) - (l l l , 110,106,97,90,90, 79, 79，78, 78, 65，65, 54, 33, 15,2) are

built. They are shown in Figure 2-11 and Figure 2-12 respectively. Their

transform matrices are shown in the next two pages without normalizing their basis

vector norms. It is shown that their matrix elements requires 12 bits and 11 bits

/o
/.6
/8
flA
fA
fn
U
/ 2 0

k
/ 2 6

/30
h
/m
hi
/.O
几

/丨9

,29

h

/23
/.7
/l5
/3,
^^

fl
,2丨

fu
fs

X V / "
V i i t / y

1
I
I

20

•21

22

.23

24

29

30

(including sign bit) to represent respectively. Order-32 LLMICT is still under

investigation. Fine-tuning is required. It will not be included in the analysis in

later sections and chapters. However, in Figure 2-10, it is shown that our proposed

LLMICT have waveforms very close to the DCT. Here we show some analysis

about these two transforms in Table 2-9. These figures are for reference only but

they show that order-32 LLMICT are quite close to the order-32 DCT.

Transform
DCT

Distortion (%)

Transform Coding Gain (dB)
Transform

DCT

Distortion (%) p = 0.6 p = OJ p = 0.8 p = 0.9

Order-32 DCT 1.855 2.806 4.268 6.959

Order-32 LLMICT-Al 0.0136 1.847 2.792 4.246 6.921

Order-32 LLMICT-Bl 0.0384 1.845 2.789 4.240 6.911

Table 2-9 Brief analysis of order-32 LLMICT

k
PrequencyA

VI…….“/"X .
1 / i V /

；A ' f\

jiX/S'^-'-'Kp-

…A…..k ^ • \k 7

劇珊迎

Frequency 5

• • … • • •• v/ N

i i :笨 i i通

mMM

\....7tv.'.../T;…../ � �A '/I......fV.
夺、f ^

••• •

I- • f\ •‘…‘f\ f\…•/ “ ‘…••f\…--f\ A A''''A

……Y'‘.. • . y - - Y - : \J:” y . . .

mSB WBi

r - 0.4

...；.厂•…丨...」.,；..1..：. 02

i l l 。 ：
i i S i : : i i i i : : s i l M

0 5 10 J5 20 25 30

Frequency 20
r 04

：

i / f f i i p s ；:
: : ' . 1 : 04

5 10 15 20 25 30 。

Frequency 21

mm ：：
: . . ： \ , n 1

) 5 10 15 20 25 X °

Frequency 22

ffliii::
i . i > ; A i

1 5 10 15 20 25 30

Frequency 23

0 5 10 15 20 25 30

Frequency 24

'•‘ ； ' ： I……： 。•“

W i W ：：
• • • i i • 1 , Q A

5 10 15 20 25 30 ' Ĉ

Frequency 25
‘• ““ • •： r….… 。.••

i U f f t l 2
n i

) 5 10 15 20 25 30

Frequency 26
• . • r 0.4

S 10 15 20 25 30

Frequency 27

W i n
0 5 10 15 20 25 30 ""O

Frequancy 26

r … - 04

§ § § § ：

1 1 i 1 i 1- .HA

1 5 to 15 20 25 30 "'C

Frequency 29
. . . 0.4

H i m . : :
i 1 . ； i ； - n j

) 5 10 15 20 25 30 …0

Frequency 30
「 • 04 ii&ii ：

i • i — — ； L. i n .

1 5 10 15 20 25 30

Frequency 31

• H i i i
]

Figure 2-10 Waveforms oforder-32 LLMICT and the DCT. The DCT is in blue,
LLMICT-Al is in red and LLMICT-Bl is in green.

】
79

4
3

39
5 1
0

19
63

31
9

12
59
 5

12
47

28
3

1
2
6
1 9

24
9

4
9

18
1 1

17
7

37

1
4

6
 6

70
2

17
1

55
1 2

52
3 87

55
9 2

»0
3

It
s 42

34
7 9

14
69

20
3

66
7 2

40
1 49

-2
6 -2

66

.3
1

-1
59

-I

-1
97

-5
3

-2
81

-
1
0

-1
44
3

-3
27

-J
30

3 -5

•
11
89

-2
61

-1
41
7 -6

-2
15

-1
1

-1
9

17
3

38

32
5 6

79
7 33

-1
97

-2

•
84
1

-
2
6
1

•
13
38

-1
0

-2
86

-5
9

-2
19

-I
-1
27

-1
7

-3
9 2

54
1

20
3

f0
73

 5

！
34
9

32
9

]8
79

9
24
7 2
1

46

1
6
6

34

24
7 2

-2
39

-1
57

-9
61

-5

.1
36
3

-3
19

-1
13
3

-6

-3
9 7

99
 1

23
3

6
1

28
6 87

-2
9

-2

-9
67

-2
91

-2
02
7

-1
0

-3
25

-2
7

-6
7

16
3

27

65
 -2

-1
30
3

-2
91

.13
63

-5

-9
19

-8
7

13
4 6

6
1

2
3

7 ！

89

-7

-1
69

-9

-1
43
7

-3
19

to
o?

-2

29

15
7

15
71

1
0

40
3 34

74

15
7

2
1

-6
5 -6

•
18
73

-3
29

•
10
73

-2

13
1

20
3

13
42

1
0

23
4 17

-7
1 -I

-2
43

-5
9

-1
69

-2

53
1

2
6
1

13
57

5

84
1

3
3

.8
1
1

-9

-4
03

-3
8

-
8

6

14
2 1
1

-1
03

-9

•
20
41

.2
6
1

-3
37

2

11
89

32
7

10
14
 2

-1
46

-5
3

-2
51

I
1

3
1

 b

-2
1

5

-1
(1

-8
7

55
1 5

12
83

1
7
1

•
42
9

-9

-
2
8
1

-3
7 9

1
2
2 -6

-3
47

-
1

0

-9
49

87

12
47
 5

46
1

-1
71

•
13
78

-9

-
6

6

37

25
3

1

10
9

-
1

1

-3
95

-9

13

2
6
1

13
21

2

’
 6
67

’
32
7

•
10
27
 2

24
9 53

33

86

-
2
1

4
0
3 -6

8
1
1

32
9

84
1 -2

•
【
357

-2
03

53
1 1
0

16
9

-1
7

-2
43

74

-
2
7

-4
03

-2

15
71

29
1

-2
9 -5

•
10
07

87

14
37
 6

-1
69

-
6
1

-8
9 1

2
3
7

67

-3
4

-3
25

2

20
27

15
7

-9
67

-5

2
9

31
9

89
4 -6

-
2

8
6

‘
7

2
3
3

-3
3

25
3

-9

.2
51

71

23

7
-9
9

31

49

-4
9

-3
1

59

7
-6
1

24
9

66

-2
81

14
6

23
4

-2
34

-3
9

10

-6

-6

10

-2

-9

9
[

0
2

7
-

1
3

7
8

4
2

9
1

0
1

4
-J

 3
4

2
1

3
4

1
1

3
3

4
9

-2
83

28
3

-4
9

-2
61

31
9

-8
7

-6
67

-4
61

12
83

-1
18
9

13
1

91
9

-1
36
3

-5

2
2

-5

5
-2

-2

-1
32
1

12
47

.5
51

-3
37

10
73

-1
36
3

96
1

.2
03

31
9

-3
19

20
3

-3
3

-1
57

29
1

13

94
9

-1
80
7

20
41

-1
87
3

13
03

-2
39

6
-

2
-

2
6

-9

10

-1
0

39
5

-3
47

21
5

-1
03

65

65

-2
47

4
2

-4
3

43

-4
2

38

-3
4

27

10
9

.1
22

13
1

-1
42

15
7

-1
63

16
6

Fi
gu

re
 2

-1
]

th
e

pr
op

os
ed

 o
rd

er
-3

2
L

L
M

IC
T

-A
l

4
6

•
38

24
7 6

87
9

-3
3

34
9 -2

07
3

26
1

•
54
1

-
1
0

-3
9

5
9

12
7 -I

-2
19

17

28
6 2

0
3
3
8

.2
03

84
1 5

.1
97

.3
29

-7
97

9
32
5

-2
1

-1
73

19

-4
2

-2
15

9
J4

17

-2
03

-1
18
9 2

]3
03

-4
9

'1
44
3

-2

28
1

31

-1

15
9

53

-6
6

-
1
0 26

32
7

40
1 -5

-6
67

26
1

14
69

-6

-3
47

I]

\7
&

-4
3

-1
03

10

5
5
9

-3
19

-5
23

5
55
1

•2
8

3

-7
02

9

1
4

6

-4
9

-1
77
 1

1
8
1

-3
7

-2
49
 6

12
61

•
 1
71

-1
24
7 2

12
59

-8
7

-1
96
3 2

39
5 -6

-1
79

-2

•
43

10
3 1
0

-5
59

-3
19

52
3 5

.5
51

•
28
3

70
2 9

-1
46

-4
9

17
7 1

-1
81

-3
7

24
9 6

-1
26
1

-1
71

1
2

4
7 2

.12
59

-8
7

19
63

17
9

-1
9

-4
2

2
1

5 9
-1
41
7

-2
03

11
89
 2

•
1

3
0

3

-4
9

14
43

-2

-2
81

31

1
9

7 -I

_
t5

9 53

-
1
0

3
3

7

-4
01

-5

M
7

•
14
60

3
4
7 li

-\
7t

1

-1
79

43

-3
95

1
0

-1
96
3

31
9

-1
25
9 5

-1
24
7

28
3

-1
26
1 9

-2
49

4
9

-1
8

1 1

-1
77

37

-1
46

6
-7
02

17
1

-5
51
 2

-5
2

3 87

-5
59
 2

-1
03
 6

15
7

43

86
5 10

86
2

31
9

55
1 5

54
8

28
3

11
03

9
10
95

49

15
8 1

15
6 37

63
5 6

62
1

17
1

23
9 2

23
2 87

24
1

2
23
0 6

15
7

42

71
0 9

70
3

20
3

23
9 2

23
2

49

-1
49

-2

-1
65

-3
1

-1
56

.1

•
 1
58

-5
3

-1
25
5

-
1
0

•
 1
25
7

-3
27

-5
51

-5

.5
48

26
1

-5
54

-6

-5
45

-1
1

15
5 38

65
5 6

43
0 33

-1
45

-2

-3
20

-2
61

•
12
15

-1
0

•
12
65

-5
9

-1
80

-I
-1
30

-1
7

-4
5 2

35
5

20
3

50
5 5

58
0

32
9

78
5 9

61
0

2
1 25

t
15
5

34

37
0 2 95

•
 1
57

•
50
5

-5

-5
80

-3
19

•7
95

 -6

-4
45

7
13
0 I

18
0

6
1

11
85
 9

98
5 87

-1
45

-2

-3
20

-2
91

-8
90

-
1
0

-8
15

-2
7

-2
5

1
15
1 27

10

-2

-4
63

’
 2
91

，
59
3

-5

-4
64

-8
7

30
3 6

90
5

6
1

19
4 I

10
8 -7

•
88
5

-9

-1
22
9

-3
19

-3
77

-
2

-7
6

15
7

76
6 10

89
5 34

43

I
13
9

2
1

-1
58

-
6

-8
15

-3
29

-4
64

-2

47

20
3

11
85

10

10
39

17

-
6

6

-
】

-2
1

2

-5
9

•
72
3

-
2

44
5

26
1

59
6 5

37
7 33

-
m -•7

J

12
5 11

-2
30

-9

-8
95

-2
61

-1
45
 2

52
0

32
7

88
5 2

w
6

3
5

-5
3

-2
20

-3
0

31

10
95

1
0

90
5

4
9

-2
95

-5

-5
80

-2
03

10
 6

86
5 42

95

11
3 6

4
5
8

-1
0

-7
85

-8
7

23
2 5

55
9

17
1

-3
55

-9

•
 1
22
7

-3
7 4 1

2
2
2

4
9

31
1 -6

• 1
21

5
，

2S
3

-
2
1
2 2

55
1

31
9

-
2

-7
69

-4
3

，
10
9

10
9

-
6

-7
69

-
1
0

-4
30

87

55
1 5

2
1

2

-1
71

•
12
15

-9

-3
11

37

2
2

2

-4
9

-1
22
7

-
6

35
5

28
3

55
9 2

.2
32

-3
19

-7
85

-
2

45
8 43

95

-1
1

-8
65

-9

10

26
1

58
0 2

-2
95

-3
27

-9
05

2

10
95

53

30

-I

-2
2

0

-3
1

63
5 1
0

88
5

-4
9

•
52
0

-5

-1
45

20
3

89
5 6

-2
30

-4
2

7.
1

-

2
1

-
8
8
1 -6

37
0

32
9

37
7 -2

-5
96

-2
03

44
5 1
0

72
3

-1
7

•
2

1
2

-1

6
6

59

10
39

-2

-1
18
5

-2
61

4
7 S

46
4

-3
3

-8
15

-9

15
8 38

43

-2
7

-8
95

-2

76
6

29
1 76

-5

'3
77

 87

12
29

 6

-
6
1

-1
08
 I

19
4 7

-9
05

-9

30
3

31
9

46
4 -2

-5
93

-1
57

46
3 10

1
0

-3
4

25

-3
4

-8
15

2

89
0

15
7

-3
20

-5

14
5

3
1
9

98
5 -6

.]
18
5 -7

18
0 1

-1
30

-
6
1

-4
45

9

79
5

-8
7

-5
80

-2

50
5

29
1 95

-1
0

-3
70

27

11
3

-1
25

13
9

-1
51

15
5

Fi
gu

re
 2

-1
2

th
e

pr
op

os
ed

 o
id

er
-3

2
LL

M
i:C

T-
Bl

t

25

-3
8

•
61
0 6

78
5

-3
3

•
58
0

-2

50
5

26
1

-3
55

-1
0

-4
5

59

13
0 >1

'1
80

17

[2
65
 2

•
 1
21
5

-2
03

32
0 5

-1
45

’
 3
29

-4
30

9
65
5

-2
1

-I
5i

1
-4
2

-5
45

9
55
4

-2
03

.5
48
 2

55
1

-4
9

-1
25
7 -2

12
55

31

-1
58

•
I

15
6

53

-1
65

-
1
0

14
9

32
7

23
2 -5

-2
39

26
1

70
3 -6

•
71
0

11

15
7

1

-4
3

.2
30

10

24
1

-3
19

.2
32

5
23
9

-2
83

-6
21

9
63
5

-4
9

-1
56
 r

15
8

-3
7

•
10
95
 6

11
03

tl7
i

-5
48
 2

55
1

-8
7

-8
62
 2

86
5 -6

-1
57

-1

-4
3

23
0 10

-2
41

-3
19

23
2 5

-2
39

-2
83

62
1 9

-6
35

-4
9

15
6 1

-1
58

-3
7

10
95

6

•
 1
10
3

-J
 7

1
54
8 2

.5
51

-8
7

S6
2 2

86
5 -6

1:
57

-4
2

54
5 9

-5
54

-2
03

54
8 2

-5
51

-4
9

12
57

-2

•
12
55

31

15
8 -I

-1
56

53

16
5

-1
0

-1
49

32
7

-2
32

-5

23
9

26
1

-7
03

-6

71
0 11

-1
57

1
-1
57

43

-8
65

10

-8
62

31
9

-5
51

5
-5
48

28
3

-1
10
3 9

-1
09
5

49

-1
58
]

-1
56

37

-6
35

6

-6
21

(7
1

-2
39
 2

-2
32

87

-2
41
 2

-2
30

6

2.7 CSF Integer Cosine Transform
2.7.1 The CSF Fast DCT

Similar to the LLMICT, the proposed method can be applied to other fast DCT

algorithms. For example, the fast DCT algorithm proposed by Chen et al [23], In

this thesis, it is named as CSF fast DCT algorithm. Similar to LLM fast DCT

algorithm described in last section, it presents in a butterfly structure with

multiplications with irrational constants. Its data flow is shown in Figure 2-13.

Recently CSF fast DCT algorithm was proposed to be used in the Test Model under

Consideration (TMuC, [28]) of JCT-VC to support larger transforms such as 16x16

and 32x32. However, the transform proposed in [28] is an integer approximation of

the DCT such that it is not truly orthogonal. This motivates us to derive an

orthogonal ICT with fast algorithm similar to CSF one. Here we call this transform

as CSF Integer Cosine Transform (CSFICT).

Figure 2-13 The CSF fast DCT algorithm.

a{ne - gf)+ b{ge + nf\
•j{he-mf)- b{me + hf)

a{ie + lf)-b{le-in
a{ke + ke)~ b(je - kn
a{je-kf)~bike + jf\

a{le~if)+b{ie + lf\
•i{hj + me) + b{he - mf\
aige + nf)+ b{ne - gf)

The criteria for orthogonality are:

2.7.2 CSF Integer Cosine Transform
Similar to LLMICT described in (2.50), the CSFICT is expressed as:

llcSî
� 0
CSF “ N

0 p(")
” N [CSF.

(2.64)

For order-16 CSFICT, Pg；̂ can be found with order-16 CSF fast OCT algorithm.

The odd part of the CSF fast DCT algorithm is generalized into Figure 2-14. In the

figure, a...n, a a n d p are real valued.

Ui =Xi

Figure 2-14 The generalized CSF fast algorithm (odd part).

It is expanded into matrix form:

•

3

=

二

-

-

-

-

\
/
\
)
<
I
J
<
l
l
f
\
l
l
t
l
-
-
(
-
l
f
-
l
-

/

二

+

+

-

-

+

+

聚
1
4
4
如

i

d{ga - nb\
d{ha + mb
-d{ia-lb^
d{}a + kb^
d{ka - jb\

—d[la 十 ib\
d{ma - kb<
d{na 十 gb

5)

？b)
hb).
A

A kb\
•lb)
mb\
nb\
(2.6

+

一

+

1

十

-

;

I

4
泰
£

-

I

一

\
l
l
y
\
)
/
\
I
I
J
<

/
、
—
/
\

/

+
 +

 -

 +

^
 ̂

-

i

\

I
 /
\
i
/
\
n
/
\
l
/
 \
l
/
\
I
/
\
l
l
/
s
n
/

+

+

^

:
 二
-

I
I

 r
d

T

T

一
T
r

a- = c ' and (2.66)

(2.67)

for arbitrary g...n. They are rather tough criteria if a...f are limited to integers.

Their values are found to be large so as to provide good performance. As a result, we

proposed to modify the CSF fast DCT algorithm so as to loosen the criteria for

orthogonality for CSFICT.

2.7.3 Modified CSF Fast DCT and MCSFICT
The odd part of CSF fast DCT algorithm is modified as shown Figure 2-15. This

modified version is generalized to the one shown in Figure 2-16.

C15
U4 = = X 4 -- X | i

Us = = X 5 -- X i o

Ul: --X2 -

= -- X i 4

W 6 :

= X i

- X 9

-Yq M7

W3 = = X 3 - X i 2

Wo =

Figure 2-15 Modified CSF fast DCT algorithm (odd part).

UO=XQ- X\5

Figure 2-16 Generalized modified CSF fast algorithm (odd part).

The fast algorithm is expanded to matrix form similar to the one shown in (2.65) and

the criterion for orthogonality is found:

a' 十d (2,68)

for any real valued e.. .n. (2.68) is a looser criterion with integer solution comparing

with (2.66) and (2.67), Therefore, a simpler integer transform with good coding

performance can be found easier. Here the integer transform found by the modified

CSF fast algorithm is called MCSFICT. In order to make the MCSFICT have a good

coding performance, the constants have to be:

a :b:c:d^ cos(4): cos (*) : cos (*) : cos(*:

and

(2,69)

(2.70)

Some suggested values are:

It is analyzed together with other order-16 DCT-like integer transforms described in

this chapter in next sections.

Chapter 2 - Order-16 DCT-hke Integer Transform

{a,b,c,d)e {(8,7,4,1),(l 1,9,7,3),(22,18,13,3),(l 9,16,11,4),...} and (2.71)

{(2,1),(5,2),(7，3),(12，5),...}. (2.72)

After choosing the value of a…the remaining constants g.’,n can be found by

exhaustive search so that the highest coding performance is offered. The proposed

method of deriving ICT has a high flexibility such that the values ofa...n can be

chosen as a balance of complexity and performance. In this thesis, we suggest a

MCSFICT with a...n equal to (8, 7 ,4 ,1 , 5, 2，9，8, 8，7,5,4,3,1). The even part of this

MCSFICT is taken to be ICTsOO, 9，6, 2, 8’ 4, 8). Its integer kernel matrix is:

^Mcsr
2 5 6 2 5 6 '

3 6 7 - 3 8 9

3 2 4 3 6 0 ,

2 4 1 - 3 6 7

1 4 4 3 6 0

- 1 6 - 3 2 0

1 3 3 - 2 8 7 (2 , 7 3 ,

2 5 6 2 5 6

3 4 9 - 2 3 9

3 6 0 2 1 6

3 8 8 - 2 2 0

3 6 0 1 4 4

2 8 2 - 5 4

2 1 6 7 2

6

3

6

1

4

0

0

9

6

3

2

0
0

2

4
9

5
3
.
—

8

4

2

6

5

5

0

7

2

6

6

2

0

2

3

2

一

1
3

3

3
 2
.
—

2

3

3

3

2

2 5 6 2 5 6

2 7 7 - 2 7 9

- 7 2 7 2

3 2 6 1 7 7

3 6 0 - 3 6 0

1 2 4 3 6 8

216 - 2 1 6

3 7 3 1 9

2 5 6 2 5 6

- 1 9 - 3 7 3

3 2 4 3 2 4

3 6 8 - 1 2 4

1 4 4 - 1 4 4

1 7 7 3 2 6

3 6 0 - 3 6 0

2 7 9 2 7 7

2 5 6 2 5 6

1 4 1 - 2 0 9

3 2 4 - 2 1 6

2 8 2 3 6 2

1 4 4 - 1 4 4

3 8 8 - 2 2 0

12 3 6 0

3 4 9 — 1 0 3

2 5 6 - 2 5 6

1 3 3 3 5 9

3 6 0 - 7 2

- 1 6 - 3 2 0

3 6 0 3 6 0

2 4 1 - 8 1

2 1 6 - 3 2 4

3 6 7 3 3 3

6

7

0

4

0

0

4

9

6

7

6

0

4

7

2

9

5
5
6
5
6
 7
-
2

3

5

8

1

2

4

6

7

8

2

1

3

3

7
1
3
2
2

2

2
3
1
3

-

3

f

二

二

I

6
7
0
4
0
0
4
9
6
7
6
0
4
7
2
9

5

5

6

5

6
 7
-
2

3
5
8
1
7
-
4
6
7
8

2

3

1

3

2

3

2

2

2

2

3
1
3

1

3

_

I

I

：

I

6
1
4

4
8

9
6
3
0
6
0
1
6
7

5
4
2
8
J
^
8
7
-
4
5
3
6
1
&
4
i
6

2

1
3
 7
-
1
3

3

2

]

3

3
2
2
3

6

9

6

2

4

0

0

3

6

9

2

0

0

1

4

5
0
J
6
4

9
~
6
0
5
5
7

2

6
8
 7
^

7
1

2

2

3

1

2

3

1
 7
1

r
O

-

3

3

3

2 5 6 2 5 6

2 7 9 2 7 7

7 2 - 7 2

1 7 7 - 3 2 6

3 6 0 - 3 6 0

3 6 8 - 1 2 4

216 216

- 1 9 3 7 3

2 5 6 2 5 6

3 7 1 1 9

3 2 4 - 3 2 4

1 2 4 - 3 6 8

1 4 4 - 1 4 4

3 2 6 1 7 7

3 6 0 3 6 0

2 7 7 2 7 9

2 5 6

3 3 3

216

81

1 4 4

3 2 0

3 6 0

3 5 9

2 5 6

1 0 3

7 2

2?0

3 6 0

3 6 2

3 2 4

2 0 9

5 6 2 5 6

8 9 3 6 7

6 0 3 2 4

6 7 2 4 1

6 0 1 4 4

20 16

2 4 - 7 2

；87 - 1 3 3

156 - 2 5 6

！39 - 3 4 9

1 1 6 - 3 6 0

；20 - 3 8 8

4 4 - 3 6 0

5 4 - 2 8 2

7 2 - 2 1 6

5 7 - 1 4 4

2.8 Analysis
In the last sections, three types of order-16 DCT-like integer transforms have been

proposed and demonstrated. Together with other order-16 transforms proposed in

previous literatures, they are listed in Table 2-10. The performances of these

transforms are going to be compared. The performance to be evaluated includes the

complexity and the compressibility. The numbers of operations for 1-D fast

transform are investigated and the computation times for 2-D fast transform are

measured. Here the compressibility is in terms of transform efficiency and transform

coding gain. These transforms are compared with the sub-optimal transform, the

DCT. As actual compressibility in a coding system involves the performance of

many other coding tools as well, the evaluation of the overall compressibility will be

shown in later chapters.

Transform Descriptions

TSICT Simple ICT[14]

TM/ct Modified ICT [19]

TV刷 Integer Transform Proposed by Wien [16]

飞Ue Integer Transform Proposed by Lee [17]

T Josh I Integer Transform Proposed by Joshi [18]

TSI 11264 Proposed Simple Integer Transfoiiii

T5/ AVS Proposed Simple Integer Transfoi 111

T"" Proposed Hybrid Integer Transfonn from EDWWI

T/-//2 Proposed Hybrid Integer Transform from EDWW2

飞！丄M-A! Proposed LLMICTAl

^LLM-B! Proposed LLMICT B1 丨

^MCSF Proposed MCSFICT '
Table 2-10 List of Order-16 DCT-like transforms in this thesis.

2.8.1 Complexity Analysis
Fast algorithms are implemented (see Appendix B) and their numbers of operations

are listed in Figure 2-17. It is shown that our proposed Simple Integer Transforms,

^ SI-11264 and ŝi-AVS require the least number of operations. Only 108 and 124

operations are required respectively. After them，our proposed LLMICT, TUM-BI,

TLLM-A! and TMCSF, follow. The numbers of operations are 140, 160 and 172

respectively. The remaining are TMICT, ^WIEN, TJOSHI, T W 2 , T " " , and TIEE in ascending

order.

The number of computation is only a theoretical figure. In order to show a more

realistic scene, these fast algorithms are tested with 1,000,000 sets of 16x16 random

pixels. The testing platform is a PC with an Intel Core 2 Duo @ 2.53GHz and 2 GB

memory working with Windows Vista. Their computation times are recorded and

listed in Table 2-12. Comparing with direct matrix multiplication, these fast

algorithms can speed up the process by 30 to 45 times. As shown in Figure 2-18, the

two proposed Simple Integer Transforms TSI-AVS and TSI-H264 are the two fastest

transforms. They require less than 1.4 seconds completing 1，000,000 2-D transform

operations. They are followed by our proposed LLMICT, TLLM-BI and TUM-AI-

Their computation times slightly increase to 1.46 seconds. Our proposed TMCSF can

also complete the test in 1.52 seconds. The remaining are Tjoshi, ^Lee, ^mict, ^wien,

T///2 and T"". They take more than 1.6 seconds.

Transform # of Add # of Shift Total # of Operation

T^MCT 144 30 174

"^Wien 144 38 182

Tiee 148 58 206

飞 Josh 120 64 184

飞 S1-H264 80 28 108

^Sl-AVS 92 32 124

飞HII 160 30 190

T///2 158 30 188

飞 LLM-AI 110 50 160

飞 LLM-Bl 92 48 140

^MCSF 114 58 172
Table 2-11 Number of operations for different order-16 transform (1-D)

Number of Operations for Fast Transforms (ID)
TLee

TWien

THI2

TJoshi

TMICT

THI l

TMCSF

TLLM-Al

TLLM-Bl

TSl-AVS

TS1-H264

•

•
画 lAbdit ions H Shifts

60 80 100 120 140 160 180

Figure 2-17 The numbers of operations of different fast transforms.

Transform Direct Multiplication,
tDM (S)

Fast Algorithm, tp̂ ^ (s) Speed-up = � M -广 AX

^FA

飞 MICT 1.732 33.71

Tmen 1.829 31.87

Tlee 1.727 33.82

飞 Joshi 1.646 35.53

飞 S1-H264 1.355 43.37

^Sl-AVS 60.126 1.304 45.11

飞HIl 2.053 28.29

T///2 1.999 29.08

飞 LLM-Al 1.460 40.18

飞 LLM-BI 1.460 40.18

飞 MCSF 1.520 38.56

able 2-12 Computation time for different order-16 transform

Time for 1,000,000 2-D Transform Operation
THI l

THI2

TWien

TMICT

TLee

TJoshi

TMCSF

TLLM-Bl

TLLM-Al

TS1-H264

TSl-AVS

L 1.2 1.4 1.6 1.8 2

Computation Time (Seconds)

Figure 2-18 The computation time of different fast transforms.

2.2

2.8.2 DCT Distortion and Transform Efficiency
It is expected that a transform with basis vectors closer to the DCT basis vectors, the

better coding performance will be. Here the DCT distortion discussed in [16] will be

measured. If a transform has a lower DCT distortion, it is closer to the DCT. The

DCT distortion is defined as:

16 "吨(TocrTf^r)!; . (2.74)

TDCT is the order-16 DCT transform matrix and T(JF is the order-16 transform under

test. If TU7 is the same as T D C / , is zero. If TUR is closer to TDCT, the smaller the

di is. The DCT distortions of different transforms are shown in the column of

Table 2-13. Tjosh has the lower DCT distortion. Tum-ai is not far from it. It is

followed by TMCSF, TS!CT, ^LLM-BI and TIEE- These five transforms have DCT

distortions lower than 1%. T " / / ， T M I C T , 飞 H ! 2 and TV卿 have higher distortions of

around 16%. The distortions of TS]-H264 and Tsi AVS are the largest (>27%).

The efficiency of a transform is generally measured by its ability to decorrelate the

pixel data. The transform efficiency is defined as:

N-\

where 二 B = (2.75)

R^̂ is the correlation matrix of the pixel data. Assume that it is a first order

Markov process. The (i ， 力 山 element of R^x is p '̂''̂ . It is reported that the

correlation of the predicted residue {p) is ranged from 0.5 to 0.9 [19]. The

transform efficiency in this range is shown in Table 2-13. They are plotted against

the correlation in Figure 2-19. The optimal transform, KLT, can completely

decorrelate the pixel data such that 100% transform efficiency is achieved. It is

shown that the DCT has the highest transform efficiency. After that are ^ L L M - A I and

Tjoshi- They have almost the same efficiency. The remaining are TMCSF, T S I C T ,

^LLM-Bh T/�e,飞謝CT, T///?, T////, Tsi-Avs,飞s“H264 and Twien in descending order.

Transform DCT
Distortion (%)

Transform Efficiency (%)
Transform DCT

Distortion (%) p = 0.5 尸 0 . 6 尸 0 , 7 尸 0 , 8 p^O.9

Tocr 0.00 79.8 78.2 77.4 78.3 82.8

T^/cr 0.23 78.0 76,0 74.9 75.1 79,4

Tmct 16.68 72.5 70.9 70.8 72.7 78.8

Twe,, 16.95 60.5 56.8 54.1 53.8 59.9

Tiee 0.80 75.7 73.4 72.0 72.6 77.2

J OS hi 0.05 79.1 77.4 76,5 77.2 81.6

^ SI-11264 27.52 64.3 62.6 62.6 65.1 72.8

28.26 63.8 61.7 61.1 62.9 70.1

T " " 16.49 71.1 69,3 69.1 71.2 78.2

16.79 71.5 69.7 69.4 71.3 77.7

^LLM-A! 0.07 79.4 77.6 76.6 77.2 81.3

飞 LLM-B! 0.50 75.6 73.5 72.6 73.4 78.5

^MCSF 0,20 78.9 76.9 75.7 76.0 80.2

Table 2-13 DCT Distortion and Transform Efficiency.

Transform Efficiency

Correlation p

Figure 2-19 The transform efficiency of different transforms.

2.8.3 Transform Coding Gain
Another important measure for the evaluation of the transform performance is the

transform coding gain GTC- Under the assumptions of optimum quantization and

bit allocation, GTC of an order-A^ transform is:

1 iV-l / ‘ V
I K (2.76)

iV / I /

where oj = b{k, k) is the variance of the 众-th transform coefficient (recall b{k, k) in

(2.75)). The transform coding gain at different p is shown in Table 2-14. As the GTC

are quite close to each other, their differences between the DCT are plotted in Figure

2-20. Again, ^ L L M - A I and are very close to the DCT. They are lower than the

DCT not more than 0.02dB which is negligible. After them, TMCSF, ISICT and TLLM-BI

follow. Both lag behind the DCT not more than 0.1 dB. The remaining are Tiee,

飞MICT’ THIU T / / / 2， ^ S I - A V S , ^SI-H264 and Twien in descending order.

z
b
u
o
p
j
s
 E
s
j
s
u
n
J

卜

Table 2-14 Transform coding gain of different transform.

Transform Coding Gain with reference to DCT

Correlation (勿

0.7 0.8 0.9

•TLLM-Al

•TJoshi

-TSICT

TMCSF

•TLLM-Bl

•TLee

-TMICT

•THl

-TH2

•TSl-AVS

•TS1-H264

•TWien

Figure 2-20 The transform coding gains of different transforms (reference to DCT).

Transform
Transform Coding Gain, Gjc (dB)

Transform
p=0.5 p=0.6 p=0.7 p = 0.8 p = 0.9

飞DCT 1.141 1.779 2.698 4.115 6.726

T�7CT 1.135 1.769 2.682 4.089 6.685

TM/CT 1.068 1.679 2.569 3.957 6.540

Tivien 0.871 1.367 2.100 3.281 5,602

Tiee 1.112 1.732 2.622 3.995 6.539

Tjoy/i/ 1.139 1.775 2.692 4.106 6.711

lsi-H264 0.932 1.484 2.307 3.619 6.118

^Sl-AVS 0.929 1.478 2.296 3.600 6.088

T///7 1.064 1.672 2.559 3.942 6.518

飞HI2 1.066 1.674 2.561 3.943 6.515

^LLM-Al 1.141 1.778 2.695 4.108 6.712

飞 LLM-Bl 1.121 1.749 2.654 4.052 6.631

飞Mcsr 1.136 1.771 2.684 4.094 6.692

{
g
p

一

9
u
u
s
9
£
a

2.8.4 Computationally Optimal Transform
In any encoding situation, including image, video and audio, rate-distortion

optimization is a common technique to minimize the distortion (or to maximize the

quality) under a given data rate. This is very well-known that the output quality

will be higher when a higher data rate is offered. Just like the relationship between

rate and distortion, the computation and the coding performance also have similar

relationship. It is very intuitive that the transform with more computation (i.e. the

more precise approximation of the DCT or KIT), the higher coding gain can be

obtained. However, which one is the computationally optimal one? The

computationally optimal transform can be found by the method similar to

rate-distortion (RD) curve. The coding gain is plotted against the number of

operations as shown in Figure 2-21. When the transform is by-passed, the gain is 1

(or 0 dB). When the number of operations in the transform increases, the transform

can be implemented more precisely. As a result, it should be approaching to the

optimal transform, KLT. The coding gain will approach to that of the KLT (the

green dotted-dashed line). An operational complexity-coding-gain (CCG) curve,

which is the upper envelope of all complexity-coding gain points, can be found. It

is the red dotted line as shown. The transform has a complexity-coding gain points

closer to the CCG curve implying that it is more computationally efficient. It can

be observed that TILM-AI and Tj�— are the two most computationally optimal

transform among the tested transforms theoretically. They are very close to the

operational CCG curve with high coding gain. With the CCG curve, we can select

different transform according to the desired application. For example, we can

choose T^/ H264 for application requires low complexity.
— — — — — ^

Coding Gam uf DCT

\lm.B1
‘ -f+̂ HH +

Operational Complexity Coding gain Curve

了S1- TSI-avs

The proposed order-16 integer transforms and existing integer transforms are

described and tested theoretically in this chapter. In the next two chapters, these

transforms are integrated into the reference software of two popular video coding

standards, H.264/AVC and AVS in China. An overview of each standard will be

given. The integration method will be described in detail. Experiment result of the

proposed platforms will be shown. The performance of these integer transforms will

be compared.

Transform Coding Gain vs Number of Operations

Coding Gain of KLT

60 80 \ m 120 140 160 180 200 220
Number of Operations

Figure 2-21 The transform coding gain (p = 0.9) vs. the number of operation.

m
c
w
s
o
 u
l
l
u
s
i

2.9 Conclusions
In this chapter, 3 classes of order-16 transforms are proposed. They include (i) the

Simple Integer Transform extended from existing order-8 ICT, (ii) the Hybrid Integer

Transform formed by order-8 ICT and order-8 Dyadic Weighted Walsh Transform and

(iii) the order-16 ICT derived from Relaxed General Cosine Transform (RGCT).

The third class of transforms can be further divided into two types: LLMICT and

CSFICT. These two types are very similar to the OCT. The order-32 LLMICT

are also shown. CSFICT is modified to loosen its criterion for orthogonality. This

increases the flexibility of designing high performance orthogonal transform.

Examples of these order-16 transforms are shown and investigated. The simple

integer transform is the simplest transform. The two proposed simple integer

transforms only take 110-120 operations to complete a single 1-D transform.

Experiment shows that they take around 1.3 seconds to complete 1,000,000 times

2-D transform. The proposed LLMICT has the highest coding gain. The

waveforms of the two proposed LLMICT are very dose to the DCT, Their DCT

distortions are 0.07% and 0.50% respectively only. At the same time, they do not

require complex computation such that their computation times are only slightly

longer than that of simple integer transform. The ultimate transform should be

computationally optimal such that it is high compressibility and low computation

requirement at the same time. In order to find the computationally optimal

transform, the operational computational-gain curve is proposed. It is found that

TiiM-AJ and Tjoshi are the two most computationally optimal transforms in theory.

2.10 References
[1] W.-K. Cham, ''Development of integer cosine transforms by the principle of dyadic

symmetry：' lEE Proc. I’ vol 136, issue 4, pp. 276-282, 1989.

[2] N. Ahmed, T. Natarajan and K. R. Rao, “Discrete Cosine Transform," IEEE Trans, on

Computers, vol. C-23，issue 1，pp. 90-93, 1974.

[3] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to

Speech and Video. Englewood Cliffs, NJ; Prentice-Hall, 1984.

[4] ''Draft ITU-T Recommendation and Final Draft International Standard of Joint Video

Specification:' document JVT-G050, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC,

Mar. 2003, [Online]. Available: http://ftp3.itu.ch/avarchyjvt-site.

[5] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and

ISO/IEC 14496-10 AVC, Mar. 2005.

[6] Information Technology-Advanced Coding of Audio and Video-Part 2: Video, GB/T

20090.2-2006 AVS, May 2006.

[7] Jay Loomis and Mike Wasson, “VC-I Technical Overview'' Microsoft Corporation,

Oct. 2007. [Online]

[8] M. Wien, “Variable block-size transforms for H.264/AVC,” IEEE Trans, on CASVT，

vol. 13，issue 7’ pp. 604-613, 2003.

[9] Steve Gordon, Detlev Marpe and Thomas Wiegand, “Simplified Use of 8x8

Transforms 一 Updated Proposed and Results,'�document JVT-K028, March 2004

[online]. Available: http://ftp3 .itu.clVav-arch/jvt-site/2004_03_Munich/

[10] D. Marpe, T. Wiegand and S. Gordon, “H.264/MPEG4-AVC fidelity range extensions:

tools, profiles, performance and application areas;, IEEE ICIP 2005, vol. 1, pp 1 -

593-596, 2005.

[11] T. Sikora and B. Makai, “Shape-adaptive DCT for generic coding of video, “ IEEE

Trans on CASVT, vol. 5, issue l ,pp 59-62, 1995.

[12] Yan Ye and M. Karczewicz, '''Improved H.264 intra coding based on bi-directional

intra prediction, directional transform, and adaptive coefficient scanning,'" 15th IEEE

ICIP, pp 2116-2119, 2008.

http://ftp3.itu.ch/avarchyjvt-site
http://ftp3

[13] Y. Zhou, L. Zhang and S. W. Ma, “Rate-Distortion Optimized Transform；' Document

AVS-M2676, March 2010. [Chinese]

[14] W. K. Cham and Y. T. Chan, “An order-16 integer cosine transform,” IEEE Trans.

Signal Process., vol. 39, no. 5’ pp. 1205-1208, May 1991.

[15] S. N. Koh, S. J. Huang and H. K. Tang, ''Development of order-16 integer

transforms. Signal Processing, Vol. 24，Issue 3, pp. 283-289, Sept 1991.

[16] Mathias Wien and Shijun Sun, “ICT Comparison for Adaptive Block Transforms:

document VCEG-L12, Jan., 2001. [Online] Available:

http://wftp3 .itu,int/av-arch/video-site/0101 —Eib

[17] Bumshik Lee and Munchurl Kim, "v4 16^16 transform kernel with quantization for

(ultra) high definition video coding:, document VCEG-AK13, April 2009. [Online]

Available: http://wftp3.itu.int/av-arch/video-site/0904_Yok/

[18] R. Joshi, Y. Reznik, and M. Karczewicz, “Simplified Transforms for Extended Block

Sizes：' document VCEG-AL30, July 2009. [Online]

Avaliable: http://wftp3.itu.int/av-arch/video-site/0906_LG/

[19] Jie Dong; King Ngi Ngan; Chi-Keung Fong; Wai-Kuen Cham, "2-D Order-16 Integer

Transforms for HD Video Coding,” IEEE Trans, on CASVT, vol, 19, Issue: 10, pp.

1462- 1474, Oct. 2009.

[20] Chi-Keung Fong and Wai-Kuen Cham, “Simple Order-16 Integer Transform for Video

Coding;, to be published in ICIP 2010.

[21] X. Mao, Y. Wang, Y. He, W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H. M. Wong, L.

Wang, Y. Huo, T. Pun, C. Cheng, “AVS Adaptive Block-size Transform；' AVS Video

Proposal AVS-M2372, Xiamen, June 2008.

[22] W. K. Cham and R. J, Clarke, “Dyadic Symmetry and Walsh matrices,” lEE Proc.

Commun., Radar, and Signal Process., vol. 134, pp. 141 - 144, 1987.

[23] W. H. Chen, C. H. Smith, and S. C_ Fralick, “A Fast Computational Algorithm for the

Discrete Cosine Transform,'' IEEE Trans, on Communication, vol, COM-25, no. 9’

pp.1004-1009, Sep. 1977,

[24] B. G. Lee, ''A New Algorithm to Compute the Discrete Cosine Transform,'' IEEE Trans,

on Acoust., Speech, Signal Processing, vol ASSP-32, no. 6, pp.]243-1245, Dec. 1984.

http://wftp3
http://wftp3.itu.int/av-arch/video-site/0904_Yok/
http://wftp3.itu.int/av-arch/video-site/0906_LG/

[25] H. S Hou, "A Fast Recursive Algorithm For Computing the Discrete Cosine

Transform^ IEEE Trans on Acoust, Speech, Signal Processing, vol ASSP-35, No.

10, pp 1455-1461, Oct 1987

[26] Loeffler C., Ligtenberg A., Moschytz C.S., “Practical Fast ID DCT Algorithm with

Eleven Multiplications；' Proc ICASSP, pp. 988-991, 1989.

[27] C, W. Kok, ''Fast Algorithm for Computing Discrete Cosine Transform,'' IEEE Trans

on Signal Process., vol. 45, no- 3, pp 757-760, Mar. 1997,

[28] “Suggestion for a Test Model," document JCTVC-A033, April 2010-

Chapter 3 ABT in H.264/AVC

3.1 Overview of H.264/AVC

H.264/AVC (also called H.264/MPEG-4 Part 10) [1][2] is a video coding standard

jointly developed by the ITU-T Video Coding Experts Group (VCEG) and the

ISO/IEC Moving Picture Experts Group (MPEG). These two parties formed the

Joint Video Team (JVT) and developed this standard. This standard targets in the

applications including video storage, streaming video on web, digital video broadcast

and real-time video-conferencing. It replaces the old video coding standard MPEG-2.

Many factors, such as new algorithms, the dramatic rise of the processor speed and the

fall of the memory cost during the last decade, break the development constraints in

the past. Computationally complex but functionally efficient algorithms are now

feasible. H.264/AVC adopted many advanced algorithms into its block-based hybrid

video coding structure to improve its coding performance. As a result, it is reported

that H.264/AVC reduces the bit rate by half at the same objective quality comparing

with MPEG-2.

The JVT extended the H.264/AVC standard and named these extensions as Fidelity

Range Extensions (FRExt) [3][4]. They improve the quality of video coding. It

supports higher sample bit depth precision, higher color sub-sampling rates (such as

4:2:2 and 4:4:4), addition of 8x8 ICT and many other new features. The drafting

work on these extensions was completed in 2004. Besides FRExt, other main

features such as Scalable Video Coding (SVC, completed in 2007) [5]-[8] and

Multiview Video Coding (MVC, completed in 2009) [9]-[ll] are also added to the

standard. However, these two features are not in the scope of this thesis. Their

detail will not be discussed here.

In Figure 3-1 and Figure 3-2, the diagrams of the encoder and the decoder of

H.264/AVC are shown respectively. It is a typical hybrid video coding structure.

The spatial, temporal and statistical redundancies in the video sequence are removed

in different stages in the encoder. The intra prediction and integer transform remove

the spatial redundancies. The motion estimation with multiple reference frames

removes the temporal redundancies. The entropy coders (Context-Adaptive Variable

Length Coder, CAVLC and Context-based Adaptive Binary Arithmetic Coder,

CABAC) remove the statistical redundancies. To reduce the blocking distortion,

Loop-filter is applied to every decoded macroblock. This does not only improve the

subjective visual quality of the reconstructed picture, but also improves the quality of

the reference frames. As a result, the coding performance is also improved.

Inpul Frame Quantization - fc- bntropv Coder Output

广 I Motion 丨 M V P
+ Estimation |

I - Motion
I Compensat ion

•a

Intra
Predication

各+ 1 Filter Inverse
Transform

Figure 3-1 Data flow of H.264/AVC encoder.

Motion
Compensation

MV

Reconstructed

一 t i I 1 • .1
Inverse i . ' „ ,

T r a n s t o n . 卜 ’ | Rescahng p -

Figure 3-2 Data flow of H.264/AVC decoder.

Entropy
- I n p u t Bitstream

v. /

In the standard, there are a number of profiles and levels which specify well-defined

sets of syntax constraints for encoders and decoder processing capabilities for

decoders. Profiles specify the syntax features while levels specify the parameters of

these feature. There are a number of profiles defined and they target specific

application areas. Some of these profiles are:

• Baseline Profile: Low-cost application such as video-conferencing and mobile

applications.

• Main Profile: Standard-Definition (SD) TV broadcast.

• Extended Profile: Streaming video.

• High Profile: Video broadcast and storage, particularly for HDTV.

• High 10 Profile: Based on High Profile, it support up to 10 bit per sample.

• High 4:2:2 Profile: Based on High 10 Profile, it support 4:2:2: chroma

sub-sampling format.

In this thesis, we focus on the High Profile which is particularly for HDTV.

Depending on the application, different features are defined in different profiles.

These features are commonly called coding tools. Numerous novel coding tools are

adopted in H.264/AVC. Here are some of the typical coding tools defined in High

Profile:

• Spatial Intra prediction: A MB can be coded as one 16x16，four 8x8 or sixteen

4x4 sub-blocks. The pixel values of these blocks are predicted by their left and

upper blocks (pixel A to M for 4x4 block and pixel A to Z for 8x8 block in Figure 3-3)

There are 9 prediction modes (mode 0 to mode 8 in Figure 3-3) for 4x4 and 8x8

blocks while there are 4 prediction modes (mode 0 to mode 3 in Figure 3-4) for

16x16 block.

2： DC

M A B C D

I

J

K

4x4
Blpclq -

L 1 i 1

z A B C D E F G H I | J | K | L | M | N | O | P |

Q

R

s

T 8x8

U Block
V

w

X

Figure 3-3 Nine intra prediction modes for 4x4 and 8x8 blocks.

Mode 0： Vertical Mode 1- Horizontal Mode 2: DC Mode 3" Plane

Figure 3-4 The intra prediction modes for 16x16 block.

• Multiple reference frames: A maximum of 16 reference frames is supported.

With more reference frames, more accurate prediction can be achieved. The

predicted residue is reduced and hence the bit rate.

• Variable block-size motion compensation: block-based motion compensation

supports the block size from 4x4 up to 16x16. This allows a more precise

segmentation of moving regions than fixed block-size motion compensation.

Figure 3-5 The variable block-size motion compensation partitions.

• Inter-prediction with sub-pixel accuracy: Motion vectors may not fall exactly

on the integer pixel grid. This is achieved by a 6-tap interpolation filter. A balance

between the accuracy and the complexity, motion estimation in sub-pixel accuracy up

to quarter pixel is supported in H.264/AVC. This reduces predicted residue and

hence the bit rate.

• Order-4 and Order-8 ICT: Predicted residues are transform with 4x4 ICT

which produces less ringing artifacts in prior codec. In FRExt, 8x8 ICT is also

_dlowed which provides a higher coding efficiency than 4x4 ICT in smooth regions.
— 3-5

The adaptive selection between the 4x4 and the 8x8 ICT improves the coding

performance significantly.

• Logarithmic step size quantization control: This makes the rate management

easier.

• Loop filtering: It is an in-loop low-pass filter which reduces the blocking

artifacts common to block-based image compression techniques. It improves not

only the visual quality but also the compression efficiency.

• CAB AC: It is a very efficient entropy coder with better compression than most

other encoding algorithms.

• CAVLC: It is a lower-complexity entropy coder than CAB AC but with high

coding efficiency also.

After a short review of H.264/AVC standard, the integration of order-16 transform to

this standard will begin in the next section. From Section 3.2 to 3.6, our proposed

implementation will be described. In Section 3.7, experimental result and analysis

will be shown. Conclusions will be drawn in Section 3.8.

3.2 Transforms

In original standard, H.264/AVC specified an order-4 ICT for transforming the

predicted residue. An order-8 ICT is added in FRExt. The integer kernel of order-4

and order-8 specified are:

E (4)
1 1 1 1

2 1 - 1 - 2

1 - 1 - 1 1

1 - 2 2 - 1

and

E

12
8

(8) _ 10

fi n A
10 6 3
4 - 4 - 8

- 3 -12 - 6

S
~6

- 4
12

tc tS — S 一 8 只 S — S

6 -12 3 10 -10 - 3

4 - 8 8 - 4 - 4 8

3 - 6 10 -12 12 -10

？i

- 1 0

4

3

- 8

12
- 8

6

S"

- 1 2

8

- 1 0
&

- 6

4

- 3

(3.1)

(3.2)

Here, the order-16 transforms described in the last chapter are integrated into the

reference software of H.264/AVC. Together with order-4 and order-8 transform, an

Arbitrary Block-size Transform (ABT) platform is formed. Only a single transform

is selected in each MB in H.264/AVC. Different transforms can be used in different

MB. It is decided in MB level. The proposed ABT platform keeps this remain

unchanged. Either order-4, order-8 or order-16 transform is used in a single MB.

An example is shown in Figure 3-6.

(a) Without 16x16 transform (b) With 16x16 transform
Figure 3-6 Arbitrary Block-size Transform in H.264/AVC.

The transforms being integrated

Simple integer transform, Tsi-h264,

Simple integer t r an s fo rm ,飞SI -AVS ,

Modified ICT, MICT,

Hybrid Integer Transform, T H I I ,

Hybrid Integer Transform, Thi2’

Order-16 transform proposed by Wien, TV勤

Order-16 transform proposed by Lee et aL, Tiee,

Order-16 transform proposed by Joshi et al., T加/»’

LLMICTA-10, TLLM-AI,

LLMICT B-1, TLLM-BI and

Modified CSFICT (MCSFICT), TMCSF-

They are tested individually in Section 3.7.

3.3 Quantization and Rescaling

The transform coefficients are quantized and rescaled before inverse transform.

Since the norms of the integer transform basis vectors may not be the same. A scaling

process is required to normalize the transform coefficients. In usual manner, this

scaling process is embedded into the quantization and rescaling process. In this

section, the method of quantization and rescaling with proposed transform in H.264

will be discussed.

Figure 3-7 Data flow of quantization and rescaling in H.264/AVC.

3.3.1 Quantization
For simplicity, let us consider this process starting from DCT. Assume an nxn data

patch X is transform with a DCT kernel TDCT into an NXN coefficient patch C. This

process can be written as:

F — T Y T^
* DCT _ '•DCT ^ '•DCT (3.3)

When quantization with step size Qstep and offset Qqffset is applied to the coefficients,

the coefficient (i j) becomes:

.么印 I 一,」• (3.4)

Replace TDCT by an ICT T 二 K E and recall that the 2-D scaling matrix S can

replace the 1-D scaling matrix K described in last chapter. (3.4) becomes:

ICT = (E X E $ S = G © S . (3.5)

Note that 0 is the element-to-element multiplication. Applying uniform

quantization to integer transform coefficients with step size Qstep and rounding offset

Qoffset-

Fq (/, /) - sign{F,,r (/, j)) X ^ ^ +

二 卿 (G (, ’ 力） x —— + Qoffset

. Q 卿 J I (3.6)

PO, j) X 咖；/，j) + a脑• 2�細,I
sign{G{iJ)).^ •，胸J

• t

= “ j)) X L卯，j) X Quant(Q_ ； “ j) + . Qbits.

Quant is an integer approximation the quantization matrix:

Quant{Qstep\ i, J) = r o u n d . 2 供"
^sfep

(3.7)

In H.264, Qstep is defined as:

QPz
0 = 2 6 (3.8)

where QP is the quantization parameter, integers from 0 to 51. Quant becomes:

QuantiQstep-j) = Quant{QP- i, j)
(

=round S{i,J)x2
Qbns-^

{QP%(>)
—f\l%tt【

~round\ ^ .2妙

= QM{QP%6-,i,j) »

QP (3.9)

QP
, 6 �

Here Q M is an integer matrix and the quantization can be implemented with integer

only. It has a period of 6 such that:

QM{QP + 6; i, J) = QM (QP; i, j) . (3 川）

In H.264, integer up to 64-bit accuracy is allowed. Assume that the input data are

represented in b bits. The largest magnitude of G(/, J) after 2-D transform is

2^x256*256 = 2 纏 . I n High Profile, b is only 9. Integer with 64-bit accuracy is

very sufficient to represent G without any fixed point error or overflow.

3.3.2 Rescaling
Similar to forward transform, a scaling process is required in inverse transform

process. This scaling process is usually integrated into the rescaling process (also

known as dequantization). The quantized coefficients F^ in the last section are

rescaled.

F, 二 F ； � (3 . H)

It can be written as:

roundiiS(i,j)xQ油产
�i , J � x ^ ^ ^

« {fq (z, j) X dequant{Qstep\ i j)) » DQbits

(3.12)

dequantQ can be expressed in terms of QP:

iiequantiQstep-/, j) = round{S{i, j) x x 2 叩胁
step

QP-4
=round{S{i,j)x2~^ y.2

(g P % 6) - 4

w round{S{i, y)x 2 ^

DObits

X i D Q b i t s « QP
6

= DQM(QP%6',iJ) « QP
6

(3.13)

Here DQM is the rescaling matrix in integer. F,- becomes

/

« QP
6

»(DQbits— W). (3.14)

Therefore, the reconstructed data patch Y is defined as:

Y = E"" F E >>10
f .
'[F(iJ)x DQM{QPUJ))<< QP E » 1 0 (3.15)

Here Qbits and DQbits are transform dependent.

3.3.3 Example
Let us take an example to illustrate the quantization and the rescaling process in the

proposed H.264/AVC platform. Suppose the LLMICT A1 is used (E = ^llm-ai,

Qbits = 31 and DQbits = 29) and QP = 28. According to (3.9), QM(QP%6) is

defined as:

QM{l%%6\iJ) around

QM(28%6)

-(28"..6)
S{iJ)x2

2048 2135 2204 2242 2151 2242 2204 - • 2204 2135'
2135 2225 2298 2337 2242 2337 2298 -“2298 2225
2204 2298 2372 2413 2315 2413 2372 2372 2298
2242 2337 2413 2455 2356 2455 2413 2413 2337
2151 2242 2315 2356 2260 2356 2315 2315 2242
2242 2337 2413 2455 2356 2455 2413 2413 2337
2204 2298

1
2372 2455 2315 2413 2372 2372 2298

1

2204
1

2298 2372 2413 2315 2413 2372 -
1 ！

-2372 2298
2135 2225 2298 2337 2242 2337 2298 ” • 2298 2225

(3.16)

Consider an intra-predicted block X:

0
9
2
6
2
4
2
2
2
1
4
1
6
3
3
1

5
 3
 2
 1
1

-

t

0
7
0
2
2
4
4
4
1
1
2
5
3
4
5
3

5

 3
 2

^

-
 -

 -

0
9
1
0
2
0
1
2
0
0
4
3
0
1
4
3

5

 3
 2
 ,

 *

n

1
1

 9
】

C
T
^

1
1

n

1
1

n

n

1
1

c
f
^
l

1
1
 1
1

o
w

1
1

C
O

5
 4
 2
 -

 -

3
2
4
1
0
0
2
3
1
4
1
1
0
0
0
4

5
 4
 2
 -

!

- -

2
3
8
4
2
0
1
6
1
7
2
1
3
1
0
3

5
 4
 2
 -
-
-
-
-

 --

3
0
1
2
2
3
3
3
5
4
3
1
4
3
2
0

4
4
1
1
 -

 -
-
-
-
-
-
-

6
2
1
2
1
3
8
0
1
2
4
2
4
3
3
1

2
 4
 -

 1

 -

 -

 1

 -

 -
-

 -
-

 -
-

f

9
6
9
0
3
2
5
4
9
1
1
1
2
1
1
3

3
 1
1
 1
5
-

 -

 _

_
 -

1
0
4
7
2
0
0
1
3
0
3
0
2
1
2
2

-
1
 2

 3

 5
 _

 _

 -

I

样

2
3
6
6
1
2
0
6
2
4
3
1
1
1
3
1

-

I

1
 -

 -

 4

 -
-

51

40

21
11

0

4

5

8

4

3

-10

-3

- 1
- 1

0

-3

3
0
5
0
4
6
4
4
2
0
1
1
8
2

5

 4
 2
 1
 -

 -

57

44

29

11

4

4

1
-3

-4

-3

- 2

- 2

55

45

30

13

52

42

28

12
4
0
6
0
0
6
1
2
1
0
3
4

-
1
 2

 -

 -
 -

 _

-
 -

1
0
8
1
3
2
0
1
3
3
0
8

-
 -

 _

 _

 _

Using (3.6), the quantized transform coefficients F . are:

According to (3.) ,DQM is

(28%6)-
DQM{QP%6-iJ) roimd(S(i,j)x2 6

�512 534 551 561 538 561 " • 551 534

|534 556 574 584 561 584 -• • 574 556
551 574 593 603 579 603 593 574
561 584 603 614 589 514 603 584

1 538 561 579 589 565 589 579 561
561 584 603 614 589 614

4

603 584

551 574 593 603 579 603 ,’
r -

593 574
,534 556 574 584 561 584 “ 574 556

(3.17)

Using (3.14) and (3.15), the reconstructed pixels, Y,

-10 -9
-6 -3
16 28
12 9
-5 -5
- 8 - 1

14 11
24 -26

-51 -97
12 6
-8 -9
5 -1
0 -5

11 0
-6 2

12 0

6
45
21

12

-5
- 8

-13
-92
15
5
0
8
2
3

10
-3

24
52

-19
10

1

-3
-17

- 2

14
6

- 6

-3
4

- 1

3
-7

44
43

6
15
5

-3
16
14
-3

- 10
-3

- 1 0

0
-5

4

60
40
38
- 1

3
9
7

-19
10
-7
-4
2

-4
2

- 1 0
11

65
41
16
-7
2

13
- 2

0
1

5
5
0

-5
7

-17
6

57
50
21

9
- 2

4
- 6

-7
-5
10

1
- 8

1

4
3
2

52
47
26
-7
0

- 1

-3
-7

- 1 0

- 8

3
-4
- 1
1

13
2

50
36
17

- 1 6
- I

- 2

7
- 2

6
0
6
1
3
3
1

12

54
37
15
3

-3
2
10
10

- 1

7
-25
- 1 6
11

11
8
0

57
47
16
7

-3
9

21

9
3

-7
- 1 2

- 1

3
3
6

-12

59
42
27
5

- 1
15
1

0
15
4
3
6

-7
-9
3

-3

61
43
28
13
7
7
8

-3
-I
- 2

-6
-13

4
-3
10
-3

64
57
42
15
0

48
42
43
14

-11
3 -19
3 -36
2 -4

-5 0
7 1
2 1

- 1 - 1 8
16 -5
-9 1
11 1

-9 -4

3.4 Syntax Structure

3,4.1 New Syntax Elements
In the proposed platform, two new syntax elements, I!6Flag and CBP16, are

introduced. I16Flag is a flag indicating the transform size used in the current MB.

The bit patterns of I16Flag are as shown in Table 3-1. Notice that 16x8 and 8x16

transforms are not used in intra-block.

One may suggest that the transform size sticks to the ME partition size. This

saves the overhead indicating the transform size. However, we found that the

scheme has a lower coding performance than the one with overhead. This is simply

because the best transform cannot be selected when the transform size links to the

ME partition size.

J]6Flag
Transform Size Intra-block Inter-block

4x4 or 8x8 0 0

16x16 1 10

16x8 … 110

8x16 111

Table 3-1 Bit patterns for II6flag

Another new syntax element is CBP16. It is similar to CBP in existing standard but

it is specific for larger transform size. It indicates the present of non-zero luma

transform coefficients in the sub-blocks when larger transform is used. If 16x16

transform is used, its length is 1 bit. If 16x8 or 8x16 transform is used, it is 2-bit long.

3.4.2 Intra Block Syntax Structure
When order-16 transform is introduced, the syntax structure has to be changed. The

change of syntax structure in intra block is relatively simpler. In H.264/AVC, 4x4，

8x8 and 16x16 Intra predications are allowed. MB Type indicates which predication

is used as shown in Figure 3-8. Since the transform size must not be bigger than the

intra prediction partition size, 16x16 transform is allowed only when 16x16 intra

prediction is used. Originally 4x4 transform is used when the MB is 16x16 intra

predicted. To distinguish the use of 4x4 and 16x16 transform, U6flag is added to the

bit stream. When this flag is “1”，16x16 transform is used. Otherwise, 4x4

transform is used. Other predictions remain the same as the standard.

4x4 Prediction 4x4 Transform
Modes Coefficients

8x8 Transform
Coefficients

116Flag = 0 _ 4x4 Transform
Coefficients

l16Flag
CBP16 16x16 Transform

Coefficients

Figure 3-8 Syntax structure for intra-block

3.4.3 Inter Block Syntax Structure
The inter block syntax is slightly more complex. 16x16, 16x8 and 8x16 are

available when larger inter-predicted partition is used. When the MB is predicted in

direct mode or the prediction partition size is 16x16, 16x8 or 8x16,116flag is inserted

into the bit stream to indicate the transform size as shown in Figure 3-9. The

mapping between I16flag and the transform size is shown in Table 3-1. If larger

transform size is not used, it follows the original decoding routine with smaller

transform size.

MB Type = {8x8 o「smaller)

p o p 4x4 Transform
W D r Coefficients

如丨
Transform

Skip Flag MB Type MVD

MB Type = {16x16,
16x8, 8x16 or direct}

l16Flag '丨—

otherwise |

Figure 3-9 Syntax structure for inter-block

O D D 8x8 Transform
O D r Coefficients

16x16 Transform
Coefficients

3.5 Entropy Coding

！

(s t a r t ^'hi-Binanzation' ^ ^ ~ / Modeling」

Binary

Arithmetic
Coding

Update
Context
Model 」 Codtng | Model

Figure 3-10 The data flow of CAB AC

The transform coefficients and some other syntax elements are coded with an entropy

coder. The entropy coding in our implementation is Context-Adaptive Binary

Arithmetic Coding (CABAC). This is because it has a higher efficiency than CAVLC.

In CAB AC, different syntax elements reference different context model. Each

context model contains the most probable symbol (MPS) of this context and the

probability (or the state) of this MPS, The flow of a CABAC coder is shown in

Figure 3-10. In binarization, the input syntax elements are first changed into binary

symbols, ‘0’ or ‘ 1’• These binary symbols are called "bins". These bins are mapped

to different context models by context indexing. The binary arithmetic coding (BAC)

engine in CABAC obtains the MPS and the probability of the context model to encode

the bin. Bit stream will be generated in this coding engine according to the status of

the context model (MPS and its probability) and the incoming bins. The status of the

corresponding context model will be updated after encoding every bin. This ensures

the status of the context model that follows the statistics of the encoded symbols. As

a result, this coder is adaptive to the context. In our impleinentation, the coding

engine is the one specified in H.264/AVC, The context model indexing for newly

introduced syntax elements, such as I16flag and CBP16, are added.

As stated in the last section, 116flag is a flag indicating the use of larger transform.

The simplest way is to use a single context model. This will capture the global

statistics of this flag within the same frame. However, this fails to capture its local

statistics. It is expected that MB coded with similar transform size are located in

group closely. Single context model is not able to react quickly when this flag

changes. As a result, the context index of the 116flag is according to the neighboring

MB in our proposed platform. Two previously coded MB, the upper MB and the left

MB, are referenced. The indexing method is shown in Table 3-2. The index will be

assigned according to the value of I16flag of the neighbor. Three context models are

required. This will not increase the complexity significantly but allow the context

modeling to capture the local and also the global statistics of I16flag. Although it is

not too much, a bit rate reduction of less than 1 % is observed with this context

modeling.

The context model of the flag CBP16, which indicates the presence of non-zero

order-16 transform coefficients, is also indexed with similar method as I16flag. The

index depends on the presence of non-zero coefficient (of any transform size) in the

neighboring MBs. The indexing of CBP16 is shown in Table 3-3.

Current block I16flag context
model index.

Ildflag in Upper MB Current block I16flag context
model index. 1 0

I16flag in Left MB
1 2 1

I16flag in Left MB
0 1 0

Ta Me 3-2 Context model index o f / 7 6flag

Current block C B P 1 6 context
model index

Non-zero coefficients in Upper MB Current block C B P 1 6 context
model index Present Absent

Non-zero coefficients
in Left MB

Present 3 1 Non-zero coefficients
in Left MB Absent 2 0

Table 3-3 Context model index of CBP16.

3.6 Rate-Distortion Optimization

Rate-Distortion Optimization (RDO) is always enabled in our experiment. The

Lagrangian RD Optimizer adopted in the H.264/AVC reference software is used. All

possible combinations (prediction modes and transform sizes) of each MB are tested.

For each combination, the bit rate (R) and the distortion (D) in sum of squared

different (SSD) are measured. The RD cost (J) of each combination is calculated as:

J = D + AR (3.18)

入 is the lagrangian multiplier which depends on the QP value. The combination

offering the smallest RD cost is chosen.

3.7 Experiment and Analysis

The analysis here is on the H,264/AVC reference software JM16.2 [12]. Those

order-16 transforms mentioned in Section 3.2 are integrated into the software platform.

It is implemented as the described in previous sections. The testing conditions are

based those stated in VCEG-AJIO [13]. Detailed testing conditions are listed in

Table 3-4. The resolutions of the video sequences in our test are ranged from CIF

(352x288) to HD (1920x1080). We use the hierarchical-B prediction structure

which provides the best coding performance among different prediction structures.

The analysis will be in several aspects. First, the objective RD performance will be

analyzed. The BD-bit rate and the BD-PSNR mentioned in [14] are computed and

compared (See Chapter 1 for more detail). RD curves will also be shown. Second,

subjective evaluation will be given. The decoded pictures will be shown. These

pictures will demonstrate the differences among different transforms. Third, the

usage of order-16 transform will be investigated. The conditions that order-16

transform is chosen will be discussed. Lastly, the conditions that may lower the

performance of the ABT with order-16 transform will be pointed out.

Platform JM16.2

Anchor JM16.2 (Order-8 and -4 transform
enabled. No order-16 transform)

Prediction Structure Hierarchical B Structure with 7 B-frames
IbBbBbBbP...

Hierarchical Coding Settings HierarchicalCoding = 2,
ReferenceRecoder ^ 1,
PocMemoryManagement = 1,
HierarchyLevelQPEnable = 1

Intra Period Only the first frame is intra predicted

Frame encoded More than 120 frames:
GIF, WQVGA or WVGA: 297 frames,
720p; 145 frames,
1080p 121 frames.

Number of Reference Frames 4

Entropy Coding CABAC

Transfoiiii8x8Mode Enable

Scaling Matrix Present Disable

Rate Control Disable

RDO Enable

R D O Q Disable

Loop Filter Enable

Subpel Motion Estimation 1/4 pixel enabled

Motion Estimation Search Range 64

Motion Estimation Method Enhanced Predictive Zonal Search

QP = { Q P J , QP_P, QP_B} {22, 23，24},
{27, 28, 29},
{32，33，34},

{37,38,39}

Table 3-4 Testing conditions in H.264/AVC platform

3-7.1 RD analysis (Objective Evaluation)
The BD bit rate and the equivalent BD PSNR are shown in Table 3-5 and Table 3-6

respectively. It is shown that the addition of order-16 transform significantly

improves the coding performance. In all the tested cases, the bit rate reductions are

observed. From Table 3-5, we can see that there is a slowly increasing trend in the

average bit rate reduction when the resolution of the video frame is increasing. Of

course, the bit rate reduction depends on the nature of the individual video sequence

more rather than the frame resolution. This will be discussed in later section in this

chapter. It is also observed that a maximum of 12.11% bit rate reduction (equivalent

to 0.47 dB) is obtained when the order-16 transform Tjoshi is used to encode 1080p

sequence "Sunflower". In [15], it is reported that this transform offers a bit rate

reduction around 36% together with Mode-Dependent Directional Transform (MDDT)

[16] and bigger motion partition up to 32x32. In our experiment, purely 16x16

transform is added. MDDT and the bigger partition size are not included.

On average, Tjoshi gives the largest gain. An overall bit rate reduction of 6.21%

(0.24 dB equivalent) is observed in all test sequences. Not very far, it is followed by

LLMICT-Al, MCSFICT and LLMICT-Bl which are only lagged behind by 0.03%,

0.08% and 0.24% respectively. The differences are so small but the three proposed

transforms are simpler. They save around 10% computation time with respect to

T/oshi shown in last chapter. T^ee is lagged by 0.51% (or 0.02 dB equivalent) but it is

requires more computation than TJOSHI. MICT, T H I I and T"/2 are developed with the

same method. Their performances are very similar. Their bit rate reductions are

5.65%, 5.51% and 5.56% respectively. Tmen also shows a bit rate reduction of 5.05%.

Jsi-H264 and T^/.^ks are the two simplest transforms in our test. Lower coding

performance is expected. However, they also offer average bit rate reductions of

4.83% and 4.16% respectively. They are lagged behind by Tjoshi by 1.38% and 2.05%.

But they save over 20% computation time comparing with

From the RD-curves shown in Figure 3-11 and Figure 3-12, the coding performance

differences among different transforms are small. It is not easy to distinguish.

However, the figures clearly show that the tested RD curves are almost parallel with

the anchor RD curve. This implies that the gain is not only obtained at the low bit

rates but throughout the tested QP range.

^S
L-

H
26

4
T^

SI
-A

VS

M
IC

T
飞

HI
I

T/
//7

^W

IE
N

TL

EE

"^
JO

SH
I

飞

L
L

M
—

A
L

飞

LL
M

-B
丨

TM
C5

F
Fo

re
m

an

-3
.6

1
-2

.6
1

-4
.2

2
-3

.7
6

-3
.6

7
-3

.8
8

-4
.2

5
-4

.4
5

-
4
.
7
8

-3
.9

4
-4

.5
0

N
M

ob
ile

-5

.6
9

-2
.4

2
-5

.6
9

-5
.9

1
-5

.9
7

-5
.7

4
-5

.8
6

-
6
.
1
3

-5
.9

8
-
6
.
1
3

-5
.9

5
•n

'u

j
N

ew
s

-5
.5

9
-3

.4
3

-6
.0

0
-5

.4
4

-5
.7

4
-5

.8
0

-6
.0

7
-5

.9
9

-
6
.
2
2

-6
.1

1
-5

.9
7

M

IW

Pa
ri

s
-6

.2
0

-3
.4

3
-6

.2
1

-6
.0

2
-6

.1
2

-6
.3

0
-
6
.
3
4

-5
,5

8
-6

.2
9

-6
.2

0
-6

.1
2

oo

O
O

Te

m
pe

te

-3
.3

2
-2

.4
2

-3
.8

5
-2

.7
1

-2
.6

3
-3

.4
0

-4
.0

3
-3

.0
9

-4
.3

0
-3

.0
9

-4
.2

6

A
ve

ra
ge

-4

.8
8

-2
.8

6
-5

.1
9

-4
.7

7
-4

.8
3

-5
.0

2
-5

.3
1

-5
.0

5
-
5
.
5
1

-5
.0

9
-5

.3
9

B
as

ke
tb

al
lP

as
s

-5
.1

4
-3

.3
5

-5
.4

9
-5

.4
8

-5
.4

6
-4

.8
8

-5
.4

0
-5

.5
7

-5
.5

9
-5

.4
6

-5
.5

0

B
lo

w
in

gB
ub

bl
e

-7
.1

7
-4

.4
5

-7
.6

0
-7

.5
8

-7
.6

1
-7

.1
1

-7
.7

4
-
7
.
9
7

-7
.9

0
-7

.8
7

-7
.8

5
On

 O

会
o

3

>

B
Q

Sq
ua

re

-3
.5

0
-4

.9
1

-5
.1

1
-5

.0
8

-4
.9

9
-5

.0
6

-5
.2

5
-
5
.
3
3

-5
.2

7
-5

.4
2

-5
.2

2
On

 O

会
o

3

>

Fl
ow

er
va

se

-5
.6

1
-6

.4
2

-6
.4

7
-6

.3
1

-6
.6

5
-6

.1
1

-6
.2

3
-
6
,
7
8

-6
.4

0
-6

.3
6

-6
.5

0

A
ve

ra
ge

-5

.3
6

-4
.7

8
-6

.1
7

-6
.1

1
-6

.1
8

-5
.7

9
-6

.1
6

-
6
.
4
1

-6
.2

9
-6

.2
8

-6
.2

7

B
as

ke
tb

al
lP

as
s

-6
.0

8
-8

.4
0

-9
.2

0
-9

.1
8

-9
.1

3
-8

.6
3

-9
.6

7
-
9
.
9
6

-9
.9

1
-9

.8
6

-9
.8

8

BQ
M

al
l

-7
.0

8
-5

.2
2

-7
.5

7
-7

.4
3

-7
.4

8
-7

.0
5

-7
.7

3
-
8
.
0
2

-
7

.9
9

-7
.9

6
-

7
.9

7

Q

> O
O

u>

Pa
rty

Sc
en

e
-

8
.8

7
-4

.9
4

-9
.1

0
-9

.0
8

-9
.0

7
-
8
.
8
1

-9
.1

9
-9

.2
2

-9
.2

5
-9

.2
1

-
9
.
2
7

Q

> O
O

u>

R

ac
eH

or
se

s
-2

.1
9

-1
.8

9
-2

.5
5

-2
.5

2
-2

.5
7

-2
.1

3
-2

.7
7

-3
.0

7
-
3
.
0
8

-2
.9

3
-
3
.
0
8

X

O
O

3
M

ob
is

od
e2

-1

.8
9

-3
.9

2
-3

.8
6

-4
.3

4
-4

.5
8

-3
.6

2
-4

.2
6

-
4
.
8
9

-4
.2

3
-4

.6
4

-4
.3

3
X

O
O

3
A

ve
ra

ge

-5
.2

2
-4

.8
7

-6
.4

6
-6

.5
1

-6
.5

7
-6

.0
5

-6
.7

2
-
7
.
0
3

-6
.8

9
-6

.9
2

-6
.9

1

B
ig

sh
ip

-3

.3
0

-2
.0

1
-3

.8
9

-3
.8

1
-3

.9
5

-3
.1

6
-3

.9
1

-4
.3

1
-3

.8
0

-4
.2

2
-
4
.
3
2

C
it

y
-2

.2
4

-2
.5

6
-3

.2
9

-3
.5

5
-3

.7
9

-3
.0

6
-3

.7
6

-
4
.
6
0

-4
.1

9
-4

.4
2

-4
.1

5

fO

o
C

re
w

-7

.3
6

-7
.2

8
-
7
.
9
5

-6
.3

9
-6

.6
8

-7
.1

9
-7

.8
3

-6
.7

9
-7

.6
5

-6
.5

1
-7

.8
2

K)

N
ig

ht

-3
.2

9
-2

.2
4

-3
.6

2
-3

.6
0

-3
.6

9
-3

.4
2

-3
.8

4
-
4
.
1
8

-3
,9

2
-4

.0
8

-3
.9

5
CO

O

 X

R
av

en

-3
.8

4
-3

.8
3

-4
.6

6
-4

.3
2

-4
.1

3
-4

.3
9

-4
.8

7
-5

.1
2

-5
.4

0
-4

.6
1

1
-
5
.
7
7

Pa
rk

ru
n

-3
.2

0
-2

.4
1

-3
.8

1
-3

.8
0

-3
.8

1
-3

.7
1

-4
.6

8
-
5
.
2
7

-5
.2

2
-4

.8
7

-5
.1

7

Sh
ut

tl
eS

ta
rt

-3

.5
9

-3
.6

9
-4

,2
0

-4
.1

0
-3

.9
4

-3
.4

4
-3

.9
2

-
4
.
4
0

-4
.3

0
-4

.2
0

-4
.2

0

A
ve

ra
ge

-3

.8
3

-3
.4

3
-4

.4
9

-4
.2

2
-4

.2
8

-4
.0

5
-4

.6
9

-4
.9

5
-4

.9
3

-4
.7

0
-
5
.
0
5

C
ac

tu
s

-4
.7

1
-4

.5
6

-5
.2

6
-5

.4
1

-5
.5

0
-4

.4
5

-5
.3

9
-
6
.
3
5

-6
.0

0
-6

.1
2

-5
.9

6

Su
nf

lo
w

er

-1
0.

02

-9
.3

3
-1

0.
40

-1

0.
90

-1

1.
58

-1

0.
40

-9

.8
7

-
1
2
.
1
1

-1
1.

28

-1
1.

70

-1
1.

19

o 节

B
as

ke
tb

al
lD

ri
ve

-6

.8
2

-6
.3

9
-7

.6
3

-7
.4

2
-7

.1
7

-6
.4

7
-7

.4
6

~1
.1

1
-7

.7
2

-7
.5

4
-
7
.
8
9

o 节

K
im

on
o

1
-4

.9
0

-4
.7

2
-6

.4
1

1
-6

.2
6

-6
.1

5
-4

.1
5

-6
.0

9
-
8
.
3
6

-8
.1

5
-7

.3
2

-7
.7

3

^ to

o
Pe

de
st

ri
an

-7

.1
0

-5
.8

8
-7

.8
5

j
-8

.1
8

-7
.9

6
-6

.8
6

-7
.9

5
-
8
.
8
2

-8
.7

7
-8

.5
7

-8
.5

6
X

o

R
iv

er
B

ed

-1
.8

2
-1

.5
9

-4
.2

1
-4

.0
1

-3
.9

7
-1

.3
3

-4
.0

7
-
7
.
1
0

-6
.7

0
-5

.7
0

-6
.3

6
j

St
at

io
n2

-3

.4
4

-3
.3

1
-4

.3
3

-4
.1

1
-4

.1
9

-3
.7

4
-4

.4
1

-
5
.
0
9

-4
.9

8
-4

.7
1

；

-4
.8

5

R
us

hH
ou

r
-2

.6
0

-3
.0

8
-3

.3
0

-3
.0

5
-3

.2
0

-2
.0

2
-2

.9
2

-
3
.
8
6

-3
.8

5
-3

.5
0

j
-3

.5
2

A
ve

ra
ge

-5

.1
8

-4
.8

6
-6

.1
7

-6
.1

7
-6

.2
2

-4
.9

3
-6

.0
2

-
7
.
4
3

-7
.1

8
-6

.9
0

-7
.0

1

A
ve

ra
ge

"4

.8
3

，
4

.1
6

-
5

.6
5

-
5

.5
1

-
5

.5
6

-
5

.0
5

-
5

.7
2

6
.
2
1

-6

1
8

-

5
9

7

^
6

.1
3

T
a
b

le
 3

-5
 E

x
p

e
ri

m
e

n
ta

l
R

e
su

lt
s

o
f

d
if

fe
re

n
t

tr
a

n
s
fo

rm
s

in
 H

.2
64

/A
V

C
 p

la
tf

or
m

 (
B

D
-b

it
ra

te
,

%
)

^S
J-

H2
64

T^

SI
-A

VS

M
IC

T
T/

//2

Tz
,ee

飞

Jo
sh

i
"^

LL
M

-A
!

飞

L
L
M

-B
l

飞
 M

CS
F

Fo
re

m
an

0.

16

0.
11

0.

18

0.
16

0.

16

0.
17

0.

19

0.
19

0.

21

0.
17

0.

20

Q

M
ob

il
e

0.
25

0.

10

0.
25

0.

26

0.
26

0.

25

0.
26

0
.
2
7

0.
26

0
.
2
7

0.
26

N
ew

s
0.

29

0.
18

0.

32

0.
29

0,

30

0.
31

0.

32

0.
32

0
.
3
3

0.
32

0.

31

to

X
 to

Pa
ri

s
0.

32

0.
18

0.

32

0.
31

0.

32

0
.
3
3

0
.
3
3

0.
29

0
.
3
3

0.
32

0.

32

oo

思

T
e

m
p

e
te

0

.1
3

0

.0
9

0
.1

5

0
.1

1

0
.1

0

0
.1

3

0
.1

6

0
.1

2

0
.
1
7

0
.1

2

0
.
1
7

A
ve

ra
ge

0.

23

0.
13

0,

24

0.
23

0.

23

0.
24

0.

25

0,
24

0.

26

0.
24

0.

25

B
as

ke
tb

al
lP

as
s

0.
25

0.

16

0.
26

0.

26

0.
26

0.

23

0.
26

0
.
2
7

0
.
2
7

0.
26

0.

26

B
lo

w
in

gB
ub

bl
e

0.
28

0.

17

0.
30

0.

30

0.
30

0.

28

0.
31

0
.
3
2

0.
31

0.

31

0.
31

ON

O

S
o

s
>

B
Q

Sq
ua

re

0.
17

0.

12

0.
18

0.

18

0.
18

0.

18

0
.
1
9

0
.
1
9

0
.
1
9

0
.
1
9

0.
18

ON

O

S
o

s
>

Fl
ow

er
va

se

0.
32

0.

28

0.
32

0
.
3
2

0.
33

0
.
3
1

0.
31

0
.
3
4

0.
32

0.

32

0.
33

A
ve

ra
ge

0.

26

0.
18

0.

27

0.
27

0.

27

0.
25

0.

27

0
.
2
8

0.
27

0.

27

0.
27

B
as

ke
tb

al
lP

as
s

0.
35

0.

25

0.
38

0.

38

0
.
3
8

、
0
.
3
6

0
.4

0

0
.
4
2

0
.4

1

0
.
4
1

0
.4

1

B
Q

M
a

ll

0
.3

0

0
.2

2

0
.3

2

0
.3

1

0
.3

2

0
.3

0

0
.3

3

0
.3

4

0
.

3
4

0
.

3
4

0
.

3
4

o
 >

Pa
rt

yS
ce

ne

0
.
3
9

0
.
2
1

0.
40

0.

40

0.
40

0
.
3
9

0.
40

0.

40

0
.4

1
0
.
4
0

0
.
4
1

oo

UJ

M

R
ac

eH
or

se
s

0
.
0
9

0.
08

0.

10

0.
10

0
.
1
0

0.
09

0.

11

0
.1

2
0

.1
2

0
.
1
2

0
.1

2

X

oo

o
M

ob
is

od
e2

0.

04

0.
12

0.

12

0.
14

0.

14

0.
12

0.

13

0
.1

5
0.

13

0
.1

5
0.

13

X

oo

o
A

ve
ra

ge

0.
23

0.

18

0.
26

0.

27

0.
27

0.

25

0.
27

0

.2
9

0.
28

0.

28

0.
28

B
ig

sh
ip

0.

08

0.
05

0.

10

0.
10

0.

10

0.
08

0.

10

0
.
1
1

0.
10

0
.
1
1

0
.
1
1

C
it

y
0.

06

0.
08

0.

09

0.
10

0.

10

0.
08

0.

10

0
.
1
3

0.
12

0.

12

0.
12

N
)

二

t
o

1

C
re

w

0
.1

9

0
.1

9

0
.2

0

0
.1

6

0
.1

7

0
.1

8

0
.
2
0

0
.1

7

0
.1

9

0
.1

7

0
.
2
0

N
)

二

t
o

1

N
ig

ht

0.
11

0.

07

0.
12

0.

12

0.
12

0.

12

0.
13

0
.
1
4

0.
13

0
.
1
4

0.
13

oo

o X

R

av
en

0.

14

0.
14

1

0.
18

0.

16

0.
15

0.

17

0.
18

 ！

0
.1

9

0
.2

0

0
.1

7

0
.
2
2

M

Pa
rk

ru
n

0.
12

0.

09

0.
15

0.

15

0.
15

0.

14

0.
18

0
.
2
0

0
.
2
0

0.
19

0
.
2
0

Sh
ut

tl
eS

ta
rt

0.

11

0.
11

0.

13

0.
13

0.

12

0.
11

0.

12

0
.
1
4

0.
13

0.

13

0.
13

A
ve

ra
ge

0.

12

0.
10

0.

14

0.
13

0.

13

0.
13

0.

14

0.
15

0.

15

0.
15

0
.
1
6

C
ac

tu
s

0.
14

0.

12

0.
15

0.

16

0.
16

0.

13

0.
15

0
.
1
8

0.
17

0.

17

0.
17

j I

Su
nf

lo
w

er

0.
39

0.

35

0.
41

0.

43

0.
45

0.

39

0.
39

0
,
4
7

0.
43

0.

46

0.
43

o oo

B
as

ke
tb

al
lD

ri
ve

0.

20

0.
18

 丨

0
.2

2

0
.2

2

0
.2

1

0
.1

9

0
.2

1

0
.
2
3

0
.
2
3

0
.2

2

0
.
2
3

存

K
im

on
o

1
1

0.
19

0.

18

1
0.

26

0.
25

0.

25

1
0.

16

0.
24

0
.
3
4

0.
33

0.

29

i
0.

31

o to

Pe
de

st
ri

an

0.
28

0.

23
 ！

0

.3
1

0
.3

2

0
.3

1

0
.2

7

0
.3

1

0
.
3
5

0
.
3
5

0
.3

4

0
.3

4

X

o

R
iv

er
B

ed

0.
08

0.

07

0.
19

0.

18

0.
18

0.

06

0.
18

0
.
3
2

0.
31

0.

26

0.
29

oo

o

St
at

io
n2

丨

0

.1
7

0

.1
4

0
.2

2

0
.2

1

0
.2

1

0
.1

9

0
.2

2

0
.
2
6

0
.2

5

0
.2

4

0
.2

4

R
us

hH
ou

r
0.

08

0.
09

0.

10

0.
09

 i
0.

10

0.
06

0.

09

0
.
1
2

0
.
1
2

0.
11

0.

11

A
ve

ra
ge

0.

19

0.
17

 ：

0
.2

3

0
.2

3
 1

0

.2
3

0
.1

8

0
.2

2

0
.
2
8

0
.2

7

0
.2

6

0
.2

7

A
ve

ra
s e

0.

20

0.
15

0.

22

0.
22

0.

22

0.
20

0.

22

0
.
2
4

0
.
2
4

0
.
2
4

0
.
2
4

Ta
bl

e
3-

6
E

xp
en

m
en

ta
l

R
es

ul
ts

 o
f

di
ff

er
en

t t
ra

ns
fo

rm
s

in
 H

.2
64

/A
V

C
 p

la
tf

or
m

 (
B

D
-P

SN
R

,
dB

)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0

Rate (kbps)

(b)
Figure 3-11 RD curves for (a) BlowingBubble (WQVGA) and (b) BaskballPass

(WVGA)

BlowingBubble (WQVGA)

T51-H264

一 T W i e n

_ T 5 1 - A V S

Anchor JM16.2 (no 16x16)

4 0 0 6 0 0

Rate (kbps)
(a)

BasketballPass (WVGA)

3 7

3 5

3
 1

3

n

(
s
p
)
 t
t
z
s

2 9

2 7

-^Anchor JM16.2 (no 16x16)
r

) 0 7 0 0 1 2 0 0 1 7 0 0 2 2 0 0 2 7 0 0

Rate (kbps)

(b)
Figure 3-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p)

"•-MICT
-TMCSF

-^TLee
—LLMICT-Al
令 TS1-H264
-^TSl-AVS
-^TWien
一 TJosW
—THI2
—LLMICT-Bl
一 THIl
•••Anchor JM16.2 (no 16x16)

i 4 0 0 3 4 0 0

Rate (kbps)
(a)

Sunflower (lOSOp)

Crew (720p)
4 1

Af\
1\J

3 9

8
(
s
p
)
 l
I
N
S
d

6

5

4 0 0

AA

3.7.2 Subjective Evaluation
In this section, the subjective evaluation of the video sequences coded with different

order-16 transforms will be given. Several sequences of different resolutions will be

illustrated. Each of them is coded with different transforms individually. In order to

show their differences clearly, cropped version will be shown instead of the whole

frame.

Figure 3-13 shows the 84^'' frame of the sequence "BasketballPass" in WQVGA

(416x240) coded with different transforms and QP = 32. When it is not coded with

order-16 transform, the fine details of the image are destroyed. The lines on the

wall (upper left) and on the door (upper right) almost disappear in Figure 3-13 (b).

They are preserved when coded with the order-16 transform ((c)-(l)). Order-16

transform preserves more detail such as the player's face (bottom right). It is also

observable that the use of order-16 transform reduces the ringing artifacts near the

high contrast regions (bottom left).

The 270th frame o f ' B Q M a l l " in WVGA coded at QP - 32 is shown in Figure 3-14,

The lines on the wall disappear in the decoded images (upper left). Only those

coded with (j) T j�血, (k) LLMICT-Al and (1) LLMICT-Bl can preserve these details.

The characters (upper right) and the old man's face (bottom left) are blurred in

different degree. It is shown that it suffers most when it is coded without order-16

transform. The texture of the lady's hat (bottom right) can hardly be seen without

order-16 transform. It is preserved with order-16 transform, especially with (j)

Tjos/u and (k) LLMICT-Al.

Figure 3-15 shows the 100^' frame of "SpinCalendar" in 720p coded at QP = 27.

The differences among different transforms in this sequence are not obvious. The

pictures on the cans (top left) are slightly sharper when order-16 transform is used.

Less ripple artifacts are observed near the letters on the calendar (top right). It is

quite clear that more texture is preserved on the field (bottom).

These examples show that order-16 transforms help to preserve the details of the

pictures and to reduce the artifacts. However, the differences among the picture

coded with different order-16 transforms are not obvious. Their subjective

performances are more

objective performance,

better.

or less the same. In

such as LLMICT-Al,

general, if the transform has a better

its subjective performance is slightly

(m) MCSFICT

Figure 3-13 Subjective quality of
BasketballPass (WQVGA)", 84& frame,

coded at QP = 32

響:

"^' i• ‘ ‘

(c) T仆观• (d) Tsj. H264

(e) MICT (F) T 肌

(g) (h)

(j) 飞Joshi

(1) LLMICT-Bl

(m) MCSFICT
Figure 3-14 Subjective quality of "BQMall
(WVGA)，，，270th frame, coded at QP = 32.

奶 矜 。 ： 、

(k) LLMICT-A1

G) T/os/li

站 2 6 乏

(1) LLMICT-B1

(m) MCSFICT

Figure 3-15 Subjective quality of
SpinCalendar (720p)", frame, coded at

QP 二 27.

3-7-3 Usage of Order-16 transform
In our implementation, the transform size selection is according to the

RD-performance. The one with the best RD-performance is chosen. If order-16

transform is more frequently chosen, a higher gain is provided. This also implies

its importance. The usage analysis of order-16 transform focuses on our proposed

LLMICT-Al only. Its statistics is shown in Figure 3-16. The average usages of

order-16 transform in different frame resolution at different QP are shown. The

analysis here is in 3 aspects:

• Frame Type: it is observed that P-frame has the highest usage percentage

(38�78%). The usage in I-frame is from 6% to 45%. It is from 15% to 35% in

B-frame. They all show a pretty high usage of order-16 transform in different frame

types. The usage of order-16 transform in I-frame depends on the frame nature. If

it has a larger portion of homogenous region, the usage will be higher. For example,

"Raven" in 720p has a large portion of smooth background. Its order-16 transform

usage in I-frame is around 40%. In contrast, the usage is only 20% in highly

textured sequence "City" in 720p. The usage in B-frame is relatively low because

the hierarchical-B prediction structure in H.264/AVC offers a very good prediction.

The predicted residue is so small that many MB are coded in skip mode (�75%). In

those "non-skip" MB, around 90% MB are coded with order-16 transform. This is

a very high percentage.

• QP: The usage changes differently in different frame types as QP increases.

The usage increases as the QP increases in I-frame. This is because as QP increases,

the RDO targets a lower rate and tolerate larger distortion. Larger transform has a

higher compressibility and hence it is favored. An obvious decreasing trend is

observed in P-frame as the QP rises. This is because the larger QP makes more MB

become all-zero blocks such that skip mode is favored. This lowers the usage of

order-16 transform. A very slow decreasing trend is observed in B-frame. The

usage of order-16 transform is relatively insensitive to the QP change in B-frame.

This is because the usage of order-16 transform in B-frame is lower than in P-frame.

The usage reduction of order-16 transform in B-frame is not as signification as in

P-frame.

• Resolution: It can be observed that the usage of order-16 transform is in an

increasing trend as the resolution increases. It is more obvious in I-frame than in P-

and B-frames. It can be observed that the average usage in I-frame is over 30% in

108Op while it is not more than 10% in CIF. This is because as the resolution

increases, the chance of a MB covering a smooth area increases. Larger order

transform has a better coding performance for smoother blocks and hence more MB

prefers to be coded with order-16 transform. In P- and B-frames, the increasing

trend is not that obvious. However, we can still observe that the average usage

increase from 40% to over 50% in P-frames and from around almost 20% to 30% in

B-frames. These shows the importance of order-16 transform in HD sequences. It

is expected that there will be higher usage and more gain provided in sequences with

even higher resolutions.

The average usage of order-16 transform In l-frame

CIF{3S2)(288) WQVGA(416x240) WV6A{832}<480) 7 2 0 p (1280x720)

(a)
The average usage of orcler-16 transform In P-frame

CIF(352)(288) WQVGA(416x240) WV6A(832x480) 7 2 0 p (1280x720 丨 1 0 8 0 p (1 9 2 0 x l 0 8 0)

(b)

The average usage of order-16 transform In B-frame

.QP-

CIF(352x288) WQVGA(416x240) WVGA{832x480) 72Op(1380x720) 1 0 8 0 p (1 9 2 0 x l 0 8 0)

(c)
Figure 3-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c) B-frame.

3-7.4 Gain from Order-16 transform
In Section 3.7.1 the BD bit rate and the BD PSNR mentioned in [14] are computed.

These are the overall gains in the ABT system. However, not all MB are coded

with order-16 transform and the gain from order-16 transform is diluted by those

coded by order-8 and order-4 transform. We are also interested in how much gain

solely comes from order-16 transform. That is if a MB is coded with order-16

transform rather than order-8 or other-4 transform, how much gain should be

obtained. Assume the sequence header and the frame header information is

negligible comparing with the MB information. The bit rate for a coded sequence,

R, can be divided into two parts: coded by order-16 transform and non-order-16

transform, denoted as Ro\6 and 尺„�6 respectively. Suppose the PSNR is the same,

the delta bit rate can be divided into two parts:

Abitrate = ~ A b i t m t e ^ , ^ + - A b i t r a t e ^ , ^ . (3.19)

We may assume there is very little or even no gain from non-order-16 transform, i.e.

AbitrateK Q, Therefore Abitrate^^^ becomes:

‘, Abitrate
Abi t ra te^ , , » ^ . (3 .20)

Using the idea of calculating BD bit rate (see Chapter 1 for more detail), the BD bit

rate purely comes from order-16 transform, BD-bitmte�\(y is:

BD-bitmte�认-
护"pp

Abitrate^^^dp ~
BD-bitrate

^ O A P)
(3 .21)

where

K M
p. ^lOM

dp (3 . 2 2)

which is a function of PSNR. Similarly, the BD PSNR purely comes from order-16

transform, BD-bitrateo\e is;

BD-PSNR,.=
BD-PSNR

(3.23)

where

r^K/
R R

KM

lower

-dr (3.24)

The gains solely from order-16 transform are listed in Table 3-7 and Table 3-8.

Wo 16(0 and Wo\6{p) are the average percentage of the bit rate allocated to order-16

transform over the tested bit rate range and the tested PSNR range respectively.

From these values, it can be observed that a high percentage of bits are allocated to

order-16 transform (from 33% to 79%). It can also be noticed that as the resolution

increases, these values increases. This shows that order-16 transform dominates as

the resolution increases. In Table 3-8, the average value of BD-PSNRo,^ is around

0.497 dB. It is very close to difference between the transform coding gains of

order-16 DCT and order-8 DCT at p= 0.9.

Sequences BD-hitrate (%) 沙 - O) BD-bitrateoi6 (%)

Foreman -4.78 0.548 -8,72

Mobi le -5.98 0.413 -14.48

fe
U News -6.22 0.377 -16.50

Paris -6.29 0.244 -25.78

Tempete -4.30 0.447 -9.62

BasketballPass -5.59 0.336 -16,64

> BlowingBubble -7.90 0.340 -23.24

% BQ Square -5.27 0.392 -13.44 %
Flowervase -6.40 0.670 -9.55

Basketbal lPass -9.91 0.490 -20.22

< o BQMall -7.99 0.494 -16.17

PartyScene -9.25 0.436 -21.22

RaceHorses -3.08 0,446 -6.91

Bigship -3.80 0.654 -5.81

City -4.19 0.687 -6.10

Crew -7.65 0.608 -12.58

卜
Night -3.92 0.490 -8.00

Raven -5.40 0.726 -7.44

Parkrun -5.22 0.576 -9.06

ShuttleStart -4.30 0.643 -6.69

Cactus -6.00 0.585 -10.26

Sunf lower -11,28 0.736 -15.33

Basketbal lDrive -7.72 0.584 -13.22
O g Kimono 1 -8.15 0.793 -10.28

Pedestrian -8.77 0.681 -12.88

Station2 -4.98 0.780 -6.38

RushHour -3.85 0.775 -4.97

Average -6.23 0.554 -12.28

Table 3-7 Delta bit rate solely from order-16 transform {BD-bitrateoi6, %)

Sequences BD-PSNR (dB) 厂） BD-PSNR— (dB)

Foreman 0.21 0.542 0.39

Mobi le 0.26 0.416 0.63

&
U News 0.33 0.376 0.88

Paris 0.33 0.250 1.32

Tempete 0.17 0.456 0.37

BasketballPass 0.27 0.346 0.78
< 0 > BlowingBubble 0.31 0.347 0.89

a BQSquare 0.19 0.394 0.48 a

Flowervase 0.32 0.667 0.48

BasketballPass 0.41 0.493 0.83

< o BQMal l 0.34 0.487 0.70

宾
PartyScene 0.41 0.442 0.93

RaceHorses 0.12 0.444 0.27

Bigship 0.10 0.654 0.15

City 0.12 0.697 0,17

Crew 0.19 0.600 0.32
CL, 0 (N Night 0.13 0.484 0.27
CL, 0 (N

Raven 0.20 0.719 0.28

Parkrun 0.20 0.589 0.34

ShuttleStart 0.13 0,638 0.20

Cactus 0.17 0.562 0.30

Sunflower 0.43 0.720 0.60

0,
g

BasketballDrive 0.23 0.567 0.41
0,
g Kimono 1 0.33 0.790 0.42
1~~1

Pedestrian 0.35 0.666 0.53

Station2 0.25 0.760 0.33

RushHour 0.12 0.765 0.16

Average 0.245 0.551 0,497

Table 3-8 Delta PSNR solely from ord er-16 transform {BD-PSNR0I6, dB)

3.8 Conclusions

In this chapter, H.264/AVC is reviewed. The order-16 transforms proposed in the

last chapter are integrated into its reference software JM16.2. Syntax structure is

changed and the implementation details are described. New syntax elements and

context models for CABAC are added. The proposed platform is tested. Different

order-16 integer transforms are tested and compared. It is found that more details and

less distortion are observed when order-16 transform is used. It is noticed that

order-16 transform helps to reduce the artifacts. Subjective qualities between

different order-16 transforms are similar. In the proposed platform, TjosJu gives the

largest average bit rate reduction (6.21%). A maximum reduction of 12.11% is

obtained. The proposed LLMICT-Al, MCSFICT and LLMICT-Bl are not far from it.

Their average bit rate reductions are 6.18%, 6.13% and 5.97% respectively but they

require fewer computations.

It is found that the usage of order-16 transform is pretty high. It is up to 78% in

P-frame on average. It is also noticed that the usage of order-16 is in an increasing

trend as the picture resolution increases. That is why order-16 transforms bring larger

gains in HD sequences.

3.9 References

[1] T. Wiegand, G. J. Sull ivan, G, Bjontegaard and A. Luthra , ''Overview of the H.264/A VC

video coding standard,” I E E E Trans on CASVT, vol. 13, no. 7, pp 560-576, 2003.

[2] Soon-kak K w o n , A. Tamhankar and K. R. Rao, ''Overview ofH.264/MPEG-4part 10,”

Journal of Visual Communica t i on and Image Representat ion, vol. 17, no. 2, pp 186-216,

Apri l 2006.

[3] D. Marpe, T. Wiegand and S. Gordon, “H.264/MPEG4-AVCfidelity range extensions:

tools, profiles, performance and application areas,'' IEEE ICIP 2005, vol. 1, pp I -

593-596, 2005.

[4] G. J. Sullivan, P. Topiwala and A. Luthra, ‘'The H.264/AVC Advanced Video Coding

Standard; Overview and Introduction to the Fidelity Range Extensions,'''' Proc. SPIE

Confe rence on Appl icat ions of Digital Image Process ing XXVII , Nov, 2004.

[5] H. Schwarz, D. Marpe and T. Wiegand, ''Overview of the Scalable Video Coding

Extension of the H.264/AVC Standard’” IEEE Trans, on CASVT, vol. 17, no. 9, pp

1103-1120, 2007.

M. Wien, H. Schwarz and T. Oelbaum, ''Performance Analysis of SVC,'' IEEE Trans, on

C A S V T , vol. 17, no. 9, pp 1194-1203, 2007.

H. Schwarz and M. Wien, "The Scalable Video Coding Extension of the H.264/AVC

Standard,” IEEE Signal Process ing Magaz ine , vol. 25, no. 2，pp 135-141, 2008.

T, C. Thang, J, Kim, J. W. Kang and J. Yoo, ''SVC adaptiation: Standard tools and

supporting methods," Signal Processing: Image Communica t ion , vol. 24, no. 3, pp

214-228, 2009.

[9] Yo-Sung Ho and Kwan-Jung Oh, ''Overview of Multi-view Video Coding’” the 14*

Internat ional Workshop on Systems, Signals and Image Process ing and the

E U R A S I P Confe rence focused on Speech and Image Process ing, Mul t imedia

Communica t ions and Services, pp 5-12, 2007.

[10] G, J. Sullivan, “Standards-based approaches to 3D and multiview video coding,” Proc.

SPIE, vol. 7443, Appl icat ions of Digital Image Process ing XXXII , Sept. 2009.

[11] P. Merkle, K. Miiller and T. Wiegand, “3D video coding: an overview of present and

‘ -

[6]

[7]

[8]

upcoming standards,” Proc. SPIE, vol. 7744, Visual Communica t ions and Image

Processing, July 2010.

[12] H.264/AVC Reference Sof tware JM16.2 . [Online] Available:

http:/ / iphome. hhi. de / sueh r ing / tml /download /o ld j m / j m l 6 , 2 . z i p

[13] T. K, Tan, G. Sullivan and T. Wedi, “Recommended Simulation Common Conditions for

Coding Efficiency Experiments Revision 4,” Document VCEG-AJIO, Oct. 2008,

[Online] Available: ht tp: / /wftp3 .itu.int/av-archyvideo-site/0810_San/

[14] G. Bj0ntegaard, “Calculation of Average PSNR Differences between RD-curves,"

ITU-T S G 1 6 / Q 6，D o c u m e n t V C E G - M 3 3 , Apri l 2001. [Online] Available:

ht tp: / /wftp3 . i tu. int/av-arch/video-site/0104_Aus/

[15J R. Joshi, Y. Reznik, and M. Karczewicz, ''Simplified Transforms for Extended Block

Sizes：' ITU-T SG16/Q6, document VCEG-AL30 , July 2009. [Online] Available:

http: / /wftp3. itu. int/a v-archy video-s i te /0906_LG/

[16] Y. Ye and M. Karczewicz, “Improved Intra Coding, ” ITU-T S G I 6 / Q 6 , document

V C E G - A G l l , Oct. 2007. [Online] Available:

ht tp: / /wftp3 . i tu. int/av-arch/video-site/0710_She/

http://iphome
http://wftp3
http://wftp3
http://wftp3

C h a p t e r 4 A B T i n A V S

4,1 Overview of AVS
Audio Video Standard (AVS) [l]-[4] is a digital audio and video compression

standard developed by the workgroup of the same name in mainland China. The

standard development started in 2002. The standard is divided into several parts

and each part specifies an application area. AVS Part 2 and Part 7 relate to video

coding in different aspect. Part 2 targets in HD digital video broadcasting and

storage while Part 7 targets in lower complexity, lower resolution mobile

applications. Similar to H.264/AVC, the standard defines different profiles

specifying subset of the coding tools. There are 4 main profiles and their target

applications are:

• Jizhun (base,基準）profile: video broadcasting,

• Jiben (basic,基本，also called Yidong,移動）profile: mobile applications,

• Shenzhan (extended, f申展）profile: video surveillance, and

• Jiaqiang (enhanced,加強)prof i le ; multimedia entertainment.

The AVS-Part 2 Jizhun profile was approved as national standard in 2006.

Recently, more profiles are added to the standard to enhance the functionality. For

example, Shuangmu Liti Jizhun (Stereo 3D b a s e ,雙目立體基準) p r o f i l e was added

to support stereo 3D video coding. In order to improve the coding performance of

the existing standard, the drafting of the next generation standard, AVS 2.0, started in

March 2009. It was expected to finish the first working draft in July 2010. It is

still based on the hybrid coding architecture. It aims to provide significant

improvement on the top of AVS Part 2. It will support super high resolution up to

8kx4k and higher color bit depth up to 14 bits. The final committee draft is

targeted to be finished in 2012 [5][6].

Input Flame Quantisat ion y * Fnti opv Coder
Output

M o t i o n
Est imat ion

J- 4 M o t i o n
Compensation

Loop Fi l ter

Figure 4-1 Data flow of AVS encoder.

[•(Mit QilT^
n

Mot ion
Compensation

Loop Fil ter
Inverse

Tranbform
ResLaling

Entropy
Decoder |

Input 1

Figure 4-2 Data flow of AVS decoder.

In this thesis, our focus is on AVS Part 2 which targets in HD video coding. It is

expected that our techniques are portable to AVS 2.0 and acts as one of the coding

tools in the new standard.

Same as H.264/AVC, AVS encoder is also a hybrid video coder. The structure of

the encoder and the decoder are the same as H.264/AVC as shown in Figure 4-1 and

Figure 4-2. However, the details in many functional blocks are different from

H.264/AVC. The following are some of the typical techniques adopted in AVS Part

2:

• Intra prediction: 4x4 and 8x8 intra predictions are available in AVS standard.

However, 4x4 intra prediction is only adopted in Jiben Profile while 8x8 intra

prediction is adopted in the other 3 main profiles. There are 9 different intra

prediction modes for 4x4 intra prediction. They are similar to those specified in

H.264/AVC. In contrast, there are only 5 prediction modes for 8x8 intra prediction.

The five modes are Vertical, Horizontal, DC, Down-Left and Down-Right. This

lowers the complexity of the encoder but maintains high coding efficiency.

• Inter prediction: There are only 4 different partition sizes for inter prediction.

They are 16x16, 16x8, 8x16 and 8x8. Also, experiments show that the nearest 2

decoded frames are the most referenced frames. The frequency of referencing

further frames is significantly lower than these 2 frames. As a result, the maximum

number of reference frames in AVS is 2. This reduces not only the motion

estimation complexity, but also the side information indicating the reference frames.

• Simplified interpolation filter: Quarter-pixel motion estimation is allowed in

AVS. In H.264/AVC, 6-tap interpolation filter is used. In AVS, two 4-tap

interpolation filters cascading together are used. One is for half pixel accuracy
— ^

while the other is for quarter-pixel. The computation complexity is lowered.

• Pre-scaled ICT: Low complexity 8x8 ICT is adopted in Jizhun, Shenzhan and

Jiaqiang profiles while 4x4 ICT is adopted in Jiben profile. They are organized in

pre-scaled [7] structure such that the scaling matrices are only located in encoder

side. In H.264/AVC, the scaling matrices are located equally in both encoder and

decoder.

• CA-2D-VLC: The quantized coefficients are specially coded with a

Context-based Adaptive 2D Variable Length Coder (CA-2D-VLC) [8]. It is a low

complexity entropy coder which utilizes the joint probability of level-run

combination. As a result, a high coding efficiency is obtained.

• Enhanced Arithmetic Coding (EAC): It is an arithmetic coder with

logarithmic probability model. Its probability estimation is multiplication-free such

that it has lower complexity than the CABAC in H.264 but higher coding efficiency

than CA-2D-VLC. Its coding efficiency is comparable with CABAC.

Based on the AVS architecture, a joint proposal [9] was submitted and accepted into

the AVS reference software. In this proposal, researchers from Tsing Hau

University proposed the use of 4x4 ICT adopted in Jiben profile. On the other hand,

we proposed order-16 Simple Integer Transform (T n 办 Together with the

existing 8x8 ICT, an Arbitrary Block-size Transform (ABT) system, integrated with

4x4, 8x8 and 16x16 transforms, is formed. A maximum bit reduction of 19.35% is

reported. On the top of this system, we have proposed several methods to improve

the coding efficiency [10]-[13]. The proposal [13] was adopted into the latest AVS

reference software.

In this thesis, the reference software RM6.2/ acts as the testing platform. The

order-16 transforms mentioned in Chapter 2 will be integrated into it. Details of

this platform will be described from Section 4.2 to 4.7. Experiment and analysis

will be shown in Section 4.8. Finally, conclusions will be drawn in 4.9

4.2 Intra prediction
In AVS, only 4x4 and 8x8 intra predictions are present. There is no 16x16 intra

prediction in the standard. The 16x16 intra-prediction proposed in [14] is

integrated in our platform. It has 5 different prediction modes (Figure 4-3). They

are the vertical, horizontal, DC, down-left and down-right prediction. The

referenced pixels from previous decoded blocks are low-pass filtered before

prediction. When 16x16 intra-prediction is used, 16x16 transform is used

compulsorily.

Mode 0 Vertical Mode 1 Horizontal pn
Mode 3 Down-Left Mode 4 Down-Right

Figure 4-3 16x16 intra prediction in proposed AVS platform.

4.3 Transforms
4.3.1 ABT in AVS

Order-8 ICT was adopted in AVS Part 2. Its integer kernel is shown in (4-1).

Order-4 ICT was also adopted in AVS Part 7. Its integer kernel is shown in (4-2).

Researchers from Tsing Hau University proposed to form an ABT system with these

two transforms in [15]. At the same time, we proposed an ABT platform using

order-16 and order-8 transforms [9]. In the proposal, order-16 Simple Integer

Transform TSI-AVS was proposed. These two ideas were merged together and an

ABT platform including 4x4, 8x8 and 16x16 transforms is formed [16]. This

proposal was accepted by the AVS workgroup and integrated into the reference

software.

, 8
丨1 0

I 10

； 一 丨 9

么/r 一 8

6

I 4

2

8

9

4

- 2

- 8

- 1 0

- 1 0

- 6

8

2

0

6

8

9

4

0

I

I

I

I

I

-
 -

I

8

6

4

0

8

2

0

9

I

7

I

1

8 8

一 2 - 6

- 1 0 一 4

6 10

8 - 8

〜 9 - 2

- 4 10

10 - 9

8

9

4

2

8

I

_

8

- 1 0

10

- 9

8

10 - 6
10 4

6 - 2

(4-1)

/ T �—
^IC —

2 2 2.

1 - 1 - 3

- 2 - 2 2

- 3 3 - 1

(4-2)

In [16], researchers from Tsing Hau University also proposed a combinative coding

manner. When a MB is not coded with 16x16 transform, it can be coded with 8x8

transform together with 4x4 (Figure 4-4) at the same time. There are 16 different

combinations. The selection between 4x4 and 8x8 transform is in sub-block basis.

It is decided when every 8x8 sub-block is coded. The best combination is selected

by RD optimization. When a MB is coded with order-16 transform，this means that

if offers a RD cost lower than any combination of 8x8 and 4x4 transform. An

example is shown in Figure 4-5. We can see that the transform size for coding

smooth regions changes from 8x8 to 16x16. We can also notice that the rate

reduces and the PSNR increases when 16x16 transform is enabled.

- 1 6 - - 8 - •41

o\

i
i

A MB coded with 16x16
Transform

A MB coded with Combinative
Transform, Mixture of 4x4 and

8x8 Transform

Figure 4-4 Combinative ABT in proposed AVS platform.

(a) 38208 bits, 35.589dB (b) 38064 bits, 35.643dB

Figure 4-5 ABT (a) without 16x16 Transform, and (b) with 16x16 Transform.

In this chapter, some order-16 transforms described in Chapter 2 will be integrated

to the AVS ABT platform. They are tested individually. These transforms

include:

• Simple Integer Transform, T 仏 爲 ，

• MICT,

• Hybrid Integer Transform, T " " ,

• Hybrid Integer Transform, THU,

• The integer transform proposed by Lee, Ti^e,

• The integer transform proposed by Joshi, Tjoshi,

• L L M I C T - A 1 , T園】，

• IIMICT-B\,TLLM-B], a n d

• MocHfied CSFICT (MCSFICT), TMCSF-

4.3.2 Flexible Transform Size Selection
In R M 6.2/ and before, the transform size selection is limited. In I-frame, only

order-4 and order-8 transform were allowed. In B-frame, only order-8 and order-16

transform were allowed. These three transforms only coexisted in P-frames. It

was because the earlier research showed low usage of order-16 transform in I-frame

and low usage of order-4 transform in B-frame. However, we found that this is not

true, especially in HD sequences. The usage of order-16 transform in I-frame is

quite high (See Section 4.8.3). As a result, we proposed a Flexible Transform Size

Selection. These three transforms can be selected flexibly based on their RD cost.

The optimal transform can be used without any restriction. We found that this

modification brings an average bit rate reduction of 4% in 1080p sequences [13].
—

4.3,3 Transform Design Constraints in AVS
It is more challenging in designing integer transform for AVS. There are more

constraints in its design and the integer kernel must be suitably adjusted before

implementing to the AVS reference software. The transform process adopted in

AVS is the pre-scaled integer transform (PIT) [7]. The forward transform and the

inverse transform processes are modeled in (4-3) and (4-4) respectively. Suppose

the integer kernel is E. X and Y are the input pixels and the reconstructed pixels

respectively. Recall that the 2-D scaling matrix S, which is a combination of 1-D

scaling matrix K. S locates in both forward and inverse transform process in

H.264/AVC. When S only locates in the forward transform process, it is called

pre-scaled transform. In contrast, if the scaling matrix S only locates in the inverse

transform process, it is called post-scaled transform and it is adopted in VC-1 [17].

No matter pre-scaled or post-scale transform, the transform coefficients are scaled.

F 附 = (E X E 卞 S © S . (4.3)

= G ® S © S “

F尸斤 E . (4-4)

There is another constraint in AVS. The transform, quantization and rescaling

process must be able to be implemented on a 16-bit system. Therefore, the

precisions of the transform coefficients are limited. To prevent overflow, the

transform coefficients are rounded. Those with smaller dynamic ranges may suffer

bigger rounding error in fixed point implementation. As a result, its coding

performance may be lowered. Suggestions were provided in [7] for the design of

pre-scaled transform so as to prevent such degradation. Weighting Factor

Difference (WFD) was defined in [7]:

max{S{i,J))
“(化,、、. (4-5)

It measures the extreme dynamic range ratio of the coefficients in a given transform.

The larger WFD, there are bigger difference between dynamic ranges of different

transform coefficients. WFD is minimum 1) when all Sii ,J) are the same. This

means all basis vectors have the same norm. In order to keep a good performance,

the transform should be unitary and it is suggested that the upper bound for WFD to

beV2 in [7]. To fulfill this requirement, the basis vectors in the transform are

adjusted with integer factors, m” The integer kernel becomes:

F — [^10 召11 …

^ “ 丨 • (4-6)

After the adjustment, the waveforms remain unchanged. However, the choice of

these factors highly affects the coding performance. It is not only the WFD issue,

but also the usage of the dynamic range. An inefficient use of the coefficient

dynamic range lowers the performance. The DC coefficient, Fpfj{Q, 0)，which has

the largest dynamic range, should have a maximum magnitude of power of 2 so as to

maximize the dynamic range usage. This can be achieved by setting the norm of

the DC basis vector to be 2". As a result, the minimum integer scaling factors, m”

are selected such that the following two criteria are fulfilled in our implementation:

• WFD must be less than a threshold WFD max'

• The magnitude of the norm of the DC basis vector should be of 2" so as to

maximize the usage of dynamic range.

By so doing, the dynamic ranges of the coefficients are restricted in a narrow range

as shown in Figure 4-6. In our case, WFO^ax is 1.6.

Dynamic
Range

2\WFD”�似 r

2 ” t

2"/WFD,抓 b

Figure 4-6 the dynamic range of the coefficient after adjustment.

As a result, the integer kernel of Tiee, X/o谢，LLMICT-Al and LLMICT-Bl are

shown in (4-7) to (4-10) respectively. The WFD after adjustment are shown in

Table 4-1. Experiment shows that this adjustment is very important in PIT design.

A bit rate reduction of more than 7 % is observed before and after the adjustment

with the same transform.

Transform
Weighting Factor Difference (WFD)

Transform
Before Adjustment After Adjustment

^SI-AVS 1.158 1.158

MICT 1.269 1.269

T " / / 1.245 1.245

T / / / 2 1.246 1.246

^Lee 2.390 1.578

飞Joshi 2.716 1.149

LLMICT-Al 2.173 � , 2 4 1

LLMICT-Bl 2.000 1.471

MCSFICT 1.179 1.179

Table 4-1 The Weighting Factor Difference of different transform.

(4-7)

(4-8)

(4-9)

(4 -10)

-

—

I

I

I

—
 —

I

4
8
0
0
2

2

4

4

4

4

6

6

2

4

0

2

6

0

0

0

0

1

8

8

6

8

5

3

4

4

2

I

7

1

7

1

7

1

-

-

-

I

4
0
4
4
2
2
0
6
4
2
0
^
2
4
6
4

6

0

8

8

4

1

2

3

6

1

0

0

0

8

5

4

i

f

-

f

 丨

7

_

4
 7
-
6

7
-
2
4
0
0
4
4
0
4
2
8
4
6

6

1

5

1

4

8

0

0

6

4

2

8

0

0

8

3

7

二

 7

丨

I

-

1
7
 -

4

4

0

6

2

0

6

2

4

8

4

4

2

2

0

4

6
8

2

3

0

0

5

1

6

0

8

4

4

1

0

8

I
 Y

1
 :

T

:
 1
"

r

4

4

0

2

2

4

6

8

4

2

4

0

2

6

0

4

6
8
2
]
0
J
^
5
0
6
1
8
0
4
3
0
8

-
7
7

-

1

二

7

I

1

4

4

0

6

2

0

6

2

4

8

4

4

2

2

0

4

6
8

3

0

0

5

1

6

0

8

4

4

1

0

8

-
T
 T

-

 1

 -

 7

 7
-

4
2

6
9
-
2
4
0
0
4
4
0
4

2
8
4
6

6
1
5
1
4
8
0
0
6
^
2
8
0
0
8
3

1

:

7

7

:

I
I

4
0
4
4
 7
~

2

0

6

4

2

0

8

2

4

6

4

6

0

8

8

4

1

2

3

6

1

0

0

0

8

5

4

1

:

-

7

7

7

7

i
 二

4
8
0
0
2

2

4

4

4

4

6

6

2

4

0

2

6

0

0

0

0

1

8

8

6

8

5

3

4

4

2

1

5 1 2 5 1 2 5 1 2 5 1 2 .

5 4 4 - 6 0 8 - 6 7 2 - 6 8 8

1 3 0 3 9 0 5 9 8 7 0 2

3 4 8 - 8 7 — 4 1 7 - 6 8 1

6 7 0 - 2 6 8 2 6 8 6 7 0

6 7 2 5 4 3 - 8 7 - 6 0 9

4 0 7 - 7 0 3 - 1 4 8 5 9 2

- 7 7 6 4 9 3 4 1 - 5 3 9

5 1 2 - 5) 2 - 5 1 2 5 1 2

6 7 1 1 8 7 5 8 3 - 4 0 7

5 9 2 1 4 8 - 7 0 3 4 0 7

2 0 1 - 4 4 4 6 9 6 - 3 4 8

2 6 8 6 7 0 - 6 7 0 2 6 8

6 0 9 - 6 9 6 5 6 4 - 1 6 8

7 0 2 5 9 8 - 3 9 0 1 3 0

-336 丨 7(3 96

3 2

3 0

0 9

7 0

:01
0 7

51：
54'

0 7

7 7

7 7

92
6 7 1

5 9 2

201

43

3 4 i

70：
54'

02

3 2

6 8 8 6 7 2 6 0 8

7 0 2 5 9 8 3 9 0

6 8 1 4 1 7 8 7

6 7 0 2 6 8 - 2 6 8

6 0 9 8 7 - 5 4 3

5 9 2 - 1 4 8 - 7 0 3

. 5 1 9 - 3 4 1 - 6 4 9

‘ 5 i 2 - 5 ! 2 - 5 1 2

4 0 7 - 5 8 3 - 1 8 7

4 0 7 - 7 0 3 1 4 8

3 4 8 - 6 9 6 4 4 4

2 6 8 - 6 7 0 6 7 0

1 6 8 - 5 6 4 6 9 6

1 3 0 - 3 9 0 5 9 8

9 6 - 1 7 6 3 3 6

2 5 6 2 5 6 2 5 6 '

3 0 4 - 3 3 6 - 3 4 4

\92 2 8 8 3 2 0

- I B - 2 0 3 - 3 1 9

128 128 120

261 -49
3 2 0 - 6 4 2 8 8

•^54 1 8 6 - 2 9 4

2 5 6 - 2 5 6 256

1 0 2 3 1 8 - 2 2 2

6 4 - 3 2 0 1 9 2

2 0 3 3 2 7 - 1 7 1

3 2 0 - 3 2 0 1 2 8

3 2 9 2 6 1 — 8 7

2 8 8 - 1 9 2 6 4

1 6 8 8 8 - 4 8

6

2

4

7

0

9

2

2

6

5
7
6
5

7
-
1
9
4
5

3 6 1

29

3 2 (

2 5 6 2 5 6 2 5 6 2 5 6 2 5 6

3 4 4 3 3 6 3 0 4 2 7 2 - 2 1 6

3 2 0 2 8 8 1 9 2 6 4 - 6 4

3 1 9 2 0 3 - 1 5 7 - 2 9 1

3 2 0 1 2 8 - 1 2 8 - 3 2 0 - 3 2 0

2 8 J 4 9 - 2 6 1 - 3 1 9 - 8 7

2 8 8 - 6 4 - 1 2 0 - 1 9 2 1 9 2

2 9 4 - 1 8 6 - 3 5 4 4 2 3 6 6

2 5 6 - 2 5 6 - 2 5 6 2 5 6 2 5 6

2 2 2 - 3 1 8 - 1 0 2 3 6 6 - 4 2

1 9 2 - 3 2 0 6 4 2 8 8 - 2 8 8

1 7 1 - 3 2 7 2 0 3 8 7 - 3 1 9

1 2 8 - 3 2 0 3 2 0 - 1 2 8 - 1 2 8

8 7 - 2 6 1 3 2 9 - 2 9 1 1 5 7

6 4 - 1 9 2 2 8 8 - 3 2 0 3 2 0

4 8 - 8 8 1 6 8 - 2 1 6 272

8

0

0

0

0

5

4

0

8

0

6

0

4

5

2

0

2

0

6

0

6

7

4

5

7
-
0
9
0
6
2
3
4

1
2
1
7
-
1
1
1
1
1
1

1

I

一

-

-

-

-

-

-

8

0

4

0

4

5

2

0

8

0

0

0

0

5

6

0

2
0
4
0
6

3

0

2

5

6

0

6

7

9

4

1
2

1
1

_

-

1

I

1

1

2

I

J

_

-

-

-

-

-

-

-

-

8

4

6

5

4

0

0

0

8

0

2

5

0

0

4

8

2
8
9
2
X
^
4
6
7
2
6
3
4
6
0
J
^
8

1
1

J

J

1

 —
-

！

I

1
1
2

1

_

1

:

1

1

-

-

8

2

2

0

0

5

6

0

8

0

4

0

4

5

0

6

2

5
3
0
6
8
0
-
1
2
8
4
8
6
7
6
3

丨

1

-

^

1

1

I

_

r
l

8

6

2

5

0

0

6

0

8

0

4

5

4

0

0

2

2

3

3

7

6

8

9

8

2

1

4

8

6

0

6

5

1

1

-

7

7

-

丨

1

-

7

7

一

8

2

2

0

0

5

6

0

8

0

4

0

4

5

0

6

2

5

3

0

6

8

9

1

2

8

4

8

6

7

6

3

丨
 1

T
T
7
-

-
7
7
7

8

4

6

5

4

0

0

0

8

0

2

5

0

0

4

8

2
8
9
?
^

6
^
6
7
2
6
3
4
6
0
4
8

l
-
j
-
Y
T
T
-

丨

丨

2

1

8

0

4

0

4

5

2

0

8

0

0

0

0

5

6

0

2
O
4
O
6
2
1
>
-
0
2
5
6
0
6
7
0
-
4

1
2

1
1

I

—
'

1

1

I

1

J

_

I

J

:
 1

 I

 I

 I

-
-

8

0

0

0

0

5

4

0

8

0

6

0

4

5

2

0

2

0

6

0

6

7

4

5

9
"
0
9
0
6
2
3
4

fo r intra b lock

fo r inter b lock ()

4.4 Quantization and Rescaling
After transformation, the coefficients are quantized in the encoder side and are

rescaled in the decoder side. In pre-scaled transform, the two scaling matrices S

locates in the encoder side and they are embedded into the quantization process as

shown in Figure 4-7.

Input pixel
block X Transform Scaling Scaling Quant.

Encoding Path

Channel 一

Reconstructed

block Y
Inverse

Transform
Rescaling

(Dequantization)
Inverse

Transform
Rescaling

(Dequantization)
Decoding Path

Figure 4-7 Data f low of quantization and rescaling in AVS.

4.4.1 Quantization
Recall (4-3), (4-4) and the definition of S in last chapter. The quantization process

with step size Qstep and rounding offset Qogset can be modeled as:

^sieD
(4-11)

Qoffset i s d e f i n e d as :

X
X

•
 /•

—

^
 -

I
 o

s

Since division is a heavy computation load, it is replaced by multiplication with

integer approximation where:

scale{i, j) = round{s'{i, j) x 2沾“)and (4-13)

f ？'5 ^ (
Q_(Qp) = round ^ - ^ around 2 « for e [0，1”.”63] (4.14)

V J V ；

Sbits controls the precision of the scale{ij). Put (4-13) and (4-14) into (4-11):

F^{iJ)^sign{G{iJ))
[round[G{i,j) x scale{ij))» Sbit)x

>>15. (4-15)

(4-15) is modified before implementation due to the following 3 reasons:

1. One can notice that the magnitude of the value in [；」in (4-15) is significantly

less than such that it is most likely rounded to zero. To prevent this round

off, a factor is added and it is removed after the inverse transform process.

2. When the input data block X is in h-h\X (including sign bit), after order-16 DCT,

its transform coefficients are in (6+4)-bit. The factor is chosen such that the

quantized coefficient can be represented in (Z?+4)-bit with the minimum Qswp (i.e.

1). This makes sure the PIT coefficient has the same dynamic range as the DCT

under the same quantization.

3. Since the transform process and quantization process in AVS are restricted to 16

-bit, bit truncation may required in the transform process. Furthermore, to

maximize the usage of the 16-bit representation in the intermediate states, the bit

shifting is adjusted. And finally, (4-15) becomes:

.� ’ (….,��(round{G{i,j) x scale{ij))» Qbits)xQ^^^{QP)
F,{i,j) = sign{G{i,j))x » 1 8 . (4-16)

where Qbits depends on the transform type. For example, it is 12 for LLMICT-Al.

4.4.2 Rescaling
When the quantized transform coefficient, which is computed in (4-16) with

quantization step size Qstep, is received, they are rescaled to PV:

= F O
q ̂ step

- (f , • D Q , , { Q P % ^)) » DQbitsiQP) (4-17)

Here, DQ^abiQP) and DQbits are

r 1 5 + 輕 、

DQ,^,{QP) = round^ 2 «

‘QP
DQbits(Qn = \2- ^

O

(4-18)

(4-19)

Finally, the output Y is reconstructed by inverse transform and the factor mentioned

at the end of section 4.4.1 is removed by right shift by Kbits.

Y = (e^F,.e) » Kbits. (4-20)

4.4.3 Example
It may not be easy to understand the pre-scaled transform with quantization and

rescaling with formulae only. In order to display a clear picture of this process,

here a step-by-step example will be shown.

Suppose the order-16 transform to be implemented is LLMICT-Al with integer

kernel E = ^LLM-AI- Using (4-13) and Stu = 52, the scaling matrix SCALE is:

SCALE=

4096 4450 4745 4911 4520 4911 4745 4745 4450
4450 4835 5155 5335 4911 5335 5155 5155 4835
4745 5155 5496 5688 5236 5688 5496 5496 5155
4911 5335 5688 5887 5419 5887 5688 5688 5335
4520 4911 5236 5419 4987 5419 5236 5236 4911
4911 5335 5688 5887 5419 5887 5688 5688 5335
4745 5155 4742 5688 5236 5688 5496 - • 5496 5155

4745 5155 5496 5688 5236 5688 5496
• 1

• 5496
•

5155
4450 4835 5155 5335 4911 5335 5155 •. 5155 4835

(4-21)

Assume QP = 34 such that it is not so high that all quantized coefficients become

zero. Consider an intra-predicted input block X :

-2 -1 9 26 43 52 53 51 50 50 50 51 53 57 55 52
-3 10 36 42 40 43 42 41 39 37 39 40 40 44 45 42
16 24 19 -1 11 28 24 22 21 20 22 21 25 29 30 28

6 7 10 12 � 2 4 1 5 0 -2 6 11 10 11 � 3 12

-I 2 3 1 2 2 0 1 2 2 2 0 4 4 1 -4

-2 0 2 -3 -3 0 0 1 0 4 4 4 6 4 0 -10

0 0 -15 -8 3 -1 2 1 1 4 2 5 4 1 -8 -26

6 -31 -54 -10 3 -6 -3 1 -2 -4 2 8 4 -3 -1 0

4 2 -53 -9 1 -5 -1 -1 -1 0 1 2 4 2 -4 -3 0

4 0 -1 -2 -4 -7 -4 1 0 -1 1 3 0 -3 2 6

-3 -3 -1 -4 -3 -2 -1 3 4 2 -14 -10 1 -2 0 1

1 0 1 -2 -1 1 1 -1 -3 -5 -11 -3 1 -2 -2

1 -2 -2 -4 -4 -3 0 1 0 3 6 -1 -8 1 3 -1

1 1 -1 -3 -3 -1 0 0 1 4 3 -1 -2 2 3 0

3 2 -1 -3 -2 0 0 1 4 5 3 0 -1 -1 0 -3

1 -2 -3 -1 0 3 4 3 3 3 1 -3 -4 -5 -8 -4

It was captured from a real video sequence of 8-bit color depth. G is the

intermediate result of the 2~D transform. Right shifts of 5 bits and 12 bits are

applied in horizontal and vertical transform respectively to limit the intermediate

results within 16-bit.

G = (E ((X E ^) » 5)) » 1 2
(4-22)

702
1114
1026

580
266
164
120

3

-161

-73
33

- 1 2

-58
5

•11

、339

-284

-59

-212

-294

- 1 0 2

95

-112

-134

- 2

44

-43

- 1 0 0

-23

33

-24

-240

-104

-14
-56

-297

-144

- 2 6

-32

-88

47

51

-18

-29

53

16

-118

-88

-131

-94

-182

-102

26

5

-30

-98

27

87

6
-28
94

46

-31

-49

-130

22

13

-72

-32

6
-48

-58

60

51

-35

64

149

45

-27

60

37

-43

-57

5

71

18

-no
-7

113

38

8
39

93

70

-35

-19

-31

-35

76

41

-74

-33

74

67

32

-25

22

104

23

-76

62

-7

-58

-41

59

93

4

-30

37

109

2

-49

17

53

0
- 1 0

20

20
130

0
0

-8
34

0
0

99

33

58

0

2

36

91

36 -4

-3 -36

-50 -27

-16 24

64 41

52 -20

-67 6

30 23

78 34

-9 -26

6 -44

-33 -1

-35 27

-3 -31

-51 -17

-46 12

22

-6

-13

29

16

-17

-14

15

9

-38

-37

29

9

-30

-9

19

2
15

36

18

-2
-40

- 2 6

34

16

-68

-13

25

15

-19

-10

26

3】

9

5

-4

-7 5

24 16

-13 -8

-29 -4

6 4

15 4

- 1 2 - 1

-24 -18

-16 7

27 16

17 -3

-23 -21

-7 -2

24 19

•13

-4

0
- 1 0

-9

-9

-1

Multiply with the scaling matrix:

702
1210

1189
695
294
197
139

3

-161

-71
38

-14
-64

6
8

- 1 2

-368
-335

-74
-276
-352
-133
120

-118

-146
-2
55

-56
-120

-30
42

- 2 8

-278
-131

-19
-78

-380
-200

-35
-36

-102

53
68

-25
-37
74
21

-149

G = (G©S

•106 -54 72

•171 -156 48

•131 28 -60

.262 17 -82

.135 -88 7

37 -42 102

7 8 25

-35 -51 -127

-117 -64 -8

31 64 131

121 65 53

9 -46 11

-37 78 52

135 197 134

64 58 97

' 4 0 -32 -46

(4-23)

-24
-42
-49
97
57

-99
-37
86
75
43

-35
28

144
3】

-96

60

-7

-65

-47

63

108

4

-28

36

102

2

-57

18

61

0
- 1 0

20

-22

-151

12

121

- 1 0

-39

- 1 0

110

96

-38

-70

- 1 1

14

-42

-99

35 -5

-3 -45

-56 -36

-19 33

68 52

60 -28

-75 8

28 26

75 39

-8 -29

7 -59

-38 -1

-37 35

-3 -43

-57 -23

-48 15

26

-8
- 1 8

42

21

-24

-19

17

11

-44

-51

42

12

-43

- 1 2

25

2
18

46

24

-2
-53

-33

36

18

-72

-17

33

18

-25

-13

31

37 6 -14

12 -5 -5

-10 7 0

34 22 -13

-17 -10 -11

-42 -6 -12

8 5 -1

17 4 3

-14 -1 -5
-28 -20 -7

-22 9 3

39 22 7

22 -4 -7

-33 -29 -1

-10 -3 8

31 24 9

Quantize the coefficient with QtabiQP)'-

From (4-14) Q,,{3A) = round{2 M = 1722

F, (i, J) = J) X Q丨。b {QP) + (q*, X)J» Qbits =

2
2
0
2
2
1
1
1

-

-

-

一

琴

1

4
U
0
8
4
2
1
1
0

0 0

0 0

0 0

0 -1

0 0

0 0

0 0

(4-24)

(4-25)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

These coefficients are zigzag scanned and sent then to the entropy coder. After

lossless compression, these coefficients are sent to the decoder. When these

coefficients are received by the decoder, they are rescaled to F^ first using (4-17):

From (4-18) DQ,AQP) = round
34%8

15

2 8 = 3 8 9 6 8 (4-26)

From (4-19) 11
i 」

= 8 (4-27)

二 F, Q�,印

- (f , X DQ时{QP))» DQbimQP}
(4-28}

609 -304 -304
1218 -304 -152
1218 0 0
609 -304 0
304 -304 -304
152 -152 4 5 2
152 152 0

0 -152 0
-152

0
n

-152
0
A

0
0
n u

0
0
0

U
0

-152
0

u
0
0
0

0
0

0
0

0
，152

152

-152

-152

-304

-152

0
0
0

152

0

152

0

0

152

0
0

0

-152

0

0
0

0
0
0

0
0

0
0
0

152

0
0

0

0

0

0
0
0

0

'152

0
152

0
0

0

152 152

0 0

0 0

0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0

0

0

-152

0

152

0
0
0

152

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Finally, after inverse 2-D transform, reconstructed Y is obtained by.

(E l F q E) � > 8)) : » 1 5 = (4-29)

12
29
15
14
2
1

-9
0
0
5
3
1
0
2
1
2

T
o

_
 _

 -

J
.

5
8
9
0
1
9
6
5
5
2
2
4
2
7
1

1
1

~
 T
o

-

 -

 -
 -

 -

2
5
1
1
0
5
1
8
5
4
2
1
0
9
1

I

-
 -
1
3
-

 -

 -

 1

•

 _

I

30

37

10

11

2
0

-IB

A

I

-10

- 1

44

41

15

7

2

-1

-6

-3

-8

4

2

-7

4

-3

48

45

27

7

2

-3

- 1

-5

"11

- 8
2

2

-4

-3

7

1

50

44

31

8

1

-5

0

-1

-8

-5

5

0

-4

-4

10

4

49

36

22

5

1

-3

4

5

2

- 2

2

-3

-4

-5

6
7

51

36

17

2

2

4

7

3

6

-1

•3

-7

0

2

2

4

45

36

23

2

4

10

6

-6

-4

-1

-5

-12

3

8

5

4
4
7
6
5
8
3
5
6
1
4
4
0
4
3

4
 3

 2

 -

 _

 -

6
0
5
1
3
3
1
5
0
1
3
1
6
4
3

4
 3

 2

 1
 -

1
M
-

-

 -

 _

50 53 55 58

34 41 44 40

23 25 2 4 21

12 12 10 8

-3 1

-6

1
7
3
3
0
5
3
1
2
0
6
3

•

2

1
 •

 -

 -

 -

3
5
4
2
3
2
2
1
7
4
s

-
1
 -

 -

 -

 •

 -

1

1

1
7
7
1
0
3
6
4
9

4.5 Syntax Structures
Here are the syntax structures in our implementation. In intra block and inter

block, the contents are indicated in different syntax structures.

4.5.1 Intra block

MB—Type
(only present m Flagl6

Inter-frame)
uv

u �

Prediction Mode CBP 16xJ6 Coefficients
uv u(3) uv

Flag 16 = I Prediction Mo<
uv

16 /

) \ C A B P (0 :

CABP
Flagl6 = 0 1,(4) \

Prediction Mode CBP CABT C A B T (0 - 0 8x8 Coefficients ‘
uv u(6) uv uv ！

CABT(0:

CABP(,):
Prediction Mode CBP 4x4 Coefficients 1

uv u(6) uv 1

Figure 4-8 Intra-block syntax structure.

Figure 4-8 shows the syntax structure of an intra block. Each block is a syntax

element. In the block, uv means it have variable bit length while u{n) means it has

a fixed length of n bits.

Since MB in Inter frames can be inter-coded and also be intra-coded, an MB_Type

header is required to indicate it. If the current frame is an intra frame, this

MB—Type header is not needed. After that a 1-bit flag, Flag 16, indicates if its

residues are coded by order-16 transform. If Flag 16 = 1, the current MB is 16x16

intra-predicted and the residue is coded by an order-16 transform. Behind Flag 16

are the prediction mode, 3-bit Coded Bit Pattern {CBP, 1 bit for 16x16 luma block

and 2 bits for two 8x8 chroma blocks). It indicates the present of non-zero

coefficient in its corresponding block. Lastly, the non-zero transform coefficients

are present. If Flag 16 = 0，smaller transforms are used. Since Combinative

Arbitrary Block-size Prediction (CABP) is also proposed. It is possible that 4x4

— — — C h a p t e r 4 - ABT in AVS

and 8x8 intra predictions coexist in the same MB. A 4-bit CABP flag indicates the

prediction size. Each bit correspond to an 8x8 sub-block. It is followed by the

prediction modes and 6-bit CBP (4 bits for four 8x8 luma sub-blocks and 2 bits for

two 8x8 chroma blocks). As 4x4 and 8x8 transforms can coexist in the same MB,

a flag is needed to indicate each sub-block transform size. If CABP indicates the

current sub-block i is 4x4 intra-predicted {CABP{i) = 1), the predicted residue must

be coded with 4x4 transform and the MB syntax ends with transform coefficients.

Otherwise, the current MB is 8x8 intra-predicted. Its residue can either be coded

by 4x4 or 8x8 transform. This is indicated by a flag, CABT.

4.5.2 Interblock
Flagi6:

CBP 16x16 Coefficients
u(3) uv

SkipFlag MB Type MVD Flag 16
u(l) uv uv u(l) CABT(i) 二 0

Flagl6 = 0 CBP CABT
u(6) u(4)

8x8 Coefficients
uv

CABT(i):

Figure 4-9 Inter-block syntax structure.

4x4 Coefficients
uv

Figure 4-9 demonstrates the syntax structure of an inter-block. The notation is the

same as intra block. Inter-block syntax structure is more straight-forward than

intra-block. It first comes with a 1-bit Skip flag indicating if it is a skip block. If

the current MB is not a skip block, it is followed by the MB—Type header which

indicates the inter-prediction partition size. MVD stores the motion vector

difference of each partition. A 1-bit Flag 16 indicates if the residue is coded with

order-16 transform. If Flag 16 = 1, the residue is coded with order-16 transform and

the MB syntax ends with CBP and coefficients. If Flagl6 = 0，CBP and CABT

indicating the use of either 4x4 or 8x8 transform in each sub-block. Lastly, it ends

with the coefficients.

4.6 Entropy Coding
In AVS, the entropy coder can select either the Context-based Adaptive 2D Variable

Length Coder (CA-2D-VLC) or the Enhanced Arithmetic Coder (EAC). In this

thesis, the entropy coding adopted in the proposed platform is EAC. This is

because it has a higher coding performance. In order to adapt to the order-16

transform coefficients, the EAC is modified. More context models are added to

handle the long run of the transform coefficients. The structure of the EAC remains

unchanged.

The context modeling of Flag 16 and CBP16 are the same as those in H.264/AVC

described in last chapter.

4.7 Loop Filter
In the original design of the loop filter in AVS, the loop filter is applied to the

boundaries between the 8x8 sub-blocks. It is noticed that this design over-smooth

some regions that are coded with order-16 transform. This over-smoothing effect

may not be observed easily but lower the quality of the decoded frames (i.e. some of

the reference frames). Hence, the qualities of the later frames may be affected.

To tackle this problem, we proposed to change the loop filter region when order-16

transform is used. The loop filter will only apply along the MB boundaries (16x16

block boundaries) when the MB is coded with order-16 transform. Those MB

coded by order-4 and order-8 transform remain unchanged.

- 8 — — — — 8 — — > 16-

»

J J

Region applying loop-
filter in AVS standard

Region applying loop-filter if current MB
is coded with order-16 Transform

Figure 4-10 Region of the loop filter is applied.

4.8 Experiment and Analysis
In our experiment, the testing platform is based on AVS reference software RM6.2/.

The order-16 transforms stated in Section 4.3 are integrated to the testing platform.

Implementation details are described in previous sections. This integrated platform

is tested under the common test conditions specified by the AVS workgroup [18].

These testing conditions are listed in Table 4-2. Video sequences with resolutions

from GIF (352x288) to HD (1920x1080) are tested. Some sequences, which are

not specified in the common test conditions, are also tested.

In our analysis, the objective evaluation of different order-16 transforms will be

shown first. The BD-bit rate and the equivalent BD-PSNR are measured using the

method stated in [19]. These will show their RD performances. Their RD curves

will also be shown. After that, the subjective qualities will be compared. The

decoded pictures will be shown.

Platform RM6.2/

Anchor RM6.2/ 4x4 and 8x8 transform enabled, 16x16
transform disabled.

Prediction Structure IBBPBBP. . .

Intra Period Every 1 second

Frame Encoded

Sequence length is 4 seconds, at least 97 frames are
encoded:

WQVGA: 121-241 frames
WVGA: 121 � 2 4 1 frames

720p: 241 frames

1080p: 9 7 � 2 0 2 frames

Number of Reference Frames 2

Entropy Coding EAC (CABAC)

ABT
Anchor: 4x4 and 8x8.

Test: 4x4，8x8 and 16x16.

Rate Control OFF

RDO ON

Weighted Prediction OFF

Weighted Quantization OFF

Adaptive Interpolation Filter OFF

Loop Filter ON (Jizhun profile)

ME Search Range 32

Target Bit Rates

Resolution Bit Rate (kbps)

Target Bit Rates

W Q V G A (416x240) 384 ,512 ,850 , 1500

Target Bit Rates
WVGA (832x480) 512, 768, 1200,2000

Target Bit Rates
720p 1600, 2500, 4000, 6000

Target Bit Rates

1080p@24Hz 1600,2500,4000, 6000

Target Bit Rates

1080p@50Hz 3200，5000，8000, 12000

Table 4-2 Testing conditions in AVS platform

4,8.1 RD Analysis (Objective Evaluation)
The experimental results are shown in Table 4-3 and Table 4-4. They display the

BD-bit rate and BD-PSNR respectively. It can be easily observed that T_/�油 and

LLMICT-Al perform very similar. Their average bit rate reductions are over 8%.

They are 8.26% and 8.20% respectively. They are equivalent to an average PSNR

gain of 0.30 dB. The differences between them are within 0.06% but notice that

LLMICT-Al is simpler than Tjoshi- It saves more than 10% computation time in the

transform process with respect to 飞她！, MCSFICT and LMMICT-Bl are slightly

lower than them. Their bit rate reductions are 7.46% and 7.32 (or 0.28dB and

0.27dB equivalent) respectively. The remaining including, MICT, T H I I , T � / 2 ,

T^/ AVS and ^Lee, all have average bit rate reduction below 7% (or 0.26 dB

equivalent). The lowest is hee . It is 5.98% only (0.22 dB equivalent).

It can be noticed that order-16 transforms give better gain in HD sequences such as

72Op and 1080p. The bit rate reductions are usually more than 10% for 1080p

sequences. The largest gain is obtained by proposed LLMICT-Al in "Crew" of

720p. A bit rate reduction of 15.89% (equivalent to 0.44 dB) is obtained. This is

because it contains a large smooth region in the pictures and also many sudden

intensity changes caused by flashes. These lead to a high usage of order-16

transform. This will be discussed in detail in later section. In the next section，the

subjective quality of the decoded pictures will be compared.

B
D

-B
it

R
at

e
(%

)
'^S

L-
AV

S
M

IC
T

T
L

C
C

T

jo
sh

i
LU

M
-A

!
'^L

LM
-

B1

^M
C

SF

F
or

em
an

-0

.6
2

-1
.0

3
-0

.8
7

-0
.9

2
-0

.4
1

-1
.9

7
-1

.5
6

-1
.2

3
-1

.3
4

K
3

M
ob

il
e

-0
.3

8
-0

.4
7

-0
.5

4
-0

.5
7

-0
.4

0
-1

.4
1

-1
.4

7
-0

.8
4

-1
.0

9

K
3

N
ew

s
-0

.1
9

-0
.6

6
-0

.9
5

-0
.6

6
-0

.7
8

-1
.5

8
-1

.2
3

-1
.1

3
-1

.4
8

X

M
 00

oo

Pa
ri

s
-0

.2
5

-0
.8

9
-1

.3
3

-1
.3

1
-1

.7
5

-1
.3

6
-1

.0
3

-1
.5

6
-1

.7
1

A
ve

ra
ge

-0

.3
6

-0
,7

6
-0

.9
2

-0
.8

7
-0

.8
4

-1
.5

8
-1

.3
2

-1
.1

9
-1

.4
1

B
as

ke
tb

al
lP

as
s

-4
,8

8
-5

.3
4

-5
.0

5
-5

.0
5

-3
.1

7
-6

.3
9

-6
.2

5
-5

.1
4

-5
.7

4

B
lo

w
in

gB
ub

bl
e

-6
.3

2
-4

.2
6

-6
.7

4
-6

.6
8

-5
.7

0
-7

.9
0

-7
.9

8
-7

.0
5

-7
.5

0
ch

<D

^

<

-p
i

U
J

s
>

B
Q

 S
qu

ar
e

-9
.0

1
-9

.5
9

-9
.6

6
-9

.4
3

-9
.6

7
-9

.5
6

-9
.4

1
-9

.5
6

-9
.7

4
ch

<D

^

<

-p
i

U
J

s
>

R
ac

eH
or

se
s

-1
.7

3
-0

.4
2

-1
.4

8
-1

.3
4

-0
.2

7
-2

.3
9

-2
.8

5
-1

.6
0

-1
.8

1

A
ve

ra
ge

-5

.4
9

-4
,9

0
-5

.7
3

-5
-6

3
-4

.7
0

-6
.5

6
-6

.6
2

-5
.8

4
-6

.2
0

B
as

ke
tb

al
lD

ri
ll

-1
0.

37

-1
0.

76

-1
0.

55

-1
0.

53

-9
.1

6
-1

1.
74

-1

1.
73

-1

0.
84

-1

1.
30

B
Q

M
al

l
-8

,0
0

-8
.7

0
-8

.8
5

-8
.9

6
-8

.7
1

-9
.3

4
-9

.1
6

-9
.1

0
-9

.3
7

%

o >
Pa

rt
yS

ce
ne

-1

0.
76

-1

0.
69

-1

0.
58

-1

0.
44

-9

.5
3

-1
1.

11

-1
0.

95

-1
0.

91

-1
0.

95

%

o >
R

ac
eH

or
se

s
-5

.4
4

-5
.7

1
-5

.8
4

-5
.5

5
-5

.0
7

-6
.2

7
-6

.1
8

-5
.7

1
-5

.6
1

oo

U
)

K
)

X

Fl
ow

er
va

se

-7
.2

0
-7

.1
4

-7
.6

1
-7

.5
7

-7
.7

5
-7

.6
7

-7
.3

4
-7

.4
2

-7
.9

3

会

5

M
o

b
is

o
d

e
2

-1
4

.0
5

-1
4

.8
7

-1
4

.6
5

-1
4

.8
4

-1
3

.6
1

-1
5

.0
2

-1
5

.0
6

-1
4

.7
8

-1
4

.8
1

会

5

K
ei

ba

-5
.8

1
-6

.9
8

-7
.3

7
-6

.9
2

-6
.6

9
-6

.4
0

-6
.6

1
-6

.8
4

-6
.8

1

A
ve

ra
ge

-8

.8
0

-9
.2

6
-9

.3
2

-9
.2

6
-8

.6
5

-9
.6

5
-9

.5
8

-9
.3

7
-9

.5
4

B
ig

sh
ip

-2

.6
1

-3
.0

0
-2

.8
6

1
-2

.9
9

-1
.6

7
-

3
.

6
8

-3
.5

8
-2

.9
0

-3
.0

5

C
it

y
-5

.4
8

-6
.1

2
-5

.9
7

-5
.9

3
-5

.2
2

1
-7

.6
6

-
7

.
8

6
-6

.7
5

-6
.3

3
o

C
re

w

-1
4.

44

-1
4.

76

-1
4.

64

-1
4.

63

-1
3.

29

-1
5.

84

-
1

5
.

8
9

-1
4.

80

-1
4.

93

^
^ NJ

00

H

ar
bo

ur

-3
.4

4
-4

.7
3

-4
.5

0
-4

.5
3

-3
.9

1
-6

.9
3

-
6

.
9

6
-5

.6
8

-5
.3

9
X

to

N

ig
ht

-1

.9
2

-2
.0

5
-0

.8
1

-0
.8

2
-0

.6
2

-3
.0

2
-

3
.

0
6

-2
.0

6
-2

.2
2

R
av

en

-0
.9

7
-
1
.
6
0

-0
.6

9
-
0
.
8
0

1.
12

-
3

.
4

3
-

3
.

4
3

-
1

.
3

7
-
1
.
3
4

A
ve

ra
ge

-

4
.

8
1

-
5

.
3

8
1

-4
.9

1
-

4
.

9
5

-3
.9

3
-6

.7
6

-
6

.
8

0
-

5
.

5
9

-5
.5

4

K
in

om
ol

-
8
.
0
2

-1
0.

02

-
9

.
8

5
-

9
.

6
3

-7
.7

4
-

1
3

.
3

1
-1

3.
12

-1

0.
70

-1

1.
56

Pe
de

st
ri

an

-
1
0
.
4
7

-
1
2
.
1
2

1
-
1
2
.
1
8

-1
2.

15

-1
1.

05

-
1

4
.

1
2

1
-
1
3
.
9
4

-
1
2
.
9
5

-1
3.

11

O
T

G

>—
> 'sO

O

Su
nf

lo
w

er

-
7

.
1

8
-

8
.

5
1

1
-

7
.

0
6

-
6

.
8

2
-

3
.

7
5

-
1
2
.
8
5

-
1

3
.

0
1

-
8

.
5

3
-

7
.

2
9

O
T

G

>—
> 'sO

O

B
as

ke
tb

al
lD

ri
ll

-
1
0
.
3
2

-1
1.

20

j
-
1
1
.
6
5

-
1
1
.
6
5

-
1
0
.
8
4

-
1

2
.

6
9

-
1
2
.
4
2

-
1

1
.

9
6

-
1

2
.

4
4

O
T

G

>—
> 'sO

O

C

ac
tu

s
-
1
0
.
4
6

-
1

1
.

0
4

-
1
1
.
0
2

-
1

1
.

0
0

-
9

.
1

4
-
1
3
.
2
3

-
1

3
.

3
9

-
1
1
.
6
8

-
1

2
.

4
0

1—
'

o g N
w

'

R
us

hH
ou

r
-

1
0

.
7

4
-1

1.
92

-1

1.
81

-1

1.
70

-1

0.
48

-

1
3

.
4

9
-1

3.
21

-1

2.
11

-

1
1

.
7

9

1—
'

o g N
w

'

St
at

io
ii

2
-

9
.

7
5

-1
0.

10

-
9

.
5

9
-

9
.

5
6

-8
.2

1
-

1
0

.
9

3
-1

0.
79

-

9
.

7
6

-
9

.
8

9

一
1

A
ve

ra
ge

i

-
9

.
5

6
-

1
0

.
7

0
-

1
0

.
4

8
-

1
0

,
3

6
i

-8
.7

4
-

1
2

.
9

5
-1

2.
84

-1

1.
10

-1

12
1

A
ve

ra
ge

-6

.4
6

-6
.9

5
-6

.9
5

-6
.8

9
-5

.9
8

-8
.2

6
-8

.2
0

-7
.3

2
-7

.4
6

Ta
bl

e
4-

3
E

xp
er

im
en

ta
l

R
es

ul
ts

 o
f

di
ff

er
en

t t
ra

ns
fo

rm
s

in
 A

V
S

pl
at

fo
rm

 (
B

D
-b

it
ra

te
,

%
)

B
D

-P
SN

R
 (

dB
)

TS
I-A

VS

M
IC

T

T/
///

T/

//2

T
L

C
C

T

jo
sh

i
T^

LL
M

-A
!

T^
LL

M
-

Bl

T^
M

CS
F

F
or

em
an

0.

02

0.
04

0.

03

0.
04

0.

02

0.
08

0.

07

0.
05

0.

05

K
 J

^ K

)

M
ob

il
e

0.
02

0.

02

0.
02

0.

02

0.
01

0.

05

0.
06

0.

03

0.
04

K

 J

^ K
)

N
ew

s
0.

01

0.
03

0.

05

0.
03

0.

04

0.
08

0.

06

0.
06

0.

08

N
J oo

oo

Pa
ri

s
0.

01

0.
04

0.

07

0.
06

0.

09

0,
07

0.

05

0.
08

0.

08

N
J oo

oo

A
ve

ra
ge

0.

02

0,
03

0.

04

0.
04

0.

04

0.
07

0.

06

0.
06

0.

06

B
as

ke
tb

al
lP

as
s

0.
22

0.

24

0.
22

0.

23

0.
14

0.

29

0.
28

0.

23

0.
26

B
lo

w
in

gB
ub

bl
e

0.
24

0.

16

0.
25

0.

25

0.
21

0.

30

0.
30

0.

26

0.
28

c^

O

X

<

;
t

o
^

s
>

B
Q

S
qu

ar
e

0.
32

0.

34

0.
34

0.

34

0.
34

0.

34

0.
33

0.

34

0.
35

c^

O

X

<

;
t

o
^

s
>

R
ac

eH
or

se
s

0.
08

0.

02

0.
06

0.

06

0.
01

0.

10

0.
12

0.

07

0.
08

A
ve

ra
ge

0.

22

0.
19

0.

22

0.
22

0.

18

0.
26

0.

26

0.
23

0.

24

B
as

ke
tb

al
lD

ri
ll

0.
41

0.

43

0.
42

0.

42

0.
36

0.

48

0.
48

0.

44

0.
46

> oo

to

V

B
Q

M
al

l
0.

35

0.
38

0.

39

0.
39

0.

38

0.
42

0.

41

0.
37

0.

42

> oo

to

V

Pa
rt

y
Sc

en
e

0.
37

0.

38

0.
37

0.

37

0.
34

0.

39

0.
39

0.

39

0.
39

> oo

to

V

R
ac

eH
or

se
s

0.
19

0.

20

0.
20

0.

19

0.
17

0.

22

0.
22

0.

20

0.
20

> oo

to

V
Fl

ow
er

va
se

0.

35

0.
35

0.

37

0.
37

0.

37

0.
37

0.

36

0.
36

0.

39

么

o
o

o

M

o
b

is
o

d
e

2

0
.6

3

0
.6

7

0
.6

6

0
.6

7

0
,6

1

0
.6

9

0
.6

8

0
.6

7

0
.6

7

么

o
o

o

K
ei

ba

0.
31

0.

37

0.
40

0.

37

0.
35

0.

34

0.
36

0.

37

0.
37

A
ve

ra
ge

0.

37

0.
40

0.

40

0.
40

0.

37

0.
42

0.

41

0.
40

0.

41

B
ig

sh
ip

0.

07

0.
08

0.

08

0.
08

0.

05

0.
10

0.

10

0.
08

0.

08

to

o
C

it
y

0.
16

0.

18

0.
18

0.

18

0.
16

0.

23

0.
24

0.

21

0.
19

to

o

C
re

w

0.
39

0.

41

0.
40

0.

40

0.
36

0.

44

0.
44

0.

41

0.
41

1—

'
N

J oo

H
ar

bo
ur

0.

13

0.
18

0.

17

0.
17

0.

14

0.
26

0.

26

0.
21

0.

20

X

to

N
ig

ht

0.
07

0.

07

0.
06

0.

06

0.
02

0.

11

0.
11

0.

07

0.
08

R
av

en

0.
04

0.

06

0
.
0
3

0
.
0
3

-0
.0

4
0.

13

0.
13

0.

05

0.
05

A
ve

ra
ge

0
.
1
4

0
.
1
6

0
.
1
5

0
.
1
5

0
.
1
2

0.
21

0.

21

0.
17

0.

17

C
ac

tu
s

0.
28

0.

30

0.
30

0
3
0

0.
25

0.

36

0.
37

0.

32

0.
34

s
1

S
un

fl
ow

er

0
.
2
0

0.
25

0.

20

0.
20

0
.
1
0

0.
39

0.

39

0
.
2
5

0
.
2
1

^
1

N
J

1
O

；

X

B
as

ke
tb

al
lD

ri
ve

0.

33

0
.
3
6

0
.
3
7

0
.
3
7

0
.
3
5

0.
41

0.

40

0.
39

0.

40

^
1

N
J

1
O

；

X

K
im

on
o

1
0.

30

0.
38

0.

37

0.
36

0.

29

0.
52

0.

51

0.
41

0.

44

^
1

N
J

1
O

；

X

Pe
de

st
ri

an

0.
37

0.

43

0.
44

0.

43

0.
39

丨

0
.5

2

0
.5

1

0
.4

7

0
.4

7

o

g

1
S

ta
ti

o
n

2

0
.3

4

0
.3

6

0
.3

4

0
.3

4

0
.2

9

,
0

,3
9

0

.3
8

0

.3
4

0

.
3

5

o

g

1

R
us

hH
ou

r
0.

34

0.
38

0.

38

0.
38

0.

33

0.
44

0.

43

0.
39

0.

38

A
ve

ra
ge

0,

31

0.
35

0.

34

0.
34

0.

29

0.
43

0.

43

0.
37

0.

37

A
ve

ra
ge

0.

23

0.
25

0.

26

0.
25

0.

22

0
.
3
0

0.
30

0.

27

0.
28

Ta
bl

e
4-

4
E

xp
er

im
en

ta
l

R
es

ul
ts

 o
f

di
ff

er
en

t t
ra

ns
fo

rm
s

in
 A

V
S

pl
at

fo
rm

 (
B

D
-P

SN
R

,
dB

)

- ^ T J o s h i

- • - L L M i a - A l

+ T_MCSF

^ L L M i C T - B l

今 T_HI1

十 T_Hi2

一 T_S1-AVS

600 800 1000 1200 1400

Bit Rate (kbps)
1600 1800

Anchor

2000 2200

(b)

Figure 4-11 RD curves for (a) BQSquare (WQVGA) and (b) BasketballDrill (WVGA)

BasketballDrill (WVGA)

BQSquare (WQVGA)

Anchor

600 800 1000

Bit Rate (kbps)

一 (a)

1200

3
 2

3
 3

(
m
p
)
 i
l
N
S
d

31

00

3
 2

 1

o

9
 8

 7

3
 3

 3

 3

 2

 2

 2

t
f
f
i
p
}

 K
N
M
d

— L L M I C T ^ I

+T—Joshi

—LLMICT-B1

—T_MCSF

令 MICT

"^T—HI1

T_HI2

- T _ L e e

Anchor

Crew(720p)

"•"T-Joshi

—T_MCSF

tLLM�CT-B1

^ M I C T

+ T _ H I 2

T S1-AVS

Anchor

35 5
1000 2000 3000 4000

Bit Rate (kbps)
7000

M

Sunflower (lOSOp)

1000 2000 3000 4000

Bit Rate (kbps)

(b)

Figure 4-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p)

44

43 5

43

42 5

42

(
a
p
)

 i
s
d

405

40

4.8.2 Subjective Evaluation
In this section, the subjective qualities of the decoded picture of different sequences

will be shown. They have different resolutions and coded with different

transforms.

The differences of subjective quality are not significant in lower resolutions such as

WQVGA and WVGA. However, they are still observable. "BQSqaure" is a scene

with high contrast. It is very obvious that ringing artifacts locates around the

objects boundaries. This is significant in the anchor. When 16x16 transform is

enabled, these artifacts are reduced. "BasketballDrill" contains regular local

motion. Slight blocking artifacts are observed in Anchor. Again, these artifacts

are reduced when 16x16 transform is used. In HD sequences, the distortions can be

observed more easily. In "Crew", obvious blocking artifacts are observed in many

smooth regions. The order-16 transforms dramatically suppress these artifacts.

However, the differences among different order-16 transforms are not significant.

They can hardly be distinguished from their picture quality.

(a
)

O
ri

gi
na

l
(b

)
A

nc
ho

r
(c

)
TS

I-A
VS

！
J
^n

m

i
i

™

(d
)

M
IC

T
(e

)
TH

II
(f

)
Th

I2

i^
jA

ti
IH

^^
A

I^

(g
)

Ti
ee

(h

)
Tj

os
h.

(i

)
L

L
M

IC
T

-A
l

W
^U

JW
^W

Fi

gu
re

 4
-1

3
Su

bj
ec

tiv
e

qu
al

ity
 o

f
"B

Q
Sq

ua
re

(j

)
L

L
M

IC
T

-B
l

(k
)

M
C

SF
IC

T
(W

Q
V

G
A

)”
, 2

8''̂
 fr

am
e,

 c
od

ed
 a

t Q
P

=
45

.

(a
)

O
ri

g
in

a
l

二 i , . - r j

管 ：

(b
)

A
nc

ho
r

(
C

)
飞

S

I-
A

V
S

(d
)

M
I

C
T

(

e
)

TH
II

(f
)

Th
I2

(g
)

(h
)

Tj
os

hi

(i)

L
L

M
IC

T
-A

l

(j
)

L
L

M
IC

T
-B

l
(k

)
M

C
SF

IC
T

Fi
gu

re
 4

-1
4

Su
bj

ec
tiv

e
qu

al
ity

 o
f

"B
as

ke
tb

al
lD

ril
l

(W
V

G
A

)"
, 2

0th
 fr

am
e,

 c
od

ed
 a

t Q
P

=
37

.

•
•

•
(a

)
O

ri
gi

na
l

(b
)

A
nc

ho
r

(c
)

JS
I-A

VS

•
•

•
(d

)
M

IC
T

(e
)

T
H

I
I

(f
)

T
皿

(
g

)
飞

L
e
e

(
l

l
)

Tj
os

hl

(i
)

L
L

M
IC

T
-A

l

(j
)

L
L

M
IC

T
-B

l
(k

)
M

C
SF

IC
T

Fi
gu

re
 4

-1
5

Su
bj

ec
tiv

e
qu

al
ity

 o
f "

C
re

w
 (

72
0p

)'
62

nd
 fr

am
e,

 c
od

ed
 a

t Q
P

=
34

.

4.8,3 Usage of order-16 Transform
The average usages of order-16 transform (LLMICT-Al) are shown in Figure 4-16.

Let us discuss in 4 different aspects.

• Frame Type: It is shown that the usage of order-16 transform in AVS platform

is pretty high in different frame types. They are 20% to 80% in I-frame, 20%

to 50% in both P-frame and B-frame. The usage in I-frame depends on the

picture nature. When a video sequence contains larger smooth region, the

usage of order-16 transform will be higher. For example, "Flowervase" has an

average usage over 70% in I-frame while "PartyScene" is only around 20%.

• QP: In our experiment, QPl < QP2 < QP3 < QP4. We can notice that as QP

increases, there is an obvious increasing trend in I-frame while there is a

decreasing tread in B-frame. The trend in P-frame is not that obvious.

Sequences with different resolutions have different trends as QP increases.

The trend is changing from increasing to decreasing as the resolution increases.

• Resolution: There is an increasing trend in all different frame types as the

resolution increases. It is more obvious in I-frame that the usage increases

from around 20% to almost 80%. It is not obvious in B-frame but the trend is

still observable.

• Vs. H.264/AVC: One may compare the statistics in this AVS platform with the

one obtained in H.264/AVC platform in last chapter. It is shown that the usage

in I-frame in AVS is much higher than in H.264/AVC, especially for HD

sequences. This is because the usage of intra 16x16 prediction in these

sequences is high. However, the transform selection in the MB with this

prediction is compulsory to order-16 transform in AVS. It can be either order-4

or order-16 transform in H.264/AVC. Thus, the usage in AVS is higher than

H.246/AVC. It can also be noticed that, in AVS platform, the usage is lower in

P-frame while it is higher in B-frame (with respect to H.264/AVC). This is

because they use different picture structures. H.264/AVC uses Hierarchical B

(Hir-B) Structure (IbBbPbBbP.. •) while AVS uses IBBPBBP... structure. The

P-frame period in H.264/AVC is longer than AVS such that the predicted

residue is usually larger in the P-frame in H.264/AVC. Thus, less skip mode is

used and hence the usage of order-16 transform is relatively higher in

H.264/AVC. In contrast, the Hir-B structure reduces the predicted residue in

B-frame (comparing with IBBPBBP... structure) such that the usage of skip

mode in these frames is large. This implies a lower usage of order-16

transform in B-frames with Hir-B structure.

The average usage of order-16 transform in l-frame

CIF (352x288) WQVGA (416x240) WVGA (832x480) 720p (1280x720) lOSOp (1920x1080}

(a)

The average usage of order-16 transform in P-frame

CiF (352x288) WQVGA (416x240丨 WVGMa32x480) 720p (1280x720) 1080p (1920x1080)

(b)

The average usage of orcler-16 transform in B-frame
ta%

CIF (352x288) WQVGA (416*240) WVGA (832x480) 720p (1280x720) lOSOp (1920xl0B0J

(C)
Figure 4-16 The average usage of order-16 in (a) I-frame, (b) P - f rame and (c) B-f rame.

4.9 Conclusions
In this chapter, we proposed an ABT platform for AVS coding standard as described

in Section 4.2 to Section 4.7. Proposed order-16 integer transforms discussed in the

last chapter are integrated into this platform and tested. They are compared with

other existing order-16 transforms. Experimental results show that a significant

gain is obtained when order-16 transform is used in video coding especially in HD

sequences. The proposed transform, LLMICT-Al, gives a maximum bit rate

reduction of 15.89% (equivalent 0.44 dB) in “Crew’，sequence. On average, it

offers a bit rate reduction of 8.2% (equivalent 0.30 dB). Other proposed transforms

such as LLMICT-Bl, MCSFICT, Ts!•，MICT, T � “ and T冊 offer average bit rate

reductions over 6.4% (equivalent 0.23 dB). These transforms not only improve the

objective coding performance but also the subjective quality. It is shown that the

picture quality is improved when these transform is used. The blocking artifacts are

significantly reduced.

We can conclude that our proposed ABT platform with proposed order-16

transforms significantly improves both the objective and subjective coding

performance of AVS.

4.10 References
[1] GB/T20090.2 information technology 一 advanced audio video coding standard Part 2:

Video, 2006.

[2] Fan Liang, Siwei Ma and Feng Wu, ''Overview of AVS video standard,” International

Conference on Mult imedia and Expo, vol. 1，pp 423-426, 2004,

[3] Lu Yu, Feng Yi, Jie D o n g and Cixun Zhang, ''Overview of AVS-Video: tools,

performance and complexity, “ Visual Communicat ions and Image Processing, Proc. of

SPIE vol. 5960, pp 679-690, July 2006.

[4] Lu Yu, Sijia Chen and Jianpeng Wang, ""Overview of AVS-video coding standards,”

Signal Processing: Image Communica t ion , vol. 24, issue 4, pp 247-262, April 2009.

[5] “Next Generation AVS Video Coding Specification Version 2.0,” AVS-N1590, March

2009. [Chinese]

[6] “Next Generation AVS Video Coding - Call for Proposal," AVS-N1591, March 2009.

[Chinese]

[7] C. Zhang, L. Yu, J. Lou, W. K, Cham and J. Dong, “The Technique of Prescaled Integer

Transform: Concept, Design and Applications,” IEEE Trans on CASVT, vol. 18, no. 1,

pp 84-97, 2008.

[8] Q. Wang, D. B, Zhao and W. Gao, ''Context-Based 2D~VLCEntropy coder in AVS Video

Coding Standard,” Journal of Computer Science and Technology, vol. 21, no. 3, pp

315-322, May 2006.

[9] W. K. Cham, C. K. Fong, Jie Dong, K. N. Ngan, H. M. Wong, Lu Wang, Yan Huo,

Thomas Pun, “Adaptive Block-size Transform for AVS-X” AVS Document

AVS-M2284, 2008, [Chinese],

[10] W. K. Cham, C. K. Fong, Y. L. Fong, K. N. Ngan, Y. Liu and Carmen Cheng, “Adaptive

Block-size Transform towards AVS 2.0’” AVS Document AVS-M2610, September

2009.

[11] C. K. Fong, W. K. Cham, Y. Liu and K. M, Cheng, “Adaptive Block-size Transform

towards AVS 2.0,” AVS Document AVS-M2647, December 2009.

[12] W. K. Cham, C. K. Fong, Y. Liu and K. M. Cheng, “An Investigation of Order-16

“ 4 - 4 3

Transform in AVS-M2606 ABT：' AVS Document AVS-M2657, December 2009.

[13] C. K. Fong, W. K. Cham, Y. Liu and K. M. Cheng, “Adaptive Block-size Transform

towards A VS 2.0,“ AVS Document AVS-M2666, March 2010.

[14] Jie Dong, K. N. Ngan and W. K. Cham, ‘‘Adaptive Block-size Transform for AFS

X-profiie, “ AVS Document AVS-M1771, March 2006,

[15] Yunfei Wang, Xunan Mao, Zhongmou Wu, Yun He, "AVS ABT Coding Technical

Proposal," AVS Document AVS-M2303, 2008. [Chinese]

[16] Xunan Mao, Yunfei Wang, Yun He, W. K, Cham, C. K. Fong, Jie Dong, K. N. Ngan, H.

M. Wong, Lu Wang, Yan Huo, Thomas Pun and Carmen Cheng, “Adaptive block size

coding for A VS-X profile, “ AVS Document AVS-M23 72, 2008, [Chinese]

[17] Jay Loomis and Mike Wasson, “VC-J Technical Overview,'' October 2007. [Online]

Available： http / / w w w microsoft com/windows/windowsmedia /howto/art ic les /vc l techoverview aspx

[18] ''AVS2 Common Test Conditions (Draft)，” AVS Document AVS-N1670，Dec. 2009.

[Chinese]

[19] G. Bj0ntegaard, "Calculation of Average PSNR Differences between RD-curves,“

ITU-T SG16/Q6, Document VCEG-M33，April 2001. [Online] Available:

http://wftp3.itu.int/av-archyvideo-site/0104_Aus/

http://wftp3.itu.int/av-archyvideo-site/0104_Aus/

Chapter 5 Transform Domain

Pattern Matching

5.1 Introduction

Pattern matching is a fundamental process in many image processing and computer

vision applications. It involves matching a given image pattern to a target image by

means of evaluating the similarity (or difference) between them. Suppose a h<k

pattern p is to be matched with a windowed target image w of the same dimension.

Both p and w are defined in a space . The difference d between them is also in

the same space.

d = p - w . (5.1)

The best candidate ŷ b拟 is usually denoted as the candidate that gives the minimum d

for all possible w in the candidate pool W.

To quantify the difference d, different measures are used. For example sum of

absolute difference (SAD) and sum of square difference (SSD) are commonly used.

k-] /M
d S A D (P, w) 二 力 — 冰 (。 • (5.3)

/=0 / = 0

ŜSD (P，= I 树,，乃-MA y f ‘ (5 4)
1=0 y=0

The choice of measure is application dependent. No matter which measure is used,

the matching process is a very computation intensive work. Many fast pattern

matching methods have been proposed to speed up the pattern match process and to

maintain the accuracy at the same time. These fast pattern matching algorithms can

be classified into two main classes. The first one is reducing the complexity of the

similarity evaluation. Every possible candidates in the target image are evaluated but

with simplified evaluation metric. One of the typical examples is Fast Full Search

(FFS). The accuracy of this class of algorithms is the same as Exhaustive Full Search.

No degradation is observed. As every candidate is examined, however, the

computation load is still very high. In contrast, another class of the fast algorithms

targets to reduce the size of the candidate pool W. Only portion of the candidates is

examined. A number of fast motion estimation methods [l]-[3] are in this class of

pattern matching, such as Three-step search and Diamond search. These algorithms

are significantly simpler than fast full search. However, there is a trade-off between

this speed-up and the accuracy. As only some but not all candidates are examined,

the best candidate may not be examined and hence, the accuracy is lowered.
—

5.2 Pattern Matching in

Walsh-Hadamard Domain

Hel-Or [7]-[9] proposed a high speed pattern matching algorithm for noisy images.

This algorithm projects the pattern and the windowed target image into the 2-D Walsh

Hadamard (WH) domain. The Euclidean distance between the projected pattern

patch and the projected target image patch are evaluated. Mismatched patters are

eliminated in an early stage. It is fast but its performance is approaching to the full

search. The search result is in pixel accuracy. It can be a preliminary result for

sub-pixel search. Mak and Li proposed a motion estimation method using Hel-Or’s

fast pattern matching algorithm.

In projection-based pattern matching, p and w projected onto the rn"̂ WH basis

(denoted as u^) are denoted as bp(m) and bw(m) respectively. Using

Cauchy-Schwartz inequality:

I W ^ l u L d (5.5)

Consider the Euclidean difference:

p - w =

>
u l (p - w) w

U.J
(5.6)

When there is a collection of u^ such that U = [ui, U2, ... u^] and the corresponding

project collection b = [^i, bj, ... bm], (5.6) can be expressed as;

(5.7)

This is the distance lower bound for a set of projections vectors. This lower bound

is getting tighter and tighter when the number of projections increases. As a result,

the pattern match can be performed in WH domain in an iterative manner. After each

projection, the candidates whose lower bound value is greater than a threshold are

rejected. The lower bound values of the remaining candidates are updated before

next projection. This is a recursive process until a predefined number of best matches

are found or the maximum number of projection is reached. WH basis vectors have

strong energy packing ability such that most of the energy is packed in the first few

projections. As a result, the comparison can be terminated in first few projections.

Majority of the mismatch candidates are removed from the candidate pool quickly and

hence less computation is required.

Besides the high speed of this algorithm, this algorithm also has an accuracy same as

full search. It also has a very high robustness. It is not affected by the difference in

illumination and noisy environment.

Based on the above Hel-Or's idea, Li and Mak proposed a faster pattern matching in

Walsh-Hadamard transform domain called Fast Walsh Search (FWS) [10]. In this

fast pattern matching, two techniques, Block Pyramid Matching and Partial Sum of

Absolute Difference, are proposed.

5.2.1 Block Pyramid Matching

Block Pyramid Matching (BPM) is an algorithm to compute the W H projections in a

hierarchical structure such that intermediate result can be reused. As a result, several

proj ections can be generated at the same time. K T Y T block can be divided into four

blocks. The DC or the (0, 0/卜 projection of the TYT block can be

decomposed into the sum of the (0，0)* projections of the four sub-blocks.

The (0，l)th，the (1, 0/卜 and the (1, projections of the TYT block can be

.1 fe V

decomposed into combinations of the (0, 0) projections of the four x2"—

sub-blocks in the same manner. Recursively, they can be decomposed into

combinations of the (0， p r o j e c t i o n s of 2x2 sub-blocks. In Figure 5-1，an example

of BPM is shown. The DC of the 8x8 block can be decomposed into the sum of DC

of the 4x4 sub-blocks. The DC of each 4x4 sub-block can be further decomposed

into sum of DC of the four 2x2 sub-blocks. When the pattern sliding window slides

by 2 pixels, the DC of each 2x2 sub-blocks can be reused. As a result, the

intermediate results are shared among different sliding window positions and hence

the computation can be significantly reduced.

—

1

H - -

1

4 - — •

1

-

]
- 4 -

r

Figure 5-1 Example of BPM with an 8x8 block.

5.2.2 Partial Sum of Absolute Difference

In Hel-Or's algorithm, the projected distance is measured by the Euclidean distance

which involves square operations or multiplications. In Li and Mak's algorithm, it is

suggested to be replaced by absolute difference. It is called the partial sum of

absolute difference (PSAD, or partial absolute difference in [10]). If �(p , w; q) is

the PSAD of g projections between p and w , �(p , w; q) is given as:

) - 1 u j w

1
0(P，w;") = a) (p , w ; � — l) + for ^ > 1 and 0 (p ,w ;0) = 0. (5.8)

After each projection, PSAD of the candidates in the pool are calculated. If one's

PSAD is larger than a threshold To, this candidate will be removed from the pool. It is

in a recursive manner until the number of candidates in the pool is less than a preset

threshold or the maximum projection is reached. The use of PSAD makes the

algorithm multiplication-free and closer to metrics in the codec which measure the

sum of absolute difference (SAD) instead of SSD. However, the threshold To for

eliminating mismatch candidates is not easy to determine. Here we propose a

statistical threshold and the Block Adaptive Threshold.

5.2.3 Statistical Threshold

It is obvious that the best match candidate may not always have the minimum PSAD.

Suppose the PSAD for the best match candidate and minimum PSAD in the candidate

pool are d)®"̂ and respectively. There is a real value T such that

Chapter 5 - Transform Domain Pattern Matching

(D 謝 圆 (5 . 9)

For all candidates, there is a relationship that:

0 = 0™" +t (5.10)

where t is a real value random variable. The probability that t > T

=尸(①〉①爐） （511)

When the probability density function (pdf) of t, pt(t), is known, (5,11) becomes:

/ � A (5.12)

Although pt{t) cannot be found analytically yet, it can be found empirically. It is

shown in Figure 5-2. If we can tolerate a very low miss rate such that the best match

may be removed from the candidate pool at a very low probability P瞧,w e can find a

value To such that:

% 丨⑴ (5.13)

The minimum value of TQ that satisfies (5.13) is the threshold to eliminate the

mismatch candidates.

X 10' pdf of the t

-4000 -3000 -2000 -1D00 0 1000 2000
t

Figure 5-2 The probability density function of/?,(/).

In block-based motion estimation, the candidates are in the search range of (±R, 士 R).

Mak found that the candidate located at (0, 0) is very likely to have O =�"“丨".Let �

of this candidate be Oo, (5.9) and (5.10) become:

(D 施 = 0 � + r , (5 .14)

� = � 0 + / . (5 .15)

Now, t is defined as the difference between O and Oq. Its pdf can also be found

from a set of training sequences and the shape is similar to that in Figure 5-2. The

threshold TQ can be found with (5.13). Mak found that when TQ is equal to 0 and O is

obtained from the first two projects (i.e. 二 2 in (5.8)), the miss rate is acceptable in a

balance between the computation and the accuracy. This threshold, TQ = 0, is

adopted in the fast motion estimation in [10].
5-8

u
 o

r
o
 f
e
d

0.4

0 2

n

5.2.4 Block Adaptive Threshold

The statistical threshold discussed in the last section is a fixed threshold at a fixed

acceptable miss rate. This works very well for majority of the blocks. However, the

fixed threshold may be over-estimated for very smooth blocks or under-estimated for

highly-textured blocks. This leads to inefficient mismatch elimination for those very

smooth blocks and over-elimination of the candidates for highly textured blocks. As

a result, we proposed an adaptive threshold which depends on the nature of the pattern

block p. For simplicity, the 8x8 pattern blocks are classified into two types: smooth

blocks and texture blocks. Each block type has its own pt{t) and hence its own

threshold TQ. This is called Block Adaptive Threshold. Using the definition in

(5.15), the value of To of these block types are found (Table 5-1). When the target

miss rate is even as low as 30%, it is shown that affect of the RD performance is very

minor. The number of the candidates for smooth block significantly reduces while

the miss rate for texture block is lowered. Overall, the remaining candidates are

reduced by 10%. However, the time for the matching process does not improve much

(� 1 %) because the classification of the pattern block also takes time.

Target Miss
Rate (%)

To Target Miss
Rate (%) Texture Block Smooth Block

1.0 280 40

5.0 73 9

10 16 1

20 -20 -3

30 -48 -6

40 -110 -32

Table 5-1 Block adaptive threshold of texture blocks and smooth blocks

5.3 Experiments

A Variable Block Size Motion Estimation (VBS-ME) algorithm based on FWS

(denoted as FWS-VBS algorithm) is built [10]. This algorithm is integrated into the

H.264/AVC reference software JM 10.1 [11]. FWS-VBS is compared with other

VBS-ME algorithms implemented in the reference software. The VBS-ME to be

compared including Fast Full Search (FFS), hybrid UMHexagons (UMH) [12],

simplified UMHexagons (SUMH) and Enhanced Predictive Zonal Search (EPZS)

[13]. Video sequences with frame resolution from GIF (352x288) to HD (1280x720)

are tested. The GOP structure is IPPPP... is used. Only the first frame is

intra-coded. Q P = {16, 20, 24 and 28) are tested. The BD-bitrates described in [14]

are measured. They are shown in Table 5-2. The best case in each sequence is

bolded. It is obvious that the test VBS-ME algorithms have similar RD performance

as FFS. The average BD-bitrates are less than 0.5%. In comparison, EPZS performs

the best. It is followed by UMH, FWS-VBS and SUMH. However, without

professional optimization, FWS-VBS is just slower than SUMH. It only requires

20% of the time for FFS on average. In [10], an early mode stop (EMS) is proposed

such that the required computation time is almost halved.

Resolution Sequences
BD-bit rate compare with FFS (%)

Resolution Sequences
U M H S U M H EPZS F W S - V B S

GIF
(352x288)

Akiyo 0.05 0.40 0.24 0.15

GIF
(352x288)

Coastguard -0.78 -1.31 -1.00 -0.52

GIF
(352x288)

Container 0.03 0.11 0.18 0.03 GIF
(352x288)

Foreman 0.80 2.84 0,60 0.30
GIF

(352x288)
Mother 0.40 1.09 0.69 0.28

GIF
(352x288)

News 0.12 0.73 0.09 0.38

GIF
(352x288)

Tempete -0.53 -0.42 -0.56 -0 .3�

SIF
(352x240)

Mobile -1.07 -0.70 -1.14 -0.73 SIF
(352x240) Stefan -1.79 -1.87 -2.08 -1.34

SD
(704x576)

City 0.60 0.48 0.23 0.00

SD
(704x576)

Crew 0.03 0.00 -0.18 0,16 SD
(704x576)

Harbour -1.25 -2.30 -1.46 -0.95
SD

(704x576)
Ice 1.45 2,44 0.92 1.26

SD
(704x576)

Soccer -0.46 -0.64 -0.47 -0.21

HD
(1280x720)

Mobile-Cal -0.26 -0.26 -0.33 -0.26

HD
(1280x720)

Night -0.26 -0.09 -0.55 2.23
HD

(1280x720)
Panslow 0.91 3.22 0.78 0.39 HD

(1280x720) Raven -0.04 1.29 0.46 0.23
HD

(1280x720)
Sailormen -0.05 0.04 -0.25 0.04

HD
(1280x720)

Shuttle-Start 0.51 1.30 1.07 0.61
Average -0.08 0.32 -0.14 0.09

T a b l e 5 - 2 B D - b i t r a t e s o f d i f f e ren t V B S - M E a l g o r i t h m s

Resolution Sequences
Percentage of M E time compare with FFS

Resolution Sequences
U M H S U M H EPZS F W S - V B S

CIF
(352x288)

Akiyo 12.9 9.5 13.6 11.8

CIF
(352x288)

Coastguard 31.1 20.0 27.4 28.4

CIF
(352x288)

Container 15.4 10.2 16.3 13.2
CIF

(352x288)
Foreman 22.8 13.1 21.0 19.5

CIF
(352x288)

Mother 14.0 10.1 15.5 12.8

CIF
(352x288)

News 13,9 10.1 15.9 13.0

CIF
(352x288)

Tempete 28.3 16.8 24.9 23.8

SIF
(352x240)

Mobile 31.0 20.0 27.2 27.1 SIF
(352x240) Stefan 26.3 16.9 24.6 24.8

SD
(704x576)

City 28,8 17.8 25.9 26.9

SD
(704x576)

Crew 29.8 15.2 23.9 23.5
SD

(704x576)
Harbour 32,0 18.7 27.5 29.5

SD
(704x576)

Ice 14.6 10.2 14.9 13.1

SD
(704x576)

Soccer 25.4 15.0 23.3 22.7

HD
(1280x720)

Mobile-Cal 27,7 16.2 23.7 23,0

HD
(1280x720)

Night 26.0 13.9 22.8 24.1
HD

(1280x720)
Panslow 22.1 11.9 18.3 17.9 HD

(1280x720) Raven 17.8 11.5 18.6 16.0
HD

(1280x720)
Sailormen 29.4 16.4 24.4 26.5

HD
(1280x720)

Shuttle-Start 12.6 8.7 12,5 10.8
Average 23.1 14.1 21.1 20.4

Table 5-3 Computation time o different VBS-ME algorithms

5-4 Conclusions

In this chapter, a transform domain pattern matching method called Fast Walsh

Search (FWS) is described. It was proposed by Li and Mak based on Hel-Or's

work. The matching is in Walsh-Hadamard transform domain in which pixel

energy in the patch are packed into several transform coefficients. Less comparison

is required and hence the matching process is speeded up. To further increase the

speed of the process, Block Pyramid Matching (BPM) and Partial Sum of Absolute

Difference (PSAD) were suggested. One of our contributions to this work is

derivation of a statistical threshold for eliminating the mismatch candidates. This

threshold can be found by an empirical pdf when tolerance of the missing the best

match is specified. With this threshold, majority of the candidates are removed

from the candidate pool while the best match is kept. This effectively speeds up the

matching process. Another contribution is the investigation of the Block Adaptive

Threshold. Different blocks have different nature. Smooth blocks and textured

blocks should have different thresholds. Experiment shows that the threshold

values for these two kinds of block have a big difference. Although the Block

Adaptive Threshold cannot give a significant speed-up to the process, it shows a

possible direction to do so. The FWS was integrated to H.264/AVC reference

JMlO.l . It is compare with some state-of-the-art motion estimation algorithms

such as UMH, SUMH and EPZS. The accuracies of these motion estimation

algorithms are similar but the proposed FWS is just slower than the fastest algorithm

SUMH. FWS only takes 20% of the computation time for the Fast Full Search.

5.5 References

[1] T. Koga, K. linuma, A. Hirano, Y. lijima and T. Ishiguro, “Motion compensated

interframe coding for video conferencing,'' in Proc. Nat, Telecommunication

Conference, pp. G5.3.1-5.3.5, 1981.

[2] L. M. Po and W. C. Ma, “/I novel four-step search algorithm for fast block motion

estimation" IEEE Trans, on CASVT, vol. 6, no. 3, pp. 313-317, June 1996.

[3] S. Zhu and K. K. Ma, ''A new diamond search algorithm for fast block-matching motion

estimation,” IEEE Trans, on Image Processing, vol. 9, no. 2, pp, 287-290, Feb. 2000.

[4] Chun-Man Mak, Chi-Keung Fong and Wai-Kuen Cham, “Fast Motion Estimation for

H.264/AVC in Walsh Hadamard Domain,” IEEE Trans, on CASVT, vol. 18, no. 6, pp.

735-745, June 2008.

[5] C. M. Mak, N. Li and W. K. Cham, “Fast motion estimation in Walsh Hadamard

domain,” Proceeding of International Symposium on Intelligent Signal Processing and

Communication Systems, pp. 349-352, 2005.

[6] N. Li and W. K. Cham, '"Statistical threshold for real time pattern matching using

projection kernels,” Proceeding of International Symposium on Intelligent Signal

Processing and Communication Systems, pp, 57-60, 2005.

[7] Y. Hel-Or, H, Hel-Or, “Real time pattern matching using projection kernels,”

Proceeding of IEEE International Conference on Computer Vision, Vol. 1, pp,

1486-1493，Oct. 2003.

[8] Y. Hel-Or, H. Hel-Or, ''Real time pattern matching using projection kernels," IEEE

Trans on PAMI, Vol. 27, no. 9’ pp. 1430-1445, 2005.

[9] M. Ben-Yehuda, L. Cadany and H. Hel-Or, ''Irregular Pattern Matching using

Projections,” IEEE International Conference on Image Processing, Vol. 2, pp. 834-837,

2005.

[10] N. Li, C. M. Mak and W. K. Cham, “Fast block matching algorithm in

Walsh-Hadamard domain,” in Proc. Asian Conference of Computer Vision (ACCV),

pp. 712-721, Jan, 2006.

[11] H.264/AVC Reference Software JMlO.l [Online]. Available:

— —

http://iphome.hhi.de/suehring/tml/download/oldjm

[12] Z. Chen, J. Xu, Y. He and J. Zheng, “Fast integer-pel and fractional-pel motion

estimation for K264/AVC’” Journal of Visual communication and Image

Representation, vol. 17, no, 2, pp. 264-290, Apr. 2006.

[13] A. M. Tourapis, O, C. Au and M. L. Liou, “Highly efficient predictive zonal

algorithms for fast block-matching motion estimation,” IEEE Trans, on CASVT, vol.

12, no. 10, pp. 934-947, Oct. 2002.

[14] G. Bj0ntegaard, “Calculation of Average PSNR Differences between RD-curves’”

ITU-T SG16/Q6, Document VCEG-M33，April 2001. [Online] Available:

http://wftp3 .itu.int/av-arch/video-site/0104_Aus/

http://iphome.hhi.de/suehring/tml/download/oldjm
http://wftp3

Chapter 6 Distribution Modeling of
Predicted Residue Transform
Coefficient

6.1 Introduction
A number of works has been done in the analysis of the transform coefficient (usually

refer as DCT coefficient) distribution of images [l]-[7]. They are commonly

expected to be in Laplace distribution. As a result, it is assumed that the DCT

coefficients are in Laplace distribution in many applications such as image coding.

In fact, the transform coefficient distribution is a fundamental to many applications,

such as rate control, quantization noise analysis and transform-based restoration. An

accurate distribution model is very important to these applications. Beside Laplace

distribution, the transform coefficients have been proposed to be modeled as mixture

of Gaussian and Generalized Gamma Distribution.

In video coding, predicted residue is transformed instead of the pixel data.

Therefore, the distribution of the transform coefficient of predicted residue should be

focused. It is commonly expected to be in Laplace distribution also. It is recently

found that, however, the predicted residue is closer to Cauchy distribution than

Laplace distribution. In [8] and [9], the transform coefficient is modeled in Cauchy

distribution and more accurate rate and distortion models are achieved.

Usually, the parameters of the distribution are estimated from the transform

coefficients. In this chapter, the parameters of the Cauchy distributed transform

coefficient are going to be estimated from the predicted residue without being

transformed. First of all, the predicted residue is verified to be Cauchy distributed.

After that, some properties of Cauchy Distribution will be described. Using these

properties, the distributions of the transform coefficient will be derived. Experiments

will verify our proposed model.

6.2 Distribution of Predicted Residue
In video coding, prediction is used to reduce the temporal and the spatial redundancy

in pixel data. Intra-prediction reduces the spatial redundancy while inter-prediction

reduces the temporal one. The predicted residue is sent after being transformed and

quantized. In general, the residue from intra-prediction has a larger variance than that

from inter-prediction. Figure 6-2 shows the predicted residue of the video sequence,

Foreman. The upper is the intra-predicted while the lower is the inter-predicted.

Their histograms are plotted in Figure 6-2. It is shown that the intra-predicted residue

has a wider spread (i.e. larger variance) than the inter-predicted. It can be shown that

the distribution of the intra predicted residue is closer to Cauchy distribution while the

inter predicted is closer to Laplace distribution.

沪 Vfst

Figure 6-1 (a) The intra-predicted residue and (b) the inter-predicted residue of

"Foreman".

Samp le Data

Lap lace Dist r ibut ion

Cacuiny Disr t ibut ion

MTMMMMMX*

2.5

0 5

-80 -60 -40 -20 0 20 40 60 80 ICD
Res idue V a l u e

(b)

Figure 6-2 The distribution of (a) the intra-predicted residue and (b) the

inter-predicted residue of "Foreman".

6-4

Sample Data

Laplace Distribution

Cauchy Distribution

\
丨•丨山_•丨• I '"ii

-60 -40 100

residue value

(a)
The Inter Predicted Residue of Foreman

The Intra Predicted Residue of Foreman

…：…=::"::“：：：：：：i_*Ji;:."";"H"

1

V

:

I.

:
/

L.

7000

6000

I 50D0
S

-100

6.3 Properties of Laplace Distribution
Laplace distribution is described by the probability density function (pdf):

exp ——. (6.1)

Its mean and variance is given by ^ and respectively. Its parameters are

commonly estimated by the maximum likelihood (ML) estimator [10]. Their

estimated values are:

ju is the median of the samples, and (6.2)

I
 h

1
1
"

I
I

6.4 Properties of Caychy Distribution
Cauchy distribution can be described by the pdf:

胞 = 4 h :) 、 , ” . (6.4)

In this pdf, xo is the location parameter, which is the median and the mode of the

distribution and / i s the scale parameter, which describe the spread of the distribution.

The standard Cauchy random variable (RV), X, is defined as:

! � _) = • • (6.5)

The Cauchy RV can be expressed as:

r
I

• ^ o i + r
(6.6)

Cauchy distribution is an example of a more generalized version of the central limit

theorem. It is a stable distribution such that the sum of independent Cauchy

distributed RV is also in Cauchy distribution;

不 〜

(6 . 7)

J

However, there is no mean variance defined for Cauchy distribution. This makes

the parameters not easy to be estimated.

6.1.1. Parameter Estimation Method 1
The simplest way to estimate the parameters is approximating its median by its

ensemble mean:

i/V
(6.8)

And from (6.6), the peak of the pdf is:

(6 . 9)

As a result, y is estimated by:

7 = (6.10)

This method is very simple but not very robust. The accuracy is low when the

samples are noisy or insufficient number of the observed data. The empirical pdf is

required.

6.1.2. Parameter Estimation Method 2
Another method is by means of entropy. The entropy of a Cauchy distribution is:

H ^\og,[A7vr). (6.11)

When the pdf or the histogram of the observed samples is known, the entropy of

these observed samples in TV bins is:

N

Ho (6.12)
rM

where is observed probability density at x,. Since these two entropies should

be the same, hence:

(6.13)

This is a robust method with high accuracy. However, the empirical pdf is still

needed and the entropy of the observed data has to be found. This requires more

computation and memory.

6.1.3. Parameter Estimation Method 3
In video coding, the range of the predicted residue value is bounded. Let this bound

be [Xmin, Â Tiax] such that the Cauchy RV:

(6 . 1 4)

Assume that the distribution is symmetric about XQ and:

尺 職 » r (6.15)

and the approximation:

tan-i (Z i « — 丄 when 6 » 1 (6.16)

The mean and variance become of 兄:

丄 4 � �- Z r

71

K

n

t an - l U a n - i
. . . r ；

2 r] I 2 R

Xr - 兄 一 �

7 J]

；r +

, 1 1 �

nRj

R

se

(6.17)

O-J = J" -p(卓X

厂

tan ‘

(f

I. ^ X -X
max _ tan‘. mm r

��

二I 2R + y + ^
^！ vv 2 R 2 R

\\

f }

(6.18)

1
1
 2R + y

_ IRy

R)

71
7 +

For Intra-predicted residue, its variance is relatively large and hence it can be

assumed to be zero-mean. In Figure 6-2, the distribution is shown to be symmetric

around zero

Xo (6.19)

and y is the solution to:

3 TVR 2 TIRCT; -
(6.20)

where

X ~X
R ^ max mm (6.21)

As a result, the parameters of the Cauchy distribution can be estimated easily from

the observed sample variance. The empirical pdf of the observed sample is not

required. However, this method is sensitive to the accuracy of X^^x- This

significantly affects the robustness.

6.5 Transform Coefficient of Predicted Residue
In Section 6.2, it is shown that the predicted residue has a Cauchy distribution.

Transform coefficient of predicted residue is a linear sum of the predicted residue. In

(6.7), it is shown that linear sum of the Cauchy RV is also in Cauchy distribution. As

a result, the distribution of the transform coefficients is a Cauchy distribution. The

best way to estimate the distribution parameters of the transform coefficients is from

the complete statistics of the transform coefficients. However, m many applications,

these statistics are not available in a single pass. As a result, a two-pass or even a

multi-pass strategy is used. Transformation is done and the statistics is gathered in

the first pass while the process is done in the remaining passes. This is an accurate

method but a very time-consuming one. Here, a method to estimate the distribution

parameter of the transform coefficients without transforming the residue is proposed.

Image and video pixel data are usually modeled in first order Markov process:

X, = p • +£•. (6.22)

The predicted residue can also be modeled in the same way with zero-mean. In 1 -D

case, the autocorrelation matrix of the predicted residue x is:

(6.23)

When X is transformed with an orthogonal kernel T, the autocorrelation matrix of the

transform coefficient is:

. (6.24)

Chapter 6 - Distribution Modeling of Predicted Residue Transform Coefficient

If X has a variance of a^ , the variance of the z-th transform coefficient c(i) is:

a!(和 CT'人(U). (6.25)

Assume that the 2-D case is separable into row-order and column-order 1-D process.

The variance of the 2-D transform coefficient c(r, s) is:

咖=汀】 [T R : T �J T R : ' T � , 力 （6.26)

where R!,^ and R:丨 are the 1 -D autocorrelation matrices in row- and column-order

respectively. They are defined as:

K:={P\：^} and (6.27)

where p痛 and are the correlation coefficients in row- and column-order

respectively. The parameters of transform coefficient distribution can be estimated

by substituting <j] in (6,20) with <yl{r,s) in (6.26). This implies that the

transform coefficient distributions can be found when the variance, the column- and

row-order correlation are known.

6.6 Experimental Results
In this chapter, our transform coefficient distribution parameter estimation method

will be evaluated. To evaluate it, the goodness-of-fit is measured and compared.

There are a number of goodness-of-fit tests. One of them is the Chi-Square test

(/ - t es t) .

6.1.4. Chi-Square Test
The Z^-tQSt is to test the hypothetical distribution against the observed data. The

cumulative distribution function (CDF) of the hypothetical distribution is assumed to

be available as F. For the observed data classified in k bins such that the frequency of

the observed samples in the 产 bin is O；. The expected frequency in the 产 bin from

the hypothetical distribution is:

E, 二 N. F{x,)-F{x,
pi =N. p{x)dx.

(6.28)

N is the number of observed data, xy and XL are the upper and lower bound of the i-th

bin. The test statistic is defined as;

i-j E
(6.29)

The smaller the value of the better fit of the hypothetical distribution is. It can be

noticed that ^ will increase as the number of observation, N, increases. In our cases,

N depends on the video resolution. Here we normalize ^ by N\

Chapter 6 - Distribution Modeling of Predicted Residue Transform Coefficient

Znorm = " ^ ^ . (6-30)

This does not affect the physical meaning of the ；f^ but makes the comparison among

different resolutions easier.

6.1.5. Empirical Results
In our experiment, the predicted residue is transformed by the order-4 ICT adopted in

H.264/AVC with normalization. The statistics is in frame-based. The histograms of

the predicted residue and its transform coefficients are gathered every frame. Their

distribution parameters are estimated with our proposed method. With these

parameters, the hypothetical distributions are formed and the goodness-of-fit test is

taken every frame. The average, minimum and maximum values of normalized ；^ in

each tested sequence will be listed and compared.

The result of fitting the intra>predicted residue is shown in Table 6-1. It is observed

that the predicted residues in most tested sequences are closer to Cauchy distribution.

It is also shown that Cauchy Estimator 1 (i.e. the parameter estimation method 1) is

more accurate than Cauchy Estimator 2 and Cauchy Estimator 3 in our experiment.

The evaluation results of the transform coefficient modeling are shown from Table 6-2

to Table 6-7. The results for the most important coefficients, the first 6 coefficients

along the zig-zag scan path, are shown. These coefficients contribute over 80% of

the signal energy. From the ； v a l u e obtained from the ML Laplace Estimator

and the Cauchy Estimator 1, it is shown that the distributions of the transform

coefficients are closer to Cauchy distribution than Laplace distribution. Although the

proposed Cauchy Estimator is not as good as the Cauchy Estimator 1, they are still

comparable.

6.7 Conclusions
In this chapter, the predicted residues of different sequences are investigated. It is

shown that the intra-predicted residue is closer to the Cauchy distribution. Three

Cauchy distribution parameter estimation methods are proposed and tested. The

estimation method from the peak of the empirical pdf is found to be very accurate

when the observed data are sufficient. Due to the properties of Cauchy distribution, it

is expected that the transform coefficients of the intra-predicted residue are also

Cauchy distributed. A method is proposed to estimate the Cauchy distribution

parameters of the transform coefficients without transformation.

Pa
ra

m
et

er
 E

st
im

at
or

C

au
ch

y
Es

tim
at

or
 1

C

au
ch

y
Es

tim
at

or
 2

C

au
ch

y
Es

tim
at

or
 3

M

L
La

pl
ac

e
Es

tim
at

or

G
O

F
7=

AT

 w
orm

M

ax

Av
e

M
m

.
M

ax

Av
e.

M

m

M
ax

.
Av

e.

M
m

.
M

ax
.

Av
e.

M

m

o 甲

Fo
re

m
an

0,

02
6

0.
01

7
「

0
.0

1
3

0
 0

3
7

0
 0

2
2

0
0

1
6

0
.0

8
3

0
.0

8
6

0
.0

5
1

0
2

1
9

0
.1

9
6

0
.1

8
0

o

甲

Fo
ot

ba
ll

0
O

il
0

00
5

0-
00

2
0

03
6

0
02

4
0

01
0

0
05

2
0

03
1

0
01

2
0

07
7

0
04

8
0

03
2

o 甲

Pa
ns

0.

03
8

0.
03

4
0

03
0

0.
08

7
0.

07
2

0
06

0
06

19

0
59

0
0

56
0

0
31

0
0

39
2

0.
27

5
o 甲

C
o
a
s
tg

u
a
rd

0
.0

4
9

0
 0

2
9

0
.0

2
0

0
 1

7
2

0
 1

5
1

0
.1

2
9

0
 2

7
4

0
-1

9
2

0
.1

1
2

0
 0

1
4

0
.0

1
0

0
.0

0
5

o

甲

M
o

b
il
e

0
.1

0
4

0
.0

9
0

0
.0

7
4

0
.0

9
1

0
 0

8
1

0
 0

7
3

0
.6

5
0

0
-6

0
4

0
.5

7
3

0
.2

6
9

0
 4

8

0
.2

2
7

o
 >

Fl
ow

er
va

se

0.
28

0
0.

24
1

0.
20

2
0

55
6

0
36

7
0-

22
6

0.
51

1
0.

35
0

0.
22

3
0,

92
1

0.
76

9
0.

63
2

o >

Ke
ib

a
0

03
2

0.
01

4
0

07

0.
11

3
0

07
1

0
04

8
0

09
5

0
05

9
0

03
4

0.
22

0
0

13
2

0.
09

7
o >

M
ob

is
od

e2

0.
24

6
0

22
7

0
20

8
0

93
5

0
79

3
0

55
2

2
54

0
1

15
1

0,
60

2
0

78
9

0
65

3
0

55
3

o >
Ra

ce
Ho

rs
es

0.

01
6

0.
01

2
0.

00
8

0
03

7
0

03
1

0
02

2
0

04
8

0.
03

4
0.

02
0

0.
13

6
0.

11
5

0,
10

2

to

C
ity

0

11
7

0
10

1
0.

08
9

0
12

8
0

11
6

0.
10

7
0.

13
2

0.
11

8
0.

10
7

0
27

3
0

26
2

0
24

1

to

C
re

w

0.
13

7
0.

06
1

0.
04

5
0J

98

0
16

1
0

10
3

0
30

5
0.

22
5

0,
09

9
0

48
8

0.
22

5
0.

19
6

to

H
ar

bo
ur

0,

03
5

0.
02

9
0

02
5

0.
04

4
0

04
1

0
03

6
0

03
0

0
02

4
0,

01
4

0.
03

9
0

03
6

0
03

3
to

Sp
m

C
al

en
da

r
0.

02
3

0
02

0
0.

01
4

0
04

5
0

03
8

0
03

0
0.

21
2

0.
20

1
0.

17
8

0
28

3
0

27
3

0
26

3

一

O
O

Bl
ue

Sk
y

0.
28

6
0.

24
1

0.
03

5
0

40
0

0
37

6
0

36
0

0
50

7
0

47
6

0
44

6
1.

00
8

0
90

4
0

67
3

一

O
O

Pe
de

st
na

nA
re

a
0.

16
0

0.
12

2
0.

09
1

0
26

0
0

20
9

0.
18

0
0.

88
9

0.
63

4
0.

49
8

0.
29

4
0.

24
0

0-
20

5
一

O

O

R
iv

er
Be

d
0.

05
0

0.
04

2
0.

02
5

0.
21

8
0

16
8

0
14

7
1.

29
1

1
06

2
0

91
9

0.
07

6
0

05
3

0
03

1
一

O

O

R
u

s
h

H
o

u
r

0
 0

8
0

0
.0

6
0

0
-0

4
6

0
 3

2
4

0
 2

7
3

0
,2

3
1

2
.2

8
2

1
,8

1
8

1
.4

9
6

0
.1

7
6

0
.1

4
1

0
 1

1
2

Av
er

ag
e

0.
10

3
0.

08
1

0,
06

1
02

16

0
17

7
0

13
6

0.
57

7
0.

41
2

0.
31

4
0.

34
5

0
30

5
0-

32
9

ab
le

 6
-1

 p
df

 f
it

ti
ng

 to
 t

he
 p

re
di

ct
ed

 r
es

id
ue

 o
f

ea
ch

 f
ra

m
e

w
ith

 d
if

fe
re

nt
 p

ar
am

et
er

 e
st

im
at

io
n

m
et

ho
ds

.

Z : forC(0 ,0)
ML Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est.

Z : forC(0 ,0) Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.
Foreman 0 138 0,120 0 100 0.052 0 033 0 022 0 054 0 036 0028
Football 0 055 0 032 0 022 0 031 0018 0 010 0 225 0,143 0.072

() Paris 0.128 0.119 0.109 0 048 0 035 0 023 0 065 0.057 0.005
Coastguard 0 022 0.016 0011 0.066 0.047 0 030 0.641 0.528 0.405
Mobile 0 091 0.081 0 069 0.078 0 053 0 037 0 141 0 126 0.111
Flowervase 1.939 1.494 1 052 1.241 1 071 0.926 0 973 0.728 0.522
Keiba 0 128 0,050 0 026 0 041 0016 0 006 0 246 0 159 0.071

O > Mobisode2 0 828 0.599 0 354 0.375 0 308 0245 1 267 0.759 0.251
RaceHorses 0 050 0 038 0 029 0 012 0 007 0 004 0 139 0 112 0 086
City 0 187 0.172 0 162 0 054 0 048 0.041 0 057 0.052 0 047
Crew 0 603 0.155 0 117 0 364 0 060 0 030 0 254 0 060 0.037

13 Harbour 0,017 0.014 0011 0.023 0 017 0.012 0 127 0.119 0.107
SpinCalendar 0 289 0 273 0 253 0 058 0 053 0 047 0 056 0 051 0 045
BlueSky 1 062 0.997 0.939 0.524 0.466 0.417 0.714 0.655 0.599
PedestrianArea 0 473 0.326 0.227 0.497 0.381 0.248 0213 0 172 0 134
RiverBed 0 035 0.015 0.002 0.057 0.040 0.025 0.997 0 643 0.377
RushHour 0 077 0 069 0 054 0 069 0 045 0 026 0 342 0 250 0 207

Average 0.360 0.269 0.208 0.211 0.159 0.126 0.383 0.274 0.183
Table 6-2 pdf fitting to the transform coefficient C(0, 0) in different sequences.

Z L forCU,0)
ML Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est.

Z L forCU,0) Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.
Foreman 0.203 0 172 0.141 0.068 0,050 0,035 0,040 0,031 0 023
Football 0.033 0-024 0,015 0.079 0 039 0.026 0 197 0.127 0.077

o
甲

Pans 0.260 0 236 0.218 0-092 0.070 0.057 0,266 0,222 0 177
Coastguard 0.026 0 020 0 016 0.090 0 064 0.041 1.992 1.750 1 455
Mobile 0 325 0 262 0211 0 253 0 200 0 158 0.164 0.133 0.109
Flowervase U790 1.624 L490 1 029 0 862 0 710 2 420 2.183 1.837
Keiba 0 231 0 120 0 077 0 050 0 031 0019 0.248 0.114 0.029

> Mobisode2 0.504 0 408 0-329 0.584 0.479 0 396 1,865 1.179 0.450
RaceHorses 0 157 0 134 0 109 0 024 0 019 0015 0 056 0.036 0.021
City 0-266 0.245 0-213 0.186 0.135 0.105 0 115 0.088 0.061

fo Crew 0 660 0.114 0 067 0 462 0 064 0 031 1 633 0 291 0 131
XJ Harbour 0 058 0.052 0-045 0 125 0.107 0 091 0.626 0 538 0.410

SpinCalendar 0 674 0 648 0 616 0 119 0 112 0 101 0 177 0 163 0.154
BlueSky 1 341 1 149 0918 0 255 0-174 0 092 1.045 0.871 0-667

1—1
o PedestrianArea 0 259 0 207 0 178 0 239 0 184 0 156 0 305 0 231 0-169
00
€ RiverBed 0 042 0 026 0011 0 135 0.105 0.042 2.186 1-742 1.449

RushHour 0 103 0.077 0 050 0 088 0 066 0 042 0 169 0 106 0 067
Average 0.408 0.325 0.277 0.228 0.162 0.125 0.794 0.577 0.429

Table 6-3 pdf fitting to the transform coefficient C(l , 0) in different sequences.

1) M L Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est. 1)
Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.

Foreman 0.173 0.148 0,117 0.065 0 054 0036 0.038 0 030 0 020

n
Football 0 138 0 061 0.034 0.052 0 032 0 019 0 096 0 064 0 020

n Pans 0 457 0418 0 390 0.091 0 071 0,061 0 081 0 071 0 065
Coastguard 0.031 0 022 0.016 0.067 0 046 0 034 0.139 0 105 0 066
Mobile 0‘220 0 183 0.154 0.185 0 147 0.105 0.105 0 087 0 070
Flowervase 1 209 1.038 0 871 0 606 0.463 0 327 1.634 1.320 1 045
Keiba 0 200 0 108 0.070 0.065 0 048 0.035 0 157 0 065 0 031

o > Mobisode2 0 760 0 597 0 425 0 683 0 566 0 472 0 588 0 483 0.425
RaceHorses 0 163 0 136 0 112 0.060 0 046 0 036 0 040 0 031 0 024
City 0.371 0 354 0.326 0.220 0.191 0,168 0.168 0.122 0.100
Crew 0 786 0.261 0 203 0 269 0 036 0015 0.183 0 103 0 077

o Harbour 0.043 0.039 0.034 0.085 0,072 0 057 1,302 1.091 0 942
SpinCalendar 0 401 0 382 0 362 0 105 0 093 0 083 0 154 0 141 0 129
BlueSky 1,130 1.001 0.902 0.125 0.075 0 052 0.724 0 533 0 347
PedestrianArea 0.415 0 339 0 279 0.245 0.187 0 148 0 361 0.306 0 261
RiverBed 0-104 0.058 0.014 0.186 0.141 0.044 0.621 0.376 0 186
RushHour 0 160 0 125 0.096 0 061 0,037 0 012 0 789 0,575 0J73

Average 0.398 0.310 0.259 0.186 0.136 0.100 0.422 0.324 0.246
Table 6-4 pdf fitting to the transform coefficient C(0, 1) in different sequences.

J- for 2)
八 NOM \ F /

ML Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est. J - for 2)
八 NOM \ F / Max. Ave, Min. Max. Ave. Min. Max. Ave. Min.

Foreman 0.210 0.168 0 125 0 098 0.070 0.050 0.571 0.434 0.303
Football 0.351 0.155 0.074 0.064 0.037 0.014 0.665 0.140 0.013
Paris 1.176 1.075 1.000 0.099 0.089 0.080 0.250 0.216 0 196
Coastguard 0.034 0.028 0.022 0.064 0053 0.042 0 186 0.129 0.077
Mobile 0 314 0.275 0.225 0.156 0 132 0,105 0 117 0.095 0.076
Flowervase 1.425 1.273 1.127 1.416 1.162 0,915 3.158 2 746 2.273

1 Keiba 0.206 0,131 0.066 0.119 0 089 0.069 3 493 2.097 1 641
o
> Mobisode2 0,767 0.647 0.580 1.031 0-855 0.717 1.084 0.937 0.799

RaceHorses 0 402 0 370 0 321 0 089 0 073 0,063 0312 0 257 0 180
City 0.350 0.326 0.302 0.180 0,160 0.147 0.441 0 210 0.107
Crew 0 621 0251 0.190 0 288 0 101 0 075 0 237 0 144 0 109
Harbour 0.075 0.064 0.050 0.099 0.085 0.068 1.856 1.636 1.459
SpinCalendar 0.247 0.229 0 212 0 119 0 105 0 092 0 304 0 276 0 253
BlueSky 0 395 0.327 0.234 0.236 0 133 0.149 1 599 1 308 0.984

O PedestrianArea 0 244 0 200 〇149 0 267 0210 0 170 0 282 0 201 0.160
oo

RiverBed 0.130 0.094 0 073 0.117 0 091 0.071 0 464 0.295 0.169
RushHour 0.290 0 188 0.110 0.191 0.130 0 091 0 304 0 231 0.201

Average 0.426 0.341 0.286 0.273 0.210 0.172 0.901 0.668 0.529
Table 6-5 pdf fitting to the transform coefficient C(0 2) in different sequences.

M L Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est.
Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.

Foreman 0 187 0 148 0.129 0,039 0 030 0.018 0 064 0 043 0 030
Football 0 101 0 049 0.023 0.050 0 030 0 013 0 201 0.120 0.045

(J Pans 0 387 0 354 0.318 0.066 0.054 0.043 0.376 0.329 0.280
Coastguard 0018 0 013 0.009 0.048 0.041 0 033 0,854 0 664 0 502
Mobile 0 353 0311 0.276 0,267 0.216 0.171 0.173 0 148 0 130
Flowervase 1 247 1 117 0 995 1.374 1 131 0 887 2 580 2.260 1,945

1 Keiba 0 183 0 120 0,085 0.047 0 036 0 031 0 088 0,043 0 028
o > Mobisode2 0 539 0 459 0398 0.707 0 591 0 493 3 266 2.298 1,401

RaceHorses 0 252 0 229 0 203 0 049 0 038 0.031 0 049 0 041 0 030
City 0.218 0 199 0.169 0.177 0.149 0,125 a 136 0.111 0 096

t o Crew 0416 0 085 0 055 0.383 0.075 0.047 0 327 0 136 0 061
Harbour 0.044 0 037 0.025 0.084 0,072 0.045 0.221 0.141 0 111
SpinCalendar 0 274 0 261 0 246 0 089 0.080 0.074 0 089 0 082 0 073
BlueSky 0.581 0-469 0.344 0.268 0.177 0.091 0.369 0-250 0 120

o PedestrianArea 0 192 0 169 0 142 0.250 0.222 0.196 0.605 0 476 0 395
oo

RiverBed 0.056 0 040 0 024 0.100 0.083 0.050 1.558 1 194 0.920
RushHour 0 126 0 099 0 080 0 159 0.128 0,106 1 870 1 702 1 584

Average 0.304 0.245 0.207 0.245 0.185 0.144 0.754 0.590 0.456
Table 6-6 pdf fitting to the transform coefficient C(1，1) m different sequences

ZL forC(2,0)
M L Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est

ZL forC(2,0) Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.
Foreman 0.212 0.174 0 148 0 063 0,044 0.028 0.126 0.083 0.052
Football 0.057 0.036 0.018 0 086 0 063 0 039 0 101 0.057 0.032
Pans 0.473 0.405 0.373 0 102 0 091 0 075 0 681 0.566 0.468
Coastguard 0.019 0.013 0.009 0 106 0 054 0 036 3 941 3 979 2.862
Mobile 0 389 0 344 0 308 0 278 0212 0 170 0 194 0 171 0.152
Flowervase 1.981 U808 1.582 1.606 1 346 1 110 2.113 1 915 1 623

1 Keiba 0 361 0 236 0.173 0 052 0 036 0 026 0 283 0 129 0.046
O > Mobisodel 0 614 0.531 0.461 0.796 0.673 0 561 1.286 0.807 0.456

RaceHorses 0.286 0.260 0,229 0 051 0 042 0 036 0415 0 341 0 233
City 0.427 0.386 0.323 0.223 0.165 0 134 0275 0.172 0,093
Crew 0 502 0.091 0.057 0.437 0 083 0 052 1 186 0 163 0.060
Harbour 0 111 0 102 0 078 0.129 0.110 0.076 2419 L969 1-275
SpinCalendar 0 520 0 489 0.449 0.089 0 078 0 070 0 092 0 080 0 067
BlueSky 0 774 0 631 0 462 0.245 0.178 0.100 0.707 0 578 0.483

o PedestrianArea 0 208 0 179 0 159 0—250 0.216 0-183 0-236 0-189 0.162 o
RiverBed 0 035 0 027 0.017 0.044 0 039 0 026 2 035 1 857 1 724
RushHour 0 115 0 100 0 091 0 147 0.132 0.121 0.438 0 296 0 194

Average 0.417 0.342 0.290 0.277 0.210 0.167 0.972 0.785 0.587
Table 6-7 pdf fitting to the transform coefficient C(2, 0) in different sequences,

6.8 References
[1] Randal l C. Reininger and Jerry D. Gibson, ''Distributions of Two-Dimensional DCT

Coefficients for Images,” IEEE Trans, on Communica t ions , vol. COM-31 , no. 6，pp.

835-839, June 1983.

[2] F. Muller, “Distribution shape of Two-dimensional DCT coefficients of natural images,“

IEEE Electronic Letters, vol. 29，issue 22, pp. 1935-1936, 1993.

[3] T. Eude, R. Grisel, H. Cherif i and R. Debrie , “On the Distribution of the DCT

coefficientsr IEEE ICASSP-94 , vol, 5, pp. 365-368, 1994.

[4] E. Y. Lam and J. W. Goodman, ''A Mathematical Analysis of the DCT Coefficient

Distributions for Images, “ IEEE Trans, on IP, vol. 9, issue 10, pp. 1661-1666, Oct,

2000.

[5] E. Y, Lam, “Analysis of the DCT Coefficient Distributions for Document Coding:,

I E E E Signal Process ing Letters, vol. 11, no. 2’ pp. 97-100, Feb. 2004.

[6] Joon-Hyxik Chang, Jon Won Shin, N a m Soo K i m and Sanjit K. Mitra, “Image

Probability Distribution Based on Generalized Gamma Function,'''' IEEE Signal

Process ing Letters, vol. 12, no. 4, pp. 325-328, Apr. 2005.

[7] Saralees Nadara jah and Samuel Kotz , “On the DCT Coefficient Distributions,” IEEE

Signal Process ing Letters, vol. 13, issue 10, pp. 601-603, Oct. 2006.

[8] Y. Altunbasak and N. Kamaci, “An analysis of the DCT coefficient distribution with the

H.264 video coder,” IEEE I C A S S P -04, vol. 3, pp. 177-180, 2004.

[9] N. Kamaci , Y. Al tunbasak and Russel l M. Mersereau , “Frame Bit Allocation for the

H.264/AVC Video Coder via Cauchy-Density-Based Rate and Distortion Models,”

IEEE Trans, on CASVT, vol. 15, no. 8 pp. 994-1006，Aug. 2005.

[10] K. Krishnamoorthy, Handbook of Statistical Distr ibut ions wi th Applicat ions, C R C

Press. 2006.

Chapter 7 Summary and Future Work

7-1 Contributions
7.2.1 Order-16 DCT-like Transforms

In this thesis, we have developed 3 classes of orthogonal order-16 DCT-like integer

transforms. They are Simple Integer Transform, Hybrid Integer Transform and

Integer Transform from Relaxed General Cosine Transform (RGCT). Simple

Integer Transform is extended from order-8 Integer Cosine Transform (ICT). It has a

very simple structure and it requires very little computation. It also has a good

coding performance. In order to improve the coding performance, Hybrid Integer

Transform is proposed. It is a hybrid of ICT and Dyadic Weight Walsh Transform

(DWWT). It has a better coding performance than Simple Integer Transform. We

proposed a method to derive ICT from RGCT. All are orthogonal, similar to the

DCT and have fast algorithms. In this class of integer transform, LLMICT and

CSFICT are proposed. LLMICT is an ICT having a fast algorithm similar to the

LLM Fast DCT algorithm which is proposed by Loeffler et al. It has an excellent

coding performance. However, it does not require heavy computation. It is also

possible to extend it to higher order transform, such as order-32. CSFICT has an

algorithm similar to the CSF Fast DCT algorithm proposed Chen et al. We modify

it to become MCSFICT which has a looser criterion for orthogonality. This leads

to a high flexibility of designing high performance order-16 ICT, Experiments

show that it has a performance similar to LLMICT.

These proposed order-16 transforms are integrated into the reference software of two

video coding standards, H.264/AVC and AVS. Together with order-8 and order-4

transform in these standards, two different ABT platforms are formed. They are

tested and compared with other existing order-16 transforms. Experiments show that

these proposed transforms provide a significant gain, especially for HD sequences, in

the two standards. Not only the objective coding performance, but also the subjective

quality is improved. The proposed transforms perform similar to other order-16

transforms but they are significantly simpler.

7.2.2 Fast Walsh Search for Pattern Matching
Mak and Li proposed a fast pattern matching algorithm in Walsh Hadamard domain.

It has a high speed and high accuracy. It was integrated into H.264/AVC to do the

motion estimation. To speed up the matching process, we proposed a statistical

threshold which can be adjusted according to the desired accuracy. This threshold

dramatically reduces the number of candidates which are possibly mismatched. As

a result, the matching process is significantly speeded up without missing the best

match.

Picture nature varies from region to region. Some are smooth while some are

textured. We expected that the proposed statistical threshold should be adaptive to

the nature of the image content. As a result, a block adaptive threshold was

proposed to eliminate the mismatch candidates more efficiently with the same

accuracy. This threshold depends on the variance of the target block. Experiment

shows that the mismatch candidates are reduced. Unfortunately, the time saving is

not significant as computing block variance is necessary.

7.2.3 Transform Coefficient Distribution
A preliminary study of the transform coefficient distribution of the predicted

residue was carried out. We found that the intra- and the inter-predicted residues

have different distributions. Intra one is closer to Cauchy distribution while inter

one is closer to Laplace distribution. As a result their transform coefficients are

closer to Cauchy distribution and Laplace distribution respectively.

Methods to estimate the distribution parameters of the transform coefficient are

proposed. They are compared with experiments. It is shown that the accuracies of

these methods are pretty high.

7.1 Future Work

7.1.1 Order-16 DCT-like Transforms
There are a lot of work can be done on the proposed DCT-like transforms. For

example, we have proposed order-32 LLMICT but have not tested it yet. It can be

integrated into our proposed platform to achieve a more powerful ABT platform for

HD video coding. In our proposed ABT platform, it is noticed that there is a high

correlation between the DC coefficients of neighbouring MB. It is possible to

improve the performance by removing this correlation. Using the development idea

of deriving ICT from RGCT, it is possible to develop other trigonometric integer

transforms of higher orders with fast algorithms. This will be very useful in many

image and video analysis applications.

7,1.2 Fast Walsh Search for Pattern Matching
The proposed block adaptive threshold significantly reduces the mismatch

candidates in pattern matching. However, the time saving is limited by the block

variance calculation at this moment. It is worth to find methods to speed up this

calculation so that a very high speed pattern matching algorithm can be developed.

Proposed FWS has been implemented into H.264/AVC as a motion estimation tools.

Currently, the candidates are found only by minimizing the difference (in terms of

MSE or MAE) between the reference block and the target block. The resultant

motion vector (MV) is not a factor of selection. It is possible to improve the

performance by considering the resultant MV in a RD-optimized manner. MV are

usually predicted by a median predictor using MV of neighbouring MB. A

candidate's MV which is more different from the predicted MV requires more bits to

code it. This candidate may not be a RD-optimized candidate even it have similarly

small MSE or MAE as other candidates. Thus, it can be eliminated from the

candidate pool and hence the pool size is reduced.

7.1.3 Transform Coefficient Distribution
The transform coefficient distribution analysis is in a very beginning stage. We

have only verified our findings in many test sequences in different resolutions and

nature. However, there is no application developed based on our findings.

Fortunately, many existing transform based image and video processing applications

are developed under the assumption that the coefficient distribution is Laplace

distribution, for example, the RD optimization in video coding. An improvement is

expected when they are redesigned with our findings.

Appendix A. Fast Algor i thm for

DWWT

A.1 Factorization of Matrix with

Orthogonal Basis Vectors
For any nxn matrix E with orthogonal basis vectors which can be decomposed into

two nxn matrices A and B. Assume that A and B also have orthogonal basis vectors.

Therefore we have:

E = AB,

E E � = D e ，

a a ^ ^ D , ,

(A-1)

(A-2)

(A-3)

(A-4)

where D^, DA and diagonal matrices. From (A-1) and (A-2), it can be

expended to:

E E �= A B B � A

= A D „ A ^
(A-5)

By multiplying A厂 and A, we have:

A D五A = D A D 尸 D^Dj (A-6)

we can rewrite it as:

A ' D y ^ D ^ ^ A 二 二 D ^ D , (A-7)

and D'^^A is an orthogonal matrix also and the left hand side of (A-7) is equal to

D^D^. Therefore:

(A-8)

i.e.

(A-9)

This means if (A-1) to (A-4) are fulfilled, the norm of the /-th row vector of E

defined as:

= E{i) • Eaf = d,ii) (A-10)

can be represented by a product of the norms of the i-th row vectors of A and B as

shown in (A-9). Recusively, if E can be factorized into product of k matrices,

T = M q M ” . . M / ((A - 1 1)

from (A-8) and (A-9), its norms can be expressed as:

D , 二 D似財,…D似,‘， (A-12)

or d,{i)=心似,(i)…ci…(0 . (A-13)

For more specific, if E is an integer kernel of a D W W T which is going to be

factorized into integer matr icesM^ g {Mo ,M”...’M/(}，these M" can be found in a

_ _ — A-2

finite search space. If the norm of E can be factorized into several p n m e factors,

these prime factors (or the products of some of these prime factors) are very likely to

be the norms of the factors M ^ . As a result, this significantly reduces the search

space for finding M It is not necessary that:

dMp(}) = (^MpiJ) for any ()<p<k and Q<iJ <n (A-14)

d e t M „ = (A-15)

which is specified in [1]. (A-15) holds only when n = % and dMp{i) is constant for

all <n which means all the row vectors have the same norm. If it is

assumed that (A-14) holds, this will turn into a generalized version in [1] with any

order n>

Consider a case that the norm of E, dsij), is a prime number. E cannot be

factorized into product of integer matrices with the above method. If E is a DWWT,

E can be broken down into simpler matrices to achieve fast matrix multiplication.

Let us take order-8 D W W T as an example. If E = b\, bo, 63, 64, bs, be, b-j)

where d 匕 - ^ b ' ^ is a prime number, the decomposition can be achieved by

replace bj by {bj + k) for certain j. And k is a small non-zero integer such as 1 or -1.

This replacement turns E into E ' = Eomv(i^o,...,办1 + K •••，̂7) which dg is a

compound number instead of a prime one. 6, 5，4，4，3, 3, 1) has a norm of

137 which is a prime number. It cannot be decomposed directly. However,

Edpk^S, 5, 5, 4, 4, 3, 3, 1) can be decomposed into 4 sparse matrices which requires

8 shift and 64 addition operations:

E酬(5,5,5,4,4,3,3,1)

2 1 - 1]

1 - 1 - 1

2 1 1 1

- 1 - 2 1

1 — 1 1 2

1 2 - 1

1 1 - 2 1
1 — 1 — 2 1

1

2 1

1

1 - 1

(A-16)

1 1

1 1

E 爾(5,6，5’4’4’3,3,1)

二 E躍（5,5,5,4，4,3,3,1) + E DWW (0,1,0,0,0,0,0,0) (A-17)

Since D W W T is linear, E服…， 6 , 5, 4, 4, 3, 3, 1) can be expressed into two

matrices as shown (A-17). As a result, 6, 5, 4，4，3, 3, 1) can be expressed

into sparse matrices which can be computed with 8 shift and 72 addition operations

indirectly.

This technique is not only useful to those E having a prime number dsO), but also to

those E which dE(i) cannot be factorized into small prime factors. Edww{5, 5, 5, 4,

4, 3, 2, 1) has a norm of 121 = 11 x 11. It can only be decomposed into two

matrices which are not very sparse as shown in (A-18). Its fast algorithm requires

16 shift and 77 addition operations.

£,^(5,5,5,4,4,3,2,1)

1 1 - 1] 1 - 1 - 2

1 2 - 2

2 - 1 1

1 2 1
- 1 - 1 2 1

- 1

1 - 2

I - 2 1

- 1

2 2

2 - 1

1 - 2

- 1

(A-18)
1 - I
2
1 - 1

- 1 - 2

However, its "neighbor", E ^ M ^ , 5, 5, 4, 4，3，2+1, 1) has a norm of 126 = 2 x 3 x 3

X 7. It can be decomposed into 4 sparse matrices as shown in (A-16). Plus 8

addition operations to restore 5, 5, 4, 4, 3, 2, 1), this indirect method

requires only 8 shift and 72 addition operations. It saves 8 shift and 5 addition

operations.

(5,5,5,4,4,3,2,1)

=£丽(5,5’5,4，4,3,3，1)-£丽(0卿’0,0’1’0) (‘、

^Dww becomes commoner to have a prime dj{i) or dj{() which cannot be factorized

into simple factors when are getting large. Therefore, this indirect method is a

very useful and efficient way to decompose Edww with large and prime b”

A.2 Reference
[1] Jie Dong; King Ngi Ngan; Chi-Keung Fong; Wai-Kuen Cham, “2_D Order-16 Integer

Transforms for HD Video Coding,” IEEE Trans, on CASVT, vol. 19, Issue: 10’ pp.

1462- 1474, Oct. 2009.

Appendix B. A Summary of Fast

Algori thms for Different Integer

Transforms
In this appendix, the fast algorithms of different integer transforms are described.

Their matrix factorization and their number of operations will be stated. The fast

algorithms described in this appendix include;

Order-8 ICT adopted in H.264/AVC,

Order-8 ICT adopted in AVS,

Modified ICT (MICT) [4],

Integer Transform proposed by Wien et al [1], T^en,

Integer Transform proposed by Lee and et al [2], T^^e,

Integer Transform proposed by Joshi and et al [3], Tjoshh

Proposed Order-16 Simple Integer Transform, TSI-AVS and TSI.H264,

Proposed Order-16 Hybrid Integer Transforms, T " " and Tnn, and

Proposed LLMICT, Al a n d B l .

Here we declare some common notations in this appendix:

ON

IN

H N

Order-// zero matrix.

Order-iV identity matrix.

I/v rotated by 90°.

NxN order-2 Hadamard matrix.
I
 I

Figure B-1 Data flow ofOrder-8 ICT adopted in H.264/AVC

The fast algorithm requires 14 multiplications and 32 additions. In

multiplication-free implementation, it requires 14 shifts and 32 additions (total 46

operations).
— — “ ‘

B.1 Fast Order-S ICT in H.264/AVC
This implementation can be easily found in the reference software of H.264/AVC.

ICT5(5, 12, 10, 6, 3, 8, 4) is adopted:

S S £
12 10 6 3 -

i! a 8 8
6 - 1 0 - 1 2

4 - 4 - 8 - S - 4 4
10 -3 -12

8 - 8 - 8
6 -12 3 10 -10
4 - 8 8 - 4 —4
3 —6 10 12 12

8
12 3 -10

- 8 - 8 8
2

8

6

1

I

-
j
 s

 o

1
1

(B.l)

It can be decomposed into:

-S 4

0 0

1 1

1 - 1

0 0 (B.2)
0

2

2

3

2

0

3

2

2

3

0

2

0

4

1

0

0

1
4

0

/ 1 \

-8 8

— 4

察妥:

Xo

X2

X4

X6

X]

X3

X5

X7

O4

Figure B-2 Data flow of Order-8 ICT adopted in AVS.

The fast algorithm requires 14 multiplications and 36 additions. In

multiplication-free implementation, it requires 16 shifts and 38 additions (total 54

operations).

B.2 Fast Order-8 ICT in AVS
This implementation can be easily found in the reference software of AVS. ICT5(5,

10’ 9, 6, 2, 10，4) is adopted:

no-
s

s

10 9 6 2

10 4 一 4 -10

9
Q

- 2
0

-10
o

- 6
0

0

6

—0

-10

—0

2

0

9
4 -10 10 —4

2 - 6 9 -10

S
2
0
6
8
9
4
0

I

I

1

1

1

s
-
 6
 4

o

8
 2

o

-
-
1
 _

 1

—9

4

2

- 8

10

10

6

•10

10
-9

8

- 6

4

- 2

(B.3)

It can be decomposed into:

- 8 8

8 - 8 0,

O4

k 1 0 0 1
0 1 1 0
0 1 - 1 0
1 0 0 - 1

0. — 4 lO
-10 4

O4

k 1 0 0 1
0 1 1 0
0 1 - 1 0
1 0 0 - 1

0.

O4

2 3 0 2
3 - 2 - 2 0
0 - 2 2 3
2 0 3 - 2

O4

「3 0 0 - 2

0 3 2 0

0 - 2 3 0

2 0 0 3

(B.4)

- 8

4

4

_

Xo

X2

X4

X6

X]

X3

X5

Xj

B.3 Modified ICT
The integer kernel of modified I C T , Em/ct , can be factorized into

E MICT

E AVS

0 .
a.
p MICT I . - I

(B-5)

where

MICL —

- 2 1

3 - 1 1

- 1 - 3 1

1

1 一 1 一 3

1 1 1

- 2

- 1 一 2

1 一 1 3

1 1

-1 一 1

-1 1

1 - 3
.3 -1

2 1

(B.6)

The fast algorithm requires 30 multiplications and 144 additions. In

multiplication-free implementation, it requires 30 shifts and 144 additions (total 174

operations).

B.4 Integer Transform proposed by
Wien and Sun.
No fast algorithm has been proposed for Twien- Here, we proposed its fast algorithm

as below. The integer kernel for Twien, ^Wien, can be factorized into:

E m7 .一 一
* Wten

Q, 0.
p Wwn,

H (B-7)

g .

「17H2 丨 02

. r 7 23

_0:」:_21__7_」

04 | X 04 1
「17H2 丨 02

. r 7 23

_0:」:_21__7_」

04
「 3 2 2

-2 3 - 2

3 2

2 - 2 3 04

• 1

4 1

- 1 一 4

- 4 1

1 - 4

「 3 2 2

-2 3 - 2

3 2

2 - 2 3

h
2h • 2 L

(B-8)

1 2

1 1 - 1
1 2

Pwren 二 2 :
- 1 1

1 3

2

2 1

1 - 2 2

2 1 2
2 - 2 - 1

2 2 - 2

2

2 2

- 2 2

2 - 2

- 2 2

- 1 2

1 - 2

- 2 - 1 2

- 2 2 - 1

2 2 2 2

H, (B-9)

The fast algorithm requires 34 multiplications and 136 additions. In

multiplication-free implementation, it requires 38 shifts and 144 additions (total 182

operations).

B.5 Integer Transform proposed by
Lee and et al.
No fast algorithm has been proposed for Ties. Here, we proposed its fast algorithm as

below. Its integer kernel E^ee can be factorized into:

=
0.

Hi (B-10)

Q" ‘ =

0, 7 1 7

1 7 7

%

H�

•5 - 5 - 7

- 5 5

H„ (B-11)

- 9 一 7

7 3

9 3

- 9

- 3 9

一 9

9 9
- 3

9 7

- 7 3

- 7 9

— 3 —1

9

9 - 9 9

3 7 3

- 3

- 9

' 1 3

-9 - 7

3 7

- 7 9

3

- 9 9

7 3

9 7

- 9

一9 —3

9

- 3 9

7

• 2 - 2

.2 2

(B-12)

The fast algorithm requires 50 multiplications and 112 additions. In

multiplication-free implementation, it requires 58 shifts and 148 additions (total 206

operations).

B.6 Integer Transform proposed by
Joshi and et al_
The fast algorithm proposed in [3] is as shown in Figure B-3.

xo

X5

X9

Xio

X

Co

C4

C]2

C]4

C6

<̂2

C]

C9

Cl3

<̂5

Cll

C7

Figure B-3 Data flow of Fast Ejoshi-

It is reported that this fast algorithm requires 36 multiplications and 72 additions. In

multiplication-free implementation, it requires 64 shifts and 120 additions (total 184

operations).

B.7 Proposed Order-16 Simple
Integer Transform
The proposed simple integer transform T^i is composed of eight order-2 WHTs and

two order-8 ICTs. The fast algorithm data flow for the simple integer transform

derived from the order-8 transform adopted in H.264/AVC (Tsi-H264) and from the

order-8 transform adopted in AVS (T^y-^j/^) are shown in Figure B-4.

fo

h X2

u M

u

h ” 8

/.o

f n

/M

f^ 叉1

h

fs

fl

h

/ n xn

f n

/l5 1̂5

/o

h

/4

/6

h

/ � 0

f n

/14

f\

h

h

fl

/9

/ n

/l3

/l5

(a) (b)

Figure B-4 Data flow of (a) ^si-h264 and (b) ^si-avs-

The order-8 ICT adopted in H.264/AVC requires 14 multiplications and 32 additions

while that adopted in AVS requires 14 multiplications and 36 additions. Therefore,

the numbers of operations required are:

Multiplication Addition
飞 Sl-m64 28 80

^ SI-AVS 28 88

In multiplication-free implementation, the numbers of operations

Shift Addition Total

28 80 108

^Sl-AVS 32 92 124

B.8 Proposed Integer Transform
from DWWT
Using the method described in Appendix A, the Hybrid Integer Transform T", from

DWWT can be factorized. Here, T///i and THU are taken as examples. Their integer

kernels can be factorized as:

E HI\
Og ¥¥

fi V
譯 I 一

(B-13)

E
HI 2

E 咖 I

E^)經2」
H (B-14)

Here:

E z w i = E 雖(11,11,11,9,8,5,4,1) + E 爾(0,0,0,0,0,2,0,0)

2

- 2

1 I 2 2

2 2

2 1

1

1
]

- I

-]
JL

1 -]

- 1

I 1

(B-15)

and

E, E騰(11,11,11，9’8,6，4，1) + E證(0,0,0,0,0,0,1,0)

1 1 1 2

- 1 1 - 3

- 2 - 1 3 1

1 —3 —1 - 1

2 1 - 1
- 1 2 - 1 - 1

3 1 - 1 2

- 1 1 - 3 1 (B-16)

1 - 1

The numbers of operations required are:

Multiplication Addition 1

T"// 30 160 !

T/-//2 30 160 ！
-1

In multiplication-free implementation, the numbers of operations

Shift Addition Total

30 160 190

T / / /2 30 158 188

B_9 Proposed LLMICT
Two LLMICTs are taken as the example, A1 and B1

Fast EAVS

— f .

- / 8

丨 — / 4

I

H / | 2

^ h

Figure B-5 Data flow of LLMICT A1

This fast algorithm requires 38 multiplications and 78 additions. In

multiplication-free implementation, it requires 50 shifts and 110 additions (total 160

operations).

一 u

’ 一 / i l l

.h- /M

h

/ l 3

/ . 5

/ .

fl

fn

/5
11

• 2

5

x5

x6

x7

x8

x9

— / 8

Fast EAVS
— f i

Figure B-6 Data flow of LLMICT B1

This fast algorithm requires 34

multiplication-free implementation, it

operations).

multiplications and

requires 48 shifts and

78 additions. In

92 additions (total 140

f(�

/u丨

f^A

h

fn

h

/ I S

/ .

fi

fu

h

B.10 Reference
[1] Mathias Wien and Shijun Sun, “ICT Comparison for Adaptive Block Transforms''

document VCEG-L12, Jan., 2001. [Online] Available:

http://wftp3.itu.int/av-arch/video-site/0101_Eib

[2] Bumshik Lee and Munchurl Kim, “A 16x16 transform kernel with quantization for

(ultra) high definition video coding,” document VCEG-AK13, April 2009. [Online]

Available: http://wftp3.itu.int/av-archyvideo-site/0904_Yok/

[3] R. Joshi, Y. Reznik, and M. Karczewicz, ''Simplified Transforms for Extended Block

Sizes；' document VCEG-AL30, July 2009. [Online]

Available: http://wftp3.itu.int/av-arch/video-site/0906JLG/

[4] Jie Dong; King Ngi Ngan; Chi-Keung Fong; Wai-Kuen Cham, “2-D Order-16 Integer

Transforms for HD Video Coding,” IEEE Trans, on CASVT, vol. 19, Issue: 10，pp.

1462- 1474, Oct. 2009.

http://wftp3.itu.int/av-arch/video-site/0101_Eib
http://wftp3.itu.int/av-archyvideo-site/0904_Yok/
http://wftp3.itu.int/av-arch/video-site/0906JLG/

