Arbitrary Block-size
Transform Video Coding

FONG, Chi Keung

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

Electronic Engineering

The Chinese University of Hong Kong

March 2011



UMI Number: 3491999

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy suljmhtted,

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Diaaartation Publishing

UMI 3491999
Copyright 2011 by ProQuest LLC-

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17 > United States Code.

ProOuesf

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346



(5B

B MR E R REEE TE - S ERE G GEAREEEST

B - ARt FRE T RITUE o (T 2 2 B 4 LR E ARV RUR - B ST ER
B Uy Y B AT 2 P AE B A B 4w B - WIIRBEBR A EE ARV S - D iE
Oy EIEEA > WA A ROt BUE R AR ACR o - B LUK R K E G 4R
B —fHE SRS ISRV E ] - EETF - st REEEERE (fHla
H.264/AV C) [ 4 tr A W 8 B0 LI 1Y 58 46 2 BE 4 58 A & 5l - {51400 ] BF 6
S VUPE R o )\ P 2 AR BR 4 (P & AR - RS SR 2 A [F RN E R
iy > F8 5% AT BB A/ NEE A B H B SR/ N o F SRR S PRI
BTN 750 > B DU AR S AL & A U P Y1 B RV SRS SR
B HE R NIE SR AEIABT 22805 -

ZHEAET E &S AR ER R EEARR P RE - AR
o TSR 0 DUREIRA RS NP SRR o B =R E
TAREEBRINGERH VBRI ELEIR - P —EHVABT R - &
SR VUPE ~ 55 \FE DA TN PE Y A ET A7 A2 S0 > AT LB R R -
B AR AN R A EEL > NBFEERNVREEEE  BHEZREE
B R R - RIEBUR & HYE Ti A [E] Y 72 58 1] DS A [E] Y 8 4 25



- HEEEATRRMN =ERAIEE RrRE - SERARRE > H
HRREAR OBV Fr R A - SRt EERVE R R G - RGN EE DU B

HEMER YL

BT IR 4R 5 HY e P SRS - ARG S SR & 2R 0 — TR P 2 AT 2 PR
AL VCECHY 5748 — PRIEVR B AR - ERERER R T AN ERE - H
HetfE o o] Ay AR R PR e Ay PR R ALY > (HEGEERIRIREE - E
JREH.264/AVCHYF &5 EEH > AEESTHNN TH - BRENEEH
SRR EE B A A E I ER o AEAF AT o i B R
HE > AR ERA RS RLL -

1% 0 AR R SCIR G R A — e S IR R B R SR I O o B R B SET

il
il

HIRZE G MR E T AMRER - BEIARH R RN — L AREBET
ERVRER B - 5 R R DU S AR ET BOE F R AR MERYELAR o L]
DLz B B KRR B U775 > BT E GRS 28t ERVBS RIZE S - Hag ko
RESHE Ry (rBUE 2 A8 AL o #ff > ELFE TR B2 6 0y (R B A A (R Y (e
AT s SCHY B 22 38 3R 0 A 2 R R TH A 7R aR A0 2 2 AL L T o0 i o R 2T SRR
R B M PN TR 5 B A0 T2 S A 8 o i s ] RO 528 ik U =2 i 3 s i
ST o B — S IR ] DU AR WA R SR B T 0 -



Abstract

Transform is a very important coding tool in video coding. It decorrelates the pixel
data and removes the redundancy among pixels so as to achieve compression.
Traditionally, order-8 transform is used in video and image coding. Latest video
coding standards, such as H.264/AVC, adopt both order-4 and order-8 transforms.
The adaptive use of more than one transforms of different sizes is known as Arbitrary
Block-size Transform (ABT). Transforms other than order-4 and order-8 can also be
used in ABT. It is expected larger transform size such as order-16 will benefit more
in video sequences with higher resolutions such as 720p and 1080p sequences. As a

result, order-16 transform is introduced into ABT system.

In this thesis, the development of simple but efficient order-16 transforms will be
shown. Analysis and comparison with existing order-16 transforms have been
carried out. The proposed order-16 transforms were integrated to the existing coding
standard reference software individually so as to achieve a new ABT system. In the
proposed ABT system, order-4, order-8 and order-16 transforms coexist. The
selection of the most appropriate transform is based on the rate-distortion performance

of these transforms. A remarkable improvement in coding performance is shown in



the experiment results. A significant bit rate reduction can be achieved with our

proposed ABT system with both subjective and objective qualities remain unchanged.

Three kinds of order-16 orthogonal DCT-like integer transforms are proposed in
this thesis. The first one is the simple integer transform, which is expanded from
existing order-8 ICT, The second one is the hybrid integer transform from the
Dyadic Weighted Walsh Transform (DWWT). It is shown that it has a better
performance than simple integer transform. The last one is a recursive transform.
Order-2iV transform can be derived from order-iV one. It is very close to the DCT.
This recursive transform can be implemented in two different ways and they are
denoted as LLMICT and CSFICT. They have excellent coding performance.
These proposed transforms are investigated and are implemented into the reference
software of H.264 and AVS, They are also compared with other order-16
orthogonal integer transform.  Experimental results show that the proposed

transforms give excellent coding performance and ease to compute.

Besides ABT with higher order transform, a transform based template matching is
also investigated. A fast method of template matching, called Fast Walsh Search, is
developed. This search method has similar accuracy as exhaustive search but

significantly lower computation requirement.

Prior knowledge of the coefficient distribution is a key to achieve better coding
performance. This is very useful in many areas in coding such as rate control, rate
distortion optimization, etc. It is also shown that coefficient distribution of predicted
residue is closer to Cauchy distribution rather than traditionally expected Laplace

distribution, This can effectively improve the existing processing techniques.



Publication List

Journal Papers
1, J. Dong, K.N. Ngan, C.K. Fong, W.K, Cham, “2D Order-16 Integer Transforms for HD
Video Coding;, IEEE Trans, on CASVT, vol.19, no.lO, October 2009, pp.1463-1474.

2. C.M. Mak, C.K. Fong, W.K. Cham, “Fast Motion Estimation for H.264/A VC in Walsh
Hadamard Domain - ' IEEE Trans, on CASVT, vol.18, no.6, June 2008, pp.735-745.

Conference Papers

C.K. Fong, W.K. Cham, “Simple Order-16 Integer Transform for Video Coding,” ICIP,
Page(s): 161-164, 2010.

J. Dong, K.N. Ngan, C.K. Fong, W.K. Cham, "A Universal Approach to Developing
Fast Algorithm for Simplified Order-16 ICT,” IEEE International Symposium on
Circuits and Systems, ISCAS, Page(s): 281 - 284 2007.

Standard Proposals

1. C.K. Fong, W.K. Cham, Y. Liu, K.M, Cheng, “Adaptive Block-size Transform towards
AVSIL.Or AVS Video Proposal AVS-M2666, Guangzhou, Dec. 2009,



C.K. Fong, W.K. Cham, K.N. Ngan, Y. Liu, K.M. Cheng, “An investigation of Order-16
Transform in M2606ABT ; ' AVS Informative Proposal AVS-M2657, Wuxi, Sept. 2009.

C.K. Fong, W.K. Cham, K.N. Ngan, Yu Liu, K.M. Cheng, ‘“Adaptive Block-size
Transform tovrart/s J KS2 "V AVS Video Proposal AVS-M2647, Wuxi, Sept. 2009.

W.K. Cham, C.K. Fong, Y| Fong, K.N. Ngan, Y. Liu, K.M.Cheng, *“Adaptive
Block-size Transform towards AVS 2.0,” AVS Video Proposal AVS-M2610, Wuxi,
Sept. 2009.

X. Mao, Y. Wang, Y. He, W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H. M. Wong,
L. Wang, Y. Huo, T. Pun, C. Cheng, “AVS A& Ngig45 A r  AVS Video
Proposal AVS-M2372, Xiamen, June 2008.

W.K, Cham, C.K. Fong, J. Dong, K.N. Ngan, H.M. Wong, L, Wang, Y. Huo, T. Pun
“Adaptive Block-size Transform for AVS-X : ' AVS Video Proposal AVS-M2284,
Lijiang, March 2008.

W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H.M. Wong, L. Wang, Y. Huo, T. Pun,
“Adaptive Block-size Transform for A VS-X and A VS-S profile - ' AVS Video Proposal
AVS-M2182, Shanghai, Dec. 2007.

Pending Patents

.W.K. Cham, C.K. Fong, “DEVICES AND METHODS FOR TRANSFORMING
CODING COEFFICIENTS OF VIDEO SIGNALS;, US Non-Provisional Patent
Application Number 12/096,531, filed on June 6 - 2008.

*  W.K. Cham, C.K. Fong, “METHODS AND APPARATUS FOR DERIVING AN
ORDER-16 INTEGER TRANSFORM : ' US Non-Provisional Patent Application Number
12/103,676, filed on April 15 > 2008.

.W.K. Cham, C.K. Fong, “PROCESSES AND APPARATUS FOR DERIVING
ORDER-16 INTEGER TRANSFORMS:, US Non-Provisional Patent Application
Number 12/100,358, filed on April 9, 2008.



W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H.M. Wong, L. Wang, Y. Huo, H.Y. Pun,
“METHOD AND DEVICE FOR ORDER-16 INTEGER TRANSFORM FROM ORDERS
INTEGER COSINE TRANSFORM” US Non-Provisional Patent Application Number
11/950,182, filed on December 4 > 2007.

W.K. Cham, C.K. Fong, “#iHH(=Ha I35 (R0 R B R T % Chinese
Patent Application Number: 200510134530.6.



Acknowledgements

First of all, I would like to express my gratitude towards my supervisor, Prof.
Wai-Kuen CHAM, who gave me generous support and invaluable comments and
suggestions on my research throughout these years. He provided an excellent
working environment with enormous freedom to develop new ideas. His insights and
guidance brought me a lot of inspiration. Without his suggestions and advices, many
problems | encountered could be difficult to solve. His encouragement and support
gave me many chances to attend some coding standard meetings and international

conferences. These are very valuable experience in my research life.

In additions, | take this opportunity to thank Prof. King Ngi NGAN, Prof. Hung-Tat
TSUI, Prof. Thierry BLU and Prof, Xiaogang WANG of Image and Video Processing
Laboratory for providing helpful advices for my studies. | would thank Mr.
Yuk-Chung WONG for his maintenance of the computer systems in the laboratory
such that we are able to work smoothly. 1 would like to thank fellow students in our
group for making my academic life enjoyable. | am so grateful for their valuable

suggestions about my research. It is a pleasure to work and study with them.



Last but not least, | would like to thank my parents, my family and my friends for
their support all the time. Without their encouragement and support, |1 would have

never been able to complete this thesis.



Contents

List of Figures
List of Tables
Chapter 1 Introduction
1.1 Introduction to Video Coding

1.2 Histories of Video Coding Standards
1.3 Generic Hybrid Video Coding
1.4 Performance Evaluation Metrics
1.5 Video Processing in Transform Domain
151  Fast Walsh Search
1.5.2  Transform Coefficient Distribution
1.6 Thesis Scope and Contributions
1.7 Thesis Outlines
1.8 References
Chapter 2 Order-16 DCT-like Integer Transform
2.1 Introduction
2.2 The Discrete Cosine Transform
2.3 Integer Cosine Transform
2.3.1 Order-4 and Order-8 ICT

2.3.2 Order-16 ICT
X

1-1
1-1

1-4

1-8

1-13

1-15

1-15

1-15

1-16

1-18

1-19

2-1

2-1

2-6

2-8

2-8

2-12



2.3.3 Other Order-16 Integer Transforms

2.4 Simple Integer Transform

2.5 Hybrid Integer Transform from Dyadic Weighted Walsh Transform....

2.6 LLM Integer Cosine Transform
2.6.1 Relaxed GCT
2.6.2 The LLM Fast DCT
2.6.3 The Proposed LLMICT
2.6.4 Order-32 LLMICT
2.7 CSF Integer Cosine Transform
2.7.1 The CSF Fast DCT
2.7.2 CSF Integer Cosine Transform
2.7.3 Modified CSF Fast DCT and MCSFICT
2.8 Analysis
2.8.1 Complexity Analysis
2.8.2 DCT Distortion and Transform Efficiency
2.8.3 Transform Coding Gain
2.8.4 Computationally Optimal Transform
2.9 Conclusions
2.10 References
Chapter 3 ABT in H.264/AVC
3.1 Overview of H.264/AVC
3.2 Transforms
3.3 Quantization and Rescaling
3.3.1 Quantization

3.3.2 Rescaling
Xii

2-13

2-15

2-18

2-23

2-23

2-24

2-25

2-32

2-39

2-39

2-40

2-41

2-44

2-45

2-48

2-50

2-52

2-54

2-55

3-1

3-1

3-7

3-9

3-9

3-11



3.3.3 Example
3.4 Syntax Structure
3.4.1 New Syntax Elements
3.4.2 Intra Block Syntax Structure
3.4.3 Inter Block Syntax Structure
3.5 Entropy Coding
3.6 Rate-Distortion Optimization
3.7 Experiment and Analysis
3.7.1 RD analysis (Objective Evaluation)
3.7.2 Subjective Evaluation
3.7.3 Usage of Order-16 transform
3.7.4 Gain from Order-16 transform
3.8 Conclusions
3.9 References
Chapter 4 ABT in AYS
4.1 Overview of AVS
4.2 Intra prediction
4.3 Transforms
4.3.1 ABT in AVS
4.3.2 Flexible Transform Size Selection
4.3.3 Transform Design Constraints in AVS
4.4 Quantization and Rescaling
4.4.1 Quantization
4.4.2 Rescaling

4.4.3 Example

3-13

3-15

3-15

3-16

3-16

3-18

3-20

3-21

3-23

3-31

3-38

3-41

3-45

3-46

4-1

4-1

4-5

4-6

4-8

4-9

4-13

4-13

4-15

4-15



4.5 Syntax Structures
4.5.1 Intra block
4.5.2 Interblock
4.6 Entropy Coding
4.7 Loop Filter
4.8 Experiment and Analysis
4.8.1 RD Analysis (Objective Evaluation)
4.8.2 Subjective Evaluation
4.8.3 Usage of order-16 Transform
4.9 Conclusions
4.10 References
Chapter 5 Transform Domain Pattern Matching
5.1 Introduction
5.2 Pattern Matching in Walsh-Hadamard Domain
5.2.1 Block Pyramid Matching
5.2.2 Partial Sum of Absolute Difference
5.2.3 Statistical Threshold
5.2.4 Block Adaptive Threshold
5.3 Experiments
5.4 Conclusions

5.5 References

4-20

4-20

4-21

4-22

4-22

4-23

4-25

4-32

4-39

4-42

4-43

5-1

5-1

5-3

5-5

5-6

5-6

5-9

5-10

5-12

5-13

Chapter 6 Distribution Modeling of Predicted Residue Transform Coefficient

6.1 Introduction

6.2 Distribution of Predicted Residue

6-1

6-1

6-2



6.3 Properties of Laplace Distribution
6.4 Properties of Cauchy Distribution
6.1.1.  Parameter Estimation Method 1
6.1.2. Parameter Estimation Method 2
6.1.3. Parameter Estimation Method 3
6.5 Transform Coefficient of Predicted Residue
6.6 Experimental Results
6.1.4. Chi-Square Test
6.1.5. Empirical Results
6.7 Conclusions

6.8 References

Chapter 7 Summary and Future Work

7.1 Contributions

7.2.1 Order-16 DCT-like Transforms

7.2.2 Fast Walsh Search for Pattern Matching

7.2.3 Transform Coefficient Distribution
7.1 Future Work

7.1.1 Order-16 DCT-like Transforms

7.1.2 Fast Walsh Search for Pattern Matching

7.1.3 Transform Coefficient Distribution

Appendix A. Fast Algorithm for DWWT

6-5

6-5

6-6

6-7

6-7

6-10

6-12

6-12

6-13

6-14

6-19

7-1

7-1

7-1

7-2

7-3

7-3

7-3

7-4

7-5

Al

Appendix B. A Summary of Fast Algorithms for Different Integer Transforms

Bl



List of Figures

Figure 1-1 A comparison of different frame resolutions 1-2
Figure 1-2 A comparison of different color bit depth in a color plane 1-3
Figure 1-3 Diagram of a simple Generic Hybrid Video Encoder 1-8
Figure 1-4 An illustration of a given picture in RGB and YUYV color space 1-9

Figure 1-5 An illustration of the motion predicted residue with respect to two
consecutive frames 1-10

Figure 1-6 Different Prediction Structure. Red arrow is the unidirectional prediction.

Blue arrow is the bidirectional prediction 1-11
Figure 1-7 An example of transform and quantization 1-12
Figure 1-8 Calculation of BD PSNR (upper) and BD bit rate (lower) 1-14

Figure 2-1 Fast algorithms oforder-8 ICT adopted in (a) H.264/AVC and (b) AVS.

2-17
Figure 2-2 Fast algorithm of proposed order-16 transform (a) Tsi and (b) .2-17
Figure 2-3 The general fast algorithm of proposed order-16 transform E///. 2-21
Figure 2-4 The LLM fast DCT algorithm 2-25
Figure 2-5 The generalized odd part of LLM algorithm 2-25
Figure 2-6 Fast 1-D Forward Transform for LLMICT-AI 2-29
Figure 2-7 Fast 1-D Forward Transform of LLMICT-BI 2-30
Figure 2-8 The relationship among , TaZl, T— andthe DCT 2-31

XVi



Figure 2-9 Fast Algorithm oforder-32 LLMICT

2-34

Figure 2-10 Waveforms of order-32 LLMICT and the OCT. The DCT is in blue,

LLMICT-AI is inred and LLMICT-BI is in green
Figure 2-11 the proposed order-32 LLMICT-AI
Figure 2-12 the proposed order-32 LLMICT-BI
Figure 2-13 The CSF fast DCT algorithm
Figure 2-14 The generalized CSF fast algorithm (odd part)
Figure 2-15 Modified CSF fast DCT algorithm (odd part)
Figure 2-16 Generalized modified CSF fast algorithm (odd part)
Figure 2-17 The numbers of operations of different fast transforms
Figure 2-18 The computation time of different fast transforms

Figure 2-19 The transform efficiency of different transforms

2-36

2-37

2-38

2-39

2-40

2-41

2-42

2-46

2-47

2-50

Figure 2-20 The transform coding gains of different transforms (reference to DCT).

2-51

Figure 2-21 The transform coding gain {p = 0.9) vs. the number of operation.... 2-53

Figure 3-1 Data flow of H.264/AVC encoder

Figure 3-2 Data flow ofH.264/AVC decoder

Figure 3-3 Nine intra prediction modes for 4x4 and 8x8 blocks
Figure 3-4 The intra prediction modes for 16x16 block

Figure 3-5 The variable block-size motion compensation partitions
Figure 3-6 Arbitrary Block-size Transform in H.264/AVC

Figure 3-7 Data flow of quantization and rescaling in H.264/AVC
Figure 3-8 Syntax structure for intra-block

Figure 3-9 Syntax structure for inter-block

Figure 3-10 The data flow of CABAC

3-3

3-3

3-4

3-4

3-5

3-8

3-9

3-16

3-17

3-18



Figure 3-11 RD curves for (a) BlowingBubble (WQVGA) and (b) BaskballPass
(WVGA) 3-29

Figure 3-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p) 3-30

Figure 3-13 Subjective quality of "BasketballPass (WQVGA)", frame, coded at
QP =32 3-34

Figure 3-14 Subjective quality of “BQMall (WVGA)", 2704} frame, coded at QP = 32.
3-35

Figure 3-15 Subjective quality of "SpinCalendar (720p)", 100™ frame, coded at QP =
27 3-37

Figure 3-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c)

B-frame 3-40
Figure 4-1 Data flow of AVS encoder 4-2
Figure 4-2 Data flow of AVS decoder 4-2
Figure 4-3 16x16 intra prediction in proposed AVS platform 4-5
Figure 4-4 Combinative ABT in proposed AVS platform 4-7

Figure 4-5 ABT (a) without 16x16 Transform, and (b) with 16x16 Transform.... 4-7

Figure 4-6 the dynamic range of the coefficient after adjustment 4-11
Figure 4-7 Data flow of quantization and rescaling in AVS 4-13
Figure 4-8 Intra-block syntax structure 4-20
Figure 4-9 Inter-block syntax structure 4-21
Figure 4-10 Region of the loop filter is applied 4-23

Figure 4-11 RD curves for (a) BQSquare (WQVGA) and (b) BasketbalDrill (WVGA)

4-30
Figure 4-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p) 4-31
Figure 4-13 Subjective quality of "BQSquare (WQVGA)", frame, coded at QP =

45 4-34



Figure 4-14 Subjective quality of "BasketballDrill (WVGA)", frame, coded at
QP =37 4-36

Figure 4-15 Subjective quality of "Crew (720p)", 62" frame, coded at QP = 34,4-38

Figure 4-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c)

B-frame 4-41
Figure 5-1 Example of BPM with an 8x8 block 5-5
Figure 5-2 The probability density function ofpt{t) 5-8

Figure 6-1 (a) The intra-predicted residue and (b) the inter-predicted residue of
"Foreman" 6-3

Figure 6-2 The distribution of (a) the intra-predicted residue and (b) the
inter-predicted residue of "Foreman" 6-4



List of Tables

Table 2-1 Notation system in later sections 2-5
Table 2-2 Example of dyadic symmetric vectors 2-19
Table 2-3 Examples of Effg with high coding gain Grc 2-21
Table 2-4 Example solutions for g.. .n which can be represented in 6 bits 2-28
Table 2-5 Example solutions for g.. .n which can be represented in 5 bits 2-28

Table 2-6 Example solutions for order-32 LLMICT which satisfy (2.60) and (2,62).
2-32

Table 2-7 Example solutions for Order-32 LLMICT with (al...al6) less than 256.
2-33

Table 2-8 Example solutions for order-32 LLMICT with (al...al6) less than 128.

2-33
Table 2-9 Brief analysis of order-32 LLMICT 2-35
Table 2-10 List of Order-16 DCT-like transforms in this thesis 2-44
Table 2-11 Number of operations for different order-16 transform (1-D) 2-46
Table 2-12 Computation time for different order-16 transform 2-47
Table 2-13 DCT Distortion and Transform Efficiency 2-49
Table 2-14 Transform coding gain of different transform 2-51
Table 3-1 Bit patterns for I16flag 3-15
Table 3-2 Context model index of Il6flag 3-19

Table 3-3 Context model index of CBP16 3-20



Table 3-4 Testing conditions in H.264/AVC platform 3-22

Table 3-5 Experimental Results of different transforms in H.264/AVC platform
(BD-bitrate, %) 3-26

Table 3-6 Experimental Results of different transforms in H.264/AVC platform

(BD-PSNR, dB) 3-28
Table 3-7 Delta bit rate solely from order-16 transform {BD-bitrateoi6, %) 3-43
Table 3-8 Delta PSNR solely from order-16 transform ¢so-rsnrowm, dB) 3-44
Table 4-1 The Weighting Factor Difference of different transform 4-11
Table 4-2 Testing conditions in AVS platform 4-24

Table 4-3 Experimental Results of differenttransforms in AVS platform (BD-bitrate,
%) 4-27

Table 4-4 Experimental Results of different transforms in AVS platform (BD-PSNR,

dB) 4-29
Table 5-1 Block adaptive threshold of texture blocks and smooth blocks 5-9
Table 5-2 BD-bit rates of different VBS-ME algorithms 5-
Table 5-3 Computation time of different VBS-ME algorithms 5-

Table 6-1 pdf fitting to the predicted residue of each frame with different parame
estimation methods 6-

Table 6-2 pdf fitting to the transform coefficient C(0, 0) in different sequences. 6-
Table 6-3 pdf fitting to the transform coefficient C(l - 0) in different sequences. 6-
Table 6-4 pdf fitting to the transform coefficient C(0, 1) in different sequences. 6-
Table 6-5 pdf fitting to the transform coefficient C(0, 2) in different sequences. 6-
Table 6-6 pdf fitting to the transform coefficient C(l, 1) in different sequences. 6-

Table 6-7 pdf fitting to the transform coefficient C(2, 0) in different sequences. 6-



Chapter 1 Introduction

1.1 Introduction to Video Coding

Digital Video Coding has been researched for decades. Researchers have devoted a
lot of work to this topic. However, it is still very hot in both research and industrial
area. This is because of its extremely high demand. It is getting more and more
popular and it relates closely to us. It appears in many applications in our daily life.
We watch TV every day. Digital TV broadcast is a typical example of video coding
application. Other than TV, many people like to watch movie at home. The movie
contents are stored in VCD, DVD or blu-ray disc. They all are storage media of
compressed videos. It is very popular to take video with a handheld digital video
camcorder or a digital cameras. Compressed videos are stored. People also like to
share their own videos with others through World Wide Web. We believe that
Youtube [1] is the most famous example. It allows people to share and to distribute
video through video streaming over the web. There are thousands of newly uploaded

videos and millions of watches in every day. We believe that it is one of the most



important inventions in this decade. As the bandwidth of the mobile network and the
processing power of the mobile hand set are improving, video phone call becomes
popular. Moreover, many video applications such as surveillance and professional
video editing are moving from analog to digital. These all are example of video
coding in our daily life. We can see that how frequent we meet with video coding in

different area.

Besides the high demand, why we encode or compress videos? Why not store the
videos in raw format? This is because the video data is so large that it is almost
impossible to be stored in raw format. It wastes too much resource as if we do so.

This can be investigated in several aspects:

. Spatial Resolution: The spatial resolution of the video frame is increasing, from
QCIF (176x144) in old days, to GIF (352x288), WQVGA (416x240), WVGA
(832x480) and it becomes High Definition (HD, 720p - 1280x720 and 1080p -
1920X1080) recently. It is expected that it will increase to Ultra High Definition

(UHD, 4k X 2k or even larger) in coming future.

QCIF

WQVGA
CIF

WVGA

720p

10SOp

Figure 1-1 A comparison of different frame resolutions.



I  Temporal Sampling Rate: Interlacing reduces the data rate by half. This is
very important when the processing power is limited. As technology is
improving, this is no longer the main bottleneck. Progressive video is the main
stream nowadays. It is also moving from 25 ] 3@psto 50-60 fpsand even over

100 fps.

I Color Sub-sampling: Since human vision system is less sensitive to chroma
information, chroma part is usually taken at a lower sampling rate than luma part,
for example 4:2:0, This is halved the data rate of 4:4:4 color sub-sampling. As
the better picture quality is demanding, higher color sub-sampling rate such as

4:2:2 and even 4:4:4 becomes popular.

I Color Depth: Besides higher color sampling rate, higher color depth is also
demanding. Conventionally, 8-bit color depth is used. Every pixel in a single
color plane is represented using 8 bits. When higher color depth such as 10, 12

14-bit or higher, more colors can be represented. Picture quality is improved.

8-bit (256 colors) |
10-bit (1024 colors)
12-bit (4096 colors)

14-bit (16384 colors) HHA™"HHHH K
Figure 1-2 A comparison of different color bit depth in a color plane.

Let us take an example here. A typical HD sequence (1920x1080) at 50 fps, with
8-bit color depth, the data rate is 1920x1080x50x3x8 = 2488.32Mbps or 311.04 Mega
Byte per second. Although the storage nowadays is very large and low-cost, it is still

very inefficient to store raw video. For example a 1T§Byte (10 %‘pryte, equivalent to



212 4.7G-DVD or 40 single-layered Blu-ray Discs) storage can only store a
3215-second (less than 1-hour) long typical HD sequence. This example shows a
typical HD sequence only. A better quality video with higher resolution, higher
frame rate and higher sub-sampling rate takes more storage space and requires higher
bandwidth to transmit. They can be several times or even several ten times of a
typical HD sequence. Video coding significantly reduces the bandwidth required.
For example, MPEG-2 has a compression ratio of 1:15 to 1:30 depending on the

desired quality. Newer coding standards can offer even higher compression ratio.

It is well-known that our human vision is less sensitive to some kind of distortion, for
example, high frequency components. Our human eyes cannot distinguish the
difference in high frequency easily. This leads to lossy video coding in most codec
designs. Some video contents which are not very sensitive to our human eyes are
reduced or even discarded. These distortions are not easily perceived by us. As a
result, a higher compression but very small or even almost no visual degradation can

be achieved. This is very common in most of the video coding standards.

1.2 Histories of Video Coding Standards

Most of the state-of-the-art video coding standards are based on the generic hybrid
video coding model proposed in H.261 [2] twenty years ago. Although it is an old
coding standard, many coding tools adopted in this standard are the prototypes of the
coding tools nowadays. For example, motion estimation and compensation and
transform coding of predicted residue are still fundamental coding tools in the latest

video coding standards. Of course, many novel, power and efficient coding tools are



integrated to different standards. Significant performance improvement is offered m

every new generation of video coding standards.

. H.261 [2] is an ITU-T (International Telecommunication Union -
Telecommunication Standardization Sector) video coding standard issued in
1990. It ISdesigned by the Video Coding Experts Group (VCEG) in the union.
Its hybrid video coding framework is a fundamental to many other video coding
standards nowadays. Many concepts and ideas in this standard are still doing a
good job such as the concept of 16x 16 Macroblock (MB), motion compensation,
residue coding with DCT, run-length coding and entropy coding. It is an

important milestone in video coding technology,

. MPEG-1 [3] is the first international standard including both video and audio
specifications. It was developed by Moving Picture Experts Group (MPEG). It
is composed of different parts. Its part 2 is the video specification. It is based
on the H.261 standard. Its target is to compress video onto a video CD at CIF
resolution. The concept of sub-pixel motion compensation was introduced into
MPEG-1. It supports up to half pixel accuracy. To enhance the motion
estimation and prediction, bi-directionally predicted frame (B-frame) is used. It
is predicted with the forward and the backward decoded frames. It reduces the

predicted residue significantly and hence the bit rate.

. MPEG-2 [4] is the direct successor of MPEG-1. It was published in 1996. Its
Part 2 (also known as H.262) specifies the video coding requirements. It is
widely used in DVD standard. The concept of profiles and levels was

introduced to MPEG-2 standard. Profile specifies decoding capability in terms
1-5



of coding tools while level specifies the constraints on bit rates, frame rates and
frame sizes. This makes the decoder manufacturer more flexible to design
decoder for one particular application. Motion estimation is also improved,
Sub-block level motion estimation is supported such that more precise prediction

can be achieved.

H.263 [5] was proposed by VCEG and released in 1996. It is originally
designed for low-bit-rate compression for video conferencing. It has many

applications on the internet also.

MPEG-4 Part 2 (Visual) [6][8] was proposed by MPEG released in 1999. One
of the most important features in this standard is object coding. It is possible to
code arbitrarily shaped individual video objects. The decoded video object can
be moved by the user interactively on the decoder side. The sub-block motion
estimation is further improved. The partition sizes allowed includes 8x8, 8x16,

16x8 and 16x16. The motion estimation accuracy can be up to quarter pixel.

MPEG-4 Part 10 (AVC) (a.k.a. H.264/AVC) [7][8] is a joint projects between
ITU-T and ISO/IEC. It was first released in 2003. An amendment called the
Fidelity Range Extensions (FRExt) [9] was proposed in 2005. It extended the
original standard to provide higher quality video coding. Although MPEG-4
Part 10 is one part of MPEG-4, it is totally different from MPEG-4 Part 2.
Object coding in MPEG-4 Part 2 is not present in Part 10. It is the current
state-of-the-art AVC standard and it is one of the coding standards to be our
testing platform. More information will be provided in later chapter (see

Chapter 3).



. Audio Video Standard (AVS) [10] is a multimedia standard proposed by the
AVS workgroup in China in 2005. It is not only highly-efficient but also
simpler and easier to implement than H.264/AVC. Its coding performance is
only slightly lower than f 1.264/ AVC, It is another testing platform in this thesis

(see Chapter 4).

. Video Codec 1(VC-1) [11] is the first video compression algorithm standardized
in Society of Motion Picture and Television Engineers (SMPTE) driven by
Microsoft released in 2006. It is based on Microsoft Windows Media 9. It
supports adaptive block-size transform which supports transform block size of
8x8, 8x4, 4x8 and 4x4. Instead ofCAVLC and CABAC in H.264/AVC, VC-1
uses multiple VLC code tables for entropy coding. It also has the fading

compensation to tackle the change of brightness level in motion compensation.

Despite of the high performances of the video standards nowadays, work is still being
devoted to developing new video coding standards. For example, High Efficiency
Video Coding (HEVC, also known as H.265) [12] is being developed by the Joint
Collaborative Team on Video Coding (JCT-VC). It is a group of video coding
experts from VCEG of ITU-T and MPEG of ISO/IEC. Its target is to further reduce
the bit rate for high quality video by half, as compared to H.264/AVC. On the other
hand, AVS workgroup in China also started the project for next generation of Audio
Video Standard, AVS 2 [14] [15]. AVS2 Ad-hoc group was formed in the 271 AVS
workgroup meeting in December 2008. It targets at HD to Super HD resolution
sequences. It will support higher color bit depth, higher frame rate and higher color

sub-sampling rate. Its FCD will be completed in 2012.



Input |

3 Generic Hybrid Video Coding

Color Spacc Transform and . Output
. . . Entropy Coding
Conversion Quanitzation

Motion
EstJmation and

COFW\S

Inverse

FrUC HtlHtt Transform and

Dequanitzation

Figure 1-3 Diagram of a simple Generic Hybrid Video Encoder.

Since generic hybrid video encoder is the fundamental and our work is based on this

framework, here we are going to give a brief introduction to this encoder for readers

who are not familiar to it. Hybrid video coding is a coding algorithm integrating

motion compensated inter-picture with spatial transform coding. Generic hybrid

encoder is a close-loop encoder which predicts the incoming picture with previously

decoded pictures. The encoder can be divided into 4 different functional blocks (in

grey) as shown in Figure 1-3. These functional blocks remove different redundancies

in the video content.

Color space conversion (Color redundancy): Color image and video are
usually represented by 3 main color components, Red, Green and Blue, It is
known as the RGB domain. Each of these components forms a color plane.
Picture data in RGB domain usually has high correlation among these color
planes. This is the color redundancy. In order to reduce color redundancy,
picture data are usually transformed into another color domain which has a lower
correlation among its color plane. For example, YUV domain is a common

color space used in video coding. Different video coding standards may use



different color domain. However, their aims are the same - to reduce the color
redundancy. Pixel data in RGB domain are converted into a specified color
space defined in the coding standard before further process, for example, YUV.
In (1.1) the RGB to YUV conversion is shown. A color conversion example is
shown in Figure 1-4. A color image can be decomposed into the RGB color
planes and these planes are converted into YUV planes using (1.1). Y is the
luminance while U and V are the chrominance. The variations of the UV planes
are smaller than RGB planes and hence the data in UV planes have smaller
entropies. Since human vision is less sensitive to the chrominance, UV plane

may be further sub-sampled.

PN

\Y 0.299 0.587 0.114
vV = -0.147 -0.289 0.436 G
\Y 0.615 -0.515 -0.100 ~

Figure 1-4 An illustration of a given picture in RGB and YUV color space



Motion Estimation and Compensation (Temporal Redundancy): It is very
trivial that consecutive frames look very similar. The correlations among
consecutive frames are very high. This is the temporal redundancy between
frames. To remove this redundancy, the incoming frames are predicted with
previously decoded frames with motion estimation and compensation. The
frame contents are represented by motion vectors (MV) and the predicted residue.

This dramatically reduces the video data size.

Target Frame F{t) Predicted Residue

Motion
Estimation

r"'-
Reference Frame Motion Compensated Frame
and Motion Vectors

Figure 1-5An illustration of the motion predicted residue with respect to two
consecutive frames.

There are several inter-prediction structures. The most trivial one is the
IPPP... structure (Figure 1-6(a)) which predict the current frame with
previously decoded frame. When bidirectional prediction is allowed, current
frame can be predicted by one previous reference frame and one future
reference frame. This forms a structure denoted as IBBP... structure (Figure
1-6(b)). This structure can be extended to Hierarchical B-frame structure

(Figure 1-6(c)), which is usually denoted as IbBbP....



(a) IPPP... structure

/ o
[ 1

(b) IBBP... structure

-A JV A y V N

(c) Hierarchical B-frame structure
Figure 1-6 Different Prediction Structure. Red arrow is the unidirectional
prediction. Blue arrow is the bidirectional prediction.



w

= ~ ISR

Transform and Quantization (Spatial Redundancy): Although the motion
estimation and compensation reduce the video data amount, the data amount of
predicted residue can still be reduced. This can be achieved by transform and
guantization. Transform decorrelates the residue while quantization reduces or
removes the components less sensitive to our human eyes. This lowers the

spatial redundancy among the predicted residue.

Input Pixels Coefficients
4 0w b 1%“1"_ i, Hi
B D <e 0 - WM o 1 ves -
M n % s T 4 1: ue 1 BL " HtD| 4 b L Quantization
2 U n . i . ° . -
02505 11 3 O R R
37 Sy 010 0 i+ 11
1 A M,]_—O i -1l '3| v SIU
Rescaling
Reconstructed Pixels Rescaled Coefficients

Figure 1-7 An example of transform and quantization.

Entropy Coding (Statistical Redundancy): Finally, the transform coefficients
in the last step, motion vectors and other side information are coded with a
lossless entropy encoder. This encoder gathers the statistics of these contents
and assigns the optimal number of bits to the bit stream according to the content

and its statistics. This removes the statistical redundancy in the contents.



1.4 Performance Evaluation Metrics

To evaluate the coding performance of a coding system, the bit rate and the PSNR
are usually compared. The one offering a higher PSNR at the same bit rate or the
one offer the same PSNR at a lower bit rate is a better coding platform or coding
algorithm. However, it is very common that they do not align on the same line and
this makes the comparison difficult. As an alternative, one may compare the
coding performances by plotting the RD curves with several RD points, the PSNR
against the bit rates. The one has higher RD curve is a better one. Unfortunately,
in some cases, two RD curves may make a cross or both may be too close to each
other. It is hard to distinguish which one is the higher one. This makes the
comparison difficult. Bjontegaard proposed a method to calculate the average
difference two RD curves in [17]. This is adopted as a common method to evaluate

the coding performance in many coding standards, such as H.264/AVC and AVS.

The method proposed in [17] has 3 basic steps. First, a third order polynomial is
fitted to 4 RD points (bit rate and PSNR at 4 different QP). Second, obtain an
expression for the integral of this curve. Third, the average difference between the
curves is calculated as the difference between the integrals divided by the integration
interval. The average difference obtained using this method is usually called as BD

bit rate and BD PSNR. They are equivalent to each other.

Suppose two coding methods, A and B, are compared and B is the anchor. The
RD curves {PA and PB) are obtained from 8 RD points (4 from each method) as

shown in Figure 1-8.



RD points

HZ¥VOPA

AMOWTR Bit rate (in log scale)

RA(PSNR\
3 i?B(PSNR)

o2 OpA -
[ )]

Bit rate (in log scale)

Figure 1-8 Calculation of BE) PSNR (upper) and BD bit rate (lower).

PA and PB can be expressed in third order polynomials of the rate. BD PSNR is

defined as:

BD-PSNR = R -1? :pper(PAr)-Ps(r))dr (1.2)

upper lower

Similarly, the curves can be expressed as functions of PSNR and hence the BD bit

rate is:

BD-bitrate =
P (1.3)

upper lower

The BD bit rate and BD PSNR are used to measure the performance in this thesis.
1-14



1.5 Video Processing in Transform Domain

Besides video coding, there are many video processing applications in transform
domain. These applications can perform more efficiently than in pixel domain. On
the other hand, the statistics of the transform coefficients plays an important role in

many applications.

1.5.1 Fast Walsh Search

Pattern matching in transform domain is an example of video processing in
transform domain. An example is the Fast Walsh Search (FWS), which is a pattern
match algorithm in Walsh-Hadamard transform domain. It is shown that its
accuracy is almost the same as Fast Full Search (FFS) but its complexity is
significantly lower than the FFS. FWS is implemented into the H.264/AVC
reference software and acts as a fast Motion Estimation (ME) method. It is shown

that it outperforms other ME algorithms in the reference software.

1.5.2 Transform Coefficient Distribution
Statistical analysis plays an important role in many video processing applications.
Many applications make use of the statistics, especially the distribution, of the data
to achieve their works. As a result, the transform coefficient distribution analysis is
very important in many processes in transform domain. It is usually assumed that
the transform coefficients distribute in Laplace distribution. In our analysis,
however, the transform coefficients of intra predicted residue are in Cauchy

distribution rather than Laplace one.



1.6 Thesis Scope and Contributions

This thesis can be divided into three parts. The first part is the development of
DCT-like integer transform and its application in video coding. The second part is
about a fast pattern matching algorithm - Fast Walsh Search. The third part is an

analysis of the transform coefficient distribution in predicted residue.

In the first part, one of our contributions is the development of three new integer
transforms.  We focus on develop order-2*" orthogonal integer transform, especially
the order-16 transform. The proposed transforms must have integer kernels. They
are going to be integrated into existing video coding systems. They must have
good coding performances. Although non-orthogonal transform may also provide a
good performance, it is not in our scope. Besides coding performance, efficient
computation is also an important factor in designing transform in video coding
system. The transform must be separable and have fast algorithm. In this thesis,
our aim is to encode sequences with color sub-sampling rate 4:2:0 and MB size of
16x16. We apply order-16 transform to luma part of the predicted residue only.
The chroma part is coded with existing 8x8 or 4x4 transforms. However, we
expect that order-16 can also be applied to chroma part for sequences with
sub-sampling rate 4:4:4 or with support of super macro-block [18]. The proposed
transforms are implemented into the reference software of two different coding
standards, H.264/AVC and AVS. We focus on the High Profile in H.264/AVC and
the Jiagiang (Enhanced) Profile in AVS. The objective coding performance in

these coding standards with different order-16 transforms are measured by the BD



bit rate and BD PSNR described in the previous section. The comparison in terms
of subjective picture quality will also be shown. The usage of the order-16
transform is also analyzed. Analysis shows that this usage is pretty high. It

reflects the importance of the order-16 transform in video coding.

The second part is the Fast Walsh Search. It is a pattern matching algorithm
developed by Mak and Li [19][20][21]. To speed up the matching process, we
proposed a statistical threshold to remove the mismatch candidates from the
candidate pool. We also analyze the relationship between this threshold and the
nature of the pattern. A speed-up of the process without degrading the matching

accuracy is shown in the experiment.

The third part is the analysis of the transform coefficient distribution.  This is very
important to many applications in transform domain and it is usually assume to be in
Laplace distribution. However, in our preliminary study, the transform coefficients
of the intra-predicted residue are in Cauchy distribution rather than Laplace
distribution. We verified this with different video sequences. Although this study
is still in a starting stage, it is a very important to many applications such as the
transform-based post-processing, the rate control and the rate-distortion optimization

(RDO) in video coding.



7 Thesis Outlines

In this chapter, a brief introduction about video coding standards has been given.
In next chapter, the motivation of our work will be explained. Three different
orthogonal order-16 integer transforms will be proposed and demonstrated. Their
developments and the abilities will be discussed in detail. They will also be
compared with several existing order-16 transforms. These transforms are
integrated into the reference software of two different coding standards, H.264/AVC
and AVS, in Chapter 3 and Chapter 4 respectively. The implementation details will
be clearly discussed. Their coding performances will be compared. Both

objective and subjective evaluation will be shown.

In Chapter 5, a new pattern matching method, Fast Walsh Search, will be
demonstrated. It is implemented as a motion estimation method into the
H.264/AVC reference software. It is shown that its accuracy is similar to Fast Full
Search but significantly simpler. It outperforms other fast motion estimation

methods in the reference software.

An analysis of the transform coefficient distribution will be presented in Chapter 6.
Usually the transform coefficients of images are supposed to be in Laplace
distribution. The same assumption is applied to the predicted residue in video
coding. However, it is found that the intra-predicted residue is in Cauchy
distribution rather than Laplace distribution. Methods to estimate the distribution

parameters are also proposed.



8 References

Youtube, http://www,youtube.com

ITU-T Recommendation H.261: Video codec for audiovisual services at /?x64 kbit/s,

1990.

International Standard ISO/IEC 11172-2 MPEG-1 Video, 1993.

International Standard ISO/IEC 13818-2 MPEG-2 Video, 1995.

ITU-T Recommendation H,263: Video coding for low bit rate communication, 1996.
International Standard ISO/IEC 14496-2 MPEG-4 Visual, 2004.

International Standard ISO/IEC 14496-10 MPEG-4 AVC, 2005.

lain E. G. Richardson, "H.264 and MPEG-4 Video Compression," Wiley, 2003.

D. Marpe, T. Wiegand and S. Gordon, "//.264/MPEG4-A VCfidelity range extensions:
tools, profiles, performance and application areas,” IEEE ICIP 2005, vol. 1, pp I -
593-596, 2005.

10] GB/T20090.2 information technology — advanced audio video coding standard Part 2:
Video, 2006.

11] Jay Loomis and Mike Wasson, “VC-1 Technical Overview," October 2007. [Online]

Available :  httpy/wwwjTiicrosoftxom/windows/windowsrnedia/howto/articles/vc 1 tech overview aspx
12] HEVC, http://www.vcodex.cora/h265 .html
13] JCT-VC, http://www.itu.int/ITU-T/studygroups/coml 6/jct-vc/

14] ““Next Generation AVS Video Coding Specification Version 2.0 , “ AVS-N1590, March
2009. [Chinese]

15] *“*Next Generation AVS Video Coding “ Callfor Proposal,” AVS-NI591 > March 20009.
[Chinese]

16] Alois M, Bock, Video Compression Systems — From first principles to concatenated

codecs, IET Telecommunications Series 53, 2009.

17] G. BjOntegaard, “Calculation of Average PSNR Differences between RD-curves,"
ITU-T SG16/Q6, Document VCEG-M33, April 2001. [Online] Available:


http://www.vcodex.cora/h265
http://www.itu.int/ITU-T/studygroups/coml

[18]

[19]

[20]

[21]

http.7/wftp3.itu.int/av-arch/video-site/0104_Aus/

Siwei Ma and C.-C. Jay Kuo, “High-definition Video Coding with
Super-macrobloch,” Proc. SPIE Vol. 6508, 650816, January 2007.

C. M. Mak, N. Li and W. K. Cham, ““Fast motion estimation in Walsh Hadamard
domain,” Proceeding of International Symposium on Intelligent Signal Processing and

Communication Systems, pp. 349-352, 2005.

N. Li, C. M. Mak and W. K. Cham, *“Fast block matching algorithm in
Walsh-Hadamard domain , “in Proc. Asian Conference of Computer Vision (ACCV)’
pp. 712-721, Jan. 2006.

Chun-Man Mak, Chi-Keung Fong and Wai-Kuen Cham, ““Fast Motion Estimation for
H.264/AVC in Walsh Hadamard Domain;, IEEE Trans, on CASVT, vol. 18, no. 6, pp.
735-745, June 2008.



Chapter 2 Order-16 DCT-like Integer

Transform

2.1 Introduction

Transform coding is a very common and important coding tool in video and image
coding. It is a linear process to decorrelate pixel data. Commonly, it is in a
block-wise basis. A patch of NxN pixel data are grouped into a block and this block
of data is transformed into NxN coefficients. Most of the transforms being used in
video and image coding are orthogonal and separable. Parseval's Theorem holds
when the transform is orthonormal. This means that the total energy in (the sum of
square of) the pixel domain is the same as that in transform domain. In addition, the
variances of some coefficients are usually larger magnitudes than the others in
transform domain. The data are packed into fewer coefficients and hence
compression is achieved. In image and video coding, 2-D transform is required. It
is important that the transform is separable. If a transform is separable, it means its
2-D transform can be achieved by a column-wise and a row-wise 1-D transform

independently. This significantly reduces the complexity from O(A”®) to 0{N*). The



complexity can be further reduced if fast algorithm exists.

Many different transforms for image coding have been proposed, such as Haar
transform, Walsh Hadamard Transform (WHT) and Slant transform. The optimal
one is Karhunen-Loeve Transform (KLT). It is optimally tailored to a group of
images. However, it is image-dependent. It depends on the correlation of the
image data and hence it is not very popular in image and video coding. Instead, the
well-known sub-optimal transform, Discrete Cosine Transform (DCT) [2], is
commonly used. It is very popular in many processing and coding applications.
This is because the DCT and the KLT are similar when the pixel correlation is
approaching to 1. In most natural images, the pixel correlation is very high and
approaching to 1. This makes the DCT has a coding performance very close to the
optimal KLT. The DCT is also a real, orthogonal and separable transform which can
be implemented with real numbers. A number of fast DCT algorithms have been

proposed and DCT are widely employed in many signal coding and compression.

Recently, the DCT is replaced by Integer Cosine Transform (ICT) [1]. This is
because it also has a very high coding performance similar to the DCT but only
required integer arithmetic rather than floating-point. This does not only save the
computation dramatically but also reduces the drift error during the transformation.
The transform process can be divided into two steps. The first step is a linear
transform with integer kernel. The second step is scaling with real numbers.  With
the integer kernel, its transform coefficients can be computed perfectly with finite bit
length. The real scaling constants can be embedded into quantization perfectly.

As a result, this solves the problem of drift error. As a result, latest video coding



standards, such as H.264/AVC [4], AVS in China [6] and also VC-1 [7], adopted

different ICT.

In image and video coding, fixed block size, says 8x8, DCT was commonly used.
However, there is a major drawback in fixed size block based transform. It fails in
adapting to varying video signal. This is because the DCT is only sub-optimal to
stationary first order Markov random signal. Unfortunately, video signal is changing
from time to time and from space to space. As a result, this limits the coding
performance. In order to adapt to the non-stationary video signal, Arbitrary
Block-size Transform (ABT, also known as Adaptive Block-size Transform and
Variable Block-size Transform, VBT) is proposed [8][9]. Transforms of different
sizes adapt to different parts of the video picture. Smaller transform codes rapidly
changing signals while larger transform codes smoother signals. In H.264/AVC
FRExt [10], both 4x4 and 8x8 ICT are adopted to form an ABT system. Either 4x4
or 8x8 ICT is selected to transform the predicted residue in each Macroblock (MB).
It IS reported that about 10% bit rate reduction is achieved in this ABT system [9].
The addition of smaller transform benefits videos with lower resolution or rich details.
Videos with higher resolutions (known as High Definition, HD) > such as 1280x720,
1920x1080 or even higher, are becoming more and more popular. It is expected that
larger transforms can provide better coding performance to these video sequences. In
[19], It is reported that the addition of 16x16 integer transform provides gains from
0.086 to 0.471 dB for HD sequences. As aresult, this becomes our motivation to find
larger integer transforms (order-16 or above), which have better coding performances

and also low computation requirements, to improve the video coding performance.



Besides ABT with larger transforms, many transform based techniques have been
proposed to improve the coding performance, such as Shape-Adaptive DCT (SA-DCT)
[10][11] in MPEG-4, (Mode Dependent) Directional Transform (MDDT) [12][13].

Despite these two techniques not in our scope, a short introduction will be given.

SA-DCT is based on pre-defined sets of 1-D DCT basis functions. It usually
co-operates Video Object (VO) coding in MPEG-4. It transforms the VO data of
irregular shape. It is not applicable to all blocks but only to 8x8 blocks with a
binary alpha mask boundary that contain one or more transparent pixels. That

means it is only applicable to 8x8 blocks along the VO boundary.

In intra-prediction, it is found that the correlation in the predicted residue along the
prediction direction is still strong. The statistics of the predicted residues are
grouped according to their prediction mode. The 4x4 directional transforms are
derived from the KLT according the residue statistics. As a result, different
prediction modes take different directional transform.  This is known as
Mode-Dependent Directional Transform (MDDT) [12]. An alternative is
demonstrated in [13]. The directional transforms are selected according the RD
performance. Overhead is required to indicate which directional transform is used.

This is not only applicable to intra-predicted blocks but also the inter-predicted.

In our work, to seek for order-16 integer transform with better coding performance,
we will propose three classes of order-16 transforms in this chapter. The first one is
the Simple Integer Transform. It has a simple structure and is derived from order-8
ICT. To improve the performance, the Hybrid Integer Transform from Dyadic

Weighted Walsh Transform will be proposed. It is slightly more complex than



Simple Integer Transform. Lastly, a novel algorithm deriving order-16 ICT will be
proposed. Two different order-16 ICTs, LLMICT and CSFICT, derived by this
algorithm are proposed. Their waveforms are very close to the DCT but
implemented in integers only. These proposed transforms aim to improve to coding
performance in video coding. They are integrated into the reference software of
H.264/AVC and AVS. Their coding performances will be shown in later chapters.
Instead, different analysis will be shown in this chapter and it is shown that the
proposed transforms have properties similar to the DCT. These transforms also have

fast algorithms such that they can be computed efficiently.

Before describing our proposed transforms, let us have a brief description of our
symbol notations in the remaining of this chapter first. We are not going to describe
the notation of every symbol in detail but we are going to roughly describe how our

notation system is. This may help to understand.

Notation Description

T Orthogonal transform matrix.

E The integer kernel of T, E and K form in a pair described in (2,10).
K '(I'Zhioi-D scaling matrix of T. E and K form in a pair described in

2-D scaling matrix of T. It is a combination of two 1-D scaling matrix

S K described in (2.14)

P The odd part of T.

Q The even part of T.

X Input pixel data.

F Transfonii output coefficients.

Table 2-1 Notation system in later sections

All notations have both subscript and superscript. Their superscript describes their

order while their subscript describes their nature or type. For example, denotes

. R “ “AA G 2.5



Chapter 2 - Order-16 DCT-like Integer Transform
the order-8 ICT. Its integer kernel and scaling matrix are denoted as E;®) and

respectively.

2.2 The Discrete Cosine Transform

In this thesis, we are only interested in the transforms of order-A* = where k is a
positive integer. Without specification, N is restricted to the integer powers of 2 in
this thesis. The Discrete Cosine Transform (DCT) referring in this thesis is DCT-II
which order-TV transform process is defined as:

/, — 14" -#H +1where ¢ , M )y=10 2.1)
2N | oJE otherwise

X\ and fj are the input signal and the output transform coefficients respectively. The

transform process can be represented in matrix form:

[2 Cos&  COSE5 (XS FE cos .?NA\/,D,W|
N COS#  COS# @B 1 oor X 22

=) ~TH :

cosA” a — CCSW)/(Z/V-O;[

Tncr is an NXN orthogonal matrix such that:

tS or equivalent to et 3 (2.3)
[1i8 an order-iV identity matrix. The (/,y)th element in T % is equal to:
cos where ¢ (2.4)

IN A otherwise



Due to the dyadic symmetry, an order-2A*DCT can be decomposed into the odd part

o and the even part QY [23][24][25]

;00

n(2A) _ bt N

~oer ~ 0 P(n) _ I forAA>2 (25)
” N [DCT

IN is rotated by 9(f while Ovis an order-TV zero matrix. It is proven that QAT

is a scaled version of the DCT

(2.6)
As aresult, the DCT has arecursive structure:
r(A)
'[(,%/TV) oeT forAn>2. (2.7)
0N DCT -1
The elements in TAj* appear more than once and hence can be represented

with a few different elements a;. The elements with the same magnitude are
represented with the same a,. We can generalize a, such that it can be any real
numbers which keep the matrix orthogonal with the structure same as TiH.In this

thesis, this transform is called General Cosine Transform (GCT). For example, the

order-8 GCT is shown in (2.8). Obviously, order-8 DCT is an example of GCT with

1 : Jor 1 1 /E-~1 N~ 1 W1 L1
Its elements {uq,a]...ae} = {T > -cos(—), -cos(—), -cos(-—), -cos(—),
V8 2 16 2 16 2 16 2 16

1 .1 371..
Py 0 (T}



AR
1

—(1
. 0D
T® o aJ fl — )
—itp ar, -an -an
a) - a, a @ — - frr a, -a*
o : —  {Te
a. —a, ti a, a, - fli

GCT has properties same as the DCT. (2.7) can be rewritten as:

~ - [ "
/l%/g Qgc ~ rTA'  _ 11w AY\/’\ ¥/V E/; forTv> 2. (2.9)
1. -V _ fed -_h -TN _

This is an important property to derive order-16 integer transforms in later sections.

] is orthogonal only when both and P [J a r eorthogonal.

2.3 Integer Cosine Transform
2.3.1 Order-4 and Order-8 ICT

Order-8 integer cosine transform (ICT) in existing coding systems was first proposed
in [1], Itis defined that an integer transform T is an orthogonal matrix which can be

composed by a scaling matrix K and an integer kernel E.

=KE (2.10)

E is a matrix which contains only integer elements and K is a diagonal matrix with
positive real elements, which makes the basis vectors of T unity. An ICT has both
the properties of an integer transform and a GCT. It is a GCT which has an integer

kernel:



Tho ¢ 2.11)

The structure of ™ is the same as T Jut ]~ contains only integers. It also

has a recursive structure:

17()

Oy for7v>2
or7Vv>2.
“ 0. ™ is v 2.12)
Order-4 ICT, T; ;A is defined as
T:7? (2,13)

-<3, a, -a.

It is orthogonal for any (ao, a], fli)- 1CT4(1, 2, 1) and ICT4(2 > 3, 1) are adopted in

H.264 and AYS respectively. For order-8 ICT, is:
—a, -3, -0,
*® -at
‘e ) Clj (2.14)
1'4
-a.
-a, -ct.

It can be decomposed into:

o Q) o,
Ne ie) (2.15)

IC

where



-y is a scaled version of T/f and
Q) — o . 15 @ scaled Vers| (2.16)

at - (2.17)

is orthogonal for any ao, as and a6. Pf¢ is orthogonal if:

(2.18)

so as to ensure that T)** is orthogonal. To make the basis vectors have waveforms

similar to the DCT:

a, >a >a*>q4( and a. > a,

(2.19)
The 2-D transform process of an NXN data block X is modeled as:
(2.20)
Substituting (2.11) into (2.20) to yield:
2.21)

is the 2-D scale matrix formed by the 1-D diagonal scaling matrix

The element-to-element multiplication is represented by ©. is defined as:

(2.22)



The inverse transform can be implemented as:

X = (2.23)

In usual manner, the 2-D scaling matrix of an integer transform, S, is integrated into
the quantization and rescaling process in coding system. The transform with
integer kernel, E, can be perfectly implemented with finite bit length. The drifting
error caused by irrational transform matrix (such as the DCT) can be prevented.

ICT also has this advantage.

There are infinite many integer solutions that satisfy (2.18). As a result, there are
infinite possible cases for . However, finite sets of cii, which obtain higher

transform efficiency (See Section 2.8.2 for detail), were suggested in [1]. The higher
transform efficiency means the higher ability to decorrelate the data. This also

implies higher compression ability. In the following, we name the order-// T( as

ICT/v(flo, for ease of use. The larger value range of a,, the better performance
can be obtained. The larger value range of a, also means higher precision and higher
complexity usually. To balance the compression ability and the complexity, two sets
ofa,, ICT8(8, 12-10>6-3 8, 4) and ICTgCS, 10, 9, 6, 2, 10, 4), are chosen. They are
adopted in the latest video coding standards - H.264/AVC FRExt [5] and AVS [6]

respectively. In H.264/AVC FREXxt, order-4 ICT is also used.



2.3.2 Order-16 ICT

Order-16 ICT was proposed in [14] and [15]. Its integer kernel, EN™, is defined as

f;
t
B
—a -fll
iy A u «I3 - 1
-a
ok \
)
-TTO ft :;:f;
a o
a 3
*a,. -a a £,
-a A
oA 8 —a SR
T
Similar to order-8 ICT, it can be decomposed into:
® O,
< (16)
Lk]:- 0 ‘Ic u -
» $is the odd part of T,(J .It has a structure:
a, - cr
Sl - A
& ©
- A,
- AL
To ensure T) ? orthogonal, both T) ? and must be orthogonal

for orthogonality are:

(2.24)

(2.25)

2.26)

. The criteria



+atah +atat - atat +atat +atat +atat + aja (2.27)
(2.28)
«[] «4 + atah L = + -NaMa”, and (2.29)

(2.30)

Some solutions to above equations are suggested in [14] and [15], However, it is not
easy to figure out the fast algorithm for and hence that for As a result,

there is no fast algorithm proposed for order-16 ICT. This motivates us to develop

other high performance order-16 orthogonal integer transforms with fast algorithms.

2.3,3 Other Order-16 Integer Transforms

There are a number of order-16 integer transform [15]-[18] proposed in recent years.
The integer kernels of these proposed order-16 transforms are listed in (2.31) to (2.34)
respectively. With these integer kernels, their transform can be easily found

according to (2.10).

"“men _ (231)



32 © 32 32 32 12 9] 32 32 ]2

45 40 21 n “ho—21 .29 40 a3
44 25 25 - 18 -44 -44 38 -25 25
41 4 -40 -35 35 45 40 -4 =29
42 -17 -42 -17 17 17 <L -42 =17 17
3 S41 a3 29 45 45 '29 13 43
~44 -25 25 44 9 9 44 25 .25 44
& 21 4 45 n . 40 - 13 45
3 - k2 32 32 32 -32 .32 32 32 =32 3 32 .32
29 - 40 13 45 -4 21 35 -2l 43
) 44 9 38 38 9 25
2 a5 29 13 -43 35 40 235 43 213
17 - 42 42 <17 <11 42 .42 17 -42 17 -1 42
n -3s5 45 -40 21 229 43 -21 40 -45
9 - 25 38 44 25 238 44 38 -2
4 13 21 29 40 43 45 4s 40 35 21 13
25
25
17
28 K-21-25 -11 27 27 28
21 -S -25 -14 14 -5 s
E . ®66 B B ’ (2.33
2 -28 -1l 27 3
14 -25 5 21 - 21 25 - 14 -14 25 25
9 -27 21 11 25 300- 28 28 -3 27
7.1 7 17 -7 -7 17 7 717
no-21 27 -28 9 21 25 - 25 21
S -14 21 -25 25 14
25
56 5 256 256 256 256 236 276 56 256 25( ﬂ% 23@.
.04 212 216 168 88 a8 - 48 38 .210 2 L4
20 40 40 -120 -184 216 -216 0 T o 84 216
S116-206-232 -188 -56 56 R = 22
o o
n o ﬁ 05BN YR 045} ]%0 116+ g 20 Tha -
E, % [176 176 o4 64 - 2% 256 g% 256
92 172 488 136 -424-296 296 g 8 8 -392 (2.34)

- 86 -
32 v \,56 258) 56 256
N 156 -4 124 -296
76 l()4 7] 56 166 i04 176
6

16 23: /% 20 -~ 60 I%M 7 132 -116
28 % -Iié -I% -‘ﬁ; I% u 39 "1?8 -8 120 128

56 132 -20S 1)6 29 -139 227 -227 39 o4 ]16 II3 88 -56
40 84 -216 216 -184 120 -40 -40 20 U (RS 20 40
48 68 -216 272 -304 336 -344 344 136 o 1572 Iéé 88 -48
I
i1

It has been reported that non-orthogonal transforms cangive a high coding
performance [19]. Theerror caused by its non-orthogonality canbe controlled at a
very low level with proper design of the transform. However, itmay notbe easy to
derive its fast algorithm because of its non-orthogonality. In this thesis, the focus is

on the orthogonal order-16 transforms with fast algorithms.



2.4 Simple Integer Transform

Tobalance the complexity and the compressibility, here we proposed anovel order-16
simple integer transform [20]. It was adopted into the AVS reference software [21],
It is developed from the existing order-8 ICT. Suppose an order-8 ICT with integer
kernel E;? as shown in (2.14), we can extend it into order-16 integer kernel. Here

we name them as E*/ and respectively. They are defined as:

-a, flrt -
a:
-a- (2.35)
-ay 'a,
a, -aq, -a. a -,
A 17(8)
Aic

Yno ST

(2.36)

-fla -
a, at

where H = [1 1; 1 -1] is the order-2 Hadamard Transform Matrix and ® is the
Kronecker product. We can rearrange EA; and E” in sequency order to become

Esi and ey



a, -
(2.37)
¥
t
T
t
8
-fln
-a (5
a a a a. a- A a-
a. a a a fll a, a. a- a‘ a.
O Gl a (2.38)
«( (O «0 x,
a a- a a a a
[ 8 a a- a a fl] a
a; & ﬂ::
a. &

Finally, normalize the integer kernels EZ] and E52 with K”i and K52 respectively.
Orthogonal order-16 Simple Integer Transforms Tsi and T%] are formed. Here we
name the above two transform matrices to be «i.’ , ¢6) and T%Ja\l...ae)
respectively. The complexities for these two transforms are the same for the same
given set of a, but Tsi has a higher compressibility than Ts2- As a result, we shall
demonstrate the experimental result of Tsi only. Two different order-8 ICTs were
proposed in H.264/AVC and AVS respectively. For simplicity, the Tsi implemented

with the order-8 ICT in H.264/AVC and AVS are denoted as «rm4  and  Tseavs

2-16 -



respectively. They are equivalent to Ts/(8, 12 10, 6, 3, 8 » 4) and T4J(8, 10,9, 6,2’ 10~

4) respectively. Their integer kernels E%] can be easily obtained using (2.37).

The fast algorithms for Es/ and E4] are very simple. Each of them consists of eight
order-2 Hadamard Transforms and two order-8 fast ICT. The fast algorithms of these
two order-8 ICT are shown in Figure 2-1. The two different Simple Integer

Transforms can be derived from these two ICT.

10 - 5 #:
X2 yx Jii
X 6 — 1 )@ \a =
(7 - a XI \):l
1S I e X5 / I‘S_Q
v ; ‘ X3 13\
X! X1

() H.264/AVC (b)AVS

Figure 2-1 Fast algorithms oforder-8 ICT adopted in (a) H.264/AVC and (b) AVS.

1

(a) (b)
Figure 2-2 Fast algorithm of proposed order-16 transform (a) Tsi and (b) T4].



2.5 Hybrid Integer Transform from

Dyadic Weighted Walsh Transform

In Simple Integer Transform T%] - there are only 8 different levels in the odd frequency
vectors at most. However, there are 16 different levels in DCT. This means that
Simple Integer Transform only approximates the DCT with limited accuracy. In
order to make the approximation more accurate, the order-8 transform for odd
frequencies is replaced by another transform with more levels. In this section, it is
replaced by an order-8 Dyadic Weighted Walsh Transform (DWWT) which has a
maximum of 8 different levels in each basis vector. As a result, a better

approximation and hence a better performance can be achieved.

First of all > let us have a short introduction to DWWT first. For simplicity, here we

take an order-4 as an example. Consider avector of 4 positive elements, F*=[a- - 4],

a2, a"]. We can find its 5 dyadic symmetric [22] vector VM - [EX) bi, bj,#33] by:
b [ for [0,1,2,3] (2.39)

and @ is the bit-wise "exclusive-or" operation. As a result we can find 4 dyadic

symmetric vectors,

Assign +/- sign to each element such that V’. =0 ifi A;  This sign assignment

is not unique such that more than one orthogonal matrix for the same (ao, a], aj, a"}

can be found. In (2.40), two with different sign assignments are shown.



K

0 do a\ ai
1 a\ cio ai
2 3 Cl]
3 ai ao

Table 2-2 Example of dyadic symmetric vectors

«2
al <3 - A
— LI -J31 all (2.40)
a a, a
Denote that the 4x4 matrix formed by the four basis vector F, as T —, the

Dyadic Weighted Walsh Transform (DWWT). Its basis vectors must be orthogonal
forany real {gq, , 02, <33}. Using the same idea, it can be extended to order-2” (for «

> 2) transform. One of the order-8 DWWT in its family is:

K bl
K K -A h
A K bs
Tl S o (2.41)
A b A h
bl -bs
b bl -b.

Here we name the above order-8 DWWT as roww in later sections for simplicity. It

is denoted as Tdww {ho../37) when its parameters are given.

Our proposed order-16 Hybrid Integer Transform (HIT), T /)i5 a hybrid of two
different order-8 transform. One is the above DWWT swoww and the other is order-8

ICT . The odd basis vectors are built by mw  while the even basis vectors are



built byT)$). T6) is defined in (2.42).

rid (2.42)
In matrix representation, it is represented as:
w0 .
HIT can be expressed as:
nt6) _ 1Y16)1’\16)
Wi~ "N/ LR (2.44)
such that is a diagonal matrix to unify the basis vectors of the integer kernel

Eg) and hence TA™ is orthogonal. Ejjf is built by Eg and eoww, which are

the integer kernels of and respectively. ForEj~" here we can simply
choose the integer kernel of ICTQCS, 10, 9, 6 > 2, 8, 4) which is adopted in AVS. For
eoww, because of its property, there are infinite many solutions. Here we search for
different "epww which produce T [6) ~ith high coding gain crc (see Section 2.5)

with basis norm similar to that of ICT8(8, 10, 9, 6, 2, 8, 4), These sets of coww are



shown in the following table. Besides compressibility, existence of fast algorithm is

also an important concern. The fast algorithm for Ej;~ is achieved as shown in

Figure 2-3.
D Set of Epww e
Norm ip=0.9)
E.owm 574 4-501
Evivm 570 4.497
"Divm (MICT) 561 4 508
E owwe 546 4 498
EDmvs 544 4.493
Eonwe 540 0 9 8 6 4 4.987

Table 2-3 Examples of eorve  with high coding gain cre-

Figure 2-3 The general fast algorithm of proposed order-16 transform E"/,

It is not easy to obtain a generalized fast algorithm for DWW but for a specific "DWW-
In [19], Dong pointed out that orthogonal matrix can be decomposed into product of
simpler sparse matrices if its norm is not prime. Let the norm of "dww be D. If

Eoww can be factorized such that "dww = M1M2M3.. .M”-i, D can also be factorized



into d\d2..dk =D where di is the norm of M,. So if the factors of D are found, the
factors of ~dww can be easily found. However, some D are prime numbers or have
large prime factors. It is difficult to factorize these "DWW- For these "DWW, they can
be decomposed into simpler linear sum first. This can simplify the factors of vspww
and provide a simpler fast algorithm for "DWW- An example the decomposition of
ADWWA is shown in (2.45). It is decomposed into the sum of two ~dww, "dww{l 1, 11,
11>9-8>5>4>51)and KowwiO, 0, 0:0>0-2>0-0). The first one can be decomposed

into 4 sparse matrices.

E DLVWL

=E fk “11,11,11,9,8,7,4,1)

tE~A(11 > 11°10,9,8,5,4 > 1 E%ﬁO,O,O,O,OQ,O,O)

. -1 2 1 2 .
o1 -2 2 1
- 11 -1 2 2 1
2 1 2 11
1 2 2
2 -1 1 1
2 -3 1 1 1
1 1 | 1 1
1
1 (2.45)
1
1

The factorizations of the Edwwi, ~dwwi and ~owm are shown in the appendix. With

the factorization, the fast algorithm oi“oww, and hence that of E(C ,63an be obtained.



2.6 LLM Integer Cosine Transform
2.6.1 Relaxed GCT

The proposed order-16 transforms in previous sections are extended from order-8
transforms. The waveforms of these transform is slightly different from those in the
DCT. This lowers the coding performance. The order-16 ICT proposed in [14] is
very close to the DCT. However, it is not easy to derive its fast algorithm and no fast
algorithm has been proposed so far. As an alternative, here we proposed a novel

method to derive higher order ICT based on an existing fast DCT algorithm.

Recall that GCT in (2.9) can be decomposed into two parts, P(JQp and Q"

Here we proposed to relax P™* to P™c¢ such that:

PV (2.46)

N-2,

"N-2
The A™-element matrix P ) is relaxed to an (A/‘/2)-element matrix P—~. Here,
Relaxed General Cosine Transform (RGCT) is defined by replacing PAf) in (2.9)

with 1iN)

RGC

» @0 . 77 wrec 1v r
RGC K o) ] Tor TVL. (2.47)
R RGC,



Take 8 as an example, P & is

- - = =
1 =2 3 ta s s =2
— s S al 1 T I
< - > 1 c® S o . ;
.2 = - — T 1
g P N v 4 -
2
J J < s
g a
¥ 2 Ty a-!:_; i} -
= =2 8 /¥ 7 N
- o) 1 op - < T I Z 4
Py _ - < L =2 - ..
_ = 1 a8 < = A
[ j[j, ,\ 2 . 7 = - -
4 1 5 ;
s —
-+ L ] 1 1
1 ¢ ==
= I =
A A <
< 1

The next step is to find the values in P ZZ T.his can be achieved by existing fast

DCT algorithms such as the LLM fast DCT algorithm proposed by Loeffler et al, [26]

and the CSF fast DCT algorithm proposed by Chen et al. [23].

2.6.2 The LLM Fast DCT

LLM fast DCT algorithm [26], which was proposed by Loeffler et al., requires only a
few multiplications. It requires only 31 multiplications and 81 additions for order-16
1-D DCT. ltis also presented in a nice butterfly structure shown in Figure 2-4. It is
divided into 5 stages from the input signal XQ 15 to the output coefficientsfo 1s.
Multiplications with the irrational constants shown in the figure are required.
Although only order-8 and order-16 LLM Fast DCT are proposed in [26], it is not
difficult to derived higher order fast algorithm with similar structure. As aresult, we
use it in our proposed algorithm of deriving higher order ICT. This will be shown in

later section.



I V2

vacl2 .
4i

'=H"_

10
2 /3
X 2.
cl4 f("f 13
[} /9
I )

/o

fn

16

14

/m

f il y
2 r
. L k2 r
c7 cl2 SO
I Figure 2-4 The LLM fast DC] algorithm.
2.6.3 The Proposed LLMICT

h

. ] [

" 9

| o

. /1

| ’

X

/5

Figure 2-5 The generalized odd part of LLM algorithm.



Chapter 2 - Order-16 DCT-like Integer Transform

Since we are going to find only the odd part, P~J*, we focus in the odd part of the

LLM algorithm. Its generalized version is shown in Figure 2-5. The irrational
constants are replaced by variables g,.,n > » and j. It is very intuitive to take these
constant as the integer approximation of the irrational constants. For example h =

61 w 61.2442 w x cos(-ly). However, the orthogonality will be destroyed by

doing so. Instead, when the fast algorithm is expanded into matrix form, the matrix

of the odd part becomes:

ek rilsi hh+m g-n {R—m ) k)
rji+sk ri-si  sh—rme(sg+ rn)(rg-sn) *{rh+sm)si + n -S
s} +rk rl—si {rh —shm) -{(r3+ Sn))ssg-rn)) sh +rm rj _Jsk
- - m
LR ‘m p h (2.49)
rj sk -iri+Sl? sh+rm sg-m o{rg+sn) rh-sm rl-s «{sj+rk)
rk-sj e(si+rl) rh+sm rg-sn e(sg+r) sh-rm ¢{ri—si rJ+sk
- h-m g—0) h +m) -ij +k)

Compare (2.49) with (2.48), we can find that they have the same structure and hence

»L(fﬁ,l is a possible solution to P~ . Here, we propose an orthogonal integer

transform TAf~ , called LLM Integer Cosine Transform (LLMICT) by replacing Pj'j.

in (2.47) with
(H) 0
M LLM N (2.50)
"N LLM

For ease of implementation, £~ can be replaced by T]p when N <8. Lastly, to

ensure orthogonal, the criteria for orthogonality (2.51), (2.52) and (2.53) have

to be satisfied for arbitrary r and 5:



(2.51)
(2.52)

(2.53)

The solution to the above equations is:

(2.54)

for some positive integer a. To make the basis vectors similar to the DCT ones,

another constraint is added:

g=>h>i>J>k>I"m"n (2.55)

There are infinite sets of solutions to these two constraints (2.54) and (2,55). 1t is
very interesting that some of these solutions can be found recursively without
exhaustive search. If given a solution (g, h, i,j, k, /, w, n) to (2.54) and (2.55), (J+k,

iH, h+m, g+n, g-n, h-m, i-ij-k) must be a solution, too. This is because:

U +KY-+ij-KY =2{f+k") = 2a (2.56)

which is also a positive integer. This means that the (J+k, J-k) pair satisfies (2.54).

Other pairs, (;+/, i-l), (h+m, h-m) and (§"+" > g-n), also have the same property such

that (J+k, i+l, h+m, g+n, g-n, h-m, i-l,j-k) is a new set of solution.

Here some examples of (g...n) are shown in Table 2-4 and Table 2-5. (g...n) can be

represented in 6 bits in Table 2-4 while they can be represented in 5 bits in Table 2-5.



They are sorted according to their coding gain in descending order in each table.

They are named as A1/A7 and B10 B7.

Al i 61 | 59 53 49 37 31 17 7
A2 1 46 45 42 35 30 19 10 3
A3 , 43 42 38 34 27 21 1 6
Al 59 58 53 46 37 26 1 2
A5 | 62 59 53 46 43 34 22 1
A6 . 51 48 . 44 37 36 27 19 8
A7 49 . 47 44 41 28 23 16 8
Table 2-4 Example solutions for g...n which can be represented in 6 bits.
Bl 18 17 15 15 10 10 6 1
B2 29 26 22 22 19 19 13 2
B3 20 19 16 16 13 13 8 5
B4 26 25 23 23 14 14 10 7
B5 30 27 22 22 21 21 14 5
B6 25 23 19 19 17 17 11 5
B7 29 27 25 25 15 15 11 3

Table 2-5 Example solutions for g...n which can be represented in 5 bits.

The examples in Table 2-5 can be implemented with fewer operations. However, the
coding performance will be slightly lowered. This is a trade-off between

complexity and performance.

Although r and s can be arbitrary, it is better to choose r :s * sin(”): cos (%)«

0.4142. (r, s) can be taken as (1,2) or (2, 5) for simplicity.

Orthogonal PgL is found. Recall (2.50) and replace with ICTgCS, 10, 9,62

10, 4). Finally, in order to normalize the dynamic ranges of different coefficients,



bit shifts are added to the last stage. Taking Al and B1 as the example, their integer
transform kernels are shown in (2.57) and (2.58). Their 1-D fast transforms are

shown in Figure 2-6 and Figure 2-7 respectively.

s 20 260 26 26 26 26 26 26 b B B B B B I

344 336 304 272 216 168 88 48 -48 -1E -168 -216 -272 -304 336 -344
320 288 192 64 -64 -192 -288 -320 -320 -288 -192 -64 64 192 288 320
319 203 33 -157 -291 -329 -261 -87 87 261 329 291 157 -33 -203 -319
320 128 -128 -320 -320 -128 128 320 320 128 -128 -320 -320 -128 128 320
283 49 -261 -319 -87 203 327 171 -171 -327 -203 87 319 261 -49 -283
288 -64 -320 -192 192 320 64 -288 -288 64 320 192 -192 -320 -64 288
196 124 -236 28 244 68 -212 -148 148 212 -68 -244 -28 236 124 -196
256 -256 256 256 -256 -256 256 256 -256 -256 256 256 -256 -256 256 (257)
212 -68 244 -28 -236 124 196 -196 -124 276 28 -244 68 212 — 148
320 64 288 -288 -64 320 -192 -192 320 -64 -288 288 64 -320 192
327 203 87 -319 26] 49 -283 283 -49 -261 319 -87 -203 327 -171
320 320 -128 -128 320 -320 128 128 -320 320 -128 -128 320 -320 128
261 329 -291 157 33 -203 319 -319 203 -33 -157 291 -329 261 -87
192 288 —320 320 -288 192 -64 -64 192 -288 320 -320 288 -192 64
-Ht 168 -216 272 -304 336 -344 344 -336 304 272 216 -168 88 -48
Order-8 ICT

<6 m
A
y 2 f4
4
2
A n
v 2 no
-2
6
= ’ fl4

2 f13

E f9

fI5

fl

4 M 7

* fll

- \ T ] . o

Figure 2-6 Fast 1-D Forward Transform for LLMICT-AL.



% e £ B x g
a
&
HAQQIMARMRNRLY O,
B G QO %0 N RRLLITN
R 1,0 2@ T U9 RAG o

Qo,%om}/igrzz@ﬁfo AN
27\/850%4,@@26}/,@ ,241
o= _%@%2%2%3%%@56%2

7965 2RRRALC IRRAN

Order-8 ICT

= %45@@?@% 8t§045%%2
8§$ﬁg%a267%m0241

Qggm@m%b%%%%ssoq

QB2562@.322894 QAI

MM %3/@40 615 _oo (7?”3. _04_@». _F\nf_ﬂ./u_Sf
HKRQYNARARIRLNEY

flo

6

fl4

fI3

f9

fI5

fl

f7

fll

Figure 2-7 Fast 1-D Forward Transform of LLMICT-BI.



One may wonder the relationships among the ICT proposed in [1] and [14] (i.e. Jjf))
and our proposed LLMICT. Their relationship is illustrated in Figure 2-8. In [1] and
[14], the DCT is generalized to Tec and then the ICT, T/c is found as a subset in Tec-
Here, we further generalize tec to trect  and a subset, Tim, is found in Trocr- If the
members in tum have integer kernels, they are our proposed LLMICT or denoted as
num in Figure 2-8. The approach to derive orthogonal transforms here is different
from that in [1] and [14]. However, the fast algorithm of the ICT in [14] (order-16

ICT) may not be found easily.

Figure 2-8 The relationship among T}” T # . T # andthe DCT.

Despite of the order-16 ICT proposed in [14], it is not easy to derive its fast algorithm.
Instead, our proposed algorithm is based on a well-structured fast algorithm with
integer multiplication only. The proposed transform has a recursive structure such
that higher order transform, such as order-32, can be easily derived. Since the LLM
fast DCT is defined for order-2”~ only > the proposed LLMICT is also defined for
order-2” only. It is not difficult to derive the LLM algorithm for higher order fast

DCT. Asaresult, P/ and hence T/: can be easily found for TV > 16.



2.6.4 Order-32 LLMICT

Using the same idea, order-32 LLMICT can be found. Its fast algorithm is shown in
Figure 2-9. Here, the order-16 LLMICT for the even part is using our proposed

LLMICT-AIL In the figure, a\.. an are predefined constants. The criteria for

orthogonality are:

+..= 4+ = +d4=  + for ome positive a, (2.59)

+@0= + =/? for some positive P, (2. 60)

Three more constraints are added to make the waveforms similar to these of DCT:

;{ «‘122 = a ! $ = >a
s Choawer At 2. 61)
==y ST - Qa 1 .
! >
_d
. TS (2. 62)
»sin (2,63)

122

For simplicity, (<1, a22) are taken as (2, 1). Some solution sets for (2.59), (2.60),

(2.61) and (2.62) are shown in Table 2-6, Table 2-7 and Table 2-8.

Set «17 «18 «19 «20
1 8 7 4 1
2 9 7 6 2
3 1 10 5 2
4 11 9 7 3
5 12 9 8 1

Table 2-6 Example solutions for order-32 LLM][CT which satisfy (2.60) and (2.62).



01
4!

IC

01

g

ot

6l
17
0¢

@va

1S3
6l
I¢C
9C
Sl
4!
6¢

0¢
m_vv

ac
65
(44
1€
8¢
()%
Lc
0€
61

€e
ST»

8¢
T
S
LE
€€
44
0S
7€
vl

Tv
0L
8¢
€S
79
LL
14
g
9y

1L
14’4

19
194
4
123
12
4
9

147
mH »

LS

83 8

€8
08
09
8
19

68
m._nvv

'g2T ueyl ssaf (9][e"""1e) yum 1IN Z€-48 810 10} suonnjos ajdwex3 8- d[qel

L9
€5
65
69
59
I
L9
ol
b

'9Gg UeY) ss9] (9 [e" **[e) UNM LOIINTT ZE-49pIQ o) suonnjos sjdwex3 .-z a|geL

98
€ET
erl
96
L0T
L0T
€8
68
172

66
am»

L9
€S
65
69
$9
174
L9
it

uv

€01
6ET
el
qrt
4%
a1t
88

qot
98

ras

LL
SL
L9
8L
8L
0s
€8

9
o

1418
4"
Lt
LET
174"
ovT
10T
GeT
60T

64T
o

LL
SL
L9
8L
8L
0s
€8

12
6

|74}
qar
14"
Sl
6v1
cL1
a1t
€at
al

LT
6»

68
08
I8
16
6L
99
v6
€L

08

91
06T
€61
q8r
41
6.7
0ctT
¥ar
TET
1817
»

68
08
I8
16
6L
1S9
76

€L
»

\ 29T
161
90¢
T6T
€Ll
G0¢
4%
0LT
Ay

L61
/»

v6
96
L3
86
06
<
901

08
91

174}
¢0¢
60¢
S0¢
18T
0¢e
Wi
06T
.91

61¢
(o

v6
96
L8
86
06
9
901

08
G»

3218
90¢
1474
1%4
1]
vee
144
86T
€91

€ec
o»

86
001
€6
LO1
L6
0L
601

88
»

v61
0ec
€cc
Lcc
961
Gee
qa1
T0¢
991

LEC
145

601
LO1
‘66
141!
901
IL

[

861
Gee
6€C
6¢¢
€0¢
9ec
097
0T¢
ELT

eve
o

011
801
€01
LI1
OTT

[44)

G6
>

T0¢
8E¢
T
€ee
TT¢
74
vo1
14
8.1

16¢
o

SIT
601
SO0l
8T
I
VL

514
L6

c0¢e
74
¢
Gee
cle
174
ot
JAVA
6.1
€4¢

8d
Ld
94
cd
vd
ed
cd
14
18S

O
6V
8V
JAY
v
qv
v
A4

v
18S



o
1.6
8
flA
fA
fn

Order-16 LLMICT 20

126

/m
hi
/10

" L

v/ X
viit/ i
,29

20

22 /.7
2 N5

AN

fl
21
29 fu
30 fs

Fi;ure 2-9F rithm oforder-32 LLMICT.

Take {a\i, a\%, “19° <X0) = (8, 7, 1). One order-32 LLMICT Al with {a\..a\)=
(253,251,243,237,233,219, 197181, 177 > 159, 127,99, 89,71,33,9) and another
B1 with (fli...a,6)-(lIl, 110,106,97,90,90, 79, 79 - 78, 78, 65 > 65, 54, 33, 15,2) are
built.  They are shown in Figure 2-11 and Figure 2-12 respectively.  Their
transform matrices are shown in the next two pages without normalizing their basis

vector norms. It is shown that their matrix elements requires 12 bits and 11 bits



(including sign bit) to represent respectively.
investigation. Fine-tuning is required.

later sections and chapters.

LLMICT have waveforms very close to the DCT.

Order-32 LLMICT is still under
It will not be included in the analysis in

However, in Figure 2-10, it is shown that our proposed

Here we show some analysis

about these two transforms in Table 2-9.

These figures are for reference only but

they show that order-32 LLMICT are quite close to the order-32 DCT.

DCT Transform Coding Gain (dB)
Transform
Distortion (%) p=06 p=0J p=08 p=09
Order-32 DCT 1.855 2.806 4.268 6.959
Order-32 LLMICT-AI 0.0136 1.847 2.792 4.246 6.921
Order-32 LLMICT-BI 0.0384 1.845 2.789 4.240 6.911
Table 2-9 Brief analysis of order-32 LLMICT
k
PrequencyA Frequency 5
Vbeoo X, WV dTd O A YL V.
) . o-V/ N //Y‘f A
A A Fofl o el “ceefl - A
L) - /:‘IT‘ LI Y
jiX/S-Kp- i oKiizm SR y

Nek 7

I L

AIIIIA



] ] ] ] ] ] ] n
VR IN at R UV IS T ozI I I u u I I I I L L
] ] ] ]
. .
OI sgoflis 2005 0 5 10 15 20 25 30 .) 5 10 15 20 25 X °1 5 10 15 20 25 3
Frequency 20 Frequency 21 Frequency 22 Frequency 23
04
. L] EmE
i/ffiips i
’ . L] | W |
. : ! . 1 : 04 : . : | . ni i . i > H Ai
0o 5 10 15 20 25 30 5 10 15 20 25 30 ) 5 10 15 20 25 30 S 10 15 20 25 3
Ereque‘cy 2 e ] . Frequenay 25 [13 Frequency 26 Frequency 27
N | P »® .- . L er 04
’ ° -
i . f f I 2 W .
o o n
W I W b I I
. . ioe 1, Qp 0. 5
0 5 10 15 20 25 30 "o 5 to 15 20 25 N O 5 10 15 20 25 3 oo 5 10 15 20 25 30
Frequancy 26 Frequency 29 Frequency 30 Frequency 31
04
r - 04
¢ .
§ :

1 1 1

CiwHimes &I M

]
Figure 2-10 Waveforms oforder-32 LLMICT and the DCT. The DCT is in blue,

LLMICT-ALI isinred and LLMICT-BI is in green.



IV-LOIINTT 2€-43p40 pasodoad ayy [1-z aanbi4

UA- 6L1 OLT- 8% ¢LT- 991 €91- LST wil- 1€l ol 601 98- YL L9- 9y 61-
9 ] 9- [1 TC- LT ve- 8¢ - 194 ev- 44 8¢~ 149 LT ¥4 TT-
€01- LyE Go¢ Lye- Y43 LyC- 9 SY €01~ GIT Lye- Go¢ eov- 0y Gee- LvC Gle- €0«
C Z 9- 6 0r- ! 6- 9 ¢ - ¢ -9 6" 0l 0T- 6 9 4
666~ T - €961 €961~ 6971 L6L- 6¢C- e0et €LYT- 1¥0¢C LOBT- 676 ¢l L8 ILST LT0T- 6L8[ LIyI- 65S
L8 L8~ L8~ 19¢ 6Ce 16C LST- £e- €0C 61¢- 61¢ A €€ LST 16¢- 6C¢ 19¢- L8
ees- LN 65T 6671 L99- L6T" 196 eo¢l- eL01 LEE- (IS LTl feet- 78 6¢ L96~ 6% i I - €es
[ & 4 4 5 S c 4 S G- [4 [4 G- S (5 ¢ S s [4
166~ 0¥~ Lret LyCl- 10¥ 8 €9¢el- 616 el 6811- €8¢l 19y~ L99- 1GET {00} 6¢- €104 eoer- 166
ILT Leg ILr- ILT - LTE €0C L3~ 61¢ 19¢- 6v- €8¢ €8¢~ 4 192 61¢- L8 €0¢ LTE- ILT
0L~ 19¢1- 1921 9¢ 8¢¢0 €ETT vET zvec- yT0T 62v 8L€T- Lzol €S LEVT- %S [Sudk 0L
9 0l- 9 9 0l- z 6 6- [ 01 9- 9- 01 e 6" r4 0l- 9
ovl- 6v¢ ove- 99- 087 6¢- veC- 14944 orl 18C- 99 44 691 - 691- 98¢ 6¢- 182" vl
LE g LE- LE- €S L1 19- L 65 I¢- ov- (4 1€ 65- L- 19 L1- €6 LE
LLT- 61" 18T~ 18l 651 6lg- 06 167 i ST 6 €T €e- - 68 €€ Lgr- o Lel- LT
1 I- T T L |- 1 |- i I |- I- I
181 L61 LLT LLT- LT1 €€t 68" e €e €5t 6 15¢- IL- Lee 66 61¢- ST~ 181
4 23 ov- 67" 1g 65 L L9- LT- €S LE LE- €S- L1 L9 L 65- e’ 414
6vC- 18¢- ovl- or1 18¢ 6€- 98z- 691- 691 44 99- 182- ovl- 1454 6¢- 98¢- 99 44
6 ¢ 6 6 ¢ oL- 9 9 ol 4 6" 6" 4 ol 9 9- ot- e 6
19¢1- Ervl 0L 0L~ evvl, g 768 LEVT Ies [ - el - 6 7101 wel ¥l eert- &Ll » 9z- 1921
€8z 6v- 7 - €82+ 61- 192 61€ /8 €0C- € . TLT- LLL LTE €0T L8 61¢- 192~ 6y €8¢
LYT1- €0ET - 1SS 199 coel ¢L0 6¢ L00T » &) - L99 . 19¥ €8¢l 6811 131 616~ et 8- 10y LYCI
S 4 S S 4 e G- G- - z S S ré - G- G- - z S
65C1- 6811 ¢Cs €Cs- 6811~ (6149 L96- 6¢C- 178 Teet Lyl 1S3 LEE- ol - eoeT 196- L6T- L99 65Tl
61¢ €0c- 6l¢- 6l¢- €0C- €e- LS1 16 6¢C¢ 192 L8 L8~ 192 (4% 16¢- LST- €€ €0t 61¢
€961~ LIyl- 666 65S LTIt 6L8 LT0T [LST L8 ! 6v6- W - LR - e0¢et- 6¢C- L6L o691 €961
ol 6 0l ol 6 9 4 - o 6 ot- DI 6 9 z z 9 6 0l
S6e- sTZ €01 €01~ Gle- LvC Y4 €0y~ 11017 S6¢- Lye- sie- ¢0l- h S9 LvC Y43 LvE G6¢
194 Zv- & ev- - & 4% L~ be- - 9 q b ¥4 LT 149 8¢ (474 £r
6LT- 61- & 61 ov L9 vL 98 601 144! ret ol LS1 €91 991 eLT | A ¢

| 1 |



0et-
Ive-

(4%

LST-
1
01L
@l
¢0L-
19¢
6¢¢
m -
e
Lt
ov1-
0r-
o1
€S
961-
—I
861
1€
ST -
NI
LSTI
o~
166-
/4
149
€0¢C-
vsS-
6
S¥S
-

511
.
698
4
295
8-
156°
4
8vS

TL (-
¢01T -

9
G601
Le-
8G1-
T
9¢1
6~
Ge9-
6

179
€8¢~
(Y
S
[4%4
61¢-
Ive-
o1
0¢t
ev-

I-

LST-
o-
698

98-
L8~
1SS

214%

121
€011

S
Le-
851

961~
o~
Ge9

129~
€8¢-
0¢C

we
o1¢-
e
01
0gT
ey-

LST
H
QOIL «

€0L
19¢
6€C-
ml
(4%¢
LTE
ovl

0l-

S91-
9c1

8G1-

6ol
NI
LSTI-
6~
1S9

€0¢-
1433

4%
-

181-
1¢-

SS9

0ey-
(Y4
Svl-

0ce
€0¢-
crer -

S9z]
LT
08T,
x
0cl

Sy-
0T-
Y %
19¢
S0

NI
(%
G8L

0.
8¢-

(74

19-LO AT 2€-49plo pasodoad ayy

Ss1
ks
0L€-
0tT-
56
167
505
Nl
08S-
18-
§6/
6
Shp-
19—
01
I
081
N‘I
81l
ol
586
61
St1
ml
oe-
LS
068

G18-
ve-

I61-
ve-
01
0l
€9y
LST-
€65~
NI
1454
61¢
€0¢
@ -
506~
L
76l
I
801~

19~

6221
Z;
us.
ml
9L
16C
99L
Nl
S68-
LT-
9%

0¢1
8¢
ST
@I
G18-
ee-
1454

N

Ly
19¢-
G811~
-
6£01
0
99
‘FI
At A
LT~
eeL
01
944
€0¢-
965~
NI
LLE
0C¢
0LE
@I
188-
Lc-

IL

Gel-
-
0eeC-
9
568
£0¢
Syl-
ml

0 »
oy~
688
oL
S€9
Ie-
0ce-
HI
0¢
€S
S601
(4
S06-
Lee-
S6C-
[4
08¢
19¢
ol
@I
$98-
11-

56

ell
194
1597
.
G8L-
61¢-
(4%
[4
05§
€8¢
Goe
5-
LTCT-
o~

zee
LE

5%
@l

SIal -
1L1-
zie

166
L3
0c-

01-
69L-

o-

601

ARSI
Q@ « 56
ey (44
69L-  S98
© 9
0T
61¢ €0C-
156 085-
z 5-
¢li- S6C-
€SC « 6F
GIels 506
9 0l
I1e G601
(Y4 1€
414 0¢-
l
1% oze-
LE- €S-
N‘NNM . ggeam
6- z
Sse- 588
1L1 LTE
65§ 0TS
S Z
[4%¢ Syl-
L8 19¢-
8L~ 568
0T- @-
8GY 0¢c-
9 11
a8 cel

Vig

33
LLE

96
19¢
944

z-

65-
zie-

[-
99-

LT
6¢01
ol
G8IT
€0¢
Ly
-
Yoy~
0C¢-
S18-

8s1-
iz
6¢l

194
ve
568
ol

9L

LLE-

€0¢
L8~
vor-
ml
6
16T
€0y~
2-
ol
LT
51
!

-
1z
G18-
01-
068-
16¢-
0ce-
2-

Svl-
L8
- 586
6
G8IIT
19
081
I
0¢l
L
Svv-
o-
§6/ -
61¢-
08S-
ml
qx -
. LST -
S6
4
0LE
143
Sl
}

44
¢
019

G8L
6C¢
08¢

S0S
€0¢
Goe

Sy-
LT-
0et-
_l
081-

TT-

7%

vSS-
19¢
8rs”
ml
156~
LTe-
LSTT -
0l-
SYah
€5-
8T -«

9G1-
Ie-
S91-
NI
ov1-
oy
[4%4

0¢C
€0
¢0L

01L
(44
LST

[4%4

144
TLT

129
Ge9
!

8S1
(614
S601

€011
€8¢
149

1SS
61¢
98
ol

S98
134

LST



2.7 CSF Integer Cosine Transform
2.7.1 The CSF Fast DCT

Similar to the LLMICT, the proposed method can be applied to other fast DCT
algorithms. For example, the fast DCT algorithm proposed by Chen et al [23], In
this thesis, it is named as CSF fast DCT algorithm. Similar to LLM fast DCT
algorithm described in last section, it presents in a butterfly structure with
multiplications with irrational constants. Its data flow is shown in Figure 2-13.
Recently CSF fast DCT algorithm was proposed to be used in the Test Model under
Consideration (TMuC, [28]) of JCT-VC to support larger transforms such as 16x16
and 32x32. However, the transform proposed in [28] is an integer approximation of
the DCT such that it is not truly orthogonal. This motivates us to derive an
orthogonal ICT with fast algorithm similar to CSF one. Here we call this transform

as CSF Integer Cosine Transform (CSFICT).

Figure 2-13 The CSF fast DCT algorithm.



2.7.2 CSF Integer Cosine Transform

Similar to LLMICT described in (2.50), the CSFICT is expressed as:

& 0

0. p([CgF (2.64)

For order-16 CSFICT, Ry;” can be found with order-16 CSF fast OCT algorithm.

The odd part of the CSF fast DCT algorithm is generalized into Figure 2-14. In the

figure, a...n, a andp are real valued.

Ui =Xi

Figure 2-14 The generalized CSF fast algorithm (odd part).

It is expanded into matrix form:

I
I
X . T . 2p) df{ga-nb\ afne-gH+ b{ge+nf\, =
Log ¥ *hb)). dﬁa+mb -jihe_—n?f))-b r%%-ljhf) . E
.= i < -dfia-Ib" "~ " afie + If)-b{le-in - %;
¥ = 1 d{}a + kb* afke + ke)~b(je-kn - -
T g “~ ko, dlka-jb\ aljekibike+jf - I
™ 7 + < _-Ib{ —d[la - b\ a{le~if)y+b{ie+I\ =
¥ R .mb\ d{ma - Bb<ei{hj + me) + b{he-mf\ = F
T 5 \ * .nb\ d{napb aige+ nf)+b{ne-gf) ~ L
r (2.65)

The criteria for orthogonality are:



' and (2.66)

(2.67)

for arbitrary g..n.  They are rather tough criteria if a..f are limited to integers.
Their values are found to be large so as to provide good performance. As aresult, we
proposed to modify the CSF fast DCT algorithm so as to loosen the criteria for

orthogonality for CSFICT.

2.7.3 Modified CSF Fast DCT and MCSFICT

The odd part of CSF fast DCT algorithm is modified as shown Figure 2-15. This

modified version is generalized to the one shown in Figure 2-16.

C15

U4-381 -xi
Us=x5 ~xio

Ul:--X2 .

w =Xi =Yg
w3 =X3 -Xi2

Wo =

Figure 2-15 Modified CSF fast DCT algorithm (odd part).



UO=XQ- X\5

Figure 2-16 Generalized modified CSF fast algorithm (odd part).

The fast algorithm is expanded to matrix form similar to the one shown in (2.65) and

the criterion for orthogonality is found:

a' +d (2,68)

for any real valued e...n. (2.68) is a looser criterion with integer solution comparing
with (2.66) and (2.67), Therefore, a simpler integer transform with good coding
performance can be found easier. Here the integer transform found by the modified
CSF fast algorithm is called MCSFICT. In order to make the MCSFICT have a good

coding performance, the constants have to be:

a :b:c:d® cos(4): cos(*): cos(*): cos(*: (2,69)

and

(2.70)

Some suggested values are:



Chapter 2 - Order-16 DCT-hke Integer Transform

{abcde  {(87.41),1,973),(2218,13,3),(I 9,16,11,4),...} and (2.71)

{(2,D,52),(7°3),125),...}. (2.72)

After choosing the value of a...the remaining constants g.’,n can be found by
exhaustive search so that the highest coding performance is offered. The proposed
method of deriving ICT has ahigh flexibility such that the values ofa..n can be
chosen as abalance of complexity and performance. In this thesis, we suggest a
MCSFICT with a...n equal to (8, 7,4,1, 5,2>9-88 » 7,5,4,3,1). The even part of this

MCSFICT is taken to be ICTsOO, 96,2, 8 4, 8). Its integer kernel matrix is:

Mcsr
56 256 256 256 256 E=5) E_i Xy =EB 156 256 256 256 g 256 256"
89 367 333 279 277 » A Ty D7 14 20 277 2279 3 367 =389
60 324 216 72 - 72 575 % 1%® fg 324 2216 .72 72 26 ;1. 360
67 241 81 177 -326 k< <) _ﬁl— 282 362 326 177 81 241 2367
60 144 144 360 -360 144 — @ % 144 - 144 360 -360 ffl- 144 360
20 16 320 368 -124 2 :lB) %) Es) 388 -220 124 368 :f 16 -320
24 -72 360 216 216 =0 35 A~ TA 2 se0 216 -216 &
8 -133 359 19y 373 % — 129%9 349 —103 373 19 %? 133 =287 (2,73,
156 -256 256 256 256 =% ) % > o s 256 256 FB 56 256
139 -349 103 371 19 & 12 B 55 350 19 373 D 0 a3
e -360 72 324 2324 g2 216 360 - 72 324 324 -1 360 216
P20 -388 270 124 -368 -3 11 1_0 z’b S16 2320 368 S124 388 -220
44 - 360 360 144  -144 %) @ ﬁ Ié“’ 360 360 144 S144 % 360 144
54 -282 362 326 177 @1 A7 6/ ﬁ 241 - 81 177 326 :Q 282 - 5 4
72 -216 324 360 360 i‘ ol 7 32 206 -324 360 - 360 3%_ 216 72
57 -144 209 277 279 $H I@ D 367 333 279 277 D

3

It is analyzed together with other order-16 DCT-like integer transforms described in

this chapter in next sections.



2.8 Analysis

In the last sections, three types of order-16 DCT-like integer transforms have been
proposed and demonstrated. Together with other order-16 transforms proposed in
previous literatures, they are listed in Table 2-10. The performances of these
transforms are going to be compared. The performance to be evaluated includes the
complexity and the compressibility. The numbers of operations for 1-D fast
transform are investigated and the computation times for 2-D fast transform are
measured. Here the compressibility is in terms of transform efficiency and transform
coding gain. These transforms are compared with the sub-optimal transform, the
DCT. As actual compressibility in a coding system involves the performance of
many other coding tools as well, the evaluation of the overall compressibility will be

shown in later chapters.

Transform Descriptions

TSiCcT Simple ICT[14]

TM/ct Modified ICT [19]

TVJil] Integer Transform Proposed by Wien [16]

e Integer Transform Proposed by Lee [17]

Tdosh 1 Integer Transform Proposed by Joshi [18]

TS 11264 Proposed Simple Integer Transfoiiii

T5/ avs Proposed Simple Integer Transfoi 111

T Proposed Hybrid Integer Transfonn from  eoww
THR Proposed Hybrid Integer Transform from eoww.
T Proposed LLMICTAI

ALLM-B! Proposed LLMICT B1

AMCSE Proposed MCSFICT

Table 2-10 List of Order-16 DCT-like transforms in this thesis.



2.8.1 Complexity Analysis

Fast algorithms are implemented (see Appendix B) and their numbers of operations
are listed in Figure 2-17. It is shown that our proposed Simple Integer Transforms,
N SH1264 and “si-AVS require the least number of operations. Only 108 and 124
operations are required respectively. After them > our proposed LLMICT, TUM-BI,
TLLM-A! and  Tvcsk, follow. The numbers of operations are 140, 160 and 172
respectively. The remaining are cr,  swen, mosw, Twz2, T"", and mee in ascending

order.

The number of computation is only a theoretical figure. In order to show a more
realistic scene, these fast algorithms are tested with 1,000,000 sets of 16x16 random
pixels. The testing platform is a PC with an Intel Core 2 Duo @ 2.53GHz and 2 GB
memory working with Windows Vista. Their computation times are recorded and
listed in Table 2-12. Comparing with direct matrix multiplication, these fast
algorithms can speed up the process by 30 to 45 times. As shown in Figure 2-18, the
two proposed Simple Integer Transforms rsiavs  and TsiHzes are the two fastest
transforms. They require less than 1.4 seconds completing 1 > 000,000 2-D transform
operations. They are followed by our proposed LLMICT, rimei and TUM-AI-
Their computation times slightly increase to 1.46 seconds. Our proposed tucss  can
also complete the test in 1.52 seconds. The remaining are Tjoshi, “Lee, *mict, "wien,

T/l/2 and T"". They take more than 1.6 seconds.



Transform # of Add # of Shift Total # of Operation

TAMCT 144 30 174
"AWien 144 38 182
Tiee 148 58 206
“tJosh 120 64 184
tS1-H264 80 28 108
ASI-AVS 92 32 124
EHII 160 30 190
TII2 158 30 188
CLLM-AI 110 50 160
CLLM-BI 92 48 140
"MCSF 114 58 172

Table 2-11 Number of operations for different order-16 transform (1-D)

Number of Operations for Fast Transforms (ID)
TLee °
TWien
THI2
TJoshi
TMICT
THII
TMCSF
TLLM-AI
TLLM-BI
TSI-Avs @
TS1-H264 @ IAbditions H Shifts

60 80 100 120 140 160 180

Figure 2-17 The numbers of operations of different fast transforms.



Direct Multiplication,

Transform {DM (s Fast Algorithm, ¢ (s)  Speed-up =[] m&(
tMICT 1.732 33.71
Tmen 1.829 31.87
Tlee 1.727 33.82
“tJoshi 1.646 35.53
tS1-H264 1.355 43.37
ASI-AVS 60.126 1.304 45.11
tHIl 2.053 28.29
T2 1.999 29.08
CLLM-Al 1.460 40.18
CLLM-BI 1.460 40.18
tMCSF 1.520 38.56

able 2-12 Computation time for different order-16 transform

Time for 1,000,000 2-D Transform Operation

THII
THI2
TWien
TMICT
TLee

TJosh
TMCSF
TLLM-BI
TLLM-AI
TS1-H264
TSI-AVS

L 1.2 1.4 1.6 1.8 2 22
Computation Time (Seconds)

Figure 2-18 The computation time of different fast transforms.



2.8.2 DCT Distortion and Transform Efficiency

It is expected that atransform with basis vectors closer to the DCT basis vectors, the
better coding performance will be. Here the DCT distortion discussed in [16] will be
measured. If a transform has a lower DCT distortion, it is closer to the DCT. The

DCT distortion is defined as:

16 "I (TocrTf r)!;. (2.74)

mer 1S the order-16 DCT transform matrix and o= is the order-16 transform under
test. Ifrws isthe same asrtocs, iszero. |Ifrwe iscloserto wer, the smaller the
di is. The DCT distortions of different transforms are shown in the column of
Table 2-13. Tjosh has the lower DCT distortion. Tum-ai is not far from it. It is
followed by s, TSICT,  ALLMABI and mee These five transforms have DCT
distortions lower than 1%. /. rmrcr, tnr2 and TVIE have higher distortions of

around 16%. The distortions of rsuse  and Tsi avs are the largest (>27%).

The efficiency of a transform is generally measured by its ability to decorrelate the
pixel data. The transform efficiency is defined as:
N-\

where —_B= (2.75)

R™ is the correlation matrix of the pixel data. Assume that it is a first order
Markov process. The . »u element of R is pM~ . It is reported that the

correlation of the predicted residue {p) is ranged from 0.5 to 0.9 [19]. The



transform efficiency in this range is shown in Table 2-13. They are plotted against
the correlation in Figure 2-19. The optimal transform, KLT, can completely
decorrelate the pixel data such that 100% transform efficiency is achieved. It is
shown that the DCT has the highest transform efficiency. After that are ~LLm-a1 and
Tjoshi- They have almost the same efficiency. The remaining are t™csr,  TsicT,

ALLM-Bh T/01 & #fCT, T///?, T////, Tsi-Avs, s “H264 and Twien in descending order.

Transform _ D_CT Transform Efficiency (%)
Distortion (%) =05 fFo.6 Fo,7 Fo,s 0.9
Tocr 0.00 79.8 78.2 77.4 78.3 82.8
Trer 0.23 78.0 76,0 74.9 75.1 79,4
Tmct 16.68 72.5 70.9 70.8 72.7 78.8
Twe, 16.95 60.5 56.8 54.1 53.8 59.9
Tiee 0.80 75.7 73.4 72.0 72.6 77.2
Jashi 0.05 79.1 77.4 76,5 77.2 81.6
AS1-11264 27.52 64.3 62.6 62.6 65.1 72.8
28.26 63.8 61.7 61.1 62.9 70.1
™" 16.49 71.1 69,3 69.1 71.2 78.2
16.79 715 69.7 69.4 71.3 777
ALLM-A! 0.07 79.4 77.6 76.6 77.2 81.3
YLLM-B! 0.50 75.6 73.5 72.6 73.4 78.5
AMCSF 0,20 78.9 76.9 75.7 76.0 80.2

Table 2-13 DCT Distortion and Transform Efficiency.



Transform Efficiency

csScecnm oecoco™

Correlation p

Figure 2-19 The transform efficiency of different transforms.

2.8.3 Transform Coding Gain

Another important measure for the evaluation of the transform performance is the
transform coding gain GTC- Under the assumptions of optimum quantization and

bit allocation, GTC of an order-A"*transform is:

I K (2.76)

where oj =b{k, k) isthe variance of the fx+thtransform coefficient (recall b{k, k) in
(2.75)). The transform coding gain at differentp is shown in Table 2-14. As the GTC
are quite close to each other, their differences between the DCT are plotted in Figure
2-20. Again, ~LLm-A1 and are very close to the DCT. They are lower than the
DCT not more than 0.02dB which is negligible. Afterthem, tmcsF, it and el
follow. Both lag behind the DCT not more than 0.1dB. The remaining are Tiee,

wmicr THIU T///2 > ASI-AVS, *s1-H264 and Twien in descending order.



Transform

TDCT

T 7CT
T™MCT
Tivien
Tiee
Tjoyl/
Isi-H264
ASI-AVS
TiHI7
THI2
ALLM-AI
¥LLM-BI
EMcsr

| om—

Transform Coding Gain, Gjc (dB)

p=0.5 p=0.6 p=0.7 p=08 p=09
1.141 1.779 2.698 4.115 6.726
1.135 1.769 2.682 4.089 6.685
1.068 1.679 2.569 3.957 6.540
0.871 1.367 2.100 3.281 5,602
1.112 1.732 2.622 3.995 6.539
1.139 1.775 2.692 4.106 6.711
0.932 1.484 2.307 3.619 6.118
0.929 1.478 2.296 3.600 6.088
1.064 1.672 2.559 3.942 6.518
1.066 1.674 2.561 3.943 6.515
1.141 1.778 2.695 4.108 6.712
1.121 1.749 2.654 4.052 6.631
1.136 1.771 2.684 4.094 6.692

Table 2-14 Transform coding gain of differenttransform.

Transform Coding Gain with referenceto DCT

Correlation (7]

0.7 0.8 0.9
*TLLM-AI

*TJoshi
-TSICT
TMCSF
*TLLM-BI
*TLee
-TMICT
*THI
-TH2
*TSI-AVS
*TS1-H264

*TWien

Figure 2-20 The transform coding gains of differenttransforms (referenceto DCT).



2.8.4 Computationally Optimal Transform

In any encoding situation, including image, video and audio, rate-distortion
optimization is a common technique to minimize the distortion (or to maximize the
quality) under a given data rate. This is very well-known that the output quality
will be higher when a higher data rate is offered. Just like the relationship between
rate and distortion, the computation and the coding performance also have similar
relationship. It is very intuitive that the transform with more computation (i.e. the
more precise approximation of the DCT or KIT), the higher coding gain can be
obtained. However, which one is the computationally optimal one? The
computationally optimal transform can be found by the method similar to
rate-distortion (RD) curve. The coding gain is plotted against the number of
operations as shown in Figure 2-21. When the transform is by-passed, the gain is 1
(or 0dB). When the number of operations in the transform increases, the transform
can be implemented more precisely. As a result, it should be approaching to the
optimal transform, KLT. The coding gain will approach to that of the KLT (the
green dotted-dashed line). An operational complexity-coding-gain (CCG) curve,
which is the upper envelope of all complexity-coding gain points, can be found. It
is the red dotted line as shown. The transform has a complexity-coding gain points
closer to the CCG curve implying that it is more computationally efficient. It can
be observed that riv-ai and Tj[l —are the two most computationally optimal
transform among the tested transforms theoretically. They are very close to the
operational CCG curve with high coding gain. With the CCG curve, we can select

different transform according to the desired application. For example, we can

choose T~/ HX4 for application requires low complexity.



The proposed order-16 integer transforms and existing integer transforms are
described and tested theoretically in this chapter. In the next two chapters, these
transforms are integrated into the reference software of two popular video coding
standards, H.264/AVC and AVS in China. An overview of each standard will be
given. The integration method will be described in detail. Experiment result of the
proposed platforms will be shown. The performance of these integer transforms will

be compared.

Transform Coding Gain vs Number of Operations

Coding Gain of KLT

Coding Gam uf DCT

\Im.B1
FHH +
Operational Complexity Coding gain Curve

n
4
[}
N
0

TSI-

! TSl-avs
U
i

60 80 \'m 120 140 160 180 200 220

Number of Operations

Figure 2-21 The transform coding gain (p = 0.9) vs. the number of operation.



2.9 Conclusions

In this chapter, 3 classes of order-16 transforms are proposed. They include (i) the
Simple Integer Transform extended from existing order-8 ICT, (ii) the Hybrid Integer
Transform formed by order-8 ICT and order-8 Dyadic Weighted Walsh Transform and
(iii) the order-16 ICT derived from Relaxed General Cosine Transform (RGCT).
The third class of transforms can be further divided into two types: LLMICT and
CSFICT. These two types are very similar to the OCT. The order-32 LLMICT
are also shown. CSFICT is modified to loosen its criterion for orthogonality. This
increases the flexibility of designing high performance orthogonal transform.
Examples of these order-16 transforms are shown and investigated. The simple
integer transform is the simplest transform. The two proposed simple integer
transforms only take 110-120 operations to complete a single 1-D transform.
Experiment shows that they take around 1.3 seconds to complete 1,000,000 times
2-D transform.  The proposed LLMICT has the highest coding gain. The
waveforms of the two proposed LLMICT are very dose to the DCT, Their DCT
distortions are 0.07% and 0.50% respectively only. At the same time, they do not
require complex computation such that their computation times are only slightly
longer than that of simple integer transform. The ultimate transform should be
computationally optimal such that it is high compressibility and low computation
requirement at the same time. In order to find the computationally optimal
transform, the operational computational-gain curve is proposed. It is found that

TiiM-AJ and Tjoshi are the two most computationally optimal transforms in theory.



2.10 References

[1]

(2]

3]

(4]

[5]

(6]

[7]

[8]

(9]

[10]

[11]

(12]

W.-K. Cham, "Development of integer cosine transforms by the principle of dyadic
symmetry ' 1EE Proc. I’ vol 136, issue 4, pp. 276-282, 1989.

N. Ahmed, T. Natarajan and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans, on

Computers, vol. C-23 > issue 1 > pp. 90-93, 1974,

N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to
Speech and Video. Englewood Cliffs, NJ; Prentice-Hall, 1984.

"Draft ITU-T Recommendation and Final Draft International Standard of Joint Video
Specification:' document JVT-GO050, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC,
Mar. 2003, [Online]. Available: http://ftp3.itu.ch/avarchyjvt-site.

Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and
ISO/IEC 14496-10 AVC, Mar. 2005.

Information Technology-Advanced Coding of Audio and Video-Part 2: Video, GB/T
20090.2-2006 AVS, May 2006.

Jay Loomis and Mike Wasson, “VC-I Technical Overview" Microsoft Corporation,
Oct. 2007. [Online]

M. Wien, “Variable block-size transforms for H.264/AVC,” IEEE Trans, on CASVT >
vol. 13 » issue 7’ pp. 604-613, 2003.

Steve Gordon, Detlev Marpe and Thomas Wiegand, “Simplified Use of 8x8
Transforms — Updated Proposed and Results,'T1 document JVT-K028, March 2004
[online]. Available: http://ftp3 .itu.clVav-arch/jvt-site/2004_03_Munich/

D. Marpe, T. Wiegand and S. Gordon, “H.264/MPEG4-AVC fidelity range extensions:
tools, profiles, performance and application areas;, IEEE ICIP 2005, vol. 1, pp 1-
593-596, 2005.

T. Sikora and B. Makai, “Shape-adaptive DCT for generic coding of video, “ IEEE
Trans on CASVT, vol. 5, issue |,pp 59-62, 1995.

Yan Ye and M. Karczewicz, "'Improved H.264 intra coding based on bi-directional
intra prediction, directional transform, and adaptive coefficient scanning,” 15th IEEE
ICIP, pp 2116-2119, 2008.


http://ftp3.itu.ch/avarchyjvt-site
http://ftp3

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Y. Zhou, L. Zhang and S. W. Ma, “Rate-Distortion Optimized Transform ; ' Document
AVS-M2676, March 2010. [Chinese]

W. K. Cham and Y. T. Chan, “An order-16 integer cosine transform,” IEEE Trans.
Signal Process., vol. 39, no. 5’ pp. 1205-1208, May 1991.

S. N. Koh, S. J. Huang and H. K. Tang, "Development of order-16 integer
transforms.  Signal Processing, Vol. 24 > Issue 3, pp. 283-289, Sept 1991.

Mathias Wien and Shijun Sun, “ICT Comparison for Adaptive Block  Transforms:
document VCEG-L12, Jan., 2001. [Online] Available:
http://wftp3 .itu,int/av-arch/video-site/0101 —Eib

Bumshik Lee and Munchurl Kim, "v4 16716 transform kernel with quantization for
(ultra) high definition video coding:, document VCEG-AK13, April 2009. [Online]
Available: http://wftp3.itu.int/av-arch/video-site/0904_Yok/

R. Joshi, Y. Reznik, and M. Karczewicz, “Simplified Transforms for Extended Block

Sizes © ' document VCEG-AL30, July 2009. [Online]
Avaliable: http://wftp3.itu.int/av-arch/video-site/0906_LG/

Jie Dong; King Ngi Ngan; Chi-Keung Fong; Wai-Kuen Cham, "2-D Order-16 Integer
Transforms for HD Video Coding,” IEEE Trans, on CASVT, vol, 19, Issue: 10, pp.
1462- 1474, Oct. 20009.

Chi-Keung Fong and Wai-Kuen Cham, “Simple Order-16 Integer Transform for Video
Coding;, to be published in ICIP 2010.

X. Mao, Y. Wang, Y. He, W.K. Cham, C.K. Fong, J. Dong, K.N. Ngan, H. M. Wong, L.
Wang, Y. Huo, T. Pun, C. Cheng, “AVS Adaptive Block-size Transform ; ' AVS Video
Proposal AVS-M2372, Xiamen, June 2008.

W. K. Cham and R. J, Clarke, “Dyadic Symmetry and Walsh matrices,” |EE Proc.
Commun., Radar, and Signal Process., vol. 134, pp. 141 - 144, 1987.

W. H. Chen, C. H. Smith, and S. C_Fralick, “A Fast Computational Algorithm for the
Discrete Cosine Transform,” IEEE Trans, on Communication, vol, COM-25, no. 9’
pp.1004-1009, Sep. 1977,

B. G. Lee, "A New Algorithm to Compute the Discrete Cosine Transform," IEEE Trans,
on Acoust., Speech, Signal Processing, vol ASSP-32, no. 6, pp.]243-1245, Dec. 1984.


http://wftp3
http://wftp3.itu.int/av-arch/video-site/0904_Yok/
http://wftp3.itu.int/av-arch/video-site/0906_LG/

[25]

[26]

[27]

[28]

H. S Hou, "A Fast Recursive Algorithm For Computing the Discrete Cosine
Transform™ |EEE Trans on Acoust, Speech, Signal Processing, vol ASSP-35, No.
10, pp 1455-1461, Oct 1987

Loeffler C., Ligtenberg A., Moschytz C.S., “Practical Fast ID DCT Algorithm with
Eleven Multiplications ; ' Proc ICASSP, pp. 988-991, 1989.

C, W. Kok, "Fast Algorithm for Computing Discrete Cosine Transform,” IEEE Trans
on Signal Process., vol. 45, no- 3, pp 757-760, Mar. 1997,

“Suggestion for a Test Model," document JCTVC-A033, April 2010-



Chapter 3 ABT in H.264/AVC

3.1 Overview of H.264/AVC

H.264/AVC (also called H.264/MPEG-4 Part 10) [1][2] is a video coding standard
jointly developed by the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG). These two parties formed the
Joint Video Team (JVT) and developed this standard. This standard targets in the
applications including video storage, streaming video on web, digital video broadcast
and real-time video-conferencing. It replaces the old video coding standard MPEG-2.
Many factors, such as new algorithms, the dramatic rise of the processor speed and the
fall of the memory cost during the last decade, break the development constraints in
the past. Computationally complex but functionally efficient algorithms are now
feasible. H.264/AVC adopted many advanced algorithms into its block-based hybrid

video coding structure to improve its coding performance. As a result, it is reported

that H.264/AVC reduces the bit rate by half at the same objective quality comparing



with MPEG-2.

The JVT extended the H.264/AVC standard and named these extensions as Fidelity
Range Extensions (FRExt) [3][4]. They improve the quality of video coding. It
supports higher sample bit depth precision, higher color sub-sampling rates (such as
4:2:2 and 4:4:4), addition of 8x8 ICT and many other new features. The drafting
work on these extensions was completed in 2004. Besides FRExt, other main
features such as Scalable Video Coding (SVC, completed in 2007) [5]-[8] and
Multiview Video Coding (MVC, completed in 2009) [9]-[II] are also added to the
standard. However, these two features are not in the scope of this thesis. Their

detail will not be discussed here.

In Figure 3-1 and Figure 3-2, the diagrams of the encoder and the decoder of
H.264/AVC are shown respectively. It is a typical hybrid video coding structure.
The spatial, temporal and statistical redundancies in the video sequence are removed
in different stages in the encoder. The intra prediction and integer transform remove
the spatial redundancies. The motion estimation with multiple reference frames
removes the temporal redundancies. The entropy coders (Context-Adaptive Variable
Length Coder, CAVLC and Context-based Adaptive Binary Arithmetic Coder,
CABAC) remove the statistical redundancies. To reduce the blocking distortion,
Loop-filter is applied to every decoded macroblock. This does not only improve the
subjective visual quality of the reconstructed picture, but also improves the quality of

the reference frames. As aresult, the coding performance is also improved.



Inpul Frame Quantization - fc- bntropv Coder

| Motion
Estimation |

MVP

+

I - Motion .
Compensation

Intra
Predication

1 Filter Inverse
Transform

Figure 3-1 Data flow of H.264/AVC encoder.

MV
Motion
Compensation

Reconstructed

- t1 I 1 - 1

Inverse i Entropy

Transton. || Rescahng

)
Figure 3-2 Data flow of H.264/AVC decoder.

Output

-Input Bitstream

V.

In the standard, there are a number of profiles and levels which specify well-defined

sets of syntax constraints for encoders and decoder processing capabilities for

decoders. Profiles specify the syntax features while levels specify the parameters of

these feature. There are a number of profiles defined and they target specific

application areas. Some of these profiles are:

« Baseline Profile: Low-cost application such as video-conferencing and mobile

applications.
e Main Profile: Standard-Definition (SD) TV broadcast.
» Extended Profile: Streaming video.

« High Profile: Video broadcast and storage, particularly for HDTV.

» High 10 Profile: Based on High Profile, it support up to 10 bit per sample.

e High 4:2:2 Profile: Based on High 10 Profile, it support 4:2:2: chroma

sub-sampling format.



In this thesis, we focus on the High Profile which is particularly for HDTV.
Depending on the application, different features are defined in different profiles.
These features are commonly called coding tools. Numerous novel coding tools are
adopted in H.264/AVC. Here are some of the typical coding tools defined in High

Profile:

« Spatial Intra prediction: A MB can be coded as one 16x16 > four 8x8 or sixteen
4x4 sub-blocks. The pixel values of these blocks are predicted by their left and
upper blocks (pixel Ato M for 4x4 block and pixel Ato Z for 8x8 block in Figure 3-3)
There are 9 prediction modes (mode 0 to mode 8 in Figure 3-3) for 4x4 and 8x8

blocks while there are 4 prediction modes (mode 0 to mode 3 in Figure 3-4) for

16x16 block.
2: DC z A B C D E F G H I|[J|K|L|M|NJO]|P]
Q
R
M A B Cc D
; ia T 8x8
X
u Block
< Blpdg - v
o1 w
X

Figure 3-3 Nine intra prediction modes for 4x4 and 8x8 blocks.

Mode 0: Vertical Mode 1-Horizontal Mode 2: DC Mode 3" Plane

Figure 3-4 The intra prediction modes for 16x16 block.



e Multiple reference frames: A maximum of 16 reference frames is supported.
With more reference frames, more accurate prediction can be achieved. The

predicted residue is reduced and hence the bit rate.

* Variable block-size motion compensation: block-based motion compensation
supports the block size from 4x4 up to 16x16. This allows a more precise

segmentation of moving regions than fixed block-size motion compensation.

Figure 3-5 The variable block-size motion compensation partitions.

* Inter-prediction with sub-pixel accuracy: Motion vectors may not fall exactly
on the integer pixel grid. This is achieved by a 6-tap interpolation filter. A balance
between the accuracy and the complexity, motion estimation in sub-pixel accuracy up
to quarter pixel is supported in H.264/AVC. This reduces predicted residue and

hence the bit rate.

* Order-4 and Order-8 ICT: Predicted residues are transform with 4x4 ICT
which produces less ringing artifacts in prior codec. In FRExt, 8x8 ICT is also

_dlowed which provides a higher coding efficiency than 4x4 ICT in smooth regions.
— 35



The adaptive selection between the 4x4 and the 8x8 ICT improves the coding

performance significantly.

* Logarithmic step size quantization control: This makes the rate management

easier.

e Loop filtering: It is an in-loop low-pass filter which reduces the blocking
artifacts common to block-based image compression techniques. It improves not

only the visual quality but also the compression efficiency.

« CABAC: Itis avery efficient entropy coder with better compression than most

other encoding algorithms.

e CAVLC: It is a lower-complexity entropy coder than CABAC but with high

coding efficiency also.

After a short review of H.264/AVC standard, the integration of order-16 transform to
this standard will begin in the next section. From Section 3.2 to 3.6, our proposed
implementation will be described. In Section 3.7, experimental result and analysis

will be shown. Conclusions will be drawn in Section 3.8.



3.2 Transforms

In original standard, H.264/AVC specified an order-4 ICT for transforming the
predicted residue. An order-8 ICT is added in FRExt. The integer kernel of order-4

and order-8 specified are:

11 1 1
W2 1-1-2 and
E 1-1-1 1 (3.1
1-2 2 -1
fi n A S 7i S
12 10 6 3 4 -10 -12
8 4 -4 -8 -4 4 8
10 -3 -12 -6 12 3 .10
ER-1 s L s s L, ¢ (32)

6 -12 3 10 -10 -3 12 .

4 -8 8 -4 -4 8 -3 4

3 -6 10 -12 12 -10 6 -3
Here, the order-16 transforms described in the last chapter are integrated into the
reference software of H.264/AVC. Together with order-4 and order-8 transform, an
Arbitrary Block-size Transform (ABT) platform is formed. Only asingle transform
is selected in each MB in H.264/AVC. Different transforms can be used in different
MB. It is decided in MB level. The proposed ABT platform keeps this remain
unchanged. Either order-4, order-8 or order-16 transform is used in a single MB.

An example is shown in Figure 3-6.



(a) Without 16x16 transform (b) With 16x16 transform
Figure 3-6 Arbitrary Block-size Transform in H.264/AVC.

The transforms being integrated

Simple integer transform, Tsi-h264,

Simple integer transform, §SI-4VS,

Modified ICT, MICT,

Hybrid Integer Transform, twi1,

Hybrid Integer Transform, Thi2’

Order-16 transform proposed by Wien, TVE)
Order-16 transform proposed by Lee et aL, Tiee,
Order-16 transform proposed by Joshi et al., Tfji/»’
LLMICTA-10, Tuwmal

LLMICT B-1, rume  and

Modified CSFICT (MCSFICT), Tmcsr-

They are tested individually in Section 3.7.



3.3 Quantization and Rescaling

The transform coefficients are quantized and rescaled before inverse transform.
Since the norms of the integer transform basis vectors may not be the same. A scaling
process is required to normalize the transform coefficients. In usual manner, this
scaling process is embedded into the quantization and rescaling process. In this
section, the method of quantization and rescaling with proposed transform in H.264

will be discussed.

Figure 3-7 Data flow of quantization and rescaling in H.264/AVC.

3.3.1 Quantization

For simplicity, let us consider this process starting from DCT. Assume an nxn data
patch X is transform with a DCT kernel wer  into an nw  coefficient patch C.  This

process can be written as:

F —T YT
* DCT _ 'DCT " *DCT (33)

When quantization with step size Qstep and offset Qqffset is applied to the coefficients,

the coefficient (ij) becomes:



OB T, e (3.4)

Replace mctr by an ICT T = K E and recall that the 2-D scaling matrix S can

replace the 1-D scaling matrix K described in last chapter. (3.4) becomes:

cr =(EXES$S =GOS. (3.5)
Note that O is the element-to-element multiplication.  Applying uniform

quantization to integer transform coefficients with step size Qstep and rounding offset

Qoffset-

Fq @, /)- sig{F,.r (/,j)) X ~ ~ +

(G, f)x

+  Qoffset
Qs ! I (3.6)
PO, j) X ) X 241,
sign{G{iJ)).» 1 w IR 4.1
= “ J) XL j) X Quant(©Q_ s “j) + ) Obits.

Quant is an integer approximation the quantization matrix:

Quant{Qstep\ i,J) =r o u n d . 2"
nsfop (3.7)

In H.264, Qstep is defined as:

0 =2 6 (3.8)

where QP is the quantization parameter, integers from 0 to 51. Quant becomes:



QuantiQstep-j) = Quant{QP- i, j)
=round S{i,J)x2 Qbns-*

{QP%(>) ot [
~round) Ao QP (3.9)

— QM{QP%6-ij) » QP
, 6 0

Here QM is an integer matrix and the quantization can be implemented with integer

only. It has aperiod of 6 such that:

QM{QP +6;1i,J) =QM (QP;1i,]j). @JID

In H.264, integer up to 64-bit accuracy is allowed. Assume that the input data are

represented in b bits. The largest magnitude of G(/, J) after 2-D transform is
27x256*256 = 2 42 . 1 n High Profile, b is only 9. Integer with 64-bit accuracy is

very sufficient to represent G without any fixed point error or overflow.

3.3.2 Rescaling

Similar to forward transform, a scaling process is required in inverse transform
process. This scaling process is usually integrated into the rescaling process (also
known as dequantization). The quantized coefficients F* in the last section are

rescaled.

It can be written as:



roundiiS(i,j)xQ.#
G, J 0 x noan (3.12)
« {fq (z,j) Xdequant{Qstep\ ij))» DQbits

dequantQ can be expressed in terms of QP:

ilequantiQstep-/,  j) =round{S{i, j)x X 2 H[Iff

QP-4
=r0und{S{i ,j)XZ“‘A y2 DObits
(gP%6)-4
wround{S{i, y)x2 ~ X iDQbits QP (3.13)

6
= DQM(QP%6',i3)  « QP
6

Here DQM is the rescaling matrix in integer. F,- becomes

« QGP »(DQbits— W)

(3.14)
Therefore, the reconstructed data patch Y is defined as:
Y= E"F E >>10
f.
'[F(id)x DOM{QPUI)<< ¥ E »10 (3.15)

Here Qbits and DQbits are transform dependent.



3.3.3 Example

Let us take an example to illustrate the quantization and the rescaling process in the

proposed H.264/AVC platform.

Qbits = 31 and DQbits = 29) and QP = 28.

defined as:

QM{1%%6\iJ) around

2048
2135
2204
2242
2151
2242
2204

QM(28%6)

1
2204
2135

S{id)x2

2135
2225
2298
2337
2242
2337
229%

2298
2225

2204
2298
2372
2413
2315
2413
2372

2372
2298

Suppose the LLMICT Al is used (E = “lIm-ai,

2242
2337
2413
2455
2356
2455
2455

2413
2337

Consider an intra-predicted block X:

2 1 9 »
3 0 B 2
o 2
7 10 2

1 3% 304
2 0 2 3
o o0 5 8

6 -1 —4 -0
2 o 1

LAE% 1 2
3 3 1 4

1 0o 1 =2

1 2 2 =

1 71 1 3

3 2 1 3

1 2 3 1

WO WRHFNI-HQ+-

53
42
24
-1

NOOO~R+H=ARWNOO

2151
2242
2315
2356
2260
2356
2315

2315
2242

NSRS}
-3

0 = 9 -u-u-m«::-u:s-uHo[«:

2242
2337
2413
2455
2356
2455
2413

2413
2337

whrowhroduronoN&d

2204 -« 2204
2298 —“2298
2372 2372
2413 2413
2315 2315
2413 2413
2372 2372
1 !
2372 —-2372
2208 7« 2298
0 20 5l
37 2 40
2D 2 21
2 6 1
2 2 0
4 4 4
4 2 5
4 2 8
-1 2 4
_1 1 3
2 _4 10
5 1 3
3 6 1
4 3
5 3 9
3 1 3

Using (3.6), the quantized transform coefficients F. are:

2135'
2225
2298
2337
2242
2337
2298

2298
2225

n

o)

NOHHONRARIMOAD

57
44
29
11

3
4
3

According to (3.9), QM(QP%6) is

(3.16)

55
45
30

—
W

w W= 0O A) WHOWQOH+

%o

= N B W
N o0 NN

NwORN~OOORD N



According to (3.

),DQM is

DQM{QP%6-iJ)

roimd(S(i,j)x2
(1512534
|534 556
551 574
561 584
1 538 561
561 584

551 574
,534 556

551
574
593
603
579
603

593
574

@

561
584
603
614
589
614

603
584

538
561
579
589
565
589

579
561

561
584
603
514
589
614

603
584

Using (3.14) and (3.15), the reconstructed pixels, Y,

-9
-3
28
9
-5
-1
n
-26
-97
6
-9
-1
-5
0

2

0

-13
-92

6
45
21
12
-5

8

15

WO WN 0 O Ul

24
52
-19
10
1
-3
-17
2

14

60
40
38
-1
3
9
7
-19
10
-7
-4
2
-4
2
-10

n

oON~NOOIOoO1TO1—= O

1
[N

57 B2
50 47
21 26
9 -7
) 0
4 -1
-6 -3
-7 -7
5 -0
10 -8
1 3
-8 -4
1 1
4 1
3 13
2 2

50
36
17

-16

-1

NawWrRrooood P

—_

"e 551
e 574
593
603
579
603
;593
“ 574
54 57
37 47
15 16
3 7
-3 -3
2 9
10 21
10 9
-1 3
7 -7
25 -12
16 -1
" 3
11 3
8 6
0 -12

534
556
574
584
561
584

574
556

rBho—-G> o

WO N w

]
w

(3.17)
64 48
57 42
42 43
5 14
0 -11
3 -19
3 -36
2 -4
-5 0
7 1
2 1
-1 18
16 -5
-9 1
1 1
9 4



3.4 Syntax Structure

3,4.1 New Syntax Elements

In the proposed platform, two new syntax elements, I'6Flag and CBP16, are
introduced. 116Flag is a flag indicating the transform size used in the current MB.
The bit patterns of 116Flag are as shown in Table 3-1. Notice that 16x8 and 8x16

transforms are not used in intra-block.

One may suggest that the transform size sticks to the ME partition size. This
saves the overhead indicating the transform size. However, we found that the
scheme has a lower coding performance than the one with overhead. This is simply
because the best transform cannot be selected when the transform size links to the

ME partition size.

J]6Flag
Transform Size Intra-block Inter-block
4x4 or 8x8 0 0
16x16 ! 10
16x8 110
8x16 1

Table 3-1 Bit patterns for ll6flag
Another new syntax element is CBP16. Itis similar to CBP in existing standard but
it is specific for larger transform size. It indicates the present of non-zero luma
transform coefficients in the sub-blocks when larger transform is used. If 16x16

transform is used, its length is 1 bit. If 16x8 or 8x16 transform is used, it is 2-bit long.



3.4.2 Intra Block Syntax Structure

When order-16 transform is introduced, the syntax structure has to be changed. The
change of syntax structure in intra block is relatively simpler. In H.264/AVC, 4x4 »
8x8 and 16x16 Intra predications are allowed. MB Type indicates which predication
is used as shown in Figure 3-8. Since the transform size must not be bigger than the
intra prediction partition size, 16x16 transform is allowed only when 16x16 intra
prediction is used. Originally 4x4 transform is used when the MB is 16x16 intra
predicted. To distinguish the use of 4x4 and 16x16 transform, U6flag is added to the
bit stream. When this flag is “1”, 16x16 transform is used. Otherwise, 4x4

transform is used. Other predictions remain the same as the standard.

4x4 Prediction 4x4 Transform
Modes Coefficients

8x8 Transform
Coefficients

116Flag = 0 _ 4x4 Transform
Coefficients

~al CBPL6 16x16 T'ral\nsform
116Flag = 1 Coefficients

Figure 3-8 Syntax structure for intra-block

3.4.3 Inter Block Syntax Structure

The inter block syntax is slightly more complex. 16x16, 16x8 and 8x16 are
available when larger inter-predicted partition is used. When the MB is predicted in

direct mode or the prediction partition size is 16x16, 16x8 or 8x16,116flag is inserted



into the bit stream to indicate the transform size as shown in Figure 3-9. The
mapping between I16flag and the transform size is shown in Table 3-1. If larger

transform size is not used, it follows the original decoding routine with smaller

transform size.

P 4x4 Transform
T

Coefficients
MB Type = {8x8 o Msmaller)
Transform
w
) 8x8 Transform
Skip Flag ~ MB Type MVD e8P Coefficients

MB Type = {16x16, 116Flag " [ —

16x8, 8x16 or direct} 16x16 Transform

otherwise | Coefficients

Figure 3-9 Syntax structure for inter-block



3.5 Entropy Coding

Binary Update
(start A'Pi—Binanzation' nA Modeling . ~ Arithmetic Context
1 Coding | el

Figure 3-10 The data flow of CAB AC

The transform coefficients and some other syntax elements are coded with an entropy
coder. The entropy coding in our implementation is Context-Adaptive Binary
Arithmetic Coding (CABAC). This is because it has a higher efficiency than CAVLC.
In CABAC, different syntax elements reference different context model. Each
context model contains the most probable symbol (MPS) of this context and the
probability (or the state) of this MPS, The flow of a CABAC coder is shown in
Figure 3-10. In binarization, the input syntax elements are first changed into binary
symbols, ‘0’ or * 1’ These binary symbols are called "bins". These bins are mapped
to different context models by context indexing. The binary arithmetic coding (BAC)
engine in CABAC obtains the MPS and the probability of the context model to encode
the bin. Bit stream will be generated in this coding engine according to the status of
the context model (MPS and its probability) and the incoming bins. The status of the
corresponding context model will be updated after encoding every bin. This ensures
the status of the context model that follows the statistics of the encoded symbols. As
a result, this coder is adaptive to the context. In our impleinentation, the coding
engine is the one specified in H.264/AVC, The context model indexing for newly

introduced syntax elements, such as I116flag and CBP16, are added.



As stated in the last section, 116flag is a flag indicating the use of larger transform.
The simplest way is to use a single context model. This will capture the global
statistics of this flag within the same frame. However, this fails to capture its local
statistics. It is expected that MB coded with similar transform size are located in
group closely. Single context model is not able to react quickly when this flag
changes. As aresult, the context index of the 116flag is according to the neighboring
MB in our proposed platform. Two previously coded MB, the upper MB and the left
MB, are referenced. The indexing method is shown in Table 3-2. The index will be
assigned according to the value of 116flag of the neighbor. Three context models are
required. This will not increase the complexity significantly but allow the context
modeling to capture the local and also the global statistics of 116flag.  Although it is
not too much, a bit rate reduction of less than 1% is observed with this context

modeling.

The context model of the flag CBP16, which indicates the presence of non-zero
order-16 transform coefficients, is also indexed with similar method as 116flag. The
index depends on the presence of non-zero coefficient (of any transform size) in the

neighboring MBs. The indexing of CBP16 is shown in Table 3-3.

Current block 116flag context lldflag in Upper MB
model index. 1 0

1 2 1

0 1 0
TaMe 3-2 Context model index of/7 6flag

I116flag in Left MB



Current block cer 16 context Non-zero coefficients in Upper MB

model index Present Absent
Non-zero coefficients Present 3 1

Table 3-3 Context model index of CBP16.

3.6 Rate-Distortion Optimization

Rate-Distortion Optimization (RDO) is always enabled in our experiment. The
Lagrangian RD Optimizer adopted in the H.264/AVC reference software is used. All
possible combinations (prediction modes and transform sizes) of each MB are tested.
For each combination, the bit rate (R) and the distortion (D) in sum of squared

different (SSD) are measured. The RD cost (J) of each combination is calculated as:
J =D +AR (3.18)

A is the lagrangian multiplier which depends on the QP value. The combination

offering the smallest RD cost is chosen.



3.7 Experiment and Analysis

The analysis here is on the H,264/AVC reference software JM16.2 [12]. Those
order-16 transforms mentioned in Section 3.2 are integrated into the software platform.
It is implemented as the described in previous sections. The testing conditions are
based those stated in VCEG-AJIO [13]. Detailed testing conditions are listed in
Table 3-4. The resolutions of the video sequences in our test are ranged from CIF
(352x288) to HD (1920x1080). We use the hierarchical-B prediction structure
which provides the best coding performance among different prediction structures.
The analysis will be in several aspects. First, the objective RD performance will be
analyzed. The BD-bit rate and the BD-PSNR mentioned in [14] are computed and
compared (See Chapter 1 for more detail). RD curves will also be shown. Second,
subjective evaluation will be given. The decoded pictures will be shown. These
pictures will demonstrate the differences among different transforms. Third, the
usage of order-16 transform will be investigated. The conditions that order-16
transform is chosen will be discussed. Lastly, the conditions that may lower the

performance of the ABT with order-16 transform will be pointed out.



Platform

Anchor

Prediction Structure

Hierarchical Coding Settings

Intra Period

Frame encoded

Number of Reference Frames
Entropy Coding
Transfoiiii8x8Mode

Scaling Matrix Present

Rate Control

RDO

RDOQ

Loop Filter

Subpel Motion Estimation

Motion Estimation Search Range

Motion Estimation Method
QP = {QPJ, QP_P, QP_B}

JM16.2

JM16.2 (Order-8 and -4 transform
enabled. No order-16 transform)

Hierarchical B Structure with 7 B-frames
IbBbBbBbP...

HierarchicalCoding = 2,
ReferenceRecoder ~ 1,
PocMemoryManagement = 1,
HierarchyLevelQPEnable =1

Only the first frame is intra predicted

More than 120 frames:

GIF, WQVGA or WVGA: 297 frames,
720p; 145 frames,

1080p 121 frames.

4

CABAC

Enable

Disable

Disable

Enable

Disable

Enable

1/4 pixel enabled
64

Enhanced Predictive Zonal Search

{22, 23 » 24},
{27, 28, 29},
(32533 » 34},
{37,38,39}

Table 3-4 Testing conditions in H.264/AVC platform



3-7.1 RD analysis (Objective Evaluation)

The BD bit rate and the equivalent BD PSNR are shown in Table 3-5 and Table 3-6
respectively. It is shown that the addition of order-16 transform significantly
improves the coding performance. In all the tested cases, the bit rate reductions are
observed. From Table 3-5, we can see that there is a slowly increasing trend in the
average bit rate reduction when the resolution of the video frame is increasing. Of
course, the bit rate reduction depends on the nature of the individual video sequence
more rather than the frame resolution. This will be discussed in later section in this
chapter. Itis also observed that a maximum of 12.11% bit rate reduction (equivalent
to 0.47 dB) is obtained when the order-16 transform Tjoshi is used to encode 1080p
sequence "Sunflower"”. In [15], it is reported that this transform offers a bit rate
reduction around 36% together with Mode-Dependent Directional Transform (MDDT)
[16] and bigger motion partition up to 32x32. In our experiment, purely 16x16

transform is added. MDDT and the bigger partition size are not included.

On average, Tjoshi gives the largest gain. An overall bit rate reduction of 6.21%
(0.24 dB equivalent) is observed in all test sequences. Not very far, it is followed by
LLMICT-AI, MCSFICT and LLMICT-BI which are only lagged behind by 0.03%,
0.08% and 0.24% respectively. The differences are so small but the three proposed
transforms are simpler. They save around 10% computation time with respect to
T/oshi shown in last chapter. T”eeis lagged by 0.51% (or 0.02 dB equivalent) but it is
requires more computation than woss.  MICT, rn1i and T"/2 are developed with the
same method. Their performances are very similar. Their bit rate reductions are

5.65%, 5.51% and 5.56% respectively. Tmen also shows a bit rate reduction of 5.05%.



Jsi-H264 and T”/.”ks are the two simplest transforms in our test. Lower coding
performance is expected. However, they also offer average bit rate reductions of
4.83% and 4.16% respectively. They are lagged behind by Tjoshi by 1.38% and 2.05%.

But they save over 20% computation time comparing with

From the RD-curves shown in Figure 3-11 and Figure 3-12, the coding performance
differences among different transforms are small. It is not easy to distinguish.
However, the figures clearly show that the tested RD curves are almost parallel with
the anchor RD curve. This implies that the gain is not only obtained at the low bit

rates but throughout the tested QP range.



16'9-
eev-
80°¢-
LT 6"
16 1-
88°6-
L9
05°9-
A
G8'L-
09'G-
6€°G-
9¢'v-
¢1'9-
L6°G-
G6°G-
0S'v-

¢6'9-
v9'v-
€6'¢-
T¢6-
96°L-
98'6-
8¢'9-
9¢€'9-
472k
18-
9y'q-
60°G-
60°¢-
0¢'9-
11°9-
€1°9-
¥6°¢-

| ¢W1n

68'9-
ey
80°¢-
G¢'6-
66 L-
16°6-
6¢'9-
0v'9-
XA
06°L-
69°G-
16°6-
0€v-
6¢'9-
9
86°G-
8L Y-

TV—NWTT )

€0°L-
68 -
LO°E-
2’6"
¢0°8-
96°6-
v 9-
8L‘9-
£e’s-
L67L-
LG°G-
S0'G-
60°€-
8G'G-
66'G-
€1°9-
Sv'v-

IHSOCv..

cL9-
9C'v-
LL°C-
676"
€L'l-
L9°6-
9T'9-
€¢9-
ST
vLL-
ov'G-
T€6-
€0'v-
v€°'9-
L0°9-
98'G-
S¢'v-

EERIE

S0°'9-
c9°¢t-
ere
18°8-
S0°L-
€9'8-
6.°G-
1T°9-
90°G-
1T'L-
881~
¢0'G-
ov'e-
0€9-
08'G-
v.'G-
88°¢-

NIIMv

LS'9-
8G'v-
LS¢C-
L0°6-
8v'.-
€T6-
8T'9-
G99'0-
6617~
19°L-
9v'G-
€8'v-
€9°¢-
cr'9-
v.'S-
L6°G-
L9°¢E-
UL

16°9-
vev-
¢s'e
80°6-
Ev'L-
8T'6-
1T°9-
1€9-
80°G-
89°.,-
8Y'G-
LL'Y-
TL¢C-
c09-
vv'S-
16°G-
9/°¢-

1HL

9v'9-
98°¢-
Ga'¢-
0T'6-
LS°[-
0¢'6-
LT°9-
LV'9-
1T°6-
09°'L-
6v°G-
61'G-
g8'¢t-
1¢°9-
009-
69°'G-
ey
121N

L8V~
¢6°¢€-
68'T-
v6'v-
¢e's-
0v'8-
8L'v-
cv'9-
16'v-
Sy'v-
ge'e-
98°¢-
cve-
Eve-
EVe-
cve-
19°¢-

SAV-ISvL

TS
681"
612
.
80°L-
80°9-
9g°s-
19°G-
05°€-
LT
yTg-
88'f-
eee-
02'9-
65'S-
69'S-
19°€-

¥9ZH-1Sv

abelany
COPOSIqON
S3SI0H9JeY
aUadgAuRd
IreNOg
ssed|leqiexsed
abelony
9SeAIIMO|H
alenbsdOg
alqangbuimolg
ssed|[eqiayseq
abelany
aladwis |

slied

SMaN

9[1q0N

uewalo

0o

<n
00



T0°L-
AN
8-
9€'9-
9G'8-
€LL-
68°L-
6T'TT-
96'G-
§0°6G-
0c'v-
LT°G-
LL* G-
G6'€-
¢8'L-
ST'v-

4204

I

06'9-
06°€-
TLv-
0.°G-
LG8~
ce L
VS L-
0L'TT-
¢T'9-
0L'v-
0c'v-
L8V~
T9'v-
80V~
T169°9-
Yy v-

cey-

(% ‘e1ea1g-ag) wioyie|d DAY/Y9Z H Ul SWIOFSULI) JUSIDIFIP JO S}NSIY [BIudWLIAdXT §-€ d[qeL

8T'L-
G8'€-
867~
0.°9-
LL'8-
GT1°'8-
[AVA
8¢C'TT1-
00'9-
€6°1-
0€'v-
AN
0v'S-
26'¢e-
G9'/-
6T V-

08°¢-

€V L-
98 ¢-
60°6-
01" L-
78°8-
9¢°8-
T~
T1°21-
G€'9-
567
0y v-
LTS~
AR
8T ¥-
649
09°v-

1€ V-

¢0'9-
¢6°¢-
Tv'v-
L0V
G6'L-
60°9-
9v'L-
1876
6€°G-
69°v-
¢6°€-
89'v-
L8V~
¥8'¢-
€81
9L°¢-

16°€-

€6'v-
¢0'¢-
vL'€-
€e'T-
98'9-
ST'v-
LY'9-
0v'0T-
Sy'v-
S0'v-
I48%
TL°€-
6E'v-
e
6T L-
90°¢-

9T'€-

¢e'9-
0c¢'¢-
6T ¥-
L6°€-
96°L-
ST'9-
LT L-
8G'TT-
06°S-
8¢'v-
v6°€-
18°¢-
ET'v-
69°€-
89'9-
6L°€-

S6°€-

LT°9-
G0°¢-
1Ty
T0'V-
81'8-
9¢'9-
A
06°0T-
Tv'G-
cey-
0T v-
08°¢-
cEV-
09°¢-
6€'9-
GG°€-

18°¢€-

LT°9-
0e'€-
€EV-
T¢'v-
G8'.L-
T7'9-
€91
0v'0T-
9¢'G-
6 v-
0¢'v-
18°¢€-
99°v-
A
S6°L-
6¢°€-

68°€-

98-
80°¢-
T€€-
6G°T-
88°G-
cLy-
6€'9-
€€°6-
9G¥~
Ev€-
69°€-
v'¢-
€8°€-
vee-
8¢'L-
9G'¢-

T10°¢-

8T1°G-
09'¢-
vve-
¢8'T-
0T'L-
06'v-
¢8'9-
¢0°0T-
TL'v-
€8°¢-
65°€-
0ce-
¥8°€-
6C'€-
9€'L-
vee-

0€e-

abelany
InoHysny
cuonels
pagisnly
uel1sapad
Touowrny
anliqglleqlayseg
lamojjuns
snjoen
abelany
1e1S91nys
uniyled
uaney
WOIN

Mal)

Ao
diysbig

<«2oX o

Lo



8¢°0
€T'0
Z1°0
Iv°0
ve o
Iy0
LC'0
€€0
8T'0
T€0
9¢'0
G20
LT°0
ce0
T€0
9¢'0
0¢'0

4SoN 1

8¢°0

ST'0

170

0v-0

e o

Iv'0

L2°0

¢€0

61°0

€0

9¢'0

v¢'o

¢€0
¢e0
LT 0
LT°0

1g-W71 1

8¢°0

Ivo
L2'0
¢e0
6170
1€°0
LT 0
9¢'0
LT°0
€€ 0
€€°0
9¢'0
1¢°0

iY-WTTva

62°0
ST'0
Z1°0
ov'0
¥€0
Ty o
870
vE€0
610
TE0
LT 0

ve'o

6¢'0
ce0
LT 0
6T°0

ysory.

LC0
€T'0
170
0’0
€e0
0v°0
L2'0
T1€°0
61°0
T€°0
9¢°0
G20
91°0
€e’0
[45N0)
9¢'0
6T°0

9'Z]

S¢'0

¢T'0
600

9€°0 «

G¢'0

1¢€°0

810

8¢°0

€20

20

€e’0

T€°0

G20

LT°0

120
Y10
0T°0

0v'0

8¢°0
LC'0
€€0
8T°0
0€'0
9¢'0

€20

ce0
0€'0
9¢'0
9T'0
aiiL

L20

¥1°0

0T0
0¥'0

8€°0

L2°0

Te’0

8T'0

0€'0

9¢'0

€20

T€°0
620
9¢'0

9T'0

9¢'0

0T'0

ov'0

8¢€'0
L2'0
¢€0
8T°0
0€'0
9¢'0

vz'o

A0
¢€0
G20
8T°0

101N

810

¢tl'0

80°0

17°0

o

G20

8T'0

8¢'0

¢T'0

9T°0
€10
60°0
8T'0
810
0T'0
1T°0

SAV-ISvL

€20
v0°0
60°0

6€°0

S€'0
9¢'0
¢€0
LT°0
8¢'0
Gc'o
€¢0
€1ro
AN0]
6¢'0
SC'0
910

Y9ZH'Sv

abrelany
C9POSIqoN
SasIoHa%eYy
auadSAlied
1eNoOd
Ssed|leqisxsed
abelony
9SeAJaMO|S
aienbsdg
slqqngbuimolg
ssed||eqisyseg
abelany
9jodwo],

slied

SMaN

9lIqON

uewaloH

o\ §>< So



ev'o
LT'0
91°0
€10
0C°0
0
€T'0

0C°0

9T°0
110
¥C0

9¢'0

6¢'0
o
9v'0
LT°0
ST0
€10
6T°0

(@p "dNSd-aq) wioyre|d DAV/F9Z H Ul SWI0JSURIIIUBIBHIP JO S}NSAY [eIuawuadxy 9-¢ a|qeL

LT0
(A
ST'0
€0
SE'0
€eo

€C°0

¢l0
0T0

970
e’ 0
€0
1428\
€0
LY0
81°0
ST'0
¥1°0
0C’0
61°0
y1°0
LT°0

€10

o
600

o

I€0
v¢o
120
6€°0
ST°0
ANY
¢l'0
8T°0
8T'0
€T'0
0T°0
0T0
0T'0

6€°0
€T'0
€T0
1T°0
v1'0
LT°0
¢T'0

800
800

€C0

0T'0
0T'0

1€2°0
160°0
120
8T°0
z€0
520
zT0
£v'0
9T'0
€10
€10
ST°0
9T'0
A0

0T0

0T'0

€C0

(4]
6T°0
I¢o
9¢'0
(]

Tv°0

¥1°0

€T'0

8T'0
¢l0
0C0

60°0

1 LT°0
600

L0°0
1 €2°0
8T'0
I 8T°0
G€'0
¢T'0
070
1T°0
60°0
AN
L0°0

80°0
S0°0

0¢'0
6€°0
10
¢T'0
170
¢1'0
AN
1T°0

900

80°0

abelany
JnoHysny
cuonels
pagisAly
ueli1sapad
Touowny
aAlIdlleqIdysed

lamojjuns

[

smoep
abelany
Heisennys
unuyied
uaney
WOIN
M1
Ao
diysbig

1

% o3o

28ox =

I

(N



BlowingBubble (WQVGA)

37
35
<
=
5 =3
t 1
T
z
s N
T51-H264
29 —TWien
_T51-AVS
Anchor JM16.2 (no 16x16)
27
400 600
Rate (kbps)
(a)

BasketballPass (WVGA)

0 500 1000 1500 2000 2500 3000

Rate (kbps)

(b)
Figure 3-11 RD curves for (a) BlowingBubble (WQVGA) and (b) BaskballPass

(WVGA)



41

[N
=
<

w
e}

(=]

Q7=

AA

Crew (720p)

"e-MICT
-TMCSF
-"TLee
—LLMICT-Al
4 TS1-H264
-ATSI-AVS
-A"TWien
— TJoswW
—THI2
—LLMICT-BI
— THII
eeeAnchor JM16.2 (no 16x16)

i400 3400
Rate (kbps)
(a)
Sunflower (I0SOp)
-AAnchor JM16.2 (no 16x16)
700 1200 1700 2200 2700
Rate (kbps)
(b)

Figure 3-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p)



3.7.2 Subjective Evaluation

In this section, the subjective evaluation of the video sequences coded with different
order-16 transforms will be given. Several sequences of different resolutions will be
illustrated. Each of them is coded with different transforms individually. In order to
show their differences clearly, cropped version will be shown instead of the whole

frame.

Figure 3-13 shows the 84" frame of the sequence "BasketballPass" in WQVGA
(416x240) coded with different transforms and QP = 32. When it is not coded with
order-16 transform, the fine details of the image are destroyed. The lines on the
wall (upper left) and on the door (upper right) almost disappear in Figure 3-13 (b).
They are preserved when coded with the order-16 transform ((c)-(l)). Order-16
transform preserves more detail such as the player's face (bottom right). It is also
observable that the use of order-16 transform reduces the ringing artifacts near the

high contrast regions (bottom left).

The 270th frame of'BQMall" in WVGA coded at QP - 32 is shown in Figure 3-14,
The lines on the wall disappear in the decoded images (upper left). Only those
coded with (j) Tjir, (k) LLMICT-AI and (1) LLMICT-BI can preserve these details.
The characters (upper right) and the old man's face (bottom left) are blurred in
different degree. It is shown that it suffers most when it is coded without order-16
transform. The texture of the lady's hat (bottom right) can hardly be seen without
order-16 transform. It is preserved with order-16 transform, especially with (j)

Tjos/u and (k) LLMICT-AL



Figure 3-15 shows the 100" frame of "SpinCalendar™ in 720p coded at QP = 27.
The differences among different transforms in this sequence are not obvious. The
pictures on the cans (top left) are slightly sharper when order-16 transform is used.
Less ripple artifacts are observed near the letters on the calendar (top right). It is

quite clear that more texture is preserved on the field (bottom).

These examples show that order-16 transforms help to preserve the details of the
pictures and to reduce the artifacts. However, the differences among the picture
coded with different order-16 transforms are not obvious. Their subjective
performances are more or less the same. In general, if the transform has a better
objective performance, such as LLMICT-AI, its subjective performance is slightly

better.



Chapter 3- ABT in H.264/AVC

(a) Original

(©) Teraps (d) Tsi-m2es

(&) MICT () Tun

(@ T

(D Tre 0)  Tiow

3-33



Figure 3-13 Subjective quality of
BasketballPass (WQVGA)", 84& frame,
(m) MCSFICT coded at QP = 32

(c) T{MAE - (d) TSj. H264



() MICT

(9)

(m) MCSFICT

® T

(h)

() Hoshi

() LLMICT-BI

Figure 3-14 Subjective quality of "BQMall
WMGA) » » » 270h frame, coded at QP = 32.



Chapter 3- ABT in H.264/AVC

(2) Ty (h) Twien

3-36



G) Tloslli

W26=

(k) LLMICT-A1 (1) LLMICT-BI

Figure 3-15 Subjective quality of
SpinCalendar (720p)", frame, coded at

(m) MCSFICT QP =27.



3-7-3 Usage of Order-16 transform

In our implementation, the transform size selection is according to the
RD-performance. The one with the best RD-performance is chosen. If order-16
transform is more frequently chosen, a higher gain is provided. This also implies
its importance. The usage analysis of order-16 transform focuses on our proposed
LLMICT-AI only. Its statistics is shown in Figure 3-16. The average usages of
order-16 transform in different frame resolution at different QP are shown. The

analysis here is in 3 aspects:

« Frame Type: it is observed that P-frame has the highest usage percentage
(3801 78%).The usage in I-frame is from 6% to 45%. It is from 15% to 35% in
B-frame. They all show a pretty high usage of order-16 transform in different frame
types. The usage of order-16 transform in I-frame depends on the frame nature. If
it has a larger portion of homogenous region, the usage will be higher. For example,
"Raven" in 720p has a large portion of smooth background. Its order-16 transform
usage in I-frame is around 40%. In contrast, the usage is only 20% in highly
textured sequence "City" in 720p. The usage in B-frame is relatively low because
the hierarchical-B prediction structure in H.264/AVC offers a very good prediction.
The predicted residue is so small that many MB are coded in skip mode ([0 75%). In
those "non-skip” MB, around 90% MB are coded with order-16 transform. This is

a very high percentage.

 QP: The usage changes differently in different frame types as QP increases.
The usage increases as the QP increases in I-frame. This is because as QP increases,

the RDO targets a lower rate and tolerate larger distortion. Larger transform has a



higher compressibility and hence it is favored. An obvious decreasing trend is
observed in P-frame as the QP rises. This is because the larger QP makes more MB
become all-zero blocks such that skip mode is favored. This lowers the usage of
order-16 transform. A very slow decreasing trend is observed in B-frame. The
usage of order-16 transform is relatively insensitive to the QP change in B-frame.
This is because the usage of order-16 transform in B-frame is lower than in P-frame.
The usage reduction of order-16 transform in B-frame is not as signification as in

P-frame.

e Resolution: It can be observed that the usage of order-16 transform is in an
increasing trend as the resolution increases. It is more obvious in I-frame than in P-
and B-frames. It can be observed that the average usage in I-frame is over 30% in
1080p while it is not more than 10% in CIF. This is because as the resolution
increases, the chance of a MB covering a smooth area increases. Larger order
transform has a better coding performance for smoother blocks and hence more MB
prefers to be coded with order-16 transform. In P- and B-frames, the increasing
trend is not that obvious. However, we can still observe that the average usage
increase from 40% to over 50% in P-frames and from around almost 20% to 30% in
B-frames. These shows the importance of order-16 transform in HD sequences. It
is expected that there will be higher usage and more gain provided in sequences with

even higher resolutions.



The average usage of order-16 transform In |-frame

CIF{352)(288) WQVGA(416x240)  WV6A{832}<480) 720p (1280x720)  1080p{1920x1080)

(a)

The average usage of orcler-16 transform In P-frame

CIF(352)(288) WQVGA(416x240)  WV6A(832x480) 720p(1280x720 | 1080p(1920x1080)

(b)

The average usage of order-16 transform In B-frame

CIF(352x288) WQVGA(416x240)  WVGA{832x480) 720p(1380x720)  1080p(1920x1080)

(c)
Figure 3-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c) B-frame.



3-7.4 Gain from Order-16 transform

In Section 3.7.1 the BD bit rate and the BD PSNR mentioned in [14] are computed.
These are the overall gains in the ABT system. However, not all MB are coded
with order-16 transform and the gain from order-16 transform is diluted by those
coded by order-8 and order-4 transform. We are also interested in how much gain
solely comes from order-16 transform. That is if a MB is coded with order-16
transform rather than order-8 or other-4 transform, how much gain should be
obtained. Assume the sequence header and the frame header information is
negligible comparing with the MB information. The bit rate for a coded sequence,
R, can be divided into two parts: coded by order-16 transform and non-order-16
transform, denoted as Ro\6 and K, 6respectively. Suppose the PSNR is the same,

the delta bit rate can be divided into two parts:

Abitrate =~Abitmte™,» +-Abitrate”™, . (3.19)

We may assume there is very little or even no gain from non-order-16 transform, i.e.

AbitrateK Q, Therefore Abitrate™* becomes:

‘ Abitrate
Abitrate®,, » ~ . (3.20)

Using the idea of calculating BD bit rate (see Chapter 1 for more detail), the BD bit

rate purely comes from order-16 transform, BD-bitmte[J \(y is:



! BD-bitrate
BD-bitmteile 7 Pdbitratedp ~ (3.21)
"NOAP)
where
K M
dp (3.22)
p. AlOM

which is a function of PSNR. Similarly, the BD PSNR purely comes from order-16

transform, BD-bitrateo\e is;

BD-PSNR
BD-PSNR,.= (3.23)

where

K/ KM
-dr (3.24)

lower

The gains solely from order-16 transform are listed in Table 3-7 and Table 3-8.
Wo16(0 and Wo\6{p) are the average percentage of the bit rate allocated to order-16
transform over the tested bit rate range and the tested PSNR range respectively.
From these values, it can be observed that a high percentage of bits are allocated to
order-16 transform (from 33% to 79%). It can also be noticed that as the resolution
increases, these values increases. This shows that order-16 transform dominates as
the resolution increases. In Table 3-8, the average value of BD-PSNRo," is around
0.497 dB. It is very close to difference between the transform coding gains of

order-16 DCT and order-8 DCT at p= 0.9.



Sequences BD-hitrate (%) ¥ -0) BD-bitrateoi6 (%)

Foreman -4.78 0.548 -8,72
Mobile -5.98 0.413 -14.48
& News -6.22 0.377 -16.50
Paris -6.29 0.244 -25.78
Tempete -4.30 0.447 -9.62
BasketballPass -5.59 0.336 -16,64
> BlowingBubble -7.90 0.340 -23.24
%BQSquare -5.27 0.392 -13.44
Flowervase -6.40 0.670 -9.55
BasketballPass -9.91 0.490 -20.22
& BQMall -7.99 0.494 -16.17
PartyScene -9.25 0.436 -21.22
RaceHorses -3.08 0,446 -6.91
Bigship -3.80 0.654 -5.81
City -4.19 0.687 -6.10
Crew -7.65 0.608 -12.58
L Night -3.92 0.490 -8.00
Raven -5.40 0.726 -7.44
Parkrun -5.22 0.576 -9.06
ShuttleStart -4.30 0.643 -6.69
Cactus -6.00 0.585 -10.26
Sunflower -11,28 0.736 -15.33
BasketballDrive -7.72 0.584 -13.22
9 Kimono1 -8.15 0.793 -10.28
Pedestrian -8.77 0.681 -12.88
Station2 -4.98 0.780 -6.38
RushHour -3.85 0.775 -4.97
Average -6.23 0.554 -12.28

Table 3-7 Delta bit rate solely from order-16 transform {BD-bitrateci6, %)



Sequences BD-PSNR (dB) ™ BD-PSNR— (dB)

Foreman 0.21 0.542 0.39
Mobile 0.26 0.416 0.63
& News 0.33 0.376 0.88
Paris 0.33 0.250 1.32
Tempete 0.17 0.456 0.37
BasketballPass 0.27 0.346 0.78
é BlowingBubble 0.31 0.347 0.89
a BQSquare 0.19 0.394 0.48
Flowervase 0.32 0.667 0.48
BasketballPass 0.41 0.493 0.83
5 BQMall 0.34 0.487 0.70
= PartyScene 0.41 0.442 0.93
RaceHorses 0.12 0.444 0.27
Bigship 0.10 0.654 0.15
City 0.12 0.697 0,17
Crew 0.19 0.600 0.32
Eﬁ]L Night 0.13 0.484 0.27
Raven 0.20 0.719 0.28
Parkrun 0.20 0.589 0.34
ShuttleStart 0.13 0,638 0.20
Cactus 0.17 0.562 0.30
Sunflower 0.43 0.720 0.60
0 BasketballDrive 0.23 0.567 0.41
g' Kimono1l 0.33 0.790 0.42
H Pedestrian 0.35 0.666 0.53
Station2 0.25 0.760 0.33
RushHour 0.12 0.765 0.16
Average 0.245 0.551 0,497

Table 3-8 Delta PSNR solely from order-16 transform {BD-PSNROI6, dB)



3.8 Conclusions

In this chapter, H.264/AVC is reviewed. The order-16 transforms proposed in the
last chapter are integrated into its reference software JM16.2. Syntax structure is
changed and the implementation details are described. New syntax elements and
context models for CABAC are added. The proposed platform is tested. Different
order-16 integer transforms are tested and compared. It is found that more details and
less distortion are observed when order-16 transform is used. It is noticed that
order-16 transform helps to reduce the artifacts. Subjective qualities between
different order-16 transforms are similar. In the proposed platform, Tjoslu gives the
largest average bit rate reduction (6.21%). A maximum reduction of 12.11% is
obtained. The proposed LLMICT-AIl, MCSFICT and LLMICT-BI are not far from it.
Their average bit rate reductions are 6.18%, 6.13% and 5.97% respectively but they

require fewer computations.

It is found that the usage of order-16 transform is pretty high. It is up to 78% in
P-frame on average. It is also noticed that the usage of order-16 is in an increasing
trend as the picture resolution increases. That is why order-16 transforms bring larger

gains in HD sequences.



3.9 References

[1]

(2]

[3]

[4]

[5]

(6]

(7]

(8]

[9]

[10]

(11]

T. Wiegand, G. J. Sullivan, G, Bjontegaard and A. Luthra, "Overview of the H.264/A VC

video coding standard,” IEEE Trans on CASVT, vol. 13, no. 7, pp 560-576, 2003.

Soon-kak Kwon, A. Tamhankar and K. R. Rao, "Overview 0ofH.264/MPEG-4part 10,”
Journal of Visual Communication and Image Representation, vol. 17, no. 2, pp 186-216,

April 2006.

D. Marpe, T. Wiegand and S. Gordon, “H.264/MPEG4-AVCfidelity range extensions:
tools, profiles, performance and application areas," IEEE ICIP 2005, vol. 1, pp | -

593-596, 2005.

G. J. Sullivan, P. Topiwala and A. Luthra, ‘The H.264/AVC Advanced Video Coding
Standard; Overview and Introduction to the Fidelity Range Extensions,"" Proc. SPIE

Conference on Applications of Digital Image Processing XXVII, Nov, 2004.

H. Schwarz, D. Marpe and T. Wiegand, "Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard’ IEEE Trans, on CASVT, vol. 17, no. 9, pp
1103-1120, 2007.

M. Wien, H. Schwarz and T. Oelbaum, "Performance  Analysis of SVC," IEEE Trans, on

CASVT, vol. 17, no. 9, pp 1194-1203, 2007.

H. Schwarz and M. Wien, "The Scalable Video Coding Extension of the H.264/AVC

Standard,” 1EEE Signal Processing Magazine, vol. 25, no. 2> pp 135-141, 2008.

T, C. Thang, J, Kim, J. W. Kang and J. Yoo, "SVC adaptiation: Standard tools and
supporting methods,”  Signal Processing: Image Communication, vol. 24, no. 3, pp

214-228, 2009.

Yo-Sung Ho and Kwan-Jung Oh, "Overview of Multi-view Video Coding’” the 14*
International Workshop on Systems, Signals and Image Processing and the
EURASIP Conference focused on Speech and Image Processing, Multimedia

Communications and Services, pp 5-12, 2007.

G, J. Sullivan, “Standards-based approaches to 3D and multiview video coding,” Proc.

SPIE, vol. 7443, Applications of Digital Image Processing XXXII, Sept. 2009.

P. Merkle, K. Miiller and T. Wiegand, “3D video coding: an overview of present and



[12]

[13]

[14]

[15

[16]

upcoming  standards,”  Proc. SPIE, vol. 7744, Visual Communications and Image

Processing, July 2010.

H.264/AVC Reference Software JM16.2. [Online] Available:

http://iphome. hhi.de/suehring/tml/download/oldj m/jml6,2.zip

T. K, Tan, G. Sullivan and T. Wedi, “Recommended Simulation Common Conditions for
Coding Efficiency Experiments Revision 4,” Document VCEG-AJIO, Oct. 2008,

[Online] Available: http://wftp3 .itu.int/av-archyvideo-site/0810_San/

G. BjOntegaard, “Calculation of Average PSNR Differences between RD-curves,”
ITU-T SG16/Q6 > Document VCEG-M33, April 2001. [Online] Available:

http://wftp3 .itu.int/av-arch/video-site/0104_Aus/

R. Joshi, Y. Reznik, and M. Karczewicz, "Simplified Transforms for Extended Block
Sizes : ' ITU-T SG16/Q6, document VCEG-AL30, July 2009. [Online] Available:

http://wftp3.itu.int/av-archy video-site/0906_LG/

Y. Ye and M. Karczewicz, “Improved Intra Coding, ” ITU-T SGI6/Q6, document
VCEG-AGII, Oct. 2007. [Online] Available:

http://wftp3 .itu.int/av-arch/video-site/0710_She/


http://iphome
http://wftp3
http://wftp3
http://wftp3

Chapter4d ABTin AVS

4,1 Overview of AVS

Audio Video Standard (AVS) [I]-[4] is a digital audio and video compression
standard developed by the workgroup of the same name in mainland China. The
standard development started in 2002. The standard is divided into several parts
and each part specifies an application area. AVS Part 2 and Part 7 relate to video
coding in different aspect. Part 2 targets in HD digital video broadcasting and
storage while Part 7 targets in lower complexity, lower resolution mobile
applications. Similar to H.264/AVC, the standard defines different profiles
specifying subset of the coding tools. There are 4 main profiles and their target

applications are:

e Jizhun (base, % ) profile: video broadcasting,
+ Jiben (basic, KA » also called Yidong,# &l ) profile: mobile applications,
« Shenzhan (extended, fEHfE) profile: video surveillance, and

» Jiagiang (enhanced, fj74% )profile; multimedia entertainment.



The AVS-Part 2 Jizhun profile was approved as national standard in 2006.
Recently, more profiles are added to the standard to enhance the functionality. For
example, Shuangmu Liti Jizhun (Stereo 3D base,® H 77 #8 F % )profile was added
to support stereo 3D video coding. In order to improve the coding performance of
the existing standard, the drafting of the next generation standard, AVS 2.0, started in
March 2009. It was expected to finish the first working draft in July 2010. It is
still based on the hybrid coding architecture. It aims to provide significant
improvement on the top of AVS Part 2. It will support super high resolution up to
8kx4k and higher color bit depth up to 14 bits. The final committee draft is

targeted to be finished in 2012 [5][6].

P . Output
Input Flame Quantisation y* Fntiopv Coder

Motion
Estimation

Motion
\]' Compensation

Loop Filter

Figure 4-1 Data flow of AVS encoder.

[.(Mlt Q|ITA Motion
n

Compensation

Inverse . Entropy
Loop Filter ResLalin Input 1
P Tranbform 9 Decoder | P

Figure 4-2 Data flow of AVS decoder.

In this thesis, our focus is on AVS Part 2 which targets in HD video coding. It is

expected that our techniques are portable to AVS 2.0 and acts as one of the coding



tools in the new standard.

Same as H.264/AVC, AVS encoder is also a hybrid video coder. The structure of
the encoder and the decoder are the same as H.264/AVC as shown in Figure 4-1 and
Figure 4-2. However, the details in many functional blocks are different from

H.264/AVC. The following are some of the typical techniques adopted in AVS Part

* Intra prediction: 4x4 and 8x8 intra predictions are available in AVS standard.
However, 4x4 intra prediction is only adopted in Jiben Profile while 8x8 intra
prediction is adopted in the other 3 main profiles. There are 9 different intra
prediction modes for 4x4 intra prediction. They are similar to those specified in
H.264/AVC. In contrast, there are only 5 prediction modes for 8x8 intra prediction.
The five modes are Vertical, Horizontal, DC, Down-Left and Down-Right. This

lowers the complexity of the encoder but maintains high coding efficiency.

» Inter prediction: There are only 4 different partition sizes for inter prediction.
They are 16x16, 16x8, 8x16 and 8x8. Also, experiments show that the nearest 2
decoded frames are the most referenced frames. The frequency of referencing
further frames is significantly lower than these 2 frames. As a result, the maximum
number of reference frames in AVS is 2. This reduces not only the motion

estimation complexity, but also the side information indicating the reference frames.

« Simplified interpolation filter: Quarter-pixel motion estimation is allowed in
AVS. In H.264/AVC, 6-tap interpolation filter is used. In AVS, two 4-tap

interpolation filters cascading together are used. One is for half pixel accuracy



while the other is for quarter-pixel. The computation complexity is lowered.

* Pre-scaled ICT: Low complexity 8x8 ICT is adopted in Jizhun, Shenzhan and
Jiagiang profiles while 4x4 ICT is adopted in Jiben profile. They are organized in
pre-scaled [7] structure such that the scaling matrices are only located in encoder
side. In H.264/AVC, the scaling matrices are located equally in both encoder and

decoder.

« CA-2D-VLC: The quantized coefficients are specially coded with a
Context-based Adaptive 2D Variable Length Coder (CA-2D-VLC) [8]. Itis a low
complexity entropy coder which wutilizes the joint probability of level-run

combination. As aresult, a high coding efficiency is obtained.

¢ Enhanced Arithmetic Coding (EAC): It is an arithmetic coder with
logarithmic probability model. Its probability estimation is multiplication-free such
that it has lower complexity than the CABAC in H.264 but higher coding efficiency

than CA-2D-VLC. Its coding efficiency is comparable with CABAC.

Based on the AVS architecture, ajoint proposal [9] was submitted and accepted into
the AVS reference software. In this proposal, researchers from Tsing Hau
University proposed the use of 4x4 ICT adopted in Jiben profile. On the other hand,
we proposed order-16 Simple Integer Transform (T n 7}  Together with the
existing 8x8 ICT, an Arbitrary Block-size Transform (ABT) system, integrated with
4x4, 8x8 and 16x16 transforms, is formed. A maximum bit reduction of 19.35% is
reported. On the top of this system, we have proposed several methods to improve

the coding efficiency [10]-[13]. The proposal [13] was adopted into the latest AVS



reference software.

In this thesis, the reference software RM6.2/ acts as the testing platform. The
order-16 transforms mentioned in Chapter 2 will be integrated into it. Details of
this platform will be described from Section 4.2 to 4.7. Experiment and analysis

will be shown in Section 4.8. Finally, conclusions will be drawn in 4.9

4.2 Intra prediction

In AVS, only 4x4 and 8x8 intra predictions are present. There is no 16x16 intra
prediction in the standard. The 16x16 intra-prediction proposed in [14] is
integrated in our platform. It has 5 different prediction modes (Figure 4-3). They
are the wvertical, horizontal, DC, down-left and down-right prediction. The
referenced pixels from previous decoded blocks are low-pass filtered before
prediction.  When 16x16 intra-prediction is used, 16x16 transform is used

compulsorily.

Mode 0 Vertical Mode 1 Horizontal

Mode 3 Down-Left Mode 4 Down-Right

Figure 4-3 16x16 intra prediction in proposed AVS platform.



4.3 Transforms
4.3.1 ABT in AVS

Order-8 ICT was adopted in AVS Part 2. Its integer kernel is shown in (4-1).
Order-4 ICT was also adopted in AVS Part 7. Its integer kernel is shown in (4-2).
Researchers from Tsing Hau University proposed to form an ABT system with these
two transforms in [15]. At the same time, we proposed an ABT platform using
order-16 and order-8 transforms [9]. In the proposal, order-16 Simple Integer
Transform tsavs  was proposed. These two ideas were merged together and an
ABT platform including 4x4, 8x8 and 16x16 transforms is formed [16]. This

proposal was accepted by the AVS workgroup and integrated into the reference

software.
8 8 8 8 8 8 8 8
I'10 9 6 2 -2 -6 19-10
110 4 ;4 ,70-10 4 4 10
.~ o -2 5,0 6 610 -9 )
4r— s ., 1818 s.8 2 8 D
6 -10 12- 9 s .2 10 - 6
14 -10 O 4 .4 10 10 4
2 9 O -9 4 -2
I
2 2 2
1 -1 -3
QIS = _
AI%_ -2 -2 2 (4-2)
-3 3 -1

In [16], researchers from Tsing Hau University also proposed a combinative coding
manner. When a MB is not coded with 16x16 transform, it can be coded with 8x8

transform together with 4x4 (Figure 4-4) at the same time. There are 16 different



combinations. The selection between 4x4 and 8x8 transform is in sub-block basis.
It is decided when every 8x8 sub-block is coded. The best combination is selected
by RD optimization. When a MB is coded with order-16 transform - this means that
if offers a RD cost lower than any combination of 8x8 and 4x4 transform. An
example is shown in Figure 4-5. We can see that the transform size for coding
smooth regions changes from 8x8 to 16x16. We can also notice that the rate

reduces and the PSNR increases when 16x16 transform is enabled.

-16- -8- 41

o\ I

A MB coded with 16x16 A MB coded with Combinative
Transform Transform, Mixture of 4x4 and
8x8 Transform

Figure 4-4 Combinative ABT in proposed AVS platform.

(a) 38208 bits, 35.589dB (b) 38064 bits, 35.643dB

Figure 4-5 ABT (a) without 16x16 Transform, and (b) with 16x16 Transform.



In this chapter, some order-16 transforms described in Chapter 2 will be integrated
to the AVS ABT platform. They are tested individually. These transforms

include:

. Simple Integer Transform, T4 & -
«  MICT,
. Hybrid Integer Transform, T"",
. Hybrid Integer Transform, THU,
. The integer transform proposed by Lee, Ti%e,
. The integer transform proposed by Joshi, Tjoshi,
. LLMICT-AL1,TE] -
IIMICT-B\,TLLM-B], and

. MocHfied CSFICT (MCSFICT),  Tmcsr

4 3.2 Flexible Transform Size Selection

In RM 6.2/ and before, the transform size selection is limited. In I-frame, only
order-4 and order-8 transform were allowed. In B-frame, only order-8 and order-16
transform were allowed. These three transforms only coexisted in P-frames. It
was because the earlier research showed low usage of order-16 transform in I-frame
and low usage of order-4 transform in B-frame. However, we found that this is not
true, especially in HD sequences. The usage of order-16 transform in I-frame is
quite high (See Section 4.8.3 ). As aresult, we proposed a Flexible Transform Size
Selection. These three transforms can be selected flexibly based on their RD cost.
The optimal transform can be used without any restriction. We found that this

modification brings an average bit rate reduction of 4% in 1080p sequences [13].



4.3,3 Transform Design Constraints in AVS

It is more challenging in designing integer transform for AVS. There are more
constraints in its design and the integer kernel must be suitably adjusted before
implementing to the AVS reference software. The transform process adopted in
AVS is the pre-scaled integer transform (PIT) [7]. The forward transform and the
inverse transform processes are modeled in (4-3) and (4-4) respectively. Suppose
the integer kernel is E. X and Y are the input pixels and the reconstructed pixels
respectively. Recall that the 2-D scaling matrix S, which is a combination of 1-D
scaling matrix K. S locates in both forward and inverse transform process in
H.264/AVC. When S only locates in the forward transform process, it is called
pre-scaled transform. In contrast, if the scaling matrix S only locates in the inverse
transform process, it is called post-scaled transform and it is adopted in VC-1 [17].

No matter pre-scaled or post-scale transform, the transform coefficients are scaled.

Fiff=(EXE ~S©OS. (4.3)
=G®SOS “
FRr E . (4-4)

There is another constraint in AVS. The transform, quantization and rescaling
process must be able to be implemented on a 16-bit system. Therefore, the
precisions of the transform coefficients are limited. To prevent overflow, the
transform coefficients are rounded. Those with smaller dynamic ranges may suffer
bigger rounding error in fixed point implementation. As a result, its coding
performance may be lowered. Suggestions were provided in [7] for the design of

pre-scaled transform so as to prevent such degradation. Weighting Factor



Difference (WFD) was defined in [7]:

max{5{i,J))
(b, >~ (4-5)

It measures the extreme dynamic range ratio of the coefficients in a given transform.
The larger WFD, there are bigger difference between dynamic ranges of different
transform coefficients. WFD is minimum 1) when all Sii,J) are the same. This
means all basis vectors have the same norm. In order to keep a good performance,

the transform should be unitary and it is suggested that the upper bound for WFD to

beV2 in [7]. To fulfill this requirement, the basis vectors in the transform are

adjusted with integer factors, m” The integer kernel becomes:

N . (4-6)

After the adjustment, the waveforms remain unchanged. However, the choice of
these factors highly affects the coding performance. It is not only the WFD issue,
but also the usage of the dynamic range. An inefficient use of the coefficient
dynamic range lowers the performance. The DC coefficient, Fpfj{Q, 0) > which has
the largest dynamic range, should have a maximum magnitude of power of 2 so as to
maximize the dynamic range usage. This can be achieved by setting the norm of
the DC basis vector to be 2". As a result, the minimum integer scaling factors, m”

are selected such that the following two criteria are fulfilled in our implementation:

. WFD must be less than a threshold WFDmax'



. The magnitude of the norm of the DC basis vector should be of 2" so as to

maximize the usage of dynamic range.

By so doing, the dynamic ranges of the coefficients are restricted in a narrow range

as shown in Figure 4-6.

2\WFD”"{l{

2"/WFD, Il

In our case, WFO”ax is 1.6.

Dynamic
Range

r
27t

b

Figure 4-6 the dynamic range of the coefficient after adjustment.

As a result, the integer kernel of Tiee, X/o¥f » LLMICT-Al and LLMICT-BI1 are

shown in (4-7) to (4-10) respectively.

The WFD after adjustment are shown in

Table 4-1. Experiment shows that this adjustment is very important in PIT design.

A bit rate reduction of more than 7% is observed before and after the adjustment

with the same transform.

Transform

ASI-AVS
MICT
T/
TII/2
"Lee

KJoshi
LLMICT-AI

LLMICT-BI
MCSFICT

Weighting Factor Difference (WFD)

Before Adjustment

1.158
1.269
1.245
1.246
2.390
2.716
2.173
2.000
1.179

After Adjustment
1.158
1.269
1.245
1.246
1.578
1.149
7,241
1.471
1.179

Table 4-1 The Weighting Factor Difference of different transform.



NERSFTLLLL BRSO R

688
702
681
670
609
592
519 -
5i2 -
407
407 -
348 -
268

168

130 -

96 -

256
344
320
319
320
281
288
294
256
222

192

171

128

87

EN
=

438

HPREB B IRHBBBEY

WARRA by 4R8BS

256

336
288

203

128
49
64 -

A Foroedih o Ra

256
304
192

-128-

-261

120

-186-354
-256-

-318 -

-320

-327
-320

-261

- 88

- — .

= boakd'e U VR

& &4
& &
9 _20
le > 2
_ fé
1S %h
5 (]
& 13
1(5" a
g <
-t
@ P
2 242
780 IO
-4 &4
1
S:
54' 32
30
09
70
01
07 07
77
671 717
592 92
201
02 N
o A
256 256
272 -216
64 -6 4
-157 -291
320 -320

-319 -87
-192 192
42 366

256 256 256
102 366 -42
64 288 -288
203 87 -319
320 -128 128
329 - 1157
288 -320 320
168 -216 272

P PP HFR

SEEEE)

§ee
38

bh,
2520067 2680 hRee e

el

Ny

1§3Q;
FRARTRASSR B4

&

RORAARY

M"“ﬁ“ﬁ@_@ Q‘SQ

08

512 512 512 512
544 -608 -672 -688
130 390 598 702
348 -87 417 -681
670 -268 268 670
672 543 - 87 -6 09
407 -703-148 592
77 649 341 530
512 -5)2 512 512
671 187 583 -407
592 148 -703 407
201 -444 696 -348
268 670 -670 268
609 696 564 -168
702 508 -390 130
43 -336 [ 713 96
8 56 256 256"
D 04 336 -344
6 2 288 320
3- 1B 203 -3109
128 128 120
O
21 -49
g 320 -64 288
? n54 186 -294
256 256 256
3016 102 318 -222
64 320 192
203 327 171
320 320 128
29 329 261 —87
32( 2838 192 64
168 88 -48
a8 @3B 1B 1B
162 1'&._%_%
2 S vle
~® B ‘»
L®© & @
3 WERY
as =2 14
1 P ™ 1®
B8 . B 18
D ® 1O
& 2o 1G
D b 1w D
& T A
.75 §;
r @
1 w o P

(4-7)

(4-8)

(4-9)

(4-10)



4.4 Quantization and Rescaling

After transformation, the coefficients are quantized in the encoder side and are
rescaled in the decoder side. In pre-scaled transform, the two scaling matrices S
locates in the encoder side and they are embedded into the quantization process as

shown in Figure 4-7.

Encoding Path
Input pixel

Scalin Scalin nt.
block X Transform g g Quant
Channel —
Reconstructed Inverse Rescaling
block Y Transform (Dequantization)

Decoding Path

Figure 4-7 Data flow of quantization and rescaling in AVS.

4.4.1 Quantization

Recall (4-3), (4-4) and the definition of S in last chapter. The quantization process

with step size Qstep and rounding offset Qogset can be modeled as:

4-11
AsieD ( )

Qoffsetis defined as:

P2 -
< forintra block

for inter block ( )



Since division is a heavy computation load, it is replaced by multiplication with

integer approximation where:

scale{i, j) =round{s'{i, j)x2;5 “and (4-13)
VAN (
QO (Op) =round *» - "“around 2 « for e [0 17.763] (4.14)
Y, J \% ;

Shits controls the precision of the scale{ij). Put (4-13) and (4-14) into (4-11):

d[G{i,j le{ij))» bi
FAi)sign{GLid) [round[G{i,j) x scale{ij)) Shit)x 515, (4-15)

(4-15) is modified before implementation due to the following 3 reasons:

1. One can notice that the magnitude of the value in [; ;in (4-15) is significantly

less than such that it is most likely rounded to zero. To prevent this round

off, a factor is added and it is removed after the inverse transform process.

2. When the input data block X is in h-h\X (including sign bit), after order-16 DCT,
its transform coefficients are in (6+4)-bit. The factor is chosen such that the
quantized coefficient can be represented in (Z?+4)-bit with the minimum Qswp (i.e.
1). This makes sure the PIT coefficient has the same dynamic range as the DCT

under the same quantization.

3. Since the transform process and quantization process in AVS are restricted to 16
-bit, bit truncation may required in the transform process. Furthermore, to
maximize the usage of the 16-bit representation in the intermediate states, the bit

shifting is adjusted. And finally, (4-15) becomes:



' © d(Gij le]ii)» bi AALOP
FAid) ‘;signéG{igan {G{i)) x scalefij)) Qbits)xQ“**{QP) 18,  (4-16)

where Qbits depends on the transform type. For example, it is 12 for LLMICT-AI.

44.2 Rescaling

When the quantized transform coefficient, which is computed in (4-16) with

quantization step size Qstep, is received, they are rescaled to PV:

=F 0

q\step -
(f, *DQ.,. {QP%A))» DQbitsiQP) (4-17)

Here, DQ"abiQP) and DQbits are

r 15+ -~
DQMN{QP) = round® 2 « (4-18)
QP
DQbits(Qn =\2- A (4-19)
(0]

Finally, the output Y is reconstructed by inverse transform and the factor mentioned

at the end of section 4.4.1 is removed by right shift by Kbits.

Y = (e~F,.e)» Kbits. (4-20)

4.4.3 Example

It may not be easy to understand the pre-scaled transform with quantization and
rescaling with formulae only. In order to display a clear picture of this process,

here a step-by-step example will be shown.

Suppose the order-16 transform to be implemented is LLMICT-AIl with integer



kernel E = wvear

4096
4450
4745
4911
4520
4911
4745

SCALE=

4745
4450

Using (4-13) and Stu

4450
4835
5155
5335
4911
5335
5155

5155
4835

4745
5155
5496
5688
5236
5688
4742

5496
5155

4911
5335
5688
5887
5419
5887
5688

5688
5335

4520
4911
5236
5419
4987
5419
5236

5236
4911

= 52, the scaling matrix SCALE is:

4911
5335
5688
5887
5419
5887
5688

5688
5335

4745
5155
5496
5688
5236
5688
5496

5496
5155

4745
5155
5496
5688
5236
5688
5496

5496
5155

Assume QP = 34 such that it is not so high that all quantized

zero. Consider an intra-predicted input block X :

-3 10 36 42

16 24 19
6 7 10 12
-1 2 3
-2 0 2
0 -15

4 0 -1
-3 -3 -1
1 0 1
1 -2 -2
1 1 -1
3 2 -1
1 -2 -3

53
42
24

N o
N PP

Wk © m = W = = Wy

50
39
21

N

w b - O

— N NN R NNYN

IR
o - &

—_ W W

—_ N B~ o
N e

S W b o O =

1
—_—

4450
4835
5155
5335
4911
5335
5155

5155
4835

coefficients

—_ N B O,
o U1 O W

—_—_ O N A~ s

oo
B~ = N 0

It was captured from a real video sequence of 8-bit color depth.

intermediate result of the 2~D transform.

(4-21)

become

55 52
45 42
30 28
1312
-4

0 -10

8 -26
100
30
26

0 1

2

1

0

3

8 -4

is the

Right shifts of 5 bits and 12 bits are

applied in horizontal and vertical transform respectively to limit the intermediate

results within 16-bit.



702
1114
1026

580

266

164

120

-161

. 339
-284
-59
-212
-294
-102

95
-112
-134

-240
-104

-56
-297
-144
-26
-32
-88
47
51
-18
-29
53
16
-118

-88
-131

-182
-102
26

-30
-98
27
87

-28
94
46

-31

-49
-130
22
13
72
-32

-48
-58
60
51
-35
64
149
45
-27

60
37
-43
-57
5
71
18

Multiply with the scaling matrix:

702
1210
1189

695

294

197
139

-161
71
38
-14
-64

-12

-368
-335

-74
-276
-352
-133

120
-118
-146

55
-56
-120
-30
42
-28

-278
-131
-19
-78
-380
-200
-35
-36
-102
53
68
-25
-37
74
21
-149

*106
°171
131

-117
31
121

-37
135

64
40

G = (GOS
-54 72
-156 48
28 -60
17 -82
-88 7
-42 102
8 25
-51 -127
-64 -8
64 131
65 53
-46 11
78 52
197 134
58 97

-46

G = (E((XE")»

-19
-31
-35
76
41
74
-33
74
67
32
-25
22
104
23
-76

24
-42
-49
97
57
-99
-37
86
75
43
-35
28
144
3]
-96

5))»12

62
-7
-58
-41
59
93
4
-30
37
109
2
-49
17
53
0

-10

60

-65
-47

63
108

-28
36
102

-57
18

61

-10

20

-151
12
121
-10
-39
-10
110

-16
64
52

-67
30
78

-33
-35

-51
-46

35

-56
-19
68
60
-75
28
75

-38
-37

-3
-57

-27
24
41

-20

23

34
-26
-44

27
-31
-17

12

22

-13
29

-17
-14
15
-38
-37
29

-30

19

16

-13
25

-19
-10
26

18
46
24

-53
-33
36
18
-72
-17
33
18

-13
31

3]

24
-13
-29

15
-12
-24
-16
27
17
-23

24



Quantize the coefficient with QtabiQP)'-

From (4-14) Q,{3A) =round{2 M = 1722 (4-24)

F, (i,J) = ) X0/ -b{QP) +(g*, X )J»  Qbits = (4-25)

O==Nbho0OCH
4 dovovn

oS O O
O O OO OO ODODODOOCOOCOOCO OO
O O OO OO OO O0OOCOOCOCO OO0

O O O e O oo
|

o O O

These coefficients are zigzag scanned and sent then to the entropy coder. After
lossless compression, these coefficients are sent to the decoder. When these

coefficients are received by the decoder, they are rescaled to F” first using (4-17):

15 34%8

From (4-18) DQAQP) = round 2 8 =38968 (4-26)

From (4-19) |11 =38 (4-27)
d



609
1218
1218

609

304

152

=
)]
N

O O O O O s oN O

Finally, after inverse 2-D transform, reconstructed Y is obtained by.

|
50%573“C):~ hdtﬂtﬁ

— T
HOOR~RNAW

-304  -304
-304  -152
0 0
-304 0
-304  -304
-152 452
152 0
-152 0
-152 0
0 0
0 0
0 0
-152 0
0 0
0 0
0 152

12 30
15 29 37
18 15 10
o 14 11
O 2 2
1 1 0
9 -9
6x -IB
5 0 4
5 s
2-3
2-1 1
4 -0 -0
2 2 |
_7] 1
1. 2

= F, Q#]

- (£, XDQIFOP))»

152
-152
-152
-304
-152

0
0
0

152

0
152
0
0
152
0
0

—
W
o o

(=N eNeleoNoNoNoeN-NoNe]

O
co

(EIFQE) O
48 50
45 44
27 31

7 8
2 1
-3 -5
-1 0
-5 -1
“11 -8
-8 -5
2 5
2 0
-4 -4
-3 -4
7 10
1 4

—_
W

—
W
OO VO OCOoOMMNONODODODOCDO OO

15

DQbimQP}

152

COO0OQO0O0O0OCO0O0ONOOOOO

o))

>8)):»15=

49 51 45
36 36 36
22 17 23
5 2 2
1 2 4
-3 4 10
4 7 6
5 3 -6
2 6 -4
-2 -1 -1
2 3 -5
-3 70-12
-4 0 3
-5 2 8
6 2 5
7 4

0
0

-152

0

152

0
0
0

152

SO O OO oo

WAODN ﬁ> hlcn N W OOKAIO\hh EQZE

K wrmroum W= B A

WA

— N
N W

53
41
25
12

VA RWORINR D

(4-28}

CoO0O0O0OO0OoO0OO0O0oO00O0O O
0000000000000 000

(4-29)

N R N
o & b O
ST O
S x

O Eiug%» U o~

» Aol iAtv =
WOON—W

[



4.5 Syntax Structures

Here are the syntax structures in our implementation. In intra block and inter

block, the contents are indicated in different syntax structures.

4.5.1 Intra block

Flag 16 = | Bredietien Mgde CBP 16xJ6 Coefficients
uv u(3) uv
MB—Type
(only present m  Flagl® /
- icti CABT(0-0 ici
Inter-frame) u ) CABP(0: Prediction Mode CBP CABT 8x8 Coefficients
uv uv u(6) uv uv
CABP .
Flaglé = 0 1,(4) \ CABT(O’
Prediction Mode CBP 4x4 Coefficients
CABP(!)- uv u(6) uv 1

Figure 4-8 Intra-block syntax structure.

Figure 4-8 shows the syntax structure of an intra block. Each block is a syntax
element. In the block, uv means it have variable bit length while u{n) means it has

a fixed length of n bits.

Since MB in Inter frames can be inter-coded and also be intra-coded, an MB_Type
header is required to indicate it. If the current frame is an intra frame, this
MB—Type header is not needed. After that a 1-bit flag, Flag 16, indicates if its
residues are coded by order-16 transform. If Flag 16 = 1, the current MB is 16x16
intra-predicted and the residue is coded by an order-16 transform. Behind Flag 16
are the prediction mode, 3-bit Coded Bit Pattern {CBP, 1 bit for 16x16 luma block
and 2 bits for two 8x8 chroma blocks). It indicates the present of non-zero
coefficient in its corresponding block. Lastly, the non-zero transform coefficients
are present. If Flag 16 = 0> smaller transforms are used. Since Combinative

Arbitrary Block-size Prediction (CABP) is also proposed. It is possible that 4x4



— ——Chapter 4-ABT in AVS
and 8x8 intra predictions coexist in the same MB. A 4-bit CABP flag indicates the
prediction size. Each bit correspond to an 8x8 sub-block. It is followed by the
prediction modes and 6-bit CBP (4 bits for four 8x8 luma sub-blocks and 2 bits for
two 8x8 chroma blocks). As 4x4 and 8x8 transforms can coexist in the same MB,
a flag is needed to indicate each sub-block transform size. If CABP indicates the
current sub-block i is 4x4 intra-predicted {CABP{i) = 1), the predicted residue must
be coded with 4x4 transform and the MB syntax ends with transform coefficients.
Otherwise, the current MB is 8x8 intra-predicted. Its residue can either be coded

by 4x4 or 8x8 transform. This is indicated by a flag, CABT.

45.2 Interblock

CBP 16x16 Coefficients
Flagi6: u(3) uv
SkipFlag MB Type MVD Flag 16
u(l) uv uv u(l) CABT(@) — 0 8x8 Coefficients
uv
Flaglé = 0 CBP CABT
u(6) u(4)

. 4x4 Coefficients
CABT(i): uv

Figure 4-9 Inter-block syntax structure.

Figure 4-9 demonstrates the syntax structure of an inter-block. The notation is the
same as intra block. Inter-block syntax structure is more straight-forward than
intra-block. It first comes with a 1-bit Skip flag indicating if it is a skip block. If
the current MB is not a skip block, it is followed by the MB—Type header which
indicates the inter-prediction partition size. MVD stores the motion vector
difference of each partition. A 1-bit Flag 16 indicates if the residue is coded with
order-16 transform. If Flag 16 = 1, the residue is coded with order-16 transform and

the MB syntax ends with CBP and coefficients. If Flaglé6 = 0> CBP and CABT



indicating the use of either 4x4 or 8x8 transform in each sub-block. Lastly, it ends

with the coefficients.

4.6 Entropy Coding

In AVS, the entropy coder can select either the Context-based Adaptive 2D Variable
Length Coder (CA-2D-VLC) or the Enhanced Arithmetic Coder (EAC). In this
thesis, the entropy coding adopted in the proposed platform is EAC. This is
because it has a higher coding performance. In order to adapt to the order-16
transform coefficients, the EAC is modified. More context models are added to
handle the long run of the transform coefficients. The structure of the EAC remains

unchanged.

The context modeling of Flag16 and CBP16 are the same as those in H.264/AVC

described in last chapter.

4.7 Loop Filter

In the original design of the loop filter in AVS, the loop filter is applied to the
boundaries between the 8x8 sub-blocks. It is noticed that this design over-smooth
some regions that are coded with order-16 transform. This over-smoothing effect
may not be observed easily but lower the quality of the decoded frames (i.e. some of

the reference frames). Hence, the qualities of the later frames may be affected.

To tackle this problem, we proposed to change the loop filter region when order-16

transform is used. The loop filter will only apply along the MB boundaries (16x16



block boundaries) when the MB is coded with order-16 transform. Those MB

coded by order-4 and order-8 transform remain unchanged.

-§————8——> 16-
»
NN
Region applying loop- Region applying loop-filter if current MB
filter in AVS standard is coded with order-16 Transform

Figure 4-10 Region of the loop filter is applied.

4.8 Experiment and Analysis

In our experiment, the testing platform is based on AVS reference software RM6.2/.
The order-16 transforms stated in Section 4.3 are integrated to the testing platform.
Implementation details are described in previous sections. This integrated platform
is tested under the common test conditions specified by the AVS workgroup [18].
These testing conditions are listed in Table 4-2. Video sequences with resolutions
from GIF (352x288) to HD (1920x1080) are tested. Some sequences, which are

not specified in the common test conditions, are also tested.

In our analysis, the objective evaluation of different order-16 transforms will be
shown first. The BD-bit rate and the equivalent BD-PSNR are measured using the

method stated in [19]. These will show their RD performances. Their RD curves



will also be shown.

decoded pictures will be shown.

Platform
Anchor

Prediction Structure

Intra Period

Frame Encoded

Number of Reference Frames

Entropy Coding
ABT

Rate Control

RDO

Weighted Prediction
Weighted Quantization
Adaptive Interpolation Filter
Loop Filter

ME Search Range

Target Bit Rates

After that, the subjective qualities will be compared.

RM6.2/

RM6.2/ 4x4 and 8x8 transform enabled,
transform disabled.

IBB

PBBP...

Every 1 second

The

16x16

Sequence length is 4 seconds, at least 97 frames are
encoded:

WQVGA: 121-241 frames
WVGA: 121 1] 24 frames

720p: 241
1080p: 9711 202Zrames

2

frames

EAC (CABAC)

Anchor: 4x4 and 8x8.

Test: 4x4 > 8x8 and 16x16.

OFF
ON

OFF
OFF
OFF

ON (Jizhun profile)

32

WQVGA (416x240)
WVGA (832x480)

Resolution

720p
1080p@24Hz
1080p@50Hz

Bit Rate (kbps)
384,512,850, 1500
512, 768, 1200,2000
1600, 2500, 4000, 6000
1600,2500,4000, 6000
3200 > 5000 - 8000, 12000

Table 4-2 Testing conditions in AVS platform



4,8.1 RD Analysis (Objective Evaluation)

The experimental results are shown in Table 4-3 and Table 4-4. They display the
BD-bit rate and BD-PSNR respectively. It can be easily observed that T /i and
LLMICT-Al perform very similar. Their average bit rate reductions are over 8%.
They are 8.26% and 8.20% respectively. They are equivalent to an average PSNR
gain of 0.30 dB. The differences between them are within 0.06% but notice that
LLMICT-AI is simpler than Tjoshi- It saves more than 10% computation time in the
transform process with respect to t#/, MCSFICT and LMMICT-BI are slightly
lower than them. Their bit rate reductions are 7.46% and 7.32 (or 0.28dB and
0.27dB equivalent) respectively. The remaining including, MICT, twii, TB /2,
T~/ AVS and “Lee, all have average bit rate reduction below 7% (or 0.26 dB

equivalent). The lowest is hee. Itis 5.98% only (0.22 dB equivalent).

It can be noticed that order-16 transforms give better gain in HD sequences such as
720p and 1080p. The bit rate reductions are usually more than 10% for 1080p
sequences. The largest gain is obtained by proposed LLMICT-AI in "Crew" of
720p. A Dbit rate reduction of 15.89% (equivalent to 0.44 dB) is obtained. This is
because it contains a large smooth region in the pictures and also many sudden
intensity changes caused by flashes. These lead to a high usage of order-16
transform. This will be discussed in detail in later section. In the next section - the

subjective quality of the decoded pictures will be compared.



¥G'6- LE6- 8G'6- 99'6- G9'8- 9¢'6- ce'6- 9¢'6- 08°8- abesany

18°9- ¥8'9- 19°9- 0v'9- 69°9- 26°9- 1€°1- 86°9- 18°G- eqIay
18°¥1- 8L V1~ 90°ST- z0°S1- 19°€1- P8 p1- S9¥I- L8V~ SO V- 7oposIqoN /HM

€6°L- 2 L- ve'L- 19°2- SL4- 157 19°2- V1L oz 9SBAIaMO |4 Mm

19°G- TL'G- 8T°9- 12°9- L0°S- 56'G- v8'G- 1L°6- vy'g- $9S10Ha9eY .

S6°0T- 16°01- 56°0T- TT'TI- £56- vy 0T- 85°0T- 69°01- 9.°0T- ausasAiied O\o

LE6 0T'6- 9T°6- €' 6- TL'8- 96'8- 58'8- 0L'8- 00'8s- HeNOg

0€'TT- ¥8°07- €LTT- VL TT- 9T'6- £5°0T- 55°0T- 9.°0T- L£°0T- [1idireqiexseg

02'9- v8'G- 29'9- 95°9- 0L'v- £9-G- €L'g- 06'v- 67°G- abelany

18'T- 09'T- G8'¢- 6C- 120~ ve'T- 8Y'1- Zr0- €LT- sasioHaRy <
v.'6- 95°6- TV'6- 9G6°6- 19°6- €v'6- 99°6- 656" 106~ aienbs 09 > Acw
0S'2- S0°L- 86°L- 06°L- 0L'S- 89'9- v1'9- 92'v- 2€'9- alqgqngbuimolg

v1's- v1's- 52'9- 6€°9- ANE 50°G- 50'G- ve'g- 88'v- ssed||eqiaxseg

r1- 6T'T- 28 1- 8G'1- 8°0- 18°0- 26°0- 9.'0- 9¢°0- abelany

TLT- 95'1T- €0'T- 9¢'1- GLT- 1€°T- £e'T- 68°0- 52°0- stied pm

8 T- eT'1- €21 8G'T- 8.0- 99°0- 56'0- 99°0- 61°0- SMaN &

60°T- ¥8'0- Ly'T- rT- ov'0- 1§°0- ¥S'0- L0~ 8¢°0- 9l1qON

ve'T- €e'1- 95'1T- 16°T- Tr0- 26°0- 180~ £0°'T- 29°0- uewWwaio

4SOV 9 -WTw iv-nN1 tysoflL 2071 121N SAV-TSv. AO\OV mu.ﬁm H_m|Dm



vy et -

TT€T
99'TT
¥S'G-
vel-
¢ee-
6€°G-
€6’ vl
€€'9-
G0°¢-

0T'TT-

T1°¢t1-
89 11~

90°¢-
89°G-
08'vT-
G.°9-
06°¢-

(% ‘erenig-ag) wuoyre|d SAV Ul SWI0JSURIIIUBIBLIIP JO S1NSay [eluswiiadx3 ¢-¢ ajqel

T

9L'9-

¢0°¢-
€6'9-
¥8'GT-
997/~

v.°8- et v ot
12°8- 950 656

8% 0T~ 0LTT- 18°TT-

v oo s T 11-
¥8°01- S9'11- o 11- I
SO'TT- ST2T- RI'CI- 1
vlL-

€6°¢- o 16 - T
l 08°0- 69°0-

29°0- 28°0- 18°0-

16°€- €5 - 05'¥-
62°€T- €9 YT~ vovI-
226" €6°G- 16°G-

19°T- 66°¢- T 98¢

09°1-
G0'¢-
ELY-
9L'VvT-
¢1'9-
00°¢-

9v°01-
e 01
Ly Ol-
¢0°8-

L6°0-
¢6'T-
1448%
vy vi-
8Y°G-

19°¢-

abelony
clionels
InoHysny
sn1e)
l1alreqisysegd
Jamojjuns
uellisapad
jowoury
afelony
usaney
WBIN
InogleH
Maid

Ao
diysbig

0l

2B X



70 ov'0 70 A LE0 ov'0 ov'0 ov'0 LEO0 abelsany

LE0 LE0 9€°0 vE0 G0 L0 or0 LE'0 T€°0 LTEN
L9°0 L9°0 890 69°0 19°0 L9°0 99°0 L9°0 £€9°0 7PPOSIqON «M
60 9e'0 9€°0 L€°0 LE0 LE0 LE0 GE'0 GE0 3seAlamo|4 mw
020 0Z'0 220 A4 LT°0 6T°0 0Z'0 020 6T°0 sasioHaoey <
6€0 6€0 6€0 6€°0 v€'0 L€0 LE0 8¢€'0 LE0 8u89s Alred
o L€0 Y0 Zvo 8€°0 6€°0 6€°0 8E'0 GE0 lewod
90 vv0 810 810 9€'0 A4 o ] 70 [11aalleqisyseg
v2'0 €2°0 9zZ'0 920 810 220 220 6T°0 220 abeiany
800 100 rAN0) 0T'0 100 90°0 90°0 200 800 $9sIOHBIRY < s
Ge0 V€0 €€°0 v€0 v€0 vE0 vE0 ve'0 Ze0 ssenbsdg > <M
820 920 0£0 0€'0 12°0 G20 S0 9T'0 vZ'0 alqgngbuimolg
920 €20 820 620 V10 €20 zz0 v2'0 220 ssed||eqiaysed
900 900 90°0 100 ¥0°0 v0°0 ¥0°0 €00 200 abelany
800 80°0 G500 L0'0 600 900 L0°0 v0°0 100 slied mm
800 90°0 90°0 800 70°0 €0°0 G500 €00 100 SMaN i
¥0'0 €00 900 S0°0 100 200 200 200 200 311qOIN
500 500 .00 800 20°0 70°0 €00 v0°0 200 uewaiod oA

4SONvL 19 -WTlvi iV-WTIvi tysofly 20711 N\\\l_l \\\\n_l |_|O_ N SAV-ISL AmUv mzm&:om



LEO
8€'0
LY'0
vv'0
ov'0
1270
€0
LT°0
S0°0
800
0¢'0
70
6T°0

80°0

LEOQ
6€°0

LY0
70
6€°0
G0
¢€0
LT°0
S0°0
L0°0
120
Tv°0
120

80°0

(gp "dNSd-ag) wiope|d SAY Ul SWIOJSUBIIIUBIBLIP JO S} NSBY |RIUBWIIBAXT ¢-1 8|qel

Ev0
EV0

8¢€°0

16°0
0v'0
6€°0
LE'0

1¢°0

1T°0
9¢'0
vv°0

¥¢'0

Ev'o
vv°0
6€°0
50
¢SS0
70
6€°0
9€'0
1¢°0
€T0
110
9¢'0
v¥0
€¢'0

0T'0

6¢°0
€€0
6C°0
6€°0
6¢'0
e 0
0ro
G¢'0
¢1o
¥0°0-
¢0°0
¥1°0
9€0
970

G0°0

v€0

8€°0

Ev'0
9€0
LE0
0¢'0
0€0
S1°0
€00
900
LT°0
00
810

80°0

€0
8¢'0
140
v¥°0
LEO0
LE0
0¢'0
0€0
Gro
€00
90°0
LT°0
0¥'0
8T'0

80°0

G€0
8€'0
9¢°0
Ev'o
8¢€'0
9¢°0
G¢'0
0€'0
910
90°0
L0°0
8T°0
70
8T0

80°0

1€°0

LEO
0€'0
€e0
0¢°0
8¢'0
v1°0
¥0°0
L0°0
€T°0
6€'0
9T'0
L0°0

abelsany
InoHysny
cuonels
uellsapad
Touowiy
anllglleqisyseg
Jlamojjuns
snjoe)
abesany
uaney
WYBIN
InogleH
Mai1)

Ao

diyshig

20X o



BQSquare (WQVGA)

=
3
I31
3
1
? o
K
N
M2
d o
8
2
7
Anchor
00 600 800 1000 1200
Bit Rate (kbps)
- (a)
BasketballDrill (WVGA)
-ATJoshi
[ -+-LLMia-Al
§>32 + T_MCSF
N ALLMICT-BI
a
4 T_HI
31
4 T_Hi2
— T_S1-AVS
Anchor
600 800 1000 1200 1400 1600 1800 2000 2200
Bit Rate (kbps)
(b)

Figure 4-11 RD curves for (a) BQSquare (WQVGA) and (b) BasketballDrill (WVGA)



Crew(720p)

"e"T-Joshi
—T_MCSF
tLLM( CT-BI
AMICT
+T_HI2

T S1-AVS
Anchor
355
1000 2000 3000 4000 7000
Bit Rate (kbps)
M
Sunflower (IOSOp)
44
435
43
—LLMICTAI

g(i"‘z 5 +T—Joshi

: a2 —LLMICT-B1

(si —T_MCSF

% MICT

"AT—HI1

405 T_HI2
40 -T_Lee

Anchor
1000 2000 3000 4000
Bit Rate (kbps)
(b)

Figure 4-12 RD curves for (a) Crew (720p) and (b) Sunflower (1080p)



4.8.2 Subjective Evaluation

In this section, the subjective qualities of the decoded picture of different sequences
will be shown. They have different resolutions and coded with different

transforms.

The differences of subjective quality are not significant in lower resolutions such as
WQVGA and WVGA. However, they are still observable. "BQSqaure" is a scene
with high contrast. It is very obvious that ringing artifacts locates around the
objects boundaries. This is significant in the anchor. When 16x16 transform is
enabled, these artifacts are reduced. "BasketballDrill" contains regular local
motion. Slight blocking artifacts are observed in Anchor. Again, these artifacts
are reduced when 16x16 transform is used. In HD sequences, the distortions can be
observed more easily. In "Crew", obvious blocking artifacts are observed in many

smooth regions. The order-16 transforms dramatically suppress these artifacts.

However, the differences among different order-16 transforms are not significant.

They can hardly be distinguished from their picture quality.



€ev

aHy,  (3) IHY, (9) IOIN (P)

STISY, (9 Toyouy  (q) eusuo  (e)

SAV UL 19V - ¥ w1deq)



ve-v

'Sy = dO 18 papod dwrey 87 *(VOAOM) LOLISON (D 19-LOINTT (D
arenbg O, Jo Aenb 0Anoslqng ¢1-i 231

ysolL  (u) so11  (B)

IV-121NTT (1

VIV vvHI Wi



N\Eh @v

Sav-ISy, (o)

SAV UL 19V - ¢ wideq)

Sev

g, (9)

loyouy  (q)

ILDOIN (P)

[euIS1IO

(®)




L€ = dO Ye papod ‘swel) WOz ‘.(VOAM) 1214SON (%) 19-101N171 (D
[jaajreqiayseq,, Jo Aljenb aanoalgns ¢1- ainbiq

IV-1O1NTT (1) 1ysofL  (y) (6)

SAV UL 19V - ¢ 1deq)



mLr ) HHL o (9) 121N (p)

SAv-Ise () Joysuy () [eutbio (o)




8¢

Y€ = dO e papod Qe ,,79 LOTASON (1) 19-LOINTT (D
“{dozL) ma1D,, jo Aifenb aanosfqng ¢1-f am3rg

1L (3)

[V-LOINTT (D mery, ()

SAV W 19V -  101dey)



4.8,3 Usage of order-16 Transform

The average usages of order-16 transform (LLMICT-AI) are shown in Figure 4-16.

Let us discuss in 4 different aspects.

. Frame Type: It is shown that the usage of order-16 transform in AVS platform
is pretty high in different frame types. They are 20% to 80% in I-frame, 20%
to 50% in both P-frame and B-frame. The usage in I-frame depends on the
picture nature. When a video sequence contains larger smooth region, the
usage of order-16 transform will be higher. For example, "Flowervase™ has an

average usage over 70% in I-frame while "PartyScene" is only around 20%.

. QP: In our experiment, QPI < QP2 < QP3 < QP4. We can notice that as QP
increases, there is an obvious increasing trend in I-frame while there is a
decreasing tread in B-frame. The trend in P-frame is not that obvious.
Sequences with different resolutions have different trends as QP increases.

The trend is changing from increasing to decreasing as the resolution increases.

. Resolution: There is an increasing trend in all different frame types as the
resolution increases. It is more obvious in I-frame that the usage increases
from around 20% to almost 80%. It is not obvious in B-frame but the trend is

still observable.

. Vs. H.264/AVC: One may compare the statistics in this AVS platform with the
one obtained in H.264/AVC platform in last chapter. It is shown that the usage
in I-frame in AVS is much higher than in H.264/AVC, especially for HD

sequences. This is because the usage of intra 16x16 prediction in these



sequences is high. However, the transform selection in the MB with this
prediction is compulsory to order-16 transform in AVS. It can be either order-4
or order-16 transform in H.264/AVC. Thus, the usage in AVS is higher than
H.246/AVC. It can also be noticed that, in AVS platform, the usage is lower in
P-frame while it is higher in B-frame (with respect to H.264/AVC). This is
because they use different picture structures. H.264/AVC uses Hierarchical B
(Hir-B) Structure (IbBbPbBbP.. ¢) while AVS uses IBBPBBP... structure. The
P-frame period in H.264/AVC is longer than AVS such that the predicted
residue is usually larger in the P-frame in H.264/AVC. Thus, less skip mode is
used and hence the usage of order-16 transform is relatively higher in
H.264/AVC. In contrast, the Hir-B structure reduces the predicted residue in
B-frame (comparing with IBBPBBP... structure) such that the usage of skip
mode in these frames is large. This implies a lower usage of order-16

transform in B-frames with Hir-B structure.



The average usage of order-16 transform in I-frame

CIF (352x288) WQVGA (416x240)  WVGA (832x480) 720p (1280x720)  10SOp (1920x1080}

(a)

The average usage of order-16 transform in P-frame

CiF (352x288) WQVGA (416x240 | WVGMa32x480) 720p (1280x720)  1080p (1920x1080)

(b)

The average usage of orcler-16 transform in B-frame
ta%

CIF (352x288) WQVGA (416%240)  WVGA (832x480) 720p (1280x720)  10SOp (1920x10B0J

(©)

Figure 4-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c) B-frame.



4.9 Conclusions

In this chapter, we proposed an ABT platform for AVS coding standard as described
in Section 4.2 to Section 4.7. Proposed order-16 integer transforms discussed in the
last chapter are integrated into this platform and tested. They are compared with
other existing order-16 transforms. Experimental results show that a significant
gain is obtained when order-16 transform is used in video coding especially in HD
sequences. The proposed transform, LLMICT-AI, gives a maximum bit rate
reduction of 15.89% (equivalent 0.44 dB) in “Crew’ - sequence. On average, it
offers a bit rate reduction of 8.2% (equivalent 0.30 dB). Other proposed transforms
such as LLMICT-BI, MCSFICT, Ts! - » MICT, T [J ‘4nd T{iif offer average bit rate
reductions over 6.4% (equivalent 0.23 dB). These transforms not only improve the
objective coding performance but also the subjective quality. It is shown that the
picture quality is improved when these transform is used. The blocking artifacts are

significantly reduced.

We can conclude that our proposed ABT platform with proposed order-16
transforms significantly improves both the objective and subjective coding

performance of AVS.



4.10 References

[1]

[2]

(3]

[4]

[5]

(6]

[7]

[8]

(9]

[10]

[11]

[12]

GB/T20090.2 information technology — advanced audio video coding standard Part 2:
Video, 2006.

Fan Liang, Siwei Ma and Feng Wu, "Overview of AVS video standard,” International

Conference on Multimedia and Expo, vol. 1>pp423-426, 2004,

Lu Yu, Feng Yi, Jie Dong and Cixun Zhang, "Overview of AVS-Video: tools,
performance  and complexity, “ Visual Communications and Image Processing, Proc. of

SPIE vol. 5960, pp 679-690, July 2006.

Lu Yu, Sijia Chen and Jianpeng Wang, "'Overview of AVS-video coding standards,”

Signal Processing: Image Communication, vol. 24, issue 4, pp 247-262, April 2009.

“Next Generation AVS Video Coding Specification Version 2.0,” AVS-N1590, March
2009. [Chinese]

“Next Generation AVS Video Coding - Callfor Proposal,” AVS-N1591, March 2009.

[Chinese]

C. Zhang, L. Yu, J. Lou, W. K, Cham and J. Dong, “The Technique of Prescaled Integer
Transform: Concept, Design and Applications,” IEEE Trans on CASVT, vol. 18, no. 1,
pp 84-97, 2008.

Q. Wang, D. B, Zhao and W. Gao, "Context-Based 2D~VLCEntropy coder in AVS Video
Coding Standard,” Journal of Computer Science and Technology, vol. 21, no. 3, pp

315-322, May 2006.

W. K. Cham, C. K. Fong, Jie Dong, K. N. Ngan, H. M. Wong, Lu Wang, Yan Huo,
Thomas Pun, “Adaptive Block-size  Transform for AVS-X” AVS Document
AVS-M2284, 2008, [Chinese],

W. K. Cham, C. K. Fong, Y. L. Fong, K. N. Ngan, Y. Liu and Carmen Cheng, ‘“Adaptive
Block-size Transform towards AVS 2.0’ AVS Document AVS-M2610, September
2009.

C. K. Fong, W. K. Cham, Y. Liu and K. M, Cheng, “Adaptive Block-size Transform

towards AVS 2.0,” AVS Document AVS-M2647, December 2009.
W. K. Cham, C. K. Fong, Y. Liu and K. M. Cheng, “An Investigation of Order-16

4-43



[13]

[14]

[15]

[16]

[17]

[18]

[19]

Transform in AVS-M2606 ABT @ ' AVS Document AVS-M2657, December 2009.

C. K. Fong, W. K. Cham, Y. Liu and K. M. Cheng, “Adaptive Block-size Transform
towards AVS 2.0, AVS Document AVS-M2666, March 2010.

Jie Dong, K. N. Ngan and W. K. Cham, ‘“‘Adaptive Block-size Transform for AFS
X-profiie, “ AVS Document AVS-M1771, March 2006,

Yunfei Wang, Xunan Mao, Zhongmou Wu, Yun He, "AVS ABT Coding Technical
Proposal,” AVS Document AVS-M2303, 2008. [Chinese]

Xunan Mao, Yunfei Wang, Yun He, W. K, Cham, C. K. Fong, Jie Dong, K. N. Ngan, H.
M. Wong, Lu Wang, Yan Huo, Thomas Pun and Carmen Cheng, “Adaptive block size
coding for AVS-X profile, “ AVS Document AVS-M2372, 2008, [Chinese]

Jay Loomis and Mike Wasson, “VC-J Technical Overview," October 2007. [Online]

Available : http //www microsoft com/windows/windowsmedia/howto/articles/vcl techoverview aspx

"AVS2 Common Test Conditions (Draft) - AVS Document AVS-N1670 > Dec. 2009.
[Chinese]

G. BjOntegaard, "Calculation of Average PSNR Differences between RD-curves,*
ITU-T SG16/Q6, Document VCEG-M33 - April 2001. [Online] Available:
http://wftp3.itu.int/av-archyvideo-site/0104_Aus/


http://wftp3.itu.int/av-archyvideo-site/0104_Aus/

Chapter 5 Transform Domain

Pattern Matching

5.1 Introduction

Pattern matching is a fundamental process in many image processing and computer
vision applications. It involves matching a given image pattern to a target image by
means of evaluating the similarity (or difference) between them. Suppose a h<k
pattern p is to be matched with a windowed target image w of the same dimension.
Both p and w are defined in a space . The difference d between them is also in

the same space.
d=p-w. (5.1)

The best candidate yY©#{ is usually denoted as the candidate that gives the minimum d

for all possible w in the candidate pool W.



To quantify the difference d, different measures are used. For example sum of

absolute difference (SAD) and sum of square difference (SSD) are commonly used.

k] M

dSAD(P,W): jj*ﬁk( o e (53)

D (P> = I, » 7AMAYT ¢ G 4)
10 70

The choice of measure is application dependent. No matter which measure is used,
the matching process is a very computation intensive work. Many fast pattern
matching methods have been proposed to speed up the pattern match process and to
maintain the accuracy at the same time. These fast pattern matching algorithms can
be classified into two main classes. The first one is reducing the complexity of the
similarity evaluation. Every possible candidates in the target image are evaluated but
with simplified evaluation metric. One of the typical examples is Fast Full Search
(FFS). The accuracy of this class of algorithms is the same as Exhaustive Full Search.
No degradation is observed. As every candidate is examined, however, the
computation load is still very high. In contrast, another class of the fast algorithms
targets to reduce the size of the candidate pool W. Only portion of the candidates is
examined. A number of fast motion estimation methods [I]-[3] are in this class of
pattern matching, such as Three-step search and Diamond search. These algorithms
are significantly simpler than fast full search. However, there is a trade-off between

this speed-up and the accuracy. As only some but not all candidates are examined,

the best candidate may not be examined and hence, the accuracy is lowered.



5.2 Pattern Matching in

Walsh-Hadamard Domain

Hel-Or [7]-[9] proposed a high speed pattern matching algorithm for noisy images.
This algorithm projects the pattern and the windowed target image into the 2-D Walsh
Hadamard (WH) domain. The Euclidean distance between the projected pattern
patch and the projected target image patch are evaluated. Mismatched patters are
eliminated in an early stage. It is fast but its performance is approaching to the full
search. The search result is in pixel accuracy. It can be a preliminary result for
sub-pixel search. Mak and Li proposed a motion estimation method using Hel-Or’s

fast pattern matching algorithm.

In projection-based pattern matching, p and w projected onto the m™ WH basis
(denoted as u”) are denoted as bp(m) and bw(m) respectively. Using

Cauchy-Schwartz inequality:

IWAluLd (5.5)

Consider the Euclidean difference:

p-w =
ul(p-w) w (5.6)
>
UJ

When there is a collection of u” such that U = [ui, U2, ... u”] and the corresponding

project collection b = [*i, bj, ... bm], (5.6) can be expressed as;



(5.7)

This is the distance lower bound for a set of projections vectors. This lower bound
is getting tighter and tighter when the number of projections increases. As a result,
the pattern match can be performed in WH domain in an iterative manner. After each
projection, the candidates whose lower bound value is greater than a threshold are
rejected. The lower bound values of the remaining candidates are updated before
next projection. This is arecursive process until a predefined number of best matches
are found or the maximum number of projection is reached. WH basis vectors have
strong energy packing ability such that most of the energy is packed in the first few
projections. As a result, the comparison can be terminated in first few projections.
Majority of the mismatch candidates are removed from the candidate pool quickly and

hence less computation is required.

Besides the high speed of this algorithm, this algorithm also has an accuracy same as
full search. It also has a very high robustness. It is not affected by the difference in

illumination and noisy environment.

Based on the above Hel-Or's idea, Li and Mak proposed a faster pattern matching in
Walsh-Hadamard transform domain called Fast Walsh Search (FWS) [10]. In this
fast pattern matching, two techniques, Block Pyramid Matching and Partial Sum of

Absolute Difference, are proposed.



5.2.1 Block Pyramid Matching

Block Pyramid Matching (BPM) is an algorithm to compute the WH projections in a
hierarchical structure such that intermediate result can be reused. As aresult, several
projections can be generated at the same time. « 7t v r block can be divided into four

blocks. The DC or the (0, 0/ | projection of the TYT block can be

decomposed into the sum of the (0> 0)* projections of the four sub-blocks.
The (0 I)th - the (1, 0/ | and the (1, projections of the TYT block can be

A fe %
decomposed into combinations of the (0, 0) projections of the four xX2—

sub-blocks in the same manner. Recursively, they can be decomposed into
combinations of the (0 > projections of 2x2 sub-blocks. In Figure 5-1 > an example
of BPM is shown. The DC of the 8x8 block can be decomposed into the sum of DC
of the 4x4 sub-blocks. The DC of each 4x4 sub-block can be further decomposed
into sum of DC of the four 2x2 sub-blocks. When the pattern sliding window slides
by 2 pixels, the DC of each 2x2 sub-blocks can be reused. As a result, the
intermediate results are shared among different sliding window positions and hence

the computation can be significantly reduced.

Figure 5-1 Example of BPM with an 8x8 block.



5.2.2 Partial Sum of Absolute Difference

In Hel-Or's algorithm, the projected distance is measured by the Euclidean distance
which involves square operations or multiplications. In Li and Mak's algorithm, it is
suggested to be replaced by absolute difference. It is called the partial sum of
absolute difference (PSAD, or partial absolute difference in [10]). If {p, w; q) is
the PSAD of g projections between p and w, (lp, w; q) is given as:

)-lujw
O(P>w;")y=a)(p,w;F—1)+ for”> land O(p,w;0) =0. (5.8)

1
After each projection, PSAD of the candidates in the pool are calculated. If one's
PSAD is larger than a threshold To, this candidate will be removed from the pool. ltis
in a recursive manner until the number of candidates in the pool is less than a preset
threshold or the maximum projection is reached. The use of PSAD makes the
algorithm multiplication-free and closer to metrics in the codec which measure the
sum of absolute difference (SAD) instead of SSD. However, the threshold To for
eliminating mismatch candidates is not easy to determine. Here we propose a

statistical threshold and the Block Adaptive Threshold.

5.2.3 Statistical Threshold

It is obvious that the best match candidate may not always have the minimum PSAD.
Suppose the PSAD for the best match candidate and minimum PSAD in the candidate

pool are d®™" and respectively. There is a real value T such that



Chapter 5 - Transform Domain Pattern Matching

For all candidates, there is a relationship that:

0 =0™" +t (5.10)

where tis areal value random variable. The probability that t>T

=F(©) O (511)

When the probability density function (pdf) of t, pt(t), is known, (5,11) becomes:

/0 A (5.12)

Although pt{t) cannot be found analytically yet, it can be found empirically. It is
shown in Figure 5-2. If we can tolerate a very low miss rate such that the best match
may be removed from the candidate pool at a very low probability P /%, we can find a

value To such that:

% (1) (5.13)

The minimum value of TQthat satisfies (5.13) is the threshold to eliminate the

mismatch candidates.



X 10’ pdf of the t

0¢

aomen

0.4

02

-4000 -3000 -2000 -1D00 0 1000 2000
t

Figure 5-2 The probability density function of/?,(/).
In block-based motion estimation, the candidates are in the search range of (R, #R).
Mak found that the candidate located at (0, 0) is very likely to have O =!1 “ | " Let [

of this candidate be Oo, (5.9) and (5.10) become:
O =00 +r, (5.14)
O =00+/. (5.15)

Now, ¢ is defined as the difference between O and Oq. Its pdf can also be found
from a set of training sequences and the shape is similar to that in Figure 5-2. The
threshold TQ can be found with (5.13). Mak found that when TQ is equal to 0 and O is
obtained from the first two projects (i.e. 2 in (5.8)), the miss rate is acceptable in a
balance between the computation and the accuracy. This threshold, TQ = 0, is

adopted in the fast motion estimation in [10].
5-8



5.2.4 Block Adaptive Threshold

The statistical threshold discussed in the last section is a fixed threshold at a fixed
acceptable miss rate. This works very well for majority of the blocks. However, the
fixed threshold may be over-estimated for very smooth blocks or under-estimated for
highly-textured blocks. This leads to inefficient mismatch elimination for those very
smooth blocks and over-elimination of the candidates for highly textured blocks. As
a result, we proposed an adaptive threshold which depends on the nature of the pattern
block p. For simplicity, the 8x8 pattern blocks are classified into two types: smooth
blocks and texture blocks. Each block type has its own pt{t) and hence its own
threshold TQ. This is called Block Adaptive Threshold. Using the definition in
(5.15), the value of To of these block types are found (Table 5-1). When the target
miss rate is even as low as 30%, it is shown that affect of the RD performance is very
minor. The number of the candidates for smooth block significantly reduces while
the miss rate for texture block is lowered. Overall, the remaining candidates are
reduced by 10%. However, the time for the matching process does not improve much

([ 1%bBecause the classification of the pattern block also takes time.

Target  Miss To

Rate (%) Texture Block Smooth Block
1.0 280 40

5.0 73 9

10 16 1

20 -20 -3

30 -48 -6

40 -110 -32

Table 5-1 Block adaptive threshold of texture blocks and smooth blocks



5.3 Experiments

A Variable Block Size Motion Estimation (VBS-ME) algorithm based on FWS
(denoted as FWS-VBS algorithm) is built [10]. This algorithm is integrated into the
H.264/AVC reference software JM 10.1 [11]. FWS-VBS is compared with other
VBS-ME algorithms implemented in the reference software. The VBS-ME to be
compared including Fast Full Search (FFS), hybrid UMHexagons (UMH) [12],
simplified UMHexagons (SUMH) and Enhanced Predictive Zonal Search (EPZS)
[13]. Video sequences with frame resolution from GIF (352x288) to HD (1280x720)
are tested. The GOP structure is IPPPP... is used. Only the first frame is
intra-coded. QP= {16, 20, 24 and 28) are tested. The BD-bitrates described in [14]
are measured. They are shown in Table 5-2. The best case in each sequence is
bolded. It is obvious that the test VBS-ME algorithms have similar RD performance
as FFS. The average BD-bitrates are less than 0.5%. In comparison, EPZS performs
the best. It is followed by UMH, FWS-VBS and SUMH. However, without
professional optimization, FWS-VBS is just slower than SUMH. It only requires
20% of the time for FFS on average. In [10], an early mode stop (EMS) is proposed

such that the required computation time is almost halved.



Resolution

GIF
(352x288)

SIF
(352x240)

SD
(704x576)

HD
(1280x720)

Average

Resolution

CIF
(352x288)

SIF
(352x240)

SD
(704x576)

HD
(1280x720)

Average

Sequences

Akiyo
Coastguard
Container
Foreman
Mother
News
Tempete
Mobile
Stefan
City

Crew
Harbour
Ice

Soccer
Mobile-Cal
Night
Panslow
Raven
Sailormen
Shuttle-Start

Table 5-2 BD-bit rates ofdifferent VBS-ME algorithms

Sequences

Akiyo
Coastguard
Container
Foreman
Mother
News
Tempete
Mobile
Stefan

City

Crew
Harbour
Ice

Soccer
Mobile-Cal
Night
Panslow
Raven
Sailormen
Shuttle-Start

UMH
0.05
-0.78
0.03
0.80
0.40
0.12
-0.53
-1.07
-1.79
0.60
0.03
-1.25
1.45
-0.46
-0.26
-0.26
0.91
-0.04
-0.05
0.51
-0.08

BD-bit rate compare with FFS (%)

SUMH
0.40
-1.31
0.11
2.84
1.09
0.73
-0.42
-0.70
-1.87
0.48
0.00
-2.30
2,44
-0.64
-0.26
-0.09
3.22
1.29
0.04
1.30
0.32

EPZS
0.24
-1.00
0.18
0,60
0.69
0.09
-0.56
-1.14
-2.08
0.23
-0.18
-1.46
0.92
-0.47
-0.33
-0.55
0.78
0.46
-0.25
1.07
-0.14

FWS-VBS
0.15
-0.52
0.03
0.30
0.28
0.38
-0.30
-0.73
-1.34
0.00
0,16
-0.95
1.26
-0.21
-0.26
2.23
0.39
0.23
0.04
0.61
0.09

Percentage of ME time compare with FFS

UMH
12.9
31.1
154
22.8
14.0
13,9
28.3
31.0
26.3
28,8
29.8
32,0
14.6
25.4
27,7
26.0
22.1
17.8
29.4
12.6
23.1

SUMH

9.5
20.0
10.2
131
10.1
10.1
16.8
20.0
16.9
17.8
15.2
18.7
10.2
15.0
16.2
13.9
11.9
115
16.4

8.7
141

EPZS
13.6
27.4
16.3
21.0
155
15.9
24.9
27.2
24.6
25.9
23.9
27.5
14.9
23.3
23.7
22.8
18.3
18.6
24.4
12,5
21.1

Table 5-3 Computation time o different VBS-ME algorithms

FWS-VBS
11.8
28.4
13.2
19.5
12.8
13.0
23.8
27.1
24.8
26.9
23.5
29.5
131
22.7
23,0
24.1
17.9
16.0
26.5
10.8
20.4



5-4 Conclusions

In this chapter, a transform domain pattern matching method called Fast Walsh
Search (FWS) is described. It was proposed by Li and Mak based on Hel-Or's
work. The matching is in Walsh-Hadamard transform domain in which pixel
energy in the patch are packed into several transform coefficients. Less comparison
is required and hence the matching process is speeded up. To further increase the
speed of the process, Block Pyramid Matching (BPM) and Partial Sum of Absolute
Difference (PSAD) were suggested. One of our contributions to this work is
derivation of a statistical threshold for eliminating the mismatch candidates. This
threshold can be found by an empirical pdf when tolerance of the missing the best
match is specified. With this threshold, majority of the candidates are removed
from the candidate pool while the best match is kept. This effectively speeds up the
matching process. Another contribution is the investigation of the Block Adaptive
Threshold. Different blocks have different nature. Smooth blocks and textured
blocks should have different thresholds. Experiment shows that the threshold
values for these two kinds of block have a big difference. Although the Block
Adaptive Threshold cannot give a significant speed-up to the process, it shows a
possible direction to do so. The FWS was integrated to H.264/AVC reference
JMIO.I. It is compare with some state-of-the-art motion estimation algorithms
such as UMH, SUMH and EPZS. The accuracies of these motion estimation
algorithms are similar but the proposed FWS is just slower than the fastest algorithm

SUMH. FWS only takes 20% of the computation time for the Fast Full Search.



5.5 References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

T. Koga, K. linuma, A. Hirano, Y. lijima and T. Ishiguro, ‘“Motion compensated
interframe  coding for video conferencing,” in Proc. Nat, Telecommunication
Conference, pp. G5.3.1-5.3.5, 1981.

L. M. Po and W. C. Ma, “/l novel four-step search algorithm for fast block motion

estimation” |EEE Trans, on CASVT, vol. 6, no. 3, pp. 313-317, June 1996.

S. Zhu and K. K. Ma, "A new diamond search algorithm for fast block-matching motion

estimation,” IEEE Trans, on Image Processing, vol. 9, no. 2, pp, 287-290, Feb. 2000.

Chun-Man Mak, Chi-Keung Fong and Wai-Kuen Cham, “Fast Motion Estimation for
H.264/AVC in Walsh Hadamard Domain,” IEEE Trans, on CASVT, vol. 18, no. 6, pp.
735-745, June 2008.

C. M. Mak, N. Li and W. K. Cham, “Fast motion estimation in Walsh Hadamard
domain,” Proceeding of International Symposium on Intelligent Signal Processing and

Communication Systems, pp. 349-352, 2005.

N. Li and W. K. Cham, "Statistical threshold for real time pattern matching using
projection kernels,” Proceeding of International Symposium on Intelligent Signal

Processing and Communication Systems, pp, 57-60, 2005.

Y. Hel-Or, H, Hel-Or, “Real time pattern matching using projection kernels,”
Proceeding of IEEE International Conference on Computer Vision, Vol. 1, pp,

1486-1493 » Oct. 2003.

Y. Hel-Or, H. Hel-Or, "Real time pattern matching using projection kernels,"” IEEE
Trans on PAMI, Vol. 27, no. 9’ pp. 1430-1445, 2005.

M. Ben-Yehuda, L. Cadany and H. Hel-Or, "Irregular Pattern Matching using
Projections,” IEEE International Conference on Image Processing, Vol. 2, pp. 834-837,
2005.

N. Li, C. M. Mak and W. K. Cham, “Fast block matching algorithm in
Walsh-Hadamard domain,” in Proc. Asian Conference of Computer Vision (ACCV),
pp. 712-721, Jan, 2006.

H.264/AVC Reference Software JMIO.I [Online]. Available:



[12]

[13]

[14]

http://iphome.hhi.de/suehring/tml/download/oldjm

Z. Chen, J. Xu, Y. He and J. Zheng, “Fast integer-pel and fractional-pel motion
estimation for K264/AVC’” Journal of Visual communication and Image
Representation, vol. 17, no, 2, pp. 264-290, Apr. 2006.

A. M. Tourapis, O, C. Au and M. L. Liou, “Highly efficient predictive zonal
algorithms for fast block-matching motion estimation,” IEEE Trans, on CASVT, vol.
12, no. 10, pp. 934-947, Oct. 2002.

G. BjOntegaard, “Calculation of Average PSNR Differences between RD-curves
ITU-T SG16/Q6, Document VCEG-M33 > April 2001. [Online] Available:
http://wftp3 .itu.int/av-arch/video-site/0104_Aus/


http://iphome.hhi.de/suehring/tml/download/oldjm
http://wftp3

Chapter 6 Distribution Modeling of
Predicted Residue Transform
Coefficient

6.1 Introduction

A number of works has been done in the analysis of the transform coefficient (usually
refer as DCT coefficient) distribution of images [I]-[7]. They are commonly
expected to be in Laplace distribution. As a result, it is assumed that the DCT
coefficients are in Laplace distribution in many applications such as image coding.
In fact, the transform coefficient distribution is a fundamental to many applications,
such as rate control, quantization noise analysis and transform-based restoration. An
accurate distribution model is very important to these applications. Beside Laplace
distribution, the transform coefficients have been proposed to be modeled as mixture

of Gaussian and Generalized Gamma Distribution.



In video coding, predicted residue is transformed instead of the pixel data.
Therefore, the distribution of the transform coefficient of predicted residue should be
focused. It is commonly expected to be in Laplace distribution also. It is recently
found that, however, the predicted residue is closer to Cauchy distribution than
Laplace distribution. In [8] and [9], the transform coefficient is modeled in Cauchy

distribution and more accurate rate and distortion models are achieved.

Usually, the parameters of the distribution are estimated from the transform
coefficients. In this chapter, the parameters of the Cauchy distributed transform
coefficient are going to be estimated from the predicted residue without being
transformed. First of all, the predicted residue is verified to be Cauchy distributed.
After that, some properties of Cauchy Distribution will be described. Using these
properties, the distributions of the transform coefficient will be derived. Experiments

will verify our proposed model.

6.2 Distribution of Predicted Residue

In video coding, prediction is used to reduce the temporal and the spatial redundancy
in pixel data. Intra-prediction reduces the spatial redundancy while inter-prediction
reduces the temporal one. The predicted residue is sent after being transformed and
quantized. In general, the residue from intra-prediction has a larger variance than that
from inter-prediction. Figure 6-2 shows the predicted residue of the video sequence,
Foreman. The upper is the intra-predicted while the lower is the inter-predicted.
Their histograms are plotted in Figure 6-2. It is shown that the intra-predicted residue

has a wider spread (i.e. larger variance) than the inter-predicted. It can be shown that



the distribution of the intra predicted residue is closer to Cauchy distribution while the

inter predicted is closer to Laplace distribution.

P Vit

Figure 6-1 (a) The intra-predicted residue and (b) the inter-predicted residue of

"Foreman".



The Intra Predicted Residue of Foreman
Sample Data

Laplace Distribution
Cauchy Distribution

7000
6000

50D0

iy I
-100 -60 -40 100
residue value

(@

The Inter Predicted Residue of Foreman

Sample Data
Laplace Distribution

Cacuiny Disrtibution

2.5

05

L. MTMMMMMX*
-80 -60 -40 -20 0 20 40 60 80 ICD

Residue Value

(b)
Figure 6-2 The distribution of (a) the intra-predicted residue and (b) the

inter-predicted residu¢’of "Foreman".

6-4

xT



6.3 Properties of Laplace Distribution

Laplace distribution is described by the probability density function (pdf):

exp e (6.1)

Its mean and variance is given by ~ and respectively. Its parameters are

commonly estimated by the maximum likelihood (ML) estimator [10]. Their

estimated values are:

ju is the median of the samples, and (6.2)

6.4 Properties of Caychy Distribution

Cauchy distribution can be described by the pdf:

(6.4)

In this pdf, xo is the location parameter, which is the median and the mode of the

distribution and /is the scale parameter, which describe the spread of the distribution.

The standard Cauchy random variable (RV), X, is defined as:

(6.5)

The Cauchy RV can be expressed as:



(6.6)

"eNoitr

Cauchy distribution is an example of a more generalized version of the central limit
theorem. It is a stable distribution such that the sum of independent Cauchy

distributed RV is also in Cauchy distribution;

N~

(6.7)

However, there is no mean variance defined for Cauchy distribution. This makes

the parameters not easy to be estimated.

6.1.1. Parameter Estimation Method 1

The simplest way to estimate the parameters is approximating its median by its

ensemble mean:

(6.8)

And from (6.6), the peak of the pdf is:

(6.9)

As aresult, y is estimated by:

7 = (6.10)



This method is very simple but not very robust. The accuracy is low when the
samples are noisy or insufficient number of the observed data. The empirical pdf is

required.

6.1.2. Parameter Estimation Method 2

Another method is by means of entropy. The entropy of a Cauchy distribution is:
H “\og, [A7vr). (6.11)

When the pdf or the histogram of the observed samples is known, the entropy of

these observed samples in TV bins is:

N

Ho (6.12)
™
where is observed probability density at x,. Since these two entropies should
be the same, hence:
(6.13)

This is a robust method with high accuracy. However, the empirical pdf is still
needed and the entropy of the observed data has to be found. This requires more

computation and memory.

6.1.3. Parameter Estimation Method 3

In video coding, the range of the predicted residue value is bounded. Let this bound

be [Xmin, ATiax] such that the Cauchy RV:



(6.14)

Assume that the distribution is symmetric about XQ and:

N i3 » r (615)

and the approximation:

tan-i (Zi«— [ when 6 » 1 (6.16)

The mean and variance become of %{:

1L 4 0 0z

tan-1 Uan-i A7 -t —1
71 o ; 7 J]
(6.17)

T+

, 110
nRj



oJ=17 -p(EX

I rx o o-x HH
tan ° mK _ tan‘. mm
r
r 4 \\
“I2R +y + A (6.18)
A w 2 R 2 Rpy
2R +y
R)
_ IRy
+
71 7

For Intra-predicted residue, its variance is relatively large and hence it can be
assumed to be zero-mean. In Figure 6-2, the distribution is shown to be symmetric

around zero

X0 (6.19)
and y is the solution to:
3 TVR2 TIRCT; - (6. 20)
where
X ~X
RA " mx  mm (6.21)

As a result, the parameters of the Cauchy distribution can be estimated easily from
the observed sample variance. The empirical pdf of the observed sample is not
required. However, this method is sensitive to the accuracy of X“x- This

significantly affects the robustness.



6.5 Transform Coefficient of Predicted Residue

In Section 6.2, it is shown that the predicted residue has a Cauchy distribution.
Transform coefficient of predicted residue is a linear sum of the predicted residue. In
(6.7), it is shown that linear sum of the Cauchy RV is also in Cauchy distribution. As
a result, the distribution of the transform coefficients is a Cauchy distribution. The
best way to estimate the distribution parameters of the transform coefficients is from
the complete statistics of the transform coefficients. However, m many applications,
these statistics are not available in a single pass. As a result, a two-pass or even a
multi-pass strategy is used. Transformation is done and the statistics is gathered in
the first pass while the process is done in the remaining passes. This is an accurate
method but a very time-consuming one. Here, a method to estimate the distribution

parameter of the transform coefficients without transforming the residue is proposed.
Image and video pixel data are usually modeled in first order Markov process:
X, =p* *e (6.22)

The predicted residue can also be modeled in the same way with zero-mean. In 1-D

case, the autocorrelation matrix of the predicted residue x is:
(6.23)

When X is transformed with an orthogonal kernel T, the autocorrelation matrix of the

transform coefficient is:

(6.24)



Chapter 6 - Distribution Modeling of Predicted Residue Transform Coefficient

If X has a variance of a" ,the variance of the z-th transform coefficient c(i) is:

al(F1 - CT' A(U). (6.25)

Assume that the 2-D case is separable into row-order and column-order 1-D process.

The variance of the 2-D transform coefficient c(r, s) is:

Wn=3TY [TR: T JTR:' T, (626)

where R!,» and R:/ arethe 1-D autocorrelation matrices in row- and column-order

respectively. They are defined as:

K:={P| : 1} and (6.27)

where pJ&F and are the correlation coefficients inrow- and column-order
respectively. The parameters of transform coefficient distribution can be estimated
by substituting <j] in (6,20) with <yl{r,s) in (6.26). This implies thatthe
transform coefficient distributions can be found when the variance, the column- and

row-order correlation are known.



6.6 Experimental Results

In this chapter, our transform coefficient distribution parameter estimation method
will be evaluated. To evaluate it, the goodness-of-fit is measured and compared.
There are a number of goodness-of-fit tests. One of them is the Chi-Square test

(/-test).

6.1.4. Chi-Square Test

The Z~QSt is to test the hypothetical distribution against the observed data. The
cumulative distribution function (CDF) of the hypothetical distribution is assumed to
be available as F. For the observed data classified in k bins such that the frequency of
the observed samples in the /™ bin is O:. The expected frequency in the /™ bin from
the hypothetical distribution is:

E —N F{x,)-F{x,

pi (6. 28)

=N. p{x)dx.

N is the number of observed data, xy and XL are the upper and lower bound of the i-th

bin. The test statistic is defined as;

(6.29)
ij £

The smaller the value of  the better fit of the hypothetical distribution is. It can be

noticed that A~ will increase as the number of observation, N, increases. In our cases,

N depends on the video resolution. Here we normalize * by N\



Chapter 6 - Distribution Modeling of Predicted Residue Transform Coefficient

Znorm =" A A . (6-30)

This does not affect the physical meaning of the ;f* but makes the comparison among

different resolutions easier.

6.1.5. Empirical Results

In our experiment, the predicted residue is transformed by the order-4 ICT adopted in
H.264/AVC with normalization. The statistics is in frame-based. The histograms of
the predicted residue and its transform coefficients are gathered every frame. Their
distribution parameters are estimated with our proposed method. With these
parameters, the hypothetical distributions are formed and the goodness-of-fit test is
taken every frame. The average, minimum and maximum values of normalized ,*in

each tested sequence will be listed and compared.

The result of fitting the intra>predicted residue is shown in Table 6-1. It is observed
that the predicted residues in most tested sequences are closer to Cauchy distribution.
It is also shown that Cauchy Estimator 1 (i.e. the parameter estimation method 1) is
more accurate than Cauchy Estimator 2 and Cauchy Estimator 3 in our experiment.
The evaluation results of the transform coefficient modeling are shown from Table 6-2
to Table 6-7. The results for the most important coefficients, the first 6 coefficients
along the zig-zag scan path, are shown. These coefficients contribute over 80% of

the signal energy. From the ; v al ue obtained from the ML Laplace Estimator

and the Cauchy Estimator 1, it is shown that the distributions of the transform

coefficients are closer to Cauchy distribution than Laplace distribution. Although the



proposed Cauchy Estimator is not as good as the Cauchy Estimator 1, they are still

comparable.

6.7 Conclusions

In this chapter, the predicted residues of different sequences are investigated. It is
shown that the intra-predicted residue is closer to the Cauchy distribution. Three
Cauchy distribution parameter estimation methods are proposed and tested. The
estimation method from the peak of the empirical pdf is found to be very accurate
when the observed data are sufficient. Due to the properties of Cauchy distribution, it
is expected that the transform coefficients of the intra-predicted residue are also
Cauchy distributed. A method is proposed to estimate the Cauchy distribution

parameters of the transform coefficients without transformation.



6¢€-0
clL o
T€0 0
S0¢-0
€90
€9¢ 0
€00
96T°0
A4 A
20T'0
€859 0
1600
€90
1¢c’0
G000
S.¢0
¢e00
0810

W

S0€ 0
Lvl0
€50 0
oveco
06 0
€20
9€0 0
STAAN)
292 0
SIT0
€599 0
¢ET 0
6920
81 0
0100
¢6€ 0
810 0
961°0

"ONY

"SpoYIaW UOoIeWIISa Jalawerled UBIBLLIP YIIM BWRl) Yoea Jo anpisal paldipaid ayy o1 Buimiy ypd 1-9 ajqe

SvE0
910
9200
620
800°T
€8¢ 0
6€0°0
887 0
€20
9€T'0
68. 0
0cco
1260
69¢°0
710 0
0T€ 0
L/00
6120

"Xe|

lorewns3 aoejde] TN

¥1€0
961'L
676 0
8670
v 0
8.T0
¥10°0
660°0
L0T°0
0200
209'0
€0 0
€¢C0
€160
¢lio
09S 0
¢100
1500
‘W

¢tvo
818l
CN0T
¥€9°0
9. 0
T0C0
¥20 0
G2eo
81T0
€00
16T 1T
650 0
0S€0
¥09-0
¢61-0
065 0
T€0 0
980°0

"Ny

L1150
¢8ce
T6C'T
6880
1050
¢1eo
0€0 0
S0€ 0
¢ET0
8700
ovs ¢
S60 0
T19°0
099°0
.2 0
6190
¢S0 0
€800

"XeW

€ Jorewns3 Ayone)

9€T 0
LEZ0
VT 0
08T0
09€ 0
0€0 0
9€0 0
€T 0
L0T°0
¢c00
¢S85 0
870 0
9¢¢-0
€00
6210
090 0
0T0 0
9100

WA

LT O
€20
89T 0
60 0
9.€ 0
8€0 0
Tv0 0
T9T O
91T O
T€0 0
€6L 0
TL00
L9€ 0
180 0
1GL 0
¢L00
20 0
2c0 0
I\

91¢0
¥2e 0
8120
09¢ 0
00v 0
S0 0
00
86C0
8¢T 0
FAONC)
GE6 0
€IT0
9GS 0
160°0
¢/l 0
/800
9€0 0
€00
Xe

2 Joyewns3 Ayoned

190°0
910-0
G200
1600
GE0'0
¥10°0
G20 0
S0°0
6800
8000
80¢ 0
L00
AV A
200
0200
0€0 0
¢00-0
€L0°04
W

1800
0900
Z¢vo'0
¢cto
Tveo
020 0
6¢00
T90°0
TOT O
¢10°0
1220
¥10°0
a0
0600
6¢0 0
€00
S00 0
L10°0

any

€0T°0
080 0
0S0°0
09T'0
98¢0
€200
GE0'0
LETO
LTT 0
9100
9veo
¢e0 0
08¢0
¥0L°0
6700
8€00
00
9200

Xep

T Jorewns3 Ayoned

abelany

JnoHysny
paglanly
ealyueulsapad
AMsenig
Tepusepuwds
inogJeH

MalID

Ao
S9SI0H3%ey
¢9POSIqon
BeqiaX
9senIaMo|H
9JIqoN
psenbjseon
sued

[lequoo4

uewaloH

wiom |

[00)

0}

oA

ol

=/ 409
lorewns3 Jsjpwered



ML Laplace Est. Cauchy Estimator 1

Z - 1orC(0,0) Max. Ave. Min. Max. Ave. Min.

Foreman 0138 0,120 0100 0.052 0033 0022
Football 0055 0032 0022 0031 0018 0010

O paris 0128 0119 0109 0048 0035 0023
Coastguard 0022 0.016 0011 0.066 0.047 0030
Mobile 0091 0.081 0069 0.078 0053 0037
Flowervase 1939 1494 1052 1241 1071 0.926
Keiba 0128 0,050 0026 0041 0016 0006

9 Mobisode?2 0828 0599 0354 0375 0308 0245
RaceHorses 0050 0038 0029 0012 0007 0004
City 0187 0172 0162 0054 0048 0.041
Crew 0603 0455 0117 0364 0060 0030

13 Harbour 0,017 0.014 0011 0.023 0017 0.012
SpinCalendar 0289 0273 0253 0058 0053 0047
BlueSky 1062 0.997 0.939 0524 0466 0.417
PedestrianArea 0473 0.326 0.227 0.497 0.381 0.248
RiverBed 0035 0.015 0.002 0.057 0.040 0.025
RushHour 0077 0069 0054 0069 0045 0026
Average 0.360 0.269 0.208 0.211 0.159 0.126

Table 6-2 pdf fitting to the transform coefficient C(0, 0) in

ML Laplace Est. Cauchy Estimator 1

ZL forCU.0) Max.  Ave. Min.  Max. Ave. Min.
Foreman 0203 0172 0.141 0.068 0,060 0,035
Football 0.033 0-024 0,015 0.079 0039 0.026

gﬁ Pans 0260 0236 0218 0-092 0070 0.057
Coastguard 0.026 0020 0016 0.090 0064 0.041
Mobile 0325 0262 0211 0253 0200 0158
Flowervase U790 1624 L490 1029 0862 0710
Keiba 0231 0120 0077 0050 0031 0019

> Mobisode2 0.504 0408 0-329 0584 0479 039
RaceHorses 0157 0134 0109 0024 0019 0015
City 0-266 0.245 0-213 0.186 0.135 0.105

fo Crew 0660 0.114 0067 0462 0064 0031
X3 Harbour 0058 0.052 0045 0125 0.107 0091
SpinCalendar 0674 0648 0616 0119 0112 0101
BlueSky 1341 1149 0918 0255 0-174 0092

%‘1 PedestrianArea 0259 0207 0178 0239 0184 0 156
g-) RiverBed 0042 0026 0011 0135 0.105 0.042
RushHour 0103 0.077 0050 0088 0066 0042
Average 0.408 0.325 0.277 0.228 0.162 0.125

Proposed Cauchy Est.
Max. Ave. Min.
0054 0036 0028
0225 0,143 0.072
0065 0.057 0.005
0.641 0528 0.405
0141 0126 0111
0973 0.728 0.522
0246 0159 0.071
1267 0.759 0.251
0139 0112 0086
0057 0.052 0047
0254 0060 0.037
0127 0.119 0.107
0056 0051 0045
0.714 0.655 0.599
0213 0172 0134
0.997 0643 0.377
0342 0250 0207
0.383 0.274 0.183

different sequences.

Proposed Cauchy Est.
Max.  Ave. Min.
0,040 0,031 0023
0197 0.127 0.077
0,266 0,222 0 177
1992 1750 1455
0.164 0.133 0.109
2420 2183 1.837
0.248 0.114 0.029
1865 1.179 0.450
0056 0.036 0.021
0115 0.088 0.061
1633 0291 0131
0.626 0538 0.410
0177 0163 0.154
1.045 0.871 0-667
0305 0231 0-169
2186 1-742 1.449
0169 0106 0 067
0.794 0.577 0.429

Table 6-3 pdf fitting to the transform coefficient C(l, 0) in different sequences.



1)

Foreman
Football
Pans
Coastguard
Mobile
Flowervase
Keiba
Mobisode2
RaceHorses
City

Crew

Vo)

Harbour
SpinCalendar
BlueSky
PedestrianArea
RiverBed
RushHour
Average

ML Laplace Est.

Max.
0.173
0 138
0 457
0.031
0220
1209
0 200
0 760
0 163
0.371
0 786
0.043
0 401
1,130
0.415
0-104
0 160
0.398

Ave.
0.148
0 061
0418
0 022
0 183
1.038
0 108
0 597
0 136
0 354
0.261
0.039
0 382
1.001
0 339
0.058
0 125
0.310

Min.
0,117
0.034
0 390
0.016
0.154
0871
0.070
0 425
0 112
0.326
0 203
0.034
0 362
0.902
0279
0.014
0.096
0.259

Cauchy Estimator 1

Max.
0.065
0.052
0.091
0.067
0.185
0 606
0.065
0 683
0.060
0.220
0 269
0.085
0 105
0.125
0.245
0.186
0 061
0.186

Ave.
0 054
0 032
0071
0 046
0 147
0.463
0048
0 566
0 046
0.191
0 036
0,072
0 093
0.075
0.187
0.141
0,037
0.136

Min.
0036
0019
0,061
0 034
0.105
0 327
0.035
0472
0 036
0,168
0015
0 057
0083
0 052
0 148
0.044
0012
0.100

Table 6-4 pdf fitting to the transform coefficient C(0, 1) in

J- for 2)

/A NOM VR

Foreman
Football
Paris
Coastguard
Mobile
Flowervase
Keiba
Mobisode2
RaceHorses
City
Crew
Harbour
SpinCalendar
BlueSky
o PedestrianArea
RiverBed
RushHour

VE

Average

ML Laplace Est.

Max.
0.210
0.351
1.176
0.034
0314
1.425
0.206
0,767
0 402
0.350
0 621
0.075
0.247
0 395
0 244
0.130
0.290
0.426

Ave,
0.168
0.155
1.075
0.028
0.275
1.273
0,131
0.647
0 370
0.326
0251
0.064
0.229
0.327
0 200
0.094
0 188
0.341

Min.
0 125
0.074
1.000
0.022
0.225
1.127
0.066
0.580
0321
0.302
0.190
0.050
0212
0.234
0149
0073
0.110
0.286

Cauchy Estimator 1

Max.
0098
0.064
0.099
0.064
0.156
1.416
0.119
1.031
0 089
0.180
0288
0.099
0 119
0.236
0 267
0.117
0.191
0.273

Ave.
0.070
0.037
0.089
0053
0 132
1.162
0 089
0-855
0073
0,160
0 101
0.085
0 105
0 133
0210
0 091
0.130
0.210

Min.
0.050
0.014
0.080
0.042
0,105
0,915
0.069
0.717
0,063
0.147
0 075
0.068

0 092
0.149
0 170
0.071
0 091
0.172

Proposed Cauchy Est.

Max.
0.038
0 096
0 081
0.139
0.105
1.634
0 157
0 588
0 040
0.168
0.183
1,302
0 154
0.724
0 361
0.621
0 789
0.422

Ave.
0030
0 064
0071
0 105
0 087
1.320
0 065
0483
0 031
0.122
0 103
1.091
0 141
0533
0.306
0.376
0,575
0.324

Min.
0020
0 020
0 065
0 066
0070
1045
0031
0.425
0024
0.100
0 077
0942
0 129
0 347
0 261
0 186
0J73
0.246

different sequences.

Proposed Cauchy Est.

Max.
0.571
0.665
0.250
0 186
0 117
3.158
3493
1.084
0312
0.441
0 237
1.856
0 304
1599
0 282
0 464
0 304
0.901

Ave.
0.434
0.140
0.216
0.129
0.095
2 746
2.097
0.937
0 257
0210
0 144
1.636
0276
1308
0 201
0.295
0231
0.668

Min.
0.303
0.013
0 196
0.077
0.076
2.273
1641
0.799
0 180
0.107
0 109
1.459
0 253
0.984
0.160
0.169
0.201
0.529

Table 6-5 pdf fitting to the transform coefficient C(0 2) in different sequences.



ML Laplace Est. Cauchy Estimator 1
Max.  Ave. Min.  Max. Ave. Min.

Foreman 0187 0148 0.129 0,039 0030 0.018
Football 0101 0049 0.023 0.050 0030 0013
(' Pans 0387 0354 0318 0.066 0.054 0.043
Coastguard 0018 0013 0.009 0.048 0.041 0033
Mobile 0353 0311 0.276 0,267 0.216 0.171
Flowervase 1247 1117 0995 1374 1131 0887
1 Keiba 0183 0120 0,085 0.047 0036 0031
9 Mobisode2 0539 0459 0398 0.707 0591 0493
RaceHorses 0252 0229 0203 0049 0038 0.031
City 0218 0199 0.169 0.177 0.149 0,125
0 Crew 0416 008 0055 0.383 0.075 0.047
Harbour 0.044 0037 0.025 0.084 0,072 0.045
SpinCalendar 0274 0261 0246 0089 0.080 0.074
BlueSky 0.581 0469 0.344 0.268 0.177 0.091
o PedestrianArea 0192 0169 0142 0.250 0.222 0.196
* RiverBed 0056 0040 0024 0100 0083 0.050
RushHour 0126 0099 0080 0159 0.128 0,106
Average 0.304 0.245 0.207 0.245 0.185 0.144

Table 6-6 pdf fitting to the transform coefficient C(1 > 1) m

ML Laplace Est. Cauchy Estimator 1

L forC(2,0) Max.  Ave. Min. Max. Ave. Min.
Foreman 0212 0174 0148 0063 0,044 0.028
Football 0.057 0.036 0.018 008 0063 0039
Pans 0473 0405 0373 0102 0091 0075
Coastguard 0.019 0013 0.009 0106 0054 0036
Mobile 0389 0344 0308 0278 0212 0170
Flowervase 1981 U808 1582 1606 1346 1110

1 Keiba 0361 0236 0173 0052 0036 0026
9 Mobisodel 0614 0531 0461 0.796 0.673 0561
RaceHorses 0286 0.260 0,229 0051 0042 0036
City 0.427 0386 0323 0.223 0165 0134
Crew 0502 0.091 0.057 0.437 0083 0052
Harbour 0111 0102 0078 0.129 0.110 0.076
SpinCalendar 0520 0489 0449 0.089 0078 0070
BlueSky 0774 0631 0462 0.245 0178 0.100

o PedestrianArea 0208 0179 0159 O0O—X0 0.216 0-183
RiverBed 0035 0027 0.017 0.044 0039 0026
RushHour 0115 0100 0091 0147 0132 0.121
Average 0.417 0.342 0.290 0.277 0.210 0.167

Proposed Cauchy Est.
Max.  Ave. Min.
0064 0043 0030
0201 0.120 0.045
0.376 0.329 0.280
0,854 0664 0502
0173 0148 0130
2580 2260 1,945
0088 0,043 0028
3266 2.298 1,401
0049 0041 0030
al3 0111 0096
0327 0136 0061
0.221 0.141 0111
0089 0082 0073
0.369 0-250 0 120
0605 0476 0395
1558 1194 0.920
1870 1702 1584
0.754 0.590 0.456

different sequences

Proposed Cauchy Est
Max.  Ave. Min.
0.126 0.083 0.052
0 101 0.057 0.032
0681 0.566 0.468
3941 3979 2862
0194 0171 0.152
2113 1915 1623
0283 0129 0.046
1286 0.807 0.456
0415 0341 0233
0275 0.172 0,093
1186 0163 0.060
2419 L969 1-275
0092 0080 0067
0.707 0578 0.483
0-236 0-189 0.162
2035 1857 1724
0438 029 019
0.972 0.785 0.587

Table 6-7 pdf fitting to the transform coefficient C(2, 0) in different sequences,



6.8 References

(1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

Randall C. Reininger and Jerry D. Gibson, "Distributions of Two-Dimensional DCT
Coefficients for Images,” IEEE Trans, on Communications, vol. COM-31, no. 6 pp.

835-839, June 1983.

F. Muller, “Distribution shape of Two-dimensional DCT coefficients of natural images,*

IEEE Electronic Letters, vol. 29 » issue 22, pp. 1935-1936, 1993.

T. Eude, R. Grisel, H. Cherifi and R. Debrie, “On the Distribution of the DCT

coefficientsr IEEE ICASSP-94, vol, 5, pp. 365-368, 1994.

E. Y. Lam and J. W. Goodman, "A Mathematical Analysis of the DCT Coefficient
Distributions ~ for Images, “ IEEE Trans, on IP, vol. 9, issue 10, pp. 1661-1666, Oct,

2000.

E. Y, Lam, “Analysis of the DCT Coefficient Distributions for Document Coding:,

IEEE Signal Processing Letters, vol. 11, no. 2’ pp. 97-100, Feb. 2004.

Joon-Hyxik Chang, Jon Won Shin, Nam Soo Kim and Sanjit K. Mitra, “Image
Probability Distribution Based on Generalized Gamma Function,"" IEEE Signal

Processing Letters, vol. 12, no. 4, pp. 325-328, Apr. 2005.

Saralees Nadarajah and Samuel Kotz, “On the DCT Coefficient Distributions,” |EEE

Signal Processing Letters, vol. 13, issue 10, pp. 601-603, Oct. 2006.

Y. Altunbasak and N. Kamaci, “An analysis of the DCT coefficient distribution with the

H.264 video coder,” IEEE ICASSP -04, vol. 3, pp. 177-180, 2004.

N. Kamaci, Y. Altunbasak and Russell M. Mersereau, “Frame Bit Allocation for the
H.264/AVC Video Coder via Cauchy-Density-Based Rate and Distortion Models,”

IEEE Trans, on CASVT, vol. 15, no. 8 pp. 994-1006 > Aug. 2005.

K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, CRC

Press. 2006.



Chapter 7 Summary and Future Work

7-1 Contributions
7.2.1 Order-16 DCT-like Transforms

In this thesis, we have developed 3 classes of orthogonal order-16 DCT-like integer
transforms. They are Simple Integer Transform, Hybrid Integer Transform and
Integer Transform from Relaxed General Cosine Transform (RGCT). Simple
Integer Transform is extended from order-8 Integer Cosine Transform (ICT). Ithas a
very simple structure and it requires very little computation. It also has a good
coding performance. In order to improve the coding performance, Hybrid Integer
Transform is proposed. It is a hybrid of ICT and Dyadic Weight Walsh Transform
(DWWT). It has a better coding performance than Simple Integer Transform. We
proposed a method to derive ICT from RGCT. All are orthogonal, similar to the
DCT and have fast algorithms. In this class of integer transform, LLMICT and
CSFICT are proposed. LLMICT is an ICT having a fast algorithm similar to the

LLM Fast DCT algorithm which is proposed by Loeffler et al. It has an excellent



coding performance. However, it does not require heavy computation. It is also
possible to extend it to higher order transform, such as order-32. CSFICT has an
algorithm similar to the CSF Fast DCT algorithm proposed Chen et al. We modify
it to become MCSFICT which has a looser criterion for orthogonality. This leads
to a high flexibility of designing high performance order-16 ICT, Experiments

show that it has a performance similar to LLMICT.

These proposed order-16 transforms are integrated into the reference software of two
video coding standards, H.264/AVC and AVS. Together with order-8 and order-4
transform in these standards, two different ABT platforms are formed. They are
tested and compared with other existing order-16 transforms. Experiments show that
these proposed transforms provide a significant gain, especially for HD sequences, in
the two standards. Not only the objective coding performance, but also the subjective
quality is improved. The proposed transforms perform similar to other order-16

transforms but they are significantly simpler.

7.2.2 Fast Walsh Search for Pattern Matching

Mak and Li proposed a fast pattern matching algorithm in Walsh Hadamard domain.
It has a high speed and high accuracy. It was integrated into H.264/AVC to do the
motion estimation. To speed up the matching process, we proposed a statistical
threshold which can be adjusted according to the desired accuracy. This threshold
dramatically reduces the number of candidates which are possibly mismatched. As
a result, the matching process is significantly speeded up without missing the best

match.



Picture nature varies from region to region. Some are smooth while some are
textured. We expected that the proposed statistical threshold should be adaptive to
the nature of the image content. As a result, a block adaptive threshold was
proposed to eliminate the mismatch candidates more efficiently with the same
accuracy. This threshold depends on the variance of the target block. Experiment
shows that the mismatch candidates are reduced. Unfortunately, the time saving is

not significant as computing block variance is necessary.

7.2.3 Transform Coefficient Distribution

A preliminary study of the transform coefficient distribution of the predicted
residue was carried out. We found that the intra- and the inter-predicted residues
have different distributions. Intra one is closer to Cauchy distribution while inter
one is closer to Laplace distribution. As a result their transform coefficients are

closer to Cauchy distribution and Laplace distribution respectively.

Methods to estimate the distribution parameters of the transform coefficient are
proposed. They are compared with experiments. It is shown that the accuracies of

these methods are pretty high.

7.1 Future Work

7.1.1 Order-16 DCT-like Transforms

There are a lot of work can be done on the proposed DCT-like transforms. For
example, we have proposed order-32 LLMICT but have not tested it yet. It can be

integrated into our proposed platform to achieve a more powerful ABT platform for



HD video coding. In our proposed ABT platform, it is noticed that there is a high
correlation between the DC coefficients of neighbouring MB. It is possible to
improve the performance by removing this correlation. Using the development idea
of deriving ICT from RGCT, it is possible to develop other trigonometric integer
transforms of higher orders with fast algorithms.  This will be very useful in many

image and video analysis applications.

7,1.2 Fast Walsh Search for Pattern Matching

The proposed block adaptive threshold significantly reduces the mismatch
candidates in pattern matching. However, the time saving is limited by the block
variance calculation at this moment. It is worth to find methods to speed up this

calculation so that a very high speed pattern matching algorithm can be developed.

Proposed FWS has been implemented into H.264/AVC as a motion estimation tools.
Currently, the candidates are found only by minimizing the difference (in terms of
MSE or MAE) between the reference block and the target block. The resultant
motion vector (MV) is not a factor of selection. It is possible to improve the
performance by considering the resultant MV in a RD-optimized manner. MV are
usually predicted by a median predictor using MV of neighbouring MB. A
candidate's MV which is more different from the predicted MV requires more bits to
code it. This candidate may not be a RD-optimized candidate even it have similarly
small MSE or MAE as other candidates. Thus, it can be eliminated from the

candidate pool and hence the pool size is reduced.



7.1.3 Transform Coefficient Distribution

The transform coefficient distribution analysis is in a very beginning stage. We
have only verified our findings in many test sequences in different resolutions and
nature.  However, there is no application developed based on our findings.
Fortunately, many existing transform based image and video processing applications
are developed under the assumption that the coefficient distribution is Laplace
distribution, for example, the RD optimization in video coding. An improvement is

expected when they are redesigned with our findings.



Appendix A. Fast Algorithm for
DWWT

A.1 Factorization of Matrix with

Orthogonal Basis Vectors

For any nxn matrix E with orthogonal basis vectors which can be decomposed into
two nxn matrices A and B. Assume that A and B also have orthogonal basis vectors.

Therefore we have:

E = AB, (A-1)
EEll =De > (A-2)
aa"~D,, (A-3)
(A-4)
where D”, DA and diagonal matrices. From (A-1) and (A-2), it can be

expended to:

E E U= ABBIA
(A-5)
=AD,A"

By multiplying AT and A, we have:

A DFFA=D A D 7 D"Dj (A-6)



we can rewrite it as:

A'Dy "D A = ~D"D, (A-7)

and D'A is an orthogonal matrix also and the left hand side of (A-7) is equal to

DAD”. Therefore:

(A-8)

(A-9)

This means if (A-1) to (A-4) are fulfilled, the norm of the /-th row vector of E

defined as:

= E{i) «Eaf = d,ii) (A-10)

can be represented by a product of the norms of the i-th row vectors of A and B as

shown in (A-9). Recusively, if E can be factorized into product of k matrices,

T = MgM”..M/( (A-11)

from (A-8) and (A-9), its norms can be expressed as:

D, = D@, DL, (A-12)

or  df{)=0MEL,(@)...ci... (0 . (A-13)

For more specific, if E is an integer kernel of a DWWT which is going to be

factorized into integer matricesM”® g {Mo,M”...”’M/(} > these M" can be found in a

— A-2



finite search space. If the norm of E can be factorized into several pnme factors,
these prime factors (or the products of some of these prime factors) are very likely to

be the norms of the factorsM”. As a result, this significantly reduces the search

space for finding M It is not necessary that:
dMp@}) = (*Mpid) for any ()<p<k and Q<iJ <n (A-14)
detM ,, = (A-15)

which is specified in [1]. (A-15) holds only when n = % and dMp{i) is constant for
all <n which means all the row vectors have the same norm. If it is
assumed that (A-14) holds, this will turn into a generalized version in [1] with any

order n>

Consider a case that the norm of E, dsij), is a prime number. E cannot be
factorized into product of integer matrices with the above method. If E isa DWWT,
E can be broken down into simpler matrices to achieve fast matrix multiplication.
Let us take order-8 DWWT as an example. IfE = b\, bo, 63, 64, bs, be, b-j)

where d/=-"b'" is a prime number, the decomposition can be achieved by

replace bj by {bj + k) for certainj. And k is a small non-zero integer such as 1 or -1.
This replacement turns E into E' = Eomv(i®o,...,7}1 + K =+ -+ which dg is a
compound number instead of a prime one. 6, 5°4>4-3 3, 1) has anorm of
137 which is a prime number. It cannot be decomposed directly. However,
Edpk”S, 5, 5, 4, 4, 3, 3, 1) can be decomposed into 4 sparse matrices which requires

8 shift and 64 addition operations:



Eff(5,5,5,4,4,3,3,1)

1 — 1 — 21 (A_16)

11

E (5,6 5°4°4’3,3,1)

— ER (55540433, +E,, (0100,0,0,0,0) (A-17)

Since DWWT is linear, Efg--- > 6, 5, 4, 4, 3, 3, 1) can be expressed into two
matrices as shown (A-17). As a result, 6,5,4>4-3,3, 1) can be expressed
into sparse matrices which can be computed with 8 shift and 72 addition operations

indirectly.

This technique is not only useful to those E having a prime number dsO), but also to
those E which dE(i) cannot be factorized into small prime factors. Edww{5, 5, 5, 4,
4, 3, 2, 1) has a norm of 121 = 11 x 11. It can only be decomposed into two
matrices which are not very sparse as shown in (A-18). Its fast algorithm requires

16 shift and 77 addition operations.

£,7(5,5,5,4,4,3,2,1)

2 -2 1

2 -1 1 I -2 1

12 1 -1 (A-18)
-1 -1 2 1 2 2 1 -1



However, its "neighbor", EAM”, 5,5, 4,4>3>2+], 1) has a norm of 126 =2 x 3 x 3
X 7. It can be decomposed into 4 sparse matrices as shown in (A-16). Plus 8
addition operations to restore 5, 5 4, 4, 3, 2, 1), this indirect method
requires only 8 shift and 72 addition operations. It saves 8 shift and 5 addition

operations.

(57575’4’4’3’27]‘)
=SNS5 5,404,330 D-EEROEN 0,0 17 0) ( "~
"Dww becomes commoner to have a prime dj{i) or dj{() which cannot be factorized
into simple factors when are getting large. Therefore, this indirect method is a

very useful and efficient way to decompose Edww with large and prime b”

A.2 Reference

[1] Jie Dong; King Ngi Ngan; Chi-Keung Fong; Wai-Kuen Cham, “2_D Order-16 Integer
Transforms for HD Video Coding,” IEEE Trans, on CASVT, vol. 19, Issue: 10" pp.
1462- 1474, Oct. 20009.



Appendix B. A Summary of Fast
Algorithms for Different Integer

Transforms

In this appendix, the fast algorithms of different integer transforms are described.
Their matrix factorization and their number of operations will be stated. The fast

algorithms described in this appendix include;
Order-8 ICT adopted in H.264/AVC,

Order-8 ICT adopted in AVS,

Modified ICT (MICT) [4],

Integer Transform proposed by Wien et al [1], T"en,

Integer Transform proposed by Lee and et al [2], TV,

Integer Transform proposed by Joshi and et al [3], Tjoshh

Proposed Order-16 Simple Integer Transform, ws.avs  and TSI.H264,
Proposed Order-16 Hybrid Integer Transforms, T"" and Tnn, and
Proposed LLMICT, Al andBlI.

Here we declare some common notations in this appendix:

oN Order-// zero matrix.

N Order-iV identity matrix.

I rotated by 90°.

Hy NxN order-2 Hadamard matrix.



B.1 Fast Order-S ICT in H.264/AVC

This implementation can be easily found in the reference software of H.264/AVC.

ICT5(5, 12, 10, 6, 3, 8, 4) is adopted:

S S £ ' a 8 8
2 10 6 3 - 6 -10 -12
4 -4 -8 -S -4 4 g
10 -3 -12 12 3 -10
s -5 o s s 8 (B.D)
6-12 3 10 -10 5 2
4 -8 8 -4 4 s le
3 46 10 12 12 =
It can be decomposed into:
0 0
1 1
1 -1
.S 4 0 0 (B.2)
0 0 2 2 0
1 4 3 0 2
O 4 0o 3 2
0 0 2 2 3
Xo
X2 -8 8
X4
X6 — 4
X H—, ]
1 z A / ®
" 2L
[ J
X5 Z 1IN T
X7
Figure B-1 Data flow ofOrder-8 ICT adopted in H.264/AVC
The fast algorithm requires 14 multiplications and 32 additions. In

multiplication-free implementation, it requires 14 shifts and 32 additions (total 46

operations).



B.2 Fast Order-8 ICT in AVS

This implementation can be easily found in the reference software of AVS.

10’ 9, 6, 2, 10> 4) is adopted:

5 = = S s
0 9 6 2 2 g —9 -0
07 4 -4 -10 'O * 4 10
9 -2 10 -6 O < 2 9
83 8 § o T o
6 10 2 9 2 10 -6
4 .10 10 —4 4 10 4
2 -6 9 .10 O 6 -2
It can be decomposed into:
-8 8 k1 0 0 1
g -8 0 0o 110 0
—4 10 o 0 1-10 :
-10 4 10 0-1
2 3 0 2 3 0 0-2
3-2-2 0 0 3 2 0
Gt 0-223 G 0-230
2 0 3 -2 2 0 0 3
Xo
X2 .
X4 !
X6 4
X]
X3
X5 _
Xj

Figure B-2 Data flow of Order-8 ICT adopted in AVS.

The fast algorithm requires 14 multiplications and 36 additions.

ICT5(5,

(B.3)

(B.4)

In

multiplication-free implementation, it requires 16 shifts and 38 additions (total 54

operations).



B.3 Modified ICT

The integer kernel of modified 1CT, Em/ct, can be factorized into

E a.
E AVS (B-5)
MmICT
0. Puer 1. -1
where
MICL
-2 T 1 13
3.1 1 1 1
1 -3 1 . 1 2 1
1 -1 1 (B6)
1 —1 —3
T o1 1 -3
2 3 -1

The fast algorithm requires

30 multiplications and 144 additions. In

multiplication-free implementation, it requires 30 shifts and 144 additions (total 174

operations).



B.4 Integer Transform proposed by
Wien and Sun.

No fast algorithm has been proposed for Twien- Here, we proposed its fast algorithm

as below. The integer kernel for Twien, “Wien, can be factorized into:

0.
Efer — & H (B-7)
Pwwn,
e | @
r 7 23 o | X o 1
0y 21__7_ 322 N
g. 4 1 -2 3 -2 (B-8)
1 -4 3 22 =
o -4 1 2 -2 3
L1 -4
1 2 1 2 2 -2 2
1 1 -1 2 1 2 2 2
1 2 2 -2 1 -2 2
-1 1 2 2 2 1 2
Pwren — 2: 1 3 2 1 2 H, (B-9)
2 2 2 2 -1 2
2 1 -2 2 1
2 2 2 2
The fast algorithm requires 34 multiplications and 136 additions. In

multiplication-free implementation, it requires 38 shifts and 144 additions (total 182

operations).



B.5 Integer Transform proposed by

Lee and et al.

No fast algorithm has been proposed for Ties. Here, we proposed its fast algorithm as

below. Its integer kernel E”ee can be factorized into:

- Hi
0, 7 17 HO
17 7
Q" =
5 5 -7
% L
9 —1 9 9 7 3 2 2
7 9 9 9 7
9 3 9 7 1 3 9
9 7 3 -9 .7 —9 —3
9 7 9 3 7 9
~9 —3 —1 7 9 3 9
9 9 9 3
3 7 3 9 9 7 2 2

The fast algorithm requires 50 multiplications and

(B-10)
H,, (B‘ll)

(B-12)
112 additions. In

multiplication-free implementation, it requires 58 shifts and 148 additions (total 206

operations).



B.6 Integer Transform proposed by
Joshi and eta_

The fast algorithm proposed in [3] is as shown in Figure B-3.

X0 Co

C4
cl2

Cl4

C]

Xio

X CI3

Cli

C7

Figure B-3 Data flow of Fast Ejoshi-

It is reported that this fast algorithm requires 36 multiplications and 72 additions. In
multiplication-free implementation, it requires 64 shifts and 120 additions (total 184

operations).



B.7 Proposed Order-16 Simple
Integer Transform

The proposed simple integer transform T”i is composed of eight order-2 WHTs and
two order-8 ICTs. The fast algorithm data flow for the simple integer transform
derived from the order-8 transform adopted in H.264/AVC (Tsi-H264) and from the

order-8 transform adopted in AVS (T"y-"j/*) are shown in Figure B-4.

fo /o
h x2 h
u M /4
u /6
h g h
/.0 /110
fn fn
M /14
f Xl N
h h
fs h
A v
h /9
/n Xn /n
fn /13
/15 A5 15
(a) (b)

Figure B-4 Data flow of (a) ”si-h264 and (b) “si-avs-



The order-8 ICT adopted in H.264/AVC requires 14 multiplications and 32 additions
while that adopted in AVS requires 14 multiplications and 36 additions. Therefore,

the numbers of operations required are:

Multiplication Addition
tSi-m64 28 80
ASI-AVS 28 88

In multiplication-free implementation, the numbers of operations

Shift Addition Total
28 80 108
ASI-AVS 32 92 124



B.8 Proposed Integer Transform
from DWWT

Using the method described in Appendix A, the Hybrid Integer Transform T", from

DWWT can be factorized. Here, T///i and THU are taken as examples. Their integer

kernels can be factorized as:

Y
Epn 5 v 3 (B-13)
=1 -
E i |
E H -
HI 2 £y (B-14)
Here:
Ezwi = E#(11,11,11,9,8,5,4,1) + E £ (0,0,0,0,0,2,0,0)
2
)
1 | 2 2
1 -]
2 2
2 1
-1
1
]
-l (B-15)
]L | 1

and



Ey

Efg(11,11,11 > 986 > 4> 1) + E&(0,0,0,0,0,0,1,0)

1
-1 1
3
—1 -1
2 1
-1
1-12
3

2
-3

The numbers of operations required are:

T/
TH2

In multiplication-free implementation, the numbers of operations

T/112

Shift
30
30

Multiplication

30
30

Addition
160
158

(B-16)

Addition
160
160

Total
190
188



B 9 Proposed LLMICT

Two LLMICTSs are taken as the example, Al and Bl

Fast EAvVS

x5
x6
x7
x8

x9

4 2

Figure B-5 Data flow of LLMICT Al

This fast algorithm requires 38 multiplications and 78 additions. In

multiplication-free implementation, it requires 50 shifts and 110 additions (total 160

operations).



—/8

Fast EAvVS

J
f

A4
fn

/18

fi
Ju

Figure B-6 Data flow of LLMICT B1

This fast algorithm requires 34 multiplications and 78 additions. In
multiplication-free implementation, it requires 48 shifts and 92 additions (total 140

operations).



B.10 Reference

[1]

[2]

(3]

[4]

Mathias Wien and Shijun Sun, “ICT Comparison for Adaptive Block Transforms"
document VCEG-L12, Jan., 2001. [Online] Available:
http://wftp3.itu.int/av-arch/video-site/0101_Eib

Bumshik Lee and Munchurl Kim, “A 16x16 transform kernel with quantization for
(ultra) high definition video coding,” document VCEG-AK13, April 2009. [Online]
Available: http://wftp3.itu.int/av-archyvideo-site/0904_Yok/

R. Joshi, Y. Reznik, and M. Karczewicz, "Simplified Transforms for Extended Block
Sizes ; ' document VCEG-AL30, July 2009. [Online]

Available: http://wftp3.itu.int/av-arch/video-site/0906JLG/

Jie Dong; King Ngi Ngan; Chi-Keung Fong; Wai-Kuen Cham, “2-D Order-16 Integer
Transforms for HD Video Coding,” IEEE Trans, on CASVT, vol. 19, Issue: 10’ pp.
1462- 1474, Oct. 2009.


http://wftp3.itu.int/av-arch/video-site/0101_Eib
http://wftp3.itu.int/av-archyvideo-site/0904_Yok/
http://wftp3.itu.int/av-arch/video-site/0906JLG/

