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商要 

變換是一種很重要的視頻編解碼工具。它不但將圖像中像素的關聯性打 

破，有效地移除當中的冗贅，從而達至壓縮視頻資訊的效果。硏究發現， 

大部份的碼流都是用在變換係數編碼。如果能採用更有效的變換，減少這 

部份的碼流，就能有效地改進現有的編碼效率。-直以來，視頻及圖像編 

碼一般都只採用第八階的變換。直至近年，最新的編解碼標準（例如 

H.264/AVC)開始採用兩種或以J i的變換來壓縮視頻資訊，例如同時採用 

第四階及第八階變換來壓縮視頻資訊。此等採用多種不同大小變換的技 

術，稱爲可變塊大小變換或自適應塊大小變換。有硏究指出更高階的變 

換，例如第十六階，可以更有效的提高在高清視頻序列上的編碼效果。因 

此’第十六階變換亦被加入到ABT系統當中。 

三種不同而且全新的第十六階變換將會在本篇論文中提出，並詳細展 

示，進行各種的分析，以及對現有的第十六階變換作比對。這三種新的第 

十六階變換亦會在最新的解碼標準上實現，形成一個新的ABT系統，當 

中第四階、第八階以及第十六階的變換都並存在系統內，可以自由選取。 

而選取的方法是基於率失真優化，根據每種變換的編碼表現，每個宏塊會 

選用表現最好，編碼效果最好的變換。不同的宏塊可以有不同的變換選 
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擇。實驗證實所提出的三種換有非常良好的表現，各自有不同的表現，但 

都能有效減少所需碼流，提供更佳的資料壓縮，對畫像的主觀以及客觀的 

質量都有所增益。 

除了用於編碼的高階變換外，本篇論文亦會牽涉一種利用變換而達致快 

速模式匹配的方法一快速沃爾什搜索。這種快速搜索方法不但快捷，而且 

準確。它可的準確度跟傳統的快速全搜索相約，但複雜度則大幅降低。它 

亦在H.264/AVC的平台上實現，用作運動預測的工具。實驗顯示它比傳 

統的快速運動估計方法更加優勝。不但作出準確估計，而且不需要煩瑣的 

運算，有效地改善現有的編碼系統。 

最後，本篇論文亦會簡述一些對變換係數的統計硏究。變換係數的統計 

對很多圖像及視頻處理方法都很重要，這些方法都是建基於一些係數統計 

上的數據與假設。若果可以對這些統計數據作出更深入準確的理解，就可 

以改善圖像及視頻處理方法，例如在編碼系統上的碼流控制等。傳統上， 

大都認爲係數是呈拉普拉斯分佈，包括預測殘餘的係數都有相同的假設。 

本篇論文的硏究發現並不是每種預測殘餘都是呈拉普拉斯分佈。硏究發現 

大部份的幀內預測殘餘都是呈柯西分佈，而幀間預測殘餘則是呈拉普拉斯 

分佈的。這一發現可以更有效改善現有的視頻處理方法。 



Abstract 
Transform is a very important coding tool in video coding. It decorrelates the pixel 

data and removes the redundancy among pixels so as to achieve compression. 

Traditionally, order-8 transform is used in video and image coding. Latest video 

coding standards, such as H.264/AVC, adopt both order-4 and order-8 transforms. 

The adaptive use of more than one transforms of different sizes is known as Arbitrary 

Block-size Transform (ABT). Transforms other than order-4 and order-8 can also be 

used in ABT. It is expected larger transform size such as order-16 will benefit more 

in video sequences with higher resolutions such as 72Op and 1080p sequences. As a 

result, order-16 transform is introduced into ABT system. 

In this thesis, the development of simple but efficient order-16 transforms will be 

shown. Analysis and comparison with existing order-16 transforms have been 

carried out. The proposed order-16 transforms were integrated to the existing coding 

standard reference software individually so as to achieve a new ABT system. In the 

proposed ABT system, order-4, order-8 and order-16 transforms coexist. The 

selection of the most appropriate transform is based on the rate-distortion performance 

of these transforms. A remarkable improvement in coding performance is shown in 



the experiment results. A significant bit rate reduction can be achieved with our 

proposed ABT system with both subjective and objective qualities remain unchanged. 

Three kinds of order-16 orthogonal DCT-like integer transforms are proposed in 

this thesis. The first one is the simple integer transform, which is expanded from 

existing order-8 ICT, The second one is the hybrid integer transform from the 

Dyadic Weighted Walsh Transform (DWWT). It is shown that it has a better 

performance than simple integer transform. The last one is a recursive transform. 

Order-2iV transform can be derived from order-iV one. It is very close to the DCT. 

This recursive transform can be implemented in two different ways and they are 

denoted as LLMICT and CSFICT. They have excellent coding performance. 

These proposed transforms are investigated and are implemented into the reference 

software of H.264 and AVS, They are also compared with other order-16 

orthogonal integer transform. Experimental results show that the proposed 

transforms give excellent coding performance and ease to compute. 

Besides ABT with higher order transform, a transform based template matching is 

also investigated. A fast method of template matching, called Fast Walsh Search, is 

developed. This search method has similar accuracy as exhaustive search but 

significantly lower computation requirement. 

Prior knowledge of the coefficient distribution is a key to achieve better coding 

performance. This is very useful in many areas in coding such as rate control, rate 

distortion optimization, etc. It is also shown that coefficient distribution of predicted 

residue is closer to Cauchy distribution rather than traditionally expected Laplace 

distribution, This can effectively improve the existing processing techniques. 
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Chapter 1 Introduction 

1.1 Introduction to Video Coding 

Digital Video Coding has been researched for decades. Researchers have devoted a 

lot of work to this topic. However, it is still very hot in both research and industrial 

area. This is because of its extremely high demand. It is getting more and more 

popular and it relates closely to us. It appears in many applications in our daily life. 

We watch TV every day. Digital TV broadcast is a typical example of video coding 

application. Other than TV, many people like to watch movie at home. The movie 

contents are stored in VCD, DVD or blu-ray disc. They all are storage media of 

compressed videos. It is very popular to take video with a handheld digital video 

camcorder or a digital cameras. Compressed videos are stored. People also like to 

share their own videos with others through World Wide Web. We believe that 

Youtube [1] is the most famous example. It allows people to share and to distribute 

video through video streaming over the web. There are thousands of newly uploaded 

videos and millions of watches in every day. We believe that it is one of the most 



important inventions in this decade. As the bandwidth of the mobile network and the 

processing power of the mobile hand set are improving, video phone call becomes 

popular. Moreover, many video applications such as surveillance and professional 

video editing are moving from analog to digital. These all are example of video 

coding in our daily life. We can see that how frequent we meet with video coding in 

different area. 

Besides the high demand, why we encode or compress videos? Why not store the 

videos in raw format? This is because the video data is so large that it is almost 

impossible to be stored in raw format. It wastes too much resource as if we do so. 

This can be investigated in several aspects: 

• Spatial Resolution: The spatial resolution of the video frame is increasing, from 

QCIF (176x144) in old days, to GIF (352x288), WQVGA (416x240), WVGA 

(832x480) and it becomes High Definition (HD, 720p - 1280x720 and 1080p -

1920X1080) recently. It is expected that it will increase to Ultra High Definition 

(UHD, 4k X 2k or even larger) in coming future. 

QCIF 

WQVGA 

CIF 

WVGA 

720p 

lOSOp 

Figure 1-1 A comparison of different frame resolutions. 



I Temporal Sampling Rate: Interlacing reduces the data rate by half. This is 

very important when the processing power is limited. As technology is 

improving, this is no longer the main bottleneck. Progressive video is the main 

stream nowadays. It is also moving from 2 5 � 3 0 fps to 50-60 fps and even over 

100 fps. 

I Color Sub-sampling: Since human vision system is less sensitive to chroma 

information, chroma part is usually taken at a lower sampling rate than luma part, 

for example 4:2:0, This is halved the data rate of 4:4:4 color sub-sampling. As 

the better picture quality is demanding, higher color sub-sampling rate such as 

4:2:2 and even 4:4:4 becomes popular. 

I Color Depth: Besides higher color sampling rate, higher color depth is also 

demanding. Conventionally, 8-bit color depth is used. Every pixel in a single 

color plane is represented using 8 bits. When higher color depth such as 10, 12’ 

14-bit or higher, more colors can be represented. Picture quality is improved. 

8-bit (256 colors) I 

10-bit (1024 colors) 

12-bit ( 4 0 9 6 colors) 

14-bit (16384 colors) H H ^ H H H H K 
Figure 1-2 A comparison of different color bit depth in a color plane. 

Let us take an example here. A typical HD sequence (1920x1080) at 50 fps, with 

8-bit color depth, the data rate is 1920x1080x50x3x8 = 2488.32Mbps or 311.04 Mega 

Byte per second. Although the storage nowadays is very large and low-cost, it is still 
_ _ - 1 rx 

very inefficient to store raw video. For example a 1 T-Byte (10 “ Byte, equivalent to 



212 4.7G-DVD or 40 single-layered Blu-ray Discs) storage can only store a 

3215-second (less than 1 -hour) long typical HD sequence. This example shows a 

typical HD sequence only. A better quality video with higher resolution, higher 

frame rate and higher sub-sampling rate takes more storage space and requires higher 

bandwidth to transmit. They can be several times or even several ten times of a 

typical HD sequence. Video coding significantly reduces the bandwidth required. 

For example, MPEG-2 has a compression ratio of 1:15 to 1:30 depending on the 

desired quality. Newer coding standards can offer even higher compression ratio. 

It is well-known that our human vision is less sensitive to some kind of distortion, for 

example, high frequency components. Our human eyes cannot distinguish the 

difference in high frequency easily. This leads to lossy video coding in most codec 

designs. Some video contents which are not very sensitive to our human eyes are 

reduced or even discarded. These distortions are not easily perceived by us. As a 

result, a higher compression but very small or even almost no visual degradation can 

be achieved. This is very common in most of the video coding standards. 

1.2 Histories of Video Coding Standards 

Most of the state-of-the-art video coding standards are based on the generic hybrid 

video coding model proposed in H.261 [2] twenty years ago. Although it is an old 

coding standard, many coding tools adopted in this standard are the prototypes of the 

coding tools nowadays. For example, motion estimation and compensation and 

transform coding of predicted residue are still fundamental coding tools in the latest 

video coding standards. Of course, many novel, power and efficient coding tools are 



integrated to different standards. Significant performance improvement is offered m 

every new generation of video coding standards. 

• H.261 [2] is an ITU-T (International Telecommunication Union -

Telecommunication Standardization Sector) video coding standard issued in 

1990. It IS designed by the Video Coding Experts Group (VCEG) in the union. 

Its hybrid video coding framework is a fundamental to many other video coding 

standards nowadays. Many concepts and ideas in this standard are still doing a 

good job such as the concept of 16x 16 Macroblock (MB), motion compensation, 

residue coding with DCT, run-length coding and entropy coding. It is an 

important milestone in video coding technology, 

• MPEG-1 [3] is the first international standard including both video and audio 

specifications. It was developed by Moving Picture Experts Group (MPEG). It 

is composed of different parts. Its part 2 is the video specification. It is based 

on the H.261 standard. Its target is to compress video onto a video CD at CIF 

resolution. The concept of sub-pixel motion compensation was introduced into 

MPEG-1. It supports up to half pixel accuracy. To enhance the motion 

estimation and prediction, bi-directionally predicted frame (B-frame) is used. It 

is predicted with the forward and the backward decoded frames. It reduces the 

predicted residue significantly and hence the bit rate. 

• MPEG-2 [4] is the direct successor of MPEG-1. It was published in 1996. Its 

Part 2 (also known as H.262) specifies the video coding requirements. It is 

widely used in DVD standard. The concept of profiles and levels was 

introduced to MPEG-2 standard. Profile specifies decoding capability in terms 

1-5 



of coding tools while level specifies the constraints on bit rates, frame rates and 

frame sizes. This makes the decoder manufacturer more flexible to design 

decoder for one particular application. Motion estimation is also improved, 

Sub-block level motion estimation is supported such that more precise prediction 

can be achieved. 

H.263 [5] was proposed by VCEG and released in 1996. It is originally 

designed for low-bit-rate compression for video conferencing. It has many 

applications on the internet also. 

MPEG-4 Part 2 (Visual) [6][8] was proposed by MPEG released in 1999. One 

of the most important features in this standard is object coding. It is possible to 

code arbitrarily shaped individual video objects. The decoded video object can 

be moved by the user interactively on the decoder side. The sub-block motion 

estimation is further improved. The partition sizes allowed includes 8x8, 8x16, 

16x8 and 16x16. The motion estimation accuracy can be up to quarter pixel. 

MPEG-4 Part 10 (AVC) (a.k.a. H.264/AVC) [7][8] is a joint projects between 

ITU-T and ISO/IEC. It was first released in 2003. An amendment called the 

Fidelity Range Extensions (FRExt) [9] was proposed in 2005. It extended the 

original standard to provide higher quality video coding. Although MPEG-4 

Part 10 is one part of MPEG-4, it is totally different from MPEG-4 Part 2. 

Object coding in MPEG-4 Part 2 is not present in Part 10. It is the current 

state-of-the-art AVC standard and it is one of the coding standards to be our 

testing platform. More information will be provided in later chapter (see 

Chapter 3). 



• Audio Video Standard (AVS) [10] is a multimedia standard proposed by the 

AVS workgroup in China in 2005. It is not only highly-efficient but also 

simpler and easier to implement than H.264/AVC. Its coding performance is 

only .slightly lower than f 1.264/ AVC, It is another testing platform in this thesis 

(see Chapter 4). 

• Video Codec 1 (VC-1) [11] is the first video compression algorithm standardized 

in Society of Motion Picture and Television Engineers (SMPTE) driven by 

Microsoft released in 2006. It is based on Microsoft Windows Media 9. It 

supports adaptive block-size transform which supports transform block size of 

8x8, 8x4, 4x8 and 4x4. Instead ofCAVLC and CABAC in H.264/AVC, VC-1 

uses multiple VLC code tables for entropy coding. It also has the fading 

compensation to tackle the change of brightness level in motion compensation. 

Despite of the high performances of the video standards nowadays, work is still being 

devoted to developing new video coding standards. For example, High Efficiency 

Video Coding (HEVC, also known as H.265) [12] is being developed by the Joint 

Collaborative Team on Video Coding (JCT-VC). It is a group of video coding 

experts from VCEG of ITU-T and MPEG of ISO/IEC. Its target is to further reduce 

the bit rate for high quality video by half, as compared to H.264/AVC. On the other 

hand, AVS workgroup in China also started the project for next generation of Audio 

Video Standard, AVS 2 [14] [15]. AVS2 Ad-hoc group was formed in the 27山 AVS 

workgroup meeting in December 2008. It targets at HD to Super HD resolution 

sequences. It will support higher color bit depth, higher frame rate and higher color 

sub-sampling rate. Its FCD will be completed in 2012. 



3 Generic Hybrid Video Coding 

Input I 
Color Spacc 
Conversion 

Transform and 
Entropy Coding 

Quanitzation 
Entropy Coding 

Output 

Motion 
EstJmation and 
COHII np̂ s 

Fruc HtiHtt 
Inverse 

Transform and 
Dequanitzation 

Figure 1-3 Diagram of a simple Generic Hybrid Video Encoder. 

Since generic hybrid video encoder is the fundamental and our work is based on this 

framework, here we are going to give a brief introduction to this encoder for readers 

who are not familiar to it. Hybrid video coding is a coding algorithm integrating 

motion compensated inter-picture with spatial transform coding. Generic hybrid 

encoder is a close-loop encoder which predicts the incoming picture with previously 

decoded pictures. The encoder can be divided into 4 different functional blocks (in 

grey) as shown in Figure 1 -3. These functional blocks remove different redundancies 

in the video content. 

• Color space conversion (Color redundancy): Color image and video are 

usually represented by 3 main color components, Red, Green and Blue, It is 

known as the RGB domain. Each of these components forms a color plane. 

Picture data in RGB domain usually has high correlation among these color 

planes. This is the color redundancy. In order to reduce color redundancy, 

picture data are usually transformed into another color domain which has a lower 

correlation among its color plane. For example, YUV domain is a common 

color space used in video coding. Different video coding standards may use 



different color domain. However, their aims are the same - to reduce the color 

redundancy. Pixel data in RGB domain are converted into a specified color 

space defined in the coding standard before further process, for example, YUV. 

In (1.1) the RGB to YUV conversion is shown. A color conversion example is 

shown in Figure 1-4. A color image can be decomposed into the RGB color 

planes and these planes are converted into YUV planes using (1.1). Y is the 

luminance while U and V are the chrominance. The variations of the UV planes 

are smaller than RGB planes and hence the data in UV planes have smaller 

entropies. Since human vision is less sensitive to the chrominance, UV plane 

may be further sub-sampled. 

V 0.299 0.587 0.114 
V = -0 .147 -0 .289 0.436 
V 0.615 -0 .515 -0 .100 

Figure 1-4 An illustration of a given picture in RGB and YUV color space 
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Motion Estimation and Compensation (Temporal Redundancy): It is very 

trivial that consecutive frames look very similar. The correlations among 

consecutive frames are very high. This is the temporal redundancy between 

frames. To remove this redundancy, the incoming frames are predicted with 

previously decoded frames with motion estimation and compensation. The 

frame contents are represented by motion vectors (MV) and the predicted residue. 

This dramatically reduces the video data size. 

Target Frame F{t) Predicted Residue 

Motion 
Estimation 

Motion 
Estimation 

Reference Frame Motion Compensated Frame 
and Motion Vectors 

Figure 1-5 An illustration of the motion predicted residue with respect to two 
consecutive frames. 

There are several inter-prediction structures. The most trivial one is the 

IPPP... structure (Figure l-6(a)) which predict the current frame with 

previously decoded frame. When bidirectional prediction is allowed, current 

frame can be predicted by one previous reference frame and one future 

reference frame. This forms a structure denoted as IBBP... structure (Figure 

1 -6(b)). This structure can be extended to Hierarchical B-frame structure 

(Figure l-6(c)), which is usually denoted as IbBbP.... 



(a) IPPP... structure 
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Figure 1-6 Different Prediction Structure. Red arrow is the unidirectional 
prediction. Blue arrow is the bidirectional prediction. 



Transform and Quantization (Spatial Redundancy): Although the motion 

estimation and compensation reduce the video data amount, the data amount of 

predicted residue can still be reduced. This can be achieved by transform and 

quantization. Transform decorrelates the residue while quantization reduces or 

removes the components less sensitive to our human eyes. This lowers the 

spatial redundancy among the predicted residue. 

Input Pixels Coefficients 
！3 4 

：‘ 
o H 1? •5 31 1 l i , Hi 

4 H i W b > J 1 
Jit 

Ml 
m 

llĵ  
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Figure 1-7 An example of transform and quantization. 

Entropy Coding (Statistical Redundancy): Finally, the transform coefficients 

in the last step, motion vectors and other side information are coded with a 

lossless entropy encoder. This encoder gathers the statistics of these contents 

and assigns the optimal number of bits to the bit stream according to the content 

and its statistics. This removes the statistical redundancy in the contents. 



1.4 Performance Evaluation Metrics 

To evaluate the coding performance of a coding system, the bit rate and the PSNR 

are usually compared. The one offering a higher PSNR at the same bit rate or the 

one offer the same PSNR at a lower bit rate is a better coding platform or coding 

algorithm. However, it is very common that they do not align on the same line and 

this makes the comparison difficult. As an alternative, one may compare the 

coding performances by plotting the RD curves with several RD points, the PSNR 

against the bit rates. The one has higher RD curve is a better one. Unfortunately, 

in some cases, two RD curves may make a cross or both may be too close to each 

other. It is hard to distinguish which one is the higher one. This makes the 

comparison difficult. Bjontegaard proposed a method to calculate the average 

difference two RD curves in [17]. This is adopted as a common method to evaluate 

the coding performance in many coding standards, such as H.264/AVC and AVS. 

The method proposed in [17] has 3 basic steps. First, a third order polynomial is 

fitted to 4 RD points (bit rate and PSNR at 4 different QP). Second, obtain an 

expression for the integral of this curve. Third, the average difference between the 

curves is calculated as the difference between the integrals divided by the integration 

interval. The average difference obtained using this method is usually called as BD 

bit rate and BD PSNR. They are equivalent to each other. 

Suppose two coding methods, A and B, are compared and B is the anchor. The 

RD curves {PA and PB) are obtained from 8 RD points (4 from each method) as 

shown in Figure 1-8. 



RD points 

^IOWTR Bit rate (in log scale) 

RA(PSNR\ 
i?B(PSNR) 

Bit rate (in log scale) 

Figure 1-8 Calculation of BE) PSNR (upper) and BD bit rate (lower). 

PA and PB can be expressed in third order polynomials of the rate. BD PSNR is 

defined as: 

BD-PSNR = 
^upper 

R - ]? « 
upper lower 

(PAr)-Ps(r))dr (1.2) 

Similarly, the curves can be expressed as functions of PSNR and hence the BD bit 

rate is: 

BD-bitrate = 
P -A K 

upper lower 

(1.3) 

The BD bit rate and BD PSNR are used to measure the performance in this thesis. 
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1.5 Video Processing in Transform Domain 

Besides video coding, there are many video processing applications in transform 

domain. These applications can perform more efficiently than in pixel domain. On 

the other hand, the statistics of the transform coefficients plays an important role in 

many applications. 

1.5.1 Fast Walsh Search 
Pattern matching in transform domain is an example of video processing in 

transform domain. An example is the Fast Walsh Search (FWS), which is a pattern 

match algorithm in Walsh-Hadamard transform domain. It is shown that its 

accuracy is almost the same as Fast Full Search (FFS) but its complexity is 

significantly lower than the FFS. FWS is implemented into the H.264/AVC 

reference software and acts as a fast Motion Estimation (ME) method. It is shown 

that it outperforms other ME algorithms in the reference software. 

1.5.2 Transform Coefficient Distribution 
Statistical analysis plays an important role in many video processing applications. 

Many applications make use of the statistics, especially the distribution, of the data 

to achieve their works. As a result, the transform coefficient distribution analysis is 

very important in many processes in transform domain. It is usually assumed that 

the transform coefficients distribute in Laplace distribution. In our analysis, 

however, the transform coefficients of intra predicted residue are in Cauchy 

distribution rather than Laplace one. 



1.6 Thesis Scope and Contributions 

This thesis can be divided into three parts. The first part is the development of 

DCT-like integer transform and its application in video coding. The second part is 

about a fast pattern matching algorithm - Fast Walsh Search. The third part is an 

analysis of the transform coefficient distribution in predicted residue. 

In the first part, one of our contributions is the development of three new integer 

transforms. We focus on develop order-2*^ orthogonal integer transform, especially 

the order-16 transform. The proposed transforms must have integer kernels. They 

are going to be integrated into existing video coding systems. They must have 

good coding performances. Although non-orthogonal transform may also provide a 

good performance, it is not in our scope. Besides coding performance, efficient 

computation is also an important factor in designing transform in video coding 

system. The transform must be separable and have fast algorithm. In this thesis, 

our aim is to encode sequences with color sub-sampling rate 4:2:0 and MB size of 

16x16. We apply order-16 transform to luma part of the predicted residue only. 

The chroma part is coded with existing 8x8 or 4x4 transforms. However, we 

expect that order-16 can also be applied to chroma part for sequences with 

sub-sampling rate 4:4:4 or with support of super macro-block [18]. The proposed 

transforms are implemented into the reference software of two different coding 

standards, H.264/AVC and A VS. We focus on the High Profile in H.264/AVC and 

the Jiaqiang (Enhanced) Profile in A VS. The objective coding performance in 

these coding standards with different order-16 transforms are measured by the BD 



bit rate and BD PSNR described in the previous section. The comparison in terms 

of subjective picture quality will also be shown. The usage of the order-16 

transform is also analyzed. Analysis shows that this usage is pretty high. It 

reflects the importance of the order-16 transform in video coding. 

The second part is the Fast Walsh Search. It is a pattern matching algorithm 

developed by Mak and Li [19][20][21]. To speed up the matching process, we 

proposed a statistical threshold to remove the mismatch candidates from the 

candidate pool. We also analyze the relationship between this threshold and the 

nature of the pattern. A speed-up of the process without degrading the matching 

accuracy is shown in the experiment. 

The third part is the analysis of the transform coefficient distribution. This is very 

important to many applications in transform domain and it is usually assume to be in 

Laplace distribution. However, in our preliminary study, the transform coefficients 

of the intra-predicted residue are in Cauchy distribution rather than Laplace 

distribution. We verified this with different video sequences. Although this study 

is still in a starting stage, it is a very important to many applications such as the 

transform-based post-processing, the rate control and the rate-distortion optimization 

(RDO) in video coding. 



7 Thesis Outlines 

In this chapter, a brief introduction about video coding standards has been given. 

In next chapter, the motivation of our work will be explained. Three different 

orthogonal order-16 integer transforms will be proposed and demonstrated. Their 

developments and the abilities will be discussed in detail. They will also be 

compared with several existing order-16 transforms. These transforms are 

integrated into the reference software of two different coding standards, H.264/AVC 

and AVS, in Chapter 3 and Chapter 4 respectively. The implementation details will 

be clearly discussed. Their coding performances will be compared. Both 

objective and subjective evaluation will be shown. 

In Chapter 5, a new pattern matching method, Fast Walsh Search, will be 

demonstrated. It is implemented as a motion estimation method into the 

H.264/AVC reference software. It is shown that its accuracy is similar to Fast Full 

Search but significantly simpler. It outperforms other fast motion estimation 

methods in the reference software. 

An analysis of the transform coefficient distribution will be presented in Chapter 6. 

Usually the transform coefficients of images are supposed to be in Laplace 

distribution. The same assumption is applied to the predicted residue in video 

coding. However, it is found that the intra-predicted residue is in Cauchy 

distribution rather than Laplace distribution. Methods to estimate the distribution 

parameters are also proposed. 
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Chapter 2 Order-16 DCT-like Integer 
Transform 

2.1 Introduction 
Transform coding is a very common and important coding tool in video and image 

coding. It is a linear process to decorrelate pixel data. Commonly, it is in a 

block-wise basis. A patch of NxN pixel data are grouped into a block and this block 

of data is transformed into NxN coefficients. Most of the transforms being used in 

video and image coding are orthogonal and separable. Parseval's Theorem holds 

when the transform is orthonormal. This means that the total energy in (the sum of 

square of) the pixel domain is the same as that in transform domain. In addition, the 

variances of some coefficients are usually larger magnitudes than the others in 

transform domain. The data are packed into fewer coefficients and hence 

compression is achieved. In image and video coding, 2-D transform is required. It 

is important that the transform is separable. If a transform is separable, it means its 

2-D transform can be achieved by a column-wise and a row-wise 1-D transform 

independently. This significantly reduces the complexity from O(A^) to 0{N^). The 



complexity can be further reduced if fast algorithm exists. 

Many different transforms for image coding have been proposed, such as Haar 

transform, Walsh Hadamard Transform (WHT) and Slant transform. The optimal 

one is Karhunen-Loeve Transform (KLT). It is optimally tailored to a group of 

images. However, it is image-dependent. It depends on the correlation of the 

image data and hence it is not very popular in image and video coding. Instead, the 

well-known sub-optimal transform, Discrete Cosine Transform (DCT) [2], is 

commonly used. It is very popular in many processing and coding applications. 

This is because the DCT and the KLT are similar when the pixel correlation is 

approaching to 1. In most natural images, the pixel correlation is very high and 

approaching to 1. This makes the DCT has a coding performance very close to the 

optimal KLT. The DCT is also a real, orthogonal and separable transform which can 

be implemented with real numbers. A number of fast DCT algorithms have been 

proposed and DCT are widely employed in many signal coding and compression. 

Recently, the DCT is replaced by Integer Cosine Transform (ICT) [1]. This is 

because it also has a very high coding performance similar to the DCT but only 

required integer arithmetic rather than floating-point. This does not only save the 

computation dramatically but also reduces the drift error during the transformation. 

The transform process can be divided into two steps. The first step is a linear 

transform with integer kernel. The second step is scaling with real numbers. With 

the integer kernel, its transform coefficients can be computed perfectly with finite bit 

length. The real scaling constants can be embedded into quantization perfectly. 

As a result, this solves the problem of drift error. As a result, latest video coding 



standards, such as H.264/AVC [4], AVS in China [6] and also VC-1 [7], adopted 

different ICT. 

In image and video coding, fixed block size, says 8x8, DCT was commonly used. 

However, there is a major drawback in fixed size block based transform. It fails in 

adapting to varying video signal. This is because the DCT is only sub-optimal to 

stationary first order Markov random signal. Unfortunately, video signal is changing 

from time to time and from space to space. As a result, this limits the coding 

performance. In order to adapt to the non-stationary video signal, Arbitrary 

Block-size Transform (ABT, also known as Adaptive Block-size Transform and 

Variable Block-size Transform, VBT) is proposed [8][9]. Transforms of different 

sizes adapt to different parts of the video picture. Smaller transform codes rapidly 

changing signals while larger transform codes smoother signals. In H.264/AVC 

FRExt [10], both 4x4 and 8x8 ICT are adopted to form an ABT system. Either 4x4 

or 8x8 ICT is selected to transform the predicted residue in each Macroblock (MB). 

It IS reported that about 10% bit rate reduction is achieved in this ABT system [9]. 

The addition of smaller transform benefits videos with lower resolution or rich details. 

Videos with higher resolutions (known as High Definition, HD)，such as 1280x720, 

1920x1080 or even higher, are becoming more and more popular. It is expected that 

larger transforms can provide better coding performance to these video sequences. In 

[19], It is reported that the addition of 16x16 integer transform provides gains from 

0.086 to 0.471 dB for HD sequences. As a result, this becomes our motivation to find 

larger integer transforms (order-16 or above), which have better coding performances 

and also low computation requirements, to improve the video coding performance. 



Besides ABT with larger transforms, many transform based techniques have been 

proposed to improve the coding performance, such as Shape-Adaptive DCT (SA-DCT) 

[10][11] in MPEG-4, (Mode Dependent) Directional Transform (MDDT) [12][13]. 

Despite these two techniques not in our scope, a short introduction will be given. 

SA-DCT is based on pre-defined sets of 1-D DCT basis functions. It usually 

co-operates Video Object (VO) coding in MPEG-4. It transforms the VO data of 

irregular shape. It is not applicable to all blocks but only to 8x8 blocks with a 

binary alpha mask boundary that contain one or more transparent pixels. That 

means it is only applicable to 8x8 blocks along the VO boundary. 

In intra-prediction, it is found that the correlation in the predicted residue along the 

prediction direction is still strong. The statistics of the predicted residues are 

grouped according to their prediction mode. The 4x4 directional transforms are 

derived from the KLT according the residue statistics. As a result, different 

prediction modes take different directional transform. This is known as 

Mode-Dependent Directional Transform (MDDT) [12]. An alternative is 

demonstrated in [13]. The directional transforms are selected according the RD 

performance. Overhead is required to indicate which directional transform is used. 

This is not only applicable to intra-predicted blocks but also the inter-predicted. 

In our work, to seek for order-16 integer transform with better coding performance, 

we will propose three classes of order-16 transforms in this chapter. The first one is 

the Simple Integer Transform. It has a simple structure and is derived from order-8 

ICT. To improve the performance, the Hybrid Integer Transform from Dyadic 

Weighted Walsh Transform will be proposed. It is slightly more complex than 



Simple Integer Transform. Lastly, a novel algorithm deriving order-16 ICT will be 

proposed. Two different order-16 ICTs, LLMICT and CSFICT, derived by this 

algorithm are proposed. Their waveforms are very close to the DCT but 

implemented in integers only. These proposed transforms aim to improve to coding 

performance in video coding. They are integrated into the reference software of 

H.264/AVC and AVS. Their coding performances will be shown in later chapters. 

Instead, different analysis will be shown in this chapter and it is shown that the 

proposed transforms have properties similar to the DCT. These transforms also have 

fast algorithms such that they can be computed efficiently. 

Before describing our proposed transforms, let us have a brief description of our 

symbol notations in the remaining of this chapter first. We are not going to describe 

the notation of every symbol in detail but we are going to roughly describe how our 

notation system is. This may help to understand. 

Notation Description 
T Orthogonal transform matrix. 
E The integer kernel of T, E and K form in a pair described in (2,10). 

K The 1 -D scaling matrix of T. E and K form in a pair described in 
(2.10). 

S 2-D scaling matrix of T. It is a combination of two 1 -D scaling matrix 
K described in (2.14) 

P The odd part of T. 

Q The even part of T. 
X Input pixel data. 
F Transfonii output coefficients. 

Table 2-1 Notation system in later sections 

All notations have both subscript and superscript. Their superscript describes their 

order while their subscript describes their nature or type. For example, denotes 

_ . • • “ “ ^ ^ “ ~ 2-5 



Chapter 2 - Order-16 DCT-like Integer Transform 

the order-8 ICT. Its integer kernel and scaling matrix are denoted as E;^) and 

respectively. 

2.2 The Discrete Cosine Transform 
In this thesis, we are only interested in the transforms of order-A^ = where k is a 

positive integer. Without specification, N is restricted to the integer powers of 2 in 

this thesis. The Discrete Cosine Transform (DCT) referring in this thesis is DCT-II 

which order-TV transform process is defined as: 

/ , 二 � 4 " - 电 + 1 ) �w h e r e c , M ) = � 
2N I •J 去 otherwise 

(2.1) 

x\ and f j are the input signal and the output transform coefficients respectively. The 

transform process can be represented in matrix form: 

[2 
r  

N 
COS合 COS務 (X)S 務 

曾 
COS蠻 COS發 

r 

c o s ^ COS — 

cos 
COS 

(2AM)7r 
~ ^ ~ I 

2{2N-\)K 丨X 
~ T H ‘ 

'DCT X 

COS (yy-i) (2/v-0;r ^ -

T^cr is an NXN orthogonal matrix such that: 

(2.2) 

t S or equivalent to � I DCT J ‘ 

� “i s an order-iV identity matrix. The (/,y)th element in T 义 i s equal to: 

cos 
IN 

where c 
^ otherwise 

(2.3) 

(2.4) 



Due to the dyadic symmetry, an order-2A^DCT can be decomposed into the odd part 

DCT and the even part Q f̂̂ V [23][24][25] 

n(2A') _ 
^ DCT 〜 

0(") 0 
VDCT “ N 

0 P(") 
” N [DCT 

- I . 
forA^>2. (2.5) 

IN is rotated by 9(f while 0/v is an order-TV zero matrix. It is proven that Q^^^T 

is a scaled version of the DCT 

(2.6) 

As a result, the DCT has a recursive structure: 

-(2/V) 
•DCT 

r(A/) 
DCT 

0 N DCT - 1 
forA^>2. (2.7) 

The elements in T^j^ appear more than once and hence can be represented 

with a few different elements a；. The elements with the same magnitude are 

represented with the same a,. We can generalize a, such that it can be any real 

numbers which keep the matrix orthogonal with the structure same as T 识 . I n this 

thesis, this transform is called General Cosine Transform (GCT). For example, the 

order-8 GCT is shown in (2.8). Obviously, order-8 DCT is an example of GCT with 

1 . � r 1 1 / 疋、1 双、1 双、1 , 7 / r � 
Its elements {uq, a]...ae} = {〒， - c o s ( — ) , - c o s ( — ) , - cos ( -—) , - c o s ( — ) , 

V8 2 16 2 16 2 16 2 16 

1 .71. 1 371.. 

严 i ) ， 广 ( T ) } . 



T(8) 
'•GC 

-a, - a , 

Oo « 
<34 -a^ -a^ 

— i t i> 
a) - a, a 

- … “ 

a. — a, ti 

一《丨 
„ � 以1 

a j flj —a: 
a^, -an -an 

CI2 — - fr̂  a, - â  
- � — 打 e 

a, a, - fli 

(2.8) 

GCT has properties same as the DCT. (2.7) can be rewritten as: 

r(2yv) 
^GC 

r ~ -
T I 

"I T⑷ A 厂 〜 "1 T T 
Q g c 〜 I A' ^N _ "yv I/v £/v 

.1. - V _ 
p(Â ) [GC -I - T 

-N IN -
for TV > 2. (2.9) 

This is an important property to derive order-16 integer transforms in later sections. 

厂 is orthogonal only when both and P � a r e orthogonal. 

2.3 Integer Cosine Transform 
2.3.1 Order-4 and Order-8 ICT 

Order-8 integer cosine transform (ICT) in existing coding systems was first proposed 

in [1], It is defined that an integer transform T is an orthogonal matrix which can be 

composed by a scaling matrix K and an integer kernel E. 

= K E (2.10) 

E is a matrix which contains only integer elements and K is a diagonal matrix with 

positive real elements, which makes the basis vectors of T unity. An ICT has both 

the properties of an integer transform and a GCT. It is a GCT which has an integer 

kernel: 



T f � 
(N) 
IC (2,11) 

The structure of 广 is the same as T�Jp but 广 contains only integers. It also 

has a recursive structure: 

/C 

1 T(") 

0 . 
0 JV 
�m 
ic • I s _?_v 

for7V>2. 
(2.12) 

Order-4 ICT, T；；̂, is defined as 

T；? 

- < 3 , a, - a . 

(2,13) 

It is orthogonal for any (ao, a], fli)- 1CT4(1, 2, 1) and ICT4(2，3, 1) are adopted in 

H.264 and AYS respectively. For order-8 ICT, is: 

，（8) 
• !C 

- a . 
� '4 

口0 

- a , 

— a, -a, -0, 

-ct. 

Cl'j 
- a ^ 

(2.14) 

It can be decomposed into: 

n ( 8 ) 
^IC 

Q(;) 0 4 
i ( 4 ) 

IC • 
(2.15) 

where 



Q;:) 二 “ 
flo - OR, 

a , -

is a scaled version of T/f and (2.16) 

IC 
a飞 一 

-a, -a, 

AN —a, 
(2.17) 

is orthogonal for any ao, as and a6. Pfc is orthogonal if: ( 4 ) 

(2.18) 

so as to ensure that T)*̂  is orthogonal. To make the basis vectors have waveforms 

similar to the DCT: 

a, > a. > a^ > a八 and a. > a, (2.19) 

The 2-D transform process of an NXN data block X is modeled as: 

(2.20) 

Substituting (2.11) into (2.20) to yield: 

(2.21) 

is the 2-D scale matrix formed by the 1-D diagonal scaling matrix 

The element-to-element multiplication is represented by ©. is defined as: 

(2.22) 



The inverse transform can be implemented as: 

X = (2.23) 

In usual manner, the 2-D scaling matrix of an integer transform, S, is integrated into 

the quantization and rescaling process in coding system. The transform with 

integer kernel, E, can be perfectly implemented with finite bit length. The drifting 

error caused by irrational transform matrix (such as the DCT) can be prevented. 

ICT also has this advantage. 

There are infinite many integer solutions that satisfy (2.18). As a result, there are 

infinite possible cases for . However, finite sets of cii, which obtain higher 

transform efficiency (See Section 2.8.2 for detail), were suggested in [1]. The higher 

transform efficiency means the higher ability to decorrelate the data. This also 

implies higher compression ability. In the following, we name the order-// T,(广 as 

ICT/v(flo, for ease of use. The larger value range of a„ the better performance 

can be obtained. The larger value range of a, also means higher precision and higher 

complexity usually. To balance the compression ability and the complexity, two sets 

o f a „ ICT8(8, 12，10，6，3, 8, 4) and ICTgCS, 10, 9, 6, 2, 10, 4), are chosen. They are 

adopted in the latest video coding standards - H.264/AVC FRExt [5] and AVS [6] 

respectively. In H.264/AVC FRExt, order-4 ICT is also used. 



2.3.2 Order-16 ICT 
Order-16 ICT was proposed in [14] and [15]. Its integer kernel, E l̂̂ ,̂ is defined as 
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(2.24) 

Similar to order-8 ICT, it can be decomposed into: 

-(16) L/C-
0 

(8) 0, 

‘IC , u - (2.25) 

»�$) is the odd part of T,(广.It has a structure: 

> { I 6 ) IC 

- A , 

- A . 

a , -

- A : 

- A -

- c r , 

«8 
(2.26) 

To ensure T〉？ orthogonal, both T〉？ and must be orthogonal. The criteria 

for orthogonality are: 



+ a^a^ + a^a^ - a^a^ + a^a^ + a^a^ + a^a^ + a]a (2.27) 

(2.28) 

«�«4 + a^a^ 以7 = + -^a^a^, and (2.29) 

(2.30) 

Some solutions to above equations are suggested in [14] and [15], However, it is not 

easy to figure out the fast algorithm for and hence that for As a result, 

there is no fast algorithm proposed for order-16 ICT. This motivates us to develop 

other high performance order-16 orthogonal integer transforms with fast algorithms. 

2.3,3 Other Order-16 Integer Transforms 
There are a number of order-16 integer transform [15]-[18] proposed in recent years. 

The integer kernels of these proposed order-16 transforms are listed in (2.31) to (2.34) 

respectively. With these integer kernels, their transform can be easily found 

according to (2.10). 

'^men — (2.31) 



It has been reported that non-orthogonal transforms can give a high coding 

performance [19]. The error caused by its non-orthogonality can be controlled at a 

very low level with proper design of the transform. However, it may not be easy to 

derive its fast algorithm because of its non-orthogonality. In this thesis, the focus is 

on the orthogonal order-16 transforms with fast algorithms. 
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2.4 Simple Integer Transform 
To balance the complexity and the compressibility, here we proposed a novel order-16 

simple integer transform [20]. It was adopted into the AVS reference software [21], 

It is developed from the existing order-8 ICT. Suppose an order-8 ICT with integer 

kernel E;? as shown in (2.14), we can extend it into order-16 integer kernel. Here 

we name them as E^/ and respectively. They are defined as: 

-a, flrt -
a: 

- a -

a, -a, -a. 
-a, 

a. 
-a, 
-a, 

(2.35) 

^ic 
17(8) 
.札 / r 

1 7 ( 8 ) 

S^Tf-

a, 

a, a^ 

a, -CL 

- f l . 

(2.36) 

- f la -

where H = [1 1; 1 -1] is the order-2 Hadamard Transform Matrix and ® is the 

n A 

Kronecker product. We can rearrange Ê ； and E ” in sequency order to become 

Esi and E幻 : 



Finally, normalize the integer kernels E幻 and E52 with K^i and K52 respectively. 

Orthogonal order-16 Simple Integer Transforms Tsi and T幻 are formed. Here we 

name the above two transform matrices to be «i . ’，《6) and T 幻 a \ . . . a e ) 

respectively. The complexities for these two transforms are the same for the same 

given set of a,, but Tsi has a higher compressibility than Ts2- As a result, we shall 

demonstrate the experimental result of Tsi only. Two different order-8 ICTs were 

proposed in H.264/AVC and AVS respectively. For simplicity, the Tsi implemented 

with the order-8 ICT in H.264/AVC and AVS are denoted as 飞SI-TM4 and TS/-AVS 
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(a) H.264/AVC (b)AVS 
Figure 2-1 Fast algorithms oforder-8 ICT adopted in (a) H.264/AVC and (b) AVS. 

16-
•n-

Order-8 ICT 8令 

WHT 

(a) (b) 
Figure 2-2 Fast algorithm of proposed order-16 transform (a) Tsi and (b) T幻. 

respectively. They are equivalent to Ts/(8, 12，10, 6, 3, 8，4) and T幻(8, 10, 9, 6, 2’ 10， 

4) respectively. Their integer kernels E幻 can be easily obtained using (2.37). 

The fast algorithms for Es/ and E幻 are very simple. Each of them consists of eight 

order-2 Hadamard Transforms and two order-8 fast ICT. The fast algorithms of these 

two order-8 ICT are shown in Figure 2-1. The two different Simple Integer 

Transforms can be derived from these two ICT. 
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2.5 Hybrid Integer Transform from 
Dyadic Weighted Walsh Transform 
In Simple Integer Transform T幻，there are only 8 different levels in the odd frequency 

vectors at most. However, there are 16 different levels in DCT. This means that 

Simple Integer Transform only approximates the DCT with limited accuracy. In 

order to make the approximation more accurate, the order-8 transform for odd 

frequencies is replaced by another transform with more levels. In this section, it is 

replaced by an order-8 Dyadic Weighted Walsh Transform (DWWT) which has a 

maximum of 8 different levels in each basis vector. As a result, a better 

approximation and hence a better performance can be achieved. 

First of all，let us have a short introduction to DWWT first. For simplicity, here we 

take an order-4 as an example. Consider a vector of 4 positive elements, F̂  = [a。，a], 

a2, a^]. We can find its 5 dyadic symmetric [22] vector V^ 二 [£»()’ bi, bj,办3] by: 

b 丨 f o r [0,1,2,3] (2.39) 

and @ is the bit-wise "exclusive-or" operation. As a result we can find 4 dyadic 

symmetric vectors, 

Assign +/- sign to each element such that V’ . = 0 if i 本 j. This sign assignment 

is not unique such that more than one orthogonal matrix for the same (ao, a], a j , a^} 

can be found. In (2.40), two with different sign assignments are shown. 



s K 

0 do a\ ai 
1 a\ cio ai 
2 <33 Cl] 

3 ai ao 
Table 2-2 Example of dyadic symmetric vectors 
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Denote that the 4x4 matrix formed by the four basis vector F, as T 二 , the 

Dyadic Weighted Walsh Transform (DWWT). Its basis vectors must be orthogonal 

for any real {gq，，02，<33}. Using the same idea, it can be extended to order-2^ (for N 

> 2) transform. One of the order-8 DWWT in its family is: 
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(2.41) 

Here we name the above order-8 DWWT as I^DWW in later sections for simplicity. It 

is denoted as Tdww {ho..力7) when its parameters are given. 

Our proposed order-16 Hybrid Integer Transform (HIT), T � / ) ’ is a hybrid of two 

different order-8 transform. One is the above DWWT JDWW and the other is order-8 

ICT . The odd basis vectors are built by TDWW while the even basis vectors are 



HIT can be expressed as: 

n(t6) _ 1̂ (16)1̂ (16) 
I/// 一 ^N/ Lh! (2.44) 

such that is a diagonal matrix to unify the basis vectors of the integer kernel 

Eg) and hence T^/^ is orthogonal. Ejjf is built by E g and EDWW, which are 

the integer kernels of and respectively. ForEj^^ here we can simply 

choose the integer kernel of ICTgCS, 10, 9, 6，2, 8, 4) which is adopted in AVS. For 

EDWW, because of its property, there are infinite many solutions. Here we search for 

different "EDWW which produce T)丄6) ^i th high coding gain GTC (see Section 2.5) 

with basis norm similar to that of ICT8(8, 10, 9, 6, 2, 8, 4), These sets of EDWW are 

built byT)$). T忍6) is defined in (2.42). 

rfltl (2.42) 

In matrix representation, it is represented as: 

(2.43： 

/
8
 /
s
 

t) 

TW 

,(8) 

0 
T(16) 1"/ 



shown in the following table. Besides compressibility, existence of fast algorithm is 

also an important concern. The fast algorithm for Ejj；^ is achieved as shown in 

Figure 2-3. 

ID 
Set of E DWW 

Norm 
GTC 

ip=0.9) 

E •DWM 574 4-501 

E vfvm 570 4.497 

^Divm (MICT) 561 4 508 

E DWW4 546 4 498 

E Dmvs 544 4.493 

E DIVW6 540 0 9 8 6 4 4.987 
Table 2-3 Examples of EOFVIR with high coding gain GTC-

Figure 2-3 The general fast algorithm of proposed order-16 transform E"/, 

It is not easy to obtain a generalized fast algorithm for ^DWW but for a specific ̂ DWW-

In [19], Dong pointed out that orthogonal matrix can be decomposed into product of 

simpler sparse matrices if its norm is not prime. Let the norm of ^dww be D. If 

Eoww can be factorized such that ^dww = M1M2M3.. .M^-i, D can also be factorized 



into d\d2...dk = D where di is the norm of M,. So if the factors of D are found, the 

factors of ^dww can be easily found. However, some D are prime numbers or have 

large prime factors. It is difficult to factorize these ^DWW- For these ^DWW, they can 

be decomposed into simpler linear sum first. This can simplify the factors of ¥ J D W W 

and provide a simpler fast algorithm for ^DWW- An example the decomposition of 

^Dww\ is shown in (2.45). It is decomposed into the sum of two ^dww, ^dww{1 1, 11, 

11，9，8，5，4，1) and KowwiO, 0, 0，0，0，2，0，0). The first one can be decomposed 

into 4 sparse matrices. 

E DLVWL 

= E 脈“ 11,11,11,9,8,7,4,1) 

tE^(11，11’1�,9,8,5,4，1) + E 
• - 1 2 1 

- 1 - 2 2 
- 1 1 - 1 2 

2 1 2 1 1 

1 
2 

2 
- 1 1 

- \ 

- 3 

I 
1 

1 
1 

1 

講(0,0,0,0,0,2,0,0) 
2 II 

“ 1 

1 2 

2 2 
1 - 1 
1 1 

1 1 

- 麗 

一 1 

(2.45) 

The factorizations of the Edwwi, ^dwwi and ^^owm are shown in the appendix. With 

the factorization, the fast algorithm oi^oww, and hence that of E(�,6), can be obtained. 



The A^-element matrix P二）is relaxed to an (A/‘/2)-element matrix P二^ . Here, 

Relaxed General Cosine Transform (RGCT) is defined by replacing P^f) in (2.9) 

with iiN) 
RGC 

，（2A0 ， 77 VRGC 
•RGC IK p(A/) 

R RGC, 

1 

- J 
' �f o r TV�2. (2.47) 

2.6 LLM Integer Cosine Transform 
2.6.1 Relaxed GCT 

The proposed order-16 transforms in previous sections are extended from order-8 

transforms. The waveforms of these transform is slightly different from those in the 

DCT. This lowers the coding performance. The order-16 ICT proposed in [14] is 

very close to the DCT. However, it is not easy to derive its fast algorithm and no fast 

algorithm has been proposed so far. As an alternative, here we proposed a novel 

method to derive higher order ICT based on an existing fast DCT algorithm. 

Recall that GCT in (2.9) can be decomposed into two parts, P(Jp and Q^^^. 

Here we proposed to relax P^^^ to P^^c such that: 

(2.46) 

a a a 

I： 
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N-2, 
^N-2 
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p(/V； 
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The next step is to find the values in P 盟 � .T h i s can be achieved by existing fast 

DCT algorithms such as the LLM fast DCT algorithm proposed by Loeffler et al, [26] 

and the CSF fast DCT algorithm proposed by Chen et al. [23]. 

2.6.2 The LLM Fast DCT 
LLM fast DCT algorithm [26], which was proposed by Loeffler et al., requires only a 

few multiplications. It requires only 31 multiplications and 81 additions for order-16 

1 -D DCT. It is also presented in a nice butterfly structure shown in Figure 2-4. It is 

divided into 5 stages from the input signal XQ 15 to the output coefficients fo 15. 

Multiplications with the irrational constants shown in the figure are required. 

Although only order-8 and order-16 LLM Fast DCT are proposed in [26], it is not 

difficult to derived higher order fast algorithm with similar structure. As a result, we 

use it in our proposed algorithm of deriving higher order ICT. This will be shown in 

later section. 



Figure 2-5 The generalized odd part of LLM algorithm. 

Figure 2-4 The LLM fast DC丁 algorithm. 

2.6.3 The Proposed LLMICT 
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Chapter 2 - Order-16 DCT-like Integer Transform 

Since we are going to find only the odd part, P^J^ , we focus in the odd part of the 

LLM algorithm. Its generalized version is shown in Figure 2-5. The irrational 

constants are replaced by variables g,.,n，r and j. It is very intuitive to take these 

constant as the integer approximation of the irrational constants. For example h = 

61 w 61.2442 w x cos(-|y). However, the orthogonality will be destroyed by 

doing so. Instead, when the fast algorithm is expanded into matrix form, the matrix 

of the odd part becomes: 

j(8) 
• U.M — 

rj + sk 
sj + rk 

J 
k 

rj 一 sk 
rk - sj 

ri - si 
rl — si 

•iri + sl) 
• (si + rl) 

- ( / - / ) 

h + m 
sh — rm 

{rh - sm) 
-h 
-m 

sh + rm 
rh + sm 

h-m 

• (sg + rn) 
•{rg + sn) 

ff 
K 

sg - m 
rg-sn 

-(g —�) 

g-n 
(rg - sn) 
(sg-rn) 

•{rg + sn) 
• (sg + rn) 

h-m 
• {rh + sm) 

sh + rm 
m 

-h 
rh 一 sm 
sh - rm 
{h + m) 

• (si + rl 

rl - s 
• {ri — si 

{fk - sj) 
rj — sk 

• {sj + rk) 
rJ + sk 

-ij + k) 

(2.49) 

Compare (2.49) with (2.48), we can find that they have the same structure and hence 

»(8) 

LLM is a possible solution to P^^^ . Here, we propose an orthogonal integer 

transform T^f^ , called LLM Integer Cosine Transform (LLMICT) by replacing Pj'^j. 

in (2.47) with 

nr(2/V)— 
1 LLM 一 

(") 0 
LLM “ N 

’ N LLM 
(2.50) 

For ease of implementation,飞二 can be replaced by T ] p when N < 8. Lastly, to 

ensure orthogonal, the criteria for orthogonality (2.51), (2.52) and (2.53) have 

to be satisfied for arbitrary r and 5： 



(2.51) 

(2.52) 

(2.53) 

The solution to the above equations is: 

(2.54) 

for some positive integer a. To make the basis vectors similar to the DCT ones, 

another constraint is added: 

g>h>i>J>k>l^m^n (2.55) 

There are infinite sets of solutions to these two constraints (2.54) and (2,55). It is 

very interesting that some of these solutions can be found recursively without 

exhaustive search. If given a solution (g, h, i,j, k, /, w, n) to (2.54) and (2.55), (J+k, 

iH, h+m, g+n, g-n, h-m, i-ij-k) must be a solution, too. This is because: 

U + kY+ij-kY =2{f+k') = 2a (2.56) 

which is also a positive integer. This means that the (J+k, J-k) pair satisfies (2.54). 

Other pairs, (;+/, i-l), (h+m, h-m) and (§"+"，g - n ) , also have the same property such 

that (J+k, i+l, h+m, g+n, g-n, h-m, i-l, j-k) is a new set of solution. 

Here some examples of (g.. .n) are shown in Table 2-4 and Table 2-5. (g...n) can be 

represented in 6 bits in Table 2-4 while they can be represented in 5 bits in Table 2-5. 

一 



They are sorted according to their coding gain in descending order in each table. 

They are named as A1 �A 7 and B 1 � B 7 . 

ID 8 •t f J A I m n 
A1 61 

i L 59 53 49 37 31 17 7 

A2 1 46 45 42 35 30 19 10 3 

A3 , 4 3 42 38 34 27 21 11 6 

A4 59 58 53 46 37 26 11 2 

A5 I 62 59 53 46 43 34 22 11 

A6 51 
1 

48 44 
1 

37 36 27 19 8 

A7 49 47 
L_ ——— 

44 41 28 23 16 8 

Table 2-4 Example solutions for g…n which can be represented in 6 bits. 

ID 8 h i J k / w 

B1 18 17 15 15 10 10 6 1 

B2 29 26 22 22 19 19 13 2 

B3 20 19 16 16 13 13 8 5 

B4 26 25 23 23 14 14 10 7 

B5 30 27 22 22 21 21 14 5 

B6 25 23 19 19 17 17 11 5 

B7 29 27 25 25 15 15 11 3 

Ta ble 2-5 Example so lutions for g...n which can be represented in 5 bits. 

The examples in Table 2-5 can be implemented with fewer operations. However, the 

coding performance will be slightly lowered. This is a trade-off between 

complexity and performance. 

Although r and s can be arbitrary, it is better to choose r : s ^ sin ( ^ ) : c o s (譬 ) « 

0.4142. (r, s) can be taken as (1,2) or (2, 5) for simplicity. 

Orthogonal PgL is found. Recall (2.50) and replace with ICTgCS, 10, 9, 6，2， 

10, 4). Finally, in order to normalize the dynamic ranges of different coefficients, 
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Figure 2-6 Fast 1-D Forward Transform for LLMICT-Al. 

o 

Order-8 ICT 

bit shifts are added to the last stage. Taking A1 and B1 as the example, their integer 

transform kernels are shown in (2.57) and (2.58). Their 1-D fast transforms are 

shown in Figure 2-6 and Figure 2-7 respectively. 
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(2.57) 

256 256 256 256 256 256 256 256 Zlr> 256 256 256 256 256 256" 
3 3 6 3 0 4 2 7 2 2 1 6 168 88 4 8 - 4 8 - I E - 1 6 8 - 2 1 6 - 2 7 2 - 3 0 4 3 3 6 - 3 4 4 
2 8 8 192 6 4 - 6 4 - 1 9 2 - 2 8 8 - 3 2 0 - 3 2 0 - 2 8 8 - 1 9 2 - 6 4 6 4 192 2 8 8 3 2 0 
2 0 3 3 3 - 1 5 7 - 2 9 1 - 3 2 9 - 2 6 1 - 8 7 87 2 6 1 3 2 9 2 9 1 1 5 7 - 3 3 - 2 0 3 - 3 1 9 
128 - 1 2 8 - 3 2 0 - 3 2 0 - 1 2 8 128 3 2 0 3 2 0 128 - 1 2 8 - 3 2 0 - 3 2 0 - 1 2 8 128 3 2 0 
4 9 - 2 6 1 - 3 1 9 - 8 7 2 0 3 3 2 7 171 - 1 7 1 - 3 2 7 - 2 0 3 8 7 3 1 9 2 6 1 - 4 9 - 2 8 3 

- 6 4 - 3 2 0 - 1 9 2 192 3 2 0 6 4 - 2 8 8 - 2 8 8 64 3 2 0 192 - 1 9 2 - 3 2 0 - 6 4 2 8 8 
124 - 2 3 6 2 8 2 4 4 68 - 2 1 2 - 1 4 8 148 2 1 2 - 6 8 - 2 4 4 - 2 8 2 3 6 124 - 1 9 6 
2 5 6 - 2 5 6 2 5 6 2 5 6 - 2 5 6 - 2 5 6 2 5 6 2 5 6 - 2 5 6 - 2 5 6 2 5 6 2 5 6 - 2 5 6 - 2 5 6 2 5 6 
2 1 2 - 6 8 2 4 4 - 2 8 - 2 3 6 124 196 - 1 9 6 - 1 2 4 2 ^ 6 2 8 - 2 4 4 6 8 2 1 2 一 148 

3 2 0 6 4 2 8 8 - 2 8 8 - 6 4 3 2 0 - 1 9 2 - 1 9 2 3 2 0 - 6 4 - 2 8 8 2 8 8 6 4 - 3 2 0 1 9 2 

3 2 7 2 0 3 8 7 - 3 1 9 2 6 ] 4 9 - 2 8 3 2 8 3 - 4 9 - 2 6 1 3 1 9 - 8 7 - 2 0 3 3 2 7 - 1 7 1 
3 2 0 3 2 0 - 1 2 8 - 1 2 8 3 2 0 - 3 2 0 128 128 - 3 2 0 3 2 0 - 1 2 8 - 1 2 8 3 2 0 - 3 2 0 128 
2 6 1 3 2 9 - 2 9 1 157 3 3 - 2 0 3 3 1 9 - 3 1 9 2 0 3 - 3 3 - 1 5 7 291 - 3 2 9 261 - 8 7 
192 2 8 8 —320 3 2 0 - 2 8 8 192 - 6 4 - 6 4 192 - 2 8 8 3 2 0 - 3 2 0 2 8 8 - 1 9 2 6 4 

- H t 168 - 2 1 6 2 7 2 - 3 0 4 3 3 6 - 3 4 4 3 4 4 - 3 3 6 3 0 4 272 2 1 6 - 1 6 8 8 8 - 4 8 

2 5 6 
3 4 4 
3 2 0 

3 1 9 
3 2 0 
2 8 3 
288 
196 
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Figure 2-7 Fast 1-D Forward Transform of LLMICT-Bl. 

Order-8 ICT 
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One may wonder the relationships among the ICT proposed in [1] and [14] (i.e. J j f ) ) 

and our proposed LLMICT. Their relationship is illustrated in Figure 2-8. In [1] and 

[14], the DCT is generalized to Tec and then the ICT, T/c is found as a subset in Tec-

Here, we further generalize TGC to TRGCT and a subset, TLLM, is found in TROCT- If the 

members in TLLM have integer kernels, they are our proposed LLMICT or denoted as 

TJLLM in Figure 2-8. The approach to derive orthogonal transforms here is different 

from that in [1] and [14]. However, the fast algorithm of the ICT in [14] (order-16 

ICT) may not be found easily. 

Figure 2-8 The relationship among T } ^ T 仏 , T 监 and the DCT. 

Despite of the order-16 ICT proposed in [14], it is not easy to derive its fast algorithm. 

Instead, our proposed algorithm is based on a well-structured fast algorithm with 

integer multiplication only. The proposed transform has a recursive structure such 

that higher order transform, such as order-32, can be easily derived. Since the LLM 

fast DCT is defined for order-2^ only，the proposed LLMICT is also defined for 

order-2^ only. It is not difficult to derive the LLM algorithm for higher order fast 

DCT. As a result, P监 and hence T监 can be easily found for TV > 16. 



2.6.4 Order-32 LLMICT 
Using the same idea, order-32 LLMICT can be found. Its fast algorithm is shown in 

Figure 2-9. Here, the order-16 LLMICT for the even part is using our proposed 

LLMICT-Al. In the figure, a\.. an are predefined constants. The criteria for 

orthogonality are: 

+ … = + ‘ = + «14 = + ‘ for some positive a, (2.59) 

+ â o = + = /? for some positive P, (2.60) 

Three more constraints are added to make the waveforms similar to these of DCT: 
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(2.61) 

^ 1 7 ^ ^ 2 0 ： 

'•22 
»sin 

(2.62) 

(2,63) 

For simplicity, (<321, a22) are taken as (2, 1). Some solution sets for (2.59), (2.60), 

(2.61) and (2.62) are shown in Table 2-6, Table 2-7 and Table 2-8. 

Set «17 «18 «19 «20 
1 8 7 4 1 

2 9 7 6 2 
3 11 10 5 2 

4 11 9 7 3 
5 12 9 8 1 

Table 2-6 Example solutions for order-32 LLM] [CT which satisfy (2.60) and (2.62). 
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Order-16 LLMICT 

Figure 2-9 Fast Algorithm oforder-32 LLMICT. 
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Take {a\i, a\%, “19’ <320) = (8, 7, 4，1). One order-32 LLMICT A1 with {a\...a\^)= 

(253,251,243,237,233,219, 197, 181, 177，159, 127,99, 89 ,71 ,33 ,9 ) and another 

B1 with ( f l i . . . a , 6 ) - ( l l l , 110,106,97,90,90, 79, 79，78, 78, 65，65, 54, 33, 15,2) are 

built. They are shown in Figure 2-11 and Figure 2-12 respectively. Their 

transform matrices are shown in the next two pages without normalizing their basis 

vector norms. It is shown that their matrix elements requires 12 bits and 11 bits 
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(including sign bit) to represent respectively. Order-32 LLMICT is still under 

investigation. Fine-tuning is required. It will not be included in the analysis in 

later sections and chapters. However, in Figure 2-10, it is shown that our proposed 

LLMICT have waveforms very close to the DCT. Here we show some analysis 

about these two transforms in Table 2-9. These figures are for reference only but 

they show that order-32 LLMICT are quite close to the order-32 DCT. 

Transform 
DCT 

Distortion (%) 

Transform Coding Gain (dB) 
Transform 

DCT 

Distortion (%) p = 0.6 p = OJ p = 0.8 p = 0.9 

Order-32 DCT 1.855 2.806 4.268 6.959 

Order-32 LLMICT-Al 0.0136 1.847 2.792 4.246 6.921 

Order-32 LLMICT-Bl 0.0384 1.845 2.789 4.240 6.911 

Table 2-9 Brief analysis of order-32 LLMICT 
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Figure 2-10 Waveforms oforder-32 LLMICT and the DCT. The DCT is in blue, 
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2.7 CSF Integer Cosine Transform 
2.7.1 The CSF Fast DCT 

Similar to the LLMICT, the proposed method can be applied to other fast DCT 

algorithms. For example, the fast DCT algorithm proposed by Chen et al [23], In 

this thesis, it is named as CSF fast DCT algorithm. Similar to LLM fast DCT 

algorithm described in last section, it presents in a butterfly structure with 

multiplications with irrational constants. Its data flow is shown in Figure 2-13. 

Recently CSF fast DCT algorithm was proposed to be used in the Test Model under 

Consideration (TMuC, [28]) of JCT-VC to support larger transforms such as 16x16 

and 32x32. However, the transform proposed in [28] is an integer approximation of 

the DCT such that it is not truly orthogonal. This motivates us to derive an 

orthogonal ICT with fast algorithm similar to CSF one. Here we call this transform 

as CSF Integer Cosine Transform (CSFICT). 

Figure 2-13 The CSF fast DCT algorithm. 



a{ne - gf)+ b{ge + nf\ 
•j{he-mf)- b{me + hf) 

a{ie + lf)-b{le-in 
a{ke + ke)~ b(je - kn 
a{je-kf)~bike + jf\ 

a{le~if)+b{ie + lf\ 
•i{hj + me) + b{he - mf\ 
aige + nf)+ b{ne - gf) 

The criteria for orthogonality are: 

2.7.2 CSF Integer Cosine Transform 
Similar to LLMICT described in (2.50), the CSFICT is expressed as: 

llcSî  
� 0 
CSF “ N 

0 p(") 
” N [CSF. 

(2.64) 

For order-16 CSFICT, Pg；̂  can be found with order-16 CSF fast OCT algorithm. 

The odd part of the CSF fast DCT algorithm is generalized into Figure 2-14. In the 

figure, a...n, a a n d p are real valued. 

Ui =Xi 

Figure 2-14 The generalized CSF fast algorithm (odd part). 
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a- = c ' and (2.66) 

(2.67) 

for arbitrary g...n. They are rather tough criteria if a...f are limited to integers. 

Their values are found to be large so as to provide good performance. As a result, we 

proposed to modify the CSF fast DCT algorithm so as to loosen the criteria for 

orthogonality for CSFICT. 

2.7.3 Modified CSF Fast DCT and MCSFICT 
The odd part of CSF fast DCT algorithm is modified as shown Figure 2-15. This 

modified version is generalized to the one shown in Figure 2-16. 

C15 
U4 = = X 4 -- X | i 

Us = = X 5 -- X i o 

Ul: --X2 -

= -- X i 4 

W 6 : 

= X i 

- X 9 

-Yq M7 

W3 = = X 3 - X i 2 

Wo = 

Figure 2-15 Modified CSF fast DCT algorithm (odd part). 



UO=XQ- X\5 

Figure 2-16 Generalized modified CSF fast algorithm (odd part). 

The fast algorithm is expanded to matrix form similar to the one shown in (2.65) and 

the criterion for orthogonality is found: 

a' 十d (2,68) 

for any real valued e.. .n. (2.68) is a looser criterion with integer solution comparing 

with (2.66) and (2.67), Therefore, a simpler integer transform with good coding 

performance can be found easier. Here the integer transform found by the modified 

CSF fast algorithm is called MCSFICT. In order to make the MCSFICT have a good 

coding performance, the constants have to be: 

a :b:c:d^ cos(4): cos (* ) : cos (*) : cos(*: 

and 

(2,69) 

(2.70) 

Some suggested values are: 



It is analyzed together with other order-16 DCT-like integer transforms described in 

this chapter in next sections. 

Chapter 2 - Order-16 DCT-hke Integer Transform 

{a,b,c,d)e {(8,7,4,1),(l 1,9,7,3),(22,18,13,3),(l 9,16,11,4),...} and (2.71) 

{(2,1),(5,2),(7，3),(12，5),...}. (2.72) 

After choosing the value of a…the remaining constants g.’,n can be found by 

exhaustive search so that the highest coding performance is offered. The proposed 

method of deriving ICT has a high flexibility such that the values ofa...n can be 

chosen as a balance of complexity and performance. In this thesis, we suggest a 

MCSFICT with a...n equal to (8, 7 ,4 ,1 , 5, 2，9，8, 8，7,5,4,3,1). The even part of this 

MCSFICT is taken to be ICTsOO, 9，6, 2, 8’ 4, 8). Its integer kernel matrix is: 
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2.8 Analysis 
In the last sections, three types of order-16 DCT-like integer transforms have been 

proposed and demonstrated. Together with other order-16 transforms proposed in 

previous literatures, they are listed in Table 2-10. The performances of these 

transforms are going to be compared. The performance to be evaluated includes the 

complexity and the compressibility. The numbers of operations for 1-D fast 

transform are investigated and the computation times for 2-D fast transform are 

measured. Here the compressibility is in terms of transform efficiency and transform 

coding gain. These transforms are compared with the sub-optimal transform, the 

DCT. As actual compressibility in a coding system involves the performance of 

many other coding tools as well, the evaluation of the overall compressibility will be 

shown in later chapters. 

Transform Descriptions 

TSICT Simple ICT[14] 

TM/ct Modified ICT [19] 

TV刷 Integer Transform Proposed by Wien [16] 

飞Ue Integer Transform Proposed by Lee [17] 

T Josh I Integer Transform Proposed by Joshi [18] 

TSI 11264 Proposed Simple Integer Transfoiiii 

T5/ AVS Proposed Simple Integer Transfoi 111 

T"" Proposed Hybrid Integer Transfonn from EDWWI 

T/-//2 Proposed Hybrid Integer Transform from EDWW2 

飞！丄M-A! Proposed LLMICTAl 

^LLM-B! Proposed LLMICT B1 丨 

^MCSF Proposed MCSFICT ' 
Table 2-10 List of Order-16 DCT-like transforms in this thesis. 



2.8.1 Complexity Analysis 
Fast algorithms are implemented (see Appendix B) and their numbers of operations 

are listed in Figure 2-17. It is shown that our proposed Simple Integer Transforms, 

^ SI-11264 and ŝi-AVS require the least number of operations. Only 108 and 124 

operations are required respectively. After them，our proposed LLMICT, TUM-BI, 

TLLM-A! and TMCSF, follow. The numbers of operations are 140, 160 and 172 

respectively. The remaining are TMICT, ^WIEN, TJOSHI, T W 2 , T " " , and TIEE in ascending 

order. 

The number of computation is only a theoretical figure. In order to show a more 

realistic scene, these fast algorithms are tested with 1,000,000 sets of 16x16 random 

pixels. The testing platform is a PC with an Intel Core 2 Duo @ 2.53GHz and 2 GB 

memory working with Windows Vista. Their computation times are recorded and 

listed in Table 2-12. Comparing with direct matrix multiplication, these fast 

algorithms can speed up the process by 30 to 45 times. As shown in Figure 2-18, the 

two proposed Simple Integer Transforms TSI-AVS and TSI-H264 are the two fastest 

transforms. They require less than 1.4 seconds completing 1，000,000 2-D transform 

operations. They are followed by our proposed LLMICT, TLLM-BI and TUM-AI-

Their computation times slightly increase to 1.46 seconds. Our proposed TMCSF can 

also complete the test in 1.52 seconds. The remaining are Tjoshi, ^Lee, ^mict, ^wien, 

T///2 and T"". They take more than 1.6 seconds. 



Transform # of Add # of Shift Total # of Operation 

T^MCT 144 30 174 

"^Wien 144 38 182 

Tiee 148 58 206 

飞 Josh 120 64 184 

飞 S1-H264 80 28 108 

^Sl-AVS 92 32 124 

飞HII 160 30 190 

T///2 158 30 188 

飞 LLM-AI 110 50 160 

飞 LLM-Bl 92 48 140 

^MCSF 114 58 172 
Table 2-11 Number of operations for different order-16 transform (1-D) 

Number of Operations for Fast Transforms (ID) 
TLee 

TWien 

THI2 

TJoshi 

TMICT 

THI l 

TMCSF 

TLLM-Al 

TLLM-Bl 

TSl-AVS 

TS1-H264 

• 

• 
画 lAbdit ions H Shifts 

60 80 100 120 140 160 180 

Figure 2-17 The numbers of operations of different fast transforms. 



Transform Direct Multiplication, 
tDM (S) 

Fast Algorithm, tp̂ ^ (s) Speed-up = � M -广 AX 

^FA 

飞 MICT 1.732 33.71 

Tmen 1.829 31.87 

Tlee 1.727 33.82 

飞 Joshi 1.646 35.53 

飞 S1-H264 1.355 43.37 

^Sl-AVS 60.126 1.304 45.11 

飞HIl 2.053 28.29 

T///2 1.999 29.08 

飞 LLM-Al 1.460 40.18 

飞 LLM-BI 1.460 40.18 

飞 MCSF 1.520 38.56 

able 2-12 Computation time for different order-16 transform 

Time for 1,000,000 2-D Transform Operation 
THI l 

THI2 

TWien 

TMICT 

TLee 

TJoshi 

TMCSF 

TLLM-Bl 

TLLM-Al 

TS1-H264 

TSl-AVS 

L 1.2 1.4 1.6 1.8 2 

Computation Time (Seconds) 

Figure 2-18 The computation time of different fast transforms. 
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2.8.2 DCT Distortion and Transform Efficiency 
It is expected that a transform with basis vectors closer to the DCT basis vectors, the 

better coding performance will be. Here the DCT distortion discussed in [16] will be 

measured. If a transform has a lower DCT distortion, it is closer to the DCT. The 

DCT distortion is defined as: 

16 "吨(TocrTf^r)!; . (2.74) 

TDCT is the order-16 DCT transform matrix and T(JF is the order-16 transform under 

test. If TU7 is the same as T D C / , is zero. If TUR is closer to TDCT, the smaller the 

di is. The DCT distortions of different transforms are shown in the column of 

Table 2-13. Tjosh has the lower DCT distortion. Tum-ai is not far from it. It is 

followed by TMCSF, TS!CT, ^LLM-BI and TIEE- These five transforms have DCT 

distortions lower than 1%. T " / / ， T M I C T , 飞 H ! 2 and TV卿 have higher distortions of 

around 16%. The distortions of TS]-H264 and Tsi AVS are the largest (>27%). 

The efficiency of a transform is generally measured by its ability to decorrelate the 

pixel data. The transform efficiency is defined as: 

N-\ 

where 二 B = (2.75) 

R^̂  is the correlation matrix of the pixel data. Assume that it is a first order 

Markov process. The ( i ， 力 山 element of R^x is p '̂''̂  . It is reported that the 

correlation of the predicted residue {p) is ranged from 0.5 to 0.9 [19]. The 



transform efficiency in this range is shown in Table 2-13. They are plotted against 

the correlation in Figure 2-19. The optimal transform, KLT, can completely 

decorrelate the pixel data such that 100% transform efficiency is achieved. It is 

shown that the DCT has the highest transform efficiency. After that are ^ L L M - A I and 

Tjoshi- They have almost the same efficiency. The remaining are TMCSF, T S I C T , 

^LLM-Bh T/�e,飞謝CT, T///?, T////, Tsi-Avs,飞s“H264 and Twien in descending order. 

Transform DCT 
Distortion (%) 

Transform Efficiency (%) 
Transform DCT 

Distortion (%) p = 0.5 尸 0 . 6 尸 0 , 7 尸 0 , 8 p^O.9 

Tocr 0.00 79.8 78.2 77.4 78.3 82.8 

T^/cr 0.23 78.0 76,0 74.9 75.1 79,4 

Tmct 16.68 72.5 70.9 70.8 72.7 78.8 

Twe,, 16.95 60.5 56.8 54.1 53.8 59.9 

Tiee 0.80 75.7 73.4 72.0 72.6 77.2 

J OS hi 0.05 79.1 77.4 76,5 77.2 81.6 

^ SI-11264 27.52 64.3 62.6 62.6 65.1 72.8 

28.26 63.8 61.7 61.1 62.9 70.1 

T " " 16.49 71.1 69,3 69.1 71.2 78.2 

16.79 71.5 69.7 69.4 71.3 77.7 

^LLM-A! 0.07 79.4 77.6 76.6 77.2 81.3 

飞 LLM-B! 0.50 75.6 73.5 72.6 73.4 78.5 

^MCSF 0,20 78.9 76.9 75.7 76.0 80.2 

Table 2-13 DCT Distortion and Transform Efficiency. 



Transform Efficiency 

Correlation p 

Figure 2-19 The transform efficiency of different transforms. 

2.8.3 Transform Coding Gain 
Another important measure for the evaluation of the transform performance is the 

transform coding gain GTC- Under the assumptions of optimum quantization and 

bit allocation, GTC of an order-A^ transform is: 

1 iV-l / ‘ V 
I K (2.76) 

iV / I / 

where oj = b{k, k) is the variance of the 众-th transform coefficient (recall b{k, k) in 

(2.75)). The transform coding gain at different p is shown in Table 2-14. As the GTC 

are quite close to each other, their differences between the DCT are plotted in Figure 

2-20. Again, ^ L L M - A I and are very close to the DCT. They are lower than the 

DCT not more than 0.02dB which is negligible. After them, TMCSF, ISICT and TLLM-BI 

follow. Both lag behind the DCT not more than 0.1 dB. The remaining are Tiee, 

飞MICT’ THIU T / / / 2， ^ S I - A V S , ^SI-H264 and Twien in descending order. 
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Table 2-14 Transform coding gain of different transform. 

Transform Coding Gain with reference to DCT 

Correlation (勿 

0.7 0.8 0.9 

•TLLM-Al 

•TJoshi 

-TSICT 

TMCSF 

•TLLM-Bl 

•TLee 

-TMICT 

•THl 

-TH2 

•TSl-AVS 

•TS1-H264 

•TWien 

Figure 2-20 The transform coding gains of different transforms (reference to DCT). 

Transform 
Transform Coding Gain, Gjc (dB) 

Transform 
p=0.5 p=0.6 p=0.7 p = 0.8 p = 0.9 

飞DCT 1.141 1.779 2.698 4.115 6.726 

T�7CT 1.135 1.769 2.682 4.089 6.685 

TM/CT 1.068 1.679 2.569 3.957 6.540 

Tivien 0.871 1.367 2.100 3.281 5,602 

Tiee 1.112 1.732 2.622 3.995 6.539 

Tjoy/i/ 1.139 1.775 2.692 4.106 6.711 

lsi-H264 0.932 1.484 2.307 3.619 6.118 

^Sl-AVS 0.929 1.478 2.296 3.600 6.088 

T///7 1.064 1.672 2.559 3.942 6.518 

飞HI2 1.066 1.674 2.561 3.943 6.515 

^LLM-Al 1.141 1.778 2.695 4.108 6.712 

飞 LLM-Bl 1.121 1.749 2.654 4.052 6.631 

飞Mcsr 1.136 1.771 2.684 4.094 6.692 
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2.8.4 Computationally Optimal Transform 
In any encoding situation, including image, video and audio, rate-distortion 

optimization is a common technique to minimize the distortion (or to maximize the 

quality) under a given data rate. This is very well-known that the output quality 

will be higher when a higher data rate is offered. Just like the relationship between 

rate and distortion, the computation and the coding performance also have similar 

relationship. It is very intuitive that the transform with more computation (i.e. the 

more precise approximation of the DCT or KIT), the higher coding gain can be 

obtained. However, which one is the computationally optimal one? The 

computationally optimal transform can be found by the method similar to 

rate-distortion (RD) curve. The coding gain is plotted against the number of 

operations as shown in Figure 2-21. When the transform is by-passed, the gain is 1 

(or 0 dB). When the number of operations in the transform increases, the transform 

can be implemented more precisely. As a result, it should be approaching to the 

optimal transform, KLT. The coding gain will approach to that of the KLT (the 

green dotted-dashed line). An operational complexity-coding-gain (CCG) curve, 

which is the upper envelope of all complexity-coding gain points, can be found. It 

is the red dotted line as shown. The transform has a complexity-coding gain points 

closer to the CCG curve implying that it is more computationally efficient. It can 

be observed that TILM-AI and Tj�— are the two most computationally optimal 

transform among the tested transforms theoretically. They are very close to the 

operational CCG curve with high coding gain. With the CCG curve, we can select 

different transform according to the desired application. For example, we can 

choose T^/ H264 for application requires low complexity.  
— — — — — ^ 



Coding Gam uf DCT 

\lm.B1 
‘ -f+̂ HH + 

Operational Complexity Coding gain Curve 

了S1- TSI-avs 

The proposed order-16 integer transforms and existing integer transforms are 

described and tested theoretically in this chapter. In the next two chapters, these 

transforms are integrated into the reference software of two popular video coding 

standards, H.264/AVC and AVS in China. An overview of each standard will be 

given. The integration method will be described in detail. Experiment result of the 

proposed platforms will be shown. The performance of these integer transforms will 

be compared. 

Transform Coding Gain vs Number of Operations 

Coding Gain of KLT 

60 80 \ m 120 140 160 180 200 220 
Number of Operations 

Figure 2-21 The transform coding gain (p = 0.9) vs. the number of operation. 
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2.9 Conclusions 
In this chapter, 3 classes of order-16 transforms are proposed. They include (i) the 

Simple Integer Transform extended from existing order-8 ICT, (ii) the Hybrid Integer 

Transform formed by order-8 ICT and order-8 Dyadic Weighted Walsh Transform and 

(iii) the order-16 ICT derived from Relaxed General Cosine Transform (RGCT). 

The third class of transforms can be further divided into two types: LLMICT and 

CSFICT. These two types are very similar to the OCT. The order-32 LLMICT 

are also shown. CSFICT is modified to loosen its criterion for orthogonality. This 

increases the flexibility of designing high performance orthogonal transform. 

Examples of these order-16 transforms are shown and investigated. The simple 

integer transform is the simplest transform. The two proposed simple integer 

transforms only take 110-120 operations to complete a single 1-D transform. 

Experiment shows that they take around 1.3 seconds to complete 1,000,000 times 

2-D transform. The proposed LLMICT has the highest coding gain. The 

waveforms of the two proposed LLMICT are very dose to the DCT, Their DCT 

distortions are 0.07% and 0.50% respectively only. At the same time, they do not 

require complex computation such that their computation times are only slightly 

longer than that of simple integer transform. The ultimate transform should be 

computationally optimal such that it is high compressibility and low computation 

requirement at the same time. In order to find the computationally optimal 

transform, the operational computational-gain curve is proposed. It is found that 

TiiM-AJ and Tjoshi are the two most computationally optimal transforms in theory. 
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Chapter 3 ABT in H.264/AVC 

3.1 Overview of H.264/AVC 

H.264/AVC (also called H.264/MPEG-4 Part 10) [1][2] is a video coding standard 

jointly developed by the ITU-T Video Coding Experts Group (VCEG) and the 

ISO/IEC Moving Picture Experts Group (MPEG). These two parties formed the 

Joint Video Team (JVT) and developed this standard. This standard targets in the 

applications including video storage, streaming video on web, digital video broadcast 

and real-time video-conferencing. It replaces the old video coding standard MPEG-2. 

Many factors, such as new algorithms, the dramatic rise of the processor speed and the 

fall of the memory cost during the last decade, break the development constraints in 

the past. Computationally complex but functionally efficient algorithms are now 

feasible. H.264/AVC adopted many advanced algorithms into its block-based hybrid 

video coding structure to improve its coding performance. As a result, it is reported 

that H.264/AVC reduces the bit rate by half at the same objective quality comparing 



with MPEG-2. 

The JVT extended the H.264/AVC standard and named these extensions as Fidelity 

Range Extensions (FRExt) [3][4]. They improve the quality of video coding. It 

supports higher sample bit depth precision, higher color sub-sampling rates (such as 

4:2:2 and 4:4:4), addition of 8x8 ICT and many other new features. The drafting 

work on these extensions was completed in 2004. Besides FRExt, other main 

features such as Scalable Video Coding (SVC, completed in 2007) [5]-[8] and 

Multiview Video Coding (MVC, completed in 2009) [9]-[ll] are also added to the 

standard. However, these two features are not in the scope of this thesis. Their 

detail will not be discussed here. 

In Figure 3-1 and Figure 3-2, the diagrams of the encoder and the decoder of 

H.264/AVC are shown respectively. It is a typical hybrid video coding structure. 

The spatial, temporal and statistical redundancies in the video sequence are removed 

in different stages in the encoder. The intra prediction and integer transform remove 

the spatial redundancies. The motion estimation with multiple reference frames 

removes the temporal redundancies. The entropy coders (Context-Adaptive Variable 

Length Coder, CAVLC and Context-based Adaptive Binary Arithmetic Coder, 

CABAC) remove the statistical redundancies. To reduce the blocking distortion, 

Loop-filter is applied to every decoded macroblock. This does not only improve the 

subjective visual quality of the reconstructed picture, but also improves the quality of 

the reference frames. As a result, the coding performance is also improved. 
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In the standard, there are a number of profiles and levels which specify well-defined 

sets of syntax constraints for encoders and decoder processing capabilities for 

decoders. Profiles specify the syntax features while levels specify the parameters of 

these feature. There are a number of profiles defined and they target specific 

application areas. Some of these profiles are: 

• Baseline Profile: Low-cost application such as video-conferencing and mobile 

applications. 

• Main Profile: Standard-Definition (SD) TV broadcast. 

• Extended Profile: Streaming video. 

• High Profile: Video broadcast and storage, particularly for HDTV. 

• High 10 Profile: Based on High Profile, it support up to 10 bit per sample. 

• High 4:2:2 Profile: Based on High 10 Profile, it support 4:2:2: chroma 

sub-sampling format. 



In this thesis, we focus on the High Profile which is particularly for HDTV. 

Depending on the application, different features are defined in different profiles. 

These features are commonly called coding tools. Numerous novel coding tools are 

adopted in H.264/AVC. Here are some of the typical coding tools defined in High 

Profile: 

• Spatial Intra prediction: A MB can be coded as one 16x16，four 8x8 or sixteen 

4x4 sub-blocks. The pixel values of these blocks are predicted by their left and 

upper blocks (pixel A to M for 4x4 block and pixel A to Z for 8x8 block in Figure 3-3) 

There are 9 prediction modes (mode 0 to mode 8 in Figure 3-3) for 4x4 and 8x8 

blocks while there are 4 prediction modes (mode 0 to mode 3 in Figure 3-4) for 

16x16 block. 
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Figure 3-3 Nine intra prediction modes for 4x4 and 8x8 blocks. 
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Figure 3-4 The intra prediction modes for 16x16 block. 



• Multiple reference frames: A maximum of 16 reference frames is supported. 

With more reference frames, more accurate prediction can be achieved. The 

predicted residue is reduced and hence the bit rate. 

• Variable block-size motion compensation: block-based motion compensation 

supports the block size from 4x4 up to 16x16. This allows a more precise 

segmentation of moving regions than fixed block-size motion compensation. 

Figure 3-5 The variable block-size motion compensation partitions. 

• Inter-prediction with sub-pixel accuracy: Motion vectors may not fall exactly 

on the integer pixel grid. This is achieved by a 6-tap interpolation filter. A balance 

between the accuracy and the complexity, motion estimation in sub-pixel accuracy up 

to quarter pixel is supported in H.264/AVC. This reduces predicted residue and 

hence the bit rate. 

• Order-4 and Order-8 ICT: Predicted residues are transform with 4x4 ICT 

which produces less ringing artifacts in prior codec. In FRExt, 8x8 ICT is also 

_dlowed which provides a higher coding efficiency than 4x4 ICT in smooth regions. 
— 3-5 



The adaptive selection between the 4x4 and the 8x8 ICT improves the coding 

performance significantly. 

• Logarithmic step size quantization control: This makes the rate management 

easier. 

• Loop filtering: It is an in-loop low-pass filter which reduces the blocking 

artifacts common to block-based image compression techniques. It improves not 

only the visual quality but also the compression efficiency. 

• CAB AC: It is a very efficient entropy coder with better compression than most 

other encoding algorithms. 

• CAVLC: It is a lower-complexity entropy coder than CAB AC but with high 

coding efficiency also. 

After a short review of H.264/AVC standard, the integration of order-16 transform to 

this standard will begin in the next section. From Section 3.2 to 3.6, our proposed 

implementation will be described. In Section 3.7, experimental result and analysis 

will be shown. Conclusions will be drawn in Section 3.8. 



3.2 Transforms 

In original standard, H.264/AVC specified an order-4 ICT for transforming the 

predicted residue. An order-8 ICT is added in FRExt. The integer kernel of order-4 

and order-8 specified are: 
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(3.1) 

(3.2) 

Here, the order-16 transforms described in the last chapter are integrated into the 

reference software of H.264/AVC. Together with order-4 and order-8 transform, an 

Arbitrary Block-size Transform (ABT) platform is formed. Only a single transform 

is selected in each MB in H.264/AVC. Different transforms can be used in different 

MB. It is decided in MB level. The proposed ABT platform keeps this remain 

unchanged. Either order-4, order-8 or order-16 transform is used in a single MB. 

An example is shown in Figure 3-6. 



(a) Without 16x16 transform (b) With 16x16 transform 
Figure 3-6 Arbitrary Block-size Transform in H.264/AVC. 

The transforms being integrated 

Simple integer transform, Tsi-h264, 

Simple integer t r an s fo rm ,飞SI -AVS , 

Modified ICT, MICT, 

Hybrid Integer Transform, T H I I , 

Hybrid Integer Transform, Thi2’ 

Order-16 transform proposed by Wien, TV勤 

Order-16 transform proposed by Lee et aL, Tiee, 

Order-16 transform proposed by Joshi et al., T加/»’ 

LLMICTA-10, TLLM-AI, 

LLMICT B-1, TLLM-BI and 

Modified CSFICT (MCSFICT), TMCSF-

They are tested individually in Section 3.7. 



3.3 Quantization and Rescaling 

The transform coefficients are quantized and rescaled before inverse transform. 

Since the norms of the integer transform basis vectors may not be the same. A scaling 

process is required to normalize the transform coefficients. In usual manner, this 

scaling process is embedded into the quantization and rescaling process. In this 

section, the method of quantization and rescaling with proposed transform in H.264 

will be discussed. 

Figure 3-7 Data flow of quantization and rescaling in H.264/AVC. 

3.3.1 Quantization 
For simplicity, let us consider this process starting from DCT. Assume an nxn data 

patch X is transform with a DCT kernel TDCT into an NXN coefficient patch C. This 

process can be written as: 

F — T Y T^ 
* DCT _ '•DCT ^ '•DCT (3.3) 

When quantization with step size Qstep and offset Qqffset is applied to the coefficients, 

the coefficient ( i j ) becomes: 



.么印 I 一,」• (3.4) 

Replace TDCT by an ICT T 二 K E and recall that the 2-D scaling matrix S can 

replace the 1-D scaling matrix K described in last chapter. (3.4) becomes: 

ICT = ( E X E $ S = G © S . (3.5) 

Note that 0 is the element-to-element multiplication. Applying uniform 

quantization to integer transform coefficients with step size Qstep and rounding offset 

Qoffset-

Fq (/, / ) - sign{F,,r (/, j)) X ^ ^ + 

二 卿 ( G ( , ’ 力） x —— + Qoffset 

. Q 卿 J I (3.6) 

PO, j ) X 咖；/，j) + a脑• 2�細,I 
sign{G{iJ)).^ •，胸J 

• t 

= “ j)) X L卯，j) X Quant(Q_ ； “ j) + . Qbits. 

Quant is an integer approximation the quantization matrix: 

Quant{Qstep\ i, J) = r o u n d . 2 供" 
^sfep 

(3.7) 

In H.264, Qstep is defined as: 

QPz 
0 = 2 6 (3.8) 

where QP is the quantization parameter, integers from 0 to 51. Quant becomes: 



QuantiQstep-j) = Quant{QP- i, j) 
( 

=round S{i,J)x2 
Qbns-^ 

{QP%(>) 
—f\l%tt【 

~round\ ^ .2妙 

= QM{QP%6-,i,j) » 

QP (3.9) 

QP 
, 6 � 

Here Q M is an integer matrix and the quantization can be implemented with integer 

only. It has a period of 6 such that: 

QM{QP + 6; i, J) = QM (QP; i, j ) . (3 川） 

In H.264, integer up to 64-bit accuracy is allowed. Assume that the input data are 

represented in b bits. The largest magnitude of G(/, J) after 2-D transform is 

2^x256*256 = 2 纏 . I n High Profile, b is only 9. Integer with 64-bit accuracy is 

very sufficient to represent G without any fixed point error or overflow. 

3.3.2 Rescaling 
Similar to forward transform, a scaling process is required in inverse transform 

process. This scaling process is usually integrated into the rescaling process (also 

known as dequantization). The quantized coefficients F^ in the last section are 

rescaled. 

F, 二 F ； � ( 3 . H ) 

It can be written as: 



roundiiS(i,j)xQ油产 
�i , J � x ^ ^ ^  

« {fq (z, j) X dequant{Qstep\ i j ) ) » DQbits 

(3.12) 

dequantQ can be expressed in terms of QP: 

iiequantiQstep-/, j ) = round{S{i, j ) x x 2 叩胁 
step 

QP-4 
=round{S{i,j)x2~^ y.2 

( g P % 6 ) - 4 

w round{S{i, y)x 2 ^ 

DObits 

X i D Q b i t s « QP 
6 

= DQM(QP%6',iJ) « QP 
6 

(3.13) 

Here DQM is the rescaling matrix in integer. F,- becomes 

/ 

« QP 
6 

»(DQbits— W). (3.14) 

Therefore, the reconstructed data patch Y is defined as: 

Y = E"" F E >>10 
f . 
'[F(iJ)x DQM{QPUJ))<< QP E » 1 0 (3.15) 

Here Qbits and DQbits are transform dependent. 



3.3.3 Example 
Let us take an example to illustrate the quantization and the rescaling process in the 

proposed H.264/AVC platform. Suppose the LLMICT A1 is used (E = ^llm-ai, 

Qbits = 31 and DQbits = 29) and QP = 28. According to (3.9), QM(QP%6) is 

defined as: 

QM{l%%6\iJ) around 

QM(28%6) 

-(28"..6) 
S{iJ)x2 

2048 2135 2204 2242 2151 2242 2204 - • 2204 2135' 
2135 2225 2298 2337 2242 2337 2298 -“2298 2225 
2204 2298 2372 2413 2315 2413 2372 2372 2298 
2242 2337 2413 2455 2356 2455 2413 2413 2337 
2151 2242 2315 2356 2260 2356 2315 2315 2242 
2242 2337 2413 2455 2356 2455 2413 2413 2337 
2204 2298 

1 
2372 2455 2315 2413 2372 2372 2298 

1 

2204 
1 

2298 2372 2413 2315 2413 2372 -
1 ！ 

-2372 2298 
2135 2225 2298 2337 2242 2337 2298 ” • 2298 2225 

(3.16) 

Consider an intra-predicted block X: 
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Using (3.6), the quantized transform coefficients F . are: 



According to (3. ) ,DQM is 

(28%6)-
DQM{QP%6-iJ) roimd(S(i,j)x2 6 

�512 534 551 561 538 561 " • 551 534 
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(3.17) 

Using (3.14) and (3.15), the reconstructed pixels, Y, 
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3.4 Syntax Structure 

3,4.1 New Syntax Elements 
In the proposed platform, two new syntax elements, I!6Flag and CBP16, are 

introduced. I16Flag is a flag indicating the transform size used in the current MB. 

The bit patterns of I16Flag are as shown in Table 3-1. Notice that 16x8 and 8x16 

transforms are not used in intra-block. 

One may suggest that the transform size sticks to the ME partition size. This 

saves the overhead indicating the transform size. However, we found that the 

scheme has a lower coding performance than the one with overhead. This is simply 

because the best transform cannot be selected when the transform size links to the 

ME partition size. 

J]6Flag 
Transform Size Intra-block Inter-block 

4x4 or 8x8 0 0 

16x16 1 10 

16x8 … 110 

8x16 111 

Table 3-1 Bit patterns for II6flag 

Another new syntax element is CBP16. It is similar to CBP in existing standard but 

it is specific for larger transform size. It indicates the present of non-zero luma 

transform coefficients in the sub-blocks when larger transform is used. If 16x16 

transform is used, its length is 1 bit. If 16x8 or 8x16 transform is used, it is 2-bit long. 



3.4.2 Intra Block Syntax Structure 
When order-16 transform is introduced, the syntax structure has to be changed. The 

change of syntax structure in intra block is relatively simpler. In H.264/AVC, 4x4， 

8x8 and 16x16 Intra predications are allowed. MB Type indicates which predication 

is used as shown in Figure 3-8. Since the transform size must not be bigger than the 

intra prediction partition size, 16x16 transform is allowed only when 16x16 intra 

prediction is used. Originally 4x4 transform is used when the MB is 16x16 intra 

predicted. To distinguish the use of 4x4 and 16x16 transform, U6flag is added to the 

bit stream. When this flag is “1”，16x16 transform is used. Otherwise, 4x4 

transform is used. Other predictions remain the same as the standard. 

4x4 Prediction 4x4 Transform 
Modes Coefficients 

8x8 Transform 
Coefficients 

116Flag = 0 _ 4x4 Transform 
Coefficients 

l16Flag 
CBP16 16x16 Transform 

Coefficients 

Figure 3-8 Syntax structure for intra-block 

3.4.3 Inter Block Syntax Structure 
The inter block syntax is slightly more complex. 16x16, 16x8 and 8x16 are 

available when larger inter-predicted partition is used. When the MB is predicted in 

direct mode or the prediction partition size is 16x16, 16x8 or 8x16,116flag is inserted 



into the bit stream to indicate the transform size as shown in Figure 3-9. The 

mapping between I16flag and the transform size is shown in Table 3-1. If larger 

transform size is not used, it follows the original decoding routine with smaller 

transform size. 

MB Type = {8x8 o「smaller) 

p o p 4x4 Transform 
W D r Coefficients 

如丨 
Transform 

Skip Flag MB Type MVD 

MB Type = {16x16, 
16x8, 8x16 or direct} 

l16Flag '丨— 

otherwise | 

Figure 3-9 Syntax structure for inter-block 

O D D 8x8 Transform 
O D r Coefficients 

16x16 Transform 
Coefficients 



3.5 Entropy Coding 

！ 

( s t a r t ^'hi-Binanzation' ^ ^ ~ / Modeling」 

Binary 

Arithmetic 
Coding 

Update 
Context 
Model 」 Codtng | Model 

Figure 3-10 The data flow of CAB AC 

The transform coefficients and some other syntax elements are coded with an entropy 

coder. The entropy coding in our implementation is Context-Adaptive Binary 

Arithmetic Coding (CABAC). This is because it has a higher efficiency than CAVLC. 

In CAB AC, different syntax elements reference different context model. Each 

context model contains the most probable symbol (MPS) of this context and the 

probability (or the state) of this MPS, The flow of a CABAC coder is shown in 

Figure 3-10. In binarization, the input syntax elements are first changed into binary 

symbols, ‘0’ or ‘ 1’• These binary symbols are called "bins". These bins are mapped 

to different context models by context indexing. The binary arithmetic coding (BAC) 

engine in CABAC obtains the MPS and the probability of the context model to encode 

the bin. Bit stream will be generated in this coding engine according to the status of 

the context model (MPS and its probability) and the incoming bins. The status of the 

corresponding context model will be updated after encoding every bin. This ensures 

the status of the context model that follows the statistics of the encoded symbols. As 

a result, this coder is adaptive to the context. In our impleinentation, the coding 

engine is the one specified in H.264/AVC, The context model indexing for newly 

introduced syntax elements, such as I16flag and CBP16, are added. 



As stated in the last section, 116flag is a flag indicating the use of larger transform. 

The simplest way is to use a single context model. This will capture the global 

statistics of this flag within the same frame. However, this fails to capture its local 

statistics. It is expected that MB coded with similar transform size are located in 

group closely. Single context model is not able to react quickly when this flag 

changes. As a result, the context index of the 116flag is according to the neighboring 

MB in our proposed platform. Two previously coded MB, the upper MB and the left 

MB, are referenced. The indexing method is shown in Table 3-2. The index will be 

assigned according to the value of I16flag of the neighbor. Three context models are 

required. This will not increase the complexity significantly but allow the context 

modeling to capture the local and also the global statistics of I16flag. Although it is 

not too much, a bit rate reduction of less than 1 % is observed with this context 

modeling. 

The context model of the flag CBP16, which indicates the presence of non-zero 

order-16 transform coefficients, is also indexed with similar method as I16flag. The 

index depends on the presence of non-zero coefficient (of any transform size) in the 

neighboring MBs. The indexing of CBP16 is shown in Table 3-3. 

Current block I16flag context 
model index. 

Ildflag in Upper MB Current block I16flag context 
model index. 1 0 

I16flag in Left MB 
1 2 1 

I16flag in Left MB 
0 1 0 

Ta Me 3-2 Context model index o f / 7 6flag 



Current block C B P 1 6 context 
model index 

Non-zero coefficients in Upper MB Current block C B P 1 6 context 
model index Present Absent 

Non-zero coefficients 
in Left MB 

Present 3 1 Non-zero coefficients 
in Left MB Absent 2 0 

Table 3-3 Context model index of CBP16. 

3.6 Rate-Distortion Optimization 

Rate-Distortion Optimization (RDO) is always enabled in our experiment. The 

Lagrangian RD Optimizer adopted in the H.264/AVC reference software is used. All 

possible combinations (prediction modes and transform sizes) of each MB are tested. 

For each combination, the bit rate (R) and the distortion (D) in sum of squared 

different (SSD) are measured. The RD cost (J) of each combination is calculated as: 

J = D + AR (3.18) 

入 is the lagrangian multiplier which depends on the QP value. The combination 

offering the smallest RD cost is chosen. 



3.7 Experiment and Analysis 

The analysis here is on the H,264/AVC reference software JM16.2 [12]. Those 

order-16 transforms mentioned in Section 3.2 are integrated into the software platform. 

It is implemented as the described in previous sections. The testing conditions are 

based those stated in VCEG-AJIO [13]. Detailed testing conditions are listed in 

Table 3-4. The resolutions of the video sequences in our test are ranged from CIF 

(352x288) to HD (1920x1080). We use the hierarchical-B prediction structure 

which provides the best coding performance among different prediction structures. 

The analysis will be in several aspects. First, the objective RD performance will be 

analyzed. The BD-bit rate and the BD-PSNR mentioned in [14] are computed and 

compared (See Chapter 1 for more detail). RD curves will also be shown. Second, 

subjective evaluation will be given. The decoded pictures will be shown. These 

pictures will demonstrate the differences among different transforms. Third, the 

usage of order-16 transform will be investigated. The conditions that order-16 

transform is chosen will be discussed. Lastly, the conditions that may lower the 

performance of the ABT with order-16 transform will be pointed out. 



Platform JM16.2 

Anchor JM16.2 (Order-8 and -4 transform 
enabled. No order-16 transform) 

Prediction Structure Hierarchical B Structure with 7 B-frames 
IbBbBbBbP... 

Hierarchical Coding Settings HierarchicalCoding = 2, 
ReferenceRecoder ^ 1, 
PocMemoryManagement = 1, 
HierarchyLevelQPEnable = 1 

Intra Period Only the first frame is intra predicted 

Frame encoded More than 120 frames: 
GIF, WQVGA or WVGA: 297 frames, 
720p; 145 frames, 
1080p 121 frames. 

Number of Reference Frames 4 

Entropy Coding CABAC 

Transfoiiii8x8Mode Enable 

Scaling Matrix Present Disable 

Rate Control Disable 

RDO Enable 

R D O Q Disable 

Loop Filter Enable 

Subpel Motion Estimation 1/4 pixel enabled 

Motion Estimation Search Range 64 

Motion Estimation Method Enhanced Predictive Zonal Search 

QP = { Q P J , QP_P, QP_B} {22, 23，24}, 
{27, 28, 29}, 
{32，33，34}, 

{37,38,39} 

Table 3-4 Testing conditions in H.264/AVC platform 



3-7.1 RD analysis (Objective Evaluation) 
The BD bit rate and the equivalent BD PSNR are shown in Table 3-5 and Table 3-6 

respectively. It is shown that the addition of order-16 transform significantly 

improves the coding performance. In all the tested cases, the bit rate reductions are 

observed. From Table 3-5, we can see that there is a slowly increasing trend in the 

average bit rate reduction when the resolution of the video frame is increasing. Of 

course, the bit rate reduction depends on the nature of the individual video sequence 

more rather than the frame resolution. This will be discussed in later section in this 

chapter. It is also observed that a maximum of 12.11% bit rate reduction (equivalent 

to 0.47 dB) is obtained when the order-16 transform Tjoshi is used to encode 1080p 

sequence "Sunflower". In [15], it is reported that this transform offers a bit rate 

reduction around 36% together with Mode-Dependent Directional Transform (MDDT) 

[16] and bigger motion partition up to 32x32. In our experiment, purely 16x16 

transform is added. MDDT and the bigger partition size are not included. 

On average, Tjoshi gives the largest gain. An overall bit rate reduction of 6.21% 

(0.24 dB equivalent) is observed in all test sequences. Not very far, it is followed by 

LLMICT-Al, MCSFICT and LLMICT-Bl which are only lagged behind by 0.03%, 

0.08% and 0.24% respectively. The differences are so small but the three proposed 

transforms are simpler. They save around 10% computation time with respect to 

T/oshi shown in last chapter. T^ee is lagged by 0.51% (or 0.02 dB equivalent) but it is 

requires more computation than TJOSHI. MICT, T H I I and T"/2 are developed with the 

same method. Their performances are very similar. Their bit rate reductions are 

5.65%, 5.51% and 5.56% respectively. Tmen also shows a bit rate reduction of 5.05%. 



Jsi-H264 and T^/.^ks are the two simplest transforms in our test. Lower coding 

performance is expected. However, they also offer average bit rate reductions of 

4.83% and 4.16% respectively. They are lagged behind by Tjoshi by 1.38% and 2.05%. 

But they save over 20% computation time comparing with 

From the RD-curves shown in Figure 3-11 and Figure 3-12, the coding performance 

differences among different transforms are small. It is not easy to distinguish. 

However, the figures clearly show that the tested RD curves are almost parallel with 

the anchor RD curve. This implies that the gain is not only obtained at the low bit 

rates but throughout the tested QP range. 
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Figure 3-11 RD curves for (a) BlowingBubble (WQVGA) and (b) BaskballPass 
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3.7.2 Subjective Evaluation 
In this section, the subjective evaluation of the video sequences coded with different 

order-16 transforms will be given. Several sequences of different resolutions will be 

illustrated. Each of them is coded with different transforms individually. In order to 

show their differences clearly, cropped version will be shown instead of the whole 

frame. 

Figure 3-13 shows the 84^'' frame of the sequence "BasketballPass" in WQVGA 

(416x240) coded with different transforms and QP = 32. When it is not coded with 

order-16 transform, the fine details of the image are destroyed. The lines on the 

wall (upper left) and on the door (upper right) almost disappear in Figure 3-13 (b). 

They are preserved when coded with the order-16 transform ((c)-(l)). Order-16 

transform preserves more detail such as the player's face (bottom right). It is also 

observable that the use of order-16 transform reduces the ringing artifacts near the 

high contrast regions (bottom left). 

The 270th frame o f ' B Q M a l l " in WVGA coded at QP - 32 is shown in Figure 3-14, 

The lines on the wall disappear in the decoded images (upper left). Only those 

coded with (j) T j�血, (k) LLMICT-Al and (1) LLMICT-Bl can preserve these details. 

The characters (upper right) and the old man's face (bottom left) are blurred in 

different degree. It is shown that it suffers most when it is coded without order-16 

transform. The texture of the lady's hat (bottom right) can hardly be seen without 

order-16 transform. It is preserved with order-16 transform, especially with (j) 

Tjos/u and (k) LLMICT-Al. 



Figure 3-15 shows the 100^' frame of "SpinCalendar" in 720p coded at QP = 27. 

The differences among different transforms in this sequence are not obvious. The 

pictures on the cans (top left) are slightly sharper when order-16 transform is used. 

Less ripple artifacts are observed near the letters on the calendar (top right). It is 

quite clear that more texture is preserved on the field (bottom). 

These examples show that order-16 transforms help to preserve the details of the 

pictures and to reduce the artifacts. However, the differences among the picture 

coded with different order-16 transforms are not obvious. Their subjective 

performances are more 

objective performance, 

better. 

or less the same. In 

such as LLMICT-Al, 

general, if the transform has a better 

its subjective performance is slightly 





(m) MCSFICT 

Figure 3-13 Subjective quality of 
BasketballPass (WQVGA)", 84& frame, 

coded at QP = 32 
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( g ) (h) 

(j) 飞Joshi 
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(m) MCSFICT 
Figure 3-14 Subjective quality of "BQMall 
(WVGA)，，，270th frame, coded at QP = 32. 
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(1) LLMICT-B1 

(m) MCSFICT 

Figure 3-15 Subjective quality of 
SpinCalendar (720p)", frame, coded at 

QP 二 27. 



3-7-3 Usage of Order-16 transform 
In our implementation, the transform size selection is according to the 

RD-performance. The one with the best RD-performance is chosen. If order-16 

transform is more frequently chosen, a higher gain is provided. This also implies 

its importance. The usage analysis of order-16 transform focuses on our proposed 

LLMICT-Al only. Its statistics is shown in Figure 3-16. The average usages of 

order-16 transform in different frame resolution at different QP are shown. The 

analysis here is in 3 aspects: 

• Frame Type: it is observed that P-frame has the highest usage percentage 

(38�78%). The usage in I-frame is from 6% to 45%. It is from 15% to 35% in 

B-frame. They all show a pretty high usage of order-16 transform in different frame 

types. The usage of order-16 transform in I-frame depends on the frame nature. If 

it has a larger portion of homogenous region, the usage will be higher. For example, 

"Raven" in 720p has a large portion of smooth background. Its order-16 transform 

usage in I-frame is around 40%. In contrast, the usage is only 20% in highly 

textured sequence "City" in 720p. The usage in B-frame is relatively low because 

the hierarchical-B prediction structure in H.264/AVC offers a very good prediction. 

The predicted residue is so small that many MB are coded in skip mode (�75%). In 

those "non-skip" MB, around 90% MB are coded with order-16 transform. This is 

a very high percentage. 

• QP: The usage changes differently in different frame types as QP increases. 

The usage increases as the QP increases in I-frame. This is because as QP increases, 

the RDO targets a lower rate and tolerate larger distortion. Larger transform has a 



higher compressibility and hence it is favored. An obvious decreasing trend is 

observed in P-frame as the QP rises. This is because the larger QP makes more MB 

become all-zero blocks such that skip mode is favored. This lowers the usage of 

order-16 transform. A very slow decreasing trend is observed in B-frame. The 

usage of order-16 transform is relatively insensitive to the QP change in B-frame. 

This is because the usage of order-16 transform in B-frame is lower than in P-frame. 

The usage reduction of order-16 transform in B-frame is not as signification as in 

P-frame. 

• Resolution: It can be observed that the usage of order-16 transform is in an 

increasing trend as the resolution increases. It is more obvious in I-frame than in P-

and B-frames. It can be observed that the average usage in I-frame is over 30% in 

108Op while it is not more than 10% in CIF. This is because as the resolution 

increases, the chance of a MB covering a smooth area increases. Larger order 

transform has a better coding performance for smoother blocks and hence more MB 

prefers to be coded with order-16 transform. In P- and B-frames, the increasing 

trend is not that obvious. However, we can still observe that the average usage 

increase from 40% to over 50% in P-frames and from around almost 20% to 30% in 

B-frames. These shows the importance of order-16 transform in HD sequences. It 

is expected that there will be higher usage and more gain provided in sequences with 

even higher resolutions. 



The average usage of order-16 transform In l-frame 

CIF{3S2)(288) WQVGA(416x240) WV6A{832}<480) 7 2 0 p (1280x720) 

(a) 
The average usage of orcler-16 transform In P-frame 

CIF(352)(288) WQVGA(416x240) WV6A(832x480) 7 2 0 p (1280x720 丨 1 0 8 0 p ( 1 9 2 0 x l 0 8 0 ) 

(b) 

The average usage of order-16 transform In B-frame 

.QP-

CIF(352x288) WQVGA(416x240) WVGA{832x480) 72Op( 1380x720) 1 0 8 0 p ( 1 9 2 0 x l 0 8 0 ) 

(c) 
Figure 3-16 The average usage of order-16 in (a) I-frame, (b) P-frame and (c) B-frame. 



3-7.4 Gain from Order-16 transform 
In Section 3.7.1 the BD bit rate and the BD PSNR mentioned in [14] are computed. 

These are the overall gains in the ABT system. However, not all MB are coded 

with order-16 transform and the gain from order-16 transform is diluted by those 

coded by order-8 and order-4 transform. We are also interested in how much gain 

solely comes from order-16 transform. That is if a MB is coded with order-16 

transform rather than order-8 or other-4 transform, how much gain should be 

obtained. Assume the sequence header and the frame header information is 

negligible comparing with the MB information. The bit rate for a coded sequence, 

R, can be divided into two parts: coded by order-16 transform and non-order-16 

transform, denoted as Ro\6 and 尺„�6 respectively. Suppose the PSNR is the same, 

the delta bit rate can be divided into two parts: 

Abitrate = ~ A b i t m t e ^ , ^ + - A b i t r a t e ^ , ^ . (3.19) 

We may assume there is very little or even no gain from non-order-16 transform, i.e. 

AbitrateK Q, Therefore Abitrate^^^ becomes: 

‘, Abitrate 
Abi t ra te^ , , » ^ . ( 3 .20 ) 

Using the idea of calculating BD bit rate (see Chapter 1 for more detail), the BD bit 

rate purely comes from order-16 transform, BD-bitmte�\(y is: 



BD-bitmte�认-
护"pp 

Abitrate^^^dp ~ 
BD-bitrate 

^ O A P ) 
(3 .21 ) 

where 

K M 
p. ^lOM 

dp ( 3 . 2 2 ) 

which is a function of PSNR. Similarly, the BD PSNR purely comes from order-16 

transform, BD-bitrateo\e is; 

BD-PSNR,.= 
BD-PSNR 

(3.23) 

where 

r^K/ 
R R 

KM 

lower 

-dr (3.24) 

The gains solely from order-16 transform are listed in Table 3-7 and Table 3-8. 

Wo 16(0 and Wo\6{p) are the average percentage of the bit rate allocated to order-16 

transform over the tested bit rate range and the tested PSNR range respectively. 

From these values, it can be observed that a high percentage of bits are allocated to 

order-16 transform (from 33% to 79%). It can also be noticed that as the resolution 

increases, these values increases. This shows that order-16 transform dominates as 

the resolution increases. In Table 3-8, the average value of BD-PSNRo,^ is around 

0.497 dB. It is very close to difference between the transform coding gains of 

order-16 DCT and order-8 DCT at p= 0.9. 



Sequences BD-hitrate (%) 沙 - O ) BD-bitrateoi6 (%) 

Foreman -4.78 0.548 -8,72 

Mobi le -5.98 0.413 -14.48 

fe 
U News -6.22 0.377 -16.50 

Paris -6.29 0.244 -25.78 

Tempete -4.30 0.447 -9.62 

BasketballPass -5.59 0.336 -16,64 

> BlowingBubble -7.90 0.340 -23.24 

% BQ Square -5.27 0.392 -13.44 % 
Flowervase -6.40 0.670 -9.55 

Basketbal lPass -9.91 0.490 -20.22 

< o BQMall -7.99 0.494 -16.17 

PartyScene -9.25 0.436 -21.22 

RaceHorses -3.08 0,446 -6.91 

Bigship -3.80 0.654 -5.81 

City -4.19 0.687 -6.10 

Crew -7.65 0.608 -12.58 

卜 
Night -3.92 0.490 -8.00 

Raven -5.40 0.726 -7.44 

Parkrun -5.22 0.576 -9.06 

ShuttleStart -4.30 0.643 -6.69 

Cactus -6.00 0.585 -10.26 

Sunf lower -11,28 0.736 -15.33 

Basketbal lDrive -7.72 0.584 -13.22 
O g Kimono 1 -8.15 0.793 -10.28 

Pedestrian -8.77 0.681 -12.88 

Station2 -4.98 0.780 -6.38 

RushHour -3.85 0.775 -4.97 

Average -6.23 0.554 -12.28 

Table 3-7 Delta bit rate solely from order-16 transform {BD-bitrateoi6, %) 



Sequences BD-PSNR (dB) 厂） BD-PSNR— (dB) 

Foreman 0.21 0.542 0.39 

Mobi le 0.26 0.416 0.63 

& 
U News 0.33 0.376 0.88 

Paris 0.33 0.250 1.32 

Tempete 0.17 0.456 0.37 

BasketballPass 0.27 0.346 0.78 
< 0 > BlowingBubble 0.31 0.347 0.89 

a BQSquare 0.19 0.394 0.48 a 

Flowervase 0.32 0.667 0.48 

BasketballPass 0.41 0.493 0.83 

< o BQMal l 0.34 0.487 0.70 

宾 
PartyScene 0.41 0.442 0.93 

RaceHorses 0.12 0.444 0.27 

Bigship 0.10 0.654 0.15 

City 0.12 0.697 0,17 

Crew 0.19 0.600 0.32 
CL, 0 (N Night 0.13 0.484 0.27 
CL, 0 (N 

Raven 0.20 0.719 0.28 

Parkrun 0.20 0.589 0.34 

ShuttleStart 0.13 0,638 0.20 

Cactus 0.17 0.562 0.30 

Sunflower 0.43 0.720 0.60 

0, 
g 

BasketballDrive 0.23 0.567 0.41 
0, 
g Kimono 1 0.33 0.790 0.42 
1~~1 

Pedestrian 0.35 0.666 0.53 

Station2 0.25 0.760 0.33 

RushHour 0.12 0.765 0.16 

Average 0.245 0.551 0,497 

Table 3-8 Delta PSNR solely from ord er-16 transform {BD-PSNR0I6, dB) 



3.8 Conclusions 

In this chapter, H.264/AVC is reviewed. The order-16 transforms proposed in the 

last chapter are integrated into its reference software JM16.2. Syntax structure is 

changed and the implementation details are described. New syntax elements and 

context models for CABAC are added. The proposed platform is tested. Different 

order-16 integer transforms are tested and compared. It is found that more details and 

less distortion are observed when order-16 transform is used. It is noticed that 

order-16 transform helps to reduce the artifacts. Subjective qualities between 

different order-16 transforms are similar. In the proposed platform, TjosJu gives the 

largest average bit rate reduction (6.21%). A maximum reduction of 12.11% is 

obtained. The proposed LLMICT-Al, MCSFICT and LLMICT-Bl are not far from it. 

Their average bit rate reductions are 6.18%, 6.13% and 5.97% respectively but they 

require fewer computations. 

It is found that the usage of order-16 transform is pretty high. It is up to 78% in 

P-frame on average. It is also noticed that the usage of order-16 is in an increasing 

trend as the picture resolution increases. That is why order-16 transforms bring larger 

gains in HD sequences. 
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C h a p t e r 4 A B T i n A V S 

4,1 Overview of AVS 
Audio Video Standard (AVS) [l]-[4] is a digital audio and video compression 

standard developed by the workgroup of the same name in mainland China. The 

standard development started in 2002. The standard is divided into several parts 

and each part specifies an application area. AVS Part 2 and Part 7 relate to video 

coding in different aspect. Part 2 targets in HD digital video broadcasting and 

storage while Part 7 targets in lower complexity, lower resolution mobile 

applications. Similar to H.264/AVC, the standard defines different profiles 

specifying subset of the coding tools. There are 4 main profiles and their target 

applications are: 

• Jizhun (base,基準）profile: video broadcasting, 

• Jiben (basic,基本，also called Yidong,移動）profile: mobile applications, 

• Shenzhan (extended, f申展）profile: video surveillance, and 

• Jiaqiang (enhanced,加強)prof i le ; multimedia entertainment. 



The AVS-Part 2 Jizhun profile was approved as national standard in 2006. 

Recently, more profiles are added to the standard to enhance the functionality. For 

example, Shuangmu Liti Jizhun (Stereo 3D b a s e ,雙目立體基準 ) p r o f i l e was added 

to support stereo 3D video coding. In order to improve the coding performance of 

the existing standard, the drafting of the next generation standard, AVS 2.0, started in 

March 2009. It was expected to finish the first working draft in July 2010. It is 

still based on the hybrid coding architecture. It aims to provide significant 

improvement on the top of AVS Part 2. It will support super high resolution up to 

8kx4k and higher color bit depth up to 14 bits. The final committee draft is 

targeted to be finished in 2012 [5][6]. 

Input Flame Quantisat ion y * Fnti opv Coder 
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M o t i o n 
Est imat ion 

J- 4 M o t i o n 
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Figure 4-1 Data flow of AVS encoder. 
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Figure 4-2 Data flow of AVS decoder. 

In this thesis, our focus is on AVS Part 2 which targets in HD video coding. It is 

expected that our techniques are portable to AVS 2.0 and acts as one of the coding 



tools in the new standard. 

Same as H.264/AVC, AVS encoder is also a hybrid video coder. The structure of 

the encoder and the decoder are the same as H.264/AVC as shown in Figure 4-1 and 

Figure 4-2. However, the details in many functional blocks are different from 

H.264/AVC. The following are some of the typical techniques adopted in AVS Part 

2: 

• Intra prediction: 4x4 and 8x8 intra predictions are available in AVS standard. 

However, 4x4 intra prediction is only adopted in Jiben Profile while 8x8 intra 

prediction is adopted in the other 3 main profiles. There are 9 different intra 

prediction modes for 4x4 intra prediction. They are similar to those specified in 

H.264/AVC. In contrast, there are only 5 prediction modes for 8x8 intra prediction. 

The five modes are Vertical, Horizontal, DC, Down-Left and Down-Right. This 

lowers the complexity of the encoder but maintains high coding efficiency. 

• Inter prediction: There are only 4 different partition sizes for inter prediction. 

They are 16x16, 16x8, 8x16 and 8x8. Also, experiments show that the nearest 2 

decoded frames are the most referenced frames. The frequency of referencing 

further frames is significantly lower than these 2 frames. As a result, the maximum 

number of reference frames in AVS is 2. This reduces not only the motion 

estimation complexity, but also the side information indicating the reference frames. 

• Simplified interpolation filter: Quarter-pixel motion estimation is allowed in 

AVS. In H.264/AVC, 6-tap interpolation filter is used. In AVS, two 4-tap 

interpolation filters cascading together are used. One is for half pixel accuracy 
— ^ 



while the other is for quarter-pixel. The computation complexity is lowered. 

• Pre-scaled ICT: Low complexity 8x8 ICT is adopted in Jizhun, Shenzhan and 

Jiaqiang profiles while 4x4 ICT is adopted in Jiben profile. They are organized in 

pre-scaled [7] structure such that the scaling matrices are only located in encoder 

side. In H.264/AVC, the scaling matrices are located equally in both encoder and 

decoder. 

• CA-2D-VLC: The quantized coefficients are specially coded with a 

Context-based Adaptive 2D Variable Length Coder (CA-2D-VLC) [8]. It is a low 

complexity entropy coder which utilizes the joint probability of level-run 

combination. As a result, a high coding efficiency is obtained. 

• Enhanced Arithmetic Coding (EAC): It is an arithmetic coder with 

logarithmic probability model. Its probability estimation is multiplication-free such 

that it has lower complexity than the CABAC in H.264 but higher coding efficiency 

than CA-2D-VLC. Its coding efficiency is comparable with CABAC. 

Based on the AVS architecture, a joint proposal [9] was submitted and accepted into 

the AVS reference software. In this proposal, researchers from Tsing Hau 

University proposed the use of 4x4 ICT adopted in Jiben profile. On the other hand, 

we proposed order-16 Simple Integer Transform ( T n 办 Together with the 

existing 8x8 ICT, an Arbitrary Block-size Transform (ABT) system, integrated with 

4x4, 8x8 and 16x16 transforms, is formed. A maximum bit reduction of 19.35% is 

reported. On the top of this system, we have proposed several methods to improve 

the coding efficiency [10]-[13]. The proposal [13] was adopted into the latest AVS 



reference software. 

In this thesis, the reference software RM6.2/ acts as the testing platform. The 

order-16 transforms mentioned in Chapter 2 will be integrated into it. Details of 

this platform will be described from Section 4.2 to 4.7. Experiment and analysis 

will be shown in Section 4.8. Finally, conclusions will be drawn in 4.9 

4.2 Intra prediction 
In AVS, only 4x4 and 8x8 intra predictions are present. There is no 16x16 intra 

prediction in the standard. The 16x16 intra-prediction proposed in [14] is 

integrated in our platform. It has 5 different prediction modes (Figure 4-3). They 

are the vertical, horizontal, DC, down-left and down-right prediction. The 

referenced pixels from previous decoded blocks are low-pass filtered before 

prediction. When 16x16 intra-prediction is used, 16x16 transform is used 

compulsorily. 

Mode 0 Vertical Mode 1 Horizontal pn 
Mode 3 Down-Left Mode 4 Down-Right 

Figure 4-3 16x16 intra prediction in proposed AVS platform. 



4.3 Transforms 
4.3.1 ABT in AVS 

Order-8 ICT was adopted in AVS Part 2. Its integer kernel is shown in (4-1). 

Order-4 ICT was also adopted in AVS Part 7. Its integer kernel is shown in (4-2). 

Researchers from Tsing Hau University proposed to form an ABT system with these 

two transforms in [15]. At the same time, we proposed an ABT platform using 

order-16 and order-8 transforms [9]. In the proposal, order-16 Simple Integer 

Transform TSI-AVS was proposed. These two ideas were merged together and an 

ABT platform including 4x4, 8x8 and 16x16 transforms is formed [16]. This 

proposal was accepted by the AVS workgroup and integrated into the reference 

software. 
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In [16], researchers from Tsing Hau University also proposed a combinative coding 

manner. When a MB is not coded with 16x16 transform, it can be coded with 8x8 

transform together with 4x4 (Figure 4-4) at the same time. There are 16 different 



combinations. The selection between 4x4 and 8x8 transform is in sub-block basis. 

It is decided when every 8x8 sub-block is coded. The best combination is selected 

by RD optimization. When a MB is coded with order-16 transform，this means that 

if offers a RD cost lower than any combination of 8x8 and 4x4 transform. An 

example is shown in Figure 4-5. We can see that the transform size for coding 

smooth regions changes from 8x8 to 16x16. We can also notice that the rate 

reduces and the PSNR increases when 16x16 transform is enabled. 

- 1 6 - - 8 - •41 

o\ 

i 
i 

A MB coded with 16x16 
Transform 

A MB coded with Combinative 
Transform, Mixture of 4x4 and 

8x8 Transform 

Figure 4-4 Combinative ABT in proposed AVS platform. 

(a) 38208 bits, 35.589dB (b) 38064 bits, 35.643dB 

Figure 4-5 ABT (a) without 16x16 Transform, and (b) with 16x16 Transform. 



In this chapter, some order-16 transforms described in Chapter 2 will be integrated 

to the AVS ABT platform. They are tested individually. These transforms 

include: 

• Simple Integer Transform, T 仏 爲 ， 

• MICT, 

• Hybrid Integer Transform, T " " , 

• Hybrid Integer Transform, THU, 

• The integer transform proposed by Lee, Ti^e, 

• The integer transform proposed by Joshi, Tjoshi, 

• L L M I C T - A 1 , T園】， 

• IIMICT-B\,TLLM-B], a n d 

• MocHfied CSFICT (MCSFICT), TMCSF-

4.3.2 Flexible Transform Size Selection 
In R M 6.2/ and before, the transform size selection is limited. In I-frame, only 

order-4 and order-8 transform were allowed. In B-frame, only order-8 and order-16 

transform were allowed. These three transforms only coexisted in P-frames. It 

was because the earlier research showed low usage of order-16 transform in I-frame 

and low usage of order-4 transform in B-frame. However, we found that this is not 

true, especially in HD sequences. The usage of order-16 transform in I-frame is 

quite high (See Section 4.8.3 ). As a result, we proposed a Flexible Transform Size 

Selection. These three transforms can be selected flexibly based on their RD cost. 

The optimal transform can be used without any restriction. We found that this 

modification brings an average bit rate reduction of 4% in 1080p sequences [13]. 
— 



4.3,3 Transform Design Constraints in AVS 
It is more challenging in designing integer transform for AVS. There are more 

constraints in its design and the integer kernel must be suitably adjusted before 

implementing to the AVS reference software. The transform process adopted in 

AVS is the pre-scaled integer transform (PIT) [7]. The forward transform and the 

inverse transform processes are modeled in (4-3) and (4-4) respectively. Suppose 

the integer kernel is E. X and Y are the input pixels and the reconstructed pixels 

respectively. Recall that the 2-D scaling matrix S, which is a combination of 1-D 

scaling matrix K. S locates in both forward and inverse transform process in 

H.264/AVC. When S only locates in the forward transform process, it is called 

pre-scaled transform. In contrast, if the scaling matrix S only locates in the inverse 

transform process, it is called post-scaled transform and it is adopted in VC-1 [17]. 

No matter pre-scaled or post-scale transform, the transform coefficients are scaled. 

F 附 = ( E X E 卞 S © S . (4.3) 

= G ® S © S “ 

F尸斤 E . (4-4) 

There is another constraint in AVS. The transform, quantization and rescaling 

process must be able to be implemented on a 16-bit system. Therefore, the 

precisions of the transform coefficients are limited. To prevent overflow, the 

transform coefficients are rounded. Those with smaller dynamic ranges may suffer 

bigger rounding error in fixed point implementation. As a result, its coding 

performance may be lowered. Suggestions were provided in [7] for the design of 

pre-scaled transform so as to prevent such degradation. Weighting Factor 



Difference (WFD) was defined in [7]: 

max{S{i,J)) 
“(化,、、. (4-5) 

It measures the extreme dynamic range ratio of the coefficients in a given transform. 

The larger WFD, there are bigger difference between dynamic ranges of different 

transform coefficients. WFD is minimum 1) when all Sii ,J) are the same. This 

means all basis vectors have the same norm. In order to keep a good performance, 

the transform should be unitary and it is suggested that the upper bound for WFD to 

beV2 in [7]. To fulfill this requirement, the basis vectors in the transform are 

adjusted with integer factors, m” The integer kernel becomes: 

F — [^10 召11 … 

^ “ 丨 • (4-6) 

After the adjustment, the waveforms remain unchanged. However, the choice of 

these factors highly affects the coding performance. It is not only the WFD issue, 

but also the usage of the dynamic range. An inefficient use of the coefficient 

dynamic range lowers the performance. The DC coefficient, Fpfj{Q, 0)，which has 

the largest dynamic range, should have a maximum magnitude of power of 2 so as to 

maximize the dynamic range usage. This can be achieved by setting the norm of 

the DC basis vector to be 2". As a result, the minimum integer scaling factors, m” 

are selected such that the following two criteria are fulfilled in our implementation: 

• WFD must be less than a threshold WFD max' 



• The magnitude of the norm of the DC basis vector should be of 2" so as to 

maximize the usage of dynamic range. 

By so doing, the dynamic ranges of the coefficients are restricted in a narrow range 

as shown in Figure 4-6. In our case, WFO^ax is 1.6. 

Dynamic 
Range 

2\WFD”�似 r 

2 ” t 

2"/WFD,抓 b 

Figure 4-6 the dynamic range of the coefficient after adjustment. 

As a result, the integer kernel of Tiee, X/o谢，LLMICT-Al and LLMICT-Bl are 

shown in (4-7) to (4-10) respectively. The WFD after adjustment are shown in 

Table 4-1. Experiment shows that this adjustment is very important in PIT design. 

A bit rate reduction of more than 7 % is observed before and after the adjustment 

with the same transform. 

Transform 
Weighting Factor Difference (WFD) 

Transform 
Before Adjustment After Adjustment 

^SI-AVS 1.158 1.158 

MICT 1.269 1.269 

T " / / 1.245 1.245 

T / / / 2 1.246 1.246 

^Lee 2.390 1.578 

飞Joshi 2.716 1.149 

LLMICT-Al 2.173 � , 2 4 1 

LLMICT-Bl 2.000 1.471 

MCSFICT 1.179 1.179 

Table 4-1 The Weighting Factor Difference of different transform. 
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4.4 Quantization and Rescaling 
After transformation, the coefficients are quantized in the encoder side and are 

rescaled in the decoder side. In pre-scaled transform, the two scaling matrices S 

locates in the encoder side and they are embedded into the quantization process as 

shown in Figure 4-7. 

Input pixel 
block X Transform Scaling Scaling Quant. 

Encoding Path 

Channel 一 

Reconstructed 

block Y 
Inverse 

Transform 
Rescaling 

(Dequantization) 
Inverse 

Transform 
Rescaling 

(Dequantization) 
Decoding Path 

Figure 4-7 Data f low of quantization and rescaling in AVS. 

4.4.1 Quantization 
Recall (4-3), (4-4) and the definition of S in last chapter. The quantization process 

with step size Qstep and rounding offset Qogset can be modeled as: 

^sieD 
(4-11) 

Qoffset i s d e f i n e d as : 

X
X
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 /•
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Since division is a heavy computation load, it is replaced by multiplication with 

integer approximation where: 

scale{i, j ) = round{s'{i, j ) x 2沾“)and (4-13) 

f ？'5 ^ ( 
Q_(Qp) = round ^ - ^ around 2 « for e [0，1”.”63] (4.14) 

V J V ； 

Sbits controls the precision of the scale{ij). Put (4-13) and (4-14) into (4-11): 

F^{iJ)^sign{G{iJ)) 
[round[G{i,j) x scale{ij))» Sbit)x 

>>15. (4-15) 

(4-15) is modified before implementation due to the following 3 reasons: 

1. One can notice that the magnitude of the value in [；」in (4-15) is significantly 

less than such that it is most likely rounded to zero. To prevent this round 

off, a factor is added and it is removed after the inverse transform process. 

2. When the input data block X is in h-h\X (including sign bit), after order-16 DCT, 

its transform coefficients are in (6+4)-bit. The factor is chosen such that the 

quantized coefficient can be represented in (Z?+4)-bit with the minimum Qswp (i.e. 

1). This makes sure the PIT coefficient has the same dynamic range as the DCT 

under the same quantization. 

3. Since the transform process and quantization process in AVS are restricted to 16 

-bit, bit truncation may required in the transform process. Furthermore, to 

maximize the usage of the 16-bit representation in the intermediate states, the bit 

shifting is adjusted. And finally, (4-15) becomes: 



.� ’ (….,��(round{G{i,j) x scale{ij))» Qbits)xQ^^^{QP) 
F,{i,j) = sign{G{i,j))x » 1 8 . (4-16) 

where Qbits depends on the transform type. For example, it is 12 for LLMICT-Al. 

4.4.2 Rescaling 
When the quantized transform coefficient, which is computed in (4-16) with 

quantization step size Qstep, is received, they are rescaled to PV: 

= F O 
q ̂ step 

- ( f , • D Q , , { Q P % ^ ) ) » DQbitsiQP) (4-17) 

Here, DQ^abiQP) and DQbits are 

r 1 5 + 輕 、 

DQ,^,{QP) = round^ 2 « 

‘QP 
DQbits(Qn = \2- ^ 

O 

(4-18) 

(4-19) 

Finally, the output Y is reconstructed by inverse transform and the factor mentioned 

at the end of section 4.4.1 is removed by right shift by Kbits. 

Y = (e^F,.e) » Kbits. (4-20) 

4.4.3 Example 
It may not be easy to understand the pre-scaled transform with quantization and 

rescaling with formulae only. In order to display a clear picture of this process, 

here a step-by-step example will be shown. 

Suppose the order-16 transform to be implemented is LLMICT-Al with integer 



kernel E = ^LLM-AI- Using (4-13) and Stu = 52, the scaling matrix SCALE is: 

SCALE= 

4096 4450 4745 4911 4520 4911 4745 4745 4450 
4450 4835 5155 5335 4911 5335 5155 5155 4835 
4745 5155 5496 5688 5236 5688 5496 5496 5155 
4911 5335 5688 5887 5419 5887 5688 5688 5335 
4520 4911 5236 5419 4987 5419 5236 5236 4911 
4911 5335 5688 5887 5419 5887 5688 5688 5335 
4745 5155 4742 5688 5236 5688 5496 - • 5496 5155 

4745 5155 5496 5688 5236 5688 5496 
• 1 

• 5496 
• 

5155 
4450 4835 5155 5335 4911 5335 5155 •. 5155 4835 

(4-21) 

Assume QP = 34 such that it is not so high that all quantized coefficients become 

zero. Consider an intra-predicted input block X : 

-2 -1 9 26 43 52 53 51 50 50 50 51 53 57 55 52 
-3 10 36 42 40 43 42 41 39 37 39 40 40 44 45 42 
16 24 19 -1 11 28 24 22 21 20 22 21 25 29 30 28 

6 7 10 12 � 2 4 1 5 0 -2 6 11 10 11 � 3 12 

-I 2 3 1 2 2 0 1 2 2 2 0 4 4 1 -4 

-2 0 2 -3 -3 0 0 1 0 4 4 4 6 4 0 -10 

0 0 -15 -8 3 -1 2 1 1 4 2 5 4 1 -8 -26 

6 -31 -54 -10 3 -6 -3 1 -2 -4 2 8 4 -3 -1 0 

4 2 -53 -9 1 -5 -1 -1 -1 0 1 2 4 2 -4 -3 0 

4 0 -1 -2 -4 -7 -4 1 0 -1 1 3 0 -3 2 6 

-3 -3 -1 -4 -3 -2 -1 3 4 2 -14 -10 1 -2 0 1 

1 0 1 -2 -1 1 1 -1 -3 -5 -11 -3 1 -2 -2 

1 -2 -2 -4 -4 -3 0 1 0 3 6 -1 -8 1 3 -1 

1 1 -1 -3 -3 -1 0 0 1 4 3 -1 -2 2 3 0 

3 2 -1 -3 -2 0 0 1 4 5 3 0 -1 -1 0 -3 

1 -2 -3 -1 0 3 4 3 3 3 1 -3 -4 -5 -8 -4 

It was captured from a real video sequence of 8-bit color depth. G is the 

intermediate result of the 2~D transform. Right shifts of 5 bits and 12 bits are 

applied in horizontal and vertical transform respectively to limit the intermediate 

results within 16-bit. 



G = ( E ( ( X E ^ ) » 5 ) ) » 1 2 
(4-22) 
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-29 -4 
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Multiply with the scaling matrix: 

702 
1210 

1189 
695 
294 
197 
139 

3 

-161 

-71 
38 

-14 
-64 

6 
8 

- 1 2 

-368 
-335 

-74 
-276 
-352 
-133 
120 

-118 

-146 
-2 
55 

-56 
-120 

-30 
42 

- 2 8 

-278 
-131 

-19 
-78 

-380 
-200 

-35 
-36 

-102 

53 
68 

-25 
-37 
74 
21 

-149 

G = (G©S 

•106 -54 72 

•171 -156 48 

•131 28 -60 

.262 17 -82 

.135 -88 7 

37 -42 102 

7 8 25 

-35 -51 -127 

-117 -64 -8 

31 64 131 

121 65 53 

9 -46 11 

-37 78 52 

135 197 134 

64 58 97 

' 4 0 -32 -46 

(4-23) 

-24 
-42 
-49 
97 
57 

-99 
-37 
86 
75 
43 

-35 
28 

144 
3】 
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60 

-7 

-65 
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63 

108 
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36 

102 
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18 

61 
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- 1 0 

20 
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-151 

12 

121 

- 1 0 
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- 1 0 

110 

96 
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-70 

- 1 1 

14 
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35 -5 

-3 -45 

-56 -36 

-19 33 

68 52 

60 -28 

-75 8 

28 26 

75 39 

-8 -29 
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-38 -1 

-37 35 

-3 -43 

-57 -23 

-48 15 

26 

-8 
- 1 8 

42 

21 

-24 

-19 

17 

11 

-44 

-51 

42 

12 

-43 

- 1 2 

25 

2 
18 

46 

24 

-2 
-53 

-33 

36 

18 

-72 

-17 

33 

18 

-25 

-13 

31 

37 6 -14 

12 -5 -5 

-10 7 0 

34 22 -13 

-17 -10 -11 

-42 -6 -12 

8 5 -1 

17 4 3 

-14 -1 -5 
-28 -20 -7 

-22 9 3 

39 22 7 

22 -4 -7 

-33 -29 -1 

-10 -3 8 

31 24 9 



Quantize the coefficient with QtabiQP)'-

From (4-14) Q,,{3A) = round{2 M = 1722 

F, (i, J) = J) X Q丨。b {QP) + (q*, X )J» Qbits = 

2
2
0
2
2
1
1
1
 

-
 
-

 

-

一

琴
 
1
 

4
U
0
8
4
2
1
1
0
 

0 0 

0 0 

0 0 

0 -1 

0 0 

0 0 

0 0 

(4-24) 

(4-25) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

These coefficients are zigzag scanned and sent then to the entropy coder. After 

lossless compression, these coefficients are sent to the decoder. When these 

coefficients are received by the decoder, they are rescaled to F^ first using (4-17): 

From (4-18) DQ,AQP) = round 
34%8 

15 

2 8 = 3 8 9 6 8 (4-26) 

From (4-19) 11 
i 」 

= 8 (4-27) 



二 F, Q�,印 

- ( f , X DQ时{QP))» DQbimQP} 
(4-28} 

609 -304 -304 
1218 -304 -152 
1218 0 0 
609 -304 0 
304 -304 -304 
152 -152 4 5 2 
152 152 0 

0 -152 0 
-152 

0 
n 

-152 
0 
A 

0 
0 
n u 

0 
0 
0 

U 
0 

-152 
0 

u 
0 
0 
0 

0 
0 

0 
0 

0 
，152 

152 

-152 

-152 

-304 

-152 

0 
0 
0 

152 

0 

152 

0 

0 

152 

0 
0 

0 

-152 

0 

0 
0 

0 
0 
0 

0 
0 

0 
0 
0 

152 

0 
0 

0 

0 

0 

0 
0 
0 

0 

'152 

0 
152 

0 
0 

0 

152 152 

0 0 

0 0 

0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
 

0 

0 

-152 

0 

152 

0 
0 
0 

152 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Finally, after inverse 2-D transform, reconstructed Y is obtained by. 

( E l F q E ) � > 8 ) ) : » 1 5 = (4-29) 
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4.5 Syntax Structures 
Here are the syntax structures in our implementation. In intra block and inter 

block, the contents are indicated in different syntax structures. 

4.5.1 Intra block 

MB—Type 
(only present m Flagl6 

Inter-frame) 
uv 

u � 

Prediction Mode CBP 16xJ6 Coefficients 
uv u(3) uv 

Flag 16 = I Prediction Mo<  
uv 

16 / 

) \ C A B P ( 0 : 

CABP 
Flagl6 = 0 1,(4) \ 

Prediction Mode CBP CABT C A B T ( 0 - 0 8x8 Coefficients ‘ 
uv u(6) uv uv ！ 

CABT(0: 

CABP(,): 
Prediction Mode CBP 4x4 Coefficients 1 

uv u(6) uv 1 

Figure 4-8 Intra-block syntax structure. 

Figure 4-8 shows the syntax structure of an intra block. Each block is a syntax 

element. In the block, uv means it have variable bit length while u{n) means it has 

a fixed length of n bits. 

Since MB in Inter frames can be inter-coded and also be intra-coded, an MB_Type 

header is required to indicate it. If the current frame is an intra frame, this 

MB—Type header is not needed. After that a 1-bit flag, Flag 16, indicates if its 

residues are coded by order-16 transform. If Flag 16 = 1, the current MB is 16x16 

intra-predicted and the residue is coded by an order-16 transform. Behind Flag 16 

are the prediction mode, 3-bit Coded Bit Pattern {CBP, 1 bit for 16x16 luma block 

and 2 bits for two 8x8 chroma blocks). It indicates the present of non-zero 

coefficient in its corresponding block. Lastly, the non-zero transform coefficients 

are present. If Flag 16 = 0，smaller transforms are used. Since Combinative 

Arbitrary Block-size Prediction (CABP) is also proposed. It is possible that 4x4 
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and 8x8 intra predictions coexist in the same MB. A 4-bit CABP flag indicates the 

prediction size. Each bit correspond to an 8x8 sub-block. It is followed by the 

prediction modes and 6-bit CBP (4 bits for four 8x8 luma sub-blocks and 2 bits for 

two 8x8 chroma blocks). As 4x4 and 8x8 transforms can coexist in the same MB, 

a flag is needed to indicate each sub-block transform size. If CABP indicates the 

current sub-block i is 4x4 intra-predicted {CABP{i) = 1), the predicted residue must 

be coded with 4x4 transform and the MB syntax ends with transform coefficients. 

Otherwise, the current MB is 8x8 intra-predicted. Its residue can either be coded 

by 4x4 or 8x8 transform. This is indicated by a flag, CABT. 

4.5.2 Interblock 
Flagi6: 

CBP 16x16 Coefficients 
u(3) uv 

SkipFlag MB Type MVD Flag 16 
u( l ) uv uv u( l ) CABT(i) 二 0 

Flagl6 = 0 CBP CABT 
u(6) u(4) 

8x8 Coefficients 
uv 

CABT(i): 

Figure 4-9 Inter-block syntax structure. 

4x4 Coefficients 
uv 

Figure 4-9 demonstrates the syntax structure of an inter-block. The notation is the 

same as intra block. Inter-block syntax structure is more straight-forward than 

intra-block. It first comes with a 1-bit Skip flag indicating if it is a skip block. If 

the current MB is not a skip block, it is followed by the MB—Type header which 

indicates the inter-prediction partition size. MVD stores the motion vector 

difference of each partition. A 1-bit Flag 16 indicates if the residue is coded with 

order-16 transform. If Flag 16 = 1, the residue is coded with order-16 transform and 

the MB syntax ends with CBP and coefficients. If Flagl6 = 0，CBP and CABT 



indicating the use of either 4x4 or 8x8 transform in each sub-block. Lastly, it ends 

with the coefficients. 

4.6 Entropy Coding 
In AVS, the entropy coder can select either the Context-based Adaptive 2D Variable 

Length Coder (CA-2D-VLC) or the Enhanced Arithmetic Coder (EAC). In this 

thesis, the entropy coding adopted in the proposed platform is EAC. This is 

because it has a higher coding performance. In order to adapt to the order-16 

transform coefficients, the EAC is modified. More context models are added to 

handle the long run of the transform coefficients. The structure of the EAC remains 

unchanged. 

The context modeling of Flag 16 and CBP16 are the same as those in H.264/AVC 

described in last chapter. 

4.7 Loop Filter 
In the original design of the loop filter in AVS, the loop filter is applied to the 

boundaries between the 8x8 sub-blocks. It is noticed that this design over-smooth 

some regions that are coded with order-16 transform. This over-smoothing effect 

may not be observed easily but lower the quality of the decoded frames (i.e. some of 

the reference frames). Hence, the qualities of the later frames may be affected. 

To tackle this problem, we proposed to change the loop filter region when order-16 

transform is used. The loop filter will only apply along the MB boundaries (16x16 



block boundaries) when the MB is coded with order-16 transform. Those MB 

coded by order-4 and order-8 transform remain unchanged. 

- 8 — — — — 8 — — > 16-

» 

J J 

Region applying loop-
filter in AVS standard 

Region applying loop-filter if current MB 
is coded with order-16 Transform 

Figure 4-10 Region of the loop filter is applied. 

4.8 Experiment and Analysis 
In our experiment, the testing platform is based on AVS reference software RM6.2/. 

The order-16 transforms stated in Section 4.3 are integrated to the testing platform. 

Implementation details are described in previous sections. This integrated platform 

is tested under the common test conditions specified by the AVS workgroup [18]. 

These testing conditions are listed in Table 4-2. Video sequences with resolutions 

from GIF (352x288) to HD (1920x1080) are tested. Some sequences, which are 

not specified in the common test conditions, are also tested. 

In our analysis, the objective evaluation of different order-16 transforms will be 

shown first. The BD-bit rate and the equivalent BD-PSNR are measured using the 

method stated in [19]. These will show their RD performances. Their RD curves 



will also be shown. After that, the subjective qualities will be compared. The 

decoded pictures will be shown. 

Platform RM6.2/ 

Anchor RM6.2/ 4x4 and 8x8 transform enabled, 16x16 
transform disabled. 

Prediction Structure IBBPBBP. . . 

Intra Period Every 1 second 

Frame Encoded 

Sequence length is 4 seconds, at least 97 frames are 
encoded: 

WQVGA: 121-241 frames 
WVGA: 121 � 2 4 1 frames 

720p: 241 frames 

1080p: 9 7 � 2 0 2 frames 

Number of Reference Frames 2 

Entropy Coding EAC (CABAC) 

ABT 
Anchor: 4x4 and 8x8. 

Test: 4x4，8x8 and 16x16. 

Rate Control OFF 

RDO ON 

Weighted Prediction OFF 

Weighted Quantization OFF 

Adaptive Interpolation Filter OFF 

Loop Filter ON (Jizhun profile) 

ME Search Range 32 

Target Bit Rates 

Resolution Bit Rate (kbps) 

Target Bit Rates 

W Q V G A (416x240) 384 ,512 ,850 , 1500 

Target Bit Rates 
WVGA (832x480) 512, 768, 1200,2000 

Target Bit Rates 
720p 1600, 2500, 4000, 6000 

Target Bit Rates 

1080p@24Hz 1600,2500,4000, 6000 

Target Bit Rates 

1080p@50Hz 3200，5000，8000, 12000 

Table 4-2 Testing conditions in AVS platform 



4,8.1 RD Analysis (Objective Evaluation) 
The experimental results are shown in Table 4-3 and Table 4-4. They display the 

BD-bit rate and BD-PSNR respectively. It can be easily observed that T_/�油 and 

LLMICT-Al perform very similar. Their average bit rate reductions are over 8%. 

They are 8.26% and 8.20% respectively. They are equivalent to an average PSNR 

gain of 0.30 dB. The differences between them are within 0.06% but notice that 

LLMICT-Al is simpler than Tjoshi- It saves more than 10% computation time in the 

transform process with respect to 飞她！, MCSFICT and LMMICT-Bl are slightly 

lower than them. Their bit rate reductions are 7.46% and 7.32 (or 0.28dB and 

0.27dB equivalent) respectively. The remaining including, MICT, T H I I , T � / 2 , 

T^/ AVS and ^Lee, all have average bit rate reduction below 7% (or 0.26 dB 

equivalent). The lowest is hee . It is 5.98% only (0.22 dB equivalent). 

It can be noticed that order-16 transforms give better gain in HD sequences such as 

72Op and 1080p. The bit rate reductions are usually more than 10% for 1080p 

sequences. The largest gain is obtained by proposed LLMICT-Al in "Crew" of 

720p. A bit rate reduction of 15.89% (equivalent to 0.44 dB) is obtained. This is 

because it contains a large smooth region in the pictures and also many sudden 

intensity changes caused by flashes. These lead to a high usage of order-16 

transform. This will be discussed in detail in later section. In the next section，the 

subjective quality of the decoded pictures will be compared. 
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Figure 4-11 RD curves for (a) BQSquare (WQVGA) and (b) BasketballDrill (WVGA) 
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4.8.2 Subjective Evaluation 
In this section, the subjective qualities of the decoded picture of different sequences 

will be shown. They have different resolutions and coded with different 

transforms. 

The differences of subjective quality are not significant in lower resolutions such as 

WQVGA and WVGA. However, they are still observable. "BQSqaure" is a scene 

with high contrast. It is very obvious that ringing artifacts locates around the 

objects boundaries. This is significant in the anchor. When 16x16 transform is 

enabled, these artifacts are reduced. "BasketballDrill" contains regular local 

motion. Slight blocking artifacts are observed in Anchor. Again, these artifacts 

are reduced when 16x16 transform is used. In HD sequences, the distortions can be 

observed more easily. In "Crew", obvious blocking artifacts are observed in many 

smooth regions. The order-16 transforms dramatically suppress these artifacts. 

However, the differences among different order-16 transforms are not significant. 

They can hardly be distinguished from their picture quality. 
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4.8,3 Usage of order-16 Transform 
The average usages of order-16 transform (LLMICT-Al) are shown in Figure 4-16. 

Let us discuss in 4 different aspects. 

• Frame Type: It is shown that the usage of order-16 transform in AVS platform 

is pretty high in different frame types. They are 20% to 80% in I-frame, 20% 

to 50% in both P-frame and B-frame. The usage in I-frame depends on the 

picture nature. When a video sequence contains larger smooth region, the 

usage of order-16 transform will be higher. For example, "Flowervase" has an 

average usage over 70% in I-frame while "PartyScene" is only around 20%. 

• QP: In our experiment, QPl < QP2 < QP3 < QP4. We can notice that as QP 

increases, there is an obvious increasing trend in I-frame while there is a 

decreasing tread in B-frame. The trend in P-frame is not that obvious. 

Sequences with different resolutions have different trends as QP increases. 

The trend is changing from increasing to decreasing as the resolution increases. 

• Resolution: There is an increasing trend in all different frame types as the 

resolution increases. It is more obvious in I-frame that the usage increases 

from around 20% to almost 80%. It is not obvious in B-frame but the trend is 

still observable. 

• Vs. H.264/AVC: One may compare the statistics in this AVS platform with the 

one obtained in H.264/AVC platform in last chapter. It is shown that the usage 

in I-frame in AVS is much higher than in H.264/AVC, especially for HD 

sequences. This is because the usage of intra 16x16 prediction in these 



sequences is high. However, the transform selection in the MB with this 

prediction is compulsory to order-16 transform in AVS. It can be either order-4 

or order-16 transform in H.264/AVC. Thus, the usage in AVS is higher than 

H.246/AVC. It can also be noticed that, in AVS platform, the usage is lower in 

P-frame while it is higher in B-frame (with respect to H.264/AVC). This is 

because they use different picture structures. H.264/AVC uses Hierarchical B 

(Hir-B) Structure (IbBbPbBbP.. •) while AVS uses IBBPBBP... structure. The 

P-frame period in H.264/AVC is longer than AVS such that the predicted 

residue is usually larger in the P-frame in H.264/AVC. Thus, less skip mode is 

used and hence the usage of order-16 transform is relatively higher in 

H.264/AVC. In contrast, the Hir-B structure reduces the predicted residue in 

B-frame (comparing with IBBPBBP... structure) such that the usage of skip 

mode in these frames is large. This implies a lower usage of order-16 

transform in B-frames with Hir-B structure. 



The average usage of order-16 transform in l-frame 

CIF (352x288) WQVGA (416x240) WVGA (832x480) 720p (1280x720) lOSOp (1920x1080} 

(a) 

The average usage of order-16 transform in P-frame 

CiF (352x288) WQVGA (416x240丨 WVGMa32x480) 720p (1280x720) 1080p (1920x1080) 

(b) 

The average usage of orcler-16 transform in B-frame 
ta% 

CIF (352x288) WQVGA (416*240) WVGA (832x480) 720p (1280x720) lOSOp (1920xl0B0J 

(C) 
Figure 4-16 The average usage of order-16 in (a) I-frame, (b) P - f rame and (c) B-f rame. 



4.9 Conclusions 
In this chapter, we proposed an ABT platform for AVS coding standard as described 

in Section 4.2 to Section 4.7. Proposed order-16 integer transforms discussed in the 

last chapter are integrated into this platform and tested. They are compared with 

other existing order-16 transforms. Experimental results show that a significant 

gain is obtained when order-16 transform is used in video coding especially in HD 

sequences. The proposed transform, LLMICT-Al, gives a maximum bit rate 

reduction of 15.89% (equivalent 0.44 dB) in “Crew’，sequence. On average, it 

offers a bit rate reduction of 8.2% (equivalent 0.30 dB). Other proposed transforms 

such as LLMICT-Bl, MCSFICT, Ts!•，MICT, T � “ and T冊 offer average bit rate 

reductions over 6.4% (equivalent 0.23 dB). These transforms not only improve the 

objective coding performance but also the subjective quality. It is shown that the 

picture quality is improved when these transform is used. The blocking artifacts are 

significantly reduced. 

We can conclude that our proposed ABT platform with proposed order-16 

transforms significantly improves both the objective and subjective coding 

performance of AVS. 
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Chapter 5 Transform Domain 

Pattern Matching 

5.1 Introduction 

Pattern matching is a fundamental process in many image processing and computer 

vision applications. It involves matching a given image pattern to a target image by 

means of evaluating the similarity (or difference) between them. Suppose a h<k 

pattern p is to be matched with a windowed target image w of the same dimension. 

Both p and w are defined in a space . The difference d between them is also in 

the same space. 

d = p - w . (5.1) 

The best candidate ŷ b拟 is usually denoted as the candidate that gives the minimum d 

for all possible w in the candidate pool W. 



To quantify the difference d, different measures are used. For example sum of 

absolute difference (SAD) and sum of square difference (SSD) are commonly used. 

k-] /M 
d S A D (P, w) 二 力 — 冰 ( 。 • (5.3) 

/=0 / = 0 

ŜSD (P，= I 树,，乃-MA y f ‘ (5 4) 
1=0 y=0 

The choice of measure is application dependent. No matter which measure is used, 

the matching process is a very computation intensive work. Many fast pattern 

matching methods have been proposed to speed up the pattern match process and to 

maintain the accuracy at the same time. These fast pattern matching algorithms can 

be classified into two main classes. The first one is reducing the complexity of the 

similarity evaluation. Every possible candidates in the target image are evaluated but 

with simplified evaluation metric. One of the typical examples is Fast Full Search 

(FFS). The accuracy of this class of algorithms is the same as Exhaustive Full Search. 

No degradation is observed. As every candidate is examined, however, the 

computation load is still very high. In contrast, another class of the fast algorithms 

targets to reduce the size of the candidate pool W. Only portion of the candidates is 

examined. A number of fast motion estimation methods [l]-[3] are in this class of 

pattern matching, such as Three-step search and Diamond search. These algorithms 

are significantly simpler than fast full search. However, there is a trade-off between 

this speed-up and the accuracy. As only some but not all candidates are examined, 

the best candidate may not be examined and hence, the accuracy is lowered. 
— 



5.2 Pattern Matching in 

Walsh-Hadamard Domain 

Hel-Or [7]-[9] proposed a high speed pattern matching algorithm for noisy images. 

This algorithm projects the pattern and the windowed target image into the 2-D Walsh 

Hadamard (WH) domain. The Euclidean distance between the projected pattern 

patch and the projected target image patch are evaluated. Mismatched patters are 

eliminated in an early stage. It is fast but its performance is approaching to the full 

search. The search result is in pixel accuracy. It can be a preliminary result for 

sub-pixel search. Mak and Li proposed a motion estimation method using Hel-Or’s 

fast pattern matching algorithm. 

In projection-based pattern matching, p and w projected onto the rn"̂  WH basis 

(denoted as u^) are denoted as bp(m) and bw(m) respectively. Using 

Cauchy-Schwartz inequality: 

I W ^ l u L d (5.5) 

Consider the Euclidean difference: 

p - w = 

> 
u l ( p - w ) w 

U.J 
(5.6) 

When there is a collection of u^ such that U = [ui, U2, ... u^] and the corresponding 

project collection b = [^i, bj, ... bm], (5.6) can be expressed as; 



(5.7) 

This is the distance lower bound for a set of projections vectors. This lower bound 

is getting tighter and tighter when the number of projections increases. As a result, 

the pattern match can be performed in WH domain in an iterative manner. After each 

projection, the candidates whose lower bound value is greater than a threshold are 

rejected. The lower bound values of the remaining candidates are updated before 

next projection. This is a recursive process until a predefined number of best matches 

are found or the maximum number of projection is reached. WH basis vectors have 

strong energy packing ability such that most of the energy is packed in the first few 

projections. As a result, the comparison can be terminated in first few projections. 

Majority of the mismatch candidates are removed from the candidate pool quickly and 

hence less computation is required. 

Besides the high speed of this algorithm, this algorithm also has an accuracy same as 

full search. It also has a very high robustness. It is not affected by the difference in 

illumination and noisy environment. 

Based on the above Hel-Or's idea, Li and Mak proposed a faster pattern matching in 

Walsh-Hadamard transform domain called Fast Walsh Search (FWS) [10]. In this 

fast pattern matching, two techniques, Block Pyramid Matching and Partial Sum of 

Absolute Difference, are proposed. 



5.2.1 Block Pyramid Matching 

Block Pyramid Matching (BPM) is an algorithm to compute the W H projections in a 

hierarchical structure such that intermediate result can be reused. As a result, several 

proj ections can be generated at the same time. K T Y T block can be divided into four 

blocks. The DC or the (0, 0/卜 projection of the TYT block can be 

decomposed into the sum of the (0，0)* projections of the four sub-blocks. 

The (0，l)th，the (1, 0/卜 and the (1, projections of the TYT block can be 

.1 fe V 

decomposed into combinations of the (0, 0) projections of the four x2"— 

sub-blocks in the same manner. Recursively, they can be decomposed into 

combinations of the ( 0， p r o j e c t i o n s of 2x2 sub-blocks. In Figure 5-1，an example 

of BPM is shown. The DC of the 8x8 block can be decomposed into the sum of DC 

of the 4x4 sub-blocks. The DC of each 4x4 sub-block can be further decomposed 

into sum of DC of the four 2x2 sub-blocks. When the pattern sliding window slides 

by 2 pixels, the DC of each 2x2 sub-blocks can be reused. As a result, the 

intermediate results are shared among different sliding window positions and hence 

the computation can be significantly reduced. 

— 

1 

H - -

1 

4 - — • 

1 

-

] 
- 4 -
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Figure 5-1 Example of BPM with an 8x8 block. 



5.2.2 Partial Sum of Absolute Difference 

In Hel-Or's algorithm, the projected distance is measured by the Euclidean distance 

which involves square operations or multiplications. In Li and Mak's algorithm, it is 

suggested to be replaced by absolute difference. It is called the partial sum of 

absolute difference (PSAD, or partial absolute difference in [10]). If �( p , w; q) is 

the PSAD of g projections between p and w , �( p , w; q) is given as: 

) - 1 u j w 

1 
0(P，w;") = a ) ( p , w ; � — l ) + for ^ > 1 and 0 (p ,w ;0 ) = 0. (5.8) 

After each projection, PSAD of the candidates in the pool are calculated. If one's 

PSAD is larger than a threshold To, this candidate will be removed from the pool. It is 

in a recursive manner until the number of candidates in the pool is less than a preset 

threshold or the maximum projection is reached. The use of PSAD makes the 

algorithm multiplication-free and closer to metrics in the codec which measure the 

sum of absolute difference (SAD) instead of SSD. However, the threshold To for 

eliminating mismatch candidates is not easy to determine. Here we propose a 

statistical threshold and the Block Adaptive Threshold. 

5.2.3 Statistical Threshold 

It is obvious that the best match candidate may not always have the minimum PSAD. 

Suppose the PSAD for the best match candidate and minimum PSAD in the candidate 

pool are d)®"̂  and respectively. There is a real value T such that 



Chapter 5 - Transform Domain Pattern Matching 

( D 謝 圆 ( 5 . 9 ) 

For all candidates, there is a relationship that: 

0 = 0™" +t (5.10) 

where t is a real value random variable. The probability that t > T 

=尸(①〉①爐） （511) 

When the probability density function (pdf) of t, pt(t), is known, (5,11) becomes: 

/ � A (5.12) 

Although pt{t) cannot be found analytically yet, it can be found empirically. It is 

shown in Figure 5-2. If we can tolerate a very low miss rate such that the best match 

may be removed from the candidate pool at a very low probability P瞧,w e can find a 

value To such that: 

% 丨⑴ (5.13) 

The minimum value of TQ that satisfies (5.13) is the threshold to eliminate the 

mismatch candidates. 



X 10' pdf of the t 

-4000 -3000 -2000 -1D00 0 1000 2000 
t 

Figure 5-2 The probability density function of/?,(/). 

In block-based motion estimation, the candidates are in the search range of (±R, 士 R). 

Mak found that the candidate located at (0, 0) is very likely to have O =�"“丨".Let � 

of this candidate be Oo, (5.9) and (5.10) become: 

(D 施 = 0 � + r , (5 .14 ) 

� = � 0 + / . (5 .15 ) 

Now, t is defined as the difference between O and Oq. Its pdf can also be found 

from a set of training sequences and the shape is similar to that in Figure 5-2. The 

threshold TQ can be found with (5.13). Mak found that when TQ is equal to 0 and O is 

obtained from the first two projects (i.e. 二 2 in (5.8)), the miss rate is acceptable in a 

balance between the computation and the accuracy. This threshold, TQ = 0, is 

adopted in the fast motion estimation in [10]. 
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5.2.4 Block Adaptive Threshold 

The statistical threshold discussed in the last section is a fixed threshold at a fixed 

acceptable miss rate. This works very well for majority of the blocks. However, the 

fixed threshold may be over-estimated for very smooth blocks or under-estimated for 

highly-textured blocks. This leads to inefficient mismatch elimination for those very 

smooth blocks and over-elimination of the candidates for highly textured blocks. As 

a result, we proposed an adaptive threshold which depends on the nature of the pattern 

block p. For simplicity, the 8x8 pattern blocks are classified into two types: smooth 

blocks and texture blocks. Each block type has its own pt{t) and hence its own 

threshold TQ. This is called Block Adaptive Threshold. Using the definition in 

(5.15), the value of To of these block types are found (Table 5-1). When the target 

miss rate is even as low as 30%, it is shown that affect of the RD performance is very 

minor. The number of the candidates for smooth block significantly reduces while 

the miss rate for texture block is lowered. Overall, the remaining candidates are 

reduced by 10%. However, the time for the matching process does not improve much 

( � 1 % ) because the classification of the pattern block also takes time. 

Target Miss 
Rate (%) 

To Target Miss 
Rate (%) Texture Block Smooth Block 

1.0 280 40 

5.0 73 9 

10 16 1 

20 -20 -3 

30 -48 -6 

40 -110 -32 

Table 5-1 Block adaptive threshold of texture blocks and smooth blocks 



5.3 Experiments 

A Variable Block Size Motion Estimation (VBS-ME) algorithm based on FWS 

(denoted as FWS-VBS algorithm) is built [10]. This algorithm is integrated into the 

H.264/AVC reference software JM 10.1 [11]. FWS-VBS is compared with other 

VBS-ME algorithms implemented in the reference software. The VBS-ME to be 

compared including Fast Full Search (FFS), hybrid UMHexagons (UMH) [12], 

simplified UMHexagons (SUMH) and Enhanced Predictive Zonal Search (EPZS) 

[13]. Video sequences with frame resolution from GIF (352x288) to HD (1280x720) 

are tested. The GOP structure is IPPPP... is used. Only the first frame is 

intra-coded. Q P = {16, 20, 24 and 28) are tested. The BD-bitrates described in [14] 

are measured. They are shown in Table 5-2. The best case in each sequence is 

bolded. It is obvious that the test VBS-ME algorithms have similar RD performance 

as FFS. The average BD-bitrates are less than 0.5%. In comparison, EPZS performs 

the best. It is followed by UMH, FWS-VBS and SUMH. However, without 

professional optimization, FWS-VBS is just slower than SUMH. It only requires 

20% of the time for FFS on average. In [10], an early mode stop (EMS) is proposed 

such that the required computation time is almost halved. 



Resolution Sequences 
BD-bit rate compare with FFS (%) 

Resolution Sequences 
U M H S U M H EPZS F W S - V B S 

GIF 
(352x288) 

Akiyo 0.05 0.40 0.24 0.15 

GIF 
(352x288) 

Coastguard -0.78 -1.31 -1.00 -0.52 

GIF 
(352x288) 

Container 0.03 0.11 0.18 0.03 GIF 
(352x288) 

Foreman 0.80 2.84 0,60 0.30 
GIF 

(352x288) 
Mother 0.40 1.09 0.69 0.28 

GIF 
(352x288) 

News 0.12 0.73 0.09 0.38 

GIF 
(352x288) 

Tempete -0.53 -0.42 -0.56 -0 .3� 

SIF 
(352x240) 

Mobile -1.07 -0.70 -1.14 -0.73 SIF 
(352x240) Stefan -1.79 -1.87 -2.08 -1.34 

SD 
(704x576) 

City 0.60 0.48 0.23 0.00 

SD 
(704x576) 

Crew 0.03 0.00 -0.18 0,16 SD 
(704x576) 

Harbour -1.25 -2.30 -1.46 -0.95 
SD 

(704x576) 
Ice 1.45 2,44 0.92 1.26 

SD 
(704x576) 

Soccer -0.46 -0.64 -0.47 -0.21 

HD 
(1280x720) 

Mobile-Cal -0.26 -0.26 -0.33 -0.26 

HD 
(1280x720) 

Night -0.26 -0.09 -0.55 2.23 
HD 

(1280x720) 
Panslow 0.91 3.22 0.78 0.39 HD 

(1280x720) Raven -0.04 1.29 0.46 0.23 
HD 

(1280x720) 
Sailormen -0.05 0.04 -0.25 0.04 

HD 
(1280x720) 

Shuttle-Start 0.51 1.30 1.07 0.61 
Average -0.08 0.32 -0.14 0.09 

T a b l e 5 - 2 B D - b i t r a t e s o f d i f f e ren t V B S - M E a l g o r i t h m s 

Resolution Sequences 
Percentage of M E time compare with FFS 

Resolution Sequences 
U M H S U M H EPZS F W S - V B S 

CIF 
(352x288) 

Akiyo 12.9 9.5 13.6 11.8 

CIF 
(352x288) 

Coastguard 31.1 20.0 27.4 28.4 

CIF 
(352x288) 

Container 15.4 10.2 16.3 13.2 
CIF 

(352x288) 
Foreman 22.8 13.1 21.0 19.5 

CIF 
(352x288) 

Mother 14.0 10.1 15.5 12.8 

CIF 
(352x288) 

News 13,9 10.1 15.9 13.0 

CIF 
(352x288) 

Tempete 28.3 16.8 24.9 23.8 

SIF 
(352x240) 

Mobile 31.0 20.0 27.2 27.1 SIF 
(352x240) Stefan 26.3 16.9 24.6 24.8 

SD 
(704x576) 

City 28,8 17.8 25.9 26.9 

SD 
(704x576) 

Crew 29.8 15.2 23.9 23.5 
SD 

(704x576) 
Harbour 32,0 18.7 27.5 29.5 

SD 
(704x576) 

Ice 14.6 10.2 14.9 13.1 

SD 
(704x576) 

Soccer 25.4 15.0 23.3 22.7 

HD 
(1280x720) 

Mobile-Cal 27,7 16.2 23.7 23,0 

HD 
(1280x720) 

Night 26.0 13.9 22.8 24.1 
HD 

(1280x720) 
Panslow 22.1 11.9 18.3 17.9 HD 

(1280x720) Raven 17.8 11.5 18.6 16.0 
HD 

(1280x720) 
Sailormen 29.4 16.4 24.4 26.5 

HD 
(1280x720) 

Shuttle-Start 12.6 8.7 12,5 10.8 
Average 23.1 14.1 21.1 20.4 

Table 5-3 Computation time o different VBS-ME algorithms 



5-4 Conclusions 

In this chapter, a transform domain pattern matching method called Fast Walsh 

Search (FWS) is described. It was proposed by Li and Mak based on Hel-Or's 

work. The matching is in Walsh-Hadamard transform domain in which pixel 

energy in the patch are packed into several transform coefficients. Less comparison 

is required and hence the matching process is speeded up. To further increase the 

speed of the process, Block Pyramid Matching (BPM) and Partial Sum of Absolute 

Difference (PSAD) were suggested. One of our contributions to this work is 

derivation of a statistical threshold for eliminating the mismatch candidates. This 

threshold can be found by an empirical pdf when tolerance of the missing the best 

match is specified. With this threshold, majority of the candidates are removed 

from the candidate pool while the best match is kept. This effectively speeds up the 

matching process. Another contribution is the investigation of the Block Adaptive 

Threshold. Different blocks have different nature. Smooth blocks and textured 

blocks should have different thresholds. Experiment shows that the threshold 

values for these two kinds of block have a big difference. Although the Block 

Adaptive Threshold cannot give a significant speed-up to the process, it shows a 

possible direction to do so. The FWS was integrated to H.264/AVC reference 

JMlO.l . It is compare with some state-of-the-art motion estimation algorithms 

such as UMH, SUMH and EPZS. The accuracies of these motion estimation 

algorithms are similar but the proposed FWS is just slower than the fastest algorithm 

SUMH. FWS only takes 20% of the computation time for the Fast Full Search. 
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Chapter 6 Distribution Modeling of 
Predicted Residue Transform 
Coefficient 

6.1 Introduction 
A number of works has been done in the analysis of the transform coefficient (usually 

refer as DCT coefficient) distribution of images [l]-[7]. They are commonly 

expected to be in Laplace distribution. As a result, it is assumed that the DCT 

coefficients are in Laplace distribution in many applications such as image coding. 

In fact, the transform coefficient distribution is a fundamental to many applications, 

such as rate control, quantization noise analysis and transform-based restoration. An 

accurate distribution model is very important to these applications. Beside Laplace 

distribution, the transform coefficients have been proposed to be modeled as mixture 

of Gaussian and Generalized Gamma Distribution. 



In video coding, predicted residue is transformed instead of the pixel data. 

Therefore, the distribution of the transform coefficient of predicted residue should be 

focused. It is commonly expected to be in Laplace distribution also. It is recently 

found that, however, the predicted residue is closer to Cauchy distribution than 

Laplace distribution. In [8] and [9], the transform coefficient is modeled in Cauchy 

distribution and more accurate rate and distortion models are achieved. 

Usually, the parameters of the distribution are estimated from the transform 

coefficients. In this chapter, the parameters of the Cauchy distributed transform 

coefficient are going to be estimated from the predicted residue without being 

transformed. First of all, the predicted residue is verified to be Cauchy distributed. 

After that, some properties of Cauchy Distribution will be described. Using these 

properties, the distributions of the transform coefficient will be derived. Experiments 

will verify our proposed model. 

6.2 Distribution of Predicted Residue 
In video coding, prediction is used to reduce the temporal and the spatial redundancy 

in pixel data. Intra-prediction reduces the spatial redundancy while inter-prediction 

reduces the temporal one. The predicted residue is sent after being transformed and 

quantized. In general, the residue from intra-prediction has a larger variance than that 

from inter-prediction. Figure 6-2 shows the predicted residue of the video sequence, 

Foreman. The upper is the intra-predicted while the lower is the inter-predicted. 

Their histograms are plotted in Figure 6-2. It is shown that the intra-predicted residue 

has a wider spread (i.e. larger variance) than the inter-predicted. It can be shown that 



the distribution of the intra predicted residue is closer to Cauchy distribution while the 

inter predicted is closer to Laplace distribution. 

沪 Vfst 

Figure 6-1 (a) The intra-predicted residue and (b) the inter-predicted residue of 

"Foreman". 
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6.3 Properties of Laplace Distribution 
Laplace distribution is described by the probability density function (pdf): 

exp ——. (6.1) 

Its mean and variance is given by ^ and respectively. Its parameters are 

commonly estimated by the maximum likelihood (ML) estimator [10]. Their 

estimated values are: 

ju is the median of the samples, and (6.2) 

I
 h

 

1
1
"
 

I
I
 

6.4 Properties of Caychy Distribution 
Cauchy distribution can be described by the pdf: 

胞 = 4 h : ) 、 , ” . (6.4) 

In this pdf, xo is the location parameter, which is the median and the mode of the 

distribution and / i s the scale parameter, which describe the spread of the distribution. 

The standard Cauchy random variable (RV), X, is defined as: 

! � _ ) = • • (6.5) 

The Cauchy RV can be expressed as: 



r 
I
 

• ^ o i + r 
(6.6) 

Cauchy distribution is an example of a more generalized version of the central limit 

theorem. It is a stable distribution such that the sum of independent Cauchy 

distributed RV is also in Cauchy distribution; 

不 〜 

( 6 . 7 ) 

J 

However, there is no mean variance defined for Cauchy distribution. This makes 

the parameters not easy to be estimated. 

6.1.1. Parameter Estimation Method 1 
The simplest way to estimate the parameters is approximating its median by its 

ensemble mean: 

i/V 
(6.8) 

And from (6.6), the peak of the pdf is: 

( 6 . 9 ) 

As a result, y is estimated by: 

7 = (6.10) 



This method is very simple but not very robust. The accuracy is low when the 

samples are noisy or insufficient number of the observed data. The empirical pdf is 

required. 

6.1.2. Parameter Estimation Method 2 
Another method is by means of entropy. The entropy of a Cauchy distribution is: 

H ^\og,[A7vr). (6.11) 

When the pdf or the histogram of the observed samples is known, the entropy of 

these observed samples in TV bins is: 

N 

Ho (6.12) 
rM 

where is observed probability density at x,. Since these two entropies should 

be the same, hence: 

(6.13) 

This is a robust method with high accuracy. However, the empirical pdf is still 

needed and the entropy of the observed data has to be found. This requires more 

computation and memory. 

6.1.3. Parameter Estimation Method 3 
In video coding, the range of the predicted residue value is bounded. Let this bound 

be [Xmin, Â Tiax] such that the Cauchy RV: 



( 6 . 1 4 ) 

Assume that the distribution is symmetric about XQ and: 

尺 職 » r (6.15) 

and the approximation: 

tan-i ( Z i « — 丄 when 6 » 1 (6.16) 

The mean and variance become of 兄: 
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For Intra-predicted residue, its variance is relatively large and hence it can be 

assumed to be zero-mean. In Figure 6-2, the distribution is shown to be symmetric 

around zero 

Xo (6.19) 

and y is the solution to: 

3 TVR 2 TIRCT; -
(6.20) 

where 

X ~X 
R ^ max mm (6.21) 

As a result, the parameters of the Cauchy distribution can be estimated easily from 

the observed sample variance. The empirical pdf of the observed sample is not 

required. However, this method is sensitive to the accuracy of X^^x- This 

significantly affects the robustness. 



6.5 Transform Coefficient of Predicted Residue 
In Section 6.2, it is shown that the predicted residue has a Cauchy distribution. 

Transform coefficient of predicted residue is a linear sum of the predicted residue. In 

(6.7), it is shown that linear sum of the Cauchy RV is also in Cauchy distribution. As 

a result, the distribution of the transform coefficients is a Cauchy distribution. The 

best way to estimate the distribution parameters of the transform coefficients is from 

the complete statistics of the transform coefficients. However, m many applications, 

these statistics are not available in a single pass. As a result, a two-pass or even a 

multi-pass strategy is used. Transformation is done and the statistics is gathered in 

the first pass while the process is done in the remaining passes. This is an accurate 

method but a very time-consuming one. Here, a method to estimate the distribution 

parameter of the transform coefficients without transforming the residue is proposed. 

Image and video pixel data are usually modeled in first order Markov process: 

X, = p • +£•. (6.22) 

The predicted residue can also be modeled in the same way with zero-mean. In 1 -D 

case, the autocorrelation matrix of the predicted residue x is: 

(6.23) 

When X is transformed with an orthogonal kernel T, the autocorrelation matrix of the 

transform coefficient is: 

. (6.24) 
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If X has a variance of a^ , the variance of the z-th transform coefficient c(i) is: 

a!(和 CT'人(U). (6.25) 

Assume that the 2-D case is separable into row-order and column-order 1-D process. 

The variance of the 2-D transform coefficient c(r, s) is: 

咖=汀】 [ T R : T �J T R : ' T � , 力 （6.26) 

where R!,^ and R:丨 are the 1 -D autocorrelation matrices in row- and column-order 

respectively. They are defined as: 

K:={P\：^} and (6.27) 

where p痛 and are the correlation coefficients in row- and column-order 

respectively. The parameters of transform coefficient distribution can be estimated 

by substituting <j] in (6,20) with <yl{r,s) in (6.26). This implies that the 

transform coefficient distributions can be found when the variance, the column- and 

row-order correlation are known. 



6.6 Experimental Results 
In this chapter, our transform coefficient distribution parameter estimation method 

will be evaluated. To evaluate it, the goodness-of-fit is measured and compared. 

There are a number of goodness-of-fit tests. One of them is the Chi-Square test 

( / - t es t ) . 

6.1.4. Chi-Square Test 
The Z^-tQSt is to test the hypothetical distribution against the observed data. The 

cumulative distribution function (CDF) of the hypothetical distribution is assumed to 

be available as F. For the observed data classified in k bins such that the frequency of 

the observed samples in the 产 bin is O；. The expected frequency in the 产 bin from 

the hypothetical distribution is: 

E, 二 N. F{x,)-F{x, 
pi =N. p{x)dx. 

(6.28) 

N is the number of observed data, xy and XL are the upper and lower bound of the i-th 

bin. The test statistic is defined as; 

i-j E 
(6.29) 

The smaller the value of the better fit of the hypothetical distribution is. It can be 

noticed that ^ will increase as the number of observation, N, increases. In our cases, 

N depends on the video resolution. Here we normalize ^ by N\ 
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Znorm = " ^ ^ . (6-30) 

This does not affect the physical meaning of the ；f^ but makes the comparison among 

different resolutions easier. 

6.1.5. Empirical Results 
In our experiment, the predicted residue is transformed by the order-4 ICT adopted in 

H.264/AVC with normalization. The statistics is in frame-based. The histograms of 

the predicted residue and its transform coefficients are gathered every frame. Their 

distribution parameters are estimated with our proposed method. With these 

parameters, the hypothetical distributions are formed and the goodness-of-fit test is 

taken every frame. The average, minimum and maximum values of normalized ；^ in 

each tested sequence will be listed and compared. 

The result of fitting the intra>predicted residue is shown in Table 6-1. It is observed 

that the predicted residues in most tested sequences are closer to Cauchy distribution. 

It is also shown that Cauchy Estimator 1 (i.e. the parameter estimation method 1) is 

more accurate than Cauchy Estimator 2 and Cauchy Estimator 3 in our experiment. 

The evaluation results of the transform coefficient modeling are shown from Table 6-2 

to Table 6-7. The results for the most important coefficients, the first 6 coefficients 

along the zig-zag scan path, are shown. These coefficients contribute over 80% of 

the signal energy. From the ； v a l u e obtained from the ML Laplace Estimator 

and the Cauchy Estimator 1, it is shown that the distributions of the transform 

coefficients are closer to Cauchy distribution than Laplace distribution. Although the 



proposed Cauchy Estimator is not as good as the Cauchy Estimator 1, they are still 

comparable. 

6.7 Conclusions 
In this chapter, the predicted residues of different sequences are investigated. It is 

shown that the intra-predicted residue is closer to the Cauchy distribution. Three 

Cauchy distribution parameter estimation methods are proposed and tested. The 

estimation method from the peak of the empirical pdf is found to be very accurate 

when the observed data are sufficient. Due to the properties of Cauchy distribution, it 

is expected that the transform coefficients of the intra-predicted residue are also 

Cauchy distributed. A method is proposed to estimate the Cauchy distribution 

parameters of the transform coefficients without transformation. 
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Z : forC(0 ,0) 
ML Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est. 

Z : forC(0 ,0) Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. 
Foreman 0 138 0,120 0 100 0.052 0 033 0 022 0 054 0 036 0028 
Football 0 055 0 032 0 022 0 031 0018 0 010 0 225 0,143 0.072 

( ) Paris 0.128 0.119 0.109 0 048 0 035 0 023 0 065 0.057 0.005 
Coastguard 0 022 0.016 0011 0.066 0.047 0 030 0.641 0.528 0.405 
Mobile 0 091 0.081 0 069 0.078 0 053 0 037 0 141 0 126 0.111 
Flowervase 1.939 1.494 1 052 1.241 1 071 0.926 0 973 0.728 0.522 
Keiba 0 128 0,050 0 026 0 041 0016 0 006 0 246 0 159 0.071 

O > Mobisode2 0 828 0.599 0 354 0.375 0 308 0245 1 267 0.759 0.251 
RaceHorses 0 050 0 038 0 029 0 012 0 007 0 004 0 139 0 112 0 086 
City 0 187 0.172 0 162 0 054 0 048 0.041 0 057 0.052 0 047 
Crew 0 603 0.155 0 117 0 364 0 060 0 030 0 254 0 060 0.037 

13 Harbour 0,017 0.014 0011 0.023 0 017 0.012 0 127 0.119 0.107 
SpinCalendar 0 289 0 273 0 253 0 058 0 053 0 047 0 056 0 051 0 045 
BlueSky 1 062 0.997 0.939 0.524 0.466 0.417 0.714 0.655 0.599 
PedestrianArea 0 473 0.326 0.227 0.497 0.381 0.248 0213 0 172 0 134 
RiverBed 0 035 0.015 0.002 0.057 0.040 0.025 0.997 0 643 0.377 
RushHour 0 077 0 069 0 054 0 069 0 045 0 026 0 342 0 250 0 207 

Average 0.360 0.269 0.208 0.211 0.159 0.126 0.383 0.274 0.183 
Table 6-2 pdf fitting to the transform coefficient C(0, 0) in different sequences. 

Z L forCU,0) 
ML Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est. 

Z L forCU,0) Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. 
Foreman 0.203 0 172 0.141 0.068 0,050 0,035 0,040 0,031 0 023 
Football 0.033 0-024 0,015 0.079 0 039 0.026 0 197 0.127 0.077 

o 
甲 

Pans 0.260 0 236 0.218 0-092 0.070 0.057 0,266 0,222 0 177 
Coastguard 0.026 0 020 0 016 0.090 0 064 0.041 1.992 1.750 1 455 
Mobile 0 325 0 262 0211 0 253 0 200 0 158 0.164 0.133 0.109 
Flowervase U790 1.624 L490 1 029 0 862 0 710 2 420 2.183 1.837 
Keiba 0 231 0 120 0 077 0 050 0 031 0019 0.248 0.114 0.029 

> Mobisode2 0.504 0 408 0-329 0.584 0.479 0 396 1,865 1.179 0.450 
RaceHorses 0 157 0 134 0 109 0 024 0 019 0015 0 056 0.036 0.021 
City 0-266 0.245 0-213 0.186 0.135 0.105 0 115 0.088 0.061 

fo Crew 0 660 0.114 0 067 0 462 0 064 0 031 1 633 0 291 0 131 
XJ Harbour 0 058 0.052 0-045 0 125 0.107 0 091 0.626 0 538 0.410 

SpinCalendar 0 674 0 648 0 616 0 119 0 112 0 101 0 177 0 163 0.154 
BlueSky 1 341 1 149 0918 0 255 0-174 0 092 1.045 0.871 0-667 

1—1 
o PedestrianArea 0 259 0 207 0 178 0 239 0 184 0 156 0 305 0 231 0-169 
00 
€ RiverBed 0 042 0 026 0011 0 135 0.105 0.042 2.186 1-742 1.449 

RushHour 0 103 0.077 0 050 0 088 0 066 0 042 0 169 0 106 0 067 
Average 0.408 0.325 0.277 0.228 0.162 0.125 0.794 0.577 0.429 

Table 6-3 pdf fitting to the transform coefficient C( l , 0) in different sequences. 



1) M L Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est. 1) 
Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. 

Foreman 0.173 0.148 0,117 0.065 0 054 0036 0.038 0 030 0 020 

n 
Football 0 138 0 061 0.034 0.052 0 032 0 019 0 096 0 064 0 020 

n Pans 0 457 0418 0 390 0.091 0 071 0,061 0 081 0 071 0 065 
Coastguard 0.031 0 022 0.016 0.067 0 046 0 034 0.139 0 105 0 066 
Mobile 0‘220 0 183 0.154 0.185 0 147 0.105 0.105 0 087 0 070 
Flowervase 1 209 1.038 0 871 0 606 0.463 0 327 1.634 1.320 1 045 
Keiba 0 200 0 108 0.070 0.065 0 048 0.035 0 157 0 065 0 031 

o > Mobisode2 0 760 0 597 0 425 0 683 0 566 0 472 0 588 0 483 0.425 
RaceHorses 0 163 0 136 0 112 0.060 0 046 0 036 0 040 0 031 0 024 
City 0.371 0 354 0.326 0.220 0.191 0,168 0.168 0.122 0.100 
Crew 0 786 0.261 0 203 0 269 0 036 0015 0.183 0 103 0 077 

o Harbour 0.043 0.039 0.034 0.085 0,072 0 057 1,302 1.091 0 942 
SpinCalendar 0 401 0 382 0 362 0 105 0 093 0 083 0 154 0 141 0 129 
BlueSky 1,130 1.001 0.902 0.125 0.075 0 052 0.724 0 533 0 347 
PedestrianArea 0.415 0 339 0 279 0.245 0.187 0 148 0 361 0.306 0 261 
RiverBed 0-104 0.058 0.014 0.186 0.141 0.044 0.621 0.376 0 186 
RushHour 0 160 0 125 0.096 0 061 0,037 0 012 0 789 0,575 0J73 

Average 0.398 0.310 0.259 0.186 0.136 0.100 0.422 0.324 0.246 
Table 6-4 pdf fitting to the transform coefficient C(0, 1) in different sequences. 

J- for 2) 
八 NOM \ F / 

ML Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est. J - for 2) 
八 NOM \ F / Max. Ave, Min. Max. Ave. Min. Max. Ave. Min. 

Foreman 0.210 0.168 0 125 0 098 0.070 0.050 0.571 0.434 0.303 
Football 0.351 0.155 0.074 0.064 0.037 0.014 0.665 0.140 0.013 
Paris 1.176 1.075 1.000 0.099 0.089 0.080 0.250 0.216 0 196 
Coastguard 0.034 0.028 0.022 0.064 0053 0.042 0 186 0.129 0.077 
Mobile 0 314 0.275 0.225 0.156 0 132 0,105 0 117 0.095 0.076 
Flowervase 1.425 1.273 1.127 1.416 1.162 0,915 3.158 2 746 2.273 

1 Keiba 0.206 0,131 0.066 0.119 0 089 0.069 3 493 2.097 1 641 
o 
> Mobisode2 0,767 0.647 0.580 1.031 0-855 0.717 1.084 0.937 0.799 

RaceHorses 0 402 0 370 0 321 0 089 0 073 0,063 0312 0 257 0 180 
City 0.350 0.326 0.302 0.180 0,160 0.147 0.441 0 210 0.107 
Crew 0 621 0251 0.190 0 288 0 101 0 075 0 237 0 144 0 109 
Harbour 0.075 0.064 0.050 0.099 0.085 0.068 1.856 1.636 1.459 
SpinCalendar 0.247 0.229 0 212 0 119 0 105 0 092 0 304 0 276 0 253 
BlueSky 0 395 0.327 0.234 0.236 0 133 0.149 1 599 1 308 0.984 

O PedestrianArea 0 244 0 200 〇149 0 267 0210 0 170 0 282 0 201 0.160 
oo 

RiverBed 0.130 0.094 0 073 0.117 0 091 0.071 0 464 0.295 0.169 
RushHour 0.290 0 188 0.110 0.191 0.130 0 091 0 304 0 231 0.201 

Average 0.426 0.341 0.286 0.273 0.210 0.172 0.901 0.668 0.529 
Table 6-5 pdf fitting to the transform coefficient C(0 2) in different sequences. 



M L Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est. 
Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. 

Foreman 0 187 0 148 0.129 0,039 0 030 0.018 0 064 0 043 0 030 
Football 0 101 0 049 0.023 0.050 0 030 0 013 0 201 0.120 0.045 

(J Pans 0 387 0 354 0.318 0.066 0.054 0.043 0.376 0.329 0.280 
Coastguard 0018 0 013 0.009 0.048 0.041 0 033 0,854 0 664 0 502 
Mobile 0 353 0311 0.276 0,267 0.216 0.171 0.173 0 148 0 130 
Flowervase 1 247 1 117 0 995 1.374 1 131 0 887 2 580 2.260 1,945 

1 Keiba 0 183 0 120 0,085 0.047 0 036 0 031 0 088 0,043 0 028 
o > Mobisode2 0 539 0 459 0398 0.707 0 591 0 493 3 266 2.298 1,401 

RaceHorses 0 252 0 229 0 203 0 049 0 038 0.031 0 049 0 041 0 030 
City 0.218 0 199 0.169 0.177 0.149 0,125 a 136 0.111 0 096 

t o Crew 0416 0 085 0 055 0.383 0.075 0.047 0 327 0 136 0 061 
Harbour 0.044 0 037 0.025 0.084 0,072 0.045 0.221 0.141 0 111 
SpinCalendar 0 274 0 261 0 246 0 089 0.080 0.074 0 089 0 082 0 073 
BlueSky 0.581 0-469 0.344 0.268 0.177 0.091 0.369 0-250 0 120 

o PedestrianArea 0 192 0 169 0 142 0.250 0.222 0.196 0.605 0 476 0 395 
oo 

RiverBed 0.056 0 040 0 024 0.100 0.083 0.050 1.558 1 194 0.920 
RushHour 0 126 0 099 0 080 0 159 0.128 0,106 1 870 1 702 1 584 

Average 0.304 0.245 0.207 0.245 0.185 0.144 0.754 0.590 0.456 
Table 6-6 pdf fitting to the transform coefficient C(1，1) m different sequences 

ZL forC(2,0) 
M L Laplace Est. Cauchy Estimator 1 Proposed Cauchy Est 

ZL forC(2,0) Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. 
Foreman 0.212 0.174 0 148 0 063 0,044 0.028 0.126 0.083 0.052 
Football 0.057 0.036 0.018 0 086 0 063 0 039 0 101 0.057 0.032 
Pans 0.473 0.405 0.373 0 102 0 091 0 075 0 681 0.566 0.468 
Coastguard 0.019 0.013 0.009 0 106 0 054 0 036 3 941 3 979 2.862 
Mobile 0 389 0 344 0 308 0 278 0212 0 170 0 194 0 171 0.152 
Flowervase 1.981 U808 1.582 1.606 1 346 1 110 2.113 1 915 1 623 

1 Keiba 0 361 0 236 0.173 0 052 0 036 0 026 0 283 0 129 0.046 
O > Mobisodel 0 614 0.531 0.461 0.796 0.673 0 561 1.286 0.807 0.456 

RaceHorses 0.286 0.260 0,229 0 051 0 042 0 036 0415 0 341 0 233 
City 0.427 0.386 0.323 0.223 0.165 0 134 0275 0.172 0,093 
Crew 0 502 0.091 0.057 0.437 0 083 0 052 1 186 0 163 0.060 
Harbour 0 111 0 102 0 078 0.129 0.110 0.076 2419 L969 1-275 
SpinCalendar 0 520 0 489 0.449 0.089 0 078 0 070 0 092 0 080 0 067 
BlueSky 0 774 0 631 0 462 0.245 0.178 0.100 0.707 0 578 0.483 

o PedestrianArea 0 208 0 179 0 159 0—250 0.216 0-183 0-236 0-189 0.162 o 
RiverBed 0 035 0 027 0.017 0.044 0 039 0 026 2 035 1 857 1 724 
RushHour 0 115 0 100 0 091 0 147 0.132 0.121 0.438 0 296 0 194 

Average 0.417 0.342 0.290 0.277 0.210 0.167 0.972 0.785 0.587 
Table 6-7 pdf fitting to the transform coefficient C(2, 0) in different sequences, 
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Chapter 7 Summary and Future Work 

7-1 Contributions 
7.2.1 Order-16 DCT-like Transforms 

In this thesis, we have developed 3 classes of orthogonal order-16 DCT-like integer 

transforms. They are Simple Integer Transform, Hybrid Integer Transform and 

Integer Transform from Relaxed General Cosine Transform (RGCT). Simple 

Integer Transform is extended from order-8 Integer Cosine Transform (ICT). It has a 

very simple structure and it requires very little computation. It also has a good 

coding performance. In order to improve the coding performance, Hybrid Integer 

Transform is proposed. It is a hybrid of ICT and Dyadic Weight Walsh Transform 

(DWWT). It has a better coding performance than Simple Integer Transform. We 

proposed a method to derive ICT from RGCT. All are orthogonal, similar to the 

DCT and have fast algorithms. In this class of integer transform, LLMICT and 

CSFICT are proposed. LLMICT is an ICT having a fast algorithm similar to the 

LLM Fast DCT algorithm which is proposed by Loeffler et al. It has an excellent 



coding performance. However, it does not require heavy computation. It is also 

possible to extend it to higher order transform, such as order-32. CSFICT has an 

algorithm similar to the CSF Fast DCT algorithm proposed Chen et al. We modify 

it to become MCSFICT which has a looser criterion for orthogonality. This leads 

to a high flexibility of designing high performance order-16 ICT, Experiments 

show that it has a performance similar to LLMICT. 

These proposed order-16 transforms are integrated into the reference software of two 

video coding standards, H.264/AVC and AVS. Together with order-8 and order-4 

transform in these standards, two different ABT platforms are formed. They are 

tested and compared with other existing order-16 transforms. Experiments show that 

these proposed transforms provide a significant gain, especially for HD sequences, in 

the two standards. Not only the objective coding performance, but also the subjective 

quality is improved. The proposed transforms perform similar to other order-16 

transforms but they are significantly simpler. 

7.2.2 Fast Walsh Search for Pattern Matching 
Mak and Li proposed a fast pattern matching algorithm in Walsh Hadamard domain. 

It has a high speed and high accuracy. It was integrated into H.264/AVC to do the 

motion estimation. To speed up the matching process, we proposed a statistical 

threshold which can be adjusted according to the desired accuracy. This threshold 

dramatically reduces the number of candidates which are possibly mismatched. As 

a result, the matching process is significantly speeded up without missing the best 

match. 



Picture nature varies from region to region. Some are smooth while some are 

textured. We expected that the proposed statistical threshold should be adaptive to 

the nature of the image content. As a result, a block adaptive threshold was 

proposed to eliminate the mismatch candidates more efficiently with the same 

accuracy. This threshold depends on the variance of the target block. Experiment 

shows that the mismatch candidates are reduced. Unfortunately, the time saving is 

not significant as computing block variance is necessary. 

7.2.3 Transform Coefficient Distribution 
A preliminary study of the transform coefficient distribution of the predicted 

residue was carried out. We found that the intra- and the inter-predicted residues 

have different distributions. Intra one is closer to Cauchy distribution while inter 

one is closer to Laplace distribution. As a result their transform coefficients are 

closer to Cauchy distribution and Laplace distribution respectively. 

Methods to estimate the distribution parameters of the transform coefficient are 

proposed. They are compared with experiments. It is shown that the accuracies of 

these methods are pretty high. 

7.1 Future Work 

7.1.1 Order-16 DCT-like Transforms 
There are a lot of work can be done on the proposed DCT-like transforms. For 

example, we have proposed order-32 LLMICT but have not tested it yet. It can be 

integrated into our proposed platform to achieve a more powerful ABT platform for 



HD video coding. In our proposed ABT platform, it is noticed that there is a high 

correlation between the DC coefficients of neighbouring MB. It is possible to 

improve the performance by removing this correlation. Using the development idea 

of deriving ICT from RGCT, it is possible to develop other trigonometric integer 

transforms of higher orders with fast algorithms. This will be very useful in many 

image and video analysis applications. 

7,1.2 Fast Walsh Search for Pattern Matching 
The proposed block adaptive threshold significantly reduces the mismatch 

candidates in pattern matching. However, the time saving is limited by the block 

variance calculation at this moment. It is worth to find methods to speed up this 

calculation so that a very high speed pattern matching algorithm can be developed. 

Proposed FWS has been implemented into H.264/AVC as a motion estimation tools. 

Currently, the candidates are found only by minimizing the difference (in terms of 

MSE or MAE) between the reference block and the target block. The resultant 

motion vector (MV) is not a factor of selection. It is possible to improve the 

performance by considering the resultant MV in a RD-optimized manner. MV are 

usually predicted by a median predictor using MV of neighbouring MB. A 

candidate's MV which is more different from the predicted MV requires more bits to 

code it. This candidate may not be a RD-optimized candidate even it have similarly 

small MSE or MAE as other candidates. Thus, it can be eliminated from the 

candidate pool and hence the pool size is reduced. 



7.1.3 Transform Coefficient Distribution 
The transform coefficient distribution analysis is in a very beginning stage. We 

have only verified our findings in many test sequences in different resolutions and 

nature. However, there is no application developed based on our findings. 

Fortunately, many existing transform based image and video processing applications 

are developed under the assumption that the coefficient distribution is Laplace 

distribution, for example, the RD optimization in video coding. An improvement is 

expected when they are redesigned with our findings. 



Appendix A. Fast Algor i thm for 

DWWT 

A.1 Factorization of Matrix with 

Orthogonal Basis Vectors 
For any nxn matrix E with orthogonal basis vectors which can be decomposed into 

two nxn matrices A and B. Assume that A and B also have orthogonal basis vectors. 

Therefore we have: 

E = AB, 

E E � = D e ， 

a a ^ ^ D , , 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

where D^, DA and diagonal matrices. From (A-1) and (A-2), it can be 

expended to: 

E E �= A B B � A 

= A D „ A ^ 
(A-5) 

By multiplying A厂 and A, we have: 

A D五A = D A D 尸 D^Dj (A-6) 



we can rewrite it as: 

A ' D y ^ D ^ ^ A 二 二 D ^ D , (A-7) 

and D'^^A is an orthogonal matrix also and the left hand side of (A-7) is equal to 

D^D^. Therefore: 

(A-8) 

i.e. 

(A-9) 

This means if (A-1) to (A-4) are fulfilled, the norm of the /-th row vector of E 

defined as: 

= E{i) • Eaf = d,ii) (A-10) 

can be represented by a product of the norms of the i-th row vectors of A and B as 

shown in (A-9). Recusively, if E can be factorized into product of k matrices, 

T = M q M ” . . M / ( ( A - 1 1 ) 

from (A-8) and (A-9), its norms can be expressed as: 

D , 二 D似財,…D似,‘， (A-12) 

or d,{i)=心似,(i)…ci…(0 . (A-13) 

For more specific, if E is an integer kernel of a D W W T which is going to be 

factorized into integer matr icesM^ g {Mo ,M”...’M/(}，these M" can be found in a 

_ _ — A-2 



finite search space. If the norm of E can be factorized into several p n m e factors, 

these prime factors (or the products of some of these prime factors) are very likely to 

be the norms of the factors M ^ . As a result, this significantly reduces the search 

space for finding M It is not necessary that: 

dMp(}) = (^MpiJ) for any ()<p<k and Q<iJ <n (A-14) 

d e t M „ = (A-15) 

which is specified in [1]. (A-15) holds only when n = % and dMp{i) is constant for 

all <n which means all the row vectors have the same norm. If it is 

assumed that (A-14) holds, this will turn into a generalized version in [1] with any 

order n> 

Consider a case that the norm of E, dsij), is a prime number. E cannot be 

factorized into product of integer matrices with the above method. If E is a DWWT, 

E can be broken down into simpler matrices to achieve fast matrix multiplication. 

Let us take order-8 D W W T as an example. If E = b\, bo, 63, 64, bs, be, b-j) 

where d 匕 - ^ b ' ^ is a prime number, the decomposition can be achieved by 

replace bj by {bj + k) for certain j. And k is a small non-zero integer such as 1 or -1. 

This replacement turns E into E ' = Eomv(i^o,...,办1 + K •••，̂7) which dg is a 

compound number instead of a prime one. 6, 5，4，4，3, 3, 1) has a norm of 

137 which is a prime number. It cannot be decomposed directly. However, 

Edpk^S, 5, 5, 4, 4, 3, 3, 1) can be decomposed into 4 sparse matrices which requires 

8 shift and 64 addition operations: 



E酬(5,5,5,4,4,3,3,1) 

2 1 - 1 ] 

1 - 1 - 1 

2 1 1 1 

- 1 - 2 1 

1 — 1 1 2 

1 2 - 1 

1 1 - 2 1 
1 — 1 — 2 1 

1 

2 1 

1 

1 - 1 

(A-16) 

1 1 

1 1 

E 爾(5,6，5’4’4’3,3,1) 

二 E躍（5,5,5,4，4,3,3,1) + E DWW (0,1,0,0,0,0,0,0) (A-17) 

Since D W W T is linear, E服…， 6 , 5, 4, 4, 3, 3, 1) can be expressed into two 

matrices as shown (A-17). As a result, 6, 5, 4，4，3, 3, 1) can be expressed 

into sparse matrices which can be computed with 8 shift and 72 addition operations 

indirectly. 

This technique is not only useful to those E having a prime number dsO), but also to 

those E which dE(i) cannot be factorized into small prime factors. Edww{5, 5, 5, 4, 

4, 3, 2, 1) has a norm of 121 = 11 x 11. It can only be decomposed into two 

matrices which are not very sparse as shown in (A-18). Its fast algorithm requires 

16 shift and 77 addition operations. 

£,^(5,5,5,4,4,3,2,1) 

1 1 - 1 ] 1 - 1 - 2 

1 2 - 2 

2 - 1 1 

1 2 1 
- 1 - 1 2 1 

- 1 

1 - 2 

I - 2 1 

- 1 

2 2 

2 - 1 

1 - 2 

- 1 

(A-18) 
1 - I 
2 
1 - 1 

- 1 - 2 



However, its "neighbor", E ^ M ^ , 5, 5, 4, 4，3，2+1, 1) has a norm of 126 = 2 x 3 x 3 

X 7. It can be decomposed into 4 sparse matrices as shown in (A-16). Plus 8 

addition operations to restore 5, 5, 4, 4, 3, 2, 1), this indirect method 

requires only 8 shift and 72 addition operations. It saves 8 shift and 5 addition 

operations. 

(5,5,5,4,4,3,2,1) 

=£丽(5,5’5,4，4,3,3，1)-£丽(0卿’0,0’1’0) (‘、 

^Dww becomes commoner to have a prime dj{i) or dj{() which cannot be factorized 

into simple factors when are getting large. Therefore, this indirect method is a 

very useful and efficient way to decompose Edww with large and prime b” 

A.2 Reference 
[1] Jie Dong; King Ngi Ngan; Chi-Keung Fong; Wai-Kuen Cham, “2_D Order-16 Integer 

Transforms for HD Video Coding,” IEEE Trans, on CASVT, vol. 19, Issue: 10’ pp. 

1462- 1474, Oct. 2009. 



Appendix B. A Summary of Fast 

Algori thms for Different Integer 

Transforms 
In this appendix, the fast algorithms of different integer transforms are described. 

Their matrix factorization and their number of operations will be stated. The fast 

algorithms described in this appendix include; 

Order-8 ICT adopted in H.264/AVC, 

Order-8 ICT adopted in AVS, 

Modified ICT (MICT) [4], 

Integer Transform proposed by Wien et al [1], T^en, 

Integer Transform proposed by Lee and et al [2], T^^e, 

Integer Transform proposed by Joshi and et al [3], Tjoshh 

Proposed Order-16 Simple Integer Transform, TSI-AVS and TSI.H264, 

Proposed Order-16 Hybrid Integer Transforms, T " " and Tnn, and 

Proposed LLMICT, Al a n d B l . 

Here we declare some common notations in this appendix: 

ON 

IN 

H N 

Order-// zero matrix. 

Order-iV identity matrix. 

I/v rotated by 90°. 

NxN order-2 Hadamard matrix. 
I
 I
 



Figure B-1 Data flow ofOrder-8 ICT adopted in H.264/AVC 

The fast algorithm requires 14 multiplications and 32 additions. In 

multiplication-free implementation, it requires 14 shifts and 32 additions (total 46 

operations).  
— — “ ‘ 

B.1 Fast Order-S ICT in H.264/AVC 
This implementation can be easily found in the reference software of H.264/AVC. 

ICT5(5, 12, 10, 6, 3, 8, 4) is adopted: 
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It can be decomposed into: 
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Figure B-2 Data flow of Order-8 ICT adopted in AVS. 

The fast algorithm requires 14 multiplications and 36 additions. In 

multiplication-free implementation, it requires 16 shifts and 38 additions (total 54 

operations). 

B.2 Fast Order-8 ICT in AVS 
This implementation can be easily found in the reference software of AVS. ICT5(5, 

10’ 9, 6, 2, 10，4) is adopted: 
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It can be decomposed into: 
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B.3 Modified ICT 
The integer kernel of modified I C T , Em/ct , can be factorized into 
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The fast algorithm requires 30 multiplications and 144 additions. In 

multiplication-free implementation, it requires 30 shifts and 144 additions (total 174 

operations). 



B.4 Integer Transform proposed by 
Wien and Sun. 
No fast algorithm has been proposed for Twien- Here, we proposed its fast algorithm 

as below. The integer kernel for Twien, ^Wien, can be factorized into: 
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The fast algorithm requires 34 multiplications and 136 additions. In 

multiplication-free implementation, it requires 38 shifts and 144 additions (total 182 

operations). 



B.5 Integer Transform proposed by 
Lee and et al. 
No fast algorithm has been proposed for Ties. Here, we proposed its fast algorithm as 

below. Its integer kernel E^ee can be factorized into: 
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The fast algorithm requires 50 multiplications and 112 additions. In 

multiplication-free implementation, it requires 58 shifts and 148 additions (total 206 

operations). 



B.6 Integer Transform proposed by 
Joshi and et al_ 
The fast algorithm proposed in [3] is as shown in Figure B-3. 
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Figure B-3 Data flow of Fast Ejoshi-

It is reported that this fast algorithm requires 36 multiplications and 72 additions. In 

multiplication-free implementation, it requires 64 shifts and 120 additions (total 184 

operations). 



B.7 Proposed Order-16 Simple 
Integer Transform 
The proposed simple integer transform T^i is composed of eight order-2 WHTs and 

two order-8 ICTs. The fast algorithm data flow for the simple integer transform 

derived from the order-8 transform adopted in H.264/AVC (Tsi-H264) and from the 

order-8 transform adopted in AVS (T^y-^j/^) are shown in Figure B-4. 
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Figure B-4 Data flow of (a) ^si-h264 and (b) ^si-avs-



The order-8 ICT adopted in H.264/AVC requires 14 multiplications and 32 additions 

while that adopted in AVS requires 14 multiplications and 36 additions. Therefore, 

the numbers of operations required are: 

Multiplication Addition 
飞 Sl-m64 28 80 

^ SI-AVS 28 88 

In multiplication-free implementation, the numbers of operations 

Shift Addition Total 

28 80 108 

^Sl-AVS 32 92 124 



B.8 Proposed Integer Transform 
from DWWT 
Using the method described in Appendix A, the Hybrid Integer Transform T", from 

DWWT can be factorized. Here, T///i and THU are taken as examples. Their integer 

kernels can be factorized as: 
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Here: 

E z w i = E 雖(11,11,11,9,8,5,4,1) + E 爾(0,0,0,0,0,2,0,0) 
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and 



E, E騰(11,11,11，9’8,6，4，1) + E證(0,0,0,0,0,0,1,0) 
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1 - 1 

The numbers of operations required are: 

Multiplication Addition 1 

T"// 30 160 ! 

T/-//2 30 160 ！ 
-1 

In multiplication-free implementation, the numbers of operations 

Shift Addition Total 

30 160 190 

T / / /2 30 158 188 



B_9 Proposed LLMICT 
Two LLMICTs are taken as the example, A1 and B1 

Fast EAVS 

— f . 

- / 8 

丨 — / 4 

I 

H / | 2 

^ h 
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This fast algorithm requires 38 multiplications and 78 additions. In 

multiplication-free implementation, it requires 50 shifts and 110 additions (total 160 

operations). 
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This fast algorithm requires 34 

multiplication-free implementation, it 
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