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Abstract 

The concept of quasi-local masses was proposed by physicists 

about forty years ago to measure the energy of a given compact 

region by a closed spacelike 2-surface. There are several natural 

conditions which we expect a quasi-local mass to satisfy ([39]): 

1. A quasi-local mass must be non-negative in general and zero 

when, and only when the ambient spacetime of the surface is 

the Minkowski spacetime in the asymptotically flat case (or 

hyperbolic space in the asymptotically hyperbolic case). These 

are called the positivity and rigidity conditions. 

2. Also, the ADM mass should be recovered as the surfaces tend 

to the spacial infinity. 

In this thesis, we will report some results about the limiting 

behaviors and posit ivity of some quasi-local masses, both in the 

asymptotically flat case and in the asymptotically hyperbolic case. 
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：商要 

大概四十年前，物理學家引入準局域量的概念，去量度一個被 

閉二維類空表面包圍的空間能量。一般來説，我們期望準局域量 

有如下性質([39])： 

1.準局域量一般是非負的，並且在漸近平坦的情況下，當且僅 

當該表面的環繞空間是Minkowski時空它才是零(或在漸近雙 

曲的情況下是雙曲空間）。 

2 .當曲面趨向無窮時，準局域量應趨向全域的質量 ( A D M 

mass 

在這篇論文裡，我們會講述在漸近平坦或漸近雙曲的情況— 

於準局域量的一些極限特性和非負特性的結果。 

舊
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Introduction I 

Introduction 

As is well known, by the equivalence principle in general relativity, the concept 

of gravitational energy at a point is not well defined. The local cffects of gravity 

can be removed by using a freely falling frame. The object centered at the origin 

of such a frame will not experience any gravitational acceleration. 

On the other hand, when there is asymptotic symmetry (asymptotically flat 

or hyperbolic), the concepts of total energy and momentum can be well defined. 

In the asymptotically flat case, these are the so called ADM energy momentum 

2] and the Bondi energy-momentum when the system is viewed from spatial 

infinity and null infinity, respectively. It was proved by Bartnik [3] that in an 

asymptotically flat manifold, these concepts are well-defined, i.e. independent 

of the coordinates chosen. These concepts are fundamental in general relativity 

and have been proven to be natural. Moreover, the works of Schoen-Yau [31, 32], 

Witten [41] show that they satisfy the important positivity condition. These 

kinds of results are now known as positive mass theorems. However, when the 

physical system is not isolated, or the asymptotic symmetry fails, there would be 

limitations to these concepts. It was proposed about forty years ago to measure 

the energy of a system by enclosing a region with a "membrane", i.e. a closed 

spacelike 2-surface, and define on it an energy-momentum 4-vector. This is the 

motivation behind the definition of quasi-local masses of surfaces. 

There are several natural conditions which we expect a quasi-local mass to 

satisfy (see for example [39]): 

1. Most importantly, a quasi-local mass must be non-negative in general and 

zero when, and only when the ambient spacetime of the surface is the 

Minkowski spacetime (or hyperbolic space in the asymptotically hyperbolic 

case). These are called the positivity and rigidity conditions. 

2. Also, the ADM mass or Bondi mass should be recovered as the surfaces 
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tend to the spacial or null infinity. 

There is still no universal agreement on the definition of the quasi-local mass 

and many other definitions have been proposed, for example from Hawking [13 

and Penrose [27]. A promising one was given by Br own-York [7], motivated by 

Hamiltonian formulation. Shi and Tarn [34] proved that it is positive in the time 

symmetric case, but in general it is not positive. Later on, Wang and Yau [38 

proposed the notion of Wang-Yau mass and proved its positivity and rigidity. 

The study of these quasi-local masses and their relations is now a subject under 

intense study. 

In this thesis, we will establish some results about the limiting behaviors and 

positivity of some quasi-local masses in asymptotically flat (AF) or asymptotically 

hyperbolic (AH) manifolds. 

In Chapter 1，we will discuss the limiting behaviors of the Brown-York quasi-

local mass of some family of surfaces. As mentioned before, we expect that the 

quasi-local mass of the boundary of exhausting domains tends to the ADM mass. 

Indeed, many people have proved that the Brown-York quasi-local mass of the 

coordinate sphere tends to the ADM mass in an AF manifold, see for example 

the works of Brown-York [8], Hawking-Horowitz [14], Baskaran-Lau-Petrov [4], 

Shi-Tarn [34] and also Fan-Shi-Tarn [12]. Shi-Wang-Wu [36] also proved that the 

same result is true even for surfaces which are not necessarily coordinate spheres, 

but are nearly round near infinity. 

The motivation of investigating the Brown-York mass for some general class 

of surfaces is as follows. In [3], Bartnik proved the following important result (see 

Theorem 1.3 for a more precise statement): 

Theorem 0.1. Suppose (M, 7) is an AF manifold with integrahle scalar curva-

ture. Let {Dk} be an exhaustion of M by closed sets such that the set Sk : dD^ 

are connected C^ surfaces (not necessarily coordinate spheres) satisfying some 
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reasonable conditions. Then 

rriADMiM, 7) = lim ： ^ / V (7ij,i — J a j ) i^^da^. 
fc—DO Wtt Jsk ^ 

That is, the ADM mass is independent of the sequence of {S^} • (Note that ADM 

mass is defined exactly as the R.H.S. of the above equation, except that Sk are 

coordinate spheres.) 

Because of this result, it is natural to ask if the Brown-York quasi-local mass of 

some general family of surfaces, other than those which are close to the coordinate 

spheres, will tend to the ADM mass in some AF manifolds. We will see in this 

chapter that this is true for certain kinds of revolution surfaces, for example a 

family of expanding ellipsoids, which are not close to the coordinate spheres. 

More precisely we will prove the following 

Theorem A. [Theorem 1.6, Limiting behaviors in AF case] If is an 

asymptotically Schwarzchild manifold and S is a given closed revolution surface 

S. Then there is an e > 0 such that for any family of revolution surfaces Sa with 

Gaussian curvatures of order mean curvatures of order and radial 

distances of order 0(a), if the rescaled surfaces cT^Sa are e-close to S, then the 

Brown- York masses of the surfaces will tend the ADM mass: 

lim mBviSa) = m^DMW") . 
a—̂oo 

This partly generalizes the results of [6, 34, 12:. 

In Chapter 2，we will work in the asymptotically hyperbolic (AH) case. The 

motivation of this chapter is quite similar to the previous chapter. In particular, 

this is partly motivated by the positive mass theorem proved by X.D. Wang 

40] in an AH manifold. Let us first recall the positive mass theorem in an AF 

manifold: if we are given a complete asymptotically flat initial data set (M^, g, h) 

for the Einstein equations, we can then define the total 4-momentum [E, P) of 

(M^, g, h), where P e The positive mass theorem of Schoen-Yau [31, 33, 32 

then states that 
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Theorem 0.2. Let (M^, g, h) be an asymptotically flat initial data set satisfying 

the dominated energy condition (e.g. non-negative scalar curvature when h = 0)， 

then E>\P . 

This can be interpreted as the 4-momentum being a future directed non-

spacelike vector in M3’i. Later on, this result was reproved by Witten [41] (under 

spin condition) using a different proof involving spinors. The spinor method turns 

out to be very useful in proving positive mass type theorems. In particular we 

have the following result of X.D. Wang, which can be regarded as the analogue 

of Schoen-Yau's result in the AF case: 

Theorem 0.3. [40, Theorem 2.5] If g) is spin, asymptotically hyperbolic 

and the scalar curvature R > —n[n — 1), then the total mass defined by (see 

Theorem 2.2 for precise definitions) 

/ / tig^{h)xdfig^) e 
Jgri-1 Jsn-l 

is a future-directed non-spacelike vector. 

In an AH manifold, we can define a quasi-local mass integral which is similar 

to the Brown-York mass in the AF case. Let (O, g) be a three dimensional 

compact manifold with smooth boundary S homeomorphic to sphere. Under 

certain conditions, E can be uniquely embedded into M^ C Then the quasi-

local mass integral of O is defined as: 

f (Ho - H)X � 

where Ho is the mean curvature of S in M^ and X — x^^x"^, x^) is the position 

vector in R3，i. 

The motivation of this definition is as follows. In [35], Shi and Tarn proved 

that if the scalar curvature of Q satisfies R > —6，then the vector �H q — H)W 

is a future directed non-spacelike vector for x^) 二（aa:。，a：】，a;], 

with a > 1 depending on the geometry of E. (This is exactly Theorem C when 
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n = 3. ) Hence W is close to the position vector. It is also conjectured by Shi 

and Tarn that the same result is true if W is replaced by the position vector X. 

It is therefore natural to ask if the quasi-local mass integral defined as in (1) for 

coordinate spheres will tend to the total mass as defined in Theorem 0.3. We will 

give a positive answer to this question. Namely, we will show that 

Theorem B. [Theorem 2.3, Limiting behaviors in AH case] In an asymptotically 

hyperbolic manifold (M^, g), for a coordinate sphere Sr which is close enough to 

infinity, we can associate with it a quasi-local mass expression (as a vector in 

入 which will tend to the total mass of (M^, g) defined by Theorem 0.3 when 

Sr approaches infinity. 

Whereas the first two chapters deals with the limiting behaviors of the quasi-

local masses, in Chapter 3 we will look at the positivity of a quasi-local mass. 

This chapter is also closely related to Chapter 2. As mentioned before, Witten 

41] (see also [26, 3]) gave a simplified proof of the positive mass theorem using 

the spinor method. Since then the method of spinor has been adopted by many 

people to prove positive mass type theorems or some rigidity results [34，1, 23, 38 . 

For example, M. T. Wang and Yau [38] developed a quasi-local mass for a three 

dimensional manifold with boundary whose scalar curvature is bounded from 

below by some negative constant. Using spinor method, they were able to prove 

that this mass is non-negative. Later on, Shi and Tarn [35] also proved a similar 

result in the three dimensional case, but with a simpler definition of the mass. 

More precisely, they proved the following: 

Theorem 0.4. ([35] Theorem 3.1) Let (O, g) be a compact orientable S-dimensional 

manifold with smooth boundary E 二 dO^, homeomorphic to a 2-sphere. Assuming 

the following conditions: 

1. The scalar curvature R of (H, g) satisfies R > —6/c^ for some k > 0， 

2. ^ is a topological sphere with Gaussian curvature K > —k^ and mean 
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curvature H > so that E can be isometrically embedded into Hl^^a with 

mean curvature Hq. 

Then there is a future directed time-like vector-valued function W on T, such that 

the vector 

J (Ho - H)WdT, 

is time-like. Here W = (xi,x2, X3, at) for some a > 1 depending only on the 

intrinsic geometry of E, with X = (xi, X 2 , t ) being the future-directed unit 

normal vector (defined in (3.1)J in 股 

In this chapter, we will prove an analogous result in higher dimension for spin 

manifolds (note that three-dimensional orient able manifolds aie spin) as follows. 

Theorem C. [Theorem 3.16, Positiuity of Shi- Tam mass] Let n > 3 and 

be a compact spin n-manifold with smooth boundary E such that 

1. The scalar curvature R of (0, g) satisfies R > ~n{n — for some k > 0, 

2. E is topologically a (n— 1)-sphere with sectional curvature K > —k"^, mean 

curvature H > 0 and I] can be isometrically embedded uniquely into H二&2 C 

R"'^ with mean curvature Hq. 

Under these conditions^ we can define onT, a quasi-local mass introduced by Shi 

and Tam [35]: 

msT(S) = f {Ho- H)W e ir'i 
Je 

where W = [xi^x^^,. • • , at) with a > 1 depending on the geometry of E and 

{xi,工2, •..，Xn, t) is the position vector of H in M"，i. 

Then the mass is positive in the sense that msri^) is a future directed non-

spacelike vector in M"'^. 

There are two important ingredients in establishing the main result. One is 

a monotonicity formula (Lemma 3.6) for the mass expression, and the other is a 
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positive mass type theorem (Theorem 3.7). The later is particularly important. 

This theorem was originally proved by M.T. Wang and Yau [38] in the three 

dimensional case. Here we will give a proof in general dimension. In particular, 

the Killing spinor fields play an important role in the proof, and we will give 

a detailed study on them. What is new in the proof of the theorem in higher 

dimension are two identities involving Killing spinors on the hyperbolic space 

(Proposition 3.9 and 3.10). 

Theorem A, Theorem B and Theorem C，which are the main results of this 

thesis, will be proved in Chapter 1，2 and 3 respectively. 



Chapter 1 

Br own-York mass in AF 

manifolds 

1.1 Asymptotically flat manifolds 

In this chapter, we will discuss the limiting behaviors of the quasi-local mass 

of a family of surfaces in an asymptotically flat manifold. Let us first recall 

some definitions. We will adopt the following definition of asymptotically flat 

manifolds. 

Definition 1.1. A complete three dimensional manifold (M, 7) is said to be 

asymptotically flat (AF) of order 丁 (with one end) if there is a compact sub-

set K such that M\K is diffeomorphic to M^ \ Bji(O) for some R> 0 and in the 

standard coordinates in M^, the metric 7 satisfies: 

�j = + (Tij (1.1) 

with 

(Jij\ + r\daij\ + r ' \ddaij\ + r'^ldddaijl = (1.2) 

for some constant | < r < 1. 

Here r and d as the Euclidean distance and the standard derivative operator 

on respectively, 6 is the usual Euclidean metric. 

8 
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A coordinate system of M near infinity so that the metric tensor in this system 

satisfy the above decay conditions is said to be admissible. In such a coordinate 

system, we can define the ADM mass as follows. 

Definit ion 1.2. The Arnowitt-Deser-Misner (ADM) mass (see [2]) of an asymp-

totically flat manifold ( M , 7 ) is defined as: 

m A D M { M , 7 ) = lim ： ^ [ (7w - ^uj) ^^da^, (1.3) 
r—00 167r Jsr 

where SV is the Euclidean sphere, da^ is the area element of Sr induced by the 

Euclidean metric, v is the outward unit normal of Sr in and the derivative is 

the ordinary partial derivative. 

To see that this gives a reasonable definition of mass, let us look at the 

Schwarzschild metric. On a three dimensional slice of SchwarzscMd spacetime, 

corresponding to time = constant, the metric is given by (1 + ^ ^ S (using the 

convention that G = c — 1), where m is the mass of a star (as r —̂  0 0 , its limit 

becomes the Newtonian model of a point mass with mass m). It is easily calcu-

lated that the integral on the R.H.S. of (1.3) also tends to m as r — 0 0 . Thus 

the ADM mass gives a reasonable definition of mass, at least in this case. 

We always assume that the scalar curvature is in L^{M) so that the limit 

exists in the definition. In [3], Bartnik showed that the ADM mass is a geometric 

invariant. More precisely, he proved the following theorem (see [3, Proposition 

4.1] for a more general setting): 

Theorem 1.3. Suppose ( M , 7 ) is an AF manifold with scalar curvature 尺 (7) € 

L\M). Let {Dfcj^j be an exhaustion of M by closed sets such that the set 

Sk = dDk are connected C^ surfaces without boundary in R^ such that 

Tk = inf{|x|, 2; G S k } — 0 0 as k — 00 

r'^'^Area{Sk) is bounded as k —> o d . 

Then 

mADM[M, 7 ) = lim [ ( ^ � — 7珠u ^ d a ^ . 
K-^OO 丄 t)7r J SK 
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That is, the ADM mass is independent of the sequence of {S^} • 

Next, let us recall the definition of the Brown-York quasi-local mass. Suppose 

( n , 7 ) is a compact three dimensional manifold with smooth boundary dQ, if 

moreover dQ has positive Gauss curvature, then the Brown-York mass of d^l is 

defined as (see [7, 8]): 

Definition 1.4. 

rriBY m ) = (Ho- H)da (1.4) 
胁JdQ 

where H is the mean curvature of dCt with respect to the outward unit normal 

and the metric 7； da is the area element induced on 80. by 7 and H�is the mean 

curvature of dQ when embedded in R^. 

The existence of an isometric embedding in E^ (Weyl's embedding theorem) 

for dQ was proved by Nircnberg [25], the uniqueness of the embedding was given 

by [15, 30, 29], so the Br own-York mass is well-defined. 

It can be proved that the Brown-York mass and the Hawking quasi-local mass 

13] of the coordinate spheres tends to the ADM mass in some AF manifolds, see 

8，14, 6, 4, 34，12], and even of nearly round surfaces [36]. It is therefore natural 

to ask whether the quasi-local mass of a more general class of surfaces tends to 

the ADM mass. 

In the coming sections, we will consider a special class of AF manifolds, called 

asymptotically Schwarzschild manifolds, which is defined as follows: 

Definition 1.5. (N, g) is called an asymptotically Schwarzschild manifold if N = 

\ K, K is a compact set containing the origin, and 

TTt 
9ij = + bij, -- 1 + —,m > 0, 

where + r\dbij\ + 7-2|(956么」+ 召 = O (r—2). 

Clearly, (TV, g) is an AF manifold. For 6 = 0，{N, ^ is called a Schwarzschild 

manifold. In this case, we always denote g as g. Note that the scalar curvature 
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of (N, g) is zero [19] (page 283) and that of {N,g) is in V^N), so in both cases 

the ADM mass is well defined. 

1.2 Brown-York mass of revolution surfaces 

In this section, we will study the limiting behaviors of Brown-York mass on some 

family of convex revolution surfaces in an asymptotically Schwarzschild manifold. 

Our main result is the following: 

Theorem 1.6. [11] Let {N, g) be an asymptotically Schwarzschild manifold and 

S be a C6，《 fO < a < 1) closed convex revolution surface parametrized by 

{w{(p) cos9,w{(f) sin 6, h{ip)), 0 < 6 < 2tt and 0 < (f < I (1.5) 

Then there exists £ > 0 such that for any family of C^'^ closed convex revolution 

surfaces Sa in (M^, S) satisfying the following conditions: 

where K is the Gaussian curvature of Sa with induced Euclidean metric. 

(n) 
0 < F < — (1.7) 

(Jj 

where H is the mean curvature of Sa with induced Euclidean metric, 

(in) 

C � < min r(a:) < maxr(x) < C^a, (1.8) 

where C i � 0 are independent of a for i ~ 1, 2, 3,4. 

Suppose also that (by applying a rotation if necessary) Sa is parametrized by 

{awa{^) cos 9, awa{(f) sin 9, aha{<^))，0 < 9 < 27r and 0 < ip < I 

such that 

Wa — w\c4 + \ha — < ^ for sufficiently large a. (1.9) 
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Then 

lim mBY{Sa) = mADM{N,g). 
a—>00 

From this result, one has 

Corollary 1.7. Let {N, g) be an asymptotically Schwarzschild manifold. Let {Si} 

be a family of C�closed convex revolution surfaces in (M ,̂ S) satisfying {1.6)-(1.8) 

and is parametrized as: 

{aiWi{ip) COS0, aiWi{ip) sin^, aihi[ip)), 0 < 6* < 27r and 0 < < / 

for some constant I > 0，here â  are positive numbers with lim a^ = +00. If there 
i—^00 

is a constant c such that 

Wi\cr + \hi\c7 < c 

for all i, then there is a subsequence of such that 

lim rriBY = mADM{N,g). 
fc 一 00 

To prove Theorem 1.6, we will show that we can actually reduce the case to 

which the ambient space is Schwarzschild. The main proposition is the following: 

Proposit ion 1.8. Let {N, g) be a Schwarzschild manifold. Suppose {S^a}a>o is 

a family of closed convex surfaces of revolution in (IR^, 6ij) with the rotation axis 

passing through the origin, satisfying (1.6)-(1.8). Then 

lim mBviSa) = mADM{N, g). 
a—00 

Remark 1.9. The conditions (i) and (ii) in Theorem 1.6 imply that the principal 

curvature A of Sa in (M ,̂ <5) satisfy ^ < A < ™ for any a. For, i / 0 < $ 入2 

are the principal curvatures, then (1.7) implies A2 < Together with (1.6), 

Ai > ^ > 

Remark 1.10. By condition (i) of Theorem 1.6 and the Gauss-Bonnet theorem, 

the Euclidean area of Sa is of order 0{a?). 
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We will first show in Subsection 1.2.1 how our main result follows from Propo-

sition 1.8 by a perturbation argument. We will then prove our Proposition 1.8 

in Subsection 1.2.3. To do this, we need some estimates for the embeddings and 

the various curvatures of Sa, which will be done in Subsection 1.2.2. 

One example of surfaces satisfying the conditions in Theorem 1.6 is the family 

of ellipsoids: 

which is not nearly round [36]. In contrast, the Hawking mass of this family of 

ellipsoids in (iV, g) does not tend to the ADM mass of (TV, p), indeed one can check 

that the Hawking mass [13] of this family tends to negative infinity as a oo. 

1.2.1 Reduction to the Schwarzschild case 

In this subsection, we will reduce the case of Theorem 1.6 to the Schwarzschild 

case. Let us first compare the mean curvatures of Sa under different metrics. 

Lemma 1.11. For the surfaces Sa satisfying the conditions in Theorem 1.6, we 

have 

H -H\< Ca—3 

for some constant C independent of a, where H and H are the mean curvatures 

of Sa with respect to g and g respectively. 

Proof. We claim that 

\A - A\g = O {a-^) (1.10) 

where A and A are the second fundamental forms with respect to g and 'g respec-

tively. 

Let p{x) defined on N to be the distance from x to Sa with respect to Jf- We 

will use the fact [18，(7.10)]: 

承X, F) — \Vp\,A{X, Y) = (rf^. — X^Y^p, (1.11) 
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for any tangent vectors X, Y of Sa. For completeness, we prove it here. We 

proceed as in [36] Lemma 2.6. First of all, we have 

( { SJp 
Vp Vp 

x{y{p)) - (Vx^)w 
(1.12) 

Vp 
here the subscript denotes ordinary derivative and Ff̂ - are the ChristofFel symbols 

with respect to g, with the indices i, j, k = 1,2, 3. Denote V^- to be the Christ off el 

symbols with respect to 'g. Then since the g gradient \Vp\g = 1, we also have 

= X 卞 Vi). — x ' Y ^ p , . 

Combining this with (1.12), we can get (1.11). 

Note that — r告| — O by the assumptions of the metrics. By asymp-

totic flatness, 1 = g^^pipj > C^^^pf, so \pi\ is uniformly bounded. The condition 

Qij = 9ij + hj implies - = O (广2), so 

which implies 

Vp\g-1 + 0 (r-2) 

Finally, the principal curvatures \ i in Euclidean metric are of order O (a一i) by 

Remark 1.9, the principal curvatures 入i with respect to g are related to 入么 by 

([19] Lemma 1.4): Â  = + where n is the unit outward normal 

with respect to S. In particular, as n{(p) = 

Combining all these together with (1.11), it is easy to see that (1.10) holds. 

Combining (1.10) and the metric conditions of g and g in Definition 1.5, this 

implies the lemma. • 
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Let (Sa^ d p ) , (5a, ds^) denote the surface Sa with metric dP�ds"^ induced 

from g. g respectively. By Lemma 1.15, for a » 1, the Gaussian curvatures on 

[Sa, d p ) and {Sa, ds^) are both positive, which implies that they can be isomet-

rically embedded into (R^, 6) uniquely. Now let us compare the mean curvature 

after embedding： 

Lemma 1.12. Under the same notations and conditions of Theorem 1.6. Let 

Hq, Hq be the mean curvature of the embedded surfaces of (SA^ dP) and {SA, ds"^) 

in (R^, 5) respectively, as a » 1, we have |5o —Ho\ < for some constant 

C,{S). 

Proof. We can set ip — j(p, so it suffices to show that the lemma holds for I — n. 

Also, by identifying S and SA with the sphere we can regard all the metrics 

here {ds^ etc.) to be metrics on S^. We will denote Wa as w and ha as h. Similar 

to (1.22), one has 
f 

ds^ = a ' ((w' ' + + 切2浙2)， 

d 4 = 如 2 + 面 2 湘 2 

which are the metrics on SA and S induced from the Euclidean metric respectively. 

By definition. 

ds^ — (f)4艘,d^ = ds^ + b, where b = bijdx^dx^ ^ on Sa-

From (1.9), w and its derivatives up to forth, order are uniformly bounded for 

a » 1, the same holds for h. By the conditions of 6”，it is easy to see that the 

followings hold: 

a'^d^ — a'^ds'^ c^ = b l^a < 

qtHS: — = 0̂ 2丨|(04 —骑2||C3 < Cga-i 

for some constant Cq{S). By (1.9), we have 

a_2<i互2 一 ( i ^引 < C-jE 

(1.13) 

(1.14) 

(1.15) 
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for some constant C^{S). So for a » 1, by (1.14) and (1.15), we have 

W — dslWcs < {Cq + Cj) £. 

By the result of [241 Lemma 5.3, if we choose some 0 < £ < ———7— such 
] L j ttI-"(C6 + C7) 

that 

— ds\\\c'2,cc < 5 

for sufficiently large a, where 5 is the one given by [24] Lemma 5.3, then there 

are isometric embeddings X and X of (S^, and (S^, respectively, 

such that by (1.13), for sufficiently large a, 

— X||c2,« < c y i ^ r W - (rW||c2，《 - O (a-2) 

for some constant Since aX, aX are the isometric embeddings of (S^, dP) 

and (§2, ds"^) respectively. Hence \Hq — Ho\ = O . The lemma holds. • 

Now we can prove Theorem 1.6. 

Proof of Theorem 1.6. By Proposition 1.8, we know that 

lim ~ I (HO - H) da 二 mADM�N, g). 
a—00 ^TT J SA 

Since the ADM mass of (N, g) is equal to that of (N, g), combining with Lemma 

1.11 and Lemma 1.12, we can get the result. • 

1.2.2 Estimates for the curvatures and embeddings of Sa 

For simplicity, from now on to the end of this chapter, we use O (a^) to denote a 

quantity which is bounded by Ca^ for some constant C independent of a as a is 

sufficiently large. We will first compute the mean curvature of Sa in (A/“, g) and 

of the embedded surface of the Euclidean space respectively. 

From the assumptions of Sa, we can assume that S � i s parametrized by 

{awa{(p) COS 6*, awa{'^) sin 仏 ahai^pY), 0<(p<la,0<9< 2tt, 
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ha((fi) being smooth functions for ip E [0, la] (i.e. Wa, ha can be extended 

smoothly on a slightly larger interval ). Moreover, 
� 

ha(0) > K{la) 

CZ < VK^a < CA (1.16) 

-iî a > 0 on (0,/a), 

(ii) The generating curve (wa{(fi), "a⑷）is parameterized by arc length, i.e. 

+ = (1.17) 

(iii) Wa is anti-symmetric about 0 and la, ha is symmetric about 0 and la, i.e. 

Wa{-<-p) = wjja + = —wjja —中 Y 
(1.18) 

= ha((p), ha (la + ( f ) = hj^ — for <f G [0, e). 

This implies 

^a(O) = Wa{la) = K{(}) = h!丄 Q = 0. (1.19) 

Since Sa is convex in (R^, and the Gaussian curvature K of Sa with the induced 

metric ds^ is 

叉 = 善 ” X ) 
So h'a < 0 for ipe (0, la) by (1.16). 

Let 0a be the function • restricted on Sa, note that in ((/?, 9) coordinates, 

•a = <i>a{^) is independent of 9. We have the following lemma: 

Lemma 1.13. The functions ^ and 昏 can be extended continuously to the 

whole [0, la]. Moreover there exists a constant C independent of a such that for 

all a, 
€ Wr 

h' h' 
c < — 

11) YJ 
Proof. We first show that the limits lim —^ and lim — exist and are uniformly 

h'a Ha K 
bounded. 
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1
 

The Gaussian curvature K of the point (0,0, aha{0)) on Sa with induced 

Euclidean metric is equal to —、“(?）. (This can be seen by noting that for 

an arc-length parametrized plane curve {wa{(f), ha{(p)), its curvature is given by 

—wlh'a + K K . ) So at (0, /ia(0)), its curvature is /i'̂ (O). 

As Z > ^ by (1.6), |/?/^(0)| > > 0. By L'Hospital rule, 
Qj 

K — K ( o ) 

which is finite and is bounded by some C > 0 by (1.6) and (1.17). The same 

applies to lim 切" 
—�• K 

Next, observe that one of the principal curvatures of Sa in (M ,̂ (̂ ) is 一 
h' 

10] P.162, (10)). So by Remark 1.9, we have h' < C on the whole [0 
aw a 

for all 

By differentiating (pa — 1 + 
m 

一么 ——-^K^ + "a) which 

can be extended to [0, by the above, and is of order O (a—” by (1.16), (1.17). 

• 

We have the following estimates 

Lemma 1.14. Regarding (pa — 4>a{^) as functions on Sa, we have 礼—0(a" 

and� = C>(a-i)‘ 

Proof. Let A = wl+hl- As (pa ^ 
m 

we only have to prove (A-臺)，=0(1) 

and {A '^y = 0(1). By direct computations and (1.16), (1.17). 

P - + hX)\ < ^-n^a + + hT)专=o� 
J2 , U2� 

{A- 暑 + KKf — + WaW: + KK 

< + hi) + + H + hDHwf + 

h' 
The two principal curvatures of Sa with induced Euclidean metric are — —^ and 

aWa 
+ )臺([10] p.162, (10)), hence by Remark 1.9, 臺 ) 〃 | = 0(1). • 
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From now on, we will drop the subscript a and denote Wa by w, ha by h, (pa 

by (j) and la by I. We also denote ds^ to be the metric on Sa induced from g. 

Lemma 1.15. The Gaussian curvature K of {Sa, ds^) is positive for sufficiently 

large a. In particular, there exists a unique isometric embedding of [Sa, ds^) into 

(5) for sufficiently large a. 

Proof. Let d資 and ds^ be the metrics on Sa induced by 5 and g respectively. 

ds^ = + w躺)=Edip^ + me^ 

ds^ = = Edif^ + Gde^, 
\ 

implies 

+ O ⑷ ， = + 0(a), E- - + 0{a) 

Ee = Eo-h 0 (a ) , Eee = Eee + 0{a). 

Similar result holds for G, By the formula K = [ [ 滅 + ( ^ ) 

and the corresponding formula for K, one can get K = K O Hence the 

lemma holds. • 

Now let us compute the mean curvature of a revolution surface in (M ,̂ <5). 

Lemma 1.16. For a smooth revolution surface S in (E^, <5) parametrized by 

(auiip) cos 0, au{ifi) sin av{ip)), ^ < ip < < 9 < 2ti, 

its mean curvature H with respect to 6 is 

一 以〃 T'v! v'  
H = — —- where T = Vu''^ + v''^. 

aiv' aT^v' aTu 

Proof. The mean curvature H of S with respect to S is computed to be 

——v'u" — u'v" v' 
aT^ aTu 

Differentiating T^ gives u'u" + v'v" = TV. This implies 

w'V — u'TV (w'2 + V — u'TT' rV — TT'u' 
v'u" - u'v" = v'u" + 

v' V' V 

So 现 h鹏 — 藥 — • 
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Lemma 1.17. The mean curvature H of Sa with respect to g is 

yf h' 
H = + ' 彻 (1.20) 

where n is the outward unit normal vector of Sa with respect to S. 

Proof. By Lemma 1.16, the mean curvature of Sa with respect to 5 is H = 

给—告 . T h e mean curvature H of Sa with respect to g is ([31], p. 72) H ^ 

於—2 + 4於—1 几（诊)).The result follows. • 

Lemma 1.18. For sufficiently large a, there is an isometric embedding of [Sa, ds^) 

into (M^, (^) which is given by 

= (au{ip) cos9,au{ip)sm9,av(}p)), Lp e [0,/],6' G [0, 27r] (1.21) 

where 
/ 

u = 0 � V ' = <f>�(1 - 譬 + O (a-”)， 

Proof. The existence has already been proved in Lemma 1.15. 

In {(f, 6) coordinates, the metric on Sa induced by g can be written as: 

ds^ = a^cj)"^ 却 2 + 沪. (1.22) 

We can regard {Sa, ds^) as the sphere with the metric ds^. Now we want 

to find two functions u,v such that the surface written as the form (1.21) is an 

embedded surface of Sa into (M ,̂ S). First of all, the induced metric by the 

Euclidean metric on the surface which is of the form (1.21) can be written as: 

dsl = a" 巧 

Comparing this with (1.22), one can choose 

u = (1.23) 
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Consider 

於4 — =輕—�24>'w + <Pw'f)-辩�w'2 + h'^) - + 

= 於 — 40》 /⑶切 / - 4於'2切2) 

44'WW' � 2 � 

/ 

(1.24) 

= A ' 2 1 一 

<p'ww' 旭 2 
By Lemma 1.13 and Lemma 1.14, the functions 

continuously on [0, /] with 
/2„„2 

(f)'ww' 
cjyh'^ 

0(a 
^
 

can be extended 

二 0(a~2). So 1 
44/ WW' 

4>警 
> 0 for sufficiently large a. For these a, we can take 

1/ = 小 〜 1 
44'WW, Acp'^w'^ \ 

妒 h'2 

so that =於4. Note that by (1.18), v' is an odd function for Lp G [—/] . By 

choosing an initial value, one can get an even function v. By the above argument, 

one has 

t/ = 
/ 

V 

2(f)'WW' 
/fc'2 

+ 0{a 

From (1.23) and (1.24), near (f ~ 0, u, v can be extended naturally to (—c, e) 

for some 6 > 0. Since u is an odd function in , is an even function in ip, and 

yf2 = 了2 > 0, the generating curve in {x^ = 0} is symmetric with respect to 

x^-axis, and is smooth at — 0. Similarly, it is also smooth at ip ~ I. Hence the 

revolution surface determined by the choice of u, v as above, can be extended 

smoothly to a closed revolution surface, which is an embedded surface of Sa- This 

completes the proof of the lemma. • 

1.2.3 Proof of Proposition 1.8 

Now we are ready to prove Proposition 1.8. 

Proof of Proposition 1.8. Let u, v be defined as in Lemma 1.18. Recall that 

u - 切’ - (1 — ̂ ^ + O (a— 

u'2 + v'2 = 04 = where T = 
(1.25) 
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By Lemma 1.14, we have 

r - + O (( u • � + O {a 
(1.26) 

u" = (fPu/‘ + 4:4>'w' + 24/'w + O {a 

By Lemma 1.16 and Lemma 1.18, 

Ho = 
u T'u' 

aTv' aT^v' aTu 

Combining with Lemma 1.17, 

Hr\ — H 
u w T'v! h' \ 

aTv' J aT^v' \aTu acjP^w / 

(1.27) 

—Acp-̂ nicf)). (1.28) 

Using (1.25) and (1.26): 

v!' w" w" 44'w, , 2(})"w , 2(f)'ww'w" w" , ^ ^ 
+ + + aTv' a 炉 h' a 妒 h' ah' ah' ah'^ 

44/w' 2(f)"w 24>'ww'w" 
a妒h' 

+ 0{a 
(1.29) 

ah' + ah. + 

By (1.25) and (1.26): 

By (1.25), 

i/ h 
+ 

T V 
aT'^v' 

ah你 

2<P'w' 
ah' 

+ O (a-3) 

+ 0(a- (1.30) 

h! 2(j)'w' h' ^ , o. + + + O (a-3. 
aTu a炉 w acpw ah' a(fP"w 

2(j)'w' 
ah' 

+ 0{c 

(1.31) 

Summing (1.29), (1.30) and (1.31) and comparing with (1.28), we have 

HQ — H 
ah' ah' 

As w'w" = -h'h" by (1.17), so 

44'w' 2(fw 2 ( j ) ' w w ' w " , . , , , 八 f 
a/i'3 

Ho-H = + ^Vtt" — 勿 + O 
ah/ ah' ah'2 

Denote the Euclidean area element of Sa by dcr。，the area element of {Sa； ds^) by 

d(7. Note that Ho — H 二 O (a—”，da - dao = O dao and / dao = O (a^). 
Jsa 

To prove the result, it suffices to show 

lim 
1 

'Sa 
{HQ — H) d(jQ = m. 
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The Euclidean area element is computed to be dao = aî wdAfdO. By (1.19) and 

Lemma 1.13, 

f M'w' 2(j)"w 2(j)'wh\ , � fi ,44'ww' 2,11)2 2(f)'w^hr , 
J s } ^ + — = 叫 � + 1 却 

二 叫 Q 认 丁 

=0. 

Since the norm of the Euclidean gradient of (f) has |Vo0| — one has 

n �= 0(a-2) . So 

^ f {Ho~H)dcjo = - ^ ( rM<t>)d<Jo + O {a-') 
J SA J SA 

1 f � dao + O {a 
2 兀 Js. 

By the result of [3] (Proposition 4.1), the definition of the ADM mass of N can 

be taken as 

lim ：^ [ y^丄g”, - g��nMao = m. (1.32) 
a—oo IGTT J s �？ 

hJ 
where n is the unit outward normal of Sa with respect to By a direct compu-

tation, 

— g � j ) n 3 = —8於3 恶 = - 8 n � + O (a—” . (1.33) 
hJ 3 

Combining (1.32) and (1.33), we have 

m = — lim — / n{(f))dao-
a—oo 27r Js^ 

Therefore 

lim ^ [ {Hq - H)da = lim ^ [ {Hq — H)dao = m. 
a—oo STT Jg^ a—oo STT J 

We are done. • 



Chapter 2 

Quasi-local mass in A H manifolds 

It is known that in an asymptotically flat manifold, the Brown-York quasi-local 

mass of the coordinate spheres will converge to the ADM mass of the manifold 

12, 36, 11]. In this chapter, we will show an analogous result for asymptotically 

hyperbolic (AH) manifolds. 

2.1 Asymptotically hyperbolic (AH) manifolds 

First we give the meanings of mass of an AH manifold and quasi-local mass. In 

this chapter, all manifolds are assumed to be connected and orient able. 

We will follow X. D. Wang [40] to define asymptotically hyperbolic manifolds 

as follows: 

Definition 2.1. A complete noncompact Riemannian manifold (M"", g) is said 

to be asymptotically hyperbolic (AH) if M is the interior of a compact manifold 

M with boundary dM such that: 

(i) there is a smooth function r on M with r > 0 on M and r — 0 on dM such 

that g = r^g extends as a smooth Riemannian metric on M, 

(ii) = 1 on dM; 

24 
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,iii) dM is the standard unit sphere 

(iv) on a collar neighborhood of dM, 

9 = s i n h — + 从）， 

with Qr being an r-dependent family of metrics on i satisfying 

ffr = go h + e, n 

where go is the standard metric, h is a smooth symmetric 2-tensor on 

and e is of order 0(r奸丄）,and the asymptotic expansion can be differentiated 

twice. 

Note that the definition is not as general as that in [9], see also [42]. In [40], 

the following positive mass theorem was proved by Wang (see also [1, 9, 42]) 

Theorem 2.2. [40, Theorem 2.5] If {M'^,g) is spin, asymptotically hyperbolic 

and the scalar curvature R > —n{n — 1), then 

/ tr卯(/i)(i�o > / t r 卯 ⑷ — '90 

Moreover equality holds if and only if (M, g) is isometric to the hyperbolic space 

IT. 

We only consider the case that n = 3, the theorem implies that if M is not 

isometric to the hyperbolic space, then the vector 

T 二 t r 卯 ⑷ • go- ti gQ{h)xdfjL '90 

is a future directed timelike vector in R3，i，the Minkowski space. We may consider 

T as the mass integral for the AH manifold. 

2.2 Quasi-local mass integral of AH manifolds 

We introduce the following quasi-local mass integral for a compact manifold with 

boundary, similar to the Brown-York mass. Let (O, g) be a three dimensional 
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compact manifold with smooth boundary S. Assume S is homeomorphic to the 

standard sphere S^ such that the mean curvature of S is positive and the Gaussian 

curvature of S is larger than —1. Then S can be isometricaily embedded into the 

hyperbolic space HP by a result of Pogorelov [28] and the embedding is unique 

up to an isometry of H^. Consider as the hyperboloid in 

Then the quasi-local mass integral of H is defined as: 

JjHo - H)X 

where Hq is the mean curvature of S in EP and X is the position vector in 

The motivation of this definition is as follows. In [38], M. T. Wang and Yau 

proved that if the scalar curvature of Q satisfies R > —6, then there is a future 

time like vector W such that 

[{Ho - H)W 
JT. 

is a future directed non-spacelike vector. W is obtained by solving a backward 

parabolic equation with a prescribed data at infinity and is not very explicit. 

Later in [35], Shi and Tarn proved that if Bo[Ri) and ^^(Kg) are two geodesic 

balls in HP such that Bo{Ri) is contained in the interior of H in IHP and E is 

contained in Bo(只2), where o = (1, 0，0, 0) e H^ C then the result of Wang-

Yau is true for x^) = (ax^, x^, x^, x^) with 

a = coth Ri + 
/sinh^ R, 

1 
sinh Ri Vsinh R^ / 

Hence W is close to the position vector. It is an open question whether W can 

be chosen to be the position vector. 

In this chapter, we consider AH manifolds with the following condition (with 

the notations as in Definition 2.1): 

1，2；0 > 0} (工0 H3 = {(:z:�’:ri,:r2，:r3) gM: 
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Assumption A: Vgn-ie, V|n-ie, V|n-ie, ••n—le with respect to go and are 

of order 0(产）. 

Let ；Sa = {r = a} C (M, g) and let H to be its mean curvature. We identify 

Sr as the standard sphere with metric induced from g. Then for r small, 

the Gaussian curvature of 7r) is positive where is the induced metric of g. 

Our main result is the following: 

Theorem 2.3. [20] Let (M, g) be a three-dimensional asymptotically hyperbolic 

manifold satisfying Assumption A. For all r sufficiently small, there exists an 

isometric embedding : C such that 

lim [ {Ho - = f tr 如 ⑷ 办 卯 ’ / tTg,(h)xdfi 
JSR 2 \JS2 

where Hq is the mean curvature of X�气SR) in H^ 

90 

S2 JS2 . 

Remark 2.4. From the proof of Theorem 2.3, ；C � in the theorem can be chosen 

by applying an isometry of H^ fixing o (i.e. 0 (3) ) on where A " � is an 

embedding of Sr (for small r) such that o is the center of a largest geodesic sphere 

contained in the interior of X�r�[Sr) (or a smallest geodesic sphere containing 

X�T��Sr) in its interior). 

By applying Theorem 2.2 to our result, we have 

Corollary 2.5. Let (M, g) he a three-dimensional asymptotically hyperbolic man-

ifold satisfying Assumption A with the scalar curvature R > —6， i f K�:Sr —» 

c ]^3，i j^s 組 isometric embedding such that 0 is the center of a largest geodesic 

sphere contained in the interior of Y�"^�(Sr) (or a smallest geodesic sphere con-

taining �(民）in its interior), then for sufficiently small r, the vector 

f {Ho - H ) Y �� 

J Sr 

is either zero or is future-directed timelike. If (M, g) is not isometric to HP，then 

this vector is always non-zero for sufficiently small r. 
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Let us give the outline of the coming sections. In Section 2.2.1, we will es-

tablish some estimates for the various curvatures of and its embedding in the 

hyperbolic space. In Section 2.2.2，we will describe some basic results in hyper-

bolic geometry concerning the radii of the smallest geodesic sphere enclosing a 

given convex surface and of the largest geodesic sphere enclosed by it. In Section 

2.2.3, we will normalize the isometric embedding of Sr into the hyperbolic space 

so that the image of the isometric embedding of SV is close to a geodesic sphere 

in the hyperbolic space. We then prove the main results in Section 2.2.4. 

2.2.1 Curvature estimates 

In this section，we always assume (M^, g) is a three dimensional AH manifold 

as in Definition 2.1 such that Assumption A is satisfied. Using the notations 

in Definition 2.1, let Sa ~ {r ~ a} C M. We want to obtain some curvature 

estimates for Sr which will be used in the proof of the main result. First we will 

estimate the intrinsic scalar curvature R which is twice the Gaussian curvature 

of Sr with the metric induced by g. 

Lemma 2.6. The scalar curvature R of Sr with respect to the induced metric 

from g is given by 

R = r + 0{r^). 

Proof. Recall that gr = go + y / i + e. Then = sinh—2(r)务 is the induced metric 

on Sr from g. Let R and R be the scalar curvature of 6V with respect to the 

metric and Qr respectively. It is easy to see that R = sinh^(r)i?. We claim 

that 

R = 2 + 0{r^). (2.1) 

The result immediately follows from this claim. 

To prove the claim, let be the local coordinates on the lower hemisphere 

(say) of §2 induced by the stereographic projection from the north pole to the 
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plane. Let g ĵ = 春’泰），认j = 泰，泰）and be the Christoffel 

symbols with respect to 知 and g^j respectively. Let 歹” and g” be the inverse of 

'g ĵ and g” respectively. Then 

R = ？ w h e r e R：^, = — d^ 十 J ] F̂ F丨” — ^ Ff月”，（2.2) 
J,k,l p p 

and 

2 = E where 作 = d ^ r ^ , -这 + ；^ r 冗 — 切 P . (2-3) 
J,k,l P P 

Assumption A implies that 

- = O(r^), |5"”，fc — g^kl = 0{r^) and — = O(r^), 

where g” ,�— etc. Hence 

rf , — r ^ - 0(r3) and d^T^ — d ^ , , - (2.4) 

In view of (2.2) and (2.3), these imply that — ^ijk 二 0(r^) and hence 

R — 2 = 0(r3). We conclude that (2.1) is true. This completes the proof of the 

lemma. • 

Next, we want to estimate the mean curvature H of 5V with respect to g. 

Lemma 2.7. If (M，g) is asymptotically hyperbolic satisfying Assumption A^ then 

the mean curvature of Sr is 

H = 2 cosh r — ^ rHr卯"+ 

Proof. Let {ejl^^j be a local orthonormal frame on (S2，go). The outer unit 

normal of Sr is u = — sinhr悬.Denote g(^e”ej) by g” and ^^(e^, e^) by <7”, then 

ff = z/ (log y^det ("”) 

= — s i n h r - ^ log (sinh-2 ry^det (ex”) 

sinh r d 
\ \ ‘ J J 

sinh r d 
2 cosh r — - ~ I � ‘ ‘ � — det ( � 
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It is easy to see that det (aij) = 1 + Y^ig^h + O(r^) and by the condition 監 = 

O(r^), that 悬 det(o•幻-)二 r ^ t r卯 + 0(r3). Combining these with the above 

calculation, we can get the result. • 

By Lemma 2.6, for sufficiently small r, the Gaussian curvature K of (6V，7r) 

is positive. Hence (SV, 7r) can be isometrically embedded into EP which is unique 

up to an isometry in EP by the results of Pogorelov [28]. Moreover, by the Gauss 

equation, for an orthonormal frame in S” 

- I + X11X22 —xL = K 〉 o . 

Hence the embedded surface which will be denoted by Ê . is strictly convex. Let 

Hq be the mean curvature of we want to estimate Hq and compare it with H, 

To estimate Hq, we will generalize a result on convex compact hypersurfaces 

in of Li-Weinstein [22, Theorem 2] to compact hypersurfaces in ET". 

Lemma 2.8. Suppose S is a closed convex hypersurface in ET̂  n > 3. If the 

scalar curvature R ofE satisfies (n — 2)(?i — 3) > 0 , then its mean curvature 

Hq satisfies the inequality 

— 2)(n — 3 ) ) 

where R = R-[- (n — l)(n ~ 2) and A is the Laplacian on S. 

Proof. We basically follow the ideas from [22]. Let x be the second fundamental 

form of E C H^. Let p € S be such that Ho{p) = maxHo. Let be a 

normal coordinates of S around p so that Xij = ^i^ij at p. Then at p, Hq.^ is 

negative semi definite. Here we use S-K to denote the covariant derivative of S on 

S with respect to the induced metric. Since Xij is positive, at p we have, 

i^oAi/o = �j 入4 < > ,入 i 丑o;ii‘ (2.5) 
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All sums here will have indices from 1 to n — 1. Since EP has constant curvature, 

the Codazzi equation implies 

Xij,k — Xik,j = 0 . 

By the Gauss equation, we have 

R + {n-l)(n-2) = H',-\x 

Let B^jki be the intrinsic cuivature tensor of S. At p, 

Ai? = 2HoAHo + 2|V//o|2 — 2|Vx| ' — 2 ^ \Xn,kk 

(Xkk，u - )Cn,kk) (by (2.5) and V f f o = 0) 

A, (Xfcfc，n — Xk”k) (by (2.6)) 
兄，fc 

=2 ^ Xtj {RkzkmXmi + Rk娜Xkm) (by Ricci identity and (2.6)) 

=2 ^ + 

=2 1 + Af + (by the Gauss equation) 
它，fc 

= 2 ((r^ — 1)|X|2 -//。；^ Af — + ixi) 

By [22, Lemma 2], since Â  > 0, 

(2.6) 

(2.7) 

- v 
Plugging this into the above and use (2.7), at p, 

AR < 2(n — l)|x|2 + 3RH^ 一 + 2|x|4 — 2均 

二 2(n — -R) + ZRHl 一 + 2{Hl — Rf — 2Hl 

二-[R-2(n- 2))Hl — 2(n - 1)兵 + 2伊. 

From this it is easy to see that the lemma is true. • 



Quasi-local Mass in AH Manifolds 32 

Applying the previous lemma to which is the embedded image of (SV，7r), 

we have: 

Corollary 2.9. With the same assumptions and notations as m Lemma 2.6, for 

sufficiently small r, the mean curvature HQ of T>R m HP satisfies 
A D 

HQ^ < inax(2H + 4 -

where A is the Laplacian on Sr under the induced metric, R = 2K and K is the 

Gaussian curvature of Sr. 

We now estimate Hq. 

Lemma 2.10. The mean curvature Hq of^r 肌 HP is given by 

ifo = 2coshr + 0(r^). 

Proof. By the Gauss equation, 2R < R-\- \x\ = H^ where R = R + 2 and % is 

X is the second fundamental form of the embedded Sr. So by combining Lemma 

2.6 and Corollary 2.9, we have 

AR 
~R 

The proof would be completed if we can show that 暂 二 0(r5). The proof is 

analogous to that of Lemma 2.6. Using the notations in the proof of Lemma 2.6, 

it is easy to see that 
Ai? sin]i4 r ^ - ,一、 

I = 〜R (2-8) 
where R is the scalar curvature with respect to gr. Using Assumption A, we have 

—沙AOr:�=O(r^) for ^ - 0,1, 2, 3, 

with respect to the coordinates {y^jf^i- Together with (2.2) and (2.3), we con-

clude that d,R — d,R = O(r^) and d^^R - d^R = Hence 

As i?o = 2 is a constant, by (2.8) and Lemma 2.6, the result follows. • 

4 cosh^ r + O(r^) < H^ < 4 cosh^ r + max 
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Combining Lemma 2.7 and Lemma 2.10, we have 

Corollary 2.11. On S” 

2.2.2 Inscribed and circumscribed geodesic spheres 

It is well known that a compact convex hyper surf ace S in can contain and be 

contained in spheres with radius depending only on the upper and lower bound 

of principal curvatures 入̂  In this section, we will describe the corresponding 

results in M", which will be used later. We will sketch the proofs for the sake 

of completeness whenever we could not locate a reference. We only consider the 

case n — 3. The general case is similar. The following is a direct consequence of 

a result of Ralph Howard [17，Theorem 4.5 . 

Proposi t ion 2.12. Let ^ be a compact convex surface in H^ and coth b — 

m ^ X i { x ) > min Ai(x) > 1， then there is a geodesic sphere of radius b which 

is contained in the interior of E. 

Proof. By [17, Theorem 4.5], since Â  > 1 on E, the largest radius (rolling radius) 

of geodesic balls which can roll inside S is equal to the focal distance of S. 

We claim that the focal distance of E in M^ is equal to 

mm{p : coth p = Xi{x), i = 1,2}. 

The result then immediately follows. 

To prove the claim, we use the following characterization of the focal distance 

in terms of Jacobi field ([17] p. 474). For p € H, a S-adapted Jacobi field 1/(s) 

along the inward-pointing arc-length parametrized geodesic 7(5) starting from p 

is one which satisfies 

V"� + 7')7' 二 0, V̂ (O) e TpS, V'(0) = ->1(1/(0)) 
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where � =V y V and A is the shape operator. For such a V ^ 0, 7 � is a 

focal point of S along 7 if V{1) = 0. If 7(Z) is the first focal point along 7, the 

focal distance at p is then I and the focal distance of S is the minimum of the 

focal distances among all p G S. 

Now, if e is an unit eigenvector of Ap with eigenvalue A, we can then parallel 

translate e along 7(s) to form e(<s). We define 1^(5) — (cosh 5 — Asinlis)e(s). 

Then 

V" = V and R(V,y)y = -{i.i)V + {V,i)i = -V. 

Thus V" + R{V, i ) i = 0. Also, F'(0) - -Ae(0) = -A(e) , V(0) e T^E. i.e. y is 

a S-Jacobi field. As V{r) = 0 where cothr : A, 7(r) is a focal point. 

Conversely, if 7(Z) is a focal point with the corresponding S-adapted Jacobi 

field Then by the Jacobi field equation, {V, = 0. The conditions of V 

implies (y(0),y(0)> = 0 = (F(/) , f ( / )>, so we have 

Then 

0 = V � + R(V, 7')7' = V" — (�7' ’ l'}V - {V, i ) i ) = V" - V. 

Let be the unit eigenvectors of A^ with eigenvalues A � w e can then parallel 
2 

translate ê  along 7(5) to form Let K(s) == ^ ^ (5)6^(5), then the above 

equation implies 

人〃 = A or, = a, sinh s + b^ cosh s. 

2 2 

But then ]/'{0) = y ^ a . e , = = - So a, = —b入 for all i. 
1=1 口 1 

Finally V{1) = 0 implies cosh I = W sinhL Therefore we have either = 0 or 

coth/ = We conclude that V is of the form V{s) = (cosh 5 — Â  sinh 5)6(5) for 

some I and for some parallel e(s). From this we can see that the claim is true. • 

For circumscribed geodesic spheres of E, we have the following: 
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Proposition 2.13. Let S a closed convex surface in IHP with \ > cotha > 1 

on E, then there is a geodesic sphere of radius a which contains S in its interior. 

Since we cannot find an explicit reference for this, we will give more details of 

the proof. We use the idea of Andrejs Treibergs [37] to give a proof. To show this, 

we need the following lemma about convex curves on M^ which is an extension of 

Schur's theorem for plane curves. 

Lemma 2.14. Let a and jS be two curves in EP with same length I parametrized 

by arc length. Suppose let 7 be the geodesic from a(0)； a{l) and a be the geodesic 

from /3(0) to 13(1). Suppose a and 7 hounds a geodesically convex region, and j3, 

a hounds a geodesically convex region. Suppose the geodesic curvature k of a is 

larger than the geodesic curvature k of p which are assumed to be positive. Then 

length of 'y is less than the length of a. 

Proof. Let us use the right half plane model for EP: 

H^ = {(工,2/) G M l̂ X > 0} 

with metric ds"̂  = We may assume that 7 is given by 7 � =( t , c), 

a < t < b and c is a constant. We also assume that a is below 7. That is, if 

a{s) = y(s)), then y(s) < c. We may assume that a touches the geodesic 

{t, c') for some c' at a(so) some 0 < s �< Z. Then a lies between the geodesies 

y = c and y — c'. Move (5 such that I3{sq) = a{so), P{so) touches ^ — c' at /?(so) 

and (3 lies above y = c'; i.e., (3 is in the region y > c'. 

Let — (2:(s), ^(5)) and /3(s) = (x(s), y'(s)). Let be the oriented angle 

from the tangent of the geodesic (t, y{s)) to a'{s). Define ^(5) for (3 similarly so 

that e{so)=歹(So) = 0. 

Note that for any I > s > s' > Sq, y{s) + y(s'), otherwise the curve {t,y{s)) 

is part of a which is a geodesic. This is impossible, because A: > 0. Hence y is 

increasing in (sq, 1). So 

x' = X cos 9,y' = xsin 9. (2.9) 
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Hence sin > 0. But for 5o < 5 < if sm0(s) — 0, then the geodesic {t, y{s)) is 

tangent to a , which is impossible because of convexity of the region bounded by 

a and 7. So sin 没 > 0, there. 

On the other hand, we have [10，p. 253]; 

k = - sine+ 9'. 

Hence 0 < 0 < tt on (50,1). Similarly, we have 

k = - sine^e'. 

Since k > k and 没 ( 匆 ） = = 0，so for s > Sq near so, 9{s) > 9{s). Suppose 

there is a first I > Si > Sq such that 0{si) = 9{si). Then at Si, 

A; —石二沒'(si)— 歹 

This is impossible. Hence 0 < 6{s) < 9(s) < tt in (sq, I). 

Now 

and 

logx{l) — loga;(5o) = / —ds = / cos9{s)ds 
J SQ ^ J so 

� ~ fl记 fl ~ 
logx{l) - log.T(5o) = / —ds = / COS 0(s)ds 

Hence log x{l) > logx{l) = log 6. Similarly, one can prove that log x(0) < 

log a:(0) — log c. In particular, x{0) < x(l). Now the length 丄(7) of 7 is log 6—log c. 

Hence 1/(7) < log x{l) — log x(0). 

We claim that log印）—log x(0) < L(a). We may assume y{0) < y{l). Then 

logx{l) — log五(0) is the length of the geodesic {t, y{l)), x(0) < t < x{l). Then by 

the sine law in we conclude that the claim is true. This completes the proof 

of the lemma. • 

Lemma 2.15. Let a be a closed geodesically convex curve in H^ with geodesic 

curvature k^ > r > 0. Let p be a geodesic circle with geodesic curvature r. 

Suppose a and (3 are tangent at p such that a and j3 lie on the same side of the 

geodesic through p and tangent to a and (3. Then a. will lie inside (3. 



Quasi-local Mass in AH Manifolds 37 

Proof. We use the disk model for EP. We may assume that is a Euclidean circle 

with center at the origin and with radius a > 0, say. We may also assume that 

p — (0，—a) and {3 is parametrized by (a cos 9, a sin 6"), —tt <6<tx. It is easy to 

see that (3{0) is outside a near p, for 0 € (—f — ^o, ~ f + Oq) = I for some 9q > 0. 

Suppose the lemma is not true. Then (3 will intersect a at some • I. Without 

loss of generality, we may assume that there is | > ‘̂！ > — f + 6*0, such that a and 

(5 intersects at g = (3(6i) and ^{9) lies strictly outside a in (—f + Oq, 9i). Then 

the length of (3 from p to g is strictly larger than the length of a from p to g by the 

Gauss-Bonnet theorem and the fact that k^ > r. Then there is � 0 2 > — f + 

such that the length of from p t o u = is the same as the length of a from 

p to q. By Lemma 2.14, we conclude that d(j), g) < d(p, u). Since p，q, u are on 

the geodesic circle P, this is impossible by the cosine law in EP. 

• 

Proof of Proposition 2.13. Let p G S. Let S be the geodesic sphere with radius a 

which is tangent to S at p with the same unit outward normal at p. Let P be any 

normal section. That is, P is the totally geodesic EP which passes through p and 

contains the geodesic normal to E (and S) at p. Let 7 = P n H and l3 = P n S. 

Since the principal curvature of S is larger than cotha, 7 is a closed convex 

curve in P with geodesic curvature larger than coth a. /? is a geodesic circle of 

radius a in P. By Lemma 2.15, 7 lies inside /? and hence is inside S. Since P is 

an arbitrary normal section, the result follows. • 

2.2.3 Normalized embedding of (5V,7r) 

Let (M^, g) be an AH manifold satisfying Assumption A. Let (5V,7r) be as in 

Lemma 2.6. The isometric embedding of {Sr, 7r) is unique up to an isometry of 

H^. In order to prove the main results, we have to normalize the embedding. As 

a first step, using Lemmas 2.6 and 2.9, we can apply Propositions 2.12 and 2.13 

to obtain the following: 
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Lemma 2.16. With the above assumptions and notations, we can find a positive 

constant C such that for each small r, x/S^ is the isometnc embedding of {Sr,jr) 

m EP, then there exist geodesic balls B饥 and Bout with the same center and radii 

Pin and pout respectively, such that B^n is in the interior of Ti” Bout contains E^ 

and p饥,pout satisfy: 

— Cr\ Pout + CV3, (2.10) 

where a = a{r) > 0 given by sinhcr = 

Proof. Let r be a fixed small number. Let Xj{x) be the principal curvatures of 

X e E^. By Lemmas 2.6 and 2.10 and the Gauss equation, it is easy to see that 

Let coth p = Xj, then 

P = 

Â  - c o s h r - h a ( r ^ ) . (2.11) 

1 , ,coshr + l + 0(r5) 1 ,coslir + 1 、 ， 〜 3 、 

2 … � - 1 , 5 l o g ( c o s h卜 l + 0 ( r ” ) + ) 

From this and Propositions 2.12 and 2.13, it is easy to see the corollary is true. • 

By Lemma 2.16, the first normalization of the embedding is to normalize such 

that the center of the geodesic balls in Lemma 2.16 is at a fixed point o E H^. We 

will use geodesic polar coordinates {a, y) with center at o, where a is the geodesic 

distance from o and t/ E S^ so that a point in HP jg of the form exp^{ay). The 

metric 抛2 is given by da^ + sinh^ a go where go is the standard metric on 

The isometric embedding X � is given by X(”(;r) = 

Lemma 2.17. With the above notations, there exists a constant C > 0 such that 

for all r small enough, 

for xi. X2 € §2，where d各2 ts the distance on with respect to the standard metnc. 
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Proof. Let Xi,X2 E S^ and let A T � as above so that the embedded image lies 

between two concentric geodesic spheres dBo(Ri) and dBjJli) with center at o 

and with radii i?i > R2 such that R^ = cr + (9(r3)，i = 1,2, and a is given by 

sinhcj = by Lemma 2.16. Here and below O(r^) will denote a quantity 

with absolute value bounded by for some positive constant C independent 

of r and Xi,X2 € 

Let l{xijX2) be the intrinsic distance between Xi, x^ € Sr with respect to the 

metric 7广 By the definition of AH manifold, it is easy to see that 

l{xuX2) = ( l + 0(r^)) . (2.12) 

On the other hand, let vî  v^ be the points of intersections of dB^JJlz) with the 

geodesies from o to X^^^xi) and respectively. Since 力 is an isometric 

embedding, the intrinsic distance between and in is equal 

to l{xi, X2). Since E^ is strictly convex in H^ by (2.11) and R^ ^ a i- O(r^), we 

have 

K工 1 ,巧） < "2) + 厂3) 

because l{xi,x2) is the minimum of lengths of curves in HP outside which 

join and Here dQB�腕 is the intrinsic distance function on 

dBo{R2)- So we have 

I{x^,x2)<smhads2 (2/�(:ri)，y�(:r2)) + 0 ( r 2 ) . 

Using the fact that dBo{Ri) is also strictly convex, one can prove similarly, 

l{xuX2) > s i n W s 2 ( y � �⑷ ⑷ ） + 0 ( r 2 ) . 

Combining these two inequalities we have: 

/(xi,2:2) = sinh(t42 (y”0i)，vW02)) + 0 ( r 2 ) . (2.13) 

By (2.12), (2.13) and the fact that sinhtr = the result follows. • 

Let be the isometric embeddings normalized as above. 
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Lemma 2.18. Wzth the above notations, by composing with isometnes of 

fixing o, and the resulting isometric embeddings still denoted by we have: 

l i m " ��x e E > \ 
r—0 

The convergence is umform in x. 

Proof. G §2 is of the form x = {x\ x^, x^) with = 1. Let e： 二 (1, 0,0), 

62 = (0,1，0) and 63 = (0,0,1). By composing with isometries of M^ fixing 0，we 

may arrange that for all r 

1 / �( e i ) = � ( 6 2 ) G 0 } , " �( e g ) G {x^ > 0}. (2.14) 

By Lemma 2.17, 

42(/(62)，61) 二 �（ei)) = 42(62,61)+ 

By (2,14), we can conclude that liniy(�(e2) = 62- For any ？̂  — 0 such that 
r—0 

？/⑷(63) 0 = with a^ > 0. Then by Lemma 2.17 again, we have 
TT 

而2(ei,a) = 42(^2, a) = 

Hence a = 63. This implies that Iim2/(”(e3) 二 63. That is, we have 
r—0 

l i m y � � = 6 ” (2.15) 

Now for any x e and r„ 0 such that lim (x) = b. Then by (2.15) 
n—»-cxD 

and Lemma 2.17, we have 

ds2(e” b) — dg2{ei,x), for 1 < z < 3. 

Hence b = x and so lim “ � � =x for all x 6 S^. r—0 
We claim that the convergence is uniform. Fix Xq E S^ for any e > 0, by 

Lemma 2.17, let C be the constant in the lemma, for any a: G S^ with dg2{x, Xq) < 

e, we have 

<3e 
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provided r is small enough depending only on xq and e. Since is compact, this 

proves the claim that the convergence is uniform. • 

2.2.4 Proof of Theorem 2.3 

We now prove our main results. First, we embed EP in the so that EP = 
3 

G R3，i ：(工0)2 - = 1，工0 > 0} and the fixed point o in 
i=l 

Section 2.2.3 is mapped to the point (1，0，0, 0). 

Proof of Theorem 2.3. For r small, let ；4：(『）be the embedding of�S”％) in I F 

given by Lemma 2.18. With the notations as in section 2.2.3, when considered 

as an embedding of (SV)7r) in 力『）is of the form 

X^'-^x) = (cos:h<jW(:r)，siiW�(:r) y ( � ) ) . (2.16) 

Now by Corollary 2.11, Lemmas 2.16 and 2.18, we have as r 0, 

Ho-H 卯" + 0(r4) 

cosli(7(”0) = cothr + 0(7*2) = • + 0(1): 

2/⑷(工: = x + o{l). 

(2.17) 

As before, 0 ( r ” represents a quantity with absolute value bounded by Cr^ with 

C being independent of r and x. Moreover, by Definition 2.1, the volume form 

dPnr = +外 3 ) )办卯 +… ) )办卯 (2.18) 

as r —» 0, where dfig^ is the volume form of the standard metric go. By (2.17) 
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and (2.18), we have 

'Sr 
{Ho — WjX � d f i � 

(Ho - H) (cosW”,siiiW” 2/⑷）dfi� 

. 广 , 一 仏 / I …X .lA , 1 � 

'§2 Js2 

+ O⑴） d f j . "90 

From this the theorem follows. • 

Proof of Corollary 2.5. Under the assumptions of the corollary, suppose {M,g) 

is not isometric to EP，then by [40，Theorem 2.5], or Theorem 2.2, 

'S2 
tl g,{h)dflg, > tj:gg(h)xdfj, 90 

Let 力” be the isometric embedding of (5V，7r) as in Theorem 2.3, then by the 

theorem there exists e > 0 such that if r is small enough then for any future null 

vector 7] = 

'Sr 
(丑0 —丑)�X(义77>股3，1咖 < —e. 

R3, 
Hence f^ (Hq — H ) X � T � d i i � i s timelike and is future directed. From this and 

Remark 2.4, it is easy to see that the corollary is true. • 



Chapter 3 

Positivity of quasi-local mass 

The positive mass theorem states that for an asymptotically flat manifold (M, g) 

such that g behaves like Euclidean at infinity near each end and suppose its 

scalar curvature is non-negative, then its ADM mass of each end is non-negative, 

moreover if the ADM mass of one of the end is zero, then (M，g) is actually a 

Euclidean space. Schoen and Yau [31, 32] proved the positive mass theorem. 

Witten [41] (see also [26, 3]) gave a simplified proof the positive mass theorem 

using the spinor method. Since then the method of spinor has been adopted by 

many people to prove positive mass type theorems or some rigidity results, see 

for example [34, 1, 23, 38 . 

In particular, let us look at some results in this direction. M. T. Wang and Yau 

38] developed a quasi-local mass for a three dimensional manifold with boundary 

whose scalar curvature is bounded from below by some negative constant. Using 

spinor method, they were able to prove that this mass is non-negative. Later 

on, Shi and Tarn [35] also proved a similar result in the three dimensional case, 

but with a simpler definition of the mass. In this chapter, we will show that the 

results of Wang-Yau and Shi-Tarn also hold in higher dimensions. 

In [35], Shi and Tain proved the following: 

Theorem 3.1. ([35] Theorem 3.1) Let (H, g) be a compact dimensional ori-

43 
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entable manifold with smooth boundary H 二 dVl, homeomorphic to a 2-sphere. 

Assummg the following conditions: 

1. The scalar curvature R of (O, g) satisfies R > — f o r some k > 0, 

2. IS a topological sphere with Gaussian curvature K > —k�and mean 

curvature H > 0, so that E can be isometrically embedded into with 

mean curvature Hq. 

Then there is a future directed Ume-hke vector-valued function W on such that 

the vector 

j {Ho - H)WdT, 

IS hme-hke. Here W = (xi, at) for some a > 1 depending only on the 

intrinsic geometry o/S, with X = (xi,x2, x^, t) G C 

In this chapter, we will prove the analogous result in higher dimension for spin 

manifolds (note that three dimensional orientable manifolds are spin). There are 

two ingredients which are most important in establishing the main result (The-

orem 3.16), one is a monotonicity formula (Lemma 3.6) for the mass expression, 

the other is a positive mass type theorem (Theorem 3.7). This theorem was orig-

inally proved by M.T. Wang and Yau [38] in the three dimensional case. Here we 

will give a proof in general dimension. In particular, the existence of the Killing 

spinor fields play an important role in the proof. What is new in the proof of the 

theorem in higher dimension are two identities involving Killing spinors on the 

hyperbolic space (Proposition 3.10, 3.9). 

This chapter is organized as follows. In Section 3.1, we will first state and 

prove some preliminary results. In Section 3.2, we will give the proof of a positive 

mass theorem in general dimension. In Section 3.3, we will then give our main 

result. 
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3.1 Preliminaries 

In this section, we will state and prove some preliminary results. The setup is as 

follows. 

Let (n, g) be a compact n-dimensional manifold with smooth boundary S = 

df}, homeomorphic to a (n — l)-sphere. Suppose the scalar curvature R of Q 

satisfies R > ~~n(n — for some A: > 0. Let H be the mean curvature of 

S with respect to the outward normal. We assume H is positive, the sectional 

curvature of S is greater than — A:̂  and E can be isometric ally embedded uniquely 

into H�2， t he hyperbolic space of constant sectional curvature —hP". We use the 

following hyperboloid model for H二知2: 

= ! (rri,….，Zn, t) e『，1 = (3.1) 

where M '̂̂  is the Minkowski space with Lorentz metric ^ ^ dx^ — dt^. The position 

vector of El^^a in can be parametrized by 

X = (xi, " • ,Xn,t) = ^(sinh(kr)Y, coshkr) (3.2) 

fC 
where V G 1, the unit sphere in M". Note that r is the geodesic distance of a 

point from 0 = (0 , . . . , 0,1/k) € H^^s- Without loss of generality we can assume 

that Ho, the embedded image of S, encloses a region Qq which contains o. 

Let Hp be the level surface outside So in with distance p from Eq. 

Suppose F : E —̂  is the embedding with unit outward normal N, then S^ 

as a subset of IR"，i is given by ([35] Equation (2.2)) 
p) - cosh{kp)X{p, 0) + i sm\i{kp)N{p, 0). (3.3) 

rC 

Here for simplicity, (p, p) denotes a point which lies on the geodesic perpen-

dicular to So starting from the point p G So and 0) 二 X(F(jp)). 

On M二紀2 \ Qo, the hyperbolic metric can be written as 

g' = dp" + gp, (3.4) 
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where g^ is the induced metric on S广 As in [38], we can perturb the metric to 

form a new metric on EI^^s \ ^o 

/ = 如 2 + 办 （3.5) 

(note that the induced metrics from g' and g" on Sp are the same) with prescribed 

scalar curvature —n{n — where u satisfies ([38] Equation 2.10): 

fyQJ 
^Ho— - 2u''ApU + ( u - + n(n — 

( � Ho{p,0) (3.6) 

Here Ap is the Laplacian on Ep, BP is the scalar curvature of Ep, Hq{p,p) is 

the mean curvature of Ep in , g') and H{p) is the mean curvature of dCl in 

{Q, g). The mean curvature of Ep with respect to the new metric g" is then 

i/(P，P) = ㈣ . (3.7) 
u(P，p) 

We have the following estimates: 

Lemma 3.2 (cf. [38] p. 255-257). 1. For all p, e-狄Pgp is uniformly equiva-

lent to the standard metric on 1. Indeed, we can choose a coordinates 

around any p G E such that gab{p, p) — f^ab, where f — sinh'^{k{/ia + 

p))/ smh^{k/Ja), e^^^ or cosh^{k{fia+p))/cosh^(kfia) andXa{p, 0) 二 A; coth(A:/Xa)，/c 

or ktai,nh.{kiJ,a) is the initial principal curvature. 

2. Let dT,p denotes the volume element of T>p, then e 一 i s uniformly 

equivalent to the volume element of . 

3. The principal curvatures of Sp with respect to g' is of order 入a(p，p)= 

对 1 + 0(e-2如))，and therefore HQ = {n - l)k + 0(E-2k�. 

4- — 1| < for some C > 0 independent of p. 

We also have the following long time existence result: 
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Proposition 3.3 (cf. [38] Theorem 2.1). 1. The solution u of (3.6) exists for 

all time and v — lim e几切[u — 1) exists as a smooth function on E. 
p-^oo 

2. g" = v^dp^ + Qp is asymptotically hyperbolic [1] on M 二 H�2 \ Qo with 

scalar curvature —n{n — . 

3. Let A : (TM, g') —> (TM, g") he the Gauge transformation defined by A-—= 

and AV = V for any vector V E TE^, then |A — /…=0(6—"^” and 

Since the proofs of the above two results are exactly the same as in [38] except 

some minor modification, we omit them here. 

Lemma 3.4. (cf. [35] Lemma 34) On \ Qq, 

Ho^ + ApX — (n — l)k^X = 0. 

Proof. Under the representation in (3.2) in … t h e Laplacian in H^^a is given 

by 
52 d 

Ah" � = — + (n — l)k coth kr-— + k^ sinh"^ krAgn - i. dpA dp 
By A g n - i F 二 —[n — 1)Y for Y e 1 and (3.2)，Ah^^.X = nk^X. 

On the other hand, under the foliation by Sp, the A— is given by 

-fc2 Qp2 dp Ah-., = — + /fo™ + Ap 

where Ap is the Laplacian on Ep. So using (3.3)， 

-92 Q B 
nPX = —X + Ho—X + = k'X + Ho^X + dp么 op op 

• 

Let Bq{Ri) and Bo(i?2) be geodesic balls in M � 2 such that Bo(Ri) C D c 

Bo{R2). We define W = (ti,X2, • • • , Xn, at) with 

1 /sinh^ kR2 , 
a = coth kRi + . . . ^ 一 1 

sinh kRi Vsinh kRi / 
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where X — {xi,x2, • • • , t) is the position vector of Sp in M"' 

By the same argument we have 

Lemma 3.5. On H二p \ Hq鸯 + ApM^ — [n — l)k^W = 0 

Lemma 3.6. (cf. [35j Equation 3.8) On M：^^^ \ 

A 
dp 

(Ho - H)X(n：^ 

[u-\u - 1)2 ({RP + {n- l)(n — 2)^)寻 + Ho竺 1 dH, 
dp 

Proof. By (3.6) and the divergence theorem, 

d 
dp 

！ 
dp 

/ r 

(丑0 — 

,dHo 
dp 

, (1 —n-i)X + i ^ � f 2 ^ X + F�(l-^z-1、竺 
hp dp dp 

聯 — 作 

\ a V-
+ ( ApU + 云（W—1 — u){R' + n(n — X + _ 

2 / ^p 

=f ((爱 + 聯 - f ”义 + 嘉(f 1 — + n{n — l)e)X 

QV 
+ Ho(l - + {u- l)ApX)dJ:p 

=J (/ + // + III + IV)dl：^ 

(3.8) 

where we have used (3.6) in line 4 and divergence theorem in line 5. The Gauss 

equation gives 

RP 二 —{n 一 l ) ( n — 2)^ + Hi - (3.9) 

where A is the second fundamental form of E^ with respect to the hyperbolic 

metric g'. By the evolution equation of Hq ([38] Equation 2.4) and the Gauss 
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equation (3 9)， 

学 = — + (n - = RP + (n - 1)V — B^ 
op 

So I = {RP + (n — 一 

Direct calculation gives 

(W + (n — 1)2^：2)(1 - a-i) + — u){R<' + n(n -

= - 知 - - + ( 7 7 - 1)(77 — - { p - l ) ( w — 
ZJ 

So we have 

/ + // 二 {-lu-\u — I f [RP + {n- l)(n - 2)k'') 一（n — l)(w — 
Zi 

By lemma 3.4, A^X — (n — l)k^X = -Hq驚.Therefore 

1 +11 + 111 +IV 

= 一 lu-\u 一 1)2 {RP + (n - l )(n — 2)e) X 
Zd 

+ {u-l)( ^ ^ + — (n — 
乂 w dp J 

1 f)Y 
- 一 — 1)2 {RP + (77 - 1 ) (77 — 2)e) x + {y- ! -

dX\ 
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U (U 
/ X 

dp 

This together with (3.8) gives the result. • 

3.2 A Positive mass theorem 

We will need the following positive mass theorem ([38] Theorem 6.1) which was 

proved by M.T. Wang and Yau when n = 3. 

Theorem 3.7 (Wang-Yau). Let n > 3 and (Q, g) is a n-dimensional compact spin 

manifold with nonempty smooth boundary which is a topological sphere. Suppose 

the scalar curvature R of Q satisfies R > —n(n — , the sectional curvature 



Positivity of Quasi-local Mass 50 

of its boundary S satisfies K > the mean curvature of the boundary with 

respect to outward unit normal is positive, and E can he isometrically embedded 

uniquely into H"：&2 in R"'^. Then 

lim [ {Ho - H)X • C < 0 
� JEp 

for any future-directed null vector ( in E^'^； where Hq, H are functions in (p, p) 

as in (3.7) 

In other words, lim / {Hq — H)XdTip is a future-directed non-spacelike vector. 

As a corollary, 

Corollary 3.8. With the same assumptions as in Theorem 3.7, 

lim / (Hq - H) cosh KRDEP > 0 
" 0 0 j � 

where r is defined in (3.2). 

3.2.1 Killing spinors on (M k̂̂ ĝ') 

The proof of Theorem 3.7 requires the existence of Killing spinor fields (i.e. a sec-

tion of the spinor bundle (see for example [21]) satisfying the Killing 

equation (3.10)) on the hyperbolic space. A Killing spinor cf)' on (皿二�2, g') satisfies 

the equation 

Vyc/)' + 二 0 for any tangent vector V (3.10) 

where diV) is the Clifford multiplication by V and V' is the spin connection 

(with respect to the hyperbolic metric g'). The Killing spinors on hyperbolic 

spaces were studied by Baum [5]. Baum proved that on H[二2，the set of all 

Killing spinors is parametrized by a e C^"", m = (integer part of We 

need the following two propositions. 
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Proposit ion 3.9. Let be the Killing spinor on ( H I二 c o r r e s p o n d i n g to 

a G m = [2」，then 

武.丄‘二一 

where • denotes the Lorentz inner product in R^'^ and 
n 

(a = y ^ ( \ / ^ c ( e j ) a , a ) e j - � \ / ^ c ( e o ) a , a�eo. (3.11) 

Here {,) is the inner product in c{ej) denotes the Chfford muUvphcatwn by 

the Chfford matrices (as defined m [5]) for the orthonormal basis 羞= e o , 

in fl < J < n^ and c(eo) ts defined to be 

Proof. Let /c 二 1 for simplicity. Baum ([5, Theorem 1], ji 二 一會）proved that 

in the ball model for 肥，the Killing spinor can be expressed as (note that the 

spinor bundle is trivial) 

0 = C o W = 

where c{x)a = ^ Xjc{ej)a for a: = . ‘ • , Xn). It is easily computed that 

U —I工 a: 
The change of coordinates from the ball model to the hyperboloid model is given 

by 

So 

1 + X 

1 - 2 ' 1 — 
G M"，1. 

x\ 

1 + 
- Ca = - : p ^ ^ � V ^ c ( e > , a> + a ‘ 

f l + \x 2 \ 

= 0 

• 
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Proposit ion 3.10. For every null vector ( G 脱“，丄(n > 2j, ( = (a for some 
a G Ĉ""； where m = L号J and (a is defined in (3.11). 

Proof. Define rja — ^ ^ ( V ^ c ( e j ) a , a)ej. As (a ™ ^ ^ � ^ / ^ c ( e J ) a , a)ej + |a|^eo, it 

suffices to prove that for any X € C M", there exists a 6 C^"" with |a| 二 1 

such that ？7o = X. We divide into two cases: (i) n is odd and (ii) n is even. 

(i) For the odd case where n — 2m + 1, we apply induction on m. When 

2m + 1 = 3, this is done in [38] (p.17). We state it here for later use. The three 

Clifford matrices for n = 3 are gi,g2 and (see [5, p. 206]), where 

gi 
V- 0 

92 

0 

0 
T 

0 - A / = 1 

0 
So for any z G there exists a € C^ with |a| = 1 such that 

玄 = � ,o ) , � ,a�，(-T(a),a». (3.12) 

Assume the result is true for n = 2m — 1, and denote the Clifford matrices in 

dimension 2m — 1 simply by fe}-;�Let 广i be the Clifford matrices in 

dimension 2m + 1, as defined in [5, p. 206 Equation (2)]. Then it is easily seen 

that 

dj 二 I � Cj for j 2m — 2, / is the 2 x 2 identity matrix, 

d2m-l = � C2m-1, 

(km = ® C2m—1, 

尚m+1 二 C2m-l-

Now let ；C G 饥，then X = (2/1,2/2； 

(3.13) 

y2m-iz) for some y = (y] 2/2m-l) € 
§ 2 爪 a n d z e §2. By induction assumption, there exists b G with \b 

such that 

y = ((V^ci(6), 6〉，...，{^^=Jc2m-l{b), b}) 

and by (3.12), there exists a G C^ with |a| = 1 such that 
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Combining these with (3.13), it is easily seen that 袖=X. 

(ii) For the even case, we also apply induction on m. When n = 2, the two 

Clifford matrices are gi and 仍 and r]a — (—|aip + |a2p, —aia2 — a2而）where 

a = (ai，a2) E C^. For X = (cos^, sin 6) 6 S^, just take a = (— sin cos | ) so 

that rja — X. 

Assume the result is true for n = 2m and denote {c)}為 to be the corre-

sponding Clifford matrices as defined in [5, p. 206 Equation (1)]. Let {dj}'^'^^'^ 

be the Clifford matrices for n = 2m + 2. Then it is easily seen that 

di = I ^ gi where I is the 2饥 x identity matrix, 

d2 = I 汤 g2 where I is the x QT identity matrix, (3.14) 

dj+2 = Cj � T for j 二 1’...，2m. 

Now let X G S2"^+i，then X = for some e S^ and y G 

g2m-1. By (3.12)，there exists b e C^ with \b\ = 1 such that 

(^1, 一之3) = ((7=1^1(6), 6), (V^92{b), b), ( - T ( 6 ) , b)) 

and by induction assumption, there exists a E C^"" ^ with \a\ = 1 such that 

y = ( { V ^ c i ( a ) , a〉，…，�v^C2m(a)，a)). 

Combining these with (3.14), it is easily seen that 柳 = X . • 

3.2.2 The hyper surface Dirac operator 

In this subsection, we will give some general results for the hypersurface Dirac 

operator. Most of the materials in this section can be found, for example, in [16 . 

Recall that on a spinor bundle 5 (M") over (M, g), the Dirac operator D is 

defined to be 
n 
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for any spinor ip E r (5 (M)) , where is a local orthonormal frame on M, 

Cm is the Clifford multiplication and V ^ is the spin connection on S{M). The 

local formula for is given by [21，Theorem 4.14 

1 “ 
= e人i(j) + - 仏、efc�CM(ej)CM(efc)也 

3<k 

where {eJ^^j are orthonormal frames on M. For simplicity, let us write c for Cm 

and V for V ^ . 

Now, for a spin manifold M, if S C M is an oriented smooth hypersurface, 

then M induces a natural spin structure on E, compatible with the induced 

orientation from M• 

We let S 5 (M") | s , the restriction of the spinor bundle of M to E. Then 

it can be shown that S = S{T) when n is odd and S = © <S'{S) when n is 

even. We will work on S instead of 5(S) . 

Definit ion 3.11. We define the hypersurface spin connection V"̂； the hypersur-

face Clifford mulhphcation cs and the hypersurface Dime operator D^ on S by 

Viv^ = Vx 功 + ^c{jy)c{B{X))^, 

cs{X) = -c(u)c{X), 

n-l 

a=l 

where v is a fixed unit normal (outward if this makes sense) and B is the shape 

operator on S，i.e. B{X) = —Vx". 

In local formula, for {eo}a=i orthonormal on S and e„ = " be the unit outward 

normal, 
1 n- l 

= Vejp + habc{et)c{en)ip. (3.15) 
乙b=i 

(It can be verified that V^ = V^ © V^ and cg — cs © — cs when n is even.) 
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Definition 3.12. We define the Killing spin connection V； Killing Dirac operator 

D and the Killing boundary operator B respectively by 

2 
n 

t=l 
n-1 

(3.16) 

S外c(en)c(ejVe> = Dijj 

Actually B is the boundary operator for the Lichnerowicz type formula ([38 

Equation 3.2): for any bounded region U with smooth boundary, we have 

I + + ^ [〈也 5 ( ^ � . (3.17) Ju\ 4 J Jqu 

where B is the scalar curvature. 

From now on until the end of this section, the indices a, 6, c run from 1 to 

77 — 1 and i , j , k run from 1 to ??. Repeated indices will be summed over. 

Proposit ion 3.13. Let tp be a spinor on M and H is the mean curvature of 

S C M. Then on E, 

� s j H 丨 V^ B ^ = - D � 1 补 — - l)c(ej欢. 

Proof. We have Bijj = Using (3.15), 

c(en)c(ea)Ve> = c(en)c(e„)Vf^^ + ]^habc{ea)c(ei,) — - l)c(e„)功. 

We have cs{ea) 二 c(ea)c(ej , so c(eJc(ea)Vf„ = - D ^ . Also, habc(ea)c{eh) = —H. 

The result follows. • 

Let us now return to the hyperbolic space. More precisely, define M = \ 

Qq. Let A : ( r M , g') (TM, g") be the Gauge transformation defined by A暴 二 

i 悬 { u as defined in (3.6)) and AV — V for any vector V tangential to Ep. A can 

be lifted to the spinor bundles as an isometry [1], i.e. A ; S{M, g') —> S{M, g"). 

Also, 

A{c'{X)ii；) = (I'{AX)AiP 
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where d (resp. c") denotes the Clifford multiplication associated to g' (resp. g"). 

We will also denote b y �( r e s p . e^) to denote the unit outward normal of Ep 

with respect to g" (resp. g'). 

Proposition 3.14. Let 4>'q be a Killing spinor with respect to V on M — 

and (j)Q = Let D^ be the hypersurface Dirac operator on Sp with respect to 

(M, g") as defined in (3.16). Then on T>p, 

-DS 如=考小。+ ^ K n — ly'KW 

(Recall that Hq is the mean curvature o/E^ with respect to g'.) 

Proof. (The proof is the same as in [38] except we have to replace V^^ by V^ 

etc, corresponding to S " . ) 

For Ve.i/^ we have 

Consider 

— y d j 
Ve>o = — A;c"(ea)(̂ o 

— 1 ,… — 

b<c 

(3.18) 

(3.19) 

+ J : ^ / ( V e A < ) c " ( e , ) c � ( e : )功 . 
丄 6 = 1 

Note that e j = / ( ^ V ^ ^ ^ - ^ e , , e,) = ^e , ) = e , ) = 

^''(Vg^efe, Cc). (y and g" induces the same metric on Sp. ) Also, g"(Ve„eh，《）= 

Ae'J ^ e；) - h i , . So (3.19) becomes 

(3,20) 

= V f > - by (3.15). 

Note that by definition of D^ and cs, 



Positivity of Quasi-local Mass 57 

So using (3.20) and (3.18), 

\ ^ 乂 

" / _ � � „ � / „ � ( V — 1 7_ J! ( _ \ X 1 ^ 7„0 J! i = - c ( e j c (e 

• 

Proposition 3.15. With the assumptions in Theorem 3.7, let 礼，。be a Killing 

spinor with respect to g' and 4>q = A(pQ on M. Then the limit lira / {Hq — 
” ⑴ Jt^P 

H)\(l)Q\^g„dT,p exists. 

Proof. (f)'Q — as in Proposition 3.9. By Proposition 3.9, |(/>a，o|含"=—2kX • Ca-

By (3.3), p) — 7 W = ^(p, 0) + 0). 

Also e—(Ho ~ H) = ifoe"•左— w—” — (n - l)kv as given by Lemma 3.2 

and Proposition 3.3. By Lemma 3.2 again, e" 

-�n-”kp 忍p tends to a measure au 

on S, induced by the metric g沈=lim e—如gp. 
p—00 

All the above limits are uniform in p. Thus we have (Ho —用 =—狄 / — . Qe—”如忍, 

一 -2 (n — / v(a . Qdii. 
JS 

• 

3.2.3 Proof of Theorem 3.7 

Following the ideas in [38] Theorem 6.1, we now give the proof of Theorem 3.7. 

Proof of Theorem 3.7. Define g" = u^dp^ + Qp on M = H 二 ; a s in (3.5)，with 

u satisfying (3.6). Let g be the metric defined on M = M Û ? H such that g g 

on Q and g = g" on M, where F is the embedding of O into IS二p. Note that g 
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is Lipschitz near dfl, i.e. there is a smooth coordinates around dfl such that the 

coefficients 如 are Lipschitz. 

Let Vy = Vy + ^^^kciy) and D — be the Killing connection and 

Killing-Dirac operator associated with 'g respectively. (All inner products and 

norms in this proof are taken with respect to g unless otherwise s ta ted.) 

Let (j)'Q be a Killing spinor on and = Acp^ on M, we claim that there 

is a (Killing harmonic) spinor • with Dcj) = 0 on M such that 

0 < lim / 二 lim / …B(M (3.21) 

where pm — oo and B is the boundary operator with respect to g as in (3.16). 

Since we arc only interested in the asymptotic behavior, by cutting off, wc can 

assume that 如 can be extended smoothly on the whole M. Then near infinity 

.e. outside a compact set), for V = AVA' have 

•ft乡o = _罕柯悬)也 

So 

Ve>0 - Ve>0 + =(令〜—VeJ如， 

�IpCh = V^c^o + 二
 (
々若— u V 

By the estimates in Lemma 2.1 of have 

(V-V)T/;| < C\A-^\V'A\\iIJ 

By Proposition 3.3, 1||•'义| = <9(6—"知)• Also = 0(e切)by Proposition 

3.9, so |V(/)o| = 如)‘ By Lemma 3.2，the volume element of (M,g) is of 

order 6(打—i)如.We then have V(f)o, and therefore D(/>o, are both in L^(M,g). 

We now find (pi G W^'^ such that == D(po as follows. We define a linear 

map on W^'^ by 

/ � 5功, 5 0 o � . 
Jm 
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Define the sesquilinear form B on W^'^ by 

Jm 

We claim that B is bounded and coercive. 

Let Mp be the region in M bounded by 

Sp and let e C^. On Mp \ fi, 

R = —n{n — 1), so by the Lichnerowicz formula (3.17), Proposition 3.13 and the 

definition of B, 

•Mp\n ，dn 

On O C Mp, 

^ ( { W ,如〉—� 5功,D i p ) + ^ { R + n { n - l ) ) { i j , = j j , , — 

To be precise, H in the two equations above are the mean curvatures of dU with 

respect to g" and g respectively, but since they agree ((3.6), (3.7))，so adding 

them up gives 

(W, V^) - (SV', Dip) + + n{n - =义 

As R = —n{n — 1) outside O, so 

B{iP, = JjDiP, Dip) = (〈々论,%�+ + n(n - 1 佩(/：>〉) 

So B is bounded on W^'"^. On the other hand, as R> —n{n — 1), for i{j G Q 

Jm ~ 
功 2 . 

'M 4 2 

Jm 

>C\ij 

n 
4 

VFl.2-

So B is also coercive. Then by Lax-Milgram theorem, there exists (pi e such 

that = l{ip) for all ip G i.e. 

一如),•)={). 

,M 



Positivity of Quasi-local Mass 60 

Let (p — (pi — (f)o and define (3 — b(p, so we have 

'm 

{(3, Dii) = 0 for all ^ eW' 

This implies Dp = -ny^jS weakly, as D* ^ D + n ^ ^ . 

As argued in [34] Lemma 3.3, (3 G Note also that in the weak sense, 

D(3 = - — S如）G I?. Then 

{ D p , D p } = l { { D + n V ^ ) D l 3 , D p } ~ / � B { " ) 5 / ? , 5 /3� 
, J Mp J^p 

=[(D{D + nV^)P,p)- [ {c{iy)Dp, Dp) 
'Mo 

< S/? 

As / < oo, there is a sequence —> oo such that 0. But 
Jm . p 爪 

then 

D(3 2 = lim / < lim / — 0 

i.e. Dj3 = 0. As D(3 = —ny^/?，we have 

5 0 = = 0. 

Now, by the Lichnerowicz formula (3.17), as Dcj) 二 

\ 
0 < 

[(M 小1 一彻1-cM 

0, 

\ 

= / + 

S/? J So ^ S/j / 
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We claim that there is pm 

above will tend to zero as m ^ 

X) such that the three terms in the bracket 

Consider 

< 01 2)* + D<t>, 2�i 4>1 

As / I W o ^ / 
'm jm 

D(j)Q\̂  and / � 
M 

all finite, there is p̂  such 

that / — 0. Similarly, as / < oc, we can also assume that 
Jm 

{B(f)i,么〉-> 0. (3.21) is proved. 

Now, by Proposition 3.13 and 3.14, 

0 < l i m / ( f i 錢 二 l im / = l i m - / (Ho — 11~)\如 
m—+00 m—>-oo m—>00 Z 

J ̂ Pm ^Pm J ^Pm 

By Proposition 3.15, lim • [ (Hq — H)\(J)o\~ exists, therefore 
” o o 2 7s . 

lim - / {Ho-H)\cl^o\~>0. 
”oo 2 

To finish the proof, by Proposition 3.10, we can let ( = (a. Let 於‘仅，。be the 

corresponding Killing spinor on H^^a and (pa,o = outside H By Proposition 

3.9, |</>a,o|| — |</4，ol�'=—2kX ‘ (a- So the above argument shows that 

—k lim [ {Ho 一 H)X • Ca > 0. 

In other words, lim / {Hq — H)XdEp is a future-directed non-spacelike vector. 
p—DO j � 

• 

3.3 Positivity of Shi-Tarn mass 

Now assume n > 3 and let {ft, g) be as described in section 3.1. Recall that 

Bo{Ri) and 丑•(丑2) are geodesic balls in such that Bo{Ri) C Uq C 
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Theorem 3.16. (cf. [35] Theorem 3.1) Let n > 3 and (Q, g) he a compact spin 

n-manifold with smooth boundary E. Assuming the following conditions: 

1. The scalar curvature R of {Q,, g) satisfies R > —n(n — for some k > 0， 

2. E is topologically a (n — 1)-sphere with sectional curvature K > mean 

curvature H > 0 and S can be isometrically embedded uniquely into 

with mean curvature Ho. 

Then for any future directed null vector ( in M"'^； 

0 = f [Ho - H)W . C < 0 
•/s 

where W ~ (xi, X2,' " ，^n^ (^t) with 

- 1 /sinh^ kR2 
1 < a = cotn kRi + ^ , ^ ^ 1 , 

sinh kRi \s inh kRi 

X = {xi,x2, • •. , Xnt t) is the position vector in and the inner product is given 

by the Lorentz metric. 

Let {(pi,…,(()n) denote the position vectors of points of in M .̂ Let {E^} 

be the foliation of H � 2 \ Oq described in section 3.1. We need the following: 

Lemma 3.17. With the assumptions in Theorem 3.16, let {yi 
n n 

that ^ ^ = 1. Let 0 ~ ^ (piUi. Then for p > 0, 

Vn ) G W such 

Hence 

where 

dp 

ip 
< f^k 

dr 

1 /sinh^ kR, 

.dr. 

sinhkRi \smh kR-i 

(3.22) 
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Proof. The same as in [35] Lemma 3.3 (ii). The position vectors in R"''̂  can be 

parametrized by 

X = y (sinh kr cos Q, sinh kr sin 6z, cosh kr) 
k 

where z e C Then the hyperbolic metric (outside fio) is 

g' = dp2 -h9p = dr2 + k''^ sinh^ r^d炉 + sin^ Oda) 

where da is the standard metric on S几-2. Compute 八暴,悬）in the above two 

forms of g', we have 

dp 
•dO 2」.2(U ( 8 d � 

Since (j) = cos 沒，the conclusion follows. • 

Proof of Theorem 3.16. X can be expressed as 

X = y (sinh(kr)Y, cosh kr) = •i(sinh(A;r)^i, • • • , cosh kr). 
k k 

n 

where = y ^ ^ f = 1. Without loss of generality we can assume that ( — 
2=1 

n 

(Ci’ …，Cn，l) where E C = 1. 
口 1 

n 

Let (j) = y^^VtC, then Lemma 3.6 implies (we omit dEp for convenience) 
2=1 

•[儿{Ho-H)W(p,p)-0 

u-\u — + {n- l)(n — 2)k^)(^sinhkr -acoshkr) 

+ iî o —((^sinh kr — a cosh kr)) 
卸 (3.23) 

—/ u-\u - - \A\^){(psmhkr -acoshkr) 
JBp 2 

+ kr — a cosh kr)) 

— / where 
J^o 
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B — \A\'^){(psinh kr - a cosh kr) 

dr 1 dcf) dr (3.24) 
+ kHM cosh kr-——h - sinh kr— a sinh kr~). 

op k op op 

Here A is the second fundamental form of Sp with respect to the hyperbolic 

metric. Let \a{p, p) be the principal curvature of Hp. Then AQ, = /ctanh A;(/io + p), 

k, or k coth k{iia + p) with fia > 0 ([38] p.255). In particular, 

a<h 

We want to show B < 0. For the first term of B, consider 

(j) sinh kr — a cosh kr < sinh kr 一 cosh kr < 0. (3.25) 

To show that the last term of R.H.S. of (3.24) is also negative, it suffices to show 

dr 1 dcj) dr 
<?̂ cosh kr — + - sinh kr— asiimkr— < 0. 

op k op op 

Recall that o G Oq and r is the geodesic distance from o. Let p G S and 

let 7 be the (arc-length parametrized) geodesic through p which is orthogonal 

to E. Let q be the point on 7 such that a = d{o, q) = 7). Since the last 

term of R.H.S. of (3.24) involves only the derivatives with respect to p, we can 

assume that 7(0) = q and 7(po) — P for some positive po, so that p is the geodesic 

distance from q to 7(/0). Denote the geodesic from x to y to be xy. 

If o then oq and qp forms a right angle at q. That is, o, q and 7(p) forms 

a right-angled triangle on the totally geodesic containing them with sides 

a, p and hypotenuse r. 

The cosine law cosh kr = cosh ka cosh kp implies 

dr cosh ka sinh kp 
dp sinh kr 

> 0. 
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If o = q, then r = p and clearly g = 1 � 0 . So by (3.22), 

0cosh k r ^ + y sinh k r ^ — a s i n h k r ^ 
op k op op 

Qt 1 dv dr 
< cosh k r - h - sinh kr(u,k—) — a sinh kr-~ 
— op k op op 

Qf 
=(cosh kr + sinh kr[fi — 

Qr 

—(cosh kr — sinh kr coth kRi) — 

<0. (as r > Ri) 

Substituting into (3.23), we have 
{Ho-H)W{p,p)-C)>0. 

dp hp 

By Theorem 3.7 and Corollary 3.8, we conclude that 

m ( n x ) = J^{Ho - H)w . C < 0 . 
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