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ABSTRACT

of thesis entitied:
Satellite Remote Scnsing of Snow Cover over Northeast China

Submitted by YAN Su
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong
in December 20010

Climate change becomes the hottest focus in the world at present as the tremendous
increcascs of frequency of cxtreme weathers and natural disasters. It is not the
problem only for govertnment or scientists. Civilians start to concern about this issue
when flooding, snow disasters and earthquakes are happening all over the world. The
need to understand what is going, what will happen and why it happens on global
chmate becomes imperative. The study on snow cover provides us a possibility 1o
fulfill the need.

Changes of snow cover is not ouly a result of global chmate change, but also a
contribute factor to the changes. The distribution and amount of snowtall play cntical
role 1n cnergy balance, heat release and atmosphere circulation. The changes on
snow cover will tead to local, even global changes of climate, not to mention local
disasters.

In this thesis. a systematic study on snow cover over Northeast China (Heilongiiang.
- hlin and Liaoning provinces) is conducted. Firstly, study on the propertics of local
snow has been done by the method of insitu measurement and ground based field
experiments. The result shows that, as one of the most sensitive parameters, snow
gran size varies from 0.2mm to over 3mm. The range of snow grain size is too big to
determine a fixed constant in passive microwave snow monitoring models. The
followed experiments result on snow grain size and reflectance suggests that the
problem can be solved by using a timely snow grain size retrieval model based on
NIR reflectance data. Then the automatic process methods for mass of MODIS and
AMSR-E data are discussed to get high quality input for snow covered area and
snow depth modcl. By using the new process methods. the processing time of a 48
working days’ job can be finished within two working days. After the preparation
works, two improved models for snow covered area and snow depth monitoring are

developed. To compare with MODIS snow products, the SCA monitoring accuracy



of improved model is better. Less errors on snow covered test sites can be found in
improved model in the case study on SCA monitoring over Northeast China.

An initial data assimilation conception is introduced into SD estimation model. In
improved model, snow grain size inérease ratio that calculated by using MODIS
band 4 and band 5 reflectance data are inputted into passive microwave SD
estimation model to determine the value of constant which is changing according to
the changes of snow grain size. Results show that, during the dry snow period, in
new model the RMSE of estimation SD and measurement ones in 5 test sites are
increased 24%, 0.4%, 23%, 65% and 16% respectively. This data assimilation
method provides a bright new way in combination application of optical and
microwave remote sensing technology in snow monitoring.

Although many achievements are obtained in the research, the investigation on snow
properties and the preliminary application of remote sensing on snow monitoring
during the 4 years from 2005-2009 shows us there are still some problems that need
to be solved, they are:

1. Snow depth monitoring dl}ﬁng wet snow period;

2. Snow depth monitoring on ice;

3. Specific snow grain size estimation by using MODIS data.

The future work on snow monitoring should go deeper for better estimation accuracy.
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Chapter ! INTRODUCTION

1.1 Significance of This Research

Climatc changes -are qtiilc familiar Lo all of us nowadays. It is not only a conception
in the book, but the da;ily life we take. The frequency of extreme weathers such as
extreme cold or hot temperatures, abnormal snowfall and hcavy rainstorm increased
dramatically in the past ten years (IPCC 2007, Li ¢f al., 2010). The followed snow,
rain, flood and dry disasters caused great casualtics and financial losses throughdul
the v‘vorld. Climatic deterioration becomes the great crisis that grabs the attention of
thc world. Sincc snow and ice are scnsitive lo the varfations in amount -of
precipitation as well as the increasc of temperature, cryosphere is the most sensitive
indicator to climate change. Therefore, many studics on snow have attempted to
asscss the changes in distribution and quantity of scasonal snow under a warmer
climatc. Bascd on its control over agriculture, ccology and economic activities, snow
cover is important in high and ned-high latitude regions (Lopez-Moreno, 2009).
Morcover, the role snow cover, especially seasonal snow cover, is more than an
indicatot of climatc change. The change of snow cover is the result of global climatc
change, as well as the causc of many severe environmental problems in the following
ways: - : -
1. for local scale N
1} Snow cover is significant for the arca where 1s characterized by a thick
seasonal snow during winter. As temporary water storage, snow cover is the main
watcr resource for agriculture rrrrgation and soil moist in spring in semiarid areas
like Northeast China. The quantity of snow is directly related to food productivity
in thesc arcas. And the insulation function of snow cover prevents the heat
exchange (rom ground and atmosphere. Thus, vegetation could survive through
the cold temperature in borcal zone.
2)  On the other hand, seasonal snow cover is a risk that necds to be monitored
timely in high or mid-high latitude area. The sudden runoff of mecliing snow
raises the risk of flooding in certain arcas. Moreover, in the areas sych as Inner
Mongolia, China, the thick snow cover also indicates lack of lood that will lead

to a big animal product industry disaster. Thus, accuracy snow cover monitoring



result is the efficient input of disaster prediction model, which will be very
important for political decision making and disaster management.

2. for large scale

The high albedo of snow is an important climatological factor that affects the
earth’s radiation budget for scveral months during the year. And the albedo
together with radiation is the primary variables of global changes. For example,
the changes in snow .covered percentages in boreal arcas will icad the extreme
changes of monsoon during the spring, even summer, over south areas.

3. for the study area in Northeast China

This study area, Northeast China, 1s one of main food grain bases of our country
and one of the only three black-soil arcas of the whole world. It means that as
most important characteristics for hydrology and climatology which have great
effects on soil conditions, Snow Covered Area (SCA), Snow Water Equivalent
(SWE) and Snow Depth (SD) are significant parameters that neced to be
monitored in this region. However, seasonal snow cover & runoff models &
algorithms based on remotc sensing data over this area can hardly be found in the
past decades, let alone researches on snow cover information over specific land
cover types and latitudes (Song and Zhang, 2008; Song ef al., 2008; Zhang er al., 2010).
Thus, a sfstemic research on ‘seasonal snow cover monitoring using remote
sensing techniques is an urgent need over Northeast China.

4. potential significance of this study

The methodologies, data processing systems and madels can be generalized to
snow monitoring over North China, even the whole high latitude regions. It is
significant for snow disaster prevention work for the time such as the winters of
2007 and 2009, when snow disasters caused huge loss.

In conclusion, snow-cover information is important for a wide variety of scientific

studies and political decisiap making. It plays a crucial role in food shortage,

resource shortage, disasters prediction & monitoring and global climate changes

. T : .
studies as well as prevention of snow-caused disasters in pastoral areas.

As it is mentioned above, study on snow cover monitoring is significant, especially

for our study area, Northeast China. Relevant rescarch works have been done on

scasonal snow cover estimation and monitoring during the past decades, but efficient

research results over large scale areas were not obtained unti! satellite remote sensing

technology was applied in this field.



1.2 Research Questions and Objectives

Because of the significance of snow, studics on snow monitoring arc conducted over
high latitude arcas, such as Canada, Greenland, Finland and Russia, and niid-high
latitude arcas, for instance, North America, German, and Japan (Biancamaria er «al.,
2008; Fre1 & Lee, 2010; Foster et al., 2009; Pulliainen, 2006:Salomonson & Appecl,
2004; Varhola er al, 2010). Recently, preliminary research results on snow over
Xinjiang and Tibet areas can be found on top-level remote sensing journal (Liang er
al., 2008; Wang et al., 2008; Immerzee ef al., 2009). However, few rescarches have
be done over Northeast China, where is the base of farming and animal husbandry of
China (Zhang ef al., 2010; Song & Zhang, 2008). No systematical study was
conducted over this area, which makes it a missing puzzle of the understanding of the
whole North Hemisphere cryosphere, not to mention the support for decision making
on local agriculture and amimal husbandry. Therefore, in this disscrtation a

comparatively systematical research on snow monitoring over Northeast China will

be conducted to fill the gap.
The objectives of this research are to:

1. Investigate snow cover properties in Northeast China. Based on in situ
measurements and long-term observations, snow propertics, such as snow grain size,
will be well studied.

2. Analyze the sensitivity of snow propertics to snow information via special
designed ground based experiments.

3. Compare the results of snow cover monitoring and in situ measurements to
find the most suitable application of multi-sources satellite remote sensing data. Each
kind of remote sensing.data has its own advantage in snow monitoring under
different environmental conditions. In this thesis, snow cover estimation accuracy of
cach kind of data will be discussed according to different observation periods
(wet-snow period and dry-snow period), land-cover types and other potential
environmental factors to find an optimized combination of remotc sensing data.

4. Investigate the unsolved problems that will bring great effect on accuracy of
snow cover monitoring models.

5. Develop improved SCA and SD monitoring model to provide more accurate

»
snow monitoring results for future applications.



1.3 Framework

The study of snow monitoring based on satellite remote sensing includes several
contents that relate to different research fields: Knowledge of remote sensing theory,

cography, computer science, and the ability of field experiments (see Figure 1.1).
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Figure 1.1 Research Framework

Since there are so many contents that need to be concemed in this study, a clear

research flowchart will be hell;)ful to sort out works that need to do (see Figure 1.2).

Study goal
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Figure 1.2 Research Flowchart
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Figure 1.3 Study procedures
According to study procedures, this rescarch work will be divided into two parts:
1. Field works
2. Satellite remote scusing related works
In the first part, field experiments and long term observations is introduced in details;
while in the second part, the processing of satellite remote sensing data, modeling,
validation and improvements of my monitering modcls will be represented in the
following chapters. Finally, the estimation results on SCA and SD over Northéast

i

China will be analyzed.



1.4 Structure of This Thesis

In this thesis, it will be started with an introduction to snow monitoring using remotc
sensing techniques {Chapter 2}, then follows methodology that will be applied in this
research (Chapter 3). However, not all the existing models work well over Northeast
China, the further study on local snow propertics need to be conducted, which will
help to select or develop a new model. Thus, in Chapter 3, study area will be
carcfully studicd. In Chapter 4, field experiments on snow propertics are designed.
And in Chapter 5, the results of field experiments are analyzed to [ind out a new
sotution for accurate model devclopment. Then, the satcllite remote sensing
application part 1s given. In this part, the idcas on an efficient and accurate snow
monitoring system will be explained in details. As it is known, the base of the whole
model is high-quality input data. Thus, beforc modeling, another important work ts
discussed in Chapter 6. That 1s pre-processing of satellite remote sensing data. The
processing method could be applied into all kinds of remote sensing applications but
not limited in snow monitoring. With the using of high-quality input data, it will
show the way to develop new models, which are more accurate than existing
products in snow monitoring over Northeast China. Finally, it will briefly give snow
monitoring results by using the ncw models and the contribution of this thesis
(Chapter 8).
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Chapter 2 LITERATURE REVIEW

2.1 Remote Sensing Data Applied in Snow Monitoring

In the rescarch of Matson er al. (1986), it was considered that snow cover has been
routinely monitored by using satellite optical remote sensing data since l‘)(;O. But not
until 1978, passive microwave imagery has been introduced into this area (Hall ef al.,
2002). The two kinds of data arc complementary approaches to each other in snow

monitoring for both their advantages and disadvantages.
2.1.1 Optical Remote Sensing Imagery

Generally, there are three kinds of components in snow body: air, water, and icc
crystal, which is the chief constituent. Snow appears to be bright white because that
it has very high reflectance in the whole range of visible region of spectrum. Only
slight difference can be found when the composition ratio of the three components
changes. The highest reflectance will be detected over fresh dry snow, in which no
liquid water is contained. Generally, reflectivity of snow in visible region can reach
90%. With the increase of liquid water content contained inside snowpack, the
reflectivity will decrease. However, water is not the only thing that affects
reﬂectancé of snow. Impurity and snow grain size can produce reactive changes in
visible and necar-infrared bal;ds (Painter et al., 2009; Rees, 2005). Recent researches
show that, the shapes of snow particle do not have decisive effect on spectral albedo
except in the modeling of radiance distribution (Jin et al., 2008; Painter ef al., 2009).

According to snow properties in visible and near-infrared regions, the commoner
approach— to distinguish snow from the other land surfaces is to usc multispectral
imagery (Rees, 2005). Figure 4 shows the spectrum propertics of snow with two

different grain sizes in comparison with optically thick cloud.
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Figure 2.1 Spectral reflectance of optically thick cloud compared with snow cover of two different grain
sizes {adopted from Rees, 2005)

It is clearly shown in Figure 2.1 that in visible region reflectance of snow is very
high, almost 0.9, regardless of snow grain size. The other objects on earth surface
can hardly reach the value, even get near of it. However, because of very similar
components of snow and clouds, especially ice cloud, in the visible range
comparatively high reflectance will be detected in the spectrum of optically thick
cloud. But the reflectance of thick cloud does not drop as much as snow does at
near-infrared region, because there is less water composition in ice cloud. A
maximum difference between cloud and snow can be obtained at wavelengths
between about 1.55-1.75um. Therefore, these two bands of reflectance are used in
snow interpreting: one is in the visible part of the spectrum, another is centered near
1.65um are selected (Massom, 1991; Kénig et al., 2001). By using the difference, it
is possible for us to detect snow from other land cover types and correct the
topographic effect. The usual index to discriminate snow from other land cover types
is called the normalized diffecrence snow index (NDSI), defined in the followihg

NDSI =

form: R, - Ry,
’ R, + Ry 2.1

Where "R, and R,, are reflectance of visible and near-infrarcd bands of remote’

sensing data respectively. Non-‘nally pixels are considered as snow covered when
NDSI value of the pixels exceeds 0.4 (Dozier, 1989; Hall‘ et al., 1995).
Although the value of 0.4 is selected as the threshold in discrimination of snow

generally, it is not universal for all kinds of land-cover types. Research results shows
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that the optimum valuc of the threshold varies (Rees, 2005). Complement
information is required to choose a suitable threshold value. For instance, over the
surface with mixed land cover types, the value of threshold need to be properly
lowered.

According to study results of Li and his tcam, the penetration of photon is only a few
centimeters in visible range (Li et al., 2001). To retricve SD of snowpack by using
optical remote sensing data, indircct relationship between snow depth and optical
properties of snow should be utilized. In Romanov and Tarpley’s rescarch (Romanov
& Tarpley, 2004) they have demonstrated that therc is a relationship between snow
depth and fractional snow cover. This relationship can be applied in SD estimation
over open arcas. It means that the snow covered fraction will change corresponding
to the changes of SD caused by vegetation cover (Baker et al., 1991). Thercfore, the
reflectance of land surface is directly proportional to SD until SD cxceeds the
penetrability of optical remotc sensing signal, namely, land surface is completely
covered by snow. This relationship provides a potential solution to retrieve SD by
using optical satellite remote sensing images.

Although SCA can be obtained, snow water equivalent can hardly be derived by
using optical remote sensing data (Tekel, 2005). Moreover, optical remote sensing
data are greatly affected by cloud, weather condition and illumination. Alternative
should be introduced into snow fnom'toring to make up the deficiency.

Be distinct in penetrability from visible and ncar-infrared ranges, the longer wave,
such as microwave, is unaffected by cloud. Physical characteristics of snow,
including snow grain size, liquid water content, SD, temperature, density, and
land-over types, determine its microwave propertics. Radiation measured at different
wavelengths and at different polarizations enables the extraction of information
rclated to SD and SCA by calculation of the areas with positive SD value because
that the variable responscs of snow in different states (Roshani er af., 2008). In the
next section, Snow monitoring using microwave remote sensing imagery will be

introduced briefly.
2.1.2 Microwave Remote Sensing Imagery

Besides the capability of microwaves to penetrate clouds, the two characteristics of

microwave signals make it possible to be used in snow monitoring: Microwave



remote sensing has the capability to penctrate dry snow, and thc strengths of signals
at different wavelengths vary according to their transmission capabilities in
snowpack. It offers a chancc (o measurc the SD and SWE of dry snow by using
microwave remote sensing data.

The simplest situation in SD and SWE measurcment is to measure the radiation
energy from a flat snow surface. According to diffuse reflectance principle, the valuc
of reflection is controlled by the angle at which the radiation strikes the surfacc and
the diclectric constant of the snow. The greater the difference between the diclectric
constant of snow and that of the air is, the greater the reflection coclficient is.
Because of the low values of the absorption cocfficient, transmission of microwave
radiation through dry snow is generally dominated by scattering. The determining
factors of scattering include diclectric constant ol the surfacc, its roughness
_propertics, and the geometry of the scattering (Rees, 2005). Among all of the
scaltering signals that passive microwave scnsors obtaincd from snow, surface
scattering is only a part of it. The major contributing factor to passive microwave
remote sensor from snowpack is volume scattering by snow particies. With the
increasing with SD, the brightness temperature of snow at microwave range
decreases. However, the decreasc which is considcred as a result of volume
scatlering by snow particles can only becn observed for dry snow (Hallikainen,
1984).

Both surface and volume scattering contribute to tolal backscattering observed by
microwave radiometers. The difference between the two contributing parts 1s the
change along with incidencc angic. Strong pcak can be found near normal
incidence for surface scattering, while a very slow variation with incidence angle is
shown in the measurcment of volume scattering. Thus, it can be concluded that
volume scattering dominates at large incidence angles except necar zero, which is
tends to be dominated by surface scaticring (Rees, 2005).

The radiometric properties of snow were shown based on ground-based
mcasurements. Strongly affected caused by snow grain size, show depth and
underlying surfaces are found during the cxﬁcriments. The microwave propertics al a
the frequency range of 5 to 100 GHz of single and multi-layers snow laycrs arc
discussed by Weise (1996) and Christian Mitzler & Andrcas Wiesmann (2007).

One of these physical models is Microwave Emission Model of Layered Snowpacks

(MEMLS), in which horizontal layers of snow are considered stacks. o[ horizonlal
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layers. Snow depth, correlation length, density, liquid water content and temperature
are all taken as effect factors and characterized in cach layer. To apply multiple
scaltering radiative transfer theory in this model, layer interfaces arc assumed as
planar. In volume scattering part, nulti-flux approach is used. Thus the absorption
and scattering coefficients are functions of correlation length, density, frequency and
‘temperature. '

For gencral physical model, the up and down welling streams of snowpack radiation

can be calculated via the following equations:

~[d—T'(z)=—k“T*(z)+F’(z)+ka

az

s

— T (z2)=k, T (z2)-F (2)-k,T

dz ' ' 22

Here:

k, =k, /cosO, k,is scattering cocfficient
k, =k,/cosO, k,s absorption coefficient

u, =cosB, , 6, is refraction angle of layers
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k, =k, /cos0,, k, isvolumescattering cocfficient matrice

5

For MEMLS, the modgl is designed for j-layer snow cover (j = 1, 2,... n). The
boundaries between air-snow and snow-snow are planar (for a given frequency f,

polarization p, and incidence angle 0 =0, ) ( Mitzler & Andreas Wiesmann, 2007):

(1). the snowpack brightness temperature Ty,



(2). the reflectivity at the bottom of the snowpack sy and the temperaturc at the

bottom Ty,

(3). the interface reflectivity on top of cach layer s,

(4). the internal reflectivity rj, cmissivily ¢, transmissivity t, temperature T; of cach

layer due to volume scattering and absorption. Encrgy conscrvation requires r; +

¢ Hi= 1,

(5). the downwelling (sky) radiation, given by the brightness temperature Ty,

(6). the layer-thickness dj and the numbecr of layers n.
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Figure 2.2 A multi layer system with a wave incident from above at an angle (),r s {(adopted from Christian
Matzler & Andreas Wiesmann, 2007)

From Figure 2.2 it can be concluded that the radiation of snowcover can be described

via the following equations( Mitzler & Andreas Wiesmann, 2007):

A;=1B;+t,C, +¢,T,
B;=S,, Aj+(l—sj.,)Di_,
C;=(1-5))A;, +s,D,
D, =B, +rC;+¢T,

the parameters are shown in Figure 2.3.
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Figure 2.3 The parameters of a selected layer j (adopted from Christian Matzler & Andreas Wiesmann,
2007)

When Aq =Ty and Dy=Tp, the brightness temperature of snowpack is ( Matzler &
Andreas Wiesmann, 2007):

T,=0-s)D, +s5,T, 2.5
Although microwave images can been used to monitor snow cover and SD without
restrictions of cloud and light conditions in large scale, their usability in some certain
kinds of local areas such as mountainous basins is limited because of their low

spatial resolutions (Tekel, 2005).

Compared with passive microwave data, active remote sensing data can provide finer

épalial resolution (e.g., Quikscat data with spatial resolution of 4.5km x 4.5 km while

SAR can provide high resolution image with spatial resolution of 1m).

As it is mentioned above, passive microwave sensors can not detect shallow dry

snow, which is one of the reasons that passive microwave techniques are always

underestimating SCA. However, Monique Bernier and Fortin discussed the potential

of times Serics of C-Band Synthetic Aperture Radars (SAR) data in shallow dry

snow detection (Bernier, 1998), and cven before that, the capability of SAR in snow

cover monitoring was analyzed by Goodison et al. (1980). C-band SAR was used as

feasible tool in snow state determining. Furthermore, in cold regions space-borne

microwave radars shows its advantage of regardless of cloud cover and lighting -
conditions in seasonal snow cover monitoring (Koskinen et «l.,-1997). The problem

in wet snow detection now can be solved by using C-Band data (Luojus et al., 2004).

And at the same time, the possibility of using Ku-band data, such as Quikscat, was

discussed by Nghiem and Tsai (2001) on global and regional scale respectively.
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Linear rcgrcssio;l and cxponential regression of in situ data and Quikscat data are
alternatively methods in SD and SCA estimation.

Hallikainen and his research team used data acquired from the QuikScat sensor in
- SCA calculation during the Snowmelt Period (Hallikaincn et al., 2005). The data is
obtained from the SeaWinds satellite at 13.4 GHz, vertical and horizontal channels,
with a spatial resolution of approximately 22.5 km and incidence angle of 46 for the
horizontal channel and 54 for the vertical channel.

Pixcl-wise percentage of snow-covered surface i1s calculated by using the

" : o g ) ; i 3
backscattering cocfficient @ against reference valucs for (a) wet snow (minimum
value at the onsct of snowmelt) and (b) snow-[ree ground (immediately after the end
of snowmelt) (Hallikainen et al., 2005):

1] {

o O-g Un.‘n
SCA=100—2—% v,
Q. —0 ;
B WE I . 2.6

where subscript ‘g’ refers to snow-free ground, ‘obs’ referes to present observed
value, and ‘ws, min’ refers to the minimum valuc for wet snow.

By doing this, real-time monitoring of SCA 1is possible without requiring
measurement of snow-[ree ground to obtain the reference value (Hallikainen er al.,
2005). '

More recently, neural network method (NNW) is introduced into SWE retrieving
models tChang & Tsang 1992; Tsang et al., 1992) based on passive microwave data.
By using NNW, an acceptable result can be obtained, but large numbers of in situ

measurement data are needed in NNW establishment and validation.
2.2 Effects on Estimation Accuracy

Remote sensing imageries provide us the possibility to monitor land surface from the
space. However, it is such a long distance from satellites to the earth that errors
caused by obstacles and modeling are inevitable. The accuracy of SCA, SD and SWE
estimation is affected by several factors, among which, land cover types are
considered as onec of the most significant and unavoidable effects (Kurvonen &
Hallikainen, 1997). The most common problem to all approaches in snow monitoring
is forest effect because lhe;t much of the world’s seasonal snow cover occurs there
(Rees, 2005, Walker & Goodison, 1993; Vikhamar & Solberg, 2000; Klein et al.,

1998). Researches on vegetation cover as a second explanatory variable in snow



monitoring have been conducted (Forsythe, 1999; Stahli et al., 2002). By doing this,
they attempt to dcvcloptmore accurate models in forested areas (Stahh et af., 2002).
In Rott and Miitzler (1989) study, it is concluded that the underlying surface should
be well studied to understand the complex representation of snow.

Land cover types, which will significantly affect SD and SWE estimation results, arc
vegetation (include forest and agriculture), and large water body, such as rivers or
lakes. There arc still some other land cover types that will influence estimation
results, for example, the bared land that covered by depth hoar or frozen ground, and
complex mountainous terrain. In the following several sections, the effects of land

cover types on snow information retrieval will be discussed in turn.

2.2.1 Vegetation

Researches show that it is essential to develop algorithms and models to elin;inatc
vegetation effect on snow monitoring. The optimum microwave response to SWE
was 100 percent higher for farmlands than for forested areas. The necessary of
reducing effects of vegetation on snow monitoring is considered in regional snow
studies. However, it is not considered yet in global snow studies (Kurvonen &
Hallikainen, 1997). On g,rassl::mds~ and croplands, studies were conducted and
research results show that the SD/snow fraction rclati(;nship is most pronounced
(Romanov & Tarpley, 2007). Since previous studies show that flat grasslands and
croplands do not have significant effect on SD and SWE estimation, in this section,
effects of forests on optical and microwave remote sensing techniques will be

discussed.
2.2.1.1 Effects of Forest on Optical Remote Sensing

In forests it has been demonstrated lower estimation accuracy will be found in snow
mapping than that in non-forested areas (Vikhama & Solberg 2000). chcsco and
Miller (2007) in their study conclude that to improve the mapping of snow n
forests, the effects of trees should be accounted for, while SCA may be
underestimated in forested areas (Solberg et al., 1997, Tedesco & Miller, 2007). In
those models for SD estimation with snow reflectance, as it is mentioned in last
section, the underestimation of snow mapping will lead to undercslin;alion of SD. To

increase estimation accuracy, vegetation index need to be considered along with



snow index. For instﬁ}ice, snow mapping from MODIS data uses bands 4 and 6 (0.56
and 1 .64um, respectively) to determine whether snow is present or not, and
additionally uses a vegetation index calculated from bands 1 (0.64um) and 2 (0.86un)
to improve detection accuracy in dense forests (Klein et al., 1998). By doing this,

underestimation of snow cover area will be eliminated to some extent.
2.2.1.2 Effects of Forest on Microwave Remote Sensing

Because of lower reflectance of vegetation, SCA and SD estimated using visible
range will be underestimated. Similarly, vegetation radiation properties are quite
different from those of snow. The backscatter of snow will be affected by the
proportion and underlying land cover, especially for shallow snow covered regions
(Rees, 2005). Over non-forested areas, the reported accuracy range of SWE that
derived from microwave remote sensing data is from Smm to 45mm. When it comes
to forest area, the range incre.ases by 5-10mm Thus, in the percentage expression, the
error increases 40-100% corresponding to increasing range of SWE (Singh & Gan,
2000; Pulliainen et al., 1999; Derksen et al., 2003; Tait, 1998). For mostly forested
locations Kelly e al. (2003a; 2003b) suggested an estimation accuracy of 50%-70%
for microwave SD retrievals models. .As to satellite remote sensing, there is much
more uncer_iainty in SWE and SD retrievals because that the microwave signals from
the other surface-emitted microwave radiation are too large to be neglected, besides
the contribution of SD, snow grain size, density and stratification (Romanov &
Tarpley, 2007). =

The reason for the significant effect of forest to SD and SWE is the disturbing that
trees and leave caused to microwave signals.

Everything on the surface of observing area contribute to the total microwave
measured radiation. In open prairies, snow cover exists between the ground and air.
In the simplest case, ground under snow layer is the only radiation source.
Theoretically, changes of signal are caused by different of snow states. While in the
forest, the total microwave signals are complex. For f;xamplc, in a forest area, the
contribution of canopy in absorption, emission, and scattering of microwave energy
is mixed with that of snow. It is not easy to distinguish which part of emitted energy
is from snow, not to mention to drive snow information from the complex scattering

environment (Foster ef al., 1991; Singh & Gan, 2000). In the research of Hallikainen
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(1984). a measurement on forest cffects show that a lincar inverse relationship
between the residual brightness temperature at 37 GHz and the thickness of snow
cover up to 80 cm under the influence of trees can been found. There is the
possibility that forested areas lower the difference between the brightness
temperatures at 18 and 37 GHz in comparison with the values observed for farmland
(Hallikainen, 1984).

Further researches on this issuc show that it is more complex than undcrestimation.
Afier a detailed analysis of the forest effect by classifying category of trecs, results of
both an underestimation and an ovecrestimation of SWE can be found (Andreadis &
Lettenmaier, 2006; Tait, 1998). Some rescarchers believe that it is the different tree
densities that cause the underestimating or overestimating. It means that SWE in high
tree density regions or linear algorithms under deep snow conditions will bc
underestimating. Othcrwise, overestimating SWE will be found in low trec density
regions (Armstrong et al, 1993). However different conclusion was drawn from
analysis of Tail’s for both high and low density forests. In this study, the effect of
forest i1s concluded as: estimation model will underestimate SWE when density of
tree is relatively high or low. Thus tree density should be taken into account in SWE
analysis (Tait, 1998). Similar results were found in Tedesco’s study over
comparatively open areas. While in dense vegetative covered area, the relationship
scems to be weakened (Tedesco et al., 2007).

Thus, more specific categories of tree and their densities should be found out to get
better results. Different approaches were developed by researchers to reduce forest
effects on estimates of the SD or the SWE:

In order to account for the masking effect of the forest cover, lots of studies were
published. The improvement of NASA algorithm (Chang er af., 1987) by introducing
forest corrective factor into the original model is well adopted (Foster ef al., 1997).
Furthermore, a more specific rescarch on retationships for different forest types was
conducted (Goita et af. 2003). For differcnt remote sensing data, the combination of
multiple microwave bands was studied to reduce forest cffect (Tait, 1998; Kongoli er
al., 2004).

Therefore, improved SD and SWE reirieval algorithms over forest areas were
developed:

For dry snow, as it is noted that attenuation of microwave radiation is dominated by

volumetric scattering above 15 GHz, the difference between a high scattering



channel and a low scattering channcl has been considered in most SWE retrieval
algorithms. Finally, 18 GHz and 37 Glliz are selected in SWE and SD retricval
because that there is a linear relationship between the difference of these two
channecls and SD or SWE. Generally horizontal polarization is more sensitive than
that of vertical polarization. Therefore, SWE retricval models based on passive
microwavce data were created (Rees, 2005):

SWE =K, +K,(F, -V,.)
SWE =K, + K (I, — I, )1-4,)

SWE =K + K[V, Vi, Y =Wy, o =Py, ) 2.7

where K1 to K10 arc coefficients, VI8SWE and V18SWE=( arc vertically polartzed
TB of 18 GHz at snow-covered and snow-free areas, AF 1s the fraction of forest
cover, Ta is the air temperature, and ATUNDRA and AW arc fraction of tundra and
water body area within each SSM/1 footprint, respectively.

Goodison and Walker (1995) assigned K1 and K2 as —2.07 cm {offsct) and 0.259
cm/K (slope) for the application of SSM/I data. A year later, Chang er al. {1996)
emended the expression and valued K3 and K4 by —2.5 em and 0.48 ecm/K for the
negligible forest fraction. With an increase in the forest fraction, K4 tends to increase
slowly and reaches a peak valuc as 0.96 c;/K while AF is increasing from 0 to the
corresponding peak valuc of 50%. According to the increasing mode of K4 and AF,
it 1s clearly that there is a linear relationship betwcen the two parameters, which
preseat the forest effect on SWE estimation. The rescarch that had been done by
Hallikainen (1989) in Finland medified the algorithm with K5 and K6. For northern
the values for the two coefficients are —10.87 cm and 0.87 cm/K, and changes to be
—9.8 cm and 1.01 cnv/K for southern Finland, respectively. Here another relationship
between the increase of forest and SWE is represented as K6, which is increasing

associated with forest cover.

SWE =K, ,(Hy—Hy;)/(1-A,) 2.8

In the research of Chang er al. (1996), a mean snow density of 300 kg/m3 is given as
standard parameter for SWE models. Foster et a/. (1997) applied the standard density
into his algorithm and proposed K10 as cocfficicnt of improved Chang’s algonthm.
- For North America the value of K10 is 0.477 cm/K and for the inland area of Eurasia
the value of K10 is 0.234 cm/K.
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Tait (1998) emended the expression into two typical underlying surfaces:

K3=129cm/ K

2.9
Ka=03lem/ K

for area with non-forested, non-mountainous terrain of no depth-hoar and no melting

SNow.

K3i=204em/ K

210
Kd4=-013cm/K
for a forested basin area.
In 1991 Chang and Chiu corrected the expression again for [oresi-covered arcas;
SWE =u(Tg, ~ Ty + S (T = T)) 511

Where T' is the brightness temperature measured for a snow-free forest-covered pixel
and f1s the fraction of a pixel covered by forest. The coefficient a can be determined
empirically. It is following the same opinion that Hallikainen applicd in the
expression in 1984.

MSC algorithm classified land cover types into morc detailed catcgories: open,
deciduous, coniferous, and sparse forest. For different categories diffcrent values of
the coefficients are used. Table 2.1 shows the research results of algorithms

gencratcd for coniferous, deciduous, and sparsely forested landscape regions (Goita
et al., 2003).

Table 2.1 Algorithms applicable to coniferous, deciduous, and sparsely forested landscape regions

Cover type SSM/I SWE algorithm

Open SWE=-20.7-2.59[(37V-19V /18]
Coniferous forest SWE=16.81-1.96(37V-19V)

Deciduous forest SWE=33.5-1.97(37V 19V) B
Sparse forest SWE= 1.95-228(37V 19V)

2.2.2 Large Water Body

2.2.2.1 Lake and River Nearby

The absorption of dry snow is 10" times lower than that of liquid water (Ulaby &

Stiles, 1980b). Thus, 1% of water content increasing will lead to 105% increase of
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absorption thcoretically. While n the practical experiments, remotc sensing
estimation accuracy of SWE i1s within 10 or 20 mm. However, serious
underestimates (30mm or more) can occur in arcas where many lakes arc present or
in areas of cxceptionally high SWE (Derksen et «f., 2003, Watker & Silis, 2002),
which mcans large water body such as lakes will greatly aftect remote sensing
estimation of SWE. One of the important rcasons for the crror is the higher hquid
water proportion in snow caused by water body because of its higher lemperature and
moisture, which will cause the increase of hquid water in snow body.

Rescarches show that small amount of liquid water has no directly effect on
reflectance in visible and near-infrared ranges. The presence of liquid water will
gather snow particles into a larger cluster and the changes of snow grain size can be
manifested in 1.03pwm and 1.24um. Even in visible region, a shghtly decrease in
reflectance will be found. However, the presence of even very small amount of liquid
water does have a great effect on microwave range (Rees, 2005). That is 1o say, thc
presence of wet snow (liquid water increases compared with dry snow) decreascs the
significance of volume emission, and increases the effective emissivity (Stiles &
Ulaby, 1980a and 1980b). As a result of the increasing of liquid water content in
snow body the brightness temperature increases dramatically at 37 GHz or higher
channels (Hofer & Matzler, 1980; Hewison & English, 1999).

Researches proof that passive microwave radiation is inversely with the SWE (Kunzi
et al., 1982; Foster et al., 1984). Water body will cause the changes of liquid water
content or temperature changes of underlying surface (when water body is frozen and
became the underlying surface). Both of water content and brightness temperature
are sensitive to SWE detection. Therefore, water body near or under SCA will
greatly affected SD and SWE estimation. Taking water cffect into account, the

calculation of SWE can be described as following expression:

SWE = K [ (Aronpra W = 1,)+ K (A NT )+ K 212
Here K7, K8 and K9 are determined based on the assumption that microwave
emission from frozen water bodics is related to air temperature {Ta). Comparison of

SWE cstimated from these algorithms with ground measurements showed a better
estimate of SWE (Gan, 1996).



2.2.2.2 Lake Ice as Underlying Surface

As a land cover with great cffect on remote sensing signals, the other situation of
lakes should be considered, that 1s lake ice being underlying when lake 1s frovzen.

The physical properties of lake ice and ground arc quile different. Estimation results
of airbormne passive microwave radiometer show that the bnghtness temperatures at
37 GHz can exceed 19 GHz with snow covered on the underlying surface. {t is a
phenomenon has never been obscrved over terrestrial surfaces. According (o the
cxisting research results, the brightness temperatures ol snow covered ground-fast ice
in shallow tundra ponds and floating ice on deeper lakes on 1s not known (Andreadis
& Lettenmaier, 2000; Tedesco er al., 2004).

In Singh and Gan’s {2000) study, the absorption and emission of microwave
radiation of ice layer on land surface and within the snowpack increase the difficulty
of SD dctection, which will lead to uncertainty of SWL estimation, because that
crustal layers to increase the emissivity at high frequencics relative to low {requency.
The energy deterioration during icc layer transmittance should be introduced into
snow monitoring model to improve estimate of snowpack cmissivity by considering
thickness (Grody ef al., 1996). Unfortunately there is no calculation methed for ice
layer thickness based on remote sensing data yet. Thus, the correction of lake ice for

snow monitoring based on passive microwave is still an unsolved problem till now.
2.2.3 Bared Land

Under different natural environmental conditions, especially temperaturc and soil
moisture, bared land can be different statuses. And the physical propertics, such as
emission of radiation, arc greatly different. Effects on SD and SWE estimation is
unpredicted if ground statuses arc uncertain. One of the most significant descriptors
affected SD and SWE estimates is depth hoar crystals, which are formed by the
transfer of vapor from particle to particle along a strong temperaturce gradient within
the snowpack. Compared with that of non-metamorphosed snow particle, the extent
of scatiering radiation of particles inside snow body is much greater al microwave
-range. And the growth of depth hoar crystal with larger cxtent of scattering makes it
beyond description by using normal snow monitoring models, which arc applicable

when snow grain size are normal, because of the increasing of scattering
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cross-section and the lowering of microwave brightness temperature caused by depth
hoar particles in snow body. Thereforc, the depth hoar crystals that grow large
enough can significantly impact the microwave signal (Tail, 1998),

Singh and (Gan (2000) conducted similar study on depth hoar. Experiments on depth
hoar cffect on microwave reiricval of snow cover parameters were conducted.
Results show that a difference of 20°K has been observed between two snow packs
of similar depth. The difference may be caused by thicker depth hoar inside one
snowpack. Anyway, it 1s very difficult to accuratcly estimate the influence of depth

hoar on microwave scalicring (Rees, 2005).
2.2.4 Mountains

The geomelry surface under snow cover also plays an important role in the
interaction of electromagnetic radiation, which will cause detection crror (Recs,
2005). Howcver, a digital clcvation model of the terrain can be applied into
moniloring models where the shadows presence to resolve the underestimation

problem (Baral & Gupta, 1997).
2.3 Snow Cover Monitoring Researches in China

Most of thc snow monitoring application of remote sensing techniques in China
started from early 1990s and focus on Xin jang, inner Mongolia and
Qinghai-Tibetan Plateau.

Optical remote sensing data, such as AVHRR and MODIS, were applicd into
monitoring of snow properties in Xinjiang area and the results arc also compared
with in situ observations during the four winters in northern Xinjiang. Comparison
results show that the performance of MODIS 1s betler than that of AVHRR in snow
monitoring over Xinjing arca. As it noted that in the area with SD lcss than 0.5 cm, it
is not possible to detect snow cover with MODfS data. Therefore, one of the most
important factor that lower the SCA estimation accuracy of MODIS product 1s SD.
Analysis shows that with the SD =3 cm, the overall accuracy increases, vice versa,
Another influence factor in the accuracy of MODIS snow cover maps is land cover
types, which just proof thc previous rescarch results. Although daily SNOW cover
products (as know as MODI10A1) is severely affecied by cloud cover, the validation

results show that 8-day composite products of (A.K.A. MODI0AZ2) can cffectively
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map snow in most casecs. To be more flexible in composite period selection, a system
that allows uscr to determine monitoring period was developed based on MODITOAI
for regional snow-caused disasters monitoring over Xinjiang arca in their study (Ma,
2008, Liang el al., 2008;
Wang et al., 2008). Tao Che applied the modilied Chang’s modcl in the Tibet
Plateau (Che et «f., 2004; 1.1 & Che, 2007), and found that the monitoring results by
using SMMR data significantly overestimated SD of Qinghai-Tibetan Plateau. At the
same time, Armstrong e al. found that snow free land marked by passive microwave
moniloring resulls can be labeled as SCA by using optical remote sensing data
(Armstrong ef al., 2002; Armstrong et al.. 2004). That may bc cause by the existence
of large-scale depth hoar. To solve the issue, GIS tcchnique was introduced into
snow monitloring to classify land cover types of SCA by Kc and his research team
(Ke et al., 1998). Che and his team applicd SMMR data at 18 and 37 GHz in lincar

regression and got the regression form:

SD = 0T8T, 1~ T,.1)) )is

With the same method, SSM/I data at 19and 37 GHz were applied in SD estimation

and better results were obtamed.

SD = 0-66(7};“ - 7}:.3?) 2.14

The standard deviation is 5.99 cm which is .23 cm less than that of SMMR.
However, a few studics have been donc on seasonal snow cover monitoring in
Northeast China (Song & Zhang, 2008; Song et al., 2008; Zhang er al., 2010). It is

no doubt that a study on snow monitoring over this areca 1s in urgent need.



Chapter 3 METHODOLOGY

3.1 Study Area

Study area in this research is Northeast China, where is one ol the three biggest food
grain base and black-soil areas on the world. Becausc of the geographic position and
cnvironmental conditions, agriculture and animal hushandry arc major pillar
comerstone industry in this region. The arca 1s covered by snow for 5-6 months per
year. The growth of vegetation and animals is dircctly affecled by temperature and
watcr sources, which is mainly from melting snow in the spring. Thus, the abnormal
changes of snowfall and distribution will cause incstimable losses in the two lields. It
makes snow monitoring extremely important here. In this chapler, a briefly
introduction is given on physical gecography of Northcast China. The tnformation is
cssential {or selection of snow monitoring models.

The eastern rcgion of Inner Mongolia, Heilongjiang Jilin, and Liaoning, provinces
are collectively called Northeast China (sce Figure 4.1). Northeast China has a size
of over 150,000 sq km. But in this study, most data collection and processing is

focused on Heilongjiang, Jilin, and Liaoning Province.
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Figure 3.1 Northeast China (38° -52" N and 118°-134° E)
The study arca is characterized by diverse land cover types. The ranges of vegetated
areas are {rom temperate cvergreen conifer-deciduous broad icaf mixed forests,
deciduous broad leaf forests, woodlands to scrublands in the Changbai Mountain, the
Daxing’an and Xizoxing’an Mountain Ranges, grassiand or meadow in the middle,
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and agricultural lands (e.g., the Liao River Plain, the Songnen Plain and the Sanjiang

Plain) (Song et al., 2008). East boundary of Northcast China is roughed out by an

irrcgular coast linc. Rivers and lakes are distributing throughout the region (sce

Iigurc 4.2).

In summary, the arca is mostly covered with forests. The typical land cover types in

study arca are:

1. Several kinds of forests (Changbai Mountain, the Daxing’an and Xiaoxing’an
Mountain )

2. Agricultural and meadow lands (the Liao River Plain, the Songnen Plain and the
Sanjiang Plain)

3. East boundary of Northeast China is roughed out by an irregular coast line.

Rivers and lakes are included in the region.
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Figure 3.2 Land cover types of Northeast China derived from MODIS_NE_2000 Data Set (Provided by
Dr. Kaishan Song)

Because of land types within the region, it is not surprisingly that agriculture and
forestry are the biggest industries. Considering that winter in this region lasts morc
than six months and almost half a year the ground surface 1s covered by snow, which
greatly affects the products of agriculture, forestry and animal husbandry, the study

on snow monitoring is quite significant for this arca.



3.2 Methods

There arc two m.ajor research directions in remote sensing monitoring of snow cover.
One focuses on the spectrum range of microwave, which is at wavelength of 1.5 mm
to 3cm. Since 1970s, researchers started to discuss the capability of passive
microwave data on snow cover detection. Among these studies (Choudhury, 1979;
Chang et al., 1982; Chang et al., 1987; Chang et al., 1991; Kelly et al., 2003a; Kelly
et al., 2003b; Ashcraft & Long, 2005; Rees, 2005; Koenig & Forster, 2004), Chang
and Foster’s NASA retrieval algorithms used to calculate SD and SWE according
microwave charactcristics arc widely accepted and introduced into snow monitoring
work in China (Li et al., 2007).

The theory is based on Geometrical configuration of the three layer medium (see

Figure 3.1).
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Figure 3.3 Three layer medium

A liner regression can be used to describe the relationship between SD and difference
of brightness temperature.

MEMLS and HUT models that were devcloped by Bem University and HUT
respectively, provide a better retricve result under the condition of lesser
transcendental information (Seidel & Martinec, 2004), which means the two models
can be taken as complement of NASA’s algorithms .

The second direction is the usage of optical remotc sensing data (Rees, 2005;
Derksen, 2008; Salomonson, 2004). MODIS data were utilized in snow cover
monitoring in Xin jiang, China.(Wang et al., 2008). Generally, normalized difference
of snow index (NDSI) can be used to distinguish snow and non-snow covered area

(Rees, 2005; Ashcraft & Long, 2005; Armmstrong et al., 2004).
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3.2.1 SCA Monitoring Methods

3.2.1.1 SCA Monitoring Using Optical Remote Sensing Data

As it is mentioned in Chapter 2, NDSI can be utilized to discriminate between
non-snow and snow covered area. Originally, the method to calculate SCA can be
described like this: check cach pixel of image and count on the ones with NDSI =
04.

For different optical remote sensing data, different channels are selected to calculate
NDSI.

For high resolution imagery, such as Landsat TM and ETM+ data, the reflectance in

bands 2 and 5 (0.57um and 1.65pm respectively) were sclected as R, and R,
respectively (Dozier, 1984 and 1988; Vogel, 2002). Landsat TM and ETM+ data are
sclected for local SCA monitoring because the comparative finc spatial resolution.
To improve estimation accuracy, digital clevation model (DEM) of the study area is
suggested to be applied in SCA estimation modcls to correct shadows that caused by
topography (Baral & Gupta, 1997).

For moderate resolution imagery: AVHRR with special resolution of 1.1km and
MODIS with special resolution of 250m, 500m and 1km respectively are considered
suitable for intermediate scales snow monitoring. In this thesis, MODIS data are
sclc-l:ctcd as optical remote sensing source for SCA monitoring and snow grain size
detection. '

Table 3.1 shows the calculation channcls for different optical remote sensing data.

Table 3.1 Channel selection in NDSI calculation for different optical remote sensing sensors

Sensors R, R .

Landsat TM and ETM+ R, R,

AVHRR ) - R. ]
e z - _ . R

As it is discussed in Chapter 2, 0.4 1s selected as the threshold in discrimination
generally. However, a lower value needs to be assigned as threshold over forest area.

With the increasc of footprint, the likclihood that mixed land cover types that
contained in one pixel is increased with the increased difficulties to determine
threshold.



Previous studies show that, the largest effect factor is forest. Considering that canopy,
even dead branches, will affect measurement spectrum in visible region by lowering
NDSI, a corrcsponding lower threshold nced to be deflined over forest area.
Therefore, before the determining of threshold lor NDSI, forest detection needs to be
conducted.

For MODIS data provide perfect channels for both NDSI and normal difference
vegetation index (NDVI) detection. With the consideration of vegelation effect, snow
covered land is determincd by the following conditions: NDSI, NDVI and water
eliminating condition.

The criterion for snow cover over not denscly forested area with MODIS data is:

NDSI =204 AND R2=0.11 AND R4 =010 31

Here the thresholds in bands 2 and 4 help to eliminate cffccts of water, which can
also show high values of NDSI. This algonthm generally performs well, though it
seems to overestimate snow covcer in areas or patchy snow (Hall er al., 2002; Rces,
2005).
When the area is identified as forested by using vegetation index that calculated from
bands 1 (0.64um) and 2, the delcection conditions changes to be (Klein er al., 1998):
NDSI =02 3.2
In Rces’s overview, there is another approach to solve the mixturc pixel problem.
That is the use of spectral mixture modeling based on high spectral resolution. Nolin
et al. (1993) successfully applied the model by using airbornc AVIRIS data (Nolin et

al., 1993). However, data sourcc is still a problem for large scale application.
3.2.1.2 SCA Monitoring Using Microwave Remote Sensing Data

Because of coarser resolution (e.g., the footprint of the 19GHz band of the SSM/1 is
70km x 45 km; and that of 18.7 GH~ band of the AE L2A-2 is 51 km x 29 km),
passive microwave data can be utihzed in SCA monitoring for large scale. In
comparison with non-snow covered ground, the emission of radiation properties of
snow cover obviously vary with [requency, based on which, multi-frequency bands
in microwave ranges have been selected in SD and SWE retricval modcls (Rees,
2005). Grody and Basist et «f. (Basist et al., 1998; Grody & Basist, 1990) in their

scrics of researches introduced a mcthod to identify scattering materials and then to
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eliminate thosc with similar scattering property but not one of snow cover by the
following steps (Recs, 2005):
1. Identifies a  scattering medium by  using the  judgement  of

(1), ~ Tys, > OYOR(T,,, - T,,. >0},

2. And then indicates precipttation by using

(T,,, > 25TYOR(T,,, — 0.49T, . > 165),

3. The third step s to climinate cold desert by
(T, ~ Top > VIV AND(T,, — Ty, < VOYANI(T,;, — Ty, < 10)

4. Finally, indicates arcas of frozen ground by

(T, =T, <BYOR(T,, —T;, <BQYANIXT,, . —T,,, > 7).
[f passive microwave data arc used alonc, a problem with the removal of
prccipitation still exists because that snow cover and precipitation have very similar
scattering properties (Standlcy & Barrett, 1999; Negn ef al., 1995; Bauer & Grody,
1995). It is suggested that thcrmal infrared daia should be utilized as onc of an
auxiliary dataset (Rees, 2005).
Another way to achieve SCA is to calculate the pixels where SD is greater than O (or
a practical threshold for a certain region). The place where snow exists can be
considered as SCA. By dong this, SD estimation algorithms or modcls should be
performed first. For example, followed the SD calculation algorithm of Chang,
Foster, and Hall, Hall et af. (2002) brought out a modification algorithm on snow
detection. The calculation method of SD will be detailed introduced in next section.

The determining conditions of snow is:

SD > 80(in mm) ANDT,,, <250 ANDT,,, <240 3.3
The third approach for SCA estimation involves several steps (details can be found in
Remote Sensing of Ice and Snow by Recs, 2005, pp. 137):
1. Estimating the land surface temperature from passive microwave data,
2. using this temperature to deduce the effcctive emussivity at different frequencies
and polarizations,
3. then applying a sel of rules to the cmissivity to determine whether snow is

present.



3.2.2 SD Monitoring Methods

3.2.2.1 Optical Remote Sensing Data Applied in SD Retrieval

L}

Optical remote sensing data, which have no penetrability as microwave ones, can not
be utilized in SD estimation directly (Stahli er al., 2002). However, the indirectly
method was worked out to estimate SD with a snow depletion model (Cline er al.,
' 1998). The model relates the SCA to its mean depth and SCA to runoff during the
melt season (Rees, 2005). As it is noted in Chapter 2, DEM is regresses as altitude
information to improve the estimation accuracy of snow depletion model (SDM)
(Konig et al., 2001). However, the environmental conditions arec too complex while
the reflectance is affected by diverse contribution factors, the accuracy of SD

retrieval by using satellite optically remote sensing data is questionable.
3.2.2.2 Microwave Remote Sensing Data Applied in SD Retrieval

Since 1970s, passive remote sensing started to be applied in SD estimation. A series
algorithms and models were developed, included: NASA algonthms originally by
Chang; Microwave Emission Model of Layered Snowpacks (MEMELS); HUT -
model and Advanced Integral Equation Method (AIEM) model (Chao et al., 2006).

1. NASA Algorithms

This algorithms was originally. developed by Alfred T. C. Chang and his research
group in 1987 (Chang et al., 1987) according Mei scattering theory. The difference
of 18 GHz and 37GHz was calculated and results show that there is linear correlation

between SD and the difference of brightness temperature. That is:

SD=1.5%T, s —T,,) 3.4
Where 7,,, and T, ,,are H polarization brightness temperature of 18 GHz and 37

GHz of SMMR, respectively. The Brightness lcm;;,-craturc of H polarization is
selected but not that of V polarization because the former is more sensitive to the
differences of SD (Chang et al, 1987). The model can be applied only over the
regions with SD lower than 1m and higher than 2.5cm.

Considering the grain size differences and depth hoar, Chang’s algorithm was

emended like this (When grain size is larger than 0.4 mm):
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SD:a(T.‘b.w"?;:.s?) 35
Where a 1s a cocfficient that will be given different values in different regions (e.g.,
1.59 in North America and 0.78 in Eurasia).

And if we take forest cffecls into account, lurther modification should be performed

(Forster er al., 1997)

a( ?.;,,13 __ ?:«_n )

1.00- f

3.6

However, SD and SCA undcrestimation was found by using this model because
shallow snow can not be detected by using microwave data (Robinson er al., 1993;
Tait & Armstrong, 1996; Armstrong et al., 2002).

AMSR data were introduced into SD rctrieval model since 1999. For better
application, Chang’s algorithm experienced another improvement, in which

precipitation, grain size, forest and wet snow were taken into account:

SD = b(AT,) +cAT, 3.7
where AThis the H polarization brighiness temperature difference of 19GHz and
37GHz, b and c are two empirical coefficients, which are functions of grain size and
proportion respectively (Chang & Rango, 2000; Kelly et al., 2003a).

However, in the algorithm only aged snow particles are considercd. When new snow
occurs, the physical properties are quite different from old snow layers. The accuracy

of this algorithm 1s not reliable anymore in the circumstances.

2. MEMLS

MEMLS was developed by University of Bern. It 1s considered as a model for
passive microwave in multilaycr snow monitoring, with an applied frequency range
of 5~100 GHz. The onginal model can not be applicd in all kinds of regions because
it is a regression results of absorption coefficient, efficient Dielectric Constant,
reflectance and rcfractive index and snow density and all these parametcers are
obtained through in silu measurement in certain area. Mitzler (Milzler, 1994,
Mitzler & Wicsmann, 1999) improved the model by extending its application scope.
Research results show that SD can be approximalely described with lincar function

of brightness temperature of 19and 37 GHz when SD is less than 50cm.

3 HUT Model

K3



Helsinski University of Technology (HUT) semi-empirical radiation transfer model
was dcvcloped by Hallikainen and his research team (Pulliainen er al., 1999,
Pulliainen & Hallikainen, 2001), and latter improved by extending its application
into forested areas (Wiesmann & Mitzler 1999; Roy et af., 2004; Pulliainen, 2006).
In Pulliainen’s further research, it is proved that by applying ground based
observations into non-lincar modcls, cstimation accuracy of SWE and SD is
significantly improved (Pulliainen, 2006).

Using the HUT model, SD was estimated with the comparison of simulation data and
remotc sensing observation brightness temperature.

To sum up, although more accurate cstimation results could be obtained by using
local models, such as HUT and MEMELS, NASA algonthm devcloped by Chang er
al. is still the most popular one because it universal applicability and requirement on
ground based obscrvation. Thus, timecly snow monitoring over large scale, even
global scale is possible by applying NASA algorithm. And passive microwave data
become the favonte with researchers in SD retrieval models. Table 3.2 shows the
often-used algorithms.

However, the global model for SD retrieval is still need to be improved in cstimation

accuracy and for different land cover types.
3.2.3 SWE estimation using remote sensing data

SWE can be calculated by using SD, SCA and snow density as well as estimated
from remote sensing cstimation model. SWE retrieval models are similar to SD
retrieval models. Linear relationship between the difference of 18 and 36 GHZ and
SWE amount is found because that volume scattering reduces the brighiness
temperature of the radiation cmitted from the underlying ground and the attenuation
at different frequencies is different (Recs, 2005). NASA’s series algorithms werc
developed based on the relationship between brighiness temperaturc and volume
scattering, However, the extract approach can only be utilized on dry snow. Table 3.3
shows some of SWE estimation algorithms. These gencrally use the difference in
emissivity between two frequencies, typically 18 (or 19) GHz and 36 (or 37) GHz
(Rees, 2005).
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Table 3.2 Primary Algorithms to obtain snow properties by using passive microwave data

Scnsor | Algorithms
[ _H_lj.s-gé—brﬁi-gﬁl_r{cs;s;Wtcmpcralllres of 1811 and 3711 GHz to discriminate dry and ;e_lln?;
SMMR snow over Northern [femisphere (Chang, 1982: Chang e af.. 1987.Choudhury |
1979; Rees, 20035)
SD retricve by using difference between brightness tr:nﬁ}c_ralures of 18H and 37H
SMMR Gllz (Chang et af., 1987, Rees, 2005)
. [ Uses brightness lempe}_alures of 18Il and 37i1 Gl in SD estimation with the |
SMMR considering of fractional boreal forest cover (Foster ¢ al., 1991)
Utilizes 19V, 37V, and 85V data to determine European SD. Incluston of 85-GHz |
SSMA channel improved identification of thin snow cover (Chang ef al.. 1991; Derksen et
al., 2008)
Brightness temperature of 19 and 37 GHz are unlized in SWE model over fractional
SSw forest type (Goita ef al., 1997)
SMMR A modified model of NASA algorithm (Foster ef af., 1997)
AMSRAE | U5 AMSR-E in Global Snow Area and SD estimation (Kelly e af., 2003a; Kelly er
al., 2005)
Table 3.3 SWE estimation algorithms based on passive n';icrowave data
Sensors | Algorithms
Uses brightness temperatures of 18H and 3711 GHz for SWE estimation (Chang er
SMMR
al. 1987)
Uses brightness temperature difference between 18V and 37V GHz with considering
SMMR of forest effect (Pulliainen & Hallikainen, 2001)
. Estimation SWE with various frequency and polarization combinations and subdivides
SSM/I Northern Hemisphere regions based on snow state (Tait, 1998)
denve SWE for Northem Finland based on snow emission nversion algorithm (l(elg1
SSMrt et al., 2005; Seidel & Martinec, 2004)
. Retricves SWE by using brightness temperatures of 19V and 37V Gliz for North
SSMi American Prairie (Walker ef al., 1995)

In the following research, the existing algonithms and models will be applied on

study area firstly. And then in situ measurcments will be used as validation data to

find out

the drawbacks of thesc models. Based on the results new models will be

developed or modification will be applied onlo existing models to obtain morc

accurate estimation results over study area.
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3.3.4 Researches on Effects of Estimation Accuracy and

Corresponding Algorithms

Although various algorithms were developed for SCA, SD and SWE retricval,

estimation accuracy is not satisfying cnough, especially those over local scales. Snow

paramcters, with the water content and state (frozen or thawcd) of the underlying

ground will affect retrieval accuracy. For inslance, the responscs of remiole sensing

signals to SWE and SID are higher for open arcas than for {orested arcas (Tait, 1998).

The existing researches on cffects of land cover types show that among ail the land

cover types, forest is considercd as the most influenced one. Becausc of elfects of the

liquid water proportion in snow body on penetrability of microwave, effects of water

body can not be ignored. Not much rcscarch on cffects of frozen ground under

shallow snow can be found, however, according to thc cxperimental results over

Northeast China, the effects do exist and may cause the undcrestimation of SD.

Topography effects on SD and SWE estimation over mountain arcas can be reduced

by using DEM. Table 3.4 shows a bricf summary of effects of different land cover

types according these researches mentioned above.

Table 3.4 Summary of effacts of land cover types on SD and SWE estimation

Land cover types effects Memo
Both  overcstimation  and [ NDVI will be applied to
Forest o ,
underestimation acquire accurate results
Special test sites will be
Water body Underestimation . selected to figure out effects
of lake ice on SD
Depth hoar may  cause
overestimation and  frozen | Snow grain size study will be
Bared land

ground probably lead to a

underestiimalion

Mounlains

conducted to reduce the effect

Underestimation ovcr‘d_cc-:'p

SNOW drea

DEM éii)_plicati011 mé;_

chiminate the cffect

_ln--{l;é_ﬁ)llowing rescarch, special strategiéé ;:_)_r‘élgoril_h]ns will be de-vélopcd to solve

the problems that caused by cerlain land cover types listed above to improve

gstimation accuracy.
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Chapter4 FIELD EXPERIMENT AND IN SITU DATA
COLLECTION

4.1 Objectives of Field Survey

As it is mentioned above, the aim of this rescarch is to solve rescarch problems that
arc dircctly related to t.hc most important factors that hinder the practical usc of
satellite sensing data to monitor snow propertics.

The objectives are to:

Investigate snow cover propertics in Northeast China. According to the daily
measurement of snow properties in the test sites, the difference of snow structure and
crystal particie between Northeast China and other high latitude arcas will be well
described and found. The more suitable modified simulation models tn snow cover
monitoring in Northeast China can be choscn by using remote sensing data. Since
passive microwave data could only provide coarse resolution images, multi-source
rcmote scnsing data fusion techniques are needed to obtain a finc grid monitonng
result.

Analyze the sensitivity of snow properties to snow information. Different channel
signal is sensitive to the changes of different snow properties. in order lo improve the
accuracy of snow cover monitoring in Northeast China, most suitablc remote sensing
data and algorithms should be found from the sensitivity analysis.

Compare the results of snow cover monitoring and find the most proper application
of different kinds of remotc sensing combination data. Each kind of remote sensing
data has its own advantage in snow moniloring under different environmental
conditions. In this project, snow cover estimation accuracy of each kind of data will
be discusscd according different observation periods, land cover types, topography
and other potential environmental factors to find an optimized combination of remote
sensing data.

Investigate the unsolved problem that will bring great effcct on accuracy of snow
cover monitoring. Huge crrors that almost recach 200% sull exist in the cstimation
results of snow cover monitoring models. Besides those ol snow propertics, the
environmental impacts could not be underestimated. The frozen soil or ground is an

important issue that will greatly affect the accuracy of SD and SCA estimation. Froze
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soil or ground has a very similar cmission and scaitering propcrties as snow itself. In
order to distinguish the two land cover subslance, multi-polarization, multi-sources
and multi-channel remote sensing data will be applied in the project (o retricve SCA,
SWE and SD.
To accomplish this, two kinds of in situ data arc nceessary. They are:

1. Insitu data of snow propertics collected from (ield experiments;

2. Daily in sitv data acquired from weather stations and testing sites.
The first kind of in situ data includes information derived by using optical and
microwave equipments, natural properties, weather conditions, land surfacc types
and other relative information. Thesc in situ data will be used in investigation and
analysis of snow cover propertics, snow structure and crystal particle over Northeast
China. To get thesc data, field experiments need Lo be designed carefully. Morcover,
repetitive experiments are conducted to eliminate experiment errors. This kind of
data is used to understand snow propertics of our rescarch area, analyzc¢ the
sensitivity of different wavelength to snow status.
The second kind of in situ data is long time serics clementary snow parameter, such
as SD, precipitation, locations, temperature, elevation and other relative information
of our testing sites. We can collect these data through a long term observation. These
data arc mainly applied in model validation and improving.

In this chapter, in situ data collcction methods are introduced.
4.2 Field Survey and Field Experiments

To obtain snow properties of Northeast China, field experiments on optical and
microwave propertics are conducted. There is less constraints when microwavce
experiments were conducted because that hight conditions do not have such huge
cffect on experiment results as it does to optical remote sensing. Thus, during the
experiment design, onc of the most important rules is to consider thc naturc light
conditions. For this reason, only a few spectrum data collected during the two
months-long ficld work are applicd in the final construction of grain size retrieval
model. In the following section, the design and conducting of optical remote scnsing

cxperiments will be introduced.



4.2.1 Optical Remote Sensing Experiments

The distinet difference optical property of snow in visible and ncar-infrared regions
makes it possible 1o classify snow from the other land surface, based on which we
can distinguish SCA from non-snow covered arcas. In visible wavelength, the
measured rellectance 1s mostly sensitive to snow purity while in near-infrared and
shortwave-infrared, all of grain size, temperature and humidity have significantly
elfect on the spectrum curve. And among all these cffect factors, snow grain size has
two observable absorption pcaks ncar 1.03wm and 1.25wm. Generally, newly (allen
snow has a finer grain size in comparison with that of sedimentary snow because of
metamorphism and sintering. Part rcason for the decrcase trend in reflectance in
wavelengths beyond aboul 0.8um is dust, which increases the impurity of snow,
while the growth of grain sizc is another contributing factor. These properties of
snow arc important indicator in snow monitoring for hydrologic and climate models.
Understanding of the rclationship between snow's physical properties and the
resuiting changes on spectrum will greatly helpful in accuracy improvement on these
models (Dozicr et al, 2009). The following experiments werc designed to
understand optical properties of snow.

To figure out optical propertics of snow over Northeast China, the following threc
experiments arc designed:

1. experiments on grain size
2. experiments on mixed pixel

3. experiments on SD
4.2.1.1 Experiments on Grain Size

The goal of this experiment is trying to quantitatively and qualitative analyze the
elTect of grain sizc on snow rcfleclance. As we know, there arc two kinds of methods
that can increasc the grain stzc of snow in the nature:

1. Metamorphism caused by gravitation

2. Refrozen after mclting

Generally, the larger size of grain caused by refrozen can only be found on the
surface of a snow pack. However, grains beth on the surfacc and in the snow body

can be changed by gravitation. The longer it lakes, the larger the grain size will be.
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To understand the optical propertics of both of the two kinds of snow structure, twe

scries of field expcriments are conducted.

Experiments on Metamorphosis of Snow Grain Size Caused by

Gravitation

Design and Methods

The scrics experiments are designed to figure out the effects of different sizes of

snow grain on snow spectrum.

Testing sites selection

Snow grain size and spectrum with different grain sizes arc collected in 6 testing
sites in 4 cities (sce Figurc 4.1). The experiments trip was started from west of Jilin

province to the east.

120°0'0"E 130°0'0"E

SDODIDIIN_ _5DODIDIIhI

40°0'0"N+ —+40°0'0"N

120°0'0"E 130°0'0"E

*

Figure 4.1 Selected test siles during field experiment trip from west to east Jilin
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The SD of out testing sites is decrcasing gradationally, which provides us the chance
to find out the effect of SD on grain size metamorphism under gravity. Figure 4.2

shows the status of testing sites.

C

) Figure 4.2 Natural State of test sites
(a) —(d) are pictures of testing sites which werc taken in Changling, Songyuan,
Changchun and Jilin respectively. Here, the underlying surfaces of bl and b2 are
cropland and ice on Songhua River.

The maximum SD in the 4 test cities are 3cm, 13cm, 13cm and 22cm respectively.

Testing timK
To get the best nature light source for our experiments, we need to start at 10: 30 and

finish before 14:30.

Experiments Methods

-+

The in situ data we need to collect in these experiments include SD, temperature,

snow grain size, GPS-based location and spectrum. Wetness of snow is one of effect
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factors on reflectance, especially when the surface temperature is higher than melting
point. To obtain all these data, instruments need to be prepared before the
experiments.

a) Electronic map: since we took a comparatively long way from one testing sites to
the other, maps arc important for our ficld trip. Maps of highways, clectron map of
land covers are selected via intemnet.

b) Recording form: to list out all the parameters should be record in the field survey

(See Table 4.1).

Table 4.1 Field survey record

Date Recorder

Record No. Snow depth

Grain size photo No. Sample Photograph No.

Spectrum No. Surface Temperature

Ground Temperature Snow Temperature

Wetness Land cover type

¢) Instruments préparation:

Global Positioning System (GPS): horizontal accuracy is 3-5 m, for recording the
accurate location of each sample site;

Digital camera: for recording the sampling objects;

Ruler and tape: accuracy is lmm. For measuring the SD and the length from
sensor to objects respectively;

Weatherglass and geothermometer/JM624u Digital thermometer: for
measuring the temperature of air, snow surface, snow body and ground. The
accuracy of these Weatherglass and gco-thermometer is +1 ‘Cwith Working
temperaturc of -40°C ~ S50°C. For JM624u Digital thermometer; the range is
extended to -199.9 ~ 199.9 C and the accuracy is +0.1 C
Spectroradiometer: for acquiring spectral reflectance of snow, it can measurc the
reflectance for wavelengths from 0.35pm to 2.5um. The réﬂcctancc curves arc
calculated using the reflectance from a white plate of barium sulfate powder.

Snow fork: for the measurement of the electrical parameters: resonant frequency,

attenuation and 3-dB bandwidth. The measuring results are used to calculate
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accurately the complex dielectric constant of snow. Further, the liquid water content
and density of snow are calculated using semi-empirical equations;

Snow grain size measurement device: for the measurement of snow grain size. The
device is composed of electron microscopy at high magnification, notebook installed
with packaged image processing Software, and photographic paper sacred to snow

grain size measurement (see Figure 4.3).

Figure 4.3 Snow grain size measurement
Experiment procedures ]
The experiment can be divided into two parts. In the first part, difference detection of
new fallen snow and sedimentary snow is discussed. In Northeast China, the grain
size of new fallen snow is smaller in comparison with that of scdimentary snow (see
Figure 4.2). On 17-12-2009 and 19-12-2009, we conducted two field experiments in
Changchun. It snowed on 17-12-2009, which means that via the measurement we can

get spectrum and grain size for both new fallen snow and sedimentary snow.

Figure 4.4 Grain size for both new fallen sn;::w and sedimentary snow [
(a) shows the grain size of new fallen snow and in (b) sedimentary snow gr in is
measured.

The second part of the experiment was conducted in the following 3 cities:
Changling, Songyuan and Jilin. In the rest four testing sites, testing snow packs are
straight-cut to find out l'hc relationship between grain size and spectrum in different
snow layers on transverse scctions. For each layer, spectrum and grain size were
measured before the snow on this layer was removed. .
Figure 4.5 shows snow grain sizes from different layers measured (from top to

bottom: (4) to (f)) on Songhua River in Songyuan city.
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Figure 4.5 Snow grain sizes obtained from different snow layer on river ice

Experiments on snow grain size affected by melting and refrozen

Design and Methods

When the temperaturg is higher than melting point, snow starts to melt on the surface.
The small melting snow grain will refroze into a larger one when temperature falls
below the freezing point. It is difficult to simulate the fluctuated temperature in
nature. On the other hand, although we can control temperature in an isolated
laboratory, the artificial snow layers are far different from those in nature.

Thus, field experiments are absolutely necessary. Long term observation will be

one option, however, it will take more than one cycle of temperature fluctuation

. Testing sites selection

In the experiments, high power experiment instruments to heat the air like sun does.
Thus two testing sites are selected in the suburb that is ncar Northeast Institute of

Geography and Agroecology (N El'GAE) in Changchun.

Testing time
To get the best nature light source for our experiments, we need to start at 10: 30 and
finish before 14:30. For those experiments that do not need sun as their light source,

the experiments were conducted not until 18:00 to climinate the effect of natural

light.



Experiments Methods
a) Recording forms: to list out all the parameters should be record in the field
experiments (see Table 4.2 and 4.3).

Table 4.2 Record for regular information

Date ' Recorder [
____.____.ﬂ__. ) a | ) Refrozen Spu,—lrum : T
Testing site No. '
No.
Grain size photo No. | Time

Testing site Surface
Surface Temperature

Temperature
' Table 4.3 Record for spectrum '
-~ - B e -
| Date [ Recorder
Testing site No. Heating Spectrum No.

Grain size photo No.

Heating Time

T(;glﬁlg site Surface

| Surface Temperature

Temperature

Parameters in the two tables are similar. However they are used in (-lifferent—iicrioas'j
of the experiment. Table 4.2 is the form used for analysis of refrozen grain, while
Table 8. is used to understand the properties of wet snow.

c) Instruments preparation:

Weatherglass and Non-Contact Infrared Thermometer: for measuring the
temperature of snow surface. The accuracy of these Weatherglass and thermal
infrared thermometer is £1 C; . . )
Spectroradiometer: for acquiring spectral reflectance of snow, it can measure the
reflectance for wavelengths from 0.35um to 2.5wn. The reflectance curves are
calculated using the reflectance from a white plate of barium sulfate powder;

Hot air generator: to hcat snow of testing sites in the first part of experiment, the
power of the two hot air generators are 1500Kw and 1000kw;

Snow grain size measurement device: for the measurement of snow grain size, the

device is composed of SMZ-B4/T4 zoom cxpander Stercomicroscopé (Table 4.4),
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notebook installed with packaged image processing Software, and photographic
paper sacred to snow grain siz¢ measurement,

Table 4.4 Parameters of SMZ-B4/T4 zoom expander stereomicroscope

Zoom Ratio ‘ 1:6.5

Magniﬁcation“ “““ 7-45 -

Zoom Range 0.7<-45- ]
| Working distance 110mm o 1

Interpupitlary distance _ 54-76mm

Diopter regulation +5 diopter

Input voltage 220V, 50H~

Vertical fluorescence illuminator LED cold light illuminator

Transmission illuminator LED cold light illuminator

Lowel Pro-Lamp Interior Light Source Assembly/ A128932: for lightiﬁg in the
second part of expcriment, which were conducting in the night to avoid obvious light
sources and effects of water vapor. It could be used both in the visible and near

infrared regions. Two lamps were used to avoid shadows.

Experiment procedures

In this experiment, we try to figure out how does the spectrum change when

temperature or wetness changes, and how does the grain size change caused by

melting and refrozen affect the spectrum.

In nature, melting and refrozen processes will happen only under certain

environmental conditions, which make it hardly to acquirc repeatability data for

analysis. Thus, imitated experimental environment is needed.

In the first part, we tried to figure out snow spectrum of different grain size that

formed by natural variation of temperature. To do this, we need to:

1. acquire the spectrum of new fallen snow ;

2. compare the spectrum of new fallen snow with that of accumulated snow;

3. compare the spectrum of undisturbed snow with that of disturbed snow with
footprint on it.

The second step is to simulate cnvironmental temperature change. The freezing and

thawing process generated under artificial temperature controlling in an open

environment will make the changes of grain size and wetness of snow in control to a



certain extent. In this part, we try to establish the rclationship between grain size and

spectrum.

Hot air generators were used to simulatc the rise and fall of tempcrature. To avoid

heat exchange, heating 1solation materials are used as adiabatic walls and balfle. The

experiment procedure of this part is:

1.
2.

S

8.

9.

10.
11.
12.
13.
14.

Seclect a plot on which is not destroyed by footmarks;

Gage the temperature of snow surface with glass thermometer and Non-Contact
Infrared Thermometer;

Measure the grain sizc of surface snow;

Calibrate Non-Contact Infrarcd Thermometer with glass thermometer;

Heat the air above testing plot with hot air generator;

Adjust heating aititude and power to get a better result according the change
speed of air temperature;

Measure the temperature of snow surface with Non-Contact Infrared
Thermometer;

Acquire snow spectrum while snow thaw;

Stop heating to refreeze snow;

Acquire the spectrum of refrozen snow;

Measurc the grain size of refrozen surface snow;

Compare the spectrum of artificial refrozen snow and natural ong;

compare the snow grain sizes before and after freezing and thawing process;

Compare the snow spectrum of different grain sizes.

However, the effects of water vapor are still existing 1f the experiments conducting in

the

day time. Thus, a derivative experiment is designed for eliminating these

influence factors:

1.
2.
3.

Experiment time for derivative experiment is changed to 7 pm, when it is dark.
A pair of Lowel! Pro-Lamps was used as light source in stead of sunlight.
Because of the big power of Lowel Pro-Lamp, in the derivative experiment the
two lamps replace hot air generators as air temperature controller, which makes

the control of experiment easicr and more efficient.

Figure 4.6 shows the grain size of snow under different antificial conditions.
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© (d

Figure 4.6 Experiments on the relationship between snow grain size and spectrum (20091222, night)
(a) and (b) are snow grain size photos of original snow surface and refreczing snow
taken for the day time experiment. (c) and (d) show the grain size of original snow

surface and refreezing snow taken for the derivative experiment.
4.2.1.2 Experiments on Mixed Pixel

Mixed pixel is the common issue people met in snow monitoring based on satellite
remote sensing data. Misjudged pixel occurs in the area of complex land cover types.
To solve the problem, one approach is the use of mixture modeling (A.K.A. spectral
un-mixing of imagery with high spectral resolution). Pixels in the image representing
"end-members" that are believed to represent homogeneous land cover types is
identified. Pixels in the image are assumed to consist of lincar mixtures of these pure
land cover types, of which reflectance spectra are determined. Thus, the reflectance r;,
observed in spectral band i is modeled as (Reeé, 2005)

N

rn=Y fir;+e 4.4

izl
Where f; 1s the fraction of land cover type j present in the pixel, ry is the band-1 reflectance of
land cover type j, and €; is the error in the linear model. N is the total number of land cover
classes. The spectral un-mixing process involves determining the set of coefficients f] that

minimize the sum of the squares of the errors e, (Rees, 2005).
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Design and Methods

Here in our expenments, we atm to acquaint the spectra propertics of mixing pixel on
main land cover types in Northeast China. Therefore, the testing sites of the scries

experiment are sclected in several cities where typical land cover types can be found.

Testing sites selection

The series experiment was conducted in five testing sites located in Changling,

Songyuan and Jilin respectively (Figure 4.7).

Figure 4.7 Test sites located in Changling, Songyuan and Jilin
The underlying surfaces of testing sites are pasture, corn land, river ice, rice land and

sapling land.

Testing time
The optimum time for optical remote sensing experiments is 10:30-14:30 in

Northeast China. In this series experiment, we aimed-for that time frame.

Experiments Methods f

We attend to study the spectra properties of mixing pixels composed with snow and a
certain major land cover type. Consequently three kinds of spectrum arc locked on:

1. Spectra of snow;

2. Spectra of a certain bared underlying surface;

3. Spectra of the mixture of snow and underlying surface.

To acquirc the information, we need to preparc the following instruments and

documents.
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The experiments on mixing pixel and grain size arec performed in turn. The in situ
data we need to collect in these experiments include SD, temperature, snow grain
size, GPS-based location and spectrum. Wetness of snow is onc of effect factors on
reflectance, especially when the surface temperature is higher than melting point. To
obtain all these data, instruments need to be prepared before the cxperiments.
a) Electronic map: before we start the trip, we nced to locate the plots with topical
underlying surfaces. The map of land cover type over Northeast China is necessary.
Besides, the maps of highways and urban map are prepared.
b) Recording form: to list out all the parameters should be record in the field survey
(see Table 4.5).

Table 4.5 Record for snow grain size

[B&I&! | Recorder T

- == e e ——— — - — = i -

i Record No. Altitude of sensors |
!

| Sample  Photograph
' No.

| A e 5

l Memo

l
| Spectrum No. 1
!

Underlying surface

c) Instruments preparation: B S
Global Positioning System (GPS): horizontal accuracy is 3-5 m, for recording the
accurate location of each sample site;
Digital camera: for recording the sampling objects;
Ruler and tape: accuracy is Imm.) For measuring the altitude of sensor to objects;

Spectroradiometer: for acquirinig spectral reflectance of snow, it can measure the

L4

reflectance for wavelengths from 0.35#™ to 2.5#™ . The reflectance curves are
calculated using the reflectance from a white plate of barium sulfate powder;

- Flag: to mark the testing plots.

Experiment procedures

In this experiment, the difference between the spectra of testing plots with different
proportion of component parts is compared. By doing this, the relationship between
reflectance spectral and snow proportion ca1'1 be deduced, and the relationship will be
applied in snow map accuracy improvement for the models based on satellite optical
remote sensing data, such as MODIS. In order to achieve this aim, the following

experiment steps are designed:
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2.
4.

Select testing plots;
Measure spectra of snow surface, bared underlying surfacc and mixing area;
Mark the plot;

Take photos of testing plots;

Figure 4.8 shows the mixture status of testing sites.
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Figure 4.8 Snow mixed with corn land(a) and vegetation(b)

.

4.2.1.3 Experiments on SD

Remote sensing of snow is based on the idea that is to use measurements in specific

wavelength regions to estimate the physical properties of the snow. To detect SD

with optical remote sensing data, models arc generated based on the following two

theories:

The relationship between snow grain size and SD, based on the assuming that grain

size increases with depth, SD can be retrieved from grain size (Dozier et ql., 2009)

" In the visible part of the spectrum, snow reflectance is dominated by the absorption

of dust, soot, or algac inside snow pack. Snow grain size is not as sensitive as it is in
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near-infrared range. Therefore, to cstimate snow grain size, near-infrared range
should be sclected (Dozier et al., 2009). However, the growth of snow grain size on
the surface layer of a snowpack is not only determined by SD. The metamorphism is
complicated, which involve lémperaturc gradicnts, vapor gradients, .and many other
environmental effects.

Another hypothesis bases on spectrum of thermal infrared. SD may have influence
on heat emission in snowpack. To study the changes at thermal infrared range, there
may be a chance to calculate the changes of SD.

However, both of the two scientific hypot:hcsizes are still in its infancy. In this study,
the experiment is designed to dig out the relationship between SD and its optical
propertics.

The series cxperiment is embedded in the other optical experiments. The parameters
in all the three experiments are corrclative. Thus, these experiments were performed
in turn. The same preparing work and procedures that mentioned in above
experiments also can be used for this one. Furthermore, to obtain direct information,
three testing plots on a snow slope are compared in this experiment, which are on the
top, half-way up the slop'e and the foot of the slope. The SD of the three plots are 26

cm, 20cm and 15cm respectively (see Figure 4.9).

B ]

Figure 4.9 Snow surfaces with different SDs

4.2.2 Field experiments on Microwave Properties of Snow

As it is noted in literature review and methodology section, passive microwave snow
cover algoﬁthmldevelopment efforts have been varied, with focus on the retrieval of
SCA, SD, and SWE (Pulliainen /& Hallikainen, 2001; Tait, 1998; Derksen et al.,
2005; Pardé et al., 2007). Among all these studies, it i's of vital importance to

estimate SD. Since 1970s, passive remote sensing started to bc applied in SD
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estimation. A series algorithms and modcls were developed. Among these models, -
the following four are most popular: NASA algorithms originally developed by

Chang’s group; MEMEL model; HUT model and AIEM modecl.

However, the accuracy of SD estimation is still affected by several other factors,
among which, land cover types arc considcred as onc of the most significant and
unavoidable effects as it is discussed in Chapter 2 and 3. Therefore, in the
experiments design, we focus on the relationship between microwave radiation
signals and snow status, and try to find out the effect factors on snow information

estimation:

1. Microwave Radiation Characteristics and SD;
Effects of underlying surfacc on Microwave Radiation Characteristics;

Microwave Radiation Characteristics and snow density/SWE;

= BN

Microwavc Radiation Characteristics and SCA.

Here in this thesis, SD estimation over different underlying surfaces was focused on.
Thus the design and data analysis for microwave radiation characteristics and SCA,

snow density and SWE will not be covered in the following sections.
4.2.2.1 Microwave Radiation Characteristics and SD

Design and Methods

The series experiments are designed to figure out the sensitivity of 7,,, and T, ,,

to SD.

Testing sites selection

7 testing sites in 4 cities (see Figure 4.10). In the 7 testing sitcs, Jingyue district
belongs to Changchun, while three testing plots with different underlying surfaces

were selected.
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Figure 4.10 Location of test sites for passive microwave experiments

_ The series experiment is lasting for more than one year. The cxperiment selected in
Jingyue District of Changchun was conducted in 2009. The rest part of the
cxpcrin';cnt is conducted in Changling, Songyuan and Jilin in 2010 (see Figure 4.11).

The underlying surface, SD and snow grain size are varicd in different testing piots.
AR R R

e — = o

(2010)

¥

Figure 4.11 Natural stages of snow in test sites

(2009) -(2010) are two group photos of testing sites which were taken in Changchun,
Changling, Songyuan and Jilin respectively. Here, the underlying surface of thesc
testing sites ineludes pasture, glebe, lake or river ice, paddy fields, bush ficld and
grove. ’

Testing time ,- o
The advantage of microwave remole sensing is its penetrativity and independence on
light source. It makes us cx}.cﬁd our working.tizﬁc from sunshine period to the whole

day in comparison with that of optical remote sensing experiments.

-
+ +
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Experiments Methods

In this experiment, we mainly focus on the brightness temperature of 18GHz and
37GHz. To get accuralé measurement results, we will do the following prepare work:
a) Electronic map: since we took a comparatively long way.from one testing sites to
the other, maps are important for our ficld trip. Maps of highways, clectron map of
land covers are selected via internct.

b) Rccdrding form: to list out all the parameters should be record in the field survey

(see Table 4.6).

Table 4.6 Snow information record for passive microwave experiment

D_alc [ Recorder

S S — -1 —-

Time

Grain size photo No.

Surface Temperature

Snow depth

Snow Temperaturc

Sample Photograph No.

Ground Temperature

e . e
Wetness Land cover type |

Polarization Incident Angle.

BT(18.7)

' BT(36.5)

¢) Instruments preparation:
Global Positioning System (GPS): horizontal accuracy is 3-5 m, for recording the
accurate location of each sample site;

Digital caniera: for recording the sampling objects;

Ruler and tape: accuracy is Imm. For measuring the SD;

Cryogenic thermometers and Geological thermometer: for mcasuring the
temperature of air, snow surface, snow body and ground. The accuracy of these
'geo-ther{nometcr is £1 ‘C with Working temperature of -40 °C ~ 50 C.

Snow fork: for the mcasurcment of the clectrical parameters: resonant frequency,
attenuation and 3-dB bandwidth. The measuring results are used to calculate
accurately the complex diclectric constant of snow. Further, the liquid water content

and density of snow are calculated using semi-empirical equations;
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Snow grain size measurement device: for thc mecasurement of snow grain size. The
device is composed of electron microscopy at high magnification, notebook installed
with package image processing software, and photographic paper sacred to snow
grain size measurement; )

Electronic halam.:e and snow shovel: for the measurement of snow density. The
accuracy of Electronic balance is 0.05g.

Test-tube: for the measurement of snow water equivalent. Quantitative snow with
natural state was put into the test tube or beaker for melting, then the snow water
equivalent II;:::m be calculate by counting the watcr Icft in the container. The accuracy
of test tube is 1ml.

Microwave radiometer: for the measurcment of brightness temperature of 18 GHz
and 37 GHz. The height of microwave radiometer shelf is 1.5m. Liquid nitrogen is

used to calibrate the microwave radiometer.

o

Experiment procedures

In the experiment, the following steps are conducted:
1. we will calibrate microwave radiometer with blackbody;
2. change the angle of shelf to obtain the brightness temperature in different

incident angles. The range of incident angle is from 30 to 60°;

3. change the polarization to get the polarized properties;
4. measure the environmental temperature synchronously;
5. survey th;:'snow grain sizc via SMZ-B4/T4 zoom expander stercomicroscope;
6. measure snow density and SWE.
4.2.2.2 Effects of underlying surface and snow grain size on SD
“estimation

Design and Methods

The effects of underlying surface are one of the hottest rescarch focuses in snow
monitoring study, because the influence result of thesc effects is still imponderables.
Meanwhile, the effect of snow grain size on SD cstimation is-widely accepted by the
researchers. However, it is still a difficult problem to determine the exact coefficient

that depends on snow grain size in SD retrieval model in Northeast China. In this
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section, the design of two experiments, from which the answer for the problems

mentioned above may be found, is introduced.

Testing sites selection

In selection of testing sites for thc two serics cxperiments, we consider both
underlying surface and SD. The major underlying surfaces include farmland, ice and
- woodland. Because of the different moisture content of the underlying surface, both
paddy fields and dry fields are selected as testing sites. Considering the thickness of
ice, we conducted experiments on both frozen fish pond and frozen driver (Songhua

River with the boundary of Songyuan). Bush field and grove are taken as tcst sites.

Testing time

Testing time for the two experiments is 9:00-22:00.

Experiments Methods

The preparing works for these experiments are very similar as those in experiment
for estimation of SD. Actually the two series experiments were conducted together.

Thus, in this section the differences between the two experiments will be mentioned.

Experiment procedures

The first scveral steps for underlying surface effects are the same as those of SD
retrieval experiment. But something new in this experiment is that the microwave
signals of uncovered land surface need to be recorded to analyze the physical
properties of underlying surface. Thus, the final step for this experiment is to sweep
away the covered snow. Here it needs to be emphasized that, the brighlnc.ss
temperature will be grcatl‘y affected by the surface temperaturc. And the temperature
of underlying surface is generally a few degrees’ higher than that of air temperature
because of the insulation function of covering snow. To reduce the errors that caused
by temperature, the radiation brightness temperature of underlying surface should be
measured half hour’s later after the snow is swept off. Figure 4.12 shows the start

and final stage of test plot.
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Figure 4.12 Experiments on underlying surface effects on microwave signals
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Chapter S INSITU DATA ANALYSIS )

5.1 Introduction

In this chapter, the processing method of in situ data collected from ficld experiments
and long term observation will be processed into a standard format and then analyzed

to figure out the relationship between snow physical propertics and SD/snow grain

sizc.
5.2 Analysis of In Situ Data

After the collection stage, in situ mgasurement results need to be pre-processed for

analysis. This is in situ data prcparmg\mstage.

-
-

5.2.1 Field Experiments Data

As it is noted, the most difficult part of ficld experiment is to control the
environmental conditions during the experiments. The effects of vapors in the
atmosphere, sunlight and temperatures can hardly be climinated because the
experiments are conducted in the open area. To get the in situ data with higher

quality, some process procedures will be conducted.
5.2.1.1 Optical experimental data

The most valuable optical experimental data collected during scrics experiments are
snow grain sizes and corresponding spectrum. However, the veracity of data is
" highly depended on environmental conditions.

According to the theory of atmospheric window, thc atmosphere is composed of
gases and aerosols which selectively absorb and scatter electromagnetic radiation at
particular wavelengths. Both of solar and earth surface radiation are filtered by the
atmosphere. The sensors on satellites outer space can only detect the energy that
tra‘lnsmil atmosphere. Thereflore, no accurate results can be derived from reflectance
that recorded with satellite sensors without considering the loss of energy that is

absorbed by atmosphere but not earth surface. Still there arc three ranges of

wavelength through which there is less loss of cnergy caused by atmosphere
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absorption. They are visible and reflected infrared (0.4 - 1.2pm), thermal infrared (3 -
Swn and 8 - 14um), radar and microwave (1 mm - 1 m) ranges. All the three ranges
are atmosphere window.

For this reason, spectrum data measured with Spectroradiometer in field survey are
usually affected by water vapor outside the range of atmosphere window, especially
at infrared range (see Figure 5.1).

Exzperiments on 20091219 _inital data

Reflectance

Mty vageewn ung At

Wavelength (nm)
st spes harm

Figure 5.1 Effects of vapors on spectral collected from field measurements
The smoothing process has become an indispensable feature of modern data handling
programs.
At present, under the general name "smoothing", different mathematical algorithms
and filter functions are included.
Localization is the most typical feature of field collected spectrum, which means that
its intensity and frequency change greatly during the whole collection spectrum
range. Therefore, in most of cases these disturbed bands will be removed in featurc
extraction. The immediate sequel to the discarding is large number of deficiency.
In this rcscarc;h, the feature of different distribution of energy on the frequency
domain is used to separate uscful signals from noise: Generally, most noise distribute
- on high frequency region while useful information on the low frequency region.
Wavelet transform is one of the efficient ;nclhods for noise reduction. Meanwhile,

the fine detail of de-noised spectral is well preserved.

5.2.1.1.1 De-noising processing

-

The reflectance acquired from ficld experiments are measured by comparison
method. That is to say, the reflectance can be calculated as the following expression

(Zhou et al., 2009):
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REFLECTANCE

= —o¥eT. % 100% 5.1
REFLECTANCE

whiteboard

and - REFLECTANCE

Here REFLECTANCE arc rcflectance of target

objrect whiteboard

object and standard board respectively.
Considering the noisc, the formula can be emended as (Zhou et al., 2009):

+error,

REFLECTANG e % €rrty,, -
REFLE( TA N(F inirefesired terror, dptedwiral

and error, arc the random errors generated dunng

whitchoard

Here error,,,,,

measurements. In this study, the measurement errors caused by absorption of water
vapor in atmosphere near wavelength 1.45uwm and 1.8wm are much higher than those
of object reflectance (Zhou et al., 2009).

log(R) = log( REFLECTANCE,

+error,,., ) - 10g(REFLECTANCE + rTor o ) 53

ohject whitehoand

As it is mentioned above, wavelet transform can be applied to de-noise the spectrum.
Here in this step, wavelet transform will be applied to reduce the noise. Figure 5.2
shows spectrum measured on 20100126. It is obvious that noisc caused by water
vapor around 1.3wn and 1.9um in near-infrared band appears at each spectral curve.
However, near-infrared range is most significant for the study on snow grain size
because that it is more sensitive to energy absorption of snow particles than visible
range. These noises need to be eliminated before the analysis of optical in situ data
before the calculation of extreme values in grain size sensitive range, which has,

unfortunate, overlap with that under the effect of vapor.

Experiments on 20100126 inital dawa
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Figure 5.2 Experiments on 20100126

To climinate the noise, logarithm operation should be performed on the initial data as
it is described in formula 24. However, sometimes zero value can be found at troughs
of reflectance spectrum. Thus, a declination value is added to initial data before

logarithm operation.
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Then Wavelet transform can be applied on logarithmic data to de-noise the high
frequency noise. Figurc 5.3 shows the same group of in situ spectrum as thosc in
Figure 32. The noticed cffect of wavelet transform 1s obviously:
1. The trembling noises around 1.3wm  arc smoothly filtered,
2. The strong noisc ncared 1.9wmn are basically removed. However, since the noiscs

at 1.9um are too strong, the processed curves are undergoing a slightly

mectamorphosis.
Experiments on 20000126 after wavelet transform
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Figure 5.3 Wavelet transformed spectrum collected from field experiment on 20100126

To guarantee data quality, the part of spectrum at the wavelength between 1.6pum

and 2.5um is abandoned.
5.2.1.1.2 Smooth processing

The second step for spectrum pre-processing is smooth processing. Since it is
unavoidable that fluctuation appear in reflectance curve after wavelet transform,
further processing is necessary to smooth the curve before analysis. The basic ideca
for spectrﬁm smooth is to (1) select several points before and after focus point, (2)
and average the reflectance of seclected points or éimulate focus point with selected
points. This method can be used to eliminate noise only when the mean value of
random noise is 0 in processing window.

Figure 5.4 shows the final processing result of the group of spectrum measured on
17" Dec. 2009. Compared with their initial data (see Figurc 5.4 (a)), most of the

effects of noises are removed.
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Figure 5.4 Spectrum processing stages

The group of pictures in Figure 5.5 shows the strongly affected measured spectrum

of the same group of snow samples after each processing steps:
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Figure 5.5 Processing procedure for spectrum that is strongly affected by vapor
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Here (a)-(c) are the spectrum of the same group of snow samples afier in sifu measurement,

wavclet transtorm and smoothing processing respectively.
Although the reflectance at near 1.9um are still under the influcnce of high frequency

noisc, the spectrum curves as a wholc can be used 1n analysis.
5.2.1.1.3 Experiments on grain size

As it is mentioned in chapter 4, the most contnbution of optical remolc sensing data
to snow monitoring is its ability on obtaining of snow grain size. There arc two
different series experiments designed for determining the relationship between snow
grain size and reflectance of the samc snow sample. In the following section, in situ
data obtained in thc two series experiments are analyzed, and preliminary rcsults on

the relationship of snow grain size and rcflectance are concluded.

5.2.1.1.3.1 Experiments on metamorphosis of snow grain size caused by
gravitation

Data processing

In this part, optical spectrum data are divided into two groups:

1) new snow, and 2) old snow.

Considering the effects of gravitation on different snow layers, snow grain sizes and

spectrum both on the surface of snowpack and inside snowpack body are studied.

Spectrum of snow particles

Figure 5.6 shows the spectrum mecasured in different testing sites (see Table 5.1) in

experiments on snow grain size metamorphosis caused by gravitation. These

spectrums are uscd 1o obtain the optical property of normal snow surface, which

mcans the testing sites for these data nced to remain in its naturally flat state when

we conducted our experiments. Among thc 7 spectrums, three of them arc

measurcments of new fallen snow (see Tablc 5.1 Memo) and the rest arc mcasured

on sediment snow surfaces.

To compare with the surface snow, corresponding spectrums mside snowpack are

measured too (sce Figure 5.7). There are two kinds of snow samplcs in this group: .

1. Natural formed snow particlcs under the thin coating of icc. To measure the
spectrum of this kind of snow particles, we need to lift up the ice cover very

carcfully without invasion of the snow particles beneath the ice.



2.

Snow particles disturbed when we swept away the surface snow. To obtain the

relatively accurate results, we nced to keep the artificial surface flat, and try not

damage the crystal structure of snow particles.
Figure 5.6 shows the 7 spectral described 1in Table 5.1.

Table 5.1 Spectrum record in different test sites

Date Testsitcs | Data description Memo
20091217 | Changchun | Reflectance 020 New fallen snow
20091217 v_Cr‘.'héﬁ'gchun Reflectance 030 -
20091219 | Changchun Rf_:ﬁgc:‘{a_nccmnomﬁ't_z_l-l SI]OW;lIrfaEC New fallen snow |
20100121 | Songyuan | Reflectance river _icel
20100121 | Songyuan | Reflectance river ice2
20100121 | Songyuan | Re ﬂeclancc__rivcr_icc3 i - o _
20100125 | Jilin Rcflectance_wetficld
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Figure 5.6 Spectrum of surface snow

The first and last two spectrums are measured of naturally formed snow particles

inside snowpack, while the others are measured on manually separated laycrs.
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Figure 5.7 Spectrum of snow body
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To analyze the difference of snow spectrum caused by naturally formed snow grain
size, spectrums of new f{allen snow and sediment snow are compared 1n this rescarch

(see Figurc 5.8).

Comparison of new {allen snoce and sediment snow
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‘Figure 5.8 Comparison of new fallen snow and sediment snow
Snow grain size
Another part of this expcriment is the measurement of snow grain size. Tsview is
used in snow grain size measurement (sce Figure 5.9). The first tag presents us the
parameters used in taking photos of snow grain size by electron microscopy. And the

second tag shows the operations for gcometrical measurements.
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Figure 5.9 Interface of snow grain size measurement software-- Tsview

Here (a) and (b) are photos of user surfaces of taking photos of snow grain and
analyzing.

Snow samples are carcfully collected from testing sites with a picce of special
photographic, which was scparated into squares with sides of 2mm by red lincs. By
doing this, snow grain size can be calculated with red square as the refercnce

substance.
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Figure 5.10 Snow particles in different position of snowpack

Here (a) and (b) show the snow particles of surface snow. And (c) and (d) present the
naturally formed snow particles inside snow body.

In Figure 5.10, it is clearly that the grain size of middlc layer snow is much larger
than that of surface one’s. The specific numbers of snow grain size in differcat layers

are listed in Table 5.2.

Table 5.2 Snow grain size in different position

R Grain | Grain | Grain Grain m?é}":fge 1 Positio
Date Time !
size(mm) | size(mm) | size(mm) size(mm) | (nun) n

20091219 | 10:21 | 0.54 0.76 059 | 0.74 1 0.66 | surface |
) Thoas [208  T2e 205 |20 235 [bedy

T "l {092 [10s Joes |06 080 | surface
o 11:35 | 0.58 0.58 2 | 081 | surface |
1150 [028 | 046 081 | 1052 | surface

2091221 1s0 [ 307 |17s . 21 T 1231 | body

Gcncrally the range of grain size of surfa(.c snow (new fallen snow or short-time
scdiment snow) is from 0.52mm to 0.80mm; while the grain sizes of middle layer
snow are larger than 2.3mm (2.35mm and 2.3!mm respectively), which arc

significantly larger than thosc of surface snow.

Data analysis

As it is observed in situ spectrum processing results, there are significant differences

between the average snow grain sizes of surface snow and that of middle layer’s, and

-
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between new fallen snow surface and sediment snow surface. In this section, the
relatienship between of snow grain sizes and snow spectrum is an‘aly'f,cd‘

Average spectrums derived from snow surface and snow body are shown in Figure
5.11. As it is obscrved, the snow grain size inside snowpack (>2.3mm) is larger than
that on sn‘ow surface (<1mm). From the spectrum curv.c‘:h,‘il is clearly that reflcctance
of snow body is lower than that of snow surface.

Morcg)vcr, the reflectance of new fallen snow on the surface of snow pack is higher
than that of sediment snow surfacc (To make it mare precise, the experiment was
conducted in the samc testing sites, Changchun. A pair of cross-references testing
plots is selected. Onc plot was covered with plastic film with an altitude of half mcter
over snow surface. Another plot was ¢xposed to the air. This ensurcs that the grain of
snow surface of testing plot 1 is naturally formed sediment snow. When experiment
was conducted the on snowy day, the grain of snow surface in testing plot 2 is new
fallen snow. ) .

Figure 5.12 shows the spectrums of new fallen snow and scdiment snow. It is
obvious that at near infrared range the spectrums of these two kinds of snow are quite
different from each other. ’ .

However, absolute valuc of reflectance is determined by several factors, such as
grain size, wetness and the incident angle of light from light source. Thus, to find out

-the qualitative changes corresponding to the changes of snow grain sizes, the changes

of wave crests and troughs need to be carefully studied. .

Speclrum comparison of snowpack surtace and snow
body
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Figure 5.11 Spectrum comparison of snow pack surface and snow body
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Comparison of new {fallen snow and scdiment snow
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Figure 5.12 Comparison of new fallen snow and sediment snow
As it is mentioned in data pre-processing part, the most sensitive band to snow grain
size changes is near infrared range. However, after wavelet transform, only the water
vapor noisc at range from 1.28wn to 1.6pm (which can be found in MODIS channcls)
can be removed successfully. Thus, in this section, snow properties within this range
will be discussed. ‘
To visually explain the relationship between snow grain size and snow sampling
spectrum, in situ data derived from the experiment measurcd on separated snow
layers are illustrated in Figure 5.13. The spectrums of five layers are drawn from
1.25um to 1.6pwm. And a pair of crest and trough is contained in this figure. Figure
5.13 shows three groups of reflectance that composed of five spectrums curves. The
upper curve with higher reflectance in this range is that of surface snow’s, which is
. followed by the reflectance of the fifth layer’s. The lowest reflectance group is
composed of spectrum curves of layer 2-layer.4.
The snow grain sizes of the five different layers’ are shown in Table 6.3.
It is casy to deduce that there are at least two snowfalls over the testing site, since the
grain size of lowest layers is smaller than that of upper ones’, which will never

happen if there is only one snowfall according to the deformation laws under gravity.

Spectrum ot difterent layers (Expeocviments on
20100121) .
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Figure 5.13 Spectrum of different layers
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Table 5.3 Snow grain size in diffgrent layer

l,uyérqm '. SD{(—:m_}T”-warpa'l_iwrrsizé‘s{n'lm) = [ Average Grain SI?.L‘(I'I‘I_I‘I‘I) T
' 6768 | | T e i T
13 1 228 | 1.76 1.8 1.95
- (6.5) | ! .

132 ' ]ss0 zi15 0 2127 | 2.06 194 207 T T 7
1133 450 262|153 [2.01 205 0 T T

13 4 3.50 238 [ 1.72 | 1.80 | 97 T

135 | 250 150 150 | - 150 7

|

Comparing the snow grain sizes in table 15 and the spectrum CILINCS in Figure 44 | it
is obvious that the reflectance with smaller grain sizes is higher than thosc with
Iarger grain size (reflectance curves of the first layer and the f{ifth layer arc lying over
those of second, third and the fourth lays’).

However, from the curves we can hardly draw a conclusion that there is any
displaccment on the wavelength of crest and trough.

To solve this problem, the slopé of the pair of crest and trough is calculated. In
Figure 5.14, the grain sizes of first layer and second layer are sclected to represent
the two groups of snow grain samples. After the calculation, a much more obvious
result can be found. That is the slope calculated from the peak and trough within

1.2pm and 1.3m with larger grain size is bigger than that with smaller grain size.

Slope comparison of dilfferent lavers in tho

same testing site(20100121)

Slae

0. 00185
0. 0019
0. 00195
0. 002

1

0. 002056

0. 0021 -

B T S —

Difterent

litvors

Figure 5.14 Slope comparison of different layers in the same testing site

According to slopc calculation results (sec Table 5.4), it can be concluded that
although the absolute value of the slope difference is light (0.00013959), the relative
difference is quite big (6.7%). It indicates that slope of peak and trough at the range
of 1.2pum -1.3pum can represent the changes of snow grain size to some degree.

Follow the same idea, slopes of wave peak and trough arc calculated for spectrums

measured in different testing sites (see Figure 5.15).
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Figure 5.15 Slopes of spectrum peak and trough at wavelength range from 1.2um -1.6um
Similar results can be obtained in different testing sites with different environmental
conditions. That is:

1. The snow grain size of snow surface is smaller than that inside snow body,
2. The snow ér'ain size of new fallen snow is smaller than that of sediment snow,

3. The slope of snow with smaller grain size is lower than that with larger snow

grain sizc (see Figure 5.10).

Comparison of average Slopes of larger snow
grain size and smal ler ones

0

; — EE
0. 0005 ———-_—ﬁg—g g— ST T E E Fi ——3————— s
ol - % .

-0. 001 - - N,

e mr———

Sleope

0.0015

0. 002 |rserivmaaints

e R e . e A e e

Different Snow grain size

Figure 5.16 Comparison of average slope of larger snow grain size and smaller ones
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5.2.1.1.3.2 Experiments on snow grain size affected by melting and
refrozen .

Data processing

In this experiment, the pre-processing of in situ optical remote sensing data is similar
with that of last scction (include Wavelet transform and smoothing). Table 5.‘5-5.7
list three groups of slopcs .calculatcd by using peak al}d trough at wavelength from
1.2pm to 1.5um of three groups of snow: |

1.  Snow with smooth surface

2.  Snow with uncven surface

3.  And refrozen snow.

From the analysis results (Table 5.5-5.7) we can conclude that the wave peak and
trough of the three kind of snow surface arc very similar. That is to say, just like
what is mentioned in the analysis of last experiment, there is no significant difference
between the original snow and refro;ccn snow seemingly. However, when we go

through the slopes of these spectral, the difference appears.

Data analysis

Figure 5.17, and 5.18 show the slopes of normal surface snow, refrozen snow and the

slopes of spectrum while we heating the testing plots’ surface.
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Figure 5.17 Slopes of normal surface snow collected from different test sites
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Most of slopes of spectrums of original surface snow are lease than -0.002, while all

of the slopes of spectrums of refrozen snow are greater than -0.002.

i
| Slopes of Refrozen snow grains
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Figure 5.18 Slope of refrozen snow grains

As to the heating/melting plots, the values of slope changes with the temperatures

(Figure 5.19).

Slopes ol Heating or melting snow at infared |
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Figure 5.19 slopes of heating or melting snow
Comparison of slopes of snow surface in
different status at near infarced range
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Figure 5.20 Comparison of slopes of snow surface in different status at near infrared range

The average slopes of the four kinds of surface snow are described in Fi gure 5.20:

1. Slope of normal snow is the lowest onc;
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2. The slope of uneven snow is a bit greater than that of normal snow maybe

causcd by thc refrozen part of the testing plots. Or there is still another

possibility: the effect of dappled shade;

3. Slope of refrozen snow is, definitely, greater than normal snow, even the uncven

Snow.

4. The hcating or naturally melting snow has the highest slope. However, the

biggest contributor to the high slope maybe is the tempcerature but not wetness.

To validate the assumption, more field experiments should be conducted in the

future.

5.2.1.1.3.3 Snow grain size retrieval model based on hyperspectra data

To sum up, strong correlation between snow grain size and slope can be found. To

sclect most sensitive expression {or snow grain size

To apply thc model in MODIS data, two troughs are selected as alternative in slope

calculation. The comparing result tells us, the two slopes perfect match cach other.

That is to say, calculation of band5 and band7 can bc used in this grain size retrieval

model.

| 0.6575
0.85

1 1.946667
235

| 1.966667
1.5

‘ Grain size (mm)

2.0675
12053333

1 .0.0031452

| -0.0026257
-0.0020673
720.0017348
-0.0019278

-0.0019327
| -0.0021284

720.0019278

Table 5.8 Snow grain size and corresponding slope

| Slope_peak&trough | Slope _double trough

| -0.000716

720.000684

-0.000533
-0.000382

| .0.00048
| ~0.00048

'_ -0.000474

-0.00054

|

L = b o . i
By using the in situ measured reflectance in the range from 1.2wn to 1.5pm and snow

grain size, a regression formula as:

Grain size(y) = 4.55 + 5364.57 * slope _peak _trough

54

Here slope peak trough is the slope of peak point and trough point at range

from 1.2um from 1.5um.



However, in the application of MODIS data, the rceflectance of band $ and band 7 are
the closer bands to slope peak and trough derived from in situ measurements,
respectively. But they are not exactly the peak and trough points. Errors can be found
in slope calculation using band S and band 7. Thercfore, the formuta can not usc lo
detect the specific grain size if the two bands are applied in the regresston formula.
But the change trend of grain size can be estimated. The correlation between snow
grain size and slope is as high as 0.97. It indicates that snow spcctrum at NIR range

is extremely scnsitive snow grain size.
5.2.1.1.4 Experiments on mixed pixel

Mixed pixel is a common problem that we will meet in snow monitoring bascd on
satellite remote sensing data for both microwave and optical techniques. The in situ

experiments on mixed pixel arc designed (o solve this issuc.

5.2.1.4.1 Data processing

For spectrum data, the pre-processing work for this experiment is the same as that of
experiments on snow grain size. Wavclet transform and smooth processing need to
be performed on initial data to remove all kinds of noise, and improve the quality of

in silu mecasurement data.

5.2.1.4.2 Data analysis

There are four major mixed pixcls in Northeast China:

1. Mixed pixcl of snow and dry-field;

2.  Mixcd pixel of snow and grassland;
3. Mixed pixcl of snow and trees or shrub;

4. Mixed pixcl of snow and sot.

In this scction pixel with more than onc kind of land cover types in the ficld of view
will be analyzed. To cnsurce that the FOV can contain more than onc land cover types,

the mcasurement altitude is determined as 1 meter or 50cm. The FOV arca 1s:

§ = x (50(0r100)» tan(25°))" = 1017(6828)cm” 55
~ Mixed pixel of snow and grassland
The grass turns yellow in winter in Northeast China. The greatest effect of mixture of

hay on snow spectrum is in the visible range. The highcest valuc of reflectance can be
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found in pure snow spectrum. And with increase amount of hay, the reflectance

decreases gradually (Figure 5.21).

Reflectance

0.

0.
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0

Mixcd pixel speclrum ol pasture snow
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Figure 5.21 Mixed pixel of snow and grassland

Because of the emission of hay, the spectrum s not only affected at visible by the

color of impuritics band but also at ncar infrared band by thc cmission of impuritics.

Generally, with the incrcase of hay, the NDSI has a decline trend (sce Table 5.9).

——

' NDS[

| More hay
- 10.722329

Table 5.9 NDSI of snow mixed with hay

Less hay | Purc snow | Lots of hay | Litter ha;

|
“T() 705634 +WEI_6_04 0599609 | 088746 |

Mlxed plxel of snow and cornstalk

Generally, the typical characteristics of snow can be found in the spectrum of mixed

pixel, the differences between these spectral curves are valucs of reflectance. All in

all, spectrums of snow samples have the characteristics of snow spectrum, except

two of them. In these curves, corn stalk dominates the reflectance. To figure out the

effect of corn stalk on spectrum, three typical spectrums are selected (see Figure

5.22).

Reflectace
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Figure 5.22 Effect of corn stalk on spectrum
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The pink curve shows the spectrum that dominates by corn stalk and the bluc onc
shows the reflectance mainly contributed by snow. Ycllow line is situated between
the two.

In the visible band the reflectance is degraded becausce of the lower reflectance of
corn stalk, while the reflectance is elevated in near infrared band in comparison with
that of pure snow.

Thus, we can conclude that the NDSI will be reduced if the pixel is a mixture of
snow and com stalk, which is the common sight in Northeast China.

Mixed pixel of snow and trees and shrubs

Northeast China is surrounded by the Great Xing'an Mountain. !ffect of forests is
always considercd as one the most difficult problems in snow monitoring, since the
deciduous forest and coniferous forest, which are the most common trees on
mountains of Northcast China, have great effect on spectrums mcasured from
satellite sensors.

In this experiment, the mixed pixel of snow with forest is simulated by using the seed

plot. The testing plots selected are covered with sapling of different densities.

Spectrum comparison over sapling with different
densities
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— e et o~ N N N o el Lo tanee Nod P ESG0 - inew ¢ §
[WITE A2
Wavelength (hm) - -
¢ Figure 5.23 Spectrum comparison over sapling with different densilies

From Figure 5.23 a down trend of reflectance at visible band can be found. 'l‘]lc trend
basically meets the ascend tendency of sapling density,

In near-infrared band, the spectrums of snow samples with different sapling densities
are consistent. It indicates that the NDSI in forest arca must be lower than that of
pure snow covered area. .

Mixed pixel of snow and soil
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The decrease trend of mixed pixel of snow and soil in reflectance at visible range is
similar with that of snow with corn stalk in some degree (Figurc 5.24). Soil, as the
1mpumics w:ll decrease the reflectance at visible band. Moreover, more effcct of
soil on snow spectrum can be found at near infrared band becausc of the special
emission property of soil. With the increase of soil proportion, the NDSI will

decreasc correspondingly.

Comparison of mixed pixel (show, snow covered thin ice
and soil)
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Figure 5.24 Spectrum of snow mixed with soil

5.2.1.2 Field Experiments on Microwave Properties of Snow
’ &
The first step of the rescarch is measurement and analysis of snow paramelers. By

doing this an optimizing method for snow monitoring based on microwave remote

écnsing data over Northeastern China can be developed.
5.2.1.2.1 Pre-experiment

In the study, Chang’s algorithm is the basic theory applied to the snow monitoring
modecl based on microwave satellite remote sensing data. Before cstablishing the
model, the algorithm for in deeper snow monitoring (SD greater than 20cm) nceds to
be performed.

Experiment v microwave sigimd tvansmisien

THG - -

Tt ol Soow leenly (nd

T - —_— M e e ——————— - —

Figure 5.25 Microwave signal iransmission
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This part of pre-experiment on signal transmission of 18.7GHz and 36.5GHz is
aimed to figurc out their signal transmission distance. From the result (sce Figure
5.25) it can be concluded that for 18.7Gll1z, the signal can penctrate more than 3
meter’s distance, swhile for 36.5 GHz, the longest distance from where we can
rcceive the signals 1s 2 meters. That is (o say, 2 meters s the largest SD that can be
detected by using 18.7GHz and 36.5Gtiz.

The second {;art ol pre-experiment for passive microwave model is to get an outline
of physical properties of snow and the potential effect factors.: In the ficld
experiments conducted in 2008-2009 winter is to fulfill the goal. Table 5.10 shows
the experiment results of 18GHz and 37 GHz brightness Temperature over three
different underlying surfaccs.

Table 5.10 Measurement result of TB and Radiance of three kinds of underlying surface

(Underymg [ 18V [0 [37v. - [37H '
surface | TR (K) [ Radiance | TB(K) [ Radiance | TB(K) | Radiance | TB(K) | Radiance
Forest 2634 0.992 250.9 0.968 253.2 0.954 248.8 0.937
frozcn

_ground (A) |

CFarmland | 2569 | 0.967 | 247.0 | 0929 | 2457 [0925 2383 |0897 |

JI!L_ =gy i — 1 R L .
Lakeice | 240.3 | 0.913 209.8 | 0.798 2474 | 0942 2058 10983

[ © .

Three commoT]mimdcrlying.“S-u-l-‘i'a.céas:"wcrc selected, which are forest I"r(.':zc'l_l_g,mr.o_tlg{(im
(site A), Farmland (site B) and Lake ice (site C) respectively. The mean SD is 10 cm
and the snow layer is mixturc of new snow with grain size of 0.2 mm and old snow
with refrozen grain size of 0.5mm. Figurc 5.26 shows the experiment results of
18GHz and 37 GHz brightness Temperature over three different underlying surfaces.
The underlying surface temperatures for testing site A, B and C arc —7.5°C, —

7.25°C and —10.25°C respectively.
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Figure 5.26 Polarization Characteristics of Microware radiance in three testing sites The upper-left one
shows the H and V polarization Ty s at incident angle from 30° to 80° of testing site A; the upper-right
one shows the H and V polarization Ty s at incident angle from 30° to 70° of testing site B; and the lower
left one shows the H and V polarization T, s at incident angle from 30° to 70° of lesting site C.

From the results in Figure 5.26 and Table 5.10, we can find that there are differcnces
between radiances of the three underlying surfaces, but no significant difference
found between the vertical (V) polarization radiances of testing site A and B,
cspecially in those of 18 GHz. In testing B, difference of V and horizontal (H) is
diminished because of the geometric effects of ground surface, cspecially in high
frequency. Thus, H polarization data should be utilized in distinguishing of
underlying surfaces. The curves of V polarization for three testing sites arc
comparatively sn.moth, while larger ffar_i’a,tion can be found in H polarization data,
which is not as smooth as that of V polarization. |

Forest background does bring significant effect on TB, wl‘ﬁch can be ligurcd out
. from cxperimental result of TB obtained from different orientations (see Table 5.11).

- . ]

Table 5.11 Radiance measurement of different orientations in testing site A(the angle of incidentis 0)

Orientation | 18VTB(K) IV IB(K) )
Bast 2440 2201 I I
Sg::uthc‘ast' 22y 227%4 _
South """'__2*5(?}?__'" LA Tk ] ' i
 Seuthwest | 250.5 T wmes T
Nmﬂmast(l(ﬁ}"l}“ . | 2503 _ T 2304 - I
‘ 4 . . y



' 7
;‘\ll the ficld experiment results show that underlying surlaces do have effects on
passive microwave signals we obtained from remoltce sensors. However, data derived
from H polarization can be used as primary monitoring dataset over Northeast China
according to our experiment results. ) '
To validate these results, further scrics field experiments arc designed for 2009-2010
winter.

»

5.2.1.2.2 Microwave Radiation Characteristics and SD

SD is always the research focus of snow monitoring, since it is the most significant
input parameter for SWE calculation and hydrological models.- In the secries
cxperiment, the obstacles that prevent the improvement of snow monitoring accuracy

will be found.
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Figure 5.27 Brightness Temperature measurements on snow covered pasture

Here (a) is the measurement of 18.7GHz and 36.5GHz on a comparative deeper

testing plot, where SD is 5-9cm; (b) is the experiment result on another testing plot,

where covers thinner snow (3.5-4cm).

Figure 5.27 shows experiment rcsults on the same testing sites, Changling. The

underlying cover types of the two testing plots arc both pasture. From the figure we

=]

can see that on the thinner snow covered plot, it is hardly to calculate SD by using
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Chang’s algorithm (the difference of 18.7GHz and 36.5 GHz). On the other hand, on
the deeper snow covered plot, SD can be calculated by using H polarization data.
Morcover, the most sensitive inc¢ident angle is 50°, which matches the incident angle

of satellitc remote sensor.

.

To makc it more clear, two pairs of channels arc drawn together in Figure 5.28.
- When the temperature of ground is similar, Ty, of 18.7 GHz and 36.5GHz are

decreasing. And the decline trend of 36.5GHz is more violent than that of 18.7GHz.
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Figure 5.28 Comparison of brightness temperature on shallow and thin snow covering test sites
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Figure 5.29 Brightness Temperature measurements on snow covered com-land
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On the other hand, to the testing plots‘with similar snow covered depth (average SD
is larger than 4cm), the differences of brightness tcmpcralu're.of 18.7GHz and -

36.5GHz are similar. It proves that SD is one of the obstacles that affect retrieval
accuracy. For those arcas with SD less than 4cm, Chang’s model can not be applicd

1o obtain accurate snow information.
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Figure 5.30 8D experiment on wet-field

Figure 5.30 shows the experiment conducted on wet field. With the increasing of SD
from 20cm to 50cm, the difference of 18.7GHz and 36.5GHz increases. Morcover,
the brightness temperature of 18.7GHz keeps increasing while 36.5 GHz start to

decrease when SD is larger than 30cm. That is to say, SD detection model should be
modified when SD is larger than 30cm. ’

.

5.2.1.2.3 Effects of Underlying Surfaces on Microwave Radiation

Characteristics

*

As it is mentioned in chapter 2 and chapter 3, underlying surface is the well known

issuc in snow monitoring. Microwave signal’s transmission will be greatly affected

by the underlying surface.

There are four typical underlying surfaces in Northeast China, which arc:
1. f;asture,

2. Dry-field, e | # =

3. Wet-field, o '
4. And ri\vcr ice. .

Figure 5.31 shows the experiment results of 18.7GHz and 36.5GHz on the four kinds

of underlying surfaces.

85



The average SD of the four testing plots are very similar, which are 7.5cm, 9.5¢cm,
6.5cm and 9cm. however, the differences of 18.7GHz and 36.5GHz are quite

.different in these testing plots.
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Figure 5.31 Brightness temperatures obtained from four test sites with typical underlying surfaces
{Pasture, Corn-land, River ice and wet-field respectively)

It is to say, the different is caused by underlying surface. The reason for the
difference is that 18.7GHz mainly represents the brightness temperature of
underlying surface because of its penetrability while the 36.5GHz is more sensitive
to SD. When the underlying surfaces ch'ange, the signals derived from 18.7GHz
changes (see Table 5.12-5.13 and Figure 5.32-5.33). -

3
F o
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Table 5.12 Brightness Temperature testing resuits on corn land

BT(18.7)_comn-land Ground  BT(36.5) com-land Ground !
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Figure 5.32 Brig‘hlness Témperatures of different incident angles over Corn-lapd
Table 5.13 Brightness Temperature testing results on Ice surface
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Figure 5.33 Brightness Temperatures of different incident angles over River ice
Here is still a big problem. That is the minus value of difference between 18.7 and

36.5 GHz on river or lake ice.
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Both for V polarization and H polarization, the differences of 18.7 and 36.5GHz are
minus. The reason for the minus value is thermal loss of the ice. The temperature of
water under the thick ice is a constant (about -4 °C), with the incrcases of thickness of

icc, the quantity of thermal loss is increased. The signals of 18.7GHz can penctrate

the 1ce with a certain thickness, while that of 36.5GHz can not.
5.2.2 Analysis of Long Term Observation Data

The ground data include daily moming and aftermoon air temperatures and
precipitation. In addition, SD, SWE and snow grain size were measured. SWE were
estimated via the snow density, which is determined by melting a snow column and
dividing the melted water height by the snow column height.

To validate the SD retricval results and SWE estimation, long term observation data
were collected from several testing sites, which are:

1. Jingyu,

Dehu,

Yinchun,

Hailun,

Sanjingzhan,

=S IE R

Muling.
Among all the six long-term observation testing sites, underlying surface of two of
them are forest (Jingyu and Muling), the rest of them is cropland.

Figure 5.34 shows SD, SWE, and temperature data collected from these testing sites
from 2005-2007.
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Figure 5.34 SD, SWE, and temperature data collected from these testing sites from 20
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Conlfined to the length of this thesis, here observation data of 2005-2006 will be
taken as examplc to analyze snow cover status. More detailed analysis will be given

in modeling section (Chapter 7) as validation data and results discussion.
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Chapter 6 SATELLITE REMOTE SENSING DATA
PROCESSING

High quality satellite remote sensing data as input parameters is the base ol SCA and
SD estimation system. As it is noted, there are still some manual differences during
the processing of satellite images besides the unavoidable system errors. Comparcd
with spectral featurc ol carth objectives, these errors are quitc huge. To get reliable
estimation results which can be used 1o dig deep during the causal nexus analysis, we
necd to pay more attention in satellite data processing procedures. in this chapter, the
preparing methods for mass of MODIS, AMSR-E, and land-cover type data will be

discussed.

6.1 MODIS Data Processing

6.1.1 Introduction

Satellite images are widely applied into all kinds of earth obsecrvation rclated
researches since 1960s. Pcople try to take the advantage of rcmote sensed data to
monitor the large and un-traversed regions where can hardly be measured in the past.
One of the extensively applicd data for Earth Observing System (EOS) is MODIS.
MODIS data play more and more important role in a variety of aspects in EOS, such
as vegetation monitoring, fire detection, ocean color monitoring, and snow cover
monitoring.

The researchers who focus on long-term global observations need to process at least
4 MODIS images per day. For a ten years’ long observation, totally 14,600 images
are nceded to be deal with. Moreover, dala pre-processing is always the first and
fundamental step, based on which the analysis can be conduced. The quality of
processed data will dircctly affect the analysis results (Durbha, 2002). The
processing of mass MODIS images became a tremendous task, which requires
accuracy, reliability and timeliness for all the long term earth observation rescarchers
based on MODIS data, no matter which fields they focus on.

In this thesis, normal mcthod for MODIS data processing is discussed. The
procedure is designed for in all kinds of researches based on MODIS LIB data,

however, here snow monitoring over Northeast China based on MODIS L1B data is
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presented as a practical examplc of MODIS products application during the
methodology illustration.

Generally, the pre-preparation phase includes the following processing steps:

1. Geo-reference of original images;

Geo-reference processing is utilized to adjust the rectangle imagces we obtained from
remote sensing sensors to the irrcgular carth surface. Only afier geo-referencing, can
MODIS L1B images bc located with relative pinpoint ground arca and each pixcl on
the imagc is corresponding to the surface position with unique pair of longitudc and
latitude. And for MODIS snow products, a projection transform processing will be

performed as well.

Figure 6.1 Deformation of MODIS L1B image before and after geo-referencing

(a) and (b) are images before and after geo-referencing respectively.

The shape of geo-referenced images will change to a greater or lesser extent. Figure
6.1 shows the shape changes of MODIS L1B image before and after geo-referencing
processing.

In many cases, the geo-referenced images can only cover such a small part of
research areca that researchers have to abandon them to save processing time.
However, it is hard to tell which image covers more arca via macroscopically
observable in manual processing. To find out suitable imagges, geo-referencing
should be conducted to all images, cven if most of them can not be applied in further
analysis. It greatly reduces the working efficiency. For example, in each MODIS
L1B image, there are 2,748,620 pixels that need to be located. An experiment shows
that, by using ENVI 4.5, the geo-reference processing of one scenc of 22 Channel

MODIS L1B image with 1 km spatial resolution takes-approximately 12°20” on Inter
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® Corc™2 Duo CPU T7300 2.00GHz 777Mliz, 2 GB Rom Lenovo ThinkPad
(For further comparison, the other experiments on processing, time are conducted on
the same notebook).

The spaces Lo save the image before and after processing arc approximately 165MB
and 450MB respectively.

in traditional, manual processing way, an inexperienced rescarcher can select
suitabic images only after he identifies the location of images. Therefore, it will take
48 working days (12.33(minutes/image) / 60 * 1865(pieces) / 8thours/day)) to do the
geo-referencing work before selection the proper MODIS LIB images (1 km spatial
resolution) for snow map generation of 2006-2007.

2. Mosaic of geo-referenced images,

In most of cases, research arca is much larger than that can be covered by only onc
MODIS image. For a larger region, such as Northeast China (as large as 787,300
square kilometers), which usually needs several scenes of MODIS image to cover the
whole region. Thus, mosaic becomes an essential processing step, through which
scveral images will be pieced together to creatc a ncw 1mage that can cover the
whole research region. These images are selected according lo research requirements,
such as research location and periods. And then thcy need to be spliced together
according to the latitude and longitude of each pixel.

Mosaic .can be conducted at different processing stages, which i1s determined by
aclual requirements of specific research. Generally there are two ways to conduct
Mosaic:

(a) Right after geo-referencing;

In this way, researchers will mosaic those images that accord with the certamn
conditions without any further process. However, sometime the images that applicd-n"
in mosaic process are obtained at different days, even different ycars. Zenith angles
and light conditions arc quitc different for cach image. In somc cascs reflectance
values are different even if images are obtained on the same day and from the same
sensor. The software used in image processing 1s not intelligent enough to reducce the

decided boundary of dilferent images caused by environmental conditions,
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Figure 6.2 The boundary caused by difference of light conditions and incident angles

Figurc 6.2 is an image of Northeast China, which is processed with three MODIS

1B images collected at different time. In Figure 68 we can clearly see the boundary

of different images after mosaic processing by using ENVI14.5.

(b) After map generation.

Another way to combine several images into a whole view is Mosaic of completely

processed images. Researchers need to completely finish the process of each piece of

images, including Geometrical Correction, Atmospheric Corrcction and map
generation. Finally, several pieces of maps are Mosaic into a whole one.

3. Clipping of mosaic results.

Afler mosaic, most of images cover the whole research arca. However, a MODIS

L1B irﬁage, especially the mosaic one, is always covering a larger area than that is

required, which will be an effect on statistic accuracy in analysis section. It is the

reason that we still nced to delimit arcas. The processing is clipping, which is the
final processing procedure in pre-preparation phasc.

Normally, all the three pre-preparation steps are manual processed. The traditional

processing way poses a couple of problems:

(a) To dcal with thesc works, most research members have to sit in front of
computers, interacting with processing software, processing cach image step by
step. Besides, during the time of computer processing for onc image, rescarchers
have to sit there for scveral minutes, doing nothing but waiting for the nexlt
interactign. It is waste of time and manpower.

(b) Most of the selections ar¢ done by researchers manually according to their
subjective experiences:

a) Does the image cover intcrested arca?
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b) Is the image covered by cloud?
Rich cxpecricnce, paticnce and carcfulness arc required during the whole processing
procedures, which will take months in many cases. Subjective factors determine the
qualily of processing results.
To increcasc working cfficiency and proccssing quality, studics on remole sensing
data processing emerged in the past scveral years. Leptoukh and his NASA colleague
introduced a series of desklop and on-line tools to remote sensing data uscers, such as
HDF rcader (Masuoka ¢t af, 2001; Leptoukh ef al, 2003). A few researchers tried 1o
focus on a special issue such as gco-reference algorithms, geo-refercnce automation
or mosaic automation processing (Fu er al, 2007; Wang ef al, 2004, Xin et al, 2007)
for their scparale processing purposcs.
Although the idcas of lighten the load of the data proccssing and improving
processing quality have alrcady become a consideration for all researchers who need
to apply MODIS data in their projects (Sonnentag, 2008), very few studies can be
found on the whole three-step pre-processing steps of large number of MODIS data
based on ENVI/IDL environment.
In this section, the problems which lead to decreased efficiency in mass MODIS data
processing are solved by providing an automatic and intelligent processing system.
The whole processing proccdures will be presented and an automatic processing
system for mass MODIS data based on ENVI/IDL cnvironment wiil be introduced in

snow cover monitoring case study over Northeast China.
6.1.2 Methodology

Pre-processing is the procedure to prepare data for analysis. For remote sensing data,
especially optical remote sensing data like MODIS, more factors neced to be taken
into account when we arrange processing procedures.

As it is mentioned above, three steps compose of the processing procedure:

1. Geo-reference;

2. Mosaic;

3. Chip.
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6.1.2.1Data

6.1.2.1.1 MODIS L.1B Data

MODIS LIB data arc generated from the MODIS Level 1A scans of raw radiance
and in the process converted 1o geophysical units of W/m”™2 um sr).

The Modcerate-resotution Imaging Spectroradiometer (MODIS) provides 36 channels,
20 of which locates in the visible and near-infrared bands and 16 of which belongs to
thermal infrared bands. The spectrum range it holds is from 0.4um to 14.3um.
Because of ils acceptable time, spatial and spectral resolution (Zhao, 2003), MODIS

data were selected for SCA monitoring in this study.

6.1.2.1.2 MODIS Snow Products

MODI0AT data, MODI0A2 data are snow covered products. They provide

fractional snow cover, and snow albedo map daily and every 8-day respectively.

6.1.2.2 Geo-reference

Geo-referencing is the first step of the whole processing, which is uscd to locate

image pixel with relative pinpoint ground area via unique pair of longitude and

latitude.

Generally, a refcrence map or a group of ground control points are needed to

calibrate the corresponding pixels on image. Then triangulation based interpolation

algorithms arc applicd to calculate the location of ncarcst ncighbor points of these

calibrated pixels.

For MODIS LIB data, two methods can be applicd in geo-referencing:

1. One way is (o plot cach pixcl of the LI1B data using the latitude and longitude
stored in the corresponding MODIS Geo-location file (MODO03),

(R

Another way is 1o usc the geo-location inlormation attached in Swath structure
of MODIS L1B or higher level MODIS data. Geo-locations of cvery fifth pixcl
are stored in the structure, with which a table ol ground control points can be
generated. This method has the advantages of faster calculating speed and less
occupation of memory and hard disk.

in the study, the second method is sclected to process 1km MODIS L1IB data.
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As it is mentioned above, because ol the huge locating computation, geo-refercncing
is the most time consuming procedurc. Unfortunately, not all of geo-referenced
images can be used in further rescarch. Two kinds of data will be removed from
datasct during the images quality control for Mosaic:

. The images with very small coverage of our interested area,

A threshold of interested area coverage is 25% in our research (considering that there
arc 4 imagces provided on our study area by NASA daily).

2. The images with unacceptable cloud covered part.

Another problem that will lead to low cfficiency and quality 1s the effcct of cloud.
Thosc images covered with large cloud nced to be removed from dataset before
feature extraction of ground objects. Howcever, it is difficult to distinguish the cloud
from snow cover by naked eyes, especially for inexperienced analysts.

To improve processing elliciency, algorithms for rough estimation ol intcrested arca
coverage and cloud detection are introduced as image selection in ged—rcfercncing

step to avoid wasting of time on uscless data and low quality of processing images.
6.1.2.2.1 Image Detection

6.1.2.2.1.1 Location Estimation

Generally, only afler geo-referencing images selcction proccdure by location can be
robot-icized. During the selection of MODIS data with requirement of specific
period of time and  particular  location [rom the  website:
hitp://ladsweb.nascom.nasa. gov/data/search.html, all the images will be listed, even
if only 1% of the image is involved in the rescarch region.

This mcans that a great deal of time will be wasting on useless data if most of images
with less than 25% overlapping area with the interested region arc geo-rclerenced.
To solve this problem, a rough but cfficient detecting method 1s needed to apply in
our research. During the location detecting, geo-location information of MODIS
swath is obtained from the header of MODIS data. By doing this, those images with
less than 25% overlapping arca can be removed from datascts before geo-referencing.

The proportion calculation can be described as the following

: n, A
overlap _ proportion = *
nu.‘! A: 6.1

Ph


http://ladsweb.nascorn.nasa.gov/data/search.html%ef%bc%8call

" n . : i o
Where ¢ and e arc the number of overlapping units and number of all units in

. ' . y A
MODIS images, respectively; b and 7 represent the covered area of once

MODIS image and the arca of interesting region.

6.1.2.2.1.2 Cloud Detection

Optical rcmotc sensing data are usually affected by lots of ¢nvironmental factors,
such as the anglc of sun, aerosol, topography, and clouds. When a suitable MODIS
image is selected by research projects, the cloud factgr needs to be considcred.

In manual processing mecthod, rescarch workers are always making the judgment
according to thcir cxperiences. Errors caused by visual fatigug can hardly be avoided
during mass data processing. -
In the automatic processing method, cloud detection via band calculation applied to
remove thosc images covered by cloud automated. According to the rescarch results
of C hen, Junhui (Chen, 2007), reflectancc of band 1, band 6 and band 26 can be

applied in cloud detection. After the analysis of large amount of cascs, the following

detection thresholds were obtained in her thesis:

1 B :
0 <_"”_’Mfﬂ <04 or band ,, > 0.1

band +band 6.2

band band
band,, o and 2 gre reflectance from channel 1, channel 6 and channcl

26 respectivély.
6.1.2.2.2 Channel Selection

In MODIS, there arc 36 channels. Extra proccssing time i‘s required to process morc
channcls than needed. The experiment results shows that it will take 9.15 minutes to
process visible and near infrared bands, but only 2 minutes to process 500m
resolution bands {channcl 3-6) by using automatic program. By manual processing
on ENVI 4.5, 12.22 minutes to process visible and ncar in(rarcd hands, 5.24 minutes
o process band 1, band 4, band 6 and band 26 and 4.63 minules to ;Srocess band 4
and band 6. To calculate Normalized Deference of Snow Index (NDSI), reflectance
of band 4 and band 6 is needed. Similarly, data from band | and band 26 arc still

important in cloud detection.
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6.1.2.2.3 Equilibrium Selection

Dépending on the research requirements, researchers need to find a balance between
processing speed and details during data processing. In the research of long term
snow cover monitoring, million of images need to be processed to generate daily
Snow Covering maps. Both processing speed and 1mages quality need to be
considered. The processing timc will be reduced by applving image sclection and
channel selection.

Generally 4 MODIS L1B images that pass through Northeast China are provided by
NASA per day (some times 3 or 5 images per day). In this study, those images will
be removed according to determined thresholds:

1. The MODIS image will be removed if its overlapping proportion is l¢ss than

25% in case study section.

2. Those images with 25% pixels covered by cloud are removed from analysis
datasct automatically.
More accurate cloud coverage of interested arca will be obtlained after
geo-referencing. However, considering the research 1s a long term observation and
total cloud amount over Northeast China 1s comparatively small, both location and
cloud detections can be conduced before geo-referencing by using the location
information in swatch structure to reduce processing time. Thus geo-referencing will
be performed on the bands that will be used in NDSI calculation and the images

selected for snow monitoring according location and cloud detections. Working time

is greatly shortened by doing this.

6.1.2.3 Mosaic

For the cases that interested regions covcred by more than one image, a mosaic
processing of multi-tmages is Hecessary. Because of different zenith angles and light
conditions, reflectance values are different even if images are obtained on the same
day or from thc same sensor. To maintain optical consistency of most interested
areas, mosaic sequence ncedls to be taken into account. The images with a better
definition and larger covered area will be put on the top of mosaic queuc of MODIS
images. Acquisition time of images is another considering condition. Besides, during

Mosaic procedure for more than one images, the light condition of diffcrent images
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need to be considered. Scveral algorithms arc designed 1o reduce the boundary effect
{(Yeetal, K 2007

1. Replace,

2. Taking max value;

3. Taking average;

4. Add priority average.

Dunng images selection, size, time and cloud effects arc taking as conditions before
Mosatc. In most of cases, Mosaic images are smooth in our study. However,
“boundary” effcct happens sometimes. To improve processing quality, a new method
1s developed to reduce the boundary 1n this thesis:

If the difference between DN values of the same location in different images is larger
than a certain threshold which can be decided by analyst according to rescarch

requirement, DN adjustment processing by calculating the average value will be
applied before Mosaic.

Figure 6.3 shows the processing flowchart of Mosaic.
Open the first
MODIS file in list
v
Find the otner
files on samme day
Y

Ordering accerding to
coverage and time

v

Boundary effect?

Yoes '

Averaging pixel
values of overlap part

h 4
NOY [ . . J
_ Mosaic processing

Figure 6.3 Flowchart of Mosaic

After Mosaic processing, a comparative smooth Mosaic image 1s gencrated.

6.1.2.4 Clip

In most cases, the mosaic resull is larger than the research area. To make the statistic

calculation result more precise, a masking processing to himit the computing in
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certain region will also be performed. There are two kinds of mcthods to clip

interested area:
1. Clip the interested arca with vector:;

2. Chip the intercsted arca by application of mask.

6.1.2.4.1 ROI

Region of interesied (ROI) 15 the processing method of clipping research area by
using a vector. To conduct the process, a polygon vector will be generated according
to rescarch arca. Each pixel on Mosaic images will be judged whether 1t is in/on the
vector or outside the vector. U the pixel is outside the vector, it will be assigned a fix

value which will never appear as DN value in interested pixcel.

ND,. = DN,

,,,,,, Pixel o polvgon _vector

wigti!

Pixel on Mosaic image
ND, _ = Fix value, Pivel ¢ polygon vector

6.3

6.1.2.4.2 Mask

Another method to cut research area from a Mosaic image is application of mask.
Before the processing, a mask image with the same size and spatial resolution as

those of images that need to be processed nced to be generated. The value of each

pixel on mask image 1s assign following the rules:

ND, . =0.Pixel  polygon_vector
Pixel on Mask image

ND, . = Fix value, Pixel @ polygon _vector

6.4
Then the mask image will be processed with cach Mosaic image that need to be

clipped. “Sce-through™ value is set as (0 during Mosaic.
Both of the two algorithms can be used as cfficient clipping methods. After all these

procedures, MODIS data are ready for further data analysis.



6.1.2.5 Map

Once the pre-processing work 1s done, snow covering maps of Northcast China wall
be gencrated by using NIDS] and Normalized difference of vegetation index (NDVI).
The thresholds can be determined according to vegetation coverage and vegetation
types. In the research on snow covered mapping over Liaoning province {Zhang, Yan
and Lu, 2010), the NDSI thresholds of forest and non-forcst areas arc 0.2 and 0.4
respectively, NDVI threshold is 0.4. Then the pixel valucs of snow map can be

assigned according to the following lormula: i

ND._. =L(NDSI>0MORNDIT>0.4802 < NDSI)

Pixcl on image

ND, =0.(NDVI<0.48&NDSI<08)ORNDYT >0.4& NDSI <0.2)
N

6.5
Although rough cloud detection by using the reflectance of band 26 was applied

before geo-referencing, the effect of atmosphere can not be eliminated completely.
Because band 26 1s sensitive only to water vapor and cirrus clouds. To reduce the
effect of atmosphere, 8-day Mosaic method is needed in our long term observation
system. Daily snow maps of 8 continuous days arc overlapped to generate an 8-day
snow covering map. The value of each pixel on mosaic image is assigned as onc of
the following numbers (Table 6.1} (Zhang er al., 2010).

Table 6.1 Interpretation key for 8-day snow covered mapping derived from MODIS L1B

Value Meaning

1-3 Possible SCA

4-8 SCA

0 Nun Snow-Covered arca
-2 Cloud Obscured

-1 Outside Liaoning Province

6.1.2.6 Flowchart

: . »
According to MODIS data processing procedures mentioned above, seven basic data
processing procedures are discussed in a flowchart. Figure 6.4 shows the flowchart.

The first step is to download MODIS data from hitp://ladsweb.nascom.nasa.gov/.
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Then, geo-location information and DN values of selected channcls will be obtained
from MODIS images for the detection of reference location and cloud coverage.
Those images selected through the detection of location and cloud will be
geo-referenced for mosaic processing.

According 1o the mosaic requircments (c.g., date or zenith angles), MODIS images
will be jointed together to form an integrated map of the whole rescarch arca.

The next step of data pre-processing 18 masking, through which the superfluous arca
of mosaic images will be removed during statistic analysis.

Finally, snow covercd maps are generated by using NDSI, NDVI and 8-day Mosaic

tcchnology, based on which further analysis on long term snow covering changes can

be conducted.

Bownload MODIS
files
L

[ Read MODIS ] -

file

¥
NG

Yes ¥
Cloud covered? NO

Georeference Mosaic
processing conditions

+ ]
Mosaic
precessing

[ Clip processing ]
L i
Map

[ generation ]

Figure 6.4 Flowchar of mass MODIS data processing

6.1.3 Snow Monitoring over Northeast China Based on

MODIS L1B Data during 2006-2007 Winter

In this part key codes of snow monitoring map gencration over Northeast China will

be discussed step by step.
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In the traditional way, the processing time of 1805 picces of MODIS LL1B images is
48 working days.

In our automatic processing mcthod. we followed the following steps:

1. Download MODIS files-totally 1865 pieces of MODIS L1B imagcs;

2. Automated processing to sclect uscful images 1s conducted aceording to location
and cloud detections. The advantage of this antomated method is that rescarchers are

freed from the bored and automatic work.

To apply the method mentioned above, the following processing will be performed

for the specific rescarch (Figurc 6.5).

3. 651 files werec removed. because only emission data but no retlectance value can be
found in those files.

The key point to handle this issue in ENVVIDL is:

(a) To open MODIS file,

(b} If reflectance is unreasonabie. then start to process the next WODIS file

270 geo-referenced NDSI files are generated from the rest of 849 files. The others
arc removed becausc of their location {420 files), cloud (1 files), invalid data (21

files), and lack of transformation points.

The total geo-referencing time for processing of 270 images are 9 hours.
The corresponding code is

fid=EQS_SW_OPEN{(filename. /READ)

SWATH_L2_STD_LowRes = Low_Res_Swath'

SWidlowres=EQS_SW_ATTACH(fid. ''WODIS_SWATH_ Type L1B")

;read Geolocation fields

ret= EOS_SW_READFIELD(SWidlowres, "Latitude”, lat)

ret= EOS_SW_READFIELD(SWidlowres. "Longitude”, lon)
envi_open_data_file, filename, /modis, dims=dims, ns=ns. nl=nl r_fid=fid
anvi_file_query, fid, dims=dims. ns=ns. ni=nl. nb=nb. bnames=brames

if nb'EO 7 then begin

- use to distinguish files with spatial resolution of 500m from those with Tkm

if float{n_elements{index))/float(n_elements{lat})) LT Q.07
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Y
Calculate Statistics
A4

Calculate daily Calculate 8-days
results results
Mapping Snow Cover (%)

Figure 6.5 Flowchart of automated processing of MODIS L18 data in SCA monitoring

Then begins calculate by using the following equation:

ared _of _research _region

covered _area of _MODIS image 6.6
Besidcs, to reduce the performance time, a new file of our interested data was created.
"[:hus, unnccessary  computing to  those not interested pixels can be elided,
Approximately 8-10 seconds and 5/6 storage space can be saved for each MODIS
geo-referenced image in mosaic processing,.
4.5 and 11 8-day mosaic images arc created in late 2006 and early 2007, respectively.

These images of cight successive days were pieced together and the onc with larger
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covering area is put on the top. About 5 minutes are needed to mosaic sub-set NDSI
images. Totally 1.33 hours are needed in this step.

5. 16 files of masking in the rescarch area arc the final output of results. To do this,
RO is applied on cach Mosaic image. All reflectance values outside Northeast China
were assigned as -1. By doing this, the calculation of SCA will be limited in our
rescarch region.

0.08 hour is nceded for clipping processing in this case.

Totally processing time of MODIS LIB data for snow cover monitoring in
2006-2007 are 10.41 hours, which are 2 working days by using automatic processing
method introduced in this paper.

Clearly, the automated method can greatly increase the efficiency of MODIS data

processing by saving manpower and time.
6.1.4 Snow Map Generation

6.1.4.1 Daily Snow Cover Mapping

The processing method removes the images of which more than 25% is covered by
cloud. However, cloud is still taken as the major cffect on monitoring results
according to the research of Frei and Lee (2010). Thus, a cloud mask is nceded to
reduce the error-judgment of SCA monitoring model.

The compared results of in situ measurements and remote sensing estimation show
that estimation values of our model are much more closer to those of in situ
measurements in comparison with MODIS snow products over Liaoning(See Figure).
However, estimation value of our model is lager th;zln that of m situ data in a few
days in late fall or early spring, when temperatures arc higher than 0 °C. Only in few
days estimation results are larger than those of in situ ones. The errors may be caused

by cloud effects (Zhang et al., 2010).
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Figure 6.6 Comparison of Snow covered percentage derived from in situ measurement, our model and
MODIS daily snow product

6.1.4.2 8-day Maximum Snow Covered Extend Mapping

Ccncrally the pixels with values larger than 1 are snow covered ones. However,
snow can hardly melt within one day when the temperature is lower then 0 C. Since
lower cold clouds and snow are very similar in the optical properties, the result of
SCA based on NDSI is usually mixed with lower cold cloud covered area.
Empirically, a pixel can be considered as SCA only when it is marked as SCA the
day before the judgment-day and the day after judgment-day. Thus, during an 8 day
period, the threshold of snow covered marks is 6. However, the thin snow covered
should be considered particularly because the wind and gravitational processcs will
lower SD. And the snow cover with SD less 2.5cm is invisible to MODIS sensors.

Therefore, it is more reasonablc to assign the threshold as 4 or 3 (Zhang, Yan, and Lu,
2010).
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(a) (b) () (d)

Figure 6.7 8-day snow covering map over Northeast China during 2006-2007 winter

(a) and (c) presents snow covercd map that produced by NASA while (b) and (d) 1s the map the
generated by using my processing method. In (b) and (d), the muddy color marks the pixels that
are not covered by snow; light grey presents the pixels may be covered by cloud or snow (pixel
value is less than 4). The pure white shows SCA.
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6.1.5 Advantage of new Processing Method

The new automated MODIS data processing mcthod 1s presented for researches
rclated to the long time series. Scven processing procedurcs are included in the
method. A case study of snow cover monitoring over Northeast China shows that by
using the new method very similar results as NASA snow products is obtained
(Figure 73), moreover, the processing time is reduced (rom about 48 to 2 working
days (10.41 hours), which grcatly improves the working cfficiency of our data

pre-processing in SCA monitoring over Northeast China.

6.2 AMSR-E Data Processing

6.2.1 Introduction

The Advanced Microwave Scanning Radiometer - Earth Observing System
(AMSR-E) L2A data and its high level product- AE_DySno data are widely used in
snow monitoring since 2002. '
Brightness temperature can be derived from AMSR-E data in the following way:

Tb (kelvin) = (stored data value * 0.01) + 327.68 6.7
To calculate SD, brightness temperatures of 18.7 GHz and 36.5 GHz with spatial
resolution of approximately 20km from 1st Nov 2005 to 1st Apr 2009 over Northeast
China are acquired in this study.
To acquire Snow Water Equivalent (SWE), AE DySno data from 1st Nov 2005 to
1st Apr 2009 over Northeast China are applied in our study.
These Level-3 SWE data sets contain SWE data with spatial resolution of 25 km, and
are available from 19 June 2002 to the present. Three kinds of datasets are provided
by National Snow and Ice Data Center, they are AMSR-E/Aqua Daily L3 Global
Snow Water Equivalent EASE-Grids (AE_DySno),AMSR-E/Aqua 5-Day .3 Global
Snow Water Equivalent EASE-Grids (AE_5DSno), and AMSR-E/Aqua Monthly L3
Global Snow Water Equivalent EASE-Grid (AE MoSno).

6.2.2 Methodology

Comparing with optical remote sensing data, microwave remote sensing data have

the capacity of penetrating, which means that cloud detection can be omitled in
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microwave data processing. The processing steps for cloud will be neglected during

AMSR-E data preparing.
6.2.2.1 Data

AMSR-E L2A

The AMSR-E Level-2A data provides brightniess temperatures at 6.9 GHyz, 10.7 GHz,
i8.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz, respectively. The spatial resolution
for dilferent channels corresponds to the footprint sizes of the observations, which
are 56 km, 38 km, 24 km, 2! km, 12 km, and 5.4 km, respectively. Since 2002, the
daily AMSR-E data are available. All these data can be downloaded free charge from
National Snow and Icc Data Center.

AE_DySno

To acquirc Snow Water Equivalent (SWE), AE DySno data from Ist Nov 2005 to
Ist Apr 2009 over Northeast China are applied in our study.

These Level-3 SWE data sets contain SWE data with spatial resolution of 25 km, and
are available from 19 June 2002 to the present. Three kinds of datasets arc provided
by National Snow and Ice Data Center, they arc AMSR-E/Aqua Daily L3 Global
Snow Water Equivalent EASE-Grids (AE_DySno),AMSR-E/Aqua 5-Day L3 Global
Snow Water Equivalent EASE-Grids (AE_5DSno), and AMSR-E/Aqua Monthly 1.3
Global Snow Water Equivalent EASE-Gnd (AE_MoSno).

6.2.2.2 SD Calculation

Since AMSR-E L2A data provide us 12 channels with re-sampling and without
re-sampling data (Sec Table 6.2). To reduce computational complexity, the channels
that arc scnsitive to SD according to our field experiments arc selected and processed
before geo-referenced processing, which means among the 6 channels without

re-sampling, only 18.7GHz and 36.5GHz arc sclected for the further processing.
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Figure 6.8 Process flowchart for AMSR-E L2 data
Table 6.2 Spatial resolution of AMSR-E data

Center Frequencies (Ghz) 6.925 10.65 18.7 23.8 36.5 89.0
Mean Spatial Resolution (Km) | 56 38 21 24 12 5.4

[fov (Km X Km) 74x43 | 51 %30 2?‘3( 16 [31x18 [ 14x8 |[6x4
Sampling Rate (Km X Km) 10x10 | 10x10 [10x 10 [ 10X 10 [ 10x10 |5xS

From Tablc 6.2 we know that cach channel has its corresponding special resolution.
Although the special resolution of 36.5GHz 1s 12km, that of 18.7GHz’s is 21km.
Thus for geo-referencing location (pair of longitude and latitude coordinate) with low

spatiat resolution is sclected.
6.2.2.3 Geo-referencing

In the original image that NISDC provides us, geo-information are not linked to
brightness temperature. Thus, geo-referencing processing is required.

Geo-referencing of AMSR-E L2A data is quite different from that of MODIS data
processing sincc AMSR-E L.2A data are swatch data. AMSR-E data arc composed ol

dispersion point with brightness temperature and location information.




To fix each point into its corresponding location for my study, the boundary of the
, :

research arca i1s simply decfined by the use of a rectangle with upper-lcft and
down-nght corner candidate of Northeast China on the map. Only those points locate

in my interested arca are registered into geo-referenced file.
6.2.2.4 Spatial Resolution Selection

Aflter Geo-referencing, the rectangle tmage 1s transformed into an anomalous
formation (scc Figure 6.9). The corner coordinates of black background are (118E,
54N) and (136E, 38N).

One of the advantages of this processing method is optional spatial resolution. The
distribution without re-sampling point is not as rcgular as that of grid data’s. When
the sampling spatial resolution increases, number of points found in onc pixel will
decrease.

Therefore, the sclection of re-sampling spatial resolution is importarice. On one hand,
a finer spatial resolution is required for accurate monitoring of snow. On the other
hand, post processing to fill vacancy where no sampling point can be found is

necessary.

0.1°0.1

0.05"0.05

Figure 6.9 Re-sampling spatial resolution according to specific usage
Accuracy will be deteriorated if the re-sampling spatial resolution 1s defined higher

than 0.05*%0.05.

6.2.2.5 Mosaic .

In most of cascs, only one piece ol swatch can not cover the whole Northeast China
Mosaic of several swatch data within one day or two days are needed here to

generate a map for the whole research area (Figure 6.10).
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Figure 6.10 Mosaic of AMSR-E data Figure 6.11 Interpolation Process

6.2.2.6 Subset and Interpolation

Then, a vector of the research area 1s needed to border the data interested. However,
there are lots of blank pixels within which no sampling point can be found in the
interest of research area map (see Figurc 6.11). An additional processing is to apply
Algorithms on processing result of boundary delimiting.

Values of blank points on the map arc gencrated with 8 neighbor points. By doing

this, each point in our research area is assign a value.
6.2.2.7 Generation of Snow Mask Map

Finally, snow mask i1s generated from the interpolated map. Those pixels with value
over 0 are SCA, while those pixels with zero values are bared land.

However, it is noticed in Figure 6.12 that most of pixels have minus values (the dark
blue pixels). On this kind of pixels, we can hardly determine whether or not it is a
SCA according to the analysis of ficld experiment. That is to say, further researches

on snow covering on different underlying surfaces are in urgent need.

FEE TR AU ’.:#Y‘_“T‘d’.m.:‘

Figure 6.12 Generation of daily snow covered map
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Sometimes, 8-day Mosaic of snow covered map can provide us a more accurale
result on snow covered monitoring. Flowever. the radiation properties of some kind

of underlying surfaces are uncertain, which doubtless increases the difficulty in land

cover discrimination.

6.2.3 Comparison of Ascend and Descend data

Besides all the procedurcs mentioned above, there 1s still one thing that we nced to
considerate. That is the change of incident angle. Generally, there are 4 piece of
swatch data that we can obtain from satellite remote scnsors per day. Two of them
are Ascend images, the others are Descend images. The incident angles of the two
types of satcllite images are around 50°, which is considered are the best performed
angle.

Another cffect factor that will influence retrieval accuracy of the two kinds of
AMSR-E data is snow wetness. The transit times of Ascend and Descend satcllites
are 16-18pm and 2-4 am respectively. Basically, in the winter of Northcast China,
minimum temperatures will occur in both of two time frames except very few days.
It means that unless the snow 1s melting during the whole day, there is no big
difference between the two time frames, especially in snow covered judgment
calculation.

Figure 6.13 shows the preliminary estimation of SD in 6 testing sites in 2006-2007.

The estimation results of Ascend and Descent satellites are similar.
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Figure 6.13 Prelimmary eshmauon of SD in 6 testing sites in 2006-2007

However, we can see that the estimation results of AMSR-E data are quite different

from that of in situ measurements. The estimation model is not accurate enough in

practical use. More researches should be done to improve the model.
\
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6.2.4 Comparison between Estimation Results Based on

AMSR-E and In Situ Measurements
6.2.4.1 SD Estimation

To develop an accurate SD retrieval model, ficld experiments and long term

observation are essential. Table 6.3 shows the location of test sites, where long term

o

observation conducted.

Table 6.3 Location of test sites

lat lon Test sites name

r'_ﬁ?)"fdz;l 12735 Sunwu !
4682 13028 | Jiamusi j
4337, 1282 | Dunhua |
| 45.63| 12283 Baicheng
" 41.98% 122.83 | Xinmin
4155, 12045 Chaoyang

f_u‘.ig\ e EhE

L' 4742 128.56 | Yichun

; S S
44.9 i 130.5 | Muling |

The measurement results of SD and SWE are compéred with that of estimation

results by using AMSR-E L2 and AMSR-E L3 data. Figure 6.14 shows us the

comparison results in selected test sites from 2006 to 2007.
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Figure 6.14 Comparison of estimation SD&SWE and in situ measurements
Table 6.4 shows the RMSE of estimation results and measurements.
Table 6.4 Statistical data of long term observation in test sites
| Average SD(cm) | RMSE SD(cm) | RMSE_SWE(mm) ' TestSites | Year |
3033 28.13 | 289 r Jingyu | 2005-06 |
[ 1022 | 560 l T 2356 | Dehui | 200506 |
} 2766 ¢+ 1870 77 2897 " Sanjiang | 2006-07 |
| 772655 1 2897 | 313.58 . Jingyu | 200607
| 2.28 T 28l T 337 ‘ Dehui | 2006-07
6.31 N 433 " 7867 7 Hailun | 2006-07 |
1698 | 1185 28.72 | Yichun | 2006-07
1625 | 1552 2270 Muling | 200607
5.10 I 398 | 1634 | Hailun | 2007-08 ‘
1038 6.63 L 1507 | Yichun | 2007-08
— S S— — - — — — ]
7.11 10.54 54181 Muling 2007-08_}

T'hémﬁéu}é‘aﬁd table clearly shows us thz{t_generally, the estimation values are lower
than that of in situ data. However, there are crosses of estimation curves and in situ
ones. The under estimation is higher in the test sites with underlying surfaces of
farmland, grassland and the wetland. While in the forest arca where SD is less than
35 cm, less underestimation can be found (see results of Muling).

The crosses between estimation and measurecment curves make the modification of
SD retrieval model more difficult, since the relationship is not linear. If I want to find
out a better matched relationship, the first thing we need to do is to figure out what is
the cause of crosses.

In the following part, test sites of Jingyu and Dehui (2005-2006) arc selected as
typical example of forest and farmland. The major effect factor of the crossing

curves is discussed by analysis of the two typical test sites.
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Ground data collected from two testing sites (Jingyu and Dchw) from Dec. 2005 to
Mar. 2006 are listed in Table 34. As mentioned above, the underlying surface of
testing site Dehui 1s farmland, where dircetly exposures to the sun and luctuation air
temperature duc to the open fterrain. [n comparison with Dchui, there is more
snowfall in testing site Jingyu, where the land cover typc ts forest with less
difference in temperature during day and night (see Tablc 6.5). The mecan grain stze
of new snow is below 3.0 mm in both two sites and the largest SD(49 cm) 1s far less
than the penetrability limitation of passive microwave signal (100 cm) , which mean
that NASA mode!l developed by Chang’s group can be applied in SD and SWE
estimation of the two testing sites by using AMSR-E data.

Table 6.5 Summary of field measurements in two lest sites in Northeast China

. Tmin | Tmax | Dsize SD SWE SWE
Sites T C {mm) {cm) {mm} mean{mm)

Dehui -39 5 0.30-1.30 | 4.50-15.80 5.18-25.48 13.75

[ Jingyu | -35 -1 1.00-2.00 11.7049.00 | 20.57-171.50 81.70

According the analysis of remote sensing data (AE_L2A, AE DySno) and in situ
measurements of the two test sites, we find that SD cstimation result with modified
Chang’s algorithm is lower than those of in situ mcasurements (see Table 6.6). A
clear trend of under estimation can be found in SD retrieve in both of two test sites.

Table 6.6 The SD estimated from AMSR-E data compared with field data of 05-06 winter

Mean_ Mean
- RMSE Correlation
Test site measured AMSR-E Error_relative
(cm) (r)
(cm} {cm)
Dehui 10.2176 8.72811 4.74921 46.4805 0.536825
Jingyu 30.3294 7.65008 25.0182 82,4882 0.454089

The underlying surfaces of the two test sites (Dchui and Jingyu) are farmland and
forest respectively. According analysis results in Table 6.4 and 6.5, it is obviously
that retrieval result of Dehui is betier than that of Jingyu by using AE [.ZA data
when we compare the estimation accuracics of two test sites during the wholc winter.
Figure 6.15 and 6.16 show the max and min sur(ace temperaturcs, measurcd SD, and
estimation SD by calculating the difference of 18 GHz and 36 GHz denved from
AE_L2A data. From the figures we can scec that during the period of early spring,
cstimation results of SD start to fluctuatc with tempcrature. That is to say,
temperature becomes onc of the most important factors that will greatly affect remotc

sensing ostimation.
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Figure 6.15 Temperature and snow parameters in Dehui ,05-06 winter
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Figure 6.16 Temperature and snow parameters in Jingyu, 05-06 winter

The influence research of temperature on SD estimation results was conducted by f
the correlations between estimation SD, measured SD and snow surface temperature.
Table 6.16 shows the correlation between estimation SD and measured SD and
correlation between estimation SD and max/min temperature. As it is noted, both of
grain size and water content in snow body have great impact on microwave signals.
Only when temperature reaches melting point, rapid changes of grain size and water
content will happen. In Rees’s review on snow, he defined that melting point is 0°C
(Rees, 2005). In researches on SD and SWE estimation in Finland, -3°C is taken as
the key point. Actually, melting point is different in different region because that the
impurities in snow changes in different area. The only way to dcfine a suitable
melting point for Northeast China is figure out the clue from crrors between
estimation SD and measured one. From Figure 6.15-6.16 we can find that in most of
days, SD is underestimated by AMSR-E data, except the days followed a
temperature fluctuation with sudden elevation and rapid drop. The overestimation is
causcd by a refrozen snow layer with larger grain size on the top of snowpack. The
grain size of new fallen snow is 0.2 mm in Northcast China while the refrozen onc is
0.5 mm according our ficld work. Based on Mei theory, the larger rcfrozen grain size
will cause an overestimation if the same coefficient is utilized in Chang’s model as

for new fallen snow. Thus, -6°C can be taken as the proper melting point for the two
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test sites. By using the point, thc whole winter can be divided into two period, which
are dry snow period and melting period. For the two test sites, 15" Feb 2006 and 7%
Fcb are sclected as the Scgmentation points of test sites Jingyu and Dechui,
respectively. However, the solution method requtres morc in silu measurements.
More cfficient way should be designed to solve the problem. In Chapter 7, an
improved modcl for SD retrieval will be discussion on this issue.

Table 6.7 Correlations of estimation SD, measured SD and daily temperature

Test sites | Dry snow period o I\Zt}ll—ing penod o
Rem  [Retwn | Revom [ Rew Rt | Retwio |

Debui 0.70 043  |-027 053  |-0.54 0.79

Jingyu 0.85 -0.12 0.05 .56 -0.45 -0.39

(Here R, ,, is the comrclation of estimation SIY and measured SD), R, 14,y 18 comelation of
estimation SD and daily max temperature and Re , 18 comelation between estimation SD and

daily min temperature)

From Table 6.7 we can find that in dry snow period, high corrclations can be found
between estimation SD and measurcd SD in both two testing sites, which means that
modified Chang’s model can bc applied in SD monitoring over Northeast China
where underlying surfaccs are forest and farmland during dry snow pertod. However,
temperature becomes the most important f(:lClOl‘ in Dchui during melting period and
the important factor in Jingyu. The less cﬂ'{:ct on SD estimation in Jingyu may be
causcd by the deeper SD and smaller tempcrajure fluctuation.

Furthermore, minus values of SD appear in estimation results with AE 1.2A data
during melting period in two testing sites, which arc caused by water percentage
contained in snow body.

In conclusion, because of the property of passive microwave meters, {luctuations in
temperature will lcad to the estimation crrors, il temperature is higher than -6 C.
Besides the effect of land cover types, temperaturc become the major cffect on SD
estimation during mclting and larger cffeet will be caused over comparatively open

arca like farmland than that of forest.
6.2.4.2 SWE Estimation

Similar results can be found in SWE analysis in two test sites. By using AMSR-E L3
data, SWE estimation results can be obtained according to NSIDC:
SWE = SD (cm) * density (g cm-3) * 10.0 (mm)
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Table 6.8 shows the analysis of SWE cstimated from AMSR-E data comparcd with
field data in the winter of 2005-2006.

Table 6.8 The SWE estimated from AMSR-E data compared with field data of 05-06 winter

Test-sites Mean_measu Mean__AMS RMSE L-'r_rnr_ Correlation(r
o ® L? red (mm) R-Lanm) | (mm) _ relative ) i
Dehui 14.76 7.70 10.53 71.33 0.16

Iingyu 1777 16,30 69.57 T893 o074

A vcry low corrclation is found between SWE cstimation and in situ measurements
in Dehui, which means estimation accuracy of SWE derived from AMSR-E L.3 is far
from the requirement for practical application. A new model for SWE retricve is
badly nceded. Generally, there is a linear relationship between the difference of
18GH7 and 37GHz, which arc quite sensitive to snow grain size, and SWE. The
higher relationship (0.7) betwecen the difference of 18GHz and 37GHz and measured
SD in Dchui can be obtained. And the in situ SWE is calculated by using measured
SD. Thus, it can be concluded that by using the difference of 18GHz and 37GHz we
will get a more accuratc SWE estimation in comparison with AMSR-E L3.
According the preliminary work on SWE estimation here, a ncgatively correlation
can be found between SWE cstimation and temperaturc, which may lcad to the low
accuracy in SWE retricval. Another factor that affects the retrieval accuracy may be
SD. In Jingyu, a better rcsult is obtained compared with that in Dchui, although the
SWE was wildly undercstimated (see Figure 6.17).
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Figure 6.17 Temperature and SWE in Dehui and Jingyu, 05-06 winter
The comparison of SWE estimation between two test sites shows that AMSR-E L3

produci can be utilized in SWE trend estimation, in spite of it is underestimated in
both of two sites.

To sum up, it is a practical way to roughly divide snow covered period into dry snow
and wet snow parts to improve estimation accuracy for both SD and SWE. But here
still be other problems that nced to be explained. That is: what happens in the cross
points during the dry snow period? And how dose the temperature affect SD

estimation’?

6.3 Breakthrough Points to Improve Remote Sensing

Estimation Models

Ficld experiments and the comparisons of SCA, SD and SWE between remote
sensing estimation results and in situ mecasurements are conducted in this study.
Results suggest the following conclusions.

1. Effect of cloud is always that major problem for optical remote sensing. To
g
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make modcls practicable, the effect must be climinated.

Different underlying surfaces will affcct SD and SWE estimation results by
using passive microwave remote sensing data. For instance, vegetation on the
ground surface masks partly the emission from the ground and snow.

Difference of V and H ts diminished becausc of the geometric cflects of ground
surface, cspecially in high frequency

SWE and SD were underestimated in retricval model by using AMSR-E data
over agriculture arca and forest in different degree.

Unlike the- other researches, cstimation results over agriculturc underlying
surface arc worse than those over forest, cspecially in carly spring, which means
temperature may become prior cffect factor in SD and SWE estimation in the
period of carly spring.

Minus value in estimation results of SD is found over the regions ncar rivers and
lakes or in the period of fate autumn and carly spring, which can be considercd
as the proof of effects of water body to SD and SWE estimation.

There are crosses or irend that will lead to cross in the curves of estimation
results and measurements ones in both dry and wet snow periods. The
phenomena makes it more difficult to find the exact way to interpret snow
information by using AMSR-E data, because the lincar model for SD retrieve is
seems to be destroyed now. To improve estirnation accuracy, the first thing is to

cxplain the cross.



Chapter 7 DEVELOPMENT OF IMPROVED SNOW
MONITORING MODELS

In chapter 5 and chapler 6, the estimation results of SD, the cffect of land cover types
on estimation accuracy and the physical propertics of snow werc analyzed briefly.
The preliminary results show us that the existing models for SCA and SD cstimation
arc not good enough in retrieval of snow information, which is usually applicd as
very importanl input parameters in hydrology and climatology models. Another
message brought by these results is that there is a great potentiality in satellitc remote
sensing data 1o provide more accurate estimations which will meet the requirements
of hydrology and climatology models. Decper research on the inherent relationship
between snow propertics and satellite remote sensing data nced to be conducted to
accomplish the goal. In this chapter, improved snow monitoring models with which
more accuratc SCA and SD estimations can be acquired over Northeast China will be

developed and discussed.

7.1 SD Retrieval Model

7.1.1 Introduction

In Chapter 2, SD retrieval models bascd on both optical and microwave remote
sensing data werc expounded. Optical remote sensing data arc not dominant in this
area because they do not have the penetrability as microwave remote sensing signals
do. With microwave remote sensing data, popular models are applied in SD
cstimation within deferent scales. With abundant and timely input parameters, HUT
and MEMELS modecls achieve comparatively high precision but more limitation for
large scalc application. The requirements of abundant and timely input parameters
greatly whittle away the advantage of models based on remote sensing, which arc
supposcd 1o work cfficiently and timely without intervention from in siu
mcasurcment and to be applicable to large, even global scale. Chang’s algbrithm is
successfully applied in global scale monitoring. However, the fixed coefficient.in this
model lead to huge errors when it is performed in different regions where snow
propertics diverge greatly. The difference’in snow propertics is mainly In snow grain

size, which has great effect on SD estimation by changing the scattering with in snow
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packs. To soive the problem, assigned value of the constant is suggested to be
diffcrent in dilferent location because of diversity in snow grain size i different
continent. The value of constant ‘«” is changed from 1.59 (in America) to (.78 when
this model is apphed 1;n Eurasia.

Nevertheless, even in the samce location, snow grain size varics. In situ measurements
in Chapter 5 shows that, snow grain size varies from 0.2mm to more than 2mm.
Researches show that, under certain temperature and humidity circﬁmstanccs, SNOW
grain size can increase tenfold. The huge snow particles inside snowpack body are
rcferred to as deep hoar, which is- considered as onc of the unsolved problem that
dramatically reduces rctricval accuracy (see Chapter 2 and 3). Further reversions
have been made on Chang’s original aigorithm to decal with the growth of grain sizce
over time (see Formula 3.8).

But new fallen snow mantled the old snow layer is not considercd in this
modification. For the new laycr, snow grain size is small. Therefore, the scattering
property changes again. But the time counting for the reversion model will kecp
running in the old mode without intervention of ground obscrvation, even if there is
ncw snowfall. Here comes the problem: snow grain size is constantly changing while
the parametcrs and constant for global SD retrieval models remain static. In the
following section, an improved model which addresses to solve this problem is

devcloped.

7.1.2 Methodology

7.1.2.1 Original SD Retrieval Model

Till now, there i1s no wildly accepted model for SD retrieve by uéing optical remotc
scnsing data. The most universal algorithm in SD estimation is Alfred T. C. Chang’s
‘model. According Mei scattcring theory, it is suggested that the difference of 18 GHz
and 37GHz can be used in SD estimation and scrics experiment results confirm the
linear correlation between SD and the difference of brightness temperaturc (Tb) (sce
Formutla 3.5)

In Formula 3.5, ¢ is 4 cocfficient that will be assigned different values in different

regions according to snow grain size (e.g., 1.59 in North America and 0.78 in

Eurasia).
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In this study, the Chang’s original algonthm is applicd in SD retrieval to make a
comparison between the SD estimation results of original algorithm and that of

improved modcl. The valuc of ¢ 1s assigned as (0.78 according 1o Li and Che’s

rescarches for original algonrithm.

7.1.2.2 Changing Trend of Snow Grain Size Estimate Model

Study on snow grain sizc detection started from research on scattering and absorption
of radiation by single ice particle. Calculation results show that scattering light is
mostly due to refraction but not reflection within snowpack (Warren, 1982). With the
increase of snow grain size, path direction of light photon inside ice particle is
increasing, which gives more chances to ice molccules for absorption. However, at

diffcrent wavelength, absorption shifi 1s different.

SEMI - INFINITE DIFFUSE ALBEDO o g

Figure 7.1 Diffuse albedo vs. grain radius {Adopted from Optical properties of Snow, by Warren, 1982,
pp.72)

Herc A present wavelength and ~ is grain radius.

By using WWI model, changing ratc of albedo according to increase of snow gran
radius is calculated at different wavelength (scc Figure 7.1). At visible region, lincar
relationship with slightly downward slopc can be found between diffuse albedo and
squaré root of grain radius. When 1t comes to ncar-infrared range, the changing rate
is more like exponential curve. It indicates that at near infrared range, albedo is more
sensitive to the changes of snow grain size then at visible range. However, at
wavelength of 1.5wn, change of albedo is close to saturation when r reaches

200um. At 1.1pm a comparatively obvious inverse relationship between albedo and



grain radius can be found. Based on which, Dozicr e al. calculate snow grain size by

using the scaled arca of the absorption featurc near 1.1um (see Figure 7.2) (Dozier ef

al., 2009).
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model calcutations 0.2mm

0.9
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Figure 7.2 Relationship between snow grain size and scale area of optical feature

Figue 1. (Adopted from Dozier, J., Green, R., Neolin, A., Painter, T.(2009). Interpretation of snow
properties from imaging spectrometry. Remote Sensing of Environment, 113 (2009}, S25-837.)

However, the most notable and monotonic decreasing of albedo can be found near
1.3um. Therefore, in this thesis, the wavelength with which snow grain size will be
retrieved is sclected from 1.2 -1.3um, that can be provided by MODIS sensors.
The analysis result of in situ measurements (sece Chapter 5) perfectly matches the
conclusion.

Compared with the dramatic decline of reflectance caused by larger scattenng at
1.2pum -1.3pm with increase of snow grain size, the reflectance shift at 0.4wm -0.6pm
is much less. The calculation results on snow grain radius and reflectance (or albedo)

in both Figure 7.1 and Figure 7.3 clearly show the flagrant contrast for reflectance

decline.
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Figure 7.3 Model calculations of simi-infinite diffuse albedo as a function of wavelength for various snow
grain radium

Figure 2. (Adopted from Optical propertics of Snow, by Warren, 1982, pp.71)

The reflectance at 1.5pm remains comparatively static when snow grain radius is
larger than 200um. However, in most cases the grain size of natural snow is larger
than 200um (Rees, 2005). The insitu measurement over Northeast China is a proof of
that (see Chapter 5). Therefore, it can be concluded that with the increase of snow
grain size, the reflectance at 1.2wm -13wm will dramatically drops, while the
reflectance at 0.4um -0.6um and 1.5uwm are relatively stable. Conscquently the
difference between reflectance at 0.4pm -0.6pum and 1.2pm -13pm significantly
decreases, and that between 1.2pum -1.3wm and 1.5pm obviously increases with the
growth of snow grain size. The change regularity derived from in situ measurement
in Chapter S is the result of this.

Thus, an expression can be drawn out from above theory for detection on snow grain

size changes:

R R

1.5 o1 - 1.25 pon
7= 7.1

R - R

1.25 b5

Here (', is the threshold for change detection and R represents rellectance at
different wavelength. The subscript is wavelength selecied according to sensitivity to
snow grain size. In this thesis, the three wavelengths arc sclecled according to both

snow physical properties and channcls that MODIS can provide.
To compare the values of C, calculated for same location but in different dates, the

change trend of snow grain size can be deduced.
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The model can be applicd into imagery pixels that fully covered by pure snow.
However, therc are still some other issucs that need to be considcred. Although ice
particles are highly transparent in the visible, which lead to a weak dependence on
the grain size, it does no mean snow reflectance at visible range is always as high as
new fallen snow because of the absorption by impurities, which have very high effect
on reflectance in this region. The valuc of (', may be degraded by lower
reflectance at 0.5ium but not the changes at 1.25wn. Besides, other land cover types,

such as soil and vegetation, also have eflect on reflectance (see Figure 7.4).

MQDIS bands 1-7

¥
) snow
08 vegetation
g 0.6 soil
B B
L)
3]
% 0.4
0.2
0
05 1 1.5 2 25

wavelength, pm

Figure 7.4 Typical reflectance of snow, soil and vegetation and corresponding detection channels of
MODIS data

Figure 3.  (Adopted from Retrieval of subpixcl snow covered area, grain size, and albedo from
MODIS. By Painter, T., Rittger, K., McKenzie, C., Slaughter, P, Davis, R., Dozier, J. (2009). Remote
Sensing of Environment, 113 (2009}, 868-879)

The mixture of soil or vegetation and snow will lead to the decrease of reflectance in
band 2 (near 0.5um) as well as increase in band 6 (near 1.5um). There is a slightly
increase on reflectance at 1.25um (band 5) can be found. It means that mixed pixel or
impurity will decrease the value of C,. Thus, in the practice the effects on C,

from mixed pixel and impurity need to be considered. The experiments on mixed
spectrum confirm the conclusion (see Chapter 4 and 5).

Painter et al. (2009) solve the problem by establishing a spectral databasc of all kinds
of typical, mixture spectra and comparing the measured spectra with samples in
database.

In this thesis, the ratio of (', and NDSI is performed to reducc the effccts of

mixlurc and impurity on spectrum. Consequently, the criteria can be modified as:

Rys,.. - R,
Cy = -2 NDST 72
R + R

0.5 pon 1.250m

Here the ratio used in formula can reduce the effects both {rom solar and scnsor
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zenith and topography. The wavelengihs sclected for calculation arc less affected by

water vapor.
7.1.2.3 Improved SD Retrieval Model

In the algorithm of original Chang, a is taken as constant in certain area. In North
China, the value of a is assigned as 0.78 (L1 & Che, 2007). However, the cstimation
results of both ascend or descend AMSR-E data show that RMSE of cstimation SD 1s
huge (see Chapter 5). Comparcd with the underestimation over forest arcas, the
situations for meadow and cropland are more complex. Crosses or trend that will
lead to cross in the curves of estimation results and measurements oncs are found in
both dry and wet snow periods. Lincar model for SD rctricve based on passive
microwave data is seems 1o bc destroyed by the comparatively large changes on
snow grain size inside snowpack. As it is discussed above, the problem is cause by
the fixing value of ‘a’, which is not static. Actually, the value of ‘a’ is changing
according to the changes of snow grain size. According to previous research results,
the value of ‘a’ is originally assigned as 1.59 when the model is applicd in North
America, and changed to be 0.78 in Eurasia because that snow grain size in the two
continents is changing from coarser to finer. But actually, snow grain sizc over
Northeast China varies from 0.2mm to over 2mm, and changes over time and snow
status.

To solve the problem, an addition model to detect the change of snow grain size
based on MODIS data is introduced into NASA algorithm (see Formula 3.5) to

determine the value of ‘a’:
SD=A,(T,,,—T,) . 7.3

Where 4, is the function of 7 and original 4,, ,:

A, =A_ N1+ AT/S) 7.4

g g5 o

Here AT isthe difference of 7 calculated from images obtained on diffcrent dates.
7.1.2.4 In Situ Snow Parameters Measurement

The ground data include important weather conditions (daily morning and aftemoon
air temperatures) and significant snow parameters (SD, SWE and snow grain size).

SWE were estimated via the snow density, which is determined by melting a snow
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column and dividing the melted water height by the snow column height. To develop
an accurate SD rectricval model, ficld experiments and long term observation are
essential (see Chapter 4 and 5). The in situ measurcments will be used 1n assessment

of Chang’s SD retricval model and the improved modcl developed in this thesis.

7.1.2.5 Data
7.1.2.5.1 AMSR-E L2A Data

In this study, data from several sources are applicd. They are AMSR-E L2A data,
MODIS data, and in situ mecasurement of snow parameters.

The AMSR-E Level-2A product contains brightness temperaturcs at 0.9 GHz, 10.7
GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz. Two channcls required for
snow monitoring are 18.7 GHz and 36.5 GHz. By using brightncss temperaturc (Th)
for the two channels together with location information, SD map wilt be generated.
Brighiness temperature can be calculated by using formula 7.7.

To calculate SD, brightness temperatures of 18.7 GHz and 36.5 GHz from 1st Nov
2007 to 1st Apr 2008 over Northeast China are acquired by using equation 3.5 with

spatial resolution of approximately 0.1 degree in this study.
7.1.2.5.2 MODIS L1B Data

MODIS image provides 36 channels. Reflectance from band 4, band 5 and band 6 is

needed in snow grain size monitoring.
7.1.2.5.3 In Situ Data

In situ measurements on SD from 8 tecst sites, daily precipitation and temperaturc
data from 101 weather stations arc applied in this rescarch as validation ol improved

model.
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7.1.3 SD Estimation Results and Discussion

7.1.3.1 Snow Grain Size Estimation Results and Discussion

Figure 7.5 shows the continuous monitoring of snow grain size {rom 27" Feb., 2007
g g g

to 14™ Mar., 2007. The valuc of T s classificd into five levels:

1, 0<T <01
2, 01«7 =03
T =43, 03<T <05 7.5
4, 05«7 <0.8
5, 38<T <1

The valuc for pixcls where is identified as non-snow covered or tack of data is
assigned as -1. From the Figurc we can found that snow grain size over northwest of
study area increased slightly from 27" Feb., 2007 to 3" Mar., 2007. On 4™ Mar.,
2007, it seems to change greatly in comparison with previous day. On most of the
area that covered by snow a day before, snow grain size decreases from 2 to |, and
over the arca that is identified as non-snow covered, snow grain size appears. From
in situ precipitation data (see Table 7.1), it can be found that thcre was a snow storm
on 4™ Mar., 2007. The storm lasted for 2 days in most of stations from which the in
situ data were collected. When it comes to 6™ Mar., 2007, snow grain size decreased
in comparison with that on 3" Mar., 2007. Because that when there is a snow storm,
the accuracy of optical remote sensing data trend to be declined. Therefore, the snow
grain size on 6 Mar. need to be compared with that on 3" Mar.. On 8" Mar., snow
grain size increased slightly. While on 10™ it declined again becausc therc is a
snowfall that day (see Table 7.1). On the following days, snow grain sizc keeps

increasing when snow stopped in most of stations.
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20070301

20070303+

Table 7.1 In situ Precipitation on the time duration in corresponding to Figure

20070310

20070306

20070312

20070308~

20070314

Figure 7.5 Continuous Monitoring on Snow grain size

Date e mge Precipitation Numbers of Precipitation stations
. (mm) i _ (Among 101)
. 20070227 018 1 - 8
20070228 | o 0
| 20070301 _0.25 15
20070302 | 0.05 1 _
20070303 016 6
2()_020}04 o 7 3 o4
| 20070305 Y A 5
120070306 __Q 05 3
i 20070307 | o 0
. 20070308 N 0 B 0
20070309 0.17 ) 10
20070310 2.4 - 53
20070311 | 0.24 9
20070312 0.01 | - N
| 20070313 | o o 0
| 20070314 0 - 0



From the comparison of monitoring results and in situ precipitation, it is obviously
that the grain size detection model can provide an accurate monitoring result on the
changes of snow grain size. According to in situ measurement, the grain sizc of new
fallen snow is approximatc 0.2mm. Thereforc, the valuc of a can be deduced by

using the initial valuc and level of grain size change provided by the detection model.

7.1.3.2 Discussion on SD Retrieval Results of Original Model and
Improved Model

Figure 7.6 shows the comparison of estimation SD and measurements in 8 test sites
by using original SD retrieval modcl developed by Chang et al. (1987). 1t is
obviously that during the dry snow season, SD is underestimated over both forest and
cropland. The underestimate over cropland is larger than that of forest. While in the
wet snow season, the estimation result is more complex becausc of thc effect of
liquid water contained in snow body.

From both ascending and descending satellite estimation, the retrieval SD are lower
than that of measured, in most cases. It is similar to the results discussed in Chapter 5

and previous sections. It is to say, the improved model should be applicd.
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Figure 7.6 Comparison of measurement SD and estimation resuit in 8 test sites during 2007-2008 winter

Results in Figure 7.7 and Table 7.2 show that, the improved SD retricval model can

provide a more efficient and accurate results in comparison with existing ones.
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Table 7.2 RMSE of original and improved models

Test Sites | RMSE original model | RMSE new model | Memo
Sunwu 1 T A | = i " [ Forest
Jiamusi T 1093 886l -]
Dunhua l o é .'37)_:_-- o FOI’CSt
“Xinmin T © 221 2200 - ]
Chaoyang | 307 49 (-
idne | T 564 | - T !Forest |
Yichun | 664 | N
Hailun | ‘ 297 T 2.86 =

7.1.4 Conc]l_lsion

The breakpoints mentioned in Chapter 5 show that there is a great potential in the

accuracy improvement for snow information, such as SD and SCA, monitoring. In

this section, an improved SD retrieval model is developed by creating a snow grain

size detection model. For the application of the improved model, following rules

should be noted:

l.

According to the in situ measurements and experiments, the major effect on
difference of 18GHz and 37GHz is frozen ice. The difference of the two
channels is minus over ice underlying surface. Minus value can also be found in
the experiments on pasture. However it only hapi)encd where the SD of test site
is shallow. The estimation result is generally lower than in situ measurements in
both forest and farmland. But the correlation of Jingyu is higher than that of
Dehui. Thus, classification of land cover types is introduced into improved
model. During the estimation, forest area, ice and agricultural land arc separated.
And the performance of improved model over cropland is the best.

Temperatures of 10 selected test sites are analyzed. Result shows that more than
80% of test sites were explored under below -3 in the period of 11-15~03-15.
Then the dry snow period is defined from 11-15 to 03-15 the next year.

After careful analyzing, the crossing trend is found to appear in the following 2
situations: _

a) When the measured SD increases dramatically (new fallen snow)

b) When it does not snow for a few days since last snow (accumulated snow)
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Now it is easier to understand the reason that causes these crosses. Brightness
tempcrature of snow is very sensitive to snow grain size. As it is noted Chapter 5,
the grain size of ncw fallen snow in Northeast China is about 0.2mm. But the
accumulated snow has much larger grain size, which can be ten times of new
fallen snow. As accumulated time goes by, the grain size is increasing. When
snow grain size becomes smaller, the trend of under estimation on SD appcars,;
vice versa, especially in the area deep hoar appearced.

To reduce the estimation errors caused by naturally changes of snow grain size, a
branch model to monitor snow grain size timely need to be applicd to determine
the value of the changeable constant a.

4. The comparing results show that, the improved model can efficiently

7.2 SCA Retrieval Model

7.2.1 Introduction

Snow cover mapping is significant for global albedo estimation, which is directly
" related to global climate, and hydrology monitoring. In the past two decadcs,
research on SCA is mainly focusing on optical and passive microwavc remote
sensing. Satellite optical remote sensing data provide finer spatial resolution for
snow monitoring in comparison with passive microwave data, however, cloud cover
is an insolvable problem in application at visible region. Statistics on cloud cover
status from 6 weather stations (2 in Heilongjiang, 2 in Jilin, and the last 2 are
selected from Liaoning according to different land cover types) for totally 279 days,
when seclected station is covered by snow, show that, only more than half of
observation days the sclected station is covered by cloud (scc Figure 7.8), and the
duration of cloud cover could last for more than 8 days (sce Table 7.3). Percentage of
Lower cloud cover, which could be a main factor of ovcrestimation of snow cover
with optical data, is 17.56%. The statisticat results show that over Northeast China,
cloud cover is still a big problem in SCA estimation using optical rcmote sensing
data, which will causc both overcstimation and underestimation of snow extent. The
SCA cstimation results shown in Chapter 6 just confirm the conclusion. And the
conclusion is similar to that Frei & Lee (2010) got in their study on optical-band

based snow extent products.
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Figure 7.8 Statistics of Cloud Cover

Table 7.3 Example of Cloud Cover Duration

1 'b!dtl()il I\am(' r Date %D (cm) _ ‘ (louq C(JVGI: Status (%)
Sunwu i 30071224 1 J - - “_:_'") _ o

| Sunwu | 200712250 4 30

| Sunwu | 20071226 4 o

i _____w_lawu | 20071227 | T a 65

. Sunwu 20071228 | 4 63 |
~ Sunwu 20071229 | 10 .10

‘ Sunwu | 20071230 | 12 100 _

| Sunwu  [20071231] 12 B

Another approach to momtonng SCA is to detect SD by using passive microwave
data (detdlled explain can be found in Chapter 2 cmd 3). Snow is the only object on
the earth that can provide decline emission w1th the increase of frequency (Rees,
2005). Based on this property, algorithms and models are generated to distinguish
sno“: from other land surfaces. However, t}ge effect of underlying surface sometimes
is stronger than emission of radiation of snow on the surface. Rees conclude that
t‘hick lack ice or frozen ground may cause the radiation attenuation at 18 GHz. Field
experiments on lake ice and thin snow covered meadow and processing results of
AMSR-E data p-rove the theory (see Chapter 5 and 6). It is obviously that over
Northeast China, where great amount of area are covered by thin snow with frozen
.ground'or lake ice as underlying surface, estimation accuracy of SCA by using
:&N!SR—E data is not convincing enough for practices application, regardless the
overestimation and underestimation caused by coarse spatial resolution. In this
section, improved n;0del for SCA monitoring based on the combination of MQDIS
and AMSR-E data will be discussed. The improved model takes advantage of higher
spatial resolution of MODIS data and the penetrability of AMSR-E data to climinate
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the effects of cloud and underlying surfacc on optical and passive microwave remote

sensing data, respectively.
. 7.2.2 Methodology
7.2.2.1 Data

7.2.2.1.1 MODIS L1B Data

Daily MODIS L1B data, MOD10A1 data, MOD10A2 data from Nov. 1*', 2007 to
Apr. 1%, 2008 werc applied in SCA monitoring in this study. The former is used as

input of the improved model, but the later two are utilized as comparison.
7.2.2.1.2 AMSR-E L2A Data

Re-sampled AMSR-E L2A data are applied in this resecarch as complement of
MODIS L1B data in SCA monitoring. The spatial resolution of re-sampled AMSR-E
data is 0.05d*0.05d afier the special designed processing (sece Chapter 6). The finer
microwave data will provide a better estimation result by reducing the overestimation
and underestimation caused by coarse resolution in comparison with original data

provided by NSIDC.

7.2.2.1.3 In Situ Data

In situ precipitation data and temperature data observed from 107 weather stations
over Northeast China are applied in this study as Criterion on performance in the

comparison between improved SCA monitoring model and MODIS snow products.
7.2.2.2 In Situ Precipitation Processing Method

In situ precipitation data will be applied in the study to confirm the presence of snow.
However, precipitation can not be translated into snow covered map information
without temperature condition analysis in test station. Thus, a special designed
processing method for translation of daily precipitation into snow cover status is
needed to pre-process these in situ obtained from weather stations to get in situ snow

covered information in sclected stations. If temperature of selected station is higher
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than 0, daily precipitation is considcred as rain. Under the circumstances that
temperature is lower than 0 and daily precipitation is morc than 0, the ground is
absolutely covered by snow. Belween the two states, the presence of snow is

uncertain. Figure 7.9 shows the flowchart of snow map gencration.

Input initial
Daily SWE on  |4¢—-
the ground
SWE
3
Na
You
Input daily
Precipitation
[
v h 4
Initial SWE on the Final SWE
ground next day
No

Output Snow
covered results

Figure 7.9 Flowchart of in situ snow covered map generation

8-day maximum snow extends of in situ measurements are derived from daily in situ
snow map. The pixels with precipitation value greater than 0 during the period of

eight successive days are marked as snow covered statc.
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7.2.2.3 Improved SCA Estimation Model
7.2.2.3.1 Cloud Detection Model

During the processing of MODIS data, cloud presence need to be detected. Although
NDSI can distinguish most of kinds of cloud from snow, however, it can not tcll
cloud from other land surface. In this study, cloud detection model is applied to mark
all of the pixels that covered by different kinds of cloud:

For lower thick cloud of which reflectance is as high as almost 1 at visible range and
slowly declines with increase of wavelength at near-infrared region, band 1 and band
6 can be applied in detection; for higher cold cloud, less liquid water is contained
inside cloud body, which makes reflectance of this kind of cloud comparatively high
in near-infrared region than all the other land surface. Band 26 is designed for the
detection of high cold cloud. To sum up, clouds can be detected by using the

following model:

0 < i R_" < 0.4 Forlower thick cloud
R, + R,
Ry 2 0.1 For high cold cloud

76
R,, R,and R,  are reflectance from Band 1, Band 6 and Band 26 of MODIS data,

respectively. The pixels that satisfy the judgment can be identified as cloud.

7.2.2.3.2 Threshold Definition of Non-Forest and Density Forestkry

Area

For those pixels that are not covered by cloud, NDVI is calculated. Both ground
based experiments on mixed pixels and previous researches (see Chapter 2 and 5)
show that the threshold of NDSI over snow covered forest arcas is supposed to be
lower than 0.4. Klein, Hall and Riggs (1998) suggested that the threshold of NDSI in
the pixel with value of NDVI larger or equal 0.4 should be 0.2.

In our study area, grassland and farmland tend to present a low valuc of NDVI
during late autumn and winter because that deciduous tree contributes a large part of
‘foresl in this region. To figure out the threshold for NDSI, the threshold of NDVI for

"

density forest can be deduced in following method:
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) _ NDVI, s — NDVI MIN
DensityForest _ proportion = ————"577 - — ———
NDVI _ MAX - NDVI _MIN

FHere NDVI MAX and NDVI MIN arc the values of minimized and maximal pixels

7.7

of NDVI map. And the Density Forest_proportion is statistic of density forest
coverage rate of study arca.

According to the study of Ji er al. (2007), the covering of foresiry in Liaoning
Province is 31. 84 percent. By using the NDVI maps of maximal extended NDVI of
10 days (downloaded from Environmental and ecological science data center for
west China (westdc.westgis.ac.cn) freely), the threshold for density forest in
Liaoning is 0.4 by using NDVI map derived on 1* Nov., 2007. Considering that the
vegetation condition over the whole Northeast China is very similar with that of
Liaoning, in this research, threshold of NDVI is assigned as 0.4. Therefore, for the

pixels with NDVI equal or great that 0.4, threshold of NDST is 0.2,
7.2.2.3.3 AMSR-E Complement

AMSR-E snow map with spatial resolution of 5km generated by using the method
mentioned in Chapter 6 is applied as supplement in last procedure to improve
modeling accuracy by eliminating effects of cloud. Besides, for daily snow mapping,
neither MODIS nor AMSR-E data can always cover the whole area cveryday, the
combination of MODIS and AMSR-E data provide the possibility o gencrate the
complete daily map. For those pixels that marked as cloud covered or lack of data,
locations are calculated to capture snow presence information from exact the same

location on AMSR-E snow map.
7.2.3 SCA Estimation Results and Discussion

Figure 7.10 shows the snow maps on 5™ Mar., 2007 beforc and after the complement
of AMSR-E data. 20% ol area is covered by cloud, which makes it impossible 10
determine the snow presence under clouds. And the proportion that covered by cloud
is too large to be accepted in practices application. After the supplement of AMSR-E

data, the cffcct of cloud is ehminated.
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Figure 7.10 Snow maps on 5™ Mar., 2007 before and after the complement of AMSR-E data

Therefore, the application of imi)roved SCA retrieval modcl provides better
estimation results by reducing the underestimate caused by cloud and data missing
from MODIS sensors.

Daily snow map's show that on most of days, estimation SCA percentage of
improved model is higher than that of MODIS snow product, except two days: 3"
Feb., 2007 and 19" Feb., 2007, on which days there are no MODIS images available
(Figure 7.11).

8-day MODIS snow product is generated to reduce the effect of cloud by the greatest
extend using optical remote sensing data, however, as it is discussed in introduction
and previous researches, the effect still exists. Only the application of multi-sources
remote sensing data can really solve ihc problem. Although there are still other effect

factors, such as underlying surface, the underestimate is improved (see Figure 7.12).

Comparison of Daily SCA Estiamtion Result of Imprcwed Model
and MODIS Snow Product
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Figure 7.11 Comparison of daily SCA estimation result of improved model and MODIS snow product
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Comparison of 8_Day SCA Estimation Results of Improved Model
and MODIS Snow Product
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Figure 7.12 Comparison of 8-day SCA estimation results of improved model and MODIS snow product

In situ snow presence map generated by using of precipitation is utilized as
validation source to asscss the performance of improved model in comparison with
8-day MODIS snow product (see Figurc 7.13). From the figure it can be observed
that the most misjudged as non-snow stations can be found by using MODIS snow
product. And the best performance is found for improved model. The model
mentioned in Chapter 6 by using an unconvincing empirical judgment on cloud
frequency will produce more crrors than the improved model by using combination

of MODIS and AMSR-E data.

Comparison of Numbers of Snow Covered Stations that Misjudged as Non-Snow
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Figure 7.13 Comparison in numbers of snow covered stalions that misjudged as non-snow
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7.2.4 Conclusion

The combination of MODIS and passive microwave data in previous research is
mainly focused on spatial resolution. Here in this study, the problem that caused by
coarse spatial resolution of AMSR-E data is partly solved via using rc-sampling
procedure. However, the minus value over lake ice, frozen ground and shallow snow
covered meadows are much bigger problems that urgently need to be solved, just as
the effect of cloud on optical remote sensing.

To reduce the effects of cloud and underlying surface that cause huge errors in
optical remote sensing model and passive microwave model, the combination of
MODIS and AMSR-E processed with special re-sampling method is applied in an
improved SCA retrieval model. The performance of improved model in daily and
8-day snow mapping shows that the cffect of underestimate can be efficiently
reduced. Although thc crror-judgment, which is caused by the cffect of underlying
surface over cloud covered arca still exist. Further researches on the effect of

underlying surface need to be conducted in near future.

Chapter 8 INNOVATIONS AND FUTURE WORKS

In this chapter, the achievements during this study will be claborated. Based on this

achievements, future works snow monitoring over this study area will be discussed.
8.1 Innovations

As it is mentioned in the first several chapters, research work on snow monitoring
based on satellitc remote sensing data over Northeast China is significanl. Snow
distribution over Northcast China is one picce of l.hejigsaw puzzle of global climate.
Snow cover over Northeast China is both the result of global and local climate
changes, and the primary contribution factors to the changes of circulation of
atmosphere and energy balance in both local and global scale. Besides, [or local scale,

the information of snow cover is the most important parameters for agriculture

149



models as waler sources, inscel pests and plant discases prediction and disaster

managements.

Therefore, {or the areas such as Northcast China, where 1s (a) the food production

arca and livestock breeding center of the whole country: (b) onc of the three largest

black soil areas, the significance of snow cover could not be described in words.

Because of above rcasons, the study in the thesis has important signilicance in both

theory and practice. The contribution of this study can be described in the following

ways:

1. It is the first time that snow cover over Northcast China has been systematically
studicd from the ground based cxperiments to the application of satcllite remote
sensing technigues.

During the past two years, systematically study on snow properties by conducting
snow sampling, ficld cxperiments and long term obscrvations have be done to get
a better understand snow physical properties. The first road trip series cxperiment
has been performed to get the first degree data on cffects ol undcrlying surface.
The second step of snow monitoring study over this area is the introduction of
satellite remote sensing data and modcls bascd on the understanding of snow
properties here. Only after the successful application of satellitc remote sensing
data on this field, it can be claimed that the whole systematic study on snow
monitoring is finished. Both optical and microwave remote scnsing data arc
applied as complement for each other. It is a great progress in comparison with
results obtained in the past decades when only in situ data or MODIS data were
tricd in snow monitoring over this region.

2.  The improved snow monitoring models are developed in the thesis. In Chapter 6
and Chapter 7, four systems are dcsigned, which are Mass of MODIS data
automatic pre-processing  system, mass of AMSR-E data  automatic
pre-processing system, improved SCA monitoring model based on optical
remote sensing data (MODIS data) and improved SD retricval mode! based on
both MODIS and AMSR-E data.

The processing of mass of satcllitc remole sensing data is always a tough task to
deat with for all the researchers in remote sensing field. Somcone ma-y say that it
is not a big deal to proccssing satellite image for their rescarch when therc are
only a few images, like ten or twenty, that need to be preparcd. But it does a

mattcr when there arc thousands of or even millions of tmages are waiting in the
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list in a mid-long or long term rescarch. How can analysts gel high quality input
data, which will determine the analysis results directly, {or the monitoring system?
Iifow could rcscarchers get the images responding to special and flexible
requirements on spatial and temporal resolution? Manually processing method is
definitely not the best choice to solute all above problems. Here in this research,
automatic processing systems for MODIS and AMSR-E data are developed to
deal with these issucs. And till now, there is no such publication that can be
found on this particular problem.

Two improved models for SCA and SD retrieval are devcloped as thc outcomes
of this research. Statistic results on improved models and initial ones prove that
there are significant improvements on the estimation results of both of the two
improved retrieval models.

The most important innovation in this thesis is the initial introduction ot data
assimilation.

In both of improved SCA and SD estimation models, multi-sources of satcllitc or
in situ mecasurcments arc applied to improve the accuracy dynamically, especially
in SD retrieval. Snow grain size determines the constant of our retricval model.
In the past, this constant is sclected according to locations and when it is decided,
in the whole processing period, the valuc will not be changes under the
hypothesis that snow grain sizc of the same location is fixed. However, during
our in situ measurements, the hypothesis is found to be wrong. The snow grain
size in NOﬂhcﬁsl China varies from 0.2mm to more than 3mm, or even larger
when the deep hoar layer generates. That the main reason that causes the cross of
estimation curve and in situ measurement onc. Thus, the value of ‘constant’ (In
the cxisting applications of Chang’s algorithm, *a” in formula 3.5 is constant)
should change according to the changes of grain size to improve SD cstimation
accuracy. In improved SD retrieval model, MODIS data arc inpul into the model
to emend the crucial paramceter —snow grain size {or S estimation. It is the first
time that MODIS data are utihzed in a passive microwave model for the
emending of input parameter but not for fining the spatial resolution. It can be
considered as an initial application of data assimilation theory in satellite snow
monitoring. The advantage of this assimilation is its convenience and efficicncy
in comparison with that of in situ grain size measurements. The performances of

all of the two processing systems and two improved models show us that the
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improvement of thesc models is not only on the saving of processing time and
man powcer but also the cstimation accuracy in comparison with the existing
models. Because of the new method of data assimilation, now snow monitoring
system can be practically applied in Northeast China.

Somic other scientific problems arc carricd out and the dircction is orientated for
future study.

Besides the scientific problems that have been solved in the thesis, there are still
some other matters that affect monitoring accuracy, such as the effcct of niver ice
on SD retrieve. All thesis potential effects were mentioned in the analysis and
discussion scction in Chapter 5 and Chapter 7. Rescarchers who work on snow

monitoring could follow the idca and try to attack the problem from these

aspects.

8.2 Future Work

Beceause of the limitation on length of thesis, only the key issues that are badly need

to be solves are mentioned here. Actually, there are still some other problems and

further works standing in the waiting list. They are:

i,

L

SD estimation by using optical rcmote sensing data. Since the water percentage
in snow has great effect on microwavc signals, the monitoring of snow in wet
snow period should be completed by other sources than AMSR-E. However,
study on SD retricve based on optical data is still on going now. In the ncar
future, we will work on this problem.

Snow information monitoring over ice area. As 1t ts mentioned in Chapter 5,
becausc of the effects of thin icc on microwave signals, the valuc ol difference
between 18 GHz and 37GHz 1s minus. 1t means that models based on this
dilterence do not work on the frozen arca. Alternative mcthod 1s nceded for
snow monitoring over river icc or frozen ground.
Shallow snow monitoring. As it is shown in field experiments, shallow snow can
hardly be delected by using the difference of 18 and 37 GHz. It 1s the similar
question as 1.

Accurate retrieve of snow grain size by using MODIS reflectance. In this thesis,
the retrieval modcl for snow grain size is a rough one. That is lo say, by using

this model, only increasing or decreasing trend can be determined. Because there
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are so many effccts on optical signals, till now perfect way to reduce all the
effects and get the absolute value of grain size stilt in the air. Instead, the ratio of
slopes shows us the changing trend and scale. As we know | normally the grain
size of new fallen snow is around 0.2mm, the changing trend and scale could tell
us how do we adjust the valuc ol ‘constant’ a. [n the future, more works should
be done on snow grain size to get the specific size value.

5. The last but onc of thc most important thing in futurc snow monitoring work is
the combination of GIS system. As it is known, GIS and remote scnsing
techniques are always interdependent, mutually promotive in the wholc history
of their development. The monitoring result of snow should be applied into a
certain GIS system, and meanwhilc, the cstimation accuracy of snow will be
greatly improved by using GIS system in the procedurc of retrieval. For example,
the application of DEM model, which 1s a GIS system improved accuracy of
SCA modcls over mountain areas. In the ncar future, the {orest GIS system is
considered to be applied in the improvement of estimation accuracy over forest
arcas. It worth to try GIS, as well as meteorological, terrain and land use data in
snow information retrieval to get higher accuracy in the time rescarchers have a
bottle-neck in this issue.

To solve the problems camied out in this thesis, more researches, cspecially ficld

experiments, should be conducted.
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