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Abstract 

Polynomial optiiiiization jHohleni is to optinii/x�a generic iiniltivaricitc polynomial furic-

tion, subject to some suitable polynomial equality and inequality constraints. Such 

probloiii fonnulatioii dates hack to the lOtli century, when the relationship l)(�tw(�(�ii 

noiiiiegative polynomials and kuiii of squares w(�r(�discuKsod by Hilbcrt. Polynomial 

optimization is onv of the fuii(laiiiciitrtl problems in the field of optiiiiization, and has 

applinUitms in a largo range of area.s, including biomedical engiiiooring, control thoory, 

graph theory, iiivostiiiciit science, iiirttorial science, iminerical linear algebra, quantum 

nicclianic's, signal processing, sptnx'h rcn'ogiiition, etc. Tliis thesis prcs(�iit.s a study 

of some iinportant subclasses of polynomial optimization problems arising from vari-

ous applicatioiLs. The focus is on optiiiiiziiig a high degree polynomial function, ov(�r 
i' 

ig 

som(�commonly oncouiiterod constraint sots, such as the Euclidean Ijall, the Eiirlidcan 

sphere, the iiiterscH'tioii of co-conterccl ellipsoids, the binary liypcrcube, as well as a 

C'oiiil)inatioii of tliein. Specifinally, five cUusses of iiiodols an* ciiscussed, i.e., optiiiiiz-

iiig a multilinear function with.quadratic constraints, a hoiiiogeiimus polyrioiiiial with 

quadratic constraints, a general polynomial with convex constraints, a general polyno-

niial with binary constraints, and a lioiiiogeiieous polynomial with binary and spherical 

constraints. All the problems under consideration are NP-hanl in general. The main 

coiitrilnition of this thesis is on the design and analysis of polyiioinial-tiiiio approxima-

tion algorithms with giiarantcxxl worst-case performance ratios. These approximation 

ratios arc dependent on the problem cliiiioiisions only, and the new results improve 

soiii(» of the existing results in the literature. In each class of these optimization inod-

els, some application examples arc discussed and results of numerical experiments are 

reported, revealing good practical performance of the proposed algorithms for solving 

sonic randomly generated test instances. 



摘要 

多项式优化I�彳题足猫于架种多项式等式和多项不等式约}l i条件K以多元多项式闲数 

为丨丨标的iii优化�11]题。这类问题的硏究“丨追述到I•九世纪，希尔伯特i�tf仓丫作负多项 

式数和多项式平方和喊数之叫的关系。多项式优化问题足 i t i优化领域报本的问题 

之一，』!；应丨丨j领域非'泛，其中iji姑了生物丨?《^学工程、控制论、’阁论、投资理论、 

材料科•，、数似代数、M子力•％、信t}处理、iSffi^丨別等等。本论义蒋觅研究多项式 

优化问题屮与各类应用领域相关的一贱觅耍的子M题。研究的优化问题觅点放/ti以尚 

次多项式闲数为II标，约束染为一些迪常出现的多项式约束傻合，例如：欧几丨II.德球 

体、欧几Ml德球丨ft丨、M心椭_的交_、商维立方体的顶点猿、以及它们的各种组合。 

体来说，本文研究五类多项式优化校型，它们足二次函数约束下的多线性闲数优 

化、二次闲数约束下的齐次多项式优化、1"1约束下的一般多项优化、二元约朿下 

的多项式优化，以及二元和球丨1! I ^iifi下的齐次多项式优化。所柯涉及的优化卩‘]题都 

为NPW难。本论文的丨要贡献在f•设H和分析多项式时间的近似算法。这些算法得到 

的解都荷一定的近似比机保证，11近似tl：他仅仅与优化闷题的维数对JKs新结来改进 

了现符文献的姑f»在梅类优化模型的研讨中，本论文列举了一些应丨 l j实例，并汇报 

了数俏实验结来，报告品示这类党法在解决一牲随机产生的案例时执行效架丨I:常好。 
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Chapter 

Introduction 

Polynomial optiniizalion prohkmi is tlic following g(�n(�ric optimization iiiodcl 

{POP) mill P{X) 

s.t. (a?) S ()，7: = 1, 2 It) 1, 

"J � = ( ) 'J = 1,2 /"‘2, 

X = (:ri,j.‘2,..- € R", 

wluTC P{X)Y FI{X) {I = 1 ,2, . . . , NI\) and <)j{X) {J = 1,2,...，川2) arc s<mi(�multivariate 

p()lyii()iiiial functions. This probloiii is a fuiuiaiiuMital model in Ui(�ficltl of optimization, 

and lias applications in a wide rango of areas. Many algorithms havo b<Hni proposed 

for siihclassos of {POP), and spcH-ialized software pa('Hag«�s liav(�btvn d(�v(�l()p(�(l. 

1.1 History 

The modem history of polynomial optiniizatiou may date back to thv 19t h (viitury wlien 

the relationship l)(�t‘wcc�n iioiniegative polynomial function and the suiii of sqiiams of 

polynomials was stiidicd. Given a iniiltiviiriate polynomial function that takes only 
. ‘ 

uonnogativo values over the real iiufuhors, can it hv ropn^Mited a»s a sum of stjiiares 
/ 

of polynomial functioiis? Hilbert [54] gave a concroto aiLswer in 1888，wliicli asserted 

that the only cases for a iioiiiiegative polynomial to be a sum of s(|iiarcs are: univariate 

polynomials; multivariate quadratic polyiioiiiials; and bivariate quartic polynomials. 

Later, in Hilbcrt's 17th problem 0110 of the famous 23 Hilbort problems addrc^sstxi in 

a cclobratwl speech in 11)00 by Hilbert, a noiiiiogative polynomial entails oxpn^sion 

of defiiiito rational functions as quotients of suiils 6i squares. Given a multivariate 

/ 
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polynomial function that takes only noimej^ativc valiios ovor tli(�r(�al iminluMS, can it l)(� 
9 

r(�i)r(�s(�iit(�d as a suiii of squares of rational functions? This was solved in t:li(�aHirinativc, 

by Art.iii [8] in 1927. A continuous and roust met ivo algorithm was lat(�r found by 

Dolzell |3()) ill 1984. About, 10 yoars ago, Lassem�|7(J, 71] and Parrilo [93. !) 1] proposed 

a method callocl the siuii of sqiuiivs (SOS) to solvr goiicral polynomial opt.iiiiizatioii 

problem. The inothocl is based on tho fact that deciding \vh(�tlK�r a given polynomial 
/ 

is a sum of squan^s can 1)(�reduced to the feasibility of a sciiiidoHiiitr program (SI)1)). 

The SOS approach has a strong theoretical appeal, rus it can in principle solve any 

polynomial optiiiii/atioii problem to any givoii accuracy. 

1.2 Applications 

Polynomial optimizations hav(�wide applications - just to naiiio a f(�w (�xampl(�s: biomed-

ical eiigiiie(»riiig, control theory, graph tli(»ory, invcstinciit. scionco, inat.(�rial scioncc. iiu-

m(�rical linear algebra, qmmt.iim iiiodianics, signal processing, spoedi rocogiiitioii. It is 

basically impossible to list, oven very partially, tho suca^ss stories of {POP), ‘simply 

due to its sheer size in the litoratiiro. To motivate our study, below wo shall nonotlirloss 

mention sonic sample applications to illustrato the'iisefulnrss of {POP). 

Polynomial optimizations have ininirdiato applications in investiiirnt s('i(MK.(�. For 

instance, the celebratcxl iiiean-variance inodel \va»s proposed by Markowitz [81) oarly in 

1952, wliere the portfolio selection problem is iiiodekxl by iiiiiiiiiiiziiig the variance of the 

investments subject to its target return. In control theory, R()l)(�rt.s and Nowiiiaiin [107 

studied polynomial optimization of stoch^vstic food back control for stablr plants. In 

diffusion iiiagiietic rc^sonaiice imaging (MRI), Bariiipoutis et al. [14] pr(�s(mtr(l a aisv 

for the fourth order tensor apj>roximatioii. In fact, there arc a largo chuss of (POP) 

arising from tensor approximations and (decompositions，which are originated from 

applications in psyclioinetrics and clicinoinctrics (seo an excellent survey by Kolcla 

ami Bader [G8j). Polynomial optimizations liavo also applications in siiial processing. 

Maricic et al. [79] proposc^d a quartic polynomial model for l)liiid diaimcl equalization 

ill digital coiniiiuiiicatioii, and Qi and T(H) [101] coiiducted global optimization for high 

degree polynoinial minimization models arising ffoin signal processing. In quaiituiii 

physics, Dahl ot al. [27] proposed a polynomial optimization model to verify whether a 

physical system is entangled or not, which is an important problem iii quantiiiii physics. 
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Gurvits [-42] showed that tlu�ontaiigleiiKMit vorification is NP-liard in goiioral. In fact, 

th(�iiKxiol (liscnss<Hl in |'27l is related to tlio ii(iini(»gativo quadratic iiiappiiigs stiiciicd 
i 

l)y Luo et al. [76]. 

Ainoiij^ g(�m�ric polym��ia丨 fiiiict.ions，li()mog(�nr()us 丨)(>lyn(Mnials play an important 

role in approximation theory (s(v o.g., two rccciit j)apors by Kr(K) ami Szabados [G9] and 

Varju [117]). Essoiitially their results state that th(�li()iiiog(�iiroiLS polynoiiiiM functions 

ar(�fairly ‘dense�’ among continuous fiiiictioiis in a (�(�rtfiiii wcll-doHiicd sonso. As such, 

optiiiii'/ations of liom()g(�n(�(ms polynomials 丨)(�coiii(�important.. As an oxaniple. Ghosh 

(�t al. |39] formulated a fiber detection proljloiii in diffusion MR I l)y inaxinii/.ing a 

lioiiiogcnous polynomial fiinction subject to the Eiicli(ioaii sphorical constraint, i.(、.， 

, * 

(HS) max F{X) 

s.t. ||:e||‘2 = l , x e R". 
> 

Tli(�constraint of (HS) is a typical polynomial (�qualit.y constraint. In this ease, tho 

(logr(H» of the lioiiiogcneoiLs polyiioiiiial F{X) may be high. This particular inodel {HS) 

is widely appeared in th(�following examples. In material scioiicos, Soaro ct al. [110 

proposed some 4th, Gth and 8th order homogeneous polynomials to model tlio plastic 

aiiisotropy of orthotropic sheet metal.置ii statistics, Micchelli and Olseii [82] coiisiclored 

a iiiaxiiiiuiii-likelihood estiiiialion iikkIcI in spctnli recognition. In hiiiiKTical linear 

tilgcbra, (Hs) is the foriiiulatioii of an interesting prohloiii: tlio eigenvalues of teii.sors 

(see Qi [99, 100] and Ni et al. [91]). Aiiotlier widely used application of {Hs) is regarding 

to tho best rank-ono approximation of higher order tensors (sco |(i7, 68)). 

Ill fact, Markowitz's mean-variance model [81] inentionccl previously is also opti-

iiiizatioii on a homogeneous polynomial, in particular, a quadratic form. Recontly, an 

intensified discussion on in vestment models involving nioro than tlie first two irioinonts 

(for instance to include the skcwiiess and the kurtosis of the investiiieiit returns) liavc 

been another source of iiiypiratioii imclerlyiiig polynomial optimizations. Mmidolbrot 

and Hudson [78] made a strong case against a ‘normal view' of the invostinont returns. 

The use of higher inoinents in portfolio select ion hecoiiicj? quite nwossary. Along that 

line, several authors proposed invostnioiit models incorporating the higher-moments, 

e.g., (Ic Athaydc and Flore [10], Prakash et al. [9G], .Joiidcau and Rockiiigcr [GO], aiid 
• , A 

Kleiiiati ot al. [64]. However, in tlioso models, the polynomial functions involved are 
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• 

no longer hoinogoneous. In particular, a v(Ty g(”i(�nil iiiodcl in [(> 1] is 

s.t. Yl'U] = 1, x > 0, X € R", 

wlierc (//,), (cT/j), (<s,jtc) and {tiiji,.() arc tlic first four contral iiioiiicnts of. tli(�.u;ivon ii 

assets. The i ion negative i)ara.m(�l"(�rs rv, li, rt iiioasiiro th(�investor's pr(�f.pr(”i(.(�to tlic 

four moments, and thoy sum up to ono. i.e., (\ + d + + J = 1. Besides invcstiiiciit 

sci(Mico, many other importaiit applications of i)olym>mial fuiK tion optimization involve 

an objective that is intrinsically iiihoiiu)goiicH)us. The other example is the l(�ast sqiiai,(� 

fonnulation to the .sensor network localization prohloiii proposed in Liio and Zhang [77]. 

Specifirally, the problem takes tlie form of 

niin (II 工 ' - - + (II 工 ' — — ^ n f 

s.t. i ' G R-K I € S’ 

where .4 and S doiiotr the set of anchor nodes and sensor nodes respect ivcly, {/ 6 

S.J € SUA) aro (possibly noisy) distanco iiieasiirciiieiits, a" {J € /I) clonoto the known 

positions of anchor nodes, while X' {I € S) repress it tho positions of sensor m>(i(\s to 
� � 

1)(�cstiiiirtioci. 

Apart from the continuous models discussod above, iK)lyiioiiiial optiinizations over 

variables in discroto values, in particular binary variables, arc also widely studied. For 

exain})lo, maximize a polynomial function over variables picking from 1 or -1, i.e., 

• {Pji) max p{x) 

‘ ‘ \ s.t. Xi e {1,-1}, i = 1,2, u. � 

This TYPO of problem can be found in a great variety of applicat ion (loiimiiis. IiuUhkI. 

(Ph) has bwn invcstigat()d extensively in the quadratic case, due to its roiincctions 

to various graph partitioning problems, e.g., the iiiiixiiimin cut prohloin [10]. If tlir 

degree of the polynomial goes higher, the following hyprrgrapli iiuix-cover problem is 

also well studied. Given a hypcrgraph H = (V, E) with V being the set of vortices 

and E the set of liypereclges (or subsets of V), mid each liyporcxlgo e € is associated 

with a real-valued weiglit IV{E). The problem is to find a subset S of tli(�vertices st't 

V, such that the total weight of the liypcnniges covered by S is iiuixiiiiized. Denoting 

XI E {0,1} (?• = 1 ,2 , . . . , n) to indicate whether or not vortex I is selected in S. Tli(� 

problem thus is imiXa.e{o,i}" Ere / i Iliee By a siiiipk�variable traiisforinatioii 

Xi—^ {xi + l)/2, the prol)leiii is traiisfornied to (Pfs), and via? versa. 

\ 
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Noto that tlu* inodcl (/)") is a t"uii(laiii(<ntal jjiohlciii in int(�jz;rr prograiiiining. As 

Slid I it has n�c(�iv<»d att(�iiti(>n in the literature (sck* (�.ji;., [I；}. 11]). It is also known as tlio 

Fourier support grai>li prohlciii. Malhcinatically. a polyiioinial function p : { — 1.1}"—> 

R has Fourier expansion i){x) = Z‘s’c{i:2 Oj .̂s" " whidi is also callt'd the 

Fourior support graph. By assuniinj^ that j){x) has only succinct (polyiioiiiially many) 

non-zoro Fourior coefficiriit /3(5), can \v(�coiiiputc tli(�inaxiiiiiiin value of i){x) (mT th(� 

(lis(,r(�t.(�hyiKTCubc {1, — 1}". or alternatively (an we find a good approximate solution 

ill polyiioiiiial-tiiiio? Tlic latter question actually motivatos th(�discrete polynomial 

optimization iiiotlels studiod in this thesis. In jijciuMal, (/)/.�)is rlosdy r(�lat(、（l to Hiuling 

the nifixiniiiin�v(�ight(�d indepondoiit set in a irrapli. In fact, any iiistmirr of (/)") can 

he traiisfonnwl into the iiiaxiiimni weightcd ind(�i)(�ii(l(�iit sot problem, which is also 

tht�most coiiiiiionly used t.(x.liiiiqu(�in the litcraturo for solviiij^ {Pa) (s(H' e.g., |12, 

1 ()()]). The transfonnatioii uses t,h(�concopt of a conjiict graph of a 0-1 jjolyiioniial 

function, for details, one is n^fernnl to [21, 5)]. Beyond its coiiiiectioii to the graph 

jHobloiiis, (PII) also luus applicatioris in noural networks [58, 21. (i), orror-corroctiiig 

codes [21, 97], etc. In fact, Bruck ami Blauiii |21] reveal th(�natural CHiuivalciicc within 

tho model (Pii), Hiaxiiiiiiiii likelihood decoding of (Tror-comH tiiig codes, and finding 

the global maximiiin of a neural network. R(H'cntly Khot mid Naor |G3] show that it has 

api)licati()iLs in the prohlciii of refutation of raiidoiii k-CNF fbriiiulas |32, 33, . 

If the objectivf polynomial fum.t iori in (尸"）is lioiiiogeiiooiis, likewise, the homog�-

iiooiis qmidratix' case litis bo<�n studied extensively, e.g., [40, 88, 90, 5). H()iiiogoii(H)us 

cubic polynomial case is also discusseci by Khot and Naor [03]. AnotlKT interesting 

problem of this claims is tho oc 1-iiorii� of a matrix F = {F,J). studied bv Alon and 

Niior [5], i.e., 

‘ s.t. x € {K-1} ' " , y e {1,-1}"^. 

It is quite natural to (�xt.(�ii(l the probloin of oo l-noriii to higher order tensors. In 

particular, the oc l-noriii of a d-ih order tensor F = (F,,,^...,^) can br (lefinccl as 

1 ..2 . . . lliax …’ 户 … 丄 II.厂'/-J ....广 
Id 

s.t. x^' € {1 , -1}"S k = 1 ,2 , . . . " / . 
/ 

Another generalization of the matrix oo l-iioriii is to extend tli(�entry of the 



matrix A,, e R""^'"-

largest singular value 

6 ••� 1 Introduction 

matrix F to a syniiiiotrir matrix A^j € R"'^'", i.e.. the prohlciii of 

max A,„ax (Ei<,<„, , i<j<n, ' ' .7jA,j) 

s.t. X € { l . - l } ' " . y e { l . - l } " - . 

whore A,„ax indicates the largest (Mĵ oiivahio ot" a matrix. If the 

is not restrict(�d to be syiniiietrk-. wc may instead maximize the 

i.e., 

max nwx (1；1</<„,,1<^<„, •^•'•'/J^'J) 

s.t. X e { l . - l } ' " . y e {1 , -1}"^ 

Tlicsc two pml)l(�m‘s arc ac tually equivalent to * 

iimx Z] 1 <I<.T,, J<j<n2,1 <k.f<vi F’jfd 工 

s. t . {1，-1}"丨，y € {1，-1广， 

||z||2 = \ . z e r " ‘ 

and 

m a x X]l<,<M,,l <j<n>,\ <k<w,. I <(<in2 F，jkf -liVj ⑴ f 

S.t. are { l . - l } " ' , y e { l . - l } " ^ 

respectively, whore F ~ {Fijf.f) is a fourth ()r(l(�r tensor, whoso { u j 

the F)-T\I entry of the matrix A,J. These two special models of 

polynomial integer programming problems to tho iiiixoci integer ])r()graiiiiniiig prohloins. 

which is also an important subclass of {POP) studied in this tliosis. 

1.3 Algorithms . 

Polynomial optimization problems ar(�typically iion-convcx and liighly nonlinear. In 

most casos, {POP) is NP-hard, oven for very special instances，such as iiuixiiiiizing a 

cul)ic polynomial over a sphere (sec Nestorov [90]), niaxiiiiizing a quadratic form in 

binary variables (see e.g., Goeiiiaiis and Williaiiisoii [40]), etc. The roaclcr is r(�f(�rr(xi 

to do Klerk [G5] for a survey on the computational complexity issues of polynomial 

optimization owr some simple coiustrtiint sots. In the case that the constraint set is 
< 

a siiiip)l(?x and the objective polynomial has a fixed degree、，it is possible to derive 

polyiioinial-tinie approximation schemes (PTAS) (see de Klork ot al. [GG]), albeit the 

result is viewed mostly a« a theoretical one. Almost in all practical situations, the 

k. f)-th entry i‘s 

{POP) EXTENDS 

i 
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problem is difficult to solve, tluxiretically as well as nuiiicrically. However, the vsearch 

for geiKTfil and efficient algorithms for polynomial ()})timi/ation luû  bcxMi a priority for 

many .matIicinatical optimizrrs and rosearrhors in various applications. 

Perhaps thr very first attoinpt for solving 丨>olyuoniia] oyjtiinizatioii problems is 

taking tliein as nonlinear prograiniiiiiig prohloins. and many existing algorithms and 

software packages arc available, iiichuling KNITRC). BARON, IPOPT, SNOPT, and 

Mfitlab optiiiiizatioM toolbox. How(�v(�r，these algorithms and solvers are not tailor 

iiiadc for polynomial oj)tiiiii'/atioii pr()l)lcnis, and so the porfoniiance may vary great 1 y 

from problem instance to instance. One clircc-t approach is to apply the iiiotliod of 

L»Hgraiigo iimltiplicTs to reach a set of multivariate polynomial equations, which is the 

Karusli-Kulin-Tiickrr (KKT) system that provides the ii('('(\ssary coiiditioiks for opti-

iiiality (SCO e.g.. [122, 39, 57]). In [39], the authors devoloj) special algorithms for that 

purpose�, sucli as subdivision met hods pr()p()s(�d by Monrrain aiicl Pavone |8 i], and gen-

eralized normal forms algorithms designed by Monrrain and Trohuchot [85]. However, 

the shortcoiiiiiigs of these methods aro apparent if tho dogrce of the polynomial is high. 

G(�n(Ti(�solution methods babied on nonlinear programiiiiiig and global ()j>tiiiiization 

have been studied and testetl (see e.g., Qi |98] aiid Qi et al. [102], and the i-[f(�r(�ii(.os 

therein). Recently, a tensor oigenvaluo based method for a global polynomial optimiza-

tiori problem was also studies by Qi ot al. [103]. Moreover, Parpas and Rusteni [92], and 

Mariiiger and Parpas [80] proposed (iiffusioii-bas(»(l inetliods to solve tlie noii-coiivox 

polynomial optimization iiiod(»ls arising from portfolio sekx'tioii involving higher iiio-

ineiits. For polynomial integer programming models, e.g., (P/^), tho most roininonly 

iised technique in tlie literature is traiisfonning them to the iiuixiiimm woightofl inde-

pendent set problems (‘see e.g.. [12，lOG]), by using the �m . q ) t of a coiiHict graph of a 

0"1 polynomial fiiiiction. 

Suiii of squares (SOS) approach has been one major systematic approach for solving 

general polynomial optimization problems. Tho approach was proposed by Lasscrre (70, 

71) and Parrilo [93, 94], and significant research on the SOS method has b(x�ii coiiductcd 

ill rwoiit ten years. The SOS method lia« a strong theoretical appeal, by constructing 

a sequence of sfinidefiiiite prograiniiiiiig (SDP) relaxations of the given polynomial 

optimization probk^ni in such a way that tho corresponding optimal values are monotone 

and converge to the optimal value of the original problem. Thus it can in principle solve 

any instance of (POP) to any given accuracy. For univariate polynomial optiiiiizatioii, 
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Nesterov [89] showed that the SOS niotliod in (�(Hiil)inat.ion with tlie SDP solution has a 

polynomial-time coiiiplexity- This is also tnio for iiiicoiistrainrd multivariate quadratic 

polynomial and hivariato qiiartir ])()lyiioinial wlicn the nonncgativity is (�quivrtl(�nt to 

the sum of sqiian^. In gonoral, however, tlio SDP probl(�iiis rcquirofi to h(�solved by tlir 

SOS method may grow very large, and is not prartiral when the program dinuMisioii 

gO(̂ s high. At any rate, thanks to the nnontly (i(�v(�l()p('(l efficient SDP solvers ((».g.. 

SoDiiMi of Sturm [112], SDPT3 of Toll (�t al. [115]), the SOS mot hod appears to he 

attractive. Heiirion and Lass(Tr(�|52] (Irveloped a specializcd tool known a.s GloptiPoly 

(the latest version, GloptiPoly 3, can bo found in Henrioii (�t al. [53]) for finding a global 

optimal solution of polynomial optimization i3rol)leins on the SOS mot hod. based on 

Mat lab and SoDuMi. For an overview on tlie rmMit thwrotical develojHiients. we refer 

to tlie excellent survey by Laurent (72 . 

On the other side, the iiitrartability of general polynomial optimizations tluMcforo 

motivates the search for suboptiinal, or more formally, approxiiiiaio solutions. In t.li(� 

case that the objective polynomial is quadratic，a well known exaniplo is the somidof-

iiiitc i)rograiiiiiiiiig relaxation and randoinization approach for tli(» iiiax-cut problem 

(iiie to Gocmaiis and Williamson [40]. where essentially a ().878-appr()xiiiiatioii ratio of 

the model maXjcef^i}" ^ ‘ FX is shown with F being the Laplaciaii of a given graph. 

Note that the approach in [40] has boon generalized subsequMitly by many authors, 

including Nest(�rov [88], Ye [118，110], Ncinirovski ot al. |87], Zlimig |120], Clmrikar 

and Wirth [24], Aloii anci Naor [5], Zhang and Huang [121], Luo ot al. [75], and He ct 

al. [50]. In particular, when tlie matrix F is only known to he positive stMiiideftiiito, 

Ncstrov [88] derived a O.GSG-approximation bound for inciXa.^ji _]}». X ‘ FX. For general 

diagonal-free matrix F , Charikar and Wirth [24] derived an (1/ log nj-approximation 

bound, while its inapproxirnate results are also discussed by Arora ct al. |7]. For the 

matrix oo ^ 1-norm problem maxa.(;{i._i}ni,ye{i,_i}"2 a?' F y , Alon and Naor [5] de-

rived a 0.56-approxiiiiatioii bound. Remark that all these approximation bounds remain 

hitherto the best available ones. In continuous polynomial optimizations, Neiiiirovski 

ct al. |87] propos(»d an 12 (1/ log 77?)-approxiiiiation bound for maximizing a quadratic 

form over the intersection of M co-ceiitercd ellipsoids. Their models arc further studied 

and generalized by Luo et al. [75] and He et al. |5()]. 

Among all the successful approximation stories meiitioiicKl above, the objective poly-

noinials are all quadratic. However, there are only a few approximation results in the 
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literature when the degnx�of the ohjoctivo polynomial is grrat,(�r than two. Perhaps 

tiie very first one is due to de Klerk ct al. [GG] in d(Tiviiig a PTAS of optimizing a fixed 

(legrw homogenous polynomial over a simplex, and it turns out to ho a PTAS of opti-

mizing a fixed clogm' ove'ii form (honiogeiuHJus polyiioniial with only cvoii oxponciits) 

over the spherical constraint. Later, Barviiiok [15] ‘showed tliat optimizing a (.(Ttaiii 

clriss of polynomials over the spherical constraint also admits a randoiiiizod PTAS. Note 

that the results in [6G, 15] apply only when the objective polynomial lias sonic spccial 

stnicturo. A quite general result is due to Kliot and Naor |63], where they showed how 

to estimate the optimal value of the problem inaxa-^^i Yli<i j k<ii ̂ ；jk-J'iJ'jJ'k with 

{Fiji,-) being square-frcn?, i.e., = 0 whencvrr two ()f the indices arc (�qiuil. Spec ifical-

ly. they presented a polynoniial-tiine raiKloinizocl procedure to g(�t an ostiiiiatcd value 

that is no less than i } � ^ ^ ^ ) tiiiios the optimal value. Two rccciit papers (Luo and 

Zhang [77], and Ling et al. [73]) disciisscKl polynomial optimization problems with the 

degree of objective polynomial being four, and start a whole now researrli on approxi-

iiiation algorithms for high ciegrw polynomial optimizations, which arc osstMitially the 

main subject in this thesis. Luo and Zhang [11] coiisiderccl quar topt imiza t ion , and 

showed that optimizing a homogenous quartic form over the intersect ion of some co-

ceiittTecl ellipsoids is essentially oquivaleiit to its (quadratic) SDP relaxation i)robl(”n, 
J 

which is itself also NP-hard. ‘ However, this gives a handle on the design of approx-

imation algorithms with provable worst-case approximadoii ratios. Ling ct al. [73 

considered a special quartic optimization model. Basically，the problem is to niiiiiinize 

a biquadratic function over two spherical constraints. In [73], approximate solutions 

a.s well as exact solutions using the SOS method arc coiisiclerod. The approxiiiiatioii 

bounds in [73) are indeed comparable to the bound in [77], although thoy are dealing 

with two different models. Very recently, Zhang et al. [123] and Ling al. [74] further 

studied biquadratic function optimization over quadratic constraiiits. The relations 

with its bilinear SDP relaxation are discussoci, based on which they derived some data 

dependent approximation bounds. 

In the meanwhile，when the objective functi6ii of (POP) is a high degree in homo-

geneous polynomial, we have not seen any approximation results so far, even in the 

relative sense (for a discussion on relative approximation algorithms, sec Section 2.3). 

As a matter of fact, so far all tho successful polynomial-time approximation algorithm-

s with provable approximation ratios in the literature, e.g., the quadratic, cubic and 
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quartic models meiitionod above are all dependent on the homogeneity in a cnicial way. 

TcH'linically, a lioinogeiioiis polynomial function allows (me to scale the overall function 

value along a given dinx.tioii, which is an essoiitial operation in i)r()viiig tho quality 

bound of the approximation algorithms. Tlius, extending the solution met hods and 

the corresponding analysis from hoinoyeiieous polynomial oj)tiinizatioiis to tlie geiioral 

inhomogeneous polynomials is not straightforward. Tliese trigger us to scarcli for a])-

proxiinate solutions of {POP) with an inhoniogcneous polynomial ohjcH tive. which is 

one of the targets to adiieve in this thesis. 

1.4 Main Contributions 

This thesis is coiiccTned with some important and widely iLsod subclasses of polynomial 

optimization problems, including optimization of a multilinear function with quadratic 

constraints, a hoiiiogeiieous polynomial with quadratic constraints, a goncVal polyno-

mial with convex constraints, a general polynomial with binary constraints, and a ho-

mogeneous polynomial with binary and spherical constraints. Tlie dotailoci description 

of tlie problems studied is listed in Section 2.1.3. All these problems arc NP-harcl in 

general, and the focus is on the design and analysis of polyiioinial-tinie approximation 

algorithms with provable worst-case perfoniumco ratios. We also discuss the appli-

cations of these models, and the riuinerical porforinance of tho proposed algorithms. 

Specifically, our contributions are highlighted as follows. 

1. We propose approximation algorithms for optimization of any fixed degree hoiiio-

gcneoiis polynomial with quadratic constraints, which is the first such result for 

approximation algorithms of polynomial optimization problems with an arbitrary 

degree. The approximation ratios depend only on the dimensions of the problems 

concerned. Compared with any existing results for high degree polynomial opti-

mizations, our approximation ratios improve the previous ones, when specialized 

to their particular degrees. 

2. We establish systematic link identities between multilinear functions and hoiiioge-

neous polynomials, and thus establish the sanie approximation ratios for hoinoge-

neous polynomial optimizations with their multilinear form relaxation problems. 

3. We propose a general scheme to handle inhomogeneous polynomial optimizations 
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through the method of hoinogonization. and tlms establish tlic saiiic* approxima-

tioii ratios (in relative sense) for iiihoniogeiioous polynoinial ()i.)Uiiiizatioii‘s with 

their honiogeiicx)iis polynomial relaxation j)rohlciiis. It is the Hrst approxima-

tion hound of approximation algorithms for gnuTal iuhoinogonoons polynomial 

optimizations with a high degnx'. 

4. We propose several ciecoinposition routines for polynomial optimizations over 

different types of const rail it sets, and derive approxiiiialioii bouiids for iimltiliiRW 

function optimizations with their lower degree relaxation problems. 

5. With the availability of our proposwi approximation algorithms, w(�illustrate 

some potential mcxleling opportunities with the now optimization models. 

This thesis is organized as follows. First in Chapter 2, \v(�introcliico the notations 

and models, as well as providing necessary preparations for bettor uii(lcrstanciiiig the w-

hole thesis. Then from Chapter 3 to Chapter 7, wo discuss five sulK'la.ssos of polynomial 

optimization probloiiis, with each subclass in one chapter (the detail description of these 

subclasses is introduced in Section 2.1). In each of these five chapters, polynoinial-tiiiie 

approximation algorithms with provable worst-case pcrfoniiancc ratios will be proposed 

to solve the models conccTiieci, followed by a discussion on their applications aiui/or a 

report on numerical performance of the algorithms proposed. Finally, in Chapter 8, w(� 

summarize the main results in this thesis, and discuss some nncMit (Icvolopiiiciits and 

future research topics. 



Chapter 2 

Notations and Preliminaries 

2.1 Notations and Models 

Throughout this thesis, we exchisivoly use the boldface letters to doiiote vectors, ma-

trices, and tensors in general (e.g., the decision variable X, the data matrix Q, and the 

tensor form F), while the usual non-bold letters arc reserved for scalars (e.g., J'[ being 

the first coiiipoiient of tlic vector X, Q" being one entry of tlio matrix Q). 

2.1.1 Objective Functions 

The objective fiinctioiLS of tlio optimization models studiccl in this thesis arc all iimlti-

variate polynomial functions. The following multilinear tensor function (or imiltiliiiear 

form) plays a major role in the discussion 

Function T ‘ • • := ^ x .丄 
»2 '̂ l.t' 

where X^ G R"*̂  for A: = 1 , 2 , c Z ; and the letter 'T' signifies the notion of TENSOR. In 
o 

the shorthand notation we denote F = (F,-,,^...,^) G … ^ o be a D-TH order 

tensor, and F to be its corresponding multilinear foriri. The meaning for multilinear 

states if one fixed (X^^ • • • ^X^) in the function F, then it is A linear function of X\ 

and so on. 

Closely related with the tensor form F is a general D-TH degree homogeneous poly-

nomial function F{X), where X 6 K". We call the tciisor form F = (F,-,,^...!^) SUPER-

SYMMETRIC (see [07]), if any of its components 尸，“之…,-"is invariant under all peririuta-

tioiLs of {ii,i2, • • • As any homogeneous quadratic function uniquely determines 

12 
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a syniiiietric matrix, a givoii f/-th degree lioiiK)gcii(X)ns polynomial function f{x) also 

uniquely (letennines a siipor-syininetric tensor form. In particular, if w(» denote a d-th 

d(�grro homogeneous polynomial function 

Function H /(j;) :== ^ ^ f] 
1仙仏S…S'.rfS" 

• • • • • / • ‘ 

]I2 ^d '</ 

then its corresponding supcr-syiniiietric tensor form can 1)(> writ ton as F = 6 

with 三 /7i,2”,d/|n('“，厂2，...，。）|, wliere |n ( i|，/2, - . -， i s the imiiibrr 

of distinctive periiiiitatioris of the iiidiccs {z'l. i), • • • , }. This supcr-syiiiinetric toiisor 

representation is indoecl unique. Lot F Ik� i t s corresponding inuUiliiiear form (l(�fim�d 

by the super-svinrnetric tensor F, then we liavo f{x) = x,... , x). Tho lot tor 
^ ‘ 

(I 

li(T(�is us(xl to oiiiplia.sizc that the iK)lyiioinial function in question is korrwfjejKtous. 

We shall also consider in this this the following mixed form 
Function M . . . , . . . . . • ， . . . , x'', x''',.. •，ar*̂ ), 

(l\ d-2 (l.s 

where d\ + d)十••. + d�— d, x^ G R"*-" for k = 1,2,..., .s, d-th ordor tensor form 

F e i{$"i*^»x"2''2x -.xm.,‘'‘'； tlie letter 'M' signifies the notion of mixed polynomial 

form. We may without loss of generality assume that F luus partial syinnietric property, 

namely for any fixed ( x � , x ^ ,. . . • ar**), F( ' , •，• •. , x^, .. • , ...，a;�a；"", •. •，ar**) is 
^ V ‘ ^ V ‘ ^ V ‘ 

d\ <h 
a supcr-syiiimetric d\-th order teiLSor form, and so on. 

Beyond the homogeneous polynomial functions described above, wo also study 

in this thesis the generic multivariate inhoiiiogeiieous polynomial function. An n-

(limeiisioiial d-th degrete polynomial function can be explicitly written as a siiiiiiiiatioii 

of homogenous polynomial functions in decreasing degrees as follows 
d d 

Function P pix) fk{x) + /o = ^ a y • • ,x) + /(>, 
k=l A:=l 人. 

where x G R", /o 6 R, and fk{x) = Fk(x, x, • • , x) is a homogenous polynomial fuiic-
k 

tion of degree k for k = 1 ,2 , . . . and letter ‘P’ signifies the notion of polyjiorniaL 

One natural way to deal with iiihoinogeiieous polynomial function is through hojrwge-

nization\ that is, we introduce a new variable, to be cieiioted l.)y x/, in this thesis, which 

is actually set to be 1, to yield a homogeneous form 
d d 

p{x) = A � + /o = E f 她 , " + h补d = /(x), 
k=l k=l 
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where f{x) is an (n + l)-diinciisioiial d-th degree hoiiiogoiicous polynoinial function, 

with variable x € M""^‘. Throughout this thesis, the 'bar' notation over boldfacc lower-

case letters, o.g., X，is reservcxl for an (n+l)-dimt�iisi()nal vector, with the underlying loi-

ter X referring to the vector of its first 71 coiiiponeiits, and tlie subscript. (t lir subscript 

of Xfi) referring to its last roiiipoiieiit. For instance, if x = (j：], x j , • • • ,./:,,，+ i)【€ 

Rn+i, then X = (a:i,x'2,... € M" and j；/, = E M. . 

Throughout we adhere to the notation F for a iiniltilinoar form (Function T) definocl 

by a tensor form jP, and f for a honiogciioiis polynomial (Function H) or a mixed 

lioiiiogeDcous form (Function M), and p for a geiUTic (iiihoinogen(K)us) polyiioniial 

function (Function P). Witliovit loss of generality w(�assume that "1 < U ) < • • • < 

in the tensor form F € M"' and N \ < 112 < • • • < IIS in the tonsor form 

F 6 股"1 �…x，i.，"-，. We also assume at lc»as(�one coiiipoiiciit of the t.(»nsor form, F 
a * 

in Functions T, H, M, and F,i in Function P is nonzero lo avoid triviality. 

2.1.2 Constraint Sets 

The most commonly usecl coiLStraiiit sets for polynomial optimization prol^leiiis arc 

studied in this thesis. Specifically, wc consider tho following types of constraint sots: 

Constraint B {x e R" | xr = L i = 1 ,2 , . . . , n} =: B"; 

Constraint B {x e R" | < 1, i = 1，2，...，7/.} =: 

Constraint S j x € R" | ||x|| := (x,"^ + + •. . + x j ) = l } §"; 

Constraint S {x e | ||a;|| < 1} =: §"; 

Constraint Q {x e E" | x^QiX < 1, i = 1,2, . . . ,m}； 

Constraint G {a; € R"丨：c € G}. 

The notion 'B' signifies the binary variables or binmij constraints, and ‘S’ signifies 

the Euclidean spherical constraint, with 'B' (liypercube) and ‘§，(the Euclidean ball) 
I 

signifying their convex hulls respectively. The norm notation '|| ‘ ||' in this thesis is the 

2-norm (the Euclidean norm) unless otherwise specified, including tliose for vectors, ma-

trices and tensors. In particular, the norm of the tensor F = (F,：,,.̂...,-̂) G M"' 

is defined as 

iii^ii ：= / E ！~ ^ u h - i / - . 
The notion 'Q' signifies tho quadratic constraints, and we focus on convex quadratic 

constraints in this thesis, or specifically the case of co-centered ellipsoids, i.e., Q, ^ 0 
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' ' . I 
for i — 1 ,2 , . . . , Ill and Qi — (). A (jciic.ral coiivcx compact set in R" is also 

(iiscuss(xl in tliis thesis, which is denoted by tlio notion Constraints B, S, Q and G 

arc con vox, while Constraints B and S arc noii-coiivox. It is ol)vious that Constraint G 

is a generalization of Constraiiit Q, ami Constraint Q is a gonoralization of Constraint 

S and Constraint B as well. 

2.1.3 Mode l s and Organization 

All the polynomial optiniization inodols cliscusscd in this tliosis are iiuixiiiiizatioii prol)-

leiris, and the results for most of their niiniinization counterparts can he similarly 

derived. The names of all the iiioclols simply combine the iiaiiies of tlio oljjwtivc/func-

tioiis clcscribod in Section 2.1.1, and the names of the constraint sets d(-\s(�rih(�(l in 

Section 2.1.2, with the names of the constraints in tho subscription. For (�xainplos， 

model (Ts') is to maximize a multilinear tensor function (Function T) under tho splior-• » • 
iccil constraints (Constraint S), inocicl (MBS) to nuixiiiiize a iiiixocl polynomial form 

(Function M) iiiicler binary constraints (Constraint B), mix(�d with variables luiclor 

spherical constraints (Constraint S), etc. ‘ 

III Chapter 3，we discuss the models for optimizing a multilinear form with quadratic 

constraints, including (T5) and (7g). In Chapter 4, we discuss the iiiodcLs for optimizing 

a hoinogoiieous polynomial or a mixed form with quadratic constraints, including (HS), 

(HQ), {MS) and (MQ). General polynomial optimization models including (尸‘<̂)，(Pg) 

and (PG) are discussed in Chapter 5. Chapter 6 talk about binary iiitogor programming 

inodols, incluciirig (T/j), {HFS), (MB)^ aiid {PB)- Chapter 7 talk about mixed iiitogor 

programming models, including (Ti^s)^ (付/i‘s) and [Mus)- All these inodols arc listed 

below for a quick reference. 

•Chapter 3: 

(Ts) max 

s.t. x^ e k = 1,2， 

(TQ) m a x F ( X \ X \ ' " . 

s.t. < 1, k — 1,2,... ik = 1,2，...，riik, 

e 知，於二 1，2，...，丄 ‘ -
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Chapter 

(Hs) max fix) 

s.t. XGS"; 

(Hq) max f i x ) 

s.t. X1 Q,a; < 1, i = 1 ,2 , . . . , Ill 

X e R"; 

(A/sO max 

s.t. x^' 6 k = 1,2, .S-

{MQ) max f{x\x'r-- ’ :ir” 

s . t . 丨 Qf;®" < 1’ A.= 1,2，. 

X , ^ IR.人，/c 1，2，•••，•、• • 

•s, ik = 1,2, ffik-

Chapter 5: 

Chapter G: 

(̂ sO 1 匪 " ⑷ 

s.t. a; 6 S"; 

{Pq) I 應 p{x) 

s.t. x^Q^x < 1, 2 = 1,2, 

X e R"； 

(Pa) max p(x) 

s.t. X £ G. 

77?., 

X 

X^ e k = 1,2， 

f i x ) 
X e B" ； 

；2’ 

G k = 1 , 2 , 

(Tb) max 

s.t. 

max 

s.t. 

(Mii) max - ,x 

�s . t . 

{Pfs) max p(x) 

s.t. X e 1" 

d: 
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Chapt(� 

• (r".s) max F { x \ x ' y(i' 

IE人.G k = 1 , 2 , (L 

{Has) max 

s.t. 

i^fiis) niiix 

s.t. 

y^ e 

fix^y) 

X € 

./V，工 

x^ e r ' 、 

2/ € s , "。 

2
 

1
1
 

二
 

X 

k = 

，y|，y ‘ 
，2，...’ 

y' 

f = 1,2, t. 

As before, wc also a.ssiune that tlie tensor forms of the objective functions in (H/^s) 

and (Mijs) to have partial symmetric property, rii] < 111-2 < • • • < nia' in {Tbs), and 

777 1 < rn2 < • • < rut in (Mbs)-

In oacli chapter mentioned above, we disciLSs the coiiipiitatioiial'complexity of the 
I 

models coiicerriecl, and foci us 011 polyiioiiiial-tiiiie approximation algorithms with worst-

casc perfonnaiicc ratios, followed by discussions 011 their applications and/or numerical 

performance of the algorithms proposed. All the iiimierical computations are conducted 

using an Intel Pentium 4 CPU 2.80GHz computer with 2GB of RAM, and the support-

ing software Matlab 7.7.0 (R2008b). Let d] -{-do + •. -^d, = d and ( � ' � + 4 + . . . + 劣=乂 

ill the above mentioned iiiodols. The degrees of the objective polynomials in these mod-

els, d and d + d', are understood as fixed constants in our subsequent discussions. We 

arc able to propose polynomial-time approximation algorithms for all those models, 

and the approximation ratios depend only on the dimensions (including the iiuiiiber of 

variables and the number of constraints) of tiie problems concerned. 

The remaining sections in this chapter discuss some necessary preparations, for the 

purpose of better understanding the iruiin subjects in the thesis. The topics include 

elementary introductions of tensor operations, approximation algorithms, rancloniizod 

algorithms, and semidefinite programming. 

2.2 Tensor Operations 

A tensor is a multidimensional array. More formally, a d-th order tensor is an element 

of the tensor product of d vcctor spaces, cach of which has its own coordinate system. 
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Each (uitry of a d-th order tensor luus d indices associated. A first order tensor is a 

vector, a secoud order tensor is a matrix, and tensors of onior three�or highor ar(�callcd 

higlior order toiisors. 

This section (icscriht�a f(�w tensor operations coiiiinonly usod in this thesis. For 

a general review of other tensor operations, the reader is referred to |08]. 丁Ik�tensor 
�/ 

iiiiKT product is cleiiot(*d l)y which is the siiiiiiiiatioii of produc ts of all corrcspoiiding 

entries. For example, if € xn^x.-xr^^ tlioii 

As iiicjitioiicd b(»foro, the iioriii of the tensor is then defined rus | |F| | := \/F • F. Notirc 

that the tensor inner product and tensor norm also apply to the voxtors and the mat rices 

since they ani lower or(l”r tensors. 

The modes of a tensor are r(�f(Tr(�d to its coordiiiate systems. For example, the 

following fourth order t w i s o r with its entries l)ciiig. 

. G n u = 1, Gil 12 = 2, 6'i 121 = 3, ^1122 = 4, (；“:” = G] 132 = 6. 

G\2\1 F-7, G1212 = 8, (̂ �2‘2丨 二 9，《 G1222 二 10, ( 7 1 2 3 丨 = 1 1 ， = 12, 

G2111 = 13, G2112 =14，G'2\2\ = 15, G'2122 = 16，G‘2i:ii = 17, Gjr.i'j = 18, 

G22II = 19, ^2212 == 20，G222I = 21, G'22'22 ~ 22, . (7.2231 = 23, 0}>：\2 = 24, » » • 
、 ‘ • . .. ‘ 

luus 4 modes, to be iianuHl mode 1，mode 2, inotle 3 and nioclr 4. In case a tensor is 
k -

a'niatrix,-it has only two modes, -whicli we Usually calked them column and row. The 

indices for an entry of a tensor arc a sequoiicc of integers, each one assigning from one 

mode. 
、 

The first widely usoci tensor operation is tensor rewritten, which appears frequently 

in this thesis. Namely, hy combining a set of i«()des into one mode, a tensor can be 
I I rewritten as a now tensor with a lower order. For cxaiiiplo, hy coiiibiiiiiig modes 3 and • •‘ * 

• > -

4 together and put it into the last luoclc of the new tensor, tensor G ( an be rewritten 

as a third order tensor ,G its entries boinij： 

G,iu = 1, ^112 — 2, G'l 13 =3 , . G'、i‘i = 4 , 5， = 6 , 

7，“ �122 = 8， G、2:i 
J • 

=10’ ^125 = 11， C丨2G =12, 

a ' -^211 一 13, n ' — 
^212 一 

< 
^213 =15 , ^214 =16 , n ' — 

^215 一 

17, Hi = 

- 19’. 二 20, ^223 =21 , ^221 =22 , ^225 = 23, ^226 = 2 4 
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By comhiiiinj^ inock?s 2, 3 and 4 tog(>thor. it'usor G is then rcwrittoii a»s a 2 x 12 mat rix 

1 2 3 4 5 G 7 8 9 1 0 11 1 2 

1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 

and L)y coiiibing all tlio iiiodcs together, tensor G Ihhoiucs a 21-(liineiisioiial vector 

(1 ,2 , . . . , 24) I，which is the same as vcctorization of a tensor. 

Tlio ot her (•oiiiiiioiily ustnl operation of teiKsor is modes switch, that is to switch the 

positions of two iiuxics. This is v(�ry much liko the traiisj)()so of a matrix, switching tlic 

lK)siti()iis of row and coluiiiii. Accordingly, t he iiiodes switch will change tli(�s(�qu(�iicps 

of indices for th(�entries of a tensor. For example, by switching iiiodo 1 and mode 3 of 

G, t(�iis()r G is thcMi dmnged to G" € with its entries defined by 

G-jkt ：= Gujit V j,"， f = : l , 2 ’ i = 1 . 2 , j } . 

By default, Hiiiong all the tensors clisciissf»d in this thesis, w(�iLssiiinc their modes have 

Ikvii switched (in fact r(H)rdorecl), so that tlieir diinensioiis arc in a iion-decrrasiHg 

(>r(k�r. 

Another widely used operation is multiplying a tensor l)y a vector. For cxauiplc, 

tensor G has its associated iiiultilinear function y, z, w), where variables x. y. w € 

R- and z G K•多.Four iiiodos in G correspond to the four positions of variables in 

function G. For a given vortor w — {w\, wo) ‘, its multiplication with G in mode 4 

makes G to l)(，G'" 6 whose entries are ddiiiod by 

G'l'ĵ  ：= Gijk�w] + Gijk/th V?, j = 1,2. k = 1,2,3, 

which is basically the inner product of the vectors w and Gijk.. := ，人.2) ‘. For 

('xainplos, if li; = (1,1) ‘, th(�n G"' hfus entries 

Ct'j'j J — 3, Ci"i2 ~ 7， ( j 113 = 11，C/12] — 15, G'122 ~ 19，G]23 二 23, 

(̂ 211 ~ 27’ G2】2 ~ 31，G213 “ 35, ~ 39，G‘yy> — 43, CJ923 = 47. 

Its corresponding iiiultiliiiear function is in fact G{x^y,z,w), with the underling vari-

able's x,y, z. Soinetiiiies, we use G ( • ， w ) more often to denote this new multilinear 

function ZyW). 

This type of multiplication can extend to a tcnisor with a matrix, cvcii with a tensor. 

For example, if we multiply tensor G by a given niatrix Z € in modes 3 and 4, 
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then wo got a second order tensor (matrix) in vvlioso (?, J)-th entry is 

3 2 
Gij.. • Z ^ Y . Y . 么 = L 2. 

Its corresponding iiiultilinoar fuiution is (leiiotcci by G{', Z). In j^(�m�ral, if a r/-tli 

order tensor multiply by a ri'-th order tensor {d' < d) in appropriate niod(�s. then its 

product is a {d — f/')-t.li order tensor. In particular, if d ~ d', thoii this luiiltiplicatioii 

is simply tlie tensor inner product. 

2.3 Approximation Algorithms 

Approximation algorithms an�algori thms designed to Hiid approximate solutions to 

optimization problems. In general, approxiiimtion algorithms arc often associated with 

NP-lianl problems, since it is unlikely that there exist polynoiiiial-tinio (�xact algorithms 

for solving NP-hanl problems, one then settles for pulyiioiiiial-tiiiK' sul)-optiiiial solii-

tions. Approximation aJgorithins an�a l so used for pro])leiiLs where exact polyiioiiiiaJ-

tiiiie algorithms arc possible but arc too expensive to compute clue to th(�size of the 

problem. Usually, an approxiinatioii algorithm is associatoci with an approximation 

ratio, which, is a provable value measuring the quality of the solution fomid. 

Approxinmtioii algorithms are widely used in coinbiiiatorial optiinizatioiis, typically 

ill various graph problems. Lot us describe a well known example, the vcHcx cover 

problem, to appreciate the notion of approxiiimtion algorithms. Given an uiidiroctxxl 

graph G — {V, E), and a iioimegativc cost fissociated with each vortex, find a iiiiiiiiiiiiin 

cost of vertices to ctover all the edges, i.e., a set V' d V such that every cflgc has at 

least one eiiclpoint incident at V'. 

The vertex cover problem is NP-hard (see e.g., [38]), even for tlio cardinality vertex 

cover, which is the case that the cost associated with cach vertex is 1. Thero is a very 

simple algorithm for cardinality vert(»x cover prol)lein. Pick any uncovered edge e e E, 

select both of its two incicient vertices, and then remove all the edges covcred by these 

two vertices; The proccss is continued until every (nige is removed, and output all the 

selected vertices. This process c an be done in at most numbors of steps, which 

is polyiioiuial-tiiiie of the input (iiiiierision iiiax{|V"|，|£*|}. Tlie algorithm may not get 

an optimal cover, however wo can show that the number of vertices selected by this 

algorithm is at most twice as the optimal value of cardinality vertex cover. If fact, 
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for any optimal cover, it must cover any edge picked (not removed) by tlie algorithm, 

and thus must iiichicle oii(�of its two incident vertices, then this optimal covor iimst 

iiicliuie half of the vertices selectod by the algorithm. Tliis is a typical approxiiiiatioji 

filgoritluii with approximation ratio 2. 

Wo shall now define formally the approxiiiuition algorithms aiid approximation ra-

tios. Throughout tliis thesis, for any iiutxiinization problem (尸）deHii(�(i as iiuiXaj^x P⑷， 

w(�use 1，(尸)to denote its optimal value, and v{P) to denote the optimal vahio of its 

ininiini/ation counterpart, i.e., 

?;(/') := maxp{x ) and v{P) := m\np{x). 
x€.V x€-V 

Definition 2.3.1 Apjmjximation algorithm, and approximation ratio: 

1. A maximization p7X)hle.m iiuiXa-^x admits a polynomial-time approximation 

algoritf^m vnt.h approximation ratio r € (0," 1], if v{P) > 0 mid a fmmldt solution 
« 

X E X can be found in polynomial-tima stick that p{x) > r v{P): 

2. A minimization problem miiixex admits a polynomial-time approximation 

algorithjn with approximation ratio /z 6 [1, oc). if v{P) > 0 and a feasible solution 

X e X can be found in polynomial-time such that p{x) < fiv{P). 

It is easy to sw that the larger tlio r , the bettor the ratio for a inaxiniizatioii 

problem, and the smaller the the better the ratio for a iniiiiiiiizatioii problem. In short 

the closer to one, tlie better the ratio. However, sometimes a problem may be very hard, 

such that there is no polyuoiiiial-time approximation algorithiii which approximates 

the optimal value within any positive factor. A typical example of this typo is also tlic 

vortex cover probierii. although its cardinality version has a very simple 2-approxiniatioii 

algorithm. In tliose unfortunate cases, we have approximation algorithms with relative 

approximation ratios. 

Definition 2.3.2 Approximation algorithm and relative approximation ratio: 

1. A maximization problem, maxaiex admits a polynomial-time approximation 

algorithm with relative approximation ratio r G (0，1]，if a feasible solution x e X 

can bt found in polynomial-time such that p{x) 一 v{P) > r (v(P) — £{P)), or 

equivalently v{P) — p{x) < (1 — r) (v(P) — v{P))； 
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2. A minimization problem iiiiiixex iidmits a polynomial-time, approxunation 

(ilgoritfnn with relative approxirnaiion mtio fi € |1, oc), if a feasible solution x G A' 

can bet found in polynomial-time, such that v{P) — p{x) > (1 ///) {v{P) — v{P)), or 

aquwaleiitly p{x) - v{P) < (1 - 1/") {v{P) - v{P)). 

Similar to the usual approximation ratio, the cIc^sct to one, the iK'ttor the rela-

tive approximation ratios. For a maximizatioii problem, if wo know for sure that tlio 

optimal value of its iiiinimizatioii counterpart is noniiegative, then trivially a relative 

approximation ratio already implies a usual approximation ratio. This is not rar(、，as 

many optimization problems always have noiiiiogativc objectivo fiiiictioiLS in real appli-

cations, e.g., various graph partition problems. Of (.(mrse there arc several other ways 

in defining the approximation quality to measure the perfonnanco of the approximate 

solutions (see e.g., [Gl, 11]). 

Wo would like to point�out. that the approximation ratios defined are for the worst-

case scenarios, which might be hard or oven impossible to find an oxaniple attaining 

exactly the ratio in applying tlie algorithms. Thus it does not mean an approximation 

algorithm with a better approximation ratio has better performance in practice than 

that with a wors(» ratio. In reality, many approxiiriatioii algorithms have their approx-

imation ratios far from one if they have one at all. which might approach zero when 

the dimensions of the problems become large. Perhaps it is more appropriate to view 

the approximation guarantee as a measure that forces lis to explore deeper into the 

structure of the pro])leiii and discover more powerful tools to explore this structure. 

In addition, an algorithm with a theoretical assurance should bo viewed as a useful 

guidance that can be fine tiuied to suit the type of iiistaiicc^s arising from that specific 

applications. 

As mentioned in Section 2.1.3, all optimization models considered in this thesis are 

maximization problems. Thus we reserve the Greek letter T,. specialized to indicate the 

approximation ratio, which is a key ingredient throughout this thesis. All the approxi-

mation ratios presented in this thesis are in general not universal constants, and involve 

problem dimensions and Q. Here il ( /(n)) signifies that there are positive universal con-

stants Q and no such that il ( /(n)) > AF{N) for all N > TIQ. As usual, O (f(n)) signifies 
« 

that there are positive universal constants a and jiq such that O i f{ii)) < af(n�for all 

71 > riQ. 
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2.4 Randomized Algorithms 

A randomized algorithm is an algorithm which employs a degree of randomness as part 
» 

of its operation. The algorithm typically coiitaiiis certain probability clistrihiition as an 

auxiliary input to guide its executions, in the liopc of achieving good perforiiiaiice on 

average, or with high probability to achieve good performance. Formally, the algorithm's 

performance will be a random variable, thus either the miming time, or the' output (or 

both) are random variables. 

Historically, the first randomized algorithm was a method clovelopod by Rabin [104] 

for the closest pair problem in computational geometry. The study of randomized algo-

rithiiLs was spurred by the 1977 discovery of a randomized priniaiity tost (determining 

the priiiiality of a number) by Solovay and Strassen [111]. Soon aftrrwards Rabin [105 

demonstrated that the 1976 Miller's priniaiity test [83] can be turned into a randoniizod 

algorithm. At that time, no practical deterministic: algoritiiin for priniaiity was known. 

A well known application and commonly used algorithm in which randomness (an 

be useful is quicksort. Any deterministic version of this algorithm requires time 

to sort TI different numbers, (to be denoted by sot e.g., the straight forward one: 

(X)mparing all the pairs requiring "("�一�)time. However, if we assume the given 7I 

different mmibers are in a sequence uiiifonnly distributed on all the n! number of 

distinctive sequences, then the quicksort algorithm sort this sequence in 0{N log II) 

time. The algorithm chooses an element of S uniformly at random as a pivot, compares 

the pivot with other elements and groups them into two sets Si (those bigger than the 

pivot) and S2 (those smaller than the pivot), and then applies the smne process to sort 

‘5] and S2', This process is continued until a sort realizes. 

To see why quicksort will cost 0{n log n) in average, let us without loss of generality 

assume 5 ' = {1,2，...,Vi}. Denote Xij. to -be the indicator random variable whether 
- R 

elements i and j are compared or not during a quicksort. The total time of compares 

is then • ‘ 

E 工IJ 

l<i<j<n 
= [ E [Xij 

‘ l< i<j<n 
9 • 

Next we compute E[a:,j], which is the probkbility that i and j are ever compared by a 
a 

quicksort. This happens if and only if either i or j is the first pivot selected by quicksort 

from the set {i, i + 1 , . . . , j — 1，j} (assume i < j), and the probability is 2/(J — i — I). 
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Therefore, the average time of compares is 

2 

E E M = E 7 3 ^ = 2 ( " + 1 )亡去 - 4 , , = ()(,“0片": 

III fact, the expected time argiinioiit is based on tho uniformly choosing the pivot.‘s, 

although the worst-case time is also when each timr w(> ar(�very unfortuiiato to 

pick the largest element as the pivot. 

There arc also othor successful stories that randomized algorithms help. For (ex-

ample, the voluine of a convex body can be estiiimted by a raiKloiiiizecl algorithm to 

arbitrary precision in polynomial-time [31]. while no (leteniiiiiistic- algorithm can do 

the same [13]. " 

In applying to NP-hard optimization problems, randomizecl algorithms ar(�often 

associated with approximation algoritlims to prove performance ratios, in terms of 

expectation, or with high probability. A simple example is a raiicloinized approximation 

algorithm with approxiinatioii ratio 0.5 for the max-cut problem. Given an undirected 

graph G — (K, E), and a rioiiiicgative weight associated with each edge, find a partition 

(cut) of V into two disjoint sets A and B. so that tlio total weight of all the edges 

connecting one vertex in A and one vortex D is ni^iiiiized. This is also one of the well 

known NP-hard problems |38]. The simple? algorithm is an follows. For each vertex, 

independently toss a fair coin, and put it into A if head or D if tail. It is easy to sco 

that the probability of an edge connectiiig A and B are exac!tly 1/2. By the linearity 

of expectation, the expected total weight of this cut is exactly half of the total weight 

of all the edges, which is at least half of the maximum cut. 

The current best approximation ratio of the max-cut problem is 0.878, another 

celebrated result of randomized algorithm due to Goemans and Williamson [40], which 

we shall elaborate in Section 2.5. 

We conclude this section by defining polyiiomial-tiine randomized approximation 

algorithms, like Definition 2.3.1 and Definition 2.3.2. We are not going to elaborate all 

of their randomized versions, rather a typical one. The others can bo similar doscribocl. 

Definition 2.4.1 A maximization problem inax^ex admits a polyiiomiul-tirne ran-

• domized approximation algorithm with approximation ratio T 6 (0,1], if v{P) > 0 and 

one of the following two facts holds: 

1. A feasible solution x E X can be found in polynomial-tima, such that E[p(i)] > 

rv{P)； 
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2. A feasible solution x G A' can be found in polyiumiial-tnnv.. such that p{x) > 

r ?;(/)) ufith probability at lexLst 1 — f for all e G {(). 1). 

2.5 Semidefinite Programming 

Seniidefinite prograiniiiing (SDP) is a subfield of convex optiniizatioii coiiccrnod with 

the optimization of a linear objective function over the intersection of tlie cone of 

positive seiiiidofinite matrices and an affine sj^acc. It (.mi he viewed as an cxtciLsioii of 

the well known linear programming problem, where the vector of variables is rrplaccd 

by a symmetric matrix, and the cone of n on negative orthant is n»pla('p(l by the conr of 

positive seiniclefiiiite iiuitricos. It is a special ease of the so-railed conic prograiiiiiiiii^ 

probleiiLS (specialized to the cone of positive scuiiidefiiiite iiiatrices). 

The standard formulation of an SDP problem is 

(PSP) sup CmX 

s.t. 參 A" = hi, i = 1 ,2 , . . . , y/i, 

X h 0, 

where the data C and A,- [i = 1,2,..., m) arc» symmetric matrices^ 6, {i — 1,2,...,川） 

are scalars, the clot product '•’ is the usual matrix inner product introduced in Soc-
« 

tion 2.2, and ‘X 匕 0' inearis matrix X is positive seinklefinitc. 

The-dual problem of (PSP) is 

{DSP) iiif b飞 y , 
t/ 

s.t. E r i i 识 如 z = c， 

Z ^ 0. . 

A solution for an SDP problem is called strictly feasible if its fca.sil)le region has 

nonempty interior, which is also called Slater condition. Wo arc now providing the 

strong duality theorem of SDP, for its proof one is rofer(H»(l to Vaiulonherghe and Boy-

(1 [116] and Heliriberg [51 . 

Theorem 2.5.1 The followings hold for (PSP\ and {DSP): 

1. If (DSP) is strictly feasible, then v(PSP) = v(DSP). If in addition {DSP) is 

bounded above, then this optimal value is obtained by a feasible X* of (PSP); 
« 

2. If (PSP) is strictly feasible，then v(PSP) = v{DSP). If in addition (PSP) is 

bounded below, then this optimal value is obtained by a feasible {Z*,y*) of (DSP); 
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3. Suppose one. of {PSP) and {DSP) is strictly feasible and has bounded optimal 

value, then feasible X of (PSP) and feasible (Z, y) of (DSP) is a pair of optimal 

solutions to its ir.spective problems, if and only if C • X = b � y or X • Z = 0; 

4. If both (PSP) and (DSP) are stricAly feasible, then v{PSP) 二 v{DSP) and this 

optimal value is obtained by feasible X* of (PSP) and {Z*, y*) of (DSP). 

For convenience, an SDP problem may often bo spedfiod in a slightly different, hut 

equivalent form. For example, linear expressions involving iioiiiiegative scalar variables 

may be added to the program specification. This remains an SDP because each variable 

can be incorporated into the matrix X as a diagonal entry (A',, for sonic i). To oiLsurc 

that Xii > 0, constraints Xjj = 0 can be added for all i + j. As another oxaiiiplc. 

note that for any n x n positive seinidefiiiite matrix X , there exists a set of vectors 

. . . , v"} such that Xtj = (v*)*!，』for all \ <i,j < Tlu'refore, SDP problems 

are often formulated in terms of linear expressions on scalar products of vectors. Givoii 

the solution for the SDP in the standard form, the vectors - - ,v"} (an be 

recovered in 0{n^) time, e.g., using the Cholesky decomposition of X . 

There an�several types of algorithms for solving SDP problems. These algorithins 

output the ^lutions up to an additive error e in a time that is polynomial in tlic 

problem dimensions and ln(l/e). Interior point methods are the most popular and 

widely use one. A lot of efficient SDP solvers based on interior point methods have 

been developed, including SeDuMi of Sturm [112], SDPT3 of Toh et al. [115], SDPA of 

Fujisawa et al. [37], CSDP of Borchers [19], DSDP of Benson and Ye [17], and so on. 

SDP is of growing interest for several reasons. Many practical problems in opera-

tions research and combinatorial optimization can be modeled or approximated as SDP 

problems. In automatic control theory, SDP is used in the context of linear matrix in-

equalities. All linear programming problems can be expressed as SDP problems, and 

via hierarchies of SDP problems the solutions of polynomial optimization problems caii 

be approximated. Besides, SDP has been used in the design of optimal experiments 

and it can aid in the design of quantum computing circuits. 

SDP has a wide range of practical applications. One of its significant applications 

is in its role to design approximate solutions to combinatorial optimization problerii-

s, starting from the seminal work by Goemans and Williamson [40], who essentially 

proposed a polynomial-time randomized approximation algorithm with approximation 
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ratio 0.878 for the inax-cut problem. The algorithm iisos SDP relaxation and raiidoni-

ization techniques, whoso ideas have l)(x�ii revised and gcnoralizocl in solving various 

quadratic programiniiig problems [88, 118. 119, 87, 120, 24, 5, 121, 75, oO] arid even 

quartic polyiioiiiial optimizations [77, 73). Wv now (�lah()mt(�s the iiiax-nit algorithm 

of Gocmaiis and Williamson. 

As described in Section 2.4, t,h(�nuix-cut problem is to find a partition of an uijdi-

rector! grapli G = {V, E) with noiiiiogativc weights on edges, into two disjoint sots, so 

that the total weight of all the edges connecting these two sets is iiiaxiiiiizcd. Denote 

{1,2, . . . , 7t} to be the set of vertices. Lot Wjj > 0 be the weight of cdgt' ('oiiiiocting 

v(Tticcs i and j for all z j, and let it be 0 if there is no edge betweon i and j, or 

i = j. If wo let Ti (i — 1 ,2 , . . . , 7?) be tlie binary variable denoting whetlier it is in the� 

first sot (iTi = 1) or the second set (Xj = — 1)，then inax-cut is the following qimdratic 

integer prograiniiiing problem 

(iV/(?) max E i < , j < m �( 1 一 叫 ) / 1 

s.t. Xi € {1,-1}, i = 1, 2 , . . . , 7/. 

The problem is NP-hard (see e.g., Garoy and Johnson |38j). Now by introducing a 

matrix X with Xij replacing XiXj, the constraint is then equivalent, to diag {X)= 

e, X y rank ( X ) = 1. A straightforward SDP relaxation is dropping the raiik-onc 

constraint, which yields 

(•？A/C) iria^ 

s.t. diag (X) = e, X y ()• 

The algorithm first solves (SMC) to get aii optimal solution X*, then randomly gen-

erates an 7i-diriieiisional vector following a zero-iiieaii multivariate normal distribution 

卜 佩 丨 , r ) ， « 

and lets x, = sigp for i = 1,2, ...，7i. Note that generating a zero-mean normal 

random vector with co-variance matrix X* can be clone by multiplying (X*)^ with a 

vector whose components are generating from n i.i.d. standard normal random vari-

ables. Besides, the sign function takes 1 for nonnegative numbers and —1 for negative 

numbers. Although the output cut (solution x) may not be optimal, and is random 

either. It can be shown that 

2 * 
E [xiXj] — — arcsiii X*j VI < < 71, 
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which further loads to 

Wij ( 1 — XjX^ 
E >

 >
 

>
 4 i<ij<n 

> 0.S7S v{SMC) > i):S7S v{MC). 

This yields a 0.878-approxiiiiatiGii ratio for the inax-ciit problem. The ratio signiHcaiitly 

improves the previous best known one, which is 0.5 introciiicod in Section 2.4. 

Wc conchidcs this section as well as this chaptcr, by introducing another (�xam-

plc of SDP relaxation and randomization torhiiiquo for solving quadratic constrainod 

quadrati<''j)rograniiiiing (QCQP) in Noinirovski et al. [87]. The problem is � \ 

(QP) max x^Fx 

s.t. x 1 GiX S 1，i = 1,2，...，7/i， 

a: e R", 

where Q, ^ 0 for i = 1,2, and Q, — 0. Reiiuirk this is oxact tiio model 

(HQ) when d = 2, whose algorithm will be used in this thesis. By using the same 

method with Xjj to replace XiXj, and drop the rank-oiio constraint, wc shall have the 

standard SDP relaxation for (QP) 

(SQP) max F»X 

s.t. Qj • X < 1, i = 1 ,2 , . . . , 7/1, 

X yo. 

A polynomial-time randomized approximation algorithm runs in as follows: , 

1. Solve {SQP) to ge»t an optimal solution X*; 

2. Randomly generate a vector ^ �X * ) ; 

3. Compute t = maxi<i<„j y ^ ^ Q,-^ and output the solution x = 

A probability analysis can prove that 

x^Fx > VL(\l\ogm)v(SQP) > n(l/\ogjn)v(QP) 

holds with probability bigger than a constant. Thus running this algorithins O (log(l/e)) 

times and pick the best solution, which shall hit the approximation bound of (1/ log in) 

with probability at least 1 — e. For details, one is referred to Nemirovski et al. [87] and 

He et al. [50]. 



Chapter 3 

Multilinear Form Optimization 

with Quadratic Constraints 

3. Introduction 

The first subclass of polynomial optimization problems studied in this thesis arc; the 

following multilinear tensor function optimizations over quadratic constraints. Spociti-

cally, the models include iiiaximizing a multilinear form under splierical constraints 

{Ts)- iiiax F { x \ x ' X' 

X "•eS"人，A" =1,2, fL 

and maximizing a multilinear form over co-centered ellipsoidal constraints 

(TQ) max 

s . t . <L,K= 1,2,, 、• •，(1、X — ，•••，川K. 

X^ e A; = 1,2’...，"， 

I 

where Q^̂  ^ 0 and YlZti Q , 气 0 for A: = 1,2，. •., = 1’ 2’ . . . ’ nif,. 

It is easy to see that the optimal value of (Tg), denoted by v(Ts), is positive by the 

assumption that F is not a zero tensor. Moreover, {Ts) is equivalent to 

niax • • • , x^) 

s.t. x^ e 如 ’ k = 1,2, d. 

This is because we can always scale the decision variables such that \\x^\\ = 1 for all 

I < k < d without decreaiiiing the objective. Thiis {Ts) is a special case of (Tq). 

29 
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- * 

Homogeneous polynomial functions play an important role in approximation tlico-

ry. In « certain woll-defiiied sense;, hoiiiogcMicx)iLs polynoiriials are fairly dense among 
all the continuous functions (see e.g., [117, G9]). Multilinear form is a spcxnal class of * * 

homogeneous polynomials. In fact, one of the main roiusons for us to study iimltilinoar 

form optimizations is its strong connection to homogenous polynomial optinii/ations in 
V » 

deriving approximation 1)OIIIKIS, whose details will L)c clisc;usscd in Chapter 4. This con-
V 

nection creates a new approach to handle polynomial optiiiiization probloins, and the « 
fundamental issue is optimization of a iiiultiliiiear tensor form. Chen et al. [25] ostablisli 

4 

the tightness result of multilinear form relaxation for maximizing a homogeneous poly-

nomial over spherical constraint. The study of multilinear form optimizations becomes 

much important. 

Î ow degree cases of (Ts) can be often encountered: When r/ = 1, its optimal solution 

is due to the Caiichy-Schwart/ inequality; When d = 2，(Ts) is to compute the 

spectrum iiorni of the matrix F with efficient algorithms readily available. As we shall 

prove later that (Ts) is already NP-hard when d = 3, the focus of this chapter is to 

design polynomial-time approximation algorithms with worst-case performance ratios 

for any fixed degree d. The novel idea to haiidlo high degree multilinear form is to 

reduce the its degree, which leads to a relaxed niultiliiiear form optimization in a lower 

degree case. As any matrix can be treated a long vector, any higher order tensor can 

also be rewritten as a tensor with its order deduced by one (see the tensor operation 

in Section 2.2), and thus rewritten its corresponding multilinear form with its degree 

deduced by one. After we solve the problem with a lower degree, we need (i(K'oiiipose 

the solution to make it fe^ible for the higher degree case. Thus specific (Iccoiiiposition 

methods are required, which are the main contributions in this chapter. 

For the model (TQ): When d = 1, it can bo formulated to a second order cone 

program (SOCP), which can be�solved in polynomial-time (see e.g., [20, 86]); When d = 

2，it call be formulated to a quadratically constrained quadratic programming problem 

discussed in Section 2.5, and known to be NP-hard in general. Nemirovski et al. [87] 

proposed a polynomial-time randomized approximation algorithm with approximation 

ratio O (1/ logrn) based on SDP relaxation and randomization, and this algorithm 

serves as a basis in analyzing our algorithms and approximation ratios. 
% 

We discuss approximation algorithms of (Ts) in Section 3.2, followed by that of 

{TQ) in Section 3.3. Some application examples of the models concerned are discussed 



3.3 Multilinear Form with E l l i p s o i d a l Constraints 31 

ill Section 3.4. Finally, numerical performance of Ui(�prop'os(Kl algorithms are reported 

in Section 3.5. 

3.2 Multilinear Form with Spherical Constraints 

Let us first consider tlie following optimization model 

[Ts) max F(®i’®V‘.，a：") 

s.t. J；人'e k = l,2,...，f/， 

where 7i\ < iio < - •• < n(i. A special câ sc of (75) is worth noting, which plays an 

important role in our algorithms. 

Proposition 3.2.1 If d = 2，then {Ts) can be solved in polynomial-tima, with v{Ts) > 

m / v ^ . 

Proof. The problem is essentially iiiaxxeS'M ,yeS"2 Fy. For any fixed y, the corre-

spoiiding optimal x must be Fy/^Fy\\ due to the Cauchy-Schwartz inequality, and 

at'corclingly, 

X 

\Fy\\ 
Thus the problem is equivalent to iiuiXyeS"2 y^F^ Fy, whose solution is the largest 

rp 

eigenvalue and a corresponding eigenvector of the positive scinidefinitc matrix F F. 

We then have 

Anmx(F''>) > t r ( F ' F ) / r a n k ( F ' ' F ) > | | F f / n i , 
• which implies v(Ts) = ^ X ^ n ^ i F ' ^ F ) > 

However, for any degree c/ > 3, (Ts) becomes NP-liard. 

Proposition 3.2.2 If cl = 3, then {Ts) is NP-hard. 

Proof. We first quote a result of Nesterov [90], which states that 

• • max $：二>丁知 ) 2 

s.t. X e S" 

is NP-hard. Now in a special case d = 3, Ji] = 11-2 = ria = ri and F € K”" satisfies 

F^f^ = Fjik for all 1 < i , j , k < n, the objective function of (Ts) can be written as 
T' / \ 
- n 71 n . \ Ti 

F{x;y,z) = ^ FijkXiVjZk = ^ Zk ^ FijkXiyj = ^ 2：)^(3^丁乂左2/)， 

�3 

V.J=J 
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» 

wh(�r(> syiiiiiu't ric matrix A A- € IR" ̂  “ with its {i,j)-{\\ entry l)(�iiî ^ F,jk for all 1 < 

i，j,k < 71. By the Candly-Scliwartz inequality. (Ts) is cciuivalent to 

niiix 

s.t. x.y e S". 

We iKK'd only to show that the optimal value of th(�ab()v(�problem is always attaiiial)I(' 

at X = y. To soo why, cloiiote (x, y) to h(�any opt.iiiml solution pair, with optimal vahic 

V*. If X = 士仏 then the claim is true; otlicrwisc, w(�in ay suppose* that x + y 0. Let 

us (Icnoto w := {x + if)/\\x + y\\. Siiico {x, y) iiiiist l)(�a KKT point, there exist (A. //) 

such tliat 
n 

士 ‘ Akif AkV = Xx 
k=l 
n 

Pro-iimltiplying x to the first equation and y to the soroiid oquatioii yield A = // = 
T 

V*. Suiniiiiiig up the two cquatioiLs, prc-iiiultiplying w , and then scaliiij^, l(�ad us to 
71 

y^ X ‘ A/,.y w ‘ A},.w = V*. 
fc=l 

By applying t:li(�Cauchy-Schwartz iii(�qmilit>' to the above ('quality, wv have 

V 
= 1 / V/l-l / \k=\ 

which implies that {w, w) is also an optimal solution. Tlio probloiii is tlioii r(�diic(�(l to 

Nostorov's quartic model, and its NP-hardness thus follows. • 

III the roiiiaiii(ier of this soctioii, w(�focus on approxiiiiatioii algorithms for (Ts) for 

general clegrcx̂  d. To illustrate the iiiaiii idea of th(�algorithms, lot vis first work with 

the case d = 3, i.(\, 

( t s ) max F{x,y,z) = Ei<,<„,J<j<"2,i<^<:":i 厂厂人 . 

s.t . x e S…，y € € §"3. 

Doiioto W = xy^, and wc liavc 

= = = = ||a;||-||i/||- = 1. 

M(jd('l (Ts) (uui now ho rolcix(xl to 

max F{W,z) = Ill<i<„,^<j<n•,^<k<u�^ ^ijk^^'ij-k 

s.t. W e 6 
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Notice that the above prohlein is exact 1 y {Ts) with (I = 2. which can hr solved in 

polynoinial-tiine hy Proposition 3.2.1. Denote its optimal solution to I K � { W, z). CU^ar-

ly F{W, z) > v{Ts). Tlio k(�y stop is to r(�(.()v(�r solution {x. y) from the matrix W. 

B(�lo\v w(�arc going to introduce two basic dccoinposition routines: one is based on 

raiuloini/ation and the other on (�ig(>u-(l(H.()niposit.ioii. Th(�y i)lay a fundaiiioiital role in 

our propos(Ki algorithms: all solution mot hods to he d(�v(.�lop(、（l later rely on those two 

routines as a basis. 

Decomposition Routine 3.2.1 

• INPUT: matrices M € IR"'^"^ W G S，''": 

1 Construct 

W = 
•̂711 X 

W 

W 

w'^'w 

2 liandoiuly (fenvraUt 

、 

r] 
膨 … … v V ) 

<in(i Tvpcat if ncxT.ssary, until 之 MT] > M •W and ||^||||r/|| < (){Y/ri\). 

3 Compute X =专/II之丨丨 mid y = 77/||?7||. 

• OUTPUT: vectors x e §'", y G . 

Now, let M = F( ' , z) and W = VV" in applying the above (UKonipositioii rout ine. 

For the randomly gcnoratod T/), WO have 

r;, z ) l = ^ ^ M T J ] = M •W = F{W,Z). 

He et al. [50] establish that if f{x) is a h()niog(»ncH)us quadratic form and x is drawn 

from a zrro-iiieaii multivariate normal distribution, tlioii there is a universal constant 

0 > 0.03 siicli that 

Proh{f{x)>E[fix)]}>0. 

Sincc ^ ‘ MT/ is a hoiiiogeiicous quadrat ic fonn of the normal raudoiii vector (^), we 

know 

MRJ > M » W } = Prob 77, z) > 77, 2)]} > 0. 
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Monxjvcr, by using a property of normal raiuloin vectors (s(v Lciiiiiia 3.1 of [77]), vvr 

have 

E [_‘-1W|2] = E 
" i 

1 j=i 
" 1 " 2 

>J = ( " 1 +2)tr(VV W) = n, + 2. 

By applying the Markov iiit'(jiuility, for any / > 0 

rr(山{||� | |2|M|2 > / } < E [Iiu.-'iwfl /t = + 2 ) / / . 

Therefore, by the so-called uiiioii inequality for th<-�probability of joint cvcMits. \vc have 

Proh > FiW.z), | | � f | M | 2 </} 

> 1 - Prol) {F(C77,Z) < FiW^z)] - Proh 依"、丨丨」> t} 

> 1 - ( 1 - 約 - ( 〜 + 2 ) / / = "/2， 

« 

where we let f = 2(7J 丨 + 2、/6. Thus \v(�have 

【，， . � �F { W , z ) � f {x. y, z) > 7="" > v{Ts) r z 
丨-N/7 - - � . 1 2 ( "丨 + 2 ) 

obtaiiiinj^ an 1/y/TTD-approxiniation ratio. 

Below we prc^sciit an alternative (and (U'temiinistic) dccoinpositioii routine 

Decomposition Routine 3.2.2 

• INPUT: a malHx M € IR"'^"'' 

1 Find ail eixjanvactor y comtspondrng to the largest eigenvalue of A/ ' A/, 

2 Compute- x = M y / | | M y | | mid y = y/| |y|| . 

• OUTPUT: vectors x € §"', y G S"-' 

This (Iccoinpositioii roiitiiic literally follows the proof of Proposition 3.2.1. which 

tells"us that x^ My > \\M\\/^/n\. Thus w(. have 

= max ^ ^ ^ , ^^i^s) y/TTT Z€S，'1"'2 y/n\ y/m y / ^ 
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The c(>iiii)lexity for DR 3.2.1 is () {n\ T)2 log(!/<-)) with probability 1 - e, and for 

DR 3.2.2 it is O (rnax{7J i "\ ii] no}) • However DR 3.2.2 is iiuUxHl wry easy to iiiipleriirnt, 

and is (leteriniiiistic. Both DR 3.2.1 and DR 3.2.2 lead to the following approximatkm 

result ill tcriiis of the order of the approximation ratio. 

Theorem 3.2.3 If d = 3, them {Ts) admits a polynomial-time approThnatioii algoHikm 

with appmximation ratio 1/^777. 

Now we proccH ĉl to the ease tor general d. Lot X — ‘ . and {Ts) can l)o 

relaxed to 
{ f s ) imix F{X,xKx\--- .x'^-i) 

s.t. X e S"丨 G A. = 2.3 (! - 1. 

Clearly it is a type of the model {Ts) with degree d — \. Suppose {Ts) can be 

solved approximately in polynoinial-tiino with approximation ratio r , i.e.. we find 

[ X . x K x ^ r - - with 

> Tv{fs) > Tv{rs). ‘ . 

Observing that x'^, • • • \ •) is an n\ x iî i matrix, using DH 3.2.2 we shall 

find (i丨，i’ sucli that 

By indiu'tioii this leads to the following: 

Theorem 3.2.4 (Ts) admits a polynomial-time appioThnation alyoiithm with approx-

imation ratio T{TS), wherr. 

T{TS)：= 

/rf-2 ’ 

n "A 
1 ‘ 

B(»low w(» smnniarizo the above recursive procedure to solve (Ts) a.s in Theoroiii 3.2.1. 

Rrrnark that the approxinmtion pcrfoniiaiice ratio of this algorithm is tight. In a 

special exaiiipk' • • •，x") = Z^ILi 丄工if.. •丄f, tlic algorithm can be made to 

return a solution with approximation ratio being exactly T(TS). 

Algorithm 3.2.3 

• INPUT: a d-th ordar tensor F G ^"iX-xn^ n, < n^ < < n". 
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1 Rewrite F as a {d - \)-th order tensor F' € xn^Ti, hy combnu) its 

first and last modes into one, mid jdacing it in tfic last mode of F'. i. (t.. 

•»2.- ,ld 一 ̂ 1 2 , - .id- VI < i\ < 111 A < 1-2 < "2, A < i r i < Hd-

2 For {Ts) with the. {d — \)-th order tensor F': ifd—l=‘2, then apply DR H.2.2. 

until input F' = M and output {x^, = {x. y): otherwise oh tain a solution 
J' 

， b y re.curmoii. r - 2 -3 
L JC « Ju • 

3 Computi' a matrix M' = F{'. x^. • • • � . ) and rctnifa the vector as 

a matrvr. X G 

Apply either DR 3.2.1 or DR 3.2.2, with input {M'.X) = {M,W) and output 

OUTPUT: a feasible, solution . •. . i ’ . 

3.3 Multilinear Form with Ellipsoidal Constraints 

In this section, we coiLsider a generalization of the optiiiiization model (liscusscd in 

Section 3.2, to include general ellipsoidal constraints. Specifically, the model is 

(Tq) max 

s.t. {x '̂) ̂  Qi^x^ < 1, k — 1,2, . . . , (L ik = 1.2 iiik, 

x '̂ e R”*，k = 1,2 d. 

where ^ 0 and Yl^.h Qi\ ^ () for k = 1’2，...,"，u- = l，2,...,m)t. 

Lot us start with the case d = 2，and su )poso , x^) = (a;') ‘ Fx*. Denote 

and Qi = 

to 

n F 
1 t 一 "711 XTIi 
F 
1 

FT r 1 
-

2 L 

丨n丨x,ii Or" X7i j 
for i\ 

丨《2XT»1 

Q , = 
Ql 0 ni XTJ2 for all 1 < ？ < 7H] 

for all mi -h 1 < z < rni + wj. Then (Tg) is equivalent 

max y ^ F ' y 

s.t. y^QiP < 1, z = 1,2, 

y e 

ni] + 111.2, 
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This QCQP problem is discussed in Section 2.5, and is well known to be solved ai>-

proximately by a polynomial-time raiiclomizod algorithm with ap{)roxiination ratio 

il (iog(rnl-t-m2))(从�> ^.g., Neiiiirovski et al. [87] and He et al. [50)). " 

We now proceed to the higher order causes. To illustrate thi» (»ssciitial idofLs, we shall 

focus on the (.aso d = 3. The extension to any higlier order can b(�done by incinction. 

Ill ca.se rf = 3 we may explicitly write (TQ) as: 

(TQ) max F{x,y,z) 

s.t. x^ QjX < 1, i = 1 ,2 , . . . . //JI. 

yYPjy “ J. = 1,2，.. •，川‘2， 

z^ RkZ < l , k = L 2, ...,7713, 

X e R"',t/ 6 K”2,2 € K"3， 

where Q, ^ 0 for all 1 < z < mi, P j ^ 0 for all 1 < j < ,"2. R^ t 0 for all I < k < ,"3, 

and ZTJi Q i � 0 ，P j > ()，T.k=̂  尺"—（). ‘ 

Coinhiiiing the constraints of x and y, we have 

tT{Q,xy^Pjyx'^) = tr {x^QiXy^ P^y) = x^Q,x y^PjV < 1. 

T * 

Denoting W = xy , {TQ) can relaxed to 

(TQ) max F(W,z) s.t. tr {QiW PJ W'^^) < 1, i = 1,2, . . . ,7», . j 二 1.2. 

z^ Ri,z < 1, A: = 1,2,...,7/13, 

W e € K”3. 

川 

Observe that for any W e 

tr (QiWPjW^^^) = tr { Q i ^ W P j ^ P j t W ' Q i ^ ) = Q ^ i W P j ^ 

and that for any W ^ 0, 

> (). 

tT{Q,WPjW tr z 中 I : 
7112 

W 

/ rrti 
EQi ^ E 

ru2 

V : 

> 0. 

Indeed, it is ea.sy to verify that tr (QiWPjW^^ ) = (vec(W))'^'(Q, (8)Pj)vec(Vy), which 

implies that tr {QjWPjW^) < 1 is actually a convex quadratic coiLstraiiit for W. 
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Thus, (TQ) is exactly in the form of {TQ) with d = 2. Therefore wc are able to find a 
A 一 

feasible solution {W, z) of {TQ) in polynomial-time，such that 

F{w,z)>N v{fQ) > 
log(mim-2 + ma) 

where rn = max{mi, 7/12, Let us fix z, and then F{ 

step is to generate ( i , y) from W . For this purpose, w(� 

lemma. 

1) \\og rri 

, - ,2) is a matrix. Our next 

first iiitrodurr the following 

Lemma 3.3.1 Suppose Q, € K")"，Q, h () for all I < i < m, and 二 Q, > (), the. 

following SDP problem 

(PS) mill 

s.t. t r ( t /Q , ) < 1, = 1,2, 7/7., 

ti > (), i = 1 , 2 , ,711. 

u 

nxri 

xn 
>-0 

has an optimal solution with optimal value equal to n. 

Proof. Straightforward computation shows that the dual of {PS) is 

{DS) max - Ez=i " 2 tr (Z) 

s.t. tr (XQj) < 1, i = 1 ,2 , . . . , m， 

.s, > 0, i = 1 ,2 , . . . , Ill, 

X Z 
> - 0 . 

Observe that {DS) indeed resembles (PS). Since YlUx Qi — 0’ both {PS) and {DS) 

satisfy the Slater condition, and thiLs both of thern have attainable optimal solutions 

satisfying the strong duality relationship, i.e., v{PS) = v{DS). Let {U*, t*) be an 

optimal solution of (PS). Clearly U* >- 0，and by the Schur complenient relationship 

we have Y17Li t ( U * ) - \ Therefore, 

v(PS) = J^t* >^t;tv{U*Q,) > t r ( c r ( i r : 71. (3.2) 

Observe that for any dual feasible solution ( X , Z, s) wc always have — sj < 

—tr(X 1 SiQ,). Hence the following problem is a relaxation of (DS) 

(RS) max -tr (XV) - 2tr (Z) 

X Z 

Z'^ Y 
^ 0. 
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Consider any feasible solution (X, Y, Z) of {RS). Lot, X = P ' DP be an ortlioiior-

mal« decomposition with D = Diag (山，山，…，"„) and = P ‘. Notice that 

{D,Y',Z') := ( P X P ' , PYP^\ PZP ^ ) is also a feasible • solution for {RS) with 

the same objective value. By tlie feasibility, it follows that d�Y“ — > 0 for 
« 

I = 1, 2，…’�/• Tliorcfore, 

u u 

- t r ( x y ) - 2 t r ( Z ) = - t r {DY') - 2 t r ( Z ' ) = - ^ Z；, 
1 = 1 1=1 

n n u 

< — + 1)2 + n < n. 
/=丨 i=l 

This implies that v{DS) < v{RS) < n. By combining this with (3.2), and noticing the 

strong duality relationship, it follows that v{PS) = v{DS) = n. • 

We then have the following decomposition method, to 1)(�called DR 3.3.1. ius a 

further extension of DR 3.2.1. It plays a similar role in Algorithm 3.3.2 as DR 3.2.1 or 

DR 3.2.2 ciocs in Algorrthin 3.2.3. 

» 

Decomposition Routine 3.3.1 
-J 

• INPUT: matrices Q, e R…父“、Q, ^ 0 for all 1 < i < m, with Q.—()， 

Pj e K"2xn2，Pj 匕 0 for all I <j < Tti'j with Pj > W e IR"'^"^ with 

tr {QiWPjW'^^) <lforalll<i< rn�and 1 < j < m。，and M e � " ‘ � 

1 Solve the SDP problem 

nun 二“ 

s.t. t r{UQj) < 1，i == 1,2，...，711\ 

> 0 , 2 = 1,2, ，7/11 

u L 

ixn 

nxn 

ErJi 说 
^ 0 

to get an optirnal solution of a matrix U and scalars t\,t2, • • • , t n 

2 Construct 

W = 
u w 
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3 Randomly generate 

AfiO "1+TI2 W) 

and repeat if necessary，until ^ ‘ Mr] > M • W, ^ ‘ Q,^ < () (log nii) for all 

I <i < in\, and rj^ Pjt] < O (ni logr/j.-i) for all 1 < j < m]. 

4 Compute x = Y/maxi <,<,„, Q,^} and y - r] j \/im\X]<j<„t^{rj'^ PjT)] 

• OUTPUT: vectors x e R"'，y e 

Tlie computational complexity of DR 3.3.1 depends on the algorithm for solving 

the SDP problem {PS), which hâ s O(ni^) number of variables aiul (){7ti\) iniinher of 

constraints. In addition it requires O (//^(yj I'/ti + 7121712) log(l/f)) other operations to 

get the quality assured solution with probability 1 — e. 

Lemma 3.3.2 Under the. input of DR 3.3.1, we cxin find x e R"^ and y G R"'^ by a 

polynomial-time randomized algorithm, satisfying x ‘ Q^x < 1 for all 1 < z < 7ri\ and 

y飞 P j y < 1 for all I < j < r/i ? ？ such that 

1 
My 

\ /n \ v l̂og m\ log m-z 乂 
M*W. 

Proof. Following the randomization procedure in Step 3 of DR 3.3.1, by Loimna 3.3.1 

we have for any I < i < 7Ji\ and 1 < j < 7112, 

nil mi 
E[rt'^Pjrt] = tr PjW'^ ^ UQi W ^ ^Utr (PjW^Q.W) < ^ ^ ="卜 

V \ t = 1 / / t=l i = l 

So et al. [109] have established that if ^ is a normal random vector aiiJ Q ^ 0, then 

for any a �0 ， 

Prob { � T q �> < 

Applying this result we have 

Prob {'n^ Pj'n > < Prob {rj^ PjT) > a - i ^ r i ^ P M ) < _22 
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Moreover, Ef^'^Mr;] = M • W. Now let x = ^/y/cTi and y = "/v/o2"i，and we liave 

f T M •W -r 'r 1 
Proh My > �零洲’ x^Q,x < l V l < i < m,, y^Pjif < 1 V 1 < j < rn-i^ 

mi 7«2 
> 1 - Prob {i^ M r j < M • W} - ^ > « , } - ^ Proh {r/' Pj77 >^2// ,} 

丨 _)=i 
> 1 - (1 - 7".i . 2f—兮 一 rn-y . 2 f 广爷 = 0 / 2 , 

where ai := 2 and 02 := 2111(87712/6̂ ). Since a\0-2 = 0(l()g77ii log/n-i), the 
% 

(lesinxi {x, i f ) can be found with high probability in multiple trials. • 

A 

Let us now turn back to (Tq). If we \cA W = W and M = F( ' , z) in applying 

Loiiiiiia 3.3.2, then in polynomial-tirne we can fiiul {x, y), satisfying the constraints of 

(Tq), such that 

F(x,y,z) = x'My > - ^ i l ( .. \ M.W > - ^ i l ( r ^ ) F{W,z). 
V V l O g 1 log m2 J \ log m ) 

Combined with (3.1), we thus prove the following result. 

Theorem 3.3.3 If d = 3, then (TQ) admits a polynomial-time randomized approxima-

tion algorithm with approximation ratio il (log'^ »>)‘川“()�()'二 iiiax{.n“，"7.2, "13}. 

This result can he generalized to the model {TQ) of any fixed dogrw d. 

Theorem 3.3.4 (TQ) admits a polynomial-time randomized approximation algorithm 

with approximation ratio r{TQ), where 

T(Tg) := n i2(log-("- ') m)， 
\it=i / 

and m — maxi<jt<d{m/t}. 

Proo至.We again take recursive steps. Denoting W = ic】（5c�i and {TQ) is relaxed to 
( Q j 

(TQ) max .x^ '^) 

s.t. triQlWQlw'^^) < 1, ii = l，2’...，mi’ = 1,2,..., m^, 

{ x ^ f Q ^ x ^ < 1 , = = "u.， 

W e a;人，e A; = 2,3，...，c/ _ 1. 

Notice that (TQ) is exactly in the form of {TQ) of degree d — 1, by treating as a 

vector of dimension niUd. By recursion, with high probability we; can find a feasible 
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solution {W, x^, x^, • • • of (Tg) in polynomial-time, such that 

/ r f - 2 、 - 2 

F ( U ^ i 2 ’ i 3 , . . . 1 ) > J l uk $2(V)g-("-2)max{m’mim,/}) 
Jt 二 2 / 

'd-2 、 - 2 

fJ /U. (k)g-(d-‘2) m) V{TQ). 

：二2 

/d-2 \ -2 
> 

\k=2 

As long fus we fix lot M = F ( •， i ] , . . .， i " - i ’ .）a n d W = W 

ill applying Lemma 3.3.2, we are be able to find {x\ x^^) satisfying the constraints of 

(7g), such that 

Fix\x^ … ， I 勺 2 I ( R ^ ) F(讼，企I'，••• T{TQ) V{TQ). 
yFTT \log my 

• 

Siimniarizing, the recursive procedure for solving general (Tg) (Theoreiii 3.3.4) is 

highlighted as follows: 

Algorithm 3.3.2 

• INPUT: a d-th order tensor F G …>oid 如他 „] < < . . . < n山 matrices 

QL 6 R"矢 x"；^，Qk̂  ^ 0 and X；；"!, Q-, >- 0 for all l<k<d and 1 < u- < 7",人.. 

1 Rewrite F as a {d - l)-th order tensor F' 6 R"2xn3x -xnd-ixn^ri, “飞j combing its 

first and last modes into one, and placing it in the last mode of F', i. a., 

= V I S ' “ < hi < 

2 Compute matrices Pix^i^ = QI^ Qf^ for all I < ii < 7n\ and 1 < < .m(i. 

3 For (TQ) with the (d 一 l)-th order tensor F', matrices Q^ {2 < K < d - 1,1 < 

ik < m/t) and Pi^^i^ (1 < < '/ii, 1 < id £ 7n(f): if d — I = 2, then apply SDP 

relaxation and randomization procedure (Nernirovski et al. [87j) to obtain an ap-

proximate solution otherwise obtain a solution {x^, x'^, • • • , i】’"） 

by recursion. 

4 Compute a matrix M' — F( ' , • • • , , •) and rewrite the vector x^'^ as 

a matrix X € 
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5 Apply DR 3.3.1 with input (Qj, Q'j, X , M ' ) = {Q^, Pj,W, M) for all 1 < i < 

and I < j < ni2 and output {x^, x'^) — {x, y). 

• OUTPUT: a feasible solution x'^, • • • , x'^). 

3.4 Applications . 

As we mentioned in the beginning of this chapter, one of the main reasons to study 

multilinear form optimizations is its strong (^oiinection to 丨lomogemms polynomial opti-

mizations in deriving approximation bounds, which will he discussed in the next diap" 

ter. Apart from that, these models also have versatile applications. Hero w(> pr(�seiit. two 

problems in this section and show that they ar(» readily formulatccl by the polynomial 

optimization models in this chapter, 

3.4.1 Singular Values of Trilinear Forms 

Triliriear forms play an increasingly important role in many parts of analysis, e.g., in 

Fourier analysis, where they appear in the guise of paracoiiiimitators and (compensated 

quantities (see a survey by Peng and Wong [95]). The problem of singular values of 

trilinear forms is the following (see also [18]). Denote? Hi, IHI2 and M3 to bo three 

separable Hilbert spaces over the field K, where K stands either for the real or the 

complex numbers, and denote a trilinear form F : Hi x IHI2 x IHI3 K. The spe.ctrmn 

norm of the tmlinear form F is then the following maximization problem: 

sup |F(a:’y,z) | 

s.t. | | x | | .< l , | | t / | | < l , ||2：||<1, 

a; e Hi, y € H2, z 6 H3. 

More generally, one can state the probteiii of the stationary values of the functional 

\F{x,y,z)\ under the same conditions. These c'orrespondiiig stationary values are 

called singular values of the Uilinear fonn F. Bcrrihardsson and Peetrc [18] showed 

in the binary ease，that \\F\\s are among the roots of a certain algebraic equation, 

called the millenial equation, thought of as a generalization of the time honored secular 

equation in the case of matrices. Another approach to singular values is given by Do 

Lathauwer et al. [281. 
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When specializing the Hilbcrt spaces to finite (iiiiionsional Euclideaii spares, i.e., 

Hj = IR"' for i = 1,2,3, and reserving the field K to bo the real, the probloiii of 

computing the largest singular value \\F\\s is oqiiivaloiit to (Ts) when d = 3. This 

is because one can always uso (—x, y, z) to replaa* {x, y, z) if its objective value is 

negative, hence the absolute value sign in \F{x, y, z)\ can b(�omitted. Moreover, we 

can also scale the decision variables such that ||a;|| = ||y|| = ||z|{ = 1 without decreasing 
« 

the objective. According to Proposition 3.2.2, the problem of computing ||jP||c,' is NP-

hard already in this real case. Together with Theorem 3.2.3, the spectrum norm of a 

triliriear form can be approximated in polynomial-time with a factor of > , ^ , • 
“ y'minfrji.n-i."：}} 

3.4.2 Rank-One Approximation of Tensors 

Decompositions of higher order tensors (i.e., the order of the tensor is bigger than or 

equal to 3) have versatile applications in psychometrics, chemomctrics, signal process-

ing, computer vision, numerical analysis, data mining, iieuroscience, graph analysis, 

and elsewhere (see e.g., an excellent survey by Kolda and Bader [G8]). The earliest, sto-

ry of tensor decomposition dates back to 1927, where Hitchcock [55, 5G] proposed the 

,idea of the polyadic form of a tciisor. Today, tciisor decomposition is most widely used 

in the form of canonical decomposition (CANDECOMP) by Carroll and Cliang [23 

and parallel factors (PARAFAC) by Harsh man [45], or in short CP decomposition. 
‘ . 

A CP decomposition decomposes a tensor as a suinmation of rank-one tensors, i.e., 

tensors who can be written as outer product of vectors (see e.g., [67]). Specifically, for 

a d-th order tensor F = (F“i.2...id) € and a given positive integer r, its 

CP decomposition is as follows: 
« 

r 

1=1 

where x^ e K"& for z = 1 ,2 , . . . , r, A: = 1,2, . . . ,丄 Exact recovery of rank-one clecoiii-

positions is in general impossible, due to various reasons, e.g., data errors. Thus the 

following optimization problem for the CP decompositiori is straightforward, i.e., to 

minimize the norm of the difference， 

s.t. xf e i = l,2，...,r,fc = 1/2,...，fi. 

Ill particular, the case of r = 1 corresponds to the best Tank-one approxirnatioji of a 
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tensor, i.e., 

{TA) mill |li^ — :E，（8)x'2(g)...^a;’| 

s.t. x^ e k = 1,2, 

By scaling, we may require the norm of x^ to be one, then [TA) is equivalent to 

mill 丨|F — A aji � … � 

s.t. A G R, x'' € = 1,2，.. d. 

For any fixed x^ € §"*•“ {k = 1 ,2 , . . . , d), if we optimize the objective function of {TA) 

with respect, to A, we shall have 

min — Aaji 0 ic2 � . • • � ‘ 
AeR 

= m m 
A€R 

y j - 2 A • (spi � � … � + � . . . � ̂ ' i f 

= m i l l J 1|F||2 - 2 A Fix^, • • • , x^) + A2 
Â R * 

Thus (TA) is equivalent to 

max ,0；勺I ’ 

s.t. x^ e A: = 1,2, 

wliich is the same as (Ts) discussed in Section 3.2. Remark that similar (Iccliictioris can 

also be found in [29, 122, 67 . 

3.5 Numerical Experiments 

In this section we are going to test the numerical performance of the approximation 

algorithms proposed in this chapter. As mentioned in Section 2.1.3, all the numerical 

computations reported in this thesis are performed on an Intel Pentium 4 CPU 2.80GHz 

computer with 2GB of RAM, and the supporting software is Mat lab 7.7.0 (R2008b). 

The experiments in this section focus on the model (Ts) with = 4，or equivaleiit-

ly, to recover the best rank-one approximation of a fourth order tensor discussed in 

Section 3.4.2. Specifically, we are going to test the following problem 

{ETs) max F{x, y, z, w) = E i < , j,fc,£<n Fijke îVjZkWe 

s.t. £c, y , z , w e S". 
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3.5.1 R a n d o m l y S imulated D a t a 

A fourth onlor toiisor F is 坊、n(Tat.(�d raiidoiiily. whost* // ‘ (�ntri<�s ar(�i.i.d. standard 

iiorinals. Basically wr have a choico to inak(� in tli(� recursion in Algorithm 3.2.3, 

yielding two dilfcmit mot hods, hotli of wliicli call thr (U'lcrniinist ic routine DR 3.2.2. 

Method 1 follows tlio stantlard rtH iirsioii pixMvdui-os in Algorithm 3.2.3, and its first 

relaxation prohl(�in is 

= mux F{Z.w) = Ei<,.j,A-./<n 

s.t. Z e e §". 

A ft or w'v got its optimal solution {Z*,w*), w(�fix w* and tlio prol)l(Mii is tlicn rcducocl 

to a trilint'ar case of {ETs), wlicro rocursioii goes on. The ()])j(vtiv(' value of tlic a}>-

proxiiiiate solution ()l)taino(l is cionotcd l)y , and a ratio t\ := v\/v\ is also coiiipiitcd. 

On the other hand. Method 2 chooses the other relaxation a<s its first st(�p. wliich is 

r’2 = max F{X,Z) = <i.j.k.(<fi 厂'J"X,而‘ 

s.t. x,z e 

After we get its optimal solution (X*, Z*), we may first fix Z* and apply 1)1 考 3.2.2 

to cltK'oiiiposc X* into x,y G S". and then fix ( i , y ) and apply DI{ 3.2.2 again to 

fkn'oniposc Z* into z, w 6 §". resulting a tWusihlo solution. WV also coinputc its 

()l)jo(;tivc value V2 and a ratio r-> := /'•_>/'''2• 

According to Tlieoreiii 3.2.1. Met hod 1 enjoys a t licorctir worst-( {use jxTioriiiaiicc 

ratio of 1 /n . Motliod 2 follows a similar Iksliion of Algoritiiiii .'i.2.3 l)y clioosing a (lif-

fennit recursion. It also enjoys a worst-caso ratio of 1/.", which can l)(�im>v(�" similarly 

as that of Thcoroiii 3.2.4. From tli(�siiimlation results in Table 3.1. the ()l)j('ctivc values 

of tlioir fofLsihlo solut ions ar(» iiuUvd very (.lost�. However. Met hod 2 coiiiputrs a iiiiicli 

hotter upptT h(>uii(l of v{ETs)^ and thus ends up with a better api)r()xiiiiat ion rat io. 

The minuTical results in Tahlo 3.1 soeni to indicate that the pcrfornianct^ rat io of* 

Method 1 is about 2/n. while that of Method 2 is about \/\/n. The main rciusoii for 

tlio (lifferciicc of upper hounds of v{ETs) (R，i vs. V)) is t he first n�laxat i(m IIKMIKXIS. By 

Proposition 3.2.1 we may gneiss that vi = J2( | |F | | /y^), while vj 二 S之(||F||/"), and this 

may coutribute to tlio large gap lK�twc(�n v\ and f'j. Consequently，it is (”iit(» possible 

that the true value (>f <，(E7"_s) is closer to the solution valuos {v\ and V)). ratlior than t li(� 

()])tiiiial value of the rdaxed problem (f'-)). Tiie real quality of the solutions productHl 

is possibly iiiudi b(�U(T than what is shown by the upper l)(川mis. 
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3.1: Nuincrical results (avrraj^c of 10 instaiuvs) of ihTs) 

“ 
2 5 10 20 10 50 GO 70 

2.GI 5.G4 8.29 y.58 12.55 13.58 15.57 17.()5 18.93 

V) 2.G9 G.57 7.5G 10.87 11.7-1 i;i.89 1 1.5(i 17.10 17.7(> 

�,1 3.84 12.70 34.81 93.38 1G9.()8 258.9 丨 細 . 8 9 172.15 . 「瓜13 

2.91 9.1G 20.40 39.40 59.55 99.G1 119.77 140.03 

r丨（％)。 07 .97� 11.41 23.81 10.20 7.42 5.24 4.31 3.71 3.19 

T2{%) 92.14 09.15 30.95 
J 

27.59 19.71 17.17 11.62 11.28 12.68 

11 • T] 1.36 2.22 2.38 2.05 2.23 2.10 2.1(3 2.21 2.23 

N . TT 1.85 3.17 3.G9 5.52 5.91 G.99 7.31 8.57 8.88 

SJTL . T> 1.3K- VI.55 1.17 1.23 1.08 1.10 1.03 1.11 LOG 

Tal)l(�3.2: CPl (J s(K-()ii(ls (average of 10 instances) for solving {ETs) 

II 5 10 20 30 10 50 GO 70 80 90 100 150 

Method 1 0.01 0.01 0.02 O.OG 0.20 0.15 0.95 1.91 3.01 5.08 8.01 58.1 

M(�tlio(i 2 0.01 0.02 1.13 12.G 25:3 517 2433 <J8()() oc 'X 乂 oc 

Although Method 2 works clearly hotter than Method 1 in terms of upper hound 

of r[ETs), it nxjiiires inuch niorr (.oiiiputat.ioiial t iiiir. The most (,xi)(>iisivr part of 

Method 2 is in its first relaxation, (miipiitiu^^ th(�(M^ciivaliic and its (•()rrrs|)()ii(liiig 

(�ig(�uvort()r of an i r x i r matrix. In coiiiparisoii.' for Method 1 the corn'spoiuHiig part 

involves only an u x n matrix. Kvid(�m.(' in Tahk�3.2 shows that Mctliod 1 can find a 

j^ood quality solution very Itusl (!v(�u for large si/c prohlciiis. \ \ \� remark here t liat for 

1) = 100, the sizes tlir input data arc already in tlic iiia^nitudf of lO”. 

3.5.2 D a t a wi th K n o w n Opt imal Solut ions 

The iipfKT bouncis appear to be quitr loose in f^riicral, cî^ one may observe IVoiii the 

previous nuiiKTical rosulls. T<) tost how good the solutions arc without referring to 

the coiiipiitcd upper bounds, in tliis siibsc< ti()ii wc report the test results wlicro tlic 

problem iiistaiK't'8 an* const met (h1 in such a way that the optimal solutunLS arc known. 

By tliis we IIOJK' “）get som(�iinprossioii, F'RONI a dilfenMit aiij^le, oii THE quality of 

the approxiinato solutions pr()(lu(,(�(l l)y our algorithms. \ \v Hrst raiuloiiily generate a 
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Table* 3.3: Numerical ratios of (ETs ) witli known optima for ii = 50 

m 5 10 20 :i() 10 50 100 150 200 

Minimal ratio (%) 50 GG 43 37 37 100 100 UK) 100 

Maximal ratio (%) 100 100 100 100 100 100 100 1()(J 100 

Averaj^c ratio (%) 97 8G 7(i 87 97 100 100 100 100 

Optiiiiality iiistanc(»s ((X:) 7 10 35 71 94 100 100 100 100 

vcxtor a € S", and g(�iK�rj<t(�ui syiiiiiK'tric matrices A, G R"^" (1 < i < m) with tli(�ir 

rigonvalu(»s lying in the interval |— 1, 1) and A,a = a for i = 1 ,2 . . . . , in. TIkmi. wc 

randoiuly geiirrato a V(rtoi- b 6 S", HIKI 川 syiiiinetric matrices B, € R"^" (1 < i < ni) 

with their eigenvalues iii th(» interval | - 1 , 1) and B^b = b lor i — 1,2 in. Dclinc 

III 

F{x. y, 2, w) = ^ (x I A,y • z ‘ B,w) 

For this particular iimltiliiioar form Fix, y, z,w). it is Crusy to S(K�that (ETs) luus an 
r 

optimal solut ion (a, a , b, b) and optimal value is m. 

W(» geiierato sudi raiidoin instances with n = 5(J for various ///. and subsoqu(�utly 
.. 

apply Method 1 to solve tlioiii. Since the optimal values arc known, it is possible to 

coiiipiito tli(�exact {XTforinaiice ratios, i.e., v\ jm. •For (�a(.li 200 raiidoin instances 

arc 职iK�rat(.�d and tested. Th(�results arc shown in Table 3.3，wliicli suj^cst that 

our algoritliin works vory well and the i)rrf<)riiian(.(» ratios arc much l)('tt(T tliaii tlie 

th(H)roti('al worst-case bounds. IiuUvd, wliciicvcr /// > 50 our algorithm always finds 

optimal solutions. 



Chapter 4 

Homogeneous Form Optimization 

with Quadratic Constraints 

4.1 Introduction 

This s(x.ti()n studios oj)^iiiiizatioiis nii important chuss of polynomial functions, iiaiiic-

ly, hoiiiogeiioous ijolyiioiiiials, or forms. The constraint set is doHiicd l>y li()iii(>g(�iieous 

quadratic polynomial equalities or inequalities. Specifically, the iiiodds includo maxi-

iniziiig a homogenous form over the Eurlidcan sphrrr 

if Is) in-cix fix) 

s.t. X e §" 

and iiiaxiiiiiziiij^ a hoinogeiious form over the intCTsectioii of co-cciitcrcd ellipsoids 

{HQ) iiiax J{x) 

s.t . X ‘ Qi'x < L i = 1.2.. 

X e M", 

where Q,- X 0 for A- = 1,2 , . . . , d, and 5]；" , Q, > 0. 

As a general extension, we also consider optiinizations on iiiixccl forms, 
s 

Function lU a;-, • • • = F i x \ x K - ‘ • , X- X X 
(I I (h fia 

whore d = d\ + + … + is clwiiiocl as a Hx(k1 constant, and f/-tli order teiisor 

F e K"i* îx”2"2x 0<”，义-ha.s partial syininotric property. The iiiixcci form optiiiiization 

49 
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models include 

{Ms) niax X/ 

e S"人，k = 1,2, 

{MQ} max f{x\x",... ’ 

x" e R"知.k = 1 . 2 .s, 

/A = 1/2, 

where Q ^ �- 0 and Qx,�（）f(>r A' = 1,2 .s. k- = 1 , 2 "u.. 

The model {MS) is a generalization of {HS) and (7:s’）in Soctioii 3.2. and (MQ) is 

a generalization of ( / /g) and {TQ) in Section 3.3. When the (k.gret�of tlic jjolyiioiiiial 

objective is odd, {Hs) is cqiiivalont to 

max f{x) 

s.t. X 6 S". 

This is b(X'aiis(̂  we can always use —x to x if its objeH'tivo value is negative, and 

can also scale tlic vector x along its diroc.tioii to make it in S". Tlias [Hs] is a spcrial 

(.ase of [HQ) when (1 is odd. However if d is even, the optimal value of {Hs) may h(� 

negative, while that of (/ /g) i‘s always noiiiicgative since 0 is always a fcasiblo solution 

of {HQ), III the former rase, the tensor F is ( ailed negative definite, i.e., f{x) < 0 for 

all x V 0. 

The model {Hs) is in general NP-hard. When d = 1，{Hs) lias a closc^forin solution, 

due to the Caucliy-Scliwartz inequality; And when d = 2, {Hs) is to comput(�tlio largest 

eigenvalue of the symmetric matrix F: However {Hs) bccoiiies NP-hard wlioii d = 3. 

first proven by Nosterov |90]. Iiitcrostingly, when d > 3. the model (Hs ) is also regarded 

as cxHiiputiiig the largest eigenvalue of the supcr-syiniiict ric t(m‘s()r F , like t he CcLSC r/ = 2 

(see e.g., Qi [98)). Luo and Zhang |77] proposed the first polyiioiriial-tinie raiitloiiiizod 

approximation algorithm with relative approximation ratio il when d = 4, bfusod 

on its quadratic SDP relaxation and raiKioinization tedmiqucs. 

For the model {HQ): When d = I, \T can be fomiulaUxi as a standard SOCP prol)-

loiii, which is solvable in polyiioiiiial-tiiiic: When d = 2, it is the well known QCQP 

problem (liscusscd in Swtioii 2.5, and known to be NP-hard in general. Nciiiirovski (�t 

al. [87] proposed a polynoinial-tiirio raiidoniized approximation algorithm with approx-

imation ratio 12 (1/log 7",) based on SDP rehixatioii and raiidoinizatioii, and this ratio 

is actually tight: When d = 4. Luo and Zhang [77] established the relationship between 
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(HQ) and its quadratic SDP relaxation, antl proposed polynoiiiial-tinio approxiiiiatioii 

algorithm \vh(?n the number of constraints is one. Mofuiwhile. Ling et al. [73] proposed 

l)i-qiiaclratic optimization model, which is exactly the model (Ms) when (1 = 4 and 

d\ ：= (l‘2 = 2. In particular, they established the equivalence between (Ms) and its 

quadratic SDP relaxation, based on which they proposed a polyiioinial-tiiiir randoni-

iz(H:l approximation algorithm with relative approximation ratio il (l//?-?")-

For the model {Ms), tlie cornputational coiiiploxity is similar to its special ciLses (Ts) 

and {Hs)' It is solvable in polynomial-time wlioii (I < 2, and is NP-liard \vh(�ii d > 3. 

which is claimed in Section 4.4.1. Moreover, when d > 4 and all c/, (1 < A- < .s) ar(�even, 

there is no polynomial-time approxiiiiatioii algorithm with a positive approxiniation 

ratio uiiloss P = NP. This is verified in its simple ease of d = 4 and = = 2 

by Ling et al. [73]. The (xmiplexity of (A/q) is also same to that of (HQ), i.e., IxMiig 

solvable in polyiiomial-tirne when d = I and NP-liard when d > 2. Meanwhile, a special 

case of (A/G) WIKMI d = 4 and (l.i = (l> = 2 is the biquadratic form optimization over 

quadratic constraints, .studied by Zhang et al. [123] and Ling al, |71j. In their work, 

the relationship between biquadratic optimization and its bilinear SDP rchixat ion is 

established, as well iis some data depeiident approximation bounds arc derived. 

In this chaptcr, wo are i^oiiig to present polyiioinial-tiine approximation algorithms 

with giiaraiitwd worsc-ciiso performance ratios for the models coiireriird. Oiir algo-

rithms work for any fixed degree d, and the approximation ratios improve all the previ-

ous works si)Ocializoci to their particular degrees. The major break though for our work 

is the multilinear teiisor form relaxation, in stead of quadratic SDP relaxation iiiotliods 

in |77, 73). The reUixed iiiiiltiliiicar optimization problems admit polynoiiiial-tinic a]> 

proxiination algorithms discussed in Chapter 3. After we solved the relaxed problems, 

wc merge a biincli of relaxed variables into one feasible solution by a link identity, and 

argue the quality ratios being deteriorated only by some constants, which is the main 

contribution in this chapter. 

» 

The approximate algorithms of {Hs) are presented in Section ‘1.2, followed by that 

of (HQ) in Section 4.3. Models (A/.s’) arid (A/g) will be studied in Section 4.4. In 

Section 4.5, we discuss some applications with the models presented in this chapter. 

Finally, iiuiiiCTical porforiiiance of the proposed algorithms will be reported in Sec-

tion 4.G. 
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4.2 Homogeneous Form with Spherical Constraint 

The first model in this chapter is to maximize* a lioiiiogonous polynomial function of 

fix(Kl degreo d over a spliero, i.e., 

L(�t F he the super-syiniiietric tensor satisfying F{x, x, • • • , x) = f{x). Tlioii [Hs] 
‘ ‘ 

• d 

can be relaxed to multilinear form optimization model (T5) discussed in Chapter 3, as 

follows: 
{Hs) max F{x\x\---

s.t. x^ e S", k =1,2，...，". 

Theorem 3.2.4 asserts that [Hs) <'aii be solved approximately in polyiioiiiial-tiiiie, with 
_ (1-2 . . 

approxiination ratio n一丁. The key step is to draw a feasible solution of {Hs) from 

the approximate solution of {Hs)- For this purpose, w(» establish the following link 

between (Hs) and (Hs)-

Lemma 4.2.1 Suppose x^.x^,... G R", and € 1， . . •，之d t.i.d. random vari-

ables, each taking values 1 and —1 with equal probability 1/2. For any super-mimme.tiic 

d-th order tenSor F and Junction f{x) = F(x, x, - • • , x), it holds that 

\ 
E 

d / d 

.i=� 

X 

Proof. First we observe that 

“d / d 
r u " i > 怎’ E 

\fc= 

= E n E F ( a . , •..， 

E E 
d (i 

X 

If {ki,k2,…,k(i} is a permutation of {1,2,…，"}，the 

E 
【 一 i J 一 J 

= E 
-
T
l
 

T
1
 

= 1 ; 

Otherwise, there must be an index ko with 1 < k() < d and k(�’— kj for all 1 < j < d. 

In the latter case. 

E 圓 e 
t=l 7 = 1 

n 他 " 、 = 0 . 
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Since the imiiiber of different jjcrmutations of {1,2,…，"} is (11，hy taking into account 

of the super-symmetric property of the tensor F , the claiincd rolation follows. • 

When d is odd, the identity in Leiiiina 1.2.1 can b(» rewritten fû  

(l\F{x\x' x'^) = E E f C
M
  

\
 

>
 
^
 
1
 

X 

Since� i 乂2’ … a r e i.i.d. random variables taking values 1 or —1，by randoiiiizatioii 

we may find a particular binary vector (3 6 IB,'，such that 
I d ' 、 、 

f E Û^ X X 1) 

We remark that d is considered a constant parameter in tliis thesis. Tlieroforo, searching 

all tlie coinbiiiatioiis can bo clone, in principle, in const ant t.im(�. 

Let X = (rii^it a ) ® " ， x = i / | | i ; | | . By thr triangle inequality, w(�have 

||x|| < d, and thus 

f i x ) > ，：c"). 

Coiiihiiiing with Theorem 3.2.4, we havo 

Theorem 4.2.2 When d > '6 is odd, (Hs) admits a polynomial-time approximation 

algorithm with approximation ratio T{HS), where. 

J d-2 / d-2\ 
t{Hs) ：= "！(广V丁 = IL ("_丁> 

The algorithm for approximately solving {Hs) with odd d is highlighted bolow. 

Algorithm 4.2.1 

• INPUT: a d-tJi order suyer-syrmnetric tensor F 6 R"' 

Apply Algorithm 3.2.S to solve the problem 

iiiax X 

2 

s.t. ic". 6 S", k = 1，2， 

approximately, with input F and output ( x ^ • ,士"). 

Compute (3 = arg iiiax^ggrf | f Ot^i^") }，or randomly (feiwmte /3 unijoTrnly 

on IB" and repeat if necessary, until f 火,士久)̂  d\F(x\x",. •. , x^). 
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3 Compute x = Eti ELi l^kx'l 

• OUTPUT: a feasible solution x e S" 

We r(�mark that it is unnecessary t.o oiiuiiiorate all possible roni})inations in Step 

2 of Algorithm 4.2.1, as ( 4.1) suggests that a simple randomization pr()(‘(�ss will serve 

the same purpose, especially when d is large. In the latter case, we will end up with 

a polyjiomial-time randomized approximation algorithm; otherwise, the coiiipiitatioiial 

complexity of Algorithm 4.2.1 is deterministic- and is polynomial-time for fixed d. 

When d is even, the only easy case of (Hs) appears when d = 2, and even worse, 

we haw the following: 

Proposition 4.2.3 If d = 4，then there is no polynomial-time approx-nnation aUjorithm 

with a positive approxiniation ratio for {Hs) unless P = NP. 

Proof. Let f{x) = F(x, x, x, x) with F being super-symmetric. We say quart,ic form 

F{x, X, X, x) is positive seinidefiiiite if F{x, x, x, x) > 0 for all x e M". It is well 

known that checking the positive seniidefiiiiteiiess of F(a3, x, x, x) is co-NP-coniplotc. 

If wo were able to find a polynoniial-tiiiie approximation algorithm to get a positive 

approximation ratio T € (0,1] for = niax^eS" x, x, x), then this algorithm 

call be used to check the positive seinidcfiiiitcness of F(x, x, x, x). To s(x�why, suppose 

this algorithm returns a feasible solution x with —F(x, x, x, x) > ()，then F{x, x, x, x) 

is not positive semidefinite. Otherwise the algorithm must return a feasible solution x 

with Q.> —F(x, X, X, x) > r v*, which implies v* < 0; heiicc% F{x, x, cc, a:) is positive 

semidefinite in this case. Therefore, such algorithm caimot exist uiik\ss P = NP. • 

,、；This negative result rules out any polyiioinial-tiine approximation algorithm with 

a positive absolute approximation ratio for (Hs) when d> even. Thus we can only 

speak of relative approximation ratio. The fiwllowiiig algorithm applies for {Hs) when « 
d is even. . 

Algorithm 4.2.2 
V 

• INPUT: a d-th order super-symmetric tensor F € R"' 
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1 Choose any vector 6 S" mid define a d-th oTder super-syrnmatric tejiaor H G 

R"'' with respect to the homogeneous polynomial fi{x) = (x' xY"!. 

2 Apply Algorithm .V.2..V to solve the problem 

max ，怎勺-/(x())/7(xi, x 'V ..，： 

s.t. x^ e §", k= 1,2,. . 

approximately, with mput F - J(x())jFf and output (i', x" 

l lE l iax l l；/• 
3 Compute (5 - arg m c i x^^g^ j-jj “ 二 , < / 

4 Compute x — arg max < f E L . 
� . I I E L T ^ 

• OUTPUT: a feasible solution x e §". 

)} 

X 

Theorem 4.2.4 When d > 4 is even, {Hs) admits a polynoirual-tirne (ipproxnnation 

algorithm with relative approximatioji ratio t(Hs)-

Proof. Denote H to he the super-symmetric tensor with rospoct to the lioinogciicHJiis 

l)olyiiomial h{x) = = {x^ xY^^'^. Explicitly, if we denote FI to be th(； set of all 

permutations of {1，2,...，f/}，then 

丄 1 H(x\x' X |n| E ((- 0 ( ( X X (( X X 

- ’“i)en 

For any x^ G S" (k = 1,2, . . wo have • • • , < 1 by applying the 

Cauchy-Schwartz inequality toniiwise. 

Pick any fixed x^ 6 S", and consider the following prol)l(>iii 

(Hs) max ^x"^) - f{x^)H{x\x\ • • • 

s . t . x ^ ^ § , k — 1，2，• • •，(I-

Applying Theorem 3.2.4 we obtain a solution (i;i，i�’.••，^j；勺 in polynoinial-tiiiie, with 

尸(士\士2，…，-/(®())//(ii,i^‘2，-..，i^") 2 fCTsX/^.s), 

tf-2 • 
where f{Ts) ：= r?一丁. 

Lot us first work on the ca.so that 

/(a：") - v{Hs) < (f(Ts')/4) (v{Hs) - 11胸) (4.2) 



56 3 Multilinear Form Optimization with Quadratic Constraints 

Since x^ , . . . ’ < 1, wo have 

= . . . ， i " ) - /(®o)//(出 1 ， . . . , i;") + — ii(//s)) H [ x \ . . . ， i " ) 

>f(Ts)v(Hs)-{f(x^)-v{Hs)) 

> r{Ts) {v{Hs) - J{x^)) - (f(rs')/4) {v{Hs) - v{Hs)) 

> (r(7:s)(l - f(7:s')/4) - f(Ts)/4) {v{Hs) - v{Hs)) 

> (T(TS)/2) (v(HS)- V{HS)), 

where the second inequality is due to the fact that the optimal solution of (Hs) is 

feasible for {Hs)-

On the other hand, let €]，“ …，$/ bo i.i.d. random variables, each taking values 

1 and —1 with equal probability 1/2. By syininetridty, we liave Proh |IYI^j = l | = 

Prob = 1 = 1/2. Applying Leniiiia 4.2.1 we know 

d\ [F(x'，i'V ..， i ’ — v{Hs)H(x', . . . , x^)) 
d ( ( d \ / d 

n M / E � - _ s v � E 缺 = E 

E 

- E 

< - E 
一 2 

/ -v{Hs) 

\ 

d 

/ -kns) 
\k=\ / 

I 

ne, = -1 
1 = 1 

ne, 二 1 

Prob = 

Proh = 

where the last inequality is due to the fact that 

f I
 

f

 

y
 

-
y
 >0, 

since Ylk=i j ik^^ € §". Thus by raiicloinizatioii, we can Hiicl /3 6 B'' 

with n?=i = 1, such that • 

/ 
\k--

>d\{f{Ts)/2) iv{Hs)-v{Hs}) 

By letting x = ZLi E L i 仇士，and noticing || E L i ^̂ kX̂W < (i, we have 

m 一 v_(Hs) > 州 h ⑵彻 )；；，购 ) ) > (.(//,) - .(//.)) 
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Recall that the above inequality is (k�riv(�d under the condition that (4.2) holds. In 

case (4.2) does not hold, then 

- v{Hs) > (f{Ts)/4) {v{Hs) - v{Hs)) > t { H s ) {v{Hs) - v{Hs)) - (4.3) 

By picking x = arg max{/(x),/(:c())}, regardless whothor (4.2) or (4.3) holds, wo shall 

uniformly have f{x) - v{Hs) > r{Hs) {v{Hs) _ v{Hs)). • 

4.3 Homogeneous Form with Ellipsoidal Constraints 

We proceed a further generalization of the optimization models to include geiUTal 

ellipsoidal constraints. 

( f f c j ) max fix) 

s.t. x^ QjX < 1,( ̂  = 1,2,. …， m , 

X e K", 

wliere f{x) is a homogenous polynomial of d(»gr(»(�d, Q, ^ 0 for i = 1 ,2 , . . . , //», and 

If wo relax [HQ) to the multilinear form optimization problem like (Tg), and we 

have 
{Hq) max • • • , x ^ ) 

s.t. < 1, Â  = 1,2’...’"，i = 1,2，•..，/"， 

x^ e k 二 1,2,...,丄 

Theorem 3.3.4 aijscrts aii approximate solution for (Hq), together with Lciiiina 4.2.1 

wc propose the following algorithm for approxiiiiatdy solving {HQ), no matter (I is odd 

or even. 

Algorithm 4.3.1 

• INPUT: ad-th order super-symmetTic tensor F e matrices Q, € M"^", Q, ^ 

0 for all! <i< m with Qi (). 

1 Apply AlgoHthm 3.3.2 to solve the prohlam 

max f X i c i， . . . ’ ajd) 

s.t. < 1, k = 1 ,2 , . . . , f/, i = 1 ,2 , . . . , ni, 

x^ e M", k 二 l,2,...，t/ 
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approximately, and get a feasible solution x^, • 

2 Compute x = argmax { / E L i � �̂ 

• OUTPUT: a feasible solution x G M". 

^  

Although Algorithm 4.3.1 applies for both odd and even (i of the model (Hq), the 

approximation results are different, â i the following theoroiiis claimed. 

Theorem 4.3.1 When d > 3 is odd, {Hq) admits a polynomial-time miidornizad (ij)-

proximation algorithm with appToxirnation ratio t{Hq), where 

t{Hq) ：= d i d - ' ^ i r ' ^ n (log—(([I) m) = n ( , �爭 log-( " 一 I) 
Til 

Proof. Acx'ordiiig to Tli(X)rein 3.3.4 wc can find a feasible solution , x^. • • • of 

{Hq) in polynoiiiial-tiiiie, such that 

> f{HQ)v(HQ) > f{HQ)v{HQ),, (4.4) 

where 于(Hq) := ir^^'il (log—("一 By (4.1), wo can hiid a binary vector f3 6 IB" 

ill polynomial-time, such that 

f Ax' >d\F(x\x\'" 

Notice that for aiiy I < k < m， 

/ d \ 'I’ { d 

Vi—i / J i,j=i 

d T (1 

t,j=l i,j= I 

If wc denote x = ^ 记,then x is a feasible .solution for (Hq), satisfying 

(4.5) 

fix) > f广V7!F(i;i，iV.. > d-^dlf(HQ)2;iHQ} = t(Hq)v[Hq) -d. 

• 
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Theorem 4.3.2 When (/ > 4 is even, {Hq) admits a polynomial-time randomized 

approximation algorithm with mlative approximation mf.io t [ H q ) . 

Proof. First, wo observe that v{Hq) < v{Hq) and !；(Hq) > v{Hq) = — ̂ (//q). There-

fore, 2v{Hq) > v{Hq) — v{Hq). Let ( i ' , x", . •. , x'^) bo the feasible solution for {Hq) 

as in the proof of Theorem 4.3.1, satisfying (4.4). According to (4.5)，it follows that 

X = arg max Ylk=i ^ is feaisible for (Hq), where�i’（2，. • • are 

i.i.d. random variables, each taking values 1 and - 1 with equal probability 1/2. There-

fore, by Loinrna 4.2.1 wo have 
-(i f d 

2d\F{x\x' i " ) = 2E 

= E 

< E 

f -rr^v(HQ) 
/ 

(d \ 
I 念 ’ - " � 

116 = 1 
1 = 1 

E —1 

According to (4.4), this implies that 

！ { X ) - V { H q ) > ， i 勺 > 2T{HQ)v{^Q) > AHQ) {V{HQ) - V{HQ)) 

• 

4.4 Mixed Form with Quadratic Constraints 

In this section, we further extend polynomial optimization models to the mixed forms. 

Specifically, we study the following two models: . 

{Ms) max ar 

X 人’ eS"S)l- = l，2， 

(A/g) max X' 

X' Qj>A-Sl’A-=l，2,...,.s’7:fc = l,2, rnk, 

x^ e A:= 1,2 , 

where Q k ; � ^ 0 and QI 0 for k = 1,2, »', k = 1,2， iiik. Hero wc 

assume that n\ < ri2 < • • • < 
/ 

Both (Ts) in Section 3.2iuid {Hg) in Section 4.2 are special cases of (Ms), and both 

(Tq) in Section 3.3 and {Hq) in Section 4.3 are special ca^s of (Mq). In particular, 
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(Ms) is a geiieralizat ion of the l)i-qua(lratic ()])t iiiii/at ion iii(>(l(�l discussed in Liii^ (�t 

al. [73], spocializcd to (I = 1 and (l\ = d> — 2. 

4.4.1 Mixed Form with Spherical Constraints 
» 

I j� t us finely tlic optimizat ion inodol {Ms)- First. we have t lie following lianiiicss n'sult. 

Proposition 4.4.1 If d = 3, then {Ms) is NP-hmtL 

Pmof. \V(�iuhhI v(Tif.y tho Nl)-lmr(lm»ss in three Crises of d — 3. i.(>., “ � = 3. (I\ 二 2 and 

(l> = 1. aiul (l\ = (12 = = 1 • The r;Lsr of (l\ = 3 is cxact 1 y (/7.s') with d 二 3. whose 

NP-luii(liu\ss is i)rov(»ii by N(�st(�rov |9()|, and tli(� case ol" (l\ 二 <1-2 = (1：\ = 1 is exact ly 

{Ts) with (I — 3, whose NP-hardness is proven in l^roposition ii.2.2. 

When "I = 2 and </•_> = 1. in its sixu ial casr = //j = // and F € IR" salisfvint^ 

Ftjf； = Fjtf； for all 1 < i.j, k < n. \vv not ire tlic tollowiiij!； form of" (7:v) is NI)-lmr(l in 

the proof of Proposit ion 3.2.2 

{'Is) max F[x,y,z) 

s.l. x.y.z ^ §". 

WV arc ^oing to show that the optimal value of (Ts) is (‘q"al to tlie "ptimal value ol" 

t liis special cast' 

( M s ) max F{x. x. z) 

s.t. X. 2 e S". 

It is obvious o{Ts) > v{Ms)- Now clioosc any optimal soliit ion {x\ y*. z*) of (Ts) 

and coiiiputc the matrix M — F{'. z*). Si"(.r M is syininctric, we can coiiiputc 

an cigonvector x (•()rn'Sj)()n(liiig to the largt'st absolute (Mgcnvaluc A (wliicli is also the 

larp;('st singular valiir) in polyiioiiiial-tiiiio. Ohscrvo tliat 

\F{x,x, z*)\ = \x^ AIx\ = X— max x ‘ My= max /‘'(cc，2/.之*)=厂?/，之•) 二'，(7:s’）， 
x.yeC" x.yeG" ‘ 

which iniplios ('itli(�r ( i , x, z*) or {x, x, ~z*) is an optimal solution of {Ts). Tli(T(�f<m, 

v{Ts) < v{'Ms). and this claims '’('/:«•>•) = v{Ms). If (.Ms) can l)(�solved in polyiioiiiial-

tiiuc. tluMi its optimal solution is also an ()|)tinial solution of (7's), wliicli solves (7:s.) in 

polynoiiiial-tiiiic, loading to a contradiction. • 

Now, we focus 011 polynoiiiial-tiiiic a])])r()xiination alj!;()ritliiiis as Ix'fore. Similar to 

the relaxation in Section 4.2 in liaiidliii^ iKJiiiogcncous polynomial opt iniizat ions. ii. w(� 
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relax [Ms) to the multilinear optimization ('�s.). tIkmi l)y riuHncin 3.2. 1 wv arc able to 

find (x ' , x ' . • • • , x'^) with = 1 for all 1 < A- < J in polyiioiiiial-t iiiic. such that 

x/')>f{Ms)r{Ms)^ (Ui) 

where 

f{Ms) 

n 二 

re二丨 

(L = 

(Is > 

In order to difiw a f(�a.sil)l(�s()luti(m of {Ms) from (x*. • • • . x' ). we ikhhI apply t he 

link identity in Lciiiina 1.2.1 �<>rr can'fully. Comparable approximation results as (Us) 

can he similarly drrivcd. 

Theorem 4.4.2 If d > 3 and one of df^. {k == l.!2 .s) /.s odd. fhcji ( I s ) (id tut Is a 

polyjioinial-tifnc appmniiiation aUjorithni with (ipjuvximatioji ratio f (‘'�/>’). win re 

f{Ms) ：二 fiMs) n 
\<k<s.:i<(ii 

= U{f{Ms)) 

To avoid messy notations and l)(�tt(T uiidiMstand the niaiii idciLs of the al^uritliiii 

and the proof, here wv only consider a special axsv {Ms)- whirl! is easily (�xt<�ml(�(l to 

g(�m�ral (A Is) • 

(Ms) niax F{x, x, x, x. y. y, z, z. z) 

• s.t. X e e S"-'.2 G 

By (1.0). we arc able to iiiul G € S"-'. and € 

ill polynoinial-tiinc, sucli t liat 

, r{x\ x~. . X'! '. 2/-. 2'. z". > f{Ms)r{^Is)• 

Let us iirst fix (i/', 2 ' . z '. z'^) aiui work for (he problem 

max F{x. x, x, x. j / , y-, z-. z.，） 

s.t. X e 

= 1 

(L > '2 
<k 

m： 
/ 

nL 

" A ! 

(Ik�.. 

<<lk 

1
.
;
:
 

T
1
 <._
 

< 
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Using tlio same arguiiicnt in proving Tlicorcni 1.2.2, we arc able to find x G . sucli 

that citlitT F{x, x, x, x, .z'-. z^) or F{x, x. x. x. . y-. - 2 ' . z'~. z'^) will 1><�no 

less tlian 4!4~ 'F{a::'. x-. xK y\ . z', z'^). whcrccus in the latt.rr (.a.s(�. uso —2' 

to update . Here (�v(�u (l(�grro {(l\ = 1) for x makes no tn)iil)l(\ as \v(�can always move 

the n(�gat.iv(�sij^n into 2 ' . W'v call this process to he an adjustiiKMit of the variable x. 

Up till now tlie approxiiiiatioii bound is 4!4~ 'f(i\/s'). 

Next wr work on adjustiiinit of variable y and coiisidcr the i)r()l>h”ii 

max \F{x, X. x. x, y, y. z'~. 

s.t. y e §"-. 

This is the matrix largest ahsoluto (�ig(�rivalu(» problem and can be solved in polyiioiiiial-

tiiiic. Denote its optimal solution to he y. update with —ẑ  if ncccssan'. and we 

k(H'|) (he a])])r()xiniati()n hound 4! 4"" ^f{Ms) for the solution {x, x. x. x,y.y, z \ z'^). 

The last adjustiiicnt of tli(�vaiial)lo z is straightforward. Similar to the adjustiiicnt 
» 

of the varial)l(» x. by tocusiiig on 

iiuLX F{x, x.x.x. if.y.z.z.z) 

s.t. 2 € S"'. 

we jL-an iiiid z € in p<>lyn(>iiiial-tim(�. sucli that tlic solution (x. i . x. x. y. y. z.z.z) 

admits an approxiination I j o u i k I 3!3~.�:l!-l—.:r(M.s.). 

Wc rcinark lion» that 1 he variable z is tlic last varial)lr tor adjust iiicnt. since \v(� 

cannot move tlic iK'gativc si«i;n to otiicr adjusted variables if tlic (i(�gr(H�of z is even. 
4 

That is why v v ( � r ( � q u i r ( � o n e of df. to 1>(‘ odd as tlio coiKlitioii of Tli<H>r(”n 1.1.2. w I k m c 

w(�can always adjust the bust variable with an odd (lt�^^r(�(�. 

However, if all "人.{k = 1 .2 , . . . . .s) ar(�（、v(,ii, wc can only li(>p(� for a irlaf irc appn)x-

iiiiation ratio. For its simplest ('{use wlicii (I = 1 and (I�二 d-y = 2. the bi-quadratic 

opt imization niodol .yeJi"-’ F(3：. x, y, y) docs not admit any j)()lyii()inial-tiiiK' 

a|)))r()xiiiiati()n algorithm witli a positive aj)j)r(>xiiiiati()ii ratio l)v Ling <�t. al. |73]. Bc-

f()n» working on this even Ccuse, J(»t us first iiitrodurc tlio followiiiji； link (*xt(�nd(�d t'roiii 

LtMiiina 1.2.1. 、 

Lemma 4.4.3 Suppose, x^' € R"丨（1 < k < "丨)乂 € {(h + 1 < A- < r/, + 

(12), • • • , G M"" ("1 + (l'> + -. • + (Is-1 + 1 < A- < f/i + (h + •.• + " . � = (/). and 

“ “ “ . id cf^ i.i-d. random variables, c(irh iakiiKj values 1 aiid — I irifh equal proh-



<i\ f {/ > 
二 “ ' z … ， E 

-<l\ -+ (h 
4
 

ability 1/2. Denote 

x^ = [ “.J：' 

For any partial syinmrtnr d-th order ielisor F 6 IR"'"' ^ and fujicfurn 

/(J：、. . . â s) _ x'. • . . , x'. X" X' 

r/i 

it holds that 

E Yl^J {xlx'l--- .x'l 

Tliis l(�uiiiia is easy to prove by applying Lciiiiiia 1.2.1 .s times. 

X 力. 

Theorem 4.4.4 If d > 4 and all r/̂ . {k — 1.2 .s) air crfii. then {Ms) adinits 

a polyjioniial-fiftic app roxi in at w n aUjonthin with relative approTurndioi) ratio T{MS). 

when 

r{Ms) ：= f { M s ) l l - ^ =il{fiMs)) 
(Ik 人’=i 

vH "A. 
n 二 ‘‘� 

n A： \ 广re:"".' 

( L = 1 

(L > 

Pmof. I)(�m>t(�H e R'" -

with rcsjKH't to t lie mixed form 

‘ t o Ik' the partial sviniiK'tric <7-th order tensor 

.s ,s 

乂 ) = II I 丨々 " = U 

Choose any fixed i人’€ for A- = 1.2 s. and amsidrr th(�following pr(>l)l(�m 

{Ms) niax F ( x ' , x'-, • • • , x'') - . • • • . i ' ' ) / / { t \ t / 

s.t. 丨丨=1,人. 

t 
A|)i)lyiiig Tlicorciii .12.1 w(�obtain a ,s()liiri()ii { x \ x ' 

1, 2 , . . . , f/ in |)C)lyn()iiiial-t iiii(', such that 

X 

x'^) with ||士1’|丨=i fbr A-= 
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X
 



.s d 

. .均 - £ ( M s ) n i i 动 I ' ' n《'二—i 

Prol) 

Prol) = -

xl)- v{Ms)h {xl 

< - E 
一 2 k=\ 

1 1 6 = 1 

\vher(�the last inequality is duo to f (x^, •. • - v{Ms) FK.^i II士会 II心 > 0. since 

‘ • • .ig/lli引I) is fcvusiblc for (Ms)- Thus, there is a binary v(�(_t(>i, 

/3 € with nf=i Pi = 1，such tlmt , 

I ( f (xl xi … i S ) - v{Ms) n � “ ) > n "人-!(子 Ws’)/2) ('，Ws.) — viMs)). V A=1 / k=\ 
l)y letting x '̂ = 引| for k = 1,2 .s, and noticing < dj., wv have 

s 

,x-')- viMs) > f(A/s.) II {v{Ms) - v{Ms)) 

> T{AIs){V{MS)-V{KS)). 
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Let US start with the cast' that 

fix'^x''.--- ,x')- v{Ms) < {fiMs)/-i){v{Ms)-ii{Ms)}. (4.8) 

Noticc that \H{xKx~. - - ， < 1, wo hav(� 

+ (f{xKx'\--- ,x-')-r{Ms)) //(士1,士2... - . i ’ 

> f (Ms)"M7‘s’)-（/( i� i'.".， i . ” i (Ms)) 

> f{Ms) {v{Ms) - - {i{Ms)/\)iv{Ms)- r{Ms)) 

> {f{Ms){l - fWs’) /4) — f{Ms)/4) {v{Ms) - v{Ms)) 

> {f{Ms)/2)(u{Ms)-v{Ms)), 

whore the sr(.(m(l inequality is due to th(�fact tliat the optimal solution of. {Ms) is 

feasible for {Ms)-

On the other liaiid. using the notation of ( 4.7) and applying Lemma 1.1.ii. we have 
.s 

Yl (k-l .x'^)-V{MS)H{X\XK---

2
 P
S
 

m 

= E 

= E 

E 
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Recall that the aljove iiioquality is clerivod under the (•onclition that (4.8) holds. In 

ease�（4.8) does not hold, then wc shall have� 

•.. — v{Ms) > {f{Ms)/4) {v{Ms) — v(Ms)) > t{Ms) {v{Ms) 一 v{Ms)). 

By pickidg (x^, x""̂ , • • •，ar*̂ ) = arg inf ix{/( i ' , • • • , x/), , ‘ • • , x"'')}, \v(�shall 

uniforiiily liave / ( x ^ x ' - , •. • , x'*) — v{Ms) > t{Ms) iv{Ms) — v{Ms)). • 

4.4.2 Mixed Form wi th Ellipsoidal Constraints 

Finally, lot us discuss the most general iiiodol {MQ) for hoiiiogrmnms polynomial opti-

inizatioii with qiuuiratic constraiiits. We iiave similar results a«s of (A fs) in Section 1.4.1. 

Theorem 4.4.5 If d > 3 and ona of df. {k = 1, 2 , . . . , .s) is odd, then {MQ) admits a 

polynomial-time raiuUnnized approximation algorithm, with approximdtion ratio T{MQ), 

where 

r{MQ) ：= f ( M s . 川 ( l o g • "川 ) n 泰 《 于 W s . ) l og - ( " - " " , ) 
/r ~ 1 

n k i ^ ) ( l o g — d . > 2. 
—n / � y V ) 

and 111 = 

The proof of Tlieoreiii 4.4.5 is very similar to that of Theorem 4.4.2, whore a typical 

example is illustrated. H(�rc wc only liigliliglit the main idras. First we relax ( Mq) 

to tlio iiniltilirioar form ojjtiiiiization (Tg) which finds a focUiihlc solution for (Tg) with 

an approximation ratio f{Afs)^ ( l o g -丨 )m ) . Tlieii. Loiiiiiia 4.4.3 sorvers as a bridge 

from that solution to a feasible solution for {MQ). Specifically, w(�may adjust the 

solution of (Tg) one hy one. During each adjustinent, wo apply Loiiiiiia 4.2.1 oiico, 

with tlie apijroxiniatioii ratio deteriorating no worse than . After .s tiiiios of 
t-

adjustments, we arc able to get a feasible solution for {^^Q) witli p(�rf()rnuuic(，ratio 

t{MQ). Besides, the feasibility of the solution s()-()l)taiiic(i is guaraiit(«(»(l by (-i-G). 

、 
Theorem 4.4.6 If d > A and all (人.=1,2, . . . , .s) are aven, then {MQ) admits a 

polynomial- time randomized approxiination aUjoriihm with relative appivximation ratio 
'r{MQ)-

/ s / I \ 

n 

/ .s . , \ 

f T-T 4 ! 
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Proof. The proof is analogous to that of Theorem 4.3.2. The main clifferonct^s ar(、： 

(i) w(�use Lemma 4.4.3 instcaci of invoking Leinnia 1.2.1 diroctly; and (ii) we use * 
/ ( + •.. , instead of / Ylk= \ (luring the rancloiiiization pro-

cess. • 

4.5 Applications 

To be^tter appreciate the homogeneous polynomial optimization models presented in 

this chapter, in this section we are going to present a few examples rising from various 

applications. In particular we shall discuss applications of fiio models {Hs) and {Ms)-

4.5.1 Eigenvalues and Approx imat ion of Tensors 

Similar as the eigenvalues of matrices, this kind of concept has been (�xt(�ii(i(xl to higher 

order tensors (see e.g., [98, 99, 100, 91]). In fact, the (,oiic(-�pt for eigeiivaluos of tensors 

become richer than that restricting to matrices. Qi [98] proposed several definitions of 

tensor eigenvalues, among which the most popular and straightforward one is iiam(�(l t 
Z-eigenvalues. For a given d-th order super-syiniiietric tensor F G M"'', its Z-cigeiivalue 

A 6 K with its corresponding eigenvector x G M" arc defined to be the solutions of the 

following system: 
/ 

F{x.x, X, •) 二 Ax, 
“ w ‘ 

下 

a: a; = 1. 

Notice that, the Z-oigenvalues are tlie usual eigenvalues for a syminetric matrix when 

the order of the tensor is 2. It was proven in Qi [98] that Z-eigeiivaliU's exist for an 

even order real super-syiiiiiietric teiisor F , and F is positive definite if and only if all 
參 

of its Z-eigenvalues are positive, which is similar to tlie matrix case. Thus, the smallest 

Z-eigciivalue of an even order supcr-syiiiiiietric tensor F is an iinportaiit indicator of 

positive clefiriiteness for F . Conversely, the largest Z-oigeiivaliie can ho an indicator of 

the negative definiteiiess for F, which is exactly the model {Hs)- In general, the � )t i m a l 

value and any optimal solution of (Hs) is the largest Z-eigenvalue and its corresponding 

eigenvector for the tensor F , no matter d is oven or odd. By Theorem 4.2.2, the largest 

Z-(ngenvaliie of an odd order siiper-syininetric tensor F can bo approxiiiiat.od witli a 

factor of d\d~ n~~. For an even order tensor, this approximation ratio is in relative 
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sense. However if we know in advance that tlie given even order tensor is positive 
• ft — sciiiidefiiiitc, we can also have an approximation fiictor of (l\d~ for its largest 

Z-eigeiivalue. 

Regarding to the tensor approximation, in Section 3.4.2 we have dfscussed the b(�st 

rank-one (lecoinposition of a tensor. In cfuse that the give tensor F G IR”" is siipcr-

symnietric, then the corrospoiidiiig host raiik-oiie approximation should h(� 

m i l l F — 
^ V ' 

(I 

s.t. X e M " . . 

Applying the same technique ciiscussod in Section 3.4.2, w() can (�quival(�ntly rofoniiulato 

the above problem as 
iiuix cc, • • • , x) 

^ V ‘ 
(I 

• s.t. X 6 §", 

which is iciciitical to the largest eigenvalue problem and {Hs)- In fact, wlicii d is odd, if 

wp denote its optimal solution (largest Z-oigenvector) to 1)(�x and optimal value�(largest 

Z-eigeiivalue) to be A = jp(i，i;, ••• , x), then the best rank-one approxiiiiatioii of tlic 
^ ‘ 

^ d ^ 
supor-syinmetric tensor F \s X x x ••• <S> x. 

d 

4.5.2 Dens i ty Approx imat ion in Q u a n t u m Phys ics 

All interesting problem in physics is to give a precise clumi(�t(�rizat,i()ii of ('iitaiigleiiicnt 

in a quantum system. This describes types of corrclatioiLs l)('twceii suhsystoniis of the 

full quantum system that go beyond tlie statistical Correlations that can ho foiiiid in a 

classical composite system. Specifically it arises a matrix approximation prohl(�ni. The 

following formulation is proposed in Dalil et al. [27 . 

Denote A" to be the set of all n x n positive seinedefiiiite matrices with trace being 

1, i.e., A'! := {A e I A b 0, t r (A) = 1} (sometimes it is also called the matrix 

simplex). Using the matrix dGcoiripositioii method (seo e.g., Stunn and Zhang [113])， 

it is not hard to verify that the extreme points of A" are all rank-one matrices, or 

specifically, A" = (:()nv{:ca;�|:c e S”}. If n = n\7i2, wliero ii\ and u.2 arc given two 

positive integers, then we call a matrix A G A" separable if A can be written as a 

convex combination 
711 

>4 = ^ A, Bi Ci 
i=l 
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for some positive integer ni, matrices Bj € A"' and C, G A"- for i = 1 ,2 , . . . , ///., and 

noimegative scalars A, (i = 1 ,2 , . . . , iti) with A, = 1. For given iii and n?’ (i(�ii()t.(� 

A"'® to be the set of all separable matrices of order n = n\n2. The density approxima-

tion problem is the following. Given a density matrix A e A" , find a separable density « 

matrix X G A"'*^ which is closest to A, or specifically, the minimization model 

‘ {DA) iniii \\X - A\\ 

s.t. X e A'；®. 

This projection problem is in general NP-harcl, mainly relying on t li(�uiiderst aiiding 

of A""* .̂ An important property of A"'*^ is that all its oxtieine points arc syniinotric 

rank-one matrices (x'^y){x<^y)�with x € S"' and y 6 S"'- {sev tho proof" in Tlioorriii 

2.2 of [27]), i.e., 

‘ A'；'*̂  = coiiv y f yG §"-}. 

Then in stead, we may turn to the projection siihproblciii of (DA), to find the i^rojoctioii 

of A on the extreme points of A"'*^, which is 

mill IK® 0 y){x y)^ - A\\ 

s.t. X € € 

Straightforward computation shows that 

||(2C0T/)(£cO<Dy)''" - A f = 1 + 

Therefore the projection subprobleiii is equivalent to 

max A* y){x y) ^ 

s.t. X € y e 

which is the exact model [Ms) with (1 = 4 and (1�= d? = 2. 

4.6 Numerical Experiments 

In this section we are going to present tho numerical p(»rfonimn(:(�of the approximation 

algorithms proposed in this chapter. In particular, the inoclel {Hq) with r/ = 4 is being 

tested, i.e., 

[EHq) max f ( x ) = Y.\<i,j,k,t<n ^'i^j-i-k^'e 

� s.t. X ‘ Q^x < 1, 7 = 1 ,2 , . . . , rn, 

X e R", 
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Table 4.1: Numerical results of {EHq) for n = 10 and m = 3() 

Instance 1 2 3 4 5 0 7 8 9 10 

100 • 0.65 0.77 0.32 0.27 0.73 0.42 0.52 0.04 0.98 1.04 

100. V 4.96 4.53 4.75 • 5.05 5.8C 5.32 5.00 5.19 5.07 5.92 

r{%) 13.10 17.00 6.74 5.35 12.40 7.89 10.40 12.33 19.33 17.57 

n In^ m • 7 • 51.56 66.88 26.51 21.04 49.01 31.(K) 40.92 48.52 7G.()5 G9.12 

where fourth order tensor F is sup(T-syniiiictric, and matrix Q, is positive somidefiiiite 

for i 二 1,2,...，77J.. During the testings, cvx vl.2 (Grant and Boyd [ U]) is (�all(、（l for 

solving the SDP problems whenever applicable. 

4.6.1 R a n d o m l y Simulated D a t a 

For the data of {EHq), a fourth order tensor F' is randoiiily geiioratccl, whoso n.* mtric's 

follow i.i.d. standard iioriilals. ,‘We then symmetrize F' to form a supor-syiiiinetric 

tensor F l)y averaging the related entries. As to the constraints, we generate m matrix 

Q'i € (i = 1 ,2 , . . . , rn) iiidepeiKleiitly, whoso entries also follow i.i.d. standarci 

normals, and then let Q^ = (Qj) ^ Q\ for i = 1 ,2，...，m. 

For the particular nature of (EHq), rather than (lir(�(.t.ly api)lyiiig Algorithm 1.3.1 

to solve it, we use a simplified met hod. First {EHq) is relaxed to 

max F ( X , X) = F_X,jXkf 

s.t. tr (Q^XQjX ' ) < 1, i = 1 ,2 , . . . , ?//,, j = 1 ,2 , . . . , in, 

X € 

wliidi is a standard quadratic program, and (.aii bo solved apj)r()xiiiiately by SDP 

relaxation aiicl raiicloiiiization (sec e.g., [75] or Section 2.5). Tho optimal value of Ui(� 

SDP relaxation problcMii is denoted by i), which w(�shall use as an upper houiid of 

v{EHq). We then apply DR 3.4-1 to decompose this approximate solution into x , y E 

R". Finally we pick a vector with the best objective value of f{x) from {0, x, y, [x + 

y)/2, {x — y)/2} iia the output. This objective value is dciiotod by v, and a ratio 
I I 

r := v/v is also computed. 

By following essentially the same proof, this simplified method also enjoys a worst-

case relative performance ratio of ^̂ jĵ n log*̂  m) ‘ similar as Theorem 4.3.2 asserted. For 

11 = 10 and 711 = 30, wc randomly generate 10 instances of {EHq). The solution results 
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Table 4.2: Numerical ratios (average of 10 iiistaiicos) of (EHQ) 

n 2 5 8 10 12 

(%) for rn = 1 90.2 57.9 73.3 66.2 GO.O 

(%) for m = 5 65.6 28.3 22.5 29.1 17.1 

(%) for rn = 10 60.4 22.3 14.G 16.0 8.9 

(%) for m 二 30 59.4 17.8 10.2 12.2 9.2 

ar(�shown in Table 4.1. In TaJ)k�4.2, the absolute approxiiiiatioii ratios for various n 

and m are shown. Remark that the diimnisions of the problems that can he offiriciitly 

solved using our algorithms are not largo, due to the liiiiitatioii of solving largo h'vav 

SDP relaxation problems. 

4.6.2 C o m p a r i s o n w i t h S u m of S q u a r e s M e t h o d 

In this siibsec'tioii, we coiiiparo our solution method with tlic so-called sum of scjuares 

(SOS) mot hod (70, 71) for solving (EHQ). D U O to the limitations of the current SD-

P solvens, our mot hod works only for small size prc)l)loins. Since t lie SOS approach 

works quite efficiently for small size polynomial optimization problems，it is iiitcn\st-

iiig to know how the SOS method would perforin in solving these randomly gciioratod 

iiistaiic'os of (EHQ)- In particular, wo shall use GloptiPoly 3 of Heiirioii ct al. [53 . 

We randomly generat(»d 10 instances of {EHQ). By using the first SDP relaxation 

(Lassorre's procedure [70]), GloptiPoly 3 found global opt in ml solutions for 4 instances, 

and got upper bounds of optimal values for the other G instances. In the latter ccuic, 

however, no feasible solutions arc generated, while our algorithm always finds feasible 

solutions with guaranteed approximation ratio, and so the two approaches arc coiiiplo-

iiientary to eadi other. Moreover, GloptiPoly 3 always yields a better upp(�r bouiid 

than V for our test instances, which helps to yield hotter approximation.mtios. The 
\ ‘ 

average ratio is 0.112 丨)y the using upper bouiicl v, and is 0.202 by using tho upper 

bound produced by GloptiPoly 3 (sec Table 4.3). 

To concliuie this section as well as this chapter, wc remark tliat the algorithms 

proposed arc actually practical, and th(;y produce high qimlity solutions. The worst-

ca«e perforiiuuice analysis offers a tli(x)reti(.al 'safety net', which is usually far from 

the typical performance. Moreover, it is of course possible to improve the solution by 
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.Table 4.3: Numerical results of (EHQ) com pared with SOS for n = 12 and 7II — 30 

Instance 1 2 3 4 5 G 7 8 9 10 

.78 

No No 

100-?; 0.30 0.7G 0.43 0.76 0.70 0.揪 0.81 0.34 

100 • V 4.75 4.47 5.21 5.20 4.59 4.81 5.23 5.12 

100 • Vsos 2.05 2.02 2.43 2.41 1.86 2.02 1.99 2.24 

Optiinality of vsos No No Yes Yes No Yes No Yes 

V/V{%) G.32 17.00 8.25 14.G2 15.25 10.19 15.49 G.G4 

v/vsos (%) 14.63 37.G2 17.70 31.54 37.63 24.2G 40.70 15.18 

some local scarcli pr(K.(�(iur(.、，e.g., tlie projection gra^liciit methods |22], iiiaxiiimiii block 

iiiiprovciiioiit method [25]. 



Chapter 5 

Polynomial Optimization with 

Convex Constraints 

5.1 Introduction 

This cliaptor tackles an important and useful extension of the models stiuliwl in previ-
I 

ous chapters: to allow the objective fiinction to be a generic inhoiuogoiioovis polymmiial 

function. As is evident, many important applications of polynomial optiiiiizatioiis in-

volve an objective that is intrinsically iiihoniogcneous. Specifically, w(�(X)iLsi(ler tiio 

following problems: 

(PQ) max p{x) 

s.t. x^ QjX < I. I —1，2，. • •，///,， 

xeR" > 

where Q^ 匕 0 for k — and Qi >~ (). It is obvious that (Pg) is an 

oxteiLsioii of {Ps)' We also in the chapter consider a much iiioro general frame of 

polynomial optimization over a general convcx compact set, a givo coiivox 

compact set G C M", tlie problem ‘ 

72 
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The model (P9) can be solved in polynomial-tiiiie when d < 2，and l)e<�oii�es NP-

liarcl when d > 3. Even worse for (I > 3, there is no polynoinial-tiinc approximation 

algorithm with a positive approximation ratio unless I) = NP. which we shall ar-

gue later. Therefore, the whole chapter is focus on relative approximation algorithms. 

-The inapproxiiiiability of (P^.) differs greatly to that of tlic hoinogcMioous model {Hs) 

discussed in S(K:ti()ii 4.2，since w11011 d is odd, {Hs) admits a polynomial-time approxi-

mation algorithm with a positive approximation ratio by Thoorciii 4.2.2. CoiLScqiiciitly, 

the optimization of an iiihoiiiogeiieous polynomial is imicli harder than a hoiiiogenwus 

one. The complexity of {PQ) and (P(；) Hi similar, being solvable in polyiioinial-tiinc 

only when f/ = 1 aii(l NP-hard when d > 2. This is bocaiiS(̂  {Pa) is generalized from 

.(7'q), and (PQ) is gencralizt^d from (//Q),>an NP-hard problem when d > 2 (see tlio 

discussion in Scctioii 4.1). 

Exteiicliiig the solution met hods and the correvspoiidiiig analysis from homogeneous 

polynomial optiiiiizatioiis to the general mfiomoyejiaous polynomials is not straight-

forward. As a matter of fact, so far all the succoj^ftit approximation algorithms with 

pr()val)lo approximation ratios in the literature, o.g)； the quadratic models coiisiciercci 

in [88, 87, 120, 75, 50] and the quartic models considered in [73, 77], are dep(�mient on 

the homogeneity in a crucial way. Tedmkally, a honiogeiious polyiioiiiifil allows one to 

scale the overall function value along a given direction, which is an essential operation 

in proving the quality bound of tlip approximation algorithiiLs. Tlio curront chapter 

breaks its path from the preceding pra(:ti(.(�s, by fliroctly dealing with a homoganiz-

iiig variable. Although hoiiiogenizatioii is a natural way to deal with iiihoinogciux)iis 

polynomial functions, it is quite a different matter wIumi it conics to the worst-ciusc 

performance ratio analysis. In fact, the usual hoiiiogenizatioii does not lead to any 

a.ssuro(l perforiiiance ratio. In this chapter we shall point out a specific route to get 

arouiid this difficulty, in which we actually provide a general scliciiie to approximately 

solve such problems via hoiiiogenizatioii. 

Ill Section 5.2, we start by analyzing the model where the constraint set is the 

Euclidcan ball, i.e., the model (P^). Wo propose polynomial-time approximation al-

gorithms with guaranteed relative approximation ratios, which serve as a basis for the 

suhsoqueiit analysis. In S(?(.t,i()n 5.3, the discussion is (�xteiid(Hl to cover tho prohloiii 

where the constraiilt set is the iiitersct'tioii of a finite number of co-centered ellipsoids， 

i.e., the iiKxlol-(PQ), and relative approximation algorithms are proposed as well. In 

z 
一 Z � 
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Sin tion 5.1. Xhv apjmjxiiiuvtioii IkjiukIs art�tlcrivcd oven for s d i i i c very ^fiicral oj)!iiiii/a-

tion iiwxlĉ ls {P(；), e.g., optimization of a ))()lyn()inial over a polytopy. It 1 urns out tliat 

for such general probU'iiis, it is still possihlo to derive n'lativ(» ；”)pmximatiou ratios. 

which (lepciid oii tlic |m山Icni tliiiicnsioiis only. Tlic tool \v(�used is t lie Lotrncr-John « 
f'llips(>i<Ls. Ill Soctioii 5.5. \vc discuss some api)li(.ati<>us wit li t lie iiKulfls presented iii 

tiiis cliHptrr. Finally, wc report t)ur nviincrical rxixMiiiiciit results in Srrtioii 5.(). As 

this chapter is (.(>ii(.rriKHl-\vitli the relative approxiiiiatioii ratios, we may without loss of 

g(Mu*ralily iussiniic t he polynimiial f'linct iou p{x) to have no constaiit term. i.e.. />(()) = 0. 

5.2 Polynomial with Ball Constraint 
_ ^ • 

* . 
• ' 

Our first Hiodcl in tliis (.liaptOr is to inaxiiiiizc a 队ncrir mull ivariatc polynomial runct ion 

subjcc't to Ui(�Euclidean ball conslraiiit. i.e.. 

IIliLX J>{x) 

i 
s.t. .X e S". 

Since wv assuim; pix) to liavc no constant term, tlic optiinai v;ilu(�of this problciii is > 
obviously iioniirj^ativc, i.e.. > 0. 

The (•()iiij)l('xily ti) solve ("、’）（.an suimnari/cd l)v tlie lollowing pmpositi"n. 
t 

, • •• • 
Proposition 5.2.1 -If d < 2. fhm ("5) he solvrd in jtolyiuntrial-timc： Othcnnsc if 
(I > 3. then ij)s�/.s NP-hnnl. and thciv is no p(>l"namml-l,mi<' "./""":/‘//,"".""/ aUfontlnn 

with a positivii appnyxuiiatwii mf.w unless I�= NI*. 

PruoJ. For d < 2, ( / � , ) is a staiidartl t rust region siil>|>r(>l>lriii. As such it is well known 

to be solvable in polyiioinial-tiiiH' (s(M' e.g.. [113, 111] and the r(�f.(�r(,iic(�s tlicrcin). Fur 

<1 > 3， in a siKvial rfi.so where j){x) is a lionioj^cncous cubic I b r i i i . it is easy lo s(m» 1 lial 

(A,.) is (xinivaloiit to niaXa:̂ S" J'{'J'), wliicli is shown to be Nl^-lianl by Ncstcn )v |!)()]. » • 
. Let us J low ((jiisidcr a special class of (/,、•）d = 3: 

^ � r(f») = max fix) — 

s.t. 'xe S". 
4 

• whcrr (ji > 0. and f{x) is a lioinogcMicous (.ul)ir form associated wit ii a h o u z c m o sujM'r-

syiniiiotric tensor F 4 If f (o) > 0, tlien its optimal solution x* satIsfics 

fi^n 一 （ • f 二 M 7 ( t i ^ ) - H k T = I k T I k l / 
X 

\\x*\\J ” V" VIk l l 
X 

- o > 0 . 



6.5 Polynomial with Binary Constraints - 75 

Thus l)v the <)j)timality of a;*, \vc \u\\v || = 1. If" we clioosc n = | |F| | > iiiax̂ ,̂；,. f{x), 

then r{(\) == (>. SiiKc ol licrwisc w(�iimsl liavr <'(o) > 0 and |丨不*|| = 1. wit li 

/ ’ ( " ） = fix*) 一 o||a:*||- < max f{x) - <\ < 0. 

whirli is a coiilradiction. Moreover. /'(()) > 0 simply because F is a nouzcro (cnsor. 

a n d it is a lso easy to mm't liat r(<\) is uoii-incrcasin^i, a s n > 0 iiicTcascs. H r " r r , t l icrc ' 

is a thrcsliold “" e |(), ||F||]. such that r(o) > 0 if 0 < n <。"，and r (") = 0 if o > � " . 

Supposi* t licrc exists a polyiioinial-t iiiic a))|)r(>xiinat ion algorit litn wit li a j)(>sitivc 

appn)xiii at ion rat io t f()r {/'<；) when d > 'I Ikmi for every n > 0. \vc can tiixi 
！ • ‘ ‘ — 

z € S"/lu polynoiiiial-tiiiic. such that " (") f{z) — r»||z||~ > r"(“}. It is obvious 

that (/\n) > 0 since ) > 0 . To.̂ ct Ium with tli(�fact that < '’（“） liavc that 

/y(o) > 0 if" and only if "(n) > 0, ami /y(o) = 0 if and only if. r(n) = 0. ThrivfoiT, 1 he 

tlircsliold rro also sat isfies r/(o) > 0 if" 0 < n. < and "(。）= 0 if" (\ > By aj)|)lyiiii!； 

tlic hiscct ion scarcli over 1 he interval |(), ||F||] wit li t his polynomial-t im(' approxiinat ion 

al^orithill, we can iiiul oo ami z € S" in jM)lyii()iiiial-tinic. sucli tliat f{z) — n()||2||"- 二 0. 

This iinj)li('s that z 6 S" is the optimal solulion for tlie pr(>l)h�ni niax^., «；" f{x) with 

tli(�optimal value “•、，wliicli is an Nl^-lmrd i)i•(山l(�m im�uti(m(�(l in tiic l)('|L!;iiiiiiii.L!, of t l"� 

proof, riicrcforc. such approxiiiiat ion al^oritiiiii caiiiiot <�xist unless P = I \ • 

The m�ji;jitivr result in I'rojM)sition 厂>.2.1 rules out any j)()lyii()iniMl-Hiii(' ap|m,xima-

tioii alj^ori thill wit h a positive aj){)!(Jxiiiiat ion rat io lor ("�. ) . However a posit iw rcldtrrc 

a|)|)roxiiuati()ii rat io is still |)ossil>l(\ which is t lie main siibjrct of this sect ion. lirlow we 

sliall first a polyiioiiiial-tiiiic algoritliin for approximately solving ( I ) . wliicli 

admits a (relative) worst-cjusc i>(Tf.(>rm;iii(.(> ratio, hi fact. Iicrc we j)r(\s('n( a general 

sclicuH' aiming at solviiiji; t l i e p o l y u o i i i i a l optimization (/'‘s’）. This scIkmhc breaks down 
V * 

to the following four major strps: 

1. Intr()(luc(' an ('(juivalcnt iiuxlcl wit li t h e ob j ec t iv (�bc i i i j ^ a lioiiiogcnoii.s ioni i : 

2. Solve a relaxed model witli t lie ohjrctivc IxMiig a mult ilin<>ar Ibrm: -

3. Adjust to get a solution Iwuscd on tlic solution of tlic relaxed iiKnlci: -

1, Assciiiblo a solution lor the original iiilioiiiogiMicous i"o(l(�l. 

Some of these steps (wui he dcsi^^iwd sri>arat(�ly. I lic algoritiiiii Iwlow is one realization 
i ‘ 4 

of the j^fiicral schciiic for solving; ("s.)，with cacli step being carricd out l)v a sjMH-iiic 
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proc ix lu rc . We first prcscMit t l i ( � s p o c i n l i ' / r d a lgor i t l i i i i , a n d t h e n in t h e i-(�nuiin<l(T of t h e 

MHtioii, wv ( ] a l ) n n i t ( � o n t h ( � s o f o u r jijciicral s tc j ) s . a n d p r o v r t h a t in (•<)iiil)iiiati<)n t l i (�y 

l(,ad t o a polynoi i i i f i l - t i i i ic a j ) | ) r ( )xi i i ia l ion al.i;(>ritImi wit l i a (jMalit>-a.ssiin'(l s o l u t i o n . 

Algorithm 5.2.1 

• INPU'V: an n-dimcusKmal d-fh dciircc pohfiiomidl function i)(x). 

1 Rcirritc p{x) — />(()) = l { x . x . - • . x ] when .i f, 二 I as in (5.2). irifh F hrriHj aii 
^ V ‘ 

i[ 

(// + 1 )-(iiim iisn)ual d-th order suf)( r-syiiiinctrir tensor. 

2 Apply Alffonllnit .V. 2.-V to solve the problem 

m a x F { x \ x ' , ' - • • . x*') � 

s . t . x^- e A- = 1 . 2 (I 

approTimatcly. with hi put F mid (ml.pul , • • • , y''). 

3 … . 乏 ？ . … = a r j ; i i i a x < [ F ( ( � � � ” . ( � 2 � " ' ' ) . . - - , ( ( ‘ ' < / " ) ) IB''}. 

4 Coinpulc z = a r g i i i a x {/ , ((>):"(：：⑶/:/“州€ IB"" / " / 山=11)1:2 ‘ " - = ！ } , 

• OUTPUT： a fvnsibU solution z e S", 

III S t c j ) 2 of A lgo r i t l i i n 5 .2 .1 . Algori t liiii is ca l l ed t o apiH.oxiiiiah'l.v so lve I lie 

splu'rically constrained limitilincar form optiiiii/ation i )1( ) I )1(Mii . which is a (Ictcriiiinistic 

polynoinial-timc algoritliiii. Notice tln' of tlic polynomial p(x} is (UhmikmI a fixed 

imraiiictcr in t his tliosis, and I liiis Algorit Inii 5.2.1 runs in polyiiomial-t iiiic. and is 

(U'tcTininistic too, (>iii main result in this strlion is tlic following: 

Theorem 5.2.2 admits a polyrioininl-ftmc approxiniafion ".l!i"rit.h.m wtfli rcUitivc 

(ippioTirnatum ratio r(/'«,.), whcir , 、 ‘ ‘ i -
t 、 

, • r ( / � )' r = : r 净 ( "+ 1)!"广2"(",+ 1 於宇 , = !《 " - ¥ ) . 
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\ * 
A l t h o u g h lioniogCMiizalioii is a i i a t un i l�va .v t o (l(�al w i th inhoiiiogcMicoiis 丨>(>lyii(>川iais. 

t h e worst-cjLsc jXTforiiiancc r a t i o d o c s not follow strrUgli t torwardly. W h a t is lackiiiji； is _ a 
tha t an iiihomoj^oiicous p o l y n o m i a l d o c s not allow o n e to sca le t l ic overal l f u n c t i o n va lue 

a long a j^ivcn d i roc t iun . vvliicli is however an essent ia l ojM'ration t o pruvt� t l ie qua l i t y 

l>(>uii(l of llio a{>i)r()xiiiiati<)n a l g o r i t h m s (sc<' e.g.. (87. 75, 50. 77]). Below we s t u d y 
. . . . 

in de ta i l liow a p a r t i c u l a r iin|)UMii<Mi1ati()ii of 1 licsc four st(”)s of tlio scIkmiic {wliicli 

b(K'()iiH's Alj^orit hill 5.2.1) leads t o t h e p romised w o r s t - c a s t � r c l a t ivo iMMforiiiancc r a t i o 

ill TlHH)r(Mii 5.2.2. As we shal l sec*later , o u r so lu t ion s<'li('in(-' c an app l i ed l o solve a 

v(�ry ^tMicral p o l y n o m i a l o p t i m i z a t i o n mode l (P(；). 

‘ ^ 

5.2.1 Hoinogeiiizatioii 

J. 

r i i c m e t h o d oi lioiiiogcMiizalion (Icjm'ikIs on t h e ibriii of t l ic polyi ioni iai />(x). Merc 

ill discussion vv(� fLssunic j){x) to liiivr no coiiiitaut tcnn. altliout^li Al^oritInn 5.2.1 

app l ies for any i jolynoii i ial . If j){x) is given <us a humi l i a t ion of. ho ino j^n icous j)()lyii()iinnl 
k * 

f u n c t i o n s of" (lifiortMit (Ic^nn^s, i.e., (1 < A* < d) is a lioiiioi^cncous po ly i ionua l 

f u n c t i o n of (Icj^rcc k,. t l ir i i \ v ( � m a y first w r i t e 

f k i x ) = Ft,(x.x. .X) (5.1) 

k 

witli Ff^. h c i n ^ a A-th o r d e r sujM'r-syii i iuotric t ensor . T i i f i i by i i i f rodi ici i i^ a lioiiiogc-

iii/iiig Vtirial)l(» which is a lways ('(|ual t.u 1, \vr m a y r ewr i t e / ) (x) a s 

,1 il 
V " . 

k= I k: 

=F 
X \ / X \ f X 

yj'hJ \.nj Vh. 
= fix). (5.2) 

wluTO F is an {n + l ) - d i m ( � i i s k m a l J - t h (ml(T s j ipor-sy i i i iuc t r ic t enso r , whose l<ust coiii-

-poiHMit is 0 (sinco ]){x) h a s no c o n s t a n t torii i) . 
V 

If tlu* polynomialj，(x) is given in “ �n u s of sui i i inat ioi i of nionoinirt ls, \ v (� s l iou ld first 

g rou j ) tlKMii {urx>r(liiig t o tlioir d ( � g m � s , a n d t h e n r ( � w r i“ �t h e s iuiniuUion of mono in i a l s in 

cacli g r o u p a s hoiiiogiMifous p o l y n o m i a l f u n c t i o n . A f t e r t h a t , \vc t hen procfH'd a c c o r d i n g 

t o (5.1) (in(i (5.2) t o o b t a i n t h e t enso r fo rm F , ius ix�(|uir(xl. . 
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F i n a l l y in t h i s st(�p，\v(! in a y oqi i iva l (� i i t ly r r l o r m u l a t r (/、）jls 

( / \ ) max fix) ‘ 

- -

* S.t • QC — I « 
K-nJ 

X e S " . .n, = 1. 

O b v i o u s l y , w ( � l u i v r v{P<^) = _"(户、.）仙(1 ll("‘s') 二— 

5.2.2 Multi l inear Form Relaxat ion 

M u l t i l i n e a r f o r m r e l a x a t i o n h a s p r o v e n t o (»ff(rt.iv(、，as d i s c u s s e d in C h a p t e r S|)('cii"-

ically, Lt ' i i i i i ia 4 .2 .1 a n d L(� i i n i i a -4.‘4.3 a r c t h e kt\v l ink Ib r i imlac . N o w w ( � r d a x (/)、’）to 

an iiilioino^^cMicous iimltiliiicar form optimization problem iks： 

(rPs.) IlliLX 

s.t. x^ = (二A.)，“1.2 (L 

T少 e S " , 4 , = 1, A- = 1 . 2 , . . . . J . 

Obviously, w(�have v{TP< )̂ > /'(/'<,.) = v{Pi；). Bcfon; pr(K.(»(�(iing, let us Hrst settle fli(� 

c o i i i p i i t a t i o n a l co i i i p l cx i ty i s sue for s o l v i n g ( T f 

Proposition 5.2.3 (7，/〜）is NI)-hard whrncvcr d > 3. 

Proof. N o t i c e t h a t iii P r o p o s i t i o n 3 .2 .2 . w ( � p r o v e d t l i c fo l lowing p m h l r i i i is N P - l i a r d : 

nifix F(x. y, z) 

s . t . x , y , z € � J 

If d 二 3 a iu i a s p e c i a l c a s e w h e r e F h a s t l i e f o r m = F , „ = f ] , � , ’ , | i 二（）lor 

all 1 < L j , k < II + 1, ( 7 7 � ) is (�qu iva l (� i i t t o t h e ab(>v(.* m o d e l , a n d t h u s is N l ^ - h a r d . • 

•0 

(7Y)s’）is still (lifiicult to s^lvc, and iimroovcr it rciiiaiiis inlioiiiogcnoous, since 

is r (�q i i i r (�d t o bo 1. T o o u r h (� s t kiiowUxigo, n o po lyr io in ia l - t i i i io a p p m x i n m t . i o n a lgo-

ri t l i i i i is a v a i l a b l e in t h e l i t e r a t u r e t o so lve t h i s p r o b l e m . F u r t l i e r n i o r o , w e sliall r ( � l a x 

t h o c o n s t r a i n t = 1， a n d i i i t r o d u c o t l i c fo l l owing {)arani( ' terizo(l hikI lioiji()jz;('ni/A'(l 
0 

l)r(>l)lt'ui: ‘ > 
, ( T P s i t ) ) . m a x F { x K x - , - " ” 

‘ s . t . • < / , x^' e + 卜,A: 二 1 . 2 d. . 
‘ • 

O b v i o u s l y , (TPi^) c a n hv i d a x r d t o {TP^{\/2)), s i i icc if x -is i.(�a«sil>l(�lor [TPs) t l iei i 

| | x f = ||:c||‘2 + 丄.,,2 5 1 + 1 = 2 . Consequently,-^；(rP<,-(v/2)) > t，(TJ)s). 
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Both the ohjwtivo aii(i the constraints arc now honiogcnoous, and it is (�asy to s ( h � 

for all / > 0, (TPt,.(0) is equivalent to each other by a simple scaling iiirtliod. Morecm�r， 

{TP^{\)) is equivalent to 

iiiax F(ac', x^, • • • , x'') 

s . t . X"’ € k =1,2,...，"， 

which is in the form of {Ts) discusscd in Section 3.2. By using Algorithm 3.2.3 and 

applying Theorem 3.2.4, (TP^(l)) admits a polynoniial-linio approxiiiiatioii algorithm 
‘ _ ,1-2 

with approxiiiiatioii ratio (7/ + 1)一丁. Tlicroforc, for all / > 0, {TP^{t)) also admits a 

polyiioinial-tiino approxiiiiatioii algorithm with approximation ratio (7/ -f 1 广丁，mi(l 

"(TPs(t)) = "(77)6.(1)). After this relaxation st(i) (Step 2 in Algorithm 5.2.1), wc 

arc able to find a fc^asihlo solution {yKy*,. •.,及"）of (TP<,-(1)) in polynoiiiial-tinic. such 

that 

= 2 - 印 ? + 1)-〒‘ 

‘ 八 > 2 - “ " + l 厂 罕 { f i - 3 ) 

Algorithm 3.2.3 is the oiigiiie which enables the sccoiid st(�p of our sdicinc. In 

fact, any polynoiiiicil-tiine approximation algoritliiii of ( ? ""��1 ) ) can he used as an 

engine to yield a realization (algorithm) of our schciiic. As will Ikkoihc (»vi(l(�iit latCM-, 

any iinprovcnieiit of tJi(�approxiiiiatioii ratio of (TPg(l)) leads to tlic iiiiprovoiiK'iit of 

rdat.ivo approximation ratio in Theorem 5.2.2. For oxaiiiple, rocciitly So [108] improved 
‘ / d-J \ ‘ 

the approximation bouiui of (TP<f(l)) to Q ‘ (tlioiigli the algoritliiii is 

iiuiiiily of tlKH)rotical interest), and (.on.s(�qmmtly the relative approxiiuation ratic? under 
’ / / , , ‘ our sclicinc is improved to il ( ) too. Of course, (mo iiiav apply any otlior 

\ \ 1 ) ‘ 
favorite algorithm to solve the relaxation {TPi^{l)). For iiLstaiice, the alternating l(�ast 

sc}uaro (ALS) algoritliiii (see e.g., [08] and the r(�fbn�ii(.(\s therein), aiul th(�iiuixiiiiiiiii “ 

block iiiiprovciiieiit (MBI) iii(?tlio(l of Chen (»t al. [25], can be otlicr alternatives for the 

sotxmd step. 

5.2.3 Homogeniz ing C o m p o n e n t s Adjus tment 

The approximate solution • • • , 乡 o f (TA,.(1)) satisfies \\y^\\ < 1 for all 1 '< 

k < d, which implies \\y^\\ < 1, but in general we Ho not havo any control on the size of" 
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and tliiLs {y\ y^, • • • , y'^) may not hv a ft�a«sihl(�solution for (7'P^).. Th(> following 

Ion una plays a link role in our analysis, to (�iisur(�that th(�construct ion of a f(�asil)l(> 

solution for tlic iiilioiiiogeiioons iiioclcl (TV)、’）is p()ssibl(�. 

Lemma 5.2.4 Suppose x^ e with |.厂乞| < 1 for all 1 < A- < d. Lv.i "卜 

be indc.peiidmt mndorti varidblc.s, mrJi. takiiu} values 1 and — 1 with. E["人.j = 乞 

1 < A' < (I, and let , ••“ i.i.d. random variahlvs. each takiruj raluc. 

—1 w.i.th equal pvohability 1/2. If the last coinpommt of thv t.nispr F is 0. then 

E n ""厂 

VlX V'lX-
1 

=F{x . X' X 

and 

E F (i'lX-
1 

= ( ) . 

• •. , '1,1 

for all 

；1 and 

(5.4) 

(5.5) 

Proof. The claiiiKHl equations r(�a(lily result from the to 1 lowing observations: 

K 

=E 

F 

(I 

n '从厂 .A-=l 

厂I 

/ 
E 

i\ 
I 

i \ 

,E 
Y 

人"1J A 

"2 

E 

• y \ 1 

• v y 
Vd J J 
v ^ Y 

�”d). 

(iiiultiliiiearity of F) 

(in(l(�iK�mk*m.(�of ////s) 

F{x\x' 

and 

E 

= F 

= F 

二 （). 

•
X
 
1
 

2
 

/
 

\
 

\
—
/
 

1
 

o
 

/
\
 

/
—
\
 

、
—
/
 

K
l

—
/
 

1
 

&
 

•r
 

y
 

/
 

E \ 1 
E (ill(l('l)(Ml(l(Ml('(' of “,‘S) 

(z(T(>-in('an of “ , s ) 

where the last oqiiality is due to th(�fact that the hust (‘omptmciit of F is (). • 

Lciiiina 5.2.4 sugg(»sts that one may (�imiiicrat(�the possible coiulMiiatioiis of 

((� '1" 广),…，(《叩))and pick the 0110 with the largest, value of function F (or 

via a simple randoini/ation pr()(.(�(lur(»)，to generate a feasible solution for the inhoino-

geiicous iimltilinoar form optiinization (TP^) from a foiusihlo solution for the lioniogo" 

iieous niultilinear form optiiiiizat 1)), with a coiit.rolled quality (letxTioratioii, 
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It plays a key rok� in proving the approximation ratio for wliicli is a hypmdue 

ill this section. 

Theorem 5.2.5 admits a polyna川i(il-f.im(' apimrrim.atuyu ul.!j().ri.t.hiii iriih lip-
id im)ximatUm mtio [u + 1) 

Prooj. L(�t , y-, • • • , y'') bo tlio foa.sil)lr solution found in St(�p 2 of Algoritlnn 5.2.1 

satisfying (5.3). and l(�t T; = (//i, //；, • • • . /八/) ‘ wit h all 7///s being iii(l(,p(Mi(l(�iil and t akiiij^ 

values 1 and —1 such that E[//；,.] 二 /y. By applying Loiiiina 5.2.4. (5.4) explicit Iv implies 

^ Pro!) {r/ = f'hy 

/3GB''. n；!- 1 
1 

+ Y^ Pr(>l){T7 = /3}F 
/3eB<Mi纟,J,： 

丨 
/ W 

1 

and (5.5) explicitly iiiiplios 

丨 2/丨）（/W 

1 

Combing the above two equalities, for any constaiit c. wv have 

‘w丨、 

E 
/3€B“，nt_r�=-

Proh {rt = f3})F 
1 

ihy 
1 

+ (5.6) 

If wc let 

r = max Pro!) {r; = 

then the coofficioiits of each toriii in (r).(i) will bo iioiinogativo. Th(�i.d.()r(�w(�arc able 

to find e M'K siicli that 

F 7̂ ； 2/' 
1 

(5. 
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whore 

To 

> 

Probjry = fl}) 

W 

> 十 1 + 2 " - —0 

Prol){7/ = fl]十（2' 

2 " 

l)r 

Let us denote z^ ( • ' � / ) for k = \.2 Since | |z” | 二 WB^y^'W < 1. \v(�know that 

( 2 ' , 2； ' , • • • , z^') is a f(vusil)lc solution for (77 \ ) . By ('ouihiiig with ( 5 . 3 ) . \v(�have 

F{z\z'- z i > Turn、，公幻' 

> 2 - " 2 卞 " + 1 广〒 viTI\-) 

= + 1 ) - �" ( T P s ) -

• 

Olio may notice lliat our proposed algorithm for solving {TJ\-) is very similar to 

Stops 2 ami 3 of Algorithm 5.2.1, with only minor inocliHcatioii at Stcj) 3，iiaiiicly we 

(•h()()s(�a solution in argniax ((，、"'）. C Y ) , . . . . i ^ ' f ) ) ^ ，i"stx�ml of choos-

ing a solution ill argiiuix | f (("'"/")，(‘'、'”"")，...，似,/3 € Thv nmsim to 

divide d at Step 3 in Algoritliiii 5.2.1 (to solve {/'«,.)) will l)(�(.(>m(�dear later. Finally, we 

roinark again tliat it is uiinocossary to onuinerato all possible 2'' coiiibiiirttions in this 

step, as (o.O) siiggosts that a ‘simple randonii/ation pmcoss will serve tlic same purpose. 

(\spc(!ially wlieii d is larg(\ In tlio latter ease, w(�will end up with a polyiuynmd-tinw 

imLdoinize.d appmximation ahjorithni: otliorwiso, tlio ronipiitat.ioiial coniploxity of th(� 

procodurc is (letoriniiiistic aiul is polynomial-tiiiio. 

5.2.4 Feasible Solut ion Assembl ing 

Finally wo conic to t,li(�laMt step of the scIkmiic. In Stop ‘1 of Algorit hiii 5.2.1, a polar-

ization formula 乏(Jf) = (h{d + 1)2' + Y^U-y^^kZ '̂ ^itli 6 IB" and /j, = UL-^l^k = 1 

is proposed. In fact, searching over all (3 € B'̂  will possibly iiiiprovr the solution, 

although tlio worst.-casc�perforiiianco ratio will roiiiain t:h(�saim�. Moreover, one 11 my 

choose or any other 2人.to play the saiiio role lioro; alUTiiativcly one iiiay cnuiiieratc 

+ + ()v<T all (3 e IB" and \ < ( < and take the Ix'st 
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possible so lu t ion ; aga in , th i s will not clwiiigc tlic t l icorot ical 丨)(�rf.(>mmm.(�ratio. Tl io 

po la r i za t ion f o r m u l a at S t o p 4 of A l g o r i t h m 5.2.1 works for any fixed (l<�gr<H�<7, a n d \v(� 

sliall c o m p l e t e t lie final staj^c of t ho proof ()f Tli(H)r(�m 5.2.2. Sjx'cifically, wv shall p m v r 

t h a t 丨)y Icttiiij^ 

z = a r g i i i a x ( />(0) : /; ( e IB'' and = [ T / � =1 1 

with z{li) = l ) i ' + ‘"’乏火'，we have 

P{z) — v{Ps) > r{Ps) {v{Ps) - EiPs)) • (厂 ) •《 ) 

Fi r s t , t h e so lu t ion (2'. • • • . z'^) as ostahl is l icd at S t e p 3 of" A lgo r i t hm 5.2.1 

sat isf ies ||z人.|| < \ jd ( n o t k r \ v ( � d i v i d e d d in (�a(.h t e r m at S t e p 3) a n d z^] = 1 for 

k = 1 , 2 , . . . . r/. A san ic proof ot" T h ( � o r ( � m 5.2.5 can show t ha t 

F{z\z'\"- .2") > " - " 2 —學（ " + 1 )一孕 v{TP^) > 2一學"-"(// + (5.9) 

It is (�asy to soc t h a t 

2 < \z,,Ui)\ < 2d aiKl | | z ( " ) | | < ( " + \ ) / d + { ( I - { ) / < ! = 2. (5.10) 

T h u s z{Li)lzu{i3) is a f(儿sil)l(�solution for a n d so /(乏（‘力/：/山力）> v [ P s ) = n i t ' s ) -

Moreover , w ( � s h a l l a r g u r below t h a t 

/i, = l = ^ / ( 2 ( / : l ) ) > ( 2 r / ) ' ^ ( r s - ) . (5.11) 

If t h i s wore not t h e ( 7 l s ( \ t h e n / {z{ii)/{2(I)) < v{Ps) < (). N o t i ( . ( � t h a t = 1 iiiii>li(�s 

Zfiil^) > ()，and t hus w ( � h a v e 

, f m \ ( V ' /•广乏 ( " ) � < f 乏 ⑷ 、 ， ， , p � 

J l ^ J = ( 函 J , � -！ K^)〈仏)， 

which contradicts the feasibility of j . 

S u p p o s e . . . a r (� i . i .c l , r a n d o m varial)I(\s, oacli t a k i n g values 1 aiui — 1 w i th 

equa l p robab i l i t y 1 /2 . By t h e link Lcnii i ia 4.2.1, no t ic ing t l ia t /(乏（一《））=f ( - 2 ( 0 ) = 
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- 1 ) ^ / ( 5 ( 0 ) , wo hav( 

= - E 

二 

f i m ) 

urn) 

f i m ) 

d 

= i，n ( … 
k=2 

<l 
0 = - i ’ n “ = 1 

k=2 
d 

n � A . / ( i : ( ( ) ) 

f{z{0) � E 

1 

/ ( 鄉 ） 

—-E Sim) 

- E f{z{-0) = i ， n � " = ( - i ) d-\ 
k=2 

= i , n “ = -
A-= 2 

(I 

k~2 
d 

(丨= i， n ( A . = - 1 

(丨=i,n《人-=(-1)' 
1 

f ( z ( - 0 ) 

By inserting and canceling a constant t,(Tiii，Uic above (�xpn�ssi(>ii furtlicr lends to 
. ( I 

+ 
(_1 广 1 

- 1 ) 

( / _ ) ) - ( 2 " ) � ( " s . ) 

m)-m'v{Ps)) 

( / ( 乏 ( o ) - � ) ) 

E 

E 

•n⑶乏⑷） 
. 人 = 1 

d 
( 丨 1 

k=2 
d 

( 丨 = 1 

,1 
(I 二 

,1 

《丨 = i ， n � " = ( - i ) 

< - E —9 ( / (• ) - ( 2 " ,肌. ) 0 = i ’ n ( " = (5.12) 

wli(，r(�the IcLst inequality is duo to (5.11). Therefore, there is a Ijiiiarv vector G B'' 

with- i-i\ = = 1, such tlmt 

M ("+1 1) “ 丁',(/)‘s’). 

where, the last step is due to (5.!)). 

Below wo ar^^ue 2 = argiiicLX |/;(0);/; (z(/i)/c/,(/i)), € IB" and = J J L j ‘九==l} 

satisfies (5.8). In fm.t. if -v(P.,.) > t(/)s.) (”("‘、.）一 ll("s.))，tl“、n 0 trivially satis-

fies (5.8), and so floes z in this rase. Othorwiso. if < � ) ( " ( / � ) -

then wc liavc 

v(Ps)�(1 - r(Ps)) (v(Ps) - v(Ps)) > "(尸�.)严s,)， 
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which imp l i e s 

zUi') 
f 2(1 

T h e a b ( w c i i icqi ia l i ty a l so i i i ipl i(�s t h a t f {z{3')l{2(l)) > (). Reca l l t h a t = 1 iiii|>lit�s 

> 0 , a n d t h u s 2 d ( z n U ^ ' ) > 1 by (5 .10) . Th(,r(�f(>rr，wo lmv(> 

Piz) > p 狀 ）  

ZiAl^') 
z{:r) 2(1 

f 
2(1 

>f 
zj^r 

T h i s s h o w s t h a t z sa t i sHos (5 .8) in b o t h ciuscs, wh ich coikIikIos t h e who le p roo f . 

5.3 Polynomial with Ellipsoidal Constraints 

In t h i s sort ion , \v(�（.(msidrr a n e x t e n s i o n of (P<,.). i ia incly 

{PQ) iiwix i){x] 

< 1. /• = 1.2, 

./• e R", 

m. 

w h e r e Q , 匕 0 for ./• = 1 , 2 , . . . , m , a n d Q i ^ G. S i u ( v is a s s u m e d t o l iavc n o 

c o n s t a n t t r r i i i , wv k n o w that . v{Pq) < 0 < v { P q ) . 

Here , like in Soct ioi i 5 .2, we p r o p o s e a poly i io iu i f i l - t i i i i r r a i i do i i i i / cd nlgori t l i i i i for 

a p p r o x i m a t e l y s o l v i n g {Pq}. w i t h a w o r s t - c a s e i , ( ] a t i v ( � p c r f o n i i a i i c c rat io. T l i c ！iiaiii 

alj^oritliiii a n d t h e a p p r o x i m a t i o n r e su l t of t h i s s e c t i o n is t h e fo l lowing . 

Algorithm 5.3.1 

• INPUT: an n-dirnmsional d-ih dcqrcc. polytioimal function pix), rtuihiccs Q�6 

R"^". Qi > 0 for all \ < i< in with J]；；" , Q, >-(). 

1 Rewrite p{x) - / > » ( 0 ) = 厂 , x) wfum j'l, = 1 a.s in (5.2). with. F hriuf/ an 
�I V Z 

[n + \ )-diin(msi(m(d (l-t.h order supc.r-syvirnctrie tensor. 

2 Apply AlfjoTitlun to solve, the. problem 

inax • • • 

s. 
o
 
1
 

x^' < 1, A- = 1,2，...，"，i = 1 ,2 . m 

apymximaUdy, and (jc.l a fcjisiblc. solution {y\y' y 
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3 Compute ...，z'O = argiimx {/�((�'�1'")，（《•<")....，（《"、'""))、又 € IB"}. 

4 Compute z = a r g i n a x ^piO);p{z{ii)/zi,{li))4-i G W^ and = U/•二 2 =l}."，"" 

• OUTPUT: a feasible solution z e R". 

Theorem 5.3.1 { PQ) admits A polynomial-t.irnr rando70hcd appjoTiinaiioii aUjoriifnn 

with Tfdativr appnymnaium ratio 丁（ PQ)，where 

� ‘ ‘“ {<l-\)� •{PQ) ：= 2-琴（"+ 1)!,广2"(" + 1厂孕 Q (丨 丨）"7) = N (/广罕 log- 川 

()>ir scluMiu' for so lv ing gene ra l p o l y n o m i a l o p t i m i z a t i o n m o d e l ( P Q ) is s imi l a r t o 

t l iat for so lv ing ( / ^ ) in S(�(.ti(>ii 5.2. T l io m a i n (liff(T(�ii(‘o lies i i i -Stcp 2, wlicre a diHcrciil 

r e l a x a t i o n niodol nHjuiros a d i f forcnt so lu t ion me t hod t o (.ope w i t h . T h e i i ict l iod in 

q u e s t i o n is A l g o r i t h m ；i.3.2. 

Tl io proof of Tli(»or(�iii 5.3.1 is s imi l a r t o t l ial of Tl icorci i i 5.2.2. H e r e � v ( � o n l y 

i l l u s t r a t e t h e m a i n ideas a n d s k i p t h e clot ails. 

By lioinogriiizing pi'x) who lias 110 constant term, wv iiiay rewrite (/ g) as 

(PQ) niiix f i x ) 

. s.t. X = I . 

x^Q^x < R", .i = 1,2 in. 

.厂/I 二 1. 

which c a n l ) ( � r e l a x e d t o t h ( � i i i l i o m o g o i i c o u s l imit i l im�a.r f u n c t i o n p r o b l e m 

,k A* — 1,2,..«• dm 

{TPQ) m a x F i x \ x - R - - -

• w;) 
< 1, x^' e E", A- = 1,2 (L i = 1 . 2 w, 

,{； = 1，k = 1，2, ••."/， 

w h e r e F{x, x , • • • , x) = J{x) vvitli F Ix ' ing su |K ' r -sy in i i ic t r ic . W e tlicii f u r t h e r re lax 

d 
{TPQ) t o t h e inii l t i l i i ioar f o r m o p t i m i z a t i o n m o d e l ( 7 V ' g ( \ / 2 ) ) , will i 

{TPQi t} ) m a x F( i i， i2，...， i " ) 

< k = 1,2，...，(/. i = l，2，...，m’ 

• ( (I、 
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\vli(�r(�Qj 
o
 
1
 

for m. 

By Theorem 3.3.4. for any t > 0, (/7)g</)) admits a polyiioinial-tinio raiulonii/ccl 

approxiiiiat ion algorithm with {i|)|)r()xiiiiatioii ratio {n + 1) ( l o g — . •rikI 

o{TPQ{t)) = t^ v{TPq{\)). Tims tho approximate solution . y~. • • • . y'') found hy 

Stop 2 of Algorithm 5.15.1 satisfies . 

- - .y'') > (" + 1 ) - 罕 厂 “ ' 叫 / " ) ."(77)(^)) 

= + “川 ) 

> 2-Un + (log-("一"川)t�(T”Q�. 

,.-
Noticing that < [y^) ‘ < 1 for k — 1,2....，<7, \v(�again apply Lciiinia 5.2.1 

to . y - . . • • , y'^), and us(�t he same argument. a.s in the proof of Theorem 5.2.5. Let c = iiifix 
、知 

Pro!) {rj = \vh(�i,(�77 = .(//卜 - •. , /"/) ‘ and its (.01.11-

j)()nc'iits arc iiiclopcndciit mmiom variables, each taking values 1 and —1 with Ej/".] = 

for k = 1.2.... ,(L Thoii w(�arc al)lc to find a binary v(�(.t(>r € such that 

F 丨义y'� 
> r o F(互 I ,办，'众’ 

> 2 “ + 1 厂罕！2 (log—("一“川)HTPq). 

This prov(�s tiie following theorem tus a hypmduct.. 

Theorem 5.3.2 {TPq) admits a polynomial-tunc nvndomizvxi approxirnation aUjoiith-

ni with appmxiiruLiion mtio {n + l)~~i} (loj^一(“一“ "/). 

To prove the iiuiiii thooreui in this soction (Thwroin 5.̂ 8.1), we only iiccui to rh(�rk 
、、、 

the feasibility of z gcnerat(»fl by Algorithm 5.3.1, wliilc tlio worst-cvuse pcrtorinaiicc^ 

ratio call he proven by the similar arguiiioiit in Soctioii 5.2.1. Iiiclooci, z-. ‘ • • 

at Step 3 of Algorithm 5.3.1 satisfies 
� VI < /• < m, 1 < (L . . , 

4 

For any binary voctor ft 6 as = (d + 1)2' + 知 夸 h a v e 2 < 

\zfi{8)\ < 2d. Noticing by the Caudiy-Schvvarz inequality, 

< WQ.^z^W . WQi'^z'W < l/d' \fl<i< m，1 <JA' < "’ 
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it follows that 

< 2(1 • '2(1 • 1 /(I- = I V 1 < /• < 川. 

T h u s z(Ji)/zf,(li) is a f e a s i h k � s o l u t i o n for ( P q ) . which impl ies z is a l so feas ib le . 

T o c o i i c I i k U ' t h i s s ec t ion , \v (�nMi ia rk h ( T ( � t l i a t ( P q ) i nc ludes a.s a spec ia l case Ui<� 

op t i i i i i za t ion of a gene ra l p o l y n o m i a l f u n c t i o n o v ( t a ccnt ral-syiiiiiK't ric p o l y t o p r : 

max p(x) 

s . t . —1 < ( t t ' ) ' ' 'a! < 1. i = 1 . 2 in. 

X e R". 

with rank (a ' . a~. • • • . a'") = n. 

5.4 Polynomial with General Convex Constraints 

III this scrtioii wc study polynomial optimization model in a ^ciioric const raiiil format: 

whore G C M" is a given convex coinpatt set. As l)d'(>r(、， wo derive polyiioiiiial-tiiiic 

api) roxinia t i ( )n a l g o r i t h m s for so lv ing (P(；). O u r a p p r o a c h e s m a k e use of tlu* well k n o w n 

Lowner-John (dlipsoids (s(x�（、.g., |2(). 86]) , w h i c h is t h e fol lowing: 

Theorem 5.4.1 Given a coiivex compact set G C R" with non-(mipt.y inUtnor. 

1. There exists a unique. Imyest volmna (dlipsoid {Ax 4- a | x 6 S"} C G. irliosc ii 

times linear-siza larcfav ellipsoid {iiAx + a | a; E S"} D G, mid if in additioii G is 

cxmtral-syinmc.iiic, than {y/TiAx + a | cc € S' ' }〕G ; 

2. Tharc exists a unique smallest volujne dlipsoid {Bx -f 6 | a; € §"} D G, whose n 

times linear-size smallar ellipsoid {Bx/ii + 6 | a; G §"} C G. and if in addition G 

is cm tml-syrnm e trie, than {Bx/y/rl b\x e §" C. 

Armed .with the above tliooreiii’ if w(�a r (�a l ) l (� t o Hud t.h(�Lovviier-.lohii dlipsoid 

(either the inner or the outer) of the feasible region G in polyiioinial-tiiiio, then tlic 

following algorithm approximately solves {Pr.) with a worst.-('as(» performance ratio. 
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Algorithm 5.4.1 

• INPUT: ail n-d'nnensioiial d-th drfpyr polynomial, function pix) and a set G C R". 

1 Find a scalar t e R, a vector b e R". and a matrix A € M"^'" with rank = 

111 < ". such that two ro-ctmiercd ellipsoids E\ — { A u + h\u E S'"} and E) 二 

{tAu -f 6 S"'} satisfy E, C G C E,. 

2 Compute a polynomial Juiirtion pi){u) = />( Au + b) of variahlc u € R'". 

3 Apply Alyojifhm 5.2.1 with input poix) and output y € S"'. 

4 Coinputr z = Ay -f b. 

• OUTPUT: a frasihla solution z G G. 

The k(\v result in this section is thr following Uioor(、川. 

Theorem 5.4.2 If S" C G C tS" := {x R" | ||a;|| < /} for some t > 1, lin n (尸 

adiniis a polynoinial-tiific approTimation aUfOTitJnn with jvlafiva approTunation ratio 

T(尸(;)(/)，wh.cj'c 

r{P(:){f) := ])\(r'-'\n + + 1 厂今=n ("—罕厂"). 

Proof. By hoiiiogoiiiziiig tho object fiinctioii of (./)(,')，w(�got tli(�oqiiivalciit prohloiii 

(A;) max fix) 

X = 

X e c\ J'/, = 1 

whore f{x) = p{x) if 丄•/, = 1, and f ( x ) is an (ji + 1 )-(liiiieiisi()iial hoiiiogencoiis poly-

iioinial function of d(�greo d. If \vv w r i t e � f { x ) = F(x . x, • • • , x) with F Ix'iiig sup(�r-
‘ 

_ d 
syininctric, then {Pa) (.an bo rchixocl to tho iuhomogeneous niultiliiicar form problnn 

{TPa) max ••‘ 
- 一 A e 人 - \ 

^ = Z. — 1 9 fi 
， f\- “ • 1 % ^ • • • • t • 

iJ ‘ 
x^' e G, 4 = l , k = 1,2 (L 
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R oca 11 that in Sort ion 5.2.2. \v(�liavo doHncd 

(rPs-(O) max .X' 

l l x ^ ' l l < /, x^ e A- = 1 . 2 (L 
.sj 

As xk e G C /S", it follows that 人 H < in {TPc). Th(�r(�f(>i.(�.（7，"、.（ vT^TT)) 

i‘s a relaxation of (r/)f;)，ami > r{TP(；) > v{P(；) = v{P(；). The rost of 

t:h(�proof follows similarly as that in Sect ion 5.2.1. SixH-ifically, \vr arc ahlo to coiistnict 

a fcvuiiblc s o l u t i o n a; E S " C G in i ) ( ) l y i i m i i i a l - t i m ( � w i t h a r ( � l a t i v ( � p ( T f o r i u a i i ( v r a t i o 

T{Pr.W)- • 

Observe that any ellipsoid ran b(�linearly traiLsfoniiod to t.lir EiiclicU^an hall. By a 

variable traiisforiuatioii if noccssary. \v(�ar(�l(�d to the main result in tliis soctioii. 

Corollary 5.4.3 Civc.ii a houiidad sat G C M", if two co-cciitcnd (dlipsoids E�二 

{Au b\u € S"} and £•> = {fAu + b | it € S" } can be found in polynoviial-tinw. 

satisfyhicf E\ C G C E). then (尸(；)admits a polyiiornial-time appjoxijiuition aUjoritlmi 

mill relative appivxiinafiori ratio T{Pc,){t). 

\Vv remark that in fact tlio st't G in Tlieoreiii. 5.4.2 and Corollary 厂j.4.3 dues not 

ikhhI to he con vex, as long â ^ the two required ellipsoids arc in pla(.(�. H(nv(�v(T, the 

faiiK)iis Lowiipr-.Iohn tluH)reiii guarantoos th(�oxistoiico of such iiiiuT and outer HIipsoids 

r(Hiuir(�(l ill Conjllary 5.4.3 for any convex conipact. set. with / = “ for G being iioii-
t 

coiitral-syiiiiiietric, and i — y/Ti for G boiiij^ ceiitral-symiiK'tric. Thus, if wv art* able to 

find a pair of ellipHoids {E\, £•>) in polyiioiuial-t iiiie for G, t hen (尸(;）can bo solvere! by a 

polynomial-time approximation algorithm with relative approximation ratio t(/)(;)(/). 

Indeed, i t is possible to coinputc in polyiioinial-tinio tlio L o w i u t - . I o I i i i dlipsoids in 

several intcn'stiiig cases. B(�l(nv is a list of such cnm^ (assuming G is houiided): for tlio 

(letails one is referred to [20, 86]: 

• G = {xe R" I { a ' f x < h“ / = 1 ,2 , . . . . m}: 

• G = conv . . . . x"'}, where x ' 6 M" for i = 1 ,2 , . . . , m; 

• G =门J^i Ej, wliere Ei is an ellipsoid in M" for i = 1 ,2 . . . . , ///; 

• G = conv {(JJ'l, Ei], where is, is an ellipsoid--in E" for i — 1 ,2 , . . . , ///; 

• G = X];二 1 Ei := x' I x' € E,, i = 1，2’. •., m}, where E, is an ellipsoid in 

K" for i = 1,2，...，771. 
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By Coro l l a ry 5.4.li, a n d t h e conip i i t ah i l i ly of t h e LchviuT-.Ioliii e l l ipsoids (lis(.uss(、（l 

al)()V(% wo conchu lo t h a t for (P(；) witli t h e cons t ra in t st't C l)cing a n y of t h e a.l)ov(� 

t h e n thoro is a jx)lyn()iiiial-tiinr a p p r o x i m a t i o n a l g o r i t h m witli a re la t ive apj)r()x-

in ia t ion qua l i t y a s su rance . In pa r t i cu l a r , t h ( � r a t i o is T{P(;){y/m) 二�2 (//-丁"厂])for 

( 一 t'̂ - - \ . .' 

ji ~ J for tlio o t h e r casos. 

\ \V also r e m a r k t h a t ( P q ) : iiiax3.TQ a.< i -j „, p i ^ ) discussccl in Sc^ction 5.3, 

may in pr inc ip le b e solved hy (i ircctlv applyiii^^ Coro l l a ry 5.4.3 tis well. If \ v ( � a d o p t 

t ha t a p p r o a c h (Algoritl i i i i 5 .4.1) . t l ien t h e rc la t ivo a p p r o x i m a t i o n r a t i o is T { P ( : ) { y / t i ) = 

11 ~ j , which prevai ls if 川 is (�x(,(H�(lingly largo. \ T a k i n g t h e h ( � t t ( � r o u r , t h e qua l i ty 

r a t i o in Tlieoreii i 5.3.1 can l)o i m p m w d t o il ( m a x | l o g — ' " " m, ii ~ 

O u r invest igatioii (pii tc n a t u r a l l y l(�a(ls t o a quos t ion which is of a gcnoral j^coiiiotric 

iiit.(T(�st itself. Cons ide r t l ic in te rsec t ion of in co-cent(uchI el l ipsoids in R " cus a gooiiict ric 

s t r i i c turo . D(� i i (>t(�€,„ n “> b(» t h e colloctioii of all such s t n i c t u r o s , or m o r e spociHcally 

Q, t 0 for i 二 1，2 . . . . ,川 a n d ^ Q , ^ 0 

For any aMitral-syinniotric and convex cc)iiij)art sot G C M" aMitorcd at b. thoro exists 

E…e <f,„,„ and i > 1, such tliat b 4- C 6' C 6 + tE”,,，,. Obviously. (m(、can 

iiatiircilly def ine 

f{G; "7，n) : = inf {/1 E川、，,6 such t h a t b + E……C G C b + …,„,„}. 

:= ‘sup m, I G C R" is convcx coiiipac t and ('(Mitral-syniiiu'tric}. 

T h ( � f a m o u s Lowrier-.Iolin t h m r e i i i s t a t e s t h a t 0 { \ , n ) = y/ri. Na tu ra l ly , ^ (oc , ii) = 1. 

l)ocaiiso any cen t ra l - syn i ine t r i r convcx sot c a n ho ox pressed by t h e in te rsec t ion of an 

inf in i te n u m b e r of (.o(:eiit(.T(�d el l ipsoids. It is i i i torostiiig t.o co i i ipu te 0{in, .") for genera l 

in a n d n. Of course , it is t r iv ia l t o observe^ t h a t 0{ni, n) is nionot.onically d(�cr(�fLsii.ig in in 

for a n y fixed n. Anyway , if we a r c ab le t o c o i n p u t o 川，it) a n d find t he ( .o r r (�sponding 

E 腳 i " po lyno in ia l - t imc . t h e n Tlieorci i i 5.3.1 sugges t s a polyi io in ia l - t i ine raiidonii/xxl 

approx i i imt i fm a l g o r i t h m of (Pa) wi th re la t ive a p p r o x i m a t i o n r a t i o {0{7n. ji))~'W{Pq)= 

i} ((6> ( m，•"罕 log-("-丨）m). “ 

5.5 Applications 

T h e genera l i ty of t h e po lynomia l o p t i m i z a t i o n mode l s s t u d i e d in t h i s c h a p t e r have 

versatile applicatioiLS. In o r d e r t o bettor appreciate t he se models a s well as t h e approx-
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iination algorithms i)r(»s(�iit.(�d，in this section wc shall disciuss a few (l(�tail<�(l cxainplos 

rising from real applications, and show that tlicy arc readily fbrnmlatrd l)y t.h(�inlic>-

inogonwiis polynomial optimization 丨iK>d(�Ls in this chaptor. 

5.5.1 Portfol io Select ion wi th Higher M o m e n t s 

The portfolio selection problem dates hack to t'arl^' 1950', wlieii tlir seminal work 

of Miemi-variaiico iiiodol was proposed by Markowitz [81]. Essentially, in Markowitz's 

model, the mean of tlie portfolio return is treated as the? 'gaiir factor, wliilo the variaiuc 

of the portfolio rot urn is treated as the 'risk' factor. By iiiiiiiinizirig Ui<�risk suhjoct to 

certfiiii target of ixnvrircl, the iii(�an-varifiii(.(�model is as follows: 

{MV) mill x^'Ex 

s.t. /X 丨 X = /")， 

e^x = ]. X >0, X e W, 

whore fi and S arc the mean vector and (.()• variance matrix of ii given assets respec-

tively, and e is tlio all oiio vector. This model and its variations have�h(vii studios 
f 

extensively along the history of portfolio luanagtMiioiit. Drspite its popularity and orig-

inality, the iiiean-variaiice iiiodel certainly ha^ drawbacks. An important one is that it 
r • 

ncglec'ts tlie higher moments inforiiiatioii of the portfolio. Mandelbrot and Hnelson [78 

niado a strong axsc against a •noniml view' ()f the inv(*stm(,nt returns. The use of higher 

iiioiiieiits ill portfolio selection bccoiiies quite nwessary, i.e.. involving i i ion� than the 

first two iiioiiieiits (e.g., the skewm^s and the kiirtosis of t he in vestment returns) if they 

arc also available. That probloin has been receiving iimch attention in the literatviro 

(see e.g., cic Athaydo aiicl Flore [10], Prakash et al. [9(3], Joiicleau and Rockiiigcr [(>()], 

Kloiiiati et al. [04], and the reforciicos therein). In particular, a wry general model 

ill [G4) is 

{ P ^ n max a fi^ x - Bx^ Ylx + 7 1 ^ijk^i-^j^'k 一 ^ 1 〜 J , " ) J :“々 

s.t. e^x = 1 , x > 0 , x e R", 

where /x, E, {<>ijk)̂  (̂ i•ijke) are the first four central iiioiiieiits of the Ji given assets. The 

nonnegative paraiiietcrs a. fi^ 7,6 measure the investor's preference to the four inoincnts, 

and they sum up to one, i.e., a + = 1. 

Ill fact, the mean-variance model (MV) can bo taken a.s a special case of {PM) with 

7 = 6 = 0. The model (PA/) is essentially iii the frame work of our model (/V;)’ as 
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the coiistrahit is convex and compact. By directly ai)i)lyiiig Corollary 5.4.3 and the 

(iiscussioii oil its applicability in a polytopo. it admits a polynomial-time approxiiimtkm 

algorithm with relative approxiniatkni ratio U (z/"''). 

5.5.2 Sensor Network Local ization 

Suppose in a cortaiii spocifiocl region G C t here a.r(�a. s(�t of andior iiofios. flcriotcd by 

A, and a set of sensor nodes, dcnotod by S. What w(» have known ar(�tho positions of the 

anchor iHides aJ G G (J G A), and the (p()s‘sil)ly noisy) (listancc iiiCfUiiinMnciits h(?twoeii 

anchor nodes and sensor nodes, aiul hct.w(.x�ii two diff(T(�iit soiisor nodes. (l(�ii()t(»d l)y‘ 

djj {i e S\ j e S U .4). Thr task is to estimate tlio positions of the uiikiiowii sensor 

nodes x' G G {i € S). Luo and Zhang [77] proposc^cl a least square foninilation to this 

sensor iK^twork local iza t ion p r o b l e m . SpeciHcally, t h e p rob lem t akes t h e foni i of 

iSNL) mill Z,,jes (II尤'—糾丨：)-VY + (丨丨尤'- 一 

s.t. e G', i e S. 

Notice that the objective function of (SNL) is an iiihoinogeiieous quartic polynomial 

function. If the spocifiocl region G is well formed, say the Euclidean hall, an ellipsoid, a 

polytope, or any other convex compact t;ct that ran be saiiclwicliod by two co-ceiitcrcci 

ellipvsoids, then {SNL) can he fit into tlio model (/)(,.) in tlie following way. Suppose 

E\ d G d E? with El and E? being two (•o-ccntcred ellipsoids, we know by the 

Lowner-.John thcorciii tliat E> is bounded by tliree tiiiios larger of E] in linear size 

(for the Euclidean ball or an ellipsoid it is 1, for a coiitral-syininotric; G it is loss t han 

\/3, and for a general convex compact G it is loss than 3). Demote the iminbor of 

sensor nodes to he n — |5|, and denote x = ( (怎”丁， • • • , (x") 6 R'^". Then 

X € G X G X • • • X G, aiid this feasible region can l)e sandwiched by two co-ccntcrccl 
� “V " 

• n 
sets El X E\ X X E] and Er> x E-z x • • • x E‘), which arc both intersections of n c o > ‘ C ^ 

n n 
(•entered ellipsoids, i.e., belonging to 3„. Accorcliiig to the discussion at the end 

r. 
of Section 5.4, and noticing in this case f(G;n’3n) < 3 is a constant, [SNL] admits 

a polynomial-time randomized approximation algorithm with relative approximation 
ratio 
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5.6 Numerical Experiments 

111 this station, wc present some i)rrliiiiinarv test results for the approximation al-

gorithms proposed ill this chapter, t.o give tlic readers an iiiiprcssioii about how our 

algorithms work in practice. Wo shall focus on (A；) witli d — 4, sprcifically. tlio iii()(l(�l 

h(�iiig t(»Ktccl is 

{EP^) inax p{x) = F.\{x,x,x,x) + F:\{x,x,x) + F2{x,x) 4- Fi{x) 

s.t. X € S", 

where F., € R"'', F.-j € R " \ F2 e W" and F , € R", mv supcr-syiiiiiietrir tensors of 

orders 4，3, 2 and 1, resjjcctivoly. 

5.6.1 R a n d o m l y S imulated D a t a 

A fourth order tensor is generated raiidoiiily. whose Ji ^ entries follow i.i.d. standard 

normals. \\v then syiiimet.rizr F'j to form the super-Hyiiiiiietric tensor F.\ by avoraj^iiig 

tlie related rntries. The other lower order tensors F.j, F2 and F\ arc generated in 

the same iiiaiiiier. We tlieii apply Algorithm 5.2.1 to got a foasihle solution with its 

objective value denote by "，wliicli has a giiaraiitwcl worst,-(.a^se iKTfonnaiico ratio. 

For the purpose of making a coinparisoii, we also (�()iiiput(' an upper bound of the 

optimal value of (EPi-). Like in (5.2), wo may let F(x, x. x, x) = f{x) = p{x) vvlicn 

Xf, = 1，and F € IR(n+i” is suppr-syninietric. {EP^) can br rclaxtni to 

iiiax F{x, X, X, x) 、 

s.t. ||x|i < v/2, i E 

Let y = vec(xxT) 6 股…+！尸，and rewrite F as an (" + 1” x (" + 1)- matrix F'. [EP^) 

is further relaxed to ，： . 

max F'(y, y) = y[F,y 

s.t. | |2/ | |S2，yeR("+i 尸. 

The optimal value of the above problem is v = 4入口磁("̂ ')，which is taken as an upper 

bound of v(EPs)-

By Theorciii 5.2.2, Algorithm 5.2.1 possesses a theoretic worst-case relative perfor-

mance ratio of 2一� • 5! • + = il{l/7i). The iiumcrkal simulation results of 

(EPg) arc listed in Table 5.1. Based on the observation, by comparing with the upp(�r 

bound V (which might be very loose), tlie absolute porformaiK'O ratio r := i)/v is about 

i l{ l /y/n) , rather than a theoretical relative ratio i2(l/n). 
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Table 5.1: Numerical results (avcMag(' of 10 instances) of {EPj^) 

11 3 5 10 20 30 40 50 60 70 

V 0.342 0.434 0.409 0.915 0.671 0.499 0.529 0.063 0.734 

V 10.5 IG.l 2G.7 51.7 74.4 97.8 121.1 143.(5 167.1 

r{%) 3.257 2.696 1.532 1.770 0.902 0.510 0.437 0.402 (J.439 

n • T 0.098 0.135 0.153 0.354 0.271 0.204 0.218 0.277 0.307 

y / n . T ().()5G O.OGO 0.048 0.079 0.049 0.032 0.031 ().()3() 0.037 

With regard to the coiiiputatioiial efforts, w(�report that Algoritlmi 5.2.1 ran fairly 

fast. For instance, for Ji = 70 w(�wort' ablo to gt�t, a f(�asihl(�solution within sc^coiicls, 

wliilo coiiipiitiiig tlio upper hound v costcd much more coniputatioiuil time. For > 80, 

however, our computer reported to run out of nieinory in the (ocprrinicnts, a pr(,l)l(-�m 

purely due to th(�sIkht size of th(� input data. 

5.6.2 Local Improvements 

Tlio theoretical worst-ease porforiiiaiico ratios that wc have d(�v(�l()p(Hl so far are r(�r-

tainly very conservative, as oI)s(tv(�(1 in the previous siil^sectioii. I t will l)e desirable to 

design a more realistic procedure to know how good the solutions actually are. One 

point to note is that wc can always improve the quality of the solution hy applying a 

local iiiii)roveiiient procedure on our liciiristic solutions. In the Mat hi h oiivironiiieiit. 

such local search procedure is readily available, e.g., the fmincon function in Ma.tlab 

7.7.0 (R2()08b), which finds a local KKT point starting from the fea.sihlo solution that 

w(�provide. In our experiments, wc find that tfie fmincon function works w(�ll at. lorust 

for the low (iiineiisional problems. In particular, for our test casos, it works quite stably 

up to n = 10. 

In order to evaluate the true quality of our approximate solutions it is desirable to 

probe the optimal values, instead of using the loose upper bounds. For this purpose 

wo set up the following experiments. In this set of experiments wo restrict ourselves to 

the low diiuciisional cases, say Ji < 10. First we take the feasible approximate solution 

(which has an objective v) as a starting point to be followed by the local iniprovoniciit 

procedure of the fmincon function to obtain a KKT solution，and denote its objective 

value to be vj. Then we use a brutal force approach to randomly sample 1,000 feai^ible 
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Table 5.2: Num(，ri(�al objectives of {EPi^) with local imi)r()v(�in(»iits for n = 5 

Instance 1 2 3 1 5 G mm 
i 8 9 10 

V 0.35 0.47 0.08 0.40 0.17 0.13 0.07 1.78 0.32 0.53 

4.1G 4.85 4.24 3.99 4.28 6.49 G.4G 6.42 5.14 6.84 

4.10 4.85 4.24 3.99 4.28 G.49 G.4G G.42 5.14 G.84 

V 14.33 14.92 14.88 15.G2 17.59 14.34 15.00 19.12 13.03 15.01 

Tal)lo 5.3: Nuiiief^cal objectives of (EPi^) witli local iinprovoiiieiits for ii = 10 

Instana? 1 2 3 4 5 G 7 8 9 10 

V 1.51 1.24 0.80 0.28 0.09 0.12 0.30 0.3G 0.35 0.01 

8.98 7.74 9.74 8.71 8.14 11.24 9.82 7.75 9.18 11.08 

9.70 7.74 9.74 8.90 8.14 11.24 9.82 7.85 9.18 11.08 

V 2G.G7 24.88 28.0G 28.75 27.82 26.99 26.92 27.75 27.83 27.10 

solutions, followed by the same local improving fmincon function in Matlab. Wo then 

pick the b(�st one as the proxy of tlio true optimal solution, and deiioto its objective 

value to 1)(�V*” This is doable for the c a.sc u < 10 in our coiiipiitatioiial onviroiiiiKMit. 

For the case n = 5 and ii — 10 respectively, \v(» generate 10 random iiistrtiiccs 

of {EP^). The solutions obtained, as described above, arc shown in Table o.2 ancl 

Table 5.3 respectively. The results quite telling: Algorithm 5.2.1 together with 

fmincon yields near optimal solutions, at least for low (liinonsion problems. Ho\v(>v(_t 

for problems in high cliniensions, a stable local iiiiprovoineiit procedure is a noiitrivial 

task, interested readers are referred to a rcceiit paper by Chen (�t al. (25 . 



Chapter 6 

Polynomial Optimization with 

Binary Constraints 

6 . Introduction 

Wo shift the focus from coiitiiiuoius optimization models in previous (jmpters，to discrete^ 

optimizations. In fact,, a v(�ry large class of discrote optiinization prohUMiis l.uiv(�thoir 

objectives and constraints being polynomials, e.g., the graph partition problems, the 

network How problems. In particular, this (;liapter is r()ii(.erii(Hl with the models of opti-

iiiiziiig a polynomial function subject to binary coiistrfiints, with the objective focusing 

on tlio four types of 丨)()l.yiioniial functions iiicntioiicd in Section 2.1.1. Specifically, thv 
\ 

models are  

(Tfi) iiifix 厂(aji, a?‘2, •. •’ 
.s 

s.t. , € k = l ,2 , . . . , r / ; 

{Ma) imix /(a; ' , x" X 

€ B"S k = 1,2， 

These four models are discussed sequentially, each one in one chapter. The lat-

ter model generalizes the former one, and cadi generalization lia« its own approach 

97 
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and t(*(.liiiiqu(�to cope with. The IcLst iiiodol, (/)")，is in(l(HHl a very ^i;(�n<�ral dis(Trt.(� 

optiinizatiori model, siiicc in principle it can ho used to iiiodol tl»r following g(�ii(Tal 

polynomial optiiiii'/atioii problem in (iiscrctc values: 

max p{x) 

s.t. € {a'j, a*2, • • • . "J,,,}. / = 1.2 

We also discMLss polynoiiiial optiniizatioiis over liyporcuhos a.s some byproducts of this 

chaptor. Th(�y arc models (T/j), (///)), {Mn) and (/)")，i.e., tlic respectivc inodols (7’")， 

(//«), {Mn) and (尸"）with B Ix-iiig replaced l)y B. 

AH tlie models an�imfortuiiatoly NP-luird when tlio (k�groo of tlie ()bj(.�rtiv(> poly-

nomial d > 2, albeit tliey ai(�trivial wlion d = 1. This is bocausc each our incliiclos 

coinputing the matrix oc l-iiorin (see e.g., |5]) as a subclass, i.e., 

II 尸 Hoc,—1 = max 

.s.t. 6 x~ e B"-), 

which is also tlie exact model of {Tn) wlioii d — 2. The matrix oc l-iioriii is rclatcfl 

to s(>-call tlio matrix rut-norm, the curmit b(\st polynomial-time approximation ratio 

for matrix oc »-). l-norin as well a.s the matrix (.iit-ii()rm is ‘2丨"(;+力)~ ().5C, duo to 

A Ion and Naor [5]. Huang and Zhang [59] considcrcxl similar problems for the complex 
t 

discreto variables and derived constant approximation ratios. When d = 3, {Tn) is 
ft , 

a slight generalization of the model considered by Khot and Naor |G3], whore F is 

assiiined to be siiper-syiniiietric (implying rii = n-) = 7i:i) and sciiian^-frcc (Fjj/,. = 0 

whenever two of tlic three indices arc equal). The approxiinatioii hound of tlic optimal 

value given in [63] is Q 

For the model (///j), its NP-hardn(\ss for d = 2 can also be derived by rrfluciiig to the 

max-ciit problem, where tlie matrix F is the Laplaciaii of a given graph. In a seminar 

work by Goenians and Williamson [40], a polynomial-time randomized approximation 

algorithm is given with approximation ratio 0.878, by tlic well known SDP relaxation 

and randomization tochiiique. The method is then generalized by Nesterov, who in |88 

proved a 0.63-approximatioii ratio for ( H f j ) when the matrix F is positive seinideHnito. 

A more generalized result is due to Charikar and Wirth [24], where an 12 (1/ log7i)-

approximate ratio for {Hu) is proposed when the matrix F is cliagoiial-fr(>t\ If the 

clegr(io of the objective polynomial goes higher, tlio only approximation result in tlu 

literature is due to Khot and Naor [G3] in considering h()iiiogemK)us cubic polynoiiiial, 
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w丨i(T(�an il ( - a p p r o x i i i i a t i o i i hound is provided when the tensor F is sq丨mr(�-

froo. In fact, squan^frw (or in the matrix case diagoiial-frcx^) is some kind of noccssary 

('oiidition to d(�riv(�polyiioiiiial-tiino. approximation algorithms (soo (�.g., [1]). Even in 

the quadratic Ciiiso, th(，r(�is no polyiioiiiial-tiiiie approximation algorithm with a positive 

approxiiiiatioii ratio for the general nioclol {Hn) unless P = NP. 

Ill this chapter \vv pr()p()S(» i)()lyn(miial-tim(' raiKloinizod approxiiiiatioii alf^oritluns 

with pr()val)l(�w(>i\st.-(.ase ptTforiiiaiicc nit.ios for all the nioclcls iiiciitionocl in Ui(�I)ogili-

ning, provided tliat the dog roe of th(�objoctivo polynomial is fixed. Section (>.2 discusses 

the model ( r" ) . Essentially, wo apply a similar approadi ius in Chapter 3, by r(�hixiiig 

the iiinltiliiioar form ohj(x.tivr to a l(>\v(�r order irniltiliiioar form. Howovcr th(�discrete 

natural makes tlic problems quite clifferoiit the continuous (mes in Chapter 3, and a 

novel doc'oinpositioii routine is proposed in order to derive the approxiiiiatioii hound. 

S(�(.tioii 6.3 ami Section G.4 discuss models (//«) and {Mh), respectively. Both of th(�m 

use iiuiltilinoar form relaxations, ariiiofl with two clitferoiit versions of link iflontitios. in 

order to preserve the approxiiiiatioii Ijounds under the sqimr(�t.r(x�proporty. Gciioral 

iiiodel (PH) is discussed in Section 6.5, wli(�r(�the lioiiiogoiiizatioii tcclinkjuc in Cliaj)-

tcr 5 is modified and applied. All th(\so approxiiiiatioii algorithms can h(�appli(�d to 

polynoiiiuil optimizations over liypcrcubos, and wo also brief tlie results in Section (i.5 

as some byproducts. Some specific applications for the dis(T(�t.(» models and approxi-

mation algorithms proposed in this chapter will l)o discussoci in Section G.G. Finally, 

« 
wc report our iiuinorical experiment, results in Section G.7. • 

6.2 Multilinear Form with Binary Constraints 
\ 

Our first discrete model in question is to iritixiiiiizc a iiiiiltilinoar function in binary 

variables, specifically 

(T/i) max • 
一） s.t. t — 1，2，•. *，(I, 

where ni < n‘2 < • • • < n(i. 

This iiiodcl is NP-hard when d >2, and w(�shall propose polynomial-time ranclom-

i/Axl approximation algorithms with worsocasc porforinaiice ratios. The ca^c of (1 = 2 

is to computc ||F||ooH^i5 whose best approximation bound is 力 ) « "0.56, clue to 
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*t 

A Ion and Naor |5). It also servers as a basis in o\ir subscH}Uciico analysis. Whon d — 3, 

Kliot and Naor [63] proposed a raiicloinizod pro(�(�(iurc to coniputo the optimal value of 

{Tn) ill i)olyn()inial-tiino, with approximation houncl U (^/‘‘»"' ) • 

Our approxiiimtion rilgorithiii works for goiicral ch^grcc d based oii rocursioii. and is 

fairly simple. Wc iiuiy take any approximation algorithm for the (I = 2 aisv, say the 

algorithin by Aloii and Naor [5], as a Iwusis. When (I = 3, not icing t hat any n i x ii ) x n.j 

third order tensor can he rewritten as an ii\ii2 x matrix l)y coiiibining its Hrst and 

socomi iiiodos. can IK�relaxed to 

max F{X, x'^) 

s.t. X e IB"丨"2, ^ � 3 . 

This problem is tlie (�xact form of (T/f) wlioii d = 2, which can ho solved approxiinatdy 

with approximation ratio 21"(丨:.\/̂). Denote its approximate solution to bo (X, x'^). 

The next key step is to r(�('ov(�i. , a;~) from X . For this purpose, we introdure tho 

following decomposition routine, which plays a fimdamcnta.1 role in our iilgorithins for. 

binary variables, similar as DR 3.2.1, DR 3.2.2 and DH 3.3.1 in Chapter 

Decomposition Routine 6.2.1 

• INPUT: matnces M € X € 

1 ConstuLct 

X = 

2 Randomly genemte 

1’MX… XI yJlTx 

X ' / A i " X'^'XIn 
0. 

and compute x^ = sign (忘)and x^ = sigii (77). and repeat if iieccssaTy, until 

• OUTPUT: vectors x^ € 1" ' , G 

The complexity for DR (j.2.1 is O {uxn^) in each trial with (expectation.. Now, if we 
n A 

let (M, X ) = a; ), X } and apply DR G.2.1, then we can prove that the output 
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5C� satisfies 

E\F{x 1 乂 i：:，、 
= > = 2 F � i ^ 3 )� — 41.(1 W 2 ) " � 

TTvAM ttv/FM T^'-sfn 

which yields an approximation ratio for d — 3. By a rccursivo i)r()(.(�(lur(、，this approxi-

mation algorithm is readily oxtciuloci to solve (7，"）with any fixed drgroo ". 
. -

Theorem 6.2.1 (T/j) admits a polynomial-time randomized appToxirnation algorithm 

with appTVxiTnatioii ratio T.(Tfi). where 

t{Th) 
nv'-' ( r\ � 

111 ( i + 
\k=\ , 

=il 
/(I-2 � 

n 
\k= I , 

Pivof. Tlic proof is l)as(�d (m niatlicinatical induction on th(�(logre(» d. For the ease 

of d = 2，it is (�xa(.tly tlio algorithm by A Ion and Naor [5]. For goiioral d > 3. lot 

X = ‘ and (T/y) is then r(�laxod to 

(Tb) luax 

s.t. X e -

x^ e k = 2 , 3 , . . . , ^ / - 1, 

whore wo treat". X fus an 7? i??,/-dimensional v(>ctor, and F € R''i''"x"2x"3x’“xn"_i 

[d — l)-tli'order tensor. Observe that [Tn) is the exact form of {Tn) in " — 1, 

and so by induction w(�can find X e B''"'" and x*" € !!’'*• [k = - 1) in 

polynomial-time, sucli tlmt • 

> ( 2 /兀广 In (1 + 75) 
A 

Rewrite X a,s an 7i\ x ？？,̂ matrix, construct 

v{t„) 

v{Tb). 

X = - T - T ' 
X /yyTT X X /11 \ 

a»s in DR 6.2.1, and randomly generate 
• / \ 

匕（)， 

I J • ••• 

Let X = sigp ( 右 ） a m i �= s i g n ( 7 7 ) . Noticing that the diagonal roinpouents of X are 

all ones, by an expectation identity in Gooiiiaiis aii(i Williamson [40], it follows that 

E XX' 
2 Xij 2 � . 

=—Xi , arcsiii =—arcsin — 一八,, 
^ TT yj^ TT 

VI <' i < 1 < j < rid, 
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wImto the last equality is due to |A',j| = 1. Let matrix Q — F{'. x". x 

and w(�have • 

X 

E F X' = E E .伪'r 
i<'<"l,l<j<iM 

2 
E 

0 1 1 

Qii — A'/, arcsiii —— 
TT v/TTT 

—arcsii 丨 _ 
TT y/lTl 

E ^ ' j ^ ' j 
\<i<ui,\<j<u,i 

二 arcsiii F ( x , x~, x' 
TT y/lT\ V 

丨) (0.1) 

> / 2 d-
111 

( i l - 2 

( 叫 n 
\k=2 

71人. v{Tn) 

nfc HTu). 

Thus x^ and x'̂  caii he found by a raiicloinization process, which conchKlos the induction 

step; • 
» 

• 

To summarize this section, the algorithm for solving general model {Tn) is attached 

below. This algorithm is similar to Algoritliin 3.2.3, with major difforeiicos lying in 

different (iocoiiipositiou routines and the coiuputability for the ca.se of d = 2. 

Algorithm 6.2.2 

• INPUT: a d-th oi-dar tensor F 6 … < n-y < < "([ 

1 Reunite F as a (d - l)-th. oTdrr tensor F' G 股 " 2 > <， , 3 > < … b y combiny its 

first and last modes into one, and placiiuj it in the last mode of F', i. e., 

、 

2 For (T13) mth the {d - l)-th orxler tensor F': if d — 1 = 2，then apply SDP 

relaxation and randomization procedure. (Alon and Naor [5]) to obtain an approx-

imate solution (士2，全1，勺,.otherwise obtain a solution (x^, x^, - • - , by 

\ 

recursion. 
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3 Compute a matHx M' = F ( ' , x^, • • • . ', •) and rewrite the vector xJ''' as 

a inatHx X € B'"^"''. 
/ 

4 Apply DR 0/2.]. with input ( M ' . X ) = ( M . X ) and output = {x\x~). 

• OUTPUT: a feasible, solution , ‘ • • 

6.3 Homogeneous Form with Binary Constraints 

W p now coiisidcT t l i e m()d(�l ofoiî ixtniiziiig a g(�n(�ml h()iii()K(�ii(xms polynomial function 

ill binary variables, i.o., 

wlicro f{x) is a d-iU ck̂ grw* lioiiiogoiioiis polynomial with cussociatcd sup(T-syiiiiiK'tric' 

tensor F € 

When (I — 2， an U (1/ log u)-appr()xiiiiato ratio for {Hn) is proposcnl when the 

matrix F is diagonal-frcx', by Charibir and Wirtli [24]; When d — 3. an il 

approxiiimtion bound for the optiiiml value of {Hn) is provided if the tensor F is 

squaro-frw, by Kliot and Naor |()3]. We remark that thr square^free property is a 

nccossary condition to derive the approximation ratios. Even in tlio qimdnitir and 

cubic cases for ("w)，there is no polynoinial-tiiiie approximation algorithm with a 

]K)sitive approximation ratio unless P = NP (set�[4]). 

As boforo, we propose jjolyiioiiiial-tinio randomized approxinuitioii algorithms of 

(Hii) for any fixed degree (I. Like the model (T^), tlic key link from iimltilincar form 

‘ ‘ ‘ , x^^) to the li()iiiogoiKH)iis polynomial f ( x ) is Lemma 4.2.1. The approx-

imation ratios for (Hf^) hold under the squan^frw coiKiitioii. This is because under 

such conditions, the decision variables are actually in the inultilinear form. Hence, one 

can replace any point in the hypercube (B") by one of its vertices (B") without cic-

crcasirig its ohjcctivc value, due to the linoarity. Before presenting our main results in 

this section, we first stiuly a property of the square-fnN? polynomial in binary variables, 

which will be used frequently in this chapter and the next chapter (Chapter 7). 

Lemma 6 . 3 . 1 If polynomial Junction p(x) is squara-firxt and z 6 B " , then x € B " and 

X G B" can be. found in polyiwinial-tiine, such that p(x) < p{z) < p{x). 
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Proof. Since p{x) is sqiuiro-frw, by fixing 

ail iiiclej)Oii(lent variable, wc may write 

Pix) = 

L<� 

- 1 fJ>{ 

1 f/>{ 

z.:i，. • • , .r„ i\s constants and taking X] jls 

Then 

R(^peat the same proccxliircs for 

• •:”)丨）<p{z). 

and l(�t them he replaced by binary scales 

• • • , J'n, rosp(rtivrly. Thon x = (j-j.-r-j, • • • , i-„)^ G B" satisfies p{x) < p{z). 
• 

Using a similar procedur(», \v(» may find x 6 B" with i){x) > p(z). • 

Loinnia 6.3.1 actually proposes a polyiioinial-tiinc procvdiin�in Hiuling a point in 

B" to replaco a point in B", without ciecreasing (or incTcasing) its fuiictioii value. Now, 

armed with Lemma G.3.1 and tlio link Leiiiiua 4.2.1, wo present the main results in this 

section. 

Theorem 6.3.2 If f{x) is squart-Jree mid d > 3 is odd. then (//n) admits a polynarniul-

tima randomized approximation algorithm with approximation ratio t{Hh), where 

t{Hi3):=(募)111 (1 + v ^ ) dlcr'n-^ = Q … . 

Proof. Lot f ( x ) = F{x, x, -- , a;) with F b(�iijg suixT-syiniiictric. and {Ha) can l>o 
‘ 

d 
relaxed to 

[Hii) max 厂(3；1，2；2,... ’®") 

s.t. x^' e k = 1,2, d. 

1 / rt \ r / — 1 

ln(l + v^) i r ^ v i f l B ) > f - j lii(l + \/2) i i- ' -^v{Hh). 

By Theorem 6.2.1 wc are able to find a set of binary vectors ( a : ' , • • • .x ) in 

polynomial-time, such that 

Wlicn d is odd, let • “ i^d be i.i.d. raiicloiii variables, each taking values 1 and 

—1 with equal probability 1/2. Then by Leiiuna 4.2.1 it follows that 

“d / d 
= E n � ' / 全 ' 

.1=1 \k=l 
= E / 

(d / \ \ 

\/t=i V ) / 
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Thus \v(�may find a binary vortor (3 G K'�sucl i t hat 

f E ri A 
\k=l 

X >(nF{x\x^ x'') > 
9\ 

111 ( l + v/2) "！ /厂孕"(//"). 

Now w(�notice tliat ^ Ylk=] (11#人,"�) 士" € B". l)(�('aus(�for all 1 < j < u. 

1 

；I： !!/、• 
X 

k=\ 

< -
一 (1 (0.2) 

Since f{x) is scjuarc^-frw. by Leiniria G.3.1 w(�ar(» able to Hiid x € B" in polvmmibil-

tiiiie, such that 

fix) > f 
1 d 

到 n 戌 X = ( l - d f X >T{Hii)v{Hii). 

• 

Theorem 6.3.3 If f{x) is square-free and d > 4 is even, then [Hn] admits a polynomial-

time. miidomized approximation algorithm with relative, approximation ratio t(///j). * 

Proof. Like in the proof of Theorem ().3.2, by relaxing (///<) to {fin), we arc able to 

find a set of binary vectors ( i . . . with 

/ 2 
In (1 + \/2) i r ^ v { H H ) -

Besides, we obsorw that v{Hji) < v{H]i) and v{Hb) > v{Hfi) = -v{Hi}). Thoroforo 

2v(Hn)>v{HB)-v{HH). 

Lot�1，之2, ••• , id be i.i.d. random variables, cadi taking values 1 and - 1 with equal 

probability 1/2. Use a similar argument of (G.2), we have 去 士人 € B". Then by 

Leiiiiiia 6.3.1, there exists x € B" such that 

w
;
 

1
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Applying Lemma 4.2.1 and wc have 

> E
 

1
 -
2
 

- 2 ^ 

= E 

= 

\ k=\ J 
/ / i \ 

- Iz(/ / / i )E 

riH 
1=1 

1 

d / d \ 1 r d 
士 - I z ( / / / i ) E I I ii 

i=l \fc=l 乂」 L:=l 

= . . . > r{HH) v{Hn) > (t(///^)/2)…(""）-

Thus we may find a binary vector G B^ with n jL i = 1, such that 

f (如 
\ k=l 

-v(HB)>T{Hi,){v{H,i)-v{Hii)) 

Noticing that ^ Ylk=\ /̂ /t®^ € 1" and applying Leiniiia G.3.1, by the square-free property 

of f(x), we are able to find x € with 

/ i d \ 
f i x ) - v { H f j ) >f - I^bx' - lAHn) > T{Hn) {v{Hh) - v{Hn)) • 

• 

To conclucie this section, wc summarize the algorithm for approximately solving 

(Hb) below (no matter d is odd or even). 

Algorithm 6.3.1 

• INPUT: a d-th order super-symmetric square-free tensor F eW 

1 Apply Algorithm 6.2.2 to solve the pToblern 

max ， . . • , x^) 

s.t. x^ € B", k = 1,2, 

approximately，with input F and output (dc^, • X 
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2 Compute x = argiiiax { / (与 “•士人.)，€ e 

3 Apply the procedure in Lemma 0..y. 1, with input x 6 B" and polynomial junction 

f{x), and output x e B" saiisJijimj f{x) > f{x). 

• OUTPUT: a feasible .solution x e B". 

6.4 Mixed Form with Binary Constraints 

VVe further inove on to coiLsidor the mixed form of discrrto polynomial optimization 

model 

(Mij ) max • ‘ .x'*) 

s.t. x^ € 1B"A-，k = 1,2, 

where associated with function / is a tensor F 6 M"' ‘ 2;<�x”.，-，with partial sym-

metric property，7ii < 112 < • • • < n’,，and d = d\ + d-? -i- • • • ds is (locin(>(l as a fixed 

constant. This model is a generalization of (Tn) in Section G.2 and {Hn) in Section G.3, 

making the model applicable to a wider range of practical problems. 

Here again we fociLS on polynomial-time approximation algoritliiiis. Similar as tlie 

approach in dealing with (H^), we relax the objective function • • • , x^') of 

(Mis) to a multilinear function, which leads to (T/j). After solving (T/i) approximately 

by Theorem G.2.1, we arc able to adjust the solutions one by one, using Loiiima 4.4.3. 

The following approximation results are p r e s e n t w h i c h arc comparable to that in 

Section G.3. 

Theorem 6.4.1 If ...，x^) is square-free in each a;人.(A: = 1,2’...，.s)，r/ > 3 

and one of dk (k = 1 ,2 , . . . , s) is odd, then (Mh) admits a polynomial-time mndomized 

approximation algorithm with approximation ratio T(Ai/^)，where 

‘ r ( M B ) ：= f ( A / s ) (，广 In (1 + v ^ ) n 送 = I M f ( 场 ) ） 

2 

IT, 

2\ 

dk\ 

dkl \ fUUi rik dk 
n, 

(L = 

d, > 2. 
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Proof. Like in the proof of Tlieorcin 6.3.2, by relaxing (Ma) to (7，")，w(�arc able to 

find a set of binary vectors {x^, x"̂ , • • • , x^) with 

v{Mh). 

Lot ^ ⑷，4‘2,…丁，whose components are i.i.d. random variables, taking values 

1 and —1 with equal probability 1/2. Similar as (4.7), wc denote 

di d\ +^2 

k=l A: 二d丨+ 1 

d 
^ = X] 之人.士 

k 

Without loss of generality, wo af>suine d\ to be odd. By applying Lcinnia ‘1.1.3 \vv have 

f]d)t!F(i:\i2，...，士二 E 

Therefore we are able to find a binary vector (3 € B'̂ , such that 

/ d \ H 
( n 汰 ’ •/，..•，•；jf ) 2 n dMc � T ( M f i ) v(M„). 
\t=i 8 / Jt=i 

Similar as (6.2)，it is not hard to verify that n f= i 6 and x^^/dk € B'"̂ " for 

/f = 2，3,..., s. By the square-free property of the function f and applying Lciiinia 6.3.1， 

we arc able to find a set of binary vectors • • ‘ , x''*) in polynoinial-timo, such that 

f{x\无2，.. •，i‘"2 / ( J ^ 汰著，署，...，g ) 2 r{MH) v(Mh). 

• 

Theorem 6.4.2 If ‘ • • , x^) is square-free in each x^ {k — 1 ,2 , . . . , .s), d > 4 

and all dk {k = 1 , 2 , . . . a r e even, then {Mb) admits a polynomial-time randomized 

approximation algorithm with lelative approximation ratio t(Mb)-

Proof. The proof is analogous to that of Theorem 6.3.3. The main differences are: 

(i) we use Lemma 4.4.3 instead of invoking Lemma 4.2.1 directly; and (ii) we use 

f 金I,击金I. " , 士金instead of / Ylk=i Â：®̂ ) during the randomization pro-

cess. • 

n 妳 
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6.5 Polynomial with Binary Constraints 

Finally, wo consider binary integer programming model to the optimization on a geiioric 

{iiihoiiiogeiiwiis) polynomial functioii, i.e.. 

Extoiicliiig the approximation algorithms and the corresponding analysis for komo-

(jeneous polynomial optimization to gon(Tal inliomofjencoiLs polynomials is not straight-

forward. Technically it is also a way to get firouiicl the scjuarc-free property, which is 

a requiroineMit for all the homogeneous polynomial optimizations discussccl in previous 

scH!tioiis. Tlio analysis here, is similar as that in Chapter 5, to directly d(�al with ho-

mogenization. An important observation here is that p{x) can always ho rewritten as 

a squan^frw polynomial, since we have Xî  = 1 for i — 1,2 , . . . , n, which allows us 

to reduce the power of Xj to 0 or 1 in each inonoinial of p{x). VVc now propose tlio 

following algorithm for approximately solving (Pb). 

Algorithm 6.5.1 

• INPUT: an n-dimensional d-th degree polynomial Junction p{x). 

1 Rewrite p(x) as a square-free polynomial function poix), and then rewiite ja){x)— 

po(0) = F{x, X, ' •' , x) when x/, = 1 as in (5.2), with F being mi {n + 1)-
d 

dimensional d-th order super-symmetric tensor. 

2 Apply Algorithm 0.2.2 to solve the problem 

max F{x\x' X' 

X*e]r+1,A:=1，2， d 

approximately, with input F and output {v}^u^,. • • ,u^). 

Compute … ， 约 = a r g i n a x { f ( ( � Y " )， ( � . j f " ) ’. . . ’ (�<" ) )，忘 € B ] . 

Compute z = argmax Po ( z ( ( 5 ) / , (3 e and = WU^^k = l} , 

with zW = + EL'i^kz'. 
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5 Apply the procadurr. in Larnma ti.3.1, unth input z G B" (ind polynomml function 

and output y € B" .<iatisfymg fH)(y) > j)u(z). 

• OUTPUT: a JeasibUi solution y € B". 

Before presenting the main result and analyzing Algorithm G.5.1, we first study 

another property of the squaje~free polynomial. Namely, thr overall average of the 
f 

function values on tlic support set E" is zero, aiul this plays an iinportant role in 

analyzing the algorithm for (Pf^). 

Lemma 6.5.1 If the polynomial function p{x) in [Pn] : iiiaxa-eB" i's square-fivM 

and has no constant terrn, then v{Pij) < 0 < v{Pii), and a binary vactor x 6 can 

he. found in polynomial-time with p{x) > 0. 

Proof. Lot ••‘ , T̂f b(�i.i.ci. rancloiii variables, each taking vnlues 1 anci —1 with 

equal probability 1/2. For any monomial . • • with degree k (1 < k < d) 

of p{x), by the square-fre(» property, it follows that 

This implies (忘)]=0，and coiisequently v{Ph) < (3 < v(Pb). By a randoiiiization 

process, a binary vector x E B" can be found in polynomial-time with p{x) > 0. • 

We remark that the second part of Leinnia 6.5.1 caii also be proven by coiKluctiiig 

the procedure in Lemma 6.3.1 with the input vector 0 G B", since p{0) = 0. Therefore, 

finding a binary vector x € IB" with p(x) > 0 can be done by either a randomized 

process (Lemma G.5.1) or a deterministic process (Lemma 6.3.1). Wo now presoiit tlio 

main result in this section. 

Theorem 6.5.2 {Pb) admits a polynomial-time randomized approximation algorithm 

with relative approximation ratio t{P[s), where �..-� 
\ 

丁(〜)：二 + 1 ) ! “ 、 + 一 = ( , 「 ” . 

Proof. The main idea of the proof is quite similar as that of Theorem 5.2.2. However 

the discrete nature of the problem as well as the non-convex feasible region requires us 

to be more careful dealing with the specific details. As we are working with relative 
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approximation ratio, by Step 1 of Algorithm (i.5.1, w(�may assuiiio that p{x) is square 

frw and has no constant t(�rin. Then hy hoinogenization as (5.2) 

p{x) = F\ X 
= F { x . X, •'' .x) = f { x ) ,    

• 

d 

where f{x) = p{x) if a,/j == 1，a.iid f{x) is an (7;,+ l)-(liiiit�nsional h()iii()gt�ii(x)us polyiioiiii-

al function with associated supor-syiiiiiictric tensor F 6 + whose last coinponont 

is 0. (Pfi) is then o(|uivaloiit to 

max f{x) 

s.t. X = 
X 

X e B", J；/, = 1 

which can be rdaxed to an instaiicc^ of (T/j) as follows 

(Pfi) max F ( x \ i""̂ , • • • , 

s.t. X e ®”+i, k= 1,2，...，丄 

Let (w�,ii2，-. • 勺 br the feasible solution for [Pb) found by Tlieoreiii ().2.1 with 

> (2/7r)"-i lii(l + n/2)(7, + 1 厂罕 

Denote v^ = u^ Id for k = 1 ,2 , . . . , d, and coii«cquerit ly 

= … > (2/7r广 1 In(l + \ / ^ ) " - � } + 1 厂罕”(/)"). 

Notice that for all I < k < d, = = 1/^/ < 1 and the kust component of tensor 

F is 0. By applying Lemma 5.2.4, it follows that 

E VdV 

and 

E :KM，Cf� 

0) 

V
 

=F( i ) ' V 

)) = 0 , 

where "i，7/2，...，"rf are independent random variables, each taking values 1 and —1 

with E[rik] — v^ for k — 1 , 2， . . . a n d . . . , id are i.i.d. random variables, each 

taking values 1 and —1 with equal probability 1/2. Combining the two identities, we 
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have, for any constant c, the following identity 

1 - 2 
V 

1 

+ E {c + Proh {rj = f3}) F 

If we let c = iiiax^^gd pjd Prolj {rj = f3}, tlicn the coefficiont of each t(�riii F in 

the above is noniiegative. Therefore, a binary vector (3' G B'̂  can b<�found, such that 

F V 

with 

7-0 (c + Pr()b{77 = /3})+ ^ ( r -Proh{77 =/3}) 

where c < + 去 )" i s applied, since E[7/jt] = = 土 l/(/ for k 二 1 ,2 , . . . , d. D(mot(� 

= (f^)=【广）for /c = 1’ 2” . . , d, and wc have 
h 

(乏1,乏 2 , … ， 乏 ( 云 1,公 (三丫‘ 一 力 + 罕 ” 
\7r / 1 + c 

For any /3 e B"，denote z(l3) = (3i{d + + ^！二‘！！^玄、By n o t i c i n g � = 1 and 

jzf I = Ivfl = Iwfl/rf = I Id for all \<k<d and 1 < 2 < t i , it follows that 

2 < \zk(^)\ < 2d and \zi([i)\ < (d + l)/d 4- (d - l)/d = 2 VI < i < n. 

Thus z{(3)/zk{P) e i " . By Lemma G.3.1, there exists x' e B", such that 

v{Pn) < Pix') <p{z(/3)/zhm ^ f ( z W / z u m . 
t 

Moreover, wo shall argue below that 
« 

. = f ( z m > m ^ v ( P B ) - (6.3) 
* 

If this were not the case, then by Lemma G.5.1 f (z({i)/{2d)) < v(Pb) < 0. Notice that 
4 

= 1 implies > 0，and thus we have 

> 
i i 丫+ > ( 2 " r + l ) —丨 > (2^ 
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which is a contradiction. 

Supp()s<» 乏 = ‘ •. . whose c'oinpoiiciits are i.i.d. random variables, each 

taking values 1 and —1 with equal probability 1/2. Noticing that (G.3) holds aiul using 

the same arguiiiont â s (5.12), wc get ’ 

d ] 
E
 

1
 1
2
 

Therefore, a binary vector (3" € with 卢 = 改-=1 ('an be found, such tliat 

f(z(fr))-(2dfv{Pjs) > 乏 1,乏v..,乏勺 〜 

• \7r J I (I 

By Loiimia (i.5.1，a binary vector x' G B" can be found in polyiioniial-tiiiio with 

p{x') > 0. Moreover, as z(f3")/Zh{l3") E by Loniiua G.3.1, another binary vector 

x" e B" can be found in polyiiomial-tiine with ]){x") > Below wv 

shall prov(�at least one of x' and x" satisfies 

!)�-v(PB) > T(PB) {v(Pii) — v{Pii)). (6.4) 

Iiidocd, if —v{Pb) > t(Pb) {v{Pfi) — v{Pji)), then x' satisfies (G.-4) in this caso. Other-

wise w(» shall have —v(Pb) < t(Pb) {v(Pi}) — v(Ph))-, then 

v{Pn) > ( 1 - T(PB)) (V(Pjj) - v(P/i)) > (v(P;j) - v ( P f j ) ) / 2 , 

which implies 

�2d ) 一\ ‘ ~~ \ ‘ \7rJ 1+e 
> riPn) {V{Pb) - iLiPis)) • 

The above inequality also implies that / {z{l3")/(2d)) > 0. Recall that = 1 implies 

> 0. Therefore, 

….p m ) = f m 、 = ( - ^ Y f 酵、〉一 I •、 \ z h m ) ' \zHinj w m j \ 2d ) - �\ 2(1 厂 

which implies x" satisfies (6.4). Finally, arg max{p(a;'),/j(a;")} satisfies (G.4) in both 

cases. • 

We remark that (Pb) is indeed a very general discrete optimization model. For 

example, it can be used to model the following general polynomial optimization problem 
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in discrete values: 

(PD)- max p{x) 
4 

s.t. Xi G {a'p ttjj,... ,a^,.}, i — 1 ,2 , . . . , u. 

To see this, we observe that by adopting the Lagrange interpolation technique and 

lotting 
mi . 

T-T Ui — k 

= n izTk v i 化 " ， 

j=l l</.<m.,Mj J 
the original decision variables (.an bo equival(也ly traiisformc^i to 

‘ Ux = j ==> Xi = V 1 < i < 71’ 1 < j < m,, 

where iii € {1,2, . . . , inj}, which can be further rojjresonted by [log2iii(iop(Mi(leiit 

binary variables. Combining these two steps of substitution, (PD) is then reformu-

lated as (尸“)，with tlie degree of its objective polynomial function no larger than 

maxi<j<„{d(77i, — 1)}, and the dimension of its decision variables being , [log.j r/j/]. 

In many real world applications, the data {oj, . . . , } (i = 1 ,2 , . . . , 7f.) in {PD) 

are arithmetic sequences. Thou it is much easier to transforiii (PD) to (尸")，without 

going through the Lagrange interpolation. It keeps the same degree of its objective 

polynomial function, and the dimension of its decision variables is X^IL!�logaTziil. 

� Finally, we remark that all the approximation algorithms proposed in this chapter 

are also applicable for the polynomial optimizations over liyperciibes (E"), which arc 

models (T^), (//；̂), (A/；̂) and (P^y), i.e., the respective models (T/y), (Mfi) and 

{Pb) with B being replaced by B. In particular, the square-frcc conditions an? no 

longer required for homogeneous form objectives and mixed form objectives. Therefore 
r 

Algorithm 6.3.1 and Algorithm 6.5.1 can be made simpler without going through the 

process in Lemma 6.3.1. We now conclude this section, as well a.s the theoretical part 

of this chapter, by the following theorem without proof. 

Theorem 6.5.3 The following approximation results hold for polynomial optiinizations 

over hypercubes: 

1. {Tq) admits a polynomial-time randomized approximation algorithm with approx-
t 

‘irnation ratio t(Tb)； ‘ 

2. If d > 3 is odd, then (H^) admits a polynomial-time mndornized approximation 

algorithm with approximation ratio t{Hb)； OthcTwise d> A is even, then (Hf^) 
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admits a polynomial-time randomized appToximation algoritlnn with relative ap-

prvjimatioii ratio r(///j)’. 
I 

3. If one of (If. (A: = 1,2, ...，《) is odd. then {Mf}) admits a polynomial-time, ran-

(lornizad approximation algoHthm with appivxiination ratio T{M}i); OfJiA^wisa all 

dk {k — 1 ,2 , . . . , .s) are cvan^ then {Mf^) admits a pqlyjiojnial-time jmidoinizcd 

• approximation algorithm xinth relative apprvxirnatioii ratio r(A//i); 
« 

4. (Pii) admits a polynomial-time randojnized approximation algoHthm with relative 

appmiimation rutio T(PB). 着 

6.6 Applications 

Tlie models studied in this chapter have versatile applications. Given tlie generic 

nature of the discrete polynomial optimization models, this point is perhaps self-evident. 

However, wc believe it is lielpful to present a few examples at this point tvitli more 
“ . r 

details, to illustrate the potential modeling opportunities with the new optimization 
models. We shall present tlirwr. problems in this section and show that they ar(�readily 

formulated by the discrete polynomial optimization iiioclels in this chapter. 

6.6.1 C u t - N o r m of Tensors 

Tiic concept of cut-norm is initially clefinccl on a real matrix A = (Ajj) 6 

denoted by ||A||c, the maximum over all I C {1,2, . . . , n\} and ./ C {1,2, . . . , ？1-2}, of 

the quantity | Yliei je J This concept plays a major role in the design of efficient 

approximation algorithins for dense graph and matrix problems (see e.g., [30, 3]). Aloii 

and Naor in [5] proposed a polynomial-time randomized approximation algorithm that 

Approximates the cut-norm with a factor at least 0.56，which is currently the best 

available approximation fatio. Since a matrix is a second order tensor, it is natural to 

extend the cut-norm tb general higher order tensors, e.g., a recent paper by Kaiiiiaii [62]. 
« 

Specifically, given a d-th order tensor F = (Fi山...ij € …x«d，its cut-norm is 

defined as ， 

\\F\\c ：= max y ^ ^Uh-td 
/;tC{l,2，…，nfc}’/:二l’‘2”..，cf f̂ i‘） . • 

111 fact, the cut-iionii | |F | |c is closely related to ||F||ooM.r, which is exactly in the 

form of (Tb). By Theorem G.2.1, there is a polynomial-time randomized approximation 
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algorithm which computes ||F||oo^i with a factor at least il ^^H^lf where 

we assiniie ii] < iiy < • • • < n j . The following proposition, asserts tliat the (.ut-iionii of 

a general rf-fh order tensor can also he approxiinatocl by a factor of il � ) . 

Proposition 6.6.1 For any d-th order tensor F € R'”x,,2x.“x”d, < ||F||oo^, < 

Proof. Recall that ||F||oo^-+i = 

B"*̂  (/? = 1,2,...,(i)，it follows that ‘ 

；勺.For any x^ 6 

X ) = E 
l<t\:<7î -, k= 1,2 d 

e ' e 

X 
'd 

Fi >d 

= E n如 

,2”.”d 

E F. 

< 

< 

E E Fi 

which implies IIFIIoo^i < 2 ’ | F | | c . 

Observe that ||F||c； == m a x — ^ {。 " "、左二口 , … , "， z 』， … ， F o r any z^ e 

{0’1}"知{k = 1,2，. • ." / ) , let z^ = (e + where e is the all one vector. Clearly 

x^ € for At = 1，2，...，and thus 

1 J2 e + a;i e 十 e + .d\ 
F 

V 2 ' 2 ' ‘ 2 
F(e,e,-" ,e) + F(a;i,e，... ’e; 

2rf 

which implies ||F||r; < … i . • 

6.6.2 M a x i m u m C o m p l e t e Satisf iabi l i ty 

t 

The usual tnaxiiiiuin satisfiability problem (see e.g., [38]) is to find the boolean values 

of the literals, so as to maximize the total weighted sum of the satisfied clauses. The 
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key point of the probloiii is that each daiis(�is in t ho disjmictiva form, iiamdy if one of 

the literals is iissigiunl tlio TRUE value, t hoii tho claiis(» is callotl satisfied. If the literals 

an�a l so amjunrtive, th(�n this form of satisfiability problem is easy to solve. However, 

if not all tho clausc^s can be satisfied, and we alternatively look for an a^ssigiiineiit 

that injixiiiiizcs the weightod sum of tho satisfied dauscs. then tlio jjrohleiii is quite 

(lifforoiit. To make a distinct ion from tho lusual M j l x - S A T problem, lot us call the new 

probloin to he nuiximum complete .mtisfidbility, or to 1>(�abbreviated as Mfix-C-SAT. 

It is immediately dear that Max-C-SAT is NP-hard, since w(�（.an easily redu(.(�the 

iiiiix-cut problem to it. Tlie reduction can be done â i follows. For cacli (Hige (<�. we 

rorisidcr two clauses {xi,xj} and {if^, Xj}, hotli having weiglit Wjj. Tlieii the Max-C-

SAT solution lemls to a solution for tlio iiuix-ciit problem. 

Now (.piisidor an instance of the Mtix-C-SAT problem with 

coiitaiiiiiig no more than d literals. Suppose that clause A- (1 < A-

form 

rn claus(\s, oat h clause 

< ni) has the following 

U'ki，’. . . ’ '̂A-,,.，ĴA-； ’ 3 ’ ...，无k'�I， 

whcTo .s人.+ tk < d, associated with a weight Wk > () for k — 1.2， 

Max-C-SAT problem can be formulated in tho form of (尸"）as 

777. Tlioii, the 

s.t. X e B". 

According to Theorem G.5.2 and the noiinegativity of the objective function, the above 

prohlciii admits a polynoiiiial-tiiiie raiicioiiiizecl approximation algorithm with approx-

iinatioii rat io il (7J.-"5"^)，which is independent of the iiuiiiher of clauses m. 

6.6 .3 B o x - C o n s t rained Diophant ine Equat ion 

Solving a system of linear equations where the variables are integers and coristraincxi 

to a hyporciilw is an important problem in discrete optimization and linear algebra. 

Examples of applications include the classical Frobeniiis problem (see e.g., [2, IG)), and 

the market split problem [26], other from engineering applications in integrated circuits 

(icsigii and video signal processing. For more details-, one is referred to Aardal et al. [1 . 

Essentially, the problem is to find an integer-valued x € Z" and 0 < a; < u, such that 
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Ax = b. The prohlciii can be foriimlaUHi by tlio lejust square�inothod rts 

(DE) max -{Ax - b)^ {Ax - b) 

s.t. X e Z", 0 < x < u . 

According to the discussion at the ciul of Section 0.5. the al)ove prohlein can be r(�-

fonimlatcd as a form of (尸"），whose objective function is quadratic polynomial aiid 

rmiiJb(�r of decision variables is [1(�&20|» + 1)1. By applying TlKK)roin G.5.2, {DE) 

admits a polynomial-time miidomized approximation algorithm with a constant relative 

approximation ratio. 
fk 

Generally speaking, the Diophantine equations are polynomial equations. The box-

coiistrained polynomial eqimtioiis can also be formulated by the leâ t̂ square method 

as of {DE). Suppose the highest degree of the polyiioinial equatioiLs is d. Then，this 

least square problem (.an be reformulated as a form of (尸"），with the dogrtK* of the 

objective polynomial being 2(1 and nuiiibor of decision variables being l^ofrjl'" + 

1)]. By applying Theorem G.5.2, this problem admits a polyiioinial-tiiiie raiidoniizcd 

approximation algorithin with a relative approximation ratio il ^(J^lLi log “ i ) _ ( " — . 

6.7 Numerical Experiments 

111 this section we are going to test, the iiuiiiericfil performcUicc of the algorithms pro-

posed ill this chapter. Our experiments focus on the model (Tn) with d = 4 as a typical 

case. Specifically the problem to bo tested is 

(ETb) max y, z, w) = Ei<,:j>,f<„ f^ijkf J-WjZkWf： 

s.t. x,y,z,w e B". 

6.7.1- R a n d o m l y S imulated D a t a 

The input data of (ETb) is generated in the same way as that of (ETs), with entries 

of F following i.i.ci. standard iioririals. The first relaxation model for Algorithm G.2.2 

to approximately solve (ETN) is 

{Efii) max F(X, w) = Ei<i,M-,£<« FijktXijuwt 

s.t. 

which can IK? solved approximately using SDP relaxation aiicl randomization method 

proposed by Alon and Naor [5]. However, the s i ^ of the SDP relaxation problem is 
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(t)"̂  + n) X (17.3 + ”,)，which is intrartablo for current SDP solvers even when n = 8. 

Therefore in our testings, w(> further relax t.h<� above problem to 

max F{X) = Z 

s.t. X e �… 請 ' ， 

whoso optimal solution is trivially sign (F) with optimal value v^ := | |F| | i . This 

optimal solution can be rewritten as an n'̂  x n matrix, followed by applying DR G.2.1 

to get a feasible solutioii of {ETn). Then wo can apply the recursion proccduros of 

Algorithm G.2.2 to get a fea^sible solution of the original model {ETn), with its object ive 

value being (ionotcd by v. 

According to Theorem 6.2.1, the thoorctical worst-case pcrfonnance ratio of (ETjj) 

by Algorithm 6.2.2 is {}{1/ti). However, the theoretical ratio for the above met hod is 

indeed Ixx aiist̂  of a deeper relaxation, which can be proven by ii.sing the same 

argumeiit in Tlieoreiii G.2.1. However, this deeper relaxation allows us to skip the SDP 

relaxation of {ETji), and make the method applicable for large dimensions. In goiioral, 

the trivial upper boiiild of v(ETb) generated by this inethod, iff}, may not good, and 

wc may seek a tighter one. For this ])urpose we turn to the model (Ts) (lisrussed in 

Section 3.2； Noticing tiiat an /j-dimciLsioiial binary vector liaa a iioni� >JTi�wc may also 

relax (ETb) to 

iiiax F(x, y, z, w) = Yl\<ijM.t<n Fijkf XiUjZkWf 

s.t. = ||y|| = N l = IMI = v^， 

% 
which can be further relaxed to 

max = E 
1 <i,j,k,f<u Fijkf Zki ；. 

s.t. | |X | |= : | |Z | | = n, 
x,z e 

Thc» above problem is the largest singular value problem, whose optiinal value ( an tx� 

computed efficiently. Denoted its optimal value to be vs, which is taken as another 

upper hound of v{ET[}). • 

The numerical results of 10 randomly generated instances for the upper bounds vb 

and vsi as well the objective values of the approximate solutions generated are listed 

in Table 6.1, which clearly shows that vs outperforms vn significantly. Therefore in the 



71 5 10 20 30 

i%) 35.42 18.51 9.94 7.0G 

• n 1.77 1.85 1.99 ‘ 2.12 

1.51 1.47 1.47 1.51 

0.79 0.59 0.44 0.39 

following general testings, we shall choose v^ as our candidate of the upper bound, to 

test the quality of the approximation solution, i.e., r := v/vs- The simulation results 

arf�listed in Table 6.2. By observation, the performance ratio is better than i2(l/7i), 

and is quite close to It is clearly better than the theoretical ratio $2(1/71'"‘*). 

The computational cost for our method is quite low. In fact, for n = 80, we are able 

to get a feasible solution within 2 minutes^ while computing the iippor bound vs costs 

much more time. For n > 95, however, our computer reports to run out of irioniory in 

the experiments, a problem purdy due to the sheer size of the input data. 

6.7.2 D a t a of Low-Rank Tensors 

The numerical tests conducted so far are based on the data generating from i.i.d. staii-

ciard normals. It would be interesting to investigate the practicability of our algorithms 

using other data settings. In particular, we shall test some low-rank tensors. 

As mentioned in Section 3.4.2 (see also [68])，a fourth order tensor has rank r if it 

call bo written as a summation of r munber of rank-one tensors, and cannot be written 

as a summation of r — 1 iiumber of rank-one tensors. Specifically, the data we generate 

here is ‘ 
r 

F := E a] af 0 aj, � 
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Table 6.1: Numerical upper bounds of v(ETb) for n = 13 

Instance 1 2 3 4 5 G 7 8 9 10 

V 619 637 603 664 682 572 613 G62 591 752 

VB 22742 22588 22775 22711 22827 22905 22593 22966 22789 22678 

vs 4251 4314 434G 43G8 4294 4338 4295 4330 4330 4303 

Table 6.2: Numerical ratios (average of 10 instances) of (ET^) 

” 0 90 

2.W 2.58 

2.3<J 2.32 

1.54 1.48 

0.27 0.25 

5.45 4.09 3.93 3.0G 

2.18 2.04 2.36 2.14 

1.51 1.38 1.56 1.40 

0.35 0.29 0.30 0.26 
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Table 6.3: Numerical ratios (average of 10 iiustaiiccs) of {ETn) with low-rank tensors 

(rank) 1 2 3 4 5 6 8 y 10 15 20 

28.3 27.2 26.5 25.9 26.2 

11.8 12.1 11.7 11.2 12.0 

6.6 7.2 7.7 6.2 5.7 

(%) for n = 10 34.6 30.9 28.0 32.4 26.7 25.8 

(%) for 71 = 20 14.8 15.0 14.0 15.7 11.3 11.1 

(%) for n = 30 9.1 7.3 7.5 6.9 7.2 7.2 

where all a}' (A: = 1,2,3,4，i = 1 ,2 , . . . , r) are iricieponclent of each other, each of which 

following i.i.d. standard normals. 
•e 

We again use the method discussed in the previous subsection to approxinmtoly 

solve the model (ETb), and compare its objective v with the upper hoiiiicl %，i.e., 

T = v/vs. The performance ratios for such data settings are shown in Table G.3 for 

n = 10,20 and 30. By observation, wc find that low-rank tensors F improve the 

approximation ratios significantly. The lower the rank of the tensor F, the better the 

performance ratio. 



Chapter 

Homogeneous Form Optimization 

with Mixed Constraints 

7.1 Introduction 

This chapter brings most of the results in previous chapters together, to discuss mixed 

integer programming problems. The objective functions are all homogenous polynomial 

functions, while the constraints are a combination of two jiiost widely used ones, the 

spherical constraint and the binary constraint. In particular, the models considered 

include: 

(TBS) max y 
•2 

s.t. x^ e A： = 

eS"^', l ’2’. . . ’d ' ; 

y 

{MBS) MAX / ( X � 
.2 

，》，2/，2/ 
2 

S.t. x^ € fc = 

2/eS”"，f = 1,2,…，f. 

The model (MBS) is a generalization of the models and (HBS)- In fact, it can 

also be taken as generalization of most of the homogenous polynomial optimization 

122 



7.1 Introduct ion 123 

models discussed in previous chapters, namely {Ts) of Chapter 3, (Hs) and {Ms) of 

Chapter 4，and (Hfj) and {Mu) of Chapter 6 as woll. 

These mixed models have versatile applications, e.g., matrix combinatorial prob-

lem, vector-valued inax-cut problem, whoso details will ho discussed in Section 7.5. 

Essentially, in many discrete optimization problems, if the objective to bo optimized 

is extended from a scalar to a vector or a matrix, then we may turn to optimize the 

Euclidean iioriii of the vector, or the spectrum iionri of the matrix, which turns out to 

be the mixed integer programming models proposed above. 

All these models are NP-hard in general, even in the simplest case of one spherical 

constraint and one binary coiLstraint, i.e., the model (Tf^s) with d = d' = 1. As wo will 

see later, it is actually equivalent to the maximization of a positive semidefinito form 

in binary variables, which includes raax-cut as a subprobleni and is thus NP-hard. In 

fact, this simplest form of-(T/js) serves as a basis for all these iiiixocl integer program-

ming models. By iising this basis and mathematical induction, we are able to derive 

polynomial-time randomized approximation algorithms with worst-case performance 

ratios for (TBS) with any fixed degree. The techniques are similar to that of Chap-

ter 3, and two types of decomposition routines are called, one for decomposition of the 

spherical constraints, and one for decomposition of the binary constraints. Moreover, 

in order to extend the results from {TBS) to {HBS ) and {MBS), the multiliiiear tensor 

form relaxation method is again applied. Armed with the link leiiinuus (Lemma 4.2.1 

and Lemma 4.4.3)，we are able to derived approximation algorithms under some mild 

square-free conditions. 

This chapter is organized as follows. We shall discuss models (Tbs), {f^Bs) and 

(MBS) in Sections 7.2，7.3 and 7.4 respectively, and propose polynoinial-tiiiie randoiii-

ized approximation algorithms with provable approximation ratios or relative approxi-

oination ratios for the respective models. In Section 7.5，wc shall discuss a few specific 

problems where these mixed models can be directly applied. For the easy of reading, 
. » - * 

in this chapter, we shall?exclusively use vector x (6 B") to denote discrete variables, 
u 

and vector y (€ S"^) to denote continuous variables. Throughout our discussion, we 

shall fix the degree of the objective polynomial function in these mixed models, d + c/', 

to be a constant. 
a；--

I 
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7.2 Multilinear Form with Binary and Spherical Constraints 

Our first mixed model is to maximize a iiiultiliiiear function, with some variables being 

binary and some in the unit sphere, namely, 

{Tus) max x^, • • •，ic^，yi,. •.，y<i' 

s.t. x^ e k = 

2/eS”"，/^=l,2，...，"'， 

where ni < 712 < • • • < and 7n\ < im < • • • < rn^/. This iiioclel is a generalization of 

{Ts) ill Section 3.2 and (T^) in Section 0.2. 

The simplest case of (Tbs), d = d' = 1，is worth mention, as it plays an essential role 

in the whole chapter. Baseci on this câ ê, we shall derive polyiioiiiial-tiine approximation 

algorithm with worst-case performance ratio for {Tjjs) with any fixed degree d + d'. 

Proposition 7.2.1 If d = d' — 1, theji (Tbs) is NP-hard, and admits a polynomial-

time randomized approximation algorithm with approximation ratio \/2/7t. 

Proof. When d = d' == 1, (T/^s) can be written as 

( f s s ) max x^Fy 
‘ * 

s.t. X 6 y € S"'^ 

For any fixed x in {fns), the corresponding optimal y must be a;|| due to 

the Cauchy-Schwartz inequality, and accordingly, � 

x'Fy = = \\F^x\\ = Vx^FF^x. 

Thus (TBS) is equivalent to 

max x ^ F F ^ x 

s.t. X e � 1. 

Noticing that matrix FF^ is positive seraidefinite, the above problem includes the max-

cut problem (see e.g., [40]) as a subclass. Therefore it is NP-harcl. Moreover, according 

to the result of Nesterov [88], it admits a polynomial-time randomized approximation 

algorithm (SDP relaxation and randomization) with approximation ratio 2/7r. This 
• ‘ A 

implies that (Tbs) admits a polynomial-time randomized approximation algorithm with 

approximation ratio yJ^Tfi: • 
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Proposition 7.2.1 is the foundation to establish the basic relaxation in solving (Tus) 

recursively for general degree d and d'. In processing to the high ciegrw cases, for the 

recursion on d, with discrete variables x^ {k — 1,2, ...,")，DR G.2.1 is applied in 

each recursive step; while for the recursion on d' with continuous variables y^ = 

1 ,2 , . . . , two decomposition routines in Section 3.2 are readily available, namely 

the eigenvalue decomposition approach DR 3.2.2 and the randomized (lecompositioii 

approach DR 3.2.1, either one of them will serve the purf>oso here. The niairi result in 

this section is the following: 

Theorem 7.2.2 (Tbs) admits a polynomial-time randomized approximation algorithm 

with approximation ratio 八Tbs), where 

/ 2 \ 罕 严 1 “ \ 
r{TBs):= ( - ) rhfcn”if 二Q 

/(!-} d'-\ � 
n几於n 

Proof. The proof is based on mathematical induction on the degree d + d', and Propo-

sition 7.2.1 can be used as the base for the induction process when d + d' = 1. 

For general d + d' > 3, if d' > 2, let Y 二 Noticing that \\Y\\'^ = 

II2/I l|2||y("||2 = 1，similar to the relaxation in the proof of Theorem 3.2.4, (Tus) can be 

relaxed to a case with degree d + d' — 1, i.e., 

max ，y"'—” 

s.t. x^ e k = 1,2,. 
y eS叫〜，2/ eS爪‘’ £二2，3，…，"'-]. 

By induction, a feasible solution . … Y , • ••，y"'一'）can be found in 

polyiioinial-time, such that 

/ 2 \ 华 " - �d ' - i 
. ’ i v . .， y , y ' \ 沪’ . . .，沪 ) > ( -)rh*n‘〜乃仏’). 

• \A:=] £=2 / 

Let us denote matrix Q = F{x\x^,••‘，i"，.，众2，众3，... ’众"‘―！，.）e Then 
m 

by Proposition 3.2.1 (used in DR 3.2.2), can be solved 

in polynomial-time，with its optimal solution ( y ^ y " ) satisfying 

’ 丨 , 众 2 ’ … ’ 众 。 = ( 众 > IIQII/vMT. 

By the Cauchy-Schwartz inequality, it follows that 
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Thus wc concludes that 

I?,二丨工'2 ^rf 二 1 二2 

For d-{-d' >'S and d > 2, let X 

case with degree d — 1 + i.e., 

> IIQII/v/^ 

t, 

= x ^ (x^) ‘, and {Tas) can be relaxed to the other 

max F(JV’a:2，arV..，a:"-i，yi,y2,... ’？/) 

s.t. X 6 e k = 2 , 3 , . . . , 6 / - 1, 

j / e S 爪丫“二 1,2’ 

By induction, it admits a polynomial-time randomized approximation algorithm with 

approximation ratio (兽）^ (0^=2 ^̂ ^ 11?="/ ^• hi order to decompose X into 

x^ and x^, we shall conduct the randomization procedure as in Step 2 of DR 6.2.1, 

which will further deteriorate by an additional factor of in expectation, shown 

in (6.1). Combining these two factors, we are led to the ratio t{Tbs)- • 

We end this section by summarizing the algorithm for solving {Tns) below. 

Algorithm 7.2.1 

• INPUT: a {d + d'yth order tensor F € …xn"”"xm^x-xm"磁h, ti�< 

712 < • • • ̂  flwd 7711 < 1712 ^ • • • ^ Tlld'. 

1 Rewrite F as a matrix M € …ndxmimz - m " 切 combining its first d modes 

into the matrix row, and last d' modes into the matrix column. 

2 Apply the procedure in Proposition 7.2.1, with input M and output x 6 B"'"^" "''. 

A 

3 Rewrite the vector x as a d-th order tensor X e and compute a 

d'-th order tensor F' = F(X, .，.，...，•）€ R'^ix^'ax-xm^, ' 

4 Apply Algorithm 3.2.3, with input F' and output ...，). 

5 Compute a d-th order tensor F" = F(•’ •，…，.’ y2，...，y^') e R"' ^"^x-xn^ 

6 Apply Algorithm 6/2.2，with input F" and output ... 
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• OUTPUT: a feasible solution - , i"，仏记，…， 

7.3 Homogeneous Form with Binary and Spherical Con-

straints 

We further extend the mixed model in previous section to the homogeneous polynomial 

case, namely’ 

(Hbs) max f(x,y) 

s.t. X e B", y 6 

where /(x, y) = F(x, x , . . . ,x,y,y,- - ,y), and F € K" is a (d + ri )-th order 
V ‘ ̂  V ‘ 

> d d! 
tensor with partial symmetric property. This model is a generalization of the model 
(Hs) in Section 4.2 and the model (Hb) in Section 6.3. We shall derive polyiioinial-

tiine approximation algorithms with worst-case performance ratios. The method here is 
I 

also multilinear function relaxation (Ti^s), which admits a polynomial-time randomized 

approximation algorithm by Theorem 7.2.2. Then by applying Lemma 4.2.1 as a link, 

together with the square-free property for the discrete variables 2c, we are led to the 

following results regarding (HBS)-

Theorem 7.3.1 If f{x,y) is square-free in x, and either d or d' is odd, then {Hj^s) 

admits a polynomial-tirne randomized approximation algorithm with approximation ra-

tio T(HBS)J where 

•{HBS) 丁 � n 2 m 
、？r, . � , 

Proof. Like in the proof of Theorem 6.3.2, by relaxing (HBS) to (T"s)，we are able to 

find {x\x\ • . . ， i �’ . . . ’ yd') with x^ e ®" for all 1 < A: < ri and y^ € S爪 for all 

I < £ < d' in polynomial-time, such that 

F(x\x\ . . . ， i � y i , y2，…•-’ 公⑴)> (2/冗)罕 n—早 m — ^ v(Nj^s)-

Let • • • ^1,7/2, • • •，T}d' be i.i.d. random variables, each taking'values 1 and — 1 

with equal probability 1/2. By applying Lemma 4.4.3 (or Lemma 4.2.1 twice), we have 

E 
d d' / d d' 

m i E M E “全〜I： 
1=1 j=i \k=i e=i 

my^ 

” (7.1) 
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Thus we are able to find binary vectors 6 and /3' 6 B^̂ '，sucli that 
d d' 

\k=I £=1 
y 

Denote 
d d. d 

V : 
d d d' tl' 

d is odd. 

d' is odd. 
, ， \ f c = i i=i j=i e=i , 

Noticing ||y|| < d' arid combining the previous two inequalities, it follows that 

/ ( 書 ， — ) 力 ' - " ' n A n 份 ( E 仇 -金 '， i > 【众仏’ w"/义s’). 
i—1 J—1 I ^ — 1 / 

Denote y = € Since x/d 6 B" by a similar argument as (6.2), and f{x, y) 

is square-free in by applying Lemma 6.3.1, x 6 B" can be found in polynomial-time, 

such that 
〜 -

>f{x/d,y) > T{HBs)v{Hns). 

• 

We remark that in Theorem 7.3.1, if d' = 2 and d is odd, then the factor d'l d'"^' in 

T{HBS) can be removed for the same argument in the proof of Theorem 4.4.2 (basically 

the corresponding adjustment is an eigenvalue problem), and this improves the ratio 
* 2d-1 J 1 

T{HBS) to (^) 2 DL D 一 D F I . Now we present the approximation result for the 

even degree case. 

、 
Theorem 7.3.2 If f(x,y�is square-free in x, and both d and d' are eimi, then (HBS) 

admits a polynomial-time randomized approximation algorithm with relative approxi-

mation ratio 丁(Hbs). 

Proof. Following the same argument as in the proof of Theorem 7.3.1, wc shall get (7.1), 

which implies • 

E 
t=l 7=1 \k=l £=1 / \冗乂 

Denote x^ := 3 Ylk=i “金人 and y” := + Yl'e^i VeV̂ - Clearly we have 

E 
d d' 

Yl^iJl'lj f i^^Vv) >r(HBs)v{HBs)^ 
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Pick any fixed y G and consider the following problem 

{Hbs) max f{x,y) 

s.t. X € B". 

Since f(x,y) is square-free in x and has no constant term, by Leiiinia (3.5.1，a binary 

vector i € B" can be found in polyiioinial-tiiiie with 

f(x,y)>0>v(H,js)>Il(HHsh 

Next we shall argue f ( a : ^ ,仏> v{ Has)- If this were not the case, then f (i^, f/,,) < 

v{Hbs) < 0. By noticing < 1，this leads to 

f (金�,仏,/ll仏,11) = II仏,11—"'/ (î《，仏,）< f (x^y,) < uiHnsh 

Also noticing x^ € by applying Lemma 6.3.1, 

with 

v(HHs)<f{x,if,/\\yJ)<f{x^^ 

resulting in a contradiction. 

By that f - v{Hbs) > ()’ it follows 

a binary vector x € can he found 

d d' 

n 印 — 

> 

t=丨 1=1 
d d' 

= E 

= E 

f (金O 仏,)-

f (金。仏i) - ^i^fis) 

d d' 

1 j=\ 

d d' 

I 一 1 f — I 

d d' 

Y l ^ i Y l v j f (x^.if,^) 
i=l 7=1 

>r{HBs)v(HBsy 

ThiLS we are able to find > € B" and (3' e B^' with OSLi f î UlLi ^'j = 1’ such that 

fi^a.yn') -v{Hbs) > 2r(HBs)v(HBs)-

Denote y = if卢//||y"'|| € S，". Since X(j € B", by Lemma G.3.1, a binary vcctor x € B" 
•r.i .A 

can be found in polynomial-time with f{x,y) > f (xp^y). � 
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Bolow wr shall pr(.)v(�oither {x, y) or {x, y) will satisfy 

^ /(x，y) — v{Hiis) > T{Hhs) {v{H,is) - r iUns ) ) . (7.2) 

Indooci, if -v{Hbs) > riHns) {v{Hiis) ~ v{Hiis)). tlicn satisfios (7.2) in this 

cas(» siiico f{x, y) > 0. Otherwise', if —v{Hiis) < T{Hiis) (r(///^s') — Ei^Hs))- then 

v{Hbs) > ( 1 - r { H H s ) ) {v{Hns) - v{Hhs)) > ("(///化）—o{Hhs)) 

which implies 

f (xs^Vfr) - v{Hns) > 2r(//«.s) v{Hns) > r{Hiis) {v{Hbs) 一 r{Hns)). 

The above inequality also implies that f (x^, y^t) > 0. XluTofore, we liav(̂  

> Hxti.y) 二 I {^li.yti') > fi^a^yn')^ 

whidi implies (x, y) satisfies (7.2). Finally, Mrg iri{ix{/(x, y), / ( x , y)} satisfies (7.2) in 

both cases. • 

7.4 Mixed Form with Binary and Spherical Constraints 

The final story of polynomial ojjtiiiiization prohlcins in tliis Ui(�sis brings togrtlier a 
c • 

bunch of models discussed in previous sections and chapters，as a generalization of a 

large family, which includes (!>), Ws,)，（Ms), ( / /«), (i\/")，(T/.^) ami (" / (s) 

all as its subclassos. The model is to iiiaxiinize a mixed form over variables in l)iiiarv 
• • ‘心 • 

cdnstriiints, iiiixod witlr variables in spherical constraints, i.e., 

(i\//仏’)in^ /(a;i,a;2’...，x�y�y2，.-. 
.、• • -

… s . t . x^ k = l ,2 , . . . , . s , 

where assojCiatwi'with function / i s a tensor F € BT"…x"2“-’x “x”> x叫（xm/L'x -xm,''； 

with partial symuiotric property, n] < n-j < , " • < and rrii < ni) < - < 川卜 and . ' - ‘ 

c » . ' 
(I = di + d2 H -f ds {ind d' — d\ + r/'； + • • ： 4- d', nrv d(H�iiied as fixed constants. 

We shall derive ]M)lyii(>inial-tinie approximation algorithriLS for this general model. • . � k •， . 

By i-elaxitig '(Mjis) to .the inullijinear.fiiiict ion oi^imization iiioclol (Ths) and solving 

it appfoxiniatojy using Theorem-7.2.2, we may further adjust its solution one by one . ‘«> ' * • ‘ 
> , ‘ . 

using the link Loiiiiiia 4.2.1 or.Li'iiiina 4.43, leading'to the following gcnoral rosults in 

two settings. . . : � , ‘ 
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111 (7.3), fus one of dk {k = 1 , 2,...， a ) or one of d'f (f = 1 ,2 , . . . . / ) is odd, we an， 

able to move 11^=1 'h the coefiicient of the correspomiiiig vrct.or or f/” 

wli(�ii(�ver appropriate) in the function f . Other derivations are ess(�ntially the same 

as thr proof of Theorem 7.3.1. Besides, we only loose a ratio o f《！广 when c/J > 3 

ill T(Miis). This is because' wlien rij, < 2, the a)rresp(m(iiiig adjiLstineiits can be done 

without deteriorating the ratio, liko in the proof of Theorem 1.4.2. • 

Theorem 7.4.2 If .x'^.y^y^, " is squam-Jrae in aacJi x^ (k = 

1，2，..., .s)，and all df. {k = 1,2,..., .s) and all d'f [f = 1，2，...,矛)are c.vcii, then (Mas) 

Proof. The proof is analogous to that of Tli(H)r(”ii 7.3.1. VW first relax (Mas) to {Tb^) 

and g(�t its approximate solution x", • • • ， • • • , y" ) using Theorem 7.2.2. 

Let * “ “ . 'l\，"2，• • • • ‘/rf' bo i.i.cl. raiicloin variables, (�a(�h t aking values 1 and — 1 

with equal probability 1/2. By applying Loiiiiiia 4.1.3, wo have 

E 
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Theorem 7.4.1 If . x**. i/'. • • • square.-frac in each x 人’{k = 

1, 2 , . . . , .s), and one. of df- {k — 1, 2 , . . . , .s) or one of d'f {f = 1 .2 , . . . , / ) is odd. then 

(Mfis) (idinits a polynomial-time Txindomizcd approxmiatimi alfforithin with. appTOxima-

tion Tdtio f{Miis)f whan' 

W h s ) 
, � / ^ 

=(!) ‘ n n di 
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admits a polynomial-time, lundomizexi approxiination alfforithjn with relative approxi-

mation ratio t{Mbs), where 

w U J i "力 , = U ” V 

= u 
Its r'h 

Proof. Th(�proof is analogous to that of Theorem 7.3.2. The main diH"(�r(”i('es are: (i) 

we uso (7.3) instead of (7.1); and (ii) we use f (务’若 ,…，茫， … , 昏 ) i n s t e a d 

of f (i^,仏》，where ( i ! , •• •，ig, y]^, y；^,... , j/”�are detiiiod in (7.4) and (7.5). • 

7.5 Applications 

The gcuierality of the mixed integer polynomial optiiiiizatioiis studied in tliis diaplrr 

gives rises to soiiie succinct and interesting i)roi)leins, apart from their vcTsatile a{>-

plicatioiis. Nevertheless, it should be useful aiul helpful to present a few cxainples at 

this point with iu(>r(�details, to illustrate the pot(�ntial modeling opportunities with tlio 

new optimization models. In this soctiori，wo shall discuss the matrix coiiihiiiatorial 

problem and some extended version of the inax-cut problem, and show that tliey arc 

readily formulated 丨)y the inixed integer prograiiiiiiiiig problems in this (.hapten 

7.5.1 Matr ix Combinatoria l P r o b l e m 

We (iisriiss a succinct and iiitcrestiiig matrix coinbiiiatorial probloiii. Given n matrices 

Aj 6 for i = 1,2,...，n, find a binary coiiibination of them so hm to iiifixinii/e 

the coiiibiiied matrix in terms of spectral iionii. Sp(x ifically, the following optimization 

model 
(MCP) max 〜服（E;'=i 而成） . 

s.t. Xi G {1, —1}, i = 1 ,2 , . . . , n, 

where cr,„ax denotes the largest singular value of a matrix. Problem {MCP) is NP-

hard, oven in a special caiie of m-i = 1. In this case, the matrix A, is rcj^laco by an 

r/ij-(limeiisioiial vector a*, with the spectral iioriii being identical to the Eiiclidcaii norm 

of a vector. The vector version combinatorial problem is then 

max II 

s.t. Xj € {1 , -1} , i = 1,2，...，n. 
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This is (Hjiiivaleiit to tho mkkIcI {Tns) with d = d' = I. whose NP-hardness is cisscrtcxl 

by Proposition 7.2.1. 

Turning back to the gdieral matrix version {MCP), the problem htus an cquival(�ut 

formulation 
max (y�) ' l (EILi 丄‘成 

s.t. x.e B", y^ 

wliicli is essentially the model (T^s) with <7=1 and d' = 2 

max F{x, y\ y-) 

s.t. X € 1", t/' 

whore a^isociated with the trilinear function F is a third order tensor F G R"^"" 

whose (z, j , A')-th (�ritry is (J, k)-th entry of the matrix A,-. According to Thcorrni 7.2.2, 

the largest matrix (in terms of sptx tral norm in (MCP) formulation) can bo appmxi-

imited with a factor of ^ 小丨.”,。}. 

If the given n matrices A, {i = 1 , 2 ,…， a r c symiiietric, then the iiiaxiiiiizatioii 

(Titcrion ('an h(、set for the largest eigenvalue in stead of tlio largest singular value, i.e”, 

max A,nax(E"=l ) 

s.t. I'i € {1,-1}, i = 1 ,2 , . . . , 7i. 

It is also easy to formulate this problem as the model {Hus) with d ~ \ and d' — 2 

max F{x,y,y) 

s.t. X e B", y e S"'. 

whose optimal value can also be approximated with a factor of y ^ by Tli(K)reiii 7.3.1 

and the remarks that followed. 

7.5.2 Vector-Valued M a x i m u m Cut 

Consider an midiroctod graph G — {V, E) where V = {tM，?。，. •.，"„} is the set of the 

vertices, and E C V x V is the set of the (xlges. On (�ach (»(lge c e E there Ls aii 

associated weight, which is a nonntgative vector in this case, i.e., € R"', We > 0 

for all e € £*. The problem now is to find a cut in such a way that the total sum of 

tlie weights, which is a vector in this case, has a inaxiinurn norm. More formally, this 

problem cmi Ijc fonnulatcci a»s 

max 
c is a cut of G eec 
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Note that the usual max-c\it problem is a special case of tlie above model wherr (�a(,h 

weight Wf. > 0 is a scalar. Similar to the scalar cast̂  (ser |4()]), w(�may roforimilatr U k � 

above problem in ))inary variables as 

iiiax 

s.t. X € B". 

where 

= 

—Wij i 半 j , 

“ (7.G) 
+ Wif, I = j. 

Observing the Cauchy-Schwartz inequality, wc further forinulate the above problem as 

‘ nmx ( E i < t j < „ ^i-^j'^ij) y = F{x ,x ,y ) 

s.t. X e y e S"'. 

This is the exact form of {Hbs) with (1 = 2 and d' = I. Although the square-free 

property in x does not hold in this model (which is a (.oiiditioii of Theorem 7.3.1)，one 

can still replace any point in the hypercube (B") by one of its vertices (B") without 

dcx-reasing its objective function value, since the matrix F( ' , •,e^) = ((Wij)k] is 
V j / Tjxn 

diagonal dominant for k = 1 ,2 , . . . , m. Therefore, the vector-valued iiiiix-ciit problem 

admits aii approximation ratio of ^ by Theorem 7.3.1. 

If the weights on edges are positive semidefinite matrices (i.e., Wij e R"'^"', Wij ^ 

0 for all (i, j ) 6 E), then the matrix-valued iiiax-cut problem can also be foriiiulateci a.s 

max A„,ax 

s.t. X e B", 

where W'^j is defined similarly as (7.6); or equivalently, 

max yT (Ei<ij<u ^i^j^ij) V 

s.t. X e 1", y € §"', 

the model (Hbs) with d = d' = 2. Similar to the vector-valued case, by the diagonal 

dominant property and Theorem 7.3.2, the above problem admits an approximation 
3 J 

ratio of ^ (罢 ( m n ) ~ 2 . Notice that Theorem 7.3.2 only asserts a relative approxima-

tion ratio. However for this problem the optimal value of its minimization counterpart 

is obviously nonnegative, and thus a relative approximation ratio implies a usual ap-

proximation ratio. ； 



Chapter 8 

Conclusion and Recent 

Developments 

This thesis discusses various subclasses of polyiioiniaJ optiiiiizatioii problems, with a 

focus on deriving polynomial-time approximation algorithms with worst-case perfor-

mance guarantees. These subclasses include many frequently encouiiterefl constraints 

in the literature, such as the Euclidean spherical coiLst rail its, the Euclidean ball con-

straints, the ellipsoidal constraints, the binary constraints, and a mixture of them. The 

objective functions range from multilinear tensor functions, homogeneous polynomials, 

to general iiilioinogeneous polynomials. Multilinear tensor function optimizations play 

the key role in these algorithms, whose ideas are based on lower order multilinear form 

relaxations and decomposition routines. Connections between multilinear functions, 

homogenous polynomials, aiid iiihoiiiogeneous polynomials are established in preserv-

ing the approximation ratios. All the approximation results are listed in Table 8.1. The 

applications of these polynomial optimization models are discussed’ which open up a 

door to many potential modeling opportunities. Reports on iiuiiierical testings show 

that the algorithms proposed are actually very effective, and they typically produce 

high quality solutions. The worst-case performance analysis offers a theoretical 'safety 

net', which is usually far from the typical performance. Table 8.1 summarizes the whole 

structure of the thesis and the approximation r a t i o s . -

Most of the results presented in this thesis have been documented and submitted 

for publications in research papers [47, 48，49], which are all joint works with He and 

Zhang. Chapter 3 and Chapter 4 are mainly based on [47]，Chapter 5 is mainly based 

135 ‘ 
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\ 
i 

Table 8.1: Thesis organization ami theoirtical approximation ratios 

Section Model Theorem 

3.2 

3.3 

4.2 

4.3 

4.4. 

{Ts) 3.2.1 

(TQ) 3.3.4 

{Hs) 4.2.2, 4.2.4 

(HQ) 4.3.L 4.3.2 

(Ms) .2, 4.4. 

4.4.2 {MQ) 4.4.5, 4A.() 

5.2 iPs) 5.2.2 

5.3 (PQ) 5.3.1 

5.4 •{Pc) 5.4.2’ 5.4.3 

6.2 (TH) 6.2.1 

6.3 {HB) 6.3.2, 6.3.3 

G.4 (MB) 6.4.1, 6.4.2 

6.5 (Pb) 6.5.2 

7.2 [TBS) 7.2.2 

7.3 (HBS) 7.3.1, 7.3.2 

7.4 (MBS) 7.4.1, 7.4.2 

Approximation performance ratio 

/fl-2 \ "2 
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oil [48], and Chapter G and Chapter 7 are mainly bastnl on [49]- The results not on-

ly enhanced approximation algorithms for high clê greo polynomial optimizations, but 

also opened up a wide range of new r(»sear(.h topics for niodoling and novel solution 

methods. The research works have attracted some follow-up studios on' the topic. For 

instance, So [108] improved the approximation ratios of the models {Ts) and {HS) to 
( (1 — 2 \ » 

Q ( n ^ I i and n ( ( 字 ) 丁 ) ’ respectively. Very recently, He et al. |4Gj pro~ 

posed some fairly simple randomized approaches, which improved the approximation 

ratios of homogenous polynomial optimizations with spherical constraiiits aiici/or bi-

nary constraints, and the orders of the ratios were comparable to that in [108]. Apart 

from the improvements of the approximation ratios, Chen et al. [25] established the 

tightness result of multilinear form relaxation for the model (Hs), and also derived 

some local improvement algorithriLs for solving general polynomial optiiiiization prol)-

leiiis, especially for the model (PQ). Meanwhile, many other researcli topics are also 

currently under iiivestigatioius, including the extensions of polynomial optiiiiization to 

complex variables; the minimization counterparts of tho models discussed in this the-
4 

sis; the inapproximability results of these models; and of course issues from practical 

applications of these models. "’ ‘“ 
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