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Abstract

tion, subject to some suitable polynomial equality and inequality constraints. Such
probloiii fonnulatioii dates hack to the IOtli century, when the relationship 1)(CJ tw(J ([ i

noiiiiegative polynomials and kuiii of squares w([J r([] discukbgdHilbcrt. Polynomial

nicclianic's, signal processing, sptnx’h rcn'ogiiition, etc. Tliis thesis prcs([] iita study

of some iinportant subclasses of polynomial optimization problems arising from vari-

ig

som([J commonlgncouiiterod constraint sots, such as the Euclidean ljall, the Eiirlidcan

sphere, the iiiterscH'tioii of co-conterccl ellipsoids, the binary liypcrcube, as well as a

quadratic constraints, a general polynomial with convex constraints, a general polyno-
niial with binary constraints, and a lioiiiogeiieous polynomial with binary and spherical
constraints. All the problems under consideration are NP-hanl in general. The main
coiitrilnition of this thesis is on the design and analysis of polyiioinial-tiiiio approxima-
tion algorithms with giiarantcxxl worst-case performance ratios. These approximation
ratios arc dependent on the problem cliiiioiisions only, and the new results improve
soiii(» of the existing results in the literature. In each class of these optimization inod-
els, some application examples arc discussed and results of numerical experiments are
reported, revealing good practical performance of the proposed algorithms for solving

sonic randomly generated test instances.
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Chapter

Introduction

Polynomial optiniizalion prohkmi is tlic following g([) n(Copamization iiiodcl

{POP) mill P{X)
s.t. @SsSor=12 It) 1,
"= ()N =12 2,
X = (:ri,j.c2,..- € R",
WIUTC P{X)y FI{X) {I = 1,2,..., NI\ and ogx) {J = 1.2,...JI[2) arc s<mi([] multivariate
and lias applications in a wide rango of areas. Many algorithms havo b<Hni proposed

for siihclassos of {POP), and spcH-ialized software pa('Hag«[18av (] btvd(1 v(C1 IQp(C7 (1.

1.1  History

The modem history of polynomial optiniizatiou may date back to thv 19th (viitury wlien
the relationship I)(T t‘wcciiomiegative polynomial function and the suiii of sgiiams of

polynomials was stiidicd. Given a iniiltiviiriate polynomial function that takes only
uonnogativo values over the real iiufuhdrs, can it hv ropn*Mited asa sum of stjiiares

of polynomial functioiis? Hilbert [54] gave a concroto aiLswer in 1888 > wiliicli asserted

Later, in Hilbcrt's 17th problem 0110 of the famous 23 Hilbort problems addrc/sstxi in
a cclobratwl speech in 11)00 by Hilbert, a noiiiiogative polynomial entails oxpn”sion

of defiiiito rational functions as quotients of suiils 6i squares. Given a multivariate
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polynomial function that takes only noimej”ativc valiios ovor tli(J r(linahluMS, can it I)(C

r(C7 )r(C s(fasg@uid of squares of rational functions? This was solved in t:li(C] aHirinativc,
by Artiii [8] in 1927. A continuous and roustmetivo algorithm was lat([7 found by
Dolzell 3() ill 1984. About, 10 yoars ago, Lassem1 |7(JF1] and Parrilo [93. !) 1] proposed

problem. The inothocl is based on tho fact that deciding \vh([7 tIKaigiven polynomial

is a sum of squan”™s can 1)([] reducetb the feasibility of a sciiiidoHiiitr program (SI)1)).

The SOS approach has a strong theoretical appeal, ns it can in principle solve any

1.2 Applications

Polynomial optimizations hav(] widgpplications - just to naiiio a f(CI (¢) xampl(bigmed
m(J ricdinear algebra, gmmt.iim iiiodianics, signal processing, spoedi rocogiiitioii. It is
basically impossible to list, oven very partially, tho suca”ss stories of {POP),  ‘simply
due to its sheer size in the litoratiiro. To motivate our study, below wo shall nonotlirloss
mention sonic sample applications to illustrato the'iisefulnrss of  {POP).

Polynomial optimizations have ininirdiato applications in investiiirnt s(i(MK.("I For

instance, the celebratcxl iiiean-variance inodel \Wa»s proposed by Markowitz [81) oarly in

studied polynomial optimization of stoch™vstic foodback control for stablr plants. In
diffusion iiiagiietic rcsonaiice imaging (MRI), Bariiipoutis et al. [14] pr(C] s(mtr@d aisv
for the fourth order tensor apj>roximatioii. In fact, there arc a largo chuss of (POP)
arising from tensor approximations and (decompositions > which are originated from
applications in psyclioinetrics and clicinoinctrics (seo an excellent survey by Kolcla
ami Bader [G8j). Polynomial optimizations liavo also applications in siiial processing.
Maricic et al. [79] proposc™d a quartic polynomial model for l)liiid diaimcl equalization
ill digital coiniiiuiiicatioii, and Qi and T(H) [101] coiiducted global optimization for high
degree polynoinial minimization models arising ffoin signal processing. In quaiituiii

physics, Dahl ot al. [27] proposed a polynomial optimization model to verify whether a
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Gurvits [42] showed that tlull ontaiigleiiKMuorification is NP-liard in goiioral. In fact,
th( iiKxigliscnss<HI in 271 is related to tlio ii(iiini(»gativo quadratic iiiappiiigs stiiciicd
)y Luo et al. [76].

Ainoiij® g([J mCpatymia | fiiiictions - li)mog(_! nrQug )>lyn(Mnials play an important
role in approximation theory (s(v 0.g., two rccciit j)apors by Kr(K)ami Szabados [G9] and
Varju [117]). Essoiitially their results state that th((J li()itiog([! iirgphBynoiiiiM functions
ar(1 fairl§dense’lamong continuous fiiiictioiis in a (7 (7 rtfeell-doHiicd sonso. As such,
(7 al. |39] formulated a fiber detection proljloiii in diffusion MR l)y inaxinii/.ing a
lioiiiogcnous polynomial fiinction subject to the Eiicli(ioaii sphorical constraint, i(. .

(HS) max F{X)
s.t.  |e2=1,xe R™

Tli() constrainof (HS) is a typical polynomial (] qualit.gonstraint. In this ease, tho
is widely appeared in th((] followingxamples. In material scioiicos, Soaro ct al. [110
proposed some 4th, Gth and 8th order homogeneous polynomials to model tlio plastic
aiiisotropy of orthotropic sheet metal. &ii statistics, Micchelli and Olseii [82] coiisiclored
a iiiaxiiiiuiii-likelihood estiiiialion iikklcl in spctnli recognition. In hiiiiKTical linear
tilgcbra, (Hs) is the foriiiulatioii of an interesting prohloiii: tlio eigenvalues of teii.sors
(see Qi [99, 100] and Ni et al. [91]). Aiiotlier widely used application of {Hs) is regarding

to tho best rank-ono approximation of higher order tensors (sco |(i7, 68)).

Il fact, Markowitz's mean-variance model [81] inentionccl previously is also opti-
iilizatioii on a homogeneous polynomial, in particular, a quadratic form. Recontly, an
intensified discussion on investment models involving nioro than tlie first two irioinonts
been another source of iiiypiratioii imclerlyiiig polynomial optimizations. Mmidolbrot
and Hudson [78] made a strong case against a ‘normal view' of the invostinont returns.
The use of higher inoinents in portfolio selection hecoiiicj? quite nwossary. Along that
line, several authors proposed invostnioiit models incorporating the higher-moments,
e.g., (Ic Athaydc and Flore [10], Prakash 'eA\t al. [9G], .Joiidcau and Rockiiigcr [GQO), aiid

Kleiiiati ot al. [64]. However, in tlioso models, the polynomial functions involved are
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no longer hoinogoneous. In particular, a v(Ty g("i(] niliodcl in [& 1] is

st. YIUl =1x>0 X€R",

four moments, and thoy sum up to ono. i.e., \+ d+ + J = 1. Besides invcstiiiciit
sci(Mico, many other importaiit applications of i)olym>mial fuiK tion optimization involve
an objective that is intrinsically iiihoiiu)goiicH)us. The other example is the () asdgiiai,([]
fonnulation to the .sensor network localization prohloiii proposed in Liio and Zhang [77].
Specifirally, the problem takes tlie form of

niin amr ' - - + MT'—— A~nf

st. iI'" GRKI€ S

where 4 and S doiiotr the set of anchor nodes and sensor nodes respect ivcly, {/ 6

variables in discroto values, in particular binary variables, arc also widely studied. For

exain})lo, maximize a polynomial function over variables picking from 1or -1, i.e.,

. {Pii) max  p{x)

‘e \ s.t.  Xie {1,-1}, 1= 1.2, u. 0
This TYPO of problem can be found in a great variety of application (loiimiiis. liuUhkI.
(Ph) has bwn invcstigat()d extensively in the quadratic case, due to its roiincctions
to various graph partitioning problems, e.g., the iiiiixiiimin cut prohloin [10]. If tlir
degree of the polynomial goes higher, the following hyprrgrapli iiuix-cover problem is
also well studied. Given a hypcrgraph H = (V,E) with V being the set of vortices
and E the set of liypereclges (or subsets of V), mid each liyporcxilgo e € is associated
with a real-valued weiglit IV{E). The problem is to find a subset s of tli([] verticest't
V, such that the total weight of the liypcnniges covered by S is iiuixiiiiized. Denoting
XIE {0,1} (= 1,2,...,n) to indicate whether or not vortex | is selected in S. TIli(C
problem thus is imiXa.e{o,i}" Ere/i Iliee By a siiiipk(] variableraiisforinatioii

Xi— {xi + 1)/2, the prol)leiii is traiisfornied to (Pfs), and via? versa.
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Slid l'it has nlJ c([1 ivated | iiti(>m the literature (sck* (O .jifl,; }. 11]). It is also known as tlio
Fourier support grai>li prohlciii. Malhcinatically. a polyiioinial function p : { — 1.1}"—>

R has Fourier expansion i){x) = Z‘s’c{i:2 Oj*s" " whidi is also callt'd the

optimization iiiotlels studiod in this thesis. In jijciuMal, (/)/.(is) rlosdy n(1k( ~ té Hiuling
the nifixiniiiin) v([J ight(degbndoiit set in a irrapli. In fact, any iiistmirr of (/)") can
he traiisfonnwl into the iiiaxiiimni weightcd ind(C i)([ ii(lot iproblem, which is also
100]. The transfonnatioii uses t,h([1 concopbf a conjiict graph of a 0-1 jjolyiioniial
function, for details, one is n*ernnl to [21, 5] Beyond its coiiiiectioii to the graph
jHobloiiis, (PII) also luus applicatioris in noural networks [58, 21. (i), orror-corroctiiig
codes [21, 97], etc. In fact, Bruck ami Blauiii |21] reveal th() naturaCHiuivalciicc within
the global maximiiin of a neural network. R(H'cntly Khot mid Naor |G3] show that it has

api)licati()iLs in the prohlciii of refutation of raiidoiii k-CNF fbriiiulas |32, 33,

If the objectivf polynomial fum.tiori in (/") is lioiiiogeiiooiis, likewise, the homog!! -
iiooiis gmidratix' case litis bo<[] studied extensively, e.g., [40, 88, 90, 5). H()iiiogoii(H)us
cubic polynomial case is also discusseci by Khot and Naor [03]. AnotIKT interesting
problem of this claims is tho oc 1-iioriifof a matrix F = {FJ). studied bv Alon and
Niior [5], i.e.,

st x€ {K-1}", ye {1,-1}"~.

It is quite natural to (CJ xt.(Cthiél probloin of oo I-noriii to higher order tensors. In
particular, the oc  I-noriii of a d-ih order tensor F = (F,,,*...,) can br (lefinccl as
lliax P LR,

st € {1,513"S k= 1,2,..").

Another generalization of the matrix 00 I-iioriii is to extend tli(C entry of the
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matrix F to a syniiiiotrir matrix A%j € R"'"'™, i.e.. the prohlciii of

max A,ax (Ei<,<,,,i<j<n, ".7jA,))
s.t. XE{l.-1}'". ye {l.-1}"-.

whore A, ax indicates the largest (Mjoiivahio ot'a matrix. If the matrix A, e R"""A'"'-
is not restrict([] tb be syiniiietrk-. wc may instead maximize the largest singular value
i.e.,

max nwx (1; 1</<,,,1<0<,,, one'e'/JN])

s.t.  Xe {l.-1}'"". ye {1,-1}"~

Tlicsc two pmDI(C) marc ac tually equivalent to *

imx Z]1<k.T, Jj<n2,1 <k.f<vi F’jfd T_

s.t. {I>-n" 1>y €{1>-1]">
l|z]]2 = \.ze r" ‘
and
m a x XN<,<M, <j<n>, W <k<w,. I<Kin2  F > jkf -liVj (1)f

st are {l.-1}"", ye {l.-1}""

respectively, whore F ~ {Fijf.f) is a fourth (r(l(_tensor, whoso {uj k.f)-th entry i's
the F)-T\I entry of the matrix AJ. These two special models of {POP) EXTENDS

which is also an important subclass of {POP) studied in this tliosis.

1.3 Algorithms

Polynomial optimization problems ar([ typicallyion-convcx and liighly nonlinear. In

most casos, {POP) is NP-hard, oven for very special instances > such as iiuixiiiiizing a

to do Klerk [G5] for a survey on the computational complexity issues of polynomial
optimization owr some simple coiustrtiint sots. In the case that the constraint set is
a siiip)l(?x and the objective polynomial has a fixed degree~ - it is possible to derive
polyiioinial-tinie approximation schemes (PTAS) (see de Klork ot al. [GQG]), albeit the

result is viewed mostly a« a theoretical one. Almost in all practical situations, the
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problem is difficult to solve, tluxiretically as well as nuiiicrically. However, the vsearch
for geiKTfil and efficient algorithms for polynomial ()})timi/ation luw bodMi a priority for

many .matlicinatical optimizrrs and rosearrhors in various applications.

Perhaps thr very first attoinpt for solving [ >olyuoniia] oyjtiinizatioii problems is

from problem instance to instance. One clircct approach is to apply the iiiotliod of
L»Hgraiigo iimltiplicTs to reach a set of multivariate polynomial equations, which is the
Karusli-Kulin-Tiickrr (KKT) system that provides the ii('((\ssary coiiditioiks for opti-
iiiality @0e.g.. [122, 39, 57]). In [39], the authors devoloj) special algorithms for that
purpose sucli as subdivision methods pr()p()s(” dy Monrrain aiicl Pavone [8i], and gen-

eralized normal forms algorithms designed by Monrrain and Trohuchot [85]. However,

have been studied and testetl (see e.g., Qi |98] aiid Qi et al. [102], and the i-[f(T1 r(T7 ii(.0s
therein). Recently, a tensor oigenvaluo based method for a global polynomial optimiza-
tiori problem was also studies by Qi ot al. [103]. Moreover, Parpas and Rusteni [92], and
Mariiiger and Parpas [80] proposed (iiffusioii-bas(»(l inetliods to solve tlie noii-coiivox
polynomial optimization iiiod(»ls arising from portfolio sekx'tioii involving higher iiio-
ineiits. For polynomial integer programming models, e.g., (P/?), tho most roininonly
lised technique in tlie literature is traiisfonning them to the iiuixiiimm woightofl inde-
pendent set problems (‘see e.g.. [12 > IOG]), by using the m.q)t of a coiiHict graph of a

0"1 polynomial fiiiiction.

Suiii of squares (SOS) approach has been one major systematic approach for solving
general polynomial optimization problems. Tho approach was proposed by Lasscrre (70,
71) and Parrilo [93, 94], and significant research on the SOS method has b(x[1 doiiductcd
ill rwoiit ten years. The SOS method lia« a strong theoretical appeal, by constructing
optimization probk”ni in such a way that tho corresponding optimal values are monotone

and converge to the optimal value of the original problem. Thus it can in principle solve



8 eelIntroduction

Nesterov [89] showed that the SOS niotliod in (7 (Hiil)inat.iowith tlie SDP solution has a
polynomial-time coiiiplexity- This is also tnio for iiiicoiistrainrd multivariate quadratic
polynomial and hivariato qgiiartir ])()lyiioinial wlicn the nonncgativity is ([1 quivrtl([tot
the sum of sgiian”. In gonoral, however, tlio SDP probl((7 iirgquirofi to h([J solveby tlir
SOS method may grow very large, and is not prartiral when the program dinuMisioii
gO(s high. At any rate, thanks to the nnontly (i(C0 v(C7 I)p€ficient SDP solvers ((».g.
SoDiiMi of Sturm [112], SDPT3 of Toll ((74l. [115]), the SOS mothod appears to he
attractive. Heiirion and Lass(Tr([0 |5Q]rveloped a specializcd tool known as GloptiPoly
(the latest version, GloptiPoly 3, can bo found in Henrioii (Tlal. [53]) for finding a global
optimal solution of polynomial optimization i3rol)leins on the SOS mothod. based on
Matlab and SoDuMi. For an overview on tlie rmMit thwrotical develojHiients. we refer

to tlie excellent survey by Laurent (72 .

On the other side, the iiitrartability of general polynomial optimizations tluMcforo

(ilie to Gocmaiis and Williamson [40]. where essentially a ().878-appr()xiiiiatioii ratio of
the model maXjcefri}" ™ “ FX is shown with F being the Laplaciaii of a given graph.
Note that the approach in [40] has boon generalized subsequMitly by many authors,
including Nest(J roy88], Ye [118 > 110], Ncinirovski ot al. |87], Zlimig |120], Clmrikar
and Wirth [24], Aloii anci Naor [5], Zhang and Huang [121], Luo ot al. [75], and He ct
al. [50]. In particular, when tlie matrix F is only known to he positive stMiiideftiiito,
Ncstrov [88] derived a O.GSG-approximation bound for inciXa?ji _J}». X FX. For general
diagonal-free matrix F, Charikar and Wirth [24] derived an  (1/ log nj-approximation
bound, while its inapproxirnate results are also discussed by Arora ct al. |[7]. For the
matrix oo A 1-norm problem maxa.(;{i._i}ni,ye{i, i}"2 a? Fy, Alon and Naor [5] de-
rived a 0.56-approxiiiiatioii bound. Remark that all these approximation bounds remain
hitherto the best available ones. In continuous polynomial optimizations, Neiiiirovski
form over the intersection of M co-ceiitercd ellipsoids. Their models arc further studied

and generalized by Luo et al. [75] and He et al. |5()].

Among all the successful approximation stories meiitioiicKl above, the objective poly-

noinials are all quadratic. However, there are only a few approximation results in the
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literature when the degnx(] othe ohjoctivo polynomial is grrat,([]than two. Perhaps
tiie very first one is due to de Klerk ct al. [GG] in d(Tiviiig a PTAS of optimizing a fixed
(legrw homogenous polynomial over a simplex, and it turns out to ho a PTAS of opti-
mizing a fixed clogm' ove'ii form (honiogeiuHJus polyiioniial with only cvoii oxponciits)
over the spherical constraint. Later, Barviiiok [15] ‘showed tliat optimizing a (.(Ttaiii
clriss of polynomials over the spherical constraint also admits a randoiiiizod PTAS. Note
that the results in [6G, 15] apply only when the objective polynomial lias sonic spccial
stnicturo. A quite general result is due to Kliot and Naor |63], where they showed how
to estimate the optimal value of the problem inaxa-""i Yli<ij k<ii A5 jk-JWjIKk with
{Fiji,-) being square-frcn?, i.e., = 0 whencvrr two ()f the indices arc ([ giuibpec ifical-
ly. they presented a polynoniial-tiine raiKloinizocl procedure to g([1dn ostiiiiatcd value
that is no less than i } (1 ~ ™ " )tiiiios the optimal value. Two rccciit papers (Luo and
Zhang [77], and Ling et al. [73]) disciisscKI polynomial optimization problems with the
degree of objective polynomial being four, and start a whole now researrli on approxi-
iiliation algorithms for high ciegrw polynomial optimizations, which arc osstMitially the
main subject in this thesis. Luo and Zhang []!] coiisiderccl quartoptimization, and
showed that optimizing a homogenous quartic form over the intersection of some co-

ceiittTecl ellipsoids is essentially oquivaleiit to its (quadratic) SDP relaxation i)robl(”n,
J

which is itself also NP-hard. ‘ However, this gives a handle on the design of approx-
imation algorithms with provable worst-case approximadoii ratios. Ling ct al. [73
a biquadratic function over two spherical constraints. In [73], approximate solutions
as well as exact solutions using the SOS method arc coiisiclerod. The approxiiiiatioii
bounds in [73) are indeed comparable to the bound in [77], although thoy are dealing
with two different models. Very recently, Zhang et al. [123] and Ling al. [74] further
studied biquadratic function optimization over quadratic constraiiits. The relations
with its bilinear SDP relaxation are discussoci, based on which they derived some data
dependent approximation bounds.

In the meanwhile - when the objective functi6ii of (POP) is a high degree inhomo-
geneous polynomial, we have not seen any approximation results so far, even in the
relative sense (for a discussion on relative approximation algorithms, sec Section 2.3).
As a matter of fact, so far all tho successful polynomial-time approximation algorithm-

s with provable approximation ratios in the literature, e.g., the quadratic, cubic and
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quartic models meiitionod above are all dependent on the homogeneity in a cnicial way.
TcH'linically, a lioinogeiioiis polynomial function allows (me to scale the overall function
value along a given dinx.tioii, which is an essoiitial operation in i)r(viiig tho quality
bound of the approximation algorithms. Tlius, extending the solution methods and
the corresponding analysis from hoinoyeiieous polynomial oj)tiinizatioiis to tlie geiioral
inhomogeneous polynomials is not straightforward. Tliese trigger us to scarcli for a])-
proxiinate solutions of {POP) with an inhoniogcneous polynomial ohjcH tive. which is

one of the targets to adiieve in this thesis.

1.4 Main Contributions

This thesis is coiiccTned with some important and widely iLsod subclasses of polynomial
optimization problems, including optimization of a multilinear function with quadratic
constraints, a hoiiiogeiieous polynomial with quadratic constraints, a goncVal polyno-
mial with convex constraints, a general polynomial with binary constraints, and a ho-
mogeneous polynomial with binary and spherical constraints. Tlie dotailoci description
of tlie problems studied is listed in Section 2.1.3. All these problems arc NP-harcl in
general, and the focus is on the design and analysis of polyiioinial-tinie approximation
algorithms with provable worst-case perfoniumco ratios. We also discuss the appli-
cations of these models, and the riuinerical porforinance of tho proposed algorithms.

Specifically, our contributions are highlighted as follows.

1. We propose approximation algorithms for optimization of any fixed degree hoiiio-
gcneoiis polynomial with quadratic constraints, which is the first such result for
approximation algorithms of polynomial optimization problems with an arbitrary
degree. The approximation ratios depend only on the dimensions of the problems
concerned. Compared with any existing results for high degree polynomial opti-
mizations, our approximation ratios improve the previous ones, when specialized

to their particular degrees.

2. We establish systematic link identities between multilinear functions and hoiiioge-
neous polynomials, and thus establish the sanie approximation ratios for hoinoge-

neous polynomial optimizations with their multilinear form relaxation problems.

3. We propose a general scheme to handle inhomogeneous polynomial optimizations
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through the method of hoinogonization. and tims establish tlic saiiic* approxima-
tioii ratios (in relative sense) for iiihoniogeiioous polynoinial ()i.)Uiiiizatioii‘s with
their honiogeiicx)iis polynomial relaxation j)rohlciiis. It is the Hrst approxima-
tion hound of approximation algorithms for gnuTal iuhoinogonoons polynomial

optimizations with a high degnx'.

4. We propose several ciecoinposition routines for polynomial optimizations over
different types of constrailit sets, and derive approxiiiialioii bouiids for iimltiliiRW

function optimizations with their lower degree relaxation problems.

5. With the availability of our proposwi approximation algorithms, w( illustrate

some potential mcxleling opportunities with the now optimization models.

This thesis is organized as follows. First in Chapter 2, \v([ introcliicthe notations
and models, as well as providing necessary preparations for bettor uii(lcrstanciiiig the w-
hole thesis. Then from Chapter 3 to Chapter 7, wo discuss five sulK'la.ssos of polynomial
optimization probloiiis, with each subclass in one chapter (the detail description of these
subclasses is introduced in Section 2.1). In each of these five chapters, polynoinial-tiiiie
approximation algorithms with provable worst-case pcrfoniiancc ratios will be proposed
to solve the models conccTiieci, followed by a discussion on their applications aiui/or a

report on numerical performance of the algorithms proposed. Finally, in Chapter 8, w([]

future research topics.



Chapter 2

Notations and Preliminaries

2.1 Notations and Models

Throughout this thesis, we exchisivoly use the boldface letters to doiiote vectors, ma-
trices, and tensors in general (e.g., the decision variable X, the data matrix Q, and the
tensor form F), while the usual non-bold letters arc reserved for scalars (e.g., J'[ being

the first coiiipoiient of tlic vector X, Q" being one entry of tlio matrix Q).

2.1.1 Objective Functions

The objective fiinctioiLS of tlio optimization models studiccl in this thesis arc all iimlti-
variate polynomial functions. The following multilinear tensor function (or imiltiliiiear

form) plays a major role in the discussion

Function T ‘oo = A N
w2 "Mt

where x» GR*" for A = 1,2,cZ; and the letter 'T" signifies the notion of TENSOR. In
0

the shorthand notation we denote F = (F-,..") G ... M 0 be a D-TH order
tensor, and F to be its corresponding multilinear foriri. The meaning for multilinear
states if one fixed (X™ ¢ «"X") in the function F, then it is Alinear function of X\
and so on.

Closely related with the tensor form F is a general D-TH degree homogeneous poly-
nomial function F{X), where x 6 K". We call the tciisor form F = (F,-,"..1"") SUPER-
SYMMETRIC (see [07]), if any of its components /= “--'% invariant under all peririuta-

tioiLs of {ii,i2, e e« As any homogeneous quadratic function uniquely determines

12
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a syniiiietric matrix, a givoii f/-th degree lioiik)gcii(X)ns polynomial function f{x) also
uniquely (letennines a siipor-syininetric tensor form. In particular, if W denote a d-th

d(L) grrbomogeneous polynomial function

Function H /(j;) = AN f]

N
1i.s...ssr 112" :

then its corresponding supcr-syiniiietric tensor form can I writton as F = 6

with = m2dn¢" “>]2>.0 ¢ )1, wliere [n(il > /2,-.- > is the imiiibrr

of distinctive periiiiitatioris of the iiidiccs {z1.i), » =+, } This supcr-syiiiinetric toiisor
representation is indoecl unique. Lot F Ikl itsorresponding inuUiliiiear form (I(C7 fim d
by the super-svinrnetric tensor F, then we liavo f{x) = X,... ,X). Tho lottor

. ( ‘
l(T(0 mss(xl to oiiiplia.sizc that the iK)lyiioinial function in question is korrwfjejKtous.

We shall also consider in this this the following mixed form
Function M ey e XXX e A,

(N d-2 (s
where d\ + d)-f-e. +d= d, x* GR*" fork = 1,2,..., s d-th ordor tensor form
F e {322, ' *; tlie letter 'M" signifies the notion of mixed polynomial

form. We may without loss of generality assume that F luus partial syinnietric property,

namely for any fixed (xJ ,x2.,. ea*), F(", « e, X", e, W aalh " e e @™ s
A VAR \% ‘ A \% ‘
d\ <h

a supcr-syiiimetric d\-th order teiLSor form, and so on.
Beyond the homogeneous polynomial functions described above, wo also study

in this thesis the generic multivariate inhoiiiogeiieous polynomial function. An n-

of homogenous polynomial functions in decreasing degrees as follows
d d
Function P pix) fk{x) +/o=" ay e+ x) + /(>
k=1 A4 A
where x GR", /o 6 R, and fk{x) = Fk(x, x, <<*,x) is a homogenous polynomial fuiic-
k
tion of degree k for k = 1,2,... and letter ‘P’ signifies the notion of polyjiorniaL

One natural way to deal with iiihoinogeiieous polynomial function is through hojrwge-
nization\ that is, we introduce a new variable, to be cieiioted L)y x/, in this thesis, which

is actually set to be 1, to yield a homogeneous form
d d
p{x) = A O+/o=E f 4 , "+ hitd = /(X),
k=l k=l
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\

where f{x) is an (n + I)-diinciisioiial d-th degree hoiiiogoiicous polynoinial function,

with variable x € M™”*. Throughout this thesis, the 'bar’' notation over boldfacc lower-

case letters, 0.g., X i reservexl for an (n+l)-dimt(] iisi()nalector, with the underlying loi-

ter X referring to the vector of its first 71 coiiiponeiits, and tlie subscript.  (tlir subscript
of Xfj) referring to its last roiiipoiieiit. For instance, if x = (: ], xj, e*°,./:,, +i) [€
Rn+i, then X = (a:i,x'2,... € M"and j;/, = E M.

Throughout we adhere to the notation F for a iiniltilinoar form (Function T) definocl
by a tensor form jP, and f for a honiogciioiis polynomial (Function H) or a mixed
lioiiiogeDcous form (Function M), and p for a geiUTic (iiihoinogen(K)us) polyiioniial
function (Function P). Witliovit loss of generality w([1 assumtghat "1 < U) < eee<
in the tensor form F € M™ and N\ < 112 < eee < [ISin the tonsor form

F6R1Ixo 0. > "-> . We also assume at Ic»as([] ormiiipoiiciit of the t(»nsor form, F
a *

in Functions T, H, M, and F,i in Function P is nonzero lo avoid triviality.

2.1.2 Constraint Sets

The most commonly usecl coilStraiiit sets for polynomial optimization prol*leiiis arc

studied in this thesis. Specifically, wc consider tho following types of constraint sots:

Constraint B {x eR"|xr = Li=1,2,...,n} =: B";

Constraint B {x e R" | <li=1 2 ., 7}=:

Constraint S jx € R"|||X|| := (X" + +e.+xj) =1} 8%
Constraint S {x e ||a] < 1} =: 8"

Constraint Q {x eE" | x*QiX < 1,i=12,....m}:
Constraint G {a; € R'| :c€ G}.
The notion 'B' signifies the binary variables or binmij constraints, and ‘S’ signifies

the Euclidean spherical constraint, with 'B' (liypercube) and % - (he Euclidean ball)
1

signifying their convex hulls respectively. The norm notation ‘|| *||" in this thesis is the
2-norm (the Euclidean norm) unless otherwise specified, including tliose for vectors, ma-
trices and tensors. In particular, the norm of the tensor F = :,,A..." GM™

9 29

is defined as

iinii =/ E | ~Auh-i/- .

The notion 'Q" signifies tho quadratic constraints, and we focus on convex quadratic

constraints in this thesis, or specifically the case of co-centered ellipsoids, i.e., Q, ~ 0
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/
ll. I
fori — 1,2,..., 1l and @ — 0. A (eicrar COliveX compact set in R" is also

(iiscuss(x! in tliis thesis, which is denoted by tlio notion Constraints B, S, Q and G
arc convox, while Constraints B and S arc noii-coiivox. It is ol)vious that Constraint G
is a generalization of Constraiiit Q, ami Constraint Q is a gonoralization of Constraint

S and Constraint B as well.

2.1.3 Models and Organization

All the polynomial optiniization inodols cliscusscd in this tliosis are iiuixiiiiizatioii prol)-
leiris, and the results for most of their niiniinization counterparts can he similarly
tioiis clcscribod in Section 2.1.1, and the names of the constraint sets d(-\s(CJ rih(iin(l
Section 2.1.2, with the names of the constraints in tho subscription. For ([ xainplos »

Jmodel (Ts) is to maximize a multilinear tegsor function (Function T) under tho splior-

iccil constraints (Constraint S), inocicl (MBS)  to nuixiiiiize a iiiixocl polynomial form
(Function M) iiiicler binary constraints (Constraint B), mix([C dvith variables luiclor

spherical constraints (Constraint S), etc. ‘

Il Chapter 3> we discuss the models for optimizing a multilinear form with quadratic
constraints, including (T5) and (7g). In Chapter 4, we discuss the iiiodcLs for optimizing
a hoinogoiieous polynomial or a mixed form with quadratic constraints, including (HS),
(HQ), {MS) and (MQ). General polynomial optimization models including (&' <) ®)
and (PG) are discussed in Chapter 5. Chapter 6 talk about binary iiitogor programming
inodols, incluciirig (T/j), {HFS), (MB)" aiid {PB)- Chapter 7 talk about mixed iiitogor
programming models, including (Ti*s) ({5/i‘s) and [Mus)- All these inodols arc listed

below for a quick reference.

*Chapter 3:

(Ts) max
st x e k=12>
(T) max F(X\X\""
s.t. <1,k—1,2,... k=12 ... 1k
e A 12 .. L ‘ -
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Chapter
(Hs) max fix)
s.t.  XGS",
(Hg) max fix)
st. X1Qa <1li=1,2,..,1
XeR";
(A/sO  max
st. xM6 k= 1,2, 5
{MQ) max Hx\X'r-- r
s.t. | Qf®" < I'A=12>. sik= 12
X, N RA E 1Deeerene e
Chapter 5:
("sO 1 BE" (4)
s.t. a6 S";
{Po) 1fE  p{x)
st. x"Q™x < 1,2=1,2, m.,
X e R";
(Pa) max p(x)
st. XE£G.
Chapter G
(Th) max X
st. Xte k=12 d
max fix)
s.t.  XeB":
(Mii)  max 7L X
sl.t. G k= 1.2
{Pfs) max p(x)
st. Xel

2 Notations and Preliminaries

ffik-
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Chapt(C
e(r'.s) max F{x\x' y(i’
IEAG k=12 (L
y/\ e j =4

{Has) max fix"y)

s.t. X €

infiis)  nilix Vo T X oy ¥
st. xAier'.k -

2/ €s,", =12, t.

As before, wc also a.ssiune that tlie tensor forms of the objective functions in (H/"s)
and (Mijs) to have partial symmetric property, rii] < 111-2 < e e < pia' in {Ths), and

i< rm2< e e<rutin (Mbs)-

casc perfonnaiicc ratios, followed by discussions 011 their applications and/or numerical
performance of the algorithms proposed. All the iiimierical computations are conducted
using an Intel Pentium 4 CPU 2.80GHz computer with 2GB of RAM, and the support-
ing software Matlab 7.7.0 (R2008b). Let d]-{-do+ . -"d, =dand ([ '0+4. + &=\
ill the above mentioned iiiodols. The degrees of the objective polynomials in these mod-
els, d and d + d', are understood as fixed constants in our subsequent discussions. We
arc able to propose polynomial-time approximation algorithms for all those models,
variables and the number of constraints) of tiie problems concerned.

The remaining sections in this chapter discuss some necessary preparations, for the
purpose of better understanding the iruiin subjects in the thesis. The topics include
elementary introductions of tensor operations, approximation algorithms, rancloniizod

algorithms, and semidefinite programming.

2.2 Tensor Operations

A tensor is a multidimensional array. More formally, a d-th order tensor is an element

of the tensor product of d vcctor spaces, cach of which has its own coordinate system.
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Each (uitry of a d-th order tensor luus d indices associated. A first order tensor is a
vector, a secoud order tensor is a matrix, and tensors of onior three(] omighor ar(Z callcd
higlior order toiisors.

This section (icscriht(] (! wensor operations coiiiinonly usod in this thesis. For

a general review of other tensor operations, the reader is referred to |08]. ] Ik tensor
o/

HiiKT product is cleiiot(*d l)y which is the siiiiiiiiatioii of produc ts of all corrcspoiiding

entries. For example, if € XnX.-xr™ tlioii

As iiicjitioiicd b(»foro, the iioriii of the tensor is then defined ns ||F|| := VF <« F. Notirc
that the tensor inner product and tensor norm also apply to the voxtors and the mat rices

since they ani lower or(I’r tensors.

The modes of a tensor are r([) f(Tr(todits coordiiiate systems. For example, the

following fourth order ... ... with its entries I)ciiig.
Gnu =1, Gil2z=2 6i2=3 M122=4, (; % = Gl = 6.
G\2\1 F-7, G1212=8, (22~ 9( G122 — 10, (7123 | =11 > = 12,

G2111 = 13, G2112 =14 > G'2\2\ = 15, G212 = 16> G*2iiii = 17, Gjr.i'j = 18,
Gz2ll = 19, 72212 = 20» G222| = 21, G2222 ~ 22, . (12831 = 23, wp>:12 = 24,

(]
N .

luus 4 modes, to be iianuHI mode 1 > mode 2, inotle 3 and nioclr 4. In case a tensor is
k —

a'niatrix,-it has only two modes, -whicli we Usually calked them column and row. The
indices for an entry of a tensor arc a sequoiicc of integers, each one assigning from one

mode.

The first widely usoci tensor operation is tensor rewritten, which appears frequently

in this thesis. Namely, hy combining a set of i«()des_into one mogde, a tensor can be
rewritten as a.now densor-with a lower order. For cxaiiiplo, hy coiiibiiiilig modes 3 and

4 together and put it into the last luoclc of the new tensor, tensor G (an be rewritten

as a third order tensor G its entries boinij :
e =1 M12—-2 @B=3. g iF4 5 =6,
U 012zs g =10" 25 = 11» ¢l =12,
a211- 13, 213 =15, 14 =16, 2 o 17 H-

19°. 20, ~p23 =21, ~A991 =22, a5 =23, npop =24
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1

1 2 3 4 5 G 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

and Ly coiiibing all tlio iiiodcs together, tensor G Ihhoiucs a 21-(liineiisioiial vector

(1,2,..., 24) 1 > which is the same as vcctorization of a tensor.

of indices for th([1 entriesf a tensor. For example, by switching iiiodo 1 and mode 3 of

G, t(iis()® is thaMi dmnged to G" € with its entries defined by
G-jkt : = Gujit Vj," » f=:1,2’i=1.2,j}.

By default, Hiiiong all the tensors clisciissf»d in this thesis, w([7 iLssiiintheir modes have
Ikvii switched (in fact r(H)rdorecl), so that tlieir diinensioiis arc in a iion-decrrasiHg
(>r(kr.

Another widely used operation is multiplying a tensor l)y a vector. For cxauiplc,
tensor G has its associated iiiultilinear function Y, Z, W), where variables x.y. w €
R- and z G K+ % Four iiiodos in G correspond to the four positions of variables in
function G. For a given vortor w — {w\, wo) *, its multiplication with G in mode 4

makes G to D, G" 6 whose entries are ddiiiod by
Gl = Gijkd w4 Gijk/th  V?2,j) = 1,2. k= 1,2,3,

which is basically the inner product of the vectors w and Gijk.. := v N.2) ‘. For

(‘'xainplos, if li; = (1,1) *, th([1 ™ hfus entries

Ctjjd—3, Ci2~7: (jM3=11-C12] —15, G122~ 19 G]23 — 23,
211~ 27 @] 2~ 31-G213 * 35, ~ 39 Gyy> — 43, CEB = 47.

Its corresponding iiiultiliiiear function is in fact G{x"y,z,w),  with the underling vari-
able's x,y, z. Soinetiiiies, we use G (*, w) more often to denote this new multilinear
function ZyW).

This type of multiplication can extend to a tcnisor with a matrix, cvcii with a tensor.

For example, if we multiply tensor G by a given niatrix Z € in modes 3 and 4,
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then wo got a second order tensor (matrix) in wlioso (?,J)-th entry is

3 2
Gij..*ZAY . Y. N = L 2

Its corresponding iiiultilinoar fuiution is (leiiotcci by G{’, Z). In j»0 m{ ik r/-tl
order tensor multiply by a ri'-th order tensor {d' < d) in appropriate niod([] ghen its
product is a {d— f/')-t.li order tensor. In particular, if d ~ d'’, thoii this luiiltiplicatioii

is simply tlie tensor inner product.

2.3 Approximation Algorithms

Approximation algorithms an(] algorithmdesigned to Hiid approximate solutions to
optimization problems. In general, approxiiimtion algorithms arc often associated with

NP-lianl problems, since it is unlikely that there exist polynoiiiial-tinio ([ xaalgorithms

tiiiie algorithms arc possible but arc too expensive to compute clue to th( sizef the
problem. Usually, an approxiinatioii algorithm is associatoci with an approximation
ratio, which, is a provable value measuring the quality of the solution fomid.

Approxinmtioii algorithms are widely used in coinbiiiatorial optiinizatioiis, typically
ill various graph problems. Lot us describe a well known example, the vcHcx cover
problem, to appreciate the notion of approxiiimtion algorithms. Given an uiidiroctxxl
cost of vertices to ctover all the edges, i.e.,, a set V' d V such that every cflgc has at
least one eiiclpoint incident at V'

The vertex cover problem is NP-hard (see e.g., [38]), even for tlio cardinality vertex
cover, which is the case that the cost associated with cach vertex is 1. Thero is a very
simple algorithm for cardinality vert(»x cover prol)lein. Pick any uncovered edge e e E,
select both of its two incicient vertices, and then remove all the edges covcred by these
two vertices; The proccss is continued until every (nige is removed, and output all the
selected vertices. This process can be done in at most numbors of steps, which
an optimal cover, however wo can show that the number of vertices selected by this

algorithm is at most twice as the optimal value of cardinality vertex cover. If fact,
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for any optimal cover, it must cover any edge picked (not removed) by tlie algorithm,
and thus must iiichicle oii([] ofts two incident vertices, then this optimal covor iimst
iiicliuie half of the vertices selectod by the algorithm. Tliis is a typical approxiiiiatioji
filgoritluii with approximation ratio 2.

Wo shall now define formally the approxiiiuition algorithms aiid approximation ra-
tios. Throughout tliis thesis, for any iiutxiinization problem (/) deHii("/d6 iiuiXaj"x P(4)
w([] usé - (JHiodenote its optimal value, and v{P) to denote the optimal vahio of its

ininiini/ation counterpart, i.e.,
2;(/") := maxp{x) and Vv{P) = m\np{x).
XEV xX&V
Definition 2.3.1 Apjmjximation algorithm, and approximation ratio:

1. A maximization p7X)hle.m  iiuiXa-"x admits a polynomial-time approximation

algoritf*m vnt.h approximation ratio r € (0" 1], if v{P) >0 mid a fmmldt solution

X EX can befound in polynomial-tima stick that p{x) >r v{P):

2. A minimization problem miiixex admits a polynomial-time  approximation
algorithjn with approximation ratio /z 6 [1, 0oc). if v{P) > 0 and afeasible solution

X e X can befound in polynomial-time such that p{x) < fiv{P).

It is easy to sw that the larger tlio r, the bettor the ratio for a inaxiniizatioii
problem, and the smaller the  the better the ratio for a iniiiiiiiizatioii problem. In short
the closer to one, tlie better the ratio. However, sometimes a problem may be very hard,
such that there is no polyuoiiiial-time approximation algorithiii which approximates
the optimal value within any positive factor. A typical example of this typo is also tlic
vortex cover probierii. although its cardinality version has a very simple 2-approxiniatioii
algorithm. In tliose unfortunate cases, we have approximation algorithms with relative

approximation ratios.

Definition 2.3.2 Approximation algorithm and relative approximation ratio:

1. A maximization problem, maxaiex admits a polynomial-time  approximation
algorithm with relative approximation ratio r G (0 1] > if a feasible solution x e X
can bt found in polynomial-time such that p{x) —v{P) > r (v(P) — £{P)), or
equivalently v{P) —p{x) < 1 —r) (V(P) — wr)):
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2. A minimization problem iiiiiixex iidmits a polynomial-time, approxunation
(ilgoritfnn with relative approxirnaiion mtio fi € |1, oc), if afeasible solution x G A’
can bet found in polynomial-time, such that v{P) —p{x) > ( ///) {v{P) — v{P)),
aquwaleiitly p{x) - v{P) < (1- 1/") {vV{P) - W{P)).

Similar to the usual approximation ratio, the clc’sct to one, the iK'ttor the rela-
tive approximation ratios. For a maximizatioii problem, if wo know for sure that tlio
approximation ratio already implies a usual approximation ratio. This is not @&( -~ > &
many optimization problems always have noiiiiogativc objectivo fiiiictioiLS in real appli-
cations, e.g., various graph partition problems. Of (.(mrse there arc several other ways
in defining the approximation quality to measure the perfonnanco of the approximate

solutions (see e.g., [GI, 11]).

Wo would like to point[] outhat the approximation ratios defined are for the worst-
case scenarios, which might be hard or oven impossible to find an oxaniple attaining
exactly the ratio in applying tlie algorithms. Thus it does not mean an approximation
algorithm with a better approximation ratio has better performance in practice than
that with a wors(» ratio. In reality, many approxiiriatioii algorithms have their approx-
imation ratios far from one if they have one at all. which might approach zero when
the dimensions of the problems become large. Perhaps it is more appropriate to view
the approximation guarantee as a measure that forces lis to explore deeper into the
structure of the pro])leiii and discover more powerful tools to explore this structure.
In addition, an algorithm with a theoretical assurance should bo viewed as a useful
guidance that can be fine tiuied to suit the type of iiistaiicc”s arising from that specific

applications.

As mentioned in Section 2.1.3, all optimization models considered in this thesis are
maximization problems. Thus we reserve the Greek letter T,. specialized to indicate the
approximation ratio, which is a key ingredient throughout this thesis. All the approxi-
mation ratios presented in this thesis are in general not universal constants, and involve

problem dimensions and Q. Here il (/(n)) signifies that there are positive universal con-

stants Q and no such that il (/(n)) > AF{N) for all N > TIQ. As usual, O (f(n)) signifies

that there are positive universal constants a and ji; such that O i) < af(nl] for all

71 > riQ.

or
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2.4 Randomized Algorithms

A randomized algorithm is an algorithm which employs a degree of randomness as part

of its operation. The algorithm typically coiitaiiis certain probability clistrihiition as an
average, or with high probability to achieve good performance. Formally, the algorithm's
performance will be a random variable, thus either the miming time, or the' output (or
both) are random variables.

Historically, the first randomized algorithm was a method clovelopod by Rabin [104]
for the closest pair problem in computational geometry. The study of randomized algo-
rithiiLs was spurred by the 1977 discovery of a randomized priniaiity tost (determining
the priiiiality of a number) by Solovay and Strassen [111]. Soon aftrrwards Rabin [105
demonstrated that the 1976 Miller's priniaiity test [83] can be turned into a randoniizod
algorithm. At that time, no practical deterministic: algoritiiin for priniaiity was known.

A well known application and commonly used algorithm in which randomness (an
be useful is quicksort. Any deterministic version of this algorithm requires time
to sort Tl different numbers, (to be denoted by sot e.g., the straightforward one:
(X)mparing all the pairs requiring "("0O Jtime. However, if we assume the given 71
different mmibers are in a sequence uiiifonnly distributed on all the n! number of
distinctive sequences, then the quicksort algorithm sort this sequence in O{N log II)
time. The algorithm chooses an element of S uniformly at random as a pivot, compares
the pivot with other elements and groups them into two sets Si (those bigger than the
pivot) and S2 (those smaller than the pivot), and then applies the smne process to sort

‘5] and S2, This process is continued until a sort realizes.
To see why quicksort will cost 0{n logn) in average, let us without loss of generality

assume 5'= {1,2- ..,Vi}. Denote Xij. to -be the indicator random variable whether
R

elements i and j are compared or not during a quicksort. The total time of compares

isthen o ‘

E Ty = [ E [Xij
I<i<j<n ‘I<i<j<n

Next we compute E[a:,j], which is the probkbility that i and j are ever compared by a

quicksort. This happens if and only if either i or j is the first pivot selected by quicksort

from the set {i,i+ 1,...,) — 1> j}(assume i <j), and the probability is 2/(J — i —1).
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Therefore, the average time of compares is

2
E EM-= E 73 AN =2("t1)H)TXx-4,, = ()0F":

Il fact, the expected time argiinioiit is based on tho uniformly choosing the pivot.'s,
although the worst-case time is also when each timr wear(L verynfortuiiato to
pick the largest element as the pivot.

There arc also othor successful stories that randomized algorithms help. For (ex-
ample, the voluine of a convex body can be estiiimted by a raiKloiiiizecl algorithm to
the same [13]. "

In applying to NP-hard optimization problems, randomizecl algorithms ar([J often
associated with approximation algoritlims to prove performance ratios, in terms of
expectation, or with high probability. A simple example is a raiicloinized approximation

algorithm with approxiinatioii ratio 0.5 for the max-cut problem. Given an undirected

known NP-hard problems |38]. The simple? algorithm is an follows. For each vertex,
independently toss a fair coin, and put it into A if head or D if tail. It is easy to sco
that the probability of an edge connectiiig A and B are exac'tly 1/2. By the linearity
of expectation, the expected total weight of this cut is exactly half of the total weight
of all the edges, which is at least half of the maximum cut.

The current best approximation ratio of the max-cut problem is 0.878, another
celebrated result of randomized algorithm due to Goemans and Williamson [40], which
we shall elaborate in Section 2.5.

We conclude this section by defining polyiiomial-tiine randomized approximation
algorithms, like Definition 2.3.1 and Definition 2.3.2. We are not going to elaborate all

of their randomized versions, rather a typical one. The others can bo similar doscribocl.

Definition 2.4.1 A maximization problem inax"ex admits a polyiiomiul-tirne ran-
e domized approximation algorithm with approximation ratio T 6 (0,1], if v{P) > 0 and

one of the following two facts holds:

1. A feasible solution x E X can befound in polynomial-tima, such that E[p(i)] >

{P) ;
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2. A feasible solution x G A' can be found in polyiumiial-tnnv.. such that p{x) >

r ?;(/)) ufith probability at lexLst 1 — f for all e G {(). 1).

2.5 Semidefinite Programming

the optimization of a linear objective function over the intersection of tlie cone of
positive seiiiidofinite matrices and an affine sj*acc. It (mi he viewed as an cxtciLsioii of
the well known linear programming problem, where the vector of variables is rrplaccd
by a symmetric matrix, and the cone of nonnegative orthant is n»pla(p(l by the conr of
probleiiLS (specialized to the cone of positive scuiiidefiiiite iiiatrices).

The standard formulation of an SDP problem is

(PSP) sup CmX

s.t. 2 A'=hi,i=1,2,..., Vi,
X h 0,
where the data C and A-[i= 1,2,..., m) arc» symmetric matrices™ 6, {i — 1,2,..., 1p)

are scalars, the clot product 'e’ is the usual matrix inner product introduced in Soc-

tion 2.2, and ‘X [ 0' inearis matrix X is positive seinklefinitc.
The-dual problem of (PSP) is
{DSP) iiif bXy
s.t. EriiiH 41 z =c¢>
Z " 0.

A solution for an SDP problem is called strictly feasible if its fcasil)le region has
nonempty interior, which is also called Slater condition. Wo arc now providing the
strong duality theorem of SDP, for its proof one is rofer(H»(I to Vaiulonherghe and Boy-
(L [116] and Heliriberg [51 .

Theorem 2.5.1 The followings hold for (PSP\ and {DSP):

1. If (DSP) s strictly feasible, then v(PSP) = v(DSP). If in addition {DSP) is

bounded above, then this optimal value is obtained by a feasible X* of (PSP);

2. If (PSP) s strictly feasible - then v(PSP) = v{DSP). If in addition (PSP) is
bounded below, then this optimal value is obtained by a feasible {Z*,y*) of (DSP);
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3. Suppose one. of {PSP) and {DSP) is strictly feasible and has bounded optimal
value, then feasible X of (PSP) and feasible (Z, y) of (DSP) is a pair of optimal

solutions to its ir.spective problems, if and only if C « X =b [l wr X «Z =0;

4. If both (PSP) and (DSP) are stricAly feasible, then v{PSP) — v{DSP) and this
optimal value is obtained by feasible X* of (PSP) and {Z*, y*) of (DSP).

For convenience, an SDP problem may often bo spedfiod in a slightly different, hut
may be added to the program specification. This remains an SDP because each variable
can be incorporated into the matrix X as a diagonal entry (A', for sonic i). To oiLsurc
that Xii > 0, constraints Xjj = 0 can be added for all i + j. As another oxaiiiplc.
note that for any n x n positive seinidefiiiite matrix X, there exists a set of vectors

., V"} such that Xtj = (#)*! > jforall \ <i,j <  Tlu'refore, SDP problems
are often formulated in terms of linear expressions on scalar products of vectors. Givoii
the solution for the SDP in the standard form, the vectors --,v"} (an be
recovered in 0{n") time, e.g., using the Cholesky decomposition of X.

There an(] severatlypes of algorithms for solving SDP problems. These algorithins
output the ~lutions up to an additive error e in a time that is polynomial in tlic
problem dimensions and In(l/e). Interior point methods are the most popular and
widely use one. A lot of efficient SDP solvers based on interior point methods have
been developed, including SeDuMi of Sturm [112], SDPT3 of Toh et al. [115], SDPA of
Fujisawa et al. [37], CSDP of Borchers [19], DSDP of Benson and Ye [17], and so on.

SDP is of growing interest for several reasons. Many practical problems in opera-
tions research and combinatorial optimization can be modeled or approximated as SDP
problems. In automatic control theory, SDP is used in the context of linear matrix in-
equalities. All linear programming problems can be expressed as SDP problems, and
via hierarchies of SDP problems the solutions of polynomial optimization problems caii
be approximated. Besides, SDP has been used in the design of optimal experiments
and it can aid in the design of quantum computing circuits.

SDP has a wide range of practical applications. One of its significant applications
is in its role to design approximate solutions to combinatorial optimization problerii-
s, starting from the seminal work by Goemans and Williamson [40], who essentially

proposed a polynomial-time randomized approximation algorithm with approximation
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ratio 0.878 for the inax-cut problem. The algorithm iisos SDP relaxation and raiidoni-
ization techniques, whoso ideas have I)(x[] revised and gcnoralizocl in solving various
quadratic programiniiig problems [88, 118. 119, 87, 120, 24, 5, 121, 75, oQ] arid even
of Gocmaiis and Williamson.

As described in Section 2.4, t,h(71 nuix-cutroblem is to find a partition of an uijdi-

rector! grapli G = {V,E) with noiiiiogativc weights on edges, into two disjoint sots, so

{1,2,..., 7t} to be the set of vertices. Lot Wjj > 0 be the weight of cdgt' (‘oiiiiocting
v(Tticcs 1 and j for all z j, and let it be O if there is no edge betweon i and j, or
i =j. Ifwolet Ti(i —1,2,..., 7)) be tlie binary variable denoting whetlier it is in thel]

first sot (iTi = 1) or the second set (Xj = — 1) > then inax-cut is the following gimdratic

(iV/(?) max Ei<,j<m (1 ~04)/ 1
st Xi€{1,-1},i=12,...,7.
The problem is NP-hard (see e.g., Garoy and Johnson |[38j). Now by introducing a
matrix X with Xij replacing XiXj, the constraint is then equivalent, to diag {X)=
e, X y rank (X)= 1 A straightforward SDP relaxation is dropping the raiik-onc

constraint, which yields

(+ ?7AC) iria®
s.t.  diag(X) =e, X y()e
The algorithm first solves (SMC) to get aii optimal solution X*, then randomly gen-

erates an 7i-diriieiisional vector following a zero-iiieaii multivariate normal distribution

NPT

and lets x, = sigp fori = 1,2, ... 7. Note that generating a zero-mean normal
random vector with co-variance matrix X* can be clone by multiplying (X*)" with a
vector whose components are generating from n i.i.d. standard normal random vari-
ables. Besides, the sign function takes 1 for nonnegative numbers and —I1 for negative
numbers. Although the output cut (solution x) may not be optimal, and is random

either. It can be shown that

2 *
E [xiXj] — — arcsiii X*j VI < <71,
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which further loads to

E > Wij s N XX 0,875 v{SMC) > i):S7S V{MC).
i<ij<n
This yields a 0.878-approxiiiiatiGii ratio for the inax-ciit problem. The ratio signiHcaiitly
improves the previous best known one, which is 0.5 introciiicod in Section 2.4.
Wc conchidcs this section as well as this chaptcr, by introducing another ([ xam-
plc of SDP relaxation and randomization torhiiiquo for solving quadratic constrainod

quadrati<"j)rograniiiiing (QCQP) in Noinirovski et al. [87]. The problem is 0\

(QP) max  X“Fx
S.t. X1GiXS 1:i=12>..°7l>

ae R",

where Q, N 0 fori = 1,2, and Q, — 0. Reiiuirk this is oxact tiio model
(HQ) when d = 2, whose algorithm will be used in this thesis. By using the same
method with Xjj to replace XiXj, and drop the rank-oiio constraint, wc shall have the

standard SDP relaxation for (QP)

(SQP)  max F»X
st. Qe X <1li=1,2,..,74
X yo.

A polynomial-time randomized approximation algorithm runs in as follows: :
1. Solve {SQP) to gext an optimal solution X*;
2. Randomly generate a vector # X * ) ;
3. Compute t = maxi<i<,jy " Q,-" and output the solution x =

A probability analysis can prove that
X"Fx > VL(\Nogm)v(SQP) > n(INogjn)v(QP)

holds with probability bigger than a constant. Thus running this algorithins O (log(l/e))
times and pick the best solution, which shall hit the approximation bound of (1/ log in)
with probability at least 1 — e. For details, one is referred to Nemirovski et al. [87] and
He et al. [50].



Chapter 3

Multilinear Form Optimization

with Quadratic Constraints

3. Introduction

The first subclass of polynomial optimization problems studied in this thesis arc; the
following multilinear tensor function optimizations over quadratic constraints. Spociti-

cally, the models include iiiaximizing a multilinear form under splierical constraints

{Ts)- iiilax F{x\x' X'

x"eS"A - A" =12, fL
and maximizing a multilinear form over co-centered ellipsoidal constraints

(TQ) max
s.t. <L,K= 1,2,,~ = (1, X —.. s JIK.
X" e A=12 ..>"

|
where QN 0 and YIZti Q,=0 for A= 12-..,, =1 2’... " nif,.

It is easy to see that the optimal value of (Tg), denoted by v(Ts), is positive by the

assumption that F is not a zero tensor. Moreover, {Ts) is equivalent to

niax oo XN

st. xrew’ k= 1,2 d.

This is because we can always scale the decision variables such that |lx2ll = 1 for all

I < k < d without decreaiiiing the objective. Thiis {Ts) is a special case of (TQq).

29
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*

Homogeneous polynomial functions play an important role in approximation tlico-

ry. In « certain woll-defiiied sense;, hoiiiogcMicx)iLs polynoiriials are fairly dense among
all the continuous functions (see e.g., [117, G9]). Multilinear form is a spcxnal class of
homogeneous polynomials. In fact, one of the main roiusons for us to study iimltilinoar
form optlmlzatlons is its strong connection to homogenous polynomial optinii/ations in

Vv

derlvmg apprOX|mat|on nolikis, whose detalls will L) clisc;usscd in Chapter 4. This con-

fundamental issue is optimization of a iiiultiliiiear tensor form. Chen et al. [25] ostablisli

4

the tightness result of multilinear form relaxation for maximizing a homogeneous poly-
nomial over spherical constraint. The study of multilinear form optimizations becomes
much important.

I"ow degree cases of (Ts) can be often encountered: When r/ = 1, its optimal solution
is due to the Caiichy-Schwart/ inequality; When d = 2 > (Ts)is to compute the
spectrum iiorni of the matrix F with efficient algorithms readily available. As we shall
prove later that (Ts) is already NP-hard when d = 3, the focus of this chapter is to
design polynomial-time approximation algorithms with worst-case performance ratios
for any fixed degree d. The novel idea to haiidlo high degree multilinear form is to
reduce the its degree, which leads to a relaxed niultiliiiear form optimization in a lower
degree case. As any matrix can be treated a long vector, any higher order tensor can
also be rewritten as a tensor with its order deduced by one (see the tensor operation
in Section 2.2), and thus rewritten its corresponding multilinear form with its degree
deduced by one. After we solve the problem with a lower degree, we need (i(K'oiiipose
the solution to make it fe”ible for the higher degree case. Thus specific (Iccoiiiposition
methods are required, which are the main contributions in this chapter.

For the model (TQ): When d = 1, it can bo formulated to a second order cone
program (SOCP), which can bel solveih polynomial-time (see e.g., [20, 86]); When d =
2 it call be formulated to a quadratically constrained quadratic programming problem
discussed in Section 2.5, and known to be NP-hard in general. Nemirovski et al. [87]
proposed a polynomial-time randomized approximation algorithm with approximation
ratio O (1/ logrn) based on SDP relaxation and randomization, and this algorithm

serves as a basis in analyzing our algorithms and approximation ratios.

We discuss approximation algorithms of (Ts) in Section 3.2, followed by that of

{TQ) in Section 3.3. Some application examples of the models concerned are discussed
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ill Section 3.4. Finally, numerical performance of Ui([] prop'os(kdlgorithms are reported

in Section 3.5.

3.2 Multilinear Form with Spherical Constraints

Let us first consider tlie following optimization model

[Ts) max F@®'®V'.»>a:")

s.t. I Ae k=12,..., f/,

where 7iW < iio < - e < n(i. A special casc of (75) is worth noting, which plays

important role in our algorithms.

Proposition 3.2.1 If d = 2 then {Ts) can be solved in polynomial-tima, with v{Ts) >

m/vA.

Proof. The problem is essentially iiiaxxeSM \yeS'2  Fy. For any fixed y, the corre-
spoiiding optimal x must be Fy/"Fy\\ due to the Cauchy-Schwartz inequality, and

at'corclingly,

\Fy\\
Thus the problem is equivalent to iiuiXyeS"2 y*"F* Fy, whose solution is the largest
(Y

eigenvalue and a corresponding eigenvector of the positive scinidefinitc matrix F F.

We then have

Anmx(F'">) > tr(F'F)/rank(F'"'F) > ||Ff/ni,
which implies vrs) = ~x~n~iF "F) > e

However, for any degree ¢ > 3, (Ts) becomes NP-liard.
Proposition 3.2.2 If cl = 3, then {Ts) is NP-hard.

Proof. We first quote a result of Nesterov [90], which states that

. emax $: Z>THI2
s.t. XeS"

is NP-hard. Now in a special case d = 3, Ji] = 112 = ria = ri and F € KE"Bsatisfies

M~ = g forall 1< i j, k < n, the objective function of (r9) can be written as

B n 71 n S\ Ti
Foys) =~ FiRKViZk =1 Zk iRy =21 )AE0 TR -
V.J=]

an
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i »j,k < 71. By the Candly-Scliwartz inequality. (Ts) is cciuivalent to

nitix

st xy e S".
We iKKd only to show that the optimal value of th([1 ab()v([] problisralways attaiiial)l(’
at X =y. To soo why, cloiiote (X, y) to h(L angpt.iiiml solution pair, with optimal vahic

V#, If X= A/ then the claim is true; otlicrwisc, w([J &y suppose* that x + y 0. Let

such tliat
n

" I:I:‘Akif AkV = Xx
n

Pro-iimltiplying x to the first equation and y to the soroiid oquatioii yield A = // =

T
V*. Suiniiiiiig up the two cquatioiLs, prc-iiiultiplying w , and then scaliiij®, 1([] ads to
71
yr X*CALyw © Al.w =V*
fc=I

By applying t:li(l1 Cauchy-Schwartai([ gmilittb the above (‘quality, wv have

=1 [ VIl / \k=\
which implies that {w, w) is also an optimal solution. Tlio probloiii is tlioii r({J diic(to(l

Nostorov's quartic model, and its NP-hardness thus follows. .

Il the roiiiaiii(ier of this soctioii, w([] focusn approxiiiiatioii algorithms for (Ts) for
general clegrex™ d. To illustrate the iiiaiii idea of th([1 algorithmdpt vis first work with
the case d= 3, i.(\,

(ts) max F{xy,2) =Ei<<,J<"2ji<r<"i [ T A.
s.t. X e S ry£€ € §8"3.

Doiioto W = xy®, and wc liavc
= = = = llasf-lli/ll- = 1.
M(d(l (Ts) (uui now ho rolcix(xl to

max F{W,z2) = llI<i<,, <j<ne<k<um Mijk M'ij-k
st. We 6
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Notice that the above prohlein is exact 1y {Ts) with (I = 2. which can hr solved in
polynoinial-tiine hy Proposition 3.2.1. Denote its optimal solution to 1K 0 {wz). CU"ar-
ly F{W, z) > v{Ts). Tlio k({1ytop is to r([7 (.(vEolution {x.y) from the matrix W.

B(J low( ] argoing to introduce two basic dccoinposition routines: one is based on

our propos(Ki algorithms: all solution mothods to he d(_ W[ lop( 1atdr rely on those two

routines as a basis.

Decomposition Routine 3.2.1

 INPUT: matrices M € IR"™™ W GS:»''":

1 Construct

2  liandoiuly (fenvraUt

L vV

<in(i 7vpcar if nexT.ssary, until 2 m11 > M «w and ||M||[r/]] < OLY/riV).
3 Compute X =%/l | | midy = T7/|?7||.

e OUTPUT: wvectors x e 8", y G

Now, let M = F(', 2z) and W = W' in applying the above (UKonipositioii rout ine.
For the randomly gcnoratod T/), WO have

rz)l=2""MTJ] =M W = F{W,2).

He et al. [50] establish that if f{x) is a h(Qniog(»ncH)us quadratic form and x is drawn
from a zrro-iiieaii multivariate normal distribution, tlioii there is a universal constant
0 > 0.03 siicli that

Proh{f{x)>E[fix)]}>0.
Sincc  * MT/ is a hoiiiogeiicous quadrat ic fonn of the normal raudoiii vector ("), we
know

MRJ > M » W} = Prob M z) > 77, 2)]} > o.



34 3 Multilinear Form Optimization with Quadratic Constraints

have

|
E[ *-1W|2] = E
1j=i

o3 =("1 +2)tr(VV W) =n, +2,

By applying the Markov iiit'(jiuility, for any / > 0
re )]0 ||2|M]2 /3 <E [liu.-'iwfl /t = +2)/1.

Therefore, by the so-called uiiioii inequality for th<-7 probabilitgf joint cvcMits. \vc have
Proh > Fiw.z), || fIM|2</}

> 1- Prol) {F(C77,Z2) < FiW"2)] - Proh {&"~ [ | ;> t}

> 1-(1-&-(~+2)/1 ="/2>
where we let f=27) | + 2+ /6. Thus \v([ have

AW,z
1\57 >"{T512( r 2y

obtaiiiinj an  1/y/TTD-approxiniation ratio.

fEX Y, Z)

Below we prchsciit an alternative (and (U'temiinistic) dccoinpositioii routine

Decomposition Routine 3.2.2

INPUT: a malHx M € IR™""™

[N

Find ail eixjanvactory comtspondrng to the largest eigenvalue of A/* A/,

N

Compute- x = My/||My]|| midy = y/||y||.

OUTPUT: vectors x € 8", y GS™

tells"us that x* My > \\WM\V¥n\.  Thus w(. have

N /\/\IAS)

ax,.. A :
vyt 288 yaw i v
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The c(ziiii)lexity for DR 3.2.1 is () {n\ 7)2 log(!/<-)) with probability 1- e, and for
DR 3.2.2 it is O (rmax{7Ji"\ii] no}) « However DR 3.2.2 is iiuUxHI wry easy to iiiipleriirnt,
and is (leteriniiiistic. Both DR 3.2.1 and DR 3.2.2 lead to the following approximatkm

result ill tcriiis of the order of the approximation ratio.

Theorem 3.2.3 Ifd = 3, them {Ts) admits a polynomial-time approThnatioii algoHikm

with appmximation ratio 1/A777.

Now we proccHl to the ease tor general d. Lot X — ‘. and {Ts) can l)o
relaxed to
{fs) imix F{XxKx\--- X'-1)
st. X eS'| G A=23 ('- 1

Clearly it is a type of the model {Ts) with degree d —\. Suppose {Ts) can be
solved approximately in polynoinial-tiino with approximation ratio r, i.e.. we find

[X.XKXA~r- - with
> Tv{fs) > Tv{rs). ‘.

Observing that XN oo \ ¢) is an n\ x i matrix, using DH 3.2.2 we shall

find (i [ » i’ sucli that

By indiu'tioii this leads to the following:

Theorem 3.2.4 (Ts) admits a polynomial-time  appioThnation alyoiithm with approx-
imation ratio T{TS), wherr.
[rf-2
TS = 4 »a
1

Blow w> smnniarizo the above recursive procedure to solve (Ts) as in Theoroiii 3.2.1.
Rrrnark that the approxinmtion pcrfoniiaiice ratio of this algorithm is tight. In a
special exaiiipk' eees x") = ZMLI [ Tif. « [f tlic algorithm can be made to

return a solution with approximation ratio being exactly T(TS).

Algorithm 3.2.3

 INPUT: ad-th ordar tensor F G AMEX-Xn? n <n< < n"
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1 Rewrite F as a {d- \)-th order tensor F' € Xn"Ti, hy combnu) its

first and last modes into one, mid jdacing it in tfic last mode of F'. . (t..

e d —M1D, - d- VI < W< IIIA < 1-2 < "2 A <iri< Hd-

2 For {Ts) with the.{d — \)-th order tensor F': ifd—I="2, then apply DR H.2.2.

until input F' = M and output {Xx", = {x. y): otherwise ohtain a solution
J'

r-2 - ; .

L _h,3, b vy re.curmoii.

3 Computi® a matrix M" = F{". x. oo 71 .)and rctnifa the vector as

a matrvr. X G

Apply either DR 3.2.1 or DR 3.2.2, with input {M"X) = {MW) and output

OUTPUT: a feasible, solution AT I

3.3 Multilinear Form with Ellipsoidal Constraints

Section 3.2, to include general ellipsoidal constraints. Specifically, the model is

(Tq) max
s.t. MM QInXt < L, k—1,2,...,Lik=12 iiik,
xNe R * k= 1,2 d.

where AQand YI"h QIN A (fork=12>...)" = 1>2,...,mht.
Lot us start with the case d = 2> and su )poso XN = (a;") “ Fx*.  Denote
F .
co T Q.= QL OniXI2 ¢ oy 1< 2 < ]
FT P !
) 2 L
. (n|xi O xzj ) . . ) )
and Qi = fordll mi -h1< z< rni + wj. Then (Tg) is equivalent
[ DA
to
max Y~ F'y

s.t. y"M"QiP < 1,z= 1.2, nil + 111.2,

y e
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This QCQP problem is discussed in Section 2.5, and is well known to be solved ai>-

proximately by a polynomial-time raiiclomizod algorithm with ap{)roxiination ratio

il (iog(rl-t-m2))( M 2.g., Neiiiirovski et al. [87] and He et al. [50)). "
We now proceed to the higher order causes. To illustrate thi» (»ssciitial idofLs, we shall

focus on the (aso d = 3. The extension to any higlier order can b() donby incinction.
Il case rf = 3 we may explicitly write (TQ) as:

(TQ) max F{x.y.2)
st. xAQX <1i=1,2,../1l.
YYPjy “  J= 12 .2

Z"RkzZ <1,k= L2, ..,7713,
Xe R"tY 6 K”22 € K"3>

where Q, * Oforall 1< z< mi, Pj A~ O0forall 1<j < ,"2. Rt Oforall | <k < "3,
and ZTJi Qi 0 0 P j > Tk K— (). ‘

Coinhiiiing the constraints of x and y, we have
tT{Q,xy"Pjyx'") = tr {xX*QiXy™ PYy) =x"Qx YWV <1.
T *
Denoting W = xy , {TQ) can relaxed to

(TQ) sax tr fM)PIW™M) < 1,i= 1,2,....7»,. ] — 1.2.
"Riz <1, A= 1,2,..,7/13,
W e € K”3.

Observe that for any W e

tr (QIWPjWAM) = tr {QIAWPJAPJEW' Qi) = QAIWPJA > ().

and that for any W * 0,

tT{Q,WPjW tr 7 [[j | -

Indeed, it is ea.sy to verify that tr (QIWPJW™M™ ) = (vec(W))'M(Q, (8)Pj)vec(Vy), which
implies that tr {QjWPjW") < 1 is actually a convex quadratic coiLstraiiit for W.
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Thus, (TQ) is exactly in the form of {TQ) with d = 2. Therefore wc are able to find a

feasible solution {W, z) of {TQ) in polynomial-time > such that

F{w,2)>N vfQ) > 1)

log(mim-2 + ma) \\og rri
where rn = max{mi, 7/12, Let us fix z, and then F{ ,-,2) is a matrix. Our next
step is to generate (i, y) from W. For this purpose, w((first iiitrodurr the following

lemma.

Lemma 3.3.1 Suppose Q, € K")">Q, h (Ofor all | <i<m, and —Q, > (),the.
following SDP problem

(PS)  mill
s.t.  tr(t/Q,) <1, = 1,2, .,
ti> (), i = 1,2, 711,

u Xn
>-0

nXri
has an optimal solution with optimal value equal to n.

Proof. Straightforward computation shows that the dual of {PS) is

{DS) max - Ez=i " 2tr (2)
st. tr(XQj)<1i=1,2,.,m>
s>0i=1,2,.., I,
X YA
>-0.

Observe that {DS) indeed resembles (PS). Since vivx o — 0’ both {PS) and {DS)
satisfy the Slater condition, and thiLs both of thern have attainable optimal solutions
satisfying the strong duality relationship, i.e., v{PS) = v{DS). Let {U* t*) be an
optimal solution of (PS). Clearly U* >- 0> and by the Schur complenient relationship

we have Y17Li t (U*)-\ Therefore,

V(PS) = JAM* >Attviu*Q,) >tr(cr(ir: 1. (3.2)
Observe that for any dual feasible solution (X, Z,s) wc always have — sj <
—tr(X 1 SiQ,). Hence the following problem is a relaxation of (DS)

(RS) max -tr (XV) - 2tr (2)
X Z
zZn Y
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Consider any feasible solution (X, Y, Z) of {RS). Lot X = P' DP be an ortlioiior-

mal« decomposition with D = Diag (tl{>tlf>----",) and = P ‘. Notice that
{D,Y,Z" = (PXP', PYPN\ PZP 7)) is also a feasible *solution for {RS) with

the same objective value. By tlie feasibility, it follows that di(f?Y — > 0 for

1= 12> .."0 [{liorcfore,

-tr (xy) -2tr(Z) = -tr {DY') -2tr(Z2*) = -~ Z:
1=1 1=

n n u

< - + 1)2+n<n.
/:[ i=l

This implies that v{DS) < v{RS) < n. By combining this with (3.2), and noticing the
strong duality relationship, it follows that v{PS) = v{DS) = n. ®

We then have the following decomposition method, to 1)([7 calledR 3.3.1. ius a
further extension of DR 3.2.1. It plays a similar role in Algorithm 3.3.2 as DR 3.2.1 or
DR 3.2.2 ciocs in Algorrthin 3.2.3.

Decompésition Routine 3.3.1

<
e INPUT: matrices Q, e R.XZ “~Q A Ofor all 1< i < m, with Q—() -
Pj e K"2xn2:> Pj . 0 for all | <j < Tti'jwith Pj > W e IR"\"A with
tr {QIWPjWM)  <lIforalll<i< rijand1<j <mecad Me 00 " ° [

1 Solve the SDP problem

nun

st. tr{UQj) < 1-i= 12+, 7
>0,2= 12, 7

u L
B 35
to get an optirnal solution of a matrix U and scalars t\t2, ¢« t

2 Construct
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3 Randomly generate

AfiO 42 W)

and repeat if necessary - until »*Mr] > M « W, *“Q" < () (log nii) for all

I <i <in\, and rj*Pjt] < O (ni logr/j.-i)for all 1<j < m].
4 Compute x = Yimaxi <,<,,,, Q,"} andy - r]j Vim\X]<j<,,trj"* PjT)]

* OUTPUT: vectors x e R">y e

Tlie computational complexity of DR 3.3.1 depends on the algorithm for solving

the SDP problem {PS), which ha's O(ni™) number of variables aiul (){7ti\) iniinher of

constraints. In addition it requires O (//"(yj I'/ti + 7121712) log(l/f)) other operations to

get the quality assured solution with probability 1—e.

Lemma 3.3.2 Under the. input of DR 3.3.1, we cxin find x ¢ R™ andy GR™" by a
polynomial-time randomized algorithm, satisfying x * Q"x < 1for all 1 < z < 7ri\ and

y EPjy < 1for all | <j <r/i? ? such that

1
M *W.
y \/n \ vMog m\ log mz XM W

Proof. Following the randomization procedure in Step 3 of DR 3.3.1, by Loimna 3.3.1

we have forany | <i <7Ji\ and 1< j <7112,

nil mi
E[rt Pjrt] = tr PjW™ AUQE W A AULr (PjW"Q.W) <N A ="R
v \t=1 / / t=I i=1

So et al. [109] have established that if ~ is a normal random vector aiiJ Q ~ 0, then

forany alQ -

Prob {1 TgD <

Applying this result we have

Prob {n"Pj'n > < Prob {rj* PjT) > a-i*riAPM) < —>2
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Moreover, EfA"*Mr;] = M « W. Now let x = *y/cTi and y = "/v/02"i > and we liave
. -r T 1
W xXQx < IVI<i< m, y"WPjif <1V1<j <rn-i®
mi 7(2
>1- Prob{i*Mrj< M « W} - A >«,} -~ Proh {r/' Pj77 >72//,}
[ _H
>1- (1 - 7L 2f—5 —my | 2f]7 5 =0/2,

fT M
Proh My > [

where ai := 2 and 02 := 2111(87712/6". Since a\0-2 = 0(l()g77ii log/n-i), the
(lesinxi {x, if) can be found with high probability in multiple trials. .

A

Let us now turn back to (Tq). Ifwe |CAW =W and M = F(', 2) in applying

(Tq), such that

Fixyz) =xMy >-"~il ( . \ MW  >-2il (r ™) F{W,2).
VVIOgl logm2J \'logm )

Combined with (3.1), we thus prove the following result.

Theorem 3.3.3 If d = 3, then (TQ) admits a polynomial-time randomized approxima-

tion algorithm with approximation ratio il (log”™»>)*/I[“()] () — iiiax{.n “>"72, "13}.
This result can he generalized to the model {TQ) of any fixed dogrw d.
Theorem 3.3.4 (TQ) admits a polynomial-time randomized approximation algorithm

with approximation ratio r{TQ), where

T(Tg) ;= n i2(log-("-") m) >
\it=i /

and m — maxi<jt<d{m/t}.

Proo % .We again take recursive steps. Denoting W = ic] (5cCiand {TQ) is relaxed to

(Q]
(TQ) max XN
s.t.  triQIWQIw'M) <l,ii=02 ...>om" =1,2,..., m"
{x~fQrxn <1, = = "u, >
W e ak-e A=23>.>¢c_1

Notice that (TQ) is exactly in the form of {TQ) of degree d —1, by treating as a

vector of dimension niUd. By recursion, with high probability we; can find a feasible
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solution {W, X", X", e e e of (Tg) in polynomial-time, such that

/ri-2 .2

F(UMi27i3,...1) > JI uk $2(V)g-("-2)max{m’mim,/})

X=22 /
I\ =
> U (K)g-(d-2) m) V{TQ).
\k=2
As long fus we fix lot M = F(e, i],...>i"-i".) and W = W

ill applying Lemma 3.3.2, we are be able to find {x\ x"") satisfying the constraints of

(79), such that

FixX\® o 14 2 'yFrr (|§gAm)y FOIR ARl 5 eee T{TQ) V{TQ).

Siimniarizing, the recursive procedure for solving general (Tg) (Theoreiii 3.3.4) is

highlighted as follows:

Algorithm 3.3.2

e INPUT: ad-th order tensor F G o o I/ IS < ...<nl matrices
QL 6 REx":~>Qr A 0 and X; ", Q-, >0 for all I<k<d and 1< u-< 7"\

1 Rewrite F as a {d- I)-th order tensor F' 6 R"2xn3x -xnd-ixnri, “ €] combing its

first and last modes into one, and placing it in the last mode of F', i.a,
= vis'* < hi <

2 Compute matrices PixMi* = QI*  Qff for all I <ii <7n\and 1< <.m(i.

3 For (TQ) with the (d —I)-th order tensor F', matrices Q" 2 < K<d- 11 <
ik <m/it) and PMi*r (1L < < 'ii, 1< id £ 7n(f): if d —1 = 2, then apply SDP
relaxation and randomization procedure (Nernirovski et al. [87j) to obtain an ap-
proximate solution otherwise obtain a solution {x*, x"\,eee —i] ")

by recursion.

4 Compute a matrix M' — F(', e, ,*) and rewrite the vector x™* as

a matrix X €
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5 Apply DR 3.3.1 with input (Qj, Qj, X, M') = {Q"Pjw, M) for all 1< i <

and | <j < ni2 and output {x*, x*) —{x, Y).

e OUTPUT: afeasible solution XN, o0 e XN,

3.4 Applications

As we mentioned in the beginning of this chapter, one of the main reasons to study
multilinear form optimizations is its strong (“oiinection to | lomogemms polynomial opti-
mizations in deriving approximation bounds, which will he discussed in the next diap"
ter. Apart from that, these models also have versatile applications. Hero we pr([J seiitwo
problems in this section and show that they ar(» readily formulatccl by the polynomial

optimization models in this chapter,

3.4.1 Singular Values of Trilinear Forms

Triliriear forms play an increasingly important role in many parts of analysis, e.g., in
Fourier analysis, where they appear in the guise of paracoiiiimitators and (compensated
quantities (see a survey by Peng and Wong [95]). The problem of singular values of
trilinear forms is the following (see also [18]). Denote? Hi, HR and M3 to bo three
separable Hilbert spaces over the field K, where K stands either for the real or the
complex numbers, and denote a trilinear form F : Hi x H2x [H3 K. The spe.ctrmn

norm of the tmlinear form F is then the following maximization problem:

sup  [F(a:’y,z)|
s.t.[Ix]].<I, [|1t/]I<I, ]2 = 1<,
a;e Hi, y € H2, z 6 H3.

More generally, one can state the probteiii of the stationary values of the functional
\F{x,y,2\  under the same conditions. These c'orrespondiiig stationary values are
called singular values of the Uilinear fonn F. Bcrrihardsson and Peetrc [18] showed
in the binary ease > that \\F\\s are among the roots of a certain algebraic equation,
called the millenial equation, thought of as a generalization of the time honored secular
equation in the case of matrices. Another approach to singular values is given by Do

Lathauwer et al. [281.
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Hj = IR™ for i = 1,2,3, and reserving the field K to bo the real, the probloiii of
computing the largest singular value \\F\\s is ogiiivaloiit to (Ts) when d = 3. This
is because one can always uso (—x,Y, z) to replaa* {x, y, z) if its objective value is
negative, hence the absolute value sign in \F{x, y, 2)\ can b( omitted Moreover, we

can also scale the decision variables such that |a;|| = ||y|| = ||lzZl{ = 1without decreasing

the objective. According to Proposition 3.2.2, the problem of computing |jP||c,' is NP-

hard already in this real case. Together with Theorem 3.2.3, the spectrum norm of a

triliriear form can be approximated in polynomial-time with a factor of > |~ .
“ yminfrjin-i." : })

3.4.2 Rank-One Approximation of Tensors

Decompositions of higher order tensors (i.e., the order of the tensor is bigger than or
equal to 3) have versatile applications in psychometrics, chemomctrics, signal process-
ing, computer vision, numerical analysis, data mining, iieuroscience, graph analysis,
and elsewhere (see e.g., an excellent survey by Kolda and Bader [G8]). The earliest, sto-
ry of tensor decomposition dates back to 1927, where Hitchcock [55, 5G] proposed the
,idea of the polyadic form of a tciisor. Today, tciisor decomposition is most widely used
in the form of canonical decomposition (CANDECOMP) by Carroll and Cliang [23
and parallel facto‘rs (PARAFAC) by Harshman [45], or in short CP decomposition.

A CP decomposition decomposes a tensor as a suinmation of rank-one tensors, i.e.,
tensors who can be written as outer product of vectors (see e.g., [67]). Specifically, for
a d-th order tensor F = (F“i.2...id) € and a given positive integer r, its

CP decomposition is as follows:

1=
where x» e K& forz= 1,2,...,r, A = 1,2,..., [ Exact recovery of rank-one clecoiii-
positions is in general impossible, due to various reasons, e.g., data errors. Thus the
following optimization problem for the CP decompositiori is straightforward, i.e., to

minimize the norm of the difference -

s.t. xf e i=12, ...rfc=1/2,.., fi.

Il particular, the case of r = 1 corresponds to the best Tank-one approxirnatioji of a
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tensor, i.e.,
{TA) mill |li*—:E - (8)x'2(g)..."a;’|
st. xte k= 1,2,

By scaling, we may require the norm of x to be one, then [TA) is equivalent to

mill | |F — A aji 0O .. O
st. AGR, x"€ =1,2.. d.

For any fixed xA € 8%‘{k = 1,2,..., d), if we optimize the objective function of {TA)

with respect, to A, we shall have

min — Agji0 ic21] .o« [] ‘
AR

=mm_Vj - 2A ¢ (spill O ... O+ [] AN i
g (spi I

=mill J 1F[2 - 2AFix?,  ees, x7) + A2
AR *

Thus (TA) is equivalent to

max 0:~1
s.t. xMe A =12,

wliich is the same as (Ts) discussed in Section 3.2. Remark that similar (Iccliictioris can

also be found in [29, 122, 67 .

3.5 Numerical Experiments

In this section we are going to test the numerical performance of the approximation
algorithms proposed in this chapter. As mentioned in Section 2.1.3, all the numerical
computations reported in this thesis are performed on an Intel Pentium 4 CPU 2.80GHz
computer with 2GB of RAM, and the supporting software is Matlab 7.7.0 (R2008b).
The experiments in this section focus on the model (Ts) with = 4 or equivaleiit-
ly, to recover the best rank-one approximation of a fourth order tensor discussed in

Section 3.4.2. Specifically, we are going to test the following problem

{ETs) max F{x, vy, z,w) = Ei<,jfcE<nFijke NVjZkWe
st. f£cy,z,we S"
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3.5.1 Randomly Simulated Data

A fourth onlor toiisor F is £ ~ n(Tat(_ chiidoiiily. whost* // * () ntri<ar(s i.i.d standard
iiorinals. Basically wr have a choico to inak(in tli(Crecursion in Algorithm 3.2.3,
yielding two dilfcmit mothods, hotli of wliicli call thr (U'lcrniinist ic routine DR 3.2.2.

Method 1 follows tlio stantlard riH iirsioii pixMvdui-os in Algorithm 3.2.3, and its first

relaxation prohl(T1 irs

= mux F{Zw) =Ei<,}A-/<n
st. Ze e 8"

Aftor w'v got its optimal solution {Z*w*), w( fiw* and tlio prol)l(Mii is tlicn rcducocl
to a trilint'ar case of {ETs), wlicro rocursioii goes on. The ()])j(vtiv(" value of tlic a}>

proxiiiiate solution ()l)taino(l is cionotcd l)y , and a ratio t\ := vWW\ s also coiiipiitcd.

On the other hand. Method 2 chooses the other relaxation asits first st(C pvliich is

rz= max F{XZz2) = <ijk(<fi [IXm o
sit. X, Zze€
After we get its optimal solution (X*, Z*), we may first fix Z* and apply 1)1% 3.2.2
to cltK'oiiiposc X* into x,y G S". and then fix (i,y) and apply DI{ 3.2.2 again to

fkn'oniposc Z* into z, w 6 8". resulting a tWusihlo solution. VW also coinputc its

ODjo(itive value V2 and a ratio > := fe >[2e

fennit recursion. It also enjoys a worst-caso ratio of 1/.", which can I)(TJ im>v(sinfilarly

as that of Thcoroiii 3.2.4. From tli([J siiimlationesults in Table 3.1. the ()l)j(‘ctivc values

hotter upptT h(>uii(l of v{ETs)" and thus ends up with a better api)r()xiiiiat ion rat io.

The minuTical results in Tahlo 3.1 soeni to indicate that the pcrfornianct” rat io of*
Method 1 is about 2/n. while that of Method 2 is about \\Vn.  The main rciusoii for
tlio (lifferciicc of upper hounds of V{ETs) R:-ivs. V)) is the first nJ laxaim nkmikxis. By
Proposition 3.2.1 we may gneiss that vi = J2(||F||/y”), while vj — SZ(||F||/"), and this
may coutribute to tlio large gap IK[I twc(W rand f'j. Consequently - it is ("iit(» possible
that the true value ¢f <> (E7'9 s closer to the solution valuos {\\ and V)). ratlior than tli("
ODtiiiial value of the rdaxed problem (f-)). Tiie real quality of the solutions productHlI
is possibly iiiudi b(77 U(Than what is shown by the upper I)(JI[mis.
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3.1: Nuincrical results (avrraj*c of 10 instaiuvs) of ihTs)
2 5 10 20 10 50 Q0 70
2.Gl 5G4 8.29 y.58 12.55 13.58 15.57 17.05 18.93

V) 269  G57 75G  10.87 11.7-1 1;1.89 115G 17.10 17.7(>
0,1 384 1270 3481 9338 1G98 2589 | 4f.89 17215 .T/{I13
291 91G 20.40 39.40 59.55 99.G1 119.77  140.03

ri Qoo 07.97011141 2381 10.20 7.42 5.24 431 3.71 3.19
T2{%) 9214 09.15 3095 27.59 19.71 17.17 11.62 11.28 12.68
11+ T] 1.36 2.22 2.38 2.05 2.23 2.10 213 2.21 2.23
N.TT 1.85 3.17 3.G9 5.52 5.91 G.99 7.31 8.57 8.88
SITL. T> 1.3K- VI.55 1.17 1.23 1.08 1.10 1.03 111 LOG

Tal)l(8.2: CPIQ s(K-(ii(ls (average of 10 instances) for solving {ETS)
I 5 10 20 30 10 50 @ 70 80 90 100 150

Method 1 0.01 001 0.02 OOG 0.20 0.15 095 191 3.01 5.08 8.01 581
M(Ctliod 0.01 0.02 113 12G 253 517 2433 <RB()) oc X M oc

Although Method 2 works clearly hotter than Method 1 in terms of upper hound

of r[ETs), it nxjiiires inuch niorr (.oiiiputat.ioiial tiiiir. The most (xi)(>iisivr part of

(Jig(J uvordf)an ir x ir matrix. In coiiiparisoii.' for Method 1 the corn'spoiuHiig part
involves only an u x n matrix. Kvid((] m.th Tahk3.2 shows that Mctliod 1can find a
jhood quality solution very ltusl (*v(C] tor large si/c prohlciiis. \\\[J remarkere tliat for

= , the sizes  tlir input data arc already in tlic iiia”nitudf o :
1) = 100, the si lir input d Iready in tlic iiia”*nitudf of 10”

3.5.2 Data with Known Optimal Solutions

The iipfKT bouncis appear to be quitr loose in f*riicral, @ one may observe IVoiii the
previous nuiiKTical rosulls. T<) tost how good the solutions arc without referring to
problem iiistaiK't'8 an* const met (h1 in such a way that the optimal solutunLS arc known.
By tliis we noxx' “) get som([iinprossioiirront a dilfenMit aiij*e, oii tHe quality of

the approxiinato solutions pr()(lu(,(J @)y our algorithms. \\v Hrst raiuloiiily generate a
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Table* 3.3: Numerical ratios of (ETs) witli known optima for ii = 50

m 5 10 20 i() 10 50 100 150 200
Minimal ratio (%) 50 &G 43 37 37 100 100 UK) 100
Maximal ratio (%) 100 100 100 100 100 100 100 ¢ 100
Averaj”c ratio (%) 97 8G (i 87 97 100 100 100 100

Optiiiiality iiistanc(»s ((X) 7 10 35 71 94 100 100 100 100

vextor a € S", and g(J iKD rj<sfiiiuK'tric matrices A, GR""" (1 < i < m) with thi(0 ir
rigonvalu(»s lying in the interval }—1,1) and Aa = a fori = 1,2....,in. Tlkmi. wc
randoiuly geiirrato a V(rtoi- b s S", Hiki J// syiiiinetric matrices B, € R""" (1 < i < ni)
with their eigenvalues iii th(» interval |-1, ) and B"b = b lor i — 1,2 in. Dclinc

m

F{x.y,2,w) =~ (X1Ay *z° Bw)

For this particular iimltiliiioar form Fix, y, zw). it is Cusy to S(K[J thatETs) luus an
optimal solution (a, a, b, b) and optimal value is m.

W geiierato sudi raiidoin instances with n = 5 for various ///. and subsoqu([] utly

apply Method 1 to solve tlioiii. Since the optimal values arc known, it is possible to
coiiipiito tli([] exacfXTforinaiice ratios, i.e., Vijm. <For ((Ja(li 200 raiidoin instances
arc HHiK[ rat(.and tested. Th([ resultarc shown in Table 3.3 > wliicli suj*cst that
our algoritliin works vory well and the i)rrf<)riiian(.(» ratios arc much I)(tt(T tliaii tlie
th(H)roti(al worst-case bounds. liuUvd, wliciicver /// > 50 our algorithm always finds

optimal solutions.



Chapter 4

Homogeneous Form Optimization

with Quadratic Constraints

4.1 Introduction

quadratic polynomial equalities or inequalities. Specifically, the iiiodds includo maxi-

iniziiig a homogenous form over the Eurlidcan sphrrr

ifIs) in-cix fix)

St xe ¢

{HQ) iiiax J{x)
st. X'Qix< Li= 1.2.
Xe M",

where Q- X0 for A= 1,2,...,d,and 5];" ,Q, > 0.

As a general extension, we also consider optiinizations on iiiixccl forms,

Function U a-, 0 = Fix\xK -, X- X X
(1 (h fia
whored = d\ + + ...+ is clwiiiocl as a Hxkl constant, and f/-tli order teiisor

49
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models include
{Ms) niax X/

e S"Aq k= 1,2,

{MQ} max f{x\x",... ’
A= 1/2,

X" e R"#.k . 1, S,

where Q~ < 0 and Ox,[() f(>r A=1.2 s k-=1,2 "U..
The model {MS) is a generalization of {HS) and (7S ) n Soctioii 3.2. and (MQ) is

objective is odd, {Hs) is cqiiivalont to

max  f{x)
s.t. x 6 S".
This is b(Xaiis(* we can always use —x to x if its objeH'tivo value is negative, and

can also scale tlic vector x along its diroc.tioii to make it in S". Tlias [Hs] is a spcrial
(.ase of [HQ) when (1 is odd. However if d is even, the optimal value of {Hs) may h([!
negative, while that of (//g) i'salways noiiiicgative since O is always a fcasiblo solution
of {HQ), Il the former rase, the tensor F is (ailed negative definite, i.e., f{x) < 0 for
all xVv o.

The model {Hs) is in general NP-hard. When d = 1 > {Hs) lias a closcforin solution,
due to the Caucliy-Scliwartz inequality; And when d = 2, {Hs) is to comput([J tlitargest
eigenvalue of the symmetric matrix F: However {Hs) bccoiiies NP-hard wlioii d = 3.
first proven by Nosterov |90]. liitcrostingly, when d > 3. the model (Hs) is also regarded
as cxHiiputiiig the largest eigenvalue of the supcr-syiniiict ric tim‘sQr F, like the ccsc 1/ = 2
(see e.g., Qi [98)). Luo and Zhang |77] proposed the first polyiioiriial-tinie raiitloiiiizod
approximation algorithm with relative approximation ratio il when d = 4, bfusod
on its quadratic SDP relaxation and raiKioinization tedmiqucs.

For the model {HQ): When d = I, \T can be fomiulaUxi as a standard SOCP prol)-
problem (liscusscd in Swtioii 2.5, and known to be NP-hard in general. Nciiiirovski (7t
al. [87] proposed a polynoinial-tiirio raiidoniized approximation algorithm with approx-
imation ratio 12 (1/log 7') based on SDP rehixatioii and raiidoinizatioii, and this ratio

is actually tight: When d = 4. Luo and Zhang [77] established the relationship between
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(HQ) and its quadratic SDP relaxation, antl proposed polynoiiiial-tinio approxiiiiatioii
algorithm \wh(?n the number of constraints is one. Mofuiwhile. Ling et al. [73] proposed
li-giiaclratic optimization model, which is exactly the model (Ms) when (1= 4 and
d\ :=( 2 = 2. In particular, they established the equivalence between (Ms) and its
quadratic SDP relaxation, based on which they proposed a polyiioinial-tiiiir randoni-

izH1 approximation algorithm with relative approximation ratio il (1//?-?")-

For the model {Ms), tlie cornputational coiiiploxity is similar to its special ciLses (Ts)
and {Hs)" It is solvable in polynomial-time wlioii (I < 2, and is NP-liard \vh(CJ @ > 3.
which is claimed in Section 4.4.1. Moreover, when d >4 and all ¢/, (1 < A < §) ar([] even,
there is no polynomial-time approxiiiiatioii algorithm with a positive approxiniation
ratio uiiloss P = NP. This is verified in its simple ease of d = 4 and = =2
by Ling et al. [73]. The (xmiplexity of (A/q) is also same to that of (HQ), i.e., IxMiig
solvable in polyiiomial-tirne when d = | and NP-liard when d > 2. Meanwhile, a special
case of (A/G) wikmi d = 4 and (l.i= (I> = 2 is the biquadratic form optimization over
quadratic constraints, .studied by Zhang et al. [123] and Ling al, |71j. In their work,
the relationship between biquadratic optimization and its bilinear SDP rchixat ion is

established, as well iis some data depeiident approximation bounds arc derived.

In this chaptcr, wo are i"oiiig to present polyiioinial-tiine approximation algorithms
with giiaraiitwd worsc-ciiso performance ratios for the models coiireriird. Oiir algo-
rithms work for any fixed degree d, and the approximation ratios improve all the previ-
ous works si)Ocializoci to their particular degrees. The major break though for our work
is the multilinear teiisor form relaxation, in stead of quadratic SDP relaxation iiiotliods
proxiination algorithms discussed in Chapter 3. After we solved the relaxed problems,
wc merge a biincli of relaxed variables into one feasible solution by a link identity, and
argue the quality ratios being deteriorated only by some constants, which is the main

contribution in this chapter.

The approximate algorithms of {Hs) are presented in Section ‘1.2, followed by that
of (HQ) in Section 4.3. Models (A/s’) arid (A/g) will be studied in Section 4.4. In
Section 4.5, we discuss some applications with the models presented in this chapter.

tion 4.G.
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4.2 Homogeneous Form with Spherical Constraint

The first model in this chapter is to maximize* a lioiiiogonous polynomial function of

fix(KI degreo d over a spliero, i.e.,

L(CJFE he the super-syiniiietric tensor satisfying F{x, x, * ¢ ¢, x) = f{x). Tlioii [Hs]
. d
can be relaxed to multilinear form optimization model (T5) discussed in Chapter 3, as

follows:

{Hs) max F{x\x\---
st. xMeS" k=l,20...°".

approxiination ratio n:(“}‘. The key step is to draw a feasible solution of {Hs) from

the approximate solution of {Hs)- For this purpose, w establish the following link

between (Hs) and (Hs)-

Lemma 4.2.1 Suppose x".x7,... GR", and €1 - ..+>d tid. random vari-
ables, each taking values 1 and —1 with equal probability 1/2. For any super-mimme.tiic

d-th order tenSor F and Junction f{x) = F(x, X, - **,X), it holds that
d / d \

E X
A=0
Proof. First we observe that
“d / d
Eru"™ i>% =E g E F(a.
d (i
E E X

If {ki,k2,...,k(i} is a permutation of {1,2,... - "} > the

Otherwise, there must be an index ko with 1< k()< d and k([1’4j forall 1<j < d.

In the latter case.
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Since the imiiiber of different jjcrmutations of {1,2,... » "} is (1L - hy taking into account

of the super-symmetric property of the tensor F, the claiincd rolation follows. .

When d is odd, the identity in Leiiiina 1.2.1 can b(» rewritten

(NF{x\x' X" = E E f R < X
1 AF

Sincell1¥2 ... ar e iid. random variables taking values 1or —1 - by randoiiiizatioii

we may find a particular binary vector (36 IB,' > auh that

I d ' A Y >
r EUS X 2
We remark that d is considered a constant parameter in tliis thesis. Tlieroforo, searching
all tlie coinbiiiatioiis can bo clone, in principle, in constant t.im(C].

Let X = (riitita) ® " > x  =i/||i;]|. By thr triangle inequality, w( have
[IX|| < d, and thus

fix) > 1 1C)

Theorem 4.2.2 When d > '6 is odd, (Hs) admits a polynomial-time  approximation

algorithm with approximation ratio T{HS), where.

J d-2 /[ d-2\
t{Hs) ="V gV =1L ("_T>

The algorithm for approximately solving {Hs) with odd d is highlighted bolow.

Algorithm 4.2.1

e INPUT: ad-tJi order suyer-syrmnetric tensor F 6 R™
Apply Algorithm 3.2.S to solve the problem
liiax X
st. ich6S" k=12

approximately, with input F and output ( x ~ « £").

2 Compute (3= arg iiiax™ggrf | f Ot\i™) } » or randomly (feiwmte /3 unijoTrnly
on IB"and repeat if necessary, until f KN d\F(X\X,. .., XM.
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3 Compute x = Eti ELi I"kx'|

e QUTPUT: a feasible solution x e S"

We r(71 marthat it is unnecessary to oiiuiiiorate all possible  roni})inations in Step
2 of Algorithm 4.2.1, as (4.1) suggests that a simple randomization pr()(‘(") ssill serve
the same purpose, especially when d is large. In the latter case, we will end up with
a polyjiomial-time randomized approximation algorithm; otherwise, the coiiipiitatioiial
complexity of Algorithm 4.2.1 is deterministic- and is polynomial-time for fixed d.

When d is even, the only easy case of (Hs) appears when d = 2, and even worse,

we haw the following:

Proposition 4.2.3 If d = 4 > then there is no polynomial-time approx-nnation aUjorithm

with a positive approxiniation ratio for {Hs) unless P = NP.

Proof. Let f{x) = F(x, X, X, X) with F being super-symmetric. We say quart,ic form
F{x, X, X,X) is positive seinidefiiiite if F{x, x,x,x) > 0 for all x e M". It is well
known that checking the positive seniidefiiiiteiiess of F(a3, x, X, X) is co-NP-coniplotc.
If wo were able to find a polynoniial-tiiiie approximation algorithm to get a positive
approximation ratio T € (0,1] for = niax"eS" X, X, X), then this algorithm
call be used to check the positive seinidcfiiiitcness of F(x, x, X, X). To s(x_ whyuppose
this algorithm returns a feasible solution x with —F(x, x, x, X) > () > ten F{x, X, X, X)
is not positive semidefinite. Otherwise the algorithm must return a feasible solution x
with Q.> —F(x, X, X,x) > r v*, which implies v* < 0; heiicc% F{x, X, cc, a:) is positive

semidefinite in this case. Therefore, such algorithm caimot exist uiik\ss P = NP. .

, ~ 5 This negative result rules out any polyiioinial-tiine approximation algorithm with
a positive absolute approximation ratio for (Hs) when d> even. Thus we can only
speak of relative approximation ratio. The fiwllowiiigalgorithm applies for {Hs) when

d is even.

Algorithm 4.2.2

e INPUT: ad-th order super-symmetric tensor F € R™
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1 Choose any vector 6 S" mid define a d-th oTder super-syrnmatric tejiaor H G

R™" with respect to the homogeneous polynomial fi{x) = (x* xY"L

2 Apply Algorithm V2V to solve the problem

max v BAT-I(XO)T (i, X'V Lo
s.t. xMe 8" k= 1,2,.

approximately, with mput F - J(x())jFf and output (i', x" X
» Compute (5- argmcixrrgr j-jj =, NEliaxIl : | -
4 t — < f EL.

Compute x argmaxD .IIELT’\)}

e QUTPUT: afeasible solution x e §".

Theorem 4.2.4 When d > 4 is even, {Hs) admits a polynoirual-tirne (ipproxnnation

algorithm with relative approximatioji ratio  t(Hs)-

Proof. Denote H to he the super-symmetric tensor with rospoct to the lioinogciicHJiis
lolyiiomial h{x) = = {x* xy™Wn, Explicitly, if we denote A to be th(: set of all
permutations of {1 > 2,..> f/} > then

H(x\x' X - Ilnl E“i)en ((_ 0((X X ((x X
For any x* GS" (k = 1,2,.. wo have eee, < 1 by applying the
Cauchy-Schwartz inequality toniiwise.

Pick any fixed x* 6 S", and consider the following prol)I(>iii
(Hs) max AN - T H{XWX oo
s.t. XN N8 Lk — 1520000 (-
Applying Theorem 3.2.4 we obtain a solution (;i - i.J¢ « > ~j; /7 in polynoinial-tiiiie, with

FENEZ2 0 e (@O (11,1725 - 0 1M) 2 TCTSsX/Ms),

tf-2 .

where {{Ts) :=r2—7.

Lot us first work on the caso that

l@a: ") - v{Hs) < (f(Ts')/4) (v{Hs) - 11/%) (4.2)
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Since XN < 1, wo have

") - @) i)+ —ii(/Is)) H[x\... - i")
>f(Ts)v(Hs)-{f(x")-v{Hs))

> r{Ts) {v{Hs) - J{x") - (f(rs)/4) {v{Hs) - Vv{Hs))

> (r(7:s)(1 - f(7:s")/4) - £(Ts)/4) {v{Hs) - v{Hs))

> (T(TS)/2) (v(HS)- V{HS)),

where the second inequality is due to the fact that the optimal solution of (Hs) is
feasible for {Hs)-

On the other hand, let €]-“... » $/ bo i.i.d. random variables, each taking values

1 and —1 with equal probability 1/2. By syininetridty, we liave Proh [IYI"] = 1| =

Prob = 1= 1/2. Applying Leniiiia 4.2.1 we know
d\[F(X' > 1’V .. > 17 — v{HS)H(X', )
d ( (d \ / d
=E nM/ EI -_sv I Et
E Prob =
| |
d —
“E V{Hs) ne, = -Ieron =
1=1
< 5B/ -kns) ne, - 1
) \k=\ /

where the last inequality is due to the fact that

since Ylk=i J ik € 8". Thus by raiicloinizatioii, we can Hiicl /3 6 B"
with n?=i = 1, such that .
/ >dWH{Ts)/2) iv{Hs)-v{Hs})
=
By letting x = ZLi ELi {fi-f- > and noticing |[ELi KXW < (i, we have

m  —v_(Hs)> Jih@2)#]) : : - ))> vy - .ah)
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Recall that the above inequality is (k1 riv(under the condition that (4.2) holds. In
case (4.2) does not hold, then

- v{Hs) > (|{Ts)/4) {v{Hs) - v{HS)) >t{Hs) {yHs) - V{HS)) - (4.3)

By picking x = arg max{/(x),/(:c())}, regardless whothor (4.2) or (4.3) holds, wo shall
uniformly have f{x) - v{Hs) > r{Hs) {v{Hs) _ v{Hs)). .

4.3 Homogeneous Form with Ellipsoidal Constraints

We proceed a further generalization of the optimization models to include geiUTal

ellipsoidal constraints.

(ffcj) max  fix)
st. xAQX <1,*=12.. ., nm,

X e K

wliere f{x) is a homogenous polynomial of d(»gr(»(C/ @, ~ 0 fori = 1,2,..., Il» and

If wo relax [HQ) to the multilinear form optimization problem like (Tg), and we

have
{HQq) maXx ) YX/\)

s.t. <L AR=12 .0 "i=R /"
X\ e k — 1,2,...,L.
Theorem 3.3.4 aijscrts aii approximate solution for (Hqg), together with Lciiiina 4.2.1

wc propose the following algorithm for approxiiiiatdy solving {HQ), no matter (I is odd

or even.
Algorithm 4.3.1
* INPUT: ad-th order super-symmetTic tensor F e matrices Q, € M"\", Q, 7
0 for all! <i< m with Qi ().

1 Apply AlgoHthm 3.3.2 to solve the prohlam
max fXici > ... ’ajd)

s.t. <l k=1,2,....f,i=1,2,..., ni,
e M,k —Z1,2,..., tf
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approximately, and get a feasible solution XN, e
2 Compute x = argmax {/ ELi o o

« OUTPUT: afeasible solution x G M".

Although Algorithm 4.3.1 applies for both odd and even (i of the model (Hq), the

approximation results are different, a\ the following theoroiiis claimed.

Theorem 4.3.1 When d > 3 is odd, {Hg) admits a polynomial-time miidornizad (ij)-

proximation algorithm with appToxirnation ratio t{Hg),  where
{Hq) :=did-"Air'An (log—(m) =n (, % logt" D

Proof. Acx'ordiiig to Tli(X)rein 3.3.4 wc can find a feasible solution (XP e 0o of

{Hq) in polynoiiiial-tiiiie, such that

> {HQ)V(HQ) > HHQ){HQ), (4.4)
where 7(Hq) := irwil (log—("— By (4.1), wo can hiid a binary vector f36 IB"
ill polynomial-time, such that

f AX' >d\F(x\x\"™

Notice that for aily I < k <m>

Id AT {d

Vi—i / J ij=i
d T 1
t,j=I ij=1
(4.5)
If wc denote x = 7 i ,then x is a feasible .solution for (Hq), satisfying
fix) > V7IF(i;i > iV.. > d-AdIf(HQ)2;iHQ} = t(Hq)V[Ha)
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Theorem 4.3.2 When (/ > 4 is even, {Hq) admits a polynomial-time randomized

approximation algorithm with mlative approximation mf.io t[Hq).

Proof. First, wo observe that wHg) < vwHg and !; (Hg) > WHg) = —"(//q). There-
fore, 2vjHq) > w{Hg) — v{Hg.  Let (i', Xx",. s. ,x~ bo the feasible solution for {Hq)
as in the proof of Theorem 4.3.1, satisfying (4.4). According to (45) > it follows that
X = arg max Yik=i A is feaisible for (Hq), where[1i" (2.»¢ are
i.i.d. random variables, each taking values 1and -1 with equal probability 1/2. There-

fore, by Loinrna 4.2.1 wo have

=@ f d
2d\F{x\x' i") = 2E
=E ¢ -v(HQ) 116 =1 E —1
/ 1=1
(d \
<E | = -"0

According to (4.4), this implies that

I'{X)-V{Hq)> i4] > 2TH{HQV{™Q) > AHQ)  {V{HQ) -  W{HQ)

4.4 Mixed Form with Quadratic Constraints

In this section, we further extend polynomial optimization models to the mixed forms.

Specifically, we study the following two models:

{Ms) max ar
x X eS"S)Il- = 1.2,

(A/g) max X'
x  Q>A-SPA-=1-2,...8°T:fc = 1,2, Kk,

XN e A= 1,2,

where Qk; 170 and Ql 0 for k = 1,2, sk = 12 iiik. Hero wc

assume that N\ < ri2 < eee<

Both (Ts) in Section 3.2iuid {Hg) in Section 4.2 are special cases of (Ms), and both
(Tq) in Section 3.3 and {Hq) in Section 4.3 are special ca”s of (Mg). In particular,
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(Ms) is a geiieralizat ion of the l)i-qua(lratic (]t iiiii/at ion iii(>(I(Cdiscussed in Liii™ ([t
al. [73], spocialized to (I= 1and (N = &> — 2.

4.4.1 Mixed Form with Spherical Constraints

Ij [us finely tlic optimizat ion inodol {Ms)- First. we have t lie following lianiiicss n'sult.

Proposition 4.4.1 If d = 3, then {Ms) is NP-hmtL

Pmof. \V([1 iuhh(Tify tho NI)-Imr(Im»ss in three Crises of d — 3. i(>, “ [1 3. (N =~ 2 and
(I>= 21 aiul (N= (12 = = 1+ The rLsr of (N = 3 is cxact 1y (/7.8) with d — 3. whose
NP-luii(liu\ss is rov(ii by N(07st(C] [@¥, and tli(Ccase o' (N — <= (| = 1lis exactly
{Ts) with (I— 3, whose NP-hardness is proven in |*roposition ii.2.2.

When "l = 2 and 4¢>= 1. in its sixu ial casr =/lj= 1/ and F € IR" salisfvint®
Ftif ; = Fjtf ; forall 1< ij, k < n. \vw notire tlic tollowiiij! ; form of* (7:v) is ND)-Imr(l in
the proof of Proposit ion 3.2.2

{'lIs) max FIxy,2)

sl. xyz " 8§

WV arc "oing to show that the optimal value of (Ts) is (‘g“al to tlie "ptimal value ol"
t liis special cast'
(Ms) max F{x x. 2)
st. X.2eS"
It is obvious o{Ts) > v{Ms)- Now clioosc any optimal soliition {x\ y*.z*) of (Ts)
and coiiiputc the matrix M — F{. z*). Si"(.r M s syininctric, we can coiiiputc

an cigonvector x (s(rn'Sj)()n(liiig to the largt'st absolute (Mgcnvaluc A (wliicli is also the

\F{ X, Z)\ =W" AlX\ =X— max x * My=  max /(cc > 2[.2%)=] 2/ » Z&) —1»@ ) >
x.yeC" x.yeG" ‘

which iniplios (itli(C7 ¢i, x, z*) or {x, X, ~z*) is an optimal solution of {Ts). TIi(T(J f<m,
V{Ts) < v{'Ms). and this claims "(f«=>) = v{Ms). If (.Ms) can I)(J solveth polyiioiiiial-
tiiuc. tluMi its optimal solution is also an ()|)tinial solution of (7's), wliicli solves (7:.) in

polynoiiiial-tiiiic, loading to a contradiction. .

the relaxation in Section 4.2 in liaiidliii® iKJiiiogcncous polynomial opt iniizat ions. ii. w([
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relax [Ms) to the multilinear optimization (‘[ s.}kmi )y riuHncin 3.2. 1 wv arc able to

find (X', X". » e x") with = 1forall 1< A < J in polyiioiiiial-t iiiic. such that

X" >f{Ms)r{Ms)" (Ui)

where

n _ (|_ =
f{Ms)

re_ | (IS >

In order to difiw a f(T7 a.sil)l(T7 sQ)lufr{Ms) from (x*. oo X'). we ikhhl apply the
link identity in Lciiiina 1.2.1 <>rr can'fully. Comparable approximation results as (Us)

can he similarly drrivcd.

Theorem 4.4.2 If d > 3 and one of df*. {k = I.I2 S) /s odd. fheji (Is) (idtut/s a

polyjioinial-tifnc appmniiiation aUjorithni with (ipjuvximatioji ratio f (“'CJ />"\in re

f{Ms) = fiMs) n = U{i{Ms)
\<k<s.:i<(ii
T1 oy m- -1
< = <<l /

ae . L <X

L > 2

and the proof, here wv only consider a special axsv {Ms)- whirl! is easily ([ xt<(] mig ! (I
g(I mri(rals) e
(Ms) niax F{X, X, X, X. Y.y, Z, Z. 2)
. s.t. Xe e S"-'.2G
By (1.0). we arc able to iiiul G € S"-". and €

ill polynoinial-tiinc, sucli t liat

, rix\\ x~. X' L 2-02 7 > f{Ms)r{*Is)e
Let us iirst fix (i/', 2'.z"'. 7" aiui work for (he problem
max F{X. x, x, x. j/, y-, Z-.2°)

S.t. Xe
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Using tlio same arguiiicnt in proving Tlicorcni 1.2.2, we arc able to find x G . sucli
that citlitT F{x, X, X, X, Z- N or F{x, x. x. x. .y-. -2". 1~ ) will 1><(1no
less tlian 4!4~'F{a::". x-. xK A .Z', '). wherccus in the latt.rr (.a.s(fluso —2'

to update . Here ([ v((I(u gr\ = 1) for x makes no tn)iil)I(\ as \v([ caalways move
the n([] gat.iv((1siffto 2'. W'v call this process to he an adjustiiKMit of the variable x.
Up till now tlie approxiiiiatioii bound is 414~ 'f(i\/s").

Next wr work on adjustiiinit of variable y and coiisidcr the ir()I>h”ii

max \F{X, X x x v ¥ z'~.

S.t. v e $"-.

tiliic. Denote its optimal solution to he y. update with —2" if ncccssan'. and we
k(H)) (he a])Dr(xiniatiOn hound 4 4" ~M{Ms) for the solution {x, x. x. x,y.y, z\ ’n).
The last adjustiiicnt of tli([7 vaiial)lp is straightforward. Similar to the adjustiiicnt

»

of the varial)l(» x. by tocusiiig on

HuLX F{x, x.x.x. if.y.z.2.2)
s.t. 2€ S™.
we jL-an iilid z € in p<>lyn(>iiiial-tim(Csucli that tlic solution (X.i.X. X. y.y. z.z.2)

admits an approxiination Ijouikl 313~.07 :1l-l—.:r(M.s.).
Woe rcinark lion» that 1 he variable z is tlic last varial)lr tor adjustiiicnt. since \v([

cannot move tlic iK'gativc sikin to otiicr adjusted variables if tlic (i([] gr(H zofs even.

4

That is why vv (B r(0 quir(C ofedf. to X odd as tlio coiKlitioii of Tli<H>("n 1.1.2. wlkmec
w([] caalways adjust the bust variable with an odd (It(] A (01 (0.

However, if all "\ = 1.2,.... s) a() ( ~v(ivc can only li(>p(for a irlafirc appn)x-
iiiiation ratio. For its simplest ({use wlicii (I = land (IC. dy = 2. the bi-quadratic

opt imization niodol yeJi' B:. X, y,y) docs not admit any j)(lyii()inial-tiiiK'

LtMiiina 1.2.1.
Lemma 4.4.3 Suppose, X' € R'] (1 < k < "[)X € {h+ 1< A<, +
(12), eev, GM" (L +(>+ -.v+(Iss1+ 1< A< fli+(h + e+ " /). and

“fid cfr ii-d. random variables, c(irh iakiiKj values 1 aiid — | irifh equal proh-
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ability 1/2. Denote

2 Aff>
XN= [ ey VT “rz oo E -
-<I\.(h
For any partial syinmrtnr d-th order ielisor F 6 IR™" A and fujicfurn
[(]+ ~ .0 as) x'.o« .. ,x'. X'x X 77
1]
it holds that
E YD {xIXI--- X

Theorem 4.4.4 Ifd > 4 and all ™ {k — 1.2 S) air crfii. then {Ms) adinits

a polyjioniial-fiftic approxiinatwn aUjonthin with relative approTurndioi) ratio  T{ms).

when
r{Ms) =f{Ms)II-» =il{fiMs))
Je (Ik
£c
VH
nA SN re™! L >
Pmof. 1)(L) m>t(le HR™ - “to Ik' the partial sviniiK'tric <74h order tensor

with rcsjKH't to t lie mixed form

.S ,S

Ny=1 1] 4#"=U

Choose any fixed i\ € for A= 1.2 s. and amsidrr th(J followingr(>DI(C) m

{Ms) niax F(x', x'-,®ee* X") - e IOtV ) X
s.t. 1= A,
t
A|)Dlyiiig Tlicorciii .12.1 w([1 obtaia ,sQliiriQii {x\x"

1,2,..., flin C)ynQiiiialt iiiii(, such that

XN with [HL | [5 fbr A=
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Let US start with the cast' that

fixAx" - X)- V{Ms) < {fiMs)/-i){v{Ms)-ii{Ms)}. (4.8)

Noticc that \H{xKx~. - - > < 1 wo hav([J

+ XK\ x-r{Ms)) /(L2 - i

> f(Ms)"M7°s” ). (/(iTi'.". »i."i(Ms))

> f{Ms) {V{Ms) - - {i{Ms)/\)iv{Ms)- r{Ms))
> {{Ms){l - fWs’)/4) — §Ms)/d) {W{Ms) - V{Ms))

> {F{MS)/2)(u{Ms)-v{Ms)),

whore the sr(.(m(l inequality is due to th( factliat the optimal solution of. {Ms) is
feasible for {Ms)-

On the other liaiid. using the notation of (4.7) and applying Lemma 1.1.ii. we have

S
Y (ke XN)-VIMS)H{X\XK---
- E X)-  V{Ms)h {xI
=EM =« Prol)
S d
E CHE-EMS)nii g1t on (" Z—i Prol) = .
< JF 116 = 1
k=\

\vher([] thkast inequality is duo to f (x*, o o - V{Ms) FKAi B2 00, > 0. since

‘e ig/llig|I) is fcvusiblc for (Ms)- Thus, there is a binary v(CJ (_t(>,
I3 € with nf=i Pi = 1> such timt

I (If (xI xi ...iS) - v{Ms) n 19 >n "MFWs')2) ("> Ws) —  ViMS)).
A=l I k=\
Ny letting x = 5] for k = 1,2 S, and noticing < dj., wv have
X-)- viMs) > f(A/s) I {{Ms) - v{Ms))

> T{AIS){V{MS)-V{KS)).
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Recall that the aljove iiioquality is clerivod under the (eonclition that (4.8) holds. In

ease[(4.8) does not hold, then wc shall havel!

... — v{Ms) > {{{Ms)/4) {W{Ms) — v(Ms)) >tMms) {vms) V{Ms)).

By pickidg (X", X™ e ee>a®) = arginfix{/(i', oo X/), : ‘oo X"}, \v(U shall

uniforiiily liave /(x~x'-, . ¢ X*) — v{Ms) > t{Ms) iv{Ms) — v{Ms)). .
4.4.2 Mixed Form with Ellipsoidal Constraints

Finally, lot us discuss the most general iiiodol {MQ) for hoiiiogrmnms polynomial opti-

inizatioii with giuuiratic constraiiits. We iiave similar results as of (Afs) in Section 1.4.1.

Theorem 4.4.5 If d > 3 and ona of df.{k = 1,2,..., ) is odd, then {MQ) admits a

polynomial-time raiuUnnized approximation algorithm, with approximdtion ratio T{mQ),

where
{MQ) :=f(Ms.Jil(log - "Jil)n % ( FWs.) log-("-"")
fF~1
/ s /1w
n
/ s ., W
f T-T 4! nki/\) (|Og—d>2
- / U y \VJ )
and 111 =

The proof of Tlieoreiii 4.4.5 is very similar to that of Theorem 4.4.2, whore a typical

example is illustrated. H([J revc only liigliliglit the main idras. First we relax ( Mq)

from that solution to a feasible solution for {MQ). Specifically, w([I mawdjust the
solution of (Tg) one hy one. During each adjustinent, wo apply Loiiiiiia 4.2.1 oiico,
with tlie apijroxiniatioii ratio deteriorating no worse than . After s tiiiios of
adjustments, we arc ablg_to get a feasible solution for {™Q) witli p(J rfQ)rnuuic( - ratio

tMQ).  Besides, the feasibility of the solution s()-()Dtaiiic(i is guaraiit(«(»(I by (-i-G).

S

Theorem 4.4.6 Ifd > Aand all (A.=1,2,...,.s) are aven, then {MQ) admits a

polynomial- time randomized approxiination aUjoriihm with relative appivximation ratio
rIMO)-
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Proof. The proof is analogous to that of Theorem 4.3.2. The main clifferonct’s & - :
(i) w(ll uséemma 4.4.3 instcaci of invoking Leinnia 121 diroctly; and (ii) we use
I (+ ..., instead of / Ylk=\ (luring the rancloiiiization pro-

Cess. °

4.5 Applications

To better appreciate the homogeneous polynomial optimization models presented in
this chapter, in this section we are going to present a few examples rising from various

applications. In particular we shall discuss applications of fiio models {Hs) and {Ms)-

4.5.1 Eigenvalues and Approximation of Tensors

Similar as the eigenvalues of matrices, this kind of concept has been ([ xt([] ii@igxhigher
order tensors (see e.g., [98, 99, 100, 91]). In fact, the (,oiic(-_) gor eigeiivaluos of tensors
become richer than that restricting to matrices. Qi [98] proposed several definitions of

fensor eigenvalues, among which the most popular and straightforward one is iiam([ (I

Z-eigenvalues. For a given d-th order super-syiniiietric tensor F G M™, its Z-cigeiivalue
A6 K with its corresponding eigenvector x G M" arc defined to be the solutions of the

following system:
/ F{x.x, X, ) — AXx,

Notice that, the Z-oigenvalues are tlie usual eigenvalues for a syminetric matrix when

the order of the tensor is 2. It was proven in Qi [98] that Z-eigeiivaliU's exist for an

even order real super-syiiiiiietric teiisor F, and F is positive definite if and only if all

Z

W

positive clefiriiteness for F. Conversely, the largest Z-oigeiivaliie can ho an indicator of
the negative definiteiiess for F, which is exactly the model {Hs)- In general, the [timal
value and any optimal solution of (Hs) is the largest Z-eigenvalue and its corresponding
eigenvector for the tensor F, no matter d is oven or odd. By Theorem 4.2.2, the largest
Z-(ngenvaliie of an odd order siiper-syininetric tensor F can bo approxiiiiat.od witli a

factor of d\d~ n~~.  For an even order tensor, this approximation ratio is in relative
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sense. However if we know in advance that tlie given even order tensor is positive

sciiiidefiiiitc, we can also have an approximation fiictor of (I\d~ft T

for its largest
Z-eigeiivalue.
Regarding to the tensor approximation, in Section 3.4.2 we have dfscussed the b([] st

rank-one (lecoinposition of a tensor. In cfuse that the give tensor F G IR™ is siipcr-

mill F —
A V !
s.t. Xe M"..
Applying the same technique ciiscussod in Section 3.4.2, w() can ([ quival([] nofpniiulato

the above problem as
liuix e, X)
N V ¢

(I
. st. x 6 8",

which is iciciitical to the largest eigenvalue problem and {Hs)- In fact, wlicii d is odd, if
wp denote its optimal solution (largest Z-oigenvector) to 1)(J and optimal value(largest

Z-eigeiivalue) to be A= jp(i > i;, *»* , X), then the best rank-one approxiiiiatioii of tlic
' /\d ’ AN
supor-syinmetric tensor F \s Xx X ’ eoe <S> X,

4.5.2 Density Approximation in Quantum Physics

All interesting problem in physics is to give a precise clumi([] t(T rizat,of)i'iitaiigleiiicnt
in a quantum system. This describes types of corrclatioiLs I)(‘twceii suhsystoniis of the
full quantum system that go beyond tlie statistical Correlations that can ho foiiiid in a
classical composite system. Specifically it arises a matrix approximation prohl(J niThe
following formulation is proposed in Dalil et al. [27.

Denote A" to be the set of all n x n positive seinedefiiiite matrices with trace being
1, ie, AT ={A e IADb O tr(A) = 1} (sometimes it is also called the matrix
simplex). Using the matrix dGcoiripositioii method (seo e.g., Stunn and Zhang [113]) >
it is not hard to verify that the extreme points of A" are all rank-one matrices, or
specifically, A" = (:()nv{:ca;J|:e S”}. If n = n\7i2, wliero ii\ and u2 arc given two
positive integers, then we call a matrix A G A" separable if A can be written as a
convex combination

711

=" ABi Ci
i=l
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for some positive integer ni, matrices Bj € A" and C, GA"- fori= 1,2,...,///, and
noimegative scalars A (i = 1,2,..., iti) with A = 1. For given iii and n?” (i((] ii(t.(1
A"® to be the set of all separable matrices of order n = n\n2. The density approxima-
tion problem is the following. Given a density matrix A e A", find a separable density «

matrix X G A™ which is closest to A, or specifically, the minimization model
‘ {DA) iniii \\X - A\
st. X eA;©®
This projection problem is in general NP-harcl, mainly relying on tli(T uiidersiiding
of A" An important property of A™" is that all its oxtieine points arc syniinotric

rank-one matrices (X"‘y){x<"y)with x € S™ and y 6 S™- {sevtho proofin Tlioorriii
2.2 of [27]), i.e.,

‘ A5 = coiiv yf yG §"-}.

Then in stead, we may turn to the projection siihproblciii of (DA), to find the i*rojoctioii

of A on the extreme points of A™*", which is

mill IK®O0 y{x y)* - A\
s.t. X€ €

Straightforward computation shows that
|(2COT/)(EcO<Dy)™ - Af =1 +

Therefore the projection subprobleiii is equivalent to

max A* y){x y) A
st. XE€ y e

which is the exact model [Ms) with (1 =4 and (15 d? = 2.

4.6 Numerical Experiments

In this section we are going to present tho numerical p(»rfonimn(:(C dhe approximation
algorithms proposed in this chapter. In particular, the inoclel {Hq) with r/ = 4 is being
tested, i.e.,
[EHq) max f(x)=Y.\<ijkt<n Ainj-ikNe
0 st X“Q'x<1,7=1,2,..., rn,

X e R"
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Table 4.1: Numerical results of {EHq) for n = 10 and m = 3()

Instance 1 2 3 4 5 0 7 8 9 10
100 - 065 077 032 027 073 042 052 004 0098 104
100. v 496 453 475 505 58C 532 500 519 507 592
r{%) 13.10 1700 6.74 535 1240 7.89 1040 1233 1933 17.57

anIM™m ¥ 5156 66.88 2651 21.04 49.01 3L(K) 4092 4852 7G()5 G9.12

where fourth order tensor F is sup(T-syniiiictric, and matrix Q, is positive somidefiiiite
fori - 12,..> 77J.. During the testings, cvx vl.2 (Grant and Boyd [U]) is (Cal( -~ for

solving the SDP problems whenever applicable.

4.6.1 Randomly Simulated Data

For the data of {EHg,  a fourth order tensor F' is randoiiily geiioratccl, whoso n* mtric's
follow i.i.d. standard iioriilals. ,'WWe then symmetrize F' to form a supor-syiiiinetric
tensor F l)y averaging the related entries. As to the constraints, we generate m matrix
Q' € (i = 1,2,..., rn) iiidepeiKleiitly, whoso entries also follow i.i.d. standarci
normals, and then let Q* = (Qj) " Q\ fori =12 ... m.

For the particular nature of EHg,  rather than (lir(C0 (.t.Igpi)lyiiig Algorithm 1.3.1

to solve it, we use a simplified method. First {EHq) is relaxed to

max F(X, X) = F_X,jXkf
s.t. tr(QXQX ')y <1i=1,2,....,%,) =1,2,..., in,
X €

wliidi is a standard quadratic program, and (.aii bo solved apj)r()xiiiiately by SDP
relaxation aiicl raiicloiiiization (sec e.g., [75] or Section 2.5). Tho optimal value of Ui([
SDP relaxation problcMii is denoted by i), which w([1 shallise as an upper houiid of
V{EHQ). We then apply DR 3.4-1 to decompose this approximate solution into x,y E
R". Finally we pick a vector with the best objective value of f{x) from {0,x, vy, [x +

y)/2, {x — y)/2} iia the output. This objective value is dciiotod by v, and a ratio
I I

r :=viv isalso computed.
By following essentially the same proof, this simplified method also enjoys a worst-
case relative performance ratio of My ™ m) “ similar as Theorem 4.3.2 asserted. For

11= 10 and 711 = 30, wc randomly generate 10 instances of {eHq.  The solution results
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Table 4.2: Numerical ratios (average of 10 iiistaiicos) of (EHQ)

n 2 5 8 10 12
(%) forrn=1 90.2 57.9 73.3 66.2 G00
(%) form = 5 65.6 28.3 22.5 29.1 17.1
(%) for rn = 10 60.4 22.3 14G 16.0 8.9
(%) form — 30 59.4 17.8 10.2 12.2 9.2

ar(C1 showim Table 4.1. In TaJ)k4.2, the absolute approxiiiiatioii ratios for various n
and m are shown. Remark that the diimnisions of the problems that can he offiriciitly

SDP relaxation problems.

4.6.2 Comparison with Sum of Squares Method

In this siibsec'tioii, we coiiiparo our solution method with tlic so-called sum of scjuares
(SOS) mothod (70, 71) for solving (EHQ). bpuo to the limitations of the current SD-
P solvens, our mothod works only for small size prc)l)loins. Since tlie SOS approach
works quite efficiently for small size polynomial optimization problems - it is iiitcn\st-
iiig to know how the SOS method would perforin in solving these randomly gciioratod
iiistaiic'os of eHQ)-  In particular, wo shall use GloptiPoly 3 of Heiirioii ct al. [53.
We randomly generat(»d 10 instances of {EHQ). By using the first SDP relaxation
(Lassorre's procedure [70]), GloptiPoly 3 found global optinml solutions for 4 instances,
and got upper bounds of optimal values for the other G instances. In the latter ccuic,
however, no feasible solutions arc generated, while our algorithm always finds feasible
solutions with guaranteed approximation ratio, and so the two approaches arc coiiiplo-
iiientary to eadi other. Moreover, GloptiPoly 3 always yields a better upp(LC bouiid

than V for our test instances, which helps to yield hotter approximation.mtios. The
, K

average ratio is 0.112 [)y the using upper bouiicl v, and is 0.202 by using tho upper
bound produced by GloptiPoly 3 (sec Table 4.3).

To concliuie this section as well as this chapter, wc remark tliat the algorithms
proposed arc actually practical, and th(;y produce high gimlity solutions. The worst-
ca«e perforiiuuice analysis offers a tli(x)reti(.al 'safety net’, which is usually far from

the typical performance. Moreover, it is of course possible to improve the solution by
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.Table 4.3: Numerical results of (EHQ) compared with SOS for n = 12 and 7Il — 30

Instance 1 2 3 4 5 G 7 8 9 10
100-?; 030 07G 043 076 0.70 O0.#k 0.81 0.34
100 « v 475 447 521 520 459 481 523 512 .78
100 « Vsos 205 202 243 241 186 202 199 224
Optiinality of vso0s  No No Yes Yes No Yes No Yes No No
VIV{%) G32 1700 8.25 14G2 1525 10.19 1549 GHA4
v/vsos (%) 14.63 37.G2 17.70 31.54 37.63 242G 40.70 15.18

some local scarcli prK(] (ur(. ~ - eglie projection gra’Miciit methods |22], iiiaxiiimiii block



Chapter 5

Polynomial Optimization with

Convex Constraints

5.1 Introduction

This cliaptor tackles an important and useful extension of the models stiuliwl in previ-

ous chapters: to allow the objective fiinction to be a generic inhoiuogoiioovis polymmiial

volve an objective that is intrinsically iiihoniogcneous. Specifically, w([J (X)iLsi(letiio

following problems:

PQ) max p{x)

S.t. XA QJX < I —1525 . e s
xeR™ >
where Q@* =0 for k — and Qi > (). It is obvious that (Pg) is an

oxteiLsioii of {Ps)' We also in the chapter consider a much iiioro general frame of
polynomial optimization over a general convcx compact set, a givo coiivox

compact set G C M", tlie problem

72
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The model (P9) can be solved in polynomial-tiiiie when d < 2> and l)e<[] oii[INé%-
liarcl when d > 3. Even worse for (I > 3, there is no polynoinial-tiinc approximation
algorithm with a positive approximation ratio unless 1) = NP. which we shall ar-
gue later. Therefore, the whole chapter is focus on relative approximation algorithms.
-The inapproxiiiiability of (P?.) differs greatly to that of tlic hoinogcMioous model {Hs)
discussed in S(K:ti()ii 4.2 > since whion d is odd, {Hs) admits a polynomial-time approxi-
mation algorithm with a positive approximation ratio by Thoorciii 4.2.2. CoiLScqiiciitly,
the optimization of an iiihoiiiogeiieous polynomial is imicli harder than a hoiiiogenwus
one. The complexity of {PQ) and (P(¢ ;) H similar, being solvable in polyiioinial-tiinc
only when f/ = 1 aii(l NP-hard when d > 2. This is bocaiiS(* {Pa) is generalized from
.(7'q), and (PQ) is gencralizt"d from (//Q),>an NP-hard problem when d > 2 (see tlio

discussion in Scctioii 4.1).

forward. As a matter of fact, so far all the succoj”ftit approximation algorithms with
pr(val)lo approximation ratios in the literature, og); the quadratic models coiisiciercci
in [88, 87, 120, 75, 50] and the quartic models considered in [73, 77], are dep([J miemndn
the homogeneity in a crucial way. Tedmkally, a honiogeiious polyiioiiiifil allows one to
scale the overall function value along a given direction, which is an essential operation
in proving the quality bound of tlip approximation algorithiiLs. Tlio curront chapter
breaks its path from the preceding pra(:ti(.("] 9y fliroctly dealing with a homoganiz-
iiig variable. Although hoiiiogenizatioii is a natural way to deal with iiihoinogciux)iis
polynomial functions, it is quite a different matter wlumi it conics to the worst-ciusc
performance ratio analysis. In fact, the usual hoiiiogenizatioii does not lead to any
a.ssuro(l perforiiiance ratio. In this chapter we shall point out a specific route to get
arouiid this difficulty, in which we actually provide a general scliciiie to approximately

solve such problems via hoiiiogenizatioii.

Il Section 5.2, we start by analyzing the model where the constraint set is the
Euclidcan ball, i.e., the model (P"). Wo propose polynomial-time approximation al-
gorithms with guaranteed relative approximation ratios, which serve as a basis for the
suhsoqueiit analysis. In S(?(tiQn 5.3, the discussion is ([ xteiid(Hb cover tho prohloiii
where the constraiilt set is the iiitersct'tioii of a finite number of co-centered ellipsoids >

i.e., the iiKxlol-(PQ), and relative approximation algorithms are proposed as well. In

Z

- Z [
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tion iiwxlcNs ¢p( ;). e.g., optimization of a ))(lyn()inial over a polytopy. It 1urns out tliat

”

for such general probUriiis, it is still possihlo to derive n'lativ(» ;~ )pmximatiou ratios.
which (lepgiid oii tlic |mrLicni tliiiicnsioiis only. Tlic tool \v(L useds tlie Lotrncr-John
f'llips(>i<Ls. Il Soctioii 5.5. \vc discuss some api)li(.ati<>us wit li tlie iiKulfls presented iii

this chapter is (.(ii(.rrikKHI-\itli the relative approxiiiiatioii ratios, we may without loss of

g(Mu*ralily iussiniic t he polynimiial flinctiou p{x) to have no constaiit term. i.e.. />(()) = O.

5.2 Polynomial with Ball Constraint

AN

subjcc’'t to Ui(J Euclideaball conslraiiit. i.e..

X J>{x)
s.t.  x e S

Since w assuim; pix) to liavc no constant term, tlic optiinai v;ilu(ll othis problciii is
obviously iioniirj™ativc, i.e.. > 0.

The («Qiiij)I(xily ti) solve ("~ ) (m  suimnari/cd I)v tlie lollowing pmpositi“n.

Proposition 5.2.1 f d < 2. fhm ("'5) he solvrd in jtolyiuntrial-timc : Othcnnsc if
(1> 3. then ij)st1/.s NP-hnnl. and thciv is no p(>I"namml-lI,mi<" "./™":/*//"".""] aUfontlnn

with a positivii appnyxuiiatwii mf.w unless 701 = NI*.

PruoJ. For d < 2, (/17 ,is a staiidartl trust region siil>>r(>>Iriii. As such it is well known
to be solvable in polyiioinial-tiiiH" (s(\M' e.g.. [113, 111] and the r([] (07 r(,tleCrcsn). Fur
<I> 3 in a siKvial rfi.so where j){x) is a lionioj*cncous cubic Ibriii. it is easy lo sm 1lial
(A,.) is (xigivaloiit tp niaXa:"S" J{J), wliicli is shown to be NI*-lianl by Ncsteny [DQ].

Let us Jlow ((jiisidcr a special class of (/, ~ = ) d = 3:

n 0 r(f») = max fix) —

s.t. 'xe S".

4

ewherr (i > 0. and f{x) is a lioinogcMicous (.ul)ir form associated witii a houzcmo SUJM'r-

syiniiiotric tensor F 4 If f(o) >0, tlien its optimal solution x* satlsfics

X X

N _ — -0 > 0.
Clpey ~ H KT = TR\l KTy

fim — (-f =M 7



6.5 Polynomial with Binary Constraints - 75

Thus I)v the <)j)timality of a* \vc \u\lv | = 1 " weclioosc n = ||F|| > ix™, ;,. f{x),

then r{(\) = ¢ SiiKc ol licrwisc w([ iimsliavr <'(0) > o and w1 = 1. witli
poo - fix®) o ooflar*]|- < max f{x) - < <0.

whirli is a coiilradiction. Moreover. /'(()) > 0 simply because F is a nouzcro (cnsor.

and it is also easy to mm't liat r(<\) is uoii-incrcasin™i, as n > 0 iiicTcascs. Hr"rr, tlicrc'

is a thrcsliold “" e |(), [|F||]. such that r(0) >0if0<n<-">and r(") =0ifo >0 ".
Supposi* tlicrc exists a polyiioinial-t iiiic a))|)r(>xiinat ion algorit litn witli a j)(>sitivc

appn)xiii ation ratio t fOr {/<:) when d > I kmi for every n > 0. \vc can tiixi

z € S"/lu polynoiiiial-tiiiic. such that "(") f{z) — mz||~ > r"(“}. It is obvious
that (/A\n) > 0 since ) > 0. To’ctim with tli(Z facthat < ' (9 liavc that
ly(0o) > 0 i and only if "(n) > 0, ami /y(0) = 0 if and only if. r(n) = 0. ThrivfoiT, 1he
tlircsliold rro also sat isfiesr/(0) > 0 0 < n. < and "(-) =01 (> By aj)|lyiiii! ;
tlic hiscct ion scarcli over 1 he interval |(), ||F||] wit li this polynomial-t im(* approxiinat ion
al™orithill, we can iiiul oo ami z € S" in jM)lyii(iiiial-tinic. sucli tliat f{z) — n()||2||"- = 0.
This iinj)li('s that z 6 S™ is the optimal solulion for tlie pr(>I)h] miax™., <" f{x) with
tli([J] optimavalue “- - »wiidi is an NI*-Imrd )i « (LA em O] uti(m(lin (tiic DLYimL!, of t1" 0

proof, riicrcforc. such approxiiiiat ion al”oritiiiii caiiiiot <1 xiginless P = I\ .

The m(] ji;jitivesult in I'rojM)sition | >21 rules out any j)(lyiiQiniMI-Hiii( ap|m,xima-
tioii alj™orithill wit h a positive aj){)!(Ixiiiiat ion rat io lor ("] .)However a posit iw rcldtrrc
al)|)roxiiuati()ii rat io is still |)ossil>I(\ which is t lie main siibjrct of this sect ion. lirlow we
sliall first a polyiioiiiial-tiiiic algoritliin for approximately solving (1) . wliicli
admits a (relative) worst-cjusc i>(TF.(>miiii((> ratio, hi fact. licrc we j)r(s(n( a general

V
to the following four major strps:
1. Intr()(luc(" an (‘(juivalent iiuxlcl witli the objectiv([] bciiij& lioiiiogcnoii.s ionii:

2. Solve a relaxed model witli tlie ohjrctive IxMiig a mult ilin<ar 1brm: -

3. Adjust to get a solution Muscd on tlic solution of tlic relaxed iiKnlci:

1, Assciiiblo a solution lor the original iiilioiiiogiMicous i"o(I([] 1.

of the j*fiicral schciiic for solving; ("s.) » with cacli step being carricd out l)v a sjMH-iiic
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Algorithm 5.2.1

« INPU'V: an n-dimcusKmal d-fh dciircc pohfiiomidl function i)(x).

1 reiritc p)  — /) = | {x.x. - =.x] when if - L as in (5.2). iith F ki aii
A .

\
(// + 1)-(itim iisn)ual d-th ordef[ suf)( r-syiiiinctrir  tensor.

2 Apply Alffonllnit V. 2V to solve the problem

max  F{x\ x','- +e . x*) 0
st w8 A= 1.2 a
approTimatcly. with hiput F mid (ml.pul : e YY),
3 e 202 e = arjsiiiax<[F((0 00T (0 20-5()N<E) IB"}.
4 Coinpulc z = argiiiax {/,((>):"( : :(3)/:/ “INE 1B""/"] 1[F11)1:2 o=

e OUTPUT . afvnsibU solution z e S",

Il Stcj) 2 of Algoritliin 5.2.1. Algorit liiii is called to apiH.oxiiiiah'l.v solve | lie

polynoinial-timc algoritliiii. Notice tIn’ of tlic polynomial p(x} is (Uhmikml a fixed
imraiiictcr in this tliosis, and [liiis Algorit Inii 5.2.1 runs in polyiiomial-t iiiic. and is

(U'tcTininistic too, (>iii main result in this strlion is tlic following:

Theorem 5.2.2 admits a polyrioininl-ftmc approxiniafion ".I'i"rit.h.m wtfli rcUitivc

(ippioTirnatum ratio r(/'«,.), whcir
) ’ =

, r(/oy=:r A"+ 1)!"f”2"(",+ IR, =0 ("-¥).
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\ *
Although lioniogCMiizalioii is a iiatunilJ va.vo (I([J akith inhoiiiogcMicoiis | >(>lyii(>)[iais.

the worst-cjLsc jXTforiiiancc ratig docs not follow strrUglittorwardly. What is lackiiiji ; is
that an iiihomoj~oiicous polynomial docs not allow one to scale tlic overall function value
along a j*iven diroctiun. wvliicli is however an essential ojM'ration to pruvt(tlie quality

I>(>uii(l of Ilio a{>i)r()xiiiiati<)n algorithms (sc<' e.g.. (87. 75, 50. 77]). Below we study

in detail liow a particular iin)UMii<Milati()ii of 1licsc four st(”)s of tlio sclkmiic {wliicli
b(K'()iiH's Alj™orit hill 5.2.1) leads to the promised worst-castl] rclaivo iMMforiiiancc ratio
ill TIHH)r(Mii 5.2.2. As we shall sec*later, our solution s<'li('in(-' can applied lo solve a

v([J rytMicral polynomial optimization model (p(:).
5.2.1 Hoinogeiiizatioii

riic method oi lioiiiogcMiizalion (Icjm'ikls on thé ibriii of tlic polyiioniiai />(x). Merc
ill discussion w([ fLssunic j){x) to liiivr no coiiiitaut tcnn. altliout®i Al”oritinn 5.2.1
applie? for any ijolynoiiiial. If j{x) is given <sa humiliation of. hoinoj*nicous j)()lyii()iinnl
functions of* (lifiortMit (lc*nn”s, i.e., (1 < A< d) is a lioiiioi“cncous polyiionual

function of (Icj*rcc k,. tlirii \v([J mayfirst write

rkix) = Ft,(XX. X) (5.1)

witli FfA. hcin® a A-th order sujM'r-syiiiiuotric tensor. Tiifii by iiifrodiiciii® a lioiiiogc-

iii/iiig Vtirial)l(» which is always (‘(Jjual tu 1, \vr may rewrite /)(x) as
1 il
V",
k=1 k:
—F LW 0y = fix). (5.2)
yj'hd \.nj Vh.

wluTO F isan {n + I)-dim( iiskmal-th (mI(T sjipor-syiiiiuctric tensor, whose I<ust coiii-

-poiHMit is 0 (sinco ]){x) has no constant toriii).

\%

If tlu* polynomialj > (x) is given in “Mmus of suiiiinatioii of nionoinirtls, \v(J sliouldirst
grouj) tIKMii {urx>r(liiig to tlioir d(J gmasd then r([] wtithe siuiniuUion of monoinials in
cacli group as hoiiiogiMifous polynomial function. After that, \vc then procfH'd according

to (5.1) (in(i (5.2) to obtain the tensor form F, ius ix(1 (Juir(xl.
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Finally in this st(7 p > \v(inay oqiiival( iitlyrlormulatr (/~) jls

(/\) max fix) °

* Ste QC— 1 «
K-nJ
XeS". .n =1
Obviously, w( luivi{P<") = ¢ 5 ua 1("*s") -

5.2.2 Multilinear Form Relaxation

Multilinear form relaxation has proven to (»ff(rt.iv( ~ > asdiscussed in Chapter S|)(‘cii"-

ically, Lt'iiiiiia 4.2.1 and L([Jiiniia4.“4.3 arc the kt\v link Ibriimlac. Now w([J rdax/):" )D

an iiilioino™cMicous iimltiliticar form optimization problem is:
(rPs.) TIX
st. xM= (ZA)) > “1.2 L

TheS", 4, = 1,A= 1.2,.... J.

Proposition 5.2.3 (7> /~) b NI)-hard whrncvcr d > 3.

Proof. Notice that iii Proposition 3.2.2. w([ provedlic following pmhlriii is NP-liard:
nifix F(x.y, 2)
s.t. X,y,z € 0J

If d — 3 aiui a special case where F has tlie form = F,, = f1,0,70 = ) lor

all 1< Lj, k< I+ 1, (770 )is (0Jquival(Utietthe ab(>v(* model, and thus is NI*-hard. -«

-0

is r(0J qiiir(itad bo 1. To our h( skiiowUxigo, no polyrioinial-tiiiio appmxinmt.ion algo-

ritliiii is available in the literature to solve this problem. Furtliernioro, we sliall r(J lax
tho constraint = 1 and iiitroduco tlic following {)arani('terizo(l hikl lioiji()jz;(ni/A'(l

. 0
Dr(>)Itui: ‘ >

, (TPsit)) . max F{xKx-,-"

: S.t. e < /[, x™ e + MNA - 1.2 d.

Obviously, (TPi") can hv idaxrd to {TP™V2)), siiicc if X -iSi.(0 a«sil>I(11 foFPS) tlieii
[|xf = |¢J2+ [.25 1+ 1=2. Consequently,-" ; (rP<,-(v/2)) > t » (TJ)s).
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Both the ohjwtivo aii(i the constraints arc now honiogcnoous, and it is (] asto s(h*
forall / > 0, (TPt,.(0) isequivalent to each other by a simple scaling iiirtliod. Morecm{Jr »
{TP~{\)) is equivalent to

lilax  F(ac', x®, e e Xx")

s.t. X" € k =1,2,...>">

which is in the form of {Ts) discusscd in Section 3.2. By using Algorithm 3.2.3 and

applying Theorem 3.2.4, (TP~(I)) admits a polynoniial-linio approxiiiiatioii algorithm

with approxuuatlou ratio (7/ + 1)= ’ff“ Tlicroforc, for all / > 0, {TP"{t)) also admits a

polyiioinial-tiino approxiiiiatioii algorithm with approximation ratio (7 f 1) ] > m{
"(TPs(t)) = "(77)6.(1)). After this relaxation st(i) (Step 2 in Algorithm 5.2.1), wc

arc able to find a fchasihlo solution {yKy*,. s, k") of (TP<,-(1)) in polynoaiiiial-tinic. such

that

=2-E1? 4 )T

A > 2-“"+l o L f i - 3 )

any iinprovcnieiit of tJi([] approxiiiiationatio of (TPg(l)) leads to tlic iiiiprovoiiK'iit of
rdat.ivo approximation ratio in Theorem 5.2.2. For oxaiiiple, rocciitly So [108] improved

“ / d‘J\ ‘
the approximation bouiui of (TP<f(l)) to Q ‘ (tlioiigli the algoritliiii is

luiiiily of tIKH)rotical interest), /a)wd (.on.s(L gmmtighe relative approxiiuation ratic? under

our sclicinc is improved to il ) too. Of course, (mo |||av apply any otlior
\\ 1
favorite algorithm to solve the relaxation {TPi*{l)). For iiLstaiice, the alternating I([7 ast

sotxmd step.

5.2.3 Homogenizing Components Adjustment

The approximate solution eee zof (TA, (1)) satisfies W\ < 1 for all 1'<

k < d, which implies \W™\ < 1, but in general we Ho not havo any control on the size of"
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and tliLs {y\ y», ¢+ *,y") may not hv a ftl] a«sihl([1 solufimn (7'P*).. Th(> following
lonuna plays a link role in our analysis, to ([ iisur([l thla¢'| construgon of a ([ asil)l(>

solution for tlic iiilioiiiogeiioons iiioclcl V)~ ) B p()ssibl([ .

Lemma 5.2.4 Suppose x" e with [ 7] < 1for all 1< A <d. Lvi "} .
be indc.peiidmt mndorti varidblc.s, mrJi. takiiu} values 1 and — 1 with. E["A\j = Zfor all
1 < A< (I, and let | oo i.i.d. random variahlvs. each takiruj raluc. ;1 and

—1 w.i.th equal pvohability 1/2. If the last coinpommt of thv t.nispr F is 0. then

VIX V'IX-
E n =F{x .X X (5.4)
HH,_‘ ‘I {

and
(i'IX-

E F =(). (5.5)
1

Proof. The claiiikKHI equations r([J a(lilyesult from the tollowing observations:

(1 i\
K
A e B
i\ vy
=E (tiiultiliiiearity of F)
J_I "2 vd JJ
/ Y vAY . .
F E E E (in(I(7 iKD mk*m {/l1s)f
F{x\x'
and
ST I
ol . 1 1 A
/
= F E | E anacnMIaMICe of «,°S)
1
/
= F (z(T(>-in(an of “,s)
= 0.
where the last ogiiality is due to th([] facthat the hust (‘fomptmciit of F is (). i

Lciiiina 5.2.4 sugg(»sts that one may ([ imiiicrat([) the possible coiulMiiatioiis of
('™ J7),... » ( {(HF))and pick the ono with the largest, value of function F (or
via a simple randoini/ation pr()(.("] (lur(») > @enerate a feasible solution for the inhoino-
geiicous iimltilinoar form optiinization (TP”) from a foiusihlo solution for the lioniogo™

iieous niultilinear form optiiiiizat 1)), with a coiit.rolled quality (letxTioratioii,



5.2 Polynomial with Ball Constraint 81

It plays a key rok(] iproving the approximation ratio for wliicli is a hypmdue

ill this section.

Theorem 5.2.5 admits a polyna///i(il-f.im(" apimrrim.atuyu ul.lj().ri.t.hiii iriih lip-

im)ximatUm mtio \d [u+ 1)

Prooj. L(LJt ,y-, »e,y") bo tlio foasil)lr solution found in St([! § of Algoritinn 5.2.1
satisfying (5.3). and (LT = (//i, /5, = < « . /Y “ withall 7///s being iii(l(;p(Mi(I(C! idnd t akiiij®
values 1 and —1 such that B//;,] — /y. By applying Loiiiina 5.2.4. (5.4) explicit Iv implies

] . / N
n Pro!) {1/ = fhy1 !
AGB.ML 1
/
+ YN PeITT = 3 W
BeB<Mi% ), :

[ 2/1) (/W

Combing the above two equalities, for any constaiit ¢. wv have

E Pron rt = f3pp "
/3€B “ > nt_r(]=-
+ (5.6)
If we let
r= max Pro!) {r; =

then the coofficioiits of each toriii in (r).(i) will bo iioiinogativo. Th([J i.d.()r([] w(abkerc
to find e MKsiicli that

e T G
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whore
To Probjry = fl})
> w Pro{7/ = f1]+ (2@ Dr
> + 1 +2"- _G) 2"
Let us denote z* ("1 /Jor k = \.2 Since [|z”] — WB"Y"W < 1. \v([] knowhat

(o2 0o VY s a f(vusil)lc solution for (77\). By (‘ouihiiig with s :,. \v(J have

F{Z\Z'- 7 i > Turn ~ > 2847
> 2-"2F%"+ 17T ViTI\)
= 4 1)-(TPs)-

Olio may notice Iliat our proposed algorithm for solving {TJ\-) is very similar to
(*h((s(Ismlution in argniax ' ~").CY),.... i"T)) A » 1"stx[] noF choos-
ing a solution ill argiiuix | £ (¢"""/") > ( " ~'" ""y» . {LL/3 € Thv nmsim to

step, as (0.0) siiggosts that a ‘simple randonii/ation pmcoss will serve tlic same purpose.
(\spc(tially wlieii d is larg(\ In tlio latter ease, w([J widnd up with a polyiuynmd-tinw
imLdoinize.d appmximation ahjorithni: otliorwiso, tlio ronipiitat.ioiial coniploxity of th([!

procodurc is (letoriniiiistic aiul is polynomial-tiiiio.

5.2.4 Feasible Solution Assembling

Finally wo conic to tli(C laMtep of the sclkmiic. In Stop T of Algorit hiii 5.2.1, a polar-
ization formula Z(Jf) = (h{d + 1)2' + YAUyVkzZ™ 7itli 6 IB'and /j, = ULk = 1
is proposed. In fact, searching over all (3 € B™ will possibly iiiiprovr the solution,
although tlio worst.-casc(] perforiiiancoatio will roiiiain t:h(7] saim Moreover, one 1l my
choose  or any other 2 A .to play the saiiio role lioro; alUTiiativcly one iiiay cnuiiieratc

+ + OWT all 3e IB*and \ < ( < and take the Ix'st
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possible solution; again, this will not clwiiigc tlic tlicorotical | )(J rf.(>mmm.([] ratidio
polarization formula at Stop 4 of Algorithm 5.2.1 works for any fixed (I<(J gr<H{1and \v([J
sliall complete tlie final staj*c of tho proof (Of Tli(H)r(J .2.2. Sjx'cifically, wv shall pmvr

that [y lcttiiij”

z = argiiiax (/>(0): /; ( e IB" and = [T /0 %1
with z{li) = Di' + “Zk' »we have
P{z) — v{Ps) > r{Ps) {v{Ps) - EiPs)) . () {)
First, the solution (2. eee 7'N) as ostahlislicd at Step 3 of' Algorithm 5.2.1

satisfies |zAl < \jd (notkr \v(O dividedd in (O a(.term at Step 3) and z] = 1 for

k=1,2,.... r/. A sanic proof ot" Th(D or([5m.5 can show that

F{z\z'\"- 2y > vara—8 (ry 1y =z VTP > o) 4 (5.9)

It is ([J asyo soc that

2 < \z,,U\ < 2d aiKl [[z(")]] < ("+ )/d+{(I-{)/<! = 2. (5.10)

Thus z{Li)lzu{i3) is a f(JLsil)I(T solutiofior and so (= ( i/ - /llf1) > v[Ps) = nit's)-

Moreover, w(L shaldrgur below that

li, = 1=~1(2(1:1))>(25]) A(rs-). (5.11)

If this wore not the (7ls(\ then / {z{i)/{2(1)) < V{PS) < (. Noti(.(0 that = 1 iiiii>li(0s

Zfiil®) > () >and thus w(0 have

,fmo\ ( V'/-T"Z™MO<fzM4)~ > » ,pO
JI~J3 =(cd o, 0o o=/ K*) (1h) >
which contradicts the feasibility of J
Suppose ar(f]i.i.clrandom varial)l(\s, oacli taking values 1aiui —1 with

equal probability 1/2. By the link Lcniiiia 4.2.1, noticing tliat /(= (— () )=f (-2(0)=
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-1)7(5(0), wo hav(

Nt ALG:(0)

d
=-E fim) :i,n(___DEf{z{O) = ji,n“=-
k=2 A=?
<| '
urn) o=-i’n* =1 /) (I
k=2
d k~2
— fim) —-E Sim) ([ =i ’dn(A.:-l
. 4y 1 .
B 1{z{-0) = ion0"=(-1) f(z(-0) (l=i,n (AN-=(-1)"
k=2
By inserting and canceling a constant t(Tiii > Uic above ([J xpn(J ssifertlicr lends to
(1
*n(3)=(4))
A=1 d
(7_))-(2")0 ("s.) ¢ [ 1
k=2
d
m)-m'v{Ps)) ( | -
(_1J71 1
+ E =

1

DB (J(Z(0)-0)) (1 =in0 =)

SgE (/(C)-(2",0L.) 0= i'n("= (5.12)

wli( > r([] thielst inequality is duo to (5.11). Therefore, there is a ljiiiarv vector G B"

with- H\ = = 1, such timt
M " e 1 [P
("+1 DTS
where, the last step is due to (5.1).
Below wo ar™ue 2 = argiiicLX |/;(0);/; (z(/i)/c/,(/i)), € IB"and =JJLj ==}

satisfies (5.8). In fm.t. if -v(P.,.) > t(/)s.) ( (" ~.)—MI(s.)) 4 “~n O trivially satis-
fies (5.8), and so floes z in this rase. Othorwiso. if < )y oo -

then wec liave

V(PS)LI (1 - r(Ps)) (v(Ps) - v(Ps)) > "(JTLI.)ET) >
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which implies

zUI")
f 2(1
The ab(wec iiicgiiality also iiiipli(0 shat f {Z{3){2(I)) > (. Recall that = 1 iiii[>lit0 s

> 0, and thus 2d(znU”') > 1 by (5.10). Th(,r(0J f(>rr > wémv(>

gR ) 2{:r) 2(1 ; ot Zj™r

Piz) >
) 2P Ziamy i

This shows that z satisHos (5.8) in both ciuscs, which coikliklos the whole proof.

5.3 Polynomial with Ellipsoidal Constraints
In this sortion, \v(OJ (.(msidran extension of (P<,.). iiaincly

{PQ) iiwix i){x]
< 1 r=12, m.
ke R",

where Q,[ 0 for A= 1,2,..., m, and Qi N G. Siu(v is assumed to liavc no

constant trriii, wv know that. v{Pq) < 0 < v{Pq).

Algorithm 5.3.1

* INPUT: an n-dirnmsional d-ih dcqgrcc. polytioimal function pix), rtuihiccs Q6

R"A". Qi > 0for all \ <i< in with J; ;" , Q, >-().

1 Rewrite p{X) - 7/ > » (0 [ﬁ: :/ )9 wfum j'l, = 1 a.s in (5.2). with. F hriuf/ an

[n + \)-diin(msi(m(d (I-t.h order supc.r-syvirnctrie tensor.

2 Apply AlfjoTitlun to solve, the. problem
|naX o0 0
S. 1oXM< L A= 120 tei= 1.2, m

apymximaUdy, and (jc.I afcjisiblc. solution  {y\y' y
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3 Compute w2 2’0 = argiimx o EmG I o<y () - X € 1B}

4 Compute z = arginax "piO);p{z{ii)/zi {li))4-i GWrand =U/- "2 =3

e OUTPUT: afeasible solution z e R".

Theorem 5.3.1 {PQ) admits A polynomial-t.irnr rando70hcd appjoTiinaiioii aUjoriifnn
with Tfdativr appnymnaium ratio 7 ( PQ) > where

PQ) 1= 23E ("¢ 1)1 2+ 17Z%Q (| D = N (/]2 log- YT

()>ir scluMiu' for solving general polynomial optimization model (PQ) is similar to
tliat for solving (/”) in S(UJ (.ti(>6.2. Tlio main (liff(T(C ii(*laes iii-Stcp 2, wlicre a diHcrciil
relaxation niodol nHjuiros a difforcnt solution met hod to (.ope with. The iiictliod in

question is Algorithm ;i.3.2.

Tlio proof of Tli(»or()iib.3.1 is similar to tlial of Tlicorciii 5.2.2. HerelJ v(l only

illustrate the main ideas and skip the clot ails.
By lioinogriiizing pi'x) who lias 110 constant term, wv iiiay rewrite (/ g) as
(PQ)  niiix  fix)
s.t.  X=1
XM < R", i=1,2 in.
- L
which can I)([] relaxedo th((J iiiliomogoiicoudimitilim() a.function problem

{TPQ) max Fix\x-R-- -

K A — 1,2« dn
W;)

<1 xMeE" A=1.2 (Li=1.2 W,
(i = 1ok= 152 « ">

where F{x, x, **¢,x) = JM{x) wvitli F Ix'ing su|K'r-syiniiictric. We tlicii further relax
d
{TPQ) to the iniiltiliiioar form optimization model (7V'g(\/2)), willi

{TPQit}) max F(ii-i2> ... i"

< k=L .. i=D2..m
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WIi(0 1(0 Qj Y for m.

By Theorem 3.3.4. for any t > 0, (/7)g</)) admits a polyiioinial-tinio raiulonii/ccl
approxiiiiat ion algorithm with {i|)|)r()xiiiiatioii ratio {n + 1) (log — . erkl
o TPQ{t)) = ™ WTPq{\)). Tims tho approximate solution .y~ o< vy found hy
Stop 2 of Algorithm 5151 satisfies

--y > (" L)y -FT ) (TTDH!Y)

= + "I
> 2-Un + (log-("—"JIHtO (T”QLI.
Noticing that < [y < 1fork — 1,2.. <7, \v([ agaiapply Lciiinia 5.2.1

to Lot ¥z IIIﬁxy"‘) and us([he sarye{ ?rgument ha(s %the &;roof of Thegrerync? 42 com

J)Oncliits arc iiiclopcndciit mmiom variables, each taking values 1 and —1 with Ej/".] =
for k = 1.2.... (L Thoii w(J aral)lc to find a binary v((1 (t(>r € such that

F PO s roR(EL A

> 2 “+ 17 %12 (log—("— “JIHHTPQ).
This prov(Ctie following theorem tusa hypmduct..

Theorem 5.3.2 {TPqg) admits a polynomial-tunc nvndomizvxi approxirnation auUjoiith-

ni with appmxiiruLiion mtio {n+ D~~i}  (lojr—(*“—")).

ratio call he proven by the similar arguiiioiit in Soctioii 5.2.1. liiclooci, Z-. "o

at Step 3 of Algorithm 5.3.1 satisfies
O VI < p<m, 1< L

4

For any binary voctor ft 6 as = (d+ 1)2" + Hl#= have 2 <
\zfi{8)\ < 2d. Noticing by the Caudiy-Schvvarz inequality,

< WQAZMW. WQINZW < ld' \fl<ic  m»1<JA' <™
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it follows that

<2(1e2(s1/(1-=1 V1< b<

Thus z(Ji)/zf,(li) is a feasihk(l solutiorfor (Pq). which implies Z is also feasible.

To coiiclikU" this section, \v([J nMiiarkh(T([J tliat(Pqg) includes as a special case Ui<[]

max  p(x)
s.t.  —1< (t')ral < 1i= 1.2 in.
Xe R".

with rank (a'.a~.e**.a'") = n.

5.4 Polynomial with General Convex Constraints

Il this scrtioii wc study polynomial optimization model in a ~ciioric const raiiil format:

api)roxiniati()n algorithms for solving (P¢ ). Our approaches make use of tlu* well known

Lowner-John (dlipsoids (s(x (. .gJ2(). 861), which is the following:
Theorem 5.4.1 Given a coiivex compact set G C R" with non-(mipt.y inUtnor.

1. There exists a unique. Imyest volmna (dlipsoid {Ax 4-a|x 6 S"} C G. irliosc ii
times linear-siza larcfav ellipsoid {iiAx + a|aES"} D G, mid if in additioii G is

cxmtral-syinmc.iiic, than {y/TiAx+ a | <€ S"}) G;

2. Tharc exists a unique smallest volujne dlipsoid {Bx -f 6|a € 8"} D G, whose n
times linear-size smallar ellipsoid {Bx/ii + 6]|a G §"} C G. and if in addition G

is cm tml-syrnm etrie, than {Bx/y/rl b\x e §" C.

Armed .with the above tliooreiii’ if w() ar(] al)lHudd.h(C) Lovviier-.lohidlipsoid
(either the inner or the outer) of the feasible region G in polyiioinial-tiiiio, then tlic

following algorithm approximately solves {Pr.) with a worst-(as(» performance ratio.
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Algorithm 5.4.1

* INPUT: ail n-d'nnensioiial d-th drfpyr polynomial, function pix) and aset G C R".

1 Find ascalar te R, a vector he R". and a matrix A € M"A" with rank =
111 < *. such that two ro-ctmiercd ellipsoids E\ —{Au + h\u E S™} and E) —
{tAu -f 6 S"'} satisfy E, CGC E,.

2 Compute a polynomial Juiirtion pi){u) = AM(Au + b) of variahlc u € R™.
3 Apply Alyojithm 5.2.1 with input poix) and output y € S'".
4 Coinputr z = Ay - b.

e QOUTPUT: afrasihla solution z G G.

The k(v result in this section is thr following Uicor(. JII.

Theorem 5.4.2 If S"CGCtS" :={x R"||a|l </} for some t > 1, linn (f*
adiniis a polynoinial-tiific approTimation aUfOTitdnn with jvlafiva approTunation ratio

TOU7 ) () > whej'e

PG = D\(r-\n  + F 1 L=n ("ZE.

(A;)) max  fix)
X =
Xec J/,=1
whore f{x) = p{x) if [+, = 1, and f(x)is an (ji + 1)-(liiiieiisi()iial hoiiiogencoiis poly-
iioinial function of d([ gred. If \w write] f{xF F(X. X, ***,x) with F IX'iig sup( r-

_ d
syininctric, then {Pa) (.an bo rchixocl to tho iuhomogeneous niultiliiicar form problnn

{TPa) max oot
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Rocall that in Sortion 5.2.2. \v([J liavdoHncd
(rPs-(0) max X
Ml </, x* e A=12 (L
Asxk e G C/S", it followsthat A H < ) in {TPc). Th(C (L@~ . ( VTATT))
fs a relaxation of (r/)f;) > ami > ({TP(:) > v{P(:)= v{P¢: ). The rost of
t:h(J prodbllows similarly as that in Section 5.2.1. SixH-ifically, \vr arc ahlo to coiistnict
a fcvuiiblc solution a; E S™ C G in i)()lyiimiiial-tim(0 witha r(0 lativ(D p(Tforiuaiifatio

T{Pr.W)- .

Observe that any ellipsoid ran b([J linearlyraiLsfoniiod to t.lir EiiclicUan hall. By a

variable traiisforiuatioii if noccssary. \v([J ar([] 1§ the main result in tliis soctioii.

Corollary 5.4.3 Civc.ii a houiidad sat G C M", if two co-cciitend (dlipsoids ECT.
{Au b\u € S"} and £> = {fAu + b|it € S"} can befound in polynoviial-tinw.
satisfyhicf E\ C G C E). then (/7'( ; )admits a polyiiornial-time appjoxijiuition aUjoritlmi

mill relative appivxiinafiori ratio T{Pc,){t).

\VWv remark that in fact tlio stt G in Tlieoreiii. 5.4.2 and Corollary | j43 dues not
ikhhl to he convex, as long & the two required ellipsoids arc in pla(.(C) H(nv([! v(Tthe
faiiK)iis Lowiipr-.lohn tluH)reiii guarantoos th([J oxistoiioaf such iiiiuT and outer Hlipsoids

r(Hiuir((1 gl Conjllary 5.4.3 for any convex conipact. set. with / = * for G being iioii-

find a pair of ellipHoids {E\, £»>) in polyiioiuial-t iiiie for G, then (J7(;) ca bo solvere! by a
polynomial-time approximation algorithm with relative approximation ratio t(/)(;)(/).
Indeed, it is possible to coinputc in polyiioinial-tinio tlio Lowiut-.loliii dlipsoids in
several intcn'stiiig cases. B(T11(n a list of such cnm™ (assuming G is houiided): for tlio

(letails one is referred to [20, 86]:
e G={e R"I{a'fx<h“/=1,2,.... m}:

e G = conv ... X"}, where x' 6 M" fori= 1,2,..., m;

G =[] Ej, wliere Ei is an ellipsoid in M" for i = 1,2...., /Il
« G =conv {(JJ']l, Ei], where is, is an ellipsoid--in E" for i — 1,2,..., /I,

e« G=X|_I1Ei := X' Ix € E, i= D2 e.,m}, where E, is an ellipsoid in
K" fori=12>..°7L
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By Corollary 5.4.li, and the conipiitahilily of the LchviuT-.loliii ellipsoids (listuss( ~ (1
a)OV(% wo conchulo that for (P(,) witli the constraint st't Cl)cing any of the a.l)ov(D

then thoro is a jx)lyn()iiiial-tiinr approximation algorithm witli a relative apj)r()x-

iniation quality assurance. In particular, th(0O ratides {P(;){y/m) —[k2/-T "] 1>for
o
(ji — j for tlio other casos.
\\V also remark that (Pq) : iiiax3.TQ a<i -J ., pi”) discussccl in Sc/ction 5.3,

may in principle be solved hy (iircctlv applyiii*® Corollary 5.4.3 tis well. If \v(0 adopt
that approach (Algoritliiii 5.4.1). tlien the rclativo approximation ratio is T{P(:){y/ti)=
N  —j, which prevails if J/[is (0 x(,(HO (lintdsgo. \Taking the h( tt(our, the quality
ratio in Tlieoreiii 5.3.1 can l)o impmwd to il (max |l og — """ m, ii —~
Our investigatioii (piitc naturally I(C a(lso a quostion which is of a gcnoral j*coiiiotric
iiit.(T(O sttself. Consider tlic intersection of in co-cent(uchl ellipsoids in R" cusa gooiiict ric

striicturo. D(Oii(>€(,J n “> b(» the colloctioii of all such stnicturos, or more spociHcally
Q tofori—=1-2....,)ffand *"Q, ™O

For any aMitral-syinniotric and convex co)iiij)art sot G C M" aMitorcd at b. thoro exists
E---e <A,» and 1> 1, such tliat b 4~ C6' C 6+« , . Obviously. (m(. can
iiatiircilly define

f{G;"7-n) := inf {/LEm- .6 such that b+ E...... CGCb+ ..,,,,..}+

= ‘sup m, I G CR" is convex coiiipact and (‘(Mitral-syniiiu'tric}.

Th(D famoudowrier-.lolin thmreiii states that 0{\,n) = y/ri. Naturally, ~(oc, ii) = 1.
l)ocaiiso any central-syniinet rir convcx sot can ho oxpressed by the intersection of an
infinite number of (.o(:eiit(.T(O dllipsoids. It is iiitorostiiig t.o coiiipute 0{in,.") for general
in and n. Of course, it is trivial to observe™ that 0{ni, n) is nionot.onically d(C cr([J fLsiinigin

for any fixed n. Anyway, if we arc able to coinputo /J//-it)and find the (.orr( sponding

E# i" polynoinial-timc. then Tlieorciii 5.3.1 suggests a polyiioinial-tiine raiidonii/xxl
approxiiimtifm algorithm of (Pa) with relative approximation ratio {O{7n. jiN~"W{Pg)=
i} ((6>(m > - "% log-("- [ ) m). -

5.5 Applications

The generality of the polynomial optimization models studied in this chapter have

versatile applicatioilLS. In order to bettor appreciate these models as well as the approx-
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iination algorithms 1)r(»s( iit.(C] d this section wc shall disciuss a few (I([7 tail<cx@inplos
rising from real applications, and show that tlicy arc readily fornmlatrd l)y t.h(C7 inlic>-

inogonwiis polynomial optimization |[iK>d(Ls this chaptor.

5.5.1 Portfolio Selection with Higher Moments

The portfolio selection problem dates hack to tarl™ 1950', wlieii tlir seminal work
of Miemi-variaiico iiiodol was proposed by Markowitz [81]. Essentially, in Markowitz's
model, the mean of tlie portfolio return is treated as the? 'gaiir factor, wliilo the variaiuc
of the portfolio roturn is treated as the 'risk' factor. By iiiiiiiinizirig Ui<[ risguhjoct to

certfiiii target of ixnvrircl, the iii([7 an-varifiii(.(") madels follows:

{MV) mill xMEX
st. X | X=/1
e’x =] X>0, Xe W,

whore fi and S arc the mean vector and ((*variance matrix of ii given assets respec-

tively, and e is tlio all oiio vector. This model and its variations havell h(vistudios

f

extensively along the history of portfolio luanagtMiioiit. Drspite its popularity and orig-

inality, the iiiean-variaiice iiiodel certainly ha™ drawbacks. An important one is that it
) r

ncglec'ts tlie higher moments inforiiiatioii of the portfolio. Mandelbrot and Hnelson [78
niado a strong axsc against a enoniml view' (f the inv(*stm(,nt returns. The use of higher
iiioiiieiits ill portfolio selection bccoiiies quite nwessary, i.e.. involving iiion[] tharnhe
first two iiioiiieiits (e.g., the skewm”s and the Kiirtosis of t he investment returns) if they
arc also available. That probloin has been receiving iimch attention in the literatviro
(see e.g., cic Athaydo aiicl Flore [10], Prakash et al. [9(3], Joiicleau and Rockiiigcr [(X(],
Kloiiiati et al. [04], and the reforciicos therein). In particular, a wry general model
ill [&4) is
{P"n max afi*x - Bx* Ylx +7 1 Nijkh-ANk — A 1 ~J,")J: “4&
st. e*x=1,x>0,xe R",
where /x, E, {<SK" (Mieijke) are the first four central iiioiiieiits of the Ji given assets. The
nonnegative paraiiietcrs a. fi* 7,6 measure the investor's preference to the four inoincnts,
and they sum up to one, i.e., a + = 1
Il fact, the mean-variance model (MV) can bo taken as a special case of {PM) with

7=6 = 0. The model (PA/) is essentially iii the frame work of our model (/V;)’ as



6.6Applications 93

the coiistrahit is convex and compact. By directly ai)i)lyiiig Corollary 5.4.3 and the
(iiscussioii oil its applicability in a polytopo. it admits a polynomial-time approxiiimtkm

algorithm with relative approxiniatkni ratio U (z/"").

5.5.2 Sensor Network Localization

Suppose in a cortaiii spocifiocl region G C there a.r([1 s([Jdf andior iiofios. flcriotcd by
A, and a set of sensor nodes, dcnotod by S. What w» have known ar( [ thpositions of the
anchor iHides aJ GG (J G A), and the (pOs‘siDly noisy) (listancc iiiCfUiiinMnciits h(?twoeii
anchor nodes and sensor nodes, aiul hctw(x[tivo diff(T([ isbiisor nodes. (I(C7 ii(t(»t)y"
djj{ie S\j e SU.4). Thr task is to estimate tlio positions of the uiikiiowii sensor
nodes X' GG {i € S). Luo and Zhang [77] proposc™cl a least square foninilation to this

sensor iK™Mwork localization problem. SpeciHcally, the problem takes the fonii of

iISNL) mill Z,jes (I8 —4] ] :)-VY + (e —
s.t. eG,ieS.

Notice that the objective function of (SNL) is an iiihoinogeiieous quartic polynomial
function. If the spocifiocl region G is well formed, say the Euclidean hall, an ellipsoid, a
polytope, or any other convex compact tict that ran be saiiclwicliod by two co-ceiitcrcci
ellipvsoids, then {SNL) can he fit into tlio model (/)(,.) in tlie following way. Suppose
E\ d G d E? with EI and E? being two (eo-ccntcred ellipsoids, we know by the
Lowner-.John thcorciii tliat E> is bounded by tliree tiiiios larger of E] in linear size
(for the Euclidean ball or an ellipsoid it is 1, for a coiitral-syininotric; G it is loss than
\/3, and for a general convex compact G it is loss than 3). Demote the iminbor of
sensor nodes to he n —|5|, and denote x = ( (/E" T > * ¢<,(X") 6 R, Then

X€ G XG XeeeXG, aiid this feasible region can l)e sandwiched by two co-ccntcrecl
0 v "

n . . .
sets >EI XE\ X  XE].and Er> X E-zx ¢+ +xE"), which arc both intersections of n co

n n
(eentered ellipsoids, i.e., belonging to  3,,. Accorcliiig to the discussion at the end
.

of Section 5.4, and noticing in this case f(G;n’3n) < 3 is a constant, [SNL] admits

a polynomial-time randomized approximation algorithm with relative approximation
ratio
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5.6 Numerical Experiments

gorithms proposed ill this chapter, to give tlic readers an iiiiprcssioii about how our
algorithms work in practice. Wo shall focus on (A; ) witli d — 4, sprcifically. tlio ii()(I(CJ 1
h(J iiigpKtecl is
{EP™) inax p{x) = F\xxxx) + F\{xxx) + F2{xx) 4- Fi{x)
s.t. X€ 8",

orders 4> 3,2 and 1, resjjcctivoly.

5.6.1 Randomly Simulated Data

A fourth order tensor is generated raiidoiiily. whose Ji * entries follow i.i.d. standard

tlie related rntries. The other lower order tensors F.j, F2 and F\ arc generated in
objective value denote by " » wiliicli has a giiaraiitwcl worst-(a*se iKTfonnaiico ratio.

For the purpose of making a coinparisoii, we also ([ ()iiiput§h upper bound of the
optimal value of (EPi-). Like in (5.2), wo may let F(x, x.x, X) = f{x) = p{x) wilicn
Xf,= 1>and F € IR(n+i” is suppr-syninietric. {EP”) can br rclaxtni to

iilax F{x, X, X, x)
st |xli<vi2iE

Let y = vec(xxT) 6 Hg-+! /" adrewrite F asan (" + 1”7 x (" + 1)- matrix F'. [EP")
is further relaxed to !

max F'(y, y) = V[Fy

s.t.  ]|2/]|S2 » yeR("+i 7.
The optimal value of the above problem is v = 4AI(""") » which is taken as an upper
bound of Vv(EPs)-

By Theorciii 5.2.2, Algorithm 5.2.1 possesses a theoretic worst-case relative perfor-
mance ratio of 2— ] 5!« + = i{l/71). The iiumcrkal simulation results of
(EPgQ) arc listed in Table 5.1. Based on the observation, by comparing with the upp(‘lr
bound V (which might be very loose), tlie absolute porformaiK'O ratio r := 1)/v is about

il{/ly/n), rather than a theoretical relative ratio i2(l/n).
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Table 5.1: Numerical results (avcMag(' of 10 instances) of {EPj")

11 3 5 10 20 30 40 50 60 70
v 0342 0434 0409 0915 0671 0499 0529 0.063 0.734
vV 10.5 IG.I 2G.7 51.7 744 97.8 1211 1435 1671

r{%) 3.257 2696 1532 17/0 0902 0510 0437 0402 (3439
» « T 0098 0135 0.153 0354 0271 0204 0.218 0.277 0.307
y/n . T (005G OO 0.048 0.079 0049 0032 0031 (030 0.037

With regard to the coiiiputatioiial efforts, w([1 reporthat Algoritimi 5.2.1 ran fairly
fast. For instance, for Ji = 70 w(J wordéblo to gt1 & f(0 asihl(J solutkaibhin sc™coiicls,
wiliilo coiiipiitiiig tlio upper hound v costcd much more coniputatioiuil time. For > 80,
however, our computer reported to run out of nieinory in the (ocprrinicnts, a pr(,DI(-C' m

purely due to th(J sIkhdize of th([J inpudata.

5.6.2 Local Improvements

tainly very conservative, as ol)s(tv(@ {n the previous siil*sectioii. Ttwill I)e desirable to
design a more realistic procedure to know how good the solutions actually are. One
point to note is that wc can always improve the quality of the solution hy applying a
such local search procedure is readily available, e.g., the fmincon function in Ma.tlab
7.7.0 (R2()08b), which finds a local KKT point starting from the fea.sihlo solution that
w([] provideln our experiments, wc find that tfie fmincon function works w([ &. lorust
for the low (iiineiisional problems. In particular, for our test casos, it works quite stably
up to n = 10.

In order to evaluate the true quality of our approximate solutions it is desirable to
probe the optimal values, instead of using the loose upper bounds. For this purpose
wo set up the following experiments. In this set of experiments wo restrict ourselves to
the low diiuciisional cases, say Ji < 10. First we take the feasible approximate solution
(which has an objective v) as a starting point to be followed by the local iniprovoniciit
procedure of the fmincon function to obtain a KKT solution > and denote its objective

value to be vj. Then we use a brutal force approach to randomly sample 1,000 feaiible
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Table 5.2: Num( > ri(l] abjectives of {EPI*) with local imi)rQv(C] in(»ii®r n = 5
Instance 1 2 3 1 5 G i 8 9 10
v 035 047 008 040 017 013 007 178 032 0.53

41G 485 424 399 428 649 GAG 642 514 684
410 485 424 399 428 G499 GAG G422 514 G844

v 1433 1492 1483 15G2 1759 1434 1500 19.12 13.03 1501
Tal)lo 5.3: Nuiiief~cal objectives of (EPi”) witli local iinprovoiiieiits for ii = 10
Instana? 1 2 3 4 5 G 7 8 9 10
v 151 124 080 028 009 012 030 03G 035 0.01

898 774 974 871 814 1124 982 775 918 11.08
970 774 974 890 814 1124 982 785 918 11.08
v 2GG7 2488 280G 28.75 27.82 2699 2692 2775 2783 27.10

solutions, followed by the same local improving fmincon function in Matlab. Wo then
pick the b([] sine as the proxy of tlio true optimal solution, and deiioto its objective

For the case n = 5 and ii — 10 respectively, M» generate 10 random iiistrtiiccs
of {EP"). The solutions obtained, as described above, arc shown in Table 0.2 ancl
Table 5.3 respectively. The results quite telling: Algorithm 5.2.1 together with
fmincon yields near optimal solutions, at least for low (liinonsion problems. Holv(>v( t
for problems in high cliniensions, a stable local iiiiprovoineiit procedure is a noiitrivial

task, interested readers are referred to a rcceiit paper by Chen ([ldl. (25.



Chapter 6

Polynomial Optimization with

Binary Constraints

6. Introduction

optimizations. In fact,, a v([! rlarge class of discrote optiinization prohUMiis l.uiv((] thoir
objectives and constraints being polynomials, e.g., the graph partition problems, the
network How problems. In particular, this Gliapter is r()ii(erii(Hl with the models of opti-

on tlio four types of [ )(lyiioniial functions iiicntioiicd in Section 2.1.1. Specifically, thv

models are
(Tfi) iiifix | (aji, @2 . ¢’
S
s.t. € k= 1,2,....r/;

{Ma) imix /(a;', x" X
€B"S k=12"

These four models are discussed sequentially, each one in one chapter. The lat-

ter model generalizes the former one, and cadi generalization lia« its own approach

97
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and t(*(.litiiqu([7 toope with. The It iiiodol, (/)") »is in((HHI a very 7i;(C) n<tdis{Trt.([

optiinizatiori model, siiicc in principle it can ho used to iiiodol tl»r following g(7 ii(Tal

max  p{x)
s.t. € {a),a2 e."),} /=12

We also discMLss polynoiiiial optiniizatioiis over liyporcuhos as some byproducts of this
chaptor. Th([! arc models (T/j), (//1)), {Mn) and (/)") - ie, tlic respectivc inodols (7 ")-
(/1«), {Mn) and (J7") with B Ix-iiig replaced l)y B.

AH tlie models an(] imfortuiiatolWP-luird when tlio (ki1 groof tlie ()bj(.[7 rtiv(poly-

nomial d > 2, albeit tliey ai([J triviallion d = 1. This is bocausc each our incliiclos

coinputing the matrix oc I-iiorin (see e.g., |5]) as a subclass, i.e.,
Il 7 Hg— = max
St 6 X~ € B"),
which is also tlie exact model of {Tn) wlioii d — 2. The matrix oc I-iioriii is rclatcfl

to s(>-call tlio matrix rut-norm, the curmit b(\st polynomial-time approximation ratio
for matrix oc »). I-norin as well as the matrix (iit-ii)rm is 2| "(;+J7)~ ().5C, duo to
Alon and Naor [5]. Huang and Zhang [59] considcrcxl similar problems for the complex
discreto variables and derived constant approximation ratios. When d = 3, {Tn) is
a slight géneralization of the model considered by Khot and Naor |G3], whore F is
assiiined to be siiper-syiniiietric (implying rii = n-) = 7ii) and sciiian®-frcc (Fjj/,. = 0
whenever two of tlic three indices arc equal). The approxiinatioii hound of tlic optimal
value given in [63] is Q

For the model (///j), its NP-hardn(\ss for d = 2 can also be derived by rrfluciiig to the
max-ciit problem, where tlie matrix F is the Laplaciaii of a given graph. In a seminar
work by Goenians and Williamson [40], a polynomial-time randomized approximation
algorithm is given with approximation ratio 0.878, by tlic well known SDP relaxation
and randomization tochiiique. The method is then generalized by Nesterov, who in |88
proved a 0.63-approximatioii ratio for (Hfj) when the matrix F is positive seinideHnito.
A more generalized result is due to Charikar and Wirth [24], where an 12 (1/ log7i)-
approximate ratio for {Hu) is proposed when the matrix F is cliagoiial-fr(>t\ If the
clegr(io of the objective polynomial goes higher, tlio only approximation result in tlu

literature is due to Khot and Naor [G3] in considering h()iiiogemK)us cubic polynoiiiial,
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w [ i(T(Jal (-approxiiiiatioii hound is provided when the tensor F is sq | mr(Cl-

froo. In fact, squan”~frw (or in the matrix case diagoiial-frcx”™) is some kind of noccssary

approxiiiiatioii ratio for the general nioclol {Hn) unless P = NP.

Il this chapter W prQp(Se> i)()lyn(miial-tim(" raiKloinizod approxiiiiatioii alf*oritluns
ning, provided tliat the dogroe of th([] objoctivieolynomial is fixed. Section (>2 discusses
the model (r"). Essentially, wo apply a similar approadi ius in Chapter 3, by r([J hixiiig
the iiinltiliiioar form ohj(x.tivr to a I(>\v("arder irniltiliiioar form. Howovcr th([) discrete
natural makes tlic problems quite clifferoiit  the continuous (mes in Chapter 3, and a
novel doc'oinpositioii routine is proposed in order to derive the approxiiiiatioii hound.
S(1J (.tiod.3 ami Section G4 discuss models (//«) and {Mh), respectively. Both of th([l m
use iiuiltilinoar form relaxations, ariiiofl with two clitferoiit versions of link iflontitios. in
order to preserve the approxiiiiatioii ljounds under the sqimr([] t.r(x(] propor@ciioral
iiiodel (PH) is discussed in Section 6.5, wli([1 r([ lib@iogoiiizatioii tcclinkjuc in Cliaj)-
tcr 5 is modified and applied. All th(\so approxiiiiatioii algorithms can h( appli(itod
polynoiiiuil optimizations over liypcrcubos, and wo also brief tlie results in Section (i.5
as some byproducts. Some specific applications for the dis(T(( t.(models and approxi-

mation algorithms proposed in this chapter will 1)o discussoci in Section GG. Finally,

«
wc report our iiuinorical experiment, results in Section G.7. .

6.2 Multilinear Form with Binary Constraints

Our first discrete model in question is to iritixiiiiizc a iiiiiltilinoar function in binary

variables, specifically

(T/i)  max .

s.t. f T2, % Q,

where ni < n'2 < eee<n(l.
This iiiodcl is NP-hard when d >2, and w([J shaldropose polynomial-time ranclom-
VAXI approximation algorithms with worsocasc porforinaiice ratios. The ca™c of (1 = 2

is to computc ||F|jooH"5 whose best approximation bound is 77)« "0.56, clue to
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Alon and Naor |5). It also servers as a basis in o\ir subscH}Uciico analysis. Whon d — 3,
Kliot and Naor [63] proposed a raiicloinizod pro(! (I (terconiputo the optimal value of
{Tn) ill i)olyn()inial-tiino, with approximation houncl U (*/**»"" ) e

Our approxiiimtion rilgorithiii works for goiicral ch™grcc d based oii rocursioii. and is
fairly simple. Wec iiuiy take any approximation algorithm for the (I = 2 aisv, say the
algorithin by Aloii and Naor [5], as a lwusis. When (I = 3, noticing that any ni xii)x n,}
third order tensor can he rewritten as an ii\ii2 x matrix l)y coiiibining its Hrst and

socomi iiiodos. can IK [ relaxedo

max F{X, x")
st. X elB'["2 AN 3.

This problem is tlie () xadorm of (T/f) wlioii d = 2, which can ho solved approxiinatdy
with approximation ratio 20"( | :.\/"). Denote its approximate solution to bo (X, x").
The next key step is to r([ (ov([!i.,a~) from X. For this purpose, we introdure tho
following decomposition routine, which plays a fimdamcnta.1 role in our iilgorithins for.

binary variables, similar as DR 3.2.1, DR 3.2.2 and DH 3.3.1 in Chapter

Decomposition Routine 6.2.1

INPUT: matnces M € X £

1 Constulct
T'MX... X1 yJITx

X'"TAIL" XMXIn

N

Randomly genemte

and compute x = sign (‘=)and x* = sigii (77). and repeat if iieccssaTy, until

OUTPUT: vectors x € 1", G

The complexity for DR (j.2.1 is O {uxn®) in each trial with (expectation.. Now, if we

let (M, X) = a;”),XA } and apply DR G.2.1, then we can prove that the output
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5C satisfies

= > = 2F0ir3) —41.(1 W2)" O

BWF{c 1L e TRAM ttv/FM TA=sfn
which yields an approximation ratio for d - 3. By a rccursivo ir()(.("] (lur( ~ - thegoproxi-

mation algorithm is readily oxtciuloci to solve (7> ") with any fixed drgroo ".

Theorem 6.2.1 (T/j) admits a polynomial-time randomized appToxirnation algorithm

with appTVxiTnatioii ratio T.(Tfi). where

nv'-" . n o _. -2
t{Th) i+ =il

\k=\ , k=1 ,
Pivof. Tlic proof is l)as(J @ niatlicinatical induction on th([! (logre(d. For the ease
of d = 2-it is (U xa(.tiflio algorithm by Alon and Naor [5]. For goiioral d > 3. lot

X = “and (Tly) is then r([7 laxodio

(Th)  luax

S.t. X e

xN e k=2,3,...,n- 1,

whore wo treat”. x fus an 7 i?? /-dimensional v(>ctor, and F € RY™*2X*3X X" _i

[d— I)-tli'order tensor. Observe that [Tn) is the exact form of {Tn) in "— 1,
and so by induction w([l carfind X e B"™" and x*"€ W™ [k = -1 in
polynomial-time, sucli timt .

vit,)
> (2/JC7 In(1 + 75) V{Tb).
Rewrite X asan 7Zil x 7 matrix, construct
X = T T E0O
X MmIT X X /11

asin DR 6.2.1, and randomly generate
. [\

I J

Let X =sigp( %) amiZ=sign (77). Noticing that the diagonal roinpouents of X are

E XX Az_TFrcsm ;J(/:J k_%rﬁ arcsiii VI <'i < 1<j <rid,
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wimto the last equality is due to |A'j| = 1. Let matrix Q — F{. x". x X
and w([l have .
E F X' = E E N

i<'<"lI<j<iM

2
i 2 A
E Qii T arcsiil ——
0 1

—arcsii | E ATAT
T YT \<jcyi\<j<u,i

Lpresii yIm F Sx , X~, X [) ©.1)

d- (il-2

/2
> 111( |]|,| \Q:z A v{Tn)

nfc HTu).

Thus x* and x” caii he found by a raiicloinization process, which conchKlos the induction
step; .
To summarize this section, the algorithm for solving general model {Tn) is attached
below. This algorithm is similar to Algoritliin 3.2.3, with major difforeiicos lying in
different (iocoiiipositiou routines and the coiuputability for the case of d = 2.
Algorithm 6.2.2

« INPUT: ad-th oi-dartensor F 6 < n-y < < "(I

1 Reunite F as a (d - I)-th. oTdrr tensor F' Gf:"2>< » ,3><..by combiny its

first and last modes into one, and placiiuj it in the last mode of F', i.e.,

Ay

2 For (T13) mth the {d - 1)-th orxler tensor F': if d —1 = 2 -then apply SDP
relaxation and randomization procedure. (Alon and Naor [5]) to obtain an approx-
imate solution (42> £/ - /~],.ohewie obtain a solution (x*, x*, -« -, by

recursion.
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3 Compute a matHx M' = F(', x" XXIS ', ) and rewrite the vector xJ" as
a inatHx X € B"""™.

!

4 Apply DR 0/2.]. with input (M'.X) = (M.X) and output =  {X\x~).

« OUTPUT: afeasible, solution ,

6.3 Homogeneous Form with Binary Constraints

ill binary variables, i.0.,

wlicro f{x) is a d-iU ck"grw* lioiiiogoiioiis polynomial with cussociatcd sup(T-syiiiiiK'tric'
tensor F €

When (I — 2> an U (1/ log u)-appr()xiiiiato ratio for {Hn) is proposcnl when the
matrix F is diagonal-frcx', by Charibir and Wirtli [24]; When d — 3. an il
approxiiimtion bound for the optiiiml value of {Hn) is provided if the tensor F is
squaro-frw, by Kliot and Naor |()3]. We remark that thr square™free property is a
nccossary condition to derive the approximation ratios. Even in tlio gimdnitir and
cubic cases for ("w) > there is no polynoinial-tiiiie approximation algorithm with a
JK)sitive approximation ratio unless P = NP (set[4]).
(Hii) for any fixed degree (I. Like the model (T?), tlic key link from iimltilincar form

M to the li(iiiogoiKH)iis polynomial f(x) is Lemma 4.2.1. The approx-

imation ratios for (Hf*) hold under the squan”frw coiKiitioii. This is because under
such conditions, the decision variables are actually in the inultilinear form. Hence, one
can replace any point in the hypercube (B") by one of its vertices (B") without cic-
crcasirig its ohjcctive value, due to the linoarity. Before presenting our main results in
this section, we first stiuly a property of the square-fnN? polynomial in binary variables,

which will be used frequently in this chapter and the next chapter (Chapter 7).

Lemma 6.3.1 If polynomial Junction p(x) is squara-firxtand z 6 B", then x € B" and

X G B" can he found in polyiwinial-tiine, such that p(x) < p{z) < p{x).
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Proof. Since p{x) is sqgiuiro-frw, by fixing z:i1°. ¢, .r,, i\sconstants and taking X] jls

ail iiiclej)Oii(lent variable, wc may write
Pix) -

L<[]
-1 13>{

1 fI>{
Then

« 7)) <p{2).
R("peat the same proccxliircs for and I(Jthem he replaced by binary scales

ee o Jn, rosp(rtivrly. Thon x = (j-j.-r-j,***,i-,)* G B" satisfies p{x) < p{2).
Using a similar procedur(», W» may find x 6 B" with i){x) > p(2). .

Loinnia 6.3.1 actually proposes a polyiioinial-tiinc procvdiinJ itdiuling a point in
B" to replaco a point in B", without ciecreasing (or incTcasing) its fuiictioii value. Now,
armed with Lemma G.3.1 and tlio link Leiiiiua 4.2.1, wo present the main results in this

section.

Theorem 6.3.2 If f{x) issquart-Jree mid d > 3 is odd. then (//n) admits a polynarniul-

tima randomized approximation algorithm with approximation ratio t{Hh),  where
t{Hi3):=(G5)111 (1 + v») dler'n? =Q

Proof. Lot f(x) = F{x, x, --,a) with F b( iijguixT-syiniiictric. and {Ha) can bo
d
[Hii) max [ 3:51:2;2.'®")
s.t. xMe k= 1,2, d.

relaxed to

By Theorem 6.2.1 wc are able to find a set of binary vectors (a:',* ¢*.x ) in

polynomial-time, such that
In(l+v?)irrviflB) > f - lii(1 +\/2) ii-"-~v{Hh).

Wlicn d is odd, let *“ i*d be i.i.d. raiicloiii variables, each taking values 1 and
—1 with equal probability 1/2. Then by Leiiuna 4.2.1 it follows that

“d /d d / \\
=E n(1 "/ % =E [/
=1 \k=l V=i \/ ) /
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Thus \v(] mafind a binary vortor (3G K'[J sucltihat

. 9\
f E NAx  >OFx x") > m (L o+ vi2) " JTZE ).
\K=

Now w([l noticdiat ™ YIk=] (11# A ,"(1X" € B". I)([7 (‘aus([afbrl < j < u.

1

3 SR _— (0.2)
k=\

Since f{x) is scjuarc™-frw. by Leiniria G.3.1 w([] ar(able to Hiid x € B" in polvmmibil-

tiiiie, such that

1d
i) >f g ¢ =0-df x  ST{Hii)v{Hii).

Theorem 6.3.3 If f{x) is square-free and d > 4 is even, then [Hn] admits a polynomial-

time. miidomized approximation algorithm with relative, approximation ratio t(///j). *

Proof. Like in the proof of Theorem ().3.2, by relaxing (///<) to {fin), we arc able to

find a set of binary vectors ( 1 . . . with

/2 In(1+\/2) ir*v{HH)-

Besides, we obsorw that v{Hji) < v{H]i) and v{Hb) > v{Hfi) = -v{Hi}). Thoroforo
2v(Hn)>v{HB)-v{HH).

LdD]ZZ, eee id be i.i.d. random variables, cadi taking values ] and -] with equal
probability 1/2. Use a similar argument of (G.2), we have 7% +A_ € B". Then by

\\Y% > fix) > v{Hjy
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Applying Lemma 4.2.1 and wc have

riH

> g
1
2Tk
[ 1i \
= E
d / d W1 rd
- . - Tz(lZ(IVDE 11 i
i=l ool L
= . . . > r{HH) v{Hn) > (t(//I™)I2)...("") -
Thus we may find a binary vector G B" with njLi = 1, such that

f H V(HB)>T{Hi,{v{H.,i)-v{Hii))
(X

Noticing that " Ylk=\ M®" € 1" and applying Leiniiia G.3.1, by the square-free property

of f(x), we are able to find x € with

/i d \
fix)-v{Hfj)>f - I"bx" - IAHn) > T{Hn) {v{Hh) - v{Hn))

To conclucie this section, wc summarize the algorithm for approximately solving

(Hb) below (no matter d is odd or even).

Algorithm 6.3.1

* INPUT: ad-th order super-symmetric square-free tensor F eW
1 Apply Algorithm 6.2.2 to solve the pToblern

max oL XN

s.t. x» €B", k=12,

approximately - with input F and output (dc®, <« x
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2 Compute x = argiiiax {/ (5 ““tA)€e

3 Apply the procedure in Lemma 0..y. 1, with input x 6 B" and polynomial junction

f{x), and output x e B" saiisdijimj f{x) > {x).

e OUTPUT: afeasible .solution x e B".

6.4 Mixed Form with Binary Constraints

£ further inove on to coiLsidor the mixed form of discrrto polynomial optimization

model
(Mij) max ot X')
s.t.  x" € BA k= 1,2,
where associated with function / is a tensor F 6 M™ * 2<1X" .-»» with partial sym-

metric property > 7ii < 112 < eee< i cadd =d\ +d-? -i- ¢+« ds is (locin(>( as a fixed
constant. This model is a generalization of (Tn) in Section G.2and {Hn) in Section G.3,
making the model applicable to a wider range of practical problems.

approach in dealing with (H”), we relax the objective function o oo xN) of
(Mis) to a multilinear function, which leads to (T/j). After solving (T/i) approximately

by Theorem G.2.1, we arc able to adjust the solutions one by one, using Loiiima 4.4.3.

The following approximation results are presentwhich arc comparable to that in
Section G.3.

Theorem 6.4.1 If .. > X7) is square-free in each gA\(A= 12 ...>s) v > 3
and one of dk (k = 1,2,..., s) is odd, then (Mh) admits a polynomial-time mndomized

approximation algorithm with approximation ratio T(Ai/") > where

‘r(MB)  =f(A/s)(> ]  In(1+v™ n ZE=IMf(iz))
b dk\
(L -
IT,
. .odk
2\ dkl \ fUUi rik d > 2

n,
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Proof. Like in the proof of Tlieorcin 6.3.2, by relaxing (Ma) to (7> ") > w([] a@ble to

find a set of binary vectors {x", X" ¢¢¢ x") with
v{Mh).

Lot~ (4)>4°2,... 7T > whose components are i.i.d. random variables, taking values

1 and —1 with equal probability 1/2. Similar as (4.7), wc denote

di d\ +"2 d
k

A= X] 2
k=1 Ad[+1

Without loss of generality, wo af>suine d\ to be odd. By applying Lcinnia ‘1.1.3 \wvv have

ARG .. £ZF g

Therefore we are able to find a binary vector (3€ B, such that

/d \ H
(n 3K 7 boeoesfy2n odMe oo (M F i) v(M,,).
\t=i 8/ =i

Similar as (6.2) - it is not hard to verify that nf=i 6 and x™dk € B™' for

f=2>3,..,s. By the square-free property of the function f and applying Lciiinia 6.3.1

we arc able to find a set of binary vectors «¢' X)) in polynoinial-timo, such that
T2 ..« "2/ (INKEE ... 0 Q) 2 R v(Mh).

Theorem 6.4.2 If ‘ee X") is square-free in each x* {k — 1,2,...,.5),d >4

and alldk {k=1,2,...are even, then {Mb) admits a polynomial-time randomized

approximation algorithm with lelative approximation ratio  t(mb)-

Proof. The proof is analogous to that of Theorem 6.3.3. The main differences are:
(i) we use Lemma 4.4.3 instead of invoking Lemma 4.2.1 directly; and (ii) we use
f j,’:_ﬁ] ", f-<pinstead of / Ylk=i 7A:®) during the randomization pro-

cess. °
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6.5 Polynomial with Binary Constraints

Finally, wo consider binary integer programming model to the optimization on a geiioric

{iiihoiiiogeiiwiis) polynomial functioii, i.e..

(jeneous polynomial optimization to gon(Tal inliomofjencoiLs polynomials is not straight-
forward. Technically it is also a way to get firouiicl the scjuarc-free property, which is
a requiroineMit for all the homogeneous polynomial optimizations discussccl in previous
scHItioiis. Tlio analysis here, is similar as that in Chapter 5, to directly d(7 alvith ho-
mogenization. An important observation here is that p{x) can always ho rewritten as
a squan™frw polynomial, since we have Xi* = 1 for i —1,2,..., n, which allows us
to reduce the power of Xj to 0 or 1 in each inonoinial of p{x). AL now propose tlio

following algorithm for approximately solving (Pb).

Algorithm 6.5.1

e INPUT: an n-dimensional d-th degree polynomial Junction p{x).

1 Rewrite p(x) as a square-free polynomial function poix), and then rewiite ja){x)—

po(0) = F{x, X,"*" ,x) when x/;, = 1 as in (5.2), with F being mi {n + 1)-

d
dimensional d-th order super-symmetric tensor.

2 Apply Algorithm 0.2.2 to solve the problem

max F{x\x' X'
X*e]r+1,A:=1 2> d
approximately, with input F and output {v}*u®,. «+ ,uM).
Compute o fzarginax {F(OY") > (O .jE")"(U<"NZE € B].
Compute z = argmax Po(z((5)/,8c¢e and = WUMk = I},

with zW = + EL'i"kz'".
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5 Apply the procadurr. in Larnma ti.3.1, unth input z G B" (ind polynomml function
and output y € B" .<iatisfymg fH)(y) > j)u(2).

 OUTPUT: aJeasibUi solution y € B".

Before presenting the main result and analyzing Algorithm G.5.1, we first study

another property of the squaje~free polynomial. Namely, thr overall average of the

f

function values on tlic support set E" is zero, aiul this plays an iinportant role in
analyzing the algorithm for (Pf}).

Lemma 6.5.1 If the polynomial function p{x) in [Pn] : iiiaxa-eB" i's square-fivM
and has no constant terrn, then v{Pij) < O < v{Pii), and a binary vactor x 6 can

he. found in polynomial-time with p{x) > 0.

Proof. Lot e NF b(J i.i.cirancloiii variables, each taking vnlues 1 anci —1 with
equal probability 1/2. For any monomial .o+ with degree k (1 < k < d)
of p{x), by the square-fre(» property, it follows that

This implies (’=)]=0 > and coiisequently v{Ph) < @< v(Pb). By a randoiiiization

process, a binary vector x E B" can be found in polynomial-time with p{x) > 0. .

We remark that the second part of Leinnia 6.5.1 caii also be proven by coiKluctiiig
the procedure in Lemma 6.3.1 with the input vector 0 G B", since p{0) = 0. Therefore,
finding a binary vector x € IB" with p(x) > 0 can be done by either a randomized
process (Lemma G.5.1) or a deterministic process (Lemma 6.3.1). Wo now presoiit tlio

main result in this section.

Theorem 6.5.2 {Pb) admits a polynomial-time randomized approximation algorithm

with relative approximation ratio t{P[s), where [1..-[]

\
J(~) = P e — = (LT

Proof. The main idea of the proof is quite similar as that of Theorem 5.2.2. However
the discrete nature of the problem as well as the non-convex feasible region requires us

to be more careful dealing with the specific details. As we are working with relative
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approximation ratio, by Step 1of Algorithm (i.5.1, w([l magssuiiio that p{x) is square

frw and has no constant t(CJ rinThen hy hoinogenization as (5.2)

p{x) = R\ * =F{x.X < x), = f{x),

al function with associated supor-syiiiiiictric tensor F 6 + whose last coinponont

is 0. (Pfi) is then o(juivaloiit to

max  f{x)

s x - XeB"x,=1
which can be rdaxed to an instaiicc™ of (T/j) as follows

(Pfi) max F(x\ i"™eee,
st. X e ®+i, k= 12>...0 L

Let (wll,ii2 ». = Jbr the feasible solution for [Pb) found by Tlieoreiii ().2.1 with

> (2/7n)"-i lii(l + nf2)(7, + 1] %
Denote v* = urld for k = 1,2,..., d, and coii«cquerit ly
= > QI7e7 T In(E+ /M0 F 1T (H").

Notice that forall | <k <d, = = 1/ < 1and the kust component of tensor

F is 0. By applying Lemma 5.2.4, it follows that
z VdVO) =F (i) v

and

e : KM » Cf[] V)) o,

where 'i-72> ... > "f are independent random variables, each taking values 1 and —1
with E[rik] — v* fork —1,2 > ...and ... ,id are i.i.d. random variables, each

taking values 1 and —1 with equal probability 1/2. Combining the two identities, we
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have, for any constant c, the following identity

1 -2

+ E {c+ Proh {rj=13}) F

If we let ¢ = iiiax*gd pjd Prolj {rj = 13}, tlicn the coefficiont of each t([1 rif in

the above is noniiegative. Therefore, a binary vector (3' G B" can b<[] founduch that

F \Y;
with
70 (c+ PrOb{77 = /3})+ A (r-Proh{77 =/3})
" ] N >

> (2"r+l) —] > (2 ii>/+
where ¢ < + £)"is applied, since E[7/] = = +1/(/ fork —1,2,...,d. D(mot([

= (f’};): [7) for fk=12"..,d, and wc have

=z1L,z2 , - > Z (= LA (=Y ‘— VA + FE"

\7r/ 1+¢c

For any /3 e B" » denote z(I3) = (3i{d + + A~ ‘) ]2z ~Bynoticing =And
jzf 1= 1Ivfl = Iwfl/rf = 11d for all \<k<d and 1< 2<ti, it follows that

2 < \zk("\ <2dand \zi([i\ < d+ 1)/d 4-(d- I))d =2 VI <i<n.
Thus z{(3)/zk{P) e i". By Lemma G.3.1, there exists x' e B", such that
v{Pn)[ < Pix") <p{z(/3)/zhm Nf(zW/zum.
Moreover, wo shall argue below that
= f(zm>m~v(PB)- (6.3)

If this were not the case, then by Lemma G5.1f (z({i){2d)) < v(Pb) < 0. Notice that

4

= 1limplies > 0 and thus we have
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which is a contradiction.

Supp(s<» = = ¢ ., . whose c'oinpoiiciits are i.i.d. random variables, each
taking values 1and —1 with equal probability 1/2. Noticing that (G.3) holds aiul using
the same arguiiiont &%s (5.12), wc get ’

Therefore, a binary vector (3" € with /& = 27-=1 (‘an be found, such tliat
f(z(fr))-(2dfv{Pjs) > Z1,Z2v... 2N

. \7rJ I
By Loiimia (i.5.1 > a binary vector x* G B" can be found in polyiioniial-tiiiio with
p{x') > 0. Moreover, as z(f3")/zh{I3") E by Loniiua G.3.1, another binary vector
X" e B" can be found in polyiiomial-tiine with ]{x") > Below wv
shall prov([J aleast one of x' and x" satisfies
1)[v(PB) > T(PB) {v(Pii) — v{Pii)). (6.4)
liidocd, if —v{Pb) > t(Pb) {v{Pfi) — v{Pji)), then x' satisfies (G-4) in this caso. Other-
wise W shall have —vPb) < tPb) {v(Pi}) —v(Ph)-, then

viPn) > (1 - T(PB)) (V(Pi)) - w(P)) > (v(Pi)) - v(Pfj))/2,

which implies

g2d ) o ~~\ ¢ A\THd 1+e
> riPn)  {V{Pb) - iLiPis))
The above inequality also implies that / {z{I3")/(2d)) > 0. Recall that = 1 implies

> 0. Therefore,

”’.RIBh)nF f. WHing = (W'n/1\ jY f @%d‘))— le(lﬁ *
which implies x" satisfies (6.4). Finally, arg max{p(a;'),/j(a;")} satisfies (G.4) in both

cases. .

We remark that (Pb) is indeed a very general discrete optimization model. For

example, it can be used to model the following general polynomial optimization problem
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in discrete values:

(PD)- max p{x)
st. XiG{ap ttjj,... .a\.} i— 1,2,..., u.

To see this, we observe that by adopting the Lagrange interpolation technique and

lotting _
mi T-T Ui — k
= n izTk vi B " >
=l I<l.<m. Mj ]

the original decision variables (.an bo equival(tf7ly traiisformc”i to

Ux = j => Xi= V1<i<71’ 1<j <m,

where iii € {1,2,...,inj}, which can be further rojjresonted by [log2iii(iop(Mi(leiit
binary variables. Combining these two steps of substitution, (PD) is then reformu-
lated as (/& ) with tlie degree of its objective polynomial function no larger than
maxi<j<,{d(77i, — 1)}, and the dimension of its decision variables being , [log.j r/j/].
In many real world applications, the data {oj, ..., } (= 1,2,...,7)in {PD)
are arithmetic sequences. Thou it is much easier to transforiii (PD) to (J7") » without
going through the Lagrange interpolation. It keeps the same degree of its objective
polynomial function, and the dimension of its decision variables is X*IL![] logaTziil.
(1 Finally, we remark that all the approximation algorithms proposed in this chapter
are also applicable for the polynomial optimizations over liyperciibes (E"), which arc

models (T7), (//:7, & :™and (PYy), i.e., the respective models (T/y), (Mfi) and

{Pb) with B being replaced by B. In particular, the square-frcc conditions an? no

longer required for homogeneous form objectives and mixed form objectives. Therefore
r

Algorithm 6.3.1 and Algorithm 6.5.1 can be made simpler without going through the
process in Lemma 6.3.1. We now conclude this section, as well as the theoretical part
of this chapter, by the following theorem without proof.
Theorem 6.5.3 The following approximation results hold for polynomial optiinizations
over hypercubes:

1. {Tq) admits a polynomial-time randomized approximation algorithm with approx-

t
‘irnation  ratio t(Th) ‘

2. If d > 3 is odd, then (H") admits a polynomial-time mndornized approximation

algorithm with approximation ratio t{Hb) ; OthcTwise d> A is even, then (Hf")
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admits a polynomial-time randomized appToximation algoritinn with relative ap-

prvjimatioii ratio r(///j)’.

3. If one of (If. A= 1,2, ...> () is odd. then {Mf}) admits a polynomial-time, ran-
(lornizad approximation algoHthm with appivxiination ratio T{M}i); OfJiA*wisa all
dk {k — 1,2,..., 5) are cvan” then {Mf") admits a pqlyjiojnial-time jmidoinizcd

» approximation algorithm xinth relative apprvxirnatioii ratio r(A//i);

4. (Pii) admits a polynomial-time randojnized approximation algoHthm with relative

appmiimation rutio T(PB). #

6.6 Applications

Tlie models studied in this chapter have versatile applications. Given tlie generic
nature of the discrete polynomial optimization models, this point is perhaps self-evident.

However, wc believe it is lielpful to present a few examples at this point tvitli more

. r
details, to illustrate the potential modeling opportunities with the new optimization

models. We shall present tlirwr. problems in this section and show that they ar([] readily

formulated by the discrete polynomial optimization iiioclels in this chapter.

6.6.1 Cut-Norm of Tensors

Tiic concept of cut-norm is initially clefinccl on a real matrix A = (Ajj)) 6

denoted by ||A||lc, the maximum over all I C {1,2,...,n\} and ./ C {1,2,..., ?1Z}; of
the quantity |Yliei jeJ This concept plays a major role in the design of efficient

approximation algorithins for dense graph and matrix problems (see e.g., [30, 3]). Aloii

and Naor in [5] proposed a polynomial-time randomized approximation algorithm that

Approximates the cut-norm with a factor at least 0.56 > which is currently the best

available approximation fatio. Since a matrix is a second order tensor, it is natural to

Specifically, given a d-th order tensor F = (Fitl]...ij € ..x«d - its cut-norm is
defined as ’

\W\¢ := max yn AUh-td
e "ARTERN1 ¢ 7 AR LA D B

1l fact, the cut-iionii ||F||c is closely related to ||F|looM.r, which is exactly in the

form of (Th). By Theorem G.2.1, there is a polynomial-time randomized approximation
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algorithm which computes ||F||oo”™i with a factor at least il "HAIf where

we assiniie ii] < ily < e+ e+< nj. The following proposition, asserts tliat the (.ut-iionii of

a general rf-fh order tensor can also he approxiinatocl by a factor of il 7).
Proposition 6.6.1 For any d-th order tensor F € R"X,,2x.“x’d, < ||F|]oo?, <
Proof. Recall that |Fjloo™+i = ; N].For any x" 6
B*\(/?= 1,2,...,(1) - it follows that ‘
X ) = E X,
<t<7i™- k=12 d
e’ e Fi >d
2 ’d

= E n %1 E F.

which implies IIFlloo™i < 27|F||c.

Observe that ||Fllc; = max—A{ """~ AE =, ,">2zy > ..> For any z" e
{0°1} "5k = 12> . «."/), let 2 = (e + where e is the all one vector. Clearly
xN € forA= 12> ..>and thus

132 F e+ai e+ e + O\
v 2 ' 2 ' 2
F(ee-" ,e) + F(ajie - ...Z}e;
which implies ||F||r; < e ¢

6.6.2 Maximum Complete Satisfiability

t

of the literals, so as to maximize the total weighted sum of the satisfied clauses. The
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key point of the probloiii is that each daiis(1 is tho disjmictiva form, iiamdy if one of
the literals is iissigiunl tlio TRUE value, thoii tho claiis(» is callotl satisfied. If the literals
an(] alsamjunrtive, th(J this form of satisfiability problem is easy to solve. However,
if not all tho clausc™s can be satisfied, and we alternatively look for an a”ssigiiineiit
that injixiiiiizcs the weightod sum of tho satisfied dauscs. then tlio jjrohleiii is quite
(lifforoiit. To make a distinction from tho lusual m;1x-sAT problem, lot us call the new
probloin to he nuiximum complete .mtisfidbility, or to 1>([7] abbreviateds Mfix-C-SAT.
It is immediately dear that Max-C-SAT is NP-hard, since w((] (.agasily redu(.([ the
iiiiix-cut problem to it. Tlie reduction can be done &\ follows. For cacli (Hige (<7 . we
rorisidcr two clauses {xi,xj} and {if*, Xj}, hotli having weiglit Wjj. Tlieii the Max-C-
SAT solution lemls to a solution for tlio iiuix-ciit problem.

Now (.piisidor an instance of the Mtix-C-SAT problem with m claus(\s, oath clause

form
Uki » . OO A '3 T L KTy

whcTo sA.+tk < d, associated with a weight Wk > () for k — 1.2 777, Tlioii, the
Max-C-SAT problem can be formulated in tho form of (/") as

s.t. Xe B".

According to Theorem G.5.2 and the noiinegativity of the objective function, the above

prohlciii admits a polynoiiiial-tiiiie raiicioiiiizecl approximation algorithm with approx-

6.6.3 Box-Constrained Diophantine Equation

Solving a system of linear equations where the variables are integers and coristraincxi
to a hyporciilw is an important problem in discrete optimization and linear algebra.
Examples of applications include the classical Frobeniiis problem (see e.g., [2, 1G)), and
the market split problem [26], other from engineering applications in integrated circuits
(icsigii and video signal processing. For more details-, one is referred to Aardal et al. [1.

Essentially, the problem is to find an integer-valued x € Z" and 0 < a; < u, such that
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Ax = b. The prohlciii can be foriimlaUHi by tlio lejust square] inothods

(DE) max -{Ax - b)*{Ax - b)

s.t. Xe Z", 0<x<u.

According to the discussion at the ciul of Section 0.5. the al)ove prohlein can be r([J -
fonimlatcd as a form of (J7") - whoe objective function is quadratic polynomial aiid
rmiiJb([Jaf decision variables is [1(T7 &20p> 1)1. By applying TIKK)roin G.5.2, {DE)
admits a polynomial-time miidomized approximation algorithm with a constant relative
approxjmation ratio.

Generally speaking, the Diophantine equations are polynomial equations. The box-
coiistrained polynomial egimtioiis can also be formulated by the lex“t square method
as of {DE). Suppose the highest degree of the polyiioinial equatioiLs is d. Then - this
least square problem (.an be reformulated as a form of (J7") - with the dogrtK* of the
objective polynomial being 2¢/and nuiiibor of decision variables being [~ofrjl™ +
1)]. By applying Theorem G.5.2, this problem admits a polyiioinial-tiiiie raiidoniizcd

approximation algorithin with a relative approximation ratio il ~(J*ILi log “i)_("—.

6.7 Numerical Experiments

posed ill this chapter. Our experiments focus on the model (Tn) with d = 4 as a typical

case. Specifically the problem to bo tested is

(ETb) max y, z, W) = Ei<,:j>,f<,, fijkf I-WjZkWF -

s.t.  xyzw e B".

6.7.1- Randomly Simulated Data

The input data of (ETb) is generated in the same way as that of (ETs), with entries
of F following i.i.ci. standard iioririals. The first relaxation model for Algorithm G.2.2

to approximately solve (ETN) is

{Efii) max F(X, w) = Ei<i,M-£<« FijktXijuwt

S.t.

which can IK? solved approximately using SDP relaxation aiicl randomization method

proposed by Alon and Naor [5]. However, the si” of the SDP relaxation problem is
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(™ + n) X @3+ " ))»wheh is intrartablo for current SDP solvers even when n = 8,

Therefore in our testings, we further relax th<fabove problem to

max F{X) = Z

S.t. X el 5" >

whoso optimal solution is trivially sign (F) with optimal value v* := ||F|li. This
optimal solution can be rewritten as an n”™ x n matrix, followed by applying DR G.2.1
to get a feasible solutioii of {ETn). Then wo can apply the recursion proccduros of
Algorithm G.2.2 to get a fea’sible solution of the original model {ETn), with its objective
value being (ionotcd by v.

According to Theorem 6.2.1, the thoorctical worst-case pcrfonnance ratio of (ETjj)
by Algorithm 6.2.2 is {{unti). However, the theoretical ratio for the above method is
indeed Ixx aiist" of a deeper relaxation, which can be proven by ii.sing the same
argumeiit in Tlieoreiii G.2.1. However, this deeper relaxation allows us to skip the SDP
relaxation of {ETji), and make the method applicable for large dimensions. In goiioral,
the trivial upper boiiild of v(ETDb) generated by this inethod, iff}, may not good, and
wc may seek a tighter one. For this ])urpose we turn to the model (Ts) (lisrussed in
Section 3.2 ; Noticing tiiat an /j-dimciLsioiial binary vector liaa a iioni[>JTil] wnay also
relax (ETh) to

liiax F(x,y,z,w) = YN<ijM.t<n Fijkf XiUjZkWf
s.t. = |lyll = NI = IMI = vA>

%
which can be further relaxed to

max = E
1 <i,j,k,f<u Fijkf ZKi ;.
s.t. [X][[=:]|Z]] = n,
X,z e

The» above problem is the largest singular value problem, whose optiinal value (an tx[
computed efficiently. Denoted its optimal value to be vs, which is taken as another
upper hound of V{ET[}). .
The numerical results of 10 randomly generated instances for the upper bounds vb
and vsi as well  the objective values of the approximate solutions generated are listed

in Table 6.1, which clearly shows that vs outperforms vn significantly. Therefore in the
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Table 6.1: Numerical upper bounds of v(ETb) for n = 13

Instance 1 2 3 4 5 G 7 8 9 10
v 619 637 603 664 682 572 613 G62 591 752
VB 22742 22588 22775 22711 22827 22905 22593 22966 22789 22678
VS 4251 4314 434G 43G8 4294 4338 4295 4330 4330 4303

Table 6.2: Numerical ratios (average of 10 instances) of (ET")

71 5 10 20 30

"0 90
i) 3542 1851 994 70G 545 409 393 306G ow 258
on 177 185 199° 212 218 204 236 214 93 239

151 147 147 151 151 138 156 140 154 148
079 059 044 039 035 029 030 026 (27 025

following general testings, we shall choose v* as our candidate of the upper bound, to
test the quality of the approximation solution, i.e., r := v/vs- The simulation results
arf(l listeth Table 6.2. By observation, the performance ratio is better than i2(1/71),
and is quite close to It is clearly better than the theoretical ratio $2(1/71"**).

The computational cost for our method is quite low. In fact, for n = 80, we are able
to get a feasible solution within 2 minutes™ while computing the iippor bound vs costs
much more time. For n > 95, however, our computer reports to run out of irioniory in

the experiments, a problem purdy due to the sheer size of the input data.

6.7.2 Data of Low-Rank Tensors

The numerical tests conducted so far are based on the data generating from i.i.d. staii-
ciard normals. It would be interesting to investigate the practicability of our algorithms
using other data settings. In particular, we shall test some low-rank tensors.

As mentioned in Section 3.4.2 (see also [68]) » a fourth order tensor has rank r if it
call bo written as a summation of r munber of rank-one tensors, and cannot be written
as a summation of r — 1 iiumber of rank-one tensors. Specifically, the data we generate

here is ‘
.

F:=E 4] af 0 aj, 0
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Table 6.3: Numerical ratios (average of 10 iiustaiiccs) of {ETn) with low-rank tensors

(rank) 1 2 3 4 5 6 8 y 10 15 20
(%) forn = 10 34.6 30.9 28.0 324 26.7 25.8 28.3 272 26,5 259 26.2
(%) for 7. = 20 148 150 140 157 113 111 11.8 121 117 112 120
(%) forn=30 91 73 75 69 72 72 66 72 77 6.2 57
where all a}' A = 1,2,34> i = 1,2,...,r) are iricieponclent of each other, each of which

following i.i.d. standard normals.

We again use the method discussed in the previous subsection to approxinmtoly
solve the model (ETb), and compare its objective v with the upper hoiiiicl % > i.e.,
T = v/vs. The performance ratios for such data settings are shown in Table G.3 for
n = 10,20 and 30. By observation, wc find that low-rank tensors F improve the
approximation ratios significantly. The lower the rank of the tensor F, the better the

performance ratio.



Chapter

Homogeneous Form Optimization

with Mixed Constraints

7.1 Introduction

This chapter brings most of the results in previous chapters together, to discuss mixed
integer programming problems. The objective functions are all homogenous polynomial
functions, while the constraints are a combination of twojiiost widely used ones, the

spherical constraint and the binary constraint. In particular, the models considered

include:
(TBS)  max vy
s.t. xMe A =
eS"A, 1’27...7d";
{MBS)  MAX /(XU 2 ) 20 0f
St XN € fc =
2/eS”", £ =12, f
The model (MBS) is a generalization of the models and (HBS)- In fact, it can

also be taken as generalization of most of the homogenous polynomial optimization

122
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models discussed in previous chapters, namely {Ts) of Chapter 3, (Hs) and {Ms) of

Chapter 4> and (Hfj) and {Mu) of Chapter 6 as woll.

These mixed models have versatile applications, e.g., matrix combinatorial prob-
lem, vector-valued inax-cut problem, whoso details will ho discussed in Section 7.5.
Essentially, in many discrete optimization problems, if the objective to bo optimized
is extended from a scalar to a vector or a matrix, then we may turn to optimize the
Euclidean iioriii of the vector, or the spectrum iionri of the matrix, which turns out to

be the mixed integer programming models proposed above.

All these models are NP-hard in general, even in the simplest case of one spherical
constraint and one binary coiLstraint, i.e., the model (Tf*s) with d = d' = 1. As wo will
see later, it is actually equivalent to the maximization of a positive semidefinito form
in binary variables, which includes raax-cut as a subprobleni and is thus NP-hard. In
fact, this simplest form of-(T/js) serves as a basis for all these iiiixocl integer program-
ming models. By iising this basis and mathematical induction, we are able to derive
polynomial-time randomized approximation algorithms with worst-case performance
ratios for (TBS) with any fixed degree. The techniques are similar to that of Chap-
ter 3, and two types of decomposition routines are called, one for decomposition of the
spherical constraints, and one for decomposition of the binary constraints. Moreover,
in order to extend the results from {TBS) to {HBS) and {MBS), the multiliiiear tensor
form relaxation method is again applied. Armed with the link leiiinuus (Lemma 4.2.1
and Lemma 4.4.3), we are able to derived approximation algorithms under some mild

square-free conditions.

This chapter is organized as follows. We shall discuss models (Tbs), {f*Bs) and
(MBS) in Sections 7.2 > 7.3 and 7.4 respectively, and propose polynoinial-tiiiie randoiii-
ized approximation algorithms with provable approximation ratios or relative approxi-
oination ratios for the respective models. In Section 7.5 wc shall discuss a few specific
problems where these mixed models can be directly applied. For the easy of reading,

. »
in this chapter, we shall?exclusively use vector x (6 B") to denote discrete variables,

u

and vector y (€ S") to denote continuous variables. Throughout our discussion, we
shall fix the degree of the objective polynomial function in these mixed models, d + ¢/,

to be a constant.
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7.2 Multilinear Form with Binary and Spherical Constraints

Our first mixed model is to maximize a iiiultiliiiear function, with some variables being

binary and some in the unit sphere, namely,

{Tus)  max XN, e enich oyl e p<it
s.t. xMNe k =

20eS” "o N2 0

where ni < 72< eee< and 7n\ < im < e e e< /. This iiioclel is a generalization of
{Ts) ill Section 3.2 and (T”) in Section 0.2.

The simplest case of (Ths), d = d' = 1> is worth mention, as it plays an essential role

algorithm with worst-case performance ratio for {Tjjs) with any fixed degree d + d'.

Proposition 7.2.1 If d = d" — 1, theji (Tbhs) is NP-hard, and admits a polynomial-

time randomized approximation algorithm with approximation ratio \/2/7t.

Proof. When d = d' == 1, (T/*s) can be written as

(fss) max  x*Fy
st. x6 y € S"'A

For any fixed x in {fns), the corresponding optimal y must be a;|| due to
the Cauchy-Schwartz inequality, and accordingly, 0
XFy = = W\ = VX FFX.

Thus (TBS) is equivalent to

max X"FFAX

s.t. X e 1
Noticing that matrix FF* is positive seraidefinite, the above problem includes the max-
cut problem (see e.g., [40]) as a subclass. Therefore it is NP-harcl. Moreover, according
to the result of Nesterov [88], it admits a polynomial-time randomized approximation

algorithm (SDP relaxation and randomization) with approximation ratio 2/7r. This
‘A

implies that (Ths) admits a polynomial-time randomized approximation algorithm with

approximation ratio yJ Tfi: .
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Proposition 7.2.1 is the foundation to establish the basic relaxation in solving (Tus)
recursively for general degree d and d'. In processing to the high ciegrw cases, for the
recursion on d, with discrete variables x*{k — 1,2, ...,")>DR G.2.1 is applied in
each recursive step; while for the recursion on d' with continuous variables y* =
1,2,..., two decomposition routines in Section 3.2 are readily available, namely
the eigenvalue decomposition approach DR 3.2.2 and the randomized (lecompositioii
approach DR 3.2.1, either one of them will serve the purf>0so here. The niairi result in

this section is the following:

Theorem 7.2.2 (Ths) admits a polynomial-time randomized approximation algorithm

with approximation ratio /(1bs), where

i

[ 2\ FE ] “N 0y d L
i{TBs):= (-) rhfcn”if Q (n})'lﬁ’\n

N
N

Proof. The proof is based on mathematical induction on the degree d + d', and Propo-
sition 7.2.1 can be used as the base for the induction process when d +d' = 1.

For general d +d" > 3, ifd > 2, let Y — Noticing that WY\ =
21 1)2]|y("||]2 = 1 > similar to the relaxation in the proof of Theorem 3.2.4, (Tus) can be

relaxed to a case with degree d + d' — 1, i.e,,

max ry—"
st. x* e k=1,2,.
y eSllf~ »2/ eSJ/\*"£2>3>...>""-].
By induction, a feasible solution e Y, o oo y"—') can be found in

polyiioinial-time, such that

12\ 4k * - ,
v cy,y' B o Ey> (B)rh*n C~T5(AT ).
. A=) £22
Let us denote matrix Q = F{x\Nee* > i" > > 32> R3> ... L=!>)e Then
by Proposition 3.2.1 (used in DR 3.2.2), can be solved

in polynomial-time » with its optimal solution (y”y" ) satisfying
[ o R27 . &R e = (&> NQINVMT.

By the Cauchy-Schwartz inequality, it follows that
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Thus wc concludes that

9 — ' A _ -
il ) rf =1 22 >  1QIl/v/?

t

For d-{-d" >'S and d > 2, let X =x”™ (x") *, and {Tas) can be relaxed to the other

case with degree d — 1+ i.e.,

max FV’a:2 - arV..> a:"-i»yiy2,..." ?/)
st. X 6 e k=2,3,..,6/-1,
il eS\Y 1,2
By induction, it admits a polynomial-time randomized approximation algorithm with
approximation ratio (&)~ (07=2 M 117="/ Ne hi order to decompose X into
xN and x”, we shall conduct the randomization procedure as in Step 2 of DR 6.2.1,
which will further deteriorate by an additional factor of in expectation,  shown

in (6.1). Combining these two factors, we are led to the ratio t{Tbs)-

We end this section by summarizing the algorithm for solving {Tns) below.

Algorithm 7.2.1

* INPUT: a {d+ dyth order tensor F € - XN"7MXmMAX-xm" i7zh, ti<
TR2< oo flwd 771< 1712 N oo e/ Tl

1 Rewrite F as a matrix M € ...ndxmimz - m" ¥J] combining its first d modes

into the matrix row, and last d' modes into the matrix column.

2 Apply the procedure in Proposition 7.2.1, with input M and output x 6 B™™""" ™",

A

3 Rewrite the vector x as a d-th order tensor X e and compute a
d'-th order tensor F' = F(X, .-.-..>+)€ R"™MxMax-xm", '

4 Apply Algorithm 3.2.3, with input F' and output o)

5 Compute ad-th order tensor F" = F(’ « ... y2-..>pyN)e R™ A"Ax-xn"

6 Apply Algorithm 6/2.2 - with input F" and output
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* OUTPUT: afeasible solution - i" s fAid s e

7.3 Homogeneous Form with Binary and Spherical Con-

straints

We further extend the mixed model in previous section to the homogeneous polynomial

case, namely’
(Hbs)  max f(x,y)
st. XeB"yb6
where /(x, y) = F(X, X,... XYY, -y), and F € K" is a (d+ ri)-th order

\Y ‘A \Y
> d d!
tensor with partial symmetric property. This model is a generalization of the model
(Hs) in Section 4.2 and the model (Hb) in Section 6.3. We shall derive polyiioinial-

tiine approximation algorithms with worst-case perfolrmance ratios. The method here is
also multilinear function relaxation (Ti”s), which admits a polynomial-time randomized
approximation algorithm by Theorem 7.2.2. Then by applying Lemma 4.2.1 as a link,
together with the square-free property for the discrete variables 2c, we are led to the

following results regarding  (HBS)-

Theorem 7.3.1 If f{x,y) is square-free in x, and either d or d' is odd, then {Hj"s)
admits a polynomial-tirne randomized approximation algorithm with approximation ra-

tio THBSy  where

«[HBS) T 0 n 2m
9 . N ,

Proof. Like in the proof of Theorem 6.3.2, by relaxing (HBS) to (T"s) > we are able to

find X\\ .. > 17 ... "yd) with x* e ®" forall 1< A < riand y* € S\ for all
| < £<d' in polynomial-time, such that
FOOW\ . 00 yiRe e 2> (2/70)FE n—FE-m—" v(Njrs)-

Let X N17/2, ¢ > T be i.i.d. random variables, each taking'values 1and —1
with equal probability 1/2. By applying Lemma 4.4.3 (or Lemma 4.2.1 twice), we have

d d / d d

EmiEM E “@&~Imy
1=1 j=i \k=i e=i

(7.1)
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Thus we are able to find binary vectors 6 and /3' 6 BV > sucli that

d d'
y
\k=I £=1
Denote

d d. d

d is odd.
V:

d d d' tl'

d' is odd.
, s lfe=i i=i j=i e=i ,

Noticing ||y|| < d' arid combining the previous two inequalities, it follows that

[(F > =) -""nAn {5 (E fi-&" > i> [RIL wiKs).
R | A /

Denote y = € Since x/d 6 B" by a similar argument as (6.2), and f{x, )
is square-free in by applying Lemma 6.3.1, x 6 B" can be found in polynomial-time,
such that

Sixidy) >  T{HBs)v{Hns).

We remark that in Theorem 7.3.1, if d' = 2 and d is odd, then the factor d'l "' in
T{HBS) can be removed for the same argument in the proof of Theorem 4.4.2 (basically

the corresponding adjustment is an eigenvalue problem), and this improves the ratio
* 2d-1 J 1

T{HBS) to (") 2 DLD — D F I . Now we present the approximation result for the
even degree case.

>
Theorem 7.3.2 If f(x,y[]1is square-free in x, and bothd and d' are eimi, then (HBS)
admits a polynomial-time randomized approximation algorithm with relative approxi-
mation ratio T (Hbs).
Proof. Following the same argument as in the proof of Theorem 7.3.1, wc shall get (7.1),
which implies .

E
t=1 7=1 \k=I £l / TN

Denote x" := 3Ylk=i “&A and y” := + YleNi VeV Clearly we have

d d
E viniarj 1 imwy)  >r(HBs)v{HBs)"
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Pick any fixedy G and consider the following problem

{Hbs) max f{x,y)

s.t. x €B".

Since f(x,y) is square-free in x and has no constant term, by Leiiinia (35.1 > a binary
vector i € B" can be found in polyiioinial-tiiiie with
f(x,y)>0>v(H,js)>II(HHsh
Next we shall argue f (a:”, {4 > v{Has)- If this were not the case, then f (i*, f/,)) <
v{Hbs) < 0. By noticing < 1 - this leads to
f (&0 A1) = MA—T ¢ (- 14,) </ (xy,) < uiHnsh

Also noticing x" € by applying Lemma 6.3.1, a binary vector x € can he found
with
V(HHs)<f{x,if \\yJ)<f{x""

resulting in a contradiction.

By that f - v{Hbs) > ()" it follows
d d
= [ 1=1
d d
>
1 J=W
d d
f(£e i) - Ninfis)
d d
= E
d d
=E  vicivivift ity >r{HBs)v(HBsy
i=l 7=1

ThiLS we are able to find > € B" and (3'e B™ with OSLi i UILi ~j = 1’ such that

firayn’)  -v{Hbs) > 2r(HBs)v(HBs)-

Denote y = ifFF//||ly"™|| € S-". Since X(j € B", by Lemma G.3.1, a binary vcctor x € B"

can be found in polynomial-time with f{x,y) > f (xp"y). 0
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Bolow wr shall pr(.)v([7] oithefx, y) or {x, y) will satisfy

n I(x > y) — v{Hiis) > T{Hhs) {v{H,is) - riUns)). (7.2)
Indooci, if -v{Hbs) > riHns)  {Y{Hiis)  ~ v{Hiis)). tlicn satisfios (7.2) in this
cas(» siiico f{x, y) > 0. Otherwise', if —v{Hiis) < T{Hiis) (r(///"s") — Ei"Hs))- then

v(Hbs) > (1-r{HHs)){W{Hns) - v{Hhs)) >  ("(/lI{t) —o{Hhs))
which implies

f (xs"Vfr) - v{Hns) > 2r(//«.s) v{Hns) > r{Hiis) {v{Hbs) — r{Hns)).
The above inequality also implies that f (x*, y*) > 0. XluTofore, we liav(*
> Hxtiy) — I {Miytiy > fitatyn)?

whidi implies (X, y) satisfies (7.2). Finally, Mg iri{ix{/(x,y), /(X, y)} satisfies (7.2) in

both cases. .

7.4 Mixed Form with Binary and Spherical Constraints

bunch of models discussed in previous sections and chapters > as a generalization of a
large family, which includes (!>), Ws,) > (Ms), (H«), @\/") > (T/™) ami ("/(s)

all as its subclassos. The model is to iiiaxiinize a mixed form over variables in I)|||arv
cdnstrmnts iiiixod witlr variables in spherlcaT constraints, i.e.,

(L )in’f “/(a;i,a;2’ Lo Xyl y2 o -
..S.t. X" k=12,..,.5,

where assojCiatwi'with function /is a tensor F € BT"...x"2“-’x “x”’> xHl (xm/L'X -xm,"'"' ;
with partial symuiotric property, n] < n-j <,"e < and r'rii <ni)< -<JI[, and
EI =di+d2H f gs {indd" —d\ + 1 D bee 4-d, nrv d(HL iiieds fixed constants.
We shall derive JM)lyii(>inial-tinie approximation algorithriLS for this general model.
By i-elaxitig '(Mjis) to .the inullijinear.fiiiiction oi“imization iiioélol (Ths) and solving

it appfoxiniatojy,ysing Theorem-7.2.2, we may further adjust its solution one by one

two settings. o 0 ‘
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Theorem 7.4.1 If XL cee square.-frac in each x \l k =
1,2,...,.8), and one.of df- {k — 1,2,..., s) or one of d'f {f = 1.2,...,/) is odd. then
(Mfis) (idinits a polynomial-time Txindomizcd approxmiatimi alfforithin with. appTOxima-
tion Tdtio f{Miis)f whan'

y D /7 n di n“~ nUime('/,
(l) W \<feLi(if
n

nL [ n L [y
f's rnt

W hs)

Proof. The proof is analogous to that of Tli(H)r("ii 7.3.1. WV first relax (Mas) to {Th")
and g(Jits approximate solution X", eee > e ee y")using Theorem 7.2.2.

Let FHe o N 2o e oo fff o iicl. raiicloin variables, ([ a(taking values 1and —1

it i2 -1-2
E 0 UM mo gy
3)
whore
X w i i vy 12 l E -4)
and
d\ d\
Vi yif -= A~ my? (7.5)
f-d\+1

m (7.3), fusone of dk {k = 1,2,....a) or one of df (f = 1,2,..../) is odd, we an~
able to move 117=1'h the coefiicient of the correspomiiiig vrct.or or f/”
wli(] 1i([ agpropriate) in the function f. Other derivations are ess([] ntiallyhe same
as thr proof of Theorem 7.3.1. Besides, we only loose a ratio of {( ! |~ when <0 > 3
ill T(Miis). This is because' wlien rij, < 2, the a)rresp(m(iiiig adjiLstineiits can be done

without deteriorating the ratio, liko in the proof of Theorem 1.4.2. .

Theorem 7.4.2 If XNYrYA, " IS squam-Jrae in aacJix® (k =

1°2>.,8 adalldf. k= 1,2,...,8 and all d'f[f = 1-2 ... 7F)are c.vcii,then (Mas)
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admits a polynomial-time, lundomizexi approxiination alfforithjn with relative approxi-

mation ratio t{Mbs),  where

w Uldi™J7,=u”Vv

Itsr'h

Proof. Th([1 prooik analogous to that of Theorem 7.3.2. The main diH"(T] r("i(ere: (i)

we uso (7.3) instead of (7.1); and (ii) weuse f (%~ Z,-- > 3> ...,&)instead
of f (iNA) » where (i, se e ig, y]N, v A, (0 are detiiiod in (7.4) and (7.5).

7.5 Applications

gives rises to soiiie succinct and interesting i)roi)leins, apart from their vcTsatile af>
plicatioiis. Nevertheless, it should be useful aiul helpful to present a few cxainples at
this point with iu(>r([ detailsp illustrate the pot([! ntighodeling opportunities with tlio
new optimization models. In this soctiori » wo shall discuss the matrix coiiihiiiatorial
problem and some extended version of the inax-cut problem, and show that tliey arc

readily formulated | )y the inixed integer prograiiiiiiiiig problems in this (.hapten

7.5.1 Matrix Combinatorial Problem

We (iisriiss a succinct and iiitcrestiiig matrix coinbiiiatorial probloiii. Given n matrices
Aj 6 fori = 1,2,... > n, find a binary coiiibination of them so m to iiifixinii/e

model
(MCP)  max ~fg (E'=i fipk) .
st. XiG{1,—1}i=1,2,...,n,
where cr,ax denotes the largest singular value of a matrix. Problem {MCP) is NP-
hard, oven in a special caiie of m-i = 1. In this case, the matrix A, is rcj*laco by an
r/ij-(limeiisioiial vector a*, with the spectral iioriii being identical to the Eiiclidcaii norm

of a vector. The vector version combinatorial problem is then

max |l

st Xj€{1,-1}, i= 127 ... n
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This is (Hjiiivaleiit to tho mkklcl {Tns) with d = d' = I. whose NP-hardness is cisscrtcxl
by Proposition 7.2.1.
Turning back to the gdieral matrix version {MCP), the problem htus an cquival( ut

formulation
max (y[l)UEILi [. fik
s.t.  xe B', y

wliicli is essentially the model (T”s) with <7=1 and d' = 2

max F{x, y\ vy-)

s.t. xe 1" t/
whore a’isociated with the trilinear function F is a third order tensor F G R"~""
whose (z, j, A)-th (7 ritrig (J, k)-th entry of the matrix A,-. According to Thcorrni 7.2.2,
the largest matrix (in terms of sptx tral norm in (MCP) formulation) can bo appmxi-
imited with a factor of N 3

If the given n matrices A, {i = 1,2,--- » arc symiiietric, then the iiiaxiiiiizatioii

(Titcrion ('an h(. set for the largest eigenvalue in stead of tlio largest singular value, i.e”,

max A,nax(E"=I )
s.t.  I€ {1,-1}, i=1,2,...,7i

It is also easy to formulate this problem as the model {Hus) with d ~ \ and d' — 2

max F{x.y,y)
s.t. X e B", y e S"I.

whose optimal value can also be approximated with a factor of y ~ by Tli(K)reiii 7.3.1

and the remarks that followed.

7.5.2 Vector-Valued Maximum Cut

Consider an midiroctod graph G —{V,E) where V. = {M>?- >, «. > " 1 is the set of the
vertices, and E C V x V is the set of the (xlges. On ([ acl(lge c e E there Ls aii
associated weight, which is a nonntgative vector in this case, i.e., €R" We>0
for all e € £ The problem now is to find a cut in such a way that the total sum of
tlie weights, which is a vector in this case, has a inaxiinurn norm. More formally, this
problem cmi ljc fonnulatcci as

max

c isacutof G eec
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Note that the usual max-c\it problem is a special case of tlie above model wherr (] a(,h
weight WE > 0 is a scalar. Similar to the scalar cast" (ser |4()]), w(J mayoforimilatr Uk[
above problem in ))inary variables as
iiiax
s.t.  X€B"
where
—Wij i E

= “ _ (7.G6)

Observing the Cauchy-Schwartz inequality, wc further forinulate the above problem as

nmx (Ei<tj<,, Mi-"'Mj) y = F{X,X,y)

st. Xe y e S".

This is the exact form of {Hbs) with (1= 2 and d' = 1. Although the square-free
property in x does not hold in this model (which is a (.oiiditioii of Theorem 7.3.1) > one
can still replace any point in the hypercube (B") by one of its vertices (B") without

decx-reasing its objective function value, since the matrix F(', ,e”) = ((Wij)k] IS
V j /T

admits aii approximation ratio of by Theorem 7.3.1.
If the weights on edges are positive semidefinite matrices (i.e., Wij e R™™"', Wij 2
0 for all (i,j) 6 E), then the matrix-valued iiiax-cut problem can also be foriiiulateci as
max A,,aX

st. x e BY

where W' is defined similarly as (7.6); or equivalently,

max yT (Ei<ij<u ANV
st. Xel" y€ 8§

the model (Hbs) with d = d' = 2. Similar to the vector-valued case, by the diagonal

dominant property and Theorem 7.3.2, the above problem admits an approximation

ratio of » (Z£(mn)~2. Notice that Theorem 7.3.2 only asserts a relative approxima-
tion ratio. However for this problem the optimal value of its minimization counterpart
is obviously nonnegative, and thus a relative approximation ratio implies a usual ap-

proximation ratio.



Chapter 8

Conclusion and Recent

Developments

focus on deriving polynomial-time approximation algorithms with worst-case perfor-
mance guarantees. These subclasses include many frequently encouiiterefl constraints
in the literature, such as the Euclidean spherical coiLstrailits, the Euclidean ball con-
straints, the ellipsoidal constraints, the binary constraints, and a mixture of them. The
objective functions range from multilinear tensor functions, homogeneous polynomials,
to general iiilioinogeneous polynomials. Multilinear tensor function optimizations play
the key role in these algorithms, whose ideas are based on lower order multilinear form
relaxations and decomposition routines. Connections between multilinear functions,
homogenous polynomials, aiid iiihoiiiogeneous polynomials are established in preserv-
ing the approximation ratios. All the approximation results are listed in Table 8.1. The
applications of these polynomial optimization models are discussed’ which open up a
door to many potential modeling opportunities. Reports on iiuiiierical testings show
that the algorithms proposed are actually very effective, and they typically produce
high quality solutions. The worst-case performance analysis offers a theoretical 'safety

net', which is usually far from the typical performance. Table 8.1 summarizes the whole

structure of the thesis and the approximation ratios.-

Most of the results presented in this thesis have been documented and submitted
for publications in research papers [47, 48 - 49], which are all joint works with He and

Zhang. Chapter 3 and Chapter 4 are mainly based on [47] > Chapter 5 is mainly based
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Table 8.1: Thesis organization ami theoirtical approximation ratios

Model

{Ts)

(TQ)

{Hs)
(HQ)

(Ms)

{MQ)

iPs)
(PQ)
*{Pc)

(TH)

{HB)

(MB)

(Pb)

[TBS)

(HBS)

(MBS)

Theorem

3.2.1

3.34

422,424
4.3.L 43.2

4.4.5, 4A.()

522
5.3.1
5.4.2° 543

6.2.1

6.3.2, 6.3.3

6.4.1, 6.4.2

6.5.2

7.2.2

7.3.1, 7.3.2

741,742

Approximation performance ratio
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oil [48], and Chapter G and Chapter 7 are mainly bastnl on [49]- The results not on-
ly enhanced approximation algorithms for high cle"greo polynomial optimizations, but
also opened up a wide range of new r(»sear(.h topics for niodoling and novel solution
methods. The research works have attracted some follow-up studios on' the topic. For

instance, So [108] improveéj the ap&ggwation ratios of the models {T§)) and {HS) to

Q (n™li and n ( (5¢) T )’ respectively. Very recently, He et al. |4Gj pro~
posed some fairly simple randomized approaches, which improved the approximation
ratios of homogenous polynomial optimizations with spherical constraiiits aiici/or bi-
nary constraints, and the orders of the ratios were comparable to that in [108]. Apart
from the improvements of the approximation ratios, Chen et al. [25] established the

tightness result of multilinear form relaxation for the model (Hs), and also derived

complex variables; the minimization counterparts of tho models discussed in this the-

sis; the inapproximability results of these models; and of course issues from practical

applications of these models.
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