
Some Topics on Compressible Navier-Stokes 
Equations 

DUAN, Qin 

A Thesis Submitted in Partial Fulfillment 
of the Requirements for the Degree of 

Doctor of Philosophy 
in 

Mathematics 

The Chinese University of Hong Kong 
August 2011 



UMI Number: 3500846 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent on the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 3500846 

Copyright 2012 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProOuesf 
ProQuest LLC. 

789 East Eisenhower Parkway 
P.O. Box 1346 

Ann Arbor, Ml 48106- 1346 



‘lesis/Assessment Committee 

Professor CHOU Kai Seng (Chair) 
Professor XIN Zhouping (Thesis Supervisor) 

Professor WAN Yau Heng (Committee Member) 
Professor WANG Xiaoping (External Examiner) 



Some Topics On Compressible Navier-Stokes Equations 4 

Abstract 
In this thesis, we study the motion of viscous compressible fluids in multi-space-
dimension. The main concern is the global behavior of either weak or smooth 
solutions to various models with different physical backgrounds. We have ob-
tained the following new results: 

1. We establish the global existence and uniqueness of classical solutions to 
the half-space problem with the boundary condition proposed by Navier for the 
isentropic compressible Navier-Stokes equations in three spatial dimensions with 
smooth initial data which are of small energy but possibly large oscillations. The 
initial density is allowed to vanish and the spatial measure of the set of vacuum 
can be arbitrarily large. 

2. We investigate a free boundary problem for compressible spherically sym-
metric Shallow water model with degenerate viscosity coefficients. For small 
perturbations to the stationary solution, we obtain the global existence and u-
niqueness of weak solutions and some uniform estimates with respect to time. 
Moreover, those solutions are shown to tend to the stationary solution as time 
goes to infinity. 

3. We consider the vacuum free boundary problem of compressible Navier-
Stokes-Poisson system with density-dependent viscosity. We obtain a local in 
time well-posedness of the strong solution in the spherically symmetric case. 



摘 要 

本論文主要研究髙維粘性可壓縮流體的运動。我們主要關心的是Navier-

Stokes方程弱解惑者光滑解得全局性態。主要得到了以下幾個結果。 

1.在Navier邊界條件下，我們得到了半空間問题的全局光滑解得存在唯一 

性，並且允許初始密度真空。 

2.對於球對稱的Shallow-Water模型，如果初值是穩態解附近的小擾動， 

我們得到了弱解是存在唯一的。並且證明了當時間趨於無窮大時，弱解將逼近 

于穩態解。 

3 .我們研究密度依賴於粘性係數且帶自由邊界的可壓縮Navie r -S tokes -

Poisson方程。在球對稱的假設條件下，我們證明了強解的局部適定性。 
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Introduction 
It is well-known that the motion of fluids in many cases are governed by 

the following famous compressible Navier-Stokes equations with constant viscous 
coefficients 

学 + div(pii 0 ii) + V P = div5', (0.1) 
C/i/ 
竿 + diY{pEu + Pu) = div( W T ) + div(Su) 

C/t where k = k{T) is the thermal conductivity, S is the shear stress tensor 

S = iiiyu^V'u) -i- X{diYu)I, 

fi and A are shear and bulk viscous coefficients, respectively. These two coefficients 
satisfy the following physical constraints 

N 

If both heat conductivity and dissipation of mechanical energy are neglected in 
(0.1), then the entropy becomes constant along each particle path. This yields 
the following isentropic compressible Navier-Stokes equations: 

(0.2) 
+ div(/m � u) — fiAu — + X)Vdwu + VP{p) = 0, C/6 

where p G M, E R", and P €R denote density, velocity and pressure, respec-
tively. 

6 
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The behavior of the solution to (0.2) is closely related to the real world such 
as the water in the oceans and the air in the atmosphere. It displays an amazing 
range of phenomena from ordinary patterns to turbulent states. Moreover, (0.2) 
is a coupled hyperbolic-parabolic system which may be degenerate in the presence 
of vacuum. This important feature leads to great complexities and rich physical 
phenomena. 

In the past several decades, significant progresses have been made for the 
system (0.2) not only for special data but also for general initial data, both in 
one-dimensional and multi-dimensional cases. For instance, the one-dimensional 
problem was addressed by Kazhikhov in [39] for the sufficiently smooth data, 
and by Serre in [61] and Hoff [29] for discontinuous initial data where the data 
were uniformly away from the vacuum. Concerning the global existence and the 
large-time behavior of solutions for sufficiently small data in multi-dimensional 
case, the system (0.2) (as well as the full compressible Navier-Stokes equations) 
is well-understood in the sense if the data are small perturbation of an uniform 
non-vacuum state, then there exists a (smooth or weak) solution which is time-
asymptotically stable (see [49, 50, 51]). Later, Hoff generalized these results for 
the discontinuous initial data in a series of papers, see [29, 30, 31] and reference 
therein. Recently, Danchin in [15] obtained existence and uniqueness of global 
solutions in a functional space which is invariant by the natural scaling of the 
associated equations. However, for the large data, there are still many important 
open problems, such as, the existence of global solutions in the case of heat-
conducting gases and the uniqueness of weak solutions. The first general result 
was obtained by Lions in [44], in which he used the method of weak convergence 
to obtain global weak solutions provided the specific heat ratio 7 is appropriately 

3N large, for example, 7 > — — — N = 2,3, Later, this result was improved by i V Zi N 
Feireisl [23] for 7 > It should be noted that the density is allowed to van-
ish initially. If the solution has certain symmetry, the global existence of weak 
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solutions was obtained for any 7 > 1 in [37, 39]. In addition, Hoff in [31] also 
obtained the global existence of weak solution for 7 > 1 if the initial density 
and velocity were a general small perturbation of a non-vacuum state. There 
have been many generalizations of this results, see [23, 29, 31，43, 44, 74] and 
references therein. Recently, under the additional assumptions that the viscosity 
coefficients /lc and A satisfy 

^ > max{4A, —A}, 

and for the far field density away from vacuum [p > 0), Hoff [32] obtained a 
new type of global weak solutions with small energy which have extra regularity 
information compared with these large weak ones constructed by Lions [44] and 
Feireisl [23]. Furthermore, there are many studies on fluids in a fixed domain 
with various boundary conditions, see [44 . 

Once we obtain a weak solution, the natural question is about the regularity 
of this solution, i.e, when will the weak solution become strong or even classical? 
The partial regularity of two-dimensional periodic weak solutions to the isentrop-
ic compressible Navier-Stokes equations has been obtained by Desjardin in [16 
under the condition that the density is bounded, where the quantity called effec-
tive viscous flux, defined as F = (2/i + A)divu — P, plays a key role to prove the 
global existence of weak solutions for the compressible Navier-Stokes equations 
in [31]. Moreover, the classical elliptic regularity estimate holds 

for p E (1, 00) and 0 = R^ or T^, where G = p{ut + u • Vu) is the convection 
term and cj = V x u is the vorticity. However, it is not easy to obtain the same 
estimate when Q is a bounded domain because of the less boundary condition for 
uj and F. Therefore, it seems that some new techniques are needed to extend the 
result in [16] to the general bounded domains. 
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There are also a series of results about the existence of strong solutions. For 
instance, Solonnikov obtained in [68] a local existence of strong solutions with pe-
riodic non-vacuum data. If the initial density allows vacuum, it was shown recent-
ly in [12] that the Navier-Stokes equations admited a local strong solution as long 
as a suitable compatibility condition is satisfied initially. This result is also true 
for full compressible Navier-Stokes equations ([13]). Moreover, Kim and Choe 
[14] established a local classical solution in a bounded or unbounded domain Q. of 
R^. In their paper, the initial density does not need to be bounded below away 
from vacuum and may vanish in an open subset (vacuum) of 0. Then a natural 
question is whether such solutions could be globally well defined. In general, one 
could not expect such general results due to Xin's blow up results in [73] where it 
is shown that in the case that the initial density has compact support, any smooth 
solution to the Cauchy problem of the non-barotropic compressible Navier-Stokes 
systems without heat conduction blows up in finite time for any space dimension 
and the same holds for the isentropic case at least in one-dimension and the 
symmetric 2-dimensional case [47]. Very recently, there is a surprising work by 
Huang, Li and Xin in [33], where they established the global existence and unique-
ness of classical solutions to the 3-diniensional Cauchy problem for the isentropic 
compressible Navier-Stokes equations with smooth initial data which were of s-
mall energy but possibly large oscillation with constant state at far filed which 
could be either vacuum or non-vacuum. In addition, Luo in her Ph.D thesis [47 
obtained similar results to the Cauchy problem for the isentropic compressible 
Navier-Stokes systems in 2-dimensional case. They also find that for spherically 
symmetric case, the local smooth solution {p,u) G T];//'®)(s > 3) has to 
blow up in finite time with initial density having compact support. In chapter 2 
of this thesis, we can also obtain the global well-posedness of classical solutions 
under the Navier-boundary condition for the half-space problem. This boundary 
condition was proposed by Navier and expressed the condition that the velocity 
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an dfl is proportional to the tangential component of the stress. This boundary 
condition for the flat-space case has been applied in a number of problems, usu-
ally for incompressible flows, see Arbogastand Lehr [5], Beavers and Joseph [25], 
Caflisch and Rubinstein [10] and SafFman [62] for example. 

Besides the fixed boundary, the motion of free surfaces of fluids has important 
physical and engineering background, for example, the interface between fluids 
and vacuum, the interface between different fluids, etc. The free boundary prob-
lems of one-dimensional compressible Navier-Stokes equations were investigated 
in [2, 3], where the global existence of weak solutions was proved. Similar re-
sults were obtained by Okada and Makino [57] for the equations of spherically 
symmetric motion of viscous gases. Furthermore, the free boundary problem of 
the one-dimensional viscous gas expanding into the vacuum has been intensively 
studied, see [56, 57] and the references therein. In particular, in [46], Luo, Xin 
and Yang studied the regularity and the behavior of solutions near the interfaces 
between the gas and vacuum, and gave a quite precise description on growth rate 
of the free boundary. 

However, it seems that (0.2) is not suitable to study fluids near vacuum. 
In general, there is no continuous dependence on the initial data for fluids with 
vacuum states, see [30]. Furthermore, it was proved in [73] that classical solutions 
will break down when the initial data had compact support. As pointed out 
in [45], the main reason for this came from the independence of the kinematic 
viscosity coefficient on the density. 

To understand fluids behavior near vacuum, one can choose an alternative 
system for (0.1). In fact, if one derives the compressible Navier-Stokes equations 
from Boltzmann equation by exploiting Chapman-Enskog expansion up to the 
second order, as in [26], one can find that the viscosity is not constant but a 
function of the temperature. For isentropic flows, this dependence is translated 
to the dependence on the density by the law of Boyle and Gay-Lussac for ideal 
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gas as discussed by Liu et al. [45]. 
In these cases, instead of (0.2), compressible Navier-Stokes equation is of the 

following form 

f (0.3) 
+ d i v — � u) + VP — divOO)L>w) - V{X(p)divu) = 0, C/t 

where a; G M"", n = 2,3, P{p) = Ap^, 7 > 1, ^ > 0 are constants. D{u) 二 
t is the stress tensor, /j,(p) and X{p) are Lame viscosity coefficients. 

In particular, the viscous Saint-Venant system for shallow water is expressed 
exactly as (0.3) with n = 2, //(/?) = p, X{p) 二 0 and P(p) = p^. Shallow water 
equations are to describe vertically averaged flows in three-dimensional shallow 
domains in term of the mean velocity u and the variation of the depth p due 
to the free surface, which is widely used in geophysical flows. This equations 
were derived rigorously by Gerbeau-Perthame (see [24]). The global existence 
of weak solution with large aptitude to (0.3) remains to be carried under the 
Lion's framework of renormalized solutions [44] due to the new mathematical 
challenges encountered below. Indeed, the system of (0.3) is highly degenerate 
at vacuum because of the dependence of viscous coefficients on the flow density. 
This makes it very difficult to obtain the uniform a-priori estimate for the velocity 
and trace the particle pathes near vacuum regions. In particular, it is not known 
yet whether the vacuum states shall form or not for global (weak) solutions to 
(0.3) even if initial density is far from vacuum. In recent years, there are many 
studies for system (0.3) in both one-dimensional and higher- dimensional setting. 
Global smooth solutions for data close to equilibrium were established in [70 . 
Bresch, Desjardins, and Lin [6] showed the [} stability of weak solutions for 
the Korteweg system with the Korteweg stress tensor A^pVAp, and their result 
was later improved in [7] to include the case of vanishing capillarity {k = 0) 
but with an additional quadratic friction term rp\u\u. Recently, Ansgar Jiigel in 
[4] study the global existence of weak solution to compressible quantum Navier-
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Stokes equations for large data. The model consists of the mass conservation 
equation and a momentum balance equation, including a nonlinear third-order 
differential operator, with the quantum Bohn potential. In their paper, a new 
entropy estimate was established in [6] which provided some high regularity for 
the density. Mellet and Vasseuer [52] proved the 1/ stability results of [6, 7 
to the case r = k = 0. Nevertheless, the global existence of weak solutions of 
the compressible Navier-Stokes equations with density-dependent viscosity (0.3) 
is still open in the multi-dimensional cases except for the spherical symmetric 
case, see [27]. The key issue now is how to construct approximate solutions 
satisfying the a priori estimates required in the L^ stability analysis. It seems 
highly nontrivial to do so due to the degeneracy of viscosities near vacuum and 
the additional entropy inequality to be held in the construction of approximate 
solutions. 

In contrast to higher dimensional case, there are fruitful studies for (0.3) in 
one-dimensional setting, where the system (0.3) reads as follows: 

Pt + {pu)x = 0’ 
(0.4) 

{pu)t + (pu'^ + P(p))x = (Mp)以丄. 

Suppose that n = cff with c and 6 being positive constants. When the initial 
density connects to vacuum with discontinuities, Makino, Liu, Xin and Yang 
obtained the local existence of weak solutions to Navier-Stokes equations with 
vacuum [45, 48]. The global existence and uniqueness of the weak solution when 
0 < ^ < 1/3 were obtained by Okada in [58]. Later, it was generalized to the cases 
for 0 < < 1/2 and 0 < ^ < 1 in [76，36] respectively. When heat-conducting 
effect are considered, Jiang in [35] proved the global existence of smooth solutions 
provided that 0 < ^ < 1/4. The global solutions to (0.4) with discontinuous initial 
data were obtained by Fang and Zhang in [21]. Recently, if the initial density is 
bounded away from zero (no vacuum), Mellet and Vasseur proved the existence 
and uniqueness of the global strong solution in [53] for 0 < 0 < 1/2. 
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The key estimate for all these results is the uniform positive lower bound of 
the density with respect to the construction of the approximate solution. Since 
these estimate implies that the second equation in (0.4) is uniformly parabolic in 
the fluid region, which yields existence, uniqueness of the solution and long time 
behavior. This is the key point to obtain the global existence of the solution to 
(0.4) when the initial data connects to vacuum discontinuously in [36, 58, 76]. 

If the density function connects to vacuum continuously, there is no positive 
lower bound for the density function and the viscosity coefficient vanishes at 
vacuum. This degeneracy in the viscosity coefficient gives rise to new difficulties 
for analysis because of the less regularizing effects on the solutions. A local 
existence result was obtained in [77] under the free boundary condition with 
0 > 1/2, and global existence result in [78] for 0 < 9 < 2/9 and in [72] for 
0 < ^ < 1/3. When the external force is constant, in [59], Okada obtained the 
global existence of the weak solution as long as ^ e (0,5/37). It was circulated 
in [71] that Zhang and Fang obtained the global existence and uniqueness of the 
weak solution when the initial data was a small perturbation to the stationary 
solution as long as ^ G (0，7 — 1) A (0,7/2], where 7 > 1 is the adiabatic constant 
of poly tropic gas. In their paper, the uniform bounds with respect to time of 
the density function were obtained. Prom this property, they showed that such a 
system did not develop vacuum states or concentration states in the domain for all 
time. Also, they estimated the upper bound of the velocity function uniformly 
in time and obtained one of the important features of this problem, that was, 
the interface separating the gas and vacuum propagated with finite speed. For 
1-dimensional shallow water model, that is 0 = 1, 7 = 2，Duan in [17] also 
obtained the global well-posedness of weak solutions. For /^{p) = p^ (0 > 1/2), 
Li, Li and Xin in [42] studied this case for both bounded spatial domains or 
periodic domains and showed that for any global entropy weak solution, any 
(possibly existing) vacuum state must vanish within finite time. The velocity 
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(even if regular enough and well defined) blew up in finite time as the vacuum 
states vanish. Furthermore, after the vanishing of vacuum states, the global 
entropy weak solution became a strong solution. Recently, the Cauchy problem 
for one-dimensional compressible flows was investigated by Jiu, Xin in [38]. In 
this paper, two cases were considered. First, the initial density was assumed to 
be integrable on the whole real line. Second, the deviation of the initial density 
from a positive constant density was integrable on the whole real line. It was 
proved that for both cases, weak solutions existed globally in time. In particular, 
for the second case, the phenomena of vanishing of vacuum and blow-up of the 
solutions were presented and it was also shown that after the vanishing of vacuum 
states, the global weak solution became a unique strong one. These generalized 
the corresponding results in [42.. 

Meanwhile, there are some investigations on the large time behavior of so-
lutions for the non-constant viscosity coefficient, for example, [64, 80] and the 
references therein. Under zero velocity boundary condition, A.A.Zlotnik in [80] 
studied the stabilization of symmetric solutions and the stabilization rate was 
evaluated. Later, the result was improved by Straskraba, Ivan in [66]. The one-
dimensional fixed-free boundary problem with a non-monotone equation of state 
and self-gravitation was investigated in [19, 81], they showed that the kinetic 
energy tended to 0 and the specific volume - tended to a stationary specific 

P 
volume as time tended to infinity. But these results above strongly replied on 
the condition > p > 0. Recently, Zhang and Fang in [71] obtained that 
the weak solution for the free boundary problem tended to the stationary one 
if 0 G (0,7 — 1)门（0，7/2]. In there paper, there was no uniform positive lower 
bound to the viscous coefficient /i(p). However, they cannot treat the case when 

= 1, -y = 2. Duan in [17] extended their results to the shallow water case, that 
is, (9 = 1, 7 = 2. In [38], Jiu and Xin also investigated the asymptotic behaviors 
of weak solutions for Cauchy problem. They proved that if the initial density 
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po e then the density tended to 0 as t oo. If there existed a positive 
constant p such that po - p E then the density tended to p. 

There are also very interesting investigations about free boundary value prob-
lems for the compressible Navier-Stokes equations with self-gravitation force tak-
en into granted, refer to [18, 19, 34, 57, 63, 67, 79, 81, 82] and the references 
therein. Recently, Jang in [34] established the local in time well-posedness of 
strong solutions to the vacuum free boundary problem of the compressible Naver-
Stokes-Poisson system in the spherically symmetric and isentropic motion. The 
main difficulty in their paper is to deal with the vacuum free boundary where 
the density vanished at certain rate, which makes the system degenerate along 
the boundary. Under the same framework of Jang, we can also obtain the local 
well-posedness of strong solution when viscosity coefficients depend on density. 
This result is outlined in chapter 4. For the spherically symmetric Naver-Stokes-
Poisson system with density dependent viscosities, authors in [20, 82] obtained 
the existence, uniqueness and global behavior of the solution with a general mass 
force and a solid core when /z(p) > ^ > 0 and po > p> 0. Without the positive 
lower bounds on the viscous coefficients, Chen-Zhang [11] established the local 
existence and uniqueness of the solution when the solid core r > a. Under the 
small perturbation of stationary solution, Zhang-Fang in [79] obtained the global 
existence, uniqueness and asymptotical behavior of weak solutions with degener-
ate coefficients and without a solid core. But, in their paper, they cannot treat 
the case when 9 = 1, j = 2, that is, Shallow water system. In this thesis, I 
will study the global well-posedness of weak solutions for spherically symmetric 
shallow-water model. By using of a new technology, we can obtain the similar 
result. The result is presented in chapter 3. Very recently, Guo-Li-Xin in [28 
showed the spherically symmetric weak solutions with stress free boundary con-
dition and arbitrarily large data existed globally in time. In particular, they also 
investigated the dynamics of global solutions. It was shown that the particle path 
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is uniquely defined starting from any non-vacuum region away from the symmetry 
center, along which vacuum states should not form in any finite time. In addi-
tion, the free boundary will expand outward at an algebraic rate in time and the 
fluid density decays to zero almost everywhere away from the symmetry center 
as the time tends to infinity. Since n > 2 and the viscosity coefficient ji depends 

11 
on p, the nonlinear term (n — 1 ) — m a k e s the analysis significantly different 
from the one-dimensional case. It would be very interesting, challenging both 
physically and mathematically to study the full system without the symmetry 
assumption as a free boundary problem. In general case, no result is known for 
the compressible gas flow with the free boundary. We will leave them in future 
study. 

In this thesis, we mainly investigate following problems for the compressible 
Navier-Stokes or Navier-Stokes-Poisson systems: 

I. Global well-posedness of classical solutions to the compressible 
Navier-Stokes equations in a half-space. 

This work is motivated by the three dimensional results of Huang, Li, Xin [33] 
and Hoff [32]. We prove the global existence of classical solutions in a half-space 
under the Navier boundary condition, that is, 

(u\x),u^(x),u^(x)) = /5«3(:r)，74(;r)，0), for a; G dRl-

Concerning this result, there are a few remarks in order: 
1. The Beal-Kato-Majda type inequality in Huang, Li, Xin [33] cannot be 

applied directly. This inequality holds only for the whole space. In order to deal 
with our problem, we need a new type estimate for the half-space, refer to [69 . 

2. The far field density p can not be vacuum, that is p > 0. Since for the 
Navier boundary condition, we need to deal with some extra boundary terms, for 
instance, J + \u\\'Vu\'^)dx. Hence, we need to estimate ||n||i>, p > 2. 
From the energy estimate, we only have / plul'^dx < C. However we can get the 
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I? norm of u by the following inequality: 

J p\u\'^dx < J \p-p\\u\^dx^ J p\u\'^dx. 

3. Also, we can obtain the large time blow up behavior of the gradient of the 
density. 

II. Global behavior of spherically symmetric compressible Navier-
Stokes system with degenerate viscosity coefficients. 

This result is motivated by Zhang and Fang in [79] where they consider the 
spherically symmetric Navier-Stokes-Poissoii equations with degenerate viscosity 
coefficients and without a solid core. Under certain assumptions on the initial 
data, they obtain the global existence, uniqueness and large time behavior of 
weak solutions. 

1. They can only deal with the case that ^ G (0,7 — 1) fl (0, —]. In their paper, 
Zi the uniform estimate of 

I H.“)"、【*，m�)& (0-5) 

plays a crucial role. But their method to estimate (0.5) will fail when 9 = 
1，7 = 2. In this thesis, although we cannot obtain the uniform estimate of J ( • ， M ] ) d s ， w e have the following estimate: 

L IW.,Z)(il^ — : r ) ” l L ( [ * ’ ^ ) d s < o o . (0.6) 

By using of (0.6), we can get the desired results. 
2. This result can be regarded as a continuous work of my M.phil thesis, in 

which we consider the one-dimensional shallow-water model. 

III. Local well-posedness of Navier-Stokes-Poisson equations 
This work is motivated by Jang in [34], which concerns a local in time well-

posedness of strong solution to the vacuum free boundary problem of the com-
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pressible Navier-Stokes-Poisson system in the spherically symmetric motion with 
constant viscous coefficient. 

1. The main difficult is to deal with the vacuum free boundary where the 
density vanished at certain rate which made the system degenerate along the 
boundary. 

2. Since the density will vanish at the boundary, so we need the decay behavior 
of the initial density near the boundary, that is 

p o O ) �( 1 — a s a :�1， 0 < ce < 

Under the similar framework of Jang in [34]，we can estimate the lower and upper 
bounds of density and show that it has the same decay behavior as the initial 
density near the boundary. 

The thesis is organized as follows. In chapter 1, we give some preliminaries 
for the thesis, such as some basic inequalities, estimates for differential inequali-
ties and elliptic regularity results. We prove a global well-posedness of classical 
solutions to compressible Navier-Stokes equation for the half-space in chapter 2. 
In chapter 3, global behavior of spherically symmetric shallow-water model will 
be described. We then show that such a system is stable under small perturba-
tions. The chapter 4 is devoted to the local existence and uniqueness of strong 
solutions to the Navier-Stokes-Poisson equations. Finally, we will discuss some 
further works and future researches in chapter 5. 



Chapter 
Preliminaries 
In this chapter, we list some elementary results which we will use later, such as 
some basic inequalities, estimates for differential inequalities and elliptic regular-
ity results. 

Definition 1.0.1 . Assume U is an open subset ofW^, and I < p < oo. If f : 
U is measurable, we define 

11/11 等）：= 

|/p)i/P， if 1 < p < oo, 'u 
ess sup 1/1, if p = u 

We define L^{U) to be the linear space of all measurable function / ; [/ M for 
which \\f\\LP{u) < oo. And 

LfJU) = {7/ : f/ M I u G LP(V) for each V CC U}. 

Lemma 1.0.2 (Young's inequality)Let a > 0, 6 > 0, p > 1, g > 1, and 
- + i == 1, then we have p q 

19 
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,aP W ab< — + —. V Q 
In particular, when p = q = 2, the above inequality also is called Cauchy 

inequality. 
Prom the Lemma above, taking a = aci, b = and p = g = 2，we can easily 

obtain that: 

Lemma 1.0.3 (Cauchy-Schwartz inequality) Let a > 0, b > 0, e > 0, then 
we have 

ah < -a^ + — 2 2e 

Lemma 1.0.4 (Holder's inequality) Let p > I, q > 1, and - + ^ = 1, if 
P Q 

f e [/{O)�g e Lq(n)�then fg G and 

Jn 
Lemma 1.0.5 (Minkowski inequality) Let 1 < p < oo, f , g e 1 / � �t h e n 
f-i-geL^iVt), and 

\\fghpin) < \\f\\LP{n) + 

Lemma 1,0.6 (Sobolev embedding theorem for bounded domain) Let 
U be a bounded open subset of M", and dU is C'^, let u G /c G N, 
1 < p < oo. 

n I l k (a) if k < - , then u G L'^iU), where — = , and ||ii||ig(m < C\\u\\wk,p/jj). p q p n 
where C depends only on k, p, n and U. 
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r 二 

(b) ifk> then u e CH芸]—1’�where 

n n . . - + 1 , it - IS not an integer, P P P 
any positive number < 1 , if — is an integer, P 

and < where C depends only on k, p, r, n and U. 

Lemma 1.0.7 (Interpolation inequality) Assume 1 < s, r, t < oo and 
！ 二 ( 1 . 0 . 1 ) r s t 

Suppose also u G n l/(f}). Then u G I/(fT)�and 

IM 糊引丨‘ ( �I M I i 7 ( ' � . (1.0.2) 

The following well-known Gagliardo-Nirenberg inequality will be used later 
frequently (see [40]). 

Lemma 1.0.8 (Gagliardo-Nirenberg) For p >2,qE (l’oo)，and r G (2, oo), 
there exist some generic constant C > 0 which may depend on q, r such that for 
f e 丑i(R3) and g G " ( R ” n we have 

\\f\\% < C l l / i y , (1.0.3) 
3) 

< c | M | ^ ^ ^ | | v " | | | r " � (1.0.4) 
Lemma 1.0.9 (Gronwall's inequality (differential form)); Let r}{-) be a 
nonnegative，absolutely continuous function on [0, T], which satisfies for a.e t the 
differential inequality 

//⑷ ⑷“⑷ + 妙'⑷， （1.0.5) 

where (f){t) and �t ) are nonnegative, summable functions on [0, T]. Then 

”⑷ S ê ĉM咖卞(0) + [ ip{s)dsl (1.0.6) 
Jo 
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for allO<t<T. 
In particular, if 

then 
rf < 如，on [0,T], a n d 77(0) = 0， 

77 三 0, on [0, T 

(1.0.7) 

Beside the differential form of Gronwall's inequality, we also have the following 
integral form of the Gronwall's inequality. 

Lemma 1.0.10 (Gronwall's inequality (integral form)): Let ^(t) be a non-
negative, summable function on [0, T\, which satisfies for a.e t the integral in-
equality 

m < (7i [ C{s)ds + C2, (1.0.8) Jo 
for constants (7i, C2 > 0. Then 

(1.0.9) 

for a.eO<t<T. 
In particular, if 

for a.e. 0 <t <T, then 
m < Ci / 

m = 0. 

Lemma 1.0.11 . Let the function y satisfy 

(1.0.10) 

y' = 9{y)^b\t) on [0,T]， y{0) = 

where g e C(R) and y, be If g{oo) = -00 and 

b(t2)-b{h)<No + Ni(t2-h) (1.0.11) 
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for alio <ti <t2 <T with some iVo 2 0 and Ni > 0； then 
l /WSmax{2 /� , f } + i V � < o o on [0,T], 

where ^ is a constant such that 

9{0 < for (1.0.12) 
Throughout this thesis, we adopt the following notations for the standard 

homogeneous and inhomogeneous Sobolev spaces. 

门乃fc，r,丑fc 二 jjk ^ 

IMIz^ r̂ = WV'uUr. 
We derive some regularity estimates for the so-called Lame system: 

Lu = -fiAu - (A + Ai)Vdivw = F in Q, (1.0.13) 
where IQ is a bounded or unbounded domain in R^. 

First we recall a famous elliptic theory due to S.Agmon, A.Douglis and L.Nirenberg. 
Lemma 1.0.12 (Agmon-Douglis-Nirenberg [1]) Assume that Cl is a bounded 
domain in E^ with smooth boundary, and let u G Wo'®(0) he a weak solution of the 
system (1.0.13), where l<q<oo.IfFe fork > 0，then u G 知+2，《(1}) 
and 

IMIW^M^MO) ^ C'll^llwM(n), (1.0.14) 
for some constant C = C{q, /z, A, Q,) independent of F. 

Then, using the domain expansion and scaling technique, one can easily obtain 
Lemma 1.0.13 (Choe,Kim [12]) Let ft be the whole space R3, the half space 

IfuE Dl(ft) is a weak solution of the system, then 

I M I d < 沪,， （1.0.15) 
for any 1 < q < oo. 



Chapter 2 
Global well-posedness of classical 
solutions to the compressible 
Navier-Stokes equations in a 
half-space 

2.1 Main result 
The motion of a viscous compressible barotropic fluid in half-space Jl = {a:； G M^ : 
xs > 0} can be described by the Navier-Stokes equations 

pt + diY{pu) = 0, in n x (0,T), (2.1.1) 

{pu)t + diy{pu (g) + Lii + V P = 0, in n x (0,T), (2.1.2) 
Lu = —ijAu 一（a + /i)Vdhm， P = P(p), (2.1.3) 

the initial boundary conditions are 

{p,u)\t=o = {po,uo) in (2.1.4) 

収2(工)，灯3(工)）=风以工)，収》3(工)，•)，卢〉0, on aO, (2.1.5) 

24 
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p(x,t) —^p, u(x,t) — a s (x,t) G 0 x (0,T). (2.1.6) 
Here we denote by /?, P and u the unknown density, pressure and the velocity 
fields of the fluid respectively. The constants ii and A are the viscosity coefficients. 
We suppose P{p) = 7 > 1, A > 0 and ^ > 0, 3/i + 2A > 0 so that 
L = —/iA — (A + /i)Vdiv is a strongly elliptic operator. 

In this chapter, we study the global well-posedness of classical solution for the 
initial boundary problem (2.1.1) — (2.1.6) with nonnegative initial densities. 

Throughout this chapter, we will use the following simplified notations for the 
standard homogeneous and inhomogeneous Sobolev spaces. 

/ / � “⑴ )， D � ' = {?�G l i e � :I 如 < oo}, 全 II•'社Ik� 

� I / n j D � ��= T ^ " ’ D^ = Z)"，D^ = {ue L^\\\Vu\\l2 < 00}. 

The initial energy is defined as: 

Co= f f^ol购+ 工， （2.1.7) 
J / 

where G denotes the potential energy density given by 

It is clear that 
p ) [ p - p f < G { p ) < C2(p, p ) { p - p ) \ if ；5>0, 0 < < P, 

for positive constants ci(p, p) and p). 
The main results can be stated as follows: 

Theorem 2.1.1 For given numbers M > 0 (not necessarily small) and p > p+l, 
� > 0，suppose that the initial data (po, uq) satisfy 

0 < infpo < sup A) < p, \\Vuo\\l2 < M, (2,1.8) 

uoeD'n (po — ~p�P(po) - P{p)) e (2.1.9) 
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and the compatibility condition 

-/iAiio - (/i + A)Vdiv?io + VP{po) = Pog： (2.1.10) 

1 丄 2 • . 

for some g E D with p^g ^ L . Then there exists a positive constant e depending 
on fi, A； A； 7，p and M such that if 

Co< (2 .1 .11 ) 

the half-space problem (2 .1 .1) — (2 .1 .6 ) has a unique global classical solution (p, u) 
satisfying for any 0 < r < T < oo, 

0 < p [ x , t ) < 2yO, x e n , t > 0, (2.1.12) 

u e C([0, ThD^n D^) n L̂ ro, T; D^) n T; D^), 
(2.1.13) 

ut e T； 1)1) n l2(o， t； d^) n l �( t , t � d ^ ) n 丑i( t， t； d^), 

and the following large time behavior 

Urn [ — + p全卜+ |V?/|2)(:c’t)dx = 0, (2.1.14) 
t-^ooj 

for all q G (2, oo). 
Theorem 2.1.2 In addition to the conditions of Theorem 2.1.1, assume further 
that there exists some point xq G 0 such that po{xo) = 0. Then the unique global 
classical solution {p, u) to (2.1.1) — (2.1.6) obtained in Theorem 2.1.1 has to blow 
up as t ——> oo； in the sense that for any r > 3, 

lim = 00. 
t>00 

Remark 2.1.3 The boundary condition can be replaced by 

{u\x),u\x),u'{x)) = k{x){ul(x),ul(x),0), 

where k{x) > /cq > 0, and k(x) G 
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Remark 2.1.4 The solution obtained in Theorem 1.1.1 becomes a classical one 
for positive time. Although it has small energy, whose oscillations could be arbi-
trarily large. 

Remark 2.1.5 It should be emphasized that in Theorem 1.1.1, the viscosity co-
efficients are only assume to satisfy the physical condition 

/ i > 0 ， 

while the theory on weak energy solution in [3^ requires additional assumptions. 

2.2 Local existence and uniqueness of classical 
solutions 

Using the same argument as in Kim, Choe [13] and the standard elliptic regular-
ity results as in Agmon-Douglis-Nirenberg [1], we can obtain the following local 
existence and uniqueness of the classical solution. 

Lemma 2.2.1 For p > 0, assume that the initial data {po > 0,7^0) satisfy 
(2.1.9) — (2.1.10). Then there exist a small time T* and a unique classical solution 
(p, u) to the half-space problem (2.1.1) — (2.1.6) such that 

'{p-p,P-P{p))eC{[0,T*];H'), 
U e C([o, T*]； 1)1 n D ^ ) n /.̂ (o, T*； D ” , 

Ut e nL2(0，T*;D2)， ^Ut e 
(2.2.1) 

^/putt e t2u e 
t'2 �u e tut e 
tutt e T*� D i ) n l2(o，t*； d^). 



^ i ( T ) + ^ ( T ) < CI As{a(T)) < 2K, ( 2 .3 .2 ) 

provided Co < 
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2.3 A priori estimates 
In this section, we will establish some a priori estimates for smooth solutions 
to the half-space problem (2.1.1) — (2.1.6) to extend the local classical solution 
obtained in Lemma 2.2.1. Let T > 0 be a fixed time and (p, u) be the smooth 
solution on 0x(0 , T] in the class (2.2.1) with smooth initial data (po, uq) satisfying 
(2.1.8) - (2.1.10). Now we define a(t) = inin{l,t} and 

r-T 

Ai(T) = sup {(7\\Vu\\l2) + f f (7p\u\^dxdt, 
fG[0,T] Jo J 

rji 

A^iT) ^ sup [ p\u\^dx+ [ [ (7^\Vu\'^dxdt, 
i€[0,Tl J Jo J 

and 

where 
M T )全 sup 

fe[o，T] 

f ^ f t ^ u - V f . 
We have the following key a priori estimates on {p, u). 

Proposition 2.3.1 For given M > 0 and p> p+1, assume that (po, uq) satisfy 
(2.1.8) — (2.1.10). Then there exist positive constants e and K both depending on 
fjL，X, p, A, 7，p and M such that if (p, u) is a smooth solution of (2.1.1) — (2.1.6) 
on Q X (0, T] satisfying 

/ sup p < 2p, 
nx[o,T] 

A i { T ) + A 2 { T ) < 2(7| , ( 2 . 3 . 1 ) 

�A^{a{T)) < 3K, 
the following estimates hold 

sup p < -p, nx[o,T] 4 
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In the following, C denotes a generic positive constant depending on A, p, 
A, 7，p and M, and we write C{a) to emphasis that C depends on a. 

Lemma 2.3.2 (Energy estimate) Let {p,u) be a smooth solution of (2.1.1)— 
(2.1.6) with 0 < p{x, t) < 2p. Then there is a constant C{p) such that 

sup f (lp\u\'' + G{p)]dx+ r f + (/i + dxdt 
0<t<T J \2 / Jo J \ J (2 3 3) 

+ /广1 / [ \u\'dS,dt < Co, Jo Jdn 

Ai(T) <CCq + C j J a\Vu\^dxdt + C J a{\u\^\Vu\ + \u\\Vu\^)dxdt, 
(2.3.4) 

A2{T) < CCo + CAi(T) + j j + + Ml•权IM + luWVuiyxdt. 
(2.3.5) 

Proof: Multiplying the equation (2.1.1) by G\p) and the second equation by 
u^ and integrating, applying the far filed condition (2.1.4), one can obtain (2.3.3) 
easily. 

For integer m > 0, multiplying (2.1.2) by cr〜，then integrating the resulting 
equality over ^ yields 

J a'^pliifdx = J ( - c r 饥 t i V P + iMT�iiAu +(A + fi)a'^Vdivuu)dx 
3 (2.3.6) 
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Using (2.1.1) and integrating by parts leads to 

= — j a'^uVPdx = J ((/"(div^i)t(i^ - P{p)) -a^(u‘ Vu)VP^ dx 

=(J a'^diYuiP — P{p))dx)t — mcr饥-V J (hvu(P - P(p))dx 

+ J a'^iP'pidiYuf - + Pdiujdjui)dcc 
< (J a^d\Yu{P - P{p))dx)t + ma'^-'a'WP - P(p)||l2|| Vi^Hl. + C{p)\\\/u\\l. 

< ([(7爪dhm(P — P{p))dx)t + C{p)\\Vu\\l2 + C � —i V O ) . 
(2.3.7) 

Integrating by parts implies 

M2= f iia'^Auudx 
^ — 力 + 营m广V"•以||i2 - i^a^ J {dku^dk{u%u^))dx 
+ f fia'^iJ^u^N^dS, Jdn /i 

J/-" dt Jdn 

(2.3.8) 

We need to estimate the boundary term —fia� / We apply the 
_ Jdn fact that for h e {C^ n 

/ h{x)dS = / [h{x) + (iC3 - l)hx;i(x)]dx. 'an JQn{o<x3<i} (2.3.9) 

Since j, k G {1, 2}，we can use (2.3.26) and integrating by parts in the xi and X2 
directions to obtain the bound 

Jn 
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Hence 

31 

M2 < 2 Jdn 

+ C j + C J a 饥 血 + C J + \Vu\''\u\)dx, 
(2.3.10) 

and similarly 

—(A + 饥 y" divudiv{u . Vu)dx 

Combining (2.3.7) — (2.3.11), we have 
d 

J dt Jqq 
< C�mV(饥—iVCo + {Cma^-' + C{p))\\Vu\\l, 

where 

> 
2 

: | | V � 2 -/z + A 
2 

(ICT 
2 

/x + A 
卜 2 

/i + A 
‘ o a^lldivullia — Co•�Q. 

(2.3.11) 

(2.3.12) 

(2.3.13) 

Integrating (2.3.13) over [0，T], we obtain 

sup a'^WVuWl, + 广 f (7'^p\u\''dxds 
0<t<T Jo J SC[P)Cq + j cr'^lVul^dxds-hC J + 

For m > 0, multiplying + div(iA-)) to (2.1.2)-^, summing with respect to CJt 
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j , and integrating the resulting equation over O, we have 

� 2 J p\u\'dx)t--a^-'cT' J p\u\'dx 

= - J a�j[djPt + div{djPv)]dx + /i j a�j[Aui + diY{uAu^)]dx 

+ (A + /i) / a^ii^[dtdjdiYU + div{udjdivu)]dx 
(2.3.14) 

A E 队 

Integrating by parts and using the equation (2.1.1), we have 

Ni = - j cTiJldjPt + diY{djPu)]dx 

- J a'^l-P'pdiYudjU^ + dk(djU^u^)P - Pdj{dku'u'')]dx 

N2 = j a � j ( A u i + div(iiAu勺;Ma; 

=-11 [ + diii^dku^diu^ — diiJdiU^dkU^ — diu^div!'dku']dx 

(2.3.15) 

II / / a'^r^u'uiu^dS：, - / i a'^dku'u'^dsu'dS^ 
'dQ Jdn Jdn 

_ 3 
J J Jdn 

+ 叫 a'^lluWVuWiil + |u| |Vu||V«| + \Vu\^\u\]dx 

(2.3.16) 
where we have used 

f 他 <c f (j^'dtillVullul + |7i||Vii||Vu| + \Vu\^\u\]dx, Jdn Jn 
and 

/ A'^DKU'U^DSU^DS：, < C / 'dn Jn 
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the proof is similar to (2.3.8) and (2.3.26). Similarly, 
+ A 
2 (2.3.17) 

Substituting (2.3.15) — (2.3.17) into (2.3.14), and choosing S suitably small, it 
holds that 

2 J p\u\'^dx)t + J + + J {diyii)^dx 

< mo•饥-V J p\u\''dx + Ca'^W^/uWl, + Ca'^hWl^ + C(p)a'^\\Vu\\l, (2.3.18) 

Taking m = 3 in (2.3.18) and using 

3 义 a'^a' j p\u\'^dxdt < CAi{T), 

we can obtain (2.3.5) after integrating (2.3.18) over (0, T), • 
If we denote 

F^(2fi + X)divu - P(p) + P(p), oj = Vxu, 

then we will have 

Pi'^ = Fx, + �j'k = < - u' (2.3.19) 

and the following Lemma. 

Lemma 2.3.3 There exists a constant C = C{p) such that if (p, u) is a smooth 
solution to (2.1.1) - (2.1.6) onQx [0,T], then for Q<t<T, 

(2.3.20) 

\Vu\Pdx < C / + + | P - P (孙 P)ci:r， l<p< (2.3.21) 

\{VF\P + \VLu\P)dx < C / ( I H 罗 + \Vu\P)dx, l<p< (2.3.22) 
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J QFl^ + H^dx < c m J P\W-
+ ( j \ P — J 2 < p < 6, 

3p-

3Ei 

(2.3.23) 

(2.3.24) 
+ ||P-P(p)IU2 + | | p - P ( P ) M 3p- 2 < p < 6. 

Proof: From Gagliardo-Nirenberg inequality (1.0.3)，we have 

�IMIJII•以IG (2.3.25) 

Since 

p j \u\^dx < J p\u\^dx^( J \p-p\^dx)^ J (2.3.26) 

making use of (2.3.25), we obtain 

J \u\^dx<C(p)iCo-i-cl J\Vu\^dx), 

using (2.3.25) again, we get (2.3.20). 
Observing that u satisfies the elliptic boundary value problem 

(â  + A)Aiz) = ((/. + A)div^ - + + A ) « — + 糊-P(~P)U 
=F,. + (// + + {P{p) — , 

u X3 r v 
< = r 

1̂3 = 0’ 

u G da 

(2.3.27) 

(2.3.28) 

by standard elliptic regularity results, we obtain (2.3.21). 
In order to prove (2.3.22), we compute from the equation (2.1.2) that 

(2.3.29) 
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Thus, if we let H = - t h e n H = Q on dQhy (2.1.4) and 

fiAH 二 {pu'),, - (pu%. 一 / i / T i A t / (2.3.30) 

in H The standard elliptic theory gives us the bounds for ||ViJ||LP for 1 < p < oo 
and therefore, we can obtain 

11 W’3||lp < C{p){\\pu\\Lr> + IIV^IUp), 1<p<oc. ‘ (2.3.31) 

A similar argument applies to In order to obtain the estimate of o/’?，we 

differentiate the j = 1 equation in (2.1.2) with respect to X2, then reverse the 
indices and substract to get 

+ g ) = (p&i)仍 一 ( ― + — ojliJ. (2.3.32) 
1 2 

Then we can estimate | | ^ 3 ) | | l p ( m 2 ) - Integrating this bound wi th 

respect to 0:3, and applying (2.3.31), we get that is bounded by 

the right side of (2.3.31). Since 

we prove the bound in (2.3.22) for uj. The bound for V F follows from the de-

composition (2.3.19). 

(2.3.23) follows from (2.3.22) for p — 2, Gagliardo-Nirenberg inequality and 

(2.3.3). 

(2.3.24) is a direct result from interpolation inequality (1.0.2)，(2.3.21) and (2.3.23). 
• 

Lemma 2.3.4 Let {p,u) be a smooth solution of (2.1.1) — (2.1.6) with 0 < 
p{x, t) < 2p. Then there exist positive constants K and e�both depending on-
ly on fi, X, p, A, 7，p and M such that 

MT) 
�K �) r 

A3(a{T)) + J J p\u\'^dxdt < 2K, (2.3.33) 
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provided As{a{T)) < 3K and Cq < cq. 
Proof: Integrating (2.3.12) over (0,a(T))，choosing m = 0, and using (2.3.13), 
one has 

严(r) . fCr[T) 
A^{a{T)) + / / p\u\''dxdt < C{p){Co + M) + C{p) / \\Vu\\lsdt 

Jo J Jo 
严(T) r + / (\u\^\Vu\-^\Vu\^\u\)dxdt. 

(2.3.34) 
It follows from (2.3.3) and (2.3.24) that 

/*(T(T) /*IT(T) 3 3 1 3 3 

/ W^uWUt < C(p) / + Q + + Jo Jo MT) r MT) 
<S / / p\u\^dxdt + C(p, S) / \\Vu\\l2dt + C{p)Co 

Jo J Jo 

which, together with (2.3.20), (2.3.34) and choosing 6 small enough, we have 
r(T) r MT) 

/•o-lJ J r 广aUJ 
As{(t{T)) + / / p\u\'dxdt < C{p) / \\Vu\\%dt + C{p){Co + M) Jo J Jo 

MT) MT) MT) � MUt+ / / WVuWlsdt^ / MUt Jo Jo Jo . MT) < C{p) / \\Vu\\%dt + C(p)((7o + M ) < A : + Cip)Co[A,iaiT))]\ 
for some positive constant K depending only on /i, A, p, A, 7, p and M. By 
choosing eo = {9C{p)Ky\ we finish the proof of (2.3.33). • 

Lemma 2.3.5 There exists a positive constant ei(/i, A, p, A, 7, p, M) < e � s u c h 
that if {p, u) is a smooth solution of (2.1.1) - (2.1.6) satisfying (2.3.1) for K as 
in Lemma 2.3.4, then 

Ai(T) + A2{T) < Cl (2.3.35) 
provided Cq < ei. 
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Proof: Prom Lemma 2.3.2 and Lemma 2.3.3, we have 

AI(T) + A2(T)<C(P)CO + C(P) RA'LLVUHT,DT + C(P) AHVULHSDT Jo Jo 
+ C{p) [ a^uWl^dt + Cifi) f f a^[\u\\Vu\\u\ + \Vu\''\u\]dxdt 

Jo Jq J 

+ C{p) J J cr(|Vw|M2 + \Vu\'^\u\)dxdt. 
(2.3.36) 

From (2.3.21), we have 

ra'\\Vu\\Ut < C r a'{\\F\\i, + \\u;\\i,)dt-h r a'\\P - P{~p)\\ldt (2.3.37) Jo Jo Jo 

It follows from (2.3.23) that 

Jo 
<C r VnlU^ + IIP - P{p)\\L^)\\pu\\hdt + Cip) rcr'WVuWUt Jo Jo 
+ C(p) [\'\\P - p{p)h4^u\\Ut 

Jo 
rp 

< C{p) sup [ f ap\u\^dxdt 
0<t<T Jo J 

+ sup •以 + �( 7 o sup (a\\Vu\\l.) 
0<t<T 0<t<T 

< C{P)IAL^'{T) + + C �C � '�“ T 产 + C(p)COA,{T) 
< C{p)Co, 

(2.3.38) 
provided Cq < e � . 
From (2.1.1)，we have 

(P - + u . V(P — P(p)) + 7 (P 一 P{p))diYU + jP{p)diYu 二 0. (2.3.39) 

Multiplying (2.3.39) by 3(P — 户⑶尸 and integrating the resulting equality over 
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fl, one can gets after using diviz = 1 
2ju + X (F + P-P(p}) that 

~ 1 IIP - P{p)\\t. = -{f{P-Prp)fdxl 37 - 1 2// +A 
—3jP(p) [(P- P�fdivt^i^r 

2/i +A j{P-P{p)fFdx 

<-{ {P- P{p)?dx)t + 6\\P - P(p)||l4 + Cs\\F\\i, + Cs\\Vu\\l, 
(2.3.40) 

Multiplying (2.3.40) by a^ and integrating over (0, T), choosing suitably small, 
one has 

fT 严(r) 
/ 一 IIP - P{p)\\Ut < C sup I I P - P(p)||i3 + c I I P - P(p)\\lsdt Jo 0<t<T Jo 

rjp 

+ C(p) [ <j^F\\%dt + C{p)Co Jo 
< C{p)Co, 

(2.3.41) 
where (2.3.38) has been used. Therefore, combining (2.3.37), (2.3.38) and (2.3.41), 
we have r>T 

A\\Vu\\t. + \\P-P(ml)dt<C{p)Co. (2.3.42) 
"T 

Next, we will estimate the term / (T\\Vu\\j^3dt. First, (2.3.42) implies that 

f [ a\Vupdxdt < f f (|Vit|4 + \Vu\'')dxdt < C{p)Co, (2.3.43) J(T{T) J JaiX) J 
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and from (2.3.24) and (2.3.33), one gets 
MT) 

/ CT\\Vu\\Ut Jo 
严(r) 

< C{p) / + Ci/' + IIV^II^/^ + C含’dt Jo 
< C ( p ) 厂 f 厂 a\\Vu\\l,dt + C{p)Co 

Jo J Jo 
/ a { T ) 广 

-…… J 
严(T) 

+ sup / 也+ C�Co 
te(o’(T(r)] Jo 

< + C(p)Co < C{p, 
(2.3.44) 

provided Co < cq- By using of (2.3.20)，(2.3.43) and (2.3.44), we obtain 
rp rp 

f f a'H'dxdt < C(p) / + Ci^'\\Vu\\Udt Jo J Jo (2.3.45) 
< C{p)Co, 

r [ (j{\Vu\\u\^ + \Vu\^\u\)dx < f [\Vu\^dxdt+ f [ a^lul'^dxdt Jo J Jo J Jo J "T 
+ / (jwvuwi^wvuwi^dt Jo 
< [[\Vu\^dxdt+ [ [ [ [ aWWuWl^dt Jo J Jo J Jo Jo 

(2.3.46) 
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and 

f [ a^[\u\\Vu\\u\ + \Vu\'^\u\]dxdt<C f a^u\\Ls\\Vu\\L2\\Vu\\L^dt 
Jo J Jo 

+ C [ CT'\\Vu\\L4^u\\L2\\Vu\\L2dt Jo 
< C{p) r + Cl^'WVuU^]\\Vu\M\Vuh^dt Jo 

rp rp 

+ C [ a'WVuM'^uWLAl^iiWL^dt < I (j'\\Vu\\%^\\Vu\\L^dt Jo Jo 
+ f a^Vu\\l4Vu\\L.dt^C [ a^WVuhAl'^ulMlVuh^dt Jo Jo 

(2.3.47) 
where we have used the following simply fact 

"T 
f (7^\\Vu\\L4^u\\L2\\Vu\\L^dt 

Jo 

Jo Jo 
s C ( 々 ， + / " �I I W l l i 2 剩广 3 | | W l l i 2 圳 

Jo Jo 

Thus, it follows from (2.3.36) and (2.3.42) — (2.3.47) that the left hand side of 
(2.3.35) is bounded by 

provided 

• 

Lemma 2.3.6 There exists a positive constant C depending only on /i； A, p, A, 
7，p and M such that the following estimates hold for a smooth solution {p, u) of 



Some Topics On Compressible Navier-Stokes Equations 41 

(2.1.1)-(2.1.6) 

sup \\Vu\\l2 + �f p\u\^dxdt < C(p, M), (2.3.48) 
t£[0,T] Jo J 

sup [ ap\u\^dx + f f a\Vu\^dxdt < C(p, M), (2.3.49) 
t&{0,T] J Jo J 

provided Co < ei. 

Proof: (2.3.48) is a direct consequence of (2.3.33) and (2.3.35). Hence we only 
need to show (2.3.49). Integrating (2.3.18) over (0,T) and choosing m = 1, by 
(2.3.24) (2.3.42) and (2.3.48) we get 

s u p / (7p\u^dx + / (7\\Vu\\\2dt 
ie(o,r] J Jo MT) p .T 
< / / p\u\^dxdt + C / a\\Vu\\l^dt + C{p)CQ 

Jo J Jo 

+ j J crlul'^dxds + C(p) J J + \Wu\'^\uWdxdt < C{p, M) 
rT MT) 

+ C / (T^Vu\\i,dt + C / (j\\Vu\\l^dt 
JaiT) Jo 

+ C{p) J a[\u\\Vu\\u\-^\Vup\uWdxdt 
MT) 

< C{p,M) + c + IIP - P(p)|iia + Iiv^iii. + IIP — pmh) 

+ C{p) j a[\u\\Vu\\u\-h\Vu\'^\u\]dxdt 
MT) 

< C ( p , M ) + (7 sup /2| |H|l2)] / \\pu\\hdt 
tG(0,a(T)] J o 

MT) 1 广 r 
+ sup / \\Vu\\Ut^- / aWViiWl.dt 

te(o，T] Jo ^ Jo 
»T 

< C{p, M) + C{p, M) sup + i / <j\\Vu\\%dt. 
te{o,T] ^ J o 

(2.3.50) 
Then (2.3.49) follows from (2.3.50) and Young's inequality. • 
Now we can derive a uniform (in time) upper bound for the density which turns 
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out to be the key to obtain the global classical solution. In order to obtain this 
result, we need to use Lemma 1.0.11. 

Lemma 2.3.7 There exists a positive constants e = e{p, M) as described in The-
orem 2.1.1 such that if (/?,u) is a smooth solution o/(2.1.1)- (2.1.6) as in Lemma 
2.3.5 then 

sup ll/^WIU^ < 譽 
0<t<T 4 

provided Cq < e. 

Proof: Rewrite the equation of mass conservation (2.1.1) as 

where 
D t p �t + u , , 

For t G [0, £t(T)], one can deduce from Gagliardo-Nireriberg inequality (1.0.3), 
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(2.3.20) and (2.3.49) that for all 0 < < < 
严(r) 

\b(t2)~b{t^)\<C / Jo 
r<T{T) 

< C(p) / \\F\\'J,'\\VF\\%'dt 
Jo 
广(T) < C{p) / {\\Vu\\%' + \\P-P{p)\\%') 

(iiv^iii/‘ + IIH|3# + iivt^ii^// + i | p - pwi i^ / '+IIP — p{p)C)dt 
ra{T) 

< C(p) / + Co1/V3/8)[M•训复2)3/8 + MIHlis^jdi JQ 
广 <t(T) 

+ cm / / 2 | | — P{p)\\l.f/'dt + C{P)Cf Jo 
raiT) 

< C(p)cT / (厂"2 + + {a\\pu\\l.f/']dt 
rcr) 

pi pa{T) pa{T) 

< C{p)Cl"\l + / a — 4 � / a\\Vu\\l.dtf/' + ( / a\\pu\\l.dtf" 
JO Jo Jo 

/

(t(t) 严(r) 

力)5/8( / IIP- + C{p)Cy' _ Jo 
provided Cq < ei. Therefore, for t G [0, cr(T)], one can choose TVq and Ni in 
(1.0.11) as follows: 

TVo 二 C(AM)CO1/I6, 
and C = in (1.0.12). Then 

= = for all C > ^ = P-

From Lemma 1.0.11, we have 

sup IIpIUoo < niax{A p} + 7Vo<P + <》， （2.3.51) 
_，a(r)] 2 

provided 
Co<min{ei,62}, for = i ^ c ^ J ^ / ' -
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On the other hand, for t G [a{T),T]^ one can derive from Gagliardo-Nirenberg 
inequality (1.0.3)，(2.3.3), (2.3.20)，（2.3.35) and (2.3.41) that for all (j{T) <ti< 
T2<T, 

— 6(力 1)1 < C{p) j : \\F\\,^dt < — h) + C{p) j : \\F\Cdt 

< — h) + C(p) j : \\F\\%'\\VF\\Ut < -力 1) 

+ C{p) + IIP — P{p)\\1M\pn\\l. + llVnIli. + ||P- P{p)\\h 
JTI 

< — h) + c(沟C o l / 6 �w v i i w u t + + —力 1) 

+ f IMI L2 
< A 

•2ju + A 
provided Co < ei. Choosing 

(7 � < A 
2'2/i + A-

that is 

and 

Note that 

Co< A 
•2(2ju + A)C(p) 

\2 A es, 

, , 3 NI = 22// + A No : C{p)C'/ 

AC Q A Q 
如 r all 

- 3 So one can set ^ — -(^5+1) in (1.0.11). Lemma 2.3.7 and (2.3.51) thus yield that 

sup t&WiT),T] IIpIIloo < maxAp + 1), Ip} + iVo<5p + C �C f ' < 字（2.3.52) 
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provided 

Co < e = min{ei,e2,e3,e4}, for £4 = _)3/2. (2.3.53) 
• 

Lemma 2.3.8 The following estimates hold 

sup [ f f \Vu\^dxdt < C, 
0<t<T J Jo J 

sup (||Vp|U2nL6 + "VHIfi) + [ llViilUoocî  < a 
0<t<T J o 

(2.3.54) 

(2.3.55) 

Proof: Taking m = 0 in (2.3.18), one can deduce from Gagliardo-Nirenberg 
inequality (1.0.3), (2.3.20) and (2.3.48) that 

( J p\u\^dx)t + fi j + J \diYu\'^dx 

+ C j {\u\\Vu\\u\ + \Vu\''\u\)dx 

+ C J (|n||Vu||ii| + \\/u\^\u\)dx + C (2.3.56) 
< C^dli^llie + Mle + IIP - Pm%) + ^llV^lii. + C\\Vu\\l. + C 
< C{\\VF\\l, + ||Va;||i.) + ^llVi^lli. + CllV^llia + C 

Note that 
fT pa{T) 广 T / l lVullisd. < / ||Vu||i3办 + / •/o Jo JaXT) 

严(T) / llVnll̂ /̂ dl̂ l̂l̂ e + C^' + C'O^' + II V l̂l̂ /^； Jo 
< C. 

(2.3.57) 
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Bearing in mind that the compatibility condition (2.1.10), we can define 

# � x ) t = Q�二 ^ g . (2.3.58) 

Choosing 6 small enough, then (2.3.54) follows from Gronwall's inequality, (2.3.48), 
(2.3.56)，(2.3.57) and (2.3.58). 

Next, we will prove (2.3.55). For 2 < p < 6, satisfies 

{\Vp\P)t + div(|V/9|V) + (P — 

Hence, 

due to 

dtWVpWL. < C(1 + ||Vt.||Loo)(||Vp||)z.P + 

< ^ ( 1 + + C{\\PU\\L. + IIVPIUP), 

which follows from the standard LF estimate for the elliptic system 

—fiAu — (// + AjVdivjx = —pii — VP, in 

{ui,u2,us) = (3(ul^,ul.O), in dCt 
Hence we need to estimate || 
Let w = u — V’ where v satisfies 

fiAv + A)Vdm; = -V(P(p) — P(p)), in Q 
)) = / 5 ( O ) , < W ’ 0)， o n dn 

then by the standard regularity estimate for elliptic systems, we have 

(2.3.59) 

(2.3.60) 

(2.3.61) 

liv^^lb < C\\Pip)-PmL^, l l V M b < C\\V{P--P{m\L^, for q e [2,oo) 
(2.3.62) 
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and w satisfies 
—fiAw — (/i + A)Vdivi(； = pii, in Q (2.3.63) 

then using the standard regularity estimate for elliptic systems again, we have 

llV^wllx. < C\\pu\\La, for q G (l,oo). (2.3.64) 

Prom the Sobolev's embedding theorem, we get 

llV ÎUoo < C{\\PU\\L^ + IIHIlO. (2.3.65) 

Now, we give the estimate for ||Vt;||L°° which is crucial to obtain the estimate of 
||Vp||i/3. We have the similar results for half-space problem as in [69]. 

Lemma 2.3.9 Let {x eR^ : xs> 0} and Vv G with q G (3,oo). 
There exists a constant C depending only on q such that 

Iloo < C(1 + ln(e + ||V2i;|U0I|Vv||smo), with q e (3,oo), (2.3.66) 

here 
IIVHIsmo = + [VV\BMO. 

\Sv\bmo = sup [ |Vi;⑷一 VivOẑ l办， 
r>0,;r!en "rî ：̂； J^rix) 

^Vr(x) 二 I 1,�| I Vv{y)dy, 
where = 0 D Br{x), Br{x) is the ball with center x and radius r. 
Proof: We know that there exists constant A > 1 such that for any r > 0 and 
X eQ, 

lO•(工)| < \Br{x)\ < A\nr{00)\. 
First, for r > r̂。，where tq > 1, we have 

I•”咖IS ‘ 丄 J • • 停 ‘ 
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If r < -To, then there exists some integer k >1 such that 

Denoting ^Ij = for j = 0,1, • • • , fc, we have 
k 

< 

< 

E / 丨 糊 - • 巧 I 办 + 事 

< Ck[Vv]BMO{n)+C\\Vv\\L2 < C(l+|lnr |) | |Vt; | |sM0(0). 
Prom the Sobolev's embedding theorem, we have for small enough e > 0: 

N_ < |Vi;(x) - �I + < + (1 + 1 ln6|)||Vi;bMO(n)) 

By choosing suitable e yields (2.3.66). [ 
By using of the classical theory for elliptic systems, we have 

II•叫Ibmo < + \\p — pUhq)) < C(p) (2.3.67) 

Combining (2.3.66) and (2.3.67), yields 

(2.3.68) 

From (2.3.54) and (2.3.59), we have 

^tiiv^U. < C{1 + ||Vti|Uoo)||Vp||L. + 
< c ( l + ||Va;|Uoo + ||VHUoo)||Vp|U. + CiWpiiU. H- | |V(P - P{~P)\\l.) 
< C{p){l + ||Vu;|Uoo + ln(e + + + | |V(P — 
< c{p){l + 1 1一 + ln(e + \\Vp\M)\\Vp\\l. + C\\pu\\l.. 

(2.3.57) 
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Taking g = 6, and setting 

one gets 

which yields 
m < Cf{t)g{t) + Cg{t) \nf{t)f{t) + Cg(t), 

( I n / � ) ' < Cg(t) + (2.3.70) 
due to f{t) > 1. Making use of (2.3.54), we have 

rg{t)dt < C 广(1 + \\pu\\L^)dt < C 广(1 + \\Vu\\L^)dt < C, (2.3.71) 
JQ JO JO 

which together with (2.3.70) and Gronwall's inequality, we obtain that 

sup fit) < C, 
Q<t<T 

that is 
sup llV/oiUa < C. 

0<t<T 
(2.3.72) 

As a consequence of (2.3.68), (2.3.69), (2.3.71) and (2.3.72), one obtains 

[\\Vu\\L^dt < C. (2.3.73) 
Jo 

Next, taking p - 2 in (2.3.59), and using (2.3.48), (2.3.73) and Gronwall's in-
equality, one gets 

sup I 丨 V/^lb < C, 
0<t<T 

which, together with (2.3.48), (2.3.54), (2.3.60), (2.3.72) and (2.3.73), gives (2.3.55). 
We finish the proof of Lemma 2.3.9. • 

In the following Lemmas 2.3.10-2.3.13, we will obtain the high order estimates 
of solutions which are needed to guarantee the extension of the local classical 
solution to be a global one. 
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Lemma 2.3.10 The following estimates hold 
"T 

sup f p\ut\'^dx-i- [ f \Vut\'^dxdt < C, 
0<t<T J Jo J 

sup {\\p-p\\H2 + \\p{p)-pmM<c. 
0<t<T 

(2.3.74) 

(2.3.75) 

Proof: Since 

and 

J p\ut\^dx < j j p\u • Vu\'^dx 
<c + c\\p'/\\\ML4yu\\le 
<C, 

II •叫 | | 1 2引 _ 2 + || • ( 以 . • 泰 

< l ivt^i i i . + c , 

due to Lemma 2.3.9. 
Now we proof (2.3.75). Note that P satisfies 

Pt + "ii • V P + ^Pd ivu = 0, 

using (2.1.1), we have 
d 
^ ( l l v ^ P i . + l l v V i l i . ) 

(2.3.76) 

(2.3.77) 
< C(1 + + llWlliO + CIlVuIlL + c. 

From (2.3.27), (2.3.28) and the standard elliptic regularity estimates, it holds 

llVi^ll丑2 < + ||a;||炉 + IIP - P{p)\\m). 
So we need to estimate and ||cj||jj-2. Using the same idea as in (2.3.29) 
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(2.3.32), we will have 
+ m i f f . + IIP-pm^^ 

< C{\\PU\\H^ + ||F||丑 1 + I M I h i + \\P- PiMm + 

< C(1 + llVpiUsii^iUe + + -

which, together with (2.3.77), Lemma 2.3.9, and Gronwall's inequality, yields 

sup (IIV^FIU. + IIVVIIlO < C. 
Q<t<T 

Hence, we finished the proof of Lemma 2.3.10. • 

Lemma 2.3.11 The following estimates hold 

sup (IWI/fi + ll^tlkO + / {WPUWL^ + \\Ptt\\L-)dt < C, 
0<t<T JQ 

"T 
(2.3.78) 

sup [ f [ pu%dxdt < C. (2.3.79) 
0<t<T J Jo J 

Proof: From (2.3.55) and (2.3.76)，we have 

I I 尸 < C^im|zH|VP||L2 + < a 

Differentiating (2.3.76), we obtain 

(2.3.80) 

VPt + u • V V P + Vm • V P + 7•尸dhm + -fPVdiYu = 0. 

Hence, by (2.3.55) and (2.3.75), one gets 

||VP』 i2 < C\\u\\l̂ \\V'P\\L^ + ||V^i||L3||VP|U6 + < C , ( 2 . 3 . 81 ) 

then，(2.3.80) and (2.3.81) imply that 
sup \\Pt\\H^<C. 

0<t<T 
(2.3.57) 
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Differentiating (2.3.76) with respect to t, we have 

Ptt + 讯divu + jPdwut + ut • VPt = 0. (2.3.83) 

By using of (2.3.55), (2.3.74), (2.3.82) and (2.3.83), it holds that 

riiPttiihdt Jo <c f (||P,|Ua||Vn|U3 + + ht||Le||VP||L3 + WVPth^fdt Jo < c. 
Using the same method, we can obtain the similar estimate of pt and pu-

Next, we prove (2.3.79). Differentiating (2.1.2) with respect to t, multiplying 
the resulting equation by Uu, one gets after integrating by parts 

=羞(一舍 J pt\ut\'^dx — j ptu.vu. utdx + j PtdiYUtdx) 

+ 臺 I ptt\uu\'^dx + I {pu • Vu)tutdx - f put • Vu • uudx 
—J pu- Vut • uttdx — J PttdiYUtdx 

(2.3.84) 
It follows from (2.1.1), (2.3.55), (2.3.74) and (2.3.78), that 

I Jo| = I - ̂  j pt\ut\'^dx ~ J ptu • Vuutdx + J Ptdivutdx\ 
< I j diY{pu)\ut\'dx\ + CWptlMW • Vl/llLHI^dU^ + C\\Pt\\LA\Vut\\L2 
< c j p\u\\ut\\WiH\dx^C\\Vut\\L^ 

< SWVutWl^ + Cs, 
(2.3.57) 
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and 

2|Jii = IJ Ad叫r血丨 

-I J{ptU + put)-V(\ut\'^)dx\ 

IJ2I = I J{ptU • Vu)t - Utdx\ 

二 I j\pttu • Vu . ut + ptUt + PtU . Vut. ut)dx\ 
< WPUWLAW • VulUallTi^lUa + 
<C\\pu\\l2 + C\\Vut\\l.. 

I 而I + =丨 j pUt.Vu. + 1 j f)U. Vut • Uttdx\ 

(2.3.86) 

(2.3.87) 

(2.3.88) 

and 

= I j Pttdivutdxl 

<c\\Pu\\h + c\\vut\\h. 

(2.3.89) 

By using of the similar argument as in (2.3.26), we have sup < C from 
[0’T*] 

Vut e 
Due to the regularity of the local solution, (2.2.1), tVut G C([0, T*]; L^). Thus 

(2.3.90) 

where C may depends on || V^rHis 
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Combining all the estimates (2.3.85) — (2.3.90), one deduces from (2.3.74), 
(2.3.78), (2.3.84) and Gronwall's inequality that 

sup + f f p\utt\'^dxdt < C. (2.3.91) 
T*/2<t<T Jt*/2 J 

On the other hand, (2.2.1) gives the estimate 

sup | |Vw� l 2 + 
0<i<T*/2 

p\utt\^dxdt < C. 

Now, we complete the proof of Lemma 2.3.11. 

(2.3.92) 

• 

Lemma 2.3.12 We can obtain the following estimates 

sup (IIP —洲丑3 + ||_P —尸05)||丑3)SC， 
0<t<T 

sup {\\Vut\\L^ + 丑2) + f + \\^ut\\%i)dt < a 
0<t<T Jo 

(2.3.93) 

(2.3.94) 

Proof: It follows from (2.3.55) and (2.3.79) that 

I I•(感 2 < I I IVHWIb + lllVplMI•以lib + llpVnJ^. 

< IIVpIMMIlg + q|Vp||L3|M|Loo||w||L6 + ciiv^tlU^ 
+ cwvuIMI^^UIIl^ + c |M| “v2以||尤2 < c , 

which together with (2.3.54) yields 

sup \\pu\\m < C. 
0<t<T 

On the other hand, we have 
< CWî Au + (/i + A)Vdiv^z||^i 
= C\\pu^VP\\hi 
<C{\\pu\\Hi-i-\\VP\\H^)<a 

(2.3.95) 

(2.3.57) 
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due to (2.1.2), (2.3.75) and (2.3.95). Combining (2.3.55) and (2.3.96), one has 

sup < C. 
0<t<T 

(2.3.97) 

Therefore, by the standard L^-estimate for elliptic system, (2.3.55), and Lemma 
2.3.11, we have 

IIVVII < CyAut + (// + 
< C\\putt + ptUt + Ptu . Vu + put. Vu + pu , Vut + VP^IIls 
< G{\\putt\\L^ + llAllL3|Mk6 + (2.3.98) 
+ + IMIlHI•叫 IIL2 + \\yPt\M 
<C\\putt\\L^ + C, 

from (2.3.79), we obtain fT / \\Vut\\]j.dt < C. (2.3.99) 
Jo 

Applying the standard 妒-estimate for elliptic system again leads to 
\\V^u\\h2 < CWfiAu + ( / / + A)Vdivu||H2 

<C\\pu\\h^^C\\VP\\H^ (2.3.100) 

where one has used (2.3.96) and the following estimates: 

< C(\\\V'p\ut\\W + + IIWIUO 
< cdivVlUHlVti^bi + ||Vp|U3||Vn,|Ua + IIWIUO 

and 

< C(1 + + iivMii^siiv^i^iUa) 
< c ( i + llvVlUHklU- + ||Vp||L6||w||I3 + i i v ^ i u o 
< a 
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where we have used (2.3.75) and (2.3.97). By using (2.3.75), (2.3.97) and (2.3.100), 
it holds that 

+ I H W I I 弯 … • 編 丨 陶 

73„.|| ilTTDll I \\T72^.\\ Iir72 

by Gronwall's inequality and (2.3.99), one gets 

sup | | V 3尸 < C. (2.3.101) 
Q<t<T 

Combining all the estimates (2.3.99) — (2.3.101) and (2.3.75), one have 
fT 

sup I I P - P �I I丑 3 + / \\Vu\\]j^dt < C. (2.3.102) 

Using the similar argument for p — p, we can also obtain 

sup \\P-P\\M < C. (2.3.103) 
o<t<r Hence, (2.3.94) follows from (2.3.79), (2.3.97)，(2.3.99) and (2.3.102). • 

Lemma 2.3.13 For any r G (0, T)^ there exists some positive constant 
such that 

T<t<T 

IJP 

sup (llVutlUi + + [ f \Vuu\'dxdt < C(T). (2.3.104) 
r<t<T J t J 

Proof: Differentiating (2.1.2) with respect to t, we get 

puttt + pu • Vutt — i^Autt - (// + X)Vdivutt 
=2div(pu)utt + div{pu)tut — 2(pu)t • Vut — {pttu + 2ptUt) • Vu (2.3.105) 
—putt. Vu - VPtt-
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Multiplying (2.3.105) by uu and then integrating the resulting equation over fl, 
one gets 

= - 4 y u\tpu • Vul^dx — J{pu)t[V{ut. Uu) + 2Vut. utt]dx 

—/ {pttu + 2ptUt) • Vu • Uttdx — / putt. Vii. Uttdx + / Pu^\-vuudx 全 ^ h. 

(2.3.106) 
We estimate each li (i = 6) as follows: 

|/l | � �| | L 2 | | V t / � L 2 | M | L o o 

It follows from (2.3.74), (2.3.78), (2.3.79) and (2.3.55) that 
I/2I < ciWputh^ + + l l v ^ / d M M W 
s q i i p i � +I H W M I l O I I • 叫 』 

<S\\Vutt\\l. + Cs. 

^m^uWh-^csWpttWh, 
and 

(2.3.107) 

(2.3.108) 

(2.3.109) 

(2.3.110) I/4I 十 \h\ < C{\\pUtt\\LA\^u\\LA\utt\W + C\\Ptt\\L4'^Uu\M 
< 引I•如fe + CSWP'^'uuWI. + CsWPuWy. 

For any r G (0,T*), since t^^'^^/puu G L �丄 ” by (2.2.1), there exists some 
to e ( r /2 , r ) such that 

J p\uu\'dx(to) < ^ p i ^ V M』！� ( � ’巧巧 < C(r). (2.3.111) 
Substituting (2.3.107) - (2.3.110) into (2.3.106), choosing 5 suitably small, one 
obtains by using (2.3.78), (2.3.111) and Gronwall's inequality that 

s u p f P\UTT\^DX+ f [\VUTT\^DXDT < C(T), 
tQ<t<T J Jtn J 
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which, together with (2.3.98) and (2.3.79), leads to 

sup [ [\Vutt\''dxdt < C(T), (2.3.112) 
<t<T JT J 

"T 

II•购|丨丑1+ I 
T<t<T 

due to TO < T. Now, (2.3.104) follows from (2.3.100), (2.3.112) and (2.3.93) 
finish the proof of Lemma 2.3.13. 

We 
• 

2.4 Proof of Theorem 2.1.1 
With all the a priori estimates in section 3, we are now in a position to proof 

the main result of this paper. 
Proof of Theorem 2.1.1. From Lemma 2.2.1, there exists a T* such that 

(2.1.1) — (2.1.6) has a unique classical solution {p, u) on (0,T*]. We now want to 
extend the local solution to a global one by using the previous estimates. 

First, from 

Ai(0) + y^O) = 0, A3(0) < M, p(0) < p, 

we know that there exists a G (0, T*] such that (2.3.1) holds for T = T\. 
Set 

f = sup{:r|(2.3.1) holds}. (2.4.1) 
Then T > Ti > 0. Hence for 0 < r < T < T with T finite, it follows from Lemma 
2.3.12 and Lemma 2.3.13 that 

Vut, V ' n G C([r, T];L^n L^), Vn, € C([r, T];L'^n (2.4.2) 

where we have used the standard embedding 

L，T，:r;ifi)nFi(T，T;i;ri)4C([T,7l;"), for any q e [2,6). 
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By using of (2.3.74), (2.3.79) and (2.3.104), we have 
rT 广T 

\\{p\ut\%\\L^dt < L {\\pt\utnL^ + 2\\pUtUtt\\L^)dt 

< c j\\\p\divu\\utnL^ + IIMIVpll叫PIIli + 

which yields 

This, together with (2.4.2), gives 

We claim that 
T (2.4.3) 

Otherwise, T < oo. Then by proposition 2.3.1, (2.3.2) holds for T = f . It fol-
lows from Lemma 2.3.12, Lemma 2.3.13 and (2.4.2) that p{x,f), u(x,f) satisfies 
(2.1.9) and (2.1.10) with g{x) ~ u(x, T). Then Lemma 2.2.1 implies that there ex-
ists f' >f such (2.3.1) holds for T = f \ which contradicts (2.4.1). Hence (2.4.3) 
holds. Lemma 2.2.1, Lemma 2.3.12, Lemma 2.3.13 and (2.4.1) show that (p, u) 
is in fact the unique classical solution defined on (0, T] for any 0 < T < T = oo. 
Finally, in order to finish the proof of Theorem 2.1.1，we need to show (2.1.14). 

Multiplying (2.3.39) by 4(P — and integrating over one gets 

r f (2.4.4) 
二（47 一 1) {P - P{p))^divudx-7 / P �( P —尸 G5))3divwfi:c， 

integrating the above equality over (1, oo), we obtain 

[ i ( i i p - p m i r m t < cj^^iwp — pmi^ + iivwiio也 < c , (2.4.5) 
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due to (2.3.42). Combining (2.3.42) with (2.4.5) leads to 

lim I I P - P ( ^ ) 11^4=0, t~^oo 
which together with (2.3.3) implies 

lim f \p 一 p\'^dx = 0, 
t^oo J 

for all q satisfying (2.1.14). From (2.3.3), we have 

J p'^M'dx < (J p\u\'dx)y'\\u\\% < 
Thus (2.1.14) follows provided that 

lim \\Vu\\l2 = 0. (2.4.6) 

Setting 
/⑷全誉II•以Ili2 + 宇 P v r f L2： 

choosing m = 0 in (2.3.6), and using (2.3.8) and (2.3.11), one gets 

\lXt)\ <C jp\u\^dx + C\\Vu\\l, + (2.4.7) 

where one has used 

\J u-VPdx\ = 1 J{P~ S 
We thus deduce from (2.4.7), (2.3.35) and (2.3.42) that 

POO POO 

/ \r{t)\'dt < c / illp'^'iiWi. + + \\vu\\h)dt < c, 

which together with 

\I{t)\^dt<C / \\Vu\\l,dt < C, 
implies (2.4.6). The proof of Theorem 2.1.1 is finished. • 
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Proof of Theorem 2.1.2. Suppose the conclusion is false. Then there ex-
ist some constant NQ > 0 and a subsequence TNJ ——> oo such that 
IIVp(-, TNJ)\\L'^ < NQ. From the Gagliardo-Nirenberg inequality, it holds that 

(2.4.8) 
where 0 二 (0,1). 
By using of (2.1.14), we know that 

\pix,tnj) — p\\c{n) ^ 0 as t^. > oo. (2.4.9) 

On the other hand, since {p, u) is a classical solution, thus there exists a unique 
particle path XQ{t) with xo(0) = xq such that 

p(xo(t),t) = 0 for all t > 0. (2.4.10) 

So, we obtain from (2.4.10) that 

IIpO, tnj) — pWciCl) > \p(xo(inj), tnj)—別三卢〉0, 

which contradicts (2.4.9). This completes the proof of Theorem 2.1.2. • 



Chapter 3 
Global behavior of spherically 
symmetric compressible 
Navier-Stokes system with 
degenerate viscosity coefficients 
In this chapter, we study a free boundary value problem for spherically sym-
metric compressible Navier-Stokes system with degenerate viscosity coefficients, 
which include, in particular, a shallow water model. We obtain global existence, 
uniqueness and large time behavior of weak solution under some assumptions im-
posed on initial data. The results show that such a system is stable under small 
perturbations. 

3.1 Introduction 
In this chapter, we investigate the dynamical behavior for the spherically sym-
metric Navier-Stokes system with density-dependent viscosity coefficients in 

62 
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which can be written in Eulerian coordinates as 
/ 

{r'^p)r + (—pu)r = 0, 
2 u (3.1.1) 

pUr + pUUr + drP = driiflip] + X{p))(Ur + -u)) 一 2 —汰/i — pfoo, r r for (r, r ) G 12” with 

n丁 = {(r,r) |0 < r < a(r), 0 < r < oo}, (3.1.2) 
Q rr 

where P — Ap"^, > 0 is a constant and foo~-^ ps^ds, G is a gravitational 
—Jo 

constant. Without loss of generality, we assume P = fi(p) = p and X(p) = 0. 
The initial data are 

{p,pu)(r, 0) 二 O o ，•？ = : r e (0,a). (3.1.3) 

The boundary conditions are 

u\r=Q = 0, = 0, (3.1.4) 
where the free boundary a(T) satisfies a(0) = a and a'(r) = ?i(a(r), r), r > 0. 

Now, we consider the stationary problem, namely 

(P(Poo))r = - p o o G — ^ (3.1.5) 
in an interval r G (0, /oo), with the end loo satisfying 

rloo 严 

Pooiloo) = 0, / pooT^dr 二 M •.= po—dr. (3.1.6) 
Jo Jo 

The unknown quantities are the stationary density poo > 0 and free boundary 
2 n - 2 loo > 0. It is well-known that if 7 > , where n denotes the dimension, then n 

there exists a unique solution (poo, loo) to the stationary system (3.1.5) — (3.1.6), 
satisfying poo �( C —广 ( P o o ) r < 0, 0 < r < 0̂0 with < + 0 0 . 

It is convenient to deal with the free boundary problem (3.1.1) and (3.1.3)— 
(3.1.4) in Lagrangian coordinates. Define the Lagrangian coordinates transfor-
mation 

x= py'^dy, T = t, (3.1.7) 
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then the fixed boundary r = 0 and free boundary r = a{r) become 
厂a(T) 厂a 

:r = 0, ：2；= / y^pdy = / y'^pody = M, (3.1.8) Jo Jo 
where M is the initially total mass. Moreover, the region { ( r , t ) | 0 < r < a ( r ) , t > 
0} is transformed into {(a;,t)|0 < x < M，t > 0}. Under this Lagrangian coordi-
nate, the equation (3.1.1) and (3.1.3) — (3.1.4) are changed to 

y 

ut + = - 2urp工—G^, (3.1.9) 

Jo 
for ( x , t ) G (0，M) x (0, oo)，with the following initial data and boundary condi-
tions 

px 
(Au)|t=o = {po,uo)(x), r\t=o = ro(x) = (3 / (3.1.10) Jo 

u\x^o = 0, p\x=M = 0, t > 0. (3.1.11) 
It is standard that if we can solve the problem (3.1.9) - (3.1.11), then the free 

boundary problem (3.1.1) and (3.1.3) — (3.1.4) have a solution. 
Prom (3.1.5) — (3.1.6), it is easy to see that Poo{x) is the solution to the 

stationary system 

= - G ; rl{x) = 3 r P_j{y)dy, x € (0, M), 
—oo Jo (3.1.12) 

Poo(M) = 0. 

In this chapter, we can show that such a system is stable under small pertur-
bations, it does not develop vacuum states or concentration states for all times, 
and the free boundary a(r) propagates with finite speed. 

The assumptions can be stated as follows: 
(yli). Ci(M — x)^ < po < C*2(M — where Ci and C2 are constants. 
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-M 
(^2)- Bi[/?o,n)] < 00, where 

B i M = 

and a G (—1,1). 
OI3). B2[po,UQ,rQ] < 00, izo(O) = 0, where 

(3.1.13) 

-M 
B2ip ,u , r ]^ / + / (3.1.14) 

Jo ^ Jo r 

Under above assumptions (Ai) 一 (A3), we will prove the existence of global 
weak solutions to the initial-boundary value problem (3.1.9) — (3.1.11) in the 
sense of the following definition. 

Definition 3.1.1 A pair of functions {p, u, r){x, t) is called a global weak solution 
to the initial-boundary value problem (3.1.9) — (3.1,11) if，for any T > 

p,ue X [0,T])nCi([0,T];iv2([0，M])), 

TeC\[0,T];L^{[0,M])), 
p-\ {ruU {r\ G L�([0，T];Li([0,Af])), 

and 
龙 e L°°([0,M] X [0,T])nC^([0,T];L2([0,M])). 

Furthermore, the following equations hold: 
pt + = 0, 0) = almost everywhere^ 

Tt = u, r{x, 0) = ro{x), t) = 3 / t)dy, almost everywhere, 
Jo 

nM ^ rM 
mpt+�P—u)：^、{r�奶补�rm{j%—Gdt+ / uo{x)i;{x, 0)dx = 0 T Jo 

for any test function ip{x,t) G with n = {{x,t)\0 <x < M, t > 0}. In 
what follows, we will use C{Ci) to denote a generic positive constant depending 
only on the initial data, independent of the given time T, 
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3.2 Main result 
We now state the main theorem in this section. 

Theorem 3.2.1 Under the conditions (Ai) — (•A3)，there exists a constant e �� 0 
such that if 

11如 

where go{x) 
(3.1.9) - (3. 

^oollioo + ll^liioo + Bi[pQ,ro] + B2[po,uo,ro\ < e^, (3.2.1) 

=(M — x)~^po(x), goc>(x) 二 (M — poc,(x). Then the system 
L.ll) has a unique global weak solution [p, u, r) satisfying 

C-i(M - x)^ < p{x, t) < C(M — 

C-'^x < r^(x,t) < Cx, 

and 
u 

for all t > 0 and x G [0, M]. Furthermore 
-M 

+ (M — x)Hg — goof + — a3 - rlf]dx < + t)-\ (3.2.6) 

(3.2.2) 

(3 

(3. 
,3) 

.4) 

(3.2.5) 

广 t pM 2 / / (l-\-s){p\^ul + ~)dxds<Cel Jo Jo r (3.2.7) 

Remark 3.2.2 The uniqueness of the solution in Theorem 3.2.1 means that if 
{pi, ui, ri) and {p2, U2, r2) are two solutions to the system (3.1.9) — (3.1.11) with 
the same initial data (po, UQ, TQ) and satisfy regularity conditions in the theorem， 
then we have {pi^ui, ri) = (p2, U2, r2). 

Theorem 3.2.3 (Continuous Dependence) For each i = 1,2, let {pi, Ui, Vi) be the 
solution to the system (3.1.9) — (3.1.11) with the initial data {poi, wq̂ , Voi), which 
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satisfies regularity conditions in Theorem 2.1. Then, we have 
广M 

Jo 
+ x^^i^Ti — r2Y]dx 

pM 
< CeCt / [(Tioi — •̂ 02)2 + - A)2)2 

JQ 
+ aT鲁(roi - rQ2f]dx 

for all t > 0. 

Remark 3.2.4 When the space dimension n = 2, similar results hold for shallow 
water model. 

3.3 The stationary problem 
2n - 2 . When 7 > , we know that the stationary problem has a unique solution n 

in 79]. Hence we will only give results. 
2n — 2 Proposition 3.3.1 7/7 > ，then the Lagrangian stationary problem (3.1.12) 

n 1 has a nonnegative solution poc G M]) satisfying < Poo{x) < 1 Th 'T C(M — x)^, where p G (1, niin{ -}) is a constant n — 2 7 — 1 
Similar to [82], we say a stationary solution (poo^oo) is a statically stable if 

厂M 
J[W] ： 二 / [ip'^'^Wl — (2n — 

fM ... (3.3.1) 

for some & � 0 and all W e K^ = {f e C([0, M])|/(0) - 0, — G K}, where 
(M-x)^ fix) 

/ ⑷ （M - a;] 
Now, the static potential energy takes the following form: 
K 二 { f e c m M])\f > 0,『：二乂 IIloo < 00, I I � �〜、J l o o < 00}. 

fM 1 广 V 
S[V] = / [ / Gx{nh)^dh]dx. (3.3.2) 

Jo 7-1 Ji 
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We call y G i^i is a point of local quadratic minimum of S if 

+ > I [{M - + x-''W'']dx (3.3.3) 

for all V E Ki and ||(M - :r)�Hy|ioo([o’Ml) + \\X~^W\\LOO < Ss, for some (̂ 3 > 0. 
2n-2 Proposition 3.3.2 / / 7 > n and poo is a solution of the problem (2.1.13) 

satisfying p^ 6 M]) and C'^M - < p^{x) < C{M — x)"^, then we 
have that (3.3.2) and (3.3.3) hold with F = Voo n 
Proposition 3.3.3 Let poo be a solution obtained in Proposition 3.3.1, and p2 
he another solution of the problem (3.1.12) satisfying p2 G ([0, M]) and 

_ 1 C-\M - x)y < p2{x) < C{M - x)^. //7 > 加]and \\{M n {Pc 
P2){X)\\l°° < with a small enough positive constant 64, then we have P2{x) ^ 
poo{^), almost everywhere x G [0, M . 

2n — 2 Proposition 3.3.4 If j > ； the Lagrangian stationary problem (3.1.12) n 
has a unique solution poo G K. 

3.4 Approximate system 
In this section, we will construct a sequence approximate solution. First, we can 
choose a sequence of suitable smooth functions {(/Oao, Uao, ^ao)} satisfying 

px 
roa(x) = + 3 / pj(y)dy)^-, î ao(O) = 0， •/o 
{PaO, UaO, Tao) > (po, Uo, TQ), in C([0, M 

ll̂ aO -5oo|| 
UaO 

B飞 

raO 
PaO,raO 

11：? 

B, PQ, ro 

B2[paO, UaO, ^oo] > UQ,厂0]: 
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as a ~ �0 , where gao = pao. Furthermore, we assume that (pao，収ao’ rao) 
satisfies 

\\9aO — 5'oollioo + || —llioo + Bi[pao,rao] + [̂AiO,̂ W)’"̂ 一 < TaO 
Then, we consider the following system with solid core. 

Pt = 久 u 
u Ut = - P] - 2d,p-} — G-^ 
r T么 px = + 3 / p-\y,t)dy, 

where {x,t) G (0，M) x (0, oo), with the initial data 

(3.4.1) 

(3.4.2) 

(3.4.3) 

and the boundary conditions 

u\ = 0 , = 0, t > 0. (3.4.4) 

Using the similar arguments as that in [11], we can obtain the following local 
existence and uniqueness result. We omit the proof. 

Theorem 3.4.1 (Local Result) Under the assumptions in Theorem 3.2.1 and 
(3.4.1)，there is a positive constant Ti > 0 such that the free boundary problem 
(3.4.2) — (3.4.4) admits a unique weak solution {pa-, Ua, r j (工，t) on [0，M] x [0, Ti 
in the sense that 

p^ix,t),Ua{x,t),ra(x,t) e X [0,Ti])nCi([0,Ti];L2([0,M])), 

P%{rl^a) e X [0,Ti])nCi([0,Ti];L2([0,M])), 
d “ r i ) , d “ r u ) e L-([0,Ti],Li([0,M])), 

and following equations hold: 

dtPa = -pldx{rlua), PaO, •) = PaO, 
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dtra(x,t) = Ua(x,t), = + S f p-^{y,t)dy, 
Jo 

�M Plir'uah = PI + + 厂 { - ¥ + - Gyr-'}dy 
Ta Jx �0! 厂 a 

for almost all x G [0，M], any t G [0, Ti], 
-M 

(3.4.5) 

(3.4.6) 

niVi 

[〜办 + {pl - plirluaUrl^l _ _ 
-M 

+ 2pa{raUil))x — Gxr~'^'^]dxdt + / UaQ{x)'ip{x^ {))dx = 0 Jo 
for any text function IIJ(X, t) G (7 (̂[0, M] x [0,7\)). Furthermore, we have 

i V i ( M - x ) ^ < Pa(x,t) < N2{M~X)K IX,t) e [0,M] X [0,Ti], (3.4.7) 

( M - e C([0,Ti]; L⑷([0，M])) 

{M-x)HpaU (pah Mt € L^i[0,Ti];L%M 
PaiuaU e L\[0,M] X [0,Ti]), Pad^Ua 6 L^([0, M] X [O, Ti]) 

(3.4.8) 
(3.4.9) 

(3.4.10) 
where Ni and N2 are positive constants. 

Assume the maximum existence time of the weak solution of Theorem 3.4.1 
is T*. We can extend the existence interval by obtaining the following a prior-
i estimates under suitable assumptions. In the following, we may assume that 
{pa, Uâ  ra){x,t) is S u i t a b l y smooth. Since all the argument used here can be ap-
plied to the weak solution in terms of the Priedrich's regularizing approximation. 
Throughout this chapter, C(Ci) denotes a generic positive constant independent 
of the given time T and a. For simplicity, we omit the subscripts a in [pa, Ua, r j 
and (paO, Uao, rao) from now on. 

3.5 A priori estimates 
Prom Proposition 3.3.1 and (3.1.12), we can obtain the following Lemma easily. 
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Lemma 3.5.1 Under the assumptions of Theorem 3.2.1, we have 
广M 

p L W = l G 
y dy 

C-\M - < poo{x) < C{M - x)-^, C-'x < r^ < Cx, 
“ 曲 ) ^ — 培 dx 

for allx e [0,M]. 
Lemma 3.5.2 Under the assumptions of Theorem 3.2.1，we have 

dt 
-M Gx -M My；" 

(3.5.1) 

(3.5.2) 
(3.5.3) 

ds)dx + / p^ruldx + / —dx = 0. (3.5.4) 

Proof: Multiply (3.1.9)2 by u, integrating over [0, M] and using the boundary 
condition (3.1.11), we can obtain (3.5.4) easily. 

• 
Now, we define 

u, 
M = II" 一 QM- + II-IIL^ + ( i+ o ^ i k -( P^— p i o ) i i 

where g{x,i) = (M — x)~^p{x,t) and = (M — 
(3.5.5) 

From the previous results, we know that I{t) G C([0, T*)). From (3.2.1) we have 
that 1(0) < CQCQ. Now by using of the classical continuation method, we can 
obtain the estimate of /⑴，t E [0, T*) n [0，T], for any T > 0. 

Claim 1. Under the assumptions of Theorem 3.2.1, there is a small positive 
constant d > CQGO, such that, for any T2 G (0,T*) n (0,T], if 

I(t) < 2ei, (3.5.6) 
for a l l t e [0，T2]，then 

m < ei, (3.5.7) 
for a W t e [0,T2]. 

Using the results in Lemmas 3.5.3-3.5.14, we can give the definition of ei and 
finish the proof of Claim 1. 
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Lemma 3.5.3 Under the assumptions of Theorem 3.2.1 and (3.5.6), ifci is small 
enough, we can obtain 

C{\M — x)^ < p(x, t) < CiiM-x)'^ (3.5.8) 

a^ + C^^x < t) Cix (3.5.9) 
for all t e [0，Ts] and x e [0, M]. 
Proof: From (3.4.2)3, (3.5.5) and Lemma 3.5.1, we can easily obtain the estimate 
(3.5.8) — (3.5.9) when 4ei < min g^o •= g. • 

Lemma 3.5.4 Under the assumptions of Theorem 3.2.1, if ti and a are small 
enough, it holds that 

pM 1 (r^ _ _ 3 \2 
/ {u^ + (M - x)-八g — goof + ^ 血 < Cse?， （3.5.10) 

Jo 工 

ft fM 2 / / ip^r ' 'ul-{ '—){x,s)dxds<C2el (3.5.11) 
Jo Jo r for all t e [0, Ts . 

Proof: Prom (3.3.2), (3.5.1) and (3.5.4) we have 
^ rM 1 rM pM 2 
LL ^ i X o , •-v �，， v-M � / 2 /i o » / L6 d r L 2 u'dx + S[V]-S[Voo])+ I p'r%idx + I -^dx = 0, (3.5.12) 

.3 where Ko = ^ and = —. Prom (3.3.3), (3.5.2), (3.5.8) - (3.5.9) and Propo-o o 
sition 3.3.2, we can obtain 

rM 
C - i / JQ 
< S[V-y]-

PM <c / + x 
when ||(M — ； — “ ： ” “ 丄 ？ + 

3 rM rV = I I ^ Gx{3h) 

a'- r l f d x 

(3.5.13) 

>3 - — rl^ydx, 

' - A ' - TDWL^ < C W < 如 a n d 

dhdx < Ca^ < Cel, (3.5.14) 
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when a^ < Cn. Hence we can obtain that 

Jo 
ft fM rt nM 以2 

+ / / p^r'^uldxds + / / —dxds 
Jo Jo Jo Jo 

2 /3 „3 „3 \2 
/ / dx 

(3.5.15) 

Let a i e (0, —) be a constant. Define {^i} and {6A by = 9j + 1, where 16 P. 7 Q/j 

Oj = m i n { ^ - — — —, 0} and = 0, j. = 0，1，….Let N be an integer satisfying 
jSjv = 1 and 6n = 0. Then by induction we can obtain the following Lemma. 
Lemma 3.5.5 Under the assumptions of Theorem 3.2.1, if ei and a are small 
enough，it holds that 

•M 
2 , - 2 i ,3 „3 \2 

——11   )dx < C4el{l + t)-\ (3.5.16) 

i (1 + sXpW^ + ^)dxds < C44 r 
fM rt i>M 
/ {9-goofdx+ / / + < C^el 

Jo Jo Jo 
for all t e [0, T2] ’ where 63 二 eg 汉. 
Proof: We can prove the following estimates by induction: 

-M 
W < Ce广乂 1+:^)一�（3.5.19) 

(3.5.17) 

(3.5.18) 

/ / (1 + sY^ipW, + ^)dxds < Cet\ (3.5.20) 
Jo Jo r 

"M 
(1-+ t f ^ / [g - Qocfdx 

+ nM 
(1 +科 

— 

)2 + ^-2(^3 rlf^dxds < Cel 

for all t e [0,�2]，j 二 0 , 1 N. 

From (3.5.10) - (3.5.11), we have (3.5.19) - (3.5.20) hold with j = 0. 

(3.5.21) 
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Suppose (3.5.19), (3.5.20) hold with j = k > 0, we want to prove (3.5.21) holds 
for j = k. 
Multiplying (3.4.2)2 by (l + i ) � - a ^ - r ^ 

3 integrating over [0, M] x [0，力] 
using integration by parts and boundary conditions (3.4.4), we have 

dxds ft pM , 
Jo Jo <-> 

r* fM .. _ „3 _ „3 rt pM 
= — / / (1 + s ) � � , ' n d x d s ^ / / 

Jo Jo r O J o Jo nt pM 
+ / / 2(l + s ) % 

Jo Jo 

u /r^ - a^- xdxds := ^^ Ei. 

Rewriting the left hand side of (3.5.22)，we obtain 
(3.5.22) 

f t pM 广3 一 3 一 „3 
I I (1 + ⑴ — 广 1 — ^-1) + — r 』 （ - 3 ' - ) ] d x d s ft pM 
= / / 2(1 + [(2 + - P ^ ' r - (4 + 0{e,))GxT-, 

Jo Jo ft fM 
+ / / 2(1 + Jo Jo 

- a^ - rL 

丁 
,3 „3 — o^y^)dxds. 

Similar to (3.3.1), we have 

left hand side of (3.5.22) + + 
rt eM 

poo(g - goof + .3 …3 �2 
> C - 1 / ( 1 + s)'知 

-\dxds. 
(3.5.23) 

From (3.5.6), (3.5.8) — (3.5.11), we have 
•M rt pM nAI ft pivi 2 u^dxds < C / / -^dxds < Cel, (3.5.24) 
_ Jq JO r 

dxds 
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fM _ _ 3 

Ei = - l (1 + 巧 ( 3 ’ 

Jo Jo ^ o r* rM 1,2 ft pM 
/ / (1 + s ) � �( r 3 —a3 — / / (1 + sf^v 'dxds (3.5.25) 

3 JQ JO '厂 Jo Jo 
pM pt fM 

<C / + x-^ir^ - a ' - rlf]dx + C e g + ( 7 / / u'dxds 
Jo Jo Jo 

f t PM pt 
+ C ( / / u^dxds)-^{ / ( 1 + s严-2ds)�< Ceo. 

Jo Jo Jo 
ft PM 1 1 ft PM 

E2 = - / pt{l + s)�H )dxds = - / h{p, Poo)^(l + sf'^dxds 
JQ JO POO P JO JO 

pM nt pM 

=- Hp,poo)(i + sY'dxil + / / h�p, pocMi + s)e“(ixds 
Jo Jo Jo pM 

+ / {g-gooydx^Cel 
Jo 

(3.5.26) 
rp I I where h{p,“⑴）=/ ( )ds �� g - Qoof, and J Poo Poo s 

Jo 

< Clio:蠻(pi _pt)||Lgo X � y -蠻 ( M — y)-钱dy (3-5.27) 
^ Jo 

�( 1 + t)-嘉 蠻， 

E3<C / 
Jo Jo 

f t rM 

+ fii+sr'^-^^wx'^ipi-pLnio.x 
Jo ft I'M 

<C( { 

+ r- 丨兰(去. r p 
t r 

pM 
( 1 -卜 / — 

Jo 
2+ 

-x)~^dxds)^ 

t 
( 1 -

卜力―1--^dsf^ < Ce\ 

(3.5.28) 

when + T) < e� . Prom (3.5.22) - (3.5.28), we get (3.5.21) with j = k. 
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Now, suppose (3.5.19) — (3.5.21) hold with j = k, we have 

+ tY叫:l^'dx + 寧]—寧oo])} + (1 + 力产+1 l^p'r'ul + 
fM 1 

= + 1 ， ( h t)dx + - ^[Ko]), 

厂 3 厂 3 

where V = ^ and I^o = Integrating the above equality over [0，力],from 
O O 

(3.4.1), (3.5.8) 一 (3.5.11), (3.5.13) — (3.5.14), (3.5.21) with j = k, (3.5.24), and 
Ok < 0, we obtain 

pM ( 3 3 3 \ 2 
Jo 工 

�M „.2 
广 t pM 2 

+ / / ( 1 + + ^)dxds < C4 
Jo Jo r 

when + T ) < cq- Hence we have (3.5.19) — (3.5.20) with j = k + l. Then we 
obtain (3.5.16) — (3.5.18) immediately. 
• 

Now we can estimate \\g{-,t) - 5̂ oo(.)||ioo([警,叫）by using of r|饭[m，m] > > 0. 

Lemma 3.5.6 Under the assumptions of Theorem 3.2.1, if a is small enough, 
we have 

"oo ⑷ 丨 仏 Q , (3.5.29) 
Ad r , 1 for all X G [—, M] and t G [0, T2], where 64 = 63 . o • M , Proof: For any fixed x G [—, M], we have o 

f r\p^{x,t) - pl{x))ds = rlpo(x)+l2{x,t), t G [O^Tj, (3.5.30) 
Jo 

where 
fM 2 2 

hix, t) = rl(x)p{x, t) — ( r i � —t ) ) p ( x , t) + ( )dy J X r PM 
—/ {u{y,t) - uo{y))dy, 



\h{x,t)-Tlp\<A,{M-

and 

广M 
\ {u- uo)dy\ < C{M — + |W|l2) < C{M J X 

thus, if a is small enough, from (3.5.31) — (3.5.33)，we have 

(3.5.33) 

(3.5.34) 
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and 
rt rM 2 一 2 rt pM 

l2{x,t) = -2 / / r-化~~^dyds^ / / - r^')dyds Jo Jx P Jo Jx 
M Prom (3.1.9)3, for any x G [—, M], we have 3 

„3 oo , < C P •\dy 

<C / \g-9oo\{M-y)-^dy Jo 
pM 1 

<C[ (9-9oofdy]i <Cel 

(3.5.31) 

�M 1 1 fM fM 1 
/ ——-dy<C \r - To\dy < Cel{M - x)'^, (3.5.32) 

tq r 人 rro J^ and 

1 M \l2(x, h) - hix, t2)\ < A24\t2 - h\{M - 0；), xe[—,M]. (3.5.35) 

• 
M Claim 2. For any fixed x G [—, M], we have Ii{x, t) > Ai，i for all t e [0, T2], o 

where 
A Ai = mm{l,(x,0),rilp'^ - 押 ( M - :r)]t — Ael(M - x)'^}, 

where A3 > 0, satisfying A3 < r^ in {x, t) G x [0, T2 . o 
Proof of Claim 2. If not, there exists ti,i such that Ii{x^t) < 成山 then 

we can find ti2 ^ (0，力ii) such that /i(:r，fi，2) = Ai i and Ii(x^t) < Ai^i for 

1
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t e (力i’2,力 1,1). From (3.5.30) and (3.5.35), we can get 
�:Mi’i) —/i(:MI，2)+ [ ‘ r V - p ^ s Jtio 

> -A2ei{M h,2] 
Prom (3.5.34)，it holds that 

t) = r^^lhix, t) - (h(x, t) - rip) 
“ " 2 

A < �1 ’ 1 + 舉 — < (JL - - / ( M - • ！ 

and 

/I3 
then /i(a;, ti^i) > Contradiction. Thus, Claim 2 holds. 
• 

Similarly, we can obtain the following claim. 
M Claim 3. For any fixed x G [—, M], we have h{x, t) < Ai^^ for all t G [0, T2 O 

where 

Ai,2 = niax{/i(x, 0)，riy� + ^^{M — :r)] “ -:r)”， 

where A4 > 0, satisfying A4 > r^ in (x,t) G x [0,�2]. o 
Prom Claim 2-3, we have 

— goo(^)l < 05^4, 
M 

where x G 一, M], and t G [0,T2 . 
O 

Let (j) G [0, M] satisfying (l)>0, (/>|â g[o’M] = 1 and = We have 
the following Lemma 
Lemma 3.5.7 Under the assumptions of Theorem 3.2,1，if ei and a are small 
enough, we obtain that 

pM pt nM 

/ 料 P - Poofjx + / / 料 p - Poofjxds < (3.5.36) 
Jo Jo Jo 
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for allte [0,T2]. 
Proof : From (3.4.2), we have 

u + - poo)x]t + '^r^PPx 二 — 2rupc (3.5.37) 

Multiplying (3.5.37) by + — Poo)x]： integrating over [0, M], we have 

23 / 於2|权 + r^iP — Poc)x\^dx + 2 / ( t ) � � � p — poo)x[u + r�— Poc)x]d. 
rM pM ^ 

+ 2 / (l)^r^ppoox[u + r'^iP - Poo)x]dx = - + - poo)x]dx 
Jo Jo r pM 

—2 / (fy^urpooxW + r \ f ) — Poo)x]dx, 
Jo 

by using the Cauchy-Schwarz inequality, we can obtain that 
(i fM /-Af 
- J + r\p — Poo)x?dx + cv y �— Poo&x 

�M �M 
< C / 权2血 + / + r^ppoox\\u + - Poo)x\dx 

�M + C / 十 (/9 - Poo)x]\dx 
"M �M < C / (fy^u^dx + / + r^pp^^Wu + — Poo)xldx+ 

Jo Jo 厂 

�M rM I'M rM 
C / (j)^ru^\poox\dx + C / (t)^r^\upoox{p - Poo)x\dx 

Jo Jo rM 1 pM fM 

(3.5.38) 
Prom (3.5.3) and (3.5.8) - (3.5.9), we have 

广M rM 

0 ^ Jo ^ 

xry ,2 dx 
pM 

< C / 作 - V - -
PooTl^ (3.5.39) 

Prom (3.5.38) — (3.5.39), we get 
1 J fM rM 
去羞 / o 們— (广知 )力冗 +字 / o 料 P — P�、'幽 

< M
 a

 
+
 2

 

2
 
L
 

\
—
/
 

L
I
 

Poo(9 - goof ]+ Co： 
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Combining (3.5.8) - (3.5.11), (3.5.18) and (3.5.24), we obtain (3.5.36) immedi-
ately. • 

Lemma 3.5.8 Under the assumptions of Theorem 3.2.1，if ti and a are small 
enough, it holds that 

-M 
-2以2义2 

nM r^'-^ip-PoofH^ds^Cges, _ _ pt 广 M 2 (jJ'dx + / / + —)dxds < Cges, 
JO JO r r-M pt nivi — p ^ f j x + / / 广 - p^)ldxds < Cses, 

Jo Jo 
M-^t) - goo(-)\\L^i[0,M]) < C8e4(l +力广5， 

t) -a^ - 740)1 < CsCiX, X G [0, M] 
where and p G (1， 

6 -)for all t G [0, Ts 3 p - 2 r \，5 + Q； 

Proof: We can prove following estimates by induction 
pt pM 

Jo Jo 
'•(p — Poof(l)dxds < Ce3, 

•M M
 i

 
i
 

u 
U工 + -^)dxds < Ces, 

(3.5.40) 

(3.5.41) 

(3.5.42) 
(3.5.43) 
(3.5.44) 

(3.5.45) 

(3.5.46) 

(3.5.47) pM pi PlVl 
/ f 产+�P — Poofjx + / / — p^tdxds < Ces, 

Jo Jo Jo 
for all t G [0, T2] and a^+i = max{a — 2, a ^ — 1} with ao = 0, m = 0’ 1，— 

Prom (3.5.8) — (3.5.11)，(3.5.18) and (3.5.36), we know that (3.5.45) — (3.5.47) 
hold with m = 0. 

Suppose that (3.5.45) — (3.5.47) hold with m < fc — 1, then we prove the 
estimates (3.5.45) — (3.5.47) hold with m = k as follows. 
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Since a e ( -1 ,1) , we have 
�M -M 

i p - Poo) (p dx 
�M 

严[da^Kp - Poo)4>]dy)''dx 
pM rM pM rM 

< C / fUg - goofch + C / 产 — p ⑴躺 y / 
JO Jo Jx Jx 

-""k-idydx 
-M -M 

< C / Poofe - Qoofdx + C / r4+"�-i09 — p^)l4>'dx. 

Combining (3.5.18) and (3.5.47) {m = k - 1), we can obtain (3.5.45) m = k. 
Multiplying (3.4.2)2 by wr"知於。，integrating over [0, M], using (3.4.4) and integra-
tion by parts, we obtain 

d 
dt / M 

令r…u�2dx _ 2 

Jo JQ '̂oo ^ 
rM 4 

+ / 他 + 2 - 元 — 一 ( ― 从 + 叫 血 = [ F h 

(3,5.48) 

Now we estimate Fi as follows. 

pivi 
— > Cq / + 产2礼2)虹. 

Jo From (3.5.8) — (3.5.9) and Cauchy-Schwarz inequality, we obtain 
pM 

Jo 
广M 

'dx-^C 一 r-ydx 
Jo 

ut + 产-2u2� 

(3.5.49) 

•dx, (3.5.50) 
^ rM 

/ I2^AU-2„.2 
� 7 �小 

<-CI J Y -Vdx + C / V — a" - r l f d x + 

since r — (r^ — a^] < Ca, and 
"M 

F, 

(3.5.51) 

fM 2 < C / + - + - g^f]dx. (3.5.52) Jo r 
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Prom (3.5.6), (3.5.8) — (3.5.9) and (3.5.48) — (3.5.52) we obtain 

�M �M 妄厂 r叫 内 W C i — � i�r 叫 ( , u i +�购X 
dt ./n .In f fM 2 �M ••^^{p- poof dx 

�M U + c I [ p W l + ~ + goof]d^ + c I — a3 - r l f d x + Ca 

< II^IIloo / rgckc < Cel. W h e n Jo 
CIQCI < 1, using the estimate (3.5.11), (3.5.18) and (3.5.45)(m = k), we can prove 
(3.5.46)(m = k) holds. 

"M 

Prom (3.4.2), we have 

守u), + [r守+2(p — p � )J , = —2r警+2仲I - G r ^ ^ - 2r守+i 
,OLk 孕 一 1 2 I f̂c 学一1 2/ � 

+ —R 2 U + —R 2 ur [p — POOH. 

'^Poox (3.5.53) 

Multiplying (3.5.53) with + r 守 — Poo)J, integrating over [0，M 
have 

J丢 f [厂守 W r , �1 o o ) j 2 d T 
pM 

= - 2 / + - Poo)x]dx 
Jo 

pM 
—/ + - p^Udx Jo pM 
一 2 / < / > 2 r 守 守 u + — 

+ 
^ pM Oik I i u 

• £Al "fc 1 g . � 1 V ^ u + r 2 t ( p -知)工 j 

+ 尝 / 小々〜P — POO)y^u + r 守 - p^Udx 
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using C auchy- Schwarz inequality, we obtain 
1 J fM pM 

J …守 tz + r 守— Poo).fdx + Cn I 02 一 4(p — Pootdx 
/ M pM 

pM 广 pM 
< C / + + Ci2ei) / 广 计 - 工 

Jo 4 Jo -M 
+ C / (j^^^'lG^ + pr^pooxl'dx. 

C îi 
If Cuei < using the estimates (3.5.6) and (3.5.45) — (3.5.46)，we have 

Jt 

< C / [ 一 J + 产 — p⑴)2 + 广二2]血 + 
Jo 

from (3.5.18), (3.5.45) — (3.5.46)(m = k) and ？(i + T) < eo, we have 
fM pt pM 
/ <f>'[r^u + r 守 — p^U'dx + / / 广 - p⑴)•彻 < 

Jo Jo Jo 

Using Galiardo-Nirenberg inequality, we have 
2(p-l) 

\\{P-POOW\L- < miP-PooMlS 

so we only need to estimate 

If a G (—1,1)，we can choose p G (1 6 

5 + Qr C (1,2). From (3.5.8) - (3.5.9) and 
(3.5.42), by using of Holder's inequality, we have 

rM pM fM 
( / mp-PooWdxrv<{ 厂(2切)巧“^；)」 
Jo JO 

<C4 
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Prom above result and (3.5.16), we have 

| | ( p — P o o ) 利 + 印 ， = p e { l 6 

84 

3 p - 2 5 + 
Now, we have proved the Lemma 3.5.8. • 

Define G C°°([0, M]), > 0,训[o,警]=0, and iP\[M^M] = 1’ hence we have 
ijj-r-^ < a 
Lemma 3.5.9 Under the assumptions of Theorem 3.2.1, if ci is small enough, 
we have 

rM fM 

and 

rt rM 

< C / (1 + s) / pWdyds + C / (1 + s) / —dyds 
Jo Jo Jo JO T 

<Cel 
Proof: First we have 

(3.5.54) 

(3.5.55) 

Choosing a G (0, - ) , by (3.5.8) we can show that, 
px px 1 

-x)^ = [ I � M - 如ydy + / (M - xYipyudy -

< f Jo 
(M 

=c[{ f Jo 
V 
[M 

< C(M 

< C(M —工) 

PM 

<C{ p^r 

C(M — I)羞-�[M — yrij\uy\dyf + C{M - x)"^ [ \ijyu\dy) Jo Jo 
-2a/ / 2 4„.2 p V V ) ( / 广 ( M l 产 办 ) + C(M-;r)石 dy) 



Some Topics On Compressible Navier-Stokes Equations 85 

hence we obtain (3.5.54). Once we have (3.5.54), the (3.5.55) holds by (3.5.17). 

Lemma 3.5.10 Under the assumptions of Theorem 3.2.1, if ci and a are small 
enough, it holds that 

rt rM 
/ / {g-goo?iJ^dxds<Ci24. (3.5.56) JQ JO 

where t G [0,T2). 
Proof : From (3.4.2), we have 

/ M pM rM 

_ JX ‘ J X ‘ 

Multiplying the above equality by ' i p { M — p^), integrating over [0, M] x 
0, t] we obtain 

M f t fM 
/ / 财—工)-2办办 Jo Jo 
二 r 广 与 油 

Jo Jo Jx T ft fM pM 
+ / / / Gy{T-4 - r�dyda:ds Jo h (O r r 7 N pt fM io.o.o7j 

Jo Jo rt fM 
一 2 / / - — p'^Jp-dxds 

Jo Jo r nM rM 5 

功 2 ( M - - P I ) / p(-)ydydxds 二 [ J , . 
. — Jx r 4-1 Using (3.4.2), (3.5.8) 一 (3.5.9), (3.5.16) 一（3.5.18), (3.5.24), (3.5.29), (3.5.43)-

(3.5.44), (3.5.54) —(3.5.55), integrating by parts and the Cauchy-Schwarz inequal-
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ity, we can estimate Ji as follows 
rM rM ft PM 

二{/ - x r \ p ' - pD I ~dydx}\i + 2 / / ^^(M Jo Jx r Jo Jo 
M… f t I'M 厂M从2 

dydxds + 2 / / - - pl^) / -jdydxds 
Jo JQ JX R 

u 

�M »M 
Jo Jo -M 

+ ft I'M 
c J J - x)--^ \p{r\U\\u{M -

^dxds 

+ C ft PM U 1 1 / / — ^oo|||~||L-|k(M — - x)-Uxds Jo Jo T 4 

/ M pt rM 

+ CJ^ II•-明Loo[誓’M][乂 p \ r \ ) l d x d s Y 
+ i / C 彻 - — plfdxds + c j : HM — ： ^” II “譬，一 

广 f % � M - 一 ftfdxds + Cel 
Jo Jo (3.5.58) 

< 

2 2 P -Pic nivi — 1 ft fM 

pt nM rM 
+ C / / Poo�g — goofdxds / (M 

JQ JO JO rt rM 
/ / ^}j\M--x)-\p^-pl,fdxds + Cel 

Jo Jo 

�M Poc{g — gocfdx 

dxds 

< -- 4 

(M — dydxds 

(3.5.59) 

pt 广M 广M 
Js = - / ^'(M - - pDptdxds <C\\g- Q^Wl^^ / {M - x)'hx 

Jo Jo Jo 
+ C d < Ce: 

(3.5.60) 
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nM 5 1 1 1 1 
- x)—s(M - x)-^\u{M — -yo各II丄�o([m’M])血办 

4 ‘ < c sup [(1 + s ) 点 誉 tG[0,T2] 
PI / (1 + s)-去(1 + 力一全(1 + s)^\u{M -Jo 

< C sup + - p t ) | U - ] i te[0,T2] 
( A l + s)-'-r2ds)H / ( 1 + s)\\u{M -J 0 0 

(3.5.61) 

nm I'm 
— x)-^\g — ^ool / {\pu.\ + \u\)dydxds Jx nM 1 rM 1 1 

— pill，([誓，_[/ + - xY^dxds Jx nM I'M 1 
+ / {p^ul + v?)dy\-^dxds 

Jx 

ft nivi 广 c 
<Cl {l + s){pW^^u'')dxds]^ {l + s)-'-T2ds]2 <Cel 

Jo Jo Jo (3.5.62) 
Prom (3.5.57) 一（3.5.62)，we get (3.5.56) immediately. • 

Lemma 3.5.11 Under the assumptions of Theorem 3.2.1, if a is small enough, 
it holds that 

pM ft fM 
/ / / i;'(M-x){p^poo)ldxds < Ci3ei (3.5.63) 

Jo Jo Jo 

for allte [0，T2], 
Proof: From (3.4.2)2,观 have 

u + rVx - rlipooUt + — r^^Poo) J + r'G-, + 2rlp(poo). = 0. (3.5.64) 
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Multiplying (3.5.64) by 功 — + r^px - rl^{Poo)x\, integrating over [0’ M 
we obtain 

a 
�M (M - + -
�M (3.5.65) 

�M + I - x)Hu + r^p, - r U p c U l r ^ G ^ + = 0, 
JO ^ Poo 

using the Cauchy-Schwarz inequality, we obtain 
d pM 1 fM 
^ / ( M - + r2办—ri(poo):cl^dx + C15 / - r^^p^fdx 

�M �M <c I {M - x)^Wdx + I 
Jo Jo r Poo 

(3.5.66) 
making use of (3.5.8) — (3.5.9), we get 

Jo f Poo J{ 
PM 

M Gxprl 
poon 

then we have 
-M J rM fM 

I J^ ( M - x)h'\u + r V . — rlipooU'dx + C23 义 - T^p^fdx 
< rM pM 2 _ _ „3 

Jo Jo ^ 
(3.5.67) 

if a2(l + r ) < eo, by using of (3.5.18), (3.5.24), (3.5.57) and (3.5.66), we obtain 
(3.5.63) immediately. • 

Lemma 3.5.12 Under the assumptions of Theorem 3.2.1, it holds that 

Bi[p,r]<Ce 4, (3.5.68) 
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(1 + 0圣II工宰("誉一pi)lkf < (3.5.69) 
+ < (3.5.70) 

for all t G [0, T2]； where ly = 
Proof: From (3.5.8) — (3.5.9), (3.5.42), (3.5.56) and (3.5.63), we have (3.5.68) 
and 

pM 3 / - pDldx < Cel t e [0, T2I, (3.5.71) 
using Galiardo-Nirenberg inequality < and (3.5.16), we have 

+ - PI)\\L^ < Ce4. 

Prom (3.5.8) - (3.5.9) and (3.5.69)，we have 

樂（pi - / ) | o ) | | l - ( [ o , m ] ) 

• 

Lemma 3.5.13 Under the assumptions of Theorem 3.2.1, if a is small enough, 
it holds that 

fM 2 ft pM 
(1 + t) / ( � + p W j d x + / / (1 + s)u^dxds < Ci5e^[l 十 \ W u U L r } . Jo ^ Jo Jo ‘ (3.5.72) 

for allte [0,T2]. 
Proof: Multiply (3.4.2)2 by (1 + t)Ut, integrating over [0, M] x [0,力],using inte-
grating by parts and boundary conditions, we get 

n
M ft 广 M 

(1 十 s)u^dxds = / / (1 + s)p^{r'^ut)xdxds 
_ Jo Jo ft I'M ft pM 

- (1 + s)p'^{r'^u):,{r'^ut)a;dxds + / / 2(1 + s)p{ruus)xdxds (3.5.73) Jo Jo Jo Jo ft fM ^ 4 - / / (1 4- s)G-^u,dxds = yHi. 
Jo Jo T 
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Using Cauchy-Schwarz inequality, A3, (3.5.8)-(3.5.9), (3.5.16) —(3.5.17)，（3.5.24): 
we obtain 

•M 
+ = {(1 + 5) / + p{TuWdx}\ 

n 1 - p{ru%]dxds ft fM 2 3 + / / (1 + S){2p\T^UUTU% - P\T'U)1 + - + 
Jo Jo r — — 

�M < 十 — Ci8(l + t) I [p\r\)l + 
u 

(3.5.74) 
pM ft nlVI Hi = (l + s) / + / / 2(1 + s)p^(r\)ldxds 

Jo Jo Jo 
f t I'M ^ f t pM f t fM - 4(1 + s)p^-{r^u)a,dxds + / / 6(1 + s)p—dxds - / / pVu�怎dxds 

JQ JO R JQ JO r JQ JO 

/ M ft I'M + Ctl - / / 
Jo Jo (3.5.75) fM nt PM f t nM , 

丑4 二 -(1 + s) / G—dx\l-2 / / (1 + s)Gxr-Vdxds + G-
Jo ^ Jo Jo Jo Jo 

< - ( l + t) r c ^ d x + cel^ f 广 G': 
Jo r Jo Jo 

dxds 

dxds. 
(3.5.76) 

Using (3.5.8) - (3.5.9), (3.5.14)，(3.5.16) - (3.5.18), (3.5.24), we obtain 

�M -M 
(1 + 0 / - (1 + /;) / G-^dx 

JQ JO ^ 
rM 

= {l + t) / [(/ - / � r M i - Gr'uxir-' Jo dx 

~2 
"M (3.5.77) 

I'M 
«/o 

,3 \2 // 
dx 

�M 
+ + i ) < 学(1 + t) I …[p\r\)l + "^jdx + Ce 

Z In T 
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and 

,2 

rt pM ft f-M 
<C / + / / [p^{g - goo? 

JO Jo T Jo Jq / 2 3 3 � 2 + (r —a 一 r^) j 如 s + + 力）s Ce^. 

From (3.5.73) — (3.5.78), we obtain (3.5.72) immediately. 

Lemma 3.5.14 Under the assumptions of Theorem 3.2.1, if ei is small enough, 
it holds that 

rM rt rM 
- 2 2 / utix 

广 t I'M t)dx^ / / + (3.5.79) Jo Jo 
||^(-,t)i|Loo + \\p{T\U-,t)\\L- < ^1764, (3.5.80) 

fM 2 rt pM 
y + pV必(工’ t)dx + j j s)dxds < Ci7e3, (3.5.81) 

for all t e [0, TV . 
Proof: Differentiate the equation (3.4.2)2 with respect to t, multiply it by 
and integrating it over [0, M], using the boundary conditions, we have 

rM 
= — / -p"-

7o ^ pM fM 
一 / dt[p\r''u), - 2p- - / + pUir-utUx + / 2[pr'{~Utr^-'utdx 

Jo f Jo r 
fM T A 

Jo 厂 

(3.5.82) 
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From (3.5.8) - (3.5.9) and (3.5.24), we have 
�M "M 

Jo Jo 
U U a- — + r^'utxldx 

P 
2 

r 
•M 

< -^18 / (pV+2必 + 产 4 必 血 Jo pM 
+ C{\\p{r'uU\l^ + 1) / + r^- 'y ' jdx 

(3.5.83) 
pM �M 

(3.5.84) 
and 

【 4 / 

M pM r" 
2 ^ 7 z �M 

产乂dx + C / u'r^'dx < 
nM 

4 J R^'-'^ULDX + C J 权2血. 

(3.5.85) 
Prom (3.5.82) - (3.5.85), we have 

I广 Jt L + (p: 对 + 

-M 
< C{\\p(r''u),\\l^ + 1) / + + C / u"dx 

�M + CWi ^uldx. 

if CigCi < 丁，that is, ^CnCi < Cis and (3.5.41), we have 

�M nM 
0： (3.5.86) 

Prom (3.4.2)2, we have 
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Integrating the above equation over [0, M], using the boundary conditions and 
integrating by parts, we obtain 

p'(r'u)^ = 广 与 _ r p{\dy+2p-^ 广 GMr-4-r二)办—么⑷‘ J X T J X r T J 
Hence we have 

, 2 � p\x,t)-pl{x) 1 U t . f M U … u 1 fM 
P�—u)工=^~“)--一 / / p —)怎办+2——/ Gy{r ^-rj)dy. P PJxr^ pJx r r pj^ (3.5.87) 
Using (3.5.8) — (3.5.9), (3.5.72) and (3.5.86)，we conclude that 

Jo (3.5.88) 
< C7e4 + 2ei + c 4 l | / 5 ( A i ) J i � t G [0，7̂ , 

on the other hand, from the equation (3.4.2)2，we have 

= Ut + + 2rupj； + G)， 

using the estimate (3.5.9) - (3.5.10)，(3.5.40) — (3.5.42) and (3.5.86)，we conclude 
that 

PM / < Ces{l + \\p{r\UlrJ, Jo T 
and 

M 

/ 2 \d ,{p\T\) , ) \dx < Ce l i l + (3.5.89) Jo 
using (3.5.8), (3.5.72), (3.5.89) and Sobolev's embedding theorem W^̂ ^ ^ L⑷， 

we have 
l i � V U l L o o a � ’ f ] ) < Celil + 

and 
IWrVUlLS < C2oe4(l + llp(r'ii).IU-) + Cei, (3.5.90) 

if C20C4 < then we can obtain that 

11"(八;MliS < Cei + Ce4. 
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Hence we can get (3.5.79) and (3.5.81) immediately. From (4.2.8), for x G 
[—,Mj, we nave o 

fM pM 
< C{ / + C\\g — + / p'r'uldxY^ 

JQ Jo pM pM 
+ / u'dx)"^ + C[ / - a ' - rlfdx]"^ + Ca^ 

JQ JO 

<Ce4. 
M For X G [—,M], we have r > C > 0, by 丄’上 we have o 

^ C rM I'M 
-< —(/ \u\dx + / \ux\dx) r r JM JM 

< I'M 
Jo 

thus, we get 
u 

For X G [0, —J, we nave o u 
.3 u)ydy. r r^ 

From the previous estimate, it is easy to obtain 

hence we have u, 
We finish the proof of the Lemma 3.5.10. 
Now we can choose 

• 

ei = Co Co + {C5 + Cg + Ci7)e4 + Cucl, (3.5.91) 

if 
+ 字 + c ? �+ 4 ^ + 4 熟 + (2C.0 + • e * < 

g OS Oil (3.5.92) 



Some Topics On Compressible Navier-Stokes Equations 95 

Using the obtained Lemmas 3.5.3-3.5.14，we can proof the Claim 1. Finally, we 
can get T* > T and the following Lemma by using of the classical continuation 
method. 

Lemma 3.5.15 Under the assumptions in Theorem 3.2.1 and a(l + T) < cq； the 
solution (j),u) satisfies the estimates (3.5.8) —(3.5.11)； (3.5.16)—(3.5.18)； (3.5.29)； 

(3.5.40) — (3.5.44), (3.5.56), (3.5.63)； (3.5.68) — (3.5.70) and (3.5.79) — (3.5.81) 

for allte [0, T]. 

Remark 3.5.16 For A(p) • 0，we cannot obtain \\pr^Ux\\Lo°{[f,M]) directly from 
the equation (3.1.9)2. However, we can derive the uniform bounds 
by using of (3.5.54), where 0 < 0 < 1. Once we obtain this result，we can use the 

11 
similar argument to obtain ||一 |Iloo([警’m])' 

3.6 Global existence 
From Lemmas 3.5.3-3.5.15, we obtain that the solution {pa, Uâ  To) exists on 
[0, M] x [0,T] and satisfies 

<Pa(x,t)<C{M-x)'^, (3.6.1) 

+ C'^x < rlix, Cx, (3.6.2) 

nM 2 rr'lpyaid.Ua)' + -i]dxds < C, (3.6.3) 

PM 
sup / X' 

te[o，t] Jo 
2+a nM (M - x) (pa - poofjxds < (7, (3.6.4) 
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/ M fT fM 
r ^ + i a力血+ / / [plrl-^'^iu^t, + r--\uar,]dxds < C, (3.6.5) … … Jo Jo 

Ur. 

厂a 
(3.6.6) 

fM 2 pi fM 
sup / + 血+/ / {uaftdxds < C efo,ri Jo 厂a Jo Jo 

T rM 

拓[o,r] 

�M sup / (pa)t<^X < C, 
tG[0,T] J o 

where x e [0, M\ and t e [0, T 
Let a ——0，we have 

(3.6.7) 

(3.6.8) 

{pa,Ua, ra) (p, u，r) in C([0, M] x [0，T]) 

2+Q； , 1 , . 1 > � * 2 + a , , , �i a; 6 (M - x)^{pa)x x—{M -
in L^([0,T];L2[0,M]) 

Pa{rlua)：, ^ in M] x [0, T 

Ta 2 dtUa A r 了 dtU i n T ； 1 / 0, M 

PaT^ {Ua)xt pr了U^^t 切 ([0, M] X [0, T 

dtPa ^ dtp in L^{[0,T];L%M 
where {p, u, r) is a weak solution to the system (3.1.9) — (3.1.11) on [0, M 

[0,T] and satisfies the regularity estimates (3.6.1) — (3.6.8). Since the constant 



Some Topics On Compressible Navier-Stokes Equations 97 

C is independent of T, we can extend the existence interval [0, T] of the solution 
to [0, oo), and obtain the global existence of the solution to the system (3.1.9)— 
(3.1.11). 

3.7 Uniqueness 
We can use the energy method to prove the uniqueness of the solution in Theorem 
3.2.1. Let (pi, ui, ri){x, t) and (p2, U2, r2)(x, t) be solutions in Theorem 3.2.1, then 
we have 

C-\M-x)^ <Pi{x,t) <C{M-x)^, C-^x'^ <ri<Cx's^ (3.7.1) 

\x-^Ui{x,t)\ + \{M - t)\ < a , i = l,2. (3.7.2) 
For simplicity, we may assume that {pi,ui, ri){x, t) and (p2, U2, r2)(x, t) are suit-
ably smooth. Otherwise we can use the Friedrichs mollifier to regularities solu-
tions. 
Let 

Q = Pi — P2, cu = ui — U2, R — ri — r2. 

Since dt^i = Ui, we have 
J pM 

dt In 
�M 2x~^Rwdx 

�M I'M fM 
<e j + Ce / x'^R^dx. 

Jo JQ 

From (3.1.9)1 and (3.7.1) - (3.7.2), we obtain 

(3.7.3) 

�M J fM 
- / (M- xY^pHx = 2 I (M — x)-'pdtipi - P2)dx 
at In In -Af 
二 2 / ( M - x)-'p(~plrlui, + plrlu2^ -2pi— + 2p2—)dx 

Jo � 1 

/ M I'M 
{{M — x)xlwl + x-hv^)dx + {(M - + x-lR^)d. Jo 

U2 

(3.7.4) 
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From the equation (3.1.9)2 and the boundary conditions, we can get 
d广1 2 

dtl — 
�M 

M 
2
 

M
 +

 

2
 
H
 

w
 

4
 
1
 

r
 

M
 i

 +
 

\—,
 

dx 
pM pM 
/ dx{rlw){pl — pl){rlu2)xdx — / {rlw)xpl[{rl — rl)u2]xdx 

Jo Jo �M fr? - ri)w x{pl{rlu2)x)dx + / 2[rfwu2{ )]xPidx Jo n r2 
�M -M 

+ / d,(riw)(pi - pl)dx + 
Jo Jo J rM pM 

+ 2 / [ w ^ i r l — rl)lp2dx + / — Jo f2 Jo 

r'i - rDwy^dx + I Jo 

Prom (3.7.1) - (3.7.2) and (3.7.5), we have 
^ rM 1 rM pM 1 pM 4 2 / -w'^dx + C / {(M - x)x^wl + x~iw^}dx 

Jo 2 Jo 
pM pM 

<C, {x-'^R^ + ( M - + e / x'^w^dx. 
Jo Jo 

Since 

we have 

�M �M x^w dx < C / w dx, 

/ M 
_ 

M
 

广
 

� m < C / (w^ + {M - + 

Using Gronwall's inequality, we have for any t G [0, T 
作M fM / {w^ + (M - + = 0. 

Jo 

p2)dx 

(3.7.5) 

(3.7.6) 

Thus, we prove the uniqueness of solution and finish the proof of Theorem 3.2.1. • 



Chapter 4 

Local well-posedness of 

Navier-Stokes-Poisson equations 

4.1 Introduction 
The motion of self-gravitating viscous gaseous stars can be described by the 
compressible Navier-Stokes-Poisson system: 

dp 
dt 
dipu) 

+ V • (pu) = 0, 
+ div(yOU � u) + V P == + div(//(yo)Vu), (4丄1) dt 

= Airp, 
where t > 0, a: € p > 0 is the density, t/ G M^ the velocity, P the pressure, $ 
the potential function of the self-gravitational force, and fi{p) > 0 the viscosity 
coefficient. The equation of state is given by 

P{p) = Ap\ 
where A is an entropy constant and 7 > 1 is an adiabatic exponent. In this paper, 
we consider /Li(p) 二 cp, where c > 0 is a constant. Without loss of generality, we 

99 
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suppose A = 1
 

I

I
 

For the spherically symmetric motion, i.e. p(x,t) = p(r, t) and u ( x , t ) = 
X u(r, t)—, where u is a, scalar function and r = 1x1, (4.1.1) can be written as r 

follows: 
Pt + = 0, 

T丄 ^ 47rp put + pUUr + + 
2 ps^ds = {p{ur + -u))^ — 2-p , 

(4.1.2) 

We consider a free boundary value problem to (4.1.2) under the following 
vacuum boundary condition 

p(R{t) ,t) =0 and p(r, t) > 0 for r < R{t), 
and the dynamic boundary condition 

{fi{p)ur-P){R{t),t)=0. 

(4.1.3) 

(4.1.4) 
Since this is a free boundary value problem, so we introduce the Lagrangian 

(mass) transformation to convert this free boundary value problem into a fixed 
boundary problem. We may also assume that the total mass is 47r. Let 

X ps^ds. (4.1.5) 
Then the domain of x is [0, ll. Denoting the Lagrangian derivatives by Df, D^ 
then we have the following simple facts: 

Dtr = u, Dj,r = pr ‘ 
The seconde relation formally leads to 

r = ( 3 / Jo P 
By change of variables, the (4.1.2) convert to 

ATTX 

(4.1.6) 

(4.1.7) 

Dtu + + — 2urD 工 p, (4.1.8) 
or Dtu + + ^ + 2 ^ = 
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with the following boundary conditions 

二 0, (p^r'^D^u- p"^)(l,t)=0, and p{l,t) = 0, (4.1.9) 

and initial value conditions 

p(x, 0) = po(x), u(x, 0) 二 询⑷， （4.1.10) 

and 
Po(x) ~ (1 - x)", as �1， 0 < a < i (4.1.11) 

In order to obtain a priori estimates, we introduce the following cut-off func-
tions X and C . Consider 0 < r �< ri < ”2 < such that 

0 < < ro, 0 < 3d < r2 - n , • < 1， (4.1.12) ro — d 
for small fixed constant d. Now let Xi be the initial position in Lagrangian 
coordinates corresponding to r^, where i = 0,1,2: 

r po{s)s'^ds. (4.1.13) Jo 
Then by the positivity of po, we get 0 < a:o < â i < 2:2 < 1. Denoting the particle 
path emanating from r̂  by ri(t), ri{t) characterizes Xi： 

I 「 油 , … ， 八 . 广⑷ 

Jt .1 
rnit) 

P(s，i)s2t/s = 0，i.e. J p�s’t�s"^ds 二 Xi. (4.1.14) 
The above equality follows from the conservation of mass and can be verified by 
using the continuity equation and 

去 rit)=u(r 制. 

If we assume \u(x,t)\ < iT for all 0 < r < R(t) and 0 < t < T, where T 
is sufficiently small. In particular, d in (4.1.12) will be chosen so that KT < d. 
Then the smallness assumption on the time interval T prevents a dramatic change 
of r in time. 
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Now let X G [0,1] be a smooth function of x such that 

0 < X < 1 and supp(x) C [â o, 1 
X(^) = 1 if < ^ < 1, 
lx ' l< c 

Xl - XQ 
and | x " | < 

Note that 

since 
Init) -ri\<d for 0<t<T, 

ri{t) = ri^ / u(r(T),T)dr, by (2.1.7). Jo 
Then we can deduce that for 0 < i < T, 

x{r, t) = 0 if r < ro — d and i) = 1 if r > ri + d. 

Similarly, we can construct smooth function ( satisfied 

0 < C < 1 and supp(C) C [0’ r) - d 
C(r) = 1 if 0 < r < ri + (i, 

C I C ' I < r2 — Ti — 2d and |C"| < 

( a s a function of x^t satisfies for 0 < t < T: 

t) = I if X < Xl, and ({x, t) = 0 if x > X2. 

We will view % and ( as functions of x, r and t without confusion. Define the 
energy functional 

Csii) is the Eulerian energy and 红(t) is the Lagrangian energy, and 

15) (4. 
1

 I
 
2
 

I

I
 

、
 

s
 

f
t
 



J xo 么 Jxo 
(4.1.16) 

We define the dissipation 

D{t) 二 DEH) + D^it) = E / + x\Diu\'dx 
| a < 3 | J i=l 工。 

+ E t xip'ADlDM'+ 
We suppose the following assumption (K): 

sup { p , I p r ' D ^ u + - | = 1 ^ 1 , \pr'D^u\, < K) 
xo<x<i r r p r 

sup {pMl\drUl\^l\^l\dtU\}<K, 
0 < r < r 2 - d P P 

(4.1.17) 
which indicated what regularity strong solutions should enjoy. It is shown in 
Lemma 4.4.1 that K is closed by i(t). Now we state the main result. 
Theorem 4.1.1 Suppose p, u are smooth solutions to the free boundary problem 
of the Navier-Stokes-Poisson system (4.1.2) with (4.1.3)； (4.1.4)，or (4.1.8)— 

(4.1.9) for given initial data such that ^(0) is bounded and satisfied (4.1.11). Then 
there exists Ci = Ci{K), C2 = C2(K) > 0 and C3 > 0 such that /or 0 < t < 

+ lD{t) < Cie ⑷全 + C2m + Csdtf, (4 丄 is) 
moreover, there exists T > 0 and A = A{T, C î, C*2，<̂3，€(•)) > 0 such that 

sup < 儿 (4.1.19) 
o<t<r 
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\
—
/
 

Xu'dx + 广狄“―1 血 + 条 & 广 x\Diupdx} 
7 丄 ^ .'-I Jxo 

A t/^rn r • n J Xo 

V-̂丄 
+ 5 豆 
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In the following theorem, we establish the local in time well-posedness of strong 
solutions to the Navier-Stokes-Poisson system. 

Theorem 4.1.2 Let the initial data po,以o be given such that ^(0) < oo and 
satisfied (4.1.11). There exists T* > 0 such that there exists a unique solution 
R{t), p{r,t), u{r, t) to the Navier-Stokes-Poisson system (4.1.2) with (4.1.3)— 
(4.1.4) in [0, T*] X [0, R{t)] such that 

sup eW <2^(0). (4.1.20) 
0<t<T* 

Moreover, p{x, t), u(x,t)，r(x, t) serve a unique solution to (4.1.8) — (4.1.9) in 
[ o , r ] X [0,1], 

4.2 Boundary estimates in Lagrangian coordi-
nates 

From the continuity equation in (4.1.8), we have 
fi u p{x, t) = po{x) exp{- / (pr^D^u + 2-){x, (4.2.1) r 

Hence we can see that if Ipr^DxU + 2 - | is bounded, then p is bounded too. In r 
Lemma 4.4.1, we will show that 

sup \pr'D,u + 2-1 < C j m + 浏 + C) o<x<i r 
where Cin depends only on the initial density po and C > 0 is a constant. More-
over, if we let 

M = sup + (4.2.2) 
OCaKl T 

then we have 
(4.2.3) 

Firstly, we will establish the estimate on 以i). 
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Lemma 4.2.1 There exits CK > 0 such that 

^瓜J帅 i=o J恥 

where OLi < CK^E for some constant CK-
Proof: Let i 二 0, multiply the momentum equation by x以，we have 

2 咖 Jxn Jxn Jxn 

105 

(4.2.4) 

+ / 2xu^rDxpdx + / Anxu^dx 二 0, 
•Jxn Jxn ^ 

(4.2.5) 

First we estimate the second, third and fourth terms in (4.2.5): integrating by 
parts and using the boundary condition (4.1.9), it holds that 

[ - f + f 2xu^rD^pdx Jxo JXQ J XQ 

= - / D^{xur'')p^dx + f D , ( x r \ ) p ^ D , ( r \ ) d x - 2 f D,{xru^)pdx 
J XQ J XQ J XQ 

= — / x^r^up^dx — / xDa;(r2u)p7dx + / J XQ J XQ J XQ 
厂 1 fl 广 1 y2 + / / ^ru^pdx + 2 / x—dx J Xn J Xn J Xn ^ 

Xr^up^dx + - I dt XP,- dx + r u)d： •X 

u + / xP nDxuYdx - 2 / x'ru'pdx + 2 / X p c k , 
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and 
—/ y^r^up^dx + / x'p"^Dxir:u)(he-2 -x^vu^pdx 

J Xq J Xo pxi rxi =— -x^r^up^dx + / x' P^f"^ ^xuudx 
JXq J XQ n priit) 广ri � < — / / p\''\drUu\dT} 
- Jro(t� Jroit) 

^ C i n + d f ^ 也 / 广 ⑷ 1 广 ⑷ 2 2 � � 
< — ^ - { sup /9 2 ( / P^rdr + / p r V d r ) 

工 1 -工0 r<ri+d Jroit) Jro{t) 
rri{t) 广1 ⑷ + sup p{ / pr'^\drufdr + / pr^u^dr)} r<ri+d J rait) 人。� 
"Tlit) 

r<ri+d J rait) 
< Ck^E-

For the fifth term in (4.2.5), we can apply the Cauchy-Schwarz inequality to yield 
^TlX , ^ C Xu^^dx < 

'XQ 7*2 — (ro — dy 
Then we get 

dt 

Xu'dxY^' < C a � 1/2. 

r x { � | 2 + + 厂 x { p V | A ^ t f + < CKiT + & & 
J con 2 "7 一 丄 r 

From the continuity equation, we get 
1 /•! XP~^\D,p\^dx < 3 / + — } d x < (ML, (4.2.6) 
n J Xn ^ 

Now let i = 1. Take Dt of the momentum equation to get 
+ r'DtD^ip^) - + 2 孕 = 

9 47rT 
- t V T U ^ ” - - A(学)， 

Multiplying the above equation by x^tu and integrating in x lead to 
x\Dtu\'dx + j : xDtur�D人拳 

(4.2.7) 

/-i 2 4:7tx 
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we estimates above terms one by one as follows: 

J XO J XQ 

= - f jx'Dtur^p'^-^Dtpdx-7 f 
J Xq J XQ 

+ f x'Dtu{p^r^DtD,u)dx + [ 
J Xq J XQ 3 .1 

= xP^r'lDtD.ul^dx 
i=i 人。 

For Ii term, we can use the assumption in (4.1.17) and change coordinate variables 
to obtain 

| / i | = \- f 7 X ' 认 w V — i 伪 S CkCE. 

For h term，we have 

I/2I = 1 - 7 [\iDMur' + 
Jxa Pr 

\Dtu\' 
< --I x p ' r ' l D M d x + j / x ' - ^ d x + C / x产— 'lApP办 

^ J Xo T Jx^ 
< \ [ \ \ B l ± d x + C sup 丨产- 2丨 [ \ p - ^ \ D , p \ ' d x . 

“Jxo ^ J XQ T xo<x<l Jxo 
(4.2.8) 

Integrating by parts and using the boundary condition, we can estimate the last 
term I3 by changing coordinate variables to derive 

I/3I = I / x'Dtu(p\^DtD,u)dx\ 
Jxo 1 rxi pxi 

= I — y / x'Wp'r'dx + / x'\Dtu\'D,{p'r')dx]\ 
< CkCE-

Now we only need to estimate 
ATTX. 

xDtu{D,{Dt{p'nD,u) - Dtv'D^ip^) - Dt{-)u - Dt{-^)}dx. (4.2.9) 
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The first term of (4.2.9) can be estimated as 

JxQ 
= - f x'Dt{p'r')D,uDtU - j xDtD,uDt{p\^)D,udx 

Jxo Jxo 
< Ck^e + I [ + 2pDtpr^]D^uD,Dtudx\ Jxo 

+ C sup + [ ' x p ' r ^ l D ^ ' d x + CK^E, ^ Jxo xo<x<l r P Jxo 
for the second term of (4.2.9), we have 

—/ xDtT^Dx(p^)Dtudx = - 2 7 / xrufP—iDxpDtudx 
JXq JXo 

广 U _ 
=-27 / x-r^DxpDtudx Jxo r 
< 2 7 sup f x l D M ' d x } , 

^ J xq JXQ 
the third term of (4.2.9) can be estimated as follows 

u Dtu u — / x'^DtuDt(^)udx = 4 / X — ~ - d x 
Jxo 厂 Jxo T r r 

u..DtU.^ I y? J 门 ,1/2 f i \Dtu\' < 4 | - | { / X-^dx + C sup l - l / X 
3；0<3；<1 ‘ Jxo T r O Jxo ‘ 3；0<3；<1 ‘ JxQ 

and for the last term, it holds that 
/ I 4:Ttx X — / xDtuDt{^-)dx = Stt / x-^uDtudx 

Jxo T J Xq ^ 
< \ ( ~ f x^dx. 

dx. 

8 ^ 0 — (ro —沟2 人。A — 
Hence after absorbing the viscosity term into the left hand side and using the 
assumption of (4.1.17), we prove the result for i = 1. 
Now let i = 2,3. Take D\ of the momentum equation to get 

Dt+iu + r'DiDUpV — + 2 宰 

“ 1 9 ATTT 
= - DPr'D^p^) - Di-^{-)D{u} - Di{—) 

j=o 
(4.2.10) 
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Multiplying the above equality by x^lu and integrating in x, we have 
(\\Dlu\Hx+ f xD\ur^D,Di{p^)dx ^ ^^ JXO JXQ 

-f\DiuD,{p'r'D,Diu)dx+ 
J XQ Jxo ^ 

j=0 人 0 r 
— f \ D i u D i { ^ ) d x . J xo T 

(4.2.11) 
Integrating by parts and using the boundary condition (4.1.9), the second term 
and third term of (4.2.11) can be estimated as follows: 

—f x'Diur'^Di{p^)dx + f x'DiuD^Diup^^dx 
人 人 。 1 (4.2.12) 

Xo J Xo 

The first two terms can be bounded by CK^E by using the change of variable. So 
we only need to estimate the third term of (4.2.12). Prom the continuity equation, 
we have for 0 < i < 2, 

n r p = -p ipr 'D^Diu + - Yu (4.2.13) 
0<j<i,0<k<i 

hence 
f XP~^\Dip\'dx < Ck^l, for 1 < j < 3. (4.2.14) 
J xo 

Then using the same idea as in (4.2.8) and (4.2.13), we can estimate the third 
term of (4.2.12). Note that each term in the RHS of (4.2.11) involves only lower 
order derivatives. Hence, by summing over i, we get the following 

^瓜•^工 0 斗i=l人0 r 

• 

Next, we estimate mixed derivatives with only one spatial derivative. 
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Lemma 4.2.2 There exists CK > 0, such that 
1 ^̂  ^ r r 2 4ir. 12 2 Djul^ 

T ^ n J xn 

< \ j z f x{p'AD^D\uf + + CK�L + OL2, 
^ 1 Jxvi T 

(4.2.15) 

where OL2 < CK^E-
Proof: For i = 0, multiplying the momentum equation by xDtu and integrating, 
we have 

f x\Dtu\^dx = - f [ xD.{p^r^D^u)Dtudx 

广�Dtu , f^ Attx ^ , A ^ 
- / ~—dx 一 / x^^Dtudjc =z y J 

JXQ T JXQ f Using Cauchy-Schwarz inequality, we obtain 

(4.2.16) 

Ji = — 7 �x p i - � � J Xn •pDtudx 
1 (4.2.17) 

For J2, integrating by parts, using the boundary condition and by changing vari-
ables, we have 

J2 = — / ^p^r'^DxuDtudx — / XP^'^^D^uD^Dtudx 
J XQ JXQ 

= - j : x'p'r'D.uDtudx — H j : 

乙 J XQ JXQ 

Xp'r'\D,u\''dx + IK j : xp'r'lDM'dx + CKU 

where we have used sup < K, and sup | - | < K. 
XQ<X<1 p X0<X<1 r For J3, we have 

(4.2.18) 

J3 = -2 Dtu , 1 d u 2 x ^ d x — 2 X^dx 

< -2Jt 
,2 2x^dx + 2K / xidx 

(4.2.10) 
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and 

- 一 f x 宰 A - < R 譬 血 产 . (4.2.20) 
Jxo ‘ ' 0 ~ " Jxo ‘ 

Then from (4.2.16) 一 (4.2.20), we complete the proof for i = 0. For i = 1,2, 
multiply (4.2.10) by x^l^^u and integrate to get 

J XQ J Xq J XQ 
+ / X — ^ d x 二 — / X 坊 血 Jxo T J x^ ‘ 

j 二0 人。 ^ 

Then all the estimates are similar to the case i = 0. Hence we obtain the desired 
results. • 

Lemma 4.2.3 There exists CK > 0 such that 

E �X P ^ ' ^ - ^ A D i D ^ p l ' d x < (4.2.21) 
J Xr\ 2di 

Proof: Integrating the momentum equation from 1 to x for a: > xq, and using 
the boundary conditions (4.1.9), it holds that 

A ^ + ^ + ^ - ^ l c / . . (4.2.22) 
r Ji r 力 r^ r 法 r 

Multiply the (4.2.22) by and using the continuity equation, we have 
n 7 27-1 1 Dtu Any 
Dtp’ = 1 7 — 厂- j p ^ h + T T + 厂他(4.2.23) 

differentiating (4.2.23) with respect to x, it holds that 
On, 2?/ 

= —tA：(产-1) — — 
n ( 1-1�r%DtU Airy 2u 

—7认(…）乂 + T T + — ~ ~ ^ � d y -
, ATTX , 2u 2D^UP. IP^ {—T + " IT + ] )' 
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. D^u u since Ux{ — ) = T, hence we nave r r pr^ 

2u n . . “ ” (4-2.24) IP' DfU ATTX, 
O ""H A 

Multiply (4.2.24) by xr^D^^ip^) and integrate to get 

"^瓜 JXO Jxo Jxo 
— 7 �x r ' D 沪 、 D 现 2 ， + p��u)d:E — 2 xI^.pI 

Jxo 厂 Jxo 厂 DtU 

We estimate all the Ei as follows: 

J XQ J Xo 
< 272 < 2K 千 

Jxo ^ J Xq 
E2 = —7'广 X/^27-2P�2广 办 < CK F 

JXQ JXQ 

E, = —72(7 — 1)「x r V ) - 2 | Z V | 2 ( 2二 + pT'D,u)dx 
JXQ T 

<CK f 

丑4 = —2/ < C k i ' I xr^p'^-'lD^pl'dx, 
and 
五5 = —7 广 X r ' I W ) 广 i ( 卑 + Jxo — — 

2 / I 4 27-2 n fDtU I 47rx = 1 Xr P^ + —)dx J xn r r 
ATTX 

(4.2.25) 

(4.2.26) 

(4.2.27) 

(4.2.28) 

(4.2.29) 

(4.2.30) 
<7^1 / —)dx\ < CK / x^V飞—2|A^/f d工 
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1
 

1
 

Combining (4.2.25) with (4.2.26) - (4.2.30), we obtain the result for i = 0. By 
using the previous result for t derivatives of u, we can get the similar estimate 
for i = 1. • 

Corollary 4.2.4 There exists a constant CK > 0 such that 

(4.2.31) 

Dtu� 

for z = 0, 

Proof: From the equality 

(4.2.32) 

= Dtu + + 与- 2 p r D , u — 2~ 

and the assumption (4.1.17), we can easily obtain the (4.2.31) for i = 0. 
Rewriting the above equality, we have 

+ 2 ^ ) = Dtu + + ^ + 2D,PTU pu A-KX 

then we can get (4.2.32) for i = 0 by integrating in x. 
Similarly, we can derive the estimate for i = l. 
Now, we present the weighted estimate of D^p. 

Lemma 4.2.5 There exists CK such that 

2di 

• 

亡�X p ' - ^ r ' l D i D l p l ' d x < CKL. (4.2.33) 
„_n J Xn 

Proof: Differentiating the continuity equation with respect to x and using the 
momentum equation, we have 

B.n^^p + ^ + - ^ p ^ - ^ D I P - 7 ( 7 - (4.2.34) 
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Multiplying (4.2.34) by xp^^r^D^p and integrating in x, we have 

•J Xq J JJo 
— / V v D � p Z y学 + 宰 + 宇 } 办 = 亡 尺 . 

J恥 r 厂 r i二 1 
For Fi term, we have 

t/xo J Xo 
D t p , “ ‘ ‘ 

(4.2.35) 

< 27 sup XQ<X<1 p X X / V | D � | 2办 + 4 sup 1-1 / J xq r Jxq 

Using the same idea with Fi, we can estimate F2 and F3. 

F2 = ~ t X7(7 -

(4.2.36) 

< 7 ( 7 - 1 ) sup / xp'^- ' \D,p\\Dlp\r 'dx 
xq<x<1 J XO 

< 7(7 - 1) sup 
Xo<X<l Jxn Jxn 

Dlpl'dx). 
(4.2.37) 

Fs =-J xp'-'-'r'lDlpl'dx 

< 7 sup 
Xo<X<l 

for the last term F4, by a simple computation, we have 

=—广 XP^^r^Dlpi^ + 与 — — i ^ ) 办 pv- pr' 
一2 x P �電 ^ 

JxQ r r 

Jxn P' -I 

(4.2.38) 

(4.2.39) 
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Hence, we need to estimate Hi, i = 1,2,3. 
For H飞,we have 

Hi 二- XP"则lA DtD^u ATT 2DtU l^TTX + pir pr' )dx 

< sup I产-i | ( / xP^ADtDM^dx+ / x p ' ' A D l p ? d x ) 
J XQ Jxq 

+ sup I产-
X0<X<1 J XV, r Jx 

dx) 

+ 27r sup I xp ' ' r ' \D lp fdx ) 
X0<X<1 J Xr, JXQ 

+ 87r sup \p 2 |(- — 
JXQ 

also, for 丑2，we have 
H 2 < 2 sup + sup I产—VAtpI 

Xp"^ADlp\'dx + j : xp'r'Mdx), 

and 

< 4 s u p |/̂7丨（/ — iro<®<l Jxo - a) 

(4.2.40) 

(4.2.41) 

Xp'^-'r'Mdx). 
(4.2.42) 

Combining (4.2.35) with (4.2.36) - (4.2.42), we finish the proof for i = 0. Using 
the similar argument, we can derive the result for i = 1. • 

We can also obtain the mixed derivatives of u with three spatial derivatives. 

Corollary 4.2.6 There exists CK > 0 such that 

(4.2.43) 

f x\pr 'D,(pr 'D,(p 'r 'DtD,u))\^dx < Ck^l- (4.2.44) 
J Xn 
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Proof: Prom the momentum equation, we have 

= D^pDtu + pr^D^p�+ -

by a simple computation and integration in x, we can obtain the result for (4.2.43). 
Similarly, we can get (4.2.44). 

The following Lemma gives the estimate to pure spatial derivative terms D^p. 

Lemma 4.2.7 There exists CK > 0 such that 

i i j ^ X P 〜 仏 CkL. (4.2.45) 

Proof: Taking D工 in (4.2.34), we get 

崎 + D ^ ^ + 学 + + 7(7 - + jp^-'DIP 

+ 7(7 — 1)(7 — + 27(7 — = 0. 

(4.2.46) 

Multiplying (4.2.46) by xp^^r^^D^P and integrating over [a;。，1], we have 

£ Xp'-^r^'lDlpl'dx 二 I £ 办 

-37(7 - 1) /I - 7 f x / V V - ” 坊 工 
JXq J X^ 

—7(7 - 1 ) ( 7 - 2 ) / xp'^r^'Dlpp-^-'iD^pfcix = ^ A,. 

For Ai, we have 

1 •̂利 1 (4.2.47) 

< 4 7 sup 1 ^ 1 f + 6 sup | - | f 
X0<X<1 p J XQ r J Xq 
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M = - f ^p^^r^^DlpDli^ + 与 + ？ 

J XQ 厂 厂 t/xo 厂 

Jxo r r 人 。 "r4 
+ r X产一DIPDZ(华 + — —与 

Jxo — — pr? 
< Ck^L. 
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(4.2.48) 

成 二 - 3 7 ( 7 - 1) / 

< 3 7 ( 7 - 1 ) sup (I 广、 2 7 - 1办-丨)( / % � 1 2 | 坊 … M f \p '^r ' \Dlp\ 'dx). , xo<x<L JXQ JXO 

and 

sup I 广 1| f p ' ^ r ^ ' l D l p 
ajosccsl Jxn 

^dx. 

(4.2.49) 

(4.2.50) 

A = —7(7 —1)(7 - 2) / 

< | 7 ( 7 - 1 ) ( 7 - 2 ) | sup ( I 严 V D � f 
XQ<X<1 Jxn Jxn 

Hence, collecting (4.2.47) - (4.2.51), we obtain the (4.2.45). 
(4.2.51) 

• 

4.3 Interior estimates in Eulerian coordinates 
In this section, we will obtain some interior estimates of “ ( t ) . Away from the 
vacuum boundary, p is expected to be strictly positive and classical results of 
the Navier-Stokes theory can be applied. Recall the full Navier-Stokes-Poisson 
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system (4.1.1): 
r 生 

dt + V . {pn) - 0, 
+ divOu (8) u) + V P = - p V ^ + div(/i(^)Vu), dt 

= 47rp, 
X where u(x) = u(r)-, x = (xi,x2, X3), r = |x| 

Lemma 4.3.1 There exist constants CK, C > 0 such that 

I f ^ ^ E + I d e < CK^E + + OLs, 

where OL3 < CK^L for some CK-
Proof: Multiply (4.1.1)2 by Cu , use ( 4 . 1 . a n d integrate to get 

嘛 

1 
C/叔} + / CplVupcfx 

+ 

4 兀 J ( y 屯 Vdt 办 dx + - y (dtp\u\^dyi - J VCpVuutix 
J CP{U . V)u . u d x + j VC/u( ix + J VC^pufix 

1 r VC^'V^f^ix. ATT 
By symmetry, we have 

. 1 

(4.3.1) 

2
 r

 

\
—
X
 

2
 

r
 /__\

 

\
—
/
 

s
 

.
p

 

/
 

r
x
 H

 c
 

1
 

A
 

+
 

a
-
 u
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 ̂

 

7
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 ̂

 2
r
 

t
 

？

 

2
P
 

J

 
2
 

J
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—
 2
 -

-
p
 ̂

 

e
 I
I
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1

 

勺
 

V
 d

 c
 

b
 rr
 

1
 

^
 

一一

 

V
l
 

- F r ' d r 
.u < C s u p I / - / + C / CPH^R^DR, 

0<r<r2-d J J r 

where we have used the Cauchy-Schwarz inequality and for r < r2 — d, 
1 厂 1 1 / ps^ds < - sup \p\, 
厂 Jo 0<r<r2-d 
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and 
,1, ^ , 1 sup | - | < sup I — le 

Q<X<X2 P 0 < X < X 2 PO 

MT 

Other terms can be estimated as follows: 

I丢 f Cd,p\u\'dx\ = / C’U|2也I < i sup 
2 Q<r<r2-d P 

Cpjupcbc, 

V(pVuudx\ < C 
— — 2d 

CX2 

\pr^DxUu\dx 
C < / x\u?dx) 

r2-ri- 2d J吻 Jxo 
< c u f l . 

Cp{u . V)u . u叔I < sup / C/o|Vupcix + / C)0|up(ix) 
0<r<r2-d J J 

/
n fX2 

•Cp^u叔I < ^ / P^-'\u\dx 
'厂2 — n - 2d 人 1 

< C sup / \u\'^dx}. 
<X<X2 J XI J XI 

r, 1 r2 -ri - M xi<x<x2 JXI 
Hence we get the following zeroth-order estimate 

{ J Cp|u|2叔 + ^ J Cp^d^} + J J Cp|Vu|2c?x < CidE + OL, (4.3.2) 

where OL < Cx^in^L, and CK,in depends also on the initial density po. The 
higher derivatives (up to third) can be estimated in the similar way. Let d be 
any Eulerian derivative, we have 

dtdp + Vdp • u + Vdp . du + dpVu -^pW -du = 0 
pdt{du) + dpdtu + a[/?(u . V)u] + Vdp’ + pVd^ + dpVcp = div(5(pVu)). 

(4.3.3) 



Some Topics On Compressible Navier-Stokes Equations 120 

Multiplying (4.3.3)2 by C谷u, using (4.3.2)” integrating to get 

+ 7 J C广2(制2邮 + J Cp\Vdu\'d^ 
= - J VCpVdudud^ - J CVpVauaudx + J 
+ �j (dtp\du\^dy:-'y J ‘fP-MpVdfm奴 i j ‘p叫fNpdudx 
-7 J (p'^-^dpfVudy： ~ 7 J ‘pi�f)Vdmhi- j�dpdtiidudx 
—J C5[jo(u • V)u]dndx — j (Wdp^dudx — J CpVd^dudyi 
—J (dpV^dudyi — J CdpVuVdudx — J VCdpduVudx. 

Note that 

-7 J 1 办Vaufix — j (VdfiWiidx J CdfPVdudx - J (Vdp^dudx 
= j VCdp^ • dudx. 

For another second derivative term - 7 j (p”dpVdp\idx, we integrate it by 
parts: 

1 1 v c 广 + J Cp^-'Vpidprudx+^ J 
Potential term, in principle, lower order and the L? estimate | |炉到< (7||/9||^2 
is useful. Hence we get the following first order estimate: 

J J + 1 Cp\Vdu\^dyi<CKCE + OL. (4.3.4) 

Now we estimate 3rd derivatives. Take one more derivative of the equation (4.3.3)， 

we obtain 
dtid^p) + V a V . u + 2Vdp • au + Vp • d'^u 
+ d^pV . u + 2dpV •du^pV-d^u = 0 

(4.3.5) 
pdtid^u) + 2dpdt{du) + d^pdtu + d\p{u • V)u) + •炉P + 2dpSm 
+ ( N d �+ = a2div(pVu). 
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Multiplying (4.3.5) by C^^u, using (4.3.l)i and integrating, we obtain 

•丢{ J 7 C 广 2 ( 炉 叔 + J + J CPI - J VCpVd^ud^udx 

^ l i l ^ J J - 71 (p^-'d'pVd'pnd^ 
一 2，j (p^-^d^pVdpdudx - 7 J (p'^-'^d^pVpd^udx - 7 J 
- 2 7 y " - 7 j 炉 P•炉 u d x - 2 J (dpdtdud'^udx 

- J Cd'̂ pdiUd'̂ udyL - J C 炉(p(u . V)!!)炉 ucfx — C•炉尸炉 udx 

-2 J (;dpVd^d^ud:si — J (pVd'^^d^ndi^ 一 J 
—J (Vd^ud^pVudx-2 j (Vd^udpVdudx - J VCa^u 炉 pVucbc-2 J 炉 udpVdudx. 

As in the first order estimates, for higher order estimates, either we use the 
integration by parts or they cancel each other. Eventually, we obtain the following 

(4.3.6) 
Taking one more derivative of the equation (4.3.5), it is routine to have the 

following high energy inequality: 

臺差{7 / C V p f d x + I + I J CH•炉 updx (4 3 7) 
where comes from the Gagliardo-Nirenberg inequality: 

to treat the nonlinear term such as J d"^pdtdud^udx. Now we finish the proof of 
the Lemma. 
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4.4 Weaving the estimates 
In this section, we will verify the assumption (4.1.17) to show that energy esti-
mates can be closed for 0 < t < T where T is sufficiently small. 

Lemma 4.4.1 Suppose (p, u, r) is a smooth solution to the Navier-Stokes-Poisson 
system. Then there exist T > 0，Cin — C(po) > 0 such that K < + 
^{t) + C) for ^ <t <T, where C > 0 zs o positive constant. 
Proof: In the view of (4.2.3), we have 

Poe 

With the bounds of p, and 

po(x)�（1 — as X 

we can estimate \pr'^Dxu\. Note that 

where 0 < a < 
LI 

sup \pr^Dx'u\ = sup{ sup … s u p 丨/？？-^/^^；！^丨} 

0<a;<l 0<r<ri+(i a;i<a;<l 
Applying the Sobolev imbedding theorem, we have 

sup l a H < / I•迄u|2dx” 
0<T-<ri+(i i二Q JBr̂ +d 
< sup | 4 = l E ( / •糾 2 叔)羞 

0<r<ri+d VP g JBr.+a 
< Cine卿Ut)�. 

From the equation (4.1.8)2，we have 

(4.4,1) 

Integrating the above equality over [x, 1] for 0： G 1), we have 

= -7 f p'-'Dypdy- f ^ d y + 2p- + 2 f Dy(-J X J X r T J X r )pdy - 与 dy, 



Some Topics On Compressible Navier-Stokes Equations 126 3
 

2
 

1
 

hence we get 
ry I /-i D+u 2 f^ u 1 /"I 47ry 

"—认u = P〜如--丄7如—ph D拳--丄 

and 
sup Ipr^D^I < O^eMT(红⑷ 1/2 + q 

Xl<X<l 

(4.4.2) 
Combining (4.4.1) with (4.4.2), we have 

sup \pr'D,u\ < C虹e似T(纷+ 口). 

0<x<l 
Once we obtain the estimate of sup \pr^Dxu\, we can now get the bound of 0<a;<l 
sup o<x<i r 1/f XI XL sup | — | = siip{ sup | - | , sup | - | } . 

o c c c l r 0<r<ri+d T xi<x<l T 

Using the same argument as in (4.4.1), we can get 

sup l- l < 0<r<ri+d T (4.4.3) 

On the other hand, 
,u, sup | - | < C( / \u\dx+ / \D^u\dx] 

X1<X<1 T 人 1 Jxi 

化 广 ( a ⑷ 妾 + 

Collecting (4.4.1) — (4.4.4), using (4.2.2), we get 

(4.4.4) 

By Taylor expansion, 
(2MT)' M - cum''+CO E < cum'+o) 

for sufficiently small T, we can obtain that 
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hence, we have 
M < Cin{i{t)^ + C) for 0 < t < T. (4.4.5) 

Because of (4.4.5) and Taylor expansion, we can derive for sufficiently small T, 
sup \pr''D^u\ < + C), 

0<x<l 

and 
sup 0<05<1 

u, 

(4.4.6) 

(4.4.7) 
Integrating (4.2.7) over [rc, 1], where x G [â i, 1)，we have 

r^DyDt(p^)dy 一 pr^DtD^u = - ~—[ 
P— Jx 

Dfudy 2 

pr^ Jx 
J
u
 

作
2
 

n
^

 r
 

1
 i

 2
 

1 
pr 

1 
pr 

then we have 

pr'^ Jx 2urDy{p^)dy 
P” Jx 
1 

pr ‘ 
2 Dt{-i:)udy 

4 7 r A ( i )办, 

sup 
Xl<X<l 

pr'D.DM < Ce蕭(彻 3 + i{t) + C), 

Using the same idea as in the estimate of sup we have 
0<a;<l 

sup 
o c a k l WDtDM < Ce'^^m'^ + m + CO. 

Once we obtain (4.4.9), we can easily obtain 
Dtu sup 

0<a;;<l 

(4.4.8) 

(4.4.9) 

(4.4.10) 

1. Because the cutoff function x 
XQ < X < XI should be estimated 

Next, we estimate in xq < a:； < 
values 1 only for xi < x < 1 ， f o r 
in Eulerian coordinates. Note that tq — d<r<ri-\-d covers xq < x < xi, we 
have 

sup < sup{ sup sup 
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 2

 
1
 

Applying the Sobolev embedding theorem W '̂̂  ^ and H51der inequality, 
one gets 

Ti+d pri+d 

< 
/

ri十a 广1十a 
— . j-d Jro-d 

2 pri-\-d 广 n+d 
d r ) �/ + / 汰 斤 1 J rn—d Jro—d 

Jro-d r 
< 聘Ut) 

(4.4.11) 
In order to estimate sup we need following two Lemmas. XI <X<1 
Lemma 4.4.2 There exists CR > 0； such that 

I f t f : < C k _ + U t � h (4.4.12) 

Proof: From the equation (4.1.8), we have 
^ ^ n / �� ^ ^ u DfU ^TTX 
DtD.P = -D^n - 肌P; -音 

Multiplying the above equation by XDXPP^^'^T"^ and integrating over [a;。，1], we 
have 

- �x i w ) a ^ p 产 - 办 — 2 广 xD^p'tD^pp^^-'r'dx J xo Jxo r 

JxQ r JxQ T 《=1 

For / i , we have 

| / i | = | - 2 r - I f X(27 — J XO ^ J XQ 

<c s u p l - l + C s u p 1 ^ 1 f x 产 工 ， 
a;o<a;<l r JxQ X0<X<1 P JXQ 

(4.2.10) 
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For I2, one can get 

I/2I < C I xp ' - ' lD^pl 'p ' - ' - ' rUx < sup I广i| / 
X0<X<1 JxQ (4.4.14) '330 

and 

Making use of 
I/3I < C sup l- l I 

XQ<X<1 厂 JxQ 
(4.4.15) 

p �( 1 _ as • �1 for 0 < a < Zi 
we can estimate I4 as follows: 

| /4 |<6^ sup r xp'^-'lD^plr'dx 
X0<X<1 ^ JxQ 

<G sup I ^ K 
X0<X<1 厂 JXQ JXQ 

For /s, we can easily obtain that 

(4.4.16) 

I/5I S Ĉ ifCL�: (4.4.17) 

Combining all the estimate from (4.4.13) to (4.4.17), we finish the proof of this 
Lemma. • 

Lemma 4.4.3 There exists CK > 0； such that 

(4.4.18) 

Proof: From the equation, we have 

DtDlp + 7(7 - 1 ) 广 + 7广 1/)》+ D“驾 + ̂  + = 0. 
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Multiplying the above equality by xp4’—�Dl^P and integrating over [â o, 1], one 
can get 

会 I L狀丨坊厂丨工-会人洲严 I — ’丨烤厂丨
2
"工 

-7(7 — 1) 
J XO ,DtU inx 2Dxpu 

XDX(—Y + + 
J.2 厂 4 r 

< C sup X0<X<1 l-l + C sup r Jxn xo<x<l p 

For Ji，we have 

Jxn 丄 Jxvi 

) 

(4.4.19) 

For J2, one can get 

\J2\<C sup 广 广 2 | 认州坊 + 6 办 

怎冗 J Xq 
C sup f xp'^-h'Mdx), 

Xo<X<l J xo J XQ 
(4.4.20) 

< 

and 

For J4, we have 
IJ3I < C sup \p' 

X0<X<1 
(4.4.21) 

飞 f i 47-1 8n2 / DtDa^u 4兀 2Dtu 167ra; 
Jxn ‘ ‘ 

J XQ r 厂 J XO 

二 E段. 

pr 

(4.2.10) 
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For each Ei, we can estimate as follows: 
E ^ < c sup f f x p h ' \ D , D M ' ' d x ) 

JxQ Jxo 

+ c sup f \ p ' ^ - ' r ' \ D l p \ ' d x ) 
X0<X<1 Jxo Jxo 

+ C sup 
a;o<a;<l Jxo Jxo ^ 

+ C sup l/.i'^-^K + f ' x p ' ^ ' d x ) . 
X0<X<1 Jxo v o 一 a) Jxo 

丑2 = 2 r + 4 广 xp^^'^r^DlpD^uD^pdx 

(4.4.23) 

<C7 sup l- l I sup sup \pr''D,u\ 
xo<x<l T Jxo xo<x<l XQ<X<1 

(4.4.24) 

and 
u, E 3 < C sup | - | sup IP xo<a;<l T xo<x<l 

_ (ro —妒 

Hence from (4.4.19) to (4.4.25), we obtain (4.4.18) 

(4.4.25) 

• 

Now we are in a position to prove sup By using of Sobolev 
X\<X<1 

embedding theorem, we have 
sup V A c p I < C{�+�|a^(/A"Vd�|血） 

Xl<X<l 
'XI 'XI 

<C sup f +C f 
X1<X<1 J XI J XI 

'XI 'XI 

<C sup + C( I 树 ^ 圳 p-V-4 剩 i 
Xl<X<l 

'XI 'XI 'XI 

J XI Xl<X<l J Xl J XI 

(4.2.10) 
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Combining (4.4.11) with (4.4.26), we conclude that 
sup \pr^D,p\ < Cinim ^ ^(t)'' + Q for 0<t<T, (4.4.27) 

for small enough T, Now we have finished the verification of all the Lagrangian 
Q terms in (4.1.17). For Eulerian terms, we only give the estimate for sup | | , 0<r<r2-d p 

Other terms such as — and dtu can be estimated in the same way by using the P 
change of variable: dt = Dt — pr^Dx in the overlapping region to estimate them 
in Lagrangian interval xi < x < X2- First, we observe that 

sup l-l < Qne^^, Q<r<r2+d P 
SO it is sufficient to compute sup \drp\. We know that 

0<r<r2—d 

Since 
sup = sup{ sup \drp\^ sup \drPW-

Q<r<r2—d 0<r<ri-]-d ri+d<r<r2—d 

sup \ d r p \ < J 2 U 胡* 

< sup 丨 / 广 2 | � a x / f 叔 (4.4.28) 

Involving that D^ ( p r ' D ^ p ) + r ' M + pr'Dlp, we have r 
sup \drp\ < sup \pr^Dxp\ <C{ I p r ^ Z )冗+ / | 

ri+<i<r<r2-rf xi<x<x2 J xi Jxi 
1 f 巧 1 

<C( + 办M / |d�2创, Jxi P T J XI 'XI r ‘ J XI 
1 产2 + C sup 1 ^ 1 / 产 - V | D � 2血 Xi<X<X2 P J XI 

rX2 1 . 广工2 
J XI P , J XI 

(4.4.29) 
This conclude the proof of the Lemma 4.4.1. Thus the a priori estimates can be 
closed at this point. 
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4.5 Approximate scheme and local well-posedness 
of strong solutions 

In this section, we will construct the approximate scheme of solutions and ob-
tain the existence, uniqueness of strong solutions. The approximate velocity is 
obtained by solving a linear parabolic PDE in Lagrangian coordinates and the 
approximate density is defined by the flow generated by the approximate velocity. 
Due to the singularity at the origin in Lagrangian formulation, the corresponding 
Eulerian formulation is invoked and both Lagrangian and Eulerian estimates are 
obtained. 
Let initial data po, uq be given and satisfy 

(4.5.1) 
C|(po,no) < ^ for some > 0; 

fR Po{R) = 0，po{r) > 0 for 0 < r < R, / po(r)r^dr = 1. 
Jo 

Introduce a Lagrangian variable x as follows: 

x = pQS^ds, 0 < X < 1. 
Jo 

Define 

We would like to define the sequence {p"", it"", r"} inductively for n > 0. Suppose 
that r" and u^ are known functions. Consider the following linear parabolic 
equation for u糾: 

„ .n+l Air^ 
D t u - ^ ' -叫⑷ 一 1) + 2 & = - { r - f D ^ P - - (4.5.2) 

with the initial data 

and boundary conditons 

力 ） = 0 ， （ ( 广 — 广 ) ( l ， t ) = 0 . 
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By the change of variables 

JX = ；drn, and Dt 二 dt + (Dtr"")drr 
(4.5.2) can be written in Eulerian coordinates (r"" 

1 汰 

1 

t) as follows: 

A 广 

™n�2 

(4.5.3) 

drn. P^ 一 rr -

广 …n)2 
(4.5.4) 

where D t 严 = 义 器 d y and 二 - 广 ( 严 尸 / ^ 、 a . n o ; = / 
(叫 2 

Next, define p奸i by 
n+l )dr}. 

We can check easily that satisfies the following equation 
n+l 

伪广+1 + 料 1 + 时 1 = 0 

In Eulerian coordinates, we can write (4.5.6) as 

线广+1 + Dtrn drn p奸L + 广 时 1 + n + l I 八n+l丨 
,n+l = 0 . 

Lastly, we define by 
„n+l (3 '0 P ,n+l dyV 

(4.5.5) 

(4.5.6) 

(4.5.7) 

(4.5.8) 

We need to show that (4.5.2) is solvable and (4.5.5), (4.5.8) make sense in an ap-
propriate sense. First, we investigate (4.5.2) in a weak formulation in Lagrangian 
coordinates, and establish the regularity of weak solution. Interior regularity is 
standard since (4.5.2) is a linear parabolic bounded away from the boundary, 
while boundary regularity is obtained with weights in the form of integrals. Once 
we have the regularity for we can check p " + i， a r e well-defined. From 
the equivalent in the interior of (4.5.2) and (4.5.4), we can easily obtain the Eu-
lerian regularity. We will study the existence of weak solution in the frame of 
Galerkin's method [41]. Without confusion, we will drop the index n from now 
on. We assume that we have as much regularity of p and r as needed. 
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Firstly, we define the notion of the weak solution, as in [34]. Introduce a 
Hilbert space H. 

/•I 2i/2 H = Cl{ueCS^(0,1) : / + — ？ z ( 0 ) - 0}. 
Jo r 

We can easily see that H C 1). 
Definition 4.5.1 We say u e H) with u' G L^(0,T; H*) is a weak solu-
tion of (4.5.2) provided 

u'vdx+ j p^r^DxuDxVdx-\- f '^^dx = f + 
Jo Jo f Jo . 

. 2 P 4.7TX 

pr .2 )vdx 
for each v E H a.e. time 0 < t <T, and ^i(O) == H* is the dual space of 
H and ‘ = Df 
Lemma 4.5.2 Assume that UQ e L), p'^P G andr'^x e 
There exists a unique weak solution u G H) with u' G L^(0,T; H*) to 
(4.5.2). Furthermore, there exists a constant C > 0 such that 

p ATTX 
< C{\\UQ\\L2 + II-IIl2(0,t;l2) + II —||l2(0,t;l2)). 

(4.5.9) 

Proof: Let ujk = oj]^{x){k = 1,2, • • •) be an orthogonal basis of H and orthonor-
mal in L? when 力=0, i.e, p(0) = /?o, r(0) = ro. Then {uj^} forms a basis of H 
for 0 < ^ < T, where T is sufficiently small, due to the smoothness of /?, r. Fix a 
positive integer m. We seek a function Um '• [0, T] ~~y H of the form 

where 
4(0) = / uo{x)ujk{x)dx, {k = l,2 Jo 

and for each A; = 1’ 2’ 
m 

(4.5.10) 

(4.5.11) 
m,0<t<T, 

/ u'^LJkdx + / p^r^DxUmDxOJkdx + 
Jo Jo 

2UmCdk dx 

印D她dx + 
.2P A-nx 
• pj. J.2 

(4.2.10) 
)u}kdx. 
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Note that 

/ u'm^kdx = 
Jo 

where 

p'^r'^DxUmD^Ukdx + � k 

e以=广 p'r^D,ujiD,uJkdx + ？^dx. 
Define 

f i t ) 二 / r^PD^Ukdx + 
Jo 

2P Attx 
pr 

then (4.5.12) becomes the linear ODE systems 

(4.5.13) 

with the initial condition (4.5.11). By the classical theory of ODEs, there exists 
a unique function d^(t) satisfying (4.5.11) and (4.5.13) for a.e 0 < t < T. In 
addition, Um defined by (4.5.10) solves (4.5.12). 
Multiplying (4.5.12) by d^ and summing up, we get 

Z Jo Jo 厂 

二 f r^PDxUmdx + f (— 一 
Jo Jo pr — 
2 In T /n 

(4.5.14) 
IQ-k^X 2^2 

r -dx. 
Integrating (4.5.14) over [0, T], we have 

rp 1 

州 [ f (P'AD^UJ 
Jo Jo 

max 0<t<T + 2ul 

lho||i2+4(||^||i3(o,T;L2) + 11 〒 丨 Ii2(�,r;巧). 

-2 
A.'KX 

)dxds < 
(4.5.15) 

Fix V € H with < 1. Write v = Vi e span{uJk}T=v and / V2UJkdx = 
Jo 

0, k = 1 ,2 . . • , m . Since {a;^} is orthogonal, < | | f < 1. From (4.5.12), 
we have 

� i 2UmVl ujdx = ^Vidx — — f p^r'^DxUmDxVidx — j 2〜外dx + f r'^PD^Vidx 
Jo Jo ^ Jo 

+ / ( — - ^)vidx < C(\\-\\,. + II — l U ^ + I W k : 
IQ pr r 丄 p r 
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Hence, 
p a t t t 

丨丨格浏yb + + I W W ， 

and fT p 47^2； 
/ \WM\\H*dt < C ( | | u o | | l 2 + \ \ - \ \LHO ,T -L^) + || ——||l2(0,T;L2)). Jo P ^ 

Now, we can pass to limit as m ——�oo. Then we obtain the existence of weak 
solutions. The uniqueness easily follows from energy estimates. 
In the following Lemmas, we provide the regularity of the weak solution. First, 
we establish Lagrangian regularity. Eulerian regularity is obtained by the change 
of variable (4.5.3) in the integral form. We skip the details of here. In the next 
Lemma, we will give the regularity in time. 

d r' Lemma 4.5.3 Assume sup | —| < Ci, sup | —— | < C2 for 0 <t < T. In addi-0<a;<l p 0<ic<l r ^TTOC tion, assume uq e H and r'^D^P + — G T; L^). Then u G L � ( 0 , T; H), 
u' e L^(0,T; L^) with the estimate 

<C(\\uorH+\\u,\\l. 
(4.5.16) 

“\W\\Ut+ sup + 
) Q<t<T 

+ \\r^DxP + + li —llL2(0,r;L2) + 

Proof: Multiplying (4.5.12) by d!^' and summing over k, it holds that 

Jo Jo T JQ r 

hence we have 

ri r since sup | —| < Ci, sup | —| < C2, so 0<®<1 p 0<x<l T 

(4.5.17) 

^ 7n T 
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Integrating (4.5.17) over [0,T], we have 
rwujhdt^ sup 工 

Jo o<x<i Jo r 

< f\pyo\D,uUO)\' + + C r \\u^\\%dt + Jo ^ Jo Jo T 
Pass to limit m ——> oc. (4.5.16) holds and the Lemma follows. 

Now we want to establish regularity in x variable. Bearing in mind that 
(4.5.2) is one-dimensional linear parabolic equation as long as x is bounded away 
from the boundary and hence interior regularity can be easily shown by using the 
standard differential quotients method, i.e. u e 1). Here 妒 represents 
the usual Sobolev space. Recall that 

9 ^ , f^ 2uv , p r DxuDxVdx + / ^cte 
1 • { � ( 4 . 5 . 1 8 ) 

/-i /•! 2P ATTT =/ r^PDMx + / ( - u')vdx, VveH. Jo Jo pr r^ 
We can now integrate by parts in (4.5.18) by approximating H with v G C广(0,1) C 
H : 

2uv - f + [ 
Jo Jo 

•dx 

(r^D^P + 与 + u')vdx, W G 1). 
JO r^ 

therefore, u actually solves the PDE a.e. , and the following estimate can be 
obtained from the equation: 

(4.5.19) '0 
+ f + Jo 

47rrr .o , 
-2 

Note that Dxip^r^D^u) is in so by the trace theorem, p^r^DxU at x = 1 
is well-defined. Thus in (4.5.18), we can integrate by parts up to the boundary 
for the first term to get: 

f ^ ATTT 
二 — / (r^D^P + + u'yvdx, W G H. 

In T 
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We know that u solves the PDE a.e. and hence, we obtain that t) = 0, 
the desired boundary condition. Also, we have proven the spatial regularity of 

Lemma 4.5.4 The weak solution u solves (4.5.2) and u € Hf^ci^, 1) and weak 
boundary regularity is given by (4.5.19). Moreover，u satisfies the boundary con-
dition. 

Using the same idea as the previous argument, we can build the high order 
regularity. 

Lemma 4.5.5 The weak solution u G 1) as long as initial data UQ as well 
as coefficients p^, r" are regular. Moreover, weak boundary regularity is available 
in the integral form. 

Remark 4.5.6 The boundary regularity is weak in a sense that p, r as weight 
functions vanish at x = 1,0 respectively. 

Remark 4.5.7 Since the equivalent of (4.5.2) and (4.5.4) away from the bound-
ary, and the interior regularity in Lagrangian coordinates，we see u also solve 
(4.5.4) a.e. Corresponding Eulerian regularity can be obtained by the change of 
variable (4.5.3). 

Now we are in a position to prove the local-wellposedness of strong solution. 
By using the similar argument as in [34] and the previous a prior estimate ^{t), 
we can obtain the uniform estimates of p几 and r" on n for sufficiently small 
T > 0, which assure the existence of limit functions u, p and r. So we only need 
to show the uniqueness of strong solutions. Let (pi, ui, ri) and (/02，̂ 2̂,厂2) be 
two strong solutions to (4.1.13) satisfying the same initial condition. Considering 
momentum equations for ui and U2 in Lagrangian coordinates: 

Dtui — D.iplrtD^u,) + ^ = -饥 Pi — (4.5.20) 
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DtU2 - D^{plrlDxU2) + ^ = —T\DJ\ 一 (4.5.21) 

2 0 i - W2) 
Subtracting (4.5.20) from (4.5.21), we obtain 

Dt(ui — U2) - - U2)} + '1 o ̂  „ 47rx 9 ^ ^ 47rx 
' 厂 1 飞 2 

+ D,{{P\T\ - plrt)D,U2) — 2^2(4 — 4 ) . 

Multiplying (4.5.22) by ui — U2 and integrating over [0,1], we have 

(4.5.22) 

丄耽Jo Jo 

[ ( r l P i 一 rlP2)D^{ui — U2)dx + [(——巡）(权 1 — U2)dx 
Jo Jo Pin P2r2 

-ATT X X 2){ui — U2)dx 
广2 

一 / (Pi^i - plrl)DxU2D^{ui — U2)dx-2 — — U2)dx 
Jo Jo 

< ( 4 - M P i - r l P 2 \ ' d x ) H f\lrt\D,{ui-U2)\'dxf^ 
Jo Pl^l JQ 

+ /
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PlTl p2r2 dx)' 
1
-
2
 

I
T
r
 

I
 

2
 X

 

2
 1
 

r
 

1
 i

 
2
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+ ( ,1 - P2r加,�2圳i(�plrtmm — U2)\'dxy 

Jo Pl^l Jo 

+ (2 广咖 Jo 
2(lil 一 U2f dx)'-

(4.5.23) 
Now we estimate the right hand side of (4.5.23) term by term. Bearing in mind 
that 

PiOM) = A ) � e ] � ' ( ' i 伪洲+导)P2[x,t) = A ) � e—儿"内咖洲+•办. 

厂1 1 

Here we only provide the detail for / — p2r2)DxU2\^dx since other 
JQ Pl^l 
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terms can be estimated in the same way, 
/•I 1 

r2 
2 4 l ( p i n - p2r2)D^U2l dx < M I 2 4 

Pin Jo Pin 
=M2 f 

Jo 
Pirl 
P2rl 

2
2
 

r
 

(4.5.24) 
dx. Pin 

where M is the bound of 她.Note that 
2 2 pt 

I A — = I exp( / {p2tID,u^ — p^T\D,u^)ds) 
p吸 2 Pin Jo 

- e x p ( - / (p2rlD^U2 - pirlD:,ui)ds)\^ 
Jo 

<C\ i {p2rlD^U2 - pirlD^ui)ds\^ 
Jo 

<C\ f pirl\D^iui - U2)ds\^ + C| / {pirj - p2rl)D^U2dsf 
Jo Jo 

< ct( / pirt\D,{u^ — U2)\'ds) + CM'\ 21 I rPlA 1、丄 12 
P2r2 l)(is| 

Since 
广亡 2 

CM^\ / (吟-l)ds\^ < CMH 
‘Jo P2rl ) I 一 

so we need to estimate 
have 

< CMH < CMH Jo P2rl 
\pirl 

• ......0 P2ri rV 

-^pds + CMH '0 n 
ds. Using the same idea as (4.5.24)，we 

.2 厂I'f -碧 | 2 < Ĉ l j\p2rlD^u, — — 2( J — p2n n 
< Ct{ f plrt\D^(ui - U2fds) + CM' / V 4 - 1 ) 耐 

lo P2rl 
+ Ct 

Since we have 

— U2) 
1 Jo 

a
 n
 

^ + < 1 + e i ^ ^ , a n d CM'j / — l)dsl' < CMH 
n Jo n 

1|2 屯 ri 
we get, for 0 < t < T where T is sufficiently small to be fixed, 

Pin P24 n —l\^ds 

+ ct [ {plrtlD^iu,—以2)2 + 
Jo 

2 i 4 ( u i - u 2 y •)ds. 
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On the other hand, in the similar argument, we can obtain 

— < CM^T + Ct 广 

n — Jo r2 r2 一 JO ri Jq rf 

by the Gronwall's inequality, we get 
iPl^l ^2,2 , , ,2 ^ ^ ^ 2 (… �2 , - U2f ” r 淳 | 2 + - i r 仰 / ( P ? • “ 術 - + 办 

2 '1 厂 1 JO . (1 + CM^T(1 + efMT)力eCM2T(i+e-�). 
Taking this into account (4.5.24), we have 

厂1 1 

JQ PI'^I 

< CM,T 广 — + 
Jo Jo n 

Using the same argument, we can obtain that 

I去 j : I'̂ i - U2\'dx + l \ p l r t m u , — + 2 j � ~ p l V 

< CM,T F [\PLRT\D,IU^ - �| 2 + �2)办叙 
Jo Jo n 

Integrating the above inequality over [0, t], it holds that for sufficient small T, 

that is ui = U2, a.e. Once we deriver this result, we can obtain that ri = r) from 
rx 1 Dtr = u, and pi = p2 from r^ = 3 -dy. Hence we get the uniqueness and 

Jo P finish the proof of theorem 4.1.2. 



Chapter 5 
Discuss on future work 

In this section, we mainly list some related problems on the compressible 
Navier-Stokes equations. 

In chapter 2, we establish a global well-posedness of classical solutions for com-
pressible Navier-Stokes systems in a half-space under Navier boundary condition. 
But we do not know yet whether similar results hold for Dirichlet boundary con-
dition. Since in that case, we cannot use the same argument as in chapter 2 to 
improve the regularity of F and uj, where F is the effective viscous flux and uj is 
the vorticity, due to the less boundary information. It seems that we need a new 
technology to deal with this kind of problem. This is a future work. 

In chapter 3 and 4, concerning the multi-dimensional compressible Navier-
Stokes equations with viscosity coefficient depending on density, can we obtain 
similar results? For spherically symmetric case, we can transfer this problem to 
be a one-dimensional model. By using of the method established for 1-d, we can 
obtain the existence, uniqueness and large time behavior of solutions. However, 
for the higher-dimensional case, it is a quite different story and would be more 
complicated. 
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