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Abstract

In this thesis, we study the motion of viscous compressible fluids in multi-space-
dimension. The main concern is the global behavior of either weak or smooth
solutions to various models with different physical backgrounds. We have ob-
tained the following new results:

1. We establish the global existence and uniqueness of classical solutions to
the half-space problem with the boundary condition proposed by Navier for the
isentropic compressible Navier-Stokes equations in three spatial dimensions with
smooth initial data which are of small energy but possibly large oscillations. The
initial density is allowed to vanish and the spatial measure of the set of vacuum
can be arbitrarily large.

2. We investigate a free boundary problem for compressible spherically sym-
metric Shallow water model with degenerate viscosity coefficients. For small
perturbations to the stationary solution, we obtain the global existence and u-
niqueness of weak solutions and some uniform estimates with respect to time.
Moreover, those solutions are shown to tend to the stationary solution as time
goes to infinity.

3. We consider the vacuum free boundary problem of compressible Navier-
Stokes-Poisson system with density-dependent viscosity. We obtain a local in

time well-posedness of the strong solution in the spherically symmetric case.
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Introduction

It is well-known that the motion of fluids in many cases are governed by
the following famous compressible Navier-Stokes equations with constant viscous

coefficients

.+ div(pii 0 i) + VP = div5, (0.1)
Cli/

Sse

= +diY{pEu + Pu) =div(WT) + div(Su)

Cht

where k = k{T) is the thermal conductivity, S is the shear stress tensor
S = iiiyu™V'u) -i- X{diYu)l,

fi and A are shear and bulk viscous coefficients, respectively. These two coefficients

satisfy the following physical constraints

If both heat conductivity and dissipation of mechanical energy are neglected in
(0.1), then the entropy becomes constant along each particle path. This yields

the following isentropic compressible Navier-Stokes equations:
(0.2)
+ div(/m L) — fidu — + X)Vdwu + VP{p) =0,

where p GM, E R", and P €R denote density, velocity and pressure, respec-

tively.
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The behavior of the solution to (0.2) is closely related to the real world such
as the water in the oceans and the air in the atmosphere. It displays an amazing
range of phenomena from ordinary patterns to turbulent states. Moreover, (0.2)
is a coupled hyperbolic-parabolic system which may be degenerate in the presence
of vacuum. This important feature leads to great complexities and rich physical
phenomena.

In the past several decades, significant progresses have been made for the
system (0.2) not only for special data but also for general initial data, both in
one-dimensional and multi-dimensional cases. For instance, the one-dimensional
problem was addressed by Kazhikhov in [39] for the sufficiently smooth data,
and by Serre in [61] and Hoff [29] for discontinuous initial data where the data
were uniformly away from the vacuum. Concerning the global existence and the
large-time behavior of solutions for sufficiently small data in multi-dimensional
case, the system (0.2) (as well as the full compressible Navier-Stokes equations)
is well-understood in the sense if the data are small perturbation of an uniform
non-vacuum state, then there exists a (smooth or weak) solution which is time-
asymptotically stable (see [49, 50, 51]). Later, Hoff generalized these results for
the discontinuous initial data in a series of papers, see [29, 30, 31] and reference
therein. Recently, Danchin in [15] obtained existence and uniqueness of global
solutions in a functional space which is invariant by the natural scaling of the
associated equations. However, for the large data, there are still many important
open problems, such as, the existence of global solutions in the case of heat-
conducting gases and the uniqueness of weak solutions. The first general result
was obtained by Lions in [44], in which he used the method of weak convergence
to obtain global weak solutions provided the specific heat ratio 7 is appropriately
large, for example, 7> KiEZ_N = 2,3, Later, this result was improved by

N
Feireisl [23] for 7> It should be noted that the density is allowed to van-

ish initially. If the solution has certain symmetry, the global existence of weak
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solutions was obtained for any 7> 1in [37, 39]. In addition, Hoff in [31] also
obtained the global existence of weak solution for 7> 1 if the initial density
and velocity were a general small perturbation of a non-vacuum state. There
have been many generalizations of this results, see [23, 29, 31 * 43, 44, 74] and
references therein. Recently, under the additional assumptions that the viscosity

coefficients kc and A satisfy
A > max{4A, —A},

and for the far field density away from vacuum [p > 0), Hoff [32] obtained a
new type of global weak solutions with small energy which have extra regularity
information compared with these large weak ones constructed by Lions [44] and
Feireisl [23]. Furthermore, there are many studies on fluids in a fixed domain
with various boundary conditions, see [44 .

Once we obtain a weak solution, the natural question is about the regularity
of this solution, i.e, when will the weak solution become strong or even classical?
The partial regularity of two-dimensional periodic weak solutions to the isentrop-
ic compressible Navier-Stokes equations has been obtained by Desjardin in [16
under the condition that the density is bounded, where the quantity called effec-
tive viscous flux, defined as F = (2/i + A)divu — P, plays a key role to prove the
global existence of weak solutions for the compressible Navier-Stokes equations

in [31]. Moreover, the classical elliptic regularity estimate holds

for p E (1, (D) and 0 = R* or T, where G = pfut + u *» Vu) is the convection
term and cj= V x u is the vorticity. However, it is not easy to obtain the same
estimate when Q is a bounded domain because of the less boundary condition for
uwj and F. Therefore, it seems that some new techniques are needed to extend the

result in [16] to the general bounded domains.
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There are also a series of results about the existence of strong solutions. For
instance, Solonnikov obtained in [68] a local existence of strong solutions with pe-
riodic non-vacuum data. If the initial density allows vacuum, it was shown recent-
ly in [12] that the Navier-Stokes equations admited a local strong solution as long
as a suitable compatibility condition is satisfied initially. This result is also true
for full compressible Navier-Stokes equations ([13]). Moreover, Kim and Choe
[14] established a local classical solution in a bounded or unbounded domain Q. of
R”. In their paper, the initial density does not need to be bounded below away
from vacuum and may vanish in an open subset (vacuum) of 0. Then a natural
question is whether such solutions could be globally well defined. In general, one
could not expect such general results due to Xin's blow up results in [73] where it
is shown that in the case that the initial density has compact support, any smooth
solution to the Cauchy problem of the non-barotropic compressible Navier-Stokes
systems without heat conduction blows up in finite time for any space dimension
and the same holds for the isentropic case at least in one-dimension and the
symmetric 2-dimensional case [47]. Very recently, there is a surprising work by
Huang, Li and Xin in [33], where they established the global existence and unique-
ness of classical solutions to the 3-diniensional Cauchy problem for the isentropic
compressible Navier-Stokes equations with smooth initial data which were of s-
mall energy but possibly large oscillation with constant state at far filed which
could be either vacuum or non-vacuum. In addition, Luo in her Ph.D thesis [47
obtained similar results to the Cauchy problem for the isentropic compressible
Navier-Stokes systems in 2-dimensional case. They also find that for spherically

symmetric case, the local smooth solution {p,u) G TL;//'®)(s > 3) has to

blow up in finite time with initial density having compact support. In chapter 2
of this thesis, we can also obtain the global well-posedness of classical solutions
under the Navier-boundary condition for the half-space problem. This boundary

condition was proposed by Navier and expressed the condition that the velocity
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an dfl is proportional to the tangential component of the stress. This boundary
condition for the flat-space case has been applied in a number of problems, usu-
ally for incompressible flows, see Arbogastand Lehr [5], Beavers and Joseph [25],
Caflisch and Rubinstein [10] and SafFman [62] for example.

Besides the fixed boundary, the motion of free surfaces of fluids has important
physical and engineering background, for example, the interface between fluids
and vacuum, the interface between different fluids, etc. The free boundary prob-
lems of one-dimensional compressible Navier-Stokes equations were investigated
in [2, 3], where the global existence of weak solutions was proved. Similar re-
sults were obtained by Okada and Makino [57] for the equations of spherically
symmetric motion of viscous gases. Furthermore, the free boundary problem of
the one-dimensional viscous gas expanding into the vacuum has been intensively
studied, see [56, 57] and the references therein. In particular, in [46], Luo, Xin
and Yang studied the regularity and the behavior of solutions near the interfaces
between the gas and vacuum, and gave a quite precise description on growth rate

of the free boundary.

However, it seems that (0.2) is not suitable to study fluids near vacuum.
In general, there is no continuous dependence on the initial data for fluids with
vacuum states, see [30]. Furthermore, it was proved in [73] that classical solutions
will break down when the initial data had compact support. As pointed out
in [45], the main reason for this came from the independence of the kinematic
viscosity coefficient on the density.

To understand fluids behavior near vacuum, one can choose an alternative
system for (0.1). In fact, if one derives the compressible Navier-Stokes equations
from Boltzmann equation by exploiting Chapman-Enskog expansion up to the
second order, as in [26], one can find that the viscosity is not constant but a
function of the temperature. For isentropic flows, this dependence is translated

to the dependence on the density by the law of Boyle and Gay-Lussac for ideal
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gas as discussed by Liu et al. [45].
In these cases, instead of (0.2), compressible Navier-Stokes equation is of the

following form

f (0.3)

+div—DOu + VP — divOO)L>w) - V{X(p)divu) = 0,
C/t

where a; GM", n = 2,3, P{p) = Ap® 7 > 1, > 0 are constants. D{u) _
t is the stress tensor, /,(p) and X{p) are Lame viscosity coefficients.
In particular, the viscous Saint-Venant system for shallow water is expressed
exactly as (0.3) with n = 2, //(/?) = p, X{p) ~ . 0and P(p) = p~ Shallow water
equations are to describe vertically averaged flows in three-dimensional shallow
domains in term of the mean velocity # and the variation of the depth p due
to the free surface, which is widely used in geophysical flows. This equations
were derived rigorously by Gerbeau-Perthame (see [24]). The global existence
of weak solution with large aptitude to (0.3) remains to be carried under the
Lion's framework of renormalized solutions [44] due to the new mathematical
challenges encountered below. Indeed, the system of (0.3) is highly degenerate
at vacuum because of the dependence of viscous coefficients on the flow density.
This makes it very difficult to obtain the uniform a-priori estimate for the velocity
and trace the particle pathes near vacuum regions. In particular, it is not known
yet whether the vacuum states shall form or not for global (weak) solutions to
(0.3) even if initial density is far from vacuum. In recent years, there are many
studies for system (0.3) in both one-dimensional and higher- dimensional setting.
Global smooth solutions for data close to equilibrium were established in [70 .
Bresch, Desjardins, and Lin [6] showed the [} stability of weak solutions for
the Korteweg system with the Korteweg stress tensor A”pVAp, and their result
was later improved in [7] to include the case of vanishing capillarity {k = 0)
but with an additional quadratic friction term rplulu. Recently, Ansgar Jiigel in

[4] study the global existence of weak solution to compressible quantum Navier-
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Stokes equations for large data. The model consists of the mass conservation
equation and a momentum balance equation, including a nonlinear third-order
differential operator, with the quantum Bohn potential. In their paper, a new
entropy estimate was established in [6] which provided some high regularity for
the density. Mellet and Vasseuer [52] proved the 1/ stability results of [6, 7
to the case r = k = 0. Nevertheless, the global existence of weak solutions of
the compressible Navier-Stokes equations with density-dependent viscosity (0.3)
is still open in the multi-dimensional cases except for the spherical symmetric
case, see [27]. The key issue now is how to construct approximate solutions
satisfying the a priori estimates required in the L* stability analysis. It seems
highly nontrivial to do so due to the degeneracy of viscosities near vacuum and
the additional entropy inequality to be held in the construction of approximate
solutions.

In contrast to higher dimensional case, there are fruitful studies for (0.3) in
one-dimensional setting, where the system (0.3) reads as follows:

Pt+ {pux =0
(0.4

twr + pu + Peyx = mp LA L.

Suppose that n = cff with c and 6 being positive constants. When the initial
density connects to vacuum with discontinuities, Makino, Liu, Xin and Yang
obtained the local existence of weak solutions to Navier-Stokes equations with
vacuum [45, 48]. The global existence and uniqueness of the weak solution when
0 < ” < 1/3 were obtained by Okada in [58]. Later, it was generalized to the cases
for 0 < < 1/2 and 0 < ~ < 1in [76 > 36 respectively. When heat-conducting
effect are considered, Jiang in [35] proved the global existence of smooth solutions
provided that 0 < ~ < 1/4. The global solutions to (0.4) with discontinuous initial
data were obtained by Fang and Zhang in [21]. Recently, if the initial density is
bounded away from zero (no vacuum), Mellet and Vasseur proved the existence

and uniqueness of the global strong solution in [53] for 0 < 0 < 1/2.
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The key estimate for all these results is the uniform positive lower bound of
the density with respect to the construction of the approximate solution. Since
these estimate implies that the second equation in (0.4) is uniformly parabolic in
the fluid region, which yields existence, uniqueness of the solution and long time
behavior. This is the key point to obtain the global existence of the solution to
(0.4) when the initial data connects to vacuum discontinuously in [36, 58, 76].

If the density function connects to vacuum continuously, there is no positive
lower bound for the density function and the viscosity coefficient vanishes at
vacuum. This degeneracy in the viscosity coefficient gives rise to new difficulties
for analysis because of the less regularizing effects on the solutions. A local
existence result was obtained in [77] under the free boundary condition with
0 > 1/2, and global existence result in [78] for 0 < 9 < 2/9 and in [72] for
0 < ~ < 1/3. When the external force is constant, in [59], Okada obtained the
global existence of the weak solution as long as ~ e (0,5/37). It was circulated
in [71] that Zhang and Fang obtained the global existence and uniqueness of the
weak solution when the initial data was a small perturbation to the stationary
solution as long as * G (0>7 —1) A(0,7/2], where 7 > 1 is the adiabatic constant
of polytropic gas. In their paper, the uniform bounds with respect to time of
the density function were obtained. Prom this property, they showed that such a
system did not develop vacuum states or concentration states in the domain for all
time. Also, they estimated the upper bound of the velocity function uniformly
in time and obtained one of the important features of this problem, that was,
the interface separating the gas and vacuum propagated with finite speed. For
1-dimensional shallow water model, that is 0 = 1, I = 2 Dum in [17] also
obtained the global well-posedness of weak solutions. For /{p) = p* (0 > 1/2),
Li, Li and Xin in [42] studied this case for both bounded spatial domains or
periodic domains and showed that for any global entropy weak solution, any

(possibly existing) vacuum state must vanish within finite time. The velocity
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(even if regular enough and well defined) blew up in finite time as the vacuum
states vanish. Furthermore, after the vanishing of vacuum states, the global
entropy weak solution became a strong solution. Recently, the Cauchy problem
for one-dimensional compressible flows was investigated by Jiu, Xin in [38]. In
this paper, two cases were considered. First, the initial density was assumed to
be integrable on the whole real line. Second, the deviation of the initial density
from a positive constant density was integrable on the whole real line. It was
proved that for both cases, weak solutions existed globally in time. In particular,
for the second case, the phenomena of vanishing of vacuum and blow-up of the
solutions were presented and it was also shown that after the vanishing of vacuum
states, the global weak solution became a unique strong one. These generalized
the corresponding results in [42..

Meanwhile, there are some investigations on the large time behavior of so-
lutions for the non-constant viscosity coefficient, for example, [64, 80] and the
references therein. Under zero velocity boundary condition, A.A.Zlotnik in [80]
studied the stabilization of symmetric solutions and the stabilization rate was
evaluated. Later, the result was improved by Straskraba, Ivan in [66]. The one-
dimensional fixed-free boundary problem with a non-monotone equation of state
and self-gravitation was investigated in [19, 81], they showed that the kinetic

energy tended to 0 and the specific volume - tended to a stationary specific
P

volume as time tended to infinity. But these results above strongly replied on
the condition > p > 0. Recently, Zhang and Fang in [71] obtained that
the weak solution for the free boundary problem tended to the stationary one
if 0 G (0,7 — 1)[\—J (0 > 721 In there paper, there was no uniform positive lower
bound to the viscous coefficient /i(p). However, they cannot treat the case when

= 1, -y = 2. Duan in [17] extended their results to the shallow water case, that
is, ©= 1,7 = 2. In [38], Jiu and Xin also investigated the asymptotic behaviors

of weak solutions for Cauchy problem. They proved that if the initial density

14
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po e then the density tended to 0 as t 0o. If there existed a positive
constant p such that po - p E then the density tended to p.

There are also very interesting investigations about free boundary value prob-
lems for the compressible Navier-Stokes equations with self-gravitation force tak-
en into granted, refer to [18, 19, 34, 57, 63, 67, 79, 81, 82] and the references
therein. Recently, Jang in [34] established the local in time well-posedness of
strong solutions to the vacuum free boundary problem of the compressible Naver-
Stokes-Poisson system in the spherically symmetric and isentropic motion. The
main difficulty in their paper is to deal with the vacuum free boundary where
the density vanished at certain rate, which makes the system degenerate along
the boundary. Under the same framework of Jang, we can also obtain the local
well-posedness of strong solution when viscosity coefficients depend on density.
This result is outlined in chapter 4. For the spherically symmetric Naver-Stokes-
Poisson system with density dependent viscosities, authors in [20, 82] obtained
the existence, uniqueness and global behavior of the solution with a general mass
force and a solid core when /z(p) > ~ > 0 and po > p> (. Without the positive
lower bounds on the viscous coefficients, Chen-Zhang [11] established the local
existence and uniqueness of the solution when the solid core » > a. Under the
small perturbation of stationary solution, Zhang-Fang in [79] obtained the global
existence, uniqueness and asymptotical behavior of weak solutions with degener-
ate coefficients and without a solid core. But, in their paper, they cannot treat
the case when 9 = [, j = 2, that is, Shallow water system. In this thesis, I
will study the global well-posedness of weak solutions for spherically symmetric
shallow-water model. By using of a new technology, we can obtain the similar
result. The result is presented in chapter 3. Very recently, Guo-Li-Xin in [28
showed the spherically symmetric weak solutions with stress free boundary con-
dition and arbitrarily large data existed globally in time. In particular, they also

investigated the dynamics of global solutions. It was shown that the particle path
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is uniquely defined starting from any non-vacuum region away from the symmetry
center, along which vacuum states should not form in any finite time. In addi-
tion, the free boundary will expand outward at an algebraic rate in time and the
fluid density decays to zero almost everywhere away from the symmetry center

as the time tends to infinity. Since n > 2 and the viscosity coefficient ji depends
11

on p, the nonlinear term (n — 1)—makes the analysis significantly different
from the one-dimensional case. It would be very interesting, challenging both
physically and mathematically to study the full system without the symmetry
assumption as a free boundary problem. In general case, no result is known for
the compressible gas flow with the free boundary. We will leave them in future
study.

In this thesis, we mainly investigate following problems for the compressible
Navier-Stokes or Navier-Stokes-Poisson systems:

I. Global well-posedness of classical solutions to the compressible
Navier-Stokes equations in a half-space.

This work is motivated by the three dimensional results of Huang, Li, Xin [33]
and Hoff [32]. We prove the global existence of classical solutions in a half-space

under the Navier boundary condition, that is,

(), u x)u™x) = /53(r) > TAx) > 0, for a G dRI-

Concerning this result, there are a few remarks in order:

1. The Beal-Kato-Majda type inequality in Huang, Li, Xin [33] cannot be
applied directly. This inequality holds only for the whole space. In order to deal
with our problem, we need a new type estimate for the half-space, refer to [69 .

2. The far field density p can not be vacuum, that is p > 0. Since for the
Navier boundary condition, we need to deal with some extra boundary terms, for

instance, J + lw\\'Vu\"dx. Hence, we need to estimate ||n|ji>, p > 2.

From the energy estimate, we only have / plul”dx < C. However we can get the

16
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1? norm of u by the following inequality:
I plu\dx < J \p-p\\u\"dx" I plu\"dx.

3. Also, we can obtain the large time blow up behavior of the gradient of the

density.

II. Global behavior of spherically symmetric compressible Navier-
Stokes system with degenerate viscosity coefficients.

This result is motivated by Zhang and Fang in [79] where they consider the
spherically symmetric Navier-Stokes-Poissoii equations with degenerate viscosity
coefficients and without a solid core. Under certain assumptions on the initial
data, they obtain the global existence, uniqueness and large time behavior of
weak solutions.

1. They can only deal with the case that » G (0,7 — 1) f1 (0, —]. In their paper,

Zi
the uniform estimate of

roH )" [Fomll (0-5)
plays a crucial role. But their method to estimate (0.5) will fail when 9 =

1> 7= 2. In this thesis, although we cannot obtain the uniform estimate of

J (e » M])ds, we have the following estimate:

L IW.Z)il» — :r)”IL([*>")ds<oo0. (0.6)

By using of (0.6), we can get the desired results.
2. This result can be regarded as a continuous work of my M.phil thesis, in

which we consider the one-dimensional shallow-water model.

III. Local well-posedness of Navier-Stokes-Poisson equations
This work is motivated by Jang in [34], which concerns a local in time well-

posedness of strong solution to the vacuum free boundary problem of the com-
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pressible Navier-Stokes-Poisson system in the spherically symmetric motion with
constant viscous coefficient.

1. The main difficult is to deal with the vacuum free boundary where the
density vanished at certain rate which made the system degenerate along the
boundary.

2. Since the density will vanish at the boundary, so we need the decay behavior

of the initial density near the boundary, that is

poO)@l— a s a:ll? 0<e<

Under the similar framework of Jang in [3] *> we can estimate the lower and upper
bounds of density and show that it has the same decay behavior as the initial
density near the boundary.

The thesis is organized as follows. In chapter 1, we give some preliminaries
for the thesis, such as some basic inequalities, estimates for differential inequali-
ties and elliptic regularity results. We prove a global well-posedness of classical
solutions to compressible Navier-Stokes equation for the half-space in chapter 2.
In chapter 3, global behavior of spherically symmetric shallow-water model will
be described. We then show that such a system is stable under small perturba-
tions. The chapter 4 is devoted to the local existence and uniqueness of strong
solutions to the Navier-Stokes-Poisson equations. Finally, we will discuss some

further works and future researches in chapter 5.



Chapter

Preliminaries

In this chapter, we list some elementary results which we will use later, such as
some basic inequalities, estimates for differential inequalities and elliptic regular-

ity results.

Definition L0 . Assume U is an open subset ofW", and I <p < oo. If f :

U is measurable, we define

|/pi/P > if 1< p < oo,

u

wm o =ED =

esssup /1, if p =
u

We define L™NU) to be the linear space of all measurable function / ; [/ M for
which WA\LP{u) < oo. And

LIgu) = {7/ :f/ M1uGLP®V) for each V CC UL

Lemma 1.0.2 (Young's inequality)Let a > 0, 6 > 0, p > 1, g > 1, and

-+ 1 =1, then we have
p 9

19
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aP w

ab< — + —.
V0
In particular, when p = ¢ = 2, the above inequality also is called Cauchy
inequality.
Prom the Lemma above, taking a = aci, b = and p= g= 2’ we can easily

obtain that:

Lemma 1.0.3 (Cauchy-Schwartz inequality) Let a > 0, b> 0, e > 0, then

we have

ah < -a™ +
—2 2e

Lemma 1.0.4 (Holder's inequality) Let p > I, g > I, and - + » = 1, if

P 0
fe [/{0) ge Lq(n) then fg G and

Jn
Lemma 1.0.5 (Minkowski inequality) Ler [ <p < oo, f, ge 1]B:t 2 n
fri-gel™iVt), and

\\fghpin) < WAWLP{n) +

Lemma 1,0.6 (Sobolev embedding theorem for bounded domain) Let
U be a bounded open subset of M", and dU is C" let u G /c G N,

1 <p < oo.

I 1 k

(a) if k < El then u G L"iU), where — = , and ||ii|lig(m < C\\u\\wk,p/jj).
p qg p n

where C depends only on k, p, n and U.
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S
(b) ifk> then u e CHZ;]—I’@ere
-+ 1 n’ it ” 1S not an integer,
P P P
I'— any positive number <1, if — is an integer,
P
and < where C depends only on k, p, v, n and U.

Lemma 1.0.7 (Interpolation inequality) Assume 1< s,r,t < 00 and
' — (1 .0 . 1)
N t

Suppose also u G n l/(f}). Then u G I/O‘T) and

r

MEIS] | “(mrize . (1.0.2)

The following well-known Gagliardo-Nirenberg inequality will be used later

frequently (see [40]).

Lemma 1.0.8 (Gagliardo-Nirenberg) Forp >2,qF (1’00) > and r G (2, 00),

there exist some generic constant C > 0 which may depend on q, v such that for

fe ﬂi(RS) and g G"(R” n we have
\\% < Cll/iy , (1.0.3)
3)
<c|M[AAA v L (1.0.4)

Lemma 1.0.9 (Gronwall's inequality (differential form)); Let r}{-) be a
nonnegative ’ absolutely continuous function on [0, T], which satisfies for a.e t the

differential inequality
/14) (4) “(4) + #'(4)- (1.0.5)

where (f){t) and 1 ) are nonnegative, summable functions on [0, T]. Then

" (4) S e«mﬂbﬁﬁ?(O)-z [ ip{s)dsl (1.0.6)
(0]
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Jor allO<t<T.
In particular, if
rf < ﬁ[l »on [0.T], and 77(0) =0 (1.0.7)

then

7 =0, on [0, T
Beside the differential form of Gronwall's inequality, we also have the following

integral form of the Gronwall's inequality.

Lemma 1.0.10 (Gronwall's inequality (integral form)): Let () be a non-

negative, summable function on [0, T\, which satisfies for a.e t the integral in-

equality

m < (7i [ C{s)ds + C2, (1.0.8)
Jo

for constants (7, C2 > 0. Then

(1.0.9)

for a.eO<t<T.

In particular, if

m <ci/ (1.0.10)

for ae. 0 <t <T, then

Lemma 1.0.11 . Let the function y satisfy
Y= 9mely  on DT] 0y =
where g e C(R) and y, be If g{oo) = -0 and

b(t2)-b{h)<No ~ +  Ni(t2-h) (1.0.11)

22
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for alio <ti <t2 <T with some Vo2 0 and Ni > 05 then
1/WSmax{2/[] ,—f}iVD <owmn [0,T],
where " is a constant such that

9{0 < for (1.0.12)

Throughout this thesis, we adopt the following notations for the standard

homogeneous and inhomogeneous Sobolev spaces.

VLR v — koA

MIZMr = WV'uUr.

We derive some regularity estimates for the so-called Lame system:
Lu = -fidu - (A+ A)Vdivw= F in Q, (1.0.13)

where KQ is a bounded or unbounded domain in R™.

First we recall a famous elliptic theory due to S.Agmon, A.Douglis and L.Nirenberg.

Lemma 1.0.12 (Agmon-Douglis-Nirenberg [1]) Assume that Cl is a bounded
domain in E™ with smooth boundary, and letu G Wo'®(0) he a weak solution of the
system (1.0.13), where [<q<oo.lfFe fork >0 thenu G He> (0
and

MWWMMO) A C'lINIwM(n), (1.0.14)
for some constant C = C{q, /z, A, Q,) independent of F.

Then, using the domain expansion and scaling technique, one can easily obtain

Lemma 1.0.13 (Choe,Kim [12]) Let ft be the whole space R3, the half space
IfuE  DI(ft) is a weak solution of the system, then

IMId-< D= (10.15)

for any 1 < g < oo.



Chapter 2

Global well-posedness of classical
solutions to the compressible
Navier-Stokes equations in a

half-space

2.1 Main result

The motion of a viscous compressible barotropic fluid in half-space Jl = & » G M :

xs > 0} can be described by the Navier-Stokes equations

pt +diY{pu) =0, in n x (0,T), (2.1.1)
{pwt +diy{pu @ + Lii+ VP =0, in n x (0,T), (2.1.2)
Lu = —ijdu ——& + AVdm > P = P(p), (2.1.3)

the initial boundary conditions are
{puw\t=0 = {po,uo) in (2.1.4)

™) > X)) LT U (L) > =) F)a on a0, (2.1.5)

24
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pix,t) —"p, ux,t) — a s xt GO0 x (0,T). (2.1.6)

Here we denote by /7, P and u the unknown density, pressure and the velocity
fields of the fluid respectively. The constants ii and A are the viscosity coefficients.
We suppose P{p) = 7> 1, A>0and » > 0, 3/i+ 2A > 0 so that
L = —/iA — (A + /i)Vdiv is a strongly elliptic operator.
In this chapter, we study the global well-posedness of classical solution for the
initial boundary problem (2.1.1) — (2.1.6) with nonnegative initial densities.
Throughout this chapter, we will use the following simplified notations for the

standard homogeneous and inhomogeneous Sobolev spaces.

/B “(1)) s pl={2G1ied 1Y < oo}, e "fhxl
I/njDOBHIT~ " DN=2)">Dv = fue LNWUN2 < 00).

The initial energy is defined as:

Co=f polll+ I (217
J /
where G denotes the potential energy density given by

It is clear that
p)ip- pf < Gi{p) < Cp p)ip- p)1 if 15>0, 0< <P,
for positive constants ci(p, p) and p).
The main results can be stated as follows:

Theorem 2.1.1 For given numbers M > 0 (not necessarily small) and p > p+l,

[>0 suppose that the initial data (po, uq) satisfy
0 < infpo < supA)< p, Wuolll2 <M, (2,1.8)

uoeD'n (po —p0O P@OFP) e (2.1.9)
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and the compatibility condition

-/iAiio - (/i + A)Vdiv?io + VP{po) = hg - @.1.10)

1 L

for some g ED with pg ™~ L . Then there exists a positive constant e depending

onfi, As A s 7°pand M such that if

Co< (2.1.11)

the half-space problem (2.1.1) — (2.1.6) has a unique global classical solution (p, u)

satisfying for any O0<r<T< 00,

O<p[x,t) < 2y0, x e n , t > O, (2112)

we A0, o DY NI T, 09N 1Dy,

(2.1.13)
u € T DN 1205 a™)Nnioce, (Bar) n i o5 a),
and the following large time behavior
Un [ — +p g N+ [VU12)(Ge’t)dx = 0, (2.1.14)

t-"ooj

for all ¢ G (2, 00).

Theorem 2.1.2 In addition to the conditions of Theorem 2.1.1, assume further
that there exists some point xq G O such that poixo) = O. Then the unique global
classical solution {p, u) to (2.1.1) — (2.1.6) obtained in Theorem 2.1.1 has to blow

up as ——>Q@D; in the sense that for any r > 3,
lim = 00.
00

Remark 2.1.3 The boundary condition can be replaced by

{u\x),u\x),u'{x)) = kix){ul(x),ul(x),0),

where kix) > /cq > 0, and k(x) G
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Remark 2.1.4 The solution obtained in Theorem 1.1.1 becomes a classical one
for positive time. Although it has small energy, whose oscillations could be arbi-

trarily large.

Remark 2.1.5 It should be emphasized that in Theorem 1.1.1, the viscosity co-

efficients are only assume to satisfy the physical condition
/i>0 >

while the theory on weak energy solution in [3" requires additional assumptions.

2.2 Local existence and uniqueness of classical
solutions

Using the same argument as in Kim, Choe [13] and the standard elliptic regular-
ity results as in Agmon-Douglis-Nirenberg [1], we can obtain the following local

existence and uniqueness of the classical solution.

Lemma 2.2.1 For p > 0, assume that the initial data {po > 0,"0) satisfy
(2.1.9) —(2.1.10). Then there exist a small time T* and a unique classical solution

(p, u) to the half-space problem (2.1.1) — (2.1.6) such that

{p-p.P-P{p))eC{[0,T*];H),

ve C(lo, T¥]; DInp~) n /™0, T*; b,

Ut e nl2(0 * THD2) ° AUt e

(2.2.1)
Nputt e 2u e
20y e tut e

tutt e 7*ADi) n 12(0 >t ).
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2.3 A priori estimates

In this section, we will establish some a priori estimates for smooth solutions
to the half-space problem (2.1.1) — (2.1.6) to extend the local classical solution
obtained in Lemma 2.2.1. Let T > 0 be a fixed time and (p, u) be the smooth
solution on 0x(0, T] in the class (2.2.1) with smooth initial data (po, ug) satisfying
(2.1.8) - (2.1.10). Now we define a(t) = inin{l,t} and

T

Ai(T) = sup {(7Wul\2) + f [ (7p\u\"dxdt,
fG[0,T] Jo 3

1ji

ANT) ™ sup [ plu\"dx+ [ [ (7"Vu\"dxdt,

€[0T J JoJ
and
MT)4  sup
fefo - T]
where
frAftru-Vif.

We have the following key a priori estimates on {p, u).

Proposition 2.3.1 For given M > 0 and p> p+1, assume that (po, uq) satisfy
(2.1.8) — (2.1.10). Then there exist positive constants € and K both depending on
fiL > X, p, A, 7° p and M such that if (p, u) is a smooth solution of (2.1.1) — (2.1.6)
on 0 X (O, T] satisfying

Su]hp < 2p,

nx[o,

ATLT) + A2(T) < 2(71, (2.3.1)
B{a{T)) < 3K

the following estimates hold

sup_ p < -p, ~i(T) +~(T) <CI  As{a(T)) < 2K, (2.3.2)
nx[o,T] 4

provided Co <
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In the following, C denotes a generic positive constant depending on A, p,

A, 7° pand M, and we write C{a) to emphasis that C depends on a.

Lemma 2.3.2 (Energy estimate) Let {p,u) be a smooth solution of (2.1.1)—
(2.1.6) with 0 < p{x, t) < 2p. Then there is a constant C{p) such that

sup f (Ip\w\" + G{p)jdx+ r f + (h+ dxdt
O<t<T J \2 / Jo J \ J (2 3 3)
+ /] | /[ Ww\dS,dt < Co,

Jo Jdn

AT) <CCq + Cj J a\Vul™dxdt + C J a\ul"\Vul +  \ul\Vu\™dxdt,
(2.3.4)
A2{T) < CCo + CA{(T) +j | + + M Bum +  uWVuiyxdt.
(2.3.5)
Proof: Multiplying the equation (2.1.1) by Glp) and the second equation by
u" and integrating, applying the far filed condition (2.1.4), one can obtain (2.3.3)

easily.

For integer m > 0, multiplying (2.1.2) by a™~ ’ ten integrating the resulting

equality over ” yields

] a"pliifdx = J(-crm GVP + iMTBHu +(A +  fi)a"™Vdivuu)dx
3 (2.3.6)
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Using (2.1.1) and integrating by parts leads to
= —j a™uVPdx =J ((/"(divrit(ir - Pfp) -au‘ VwVP" dx
=(J  a"diYuiP - P{p)dx)t — mer[)[VJ (P - P(p)dx
+] a"Pyidiluf - - + Pdijdjui)dec
< (J ad\Yu{P - P{p)dx)t + ma™'aWP - p)||l2)viral. + )l

< (1(7)\dhm® - P{p)dt + Cip\Wui2 + ¢ @ iV O ) .

(2.3.7)
Integrating by parts implies
— A
M= iia" Aundy
- 7 L Eml v Dz - %t T {dkutdikiu%u’)dx
I\ TA, ANTA
o "N
in
i
J/_H
dt Jdn
(2.3.8)
We need to estimate the boundary term —fial?l We apply the
Jdn
fact that for h e {C" n
/ hix)dS = / [hix) + (G - Dhx;i(x)]dx. (2.3.9

'an JOn{o<x3<i}

Since j, k G {1,2} » wecan use (2.3.26) and integrating by parts in the xi and X2

directions to obtain the bound

Jn
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Hence
M2 <
2 Jdn
v cj teJoflm+ CJ b W)y,
(2.3.10)
and similarly
—(A + /tﬂ‘ y" divudiviu . Vu)dx (2.3.11)
Combining (2.3.7) — (2.3.11), we have
d
J dt Jqq
< cav(fJl—ivco + {Cma' +  Cip)Wulll, (2.3.12)
where
v e
2 2
. (€T Kt (23.13)
2 b2
A+ A
« o aMdivullia - Co-D.
Integrating (2.3.13) over [0 > T] we obtain
"Wl + /_h £ (7"l "dyds
O<t<T Jo J
SCPCg + 7 " uldeds-hC T +
For m > 0, multiplying + div(iA-)) to (2.1.2)", summing with respect to

CJt
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j, and integrating the resulting equation over O, we have

O 7 pudx)t--a™'cT’ J  pluldx

- J a0 j[djiPt + div{diPv)]dx +/ij aO j[Aui + diY{uAu")]dx

(2.3.14)
+ A+ /i) / aNiNdtdidiYU +  div{udjdivu)]dx
A
E A
Integrating by parts and using the equation (2.1.1), we have
Ni = - cTisdipe + dIYaipujax
- J  a™N-PpdiYudiU» + di(djU™P -  Pdj{dku'u")]dx (2.3.15)
N2= j a0 j(AdidviiArS];Ma;
=11 [ + diii"dku"div® — diiJdiUNkU™ — diu™div!'dku']dx
i/ [ a™NluinNdS C , -/i a"dku'u"dsu'dS"
'dQ Jdn Jdn
3
J J Jdn
+ HL/ a™luWVuWiil + |u||Vu||V«| + Wu\™u\]dx
(2.3.16)
where we have used
! M <c £ Grdtlvallul + 78 Vil Va] + aladx,
Jdn Jn
and

/  A"DKU'UDSUDS -« , < C /

2

'dn Jn

32
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the proof is similar to (2.3.8) and (2.3.26). Similarly,

+A

5 (2.3.17)

Substituting (2.3.15) — (2.3.17) into (2.3.14), and choosing S suitably small, it
holds that

) I plu\™dx)t + J + + J {diyii)"dx

< mo * PYl-vJ pu\de + Ca™WNuWi, + Ca”™hWl* + C(p)a™\WVulll, (2.3.18)

Taking m = 3 in (2.3.18) and using
3N ara'j pluldxdr < CAifT),

we can obtain (2.3.5) after integrating (2.3.18) over (0, T), .

If we denote
FN\2fi + X)divu - P(p) + P(p), o= Vxu,
then we will have
Pi"™- Fx, + K - < -u (2.3.19)
and the following Lemma.

Lemma 2.3.3 There exists a constant C = C{p) such that if (p, u) is a smooth
solution to (2.1.1) - (2.1.6) onQOx [0,T], then for O<i<T,
(2.3.20)

\Wu\Pdx < C | + + |P- P(#)P)ir> <p< (2.3.21)

\(VF\P + \WLu\P)dx < C | (I1H % + \Vu\P)dx, <p< (2.3.22)
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J QFI"+ Hdx <c¢c m J P\W-
3p-
+( | P — J 2 <p<86

(2.3.23)

(2.3.24)

+|[P-P(p)IU2 + ||p-P(P)M™  2<p<es

Proof: From Gagliardo-Nirenberg inequality (103) * we have
v o Dlic (2.3:25)
Since
pi \wWdx <J pu\dx™ ] \p-p\Ndx)N ] (2.3.26)
making use of (2.3.25), we obtain
J \u\dx<C(p)iCo-i-cl J\WVu\"dx),

usin J. again, we get (2.3. .
ing (2.3.25) agai get (2.3.20)

Observing that u satisfies the elliptic boundary value problem

@ + A)AiZ) = ((/.+ A)div" - +OrA)C — o+ #hrp)u
=F,. + @+ + {P{p) — ,
(2.3.27)
uX3 rv
< = G da (2.3.28)
Y8=0

by standard elliptic regularity results, we obtain (2.3.21).

In order to prove (2.3.22), we compute from the equation (2.1.2) that

(2.3.29)
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Thus, if we let H = -then H=QondOh (2.14) and
fiAH {pu’),, - (pu%. IITiAt/ (2.3.30)

in H The standard elliptic theory gives us the bounds for ||ViJ||LP for 1 <p < oo

and therefore, we can obtain
llW’3|||p < C{p){\\pu\\Lr> + IIVAIUp), 1<p<oc. 0 (23.31)

A similar argument applies to In order to obtain the estimate of o/ ?’we
differentiate the j = [ equation in (2.1.2) with respect to X2, then reverse the

indices and substract to get

re ) = @ff—( — + — ojlid. (2.3.32)

1 2
Then we can estimate | | ~3 ) [ |1 p(m2) - Integrating this bound with
respect to 0:3, and applying (2.3.31), we get that is bounded by

the right side of (2.3.31). Since

we prove the bound in (2.3.22) for uj. The bound for VF follows from the de-
composition (2.3.19).

(2.3.23) follows from (2.3.22) for p — 2, Gagliardo-Nirenberg inequality and
(2.3.3).

(2.3.24) is adirect result from interpolation inequality (1.0.2) ’ (23.21) and (2.3.23).

Lemma 2.3.4 Let {pu) be a smooth solution of (2.1.1) — (2.1.6) with 0 <
pix, t) < 2p. Then there exist positive constants K and eOd bothdepending on-

lyonfi X p, A 7 ’p and M such that

MT)
O r
A3(a{T)) +J J plu\"dxdt < 2K, (2.3.33)
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provided As{a{T)) < 3K and Cq < cq.

Proof: Integrating (2.3.12) over (O,a(T)) > choosing m = 0, and using (2.3.13),

one has

N[ 12,

. fCr[T)
ANA{T) + / / pu\"dxdt < C{p){Co + M) + C{p) / WVul\Isdt
Jo J Jo

P
/ e\ M Vu\-NVu\™Mu\)dxdt.

(2.3.34)

It follows from (2.3.3) and (2.3.24) that

7T FIT(T) 3 3 1 3 3

/ wruWwut < C(p) / +Q + +
Jo Jo
MIT) r MT)
<S / / plu\™dxdt + C(p, S) / Wu\l2dt + C{p)Co
Jo J Jo

which, together with (2.3.20), (2.3.34) and choosing 6 small enough, we have
r(m r MT)

f0-13J Jaud
As{(t{T)) +J/ fp\u\’dxdt < C{p)J/ Wul\%dt + C{p){Co + M)
] ]

MT) MT) MT) ]
MUt+ / / WVvuWlisdt™ / MUt
Jo Jo Jo .

MT)
< C{p) / Wul\%dt + coxo + M) <A + Cip)Co[A,iaiT))]\
for some positive constant K depending only on /i, A, p, A, 7, p and M. By
choosing eo = {9C{p)Ky\  we finish the proof of (2.3.33). .

Lemma 2.3.5 There exists a positive constant €i(/i, A,p, A, 7,p, M) < e L] such
that if {p, u) is a smooth solution of (2.1.1) - (2.1.6) satisfying (2.3.1) for K as
in Lemma 2.3.4, then

Ai(T) + AAT) < CI (2.3.35)

provided Cg < ei.
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Proof: Prom Lemma 2.3.2 and Lemma 2.3.3, we have

AT+ A2(T)<C(P)CO  + C(P) RA'LLVUHTDT — + C(P) AHVULHSDT
Jo Jo
+ C{p) [ a™uWirdt + Cifi) £ [ a™\u\WVullul + Vul"\u\]dxdt
Jo Jg J

+ Ci{p)J J cr(|VwM2 + \Vul"u\)dxdt.
(2.3.36)

From (2.3.21), we have

ra\\Vu\Ut <C r af\WF\i, +Wu\i)dt-h r a'\P - P{~p)\ldt (2.3.37)
Jo Jo Jo

1t follows from (2.3.23) that

Jo
<C Jr VnlUN + IIP - P{p)\L’")\\pu\\hdt + Cip) r rer'WVuWUt
0 0
+ C(p) [\\\P - pip)h4™u\\Ut
Jo
< C{p) sup [ f ap\u\dxdt
0<t<T Jo J
+ sup i L\/L + (7o sup (a\\Vu\\l.)
0<t<T 0<t<T
< C{PIALMT)  + +cocoo T+ Cp)COALT)
< C{p)Co,
(2.3.38)
provided Cq < e L] .
From (21.1) > we have
(P - +u . V(P —rp) + 7(P — Pp)divu + jP{pidivu  — 0. (2.3.39)

Multiplying (2.3.39) by 3(P — F\QBF and integrating the resulting equality over
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1
fl, ts aft ing diviz = F + P-P that
one can gets after using diviz 2u + )(( (r}) a

~ - = _ - - 1j{P-P
5y 1A 1P - PP {f{P-Prp)fdxl F7 ; AP-Pip)fFidx

—3jP(p) [(P- PHEivtNi™r

<{  qP- Pp2d)t + 6\P - P4 + Cs\\Flli, + Cs\Waull,

(2.3.40)

Multiplying (2.3.40) by a” and integrating over (0, 7), choosing

suitably small,
one has

fT [0
/ —IHP- P{p)\\Ut <C sup IIP- P(p)|li3 +¢ IIP-  Pp)\\sdt
Jo ) 0<t<T Jo

+ C(p) J[ <"F\\%dt + Cfp)Co
o

< C{p)Co,

(2.3.41)

where (2.3.38) has been used. Therefore, combining (2.3.37), (2.3.38) and (2.3.41),
we have
T

AWulle.  + \\P-P(ml)dt<C{p)Co. (2.3.42)

HT

Next, we will estimate the term / (T\\WVu\\j*3dt. First, (2.3.42) implies that

f [ aWVupdxdt < f [ (|Vit|d + Wu\")dxdt < C{p)Co,
JTT) J Ja

(2.3.43)
iX)J
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and from (2.3.24) and (2.3.33), one gets

MT)

/ CT\WWVu\Ut

Jo
)

< Clp) / + Ci/ + IIVMNIN + ¢ & ar
Jo

<c ( p ) | 7 |7 awalide + Cip)Co
Jo J Jo

/a{T) o
—— J
S
+  sup / ﬁ_?+ COo
te(o'(T(N] Jo
< + C(p)Co < Cip,

(2.3.44)

provided Co < cq- By using of (2.3.20) ? (2.3.43) and (2.3.44), we obtain

» 4

f fa'Hdxdt < C@p) / +  Ci*MWVu\\Udt
Jo J Jo (2.3.45)
< C{p)Co,

r [ G{Wulu\™ + VulNuhdx < f [\WWu\dxdt+ f [ aMMul"dxdt
J Jo J Jo J

Jo

"T
+ / (wvuwi™wvuwi™dt
Jo
< [[\Vu\"dxdt+ [ [ [ [ aWWuWindt
Jo J Jo J Jo Jo

(2.3.46)
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and

[ a W Vullul + Vu\"MNu\jdxdt<C  f a™u\Ls\\Vu\\L2\\Vu\\L"dt

Jo J Jo
+ C [ CT\Wul\L4™u\L2\WVu\\L2dt
Jo
< C{p) Jr + CINWVuUNWVu\M\Vuh"dt
0
+ C [ a'WVuM"uWLAINiWLNdt < | G"\WVul\ %M\ Vu\\L dt
Jo Jo
+ f aVull4Vu\L.dt"C J[ a’"WVvuhAl"ulMIVuh"dt
0 fo}

(2.3.47)

where we have used the following simply fact

"T
(MWL u\L2WVu\\ L dt
Jo
Jo Jo
sc (& o+ i owri- T w3
Jo Jo

40

Thus, it follows from (2.3.36) and (2.3.42) — (2.3.47) that the left hand side of

(2.3.35) is bounded by

provided

Lemma 2.3.6 There exists a positive constant C depending only on & y A, p A4,

7 % p and M such that the following estimates hold for a smooth solution {p, u) of
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(2.1.1)-(2.1.6)

sup WWlll2 + Of plulrdde < Clp, M), (2.3.48)
t£[0,T] Jo 3

sup [ aplu\™dx + f  fa\Vul"dxdt < C(p, M), (2.3.49)

t8{0,T] J Jo J

provided Co < ei.

Proof: (2.3.48) is a direct consequence of (2.3.33) and (2.3.35). Hence we only
need to show (2.3.49). Integrating (2.3.18) over (0,T) and choosing m = 1, by
(2.3.24) (2.3.42) and (2.3.48) we get

sup / (7p\wndx  + /7 (7\\Vu\\\2dt
ie(o,r] J Jo
MT) p T

</ /puldxdt + C / a\WVulindt + Cip)CO
Jo J Jo

tj  J crlul™dxds + C(p) J J + \Wu\"NuWdxdt < C{p, M)

rT MT)

+C/ (TVVulidt +C / G\ u\inde
JaiT) Jo

+ C{p) J a\uM\Vu\\u\-\Vup\uWdxdt

MT)
< ClpM) +c + 1P - P(p)liia + TivXiii. + IP—  pmk)

+ C{p) j alluN\Vu\\u\-h\Vu\"Mu\Jdxdt

MT)

<C(p,M) + (7 sup /2|[H|12)] / \pu\\hdt

tG(0,a(T)] Jo

MT) 1/
+ sup / Wul\Ut- / aWViiWl.dt
te(o ’ T] Jo ~ o Jo
»T
< C{p, M) + C{p, M) sup +i /  <j\Wul\%dt.
te{o,T] A Jo
(2.3.50)

Then (2.3.49) follows from (2.3.50) and Young's inequality. .

Now we can derive a uniform (in time) upper bound for the density which turns
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out to be the key to obtain the global classical solution. In order to obtain this

result, we need to use Lemma 1.0.11.

Lemma 2.3.7 There exists a positive constants e = e{p, M) as described in The-
orem 2.1.1 such that if (/?,u) is a smooth solution o/(2.1.1)- (2.1.6) as in Lemma
2.3.5 then

sup ll/AwWIur < 2
o<t<T

N

provided Cq < e.

Proof: Rewrite the equation of mass conservation (2.1.1) as

where

Dtp¥+u,,
For ¢t G [0, £1(T)], one can deduce from Gagliardo-Nireriberg inequality (1.0.3),
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(2.3.20) and (2.3.49) that forall0< < <

Jm ®
b(i2)~b{t)\<C  /
r<T{T)
< Cp) | WEWVEN % dr
Jo
@
<Cp) /) Wul% + \P-Pip)\%))
(iivAiii/ + TIH[3# + iivenid/ + i p- pwiir/'+IIP —  pfp)C)de
ra{T) e e
<Cp) / + cotvym * WE 238+  MiHIisdi
J
(1)
tom /2 | —  Pplgde + CIPICS
]
raiT)
<cper | (2 + + fallpu\Lgde
rcr)
pi pa(T) pa{T)
<CpCl /) a — 40 / aWuldg  +(/ allpu\Ldyf”
JO /Ig Jo
(t(?) (r)
/
Thsisc/ ap- + Oy
Jo

provided Cg < ei. Therefore, for ¢ G [0, cr(T)], one can choose TWj and Ni in
(1.0.11) as follows:
T™o __. C(AM)COL1/16,

and C= in (1.0.12). Then
= = for all C > ~=P-
From Lemma 1.0.11, we have

sup IplUoo < niax{A p} + 7Vo<P + <) (2.3.51)
_ )] 2

provided

Co<min{ei,62}, for = i"crJN/"-
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On the other hand, for t G [a{T),T]" one can derive from Gagliardo-Nirenberg
inequality (1.0.3) * (2.3.3), (2320), (B35) and (2.3.41) that for all G{T)  <ti<

T2<T,
— 6Dl < Clpj: W\ < W+ Cp) i WRCdt
< — ) +Cp)j - WFN%\WFIUE < T
+ C{p) + IIP — P{p)\IM\pn\\l.  + UVnlli. + ||P- P{p)\\h
JTT
< —h) +c(}\@Col/6E/viiwut+ + 7—'31)
+ £ IMID
y
<
2ju+ 4

provided Co < ei. Choosing

a7 [ 4

<
22/i + A
that is
A
2 A
Cos v@ju+ g
and
S Ne C{p)C"/
M=oy +a Neo Clp)
Note that
AC 0 4 0
4ir  all

- 3
So one can set * — -(*5+1) in (1.0.11). Lemma 2.3.7 and (2.3.51) thus yield that

Moo < maxdp + 1), Ip} +iVo<Sp+c [df' < F (2352
[ &%’T), lelp maxAp ), Ip} p 7 ( )
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provided

Co < e = min{ei,e2,e3,e4}, for # = 32 (2.3.53)

Lemma 2.3.8 The following estimates hold

sup [ f f WulNdxdt < C, (2.3.54)
O<t<T J Jo J
sup ([Vp/U2nLé6 + "VHIfi)+ [ 1ViilUooci* < a (2.3.55)
0<t<T Jo

Proof: Taking m = 0 in (2.3.18), one can deduce from Gagliardo-Nirenberg
inequality (1.0.3), (2.3.20) and (2.3.48) that

(o pwWdx)t o+ fi + J\diYu\'""dx
+ 0 N\ \Wullul + \Vu\"\u\)dx
t cJ (n|Vullii| + Wi Nupax + ¢ (2.3.56)

< CAMdlirllie + Mle + IIP - Pm%) + MNIVMGi. + CWulll,. + C

< RN, + |[Vaglli.) + AViALLL + CIIVAILa + €

Note that
fT pa{T) fW
/' UVullisd. < / Va3 /; +
/0 Jo JaXT)
- (2.3.57)
J Vil AP e + o+ cov+ Tvan/A s
o0
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Bearing in mind that the compatibility condition (2.1.10), we can define

4] x=QLrg. (2.3.58)

Choosing 6 small enough, then (2.3.54) follows from Gronwall's inequality, (2.3.48),
(2356) > (23.57) and (2.3.58).

Next, we will prove (2.3.55). For 2 < p < 6, satisfies

(VPP + div(V/9|V) + (P —

Hence,
dtWVpWL. < C(1 + vt.||LoO)|vppz.P +
(2.3.59)
<M1+ + C{\\PU\\L. + IIVPIUP),
due to
(2.3.60)
which follows from the standard LF estimate for the elliptic system
—fidu — (// + AjVdivix = —pii — VP, in
{ui,u2,us) = (3(ul*,ul.0), in dCt
Hence we need to estimate ||
Let w = u — V’ where v satisfies
fidv + A)Vdm; = -V(P(p) — P(p)), in Q
(2.3.61)
)) =/5(0),<W’0) ’> on dn
then by the standard regularity estimate for elliptic systems, we have
liv’° b < C\\Pip)-PmL", 1IVMb < CWV{P--P{m\L", for gqe [2,00)

(2.3.62)
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and w satisfies

—fiAw — (i + AVdni( 5 = pii, in Q
(2.3.63)

then using the standard regularity estimate for elliptic systems again, we have
v wilx. < C\\pu\\La, for ¢ G (1,00). (2.3.64)

Prom the Sobolev's embedding theorem, we get
IIVAIUoo < cy\lpuWLA + TTHIIO. (2.3.65)

Now, we give the estimate for ||Vt;||L°° which is crucial to obtain the estimate of

IIVpl|i/3. We have the similar results for half-space problem as in [69].

Lemma 2.3.9 Let {x eR" :xs> 0} and Vv G with g G (3,00).

There exists a constant C depending only on q such that

Ioo < C(1 + In(e + ||V2i;|UOI|VV|[smo), with ge (3,00), (2.3.66)

here
IIVHIsmo = + [VVIBMO.
\Sv\bmo = sup [ vii(4)— vivor 1/}
>0.len 1 2 A5 S rix)
Nre) T LA T Vviv)dy,
where = 0 D Br{x), Br{x) is the ball with center x and radius r.

Proof: We know that there exists constant 4 > [ such that for any r > 0 and
X eQ,
O-MI < \Brix)\ < A\nr{00)\.

First, for r > v © 2 whae t¢ > 1, we have

1"’ﬂ)j[s‘l R
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If r < -To, then there exists some integer £ >/ such that

Denoting "[j = forj = 0,1, « » » fc,we have

k

SEs | M- - 9+ E

< CK[VVIBMO{n)+C\VWL2 < C(I+|Inr])||Vt;|[sM0(0).

Prom the Sobolev's embedding theorem, we have for small enough e > 0:
< |Vi;(x) - 1 + < + (1 + 1 1n6])||[Vi;bMO(n))

By choosing suitable e yields (2.3.66). [

By using of the classical theory for elliptic systems, we have

1+ Mo < slp—pUhg) < Cp 2D

Combining (2.3.66) and (2.3.67), yields
(2.3.68)

From (2.3.54) and (2.3.59), we have

iU, < C{1 + ||Vti|Uoo)||Vpl||L. +
< ¢(1 + |[Va;lUoo + [[VHUoo0)|[Vp|U. + CiWpiiU. B ||V(P - P{~P)\\l.)
< C{p){l + |[VuUoo + In(e + + + |[V(P —

<ecp)fl + 11—+ In(e + WWp\M)W\IpIIL + Clipul\l.
(2.3.57)
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Taking g = 6, and setting

one gets
m < ffgly + Cg{y) nflyfly  + Cg(),

which yields
(In/0 ) 'Ge® + (2.3.70)

due to ff&) > 1. Making use of (2.3.54), we have
rgfydt < C T (14 weyar < C (14 WulLNdt < C, (2.3.1)
JO JO JO
which together with (2.3.70) and Gronwall's inequality, we obtain that
sup fi) < G
Q<t<T

that is
sup lIV/oilUa < C. (2.3.72)

o<t<T

As a consequence of (2.3.68), (2.3.69), (2.3.71) and (2.3.72), one obtains

[\Wul\LAdt <C. (2.3.73)
Jo
Next, taking p - 2 in (2.3.59), and using (2.3.48), (2.3.73) and Gronwall's in-

equality, one gets

sup I | V/AIb < C,
o<t<T

which, together with (2.3.48), (2.3.54), (2.3.60), (2.3.72) and (2.3.73), gives (2.3.55).
We finish the proof of Lemma 2.3.9. .

In the following Lemmas 2.3.10-2.3.13, we will obtain the high order estimates
of solutions which are needed to guarantee the extension of the local classical

solution to be a global one.
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Lemma 2.3.10 The following estimates hold

"

sup T pudrdei- [ Fovunaxdt < c, (2.3.74)
0<t<T J Jo- J
P Ap-pl\H2 + \\p{p)-pmM=<c. (2.3.75)
0<t<T
Proof: Since
J plut\™dx < j j plu * Vu\"dx
<c + c\\p/W\ML4yu\\le
<C,

and

I-w[125] 24 - (. - =%

< livthiii. + ¢,
due to Lemma 2.3.9.

Now we proof (2.3.75). Note that P satisfies
Pt+ "ieVP + "Pdivu = 0, (2.3.76)

using (2.1.1), we have

d
AvAPI. + 1lvVili)
(2.3.77)

< C(1 + + UWIO  + CIIVullL  + c

From (2.3.27), (2.3.28) and the standard elliptic regularity estimates, it holds

wvirn 2 < + P+ P - Pgym).

So we need to estimate and ||cj|[jj-2. Using the same idea as in (2.3.29)

50
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(2.3.32), we will have

+miff.+  HP-pm™

< C\PUNH~ + |FIfE1+ IMIni + \WP- PiMm  +

< C(1+ llvpiUsiitiUe + +

which, together with (2.3.77), Lemma 2.3.9, and Gronwall's inequality, yields
sup (IIVAFIU. + IIVVII|O < C.
Q<t<T

Hence, we finished the proof of Lemma 2.3.10. .

Lemma 2.3.11 The following estimates hold

sup (IWI/fi + IMIKO + /  wPUWL~ + \Pe\\Lodt < C, (2.3.78)
0<t<T JO
HT
Sup f [ pu%dxdt < C. (2.3.79)
o<t<T J Jo J

Proof: From (2.3.55) and (2.3.76) > we have
1 F < CAim|zH|VP|IL2 + < a (2.3.80)

Differentiating (2.3.76), we obtain

VPt +u+VVP + VM VP + 7 * Flam+ Praiva = o.
Hence, by (2.3.55) and (2.3.75), one gets
[|VPy i2 < CWWuWWIWWVPWWL~ + ||V IL3||VPIU6 + < C, (2.3.81)

then > (2.3.80) and (2.3.81) imply that

sup WPHIHA<C. (2.3.57)
O<t<T
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Differentiating (2.3.76) with respect to t, we have

Pu + Ifdim + jPdwut + ut + VPt = 0.

(2.3.83)
By using of (2.3.55), (2.3.74), (2.3.82) and (2.3.83), it holds that
riiPttithdt
Jo
A
<¢ f(||P,|Ua||Vn|U3 + + ht||Le|[VP|[L3 + WVPlhfdl
o
<c.

Using the same method, we can obtain the similar estimate of pt and pu-

Next, we prove (2.3.79). Differentiating (2.1.2) with respect to 7, multiplying

the resulting equation by Uu, one gets after integrating by parts

—F2(— J ptwt\™dx - j ptuvu. utdx +j PtdiYUtdx)

+ % I ptt\uu\"dx + I {puVwtutdx - f putVu * uudx

—J pu- Vut ruttdx — J PttdiYUtdx

(2.3.84)
It follows from (2.1.1), (2.3.55), (2.3.74) and (2.3.78), that

Ll =1-" ptut"dc~J ptueVitdx +J  Pidivutc

< 1j diY{pwut\dx\ + CWptIMW + VINILHIAdUA + C\\PA\LA\Vut\\L2

< cj  plulut\\WiH\dx"C\Vut\\L"

< SWVutWi™ + Cs,

(2.3.57)
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23ii = 1J adUeT |

LIt 4+ put)-Vhut "

(2.3.86)
and
21 = 1 J{ptU < Vwt - Utdx\
1 jiottu V. ut + ptUt +PU . Tt gl
< wruwraw * VulUallTiNUa + (2387
<C\\pul\l2 + CWWut\\l.
Ii | |§|+ j pUtT 1 U Tut® Uttd)
(2.3.88)
and
= 1j Pttdivutdxl
(2.3.89)
<c\\Pul\h -+ c\lwut\\h.
By using of the similar argument as in (2.3.26), we have sup < C from
[0°T*]
Vut e

Due to the regularity of the local solution, (2.2.1), tVut ¢ C([0,T [ Thus

(2.3.90)

where C may depends on || V rHis
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Combining all the estimates (2.3.85) — (2.3.90), one deduces from (2.3.74),
(2.3.78), (2.3.84) and Gronwall's inequality that

sup + f [ plutt\"dxdt < C. (2.3.91)
T*/2<t<T a2 J

On the other hand, (2.2.1) gives the estimate

sup  [[Vwl] ® plutt\ Ndxdt < C. (2.3.92)
0<i<T*/2
Now, we complete the proof of Lemma 2.3.11. .

Lemma 2.3.12 We can obtain the following estimates

sup (P s + | LP —/~os)T3)sc (2.3.93)
0<t<T
sup MVurllLA + m +r +\u\%ide < a  (2.3.94)
0<t<T Jo

Proof: It follows from (2.3.55) and (2.3.79) that

e (B2 < IIIVHWIb + mvpiMi * Dliib + 1pVnl~.

< [IVpIMMIlg + q|Vpl||L3|M|Loo||w||L6 + ciiv/ tlUA
+ ewvulMIMUIIN  + c|M|“v2PLT T2 < c,

which together with (2.3.54) yields

sup llpullm < C. (2.3.95)

O<t<T

On the other hand, we have
< CWiMAu + (/i + A)Vdiv z||"
= C\\pu™VP\hi (2.3.57)

<C{\\pu\\Hi-i-\VP\\H")<a
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due to (2.1.2), (2.3.75) and (2.3.95). Combining (2.3.55) and (2.3.96), one has

sup < C (2.3.97)
0<t<T

Therefore, by the standard L"-estimate for elliptic system, (2.3.55), and Lemma

2.3.11, we have

IVVIL < Cydut + (// +
< Clputt + ptUt + Ptu . Vu + put. Vu + pu , Vut + VPMIls
< G{\\putt\L" + 1IAIIL3|Mk6 + (2.3.98)
+ + i QW2 +  \Pam
<Cllputt\L* + C,

from (2.3.79), we obtain

fT .
/o Wut\\]j.dt < C. (2.3.99)

Jo

Applying the standard ﬁ}ﬁ-estimate for elliptic system again leads to
W ul\h2 < CWfidu +(// + A)Vdivu|H2

<C\\pu\\h"*C\\VP\\H" (2.3.100)

where one has used (2.3.96) and the following estimates:

< CAWWplut\W  + + HNOwIiUo

< ¢divVIUHIVti*bi + |[Vp|U3|[Vn,[Ua + IIWIUO

and

<c(+ + iivMii*siivAitiUa)
< ¢(i + llvVIUHKIU- + |[Vp||L6||w||I3 + iiv” iuo

<a
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where we have used (2.3.75) and (2.3.97). By using (2.3.75), (2.3.97) and (2.3.100),
it holds that

+ THWIIZ -« « 4% | W
73,11 iITTDII WT722\ T1ir72

by Gronwall's inequality and (2.3.99), one gets

sup [|[V3 /< G (2.3.101)

Q<t<T
Combining all the estimates (2.3.99) — (2.3.101) and (2.3.75), one have
fT

sup IIP-P ﬁﬂ:SJr /o Wul\jjrde < C. (2.3.102)
Using the similar argument for p — p, we can also obtain

sup \P-PIM < C (2.3.103)

o<t<r
Hence, (2.3.94) follows from (2.3.79), (2.3.97) > (23.99) and (2.3.102). .

Lemma 2.3.13 For any v G (0, )" there exists some positive constant

such that
sup (I1VutlUi + + [ f Wauu\dxdt < C(T). (2.3.104)
LT Jt J

Proof: Differentiating (2.1.2) with respect to ¢ we get
puttt + pu » Vutt — i*Autt - (/' + X)Vdivutt
=2div(pwutt + divipwtut — 2(pu)t * Vut — {pttu + 2ptUt) » Vu (2.3.105)

—vputt. Vu - VPt
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Multiplying (2.3.105) by uu and then integrating the resulting equation over fl,

one gets

=-4 y ultpu * Vul™dx — Ji{pwt[Viut. Uw) + 2Vut. utt]dx

—/ {pttu+ 2ptUt) * Vu * Uttdx — | putt. Vii. Uttdx + / PUMovuudx % » .

(2.3.106)
We estimate each I (l = 6) as follows:
N k2 pve/ld L2|M|Loo
(2.3.107)
It follows from (2.3.74), (2.3.78), (2.3.79) and (2.3.55) that
121 < ciWputh™ + + llvr/dMMW
sqiipi U mawMIIOT1 = HJ (2.3.108)
<S\Wutt\l.  + Cs.
(2.3.109)
m uWh-"csWpttWh,
and
4l w1 < cpU LA U\ LA W +  CLPH\LA™UuM (23.110)

< 51« Ylte + CSWP"uuWl. + CsWPuWy.
For any r G (0,T*), since t""/puu G L Ol » by (2.2.1), there exists some

to e (r/2,r) such that

Jp\uu\’dx(to) < rpirvM g | JIGTY < C(r). (2.3.111)
Substituting (2.3.107) - (2.3.110) into (2.3.106), choosing 5 suitably small, one

obtains by using (2.3.78), (2.3.111) and Gronwall's inequality that

sup f PWUTTWDX+ f [WUTTWDXDT < C(T),
tQ<t<T J Jtin J
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which, together with (2.3.98) and (2.3.79), leads to

"T
sup [ [Wutt\"dxdt < C(T), (2.3.112)

<t<T JT J
18 [ He 1
r<<T We

due to TO < T. Now, (2.3.104) follows from (2.3.100), (2.3.112) and (2.3.93) -
finish the proof of Lemma 2.3.13.

2.4 Proof of Theorem 2.1.1

With all the a priori estimates in section 3, we are now in a position to proof
the main result of this paper.
Proof of Theorem 2.1.1. From Lemma 2.2.1, there exists a 7% such that
(2.1.1) — (2.1.6) has a unique classical solution {p, u) on (0,T*]. We now want to
extend the local solution to a global one by using the previous estimates.

First, from
Ai(0) + y*0) = 0, A3(0) <M, p(0) < p,

we know that there exists a G (0, 7%/ such that (2.3.1) holds for T = T\
Set
f = sup{:r/(2.3.1) holds}. 2.4.1)

Then T > Ti > 0. Hence for 0 <r < T < T with T finite, it follows from Lemma

2.3.12 and Lemma 2.3.13 that
Vut, V'n G C([r, T/;L™n L"), Vn, € C([r, T/;L'™n (2.4.2)
where we have used the standard embedding

LT . rifiynFi(T * T;i;ri)4C([T,71;"), for any qe [2,6).
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By using of (2.3.74), (2.3.79) and (2.3.104), we have

rT IT

Wiplut\%\\LAde < L {\\ptlutnl™ + 2\pUtUt\\L")dt

< ¢ Mpldivullur — + vivpiHUpmi +
which yields
This, together with (2.4.2), gives
We claim that

T (2.4.3)

Otherwise, T < o0o. Then by proposition 2.3.1, (2.3.2) holds for 7 = f. It fol-
lows from Lemma 2.3.12, Lemma 2.3.13 and (2.4.2) that p{x,f), wu(xf) satisfies
(2.1.9) and (2.1.10) with g{x) ~ u(x, T). Then Lemma 2.2.1 implies that there ex-
ists // >f such (2.3.1) holds for T = f'| which contradicts (2.4.1). Hence (2.4.3)
holds. Lemma 2.2.1, Lemma 2.3.12, Lemma 2.3.13 and (2.4.1) show that (p, u)
is in fact the unique classical solution defined on (0, T] for any 0 < T < T = oo.

Finally, in order to finish the proof of Theorem 211 > we need to show (2.1.14).

Multiplying (2.3.39) by 4(P — and integrating over  one gets
r f (2.4.4)
Z (a1~ 1) (P - P{p)divudx-7 /PO P —F GY3divwhic °

integrating the above equality over (1, 00), we obtain

[ i(iip -pmirmt < g™Mwp — pmi™ + iivwiio‘m < c, (2.4.5)
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due to (2.3.42). Combining (2.3.42) with (2.4.5) leads to

lim IIP-P(") 1174=0,
t~"00

which together with (2.3.3) implies

infp—pir=Q

t"oo J
for all g satisfying (2.1.14). From (2.3.3), we have
J "My < plildelull% - <

Thus (2.1.14) follows provided that
lim \\V/u\/2 = 0.

Setting
/(A)Ye%n e Dl + %3 Pvrgh:

choosing m = 0 in (2.3.6), and using (2.3.8) and (2.3.11), one gets

W) <C jplatdr +Cll
where one has used
J TPl = 1P~ S

We thus deduce from (2.4.7), (2.3.35) and (2.3.42) that

POO POO

/W\dt <c / illp™iiWi. + + Vvul\h)dt

which together with

ldc 1 Walld <C

implies (2.4.6). The proof of Theorem 2.1.1 is finished.

<

(2.4.6)

(2.4.7)

c}
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Proof of Theorem 2.1.2. Suppose the conclusion is false. Then there ex-

ist some constant NQ > (0 and a subsequence TNJ- >00 such that

IIVp(-, TNH)I\L™ < no. From the Gagliardo-Nirenberg inequality, it holds that

(2.4.8)
where 0 __. (0,1).
By using of (2.1.14), we know that
\pix,tnj) — p\lefn) ~0 as > 00. (2.4.9)

On the other hand, since {p, u) is a classical solution, thus there exists a unique

particle path XQ{t) with xo(0) = xq such that
p(xo(t),t) = 0 for all 7> 0. (2.4.10)
So, we obtain from (2.4.10) that

pO, tnj) — pWciCl) > \p(xo(inj), mj)—HI=F) 0,

which contradicts (2.4.9). This completes the proof of Theorem 2.1.2. .



Chapter 3

Global behavior of spherically
symmetric compressible
Navier-Stokes system with

degenerate viscosity coefficients

In this chapter, we study a free boundary value problem for spherically sym-
metric compressible Navier-Stokes system with degenerate viscosity coefficients,
which include, in particular, a shallow water model. We obtain global existence,
uniqueness and large time behavior of weak solution under some assumptions im-
posed on initial data. The results show that such a system is stable under small

perturbations.

3.1 Introduction

In this chapter, we investigate the dynamical behavior for the spherically sym-

metric Navier-Stokes system with density-dependent viscosity coefficients in

62
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which can be written in Eulerian coordinates as

e+ (—pur = 0,
2 u (3.1.1)

pUr 4+ pUUr + drP = driiflip] + X{p)(Ur + -w)) — 2—51(21 — pfoo,
r r
for (r,r) G 12” with

n ] = {(r,)0<r<a@), 0<r < oo} (3.1.2)
O rr
where P — Ap"™, > 0is a constant and foo~-" ps™ds, G is a gravitational
—Jo
constant. Without loss of generality, we assume P =  fi(p) = p and X(p) = 0.

The initial data are

{ppu)(r, 0) = 0o > = ?2=: re (0,a). (3.1.3)

The boundary conditions are

ulr=0 = 0, - 0, (3.1.4)
where the free boundary a(T) satisfies a(0) = a and a'(r) = ?i(a(r), r), r > 0.

Now, we consider the stationary problem, namely
(P(Poo))r = -pooG—" (3.1.5)

in an interval » G (0, /oo), with the end /oo satisfying

Eied

rloo . J
Pooiloo) = 0, |/ pooT™dr _. M =  po—dr. (3.1.6)
Jo Jo

The unknown quantities are the stationary density poo > 0 and free boundary

2n
loo > 0. It is well-known that if 7 > , where n denotes the dimension, then
n

there exists a unique solution (poo, loo) to the stationary system (3.1.5) — (3.1.6),
satisfyingpoomc —}Ad(Poo)r<O,O<r<”(I)With < 400.

It is convenient to deal with the free boundary problem (3.1.1) and (3.1.3)—
(3.1.4) in Lagrangian coordinates. Define the Lagrangian coordinates transfor-

mation
x= py™dy, T=1t, (3.1.7)
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then the fixed boundary r = 0 and free boundary » = a{r) become

[ am ["a
r=0, 2:5= / ypdy = |/ y"pody= M, (3.1.8)
Jo Jo
where M is the initially total mass. Moreover, the region {(r, t)|0 <1 < a(r),t >
0} is transformed into {(a;,t)[0 < x < M ’ ¢ > 0}. Under this Lagrangian coordi-

nate, the equation (3.1.1) and (3.1.3) — (3.1.4) are changed to

ut + = - 2urp_|.—G (3.1.9)

Jo

for (x,1) GO Mx (0, oo) > with the following initial data and boundary condi-

tions
px
(Au)t=0 = {po,uo)(x), r\t=0 =ro(x) = (3 / (3.1.10)
Jo
ulx®o = 0, pu=M = 0, > 0. (3111)

It is standard that if we can solve the problem (3.1.9) - (3.1.11), then the free
boundary problem (3.1.1) and (3.1.3) — (3.1.4) have a solution.

Prom (3.1.5) — (3.1.6), it is easy to see that Poo{x) is the solution to the
stationary system

=-G; rl{x) =3 r P j{ydy, x € (0, M),

—o0 Je

(3.1.12)
Poo(M) = O.

In this chapter, we can show that such a system is stable under small pertur-

bations, it does not develop vacuum states or concentration states for all times,

and the free boundary a(r) propagates with finite speed.

The assumptions can be stated as follows:

(yli). Ci(M — x)" < po < C*2M — where Ci and C2 are constants.
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(*2)- Bi[/?0,n)] < 00, where
BiM = (3.1.13)

and a G (—1,1).
OI3). B2[po,UQ,rQ] < 00, izo(O) = 0, where

+ / (3.1.14)

B2ip,u,r]” /
Jo A Jo r

Under above assumptions (Ai) — (A3), we will prove the existence of global
weak solutions to the initial-boundary value problem (3.1.9) — (3.1.11) in the

sense of the following definition.

Definition 3.1.1 A4 pair offunctions {p, u, r){x, t) is called a global weak solution
to the initial-boundary value problem (3.1.9) — (3.1,11) if ’ for any T >

poue X [0,TDnCi([0,TLiv2([0 * M])),
TeC\[0,T];,LN[0O,M])),
p-\ fruU i GL{O ° TILi([0,Af])),
and
TV e 1o°([0,M] X [0, T])nCA([0,T];L2([0,M])).

Furthermore, the following equations hold:

pt + =0, 0) = almost  everywhere”
Tt = u, r{x, 0) = ro{x), t) = 3]/ t)dy, almost  everywhere,
0
I lM A rM
mpt+O—8) < N > AT rmgioe—Gar+ / wotn)itx, 0)dx =0
T Jo
for any test function ip{xt) G with n = {{x,)\0 <x <M, t > 0}. In

what follows, we will use C{C]) to denote a generic positive constant depending

only on the initial data, independent of the given time 7,
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3.2 Main result

We now state the main theorem in this section.

Theorem 3.2.1 Under the conditions (Ai) —(°M) Y thae exists a constant e |11 0
such that if

1 "oollioo + [Miioo  + Bi[pQ,ro] + B2[po,uo,ro\ < e, (3.2.1)

where go{x) =M — x)~"po(x), goc>(x) _ (M — poc,(x). Then the system

(3.1.9) - (3-L.ll) has a unique global weak solution [p, u, r) satisfying

C-ilM - )™ <pix, t) < C(M — 3.2.2)
C-"x <r\xt) < Cx, G 3)
3. »
and
. (3.2.5)

for all t > 0 and x G [0, M]. Furthermore

M
+ (M — x)Hg — goof + —a3- rlfldx < + 9\ (3.2.6)
"t pM 2
;T el + T ~)dvds<Cel (3.2.7)
Jo Jo 7

Remark 3.2.2 The uniqueness of the solution in Theorem 3.2.1 means that if
{pl, ui, ri) and {p2, U2, r2) are two solutions to the system (3.1.9) — (3.1.11) with
the same initial data (po, UQ, TQ) and satisfy regularity conditions in the theorem ’

then we have {pi*ui, ri) = (p2, U2, r2).

Theorem 3.2.3 (Continuous Dependence) For eachi = 1,2, let {pi, Ui, Vi) be the

solution to the system (3.1.9) — (3.1.11) with the initial data {poi, wq’, Voi), which



Some Topics On Compressible Navier-Stokes Equations 67

satisfies regularity conditions in Theorem 2.1. Then, we have

'™

Jo
+ XN — r2Y]dx
M
< CeCt / [(Tioi — 022 + - ARR
JO

+ T i - 1Q2f]dx

for allt > 0.

Remark 3.2.4 When the space dimension n = 2, similar results hold for shallow

water model.

3.3 The stationary problem

2n -2 .
When 7 > , we know that the stationary problem has a unique solution
n

in 79]. Hence we will only give results.

2n —2
Proposition 3.3.1 7/7 > > then the Lagrangian stationary problem (3.1.12)
n 1
has a nonnegative solution poc G M]) satisfying < Poo{x) <
C(M — x)”, where p G (1, niin{ 5 -f) is a constant
n R [E—

Similar to [82], we say a stationary solution (poo”™o0o) is a statically stable if

M

Jwi o+ | [ip™Wl — (2n—

™ (3.3.1)

for some & || Ond all W e K~ = {f e C([0,M]D|/(0) - 0,— G K}, where
(M-x)" fix

. f .« —Z

K Z{fecm M])f >o, /_(4%4 IIloo<oo,II%M[_faa~roo < 00).

Now, the static potential energy takes the following form:

w1 Y
SVl =/ [ / Gx{nh)"dhjd. (3.3.2)
Jo '7-1 Ji
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We call y G i"i is a point of local quadratic minimum of S if

+ > 1 [{M- + x-"W"dx (3.3.3)

for all ¥V E Ki and ||(M - )] Hylioo([o’MI)\X~PALOO < Ss, for some (3 > 0.

. 2n-2 . .
Proposition 3.3.2 // 7> and poo is a solution of the problem (2.1.13)
n
satisfying p~ 6 M]) and C"M - <pNx) < C{M — x)"\ then we

have that (3.3.2) and (3.3.3) hold with F = Voo a

Proposition 3.3.3 Let poo be a solution obtained in Proposition 3.3.1, and p2

he another solution of the problem (3.1.12) satisfying p2 G ([0, M]) and
1

CM - xy < p20) <M - o~ []T> Z?[]]y;md WM 1Pc
P2){X)\I°° < with a small enough positive constant 64, then we have P2{x) "
poo{”™), almost everywhere x G [0, M .

2n —2
Proposition 3.3.4 Ifj > s the Lagrangian stationary problem (3.1.12)

has a unique solution poo G K.

3.4 Approximate system

In this section, we will construct a sequence approximate solution. First, we can
choose a sequence of suitable smooth functions {(/Oao, Uao, “a0)} satisfying
px
roa() =+ 3/ pio)dy- l0) = 0>
*/o

{PaO, UaO, Tao) > (po, Uo, TQ), in C([0, M

a0 -500]|
UaO
raO n:?
B @JaO,raO B, PQ, ro

B2[paO, UaO, "00] > UQO,] 0]:
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as a ~ M, where gao = pao. Furthermore, we assume that (pao ’ L&ao’ rao)
satisfies
19a0 — Soollioo + || —Ilico + Bi/pao,rao] + NAIOWY "' N < (3.4.1)

Then, we consider the following system with solid core.

u
Ut = - P[- 2dp} — G-" (3.4.2)
roTA
= 3/ poay,
where {x,7) GO > M) x (0, 00), with the initial data

(3.4.3)
and the boundary conditions
ul =0, =0, t>0. (3.4.4)

Using the similar arguments as that in [11], we can obtain the following local

existence and uniqueness result. We omit the proof.

Theorem 3.4.1 (Local Result) Under the assumptions in Theorem 3.2.1 and
(3.4.1) > tee is a positive constant Ti > 0 such that the free boundary problem
(3.4.2) — (3.4.4) admits a unique weak solution {pa-, Ua, 1 ] (]:’)f on 0> M x [0, Ti

in the sense that
plix,t), Ua{x,t),ra(x,t) e X [0,Ti]nCi([0,Ti];L2([0,M])),

P%{rl"a) e X [0, TihnCi([0,Ti};L2([0,M])),
d“ri),d“ru) e L-([0,Ti],Li([0,M])),

and following equations hold:

dtPa = -pldx{rlua), PaO, ¢) = PaO,



Some Topics On Compressible Navier-Stokes Equations 70

dtra(x,t) = Ua(x,t), = +Sf  pNyudy, (3.4.5)
Jo
Pliruvah = PI + + ij- ¥ + - Gyr-"Jdy (3.4.6)
Ta Jx L1 o [a

for almost all x G[0° M], any t G [0, Ti],

Iq -M
ivi

+ qu{ra[ﬁfg} s @!FL’A”\]dfcﬁr l_z{ga_yr ! AanQ{x) ip{x™{))dx =0
Jo

for any text function IIJ(X, t) G (7A([0, M] x [0,7\)). Furthermore, we have

iVi(M-x)" < Pawt) < v2{m-vK Xy e [OM] x [0,Ti,  (3.4.7)
(M - e ([0, t4)([0 > M) (3.4.8)
{M-x)HpaU (pah Mt € L7i[0,Ti];L%M (3.4.9)

PaiuaU e L\[0,M] X [0,Ti]), Pad"Ua 6 L~([0, M] X [O, Ti]) (3.4.10)

where Ni and N2 are positive constants.

Assume the maximum existence time of the weak solution of Theorem 3.4.1
is 7%, We can extend the existence interval by obtaining the following a prior-
i estimates under suitable assumptions. In the following, we may assume that
{pa, Uz ra) {x,t) is Suitably smooth. Since all the argument used here can be ap-
plied to the weak solution in terms of the Priedrich's regularizing approximation.
Throughout this chapter, C(C]) denotes a generic positive constant independent
of the given time T and a. For simplicity, we omit the subscripts a in [pa, Ua, 1 |

and (paO, Uao, rao) from now on.

3.5 A priori estimates

Prom Proposition 3.3.1 and (3.1.12), we can obtain the following Lemma easily.
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Lemma 3.5.1 Under the assumptions of Theorem 3.2.1, we have

Y
DLW =1 G dy (3.5.1)
C-\M - < poo{x) < C{M - x)-, C-x <r* < (Cx, (3.5.2)
“ A — B 3.5.3
g B 5 (3.5.3)

for allx e [0,M].

Lemma 3.5.2 Under the assumptions of Theorem 3.2.1 ’° we have

M M e

G : My s
p Ydgde + / prruddx + /70— dx =0, (3.5.4)

Proof: Multiply (3.1.9)2 by u, integrating over [0, M] and using the boundary

condition (3.1.11), we can obtain (3.5.4) easily.

Now, we define

u

M =1"—oM- + 1-ILN+ (itorik-( PN —pio)ii (3.5.5)

where g{x,i) = (M — x)~"p{x,t) and = (M —
From the previous results, we know that [{7) G C([0, 7%)). From (3.2.1) we have

71

that 1(0) < CQCQ. Now by using of the classical continuation method, we can

obtain the estimate of(l) tE[0,7% NP’ T for any T > 0.
Claim 1. Under the assumptions of Theorem 3.2.1, there is a small positive

constant d > CQGO, such that, for any 72 G (0,7% N (0,T], if
I(t) < 2ei, (3.5.6)

for allte [0° 12] > then
m < ei, (3.5.7)
for aWte [0,T2].
Using the results in Lemmas 3.5.3-3.5.14, we can give the definition of ei and

finish the proof of Claim 1.
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Lemma 3.5.3 Under the assumptions of Theorem 3.2.1 and (3.5.6), ifci is small

enough, we can obtain
CI\M  — x)" <p(x,t) < CiiM-x)" (3.5.8)

ar+ ™ < 1) Cix (3.5.9
for all t € 0° T and x € [0, M].

Proof: From (3.4.2)3, (3.5.5) and Lemma 3.5.1, we can easily obtain the estimate

(3.5.8) — (3.5.9) when 4ei < min g’o *=g. .

Lemma 3.5.4 Under the assumptions of Theorem 3.2.1, if ti and a are small

enough, it holds that

M 1 o _ 32

S s M= 92/ goof wea? (G50

Jo T
JfJiMipAr”ul—{'ri){x,s)dxds<C2el (3.5.11)

for all t e [0,Ts .
Proof: Prom (3.3.2), (3.5.1) and (3.5.4) we have

A VMI rM pM 2
&L yuldx = S(VS[Veo))+ s I pPidx >+ 1 -%dx =0, (3.5.12)
3
where Ko = » and = —. Prom (3.3.3), 3.5.2), 3.5.8) - (3.5.9) and Propo-
0o 0o
sition 3.3.2, we can obtain
™
C-i/ a- rilfdx
JO
< S[V-y]- (3.5.13)
PM
</ ty >3- — vy
when |[(M — : — “:” “ [ 2+ ‘oA DWLr < CW < Y and

7 I A Gxf3h dhdx < Ca™ < Cel, (3.5.14)
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when a” < Cn Hence we can obtain that

213 3 312 4

Jo
ft M rt nM L2 (3.5.15)
+ / / p~"uldxds + / /  —dxds
Jo Jo Jo Jo
Let ai e (0, R) be a constant. Define N} and {64 by = 9j + 1, where
P 7 w
Oj = min{"- ———,0}and = 0,j.,=0 1" ..Let N be an integer satisfying

jSiv= 1and 6n = 0. Then by induction we can obtain the following Lemma.

Lemma 3.5.5 Under the assumptions of Theorem 3.2.1, if ei and a are small

enough ’ it holds that

M
2, a3 30 < Cgelfl v -l (3.5.16)
(1 + sxpmn + Ndvds < CH (3.5.17)
M rt i>M
/ {9-goofdx+ / / + < (el (3.5.18)
Jo Jo Jo

for all t e [0, T2]” where 63 _ g ix
Proof: We can prove the following estimates by induction:

-M

w < N1y —0 (3.5.19

/1 (1 + sYNpW, + Ndxds < Cet) (3.5.20)
Jo Jo r

"M
A+~ | [g- Qoctax
(3.5.21)
+ )2 + ~2("3 rlfrdxds < Cel

M
for allt e [O,g? }I_%I‘O,l N.

From (3.5.10) - (3.5.11), we have (3.5.19) - (3.5.20) hold with j = 0.
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Suppose (3.5.19), (3.5.20) hold with j = k > 0, we want to prove (3.5.21) holds

forj = k
o . -at - 1t
Multiplying (3.4.2)2 by (1+ i) [ 3 integrating over [O, M] x Dajj
using integration by parts and boundary conditions (3.4.4), we have
t pM ,
Jp dxds
Jo Jo <->
r* fM . 3,3 rt pM
=—/ / +s)y U U, ndxdsn
Jo Jo r o] Jo Jo
nt pM u/rr-  an-
+/ / 201+ )% xdxds :="™ Ei
Jo Jo
(3.5.22)
Rewriting the left hand side of (3522) > we obtain
ft pM I's. 3..3
I }”t pg + 1 — - 1 —_— /\'1) + —r ] ( -3 '—)-]dgls\d_s I-L
=/ / 21+ (2 + - PN'r - 4+ 0fe))GxT-,
Jjg J})M
t
77 20 g 2 —  o'y)dxds.
Jo Jo
Similar to (3.3.1), we have
left hand side of (3.5.22) + +
rt eM (3523)

poo(g - goof + 3.3 gdx%’s

c-1 o 1+ $'H

From (3.5.6), (3.5.8) — (3.5.11), we have
M rt pM
ivi 2

14
uNdxds < C//p Nxds < Cel, (3.5.24)
q JO

7

/
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M 3
Ei =-1 (1+I§(3

Jo Jo A

o r*rM 1 ft pM
/] (I+s) Ezr@—a?) — /(1 + sfAv'dxds
3 Jo Jo - Jo Jo
M pt M
<C + X-Nirh - a - rlfldx + ceg + (71 u'dxds
Jo Jo Jo
ft PM pt
+ c(/ / utdxds)M 1 1+ s/-2ds)R Ceo.
Jo Jo Jo
ft PM 11 ft PM

(3.5.25)

E2 = - pt{l + s)a H )dxds = - h{p, Poo) (I + sf'’dxds
Jo /0 POO P Jo ./0

pM nt pM
= Hppoo)i  + sY'dxil + + + hO pocMi +  s)e“(ixds
Jo Jo Jo
pM
+ / {g-gooydx"Cel
Jo
p 1 1
where hip, “(1)) =/ ( )ds g Qoof, and
JPoo Poo s
Jo

< Clio%(pi  _pt)[[Lgo X B y & (M — y)-fkdy

A Jo
— N
(1 + o5
E3<C / + - [ (%,
Jo Jo rp
ft ™ t M
(1-b -
2+ JO
+ , Sfii+sr"-"wx"Nipi-pLnio.x -x)~*dxds)”
o
ft I'M t
<C( { (1. Fh—1-AdsfA < Ce)

when + T) < e PProm (3.5.22) - (3.5.28), we get (3.5.21) with j

(3.5.26)

(3-5.27

75

)

(3.5.28)

k.
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Now, suppose (3.5.19) — (3.5.21) hold with j = k, we have

+ /1 2 1vax + ZEZ ] —Zoo) + (1 + T3 rprut +

M1
=+ 1 - ( h t)dx + - A[Ko]),

3 3

where V' = ~ and "o = Integrating the above equality over [’ jj] fiom

9, 0
(3.4.1), (3.5.8) — (3.5.11), (3.5.13) — (3.5.14), (3.5.21) with j = K, (3.5.24), and

9

Ck < 0, we obtain

M (3 3 3\2
't pMo 2 T
v (L + Mdxds < (4
Jo JH M r?

when +T) < o Hence we have (3.5.19) — (3.5.20) withj =K+ /. Then we
obtain (3.5.16) — (3.5.18) immediately.

Now we can estimate \\g{-t) - 5oofioo( [ %gDLD by using of nf)i[m > m| > 0.

Lemma 3.5.6 Under the assumptions of Theorem 3.2.1, if a is small enough,

we have

) I 1fha. (3.5.29)
Ad |
for all XG [— M] and t G [0, T3], where 64 = &3 .
(6]

Proof: For any fixed x G .[ZK, M], we have
0

Jf r\prMx,t) - plix))ds = rlpo(x)+I2{x,t), t G[O"Tj, (3.5.30)
o

where

w2 2
hix, t)=rlx)p{x, t)—(ri@ +))p(x,t)+ ( )dy
o JX r

—/  {ufy,t) - uofy))dy,
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and
rt  rM 2 - 2 rt  pM
1200 = -2/ 1 rfF—rdyds / - Mdyds
Jo Jx P o Jx

Prom (3.1.9)3, for any x G []\31, M], we have

"H0,<c *\d

< P \dy

<CJ/ lg-900\{M-y)-"dy (3.5.31)
0
pM 1

<C[ (9-9oofdy]i <Cel

1

o m! 1 M M
/ ——dy<C \r - Toldy < Cel{M - x)” (3.5.32)
and M4 T AN rro N
[ )26t (3.5.33)
\J {u- uo)dy\ < C{M — + |W|2) < CIM
thus, if @ is small enough, from (3.5.31) — (3.533), we have
\hifx, 0)-Tip\< A, {M- 11e2 (3.5.34)
and
1 . M
20, h) - hix, 12)\ < A24\2 - WM - 05), xe[—M]. (3.5.35)
[}

M
Claim 2. For any fixed x G [—, M], we have Ii{x, 1) > A’ ifor all ¢ e [0, T2],
0

where

Ai = mm{l,(x,0),rilp™ - inEP (M - )t —AdelM - )™},

where A3 > 0, satisfying 43 < " in {x, ¢) G x [0, T2 .

Proof of Claim 2. If not, there exists ti,i such that Ii{x"t) < m then

we can find ti2 ~ 0 j:]i) such that Ar°> fi°>2 = Aii and Li(x*t) < AiMN for
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t e (JRJJ1,1). From (3.5.30) and (3.5.35), we can get
L] MizieMI 0 2)+J[‘ “rV-p~"s
tio
> _A2eifM h2]

Prom (3.534) > it holds that

) = r™hix, t) - (h(x, t) - rip)

<H’l+%§ — <<OO"R - -/ (M- -
A
and
/13
then /i(a;, titi) > Contradiction. Thus, Claim 2 holds.
[ ]

Similarly, we can obtain the following claim.
M
Claim 3. For any fixed x G [6, M], we have h{x, t) < Ai™ for all ¢t G [0, T2

where
Ai,2 = niax{/i(x, 0) iy 4 MM — ]« )

where A4 > 0, satisfying A4 > r* in (X,t) G x [0,[] 2].
0

Prom Claim 2-3, we have

— goo(MI < 054,

M

where x G —;M], and ¢ G [0,72 .
O

Let j) G [0, M] satisfying ()>0, (adoM] = 1 and = We have
the following Lemma
Lemma 3.5.7 Under the assumptions of Theorem 3.2,1 ’ ifei and a are small

enough, we obtain that
pM pt nM

/  F P - Poofix + / /¥ p - Poofjxds < (3.5.36)
Jo Jo Jo
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for allte [0,T2].
Proof: From (3.4.2), we have

u+ - pooxjt +"PPx__.  — 2rupc (3.5.37)

Multiplying (3.5.37) by + — RI)(] - integrating over [0, M], we have

23 | ¥ +miP — Pocxvdx+2 | (t)0 B Bbolp/u+ rB— Poc)xd.

rM pM A
+ 2/  ()™"ppoox[u+ r"NP - Poo)x]dx = - + - poo)x]dx
Jo Jo r
pM
—2 /  (fy™upooxW + r\f) — Poo)x]dx,
Jo

by using the Cauchy-Schwarz inequality, we can obtain that

i@ fM FAF
-J +rlp — Poo)x?dx +cvy 0O — Poodx
/:I M [
<C *m + / + rppoox\\u + - Poo)x\dx
O M
+C/ —+ (19 - Poojx]\ax
"M
<C / (H"u"dx + /IZI M + r'pp™MWu + — Poo)xldx+
C ;d/[(% “rulpoox\dx + C /M (t)A lupoox{p -  Poo)xix
pM fM
(3.5.38)
Prom (3.5.3) and (3.5.8) - (3.5.9), we have
J__ rM
. Y ’2dx
0 . Jo r o Pooll” (3.5.39)
<C / {’E Vo -
Prom (3.5.38) — (3.5.39), we get
1J oM M

%%/of?ﬂ—(V%H)jjfu%/o/ﬂP —ro 'BY

< Ly T, Poo(9 - goof ]+ Co -
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Combining (3.5.8) - (3.5.11), (3.5.18) and (3.5.24), we obtain (3.5.36) immedi-

ately. .

Lemma 3.5.8 Under the assumptions of Theorem 3.2.1 ’ ifti and a are small

enough, it holds that

(3.5.40)
r-Nip-PoofH"ds"Cges,
- opoyy . pt M 2
ZLM%&’dx +/ / + —)dxds < Cges, (3.5.41)
M Jo Jo r
pt nivi
—p~fjx+/ / )_‘_‘ - pYldxds < Cses, (3.5.42)
Jo Jo
M-") - goo(-)\\LYNi[O,M]) < C8ed(l +3] 5 > (3.5.43)
t) -a® - 740)1 < CsCiX, X G [0, M] (3.5.44)
6
where 3p-2 andlr) G s +Q;-)f0r all t G [0, Ts
Proof: We can prove following estimates by induction
pt pM
's(p — Poof{l)dxds < Ce3, (3.5.45)
Jo Jo
‘™M . .M
11 u
UT. + Ndxds < Ces, 3340
M i PIVI

b b (3.5.47)

/f /ﬁ+EI P — Poofix + / / — pMdxds < Ces,

Jo Jo Jo

forall r G [O, T2] and a”+1 = max{a — 2, aN — 1} with ao = O, m = O’ 1’—
Prom (3.5.8) — (3.5.11) > (3.5.18) and (3.5.36), we know that (3.5.45) — (3.5.47)
hold with m = 0.
Suppose that (3.5.45) — (3.5.47) hold with m < fc — 1, then we prove the
estimates (3.5.45) — (3.5.47) hold with m = k as follows.
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Since a e (-1,1), we have

-M
. O
ip- Poo) (pdx /Aé[daAKp - Poo)4>]dy)"dx
plu M rM M rM
<C/ fUs - goofch +C/ [ (1M y s TR
Jo_p s Jopg UIx Jx

< C/ Poofe- Qoofdx + C / r4+"L] -i09 pi4>dx.

Combining (3.5.18) and (3.5.47) {m =k- 1), we can obtain (3.5.45) M = k.
Multiplying (3.4.2)2 by M%HB/\‘\ ° 9 yiptg over [0, M], using (3.4.4) and integra-

tion by parts, we obtain

d
dt M
f ?r...ul:l 2dx
(3,5.48)
Jo JO Yoo A
rM 4
. 2 52— —(— s O ifil =1 Fn
Now we estimate Fi as follows.
pivi
, (3.5.49)
— > (g J/ + /ﬁzﬂﬂ)ﬂ
o]
From (3.5.8) —(3.5.9) and Cauchy-Schwarz inequality, we obtain
pM
ut +  ulB odx, (3.5.50)
Jo
~orM ™™
[, I2MMU-2,.2dx-"C — r-ydx
Uo7 i Jo (3.5.51)
Vdx +C / V —a"-rlfdx+
<-CI J
since I — (f'/‘ — @/Ua, and

M 2
F <C/ +- 4+ - gV¥ldx (3.5.52)
Jo r
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Prom (3.5.6), (3.5.8) — (3.5.9) and (3.5.48) — (3.5.52) we obtain

SO ORW e Sl f+ﬁ£7x

dt /n .In
M 2

N M"""{p- poof ax

+cID[AﬂWI+9+ goofjdr + ¢ | —a3- rifdx+ Ca

”

< 1Moo / rgckc < Cel. When
o

CIQCI < 1, using the estimate (3.5.11), (3.5.18) and (3.5.45)(m = k), we can prove

(3.5.46)(m = k) holds.
Prom (3.4.2), we have

SFu, + 5F2p —p L0,)= —28offii - G r » ~ - 2e5F+"Poox

(3.5.53)
Ok & 121Me s 2 []
+-—R2 U+ —R 2 Ur[p— POOH.
Multiplying (3.5.53) with +r \if_’ — Poo)J, integrating over D ° M

have

It [5FWr, doo)j2dT

pM
-2 + - Poo)x]dx
Jo
pM
— + - p"Udx
Jo
M
—2/ </>t5F5Fu + —
. pM N :
+ Oik 1 L u viriu+r ;ctlg(b-ﬁ/iﬂ)]:j '

82
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using Cauchy-Schwarz inequality, we obtain

) RFgerar— Poo).?dx+ml @—4p — Pootdx

! M M
M I M
< C / + + Ci2ei) / [ T
Jo 4 Jo
-M
+C / GG + pripooxldx.

CMi
using the estimates (3.5.6) and (3.5.45) — (35.46) > we have

If Cuei <
Jt
< C / [—T + /™~ — pl1)2 + [TZ2]m +
Jo
from (3.5.18), (3.5.45) — (3.5.46)(m = k) and ?(i + T) < eo, we have
M pt  pM
I <f>fru+ e 5F— pNUdx o+ 1 - (1)« #1 <
Jo Jo Jo
Using Galiardo-Nirenberg inequality, we have
2(p-1)
miP-PooMIS

\\fP-POOW\L- <

so we only need to estimate

If a G (—1,1) * we can choose p G (1 540 C (1,2). From (3.5.8) - (3.5.9) and

(3.5.42), by using of Holder's inequality, we have
M

rM pM
J@unys ray g

¢/ mp-PooWdxrv<{
Jo

Jo
<C4
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Prom above result and (3.5.16), we have

[1(p — P o o ) %U + Eﬂ 3p_2 poe {1 5—£

Now, we have proved the Lemma 3.5.8. *

Define G C°°([0,M]), > 0,1)l[[0.2]=0, and iP\[M"M] = I’ hence we have

ijjr" < a

Lemma 3.5.9 Under the assumptions of Theorem 3.2.1, if ci is small enough,

we have
rM ™
(3.5.54)
and
rt r™M
<C/ (I+s)/ pWids +C/ (I+s) / —dvds (3.5.55)
Jo Jo Jo JO T
<Cel
Proof: First we have
Choosing a G (0, -), by (3.5.8) we can show that,
§23 X 1
x) =[/10 M }?ﬂydy + / (M - xYipyudy
< M
£
=cf{ [fM
Jo
< QW — DZE-M —yrijlw\dyf  + CIM - x)"™ [ lijpu\dy)
Jo Jo
2a/ | 2 4,2
< M, PVV)Y(/ [T (M1 43 )+ cov-nfa b)

PM

<C{ pir
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hence we obtain (3.5.54). Once we have (3.5.54), the (3.5.55) holds by (3.5.17).

Lemma 3.5.10 Under the assumptions of Theorem 3.2.1, if ci and a are small
enough, it holds that
rt vM
/ /| {g-goo?i]*rdxds<Ci24. (3.5.56)
JO JO
where t G [0,T2).
Proof: From (3.4.2), we have
/ M M rM

Multiplying the above equality by ' i p { M — p”), integrating over [0, M] x

0, ¢/ we obtain

oM
/] W —T1) -2 73
Jo Jo
- r 5 H
Jo, Jo Jx T
Jto M M
+ / / [ Gy{T-4 - rO dyda:ds
JO h y{ y (Or r7N
pt M i0.0.07]
Jo Jo
rt M
-2/ / - — p"Jp-dxds
Jo Jo r
I lM rM 5

ha(m - - p1) [/  p(-)ydydxds | i,
Using (3.4.2), (3.5.8) - (3.5.9), (3.5.16) #* (35.”18), (3.5.24), 6315.29), (3.5.43)-

(3.5.44), (3.5.54) —(3.5.55), integrating by parts and the Cauchy-Schwarz inequal-
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ity, we can estimate Ji as follows

o ™ ft PM
_{ - \p'-pD I ~dydx}\i +2/ / M
éo e P Jx ryX}l Jo Jo (
u--Y ft,r T MAM2
dvdvds +2°/ "/ - — o1 idydxds
Jo JQ M X r
oM
Jo Jo
fr '
+ dxds
— N _
Cfﬁ ]PM - UM ;
+Cy/ oy —’\00|H7:||L-|k(M — - x)-Uxds
Jo Jo a
/ M pt ™
+ CI* e -BHroo[E MI[ Y. p\r\)ldxdsY
+i/ C ] - —plfdxds +cj: HM — :n~ [ B, —
<
=% M- — ftfdxds + Cel
Jo Jo
(3.5.58)
) 2 oM
- P -Pic Poc{g — gocfdx M — dydxds
- Wi
1 ft fM
dxds
pt nM rM
+ C / |/ PooO—ggoofdxds |/ (M
JO JO JO
rt rM
<4~/ | Nj\M--x)-\p"-pl fdxds + Cel
Jo Jo
(3.5.59)
pt ™ Y
Js = - / NM - - pDptdxds <Cl\g- Q"WI™/ {M -  x)'hx
Jo Jo Jo
+ Cd < Ce:

(3.5.60)
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I.M 5 i 1 1 1

<c sup [(1+ s ) /M - "M — ')O%HJ_D d‘[n{lm]ﬁj\
(G[0,T2] 4

PI

I+ A+ S M -

Jo

<C s 7 -pt)|U-]i
te[0,T2]

(Al + s)-"-r2ds)H /(1 + s)\\uiM -
Jo 0

(3.5.61)

I Im I'm

— x)-"g —AOOJI/ Npu.\ + \ul)dydxds
X

I lM 1 ™M 1 1

— it ([Z [/ + - xY’dxds
nivi cJx
<C {1+ s){ipW™u")dxds]™ {1+ s)--T2ds]2  <Cel
Jjo M I'Mo 1
+ / {ptul + v2)dyl-dxds (3.5.62)
Prom (3.5.57) — (35.62) ’ we get (3.5.56fximmediately. .

Lemma 3.5.11 Under the assumptions of Theorem 3.2.1, if a is small enough,

it holds that

pM ft M
/ /7 L (M-x){p"poo)ldxds < Ci3ei (3.5.63)
Jo Jo Jo

for allte [0 > T2],
Proof: From (3.4.2)2,5(% have

u+rVx - rlipooUt + — 1™Poo)J + r'G-, + 2rip(poo). = 0. (3.5.64)



Some Topics On Compressible Navier-Stokes Equations

Multiplying (3.5.64) by Ij] — + 1px - 11"{Poo)x\, integrating over [0’ M
we obtain
oM
M - + -
a
O M (3.5.65)
T x)Hu + rp, - rUpcUIr"G» + =0,
JO n Poo

using the Cauchy-Schwarz inequality, we obtain

d pM 1 ™
ANl (M- + rzjj\—ri(poo):clAdx + C15 / - M p/dx
<c 1- M. xX)"Wdx+ B M
Jo Jo r Poo
(3.5.66)
making use of (3.5.8) — (3.5.9), we get
M Gxprl
Jo f Poo J poon
PM
then we have
J M M
I J (M- 9h'lu +1V. — rlipooUdx  + €23 M. S
M pM 2 3
<
Jo Jo A
(3.5.67)

if a2(1 + r) < eo, by using of (3.5.18), (3.5.24), (3.5.57) and (3.5.66), we obtain
(3.5.63) immediately. .

Lemma 3.5.12 Under the assumptions of Theorem 3.2.1, it holds that

Bifp.r]<Ce (3.5.68)
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(I+ 0ZEnTL=E ("E—piikt < (3.5.69)
+ < (3.5.70)
for all t G0, "Q] sy where ly =

Proof: From (3.5.8) — (3.5.9), (3.5.42), (3.5.56) and (3.5.63), we have (3.5.68)

and

pM 3
/ - pDldx < Cel te [0, T2, (3.5.71)
using Galiardo-Nirenberg inequality < and (3.5.16), we have
+ - PDILS < Ced.

Prom (3.5.8) - (3.5.9) and (35.69), we have

&% (pi -Nlo)|1-([o,m])

Lemma 3.5.13 Under the assumptions of Theorem 3.2.1, if a is small enough,
it holds that

M 2 ft pM
A+0/ (L pwWidx+ / / (1+syurdxds < CiSerll T \Wu UL~} .
Jo Jo Jo ‘

(3.5.72)
for allte [0,T2].

Proof: Multiply (3.4.2)2 by (1 + 7)Ut, integrating over [0, M] x [Ojj] ,using inte-

grating by parts and boundary conditions, we get

N

M ft ™

(1 + s)u’dxds J= [/ (1 + s)pNr"ut)xdxds
o

o J
~ft I'm ft pM
- (1 + s)p™r'u):,{rut)a;dxds + /  /  2(1 + s)p{ruus)xdxds (3.5.73)
Jjg J;M R Jo Jo
1

-/ /1 (14 5)G-™udxds =  yHi
Jo Jo T
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Using Cauchy-Schwarz inequality, A3, (3.5.8)-(3.5.9), (3.5.16) —(35.17) ’ (3524).

we obtain

M
+ ={a+95 / +  p{TuWdx})

n.

- p{ru%]dxds
ft M , 2 3
+ (1+ S){2p\T"UUTU% - P\T'U)1 + - +
Jo Jo r — —
O M u
< -+ —Cci8U+y [ [pwyl  +
(3.5.74)
M foplvL
Hi=a+s [ + / / 20+  s)pro)idxds
Jo Jo Jo
feoIm ( A ) ft pM ( fto oM™
- 4(1 + s)p™~{r™wadxds + [/ /|  6(1 + s)p—dxds - / / Vullidxds
JQ Jo (! JQ Jo P i’
;M fi I'M
+Ct - |/ ]/
Jo Jo
(3.5.75)
. M nt  PM ftoonM
M= -(1+y/ G—avi-2 [ | (1 +9Gr-vivds + dds
Jo A Jo Jo Jo Jo
<-(1+t) re™rdx +cel f /_uG’.' dxds.
Jo r Jo Jo
(3.5.76)
Using (3.5.8) - (3.5.9), (3.5.14) ’ (35.16) - (3.5.18), (3.5.24), we obtain
M
(1+0 /0 M S+ A/ Gndx
JO JO n
rM
=l +t)J/ [/ -/0 r M-i Griluxir-' dx
o
"M
3.5.77
. (3.5.77)
I'M 3 |2
/P d)(
«o

+ +i)< (1409 1 pt + e + Ce

T
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and

)2
rt pM ft M
<C / + /1 [pNg - goo?
Jo Jo T Jo Jq
/2 73 302
+ 0 —a ) jWs + + 77) s Cen

From (3.5.73) — (3.5.78), we obtain (3.5.72) immediately.

Lemma 3.5.14 Under the assumptions of Theorem 3.2.1, if ei is small enough,
it holds that

™Mo Fet I'VY
Pufik pdx ]/ + (3.5.79)
Jo Jo
IN(-,t)i[Loo + \\p{T\U-,t)\\L- < ~1764, (3.5.80)
M 2 rt pM
% + (T Bdx +j s)dxds < Ci7e3, (3.5.81)

for all t e [0, TV .
Proof: Differentiate the equation (3.4.2)2 with respect to t, multiply it by

and integrating it over [0, M], using the boundary conditions, we have

™M
- _p "_

7o A

_.py ", . W ! AN/
dtfp\r'u), - 2}9— -/ + pUir-utUx + / 2[pr'{~Utr™-"utdx
Jo Jo r

™M T A
Jo I

(3.5.82)
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From (3.5.8) - (3.5.9) and (3.5.24), we have

oM M
Jo Jo
v v a- — + rMutxldx
P
2
r
‘M
< A8/ (pv+2h s PR
Jo
pM
+ C{\p{r'uU\I* + 1) / + rA-ytidx
(3.5.83)
P O M
(3.5.84)
and
. i 247 2 " oM nM
[ 4 Ml +C/ urNde < 4 J  RM-NULDX+ CJ AL
(3.5.85)
Prom (3.5.82) - (3.5.85), we have
{};LAL + (p Xt +
M
< Cp@rw),\> + 1) + +C/  udx
+cwi O M ~ygy,
if CigCi < ] 7 that is, “CnCi < Cis and (3.5.41), we have
N
M 0
(3.5.86)

Prom (3.4.2)2, we have
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Integrating the above equation over [0, M], using the boundary conditions and
integrating by parts, we obtain

plruw)” = JJ}—? _ JrX p{\dy+2p-" . JF“ GMr-d-r ) Jp—2(4) °
r

Hence we have

, 20 \x,t)-pl{x 1 Ut . M U . 1
PO ="~ “57--—)}91 ) / S o —) B \+2—_/fM Gy{r rj)dy.
P PJxr® pJx r r p"
(3.5.87)
Using (3.5.8) — (3.5.9), (3.5.72) and (35.86) > we conclude that
Jo (3.5.88)

< Clh+ 2ei+c4al|/5(ADTiLlap’ 7

on the other hand, from the equation (342)2 ° we have
= Ut + + 2rupj ; +G) ’

using the estimate (3.5.9) - (3.5.10) > (3540) — (3.5.42) and (35.86) > we conclude
that

/ < Cestl + \piriUlg,

and

/ 2\d,{p\T\),)\dx < Celil + (3.5.89)
Jo

using (3.5.8), (3.5.72), (3.5.89) and Sobolev's embedding theorem W™ /A L4>’

we have
1il! VUlLooal < €Wt +

and

IWrVUILS < C2o0e4(l + llp(r'ii).IU-) + Cei, (3.5.90)

if C20C4 < then we can obtain that

1°( J\;MlS < Cei + Ced.
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Hence we can get (3.5.79) and (3.5.81) immediately. From (4.2.8), for X G

[—,Mj, we nave
0

M M
< C{/ + Cllg — + / p'ruldxY”
Jo Jo
M M
+ /" u'dx)™ + C[/ -a'- rifdx]"™ + Ca
70 Jo
<Ce4.

For X Glt/[—,M], we have r > C > 0, by , we have
0

A C ™ I'M
< —( w\dx + /  \ux\dx)
r roJM JM
I'M
<
Jo
thus, we get
u

For X G [0, —J, we nave
)
u

1)ydy.
room o

From the previous estimate, it is easy to obtain

hence we have

u,
We finish the proof of the Lemma 3.5.10. *
Now we can choose
ei = CoG + {C5 + Cg+ Ci7)ed + Cucl, (3.5.91)
if
+$+c?4A+4%@+ 2COo0+ e * < (3.5.92)
g OS Oil

94
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Using the obtained Lemmas 3.5.3-3.5.14 > we can proof the Claim 1. Finally, we

can get T* > T and the following Lemma by using of the classical continuation

method.

Lemma 3.5.15 Under the assumptions in Theorem 3.2.1 and a(l+ T) < q > the
solution (j),u) satisfies the estimates (3.5.8) —(3.5.11); (3.5.16)—(3.5.18) ; (3.5.29) ;

(3.5.40) — (3.5.44), (3.5.56), (3.5.63)5 (3.5.68) — (3.5.70) and (3.5.79) — (3.5.8])
for allte [0, T].

Remark 3.5.16 For A(p) * 0’ we cannot obtain \\pr"Ux\\Lo°{[f,M]) directly from
the equation (3.1.9)2. However, we can derive the uniform bounds

by using of (3.5.54), where 0 < 0 < 1. Once we obtain this result > we can use the
11

similar argument to obtain ||— \Iloo([%’ mj)’

3.6 Global existence

From Lemmas 3.5.3-3.5.15, we obtain that the solution {pa, Us" To) exists on
[0, M] x [0,T] and satisfies

<Pa(x,)<C{M-x)", (3.6.1)

+ C"™ < rlix, Cx, (3.6.2)
2

rr'lpyaid.Ua)'  + -iJdxds < C, (3.6.3)

PM n
sup /X
o * 1 Jo M (

M - x) (pa - poofjxds 7,

<(
(3.6.4)
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M ST M
r"+ia jj J_jl]l +§ J/ [plrl-"Nwnt,  + r--\uar,Jdxds < C, (3.6.5)
o Jo

ur.

3.6.6
J—a (3.6.6)

M 2

i v
/ dxds < C 3.6.7
%I;%Jo J_a+ Jﬁl+{§J{) {uafidxds < (3.67)

sup /0 Mx <, (3.6.8)
tG[0,T] 4o

where x € [0, M\ and L € o, T

Let a 0 ° wehave

{pa,Ua, ra) ® u’r)in c([0, M] x [O > T)

a;2+t%: (M - x)_Al{;)a)x ’ x:?M” -
in LA([0,T];L2[0,M])
Pa{rlua) J , " in M] x [0, T
Ta2 dtUa a - 7 au in r 5 1/ 0, M

PaT™ {Ua)xt pr TU""t tﬂ ([O, Mj X [O, T

dtpa N dip in L0, T];L%M

where {p, u, r) is a weak solution to the system (3, 1.9) — (3.1.11) on [0, M

[0,T] and satisfies the regularity estimates (3.6.1) — (3.6.8). Since the constant
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C is independent of T, we can extend the existence interval [0, T] of the solution
to [0, 00), and obtain the global existence of the solution to the system (3.1.9)—

(3.1.11).

3.7 Uniqueness

We can use the energy method to prove the uniqueness of the solution in Theorem
3.2.1. Let (pi, ui, ri){x, t) and (p2, U2, r2)(x, t) be solutions in Theorem 3.2.1, then

we have
C-\M-x)» <Pi <C{M-x)", C-x" <ri<Cx'sh 3.7.1)

Wi )l + (M - Ol <a, i=12 (3.7.2)

For simplicity, we may assume that {pi,ui, ri){x, t) and (p2, U2, r2)(x, t) are suit-
ably smooth. Otherwise we can use the Friedrichs mollifier to regularities solu-
tions.

Let

Q= Pi — P2, cu=ui — U2, R —ri—r2.

Since dt"i = Ui, we have

J pM
a In O M Arwax
M (3.7.3)
'™
<e j + Ce / X""Rdx.
Jo Jo

From (3.1.9)1 and (3.7.1) - (3.7.2), we obtain
7O 5
-/ (M- xY'pHx =21 (M — x)-'pdtipi - P2)dx
In

at In

— 2/ (M - x)-p(~plriui, + plriu2" -2pia + %Z—)dx
Jo 1

M ™
M — x)xlwl  + x-hvNdx + - +  x-IR"
{M — x)xlwl -+ x-hv")dx B {( IR, 5 4)

/
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From the equation (3.1.9)2 and the boundary conditions, we can get

Y S iMoo, M p
dtl L+ w2
M M
[ dx{riw){pl — pD{rlu2)xdx — | {riw)xplf{rl — r)ul]xdx
Jo Jo
o O 2% .
fr? - ri)w x{pl{riu2)x)dx + / fwul{ )]xPidx
Jo n r2
M
+ /B Meiwmpi - phax + i rDwpdx + p2dx
Jo Jo Jo
rM pM
+ 2/ [whirl —rl)lp2dx + / —
Jo 12 Jo
(3.7.5)
Prom (3.7.1) - (3.7.2) and (3.7.5), we have
" /ﬁW{ M 4 2
whdx + C / {M - x)x™wl + x~iw’ldx
Jo 2 Jo (3.7.6)
pM pM R
<C, {x-"R» + (M - +e/ x"wd
Jo Jo
Since
D% dx<C/Ddex,
we have
M
/ 7M
O m
<C/ W+ {M - +

Using Gronwall's inequality, we have for any ¢ G [0, T

M

/Wt (M - + = 0.
Jo

Thus, we prove the uniqueness of solution and finish the proof of Theorem 3.2.1. <



Chapter 4

Local well-posedness of

Navier-Stokes-Poisson equations

4.1 Introduction

The motion of self-gravitating viscous gaseous stars can be described by the

compressible Navier-Stokes-Poisson system:

dp
dt+v.(pu)_0:

= Airp,
where t > 0, a: € p > 0 is the density, t/ G M" the velocity, P the pressure, $
the potential function of the self-gravitational force, and fi{p) > 0 the viscosity

coefficient. The equation of state is given by

Pi{p) = Ap\

where A is an entropy constant and 7 > 1 is an adiabatic exponent. In this paper,

we consider /Li(p) _ cp, where ¢ > 0 is a constant. Without loss of generality, we

99
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L1

suppose 4 =

For the spherically symmetric motion, i.e. p(x,t) = p(r,¢) and u(x,t)=
X

u(r, t)—, where u is a, scalar function and r = Ixl, (4.1.1) can be written as
r

follows:
Pt + =0,

T 2
Lo srp  psids = plUr <)y —2-p,
put + pUUr + +
We consider a free boundary value problem to (4.1.2) under the following

(4.1.2)

vacuum boundary condition
p(R{Y) ,;t) =0 and p(r,t) >0 for r < R{1), (4.1.3)
and the dynamic boundary condition

{fiip)ur-P){R{1),1)=0. (4.1.4)

Since this is a free boundary value problem, so we introduce the Lagrangian
(mass) transformation to convert this free boundary value problem into a fixed

boundary problem. We may also assume that the total mass is 47r. Let
X ps/ds. (4.1.5)

Then the domain of x is [0, Il. Denoting the Lagrangian derivatives by Df, D"

then we have the following simple facts:

Dtr - u, Djr - (4.1.6)

I3

pr
The seconde relation formally leads to
r=(3 / (4.1.7)
Jo P
By change of variables, the (4.1.2) convert to

ATTX
Dtu + + — 2wD [ p, (4.1.8)

or Dtu + + 7~ +20 =
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with the following boundary conditions
0, @"DN- p"™)(1y=0, and p{lty) =0, (4.1.9)
and initial value conditions
p(x, 0) = po(x), u(x, 0) — 4] (4.1.10)

and

Po(x) ~ (1- x)", as 1J° 0<ac<i (4.1.11)

In order to obtain a priori estimates, we introduce the following cut-off func-
tions X and C. Consider 0 < r ri <2< such that
0< <ro, 0<3d<r2- n, o< 10 (4.1.12)
ro—d
for small fixed constant d. Now let Xi be the initial position in Lagrangian
coordinates corresponding to r, where i = 0,1,2:
r pofs)s"™ds. (4.1.13)
Jo
Then by the positivity of po, we get 0 < a0 < a%i < 22 < 1. Denoting the particle

path emanating from r* by ri(t), ri{t) characterizes X -

R A Faft)
Jt 1 P(S ’ i)SZT/S =0 ie. ] pO st0 s"ds_ Xi. (4114)

The above equality follows from the conservation of mass and can be verified by

using the continuity equation and

Lrin=utr .

If we assume lu(x,f)l < iT for all 0 < r < R@®) and 0 < t < T, where T
is sufficiently small. In particular, d in (4.1.12) will be chosen so that KT < d.
Then the smallness assumption on the time interval 7 prevents a dramatic change

of r in time.
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Now let X G [0,1] be a smooth function of x such that

0<X<1 and supp(x) C [ao, 1
XM =1 if <N <,

1x'l< and [x"[<
Xl - X0

Note that

Init) -ri\<d for 0<t<T,

since

rift) = ri™ / u(r(T),T)dr, by (2.1.7).
Jo
Then we can deduce that for 0< 1< T,
x{r,t) =0 if r<ro—d and =1 if r>ri+d
Similarly, we can construct smooth function ( satisfied

0<C<1 and supp(C) C[0’r) - d
Ch=1 if 0<r<ri+(
C
| " <
IC< 1y g pq 20 [
as a function of x”t satisfies for 0 < t < T:
( f i f x” isfies for 0 T

) =1 if X<X, and ({x, t) =0 if x >X2

We will view % and ( as functions of x, » and ¢ without confusion. Define the

energy functional

Csii) is the Eulerian energy and éI(t) is the Lagrangian energy, and

e
— e

@ 15
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) Xu'dx + KL

7 L
A t/rn r
va [
+ 5 =
Jxo 24 Jxo

We define the dissipation

D{t) __ DEH) +D%t) = E /
la<3 1 J

+E ¢ xip'ADIDM'+

We suppose the following assumption (K):

sup {p,Ipr'D u+-| =171, \pr'D'u|,
X0<x<i r 7 P

sup MI\drUINW\dtU <K,
o<r<r2-d P P

which indicated what regularity strong solutions should enjoy. It is shown in

Equations

& & T
N o Jxo
*nJXo

+

i=1

x\Diupdx}
(4.1.16)
x\Diu\'dx
.
(4.1.17)

Lemma 4.4.1 that K is closed by i(#). Now we state the main result.

103

< K)

Theorem 4.1.1 Suppose p, u are smooth solutions to the free boundary problem

of the Navier-Stokes-Poisson system (4.1.2) with (4.1.3);

+ IDfy < Cie(dE + C2m  + Csdyf,

(4.1.4) > o (4.1.8)—
(4.1.9) for given initial data such that 0) is bounded and satisfied (4.1.11). Then
there exists Ci = Ci{K), C2 = C2(K) > 0 and C3> 0 such that /or 0 < t <

moreover, there exists T > 0 and A = A{T, CN, C2 > <3 ° &) > 0 such that

swp < JL,

o<t<r

(4.1.19)

@_] is)
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In the following theorem, we establish the local in time well-posedness of strong

solutions to the Navier-Stokes-Poisson system.

Theorem 4.1.2 Let the initial data p)Ly\o be given such that N0) < oo and
satisfied (4.1.11). There exists T* > 0 such that there exists a unique solution
R{t), pi{rt), u{r, t) to the Navier-Stokes-Poisson system (4.1.2) with (4.1.3)—
(4.1.4) in [0, T*] X [0, R{t)] such that
sup eW <27(0). (4.1.20)
O<t<T*
Moreover, pi{x, 1), u(x,t) > r(x, t) serve a unique solution to (4.1.8) — (4.1.9) in
[o,r] X [0,1],

4.2 Boundary estimates in Lagrangian coordi-

nates
From the continuity equation in (4.1.8), we have
fi u
pix, t) = po{x) exp{- / (pr"D™u + 2—}2{x, (4.2.1)

Hence we can see that if [pr*"DxU + 2-| is bounded, then p is bounded too. In
Lemma 4.4.1, we will show that '

sup lprDu +2-1<Cjm + W + ¢

0<x<i r
where Cin depends only on the initial density po and C > 0 is a constant. More-
over, if we let

M = sup + 4.2.2)
OCaKl T

then we have

(4.2.3)

Firstly, we will establish the estimate on ,L){i).
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Lemma 4.2.1 There exits CK > 0 such that

AR i=o JH[ (4.2.4)

where OLi < CK"E for some constant CK-

Proof: Let i — 0, multiply the momentum equation by x[L * we have

2.0 Jxn Jxn Jxn 4.2.5)
+ / 2xu™rDxpdx + / Amxurdx . O,
oJxn Jxn A

First we estimate the second, third and fourth terms in (4.2.5): integrating by

parts and using the boundary condition (4.1.9), it holds that

[ - f + £ 2xuD pdx
Jxo JX0 Jx0
= -/ DMxur'")prdx + f D,(xr\)p”"D,(r\)dx - 2 f D,{xru’)pdx
JXO JX0O JXO
=—/ x™up™dx — /| xDa;(r2u)p7dx + /
JXO JXO JXO
1 ﬂ ™1 y2
+ / / ~rutpdx + 2/ x—dx
JXn JXn JXn
Xr'up™dx  + Idr XP,- dx + r u)d X

u
+ / xP nDxu¥Ydx - 2/ x'vulpdx + 2/ Xpck,
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and
—/  yup™dx + / xp"Dxir:u)(he-2 -x"™vu"\pdx
J Xq JXo
pxi rxi
=  xNuptdx + /[ x'PY" “xuudx
JXq JXQ
n priit) }__r []
<— / / p\"\drUu\dT}
- Jro(tO Jroit)
A Cin + df » /T d) I~ ). 20 [
A -
< r'i%iup D 2(/ r4+ / prvdr)
+ osup pf 4| ) prRidmddr tnbit)  prividiiioft
r<;z#;c}2 Jrait, “ O ofY)
< Ck"E-

For the fifth term in (4.2.5), we can apply the Cauchy-Schwarz inequality to yield

X, A C R B
Yo Xy < (rg dy Xu'dxY™ < C a [1/2.

Then we get

g xt0 e + | x{pVIArtf + < CKIT + & &

Jeon " — r

From the continuity equation, we get
1 /o
XP~MN\D,p\"\dx < 3 / + —}dx < (ML, (4.2.6)
n JXn A

Now let i = . Take Dt of the momentum equation to get

+ r'DiD%NpY - + )&=
9 47T (4.2.7)
StVTUA” - - A(F) o

Multiplying the above equation by x"fu and integrating in x lead to

x\Dtu\'dx  +j : xDturQ /bé

/1 2 4:7tx
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we estimates above terms one by one as follows:

JX0 JX0

= - f jx'Dtur"p"-"Dtpdx-7 f
J xq J xq

+ f xDtu{p™DtDuw)dx + [

JXq JXQ
3 1

= xP™r'IDtD.uldx
i=i NG

For Ii term, we can use the assumption in (4.1.17) and change coordinate variables

to obtain
vil=\- fax IAwv—ifls ckce.

For h term °> we have

121=1-7 NiDMur' +
Jxa Pr
\Dtu\’
< -~ xp'r'IDMdx~+j/ x'-"dx +C/ x}iz—'lAij}
NIJXo T Jx"
<\ [\\Bl#dx + ¢ sup | J=-2 [ [\p-"\D,p\"dx.
“Jxo ~J XQ T xo<x<l Jxo

(4.2.8)

Integrating by parts and using the boundary condition, we can estimate the last

term I3 by changing coordinate variables to derive

1Br=1/ x'Dtu(p\"DtD,u)dx\

Jxo i )
1 rxi DX
=l —y / x'Wp'rdx + / x'\Dtu\'D, {p'r")dx]\
< CkCE-

Now we only need to estimate

ATTX.
xDtu{D,{Dt{p'nD,u) - Dtv'DApM) - Dtf-)u - Dt{-M}dx. 4.2.9)
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The first term of (4.2.9) can be estimated as

JxQ
= - f xDt{p'r)DuDtU - j xDtD,uDt{p\")D,udx
Jxo Jxo
< Ck*e + 1/ +  2pDtpr"] D" uD, Dtudx\
Jxo
+ C sup + ['xp't " 1D”'dx + CK"E,
" Jxo xo<x<[l r P Jxo

for the second term of (4.2.9), we have

—/  xDtT"Dx(p)Dtudx = -27 |  xrufP—iDxpDtudx
JXq JXo
U
=27 / x-r"DxpDtudx
Jxo r
<27 sup fxIDM'dx},
N Jxg JXO
the third term of (4.2.9) can be estimated as follows
u Dtu u
—/ x"DtuDtNudx =4 / —~-dx
Jxo I~ Jwvo T r r
<4 -1 25d dx.
3;06;<4 ¢ Jxo y-DIU" é]xo j( Sijs ]}2 * Dl
and for the last term, it holds that
/1 4:Tex X
—/  xDtuDt{"-)dx = Stt /  x-"uDtudx
Jxo T J)G; A
<\ ( x"\dXx.
810 — (ro S A ea—

Hence after absorbing the viscosity term into the left hand side and using the

assumption of (4.1.17), we prove the result for i = 1.

Now let i = 2,3. Take D\ of the momentum equation to get

Dt+iu 4 rDiDUpV ~ — +) =

9 ATTT
= - DPr'D"p") - Di-N9D{w} - Dif—)

(4.2.10)
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Multiplying the above equality by xu and integrating in x, we have

(\DIlu\Hx+ f xD\ur™D, Di{p")dx

AN JXO JXO
-AADiuD, {p'r'D, Diu)dx+

J XQ Jxo n

Jj=0 A0 r
— f\DiuDi{")dx.

Jxo T

(4.2.11)

Integrating by parts and using the boundary condition (4.1.9), the second term
and third term of (4.2.11) can be estimated as follows:

—f  xDiur"Di{pNdx + f x'DiuD"Diup™dx
A A ° 1 (4.2.12)

Xo J Xo

The first two terms can be bounded by CK"E by using the change of variable. So
we only need to estimate the third term of (4.2.12). Prom the continuity equation,

we have for 0 <1 < 2,

nrp = -pipr'D*Diu + - Yu (4.2.13)
0<j<i,0<k<i
hence
£ XP-"Dip\dx < CkN, for 1<]j < 3. (4.2.14)
Jx0

Then using the same idea as in (4.2.8) and (4.2.13), we can estimate the third
term of (4.2.12). Note that each term in the RHS of (4.2.11) involves only lower

order derivatives. Hence, by summing over i, we get the following

A Ao i[»i=l)\0 r

Next, we estimate mixed derivatives with only one spatial derivative.
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Lemma 4.2.2 There exists CK > 0, such that

L~~~ v r24ir. 2 2 Djul®

T N nJxn
(4.2.15)

<\ jz f x{p'AD"D\uf + + CKO + OL2,
N1 Jxvi T

where OL2 < CK"E-

Proof: For i = 0, multiplying the momentum equation by xDtu and integrating,

we have
f x\Du\"dx = - f [ xD.{p"r"D"u)Dtudx
(4.2.16)
/D . A A, A A
-/ ~—dx — [ xMDtudic =2 y J
JXQ T JXQ
Using Cauchy-Schwarz inequality, we obtain
Ji = —7Epi-GpDde
. JXn (4.2.17)

For J2, integrating by parts, using the boundary condition and by changing vari-

ables, we have

2=—/ "»¥"DxuDtudx — / XP""D"uD"Dtudx
JXO JXQ
= -] xpr'DuDtudx — H |
(4.2.18)
Z JXQ JXQ
Xpr'\Du\"dx + IK j: xp'r'IDM'dx + CKU
where we have used sup < K, and sup |-| < K.
X0<X<I p X0<Xx<I r
For J3, we have
Dt 1d
J3= 2 b 2xAdx — 2 Xndx
2 (4.2.10)
< - 2xNx  + 2K / xidx

2Jt
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and

—f x ¥ A - < R 2 M1 7 . (4.2.20)
Jxo ° "0~ " Jxo
Then from (4.2.16) — (4.2.20), we complete the proof for i = 0. For i = 1,2,

multiply (4.2.10) by x*1"*u and integrate to get

JXO JXq JXO
+/ X —Ardx _—/ X I
Jxo T JxN ‘ ]\i ml
J 0 A A

Then all the estimates are similar to the case i = 0. Hence we obtain the desired

results. .

Lemma 4.2.3 There exists CK > 0 such that

2di E&]P’\"\-AADiDApl'dX < 4.2.21)
JXr\

Proof: Integrating the momentum equation from 1 to x for a: > xq, and using
the boundary conditions (4.1.9), it holds that

A N +7~ +1r-ANlce/ .. (4222
r Ji ri M rxt r

Multiply the (4.2.22) by and using the continuity equation, we have

n 7 27-1 1 Dtu  Any

pp =1 T — ] -jpr ok +TT + | ffa223)
differentiating (4.2.23) with respect to x, it holds that /

On, 27
= _tA - (;‘:r‘-l) _ _
n ( 1I-1BDtU Airy  2u
EUNGDB% + TT + —~~"0 dy-

, ATTX , 2u 2D"NUP.
PN T + "IT + ] )
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. D"u u
since Ux{—) = T, hence we nave
r

r pr
2u PfU ATTX, ”
Jid o "H .

Multiply (4.2.24) by xr"D™ip”) and integrate to get

"M X0 Jxo Jxo

—7Jor' D)7 > DHl2 > +p0 O wdE-2 xI"pl

Jxo I Jxo
DtU

We estimate all the Ei as follows:

JXO JXo
<:7: < 2K F
Jxo 7 JXq
E2 = —7 " xr27-2pd 2 Jr<ck F
Jx@ Jr@
E - —710-1) "xev)-21zvi2@ -+ pT'Dudx
IXQ T
<CK f
Hs = —2/ < Cki' I xr*p'-'ID pl'dx,
and
Fs=—T ] xeaw)[ i(H +
Jxo — —
2 /1 _4272n {DtU I 47x
=] Xr P? + —dx
Jxn r r
ATTX

<7° dx\ < CK / xV K21arfd L

112

(4-2.24)

(4.2.25)

(4.2.26)

(4.2.27)

(4.2.28)

(4.2.29)

(4.2.30)
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Combining (4.2.25) with (4.2.26) - (4.2.30), we obtain the result for i = 0. By
using the previous result for ¢ derivatives of u#, we can get the similar estimate

fori= 1. .

Corollary 4.2.4 There exists a constant CK > 0 such that

(4.2.31)
Dm0 (4.2.32)
for z= o,
Proof: From the equality
= Dt + +'§/—2prD,u—2~
and the assumption (4.1.17), we can easily obtain the (4.2.31) for i = 0.
Rewriting the above equality, we have
pu A-KX
+ 2N) = Dt + + A + 2D,PTU
then we can get (4.2.32) for i = 0 by integrating in x.
Similarly, we can derive the estimate fori = 1 b
Now, we present the weighted estimate of D”p.
Lemma 4.2.5 There exists CK such that
) t@p'-Ar'lDiDlpl'dx < CKL. (4.2.33)

i yxn

Proof: Differentiating the continuity equation with respect to x and using the

momentum equation, we have

B.n"p +A o+ -ApA-~DIP-7(7- (4.2.34)
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Multiplying (4.2.34) by xp™r"D”p and integrating in x, we have
JXq T 1o (4.2.35)
—/ vvbD Uz +EE+F )Y =07 R .
D r I r i1
For Fi term, we have
t/xo0 JXo
D tp , 113 3
<27 sup X X/VID 73+ 4 sup 1-
p 1-1/
XO=&=<lp Jxq r Jxq
(4.2.36)
Using the same idea with Fi, we can estimate F2 and F3.
F2=~1t X7(7 -
<7(7-1) sup / xp"-"\D,p\\DIp\r'dx
Xg<x<l JXO
< 7(7 - 1) sup Dipl'dx).
Xo<X<l Jxn Jxn
(4.2.37)
Fs =J xp'--"r'IDIpl'dx
(4.2.38)
<7 sup
Xo<X<l
for the last term F4, by a simple computation, we have
=] XP"DIpir +5 v Iipﬁ,) 7H
(4.2.39)
—2 x p O 7
JxQ r r

Jxn P’ -l
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Hence, we need to estimate Hi, i = 1,2,3.

For HKWE have
DtD™  ATT 2DtU IMNTTX

- " + d.
Hi _ xp 14 vir Jdx
< sup I}iz-i|(/ xP*"ADtDM”"dx+ / xp"ADIp?dx)
JXO Jxg
+ osup I - dx) (4.2.40)
X0<X<I JXV, r Jx
+ 27 sup I xp"r"\Dlpfdx)
X0<Xx<I JXr, JXQ
+ &8t sup p 2 |(- —
JXO
also, for 72’ we have
H2< 2 sup + sup IFZ—VAth
(4.2.41)
Xp" ADIp\'dx  + Jj: xp'r'Mdx),
and
<4 sup | (/ — Xp"™""'Mdx).
iro<®<l  Jxo - a
(4.2.42)

Combining (4.2.35) with (4.2.36) - (4.2.42), we finish the proof for i = 0. Using
the similar argument, we can derive the result for i = /. .
We can also obtain the mixed derivatives of u with three spatial derivatives.

Corollary 4.2.6 There exists CK > 0 such that

(4.2.43)

f x\pr'D,(pr'D,(p'r'DtD,u))\*dx < Ck"I- (4.2.44)
JXn
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Proof: Prom the momentum equation, we have
= D"pDtu  + pr"D"p0 + -

by a simple computation and integration in x, we can obtain the result for (4.2.43).
Similarly, we can get (4.2.44).

The following Lemma gives the estimate to pure spatial derivative terms D”p.

Lemma 4.2.7 There exists CK > 0 such that

i i~ xpr ~ 1A . (4.2.45)

Proof: Taking ]I in (4.2.34), we get

& +p ~r +5F 4+ + 77 - + jp"- ' DIp

+ W7 — T — + (1 — = 0.
(4.2.46)

Multiplying (4.2.46) by xpr™D"P and integrating over k ° > 1 we have

£ Xp“NNIDipldx . 1% 75
-37(7 - D/ -7 f x/VV-" 5 T
JXq JX»

—7(7-1)(7-2) / xp"tM'Dlpp-~-'iD pfcix = ~  A..

For Ai, we have

1 ZFIJ 1 (4.2.47)
<47 splAlf t0 sup |-
< X0 ‘ fJ‘Xq

X0<X<Ip r
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M =-f spvopplis + 5+ 7
JXQO | t/x0 I
Jxo r r A "r4
+ r x " —Dpirpz(1E T — B
Jxo — — pr?
< Ck"L.
(4.2.48)
ik S37(7 - 1)
<37(7-1) sup (A ~27-17F- | Y (/% 1y - m f\p'r'\DIp\'dx).,
xo<x<L JXO JXO
(4.2.49)
and
sup 1] 1| fp'~rA'1D1pAdx. (4.2.50)
ajosccsl Jxn
A= —T707—1)7-2) /
<|7(7-1)(7-2)| sup ( 1 ™ v bp [t
XO<X<1 Jxn Jxn
(4.2.51)

Hence, collecting (4.2.47) - (4.2.51), we obtain the (4.2.45).

4.3 Interior estimates in Eulerian coordinates

In this section, we will obtain some interior estimates of “(t). Away from the

vacuum boundary, P is expected to be strictly positive and classical results of

the Navier-Stokes theory can be applied. Recall the full Navier-Stokes-Poisson
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system (4.1.1):

A4
g +V .{pn) - o,
+ divOu @ u) + VP = -pV~* + div(/i(*)Vu),

= 47rp,
where u(x) = u(r)—,x X = (xix2, X3), r = [X|

Lemma 4.3.1 There exist constants CK, C > 0 such that

[f*""E+1de < CKE+ + OLs, (4.3.1)

where OL3 < Ck~L for some Ck-
Proof: Multiply (4.1.1)2 by Cu,use (4.1.and integrate to get

i c/H} + 1 CplVupefx

4]7|: J (y H—ngt ﬁdx + -y (dtp\l/l\Adyi - ] VCpVuutix

J CP{U.V)u .udx + j VC/u(ix +J VC’pufix

v ¥
+ VCAMVAMiX.
ATT

By symmetry, we have

7
1 b \ t 1y / 2y 2
b Ve -- a X g r
T T b I NT
di 27 TuaH
1 b 2
C 1 %)2 —+ C/
r,\ .
A -Fr'dr
A4 J
1 a U
< C sup /-7 + C / CPH"R"DR,
0<r<r2-d J J r

where we have used the Cauchy-Schwarz inequality and for » < r2 — d,

I 1
1 / ps™ds <- sup \p)

J~ Jo O<r<r2-d
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and
A

1 1
sup -] < sup 1—1&"

0<X<X2 P 0<X<X2 PO

Other terms can be estimated as follows:
% fcdpulad = s cu2tht <i sup Cpjupcbe,
2 Q<r<r2-d P
C cx2
VipVuudx\ < 2d \pr"DxUu\dx

C
< /[ x\u?dx)

r2rie 2d JIY) Jxo
<cufl.

Cpfu . VIu . ufll < sup / Clo[Vupcix + / C)0Jup(ix)
J J

O<r<r2-d

/ n X2

N A At
< Cpﬁgﬂlrf sup £ PRld gy,
F2 i - M i<k - 2d I IXI

Hence we get the following zeroth-order estimate
{J Cp|u|2ﬂ:\y + A J Cprd™} + JJ Cp|Vu2e?x < CidE + OL, (4.3.2)

where OL < Cx"in™L, and CK,in depends also on the initial density po. The

higher derivatives (up to third) can be estimated in the similar way. Let d be

any Eulerian derivative, we have

dtdp + Vdp eu+ Vdp . du +dpVu -"pW -du =0

pdt{du) + dpdtu + a[/?(u . V)ul + Vdp’ + pVd" + dpVep = div(5(pVu)).
(4.3.3)
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Multiplying (4.3.3)2 by Xy using (4.3.2)” integrating to get
7T il +J CplVduld®
=-J VCpVdudud"- J CVpVauaudy + J
O (dpldid-y T PMvam I G o pduds
~( ] (" 2dpfVudy < ~7J ‘pi Vi O dpdtidudy
—J CSfjo(u * Vuldndx —j (Wdp"dudx — J CpVd"dudyi
—J (dpV"dudyi —J CdpVuVdudx —J VCpduVudx.

Note that

L J 1 agk—j (diiide T CdPVads- T (Vdy'dud

=j VCdp™ + dudx.

For another second derivative term - 7j (p”dedp\ldx, we integrate it by

parts:

Iy e | + J Cp™Vpidprudx ™ J

Potential term, in principle, lower order and the L? estimate ||j:}fl Z;éu< 79|"2

is useful. Hence we get the following first order estimate:

J J + 1 CplVdu\dyi<CKCE + OL. 3.4

Now we estimate 3rd derivatives. Take one more derivative of the equation (433) ’
we obtain
dtid"p) + VaV .u+ 2Vdp *au + Vp *d"u

+ d"pV .u+ 2dpV ~du"pV-d*u =0
(4.3.5)

pdiid™y) + 2dpdt{du) + d'pdw + dipfu + Vyu) + S+ 2dpSm
+ (Nd DO = a2div(pVu).
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Multiplying (4.3.5) by C*u, using (4.3.1)i and integrating, we obtain

FHJ oo . -J  vepvarudruas
Mialh J - 71 (pdpVdpnd”
— ) (" dpVdpdudx - 7T (p"-"d"pVpd udx - 7J

27y . 7j P - truaxs -2 o (dpdidud™udx

-3 carpdivdudyL - J CYFpu. VI ucfx— ¢+ SFFYF udx
=2 J (dpVddud:si—J (pVd™d'wdi® —J

—J (Vdud"pVudx-2  j (VdudpVdudx - J VCaruPpvucbe-2J ¥ udpVdudx.

As in the first order estimates, for higher order estimates, either we use the

integration by parts or they cancel each other. Eventually, we obtain the following

(4.3.6)

Taking one more derivative of the equation (4.3.5), it is routine to have the

following high energy inequality:

%/ CVpfdx +[ +]JCH'Jf)E'ude (437)

where comes from the Gagliardo-Nirenberg inequality:

to treat the nonlinear term such as .]d"ApdldudAudx. Now we finish the proof of

the Lemma.
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4.4 Weaving the estimates

In this section, we will verify the assumption (4.1.17) to show that energy esti-

mates can be closed for 0 < t < T where T is sufficiently small.

Lemma 4.4.1 Suppose (p, u, r) is a smooth solution to the Navier-Stokes-Poisson
system. Then there exist T > 0 > Cin — C(po) > 0 such that K < +
Nt + C) for ~ <t <T, where C > 0 zs o positive constant.

Proof: In the view of (4.2.3), we have

Poe

With the bounds of p, and

PO(X)[(l — as X where 0< a <

LI

we can estimate \pr‘Dxu\. Note that

sup \pr"Dx'u\ = sup{ sup e SUD e
O<a1 O<r<ri+(i aji<a<l

Applying the Sobolev imbedding theorem, we have

sup laH < / Ie ?LZ_u|2dx”
O<T=<tiHi iQ B

< sup |4=1E(/ - Ao ke

O<r<ritd VP g JBr.+a
< Cinelfluyn

From the equation (4.18)2 *> we have

(4.4,1)

Integrating the above equality over [x, 1] for 0+ G 1), we have

=7 " 'Dypdy- ANd oy o+ 2p- +2 Dy(-)pdy - 5 dy,
]fxp ypdy ]/Xry P J/X y’()py 5 dy
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hence we get

ry I /i D+u 2 A u 1 M 47y
"—Fhu = P~Zl--_[ . 741—ph pZE_ [
and
sup Ipr"D?I < oreMT(ZL(4)12+ q (4.4.2)

XI<X<I

Combining (4.4.1) with (4.4.2), we have

sup lpr'Du\ < cilefllr(Zy+ o).
O<x<1

Once we obtain the estimate of sup \pr*Dxu\, we can now get the bound of
O<a:<1

su

0<)?<i r

If . 1 X
sup |—|= Sllp{ sup )f'|a sup ZH}
T

occcl - O<r<ri+d T xi<x<l

Using the same argument as in (4.4.1), we can get

sup  1-1 < (4.4.3)
O<r<ri+d T

On the other hand,

sup [©] < C(/ luldx+ / \DMuldx]
XI<X<I T A1 Jxi (4.4.4)

BT (a(4) 32 +

Collecting (4.4.1) — (4.4.4), using (4.2.2), we get

By Taylor expansion,

2MT)'
M - cum"+CO E ( ) < cum'+o)

for sufficiently small 7, we can obtain that
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hence, we have

M < Cin{i{t)» + C) for 0<t<T. (4.4.5)

Because of (4.4.5) and Taylor expansion, we can derive for sufficiently small 7,

sup |pr'DMul < + C), (4.4.6)
O<x<1

and
u}

su 4.4.7)
()<()§)<l
Integrating (4.2.7) over [r, 1], where x G [V, D ve have

- 1

2 1w
pr"DtD™y = - ~—[ Dfudy DyDt(pNdy — ~
P—Jx pr Jx P Jx  y
1 1 2
ZurDy(p")dy ) Dt{-i:)udy
pr pr'c Jx pr
1

o TIINOVIR

then we have

SUD D DM < (] 3+if) + O), (4.4.8)
XI<X<l
Using the same idea as in the estimate of sup we have
0<a;<l
Sugl WDtDM < Ce™m"™ +m + CO. (4.4.9)
oca

Once we obtain (4.4.9), we can easily obtain

Dt
sup ! (4.4.10)

0<a;;<l
Next, we estimate in xq < 4> % Because the cutoff function x
values 1 only forxi <x < 1 > f o rXQ < X< XI should be estimated
in Eulerian coordinates. Note that tg — d<r<ri-\-d covers xq < x < xi, we

have

sup < sup{ sup sup
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Applying the Sobolev embedding theorem W™ #

and HS5lder inequality,

one gets
Ti+d pri+d
/
< ita [rha
Jro-d 1 j-d Jro-d
< ﬁmUt) ) ZD/ pri-\-d r_‘n+d
Jrn—d +Jr/0—d C Al
In order to estimate sup we need following two Lemmas.
XI<X<l]
Lemma 4.4.2 There exists CR > 05 such that
Iftf: <Ck _ +Utll n (4.4.12)
Proof: From the equation (4.1.8), we have
AN n/0 O u DU TX
p.p = - - PP, -EF

Multiplying the above equation by XDXPPMAT"A and integrating over k) © ° [we

have
S Ox iw ) arpPt - —2 ] xD'tD\pp™-rdx
Jxo Jxo r
JxQ r JXQ T (=1
For /i, we have
/i =]-2 r -1 f XQ27—
X0 /\JXQ
<C sup I-1I + C sup 171 f x fz xTr o
ao<ad r JxQ X0<X<l P JXQ

(4.2.10)
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For 12, one can get

Rl < C 1T xp'-'ID*pl'p'-'-'tUx < sup Iri| /
330

X0<X<1 IxQ
(4.4.14)
and
Bl <C sup I-1 I (4.4.15)
XQ<X<1 | JIxQ
Making use of
pld1 as o for 0<a <
Zi
we can estimate 14 as follows:
|/4]<6” sup r xp'"*-'ID*plr'dx
X0<X<l A JxQ
<G sup I K (4.4.16)
X0<X<1 - JXQ JXQ
For /s, we can easily obtain that
A S CHCLL : (4.4.17)

Combining all the estimate from (4.4.13) to (4.4.17), we finish the proof of this

Lemma. .

Lemma 4.4.3 There exists CK > 0 such that

(4.4.18)

Proof: From the equation, we have

pop +70 -1 )T+ 7T 1)+ “Z+4 + =0
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Multiplying the above equality by Xp4’—D DI4Rd integrating over [a'o, 1], one

can get

2k T3 T T-2 AM™— [ B "L

-7(7—1)
. JXO
DtU  inx 2Dxpu
XDX(—Y  + +
J.2 4 r
For Ji * we have
Jxn _L Jxvi
< C sup -] + C sup
X0<X<k Jxn xo<x<l p )
(4.4.19)
For J2, one can get
WJ2\<C  sup = 2 AN +e A
BT JXq
< C sup f xp'"-h'Mdx),
Xo<X<l Jxo JX0
(4.4.20)
and
W< C sup p’ (4.4.21)
X0<X<1
For \]4-, we have
K i 471 sn2 [ Dparw Y 2D 167
Jxn ‘ ‘
JXO r I JXO pr
— eE%.

(4.2.10)
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For each Ei, we can estimate as fol
E~<c sup f

xQ

+ ¢ sup

X0<Xx<1

+ C sup

a;o<a;<l Jxo

1/.i"-"K

Ixo

+ C sup

X0<X<1

R =2

<C7 sup I-11
xo<x<Il T Jxo

and

u)
sup |-| sup IP
xo<a;<l T xo<x<lI

E3<C

Equations

lows:

fxph"\D,DM"'dx)

Ixo

f\p'*-'r'\DIp\'dx)

Jxo

Jxo ~

+ f'xp'Mdx).

vo — a) Jxo

+4 r_‘ xp™" DIpD uD" pdx

sup
xo<x<[

sup \pr'"D,u)

XQ<X<1

(ro —4F

Hence from (4.4.19) to (4.4.25), we

Now we are in a position to prove

embedding theorem, we have

obtain (4.4.18)

sup
X\<X<1

128

(4.4.23)

(4.4.24)

(4.4.25)

By using of Sobolev

sup VAcpl < X1 C{ Gi{m/A"Vd )
X =z
S s f +C
xi<x<1 Jxi Jx1
Xl “X1
<C sup l + C( .’x, gtorou L, p-V-4H i
XI<X<«
J X1 XI<X< J X1 JX1

(4.2.10)
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Combining (4.4.11) with (4.4.26), we conclude that
sup \prDp\ < Cinim  ~ 1" +Q for 0<t<T, (4.4.27)

for small enough 7, Now we have finished the verification of all the Lagrangian

terms in (4.1.17). For Eulerian terms, we only give the estimate for sup [ ],
O<r<r2-d p

Other terms such as — and dtu can be estimated in the same way by using the
P

change of variable: dt = Dt — pr"Dx in the overlapping region to estimate them
in Lagrangian interval xi <x < X2- First, we observe that

1_1 < AN
Q<Sl;<pr2+d P Qne™”,

O it is sufficient to compute sup |drpl. We know that

O<r<r2—d
sup = sup{ sup \dp\» sup  \dPW-
Q<r<r2—d o<r<ri-]-d ri+d<r<r2—d
Since
sup \drp\<J2U ﬁﬁ*

<  sup [ / J_\_‘ 21 azﬂ;& (4.4.28)

Involving that D
(pr "D p)+r ' M +pr'Dlp, we have
r

=7
sup \drp\ < sup \pr"\Dxp\ <C{ Iprr"Z) JL+ /|
ri+<i<r<r2-rf xi<x<x2 Jxi Jxi
1 177 1
r Jhmax B3l
Jxi | PaT JX1
+C sup 1 A1/ }E-V\DDJE[

Xi<X<X2 P JX

x2 1 N I
Ju P , J u

<C( 'XI +

(4.4.29)
This conclude the proof of the Lemma 4.4.1. Thus the a priori estimates can be

closed at this point.
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4.5 Approximate scheme and local well-posedness
of strong solutions

In this section, we will construct the approximate scheme of solutions and ob-
tain the existence, uniqueness of strong solutions. The approximate velocity is
obtained by solving a linear parabolic PDE in Lagrangian coordinates and the
approximate density is defined by the flow generated by the approximate velocity.
Due to the singularity at the origin in Lagrangian formulation, the corresponding
Eulerian formulation is invoked and both Lagrangian and Eulerian estimates are
obtained.
Let initial data po, uq be given and satisfy

Clpopo) <~ for some > 0;
4.5.1)

/R
Po{R) =0’ pof) >0 for O0<r <R / po(r)rdr = 1.
Jo

Introduce a Lagrangian variable x as follows:

X = pQShds, 0< X < 1.
Jo

Define

"

We would like to define the sequence {p", it", r"} inductively for n > 0. Suppose

that r" and u” are known functions. Consider the following linear parabolic
equation for uéL/

. -H Air®
Dtu-~'-HU(4) —1)+2 & =-{r-fDAP- - (4.5.2)

with the initial data

and boundary conditons

J7) =0 C (T —=T"Hc1t > 1) = o.
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By the change of variables

X = m and Dt = dt+ (De")drr (4.5.3)

(4.5.2) can be written in Eulerian coordinates (' ) as follows:

bk drn. P* - IT.
™ ]2 - ..n)2
= 1o (4.5.4)
where D t /I(:DLI%( %f;y and T (A ane =/
Next, define pﬁ:l:l by
ntl )dr}. (4.5.5)
We can check easily that satisfies the following equation
n+l
I+l + B+ 1= 0 (4.5.6)

In Eulerian coordinates, we can write (4.5.6) as

éﬁ_\_‘-ﬂ +Dtrndrng}j?7_l|:L;P\qrr Hﬁl 1+ =0. (4.5.7)

Lastly, we define by

it
@3 o pntV (4.5.8)

We need to show that (4.5.2) is solvable and (4.5.5), (4.5.8) make sense in an ap-
propriate sense. First, we investigate (4.5.2) in a weak formulation in Lagrangian
coordinates, and establish the regularity of weak solution. Interior regularity is
standard since (4.5.2) is a linear parabolic bounded away from the boundary,
while boundary regularity is obtained with weights in the form of integrals. Once
we have the regularity for we can check p"+i > are well-defined. From
the equivalent in the interior of (4.5.2) and (4.5.4), we can easily obtain the Eu-
lerian regularity. We will study the existence of weak solution in the frame of
Galerkin's method [41]. Without confusion, we will drop the index n from now

on. We assume that we have as much regularity of p and r as needed.
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Firstly, we define the notion of the weak solution, as in [34]. Introduce a

Hilbert space H.

/o 2i/2
H = Cl{ueCS™0,1) 2/ + — (? z (0) - 0}
Jo r
We can easily see that H C 1).
Definition 4.5.1 We say u e H) with u' G LN0,T; H* is a weak solu-
tion of (4.5.2) provided
ap o ATTX
uvdx+ j p’"DxuDxVdx-\- f "™dx = f + 2 Jvdx
Jo Jo f Jo . pr :
for eachv E H a.e. time 0 <t <T, and ™N(O) == H* is the dual space of
H and ‘= Df
Lemma 4.5.2 Assume that UQ e L), p"™P G andr'”™x e
There exists a unique weak solution u G H) with u' G LN0,T; H* to
(4.5.2). Furthermore, there exists a constant C > 0 such that

P
< cpwonie + IFINR(0,412) + 1 —|)12(0,t;12)).

Proof: Let uk = 0j/"{x){k = 1,2, * * *) be an orthogonal basis of H# and orthonor-
mal in L? when jj=0, i.e, p(0) = /0, r(0) = ro. Then {u*} forms a basis of H
for 0 < < T, where T is sufficiently small, due to the smoothness of /2, . Fix a

positive integer m. We seek a function Um* [0, 7] ~~y H of the form

(4.5.10)
where
H0) = wotgwktds,  fk =12 ™ (4.5.11)
o
and for each A = 1’2 m,0<t<T,
| wLikdx+ | pDxUmDxOJkdx + 20"
" " 2P A (4.2.10)
: -nx
o #ix + i J2 Jupkdx.
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Note that
IALIA A DC
[ u'mMkdx = p"r""DxUmD" Ukdx +
Jo
where
L= p'rDujiD,ukdx + ? Nd.
Define
2P  Attx

fit) — / PD"Ukdx +
Jo pr

then (4.5.12) becomes the linear ODE systems

(4.5.13)

with the initial condition (4.5.11). By the classical theory of ODEs, there exists
a unique function d”(t) satisfying (4.5.11) and (4.5.13) for a.e 0 < t < T. In
addition, Um defined by (4.5.10) solves (4.5.12).

Multiplying (4.5.12) by d* and summing up, we get

Z Jo JO I~
—. f mPDxUmdx + [ (— — (4.5.14)
Jo Jo pr -
10-KR
-dx.
2 In T /n .
Integrating (4.5.14) over [0, T], we have
n 2ul
pax. My pupur+ 7 Jdvds <
s Jo (4.5.15)

VKX
Thol[i2+4(]|A[i3(0,T;L2) + 15 12 F%) .

Fix V € H with < 1. Write v = Vi e span{uJk}T=v and / V2UJkdx =
Jo
0, k = 1,2.. «,m. Since {a;"} is orthogonal, < || f< 1. From (4.5.12),
we have
ujdx = NVidx —— [ pn""\DxUmDxVidx — j [ bggpithax + f r""PD"Vidx
Jo Jo A Jo
+ /(— - Mvidx <CA-\,. +IT—1U~N+ IWk:

0 pr rl. p r
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Hence,
p attt
[ | £ yo + + IWW >

and .

fT P 4772 s

/ \WM\H*dt < C(J|luo||12 + W-WLHO,T-L*) + || —ni2(0,T;L2y.

Jo P A
Now, we can pass to limit as m —&d. Then we obtain the existence of weak

solutions. The uniqueness easily follows from energy estimates.

In the following Lemmas, we provide the regularity of the weak solution. First,
we establish Lagrangian regularity. Eulerian regularity is obtained by the change
of variable (4.5.3) in the integral form. We skip the details of here. In the next

Lemma, we will give the regularity in time.

d r
Lemma 4.5.3 Assume sup |— < Ci, sup |—| < C2for 0 <t < T. In addi-
O<ad O<icd r

ATTOC
tion, assume Uq e H and Y"D'"P+ — G T;L"). Then u GL [] (D;, H),
u' € LNO,T; LN with the estimate
“\W\Ut+ sup <CM\uorH~+\\u,\\1.
) Q<t<T (4.5.16)
+ \W\r*DxP + + i —I2005L2) +

Proof: Multiplying (4.5.12) by d/" and summing over £, it holds that

Jo Jo T JO r

hence we have

(4.5.17)
i Li < Ci, su r% < C2
since u: 1\ | 1, 02 <Pl \T > SO

N Tn T
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Integrating (4.5.17) over [0,T], we have

rwujhdt® sup T
Jo o<x<i Jo r
< o\D,uUO)\' + + C r Wu™M\%dt +
P 4 A Jo o T

Pass to limit m——>oc. (4.5.16) holds and the Lemma follows.
Now we want to establish regularity in x variable. Bearing in mind that
(4.5.2) is one-dimensional linear parabolic equation as long as x is bounded away

from the boundary and hence interior regularity can be easily shown by using the

standard differential quotients method, i.e. u e 1). Here ,éﬁ represents
the usual Sobolev space. Recall that
9 AN 1 2uv
pr DxuDxVdx + / “cte
1 O e R SR -
/-i /ol 2P ATTT
=/  rPDMx + / ( - u')vdx, VveH.
Jo Jo pr m

We can now integrate by parts in (4.5.18) by approximating H with v G CJ_\_‘(O,l) C
H:
— 7 + [ 2uv, .
Jo Jo
(r"DP + % + u')vdx, W G 1)

Jo

therefore, u actually solves the PDE a.e. , and the following estimate can be

obtained from the equation:

0 (4.5.19)
[ 4mr O
+ o,
Note that Dxip~r"D”u) is in so by the trace theorem, p"r"DxU at x = 1
is well-defined. Thus in (4.5.18), we can integrate by parts up to the boundary

for the first term to get:

fr ATTT
— / P 4+ uwdx, W GH
T
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We know that u solves the PDE a.e. and hence, we obtain that t) =0,

the desired boundary condition. Also, we have proven the spatial regularity of

Lemma 4.5.4 The weak solution u solves (4.5.2) and u € Hf'ci®, 1) and weak
boundary regularity is given by (4.5.19). Moreover ’ u satisfies the boundary con-
dition.

Using the same idea as the previous argument, we can build the high order

regularity.

Lemma 4.5.5 The weak solution u G 1) as long as initial data UQ as well
as coefficients p” r" are regular. Moreover, weak boundary regularity is available

in the integral form.

Remark 4.5.6 The boundary regularity is weak in a sense that p, r as weight

unctions vanish at x = 10 respectively.
7 y4 A%

Remark 4.5.7 Since the equivalent of (4.5.2) and (4.5.4) away from the bound-
ary, and the interior regularity in Lagrangian coordinates ’> we see u also solve
(4.5.4) a.e. Corresponding Eulerian regularity can be obtained by the change of
variable (4.5.3).

Now we are in a position to prove the local-wellposedness of strong solution.
By using the similar argument as in [34] and the previous a prior estimate "{t),
we can obtain the uniform estimates of p/Z and r" on n for sufficiently small
T > 0, which assure the existence of limit functions u, p and ». So we only need
to show the uniqueness of strong solutions. Let (pi, ui, ri) and @> V%] 2 be
two strong solutions to (4.1.13) satisfying the same initial condition. Considering

momentum equations for ui and 2 in Lagrangian coordinates:

Dtui — D.iplrtD*u,) + ~ = - [J[ Pi — (4.5.20)
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DtU2 - DNplrlDxU2) +~ = —T\DJ| — (4.5.21)

Subtracting (4.5.20) from (4.5.21), we obtain

Dt(ui — U2) - vy 01 w2
"1
N\ VANEVAN
@) gy 47rx 9 47rx 4.5.22)
[
+ D,{{P\T\ - plrt)D,U2) — 272(4 — 4).
Multiplying (4.5.22) by ui — (2 and integrating over [0,1], we have
_LEZ’JO Jo
[ (riPi —rlP2)DNui — U2)dx + j—38) (A 1 — U2)dx
Jo O Pin P22
X X
-ATT Z){Mi — U2)dx
2
— / (PiMi - plrl)DxU2DNui — U2)dx-2 — U2)dx
Jo Jo
<(4-MPi-riP2\'dx)H Alrt\D, {ui-U2)\'dxf™
Jo PIN JQ
-1
PI P2 2 / 21 2 2
+12 dx - >
% / PITI  p2r2 ) + H i
+ (,1 - P2r)j[1 E[Uui(ﬂrtmm — U2)\'dxy
Jo PIN Jo
Jo
(4.5.23)

Now we estimate the right hand side of (4.5.23) term by term. Bearing in mind

that

PioM) = A ) [d]1 L] (IN+S ) p2ix.) = A) L& JL" o « 73

1 1
Here we only provide the detail for / — p2r2)DxU2\dx since other
JQ pPInl
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terms can be estimated in the same way,

fL1
2 4l(pin - p2r2)D U2l dx <M1 2.

Pin Jo Pin (4.5.24)
_ Pirl 1%
=M2

Jo P2rl  Pin
where m is the bound of . Note that

dx.

2 2 pt
IA — = lexp(/ {p2tID,u™ — p"T\D,u’)ds)
pk2  Pin Jo

-exp(- / (p2rIDU2 - pirlD:,ui)ds)\*
Jo
<C\ i {p2riD"U2 -  pirlD"ui)ds\"
Jo

<C\ f pirl\D%ui - U2)ds\* + C| / {pirj - p2rl)D U2dsf
Jo

Jo
<t | pirlDfur — U2\Vds) + CHbT P ll)‘ekaE
P2r2
Since
e 2
cMn /(- dsin < C# pds  + CMH
Yo P2rl ) 11— Jo P2rl 0 n
so we need to estimate \pf.r,l Q ds. Using the same idea as (4.524), we
P2r rvV
have
[1_'1-%\2<cqj\pzrum, — — A1 —
) 7
< C{ [ plr\D™ui - U2fds) + CM' ;v 4 - 1) [}
lo P2ri
+ Ct - U2 d
1 J%
Since we have
A4 <1 + eirA, and  OMj  / — pds' <  CMH 1275
n Jo n vi

we get, for 0 < t < T where T is sufficiently small to be fixed,

—\Ads
Pin P24 n

+ct [ {plrtlDAiu,—Ly\Z)j Patui -2y
Jo
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On the other hand, in the similar argument, we can obtain

— < CM*T +Ct |
n — Jo r2 nr2 - JO ri Ja rf

by the Gronwall's inequality, we get

PN P2 0« - LN s (B o GOl L2 - u2f 7

(T CMAT( -’Ileﬂ\/[T)jjeCI\J/%T(iJre—D ).
Taking this into account (4.5.24), we have
11
JO PIN

< CMT |~ — +
Jo Jo n

Using the same argument, we can obtain that

I j - U2+ plrine, — + 20 ~plv
< CM,T F [\PLRT\D,IU" s B HY
Jo Jo n

Integrating the above inequality over [0, #/, it holds that for sufficient small 7,

that is ui = U2, a.e. Once we deriver this result, we can obtain that ri = r) from

rx 1
Dtr = u, and pi = p2 from r* = 3 -dy. Hence we get the uniqueness and
Jo P
finish the proof of theorem 4.1.2.



Chapter 5

Discuss on future work

In this section, we mainly list some related problems on the compressible
Navier-Stokes equations.

In chapter 2, we establish a global well-posedness of classical solutions for com-
pressible Navier-Stokes systems in a half-space under Navier boundary condition.
But we do not know yet whether similar results hold for Dirichlet boundary con-
dition. Since in that case, we cannot use the same argument as in chapter 2 to
improve the regularity of /' and uj, where F is the effective viscous flux and uj is
the vorticity, due to the less boundary information. It seems that we need a new
technology to deal with this kind of problem. This is a future work.

In chapter 3 and 4, concerning the multi-dimensional compressible Navier-
Stokes equations with viscosity coefficient depending on density, can we obtain
similar results? For spherically symmetric case, we can transfer this problem to
be a one-dimensional model. By using of the method established for 1-d, we can
obtain the existence, uniqueness and large time behavior of solutions. However,
for the higher-dimensional case, it is a quite different story and would be more

complicated.
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