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Abstract 
黍 • 

of thesis entitled： 

“Multifractal Analysis of Geographical Structures and Processes: 
� Concepts and Applications 

Submitted by ZHOU, Yu 
for the degree of Doctor of Philosophy 

. at The Chinese University of Hong Kong 
in September 2011 

Following its development by Benoit Mandelbrot, fractal has been used in a 

large number of studies of a wide variety of geographical phenomena exhibiting 

complexity. Fractal makes the study of highly irregular and complex structures 

and processes that defy traditional mathematical analysis feasible. One of the , 

most popular uses of the fractal is to draw attention to the variance of structures 

and processes across multiple scales (e.g. scaling behavior). The concept of a 

power-law, which is expressed as a straight line in a double-logarithmic plot, is 

the most characteristic scaling behavior of fractal to measure self-similarity in-

variant across multiple scales. However, the single fractal dimension falls short 

in capturing scale-invariant geographical phenomena for the characterization of 

their non-linear variation across a wide range of scales. The concept of mul-

tifractal was, therefore, introduced to give a more complete description. The 

fractal dimension was extended to the generalized fractal dimensions. The main 

objective of this thesis is to improve the theoretical formulation of Multifractal 

Analysis (MFA) along a number of directions, and to make applications to i n v e s - � 

tigatc the self-similarity, long-range correlation or multifractality of some real-life 

geographical phenomena for substantiation. 

Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctua-

tion Analysis (MF-DFA) have become the most popularly used because of their 
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effectiveness and easy iiiiplcinciitatioii. Actually, MF-DFA is based on DFA, 

• which is designed to calculate the Hurst exponent, H, through the power-law 

between the square of fluctuation^ and the corresponding scales. II aims at quan-

tifying the long-range correlation of a process and can be related to the fractal 

dimension. The generalized Hurst exponents h(q) can be obtained by studying 

the scaling behavior of the qth moment of the fluctuations. On the conceptual 

level, MF-DFA and DFA (the base of MF-DFA) arc explored in this thesis. 

Two problems of DFA and MF-DFA in this study are: firstly, oscillations in the 

fluctuation function and significant errors in the crossover locations; and secondly, 

the negative influence of periodic trend on the scaling behavior in DFA. The Mul-

I tifractal Moving-Window Detreiided Fluctuation Analysis (MF-MWDFA) and 

the more general Multifractal Temporally Weighted Detrended Fluctuation Anal-

ysis (MF-TWDFA) arc formulated as a solution of the first problem. The sccond 

problem is solved by a pre-detrendiiig method on the basis of Empirical Mode 

Decomposition (EMD) for the elimination of the cffect of the periodic trend in 

DFA. Furthermore, some claijsical relationships of the exponents in MF-DFA are 

revisited. This study will rectify the incorrectness of existing results found under 

some situations, and propose modified relationships to obtain the appropriate 

characterizations. 

In terms of applications, the efficacy of the improved DFA is shown by two 

real-life examples, namely: temperature variations aiid sunspot activities. A 

substantial systematic analysis of the temporal and spatial patterns of the earth-

quake process is studied at length. As a complement to the inter-event spatial 

and temporal distance, the epicenter motion direction is investigated by DFA. 

The scaling behaviors uiider different conditions (e.g. the threshold magnitudes, 

boundary effect, random removal of some events, and different seismic zones) are 

also investigated. At the small scale, there is a general scaling behavior indicating 

the random process and independence of the different sensitive testing conditions. 

In the. large scaling range, the long-range correlation appears. Furthermore, the 

behavior on the dependence of different conditions is uncovered. 
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This thesis, therefore, gives a rigorous and systematic study of geographical 

phenomena in multiple temporal and spatial scales. 
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摘要 

： 自Benoit Mandelbrot提出概念，分形已经被广泛的应用到了对地理现象的 

复杂性研究中。分形概念使得对不能被传统数学分析方法所研究的极不规则、 

复获的结构和过程的硏究变得可行。多尺度下结构和过程变化的规律，即尺度 

律，是分形概念中©关心的问题之一。作为分形概念中最重要的一种尺度律， 

'幂定律在双对数图里被表示为一条‘直线并能估计分形维数来量化对象的自相似 

性。但是，单一的分形维数常常无法有效而完备的提取出大范围尺度下非线性 

变异的全部特性。因此，我们引入多重分形的概念对研宄对象进行一个更全面 
\ 

的描述，并推广得到多里分形维数。本文意在多重分形的若千个方面开展理论 

上探讨，从而进一步完善多重分形分析的理论体系，并对实际问题中的自相似 

• 性、长程相关性及多重分形特性进行分析和研宄。 

去趋势涨落分析(Detremied Fluctuation Analysis (DFA))和多重分形趋势涨 

落分析(Multifractal Detrended Fluctuation Analysis (MF-DFA))凭借其高效和 

易操作性成为了最为常用的分形和多重分形方法。通过涨落函数的平方和 

相应尺度之间的縣定律，Hurst指数，H，可被DFA计算来量化长程相关性. ’ 
t 

并建立其与分形维数的关系。同时，DFA和Hiirst指数还可以推广到更一般 

的MF-DFA和/1((7)�本文将在理论层而上研究和讨论MF-DFA及DFA� 

本文关注的D FA和M F- D F A的两个问题为：涨落函数的摆动和由此带 

来的在拐点定位时的误差；以及周期趋势对D F A尺度律的负面影响。对 

这两个问题，本文提出了多重分形滑动窗口去趋势涨落分析 (Mult i f racta l 

Moving-Window Detrended Fluctuation Analysis (MF-MWDFA))和更一般的多 

重分析时间加权去趋势涨落分析(Multifractal Temporally Weighted Detrended 

Fluctuation Analysis (MF-TWDFA))；以及基于经验模式分解(Empirical Mode 

Decomposition (EMD))的预处理。同时，我们在理论层面上研究了MF-DFA中 
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的儿个经典关系的潜在问题，并由此提出对了这些关系的修正。 

在应用部分，改进的DFA的有效性很好的体现在了对气温变化和太阳黑子 

活动的研究中。此外，在地误过程的时問和空丨、0]分布模式的系统分析中报据现 

有研究主要集中在相邻地：來件之间的H、]•间和空间距离上的情况，提出了对 

. 地展迁移方向进行研宄来补充现有结果。DFA得到的尺度律以及在几个不同方 

面，即廢级阈值、边界条件、堯整和不同地震区域，的敏感性分析表明：在 

小尺i^i上，地展迁移方向具符随机性且不依赖于上述设定条件；而大尺设上， 

则表现出了长程相关性和对廢级阈值的依赖性。 一 

综上所述，本文的主要目的是对地理问题进行精细而系统的时间和空间.1-： 

的多尺度研究。 
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Chapter 1 

Introduction 

1.1 Basic Concepts and Introduction of Fractal 

and Multifractal 

Ever since the development of fractal by Mandelbrot (1982), this concept has 

‘ been used in a range of applications in a large variety of geographical phenomena 

exhibiting complexity. Fractals makes the study of highly irregular and complex 
i 

structures feasible, it also enables the study of those processes that defy tradi-

tional mathematical analysis (Fcder, 1988; Mandelbrot, 1982). Although a strict 

definition of a fractal is hard to give, Falconer (1990) suggested that it seems best 

" to regard a fractal as a set F that has properties such as: 
I 

• F has a fine structure (i.e. is detailed on arbitrarily small scales)； 

• It is too irregular to be easily described in traditional Euclidean geometric 

language; 

• F often has some form of self-similarity (perhaps approximate or statistical); 

• Usually, the 'fractal dimension' of F (defined in some way) is greater than . 

its topological dimension; and, 

• In most cases of interest, F is defined in a very simple way (perhaps recur-

sively). , 

‘ 1 



Among these properties, self-similarity is the most important concept which is 

used in fractal. This concept means that a fractal is a shape made of parts similar 

to the whole in some way (Mandelbrot, 1982). It is not difficult to find examples 

of fractal-like behavior in nature. In some examples self-similarity in nature can 

be detected by human eyes; for example, in a von Koch curve, which is shown ‘ 

below in Fig. 1.1: However, the, self-similarity of observod objects is not usually 

Figure 1.1: von Koch curve. 

able to be detected by sight alone. In these cases the self-similarity exists in the 

statistical sense. Two well-kiiown numerical examples of this sort of self-similarity 

are illustrated in Fig. 1.2. The first is fractional Brownian motion (fBm) and the 

second is fractional Gaussian noise (fGn) (they are given as non-stationary and 

stationary examples, respectively). 

In the geographical world there are a large number of temporal and spatial 

examples which exhibit self-similarity. This thesis will study self-similarity in a 

� number of geographical cases (such as temperature variation, sunspot variability, 

and the epicenter distribution) in addition to the numerical examples. Some of 

the research objects are presented in the illustrations below without a detailed 
秦 

description in order to give some intuitional impression of the nature of this re-
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Figure 1.2： Numerical examples of non-stationary and stationary eases, fBm (upper panel) 
and fGn (bottom panel). 
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search project. The daily mean temperature records and monthly mean sniispots 

are shown in Fig. 1.3. The seismic examples are also offered in the way of spatial 

distribution and time series iii Figures 1.4 and 1.5. 

Theoretically, if the self-similarity exists (at least in a statistical sense) then 
V � � . . . . 

there is a corresponding formula which is given as: ) 

M s ( F ) � 巧 ， (1.1) 

Where s is the considered scale and M, is the corresponding measurement. This 

formula is called the power-law and it is represented as a straight line in the 

double logarithmic plot. Then D； is determined from the invariance across mul-

tiple scales in the power-law, and it is named as a fractal dimension of explored 

stnictures or processes. Three common fractal dimensions are: the Hausdroff 

dimension, the box-counting dimension, and the packing dimension (Falconer, 

1990; Feder, 1988). Given a set F, covering it by 'balls' whose sizes could be 

different but have to be less than s, then the corresponding ci-measure Md’‘，is 

defined as the infirnum (e.g. the minimal values of all possibly obtainable cov-
# * 

eriiigs). The Hausdroff dimension is the value of d leading the limit of M+s, • 

corresponding to the vanishing diameter or size .s of the 'balls' used to cover the 

set in changing from the infinite to zeros (Falcoricr, 1990; Feeler, 1988). With 

regard to the box-counting dimension: by using boxes with size s to cover the 

. set F, and setting the measure Ms as the number, Ng, of balls with a non-empty 

intersection of the set F, then the box-counting dimension can be obtained from 

the power-law Ns � s — d ! (Feder, 1988). Alternatively, the packing dimension 

could be obtained by locating the centroid of the non-overlapped boxes which are 

used to cover F, the points of F (similarly to the definition of Hausdroff diincii-

sion) (Falconer, 1990). All three fractal dimensions are defined to measure the 

degree of complexity. Generally speaking, the larger values of fractal dimensions 

indicate a higher degree of complexity. Among the three fractal dimensions, the 
€ 

‘ box-counting dimension has become the most popular fractal dimension which 

is used in real computation due to the simplicity of its calculation. Compared 

4 ‘ 
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Figure 1.4： Distribution of epicenters in south China from 1970 to 1995. 
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with the traditional topological dimension D t , only taking the integer values Df . 

(which can be either integer or fraction) could give a more accurate measurement 

of the investigated processes. The larger value of D/ corresponds to a higher de-

gree of complexity and irregularity. Thus Dj provides a route to handle complex 

and irregular structures and processes. , 

There are some other related concepts which enable us to understand complex-

ity and irregularity besides the fractal dimension. For example, the long-range 

correlation was proposed by Hurst (1951) and it can also be determined by the 

concerned power-law. This correlation is related to the auto-correlatioii function 

which decays following a power-law rather than decaying exponentially (Rybski 

et al., 2006, 2008). The positive or negative long-range correlation means that the 

current pattern would be more likely to be maintained or broken in the future. 

The Hurst exponent (H) is an important exponent which was first proposed by 

(Hurst, 1951) to quantify thus long-range correlation. Furthermore’ a relationship 

between Dj and H has been established as (Falconer, 1990): 

D f = D T - \ - l - / / , ( 1 . 2 ) 

» t 

Here Dt is the topological dimension of the support of the fractal. 

However, the fractal dimension falls short in capturing scale^invariant geo-

graphical phenomena (such as temperature variations, sunspot activities, and 

the changed direction between successive earthquake events) which require an 

infinite number of scaling exponents instead of one single dimension for the char-

acterization of their non-linear variation across a wide range of scales. Thus, 

it is necessary to introduce the concept of multifractal by considering the mul-

tiple gth order moments of the coriccrned measure (or fluctuation) rather t h a t � 

just analyzing a single order moment in the fractal analysis. Consequently, in � 

this generalized conceptual framework the fractal dimension D； and Hurst ex-

ponent H have been extended to a generalized fractal dimension D{q) (Feder, 

1988) and a generalized Hurst exponent h{q) by Kantelhardt et al. (2002). In a 

one-dimensional situation (e.g. for time series study) Kantelhardt et al. (2002) 
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established the relationship connecting D(q) to h(q) as: 

T(q) = D{q) .(l-q) = q. h{q) - 1, (1,3) _ 

Where r(g) is the mass exponent in tlie partition function based multifractal 

formalism (Halsey et al., 1986). Hence, the multifractal analysis (MFA) can be 

performed with the generalized Hurst exponent h{q) as a bridge. 
* 

The research problems involved in this thesis will be concluded and presented 

in the following section based on the discussion above. 

1.2 Research Problems 

This thesis has two sections, which are: conceptual discussions and applica-, 

tions. The core aim of this thesis is to analyze the different fractal and multifrac-

tal properties of the numerical examples, geographical structures, and processes. 

The research problems are presented below. 

On a conceptual level, five problems will be discussed: 

1. Selection of the most appropriate method for exploring the frac-

tal and multifractal properties of geographical problems. There 

are many algorithms which have been developed for fractal and multifrac-
‘ f * 

tal analyses. Each method has its advantages and disadvantages. Selec-

tion of which method is to be used should be based on a complete review 

‘ and careful comparison of the existing popular methods. Since the long-

, range correlation and generalized Hurst phenomena are related to fractal 

and multifractal analysis, they should be included in this thesis. Among 

the fractal and multifractal analysis, the most important task is to study 

the power-law; however, there are some trends in geographical phenom-

ena which have a negative influence on the scaling behavior of fractal and 

multifractal analysis (e.g. the global warming in temperature "records and v 

‘ the periodic trend in some of the geographical records such as the 11-year-

cycle in sunspot series and the annual cycle in a streamflow series). The 
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capability of Detrended Fluctuation Analysis (DFA) (Peng et al., 1994) to 

eliminate the influence of these kinds of non-stationary trends makes it the 

preferred method to be used to study the long-range correlation of geo-

graphical processes in this thesis. A description of the detailed comparison 

between DFA and other algorithms, together with relevant discussions, will 

be given in the following chapters. From this comparison it was found that 

the Multifraotal Detrended Fluctuation Analysis (MF-DFA) (Kantelhardt 

et al., 2002) and its basis (i.e. DFA) are the preferred methods for MFA in 

this thesis. However, despite their numerous advantages DFA and MF-DFA 

are not entirely perfect methods. After careful investigation two significant 

disadvantages of DFA and MF-DFA have been identified in this thesis, they 

are: 

2. Handling of oscillations in the fluctuation function. One disadvan-

tage of DFA and MF-DFA are the oscillations in the fluctuation function 

and significant errors in crossover positioning which are introduced in ac-

tual implementations due to the removal of local estimated discontinuous 

polynomial trends in DFA and MF-DFA. Such strong fluctuations can lead 

to difficulty in estimating the scaling exponents from power-law and de-

tecting the possible crossover points. Usually, the crossover points indicate 

a phase change in the underlying dynamics across the scales (Hu et al., 

2001). Therefore,|||ptection of the crossover points is very helpful for us to 

understand the studied processes. 

• 3. Handling of periodic and quasi-periodic trends. The other disad-

vantage of DFA and MF-DFA is the negative influence of periodic trend on 

. the scaling behavior of DFA. Previous studies have shown the possibility of 

spurious crossover points which are caused by the periodic or quasi-periodic 

trends (Hu et al” 2001). To obtain the genuine scaling behavior, it is nec-

essary to handle these kinds of trends. 

4. Correcting the classical relationship connecting h{q) to T(g). A 
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potential problem in a classical relationship connecting h{q) to T{q) as ex-

pressed in Eq.(1.3) in MF-DFA for one-dimensional câ se. Through this 

relationship, the conventional MFA based on T{q) can be performed from 

an MF-DFA aspect. A large number of studies have employed this rela-

tionship in their MFA (see for example in Kimiagar et al. (2009); Movahed 

and Hermanis (2008); Movahed et al. (2006); Telesca et al. (2004c, 2005)); 

however, in this thesis our investigation shows that this relationship has 

a potential problem in that a correction of this important relationship is 

expected. 

5. Correcting two relationships of two-dimensional MF-DFA. Poten-

tial problems in two relationships of MF-DFA for study in two-dimensional 

space: h{q) = H for fBm and, generally, h{q = 2)三 H. Since the inception 

of MF-DFA, the focus has been placed on signals in one-dimensional space. 

Gu and Zhou (2006) recently extended MF-DFA to higher dimensions and 

also related the generalized Hurst exponent, in higher dimensions to 

the original Hurst exponent H. These two relationships have also been ex-

tended by Gu and Zhou (2006) to two-dimensional versions; however, these 

relationships again appear to be invalid from the empirical and numerically 

experimental perspectives. 

There are three problems with regard to the role of applications, tempera-

ture variations, sunspots activities, and the general scaling law in the directional ’ 
J 

. analysis of epicenter migration which are briefly introduced as follows: 

1. The long-range temporal correlation and critical scales of tem-

perature variation. Recently, much attention has been given to the 

long-range temporal correlations of atmospheric phenomena (Pattantyiis- ‘ 

Abraham et al., 2004). Temperature, as an important indicator reflecting 

changes in the atmosphere, has also attracted considerable interest (Eichner 

et al., 2003; Fatichi et al., 2009; Fraedrich and Blender, 2003; Koscielny-

Bunde et al., 1998; Lennartz and Bunde, 2009; Oruri and Kocak, 2009; 
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Pattantyus-Abraham et al., 2004; Talkner and Weber, 2000). In terms of 

the critical scales of temperature activities, there are some well-known scales 

in climatology (e.g. the 'general weather regimes' or 'Grosswetterlagcn', the 

monthly and seasonal scale corresponding to the usual scale of El Nino, the 

climate anomaly, and seasonal scales); however, only the weekly scale has 

been uncovered by the DFA in previous studies. Does this then mean that 

the other scales in the temperature variation are unimportant? Or, is this 

due to the drawback of the use of DFA and MF-DFA? 

2. The long-range correlation of sunspots activities without the in-

fluence of ll-year cycle. Due to the negative influence of periodic trend 

on the scaling behavior obtained by DFA, Movahed et al. (2006) and Hu 

et al. (2009) have derived two totally different results using DFA for the 

same sunspot time series. This conflict has arisen becaiLse different methods 

have been selected to handle the effect of the 11-ycar cycle. The question 

then is, whose results capture the nature of the sunspots activities? 

3. A systematic analysis of the temporal and spatial patterns of 

earthquake process. Most previous studies have almost always focused 

on the event-betweenness temporal and spatial distance; however, in com-

parison the directional information has attracted considerably less interest. 

From this perspective, we would like to see if any natural mechanism could 

be found for the better understanding of earthquake processes. Three cata-

logues of directional information will be investigated in this thesis (i.e. south 

China, southern California, and the experimental microshock database). 

Among these three problems the first two are actually employed to test the 

efficiency and capability of the modified DFA and MF-DFA when handling the 

real-life data and, in particular, those corresponding to the second and third 

research problems in the conceptual part. 

m 
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1.3 Research Objectives 

On the basis of the above discussions on the research problems, this thesis 

can be seen to render a rigorous and systematic study of geographical phenomena 

in multiple temporal and spatial scales. In order to do this the discussions on 

conceptual level will be used as the basis of the case studies. On the conceptual 

level, this study will aim at making some improvements in methodology and 

clarifying some problematical relationships. The objectives of the ca^e studies 

are to test the validation of the modified methods and better understand the 

complicated temporal-spatial geographical structures and processes from some 

new research aspects. 

The objectives of this thesis can be outlined as: 

1. This thesis will select the most appropriate methods to be used for the frac-

tal and multifractal analyses according to the specialities of the geographical 

problems (such as the influence of noises or trends). The preferred methods 

which are used are expected to capture the natural complexity and diarac-

teristics of the concerned geographical processes and structures, which are' 

usually covered by unknown noises or trends. 

2. This thesis will attempt to reduce the strong fluctuation in scaling behavior 

of DFA and MF-DFA in order to obtain a better scaling law for estimating 

the scaling exponents and positioning the crossover points. Modified meth-

ods are expected to improve the performance of DFA and MF-DFA. Then 
/ 

the improved DFA and MF-DFA are going to be used to detect the critical 

scales in temperature variations. Although these scales are already known 

as important scales in climatology, they are not revealed by conventional 

DFA and MF-DFA. 

3. This thesis will develop a new method to not only remove the periodic 

or quasi-periodic trends but also to maintain the intrinsic scalings of the 

studied processes. This newly-developed method will be compared with 

existing methods in handling a challenging problem (i.e. the long-range 
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correlation of sunspot activities without the influence of the 11-year cycle). 

The results obtained by the proposed method are going to be compared 

with the inconsistent results which are reported in several previous studies 

(Hu et al., 2009; Movahcd ct al., 2006). The real long-term memory of 

sunspots records may then be determined. 

4. This thesis will demonstrate the invalidity of the relationships in MF-DFA 

in one- and two-dimensional space from empirical, experimental, and theo-

retical aspects. The corrected relationships will be proposed via the formal 

and empirical derivations. Their validation will then be tested by con-

structed numerical experiments. This study's hope is that these corrected 

relationships will provide more accurate routes to grasp the natiirc(s) of 

processes. 

‘ 5. This thesis will perform a directional analysis in a more systematic ease 

study of epicenter migration. The directional information here is particu-

larly noteworthy in epicenter migration, from either seismological or math-

ematical aspects; however, to date little academic attention has been given 

to this topic. This thesis's study of this aspect will be able to offer a sup-

plement for a better understanding of complicated earthquake processes. 

1.4 Research Significance 

In this thesis the methods for the fractal and multifractal analysis, especially 

the DFA and MF-DFA, are going to be carefully investigated. It will first make 
f 

some improvements and corrections to the development of a methodology. It will 

then detail a number of examples of the application of this theory in real-life 

geographical problems. 
The following achievements exemplify the research significance of this thesis: * 

• Conceptual aspect: 
% 

1. This thesis will thoroughly review the mainstream algorithms for frac-
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tal and multifractal analyses. The advantages of the DFA and MF-

DFA for analyzing the geographical structures and processes will also 

described. 

2. An enhanced version is proposed against the strong fluctuations, espe-

cially at large scales, in the scaling behavior of the DFA and MF-DFA. 

A better scaling law can he obtained using this new method. This 

improvement can ensure the better performance of DFA in the com-

putation of the scaling exponents and detection of crossover points. 

These exponents and crossover points are helpful for understanding 

the effects of the complicated dynamics across multiple scales. 

3. An adaptive method for estimating and eliminating the periodic trends 

is employed in this thesis in order to avoid the negative influence of 

‘ such trends on the outcome of DFA and MF-DFA. When compared 

to the existing popular methods the proposed method is equivalent 

in removal of the periodic trends, but it is considerably more easy to 

implement. Its good performance in analyzing the numerical examples 

is shown in this thesis. 

4. The incorrectness of a classical relationship connecting h{q) to T{q) in 

one-dimensional MF-DFA is pointed out. Such a relationship has been 

applied in a significant number of previous studies; however, its vali-

dation has been found to be limited in some special situations. This 

study will formally propose a new relationship and demonstrate its 

correctness using numerical experiments and empirical studies. This 

corrected relationship extends the classical relationship to a more gen-

eral version and, therefore, it could be of great benefit to the MFA 

using MF-DFA. 

5. Extending the one-dimensional MF-DFA, Gu and Zhou (2006) gave 

two relationships: h(q) = H for fBm in the two-dimensional space and 

h{q = 2) = H, in their development of the two-dimensional MF-DFA; 

however, these generalized relationships are inconsistent with that in 
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one-dimensional spac:e. With the aid of numerical experiments, this 

thesis will suggest the more logical and reasonable relationships which 

can well calculate the Hurst exponent using the two-dimensional MF-

DFA. 

• Applications: 

1. In the application of improved DFA and MF-DFA in exploring the 

long-range correlation of temperature variations, compared with the 

results of conventional DFA and MF-DFA, a better scaling law is ob-

tained and consequently two more critical scales which have been rec-
t 

ognized in climatology are detected. Such performance, prior to that 

of conventional DFA and MF-DFA, substantiates tlie improvement of 

the modified versions. 

2. The adaptive periodic-trend-remove method facilitates the elimination 

of the negative influence of an 11-year cyclc in the study of sunspot 

activities. The real aspect of long-range correlation of sunspots activi-

ties is uncovered on the basis of this method. In addition, the incorrect 

selection of parameters in the application of Movahcd et al. (2006) is 

also found. 

3. In terms of the earthquake process, although some work has already 

been done by others about the epicenter motion focus on the waiting 

time and jump distance between two successive earthquake events, the 

temporal and spatial distance alone can not determine the temporal-

spatial position of the epicenters if we consider the epicenter motion 

under the polar coordinates. Thus, we can take the changed motion 

direction between two events into consideration as a supplement work 

to the current studies in earthquake process; this could shed a light 

on our understanding of the epicenter motion. By exploring the long-

range correlation of the changed direction series a universal scaling 
> 

behavior can be found to exist in the first scaling range, while non-
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universal behavior in the sccoiid scaling range reflects the different 

geological structures. 

1.5 Organization of the Thesis 

This thesis is organized as follows: the research framework is given in chap-

ter 2. In chapter 3, DFA and MF-DFA are selected as preferred methods to 

be used on the basis of the review and comparison of the exiting methods for 

fractal and multifractal analysis (their disadvantages and incorrectness are also 

pointed out here). Against the weakness and problems of DFA and MF-DFA, 

the corresponding improvements and correctness are proposed in chapter 4. The 

numerical experiments are also constructed in chapter 4 in order to test these 

improved methods and corrected relationships. Applications in two real-life ex-

amples, namely temperature variation and sunspots activities, are presented in 

chapter 5 in order to show how the improved DFA and MF-DFA work. Chapter 6 

systematically analyzes the occurrence of earthquakes. Finally, this thesis will be 

summarized in chapter 7. 
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Chapter 2 

I 
Research Framework 

Following the introduction of the research problems, objectives, and signifi-

cance in the previous chapter, the framework for this study is proposed in this 

chapter. 

2.1 Introduction 

Almost all geographical structures and processes are highly complicated and 

irregular and, therefore, they go beyond the capabilities of conventional mathe-

� niatical analysis. This study intends to analyze these geographical structures and 

processes, and to do so it will introduce the concepts of fractal and multifractal 

analysis. Consequently, this study will render a rigorous and systematic study of 

geographical phenomena at multiple temporal and spatial scales. This study will 

develop an overall framework which integrates both: discussions on the concepts 

of fractal and multifractal analysis, and the application of fractal and multifractal 

analyses in a number of case studies. The structure of this framework is presented 

in Fig. 2.1. “ 

III this thesis the discussion of the concepts and case studies is organized 

according to the structure of this framework. After selecting the most appropriate 

method to be used for the fractal and multifractal analyses of the geographical 

problems, this study then worked on the weakness and problematic relationships 
« 

17 
* > 



of these methods. Numerical experiments, theoretical discussions, and empirical 

derivations arc employed to analyze and handle these weaknesses and problems. 

The improved methods are then applied to two challenging geographical problems 

to test their efficacy. The application part includes, but is not limited to, the 

above two examples. A systematic study on earthquake migration is presented 

in this thesis as part of the application of the theory in a number of case studies. 

2.2 The Research Framework 

The research framework which is illustrated in Fig. 2.1 shows that two main 

sections are included in this study, namely: 'concepts' which focuses on the dis-

cussions on methodology, and the 'application' of the geographical problems iii 

the case studies. 

In terms of concepts, the discussion will- firstly focus on how to select the 

appropriate algorithms for fractal and inultifractal analyses by taking the special 

features of the geographical problems into account. On the basis of this, DFA and 

MF-DFA have been selected as the preferred methods to be used in this thesis for 

fractal and multifractal analyses. However, two disadvantages and two problems 

of the use of these methods have been identified. As shown in Fig. 2.1, there are 

four further sections corresponding to the problems in DFA and MF-DFA (the 

. improvements and corrections are proposed in these sections, respectively). 

The first disadvantage of the use DFA and MF-DFA are the strong fluctua-

tions in their scaling behavior. This is especially problematic at large scales due to 

insufficient statistical samples. This study will employ the idea of the moving win-

dow technique to ensure that there are enough samples to provide stable results. 

In addition, the autocorrelation which is commonly seen in geographical processes 

are also considered to enhance the performance of DFA and MF-DFA for better 
• 

scaling behavior using the idea of Geographical Weighted Regression (GWR). 

Since what is studied here is time series, the correlation considered is temporal 

and the modified DFA and MF-DFA are called Temporal Detrended Weighted 

Fluctuation Analysis (TWDFA) and Multifractal Temporal Detrended Weighted 
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Fluctuation Analysis (MF-TWDFA). Numerical experiments with known fractal 

and multifractal properties are constructed in this thesis for testing the validation 

of TWDFA and MF-TWDFA. An insignificant difference to the expected results 

in this study shows that the TWDFA and MF-TWDFA work very well. Fur-

thermore, the performance of TWDFA and MF-TWDFA in this study's analysis 

of temperature records is better than that of DFA and MF-DFA. Consequently, ‘ ‘ 

scaling law with less fluctuations could bo obtained. As a msult, two more critical 

scales, which are masked by the strong oscillations in the outcome of DFA, are 

detected from the better scaling law of TWDFA. 

The second weakness of DFA and MF-DFA occurs when analyzing the series 

with periodic trends. Empirical Mode Decomposition (EMD) is applied here as 

the pre-processing to eliminate these trends for DFA and MF-DFA. EMD is an 

adaptive and data-driven method which can decompose the series into many com-

ponents with different dominant frequencies. The denoised series can be obtained 

by removing the component(s) corresponding to the targeted periodic trend(s). 

The EMD-based method is also tested in this study with the designed experi-

mental data. It is then employed to study the controversial issue of long-range 

correlation of sunspot time series arising from the use of different pre-detrendiiig 

methods employed to handle the prominent 11-year cycle. By comparing the 

results of this study with that of previous studies, it is suggested that the incon-

sistent results could contribute to the incorrect selection of the parameters for the 

implementation of the detrending algorithm. The conclusion of the long-range 

correlation of sunspots activities should be about 0.72. 

This study will demonstrate the incorrectness of using mimerical experiments 

and theoretical discussions with regard to the two problematic relationships in 
參 

MF-DFA established to connect different fractal exponents in one- and two-

dimensional space. It will then present the corrected relationship for the one-

dimensional case through a formal study taking the universal multifractal for-

malism as a bridge. A suggested relationship for the problem in two-dimensional ‘ 

space is given on the basis of empirical derivation. Several kinds of numerical 
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• experiments are then constructed to test these improvements and their correct-

ness. The corrected relationships are of great benefit to profile the fractal and 

multifractal properties of the complicated processes using DFA and MF-DFA. 

In addition to the applications in the above geographical problems, this thesis 

will complete a systematic analysis of the temporal and spatial patterns of the 

earthquake process in order to better understand the earthquake process. For 

this purpose, a new analysis perspective is proposed in order to study the scaling 

behavior of epicenter migration in south China, southern California, and a acous-

tic emission database using DFA. The obtained scaling behavior shows a basic 
ilOli __ 丨丨 

structure which contains both the common property of earthquake process and • 

the local seismic characteristics of the study areas. Different conditions are set 

to test the sensitivity of the obtained scaling structure, considering the effects of 

threshold magnitudes, random removal, and the boundary of study area. 

It should be noted from the framework that numerical experiments will be 

employed frequently in this thesis. This is due to the fact that we can construct 

experimental examples with known or expected properties in these numerical 

experiments. The performance and capability of the studied methods can then 

be evaluated by comparing the calculated results with the expected results. 

2.3 Summary 

This chapter has illustrated the framework which will be used in this thesis. 

The framework itself has two main sections: the first section describes the the-

oretical concepts and the sccond section describes their application in a number 

of case studies. Some interactions can be found between these two main sections 

from the framework which is illustrated in Fig. 2.1. These discussions on the re-

search issues can build the basis for the case studies. Meanwhile the applications 
% 

of proposed methods in geographical problems can be used to show their effi-

ciency and to benefit our understanding of the nature of the geographical world. 

The next chapter will expand on these ideas by following the research framework 
which is proposed here. « 
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Chapter 3 

Review of Relevant Methodology 

and Discussions 

• . 

{ 
» 

This chapter will first review the relevant methods for fractal and multifractal 

analysis. Through comparing these methods, this thesis will give DFA and MF-

DFA as preferred methods for fractal and multifractal analysis of geographical 

problems. In this thesis MF-DFA, and its basis DFA are going to be inv^tigated 

systematically from several aspects, including two of the disadvantages of DFA 
> 

“ I and two classical relationships in MF-DFA. The corresponding improvements and ‘ 
« ‘ ‘ 

corrections are "proposed after the discussions of methodology in chapter 4. » , 
From the inception of MF-DFA and rescaled range (R/S) analysis the focus of 

their academic study has been placed on signals in one-dimensional (ID) space. 

\ '， Recently, MF-DFA has been extended to higher dimensions and it has also been 

related to the generalized Hurst exponent, h{q), in higher dimensions to Hurst ex-

ponent H (Gu and Zhou, 2006). Alvarez-Ramirez et al. (2008) have also extended 

R/S analysis into two-dimensional (2D) space. Alvarez-Ramirez et al. (2008) 

employed numerical experiments to compare the two-dimensional MF-DFA and 
% 

two-dimensional R/S analysis, and they also extended the relationship between 

H and the scaling exponent obtained from R/S analysis of the two-dimensional 

case. To avoid confusion, this thesis will call the one-dimensional (MF-)DFA and 

、 

‘ 22 



R/S analysis (MF-)DFA and R/S analysis, and that in the two-dimensional space 

the two-dimensional (MF-)DFA (2D (MF-)DFA) and two-dimensional R/S (2D 

R/S) analysis. 

3.1 Methods of Fractal Analysis 

This section will first describe the fractal analysis, including calculation of 

box-counting dimension and the algorithms for calculating the Hurst exponent 

for long-range correlation analysis. 

Fractal analysis aims at characterizing the self-similarity (at least in a sta-

tistical sense) of the analyzed processes. The self-similarity exhibits in the for-

mula as the power-law between the-measures Ms(F) and corresponding scales s, 

M s ( F ) � c • The most common method to calculate the fractal dimension 

Df is the box-counting algorithm, which considers the power-law between the 

number of boxes in the fractal supports having non-empty intersection to the 

fractal F and the corresponding box size. 

The concept of fractal was proposed by Mandelbrot (1982) for studying the 

length of a coast. Since the inception of this concept, fractal properties have been 

found in a large variety of geographical phenomena and appears to be a natural 

structures of many things in the world. 

In general, the fractal nature of geography have been studies by Goodchild and 

Mark (1987), Lam and De Cola (1993) and Gao and Xia (1996). The complexity 

of structures and processes in physical geography, and the way to solve the spatial 

scale problems have also been investigated via the concept of fractals (Atkinson 

and Tate, 2000), and Richards (2002). 

In particular, fractal has been employed to study many real-life phenom-
» 

ena, such as the extraction of the multiscale features of remotely sensed images 
a 

(Emerson et al, 1999; Lovejoy et al , 2001; Maxghany et al., 2009; Myint, 2003; 
* 

Pachepsky and Ritchie, 1998; Parrinello and Vaughan, 2002; Qiu et al., 1999)， 
< , 

especially the integrated system called Image Characterization and Modeling Sys-
* 

tern (ICAMS) developed for fractal analysis of remote sensing data (Quattrochi 
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et al., 1997), the structure, shape and the size of the cities (Batty, 2008; Batty :| 

and Longley, 1994)，the fractality of the earthquake process (Goltz, 1997; Harte, ^ 

1998; Hirabayashi et al., 1992; Hirata, 1989; Kagan, 1981; Kagan and Knopoff, 1 
s 

1980; Lei and Kusimose, 1999; Sadovskiy et al., 1984; Takayasu, 1990), the het-

erogeneity and complexity of the spatial point pattern (Buczkowski et al., 1998; ) 

Cola, 1991; Kyriacos et al., 1994; Vere-Jones, 1999), and the fractal properties of ； 

rainfall process (Kantelhardt et al., 2006; Leung, 2010; Lilley et al., 2006; Olsson, ； 

1995; Peters et al., 2001; Tessier et al., 1996), hydrological process (Koscielny-

Bunde et al., 2006; Leung, 2010; Neuman, 2010; Pandey et al., 1998; Tessier et al., 

1996; Zhang et al., 2008, 2009). 

The concept of long-range correlation is also given here as a relative property 

to fractal. One of the most important purposes of time series analysis is to develop 

suitable models and to obtain accurate prediction based on the known record. To ‘ 

achieve this task, one core ingredient is to capture the self-dependence or auto-

correlation in the series (Doukhan et al., 2003). The long-range correlation is a 

very important and common dependency concept in time series, from which the 

understanding of time series for prediction can be improved. Given a time series 

after extracting the mean, < x >= ；^JZfcLi 工fc，as f̂c =工jt一 < 工〉，the 

auto-correlation function of {5*：}仏i separated by 5, C(s), can be considered as 

(Bashan et al., 2008): 

< XkXk+s > 1 ^ ~ ~ /o 1\ 
‘ C � = < 转 > ( 3 . 1 ) 

K— i 

Then if {xk} is an uncorrelated series, C(s) = 0 for positive s. If there is some 

. finite t^ making C{s) to decrease exponentially as C{s)�exp(—s/i:)’ {x*：}^! 

can be described by short-range correlation. For those series which have diverges 

tx = C(5)da;, long-range correlations can be defined if the power-law can be 

found in the scaling behavior of C{s) as: 

J 

C { s ) � ( 3 . 2 ) 
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The scaling exponent 7 lies from 0 to 1. Although long-range correlation can 

be described from the auto-correlation function, the potential power-law Eq.(3.2) 

might fail to be found due to the unknown noises or trends. Thus, the scaling 

exponent 7 might be difficult to determine directly from autocorrelation function. 

Consequently, it is necessary to develop indirect but effective methods to uncover 

the long-range correlation and Hurst phenomenon. 

Many methods have been proposed to handle the long-range correlated pro-

cess. For example, Hurst (1950) put forward rescaled range analysis to study the 

• water levels of reservoir on the Nile River. More importantly, he gave an impor-

tant exponent, generally known as the Hurst exponent, H, to quantify long-range 

correlation of signal series. Fluctuation Analysis (FA) was proposed by Peng et al. 

(1992) to study the long-range correlations in nucleotide sequences on the basis 

of the numerical representation, random walk model. Following this, Peng et al. 

(1994) developed DFA to determine the fractal scaling properties and long-range 

correlation in both stationary and non-stationary time series. Detrending is one 

key step when implementing DFA, whereby the polynomial regression is employed 

to estimate the local trend. According to the different order, m, employed, DFA 

can be denoted as DFAm. Taqqu et al. (1995) subsequently gave the direct re-

lationship between the scaling exponent of DFA and the Hurst exponent H for 

fGn. Movahed et al. (2006) and Movahed and Hermanis (2008) later proved the 

relationship between h and H for the fBm and fGn. Studies have also been made 

on some properties of DFA, such as: the effect of non-stationarities (Chen et al., 

2002)，trends (Hu et al, 2001), and extreme data loss (Ma et al., 2010) on DFA, > 
the relation between DFA and power spectral density analysis (Heneghan and 

McDarby, 2000) and the comparative study of DFA and some other correlation . 

analysis methods (Bashan et al., 2008; Xu et al., 2005). In addition, inspired by 

the idea of R/S analysis and DFA and utilizing the capability of moving average 

to capture the low-frequency trends of the signals, Alessio et al. (2002) presented 

the Detrending Moving Average (DMA) technique to reveal the scaling behaviors 

by estimating H. The power spectrum technique, which was employed to analyze 

•I 
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the scaling properties of the rainfall series (Fraedrich and Lariider, 1993) and tem-

perature series (Talkner and Weber, 2000), is another method which is devoted 

to estimating the Hurst exponent. The Structure Function (SF) (also called var-

iogram in spatial statistics) and its many modified versions are important tools 

which are used in the geophysical or geographical fields (Balankin et al., 2009; 

Davis et al., 1994) when some scaling exponents related to H are to be estimated. 

Finally, this thesis will make the comparisons among these methods. The 

preferred method to be employed in this thesis can then be determined on the 

basis of these discussions. In order to facilitate this discussion some popular 

methods for fractal and multifractal analyses are briefly introduced in the next 

section. 

3.1.1 Box-Counting Dimension 

As mentioned in the first chapter, the box-counting dimension is the most 

popular fractal dimension which is used in real computation because of its sim-

plicity of calculation. The box-counting dimension for fractal F with support R " 

can be defined as follows: 

Given a scale s, the support R " can be covered by a set of R" boxes as: 

( m i 5 , ( m i + 1 ) 5 ] X • • • X (m„s, ( m „ + l)sj, (3.3) 

Where mi, • •. ,m„ are integers (for example, the boxes are intervals for R while 

squares for R^). Using Na(F) to denote the number of boxes with non-empty ’ 

intersection to fractal F. 

The upper limit D/(F) and inferior limit Dy(F) can then be calculated as: 

(3.4) 
5-̂ 0 - l o g s 

= (3.5) 
— ) a->0 一 logs 

If the limit of 丨。!�f exists, we have 万/(F) = Then the Df can be 
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obtained. 

When compared with another two common fractal dimensions (i.e. the Haus-

droff dimension (Falconer, 1990; Feder, 1988) and packing dimension (Falconer, 

1990; Feder, 1988)) the box-counting dimension is much easier to be used when 

handling the practical problems by coding and computing with the aid of com-

puter. 

3.1.2 Rescaled Range (R/S) Analysis 

The R/S analysis and the Hurst exponent, H � a r c firstly proposed to explore 

the persistence of the storage capacity of water reservoirs on the Kile River by 

Hurst (1951). Based on the description of R/S analysis given by Hurst (1951), for 

a given time series Ym — {？；̂} can be constructed as the M-dirnensional 

sample subvectors of {xa：}^” here M = sN and s € (0, 1). Then define 

仏二 j f ^ 训、 (3-6) 
‘ fc=i 

t 

= ^ i V k - Vs), (3.7) 
fc=i 

For s G (Srain, Smax), if we have 

( R / S ) . � ( 3 . 9 ) 

then we can obtain H as the Hurst exponent. According to the value of H, 

{xit} is considered as long-range anti-correlatcd if 0 < / / < 0.5; uncorrelated 

if / / = 0.5; and long-range correlated if H > 0.5. After obtaining the Hurst 

exponent, the degree of the prediction of studied series could be assessed. For 

example, if a series is characterized by H = 0.5，then nothing can be done for 

the prediction due to the total randomness indicated by the value of the Hurst 

exponent. However, if H = 1, the studied series is a definite linear process and 
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the future of the series is under control and is completely depeiidoiit on what 

happened in the past. Thus the study of the long-range correlation measured by • 

the Hurst exponent is very helpful for establishing a prediction model. :| 

Many applications of R/S in different research fields can be found: such as in 

economical studies by Cajueiro and Tabak (2008) and Muniandy et al. (2001), in | 

bioinformatics by Wang et al. (2008), in environment problems by Tarafdar and | 

Harper (2008), in geophysics by Chamoli ct al. (2007); Jimenez ct al. (2006); Li - | 

et al. (2002); Peters et al. (2001), and in theoretical discussions by Chamoli et al. | 

(2007) and Rangarajaii and Ding (2000). 考 

i 
3.1.3 Two-Dimensional (2D) R/S analysis j 

Recently, the R/S analysis has been generalized to the 2D space by Alvarez- | 

Ramirez et al. (2008). For the 2D R/S analysis, we just need to construct a 1 
1 

sub-surface instead of the one-dimensional subscqucncc. Given a two-dimensional | 

surface X with size Nr x Nc and scale s. Consider a sub-matrix V^r Mc — {Vij} | 
‘ ‘ ,1 

with size Mr x Mc, Mr = sNr and Mc — sNc respectively. We can obtain the | 
I 

following R/S statistic (Alvarez-Ramirez et al., 2008): | 
i 
'I 

. Mr Mc I 

互一而 I J S 队 （ 3 . 1 0 ) 1 

， 
. . . , ： 

…cn — EUi YUjJ^i - Vs) — min.-j EUi Ei=iiyk,i — V s ) … � | 
講 一 . (3.11) I 

J 

According to Alvarez-Ramirez et al. (2008), as s increases from 0.025 to 0.5, the | 
••5 

R/S statistic follow the power law: • 

O R / 外 〜 ( 3 . 1 2 ) I 

I 
• I 

The Hurst exponent H can then be derived for the two-dimensional situation 4 

(Alvarez-Ramirez et al, 2008). In 2010，Raoufi (2010) employed the 2D R/S | 

analysis to study the fractal property of indium tin oxide (ITO) thin films. | 
‘ I 
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3.1.4 Fluctuation Analysis (FA) 

Peng et al. (1992) proposed FA to study the long-range correlations of nu-

cleotide scqucncos based on random walk model. In FA, firstly the 'not displace- ； 

ment’ of the walker, after s steps is computed a»s (Pong ot al., 1992): ^ 
M 

= (3.13) ； 

k=i ‘ 

The fluctuation function F{s) can be defined as the differcncc between the average 

of the square and the square of the average, ] 

F'^is) = [Ay(.s) -

二 (3.14) 丨 

here Ay{s) equals y(so + s) — y{so). The bars means the s�indicating all possible 

positions of The Hurst exponent, H � c a n be obtained if the power-law, \ 
_ . j 

F(s)�；s" (3.15) j 

i 

can be found. ^ 

However, since there usually are some noises in the DNA sequences, Peng | 

and the co-workers improved the detrending procedure into the FA for better ^ 
ii 

estimating the long-range correlation of the DNA sequences (Buldyrev et al., j 

1993; Peng et al., 1994). . i 
、 i > '1 � j 

3.1.5 Detrended Fluctuation Analysis ( D F A ) � 1 
-乂 i 

To handle the 'nucleotide heterogeneity', a key step, detrendiiig, wâ i iiitro- J 

duced into FA and then DFA was consequently proposed by Peng et al. (1994). j 
I 

DFA can be performed in the following steps: , 
i 

. I 

. 1 
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• Step 1: Determine the ’profile， ^ 

t 

V{i)三 Yl[xk- < X >1, i 二 1，….，iV. (3.16) 

fc=i ^ 

Here, < x > means the average of {xa：}. It is remarked in Kantelhardt ct al. 

(2002) that the subtraction of the mean < x > is not compulsory since it 

would be eliminated by the detreiidiiig procedure in Step 3. 

• Step 2: For each given positive integer s, the 'profile' can be divided into 

Ng 三 mt(iV/.s') non-overlapping local windows/segments'with equal length 

s. Here irit(-) is a function which takes the integer part of a number. Since 

N/s may not be integer, there might bo a short part of the 'profile' remained 

uncovered. To make use of the information containing in this slack, the same 

procedure can be repeated starting from the opposite end of the series. 

Hence, 2Ns local windows are obtained altogether. 

• Step 3: For the vth of the 2Ns local windows, the variance can be determined 

as: 

s) = - f]{Y[{v - 1)5 + i] - yi,(i)}2， 

for V = 1 , … ’ TV,; (3.17) 

厂2(”，s)= - f^{Y[N - { v - 7V,).s + � ； 

^ t=i 

forv = 7V,-f-l , --- ,2N„ (3.18) 

where y^ is the fitting polynomial representing the local trend in the vth lo-

cal window. If we use m to cteiiote the order of then the one-dimensional 

DFA call be denoted as one-dimensional DFAm. 待 
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• Step 4' Obtain the fluctuation function as: 

1 2N, 

• 三 仏 (3.19) ^ 

• Step 5: Determine the scaling behavior of F{s) by analyzing the log-log 

plots of F{s) versus s. If 

F ( s ) � ( 3 . 2 0 ) 

Here, h can be related to the classical Hurst exponent H by: 

{ h, for ID stationary case; 
. (3.21) 

/i - 1, for ID non-stationary case. 

According to the value of / / , {x/t} is considered as long-range aiiti-correlated 

if 0 < / / < 0.5; uncorrelated if / / = 0.5; and long-range correlated if 

H > 0.5. Thus, / / is a very useful index for extracting the feature of a time 

series from the perspective of long-range dependence. 

In reality, DFA has been successfully applied in many fields such as sunspot 

series (Hu et al., 2009; Movahed et al., 2006), earthquake processes (Balasco 

et al., 2002; Telesca et al., 2001a, 2005), temperature series Eiclmer et al. (2003); 

Koscielny-Bunde et al. (1998); Pattantyus-Abraham et al. (2004), DNA sequence 

(Peng et al., 1994), streamflow (Matsoukas et al., 2000; Zhang et al., 2008，2009) 
* ... 

« 

and the geomagnetic storm and solar flare indices (Yu et al., 2009). 
• « f. 

• ‘ ‘ >c々 ： 

3.1.6 Detrended Moving Average (DMA) 

Moving average technique is a classical way to estimate the low-frequency 
- I • 

trend. Based on this characteristic, Alessio efe al. (2002) proposed the DMA in 

'"V、； ‘ , which the trend estimated by the moving average procedure at different scales 

• - … t a k e s the place of that calculated by polynomial regression in DFA. Generally, 

^ 广 the procedure of DMA consists of the following main steps (Alessio et al., 2002; 

Xu et al, 2005): � • 广 
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• Step 1: Detect the local trend of the profile Y{i) with scale s in series 

, employing moving average 

1 (3.22) 
» k=0 

• Step 2: Subtract the estimated trend y,(z) from the intcp;ratf!d profile Y{i), 

then the residual Cs(i) 

Csi = Y(i) - Ys{i). ‘ (3.23) -

• Step 3: The fluctuation function of DMA F(.s-) then can be determined as 

厂 ⑷ 、 ] 7 ： ： ^ £ 哪 ‘ (3.24) 
) i=s 

• Step 4- Determine the scaling behavior of Fg{s) by analyzing the log-log 

plots of Fq(s) versus s if 

厂 ⑷ 〜 s " . (3,25) 

DMA attracted much attention covering the financial time scries (Carbonc 

et al., 2004a), biological analysis (Shiogai et al., 2010)，and theoretical discussion 

(Arianos and Carbone, 2007; Carboiie et al., 2004b; Serletis, 2008; Xu et al., 

2005). 

3.1.7 Fourier Power Spectral Analysis 

Since the signals considered in real computation is discrete, the Fourier power 

spectral of given series can then be expressed as: 

i ( / ) = A r i / 2 f 树 ( 3 . 2 6 ) 
fc=0 

Then 

5 ( / ) = |x(/)p (3.27) 
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, is the power spectrum of {xk}- If the power-law can be found as: 

S{f)〜1/广， （3.28) 

T-

the scaling exponent (3 is determined. Generally, the relationship between ft and 

h of DFA is given by Herieghaii and McDaiby (2000) as 卢=2/ i — 1. Hciicc, P 

could be related to the long-range correlation analysis. 

3.1.8 Structure Fluctuation (SF) 

In the turbulent study, SF analysis is a very popular method to explore self-

siiriilarity. Given a non-stationary series with stationary increment, the 

SF is defined as: 

< � > = < \xk+s — Xfcl̂  > � ( 3 . 2 9 ) 

The scaling exponent�2) is related to H for fBm as ((2) = 2H (Davis et al., 

1994). 

3.1.9 Preferred Method 

, Generally, the R/S method and box-counting algorithm can be used only for 

the analysis of the stationary time series. The SF is also subject to the stationary 

assumption. In fact, however, most of the geophysical series are non-stationary 

and are contaminated by various trends. Some of the trends still remain unknown 

because of the complicated intrinsic and extrinsic dynamic systems that the series 

has formed. 

Fortunately, the detrending step included into the DFA procedure enables it 

to partly handle the non-stationary series as well as the stationary series. With 

respect to the performance of the power spectrum method in estimation of H 

exponent, significant fluctuation of power spoctnim, in particular that of low-

frequency range, can usually mask the scaling regions and lead to difficulty when 
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directly estimating of the slope in the double-logarithmic plots (Matsoukas ct al., 

2000; Tsonis ct al., 1998; Weber and Talkncr, 2001). In contrast to the spectral 

analysis, FA is a more systematic procedure (Talkiier and Weber, 2000) with 

small finite size effects and a smoother fluctuation function (Tsonis ct al., 1998). -

Although FA works better than spectral analysis to estî mate the long-range corre-

lation, it cannot avoid the effect of the trend (such as global warming) as pointed 

out by Koscielny-Bunde et al. (1998). As to the DMA, Xu et al. (2005) com-

pared the performance of DFA and DMA, the scaling curves obtained by DFAl 

are claimed to be more stable over much broader scale ranges when compared 

with DMA, which suggests a better fitting range can be obtained to quantify the 

correlation property. In addition, Bashan et al. (2008) pointed out that the DMA 

has the similar performance with the DFA technique if the trends within the stud-

ied series are weak. However, the DFA method is still the best choice, particularly 

when the trends within the studied series remain unknown before analysis. Ac-

tually, the trends of the series are often unknown. In this sense, the DFA method 

has the potential to fully recognize and diagnose tlie trends within the series by 

using different orders of detrending polynomial (Bashan et al., 2008). Due to the 

foregoing advantages and its simplicity to implement, DFA is the prominent pri-

ority in the analysis of the scaling properties of the series amongst the alternative 

methods for analyzing geographical processes. 

3.2 Methods of Mult ifr act al Analysis 

Becausc of the insufficiency of fractal analysis to capture the heterogeneity 

of complex and irregular processes with a single fractal dimension (Grassberger 

and Procaccia, 1983), multifractal analysis is employed in this thesis in order to 

give a full description of complicated scaling behaviors over multiple time scales. 

By taking into the qth. order moment of the measure or fluctuations account, 
、 

the fractal dimension Dj and Hurst exponent H are extended to a generalized 

fractal dimension D(q) (Mandelbrot, 1982) and a generalized Hurst exponent h(q) 

(Kantelhardt et al., 2002). The Dj and H are two special cases of D{q) and h{q). 
\ 
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D(q) and h(q) with different values of q rcflcct the measures and fluctuations 

with different degrees. The parts with high density measure or a large fluctuation 

will dominate the qth. order moment when the positive values of q are taken into 

consideration. However, for the negative values of q, what is reflected in the scal-

ing behavior is the information related to the small density, or fluctuation parts 

of structures and processes. In an extreme situation, the D(士oo) corresponds to 

the information of those parts with largest or smallest density and fluctuations. 

Usually, the D{q) and h{q) monotonous decreases with q increases (Kantelhardt 

et al., 2002). 

3.2.1 Partition Function-Based Formalism 

Halsey et al. (1986) proposed the partition function-based formalism tech-

nique, which is the most commonly used method, to extract the multifractality 

of studied objects. The basic procedures can be enumerated as: 

Given a measure /x with support E C R " , the partition function can be 

represented as: 

9 Zsiq) = [ H^m)]', qeK, (3.30) 
/•(Bm)邦 

Where Bm is a box of a given side e covering the support E: 

Bm = (mis, (mi + l)s] x … x (m„s, (m„ + l)s], . (3.31) 

If power-law Zs{q) oc � is existing, we can get the r{q) using following equation: 

； ， = (3.32) 

v. . ' ' S~f0 logs \ ' 
‘ • *' • • -rL • • * 

， 今 ； “ And generalized fractal dimension D{q) can be calculated by 
% >4 

* 、 • 

‘ ‘ = for q 1, (3.33) 
产 g — 1 

‘ -Diq) = liin for g = 1, (3.34) 
In s 
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where Zî s — ^ /̂̂ (-^)- The multifractal spectrum can then be ex-

pressed as: 

* 

— ) = ⑷ ， （3.35) 

/ � = q a { q ) - T{q). (3.36) 

Usually, in the real calculation, a{q) can be obtained by: 

.‘ oc{q) = lim " ( 二 ? � , — (3.37) 

Diji) for a large positive q reflects the fractal property of the dense regions, while 

D{q) for negative q quantities reflects the situation for the sparse regions. D(+oo) 

and D(—oo) are two extreme dimensions indicating the most and least clustering 

of distribution, respectively. Specifically, D{0) is the conventional fractal dimen-

sion Df. D � and D(2) corresponds to the information dimension and correlation 

dimension (Falconer, 1990). D(0), as the geometric .measure, shows the extent 
i 

of fractal distributing in the support. D( l ) and D(2) depicts the non-uniformity 

and global clustering degree of data, respectively (Enescu et al., 2005). MFA 

is a useful way to characterize the spatial heterogeneity of both theoretical and 

experimental fractal patterns (Grassberger and Procaccia, 1983). In fact, some . 

applications in the spatial analysis can be found. Vere-Jones (1999) has discussed 

the fractal dimension of the point pattern in fixed spatial region and fixed inter-

val of time respectively theoretically. Buczkowski et al. (1998) used the modified 

box-counting method designed by Kyriacos et al. (1994) to measure the regu-

lar and random distributed objects. While Cola (1991) analyzed the multiscale 

. . spatial autocorrelation of point data. 

f 

a • 
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3.2.2 Multifractal Detrended Fluctuation Analysis (MF-

DFA) 

Given a time series, of length N with compact support, the MF-DFA 

method consists of five main steps (Kantelhardt et al., 2002), all steps except the 

4th one are the same as those of DFA. In MF-DFA, the 4th step takes the r/th 

instead of 2nd order iiiomeiit of fluctuations into consideration as: 

• Step 4- Obtain the gth order fluctuation function as: 
* 

& ⑷ 三 ( 3 . 3 8 ) 

S V = 1 

- where q can be any real number. 

Then in step 5, h{q) can be considered in the following way: 

• Step 5: Determine the scaling behavior of Fq(s) by analyzing the log-log 

plots of Fq{s) versus s for each q. Generally, we only use s varying from 

m + 2 to N/A. If 

, > F,{s)〜力⑷， （3.39) 

h(q) called the generalized Hurst exponent could be obtained. Specifically, 

for q = 2, the MF-DFA are actually DFA and h{q = 2) is h in DFA. 

The values of h(q) for different q's can be employed to quantify the property of 

the parts of series with different degrees of fluctuations. The h(q) corresponding 

to large q reflects the property of large fluctuations while that to small q connects 

to small fluctuations. Specifically, the h{q) of the positive and negative infinite q 

correspond to the maximum and minimum fluctuations respectively. According 

to the dependence of the h{q) on q�the miiltifractality could be detected. If h{q) 

is independent/dependent on q, then there is the monofractality/multifractlity. 

Fig. 3.1 exhibits the dependence of h{q) on q for two examples, namely fractional 

Gaussian noise and temperature record. It is shown that h{q) almost remains 

constant for all qs for the former while varies significantly for the latter, which 

indicates their different multifractal properties. 
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Figure 3.1: h{q) for fractional Gaussian noise and temperature record against q. 

According to Kantelhardt et al. (2002), if the time series is stationary, 

positive and normalized, then it is not necessary to detrerid in step 3. Thus the 

DFA can be replaced by the standard fluctuation analysis as: 

F^^iv, s) = [Y{vs) - Yiiv - (3 .40) 

Then, combining Eq.(3.38) and Eq.(3.39)’ we can obtain: 

2N, 
. Y ^ |y(i;5) - y((i； — � ( 3 . 4 1 ) 

t;=i 

To relate the one-dimensional MF-DFA to the box-counting formalism, Kantel-

hardt et al. (2002) gave the partition sum of the analyzed time series as: 

N/s 

三 E | p “ t ; ) | g � s T ⑷ ， （3.42) . . 
‘ V=1 
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where 
vs 

Ps{v) = ^k = y{vs)-Y{{v-l)s). (3.43) 

fc=(u-l)s+l 

From the above two equations, they established the relationship to relate the 

• partition function foniialLsin and MF-DFA together as: 

‘ r{q) = qh{q) - 1. (3.44) 
t 

Based on r(r/), the generalized fractal dimension D{q) and the singular spectrum 

can be derived as follows: 

Dig) E (3.45) 
Q - 1 

cx = T'{q) and f{a) — qa - r{q). (3.46) 

With Eq.(3.44), D{q) and the singular spectrum can be expressed via h{q) as: 

m = 5 ^ ， (3.47) 
g - 1 

tt = h(q) + qh'(q) and f(a) = q[ct - h{q)] + 1. (3.48) 

Such relationship (Eq. 3.44) has been employed to study the scaling behaviors 

of time scries in different fields of research (Kimiagar et al., 2009; Movahed and 

Hermanis, 2008; Movahed et al, 2006; Telesca et al., 2004c, 2005). 

Actually, there are some other methods for multifractal analysis, such as the 

wavelets transform modulus maxima (WTMM) (Muzy et al., 1994, 1991) and 

empirical mode decomposition based arbitrary- order Hilbert spectral analysis 

(EMD-HSA) (Huang et al., 2008). Compared to WTMM and EMD-HSA, the 

algorithm of MF-DFA is much easier to implement. Moreover, the systematic 

discussion and comparison of the performance of WTMM and MF-DFA on frac-

tal and multifractal analysis was made in Oswiecimka et al. (2006). Simulated 
- . 

numerical series and real-life examples were employed for comparison. Then, Os-
wiecimka et al. (2006) claimed that MF-DFA works in a more automatic way 
while WTMM should be applied with care when applied to analyze real data. 

39 



3.2.3 2D MF-DFA 

The procedure of the 2D MF-DFA is very similar to that of the MF-DFA. 

Based on the description by Gu and Zhou (2006), for each given s, wo can first 

divide the two-dimensional surface, denoted by a matrix X(i,j) with size M x N, . 

into Ms X Ns non-overlapping sub-surfaces with size s x s, where Ms = ‘ 

int(M/s) and Ng = iiit(7V/s). The profile Uŷ v̂ = J2 can then be 

obtained in each Xŷ yj. Subsequently, we can eliminate local trend from every 

by using one of the following local surfaces as the pre-specified polynomial 

detrending function u: 

Uy^wihj) =ai + bj + c, (3.49) . 

Uv,wi^J) = + bf + c, (3.50) 

Uv.wihj) = aij + + cj + d, (3.51) 

Uv,w{h j) = a 一 + + d + 由 + e’ (3.52) 

Uv,xv(h3) = a 一 + bf + cij + di + ej + / , (3.53) 

here a, 6, c, d, e and / are free parameters to be determined. Then for each 

sub-surface, we can have a residual matrix: 

£v,w(ij) = - (3.54) 

The variance of the residual matrix is obtained as： 

‘ = (3.55) 
1=1 J=1 

Subsequently, the two-dimensional r/th order fluctuation function, F,(s), becomes 
» 

训 二 (WW Z E (巧也，s)}， _ 
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By varying s from 6 to min(M, N)/4, if the power law � e x i s t s , we � 

can obtain the generalized Hurst exponent h{q) for the two-dimensional surface. 

Gu and Zhou (2006) also gave without proofs the relationship between fi{(i) and 

H for the 2-dimensional fBm as: 

‘ h{q) = H, (3.57) 

and the relationship between h{q = 2) and H as: 

. h(q = 2) ~ / / . (3.58) 

3.3 Several Problems in DFA and MF-DFA 

'•一 Although the DFA is the preferred method for the fractal analysis, and DFA 

and its extended version, MF-DFA, have been applied to solve problems in many 

fields such as astronomy (Aiih et al., 2007，2008; Movahed et al., 2006; Yu et al., 

2009), hydrology (Movahcd and Hermanis, 2008; Zhang et al., 2008, 2009), me-

teorology (Talkner and Weber, 2000), seismology (Telesca et al., 2004a,c, 2005; 

-Varotsos et al., 2002, 2003) and electrics (Kimiagar et al., 2009), we still have 

to investigate them systematically before applying to the geographical processes. 

Firstly, we study the basis, DFA, since its disadvantages could also bring negative 

influence on MF-DFA. And then the iiicorrcctri(;ss in MF-DFA would be discussed 

in this section. 

3.3.1 Strong Fluctuation in Scaling Behavior 

Detrendiiig is the key step in DFA. As to the concept of trend, it is hard to give 

an exact definition. However, there are generally two approaches for estimating 

• the trend: one employs regression and the other uses the moving mean of data 

(Wu et al., 2007). In DFA, it treats the polynomial fits of the time series in local 

windows as the local trends to be handled in the detrending step of the algorithm. 

It should be noted that ordinary linear or high order regression can be used in 
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the detrending step. In f inding the best-fit curvc, all points in a local window 

take on the same regression parameters regardless of their location in the window. 

However, i t has been argued, particularly in geographical studies (Tobler, 1970), 

that points near in space should be more related than points some distance away. 

The same argument can also be applied to points in t ime series. I t is natural to 

cxpect points near in t ime in a t ime series to be more related, e.g. have siirii-lar 

values, than points sonic distance apart. Change of temperature over t ime is 

a typical example. As pointed out by Eichner et al. (2003), ’the persistence of 

weather states on short terms is a well-known phenomenon: a warm day is iriore. 

likely to be followed by a warm day'. W i t h rcspcct to DFA, points locating at the 

end (beginning) of a local window of a t ime scries should have stronger correlation 

wi th points closer to them, even though they arc located at the beginning (end) 

part of the local window next (before) to it. Tha t is, w i th reference to a point, 

points at greater distance w i th in the same local window might not be as related 

those in another local window right next to it. The implication then is that points 

should be weighted according to their position in the t ime series. Furthermore, 

Alvarez-Ramirez et al. (2005) pointed out in their study t i iat as the removal of 

local trends in DFA is based on discontinuous polynomial fitting, oscillations in 

the fluctuation function and significant errors in crossover locations might be 

introduced. I t is very common to see that the linear relationship in the log — log 

plot of the fluctuation function F{s) versus the scale s is very poor when a is 

large. 

Besides, the rion-overlapping window considered in the step 2 of DFA might 

lead to the insufficient samples for calculating the fluctualioii function of DFA, 

especially for the large scales. For example, if s = iV/4, only the f luctuation in 

four window could be taken into account. As a results, the static on the baais 

of the insufficient samples may at tr ibute to the unstable scaling behavior w i th 

strong fluctuation, part icularly at large scales. 
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3.3.2 Influence of Periodic Trend 

In the geographical phenomena, the periodic or quasi-periodic trend is com-

mon to SCO, such as the aiirmal cyclc in < temper at iiro and st.roainflow records, and 

the famous l l -ycar-cycle in sunspot series. Usually, the existence of crossover 

in the scaling behavior of DFA can imply a transit ion from one to another state 

of underlying correlation. In the analysis of the r(;al-lifc examples, the crossover 

points generally indicate the chaiigc of the scaling behavior of a process. And 

scales marked by such crossover points usually have a crit ical and significant 

physical meanings. For example, the crossover points in the study of tempera-

ture records could be detected around one week, one month and one season, which 

uncover different properties of persistence in the climate systems, such as more or 

less similar temperature records found in successive days but significant difference 

in the days separated by seasons. The significance of these detected scales can 

generally be confirmed by the climatological studies. However, some trends can 

lead to the crossover which has nothing to do wi th state transition of dynami-

cal properties of the underlying process, for example the spurious crossover t ime 

scales due to periodic or quasi-periodic trend (Hu et al., 2001; Nagarajan and 

Kavasseri, 2005). Therefore, handling this kind of trend is very much crit ical for 

obtaining the genuine scaling behavior of a t ime series. 

In fact, many methods have been designed to remove the periodic or quasi-

periodic trends from t ime series. According to Wu et al. (2007), there are two 

commonly used methods for estimating the trend of t ime series/signals. They 

are the linear regression method and the moving average method. Other than 

that , there are some more complicated trend extraction methods, like the higher 

order regression analysis, Foiiricr-bascd fi l tering (Nagarajan and Kavasseri, 2004), « 

singular-value decomposition (SVD) (Nagarajan and Kavasseri, 2005) and the 

adaptive detrending methods (Hu et a l , 2009). Details about these methods 

(except the adaptive detrending in Hu et al. (2009)) and their comparison can be ‘ 

found in Kantclhardt (2008) and Bashaii et al. (2008). 

The linear regression method may be inappropriate or physically meaningless 

‘ 43 



• • -j 

for real-life problems, especially under noii l incarity and non-stationarity. W i t h 

• regard to the moving average methods, a pre-determined t ime scale, like that in 

、 Alessio et al. (2002) and Alvarez-Ramirez ct al. (2005), is required before the 

trends are estimated. Higher order regression analysis and Fourier-based filtering 

are often based on the stat ionari ty and linearity assumptions, and some prC" 

determined function forms, siich as polynomial, sine or cosine functions, for higher 
t 

order regression and Foiiricr-bascd fi ltering. Bosides this, there are no physically 

justifiable foundations support ing the prospccif icd function forms (Wii et al., 

2007). Using the SVD method one has to determine the number of singular values 

to be removed. The Fourier-based method is faced wi th similar problem, that is 

how many of the frequencies should be removed. The adaptive detrending in Hi i 

et al. (2009) is based on the regression analysis. Thus the order of polynomial and 

the t ime scale have to be determined wh4n Itpplementii ig these trend extracting 

methods. 

What should be emphasized is that the definition of trend is debatable. For 

example, the periodic t rend in financial series is considered an important compo-

nent rather than noise which should be removed during the analysis (Wii et al., 

2007). If the periodic t rend dominates th« series, the scaling i i i for inatioi i of other 

components would be masked. To investigate the scaling behavior of those non-

periodic components, the dominant part has to be removed. Thus, to give a 

complete description of the scaling behavior, in the study of the temperature 

variations, we analyze the scaling behavior of series w i th annual cycle and series 

after removal of the annual cycle. However, for the same siiiispot time series, 

Movahed et al. (2006) and l l u ct al. (2009) derived two total ly different results 

. using DFA on the basis of two different ways to remove the edcct of the 11-year' 
A % 

cycle. Specifically, Movahed et al. (2006) applied the Courier truncat ion method ‘ 
N * 

whereas Hu et al. (2009) developed an adaptive dctrencling method. Further- 、 

more, Hu et al. (2009) claimed that the Hurst exponent obtained in Movahed 

et al. (2006) is incorrect because an inappropriate detrending method, namely 

Fourier truncation, was used. Therefore results in Movahed et al. (2006) are coii-
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sidered an artificial outcome of Fourier truncation rather than a real property • 

of the sunspot series. Unlike Hu et al. (2009), Nagarajaii and Kavasscri (2004) 

showed that the Fourier-based method is a conventional but effective method for 

removing periodic trends. The question then is which method is appropriate for 

handling the 11-year cycle? On the basis of the above discrepancy, how to remove 

the 11-year cyclc thus becomes a key issue in the study of the sunspot time series 

using DFA. I t triggered us to adopt another angle to get to the bottom of this 

problem. 

I 3.3.3 Problematic Relationship in MF-DFA 

Though the MF-DFA have become popular over the years, there seem to 

be some problems in the relationships of the exponents given in these papers. In 

the development of MF-DFA, Kantelhardt et al. (2002) established a relationship, 

which has been extensively appliect^ever since, between MF-DFA and the standard 

partition-function-based mult i fractal formalism as: r (g) = qh(q) — 1 for positive 

and stationary t ime series. This relationship has been employed as a basis for 

mult i fractal analysis in a good number of studies (see for example (Kiiniagar 

et al., 2009; Movahed and Hermanis, 2008; Movahed et al., 2006; Telesca et a l , , 

2004c, 2005)). However, our investigation shows that such relationship has a 

potential problem. I t might at least be incorrect for some signal like fGn. 

Since tl ie concept of the Hurst exponent, H , and the relationship between 

‘ h(q) and H are the crit ical issues, they arc briefly reviewed horo first. The scaling 

exponent 广，which is determined by the Fourier power spectrum E { / ) = /一“，is 

employed to describe many processes. Thus Hurst exponent can also be ddinccl 

using (3. On one hand, a definition of the Hurst exponent, H, of fBm and fGn 

requires different relations to connect these exponents according to the underlying 

processes a s / / = for fBm and H = ( ^ + l ) / 2 for fGn (Barton and Poor, 

1988; Mandelbrot and Ness, 1968). Then H lies between 0 and 1 for both fBm and 

fGn. On the other hand, there is a different definition of the Hurst exponent, / / , 

of fBms and fGns given as H = ( ) 0 - l ) / 2 (Flanclriii, 1992; Mandelbrot, 1982). In 
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this definition, H varies f rom -1 to 0 for fGri and from 0 to 1 for fBm. We denote 

this definition of H as Hi in the following discussion. The following statement 

gives the reasons that the former definit ion ought to be the one adopted in MF-

• DFA. As mentioned above, M F - D F A becomes DFA if q — 2. Herieghan and 

McDarby (2000) pointed out that H = l ) / 2 for fGn and / / = ( 々 — l ) / 2 for 

fBm and proved' that the relationship between the DFA exponent 2/t(2) and the 

power spectrum'scaling exponent, \s P = 2h{2) — 1. Tha t is to say h{2) = II 

for fGn and h{2) = / / + 1 for fBm. W i t h this definit ion of H, the relationships 

between H and DFA scaling i ixpoiient h{2) for fGn arid fBi i i liavc been coiifirined 

by analytical calculation. Taqqn et al. (1995) analytically calculated that the 

DFA scaling exponent h equals H for' fGn. Furthermore, Movalied et al. derived 
» 

the relationship h{2) = / f -f 1 for fBm (Movahed ct al., 2006) and h{2) = H for 

fGn (Movahed and Hermanis, 2008). These research results can be employed to 

support that the scaling exponent h{2) obtained by MF-DFA should be related 

to H rather than H^. In addit ion, Kantelhardt et al. (2002) gave the relationship 

between H and P .as H = ( /?+1) /2 for the stationary long-range correlated series. 

So in MF-DFA, the former definit ion of the Hurst exponent is adopted. And in 

this thesis, we just consider the former definit ion of Hurst exponent. 

Here, we would like to point out the incorrectness of relationship between r{(]) 
I 

and h{q) f rom the theoretical and numerical points of view. 
t% 

T h e T h e o r e t i c a l Issue 
• 

I t should be observed that for positive, stationary, and normalized t ime scries 
I 

i f no trend has to be eliminated, then Step 3 w i l l not be performed. In 

such case, Step 1 of MF-DFA should then be compulsory. I f so, ‘ 

us 

Y(vs) - Y((v - l ) s ) = Y ^ (^fc- < a： > ) , (3.59) 
. k={v-l)s+l • 

jr 

等 

f 
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instead of Eq.(3.43). A n d even if {xk}k=i is a positive series, Xfc— < x > might 

st i l l be negative. W i thou t loss of generality, we can suppose: 

vs 
^ {Xk- <x >) > 0, (3.60) 

k={v-l).i + l 

{v\-l)s 
{ x k - < x > ) < 0; (3.61) 

k=vs+l 
and 

vs (W+1)S 
I (工广 < ^ - > ) 1 > 1 ( A - < >)l- (3-62) 
A:=(u-1)5+1 k=V3+l 

Then, even if 

{工广 < X > }二 ) _ ^丨 2 { x . - < X (3.63) 

i t is st i l l possible to have 
(V+1)S us 

I Y^ Or,. — < :r〉)| < I ( x ' f c - < x - > ) | . (3.64) 

*:=(v-l)a+l k={v-l)s+\ 

J list take the fGn as an example. Fig. 3.2 depicts an enlarged plot of part of 

the fGn. Wc transform { x } upwards for | min(a;)| + 1 to ensure that the new 

- series, { i } , is positive, and then replace i t usiiig {x— < x > } . Mathematically, 

{x— < X >} = {x~ < X > } . Then we obtain a positive, stationary series. Given 

s — 3，it is easy to see t l ia t Eq.(3.60)-Eq.(3.64) arc valid. However as is well 

known, if ^ is a measure defined on sets A and B, then 

A O B (3.65) 

Aiust be followed by 

‘ • K A ) > (3.66) 
# 

That is to say in Eq.(3.42) cannot be treated as a measure defined on the 

times series {a:fc}£Li since i t does not possess the basic property of a measure. 
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Figure 3.2： An enlarged plot of part of the fGn ( re- < x >) , for s=3 . 

However, when the box-counting algori thm, for example, is used, i t is necessary 

to have a measure defined on a set. Then, the part i t ion-sum funct ion based on 

|Ps(t;)| is not proper. Now that Eq.(3.43) is incorrect, the relationship in Eq.(3.44) 

which is obtained by combining Eq.(3.41), Eq.(3.42) and Eq.(3.43), might also 

be incorrect, at least for fGns. I n the following subsection, we employ inimerical 

experiments to support our arguments. 

N u m e r i c a l E x p e r i m e n t s 

We first substantiate our view on the probknnatic relationship between r[q) 

and h{q) established in Kante lhardt et al. (2002) w i th a scries of numerical exper-
i 

iments. I n order to numerically obtain the relationship between T{q) and h{q)^ 

、 we have to calculate t ⑷ and h{q) f irst. To be consistent, we consider in here 

the stationary, positive, and normalized t ime series following the assumption in 

Kantelhardt et al. (2002). As i t is well-known, fGn is the stationary increment 

of fBm. Thus we construct our numerical examples using fGn to calculate r ⑷ . 
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and h{q) by the fixed-size box-counting algori thm in Halscy et al. (1986) and 

M F - D F A i l l Kantelhardt ct al. (2002) respectively. The procedure to construct 

our examples is presented in detai l as follows: 

In the experiment, we first used Ma t Lab to synthesize 10 fBms w i th length 

+ 1 for each assigned Hurst exponent H whose values range, f rom 0.1 to 0.9 

w i th step size 0.1. For each fBm, we obtained a corresponding fGi i , {G'^}, w i th 

the same H . As the fixed-size box-counting algor i thm is based on the part i t ion-

simi function, i t is nccessary to keep all elements of the series non-negative. Thus, 

wc replaced the original {Gf^} w i t h {Gk — mi i i (G) + 1}, where imi i (G) denotes 

the min imum value of series { G ^ } , so that, wc could transform {GA：} into a pos-

it ive series which st i l l is stationary. Moreover, the detrending step in MF-DFA 

e n s u j ^ that the vertical t ranslat ion holds the same H as that of {G^ } . W i thou t 

confusion, we st i l l use {Gfc} to denote the vertically shifted fGiis in the following 

description. To calculate T{q) and h(q), we let q iiicrcase from -5 to 5 w i t h step 

size 1. Apply ing the box-couii t i i ig a lgor i thm (Halsey et al., 1986)，we computed 

T{q) for each series {G；：}. Af ter normalizing the transformed series, we applied 

the fixed-size box-counting a lgor i thm to get 丁(q). The almost unvaried values of 

averaged D(q) shown in Table 3.1 indicate the rnoiiofractality of these vertically 

shifted fGns. Whereafter, we calculated /l((j) using MF-DFA. I t should be noted 

T a b l e 3 . 1 : Averaged D { q ) of vertical shifted fGns for different H and q values 
, g=-5 q=-4 g=-3 q=-2 g=-l « q=0 q=l q=2 g=3 q=4 g=5 ‘ 

/ / = 0 . 1 1 . 0 3 1 0 " " " 1 . 0 3 1 0 1 . 0 3 1 0 1 . 0 3 1 0 " " " 1 . 0 3 1 0 " " " 1 . 0 3 1 0 ~ 1 . 0 3 1 0 " " " 1 . 0 3 1 0 ~ 1 . 0 3 1 0 ~ ~ 1 . 0 3 1 0 1 . 0 3 1 0 
11=0.2 1.0310 -1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 
H=0.3 1.0311 1.0311 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 
H=0.4 1.0311 1.0311 1.0311 1.0311 1.0311 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 
/ / = 0 . 5 1.0311 1.0311 1.0311 1.0311 1.0311 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 
/ / = 0 . 6 1.0311 1.0311 1.0311 1.0311 1.0311 1.0310 1.0310 1.0310 1.0310 1.0310 1.0310 
'H=0.7 1.0314 1.0314 1.0313 1.0312 1.0311 1.0310 1.0310 1.0309 1.0308 1.0307 1.0307 
/ / = 0 . 8 1.0321 1.0319 1.0317 1.0315 1.0313 1.0310 1.0308 1.0306 1.0304 1.0302 1.0300 

, / / = 0 . 9 1.0349 1.0341 1.0334 1.0326 1.0318 1.0310 1.0303 1.0295 1.0287 1.0280 1.0272 

tha t these normalized transformed fGns are stationary, positive, and normalized » 
series satisfying tota l ly the assumption in (Kantelhardt et al., 2002) to in the 

derivation of the relationship between T(q) and h(q)y e.g. Eq.(3.44). Since the ‘ 
* 

• Hurst exponents of fGn here are all positive an emphasized in the introduction, 

M F - D F A is directly performed wi thout employing the double sumtnation tcch-
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F i g u r e 3 . 3 : R e l a t i o n s h i p s b e t w e e n h{q) a n d r{q) f or n u m e r i c a l e x a m p l e s wi th 11=0.1 t o 0 .9 . 
(from top left to bottom right). 

nique as suggested by Kante lhardt et al. (2002). Step 3，detrending, of M F - D F A 

is able to keep h{q) of {ga；} a constant when a constant is added to each element 

Gk of the series. Now, we could obta in 丁(q) and h(q) for each H. A n d then 

the average values of ten D{q) and h{q) for each H axe compared. The figures 

are shown in Fig.3.3. Apparent ly, the actual curves of r (g ) versus qh(q) do not 

follow the expression st ipulated by Eq.(3.44). The deviations are actual ly rather 

、 drastic. 

Prom Fig.3.3, one can observe that the curves poor ly fit the linear relationship 

when H < 0.3. As H increases, however, the curve of T{q) versus qh{q) is gett ing 

more and more like the straight line: r(gr) = qh{q) - 1. Table 3.2 gives the slopes 

and intercepts of the linear fits of these actual curves. From this table, we can 

see tha t the linear f i t is close to 丁(q) = qh(q) 一 1 only when H = 0.9. However, 

there is a significant difference between the actual curve and T{q) = q h � - 1 
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T a b l e 3 .2 : Slopes and intercepts of the linear fits of tho curve of t � and qh{q) for difFerenl 
II values in Fig.3.3 ‘ 

H slopes of the linear fits intercepts of linear fits 
" O l 6.0839 -0.5593 

0.2 4.2370 "0.7178 
0.3 3.1375 -0.8149 

0.4 2 . 4383 -0.8663 
0.5 1.9604 -0.9184 
0.6 1.6609 -0.9382 
0.7 1.4240 -0.9504 
0.8 1.2560 -0.9656 
0.9 1.1264 -0.9995 

when H < 0.8，especially for small H. Th is numerical counter example shows 

that the relationship between T{q) and h[q) st ipulated by Eq.(4.2) established by 
3 

Kante lhardt et al. (2002) appears to be incorrect. 

3.3.4 Problematic Relationship Between H and h{q) in the 

2D MF-DFA 

Gu and Zhou (2006) claimed that H can be obtained via Eq.(3.57) for two-

dimensional fBm and Eq.(3.58). For the two-dimensional R / S analysis, however, 

H is calculated using the power law (see Eq.(3.12)). Alvarez-Ramirez et al. 

(2008) claimed that the two-dimensional R / S analysis is equivalent to the two-

dimensional D F A l (two-dimensional D F A which eliminates local t rend using pla-

nar sub-surface), e.g. 2H = / i(2). They also generated two-dimensional fBm to 

carry out numerical experiments using bo th the two-dimensional R /S analysis 

and two-dimensional M F - D F A to support their claims. However, the relation-

ships obtained in these two separate studies are contradictory: i.e. H = h{2) in 

Eq.(3.58) versus 2H 二 /i(2) in Alvarez-Ramirez et al. (2008). Since / / is a con-

stant for a given two-dimensional signal, either one of these relationships has to 

be wrong or they are both wrong. Such contradict ion compels us to numerically 

investigate the relationship and make a conjecture about the real one. 
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P r o b l e m o f t h e 2 D R / S A n a l y s i s i n A l v a r e z - R a m i r e z e t a l . (2008) 

The 2D R /S is studied in Alvarez-Ramirez et al. (2008) v ia the two-dimensional 

fBm. Since the one-dimensional R / S analysis is only suitable for the stat ionary 

t ime series, and the two-dimensional f B m used in Alvarez-Ramirez et al. (2008) is 

a wel l -known non-stat ionary process, i t is questionable that R /S can handle the 

non-stat ionary f B m just becausc i t is generalized to the two-dimensional space. 

To satisfy our curiosity, we repeated the experiment of Alvarez-Ramirez et al. 

(2008) and found that the same results cannot be obtained although the same 

software F R A C L A B 2.03 (ht tp: / / f rac lab.saclay. inr ia . f r / ) was employed to syi i - . 

thesize the two-dimensional fBm. Fig.3.4 and Fig.3.5 show our results obtained 

by the 2D R /S analysis. 
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� 
F i g u r e 3 .4 : Results of 2D R / S analysis using 2D fBm with size 256 x 256 and known Hurst 
exponent H = 0.2(left panel), 0.5(ceiiter panel) and 0.8(right panel). 
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Figure 3.5： Results of the 2D R / S analysis using 2D fBm with size 512 x 512 and H = 0.2 

(left panel) H = 0.5 (center panel) H = 0.8 (right panel). 

I t can easily be observed tha t no mat ter what the size of the surface is, 

256 X 256 or 512 X 512, the slopes of all these plots are approximately 2 instead 
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of the pre-specified H values, i.e. 0.2, 0.5 and 0.8; or 2/7. Thus H obtained from 

the power law in Eq.(3.12) Alvarez-Ramirez et al. (2008) should be incorrect, 

at least for the two-dimensional fBm. Thus, the two-dimensional R /S analysis 

should st i l l be an improper method to estimate H on non-stationary surfaces. 

P r o b l e m o f t h e R e l a t i o n s h i p o f H a n d h{q} i n G u a n d Z h o u (2006) 

The relationship between H and h{q) for the one-dimensional MF-DFA is 

• well-known. In brief, II = h{q = 2) for stationary t ime series, whereas H = 

h{q = 2) — 1 for non-stationary series as shown in Eq.(3.21). The problem is 

when M F - D F A is extended to the two-dimensional space, can the relationships, 

like Eq.(3.57) for the two-dimensional fBm and Eq.(3.58), be obtained wi thout 

considering the property of stationarity? We provide in here some numerical 

experiments for their verifications. 

As mentioned above, two-dimensional fBm and two-dimensional fGn are fa-

mous non-stationary and stationary process respectively. Thus we used these two 

processes to investigate the relationship between H and h{q = 2) for stationary 

and non-stationary processes in two-dimensional space. 、 

We generated 20 two-dimensional fBms w i th size 512 x 512 and assigned 

value of H ranging from 0.1 to 0.9 w i th step size 0.1. According to McGaughey 

and Ai tken (2002), the mixed second part ial derivative /dxdyF{x,y) of the 

two-dimensional fBm is the two-dimensional fGn. Therefore, we can get one 

two-dimensional fGn from each two-dimensional fBm using the following approx-

imat ion equation: 

-^Bnix^y) = [Bnix^y) - Bjj{x - l,y)] 一 \Bh{x,xj — 1) - Bn{x - l , ? y - 1)], 
oxoy 

. (3.67) 

where Bjj denotes two-dimensional fBm, and x and y are integers. For this 

numerical study, we obtained 20 two-dimensional fBms and 20 two-dimensional 

fGns for each H , which varies from 0.1 to 0.9 w i t h step size 0.1. We performed the 

experiments following exactly the procedure given by Gu and Zhou (2006). We 
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i 

employed Eq.(3.49) and Eq.(3.53) as the detrending function. We found it diff icult 

to establish any relation from applying Eq.{3.49). By detrending via Eq.(3.53), 

however, we obtained certain relationship depicted in Fig.3.6 and Fig.3.7. 
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F i g u r e 3 . 6 : Results of 2D M F - D F A for 2D fGn with " 二 0.1 to 0.9 ( from top left to bo t tom 

right). 

Table 3.3 gives the average values of /i(2) for the 2D fGn and fBm for each 

H. I t is easy to read the invalidation of Eq.(3.57) for the two-dimensional fBm 

and Eq.(3.58) from Table 3.3. 

3.4 Summary 

This chapter first reviewed the popular methods which are usod in fractal 

analysis. DFA has been selected for use in this study based on the results of 
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F i g u r e 3 .7 : Results of 2D MF-DFA for 2D fBm with H = 0.1 to 0.9 (from top left to bottom 

right). 

T a b l e 3 .3 : Averaged values of h{2) of the two-dimensional MF-DFA using 2D fGn and 2D 
fBm with different H values 

^ averaged h{2) of 2D fGn averaged h{2) of 2D fl^ 
i n 0.12856729 2.02598325 

0.2 0.21972847 2.15956748 
0.3 0.31424202 2.27278913 
0.4 0.40323210 2.38832299 
0.5 0.50254354 2.50397095 
0.6 0.60270936 2.59705262 
0.7 0.69889756 2.69256248 
0.8 0.80237260 2.78993299 
0.9 0.89712406 2.89163698 

this review. The concepts of i ini l t i f ractal analysis have been introduced for use 

in this study because of the l imitations of fractals in the analysis of the real-

world data; therefore, a generation of DFA (i.e. MF-DFA) is chosen for the MFA. 
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Two weaknesses of DFA have been identified by previous studies, namely: the — 

strong fluctuation in the scaling behavior of DFA and MF-DFA, and the negative 

influence of periodic and quasi-periodic trends. In addit ion, two problematic rela-

tionships of MF-DFA are also claiincd on the basis of theoretical discussions, the 
-I 

numerical experiments, and the empirical analysis. Therefore, those theoretical 

issues wi l l need to be discussed in further detail before wo can apply the DFA 

and MF-DFA in the gcograpliical problems. 

• "x 一 、 
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Chapter 4 

Methodological Investigation of 

DFA and MF-DFA 

This chapter wi l l focus on the methodology issue. On the basis of review 

in chapter 3, there are two disadvantages in DFA ami two potential problematic 

relationships appearing in MF-DFA. In addit ion, introducing the ideas from other 

research fields should be a appropriate way to improve the performance of the 

methods in analyzing the geographical probleiiLs. This chaptcr is organized by 

describing the corresponding iinprovcmciits and corrections first, and then testing 

their capability using numerical experiments. 

4.1 Improvement of DFA 

Two disadvantages of DFA, strong f luctuation in scaling boliavior and influ-

ence of periodic trend, have been pointed out in chapter 3. Now we would like to 

give our proposal to handle them in this section a.s follows. 
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4.1.1 Strong Fluctuation in Scaling Behavior 

M o v i n g W i n d o w D e t r e n d e d F l u c t u a t i o n A n a l y s i s ( M W D F A ) 

-、， Detrending is a key step in DFA. However, the current way for detrending rus 

described in step 3 in DFA procedure may result in strong fluctuations in scaling 

behavior as introduced in chapter 3. 

To avoid such problem, wo propose a method that c.aii take into consideration 

local relationships of points in t ime series in the detrending procedure of DFA. 

Oi l the basis of this principle, the moving-window DFA ( M W D F A ) and the more 

general temporally-weighted DFA (TWDFA) are proposed in the following of this 

section to improve the detrending procedure in DFA, and the performance of DFA 

in general. The proposed model is then evaluated through numerical simulations. 

Note that the relationship between the Hurst exponent and h of D F A l hai5 been 

proved (Movahed and Hermaiiis, 2008; Movalied et al., 2006; Taqqu ct al., 1995), 

the local trend estimated by linear regression in the detrending step of DFA is 

our main focus in the following discussion. 

Suppose that the zth point belongs to the " t h local window and the scale is 

st i l l 5. In step 3 of DFA, gus pointed out above, the local trend at the ith point 

Y(i) is determined by y”(i). However y”(f} is dcterini i ied by the points in its local 

window rather than by those points, which might he outside the window, nearer 

to i t . To account for such local effccts, i t is thus more reasonable to determine 

y”(i) using the nearby points. To achicvc this, we need another way to estimate 

the local trend instead of usiug y j^ i ) in the conventional DFA. We propose to 

estimate Y{i) by using the f i t t ing polynomial Y{i) in each local window consisting 

of points { j : \i — j\ < = s}. Then for Y{i), we can get the corresponding y (z ) 

from using the moving window (MWz), defined as { j : - j\ <= s}. Fig.4.1 

gives a graphical i l lustrat ion of the concept. That is, to capture the local cfFcct, 

we move the fixod-sizc window along the series for detrending. Therefore, ⑷ 

by V(i) in step 3 of DFA (Eq.(3.17) and (3.18)), t l ic modified and F(s) 

can be obtained. That is, Eq.(3.17) and (3.18) can be respectively redefined as 

58 



200 1“I 1 I 1 1~I 1 
t 

160 • 丨 • : I -

w V ^ , 
① 140 - —一—^zj^ ‘‘ - • ’ \ i -

3 120 - yZ I ‘ -
I / I \ 

100 ‘ I V -
‘ I — • — series of Y ‘ \ 

I 8 0 - I • Y(312) ‘ V -
a ~ ~ ' \ 
I 60 - I - - ends o fMW312 ‘ ., \ . 
^ 丨 Y(319) I \ 

40 - ‘ I N 
I ends of MW319 ' 
I fitting polynomial in MW312 丨 

20 - 1 fitting polynomial in MW319 i 

0' 丨‘ 丨 ‘ 1 ‘―！ ‘ 
290 300 310 320 330 340 

• date 

Figure 4.1： Two local moving windows ( M W ) along the air-tcinperature series and t,ho c.or-
• responding fitting polynomial Y in t,he.s(； moving-windows 

equations: 

1 ® 

= 一 […一 + — 卜 l)iS. + 0 }2 ’ (4.1) 

for V = 1，• •. ’ N , ; 

1 .， 
F''{v,s) = - ~ (v - Ns)s + z] - Y{N - (v - N,)s + 0} ' , (4.2) 

s t=l 
for 1； = + 1, • • •, 2N,; 

where Y(i) is the value of the fitting polynomial of MWz at point i. Similar to 

MF-DFA, from varying s we can also see if the power-law exits between F{s) 

and s so that h can likewise be obtained. We call this modified method the 

moving-window detrended f luctuation analysis ( W M D F A ) . 
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M u l t i f r a c t a l T e m p o r a l l y - W e i g h t e d D e t r e n d e d F l u c t u a t i o n A n a l y s i s ( M F -

T W D F A ) 

In ordinary linear regression (OLR), parameters of the regression model are 

universal over the whole dataspacc. Given n observations (yi\ Xi\, X i2 , . . . , Xip),(2 = ^ 

1 , 2 , . . . , n ) , the O L R can be expressed as: 

P « 
Vi 二 A) + X l (、而左 + i = 1’ 2，.. •, n, (4.3) 

. k=\ ‘ 
7 

here p i { i — 1 , 2 , . . . are the parameters. However, this uniformity may not 

rcflcct the spatial or temporal non-stationarity in real-life situations. That is, the 

parameters might not be able to capture local effects due to proximity in space 
身 

or time. W i t h respect to space, some methods have been proposed to consider 

• spatial non-stationarity or spatial dr i f t into OLS, see for example Aiiseli i i (1988, 

1990). In more" general terms', Anselii i (1988) have also studied the following 
varying-parametcr regression model: 

• ‘ p 

Vi = + i = 1 , 2 , . . . , n , (4.4) , 
k=l 

where l^ik are parameters which can vary in the data spacc. Geographically 

weighted regression (GWR) is actually a k ind of varyii ig-parameter regression » 

model tak ing the same form fis that of Eq.(4.4) (Leung et al., 2000). By the 

varying parameters, the local uni formity in the spatial d istr ibut ion can be well 

captured. Very recently, the G W R has been extended to the geographically 
« 

and temporal ly weighted regression ( G T W R ) to study the heterogeneity in the 

spatial and temporal processes (Huang et a l , 2010). Parameters in G W R can be 

estimated using the weighted least-squares approach. To take into consideration 

the local effect in t ime series, the idea of the varying-parameter model in general 

and the G W R and G T W R in part icular is employed to handle local effects in DFA 

i l l our analysis (Zhou and Leung, 2010b). Moving window regression ( M W R ) can 

be treated as the special case of G W R (Lloyd, 2007). When estimating y ( i ) 
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wi th a given M W i , M W R gives equal weight (generally, 1) to each point of M W i , 

while G W R allocates different weights (u^j) according to the distance between i 

and j { j GWMi ) . Of course, for the general varying-paraiiieter regression model 

i l l Eq.(4.4), Wij can be ddi i ied in different ways according to the situations of 

the geographical problems. To estimate the varying parameters for the model in 

Eq.(4.4) in the context of t imo scries, we give the expr(\ssioiis for the moving-

wiiidow method and the G W R method as follows (Lloyd, 2007): 

In the MWz, the fittiufi; polynomial can be oxpressod JUS: 

) � � = A ) � + /M'0'z + � （4-5) 

and P{i) = (M'l), can be obtained by solving: 

= { r W { i ) T ) - ^ T ' W { i ) Y , (4.6) 

where T is a 2 x TV matr ix: 

1 2 
T = ， (4.7) 

and 

Wii 0 … 0 

0 lUi2 … 0 
W ( i ) = . . . . J (4.8) 

• • • • 

0 0 … W i N J . 
\ / NxN 

I f we choose M W R model at scale s，Wij can be defined as: 

f 1, if \i - j\ < s, 
W i j ^ l ( 4 . 9 ) , 

. • I 0, otherwise. 

. � 
For GWR, oil the other hand, the width of the weighted fi inption affects the re-
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gressioii model more significantly, whereas the type of the weighted funct ion docs 

not seem to have as an impor tant effect. Tims, we can define Wij as follows (Lloyd, 

2007): 

I [1 — ( ¥ ) T ’ if \i-j\<s. 
Wij = (4.10) 

0, otiierwise. 
V 

Similar to the procedure of MWDFA，h{q) can likewise be obtained under these 

two scheincs. Since wo define Wij in terms of distance between two points in t ime 

i and j in a t ime series, the proposed method can apt ly be called temporal ly-

weighted dctreiidecl fluctuation analysis ( T W D F A ) . 

Actual ly, if we let the order of the f i t t ing polynomial be zero, then what 

we obtain is the mean in each moving window. Compar ing w i th the detrending 

moving average ( D M A ) (Alessio et al., 2002) which uses the mean in each moving 
� • • � ’ 

window as the t rend of corresponding point (the description of D M A can be . ) ‘ 
referred to the relative content in chapter 3), M W D F A and T W D A F are actual ly 

f 

one k ind of combinat ion ^ f DFA and D M A too. One advantage of M W D F A 

and T W D F A taking the moving window technique is tha t sufficient windows 

for calculat ing the fluctuation funct ion can be obtained. Thus a more stable 

scaling behavior could be obtained in the stat ist ical sense. Consequently, the 

* strong fluctuation could be much rel ieved Tho porforniaiico of tho modif ied DFAs 

are checked by the experimental numerical examples in the succeeding sections. 

Similar to the extension of DFA to M F - D F A , the M W D F A arid T W D F A can also 

be generalized to mul t i f racta l M W D F A ( M F - M W D F A ) and mul t i f racta l T W D F A 

( M F - T W D F A ) by considering the qth order moment of f luctuations. I t is easy to 

notice tha t M W D F A and T W D F A should correspond to the special case q — 2. 

Thus the test ing of M W D F A and T W D F A could be included in the testing of 

their mul t i f racta l versions. 

N u m e r i c a l E x p e r i m e n t s , 

Sincc M F - W M D F A can be treated as a special case of M F - T W D F A , wc just , 

need to compare the performance of M F - T W D F A to that of M F - D F A , whose 
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stabi l i ty and val idat ion have been tested, in our experiments. • 
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F i g u r e 4 .2 : h{q) of the binomial multifractal series with length and a ranging from 0.7 
(upper left-hand panel) U) 0.85 (lower right-hand panel). 

First ly, the simulated mul t i f ractal scries are employed for testing the perfor-

mance of M F - T W D F A by calculating h{q) and studying the mi i l t i f ractal i ty , as 

well as comparing these results w i t h M F - D F A . We generated the binomial mul-

t i f ractal model (Fcder, 1988), which was also employed by Kantelhardt et al. 

• (2002), â ： 
Xk - a " ( h ” ( l — a ) " " ' " ' - " ( ( - i ) ’ --(4.11) 

where the parameter a and satisfies 0.5 < a < 1, and n{k ) denotes the number . 

of digits equal to 1 in the binary representation of k. Theoretically, fi{q) can be 

expressed as: 
, , 、 1 + (1 — , … 、 "⑷丁 ,1.：(2) . (4.12) . 
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Based on Eq. (4.12), the singular i ty spectrum f { a ) vs. a can be obtained. I n this 

thesis, we set a = 0.7，0.75, 0.8，0.85 w i t h length N = h{q) obtained l)y 

M F - D F A and M F - T W D F A is presented in Fig. 4.2’ f rom which i t can be observed 

tha t two methods can obta in almost the same h{q) for b inomial mul t i f rac ta l series. 

Fig. 4.3 depicts the singular i ty spectra of these binomial series. We can see 

these spcctrum obtained by M F - D F A and M F - T W D F A arc very similar though 

the im i l t i f rac ta l i t y is a l i t t l e overestimated, if the spread of these singular i ty 

spcctra is employed to measure the mul t i f rac ta l i t y of series. 

I t is well known that fGn and f B m arc stat ionary and non-stat ionary t ime 

series respectively. To compare the performances of M F - D F A and M F - T W D F A 

for long-range correlat ion analysis (e.g. here we just to consider the special case 

q = 2’ M W D F A and T W D F A ) , we used F R A C L A B 2.03 developed by I N R I A 

(h t tp : / /www . i rccyn.ec- i iantes. f r /hebergement /FracLab) to generate 50 fGris and 

‘ 50 fBms w i t h length 500, 1000, 1500, 2000, 2500, 3000 and set the Hurst ex-

ponent ranging f rom 0.1 to 0.9 w i t h step size 0.1 to calculate / i (2) ‘ for testing. 

The numerical results of one f B m and one fGn w i t h H = 0.8 arc depicted in 

Fig. 4.4. The close agreement w i t h the straight l ine w i t h expected slope around 

0.8 confirms the va l id i ty in using the T W D F A to study the scaling behavior of 

s tat ionary and non-stat ionary scries. The less strong fluctuation in the scaling 

behavior of T W D F A than tha t of DFA could be observed in Fig. 4.4. Since DFA 

has already been tested as a stable method for the correlat ion analysis, we com-

pare the results of T W D F A w i t h DFA dircct ly. Def ining Ah{q) fus the difFcrcncc 

between h{q) obtained by D F A and T W D F A , the A / i ( 2 ) results l isted in Table 4.1 

demonstrate tha t for fGns and fBms w i t h different Hurst exponents and lengths, 

T W D F A and DFA have equivalent performance in the correlation analysis. The 

high s imi lar i ty in results of the two methods indicates that our proposed method 

is as effective as the extensively used M F - D F A in calculat ing H. However, wc can 

observe f rom Fig. 4.4 t ha t the plots of M F - T W D F A are smoother than tha t of 

M F - D F A . I t can thus help us to find the hidden crossover point(s), par t icu lar ly 

at large scale s, t ha t cannot be found by conventional M F - D F A because of the 
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Table 4.1: Averaged A/t(2) of M F - T W D F A and MF-DFA using fGns and flims wilh difTerent 
values of the Hrust exponent H and lengths 

H m ifioa ^ ' mb aSM 麗 
1 0 . 1 0 0 0 - 0 . 0 3 6 6 ± 0 . 0 0 9 1 - 0 . 0 2 6 0 ± 0 . ( ) 0 4 H - 0 . 0 2 1 7 ± 0 . 0 0 3 4 - 0 . 0 1 9 8 土 0 . 0 0 3 0 - 0 . 0 1 8 0 丄 0 0 0 2 7 - 0 0 1 7 7 上 0 . 0 0 2 4 “ 

0 . 2 0 0 0 - 0 . 0 3 4 3 士 0 . 0 1 0 1 - 0 . 0 2 5 5 士 0 . 0 0 6 7 - 0 . 0 2 0 0 土 0 . 0 0 G 2 - 0 . 0 1 7 9 ± 0 . 0 0 5 5 - 0 O l S H ± 0 (M)42 - 0 . 0 1 5 9 ± 0 . 0 0 4 4 
0 . 3 0 0 0 - 0 . 0 3 3 1 ± 0 . 0 1 3 4 - 0 . 0 2 1 3 ± 0 . 0 0 9 6 - 0 . 0 1 9 2 ± 0 . 0 0 8 2 - 0 . 0 1 5 7 士 0 0 0 7 4 - 0 . 0 1 8 0 土 0 . 0 0 5 8 - 0 . 0 1 5 3 土 0.0050 

0 . 4 0 0 0 - 0 . 0 3 0 5 ± O . O l f l l - 0 . 0 1 9 9 士 0 . 0 1 1 4 - 0 . 0 1 C 9 上 0 . 0 0 9 6 - 0 . 0 1 4 8 ± ( J . I K ) » 6 - 0 . 0 1 . 1 2 ± 0 . ( ) 0 7 ' 2 - 0 0 1 3 0 土 O.OOTH 
f C n 0 . 5 0 0 0 - 0 , 0 2 5 5 土 0 . 0 2 2 8 - 0 . 0 2 2 7 ± 0 . 0 1 2 5 - 0 . 0 1 9 4 土 0 0 1 3 2 - 0 , 0 1 5 6 士 0 . 0 1 0 2 - 0 . 0 1 7 3 士 0 . 0 0 9 3 - 0 . 0 1 6 5 ± 0 . 0 0 7 7 

0 . C O O O - 0 . 0 3 1 4 土 0 . 0 1 H 0 - 0 . 0 2 1 5 士 0 . 0 1 G 3 - 0 . 0 1 5 0 ± 0 . 0 1 6 S - 0 0 1 4 8 ± 0 . 0 1 0 8 - O . O l t i O ± 0 0 0 9 4 - 0 . 0 1 5 3 ± 0 . 0 1 0 2 
0 . 7 0 0 0 - 0 . 0 2 9 7 土 0 . 0 1 8 8 - 0 . 0 1 8 6 士 0 . 0 1 2 7 - 0 . 0 1 7 5 土 0 - 0 1 2 0 - 0 . 0 1 3 2 ± 0 . 0 1 3 1 - 0 0 1 4 9 上 0 0 0 9 8 - 0 . 0 1 4 6 上 0 . 0 1 Ofi 
0 . 8 0 0 0 - 0 . 0 3 0 8 ± 0 . 0 2 3 3 - 0 . 0 2 2 5 丄 0 0 1 5 4 - 0 . 0 1 8 1 土 0 . 0 1 3 5 - 0 . 0 1 7 7 士 0 0 M 0 - 0 . 0 1 5 5 士 0 . 0 0 9 7 - 0 . 0 1 4 8 ± 0 0 1 2 1 
0 . 9 0 0 0 - 0 . 0 3 7 7 ± 0 . 0 2 9 0 - 0 . 0 2 4 3 4 0 . 0 2 1 4 - 0 . 0 2 1 0 土 0 . 0 1 8 1 1 - 0 . 0 1 C 7 f 0 . 0 1 2 3 - 0 0 1 9 7 ir 0 0 1 3 5 - 0 0 1 4 0 i 0 0 1 2 1 
0 . 1 ODO - 0 . 0 0 4 6 ± 0 . 0 2 6 8 0 . 0 0 0 7 上 0 . 0 2 0 0 0 . 0 0 1 2 ± O . O I S O - 0 . 0 0 2 2 ± 0 . 0 1 2 8 - 0 . 0 0 3 1 ± 0 0 1 2 2 O.OOOC 士 0 . 0 1 2 G 
0 , 2 0 0 0 - 0 . 0 1 8 4 i： 0 . 0 2 8 9 - 0 . 0 1 4 ! ) ± 0 . 0 2 2 0 - 0 . 0 1 1 9 士 0 . 0 1 6 5 - 0 . 0 1 0 2 ± 0 0 1 4 3 - 0 . 0 0 0 2 上 O . C H 5 : i - O . O O a i 上 0 0 1 6 5 
0 . 3 0 0 0 - 0 . 0 2 3 0 士 0 . 02 ( 55 - 0 . 0 2 1 8 土 0 . 0 2 1 6 - 0 . 0 2 0 9 土 0 . 0 1 6 8 - 0 . 0 1 6 0 士 0 . 0 1 7 1 ) - 0 . 0 1 5 8 士 0 0 1 3 4 - 0 . 0 1 6 4 士 0 - 0 1 3 9 

0 . 4 0 0 0 - 0 . 0 3 5 8 士 0 . 0 2 7 5 - 0 . 0 3 1 3 ± 0 0 1 8 3 - 0 0 2 4 3 土 0 0 1 8 8 - 0 . 0 2 0 1 士 0 . 0 1 8 0 - 0 . 0 2 0 6 + 0 . 0 1 6 6 - 0 . 0 1 9 0 士 0 . 0 1 4 8 

f B m 0 . 5 0 0 0 - 0 . 0 3 8 7 上 0 . 0 2 0 1 - 0 . 0 3 1 1 士 0 0 2 2 2 - 0 . 0 2 6 C 士 0 . 0 1 9 1 - 0 . 0 2 5 3 土 0 . 0 1 8 9 - 0 . 0 2 4 0 上 0 0 1 7 0 - 0 . 0 2 4 7 上 0 0 1 5 6 
0 . C 0 0 0 - 0 . 0 4 4 5 士 0 . 0 3 1 8 - 0 . 0 3 6 0 ± 0 . 0 2 3 6 - 0 . 0 2 « 8 ± 0 . 0 2 0 8 - 0 0 2 5 7 士 O . O M ' i - 0 . 0 2 8 8 + 0 O l S t t - 0 0 2 2 2 士 0 . 0 1 G 1 
0 . 7 0 0 0 - 0 . 0 5 0 C i 0 . 0 2 7 0 - 0 . 0 4 M ) 十 0 0 2 4 7 - 0 . 0 3 4 5 J 0 . 0 2 1 9 - 0 . 0 3 4 7 A 0 . 0 1 7 6 - 0 . 0 3 0 8 * 0 . 0 1 6 4 - 0 . 0 2 8 2 JL 0 . 0 1 5 8 
0 . 8 0 0 0 - 0 . 0 5 9 6 土 0 . 0 2 8 4 • < ) . 0 4 : i « ± ( ) . 0 1 H 2 - 0 . O 3 G 1 ± 0 . 0 1 3 4 - 0 . 0 3 3 7 土 0 - 0 1 5 5 - 0 0 3 8 0 丄 0 . 0 1 5 4 - 0 . 0 3 1 5 土 O . O l f l l 
0 . 9 0 0 0 - 0 . 0 G H 9 t 0 . 0 3 3 S - 0 . 0 4 9 0 土 0 . 0 1 8 9 - 0 0 4 2 8 上 0 0 1 6 2 - 0 . 0 3 9 1 十 0 0 1 2 8 - O O X i H ± 0 0 1 1 6 - 0 . 0 3 5 9 ± U . Q 1 5 5 

strong f luctuat ion at large s. Such advantage is demonstrated and quanti tat ively 

measured in the real-life problem to be discussed in the next chapter. 

i| • “ 1 ^ 6 .饭'ccj、， ‘ 1 
0 9 。/ Oĉ、 0 9 6 / 〜. 
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。.7. “ A 。r A ’ 
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F i g u r e 4 .3 : Results of M F - T W D F A and MF-DFA using binomial multifractal series with 
length 1012 and a ranging from 0.7 (upper left-hand panel) to 0.85 (lower right-hand panel). 
The solid line is the theoretical line derived from Eq. (4.12) and is presented here as benchmark. 
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F i g u r e 4.4： Results of M F - T W D F A aud MF-DFA using fGn (upper panel) fBrn (bottom panel) with length 2000 and Hurst exponent H = O.S . 
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A n a l y t i c a l C a l c u l a t i o n 

To givR a solid basis of the validation of our proposed modification, tho arialyt-

‘ ical calculation is given in this subsection. The relation between fi(2) obtaiiiocl by 

M F - T W D F A arid Hurst exponent of fGns, H , iy derived in this subsection using 

the basic ideaii in Arianos and Carbone (2007); Movahed and Ilennariis (2008); 

Movalied ct al. (2006); Taqqu et al. (1995). We show that the exponent h{2) of 

the power-law F'^{s)�6力⑵ equals H of the analyzed fGns (e.g. the example 

(y = 2 of the Eq. (3.39)). I t is shown that /^^(.s) behaves as: 

F'is)=去 I：厂 
V—1 

〜 C V " , (4.13) 

where s) is dcfiiKxi as: 

(4.14) 
s t = l 

and Cu is a function of H、Y^ and K denote the value of Y in the segment 

and the estimated value in the M W i respectively. Then for q = 2, what we have 

to prove actually is: 

Ns\ 

^ v=\ j 
1 Ns ‘ s 

1 Ns B 

= 去 E D 口 咖 

={[Y{i)-Y{i)]% 

〜 C h s 气 (4.15) 

I t should be noted that for fGn Xk, the profile Y{i) is a fBm signal. 

In T W D F A , the f i t t ing function Y in MWz can be expressed as Y{i) = a{i) + 
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s 

b{i)i, here a{i) and b{i) can be calciilatcd from Eq. (4.G) as: 

" . 、 = - Y ! 二 二 M j E;二!^ is ”�]YU) + 1 ： 二 " 购 】 

⑴ — T!二。叫 Y ! 二 — ( E ; : X ， ” ) 2 ‘ 

= E 二 旧 二 is 购 外 ) - 州 灼 ) 

a ⑴ — , ⑴ , 丄 ; - ( E ; : X ， ” ) 2 
(4.16) 

To simplify the problem, we set = 1 and = O) 二 0. Then T W D F A changes 

to MWDFA. We believe the scaling behavior of the fluctuation function log(F^(.s)) 

verse log(.s) should be mainly maintained since the scale s bring more influence to 

the regressiou than the weight w^j (Lloyd, 2007). Therefore, for example, a{Os + l) 

and b{6s + 1) in MW(6^5 + 1) is equal to the normal regression parameters in this 

local window and can be expressed as (Movahed and Hermanis, 2008; Movahed 

et a l , 2006; Taqqii ct al., 1995): 

_ - E - y ^ J g i n 力 + {2es +1)z二+1 jY(j) 

E f = r y{3)3 - 脾 + 1 ) E 二+1 n ? ) Y^r 3 
� {20s + If 112 ‘ 

⑴ 1、— x:】 ! r 1 y ( i ) - E 二广 1 ] E - y ^ 們 . 7 ) 

) 二 ( 2 � s + i ) E r = r � 2 — ( E r = ? � ) 2 ‘ 

208 + 1 乙 … 2 . ^ 
J=1 

“ / 
Using the above two equations and taking the self-similarity of fGn and fBm 

into consideration, ([7(2) — y{z)]'^> can be writ ten as follows: 

([Y{i) - = {[Y(es + i)-Y{es^\)f) 

= + 1) — a{ds + 1) — b{es + 1) • {Os + l)f) 

释+1)+ 〜二 

68 



I、乙 、 “ , 、 L _1 - \ (4 18) 
+ {20 s -I- 1) 4 ( ) 

III the proof of the relation between the DFA scaling exponent and H in 

Movahed and Hermanis (2008) and Taqqu et al. (1995), they assume that s is 

large enough. Thus, we make the same assumption in our proof also. I t is then 

easy to see Vx > 0’ {C\Os + C2Y 〜Cfs工.Employing this relation and inserting 

the expression of b into Eq. (4.18), it becoines: 

〈 [ Y ⑴ - f ( ' O P 〉 ^ 昨s 十 1)〉 

(16 O ŝ̂  ) 
/ loio , 1 0 2 \ 2<?.s+l 20.s+1 

+〈(( 二 . r ) ) E E n m 

J=1 、 

, ‘ ( ― + + 24Y{0., + ) 
十〈 1 6 ^ ^ ⑴） 

( - 1 2 沪 + 沪.s” , 

= { V i e s +1)) 

I 10/1 . in/)2 2、 2权计 1 20S+1 

_7 = 1 j=l 

• , — 〈 巧 + 

j = i 

(-16^(^5 + 1 ) 沪 + 24Y{0s + 
+ ( 1 6 ^ ^ ⑴） 

+ (一 (4.19) 

I t should be noted that ^(2) is the fBm produced by the fGn. Then there arc 

« � 
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some properties as follows Movahed and Hennanis (2008); Taqqu ct, al. (1995): 

Y(i) ^ (4.20) 

( V r ^ W ) ^ ( 2如+ 1 严 ( 4 . 2 1 ) 
� L �”7 2H + 1 2H - 1 - 1 ‘ ^ ^ 

� — ( ‘ 2 时 L — —) f49‘)） 

— 4 ( / / + l ) k ( H + 2 ) ( 2 / - / + i y ’ 、.一 J 

二 i f ^ ^ l i—— ^ _ _ ) ’ (4.23) 
4 1/ / + 1 2 / /十 i h ^ } 

�(if叩))2�^ 
户1 

Then with the assumption s is large enough, wo can obtain: 

{[Y{i) - Y(i)]')〜Cum饥〜Cus州、 (4.27) 

here C j i is: 
n2II 9// + 1 

Cj i = - = + 1. (4.28) 
� 211 4- 2 / / + 1 

Then the validation of the M F - T W D F A has been tested above t.hnjugli the 

numerical experiments and analytical calculation. 

4.1.2 Influence of Periodic Trend 

‘ The negative iiiflu\jiic(； of tho periodic tircnd on the scaling behavior in DFA 

has boon mentioned in the chapter 3. The cfrcct of periodic trend can be shown 

in the following example. A stationary scries wi th Hurst exponent / / 二 0.9 wi th 

m 
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length 3123, is constructed by applying the Fourier l i l icr ing method (1(况:ril)e(l in 

Makse et al. (1996). This sorics and its scaling behavior are shown in Fig. 4.5. 

After superimposing a quasi-periodic trend, a typical scaling hehavioi of DFA 

under the influoiicc of this kind of trend as indicated by Hu et al. (21101) and the 

superimposed series could be found in Fif^. 4.G. 

Since only the polynomial tnir id is considered in the clctreiuling step in DFA, 

t;hf! infiiicnco of porioclic trend cannot, be cliniinatod totally. Thon sonu; prv.-

detrending processing scoins to be necessary before DFA. There ar« some methods 

proposed to handle tl ie periodic trend, such as higher order regression analysis, 

Fourior-bfkscd filtering (Nagarajaii and Kavrusscii, 2004), SVD (Nagarajaii and 

Kavassori, 2005) and the adaptive (letre.iidiiig methods (Hi i et, al., 2009). However, 

their disadvantages and the different results from them (for example difiereiice 

between Movahcd ot al. (2006) and Hu et al. (2009) using DFA on the same 

sun.si)()t series) triggered us to adopt another angle to get to the hottoi i i of this 

problem. 

Ill Hu ct al. (2009), empirical mode decomposition (EMD) (Huang et al., 1998) 

is considered an inappropriate method to extract trends from sunspot, time series. 

Nevertheless, EMD is proposed to handle nonlinear and noii-stationary signals. 

E M D is a totally data-clriveri adaptive method without any a priori fLSSuinptions 

about the function forms, t ime scale, stationarity or linearity (Huang ct al., 1998; 

Wu et al., 2007). I t can cxtract many basic components, called intrinsic mode 

functions (IMFs), from the original signal to detail the structural information. 

I t looks like the Fourier decomposition or wavelet methods. However, the IMFs 

wi th different doininant frequencies arc wi th physical meanings that cannot be 

convcyed by the Fourier or wavelet methods (Ril l ing et a.l., 2003; Sinclair and 

Pegram, 2005). In fact, E M D has been eini)l«ye(l to study the cycle of sunspot 

time series af the monthly record from 1848〜1992 and 1894〜2003 respectively (L i 

et al., 2007: Xu ct a l , 2008). Compared wi th the conventional analysis, many 
<J> 

• periodic components wi th real physical irieaiiings can be found using EMD. I t 

is claimed in Li et al. (2007); Xu et al. (2008) that the IMFs can correspond to 
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Figure 4.5: The constructed series (upper panel) and its scaling behavior (bottom panel), tlu; 

marked slope 0.92 i.s the estimated Iliirst exponent. 
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some well-known cycles of solar activities, such as the cycle observed in solar wind 

wi th quasi-period of about 1.3—1.4 years (Richardson et al., 1994), qiifisi-biannual 

oscillation (QBO) about 25—30 months (Naujokat, 1986), 11-year cycle, Hale 

period of 20-24 years (Wilson, 1988), double Hale period (Fairbridge and Hillaire-

Marcel, 1&77) and possible) Gleissberg period of around 80 years (Glcisshwg, 

1944). 

* 111 order to coriiparo tlio pcrforimmros of difroront ])eri{)(lic-troiKl-iemoviiig 

mothods, wo firstly introduce thorn briofly, (especially the F'omior truncation and 

tiie adaptive detrendiiig methods which cause the contradictory results by Mova-

hed et al. (200()) and Hu et al. (2009), and the EMD-l)ased methods proposed by 

lis in following. 

Fou r ie r T r u n c a t i o n M e t h o d 

Generally, one scries can be treated as an combination of nuiny components 

il l the sinus and cosinus forms wi th different frcHjuericies. Fourier transform can 

decompose the given series to these components. Thase components can be em-

ployed to reconstruct the original series using inverse Fourier transform. If per-

form the Fourier transform on the series {-Tfcl^Li，then a scries wi th equal length 

can be obtained as: 

i 、 = ; f > a ; r i ) 。 - i ) . (4.29) 

i=k 

And can be employed to reconstruct the original series via the inverse 

Fo\iri«r traiisforrii as below: 

N 

工、 -二“ / " ) ^ ^ - ”…— " (4.30) 

Here un — is an Nth root of unity. For cadi j, Xj corresponds certain 

component wi th certain frequency. The larger j corresponds the higher frequency. 

Then if eliminate Xj, e.g. set Xj — 0, the information of this component wi l l be , 

» V 
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removed in the rccoiistnictod series. Movahed et al. (200G) removed the first 50 

terms of the Fourier transforms of sunspots series. Tha t means all t l ie frequencies 

smaller than the one corresponding to i^o was eliminated. Then Movahed et al. 

(2006) found the crossover points existing in the scaling behavior of the original 

sunspots series (iLsappeaml in the log — log plot of the detrended series. And they 

‘ d a i i i i c d the affect of the around 11-year cycle of sunspots s(u i(\s wiis removed. 

A d a p t i v e D e t r e n d i n g M e t h o d 

In 2009, Hu ct al. proposed this data-clriven method to estimate the local 

t rend of given series. And then apply it on removing the around 11-year cycle 

from the sunspots series to obtain the scaling plot w i thout the infiiienco of this 

cycle. Brief description of the adaptive detreiuling method can be given £U5.(Hu 

et al., 2009): 

• Step 1: Divide ink) segments of length 2n + 1. The coiiti iuious 

segments share n + 1 common points. The last segments might consist of 

points less than 2n + 1. 

• Step 2: Then for the j t h vscguiciit, a f i t t ing polynomial of order K can be 

obtained and denoted as w i th I = 1’ 2’ • •.，2n + 1. 

• Step 3: Now, the trend for the ovcrlappoci region can be defined as: 

i f = (1 - + ^ 丄 i … ) ’ / 二 1’ 2’ … ’ n + 1. (4.31) 

Here, overlapped segments and temporal dependence of the neighboring points are 

considered to avoid any jumps or discontinuities around the ends of iieiglihoririg 

segments. In addit ion, two parameters, the segment length, 2 n + 1, and the order 

of fitting polynomial, A', should be consider to estimate the local trend. As Hi i 

‘ et al. (2009) claimed, the length of segment can bo set according to the scale 

of considered trend. And K can be dctennined by the variance plot (detailed 

’ in jprmat io i i can l^ej^cferred to fhe Fig. 2 in Hu et al. (2009)). 
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E m p i r i c a l M o d e D e c o m p o s i t i o n ( E M D ) - B a s e d M e t h o d • 

E M D is an empirical, intuit ive’ data-driven and adaptive i i iet l iod that makes 

no requirements on predetermined bcU>is function and stat ionari ty or l inearity 

assumption about t ime series (Huang et al., 1998; Wu et al., 2007). The concept 

of I M F plays a key role in E M D analysis. An I M F is a fmict io i i satisfying: 1) 

the diffcroiice between the iiuiiibor of oxt ioma aiici that of zcio-crossings is one 

at most, and 2) the mean value of the envelope of cither the local maxima or 

local min ima is zero (Wu ct al., 2007). Given an original t ime scries/signal, 

X — {x-( t)} , the method of E M D can be summarized as follows (Huang et al., 

1998; Wu et al., 2007): 。 

• Step 1: Identi fy all local extrema and coiiiKict all local i i iaxi ina and ir i i i i i i i ia 

w i th cubic spline to obtain the upper and lower envelope, ENV,„ax and 

ENV,„i,i, respectively; 

• Step 2\ Calculate the average envelope M using M = (ENV,n(u :+ENV„“ „ ) /2 

and obtain h through h = X — M ; 

• Step 3: Determine whether or not h is a I M F . If i t is not a IMF , repeat step 

1 arid vStcp 2 on h unt i l the envelops have zero-mean under ccrtain stopping 

criteria, which is the name sift ing process by Huang ct al. (1998). I f fi is a 

I M F , take h as the first r.oinj)oiicnt, IMFi； 

• Step 4'- Perform step 1 and step 2 on X — I M F ] to extract the second 

component IMF2. Repeat the procedure unt i l all k IMFs are extracted 

from the original series X . 

Based on the algor i thm above, wc have X = ^Z j^ i I M F ^ + r , where r is the residual 

f rom which no more IMFs can be extracted. In the present study, the stopping 

cri ter ia of the si f t ing process proposqd by Ri l l ing et al. (2003) is employed to 

guarantee globally small fluctuations in the mean while tak ing into account locally 

large excursions. The E M D implemented in this thesis employed the Mat lab 

codes wr i t ten by G. Ri l l ing and P. Flandr in from Laboratoire de Physique CNRS 

ENS Lyon (France): ht tp: / /pcrso.cns- lyon.f i7patr ick. f landrin/emd.html. 
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These extracted IMFs are usually physical meaningful. Then i t enable us to 

consider the influence of these components and their combinations on the scaling 

behavior of analyzed series. Then, the procodiirc of EMD-ha.sod method can be 

summarized as follows (Zhou ami Leung, 2010a): 

• Step 1: Employ E M D to decompose the aiialyzoci serios to IMFs and r , w i th 

increased ( ioi i i i i iai i t frcqucncics which can be estimated by Fourier power 

spectrum; 

• Step 2: Select the coirespoiiding components according to the frequencies 
i 

of periodic trends and requirements of discussion, like studying the effcct 

of different coii ipoiicnts on the scaling behavior; 

• Step 3: Remove the selected components and sum the others remained to 

obta in the cletreiided series. . 

N u m e r i c a l E x p e r i m e n t s 
* 

To test the rel iabi l i ty of our proposed methods, two wcll-coi i trol led numerical 

experiments w i th some known properties are designed to check and compare the 

EMD-based method, Fourier t runcat ion, and the adaptive detrending method. 

By comparing the outputs of these three methods w i t h the expectcd results, their 

performances can be quant i tat ively evaluated. We first construct a stat ionary 

series w i th known Hurst exponent w i thout crossover points in its scaling behavior. 

Different trends arc t l ion siipcriniposcd onto this series. These three (letrendii ig 

methods arc subsequently performed in ordcir to remove the offccts of these trends. 

By studying the scaling behavior of the detreiided series, we can evaluate the 

capabil i t ies of the methods by evaluating their differences w i t h the expccted Hurst 

exponent. 

The first experiment is the example shown in Figs. 4.5 and 4.G. The superim-

posed periodic t rend is actually the cyclc extracted by E M D which corresponds 

to the 11-ycar cycle, f rom suiispots series. We then employ Fourier t runcat ion, 

adaptive detrending method and EMD-based methods w i t h settings determined 
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by the added periodic t rend, e.g. removing the first 70 and 18th〜70th terms 

of Fourier transforms coefficients, sett ing length of segments, 2n + 1, and choos-

ing order of detrending polynomial , K, as 2n + 1 = 61 and K — 2 respectively 

H u et al. (2009), and sett ing the removed IMFs as the 5th and 6 th ones. The 

visual izat ion of E M D results, and the scaling behavior of the series after remov-

ing ^ I ^ L s I M F i and I M F i + r are shown in Fig. 4.7. The results of Fourier 

. t r u n c a t i o n and adaptive detrending method are shown in Fig. 4.8. 

Th is numerical experiment shows tha t none of the three methods can to ta l ly 

remove the effect of the added trends. Besides, a crossover po int appears at 

the posit ion similar to the sunspots series. A l l slopes estimated for the first 

scaling range are around 0.92，which is the expected value. The fluctuations 

、 of the series by removing the first 70 Fourier t ransform coefficients and by the 

adaptive detrending method on the larger scales remain almost unchanged, which 

means the in format ion of scales larger than the crossover points is lost in the 

detrending procedure. However, the exponents obtained f rom the EMD-based 
* 

4 

‘ method and Fourier t runcat ion in the other sett ing are 0.94 (Fig. 4.7) and 1.08 

‘ (Fig. 4.8) respectively, which are roughly close to the expected value, 0.92. I t can 

广 be observed tha t considerable, al though not all, in format ion on the larger scales 

are maintained after detrending by these two methods. 

I n the first numerical experiment, the cycle of the superimposed periodic t rend 
-w » 

is not very exaht. I n the second numerical experiment, a periodic t rend w i t h exact 
/ 

'cycle equall ing 500 (f irst row of plots in the upper panel of Fig. 4.9) is superim-

posed onto the constructed series. Results obtained by the similar experimental 

procedure are depicted in Fig. 4.9. I t shows the E M D results and the comparison ‘ 

between the scaling behaviors of the original and detrended series. And , Fig. 4.10 

depicts the results of Fourier t runcat ion and the adaptive detrending methods. 

* Again, al l three detrending methods are unable to completely remove the effect 

of the added periodic t rend since there are the crossover points in al l results. A n d 
• ‘ . . 
the scaling behavior on scales larger than the crossover points are different f rom 

« • 
the expected pat tern. We conjecture tha t the or ig inal structure of the series on 

» 
V 

« 
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Empirical Mode Decomposition 
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Figure 4.7： The EMD results of the superimposed series (upper panel) and the scaling be-
havior from removing IMFi and X)f=5 IMFi + r, e.g. (bottom panel). 
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Empirical Mode Decomposition 
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relative large scales might be destroyed dur ing the detrending procedure. W i t h 

the appropriately selected parameters, however, the three methods can obtain the 

results close to the expected value, 0.92, for the relatively small scaling range. 

Thus, selection of the relevant parameters becomes significant. For EMD-based 

methods, we only choose the components w i t h relevant frequencies mostly f rom 

11 ~ 13 IMFs. However, for Fourier t runcat ion method, we have to face large 

• amoiint of, the Fourier cocfficicnts. In this numerical oxperiiriciit, the dominant 

frequency of the added trend should be 1/500 m o n t h " \ which corresponds to the 

6th and 7th coefficients because 3123 /500。6.4 . However, after removing the 

6 〜 3 5 t h or 1 〜 3 5 t h coefficients, the Fourier i i ic t l iod can result in the correct 

scaling exponent. W i t h regards to the adaptive detrending method, Hu et al. 

(2009) gave their rules to select the parameters, n and K . In this experiment, n 

‘ can be obtained by 2n + 1 = 2 5 1 depending on the cycle of the trend. According 

to the variance method suggested in H u et al. (2009), K should be selected as 2 

(Fig. 4.11). However, i t can be seen in the r ight panel of Fig. 4.10 that the result, 

1.19，when K = 2 is significantly different f rom 0.92. Whi le the exponent 0.94, 

which is closer to 0.92, is obtained when K = 6. 

As a summary of these two numerical experiments, the three detrending meth-

ods appear to be effective in detrending the effect of periodic trends on the rel-

atively small scales for the further analysis of MF-DFA if the parameters are 

appropriately selected. For larger scaling range, however, i t is diff icult to remove 

the cffect of periodic trends completely. The pseiuio-crossovcr-poiiits might ap-

pear because of the possible changes of the scaling structure in large scaling range 

dur ing the detrending process. Generally, the IMFs do have meaning, physically. 

Thus the crossover points unraveled by the EMD-based method are usually in-

tr insic to the structure of a series. However, the crossover points obtained by 

Fourier t runcat ion and the adaptive detrending method are generally artifacts 

of the selected parameters, such as frequencies to be removed and the length of 

segment for detrending. A l though w i th appropriate parameters, these two meth-

ods can obtain results similar to that of the EMD-based method, i t seems that 
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F i g u r e 4 .11: Selection of K by the variance method in Hu et al. (2009) 

the EMD-based method is a more natural way for the study of intrinsic scaling 

behaviors. Furthermore, its parameters selection procedure is much easier. W i t h 

regard to the situation on scales larger than t l ie crossover points, the adaptive 

detrending method almost wipe out all information, while the EMD-based and 
f 

the Fourier methods manage to keep considerable information even though the 

results are a bi t off the expected pattern. I t should be noted that by comparing 

Fig. 4.7, Fig. 4.9 w i th Fig. 4.8, Fig. 4.10, the EMD-based method leads to results, 

including the slopes and crossover points, similar to that of the Fourier method. 

However, the results obtained by the adaptive detrending method, though sti l l 

.acceptable, differ rather significantly from that of the other two methods. 
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4.2 Correction of Problematic Relationships in 

MF-DFA 
I 

(i) In the development of the one-dimeiisioiial MF-DFA, Kantelhardt et al. 

, (2002) established a relationship, which has been extensively applied ever since, 

between the one-dimensional M F - D F A and the standard partitiQn-furictioii-ba.sed 

mul t i f racta l formalism as: T{q) = (ih{q) — 1. However, its incorrectness ha-s been 

shown in our investigation from theoretical and experimental a.spccts in chaptcr 3. 

Based on the universal mul t i f racta l formalism proposed and developed by Lavallec 

et al. (1993); Lovejoy et al. (2008); Schertzcr and Lovejoy (1987), the relationship 

between h{q) and r (g ) can he established as h{q) = qh{q) - qH' 一 1，which wa.s 

f i rst ly suggested by Yu et al. (2009) w i thout detailed analysis in their study of 

the dai ly rainfall in the Pearl River basin of China. We would like tx) discuss this 

relationship in detai l i aJh is section. 

(i i) Extending on the one-dimensional M F - D F A ’ Gu and Zhou (2006) gave 

two relationships: h(q) = H for f B m in the two-dimensional space and h{q = 

2) = / / , in their development of the two-dimensional MF-DFA. The inval idation 

of their relationships has also been pointed out in chapter 3. Instead, we pro-

pose a postulated relationship as follows: H = h{2) for the 2D fGn, and h{2)-

2 for the 2D fBrn. in this section. 

4.2.1 Problematic Relationship Between h{q) and r � in 

MF-DFA 

In this subsection, we focus on the stationary, positive, and normalized t ime 

series in our discussion. I n the universal mul t i f racta l formalism, there are three 

parameters a , C i and / / ' , called the mul t i f racta l index, the codimcnsion and 

the iionconservation parameter respectively (Lovejoy et al., 2008). Comparing 

the codimension mul t i f racta l formal ism based on K{q) and c(7) (Schertzer and 

Lovejoy, 1987) w i t h the dimension mul t i f racta l framework based on r (g ) and f { a ) 

(Halsey et al., 1986), we can observe tha t some relationships have already been 
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established, part icular ly 

. r{q) == {q - l)D - K{q), (4.32) 

y 
where D is the diriieiisiori of the observing space (for t ime series, D = I) (Halscy 

ct al., 1986; Lovejoy et al., 2008). Besides, there is an interesting relationship for 

(7 > 0 in Seurorit et al. (1999): 

c � = 沖 ' - 為 ( r 广 _ 
Or —丄 

wi th 

= (4.34) 

‘ and C(ry) is the exponent obtained from the structure function Sg{s)三< -

iTfcl"̂ 〉〜<s《(" (see Davis et al. (1994) for more details about the structure function 

and C{q)). According to Koscielny-Buiide et al. (2006)’ 

� 

^ • C ⑷ = 她 ) 1 ， (4-35) 

• -

and then 

qh{q) = q + ( � = ( H ' + l)q — K{q). (4.36) 

I t should be noted tha t i f ^ = 1, then according to Eq.(4.34) K{q = 1 )三 0, 

Eq.(4.36) becomes ‘ 

•Vi( l ) = / / ' + ! . (4.37) 

Combining Eq.(4.32) and Eq.{4.36), we can obtain for (/ > 0 (Zhou et al., 2011) 
> 

. T{q) = qh{q) - qH' - 1. (4 .38) 

Thus, the original relationship in Eq.(3.44), t ⑷ = q h { q ) 一 1，differs from the one 

wc derived in Eq.(4.38) by -qH'. 

On one hand, i f the two equations are compared using the vert ical ly shifted 
* 
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fGn, which were employed to check the or iginal relationship Rq.(3.44), w i th 

Eq.(3.45) we can then find for q = 0, bo th Eq.(3.44) and Eq.(4.38) lead to . 

r ( 0 ) 二 一1 so tha t D(0) = ^ = f j =： 1. Since experimental examples are 

• rnoiiofractal, D(ry) = constant and h(q) = H {PI is the Hurst exponent of the 

, v e r t i c a l l y shifted fGi i here, which could be any value of 0.1，0.2, . . 0.9) so tha t 

D{q) = D(0) = 1 and r{q) = D{q){(i 一 1) == g — 1. However, the right hand 

side of Eq.(3.44), qfi{q) - 1, equals qll - 1. Thus, Eq.(3.44) is valid only for 

H = I. Based on Eq.(4.37), wo obta in H' = H - I. Then we can calculate the 

r ight hand side of Eq.(4.38), qh{q) - qJV - 1’ and i t indeed equals T(q) since 

qH - q(H - \) - I = qH - qH q - \ = q - I. Thus Eq.(4.38) should he the 

correct relationship for the vert ical ly shifted fGi i . 

On the other hand, we investigate the two equations using the binomial cas-

cade model. Lovejoy et al. (2008) described the nonconservation parameter H' a.s 

H' = 0 meaning that the set can be modeled as a pure mult ip l icat ive process, i.e. 

the set can be conserved f rom scale to scale. According to Lavallce ct al. (1993), 

the mult ip l icat ive processes were first developed as models of turbulent cascades. 

A n example of such mult ip l icat ive process in two dimensional space is depicted 

in Figure 8.6 in Lavallee et al. (1993) which is actual ly a cascaxic model in two 

dimensional space. Therefore, the b inomial cascade model is just the one which 

satisfies the / / ‘ 〒 0 condit ion. Actual ly, the equation (19) arid (20) in Kantc l -

hardt et al. (2002) ensure / i ( l ) = l/q - ln[a9 + (1 - a)'^]/{cj ln(2))|q=i = 1—0 = 1’ 

which indicates H' = / i ( l ) - 1 = 0. Under this si tuat ion, Eq.(3.44) and Eq.(4.38) 

become identical. 

Though our proposed relationship in Eq.(4.38) is established on the basis of 

non-negative q, the analysis aud conclusion of the two examples above are actually 

independent of the sign of q. T h a t means the new relationship is also val id for 

negative q i n terms of the above two examples. Thus we th ink the generalized 

relationship in Eq.(4.38) should be valid for all q. We would like to discuss this 

problem f rom the empirical points of view. 

Take the vert ical ly shifted fGn w i t h Hurst exponent Ho, which could be any 
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value of 0.1, 0.2, •. •’ 0.9，as an example, i t is known tha t t l ie vert ical ly shif ted 

fGn is monofractal (Mandelbrot , 1982). Then its generalized fractal dimension 

. .D[q) = D = 1 and h(q) = Hq. As given by Hals(3y et al. (1986), T{q)= 

D{q) . (r/ - 1) = gr - 1. However, qh(Q) _ 1 = (!H��- 1. Then Eq.(3.44) docs 
w 

not hold unless Ha = 1. Therefore, the val id i ty of the relationship Eq.(3.44) is 

questionable. Empir ical ly, r ( g ) should be 0 for g 二 1 to ensure D ( l ) , which comcs 

’ f rom D(l) = r(q)/{q - finite. Therefore, there should bo one addit ional 

te rm, A{q), in Eq.(3.44) to ensure t ( 1 ) = 0. I t is easy to obta in = / i ( l ) 一 1 

• , for (/ 二 1 i f set r ( l ) = h{l)-A{l)-l - 0. Then we can further derive the formula 

of A{q) f rom the special s i tuat ion, the fGn, as mentioned above. I t is already 

known tha t T{q) = q - l . Then if qHo - A{q) - 1 is expected to be equal to 1, 

i t can be obtained tha t A{q) = q - {Hq - 1). Tak ing into account tha t h{q) = Ho 

for fGn and A{1) = h�—1’ the new relat ionship can be established empir ical ly 

. as T{q) = qh[q)-q-{h{l)-l)-l = qh{q) - qH' — 1. Therefore, i t Is reasonable to 

say tha t the original relat ionship, Eq.(3.44) proposed in Kante lhardt et al. (2002), 

only holds for the special s i tuat ion, H' = 0 or h{l) = 1, of the general relationship 

in Eq.(4.38). And Lovcjoy et al. (2008) pointed out tha t there is always the case 

in geophysical phenomena and turbulence tha t the observable have H' 一 0, like 

H' > I for temperature and pressure in the verticals and H' « - 0 . 3 5 for ra in 

rate in t ime on ' (c l imate) scales larger than one month (Tcssier et al., 1996). 

Ill addi t ion, the numerical examples are employed again to check the new - • 

r 

relat ionship wc just obtained as Eq.(4.38). The i l lustrat ive figures of T(q) versus 

qh{q)-qH' arc shown in Fig.4.12. The linear f i ts of act iml curve conform w i th the 

expectcd relationship T(q) — qh(q) - qH' - 1 very well. The slopes and intercepts 
•i 

of the linear (its in Table 4.2 arc very close to the 1 and -1 respectively which 

solidly support our new relat ionship. 
Since H' seems to be simi lar to the Hurst exponent, H, i ts meaning needs 

• 

to be discussed here. W h a t should be emphasized here is t ha t al though for 

some cases, H' and H are numerical ly equal, these two exponents haWdi f fe rent . 

physical meanings. I t is already known tha t <(2) = 1 3 - 1 Davis et al. (1994). 
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Figure 4 .12： Relationships between h{q) and T(</) for numerical examples with 11=0.1 to 0.9 
. . ( f r o m top left to bottom right). “ • 

T a b l e 4 . 2 : C a l c u l a t e d r ight s ide o f the new re la t i onsh ip E q . ( 4 . 3 8 ) for riuiricrical e x a m p l e s 
w i t h diffRrent II values in Fig . 4 .12 

• H cocfficiont of qkjq) - qH' intercepts of linear fits 
T a 1.0114 -0.9526 

0.2 1.0126 -0.9562 
0.3 1.0134 -0.9612 
0.4 1.0129 -0.9626 
0.5 1.0156 • -0.9727 
0.6 1.0157 -0.9743 ‘ 
0.7 1.0166 -0.9737 
0.8 1.0172 -0.9785 
0.9 1.0203 -1.0032 

� 
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For monofracta l example, such as fBm, there is r{q) — D • {q — 1) and h(q)三 H� 

then f rom Eq.(4.32), we can obtain K(q) = 0. Thus according to Eq.(4.33) and 

Eq.(4.38), there is C(<?) = qH'. Specifically, for = 2, we have 2H' = ft-l. Then « • 

H ' = ^ ^ which is t l ic Hurst exponent f rom another def ini t ion in Flandr i r i (1992); 

Mandelbro t (1982), H�. However, for the mul t i f rac ta l examples, K{q) = D • (q — 

l ) - T { q ) should not always equal zero. Then H' should be ^ + ^ = + 

For the ca.se K{q) ^ 0, H' is different f rom H numerically. Actual ly , H' is the 

‘ noncoiiservatioi i parameter in the universal mul t i f rac ta l formal ism, and H' = 0 

means that the set can be modeled as a pure mul t ip l icat ive process, i.e. the set 

can be conserved f rom scale to scale. Wh i l e H is the Hurst exponent which can 

be employed to measure long-range correlat ion of series, and H = 0 indicates the 

s t rong long-range anti-correlat ion. I t is not uncommon to see they have different 

values. Take the binomial mul t i f racta l model as an example, H' = 0 -an mentioned 

above. However, H = h{2) = 1 / 2 - + (1 - In 2) according to Eq. (20) 

in Kante lhard t et al. (2002). Then i t obviously is not equal to 0. 

Based on this new relat ionship (Eq.(4.38)), instead of Eq.(3.48), we can further 

ob ta in the singular spectrum, a and / ( a ) ’ as follows: 

� ^ = = h{q) + q^h(q) — H\ (4.39) 

/ ( a ) = qa- 7 • ⑷ = q { a 一 h{q) + H') + 1. (4.40) • 

Therefore, H' should be estimated before wc calculate the mul t i f rac ta l spectrum . 

* using h[q) of the M F - D F A . 

i 

4.2.2 Problematic Relationship Between H and h{q) in the , 

2D MF-DFA 
» 

, I n chapter 3，the problem in the relat ionship between H and h{q) in the 

two-dimensional M F - D F A has been shown. I t has been recognized that the 2D 

R / S analysis should st i l l be inappropr iate for 2D non-stat ionary process. A n d 

the Eq.(3.57) for the two-dimensional f B m and Eq.(3.58) given by G u and Zhou 
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(2006) is also problemat ic. 

Actua l ly , some relat ionship could be read f rom Table 3.3. Look ing carcful ly 

in to Table 3.3, i t could be found tha t except for the s i tua t ion H = 0.1 for the 2D 

fBm, the empir ical results appear to suggest the fo l lowing relat ionship between 

‘ H and / i (2): 、 

{
/ i (2),- for the 2D fGn; 

(4.41) 
h(2) — 2， f o r the 2D fBm. 

Accord ing to Movahed and Herrnaii is (2008), I D D F A gives inaccurate results, 

for s t rongly ant i -corrc lated t ime series when H is close to zero. Thus the result 

obta ined for H = 0.1 for 2D f B m may be due to the weakness of the method in 

cap tu r ing st rong ant i -correlat ion of signals. Besides, 2D fGns arid fBms are the 

most common classical s tat ionary and non-stat ionary examples respectively. I n 

summary, for the 2D s i tuat ion, we postu late tha t the relat ionship between the 

Hurs t exponent H and h{q — 2) should be as follows: 
h(2), for the 2D s ta t ionary signal; 

H = I ^ ^ ‘ . ^ (4.42) 
h{2) — 2， f o r the 2D non-stat ionary signal. 

Such relat ionship is actual ly in synchrony w i t h t ha t of the I D s i tua t ion (Movahed 

et al., 2006) (see Eq.(3.21)). Th is reinforce our belief in the va l id i ty of the above 

conjecture. Th is , however, has to be veri f ied by fur ther theoret ical investigation. 

4.3 Summary 

111 th is chapter, we present the results of the methodological issues. Against 

the ment ioned two disadvantages of D F A and M F - D F A , corresponding modif ica-
I 

‘ t ions have been proposed. For the st rong osci l lat ions of scaling law, the moving 

w indow techniques and the idea of G W R are empjoyed to develop the T W D F A 

and M F - T W D F A . They have been tested by the numer ical experiments. Fur-

thermore, to give a sol id basis of the developed modif icat ions, the analyt ical 

calculat ions have been presented too. The negative influence of the periodic and 
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quasi-periodic trends on the scaling behavior of DFA and M F - D F A are overcome 

by in t roducing the E M D . A EMD-based method is suggested to estimate and 

remove the periodic t rend before DFA and M F - D F A . I ts good performance, es-

pecially at the small scales, has been demonstrated by the numerical examples. 

‘ W i t h regard to the problematic relationships, the corrected relationships are sug-

gested on the basis of the formal study and empirical analysis. The results based 

on them closing to the expected confirm the correctness of our corrections. 

» , 
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Chapter 5 

Application to Real-life 

Geographical Examples 

As shown in the discussions in chapter 4, the modif ied DFA arid pre-detrending 

processing is indeed able to improve the performance of DFA and MF-DFA when 

handl ing the constructed numerical examples. In this chapter, they are applied 

in the real-life geographical examples to study the temperature variat ion and 

long-range correlation in sunspots series. Some discussion on and interpretation 

of the results are also presented. Through the applications in the geographical 

examples, the efficiency of the modified DFA and pre-detrending processing could 

be confirmed. 

5.1 Performance of Multifractal Temporally-Weighted 

Detrended Fluctuation Analysis (MF-TWDFA): 

Application in Air Temperature Study 

One of the most impor tant tasks in cl imatology is to understand the nature 

and l imi ts of cl imate var iabi l i ty (PeUetier, 1997; Tsonis et al., 1998, 1999). In 

general, the cl imate dynamic process is nonlinear (Tsonis et al., 1999). 

I n recent decades, especially the last ten years, nonlinear analysis of climate 
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data has attracted much interest in the academic community. Tsonis et al. (1999) 

investigated the extratropical atmospheric circulation from a unique insights of 

” random walk" on the basis of height anomalies. Peters et al. (2001) claimed that 

the rainfal l event is similar to a variety of nonequil ibri i im relaxation processes. Yi i 

et al. (2011) proposed a mult i f ractal framework to study the daily rainfall series 

by different mult i f ractal methods. As to the river streamflow or runfall, they have 

also analyzed them through different nonlinear techniques, such as mult i f ractal 

analysis (Kantelhardt et al., 2006; Koscielny-Bunde et a l , 2006; Pandey et a l , 

1998; Tassier et al., 1996) and the frequency distr ibut ion (Zhang and Singh, 2007). 

The technique of embedding t ime series to the phase space, power spectrum and 

the return map were employed by Tziperman et al. (1995) to examine the chaotic 

structure in the series from the El Nino-Southern Oscillation prediction model of 

Zebiak and Cane (1987). ‘ 

Temperature is one of the most common and important measures to signify 

the climate (Ashkenazy et al., 2008). Therefore, many researches focus on the 

temperature records. Ashkenazy et al. (2003) showed the noii l inearity of temper-

ature series for the t ime scales 1-100 kyr by the magnitudes correlation analysis 

of temperature increments, which was first proposed and applied to the analysis 

of human heartbeat series by Ashkenazy et al. (2001). The norilinearity of tem-

perature records was also pointed out by Bartos and Janosi (2006) and confirmed 

by Ashkenazy et al. (2008) through studying the asymmetry of temperature. An-

other hot topic is the determination of the trend in temperature record (Fatichi 

et al., 2009; Rybski et al., 2006,2008), which is closely related to global wanning. 

Since the complicated dynamics of climate are effective on a large variety of 

t ime scales (Weber and Talkner, 2001)，the study of the dynamics process on 

different scales is meaningful. The exact relationship between the scales involved 

can be studied by the scaling law (Tsonis et al., 1999). One of the most significant 

scaling behaviors on different scales is the scale invariance, which is a law that 

incorporates variabi l i ty and transitions over the whole scaling range and usually 

is a result of nonlinear dynamics (Tsonis et al., 1998). Long-range correlation 
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proposed by Hurst (1951), as one property of t ime series, can be determined 

by the scaling law. This correlation refers to the auto-correlation function which 

decays following a power law rather than exponentially (Rybski et al., 2006, 2008). 

The positive or negative long-range correlation means the current pattern would 

he more likely to be maintained or broken in the future. The Hurst exponent 

(H) is an important index for measuring long-range correlation of a series (Hurst, 

1951). An advantage of the MF-DFA is that i t can estimate H even if the t ime 

series is affccted by non-stationary trends. W i t h regard to temperature variation, 

short-time persistence of weather is well known in the l iterature (Eichner et al., 

2003; Orun and Kocak, 2009). The trend is more likely to be maintained in the 

short run. Besides, a weekly scale corresponding to the average duration of the 

so-called 'general weather regimes' or 'Grosswetterlagen' is a typical timescale 

for weather change (Eichner ct al., 2003). Although the relevant physical process 

of climate systems on short-term scales are well understood, much less is known 

about the temperature f luctuation on larger t ime scales, such as larger than a 

month (Talkiier and Weber, 2000). Then they indicated that the long-range 

correlations should be detected by the analysis of correlation structure as the first 

step to improve our understanding of climate on large scales. However, the long-

range correlation of the temperature series at larger scale is more diff icult to define 

because of the influence of different processes and trends such as the circulation 

patterns, global warming (Kurnaz, 2004), urban growth (Eichner ct al., 2003), and 

the El Nino southern oscillation (one of the most pronounced phenomena, whose 

variation is on the scale of months to seasons (Bunde et al., 2002)). Al though the 

diff iculty to define the long-range correlation in temperature scries, understanding 

long-range correlations in atmosphere is of fundamental interest physically and 

practically (Fraedrich and Blender, 2003; Pattantyi is-Abraham et al., 2004). 

Generally, the crossover points appearing in the scaling behavior of DFA and 

, MF-DFA are expected to indicate the crit ical scale range of the analyzed process. 

Besides the crossover point at about 10 days found by Eichner et al. (2003)，the 

long-range correlation on the scale longer than 10 days is measured by H around 
% 
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0.65 according to the universal persistence law (Kosdelny-Buncle et al., 1998)，the 

power law for the continental land air temperature (Lcnnartz and Buiide, 2009) 

and the results for coastal cities, including Hong Kong (Eichrier et al., 2003). 

As a contrast, the point of view of non-universal atmospheric persistence is held 

by some other researchers (Orun and Kocak, 2009; Pat tanty i is -Abraham et al., 

2004). Somewhat related, DFA is also applied to study the problem of global 

warming (Lennartz and Bimde, 2009). 

5.1.1 Results 

As discussed in chapter 3，temperatures of adjacent dates are generally more 

simi lar than tha t at points distant in t ime. The detrending process should thus 

take this natura l phenomenon into account. To veri fy our arguments, we em-

ployed the mean dai ly temperature data obtained by the Hong Kong Observatory 

(h t tp : / /www.hko .gov .hk / l i ko ) f rom January 1，2005 to December 31, 2007. The 

result ing t ime scries is of length 1095 (see Fig.5.1). 

daily mean air-temperature in Hong Kong 
351 1 1 1 1 1 

；AAA I f I 
1 0 - -

5 1 1 1 1 1 
0 200 400 600 800 1000 1200 

time (day) 

F i g u r e 5.1: Daily mean temperature in Hong Koiig from 2005 to 2007 ？ 
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The results obtained by the DFA and the T W D F A are shown in Fig.5.2. Plots 

of the results obtained by the two methods exhibit similar scaling behaviors. 

Generally, the scaling behavior of DFA at large scale, s\icli as around 6' = N /4 , is 

hard to determine because of the great fluctuation. However, T W D F A has less 

f luctuation, even v^hen the scale range is increased to around s = N/2, where the 

scaling behavior seems to be maintained quite well. To il lustrate this advantage 

of T W D F A , we make the semi-log plot of its f luctuation function up to the scale 

s = N/2 ^ 548 while only to .s = N/4 ^ 273 for DFA. Baused on the same 

reasons, Fig. 5.5 is plotted in the similar way. As expected, i t can be observed 

that the T W D F A obtains a much smoother plot of logio F(s) vs log川.s, especially 

when s is large (see the part w i th s larger than 100). I t is impossible to detect the 

crossover points by the DFA in this example. However, in the plot of the T W D F A , 

three crossover points can be respectively unraveled at s = 30; at s = 190; and 

at s = 360. In real life, the three crossover points correspond to the t ime scales 

of around "one month" , “ha l f a year" and the “whole year" respectively. The 

slopes, which mean the Hurst exponents, in different t ime regions are 0.9197, 

. 1.5966, 0.7651 and 0.0175 for the respective t ime scales: “under th i r ty days", 

"one to six months", "six months to one year" and “over one year", indicating 

different properties of long-range correlation. 

As pointed out by many researchers and us in chapter 3 that periodic trends 

wi l l generally affect the analysis results of the DFA and MF-DFA (Hu et al., 2009, 

2001; Kantelhardt et al., 2003; Movahed and Hermanis, 2008; Movahed et a l , 

2006). Periodic trend and seasonal trend, for example, might affect the scaling 

behavior of river runoff and precipitation in hydrology. In this empirical analysis, 

we employed the method applied to remove the seasonal trend in the hydrological 

series (Kantelhardt et al., 2003) and the study of the temperature series (Eichner 

et al., 2003; Koscielny-Bunde et al., 1998; Pattantyus-Abraharn et al., 2004) to 

first eliminate the annual t rend of temperature. Denoting the temperature series 

. as { T i } , we consider the departure = T i - f i where f i is calculated for each 

calendar year i by averaging over all years. Then the detrended temperature 
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F i g u r e 5.2: MF-DFA and MF-TWDFA results of Hong Kong daily mean temperature from 
2005 to 2007 

series can be obtained (see the upper panel of Fig. 5.3). The bot tom panel 

of Fig. 5.3 illustrates the profile of detrended series w i th the trends estfimated 

by DFA and T W D F A . I t should be observed that obvious discontinuous points 

mentioned by Alvarez-Ramirez et al. (2005) as irregular jumps can be found at , 

the ends of the f i t ted straight line of each segment of DFA (see step 2 of DFA for 

this k ind of segment). However, this kind of irregular jumps can be avoided by 

the moving window technique of T W D F A , as shown by the solid smooth curve 

in the bo t tom panel of Fig. 5.3. Since the T W D F A trend is an obvious signal 
« 

wi th relatively long t ime period, T W D F A ought to be a high-pass filter as DFA 

and D M A . This conclusion is supported by the power spectrum of the signal 

before and after removing the T W D F A trend (Fig. 5.4). I t is confirmed that 

the estimated trend is dominated by low frequencies. In addit ion, for relatively 

high frequencies, the power density of residuals is almost the same as those of 

the detrended series. Because of the strong fluctuation of the power spectra, the 

crossover points are diff icult to be detected. Then only two scaling exponents, 
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F i g u r e 5.3： Detrended daily temperature series in Hong Kong from 2005 to 2007 (upper 
panel) and its profile with the local trends estimated by DFA and TWDFA (bottom panel) 

99 

• * 



t 

power spectrum of Fourier transforms 
. 1010 

一”B- - profile of temperature series without annual cycle 
— • — trend of profile estimated by TWDFA 

、 ,, detrended profile of temperature series 

(J=-1.7457 介丨 

P= 3.2442 

10-1。 • ~ — 
10-3 10-2 10-1 10。 

Frequency (day-1) 

Figure 5.4： Power spectrum of the profile of detrended daily temperature series, the trend 
cslimated by T W D F A and the detrcndod profile. For better illuslration, the power spectrum 
of the profile of daily tcinperature series and the (ietreiKled profile have btion shifted vertically 
upwards by 3 (from setting log,o S{f) as log,o(10^ . S{f)) which is eqval to log,o S{f) + 3) and 
siiiiilarly downwards by 4 at log^o scale respectively. 

p、of each power spectrum for relatively low and high frequencies are estimated 

by S { f ) 〜 f - 3 ( S { f ) is the power spectrum density) and accordingly denoted 

in Fig, 5.4. I t can be observed that the ( i corresponding to the relatively low 

frequencies are relatively similar for the profile of detrended daily temperature 

and the TWDFA-est imated trend (2.0058 vs. 2.6339). Whi le the 卢’s of the profile 

. and detrended profile series estimated by the slope of relatively high frequencies 

are much closer (3.3812 vs. 3.2442). The experimental results support our above 

conjecture tha t the T W D F A method should work as a high-pass filter. However, 

since the great fluctuation of the power spectra can usually be found in real-life 

applications such as the temperature example in this thesis, the estimated slope 

should bfe very uncertain. Then DFA and T W D F A are rccommeiided for the 

calculation of the scaling exponent. 

We then performed the T W D F A and the DFA on this detrended series, and 

the result is shown in Fig. 5.5. I t can be observed that the results of DFA 
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F i g u r e 5.5： DFA ami TWDFA results of the detrended daily temperature series in Hong Kong 
from 2005 to 2007 

and T W D F A exhibit similar scaling behaviors. However, besides the common 

crossover point at the location around 5 = H , T W D F A manages to f ind an-

other two crossover points locating at s = 30 and s = 90, which can hardly be 

deciphered by the DFA tha t exhibits much stronger fluctuation. The two ad-

di t ional crossover points correspond to one month and one season in real t ime. 

However, the half-year and one-year crossover points detected wi thout removing 

the annual trend disappeared when such trend is removed. The slopes in the 

four time-scale regions divided by these three crossover points are 0.9752，0.5698, 

0.7113 and 0.4469 respectively. In addit ion, the T W D F A result again seems to be 

smoother than tha t of DFA. In order to quanti tat ively confirm that the T W D F A 

method indeed obtain a better linear relationship for estimating the power-law of 

scaling behavior, wc employ the root mean squared fluctuation (RMSF) around 

the regression line to measure the goodness of linear fit. Obviously, the perfect 

fitting corresponds to R M S F = 0 . The RMSFs in the scaling ranges divided by 

the crossover points detected by T W D F A for DFA and T W D F A are listed in Ta-
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ble 5.1. The symbol ”一” in Table 5.1 indicates that RMSF at this range cannot ho 

T a b l e 5 . 1 : R o o t mean squared fluctuation around the regression line depicting the scaling 
b e h a v i o r by D F A and T W D F A o n the or ig inal arul annual-cycle-rornovcid t e m p e r a t u r e series 

original temperature series aiinual-cyclc-reiuovcd temperature scries 
<30 dayH 3 0 � 1 9 0 days�—190�360 daya >36() cJi»ys"" <14 days 1 4 � 3 0 clays 30~90 days >；)0 days 

TWOFA 0.01997 0.01958 0.02281 0.00542 0.02171 0.00207 0.00G44 0.00601 ~ 
DFA 0.05074 0.08597 0.03273 - 0 . 0 2哪 0.02800 0.03580 0.0r»230 

obtained bccause of the maximum studied scales N / 4 = 250 < 3GO. I t is obvious 

that all RMSFs of T W D F A are much less than that of DFA. Therefore, T W D F A 

is able to obtain much InSt^r linear relationship for estimating the corrdat ion 

properties of t ime scries and can reduce the uncertainty due to great f luctuation 

around the regression line. The results are generally reasonable. If temperature 

scries is observed at the scale less than two weeks, the slope (0.9752) indicates 

that the variat ion of temperature more likely manitaii is the same local trend. A t 

a slightly larger scale, the variat ion of temperature appears to be maintaining the 

same pattern, but w i th the possibility of having random sudfloii changes^ This 

is an interesting discovery, since the Hurst exponent in this scale region, 0.5698, 

is even smaller than that at the region from one month to three months (i.e. 

one season), 0.7113. This discovery indicates that the variation of temperature 

is more stable at the one-month-to-oiie-season scale region than that at the two-

to-foiir-week region. On the other hand, the Hurst exponent at the scale longer 

than one season is 0.4469, suggesting a anti-correlation in this t ime region. This 

means that the variat ion of temperature is most distinguishable at scale longer 

than a season when the annual trend has been removed. From the numerical 

examples, the fluctuation function of MF-DFA and M F - T W D F A generally ex-

hib i t similar scaling behavior. Thus periodic trends should have similar clfect 

on M F - T W D F A method in general. This effect can be unraveled by comparing 

the locations of the crossover points and the corresponding slopes in Fig. 5.2 and 
I 

Fig. 5.5. The crossover points located at 190 days and 360 days of the origi-

nal series disappear in the anriual-cycle-rernoved results. These two scales just 

correspond to the half and one cycle of the annual periodic trend. The 14-days 
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crossover point can be newly detected in the ai i inial-dctrci ided scries. In order to 

further discuss the effect of the annual t rend on the scaling behavior of f luctua-

t ion funct ion of T W D F A , the power spectrum (sec Fig. 5.6) of the original series 

. and the annual-cycle-removed series are employed. The fieqiicncy of the animal 

power spectrum of Fourier transforms 
10® • • ;| 

~ o r i g i n a l temperature series 
a ——‘——temperature without annual cycle 

10 - ^ 

、 104 - -

S l。。. P=0.0059 — -

1 。 、 -

: PTH. 
10"° I 

10_3 • ICfi 10° 
Frequency (day"^) 

. F i g u r e 5.6： The power spectrum of the original series and the annual-cycle-ieinoved series. 
The power spectrum of the original series have been shifted vertically upwards by 3 at logio 
scale for convenience of comparison and observation. 

cycle corresponds to 1/365 "：^ 0.0027(day~^), which indicates approximately the 

5 th and 6 th terms in the power spectrum. In Fig. 5.6，it is clearly seen tha t the 

‘ power spcctruin density of the f irst several, especially the first 10，terms marked 

by squares are much larger than the dot ted ones. However, for higher frequencies, 

the two spcctra have similar values. The difference of the /9's for the lower and 

higher frequency ranges of these two series indicates tha t the scaling behavior at 

higher range are more similar to each other (1.9003 vs. 1.6447) compared w i t h 

their obvious different behavior at the lower range (2.2692 vs. 0.0059). Based 

on the above observations, i t is safe to draw the conclusion tha t the change of 

the location of the crossover points at relat ively large t ime scale are main ly due 

‘ to the aimual-cycle-removing procedure. Because of the complicated properties 
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of real-life temperature series, i t cannot be ensured that effect of periodic t rend 

leads to the undctcctabi l i ty of the newly-appeared 14-day crossover points in the 

scaling behavior of the original series. 

Furthermore, a clear linear relationship can he maintained even when s is 

nearly mt(N/2) = int( 1095/2) = 547. The experiment thus shows that by the 

proposed iriethocl, wc can obtain more informat ion relating to the scaling behavior 

• of the temperature t ime series. And, i t supports our theoretical arguments. 

As to the mul t i f racta l i ty of the temperature series, M F - T W D F A is preformed 
‘ “ 

on the annual-cycle-removed series. Similar to MF-DFA , if h{q) obtained by MF- ^ 

T W D F A depends obviously on q, then i t indicates that the series is mult i f ractal . 

Fig. 5.7 il lustrates tha t the h{q) varies w i t h r/, and its significant dependence on 

q suggests that the mul t i f racta l i ty exists in the temperature series. The bo t tom 

panel of Fig. 5.7 also supports the mul t i f racta l i ty suggested by the h{q)-q plot. 

5.1.2 Interpretations and Discussions 

The climatological interpretations of the crossover points are that the weekly 

scale should correspond t o t h e average durat ion of the so-called "general weather 

regimes" or " Grosswetterlagen" which is the typical t ime scale for weather changes, 

e.g. about 1 week (Eichiier et al., 2003). The two-week crossover point can be 

found by both the M F - D F A and the M F - T W D F A . In fact, Eichner et al. (2003) 

found the 10-day crossover point using DFAO. They also indicated tha t the order 

of the regression polynomial used for detrending could affect tho location of the 

crossover points. This location w i l l increase, i.e. larger crossover t ime scales, as 

the order m increases. Given tha t we employed the linear f i t t ing (m = 1 > 0) in 

the detrending step in M F - D F A and M F - T W D F A , our crossover point appears 

to coincide w i th the finding of Eichner et al. (2003), which means tha t bo th the 

two-week and 10-day crossover points actually correspond to a typical Grosswet-

terlagen. A t the t ime scale of less than twoweeks, the short- ter i j j^ersistence 

dominates so that the Hurst exponent is almost 1 (exactly, 0.9.752) which coin-

cides w i th the statement made in Eichner et al. (2003); Orun and Kocak (2009) 
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about the 'min imum skil l ' forecast. W i t h regard to the one-month and one-season 

f • 

crossover points which are only found by the M F - T W D F A , but failed to be un-
raveled by the (MF- )DFA studies of such temperature series (Eichner et al., 2003; 
Fatichi et al., 2009; Fraedrich and Blender, 2003; Koscielny-Bunde et al., 1998; 

f 

Lennartz and Bunde, 2009; Orun and Kocak, 2009; Pattantyus-Abraham et al., 

2004; Talki ier and Weber, 2000)，since the weather changes after the Grosswet-
I 

terlagen, the air-temperature, an impor tant indicator of weather change, should 

, m o s t l ikely change compared to that in the one-day-to-two-week scales. Therefore 

i t is reasonable to find a weaker long-range correlation in this regime ( / / = 0.5698 

vs 0.9752). However, the variat ion of temperature should maintain the same trend 

w i th in the same season. Thus, i t is natural tha t we can find the the exponent H 

increases to 0.7113 in the one-month-to-one-season scale region indicating persis-

tence in temperature variation. 

Comparing w i th the universal persistence law found by Koscielny-Bunde et al. 

(1998) and the study of Eichner et al. (2003) which both suggested the exponent 

should be around 0.65 at the scale larger than 10 days, we can f ind 0.7113 is 

sl ightly larger than 0.65. I t should be noted that on the scale of months to seasons, 

one of the most pronounced phenomena is the E l Nino southern oscillation event 

which strongly affects the weather over the tropical Pacific (Bunde et al., 2002; 

Eichner et al., 2003). Ding et al. (2002) pointed out that temperature anomaly 
I 

occurred in Hong Kong dur ing the El N ino years. Besides, E l Nino could also 

lead to drier conditions in parts of Southeast Asia and Northern Austral ia which 

might also affect the temperature in these area. As 2006 and 2007 are the El 

Nino years, our discovery f rom the series suggests tha t the long-range correlation 

of temperature is sl ightly stronger than the average si tuat ion on the scale of 

months to seasons, corresponding to the typical scale of El Nino (Bunde et al., 

2002; Eichner et al., 2003). I t is plausible that the warming process because of 

the E l Nino events might keep the temperature on a stable trend. On the even 

larger t ime scale, the plots of the M F - D F A become too fluctuated to estimate 

its Hurst exponent which however can st i l l be estimated by our proposed M F -
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T W D F A method. In larger t ime scales, temperature is influenced by different 

processes and trends, like the circulat ion patterns and global warming, the long-

term correlation becomes more dif f icult to define (Kuri iaz, 2004). In the t ime 

scale covering seasons, we f ind the scaling behavior of temperature changes to 

sl ightly anti-correlated (0.4469 < 0.5) but is not much different from 0.5 that 

. indicates a random process. I t means that the variations of temperature is most 

distinguishable in this regime which corresponds to the variat ion of temperatures 

among seasons. On the other hand, results obtained by (MF- )DFA suggest that 

the scaling behavior of the temperature series on the scale region larger than 

one season st i l l follows the previous trend even after the annual trend has been 

removed (Eichner et a l , 2003; Koscielny-Bunde et al., 1998; Orui i and Kocak, 

2009; Pattantyus-Abraham et al., 2004). This clearly contradicts our conventional 

understanding of seasonal variat ion of temperature. The difference might be due 

to different ways of detrending. However, our conclusion appears to be more 

reasonable and comprehensible. Actual ly, the importance of the monthly and 

seasonal crossover points has already been pointed out by Ding et al. (2002) 

using several different statistical methods support ing their significance. 

I n terms of prediction, the value of the Hurst exponent, almost 1, indicates 

that the future temperature in weekly scales is predicable and reliable. Actual ly, 

the weather forecast is w i th great accuracy in practical implementation. However, 

in the weeks- tomonth scales and the scales larger than one season, i t is hard to 

perform the predict ion due to the randomness indicated by the I ^ s t exponent, 

close to 0.5. The prediction of temperature in the one-inonth-to-one-season scales 

is also possible though i t is more dif f icult compared w i th that iu the weekly scales. 

Thus, the study of the long-range correlation is very helpful in recognizing the 

underl ing dynamics of process and is beneficial to evaluating the possibil ity in 

establishing a accurate prediction model. 
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5.2 Performance of EMD-Based Pre-Detrending 

Processing: Application in Sunspot Series 

Sunspot is the relatively lower temperature part of the solar surface tha t 

looks like black regions (Liou, 2002). The number of sunspots varies greatly dur-

ing different periods. I t might stay relatively high over some periods but drop 

to almost zero a few years later. Since the famous 11-year cycle appearance of 

sunspots was discovered by Schwabe in 1841. i t has been confirmed by many 

researchers through long-term observations and studies (Gnevyshev, 1977; Mous-
I 

sas et al., 2005; Schatten and Sofia, 1987). Besides, some other solar cycles have 

been found in succession, such as the cycle of solar wind, quasi-biannual oscilla-

t ion (QBO) , Hale per iod and possible Gleissberg period (L i et a l , 2007; X u et a l . , . 

‘2008). Many geophysical phenomena and atmospheric processes are significantly 

‘ influenced by the sunspot act iv i ty (L iou, 2002; Moussas ct al., 2005). Thus i t is 

meaningful to study the property of the sunspot t ime series. 、 

As mentioned in chapter 3，some debates on the long-range correlation of 

the sunspot series exist. Different pre-detrending processing techniques for han-

d l ing the periodic trend, such as the dominate 11-year cycle, lead to the different 

long-range correlations property (Hu et al., 2009; Movalied et al., 2006). We 

proposed the EMD-based method to handle th is k ind of t rend. . I ts val idat ion 

and the comparison to the Fourier t runcat ion and adaptive detredning methods 

have done by numerical experiments. I n the numerical experiments in chapter 4, 

for the small scales the three pre-detrending methods appear to be effective in 

detrending the effect of periodic trends i f the parameters are appropriately se-

lected. For larger scaling range, however, some diff icult ies exist. Generally, there 

are definit ive physical meaning in the IMFs. Thus i t seems to be more intr insic 

the crossover points unraveled by the EMD-based method. In contrast, Fourier 

t runcat ion and the adaptive detrending methods work in a art i f ic ial way, espe-

cial ly for the selection of parameters, such as frequencies to be removed and the 

length of segment for detrending. Besides, the EMD-based methods parameters 
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selection procedure is much ea^sier. W i t h regard to the situation on scales larger 

than the crossover points, the adaptive detrending method almost wipe out all 

information, while the EMD-based and the Fourier methods manage to keep con- ‘ 

‘ siderable information even though the results are a bi t off the expected pattern. 

To compare these pre-detrending processing in the real-life example to get the 

bo t tom of the discrepancy between Movahed ct al. (2006) and Hu ot al. (2009), 

all of them are also considered in the following discussion. 

5.2.1 Basic Results 

We analyzed the monthly number of sunspots during the period 1749〜2009 

w i t h 3123 months from SIDC's website (ht tp: / /s idc.oma.be/sunspot-data/) used 

in Movahed et al. (2006) ( to.the year of 2006) and Hu et al. (2009). The down-

loaded data is our original t ime series, henceforth referred to as “ original data" or 

"or ig inal series". From Fig. 5.8, the 11-year cycle is very obvious. Apply ing the 
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Figure 5.8: The monthly sunspot lime series. 

E M D method to the sunspot t ime series, eight IMFs and one r can be obtained 
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(Fig. 5.9). As discussed in the introduction, different IMFs correspond to differ-

Empirical Mode Decomposition 
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F i g u r e 5.9： Results of the EMD on the original sunspot series, IMF! to r (from top to 
bottom). 

ent well-known cycles of sunspot activities. Therefore, we apply DFA to analyze 

the series by reducing the IMFs or r one by one so that we can study the influence 

of each of them on the scaling behavior of the sunspot t ime series. As depicted in 

Fig. 5.10, there are roughly two groups of scaling behavior. We denote the series, 

including the original data, w i th relatively steep slopes (s lope>l) group 1’ and 

the—others group 2. The scaling properties of the series wi th in e^ch group are 

similar. We discover that IMF5 is the crit ical component that decides the scaling 

property of the sunspot t ime series. When IMF5 is removed, the series becomes 

group 2 right away and exhibits total ly different scaling behavior from the original 

data. For the series, IMF^, a crossover point at 5 = = 57.5440 « 60 

can be identified. The slopes to the left and right of this point are 0.69 and 

0.28 respectively. The position of the crossover point and the left slope are very 

similar to the result obtained by Hu et al. (2009). While the series E t = i IMF, ' 

has property similar to the original series wi th Hurst exponent larger than 1 (see 
« 
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Figure 5.10： Scaling behavior of suiispot time series by removing the coiiipoucnts one by one. 

Movahed et al. (2006) for more discussion on the results obtained from the orig-

inal series). As observed in from Fig. 5.11 (upper panel), J2i=r> + 厂 fits the 

original data, x, very well. Besides, the 11-year cycle should be also eliminated 

in X — + r ) = To coufirm i t , we calculate the power 

spectrum of the detrended series and compare i t w i th the original series. From 

Fig. 5.12^ we can see that the powers of the detrended series, JZj^ j IMF i , for the 

frequencies around the 11-year-cycle frequency, e.g. y j ^ = 0.0076 m o n t h " \ are 

significantly less than that of the original series. Such difference quantitatively 

indicates that the 11-year cycle has been removed. As a whole, our results, up to 

here, are very similar to that obtained by Hu et al. (2009). This is a validation 

of their results from the angle of EMD. 

In addition, we remove each component from the original t ime series once, 

and study the respective scaling behavior afterwards. From Fig. 5.13, we can 

also discover the remarkable effect of IMF5. Though not as strong as the effect . 

of IMF5, IMFe also affects the scaling behavior of the series. The others have 

111 ‘ 



I 

300 1 1 r- 丨 I ..I-
* • original data 

I . I ? J M F + r 
1=5 i 

250 - ^ -
• g 

g 

200- • ° I @ 

I M 
1750 1800 1850 1900 1950 2000 

Time (year) 

I 

1001 1 1 1 1 ' 
• JMF. 

1=1 I 
8 0 - • 

60- . . . -
• • • • t • 

40- »； • • . .、 •、• :•:•: -
o .. ‘ • ；... • . ••. • •• , . •龙 

.if麵耀禱 
“ • •• ••• r. • . — i ‘ • ‘ •• » . • ： ^ 

-40- > ‘ - •： .•. -

• . “ • 
• • • 

- 6 0 - • 

_8oi ‘ ‘ ‘ ‘ ‘ 
1750 1800 1850 1900 1950 2000 

Time (year) 

F i g u r e 5.11: Original data and the fitted series using I^Fi + r (upper panel) and the 
residual x - IMF. + r) = IMFi (bottom panel) 

. � 
‘ » 112 

1 



power spectrum 
1(f n —r— 1 ‘ ‘ 

UL— • 

1 0 - 2 U — , . ‘ : — i 
‘ 0 0.1 0.2 0.3 0.4 0.5 

的 10' n . ‘ ‘ . 
<u 

, I . 

1 1 0 。 I l m i i i i l i i i i i l l i h i l i l i i i i 

I IfTfTJpp 謂 , 啊 P . w p f l 
§ 10-2 U . ‘ L i • 

0 0.1 0.2 0.3 0.4 0.5 
frequency (month—) 

Figure 5.12: Compare the power spectra of the detrended series 二 , IMF,) and the original 
series. The vertical straight line corresponds to the frequency of the 11-year cycle, 0.0076. 

almost indistinguishable influences on the scaling behavior. Two crossover points, 

^ 29 and lO。。"̂  « 117, can be identified, as shown in Fig. 5.13. ‘ 

However, by removing these two most remarkable components, i.e. removing « 

IMF5 and IMFe from the sunspot t ime series, the original t ime series (Fig. 5.8) 

is transformed into the time series in Fig. 5.14. Here the 11-year cycle becomes 

less obvious, although some other irregular cycles can sti l l be found. 

To compare wi th the cffect of the 11-year cycle on the fractal property of 

sunspot t ime series, we employ DFA to study the original and this detrended 

series, the results are depicted in Fig. 5.15. As the DFA results of the original * « 

series have already been discussed in Movahed et al. (2006) and Hu et al. (2009), 
I* 

we now focus our analysis on the detrended series. A crossover point of the t ime 

series can be found in Fig. 5.15. Its position is lO^ "̂® « 58’ which is very close to 

60 obtained by Hu et al. (2009). Two different slopes arc discovered on the two 

sides of the crossover point. The left slope is 0.72 which is similar to the result, 

0.74, of Hu et al. (2009). However, the right slope, 1.49 is much larger than that 
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Figure 5 .15 : The scaling behaviors of the original and the detrenchnl series using DFA. 

、 obtained by Hu et al. (2009). I t can also be observed that the scaling behaviors of 

二 1 I M F i and r r一 J ] ； 二 5 IMF , at the t ime scalc s < 60 are very close, 0.69 vs 0.72, 

to each other. However, i f s increases beyond this crossover point, two different 

behaviors are observed, 0.28 vs 1.49. Generally, the maximum scale on which 

the scaling behavior can be studied is iV/4 {N is the length of series) since the 

fluctuation usually bocomcs too strong to obtain the reliable scaling behavior on 

even the larger scales because of the iiisiifficiciit local windows (Kantelhardt et al., 

2002). I t is interesting to find in this real-life example that the fluctuations of 

a；-口二5 I M F i and the original data, x, approach the same value at the maximum 

time scale, s = N/4 二 3 1 2 3 / 4 。 7 8 1 months. Then the information of the 

sunspots series on the larger scales seems to be maintained considerably. Take 

、 the difference between J ^ L i IMF^ and x - YlLs I M F ; into consideration, i t is 

reasonable to draw the conclusion tha t the components w i th dominant frequencies 

lower than those of I M F 5 and I M F G determine the fluctuation of the series at scales 
» 

larger than 60 months. 
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5.2.2 Further Discussion 

To affirm our results above, we study the problem from tho Fourior-hased angle 

in this subsection. We employed the Fourier transforms to investigate the eight 

IMFs. Since the concerned 11-year cyclc corresponds to the frequency 1/132 

0.0076 per month and the interval of the two successive discrete frequencies is 

1/3123 3 0.0003, consider what wc would like lo find is the rough correspondence, 

wc th ink i t ought to be fine to transform these coriipoiierits to the coefficients 

w i t h equal length to cxtract the relevant frequencies for our further analysis. 

The respective power spectra of them are depicted in Fig. 5.16 and Fig. 5.17. 
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Figure 5.16: Power spcctra of the IMFs of the original sunspot series using Fourier traiisfonii, 

IMFi to IMF4 (from top to bottom). ‘ 

‘ I t should be noted tha t the abscissa of Fig. 5.16 and Fig. 5.17 is the frequency 

expressed in number per month. Generally, the components, IMFs, decomposed 

by E M D have their physical meaning. I n the sunspot series study, L i et al. 

(2007) systematical studied some relations between these IMFs aiid some solar 

‘ active cycles. On the basis of the power spectra, these IMFs obtained in this 

thesis arc attempted to correspond to certain solar cycles. IMFs are analyzed 

one by one as follows: For I M F i , i t is hard to observe any kind of cycle because 
• / 
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of its uni form dis t r ibuted power spectrum density. Since the dominant frequencies 

distr ibute around 5 - 1 0 months, i.e. 150-300 days, IMF2 should correspond to 

the around 153-clay cycle, which is found by Rieger et al. (1984) in 7 - ray flares ‘ 

and Cane et al. (1998) f rom interplanetary magnetic fields. W i t h regard to IMF3 

and IMF4, the doini i ia i i t frequencies corresponding to 1 0 - 2 0 months and 2 5 - 3 0 

months suggest tha t the 1.3-1.4 years periods and Q B O might be included in 

these two IMFs. The 11-year cycle should be denoted an j y ^ = 0.0076 per 

mouth. Obviously, the dominant frequency of IMFr, and IMFf, is around 0.0076. 

Thus they should be both related to the 11-year cycle of sunspots. In addit ion, 

some frequencies w i t h relative large ampl i tude can be found between 0.003 and 
i 

0.004，i.e. the periods about 2 1 - 2 7 years, in power spectrum of IMFg. Tha t 

, means IMFg might also include the Hale period w i th 22-years cycle. The relative 

dominant frequencies of IMF7 around 0.002, i.e. 42 months, ought to include the 

double Hale period (Fairbridge and Hil laire-Marcel, 1977). These discovers are 

similar to results of L i et al. (2007). However, the length of series considered in 

this study is more than 260 years, which is much longer than 110 and 55 years 

researched by L i et al. (2007). Then much longer cycles might be found in our 

study. Actual ly, the power spectrum of IMFg has a peak at around 0.001. Then 

i t should indicate the Glcissberg period w i th nearly 80 years cycle (Gleissberg, 

1944), those frequencies w i th less amplitudes around i t should be related to some 

other kinds of solar centenary period varying in the range f rom 65 to 130 years 

(Nagovitsyn, 1997). Therefore, IMF2 to IMFg should correspond to the 153-day 

cycle of 7 - ray flares and interplanetary magnetic fields, the 1.3—1.4 years periods, 

QBO, 11-years cycle, Hale, double Hale and Gleissberg period respectively. A n d 

the effect of those periods on the scaling behavior of sunspots series can be studied 

through the summat ion of selected IMFs. 

According to many studies, the effect of the 11-year cycle has to be el iminated 

to avoid the product ion of spurious crossover points. Coincide w i t h our above 
» 

analysis, IMF5 and IMFg are also the most inf luential components manifesting the 

effcct of the 11-year cycle. Then what should be removed f rom the original series? 
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X l L s I M F i 4-r or just J^Lr) IMF,? In our opinion, if wc only consider the effect of 

the 11-year cycle, we should remove only IMFr, and IMFq from the original data. 

However, if we want to study the scaling behavior wi thout the; irregular cycle, 

which should be the combination of such periods mentioned above and be shown 

in Fig. 5.14, we should just keep IMF— What we would like to emphasize • 

is that the EMD-based method can preserve the scaling behavior at larger scale. 

On the other hand, the adaptive detreiuii i ig method removes all information at 

scale larger than a pre-deteniii i ied t ime scale. 

Wha t is puzzling is the invalidation of the Foiirier-hascd method, like the . 

Fourier truncat ion employed by Movahed et al. (2006), since the Fourier-based 

method should be a simple but effective method to handle periodic and quasi-

periodic trends. Theoretically, the 11-year cycle should be eliminated using the 

combination of some sine and cosine function w i th some frequencies. The dif-
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Figure 5.18： Scaling behaviors of the original and the Fourier truncation series (removing the 
first 50 terms of the Fburier transform of the sunspot time series) using MF-DFA. 

ficulty is to decide how many sine and cosine function terms should be chosen. 
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Thus, the significant differences among the scaling behaviors obtained by the 

Fourier method (Movahed ct al., 2006,), the adaptive detrending method (Hu 

et al., 2009), and the EMD-based method need further cross comparison. To 

compare, we repeated the Fourier t runcat ion and also truncated the first 50 low-

est frequencies. In the practical implement of Fourier transform, what we can 

obtain are the coefficients corresponding to the discrete frequencies. Specifically, 

these first lowest frequencies removed should be i • m o n t h i — 1, • • •, 50. 

Interestingly, the scaling behavior discovered is so different from that presented in 

Movahed et al. (2006), as shown in Fig. 5.18. The crossover point at, 10口6。60, 

which corresponds to the 50th frequency of the Fourier transform of the sunspot 

t ime series, is the same as that obtained by Hu et al. (2009) and our EMD-based • 

method. The scaling behavior on the left of this point w i th slope 0.85 is total ly 

different f rom what Movahed et al. (2006) obtained, and slightly different from 

‘ t h e EMD-based method obtained in this study. The fluctuation at larger scales 

remains almost constant, w i th slope near zero. This is reasonable since infor-

‘ m a t i o n beyond 60 months has already been removed by the Fourier truncation. 
.V 

Fig. 5.19 is a supplement to the explanation of the Fourier truncation. I t can 

be observed that Fourier t runcat ion provides a close f i t of the original data and 

there are no obvious cycles in the residuals. 

Wha t remains is the question why there is st i l l a difference between the re-

sults obtained the Fourier t runcat ion and that by Hu et al. (2009) and us (the 

EMD-based method)? I t should be observed that the slope to the left of the 
A 

‘ crossover point, 0.84, in Fig. 5.18 is close to the slope of the sunspot series, 0.86, 

、 by removing IMF5 at smaller scale. Thus, the reason for the diffcreiicc should 

be that the EMD-based method and method of Hu et al. (2009) are adaptive so 
» 

tha t the trends removed might contain both larger and smaller frequencies. On 

the other hand, the Fourier method can completely remove all selected frequen-

cies. Since the residuals of the EMD-based and the method of Hu et al. (2009) 

contain less informat ion of higher frequencies, the slopes are slightly less than 

that obtained by Fourier truncat ion. To substantiate this argument, we remove 
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20 more frequencies, e.g. the first 70 frcqucncics of the Fourier transform of the 

sunspot scries. Then the fluctuation at scale range larger than 45 months should 

remain constant. The result can be observed in Fig. 5.20. The slope is 0.69 and 

the crossover point is at l O — ^ 48 months as expected. Fourier t runcat ion is 

further employed to deal w i t h the situation by considering only the effect of the 

11-year cycle. Thus the period (frequency"^) around 11-year corresponding to 

the 23rd term of the Fourier transform should be removed. Here, we also t ry 

to remove the 18〜70 terms. The results is also i l lustrated in Fig. 5.20 visually. 

The crossover point is l O ! 6 0 months which is similar to what is shown in 

Fig. 5.10 and Fig. 5.15. Furthermore, the scaling behaviors on both sides of the 

crossover point are also similar to the results of the EMD-based method which 

just removes IMF5 and IMFg in Fig. 5.15, 0.72 vs 0.72 and 1.47 vs 1.49 for the 

left and r ight sides of the crossover point respectively. Our above conclusion that 

fluctuation at larger t ime scale is mainly determined by the lower frequencies is 

affirmed again. Here, in comparison w i th the behavior of the series by removing 
m 

the first 70 terms, we can see the first 17 terms of the Fourier transform increaise 

the fluctuation at the same t ime scale (can be compared in Fig. 5.20). Neverthe-

less, the choice of the removed terms of Fourier t runcat ion is a problem which 

cannot.be avoided. 

To recapitulate, we summarize the experimental results concerning the slopes 

and crossover points in Table 5.2. 

Table 5.2: Summary of experimental results. 
analyzed series left slopes position of crossovers right slopes corresponding figure 
removing IMF5 O g 29 (months) 136 Fig. 5.13 

TMFi 0.69 60 (months) 0.28 Fig. 5.10, Fig. 5.15 
ren7oving IMF5 aiid IMFe 0.72 60 (months) • 1.49 Fig. 5.15 
removing 1 � 5 0 t h Fourier terms 0.84 60 (months) ' 0.02 Fig. 5.18 
removing 1 � 7 0 t h Fourier terms 0.69 48 (months) 0.01 Fig. 5.20 
removing 1 8 � 7 0 t h Fourier terms 0.72 60 (months) 1.47 Fig. 5.20 
result in Hu et al. (2009) 0.74 60 (months) ~ 0 

By means of DFA, the influence of these components or their combinations 

on the scaling behavior of the sunspot t ime series has been studied. For the scale 

range less than 60 months, we have discovered property, H ^ 0.73, similar to 
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that of Hu et al. (2009), inconsistent w i th that of Movahed et al. (2006) when 

the dominant frequencies of less than 60"^ month"^ is removed. However, our 

result show that if we just want to study the fractal property of the sunspot • 

series wi thout the cffect of the 11-year cycle, then the slope of this t ime range 

changes to 0.69. For t ime range larger than 60 months, as all information is 

eliminated by adaptive detrending, the f iuctnation maintains constant, i.e. the 

‘ slope is close to zero. However the EMD-based method obtains the slopes 0.28 

and. 1.48 respectively. Then, wc have repeated the Fourier truncation methods, 

which should be effective to periodic or quasi-pcriodic trends, but invalidated by 

Hu et al. (2009). Interestingly, we have discovered that this method is actually an 

effective mean to handle t ime series w i th periodic and quasi-periodic trends, such 

as the sunspot series in this study. However, some difficulties are sti l l encountered 

in choosing the appropriate frequencies. Apply ing Fourier truncation w i th the 

chosen frequency, we can obtain results very close to what are attained by the 

EMD-based approach under two detrending situations. And i t is reasonable that 

one frequency might contain both noise and useful information, which cannot be 

extracted by the Fourier-based method. Like what is shown above, the removal of 

the first 50 and 70 terms leads to different results. Another discovery in this study • 

is the position of the crossover point. We have found out that the crossover point 

changes w i th different number of removed terms in the Fourier-based method. 

Thus, i t is the art i fact rather than the true reflection of the intrinsic situation. We 

have further shown that the adaptive detrending is also a good method although 

i t requires a pr ior i determined function forms and t ime scale for detrending. 

And the informat ion of the scale larger than the prospecified scale is all reduced. 

Even there is useful information contained in these frequencies, wc cannot extract 

them by the Fourier-based methods. Besides, compared w i th what is attained by 

adaptive detrending and Fourier filtering, the components obtained by the E M D 

method are usually reasonable w i th real physical meaning. Although, as i t was -

obtained through the numerical experiments, this exponent might be inaccurate, 

the EMD-based method can at least part ly reflect information contained in the 
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series on large scales, which, as suggested by the first experiment i i i chapter 4, 

can be of considerable use in the study of the scaling behavior of the series. 
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Figure 5.20： Scaling behavior of the original and Fourier truncation series (removing the first. 
70 and 1 8 t h � 7 0 t h terms of the Fourier transform of the sunspot time series) using MF-DFA. 

5.3 Summary 

This chapter showed how the T W D F A , M F - T W D F A and EMD-based method 

work in handling the real-life problems. T W D F A and M F - T W D F A could ensure 

the better scaling behaviors of the temperature records compared w i th conven-

t ional DFA and M F - T W D F A . Consequently, two crit ical scales, monthly and sea-

sonal scales, which cannot be found by the conventional DFA, have been found in 

the annual-detrended temperature series by the proposed model. The EMD-ba.sed 

method handles an challenging problem, the long-range correlation of sunspots 

activities. On removing the effects of these periods obtained by E M D , the natural 

long-range correlation of the sunspot t ime series can be revealed. Particularly, 
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- w i th the removal of the 11-year cycle, a crossover point located at around 60 

months is discovered to be a reasonable point separating two different tiirie scalc 

ranges, H » 0.72 and II ^ 1.49. And on removing all cycles longer than 11 

years, we have H ^ 0.69 and H ^ 0.28. The three cycle-removing methods 

Fourier truncation, adaptive detrending and the proposed EMD-based method 

— a r e further compared, and possible reasons for the different results are given 

as the incorrect selection of parameters when employing the Fourier truncation. 
I 

I t is seen that three methods should be equivalent when eliminating the peri-

odic trends, especially at small scales. However, EMD-based method is preferred 

because of its capabil ity to maintain the information at large scales and the con-

venience when determining the parameters. 
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Chapter 6 

Application to Earthquake 

Problems 

6.1 Introduction 

The occurrence of earthquakes in a given area is a complicated spatio-temporal 

process (Bak et al., 2002). A better understanding of the pattern of earthquake 

occurrence is conducive to the study of the dynamics of earthquake processes. 

Fractal analysis and MFA are known as the mathematical formalism which is 

able to: handle complex dynamic structures (Feeler, 1988; Mandelbrot, 1982), 

and characterize the heterogeneity of fractal patterns (Gra^isberger and Procac-

cia, 1983). Actually, Takayasu (1990) pointed out that，earthquakes have so 

many different fractal properties that they belong to the most interesting fractal 

phenomena'. The fractal i ty and mult i f ractal i ty of the earthcjuake process has 

been discovered and measured by many researchers (Goltz, 1997; Harte, 1998; 

Hirabayashi et al., 1992; Hirata, 1989; Kagan, 1981; Kagan and Knopoff, 1980; 

Lei and Kusunose, 1999; Sadovskiy et al., 1984; Takayasu, 1990). Therefore, this 

study wi l l focus on the applications of fractal and ir iult i fractal analysis in this 

research field. 

The spatial distr ibutions of epicenters or hypocenters are known to be fractal 
7-
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(Hirabayashi et al., 1992; Hirata, 1989; Kagan, 1981; Kagan and Knopoff, 1980; 

Sadovskiy et al., 1984). For example, Sadovskiy et al. (1984) gave the capacity 

dimension using the box-counting method. Kagan and Knopoff (1980), I l i ra ta 

‘ (1989) applied the conelatkm function or integral method (Grassberger and P r o 

caccia, 1983) to calculate the correlation dimension. Mul t i f ractal analysis using 

a fixed-size box-counting algori thm (Halsey et al., 1986) has l>(;(m performed by 

Hirabayashi et al. (1992). Meanwhile, Martc; (1998) used the Hi l l estimator to 

estimate the correlation dimension of epicenters and hypocciitcrs from four earth-

quake catalogues. Harto (1998) found that the. point pattern of shallow and ( l e零 r 

earthquakes in Japan were more t ight ly clustered than tliose in New Zealand. I i i 

this paper Harte (1998) discussed the affcct of the amount, of data and bound-

ary.. A characteristic scale of around 13 kin was found by Lei and Kusuiiose 

(1999), who suggested that i t is a common feature of the heterogeneity of t l ic 

crust. Some laws about epicenter location are also relative to fraxjtal statistics, 

such as the famous Gutenberg-Richter (GR) Law (Gutenberg and Richter, 1949; 

Stein and Wysession, 2003; Turcotte’ 1997) which states that the size distr ibut ion 

of earthquake is scale-free. Davidsen and Pac/Aiski (2005) and Abe and Suzuki 

(2003) studied the power-law of the distr ibut ion of the distances between two 

successive events using finite size-scaling and a modified Zipf-Maiidelbort Law, 

respectively. And, Molchan and K ion rod (2005) discussed the spatial scaling of 

the seisniicity rate using the Cal i fornia data. 

W i t h regard to the temporal aspect, there have been many studies of the frac-

. tal i ty, mult i fractal i ty, and noi i l incari ty from a iiuinbcr of different perspectives 

(Balankiri et a l , 2009; Console and Murru, 2001; Gardner and Knopoff, 1974; 

Gasperiii i and Mulargia, 1989; Lennartz et al., 2008; L i et al., 2002; Livina ct al., 

2005; Marsaii et a l , 2000; Mega et al., 2003; Shcherbakov ct al., 2005; Shlien 

and Nafi Toksoz, 1970; Telcsca c l al., 2004a,b, 2005). Shcherbakov et al. (2005) 

stated that,，the occurrence of an earthquake is an outcome of complex nonlinear 

threshold dynamics in the br i t t le part of Earth's crust.' Omori 's Law (Ornori, 

1894) is used to express the correlation of the main shock and aftershocks. Mean-
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while, earthquake frequency has been studied by many rcscarchers. The Gminr-

alized Poissoii (GP) model is an example of this kind of model (Console and 

Mi i r ru , 2001; Gardner and Knopoff, 1974; Gasporiiii and Mulargia, 1989; Shlieii 

and Nafi Toksoz, 1970). However, Moga ct al. (2003) discovered the iiitor-cluster 

correlation by studying a catalog of seismic events in California using Diffusion 

Entropy (DE), which is used to study the memory in t ime series (Grigolini ct a l , 

2001). The waiting times between earthquakes (also called the return t ime or the 

intor-occurrcncc t ime) is another popular topic in the field of temporal analysis 

(sec for example the review by Saichev and Sornette (2007)). The scaling hiiic-

t ion f i t t ing by a generalized gamma distr ibut ion was Ibuiici by Corral (2004) to 

he relative to the statistic of the return t ime in each local bin. Li i idniai i et al. 

(2005) showed that a characteristic kink in observed wait ing t ime distr ibution 

could not separate the correlated and uncorrelated earthquakes. The strong dc-

peiulence of the recurrcnce t ime on the previous times w£ls found by Livina et al. 

(2005). In the same year, Carbone et al. (2005) found the unified law for the 

i n t e r - o c d e n c e time. Long-range correlation (also called long-run correlation or 

long(-terin) memory) was found in wait ing t ime using R/S analysis (Goltz, 1997; 

Jimenez et al., 2006) or by using MF-DFA (Balankiri et al., 2009; Lerinartz et a l , 

2008; Marsan et al., 2000; Telesca et a l , 2004b). R/S analysis and MF-DFA 

have also been applied to analyze the temporal distr ibut ion of earthquakes in 

North China (Li et al., 2002) and in the earthquake-related series (Tclesca et al., 

2004a, 2005). In terms of the wait ing times of aftershocks, a iriodel biusecl on a 

non-homogeneous Poissori process ha.s been established to quantify the scaling 

behavior by Shchcrbakov ct al. (2005). At tempts at f inding the cdrthq\iake pre-

cursors are to be found in the study by Goltz (1997). In addij>ion, the precursors 

i l l two practical cases were explored by Huang ct al. (2001) and Huang (2008) 

in the M=7.2 Kobe earthquake and the M=8.0 Wendniari earthquake using the 

Regiori-Tiine-Length (RTL) algorithm. 

Generally, earthquakes which happen in same seismic zone ought to be related 

to each other and follow the same generating iriechaiiisin. Sorting the earthquake 
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events according to the t ime when they st rike, the earthquake spatial and tempo-

ral distr ibution can be regarded a<s the results of motion of a point. It, should be 

noticcd from the above reviews that in order to simpli fy the earthquake problems 

many researchers have expressed tl ie earthquake process in the form of a t ime 

series by extracting the spatial arid temporal distance between two successive 

earthquake events. The series which t l icy s\ibseq\ieiitly obtain contains the corre-

sponding earthquake i i i forinatioi i . This kind of ordered series can be treated and 

analyzed as a special t ime series. Many recent studies have focused on the f^eiieral 

rules governing the«e series, for example: tl ie idea of universal jumps by Corral 

(2006), the betweonrifiss spatial distr ibut ion by Daviciseii and Paczuski (2005), 

the power-law distr ibut ion of large earthquake times by Mega et al. (2003), their 

universality by Corral (2004), Bott ig l ier i et al. (2010), Davidseii and Goltz (2004), 
� 

and earthquake memory by L iv i i ia ct al. (2005). Taking into account the spatial 

aiid temporal dimensional perspectives simultaneously, Bak et al. (2002); Chris- , 

tensen et al. (2002) proposed a unified scaling law to depict the multidimensional 

‘ nature of earthquakes and suggested a universal mechanism which is followed by 

all earthquake processes. The long-range correlation can also be fouiul in Abe 
f 

and Suzuki (2003); Corral (2006); Davidsen and Paczuski (2005). 

I t is not enough to wholly profile the occurrence of the earthquakes only con-

sidering the events-bctweeimess distance and time. On one hand, seismologically 

speaking i t is more likely to see the epicenters locating beside the fault lines, . 

which are usually along some directions; hence, the direction which the epicen-

ters migrate along should contain meaningful scismological information. On the 

other hand, mathematically spewing, w i th aid of the idea of polar coordinate i t 

can be seen that if we want to determine the posit ion of an event temporally and 

spatially then the relative information of the wait ing time, distance and direction 

of this earthquake event to the previous event arc required. However, despite 

’ the seismological and mathematical importance, no work on the direction of the 

力 epicenter's migration could be found wi th in the search of the previous l i terature 

、 which was conducted at t\ie start of this study and, therefore, this st i id^ aims to 
t 
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analyze this uiidevclopcci property. 

In addit ion to the real-life earthquakes catalogm3S, thcro arc; some simulative 

experiments which are designed to facil i tate the uiiderstaricliiig of the earthquakes; 

such aji, the Acoustic Emission (AE) of rock fracture being analogous to the real-

life inicrosliocks. W i t h regard to the probabil i ty density function of the wait ing 

t ime of A E series using (iiffnront materials, Davidsen et al. (2007) found that 

， they are indistinguishable from that of earthquakes in California which wms pre-

sented by Corral (2004). Thus, Davidsen et al. (2007) claimed that the rock 

fracture process should be the same as the earthquake process. In order to draw 

a comparison between these two views, t l ie data from the two real-life earth-

quake catalogues (i.e. south China and southern California covering the period 

f rom 1970 to 1995) as well an that f rom the previous rock fracture experiments 

(Y ing et al., 2009) are Employed in this study for the changed direction analysis. 

The rock fracture experimental data was obtained from R. P. Young's research 

group at the University of Toronto. Experiments were performed by W. Y ing 

and presented in her thesis Laboratory Simulation of Reservoir-iiiduced Seisinic-

i ty ht tps:/ / tspace. l ibrary.utoronto.ca/bi tstream/1807/24919/1/Ying_Winnie-W-

L_201006-PhD_thesis.pdf. Somewhat similar to the concept of epicenter, the pro-

jection of locations of microshocks in rock fracture recorded in three dimensional 

space on one selected two-dimensional surface are considered in this study, which 

wi l l st i l l name them as epicenters. 

6.2 Epicenter Migration 

Given a series {J?i} recording the locations of N epicenters sorted in the nat-

ural temporal order, the mot ion direction from the (z - l ) t h to i t h epicenter can 

be represented as f ^ - i 二 兄 - 兄 - i . A l though the locations of epicenters are rep-

resented by the lat i tude and the longitude, this would bring l i t t le difference if we 

treat t l iein under the Cartesian coordinate system for the local area (such as south 

China and southern California). The changed direction 6 can then be obtained 

from every three successive epicenters as d i - i = arccos(fi . f i _ i / { | | f i | | . | | f j _ i | | ) ) . 
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In this way w i t h length N - 2 can be ohtaii ied for a given series { X , } . This 

study wi l l consider the foreshocks, rnairisliocks, and aftershocks, together. This 

is the same technique that is used in the analyses of t l io studies by Bak ct al. 

(2002); Christensen et al. (2002); Corral (2004, 2006); Davidscn and Goltz (2004); 

Davidseii and Paczuski (2005); L iv ina et al. (2005). 

For the obtained series { ^ J , the Detrended Fluctuat ion Analysis (DFA) is 

chosen in order to study its scaling. DFA is proposed to be employed âs a tech-

nique to investigate the long-term correlation of the non-statioiiary, as well tis 

the stationary, t ime series (Peng et al., 1994). This capabil i ty is the reason why 

the DFA is so popularly used in scaling analysis of t ime series. In their investiga-
^ 》 

t ion of atmospheric variabil i ty, Koscielny-Bunde et al. (1998) reported a universal 

scaling law of long-term temperature records by analyzing fourteen meteorolog-

ical stations around the world employing DFA. Following this study, Govindan 

et al. (2002) and Fraedrich and Blender (2003) used DFA to study the tempera-

ture series generated by the cl imate models under different scenarios and found a 口 

different scaling pattern from that of the observational records. In addit ion, DFA 

has been employed in seismology Current i et al. (2005); Telesca et al. ( 2 0 0 1 a , b , ‘ 

2003, 2008). ‘ 

The 1970-1995 earthquake catalogue of south China contains 13,653 M > 1 

events. In this study the events w i t h M > 1 which were recorded in southern Cal-

i fornia during the same period have been downloaded from http: / /www.data.sccc-

.org. The basic patterns of the epicenter distr ibut ion in these two study areaij are 

visually presented below in Figs. 6.1 and 6.2: 

The scalings curves for the two areas which were obtained by using DFA 

(Fig. 6.3) exhibit a similar pat tern consisting of two power-law parts, as can 

be seen in the figures below: The first part yields a slope around 0.5, which is 

indicative of a random process. The second part exhibits a significant positive 

long-range correlation w i t h a slope equal about 0.75. A slight difference exists 

between the two scaling behaviors in the location of the crossover point separating 

the two scaling rconges. Since tHe lengths of the analyzed series for the two areas 
I 

« 
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F i g u r e 6 .1 : Distribution of epicenters in south China from 1970 to 1995. 

are different, the positions of the crossover points arc represented by their relative 

position in the series (wi th the investigated scaling range of each catalogue divided 

into 60 equal intervals at the logarithmic scales). The crossover points are located 

the 37th and 45th interval for south China and southern California, respectively. 

After obtaining the double power-law scaling behavior, the sensitivity analy-

sis is performed from three aspects, namely: the effects of threshold magnitude, 

incompleteness, and the edge of the study area. This study is first concerned wi th 

’ . t he possible effects of the magnitude range used in the analysis, data incomplete-

ness and boundary of the studied area on the DFA resuits. Sensitivity tests were 

conclucted to test whether these factors should substantially modify the scaling 
» 

behavior. In order to determine the effect of the threshold magnitude, events 

wi th magnitude less than a threshold value are removed from the catalogues and 

subjected to the DFA. The scaling curves using different threshold magnitudes 

are also shown in Fig. 6.3. The resulting curves retain the twopa r t scaling struc-

ture for all threshold values. The slope of the first scaling range remains at 0.5, 
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F i g u r e 6.2： Distribution of epicenters in southern California during the period 1975 to 1995, > 

which is part of our study period. (This figure is adopted from Godano ct al. (1999).) 
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Figure 6 .3: The scalmgs of the catalogues with different threshold magnitudes of south China 
(the upper panel) and southern California (the bottom panel) were obtained by DFA. The selec-
tion of threshold magnitudes takes into consideration that there should be sufficient earthquake 
events left to ensure the statable results of DFA. The solid straight lines are estimated by linear 

‘ regression. These scalings are shifted vertically for the sake of better illustration. 
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while the slope of the second scaling range decreases w i th an increasing threshold 

magnitude approaching and fluctuating around the value 0.5. Thus, in this study 

the double power-law scaling behavior seems more apparent for small events. 

For testing the effects of data incompleteness, a port ion of events were ran-

domly removed and the reduced catalogue was re-analyzed using DFA. As shown 

in Fig. 6.4, no significant modif ication to the scaling pattern is noted when up 

15% of the events are removed. When a greater percentage of events was removed, 
* 

the slope of the second scaling range begins to decrease. 

The effect of area boundary on the scaling behavior was also studied by con-

fining the data set to events localcd beyond a certain distance from the edge of 

the study area in the DFA. The threshold distances used were set at {*%, 10%, 

15% and 20% of the wid th or length of the area. As shown in Fig. 6.5, the con-

finement of data to wi th in a certain distance f rom the edge reveals no significant 

• modif icat ion in the scaling pattern. The above studies show that the scaling be-

havior is highly insensitive to the threshold magnitude, data incompleteness and 

prox imi ty of events to the boundary of the study area. The scaling behavior is, 

therefore, a property of the seisinicity of the area and possibly bears pertinent 

informat ion on the dynamics of the seismicity of the area. 

Since Davidseri et al. (2007) suggested that rock fracture is similar to the 
广 

earthquake process, this study wi l l perform the DFA on the series obtained 

• f rom the rock fracture experiment on sandstone. The upper panel of Fig. 6.6 

shows tha t the scaling is independent of the choice of the surface of projection, 

and no crossover point can be found in the rock fracture process (e.g. the slopes 
• yr 

for the epicenters on three surfaces are about 0.5 in the whole scaling range). 

We may then select their projections on one of three surfaces and preform the 

randomly-removal and boundary-zooming-i i i analysis. The r ight panel of Fig. 6.6 

shows that the scalings are maintained the slopes about 0.5 in all different analysis 

conditions. Hence, the scaling pattern of rock fracture is different from that of the 

epicenter in two real-life earthquake catalogues. Only the power-law w i th slope 

0.5 could be found for rock fracture processes comparing w i th the two-part-scaling 
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Figure 6 .4: The scalings of the catalogues with events randomly removed occupying different 
percentages of south China (the upper panel) and southern California (the bottom panel) ob-
tained by DFA. The scalings without any event being removed are also presented for comparison 
and are marked by the legend corresponding to ’0%’_ The solid straight lines are estimated by 

. linear regression. These scalings are shifted vertically for the sake of better illustration., 
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F i g u r e 6.7： The scalings of obtaiiuid from shuffled { X , } for south China and southern 
California are obtained by DFA. These scalings are shifted vertically for the sake of better 
illustration. 

pattern w i th slope about 0.5 and 0.75 for south China and southern California, 

respectively. 

The series {6>,}, describing the change in the migrat ion direction of epicenter 

location, theoretically provides information different from that of the spatial and 

temporal distance ( { T } and { D } ) between successive earthquake events. This 

study has quantitat ively studied the relationship among the three series {0 } , {7 ' } , 

and {£) } . First to be investigated was the dependence of {6>,} on the temporal 

order of earthquake events. By shuffling the temporal order of {X,} the epicenter 

distr ibut ion is st i l l kept; however, as shown in Fig. 6.7’ the two-part scaling 

pattern of is found to diminish and a single power-law w i th slope about 0.5 

appears for both study areas. Therefore, the two-part scaling pattern is closely 
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related to temporal order of events but i t has l i t t le relationship to the. spatial 

distr ibut ion of epicenters. The correlation ajefficicnt, C , of the pairs of { T ] , 

and {D} arc calculated. For south China the computed CV,<?, CV./j>, and Co,d 

arc about 0.02, 0.12, and 0.2, respectively. For southern California the results 

are around 0.001, 0.07, and 0.2 and for rock fracture they are nearly 0.03, 0.004, 

and 0.26, correspondingly. Heiicc, {0 } , a«s a new per.spcctive of analysis is almost 

independent of the wait ing time, but i t is sightly corrdated to the bctweenness 

distance. This researcher feels that this should he happening because both 

and {D} arc extracted from the locations of Ihe epicenters, even though the 

correlation cocfliciciit between t.hmii is st i l l low. Therefore, this study holds that 

the {6>} contains the new information which can be reflected by neither { T } nor 

{ 外 

As a supplement to the previous studies on the spatial and temporal diytance 

between two successive earthquake events, this thesis wi l l propose a new analy-

sis perspective focusing on the direction of earthquake migration. The chaiigod 

direction is first extracted from the locations of epicenters and is denoted by the 

angles, {Oi}, between two migrat ion directions. The DFA is then employed to 

investigate { " ‘ } for the catalogues of south China and southern California wi th 

earthquake events holding min imum magnitude 1. The same scaling stnicture 

consisting of two ranges is found for both catalogues. 

The analysis above reveals the characteristic scaling behavior of the change 

in direction of earthquake migration. From this the following inferences can he 

made. Firstly, the scaling curves for both catalogues comprise two parts: the first 

range is dominated by the power-law slope 0.5 while the second range is about 

0.75. The positions of the crossover points are diUcreiit for the two catalogues. 

These differences probably contain information pertaining to local scismicity. Sec-

ondly, only the slope of the second scaling range changcy wi th the threshold iiiag-

• nit i ide used in the analysis, the slope of the first scaling range remains at 0.5 for 

all threshold magnitudes. Third ly, the location of the crossover points is found 

to depend on the length of analyzed scries {0} . For further comparison, a siini-
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lar analysis is made on simulated inicroshock process. Coiisecniently, the whole 

scaling range is dominated by the power-law scaling wi th slope 0.5. The simple; 

composition of the material used in the rock fracture experiment may able to 

explain this difference. 

The scaling structure reveals a basic pattern of earthquake migration wi th 

respect to the temporal order of earthquake events. From an average view, the 

crossover point indicates a crit ical scale for the study area. Tho earthquake events 

. w i th in this scale migrate randomly. However, if the observable scale is beyond 

the cri t ical one t l iei i the inoiiiory of migration appears. bVoiii Ui() dircctioiial 

analysis of earthquake migration, the pattern can be interpreted lo consist of 

several clusters of earthquake events w i th an average size which is quantified by 

the cri t ical scale. W i th in a cluster, the migration direction of earthquake events 

can be considered random; however, the migration direction of the clusters ex-

hibits a control by some underlying factors. These factors may be related to 

the fault pattern in an area and the tectonic factors governing the recurrence of 

earthquakes. Such proport ion and the randomness in each cluster is maintained 

under all conditions considered here, only the slope in the second scaling range 

decret̂ Lses wi th the increasing threshold magiiitudas approaching the value 0.5. 

However, the extent of the decrease for two catalogues is different. Such differ-

ence may be at t r ibuted to the differciicc in fault pattern in the two areas: the 

fault system in south China shows a rectangular pattern while that in southern 

California shows a anastomosing pattern. The earthquakes arc more likely to 

happen on fault lines. Conceivably, the change in epicentral migration direction 

is relatively larger in a rectangular fault system than that in an aiuustoirioHiiig 

system. 

6.3 Summary 

I n summary, a universal scaling pattern of earthquake migration is revealed by 

directional analysis. The analysis in this study suggests t l ia t the real-life earth-

quake migration at scales less than the crit ical scale actually follows a random 
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process; however, a positive long-raiigc correlation appears at large scalcs. Such 

correlation and the crit ical scale is highly insensitive to the random-removal or 

the effect of boundary of the analyzed area but i t is related to the threshold mag-

‘ niti idcs. However, the positive long-range correlation at large scalcs approaches 

to randomness as the threshold magnitudes increase, even though there are sonic 

fluctuations around t,h(’ random status. 

W i t h regard to earthquake migration, the migrat ion direction, spatial and 

temporal betweeii-eveiit distance depict the seismic process from diffnront pcr-

spcctivcs. Sliouki tho unified scaling law be established on the basis of combi-

nation of the these three parameters, which is Himilar to what have been done 

hy Bak et al. (2002) to combine the G-R Law, Omori Law, and the npiccntcr 

distr ibut ion together? Actually, as we have shown, siiicc the new jxirametor, mi-

gration direction, the wait ing time and tlie betweeiiiicss distance have very l i t t le 

、 dependence on one another, i t would not make too much of a difierencc oven if 

we combine them together. Then, in future study, we would like to investigate 

these parameters separately to ensure a complete (inscription of the earthquake 

migrat ion and tho simplicity to perform the analysis. 

* 
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Chapter 7 

Conclusion 

The results of this thesis are summarized in this chapter. The main results 

wi l l bo presented first. 

7.1 Main Results 

This thesis aims to render a rigorous and systematic study of geographical 

phenomena in mult iple temporal and spatial scales wi th t.lie aid of fractal and 

mult i f ractal analyses. To achievc this the study first worked oii a conceptual level. 

A number of theoretical issues have been discussed, and the academic debate on 

these has been reviewed. The corresponding works have been proposed to refine 

the framework of the fractal and mult i fractal analyses which wil l be conducted 

in this study. After bui lding a solid basis, this study applied the fractal and 

mult i f ractal analyses in the geographical case studies. Some of the significant 

properties of these geographical processes has been uncovered. 

On the basis of the reviews of the mainstream algorithms for fractal and mul-

t i f ractal analyses, taking the speciality of the geographical problems into consid-

eration, the DFA and MF-DFA were selected aa the preferred methods to be used 

, i l l this study due to: their simple procedure, small finite size efFcct, stable scaling 

behavior, and their capability to study the structures and processes disturbed by 

unknown trends or noises. 
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Despite their many advantages, DFA and MF-DFA are not entirely prefect 

methods. In this study, after elaborative investigation two weakness of DFA 

and MF-DFA, and two problematical relationships of MF-DFA have been icleiiti-

fieci, and corresponding improvements and corrections have been suggested. This 

study has proposed T W D F A and MF-TWDFA to obtain better scaling behavior 

wi th loss fluctuatioTis. An EMD-t)aswl method was also developed as a pie-

pr()('.(!ssing in order to eliminate the iiegativci iiifliioncc of poriodic t.rr.ii(ls on the 

results of DFA and MF-DFA. Two problematic relationships in one- and two-

dimensional space were corrected based on the previous studies, which are botl i 

theoretical and experimental in nature. These corrections can Yni employed to 

reveal accuratc relationships in the formalism of multifractal analysis for general 

situations. 

DFA, MF-DFA and tlieir modified versions are applied in this study of ^eo-

graphical problems. The better performance of improved DFA and MF-DFA is 

shown in two of the case studies, which arc: temperature variation and sunspot 

activity. A natural mechanism of earthquake process has been revealed in this 

study based on the scaling analysis from a new perspective using DFA. The con-

clusions of this analysis are briefly described below. 

7.1.1 TWDFA and MF-TWDFA 

I t him been argued that points nearer in time are more related than points 

some distance apart. Correspondingly, we have proposed a locally detrended 

mcchanisrii for MF-DFA, and the model is called M F - T W D F A in general and 

M F - M W D F A in particular. The theoretical arguments have been supported by 

numerical simulations and a real-lifo problem. Speciiically, this study has deinon-

strated that M F - T W D F A can indeed improve the linear relationship between the 

fluctuation function Fri{s) and t l ic scale s. Therefore, crossover point(s)'can be 

effectively detected. In particular, i t is easier to detect scaling behavior for large-

range scales which cannot be dctectcd by the conventional MF-DFA otherwise. 

W i t h this technical advantage, we inanaged to find the crossover of timescale 
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from one month and one season in the tcmperaturo scries elusive as regards de-

tection by the conventional MF-DFA. The weekly scale seems to correspond to 

the 'general weather regimes' or 'Grosswctterlagen' in climatology. The monthly 

and seasonal scale might correspond to tho usual scale of E l Nino, the cliiriatc 

anomaly. The significance of these two crossover points is echocd by the reaiilts 

obtained by other researchers via the statistical and wavelet methods (Ding ct al., 

2002). On the basis of these two crossover points, we further fouiid that sudden 

changes of temperature arc more likely to happen at the weekly rather than the 

monthly scale. A m i the eflcct of t in; El Nino events on the long-range correla-

t ion of temperature of Hong Kong in the corresponding tiniescale region is also 

rcilected. Besides, the scaling behavior of the temperature scries of Hong Kong 

on a scale longer than one seafjoii unraveled by the M F - T W D F A appears to be 

more reasonable and interpretable. 

To recapitulate, a locally detrended mechanism for MF-DFA has been pro- 、 

posed, iminely the M F - T W D F A in general and the M F - M W D F A in particular. 

The proposed methods can also be treated as a kind of combination of MF-DFA 

and D M A since the moving-window technique has been adopted for improving the 

estimation of local trends. The validation of the relation between the M W D F A 

and T W D F A scaling exponent and the Hurst exponent has been shown in the ap-

pendix. Besides, simulated numerical experiments are also employed to validate 

the proposed methods. Equivalent performances of M F - T W D F A and MF-DFA 

on the correlation property and mult i f ractal i ty nature of these constructed series 

arc conftimed. Besides, we argue; tha t a better linear relationship can be obtained 

using M F - T W D F A . Therefore, the crossover points, which indicate changes in the 

correlation properties of t ime series at different scales (Hu ct al., 2001) and draw 

much attention in the applications of MF-DFA (Eichner et al., 2003; Talkner and 

Weber, 2000), are more easily detected and located. I i i addit ion, the uncertainty 

clue to the large fluctuations around the regression line (Lennartz and Bundc, . 

2009) can be reduced by the proposed methods. Compared against the results 

of conventional MF-DFA, this k ind of uncertainty, especially at large scales, as 
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shown in the real-l ife appl icat ion, can indeed be roduced. R M S F is employed to 

quant i ta t ive ly support th is advantage. Another benefit gained f rom this technical 

advantage is tha t the scaling behavior, which usually cannot be detected because 

of the great f luc tuat ion for a range larger than N / A , at the scale range up to TV/2 

can st i l l be studied in th is appl icat ion. Furthermore, the conclusion drawn on the 

basis of the newly detected crossover points seems to bear more physical meaning. 

The use of M F - M W D F A and M F - T W D F A is in part icular more reasonable when 

linear regression is employed as the basis for cletreiulii ig. 

7.1.2 EMD-Based Method 

. T h e E M D method has been employed to decompose the sunspot t ime series 

into eight I M F s and one r. As regards their physical meanings, IMF2 to IMFs 

should correspond to the 153-day cycle of 7-ray flares and interplanetary magnetic 

fields, the 1.3-1.4 year periods, Q B O , the 11-year cycle, and the Hale, (iouhk) Hale 

and Gleissberg periods respectively. Th is study explored the influence of these 

components or their combinat ions on the scaling behavior of the sunspot t ime 

series using DFA. For the scale ranges less than 60 months, the f inding is similar 

to that of H u et al. (2009) whi le is inconsistent w i t h t ha t of Movahed et al. (2006), 

provided the dominant frequencies of less than 60—1/month is removed. For t ime 

range larger than 60 months, compared w i t h the complete loss of the in format ion 

“ i n the results of H u et al. (2009)，the EMD-based method obtains the slopes 0.28 

and 1.49 respectively. Th is result indicates tha t the scaling behavior can st i l l be 

found for the series w i t h the 11-year cycles removed on the larger scales. The 

slope greater than 1 suggests tha t this detrended series seems to be non-stat ionary 

and w i t h Hurst exponent 0.49. A l though, as i t was obtained through a numerical 

experiment, this exponent might he inaccurate, the EMD-bai^ed method can at 

least par t ly reflect in fo rmat ion contained in the series on large scales, which, aa 

suggested by the first experiment, can be of considerable use in the study of the 

scaling behavior of the series. 

Two numerical experiments have also been performed to test these three de-
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t rending methods. None of them can completely remove the influences of the , 

added periodic trends. A l though spurious crossover points appear, the. effect of 
f 

the periodic trends on relatively small scales can be satisfactorily el iminated by . 

the three methods. Whi le almost all informat ion on the large scales is removed 

by t l ie adaptive detrendi i ig method, the other two methods can par t ly i i ia i i i ta in 

—even considerably in the first experiment — the informat ion contained in the 

series. I t should be noted tha t i f appropriate parameters arc sclectcd, the results, ‘ 

including the scaling behavior and posit ioning of the crossover points, obtained 

by the EMD-baused and Fourier methods can he very similar, which can also be 

found in the sunspot series analysis. However, the determination of the setting 

for the EMD-baaed i i iethod is much easier and more natural than for the other 

two methods. 

In sumiliary, the EMD-based method Ls strongly recommended since i t is a 

‘ tota l ly data driven and adaptive method. In general, mostly 11-13 IMFs are 

obtained by E M D . I t is very convenient to study the effect of each component 

compared w i th the large number of terms of the Fourier-based method. And i t 

is reasonable to draw the conclusion that H ^ 0.72 and 1.49 for two different 

t ime scale ranges divided by a crossover point located at about 60 months if the 

11-ycar cycle is removed, and H ^ 0.69 and 0.28 for t ime ranges divided by the 

crossover point of 60 months w i th all cycles longer than 11 years removed. 

7.1.3 Problematic Relationship in ID MF-DFA 

MF-DFA iy a generalized version of DFA developed for the purpose of charac-

terizing the fractal and mul t i f racta l properties of stat ionary and non-stat ionary 

signals. Kantelhardt et al. (2002) established the relationship for stationary, posi-

t ive series in Eq.(3.44) which connects fi{q) to T(q) for M F - D F A . This relationship 

has been used in a large number of researches. We have shown in this study that 

Eq.(3.44) is in fact val id only under the special si tuat ion H' = 0. Our argument 

has also been substantiated by numerical experiments and theoretic derivation 

which suggest that the generalized relationship between h{q) and r{q) should be 

147 



T{q) = qh{q) - qH' — 1 instead of the one stipulated in Eq.(3.44) for the station-

ary, positive t ime series. The singular spectni i i i , a and / ( a ) , based on h{q) have 

also been proposed in Eq.(4.39) and Eq.(4.40) respectively t,o replace the existing 

ones stipulated in Eq.(3.48). 

To recapitulate, this study has conceptually argued and experimentally demon-

strated one problem in M F - D F A . T h a t is the relationship between h(q) and T(q) 

in MF-DFA. A modified relat ionship on the plausible form about this problem 

has been suggested. 

7.1.4 Problematic Relationship in 2D MF-DFA 

In the extension of M F - D F A to two-dimensional space by Gu and Zhou (2006), 

some corresponding relationships of the exponents have also been extended. 

In this thesis, we have casted doubt on the val idity of two relationships in Gi i 

and Zhou (2006), which connect the Hurst exponent H to h{q = 2) in Eq.(3.58) in 

Gu and Zhou (2006). Such relationships not only lack the theoretical derivations, 

they also contradict some empir ical understandings. Specifically, (i) establish the 

correct relationship between H and h{(} = 2) is cr i t ical for obtaining accurate 

Hurst exponent f rom the scaling exponent h{q) of 2D MF-DFA. However, the 

original one in Eq.(3.58) is not in synchrony w i t h the I D situation. Based on 

our numerical experiments, we have brought forth a new relationship, Eq.(4.42), 

which appears to be more natural and logical, and is in synchrony w i th the I D 

situation. In addit ion, we have also shown by numerical experiments that i t is 

incorrect to use 2D R / S analysis Alvarez-Ramirez et al. (2008) to analyze non-

stat ionary surfaces. 

In summary, we have conceptually argued and experimentally and empirically 

demonstrated the problematical relationship of the exponents in 2D MF-DFA. A 

more logical and reasonable relationship was conjectured by us. 
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7.1.5 Universal Scaling Structure of Epicenter Migration 

This study has proposed a new parameter, which is the 0 indopciidciice of 

the previous event-betweennass spatial and temporal distance, in order to ca[>-

ture the directional informat ion of earthquake migration. Common findings for 

two of the ease studies (i.e.. south China and southern California) can be used 

to uncover the natural inechanisriis of the earthquake procoss. Firstly, a double 

power-law scaling pattern is revealed through the directional analysis using DFA. 

Secondly, the scaling exponents of two scaling range are equal 0.5 and 0.75, re-

spectively. Meanwhile, the whole scaling range is dominated l)y the slope 0.5 for 

the microshock data. A cri t ical scale could he indicated by the crossover point 

d iv id ing two ranges. Our analysis in this study suggests that some clusters are 

formed during the earthquake migrat ion, w i th averaged size characterized by the 

cr i t ical scale. The directional independent events can be identified wi th in each 

cluster; however, a positive correlation exists outside the clusters. Third ly, this 

correlation and the cr i t ical scale is highly insensitive to the randomly-removal 

or the effect of boundary of the analyzed area, but i t is related to the threshold 
» 

magnitudes. The double power-law scaling pattern becomes less apparent when 

threshold magnitude increases. Fourthly, a.s the threshold value increases, the 

slopes at large scales approach 0.5 even though there arc st i l l some fluctuations 

around 0.5. The slight differences between the results of the two areas arc the 

relative locations of crossover points and the different extent of the ciecreaise of 

the slopes in the second scaling range, h int ing at the different geological structure 

of south China and southern Cali fornia (e.g. in the differing structures of the two 

fault systems). For southern California, the crossover point appears at the scale 

0.75=45/60, w i th scaling range normalized to 1. In the same study area, a kink 

could be found in Fig. 4 of Bak et al. (2002), and a crossover point separating the 

power-law is to be found at the left side to another scaling range in Figs. 1 and 2 

of Davidsen and Paczuski (2005). Interestingly, the scales indicated by the kink 

and crossover point are both about 0.75 provided the scaling range normalized to 

1. Thus, this scale should contain the special scismical information for southern 
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California. 

/ 

7.2 Research Limitations and Suggestions for 

Further Research 

In spite of great, efforts which have been made in this study to improve the 

DFA and MF-DFA and so better understand the earthquake process, there sti l l 

are some l imitat ions to this research. Some suggestions for further researf-h based 

on these l imitat ions arc also listed here. 
f 

1. Al though the improvement of the T W D F A and M F - T W D F A is apparent 

they are, however, computat ional ly expensive because the t ime distance 

matr ix W^ needs to be computed. How to develop a fast algorithm for the 

proposed analysis is one problem which needs to he addressed by further 

research. In addit ion, choosing a suitable w ” for M F - T W D F A , although not 

unique to the proposed model, is another topic that needs to be investigated 

further. 

2. Al though the scaling behavior at small scales could be maintained well 

during the procedure of the EMD-b£U>ed method to eliminate the periodic 

trend, its original scaling pat tern at large scales is affected (as shown in the 

numerical experiments). Therefore, a better algor i thm to keep the informa-

t ion at all scalcs is required in order to better reducc the influence of the 

periodic trend. 

3. In the discussions on the relationship in 2D MF-DFA, a conjecture was made 

in this thesis as to the corrected relationship; however, this new relationship 

w£us suggested on the basis of numeric experiments and empirical derivation. 

Solid mathematical study, such as the formal study or analytical calculation, 

is so far lacking in this study because of the research l imitations. I t is to be 

recommended, therefore, that further research should conduct an i i i -dcpth 

investigation from the theoretical aspect. 
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4. W i t h regard to the exploration of the earthquake process, a very interesting 

pattern of the scaling behavior has been found for dilferent earthquake cat-

alogues, which suggests the a natural mechanism of earthquakes has been 

revealed. Some interpretations of the geophysical aspects of this lias been 

offered; however, the soismical meaning of the findings of this study deserves 

further careful study. Further research should be conducted in cooperation 

with a gcophyyicist. I i i addit ion, we plan to apply the (lir(i(:ti()iml analy-

sis to areas other than south China and southern California to check the 

universality of the scaling behavior obtained in this study. 

5. Considering the fractal nature of the earthquake process, i t is recommended 

to perform further fractal and mult i f ractal analyses on the earthquake wave 

records, which should contain more instantaneous information. Such infor-

mation is cxpcctod to provide a more subtle profilo of eiuthquako activity. 

In particular, some special features are expected to be extracted from this 

information that is recorded before strong events which wi l l shed some light 

on short-time earthquake prediction. 
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