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Abstract

This thesis is devoted to the study of nonlinear elliptic equations and systems.
It is divided into two parts. In the first part, we study the uniqueness problem,
and in the second part, we are concerns with traveling wave solutions.

In Chapter 2 we study the uniqueness problem of sign-changing solutions for
a nonlinear scalar equation. It is well-known that positive solution is radially
symmetric and unique up to a translation. Recently, there are many works on
the existence and multiplicity of sign-changing solutions. However much less
is known for uniqueness, even in the radially symmetric class. In Chapter 2, we
solve this problem for nearly critical nonlinearity by Lyaponov-Schmidt reduction.
Moreover, we can also prove the non-degencracy.

In Chapter 3 we are concerned with the uniqueness problem for coupled non-
linear Schrodinger equations. The problem is to classify all positive solutions. In
Chapter 3 some sufficient conditions are given. In particular, we have a sufficient
and necessary condition in one dimension. The proof is elementary because only
the implicit function theorem, integration by parts, and the uniqueness for scalar
equation are needed.

In Chapter 4 wc go back to the nonlinear scalar equation and consider the
traveling wave solutions. Using an infinite dimensional Lyaponov-Schmidt reduc-
tion, new examples of traveling wave solutions are constructed. Our approach
explains the difference between two dimension and higher dimensions, and also
explores a connection between moving fronts and the mean curvature flow. This

is the first such traveling waves connecting the same states.
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Chapter

Introduction

In this thesis, we study two kinds of problems. The first one is the unigqueness
problem for elliptic equations and systems. The second one concerns the traveling
wave solutions. We will consider three nonlinear elliptic equations : the nonlinear

Schrodinger equation of the form
Au~u  + \u\P-\ =0 in M", ue (NLS)

the coupled nonlinear Schrodinger equations of the form
Alii — Aitii + /xitif + puiu2 = 0

Au2 - X22+ I2U2+ Pulu2 = 0 in EA, (CNLS)

and the traveling wave equation of the form

dv
D0 iv+i

Next we will consider these problems separately.

-v +VvA=0 in (Twec)

Uniqueness of sign-changing solutions in NLS

Consider the general semi-linear elliptic equation

(1L D
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where / : IR — IR is a continuous function with /(O) = 0. Equations of type
(1.1.1) arise in various contexts of physics, such as, constructive field theory, false
vacuum in cosmology, nonlinear optics, laser propagation, etc. They are also
called nonlinear Euclidean scalar field equations, see [15, 16] and the references
therein.

Such equations arise in particular in the search of standing waves in non-
linear equations of the Klein-Gordon or Schrodinger type. Indeed, consider the

nonlinear Schrodinger type equation
AT/

where T is the complex-valued wave function, g is a real function such that g{0)
0. Considering the so-called standing wave solutions, i.e.,di(/7,X) = e—{Lii(c) » one

is led to the following equation
Au-Xur f{uy =0,

where f{u) ~ g{uMu.
The Lagrangian E{u) associated with (1.1.1), is defined by

B{u) ~ | f [ Fu)dx (1.L2)
2 JRN ™

where F{s) = fj f{t) dt. The functional E{u) is also called the "action" as-
sociated with (1.1.1). Moreover, by analogy with nonlinear elliptic problems in
bounded domains, E{u) is sometimes called the energy associated with (1.1.1).
Roughly speaking, a solution u to (1.1.1) such that E[u) < +oo0 is called hound
state solution. If a bound state solution uq has the property of having the
least action among all non-trivial bound state solutions, namely, 0 < E{uo) <
E{u), for any non zero bound state solution u of (1.1.1), then ugqg is called
ground state solution. For the existence of ground and bound state solutions,
see 25, 15, 16, 13, 26, 27] and references therein.
In Chapter 2, we consider (NLS), i.e.,

Au-u  + WIP-*u=0 inR”, uGi/*"M"). (1.1.3)
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It is well-known that, if

_ f +oo0, if V.= 1,2,
1<P9<2*— 1, where 2*- <

1

then (1.1.3) has a ground state solution, which is positive (cf.[25, 15]). For p >
Pohozaev's identity implies that (1.1.3) has no non-trivial solution (cf. [81,
84]).

The structure of positive solutions to (1.1.3) is completely classified thanks
to the moving planes method developed in [44] and the uniqueness result in
53], More precisely, the space of positive solutions to (1.1.3) is a smooth N
dimensional manifold parameterized by w{- — x), x GM”, where w is the unique
positive radially symmetric solution to (1.1.3).

Next, we move on to sign-changing solutions to (1.1.3). Unlike positive solu-
tions, sign-changing solutions have more complicated qualitative properties, such
as the number and shapes of nodal domains and the measure of nodal sets. For a
deeper discussion of a more general case, we refer the reader to the recent survey
article [64], where various methods for obtaining sign-changing solutions devel-
oped in the last three decades are revisited. Apart from the survey article [64],
there is a quite interesting paper [76], where the authors construct infinitely many
nonradial solutions in any dimension N > 2 and explore a connection between
finite-energy sign-changing solutions of the semilinear elliptic PDE and constant
mean curvature surfaces in three dimensional Euclidean space.

To study the structure of sign-changing solutions, it is reasonable to consider
the structure in the class of radially symmetric functions first. Given any integer
A > 1, it is known that there exists a pair of radial solutions to (1.1.3) having
precisely k nodes (cf. [13 > Theorem 2.1]). However much less is known for fur-
ther qualitative properties, such as the locations of nodes, non-degeneracy and
uniqueness.

In Chapter 2, we regard the exponent p as a parameter and apply the finite

dimensional Lyaponov-Schmidt reduction to study the structure of radially sym-
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metric sign-changing solutions of (1.1.3), especially on the unigueness problem.
The approach is motivated by [93], where the author studies the uniqueness and
critical spectrum of single boundary spike solutions for a singularly perturbed
problem. To carry out the approach, it is worth pointing out that the so-called
Emden-Fowler transformation is used to deal with the blow-up as p goes to the
critical exponent For more details we refer the reader to Chapter 2,

Our first result in the thesis concerns the uniqueness of sign-changing solutions
of (1.1,3) in the class of radially symmetric functions when p approaches the

critical exponent

Theorem 1.1 (Uniqueness). For N = 3 and k = 1, there exists a constant

£0= k) > Qdepending only on N and k such that: if
N+ 2 ivV+ 2 y ee. [
(1-1-4)

then (1.1.3) admits aunique radially symmetric sign-changing solution having

exactly k nodes, up to one sign.

Let us denote by Up the unique radially symmetric sign-changing solution in

Theorem 1.1. Our second result concerns the non-degeneracy of Up.

Theorem 1.2 (Non-degeneracy). For N > 3and k > 1, there exists a positive

constant Si < el] such that: if

N +2 N +2 A
I~ = ’ (1.1.5)

then Up is non-degenerate. Namely, if (p satisfies

then dxi - dxj\[

: f dur, dur, 1
@ G span
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1.2 Uniqueness of positive solutions in CNLS

In Chapter 3, we study systems of nonlinear scalar field equations, that is, the
coupled nonlinear Schrodinger equations:

/SUI — Aiwi + iiiul + (3uiul = 0 in

Au2 — 2R+ M2ul + (3ulu2 = 0 in RA, (CNLS)

eifi(R"),

where li/s are unknown functions, Xj], and /5 are given constants. > 0is
the attractive case, while < 0 is called repulsive. This system arises in math-
ematical model for various phenomena in physics, such as nonlinear optics and
Bose-Einstein condensation. We refer to the survey articles [b1: 43] for back-
grounds.

When the spatial dimension is one, i.e., N = system is integrable, and
there are many analytical and numerical results on solitary wave solutions of the
general m-coupled nonlinear Schrddinger equations by physicists ([47, 50, 99]).
But it is still very hard to classify all solutions. One part of the work here was
intended as an attempt to study this problem, see Section 3.2 of Chapter 3 for
more details.

For higher dimension, as far as we know, the first general mathematical the-
orems were obtained by T.-C. Lin and J. Wei in [55, 61], where they consider a

more general m-coupled nonlinear Schrodinger equations of the form

Auj - \jUj + E 13jkwk?uj -0 inM~A, N S 3,
k=l

(1.2.1)
Uj io=
Indeed, they considered the following minimization problem:
c.= uIQK/I E\uJ]: (1.2.2)
where the associated energy functional is given by
1 m [ .rn

Elu] :=5E / (|Vu,f + — - ftfc / hf (1.2.3)
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for
Nwm (1.2.4)
and the so-called Nehari manifold is defined by
A = (ni)..”’Um) G lUj >0, Uj£ 0,
2 (1.2.5)
Irn  IVUjf + Xj /HEw = E ftfc iftiv ulu], j m

A minimizer, if it exists, is called a ground state solution in [55]. Therefore, a
ground state solution is a positive solution such that its energy is minimal among
all the positive solutions.

Partially because the ground state solution defined in [55] might have Morse
index m due to the fact that the Nehari manifold J\f defined in (1.2.5) has codi-
mension m, a different definition of ground state is used in [11, 5]. In the following,
we say that n is a bound state solution if u G is a solution and satisfies
E[u] < +o0o. A bound state u whose energy is minimal among all non-trivial

bound states, namely,

is called a ground state solution. We emphasize that all the ground state solutions
may be semi-trivial, i.e., one of its components Uj = 0. When all >0
using the Nehari manifold approach and symmetrization arguments T. Bartsch
and Z.-Q. Wang [11] proved that (CNLS) has a semi-positive radially symmetric
ground state solution. Moreover, it is of mountain pass type and has Morse
index 1 considered as critical point of E on (I-1(f - )J/L and on (*(R"))"”. Here
consists of all radially symmetric functions in

Compare the two different definitions of ground state, there raises a quite
interesting problem: under what conditions (1.2.1) has a positive ground state
solution? Recently some sufficient conditions have been obtained in [4, 11, 68,
12, 87, 5] for large coupling parameters by differential methods, such as minimax

method and the method of invariant sets.
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In Chapter 3 we study the uniqueness of positive solutions to (CNLS) in the
attractive case, i.e.,
(3>Q. (1.2.6)

Under this assumption, using a classical "bootstrap” argument, all positive so-
lutions are classical solutions and tend to zero as \x\ — oo. Moreover, applying
Moving Planes Method (cf. [17, Theorem 1]), all positive solutions are radially
symmetric and strictly decreasing with respect to some point Xg. Without loss of
generality we assume xq = 0. Without loss of generality we write Uj{x) — Uj(r)

forr = \\and j = 1,2. Then (CNLS) becomes

u'(+ - XiUi + niuf + f3uiul = 0 in (0, +00),
u2 + — A2 + + (5ulu2= 0 in (0, +00), (1.2.7)
ur (0) = =0 and Ui(r), U2(ry 2 0asr  +oo0.

Denote by w the unique radial positive solution of
Aw - wr wr=0, we
Our first result in Chapter 3 concerns the one-dimensional case.

Theorem 1.3. Suppose N = 1and Ai= A2— A> 0. Then

(i) for
0 <P f [mir{tii’"2},max{/ii,/i2}], (1.2,8)

(CNLS) admits a unique positive solution (ul/a®) explicitly given by

up to a translation;

(i) for (5G [min{"i, /< } - magg2Z] but "1+ (12, positive solution doesn't

exist;
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(m) for /it = /i2 — > 0; all posztzve solutions of (CNLS) are of the form

cose "w(Vxx),sme*w(Vxx) j> ye e (0,M), (1.2.10)

up to a translation.

Unlike to one dimension case, the situation is more complicated for higher di-
mensions. In general, the question of uniqueness of positive solutions to nonlinear
equations is difficult For scalar equation, the shooting method and Pohozaev's
identity can give uniqueness (cf. [53, 20]). However for systems, there are very
few results on uniqueness, and it seems very difficult to apply shooting method
because there are at least two shooting parameters. We briefly discuss here two
feasible ways. One way is based on the implicit function theorem. The restriction
of this technique is that only local uniqueness can be obtained mostly. Another
way based on the uniqueness for scalar equation is perhaps more efficient. How-
ever, it is not easy to reduce a problem of systems to that of single equation.

Our second result in Chapter 3 concerns the higher dimensions.

Theorem 1.4. Suppose N = 2,3.

(I) There exists /0> 0 depending only on \j »s,fij s and N such that if 0 <

[3 < (3q, then (CNLS) admits a unique positive solution up to a translation;

(if) If assume further Ai — A2; then for (3 > max{//i, (tti, u™) exphcitly
defined at (1.2.9) is the unique positive solution to (CNLS) up to translatwn;
for p 6 m.m{/j,i, 112}, max{/ii, /i2} but fii + positive solution doesn't

exist;

(ui) For Ai — AR and fii = fJ'2 = P > 0, all positive solutions of (CNLS) are of
the form (1.2.10) up to translation.

There are still many quite interesting and open problems regarding (CNLS).

We will discuss them in Chapter 3.
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1.3 Traveling wave solutions to TWc

In a totally different context, a solution of (1.1.1) can also be interpreted as

stationary solution for a nonlinear heat equation
+ Bk = iKtx). t>0, xeR™. (1.3.1)

Such problems arise in biology, especially in population dynamics theory, for a
recent account of the theory we refer to the survey articles [41, 77, 78, 94].

In Chapter 4 of the thesis, we are interested with the traveling wave solutions
to (1.3.1). It is well known that traveling wave solutions play an important role
in nonlinear science. These solutions may well describe various phenomena in
nature, such as vibrations, solitons and propagation with a finite speed, etc. In
mathematics, they form a specially important class of time-global solutions of
evolution equations. For a recent account of the theory we refer the reader to the
survey article [89], especially on the stability theory.

To begin our study, we first introduce a generalization of traveling wave solu-

tion which is defined in [14] and stated as follows:

Definition 1.1 ([14]). Let k > 1 be a given integer and let u,... "uj. bek time-
global classical solutions of (1.3.1). A generalized transition wave (or traveling
wave solution) between Ui,... ,Uk is a time-global classical solution u of (1.3.1)
such that u « Ujfor all I <j <k, and there exist k families fepl <j <fcol
open pairwise disjoint nonempty subsets o/E* and afamily (rT°)T-HH& of nonempty

subsets ofR”, such that

vieM, U dni=r,, r,u U =
I<j<k I<j<k (1.3.2)

V1 <i</C, GM,XEQL}:+OO

and

u(t, x) — Ujt, x) — 0 uniformly in i G Mand x e Qj (133)
as daljr, r) —+00, forall 1<j <p. -
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In the particular case where k = 1 and P" is a singleton in Definition 4.1, u is
called a localized pulse. Here the set Tt will be called traveling front or front

In the following we study the traveling wave solutions of

’t=Au-u+ uP-'-u, XGR™MS t>0.
0

As a first step, we look for traveling wave solutions in the following form:
X) = —ct), X~ (X, XAFH)E R W (1.3 .4)

which is called curved travelling fronts in [14]. Then the profile v satisfies

Av+c- "N - —1; + -0 in (TWc)

oxN+1

For stationary wave solutions (sometimes also called standing wave solutions),
i.e., ¢ = 0> there is a surprisingly rich and very interesting stmcture. We refer
the reader to [70, 34, 85], where a surprising link between the solutions of the
(continuous or discrete) Toda type system and entire solutions of above semi-
linear elliptic equation is provided.

The objective of Chapter 4 is to show that a similar construction can be
obtained for the positive traveling wave solutions of (TWc). Roughly speaking,
the approach in Chapter 4 explores a connection between traveling wave solutions
of (TWc) and eternal solutions to the mean curvature flow. In particular, three
new kinds of traveling wave solutions are constructed. The first one is that a
traveling wave solution with one convex non planar front. The second one is that
with one non convex front. The third one is that with two non planar fronts. It
is worth pointing out that the approach used here is motivated by [36], where the
authors construct traveling wave solutions to the parabolic Allen-Cahn equation
with multiple and non convex fronts for N > 2. Their approach also explores
a connection between traveling wave solutions of parabolic Allen-Cahn equation

and eternal solutions to the mean curvature flow.

To explain the difference between the study of Allen-Cahn equation and that

of (TWCc), we consider the one dimensional case. It is known that the linearized



8 1.3 Traveling wave solutions to TWc¢ o1l

operator of heteroclinic solution to the Allen-Cahn equation is stable and has
only one bound element in the kernel. However, the linearized operator of one-
dimensional bump to the nonlinear Schrddinger equation has a negative eigen-
value, where resonance phenomena may occurs. The main tool used in Chapter
4 is the infinite dimensional Lyaponov-Schmidt reduction, which have been well
developed in the last three decades.

For the readers' convenience, Chapters 2, 3 and 4 are independent and can be
viewed as individual papers. In fact,

Chapter 2 is based on the paper: Juncheng Wei and Wei Yao, Uniqueness and
non-degeneracy of sign-changing radial solutions of an almost critical problem,
preprint.

Chapter 3 is based on the paper: Juncheng Wei and Wei Yao, Uniqueness of
positive solutions for some coupled nonlinear Schrddinger equations, Communi-
cations on Pure and Applied Analysis, to appear.

Chapter 4 is based on the paper: Manuel del Pino, Juncheng Wei and Wei
Yao, Traveling waves with one and two fronts for an autonomous parabolic Equa-

tion, preprint.



Chapter 2

Uniqueness and non-degeneracy of

sign-changing solutions

In this chapter we are concerned with the semi-linear elliptic equation

Au-u+\u\P-"*u =0 in M* we (2.0.2)
where
N +2
N>3 and 1<p <  o—.
N — 2

It is well-known that (2.0.1) admits a unique positive solution (called ground state
solution), which is radially symmetric up to translations. Unlike positive solu-
tions, sign-changing solutions have more complicated and interesting structure.
For instance, infinitely many nonradial solutions with geometric characteristics
are constructed in [76 °

To study the structure of sign-changing solutions, we consider the problem
in the class of radially symmetric functions first. Motivated by [93], we apply
the Lyaponov-Schmidt reduction to study the uniqueness and non-degeneracy of
radially symmetric sign-changing solutions. When the exponent p goes to the
critical exponent ~~ from below, the uniqueness and non-degeneracy of sign-
changing solutions will be proved in the desired class. To carry out the approach,

the so-called Emden-Fowler transformation is used.

12
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2.1 Introduction

Sign-changing solutions of nonlinear elliptic equations and systems have attracted
much attention in the last three decades. One reason is that sign-changing so-
lutions arise naturally from mathematical models in science. Another reason is
that there are richer structures of sign-changing solutions than that of positive
and negative solutions for generic linear and nonlinear elliptic problems. For
a deeper discussion we refer the reader to the recent survey article [64], where
various methods for obtaining sign-changing solutions developed in the last three
decades are revisited, such as Nehari manifold technique, heat flow method, Morse
theory and the method of invariant sets.

In this chapter we consider the semi-linear elliptic equation
Au-uMu\P-"u =0 inE" ue (2.1.1)

where

N >3 and I<p< 2.1.2
< (2.12)

It is well-known that (2.1.1) admits a unique positive radially symmetric solution,
called ground state solution. But compared with positive solutions, sign-changing
solutions have more complicated and interesting structure. For this it is worth
to mention a quite interesting article [76], where the authors construct infinitely
many nonradial solutions in any dimension N > 2 and explores a connection
between finite-energy sign-chaing solutions of the semilinear elliptic PDE and
constant mean curvature surfaces in three dimensional Euclidean space.

To study the structure of sign-changing solutions of (2.1.1), we consider the
problem in the class of radially symmetric functions first. Applying the standard
"bootstrap™ argument, we are concerned with a boundary value problem of the

nonlinear ordinary differential equation

v+ Ayl -0, re (0,00),

. (2.1.3)
n'(0) =0, limu(r) =0. ‘
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This raises a quite interesting and challenging problem:
Problem 2.1. Classify all the solutions of (2.1.3).

When A — 1, the situation is trivial by the Hamiltonian identity. In fact,
only positive solution exists. But for A"> 2, as far as we know, this problem is
largely open.

To study Problem 2.1, it is reasonable to use the numbers of zeros of solutions
to distinguish all solutions. Therefore, first we consider the set of positive and
negative solutions. Initiated by Coffman [25] and finally by Kwong [53], it is
proved that this set contains only two points. One is positive and another one
is negative. Combining the symmetry result in [44], the uniqueness of positive
solution to (2.1.1) follows. The main method used in [25] and [53] is the so-called
shooting method. The main idea is to study the behavior of solution u[r, a) to

the initial value problem:

u" + -u + =0, Te (0,00), : \

X (2.L4)

_180) =a, u(0) = o

Let /is mention two important properties of (2.1.4). One is the existence and
uniqueness of u{r, a). Namely, given any a G R, there exists a unique solution
to (2.1.4). The other one is the oddness of nonlinearity in (2.1.4). Therefore,
without loss of generality we consider the case a > 0. After a series of comparison
results between two solutions to (2.1.4) with different initial values, the authors
in [25, 53] proved that there exists a unique ckqg [ Guch that u{r,al] » O for
all r and u{r)ao) — 0 as r goes to infinity. One feature of their approach is
that it can be extended to more general nonlinearities (cf. [73, 72]), balls and
annulus (cf. [20, 88]), quasilinear operators (cf. [37, 86)) and fully nonlinear
operators (cf. [40]). However, it seems very hard to apply the approach to sign-
changing solutions if one don't understand the complicated intersection between

two solutions to (2.1.4) in the second nodal domain.
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Now we are interested in the sign-changing solutions. For the existence, it
is known that given any integer A > 1 there exists a pair of solutions to (2.1.3)
having precisely k nodes. For example, this was proved in [25] and [13] both
by variational methods. However, much less is known for further qualitative
properties, such as the locations of nodes, the uniqueness and stability problems.
This chapter is intended as an attempt to solve Problem 2.1. Our first result

concerns the uniqueness of sign-changing solutions of (2.1.3).

Theorem 2.1. For N > 3 and k > there exists a positive constant  eS

£0{N, k) depending only on N and k such that: if

N + 2 N + 2 ,
1 —&] <P (1 (2.1.5)
then (2.1.3) admits a unique sign-changing solution having precisely k nodes, up

to a sign.

As a corollary of Theorem 2.1, Theorem 1.1 in the introduction of this thesis

is proved. For the convenience of the reader we repeat it as follows.

Corollary 2.1 (Theorem 1.1). Under the same hypotheses and conditions of
Theorem 2.1, (2.1.1) admits a unique radially symmetric sign-changing solution

having exactly k nodes, up to a sign.

To prove Theorem 2.1, we regard exponent p as a parameter and apply the
Lyaponov-Schmidt reduction, which is a powerful tool for obtaining solutions of
nonlinear problems. The idea of applying the Lyaponov-Schmidt reduction to a
uniqueness problem, is motivated by [93], where the author studied the unique-
ness and critical spectrum of single boundary spike solutions for the singularly

perturbed problem

e”Au —u-+ uP - 0 in Q,

u>0 in and =0 on do.
ou
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Here e > 0 is a small parameter, 0 is a smooth bounded domain in M” and v is
the unit outer normal on dVt. Roughly speaking, the approach carried out in [93
is to establish a one-to-one connection between the singularly perturbed problem
and a finite-dimensional problem. Then the uniqueness problem is reduced to
count the number of critical points for a finite-dimensonal problem, where the
degree theory can be easily applied. A similar approach has been used in [46].
For the proof of Theorem 2.1, let us mention one more important point. Here
we do not apply the Lyaponov-Schmidt reduction to (2.1.3) since the single point
blow-up phenomenon occurs for (2.1.3) as p goes to the critical exponent. To

overcome this difficulty, we take the so-called Emden-Fowler transformation

2

v{t) = ru{r), r= t e {—o00, 00). (2.1.6)

Then (2.1.3) becomes

v'- Bv— (7 + + =0, te (-o00,00), (2.1.7)
where
V. 2 iV - 229 (N. 22 (P
- —(iV —2K 7= —T. (2.1.8)

Note that if p~ ~” then e — 0. Now the Lyaponov-Schmidt reduction can be
applied to (2.1.7) since v is uniformly bounded by (2.1.6). As far as we know,
the Emden-Fowler transformation has been always used in the study of the Lane-

Emden equation
-Au = \u\P-hi.

It seems to be the first time to use the Emden-Fowler transformation in the study
of (2.1.1).

Let us denote by Up the unique radially symmetric sign-changing solution to
(2.1.1) in Theorem 1.1 or Corollary 2.1. An invertibility theory for the linearized
operator associated to Up is very important for the construction of new solutions

with Up. We consider the linear problem

A(F)-(t) + pup\PAI>= 0 in R”, (t>eH\R"™). (2.1.9)
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Clearly # satisfies (2.1.9) for all I<j<N.
Our second result shows that the converse is also true, which proves the non-
degeneracy of Upi i.e., Theorem 1.2 in the introduction of this thesis. For the

convenience of the reader we repeat it as follows.

Theorem 2.2 (Theorem 1.2). For N > Z and k > there exists a positive
constant Si < £o0 depending only on N and k such that: if

N+ 2 N +2

2.1.10
o (2.1.10)

then Upis non-degenerate. Namely, if (p satisfies (2.1.9) » then

dur> d%

OGspan . dxN J

To prove Theorem 2.2, we first expand (p into spherical harmonics as

Cco

fx) = YA WE 1> 0, "e SN-i (2.1.11)

m=0
where e”'s are the eigenfunctions of the Laplace-Beltrami operator —A”n-i on
the sphere normalized so that they constitute an orthonormal system in

—1). Then (Am's satisfy the following differential equations

N — 1 = )

+ - + =0 in (0, 00)
and lim = 0,
r—oo0

where A* = m(N — 2+ m) denotes the eigenvalue associated to em-

Using the Emden-Fowler transformation, above eigenvalue problem becomes

110 V)] —fE— (7 + eOVN + = X/ in (-00, 00)
and lim ip{t) = 0.
|t| — o0
Form =0, i.e., ~— 0>westudy the small eigenvalue fi* of L[ and prove that

A converges to a nonzero constant. Thus « = Qforthe mode m = 0. Form = 1

the situation is clear since we have an explicit solution u= to the equation of Hm
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Finally consider m > 2, we study the first eigenvalue —Ui(p) of L1 i.e.,
is the largest eigenvalue. If one can show that — < 2N, then Theorem 2.2
follows. By the variational characterization of eigenvalues and the properties of
\s we have obtained, it can be shown that — * N —lasp Since
N - 1< 2N Xf prove Theorem 2.2.

The organization of the chapter is the following. In Section 2.2 we give some
preliminary analysis. In Section 2.3 a finite dimensional reduction procedure is
given. In Section 2.4 we show the existence and uniqueness. Finally in Section

2.5 the small eigenvalue estimate and the proof of theorem 2.2 are given.

2.2 Preliminary analysis

In this section, some preliminary analysis are given. In oder to make the argument
more transparent, we will consider the special case of one, i.e., k — 1. The
corresponding results for general case will be given in the remarks. Furthermore,
without loss of generality we can assume that u{0) > 0 due to the oddness of
nonlinearity in (2.1.3).

We consider the equation

v'- (Bv'- (7T + + -0, tG (-00, 00), (2.2.1)
where

~  N-2 7 — 4 4. (% L
Recall that the corresponding energy functional of (2,1.3) is given by
Eju) — 1 nT + riydr — [ _dr, 2.2.3
) =1 S yrivdr— [ (2.23)
and by the Emden-Fowler transformation,

dr = v +v'? e—3 ['dt;
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r Mvig-1 dr = 2V e-At
Jo
u dr = / K+ie—{3fH

Thus the corresponding energy functional of (2.2.1) is

EAV] e-~dt 24l EFV" i dt.  (2.2.4)
Moreover, u{r) 6 if and only if v{t) G H, where H is a Hilbert space
defined by

revive Hw) I r + (7+ e2”M2]e-011i<o00}

J —t

with the inner product

noo r
wonde — vw' + (7 + VW dL
e ~J—oo L (

Similarly, we define the weighted L"-product as follows:
[vAw)? = vwe—7#7 dt.

To obtain the asymptotic behavior of the solutions, by the standard blow-up

analysis, we get the a priori estimate.

Lemma 2.1. Let v satisfies (2.2.1). Then there exists a positive constant C

depending only on N such that

Ve loo < C. (2.2.5)

Since the solution u of (2.1.1) is unique in fixed ball and annulus, so is V.

Then the a priori estimate of energy of v* can be proved.

Lemma 2.2. Let v satisfies (2.2.1). Then there exists a small positive constant

6 such that
E(v,) < 2E{wo) + 5 < 3E{wo), (2.2.6)
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where Wq is the unique positive solution of

w" —inNMAwW + =010 in M
4 (2.2.7)
w(0) = maxw(t), wit) — 0, as — oo.

Proof. First we show that the local maximum point must go to —o00. Suppose
not, there exists a sequence of local maximum points t* of v* such that t — Iq.

By the estimate of energy of fg, we get Vs{t+ U)  wg in Cf, where \g satisfies

V' — (70 + + ==0, V> 0inE, (2.2.8)
v(t) 0, as \t\ — oo. (2.2.9)
1/ H9*—1\
But by Pohozave's identity, v* — 0- This contradicts with t?0(0) > _ "> 0.

Using the similar argument for local minimum point, we get that Wqis an
approximation of v* near the maximum or minimum point. Note that in each
nodal domain, v* has one sign, thus it is one and the least energy solution by the
uniqueness of positive solutions. Compare the energies between v* and a proper

cut-off of Wo, the conclusion follows. .
Remark 2.1. For the general case A > 1, using the similar argument, we can get

E{y") < + 1L£:0-)+ < A+ (2.2.10)

Using the a priori estimate (2.2.6), one may follow the argument of [79] to

prove the following asymptotic behavior of v

Lemma 2.3. Suppose V" is a sign-changing once solution of (2.2.1), then v has
exactly one local maximum point ti and one local minimum point t) in (00,00 -

provided that e is sufficiently small. Moreover,
Veit) = Wo(t- h) — Woft — t2) + o(1) (2.2.11)
and

ti < h —o00, A —x), 12— h\ —"oo, (2.2.12)
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where wq is the unique positive solution to equation (2.2.7) and o(l) — 0 <5

e O

Proof. As shown in the proof of Lemma 2.2, the local maximum and minimum
points must go to —o0. Next we prove that the distance between local maximum
point and zero point of v!: approaches to 0o. Suppose not, using the same notation
above, there exists d G M such that, Vs:{t +1") — vq in c?), where i; °

satisfies

v — (70 + + =0) V>0in (-00, d),

vWd) = 0, v 0, as w — oo.

This is also a contradiction to the Pohozave's identity.

Now we show that there only exists one local maximum point. Suppose not,
there are at least two local maximum points ti and J2 We first show that \ti —
"2l — o00. Suppose not, \ti —/A is bounded. Then using the same notations,

— i n SmfEy) - wee vq satisfies (2.2.8). Moreover since = 0,

= 0, then applying Lemma 4.2 in [79] and the paragraph right after the

proof of Lemma 4.2, we get a contradiction. Thus —f/f— oo. Now we estimate

the energy from below to get E{vg) > 2E{wq) + Ci > 2E{wo0)-]-6, a contradiction
follows.

For the negative part, we can get the similar result and complete the proof. e

Remark 2.2. Similarly, for general case k > 1 we have
fc+i

i=i
where tj,s are the local maximum and minimum points satisfying
tj < tjj™i, tj —>—o0, tj —J7j_+| — oo.
Now we set

Sefv] - v' - pv - (7 + + W\P-'v. (2.2.13)
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To get more accurate information on asymptotic behavior, we introduce the func-

tion w to be the unique positive solution of

‘w' — MMM W +wWP=0 in E;
(2.2.14)
w;(0) — maXjtgR w{t)y —=0-as — oo.
It is standard to\see that
Wt =AHT)T\-(?X-7‘E+Oe-P‘y-f‘E/Z)’ t>0,
{t i (e-P(IX -1 (2.2.15)

w{t)=—2y\ve—(ii—hE2  + Q¥32) > 1>0,
where As™n > 0 is a constant depending only on e and N. Actually the function

w{t) can be written explicitly and has the following form

laxro" | 2 cosh hH (2.2.16)

where 70 = (iV — 2)M4. Testing (2.2.15) with w and v/ and integrating by parts,

one arrives at the following identity :

1 -1
dt usErldt =7 lu” dt. 2.2.17
" 2 P+ Jr i 0? +3 ( )

Note that w ~ H when TV " 34 Next we introduce an important definition.

For each tj 6 M, we set Wj+ to be the unique solution of
(70 + + = 0, where wt (s) = w{s — (2.2.18)

in the Hilbert space 7i. The existence and uniqueness of Wj{j are derived from
the Riesz's representation theorem.
Using the ODE analysis, we can obtain the asymptotic expansion of Wj\,

3 . L

Lemma 2.4. For e sufficient small,

Due to the different asymptotic behavior of w in different dimension spaces, we

have the following cases:
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@iy for N = 3,
= —-We'3e—"2(1 — g-eN). (2.2.19)
fiij for N = 4,
htM — — (2,2.20)
and

where Ki (z) is the modified Bessel function of second kind and satisfies

ZK'liz) + K[{z) - {"+ DKi{z) =0,

see for example [67];

(Hi) for N
=-e3 ()~ - (1+5-1; (2.2.21)
(iv) for N = 6,
= [1—Mjne %
where

uoM - 8vAK2(4r."" >

where K2{z) is the modified Bessel function of second kind and satisfies

7Kliiz) + zK'"™Mz)-(22 + AK2{z) = 0,

(v) for N>

Proof. For the convenience of the reader we postpone the details in the Appendix

A. .
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Remark 2.3. To obtain more asymptotic expansion of Wj\j 's, some remarks are

given below.
(i) By the maximum principle, we get the following useful estimates:
0< Wi < wt., -wt. < <0, (2.2.22)
and
H.\ < ciwtj < G S ciWjtj< Q2 (2.2.23)

(if) In the case of N = 3, the contribution of (f)j in the integration estimate is
gyJ; in the case of iV = 4, the contribution of t7-h the integration estimate
is 0{5j \ In in the case of TV > 5, the contribution of 4>j in the integration

estimate is 0{8j) as we will see later in Appendix.
From the above lemma and (2.2.12), we see that Wj™j = wtj+o{l) = t/;0 > tj+o(l)
in all the cases for j — 1,2. Thus by (2.2.11),
Vert = woEn 0ty
where
Wet(t) = Wwhttit) - W2t2()- (2,2.24)

Before studying the properties of ujs - t, we need some preliminary lemmas The

first one is a useful inequality.

Lemma 2.5. Forx >0,y >

X-y if 0<p <L
(2.2.25)

pX—y + y"n if 1<p<

The second is about the interactions of twow:s
Lemma 2.6. For — [J land rj> 0> 0, there hold
w’{t — W\t — s) = 0{w%\r — <3))) (2.2.26)
[ w’[t- nwNt -s)dt? {1+ of))wr\r - s oy dt, (2.2.27)
J—oo0

where o(l) 0as\t—s\ oo
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Proof. The conclusion follows from (2.2.15) and Lebesgue's Dominated Conver-

gence Theorem. .

Now we can prove the error estimates.

Lemma 2.7. For £ sufficiently small and ti)t2 satisfy (2.2.12), there is a constant
C independent of e, ti and J2 such that

I RAAA ;1100 + s: w.  e—fitdt<C\(5 + €Tk + g-r|ti-i2|/2i for iV = 3

foo

\SAwe,t] Hoc + / Rrome—udt<Clp + & + e-mi—0y foriv- 4

sUths - tlijoo + (w, e—ffdt<C\(5 + + for V>5
where r satisfies | <r <  Hf™).
Proof. By the equation of wj”tj, we have

= -pw'r — (7 — + \we,tr w. 2.2.29)

From the exponential decay of Wj and (2.2.22), (2.2.23) we deduce that

Using (2.2.22), (2.2.23), the exponential decay of wj and the fact that 7 — 70

—F/4 > we get

(7 — 'yo)Weth < CP™Nwt,  + W),

Next, we divide ,00) into two intervals li, 12 defined by
ti+t2 tl+t2
2 2
Then on i, i = 1,2, we have Wr* < wt* and then W{Y* < Witi by the maximum

principle. So on li we use inequality (2.2.25) to get

Ww. W. + Wt2
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for any r G (0,1]. Similarly on 12 the following inequality holds,

W. - - Wt2

for any r 6 (0,

By the above inequalities and using Lemma 2.6, the desired result follows. e

Remark 2.4. A similar result holds for the general case A > 1. Usually 72 will
be replaced by tfc+i > and \ti — J2 by supj \tj —/jthanks to the exponential
decay of w/s and the one dimension space. This remark is also true when similar

estimate appears.

In order to obtain the a priori estimate of ti,t2 and compute E* w. give

the estimates of

\Wwe -0 > tiloo  and A -
in the following lemma.

Lemma 2.8. For e sufficiently small - there is a constant C independent of e such

that

Ve = Wrt + 4.
where

12 lloo + <C[f3 + e + Jp] for N =3

Moo + UsWh <C[P + trezy +elll ‘0O for AT 4

[J«oc + Ue]\H < + JI1-1 218pr AT> 5

where J satisfies "< r <
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Proof. We may follow the arguments given in the proof of Lemma 2.4 in [93
First by the properties ofWj - t/s we can choose proper t/s such that the maximum
points Ts and minimum points §= of V* are also the ones of We't, respectively. Let

Ne= Wet + 0s, then  — Q and satisfies
- —(+ + + +NS] =0

where

Now we prove the result by contradiction. Denote the right hand side order term

by K" and suppose that

(peWoo/Ks
Let % = Then (y*satisfies
(A — (7 +2"()+ pw T Y (2.2.29)
(7N
Note that
< CKJU. Ne[ct>e] (2.2.30)
u.

Let te be such that 5% T EA| [(45 (the same proof applies if  J§ = —1).

Then by (2.2.29), (2.2.30) and the Maximum Principle, we have \ts - ti\ < C

or -t2\<C. Thus — IS Cor % —51< C. WLOG we assume that
Ml < C. Then by the usual elliptic regular theory, we may take a subsequence

+rg) —00 Jas e — 0in CIQ*(M) since [£— ti\ —» 0, where o satisfies

?S - + ﬁD:O, and = O,

which implies //\ - = 0. This contradicts to the fact that 1 = 4>£{t) — for

some to- Therefore we complete the proof. .
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The following is the basic technical estimate in this paper which gives the a

priori estimates of ti and T2-

Lemma 2.9. For e sufficient small we have for N ~ 3,

ti = loga + 21096 + 3109 j&

h loga+ log

where a, b are constants and
a—ao,3, & —

Here 70,3,60,3  positive constants.

For V-4,

—2126 f=al3,

where a. b are constants and
a-> a4 b— 604

Here <20,4, 60,4 "“re positive constants.

For N> 5

ti = |loga+ *log6+ log/? ;
h = iloga + |log/3,

where a, b are constants and
a— b—@ 3
Here (Zo > jv, 60’yv o/re positive constants.
Proof. From Se[wg] = Oand v*: = w"t+ we deduce that

+ +NM =0, (2.2.31)
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where

=f — /¥ — (7+¢eM"+Pke-t]” V

and

Multiplying (2.2.31) by and integrating over M, we obtain

roo poo poa
Integrating by parts and using Lemma 2.8 we have
Le,t[4>Wi.ti dt = w e dt

P (70 + < (@ —T70)

+2/ (j)dt

J —oo

Similarly we can obtain
/ cifj=o( +eti+ +e—
J —o0
For the nonlinearity term, using (2.2.25) we get

NM

so using the exponential decay of w and taking r > max{|,  we deduce

Similarly we can obtain
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To estimate f » we write

roo

- —  (7- loWet + Vot- U+
=H1 +H2 +1:3,

where

El
J —oo
poo

T=—(7 —70) / dt]
1t3 vjet — <hP lf+

Using (2.2.23) and Lemma 2.6 we obtain

Ei=-pf W d+(31 dt = -3 [ —T dt+ ofp).
J—co J o0 J oo
Note that 7 — 70 = and using (2.2.23) we get
E2 = jrroc dt - OiP").

To estimate fI3 - following the argument in the proof of Lemma 2.7. We divide

into two intervals li, 12 defined by

t1+t2 _ th+t2
5 19. 5 00
Then on 1" i = 1,2, we have wt* < W\ and then wj™j < uji“u by the maximum

principle. So on li the following equality holds:

9,
_ . ;ﬁz

Gre —warT — + —
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We use inequality (2.2.25) to get

+ MY —< — | < :

forany / < 6< 2. Then using Lemma 2.6 and integrating by parts, we get

POO

\,\,pilw2 dt- dt + + (gii-

J—00

On the other hand, on 12, using wi*n < 5 (2.2.23) and inequality (2.2.25) we
get

W Wt — "0 M|

for any 1 < S <2. Using Lemma 2.6 we get

w Py <l < dt = o(e—l “Jj21/2) + ©
12
Thus
1 /-00
Es = 5 (N 3/  ufeWMdt
1
[ ufet/"dt+ o (e — +
and
SelweMtW AN dt -3 + [ whe'M dt
Similarly,
POO /XD 1
/ 2 dt = (8 | 2 -t2v2 o A / WAe'AA dt
J—00 ) A

Combining all the estimates above, jS /7 and eW—T 22 have the same order.
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Therefore,
2 dt + JZo UJ]~dt = o{P):
f - «= At2y2 —
Let
e" = aP e — = W
then
() — ao,3
and
b ZJT:GD \wfdt L 0(1) — -
where &3> W positive constants. Thus
ti =loga +21og6 + 31og/5;
t2 =loga + log/3,
where

assz & T,

[ ]
Remark 2.5. The above estimates for the general case A > 1 are:
e 1271+&d 2 5 jzowPe s dt = 0(3), j = e
/ +2 -Afc+l/2 qr A3j*ZwPet/Ut =0 1 .
(2.2.32)
By Lemma 2.9 we introduce the following set

{t = no33<ejj< fao,3/?,<’ v 1r033} for N=3:

A= t - ih,J72)|lao > 4/? < —2/2e > < o < < f&0,4/3} for N =

{t =71, 2\aoNp < < %ao,/? » "bo’Np < fiL—4) - < B~"2forTV >5.
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Then by Lemma 2.9, for e sufficient small, t =(J7i,”2) 6 Aif is a sign-changing
solution to equation (2.2.1). In the next section, the set A will be the configuration

space in the Lyapunov-Schmidt reduction method.

2.3 The existence result

In this section we outline the main steps of the so-called Lyapunov-Schmidt re-
duction method or localized energy method, which reduces the infinite problem
to finding a critical point for a functional on a finite dimensional space. A very
important observation is the following Lemma 2.12. To achieve this, we first
study the solvability of a linear problem and then apply some standard fixed
point theorem for contraction mapping to solve the nonlinear problem. Since the
procedure has been used in many papers, we will omit most of the details. We

refer to [71] for further detailed proofs.

2.3.1 An auxiliary linear problem

In this subsection we study a linear theory which allows us to perform the finite-
dimensional reduction procedure.
Fix t G A. Integrating by parts, one can show that orthogonality to in

I, j = 1,2, is equivalent to orthogonality to the following functions

- + + (7 + j =0, (2.3.1)
in the weighted L"-product (, . By (2.2.24) and elementary computations, we
obtain forj = 1,2,

dt st = (Dt (L RASCHEI )+ +

and

Zitk=(—ly —ms35ff — (7 — lo)dtwA . (2.3.2)
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In this section, we consider the following linear problem. Given h € (M),

find a function 4> satisfying

LeA<t>] ee=r -Afi'—(7 + + = h+J . ¢z,
] ' (2.3.3)
= J-1,2,
for some constants Cj,j = 1,2. For this purpose, define the norm
4> *  (p (2.3.4)

Using contradiction argument, we have the following result. Since its proof is

now standard, we omit the details here.

Proposition 2.1. Let « satisfy (2.3.3). Then for e sufficiently small’ we have

IHI* < (2.3.5)
where C is a positive constant independent of e and t E A.
Proof. The proof is now standard, we refer to [71 b
Using Fredholm's alternative we can show the following existence result.

Proposition 2.2. There exists eo > 0 such that for any e < S; the following

property holds. Given h e (R), there exists a unique pair {(p, Ci,C2) such that

LeM] = E
l 3=1 (2.3.6)
Moreover, we have
+ S C\h (2.3.7)

for some positive constant C.

Proof. The result follows from Proposition 2.1 and the Fredholm's alternative

theorem, see for example [71]. .
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In the following , if & is the unique solution given in Proposition 2.2, we set
(2.3.8)
Note that (2.3.7) implies

A{hYU<C\\h\\ (2.3.9)

2.3.2 The nonlinear problem

In this subsection we reduce problem (2.2.1) to a finite-dimensional one. This
amounts to finding a function 2.t such that for some constant ¢ j = 1,2, the

following equation holds true

[K't + 4>y — [?K >t + Cff — (7 + +</>) + BY t+ 12771 (lifet + =t

J0f)6=10>J-1,2.

(2.3.10)
The first equation in (2.3.10) can be written as
r — —((7+ + = - NS] +7~ CjzO
where
NM - +Rr—i @l + — — (2.3.11)
Lemma 2.10. For t € A and e sufficiently small, we have for \(f)\\* + +
M* < h
(2.3.12)

WNsM — NM\U < c(|2]|fn"b-i > i} + Nn&ltn{p-i’i})||z0—ai*,  (2.3.13)

Proof. These inequalities follows from the mean-value theorem and inequality

(2.2.25). .

Cizsf: -
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By the standard fixed point theorem for contraction mapping and Implicit

Function Theorem, we have the following proposition.

Proposition 2.3. For t E A and e sufficiently small, there exists a unique (j)=
(f)s,t such that (2.3.10) holds. Moreover, t — 72" £ is of class C* as a map into

and we have
Clp-" g2 + AT\-t2Vv2h for iV =3
C\(3 + tVf/+ for iV __ 4 (2.3.14)
+ + e-T(iV-2if&-WsN  for AT > 5
where r satisfies | <r < B}

Proof. The result follows from the standard fixed point theorem and the implicit

function theorem, see for example [71]. .

2.3.3 Expansion of the reduced energy functional

In this subsection we expand the quantity

(2.3.15)
in e and t, where (e-tis given by Proposition 2.3.
Lemma 2.11. For t GA and e sufficiently small, we have for N —3,
KM - (@ - (e—X\ 1 + e-f£” [l 1dt+ I dt
+ A’ 3RKBV/2dt+ o{(3) +o(e” + oe—VI”

=K{t) + 0iP) + o(—) + o(e- | “-ht/2)*
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For iV =4
Kit) = — (e-Bt 1 + rigt2)[UEF Idt — [ wPetdt
POO
+ N4 | wPe'dt + o(/3) + + o(e—I1“_"2l)
.’ =00
=Ks{t) + 00 + + o(e-m*
For N >5,
KM == (--— ) (effll] +e3t2) r TPdt+ whe'' dt
2 p+ 1, J-00 2 J_ oo
+ 120 wiElJPe(Chi—dt + o{(3) + 0(e2” +[1 (et
J —o0

=K,[t) + O(8Y + o(e2” + o(e-(JI|1-

Proof. We write

(2.3.16)
where
A P-0O0
b, <t + (7 + e-ft dt- dt
J —00
e-Ndt:
K,
e—/2L dt.
>
Integrating by parts and using Lemmas 2.7 » 2.8, we have
Ml = 5UtA, > t] ,te-001 B([/? + &2 (2.3.17)

To estimate K27 we note that satisfies

=—"st+ + (k) + — + N OV (2-3-18)
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Integrating by parts and using the orthogonality condition (2.3.10), we have

K2 = Wet + <Je s t—I(6t + 4>ex)  IYS w, o-pe.-t + <t>e,te-M dt
By the mean value theorem and inequality (2.2.25) we get
+ 4+ 2. » t ) —ke>trv > t—Pill s tr-Vs't < ck?, ™. > 2}
so using Lemmas 2.7 and 2.8 we deduce
-|tI-t2)/2 (2.3.19)
For using the mean value theorem and inequality (2.2.25),
. t+ 22— 19d Jif — — \p{p +
< C|0s > t|—%F13)»
S0, again, using Lemmas 2.7 and 2.8 it follow that
= ([I? +e ~ i 1 (2.3.20)

Combing with (2.3.16), (2.3.17), (2.3.19), (2.3.20) and Lemma 2.3.16, we obtain

the conclusion. .

A very important observation both for existence and uniqueness is the follow-

ing fact.

Lemma 2.12. v t=F+ A A critical point of E. if and only if t is a critical

point of K& in A.

Proof. The proof follows from the proofs in [93]. For the sake of completeness,
we include a proof here.
By Proposition 2.3, there exists an e sucthat, for 0 < e < Cq°we have a C*

map t — (st from Ainto H such that

se[Vetl =  Cj AL > t= Wa + Cpe (2.3.21)
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for some constants cj > which also are of class C* in

First by the integration by parts we get

roor’
dt,KS) - /foo ot EBGBt + dtsK ) + (7 + + dtsk e—#fdt
(2.3.22)
- , + dt/K - t)e-Fy  dt.
If vt =Jlle-t+ Oet is a critical point of EY then S 4 : = 0. By (2.3.22) we
get
dtjKS) = — / (— ot o+ dUK tgE dt =

1—O
which implies that t is a critical point of Kg.

On the other hand, let t* G A be a critical point of Ke, that is dtjKsi*te) = 0,
i = by (2.3.22) we get

POO

0= KSs) = —/ + & 0 e-ftdt

J —oo
for j = 12 Hence by (2.3.21) we have
2

E f 2Meri + dtX" , >-[Jtdt = 0.

By Proposition 2.3 and the fact (2. t>Ze- £ 0,
ol . (2.3.23)

On the other hand,

6iip / wP-*\wfdt + ofl).
(2.3.24)

By (2.3.23) and (2.3.24), the matrix

.I —00

is diagonally dominant and thus is non-singular, which implies c/rg) ~ 0 for

i = 1,2. Hence ve — "ete + 4>et" is a critical point of E/.
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Remark 2.6. Note that in the proof the theorem, we assume that the solution
V" of equation (2.2.1) can be written as vV — w"t + 4e with 2, satisfying

[cjh A = j-1,2. (2.3.25)

For generality, using (2.3.24) we can decompose

2

(2.3.26)
3=1
where (fy* satisfies (2.3.25) and dj = 0(|[i2e||oo)- Thus we can write
2
ve “HMt + didtwa * + /8 (2.3.27)

2
and get the desired result using the same argument for Wet+ X]

2.4 The uniqueness result

By Lemma 2.12, the number of sign-changing once solutions of (2.2.1) equals the
one of critical points of To count the number of critical points of
we need to compute dK”it) and ¥F

Recall that Ks{t) and Kg{t) are define in (2.3.15) and Lemma 2.11. The

crucial estimate to prove uniqueness of v* and u” is the following proposition.
Proposition 2,4, is of C" in A and for e sufficiently small@ we have
1) K{) — KXt) = o{(5);
(2) dK{t) - dK*) = ofP) uniformly for t G A,
(3) if tse A is a critical point of K[ then
— = (2.4.1)

The proof of proposition 2.4 will be delayed until the end of this section. Let

us now use it to prove the uniqueness of Vs.
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Proof of theorem 2.1. By Lemma 2.12, we just need to prove that K"it) has only
one critical point in A. We prove it in the following steps as in [93 .

On one hand, By (2) of proposition 2.4, both Keit) and Ke{t) have no crit-
ical points on dk and a continuous deformation argument shows that dK/{t)
has the same degree as dKe{t) on A. By the definition of we have
deg(iCE(t), A 0) — (—where m is the number of negative eigenvalues of
[dtAj Esits)). Therefore, deg(a/~“t), A,0) = (-17.0n the other hand, at

each critical point t* of Ks{t), we have

deg(~“t) » Afm“uo) = (~ir,

fro 5s is sufficiently small. This follows from (3) of proposition 2.4 and the fact
that the eigenvalues of the matrix are away from 0 (cf. 2.4.14
and 2.4.15). Hence we deduce that K”{t) has only a finite number of critical

points in A, say, k. By the properties of the degree, we have

Therefore, k* = 1 and then theorem 2.1 is thus proved. .

In the rest of this section, we shall prove proposition 2.4.

Proof of proposition 2.4- The proof of part (1) is postponed in Appendix B.

We now prove (2) of proposition 2.4 as follows,

dt,K {t) = f + (7 + eMystdt,Vet] e dt- 717e s tPU A _"s’te-0 f

—CO —CO

(2.4.2)
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where

(2.4.3)

and

h =- + dt. (2.4.4)

Using the similar argument in Lemma 2.9, in the case of iV = 3, we can obtain

L3 f VW dt + -e(til MO 0 F wPe™ dt + forj = 1.
h
-PJ \wUt- A>3 + forj =2
(2.4.5)
By (2.3.10) and proposition 23>
(2.4.6)

Combining the estimates (2.4.5) and (2.4.6), part (2) of proposition 2.4 is thus
proved.

In the rest we shall prove part (3) of proposition 2.4. By definition and (2,4.2),

diAKAit)

aj- 7 dt

(2.4.7)

By (2.3.21) we get

(2.4.8)
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Let §; be a critical point of KMt) in A, then

= 0 and Ck({") = 0, (2.4.9)
which implies
(2.4.10)
k=I
Note that
dt,Se[Vs,t] = Ls[dt,Ve,t] p[\Ve H]5iAt=:1E~"”s > t]. (2A1ll)

As in Lemma 2.2 > multiplying (2.4.11) by dtWj*tj and integrating by parts, we
get dt"Ck{te) = 0(/?). Hence
2 00

dtAb ddt A te-U iytME )
k=l

ZHEJAUK, )e-U

g

— frticH ) o 78 B et =oB (3.

(2.4.12)
and then
dAKe{Q =- / dt
J:OZEFLI + dt.cPeMjrerte-N  dt t:te+ o(p). (2.4.13)
Note that
jool"dt7j< ,t]dt:AWe - t(r#f dt = j" dt = o(f3)

and
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Therefore, we have

dfAMLt,) (2.4.14)

Using the following important estimate:

00

J  Ls[dt,Ws,t]dtWs,te~" dt

[e*i0 YR - 3 T pM2 fif + fori=j =1;
(ti—12)2)\ >3 J M2 r+ $Y > forie j- (2.4.15)
+ JL°3J yjVemdt + fori=j = 2,
which we have proved in Appendix C, we get the desired result. i

Remark 2.7. For the general case k > 1, we denote the Hessian matrix

(dtAKe{ts)\ a1

by jM.. We also set for convenience to = —c0 and tk+2 = +00. Using the argument
above, we can get

“h+l _
Mu — (-DY e 2 St

ier4l.

(2.4.16)

(2.4.17)
KT~ 0 forvi-3\ > 2,

We show that M. is invertible and has fixed number of negative and positive
eigenvalue. In fact let 97 = (r/i,..., 77°+1)* and we compute
k

(ah k. 2y (24.18)

M3 4p= E r 2
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tj —tjin
Recall that by (2.2.32), and en4l satisfies
020 AN tiZli+ll n, /In\ = *
e '2 +e 2 -co@B+o(N), =17 A (2.4.19)
( — — gF1- G+ o), s
1 tj—tF
where ¢g < 0 is a constant independent of p. Therefore, 2 and "—V4]

converge to non-zero positive constants, which proves the desired result.

2.5 The non-degenerate result

In this section we want to investigate under what conditions the following homo-

geneous problem admits only trivial solution:
+ =0 inM”* and Ilim (H{x) = 0. (2.5.1)

First we expand ¢ into spherical harmonics as

5
£{x) = Y, om(r)eJL4) - r > 0, e SiE—1 (2.5.2)

ri—0
where e, m > 0 are the eigenfunctions of the Laplace-Beltrami operator —AMjv-i
on the sphere normalized so that they constitute an orthonormal system
in L?("SN_i[] .Let A" denotes the eigenvalue associated to eliz) we repeat eigen-
values according to their multiplicity and we arrange them in an non-decreasing
sequence. We recall that the set of eigenvalues is given by {i{fN —2+ |j > 0}.

The components () then satisfies the following differential equations

4>'L + — 4>m + pWT"”K + =0 in (0’00) (2.5.3)
and limj>J1((4)=0.
r—too

To this end, let us consider the eigenvalues of the problem

C +/AAAAA - Om + =0 in (0 o) (2.5.4)

and lim (pmi®) = 0.
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The I-th eigenvalue of (2.5.4) can be characterized variationally as

CCO @flfy<ifgy . T LR TP _fWRN-tij o (2.5.5)

where V runs through subspaces of and [ isthe set of 0 G - }%)%)
satisfying J{J cfmrN-s : 0 for all u G V, and be the space of radial
functions in Thanks to Hardy's inequality:
N-22r < T 1 1 dr,
4 Jo Jo

the eigenvalues zfi (p) ¢ S ...are well defined. Using Hardy's embedding
and a simple compactness argument involving the fast decay of X [7=1 -k is
an extremal for ui{p) which represents a solution to problem (2.5.4) for v = i"i(p).

To prove Theorem 2.2 we need to know whether and when equals —\n.
To show this, more information about solutions is required. As before, we consider
the corresponding problems for v* using the Emden-Fowler transformation. Then

the eigenvalue problem (2.5.4) becomes

Le[ili] ‘00— —C + 7+ - -jy"j in {-co, 00) (2.5.6)

and lim 'dj(t)= 0.
For the proof of Theorem 2.2, let us consider first the radial mode m = 0,
namely Xm = 0. The following result, which contains elements of independent

interest, gives the small eigenvalue estimates of L™ and shows that - /=0 for

the mode m = d
Proposition 2.5. For E small enough, the eigenvalue problem
Lebe = (2.5.7)
has exact_l}f] two small eigenvalues j= 1,2 > which satisfy
1

——Co0"” up to a subsequence ase — 0, forj = 1,2, (2.5.8)
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where Vj,s are the eigenvalues of the Hessian matrix VA/Cg and oq is a positive
constant. Furthermore, the corresponding eigenfunctions <”[is satisfy

2

[ aij ™ ofl)ldwert+ 0{e), j =12
i=l

where aj — (aij,..., a2jY 7J/ the eigenvector associated with Uj, namely,
VKA = incLj.
Remark 2.8. By (2.5.8) we know that 0 and then obtain the non-degeneracy

of V* in the space of ffi-radial symmetric functions.

Proof of proposition 2.5. To prove this proposition, one may follow the arguments

given in section 5 of [93] and use the following estimates
00)

| LEZ[duWs,t] dtj We,te—Fif dt

OIZ2A3 1 P2 dt + ofP), fori = j

-@A 3 1 ufeMi dt + o(/3), forie j: (2.5.9)

LoTE b Ae3f wwW o dt+ o(3\  for =2,
which is given in Appendix C. i
Let us consider now mode 1 for (2.5.3), namely m TV, for which

Xrn = N —1. In this case we have an explicit solution u' (r). Now we show that
(Am = Cmu' for some constants Cm for m = N e This is not trivial since
<(r) change sign once. Suppose that (4 77/F solve (2.5.3). We first multiply equation
of (pm by < and the equation of < by (f)®@and integrate over the ball Br centered

at the origin with radius r. Since they satisfy the same equation, we get

u: —(Pr 0,
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from which we get “n = for some constants Cm-

Finally let us consider modes 2 and higher. Assume now that m > N + 1
for which X@ > 2N. Since u'jy) has exactly one zero in (0,00) and AN > A,
by the standard Sturm-Liouville comparison theorem, 4m does not change sign
in (0,00). On the other hand, by Sturm-Liouville theory, it is well known that
the eigenfunctions corresponding to ui much change sign, in (0, oo) at least 1 — 1

times. Thus the only possibility for equation (2.5.3) to have a nontrivial solution

for a given m > N  1is that X,i= — In the next proposition we shall
show that —z/i(p) = —lasp-" Therefore we get Am e for
k> N and p is closed to ~~ and then complete the proof of Theorem 2.2.
Proposition 2.6. As p we have that —vi(p) —"Xi = N — | for | < 2.

Proof of Proposition 2.6. One may follow the arguments given in section 3 of [30
to prove this kinds of proposition. Note that by the Emden-Fowler transforma-

tion, the eigenvalues has a variational characterization

Mp) —

max | inf ~ r] e N <> (2.5.10)
dir; (<2 L I— o 1Tl

where W runs through the subspaces of H and W-" is the set ofip eW satisfying
JToo dt = O for all v e W. Note that the term involving the weight is
relatively compact and it follows from a previous argument that the eigenvalues
exist.

We observe that the limiting eigenvalue problem

(N—202 N+2 L
r — [ 4), + N ffr)e0(x00) =0 (2.5.11)
admits eigenvalues
fii=N-1, /i2=0, M3<0,-- > (25.12)

where the corresponding eigenfunction for the principal eigenvalue fii is positive
and denoted by i A simple computation shows that we can take i = w Ll
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pH
Now we take tf7,.=w" I"V.,j = 1,2. Let W he & given one-dinzwensional subspace.
Then there exists ci, @ (not all equal to 0) such that f :Q( Cj.jve-Hf dt =0
—a
for all VeW. We then compute that

IZo [W + + hr'We-"'dt

and hence by variational characterization of "2 we deduce that

Mp) < MP) < — — 1)+ 0(1), 1= 1,2. (2.5.13)

On the other hand, according to (2.5.12), vi{p) jik > —{N —1) for some k.

Thus we have — —[N- 1)asp”™ N for ; <2

Remark 2.9. Take i{jj= WjI* .,j = 1->..> A for the general case k > 1, by a

similar argument we get the desired result.

2,6 Conclusion and comment

To study the structure of sign-changing solutions to (2.1.1), we first consider
the radially symmetric sign-changing solutions. Then we shall study a boundary

value problem on an infinite interval:

fu+ -u-{- IlP-*u=0 re (0-00):-
MN'@O)- 0, limu(r) =0.
r-i-00

In this work we regard exponent p as a parameter and prove the unigueness
and non-degeneracy of sign-changing solutions having exactly k nodes as p goes
to ~~ from below. The method used here is the Lyaponov-Schmidt  reduction,
which has been well developed in the last three decades. We refer the reader to
[80, 79, 93, 71 » 76] and references therein for more details.

To our knowledge, there are only two work concerning the uniqueness of sign-

changing solution. So let us compare our results with them.
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The first article is [92], where the author studied the existence and uniqueness

of positive solution and sign-changing once solution (so-called second bound state

solution) to
I ut+f - u+fu) =0, rG(0,00),
u{0) =0, Ilim (w(r)X(r)) = (0,0),
for
u+1, u< -
f{n) = .

u—1, u>=
His approach follows from [25] and a carcful analysis of the behavior of the first
variation of u(r) a). The special form of f{u) plays an important role in the proof
as well as the number of nodes. As a comparison, our argument in this chapter
can be applied to any number of nodes.
The second article is [28] where the authors study a more general nonlinearity.
More precisely, they established the uniqueness of the second bound state solution

(sign-changing once solution) of

u - +fu) =0, rG(0,00), N>2, AT
u'0) = 0, lim u(r) = 0, o

r-"oo
under some convexity and growth conditions of f{u). If we consider the canonical

example
/(n) - K—iu- lurVv

then conditions of f{u) in [28] are given by

2

p>1 0<g<p, and +g<N—2

Therefore, q can not equal to 1, i.e., there must be a sub linear term in the
equation. The main idea in [28] goes back to [25, 53] and is carried out through

a careful analysis of the intersection between two different solutions. So their
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approach depends on the number of nodes. But our method can deal with any
number of nodes.

Therefore, there are two possible way to study the uniqueness of sign-changing
solutions- One way is to apply the shooting method, initiated from [25]. It will be
very interesting to study the uniqueness of sign-changing solutions to (2.1.1) by
this method and to (2.6.1) under weaker assumptions on the function f and on the
number of nodes. The other way is to combine the approach in this chapter and
a bifurcation argument, which is suggested by Professor Wei. For an application,

we refer the reader to [30].

2.7 Appendices

2.7.1 Appendix A

In this subsection we shall give the estimates of Wj™j, J = 1,2. Recall that wjtj

is the unique solution to the following equation
(70 + . 0, (2.7.1)

in the Hilbert space H, whose existence are given by the Riesz's representation

theorem. Here w is the unique positive even solution of
w' —TotJ] + lil =a (2.7.2)
Actually the function w{t) can be written explicitly and has the following form
)= )Hdlcosh (5F7# ) =A Ve2tgt+e 2T0o N
Note that now w has the following expansion
w{t) - AeNe"'™ + O(e-p#”, t>0;

w {t)=-[K--— +0€l"” t>0

where AMN >0 is a constant depending on e: and N.
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To get the estimates of wif,we write w#f: Wt~ + //\ > then by (2.7.1) and
(2.7.2),//» satisfies

- (70 + —e 0= 0. (2.7.3)
Note that as s — oo.
e'w, (s) = e 2 ""AeMG . (2.7.4)
Hence when N > 6, (j) e H and « = O(e™j). Therefore,
WY — Wi+ 0(e2 ] when N > 6. (2.7.5)
Next we consider N <Q. Let be the unique solution of
c()" — (lo+ —e—Fs=0, —0,a —o00. (2.7.6)
Then when A*< 6, we have
v, —wer te T AL -+ 0(e2fy=:wth + Z20) + (2.7.7)
The rest of this subsection is to solve (ppj. The key point is that
45Q - _JV'Z (2.7.8)

is a special solution of (2.7.6). Thus we only need to solve the homogeneous

equation
3+ (10 + - 0. (2.7.9)
Note that 70 —~ ~ N — 2)7/4, let
(Pis) = # ~ where Xn = {N- 22 (2.7.10)
Then @) satisfies

IN—A—  —

@i's) =5 — 50 (0) - 1 (pioo) - 0 (2.7.11)
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and thus
h =— 2@ 5% (2.7.12)

In the case of A" —~ 3> A3=1and e = e—Then

In the case of A" =4> Ad = 1/4 and
M= =: po,
where Ki{z) is the modified Bessel function of second kind and satisfies
K'liz) + zZK[{2)—(Z2 + DKi{z) =0,

see for example [67]. Then

/lizs

k=-e T 1]¢ (2.7.13)
a4
For iV = 5,
(i>5 — 2 (1+ ede-

In the case of iV = 6,
where Ug satisfies

. .uir ,

u"{r)=2z+fi(0) =1 —) =0.

Actually, we have

where K2(z) is the modified Bessel function of second kind and satisfies

z"K'Niz) + zK'Niz) - + (@) =0.
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2.7.2 Appendix B

In this appendix we expand the quality Eg[u)g'tj asafunction ofe and

Lemma 2.13. For tE A and s sufficiently small, we have for TV= 3;

1 1
E, w. g 1 dt+ / HH
p+1
+ e— [ E]—A 0 32 dt +oip) +o(e”” + 12/2)
For v =4
1 "yP+i d
w. N yP+ dt — when dt
+ VLY
W dt + o(/?) + oiptefJ -+ of(e- | ti-0l.
For TV > 5,
Ee[We o BpHH /BT 2 Bk
2 'p +
+ BE1-Z2112 N, F+ I+ +  o(e— (I -Hip

Proof. Since the proof are similar fordifferent cases, we give the details foriv — 3

here. Integrating by parts we get

Ee[w, “Iwet]  + W. W.  Wsa tef# dt — o+1 VIftP+ie —{Hi(t

1

P<, t + (7 — T0JIl§ t+ Wti — &2 o1

where

%J u; [te-~Jy=

E.="\N r JX{, r ui, (11 dt=cm...
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E=——ro dt-1 f o wltiFgE  dt-

041 - - e—pf dt

E,
p+1

First for E3, by Lemma 2.6, we have

E3=— ¢ — (ujPe'"A dt+ofR) + + (B—T %’

J—00
To estimate E4, we divide E into two intervals 12 defined by
r ( ti +1i2 r M + .
h =(-(2) -2

So on |i the following equality holds:

P +
[Oui — W2 3F1— AiXA + (P+ 1W > ti 2 71—
1 r I P
p+i 'Oti + (f>i,hT — wfi +
v Y020
< Kh —p

As in the proof of Lemma 2.9, by the mean value theorem and inequality (2.2.25)
we have
1

p .
/j\lM

o+ | -

<
W2,
for any 1 < ~ < 2. Using Lemma 2.6 and integrating by parts, we get

1
wti — wtt — yjlwinti — e-fif dt
P+ 1Jh

w t+ o(e-1“1/2).
P+1
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Similarly,
e, dt
roo .
3/ W o W+ o(e-|t|"~? |/2).

p+l
Hence
E4= -"e IA M, w' dt — I nfey dt + o(e— ! T Y1/

p+

Regarding the term E5, by Lemma 2.6 we have

1 1
, /owi()o g dt
A pH 3—00
I
+ / w r dt
-)(e——e- 021 dt
p+1° " J3-00 '2 p+1

Combining the above estimates for Ej, E2, E3, E4 and 75, we obtain

* p+iodi + [ nfesy dt
2 p+
+e-| | /IMy [/ W+ (89 + ~(gt.) + o(e-l-H32 | /2).

2.7.3 Appendix C
In this section we want to prove (2.4.15) for N = 3, that is,

— 1 2122.,3 3 "PrNI2 g+ NS o for

00 ~00
1 dt = A 317 dt + o(4h fori + j;
J _m
-0 - 20 Tt L A3/ dt + o{{3), for
. =0

Proof. Note that by (2.3.1) and (2.3.2), we obtain

Le[dt"We,t\ = — ZZJ-i-p\ (2.7.14)

=(—ly. . + + (7 — 10)dtWjrt, - p|”"5't] " 13X, 3§

J =2
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And by the definition of w?

= = (—ly+ia . ' + X Eif)+ (2.7.15)

We divide (—o0, 00) into two intervals /[ - R defined by

tl +t2 t1+t2

=—00, 00).
2 2

First we computer the case of i » j, by (2.7.14) and (2.7.15) we get

Ljdt.w.tlduw.te""* dt

=] —[19m - J Ph,
: 312
—00
h
« + oW)
For the case of i = j, on 1 i = 1,2 > we have wt. < Wt- and then Wjj <
by the maximum principle. Recall that Vst ~ Wst + where (f) = ttis given
by proposition 2.3. Then on li (Here we give the details for i = j = 1, the other

cases is similar),

Pl —iX*WI' Mt +p{p — +
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So by (2.7.14) and (2.7.15) we obtain

00

- f per + f
3h ih
——f dt-h f
Ih n

=Ti+T2 + o(/?).

Recall that wi#f satisfies

So dt"WjM, and di*\Wjrtj satisfy

— (70 + i< 51 ) =0

and

(¢ =))y"-(70 +

which implies

Hence

By (2.2.28) and proposition 2.3, on /[.we have

Ls[(i>] = + VAIAWEN  + o(/3).
Thus
T2 = - f < dt + o{f3)
JM.
= — / +

(2.7.16)

= 0,

(2.7.17)

(2.7.18)
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On the other hand,

Ti = -/ p{p-hwl\w/ ; fint,dt + 0{(3)
dt + o(/3) - / (it + o(/?)
W, (2.7.19)
m. JR

where

Combining (2.7.16), (2.7.17) and (2.7.19), we get the desired result. L



Chapter 3

Uniqueness of positive solutions to some

coupled nonlinear Schrodinger equations

In the chapter we study the uniqueness of positive solutions to the coupled non-

linear Schrodinger equations:

Alii - AlUI + jujuf + jduiv® = 0 in M7,

Au2 —A2U2 + M2U2 + Pulw2 - 0 in (CNLS)

where 1 < N < 3, Xi, X]J -fi,fi2 are positive constants, and /? > 0 is a cou-
pling constant. In Section 3.1 we first introduce the background of (CNLS) and
review some of the recent results. Later our main results on uniqueness are
stated. Section 3.2 is devoted to the study of the uniqueness of positive solu-
tions to (CNLS) in one dimension. In particular, we prove the uniqueness for
3 4 min{/ii,/i2}, max{/ii,(12}) when A! = A2. The higher dimensional cases
are studied in Sections 3.3 and 3.4. More precisely, in Section 3.3, among other
things, the uniqueness of positive solution is proved for both sufficiently small
jS and (3> max{/ii, "2}; Section 3.4 establishes a Liouville type theorem for

= = Finally we discuss some possible extensions and applications in
Section 3.5. There are still many quite interesting and open problems regarding

(CNLS). We will discuss them later.

60
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3.1 Background and main results

We are interested in nonlinear elliptic Schrodinger system of the form:

m
—Auj + XjUj = in C i~ 1,...,m, (3.1.1)
fc=i

where Uj's are unknown functions, Xj, (3jk are given constants. Here (Lis an open
subset of M", N is the spatial dimension and m is the number of equations. This
system arises in mathematical model for various phenomena in physics, such as
nonlinear optics and Bose-Einstein condensation. We refer for this to the survey
articles [51, 43 .

Recall that system (3.1.1) is satisfied by the amplitudes of standing or solitary
wave solutions of the form X) = eMANMUj(x), for the time-dependent m-coupled
Gross-Pitaevskii equations given by

m
, fc-i (GPE)
= x) GC, t>0, Xen c -%>
where i = is the imaginary unit and C is the set of all complex numbers.

Physically, when Q. = system (GPE) arises in the study of incoherent
solitons in nonlinear optics. The j-th component ifij of solution denotes the j-th
component of the beam in Kerr-like photorefractive media [1]. Denote fLj — pjj
and suppose jij > 0. Then the positive constant fij is for self-focusing in the j-ih
component of the beam and the coupling constant (3jk {j + k) is the interaction
between the j-th and the k-th component of the beam. As (37 > 0, the interaction
is attractive, but the interaction is repulsive if (3jk < O.

When 0 is a bounded domain and m = 2 system (GPE) also arises in the
Hartree-Fock theory for a double condensate, i.e., a binary mixture of Bose-
Einstein condensates in two different hyper fine states [1) and |2) ([38]). Now
and are the corresponding condensate amplitudes. Constants fij := (3jj and

P = (312 are the intraspecies and interspecies scattering lengths respectively. The
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sign of the scattering length (3 determines whether the interactions of states |1)
and 12) are repulsive or attractive. When < 0, the interactions of states |1) and
[2) are repulsive ([91]). In contrast, when > 0, the interactions of |1) and |2}
are attractive.  For atoms of the single state [j), when fij > 0, the interactions of

the single state |j) are attractive.

Throughout the whole chapter due to physical considerations, the coupling
constants PjkS satisfy pjk = Ay, and we always denote fij — jSjj forj —1,..., m.
Unless otherwise stated we always assume that Q = M” and consider the nonlin-

ear Schrodinger system like the following:

Auj — XjUj+ X; BjKwuk?uj = 0 in M~ TV< 3
(3.1.2)

GHAW'"), 3=1, m

When the spatial dimension is one, i.e., N — 1, system (GPE) is integrable,
and there are many analytical and numerical results on solitary wave solutions of
the general m-coupled nonlinear Schrodinger equations by physicists ([47, 50, 99]).
But it is still very hard to classify all solutions. One part of the work here was

intended as an attempt to study this problem, see Section 3.2 for more details.

For the high dimensional m-component solitons, from physical experiment
([74]), two dimensional photorefractive screening solitons and a two dimensional
self-trapped beam were observed. It is natural to believe that there are two
dimensional m-component (m > 2) solitons and self-trapped beams. As far as
we know the first general mathematical theorems for m-component solitary wave
solutions of system (GPE) in two and three spatial dimensions were obtained
by T.-C. Lin and J. Wei in [55, 61]. They established some general theorems
for the existence and non-existence of ground state solutions of steady-state m-
coupled nonlinear Schrodinger equations (3.1.2) using a modified Nehari manifold

approach and symmetrization arguments. Here a ground state solution is defined
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as a constrained minimum on the called Nehari manifold:

M “(ui, e luj > 0,Uj « 0>
m ) (3.1.3)
/rat ivwijf + Xj = E Pk fgNulul j = I,...,m
k=i J

It is worth pointing out that by this definition it is also a positive solution of
(3.1.2) such that its energy is minimal among all the positive solutions of (3.1.2).

In fact, they considered the following minimization problem:

c:= inf Efu 1

where the associated energy functional is given by

~Ameoo, 1m
E[ul iE /(2 +AJE2)-EIE U UK (3.1.5)
for
us= G (3.1.6)
Since we assume N the Sobolev embedding theorem implies that the energy

functional E is well-defined and of class CK
The sign of coupling constants pjk,s is crucial for the existence of ground state

solutions. The first result in [55] concerns the all repulsive case:
Theorem 3.A ([55]). Suppose Xj,fij >O0for allj = 1,.., m. If j3jk<0for all

j * k, then the ground state solution does not exist, i.e., ¢ defined at (3.1.4) can

not be attained.

Remark 3.1. Some results for Xj < 0 or fij < 0 can be found in [59, 60]. It is
related to the vortex solution of Ginzburg-Landau equation. The existence and
properties of semiclassical state solutions have been studied in [56, 58, 75, 62, 31
where the following singularly perturbed nonlinear Schrodinger system with ¢

without trapping potentials is studied:
e Au — Vi{x)u + fiiu + =0 inQ,
N erAv — V2{x)v + +j3y?v=0 inH, (3.1.7)

?2-f; >0in Q, and u=v ~ 0on dft.
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where Q. C R™ (TV < 3) is a smooth and bounded domain, e > 0 is a small
parameter, /ii, /i2 > 0 are positive constants, Vi, V2 are positive functions and may
be constants and P js a coupling constant. For some more general nonlinearities,

see [68, 6, 83] and references given there.

From now on, we will restrict the discussion to the case of Xj, fij > Qfor all

Jj = 1,...,m. The second result in [55, 61] concerns the all attractive case.

Theorem 3.B ([55, 61]). Under hypotheses of Theorem 3.A. There exists >0
depending on Xj's; fij’s, N and m such that if 0 < j3jk < and the matrix
S = {\(3jk\) is positively definite, then there exists a ground state solution with

all components are positive, radially symmetric and strictly decreasing.

When attraction and repulsion coexist, things become very complicated. The
third result in [55, 61] shows that if one state is repulsive to all the other states,

then the ground state solution doesn't exist.

Theorem 3.C ([55, 61]). Under hypotheses of Theorem 3.A. There exists >0

depending on Xj  fij > s, N and m such that if the matrix E is positively definite,

I3jok< 0 » jo, andO0<ftfc < A), Vj+jo, k ¢« {j,io},
for some jo G{1,..., m}, then the ground state solution to (3.1.2) doesn't exist.

Remark 3.2. Form = 3and Xj, fij> Oforallj —1,...,3>T.-C. Lin and J. Wei
[55] corLStructed certain cocfRcicnt matrices {/3jk) for which there is a non-radially
symmetric bound state solution of (3.1.2) by using Lyapunov-Schmidt reduction
and variational arguments. Here a hound state solution u is defined as a solution

of (3.1.2) with finite energy, i.e., E[u] < +00.

Remark 3.3. Note that in Theorem 3.B is a (unknown) small constant. Re-
cently some explicit estimates of Pq have been obtained, see for instance [87, 5

where they also gave some explicit ranges for large coupling parameters. The
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methods there are different. One [87] considered a minimization problem with m
constraints and compared the energies, the other [5] used a minimax argument
for the energy functional E[u] with one natural constraint and evaluated the
Morse indices. As far as we know, it is still open, and quite interesting, to find
out what the optimal ranges for existence are. Some progress may be found in

4, 11, 68, 12, 87, 5, 33, 19, 18:.

It is worth pointing out a different definition of ground state is used in [11, 5].
One of the reason is the following [5]: In the case of a single nonlinear Schrodinger

equation
Au-Xu  +jiur =0 in (3.1.8)

a ground state solution is a solution u of (3.1.8) such that

{u) = min{/@ 1" e \ {0},v>0,r(v)v = o0},

where

B L (8
It is well known that, for all A\, /i) 0, (3.1.8) has a unique radial ground state
solution [53], which is positive and non-degenerate [80]. Furthermore, since
Ux,fx arises as a mountain-pass critical point of | [7], it has Morse index equal
to 1 [3]. Hence it is natural to expect that similar properties are shared by a
ground state solution of m-coupled nonlinear Schrodinger systems. In particular,
a ground state solution should have Morse index 1. However, according to the
definition of ground state solution in [55], it might have Morse index m due to the
fact that the Nehari manifold M defined in (3.1.3) has codimension m. Therefore,
in this chapter we will use the following definition of ground state solution as in

11, 5):

Definition 3.1. We say that u is a bound state solution of (3.1.2) if u E

is a solution of (3.1.2) satisfying E[u] < +o0o0. A bound state u
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such that its energy is minimal among all non-trivial bound states > namely,
E[iL] = min S*E[u] |v G (//i(k, =\ {0}, E'[v]lv - o},
is called a ground state solution of (3.1.2).

Note that here we do not require all the components of ground state solution are
strictly positive, which is slightly different from Definition 2.1 in [5].

Since we assume N < the Sobolev embedding theorem implies that the
energy functional E is well-defined on and of class C*. With the help
of a classical "bootstrap" argument, solutions of (3.1.2) which are in I
are also in and tend to zero as \x\ — 4-00. Clearly, if there exists a
ground state solution then there also exists a semi-positive one, which satisfies
Uj > 0 for all j and Uj 5 0 for at least one j. In this case, note that Uj satisfies

a linear equation
m

AUj- XjUj o+ (Eft oA IWitl = 0,

h=1
the Strong Maximum Principle implies that uj is strictly positive or Uj = 0.
Moreover, if assume further £j& > 0 for all = 1,..., m satisfying (H4) in [17],

then all positive Uj-s are radial symmetric and strictly decrease with respect to
the same origin in R by Moving Planes method [17]. For Uj = 0 for all j, the
vector 0 := (0,... > 0) will be referred to as the trivial solution. For a solution
u ™ 0, if one of its components uj ~ 0 then it will be called a semi-trivial
solution; if all of its components are positive we will call it a positive solution.

About the ground state, it is natural to ask the following question:

Problem 3.1. When does ground state solution exist? When is it positive ?
Is it unique? And what other properties does it have, like symmetry and non-

degeneracy?

If m ~ 1, the answer is complete, we refer to [25, 15] for the existence; [44] for

the radial symmetry; [25, 53] for the uniqueness; and [79] for the non-degeneracy.
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When m > 2, the problem above remains largely open. For the existence of

ground state solution, T. Bartsch and Z.-Q. Wang [11] gave an answer as follows.

Theorem 3.D ([11]). Suppose Xj,/3jk> 0 for all j,k = 1,..., m. Then system
(3.1.2) has a semi-positive radially symmetric ground state solution. Moreover,
it is of mountain pass type and has Morse index 1 considered as critical point
of E on and on (i/ X JixiHere consists of all radially

symmetric functions in //A(M7).

Remark 3.4. To prove Theorem 3.D, the authors [11] used the Nehari manifold
approach and symmetrization arguments similar to [55]. But the Nehari manifold
is different. In [55] the Nehari manifold is defined at (3.1.3) with m constraints.
T. Bartsch and Z.-Q. Wang [11] correspondingly considered the Nehari manifold

with one constraint:
M:="~ue (#1(R. I~ \{O} I E'[u]u = O} (319

and the radial Nehari manifold Mr := M 11( H S im il ar idea was also

used by A. Ambrosetti and E. Colorado [5.

Remark 3.5. When Pj* < 0 for some j ¢ k, there maybe doesn't exist a ground
state solution, see [55, 4, 87, 5] for more details. Moreover, in this situation, the

structure of bound state solutions to (3.1.2) is more complicated. For examples,

(i) symmetry-breaking may occurs for positive bound state solution, see [55,

57, 48] for small interactions and [95] for large interactions;

(ii) system (3.1.2) admits infinitely many positive radial bound state solutions
[97, 96, 31, 90 - 32, 10], a relation between which and sign-changing radial
solutions of (3.1.8) can be found in [97, 90], which provides a theoretical
indication of phase separation into many nodal domains for the tt?] mixtures

of Bose-Einstein condensates with strong repulsion;



* 68 . Chapter 2 Uniqueness of gfsmy solutions in  NLS

(iii) The relation between a priori bounds and multiple existence of positive
bound state solutions has been studied in [32, 10] by establishing some
new Liouville type theorems. After that the local and global bifurcation
structure of positive bound state solutions are investigated in [10] by using

spectral analysis;

(iv) For sign-changing bound state solutions, the existence and multiplicity have
been studied in [63] for both small and large interactions by different ap-
proaches, but there is no precise nodal property of the solutions and explicit
estimates on small and large interactions. This raises some quite interesting
guestions: what are the optimal ranges for existence? what's the precise
nodal property? Does it determine the solution, similar to that of scalar

equation (3.1.8) ?

We emphasize that all the ground state solutions may be semi-trivial. An

example for such a situation is contained in the next result [11..

Theorem 3.E ([11]). Assume that Xj's are non-increasing and (3jk are non-
decreasing in j and k. Then (3.1.2) admits no positive solution unless Xj ~ A

and = (3 for some positive constants X, (3and all j, k = 1,..., m.

Remark 3.6. The above result still holds with both of the monotonicity con-
ditions reversed for Xj and (3jk. It also gives a non-existence result for positive

solutions to (3.1.2).

Hence it raises a more complicated and interesting question : under what con-
ditions (3.1.2) has a positive ground state solution? Recently some sufficient
conditions for the existence of positive ground state solution have been obtained
in [4, 11, 68, 12, 87, 5] for large coupling parameters. The methods there are
different. One is the minimax method on a Nehari manifold [4, 11, 68, 87, 5]

and the other is the method of critical point theory in the setting of invariant
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sets of the (negative) gradient flow [12]. Later on, some improved explicit esti-
mates have been done in [33, 19, 18] by comparing the energies or Morse indices.
For small coupling parameters, there are some results on the non-existence of
positive ground state solution, see for instance [4, 11, 87, 5]. But there is no
general result on the optimal range for existence. For m = 2 and Ai = A2, it
is a simple matter to check that (3.1.2) admits a positive solution if and only
(3 ZAmin{yUi, Y}, max{?i, fi2)] or /ii —/i2 " /? and there exists a positive
ground state solution if and only if ~ > max{/ji, 122} or j5i = fi2 = P (cf. [11]).

Here j3 := (3i2.
Remark 3.7. Among other properties of ground and bound state solutions,

(i) the orbital stability of ground and bound state solutions to a more general
nonlinear Schrodinger system:

uv
Ay - xjuyj + E f3jK\uk\\uj\P~\ =0 in M", N <3
(3.1.10)

Uj e j - I]"'lm,

has been studied in [62] for p — 1+ | (critical case) and [69] for p < 1+ |

(subcritical case);

(ii) the blowup solutions of (GPS) have been investigated in [57, 39, 22], which

may describe nonlinear wave collapse.

Remark 3.8. To get a positive ground state solution of (3.1.2), it is sufficient
to show that there exist semi-positive ground state solutions different from all

the semi-trivial solutions. So it is very important to know all the semi-trivial

solutions. Form = 2, let = (ui,u2) be a semi-trivial solution with non-negative
components. Then either lii =0 or = 0. In any case, the non-zero component
satisfies

Auj —XjUj + iiju, =0, Uj > 0in R® and wuj e
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for j — 1 or 2, then Uj — Uxj,fij by the uniqueness of positive solution to (3.1.8)
for all A,/l > 0 (cf. [53]). Therefore, all the semi-trivial non-negative solutions
are given by

= 0Mi- "i,0), U2= (0, "A2"2).

Similarly, to get a positive ground state for m > 3, it is important to know all
the non-negative solutions of (3.1.2) having one component equal to zero. Pre-
cisely, if the component ui is identically zero, then the remaining pair (U2,...,u”)
solve the system

Auj - XjUj + X5 JAkIkF =0 in VS$3
(3.1.11)

Uje HARY,

1
N

.
It is noting but a (m—I)-coupled nonlinear Schrodinger equations with (3jk, j, k =
2,...,m. Therefore, to search for all the non-negative semi-trivial solutions, one
need to know the uniqueness of positive solutions to (3.1.11).

Next as shown in [11] we give a simple condition which guarantees the exis-
tence and non-existence of a positive solution of (3.1.2) when Ai = eee= A"/ In

fact in this case there is an explicit solution-

Theorem 3.F (cf. [11]). Assume Xj —-¢+= X" = 1. Then (3.1.2) has a 'positive

solution of the form

Uix) =a w{x), j=1-m, (3.1.12)
where w is the unique radial positive solution of

Aw~w +wr =0 weF*E")), (3-1.13)

if and only if the matrix B = (/jfc) can be written as B = SD, where S is
a square matrix with each row summing to 1 and D is a diagonal matrix with

positive entries.
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Remark 3.9. The above result still holds for some < 0. Leta= ce.y ON),
then the function u = {aiw”...,  olj*w) is a solution of (3.1.2) if and only if Ba = 1
where f = (1,..., 1). Hence all possibility of the number of positive solutions of

the form (3.1.12) are zero, one and infinity.

From Theorem 3.F we can get all positive solutions if one can prove that all
positive solutions of (3.1.2) are of the form (3.1.12), This raises an important

and quite interesting question :

Problem 3.2. For Ai= --+= An= 1> we all positive solutions of (3.1.2) of the
form (3.1-12)?

If the answer is affirmative, then non-existence, uniqueness and infinitely mul-
tiplicity of positive solutions will follow from that of Ba = 1. Moreover, when
the uniqueness holds, this explicit solution (3.1.12) will be a positive ground state
if the latter exists. As far as | know, the first attempt to study this problem is
given in [87], where B. Sirakov conjectured that under the hypotheses oi m, = 2
and 0 <~ min{yLii, max{/ii, 112} the answer is affirmative and uniqueness
follows.

In the remainder of this chapter we proceed with the study of Problem 3.2

and mostly focus on the case m, = 2 oi two equations, namely,
Aui — XiUi + /uiuf + 13uiul = 0 in R",
- \2uU2 + + (hulu2 = 0 in R", (CNLS)
ui,u2 e

Some extensions to systems with more than two equations will be discussed and
a few applications are also indicated. From now on, unless otherwise stated we
assume that

(3.1.14)

Under this assumption, using a classical "bootstrap” argument, all positive solu-

tions of (CNLS) are classical solutions and tend to zero as a. — 00. Moreover,



° 72 Chapter 2 Uniqueness of sgamy solutions inNLS

applying Moving Planes method (cf. [17, Theorem 1]), they are radial symmetric
and strictly decrease with respect to some origin xq. Without loss of generality
we assume :?:= 0. Itwill cause no confusion if we write Uj(x) = Uj(r) for r — &\
and j = 1,2. Then (CNLS) becomes

u{+ ™u'l — XiUi + fiiiif + Puiul =0 in (0, +00),

4 + Mu'N — A2+ 120+ 13ulu2 - 0 in (0, +00), (3-1.15)

(0) ~"2(0) =0 andni(r), U2(r)—20asr +00.
Our first result concerns the one-dimensional case.

Theorem 3.1. Suppose N= 1 and Xi = X2 = X> 0. Then the function (n*, u®)

explicitly given by

Mmie=  HEo s o py (3 1.16)

® /)

is the unique positive solution to (CNLS) up to a translation as long as
0 <™ [mm{/ii, li2}, max{"i, "2}] * (3.1.17)

Remark 3.10. The condition 3.1.17 is necessary. Indeed, if ="2 = there

are infinitely many positive solutions

cos —allt),sin, V6' G (O, (3.1.18)

and if G [minj/Ui,/ 2} ,~21}] butjj,i —/i2, positive solution doesn't

exist by Theorem 3.E.

The above result gives an affirmative answer to Problem 3.2 under the con-

dition (3,1.17) for N = 1. Our second theorem below deals with the case of
lii = i2 = Combining these results Problem 3.2 is completely solved in one
dimension.

Theorem 3.2. Under the hypotheses of Theorem 3.1, suppose further = =
j3 > Q. Then all positive solutions of (CNLS) are of the form (3.1.18) up toa

translation.
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For higher dimensions, the situation is more complicated. In general, the
guestion of uniqueness of positive solutions to nonlinear equations is difficult. For
scalar equation, the shooting method and Pohozaev's identity can give uniqueness
(cf. [53, 20]). However for systems, there are very few results on uniqueness and
it seems very difficult to apply shooting method because there are at least two
free initial values. We briefly discuss here two feasible ways. One way is based
on the implicit function theorem. To apply it one need the non-degeneracy and
a compactness result. The restriction of applying this technique is that only
local uniqgueness can be obtained mostly. Another way based on the uniqueness
for scalar equation is perhaps more efficient. But how to reduce a problem of
systems to that of equations is a big problem. Some results have been obtained
in [66 > 54, 65, 49, 23], in which Hamiltonian and integral identities are very useful.

Our first uniqueness result in higher dimensions concerns small (3, To get
it, the implicit function theorem, a compactness result, and the uniqueness of

positive solutions to (3.1.8) are needed.

Theorem 3.3. Suppose N = 2,3. There exists /30 > 0 depending only on \j
fjij s and N such that if 0 < (3 < fo; then (CNLS) admits a unique positive

solution up to a translation.

Remark 3.11. We do not know how small (53 is. It would be interesting to find

an explicit estimate and we conjecture that Pq = minf4’ //z} for = A2

But for large using a simple integral identity, we can obtain a result for

higher dimensions similar ro N = 1.

Theorem 3.4. Under the hypotheses of Theorem 3.3, suppose further Ai
A2. Then (u”u”) explicitly defined at (3.1.16) is the unique positive solution
to (CNLS) up to translation when

(3 > max{/™i,li2}. (3.1.19)
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To answer Problem 3.2 in higher dimensions for /M = [i2 = we have the

following Liouville type theorem.

Theorem 3.5. Under hypotheses of Theorem 3-4, assume further ni =
P > 0. Then all positive solutions of (CNLS) are of the form (3.1.18) up to

translation.

The organization of this chapter is as follows. In Section 3.2, we consider
the one-dimensional case and prove Theorems 3.1, 3.2. Sections 3.3 and 3.4
are devoted to the proofs of Theorems 3.3, 3.4, 3.5. Section 3.5 presents some

extensions and applications.

3.2 The one-dimensional case

In this section we consider the one-dimensional case of (3.1.15) under the condi-

tion Ai = A2 = A, i.e., the following ODE system with two boundary conditions:
u'l —Xui + fiiuf + (3uiu2 — 0 in (0, -foo),
u'i —Xu2 + fi2ui + pufu2 = 0 in (0, +00), (3.2.1)
"10) = "4(0) = 0 and ui(r), U2(r) — 0asr — +00.

Proof of Theorem 3.1. Let (1/1,1"2) be a positive solution of (3.2.1). The basic

idea of the proof is to show that ui (r) = a1 U2(r) for allr > 0, where a = "J

well-defined by (3.1.17). Define u{r) —ui{r) and v{r) = u2(r) forr > 0. Then

(uv) satisfies

/
u" - Aii + fiiu® + Pa®uv® =0 in 0; +00),
VXV + + 732" = 0 in (0, +00), (3.2.2)
7700y = /0y = 0o and Uur), v{r) —~o0 asr — +00.
The proof of u = v will be divided into four steps.

Step 1: We claim that

uv —uw'Y + 0oi — ,6)uv{ur — = 0 in (0> +00). (3.2.3)
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Indeed, multiplying the first equation in (3.2.2) by v and second one by u yields
{u'v)' —u'v' — Xuv + fiiurv + (50?uv® = 0,
{uv’)' —u'v’ — Xuv + + puty = 0.

Subtracting the second equation above from the first one, our claim follows.

Integrating (3.2.3) over (0, +o0) we get

poo

Oi -j3) uvfur— v4) = 0.
Jo

Hence u =v otherwise the function u —v changes sign.

Step 2: Suppose that U — VvV changes sign. We claim that there exists ri > 0 such

that either

ur) —v(r) >0 forallr >ri and wu(i) - v(ri) = 0> (3.2.4)
or

ury —wv(r) <0 forallr >ri and u(ri) —v(ri) = 0. (3.2.5)

Indeed, by (3.2.2) u —v satisfies
[ —A |+ [itiur+ (IXi — (3)mi + /=0 in (0, +00).
Since A > 0 and
filur + (/it — f3)uv + () =0 asr — +o00,

our claim is proved.
Step 3: Without loss of generality we assume that (3.2.4) holds, since otherwise

we consider v —u. We claim that there exists r2 > Vi such that
ILlv — u'){r2) = 0. (3.2.6)

Indeed, multiplying the first equation in (3.2.2) by u' and second one by V'
get
f \[[uf] — IA (uy + + + |/3a'uv(u'v. — uwv') =0,

liv'fY —IA {vry + +ipiu'v'y + 51— “) -o.
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Subtracting the second equation above from the first one and integrating over

(ri, 00) yields
— 5[ 2 — 1 7(ri) + iT wfuv - w') =0 (3.2.7)

It follows from (3.2.4) that
0> u{ri) >v'(ri) and {u'v- u)(ri) > 0. (3.2.8)

Hence by (3.2.7) and > 0,

poo
[ uw{uv —m/) <0
Jri
from which and (3.2.8) our claim follows’

Step 4: Integrating (3.2.3) over {t2,00) yields

poo
(Ml -P) uv(u' - 72)= 0,
Jr2

which contradicts the fact that ti,v > 0, r2 > ri and (3.2.4). o

Next we prove Theorem 3.2 in a one-dimensional way. For other proof we

refer to Section 3.4.

Proof of Theorem 3.2. Let {uiu2) be a positive solution of (3.2.1) with jii =

fi2 — (3. Define the Hamiltonian functional H{r) of (3.2.1) by

C
W +hi 12 S 3.2.9)
Thanks to iV — 1, we always have the Hamiltonian identity
H(r)y = C in (0,+00). (3.2.10)

By the exponential decay of solutions to (3.2.1) (cf. [25]), we get (7 = 0. Hence
P A
==H{0) = "ut{0) + um 0 (3.2.11)

which implies that
o\
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Then there is a » G (0, f) such that
.. 2A 2A
lii(O) = — cos9 and ~2(0) = — sin 6.

Note that w(0) —\/2 for N = 1. Thus (txi, U2) has the same initial values with

/
cos”
¥

Therefore, applying the standard uniqueness theorem of initial value problem in

ODE theory, our conclusion follows. .

Remark 3.12. The proof above gives more, namely all non-trivial solutions of
(CNLS) are of the form (3.1.18) up to a translation except 9 G [0, 2tt) under
hypotheses of Theorem 3.2. But for e Xi, the solution structure is much more

complicated, see [99] and references therein.

3.3 The higher dimensional case

In this section, we prove Theorems 3.3 3.4 and discuss some possible extensions.

3.3.1 Uniqueness for small (3

By the symmetry and regularity result mentioned above, we need only consider
(3.1.15) and work on the space CV, . (R, x CV, . W), where 6; , . () denotes the
space of continuous radial functions vanishing at infinity.

To prove Theorem. 3.3 > we first establish the following more general lemma,
applying which we get uniqueness from local uniqueness. Before we state and

prove the lemma, let us define
“ g + —=mf h ( | + ffi.(3.3.1)

Lemma 3.1. Suppose that the set of nonnegative solutions of (CNLS) is compact

in CV-> o®)X CV - o(™) for bounded j3. Let uqg is a positive solution of (CNLS)
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for jS— (39, where (3q + «[160. Assume further uq is unique and non-degenerate
in CV, ofR) X CV, oM. Then there exists e, » O such that (CNLS) admits a
unique positive solution in CV > o(lx¥) x CV,0(lfor P G {(30 — e[1/30 + €0)-

Proof of Lemma 3.1. Denote = E'fii]. Then $(/?. , ,1)=0. Moreover,
AUiAh £Q) — is invertible. By the implicit function theorem, there exists
Co, Tq > 0 and function (f> : (Pq —Cq, /20 + cq) » Bj.Auq) such that for any (3G
(/20 —Co, P70 + co0), the functional u) has a unique solution u = 4>{(3) in BrQiHo).
Namely, (CNLS) admits a unique solution in Br, (Ho) for G (20— A)+%j), To
get the uniqueness result, it suffices to prove that positive solutions is contained
in Bj.g(uo) for \I3— {3q\sufficiently small. Suppose not, thero is a sequence {un}
of positive solutions to (CNLS) for (3= (3n such that Un « BroiHo) and (3/L goes
to (3g as n goes to infinity. By the compactness condition, Un converges to a
nonnegative solution H*+ uq of (CNLS) for (3= (5. By the uniqueness of Uq, u®

is a semi-trivial solution. That is either u® = (t*Ai./ii, 0) or u* = (0, UX\j,"). By

non-degeneracy of Ux®..as in [31], it is easily seen that 0} is non-degenerate
if aoe Thus by the implicit function theorem again, (CNLS) admits a unique
solution in a neighborhood of (t*Ai'fH 0) for (3¢ & . Since 0) is one such

solution, it is the unique one. Hence u* «(~—";ui,0) if A) clg- Similarly, we
conclude that u® « (0, UxX™W) if 3g « 60 This leads to a contradiction and

completes the proof. .

The compactness condition in Lemma 3.1 is satisfied by the Lemma 2.4 of
31]. For the convenience of the reader we repeat it without proof, thus making

our exposition self-contained.

Lemma 3.2 (cf.[31]). Lei > O 6e bounded. Then the set of nonnegative solu-
tions of (CNLS) IS compact in O, «(iiDx C;., oR).

Proof of Theorem 3.3. Combining Lemma 3.2 and the uniqueness and non-degeneracy

of to (3.1.8) in [53, 79], our Theorem 3.3 follows from Lemma 3.1 for

A) = 0. .
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Remark 3.13. Let us mention that, N. lkoma in [49] proved a result similar to
Theorem 3.3 and also extended to radially symmetric solutions of (CNLS) with
trapping potentials by perturbation argument. By Lemma 3.1 we have proved
more, namely that there exists an optimal 39 > Q such that (CNLS) admits a
unique positive solution for 0 < < /?0.But we don't know any explicit estimate
of /%. Recently, there are a few results on uniqueness for other systems, see for

instance [66, 54, 23 .

3,3.2 Uniqueness for large jS
Now we consider the case of large j3 and prove Theorem 3.4.
Proof of Theorem 3.4- As in the proof of Theorem 3.1. The basic idea is to show

that ui{x) = a-i U2[1x)for all x e R-"*, where a = yj

Define u{x) = ui(x) and v{x) = a-i U2{x) for x GM". Then (n,v) satisfies

Au-Xu =+ iiiu™ + =0 inR",
Av~Xv + + (du™v =0 in (3.3.2)
uv e

Let r+ = {Xx e R* Tu{x) >v{x)} and r_ ={x EM~ u{x) < v(X) We divide
the proof oi u = v into two steps.

Step 1: We claim that
div{ywu — uvv) + (/I - -vy) =0 inE". (3.3.3)
Indeed, multiplying the first equation in (3.3.2) by v and second one by u yields

div{fvwu) — Vu « Vv — Xuv + jjhiutv + (3a?uvr = 0,

div(iiVv) — Vu «W —Xuv + fisa®uv + Puv = 0.

Subtracting the second equation above from the first one, our claim follows.
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Step 2: We claim that r+ = 0 and > = 0. Then u = v. Indeed, integrating
(3.5.21) over r+ yields

A _ tAIA _/? oy —
\CVM téujl+ /?) f uv(u2 —-2 =o, (3.3.4)

where f denotes the unit outward normal to <9?+. Note that u—f > 0inr+ and

Jdr+

w=v > 0on #Hr+, we get

(du dw\
vA——u” <0 on 5r+.

\ aly oyJ

Hence the first term of (3.5.22) is non-positive. Since (3> max{/ii, *2] the second

term of (3,5.22) is also non-positive. Therefore,
/[ uv{u® —v?) = 0,

which implies r+ = 0. By a similar argument, we can prove that r_ = 0. .

3.4 Liouville-type theorem

This section is devoted to the proof of Theorem 3.5. It also gives another proof
of Theorem 3.2 with a PDE method.

To prove Theorem 3.5, we will use the following Liouville type result for the
equation V e« (cp?Vecr) = 0, where denotes the divergence operator. This has
previously been used by L. Ambrosio and X. Cabre to study a conjecture of De

Giorgi in (cf. [8, Proposition 2.1]).

Proposition 3.1 ([8]). Let (f G Lg“(M”) be a positive function. Suppose that
a G/ji*r(IRM)  satisfies

Va) > 0 in R”

in the distributional sense. For every R > [ -let Br — {|:c| < H} and assume
that

f < CR\ (3.4.1)
JBr

for some constant C independent of R. Then a is constant.
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Proof of Theorem 3.5. Let {ui,u2) be a positive solutions of (CNLS) with
Ai —A2=A, and jii— (12= P.
Direct computation yields

v c® 1 = o (3.4.2)

Since v G applying Proposition 3.1 with (p = u and a = v/lu, we get
that v/u is a constant. That is, there exists 6 € (0,7r/2) such that u = tan0'<;.

Substituting this identity into (CNLS) yields Theorem 3.5. .

3.5 Extension and application

In this section we will discuss some possible extensions and applications.

3.5.1 General domain and trapping potentials

First we consider generalizations of Theorem 3.4 to the following coupled nonlin-

ear Schrodinger equations with trapping potentials:

1
o
=
o

Aui —Vi[x)ui + + j3uiul

A'U2 —V2{x)u2 + (12U2 + (3ulu2

I
o
>

(3.5.1)

> 0in n, ui = U2= 0 on dVvl,

where 0 C R” is asmooth (bounded or unbounded) domain, N < S, Vi{x)" 0
are trapping potentials and /i2, (3 are positive constants.
Now we consider the case of large (3 and pose the following conditions on the

trapping potentials and coupling constant:

Vi) = V2{x) = V{x) >0 ino, (3.5.2)

(3 > max{/xi,/"2}- (3.5.3)

Using only integration by part, we obtain the following result.
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Theorem 3.6. Let (wj, 22) is a solution of system (3.5.1), then under the con-

ditions (3.5.2) and (3.5.3), we obtain
U2{x) = aui{x)j where /AN (3.5.4)

and U\ satisfies the scalar equation:

An —V{Xu + — = 0. (3.5.5)
P -M2
Proof. Let u{x) — and v{x) = a""U2{x) we have
div('t;Vu — uwv) + (j"i — Quvfu™ - v) =0 inQ (3.5.6)

Then conclusion follows from the argument in Step 2 of the proof for Theorem

3.4. .
Remark 3.14. The equality (3.5.6) is the basic of our argument.
(i) The conclusion is also true for homogeneous Neumann boundary condition;

(ii) It is worth pointing out that the proof above doesn't use any symmetric

assumption compared to [49].

3.5.2 Non-degeneracy and existence

Let (ui,ii2) be a solution of system (CNLS). We say that (7/1,7/2) is non-

degenerate if the solution set of the linearized equation

A01 —Ai0i + 3iJiul(f)i + jSul+i + 27uiu2(f)2 = 0,

A02 — X2 /\2 + #R27f£17)2 + 13ul(f)2 + 2(5UiU2(pl = 0, (3.5.7)

is exactly iV~dimensional > namely,

— z
v
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for some constants ai, | = 1, ..., V.
Assume that Aj = A2. By Theorem 3.3 and Theorem 3.4 > we conclude that

(ui,U2) = (ul, U2), where (u”®, Ug) is defined by (3.1.16), provided

fH [/?0(iV),max{Mi,//2}], (3.5.8)
where Pg{N) < mm{/ii® /12} and "0(1) = min{/ii,/i2}. By Lemma 2.2 and Theo-
rem 3.1 of [31], (*1,22) is non-degenerate. We state it in the following corollary.

Corollary 3.1. Assume that Ai : A2 and (3.5.8) holds. Then the positive solu-
tion {ul,U2) to (CNLS) is non-degenerate.

In [58], the authors constructed ground states in coupled nonlinear Schrodinger
equations with trapping potentials. Using the non-degeneracy result, we can con-

sider bound states of the following system

eAui - Vi{x)ui + /2iul + |3uiul

1
o
5

(3.5.9)
£2AW2 —V2{x)ui + fi2U2 + =« in E~
To simplify the technical difficulties, we assume that 0 < Ci < VWA, V2 < C2.
We have the following two results.
Theorem 3.7. Assume that Vi and V2 has a strictly local minimum at xq. That
is, there exists 5 > 0 such that Vi[x) > Vi{xo), V2{x) > 1"2("0)for xq * x £

(xg — 6, xq + S). Furthermore we assume that

ViCho) = V2 M, A [max{//i,/i2},max{",i,/i2}]- (3,5.10)

Then for e sufficiently small, problem (3.5.9) has a solution n2,e) with spikes

near xq.

Theorem 3.8. Assume that Vi and V2 has a strictly local maximum at Xqg. That
is, there exists 5 > 0 such that Vi(x) < Vi(xq), V2{") < for xq .xG
(xa — Xq + ("). Furthermore suppose (3.5.10) holds. Then for positive integer
K >2 and 5 sufficiently sm,all, problem (3.5.9) has a solution {ui,™* U2"e) with K

spikes near Xxq.



« 84

Chapter 2 Uniqueness of giamy solutions in  NLS

Theorem 3.8 seems to be the first result on the existence of bound states
with multiple spikes. Under the condition (3.5.10), we have uniqueness and non-
degeneracy of the limiting equations. The proofs of both Theorem 3.7 and The-
orem 3.8 follow form the same reduction procedure in [98] for single equations.
We omit the details.

Another application of our uniqueness results is in the article [18]. The author
consider the existence of positive radial ground states of 3-coupled nonlinear

Schrodinger equations

—AuUi + Xui = + + MNswl'Ui,  in RIL
—Ati2 + \U2 - Pl2ulu2 -+ + <L IHE™,
(3.5.11)
—A?3+ AUs = jdisufus + ~23uiu3 + //31/3, in W,
ui{x) 0, — 0, — 0, as — 00,
where n = 1,2,3, A> 0, fij > 0and Aj > 0 < j) forij = 1,2,3. To

conclude the existence of positive ground state, the author first use Theorem 3.D
of T. Bartsch and Z.-Q. Wang. Secondly the author applies our unique result
to obtain all the semitrivial solution of (3.5.11). Thirdly the author provides a
sufficient condition to guarantee each Morse index of nontrivial and semitrivial

solutions is at least 2 and then gets the following result:

Theorem 3.9 ([18]). If pij 's satisfy the following conditions:

fAij > max{jui, juj} and -y < —h) + Pjkiflij — f-kh (3.5.12)

for =12 3 i<j andi”™ kj ™ k., then (3.5.11) has a positive radial

ground state.

It seems that the condition ((3.5.12)) is only a sufficient condition, we can

give some comments below.

(i) The first kind of condition: (3ij > max{/ii, fj,j} in condition (3.5.12) is a suffi-

cient condition on the uniqueness and existence, So we can firstly relax this
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kind of condition for any considered dimension by using the non-existence
result for coupled equations. For example,

/

I3 <12 < < As < /523,
P23 - PI2 = 1JI- As - (M2 Us, (3.5.13)
(3i2 < and fii — Pu is small enough.

Secondly we can relax this kind of condition at least in dimension one by

Theorem 3.1

(i) The second kind of condition:

Aj- - < Afc(Aj - M) + PjkiPij - ") (3.5.14)

in condition (3.5.12) is one part of condition on the existence of positive
solution of system (3.5.11) with ui — CiUs and U2 = C2Us for some positive
constant Ci and C2. It is quite interesting to see whether it is sufficient and

necessary (exclude the case of pn — = 28 = [ii =/i2 = Ms)-

3.5.3 Systems with more than two equations

Now we consider Problem (3.2) for the general m-coupled nonlinear Schrodinger

equations
m
Ay — XjUj + E  Pjkukw = 0 in N S 3,
M (3.5.15)
Uj e /fi(M™),
Namely, for Ai — ...BEm = 1, does any positive solution of (3.5.15) have the
following form:
Ux) =alwx), J —1,...,m (3.5.16)

where w is the unique radial positive solution of

Aw-w-1-w" =0, we (3.5.17)
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As we mentioned before, there is a sufficient and necessary condition oi B — {Pjk)
such that (3.5.15) has a positive solution of the form (3.5.16) (cf. Theorem 3.F).
Let us denote the solvable domain of B by B, i.e., B G B is the sufficient and

necessary condition. For simplicity of notation, we consider the case m = 3;

-Aui + Xui = fiiul + Puu®ui + Pisului, in E~*,
-A7/2 + XU2 Puufuz + + P23uiu2, in E*,

. (*0.5.10j
-Aus + XU3 = /3i3ufu3 + + '8

Follow the argument of the proof for Theorem 3.3, one can show that

Theorem 3.10. Suppose N = 1,2,3. There exists Pq > 0 depending only on
Xj's v jij's and N such that if 0 < Pjk < A) for all j, k's, then (3.5.18) admits a

unique positive solution up to a translation.
For large PjkS we can get a result similar to Theorem 3.4.

Theorem 3.11. For N = 1,2,3. Suppose B e B and

Prs ~ /223, A2 > max{yLii,/i2} As > 1"3- (3-5.19)

Then any positive solution of (3.5.18) has the form (3.5.16) and then is unique

up to a translation.

Proof. First we can prove that ui = a-iu2 where a = y Z "« Indeed, define

u{x) = ui[x) and v{x) = U2{x) for x E Then (u, v, U3) satisfies
/

Au — Xu + "47/ + 13i2ahiv* + Pisulu = 0 in Ry,
AN — o+ + Puu'™v + p23ulv = 0 in RA", (3.5.20)

Aus —Xus + B + iSisUtus + fhsatiPy?s = 0 in IR/,

Let I+ ={x emM~ 1) > v{x)} andr_ = {x € I I|(T) <75 (). We divide

the proof of = v into two steps.
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Step 1. We claim that
div(t;Vw — uw) + (/1 —/Bi2uyw* - v =0 in M (3.5.21)
Indeed, multiplying the first equation in (3.5.20) by v and second one by u yields

div(vWVw) — Vu « Vv - Xuv + fiiutv + f3i2auv” + (3i2,uluv = 0,
div(itvii; ) — Vu .Vv — Xuv + 1120"uv + Puu™ + (522,uluv = 0.

Subtracting the second equation above from the first one, our claim follows.
Step 2: We claim that r+ = 0 and r_ — 0. Then u —v. Indeed, integrating

(3.5.21) over r+ yields

f f du dw\ N
u- + . A uv(ur —vn) = 0, (3.5.22)
Jap  dvodu .
where “ denotes the unit outward normal to Note that ti—t;> 0 inr+ and
= > 0on (9r+, we get

f du dw\ <0 onar
du dv, )

Hcnce the first term of (3.5.22) is non-positive. Sincc P12 > rDax{//i,"2} the

second term of (3.5.22) is also non-positive. Therefore,
uv[u vA) = 0,

which implies r+ = 0. By a similar argument, we can prove that r_ = 0.

Step 3: We claim that U3 — bu for some positive constant b. Indeed, {u,1"3)

satisfies
Au-  Xu-\- {fxi+ + Pi*uju =0 inR"
(3.5.23)
Aus —Xus + Mshi + (A3 + -0 in
Define w = bMu®, then (n,w) satisfies
Au-  Xu+ (iM + + Pish”w"u = 0 in
(3.5.24)

Aw-Xw + PSR + (3 + -0 in
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Multiplying the first equation above by w and second one by li, we get
div(wVm - uvw) + {ill + (3i20? - /?i3 - - ("3 - 0. (3.5.25)

Since B e B and /Ma > /Z3, there exists 6 > 0 such that

+ Pua” - —Ihw = M3 — (3.5.26)

Therefore, we have
divoOv~/ - uvw) + 03 — I3i3)bw{ur - w” = 0. (3.5.27)
Repeat the argument in Step 1 and Step 2, we get the desired result. .
Remark 3.15. Similar argument can be applied to the case /52 = or [?i2 =

N23-



Chapter 4

Traveling wave solutions

In this chapter, we study the positive traveling wave solutions for the semi-linear

parabolic equation
ut = Au - u+ uP in (0,00) X iv > 1,

in the form

u{t, x) —v { x ' — ct\ Xn+i) e MM+

Some new examples are constructed. The first one is that of a traveling wave
solution with one convex non planar front. The second one is that with one non
convex front. The third one is that with two non planar fronts. Our approach
explains the difference between two dimension and higher dimensions, and also
explores a connection between moving fronts and the mean curvature flow. The
main tool is the infinite dimensional Lyaponov-Schmidt reduction, which have

been well developed in the last three decades.

89
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4.1 Introduction

Traveling wave solutions play an important role in nonlinear science. These solu-
tions may well describe various phenomena in nature, such as vibrations, solitons
and propagation with a finite speed, etc. In mathematics, they form a specially
important class of time-global solutions of evolution equations. For a recent ac-
count of the theory we refer the reader to the survey article [89], especially on
the stability theory.

In this chapter we consider the traveling wave solutions in the homogeneous

case, for the semi-linear parabolic equation

F= Au + fiu), Xe t >0, (4.1.1)
Clc
where u is a (unknown) real-valued function on so that the level sets of u

are N dimensional.

Let us start with the planar traveling wave solution, which propagates in a
given unit direction e with a speed c. Two properties characterize such solutions:
their level sets are parallel hyperplanes which are orthogonal to the direction e
and the solution is invariant in the moving frame with speed c in the direction
e. Then it can be written as u{t, x) = U{e- x —ct). The profile U satisfies the

ordinary differential equation
U'+cU +HU) =Q inM

Existence and possible uniqueness of such solutions are well-known and depend
upon the profile of the function /, see for instance, [9, 42, 52 .

Recently, the non planar traveling waves have been well studied for the reac-
tion diffusion equations. For a reccnt account of the theory, we refer the reader
to [14], where a generalization of travelling wave solutions is introduced. More

generally speaking, waves with multiple transitions can be defined as follows :

Definition 4.1 ([14]). Let k> 1 be a given integer and let ui”... hek time-

global classical solutions of (4.1.1). A generalized transition wave (or traveling
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wave solution) between Ui,... ,Uk is a time-global classical solution u of (4.1.1)
such that u + Ujfor all 1 <j < k, and there exist k families 1<i <A
of open pairwise disjoint nonempty subsets ofU and afamily {rt)teR of nonempty

subsets of Q, such that

VIGE, U (ai]‘lnrO =r* ru U #a,
I<3<k I<j<fc (4.1.2)

Vi<i < fc, sup{dn{x, ") I"G R, aG O"} = +00

and
u(t, x) — Uj[t, a) —0 uniformly ini GM. and x G Qj
(4.1.3)
as r"y — +00, for all 1<j <np.
In the particular case where k = 1 and is a singleton in Definition 4.1, u is

called a localized pulse. In the following the set Ft will be called traveling front
or front.

In the following we are concerned with the case

fluy = -u+lu u.

which appears in various nonlinear equations, such as the nonlinear Schrodinger
equation and the Gray-Scott or Gierer-Meinhardt systems in Turing's biological
theory of pattern formation (cf. [94]). Namely, we study the traveling wave
solutions of

AN =Au-u + Xe t>o0.

CJL
As a first step, we look for traveling wave solutions in the following form:

u(t, x) = v(x\ Xiv+1l - ct), X= (X' xjv+i) e (4.1.4)

which is called curved travelling fronts in [14]. Then the profile v satisfies

Av -AcOn+iV. — V + =0 in (TWc)

In particular, we say the traveling wave u is stationary if it does not depend on
t, i.e., u satisfies

+ =0 iNRW+i. (SWc)
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For stationary wave solutions (sometimes also called standing wave solutions),
there is a surprisingly rich and very interesting structure. First, the solutions
of (SWc) which are positive and decay to zero at infinity are well understood.
Secondly, the solutions of (SWc) which decay to zero at infinity but change sign
have a more complicated structure. Much less is known about solutions which are
defined in the entire space and which do not decay to zero at infinity uniformly.
Entire solutions of (SWc) are known to be bounded thanks to [82]. Observe that
the solution of (SWc) can be trivially extended as a solution of (SWc) which is
defined in and which only depends on N variables. Starting from the unique
positive radially symmetric H~ solution in R”, a new class of entire, positive
solutions has been discovered by N. Dancer [29] using a bifurcation argument.
Later more positive entire solutions are constructed, see for instance [70, 34, 85 .
These results provides a surprising link between the solutions of the (continuous
or discrete) Toda type system and entire solutions of above semi-linear elliptic
equation. In particular, in [34] the authors construct a new class of positive entire

solutions of (SWc) in M when p > 2. These solutions are close to the function

k

where w is the unique positive even solution of

w"-w +wr=0, we (4.1.5)

and = {(aj,z) GM* x = fj(2)} are embedded curves which are asymptotic to

oriented half lines at infinity. Moreover, //s satisfies a Toda system:
elf;=ef--FJ—e) A+, | = (4.1.6)

where we agree that fo = —oo, f*+i = +co and @ > 0 is an explicit constant.
The objective of this chapter is to show that a similar construction can be
obtained for the positive traveling wave solutions of (TWc). Rough speaking,

three new kinds of traveling wave solutions are constructed. The first one is that
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a traveling wave solution with one convex non planar front. The second one is
that with one non convex front. The third one is that with two non planar fronts.

To introduce our results in this chapter more precisely, we should mention
some known facts about the relation between traveling wave solutions of semi-
linear parabolic equation and the so-called self-translating solutions (also called
eternal solutions) to the mean curvature flow. Consider the traveling wave so-
lutions to the parabolic Allen-Cahn equation of the form (4.1.4), that is, the
solutions of

A7; + cdN+iV = Q InR¥+1. (4.1.7)

In [21], cylindrically symmetric traveling waves with paraboloid like interfaces are
constructed for A* > 2 and that with hyperbolic cosine like interface is constructed
for iv = 1. It is also shown that the asymptotic shape of the interfaces (level sets)
are related to mean curvature flow. Moreover, there is a monotonicity condition
on Vin [21], so the traveling fronts in all cases are connected, convex surfaces.
Recently, in [36] the authors construct traveling wave solutions with multiple and
non convex fronts for N > 2. Their approach explores a connection between
traveling wave solutions of parabolic Allen-Cahn equation and eternal solutions
to the mean curvature flow. More precisely, the first example of their construction
is that of a traveling wave solution with two non planar fronts that move with
the same speed. The second example in [36] is a traveling wave solution with a
non convex moving front.

The objective of this chapter is to show that a similar construction can be
obtained for the positive traveling wave solutions of (TWc), To explain the differ-
ence between the study of Allen-Cahn equation and that of (TWc), we consider
the one dimensional case first, which are the basic models in both constructions.
It is known that the heteroclinic solution to the Allen-Cahn equation is stable
and has only one bound element in its kernel. However, the one dimensional
bump to the nonlinear Schrodinger equation is unstable. It is a mountain-pass

type solution and has Morse index one. Hence resonance phenomena may occurs
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for the nonlinear Schrodinger equation.
Now we review some known facts about the eternal solutions to the mean
curvature flow. In general, we say that an evolving in time family of surfaces

moves by mean curvature if the following is satisfied:
VA-H,

where V is the normal velocity of the surface and H denotes the mean curvature
vector. Self-translating solutions are represented by surfaces that do not change
shape and are translated by the mean curvature (MC) flow in a fixed direction
and with constant velocity. After a rigid motion and rescaling we may assume
that a translating solution of the MC flow is represented by a family of surfaces
{r + c”e”v+iliGR, where F is a fixed surface and c € M. is a fixed number. From
this r must satisfies

B = czMjv+i, (4.1.8)

where ] is the mean curvature and P is the unit normal vector of the (oriented)
surface F (here H : HP),

Fix a surface F for which (4.1.8) holds and such that ¢ = 1. Let us define its

scaling Fg by
yeV."eyeV, (4.1.9)
and denote the mean curvature of Fg by Hr*. Then,

Hr, = ei"N+i- (4.1.10)

In this chapter we will consider e to be a small parameter, or in other words,
we will be interested in translating solutions of the MC flow moving with a small
speed.

Several examples of translating solution to the MC equation are known, see
for example [2-24] and the references therein. Here we will discuss a special

eternal solution of the mean curvature flow for which F is a graph of a smooth
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function F : R* ~ R, thatis, T = { ( I € R”}. In this case (4.1.8)

reduces to

(4-1.11)

It is known from [2, 24] that there exists a unique rotationally symmetric solution

F of (4.3.1) with the following asymptotic behavior :

F(r) = 1) - logr+ 1+ 0(r-", r » 1.

In what follows we will denote the rotationally symmetric translating solution of

the MC flow by F and the corresponding scaled surface by i.e.,

= ITVH=  EF(EN)L

The first result in this chapter concerns the existence of a positive traveling

wave solution to (TWc) with one convex non planar front.

Theorem 4.1. Suppose N > 2. Then for each sufficiently small z, the traveling
wave problem (TWc) has a solution v* moving with speed ¢ = e, and with only

one front - which is a rotationally symmetric paraboloid-like hypersurface.

Our second result is about existence of a traveling wave solution to (TWc)
which has two traveling fronts, each of which is asymptotically a paraboloid-like
surface in a neighborhood of the rotationally symmetric eternal solution to the

mean curvature flow.

Theorem 4.2. Suppose N >2. Then for each sufficiently small e, (TWc) has
a traveling wave solution v* moving with speed ¢ = e, and with the following

properties:

(1) the fronts of v* consists of two disjoint, rotationally symmetric and convex

hypersurfaces F.
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(2) Forany r > 0; let CV bethe cylinder CV= {(a/,ccjv+i | < r}. Let Tf (r)
r™ \ Cr, and similarly = \ C” Here is the eternal solution of

mean curvature flow with ¢ = e. Then it holds:

(4.1.12)

where d is the Hausdorff distance between sets.

Our third result is denoted to prove the existence of traveling wave solutions

whose traveling front are non convex surfaces.

Theorem 4.3, Suppose N >2. Then for each sufficiently small 5, the traveling
wave problem (TWc) has a solution Vs moving with speed c — e, and with only

one front, which is a rotationally symmetric non convex hypersurface.

Our last result is denoted to the study of traveling wave solutions in two

dimension.

Theorem 4.4. Suppose N = 1. Then for each sufficiently small e, the traveling
wave problem (TWc) has a solution v moving with speed c — e, and with only

one front - which is a rotationally symmetric hyperbolic cosine like hypersurface.

The existence results in this chapter explain the complicated bifurcation struc-
ture of traveling wave solutions to (TWc). In the following we will focus on the
second result since it is the most complicated one.

This chapter is organized as follows. In Section 4.2 we explore on the formal
level the relation between the traveling wave solutions to (TWc) and the eternal
solutions to the mean curvature flow and introduce the Jacobi-Toda system for
the moving fronts. In Section 4.3 we review some known results on the eternal
solutions to MC flow. In Section 4.4 we study of the Jacobi-Toda system and
its linearization. Scction 4.5, 4.6 and 4.7 is denoted to carry out the infinite

dimensional Lyapunov-Schmidt reduction to prove Theorem 4.2.

™
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4.2 Preliminaries and motivations

To understand the role played by the mean curvature flow and the Jacobi-Toda
system in the existence of traveling wave solutions with multiple traveling fronts,
we first introduce some important notations and tools from Riemannian geometry.
Secondly, after describing a model for the traveling wave solutions with multi
fronts, we will derive formally the Jacobi-Toda system. The notations and many

calculations presented here will be used throughout the chapter.

4.2.1 Geometric background

In this section, we assume that A* > 1 and that F is an oriented smooth hy-
persurface embedded in the {N + 1) dimensional Euclidean space ]R¥li, which
separates IRl into two different connected components in the sense that F is
the zero set of a smooth function for which 0 is a regular value.

The first important tool is the use of Fermi coordinates to parameterize a
neighborhood of F in

Denote by P the unit normal vector field on F which defines the orientation

of r. We define

z) =y + zi7(y),

where y € F and 2; G M. The implicit function theorem implies that is a local
diffeomorphism from a neighborhood of apoint (y, 0) 6 FxM onto a neighborhood
0iyeRMK

Given 2 E M, we define T* by

Observe that for z small enough (depending ony), T~ restricted to a neighborhood
of y is a smooth hypersurface which will be referred to as the hypersurface parallel

to r at height z. The induced metric on will be denoted by g"
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The first result in this section is a consequence of Gauss's Lemma. It gives
the expression of the metric g of R ¥l i parameterized by X. For atreatment of a

more general case we refer the reader to the book "Tubes" of Alfred Gray [45.

Lemma 4.1. The metric g of parameterized by X, in a tubular neighbor-
hood, is
= gz + dz'",
where
9z = 9o~ ""zAr + ZMAr e Ar,

Ar{ti,t2)-—%1( « 2 15512)
Here gomdr are the induced metric and second fundamental form on F; respec-
tively.

Moreover, the mean curvature Hz of Tz for z small, has the explicit formula

(4.2.1)

where Hy is the mean curvature of F and

m—2  j=1
Here we denote by k/s the principal cui'vatures of T.
Recall that the Laplace-Beltrami operator is given by
1

v o1 A )

in local coordinates. Therefore, in a tubular neighborhood of F, the Euclidean

Laplacian A in can be expressed in Fermi coordinates by the well-known
formula
A=4%—iljz + AJ. (4.2,2)

Denote tin+i be the projection on the N + 1-th coordinate, then the Euclidean

N + 1-th partial derivative dN+; has the expression

dN+i = iI"N+id, + VAMtaN+] ee"— (4,2,3)
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in Fermi coordinates.

Finally, for future reference, consider the scaled version of and denote its
parametrization and the unit normal by g® Pe, respectively. Itis easy to see that

the following relations hold:

(lefy) =e-iga)). iUy) =nep). (4.2.4)
Therefore,
fflly) = cyimyy =£7 M@, F0yIE ~,Aey),
HvAv) = Irrj'fo) =e'I*"rPN), kr*Av) = skr,j(ey).

4.2.2 A model for the traveling wave solutions with multi
fronts

In this section we will first describe a model for the traveling wave solutions
with multi fronts to (TWc), where ¢ = e isconsidered to be asmall parameter.
Then using the Fermi coordinates and the expansions of operators in the previous
section, we explore formally the relation between the traveling wave solutions to

(TWc) and the Jacobi-Toda system defined on an eternal solutions to the MC

flow.

Let w be the unique positive and even solution of
w" -wrMw”N =0 in R. (4.2.5)
For future reference let us recall that
Fr)cosh (F)]—F

We agree that Fis a smooth embedded hypersurface in R ki and let

be any (sufficiently small) smooth functions such that Q < (j.+i. Now we assume

that, in atubular neighborhood of 1\,

no= Z ) =Z ) + gk (4.2.6)
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where
k
Velly) = X1/le,joy:EJ fe, z) =wz —CjN)), (4.2.7)
j=i
and 0 is a small perturbation. Later on we will have to be more specific about

the way the approximate solution is defined.
For simplicity of notation, we use the same Ss:(v) for the nonlinear operator in
(TWc) regardless of the coordinates. Using the expressions of operators in Fermi

coordinates in the previous section, in a tubular neighborhood of F*,

myJ) = {d>0j —Ws,j+ <,)

"AgA W + e-OleztTafl 1« Qe = = 7FJ

Direct computation yields
—flis,j + iw" + ON)) - 0,

{£"e N+l — HY,,2)dzUJe"j — eQiv+l— Bp) (e'l/)\w'(z -  EP))
(B +o@W) (« (-6 (£

and

£ o I 0 ee U O =——VpsTTiv+i * (VgXjfF nliz — Q(ey)).

From the above computations, since we assume that Wsj is a good approximation,
it is reasonable to choose F such that Hp = i*n+i, i.e., F is an eternal solution of
the mean curvature flow. In the following, we will agree this choice.

To obtain a traveling wave solution to (TWc) near our model v™ at least in a
tubular neighborhood of Fg, a standard way is to apply the method of Lyapiinov-
Schmidt reduction. To apply this method, it is needed to know the kernel of the
linearized operator associated to v*. Since near each front w is a. model of v, we

first review the known facts about the linearized operator associated to w.
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The linearized operator of (4.2.5) about w is given by
(4.2.8)

It is known that Lg has a unique principal eigenvalue Ai > 0 and A2 = 0 while the
rest of the spectrum is strictly negative, see for example [34]. For future reference

let us recall that

and the function
w (P1) /2

w; & 1 dx
is a positive eigenfunction associated to Ai.
As already mentioned, the discussion to follow is based the understanding

of the kernel of the operator
L, = df + Akat - 1+ pvf-i~ (4.2.9)

which is now acting on functions defined on the product space M x IR”. It is easy
to check that both the functions w'{t) and *y)z{t) are in the kernel of L” where

is a bounded radial solution of
Arn™ + Ai0 in RA.

Therefore, the situation is more complicated than that of Allen-Cahn equation.
To deal with this difficulty, we introduce another family of parameter functions
as in [35, 341. Let
ly: r —JK, j = kkl,
be any (sufficiently small) smooth functions with the property :

foil (42.10)

where the norm and a small number k will be chosen later on. Now we consider

the approximate solution of (TWc) is atubular neighborhood of Fg,

k
we,:j{y.z2)'{-71j{ey) Ze,j{y.2) > =Z{z - Qffy)). (42.1])
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We will look for a solution of (TWc) in the form:
+ (). (4.2.12)

Substituting into (TWc) with ¢ = £ we get for the function (p,

AN + edN+i=+ 4i//\=-S"Ve) — (4.2.13)
where f{u) = —u + u* and
SM)-Er + edN+life+ f { Ve ) . I = + (N)— 4f—

For future references let us denote as well:
L @4 =A11# + edN+i//+ f{ve)d>- (4.2.14)

To solving (4.2.13) for s/ one would like to use a fixed point argument for the

operator

provided that L has auniformly (in small €) bounded inverse in a suitable function
space. To explain the theory we will need let us observe that locally, that is near

for small e the linear operator L resembles the following form:

Ls(I> = + EVIA'7v+i « V1.0 + % + S

where Vr”~, Ap® are the gradient vector field and Laplace-Betrami operator on

respectively. Observe that

L{w) = ofl), = 0@,

and consequently we do not expect to find a uniformly bounded inverse of L
without introducing some restriction on its range. In this chapter we deal with

this difficulty using aversion of infinite Lyapunov-Schmidt reduction (cf. [35, 34]).
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The essence of this method is to introduce a function c[y) and d{y), y G Eg and
consider the following problem:

‘L,7/\=-Se{ve) — N{(j>) + c{yw'{z) + d{y)Z{2), in E, x R,
(4.2.15)

/k (Ky, w'{z) dz =0= 1 2)Z(z) dz, forallye IV
Vv
Recall that the ansatz Vs depends on, still undetermined, functions Cj's and "/s,
j = 1,..> k. Solving (4.2.15) for given Q's and 77/s and then adjusting them in

such a way that

y:;0,Vj)=0=%; Vy G (4.2.16)

we get a solution of (TWc). Actually, the following extra steps are needed to
solve (TWc): (a) gluing the local (inner) solution of (4.2.15) and a suitable outer
solution; (b) a fixed point argument to solve (4.2.15); (c) solve system (4.2.16),
called here the reduced problem. It is a nonlocal PDE system for (/s and rj/s
and its solvability is a nontrivial step extensively in this chapter.

Next we explore formally the relation between the traveling wave solutions to
(TWc) and the Jacobi-Toda system. Because of the L”*-orthogonality of w' and

Z, the reduced problem (4.2.16) is equivalent to

/
LILI(y,ow\2) dz+4 Sy, 2 )w{z) dz + /K ow{z) dz - O
LILIE » 2)Z(z) dz+4 Sy, 2Z{z) dz+ 4 iV 2)Z(z) dz — 0.

Neglecting formally terms involving V() and Lj*cf)), which should be of lower

order, this condition reads:

[ Se{ve){y, 2)Zejly, z)dz 0, j = 1,--A;,
JR

and

I Se{vs){y,zMly,2) cb =0, j = ..k
JR

Using the expressions for A, djv+i, and neglecting small terms (as in the pre-
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vioiis section), we get:

'div,+/eni
HEz/£, WH - HrJdzHe
+ (Ar, - + eVvr.vs .

Consecutive terms above are organized in such a way that the first term can be

estimated by the definitions of and Z”"j as follows:
El —Xir]j{e-)Zsj + f{v,) —f{wj +

The second term is also 0 since F* is an eternal solution of the mean curvature
flow translating with speed ¢ = e, and the third is of order O(e”). In this term

we will separate those parts that are parallel to w. 1 and Z”*j from the rest:

E, [(-ArO - VITTiv+i -VrCj - I~rPO)

+— (|VrO %rp (2 —CikK
+£2 [{Ariij + VITTjv+ . V) Zsi]

-e"Arnz -

Here We,j = w{z — =w{z — and w*“ = w"[z —Q{e-)). Taking

this formula into account, since

SN A

it is not hard to show that

rSle
(EWej)) {AZ) dz 11 £ A r O + INfO  + VrO . Vr JLiv+i) (ey),

where cq = fijA(w)*  dt
Similarly we will separate the integrand in the second integral in Ei into parts

which are parallel to w, j and the rest. After some elementary manipulations we

find
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since flu) = —u + vF and the terms we have neglected turn out to have small
contributions when projected onto w'y To compute the projection let us recall

the following asymptotic formula

w{x) = e +0((coshx ;

and denoting:

ci=p wP-Aw'eM dt - whendt < 0,

we get the following as the leading order term in the second integral in Ei

fs/e .
s ([J(E > nej+ii) —ELit (v, 2) dz
fSIB p—1 ¢ ..
J~S/e rj-i dz + dz
rSle
J-6/e
le 1
ci —9Cj-i-Cj —
Denoting
= = 7T 0, 4.2.17
® it fWe R (4.:2.17)
we find that to the leading order of {y, z) dz = 0 is equivalent
to:

e'ao (ArO + Vr7r,v+i .VrO + I"rPO) —)—L— 9.—& 1ALl
(4.2.18)

Similarly the leading order of /fAy” [Ss{VE)Zsj){y, z) dz = 0 is equivalent to:

£2{ArVj + VrITTiv+i «VrVj) + hrjj = Q(0, Vj)- (4.2.19)

Remark 4.1. Using a similar argument, for TV. = 1, we can get the following

type of Jacobi-Toda system:

efaoiC- + Ci) — —e (/7 =0 (4.2.20)
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4.3 Eternal solutions to the mean curvature flow

In this section, we review some results about the eternal solutions to the mean
curvature flow.

First we consider the entire solutions to the mean curvature flow. Assuming
that the surface F is given as a graph T — {rcjv = F(x) \x' G IR"}, and that

c = 1, we obtain that (4.1.8) is equivalent to:

VF ¥ -
. in
VITIWF/ VIT|W
We will further assume that F{x) — F{\X)* i.e, T is rotationally symmetric.
Denoting —r we get:
Fr_. + (N - FT=1 in M~ 4.3.1
152" Mg (4:3.1)

The following result is proven in [2] in the case N = 2 and in general in [24]:

Proposition 4.1 ([24]). Suppose N >2. Then there exists an entire, rotation-
ally symmetric, and strictly convex, graphical eternal solution to the mean curva-
ture flow (4-3.1). This solution is translating with speed 1 and has the following

asymptotic expansion as r — 0o0:

m = 1)-logr + (7i + O(r-i) - (4.3.2)
where Ci is a constant depending on F(l).

Remark 4.2. The dynamically stability of these eternal solutions to the mean
curvature flow have been proved in [24] and there is no decay rate imposed on

initial value.

In the sequel by F we will denote the surface corresponding to the rotationally
symmetric eternal solution described in Proposition 4.1.

Next we consider the complete non-convex translating solution to the mean
curvature flow. We repeat here an existence result proven in [24] for the conve-

nience of the reader.
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Proposition 4.2 ([24]). Suppose N > 2. For every R > 0, there exists ro-
tationally symmetric, graphical solution to the mean curvature flow, W», WA
RMBr X [0,00) — R, translating with speed 1. We have the following asymptotic

expansion as r goes to infinity:
t~) = t+ 1) -logr + ax + 0(J 1). (4.3.3)

Moreover, the union of these graphs forms a complete non-convex translating

solution to the mean curvature flow.

In what follows by S we denote the non-convex surface obtained by taking

the union of the graphs of W”~ and by Sg. we denote its scaled version.

4.4 The Jacobi-Toda system and its lineariza-
tion

The general theory of solvability of the Jacobi-Toda system (4.2.18) is beyond
the scope of this chapter. Here we only consider the Jacobi-Toda system on F

(or S):

‘ertto (ArO + VrF «VrO + — + -0
(JT)

j— eeelk

Our theory of solvability of the Jacobi-Toda system will be valid for functions of

the radial variable r only and so we need to express the Jacobi-Toda system on

r in terms of the radial variable r first. For what follows it will be convenient to
denote :

L[v] := Arv + VIF .Vr®; + \Ar\v. (4.4.1)

Now we will find the expression of this operator when restricted to functions

V = v{r), i.e., functions depending on the radial variable only. The Laplace-

Betrami operator for a surface Xjv+i = F(r) acting onv = v(r) is

Vrr fN-1 Fr \
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The principal curvatures are given by

Fr ”
h fAN-1 = kN F
hence
[H] — r2(l +  + +
Finally we have
VIF «Vrv = Fr Vr.
+ T
Hence the expression for the operator L acting on radial functions, denoted by
Lrad, is
« HE (N - Ki
T 4.4.2
“radb 4, gy Yo+ T s (4.4.2)

Wo will now proceed to define some weighted norms that wc will use in the

sequel. For radial functions the following relations hold:

C\drh{i
+ \Fr{r
\drh{r)\ < CVI +il | 2|V (r

mT)\ <
< C(1+ \Fr{r)mDIh{r\ + \Wrh{n\l

where Vr is the gradient derivative vector and D is the second derivative matrix

on .
We define the following weighted norms for function h on F:
WUMT)  -=sup(2 + y = (VAVn) e
jj‘ yer

Dhod"(r) = WACF{r)  + IIVrilic7) "(r) + IP?73lic) "(r)»

and for radial ¢c2'4 function g on F;

Ibllcd-(r) - sup{(2+ \Fr{ly'\)\Vf{log
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With these weighted norms, we first consider the solvability of the Jacobi-
Toda system in the case k = i.e., consider the solvability of the linear equation

onr:

L[Ci] = ArCi + VrF .VrCi + =0 (4.4.3)

The key observation is that the equation L[<"] = 0 has a decaying, positive solution
(h = ry I. (4.4.4)

from which we can solve (4.4.3) by a standard ODE method. We rewrite this

observation in the following lemma, which has been proved in [36 .

Lemma 4.2. Function Sn = J— satisfies L[00] = 0, thatis, 41 is a positive,

decaying element in the kernel of L.

Proof. Let us consider the nonlinear operator

&) $
m ) + (AT — (4.4.5)

Let FT = F + acj), (j) = (){r) we get

A (>7  2FrFr)r + —

X —_ b —

da ™ © =W 1y R (1+if)

In particular we have H! 0. On the other hand, it is not hard to check that
LM = B 4+ FL

From this the assertion of the lemma follows. b

The second lemma concerns the solvability of L[\ = g, which has also been

proved in [36 .

Lemma 4.3. Let g bea radial function such that

IMIc) "(r) < (3>
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There exists a unique, hounded solution to
LIv]=14 (4.4.6)

such that:

HAletA(r) ~ gMlc) "(r). (4-4.7)
Proof. This lemma is also proved in [36] by the reduction of order formula in the
standard ODE theory. Here the uniqueness means we can define v in one unique

form. More precisely,

_ r A "
(1) M) qu) + YM.TJ‘OFﬁD(V\)/{%)W

where

~g[T) = iINFr{TW)9{r\

V\Oz r(|+ W,

= JT @—1@+ | 7@

Next we consider the Jacobi-Toda system in the case k = 2. Generally we

consider the non-homogeneous problem:

£2c.o(ArCi + VrF .VrCi + + = e'"h,
(4.4.8)
e2a, (ArC2 + VrF -VrC2 + | 7#1'G) — = e []
where Q r ~ M. To describe the strategy let us denote
u=(2- Ci, =cCi+C2 h= —(i2—hi), andg — 1+ (4.4.9)
«0 olq
Then the decoupled system holds:
'SN :=L[u] — = h,
(4.4.10)
= 0-

The second equation has been solved by lemma 4.3. The solvability theory for
the nonlinear equation in (4.4.10) is where the real difficulty lies.
We summarize here the main results in Section 3 of [36], which concerns the

solvability theory of the Jacobi-Toda system.
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Lemma 4.4. The nonlinear homogeneous equation

2
Sgful] L e" - 0 (4.4.11)
has a hounded solution uqg satisfying
2 -1
= + 0(loglo aser — O+,0or sr U
Uo{r) = log (loglog AW P

(4.4.12)
where \Ar{r)\* is the norm of the second fundamental form on T. Moreover, for
the linearized operator ~sW oi Uqg,suppose that > 0; 2z > 0; then there

exist a constant C > 0 and solution cf) to CM[<t>] = g such that

+ | |+ IPMICIT’ “r) < C(log*)4+'1"llc2fi, ~i(r).

Remark 4.3. The asymptotic expansion is found by solving for ug the following

equation:

From this first approximation, the authors in [36] define a sequence of approxima-
tions by solving a sequence algebraic equations like ug. Once an accurate enough
approximation is found the nonlinear problem can be reduced to a fixed point

theorem.

Using a fixed point argument as in [36] one can solve the following nonlinear

and non-homogeneous problem:
L (4.4.13)

in the following lemma:

Lemma 4.5. Let h be a CO’™(r) radial function such that
C>>ﬁ)<Ce\ r >0, {3>

Then there exists a bounded solution to (4.4.13) satisfying (4.4.12).
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We will finish this section with a discussion of another important ODE, how-
ever not directly related to the Jacobi-Toda system considered above, plays as
important role in the sequel. We consider the solvability theory of the linear
equation:

Arv. + VIF .Vr" + M =g. (4.4.14)

The key point is that it has a exponential decaying solution, from which we can

solve (4.4.14) by a standard ODE method and have the following:

Lemma 4.6. Let g he a CM(r) radial function such that

5*Icy () < (D > > e

There exist a constant C > 0 and hounded solution to (4.4.14) such that:

We) "(r) + d|Vrilic) "(r) + enlIrklicj'~Atr) < <Alblicy "(r). (4.4.15)

Proof. The proof of this lemma follows arguments in section 3 of [36] by the
reduction of order formula in the standard ODE theory. Recall that we define
another parametrization of F, which is obtained by taking the arc length along
the curve (r, F{r)). Thus we define

s= |/ NATAdp. (4.4.16)
Jo

Using the asymptotic formula for F we get that

s »r L1, 5= --~_—~ + 0(logr), ry (4.4.17)

By a straightforward computation we obtain the following expression for the

operators but now with the arc-length variable s:

Arfl + VrF -VrV = 1+ + — - Vss+ a(s)7]” (4.4.18)

-

where

oo (4.419)

VATWWW)

afs)=:
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Note that
N -1 _
S - c (I + 0(s2)), s<CI, a(s) =1+ 056—1), s> L (4.4.20)

Denote Li[r)] = Arrj+ VrF ‘Vpf]l + #rj. Then given one solution ipo of
Lilijj] = 0 we find the second linear independent solution ipi of = 0 by

reduction of order formula:

(4.4.21)
By we will denote the Wronskian of Z7 B y the Abel formula we have
(4.4.22)
W{s) = W{l)exp J a(T)dr
We make the following Liouville transformation
. n
fi{s) = ex'p a(r) dr t]{s (4.4.23)
Then
(4.4.24)
Now 7] satisfies
Y a(s (4.4.25)
where
/1
g= exp Mdr g (4.4.26)
Let us denote
= V" + p{s)r], a(s; (4.4.27)
When we consider the operator L for functions defined in the interval li — (0, 5i),

for some Si > 0 then we refer to this problem as the inner problem. We speak of
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the out problem when we take Igh ~ {s.,, 00), Se > si > 0 as the domain of the
functions involved.

First we will describe the way we choose Si and s®. For s — 0, we have

B w-—22 1 " "
> = s . , (h+ 0(2). (4.4.28)

As a consequence we see that there exist an M > 0 and si > Me) 0 such that

p(s) >0, Me <s< si. (4.4.29)

When s — 00 we have

(4.4.30}
with similar formula for the derivatives. Actually we have
~ DFr 1 N — 2)2 1 1
a— v .) + ( ) + (4.4.31)
r(l +if) 2 4 4

Also we can use the asymptotic behavior of d(s) for s large to infer the existence

of 52 > Si such that for 5> S it holds
(4.4.32)

Observe that Si and S2in general do not coincide and we need to solve an inter-
mediate problem to glue the inner solution and the solution for s between si and

S2. Finally, we will assume that e is chosen sufficiently small, so that
p{s) >0, Si<s<52- (4.4.33)
We first solve the inner problem:

Lh] =g, in/i = (0,Si), (4.4.34)

7/,(0) =0, rj[i0) = 0. (4.4.35)
Our goal is to show that there exists a unique solution rji such that

\M\co,p<C\\g\\co" (4.4.36)



8 4.4 The Jacobi-Toda system and its linearization o 115

For convenience we will denote A =% . Taking into account the asymptotic
behavior of d{s) when s — 0 we see that the operator L can be written in the

form:

(iv—2);: 1

¥y 1 (1+0 mn . (4.4.37)

Lrj =r" 4 a*-s"?
It is convenient to make further change of variables setting:
fHs) = MAs), 9{s) = g{\s), p{s) = A"p(As) (4. 4.38)

Then denoting by Z the scaled operator we have

/ L 2= 1
L sz / 1+ 0A—2 () (4.4.39)
and
= A2 e (4. 4. 40)
Formally = 0 resembles the modified Bessel equation and the operator L

should have an element of the the kernel fji’i such that
i, 1@—=Jdr@, (4.4.41)

where Jn—2 (s) is the Bessel function. The second, linearly independent element

in the kernel is such that
fiids)— (4. 4.42)
when A"7 is not an integer and

ViAs) ~ (4. 4. 43)

when ~"7 is an integer, where w— is the modified Bessel function of the second
kind.

We choose a solution given by

=— A—%, “s)DOWyg{rO0d™X -0 ,20#8m 70O dT (44.44)
Jo Jo
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Note that = 0, fjl{0) = 0 since after the change of variables we have Z(s) ~
0 K
Now we will make a useful observation: let 77 be a solution of L[ff] — O in

(K, Asi) and consider the following expressions:

Qi{v) = W{s)I'+p[fi{s)I', Q2{fj)= + (4.4.45)
P{s]
It is easy to see that
P (4-4.46)
\p.

Now, the asymptotic formulas of /3“1 and %2 for s small and the uniform bound
on fjij together with the variation of parameters formula give the following bound:

hzK~ . C -
S 2VIW < ; "2 IIgl (4.4.47)

On the other hand uniform bounds on fjij yield

st2 g (4.4.48)

Scaling back this estimates we get for the solution of inner problem estimates.
Since

n / A. 1 m Z
O <) 1 a) &~ 1 - (4.4.49)

let <, {2 are two consecutive zeros of 17, then by the theory of Sturm-Liouville we

have

<dist(6,6)< . (4.4.50)

By the similar argument above we have

C C
"W < ;m2d] < s B (4.4.51)

)82
Therefore,

mor o< ’ (4.4.52)
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4.5 The infinite dimensional reduction

Let r be the eternal solution of the mean curvature flow with speed 1 and let

be the corresponding surface translating with speed c = e 1. We will use the
natural representation of F as a graph of the radial function P = {xat+i ~ F(N}.
The scaled surface is given by T8 — {Xn+i —m )| FT . ) =£~*F(En}. In
general we will take advantage of the radially symmetry of the eternal solution
and apply the infinite dimensional Lyapunov-Schmidt reduction, whose approach

has been sketched in Section 4.2, to reduce the original PDE:
Av + edjv+iv + f(v) =0, in

to a one dimensional system whose independent variable is the radial variable

r=|;zl

4.5.1 An infinite dimensional family of approximate solu-

tions

We will now proceed to define an approximation of solution which depends on the
radial variable r = and the signed distance 2 to IV We will use the notations
introduced in Sections 4.2, with obvious modifications taking into account the fact
that r~ is radially symmetric and thus has a globally defined parameterization as

follows:
r={(r0,F{r) Ir>0e e S"Y}, T, = {(erG,e~"F{£r)) |r > 0,0 G SM}.

We choose an orientation iy(y) on F and take 2; = z{x) = dist(x, F) compatible

with this orientation. Let us introduce the following weight functions:

Recall that Fr(r) 0 as r (11 for N >2. It isnot hard to show that there exists

an 70 > 0 such that for all points x such that |2:(&})| < 70 loga;(r) the map

a + yeT
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is a diffeomorphism, denoted by X{x) — {y, z) and called Fermi coordinates of
r. Similar claims are true when we consider r™ and points x such that \z{x)\ <
A logujsir)- Taking this into account we introduce the following neighborhood of
1V

Us,M :={x e I\z{x)\ < Mlog™\}.
Clearly Fermi coordinates are well defined in Ue™m for all M > 0 large and e > 0
small. If by Xg we denote the diffeomorphism in Usm defined by £(X) = (y, 2)

then for a function v defined in this neighborhood we set

We will describe functions fj representing the leading order for the location
of the fronts of our traveling wave solution. In this section we consider the case
of two fronts since other situation can be deal with in a similar approach (most
may be more easily). Let fj, j = 1,2 to be solutions of the Jacobi-Toda system

(JT). We get that //s satisfies

# = %% log + B g (4.5.1)
In addition we have /i = —/2. In the sequel we will use scaled versions of these
functions, namely f*j : —>R, defined by

fejir) =fi{er), r=r{y) =W\, y={y yN+i) * IV
We recall here that = . In the course of the Lyapunov-
Schmidt scheme for our problem we further need two family of small functions,
which will be for a moment unknown parameters. Thus we let erj = 1,2, be
functions of the radial variable r on T such that for some r G (0,1) we have
[IVIIC7Y "(r) ~ [T, < (4.5,2)

Then by the relation between the weighted norms on P and we get

2T, llee- jll5"(m) < s: (4.5,3)
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Given the functions /gj, /igj and e”j as described above we will denote

fe= (fel, A©2), he= @n, "o 2), 1 = (erl, eo 2),

etc.
To define a proper initial approximation in the whole space. We will need
various cutoff functions in our construction. Therefore, for m = 1,--->6, we

define the cut-off function Xm by

0, vt o>1 - 2% .

Now let M > 0 be a fixed large number and let

i © Zip) = dist(a:, Fg

Xe,m,j j = Xm
. Mlog

where T7j is a normal, rotationally symmetric graph over Fg defined by

rYj = \x= (r,e-*F{Er)) + @ €...)}, where Cj = fsj + Kj-

Based on the analysis we have done in the previous sections, taking M large and
e small, we define the initial approximation v* of the solution by

2
R @z —Ce(n)) (4.5.4)

where

QAr) = fsAr) + h Ar). (4.5.5)

4.5.2 Reduction to the projected nonlinear problem
Now we look for a solution of

Ss(y) = Av +edjv+iv —?; + = O
as a perturbation of v*, and hence, we define

va +
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so that the equation we need to solve can be written as

SS[J " ~+ (/>)- + L@+ 8 =0 (4.5.6)

where
L(() - A() + edN+i/-0+  piF [~ -
= (v, + (Y -yP-

(4.5.7)

To solve (4.5.6), we use a very nice trick which was already used in [35, 34, 36].
This trick amounts to decompose the function (into three functions and instead
of solving (4.5 6), solve a coupled system. At first glance this might look rather
counterintuitive but, as we will see, this strategy allows one to work in a tubular

neighborhood of IV Therefore, we set

2
w=Xe,4] B8+ Vs

where the function ip solves

Az + SAN+I — 3= — 1 —  x.,4,,) \Ss{Ve) + # +
2 Fl 2 (4-5.8)
- E [MXEAA)) — — £E [dN+I{XeA3't>3) — XeAj"N+I"j

For short, the right hand side will be denoted by Ng{(f)j,ip, hj.Cj) so that this

equation reads

AZh+ sdN+iip- =1 K (4.5.9)

Observe that the right hand side vanishes when Xe4j = 1- Hence it can be written
5 (

as the product of a function with (1 — Xe,5,j)-

Taking the difference between the equation satisfied by /) and the equation by

it is enough that satisfies

[+ €AN+I(1)j —th + PAr VjJ /jrin,

= Xe- 4j [S,(Vs) + #E  +piTV], J= 1.2 .
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Since we only need this equation to be satisfied on the support of XMj*, we can
as well solve the equation

Lejl>j = -Xs,3, +edNH(f>) — o+ ptarv —Lei®

~Xe,3j [ B + , Jo= 1,2,

where the operator L*j is defined on functions whose domain is Fg x M by

= + (4.5.12)

For short, the right hand side of (4.5.11) will be denoted by hj, ej) so
that (4.5.11) reads

Ar>i + + f'—s,j)<h = M,j{cl>j, 1 hj, €j). (4.5.13)

It is convenient to rewrite this system in the following way. First we introduce

the shifted Fermi coordinates:
tji - Z - je,j, J - 1.

Then each of the operators has the following form in terms of these new coordi-

nates:

Ar. + dl + = Ar,+d + f(w_
-Ar L - Vg ‘VIA. +

Usually the second line above is small in the sense that its norm can be controlled
by the norm of solution times a small factor and thus can be absorbed on the
right hand side of the corresponding equation. Note also that variables tj are

related through the formula:
h —h = fe2 — fs-
Letting

Ms, — + [Ar LA. +VrJ.j . VIA — 1'*rJ.jM
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we obtain the following system
+doB+ H{wit,))4>] = e, e), (4.5.14)

where now, with some abuse of notation, (j)j — 4> = 4>j{y,tj), This system can be
considered as a system for functions defined on x M, and it looks at first sight

as being decoupled. However,

Me,3 =74y - z\(h, Kej),

Therefore, when considering the equation for in the shifted variable ti we need
to use the above relation between tj and T2 As a result we will obtain a nonlinear
and nonlocal system for (pj, j = 1,2. The advantage of making this transformation
is that we always work in the same, basic linearized operator. Again it isworth to

point out that all the functions involved depend on y through the radial variable.

4.6 The linear theory
Given a (72> "(1\ x M) function u we define its weighted norm by :

I bIk"(rexiR) = sup  (coslaz)"a;f('r(")l'allc. » “ (BOAi)nrsX(--i'z+i)),

' ’ . ‘ (4.6.1)
Above Vr*xR and Dy”"" denote the gradient and second derivative on the mani-
fold r. xM equipped with a natural product metric and the associated Levi-Civita
connection.

In this section we will consider the following basic linearized operator:
Le//v=Ard+  df<j> + f{w{t))<p.
Recall that the linearized operator of (4.2.5) about w is given by

Lo = df - 1 (4.6.2)
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It is known that Lg has a unique principal eigenvalue Ai > 0 and A2 = 0 while the
rest of the spectrum is strictly negative, see for example [34]. For future reference
let us recall that

Ai — 1)("3),

and the function

yJJAVjP+Mdx
is a positive eigenfunction associated to Ai. Hence there exists a positive constant
70 such that
(Low,0) >70]|O]]i

whenever

“ow'y = €0,4] = 0.

From the equation of w it also follows that there exists a 7 > 0 such that:

(W %

As a consequence the problem

is uniquely solvable whenever * Ai,0 for any h G Actually, rather
standard argument, using comparison principle and the fact that Lg is of the

form
= + IgWI1 < 71,
can be used to show that the solution is an exponentially decaying function
whenever h is for instance a compactly supported function.
In general we will consider the following problem:

+ + in X M,
(4.6.3)

A tw'{t) dt = 0 = fAZ(Ky, t)Z{t) dt, for ally G V..
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We will assume that
Mlc5;, eXR> < + (2),

with some (3,7] > 0.

4.6.1 The a priori estimates and an existence result

Most of what will be stated in this section follows the arguments of [34] and so
we will only outline the main points.

The followng lemma is about the kernel of LEZ.

Lemma 4.7. Let cj) he a hounded radial solution of the problem

Ar, N+ + f{w{L))4>=0 in T, x E. (4.6.4)
Then t) is a linear combination of the functions w'{i) and i(y)Z(f) - where
Ny) satisfies
+ in rv

Proof. Let be a bounded solution of equation (4.6.4). First we claim that 0

has exponential decay in t, uniformly in y. Secondly let

z{t)
Ny t) = —( L. wW\t)/ALy, t)dt) —  m(Ky, 0]
Jm
then = 0. We claim that « = Qand then we get the desired result T
0 prove

the claim, we define

Ay) = f
) JR

which is well defined by the first claim. In fact so are its first and second deriva-
tives by elliptic regularity theory applied to (p, and differentiation under the in-

tegral sign is thus justified. Now observe that

= 2 f ArJ”dL +2f dt
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and hence

= 4 iVrlp at+ /I8 e ,dt
It follows that

- > 0.

Since > 0is bounded, from maximum principle we find that cp must be identi-

cally equal to zero and then JA= 0- This means that

Hy. t) = My)yj'it)  + Uy)z{t). (4.6.5)

Substitute it into the equation (4.6.4) we get

ArMvWit) + (Are02 + XiM{y)z{t) = O,

which implies

Arji =0, Ar + A(p2= 0

Liouville's theorem implies that (fli = Ci and /2= Cii(y) for some constants

Ci,C2 because (pi and 2 are bounded radial functions on 1V .
Follows the above lemma, we show get the a priori estimate:
Lemma 4.8. Let (p he a solution of the problem (4.6.3). There holds:

IHIc) 't;(rdR) » gMIc —(rsxR). (4-6-6)

By the a priori estimate in lemma 4.8 one may get the following existence

result:

Lemma 4.9. Given g G x E) such that

I 0y, w\z2) dz =0= [/ (j)UpzZ{z) dz, forallyG

JK

there exists a unique solution of (4.6.3).
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4.6.2 Study of a strongly coercive operator
In this section we will consider the following problem:
Alp + sdN+iip (4.6.7)

Observe that if h depends on r = W\ and x*+i only, so does ¥.

We will use the following weighted norms:
= sup™ (1+ "> 0. (4-6.8)
The weighted Holder norms x M) are defined similarly. Note that if

I"llc) "(R"XR) < +(,

then

"Mico.f(RiIVXR) < +00.

Therefore, by a standard argument, we obtain the existence of a solution 'jjj E
C) "Riv X E) to (4.6.7).

Now to show that in fact

one may use a comparison argument based on the fact that the reciprocal of the
weigh function (1 + is a positive supersolution. Details are left to the

reader.

4.7 Proof of Theorem 4.2

In this section we will prove Theorem 4.2.

4.7.1 Error estimates

Our first goal is to estimate functions * Whenever convenient we will indicate

the fact that these functions depend on their functional arguments by writing
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Mgj = RE2,WE, hg, eg). In general, besides the assumptions on h”, eg we

made in (4.5.2) we will also assume that, for some a E (0,1) and K > 0,
4 (4-7.1)
About the function we assume that, with some & > 3, we have
IV.llcAMRIVAR) < Ke (4.7.2)

Lemma 4.10. Under the preceding assumption there exists a ex G (0,1) such that

the following estimate holds:

CANENXK)
(4.7.3)
Function Ms,j is Lips chitz function of its arguments and we have.
cf = "“rexR)
< C 2-2(7
(™xR) + M1) - # llea
(4.7.4)

Next we will consider Ns{(fe,i,4>e,2, V'e"hg, e") defined in (4.5.9). We have:

Lemma 4.11. Under the same hypothesis as in Lemma 4.10, and assuming that

the constant M is large enough, there existes k, > S and 7 > 1 such that we have

“1le) "(RxR) C + IAJ Tei2: ™, “IWR + 0(D)1iV)Je) “ RiVxR) j. (4. 7.5)

Furthermore, considering N” as a function 4>e 2" e”) »itis a Lipschitz

function of its arguments and

I|N”e € I, Hes — w o D, enp, <),

< Cle3||/4i) - — (4.7.6)

1—a 1—or
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The proof of this estimates is omitted, since similar results are proven in [34
and no essentially new elements are needed to carry out the argument in the

present case.

4.7.2 Projected nonlinear problem
Our objective in this section is to solve (4.5.9)-(4.5.14), i.e.,

AV + edN+iip- - ZiVeOj H 1" gj), CF -

Given the linear theory available and the results of the preceding section, we
will achieve this by a simple fixed point argument.

Let functions j = 12 and 7, satsifying assumptions (4-7.1)~(4.7.2) be
fixed. We will also choose h”, eg to satisfy (4.5.2). We first use the linear theory

to solve the following system:

(A + edN+ - 1)0f = £& 1,££241€ he, e?),
Ar. +eVvrF, .Vr. +d; + f—fe))]

fm <f>e,ily, ijWitj) dtj=0 =/Etj)Z {t])di.
(4.7.8)

Using Lemma 4.10 and Lemma 4.11 we obtain existence of such a fixed point

satisfying (4.7.8) by the Banach fixed point theorem. Hence we have the following:

Lemma 4.12. Under the above hypothesis there exists a unique solution (4, i (€ 2 i"e)

of (4.7.8) satisfying (4.7.1) and (4.7.2).
Let us observe that the map
,? E,2,0%, hi ef) ,4>e2,A )

is a uniform contraction with respect to h”, eg. It follows that {(fe,i, are

Lipschitz functions of h”, e with a small Lipschitz constant.
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4.7.3 Solution of the reduced problem

At this point we are left with the task of adjusting h*,e” in such a way that
Cgj = 0 and d = 0. First we will find the exact conditions for h”, e which
guarantee that c®j = 0 and d*j = 0. We will show that they result in a non-
homogeneous and non-local ODE system since we have assumed initially that all
the functions are functions of r, where r — ', xi™i) G quite similar to
the one already studied in Section 4.4. From the theory developed in this section
the existence of h and e® will follow immediately, thus completing the proof of
Theorem 4.2. Our first task is then to justify rigorously formal calculations in
section 4.2. In fact, with the notations as in the previous sections we need to

adjust h™ and e” so that

f Ms,j{rJ,jwW{tj)dtj = 0= f M,j{r,H)Z()) dg, i = 1I,2.

Jw JR
Let us recall that M”j depends non-locally on hg and e* and this dependence
involves the first and second derivatives of h™ and e®. Thus its projection onto
wrt) and z¢tj) will be a non-local, second order ODE system in terms of the
radial variable r.

Let us write
Mej = XeZjSs {Ve) + Me,, Me,j =3Fej ,(k'2,'7e, K, As) e
It is easy to see that ¢j =0 when

fu #ldr, hWih) dij = /% tMM dij + 4 dgj

As we have argued in Section 4.2, the main order term in the above integral
comes from Jg’j while the remaining part of the projection, denoted I*j is a lower
order term. Repeating calculations in Section 4.2, one can derive the following

expression:

= o”oJrAfej + + + h,) + + h,), (4.7.9)
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where, for a vector function v — {viyV2), on we have denoted:

JYAv)) = Mv? 4+ 1Nt + sV F, - %ly) = —eIh—I5 + e —

We observe that the main order term in g~ comes from

N
AN
Z%RrAUe A ih - fe? E Yihe VB — Ko).
where kr*\i are the principal curvatures of |V Direct calculations show that
LE1J W -3/2.

Taking into account the assumptions we have made at the beginning on h”, and
Ggin (4.5.2), we see that there exist > 0 and > 0 such that

UAcl-Miv.) < Ce >
Identifying functions on Fg and F by — v{er), so that Wij(r) = Qjer) we
get

Ikdc = (r) < '

Function gj now depends on the functions hg and e" defined on F. Similar state-

A
ments hold for the remaining term in Mg”, namely we have

We let /J > 0 to be a small number such that p —n > r. Denoting by Jp the

scaled operator for F, and setting * = o we get
ao”r""Mfj + hj) + 7;(f+h)=4%. (4.7.10)

This is a Jacobi-Toda system, which can be solved using the theory we developed
in Lemma 4.6. In fact QJ is a Lipschitz function of h and e since it follows from

the Lipschitz character of as functions of h and e. Defining
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we also have

Similarly, is a Lipschitz function of h. Since we have chosen f to be a

solution of the homogeneous version of (JT) we are left with:
aoe’r(Aj) + 7;'(f)h — %, g~ — 4 —N]. (4.7.11)
Similarly, the condition such that d*j =0 is
ao"-Ar(ej) + XiCj =15 . (4.7.12)

The left hand side of this equation is the linearized Jacobi-Toda system, and now
Lemma 4.4 can be employed directly to solve it using Banach fixed point theorem.
As similar arguments can be found for instance in [34], we omit the details here.

With this last step we complete our proof.
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