
Some New Results on Nonlinear Elliptic 
Equations and Systems 

YAO, Wei 

A Thesis Submitted in Partial Fulfilment 

of the Requirements for the Degree of 

Doctor of Philosophy 

in 

Mathematics 

The Chinese University of Hong Kong 

June 2011 



UMI Number: 3497782 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent on the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be rermwed, 

a note will indicate the deletion. 

UMI； 
Dissertation Publishing 

UMI 3497782 
Copyright 2012 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346 



Thesis / Assessment Committee 

Professor Kai Seng Chou (Chair) 

Professor Jun Cheng Wei (Thesis Supervisor) 

Professor Yau Heng Wan (Committee Member) 

Professor Zhi Qiang Wang (External Examiner) 



Abstrac t 

This thesis is devoted to the study of nonlinear elliptic equations and systems. 

It is divided into two parts. In the first part, we study the uniqueness problem, 

and in the second part, we are concerns with traveling wave solutions. 

In Chapter 2 we study the uniqueness problem of sign-changing solutions for 

a nonlinear scalar equation. It is well-known that positive solution is radially 

symmetric and unique up to a translation. Recently, there are many works on 

the existence and multiplicity of sign-changing solutions. However much less 

is known for uniqueness, even in the radially symmetric class. In Chapter 2, we 

solve this problem for nearly critical nonlinearity by Lyaponov-Schmidt reduction. 

Moreover, we can also prove the non-degencracy. 

In Chapter 3 we are concerned with the uniqueness problem for coupled non-

linear Schrodinger equations. The problem is to classify all positive solutions. In 

Chapter 3，some sufficient conditions are given. In particular, we have a sufficient 

and necessary condition in one dimension. The proof is elementary because only 

the implicit function theorem, integration by parts, and the uniqueness for scalar 

equation are needed. 

In Chapter 4 wc go back to the nonlinear scalar equation and consider the 

traveling wave solutions. Using an infinite dimensional Lyaponov-Schmidt reduc-

tion, new examples of traveling wave solutions are constructed. Our approach 

explains the difference between two dimension and higher dimensions, and also 

explores a connection between moving fronts and the mean curvature flow. This 

is the first such traveling waves connecting the same states. 



摘要 

本論文研究的是非線性橢圓方程和方程組。它可以分成兩個部分，其中之 

一研究的是唯一性問題，另外一個研究的是行波解。 

首先在第二章我們研究一類非線性橢圓方程的變號解的唯一性問題。由於 

變號解的多樣性，我們只考慮具有徑向對稱性的變號解。當方程中的非線性項 

的次數足夠接近臨界值時，我們可以證明徑向對稱解具有唯一性和非退化性。 

證明的工具是一種有限維的Lyaponov-Schmidt約化方法。 

接著在第三章我們研究耦合的非線性Schrddinger方程組的正解的唯一性問 

題。我們給出了一些條件使得耦合的非線性Schrddinger方程組有唯一的正解。 

特別的是，這個條件在一維的情況下也是必要的條件。 

最後在第四章我們研究了一類非線性橢圓方程的行波解。運用一種無窮維 

的Lyaponov-Sdimidt約化方法，我們可以構造出一些新的行波解。有趣的是他 

們的結構與平均曲率流以及Jacobi—Toda系統有關。 
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Chapter 

In t roduc t ion 

In this thesis, we study two kinds of problems. The first one is the uniqueness 

problem for elliptic equations and systems. The second one concerns the traveling 

wave solutions. We will consider three nonlinear elliptic equations： the nonlinear 

Schrodinger equation of the form 

Au~u + \u\P-\ = 0 in M^, ue 

the coupled nonlinear Schrodinger equations of the form 

(NLS) 

Alii — Aitii + /xitif + puiu2 = 0 

Au2 - X2U2 + IJ'2U2 + Pulu2 = 0 in E^ , (CNLS) 

and the traveling wave equation of the form 

dv 
加 iv+i 

- v + v^ = 0 in (TWc) 

Next we will consider these problems separately. 

Uniqueness of sign-changing solutions in NLS 

Consider the general semi-linear elliptic equation 

(1 丄 1) 
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where / : IR — IR is a continuous function with /(O) = 0. Equations of type 

(1.1.1) arise in various contexts of physics, such as, constructive field theory, false 

vacuum in cosmology, nonlinear optics, laser propagation, etc. They are also 

called nonlinear Euclidean scalar field equations, see [15, 16] and the references 

therein. 

Such equations arise in particular in the search of standing waves in non-

linear equations of the Klein-Gordon or Schrodinger type. Indeed, consider the 

nonlinear Schrodinger type equation 
PvT/ 

where 屯 is the complex-valued wave function, g is a real function such that g{0) ~ 

0. Considering the so-called standing wave solutions, i.e.,屯(力,x) = e—化ii(:c)，one 

is led to the following equation 

Au-Xu^ f{u) = 0, 

where f{u) ~ g{u^)u. 

The Lagrangian E{u) associated with (1.1.1), is defined by 

B{u) ^ \ f [ F(u)dx, (1.L2) 
2 JRN 7rJV 

where F{s) = f j f{t) dt. The functional E{u) is also called the "action" as-

sociated with (1.1.1). Moreover, by analogy with nonlinear elliptic problems in 

bounded domains, E{u) is sometimes called the energy associated with (1.1.1). 

Roughly speaking, a solution u to (1.1.1) such that E[u) < +oo is called hound 

state solution. If a bound state solution uq has the property of having the 

least action among all non-trivial bound state solutions, namely, 0 < E{uo) < 

E{u), for any non zero bound state solution u of (1.1.1), then uq is called 

ground state solution. For the existence of ground and bound state solutions, 

see 25, 15, 16, 13, 26, 27] and references therein. 

In Chapter 2, we consider (NLS), i.e., 

Au-u + lulP-'^u = 0 in R^, u G i /^M^) . (1.1.3) 
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It is well-known that, if 

f +00, if TV = 1,2, 
1 < j9 < 2* — 1, where 2* - < 

1 
then (1.1.3) has a ground state solution, which is positive (cf.[25, 15]). For p > 

Pohozaev's identity implies that (1.1.3) has no non-trivial solution (cf. [81, 

84]). 

The structure of positive solutions to (1.1.3) is completely classified thanks 

to the moving planes method developed in [44] and the uniqueness result in 

53], More precisely, the space of positive solutions to (1.1.3) is a smooth N 

dimensional manifold parameterized by w{- — x), x G M^, where w is the unique 

positive radially symmetric solution to (1.1.3). 

Next, we move on to sign-changing solutions to (1.1.3). Unlike positive solu-

tions, sign-changing solutions have more complicated qualitative properties, such 

as the number and shapes of nodal domains and the measure of nodal sets. For a 

deeper discussion of a more general case, we refer the reader to the recent survey 

article [64], where various methods for obtaining sign-changing solutions devel-

oped in the last three decades are revisited. Apart from the survey article [64], 

there is a quite interesting paper [76], where the authors construct infinitely many 

nonradial solutions in any dimension N > 2 and explore a connection between 

finite-energy sign-changing solutions of the semilinear elliptic PDE and constant 

mean curvature surfaces in three dimensional Euclidean space. 

To study the structure of sign-changing solutions, it is reasonable to consider 

the structure in the class of radially symmetric functions first. Given any integer 

A; > 1, it is known that there exists a pair of radial solutions to (1.1.3) having 

precisely k nodes (cf. [13，Theorem 2.1]). However much less is known for fur-

ther qualitative properties, such as the locations of nodes, non-degeneracy and 

uniqueness. 

In Chapter 2, we regard the exponent p as a parameter and apply the finite 

dimensional Lyaponov-Schmidt reduction to study the structure of radially sym-
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metric sign-changing solutions of (1.1.3), especially on the uniqueness problem. 

The approach is motivated by [93], where the author studies the uniqueness and 

critical spectrum of single boundary spike solutions for a singularly perturbed 

problem. To carry out the approach, it is worth pointing out that the so-called 

Emden-Fowler transformation is used to deal with the blow-up as p goes to the 

critical exponent For more details we refer the reader to Chapter 2, 

Our first result in the thesis concerns the uniqueness of sign-changing solutions 

of (1.1,3) in the class of radially symmetric functions when p approaches the 

critical exponent 

Theorem 1.1 (Uniqueness). For N > 3 and k > 1, there exists a constant 

£：0 = k) > Q depending only on N and k such that: if 

N + 2 iV + 2 , … � 
(1-1-4) 

then (1.1.3) admits a unique radially symmetric sign-changing solution having 

exactly k nodes, up to one sign. 

Let us denote by Up the unique radially symmetric sign-changing solution in 

Theorem 1.1. Our second result concerns the non-degeneracy of Up. 

Theorem 1.2 (Non-degeneracy). For N > 3 and k > 1, there exists a positive 

constant Si < e�such that: if 

N + 2 N + 2 , … � 
口 〜 〈 旧 ， （1.1.5) 

then Up is non-degenerate. Namely, if (p satisfies 

then 

, f dur, dur, 1 
cp G span 

dxi ‘ ‘ dxj\[ 
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1.2 Uniqueness of posit ive solutions in CNLS 

In Chapter 3, we study systems of nonlinear scalar field equations, that is, the 

coupled nonlinear Schrodinger equations: 

/S.UI — Aiwi + iiiul + (3uiul = 0 in 

Au2 —入2U2 + M2ul + (3uIu2 = 0 in R^, (CNLS) 

e i f i ( R ^ ) , 

where l i /s are unknown functions, Xj, and /5 are given constants. > 0 is 

the attractive case, while < 0 is called repulsive. This system arises in math-

ematical model for various phenomena in physics, such as nonlinear optics and 

Bose-Einstein condensation. We refer to the survey articles [51，43] for back-

grounds. 

When the spatial dimension is one, i.e., N = system is integrable, and 

there are many analytical and numerical results on solitary wave solutions of the 

general m-coupled nonlinear Schrddinger equations by physicists ([47, 50, 99]). 

But it is still very hard to classify all solutions. One part of the work here was 

intended as an attempt to study this problem, see Section 3.2 of Chapter 3 for 

more details. 

For higher dimension, as far as we know, the first general mathematical the-

orems were obtained by T.-C. Lin and J. Wei in [55, 61], where they consider a 

more general m-coupled nonlinear Schrodinger equations of the form 

/\uj - \jUj + E I3jk\uk?uj - 0 inM^, N S 3, 
k=l 

Uj j = 

Indeed, they considered the following minimization problem: 

c := inf E\u], 
ueM J， 

where the associated energy functional is given by 
1 m 卩 . r n 

Elu] := 5 E / ( |Vu,f + — - ft-fc / h f 

(1 .2 .1 ) 

(1 .2 .2) 

(1.2.3) 
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for 
Nwm (1.2.4) 

and the so-called Nehari manifold is defined by 

A/" = (ni).. ”Um) G I Uj > 0, Uj 幸 0, 
2 

Irn IVUjf + X j /股w = E ftfc iftiv ulu], j 
k=l 

(1.2.5) 
m 

A minimizer, if it exists, is called a ground state solution in [55]. Therefore, a 

ground state solution is a positive solution such that its energy is minimal among 

all the positive solutions. 

Partially because the ground state solution defined in [55] might have Morse 

index m due to the fact that the Nehari manifold J\f defined in (1.2.5) has codi-

mension m, a different definition of ground state is used in [11, 5]. In the following, 

we say that n is a bound state solution if u G is a solution and satisfies 

E[u] < +00. A bound state u whose energy is minimal among all non-trivial 

bound states, namely, 

is called a ground state solution. We emphasize that all the ground state solutions 

may be semi-trivial, i.e., one of its components Uj 三 0. When all > 0， 

using the Nehari manifold approach and symmetrization arguments T. Bartsch 

and Z.-Q. Wang [11] proved that (CNLS) has a semi-positive radially symmetric 

ground state solution. Moreover, it is of mountain pass type and has Morse 

index 1 considered as critical point of E on (丑 1(服。)肌 and on (^^(R^))"^. Here 

consists of all radially symmetric functions in 

Compare the two different definitions of ground state, there raises a quite 

interesting problem: under what conditions (1.2.1) has a positive ground state 

solution? Recently some sufficient conditions have been obtained in [4, 11, 68, 

12, 87, 5] for large coupling parameters by differential methods, such as minimax 

method and the method of invariant sets. 



"2},niax{/ii,/i2} 

(i) for 

0 < P f [min{/ii’"2},max{/ii,/i2}], (1.2,8) 

(CNLS) admits a unique positive solution (ul/a^) explicitly given by 

/ l ^ 善 亭 ) ) ， （ 1 . 2 . 9 ) 

up to a translation; 

(ii) for (5 G [min{",i, ；/。}，max{/ii,",2}] but ",1 • (I2, positive solution doesn't 

exist; 

§ 1.2 Uniqueness of positive solutions in CNLS - 7 • 

In Chapter 3 we study the uniqueness of positive solutions to (CNLS) in the 

attractive case, i.e., 

(3>Q. (1.2.6) 

Under this assumption, using a classical "bootstrap" argument, all positive so-

lutions are classical solutions and tend to zero as \x\ — 00. Moreover, applying 

Moving Planes Method (cf. [17, Theorem 1]), all positive solutions are radially 

symmetric and strictly decreasing with respect to some point Xq. Without loss of 

generality we assume xq = 0. Without loss of generality we write Uj {x) — Uj (r) 

for r = \x\ and j = 1,2. Then (CNLS) becomes 

u'( + - XiUi + niuf + f3uiul = 0 in (0, +00), 

U2 + — A2ti2 + + (5uIu2 = 0 in (0, +00), 

u'̂  (0) = = 0 and Ui(r), U2(r) —̂  0 as r +00. 

Denote by w the unique radial positive solution of 

Aw - w ^ w^ = 0, w e 

Our first result in Chapter 3 concerns the one-dimensional case. 

Theorem 1.3. Suppose N = 1 and Ai = A2 — A > 0. Then 

(1.2.7) 

min{/ii 
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(m) for /ii = /i2 — > 0； all posztzve solutions of (CNLS) are of the form 

cose ^w(Vxx),sme^w(Vxx) j， ye e (o ,^) , (1.2.10) 

up to a translation. 

Unlike to one dimension case, the situation is more complicated for higher di-

mensions. In general, the question of uniqueness of positive solutions to nonlinear 

equations is difficult For scalar equation, the shooting method and Pohozaev's 

identity can give uniqueness (cf. [53, 20]). However for systems, there are very 

few results on uniqueness, and it seems very difficult to apply shooting method 

because there are at least two shooting parameters. We briefly discuss here two 

feasible ways. One way is based on the implicit function theorem. The restriction 

of this technique is that only local uniqueness can be obtained mostly. Another 

way based on the uniqueness for scalar equation is perhaps more efficient. How-

ever, it is not easy to reduce a problem of systems to that of single equation. 

Our second result in Chapter 3 concerns the higher dimensions. 

Theorem 1.4. Suppose N = 2,3. 

(I) There exists /^o > 0 depending only on \j，s, fij，s and N such that if 0 < 

[3 < (3q, then (CNLS) admits a unique positive solution up to a translation; 

(ii) If assume further Ai — A2； then for (3 > max{//i, (tti, u^) exphcitly 

defined at (1.2.9) is the unique positive solution to (CNLS) up to translatwn; 

for p 6 m.m{/j,i, 112}, max{/ii, /i2} but fii + positive solution doesn't 

exist; 

(ui) For Ai 二 入2 and fii = fJ'2 = P > 0, all positive solutions of (CNLS) are of 

the form (1.2.10) up to translation. 

There are still many quite interesting and open problems regarding (CNLS). 

We will discuss them in Chapter 3. 



§ 1.3 Traveling wave solutions to TWc 

1.3 Traveling wave solutions to T W c 

In a totally different context, a solution of (1.1.1) can also be interpreted as 

stationary solution for a nonlinear heat equation 

+ 跳 = iKt,x). t>o, xeR"". (1.3.1) 

Such problems arise in biology, especially in population dynamics theory, for a 

recent account of the theory we refer to the survey articles [41, 77, 78, 94]. 

In Chapter 4 of the thesis, we are interested with the traveling wave solutions 

to (1.3.1). It is well known that traveling wave solutions play an important role 

in nonlinear science. These solutions may well describe various phenomena in 

nature, such as vibrations, solitons and propagation with a finite speed, etc. In 

mathematics, they form a specially important class of time-global solutions of 

evolution equations. For a recent account of the theory we refer the reader to the 

survey article [89], especially on the stability theory. 

To begin our study, we first introduce a generalization of traveling wave solu-

tion which is defined in [14] and stated as follows: 

Defini t ion 1.1 ([14]). Let k > 1 be a given integer and let u^,... ^uj. be k time-

global classical solutions of (1.3.1). A generalized transition wave (or traveling 

wave solution) between Ui,... ,Uk is a time-global classical solution u of (1.3.1) 

such that u • Uj for all I < j <k, and there exist k families 股，1 < j < fc o/ 

open pairwise disjoint nonempty subsets o/E^ and a family (r亡)亡白股 of nonempty 

subsets ofR^, such that 

v ^ e M , U dni = r , , r , u U = 
l<j<k l<j<k 

�V 1 < i < /c, G M, X E Q L } = +00 
(1.3.2) 

and 
u(t, x) — Uj(t, x) 一 0 uniformly in i G M and x e Qj 

as daljr, r^) —+00, for all 1 < j < p. 
(1.3.3) 
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In the particular case where k = 1 and F^ is a singleton in Definition 4.1, u is 

called a localized pulse. Here the set Tt will be called traveling front or front 

In the following we study the traveling wave solutions of 

，=Au-u+ u P-'-u, X G R^+S t > 0. 
ot 

As a first step, we look for traveling wave solutions in the following form: 

x) = — ct), X ~ (x-', x'Af+i) E R 汉 ( 1 . 3 . 4 ) 

which is called curved travelling fronts in [14]. Then the profile v satisfies 

Av + c - ^ - — 1； + - 0 in (TWc) 
OXN+1 

For stationary wave solutions (sometimes also called standing wave solutions), 

i.e., c = 0，there is a surprisingly rich and very interesting stmcture. We refer 

the reader to [70, 34, 85], where a surprising link between the solutions of the 

(continuous or discrete) To da type system and entire solutions of above semi-

linear elliptic equation is provided. 

The objective of Chapter 4 is to show that a similar construction can be 

obtained for the positive traveling wave solutions of (TWc). Roughly speaking, 

the approach in Chapter 4 explores a connection between traveling wave solutions 

of (TWc) and eternal solutions to the mean curvature flow. In particular, three 

new kinds of traveling wave solutions are constructed. The first one is that a 

traveling wave solution with one convex non planar front. The second one is that 

with one non convex front. The third one is that with two non planar fronts. It 

is worth pointing out that the approach used here is motivated by [36], where the 

authors construct traveling wave solutions to the parabolic Allen-Cahn equation 

with multiple and non convex fronts for N > 2. Their approach also explores 

a connection between traveling wave solutions of parabolic Allen-Cahn equation 

and eternal solutions to the mean curvature flow. 

To explain the difference between the study of Allen-Cahn equation and that 

of (TWc), we consider the one dimensional case. It is known that the linearized 



§ 1.3 Traveling wave solutions to TWc • 11 • 

operator of heteroclinic solution to the Allen-Cahn equation is stable and has 

only one bound element in the kernel. However, the linearized operator of one-

dimensional bump to the nonlinear Schrddinger equation has a negative eigen-

value, where resonance phenomena may occurs. The main tool used in Chapter 

4 is the infinite dimensional Lyaponov-Schmidt reduction, which have been well 

developed in the last three decades. 

For the readers' convenience, Chapters 2, 3 and 4 are independent and can be 

viewed as individual papers. In fact, 

Chapter 2 is based on the paper: Juncheng Wei and Wei Yao, Uniqueness and 

non-degeneracy of sign-changing radial solutions of an almost critical problem, 

preprint. 

Chapter 3 is based on the paper: Juncheng Wei and Wei Yao, Uniqueness of 

positive solutions for some coupled nonlinear Schrddinger equations, Communi-

cations on Pure and Applied Analysis, to appear. 

Chapter 4 is based on the paper: Manuel del Pino, Juncheng Wei and Wei 

Yao, Traveling waves with one and two fronts for an autonomous parabolic Equa-

tion, preprint. 



Chapter 2 

Uniqueness and non-degeneracy of 

sign-changing solutions 

In this chapter we are concerned with the semi-linear elliptic equation 

A u - u + \ u \ P - ' ^ u = 0 in M^, w e (2.0.1) 

where 
N + 2 

N >3 and 1 <p < •—-. 
I\ — 2 

It is well-known that (2.0.1) admits a unique positive solution (called ground state 

solution), which is radially symmetric up to translations. Unlike positive solu-

tions, sign-changing solutions have more complicated and interesting structure. 

For instance, infinitely many nonradial solutions with geometric characteristics 

are constructed in [76 ‘ 

To study the structure of sign-changing solutions, we consider the problem 

in the class of radially symmetric functions first. Motivated by [93], we apply 

the Lyaponov-Schmidt reduction to study the uniqueness and non-degeneracy of 

radially symmetric sign-changing solutions. When the exponent p goes to the 

critical exponent ^ ^ from below, the uniqueness and non-degeneracy of sign-

changing solutions will be proved in the desired class. To carry out the approach, 

the so-called Emden-Fowler transformation is used. 

12 
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2.1 In t roduc t ion 

Sign-changing solutions of nonlinear elliptic equations and systems have attracted 

much attention in the last three decades. One reason is that sign-changing so-

lutions arise naturally from mathematical models in science. Another reason is 

that there are richer structures of sign-changing solutions than that of positive 

and negative solutions for generic linear and nonlinear elliptic problems. For 

a deeper discussion we refer the reader to the recent survey article [64], where 

various methods for obtaining sign-changing solutions developed in the last three 

decades are revisited, such as Nehari manifold technique, heat flow method, Morse 

theory and the method of invariant sets. 

In this chapter we consider the semi-linear elliptic equation 

Au-u^\u\P-^u = 0 inE^, u e (2.1.1) 

where 

N >3 and l<p< (2.1.2) 
N — 2 

It is well-known that (2.1.1) admits a unique positive radially symmetric solution, 

called ground state solution. But compared with positive solutions, sign-changing 

solutions have more complicated and interesting structure. For this it is worth 

to mention a quite interesting article [76], where the authors construct infinitely 

many nonradial solutions in any dimension N > 2 and explores a connection 

between finite-energy sign-chaing solutions of the semilinear elliptic PDE and 

constant mean curvature surfaces in three dimensional Euclidean space. 

To study the structure of sign-changing solutions of (2.1.1), we consider the 

problem in the class of radially symmetric functions first. Applying the standard 

"bootstrap" argument, we are concerned with a boundary value problem of the 

nonlinear ordinary differential equation 

v!' + ^ v ! - 0 , r e (0, oo), 
(2.1.3) 

n'(0) = 0, lim u(r) = 0. ‘ 
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This raises a quite interesting and challenging problem: 

Problem 2.1. Classify all the solutions of (2.1.3). 

When Â  — 1, the situation is trivial by the Hamiltonian identity. In fact, 

only positive solution exists. But for A'" > 2, as far as we know, this problem is 

largely open. 

To study Problem 2.1, it is reasonable to use the numbers of zeros of solutions 

to distinguish all solutions. Therefore, first we consider the set of positive and 

negative solutions. Initiated by Coffman [25] and finally by Kwong [53], it is 

proved that this set contains only two points. One is positive and another one 

is negative. Combining the symmetry result in [44], the uniqueness of positive 

solution to (2.1.1) follows. The main method used in [25] and [53] is the so-called 

shooting method. The main idea is to study the behavior of solution u[r, a) to 

the initial value problem: 

u" + - u + = 0, T e (0,oo), , \ 
‘ ‘ � 乂 (2.L4) 

1^(0) = a, u'(0) = 0. 、 

Let lis mention two important properties of (2.1.4). One is the existence and 

uniqueness of u{r, a). Namely, given any a G R, there exists a unique solution 

to (2.1.4). The other one is the oddness of nonlinearity in (2.1.4). Therefore, 

without loss of generality we consider the case a > 0. After a series of comparison 

results between two solutions to (2.1.4) with different initial values, the authors 

in [25, 53] proved that there exists a unique c k q � 0 such that u{r, a � ) > 0 for 

all r and u{r) ao) —̂  0 as r goes to infinity. One feature of their approach is 

that it can be extended to more general nonlinearities (cf. [73, 72]), balls and 

annulus (cf. [20, 88]), quasilinear operators (cf. [37, 86)) and fully nonlinear 

operators (cf. [40]). However, it seems very hard to apply the approach to sign-

changing solutions if one don't understand the complicated intersection between 

two solutions to (2.1.4) in the second nodal domain. 
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Now we are interested in the sign-changing solutions. For the existence, it 

is known that given any integer A; > 1 there exists a pair of solutions to (2.1.3) 

having precisely k nodes. For example, this was proved in [25] and [13] both 

by variational methods. However, much less is known for further qualitative 

properties, such as the locations of nodes, the uniqueness and stability problems. 

This chapter is intended as an attempt to solve Problem 2.1. Our first result 

concerns the uniqueness of sign-changing solutions of (2.1.3). 

Theorem 2.1. For N > 3 and k > there exists a positive constant e�= 

£o{N, k) depending only on N and k such that: if 

N + 2 N + 2 , 
口 —句 < P 〈 口 ， (2.1.5) 

then (2.1.3) admits a unique sign-changing solution having precisely k nodes, up 

to a sign. 

As a corollary of Theorem 2.1, Theorem 1.1 in the introduction of this thesis 

is proved. For the convenience of the reader we repeat it as follows. 

Corollary 2.1 (Theorem 1.1). Under the same hypotheses and conditions of 

Theorem 2.1, (2.1.1) admits a unique radially symmetric sign-changing solution 

having exactly k nodes, up to a sign. 

To prove Theorem 2.1, we regard exponent p as a parameter and apply the 

Lyaponov-Schmidt reduction, which is a powerful tool for obtaining solutions of 

nonlinear problems. The idea of applying the Lyaponov-Schmidt reduction to a 

uniqueness problem, is motivated by [93], where the author studied the unique-

ness and critical spectrum of single boundary spike solutions for the singularly 

perturbed problem 

e'^Au 一 u + uP = 0 in Q, 

u > 0 in and = 0 on dQ. 
OU 
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Here e > 0 is a small parameter, 0 is a smooth bounded domain in M^ and v is 

the unit outer normal on dVt. Roughly speaking, the approach carried out in [93 

is to establish a one-to-one connection between the singularly perturbed problem 

and a finite-dimensional problem. Then the uniqueness problem is reduced to 

count the number of critical points for a finite-dimensonal problem, where the 

degree theory can be easily applied. A similar approach has been used in [46]. 

For the proof of Theorem 2.1, let us mention one more important point. Here 

we do not apply the Lyaponov-Schmidt reduction to (2.1.3) since the single point 

blow-up phenomenon occurs for (2.1.3) as p goes to the critical exponent. To 

overcome this difficulty, we take the so-called Emden-Fowler transformation 
2 

v{t) = r^u{r), r = t e {—oo, oo). (2.1.6) 

Then (2.1.3) becomes 

v" - (3v' — (7 + + = 0, t e ( -oo, oo), (2.1.7) 

where 
iV + 2 (iV 一 2)2g (N - 2)2 (P 

二 —(iV —2K 7 = — T . (2丄8) 

Note that if p ^ ^ ^ then e — 0. Now the Lyaponov-Schmidt reduction can be 

applied to (2.1.7) since v is uniformly bounded by (2.1.6). As far as we know, 

the Emden-Fowler transformation has been always used in the study of the Lane-

Emden equation 
-Au = \u\P-hi. 

It seems to be the first time to use the Emden-Fowler transformation in the study 

of (2.1.1). 

Let us denote by Up the unique radially symmetric sign-changing solution to 

(2.1.1) in Theorem 1.1 or Corollary 2.1. An invertibility theory for the linearized 

operator associated to Up is very important for the construction of new solutions 

with Up. We consider the linear problem 

A(f)-(t) + p\up\P-̂ (l> = 0 in R^, ( t>eH\R^) . (2.1.9) 
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Clearly 舞 satisfies (2.1.9) for all l<j<N. 

Our second result shows that the converse is also true, which proves the non-

degeneracy of Upi i.e., Theorem 1.2 in the introduction of this thesis. For the 

convenience of the reader we repeat it as follows. 

Theorem 2.2 (Theorem 1.2). For N > Z and k > there exists a positive 

constant Si < £o depending only on N and k such that: if 

7V + 2 N + 2 
口 - 〈 〜 ， 

then Up is non-degenerate. Namely, if (p satisfies (2.1.9)，then 

dur> dur 

(2.1.10) 

(j) G span "p 
dxi dxN J 

To prove Theorem 2.2, we first expand (p into spherical harmonics as 

CO 

•{x) = Y^ 昨 r > 0, ^ e SN-i (2.1.11) 

m = 0 

where e^'s are the eigenfunctions of the Laplace-Beltrami operator —A^n-i on 

the sphere normalized so that they constitute an orthonormal system in 

一 1). Then (f)rn's satisfy the following differential equations 
N — 1 (—\ ) 

+ - + = 0 in (0, oo) 

and lim = 0, 
r—oo 

where A^ = m(N — 2 + m) denotes the eigenvalue associated to em-

Using the Emden-Fowler transformation, above eigenvalue problem becomes 

/�[V)] — 陣 — ( 7 + ê OV̂  + = Xm寸 in ( -oo, oo) 

and lim ip{t) = 0. 
|t| 一 oo 

For m = 0, i.e., 二 0，we study the small eigenvalue fi^ of L[ and prove that 

^ converges to a nonzero constant. Thus •三 Q for the mode m = 0. For m = 1 

the situation is clear since we have an explicit solution u已 to the equation of 4>m-
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Finally consider m > 2, we study the first eigenvalue —Ui(p) of L � i . e . , 

is the largest eigenvalue. If one can show that — < 2N, then Theorem 2.2 

follows. By the variational characterization of eigenvalues and the properties of 

Vs we have obtained, it can be shown that — ^ N — 1 as p Since 

N - 1 < 2N 观 prove Theorem 2.2. 

The organization of the chapter is the following. In Section 2.2 we give some 

preliminary analysis. In Section 2.3 a finite dimensional reduction procedure is 

given. In Section 2.4 we show the existence and uniqueness. Finally in Section 

2.5 the small eigenvalue estimate and the proof of theorem 2.2 are given. 

2.2 Pre l iminary analysis 

In this section, some preliminary analysis are given. In oder to make the argument 

more transparent, we will consider the special case of one, i.e., k — 1. The 

corresponding results for general case will be given in the remarks. Furthermore, 

without loss of generality we can assume that u{0) > 0 due to the oddness of 

nonlinearity in (2.1.3). 

We consider the equation 

v" - (3v' - (7 + + - 0 , tG ( -oo, oo), (2.2.1) 

where 

卜 N-2 7 — 4 4 . (左丄 

Recall that the corresponding energy functional of (2,1.3) is given by 

E,iu) 二 I 厂(|nT + ) r 汉 d r — 厂 丄 dr, (2.2.3) 
2 Jo + 1 Jo 

and by the Emden-Fowler transformation, 

dr = V +JV |2 e一3丨'dt; 
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r MV汉-1 dr = 
Jo 

2t 
-日t dU V e 

u dr = / K+ie—饼此 

Thus the corresponding energy functional of (2.2.1) is 

EAv] e-^'dt 
？) + l 

I奸 V"力 dt. (2.2.4) 

Moreover, u{r) 6 if and only if v{t) G H, where H is a Hilbert space 

defined by 

revive H\w) I r 
J —{ 

with the inner product 

+ (7 + e 2 ” M 2 ] e - � i < o o } 

'"，叫£ 二 

noo 「 

/ v'w' + (7 + 
J —oo L 

VW dL 

Similarly, we define the weighted L^-product as follows: 

[v^w)^ = vwe—街 dt. 

To obtain the asymptotic behavior of the solutions, by the standard blow-up 

analysis, we get the a priori estimate. 

Lemma 2.1. Let v^ satisfies (2.2.1). Then there exists a positive constant C 

depending only on N such that 

Ve loo < C. (2.2.5) 

Since the solution u of (2.1.1) is unique in fixed ball and annulus, so is v. 

Then the a priori estimate of energy of v̂  can be proved. 

Lemma 2.2. Let v^ satisfies (2.2.1). Then there exists a small positive constant 

6 such that 

E(v,) < 2E{wo) + 5 < 3E{wo), (2.2.6) 
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where Wq is the unique positive solution of 

w" — i ^ ^ ^ w + = 0，'⑴〉0 in M; 
4 (2.2.7) 

w(0) = maxw(t), wit) —> 0, as — oo. 

Proof. First we show that the local maximum point must go to —oo. Suppose 

not, there exists a sequence of local maximum points t̂  of v̂  such that t̂  —̂  Iq. 

By the estimate of energy of fg, we get Vs{t + U) vq in Cf^ ,̂ where vq satisfies 

v" — (70 + + ==0, V > 0 in E, (2.2.8) 

v(t) 0, as \t\ — oo. (2.2.9) 

1 / 卩 9* 一1 \ 

But by Pohozave's identity, v^ 三 0- This contradicts with t?o(0) > _ ^ > 0. 

Using the similar argument for local minimum point, we get that Wq is an 

approximation of v̂  near the maximum or minimum point. Note that in each 

nodal domain, v̂  has one sign, thus it is one and the least energy solution by the 

uniqueness of positive solutions. Compare the energies between v̂  and a proper 

cut-off of Wo, the conclusion follows. • 
Remark 2.1. For the general case A; > 1, using the similar argument, we can get 

E{y^) < + 1)_£；0。）+ < (A; + (2.2.10) 

Using the a priori estimate (2.2.6), one may follow the argument of [79] to 

prove the following asymptotic behavior of v^. 

Lemma 2.3. Suppose v^ is a sign-changing once solution of (2.2.1), then v^ has 

exactly one local maximum point ti and one local minimum point t) in (—00,00)， 

provided that e is sufficiently small. Moreover, 

Veit) = Wo(t - h) — Wo{t 一 t2) + 0(1) (2.2.11) 

and 

t i < h —00, ^ —cx), 1̂ 2 — h \ —^00, (2.2.12) 
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where wq is the unique positive solution to equation (2.2.7) and o(l) —> 0 <25 

e 0. 

Proof. As shown in the proof of Lemma 2.2, the local maximum and minimum 

points must go to —oo. Next we prove that the distance between local maximum 

point and zero point of v̂： approaches to oo. Suppose not, using the same notation 

above, there exists ci G M such that, Vs:{t +1^) — vq in c?)), where i；。 

satisfies 

V" — (70 + + = 0) V > 0 in ( -oo, d ) , 

v{d) = 0, v{t) 0, as \t\ —> oo. 

This is also a contradiction to the Pohozave's identity. 

Now we show that there only exists one local maximum point. Suppose not, 

there are at least two local maximum points ti and 力2, We first show that \ti — 

2̂! — 00. Suppose not, \ti 一力2I is bounded. Then using the same notations, 

— i n 句oc(股)，where vq satisfies (2.2.8). Moreover since = 0, 

= 0, then applying Lemma 4.2 in [79] and the paragraph right after the 

proof of Lemma 4.2, we get a contradiction. Thus —力2I — oo. Now we estimate 

the energy from below to get E{vg) > 2E{wq) + Ci > 2E{wo)-]-6, a contradiction 

follows. 

For the negative part, we can get the similar result and complete the proof. • 

Remark 2.2. Similarly, for general case k > 1 we have 
fc+i 

i= i 

where tj,s are the local maximum and minimum points satisfying 

tj < tjj^i, t j —> —00, t j —力j_+i| —̂  00. 

Now we set 

5'e[v] - v" - pv' - (7 + + \v\P-'v. (2.2.13) 
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To get more accurate information on asymptotic behavior, we introduce the func-

tion w to be the unique positive solution of 

‘ w " — ^ ^ ^ w + wP = 0 in E; 

w;(0) — maXjtgR w{t) —> 0，as —> oo. 
、 

It is standard to see that 

(2.2.14) 

(2.2.15) 
w{t) = A , , 抓 - ( 汉 - 雄 + 0(e-P(汉-雄 /2)， t > 0; 

w'{t)=—罕y^ve—(況—雄/2 + (汉-2)"2)， I > 0, 

where As^n > 0 is a constant depending only on e and N. Actually the function 

w{t) can be written explicitly and has the following form 

切⑷=7o" 、2 cosh 力) (2 .2 .16) 

where 70 = (iV — 2)^/4. Testing (2.2.15) with w and v/ and integrating by parts, 

one arrives at the following identity： 

w dt 
1 

u；奸 1 dt = 7o( p - 1 lu^ dt. (2.2.17) 
'2 P + l J r + 3 

Note that w ^ H when TV 二 3，4. Next we introduce an important definition. 

For each tj 6 M, we set Wj + to be the unique solution of 

(70 + + = 0, where wt (s) = w{s 一 (2.2.18) 

in the Hilbert space 7i. The existence and uniqueness of Wĵ tj are derived from 

the Riesz's representation theorem. 

Using the ODE analysis, we can obtain the asymptotic expansion of Wĵ t̂ , 

J 二 1,2. 

Lemma 2.4. For e sufficient small, 

Due to the different asymptotic behavior of w in different dimension spaces, we 

have the following cases: 
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(i) for N = 3, 

= —…义e’3e—"2(1 — g-e^). (2.2.19) 

fiij for N = 4, 

h t M 二 — (2,2.20) 

and 

where Ki (z) is the modified Bessel function of second kind and satisfies 

z'K'liz) + zK[{z) - {z^ + l)Ki{z) = 0, 

see for example [67]; 

(Hi) for N 二 

= - e 3 《 ) 〜 [ l - (1 + 今-叫； (2.2.21) 

(iv) for N = 6, 

，4s� = [1 — M j ^ e 

where 

uoM - 8v^K2(4r."”， 

where K2{z) is the modified Bessel function of second kind and satisfies 

z^K'iiz) + zK'^{z)-(么2 + A)K2{z) 二 0; 

(v) for N> 

Proof. For the convenience of the reader we postpone the details in the Appendix 

A. • 
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Remark 2.3. To obtain more asymptotic expansion of Wĵ tj 's, some remarks are 

given below. 

(i) By the maximum principle, we get the following useful estimates: 

0 < Wĵ tj < wt., -wt . < < 0, (2.2.22) 

and 

H . \ < ciwtj < C2, S ciWj^tj < C2. (2.2.23) 

(ii) In the case of N = 3, the contribution of (f)j in the integration estimate is 

ê -J； in the case of iV = 4, the contribution of 也-in the integration estimate 

is 0{5j \ In in the case of TV > 5, the contribution of 4>j in the integration 

estimate is 0{8j) as we will see later in Appendix. 

From the above lemma and (2.2.12), we see that Wĵ tj = wtj+o{l) = t/;o，tj+o(l) 

in all the cases for j — 1,2. Thus by (2.2.11), 

where 

V e { t ) = w 已，t + 0 ( 1 ) : 

We,t(t) = Whttit) - W2,t2(i)- (2, 

Before studying the properties of uj£，t, we need some preliminary lemmas 

first one is a useful inequality. 

2.24) 

The 

Lemma 2.5. For x > 0, y > 

x-y 

p X — y + y'^ 

if 0 < p < L 

if 1 < p < cx 
(2.2.25) 

The second is about the interactions of two w，s. 

Lemma 2.6. For 一 � 1 and rj > 0 > 0, there hold 

w”{t 一 r)w\t 一 s) = 0{w%\r 一 <s|)) (2. 

/ w”[t - r)w^{t -s)dt^ {1 + o{l))w^(\r - s 
J — oo 

where o(l) 0 as \t — s\ oo. 

2.26) 

啊 dt, (2.2.27) 
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Proof. The conclusion follows from (2.2.15) and Lebesgue's Dominated Conver-

gence Theorem. • 

Now we can prove the error estimates. 

Lemma 2.7. For £ sufficiently small and ti)t2 satisfy (2.2.12), there is a constant 

C independent of e, ti and 力2 such that 

II 划^^^』1100 + S; w. e—供dt<C\(5 + eTk + g-r|ti-i2|/2i for iV = 3 

fOO 

\ S A w e , t ] Hoc + / 民 [ '⑴M]已一日 t dt<C[p + 姊 + e-咖—叫 for iV - 4 
J —CO 

5U't^£，t]l|oo + ['⑴, e—淋 dt<C\(5 + + for TV > 5 

where r satisfies | < r < 腿产}. 

Proof. By the equation of wj^tj, we have 

= - p w ' ^ — (7 — + \we,tr w. (2.2.28) 

From the exponential decay of Wj and (2.2.22), (2.2.23) we deduce that 

Using (2.2.22), (2.2.23), the exponential decay of wj and the fact that 7 — 70 = 

—沪/4，we g e t 

Next, we divide 

( 7 — 'yo)We,t\ < CP'^iWt, + Wt^). 

,00) into two intervals Ii, I2 defined by 

t i + t 2 

2 ‘ 
t l + t 2 

2 

Then on Ii, i = 1,2, we have Wt̂  < wt̂  and then Wĵ t̂  < Wi,ti by the maximum 

principle. So on Ii we use inequality (2.2.25) to get 

w. w. + Wt2 
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for any r G (0,1]. Similarly on I2 the following inequality holds, 

w. — + W t2 

for any r 6 (0, 

By the above inequalities and using Lemma 2.6, the desired result follows. • 

Remark 2.4. A similar result holds for the general case A; > 1. Usually 力2 will 

be replaced by tfc+i， and \ti 一 力2I by supj \tj —力thanks to the exponential 

decay of w/s and the one dimension space. This remark is also true when similar 

estimate appears. 

In order to obtain the a priori estimate of ti,t2 and compute E^ 

the estimates of 

w. give 

\\ve -叫，tiloo and IÎ；̂  -

in the following lemma. 

Lemma 2.8. For e sufficiently small，there is a constant C independent of e such 

that 

Ve = Wrt + 4 ， 

where 

II么lloo + <C[f3 + e丁切 + 力2|/2] for N = 3 

Moo + UsWh <C[P + t^e姊 + e 叫 ‘ 叫 for AT 二 4 

| | « o c + Ue]\H < + 川 1-�2I/2] for AT > 5 

where 丁 satisfies ^ < r < 
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Proof. We may follow the arguments given in the proof of Lemma 2.4 in [93 

First by the properties ofWj，t/s we can choose proper t / s such that the maximum 

points Ts and minimum points s它 of v̂  are also the ones of Wê t-, respectively. Let 

îe = Wet + 0s, then — Q and satisfies 

<P" — — (7 + + + + N S ] = 0 

where 

Now we prove the result by contradiction. Denote the right hand side order term 

by K^ and suppose that 

(peWoo/Ks 

Let 於e = Then (jŷ  satisfies 

( ^ “ ― ( 7 +e2”(/) + p w. 
Se W, 

I么 
+ 聊 I 

= 0 . (2.2.29) 

Note that 

u. 
< CKJU. 

Ne[ct>e] (2.2.30) 

Let te be such that 於“亡芒）=队丨丨⑷=1 (the same proof applies if 力e) = —1). 

Then by (2.2.29), (2.2.30) and the Maximum Principle, we have \ts - ti\ < C 

or - t2\ < C. Thus — r^l S C or % — 5̂ 1 < C. WLOG we assume that 

r^l < C. Then by the usual elliptic regular theory, we may take a subsequence 

+ rg) — 0 0 � as e —̂  0 in CJQ^(M) since |厂£ — ti\ —» 0, where <po satisfies 

？S - + 如=0, and = 0, 

which implies 小。三 0. This contradicts to the fact that 1 = 4>£{ts) — for 

some to- Therefore we complete the proof. • 
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The following is the basic technical estimate in this paper which gives the a 

priori estimates of ti and 亡2 -

Lemma 2.9. For e sufficient small we have for N ~ 3, 

ti = loga + 21og6 + 31og 汰 

h 二 log a + log 

where a, b are constants and 

a — ao,3, & — 

Here ^0,3,60,3 positive constants. 

For iV-4, 

—2126 彻=a/3, 

where a. b are constants and 

a -> ao，4, b — 60,4-

Here <20,4, 60,4 ^re positive constants. 

For N> 5, 

ti = | l o g a + ^ l o g 6 + log/?； 

h = i l oga + |log/3, 

where a, b are constants and 

a — b — 6o，Jv-

Here (Zo，jv, 6o’yv o/re positive constants. 

Proof. From Se [vg] = 0 and v^： = w^̂ t + we deduce that 

+ + N M = 0, (2.2.31) 
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where 

= f — / ¥ — (7 + e ^ l ^ + Pke，t 广 V 

and 

Multiplying (2.2.31) by and integrating over M, we obtain 

roo poo poa 

Integrating by parts and using Lemma 2.8 we have 

Le,t [4>Wi.ti dt = 

P (70 + — < 掉一（a — 70) 

w • dt 

+ 2 / 
J —OO 

(j)dt 

Similarly we can obtain 

/ ci力=o( + eti + + e— 
J —OO 

For the nonlinearity term, using (2.2.25) we get 

NM 

so using the exponential decay of w and taking r > max{| , we deduce 

Similarly we can obtain 
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To estimate f ^ we write 

roo 

- — (7 - lo)We,t + V，t - Ulf̂  + 

= 五 1 + 丑 2 + 丑 3 , 

where 

El 

丑2 

丑 3 

J —OO 
poo 

=—(7 —70) / dt] 

L P ! yje.t — < + h 丁 

Using (2.2.23) and Lemma 2.6 we obtain 

Ei = - p f \w[J' dt + (3 1 dt = -(3 [ —T dt + o{p). 

J —CO J —OO J —OO 

Note that 7 — 70 = and using (2.2.23) we get 

斤 r o c E2 = 
4 dt - OiP'). 

To estimate 丑3，following the argument in the proof of Lemma 2.7. We divide 

into two intervals Ii, I2 defined by 

tl+t2 
2 I9. 二 

tl+t2 
2 00 

Then on I“ i = 1,2, we have wt^ < v\ and then wj^tj < uji^u by the maximum 

principle. So on Ii the following equality holds: 

V—L 50 , V 
— + 如 t2 

_(切 1’“ — W2,t,T — + — 
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We use inequality (2.2.25) to get 

+ chM Y 一 < — I < , 

for any 1 < 6 < 2. Then using Lemma 2.6 and integrating by parts, we get 

'h 
dt y—^ v I p 

W£，t - + 
POO 

dt- dt + + ^(gii-
J —oo 

p 
Wi.W, �t 2 

On the other hand, on I2, using wi^n < 5 (2.2.23) and inequality (2.2.25) we 

get 

w. W£，t — ' � :M l 

for any 1 < S <2. Using Lemma 2.6 we get 

'I2 
w. 

p—1 — < + <1 < dt = o(e—I‘力2I/2) + • t2� 

Thus 

1 /-oo 
Es = 丨 么 3 / ufeW^^dt 

2 
1 

and 

/ ufet丨""dt + o ( e — + 

Selwe^tW,^,^ dt 二-[3 + / w^e'^'' dt 

Similarly, 

POO />00 1 

/ dt = (3 
J — 00 J —00 ^ 

^-\tl-t2\/2 — 
’t2 - 「 I 2 A.. / w^e'^^ dt 

Combining all the estimates above, jS力 and e—l̂ i一亡2I/2 have the same order. 



A三 t - ih,广2)||ao，4/? < —2/'2e，< 紗oaP < < f&o,4/3} for N = 

{ t 二（力 1, t2)\lao,Np < < 舊ao,/?，^bo^Np < 柳丄―⑷/。< 昼〜’"々 } for TV > 5. 

^0,3/3} for N = 3: 

By Lemma 2.9 we introduce the following set 

{ t = 11̂ 0,3/3 < e切 < f a o , 3 / ? , < 

-tfc+il/2 ‘ 1 广 A,3j‘ZwPet/Ut = o � . 

(2.2.32) 
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Therefore, 

f - “二 

2 dt + JZo 切〜dt = o{P): 

Let 

then 

and 

where ao,3，W 

where 

-\tl-t2y2 — 

e'' = aP, e — 丨 = 吵 

b 
2 广 \wfdt 

J —CO 

+ 0 ( 1 ) 一 ao,3 

positive constants. Thus 

+ 0 (1) — be 

ti = l o g a + 21og6 + 31og/5; 

t2 = loga + log/3, 

7
0
 

T
 

7
0
 

3
’
 

c
f
 

a
 

0,3-

Remark 2.5. The above estimates for the general case A: > 1 are: 
.一丨力丨 I e 2 + e 2 

• 

As,3 JZoWPe 响 dt = o(j3), j = …，k’ 

3
1
2
 

V
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1
-
2
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Then by Lemma 2.9, for e sufficient small, t =(力i, ^2) 6 A if is a sign-changing 

solution to equation (2.2.1). In the next section, the set A will be the configuration 

space in the Lyapunov-Schmidt reduction method. 

2.3 T h e existence resul t 

In this section we outline the main steps of the so-called Lyapunov-Schmidt re-

duction method or localized energy method, which reduces the infinite problem 

to finding a critical point for a functional on a finite dimensional space. A very 

important observation is the following Lemma 2.12. To achieve this, we first 

study the solvability of a linear problem and then apply some standard fixed 

point theorem for contraction mapping to solve the nonlinear problem. Since the 

procedure has been used in many papers, we will omit most of the details. We 

refer to [71] for further detailed proofs. 

2.3.1 A n auxil iary linear p rob lem 

In this subsection we study a linear theory which allows us to perform the finite-

dimensional reduction procedure. 

Fix t G A. Integrating by parts, one can show that orthogonality to in 

II, j = 1, 2, is equivalent to orthogonality to the following functions 

= + + (7 + j = 口, (2.3.1) 

in the weighted L^-product ( , . By (2.2.24) and elementary computations, we 

obtain for j = 1,2, 

dt，s,t = (—1)奸 ⑴认=(—ly+i(这J 购）+ + 

and 

z味=(—ly — m，3，fj — (7 — lo)dtW,A . (2.3.2) 
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In this section, we consider the following linear problem. Given h € (M), 

find a function 4> satisfying 

LeA<t>] ••= r -帥'—(7 + + = h+J： c^Z, 

= J - 1 , 2 , 

for some constants Cj, j = 1, 2. For this purpose, define the norm 

4> * (p 

(2.3.3) 

(2.3.4) 

Using contradiction argument, we have the following result. Since its proof is 

now standard, we omit the details here. 

Proposition 2.1. Let • satisfy (2.3.3). Then for e sufficiently small’ we have 

IHI* < (2.3.5) 

where C is a positive constant independent of e and t E A. 

Proof. The proof is now standard, we refer to [71 

Using Fredholm's alternative we can show the following existence result. 

• 

Proposition 2.2. There exists eo > 0 such that for any e < Sq the following 

property holds. Given h e (R), there exists a unique pair {(p, Ci,C2) such that 

LeM] = E 
3=1 (2.3.6) 

Moreover, we have 

+ S C\\h (2.3.7) 

for some positive constant C. 

Proof. The result follows from Proposition 2.1 and the Fredholm's alternative 

theorem, see for example [71 j. • 
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In the following , if (/> is the unique solution given in Proposition 2.2, we set 

(2.3.8) 

Note that (2.3.7) implies 

A{h)\U<C\\h\\ (2.3.9) 

2.3.2 T h e nonlinear problem 

In this subsection we reduce problem (2.2.1) to a finite-dimensional one. This 

amounts to finding a function 么，t such that for some constant c ,̂ j = 1,2, the 

following equation holds true 

[ K ’ t + 4>y' 一 /?K，t + Cff — (7 + +</>) + I恥’t + 诊广 1 (lî e.t + = t CjZ味： 

�0,Z明〉6 = 0，J-1,2. 

The first equation in (2.3.10) can be written as 

(2.3.10) 

r — — (7 + + = - N S ] + ^ CjZ� 

where 

NM - +々r—i (扣 + — — (2.3.11) 

Lemma 2.10. For t € A and e sufficiently small, we have for \\(f)\\^ + + 

M* < h 

(2.3.12) 

\ \NsM — N M \ U < c(||么||fn"b-i，i} + II糾fn{p-i’i})||如—如II*, (2.3.13) 

Proof. These inequalities follows from the mean-value theorem and inequality 

(2.2.25). • 
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By the standard fixed point theorem for contraction mapping and Implicit 

Function Theorem, we have the following proposition. 

Proposition 2.3. For t E A and e sufficiently small, there exists a unique (j)= 

(f)s,t such that (2.3.10) holds. Moreover, t —> 命已’七 is of class C^ as a map into H, 

and we have 

Clp-^ e付2 + ^-T\t^-t2\/2^ for iV = 3 

C\(3 + tV打+ for iV 二 4 

+ + e-T(iV-2妝-Ws^ for AT > 5 

(2.3.14) 

where r satisfies | < r < 腿产}. 

Proof. The result follows from the standard fixed point theorem and the implicit 

function theorem, see for example [71]. • 

2.3.3 Expansion of t he reduced energy funct ional 

In this subsection we expand the quantity 

(2.3.15) 

in e and t, where (̂e，t is given by Proposition 2.3. 

Lemma 2.11. For t G A and e sufficiently small, we have for N — 3, 

KM - (J - (e—风 1 + e-供”[川叶 1 dt + 厂切V/2 dt 

+ 人’3�秘V/2 dt + o{(3) + o(e” + o(e—切I/” 

=K,{t) + oiP) + o( 一) + o(e-丨“-ht/2)‘ 
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For iV = 4， 

Kit) = — (e-併 1 + r饼2)[切奸 1 dt — [ wPet dt 
POO 

+ 乂。4 / wPe' dt + o(/3) + + o(e—l“_''2l) 
J — 00 

=Ks{ t ) + o � + + o ( e - 叫 ‘ 

For N >5, 

KM == ( - - — ) (e-側 + e-讲2) r 切P+i dt + �w ^ e ' ' dt 
2 p + 1, J-00 2 J_oo 

+ 幼2八’w�切Pe(況—dt + o{(3) + 0(e2” +�(e—(況 
J —00 

= K , [ t ) + 0(釣 + o (e2” + o(e-(汉川 1-

Proof. We write 

(2.3.16) 

where 
^ P-OO 

切:，t<t + (7 + e-供 dt- dt 
J — 00 

e-^'dt: 

K , 

2' 
e一供 dt. 

Integrating by parts and using Lemmas 2.7，2.8, we have 

凡 I = 5 U t ^ ,， t ] ‘ , t e - � = 0([/? + 6亡2 (2.3.17) 

To estimate K27 we note that satisfies 

=—|̂ ŝ，t + + (k,t) + 一 + ^ Cy么，V (2-3-18) 
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Integrating by parts and using the orthogonality condition (2.3.10), we have 

2K2 = \We± + <Ĵ e，tr—l('�e,t + 4>e±) 一 l̂ î s W, 叫，tjP—i么，t + <t>e,te-^' dt 

By the mean value theorem and inequality (2.2.25) we get 

+ + 么 ， t ) — ke， t rv， t—Pi叫， t r -Vs’ t < ci<̂ ,，t严•，2} 

so using Lemmas 2.7 and 2.8 we deduce 

-|tl-t2|/2 

For using the mean value theorem and inequality (2.2.25), 

I 叫’ t + 么，tP̂+l — 1 切d 州 — — \p{p + 

< C|0s，t|—奸 1’3}， 

(2.3.19) 

so, again, using Lemmas 2.7 and 2.8 it follow that 

=。([/? + e 〜 如 1 (2.3.20) 

Combing with (2.3.16), (2.3.17), (2.3.19), (2.3.20) and Lemma 2.3.16, we obtain 

the conclusion. • 

A very important observation both for existence and uniqueness is the follow-

ing fact. 

Lemma 2.12. v�t =秘+ ^^ ^ critical point of E. if and only if t is a critical 

point of K� in A. 

Proof. The proof follows from the proofs in [93]. For the sake of completeness, 

we include a proof here. 

By Proposition 2.3, there exists an e � s u c h that, for 0 < e < Cq，we have a C^ 

map t — (j}s,t from A into H such that 

Se [Ve,t] = Cj ,仏，t = W�,t + Cpe (2.3.21) 
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for some constants cj，which also are of class C^ in 

First by the integration by parts we get 
roo� 

d t , K S ) - / <，t (线,•奶e，t + dt水,t)' + (7 + + dt水 
J —OO 

e—琳 dt 

(2.3.22) 

二- + dt水，t)e-取 dt. 
J 一 CO 

If v̂ t̂ =川e，t + 0e,t is a critical point of EĴ , then S ^ ： = 0. By (2.3.22) we 

get 

d t j K S ) = — / (一,，t + dt水’t�e-併 dt = 
J —CO 

which implies that t is a critical point of Kg. 

On the other hand, let t^ G A be a critical point of Ke, that is dtjKsi^te) = 0, 

i = by (2.3.22) we get 
POO 

0 = KSs) = — / + 线,•’ 0 e-饼 dt 
J —OO 

for j = 1，2. Hence by (2.3.21) we have 
2 

E f ZMe，i + dt本’、>-口t dt = 0. 

By Proposition 2.3 and the fact〈么’t̂ ，Ze，f“�£ = 0, 
0 � . (2.3.23) 

On the other hand, 

w. 6iip / w P - ^ \ w f d t + o{l). 

(2.3.24) 

By (2.3.23) and (2.3.24), the matrix 

J —OO 

is diagonally dominant and thus is non-singular, which implies c办g) ~ 0 for 

i = 1,2. Hence v^te 二 "^ete + 4>e t̂  is a critical point of E^. • 
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Remark 2.6. Note that in the proof the theorem, we assume that the solution 

v̂  of equation (2.2.1) can be written as v̂  — ŵ t̂ + 4>e with 么 satisfying 

[ c j h 入 = j - 1 , 2 . (2.3.25) 

For generality, using (2.3.24) we can decompose 
2 

(2.3.26) 
3=1 

where (f)̂  satisfies (2.3.25) and dj = 0(||诊e||oo)- Thus we can write 

2 

Ve 二 恥’t + djdt^w�’t + 小� (2.3.27) 

2 
and get the desired result using the same argument for Wê t + X] 

， ‘ ’ 

2.4 T h e uniqueness result 

By Lemma 2.12, the number of sign-changing once solutions of (2.2.1) equals the 

one of critical points of To count the number of critical points of 

we need to compute dK^it) and 炉 

Recall that Ks{t) and Kg{t) are define in (2.3.15) and Lemma 2.11. The 

crucial estimate to prove uniqueness of v̂  and u^ is the following proposition. 

Proposition 2,4, is of C^ in A and for e sufficiently small�we have 

(1) K,{t) 一 K^Xt) = o{(5); 

(2) dK,{t) - dK^t) = o{P) uniformly for t G A; 

(3) if ts e A is a critical point of K�then 

— 玄 = (2.4.1) 

The proof of proposition 2.4 will be delayed until the end of this section. Let 

us now use it to prove the uniqueness of Vs. 
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Proof of theorem 2.1. By Lemma 2.12, we just need to prove that K^it) has only 

one critical point in A. We prove it in the following steps as in [93 . 

On one hand, By (2) of proposition 2.4, both Keit) and Ke{t) have no crit-

ical points on dk and a continuous deformation argument shows that dK^{t) 

has the same degree as dKe{t) on A. By the definition of we have 

deg(iC£(t), A，0) — ( — w h e r e m is the number of negative eigenvalues of 

[dtAj它sits)) . Therefore, deg(a/^“t) , A,0) = ( - 1 产 . O n the other hand, at 

each critical point t^ of Ks{t), we have 

d e g ( ^ “ t ) ， A f m “ u o ) = ( ~ i r , 

fro 5s is sufficiently small. This follows from (3) of proposition 2.4 and the fact 

that the eigenvalues of the matrix are away from 0 (cf. 2.4.14 

and 2.4.15). Hence we deduce that K^{t) has only a finite number of critical 

points in A, say, k^. By the properties of the degree, we have 

Therefore, k^ = 1 and then theorem 2.1 is thus proved. • 

In the rest of this section, we shall prove proposition 2.4. 

Proof of proposition 2.4- The proof of part (1) is postponed in Appendix B. 

We now prove (2) of proposition 2.4 as follows, 

dt,K,{t) = f + (7 + e^')vs,tdt,Ve,t] e'^' dt - 7 l ” e ， t P � A _ ” s ’ t e - � f 
— CO —CO 

—oo 

(2.4.2) 
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where 

(2.4.3) 

and 

h 三- + dt. (2.4.4) 

Using the similar argument in Lemma 2.9, in the case of iV = 3, we can obtain 
oo oo 

-(3 f \'wf dt + -e(ti�)/M��3 f wPe'^^ dt + for j = 1; 

h 

-P J \w'\Ut- A,，3 J + for j = 2. 

(2.4.5) 

By (2.3.10) and proposition 2.3， 

(2.4.6) 

Combining the estimates (2.4.5) and (2.4.6), part (2) of proposition 2.4 is thus 

proved. 

In the rest we shall prove part (3) of proposition 2.4. By definition and (2,4.2), 

diAK^it) = a j - 7 dt 

=—f dt - f dt 

By (2.3.21) we get 
2 2 

(2.4.7) 

(2.4.8) 
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Let tj； be a critical point of K^{t) in A, then 

which implies 

= 0 and Ck(t^) = 0, 

k=l 

(2.4.9) 

(2.4.10) 

Note that 

dt,Se[Vs,t] = Ls[dt,Ve,t] p[\Ve H ] 5 i A t = : l E ^ ” s， t ] . (2A11) 

As in Lemma 2.2，multiplying (2.4.11) by dt.Wj^tj and integrating by parts, we 

get dt^Ck{te) = 0(/?). Hence 

dtAb^ddt 本,te-�U 
2 oo 

iytM�) [ Z昧Jdt水,t:)e-�U 
k=l 么 

—OO 
2 oo 

— f^tiC办力 J 队 Z�l�e-3丨‘dt = o�(3丫. 

(2.4.12) 

and then 

dt,A,Ke{Q = - / dt 

OO 

f Z抽凡t + dt.cPeMj^e^te-^' dt + o(p). (2.4.13) 
J t=te 

Note that 
OO OO 

j I^dt水,t]dt:^We，t(r执 dt = J dt = o(f3) 

and 



(2.4.18) 
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Therefore, we have 

d f A M t , ) (2.4.14) 

Using the following important estimate: 

oo 

J Ls[dt,Ws,t]dtWs,te~^^ dt 

[e(*i�)/2人，3 了 ̂ p^t/2 批 + for i = j = 1; 

(ti—12)/2八，3 J ^p^t/2 汝 + 釣， f o r i • j- (2.4.15) 

+ 儿，3 J yjVem dt + for i = j = 2, 

which we have proved in Appendix C, we get the desired result. 

Remark 2.7. For the general case k > 1, we denote the Hessian matrix 

• 

(dtAKe{ts)\ .k+1 

by jM.. We also set for convenience to = —c>o and tk+2 = +oo. Using the argument 

above, we can get 

Mu 二 ( - 1 ) 
1+1 "h+l 

e 2 1
 

I

I
 r

 

f
o
 

ie亡糾. 
(2.4.16) 

风 广 0 for \ i - 3 \ > 2. 

1
 

1

1
 k. 

(2.4.17) 

We show that M. is invertible and has fixed number of negative and positive 

eigenvalue. In fact let ？7 = ( r / i , . . . , 77^+1)̂  and we compute 

+
 

2
饰
 

fk. 
2 (Jh r 

k 

从3”外二 E 
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tj —tji^ 
Recall that by (2.2.32), and e^糾 satisfies 

7 — 1 * . . . . A/ 
(2.4.19) 

‘1、?.r t卜 l-tj tiZli+ll n , /n\ • 
e 2 + e 2 = co(3 + o(^), j = 

( — — e力科 1 - Co/? + o(/?), 

1 tj 一亡j’+i 

where cq < 0 is a constant independent of p. Therefore, 2 and /^—V糾 

converge to non-zero positive constants, which proves the desired result. 

2.5 T h e non-degenera te result 

In this section we want to investigate under what conditions the following homo-

geneous problem admits only trivial solution: 

+ = 0 inM^ and lim (f){x) = 0. (2.5.1) 

First we expand • into spherical harmonics as 

00 
伞{x) = Y , 0m(r)e爪⑷，r > 0, ^ e S況一 1 (2.5.2) 

rri—O 

where e^, m > 0 are the eigenfunctions of the Laplace-Beltrami operator —A^jv-i 

on the sphere normalized so that they constitute an orthonormal system 

in L?(^SN_i�. Let A^ denotes the eigenvalue associated to e购 we repeat eigen-

values according to their multiplicity and we arrange them in an non-decreasing 

sequence. We recall that the set of eigenvalues is given by {j{N — 2 + | j > 0}. 

The components (f)̂  then satisfies the following differential equations 

4>'L + — 4>m + pWT'^K + = 0 in (0’ oo) (2.5.3) 

and lim於爪⑷=0. 
r—t-oo 

To this end, let us consider the eigenvalues of the problem 

C + ^ ^ ^ ^ ^ - 0m + = 0 in (0，oo) (2.5.4) 

and lim (prni^) = 0. 
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The l-th eigenvalue of (2.5.4) can be characterized variationally as 

. ( . ) =丽 mf 外 + 1 料 二 t P _ f W ” ^ - : i j : ， ( 2 . 5 . 5 ) dim{v)<i 4>gv丄 dr 

where V runs through subspaces of and 丄 is the set of 0 G 丑股况) 

satisfying J�cfmrN-s : 0 for all u G V, and be the space of radial 

functions in Thanks to Hardy's inequality: 

、N - 2)2 r 如 < 「 I 們 1 dr, 
4 Jo Jo 

the eigenvalues z/i (p) g S … a r e well defined. Using Hardy's embedding 

and a simple compactness argument involving the fast decay of (以̂丨产工，there is 

an extremal for ui{p) which represents a solution to problem (2.5.4) for v = i^i(p). 

To prove Theorem 2.2 we need to know whether and when equals —\n. 

To show this, more information about solutions is required. As before, we consider 

the corresponding problems for v̂  using the Emden-Fowler transformation. Then 

the eigenvalue problem (2.5.4) becomes 

Le[ilj] ' 0� 一师 一（7 + 小 + - -jy^j in {-co, oo) (2.5.6) 

and lim 'dj(t) = 0. 

For the proof of Theorem 2.2, let us consider first the radial mode m = 0, 

namely Xm = 0. The following result, which contains elements of independent 

interest, gives the small eigenvalue estimates of L^ and shows that •爪=0 for 

the mode m = d 

Proposition 2.5. For E small enough, the eigenvalue problem 

Le(f>e = (2.5.7) 

has exactly two small eigenvalues j = 1,2，which satisfy 
jjJ 

— — C o " ” up to a subsequence as e —> 0, for j = 1, 2, (2.5.8) 



Ae,3 f wW dt + o(j3\ for = 2, 

which is given in Appendix C. 

Let us consider now mode 1 for (2.5.3), namely m 

• 

TV, for which 

Xrn = N — 1. In this case we have an explicit solution u' (r). Now we show that 

(f)m = Cmu' for some constants Cm for m = N • This is not trivial since 

< ( r ) change sign once. Suppose that (^了作 solve (2.5.3). We first multiply equation 

of (pm by < and the equation of < by ( f ) � and integrate over the ball Br centered 

at the origin with radius r. Since they satisfy the same equation, we get 

U： —(Pr 0, 
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where Vj ,s are the eigenvalues of the Hessian matrix V^/Cg and cq is a positive 

constant. Furthermore, the corresponding eigenfunctions <^�，s satisfy 

2 

杖 [ a i j ^ o{l)]dt,We^t + 0{e), j = 1,2, 
i=l 

where aj 二 (aij,..., a2jY 切 the eigenvector associated with Uj, namely, 

V'^K^aj = i^jCLj. 

Remark 2.8. By (2.5.8) we know that 0 and then obtain the non-degeneracy 

of v̂  in the space of 丑i-radial symmetric functions. 

Proof of proposition 2.5. To prove this proposition, one may follow the arguments 

given in section 5 of [93] and use the following estimates 
00 

/ L已[du Ws,t] dtj We,t e—所 dt 

(力1-艺2)/2入，3 J ^P^t/2 dt + o{P), for i = j 

- ⑷ 人 ， 3 7 ufeMi dt + o(/3), for i • j: (2.5.9) 

1
1
2
 

+
 

S
I
/
 

T
 

1
 

1
1
4
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from which we get ^̂ n = for some constants Cm-

Finally let us consider modes 2 and higher. Assume now that m > N + 1 

for which X � > 2N. Since u'jy) has exactly one zero in (0, oo) and A^ > Ai, 

by the standard Sturm-Liouville comparison theorem, 4>m does not change sign 

in (0, oo). On the other hand, by Sturm-Liouville theory, it is well known that 

the eigenfunctions corresponding to ui much change sign, in (0, oo) at least I — 1 

times. Thus the only possibility for equation (2.5.3) to have a nontrivial solution 

for a given m > N 1 is that X„i = — In the next proposition we shall 

show that — z/i(p) = — l a s p - ^ Therefore we get Am • for 

k> N and p is closed to ^ ^ and then complete the proof of Theorem 2.2. 

Proposition 2.6. As p we have that —vi(p) —^Xi = N — l for I < 2. 

Proof of Proposition 2.6. One may follow the arguments given in section 3 of [30 

to prove this kinds of proposition. Note that by the Emden-Fowler transforma-

tion, the eigenvalues has a variational characterization 

Mp) 二 

max 丨 inf ~ rJ • ^ •， (2.5.10) 
dir；：(防<Z 劝 丄 / — ： 丨 训 出 

where W runs through the subspaces of H and W-^ is the set ofip eW satisfying 

JToo dt = 0 for all v e W. Note that the term involving the weight is 

relatively compact and it follows from a previous argument that the eigenvalues 

exist. 

We observe that the limiting eigenvalue problem 

(N — 2�2 N + 2 丄 

r — � 4 ) , + ^ 帥)•0(±oo) = 0， (2.5.11) 

admits eigenvalues 

fii = N - l , /i2 = 0, M 3 < 0 , … ， （2.5.12) 

where the corresponding eigenfunction for the principal eigenvalue fii is positive 
N 

and denoted by 屯i. A simple computation shows that we can take 屯i = w �. 
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p+i 
Now we take 也.=w^ l^ ., j = 1,2. Let W he & given one-dimensional subspace. 

， 2 

Then there exists ci, C2 (not all equal to 0) such that f : ( Cj.j)ve-拼 dt = 0 
一① 

for all V eW. We then compute that 

IZo [W + + hr'We-^'dt 

and hence by variational characterization of "2 we deduce that 

Mp) < MP) < — — 1) + 0(1), 1 = 1,2. (2.5.13) 

On the other hand, according to (2.5.12), vi{p) jik > —{N — 1) for some k. 

Thus we have — 一 [N - 1) as p ^ ^ for ； < 2. • 

Remark 2.9. Take i{jj = Wjl^ ., j = 1，...，A; for the general case k > 1, by a 

similar argument we get the desired result. 

2,6 Conclusion and comment 

To study the structure of sign-changing solutions to (2.1.1), we first consider 

the radially symmetric sign-changing solutions. Then we shall study a boundary 

value problem on an infinite interval: 

f u" + -u-{- lulP-^u = 0, r e (0，00)， 

î'(O) - 0, lim u(r) = 0. 

r-i-oo 

In this work we regard exponent p as a parameter and prove the uniqueness 

and non-degeneracy of sign-changing solutions having exactly k nodes as p goes 

to ^ ^ from below. The method used here is the Lyaponov-Schmidt reduction, 

which has been well developed in the last three decades. We refer the reader to 

[80, 79, 93, 71，76] and references therein for more details. 

To our knowledge, there are only two work concerning the uniqueness of sign-

changing solution. So let us compare our results with them. 
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The first article is [92], where the author studied the existence and uniqueness 

of positive solution and sign-changing once solution (so-called second bound state 

solution) to 

I u" + f - u + f{u) = 0, rG(0 ,oo) , 

u'{0) = 0, lim (w(r)X(r)) = (0,0), 

for 
’• 

u + 1, u < —： 

f{n) = •u. 

u — 1, u > 会. 

His approach follows from [25] and a carcful analysis of the behavior of the first 

variation of u(r) a). The special form of f{u) plays an important role in the proof 

as well as the number of nodes. As a comparison, our argument in this chapter 

can be applied to any number of nodes. 

The second article is [28] where the authors study a more general nonlinearity. 

More precisely, they established the uniqueness of the second bound state solution 

(sign-changing once solution) of 

u" + + f{u) = 0, rG(0 ,oo) , N>2, ^ 工) 

u'(0) = 0, lim u(r) = 0, . • 
r-^oo 

under some convexity and growth conditions of f{u). If we consider the canonical 

example 

/(n) - K—iu - l u r V 

then conditions of f{u) in [28] are given by 

2 
p > 1, 0 < g < p, and + g < N — 2 

Therefore, q can not equal to 1, i.e., there must be a sub linear term in the 

equation. The main idea in [28] goes back to [25, 53] and is carried out through 

a careful analysis of the intersection between two different solutions. So their 
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approach depends on the number of nodes. But our method can deal with any 

number of nodes. 

Therefore, there are two possible way to study the uniqueness of sign-changing 

solutions- One way is to apply the shooting method, initiated from [25]. It will be 

very interesting to study the uniqueness of sign-changing solutions to (2.1.1) by 

this method and to (2.6.1) under weaker assumptions on the function f and on the 

number of nodes. The other way is to combine the approach in this chapter and 

a bifurcation argument, which is suggested by Professor Wei. For an application, 

we refer the reader to [30]. 

2.7 Appendices 

2.7.1 Append ix A 

In this subsection we shall give the estimates of Wj^tj, j = 1, 2. Recall that wj^tj 

is the unique solution to the following equation 

( 7 0 + + 0, (2.7.1) 

in the Hilbert space H, whose existence are given by the Riesz's representation 

theorem. Here w is the unique positive even solution of 

w" — To 切 + l i / = a (2.7.2) 

Actually the function w{t) can be written explicitly and has the following form 

JV e 2 t̂q t + e 2 To ^ = A - ⑷ = 宁 ) 叫 c o s h (宇7#《） 

Note that now w has the following expansion 

w{t) - Ae^Ne"'^^ + 0(e-p#”, t > 0; 

w ' { t ) = - �K - - — + 0(e1^/^”’ t > 0 

where A^^N > 0 is a constant depending on e： and N. 
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To get the estimates of w认,we write w城 : W t ^ + 小，then by (2.7.1) and 

(2.7.2),小 satisfies 

- (70 + — e � = 0. 

Note that as s —> oo. 

(2.7.3) 

e^'w, (s) = e 2 "-^AeMG ^ . 

Hence when N > 6, (j) e H and • = O(e^^j). Therefore, 

Wĵ f̂  二 Wf̂  + 0 ( e 2 � when N > 6. 

Next we consider N <Q. Let be the unique solution of 

c()" — (7o + — e—罕s = 0, — 0, as — oo. 

Then when Â  < 6, we have 

y^j^i, 二 wt^ + e 〒 人 • + 0 (e2力=:wt^ + 么，t) + 

The rest of this subsection is to solve (ppj. The key point is that 

(2.7.4) 

(2.7.5) 

(2.7.6) 

(2.7.7) 

4>Q = - e " 

jV-2 (2.7.8) 

is a special solution of (2.7.6). Thus we only need to solve the homogeneous 

equation 

一於〃 + (70 + - 0. (2.7.9) 

Note that 70 二、N — 2)^/4, let 

(Pis) = 彻、,where Xn = {N - 2)一(汉—2). (2.7.10) 

Then cj) satisfies 

. ‘ IN — ̂  〜 〜 〜 

d/'i^s) 二 s — 厄 0 ( 0 ) - 1, (pioo) - 0 (2.7.11) 
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and thus 

(h = —e-
N-2 , 

-？(A况e(汉-2)” (2.7.12) 

I n the case of A/" 二 3，入3 = 1 and • = e — T h e n 

I n the case of A/" = 4，入4 = 1/4 and 

？(r) == = : po, 

where Ki{z) is the modif ied Bessel funct ion of second k ind and satisfies 

z^K'liz) + zK[{z)—(之2 + l)Ki{z) = 0, 

see for example [67]. Then 

(k = - e " 

For iV = 5, 

(i>5 — — 
- 3 S / 2 

s
 

2
 e

 

±
 
1
4
 

/
—
\
 

-
1
 

一 (l + e')e-

I n the case of iV = 6, 

where Uq satisfies 

uir 
u"{r)=兹•fi(O) = 1 ’—） = 0. 

Actual ly , we have 

(2.7.13) 

where K2(z) is the modif ied Bessel funct ion of second k ind and satisfies 

z^K'^ iz) + zK'^ iz) - + ⑷ = 0 . 
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2.7.2 Appendix B 

In this appendix we expand the qual i ty Eg[u)g’tj as a funct ion of e and 

Lemma 2.13. For tE A and s sufficiently small, we have for TV == 3； 

1 1 
E, w. 切奸 1 dt + / 出 

p+1 

+ e—丨訂―人，3�拟V/2 dt + oip) + o(e” + 12|/2) 

For TV = 4’ 

1 
w. 

p + 
+ 切 I 义 

^yP+i dt — w^e^ dt 

w dt + o(/?) + oip^e彻、+ o(e-丨ti-叫. 

For TV > 5, 

Ee[We 
,1 切p+i出+ / 切 2 已 狀 

' 2 'p + 
+ 徘 1 - 艺 2 | / 2 人 , 厂 拍 + 《 釣 + + o ( e — (汉-邮 

Proof. Since the proof are similar for different cases, we give the details for iV 二 3 

here. Integrat ing by parts we get 

Ee[w, -划We’t] + w. w. Ws�te一脾 dt — 
p+1 

切ftP+ie 一供(it 

P<、t + (7 一 7o)川£，t + Wti — w t2 
1 

p + 1 

where 

E, f 厂 < t ' " ^ s ， t e -〜力 =空厂 u ;【 te -〜力= 
Z J-oo ^ J-oo 

E.=^^ r 风 r ui,(计 dt=cm... 
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E.=—— dt-l f w�ti 寺併 dt-

p + 1 
— — e一淋 dt 

E, 
p+1 

First for E3, by Lemma 2.6, we have 

E3 = — e — �u j P e ' ^ ^ dt + o{(3) + +。(已—亡广*。’. 
J — 0 0 

To estimate E4, we divide E into two intervals I2 defined by 

r ( ti + i2 
h = ( - ⑵ ， 2 

So on I i the following equality holds: 

r M + 、 

P + 

[ O u i — W2，*2)奸 1 — ^ iX^ + ( P + 1 W，ti 比2，切]— 

1 r I P 
「Oti + (f>i,hT — wfi + p + i 

V 
< Kh — 

P + 1 
' �t 2 � 

As in the proof of Lemma 2.9, by the mean value theorem and inequality (2.2.25) 

we have 

1
 

jo + l 
< 

P + 

P p , 
小 IM 

w t2. 

for any 1 < ^ < 2. Using Lemma 2.6 and integrating by parts, we get 

1 

P + lJh 

P + 1 

wti — wt^ — yjl.wi^ti — e-併 dt 

w 也+ o ( e - l “ l / 2 ) . 



2.7.3 Appendix C 

I n this section we want to prove (2.4.15) for N = 3, that is, 

‘ — 力 2)/2么,3 J ^P^i/2 浙 + 乂灼， f o r 

00 ~oo 

1 dt 二 人’3 J dt + o (外 for i + j ; 
J —OO 

- � - � + A’3 / dt + o{{3), for 
、 —OO 

Proof. Note that by (2.3.1) and (2.3.2), we obtain 

Le[dt^We,t\ = — Z吻-i-p\ 

=(—ly . 

(2.7.14) 

J 二 2. 

- + + (7 — lo)dtWj^t, - p|”5 ’ t广 1 这 , 城 
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Similarly, 

p + l 

roo 
3 / W 

e , dt 

广 奶 淑 + o(e-|t i々 | /2). 

Hence 

E4 = - ^ e ^ M , 
p + l 

w' dt — / nfe啦 dt + o(e一！亡广切 1/”. 

丑5 

Regarding the term E5, by Lemma 2.6 we have 

,1 1 
'2 p+l 

/ wl(l)�tie-脾 dt 
J —00 

r dt 
广00 

+ / w 

- ) ( e — 〜 e - -0t2� dt 
p + l " ' J—00 ' 2 p + l 

Combining the above estimates for E j , E2, E3, E4 and 五5, we obtain 

1
 

2 p + 
^p+i di + / nfe啦 dt 

+ e - 丨 丨 / M y / 说 + 《 釣 + ^ ( g t . ) + o(e-l“-力2丨/2). 

• 

々
 

1
1
2
 

+
 

V
 

T
 

1
-
4
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A n d by the def ini t ion of w^ 

= = ( — l y + i a . ’ + 这為而 ) + (2.7.15) 

We divide (—oo, oo) in to two intervals /丄，I2 defined by 

= — 0 0 , 
tl + t2 

2 

tl+t2 
2 

00). 

First we computer the case of i • j , by (2.7.14) and (2.7.15) we get 

Ljdt.w.tlduw.te''^* dt 

= j —【-1 切 - J Ph, 
—00 

h 

« + oW) 

J12 

For the case of i = j , on 1“ i = 1,2，we have wt. < Wt- and then Wj^tj < 

by the max imum principle. Recall tha t Vs,t ~ Ws,t + where ( f ) = 〔’t is given 

by proposit ion 2.3. Then on I i (Here we give the details for i = j = 1, the other 

cases is similar), 

-p{p — i X ' W J ' ^ t . +p{p — + 稱 
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So by (2.7.14) and (2.7.15) we obta in 

oo 

二 - f 併也 + f + 
Jh J h 

——f dt-h f + 
J h J h 

= T i + T 2 + o(/?). (2.7.16) 

Recall t ha t w城 satisfies 

So dt^Wj^t, and df^Wj^tj satisfy 

— (70 + i(<9t】购】）二 0， 

and 

( 《 ' 〜 ) ) " - ( 7 0 + - 礼⑴tf = 0, 

which implies 

p ( p — = + o w . 

Hence 

T2 = - f + 
Jh 

B y (2.2.28) and proposi t ion 2.3, on /丄 we have 

Ls[(i>] = + V^l'^Wt^ + o(/3). 

Thus 

T2 = - f < dt + o{f3) (2.7.17) 
JM. 

= 一 / + (2.7.18) 
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On the other hand, 

Ti = - / p{p-l)wl;\w[；fwt,dt + o{(3) 

dt + o(/3) - / (it + o(/?) 

w ti (2.7.19) 

where 

Jm. JR 

Combining (2.7.16), (2.7.17) and (2.7.19), we get the desired result. • 



Chapter 3 

Uniqueness of positive solutions to some 

coupled nonlinear Schrodinger equations 

In the chapter we study the uniqueness of positive solutions to the coupled non-

linear Schrodinger equations: 

• 

A l i i -入 lUi + jujuf + jduiu^ = 0 in M^, 

Au2 — A2U2 + M2U2 + Pulw2 - 0 in (CNLS) 

where 1 < N < 3, Xi, X】，fii, fi2 are positive constants, and /? > 0 is a cou-

pl ing constant. In Section 3.1 we first introduce the background of (CNLS) and 

review some of the recent results. Later our main results on uniqueness are 

stated. Section 3.2 is devoted to the study of the uniqueness of positive solu-

tions to (CNLS) in one dimension. In particular, we prove the uniqueness for 

j3 朱 m in { / i i , / i 2 } , max{/i i,(12} when A! = A2. The higher dimensional cases 

are studied in Sections 3.3 and 3.4. More precisely, in Section 3.3, among other 

things, the uniqueness of positive solution is proved for both sufficiently small 

jS and (3 > max{/ i i，"2}; Section 3.4 establishes a Liouvi l le type theorem for 

= = Final ly we discuss some possible extensions and applications in 

Section 3.5. There are st i l l many quite interesting and open problems regarding 

(CNLS). We wi l l discuss them later. 

60 
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3.1 Background and main results 

We are interested in nonlinear el l ipt ic Schrodinger system of the form: 

m 

— A u j + XjUj = i n C j ~ 1 , . . . , m , (3.1.1) 
fc=i 

where Uj's are unknown functions, X j , (3jk are given constants. Here CL is an open 

subset of M " , N is the spatial dimension and m is the number of equations. This 

system arises i n mathemat ical model for various phenomena in physics, such as 

nonlinear optics and Bose-Einstein condensation. We refer for th is to the survey 

articles [51, 43 . 

Recall tha t system (3.1.1) is satisfied by the ampli tudes of standing or sol i tary 

wave solutions of the form x) = e^^^'^Uj(x), for the t ime-dependent m-coupled 

Gross-Pitaevskii equations given by 

„ 771 

. fc-i (GPE) 

= x) G c, t > 0, X en c •況， 

where i = is the imaginary un i t and C is the set of all complex numbers. 

Physically, when Q. = system (GPE) arises i n the study of incoherent 

solitons i n nonlinear optics. The j - t h component 屯j of solut ion denotes the j - t h 

component of the beam in Kerr- l ike photorefract ive media [1]. Denote f.Lj — p j j 

and suppose jij > 0. Then the posit ive constant f i j is for self-focusing in the j-ih 

component of the beam and the coupl ing constant (3jk {j + k) is the interact ion 

between the j - t h and the k-th component of the beam. As (3诉 > 0, the interact ion 

is attractive, but the interaction is repulsive if (3jk < 0. 

When 0 is a bounded domain and m = 2，system (GPE) also arises in the 

Hartree-Fock theory for a double condensate, i.e., a b inary m ix tu re of Bose-

Einstein condensates in two different hyper fine states |1) and |2) ([38]). Now 

and are the corresponding condensate ampli tudes. Constants f i j : = (3jj and 

P ：二 (312 are the intraspecies and interspecies scattering lengths respectively. The 
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sign of the scattering length (3 determines whether the interactions of states |1) 

and 12〉are repulsive or attractive. When < 0, the interactions of states |1) and 

|2) are repulsive ([91]). I n contrast, when > 0, the interactions of |1) and |2} 

are attractive. For atoms of the single state [ j ) , when f i j > 0, the interactions of 

the single state | j ) are attractive. 

Throughout the whole chapter due to physical considerations, the coupling 

constants PjkS satisfy pjk = A y , and we always denote fij :— jSjj for j — 1 , . . . , m. 

Unless otherwise stated we always assume that Q = M ^ and consider the nonlin-

ear Schrodinger system like the following: 

J 

Auj — XjUj + X； (3jk\uk?uj = 0 in M^, TV < 3 
(3.1.2) 

G H ^ W ' ) , 3 = 1, m. 

When the spatial dimension is one, i.e., N — 1, system (GPE) is integrable, 

and there are many analytical and numerical results on solitary wave solutions of 

the general m-coupled nonlinear Schrodinger equations by physicists ([47, 50, 99]). 

But i t is st i l l very hard to classify all solutions. One part of the work here was 

intended as an at tempt to study this problem, see Section 3.2 for more details. 

For the high dimensional m-component solitons, from physical experiment 

([74]), two dimensional photorefractive screening solitons and a two dimensional 

self-trapped beam were observed. I t is natural to believe that there are two 

dimensional m-component (m > 2) solitons and self-trapped beams. As far as 

we know the first general mathematical theorems for m-component solitary wave 

solutions of system (GPE) in two and three spatial dimensions were obtained 

by T.-C. L i n and J. Wei i n [55, 61]. They established some general theorems 

for the existence and non-existence of ground state solutions of steady-state m-

coupled nonlinear Schrodinger equations (3.1.2) using a modified Nehari manifold 

approach and symmetrizat ion arguments. Here a ground state solution is defined 
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(3.1.3) 

as a constrained min imum on the called Nehari manifold: 

M 二 ( u i , … e I uj > 0,Uj • 0， 
m ) 

/rat i V w j f + Xj = E Pjk f胶N u l u l j = l , . . . , m 
k=i J 

I t is worth point ing out that by this definit ion i t is also a positive solution of 

(3.1.2) such that its energy is min imal among all the positive solutions of (3.1.2). 

I n fact, they considered the following minimizat ion problem: 

c : = inf E fu 

where the associated energy functional is given by 
^ m „ 1 m 

E[u] i E / (I•�|2 +入無|2)-去1>勒 u. Uk 

r
-
1
 

(3.1.5) 

for 

u = G (3.1.6) 

Since we assume N the Sobolev embedding theorem implies that the energy 

funct ional E is well-defined and of class CK 

The sign of coupling constants pjk,s is crucial for the existence of ground state 

solutions. The first result in [55] concerns the all repulsive case: 

Theorem 3.A ([55]). Suppose Xj, fij > 0 for all j = I,..., m. If j3jk < 0 for all 

j • k, then the ground state solution does not exist, i.e., c defined at (3.1.4) can 

not be attained. 

R e m a r k 3.1. Some results for Xj < 0 or fij < 0 can be found i n [59, 60]. I t is 

related to the vortex solution of Ginzburg-Landau equation. The existence and 

properties of semiclassical state solutions have been studied in [56, 58, 75, 62, 31 

where the following singularly perturbed nonlinear Schrodinger system w i th c 

w i thout t rapping potentials is studied: 

e'^Au — Vi{x)u + /iiu^ + = 0 in Q, 

^ e^Av — V2{x)v + + j3y?v = 0 in H, 

？-f； > 0 in Q, and u = v ~ 0 on dft. 

(3.1.7) 
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where Q. C R ^ (TV < 3) is a smooth and bounded domain, e > 0 is a small 

parameter, / i i , /i2 > 0 are positive constants, Vi, V2 are positive functions and may 

be constants and P is a coupling constant. For some more general nonlinearities, 

see [68, 6, 83] and references given there. 

From now on, we wi l l restrict the discussion to the case of Xj, f i j > Q for all 

j = 1,... ,m. The second result in [55, 61] concerns the al l attractive case. 

Theorem 3.B ([55, 61]). Under hypotheses of Theorem 3.A. There exists > 0 

depending on Xj 's； fij ’s, N and m such that if 0 < j3jk < and the matrix 

S := {\(3jk\) is positively definite, then there exists a ground state solution with 

all components are positive, radially symmetric and strictly decreasing. 

When attract ion and repulsion coexist, things become very complicated. The 

th i rd result in [55, 61] shows that i f one state is repulsive to all the other states, 

then the ground state solution doesn't exist. 

Theorem 3.C ([55, 61]). Under hypotheses of Theorem 3.A. There exists > 0 

depending on Xj fij，s, N and m such that if the matrix E is positively definite, 

l3jo,k < 0 ， j o , and 0 < ft.fc < A), V j + jo, k • { j , i o } , 

for some jo G {1, . . . , m}, then the ground state solution to (3.1.2) doesn't exist. 

R e m a r k 3.2. For m = 3 and Xj, fij > 0 for all j 二 1 , . . ., 3，T.-C. L i n and J. Wei 

[55] corLStructed certain cocfRcicnt matrices {/3jk) for which there is a non-radially 

symmetric bound state solution of (3.1.2) by using Lyapunov-Schmidt reduction 

and variational arguments. Here a hound state solution u is defined as a solution 

of (3.1.2) w i th finite energy, i.e., E[u] < +00. 

R e m a r k 3.3. Note that in Theorem 3.B is a (unknown) small constant. Re-

cently some explicit estimates of Pq have been obtained, see for instance [87, 5 

where they also gave some explicit ranges for large coupling parameters. The 
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methods there are different. One [87] considered a minimizat ion problem w i t h m 

constraints and compared the energies, the other [5] used a min imax argument 

for the energy functional E[u] w i t h one natural constraint and evaluated the 

Morse indices. As far as we know, i t is st i l l open, and quite interesting, to find 

out what the optimal ranges for existence are. Some progress may be found in 

4, 11, 68, 12，87, 5, 33, 19, 18:. 

I t is worth point ing out a different definit ion of ground state is used in [11, 5]. 

One of the reason is the following [5]: I n the case of a single nonlinear Schrodinger 

equation 

/\u-Xu + jiu^ = 0 in (3.1.8) 

a ground state solution is a solution u of (3.1.8) such that 

I { u ) = min { / ⑷ I ” e \ { 0 } , v > 0, r(v)v = o}, 

where 

眷 昼 L ( 时 

I t is well known that , for all 入, / i〉0 , (3.1.8) has a unique radial ground state 

solution [53], which is positive and non-degenerate [80]. Furthermore, since 

Ux,fx arises as a mountain-pass cri t ical point of I [7], i t has Morse index equal 

to 1 [3]. Hence i t is natural to expect that similar properties are shared by a 

ground state solution of m-coupled nonlinear Schrodinger systems. I n part icular, 

a ground state solution should have Morse index 1. However, according to the 

definit ion of ground state solution in [55], i t might have Morse index m due to the 

fact that the Nehari manifold M defined in (3.1.3) has codimension m. Therefore, 

in this chapter we wi l l use the following definit ion of ground state solution as in 

11, 5]: 

Definit ion 3.1. We say that u is a bound state solution of (3.1.2) if u E 

is a solution of (3.1.2) satisfying E[u] < +oo. A bound state u 
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such that its energy is minimal among all non-trivial bound states，namely, 

E[iL] = min S^E[u] | v G (//i(股，广 \ {0}, E'[v]v - o}, 

is called a ground state solution of (3.1.2). 

Note tha t here we do not require al l the components of ground state solut ion are 

s t r ic t ly posit ive, which is sl ight ly different f rom Def in i t ion 2.1 in [5]. 

Since we assume N < the Sobolev embedding theorem implies tha t the 

energy funct ional E is well-defined on and of class C^. W i t h the help 

of a classical "bootstrap" argument, solutions of (3.1.2) wh ich are i n 广 

are also i n and tend to zero as \x\ — 4-oo. Clearly, i f there exists a 

ground state solut ion then there also exists a semi-positive one, which satisfies 

Uj > 0 for al l j and Uj 卓 0 for at least one j . I n this case, note t ha t Uj satisfies 

a l inear equation 
m 

^Uj - XjUj + ( E f t A； I Wit 1 = 0 , 

h=l 

the Strong M a x i m u m Principle implies tha t u j is s t r ic t ly posit ive or Uj = 0. 

Moreover, i f assume fur ther 约& > 0 for al l = 1 , . . . , m sat isfying (H4) i n [17], 

then al l posit ive Uj，s are radial symmetr ic and s t r ic t ly decrease w i t h respect to 

the same or ig in in R ^ by Mov ing Planes method [17]. For Uj 三 0 for al l j , the 

vector 0 : = (0,. . .，0) w i l l be referred to as the trivial solution. For a solut ion 

u ^ 0, i f one of i ts components uj ~ 0，then i t w i l l be called a semi-trivial 

solut ion; i f al l of i ts components are posit ive we w i l l cal l i t a positive solution. 

A b o u t the ground state, i t is na tura l to ask the fol lowing question: 

Problem 3.1. When does ground state solution exist? When is it positive ？ 

Is it unique? And what other properties does it have, like symmetry and non-

degeneracy? 

I f m ~ 1, the answer is complete, we refer to [25, 15] for the existence; [44] for 

the radia l symmetry ; [25, 53] for the uniqueness; and [79] for the non-degeneracy. 
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When m > 2, the problem above remains largely open. For the existence of 

ground state solution, T . Bartsch and Z.-Q. Wang [11] gave an answer as follows. 

Theorem 3.D ([11]). Suppose Xj, /3jk > 0 for all j, k = 1 , . . . , m. Then system 

(3.1.2) has a semi-positive radially symmetric ground state solution. Moreover, 

it is of mountain pass type and has Morse index 1 considered as critical point 

of E on and on (i/乂股況Here consists of all radially 

symmetric functions in //^(M^). 

R e m a r k 3.4. To prove Theorem 3.D, the authors [11] used the Nehari manifold 

approach and symmetrization arguments similar to [55]. Bu t the Nehari manifold 

is different. I n [55] the Nehari manifold is defined at (3.1.3) w i t h m constraints. 

T . Bartsch and Z.-Q. Wang [11] correspondingly considered the Nehari manifold 

w i th one constraint: 

M:=^ue (丑 1( ]R。广 \ {0} I E ' [ u ]u = o} (3.1.9) 

and the radial Nehari manifold Mr := M 11 ( 丑 S i m i l a r idea was also 

used by A. Ambrosett i and E. Colorado [5 . 

R e m a r k 3.5. When Pj^ < 0 for some j • k, there maybe doesn't exist a ground 

state solution, see [55, 4, 87, 5] for more details. Moreover, in this situation, the 

structure of bound state solutions to (3.1.2) is more complicated. For examples, 

(i) symmetry-breaking may occurs for positive bound state solution, see [55, 

57, 48] for small interactions and [95] for large interactions; 

(ii) system (3.1.2) admits inf initely many positive radial bound state solutions 

[97, 96, 31, 90，32, 10], a relation between which and sign-changing radial 

solutions of (3.1.8) can be found in [97, 90], which provides a theoretical 

indicat ion of phase separation into many nodal domains for the tt?厂mixtures 

of Bose-Einstein condensates w i t h strong repulsion; 
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( i i i ) The relation between a pr ior i bounds and mul t ip le existence of positive 

bound state solutions has been studied i n [32, 10] by establishing some 

new Liouvi l le type theorems. Af ter tha t the local and global bi furcat ion 

structure of positive bound state solutions are investigated i n [10] by using 

spectral analysis; 

( iv) For sign-changing bound state solutions, the existence and mul t ip l ic i ty have 

been studied in [63] for bo th small and large interactions by different ap-

proaches, but there is no precise nodal property of the solutions and explicit 

estimates on small and large interactions. This raises some quite interesting 

questions: what are the optimal ranges for existence? what's the precise 

nodal property? Does it determine the solution, similar to that of scalar 

equation (3.1.8) ？ 

We emphasize that all the ground state solutions may be semi-tr ivial. A n 

example for such a si tuat ion is contained in the next result [11:. 

Theorem 3.E ([11]). Assume that Xj 's are non-increasing and (3jk are non-

decreasing in j and k. Then (3.1.2) admits no positive solution unless Xj ~ A 

and = (3 for some positive constants X, (3 and all j , k = 1, . . . , m. 

R e m a r k 3 . 6 . The above result s t i l l holds w i t h bo th of the monotonic i ty con-

dit ions reversed for X j and (3jk. I t also gives a non-existence result for positive 

solutions to (3.1.2). 

Hence i t raises a more complicated and interesting question： under what con-

ditions (3.1.2) has a positive ground state solution? Recently some sufficient 

conditions for the existence of posit ive ground state solution have been obtained 

in [4, 11, 68, 12, 87, 5] for large coupling parameters. The methods there are 

different. One is the min imax method on a Nehari mani fo ld [4, 11, 68, 87, 5] 

and the other is the method of cr i t ical point theory in the sett ing of invariant 
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sets of the (negative) gradient flow [12]. Later on, some improved explici t esti-

mates have been done in [33, 19, 18] by comparing the energies or Morse indices. 

For small coupl ing parameters, there are some results on the non-existence of 

positive ground state solution, see for instance [4, 11, 87, 5]. Bu t there is no 

general result on the optimal range for existence. For m = 2 and Ai = A2, it 

is a simple mat ter to check that (3.1.2) admits a positive solut ion i f and only 

(3 朱[min{yUi, } , m a x { ^ i , fi2}] or / i i — /i2 " /?； and there exists a positive 

ground state solut ion i f and only i f ^ > ma.x{/j,i, 122} or j^i = fi2 = P (cf. [11]). 

Here j3 := (3i2. 

R e m a r k 3 . 7 . Among other properties of ground and bound state solutions, 

(i) the orb i ta l stabi l i ty of ground and bound state solutions to a more general 

nonlinear Schrodinger system: 

uv 
Auj - XjUj + E f3 jk \uk \^ \u j \P~\ = 0 i n M ^ , N < 3 

(3.1.10) 

Uj e j - l,...,m, 

has been studied i n [62] for p — 1 + | (cr i t ical case) and [69] for p < 1 + | 

(subcri t ical case)； 

(i i) the blowup solutions of (GPS) have been investigated in [57, 39, 22], which 

may describe nonlinear wave collapse. 

R e m a r k 3 . 8 . To get a positive ground state solut ion of (3.1.2), i t is sufficient 

to show that there exist semi-positive ground state solutions different f rom all 

the semi-tr iv ial solutions. So i t is very impor tant to know al l the semi-tr iv ial 

solutions. For m = 2, let = (u i ,u2) be a semi-tr iv ial solution w i t h non-negative 

components. Then either l i i 三 0 or 三 0. I n any case, the non-zero component 

satisfies 

A u j — XjUj + i i jU、= 0, Uj > 0 i n R ^ and u j e 
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for j — 1 or 2, then Uj 二 Uxj,fij by the uniqueness of positive solution to (3.1.8) 

for all A,// > 0 (cf. [53]). Therefore, all the semi-trivial non-negative solutions 

are given by 

= 0^Ai，"i,O), U2 = (0，^̂ A2’"2). 

Similarly, to get a positive ground state for m > 3, i t is important to know all 

the non-negative solutions of (3.1.2) having one component equal to zero. Pre-

cisely, if the component u i is identically zero, then the remaining pair ( U 2 , … , u ^ ) 

solve the system 

m 

Auj - XjUj + X； l^jkWkW = 0 in TV $ 3 
(3.1.11) 

Uj e H^iR^), j = 2,…，m. 

V 

I t is noting but a (m—l)-coupled nonlinear Schrodinger equations w i t h (3jk, j , k = 

2 , . . . ,m. Therefore, to search for all the non-negative semi-trivial solutions, one 

need to know the uniqueness of positive solutions to (3.1.11). 

Next as shown in [11] we give a simple condition which guarantees the exis-

tence and non-existence of a positive solution of (3.1.2) when Ai = • • • = A,",, In 

fact in this case there is an explicit solution-

Theorem 3.F (cf. [11]). Assume Xj — - • • = X^ = 1. Then (3.1.2) has a 'positive 

solution of the form 

Uj{x) = aj w{x), j = 1,…，m, (3.1.12) 

where w is the unique radial positive solution of 

Aw~w + w^ = 0, w e F ^ ( E ^ ) , (3-1.13) 

if and only if the matrix B = (/^jfc) can be written as B = SD, where S is 

a square matrix with each row summing to 1 and D is a diagonal matrix with 

positive entries. 
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R e m a r k 3.9. The above result st i l l holds for some < 0. Let a = . . . , o ^ ) , 

then the function u = {aiw^..., olj^w) is a solution of (3.1.2) i f and only i f Ba = 1 

where f = ( 1 , . . . , 1). Hence all possibility of the number of positive solutions of 

the form (3.1.12) are zero, one and infinity. 

From Theorem 3.F we can get all positive solutions if one can prove that all 

positive solutions of (3.1.2) are of the form (3.1.12), This raises an important 

and quite interesting question： 

Problem 3.2. For 入i = - - • = Am = 1，are all positive solutions of (3.1.2) of the 

form (3.1-12)? 

I f the answer is affirmative, then non-existence, uniqueness and infinitely mul-

t ip l ic i ty of positive solutions wi l l follow from that of Ba = 1. Moreover, when 

the uniqueness holds, this explicit solution (3.1.12) w i l l be a positive ground state 

i f the latter exists. As far as I know, the first attempt to study this problem is 

given in [87], where B. Sirakov conjectured that under the hypotheses oi m, = 2 

and 0 < ^ min{yLii, max{ / i i , 112} the answer is affirmative and uniqueness 

follows. 

I n the remainder of this chapter we proceed w i th the study of Problem 3.2 

and mostly focus on the case m, = 2 oi two equations, namely, 

A u i — XiUi + /uiuf + I3uiul = 0 in R ^ , 

- \2U2 + + (^ulu2 = 0 in R ^ , (CNLS) 

ui,u2 e 

Some extensions to systems w i th more than two equations wi l l be discussed and 

a few applications are also indicated. From now on, unless otherwise stated we 

assume that 

(3.1.14) 

Under this assumption, using a classical "bootstrap" argument, al l positive solu-

tions of (CNLS) are classical solutions and tend to zero as a: —̂  oo. Moreover, 
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applying Moving Planes method (cf. [17, Theorem 1]), they are radial symmetric 

and str ict ly decrease w i th respect to some origin xq. Wi thout loss of generality 

we assume ：？:。= 0. I t wi l l cause no confusion i f we write Uj(x) = Uj(r) for r — \x\ 

and j = 1,2. Then (CNLS) becomes 

u'{ + ^u'l — XiUi + /iiiif + Puiul = 0 in (0, +oo), 

4 + ^ u ' ^ — A2̂ 2 + fJ'2ul + I3uIu2 - 0 in (0, +oo), (3-1.15) 

(0) ~ ^2(0) = 0 and ni(r), U2(r) —̂  0 as r +00. 

Our first result concerns the one-dimensional case. 

Theorem 3.1. Suppose N = 1 and Xi = X2 = X > 0. Then the function (n*, u^) 

explicitly given by 

Jh,让2)= .顯2嶺羅2确)(3丄16) 
is the unique positive solution to (CNLS) up to a translation as long as 

0 < /? ^ [ m m { / i i , / i2}, m a x { ^ i , ^2} ] • (3.1.17) 

R e m a r k 3 .10 . The condition 3.1.17 is necessary. Indeed, if = ",2 二 there 

are infinitely many positive solutions 

c o s — a / I t ) , s i n , V6' G (O, (3.1.18) 

and i f G [minj/Ui, / / 2 } , ^ 2 } ] but jj,i — /i2, positive solution doesn't 

exist by Theorem 3.E. 

The above result gives an affirmative answer to Problem 3.2 under the con-

dit ion (3,1.17) for N = 1. Our second theorem below deals w i th the case of 

/ i i = /i2 = Combining these results Problem 3.2 is completely solved in one 

dimension. 

Theorem 3.2. Under the hypotheses of Theorem 3.1, suppose further = = 

j3 > Q. Then all positive solutions of (CNLS) are of the form (3.1.18) up to a 

translation. 
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For higher dimensions, the si tuat ion is more complicated. I n general, the 

question of uniqueness of positive solutions to nonlinear equations is diff icult. For 

scalar equation, the shooting method and Pohozaev's ident i ty can give uniqueness 

(cf. [53, 20]). However for systems, there are very few results on uniqueness and 

i t seems very diff icult to apply shooting method because there are at least two 

free in i t ia l values. We briefly discuss here two feasible ways. One way is based 

on the impl ic i t funct ion theorem. To apply i t one need the non-degeneracy and 

a compactness result. The restr ict ion of applying this technique is that only 

local uniqueness can be obtained mostly. Another way based on the uniqueness 

for scalar equation is perhaps more efficient. Bu t how to reduce a problem of 

systems to that of equations is a big problem. Some results have been obtained 

in [66，54, 65, 49, 23], i n which Hami l ton ian and integral identities are very useful. 

Our first uniqueness result in higher dimensions concerns small (3, To get 

i t , the impl ic i t funct ion theorem, a compactness result, and the uniqueness of 

positive solutions to (3.1.8) are needed. 

Theorem 3.3. Suppose N = 2,3. There exists /3o > 0 depending only on \j 

fjij，s and N such that if 0 < (3 < /?o； then (CNLS) admits a unique positive 

solution up to a translation. 

R e m a r k 3 .11. We do not know how small (5q is. I t would be interesting to find 

an explicit estimate and we conjecture tha t Pq = min仏’//之} for = A2. 

Bu t for large using a simple integral identity, we can obta in a result for 

higher dimensions similar to N = 1. 

Theorem 3.4. Under the hypotheses of Theorem 3.3, suppose further Ai : 

A2. Then (u^,u^) explicitly defined at (3.1.16) is the unique positive solution 

to (CNLS) up to translation when 

(3 > max{ /^ i , / i2 } . (3.1.19) 
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To answer Problem 3.2 in higher dimensions for /^i = /i2 = we have the 

fol lowing Liouvi l le type theorem. 

Theorem 3.5. Under hypotheses of Theorem 3-4, assume further ni = 

P > 0. Then all positive solutions of (CNLS) are of the form (3.1.18) up to 

translation. 

The organization of this chapter is as follows. I n Section 3.2, we consider 

the one-dimensional case and prove Theorems 3.1, 3.2. Sections 3.3 and 3.4 

are devoted to the proofs of Theorems 3.3, 3.4, 3.5. Section 3.5 presents some 

extensions and applications. 

3.2 The one-dimensional case 

I n this section we consider the one-dimensional case of (3.1.15) under the condi-

t ion Ai = A2 = A, i.e., the following O D E system w i th two boundary conditions: 

u'l — Xui + f i i u f + (3uiU2 — 0 in (0, -foo), 

u'i — Xu2 + f i2ui + pufu2 = 0 in (0, +00), (3.2.1) 

'",1(0) = ' '4(0) = 0 and ui (r), U2(r) — 0 as r — +00. 

Proof of Theorem 3.1. Let (1/1,1^2) be a positive solution of (3.2.1). The basic 

idea of the proof is to show that ui ( r ) = a-丄 U2 (r ) for all r > 0, where a = ^J 

well-defined by (3.1.17). Define u{r) — ui{r) and v{r) = U2(r) for r > 0. Then 

(u,v) satisfies 
/ 

u" - Aii + fiiu^ + Pa^uv^ = 0 in (0； +00), 

v" -Xv + + 办 2 ” = 0 in (0, +00), (3.2.2) 

? / ( 0 ) = i / ( 0 ) = 0 and u(r), v{r) —^ 0 as r —> + 0 0 . 

The proof of u = v w i l l be divided into four steps. 

S t e p 1: We claim that 

(u'v — uv'Y + O i — ,6)uv{u^ — = 0 in ( 0， + 0 0 ) . (3.2.3) 



§ 3.3 The higher dimensional case • 75 • 

Indeed, mul t ip ly ing the first equation i n (3.2.2) by v and second one by u yields 

{u'v)' — u'v' — Xuv + fiiu^v + (5o?uv^ = 0, 

{uv')' — u'v' — Xuv + + pu^y = 0. 

Subtracting the second equation above from the first one, our claim follows. 

Integrat ing (3.2.3) over (0, +oo) we get 
poo 

O i -j3) uv{u^ — v^) = 0. 
Jo 

Hence u 三 v otherwise the funct ion u — v changes sign. 

Step 2: Suppose that u — v changes sign. We claim that there exists r i > 0 such 

that either 

u{r) — v(r) > 0 for al l r > r i and u(ri) - v(ri) = 0， (3.2.4) 

or 

u(r) — v(r) < 0 for all r > ri and u(ri) — v(ri) = 0. (3.2.5) 

Indeed, by (3.2.2) u — v satisfies 

/〃 —入 / + [i^iu^ + (/xi — (3)mi + / = 0 in (0, +oo). 

Since A > 0 and 

fiiu^ + (/ii — f3)uv + (r) —> 0 as r —> +oo, 

our claim is proved. 

S tep 3: W i thou t loss of generality we assume that (3.2.4) holds, since otherwise 

we consider v — u. We claim that there exists r2 > Vi such that 

IL 'v — uv'){r2) = 0. (3.2.6) 

Indeed, mul t ip ly ing the first equation in (3.2.2) by u' and second one by v' 

get 

f \[[u'f]' — iA (uy + + + l/3a'uv(u'v — uv') = 0, 

l l i v ' f Y — l A {v^y + + i p i u ' v ' y + 欤 — “ ） - o. 



A 
(3.2.11) 

which implies that 
o \ 

Thanks to iV 二 1, we always have the Hamil tonian ident i ty 

H(r) = C in (0,+oo) . (3.2.10) 

By the exponential decay of solutions to (3.2.1) (cf. [25]), we get (7 = 0. Hence 
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Subtracting the second equation above f rom the first one and integrating over 

( r i , oo) yields 

一 5 [ �2 — � ” (ri) + jT uv{u'v - uv') = 0， 

I t follows f rom (3.2.4) that 

0 > u'{ri) > v'(ri) and {u'v - uv')(ri) > 0. 

Hence by (3.2.7) and > 0, 
poo 

/ uv{u^v — m/) < 0， 
J ri 

f rom which and (3.2.8) our claim follows‘ 

S t e p 4: Integrat ing (3.2.3) over {t2 , oo) yields 

poo 

(Ml -P) uv(u' - ”2) = 0, 
Jr2 

which contradicts the fact that ti, v > 0, r2 > r i and (3.2.4). 

(3.2.7) 

(3.2.8) 

• 

Next we prove Theorem 3.2 in a one-dimensional way. For other proof we 

refer to Section 3.4. 

Proof of Theorem 3.2. Let {ui^u2) be a positive solution of (3.2.1) w i th jii = 

fi2 — (3. Define the Hami l tonian functional H{r) of (3.2.1) by 

0 卿 
P ‘ 0==H{0) = ^[ut{0) + um 

3.2.9) 
C
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Then there is a ^ G (0, f ) such that 

2A 2A 
lii(O) = — cos 9 and ^2(0) = — sin 6. 

Note t ha t w(0) — \ / 2 for N = 1. Thus (txi, U2) has the same in i t ia l values w i t h 

/ 
cos^ 

\ 

Therefore, apply ing the standard uniqueness theorem of in i t ia l value problem i n 

O D E theory, our conclusion follows. • 

R e m a r k 3 .12. The proof above gives more, namely al l non- t r iv ia l solutions of 

(CNLS) are of the fo rm (3.1.18) up to a t ranslat ion except 9 G [0, 2tt) under 

hypotheses of Theorem 3.2. Bu t for • Xi、the solut ion structure is much more 

complicated, see [99] and references therein. 

3.3 The higher dimensional case 

I n th is section, we prove Theorems 3.3，3.4 and discuss some possible extensions. 

3.3.1 Uniqueness for small (3 

By the symmetry and regular i ty result mentioned above, we need only consider 

(3.1.15) and work on the space CV，。(IR, x CV，。(1 汉)，where 6；，。(股汉）denotes the 

space of continuous radial functions vanishing at inf ini ty. 

To prove Theorem. 3.3，we first establish the fol lowing more general lemma, 

apply ing which we get uniqueness f rom local uniqueness. Before we state and 

prove the lemma, let us define 

“ f + 〜 = m f h ( 丨 + 們 . ( 3 . 3 . 1 ) 

Lemma 3.1. Suppose that the set of nonnegative solutions of (CNLS) is compact 

in CV，o(®•况)X CV，o(Î ") for bounded j3. Let uq is a positive solution of (CNLS) 
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for jS — (3q, where (3q + a�, 60. Assume further uq is unique and non-degenerate 

in CV，o(IR") X CV，o(M"). Then there exists e。〉0 such that (CNLS) admits a 

unique positive solution in CV，o(股況)x CV,o(股for P G {(3o — e�, /3o + eo)-

Proof of Lemma 3.1. Denote = E'[ii]. Then $(/?。，,而)=0. Moreover, 

否uiAh 紅Q) — is invertible. By the impl ic i t function theorem, there exists 

Co, Tq > 0 and function (f> : (Pq — Cq, /?o + cq) ^ Bj.^(uq) such that for any (3 G 

(/?o —Co, /?o + co), the functional u) has a unique solution u = 4>{(3) in BrQiHo). 

Namely, (CNLS) admits a unique solution in Br。(Ho) for G (/?o — A) +幼)，To 

get the uniqueness result, i t suffices to prove that positive solutions is contained 

in Bj.q(uo) for \I3 — {3q\ sufficiently small. Suppose not, thero is a sequence {un} 

of positive solutions to (CNLS) for (3 = (3n such that Un • BroiHo) and (3几 goes 

to (3q as n goes to infinity. By the compactness condition, Un converges to a 

nonnegative solution H* • uq of (CNLS) for (3 = (5^. By the uniqueness of Uq, u^ 

is a semi-tr ivial solution. That is either u^ = (t^Ai./ii, 0) or u^ = (0, Ux^ ĵj,^). By 

non-degeneracy of Ux�…as in [31], i t is easily seen that 0} is non-degenerate 

i f ao • Thus by the impl ic i t funct ion theorem again, (CNLS) admits a unique 

solution in a neighborhood of (t^Ai’阳 0) for (3 • a。. Since 0) is one such 

solution, i t is the unique one. Hence u* • ( 〜 ’ ; u i , 0 ) i f A) clq- Similarly, we 

conclude that u^ • (0, Ux^^^^) i f (3q • 60• This leads to a contradiction and 

completes the proof. • 

The compactness condit ion in Lemma 3.1 is satisfied by the Lemma 2.4 of 

31]. For the convenience of the reader we repeat i t wi thout proof, thus making 

our exposition self-contained. 

Lemma 3.2 (cf. [31]). Lei > 0 6e bounded. Then the set of nonnegative solu-

tions of (CNLS) IS compact in O•，•(服況)x C;.，o(R"). 

Proof of Theorem 3.3. Combining Lemma 3.2 and the uniqueness and non-degeneracy 

of to (3.1.8) in [53, 79], our Theorem 3.3 follows from Lemma 3.1 for 

A) = 0. • 



Let r+ = {x e R^ I u{x) > v{x)} and r_ = 

the proof oi u = v into two steps. 

S t e p 1: We claim that 

div{vVu — uVv) + (//I - - v^) = 0 in E^. (3.3.3) 

Indeed, mul t ip ly ing the first equation in (3.3.2) by v and second one by u yields 

div{vVu) — Vu • Vv — Xuv + jj^iu^v + (3a?uv^ = 0, 

d i v ( i iVv ) — Vu • Vv — Xuv + fisa^uv古 + Pu^v = 0. 

Subtract ing the second equation above f rom the first one, our claim follows. 
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R e m a r k 3.13. Let us mention that , N. Ikoma in [49] proved a result similar to 

Theorem 3.3 and also extended to radial ly symmetric solutions of (CNLS) w i th 

t rapping potentials by perturbat ion argument. By Lemma 3.1 we have proved 

more, namely that there exists an opt imal (3q > Q such that (CNLS) admits a 

unique positive solution for 0 < < /?〇.But we don't know any explicit estimate 

of /%. Recently, there are a few results on uniqueness for other systems, see for 

instance [66, 54, 23 . 

3,3.2 Uniqueness for large jS 

Now we consider the case of large j3 and prove Theorem 3.4. 

Proof of Theorem 3.4- As in the proof of Theorem 3.1. The basic idea is to show 

that ui{x) = a-i U2�x) for all x e R-^, where a = yj 

Define u{x) = ui(x) and v{x) = a-i U2{x) for x G M " . Then (n, v) satisfies 

Au-Xu + iiiu^ + = 0 in R^, 

Av~Xv + + (du^v = 0 i n (3.3.2) 

u,v e 

We divide {x E M ^ u{x) < v(x) 
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S t e p 2: We claim that r + = 0 and ]?— = 0. Then u = v. Indeed, integrating 

(3.5.21) over r + yields 

I (v^ - t^l^l + -/?) f uv(u2 — ”2) 二 0, (3.3.4) 
Jdr+ V 加 duj 

where f denotes the unit outward normal to <9?+. Note that u — f > 0 in r + and 

w = v > 0 on 召r+, we get 

(du dv\ 
v ^ — — u ^ < 0 on 5 r + . 

\ aiy oy J 

Hence the first term of (3.5.22) is non-positive. Since (3 > max{ / i i , ^2] the second 

term of (3,5.22) is also non-positive. Therefore, 

/ uv{u^ — v^) = 0, 

which implies r + = 0. By a similar argument, we can prove that r _ = 0. • 

3.4 Liouville-type theorem 

This section is devoted to the proof of Theorem 3.5. I t also gives another proof 

of Theorem 3.2 w i t h a PDE method. 

To prove Theorem 3.5, we w i l l use the following Liouvil le type result for the 

equation V • (cp^Vcr) = 0, where denotes the divergence operator. This has 

previously been used by L. Ambrosio and X. Cabre to study a conjecture of De 

Giorgi in (cf. [8, Proposition 2.1]). 

Proposition 3.1 ([8]). Let (f G Lg'̂ (M )̂ be a positive function. Suppose that 

a G //ji^(IR^) satisfies 

V a ) > 0 in R ^ 

in the distributional sense. For every R > 1，let Br 二 {|:c| < H} and assume 

that 

f < C R \ (3.4.1) 
JBr 

for some constant C independent of R. Then a is constant. 
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Proof of Theorem 3.5. Let {ui,u2) be a positive solutions of (CNLS) w i t h 

Ai — A2 =入， and j i i — (12 = P. 

Direct computat ion yields 

V • ⑶ ] 二 0. (3.4.2) 

Since v G applying Proposit ion 3.1 w i t h (p = u and a = v/u, we get 

that v/u is a constant. Tha t is, there exists 6 € (0,7r/2) such that u 三 tan0'<;. 

Subst i tut ing this ident i ty into (CNLS) yields Theorem 3.5. • 

3.5 Extension and application 

I n this section we w i l l discuss some possible extensions and applications. 

3.5.1 General domain and t r app ing potent ials 

First we consider generalizations of Theorem 3.4 to the following coupled nonlin-

ear Schrodinger equations w i t h t rapping potentials: 

A u i — V i [ x ) u i + + j3uiu\ = 0 in O, 

A 'U2 — V2{x)u2 + (I2U2 + (3uIu2 = 0 in (3.5.1) 

> 0 in n , u i = U2 = 0 on dVl, 

where 0 C R ^ is a smooth (bounded or unbounded) domain, N < S, Vi{x)^ � 

are t rapping potentials and /i2, (3 are positive constants. 

Now we consider the case of large (3 and pose the following conditions on the 

t rapping potentials and coupling constant: 

Vi[x) = V2{x) = V{x) > 0 in 0 , (3.5.2) 

(3 > max{/xi,/^2}- (3.5.3) 

Using only integration by part , we obtain the fol lowing result. 
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Theorem 3.6. Let (wj, 2/2) is a solution of system (3.5.1)，then under the con-

ditions (3.5.2) and (3.5.3)，we obtain 

U2{x) = au i {x ) j where / A ^ i 

and U\ satisfies the scalar equation: 

An — V{x)u + — = 0. 
P - M 2 

Proof. Let u{x) — and v{x) = a''^U2{x) we have 

div('t;Vu 一 uVv) + (jj^i — (3)uv{u'^ - v^) = 0 in Q 

(3.5.4) 

(3.5.5) 

(3.5.6) 

Then conclusion follows f rom the argument i n Step 2 of the proof for Theorem 

3.4. • 

R e m a r k 3 . 1 4 . The equality (3.5.6) is the basic of our argument. 

(i) The conclusion is also true for homogeneous Neumann boundary condition; 

(i i) I t is wor th point ing out that the proof above doesn't use any symmetric 

assumption compared to [49]. 

3.5.2 Non-degeneracy and existence 

Let (u i , i i2 ) be a solution of system (CNLS). We say that (7/1,7/2) is non-

degenerate i f the solution set of the linearized equation 

A01 — A i 0 i + 3iJiul(f)i + jSul+i + 2^uiu2(f)2 = 0, 

A02 — X2 小 2 + 补 2社1小2 + I3ul(f)2 + 2(5UiU2(pl = 0, (3.5.7) 

is exactly iV~dimensional，namely, 

N 
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for some constants ai, I = 1，...，iV. 

Assume that A j = A2. B y Theorem 3.3 and Theorem 3.4，we conclude that 

(ui ,U2) = (u l , U2), where (u^, Ug) is defined by (3.1.16), provided 

f H [ /?o( iV),max{Mi, / /2} ] , (3.5.8) 

where Pq {N) < mm{ / i i ^ /12} and "0(1) = m i n { / i i , / i 2 } . B y Lemma 2.2 and Theo-

rem 3.1 of [31], (^1,^2) is non-degenerate. We state i t i n the fol lowing corollary. 

Corollary 3.1. Assume that Ai : A2 and (3.5.8) holds. Then the positive solu-

tion {ul,U2) to (CNLS) is non-degenerate. 

I n [58], the authors constructed ground states in coupled nonlinear Schrodinger 

equations w i t h t rapp ing potentials. Using the non-degeneracy result , we can con-

sider bound states of the fol lowing system 

e^Au i - V i { x ) u i + /2 iul + l3u iu l = 0 i n 
(3.5.9) 

£2Aw2 — V2{x)ui + fi2U2 + = • i n E ^ 

To s impl i fy the technical diff iculties, we assume that 0 < C i < V î, V2 < C2. 

We have the fol lowing two results. 

Theorem 3.7. Assume that Vi and V2 has a strictly local minimum at xq. That 

is, there exists 5 > 0 such that Vi[x) > Vi{xo), V2{x) > 1^2(^0) for xq ^ x £ 

(xq — 6, xq + S). Furthermore we assume that 

ViC^o) = V 2 M , ^ [ m a x { / / i , / i 2 } , m a x { " , i , / i 2 } ] - (3,5.10) 

Then for e sufficiently small, problem (3.5.9) has a solution n2,e) with spikes 

near xq . 

Theorem 3.8. Assume that Vi and V2 has a strictly local maximum at Xq. That 

is, there exists 5 > 0 such that Vi(x) < Vi(xq), V2{^) < for xq .x G 

(xq — Xq + (^). Furthermore suppose (3.5.10) holds. Then for positive integer 

K >2 and 5 sufficiently sm,all, problem (3.5.9) has a solution {ui,^^ U2^e) with K 

spikes near xq. 
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Theorem 3.8 seems to be the first result on the existence of bound states 

w i th multiple spikes. Under the condition (3.5.10), we have uniqueness and non-

degeneracy of the l imi t ing equations. The proofs of both Theorem 3.7 and The-

orem 3.8 follow form the same reduction procedure in [98] for single equations. 

We omit the details. 

Another application of our uniqueness results is in the article [18]. The author 

consider the existence of positive radial ground states of 3-coupled nonlinear 

Schrodinger equations 

(3.5.11) 

—Aui + Xui = + + /̂ iswI'Ui, in IR几， 

—Ati2 + \U2 = Pl2ulu2 + + •以2， IH E"", 

一 A?/3 + 入Us = jdisufus + ^23uiu3 + //31/3, in W, 

u i { x ) 0, — 0, — 0, as — oo, 

where n = 1,2,3, A > 0, fij > 0 and A j > 0 < j ) for i,j = 1,2,3. To 

conclude the existence of positive ground state, the author first use Theorem 3.D 

of T . Bartsch and Z.-Q. Wang. Secondly the author applies our unique result 

to obtain all the semitrivial solution of (3.5.11). Th i rd ly the author provides a 

sufficient condition to guarantee each Morse index of nontr ivial and semitrivial 

solutions is at least 2 and then gets the following result: 

Theorem 3.9 ([18]). If pij 's satisfy the following conditions: 

f^ij > max{jUi, juj} and - 叫 j i j < — h ) + Pjkiflij 一 f-kh (3.5.12) 

for = 1,2，3，i < j and i ^ k,j ^ k； then (3.5.11) has a positive radial 

ground state. 

I t seems that the condition ((3.5.12)) is only a sufficient condition, we can 

give some comments below. 

(i) The first k ind of condition: (3ij > max{/ i i , f j, j} in condition (3.5.12) is a suffi-

cient condition on the uniqueness and existence, So we can f irst ly relax this 
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k ind of condit ion for any considered dimension by using the non-existence 

result for coupled equations. For example, 

/ 

1^3 < 1^2 < < A s < /523, 

/?23 - Pl2 = IJ'l- A s - (^12 /Us, (3.5.13) 

(3i2 < and f i i — P u is small enough. 

Secondly we can relax this k ind of condit ion at least i n dimension one by 

Theorem 3.1 

(i i) The second k ind of condition: 

Aj- - < Afc(Aj - l^j) + PjkiPij - ^i) (3.5.14) 

in condit ion (3.5.12) is one part of condit ion on the existence of positive 

solution of system (3.5.11) w i th ui 二 CiUs and U2 = C2Us for some positive 

constant Ci and C2. I t is quite interesting to see whether i t is sufficient and 

necessary (exclude the case of p n — = /?23 = / i i == /i2 = Ms)-

3.5.3 Systems wi th more t han two equat ions 

Now we consider Problem (3.2) for the general m-coupled nonlinear Schrodinger 

equations 

‘ m 
Auj — XjUj + E Pjk\ukW = 0 i n N S 3 , 

M (3.5.15) 

Uj e / f i ( M ^ ) , 

Namely, for Ai 二 …�Xm = 1, does any positive solution of (3.5.15) have the 

following form: 

Uj(x) = a J w(x), j — 1,... ,m, (3.5.16) 

where w is the unique radial positive solution of 

Aw-w-i-w^ = 0, w e (3.5.17) 
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As we mentioned before, there is a sufficient and necessary condit ion oi B — {Pjk) 

such that (3.5.15) has a positive solution of the form (3.5.16) (cf. Theorem 3.F). 

Let us denote the solvable domain of B by B, i.e., B G B is the sufficient and 

necessary condit ion. For simpl ici ty of notation, we consider the case m = 3: 

- A u i + Xui = f i i u l + Puu^u i + P isu lu i , in E ^ , 

-A7 /2 + XU2 Puufuz 十 + P23uiu2, in E ^ , 
(^0.5.loj 

-Aus + XU3 = /3i3ufu3 + + ^ 汉， 

Follow the argument of the proof for Theorem 3.3, one can show that 

Theorem 3.10. Suppose N = 1,2,3. There exists Pq > 0 depending only on 

Xj 's，jij 's and N such that if 0 < Pjk < A) for all j, k 's, then (3.5.18) admits a 

unique positive solution up to a translation. 

For large PjkS we can get a result similar to Theorem 3.4. 

Theorem 3.11. For N = 1,2,3. Suppose B e B and 

Prs ^ /?23, A 2 > max{yLii,/i2} A s > 1^3- (3-5.19) 

Then any positive solution of (3.5.18) has the form (3.5.16) and then is unique 

up to a translation. 

Proof. First we can prove that ui 三 a-iu2 where a = y 忽二二 • Indeed, define 

u{x) = ui[x) and v{x) = U2{x) for x E Then (u, v, U3) satisfies 

/ 

Au — Xu + "47/ + I3i2ahiv'^ + Pisulu = 0 in R況, 

A^; — + + Puu'^v + p23ulv = 0 in R ^ , 

Aus — Xus + 置 + iSisU^us + fhsa^iPy^s = 0 in IR凡， 

Let r+ = {x e M ^ I 咖 ） > v{x)} and r _ = {x e | li(.T) < ^；⑷}. We divide 

the proof of = v into two steps. 

(3.5.20) 
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S t e p 1: We claim that 

div(t;Vw — uVv) + (//I — /3i2)uy(u^ - v^) = 0 in M N (3.5.21) 

Indeed, mul t ip ly ing the first equation in (3.5.20) by v and second one by u yields 

div(vVw) — Vu • Vv - Xuv + fiiu^v + f3i2a^uv^ + (3i2,uluv = 0, 

div('ifV'i；) — Vu . Vv — Xuv + 1120^uv^ + Puu^v + (522,u\uv = 0. 

Subtracting the second equation above f rom the first one, our claim follows. 

S t e p 2: We claim that r + = 0 and r _ — 0. Then u — v. Indeed, integrating 

(3.5.21) over r + yields 

f f du dv\ 
JdT+ 

u-
dv du + 

+
 

\
—
^
/
 

2
 

A
 

I
 1

 
uv(u^ — v^) = 0, (3.5.22) 

where “ denotes the unit outward normal to Note that t i — t ; 〉 0 in r + and 

= > 0 on (9r+, we get 

f du dv\ < 0 on ar. du dv, 

Hcnce the first term of (3.5.22) is non-positive. Sincc P12 > rDax{ / / i , ^2} the 

second term of (3.5.22) is also non-positive. Therefore, 

uv[u v^) = 0, 

which implies r + = 0. By a similar argument, we can prove that r _ = 0. 

S t e p 3: We claim that U3 — bu for some positive constant b. Indeed, {u, 1^3) 

satisfies 

)N Au- Xu-\- {fxi + + Pi^uju = 0 in R 

Aus — Xus + Ms^ii + (A3 + - 0 in 

Define w = b^^u^, then (n, w) satisfies 

Au- Xu + (iM + + Pisb'^w'^u = 0 in 

Aw-Xw + 鄉62川3 + (战3 + - 0 in 

(3.5.23) 

(3.5.24) 

§ 3.5 
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Mult ip ly ing the first equation above by w and second one by l i, we get 

d i v ( w V m - uVw) + {ill + (3i20? - /?i3 - - (^3 - 二 0. (3.5.25) 

Since B e B and /^la > /Z3, there exists 6 > 0 such that 

+ Pua^ - — I h W 二 (M3 — (3.5.26) 

Therefore, we have 

d i vOV^ / - uVw) + O3 — I3i3)b\w{u^ - w” = 0. (3.5.27) 

Repeat the argument in Step 1 and Step 2, we get the desired result. • 

R e m a r k 3.15. Similar argument can be applied to the case /5i2 = or /?i2 = 

^23-



Chapter 4 

Traveling wave solutions 

I n this chapter, we study the positive traveling wave solutions for the semi-linear 

parabolic equation 

ut = Au - u + uP in (0,oo) x iV > 1, 

in the form 

u{t, x) — v { x ' — ct\ Xn+i) e M^+l. 

Some new examples are constructed. The first one is that of a traveling wave 

solution w i th one convex non planar front. The second one is that w i th one non 

convex front. The th i rd one is that w i th two non planar fronts. Our approach 

explains the difference between two dimension and higher dimensions, and also 

explores a connection between moving fronts and the mean curvature flow. The 

main tool is the infinite dimensional Lyaponov-Schmidt reduction, which have 

been well developed in the last three decades. 

89 
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4.1 Introduct ion 

Traveling wave solutions play an impor tant role i n nonlinear science. These solu-

tions may well describe various phenomena i n nature, such as vibrat ions, solitons 

and propagation w i t h a f ini te speed, etc. I n mathematics, they form a specially 

impor tan t class of t ime-global solutions of evolut ion equations. For a recent ac-

count of the theory we refer the reader to the survey article [89], especially on 

the stabi l i ty theory. 

I n th is chapter we consider the travel ing wave solutions in the homogeneous 

case, for the semi-linear parabolic equation 

字= Au + f i u ) , X e t > 0, (4.1.1) 
CJ c 

where u is a (unknown) real-valued funct ion on so that the level sets of u 

are N dimensional. 

Let us start with the planar traveling wave solution, which propagates in a 

given un i t direct ion e w i t h a speed c. Two properties characterize such solutions: 

their level sets are parallel hyperplanes which are orthogonal to the direct ion e 

and the solut ion is invariant in the moving frame w i t h speed c in the direct ion 

e. Then i t can be wr i t ten as u{t, x) = U{e- x — ct). The profile U satisfies the 

ordinary dif ferential equation 

U" + cU + f{U) = Q in M. 

Existence and possible uniqueness of such solutions are wel l-known and depend 

upon the profi le of the funct ion / , see for instance, [9, 42, 52 . 

Recently, the non planar travel ing waves have been well studied for the reac-

t ion diffusion equations. For a reccnt account of the theory, we refer the reader 

to [14], where a generalization of t ravel l ing wave solutions is introduced. More 

generally speaking, waves w i t h mul t ip le transit ions can be defined as follows： 

Definition 4.1 ([14]). Let k> 1 be a given integer and let ui^... he k time-

global classical solutions of (4.1.1). A generalized transition wave (or traveling 
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wave solution) between Ui,... ,Uk is a time-global classical solution u of (4.1.1) 

such that u + Uj for all 1 < j < k, and there exist k families 1 < i < A: 

of open pairwise disjoint nonempty subsets ofU and a family {rt)teR of nonempty 

subsets of Q, such that 

v t G E , U ( a i ] ‘ l n r O = r “ r ^ u U 进二a, 
l<3<k l<j<fc 

V1 < i < fc, sup {dn{x, r^) I ^ G R, a; G O^} = +00 
(4.1.2) 

and 

(4.1.3) 
u(t, x) — Uj[t, a:) —> 0 uni formly in i G M. and x G Qj 

as r^) —> +00, for al l 1 < j < p. 

I n the part icular case where k = 1 and is a singleton in Def ini t ion 4.1, u is 

called a localized pulse. In the following the set Ft wi l l be called traveling front 

or front. 

I n the fol lowing we are concerned w i t h the case 

f(u) = -u+lu u. 

which appears in various nonlinear equations, such as the nonlinear Schrodinger 

equation and the Gray-Scott or Gierer-Meinhardt systems in Turing's biological 

theory of pat tern format ion (cf. [94]). Namely, we study the travel ing wave 

solutions of 

^ = Au-u + X e t > 0. 
CJL 

As a first step, we look for travel ing wave solutions in the fol lowing form: 

u(t, x) = v(x\ Xiv+1 - ct), X = (x',xjv+i) e (4.1.4) 

which is called curved travelling fronts i n [14]. Then the profile v satisfies 

Av -^cOn+iV — V + = 0 in (TWc) 

In part icular, we say the travel ing wave u is stationary i f i t does not depend on 

t, i.e., u satisfies 

+ = 0 i nRW+i . (SWc) 
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For stat ionary wave solutions (sometimes also called standing wave solutions), 

there is a surprisingly rich and very interesting structure. First , the solutions 

of (SWc) which are positive and decay to zero at in f in i ty are well understood. 

Secondly, the solutions of (SWc) which decay to zero at in f in i ty but change sign 

have a more complicated structure. Much less is known about solutions which are 

defined in the entire space and which do not decay to zero at in f in i ty uniformly. 

Ent i re solutions of (SWc) are known to be bounded thanks to [82]. Observe that 

the solut ion of (SWc) can be t r i v ia l l y extended as a solution of (SWc) which is 

defined i n and which only depends on N variables. Star t ing f rom the unique 

positive radial ly symmetric H^ solut ion i n R ^ , a new class of entire, positive 

solutions has been discovered by N. Dancer [29] using a bi furcat ion argument. 

Later more positive entire solutions are constructed, see for instance [70, 34, 85 . 

These results provides a surprising l ink between the solutions of the (continuous 

or discrete) Toda type system and entire solutions of above semi-linear el l ipt ic 

equation. In part icular, i n [34] the authors construct a new class of positive entire 

solutions of (SWc) in M^ when p > 2. These solutions are close to the funct ion 

k 

where w is the unique positive even solut ion of 

w " - w + w^ = 0, w e (4.1.5) 

and = {(aj, z) G M^ x = f j (z)} are embedded curves which are asymptotic to 

oriented half lines at inf inity. Moreover, / / s satisfies a Toda system: 

e l f ; = ef…才〕—e,广 A+i, j = (4.1.6) 

where we agree that fo = —oo, f ^+ i = + c o and Cp > 0 is an explicit constant. 

The objective of this chapter is to show that a similar construct ion can be 

obtained for the positive traveling wave solutions of (TWc) . Rough speaking, 

three new kinds of travel ing wave solutions are constructed. The first one is that 
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a traveling wave solution w i t h one convex non planar front. The second one is 

that w i t h one non convex front. The th i rd one is that w i t h two non planar fronts. 

To introduce our results in this chapter more precisely, we should mention 

some known facts about the relation between traveling wave solutions of semi-

linear parabolic equation and the so-called self-translating solutions (also called 

eternal solutions) to the mean curvature flow. Consider the traveling wave so-

lutions to the parabolic Al len-Cahn equation of the form (4.1.4), that is, the 

solutions of 

A7； + cdN+iV = Q inR汉+1 . (4.1.7) 

I n [21], cyl indrical ly symmetric traveling waves w i t h paraboloid l ike interfaces are 

constructed for A^ > 2 and that w i th hyperbolic cosine like interface is constructed 

for iV = 1. I t is also shown that the asymptotic shape of the interfaces (level sets) 

are related to mean curvature flow. Moreover, there is a monotonici ty condit ion 

on V in [21], so the traveling fronts in all cases are connected, convex surfaces. 

Recently, in [36] the authors construct traveling wave solutions w i t h mult iple and 

non convex fronts for N > 2. Their approach explores a connection between 

traveling wave solutions of parabolic Al len-Cahn equation and eternal solutions 

to the mean curvature flow. More precisely, the first example of their construction 

is that of a traveling wave solution w i th two non planar fronts that move w i t h 

the same speed. The second example in [36] is a travel ing wave solution w i t h a 

non convex moving front. 

The objective of this chapter is to show that a similar construction can be 

obtained for the positive traveling wave solutions of (TWc) , To explain the differ-

ence between the study of Al len-Cahn equation and that of (TWc) , we consider 

the one dimensional case first, which are the basic models in both constructions. 

I t is known that the heteroclinic solution to the Al len-Cahn equation is stable 

and has only one bound element in its kernel. However, the one dimensional 

bump to the nonlinear Schrodinger equation is unstable. I t is a mountain-pass 

type solution and has Morse index one. Hence resonance phenomena may occurs 
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for the nonlinear Schrodinger equation. 

Now we review some known facts about the eternal solutions to the mean 

curvature flow. I n general, we say tha t an evolving in t ime fami ly of surfaces 

moves by mean curvature i f the fol lowing is satisfied: 

V ^ - H , 

where V is the normal velocity of the surface and H denotes the mean curvature 

vector. Self-translating solutions are represented by surfaces tha t do not change 

shape and are translated by the mean curvature (MC) flow in a f ixed direct ion 

and w i t h constant velocity. Af ter a r ig id mot ion and rescaling we may assume 

that a t ranslat ing solut ion of the M C flow is represented by a fami ly of surfaces 

{ r + c^e^v+iliGR, where F is a fixed surface and c € M. is a f ixed number. From 

this r must satisfies 

B = cz ĵv+i, (4.1.8) 

where II is the mean curvature and P is the un i t normal vector of the (oriented) 

surface F (here H : HP), 

F ix a surface F for which (4.1.8) holds and such that c = 1. Let us define its 

scaling Fg by 

y e V . ^ e y e V , (4.1.9) 

and denote the mean curvature of Fg by Hr^ . Then, 

Hr, = eî N+i- (4.1.10) 

I n this chapter we w i l l consider e to be a small parameter, or i n other words, 

we w i l l be interested in t ranslat ing solutions of the M C flow moving w i t h a small 

speed. 

Several examples of t ranslat ing solut ion to the M C equation are known, see 

for example [2，24] and the references therein. Here we w i l l discuss a special 

eternal solution of the mean curvature flow for which F is a graph of a smooth 
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funct ion F : R^ ^ R, that is, T 二 { ( 工 € R ^ } . I n th is case (4.1.8) 

reduces to 

(4-1.11) 

I t is known f rom [2, 24] that there exists a unique rotat ional ly symmetr ic solut ion 

F of (4.3.1) w i t h the fol lowing asymptot ic behavior： 

F ( r ) = 1) - log r + 1 + 0 ( r - ” ， r » 1. 

I n what follows we w i l l denote the rotat ional ly symmetr ic t ranslat ing solut ion of 

the M C flow by F and the corresponding scaled surface by i.e., 

= {•-Ĵ TV+i = £''^F(£r)}. 

The first result in this chapter concerns the existence of a posit ive travel ing 

wave solut ion to (TWc) w i t h one convex non planar front. 

Theorem 4.1. Suppose N > 2. Then for each sufficiently small z, the traveling 

wave problem (TWc) has a solution v^ moving with speed c = e, and with only 

one front，which is a rotationally symmetric paraboloid-like hypersurface. 

Our second result is about existence of a travel ing wave solut ion to ( T W c ) 

which has two travel ing fronts, each of which is asymptot ical ly a paraboloid-l ike 

surface in a neighborhood of the rotat ional ly symmetric eternal solut ion to the 

mean curvature flow. 

Theorem 4.2. Suppose N >2. Then for each sufficiently small e, (TWc) has 

a traveling wave solution v^ moving with speed c = e, and with the following 

properties: 

(1) the fronts of v^ consists of two disjoint, rotationally symmetric and convex 

hypersurfaces F^. 
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(2) For any r > 0； let CV be the cylinder CV = {(a/, ccjv+i I < r } . Let Tf (r) ™ 

r^ \ Cr, and similarly = \ C” Here is the eternal solution of 

mean curvature flow with c = e. Then it holds: 

(4.1.12) 

where d is the Hausdorff distance between sets. 

Our th i rd result is denoted to prove the existence of traveling wave solutions 

whose traveling front are non convex surfaces. 

Theorem 4.3, Suppose N >2. Then for each sufficiently small 5, the traveling 

wave problem (TWc) has a solution Vs moving with speed c — e, and with only 

one front, which is a rotationally symmetric non convex hyper surf ace. 

Our last result is denoted to the study of traveling wave solutions in two 

dimension. 

Theorem 4.4. Suppose N = 1. Then for each sufficiently small e, the traveling 

wave problem (TWc) has a solution v^ moving with speed c — e, and with only 

one front，which is a rotationally symmetric hyperbolic cosine like hypersurface. 

The existence results in this chapter explain the complicated bi furcat ion struc-

ture of traveling wave solutions to (TWc) . In the fol lowing we w i l l focus on the 

second result since i t is the most complicated one. 

This chapter is organized as follows. I n Section 4.2 we explore on the formal 

level the relation between the traveling wave solutions to (TWc) and the eternal 

solutions to the mean curvature flow and introduce the Jacobi-Toda system for 

the moving fronts. In Section 4.3 we review some known results on the eternal 

solutions to M C flow. I n Section 4.4 we study of the Jacobi-Toda system and 

its linearization. Scction 4.5, 4.6 and 4.7 is denoted to carry out the infinite 

dimensional Lyapunov-Schmidt reduction to prove Theorem 4.2. 
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4.2 Preliminaries and motivations 

To understand the role played by the mean curvature flow and the Jacobi-Toda 

system i n the existence of t ravel ing wave solutions w i t h mul t ip le travel ing fronts, 

we first introduce some impor tan t notat ions and tools f rom Riemannian geometry. 

Secondly, after describing a model for the travel ing wave solutions w i t h mu l t i 

fronts, we w i l l derive formal ly the Jacobi-Toda system. The notat ions and many 

calculations presented here w i l l be used throughout the chapter. 

4.2.1 Geometr ic background 

I n th is section, we assume tha t A^ > 1 and tha t F is an oriented smooth hy-

persurface embedded in the { N + 1) dimensional Eucl idean space ]R料 i，which 

separates IR料 i in to two different connected components in the sense that F is 

the zero set of a smooth funct ion for which 0 is a regular value. 

The first impor tant too l is the use of Fermi coordinates to parameterize a 

neighborhood of F in . 

Denote by P the uni t normal vector field on F which defines the orientat ion 

of r . We define 

z) = y + zi7(y), 

where y € F and 2； G M. The impl ic i t funct ion theorem implies tha t is a local 

di f feomorphism f rom a neighborhood of a point (y, 0) 6 F x M onto a neighborhood 

oiyeR^^K 

Given 2; E M, we define T^ by 

Observe that for z small enough (depending on y) , T^ restr icted to a neighborhood 

of y is a smooth hypersurface which w i l l be referred to as the hypersurface parallel 

to r at height z. The induced metr ic on w i l l be denoted by g^. 
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The first result i n this section is a consequence of Gauss's Lemma. I t gives 

the expression of the metr ic g of R 料 i parameterized by X. For a treatment of a 

more general case we refer the reader to the book "Tubes" of A l f red Gray [45 . 

Lemma 4.1. The metric g of parameterized by X, in a tubular neighbor-

hood, is 

= gz + dz'^, 

where 

9z = 9o~ '^zAr + z^Ar ® A r , 

Ar{ti,t2)-—如(•？1 巧力2)， 

Here go� Ar are the induced metric and second fundamental form on F； respec-

tively. 

Moreover，the mean curvature Hz of Tz for z small, has the explicit formula 

where Hy is the mean curvature of F and 

m—2 j = l 

Here we denote by k / s the pr incipal cui'vatures of T. 

Recall that the Laplace-Beltrami operator is given by 

1 

(4.2.1) 

V 91 ^ ) 

i n local coordinates. Therefore, in a tubular neighborhood of F, the Euclidean 

Laplacian A in can be expressed in Fermi coordinates by the well-known 

formula 

A = 劣 一 i / j z + A办. （4.2,2) 

Denote tin+i be the project ion on the N + 1- th coordinate, then the Euclidean 

N + 1 - th par t ia l derivative dN+i has the expression 

dN+i = i^N+id, + V^^tta^+I • • "〜 （4,2,3) 
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in Fermi coordinates. 

Finally, for fu ture reference, consider the scaled version of and denote its 

parametrizat ion and the un i t normal by q^, Pe, respectively. I t is easy to see that 

the fol lowing relations hold: 

(le(y) = e- ig(q/)， iUy) = ^(ep). (4.2.4) 

Therefore, 

ffrUy) = • 卯 叫 y) = £ • " 叫 ⑷ ， �r � y )= 已 〜 , A e y ) , 

HvAv) = l ^ r j ' f o ) = e ' l ^ r P N ) , kr^Av) = skr,j(ey). 

4.2.2 A mode l for t h e t ravel ing wave solut ions w i t h mul t i 

f ron t s 

I n this section we w i l l first describe a model for the traveling wave solutions 

w i t h mu l t i fronts to (TWc) , where c = e is considered to be a small parameter. 

Then using the Fermi coordinates and the expansions of operators i n the previous 

section, we explore formal ly the relat ion between the travel ing wave solutions to 

(TWc) and the Jacobi-Toda system defined on an eternal solutions to the M C 

flow. 

Let w be the unique positive and even solution of 

w" -w^w^ = 0 in R. (4.2.5) 

For future reference let us recall tha t 

宇)气cosh (宇t)]—击 

We agree that F is a smooth embedded hypersurface in R 料 i and let 

be any (sufficiently small) smooth functions such that Q < (j.+i. Now we assume 

that , in a tubular neighborhood of 1\， 

^ = 之 ） = 之 ） + 外 (4.2.6) 
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where 
k 

Ve�y) = X]川e,j�y,之购J.fe, z) = w(z — C j N ) ) , (4.2.7) 
j = i 

and 0 is a small perturbat ion. Later on we w i l l have to be more specific about 

the way the approximate solut ion is defined. 

For s impl ic i ty of notat ion, we use the same Ss:(v) for the nonlinear operator i n 

( T W c ) regardless of the coordinates. Using the expressions of operators in Fermi 

coordinates in the previous section, i n a tubular neighborhood of F^, 

叫,J.) 二 {d>�j — Ws,j + < , ) 

^Ag^^^w.j + e•卯。ztTa 料 1 • •卯。•。力 

Direct computat ion yields 

—扣s,j + 二 i w " + O N ) ) - 0, 

{£^e,N+l — HY„z)dzUJe^j 二 eOiV+1 — Bp) (e'l/)w'(z - 印)） 

( 树 + o ⑷ ) ( • ( 之 - G ( 樣 

and 

£ • 卯 � • • 卯 � = —一 VpsTTiv+i ‘ (VgXj偏 n/(z — Q(ey)). 

From the above computations, since we assume that Wsj is a good approximat ion, 

i t is reasonable to choose F such tha t Hp = i^n+i, i.e., F is an eternal solut ion of 

the mean curvature flow. In the fol lowing, we w i l l agree this choice. 

To obta in a travel ing wave solut ion to ( T W c ) near our model v^^ at least in a 

tubular neighborhood of Fg, a standard way is to apply the method of Lyapi inov-

Schmidt reduction. To apply th is method, i t is needed to know the kernel of the 

linearized operator associated to v^. Since near each front w is a. model of v^, we 

first review the known facts about the linearized operator associated to w. 
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The l inearized operator of (4.2.5) about w is given by 

(4.2.8) 

I t is known tha t Lq has a unique pr inc ipa l eigenvalue Ai > 0 and A2 = 0 whi le the 

rest of the spectrum is s t r ic t ly negative, see for example [34]. For fu ture reference 

let us recall t ha t 

and the funct ion 

Z 
w (P+l)/2 

•w;奸 1 dx 

is a posit ive eigenfunction associated to Ai . 

As already mentioned, the discussion to fol low is based 

of the kernel of the operator 

the understanding 

L , = d f + Akat - 1 + p v f - i， (4.2.9) 

which is now act ing on functions defined on the product space M x IR^. I t is easy 

to check tha t b o t h the functions w'{t) and ^{y)Z{t) are i n the kernel of L” where 

is a bounded radial solut ion of 

A r n ^ + A i ^ ^ O i n R ^ . 

Therefore, the s i tuat ion is more compl icated than tha t of A l len-Cahn equation. 

To deal w i t h th is di f f iculty, we int roduce another fami ly of parameter funct ions 

as in [35, 341. Let 

ly: r — 股 ， j = k k l , 

be any (suff iciently small) smooth funct ions w i t h the property： 

foil (42.10) 

where the no rm and a small number k w i l l be chosen later on. Now we consider 

the approximate solut ion of ( T W c ) is a tubu lar neighborhood of Fg, 

k 
巧 W e , : j { y , z ) ' { - 7 ] j { e y ) Z e , j { y , z ) ， = Z{z - Q{£y)). (4.2.11) 
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We w i l l look for a solut ion of (TWc) in the form: 

+ (j). (4.2.12) 

Subst i tut ing in to ( T W c ) w i t h c = £ we get for the funct ion (p, 

A ^ + edN+i 伞 + 綱小=-S^Ve) — (4.2.13) 

where f{u) = —u + u^, and 

SM)-政 + edN+life + f { V e ) . 嗎 = + ( ^ ) — 綱 — 

For future references let us denote as well: 

L ⑷ = A 诊 + edN+i 小 + f{ve)4>- (4.2.14) 

To solving (4.2.13) for 小 one would like to use a fixed point argument for the 

operator 

provided that L has a un i formly ( in small e) bounded inverse in a suitable funct ion 

space. To explain the theory we w i l l need let us observe tha t locally, that is near 

for small e the linear operator L resembles the fol lowing form: 

Ls(l> = + £VrA’7v+i • V r . 0 + 劣 + 八视 

where V r^ , Ap^ are the gradient vector field and Laplace-Betrami operator on 

respectively. Observe tha t 

L,{w') = o{l), = 0(1), 

and consequently we do not expect to find a un i fo rmly bounded inverse of L 

w i thou t in t roducing some restr ict ion on its range. I n th is chapter we deal w i t h 

this di f f icul ty using a version of inf ini te Lyapunov-Schmidt reduct ion (cf. [35, 34]). 
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The essence of this method is to introduce a function c[y) and d{y), y G Eg and 

consider the following problem: 

‘L,小=-Se{ve) — N{(j>) + c{y)w'{z) + d{y)Z{z), in E, x R, 
(4.2.15) 

/k (Ky, z)w'{z) dz = 0 = f^ z)Z(z) dz, for all y e IV 
V 

Recall that the ansatz Vs depends on, st i l l undetermined, functions Cj's and " / s , 

j = 1,…，k. Solving (4.2.15) for given Q's and 77/s and then adjusting them in 

such a way that 

c{y； 0 , Vj) = 0 = % ； Vy G (4.2.16) 

we get a solution of (TWc). Actually, the following extra steps are needed to 

solve (TWc) : (a) gluing the local (inner) solution of (4.2.15) and a suitable outer 

solution; (b) a fixed point argument to solve (4.2.15); (c) solve system (4.2.16), 

called here the reduced problem. I t is a nonlocal PDE system for ( / s and rj/s 

and its solvability is a nontr ivial step extensively in this chapter. 

Next we explore formally the relation between the traveling wave solutions to 

(TWc) and the Jacobi-Toda system. Because of the L^-orthogonality of w' and 

Z、the reduced problem (4.2.16) is equivalent to 

/ 

以 L �( y , z)w\z) dz + 4 S 減 y , z)w'{z) dz + /胶 z)w'{z) dz - 0’ 

�以L观，z)Z(z) dz + 4 S 械 y , z)Z{z) dz + 4 i V �(仏 z)Z(z) dz 二 0. 

Neglecting formally terms involving iV(於）and Lj^cf)), which should be of lower 

order, this condition reads: 

/ Se{ve){y, z)Zej[y, z) dz 0, j = 1,…，A ; , 
JR 

and 

/ Se{vs){y,zM/y,么）cb = 0, j = i,...,k. 
JR 

Using the expressions for A , djv+i, and neglecting small terms (as in the pre-
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vioiis section), we get: 

�'div,+/e^i 
+(£z/£，iv+i - HrJdzHe 

+ (Ar, - + eVr.Vs . 

Consecutive terms above are organized in such a way that the first term can be 

estimated by the definitions of and Z ^ j as follows: 

El 〜Xir]j{e-)Zsj + f{v,) — f{w,j + . 

The second term is also 0 since F^ is an eternal solution of the mean curvature 

flow translat ing w i th speed c = e, and the th i rd is of order O(e^). I n this term 

we w i l l separate those parts that are parallel to w'、』and Z ^ j f rom the rest: 

E, [ ( - A r O - VrTTiv+i - V rC j - l ^ r P O ) 

+一 (|VrO 等 r P ( 之 — C i K 

+£2 [{Ariij + VrTTjv+i . ̂ rVj) Zsj] 

-e^Arnz - . 

Here We,j = w{z — = w'{z 一 and w'“ = w"[z — Q{e-)). Taking 

this formula into account, since 

iv''w‘ 0
 

f
a
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/
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i
l
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K
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T
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i t is not hard to show that 

rS/e 
(EWej)(仏之）dz � —( A r O + l^ifO + VrO . Vr 兀 iv+i) (ey), 

J-S/e 

where cq = fj^(w')^ dt. 

Similarly we wi l l separate the integrand in the second integral i n E i into parts 

which are parallel to w、j and the rest. Af ter some elementary manipulations we 

find 
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since f{u) = —u + vF and the terms we have neglected tu rn out to have small 

contributions when projected onto w'^y To compute the projection let us recall 

the following asymptotic formula 

w{x) = e-l^^l +0 ( ( coshx； 

and denoting: 

ci=p wP-^w'e^ dt 二- w^e^ dt < 0, 

we get the following as the leading order term in the second integral in E i 

^ej+i-i) — E L i f (y, z) dz 

rj-i dz + dz 

f5/e 
J~6/e ([/(E； 
fS/B 
J~S/e 

p—1 f 

rS/e 
J-6/e 

Ci — 

/e 1 

.gCj-i-Cj — 

Denoting 

Qfg = = 乂(—~7—77 > 0 , (4.2.17) 
Ci f w^e* dt 

we find that to the leading order of {y, z) dz = 0 is equivalent 

to: 

e'ao ( A r O + Vr7r,v+i . V r O + l ^ r P O ) — [ê )—丄―‘).—已‘广仏丄]= 

(4.2.18) 

Similarly the leading order of /f^y^ [Ss{vE)Zsj){y, z) dz = 0 is equivalent to: 

£2 { A r V j + VrTTiv+i • VrVj) + hrjj = Q ( 0 , Vj)- (4.2.19) 

R e m a r k 4 . 1 . Using a similar argument, for TV == 1, we can get the following 

type of Jacobi-Toda system: 

e^aoiC- + Ci) — — e ( 广 叫 二 0 (4.2.20) 
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4.3 Eternal solutions to the mean curvature flow 

I n this section, we review some results about the eternal solutions to the mean 

curvature flow. 

First we consider the entire solutions to the mean curvature flow. Assuming 

that the surface F is given as a graph T — {rcjv = F(x') \ x' G IR^} , and that 

c = 1, we obtain tha t (4.1.8) is equivalent to: 

V 
VF \ 

ViTlWF/ vTT|W 
i n E N 

We w i l l further assume tha t F{x') — F{\x'\)^ i.e, T is rotat ional ly symmetric. 

Denot ing 二 r we get: 

F'r + (N - FT = 1 i n M ^ . (4.3.1) 1 + F2 r 

The fol lowing result is proven in [2] in the case N = 2 and in general in [24]: 

Proposition 4.1 ([24]). Suppose N >2. Then there exists an entire, rotation-

ally symmetric, and strictly convex, graphical eternal solution to the mean curva-

ture flow (4-3.1). This solution is translating with speed 1 and has the following 

asymptotic expansion as r — oo: 

m = 1 ) - l o g r + (7i + O(r- i)， (4.3.2) 

where Ci is a constant depending on F(l). 

R e m a r k 4 . 2 . The dynamical ly s tabi l i ty of these eternal solutions to the mean 

curvature flow have been proved i n [24] and there is no decay rate imposed on 

in i t ia l value. 

I n the sequel by F we w i l l denote the surface corresponding to the rotat ional ly 

symmetr ic eternal solut ion described i n Proposi t ion 4.1. 

Next we consider the complete non-convex t ranslat ing solut ion to the mean 

curvature flow. We repeat here an existence result proven in [24] for the conve-

nience of the reader. 
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Proposition 4.2 ([24]). Suppose N > 2. For every R > 0, there exists ro-

tationally symmetric, graphical solution to the mean curvature flow, W^, W^ : 

R^\Br X [0, oo) —> R, translating with speed 1. We have the following asymptotic 

expansion as r goes to infinity: 

t~) = t+ 1) - l o g r + a ± + 0(厂1 ) . (4.3.3) 

Moreover, the union of these graphs forms a complete non-convex translating 

solution to the mean curvature flow. 

I n what follows by S we denote the non-convex surface obtained by tak ing 

the union of the graphs of W ^ and by Sg. we denote i ts scaled version. 

4.4 The Jacobi-Toda system and its lineariza-

t ion 

The general theory of solvabi l i ty of the Jacobi-Toda system (4.2.18) is beyond 

the scope of th is chapter. Here we only consider the Jacobi-Toda system on F 

(or S): 

‘ e ^ t t o ( A r O + V r F • V r O + — + - 0 
(JT) 

j — • • • 1 k. 

Our theory of solvabi l i ty of the Jacobi-Toda system w i l l be val id for funct ions of 

the radial variable r only and so we need to express the Jacobi-Toda system on 

r in terms of the radial variable r first. For what follows i t w i l l be convenient to 

denote： 

L[v] := Arv + V r F . Vr^; + \Ar\^v. (4.4.1) 

Now we w i l l find the expression of this operator when restricted to functions 

V = v{r), i.e., funct ions depending on the radia l variable only. The Laplace-

Bet rami operator for a surface Xjv+i = F ( r ) act ing on v = v('r) is 

, Vrr f N - 1 Fr \ 
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The principal curvatures are given by 

h f^N-l 二 
Fr 

kN F” 

hence 

丨卸 一 r 2 ( l + 切 + + 

Finally we have 

V r F • Vrv = Fr 
+ 斤 

Vr. 

Hence the expression for the operator L acting on radial functions, denoted by 

丄rad, is 

^radb +
 

K
 

1
 

I
 

+
 

r
 

”r
 

1 + F2 
(N - , Ki + r 2 ( l + F2) (1 + 

(4.4.2) 

Wo wi l l now proceed to define some weighted norms that wc wi l l use in the 

sequel. For radial functions the following relations hold: 

C\drh{i 

+ \Fr{r 

\drh{r)\ < CVl +剛|2|Vr"(r 

m T ) \ < 

< C(1 + \Fr{r)mDlh{r)\ + \Vrh{r)\l 

where V r is the gradient derivative vector and D^ is the second derivative matr ix 

on r. 

We define the following weighted norms for function h on F: 

WU^^T) -= sup(2 + y = (v'^Vn) e 
办 yer 

I灿oJ"(r) ：二 W\cf/{r) + llVr灿c7》"(r) + IP?办llc》"(r)， 

and for radial C^'^ function g on F; 

IbllcJ-(r) - sup {(2 + \Fr{\y'\)\'f{\og 

;(r). 
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W i t h these weighted norms, we first consider the solvability of the Jacobi-

Toda system in the case k = i.e., consider the solvabil ity of the linear equation 

on r： 

L[Ci] = ArCi + V r F . V rC i + = 0 (4.4.3) 

The key observation is that the equation L[<^] = 0 has a decaying, positive solution 

(h = r 》 l . (4.4.4) 

f rom which we can solve (4.4.3) by a standard ODE method. We rewrite this 

observation in the fol lowing lemma, which has been proved in [36 . 

Lemma 4.2. Function Sn = J— 

decaying element in the kernel of L. 

satisfies L[0o] = 0，that is,如 is a positive, 

Proof. Let us consider the nonlinear operator 

m ) 
CT) $ 

+ (AT — (4.4.5) 

Let 歪CT = F + acj), (j) = (f){r) we get 

A 
da 释 c = 糊 = 

(f>7 
1 + F2 ( 1 + i f ) 

2FrrFr(})r + — 

I n part icular we have H ! 0. On the other hand, i t is not hard to check that 

L M = 时 + F� 

From this the assertion of the lemma follows. • 

The second lemma concerns the solvabil ity of L[v\ = g, which has also been 

proved in [36 . 

Lemma 4.3. Let g be a radial function such that 

IMIc》"(r) < (3> 
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There exists a unique, hounded solution to 

L[v]=仏 (4.4.6) 

such that: 

l l ^ l lc t^ ( r ) ^ qMlc》 " ( r ) . (4-4.7) 

Proof. Th is lemma is also proved in [36] by the reduct ion of order formula in the 

standard O D E theory. Here the uniqueness means we can define v in one unique 

form. More precisely, 

. ( r ) = - M r ) 「 H ^ + M r 、 厂如 ( " ) 互⑷ 

where 

W{p) Y…Jo W{p) 

~g[T) = il^\Fr{TW)9{r\ 

WO = r( l + 咖， 

= JT (況一 1)(1+丨""⑷ 

• 

Next we consider the Jacobi-Toda system in the case k = 2. Generally we 

consider the non-homogeneous problem: 

£2c.o(ArCi + V r F . V rC i + + = e'^h, 

e2a。(ArC2 + V r F - VrC2 + |办 I ' G ) — = e � . 
(4.4.8) 

where Q r ^ M. To describe the strategy let us denote 

u = (2- Ci, = Ci + C2, h = — (/i2 — hi), and g 二 丄 + 
«o olq 

Then the decoupled system holds: 

'S.N ：= L[u] — = h, 

(4.4.9) 

(4.4.10) 
= 9-

The second equation has been solved by lemma 4.3. The solvabil i ty theory for 

the nonlinear equation in (4.4.10) is where the real di f f icul ty lies. 

We summarize here the main results in Section 3 of [36], which concerns the 

solvabil i ty theory of the Jacobi-Toda system. 
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Lemma 4.4. The nonlinear homogeneous equation 

Sg [u] L 

has a hounded solution uq satisfying 

2 

2 
e " " - 0’ (4.4.11) 

Uo{r) = log + 0 ( l o g l o g 
1
 

^ r W P 
as er —> 0+, or s r � 

(4.4.12) 

where \Ar{r)\^ is the norm of the second fundamental form on T. Moreover, for 

the linearized operator ^sW oi Uq, suppose that > 0； z/ > 0； then there 

exist a constant C > 0 and solution cf) to C^ [<t>] = g such that 

+ 丨 丨 + I P M l I c冗’ “ r ) < C ( l o g * ) 4 + ’ l " l l c 2 f i，〜 i ( r ) . 

R e m a r k 4 .3 . The asymptotic expansion is found by solving for uq the fol lowing 

equation: 

From this first approximation, the authors in [36] define a sequence of approxima-

tions by solving a sequence algebraic equations like uq. Once an accurate enough 

approximat ion is found the nonlinear problem can be reduced to a fixed point 

theorem. 

Using a fixed point argument as in [36] one can solve the fol lowing nonlinear 

and non-homogeneous problem: 

L (4.4.13) 

in the fol lowing lemma: 

Lemma 4.5. Let h be a CO’"(r) radial function such that 

c》卞) < Ce\ r > 0 , {3> 

Then there exists a bounded solution to (4.4.13) satisfying (4.4.12). 
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We wi l l finish this section w i t h a discussion of another impor tant ODE, how-

ever not direct ly related to the Jacobi-Toda system considered above, plays as 

impor tant role i n the sequel. We consider the solvabil i ty theory of the linear 

equation: 

Arv + V r F . V r " + ^t] = g. (4.4.14) 

The key point is tha t i t has a exponential decaying solution, f rom which we can 

solve (4.4.14) by a standard O D E method and have the following: 

Lemma 4.6. Let g he a C^'^(r) radial function such that 

Il5*llc》"(r) < ⑴ ） > !• 

There exist a constant C > 0 and hounded solution to (4.4.14) such that: 

Wc》"(r) + d |Vr ” l l c》 " ( r ) + e ^ l l ^ k l l c j ' ^ t r ) < <^lbllc》"(r). (4.4.15) 

Proof. The proof of this lemma follows arguments in section 3 of [36] by the 

reduct ion of order formula in the standard O D E theory. Recall tha t we define 

another parametr izat ion of F, which is obtained by tak ing the arc length along 

the curve (r, F{r)). Thus we define 

s= / ^AT^dp. 
Jo 

Using the asymptot ic formula for F we get that 

s �r ， r 《 l , 5 = - - ^ — ^ + 0 ( l o g r ) , r 》 

(4.4.16) 

(4.4.17) 

By a straightforward computat ion we obta in the fol lowing expression for the 

operators bu t now w i t h the arc-length variable s: 

A r f ] + V r F - V r V = + 一 - Vss + a(s)7]” (4.4.18) 
1 + r 

where 

a{s)=；…乂 咖 • (4.419) 

V^TWWW) 
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1
 

Note that 

N -1 
s = 

5 
( l + 0(s2)) , s < C l , a(s) 二 1 + 0(5—1), s > L (4.4.20) 

Denote Li[r)] = A r r j + V r F ‘ Vpf ] + 备rj. Then given one solut ion ipo of 

L i l i j j ] = 0 we find the second linear independent solution ipi of = 0 by 

reduction of order formula: 

(4.4.21) 

B y we w i l l denote the Wronskian of 如 B y the Abe l formula we have 

W{s) = W{l)exp J a,(T) dr 

We make the following Liouvi l le transformation 

'fj{s) = ex'p 
n 

a( r ) dr t]{s 

(4.4.22) 

(4.4.23) 

Then 

(4.4.24) 

Now 7] satisfies 

where 

-// I 
V + a(s 

/ I 
g = exp 〔r) d丁 g 

(4.4.25) 

(4.4.26) 

Let us denote 

= v" + p{s)r], a(s； (4.4.27) 

When we consider the operator L for functions defined in the interval Ii — (0, 5i) , 

for some Si > 0 then we refer to this problem as the inner problem. We speak of 
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the out problem when we take Ig^ ~ {s., oo), Se > si > 0 as the domain of the 

functions involved. 

First we wi l l describe the way we choose Si and s^. For s —̂  0, we have 

>s = s 
(A/~ —2)2 1 

4 4 
( l + 0 ( 々 ) . (4.4.28) 

As a consequence we see that there exist an M > 0 and si > Me〉0 such that 

p(s) > 0, Me <s< si. 

When s —» oo we have 

w i th similar formula for the derivatives. Actual ly we have 

a — 
(TV 一 l)Fr 1 
r ( l + i f ) 一 2 

+ 
(N — 2)2 1 

4 4 
1 + 

(4.4.29) 

(4.4.30} 

(4.4.31) 

Also we can use the asymptotic behavior of d(s) for s large to infer the existence 

of 52 > Si such that for 5 > S2 it holds 

(4.4.32) 

Observe that Si and S2 in general do not coincide and we need to solve an inter-

mediate problem to glue the inner solution and the solution for s between si and 

S2. Finally, we wi l l assume that e is chosen sufficiently small, so that 

p{s) > 0, Si < s < 52-

We first solve the inner problem: 

L h ] = g, in / i = (0,Si), 

7/,(0) 二 0, rj[iO) = 0. 

Our goal is to show that there exists a unique solution rji such that 

(4.4.33) 

(4.4.34) 

(4.4.35) 

\M\co,p<C\\g\\co^ (4.4.36) 
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For convenience we w i l l denote A = 衾 . T a k i n g into account the asymptot ic 

behavior of d{s) when s —> 0 we see tha t the operator L can be wr i t t en in the 

form: 

T r a// , 
Lrj =rj + 2 广 2 A " - 5 

(iV —2): \
 

1
 1
4
 

(1 + 0 咖 . 

I t is convenient to make fur ther change of variables setting: 

f}{s) = ^(As), g{s) = g{\s), p{s) = A^p(As) 

Then denoting by Z the scaled operator we have 

L — s 
1
 

2
 

\

 /
 

2
 

i
 

/
/
 2

 (1 + 0(A—2 ⑶ 

and 

o
)
 

/
I
V
 

I

I
 

A
 n

 

*

 1
 

2
 

i
 A

 -
z
 

(4.4.37) 

(4.4.38) 

(4.4.39) 

(4.4.40) 

Formal ly = 0 resembles the modi f ied Bessel equation and the operator L 

should have an element of the the kernel f j i ’ i such tha t 

伤 ， 1 ⑷ 〜 J ^ ⑷ ， (4.4.41) 

where Jn—2 (s) is the Bessel funct ion. The second, l inearly independent element 

i n the kernel is such tha t 

fjiAs)〜 

when ^ ^ ^ is not an integer and 

ViAs) ~ 

(4.4.42) 

(4.4.43) 

when ^ ^ ^ is an integer, where YN—2 is the modi f ied Bessel funct ion of the second 

k ind. 

We choose a solut ion given by 

= — 入 一 ％ ， “ s ) � W y g { r � d T + X - � , 2 � s �郝 � T � d T ‘ (4.4.44) 
Jo Jo 
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Note tha t = 0, fjl{0) = 0 since after the change of variables we have 互(s) ~ 

0 肉 . 

Now we w i l l make a useful observation: let 77 be a solut ion of L[fj] — 0 i n 

(K, Asi) and consider the fol lowing expressions: 

Qi{v) = W{s)]'+p[fj{s)]', Q2{fj)= 

I t is easy to see that 

P{s] 

P' 

+ 

\p. 

(4.4.45) 

(4-4.46) 

Now, the asymptot ic formulas of 乃.“1 and .々“2 for s small and the un i fo rm bound 

on f j i j together w i t h the var iat ion of parameters formula give the fol lowing bound: 

hzK ~ . C I ~|| 

S 2 ViW < ； + 2 gl 

On the other hand uni form bounds on f j i j y ield 

C 
S 十 2 引I. 

(4.4.47) 

(4.4.48) 

Scaling back this estimates we get for the solut ion of inner problem estimates. 

Since 

n / Ai 1 m z 1 
0 < 厂 厂 ⑷ 々 1 : (4.4.49) 

let <̂ i;《2 are two consecutive zeros of 17, then by the theory of Sturm-Liouvi l le we 

have 

TT 
< d i s t ( 6 , 6 ) < 

TT 

'Ai 
(4.4.50) 

By the simi lar argument above we have 

C 
I ^ W I < 

1
1
4
 

I
 

广 2 d丁 < 
C 

�e啦s部. 

S2 
(4.4.51) 

Therefore, 

咖 I < 
C 

W -

-1 /2 (4.4.52) 

• 
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4.5 The infinite dimensional reduction 

Let r be the eternal solution of the mean curvature flow w i t h speed 1 and let 

be the corresponding surface t ranslat ing w i t h speed c = e 《 1 . We w i l l use the 

natura l representation of F as a graph of the radial funct ion P = {xat+i ~ F(r)}. 

The scaled surface is given by T^ — {xn+i —巧('厂） | 尸 “ '厂.）=£~^F(£r)} . I n 

general we w i l l take advantage of the radial ly symmetry of the eternal solut ion 

and apply the inf in i te dimensional Lyapunov-Schmidt reduction, whose approach 

has been sketched i n Section 4.2, to reduce the or iginal PDE: 

Av + edjv+iv + f(v) = 0, in 

to a one dimensional system whose independent variable is the radia l variable 

r = |;z/l. 

4.5.1 A n infinite dimensional family of approx imate solu-

t ions 

We w i l l now proceed to define an approximat ion of solut ion which depends on the 

radia l variable r = and the signed distance 2 to I V We w i l l use the notat ions 

introduced i n Sections 4.2, w i t h obvious modif ications tak ing into account the fact 

tha t r ^ is radia l ly symmetr ic and thus has a globally defined parameter izat ion as 

follows: 

r = { ( r0 , F{r)) I r > 0, e e S^'^}, T, = {(erG, e~^F{£r)) | r > 0, 0 G S^'^}. 

We choose an or ientat ion iy(y) on F and take 2； = z{x) = d is t (x , F) compatible 

w i t h th is or ientat ion. Let us introduce the fol lowing weight functions: 

Recall that F r ( r ) �r as r �1 for N >2. I t is not hard to show tha t there exists 

an 770 > 0 such tha t for al l points x such tha t |2:(a:)| < 770 loga;( r ) the map 

a: + yeT 
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is a diffeomorphism, denoted by X{x) — {y, z) and called Fermi coordinates of 

r . Similar claims are t rue when we consider r^ and points x such tha t \z{x)\ < 

^ logujsir)- Taking this in to account we introduce the fol lowing neighborhood of 

I V 

Us,M := {x e I \z{x)\ < Mlog^^}. 

Clearly Fermi coordinates are well defined in Ue^m for al l M > 0 large and e > 0 

small. I f by Xg we denote the dif feomorphism i n Us,m defined by 艾£(x) = (y, z) 

then for a funct ion v defined in th is neighborhood we set 

We w i l l describe functions f j representing the leading order for the locat ion 

of the fronts of our travel ing wave solution. In this section we consider the case 

of two fronts since other s i tuat ion can be deal w i t h in a similar approach (most 

may be more easily). Let f j , j = 1,2 to be solutions of the Jacobi-Toda system 

(JT) . We get tha t / / s satisfies 

側 = 华 log + 释 g （4.5.1) 

I n addi t ion we have / i = —/2. I n the sequel we w i l l use scaled versions of these 

functions, namely f ^ j : —> R, defined by 

fejir) = fj{er), r = r{y) = \y'\, y = {y',yN+i) ^ IV 

We recall here tha t = . I n the course of the Lyapunov-

Schmidt scheme for our problem we fur ther need two fami ly of small functions, 

which w i l l be for a moment unknown parameters. Thus we let e^, j = 1,2, be 

functions of the radia l variable r on T such that for some r G (0,1) we have 

||/vllc7》"(r) ^ [T, < (4.5,2) 

Then by the relat ion between the weighted norms on P and we get 

么已T, ||ee，j.||兮"(r^) < s : (4.5,3) 
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Given the functions / g j , / ig j and e^ j as described above we w i l l denote 

fe = (/e’l，A，2), he = (Jh,l, "。2)， ^e = (e^.l, e。2), 

etc. 

To define a proper in i t i a l approximat ion in the whole space. We w i l l need 

various cutoff functions in our construction. Therefore, for m = 1，…，6, we 

define the cut-off funct ion Xm by 

0, \t > 1 - 榮 . 
X m ⑴ = 

Now let M > 0 be a fixed large number and let 

姻 、 
Xe,m,j j 二 Xm 

、 M l o g 
Zj {x) = dist(a;, Fg 

where T ^ j is a normal, rotat ional ly symmetr ic graph over Fg defined by 

r ^ j = \x= ( r , e - ^ F { E r ) ) + Qj《…)}, where C j = fs,j + K j -

Based on the analysis we have done in the previous sections, tak ing M large and 

e small , we define the in i t i a l approximat ion v^ of the solut ion by 

2 

' 湘 = ( 之 — + (z 一 Cej(r)) , (4.5.4) 

where 

Q A r ) = f s A r ) + h ^ A r ) . (4.5.5) 

4.5.2 Reduct ion to t he p ro jec ted nonlinear p roblem 

Now we look for a solut ion of 

Ss(y) = Av + edjv+iv — ?； + = 0’ 

as a per turbat ion of v^, and hence, we define 

V ^ + 
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so tha t the equation we need to solve can be wr i t t en as 

Ss[厂〜+ (/>)- + L ⑷ + 糊 二 0， 

where 

(4.5.6) 

(4.5.7) 
L((/)) - A(/) + edN+i小-0+ p研「、、 

= (v, + (f)Y -yP-

To solve (4.5.6), we use a very nice t r i ck wh ich was already used i n [35, 34, 36]. 

Th is t r ick amounts to decompose the funct ion (j> in to three funct ions and instead 

of solving (4.5 6), solve a coupled system. A t f irst glance this m igh t look rather 

counter intu i t ive but , as we w i l l see, th is strategy allows one t o work i n a tubu lar 

neighborhood of I V Therefore, we set 

2 

凌 = X e , 4 j (f>3 + Vs 

where the funct ion ip solves 

A功 + sdN+lllj — 功 = — ( 1 — x.,4,,) \Ss{Ve) + 糊 + 

2 户 1 2 (4-5.8) 

- E [^{XEAAJ) — — £ E [dN+l{XeA3't>3) — XeAj^N+l^j 

For short, the r ight hand side w i l l be denoted by Ng{(f)j,ip, h j .C j ) so tha t th is 

equation reads 

A 功 + s d N + i i p - 冲 = 崎 J 水 (4.5.9) 

Observe tha t the r ight hand side vanishes when Xe 4 j = 1- Hence i t can be w r i t t en 
2 ‘ 

as the product of a funct ion w i t h (1 — Xe,5,j)-
‘ ‘ 

Taking the difference between the equation satisfied by 小 and the equation by 

i t is enough tha t satisfies 

[^^J + €dN+l(l)j 一也 + P ^ r VjJ / j r 1 n、 

=—Xe，4j [S,(Vs) + 唯 + p i T V ] , J = 1,2. • ‘ 
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Since we only need this equation to be satisfied on the support of XMj•，we can 

as well solve the equation 

(4.5.11) 
Le,j(l>j = -Xs,3,j + edN+i(f>j — + p t ^ rV j — Lej(f)j 

~Xe,3j [ 民 + _ , j = l , 2 , 

where the operator L ^ j is defined on functions whose domain is Fg x M by 

= + (4.5.12) 

For short, the r ight hand side of (4.5.11) w i l l be denoted by h j , ej) so 

that (4.5.11) reads 

Ar>i + + f'—s,j)<h = M,j{cl>j,也 hj, ej). (4.5.13) 

I t is convenient to rewrite this system in the following way. First we introduce 

the shifted Fermi coordinates: 

t j = Z — je,j, J’ 二 1，2. 

Then each of the operators has the following form in terms of these new coordi-

nates: 

A r . + dl + = A r , + d^ + f ( w _ 

- A r 丄 - VrJej ‘ V r A . + 

Usually the second line above is small in the sense that its norm can be controlled 

by the norm of solution times a small factor and thus can be absorbed on the 

r ight hand side of the corresponding equation. Note also that variables t j are 

related through the formula: 

h — h = fe,2 — fs’l-

Let t ing 

M s , 二 + [ A r 丄 A . + V r J . j . V r A 一 I ' ^ r J . j M 
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we obtain the fol lowing system 

+ d，J>j + f {w { t , ) )4> j = 也")•，e,), (4.5.14) 

where now, w i t h some abuse of notat ion, (j)j — 4>j = 4>j{y,t j), This system can be 

considered as a system for functions defined on x M, and i t looks at first sight 

as being decoupled. However, 

Me,3 =礼Ay，z\(h,也 K e j ) , 

Therefore, when considering the equation for i n the shifted variable t i we need 

to use the above relat ion between t j and 亡2- As a result we w i l l obtain a nonlinear 

and nonlocal system for (pj, j = 1,2. The advantage of making this transformation 

is tha t we always work i n the same, basic linearized operator. Aga in i t is wor th to 

point out that al l the functions involved depend on y through the radial variable. 

4.6 The linear theory 

Given a (72，"(1\ x M) funct ion u we define i ts weighted norm by： 

I 卜 lk’"(rexiR) = sup (cos]az)"a;f('r('"))ll'a||c。，"(BOAi)nrsX(--i’z+i)), 

’ ’ . ‘ (4.6.1) 

Above Vr^xR and Dy^^^ denote the gradient and second derivative on the mani-

fold r . x M equipped w i t h a natura l product metr ic and the associated Levi -Civ i ta 

connection. 

I n this section we w i l l consider the fol lowing basic linearized operator: 

Le小:=ArJ+ df<j> + f'{w{t))<p. 

Recall tha t the linearized operator of (4.2.5) about w is given by 

Lo = df - 1 (4.6.2) 
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I t is known that Lq has a unique principal eigenvalue Ai > 0 and A2 = 0 while the 

rest of the spectrum is str ict ly negative, see for example [34]. For future reference 

let us recall that 

Ai 二 1 ) ( ” 3 ) , 

and the function 

z = 
yJj^VjP+^dx 

is a positive eigenfunction associated to Ai. Hence there exists a positive constant 

7o such that 

( L o W , 0 ) > 7 o | | 0 | | i 

whenever 

〈么 w '〉=〈0 ,幻二 0. 

From the equation of w i t also follows that there exists a 7 > 0 such that: 

〈 糊 象 

As a consequence the problem 

is uniquely solvable whenever • A i ,0 for any h G Actually, rather 

standard argument, using comparison principle and the fact that Lq is of the 

form 

= + IgWI < 力丨， 

can be used to show that the solution is an exponentially decaying function 

whenever h is for instance a compactly supported function. 

In general we wi l l consider the following problem: 

+ + in x M, 
(4.6.3) 

A t)w'{t) dt = 0 = f肢(Ky, t)Z{t) dt, for all y G V,. 
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We wil l assume that 

Mlc5;，eXR> < + ⑵， 

wi th some (3,7] > 0. 

4.6.1 T h e a priori est imates and an existence result 

Most of what wi l l be stated in this section follows the arguments of [34] and so 

we wi l l only outline the main points. 

The followng lemma is about the kernel of L已. 

Lemma 4.7. Let cj) he a hounded radial solution of the problem 

A r , ^ + + f{w{L))4> = 0 in T , x E. (4.6.4) 

Then t) is a linear combination of the functions w'{i) and 屯(y)Z(f)，where 

^{y) satisfies 

+ in r V 

Proof. Let be a bounded solution of equation (4.6.4). First we claim that 0 

has exponential decay in t , uniformly in y. Secondly let 

z{t) 

J m 窗 

To prove 

^{y. t) = t)—(丄 w\t)小[y, t) dt) — m(Ky, 0 出〕 

then = 0. We claim that • 三 Q and then we get the desired result 

the claim, we define 

Ay) •= f 
JR 

which is well defined by the first claim. I n fact so are its first and second deriva-

tives by ell iptic regularity theory applied to (p, and differentiation under the in-

tegral sign is thus justified. Now observe that 

= 2 f ArJ'^dL + 2 f dt 
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and hence 

= — 4 iVrJp at + /胶 • ；dt. 

I t follows that 

- > 0. 

Since > 0 is bounded, f rom max imum principle we f ind that cp must be identi-

cally equal to zero and then 於三 0- This means that 

Hy. t) = My)yj'it) + Uy)z{t). (4.6.5) 

Substitute i t into the equation (4.6.4) we get 

A r M v W i t ) + (Are02 + X i M { y ) Z { t ) = 0, 

which implies 

A r j i = 0, A r + Ai(/>2 = 0‘ 

Liouvil le's theorem implies that (f)i = Ci and 於2 = C�屯(y) for some constants 

C i ,C2 because (pi and 於2 are bounded radial functions on I V • 

Follows the above lemma, we show get the a pr ior i estimate: 

Lemma 4.8. Let (p he a solution of the problem (4.6.3). There holds: 

IHIc》’t;(rdR) ^ qMIc二 ( r sxR) . (4-6-6) 

By the a pr ior i estimate in lemma 4.8 one may get the fol lowing existence 

result: 

Lemma 4.9. Given g G x E) such that 

/ (f){y, z)w\z) dz = 0 = / (j)�y) z)Z{z) dz, for all y G 
J R JK 

there exists a unique solution of (4.6.3). 
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4.6.2 Study of a s t rongly coercive opera tor 

I n this section we w i l l consider the fol lowing problem: 

Alp + sdN+iip (4.6.7) 

Observe that i f h depends on r = \x'\ and x ^ + i only, so does 欢. 

We wi l l use the fol lowing weighted norms: 

= sup^ (1 + " > 0. (4-6.8) 

The weighted Holder norms x M) are defined similarly. Note that i f 

l"llc》"(R"xR) < +㈨ , 

then 

l^llco.f(RiVxR) < +00. 

Therefore, by a standard argument, we obtain the existence of a solution 'ijj E 

C》’"(R」v X E) to (4.6.7). 

Now to show that in fact 

one may use a comparison argument based on the fact that the reciprocal of the 

weigh function (1 + is a positive supersolution. Details are left to the 

reader. 

4.7 Proof of Theorem 4.2 

I n this section we w i l l prove Theorem 4.2. 

4.7.1 Er ror es t imates 

Our first goal is to estimate functions • Whenever convenient we w i l l indicate 

the fact that these functions depend on their functional arguments by wr i t ing 
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M g j = 於£’2,妙£, hg, eg). I n general, besides the assumptions on h^, eg we 

made i n (4.5.2) we w i l l also assume that , for some a E (0,1) and K > 0, 

II么 (4-7.1) 

Abou t the funct ion we assume tha t , w i t h some /v > 3, we have 

llV'.llc.^.^(Riv^R) < K e \ (4.7.2) 

Lemma 4.10. Under the preceding assumption there exists a ex G (0,1) such that 

the following estimate holds: 

’ . 7 = 1 ’ 

Function Ms,j is Lips chitz function of its arguments and we have. 

C^'^(E^xK) 

(4.7.3) 

cf 二 ’“rexR) 

< C 2-2(7 

.(r^xR) + M l ) - # Ilea 

(4.7.4) 

Next we w i l l consider Ns{(f)e,i,4>e,2, V'e^hg, e^) defined in (4.5.9). We have: 

Lemma 4.11. Under the same hypothesis as in Lemma 4.10, and assuming that 

the constant M is large enough, there existes k, > S and 7 > 1 such that we have 

^llc》"(R^^xR) ̂  + II么J.IIci2:̂ ",“1\XR) + 0(l)liV)Jc》"(RiVxR)j. (4.7.5) 
’ 

Furthermore, considering N^ as a function 4>e,2^ e^)，it is a Lipschitz 

function of its arguments and 

l|iV“e e 功̂1)，妒,e 巧 — 似 欢 1〉，e 劝户,“？), 

< C[e3|| /4i) - — (4.7.6) 
• 1 — a 1 —cr 
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The proof of this estimates is omitted, since similar results are proven in [34 

and no essentially new elements are needed to carry out the argument i n the 

present case. 

4.7.2 P ro j ec t ed nonlinear problem 

Our objective i n this section is to solve (4.5.9)-(4.5.14), i.e., 

AV^ + edN+iip- •二 iVeOj’ 也 h” ej), (斗 ̂  

Given the linear theory available and the results of the preceding section, we 

w i l l achieve this by a simple fixed point argument. 

Let functions j = 1,2 and 礼 satsifying assumptions (4-7.1)~(4.7.2) be 

fixed. We wi l l also choose h^, eg to satisfy (4.5.2). We first use the linear theory 

to solve the following system: 

(A + edN+i - 1)0£ = 石£，1,石£’2,石e, he, e^), 

Ar. + eVr.F, . Vr . + d; + f — f e ) ) ] 

= t j ] he, + + J = 1,2, 

fm <f>e,i{y, ijWitj) dtj=0 = / 政 t j ) Z { t j ) dtj. 
(4.7.8) 

Using Lemma 4.10 and Lemma 4.11 we obtain existence of such a fixed point 

satisfying (4.7.8) by the Banach fixed point theorem. Hence we have the following: 

Lemma 4.12. Under the above hypothesis there exists a unique solution (么，i, 0£，2, i^e) 

of (4.7.8) satisfying (4.7.1) and (4.7.2). 

Let us observe that the map 

, ？ £ , 2 , 成， h � e £ ) , 4>e,2, A ) 

is a uni form contraction w i t h respect to h^, eg. I t follows that {(f)e,i, are 

Lipschitz functions of h^, e^ w i t h a small Lipschitz constant. 
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4.7.3 Solution of t he reduced problem 

A t this point we are left w i t h the task of adjusting h^,e^ in such a way that 

Cgj 三 0 and d^j 三 0. First we w i l l find the exact conditions for h^, e^ which 

guarantee that c^ j 三 0 and d^ j 三 0. We w i l l show that they result in a non-

homogeneous and non-local O D E system since we have assumed in i t ia l ly that all 

the functions are functions of r , where r — (x', xj^^i) G quite similar to 

the one already studied in Section 4.4. From the theory developed in this section 

the existence of h^ and e^ w i l l follow immediately, thus completing the proof of 

Theorem 4.2. Our first task is then to jus t i fy rigorously formal calculations in 

section 4.2. I n fact, w i th the notations as in the previous sections we need to 

adjust h^ and e^ so that 

f Ms,j{rJ,jW{tj)dtj = 0= f M,j{r,tj)Z(tj) dtj, i = l,2. 
Jw JR 

Let us recall that M ^ j depends non-locally on hg and e^ and this dependence 

involves the first and second derivatives of h^ and e^. Thus i ts project ion onto 

w^(tj) and Z { t j ) w i l l be a non-local, second order O D E system in terms of the 

radial variable r. 

Let us wr i te 

Me,j = Xe,Z,jSs {Ve) + Me,j, Me,j =夺e,j , (k’2,'小e, K , ^s) • 

I t is easy to see that c^j 三 0 when 

fu 机Ar, hWih) dtj = f股 tMM dtj + 4 dtj 

As we have argued in Section 4.2, the main order te rm in the above integral 

comes f rom Jg’j while the remaining part of the projection, denoted I ^ j is a lower 

order term. Repeating calculations in Section 4.2, one can derive the following 

expression: 

= o^oJrAfej + + + h , ) + + h , ) , (4.7.9) 
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where, for a vector funct ion v 二 {viyV2), on we have denoted: 

JYAvj) = ^r.v? + l ^ r j ' t ^ , + s V r . F , - %{y) = —e巧一巧 + e 一 

We observe that the main order te rm in q^j comes f rom 

N 

Z%,RrAUe ^ ih - fe,? E 站。Vfe — Ko). 

where kr^^i are the pr incipal curvatures of I V Direct calculations show that 

I 知 J 喊 - 3 / 2 . 

Taking into account the assumptions we have made at the beginning on h^, and 

Gg i n (4.5.2), we see that there exist > 0 and > 0 such that 

UAcl'-^iv.) < Ce， 

Ident i fy ing functions on Fg and F by — v{er), so that 如 j ( r ) 二 Qj(er) we 

get 

I k J c二 ( r ) < 炉 

Funct ion qj now depends on the functions hg and e^ defined on F. Similar state-
A 

ments hold for the remaining te rm in Mg^, namely we have 

We let /J > 0 to be a small number such that p — n > r. Denot ing by Jp the 

scaled operator for F, and sett ing q̂  = q̂  we get 

a o ^ ^ M f j + h j ) + 7 ; ( f + h ) = 名 . (4.7.10) 

This is a Jacobi-Toda system, which can be solved using the theory we developed 

i n Lemma 4.6. I n fact QJ is a Lipschitz funct ion of h and e since i t follows f rom 

the Lipschitz character of as functions of h and e. Defining 
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we also have 

Similarly, is a Lipschitz funct ion of h . Since we have chosen f to be a 

solution of the homogeneous version of (JT) we are left w i th : 

a o e ” r ( A j ) + 7 ; ' ( f )h 二 务，q^ 二 么— N ] . (4.7.11) 

Similarly, the condi t ion such that d ^ j 三 0 is 

ao^^-^r(ej) + XiCj = 汚 . (4.7.12) 

The left hand side of this equation is the linearized Jacobi-Toda system, and now 

Lemma 4.4 can be employed direct ly to solve i t using Banach fixed point theorem. 

As similar arguments can be found for instance in [34], we omit the details here. 

W i t h this last step we complete our proof. 
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