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Abstract of thesis entitled: 

Spatial and Temporal Anah^Sis of Avian Influenza, H5N1 

Submitted by GE, Erjia 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in July 2011 

Avian influenza H5N1 is one kind of important bird flu. Unfortu-

nately, this virus has swiftly evolved and become highly pathogenic to 

humans and poultry, resulting in 100% of death in infected poultry and 

over 60% of mortality among infected human population. Moreover, 

the virus tends to reassert with other influenza viruses, such as the 

cuiicnt swine flu HlNl , to establish thems(4vete iii environments and 

further this epidemic all over the world. The World Health Organiza-

tion (WHO) h a � m fact warned that liighlv pathogenic avian influenza 

H5N1 poses a graver risk of a global liiiniAii pandemic than at any time 

since the Hong Kong outbreak {H3N2) in the 1960s. 

Que key to preventing sudi a calamity is to obtain 'd thorough un-

derstdiidiiig of the niec lid.iiibiris of avian iiifliieuza ti'diisniission and. its 

spatio-temporal patterns of dispersal. The issues at stake are out-

breaks' spatial 'and temporal patterns, the interrelatiorisliip of these 

with The evolution of influenza viruses in such a wa}" that geography 

is understood as a dimension of the disease's viiologv. 'and the human 

and avian beha\iors and socio-ecological environments assocralcd with 

H5N1 spread. This thesis sets out to study these problein^ in detail 



and propose solutions. 

First, we apply rnultifrdctal dctrcrided fluctuation auah'sis to de-

termine the temporal scaling behavior of outbreaks in Asia. Europe. 

Africa, and the whole of the world between December 2003 to March 

2009. Long-range correlation and miiltifractality. two important prop-

erties characterizing the scaling behavior of complex dynamics, are first 

detected in the outbreak time series. In addition, this study idoiitifloa 

different temporal scaling behaviors of outbreaks of these continents 

find spodfir seasonal patterns in Asia. These findings confirm our per-

spective that dvian-iiifluenza outbreak behaviors are self-similar over 

time and dre spatially heterogeneous. 

Second, we conduct a spatial analysis for global trends and local 

cluyters of H5N1 outbreaks at multiple geographical scales. Currently, 

the local K function used in a point pattern analysis searches outbreak 

clusters, asHiiming the disease is spatially homogeneous The thesis 

proposes a much more efficient method to measure the degree of clus-

ters acciirateh^. The modified function woiks by weighting outbreaks 

through distances, counting the rmrnber of the weighted oiitbreakb for 

each lattice point no matter whether the disease ernergeb in a grid. 

Tliib weighted local K fuiiclioii extends cluster analysis from a point 

pattern to lattice data. Spatial representation in these terms then seeks 

to explore local patterns of H5N1 over a continuous space. 

Third, we study a set of hocio-emdroiiiiiental factors, wliicli are 

plausibly associated with the occurrence of HoNl. Spatial epidemi-

ological models are built for predicting the disease at both coiitmental 

and national level-�covering Indonesia, China, and the whole of East-

Soulhoast Asia, We evaluate the statistical models using 丄 , 0 0 0 boot-

strap rcplicatcs, showing a conbistciilly high rate of prediction, absesscd 



by statistics: AUC. Kappa Index, and pscudo R squaic 

Fiiidllv. avian iiifiuoir/a i.s an mter-disciphiidiy ibsue aciobs virology, 

medical gPOgi>ipliy. and spatial epidemiology How to quantify and in-

tegrate knowledge fiorn different disciplines iciiidiiis a chdlJcngc in fullv 

understanding the disease We propose a method to foimally integrate 

genetic analysis that identifies the evolution of the H5N1 \ ' i n i � i n .space 

and time, epidemiological analysis that determine�socio-environmenral 

factors associated with H5N1 occurrence and statistic-al analv'si� that 

identifies oiitbicik rliistor.s. Our integrated results show a�iftnifixant 

advance in findings over leports in, for instance, Gilbert et dl. (2008) 

and wp believe oui findlng.s are more precise Hiid infoimative in repre-

senting the occiirience and the space-time dyna,mic.s of H5N1 .spread. 

Overall unlike traditional influenza .studies, om woik .sets up a solid 

foundation foi the intei'-disciplinaiy .stiiclv of this and other spatial 

infectious disea^e.s. 

Ill 



摘 w 

H5N1是其中一种严重的鸟类禽流感病毒。这种病毒已经迅速地演 

变成为高致病性的病毒，导致感染病毒的家禽的死亡率达到100%。然 

而，这种病毒同样对人类产生高致病性，在感染病毒的病人中，有超 

过60%的人死亡。更糟糕的是这种病毒己经出现与其他流感病毒结合 

产生新的病毒类型，如近期的H1N1猪流感病毒。而这些新的病毒将 

在人类生存的环境中存活下来加剧全球性的流感传播。实际上，世界 

卫生组织已经发出警告：高致病性H5N1禽流感是对人类全球性流感疾 

病的重大威胁。这将比六十年代香港爆发mN2流感以来的任何时刻 

更为严重。 

掌握禽流感的传播机制及其时空分布模式为实现有效阻止疾病的 

爆发和传播提供重要手段。R前，我们所 [ i i临的问题包括：禽流感爆 

发的时间和空间分布，以其与流感病毒演化的关系，人类活动，家禽 

词养，还有各种社会生态环境因素弓H5N1病毒传播的关系。该论文 

对上述问题做了详尽的分析研究并提出相应的解决方案D 

首先，我们通过重分形去势波动分析方法在亚洲，欧洲，非洲， 

以及全球不同尺度下对从2003年12月份到2009年3月之间爆发的禽 

流感做了时间序列方面的分析。在分析中，我们发现禽流感的爆发在 

时间尺度上是具有长相关性和重分形性质的。这些特性在禽流感的研 

究中是第一次被发现，反映了这种疾病复杂的时间尺度变化朽为。此 

外，我们的研究还发现禽流感爆发的时间尺度变化在不同的空间上也是 

不一样的。尤其在亚洲，具有明显的季节性。这些发现证实了我们的 

观点i禽流感的爆发在时间尺度上是具有自相似性的，而在空•间又不尽 

相同。 

其次，我们基于多个不同的地理空间尺度对禽流感H5NI的爆发 

做了全局和局部模式的分析。局部函数是一种常用于点模式分析的 

空间统计量在这里，我们将用这类方法确定疾病集中爆发的空间位置。 

IV 



然而，空间无差异性的假设条件，限制了局部尺函数的精确性，也很难 

符合现实环境巾的情况。因此，论文提出了一种更加有效精确地测量空 

间聚合度的方法。改进后的火函数通过对每个栅格彳 •置周围的爆发事 

件求取距离加权和的方式来估计疾病在空间中的聚合分布。这种加权局 

部K函数是对原来基于点模式的分析进行拓展，使得对禽流感H 5 N 1 

的空间聚合分析可以在连续的栅格数据屮实现。 

第三，为了寧握禽流感爆发与环境的关系，我们对一些有可能导 

致疾病的社会生态环境因素进行了分析。基于这些因素的分析，？ja门为 

印尼，中国，以及整个东南亚地区建立空间流行病的预测模型，并且 

通过一系列的统计分析，如A U C，K a p p a指数，和方差 i ? 2对该模型 

进行了评价，证实了模型良好的预测效果。 

最后，我们意识到禽流感的硏究是一个跨越病毐学，医学地理， 

以及流行病学的交叉学科。如何将这些不同学科的知识量化并结合在一 

起实现对该疾病全liU认识是跨领域研究中的一大挑战。一方面，论文通 

过对H5N1病毒的基十分析，加入空间和时间因素，分析了病毒在时空 

中的演化。另一方面，论文提出了一种方面，将上述的空间流行病模 

型分析，疾病爆发的聚合分析，以及基因分析的结果进行量化并结合起 

来用 j对H5N1病毒演化的时空建模。我们的工作比起一些已经发表的 

结果，如Gilbert et al. 2008),无论在对疾病爆发的预测和病毒时 

空传播的模型的精确度和信息量的表达上都具有显著的优势。总的来 

说，我们的工作并非一种传统的流感研究，而是为类似于禽流感和其他 

的流感疾病的交叉f科研究建立了一个良好的基础。 
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Chapter 1 

Introduction 

This thesis bets out to study spatial and temporal procesbcb in tlie iii-

cidciicc of avian influenza H5N1. It surveys different existing H5N1 

studies in virology, rm'dical geography, and spatial epidemiology befoie 

pointing to pioblems in existing types of analysis in theiie disciplines 

thai might limit our being able to reconstruct the scaling behaviors of 

the disease in space and time. As an altcriidtive to current approaches, 

tlic st 11 dy then proposes a range of advanced techniques, including miil-

tiii actdl dot 1 ended fluctuation arialysib. plivlogcnelK diialysib, spatial 

epidemiological modclb, and theory of evidence, which it applies to 

luodeling the spatial and teinpoial spi cad of H5N1. The study hiially 

suggests fmlhcr research extending the melliods and topics it has in-

troduced. 

1.1 Motivat ion 

The highly pathogenetic avian influenza (HPAI) A H5N1 has bccome 

a beiioub public health pioblern fatal to poultiy and humans all over 

the world (Eiiseriiik. 2006; Adelines and Saiidrock, 20丄0) Tliî ? form oi 

influenza can cause fatalities in liuiiiaiis and buds alike, The World 
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Health Organization has caiitioncd that H5N1 has the potential to 

cause a global human pandemic (WHO, 2005), suggcbting the urgent 

need to put in place offoctive control measures to prevent fresh out-

breaks. or (failing that) the spread of the disca«c. The study of the 

spatial and tomporal patterns of avian influenza is thus an important 

area of research in so far as it can help science understand the mecha-

nisms that drive the establishment and transmission of the H5N1 virus 

(Wallace et al.. 2007; Smallman-Raynor and Cliff, 2008; Si et a l , 2009). 

Traditional genetic analysis, which infers the phylogenetic relation-

ships associated with the H5N1 virus from its genetic sequences, has 

already made a fair amount of progress on under standing the evolution 

of avian influenza viruses (Li et al., 2004: Duaii et al., 2008). These 

genetic means allow the inference of possible sources of, and pathways 

taken by, the disease (Smith et al., 2006b). However, this form of 

analysis, which provides a micro-scale insight into the process of viral 

evolution, is insufficient to represent the macro-scale spread of avian 

influenza. 

Tlie spread of the evolution of influenza in large-scale, that is. geo-

graphic terms, lias only recently becouic a subject of research. Geogra-

phers' main coriccrn has been, up to now, not the virology of H5X1 but 

more simply its spatial distribution and mapping (Siiiallrriaii-Rayrior 

and Cliff, 2008; Carrel et dl., 2010). Thus, although geography can 

properly be ad counted an important dinieiisiori in the virus's evolu-

tion, as yet no rigorous and systematic analysis lias been carried out 

on the time senen of tlie epidcmic. While virologictil attempts to place 

pliylogciietic influenza variciiits in some sort of sequence have ncce&sar-

ily roliod oii assimiptions of variants occurring at (liffcront times and in 

different placcs.�ti,cc’ models of the disease, as rioted above, have been 
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put togellier purely out of the analysis of variants' genetic data. Fur-

ther. despite the suggestion being made that (wian iiiflucriza outbreaks 

are seasonal and follov^ a random distribution (Chaichoime et al., 2009), 

veiy few studies havo been oficicd formallv analyzing thr influenza's 

temporal behaviors. There is consequently a need to unpick the tem-

poral processes of H5N1 in order to shed light on the spatial spread of 

the disease. A.s Chapter 3 discusses in more detail, an accurate mea-

sure of tlie temporal scaling behavior of avian infiueiiza outbreaks will 

enable us to understand the physical mechanisms driving thih complex 

s}'stem. 

Identifying the spatial patterns of avian influenza is also essential 

if we want to prevent H5N1. Si et al. (2008) apph^ a range of spatial 

statistics to explore the virus's hpatio-temporal pattern. The iihefiil-

iie.ss of this study, though, is restricted by its assumption of an equal 

probability of an occurrence of the disease over an entire nnd homoge-

nous space (and/or rime) (Diggle, 1983, Cressie. 1991). The local K 

function, a moasuro of the rhistoring of events, also suffers from this as-

sumption. meaning that it ib uiilikdy to yield a satisfactorily accuiate 

(or detailed) picture of local patterns of the disease as shown through 

a point pioc&ss. There iis a particular discrepancy between the reality 

of the disease and these basic modeling ineliiodb in that the risk posed 

by avian influenza extends continuously in space (and time). The irn-

plkcitioii fiom iriodeling oi picdication i8 that it ib not buffideiit to 

concentrate on points where outbreaks occurred and clusteied inten-

sively in the past. Modeling has to be able to take account of the risk 

of new oulbreakb and to understand the likelihood of past incideiiccb 

of H5X1 incubating fresh occurrences. 

Given that dvian iiifluoiizd has spread across the globe (Eriberiiik, 
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2006), it is pariiculaily urgent and important to understand the fac-

tor b associated with the disease. Gilbert et al.'s analysis focuseb on 

the -association between the spread of H5N1 and domestic poultry in 

Thailand (Gilbert ct al., 2006a, 2007). The increasing -availability of 

environmental data means that the study can quantify this research 

by statistical modeling (Gilbert et al., 2008). Gilbert et al.'s model 

attempts in this way to predict the probability of occurrence of the 

disease in both Thailand and Vietnam. However, the value of these 

statistical analysis is limited by persistent forms of uncertainty aris-

ing from incomplete data, limited domain knowledge, and the appli-

ca,tion of an insufficiently sophisticated methodology. Specifically, by 

not taking into account effects caused by geographical scale (the so-

called 'modifiable aroal unit problem'' (Opensliaw. 1984)). studies of 

this kind have the potential to be misinterpreted at the stage where 

th(ii lesults offci themsch'cs \ip foi modeling in terms of aica-based 

epidemiology. 

Finally, current research recognizes that the sliidy of avian influenza 

is iiitcr-disciplinary (Yee et al., 2009). It is 'dcceptable that integrating 

multi-discipliiiarv stuclicb from virology, medical geography, diici spa-

tial epidemiology iiray in Uicoiy be able to get around the pioblems of 

needing to factoi geographic scale into predictivc models of the spread 

of dii evolving dibease. However, as tlie stud\ describes in Chapter 

5，the cm rent work can go no further than the ea i l j stage of analyt-

ically integrating data fiom different sources (Kilpatrick et al., 2006; 

Liang et al., 2010) and performing basic statistical analysis (Carrel 

et al., 2010). Even though knowledge can be derived from different 

disciplinary studies, how best to quantify and integrate this knowledge 

icmains a challenge in the ongoing study of H5N1. 
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Based on the above issues, the thesis, unlike traditional influcjriza 

studies, sets out to invcbtigatc the mcclianismb of the H5N1 virus's 

evolution and its spread in space and time. The primary objective 

of the thesis is to model the spatial and temporal spread of H5N1, 

aiming at the prediction and prevention of the disease. Specifically, 

this study consists of four sub-objectives: (1) to explore the tempo-

ral scaling behaviors of H5N1 outbreaks in Asia, Europe, Africa, and 

the world; (2) to identify the spatial patterns of the disease over a 

range of geographical scales, covering Thaiirind, Vietnam, Indone'-ia, 

China, and the whole of East and Southeast Asia: (3) to determine the 

sofio-eiivironmental factors that might have affoctod the spread and 

outbreaks of the disease; (4) to integrate pliylogenetic analysis with 

the above studies for modeling the occurrence of the H5K1 virus in 

Eabt-Soutlieast Asia. 

1.2 Contr ibut ion 

This thesis examines problems of geography, geographic scale and virus's 

continuous evolution in moic detail, making the following specific con-

tributions. 

1 The thesis roprosonts first full-dress study of the long-range cor-

relation and multifractality of the time series of H5X1 outbreaks 

ill Asia. Europe, Africa and the rest of the world. The study re-

veals a seasoiidl pattern to Asian outbreaks，further identifying 

well-formed and distinct temporal scaling behaviors in outbreaks 

on the three key continents. These results indicate that avian 

influonza outbreaks are lictcrogciioous in space and time (Leung 

et al.. 2011). 



CHAP TEH 1. INTRODUCTION 0 

2. The thesis lays out a statistical procedure for the modeling of 

complex fractal scaling behaviors capablc of reliably identifying 

crossover time scalos under multifrartal dotroiidod fluctuation anal-

ysib (AlF-DFA). Further, it proposes a statistical procedure for 

automatically detecting crossover time scales in fractal analysis. 

This technique, it is suggested, can replace the traditional iden-

tification of crossover time scalos by eycballing. improving the ef-

ficiency, precision and robustness of this process (Ge and Leung, 

2011). 

3. The thesis unravels the spatial patterns of avian~infl\ienza (H5N1) 

outbreaks in humans and birds across the world. This study ex-

plicitly indicates that the global trends of the outbreaks for these 

two host populations differ significant!}" over a wide range of spa-

tial scales. This finding implies that mechanisms driving the dis-

ease are different m humans and birds. 

4. The thesis investigates dusteis of avian influenza (II5N1) out-

breaks iising a weighted local K function. This modified func-

tion takes into account the spatial association of outbreaks and 

shows a substantial improvement over the standard K function 

in detecting outbreak clusters. ^loreover, the thesis s technique 

developing a modified K function further refines cluster analysis 

by shifting from a discrete point pattern to the representation of 

a continuous space set out on a lattice. 

5. The thesis identifies sorio-environmental factors associated with 

outbreaks in East and Southeast Asia, notably Indonesia and 

China, and quantified factors' I'elative iiiiportanco in triggering 

the disease using logistic regression models. By formulating the 
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relationship, we can predict the likelihood of disease out breaks 

for the three areas al various spacc bcalcs. 

6. Tiie thesis proposes a novel method formally integrating H5N1 

studies in virology, mcdical gcograpliv. and spatial epidcmioiogy. 

This method, as underpinned by the thesis' geographic perspec-

tive, facilitates the framing of a new research paiadigm foi Ihc 

intcr-disfiplinavy investigation of this and other infliieiiza epi-

demics (Gc Gt al.’ 2011). 

1.3 Thesis Outline 

Chapter 2 seeks to midcrliiie the importance of studying H5N1 hy com-

ing at the topic from three distinct directions: from that of the history 

of avian influenza, from a virologv account of H5N丄's characteristics, 

and from a consideration of its transmission. The chapter procecdb to 

ofici a cornpiehcridive review of previous woik on H5N1 in the fields of 

virology, medical geography, and spatial epidcmiologv. It explains this 

thesis"s basic conccpts, points to trcndb in current researches, and ends 

hy proposing the set of research problems that the current ritudy goes 

on to tackle. 

Chapter 3 aimb to provide a conceptual research framework within 

which the spread of avian influenza can be examined from a unified 

view that takes into ncrount the evolution of H5X1. the spatial and 

tempoial spread of avian influenza, and tlie environmental and so( io-

economic settings conducive to the outbreaks of i he disease. This chap-

ter elal^orates the interplays of these diftVronl analysis components for 

the coiistiuction of the overall patterns of dviaii-iiifiueiiZfi spread and 

its interpretation. 
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Chapter 4 engages with these problems by btudying the temporal 1 

scaling behaviors of avian influenza (H5N1) over multiple time scales. 

It applies iTiiiltifractal dctrondod fluctuation anal^^sis (MF-DFA) to de-

tect the long-range correlation and miiltifraclalily of the time scries 

of global and continental outbreaks over a period stretching from De-

cember 2003 to March 2009. Experimental results show that H5N1 

outbreaks differ in long-range coiTelation amd raultifractal properties 

among the different spatial areas of Asia. Europe, Africa, and the world. 

]\Iore particularly，it is possible to detect a crossover timescale in Asian 

outbreaks. This study demonstrates how H5N1 outbreaks follow dif-

ferent time series depending on the parr of the world where they occur. 

The implication is that H5N1 outbreaks behave differently under dif-

ferent ecosystems, different poultry farm practices, and different public 

health measures. , 

In applying MF-DFA, this study notes that the detection of crosyover 

time scalefs) in previous work has been relatively subjective, since it 

lias not been made on the back of rigorous statistical procedures, rather 

having been generally determined by “eye balling" or subjective obser-

vation. The rrossovcr time scales identified in this way may, then, turn 

out to be problematic even spurious. As an advance on subjective eye-

balling procedures, tliia work proposes a statistical method modeling 

complex fractal scaling behaviors, which ia capable of reliably identi-

fying miobservable crossover time scales: it can deleriiiiiie the number 

and locations of the genuine crossover time scales, providing confidence 

intervals for the crossover time scales detected. In order not to break 

the flow of our discussion of avian infiucnzd, tlic statistical test for the 

crosso\'er time scales is detailed in ilie Appendix. This work has been 

organized for publication (Ge and Leung, 2011). 
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Chapter 5 studies spatial patterns of avian influenza (HoXl) over 

a range of space scalcs. The chapter employs K and local K func-

tions to identify global trends and local outbreak clusters across the 

world. A modified local K function, a.s defined bv the thcsib, tack-
I XJ 

les the problem of HSNl's spatial heterogeneity (Diggle. 1983; Cressie, 

1991) by allowing for (the possibility of) outbreaks' spatial associa-

tion. By weighting the number of outbreaks by the distances between 

tlieni, such a, modified function can dramatically increase the precision 

of cluster estimates. This method is extended from point to lattice data 

to model outbreak clusters arranged along a, theoretically continuous 

area. 

Chapter 6 studies factors associated with the occurrence of H5N1. 

It selects a set of socio-environnieiit variables and works out the re-

lationship between these using logistic regression models. This socio-

environmental model is then used to predict a possible pattern of in-

cidence for H5N1 in Indonesia, China, and across the whole of East 

and Southeast Asia. The study assesses this modcrs prcdictive power 

by three statistical measures: Cohen's kappa index. Xagelkerke/Ciagg 

h Uhler's Psuedo R^, and plots of receiver-operating characteristic 

(ROC). 

This chapter also says a few words on the inter-disciplinary nature 

of H5N1 research. The study of avian influenza has become inter-

disciplinary across virology, medical geography, and spatial epidemi-

ology and any study that relies on only one kind of knowledge may 

miss important connections. Chapter 5 proposea a novel approach to 

uncovering the spacc-limc dynamics of the disease by integrating the 

findings, first, of pliylogeiietic anah>is, wliicii uiiravds H5N1 evolution 

ill space ciiid time, sccond, of an analysis based on a modified local K 
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fuiictiori, which identifies outbreak cluster in space, with lastly, with 

the methods of spatial epidemiology, wliicii .seek to determine socio-

environmental factors associated with H5N1 occurrence. These three 

strands of theory arc integrated in formal terms using Dempster-Shafcr 

theorj'' of evidence (Dempster. 1967; Shafer, 1976). “Fusing" knowledge 

from multiple disciplinary domains can mark a significant advance on 

previous methods in the following ways. First, it can provide more 

precise predictions of future outbreaks and outbreak clusters by more 

fully mining informHtioii from different sources. Second, the integrative 

method does not just yield a description of the spatial distribution of 

H5N1, but is more informative in depicting the space-time dynamicp 

of the disease and so more realistically represents its bpread. 

Chapter 7 concludes the thesis and suggests future work that can 

build on the foundation of concerns and techniques it puts in place. 

• End of chapter. 



Chapter 2 

Literature Review 

This chaptei explains w hy the study of H5X1 is import ant. looking 

fiist at its liistoiy diid tlicii coribidciing the specific cliai'dcteiibtics of 

the H5N1 virus and its vector(s) of tiaiibmisbion. The chapter next 

reviews a iange of studies of the H5N1 virus as lliey have been ottcicd 

in the disciplines of virology, medical geography, and spatial epidemi-

ology. This section is intended to help orient readeis ol this lliesis 

by explaining the work's basic concepts and identifying its research 

problems. 

2.1 Impor tance of H5N1 Studies 

Tile highly pathogenic avian influenza (HPAI) designated H5N1 h'as 

been lesponsible for large outbreaks in poultry, leading to high iate of 

human mortality as the disease has leaped the species barrier. H5N1 

thus poses a serious threat to the health of both liiiin'diis and animals. 

Since its first dcLection in 1996. the H5X1 subtype lias exhibited a 

great ability to spread across boiitheastern Asia, Europe and Africa. 

The World Health Organization (WHO) has warned ilidl H5N1 lias 

the potential to cause .a global human pandemic that could well result 

11 
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in a total of over 5 million deaths and huge Ircatment and other costs 

(WHO. 2004). 

By March 2010, a total of 489 patients from 15 countries were known 

to have been infected by H5N1, of which 289 died (WHO, 2010a). These 

deaths, along with its many outbreaks, have led to HPAI H5N1 s being 

recognized by researchers in virology, molecular biology, epidemiology, 

and medical geography as an important research issue of significant 

practical value. By way of illustration, this section will give a general 

(inscription of H5N1 from perspective of histoiy. viral characteristics, 

and transmission. 

2.1.1 History of H 5 N 1 subtype 

Edi'lv in 丄 8 7 8 , liighlv pathogenic avidii influenza was initially detected 

in chickens in Italy (Preiser, 2006). These viruses are usually able to 

circulate for hundreds of years. Sucli a degree of persistence makes 

them more likely to set up viral pools for genetic reassertrrienis and 

mutations (Diiari ct al., 2008). This mny facilitate the evolution of 

viruses of ail increased degree of virulence or extended host range. 

Importantly, virus persistence and pool depth also increase the risk of 

transmitting the virus to humans. 

In the mid-1990s, H5N1 via a host of adaption phrase saltatori-

ally evolved into a highly patliogcnic form (Xii ct al., 1999). This 

rapid cvoliition became one of the causes of large outbreaks in Thai-

land, Vietnam. Indonesia, and soiitlicrn China between 2002 and 2004 

(Chen et al., 2006). Since then, the virus has become predominant in 

East and Southeast Asia (Chen ct al., 2006). Repeated outbreaks of 

the H5N1 strain of disease pose a challenge for cairrent disease con-

trol mcAsureb, A^iaii influenza A IISNl outbieaks have thus far gone 
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through three epidemic waves (Yec et a l . 2009). 

• Wave 1: December '2003-Morch 2004 

Before 2003, a Gs/GD-likc influenza lineage was predoiriiriant in 

poultry in Hong Kong and Guangdong, southern China (Xu et al., 

1999). In late 2003, this precursor lineage was replaced by a novel 

H5N1 genotype Z, which rosiiltod in tho first opidcmic wavo across 

southeast Asia (Li et al., 2004). This genotype is widespread across 

Thailand, Vietnam. Japan, South Korea. Philippine, Laos. Cambo-

dian, Indonesia, and China (Alexander. 2007b). Compared to other 

viruses, H5N1 proved especially virulent in poultry, leading to over 

120 million birds dying in the affected countries within a short period 

(Ligon, 2005). Unlike previous outbreaks, this lethal vims had a much 

higher mortality, nearly 100% in infected poultry in ThaiLmd and Viet-

nam (WHO, 2004). Bird losses in numerical teims came in at a much 

higher figure than for all other outbreaks cumulatively worldwide for 

previous decadcs (Ligon, 2005). 

Furthermore, this genotype extended its range of host speciea to 

mammals, including tigers, leopards, swine, cats, and dogs (OIE. 2010). 

The virus caused severe respiratory disease in infected limiiaiis, who 

suffered a high mortality ivito accordingly (Chotpitayasimoiidh et al., 

2005). Subtype H5N1 also significaiitlv deepened the influenza risk 

of iiifiuonza in Imiiiaiis and othei animals. To picvcut tlic disease 

from spreading further, strict control inea.siire& were implemented in 

the infected countries. Vaccination for H5N1 in commercial domcstics 

was extensively implemented in China. Vietnam, and Indonesia (FAO, 

2010). Howcvei, t l i(�w�efforts failed to stop the rcHnirronco of the epi-

demic. 
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• Wave II: June 2004-November 2004 

In contract with other strains, subtype H5N1 tends to prove more 

tenacious, even though it has to survive inter-out break seasons on the 

basis of a few remaining sublineages (Chaiclioune et al., 2009). In the 

second wave, the persistent virus, again, moved the disease to sev-

eral Asian countries, including Malaysia (WHO. 2005). Outbreaks ap-

peared to be contained in Hong Kong, Japan, and Korea (FAO. 2010), 

but it is widely believed that during this period the H5N1 virus was 

going through a silent genetic evolution with the potential to initiate a 

larger iDandemic in future outbreak seasons (Li et al., 2004; Chen et aL, 

2006). 

• Wave III: December 2004-May 2006 

Compared to the previous waves, the third epidemic wave was the 

largest and most devastating in terms of the magnitude of its out-

breaks ill poultrv, tlie spread ol tlie disease and tlie increasing number 

of species falling susceptible to it. Human H5N1 infections in this 

wave were reported every month in Asia, Eastern Europe, and Africa 

(WHO. 2010b). Hurnan-to-liunian H5N1 transmission is rare, with 

poultrv-to-liunmn infections being the doiniiiaiit vector by which the 

disease pass ovei to human in southeastern Asia. As a result of this 

thiid wave, subtype H5N1 has become highly epidemic in himiaii pop-

ulations. The rate of human-case fatalitv stands at aioiind 60% in Asia 

(WHO, 2006b). In contrast, Indonesia showa a worse late of about 77% 

considering the repeated infccfcions of liuniaiis with the iiifiucnza over 

the whole, three-wave period. 

Aftei a seemingly silent period, a new variant of H5X1. chaiactcr-
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izcd by what has been callcd "Fujian-likc" lineage, was found in place 

of the virus's previous multiple sublincagcb (Smith el al., 200Ga). This 

dominant vims was more panzootic in poiillry and birds and prove 

more virulent (FAO, 2010). Over GOOO infccted migratory birds died 

at Qinghai Lake, western China in April 2005 (Chen et al., 2005; Liu 

et a l , 2005). This large outbreak caused an estimated 10% decrease in 

the global population of bar-headed geese, highlighting the virus's po-

tentiall}^ devastating effects on vulnerable wildlife (Olsen et al., 2006). 

Subsequently, the virus has appeared across western Siberia, spreading 

to Europe and several coiinTries of Africa (Olsen et al.. 2006). Large 

outbreaks in poultry and wild birds were reported in these regions. At 

the time of these outbreaks in birds, the H5N1 virus was also isolated 

in pigs, tigers, leopards, cats, and dogs (OIE, 2010). 

The persistence of avian influenza seriously threatens the health of 

humans and animals. The disease's spread has caused large economic 

losse-s in the poultry trade both through the loss of stock and the high 

costs of vaccination. H5X1 spreads so quickly, and had proved so (Uffi-

cult to eradicate, that the efficacy of current disease control measiireb 

ill poultry must be placed in question. Therefore, understanding the 

spatial and temporal patterns of H5N丄 is crucial to forming an effective 

strategy of containing the disease. 

2.1.2 The Viruses 

Virological studies have shown a high degree of similarity between the 

H5N1 strain of avian influenza and the 1918 “Spanish” influenza virus 

sequence, with no more than ten amino acid changes being dctcctcd be-

tween the two strains" polymerase proteins (Preiser. 2006). Moreover, 

a number of the same changes have been found in recently circulating 
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highly pathogcnic H5N] viruses (Taubenberger ct al., 2005). This siiii-

ilaiiiy between virus subtypes implicates that H5Ni could potentially 

cause a major pandemic in humans in coming decades (Preiser, 2006). 

Infiuciizd virubes are enveloped with a segmented genome nidde up 

of eight Bingle-stranded negative RNA segments. These viruses belong 

to a family of Orthomyxoviridae (Webster et al., 1992). Based on anti-

genic diffbreiK cs between their mirlco- and matrix proteins, infiuonza 

viruses are classified into types A. B or C. Avian influenza is caused by 

type A viruses. Two main antigenic dotorminants of influenza A and B 

viruses are haemagglutonin (HA) and neuraminidase (NA) transmem-

brane glycoproteins. HA attaches to cell surface sialic acid receptors in 

association with entry of the virus into host cells (Takeda et al., 2008). 

NA cleaves terminal sialic acid to release of the virus from infected 

cells; infection then spreads through the respiratory tract (Lamb and 

Knig. 2001). The interest of this thesis is in looking at both HA and 

NA in order to infer phylogenetic relationships among H5N1 viruses. 

The other segments of the virus genome are a polymerase basic (PB2 

and PB丄)，polymerase acidic (PA), nucleoproreiii (NP). matrix (Ml 

and M2), and noiistructural proteins (NSl and NS2). Based on an 

analysis of glycoproteins, influenza viruses are clustered into sixteen H 

(Hi-H16) and nine N (N1-N9) subtypes. Three subtypes, H l N l . H1N2, 

and H3X2 are the only known influenza A viruses currently circulating 

among humans (Lipatov et al., 2004). Few dviciii influenza subtypes 

can cross species barriers, but H5N1 has causcd responsible of severe 

disease and a high rate of mortality in humans. 

The replication of influenza viruses as a cause of diitigeiiic diaiigc 

lidS, in off(Tt. made tho disraw�continuously rirnilate in human popula-

tions. Selective pressures in viruses, for instance, neutralizing anlibod-
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ics, suboplinial rcccptor binding, or clicinical antiviraL^，arc likely to 

raise replications in a host or population scale (Preiser, 200G). In this 

case of H5N1, mutants with corresponding selective advantages have 

gradually become the dominant variants in that host and population 

(Ferguson et al.. 2003). Such changes, named “antigenic drift”，have 

been found mainly to occur in HA and NA, generating new influenza 

strains that have the potential to spread annually (Proeiica-Modeiia 

et al., 2007). "Antigenic shift'', by contrast, names a sudden and pro-

foimd change, Cftiisod by the acquisition of two or more influenza A 

viruses of different subtypes (so-called reassorts). However, both ge-

netic mutation and reassortment are likely to raise novel subtypes, such, 

for instance, as strains of H5N1 associated with genetic reassortment 

between human and avian viruses (Guan et al.. 2002; Taubeiiberger 

et al.. 2005). Such influenza subtypes with their increased virulence 

and host's limited levels of prior protective immunity, may conceiv-

ably cause epidemic or even pandemic in humans. More importantly, 

the establishment of multiple H5N1 sublineages lias the potential lo 

set up viral pools for subsequent genetic reassortmeiit and mutations. 

This in turn increase the possibility of a pandemic flowing from future 

influenza waves (Chen et al., 2006). 

2.1.3 Transmission 

Understanding the transmission of H5N1 viruses is important if we 

want to learn which areas arc seeding rccurrcnl outbreaks and how 

these are epiclemiologically connected. The mechanisms by which avian 

mfluciizd viiuscb pass thioiigh one species to anothei 'and bring about 

infection are extremely complex, depending on the strain of virus, the 

species of host, and environmental factors. To allow readers to better 
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understand this study, this scction presents sonic background in terms 

of natural hosts, H5X1 pathogeny, and the modes of viruses transmis-

sion. 

Wild aquatic birds, including Anserijormcs (ducks and geese) and 

Ch aradriiform es (gulls and shorebirds), are natural hosts, indeed car-

lying all subtypes of influenza A viruses (Webster et a l , 1992; Krauss 

et al., 2004). These viruses are often stable in their natural hosts in a 

low pathogenic form. However, birds without apparent clinical symp-

toms niav shed H5K1 vinise.s over a long time period (Hulse-Post ex al., 

2005). Viruses, which cause birds only a slight reduction in weight or 

a decline in egg production, are referred to as low pathogenic avian 

influenza (LPAI). However. LPAI H5N1 has the potential to become 

highly pathogenic avian influenza (IIPAI) after transmLssion or adap-

tion to new hosts (Preiser, 2006). Domestic poultry, such as chickens, 

turkeys, guinea fowls, quail and pheasants, are vulnerable to infection 

(Perkins and Swayne, 2002). Once LPAI phenotypes are transmitted to 

domestic poultry, they will quickly mutate to a highly pathogenic form 

and cause severe respiratory diseases within 24 hours. Death teiidb to 

follow in 48 hours (Swayne and Suarez, 2000). So far, the HPAI H5N1 

strain that originated in poultry in East and Southeast Asia has re-

Hiilled in mortalities in more than 60 species of wild birds (Olseii et al., 

2006). The actual number of fully susceptible species is likely to be 

greater than that suggested by laboratory experiments or investigation 

of captive birds (Alexander, 2007a). 

Tlie main mode of transmission among birds is through faecal-oral 

chains (Preiser, 2006). Transmission enables both, direct infection from 

host to host and the indirect spread of the virus via contaminated water 

and fomiics. Birds with large populations thai co-iniiigle with other 
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spccics are at high risk for transmisbion of llic disease. 'Wet ‘ markets, 

where live birds are sold under crowded conditions, have been doomed 

as one of primai'y sonrcos for the dissomination of avifm infliienza dis-

eases (Mounts ct al., 1999). Compared to poult rj-^-to-poiillry transmib-

aion. transmission from poultry to wild birds were not so apparent at 

the onset of the disease m 1997. 

The virus"b mode of transmission becomes more intricate after the 

re-emergence of HPAI H5N1 in poultry 2003 (Ligoii, 2005). Since that 

time, poultry-to-liiimdn trciiismission lias been found in relation to hu-

man's direct contact with infected poultry or with surfaces and objects 

heavily contaminated with their droppings (Yee et al., 2009). Even 

though the suspicion exists that the virus may be disseminated over 

long distances by migratory wild birds (Normile, 2006A; Brown and 

Stallknecht, 2008), wild birds" role in the geographic spreading of avian 

influenza dibcascs remains unclear (Normile, 2(J0oa, 20()6b, Olsen et al.. 

2006). So far cases of liuman-to-hiiman transmission have been lim-

ited only among family members, at the same time, the liighlv lethal 

H5N1 viriiseb beem capable of naturally infecting other mammals in-

cluding tigers, swine, cats, and dogs. These infections impose signif-

icant threats on public health, as an avian strain of influenza A may 

jump directly from aquatic birds to an iiiteimediate animal host and 

then to human populations (Preiser, 2006). Furthemiorc. H5X1 siib-

typcb pobc the lisk of i aisiiig novel iiiflueiizd, viiubes that might exhibit 

a higher degree of virulence exacerbating the current influenza pan-demic ill the case of HPAI H5N1 viruses potentiallv reassoiting with the current swine flu HlX丄(Dawood ut dl.. 2009). In addition, the ille-gal trades of poiiltrr and exotic birds provide another route for possible spread of H5N1 over large geographic scales (Kormilc, 2005a: Kilpatrick 
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ct al., 2006). 

Previous epidemiological studies provide a general description of rc-

Ifitionships, for example, between avian influenza and water (Ito et al., 

1995; Okazaki ei al., 2000; Rogers et al” 2004), climatc (Fang ct al., 

2008). and poultry and farming (Gilbert et al.. 2006a, 2007, 2008). 

However, these studies need to be further developed tor difterent spa-

tial and temporal scales (Kapan et al., 2006). Soientists may apply 

different spatio-temporal scales to explore the spatial and temporal 

patterns of socio-ecological changes. The patterns identified will elab-

orate trends in how the relationships vary with the changes of scales. 

Scale-based and -variant analysis of this kind may provide substantive 

information towards the prediction of avian-influenza outbreaks, which 

can be used to prevent the disease at global, continental, and regional 

levels. 

2.2 State of Current H5N1 Investigations 

Avian influenza is the subject of research across a range of disciplines 

in virolog}'- and molecular biology, spatial epidemiology, and medical 

geography. In the last decades, intensive studies have been devoted to 

understand the evolution of H5N1 subtypes, relationships between dis-

ease presence and socio-ecological factors, and geographical patterns of 

outbreaks Drawing on different disciplinary knowledge, data sources, 

and methodologies, these studies share the objective of identifying the 

sources and pathways of H5N1. In order to frame the current research 

topic more clearly, this thesis will give a compreliensive review of pre-

vious studies, with focus on H5X1 evolution, disease epidemiological 

modeling, and the spatial distribution of outbreaks. 
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2.2.1 Studies of H 5 N 1 Evolution 

Vii ologists around the woild have made sigiiific ant progiess in under-

standing the evolution of H5N1 viruses (Guan et a l , 2002: Li et al., 

2004; Smith et al., 200Gb; Suwannakarn et al.. 2009). Traditional ge-

netic studies primarily include antigenic analysis and phylogenetic anal-

ywis. Antigenic analysis using antisera raised from immunized ferrets 

provides a “gold standard" for evaluating antigenic change to influenza 

viruses (Smith et a l , 2004; Ducatez et al., 2006; Chen et al.. 2006). 

Analysis can be used to predict antigenic drift, a factor aiding in the 

selection of vaccine strains (Bush et al., 1999; Smith et al., 2004; Wu 

et al” 2008). 

Phylogenetic analysis was first piopo.scd in biology for the study 

of evolutionary relatednesa among various groups of organisms such 

as species and populations (see Fig. 2.1) (Edwards and Cavalli-Sfoi'za, 

1964). In using UNA sequences to construct phylogenetic trees this 

method has been widely applied to infer the evoliitioiiarv relationships 

among influenza viruses (Guan ct al., 2002; Li ct a l , 2004: Chen ct al., 

2006: Duaii et al., 2008). Phylogenetic analysis iiiferentially builds 

up a gene tree out of sampled scqucnccs using (one of) the computa-

tional methods of maxiiimni parsimony (thai is, inferring the simplest 

or most economical gcnctic connections), maximum likelihood (infer-

ring the most plausible genetic conneclionb), or distance (inferring the 

shortest gcnelic connections) (Felbcnslein, 1981; Salt on and Nei. 1987; 

Felfecribteiih 1996; Swolford, 2002). Analysis tlicii giaphically repre-

sents inferred evolutionary relationships among viruses based on &ini-

ilaritios and diflorciiccs in their genetic chdiactorisiics (Ca^^alli-Sforza 

and Edwards, 1967). For a rooted phylogenetic tree, each node with 

descendants represents an inferred common ancestor while the lengths 
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of edges can be interpreted as virus's evolution processes. Rooted 

tree may actually be understood as direct in the sense of showing a 

unique node corresponding to the most common ancestor of all the 

tree R leaves (taxa) in the tree (Benton and Ayala. 2003). The most 

common ancestor for sporific phylogcnotir trees is usually designated 

as an oiitgroup close enough to allow inference from the sequence but 

far enough to sustain the assertion of distinct identity (Nixon and Car-

penter, 1993). A/Goose/Guangdong/1/96, which has been commonly 

viewed as a source of H5N1 viruses (Xu et aL, 1999; Li et al., 2004; 

Preiser, 2006). is chosen to be an outgroup of the phylogenetic analyses 

considered in this study. 

Virologists attempt to infer about the spread of avian influenza dis-

ease from observing the topology of phylogenetic trees (Smith et al., 

2006b; Ducatez et al., 2007). However, phylogenetic analysis has im-

portant limitations both in terms of the nature of the data in analysis 

and the bio-evoliitiuriary models it supposes (Penny et aL, 1992). This 

mode of analysis may not accurately represeiiL species' evolutionary 

history when data for antigen movements is noisy (Woese, 2002). Al-

thougli phylogenetic analysis provides a micro-scale insight into the 

evolution of avian influenza viruses, inferring evolution of H5N1 solely 

from a virological perspective will not be enough to give a complete 

and direct picture of the spread of avian influenza in space and lime. 

There is a need to call on epidemiological stiidie.s and geographical aiial-

ysis for supplementary information helping us better to understand the 

dynamic of this epidemic. 
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2.2.2 Spatial Epidemiological Studies of H 5 N 1 

In taking both space and time into account, spatial epidemiology is cen-

trally cuncerned to identify factors relating to the causation of disease 

ill population (Thomas, 1990). The purposes of spatial epidemiology 

are to describe .spatial patterns of disease, to identify disease clusters 

to interpret or predict epidemic risk (Elliott et al.. 2001; Pfciffei et al., 

2008). The discipline involves a range of quantitative analysis rang-

ing from statistical description to sophisticated mathematical modeling 

(Lawson. 2001). 

Avian iiifliK^iiza H5N1 is an impoitaut infe( tious dibcase spreading 

across large areas in Asia, Europe, and Africa (Eiiserink, 2006). This 

widespread disease has attracted much interest in spatial epidemiol-

ogy, with intensive studies being devoted identifying risk factors in 

relation to the introduction and persistence of infection (Kapaii et al., 

2006. Pfeiffer et al.. 2007; Ucliida et al., 2008). Gilbert et al. (2006b) 

analyze the association between wild bird migration and patterns of 

HPAI H5N] spread in western palearclic. Gilbert".^ analysis supports 

the inference that Anaiidae species, including ducks, geese, and swans, 

have seeded influenza viruses along thoir seasonal migration routes. 

Li ct al. (2006) dssoss the risk of avian influenza discdsc by conduct-

ing an analysis of the association between outbreaks and temperature 

in China. Spatial epidemiological studies have sorted though a large 

amount of socio-ccological data to model and predict the occurrence of 

HPAI H5X1 risk in southeastern Asia (Fang ct al.. 2008; Gilbert ct al., 

2008). Free-grazing cluck, rice cropping, and population density have 

all been proved as ccntral factors in virus transmission in Thailand 

(Gilbert et al., 2006a, 2007) and Vietnam (Pfeiffer et al., 2007). 

These epidemiological studies have made a significant contribution 
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to undei standing the lelationships between avian influenza disease and 

ccological environments. However, spatial epidemiology m limited in 

the support that it can give inferences of the causal nature of those 

relationships it establishes (Green et al.. 2008). In other words, while 

it can show correlations between outbreaks and model the spread of 

the disease, it lacks the virologiral or other foundations to assert these 

correlations as causes. Epidemiological analysis ma\' further give a 

misleading impression of the causes of disease. This ambiguitv is a 

consequence of a similar ""modifiable areal unit problem"' (OperisliaA�, 

1977) in the sense that estimates of causation will vary with change m 

the Kcale at which analybe.s are implemented (Thomas, 1990). In addi-

tion, spatial epidemiological studies that explore the interrelationships 

between diseases and risk factors may suffer from uiirortainty arising 

out of incomplete data or sometimes imprecise methodologies (Kapan 

et al., 2006). We will better understand the spatial pattern of H5N1. 

then, if we carry out geographical analynis aiming To ifleiitify disease 

dyiiamicH over multiple spatial and tempoml scales. 

2.2.3 Geographic Studies of H 5 N 1 

Medical geography uses the concepts and tedinologies of the geogiaphy 

dibciplinc to ime&tigalc health-related topics (Meade and Earickson. 

2000). Getting underway in the 1950s, medic al geography has been 

defined as a study of the rdcidoiibliips of factor.�connecting palliogcns 

and so-called "gcogciis" (May. 1977). Thi.s study, as a subdiscipline 

and specialty of geography, brings to bear geographical perspectives 

and methodologies in various studies of health, disease, and care (May. 

1954, 1977). Generally unlike spatial epidemiology, medical geography 

ielatcb obbcivcd differ eiice in disease iiicidciic c to dificrences in local 
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environments by inappmg, the iiicidonce of diseases (Cliff and Haggett, 

1986; ^leadc and Earickson. 2000). 

One of the fundamental concepts in geography is scale, which ma)"" 

be broken down further into coiiccpts of cartographic scale, analysis 

scale, and phenomenon scale. Cartographic scale refers to the depicted 

size of a feature on a map relative to its actual size in the world. Phe-

nomenon scale indicates the size of physical processes that artually 

exist (Smelser et a l , 2001). Unlike these two scales, analysis scale 

refers to the size of a iiiiit within which quantitative analysis will be 

implemented (Openshaw, 1977; Meade and Earickson, 2000). Change 

of unit size often alters the level of analysis, generating different spa-

tial paTternb and affecting the interpretation of analysis results. This 

well-known phonomenon has been labeled ah the modifiable area unit 

problem (MAUP or MTUP in the case of temporal scale) (Gehlke and 

Bielih 1934; Openshaw, 1984). 

The MAUP lias, in fact, disrupted, or had considerable effects on the 

analysis of spatial and temporal patterns, particularly in asbociatiori 

with epidemic diffusion (Aledcio and Eaikksoii. 2000). Geography offers 

a straightforward and offcctivo way To deal with such piobloms by using 

multiple scales or zooms (Lam and Quattrochib. 1992; Aloiitello and 

Golledge. 1998). 

Geographers have taken interest in the study of epidemics and pan-

doimcb foi soiiic time (Cliff and Haggett, 1986). Mapping the distribu-

tion of diseases (Cliff and Haggett. 1986; Gilbert et al., 2008) and rriod-

cliug the pioccsscs of outbicaks {Cliff and Oid,丄980, Gibson. 1997a,b; 

Williams and Peterson. 2009) are typical examples of the application 

of geography to epidemiological themes. With more data available, ge-

ographical studies, however preliminary, bccomc posbible, in the cabes 
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of avian influenza, geogmphk research i‘�still tliiri on the ground and 

remains at an initial stage. 

Geographic factors have not been explicitly considered ns a dimen-

sion ill the study of avian influenza until rcccntlv- In this connection. 

Wallace et al. (2007) apply the concept of spatial association in pliy-

logenetic analysis to identify the epicenter of the disease and to infer 

the possible direction of spread of H5N1. Gilbert et al. (2008) also 

introduced spatial autocorrelation into their epidemic model for ana-

lyzing the factors associated with H5N1 outbreaks m southeast Asia, 

particularly Thailand and Vietnam. Most geographprs" main concern is 

to establish H5Xl".s spatial and temporal patterns and to map the dis-

ease's spread (Si et al., 2008; Carrel et al., 2010). Smallnian-Rayiior and 

Cliff, for instancp, propose a number of problems ahsociated with the 

spread of avian influenza, coming up with a statement of tlip potential 

significance of geographical rosearcli on the disxvibc (Sriidllman-Rdynor 

and Clift, 2008). 

Willi respect to space and time, the spatial and temporal patiern.s 

of global spread of avian-influenza disease have been studied in iela-

tion to the movements of migrating birds (Olsen et al., 2006; Kilpatrick 

et al., 2006; Si et al.. 2009). It is believed on the basis of such sliid-

ieb that migratory birds are responsible for the distribution of avian 

influenza (Normile, 2006a,b; USGS, 2010). However, sucli clainib have 

not been ligoiously confiiiricd in the statibtical bciisc, and in fact, the 

role of migratoiy birds in the long-distance spread of influenza A H5N1 

1 cinaiiis to be definitively dctcimiiied (Noiinilc. 2003d： Ducdtez et a l , 

2006; KraubS et al., 2007; Wang ct al., 2008a). Actually measuring the 

googrcipliic scaling boliaviois of influenza A H5X1 will be key to under-

standing the physical mcchanibms of the disease's complex dynamics. 
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If medical geography is then to illuminate the process of avian influenza 

H5N1, it must integrate multiple knowledge bases, in a rigorous way. 

bringing together studies originating in difforont disciplines. 

2.3 Research Issues and Trends 

111 virology, lesedich on tiic avian iiifluciiza A viiubos have (centered 

around the detection of new subtypes and sublineages by pliylogeiietic 

analysis on nucleotides (Li et a l . 2004; Clieii el al., 2005). These stud-

ies attempt to trace Low viruses jump from wild birds to poultry and 

possibly on to humans. Some of the motivation behind these studies is 

the fear that a new subtype, not previously circulating among humans, 

might be introduced into the human population and cause a pandemic. 

Virologists using ihc topology of phylogcnotic trceb attempt to infer llic 

spicad of avidii influenza viiuses over spacc arid time (Chen et al.. 2006; 

Smith et al.. 2006b; Ducatez ct al., 2007; Wang ct al., 2008a). How-

ever, referring solely from the evolution of H5N1 in virologica] terms 

can only yield an incomplete picture of the spread of avian influenza, 

which has distinct spatial pattern (Kilpairick et al., 2006). On this 

theme, Wallace et a l (2007) find that their results of phylogeographi-

cal analysis are statistically non-significant and conflict with previous 

studies such as those of Kilpatrick et al. (2006), although this may be 

due to the shortage of data. 

Aledical geography investigates patterns of mapping diseases and 

their association with attributes of the human and physical environ-

ments (Meade and Earickson, 2000). Mapping disease may raise valu-

able questions and hypotheses about its causation (May. 1954). This 

method, though, is unlikely by itself to arrive at correct iinclerstancliiig 

of a disease/s etiology. Howe (1977), for example, attempts to identify 
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the origin of stomarli caiiccr in Japan by mapping its ralcb of incidence 

both -at international and national scales. Hcrwevci’，his studv cannot 
7 yJ 

derive any single interpretation of the two maps. In this case, spatial 

variation fails to be consistent with the etiology. A bimilar Riliiation 

currently characterizes H5N1 studies. Si et al. (2008) apply a set of 

spatial statistics to detect spatial and temporal clusters of H5N1 dis-

ease. The analysis appears to identify clusters hy pointing out areas of 

a high density of outbreaks. However, it cannot fulH interpret mecha-

nisms of avian-infliienza outbreaks and IFjNI's mode of transmission. 

In addition, the IMAUP (Openshaw. 1977) can lead to interpretation 

errors or misunderstanding of the spread of diseases in geographic stud-

ies . E v e n though sophisticated statistics features in current research 

work (Cliff and Orel, 1980; Cliff and 11 明gett, 1986: Goti.s. 1991; Getis 

and Ord, 1996; Getis and Aldstadt, 2004). studies cannot relv on the 

information essential for making detailed forecdsts of disease's outbreak 

and spread. 

The focus of spatial epidemiology, unlike that of medk'al geogra-

phy, is measures of the prevalence of disease (Tlioiiias,丄990)， One 

of important factors affecting statistical analyses in epidcmiologv is 

uncertainty, which iiiay arise from the limitations in data, method-

ologies. or even domain knowledge. Not being able to access relevant 

data ill terms of numbers ol cliickeris and ducks. Gilbert et al. (2008) 

failed to give a high rale of HPAI H5N1 prediction in Vietnam and 

Indonesia. On the other liancl. spatial epidemiology is -also affected 

by the 3JAUP (Openshaw, 1977) wlieri statistical analyse'^ or models 

are implemented on the basis of lattices or grid data. Without rigor-

ous analysis procedure. Fang et al. (2008) convert point and line-tvpe 

iiiforrnation for H,5]N1 outbreaks, wild biid miffration, and environmcn-
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tal variables (including water bodies, wetlands, transportation routes, 

mam cities, precipitation and elevation) into a raster-type layer for 

modeling H5N1 risk. This study, though, suffer from its lark of a rig-

oioiisly defined analytical procedure, Fang's logistic regression model, 

then represents the distribution of the disease misleadingly. showing 

the highest risk in northern China and a weaker risk in southeastern 

coastal and near-coastal areas. This riak map obviously conflicts with 

real-world observations (FAO, 2010: WHO, 2010b) and with previous 

studies (Smith et al., 2006a: Wallace et al.. 2007: Smallman-R'dj'nor 

and Cliff, 2008). 

Existing studies of H5N1 have generated insights into the evolution 

and space-rime bpreacl of avian influenza The study of H5N1 it, a 

mulri-disdplinaiy investigation across virology, medical geography, and 

spatial epidemiology. Integrating diftereiit types of domain knowledge 

will be key to framing a direct, comprehensive understanding of this 

spatial infectious disease. 

Although current research tries to integrate multi-disciplinary stud-

ies of avian influenza, it tends to stop at the initial stages of analyt-

ically integrating data or irnpleineiitirig only basic statistical analysis 

between plivlogeiietic distance and geographic distance. The leseardi 

gioiip at the University of North Carolina (UNCj and the Uiiiver&ity 

of Iowa have begun to undertake work on the geography of avian iii-

fiuonza witli a view to depicting the spdtidl duel tcnipoidl pdtterus of 

influenza viral genotypes and thereby enhancing our understanding of 

ocosystciii divcisity in avian-mfluenzci evolutiorib (Caird et a l . 2010). 

Kilpalrick ct al. (2006) integrate data for phylogciietic relationships 

for vims isolates, migratory bird movements, and trade in poultry and 

wild birds to determine the pathways of H5N1 transmission into coun-
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tries and to predict the disease.b spread in future. The roiiibinatioii of 

data on human population dcnbity, natural host m o v e m e n t a n d viral 

evolution also forms a basis for the idoiitifiratioii of hot spots (Kapan 

ct al., 2006). However, even though all these studies arc informative in 

difforent ways, the questions remain of how current H5NI studies can 

best quantify and integrate these different forms of knowledge. 

2.4 Summary 

In providing a coiiipreheiisive literature review, this chapter first illus-

tidtcd the irnpoitaiicc diid ncccsbity of tliit. study by offering a biief 

peispcctive on avian influenza history, viruses' genetic characteristics 

and viiubcs" ticLiismissioii. It took stock of cliffoi cut htudicb of H5N1 

as offered in the dibciplincs of viiology, mcdkcil geography, and spatial 

epidemiology. These investigatioiib all sufiei ficau ceitaiii problems, 

even if many point in the same direction and suggest research trends. 

The filial pait of the chaptei began to expound I lie icbeaich i&siies to 

be discussexl in this thesis. In the next chapter, we will present a con-

ceptual framework of this research and then detail each component and 

their interplays within the proposed framework. 

• End of chapter. 



Chapter 3 

Research Framework 

This cliapter presents the conceptual framework of the thesis in general 

and elaborates research problems to be investigated under the frame-

work ill particular. It aims to give a complete outline of this study and 

to identify the interplays among the constituent components. 

3.1 Conceptual Framework 

Avian influenza is a spatial epidemic problem, which calls for the analy-

sis of its patterns of spread at multiple spatial and temporal scales: the 

identification of hot spots and clusters of oiitbreakb； the relationship 

between H5X1 evolution and the outbreaks in humans and birds: and 

the socio-environmental factors affecting the spread and outbreak of 

the disease. The issues to be investigated are:(丄）How do the patterns 

of spatial and temporal spread of avian influenza vary with the change 

of spatial and temporal scales; (2) How does the H5N1 virus evolve 

and how is it related to the outbreak of avian influenza in space and 

time; (3) What are the sodo-ecoiiomic and ecological-eiivironrneiital 

factors affecting the outbreak and transmission of the disease: (4) Can 

the future occurrence of dvian influenza be predicted? 

32 
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The section constructs an integrated conccptiial research framework 

for these studies. Within the framework, the spread of avian influenza 

ran bo examined under a unified view that takes into account the evo-

lution of H5N1, tlic spatial and temporal spread of avian influenza, 

and the environmental and socio-economic factors conducive to the 

outbreak of the disease. Figure 3•丄 shows the conceptual framework of 

this study. 

Spatial & Temporal Analysis of 
Avian Influenza Spread 

Phylogenetic Analysis of H5N1 
Evolution 

Association 

Patterns & Processes of Avian-Influenza 
Spread in Space and Time 

Determination 

Environmental Factors 
(Flyways & Habitats of Wild 

Birds) 

Socio-economic Factors 
(Poultry Practice, Public Health & 

Hygiene) 

Figure 3.1: Conceptual fidiiiowork for the study of avian influenza. 

The framework pays particular attention to the interactions among 

the.se processes. The .spatial and tempor'dl spreads of avian influenza i> 

first scrutinized to explore the patterns and processes of the disease over 

multiple Kpatial and temporal scales. Phylogenetic aiirilysis is applied 

to explore the evolution of the H5N1 virus and its transminHion among 

humans and birds so that a link to the spread of the disease in space 

and time can be established. Environmental factors and human socio-
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economic behaviors, such as wild birds migration and poultry practice, 

are then investigated with respect to their effects on tlic occurrence 

and spread of the disease. Through these interactions, we can come up 

wall a more comprehensive spatial and temporal analysis of H5N1. 

3.2 Research Issues 

Based on the proposed framework, this section sets to give an elab-

oration on the issues, including the spatial and temporal patterns of 

H5N1 outbreaks, the evolution of the H5N1 virus and its transmission 

in space and time, factors associated with the occurrence of H5N1. and 

the prediction of the disease. To "understand the process of avian in-

fluenza, the thosife seeks to answer these questions thioiigh a systematic 

and rigorous analysis. 

3.2.1 Spatial and Temporal Patterns 

Geographical studies are essential of H5N1 outbreaks providing clues 

to the aetiology of a disease (Elliott et al., 199(3). The purpose of 

spatial and temporal analysis is to explore the behavior and tendency 

of H5N1 outbreaks over multiple spatial and temporal scales. Spatial 

distribution and temporal scaling behaviors of avian influenza obtained 

from yiich study can be used to analyze the patterns and procesyeH of 

the disease (see Figure 3.1). 

First, the thesis sets to examine the process of avian influenza over 

time. Outbreaks of avian influenza appear to be complex, irregular, 

and self-similar at different temporal scales, evolving intermittently 

with interwoven periods of tranquility and spiky bursts of devastating 

occurreiicGs. Understanding the scaling beliavior of H5N1 outbreaks 

ia essential to formulating the physical medianisiiis of this complex 
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dynamics. The temporal analysis for outbreak time series seeks lo an-

swer： (1) Aic avian-infiiicnza outbreaks teinporally coneldtcd? (2) Do 

the outbreaks liavo any specific poriodirity? and (3) Aie the temporal 

bclidviois different in difterent parts of the world? 

Long-range correlation and multifraftality are two important prop-

erties which characterize the scaling behaviors of time series. Multi-

fractal dotroiulod flurtiiation analysis (1\IF-DFA) (Kaiitolhardt et al., 

2002) provides an approach to detect the long-range correlation and 

multifractal property of non-linear rime series. This method is used 

to analyze the time series of global and continental outbreaks of H5N1 

from December 2003 to March 2009. The general Hurst exporient.s de-

rived from the analysis can l)e employed to explicate the degree of long-

range con elation in the outbreak of avian influenza ovor timo. Specifir 

crossover time scales separating regimes that have different long-range 

correlations can be uncovered to indicate diange.s in the behavior of 

the outbreak time series. Seasonal patterns and specific periodicity are 

thus determined. In addition, to examine if there are heterogeneities 

among the time scrie.s in different parts of the world. The outbreak series 

of Abia, Europe, Africa, and the world are examined and conipaied in 

a quantitative manner. Detailed analysis and interpretation are made 

ill Chapter 4. 

Second, tliib thesis seeks to identify the spatial distribution of avian 

infliieiiza. pditicukii ly the global ticiids and local clustciing of H5N1 

outbreaks. It collects and collates outbreak data from the Woild Or-

ganisation foi Animal Health (OIE) and the World Health Organiza-

tion (WHO). The K and local K functionb (Ripley. 1976: Get is, 1984) 

arc applied to tliefeo data to dctcriniiio the ticnd of aviari-irifiiienza 

out breaks of the world showing a pattern of clustering over a range 
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of spatial scalcs. Through this method, hot spots of avian-influcriza 

outbreaks can be identified at different scalcs. 

Allowing for tho spatial association of outbreaks, a modified local 

K function is proposed in this study to the out breaks of H5N1 in 

Thailand, Vietnam. Indonesia. China, and the whole of East-Southeast 

Asia. Weighting the number of outbreaks by the distance between the 

outbreaks ran significantly increase tlio procisio]] of cluster estimation. 

Moreover, it extends the analysis from point to lattice data, to model 

outbreak dusters under a theoretically continuous area. This study 

provides a detailed description of the distribution of H5N1 clusters in 

space (as detailed in Chapter 5). 

Finally, these analyses explore the spatial and temporal patterns of 

H5N1 outbreaks and sheds more lights on the scaling behaviors of avian 

influenza from a macro view in space and time. Findings of this stud), 

will be integrated in Chapter 6. with the analysis of H5N1 evolution to 

model the processes of avian-influenza spread. 

3.2.2 H 5 N 1 Evolution in Space and Time 

To have a complete uiidcistanding of avian influenza, phylogenctic 

analysis provides an approach to study tlic processes of H5N1 evo-

liilioii. The phylogenctic tree obtained from this analysis can help us 

infer sources and pathways that the H5N1 virus evolves. How to ex-

tract this kind of knowledge from viral evolution remains a challenge 

to tracing the spread of the disease. 

In Chapter 6, we first use DNA sequences and space-time data 

to create a plijdogciietic ircc to estimate the H5N1 vims' capability 

of spreading. Unlike traditional studies in influenza disease, it is the 

fiist attempt to quantify the evolution process of a virus in space and 
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time and provide a mapping of H5N1 viruses directly derived from the 

phylogenetic tree. This study is significant in shedding light on ihc 

spread of avian influcwa through the mirroscopo of tlio evolution of 

H5N1 in spacc and lime. 

3.2.3 Factors Associated wi th H 5 N 1 

Within the research framework (Figure 3.1), factors aHsociated with 

aviaii-iiifliicn^rt outbieaks and spreads arc to h<�d(�t(�iiuiii(�d tor the 

prediction of avian influenza. To explain the relationship between the 

environment and the disease, factors, such as altitude, the shortest path 

to wild birds fly ways, inland water, coast lines, are collected and col-

lated for the analysis. On the otliei hand, socio-economic factors, such 

as population density, poultry density, the shortest path, to railways 

and roads, are also employed to explain the occurrence of tiie disease. 

To provide a rigorous analysis proceduie. logistic regrebsioii analysis 

is used to model the relationship between socio-eii\'iroimiental factors 

arid the occurrence of avian influenza H jXI over different geograph-

ical scales ranging fiom Indonesia, China, arid East-Southeast Asia, 

respectively (see the discussion in Chapter G). In addition, a scries of 

statistics, including the receiver-operating characteristic ROC. Cohen's 

Kappa index, and Xagelkcrkc / Cragg & Uhler's psuedo-i?-, arc calcu-

lated to ci8facss the piediclivc powci of the model. The findings obtained 

from this analysis give a quantitative description of the relationship 

between avian influenza and the ciiviiomriciils wkcie the HoXi virus 

evolves，as well as human social behaviors that might have triggered 

the wide spread of the disease all over ilic world. The analysis result 

can be used as a piece of valuable evidence for the prediction of avian 

influenza. It also piovides governments oi publi( licaltli organizations 
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substantial information for containing the disease. 

3.2.4 Integrated Predict ion of the Epidemic 

The above analyses provide evidenro from three different angles for the 

processes of avian influenza and its viral evolution in space and time. 

Relying on knowledge or analysis results from only one perspective 

would only give us a partial picture of the spread of H5N1 in space and 

time. These pieces of knowledge, however, can complement one another 

in the construction of the overall situation of the disease. Therefore, 

(�ff(x:tive iritogiatioii of tliesc domain specific knowledge�is (�ssential to 

understanding the process of avian-influenza outbreaks and spreads, as 

well as to predicting the occurrence of the disease. 

In tliib par t of the framework, Deiiipster-Shafer theory of infer-

ence is employed to intcgiatc the iindiiigs of phylogcnotic analysis, 

which unravels H5N丄 evolution in space and time, with modified lo-

cal K function cLiialysis. which idoiitificb oiitbicak cluatcis in space, 

and altio with spatial epidemiology, wliicli determines socio-ecological 

factors associated with the occurrence of H5N1. In Chapter 6. we 

apply this approach to study and map the risk of H5N1 across mul-

tiple geographical scales, including the whole of East-Southeast Asia 

and individual countries: Thailand, Vietnam, Indonesia, and China, 

respectively. As indicated in Chapter 6, bivariaic spatial association 

analysis shows thai our integrated study outperforms existing studies 

in giving a closer correspondence to tlic actual observation of H5N1 

outbreaks in these places. This finding holdb over a range of spatial 

scales. By lids ineaiis, we may corifiriii that our lesults arc more precise 
and informative in analyzing the space-time dj'namic of H5N1. This study lays a solid foundation for the inter-disciplinary approach to the 
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study of influenza opi(lenii(\s in general and H5Ni in particular. 

3.3 Summary 

This chapter provides the conceptual framework of the thesis by depict-

ing tlie overall approach of the present study and the interrdationsliipb 

of the constituent (X)mponents. The central idea of the framework is to 

first identify the impoitance in understanding the spatial and temporal 

aspcclb of avian influenza, the pliylogciictic analysis of H5N1, and the 

spatial epidemiological modeling and prediction of the disease. It then 

stipulates the way these individual studies can be integrated to render 

a comprehensive aualybis of the patterns and preccsbcs of the spread of 

avian influenza in spacc and time. Tlic iiiethodologicb and t h r analysis 

result s of the above analysis arc detailed in the chaplcrs to follow. 

• E n d of chapter. 



Chapter 4 

Temporal Analysis of H5N1 
Outbreaks 

Why IS (J come fry often described as 'cold’ and 'dry'? One rea/^on lies 

m its inability to describe the shape of a cloud, a mountain, a coastline, 

or a tree. Chmis are not spheres, movnfnms are not cones, coastlines 

are not circles, and bark is not smooth, nor does lightning travel in 

a straight line - • - Nature erhibits not simply o higher degree but an 

altogether dijjcrent level oj complexity. 

— B e n o i t Mandelbrot, 1977 

This chapter studies tlie temporal behaviors of avian iiifliienza A (H5N1) 

ovci multiple time .scales by analyzing the global and continental out-

break time .seiies from December 2003 to March 2009. Experimental 

resultb show that H5N1 outbreaks arc long-range correlated and mul~ 
tifrartal. The temporal patterns are heterogenous over -space. 

40 
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4.1 In t roduct ion 

In ternib of time, aviaii-iiifluenza outbreaks have been .buggested to be 

seasonal with random distribution (Chaichoune et al., 2009). However, 

there are ver> few btudiey on the formal analysis of its temporal behdv-

iors. To bhed some more light on the spatial spread of the disease, this 

chapter seeks to unravel the temporal proceKses of H5N1 outbreaks. 

In particular, one needb lo study its complex dynamics with reference 

to long-range ccnTelation and self-similarity over time. In other words, 

the scaling behavior ib a key to model tlie temporal process and lo for-

mulate the physical mechanisms of the complex dynamics. Studying 

the temporal behavior of avian influenza H5N1 outbieaks over multiple 

time scales will enable us to detect long-range correlation and mideiiy-

ing multifractal properties characterizing Iho complex dynamics (Feder, 

1988). In addition, the temporal patterns of the H5N1 outbreak sciies 

can be corapaicd to show whether avian influenza outbi'cdks are hel-

erogciicous in different parts of the world. 

The purpose of this chapter is to determine llic scaling behavior 

of H5N1 outbreaks in wild biidb and poultry over lime. Specifically, 

answers are sought in quantitative terms for the following issues: (1) 

Are previous H5N1 outbreaks responsible for the current spells oi in-

fection? (i.e., Is it long-range correlated?): (2) Do H5N1 outbreaks 

exhibit multifractaiity properties; and (3) Are the temporal bchaviois 

different among the tontinents? 

To facilitate our discussion, we first give a desciiption of the data in 

section 4.2. Relevant methodologies related to time series analysis, such 

as fractal, rescale range analysis, multifractal analysis and multifractal 

detrpiided fluctuation analysis are then briefly discussed in section 4.3. 

In section 4.4, the analysis results are examined and interpreted. We 
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then concliidc the chaptcr with a summary of the analysis. 

4.2 Experimental Da ta 

To facilitate oiii analysis, an intcgiatcd aviaii-iiifluonza database lias 

been built bv pulling together information provided by the World Or-

ganisation for Animal Health (OIE) (www.oie.int), which are respon-

sible for the global surveillance of the outbreaks of avian influenza A 

H5N1 111 aiiinials and huniaiib. Specifically, the OIE collects and col-

lates confirmed information on animal outbreaks from the sub-reference 

laboratories across the world. On the other hand, WHO collects data 

on human infections from its member countries distributed iii different 

parts of the world. Since 2003, the organization liab provided statisti-

cal data on H5N] infections confirmed in humans. In this study, each 

lecoid of H5N1 confiinied infections provided by the OIE is called, as 

officially addressed b}̂  OIE, an “outbreak” of H5N1, The Geiibank is a 

sequence database of the National Institutes of Health (NIH) thai col-

lectb all publicly available nucleotide sequences. This official database 

offeifo genetic scquoncch of H5N1 viiuses iii differeiil parlt. of the world. 

making it possible to study the viral evolution via molecular analysis 

(Carrel et a l , 2010). 

This chapter is mainly conrerned with the temporal behaviors of 

avian-infiiipnza outbreaks in poultry and birds. The outbieak data 

are extracted from the official reports provided hy the OIE. Although 

surveillance programs vary among countries, data provided by OIE are 

considered general!}'' reliable and official records of the overall situa-

tion across the world. The OIE database has been commonly used 

in the study of avian influenza in medical geography (see for example 

Smallman-Raynor and Cliff (2008); Si et al. (2009)). 

http://www.oie.int
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More than 5000 outbreak data have been involved in the present 

study, covering the period from 10仆 Decembci 2003 to March 2009. 

All these outbreak records \^ere reported by the OlE. Most records 

contain attributes such as location, latitude, longitude, start time, end 

timo, report time, aff or tod spories, and nninbcr of doaths (as explained 

in Table 4.1). Based on these reported data. Asia appears to be an 

epicenter with more than 579o outbreaks in general, compared to 25% in 

Europe and 189r in Africa. Nevertheless, the situation is quite diffeient 

from the outbreaks In wild birds and poultry For wild birds, less than 

1% outbreaks happened in Africa. while beyond 40% were in Europe 

and 59% were in Asia But for poultry, intensive outbreaks emerged 

in Abia and Africa including more than 80% in total. This preliminary 

examination suggests a spatial heterogeneity of the temporal outbreaks, 

which may imply distinct behaviors of the disease in different parts of 

the world over time. 

To construct the rime series for analysis, the OIE data are grouped 

into continents with respect to time (in year, month, and date). Table 

4,2 shows a small part of the time seiies that indicates the frequeucieb of 

H5N1 outbreaks in each continent at each point in time. The analysis 

at the coiitiiientdl scale is to have time serieb long eriougli for a leliable 

temporal invebtigatiori of daily outbreaks of H5N1 across the world. 

However, our analysis is also applicable to finer spatial scale in the 

future if the outbreaks in places at such scale aie long enough with 

respect to time. 

Tliib chapter aims at iiniaveling the temporal behaviors of aviaii-

infliienza outbreaks of Asia. Europe. Africa, and the world Four lime 

seiies of the outbreaks have been constructed, as depicted in Figure 

4.1. Advanced statistical method, the MF-DFA, is applied to examine 
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Table 4.1; Attributes of H5N1 outbreak records 

Field Definition Examples 
FID Shape ID by location 221 

Shape Type of shape . Point 
Case No Unique case number by time 4206 

Coutineiit Part of the continent where the outbreak occurred East Asia 
Country Country where the outbreak occurred China 
Province Province of country (if any) where the outbreak occur Guangdong 
District. Local village where the outbreak occurred Panyu 
Location Local village where the outbreak occurred Sixian 

Unit. Unit of outbreak size (e.g. village, farm) village 
Latitude Latitude of the outbreak occiirrod 23.05 

Longitude Longitude of the outbreak occurred 113.42 
Report Date Date of report by WHO 9/15/2007 
Date Start Starting date of outbreak 9/5/2007 
End Date End date of outbreak N/A 

Virus Virus of avian influenza H5N丄 

Species Species of the infected animal ducks 

Deaths Number of Deaths in the outbreak 9830 
Source WHO OIE Reference OIE Ref:62i3 

Table 4.2: A Ramplo of outbreak records by continents 

Year Month ] Date World Asia Africa Europe 
2007 2 12 8 2 5 1 
2007 2 13 6 2 3 1 
2007 2 14 9 2 4 3 
2007 2 15 3 0 1 2 
2007 2 16 2 1 1 0 
2007 2 17 4 2 2 0 
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the behcwioi of avian influenza ovor a wide rang,p of tirno scales froni 

5 to 90 days. This renders a quantitative exploration of the behavior 

of the epidemic. The time series of Asia, similar to the world, contains 

the daily outbreaks from Dcccmbcr 2003 to 2009. It should 

be noted that the time series of Europe and Africa are shorter, which 

contain 1082 and 901 records starting from the first detection on 

July 2005 and 10"' 2006, rcspoctivcly From Figure 4.1 (h) fivo distinct 

peaks of avian-infiuenza outbreaks can he observed，with the fiist three 

cxx'iirring around the winter of 2003. 2004, and 2005, mainly in Asia, 

and the last two occurring towards the eaiiy spring in Asia, Europe. 

Hiid Afri( a The diffusion process of II5N1 is thus reflected bv the 

dibtincr phases of outbreaks, originating seemingly from eastern Asia 

rind spreading acioss Eurasia and finally into Africa. 

To initially explore the spread of avian influenza A HoNl across 

the woild, wc fiibt examine the coirelation and ciohh-corrclation of the 

outbreaks emeiging in different continents. The pearson's correlation 

analysis is employed to examine whether the outbreaks of Asia. Eu-

rope, and Africa are temporally associated. From the results in Table 

4.3. outbreaks in Europe are slightly correlated with those ol Asia and 

Africa, but no significant correlations aie found between the latter two 

continents. This result indicates that outbreaks in Europe have dis-

tiiict associations (overlappings) in time with these of Abia and Africa. 

This implies that an indirect spread of the disease from Asia lo Africa 

goes through Europe, an intermediate hub. The correlation analysis of 

the outbi Ccik time seiicb is insufficient to dctoiiimic the degiee of coi re-

spondcnce of the three coiitincnts. Hencc the cross-corrclalion analysis 

(Haggett and A.E.Frev. 1977) has been applied to the time series of the 

outbreaks. Figure 4.2 indicates lliat the outbreaks in Asia are one and 
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Table 4.3： Pearson's Corrciatioii 

Africa Europe Asia 

Africa Pearson Correlation 1 .15丄(林） .022 

Sig.(2-tailed) .000 .362 
N 1652 1652 1652 

Europe Pearson Correlation 1 
Sig.(2-tailed) .000 .000 
N 1652 1652 1652 

Asia Pearson Correlation .022 1 
Sig.(2-tailcd) .362 .000 
N 1652 1652 1652 

Correlation is signifirant at the 0.01 levol (2-tailed). 

a half years prior to lliosc of Europe and Africa. This sccmti to imply 

that avian infiiionza tends to poak first in Asia and siihsoquontly spread 

into the surrounding continents. Although the plicnomciioii has been 

observed and reported by Enseriiik (2006) and Alexander (2007a), this 

chapter provides a statistical description of such associations. 

Correlation and cross-correlation analysis only give U8 a preliminary 

examination of avian influenza outbreaks across the continents. They, 

]iowover, aro insiifficiont for our understanding of the situation that is 

marked by the complex temporal dynamics across the continents. To 

shed some more light on The spatial processes, rigorous analysis of the 

temporal processes and their comparisons are essential. This is the 

focus of this chapter and is detailed in the discussion to follow. 

4.3 Fractal Methods 

Avian influenza outbreaks appear to be a complex process lliat evolves 

iiitermiUently with interwoven periods of tranquility and spiky bursts 
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Europe leads/ .Asia lead? 

-800 -600 -400 -200 0 200 
Day Lag 

Africa leads / Asia leads 
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Day Lag 
Africa leads > Europe leads 

600 800 _ 

600 800 

-800 -600 -400 -200 0 200 DO 600 801 
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Figure 4 2' Cross-coi relation analysis of H5N1 outbreaks of Asia, Europe, 
and Africa 
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of devastating occurrences. These intricate processes may be long-

range correlated and multifractal. To unravel the temporal procetihcs of 

avian influenza, fractal and mnltifractal analysis are nsoful for studying 

its dynamics, particularly its long-range correlation and scll-bimilarity. 

To facilitate our discussion, we first give a brief description of fractal 

and mnltifractal analyses. Then we will explain why detrended fiuctua-

tion analysis in general and mnltifractal dotrondod flurtuatioii analysis 

in particular are needed to study the complex outbreaks in time of 

avian influenza. 

4.3.1 Fractal 

Complex systems usually contain many components with multiple in-

terwoven fractal subsets of time series having multitudes of scaling 

exponents. Accurate measure of the scaling exponents play an essen-

tial role in the classification and modeling of empiiical data, as well 

as in the analysis of the physical niechanisnis producing the scaling 

phenomena. 

Fractal provides a mathematical formalism describing complex spa-

tial and temporal structures (Fcdcr, 1988; Mandelbrot, 1983). It in-

tends to study extremely irregular objects, with fractional dimeribion, 

that cannot be easily described by the language of Euclidcan geome-

try. Self-similarity is an underlying concept of all fractals. Self-similar 

objects repeat tlicirit,elvcs on fiiiei and finer stages/levels dd infinitum. 

Fractals are actually quite common in geographical structures, such as 

urban patterns and ri\er networks, which have been intensively studied 

over the years (Lam and Lee‘ 1993). 

Time series may also be recursively divided into self-similar rompo-

iieiitb. Ill terms ot avian-influenza-outbreak ovei time, one ma) wonder 



CHAPTEB 4. TEMPORAL ANALYSIS OF H5N1 OUTBREAKS 51 

whether it is self-similar in multiple time .scalcb. That is. hctlici it is 

a self-similar process that consists of miniatures of itself. 

The size of a fractal set can be measured by the fractal dimension, 

which is defined, as follows; 

oc -s G R， (4.1) 

where F is a set, Ms{F) is the measurement of F with dimension s � 

6 is the scale, and c is the s-dimensional measure of F. It can be 

interpreted as the number of covers required to cover the set F. In 

short, the required number of covers scales with the dimension. 

4.3.2 Correlation 

For time series, tlie properties of fractal can be measured from the 

correlation function. For a time series, x',, i = 1. 2” .…V. the autocor-

1 elation function can be defined as: 

1 N-b 

C{s) 二 = ——I] fi > 0, (4.2) 

_ 1 
^I = iTt — � / , 了1, (4.3) 

丄、口 1 

where s is the time interval. 

If the time series Tj are uncorrelated, then C{s) is zero. When C{/} 

has the exponential function like C(s) oc exp ( — s / s j is the time 

decay), the time series has short-range correlation, which means the 

correlation of r^ declines exponentially over time. Howe^er. when C‘(\s) 

in distributed as the power law, C(s) oc 广 with the exponent [ ) < ' ) < 

1, the time series x^ is siippobcd to have long-range dependency, which 

iiiediis the autocorrelation fund ion decays gradually to zero with heavy 
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tails over time. 

This chapter is to dctcct whether there are long range dcpendcndcs 

in the outbreak prorosses of avian influcma，i.e. whether previous 

outbicdks have long-term effects on tlio current occuricnces. However, 

when noise is superimposed on the collected data and the underlying 

trends, the direct calculation of C'(.s) is inappropriate (Chen et al., 

2002). 

4.3.3 R / S Analysis 

Hurst (1951) proposed the rescalecl range analysis {RjS analysis) to 

study the staling behaviors of complex systems. For time series, the 

R/S analvsifa can be used to detect the underlying temporal depen-

dency, indicated by the Hurst exponent. 

Given a time series of length n, X = {A î : t = 1, 2, • • •, n) with 

mean {x)n and variance the ratio R{n)/S{n) is defined as. 

B{n)/S{v) oc {n/2) H (4‘4) 

where 

Rin) — max n) — miri 
] < 7 < T 7 ‘ 

n 1 1/2 

(4.5) 

(4.6) 

H is the Hurst exponent of time series X , which can be estimated by 

the Icdfat-sqiiaies liricai fit of the log-log ti'diisforin of Equation 4.4. 

Theoretically, when the Hurst exponent H is larger than 0.5, the 

time series is said to have long-range correlation. When H is less than 

0.5, the time series is baid to be long-range anti-correlated. When H 
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is equal to 0.5, then it mc-ans that no correlations exist and the scries 

is considered as random. 

Extending on this statistical method, some advanced fractal meth-

ods have been developed lo examine the long-mngc correlation and 

multifractal properties of complex time series in varying time scales. 

4.3.4 Multifractal Analysis 

In many cases, a single exponent (fractal dimension) is not sufficient 

to describe the toiiiplex dynamics of a multifractal system, such as the 

tcmpoial bchaviui of avian influenza as we will show in this chapter. 

Different regions of an object or series may have different fractal prop-

ertieR. An appropriate description may require a continuous spectium 

of exponents instead. In some cases, there might exist crossover time 

scales separating, clifatiiict regimes that iiitiy indicate diffcieiit paiteins 

of fractal structures. Hencc, multiple scaling exponents might be le-

quiied for the full description of the niultiscaling behavior. 

^Multifractal analysis, which enables ub to obtain more insight into 

the scaling behaviors of complex time series, has been used lo clidractei-

ize the spatial heterogeneity of the tlicorctical and experimental fractal 

pattern in general (Grassbergcr and Procaccia, 1983). The most com-

mon numerical implementation of multifractal analysis is the fixed-size 

box counting algorithm (Halsev et al., 1986). For the one-dimension 

case, the simplest type of multifractal analysib based on the standard 

partition function is as follows: 

Given a measure fi with support E cJi, the partition bum can be 

defined as: 

么 ⑷ = E 講 , (4-7) 

wlicie Zf{q) is the buiri of diffeieiit iioii-ciiipty half-open-to-tlie-iiglit 
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boxes B with a given scale (width) c in a lalticc covering the whole 

support E, wlicre B = ‘Jcc’ {k + l)c[. Tliup, summing over all possible 

outcomes is equivalent to summering over all lattice boxes. The dimen-

sions arc then cicfinccL by scaling via the box width. Then tlie scaling 

exponent T(q) is def in�d as: 

T{q) (4.8) 
�� c-O logc 

The scaling exponent (mass function) r{q) is numerically estimated by 

the linear fit of log Z人q) against logf for any value of g. g 6 R . 

A relationship between the scaling exponent (mass function) r{q) 

and the generalized fractal dimension D{g) is obtained as: 

= i M , qeR and q ^ I. (4.9) 
g - 1 

Both r(g) and D{q) have been employed to examine the mullifractal 

properties of time series (V.V. Aiili, 2000: Yu et a l . 2009). 

R e m a r k . JMc'tiiocls such as the R/S analysis and mullifractal analysis 

work well when the time series are long and trends arc not, involved. 

Tlicy aie. however, not yuitable for the analysis of nonstatioiiary lime 

scries affectcd by trends. The cxisteiicc of underlying treridb or cxo-

gcncous ticnds might affect the scaling behavior of long-range depen-

dent proccsst's. Tlic detrcnded fluctuation audlvsis (DFA) pioposcd by 

Peng et al. (1994) provides an approach to identify the monofractality 

of noihv and non-stationary processes. Extended on this. Kantelharcit 

ol al. (2002) proposed the mult if i artal detrondcd fluctuation anal},-

sis (MF-DFA) for the study of long-range correlation and multifractal 

property of Time series. It is an appropriate method for the study of 

scaling behaviors of H5N1. 
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4.3.5 Multifractal Detrended Fluctuation Analysis 

The mult ifr Actal deti ended fluctuation analyhib (Kantclhdrdi et al., 

2002) is an extension of the DFA for the detection of correlation and 

mnitifractal properties of noisy and non-stationary time series. Since 

its inception, the MF-DFA has been widely- used to identify long range 

dependency and multifractal properties in economic time series (Lim 

et al.. 2007: Du and Ning, 2008). chemical engineering (Niu et -al, 2008), 

trafiic system (Sliang ot al 2008), heart rate (MOAVIIKMI ( � t AL, 2006a). 

It has also been applied to the study of geomagnetic field (Anh et dl., 

2007; Yu et aL, 2010). earthquake, hydrology, and siiiispot activities. In 

this chapter, we attempt to explore the existence of mult ill actal scaling 

behavior in the H5N1 outbreak process. The generalized multifractal 

DFA procedure contains five steps Supposed that i/^ is a series of 

length N with compact support. 

Step 1 Determine the 'profile' 

N. (4.10) 

According to Kantelhardt et al. (2002), the subtraction of the medii 

( � • is not compulsory, since it will be oliuiiiiated by the detrending in 

the third step. 

Step 2. Divide the profile F(z) into i V � = i n t { N / s ) non-overlapping 

segments of equal length s. Since the length N of the seiies is often 

not a multiple of the time scalcs s, a bhoit part at the end of the profile 

may remain. In order not to ignore this part of the series. Uic same 

procedure is repeated starting from the opposite end. Thereby, 2A,� 

segments arc obtained altogether. 

Step 3 Calculate the local trends for each of the segments by 
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a least-squriros fit of the scries. Then determine the varidnce 

r) = - fiY[(v 一 1)5 + z：- y碰、 (4.11) 

for each begrrient v, v = I, - • •, Ng, and 

n ’ � = - i : { y [ N - - +2] - /MO}2， (4.12) ^ ？=1 

for I? = + - • ‘，2Ns. Here, yy[i) is the fitting polynomial in segment 

V. Linear, quadratic, cubic or higher order polynomials can be used 

ill the fitting procedure (conventionally called DFA 1,DFA2,DFA3.... j. 

Since detrending of the time series is acconiplislied by the subtraction 

of the polynoiriirial fats from the profile, different oi ders employed in the 

DFA diffei in their capabilities of eliminating trends in the series. In 

(MF-)DFAm (mth-order (MF)-DFA). trends of order m in the profile 

(or equivalentb/. of order rn-l in the original series) are eliminated. 

Thus, a (onipaiisori of the results obtained from different orders of the 

DFA enables us to estimate the types of the polynomial trends existed 

ill the time series (Hii et a l , 2001a; Chen et al., 2002). For simplicity, 

the lineal trends are considered in the present study. 

Step 4. Average over all segments to obtain the t^th-order fluctua-

tion function, defined as 

1 2.V, 

(4.13) 

In general, the index variable q can take on any real value except zero. 

For q = 2.the standard DFA procedure is retrieved. Fq{s) is only 

defmed for 5 < m + 2. 

Step 5. Determine the scaling behavior of the fluctuation functions 
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by analyzing the log-log plots of Fq(s) versus s for each value of q. If 

the series is long-range correlated, it then follows the power law below: 

Fq(s)<x , (4.14) 

where h{q) is the generalized Hurst exponent. When the scaling ex-

ponent h{q) depends on the order of q, the time series are said to be 

multifractal. On the contrary, when a time series is monofracital, the 

scaling exponent h{q) does not depend on q. In this case, the scal-

ing behavior of the variance Fg{s) is identi(;al for all segments i\ and 

the averaging procedure in Equation 4.13 will obtain the same scaling 

behavior for all values of q. 

For positive values of q, the average Fq{s) will be enlarged by higli 

value of u) in each segment v. So. h(q) describes the staling 

behavior of the segment with large fluctuation. For negative values of 

q. the average Fq(s) will be calculated by the small value of F~(s. v) 

in each segment v. Thus. h{q) describes the scaling behavior of the 

segments with small fluctuation. 

Figure 4.3, for example, shows two distinct time series of Brownian 

motion and Gaussian noise, as well as their MF-DFA results. For 

iiori-statioiiar}^ time series like fractional Browriiari motion, the scaling 

exponent h{2) is laiger than 1 aud it satisfies the foniiula: H = h{2)— 

1. For stationary time scries such as fractional Gaussian noise, llic 

corresponding scaling exponent is 0 < h{2) < 1 and it is equal to the 

well-known Hurst exponent H as mentioned above (Feeler, 19S8; Peng 

ct al.. 1994), 

The relationships discusscd above can shed light on our analysis of 

the long range dependency and multifractal properties of the aviaii-

influcnza outbreak scries. The experiments and analysis rcbiills arc 
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elaborated in the section to follow. 

4.4 Analysis Results and Interpreta t ions 

The IvIF-DFA results indicate that avian-iuflucii^a outbreaks are long-

range correlated and iimltifractal. Long-range correlation implies that 

H5N1 can transmit in time and spacc. Specifically, previous outbreaks 

of H5N1 infections are responsible for and have long-term effects on tlie 

current outbreaks. The property of iimltifractalitv indicates that the 

dynamics of avian-infliienzd outbreaks are self-similar at all moments 

q examined in this chapter, which may be caused by the long-range 

correlation of the cpidemic. 

4.4.1 Long-range correlation 

Figure 4.4 depicts the TvIF-DFA result of avian-influeiiza outbreaks of 

the world. It suggests a strong long-range correlation of the disease 

because the value of the scaling exponent h{2) is up to 0.8. In other 

words, the epidemic is long-range correlated. That is. when a large 

outbreak occurs at the present moment, a large outbreak is more likely 

to follow at the next moment in time. The Hit nation is similar for small 

oiirbreaks. The long-range correlation of avian influenza detected hy 

the present analysis give a quantitative description of the behaviors of 

this disease. It has been discovered that avian influenza H5N1 viruses 

have adapted to the ecological environments (Smith et al., 2006b) and 

have evolved to establish their genetic diversities crossing large areas of 

the world (Chen et a l , 2006; Cattoli et a l , 2009). The multiple snblin-

cages of H5N1 coexisting in common enviroiinieiits are more likdy to 

set up tlie pool for genetic reassortmerits and mutations that may facil-

itate the evolution of the viruses with increased virulence or expanded 



⑷ 

Figure 4.3: Time series of (a) the fractional Browiiiaii motion and (b) 
MF-DFA results with h(2) = 1.4497; ((•) the fractional Gaussian noise and 
(d) the A/IF-DFA lesutls with h{2) = 0.5361 for the fractional Gaussian noise 
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host range (Aubin el al‘，2005; Diian ct al.. 2008). Continued circula-

tion of the aviaii-irifiiienza viruses in poultry and wild birds have led 

to repeated outbreaks over the years (Chen et al., 200G; Tiensiii et a l , 

2007), In general, the continuous outbreaks that are temporally as-

sociated demonstrate a long-term persistence, derived probably from 

the genetic behaviors of H5N1. Specifically, the degree of the long-

range correlation of the global outbreaks has mainly been intensified 

by the diseases in southeastern Asia and Africa. since over 80% of the 

world's outbreaks emerged continuously in the Two continents, infect-

ing primarily the poultry. This might imply that current public health 

practiceh and disease control measures are inadequate for preventing 

the outhreakb and the spread of avian influenza at a global level. 

Figure 4.4(b) is the MF-DFA plots of H5N1 outbreaks of Asia. The 

disease appears to be long-rdiige correlated in general. The scaling 

behavior in Asia exhibits a special crossover time scale at around 20 

days, separating two distinct outbreak regimes. For scales of 5 days 

to around 20 days, the disease outbreaks display a weaker long-range 

correlation as the value of the scaling exponent h{2) is close to 0.6, 

but for scales up to 90 days and beyond, the outbreaks are long-range 

correlated and the value of the scaling exponent h(2) is larger than 

0.9 This implies that there might be different inochanisms driving the 

outbreaks in the two temporal regimes. 

The ciossovci time scale identified in this study roughly coincides 

with the incubation period of avian influenza A H5N1. ranging from 2 

to 8 davb or as long as possibly 17 days (WHO, 2006a). Si et al. (2009) 

also disceiii that the time length of incubation for avian iiifiuenza is 

about 21 dayb, depending on the species exposed. Our lebult essentially 

indicates in mathematical manner the crossover time scalc of around 
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Figure 4.4: The MF-DFA results of H5N1 outbreaks of (a)tlie whole world, 
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20 dcivs. at which the l)ehavioi of aviaii-iiifiuenza outbreaks happens 

to change. 

For larger scales (the 20-day and above scales), the outbreaks in 

Abia have strong long-range correlation, with the scaling exponent h(2) 

having a value larger that 0.9. It generally depicts the process in which 

large outbreaks are usually followed by another large outbreak at the 

next moment of time Avian-influonza outbroaks in Asia, depicted in 

Figure 4.5(a) shows a strong seasonal pattern with a high frequency 

of outbreaks that start from late autumn and last through the entire 

wintei, and then a reflux with the coming of the following spring. The 

seasonal patTern has been observed and reported by Guan et al. (2004) 

and Smith et al. (2006a). 

Indeed, the strong long-range correlation obtained in our aiialysiw 

further clidrdcterizes quantitatively the behaviors of the disease in a for-

mal manner. For the period from late autumn in October to the early 

spring of next year in around April, repeated H5N1 outbreaks have 

largely taken place in most areas of Asia, including Thailand, Viet-

nam, Indonesia, and southern China (Yee et al.. 2009). Figure 4.5(b) 

and 4.5(c) give instances of the intensive H5N1 outbreaks in the winter 

of 2005 and 2008. respectivelv. Previous silulies have shown that lower 

temperatures make the viruses more viable with persistence, increasing 

the likelihood of the wide spreading of the epidemic (Li et al.. 2006; 

Preiser, 2006). Moreover, cold air may inhibit the imnmnity of poultry 

against avian-influenza disease, leading to high fiequency of H5N1 out-

breaks in winter. In addition, Si et al. (2009) indicate that during the 

autumn migration from August to around November, wild birds mi-

grated from north Siberia to Australia via East Abia. This also leads 

to the seasonality of the outbreaks in soiillicasterii Asia. Bcsidcb these 
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ccological and environmental factors, the long-range correlation of the 

outbreaks in Asia might also be ascribed to social-economic behaviors. 

Traditional agricultural modes and free-grazing practices have been at-

trihuled to the persistence of the cpidcmic (Gilbert et al . 2006a, 2007, 

2008), as domostir ducks have been affirmed bring tlio Trojan horse of 

the highly pathogenic H5N1 influenza in Asia (Hulse-Post et a l , 2005). 

Furthermore, we may notice that most festivals, such as Thanksgiv-

ing, Christmas, and New year, occur in winter. This may increase the 

risk of avian-influenza outbreaks owing, to an increase in the import of 

poultry from other countries to meet market demands (Smith et al., 

2006a). For the period starting from the early spring in April, spo-

radic outbreaks lasting through the entire summer also demonstrate a 

strong long-range correlation. Figure 4.5(cl) and 4.5(e) show the spo-

mdic outbreaks in the early spring of 2004 and in the summer of 2006, 

respectively. The disease is rather long-range correlated: sporadic out-

breaks appear at this moment tend to take place at the next moment 

ill time. The near disappearance of the disease seems to suggest that 

aviaii-iiiflucnza viruses of Asia undertake an hibernation over the whole 

summer. From llic phylogeiietic analysis. Chaichoiine et al. (2009) be-

lieved that a small number of H5N1 viruses silently persist and survive 

the inter-outbreak period in summer, while most H5N1 viruses weie 

extinct, causing a bottleneck effect in evolution This niav suggest an 

cippiopiiato time to ciadicatc llic influenza H5N1 viiubC8. Oftentimes, 

these small pool of viruses are periodicallv amplified to facilitate ge-

netic reaKSortmcnts leading to large epidemics when outbieak beabon 

ictuiiis. All the factors att i ibnte to tlio specific scaling behavior ol the 

outbreaks m Asia. Long-range coi relation dctuallv si^iiifies I lie scaling 

behaviors of the disease bccaiisc the more long-range correlated the 
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outbreaks arc. the higher is the value of the scaling exponent ^(2). 

However, &ucli long-range dependence does not hold at time scales 

smaller than 20 days. The value of the sraling exponent /?(2) is close 

to 0.6, which suggests a weaker long-range correlation of the disease 

in Asia (see the Figure 4.4(b)). For smaller scales from 5 to around 

20 days, the outbreaks appear to be nearly random as the value of 

the h{2) is approaching 0.5, as explained above by the R/S analysis 

and the MF-DFA. The distinct scaling behavior may imply a different 

mechanism of the outbreak at these shorter time scales. To generate 

an intuitive insight into this epidemic, the time series of the outbreaks 

from l (�th December 2003 to March 2009 was divided into 96 sec-

tions based on the 20-ddy time scales. Figure 4.6 shows the instances of 

the outbreaks, extracted from 2004, 2005, 2006, and 2008, respectively. 

Compared to Figure 4.6, the outbreaks at smaller time scales of 20 days 

are not so long-term persistent. In these cases, large outbreaks occur at 

the present moment may not be followed by large outbreaks at the next 

moment. It may be interpreted that the incubation period for avian in-

fluenza H5N1 is longer than that of the conventional seasonal influenza 

(WHO, 2006b). which usually lasts a few days but rarely up to 21 days 

depending upon the characteristics of tlie isolate, the dose of inoculum, 

and even tlie Lost species and its age (Preiser, 2006). Many birds die 

feuddeiilv and large outbreaks subseqiieiitly happen with preinoiiitoiy 

signy. This lias been speculated that wild aquatic birds play a crucial 

role ill carrying the H5N1 influenza virus over long distances during 

the uicubdtioii peiiods (Noiimlc, 2005d) Effective control measures 

and rigorous bioseciirity practice have been conductccl by the infected 

countries or regions to prevent the disease from spreading wide and 

caubiiig larger outbreaks. The Hong Kong authorities, foi example, 
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culled the entire poultry population (around 1.5 million birdb) for the 

immediate eradication of the highly pathogenic avian influenza boon 

after the early detection of the outbreaks in 1997 (Preiser, 2006). In 

addition, Japan and Korea quickly look aggressive strategies through 

culling massive number of birds and implementing movement controls 

(Ozawa et al.. 2006J when the HPAI H5X1 were first detected in Jan-

uary 2004 and December 2003, respectively. The rapid and determined 

responses have effectively controlled the disease, preventing the large 

outbreaks that might follow. On the other liaiid, yiich measures, aiming 

at the immediate eradication of the disease at the cost of birds culling, 

are iisiiallv infeasible in those countries, i.e.. Cambodia, Vietnam, and 

Thailand, that pursue traditional forms of poultry holding. Chickens 

and ducks roam freely and share common water sources together with 

wild birds (Yee et al., 2009). Even vaccination fails to control the 

disease in China and Indonesia where repeated outbreaks appear long-

term persistent (Webster et al.. 2006: Yee et al., 2009). The weaker 

long-range correlation essentially characterizes the intrinsic dyiidiiiics 

of the outbreaks in smaller scales. From this result, wc may affirm 

that massive control measures have been carried out to prevent the 

outbreaks and the spreading of avian influenza. However, the current 

disease surveillance and control practice are inadequate in effortivoly 

eradicating the epidemic. The scaling exponent discussed in this study 

may in a sense serve as an indicator for the evaluation of llie ellccts of 

disease control and prevention. 

With respcct to Euiopc and Afiica. avian influenza appoarb to be 

long-range correlation also (see Figure 4.4(c) and 4.4(d)}. The Euro-

pean outbreaks exhibit weaker long-range correlation with its scaling 

cxpoiiciil /i(2) = 0.754 for the time scales from 5 to 90 days. In Afiica, 
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long-range correlation is considerably more apparent as I he value of 

h{2) is larger than 0.98. The distinct values of the scaling exponent 

in the three continents may indicate that avian-influeii/a processes are 

heterogeneous with plausibly different driving iiicchanisms. 

The majority of the infections take place among wild birds rather 

than poultry (WHO. 2010b). Since the H5N1 outbreaks in migratory 

birds at Qingliai Lake in April 2005 (Chen et al.，2005; Liu et a l , 

2005), the highly pathogenic avian influenza has spread across eastern 

and central Europe arriving at Croatia, Romania, and the European 

part of the Russian Federation at the end of the year. Within a short 

period between January and March 2006, 18 European countries were 

infected, primarily in wild birds, east of the line from south-eastern 

Sweden to south-western Italy (OIE, 2010). Such rapid spreads of the 

disease seem to be associated with the dispersal of wild birds (Lebar-

benchoii et al., 2009). The outbreaks that emerged in domestic poultry 

in Europe have been assumed to be primarily linked to the behav-

iors of wild birds also (Martinez et a l , 2009; Szeleczky et al., 2009). 

Quick actions have been carried out bv the European Corrmiissiori on 

the curbing of the disease (Normile, 2005b; Miinasiiighe et al.. 2008). 

IVIdiiy countries in Europe urged their farmers situated along, the mi-

gratory routes or near wetlands to keep their poultr> indoor in ordei to 

minimize the chance of having close contacts w ith wild birds tliat may 

cariv influenza viiuscs (Normile, 2005a). This makes the outbreakb of 

Europe appear to be not as long-term persistent as that of Aaia and 

Africa. The positive surveillance aiming at the early detection of H5N1 

ill wild birds has been established in many European countries. How-

ever. large outbreaks of the disease that emerged at the current nioiiient 

usually re-emerged at the next moment in time. The persistence of the 
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cpidemic may be due to the behaviors of wild birds (Klunslcr ct al.. 

2007). Specifically, different species have different behaviors in seasonal 

migration for wintering and breeding, as well as movements for forag-

ing and moulting (Globig ct al., 2009). Such bchaviorb that depend 

on climate conditions may interfere with disease prevention and con-

trol activities, leading to the recurrence of avian influenza in Europe 

(Gilbert et a l , 200Cb; Liu et al., 2007). Our results reveal diffcient 

mechanisms of the outbreaks in Europe and in Asia and Africa, The 

weaker long-range correlation in Europe might be a result of its rigor-

ous biosecurity and public health practice. As migratory birds share 

common areas for wintering and breeding, it is important for Europe 

to implement surveillance of wild birds at distinct geographical sites 

and to employ comprehensive control measures to prevent the spread 

of the epidemic. 

Although the H5N1 viruses of Africa show a ckxse pliylogenetic re-

lationship with that of Europe (Salzberg et al.. 2007), the African out-

break mechanism is conbiderably more complex and distinct. The out-

breaks of Afiica demonstrate strongest long-range correlation with the 

value of the scaling exponent h{2) measured up to 0.98. Sinco the first 

H5N1 outbreak wab reported in Kadmia State, Nigeria, in mid-January 

2006, the disease has spread across Africa within a shoit time period, 

affecting Nigeria, Niger, Sudan, Egypt, Burkina Faso. Djibouti. Ivory 

Coast, Ghana. Togo, Cdiiieroon, and Benin (OIE, 2010). Oftentimes, 

the mechanism of the outbreak niiglit vary with the evolution of H5N1 

(Kilpatrick et al., 2006). Three H5N1 lineages have been identified in 

Nigeria, suggesting multiple introductions of the epidemic irom dis-

tinct sources into Africa (Ducatez et al., 2006; Cdttoli et al., 2009). Al 

least, three migratory bird fly ways, witli many bird barictuaries along 
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western Africa, link the territories of western Siberia, Europe. Mediter-

ranean, diid western Asia. The association oi outbreaks and flj'ways 

implies the role migratory birds play in the spread of H5N1, although 

poultry imports and trades cannot be ruled out (Diicatez et al.‘ 2007). 

The complex ecological systems of wild birds and poultry, moveover, 

exacerbate the long-term co-rirculation of the multiple H5N1 lineages, 

leading to large repeated outbreaks in Africa. Backyard rearing is very 

common in Africa. Over 65% of 140 million birds in Nigeria for ex-

ample are free-range poultry, the majority of which are chickens and 

guinea-fowls (Adene and Oguntad, 2006). This also facilitate the trans-

mission of avian mfluonza in poultry. In addition, the wetlands that 

serve as important habitats for both migratory and resident water birds 

increase the risk of H5N1 infectioriH in poultry and humans in places 

where extensive rice farming, fibliing, cattle grazing, and poultry rear-

ing make frequent contacts between humans and birds (Cecchi et al., 

2008). Recent climate change may also exert infliienres on birds niigra-

tioii causing extensive disease outbreaks across the continent (Cecdii 

et al., 2008). For Africa, poverty, inadequate infrastructure including 

poor hygiene facilities and insufficient medical rare, and political hur-

dlefa further compromise the control measures (Enserink, 2006). These 

result in the long-term persistence of the disease and the multiple iii-

troductioiifa of H5Ni viruses (Ducatez et aL, 2006). The new genetic 

icAssortiiiciit of H5N1 vliuscs, commonly identified in the poultry of 

Nigeria, reflects the inadequate biosecurity measures and poor disease 

prevention in Africa (iVIoone et al., 2008). All of the above are per-

haps the reasons for such repeated large outbreaks in this continent. 

Oiii result actually indicates the strongest long-range correlation of 

Lhc outbreaks in Africa, and echoes the call in the literature for strict 
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biosecurity practiccs and sustainable control measures in order to keep 

the disease from further spreading. 

To rocapitiilato, this chapter has idontificd difforont long-range cor-

relations of dvidii-influcnza outbreaks among tlie woild as a whole and 

the three continents, namely Asia, Europe, and Africa. The analysis 

shows that the mechanisms driving the outbreaks are spatially hetero-

goiicoiis under differ nit orologiral and sorial-ecoiiomif onvironmeiits. 

The continents need to devise control measures appropriate to their 

own situations. Furthermore, this result, different degrees of the long-

range correlation, may serve as a reflection of different disease siirveil-

Idiice and controls put into practice. The crossover time scales at which 

outbreak behaviors varied may indicate distinct mechdnisrns of the dis-

ease at different time scales This finding is also instrumental to the 

design of different biosecurity strategies and hygiene practices with re-

spcct to (liffriciit time scales. 

4.4.2 Multifractality 

In the present study, we have detected the multifractality of tlie time 

series of H5X1 outbrcakb. This property indicates that the multifrac-

tal boliavioiri extend ovci differ cut rnatheiiiatTcal inoniciits q. In other 

woids. avian-influenza outbreaks exhibit divcisc self-similarities at dif-

ferent moments. Oftentimes, the property of a data set can be statisti-

cally evaluated in terms of mean, variance, and even higher moments. 

Similarly, the property of self-similarity of time series can be described 

by distinct moments q. 

Mathematically, the multifractality of time scries can be dctccted 

by the generalized Hurst exponent h{q), the mass function r{q), or the 

generalized fractal dimension D{q). Figure 4.7(a).(b) and (c) show the 
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dependence of h{q) on q�and the nonlinear T{q) and D(g), respectively. 

All these indicate that the lime series of the H5N丄 outbreaks in general 

and the three continents in particular are miiltifractal. 

Spcdficcilly, the gencidlized Hiiist exponent h{q) is the dimension 

of the measure Fq[s) in Equation 4.14, which has often been used to 

characterize scaling behavior and raultifractality of time series. When 

the time series is miiltifractal. h{q) will have diverse values describing 

fractal properties fiom diffeient moments q. For monofractal time se-

ries. the value of h{q) will not change with different moments, depicting 

a single form of self-similarity. 

Alternatively, the miiltifractal property ran also be reflected by T[q) 

and D(g). The mass exponent function T(g) from the partition function 

proposed by Halsey (1986). especially the value of T(q) dt q = 0，1, and 

2, is useful for describing the degree of multifractalit}' over multiple 

moments q. It metisures the variation of the q仇 moment of the fractal 

measure with respect to scales. If the measure is miiltifractal. the mass 

exponent r{q) iimbt be a iionliiiear function. Similarly, the general 

fractal dimension D{q), having the relationship with T{q) described in 

Equation 4.9, shows anoThei identification of mulTifractality in ternib 

of diffeient moments. For instance, D{q) can be interpreted as a fractal 

dimension when q ie equal to 丄 . I f tlie value of q are 2 and 3, then D{q) 

represents tlio information dimension of entiopy and the coi relation 

dimension of a time seiieb, respectively. For valuer larger than 3, it 

IS. however, difficult to find appropriate physical meanings of D[q). 

jMatliernatically, multifractality can be completely determined by the 

entire moments of r � and D{q). 

The expei'irnentdl results indicate the self-similarity of avi'dii in-

fluenza for all states, which seem to suggest that multifractality of the 
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Figure 4.7; The miiltifractalities of the H5N1 outbieaks of the whole world, 
Asia, Europe, and Africar (a) h{q), (b) r(g), and (c) D{q) 



CHAPTEB 4. TEMPORAL ANALYSIS OF H5N1 OUTBREAKS 80 

disease arc probably due to the diversity of ccological environments 

and tlic complexity of social behaviors. The long-range correlation, 

in mathematics, may lead to nmltifrartal scaling behaviors, but more 

comprehensive studies will be needed to confirm and furtlici explain 

this interesting property. The multifractal behavior of avian-influonza 

outbreaks appears to be first discovered by the present study. 

4.5 Summary 

III this chapter, we have studied the scaling behavior of avian influenza 

A H5N1 in wild birds and poultry over time. Tlirougli the application 

of MF-DFA to the analysis of the H5Nl-outbrcak time berics. wc have 

successfully detected the long-range correlation and multifractal prop-

erties of the disease. Our results show that repealed outbreaks have 

long-range correlation in llic sense that outbreaks have great cllcctb on 

and are responsible for rccurrcnt infections and future spreads. Fur-

thermore. crossover time scales separating dibtinci outbreak regimes 

have also been unraveled. In particular, the seasonal pattern has been 

identified. Corripaiisoiis of llie scaling behaviois of llie outbreak time 

series b}̂  continents, however, reveal that the spread mechanisms are 

spatially heterogeneous, It is possibly due to different ecological en-

vironments. public health policies, and poultry farm practices The 

results suggest that tighter surveillance and control with international 

cooperation is necessary for the prevention of avian influenza outbreaks 

and spreads. 

The present study is limited by the availability of the time series 

data. With finer and more data made available in the future, we can 

achieve a deeper understanding of the underlying process generating 

the temporal scaling behavior of the H5N1 time series. To have a more 
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complete picture, the next chaptcr is to study the scaling behavior of 

H5N1 in bpace. The spatial and temporal dimensions can then be tied 

togothor to coRhtnirt a sparo-timo prorosa of aviaii-influenza outbreaks 

and spreads. Such studies will advance the rigorous analysib of the 

disease and provide practical guides to policy formulation. 

• End of chapter. 



Chapter 5 

Spatial Analysis of H5N1 
Outbreaks 

The sound of progress is perhaps the sound oj plummeting hypotheses. 

— P e t e r Haggett, 1965 

The last chapter explored the long-range correlation and multifracTal-

ity of the time series of H5X1 outbreaks. It showed different scaling 

behaviors of H5N1 outbreaks in Asia, Europe, and Africa. The scal-

ing behavior can be used to interpret the mechanisms by which avian 

influenza outbicaks move spatially in a lictorogeneous fashion, as me-

diated by the world's different ecological environments. 

This chapter deals with the study of the spatial patterns of H5N1 

outbreaks over a range of spatial scales. By applying a general and local 

K function to the outbreak data, the global trend and local clusters of 

avian influenza are identified respectively. A modified local K function 

is pioposed to take into account the spatial cffccts caubcd by distance 

between outbreaks. This method in effect extends the analysis of the 

local K function from a point pattern problem to a lattice for points 

82 
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over continuous spacc. Spatial leprcsentation in these terms then seeks 

to explore local patterns of HoKi at various scales, including for the 

whole of East and Southeastern Asia and for the individual countries: 

Thailand, Vietnam, Indonesia, and China. 

5.1 In t roduct ion 

It is essential to understand the spatial distribution of avian-influenza 

outbreaks if the disease is to be better understood. Avidn-iiifiuciiza 

outbreaks appear in cluytera in both the global ami local contexts. 

Parameters and measures taken from spatial statistics, for example, 

the K function (Ripley, 1976) and llie local K function (Gelis, 1984), 

haA'e been commonly used to identify spatial patterns represented as a 

point process• Wc can further analyze avian influenza bv these means. 

However, the usefulncsa of the local K function is restricted when 

tlie events iindei modeling, such ab avian-influcnzA outbreaks, cannot 

plausibly be characterized as spatially homogeneous. In most real world 

cases of epidemics, an assumption of spatial homogeneity is hard to 

sustain (Diggle, 1983; Cre&sie. 1991). as in the ease of avian influenza. 

Avian-mfiuenza outbreaks, rather, appear to be spatially associated 

with each other without being homogeneous. The closer it is to a 

disease cluster, the greater the number of outbreaks a site can expect 

(Tobler, 1970). In order to describe this pattern of spatial association 

accuratelv, this work proposes a weighted form of the local K function 

specifically adapted foi examining cliibteib of H5N1 outbreaks. This 

modified function, which measures the count of outbreaks by tlie weight 

of the distance between them, enables the study to extend the cluster 

analj^his of outbreaks from a depiction of a number of point process to 

the representation of data arranged in lattices. 
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The objective of this chapter, then, is to unravel the spatial scaling 

behavior of H5N1 outbreaks in humans and poultry. The chapter has 

throe more spocifir aims: (1) to dotcrmino global patterns of the H5N1 

out breaks in humans and avians; (2) to explore local clusters of poul-

try outbreaks over a range of spatial scales: and (3) to estimate the 

probability of an occurrence of the disease being caused by outbreaks 

in surrounding areas. Findings for all of these questions promise to 

help improve public health practice by offering guidelines for the more 

effective managomont of infectious disease. 

The chapter proceeds by first describing (in section 5.2) the data 

for avian-influeiiza outbreaks. In section 5.3, traditional K and local K 

functions are applied to this data in tracing global and local patterns 

of H5N1 across the world. In response to the problems of applying a 

traditional local K function to spatially heterogeneous phenomena, we 

propose a weighted local K funcrion for identifying outbreak clusters, 

and then estimating the probability of the presence of H5N1 across 

lattices. In section 5.4, we examine and interpret the results of this 

lattice analysis. 

5.2 Experimental Da t a 

This chapter takes as its topic the spatial patterns of avian-influenza 

outbreaks in humans and birds. Outbreak data are taken from the 

WHO and OIE official Reports (WHO, 2010b; OIE, 2010) 

Each report states outbreak attributes, noting outbreaks' latitude, 

longitude, report data, start date, end date, infected species, and num-

ber of deaths caused. The OIE's term for any reported occurrence of 

the disease is an "'outbreak" of H5N1. The (chapter subjects to analysis 

data from more than 5,000 separate outbreaks, covering a period from 
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late 2003 to early 2009. In the earliest two years of reports, longitude 

and latitude data arc absent from the reports provided by the OIE. 

These outbreaks in this anahsis are geocoded on the basis of their lo-

cations. The World Gcodctic System (WGS) 84. cuiTcnlly idch^ used 

in cartography, geodesy and navigation, is applied by the study as ge-

ographic coordinate system. Figure 5.1 shows the locations of H5N1 

outbreaks. 

In order to display in our analysis, points in a geographic coordi-

nate system need to be expressed as a pair of Cartesian coordinates 

(Robinson, 1978). The stud\ uses the Mercator projected coordinate 

system (Raisz, 1938). a standard cylindrical map projection, to make 

the conversion. This projection has severe distortion with increa'^ing 

distance from the Equator, but maintains the shape of the continents. 

Taking the advantage of Mercator in mapping, we used this projection 

for displaying avian-iriflueiiza cmtbrcaJk data. Actually’ the modified 

local K function and other spatial quantitative method^ in Chapter 

6 are developed on the basis of lattice points and distances, not the 

IMercator projection. That is, the distortion caused by the Meicatoi 

projection has essentially no effect on the computation roMilts. Furthei. 

the study applies a modified local K function to extend cluster anal-

ysis on lattice data. Outbreak data are collated for lattices based on 

different spatial lesokitioiis: 8.4 krir, 34.22 krn^, 0.94 k n r , 0.32 k n r , 

and 0.24 kn r for East-Southeast Asia, China, Iiidoncaia, Thailand, and 

Vietnam, respectively. Spatial resolutioriis are deterrriiiied in terms of 

the area under study. The larger is the area, the lower ih the resolution 

adopted. Due to the limitation of computaiion power, East-Southeast 

Asia and China have to adopt lower resolutions than Indonesia. Thai-

land, and Vietii'din. On the other hand, to provide a finei dost rip t ion 
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of avian influenzal in the latttT three coiiiitrios. a rdUtivf4’y larger res-

olutions are employed. By this approach, the spatial pattern of H5N1 

can be better idcntifiod over multiple scales in these different areas. 

5.3 Spatial Statistics Me thods 

Tli<�process of influenza outbreaks and spi cads deinoiisti ates a close 

association with properties typically studied in geography (Cliff and 

Haggctt, 1986). The spdtidl process of avian influenza is complex and 

the patterns of outbreaks may vary with geographical scales. To deter-

mine the spatial patterns of avian irifluciiza. this scctioii first employs a 

K function and local K function to study the spatial dynamic of avian 

iiifiuonzd. particularly iis global ticiids and local dubtcrs. In addition, 

a modified local K function is then proposed and used to evaluate the 

possibility of H5N1 duster occurrcncc for a succcssion of map lattices. 

5.3.1 K Function 

In spatial analysis, a spatial point pattern is defined as a set of locations 

which are irregularly distributed within a designated region (Diggle, 

1983). A wide range of phenomena may be represented through spatial 

point patterns, including, for example trees in forest. traffic accidents 

on highways and influenza outbreaks in cities. When all the events 

of a realization are recorded, a point pattern is mapped. Mapped 

point patterns can then be separated as random, cluster, and dispersed, 

although change of patterns are continuous. Figure 5.2 shows a series 

of spatial point patterns. 

Informally defined, randomness, which is usually called spatial com-

plete randoiniiess (CSR). represents an idealized realization where the 

intensity of events remains invariant over the study plane and shows 
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Dispersed ^ d u s t t r e d 

Figure 5.2: Spatial point patterns 

absolute!}^ no (spatial) interactions between events. A mathematical 

manifebtation of CSR is described by Diggle (1983). Importantly, CSR 

provides a baseline against which to distinguish other patterns as they 

may be broadly categorized as "cluster'' and "dispersed". For a cluster 

pattern, the average distance between an event and its nearest-neighbor 

event is smaller than that in CSR. Meanwhile, for a dispersed pattern, 

the average distance is larger than would be expected under CSR. 

However, the analj'sis of spatial point patterns also falls foul of the 

modifiable areal unit problem (MAUP) (Openshaw. 1984). a source 

of statistical bias that can significantly affect the results of statistical 

analysis. In the study of ecology, for iribtance. the nature of the pattern 

generated by a biological piocess can be affected by the physical scale 

at which the process is obseived (Diggle, 1983). Specifically, at a large 

scale, most natural eiivirorinients appear to be spatially heterogeneous 

and in aggregate terms would seem to be characterized by many differ-

ent kinds of vegetation. At a small scale, this environmental variation 

is not so pronounccd. A pattern of vegetation may then exhibit a more 

di&pcrsed paUern. 

The properties of spatial point patterns have been intensively stud-

ied over many decadcs. A broad laiige of statistical methods have also 

been developed for point pattern analysis, including quadrant analysis. 
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nearest-neighbor distance, kernel density estimation, and the K func-

tion (Cliff and Ord, 1980; Diggle, 1983. Crcssie. 1991, Sdiabenbcrgcr 

and Gotway. 2005). The K function offers a way to rhararterizo the 

pat icriis as they emerge across multiple spatial scalcs. This measure 

wafi first proposed -as a rone opt by Bait left (1964) and defiiiod mathe-

matically by Ripley (1976) as follows. 

K{h) = (number of events within distance h 

of an arbitrnry event). (5.1) 

where E{-) is the expectation of events within distance h, h >0 and A 

is the intensity of a point process. 

In experimental terms, when a point pattern is CSR, the theoretical 

value of K[h} should be irlr. Supposing that N events fall within a 

study area .4, the intensity of these events can be estiinated by A = 

N/A, The estimate of K function is then as follows. 

(5.2) 

where d” is the distance between events i and j. I{d,j) is an indication 

function as below. 

/ ⑷ = 
1 if < h 

0 others 

When K{h) is smaller than ivh), it indicates a dispersal point pattern. 

On the other hand, when K{h) is larger than 7Yh\ it implies a tendency 

of cluster. For simplicity, Bcsag (1977) suggested a linear form of the 

K function taking the form of a straight line proceeding upwards from 
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CSR. i.e., from a dispersed pattern showing no clustering or density of 

incidence. This linear form lias been llic cailed ihc L function. 

Edge eff'ocTs may arise when events outside the study region A inter-

act with events that can be observed within A. Spatial geographers have 

therefore devotod efforts to developing a more sophisticated K function 

taking into account these edge effects and thus seeking to mitigate the 

arbitrariness of particular of points or delimitation of areas (Cressie. 

1991: Yamada and Rogerson, 2003). The value of this K function can 

be estimated by 

二 仏 恥 〈 ⑷ . (5.3) 

where c” is a factor of edge efiect for a pair ot events ? and ]. It can be 

calculated in terms of taking a proportion of a circumference of a circle 

with a conceiitration at event / which passas through event j (Cresbie. 

1991). 

This modified function has been widely applied in the current stud-

ies of ecology (Haase, 1995; Barot et a l , 1999; He and Duncan, 2000), 

spatial epidemiology (Pfeiffer et a l , 2008: Lai et al., 2009), traffic ac-

cidents (Jones et a l , 1996: Okabc and Yamada. 2001) , wild •animal 

belidviors (Bailey and Gatrell. 1995), and even testing good-of-fitness 

for model selections (Digglc. 1983; Cressie, 1991). H5N1 outbreaks 

from late 2003 to earty 2009 can also be regarded ii] terms of a spatial 

point process. In this study, wc will apply the K function to deter-

mine the global trend of the disease by making a comparison between 

outbreaks and CSR. In order to arrive al a more explicit estimation, 

1,000 Monte Cailo simulation runs of CSR arc carried out to examine 

the statistical significant of H5N1 outbreak patterns as they have been 

delected. 
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5.3.2 Local K Function 

The oveiall stiuctuic of point patterns leficcts d g(�ii(�ial average trend 

of all possible spatial relationships. Another important characteristic 

of a point pattern is its local structure (Aiiselin, 1995). The analysis 

of local pattern studies deviations from the mean of overall trends by 

seeking out poitions of dii area that vaiy spatially cind offer some kind 

of exception to randomness. Study of local pattern effects originated 

from work carried out on the detection of rare disease clustering in 

Be.sag and Newell (1991). A.s an increasing number of georeferenced 

data sets become available for complex spatial studies, an increasing 

number of researchers have taken an interest iii exploring local patterns 

based on 'local statistics' (Getis and Orel. 1992； Leung and Mei, 2003), 

for example, and G* statistics (Ord and Getis. 1995) and Anselin's 

LISA (Anselin. 1995) which include a local form of Moraii'b I (Moran, 

1950) and Geary's C (Geaiv. 19.54). 

These statistics developed for the study of continuous space, how-

ever. might not be appropiidto to the study of aviari-iiifluenza out-

breaks. The local K function, a local statistical measure supposing 

spatial point patterns, may provide a better approach to understanding 

the spdlidl distribution over relatively small scales of H5N1 outbreaks. 

This statistic was first proposed by Getis (1984). and defined in Getis 

and Franklin (1987) 88 follow. 

Ki{h) = £'(the number of events within distance h 

of an arbitrary event ？)’ (5.4) 
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Mathematically, the function can be estimated by 

_ = 炉 ? ( 5 . 5 ) 

where I is an indicator of a number of events j. The distance between 

I and J must less than h. c” is an edge coirelation. 

Unlike the LISA, the local K function can be used to evaluate the 

degree of clustering in a location, regardless of whether eventr occur 

oi not at a specific point (Yamada and Tliill, 2007) Tlie ability to 

take a measure of this variable i.e. cluster has meant that the metric 

has been widely applied to the study of wild animal behaviors (Potvin 

et aL, 2003), tiaffir incidence (Yamada and Tliill. 2007), and indeed 

avian-infiuenzd epidemic (Si et aL. 2008). 

5.3.3 Modified Local K Function 

The local K function, as an indicator of cluster, can also be used to 

indicate the cffccts causcd by outbreaks at the point of a specific occur-

rcricc of disease. This effect iridv be urideistood in theoiy as spatially 

continuous and gradually decreasing with distance (Cliff and Haggett, 

1986). However, as a spatial statistic of point patterns, the local K 

function fails to estimate continuous spatial effects. Motivated by this 

problem, lliis woik propobCb a modified local K function weighing the 

spatial effects of disease in causative tennis across a continuous space 

by distance. 

The modified local K function sets out to analyze the spatial effect 

of outbreak dusters as they may be conceived and represented on lat-

tices. Outbreaks, represented by point data (see Figure 5.1). are thus 

assigned to a lattice form. In each grid, analysis records the number of 

outbreaks, including in humans and birds. For each lattice, then, the 
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offect of suiToimding outbreaks can be evaluated by 

Ki[h) — £(tlie weighted miiiiber of outbreaks within 

distance /i of a lattice ?), 

Mathematically, the modified function can be estimated by 

< h] 

93 

(5.6) 

K人 h)= 
A q 

(5.7) 

where A is the global density of outbreaks and d̂ ^ is a distance be-

tween lattices i and ]. I is an indicator function, giving the number 

of outbreaks surrounding a lattice i within tlic distance of h. Unlike 

traditional local K function, I is weighted by the inverse of Euclidean 

distance, i.e. w” = l /di j . 

Intuitively, Figure 5.3 gives an example of a distribution of out-

breaks in lattices. The total number of outbreaks is 11 for two different 

circles in the plot. The estimate obtained from the local K function 

is K{h) = J ^二 where E,j < h) ^ 11, the same value 

within both circles. However, such estimates do not fnlly capture the 

spatial effect caused by the locations of outbreaks. In this case, the 

modified function weighting outbreaks by distances away fiom a point 

offers a more prccise estimation of rhistrrs and their likely effects. 

Through applying these spatial .statistical methods, we can explore 

the spatial patterns of avian influenza outbreaks in a global-local con-

text. The modified local K function can also be used to analyze other 

spatial point pattern analysis, ‘siich as criminology and traffic acci-

dence. Similar to this study, an event, represented as a spatial point, 

can be converted to lattice based on its corresponding latitude and 

longitude. By this approach, a risk map (characterizing the probability 



C H A P T E B 4. T E M P O R A L ANALYSIS OF H5N1 OUTBREAKS 94 

0 0 0 

.'一 

0 

产••’ 、 

0 0 

0 0 1 

i 

2 0 0 

0 0 i 2 
1 
* 1 t 

2 

I 
丄 

t 
0 

0 

、 
5 i> 0 

0 i 0 0 0 0 

\ 
5 5 0 0 0 0 

Figure 5.3: Note: the original local K function based on a count of events 
cannot identify the different local K function taking into account the dis-
tance between events. In this instance, the modified function is able to 
distinguish the two above patterns. 

of the occurrence of events is thus generated over a continuous area 

(see Figure 5.6 and 5.7). In next section, we will run and analyze a 

number of statistical experiments studying the spatial distribution of 

avian influenza. 

5.4 Analysis Resu l t s and I n t e r p r e t a t i o n 

The results of spatial analysis indicate that the global patterns of avian-

influcnza outbreaks vary with the changc of spatial scales. These pat-

terns are different between the outbreaks in humans and birds. The 

difference suggests tha t the mechanisms of H5N1 outbreaks and pat-

terns of spread are various in space and among host species. In addi-

tion, our result allow us to examine clusters of outbreaks according to 

a series of scales. Understanding the scaling behaviors of H5N1 in this 
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way should strengthen prevention at national, continenlal, and global 

levels. 

5.4.1 Global Trends 

Figure 5.4 shows the K and L functions of aviaii-iiiflueiiza outbreaks 

of the world. Figurefs 5.4(a) and (b) depict the patterns of outbreaks 

in humans and birds. The plots indicate that these spatial patterns 

vary with the diaiigc of scalcs, with the pattci'ii of avian influenza 

appearing to be more complex than in human.s. This may suggest that 

the mechanisms driving the outbreak and spread of this disease are 

spatially different between the two host species. 

For human outbreaks, results show a sigriifirant dcgroo of clustering 

ill a wide range from around 500 to 5000 km, with patterns then show-

ing a much more dispersed form thereafter (see Figure 5.4(a)). The 

highest degree of cluster appears at about 3500 km. 

This pattern suggests that H5N1 may be traiibinitted across a large 

space. Geographically, this wide range stands for a series of spatial 

levels from transmission within a particular country to trarisiiiission 

across a continent. Humans' socio-economic behaviors may plausibly 

be taken as the cause of such a persistent degree of clustering in the 

disease. First, intensive agricultural activities and the free grazing 

of domestic poultry facilitate the establishment and drrulation of the 

H5N1 virus (Chen et a l , 2004； Gilbert ct al.. 2007). Dirccl contacts 

with sick or deadly HSNl-iiifected poultry have caiiscd large out breaks 

in most countries of southeast Asia (WHO. 2010b). 

Second, long-distance movements arc albo responsible for clusters 

of infected family. Ha,ving said that, Human-to-hiiman transmission is 

rare and limited (Ungchiisak et al., 2005). However, about 25% have 
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occurred in clusters of two or more cpidemiologically linked peoples 

(Wang et aL, 2008b). In addition, intensive trading in poultry and 

illegal bird smuggling across large geographical areas have caused the 

spread of H5N1 at a continental level (Smith et al.. 2006b). 

These outbreaks, however, become dispersed at a scale of 5000 km 

and upwards. The suggestion here is that avian influenza lias yet to 

become a global pandemic in human beings, despite the fact that out-

breaks cluster at a wide range of spatial scales. For avian outbreaks, 

analysis of clustering by scales shows two clusters, the firht starting be-

tween around 500 and 5,000 km, and the second at a scale of 8,000 km 

and upward. Between these two levels, outbreaks are dispersed. This 

interphase pattern implies a complex mechanism of outbreaks and (iib-

tribiition in bird flu. Specifically, these outbreaks appear to be asso-

ciated with various factors including the ecological environment and 

human behaviors (Alexander, 2007a). Human socio-economic behav-

iors, again, have played an important role in leading to clusters of the 

disease in birds at both community and country levels (Gilbert et al., 

2006a; Wang et aL, 2008a). 

Migratory birds have been regarded as a vehicle leading to the global 

spread ofHSNl (Normile, 2006a: Olsen et al., 2006; Si et a l , 2009). The 

clustering behavior of the disease at large scales of 8,000 km and above 

can be interpreted as a support to the claim that avian influenza has 

crossed continental barriers and become a global pandemic in poultry. 

On the other hand, tlie varying dispersal of outbreaks at the conti-

nental level may suggest the variation of inhibiting factors among the 

continents that have yet to be detected in the study. 
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5.4.2 Local Clusters 

111 this cliaptei. we apply the two different loc al K functions to identify 

local pattern of outbreaks in poultry. The traditional local K function 

examines the degree of clusters for each location of the outbreaks. The 

modified local K function, on the other hand, is used to estimate the 

effect caused by the outbreaks in a continuous manner ab they dre taken 

to get further and further awav from a location. 

Figure 5.5 shows the results of traditional local K function analy-

sis. It shows clusters of avian H5N1 outbreaks at a number of scales, 

including 30 km, 120 km, 260 km, and 330 km. At the scales for 30 

and 120 km, the outbreaks showing small values of the local K es-

tiiriates indicate a low degree of clustering (see siibfigui.es 3.5(a) and 

(b)). The patterns seem to suggest an equal possibility of outbreaks at 

these small scales. 

These results are explicable, however, in terms of the similarity of 

the socio-ecological environments across an area at a bmall scale. How-

ever, at large scales (260 and 330 km), clusters can be observed in 

Thailand and Vietnam, soiitlieast Asia, and Egypt. Africa (see Figures 

5.5(c) and (d). Since late 2003. the widespread HPAI H5N1 has caused 

intensive outbreaks among poultry in Thailand and Vieuiain (WHO, 

2010b). This virus has established itself in Thailand (Lipatov et a l , 

2005; Tiensin el al., 2007; Suwannakarn cl a l , 2009} and also evolved 

into multiple sublineages in Vietnam (Nguyen ct al., 2008). The fiibt 

H5N1 infection was reported in Egypt, February 2006 (WHO, 2010b}. 

Since then, this disease has caiLsecl large outbreaks in poultry and back-

yard flocks, resulting in diarridtic economic loss in Noitli Afiican coun-

tries (WorldBanK. 2009). Although rigorous control measures are in 

place, the transmission of avian influenza (H5N1) has been continuous 
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(Kaiidecl ct al., 2010). 

Ill this chapter, the modified local K function facilitates analysis of 

what it is taken to be the H5N1 virus's spatially continuous spread. 

The scale h = 113 (see the Equation 5.7) is sclcctecl as showing a typ-

ical local spread of influenza viruses in Viboiid et al. (2006). Each 

estimate of the modified local K function indicates a degree of a clus-

tering in an outbreak. By this means, we can evaluate the effect caused 

by outbreaks for lattices strung across East-Southeast Asia, Thailand, 

Vietnam. Indonesia, and China, respectively. These values via normal-

ization can be used as a probability for predicting the occurrence of 

H5N1 dt a location. That is, a lattice with a high value approaching 

to 1 implies the large likelihood of a location having the disease. 

Figure 5.6 is the normalized result for investigation of a modified 

local K function of East-Southeast Asia. It indicates that intensive 

outbreaks aggregate in Thailand. Vietnam, and Java island in Indone-

sia. Specifically, two large clusters can be observed in the Red River 

delta and a low-lev el plain of the Mekong delta in northern and south-

ern Vietiiaiii, respectively. Further, one cluster lies in the fiat Mekong 

delta of central Thailand. In contrast to the results of traditional anal-

ysis, the outbreak effects gradually decreasing with distance away from 

the three clusters have been detected as operating across continuous 

space. Interestingly, China, regarded as one of epicenters, shows a low 

degree of clustering for outbreaks in the wider East and southeastern 

Asian region. 

Foi purposes of oldboidtioii, a modified local K function is employed 

to show clustering behavior for the individual countries of Thailand. 

Vietnam. Indonesia, and Cliina, respectively. These countries are dif-

ferent in their resolutions as discussed in scction 5.2. Figure 5.7 shows 
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Distance Lag at 30 km 

(a) 
Distance Lag at 120 km 

( b ) 
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Distance lag a! 260 km 

(c) 
Distance Lag at 330 km 

⑷ 

Figure 5 5: Clusters of H5N1 outbreaks at a scale of (a) 30 km, (b) 120 km, 

(c) 260 km, and (d) 330 km. 



C H A P T E B 4. T E M P O R A L ANALYSIS OF H5N1 OUTBREAKS 103 

Figure 5.6: Result of modified local K function analysis of H5N1 outbreaks 
in East-Southeast Asia. 

the normalized results of the modified local K function for the out-

breaks of the four countries. 

Specifically, these patterns support interpretations asserting differ-

ences between outbreaks in the four countries in terms of spatial ranges, 

geographical locations and socio-ecological environments, as well as the 

spread of H5N1 virus. In Thailand, analysis indicates a large cluster 

close to Bangkok (see Figure 5.7(b)). The risk posed by this clus-
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ter spatial ly disperses over a broad area f rom Nakhon Ratchasinia to 

Phitsanulok. Sucli a pat tern may suggest t h a i the H5N1 virus locally 

persists and circulates w i thout further spread outside the central par t 

of Thai land. In Figure 5.7(d), the highest risk can be observed in 

Hanoi, northern Vietnam. This r isk also gmdtml ly diminishes w i t h 

distance. Separated by a low risk i n the central area of the country, a, 

high degree of risk, again, characterizes southern Vie tnam, especially 

the area around Ca M a u City. The interphase pat tern of clusters im-

plies that mul t ip le H5N1 sublineages have established themselves in 

Vietnam. Showing a different pat tern f rom the above two co皿 tr ies. 

China shows an intensive outbreak in Guangdong province (see Fig-

ure 5.7(f)) . The effect of th is cluster extends across a wide area to 

affect provinces in the southwest and northeast, as well as the whole 

of southeastern China. Such a continuing pat tern reflects how H5N1 

is t ransmi t ted in part as a consequence of extensive human behaviors 

in main land China. I n addit ion, Indonesia, isolated by the Pacific, 

exhibits a different pat tern again, where a high degree of clustering 

behaviors center on western Java (see Figure 5,7(h)). W i t h over 60% 

of pou l t ry product ion of the whole country (Smith et a l , 2006b) and 

the highest density of populat ion (more than 940 people per square 

k i lometer) [ht tp: / /www.world is landinfo.corn] , Java has been deemed as 

one of epicenters of the world. 

T l ic modif ied local K funct ion has extended spatial point pat tern 

analysis f rom a vector to lat t ice data. The modif ied funct ion allows 

for the spatial association of outbreaks over a continuous space. The 

analysis result, in terms of outbreak clusters, is a risk map indicat ing 

the probabi l i ty of the occurrence of H5N1. I n contrast to t rad i t ional 

analysis, the results obtained f rom the modified, local K funct ion are 

http://www.worldislandinfo.corn
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more precise and comprehensively i l lustrate the d is t r ibut ion of H5N1 

risk. 

This study has also dosrr ibod the spatial effect of outbreak clusters. 

I ts representation of virus's clustering behavior in terms of normalized 

patterns may also be thought more informat ive than previous work in 

presenting the possibi l i ty of H5N1 occurrence in a location. 

5.5 Summary 

I I I th is chapter, we have studied the spatial patterns of avian influenza 

A H5N1 i n humans and poul t ry . Through the appl icat ion of K and 

local K functions, the d iap tc i lias identif ied the global t i cnd and local 

dusters of the disease over mul t ip le spat ial scales. Our results indicate 

tha t H5N1 outbreaks tend to fol low dif feici i t patterns in humans and 

birds, suggesting dist inct meclianisms of H5N1 outbreak for these two 

hosts. Clusters of outbreaks have also been detected in Tha i land and 

Vietnam. 

To enhance the power of th is stat ist ical analysis, the chapter pro-

posed d i i iodif ied local K funct ion to estimate clusters in Thai land. 

V ie tnam, China, Indonesia, and the whole of East and Southeast ern 

Asia. The analysis result can be used to assess the spatial impact of the 

disease on a locat ion given a certain density and pat tern of incidence of 

outbreaks in surroiincimg areas at a range of spatial scales. Here clus-

ter ing analysis points up different patterns for different countries and 

across environmental features of the whole region. The suggestion is 

tha t different t i ansmission mechanisms foi H5N1 avian influenza nid}^ 

come into play fo i different countries and different environments. 

Th is study ib also l imi ted by the l imi ted avai labi l i ty of outbreak 

data. W i t h finer and more accurate locat ion data of outbreaks, we 
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could further explore the spatial pa t te rn of H5N1. The next chapter 

moves to deepen our understanding of the disease by considering factors 

associated w i th its occurrence. The chapter w i l l consider the evolut ion 

of l i 5 N l virus and the ecological environments in which i t spreads, be-

fore moving to integrate those w i t h idci i t i f icat io]! of space-time process 

of outbreaks and their spiead in avian influenza. The study as a whole 

is intondod to provide a f i rm foundat ion fo] inter-discipl inary research 

on lelevant research fields, i t should further provide valuable knowledge 

guiding pol icy decision in practice. 

• End of chapter. 



Chapter 6 

The Integrated Approach to 

Map H5N1 in Space and 

Time 

Science provides us with very sharp tools, but as any craftsman will tell 

you it is the sharp tools which can do most damage when misapplied. 

—David Harvey, 1973 

Though many disciplines have made impor tan t contr ibut ions to our 

understanding of H5N1，it remains a, challenge to integrate knowledge 

f rom different disciplines. This chapter applies genetic analysis tha t 

identifies the evolut ion of the H5N1 virus in space and t ime, epidemio-

logical analysis tha t determines socio-ecological factors associated w i t h 

H5N1 occurrence and stat ist ical analysis tha t identifies outbreak clus-

texs, and then applies a methodology to formal ly integrate the findings 

of the three sets of methodologies to obta in a. more compreheusive ex-

aminat ion of avian influenza occurrence in space and t ime. I t reports 

findings f rom about the spatial pa t te rn of the h ighly patl iogcnic avian 

111 
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influenza. H5N1, risk in East-Southeast Asia where the disease is bo th 

persistent and devastating. 

6.1 Introduction 

Tradi t ional genetic analysis, which examines phylogenetic relationsliips 

associated w i th the H5N1 virus from its D N A sequences, has enabled 

progress to be made in uiiderstancliiig t l ie evolution of avian influenza 

viruses (L i et a l “ 2004; Smith et al.. 2006b). By l l i is means, possible 

sources and pathways that are associated w i th the spread of the H5N1 

v ims call be inferred (Smith ct a l ” 2006b; Duai i et a l , 2008). Phy-

logeograpiiic analysis (A^ase et al.. 1987) offers a method of tracking 

migra i io i i of the H5N1 virus. I t analyzes the topology of the phyloge-

netic tree and use evolutionary iiiodels to .statistically infer the resident 

localities of t l ic H5N1 virus (Wallace et a,l., 2007). Medical geography 

examines the spatial pat tern of H5N1 looking for localized hot spots 

wheie oiilbi'eaks a.re significantly clustered (Si et al., 2009). In spatial 

epidemiology, risk factor analysis focuses on the identif ication of fac-

tors associated w i th H5N1 occurrencc and statistical modeling is used 

to predict the incidence of the disease (Gilbert et al.. 2008). A l l these 

different forms of analyses have a common objective which is to under-

stand the distr ibut ion and the spread of avian influenza. The study of 

avian influenza H5X1 is mult i-discipl inary across virology, molecular 

biology, evolutionary biology, medical geography, and spatial epidemi-

ology. 

However, any study that relies on only one k ind of discipl inary 

knowledge may miss important dimension and connections. For ex-

ampte, ignoring the •'modifiable areal uni t problem" could lead to in-

terpretat ion errorH when reviewing results f rom statistical analysis and 
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modeling in area-based epidemiology. The predictive mapping of H5N1 

risk i l l China, foi iii&tance. in Fdiig ct al (2008). conflicts w i th empirical 

observations (WHO, 2010a; FAO, 2010) and previous studies (Smith 

ct al., 2006a; Smallniaii-Rayiior and Cliff, 2008). Also, phylogcnctic 

analysis (Cavalli-Sforza and Edwards, 1.9G7) has its own l imitat ions 

when genetic data are incomplete, and evolutionary models inappro-

priate (Penny et al.. 1992), This form of analysis, which provides a 

microscopic insight into the process of v iral evolution, is insufficient for 

undorsranding marrosi opir spread of avian influenza In addition, un-

certainty, perhaps arising from incomplete data, l imited domain knowl-

edge, or the application of an insuffirioiit ly sophisticated methodology 

could l imit the value of these analyses. Wallace et al. (2007) states 

that l imited sampling may lead to results that are not .statistically 

significant. 

Al though current research tends to integrate nuilt i-dihciplindry stud-

ies of avian influenza, i t stops at the early stage of analyt iral lv inte-

grating data, for example, on phylogenelic relationships between iso-

lated occurrence of the virus, i i i igratorv b in l rnovemenls. and trade in 

poul t ry and wi ld birds (Ki lpatr ick et al., 2006; Liang et al., 2010) or 

i inplementii ig only basic statistical analysis between genetic distance 

and geographic distance (Carrel et al., 2010). Even though knowledge 

can be obtained from different studies, Low to quantify and integrate 

this knowledge rciiiaiiib a challenge i i i the study of H5N1. 

This chapter proposes a novel approach to integrating the findings 

of phvlogerietic analysis, which unravels H5N丄 evolution in space and 

t ime, w i th modified local K function, which, proposed in the last chap-

ter, idcntifios oiitbroak clusters in spare, arid also w i th bpatial epidemi-

ology. which deleimines scoio-ccological factors associated wi th the oc-
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currcncc of H5N1. In this study, Dempster-Shafcr theory of evidence 

(Dempster, 19G7; Shafer, 1976). a mathematical method for making 

inferences based on mult iple forms of evidence and which recognizes 

the i i i iceitainties associated w i th the cliffeiorit sources of cvidcncc, is 

Tiscd to formally integrate the throe sots of findings. Finally, we ap-

ply the methodology across mult iple scales; that is to the whole of 

East-Southeast Asia as well as the individual countries of Thai land. 

Vietnam. Indonesia, and China, respectively. 

6.2 Data Description 

Three kinds of data are used in this study： D N A sequences, reported 

H5N1 outbreak records, and socio-envirorimeiital factors, including al-

t i tude, populat ion dcnsit); poul try dcDsity, and the shortest path dis-

tances to inland water, coastlines, migratory b i rd pathways, railways, 

and roads (sec Figure G.l). A l l these data were collated for latt ice 

based on cliffeieiit apalml lesolnlioiis: 8.4 kni^. 34.22 km^, 0.94 km^, 

0.32 km^, and 0.24 km^ for East-Southeast Asia, China, Indonesia, 

Thai land, and Vietnam, respectively. 

6.2.1 DNA sequences 

From GenBank (Benson et al., 2006), 888 D N A sequences of influenza. 

A H5N1 l iemagglutmin (HA) and neuraminidase (NA) genes were iso-

lated f rom a variety of hosts between 1996 and 2009 across the 'areas 

of East-Southeast Asia covering Thailand, Vietnam. Laos, Cambodia, 

Indonesia, and China. Figure 6.2 shows the combination of the H A 

and N A sequences. 

W i t h reported geographic localities, the sequences can be assigned 

to latticefe by geocoding. Mul t ip le alignment of al l sequences from each 
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H A and N A gene was carr ied out using M U S C L E (Edgar, 2004), and 

the H A and N A sequences wove combined using T a x o i i D N A (Meier 

et al., 200G). A phylogenetic tree for the combined data set was con-

structed. using neighbor- jo in ing (NJ) (Saitou and Nci, ] 987) in PAUP"^ 

4,0 (SwofFord, 2002). The best-f i t model of D N A subst i tu t ion for the 

N.J analysis was assessed by Mode l test version 3.7 (Posada and Cran-

dal l , 1998). Base composi t ion and pairwise comparisons were examined 

using M E G A version 4.02 (Taraura et al., 2007). The NJ a lgor i thm k 

adopted in th is s tudy because th is distance-based method of phyloge-

netic reconstruct ion gives the genetic distances among the sequences 

tha t need to be combined w i t h the results of the other analysis in the 

knowledge fusion step. Figure 6.3 shows the NJ Tree of the H5N1 virus 

in East-Southeast Asia. 

6.2.2 Outbreak Data 

Outbreaks of t l i c diaeabe arc assigned to lat t ice points. Da ta on avian 

influenza H 5 N 1 outbreaks i n East-Southeast Asia include 2204 avian 

and 327 l iu i r ia i i H5N l - con i i i i i i ed cascb beUvccii Meiy P亡 1997 to March 

2009. compi led by the Wor ld Organisat ion of A n i m a l Heal th (OIE, 

www.oie. i i i t ) and the Wor l d Heal th Organizat ion ( W H O , www.who. i r i t ) . 

respectively. Each record contains the fo l lowing attributes", country, 

province, locat ion (Latitude, longi tude), start l ime, affected spcries. 

and the number of deaths. Using la t i tude and longi tude, any outbreak 

can be assigned, to the latt ice. For each lat t ice po in t , the numbers of 

outbreaks of b o t h human and avian infiueiiza are recorded. 

http://www.oie.iiit
http://www.who.irit
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Figure 6.3: NJ tree of the 888 H5N1 concatenation of hemagglutinin (HA) 
and neuraminidase (NA) D N A sequences from East-Southeast Asia covering 
Thailand, Vietnam, Cambodia, Laos, Indonesia, and China. The best model 
is T V M + I + G (transversional model incorporating invariable sites and rate 
variation among sites). The goose H5N1 D N A sequence from Guangdong 
in 1996 (A/Goose/Guangdong/1 /96) is used to root the tree. The length 
of a unit is 0.02. The taxa are colored by locality w i th green for Thailand, 
blue for Vietnam, orange for Indonesia, and black for all others including 
China, Cambodia, Laos, and purple, especially, for Qinghai province, west-
ern China. 
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6.2.3 Socio-environmental Data 

The socio-environmental data were compiled for the raster grids based 

on the spatial rebolutions of East-Southeast Asia, Indonesia and China, 

respectively. Poultry censuh data in 2005 are obtained from Food 

and Agriculture Organization's Animal Production and Health Divi-

sion (FAO-AGA). 

These poultry data, collected from sub-national livestock census 

data and corresponding to administrative boundaries, have been con-

verted into densities by excluding the areas unsuitable for livestock. 

The poul t ry density data were downloaded f rom GeoNetwork (www iao. 

org/geonetwork/srv/eri). and collated to raster grids wi th each pixel 

value representing actual density per km". Population density was cho-

sen as an indicator of the volume of viral traffic (Gi lbei t et al.. 2008). 

The 2010 estimate of population density, produced by the Center for 

International Earth Science Information Network (CIESIN), Columbia 

University and the United Nations Food and Agriculture Programme 

(FAO), were downloaded from the CIESIN (www.cie.sin.org). Railways 

and roads were chosen because these two variables were used as .sur-

rogate indicator of long-range movements of l i i i i i ian and poultry. The 

shape data for the two transport networks were provided by GIVA-

GIS (www.diva-gis.org). an open source for mapping and geographic 

data. The area and line-based data, including inland water bodies, 

coastline, and migratory bird pathways, downloaded from the GIVA-

GIS, were used to determine the association between birds and t l ic out-

breaks. The migratory bird pathways were specified by 70 km buffers 

oi l each side because of uncertainty about the behavior of migrating 

birds. A l l shapes were converted to binary lattice data indicating pres-

ence or absence. In addit ion average elevation data [90_m resolution 

http://www.cie.sin.org
http://www.diva-gis.org


CHAP TER 6. THE INTEGRATED APPROACH TO MAP H5N1 IN SPACE AND TLAIE145 

Digi ta l Terrain Model f rom the Shuttle Radar Topography Mission 

data, S T R M V3 (http:/ /srtm.csi.cgiar.org)] were used to capture to-

pographic features that might be associated w i t h the establishment of 

an H5N1 epidemic (Gi lbert et a l , 2008). 

6.3 The Quantitative Analysis 

Three analyses are implemented on raster data frames. The probabil-

i ty of the occiirrerice of H P A I H5N1 is estimated for each latt ice point 

(or small pixel). Specifically, this study consists of four parts. First, 

phylogeiietic trees are bui l t for the evolution of the H5N1 virus. The 

branches and the topology of a tree describe the processes of v i ra l evo-

lut ion. The abi l i ty of a virus to survive in nature (its “capability”）is a 

characteristic of a virus w h i d i goes through a long evolutionary process 

w i th wide spatial dispersion and persistence over t ime. Strong capa-

bi l i ty ma)' lead to a high probabi l i ty of the disease spreading widely. 

In this study，the years and localities from which the D N A sequences 

were sampled are collated for each H5N1 virus. Integrat ing in space 

and i i i i ic, the quantif ication of the phylogeiietic tree ib a feasible way to 

measure and map the capabil i ty of the H5N1 virus. Second, the local 

K function, a spatial point pat tern statistic (Botts and Getis, 1988), 

has been modified in the last chapter for the purpose of ident i fy ing the 

local pat tern of outbreaks. The estimates obtained from the analysis 

are an indicator of outbreak clusters. Th i rd spatial epidemiological 

analysis involves bui lding a logistic regression model for analyzing the 

statistical association between the presence/absence of reported H5N1 

outbreaks and eight socio-environmental variables. This model can be 

used to predict the probabi l i ty of the occurrence of an H5N1 outbreak. 

The findings obtained f rom the three analyses provide evidence w i t h 

http://srtm.csi.cgiar.org
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which to explore the spatial d is t r ibu t ion of H5N1. To present a pow-

erful, robust, and unif ied result, Dempster-Shafer theory of evidence is 

appl ied to integrate the diffn-cnt forms of ovidciicc. 

6.3.1 Quantifying the Phylogenetic Tree 

Figure 6.4 shows the NJ tress of the H5N1 virus f rom (a) Thai land, 

(b) V ie tnam, (c) Indonesia, and (d) China. I n the phylogenetic trees 

of the H5N1 virus, the process of v i ra l evolut ion is composed of a set of 

branches, or ig inat ing f rom a common ancestor at the root of the tree. 

The length of a branch describes an evolut ionary stage which starts 

f i on i a previous h>pothasized ancestor (or a node). The taxa having 

a common node can be regarded as a subgroup (or a cladej. By this 

means, a phylogenetic tree is usually d iv ided and the taxa are grouped 

into different subgroups, w i t l i the membcis of cacli s i ibgioup are phy-

logeneticaliy close. I n virology, subgroups are usually deteri i i ined by 

eye bal l ing (L i et al.. 2004； Smi th et al‘，2006b). A subgroup is belied 

to have a strong capabi l i ty of surviv ing i f its members show a pa t te rn 

of wide spat ia l dispersion and extensive persistence over t ime (Chen 

ct al., 2006). This also indicates the capabi l i ty of a subgroup to spread 

the disease. 

However, for a virus, this capabi l i ty can be measured by bo th the 

process of the v i ra l evolut ion and the capabi l i ty of the subgroups which 

the virus belongs to. The longer is the evoluUonaiy procesb the greater 

is the abi l i ty of a virus to burvivc and the higher is the possibi l i ly of the 

spread of the virus. Also, a virus is believed to have a large capabi l i ty 

i f i t is a member of a strong subgroup of the strains showing extensive 

persistence in space and t ime. For evaluation, i t is necessary to sum up 

al l evolut ionary stages tha t a virus goes through. Each stage contains 
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(d) 

Figure 6.4: The NJ trees for the H5N1 virus from (a) Thailand, (b) Vietnam, 
(c) Indonesia, and (d) China. The best model is G T R + I + G (General Time 
Reversible incorporating invariable sites and rate variation among sites.) 
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a branch and a node which is shared by a .subgroup of the taxa. As a 

first approximation, p^. an estimate of the capabil i ty of a virus, can be 

measured bv a linear sum, 
L/ > 

P, = + W2S, + i i ' s t ” (6.1) 

where e “ s^, and are v i ra l evolution, spatial dispersion, and t ime 

span at a stage %. W]_, 202： and wg are weights for the three variables, 

assigned the values 0.4. 0.4, and 0.2, resperUvely. The lower weight for 

the t ime span m because a temporal scale of a year is coarse relative 

to the other two variables. The normalized values of e^. s” and f, can 

be estimated f rom the hierarchical structure of the tree. First , the 

length of the branch at a stage 1 is used to measure v i ra l evolution. 

Second, we measure how widely dispersed, geographically, members of 

the same subgroup are. Spatial dispersion is estimated by the to ta l 

inert ia (sum of the variances) of the 2 x 2 covariance mat r ix calculated 

using the locations ( lat i tude, longitude) of the meniberb at the same 

stage. Th i rd , the length of t ime for a subgroup is measured by the t ime 

span f rom early to late occurrences of virus members. The t ime span 

ti is a rat io, including the persistcncc of a subgroup at stage i. I t is 

calculated as the t ime length l divided by the t ime length of the wliole 

tree. Estimates of e and s are noirnalizcd to avoid the effect of large 

values. Mathematical ly, the capabil i ty of a virub can be evaluated by 

a = f>‘ （6.2) 

where n is the number of evolutionary stages of t l ie virus. Quant i fy ing 

a phylogenetic tree enables us to estimate the capabil i ty of a virus. 

To determine the range of a virus, we also need to examine the 
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density of surrounding outbreaks at a series of scalcs f rom 10 to 250 km. 

W i t h i n this range, a scale I at which outbreak denbity is at a max imum 

was sclcrtcd. Tho aroa affected by a virus is estimated using a spatial 

Gaussian kernel function: 

1 ||x|2 

I f ||x|| > J and G ( x . a) = 0, the range ot the afiecTed surface is I: 

otherwise, i f ||x|| < / and G (x . a) = 0. the range is x . Figures 6.5 show 

the capabi l i ty of H5N1 in Thai land and V ie tnam based on quant i fy ing 

the phylogenetic trees of the H5N1 virus (Figures 6.4(a)) and (b)). 

I n Figure 6.5, high value represented bv red pointh indicates a large 

probabi l i ty of occurrence of avian influenza in terms of the evolution 

capabi l i ty of H5X1 analyzed above. 

6.3.2 Risk Factor Analysis 

A logistic regression wafa f i t ted to model the association between the 

occurrence of H5N1 outbreaks -and. eight socio-onvironmental factors 

i n East-Soiit l ieasi Asia, Indonesia, and China. Da ta on the predictors 

were compiled for each latt ice point , and the outbreaks converted to 

•presence of outbreaks' (1) or 'absence of outbreaks' (0) for each lat-

tice point. Mathematical ly, the relationship between the occurrcnce of 

H 5 N 1 and the predictors can be formulated by a binary logistic regres-

sion model: 

Pi = T̂ ^ ； (6.4) 
1 + e-' 
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where Pi is a probabi l i ty for the occurrence of the disease at locat ion i 

and Zi is usually defined as: 

之i = A) + (^ iX i + . . . + l3nXn • (6.5) 

(3 is correlat ion coefficient and x is independent variable. T h a t is, the 

eight predictors in the analysis. 

A very large ma jo r i t y of lat t ice points have no outbreaks which 

makes fitting the logistic model to all the lat t ice points unsatisfac-

t o r y (see also Gi lber t et al. (2008)). We bu i ld models by selecting 

al l outbreak-present lat t ice points and randomly selecting double the 

number of latt ices points w i t h no outbreaks. The number of H 5 N 1 

outbreaks in East-Southeast Asia inc lud ing Indonesia and China are 

much lower t han in Tha i land and V ie tnam. 1000 boots t rap replicates 

were implemented to ensure a satisfactory sample size for carry ing out 

model inference. In each repeat, the coefficient and p value of each 

predictor were estimated. Cohen's kappa index was used to evaluate 

the observed/model predicted misclassification m a t r i x and Nagelkerke 

/ Cragg h Uhler's psuedo-i?^ was used as the goodness-of-fit statis-

t ic for the logistic regression models (Long, 1997) . I n addi t ion, the 

receiver-operating characteristic R O C provides a two-dimensional de-

p ic t ion of predict ive performance (Fawcett, 2006). The area under the 

R O C curve (AUC) measures the probab i l i t y of a correct classification 

(Hanely and McNei l , 1982). Figure 6.6 shows the R O C curves for the 

logistic regression models of Indonesia, China, and the whole of East-

Southeast Asia. 

The ROC, Cohen's kappa index, and Nagelkerke / Cragg h Uhler 's 

psuedo-i?^ were calculated for the purpose of assessing the predict ive 

power of the model (see Table 6.1). A l l these estimates were averaged 
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East & Southeastern Asia 
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Tabic 6.1: Logistic regression model asbcssinerit for the H5N1 occniiencos in 
East-Southeast Asia. Indonesia, and. China, 1996-2009 and the two epidemic 
waves between 1996-2001 and 2005-2009. 

Model Assessment 

Region or Country AUC土SD Kappa 土 SD Pseddo-R2 土 SD 

East-Southeast Asia .9034* 士,0019 8467二.0 丄 30 .6061 士.0060 

Indonesia .8947+.0044 .6491+.0042 .4751+ .0192 

China (1996-2009), .7806±.0097 .6063士 0408 .2354 二 :.024i 

China (1996-2004), .8865±.0180 .6497±.0181 .4901亡 :.0681 

China (2005-2009), .7221i.0132 .5796±.1021 .1679-:.0269 

* Average value of 1000 logistic models 

over the 1000 bootst rap replicates. The predictions for the H5N1 in 

Indonesia. China, and East-Southeast Asia are shown in Table 6.2 and 

Figures 6.7(b), (d). and (f). I n these figures, the i i sk potent ia l for t l ie 

occurrence of H5N1, w i t h respect to environment, is highl ighted by 

large values in red. T h a t ib, the larger ib I lie value approacli ing to 1, 

the higher is the probabi l i ty of occurrence of the disease. 

6.3.3 Knowledge Fusion and Denipster-Shafer Theory of Ev-
idence 

Knowledge fusion provides a framework for integrat ing in format ion 

f i o in di frcici i l lobcaicl i doiudiiib. Uncc i tamty, peihapb ai ising f rom 

incomplete data, l im i ted domain knowledge, or the appl icat ion of an 

insuff iciently sophibticatcd rnotliodology, could l im i t the value of the 

above analyses. Dempster-Shafer (D-S) theory of evidence seeks to 

overcome the l imi ta t ions associated w i t h conventional probabi l i ty the-

ory when the researcher seeks to quant i fy and reason w i t h imprecise, 

uncertain and/or weak in format ion (Dempster. 19G7; Sliafer. 1976). I t 

has been widely used i n applications involv ing the use of geographical 
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in format ion systems (Malpica ct aL, 2007) and image processing tech-

nologies {Kaf ta i id j ian et aL, 2003; Adamck and O'Connor. 2007); i t has 

also been used in cl imate change research (Li io and Caselton, 1997), 

detecting credit card fraud (Panigrahi et aL. 2009). and in evaluating 

outcomes associated w i t h medical intervention (Jones et a l , 2006) 

Recently, this method has been employed to identi fy areas at risk 

f rom r i f t valley fever in Afr ica (Clements et aL, 2006). To provide a 

formal description of D-S theory, B defines a f inite set of muti ia l lv ex-

clusive and exhaustive elementary h.}pothesis { H i , Hi^ • • • H � ^ } called 

the frame of discernment {FOB). The number of possible subsets of 

O is 2丨 e丨，including the fu l l and nul l hypotheses. In this study, each 

latt ice point is d binary frame of a discernment containing two elemen-

tary hypotheses, {yes} for the presence of H5N1 risk and {720} for 

absence, i .e. ,0 二 {yes, no}. Tl ie subsets of © are {yes}, {r?o}, 

and {yes, no}. I n part icular, the subset {(p} and {yes, no} stand for 

empty and unknown (or uncertainty). ‘ 

I n D-S theory, each subset is assigned a belief value by the avail-

able evidence, called probabi l i ty mass function, m(-) . I n part icular, 

rn{{4>}) = 0, E i / c e 爪(丑）=1, where H reprcsonts t h e subsets B 

and 0 < 77i(-) < 1. In this study, the results o l the three analyses 

(the capabil i ty measure of the H5N1 virus, t l ie clusters of outbreaks, 

and the results f rom the logistic regression analysis) provide evidence 

indicat ing the belief for the risk of occurrence of H5N1, denoted by 

m i ( { ^ e s } ) , m2({ ’ye<5})、and However , no ev idence is d i -

i cc t ly provided by t l ic f i i8t two studies icgaid i i ig the absence of the 

disease. Therefore, the values of mi({？zo}) and m2({?io}) cannot be 

determined and so the mass functions of unknown, i.e. mi({//e6', tho}) 

and m2[ {yes ,no } ) , arc assigned: 1 — ？?{？yc.s}) and 1 — m2{{yes} ) . 
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The logistic rcgicssion model r rs i i l ts aic different bowevoi because the 

predict ive power of the model allows us l o assign values to the mass 

funct ions. The average A U G is used to assess model predictions. The 

mu l t ip l i ca t ion of the prcd ic lcd value and the average A U G is the ev-

idence for nv^{{yes}). The values of msi{no}) and m^dye.s, no} ) are 

thus (1 — m3{{yes})){l —AUC) and l — ni-i{{yes}) —rriiilno}), respec-

t ively. 

The Dempster 's rule of combinat ion offeis an approach to combining 

evidence f rom different sourres. The jo int p robab i l i t y mass funct ion, 

for instance can be obtained f rom the combinat ion of the 

two mass funct ions, rr?i({ye,s}) and n i2 { {y ( s'}): 

二 (mi 中 = ^ 爪 “ 卞 ⑷ ( 6 - 6 ) 

sins2 —{yrs} 

where 

人 ， = 1 一 Y ^ 7 7 Z I ( 5 i ) 7 7 Z 2 ( S . ) > 0 , ( 6 . 7 ) 

sins2=<? 

where k is a normal iza t ion factor, and S] and §2 arc subsets of 0 . 

Dempster 's rule is commutat ive and associative, and thus the jo in t 

mass funct ion is independent of the order in w l i i c l i evidence are com-

bined Dempster (1967). 

I n this study, the three bources of evidence are combined v ia an i t -

erat ive procedure in order to ident i fy for each la t t ice point the 'degree 

of belief" wc have in the l ikely occurrcuce o l H5N1. To s impl i fy the text 

we have referred to this as t l ie “ r i sk ” . Tha i land, for exa iupk , is repre-

sented by a ma t r i x 3088x1738 lat t icc points. Dempster 's combina l ion 

procedure is demonstrated lor Tha i land i n Table 6.3. 
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CHAPTER 6. THE INTEGRATED APPROACH TO MAP H5N1 IN SPACE AND TIMEUl 

6,3.4 Spatial Correspondence Analysis 

Spatinl correspondence analysis using Pearson's correlation coefficient, 

R, Haining (1991, 2003) measures the association between observed 

avian-influciiza o i i tb i oaks and model p i edict,ioiib. A sairipl(^ hize ad-

justed t-test was employed to test statistical significance of R. The 

reduction in the degrees of freedom is a funct ion of the level of spa-

t ia l autocorrelation in the two rnapH that are being correlated. This 

is because spatial autocorrelation introduceb redundancy into a set of 

data and the adjustment procedure identifies the ''equivalent" number 

of independent observations. 

^Jatheinatically, the Pearbon product niomeut correlation coefficient 

is dcfiiiod as: 

r = � ) (6.B) 

where x and y are sample means and n is the sample size. The adjusted 

sample size can be calculated f rom 

N ' = 1 + 1 , (G.9) 

B^ and Ry are the estimated n x n spatial correlation matrices for 

two spatial processes X and Y. I f they are spatially uiicorrelatcd, 
A A 

trace(i?ri?y) = n and N ' = n. 

Assuming approximate normality, and nul l hypothe^iis Hq iti r = 0, 

If 

t 二（iV" — — 厂 1/2 (6.10) 
exceeds the cr i t ical value of t-stat ist ic w i th the degree of freedom —2, 

Ho w i l l be rejected. 

For the implementation, lattices were aggregated into blocks vary-
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ing i l l size f rom 60x60 to 30x30 because the number of cases is small 

relative to t l ic original spatial resolution of the data which is extremely 

fine-grained Tl ic observed outbreaks were converted to a rate by cal-

culat ing for each areal unit the number of outbreak cases divided by 

the populat ion at risk which is the human plus poul t ry populat ion, 

(number of outbreak) / fpopulat ion+poul t ry) . Model predictions were 

obtained by averaging results across the latt ice points fall ing w i th in 

aii}^ block. Results f rom the analysis of spatial correspondence using 

the sample size adjusted t-test for significance testing are shown in 

Table 6.4. 

6.4 Results and Interpretations 

6.4.1 Thailand and Vietnam 

Table G.4 and Figure 6.5 show the result for Thai land and Vietnam. 

Table 6.4(c) and (f) demonstrate our estimate of the spatially varying 

'degree of belief" in the level of risk of H5N1 obtained by integrating 

the three forms of anal}^sis (see Figs. 6.5(a) and (c), and Figures. 6.5(b) 

and (d), and Table 6.4(b) and (e)) using the Deinpster-Sliafer theory 

of knowledge fusion. Tablen 6.4(b) and (e) are the results f rom the 

epidemiological analysis of Gi lbert , et al. (Gi lbert et al., 2008). I n 

both cases the closer any area's value is to 1 (the redder i t is) the 

greater the l ikelihood of an H5N1 outbreak in that area. Table 6.4 

also reports Pearson correlation coefficients (R) and associated p-valiies 

which show that our experimental patterna ((c) and (f)) have a closer 

correspondence to tl ie observed pat tern of cases ((a) and (d)) than the 

results of Gi lbert et al. (Gi lbert et a l , 2008) ((b) and (e)). This f inding 

holds over a range of spatial scales f rom 60 x 60 cell aggregates to 30 x 30 
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cell aggregates. 

Tabic 6.4(c) shows that the greatest risk of H 5 N i is in the upper 

central region and the lower part of nor th Thai land. I t indicates less 

risk in central Tha i land than predicted by Gi lbert ct al. (Gi lbert ct al,. 

2008) (Table 6.4(b)). This pat tern corresponds w i t h fewer observed 

outbreaks in this area of Thai land. 

For Vietnam, the greatest risk occurs in the no r th and to a lesser 

extent the south of the country (Table G.4(f)). Unl ike the work of 

Gi lber t et al. (2008)，our results not only model the spatial d is t r ibut ion 

of H5N1 outbreaks, but also the space-time dynamics of v i ra l evolu-

t ion. Our analysis combines real-world outbreak data w i t h evidence 

on v i ra l evolution. For instance, the H5N1 virus was first detected and 

became established around Hanoi, nor th Vietnam, in 2001 and con-

sequently spread to the south around Ho Chi M i n h ci ty (Wan et al., 

2008). Phylogenetic analysis shows tha t the virus, isolated f rom the 

north, has mult ip le sublineages and shares a close phylogenetic relation-

ship w i t h the virua f rom Thai land, Malaysia, Laos, and provinces in 

southern China (Chen et al., 2006; Smi th et al.. 2006b). Furthermore, 

the northern H5N1 virus is associated w i t h novel genetic subtypes, and 

these have faci l i tated the spread of the disease bo th w i th in and out-

side the coui i t ry (Wan et al.. 2008). Final ly, i t was reported that the 

number of H5N1 outbreaks decreased in the south in late 2005. but the 

disease st i l l persists in causing outbreaks in nor thern V ie tnam (FAO, 

2010; Wan et al., 2008). Table 6.4 again demonstrates that the risk es-

t imates obtained f rom our integrated analysis correspond more closely 

than the results f rom Gi lbert et al. to the empir ical outbreak pat tern 

at, a range of different scalo . 
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6.4.2 Indonesia, China, and East-Southeast Asia 

Figure 6.8 shows the observed d is t r ibu t ion of H 5 N 1 outbreaks and 

our estimates of the r isk of the disease in Indonefeia. China, and the 

whole of East-Southeast Asia. The integrated pat terns shown in Fig-

ures 6.8(b). (cl)’ and ( f ) , actual ly ’ are risk maps which not only reflect 

avidi i - inf lucnza outbieaks, bu t also chaiactei ize the p i obvibilities of oc-

currence of the disease by integraledly confeidering the H5N1 evolut ion, 

outbreak clusters, and environment. I n these Figures, the larger is the 

value approaching to 1. the higher is the probabi l i ty of de\ eloping the 

disease. Table 6.2 summarizes the logistic regression analysis in the 

three areas. 

For Indonesia, the higheat r isk of H5N1 is in central Java (Figure 

6.8(b)) . I t shows tha t the risk extends th rough the island to i ts sur-

l o imd i i i g archipelagos. The l i i idingb f rom the logistic i egiessioii anal_>'-

sis provide an i i i te rprc ta i ior i i()r th is pat tern. Table 6.8 i l lustrates tha t 

popu la t ion deiibity. pou l t r y deiibity. and the shortebt pa th distance to 

rai lways are signif icant ly (p < 0.001) associated w i t h occurrciiccs of ihe 

disease. The results indicate tha t the very h igh density of popula t ion 

(more l l i an 940 people per km^) and the h igh concentrat ion of pou l t r y 

p roduct ion (60% of Indoi iKi ia 's p roduc t ion takes places i n Java) are 

under ly ing factors in the establishment of mul t ip le H 5 N 1 .subgroups 

( S m i t h e l a l . , 2006b) . ThebC fac to rs g rea t l y increase t h e r i sk o l H 5 N 1 

occurrence i n Java. I n addi t ion, the signif icant negative ic la t ionship 

between H5N1 and the ,shortest pa th distance to rai lways implies t h a i 

avian influeiiza is spread to othei surro imdnig ardi ipelagob th rough the 

p roduc t ion and t rad ing of pou l t r y (Smi th c l al., 2006b). 

For China, our result showb tha t the highest r isk of H5N1 is i n 

Guangdong, Yunnan, Fuj ian, and areas close to Do i ig t ing Lake in Hu-
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nan province, south China. High risk also appears to extend along 

the coastline of southern China (see Fig. G.8(d)). The risk increases 

f rom the northwest to southeast. Qinghai Lake, where over 6000 mi-

gratory birds were infcctcd and ki l led by H P A I H5N1 in early 2005 

(Chen et al., 2005: L iu et al.. 2005), was also highlighted as a potent ial 

source for the disease. The logistic regression analysis identified popu-

lat ion density and the shortest path distance to inland water bodies aa 

significantly {p < 0.005) associated w i th the occurrence of H5N1 (Ta-

ble 6.2) 111 eastern China, farming, free-grazing poultry, and economic 

trade and movement, have played significant roles in the niaintenance 

Hiid the transmission of avian influenza The significant positive rela-

t ionship ip < .005) between the shortest path distance to migratory 

b i rd pathways and outbreaks, however, appears to suggest that b i rd 

migrat ion may not be a key factor tr iggering large outbreaks and v i ra l 

transmission in China, part icular ly in eastern China between 1996 and 

2009, even though b i rd migrat ion has been widely thought as a cause 

of wide spread of the disease globally (Chen et al., 2005; L iu et al.. 

2005; Olisen et a l , 2006). The other socio-environrneiital variables (as 

shown i l l Table 6.4), including al t i tude, populat ion deiibity, pou l t ry 

deiibity. and the shortest distances to inland water bodies, coastlines, 

migratory b i rd pathways, railways, and roads, fail to b h o w stat ist ical 

significance w i th in the two periods between 1996 and 2004. and 2005 

and 2009. This might be due to data l imi tat ions associdted w i th using 

.such a short t ime span. 

Figure 6.8(f) dcpicts the risk of o c c u i T o i i c c of avian iiifluoriza H5N1 

i l l East-Soulheast Asia. The largc-scalc mapping shows tha i the high-

est risk is in central T l id i land and the r io r ihcm and southern parts of 

Vietnam. The central part of Indonesia also has high risk. Compared 
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to these countries, China appears to have lower levels of risk, especially 

in the northwest including Tibet and X in j iang autonomous regions, and 

the nor thern par t of Qinghai province. This pat tern can be regarded 

as a reflection of the relat ionship between the disease and lioterogenc-

i ty of the local so do-ecological environment. The logistic regression 

analysis indicates tha t outbreaks signif icantly (p < 0.001) associated 

w i t h al t i tude, populat ion density，and the shortest pa th distance to 

in land water bodies, coastlines, railways, and roads (Table 6.2). I n 

East-Southeast Asia, most cities and countries are usually located i n 

areas where the environment is suitable for human hab i ta t ion and agri-

cu l tu ra l product ion. Rice cropping and pou l t r y rearing are popular i n 

Thai land, V ie tnam, Indonesia, and south China. These countries ben-

efit f rom abundant hydrologira l resoiirces (e.g., r iver deltas), bu t suffer 

f rom ecological-environmental problems caused by a rap id ly increas-

ing populat ion which in t u rn facil i tates the establishment of mul t ip le 

H5N1 Hiiblineages (Chen et al., 2005), In addi t ion, convenient trans-

por t networks like railways and roads become significant i n spreading 

and tr iggering the re-occurrence of H5N1 i i i East-Southeast Asia. 

6.5 Summary 

This chapter employed genetic analysis that identifies the evolut ion of 

the H5N1 virus in space and t ime, epidemiological analysis that de-

termines 8ocio-ecological factors associated w i t h H5N1 occurrence and 

stat ist ical analysis tha t identifies outbreak clusters, and then applied 

a methodology t o formally integrate the findings of the three sets of 

methodologies. 

This study is novel and significant in seeking to lay a solid founda-

t ion for the inter-discipl inary study of this and other relevant influenza 



CHAP TER 6. THE INTEGRATED APPROACH TO MAP H5N1 IN SPACE AND TLAIE145 

epidemics. First , i t Ubcs D N A sequences and spacc-time data to crcate 

a phylogenelic tree to estimate l l i c v ims ' capabi l i ty of spreading. Th is 

is the first at tempt to provide a mapping of H5N1 vi i uses derived f rom 

the phylogcnetic tree. Second, by integrat ing the results obtained f rom 

the throe analyso.s, wo offer insights into the ocnirrcnco and space-time 

spread of H5N1 t ha t have a higher level of correlat ion w i t h empir ical 

evidence than is found when analysis is based on only one methodology. 

I n addit ion, we appl ied the methodology across mul t ip le scales; tha t 

is to the whole of East-Southeast Asia as well as the ind iv idual countries 

of Thai land, V ie tnam. Indonesia, and China, respectively. Our analysis 

roftults in a significant advance in f indings over thoso reported in, for 

example, Gi lbert et al. (2008), and we believe our findings are more 

precise and informat ive i n representing the ocTurreiice and the space-

t ime dynamics associated w i t h the spread of H5N1. 

• End of chapter. 



Chapter 7 

Conclusion 

7.1 Summary 

This research set out to explore the spatial and temporal patterns of 

avian influenza H5N1 and to identi fy factors affecting the spread of the 

disease. On these questions, the work makes three pr imary contr ibu-

tions; 1) i t explores the long-range correlation and rnult i f ractal i ty of 

the t ime sei ics of H5N1 outbieaks; 2) i t devises di] efficient rnelhod for 

mapping the risk of H 5 N i disease by integrating studies -and technique 

in i t ia l ly proposed in different knowledge domaiii&, and 3) i t modelb the 

association between the occurrcnce of H5N1 and socio-ccological envi-

ronments in Thai land, Vietnam, Indonesia, and China, as well as the 

whole of East-Southeast Asia, In addit ion, we proposed a statist ical 

method for automatical ly ident i fy ing the crossover point of t ime series. 

The method was discussed in Go and Leung (2011). 

We started, in Chapter 2, by i l lustrat ing the importance of studies 

of avian influenza as they have been offered f rom three perspectives: 

that of H5N1 history, characteristics of the H5N1 vims, and of its 

mode of transmission. In Chapter 3, we give the conceptual framework 

152 
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within whitli tlic spread of avian influen>:a cdn be examined under a 

unified view that takes into account the evolution of H5N1, the bpatial 

and temporal spioad of avian influenza, and the onvironmcntal and 

socio-economic factors conducive to the outbreak of the disease. The 

framework pays part icular attent ion to the interactions among these 

processes. Based on the framework, we first investigate in Chapter 4 

the scaling behavior of H5N1 outbreaks in wi ld birds and pou l t ry over 

time. This chapter sought to answer the following issues: (1) Are pre-

vious H5N1 outbreaks responsible for current spells of infection? (i.e.. 

Are outbreaks long-range correlated?); (2) Do H5N1 outbreaks exhibit 

nmlr i f ractal i ty properties; and (3) Are the temporal behaviors ciifFor-

ent among the conriiients? Through the application of mul t i f ractal 

detrended fluctuation analysis (KIF-DFA) to the HSNl-outbreak t ime 

series, the study was able to work out the long-range correlation and 

mi i l r i f ractal properties of the disease. The seasonal pat tern was also 

determined by the crossover t ime scale. A compdrisoii of the scaling 

behaviors of the outbreak t ime series suggested different mocliaiii&ms 

of the transniifasion of the dibea.se in Asia, Europe, and Afr ica, respec-

tively. These results underlined a need for t ighter suiveilldiice and 

control of HSN丄 t i i rougl i w i t h international cooperation in order to 

prevent outbreaks and spread of avian infiiienza. 

I l l applying M F - D F A . we found that the detection of crossover t ime 

bcale(y) was relatively subjective since d id not rest on rigorous statis-

t ical procedures and was generally deteimined bv eyeballing or sub-

jective observation. Crosbover t ime scales determined in this way risk 

being problematic ,cvcii spurious. The results of subjective estimates 

may not thus rcf lort t l io {^rriuinc underlying sr aling brhdvior of a t ime 

scries. In place of these approximate method, wc proposed a statisti-



CHAPTER 7. CONCLUSION 154 

cal procedure to terminate the number and locat ion of crossover t ime 

scalcs hidden in the fluctuation of a t ime series. I n ordei to ensure 

stat ist ical sigmficanrc, the method also ostablkshes confidence intervals 

for the crosbover t ime scales. By this means, genuine crossover t ime 

scales can be rigorously determined and crossover t ime scales which 

went unnot iced by conventional observation method can be success-

fu l ly captured. This makes the detection of crossover t ime scales in 

M F - D F A more objective, reliable, and w i t h stat ist ical sense. The pro-

posed method was the first a t tempt to employ a stat ist ical procedure 

for the determinat ion of crossover t ime scales in M F - D F A . 

In Chapter 5, we went on to study the spatial pat tern of H5N1 

outbreaks. This study included the ident i f icat ion of bo th global and 

local patterns of the outbreaks in humans and b i rd populat ions of the 

world. We applied the K funct ion and the local K funct ion to explore 

trends and clusters of the disease at mul t ip le spatial scales. K funct ion 

analysis indicated tha t the global trends of the disease were different 

i l l Imniaiis and avian. Our local pa t te rn analysis using a local K func-

t i on fur ther identif ied clusters of outbreaks in Thai land, V ie tnam, and 

Egypt . 

However, we recognized tha t the as-sinnptiori of spat ial homogene-

i t y impl ic i t i n the work ing of t rad i t iona l ly defined K funct ion had the 

potent ia l to l im i t the value of analyses of the disease's spat ial scaling 

behavior. To meet this concern, this work then proposed a modif ied 

local K funct ion to estimate the degree of outbreak clusters on lattices, 

al lowing for the hpatidl offccts caused by diht aiicc This modifi(、d fi i i ic-

t i o i i was used to detect clusters of outbreaks in Thai land, Vietnam， 

Indonesia, China, and East-Soutlicvist Asia. Wc idoi i t i f icd diffciorit 

patterns as chaiactcrizing these countries and various ccological envi-
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roninents of the widor region. The existence of these different forms 

of pat terning behavior suggests that H5N1 may transmit itself via dis-

t inct raorhaiiismft in different countries and different environments. I t 

seems plausible to suggest that these mcchanisms w i l l vary in asso-

ciat ion w i t h the different local sroio-crological environments and the 

behavioral patterns of hosts, including humans and birds. 

Finally, Chapter 6 studied a set of socio-environmental factors pos-

sibly associated w i t h the disease, including alt i tude, populat ion density, 

pou l t ry density, and the shortest path distances to in land water bodies, 

coastline, migrat ing b i rd pathways, railways, and roads. The relation-

ship between outbreaks and these factors wore quantif ied by the logistic 

regreKsion model. By this means, we predicted the occurrence of H5N1 

risk for Indonesia, China, hand East-Southeast Asia. 

Through our attempts at modeling, we note that uncertainty, whether 

arising f rom incomplete data, l imi ted domain knowledge, or the appli-

cation of an insufficiently sophisticated methodology could l im i t the 

rigor of H5N1 studies. In essence, the istiidy of avian influenza H5N1 

ib i i iu l t id iscipl i i iary across virology, molecular biology, medical geogra-

phy’ and spatial epidemiology. Any study that relies on only one k ind 

of discipl inary knowledge may fai l to make impor tant connection w i t h 

various domains. W i t h this perspective, this work proposed a novel 

approach for formally integrating mult iple in format ion f rom different 

data sources and the distinct domain knowledge. Overall, our analysis 

result is significantly more revealing than that of the analyses based on 

only one k ind of methodologies. I n addit ion to having higher predictive 

power, the integrated pattcrnb shown on our maps are substantively in-

formative in depicting the space-time dynamics of v i ra l evolution. 

To sum up. this thesis proposed three methods - (1) applying mul t i -
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f i a c t c i l detiended fluctuation analysis to deteiinii ie the temporal scaling 

behavior of aviaii-ii if luenza outbieaks (Chapter 4)-’ (2) modify ing the 

local K funct ion to identi fy the clusters of outbreaks in space (Chap-

ter 5) and (3) applying spatial epidemiological model and Dempsler-

Shafer evidence theory to explore the distr ibut ion of H5N1 risk (Chap-

ter 6). The study seeks to lay a solid foundation for the future inter-

(iLsriplinary study of influenza outbreaks in general and avian influonza 

in particular. 

7.2 Directions for Further Research 

Bui ld ing on the knowledge gained in this research, it is bencficidl in 

carrying out further research along the following directions. 

1. The mul t i f racta l detreiided fluctuation analysis (MF-DFA) pre-

sented in Chapter 4 could be applied to delcct the temporal scal-

ing behavior of avian influenza and otl iei infectious diseases (such 

as H I V and dengue fever) at mult ip le spatial scales based on city, 

country, continent, and the world. To make i t viable in practicc. 

further work need be done to collect space-time diseases data at 

different levels. This aiiah^sis could also be combined w i t h method 

of geographical statistics introduced in Chapter 5. depending on 

whether a substantial database is available for the disease under 

consideration. 

2. In Chapter 5, i t is possible to include the variable of l ime into 

spatial analysis, e.g. based on the K and local K function, in-

stead of just estimating the effect oi distance. Hence, by adding 

variables of space and t ime, the detection of disease hot spots 

could be examined along the two dimensions. This w i l l enable 
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better decision making in ihc prevention of the disease. 

3. I t is wort l iv to extend the techniques presented in Chapter 4 and 

5 to other subtypes of avian influeiiza. thereby seeking to undcr-

stand the spatial and temporal association between H5N1 and 

other avian viruses. A conceptual and technical challenge w i l l be 

on measuring the association between these viruses in terms of 

space, t ime, and the v i ra l evolutionary processes. 

4. I l l Ci iaptc i 6. I t iiiiglit. be piof i tablc to extend t l ic aiialy&ib of 

phylogenetic tree to l l ic analysis of genctic networks. The quan-

t i f icat ion of a phylo^cnutic nctwoik would enable us to lo i inal ly 

measure the relationships among the viruses. By l ink ing up wi th 

spdce and t ime, bucli an identif ication oi i iotwoiks might ciiliance 

our understanding of the association of avian influenza based on 

their spacc-timc evolutionary processes. 

5. Finally, the thesis can be made more comprehensive and policy 

relevant i f detailed data about poul t ry trades and products, hu-

man socio-economic activities, w i ld birds' migrat ion, investment 

in public for hygiene, health care service, and public health prac-

tice could be made available. Apply ing our approach to the anal-

ysis of these data wi l l be a direction for future research capable of 

providing effective measuies and strategies for prevention of the 

spread of infectious diseases. 

• End of chapter. 



Appendix A 

Detection of Crossover Time 
Scales in MF-DFA 

Fractal analysis provides a mathematical formalism to characterize in-

tricate spatial and dynamical structures (Feder, 1988). The method in-

tends to study extremely irregular objects that cannot be described by 

Euclidean geometry because of their fractional dimension. The study of 

fractal scaling behaviors examines how time-series patterns vary w i t h 

the change of temporal scales. In other words, the scaling relationship 

between pattern and its nipgusurement scale can be described a.s the 

ize of steps required to rover a fractal series that varies as the scale 

raised to a scaling exponent given by the fractal dimension. The 

study explores the characteristics of t ime series in terms of long-rang 

correlation and fractal property, giving rise to diverse behaviors w i t h 

respect to the change of scale. In practice, to determine fractal scaling 

behaviors, we measure the series using various step sizes 

Oftentimes, complex fractal series does not exhibit mono-scaling 

behaviors characterized by a single scaling exponent. Mult i-scal ing 

behaviors are actually very common in natural phenomena, such as 
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hydrological processes (Kantelhardt ct a l . 2003), tempcratiirr fluctua-

tions (Alvarez-Ramirez et a l , 2008), sunspot activitieb (Movahed et al., 

2006b), avian-influoiiza outbioaks (Lcimg ot FII.. 2011), otc.. One of 

the impor tan t concepts is the crossover l ime scale(s) tha t ‘separates 

d is t in r t rogimcs having different scaling behaviors. Actual ly , crossover 

t ime scale(s) can be t reated as the crossover point at which the f rac ta l 

s t ructure changes i ts behavior. For example, the t ime series may be 

long-range correlated in large scales of .s > 6̂；. whi le i t ma}- nor happen 

in smal l scales .s < Sj., where Sj； is the crossover t ime scale. Figure A . l 

shows two examples of crossover t ime scales reported by L iv ina et al. 

(2007) and Movahed et al. (2006b). 

The detect ion of crossover t ime scale(,s) is consequently employed 

to dist inguish mult i -acal ing behaviors. Some investigations intend to 

find the factors leading t o the occurrence of crossover t ime scales and 

mixed f racta l structures by detrending (Kante lhardt et al.. 2001, H u 

et al.. 2001b). Mu l t i f r ac ta l cletrended f luc tuat ion analysis ( M F - D F A ) 

(Kante lhardt et al., 2001) is a commonly used method. B y convention, 

the detect ion of crossover t ime scales in M F - D F A is b‘、obberviiig the 

change of the log-log p lo t of The fluctuation f imr t ion . However, ex-

act ly l iow one should ident i fy and locdtc the genuine ciossover points 

tha t separate difFoiont regimes remains an op on issiio. A l though B i i l l e r 

et al. (2001) analyt ica l lv identi f ied crossover points by min imiz ing the 

icsicludl of the l i i ieai fitb o i i f racta l scaliiigs, i t lias no solid theoret i -

cal foundat ions for the quant i ta t ive detect ion of crossover t ime scales. 

Up to th is moment, t l ie detect ion of crossover t ime Hcales has been 

done by the visual izat ion of the log-log p lot and the presence of &ecm~ 

ir igly different exponent vahioH Whether the obsorvod crossover points 

arc significant] in the statistical sense and whetlicr there arc gciiiiiiic 



APPENDIX A. DETECTION OF CROSSOVER TIME SCALES IN A / F - D F A 1 5 9 

real data 
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Figure A.l： Two examples for crossover points provided by Liv i i ia et al. 

(2007) and Movahed et al. (2006b): (a) "Arrows denote average points of 
crossovers, where the scaling exponents change" and (b) "Crossover behavior 
of the log-log plot of F{s) versus 5 for the sunspot time series for q = 2.0. 
There are three crossover timescales in the plot of F(s) , at scales si^-, S2x 
and S3a,". 
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crossover points tha t went lui i iot iccd have not been investigated. 

Actual ly , crossover t ime scales can be identif ied by some rigorous 

statist ical methods that, scarcli for the best f i t of the log-log plot . For 

simple fractal scaling, i t can be f i t ted by a linear regression model. 

The gradient is the index chaxacterizing the fractal scaling behavior. 

For complex f ractal series, mult ip le scaling behavior exhibits itself as 

a kinked k ind of curvc w i t h picrcmoal linoar fits. And t h r crossover 

points should be the jo inpoints of the kinked curve. Segmented line 

regression model (Miiggeo, 2003; K i m et a l , 2004: T iwa r i et aL, 2005: 

Yn et al.. 2007). which is composed of a few continuous linear phrases, 

appears to be a natura l model to characterize the mult i (mono)-scal i i ig 

behaviors of t ime series. Through the procedure of model selection and 

parameter est imation, crossover points in mult i-scal ing t ime series can 

be stat ist ical ly identif ied w i t h rigorous justif ications. 

To faci l i tate our discussion, the statist ical model for the description 

of mult i -scal ing behaviors and the statist ical procedure for detecting 

the crossover points w i l l be detailed in the sections to follow. 

A. l Scaling-identification Regression and Detec-

tion of Crossover Points 

As discussed above, a single scaling behavior can be modeled by a l in-

ear f i t of t l ic fluctuation function. However, for niulti-bcalirig behaviors, 

i t is apparent tha t d single linear fit fails to characterize the fluctua-

t ion function. I t appears that i f there mul t ip le crossover l ime scales, 

the linear fit w i l l be segmented into a kinked curvc w i t h cach linear 

segment representing a dist inct regime of the mult i-scal ing behavior of 

t l ic t ime series under study. Tims, it is essential l o have an appropri-
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ate model w i t h which wc can r igorously characterize such behavior by 

determin ing the number of crossover t ime scalcs (crossover points) i n 

st r ic t stat ist ical sense. Due to the kinked nature of the l inear f i t , the 

segmented l inear regression model (also called mult i -phase regression, 

piecewise regression, broken l ine regression, and jo inpo in t regression) 

(Feder, 1975; Er te l and Fowlkes, 197G) w i t h continuous linear phases 

should be appropr iate for the stat ist ical descript ion of mul t ip le scaling 

behaviors Here, we apply the segmented linear regression model to 

detect the crossover points of the f luc tuat ion funct ion, derived bv the 

M F - D F A . 

Supposed tha t ( T I , ^ I ) , (.T2, ^2),- • • • - U-n) are the observations of 

the f luc tuat ion values at each scale, i.e., x = logs and y — logFq(s). the 

responses are = E { y \ x , )十 £。i = 1，...，n. assuming that E { c i ) — 0 

and V'(£：?) = i^f for random errors c ” For each regime, the scaling 

behavior is described by d l inear fit exprcsscfl a^: 

E{y\x) = ,4,0 + 二 < -r <Tk, ( A . l ) 

where )'3、o and d ^ j are the intercept and g iad ie i i i tha t can be regarded 

as parameters characterizing the scaling exponents m the M F - D F A . 

I l l genera l the scaling model w i t h k crossover t ime scales can be 

expressed as 

K 

E{y\x) = + I3ux + J ] dk{x — (A.2) 

where 3iq and 3\i stand for the intercept and gradient of the f irst 

regime, respectively; r^, k = 1 , . . . , A" + 1, is the kth crossover t ime 

scale to be determined; 4 ( x ' — Tk)+. depicts the fluctuation of the kth 

subregion, when j ： 〉 a n d x — Tk ~ 0, i f x < Tk： 6k is the coefficient 
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equals to A+1,1 — 

Thib is actually the jo inpoint regression model t ha i has been used 

to describe the trends of canrer incidents over t ime (Muggeo. 2003; 

K i m et al., 2004). In the contcxt of MF-DFA, we call i t the scaling-

ident i f i fat ion rogrossion raodol And, i t is used to drtormine the ex-

act form of The fractal scaling behavior by identifying the significant 

crossover points of tho MF-DFA f i i i r tnat ion funrt ioD. Specifically, i t 

is emploj^ed to determine the locations and number of crossover points 

that are stat is t i ra l ly significant. That is, i f there arc only N statist i-

cally significant cros&ovei points, then the exact fo rm of the scaling-

ident i f i rar ion regression model can be statisti( al ly determined. K i m 

et al. (2000) proposed an iterative hypothesis testing procedure to de-

termine the number of joinpoints in the regression model. Similar ap-

proach is employed in our investigation. 

A.2 Determination of Crossover Time Scales by 

Statistical Inference 

The key to the determination of crossover t ime scales is the idoi i t i f i ra-

t ion of the significant crossovei points of the log-log plot of the M F - D F A 

f luctuat ion function. Supposed that AIQ arid k i , w i t h 0 < A;o < k i , are 

the min imum and the maximum crossover points respectively. The i t -

erative stat ist ical infeieiice starts f rom the nul l h>potliesib H。: there 

are ko crossover points against the alternative hypothesis H i � ihcrc 

are k�crossover points. If Hq ib rcjcctcd at bigmficancc level ai and 

ki — A;o > 2, we w i l l lest the hypothesis: "() + 1 vs k�. On the other 

hand, if is not rejected and ki — ko > 2. we w i l l test the hypothesis: 

ko us ki — 1. The iterative inferential procedure cndb when the nul l 
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Hq. ko crossover points 
Hi'. ki crossover points 

- 4 
Initialization 

J&S{HqvsH] 

No 
J L 

Make final decision 
Decision Making 

Figure A.2: Inference procedure for the determination of Scaling 
identification Regression Model 

hypothesis of k crobsover points is tested against the alterative hypoth-

esis of A'+l crossover points, where ko < k < ki. Hence, the number of 

(Tobsover points is determined as /c+1 when the nul l hypothesis assum-

ing k crossover points is rejected, and i t is k otherwise. In each step, 

the significance level is adjusted as a i = a / { k i — ko) by the Bonferroni 

coriectioii in oider to eribure that tke eiitiie significance level equal to 

a. The iterative procedure of this statist ical inference is depicted in 

fig,uic A.2. 
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For calibration, we applied the grid-scarch method proposed by Ler-

ir idi i (1980) to obtain the best-fit curve of t l io data and give a signifi-

cance test by permutat ion (K im et al., 2000) for each hypothesis. The 

irnpleinerit at ions of the model f i t t ing and the crossover t ime scales de-

tection procedures are elaborated in the next section. 

A.3 Model Fitting and Detection of Crossover Points 

Lei man (1980) developed the grid-bcait l i method of f i t t ing bcgrrieiited 

regression curvcs w i th unknown transit ion points. This teeliriique is 

suitable foi f i t t ing the bcaling-idcntificatiori iegression model and for 

providing as a by-product a way of making reliable inference on ihc 

crossover points. Essentially, it estimates the parameters, J i , 

. . . a n d Ti r „ . in the proposed model by minimizing the residual 

sum of squared error (SSE) 

丑2 = — " ” ) ) 2 ， ( A . 3 ) 

t=l 

where /i,⑷ denotes the fitted value of y at Xf, and 4友）=y，— /i；*̂  

denotes the residual. 

The entire procedure of the grid-search method consists of two i i idi i i 

steps. Firstly, assuming k unknown crossover points fixed at T�,• . . , T>, 

we fit a least square regression model {LS) on the covaiiates {.T, (jt — 

Ti)丁 (x — rfc)+}. and thus obtain a residual sum of squared eiror. 

Secondly, we examine all posbiblc combinations of (TI , . . . . r；,) to f ind 

out the geiiiiiiie crossover points T] t/, w i th the rnininmm SSE. The 

roiitid(、nrc、iiitrival of t l ic crobsovor points can be (alci i latcd as 

< MmSSE x (1 + ( A . 4 ) 
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where is the m i n i m u m value of SSE at X . I n this expression, k 

is I lie nimih)cr of crossover points, p is the dimension of the parameter 

space of the model, and Fa {k \p ) is the (1 — cv) percenti le of an F -

d is t r ibu t ion w i t h k and p degrees of freedom. 

The grid-soarrh technique is capable of finding the exact locations 

of the crossover points th rough the search of the best f i t for the sea l ing-

ident i f icat ion regression modol. However, the method docs not provide 

a means to determine whether one should reject the model under the 

nul l hypothesis and accept the model under the al ternat ive hypothesis. 

Furthermore, i t does not say whether the selected model is significant 

enough to represent the observed mult i -scal ing behavior under M F -

DFA. I n order to answer these two questions, the construct ion of an 

appropr iate test stat ist ic is thus crucial. 

Obviously, i t is reasonable to believe tha t there is significant dif-

ference between the two hypothesized model when the rat io of their 

residual sum of squares approaches 1. The test stat ist ic is thus deter-

mined as ( K i m et al., 2000): 

if(叫y)]，)⑷j’ ( ) 

where f(奴))(j/) is the residuals vector of the nu l l model and f(" ’)( jy) is 

tha t of the al ternat ive model. Essentially, T{y) is a goodiicss-of-fit 

moasii io examining the difi'eroiicc between the two models. 

However, how large (or small) should the value of T{y) be before one 

caii bay that t l i c i c is a s igi i i l icdi i l difference between the models? The 

d is t r ibu t ion of the test stat ist ic T{y) is the key to the answer of th is 

quest ion. Oftent imes, the exact d is t r ibu t ion of T{y) is unclear. Permu-

ta t ion. a Monte Carlo method, can be used to construct a permuta t ion 

d is t r ibu t ion for the test stat ist ic tha t approximates the proper ty of i ts 
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sampling distr ibution when permutation resamplcs arc large. We ghe 

a brief description of the procedure in K i m et al. (2000) as follows: 

Firstly, we apply the grid-soarch method to f i t t l io null model and 

obtain the residuals [亡f^"^。?，...，4^�)1- The procedure of pcrmuta-

t ion is repeated to ensure large enough resamples. For each process, we 

permute the residuals and add them bark to the null-modeled means. 

Let < = [tTqi TTan] be an H X 1 vector of permutations of the inte-

gers f rom 1 to n. The permuted data set associated wi th TTq has the 

same covariates as the original data, and the pernmtated responses are 

of the form 

z/;«) = /̂ ("�)' + [4"�),...’4f�)], (A.6) 
where = [/if。)，...，/}；^。)]. The next step is to calculate the lest 

statistic T{y{a)) by f i t t ing the null and alternative hypothesis models 

for cach permuted series. The values of T(y、„))、a = 1 , . . . /v^ — 1 arc 

therefore obtained by i l ic repeated Np — 1 permutations. 

The purpose of the permutation test in this study is to evaluate l l ic 

significance of the dillcrence between the liypothcbized models. The p-

valiie is then calculated by the following formula to depict how extreme 

T{y) iy in the entire pcrmulat ion values of T(巩“)），a = 1 Np — 1, 

=#[T(y。)）2r(y)],ae{l,2’...，Ap-1} 
where Np — 1 is the number of permutations. By this statistical proce-

dure, we can decide whether the two hypothesized models are different, 

and determine .simultaneously the number of crossover points under-

ly ing the nmlti-scaling behavior. K i m et al. (2000) called it the ap-

proximate permutation test, because of the Monte Cailo nature of the 

calculation and some oilier factors. W i t h regard to the issue of whether 

the sdcc'tcd model is sigiiifieaiil, enough to I'cprosciil the nmlti-scaling 
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behavior under MF-DFA, conventional methods, such as T-test and 

normal test, a,re useful for testing each estimation of the parameters of 

the kinked curve. 

• End of chapter. 
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