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Haze is a natural plicnoiiienon tliat obscures scenes, reduces visibility, aiK I 

changes colors. It is an annoying problem for photographers since it degrades 

image quality. It is also a threat to the relialMlity of iiiaiiy applications, like 

outdoor surveillance, objocl, dotecMjon, and aerial imaging. So removing haze 

from images is important in computer vision/graphics. 

But haze removal is highly challenging due to its rnatlicriicitical ainbigiiity, 

typically wlien the input is merely a single image. In this theyis. we propose 

a simple but effective image prior, called dark chamicl prior, to lemove htize 

from a single image. The dark channel prior is a statistical propoity of out-

door haze-free images: most patches in these images should contain pixels 

which are dark in at least one color channel. Using this prior with a haze 

imaging model, we can Crosily recover high quality hazofree imag'es. Exper-

iments donioiistrate thai this simple prior is powerful in various situations 

arifi outperforms many ]>rovioiis approaches. 

Speed is an important issue in practice. Like iiuniy coniput(jr vision prob-

lems, the tinie-consmiiiiig step m haze removal is to combine pixol-vviye coii-

stiaints with spatial continuities. In this thesis, we propose IAVO novo I tech-

niqiios to solve this problem cffidrntly. The first one is an unrorivontioiial 

largcvkernel-based linear solver. The second one is a gciieric ocigo-awaits til-

ler which enables real-time performance. This filter is superior in various 

applications including haze removal, in teims of speed and quality. 

The hiiinan visual system is able to perceive haze, but the underlying 

mechanism remains unknowni. In this thesis, we present new illiLsions slicnviiig 

that the human visual system is possibly adopting a mechanism similar to 

the dark chamiel prior. Our discovery casts new insights into liurnari vision 

research in psychology arid physiology. It also reinforces the validity of the 

dark channel prior ?us a coiriputer vision algorithiri, ])ecau.se a good way for 

artificial intelligence is to mimic liuman biciiiis. 



摘要 

猫敏是一铺大叙遮斋殺物的然現象。迫稀現象齊降低最物能站度並改變错物 

颜色。霧媒曾降低議像贸賴：，給榀影者們帶來困搜。霧猫也科影蓉許多货際應用的 

錄性，例如戶外監控、物體檢測識別及航空拍攝。闲此，丨關像去藉在計赏機視覺 

和計轉機圖形學領域都足運驳的观题。 

但…於数‘字上的歧教性，圃像去霧是一個很闲难的問题，尤;R:足當輸入僅為一 

張圆像的時候在本論文中，我們提出一fl抑"P托而有效的圖像先驗覘律，询现単一 

丨则像去霧《我們稱逭個先驗規徘為暗原色先驗，’1；：;是搖於戶外無霧丨輒像的一個統計 

規排：道些刷像中的大多數區塊都含有迫樣的一些像索，它們的某一個原色#是 

很低的亮度。結fr暗原色先驗和霧猫成像的物现規禅，我們可以輕鬆地遭原高'过魁 

的無豁像。资驗表明.這個簡耶的先驗規徘在多種情形下都非银行效，並.1:1.優於 

很多以前的方法。 

速度楚一個坑際應用中的重要問题《和許多計算機视覺方法類似，我們的去霧 

法花vin'大M•運錄時問以結合f.點約Jic和?；^冏速總性。在本論文中，我們提出丫 

兩稀新方來快速解決這個問题。第--嵇方法是一個Hh傅統的大核線性求解器。第 

二稀方法进一稀新穎的保迪秘波器，它能把我們的算法提升至•時的速度。我們週 

發現，無論是速度遝是资M,這種滤波器在許多其它應用中也荷優與的衷現。 

‘我們對顆猫的硏究並不局限於計舞機視觉領域。人類視觉系統擁有感知霧線的 

能力，但相關機制還衬待研究。在本諭文中，我們提出了多個錯资寅驗，表明人類 

視覺系統很存可能也在使用類似暗原色先驗的機制。我們的發現為心理學和牛.理學 

中的人類視觉研究帶來了新的兄解。我們的资驗也加強了暗原色先驗作為一種ii^ 

機視赞舞法的可靠性，因為在人工哲能領域，模仿人腦的算法通常齊很有效。 
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Chapter 

Introduction 

Haze is aii atmospheric phenomenon where turbid media obscure the scenes. 

Haze brings troubles to iriaiiy computer vLsioii/graphics applications. II. re-

duces the visibility of the scenes and lowers the reliability of outdoor surveil-

lance systems; it reduces the clarity of the satellite images; it also changes 

Uio (X)lois and detirea^ses the contrast of daily photos, which is an aiuioying 

problem to i)liotogTaphers (see Fig. 1.1 left^). Therefore, removing haze from 

images is an important; and widely demanded topic in computer vision and 

('.omi)iit'.(?r graphics arenas. 

The main challenge lies in tlie ambiguity of the problem. Haze attenuates 

the light reflected from the sceiios, and further 1)1 ends it with some additive 

light in the atmosphere. The target of haze removal is to recover the rc-

fioctud light, {i.e., the scoiie colors) froiri the blended light. This prohlom is 

matlK'niaticH.lly ambiguous: there are an infinite number of solutions given 

the blended light. How can we know wliicli solution is true? We need to 

answer this cjiiestioii in haze removal. 

Aml;)igui1:y is a cormriori challenge for many (X)iiiputer vision problems. 

Ill teniis oi. mathematics, ambiguity is because the number of equations is 

smaller than the iiumber of unknowns. The lucUiods in computer vision to 

solve the ambiguity can roughly categorized into two strategies. The first 

one LS to acquire more known variables, e.g.̂  .some haze removal algorithms 

capture multiple images of the same scene under different settings (like po-

larizers). But it is uot easy to obtain extra images in practice. The second 

strategy is to impose extra constraints using some knowledge or assiiiriptioiis 

^All the images iii this tliesis are beat viewed in the electronic version. 



Figure 1.1: Haze removal from a single iiiiago. Loft: iiipiit hazy image. H.iglir ： 

haze removal result of our approach. 

known beforehand, namely, some “jjiiors”. Tliis way is nioLP practical since 

it requires as few a«s only one image. To this end, we focus on mnqk. image 

haze removal in this thesis. The key is to find a suitable prim.. 

Priors are important in many computer vision topics. A prior tells the al-

gorithm "what, can wo know about; the fact bcforchand” when the fact is not 

directly available. In general, a prior can be some statistical/physical prop-

erties, rules, or heuristic cussiiinptioris. The perfornianco of the algorithnis 

is often determined by the extent to which tlie prior is valid. Some widely 

used priors in computer vision are the smoothness prior, spaisit.y prior, and 

syiimietry prior. 

In this thesis, we develop an effective but very simple prior, called the dark 

channel prior, to remove haze from a single image. The dark channel prior 

is a statistical property of outdoor haze-free images: most patches in tliese 

images should contain pixels which are dark in at least one color channel. 

These dark pixels can be due to shadows, colorfiilness, geometry, or other 

factors. This prior provides a constraint foi; each pixel, and thus solves the 

ambiguity of the problem. Combining this prior with a physical haze imagirijz; 

model, we caai easily recover high quality haze-free images. Experiinciits 

demonstrate that our method is very successful in various situations {e.f/., 

Fig. 1.1 right) and outperfoniLS many previous approaches. 

Besides quality, speed is another concern in practical applications, typi-

cally in real-time video processing and interactive image editing. The time-
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Figure 1.2: An illusion experiment,. The roofs pointed by tlie arrows have 

exactly t.he same color, but they are perceived very differently by liumari 

eyes. This striking illusion suggests that; the dark chamiel prioi. may be 

closely related with some human visual mecliariisins. Details are given in 

Chapter 5. 

coiisuiriiiig procedure in hazt; removal is to coiul^irie pixd-wise constraints 

aiid spatial continuities, wliicli is a corrunoii problem in many computer vi-

ii'um topics. Ill thiy tlicHis, wc propose two novel tcchiii(iucy to efficiently 

handle this problem. lu the first tediniqiie, we achieve a faster speed by 

solving a large kernel linear system. This discovery is against, conventional 

theories but we can prove its validity theoretically and experimentally. The 

second technique is a novel edge-aware filter. It is non-iterative and can be 

computed in real-time, but still exhibits very high quality. We find this filter 

superior to previous techniques in various edge-awarc applications including 

haze removal. Thus, we advance the state-of-the-art in a, broader area. 

Our study on haze is not limited in computer vision. The human visual 

system (HVS) is also faced witli the inherent ambiguities in many -vision 

problems, including haze perception. But the HVS has good abilities to 

solve these ambiguities. People have long realized that the only way the HVS 

could do so is to use certain priors [25]. However, most of these priors remain 

mysterious in psychology and physiology. In this thesis, we cUjsign several 

psychologically based illusion experiments (e.g., Fig. i,2), which suggest that 

the dark channel prior is related to the mechanism used by the HVS to 

perceive haze. Our discovery casts new insights into human vision research 

area. It also reinforces the validity of the dark channel prior as a computer 

3 



PUBLICATIONS 

vision algorithm, bccfiusc a good way for artificial iut(、llig(::iK、(、Is to niiiiiic 

1mman brains. 

1.1 Publications 
This thesis involves the following publications during my PhD t niiiiiiig peri-

od. The main concept and methods aie published in: 

• [30] Kairriing He, Jiaii Sun, aiid Xiaoou Tang. Single linage Haze 

inoval using Dark Channel Prior. In IEEE Confcir.nce on Corn.pv.f.a 

Vision mid Pattern, Recognition (CVPR), 2009 (acccptcd as oral). 

33) Kaiining He, .]iaii Sun, and Xiaoou Tang. Single Image Ha.z<' Re-

moval using Dark Channel Prior. In IEEE Tram^yactions on Pattern 

Analysis and Machine Intelligence (TPAMl), 2010. 

Our work [30] receives the CVPR Best Paper Award in 2009. Th(、twu fast 

algorithms fliso\isso(i in this thesis arc published in; 

•“ [31] Kaiming He, .liaii Sun, and Xiaoou Tang. Fâ st Matting using Large 

Kernel Matting Laplaciaii Matrices. In IEEE Conference on Covipuifv 

Vision and Pattern Recognition (CVPR), 20] 0. 

• [32] Kaiming He, .lian Sun, and Xiaoou Tang. Guiflod Image Filtering. 

I n The 11th European Conference cm Computer Vision (ECCV). 2010 

(accepted as oral). 

These two techrikiues are generic and applicable in haze ifiiiioval, alpha mat-

ting, and edge-aware filtering. The abcw. papers inspired a iiovnl alpha 

matting method, wliicli is not inchicled in this thesis: 

• [29] Kairniiig He, Chrisiopli Rlieinaiiii, Carsten Rother, Xiaoou Tang, 

and Jiaii Sun. A Global Sampling Method for Alpha Matting. Iii IEEE 

Conference on Computer Vision and Patteiii Hecoquition (CVPR), 

2011. 

1.2 Thesis Overview « 
Tliis thesis is organized as follows. In Chapter 2 we introduce the physical 

model of hâ se and give a comprehensive study on existing haze reuKwal 

4 



.2. THESIS OVERVIEW 

methods. In Chapter 3 we introduce the dark diaimel prior and apply it, t,o 

single image haze removal. In Chapter 4 we discuss two fast algorithms and 

their applications in haze removal and other cases. In Chapter 5 we stud)' the 

relationship between t.ho dark dmmid prior and the human visual system. 

We conclude in Chaptd- 6. 

• End of chapter. 



Chapter 2 

Background 

In the first part of this chapter, we study the physical model of the haze 

effect, which is given l)y a concise haze imagijig equation. This equation is 

the focus of the whole thesLs. We also formulate the haze removal problem 

and point out the challenges in this problem. 

Ill the second part of this cliapter, we review the previous works on haze 

removal. We investigate both multiple-image and single image cases, oii their 

advantages and limitations. ‘ 

2.1 Haze Imaging Model 
.The haze imaging equation is given by [49, ib, 79 

I(x) = J(x)i(x) + A(1 -《X)). 

An example of the haze imaging equation is given in Fig. '2 
are explained in the following: 

• X = (x, y) is a 2D vector represeuting the coordinates 

position in the image. 

(2-1) 

.1. The variables 

(:7;, y) of a pixel's 

I represents the hazy image observed. I(x) is a 3D RGB vector of the 

color at a pixel. 

6 
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藏 1 

Figure 2.1: Variables in the haze imaging equation. The traiLSiiiissioii map t 

is shown as white when t= l , and black when t=0. 

• J represents the scene radiance image. J{x) is a 3D RGB vector of 

the color of the light reflected by the scene point at x. It would be the 

light seen by the observer if this light were not through the liaze. So we 

often refer to the scene radiance J as a haze-free image. See Fig. 2.i. 

• t is a map called transmiHsion or transparency of the haze. f(x) is a 

scalar in [0,1]. Intuitively, t(x) = 0 means completely liazy and opaque, 

t{x) — 1 means haztvfiee and completely clear, and 0 < t{x) < J means 

semi-transparent. See Fig. 2,1. 

• A is the atmospheiic light It is a 3D RGB vector usually â SHumed 

to be spatially constant. It is often considered as “the color of the 

atmosphere, horizon, or sky" [49, IS, 79 . 

A physical view is shown in Fig. 2.2. The haze is formed by the particles 

in the atmosphere absorbing and scattering light. The term J(x.)t(x) iii (2.1) 

is called direct attenuation. The light reflected froiu an object is partially 

absorbed by the particles in the atmosphere and is attenuated. The traiis-

rriissiou t is the ratio of "the light that is not attenuated and reaches the 

observer" to "the light reflected from the object". The term A(1 — f(x)) is 

called airtight [40, IS]^. The particles scatter the light they absorb, playing 

as an infinite member of tiny light sources floating in the atmospliore. The 

airlight is due to these light sources. A detailed physical derivation of the 

^Sometimes researchers call A "airlight" instead. 

'2.L HAZE IMAGING MODEL 

囊 
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'2.L HAZE IMAGING MODEL 

疏 。 尋 二二•：二：：二二 > 

J(x) allcnuation J(x)t(x) l(x) 
camera 

atmosphere 

Figure 2.2: A macro physical pictiirc of the hfizo imaging model. 

hazo imaging equation is in Appendix A. Note the direct attenuation is M 

rmiltiplicativc effect, whereas the airlight i.s an additive one. 

The atiriospheric pheiioiiicna of haze, fog, and mist are all din.; to .Uio 

particles in the atmosphere, like dust, sand, water droplets, or ice crysl aLs. In 

meteorology, all these pheriornciia mainly differ iii their partick? mritcrial, sizf、 

shape, and c'.onceiitration[87|, but their jjliysical iiiiliuuiccs on iiiia^iii^ air 

similar[19). The haze imaging equation (2.1) is valid for all those phoiioiTioiia. 

and a haze removal algorithm should handle all of theiri. In Uiis thesis, wo do 

not distinguish their meteorological properties, and refer to tlieni ；i.s "haze" 

for simplicity unless specified. But one should keep in mind that we arc 

liaridling a more general concept including haze, fog, and inist. 

2.1.1 Depth 

Suppose that a scene point in the position x has the dislaiico dix) froin 

the observer, d is called tlie depth of the scene point. It is found that the 

haze transmission t is physically related to the depth d (see Appendix A for 

details): 

/.(X) 二 exi) I3{z)dz . (2.2) 

Here, 13 is the scattering coefficient of the atiriospliere. 3 is (ieterriiinwi l)y 

the physical properties of the atmosphere, like particle material, size, ‘shape, 

and concentration. The integral is on a line between a scene point, and 

the observer. 

If the physical properties of the atmosphere are honiogenous, the scatter-
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iiig coefficient, /j is a spatial coiLsUirit. Thus, wo can rewrite (2.2) as 

t(x) - e x p ( - M x ) ) , (2.3) 

or equivaieiitly: 

• ) 二 (2.4) 

Equation (2.4) says if wc can astiiiiate Ihe transiriission i, we can calculrtt(» 

the depth up to an uiilaiown scale^. In cornpiiter viskni, estimation is 

a very iiiiportaiit. yet difficult, problem [64]. In this SCILSO, the bad haze can 

>)e put l.o good use if we can separate the trarisrriissiou t. This is another 

iniportaiit motivation in liaze removal. 

The constant-/? assmript.ioii is invalid when the atmosphere is iiihoriiog(>-

iieous, e.g., when the haze is concentrated in some regions and forms cloud-

like. media. In this case, w(； cannot ii«c (2.-4) to estimate the depth. 

2.1.2 Image Degradation 

Given the haze imaging (.equation I(x) = J(x)/:(x) A(1 — /(x)), let us 默; 

how haze (iegrades images. 

The. first (icgradation is die visibility rodiift.ion duo to the. dim.-t, at.tcn-

iiatiori. Visibility is a measure of bow well tlie object, can bo,' discerned. In 

compuler vision visibility is often described by the gradient of the image. 

From (2.1) we have: 

VI(x) = /:(x)VJ(x), (2.5) 

where we consider t as uniform so the gradient of t is ignored. Because t is 

in the range [()，1], V I ha.s a smaller magnitude than VJ . So the visibility is 

reduced and the objects are more difficult to discern (see Fig. 2.3). We can 

see that visibility reduction is due to the direct attenuation J(x)^(x), or say, 

duo to the multiplicative t. 

The second degradation is chrominance shift due to the airlight. The 

chrominance describes the colorfillness regardless of the liuninance, which is 

represented by the direction of the color vector in the RGB color space. The 

haze imaging equation (2.1) suggests the vector I(x) ia a linear combination 

of the two vectors J(x) and A (see Fig. 2.4). Due to the additive A, the 

^This scale is less iinportant in many cases, because pcDple are often interested in 

relative fiepth. 

9 . 
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Figure 2.3: Images degraded by haze. On the k f̂t aro the scene rmiiaiic 

On the right are the observed liazy images I. 

i>� ) 

Figure 2.4: The color vector I is a linear combination of J mid A in th<) RGB 

space.“ 

vectors I(x) and J(x) are not in the same dirccUon: the diroiiiiriaiice is 

shifted. Usually the atruospliere is white or gray, so a hazy image appears 

grayish and less vivid. See Fig. 2.3. 

In sum, the inulUplicaMvc atteiiuatiou rodiiccs the visibility, and tiio addi-

tive airlight changes the chrominance. Haze Ls troublesome in many computer 

10 
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visioij/graf)luc.s applications. The reduced visibility' impacts object detection 

and recognition, lowers Ibe reliability of outdoor surveillance systems, and 

obscures the satellite linages. In consuinci-level photography, haze changes 

l:lie colors and reduces t he contrast of the photos. The degradation cannot 

be avoided by liiglier lovel cainera.s or better lens, because it happens in (he 

atmosphere before jeachiiig the apparatus. Therf^fore, removing the haze 

effects from images is demanded in comput er vision'/graphics. 

2.1.3 Problem Formulation and Ambiguity 

We have int ioduml the haze imaging equation: 

I(x) = J{x)^(x) -f- A(1 - ^(x)) (2.1) 

with 

/(X) = " ⑷ ( 2 . 2 ) 

The target of hazo removal is: given l;lie input liazy imago I, recover I,lie scene 

radiance iina,ge J . Usually we also need to recover t and A. (see Fig. 2.1). 

Next, we explain why this problem is iriatlicrnatically ambiguous. 

Denote the; iiuiriber of pixels in an image as N. If the input I is an RGB 

color image, we have a set of 3/V (3quatiorii3： 

、 

4 ( x ) = JrMt(x) -I- —《X))， （2.6) 

where the scalars /^(x), Jt;(x), aiid Ac arc the color coriiporiciits in the channel 

c € h}. However, we have 3TV unknown reflections ,/。N iinkiiown 

transiiiissioii t, and 3 unknown a(;iiiosplieric light A^. Tlie total number of 

luilaiovvns are 4N j 3, much greater than the number 'SN of equations, fn 

cornpiitei. vision, we refer to this problem as ambiguous, ill-posed, or uiider-

coiistrairieci. The ambiguity is iriaiiily due to the spatially variant, which 

contributes N variables. So we require at least one extra constraint fur each 

pixel to solve the ambiguity. , 

The physical meaning of the ambiguity can be understood in the following 

way. the haze plays a role like a semi-transp)arent. glass filter. The color of 

the filter \h A , and the transparency is t. An object with a color J is seen 

through the filter (see Fig. 2.5). Objects in (liffercrit colors can be observed 

11 
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glass filters 

objects observed 

Figure 2.5: The same ol)servc(l color can be explained by ohj(;ct.8 in diffcrcnl. 

colors scnn through filters in difFcnont, colors. 

as the same, if they are seen through filters in (liffercnt. cdltjis with proper 

traris|)aroncy. So given tho observed color, how can vvc know t he oK) jccl, color? 

We are faced with a siiriilar question in haze removal. 

2.2 Related Works 
In computer vision, the methods to handle the ambiguity a.ix、rouglily on two 

ways. The first way is to acquire more known varial)les, reducing the dis-

crepancy between the number of equations and t,he nunibej： of unknowns. In 

haze removal, this is often by capturing two or more images of the scene. The 

second way is to iiso some knowledge or iussiiinptioiis known beforehand, i.c.. 

priors. The priors impose extra constraints/dependency among the unknown 

variables. 

In the following, we review the previous haze removal methods in both 

categories. We do not discuss the teclmical details of these methotls. Instead, 

wc are interested in how they introduce oxtra constraints. All t;he met hods 

are reformulated in a same framework, though they iiia-y he expressed in 

different forms in the original works. We believe that tiiis is lielpfvil to better 

compare these iriethods. 

2.2,1 Multiple-Image Haze Removal 

Some earlier methods take two or more images of the same sceiio. Though 

this strategy increases the nmnbcr of known variables, at the same time it 

12 
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麵 • 

Figure 2.6: Haze removal based on varying atmospheric conditions. On the 

left are (;wo images taken in two hazy conditions. On the right are Llie 

estiiiiateci scene radiance and depth (the sky is ignored). Images froru [48 . 

brings in more unknowns. So the setting iiuist under certain constraints l.o 

avoid too many imknowiis being introduced. 

Methods Based on Varying Atmospheric Conditions 

The dichromatic method proposed in [5'2, 48, 50] takes at least two images 

of the same scene, under different atmospheric conditions (Fig, 2.6 left). The 

two images are strictly aligned. Thus the two images sharers the smrie depth 

d{x) and the same reflectance^ PcM-

It further assumes that the atmospheric light A is the only light source 

of the scene. Then the reflection J satisfies: 

Jc(x) = fJcWA, (2.7) 

Under the constant ^ assumption, the haze imaging equations of the two 

•̂ Tlie term reflectance refers to the ratio of the reflected light to the incident, light, 

whereas the term rcjlection refers to the reflected light alone. 

13 
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Figure 2.7: Polarizatiori-bcused methods, 

in two polarizer states. On the right are 

depth. Images from [G5 

Oil the left are two iiiuigevS 1 akoii 

the estimated scene radiance and 

images iire: 

( X ) = P c { x ) A l t } { x ) -I I 

，(X) = P c M A l t ^ K ) f 

/'i(x)) 
I'M). .8) 

where the superscript (.】or .2) is the image index. This is called the dir.h,r(nn.ati.(’ 

model ill [.52, -18, 50 . 

The equations (2.S) piovide QN constraints, togctlier with ‘浏 iiiiknovvn 

Pc, 2N unknown t, and G unknown A^.: in total 5A' + 6 unknown variablas. 

The constraints outnumber the unlmowns, and the problem bccomes over-

con,'ytrained. This problem ran be solved by standard fitting iilgoril.hins. 

Fig, 2.6 show an example result. • 

The above analysis is valid only when t^{x) ^ ^^(x). To oiisure this 

condition, the two images must be taken imder very differeut atmospheric 

conditions，e.g., one iri denser haze arid the other in thinner haze. This is 

not an eas3' task: tlie weather may remain uncliariged in several iiiirmt.es or 

even hours. This is the main limitation of this method. 

14 



2.2. BELATED WORKS 

Polarization-based Methods 

The methods in [65, 66] utilized a physical effcct of the haze - polarization. 

The airliglit is highly polarizwi, biil： the direct attenuation is much loss. 

Using a polarizer (a glass filter) attached in the camera lens, these meth-

ods take two images of the sarne scone under two polaj-ization states (see 

Fig. 2.7). Assume the direct attenuation i.s completely mipolarized, the hazo 

imaging equations of the two images are: 

IcM = ]:Jc{x)t{x)-\-A^{l-t{x)). (2.9) 

Here || and 丄 （ l e i i o t e two states, aiul the factor 去 is the influence of a polarizer 

to nil polarized light. 

The eq\iatioiis (2.!)) provide QN coiLstrairits, together with 3N urikiiown 

Jc, N unknown t、3 unknown a!! and 3 unknown A^: in total 47V+6 unknown 

variables. The problem becomes over-ooiistraiiied and can be .solved. Fig. 2.7 

is fill example. , 

A limitation of the polarization-based methods is the settings. Capturing 

two strictly aligned polarized images is troublesome in practice. Another 

problem is that the direct transmission is not always completely unpolarizcd. 

Besides, a recent work [81] finds that pobxrization-b^used methods increase the 

noise and are not beneficial to visibility. 

Methods Based on Given Depth 

Tlie methods in [51, 39] luse some given depth information to remove the 

haze. As the depth d is a map describing the structure of the scene, we 

categorize these methods as multiple-image ones. 

Under the constant-y f̂ assuiripfcion, the haze imaging equation becoiiios: 

4(x) = ⑷ + Ac{l - ⑷）會 (2.10) 

We have 3N equations in (2.10), together with 3N unknown Jc, 3 unknown 

Ac, aiid one unknown /3: in total 3N + 4 unknowns. The problem is almost 

well-posed. The extra unknown variables {Ac and P) can be estimated by 

15 



.2. RELATED WORKS 

丨 , ： 畫 

Figure 2.8: Methods Based on Given Depth. From left to light: 'hazy image, 

given 3D structure, haze removal result. Images from [39)̂  

fitting [39；. . 

But it is not trivial to obtain the depth information. In【511. t.he user 
LS asked to roughly draw the depth. In [39], the 3D structural model of the 

scene is provided by some, databases, such .'LS Google Eart.h or NASA ra.(la,i-

images. The 3D structures are then aligned to the hazy image and provide 
•4 t * 

the depth. See Fig. 2.8 for an example. However, the 3D strucluro modd is 

not available iu most cases., 

S ummary r 

The multiple-Image luize removal methods share some common advantages 
• Z 

and limitations. . ‘ 产 

These methods turn the ill-posed problem into a wdl-posed or over-

coiistrainod one. Quo benefit is the fast, running time. The computation is 

often pixel-wise and no complex optimization is needed. Another benfifit is 

that they may handle some special situations. For,example, the'dichromatic 

methods can haricile night images, and the polarization-based o八lepth-based 

methods allow t to vary across, color channels. ‘ ‘ . . . 

'The coinihon limitation of these methods is that the extra images are not, 

easily available. They all require special settings with carefully caHbratioii. 

,Tliis is not practical iu most cases, such as for hand-held cameras? axid oiitr 

door siirvcillaiice systems.，Tlie limitations of these iiietlpds motivate the 

development of single image haze removal riietFiodiS. • 、 ‘ . . 
0 
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2.2.2 Single Image Haze Removal 

Single image haze removal methods liave to rely on some priors. The priors 

can be statistical/physical properties, heuristic assumptions, simplifications, 

and application-based rules. In the haze imaging model (2.1), the discrepancy 

between the number of equations and the number of unknowns (4/V + 3) 

ifs about N. So the priors are expected to inl;rocliico at least, one constraint 

for each pixel. 

Dark Object Subtraction < 

A straightforward c'lssumption is that the transmission t can be treated ivs a 

const ant indeperideiit of the position x: 

i , (x) = J,(x)/. + A e ( l - 0 (2.11) 

Thus the number of unknowns about the transmission t reduces from N t o 

1. 
The dark object subtraction proposed in [9] is to ftnd this sole unlcriown 

variable. This iiietliocl is first, developed iu remote sousing area wiicrc thu 

images arti often rmilti-spectral (often more than three channels). Consider 

a single channel c. It is assumed there must be an object that is dark in this 

channel. Specifically, there; exists at lea^jt a pixel satisfving： 

Jc(x) = 0 (2.12) 

and therefore: 

/c(x) 二 - t). (2.13) 

The pixel satisfying Jc(x) = 0 corresponds to the rniiiiniuiri value in /^(x). 

So we call obtain the constant t from (2.13) if A'^ has been given. 

However, the coiLStant-i assumption limits its application. This method 

is often applied iii satellite images where all the scene points have the saiiie 

distance with the camera. But this is rarely true in other cases where the 

depth is not constant.. Fig, 2.9 shows an example. We can see that the 

method cannot remove the distant haze. 

The dark object subtraction partially inspires the dark cliamiel prior p ro 

posed in this thesis. 

17 
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Figure 2.9: Haze removal by dark object subtraction [9]. Left: input hâ zy 

image. Right: haze removal result. 

Visibil i ty Maximizat ion 

Haze reduces visibility. Removing the haze will eiiliance the visibility of the 

image. In [79] Tan proposes a method to maximize the visibility under the 

constraint of the haze imaging model. 

Consider a small local patch. The traiisinissioii I is treated to be coiustant 

inside this patch, so V/c(x) = iVJ,;(x). The total visibility inside the paXcli 

is defined as the sum of the gradient magnitude: 

= (2.14) 

The visibility of the recovered image J^^.x I•人(x)| will keep iiicrea.sirig wlion 

the transmission t is decreasing. Tan supposes the atmospheric light is the 

light source of t;he scene, so Jc(x) 二 ,c(x)Ai with 0 < = /•̂ 。⑷ < = 1 . This 

leads to the following constraint: 

( )<=Je(x) < = A,. ‘ (2.15) 

In Tan's method, the value Jc(x) outside this range is truncated. This op-

eration prevents the visibility of |V«7c(x)| from increasmg because the 

truncated values provides zero gradients. The optimal t is the value that 

maximizes the visibility. This computation is performed in each patch, pro 
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Figure 2.10: Haze removal by maximizing visibility [79]. Left.： input hazy 

image. Right: haze removal result. 

Figure 2.11: The color vectors in the RGB space. Three pixels at xi, X2, and 

X3 have the same rcflcctancc R, but different liiminancc arid transmission. 

• 

viding a constraint for each pixel. 

Tail's method has the advantages of enhancing the visibility. But it lias 

some limitations. Although the scene radiance should have a better visibility 

than the hazy image, it does not necessarily have the luaxirnum visibility. 

Moreover, the truncation operation is not physically valid. The resulting 

images often look over-saturated and unnatural, as iu Fig. 2.10. 

Independent Component Analysis 

In [18] Fattal solves the haze removal problem by Inclepeiident Component 

Analysis (ICA). ICA is a statistical method to separate two additive compo-

nents from a signal. Fattal adapts this method to the haze problem. 

19 



Figure 2.12: Haze removal using Independent Coinponent Analysis. 

input hazy image. Right: haze removal result 

.eft: 

This method considers the scene points with the same reflertance in a 

local patch. Thus the colors J(x) of these scene points are in the same 

direction R , as shown in Fig. 2.11. Denote the luminance by /(x). Then 

J(x) is R/(x), and the liaze imaging ecjuation be(!omes: 

/,:(x) =： R,d{yi]tix) + .4^(1 — t{x)) (2.1ft) 

The two scalar components /(x) and /(x) are to bo soparatod. The Iniuinaiice 

/(X) depends on the illumination, object reflectance, and the scene geometry, 

wherea.s the transmission i(x) depends on the depth and the property of the 

haze. Fattal's assumption is that: these two components are due to in inf-

lated sources and therefore statistically independent. Under tliis assurriptiun 

the method can recover the rcfleclance of the pixels and provides extra con-

straints. We omit the tedmical details. Unlike Tail's method, this method is 

physically valid. The results often looks more natural and visually |jlea,sirig 

(see Fig. 2.12). 

The iriaiii limitation of this inethocl results from the locally based statis-

tics. To ensure the statistics is reliable, the method requires the two com-

ponents /(x) and t(x) to vary significantly in a local pakh. This ciouditioii 

is not always satisfied. For example, a local patch of a distant Hceiie usually 

exhibit negligible variance in t(x}. To handle this problem, the method only 

apply the ICA to some reliable patches. The constraints are thus iiiissed in 

some pixels. This method uses a Markov Random Field (MRF) to' extrapo-

late the missing values. But. the results axe not satisfactory when the reliable 

pixels are insiifficient. This method docs not work woll for dense haze. 
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Summary 

Til single image haze removal, the differ en ce between the miinber of unknowns 

and the number of equations is about the nuiTil)er of pixels N. This siiggestri 

the prior should impose at least one constraint for eac'li pixel. 

If each pixd is considered mdependentJy, it is perhaps impossible for us 

ro Tiiake any rLssiuuption, just as the glass filtor (̂ xpc-rirnciit. in Fig. '2.5. But 

we can make assumptions or built priors for a group of pixels. Botli Tan's 

method [79] and FattaFs method [18] consider small local patclie.s. Tan's 

visibility maximization assumption can be applied in each patch, Imt is less 

physically valid, Fattal's ICA method is physically biu>ed, hat it is only 

applied in some patches. Therefore, wc expect a robust prior that is reliable 

in as many patches as possible. The dark channel prior proposed in this 

thesis is on this way. “ 

• End of chapter. 
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Chapter 3 

Dark Channel Prior and Single 

Image Haze Removal 

In this chapter, we propose a novel prior - dark channel prior - for yiiigle 

image haze removal. The dark channel prior is based on t.lie statistics of 

outdoor haze-free images. We find thai, in most of the local regions which 

do not cover the sky, it is very often that, soirie pixels (called dark pLucls) 

have very low intensity in at least one color (RGB)'channel. In hazy images, 

the intensity of these dark pixels in that channel is mainly contributed by 

the airlight. Therefore, these dark pixels can directly provide? aii accurate 

estimation of the haze transmission. To improve the quality of the resulting 

transmission map, we develop a soft matting iiiteipolation method. Various 

experiments show that we can recover a high quality hazevfrce image and 

produce a good depth map. 

Our approach is physically valid arifi is able t.o handle distant objects in 

heavily hazy images. We do not rely on significant variance of traiisniiHsioii 

or siirtacc shading. The result contains few artifacts. 
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3.1 Dark Channel Prior 
/ 

A prior is the assmiiptiori or knowledge that, can be built beforehand. Tan's 

method [79] is based on the prior that U.ie scene radiance J should have a 

better visibility than the hazy image I. Fattal's method [18] is baaed on 

the prior that the object 】umiiiaiice / and the transmissiuii t are .statistically 

irid(»p(;iKiont.. Wo find that l)()Ui prions talk about the inU'.raction between 

the scene radiance (J or I) and the litizc iiiflnciicc (I or t). But let us coiisicier 

an image taken in a clear day iii which no haze exists. Hum an beings arc; able 

to tell whet lier it is a haze-free iiiiag(% even there is ii() iiitcracl.ioii hot.weeii 

the scene radiance and the haze at all. This motivates us to find n prior, 

which coiiceniH the s(;ojie radiance J (an hazo-froe i in age) alone. 

We propose the dark channel •jnior which is solely al)ont haze-free iriia,ge. 

Tn the following, we, first i)rop()‘s(、our oV)s(u.va.U()ri and givt; intuitive; (explana-

tion. Then we introduce the dark diamiel prior in a inatlieiriatical fonii. We 

further design experiments to verify this prior. 

3.1.1 Observation 

Our observation is as following: 

For outdoor haze-free images, in most patches that do not cover 

the sky, there exist some pixels whose .intensity is very low and 

close to zero in at least one. color channel. 

We refer to the pixels "whose intensity is very low and close to '/wo in at 

least one color diaiirid" as "dark pixels. To understand tliLs observation, we 

explain what fad.ors contribute to the dark pixels. 

Factors contributing to dark pixels 

Outdoor 

and cars. 

First, the dark pixels can come from the shadows in the iiriage 

images are full of shadows, e.g., the shadows of trees, buildings 

Objects with irregular geornetry like rocks and plants are easily shaded. In 

most cityscape images, the windows of the buildings look dark from the out-

side, because the indoor illmninatiori is often much weaker than the outdoor 

light. This call also be considered as a kind of shadows. See the first row in 

Fig. 3.1 for examples. 

Second, the dark pixels can come from colorful objects. Any object with 

low reflectance in any color channel will result in dark pixels. For example, 
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Shadows 

Colortiil objects 

Black objects 

Figure 3. 

pixels. 

Shadows, colorful objects, and black objccts contribute dark 

a green color has low intensity in its red and blue cliaiincls, and a yellow 

color has low intensity in its blue channels. Outdoor images often contain 

objectH in various colors, like flowers, loaves, cars, buildings, road signs, or 

pedestrians. See the second row in Fig. 3.1. The colorfulne-ss of these objectw 

generates many dark pixels. Notice that by oiir definition a dark pixel is not 

necessarily dark in terms of its total intensity; it is snfliriRot to be dark in 

only one color channel. So a bright red pixel can be a dark pixel if only its 

gieen/bliie component is dark. 

Third, the dark pixels can come from black objects, like veliicles tyros, 

road signs, and tree trunks. See the third row in Fig. 3.1. These dark 

pixels are particularly useful for iii-vehic.'le camera which oversees the road 

conditions. 

If ail image patch includes at. least one of these factors, this patch must, 

have dark pixels. This is the iutuitive explanation of our observation. 

Remarks . 
* 

It is worth mentioning some remarks on this ohsorvatiori. 

(a) The observation cmly talks about haze-fvac images, the sccnc 
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radiance J . This is l)ecause (he above four factors contributiug the dark 

pixels concern the properties of the scene objects, such as shading, colors, 

reflectance, and geometry. These fact.ons do not concern the reflect,ed light 

traveling in the at;rriosi)here. Actually, we shall see that this ol:)servation does 

not hold for hazy images (so wo can use it to remove haze). 

(b) The observation is on most patches but not all. By “most” we mean 

that there is a liigli probability tliat the observation is true. So this observa-

tion is in the sense of statistics. It is possible that' some patches oi. images 

do not obey it, but such cases are rare. Wo shall verify this observation by 

statistical experiments. 

(c) Currently we do not set the size of the patch, A larger patch hius 

a better chance to contain a dark pixel. But we expect the observation to 

provide local coastrairits instead of global ones. So the patch size cannot be 

too large. We discuss tliis problem in the experiments. 

(d) The observation is on outdoor images. Haze only occurs in outdoor 

images, so we are mainly interested in this case. Besides, a pat.di in an 

outdoor image often covers richer contents than an indoor imago, typicfilly 

wlien the scene objects are far away. So the probability that a patch covers 

(lark pixels is higher in outdoor images. 

(e) We ignore the sky regions in this observation. This is because the 

color of the sky is hard to predict. Fortunately, we shaJl see that our lia/c 

removal metliod can gracefully handle both non-sky and sky regions. So 

we do not have to treat the sky separately. More details are given in the 

algorithm section. . 

(f) We should also notice that tlie intensity of a pixel depends not only 

on the object colors or the light reflected, but also on the exposure settings 

of the camera (shutter speed, aperture, ISO, etc.). Black surfaces or shaded 

regions also reflect lights, and the corresponding pixels can be bright when 

the exposure value is high. We assume the images are taken under proper 

exposure settings so that a black color is correctly recorded by a low intensity 

value. 

3.1.2 Mathematical Formulation 

Next we discuss the mathematical fonriulation of the above observation. 
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3.1. DARK CHANNEL PR/OJ?, 

Dark Pixel 

Formally, we define a dark pixel as "the pixel whoso luinimuiii int eiKsit.y 

among the throe RGB channels Ls bdow a small thmsliold (>”： 

J(x) is a fiaik pixel iriiii (J(.(x)) <— <S. (3.1) 

Accordingly, if J(x) is a dark pixel, all the pixels J fx') that .satisfying the 

following coiiditiori are also (iark pixels: 

mill [ JcW)) < = mill (J..(x)). (3.2) 

Here X' denote the coordinates of another pixel. This inequality siiggcHts llie 

following necessary ami .sufficient condition for a patdi to coiitairi at I fas I 

one (lark pixel: 

A patd.i i} contains at, least one dark pbcd <==> riiiii{ min (Jr(x'))) < = d". 

(3.3) 

In the following, we do not consider the small threshold d explicitly, and 

simply write the inequality as: 

irun( min (Je(x'))) ^ 0. (3.1) 
x'en ce{r,y,b} 

m 
We call see we only need to concern the quantity iniiix'en(niinf:e{7’fl,/>}(乂 (x'))). 

This motives us to define a dark channel 

Dark Channel 

Denote n(x) as the patch centered at, the pixel x. Given an image J , tlie 

dark channel of J is defined as a map satisfying: 

.户邮k(x) = niiri ( mill Jc(x')) (3.5) 
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Figure 3.2: Computation of a dark channel, (a): An arbitrary image 

(b): For each pixel, we calculate the minimum of its (r, g, b) values. 

A m i u i i T i m n filter is performed on (b). This is the (lark channel of'J, 

image size is 800 x 551, and the patch size of Q is 15 x 15. 
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3.1. DARK CHANNEL PR /O J ? , 

Note each pixel in is a scalar. A dark channel is the out.c.orrio of I,wo 

minimum operators. The operator “miii。e{r,.y,/j}” is perforrriod on each pixel. 

See Fig. 3.2(b) for an example. The operator “miiix:'ei2(x)，’ is a minimum 

filter [27]. See Fig. 3.2(c). 

It is worth mentioning that the dark dmmiel is an operation (ni an image, 

no matter it is a liazofree or hazy one. Wc can also compute the dark chanriol 

idark(x) ^f 孔 hazy image I by： 

I dark i 
mill { mill 尸(x')). (3.G) 

Wc shall see the "dark cliaimel” oijerat.iou is very useful iii haze rprnuval. 

Definition: Dark Channel Prior 

Now wc are ready to describe the riiatheiiiatical formulation of t he liark 

chamiel prior. Our observation says most patches should contain dark pixels. 

Formally, we have the following mathematical expression of the obsei vatioii: 

For outdoor haze-free images，most patches not covarimj the 

sky should satisfy: 

mill ( min J^(x')) ^ 0, (3. 

or more simply: 

.严 ( X ) a 0. (3.8) 

We call this observation dark channel prior. ‘ 

The dark channel prior is the core idea of this thesis. It, has a concise 

form as (3.8). It is a statistically and physically based law. Though it is 

very simple, we shall demonstrate it is very powerful in haze removal. We 

also discover a. tight relationship between this prior and the human visual 

system, which is discussed in Chapter 5. 
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3.1. DARK CHANNEL P R / O J ? , 

3.1.3 Experimental Verification 

According to thd prior，the dark channels of haze-free invagcs should be niost-

ly dark. Fig. 3.2 (c) shows an example. More visual examples arc given in 

Fig. 3.3. Carefully inspecting these images, we can find out, the som-ces of the 

dark pixels: shadows, colorful objects, and black objects. They exist almost 

everywheio in the images. 

—To verify how good the dark chmiriel prior is, we should test a large 

collection of images and study their statist ical properties. We (iowiiload over 

300,000 images from popular imago search engines using 150 most popular 

tags annotated by the Flickr users. We are interested in outdoor landscape 

aiid cityscape scencs becausc 1;hey arG the potential victims of hazo. We only 

focus on daytime images. Among tlierri, wo maruially label the liaze-free ones. 

We randoirily choose 5,000 inmges and cut out the sky regions. The images -

are resized so that tlie inaxiriiuin of width aiid height is 500-pixel. Fig. 3.3 

(left) shows several samples from the data set. 

To computo the dark channels, we syiould set the patch si'/e. As ineiitioned 

before, a larger patch has a better diance to contain a dark pixel. But, we 

expect the pirior to provide local constraints instead of more global ones. 

Ill this experiment, we set the patch as a rectangle of 15 x 15 pixels. We 

compute the dark channels of all the 5,000 images. Fig. 3.3 (right) shows 

soiiie examples. “ 

Fig. 3.4(a) is the distribution of the pixel intensity of all the 5,000 dark 

channels'. Each bin contai】is 16 intensity levels. We find that about 86% of 

the pixels fall in the first bin. Fig. 3.4(b) is the corresponding cumulative 

distribution. We can see that about 75% of the pixels in the dark channels 

have 耽1.() intensity, 90% of the pixels is below the intensity "(ie., abouf 

0.1 iu the [0, 1] gray scale). This statistic gives a very strong support to the 

dark channel prior. . » 

We also concern whether some images have bright dark channels. We 

compute the average intensity of each dark channel. The distribution is 

shown ill Fig. 3.-'i(c). Again, we find that most dark chiinnols liave very low 

average intensity, indicating that most images obey our prior. 

Mil this experiment, the color int.eusi1;y*of tlie input images (and the dark clxauiiels) is 

represented iu [0，255). . 
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3.1. DARK CHANNEL PR/OJ?, 

Figure 3.3: Dark ^channel prior. Left: outdoor haze-free iiriages. Right.： 

the corre,sponflirig dark channels. The dark cliaiirieLs are mostly dark. The 

iinages are resized so that the maximum of width and height is 500 pixels. 

Their dark chariiiels are computed using a patch size 15 x 15. 
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Figure 3.4: Statistics of the dark channels, (a) Distrib\itioii of the pixel 

intensity of all of the 5,000 dark channels (each bin represents 16 intensity 

levels). (])) Cumulative distribution, (c) Distribution of the averse intensity 

of each dark channel. 
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:i2. A JVOVEL ALGORITHM FOR SINGLE IMAGE HAZE REMOVAL 

Figure 3.5: A hazy image and its dark channel. 

3.2 A Novel Algorithm for Single Image Haze 

Removal 
III this section, we propose a single image haze removal algorithm usiug the 

dark channel prior. We show that the dark channel prior introduces an extra 

constraint to each pixel, providing an estimated traiisniission value. Then 

"WO develop a method called "soft matting" to i.efinc this transriiission map. 

We furtlier propose a robust method to estimate the atmospheric light A. 

which is also based on the dark channel prior. 

We have seen the dark channels of liaze-froe images. But what (Iocs the 

dark channel of a hazy image look like? Fig. 3.5 shows an example. We can 

see that the dark channel of a hazy image is not dark (though we still iise the 

name "dark channel”). The reason is the additive airlight.： the dark pixels 

are brightened when the airlight is added. From Fig. 3.5 we also see tiiat the 

dark chamiel approximately tells the haze thickness: it is brighter in where 

the haze is thicker. We show that this effect c:aii be explained by combining 

the haze imaging equation and the dark channel prior, and the transmission 

and atmospheric light are estimated accordingly. 
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3.2.1 Transmission Estimation 

First we use the dark chaiiriel prior to estimate the transmission t. llecall 

the haze iniaging equation (2.1): 

I(x) = J(x)i(x) + A(1 — t(x)). (2.1) 

Suppose the atmospheric light A has been estimated. We sliall give an 

autoinatic method to estimate A in Section 3.2.3. We normalize the liazc 

imaging equation (2.1) by A: 

:(x) = “ X ) 罕 + 1 - t(x) (3.9) 
A、 、 A, 

Note that we normalize each color channel c independently. Then we compute 

the dark chaiiricl on both sides of this equation, i.e., we insert the miiiiinuiri 

operators: 

mill miii min f - I - 1 - ^Ix')") (3.10) 

:'eQ(x) c Ac x'eii(x) ••乂 A, 

where we denote "miiice{r,(/,fe}" by "ruin, for simplicity. 

We consider the transmission of a local patch n(x) as approximately 

uniform, and denote tins transmission value as t(x). Tlie side effect of this 

approximation will be handled in Section 3.2.2. Thus we replace the torrn 

t(x') ill (3.10) by /.(x). This allows us to imwe the tiarLsrriissioii out of the 

minimum operators: 

mill iniri ^ ^ ^ = t{x) niiii m in ( + 1 - /:(x). (3.11) 

:'GJ2(x) C Ac x'eilix) C. \ Ac J 

The scene radiance J is a haze-free image. Due to the dark channel prior, 

we have: 
,cimk(x) = min ruin J^(x') 0. (3.12) 

x'en(x) c 
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i{x) = 1 - mill inin 
x'esi(x) c 

111 fact, the term “mirix'例x) iniiip is the dark channel of the iioriiialized 

hazy image 全.So (3. M) can be expressed in a more concise loim: 

？dark i X (:U5) 

where I represents the normalized hazy image. 

As we mentioned before, the dark channel prior does not： coiicein 1:1 ic 

sky regions. Fortunately, the color of the sky in a hazy image I is ii.sually 

very close to the atmospheric light A (because the deptli t/ —> oo and the 

transmission 广 — 0 , see (2.2)). So in the sky region we have： 

X' 
111 in (riiiii ^ 
:'en(x) c At 

(3.16) 

arid equation (3.14) will estimate i(x) —> 0, which is consistent with the true 

transmission (zero) of the sky. So (3.14) gracefully handles both sky arid 

non-sky regions. We do not need to separate the sky beforehand. 

Equation (3.14) is the core method of our single image haze removal algo-

rithm. It provides an estimated transmission for each pixel, and thus solves 

the ambiguity of the problem. Its computation is very simple. Fig. 3.G shows 

an example of the estimated transmission map by (:i.l4) and the recovered 

scene radiance J . As we cau see, this simple method is effective on rt'coveririg 

the vivid colors and unveiling low contrast objects. The trarisiriission maps 

reasonably describe the thickness of the haze. 
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As Ac is always positive, Uiis loads to: 

ruin iiiin ^ 0 (3.13) 

Putting (3.13) into (3.1i), wo can eliminate the lorrn containing J aiul ap-

proximate the transmission by: 

A 
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We call also see the artifacts from Fig. 3.G. They are mainly duo to 

the locally-uniform-transmission fissuiription. This a^isumption is not true 

near the depth edges, i.e., where the depth d (and t) changes abruptly. So 

halo artifacts appear near depth edges {e. <]., the white outlines of the leaves 

in Fig. 3.6). Besides, tho transmission maps have block-like artifacts. To 

suppress these artifacts, we propose a soft matting method to refine the 

estimated transmission. 

3.2.2 Soft Matting 

The dark channel prior provides a constraint for each pixel, but, we should also 

consider spatial continuities. Denote the refined transmission map by t. VVc 

hope to find a map t that: (i) approximates the trarisiriissioii i estimated by 

(3.14); (ii) has an edge when the depth is discontinuous; and (iii) is spatially 

smooth otherwise. The first condition is the pixel-wise constraint, arid the 

other two are spatial coritimiity concerns. Siiicc the depth is not known, we 

approximate the depth discontinuity by the sharp edges in the hazy image I. 

Combining pixel-wise constraints and spatial continuities is comnioiily 

desired in many computer vision/grapliics applications, such afs stereo vision 

76]., image denoising [21], surface interpolation [77], and alpha matting [4"2 . 

A popular solution to these probleiriij is the Markov Random Fields (MRF) 

model. 

We adopt the following MRF model in our algorithm. 

E{t) = xJ2\\i{x)-i{^)\\l^J2 E ''4I,x',x)||/.(x)-^(xO||:j (3.17) 
X X x 'eN(x) 

In thi.s equation, the first term is a data term with a weight A. It (icscribes 

the error between t and t. We set a small A (1(广” in the experiments, so t is 

softly constrained by t. The second term is the smoothness term where N(x) 

is a small neighborhood around x. The weight w{l,-x!, x) imposes coritiiiiiity 

conditions on t: a large weight suggests smoothness, and a small weight 

suggests an edge. The smoothness is adjusted according to I. 

The optimization is better written in matrix forms. We reorder the pixels 

in t and i to form column vectors t arid t respectively-. The quadratic cost 

^For example, the pixel with the coordinates (a：, y) corresponds to the {x y * wid)th 

entry hi the vector, where luid is the image width. 
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Figure 3.6: Haze removal using Equation (3.14). Left: input hazy images. 

Middle: transmission maps estimated by (3.1 J). Right: recovered scene 

radiance by these traiLsniissioii maps. 
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(a) (b) (e) 

Figure 3.7: Soft matting results of Fig 3,6. (a): Input, hazy unages. (b): Rc-

fiuecl transmission t after soft matting, (c) Recovered sceno radiance images. 
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3.2. A NOVEL ALGORITHM FOR SINGLE IMAGE HAZE REMOVAL 

function (3.17) 1)eooiiies: 

Zi;(t) 二 A||t-i;||g + tTLt, (3.18) 

where L is an N x N Lapladari nialrix'^ coiilaiiiing the weight s. 

Wc adopt the matting Laplaciaii matrix [-12] proviously designed for alpha 

matting. We choose this matrix for two reasons. First, the haze imaging 

equation (2.1) is analogous to the alpha mat ting equation: 

I(x) = F(x)a(x) + B(x)( l - a{x)), (3.19) 

where F is the forcgroiand, B is the ba.ckgrouiid, and n if̂  tlie foi-egroimd 

transparency [70]. The map t> plays a role like t in the haze equation. The 

matting Laplaciaii matrix has been proven successful in recovering the profi le 

of a (e.//., in [42, H4]). Second, the matting Laplaciaii matrix is dorivetl from 

a local linear model. We can show that the haze iiriagirig equation also leads 

l.o this model. Thus, the matting Laplaciaii matrix is a proper choice in haze 

removal. We discuss more details in Chapter 4. 

The (i，j) element of tlio rnat.tiiig Laplaciaii matrix is given 1)Y ['12]: 

E (知一 + ^ U3)-i(I, -“丄•)))， （3.20) 

Here, the subscript; i, j、and k are the pixel indexes in a form like {x-\-y* wid). 

l i and I j are the colors of the iiiput image I at. pixels i and J, (\j is the 

Kronecker delta, and are the mean and covariaiico matrix of t.hi； colors 

in window 'u)k’ Ur̂  is a 3 x 3 identity matrix, e is a. regularizing pararri«ter, and 

is tlie number of pixels in the window “；知.Having defined t:h(、 matrix 

L, the optimal t in (3.18) is obtained by solving the following sparse linear 

system: 

. (L + AU)t = At, (3.2i) 

where U is an identity matrix of the same size as I:. The linear system can 

be solved by standard linear solvers liko Conjugate Gradient [63 . 

The matting Laplaciaii matrix lias also been applied in [3(iJ to deal with 

'̂ A Laplaciaii iriatrix is a matr ix whose eleTnoiits iii Oivch row sum l.o zero. 
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the spatially variant, vvliite balance problem. In [36] and in alpha inatting 

•12], the data term are known in some sparse regions, and the MRF is used 

to extrapolate the values into the unknown regions. So the data coiLstraints 

are strict or fixed. In our application, the data term have already filled the 

whole image, and the MRF is used to smooth and refine them. Our data 

constraints are soft and loose:. So we call our method soft matting. 

Figure 3.7 shows tlie soft, matting results of Figure 3.(>. As we can sec, 

the halos and block artifacts arc supprossod. The refined transmission maps 

manage to capture the sharp edge discoiitiniiities and outline the ijrolilo of 

the objects. Besides, the transmission map is smooth in where no depth edge 

exists. 

Ill Chapter 4 we disciuss more on the inatting Laplaciaii iriatiix and soft 

inatting. We propose fast algorithms, alternatives, and generalizations. 

3.2.3 Atmospheric Light Estimation 

We have been assuming that the atmospheric, light A is known. Next wo 

propose a method to eatirnate A. In previous works (e.g. [79, 18)), Uic color 

of the inost liaze-opaque (smallest /.) regions is considered a.s A. However, 

the detection of the "most haze-opaque" regions is not trivial, becausc the 

estimation .of t is often after the estiriiation of A. So we cannot find such 

regions by tlie criterion of "smallest Some methods {e.g. [65]) require the 

user to mark such regions. But in most applications automatic methods are 

required. 

In Tan's work [79], the brightest pbcels in the hazy image are considered 

to bo the iiioal, haze-opaque. Tliis is true only when the atmospheric light 

is the sole illumination source of the scene (see Fig. 3.8 top). Denote tlie 

reflectance of the scene point by /). The scene radiaiicc of each color channel 

is given by: 

‘ ./“x) = (3.22) 

where 0 < pc < 1. The h/ize imaging equation (2.1) can be written n̂s: 

/.(x) = p “x )A j ( x ) + (1 — (3.23) 

Since pc(x)t(x) + (1 — 亡 ( x ) ) < 1, we have: 

/c(x) < 人. (3.24) 
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Figure 3.8: Illurriiiiation sourcos in hazy days. Top: The atmospheric light, 

is the sole illiiniiiiation source. Bottom: the suiilight is another illiiiiiiiiatioii 

source. 

for any pixel in the image. The brightest 4 is the closest to If pixels 

at. iiiliriite di.stance (d —)• oo and 之；̂  0) exist in the image, the brightest 八. 

equals to the atmospheric light A:. 

Unfortunately, the atmospheric light is rarely the sole illumination soiiicc. 

If the weather is not cloudy or overcast, the sunlight may go through the 

atmosphere and illuminate the scene objects (see Fig. 3.8 bottom). The liftht 

reflected or radiated by (hf； clouds can also be another illiiiiiiiiation sdurco 

ill hazy weather. Denote the sunlight (or the light from clouds) by S. We 

modify (3.22) by: 

J,(x) - /;,(x)(5'c y l j , (3.25) 
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Figure 3.9: Estimation of the atmospheric light A. (a) Input hazy image, 

(b) Dark channel and the most haze-opaque region (bounded by the yellow 

lines). ((:) The patcli from where our met hoc] automatically obtains the 

atmospheric light, (d) and (e): Two patches that contain pixels brighter 

than the atmospheric light. 

and (3/2：；]) by: 

〔X) = p,(x)Sj.{x) + p,{x)A,t(x) + (1 — t(x))/l (3.26) 

The inequality /c(x) < A^ no longer holds. The brightest I dx ) can be 

brighter than the atmospheric light Ac- It can be on a white car or a whit e 

building (Figure 3.9(d)(e)). 

We develop a more robust method to estimate A based on the dark 

channel prior. We notice that in (3,26), the sunlight term pc{ )̂Sct{y：) is more 

negligible when t{x) is smaller. In the most hazy-opaque region (smallest t), 

the impact of t.he sunlight is the smallest. Recall our transmission estimation 

(3.14): 

{(x) = 1 - mill ruin (3.14) 
x'en(x) c Ac 
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(a) (C) 

Figure 3.10: Estimation of the atmospheric： light when there is no infinitely 

distant pixel, (a): Input image, (b)： Dark channel. The red pixels on the 

top right corner are the most haze-opaque regions detected by our iiietiiod. 

(c): Our haze removal result. 

Assiunc the color of the atmosphere is grayish, i.e., the three coinpoiicrits of 

A are identical: Ar = Ag = A(, = A. Then (3.14) becomes: 

~ 1 
i(x) = 1 — "T inin mill lA^ ' ) 
乂、 A x'en(x) c c、， 

rdark 

A 
(3.27) 

where tlie dark cliannd /如k given in (3.G). This equation iiidicates the 

most haze-opaque region (smallest t) corresponds to tlie brightest values in 

/、、ark (Figure 3.9(b)). This claim is true even if we do not know the value .4 

in (3.27). ‘ 

So we can use the dark chaimel to detect the most hazoopaque region 

and estimate the atmospheric light. We first pick the top 0.1% brightest 

pixels in the dark channel. These pixels are most haze-opaque in the image 

(bounded by yellow lines in Figme 3.9(b)). Among them, tlie pixels with 

highest intensity^ in the input image 1。arc selected as the atmospheric light 

These pixels are in the red rectangle in Figure 3.9(a). Note that, these 

pixels may not be the brightest in the whole image. 

Theoretically, we can use the estimated A to fix the grayish-A assump-

tion and improve its accuracy. But in experiments we find the first estimation 

4We choose the top 1% highest intensity to avoid noise. 

'''This operation is on each chamiel independently. 
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is good enough even if A is colored (e.g., blueLsh or reddish). So this im-

provement is not necessary. ‘ 

This method works well even when the image does not contain pixels at 

infinite distance. It is usually sufficient if only the image contains a densely 

hazy region, where tlie sunlight term can he ignored. In Fig. 3. j.U(b), our 

method detects the most hazy region which is riot iiiliiiitely distant. The 
> 

estimated A is already a good approximation in our haze reirioval algoiithin. 

The haze removal result is shown In Fig. 3.i()(c). 

This simple method based on the dark channel prior is more robust than 

the brightest-pixel method. We use it to automatically estimate the atmo-

spheric lights for all images in this thesis. 

3.2.4 Scene Radiance Recovery 

With the atinospheric light A aud the transmission t, wo can recover the 

scene ifwliance J ])y inverting liazo imaging equation: 

Jc(x) 二 " ’ A 、 + 人. (3.28) 

However, the direct; attenuation term J(x)t(x) in the haze imaging equa-

tion (2.1) is very close to zero when t{x) is very small. The recovered scene 

radiance J from (3.28) is prone to noise. Therefore, we restrict the transmis-

sion t{x) by a lower bound to, i.e., we preserve a small amount of haze in 

very dense haze regions. The final scene radiance J(x) is recovered by: 

J c M - " ( ? ) , — 、 个 、 - (3.29) 

A typical value of to is 0.1. ‘ 

Since the scene radiance is usually not as bright as the atinospheric light, 

removing the haze from an image may reduce the whole intensity. The image 

after haze removal will look dim. So we increase the intensity of J for display. 

The' image J is multiply by a ratio C so that the average intensity of J 

equals to the average intensity of I. Some final recovered images are shown 

ill Fig. 3.7. ’ 
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Figure 3.11: A.erial perspective: the atmospheric efi'ect.s art* important clues 

for depth. Left: a photograph from Wiki by J. A. Caspar. Right: the 

painting Haystack at Givmriy by Claude Monet (1840-1926). , 

Aerial Perspective 

Haze is not always unwanted. They provide clues for liuinan l)diigs to [jer-

ceive the distanc'e. This is known as aerial perspective or atinosphertc pv.r-

spective [1 J.]. See Fig. 3.'1'J (left) for an example. The texture and details of 

the mountains are hard to see. But the farther objects appear more whitisli, 

so we can still tell their relative distance. The aerial perspective has been no-

ticed by artists and used to represent depth in their works ( 

painting in Fig. 3.11 (right)). 

• .. Ill Fig. 3.11 we also notice that haze (ioe,s not always 

they may increase contrast near the depth edges. In fact, 

the gradient on both size of the haze image equation (2.1): 

e.g., sec Monet's 

reduco coiitra.st,: 

we can compute 

VI(x) = i(x)VJ(x) + {J(x) - A)V/(x). (3.30) 

The gradient of I can be mostly contributed by Vi(x} near the sharp depth 

edges. 
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(d) 

Figure 3.12: Haze removal with cierifil perspective, (a) Input hazy image, (b) 

Recovered traiisiiiissiori. (c) Haze removal result without aerial perspective 

1). (d) Haze removal result with aerial perspective (/?. = 0.95). The K 

depth is more perceivable because the remained haze. 

If we remove the haze thoroughly, the feeling of depth may be greatly 

weakened and the image may appear unnatural. See Fig. 3.12((：) for an 

example: the moimtams arc hard to discern. To handle this problem, we 

can optionally keep a very small amount of haze for the distant objects 

by iiitrodiichig a constant parameter /c (0 < k < 1). Aftor obtaining the 

tiarisiriission t、we modify its value by: 

-/.(X) (3.31) 

Here wc use “:=” to denote assignment. The nice property of this iiiodifica-

tion is that we adaptively keep more haze for the distant objects. In haze-free 

regions, < is 1 on tlie right hand side so it is not changed by «：; in corupleto-

ly hazy regions, t is 0 on the right, hand side so it will bec;ome i — k > 0’ 

and thus a small amount of haze would remain in the recovered image. The 

value of /c is application-baaed. We set it to 0.95 in this thesis. We iLse this 

modified i in (3.29) to recover the scene radiance. In Fig. 3. J2(cl) shows an 

example. The depth is more perceivable because of the reiiiaiiied haze. 

3.2.5 Implementation 

Our single image haze reirioval algorithm is suimiiarized in Algorithm 1. 

Ill Step 1 ？uicl 2 the dark channel coriipiitatioii involves the rriiiiiinurri 
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filter "minx'Gn(x)" • A l)riite-force algorithm lakes 0{r^N) time where r is 

the patch iVs radius. Instead, we adopt van Herk's i'tû l algorithm [‘、;:)] whicli 

is 0(7V) time. The computational time is independent of the pat.ch size and 

very fast (< 10ms per megapixel). 

In Step .''>, the linear system is solved by Conjugate Gradient {CO) or Pre-

conditioned Conjugate Gradient (PCG) [63]. TliLs is the sole tiiiic-consumiiig 
；J 

step in the whole algorithm. The time complexity is ) in the ninnher 

of pixels N. For a 600x400. it takes over 10s to solve tho liiieai systom. We 

shall propose fast algoritlmis in the Chapter '1. 

Algor i thm 1 A single image haze removal algorithm ba.sed on dark chainlel 

prior 

1： Estimate the atmosphoric light A a.s in Sec. 3.2.3. 

2： Estimate Uic traiisinissioii by (3.14): 

/ ( x') 
/ ( x ) = 1 - m i l l m i l l 丨 i - l ) 

. x ' tJ2(x) c- A c 

3： Ref ine t he t ranrnss io i i by sof t m a t t i n g , i . t . , solve the l inear sysUnii (.'.3.21) 
for t : 

(L -f AU)t. = At. (：5.21) 

4: R,ecx)ver the scciie radiance J l)y: 

t(x) := 1 一 /r,(l — / (X) ). 

X ) = - Ac + 

'' max(f(x),/()) ‘ ( 
2')) 

3.2.6 Relation to Previous Methods 

The dark cliaiinel prior is partially inspired l)y the dark object, subtrac^lioii 

9]. Both methods concern dark intensity. However, the dark object. syl> 

traction is oiilv valid for constant transmission. This method finds one dark 
V ‘ 

object in the whole image. On the contrary, oiir method is valid for spatially 

variant transmission, and it is based on the observat-ion that the dark pixels 

Ilia)' appear everywhere. Besides, the dark object .sul)tractioii requires dark 

46 



:i2. A JVOVEL ALGORITHM FOR SINGLE IMAGE HAZE REMOVAL 

objects hi each color chaimel. whereas our method only requires a pixel to 

be dark in only one channel. 

Both our method and Tan's visibility maximization metliod [79j aiisume 

locally I mi form traiLSiriissioii and searcbdor this value. In Tan's methoci the 

visibility is maximized only when a of pixels have intensity < 0 or 

> A, which are then truncated. This operator is not physically based. This 

method often overestimates the thickness of t he haze, and many pixels are 

actually brought below 0. On the contrary, our dark channel prior ensures 

that the pixel intensity is not below zero. Indeed, our method set the dark 

channel (the imniinum intensity) to zero, so it will not violate the physical 

constraints. 

Fattal's ICA method [18] assume a statistical iii(lependenc\^ of the s(;eiie 

luiriiiianco and the haze transmission. Our dark chaimel prior, at a broader 

view, indicates that, the dark diannel of the scene radiance is independent of 

the haze, because it is mostly a zero constant. 

Multiplicative vs. Additive 

In the haze image equation (2.1), the direct transmission J(x)/(x) is a imd-

tiplicative degradation of the scene radiance J . It acxxjunts for visibili-

ty/contrast reduction. The airlight A(1 — t(x)) is an additive degradation 

with respect to the scene radiance. It leads chroininaiicc shift, making the 

scene whitish or grayish. The existing two single image methods (Tan's [79 

and Fattal's [18]) solve the ambiguity from the multiplicative term. They are 

driven by the observations that the multiplicative term cliaiiges the image 

visibility [79] or the color variance [18 . 

On the contrary, our method is based on the additive term. It based 

on the fact that the dark channel is brightened by the additive airlight. In 

the derivation of the transmission estimation (3.14), the dark channel prior 

eliminates the multiplicative term (see Equations (3.11) to (3.11)) and leaves 

the additive term. We can see this fact, more clearly if we generalize the haze 

image equation (2.1) by: 

I(x) == J(x)“(x) + A(1 - /2(x)), (3.33) 

where ti does not iiecossarily equal to Using the dark channel prior to 
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eliininatc the multiplicative; term we can ol)l:aiii: 

/ (x') 
Ux) = 1 - mill mill (3.3-1) 

x'eJ2(x) c A,. 

Thus, we can separate the additive term A(1 —亡2(x)) with the rnuUiplicaliv( 

term J(x)ti(x). If t] / U, we need other priors to compute /卜 dcpciidiii/; 

on the problem formulation. In the literature of hurriari vision research [2G 

the additive term is called a veUing luminance, and can inodnl semi 

transparent veils, glare from strong light sources, or specular refl<;cl.it)ii liigli-

lights. Our method has potential in solving this proljleni. 

3.3 Experimental Results 
111 this section, we demonstrate the results of our riiethod and coin pa re with 

various previous works. 

3.3.1 Patch Size 

A key parmneter in our algorithm is the patch size in the transiriissioii es-

timation (3.14). On one hand, the dark chariiiol piior b(3Coiiies h(，t.tei. for a 

larger patch size, because the probability that a patch contairLS a. dark pixel 

is increased. We can sec this in Fig. 3.1.3: the larger the patcli size is, the 

darker a dark channel is. Consequently, (3.14) is more accurate for a larger 

patch. A patch that is too small will lead to over-saturated colors in the liazc 

reirioval results (Fig. 3.11(b)). On the other hand, the assumption tlial (lie 

transmission is uniform in a patch becomes less appropriate it. tlie i)aU:li size 

is getting larger. Halos near depth edges may become .stronger (Fig. ；) l i(c)). 

Fig. 3.15 shows the haze removal results using different patch sizes. The 

image sizes are 600 x 400. In Fig. 3.15(b), the patch size is 3x3 . The colors 

of some grayish surfaces look over-saturated (see the buildings in the first 

row, and the rcctarigies in the second and the third rows). In Fig. 

and (d), the patch sizes are 15 x 15 and 30 x 30 respectively. The results 

appear more natural than those in (b). This shows that our method works 

well for sufficiently large patcli sizes: the soft matting is able to reduce the 

artifacts introduced by large patches. In the rerriaiiiirig part, of tiiis thesis. 
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Figure 3.13: A hazo~ii.ee image (600 x 400) and its dark clumriels vLsirig 3 x 3 

and 15 x 15 patches respectively. 

Figure 3.14: A 600 x 400 hazy image (a) and the recovered scene mdimice 

lusiug 3 X 3 (b) and 15 x 15 (c) patches respectively (without .soft matting). 

The recovered scene radiance is over-saturated for y small patch size, while 

contains apparent lialos for a large patch size. 

we use a patch size of 15 x 15 for 600 x 400 images, and scale tJie j)at,ch size 

aocoi.fUug to the image ‘si沈. 

3.3.2 Results of Our Method 

We have shown some results in Fig. 3.7 and Fig. 3.15. We sliow more c-

ityscape examples in Fig. 3.16 and Fig. 3.17, landscape examples in Fig. 3.18, 

and miscellaneous cases in Fig. 3,19. The atmospheric light estiiriated by our 

algoritluri is indicated by the red rcctaiiglcs in thcso figures. As wr can sec, 

our irietliod can recover the details and vivid colors even in heavily hazy 

weather, and is robust in various cases. Our approach also works for gray-

scale images if there are enough shadows. City scape images usually satisfy 

this condition. Fig. 3.20 shows an example. 

We also show the resulting depth maps in Fig. 3.10 to 3.20. The depth 
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U K : 龜 纖 隨 . 

(d) 

Figure 3.15: Recovering images using different patch sizes (alier soft mat 

t ing) .⑷： Input hazy images. (b): Using 3 x 3 [jat.ches. (c): lisiiig 15 x if 

patches, (d): Using 30 x 30 patches. 

maps are computed according to (2.1): 

ln/.(x) 
1 ) 

Here we show relative depth where the scale (—古）is unknown''. We can see 

that our depth maps arc visually reasonable: they have consistent edges with 

the input and are siriootli otherwise. Notice that o-stimatiiig flepth from a 

single image is a very challenging problem in computer vision [Cil). But it. 

becomes much easier with the "help" of the haze. We can use the depth map 

to (iefociis the images (see Fig. 3.21 and Fig. 3.22). Tliis U?dmique can ho 

used to simulate miniature scenes (Fig. 3.2'2). .Tli(’sc interostirig rcHiilts are 

generated from "annoying" hazy images. 

'̂Tho depth maps iir(； sliowji by pscudo-cdlor mapping. 
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(a) (b) (c) 

Figure 3.16: Haze removal from a single image, (a) Input, hazy irimge. (b) 

Our haze removal result, (c) Our recovered depth map. 

3.3.3 Comparisons with Previous Methods 

Next we coiiipai'e with all the statcvof-the-art methods in previous works. 

VVe show that our method outperforms thoiii in various siluadoiis. 

Ill Fig. .'•(.23 we coiiiparc with the dichromatic methods [52, 48,「“l] which 

requires two iinage.s taken in dillcrerit atniosphcric coiiditioiLS. Oui results 

is merely horn U.ie bottom left imago. Though our inethod iisas only one 

image, the recovered scene appeal's more natural aiid visually pleasing. Our 

depth map l.ia« no missing labels in the buildings. 

Ill Fig. 3.24 we coiriparo with the p)olarizatioii-based iriethod [65, (iG] which 

requires two polarized hazy images. Our result is from oidy one of the two 

images. We can see tliat ovir iriothod recovers cornparabk details and contrast 

with the polarization-based method. Our result also appear less bliieish. 

Moreover, recent work [81] points out that the polarizatioii-based method is 

not beneficial, because the polarizer reduces the exposure value and iricrcasas 

the noise level. The noise is further increased when the two images are 

coiii1)iiicd. So if we luso only one mipolanzad image as iiiput, the signal-to-

rioise ratio (SNR) would be iniich higher (see [81]). 

Ill Fig. 3.25 we compare with Kopf ei a^.'s work [39] which based on given 

3D models of the scene. Our result does not require any geometric informa-

tion. We notice that even with the given deptli, their method camiot handle 

iiihoinogeiieoiis hay,e (like the cloud pointed by the red arrow in Fig. 3.25). 

Because when Ls not a constant, the traiLsmissioii can not be olotaiiied l)y 
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Figure 3.17: Haze removal results (citysrapos), 

Figure 3.18: Haze removal results (landscapes), 
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Figure 3.19: Haze removal results (miscellaneous), 
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Figure 3.20: Haze removal result： (gray-scale). 

Figure 3.21: Defociising on three different positions. The input image and 

depth map is in Fig. 3.19 
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(a) 

Figure 3.22: Defociising. (a) Input hazy image, (b) Our haze removal result, 

(c) Our recovered depth map. (d) A defoousecl image using the depth map. 
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Figure 3.23: Comparison with the dichrornatic methods [52, 18, 50]. Ld.t.: 

two input., haze images in (Uffci'(mt, weather (toridil.ioris. Middle;: tho. n、rov(、red 

scene radiance and depth by the dichromatic methods. Right:: our results, 

only using the bottom left image as the input. 

Figure 3.24: Comparison with the polarization-based methods [G5, Left.： 

one of the two input polaiized images. Middle: the result in [(15]. Right: our 

result from the single input iiriage. 

t = e一(似 from the given depth. On the contrary, our method does not rely 

on the constant-/:? assumption. Our result appears clearer in the cloud-like 

area. , 

Next we compare with •single image methods. In Fig. 3.'2() we compare 

with the dark object subtraction method [9]. This method assumes a constant 

transmission, so it can only remove the haze of the nearest ol)jects. See 

Fig. 3.2(3 (b): I,ho haze; cffocts in the town is not rcdur.ed at all bocavi.sc of t he 

nearer trees. The result of tliis, method the becomes better if the image is 

cropped (Fig. 3.26 (c)). But the distant haze st.ill remains. On the coiitiary, 

our method can remove the haze iii (3at-h position (Fig. 3.26 ((I)). 

Ill Fig. 3.27, we compare our approach with Tan's visibility rriaxiiriizatioii 

method [79]. The results of this method have over-saturated colors. This 

is because the visibility is rnaxiuiizwi only when some f)ixols' intensity is 

brought below zero. On the contrary, our method recovers the scenes without 

severe!}'' changing the colors {e.g., the swans and the buildings in Fig. 3.27). 
f • 
r 
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Figure 3.25: Comparison with the 3D-geometry-based method [39]. Left: 

input. Middle: the result of [39]. Right: ovir result. 

We also notice the apparent halo artifacts in Tan's result. This is l)cjca.\isi; 

the smoothness term in his MRF is not edgc-aware. 

Fattal's ICA method [18) is the most competitive one. In Fig. 3.28, we 

show that our result, is comparable with Fattal's representative example in 

his paper. In Fig. 3.29, we show that our method outperforms Fattal's in 

dense haze. His method is based on local statistics and requjLres sulBcient 

color information and variance. When the haze is dense, the color is faint 

and the variance is not high enough for estimating the transmission. Fig. 3.29 

(b) shows Fattal's results usiug the reliable traiisinission values: the reliable 

regions are sparse. The transmission is then extrapolated by MRF. But 

the results after extrapolation (Fig. 3.29 (c)) are still not satisfactory: some 

regions are too dark (see the mountains) and some haze is not removed (see, 

the cityscape). On the contrary, om. approach is more successful in both 

causes (Fig. 3.29(d)). This is because our dark chfmiiel prior provides reliable 

estiiriatioii in much more regions than Fattal's method. 

3.3.4 Limitations 
» t 

Tlie limitations of om. method are mainly due to two reasons: the failure of 

the dark channel prior, and the irivalidty of the haze imaging equation (2.1). 

The dark cliaiinol prior is statistically based, so there is a chance that, 

some patclies or whole images ^oes not obey this prior. The prior may fail 

when the scene objects are inherently gray or white, with no shadow cast 
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Figure 3.26: Compadsoii with dark, object, subtraction [iJ]. (a) Input, (b) 

Result of dark objc^ct. suhtrac.t.iori. (c) flo.siilt of Da.ik ()l)j(H'.t Subt raction on 

a cropped image, (d) Our result. 

\ 

isip:::,.，. 

Figure 3.27: Comparison wilh Tan's Visibility Maximi'/ation inetliocl [79 

Left: input images. Middle: Tan's results. Right: our results. 
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Figure 3.28: Comparison with Fattal's ICA iiietho(i [ 18]. Left: input, iinagf^ 

IVlkklh” Fattal's result. Right: our result.. 

Hi 

(d) 

Figure 3.29: More comparisons with Fattal's method [18]. (a) Input images, 

(b) Fat.taps results before extrapolation. The trarisiriissioii is not estiiriatcd 

in the black regions, (c) Fattal's results after oxt-rapolation. (d) Our results. 
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Figure 3.30: Failure of tlie dark channel prior. Left.: input image. Mifkllc: 

our result. Right: our transmission map. The transmission of tlio mm.l)l(、is 

iuiflerestiinat(.;d. 

on them, and with no colorful objects around tlicm. The white marble in 

Fig. 3.30 is an example. In this case, our irietliod may oven^sliiriat(； the 

thickness of the haze (underestimate the transmission). The recovered colors 

become more saturated than they should be. 

Another limitation is that the haze imaging eqmit.ioii (2. j) may he invalid. 

It involves two"situations: (i): diaiiiiel-depoiident trausiriission t. and (ii) 

iioiicoiistarit atmospheric light A. 

(i): Channel-dependent transmission. Tii the haze imaging equalion 

(2.1), it is assumed that the scattering cocfficdcnt is iiidc|:)cii(loiit of th(、 

wavelength A. But this is not true when the part.iclos in at.iimspluTC is too 

I lie particles art； air 

the tran.siiiLs.sion / 

small. All example is the Rayleigh Scattering 

molecules instead of dust or water droplet. In this case 

sKiould bo modified as rhanrinl-dcpondont (soo |-1!：), 

35) 

where the scattering coefficients usually satisfy: 

modify the haze imaging equation (2.丄）by: 
1%. < < Ph- And wo can 

Ir{x) (3.36) 
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Figure 3.31: Cliaiiiiol-dependent transmission. Left: input image. Middle: 

our result using the original haze imaging model (2.1). Right: our result 

where each channel is processed independently. 

In Rayleigh Scattering, the blue channel transmission tb is often the smallest. 

So the distant objects often appeal's Vlusli (see Fig. ’3.:U (a)). Rayleigli 

Scattering is also the reason for the blue sky. If we follow the origiiiiil haze 

imaging equation (2.丄)to remove haze, the distant objects become bluish 

(sec Fig. 3.31 (b)). Notice that the nnarer objects is lass infl\ieric'(;d .̂ One 

way t,o fix this problem is to process each dicuiiiel iiiciepeiideiitly. The result 

is in Fig. 3.31 (c). We ca.n see that the bluish artifacts is removed. But this 

modification requires that each channel liâ s its own dark pixels, which is less 

valid than tlie dark channel prior in some cases. 

(ii): iionconstant atmospheric light. The haz(̂  imaging equation 

(2.1) may also be invalid when the atriiospheric light A is rioncoristaiit. We 

should modify it by: 

I(x) - J(x)/.(x) + A(x)( l —《X)), (3.37) 

where A(x) depends on the position. This is often due to point light sources 

like the sun and the street lights at night. The atmospheric light is stronger 

near the center of a point light source (see Fig. 3.32). In this case our method 

may fail becciusc oiir fixed atiiioHplieric light not. correct in most positions 

ol' the image (see Fig. 3.33). 

This is because of the <ixponoi)tial clepeiidency in 
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Figure 3.32: Point light sources lead to iioiicoiistaiit atinosplieric light. 

(b) ⑷ 

Figure 3.33: Noiicon.stant atmospheric light, (a): Input image, (b): Our 

result, (c): Dark Channel. Red pixels indicate where thr atmospheric li^ht 

is estiiriatcd. (d): Estimated traiisiiiission map. 

Both the clianiiel-dependent traiisiiiission model (v>.,'.U)) and the noncon-

staiit atriiospheric light model (3.37) increase the iiuiiil.)er of unknowns fiom 

about 4N t o about 6N. So we require more prior knowledge or assiimpUoiis 

to handle these situations. Wc will study these problems in the fiitunv 

3.4 Conclusion 

In this chapter, we propose the dark channel prior and a haze removal al-

gorithm basod on it. This novel prior is very simple but, fifl(-f,tivc. Wc show 

experiments to support its validity. We also show that, our algorithm out-

performs previous works in various experiments. 

We do not focus on the ruiiriing time in this chapter. The only timo 

cousumiiig step is to solve the linear s.ystem in soft matting In the 

next chapter, wo propose two fa.st algorithms to adrlrcss the spe”d issue. 

We find that tlie dark channel prior may also adopted by the h urn an 

visual system. This is another strong support for our prior j-us a coirip\ii,er 
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vision algorithm. We investigate thiw pioblcm in Chapter「)‘ 
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Chapter 4 

Fast Algorithms 

111 practical applications, the efficiency of a haze removal cilgoritluri is iiripor-

tarit,. For exarri])le, in outdoor siirvoillance system it. is n.’qiiir<xl to piocciss 

tlie video in real-tiirie; in an image editing system, iiiHtaiit feedback is (、.s‘s(、n-

tial for user experience. In this chapter, \v(:' study t.ho spend-up of ()⑴.haze 

removal algorithni. 

All the operations of our algorithm except soft matt iiig can ho coiri[)ut:ecl 

in real-time for mega-pixel iinagcs. The pur])ose of soft mat ling is lo c;oiril)irH：： 

pixel-wise coiLSt,rail its wit.h spatial cx)iitirmil.i(̂ .s. This wa.s achieved by solving 

a linear systorn. In the first section of this chapter, we propose a largo-kenlel-

ba»sed algoritliin' to INCREASE tlie speed of the linear solver. In TLU; SCCDIK I 

section, we propose a iioii-iterative filter called guide.d jUf.cr丄 lo noplace Ui(、 

soft miitting step. This technique allows us 1.0 process rric^a-pixel iiiiat!,os in 

real-time with almost no quality (Icgradation. 

The guided filter is aii edge-aware filter. Edge-aware fillering is an iiiipor-

taiit and widely applied t-echnique in coriiputer vision/graphics. Tlio guidod 

filter is also applicable in various applications Ijesides lu\ze iTmova.1. Wc .show 

that this filter is a stato-of-thoi-arl, (.c;i;limq\ie for edge-aware； filtering, in ten us 

of both quality and efficiency. 

^This niethod is pnl)lishe(l iii our paper (；>1] as an alpha MiaUing iiiftfiod. 
^Tho guided filter is published in our paper [."V2) os a general cfigc-awarc filler 
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4.1. A LARGE-KERNEL-BASFAJ LINEAR. SOLVER 

4.1 A Large-Kernel-Based Linear Solver 

In the soft luatting stop, we IIWK.I to solve a large liiicw system vvitli a matting 

Lapladaij nuitiix L: 

(L 1 AU)t = At. (3.2J) 

A popular arid g(uiei ally superior t;ec.}iiiique is the Coiijiigat.e Gradient solver 

(CG) which takes time in terms of. the inmibci- of pixels N. It. 

Is quite slow whom N gets larger. 

Ill this section, we fociLS on the kernel siz(.; of the linear system. Coiisid-

eririg the kernel radius r, we shall show that a. convKutiona】 CG algorithm 

tak(̂ 8 0('rA^2) time: it is slovvor when r gets larger. This is one reason why 

previous iTiethods [11, 28, 42’ 84, 36] often use the srriallasl, kcniol, no iiiaMer 

in what form tlie linear sy.st.eiii is. However, we shall prop(.)Ho an —iV” 

tiirio algorithm particularly designed for the inattiiig Ljiplaciaii matrix. It, 

allows us to reduce t he nmnirig time by clloosing a larger kcnicl. This is an 

ill to resting discoveiy, l)cca.ust' in coriveiiUoiial theories solving a loss spanst、 

[e.(j., Itiiger kerii(»l) linear system requires niorej Lime. 

4.1.1 Related Works: Linear Solvers 

Beforê  iiitroduciug onv algorithm, wo briefly rĉ view the pr(、vkms works on 

linear solvers. They are in two categories; direct (noii-iterativc) methods 

and it(:;rativc methods. 

Direct, inetliods find a solution in a finite lumiber of operations. TVu' 

Gaussian Eliiniuatiori is a well-known strategy, which is in essoriiial a matrix 

decomposition method. Other variations inclucle LU, Q.R, and Cliolesky 

decomposition [1 '2]. These methods are ofiective foi' small linear .sysloiiLs. 

But tlioy sufl'er from the "fill-in" probkiiris [12, G3]: inore and more rnti ies in 

tho matrix becomes iioii-zcro during decoiiiposilioii. The iiuiriber of iion-zero 

entries is O(iV^) in the worst case. So these methods can eaijily run out of 

irifiiiiory when N is the image size. For exainj)le, tlio ineriiory for solviii}^ 

a 1000x100(3 image can he in the order of inegabvtes (IM MB or 1000 

GB). 

Tho Fourier transform can be used as a direct solver for some special liiicai-

systems, like the Poissori Equation [7-'l] and the Screened Poisson Equatioii 

6]. If the kernel of the matrix is spatially invai iant, wc can treat tho linear 

‘systeii】a convolution and solve it. by Fourier transform. But this is not tlio 

case ill many problems, including any edge-aware matrices (e-.̂ .tho iiiattiiig 

Laphicnaii matrix) [78] a.iid finy iioii-iiniform data weights 
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Due to the irieiiioiy issuo, prac;tical liiioar so Ivors in cornpii tor visioii/jijiapliic! 

Lira the iterative methods [6'：)]. The Jacobi metliod, Caiiss-Seitlcl iiiotliod, 

Successive Over Relaxation (SOli), and CoiijugaLe Gradient. (CG) are soinc 

widely used ones. In general, tlicsf, methods iterat.ively miilljply a riiatiix 

and converge to tlie tiuo solution. Bui I heir coiivergeiKC sp(、(Hl is not fa.sl. 

For example, it often takes hnnclrods to tliousaiids oi. iterations for a CG 

solvor to converge in many imago problems [77, 78]. 

Pi'econdilioiiirig [()•!>] is a. tediriique lo onsuic fasl. convergence of the it-

erative solvers, often applied in Conjugate^ Gni.(ii(、iit,. The; PnuMiiidilionod 

Conjugate Gradient (PCG) iriet.liud multiplies a spfx'ially (lc\sî iie(l mat rix 

(callcd prccoiiditioncr) in each iteration, which is ()xpcct(、d to iiKTea,so the 

(•-oiiverg(ni(;o si)CO(i. Several precondit.ioricrs for geiKU'al linear systems aic 

given ill [f]:”，hut, tlieir performance is lass satisfactory in prohlmii-

s [77, 7S]. The hierarchical basis precoiitlitioiiiiig (H13P) 1 丁 e x p l o i t s t.h<、 

iriiilti-scale nature of image [)rol)lems. It. is parUcularly iLseful wliuii die 

solution is mostly smooth. The locally adaptive hierarchical basis prccoii-

(litioiiirig (LAHBP) [78] improves this tec.hniqiie for varioiis iiihoniogeiifious 

probloiris like cdgo-awarc smoothing. But the LAI IBF is not api")li(:a.h]o for 

the nialting La))lac.iaii matrix, bcM'.ausfi it. i.(、quii•(入s t:li(、matrix lo 1h: first-ordci' 

smooth''. 

The multigiid tccliiiiquc is another way to accolcratc^ the il erativc solvt'i-s 

7j. It also exploits the iiiulti-scalc nature of image problems. Il, solves iJic 

problem at a coarser sccilo, and corrocts the oi ror at, a (iiicr scalc. This process 

is often run recursively and itcratively. The multigiid riiotliod is optimal for 

horuogenoiis problerrus like the Poissori Equation, hut Ls l(\ss salisfaclcji v in 

irregular cases. 

4.1.2 Matting Laplacian Matrix 

Our algorithm proposed in this section is parUculaily designed Ini- I,lie IMMI-

ting Lapladan matrix. We first introduce Mu; dcrivril.i(jii of 1 his nialrix. Th(: 

derivation is mainly following Levin et oi/s alpha niat Uiig paper [12] in which 

the matrix is proposed. But we discuss in tho scenario of haze rcniuvril. W(! 

shall also see why we C I IDOSC this matrix in our MRF model (3.18): it, is COUI-

pati})le with the lia/o image (filiation, ami has nice edge-aware properties. 

We still denote the estimated traiisinissiori in (3.1-1) by t, and Uu-. rcfiiiod 

trruisiiiission by t. For simplicity, wc dorioto the image as a oiitj-cliaiiiiel image： 

I {but the color image case is similar). Efidi image or map can he writien 

'̂This means that L”- is non-zero only when j is in tlie 1-neighburhuof.l of 
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as an N x .1 column vector. Kor example, the ith eleiiicnl. of tlie voc;l,oj- t 18： 

U ~ 广(X)’ with i — :i： + y * wid and x = (；/;, vy), 

whcTe wid is the image width. Tlie index ？: is in the range [(), N — 1 . 

W(.、. a.ssuriic that iii a small local wiij(k)w tli(?r(； Ls a Iinear tiaiisfoniiat ion 

bctw(3eTi the refilled ti ansinissioii t and tlic hazy linage /: 

“二 ult + k Vv： G w, (-1.J) 

wlienj a and b arc； l.ho linear coefficients assunicfl to be con.si.aiit in 1 lie, window 

w. In rac;t, thia mode] is compatible with the ha/o iriodol. From the haze 

imaging equal i(.)ii /,： = ,1山 + 成丄—/ j) wc; can write as: 

•li - ( '1.2) 
飞 Ji-A Ji — A 

If Ji is approxiiriatcjly constant in w,‘ we let a = and h — - and 

obtain ( i . l ) . In [42] it is shown that the constant-J assumpUoii can be 

alleviated to a color line assuuiptioii. Later we .shall further generali/c il t,o 

a color plana assmnption. This (uisuros that Uu! local linear inodol (4.1) is 

valid in most sitviationw. 

The local linear model (-1.1) luiis a good edgtvaAvare i)i()p(、ity. lii hict, if 

we take the j^radicnt of ( l i ) wc have: 

= aVIi V?： G w. (4.3) 

This indicates that t has an edge only if the image I has aii edge, and t is 

smooth if J is smooth. This is ilic maiii purpose of soft matting - imposing 

continuities on t aocoidiug to the edges of /. 

We encourage tlie r(:;rmed transmission t to obey the local lineaj- iriodcl 

('1.i). So we minimize a cost function f(t，a, b): 

(t’ a, b) = ^ ( ^ ⑷ — a - k l i 一 hkf + sal (4.4) 
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二 h - (ikVk-

The solution is： 

(Ik 

Here, |?i;fc| is the iiurnbor of j)ixelH in w^, fk = t、and //'人.二 Xln二队./. an) 

the mean of t and I in the window Wk、cov^.(/, f.) is the covariaiu e of I and / 

ill Wf̂^ arul rr^ is the variaiico of I in the lU/,.. Notifc thai this is t.ho solui.ioii 

to a ‘siiriple linear rogrfission problem [J-i . 

We should point, out that the solution (1.7) is writ,ton as an iinplicit matrix 

42]. But it is t:li(，(!xi)li(:it fonii (1.7) that, IV)rm in Levin eJ, a/.'s derivation 

inspires our large-keriiel-basod rnethod [31 

Putting (1.7) into (4.5) wo f.ari cliiniriMtc all tlio "丄 

ciuadratic fimctioii on t: 

iiid the guided filler 

Liui Icaviiij^ us 

t
 ’ U + A||t — t i l l ( 1 . 8 ) 
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111 this eq\iatioii, k is anot her \nxc\ index and X (Iciiotcs t\w. sot: ol" all l lio 

pixels ill the image, uĵ  is a window centered at pixel k. Wc a.ssiiiii(> tliM,t 

eacli local window Wk bai> its own linear coeflicncnits a、and So tlic sot. of 

all (Lk (arifi bk) forms a map, (i(、iiot()d as a column vector a (and b). e is M, 

regiilarizatioii parameter. 

If we further constrain that i sliould approximate the csliiiiatcd t、wc mid 

a data, lerrii to the cost function: 

印，a , b) = E [t, - (ifJi — + zai 

kel \i^Wk 

Y^ifk - h: 

J kfl 

1.5) 

Noticc that this is a (|iiadiatic t'unctioii w.r.t. ()ach (/./. and 

fiinctiori is iiiiiiiiiiized by setting oacli partial derival.ive 

a, h)/()bi； to zero: 

hi,-. Th(j，(M)st 

a, h)/dak and 

du-k 

(卵 , ’a，b) 

'^^MkU + h — U) + 2t:(j…二（) 

• 6 ) 

= ^ '2.(a(Ji + hk - ti 
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Alter a series of algebraic operations (see [42]}, we can obtain the ent ries of 

the matting Laplacian matrix L: -

“ 广 ^ ( 〜 广 1 ^ ( 1 + … r a )). 
(4.9) 

k\(ij)£ivi, 

where f5/, is the Kroiiecker doUa. Foi- an RGB image I, tlic fonimlrition is in 

(:i.2()).“ 

Equation (4.8) is exactly the cost hiiictiou in (：！ 18). Its sohit ioii can bo 

obtained by solving t.lie linear system for t as in (3.21): 

(L +AU)t. 二 AL (4.10) 

where U is an identity matrix of t;hc saiiK； SV/A) a« L. The matrix L is an 

N X N matrix. Intuitively, the entry L^ describes the relationship ])ctw(HMi 

any l-wo pixels indexed by i and j. If an image has N ~ 100(J x 1000 pixels, 

the matrix L lia.s i()「) entries in cacli row and 10^ x entries in total - which 

is a very huge number. 

Forimiately, tlie matrix is sparse: only a small portion of its eiiU.kis arc 

non-zero. Notice the suiniuatioii •」)£,“ in (4.9). Given a fix(乂i pair of 

(i, ；/•), the sumriiation is over all the windows that: contain both pLx.ehs at i 

arul j . The siirriiiiation is not empty (so L/, can be iion-zoro) only if » and j 

can be covered l)y at least one window. See Fig. i. J for an illiistratioii where 

the pixels i and j arc the furtluist to ensure the summation is not. eiiipty. We. 

can see that if the radiuses of the windows w i.s /.’ L,j can be non-zero only 

when l,li(、pixel j is in a (47. + 1) x (4r |- 1) iieighboi hood arc Mind t he pixel L 

We define keuiel size as the riivmhor of iioii-zero outvies in ()a(、li row of 

L. The /th row of L lias at most (4r + 1) x (4/- + 1) non-zero entries, so 

the k m id size of L is (4r -I- 1) x ('l.r + 1). When the window w is getting 

larger, the matrix has more non-zero entries aiid becomes loss sparse. In the 

previous iiietJiods [-12, 36, 84] the radius r is always set to 1. One reason is 

tliat solving a less sparse linear system is slower in conventional theories. 

4.1.3 Algorithm 

Our obsorvalJoii is that a larger kernel acl ually rediicos the iteration riuinbtjr. 

The cost is from the highly expensive iri-iteration computation. But if w(、c.ari 
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2r 

Figure .'1.1: Km.id size. The kernel is a rectangle iiiclviding all llu) ii,ray pixels 

in this figure. 

compute etich itoration more efJicient.ly, the total complexity can be rcchiced 

tliauks to the ffLster corivergenco. 

Analysis of Conjugate Gradient. 

In coiivoiitioiial theories, solving a less sparse matrix: is ofleii slower. Bui 

we point out. it is not nece^ssaiily true. Here we analyze this issue in the 

Conjugate Gradient method; other iterative riiothods are essentially similar. 

We discuss a. general liiioar systeiii: 

r- Ax = b, {11 I) 

r 

whore A an A' x yV malrix, and x and b are A'x 1 vcct̂ ors. In .soft inaUiiig. 

we liavo 4- = L -i-入U, x — t, and b 三 At. 
( ‘ 

The Oonjugate Gradient, algorilhru is given in Algorithin」，vvherci \vc u.sc 

“:=” to (loiiotc a variable assignment. In each iteration oi" CC, all tli() stops 

except Sp'p '1 fire vec;tor axlditioii, s\il)Ua(:tioii, oi. imior product, whose time 

complexity is O(A') regardless of the matrix A. The comput ational cost is 

dorninatwi by the matrix iriiiltiplicalioii in Stop .1: 

U = YlA.,7>r (1.12) 
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Algor i thm 2 (?oiijugate Gradient: solving Ax = b for x 

Require: Arbitrary initial guess x() 

1： Initial r :— b — Ax^, p := r , 

2： repeat 

3： 7 r ̂  r 

i: q := Ap 

5: rv := 7/p] q 

(i： X := X i 叩 

7： r ：― r - op 
8： /a •—丄 rTr 

“ 1 
9： p := r I fip 

10： unti l oonvcrgencc 

The runnbei" of operations for comput.iiig …is pyoportiomU to t he imuiher 

of non-zero (elements in the row of A, i. e., the kernel size. So t,h(、timo 

complexity of this stop is 0('r-N}: it. would be very high when t;luj kerriol is 

large，. . 

But; the niiiiiing time of the solver also depends on the iiiiinber of il,-

cratioius. A pixd influences more pixels in each iteration when the ker-

nel is larger. Intuitively, Uie "information” of a pixel is "propagated" at 

a spoccl of ()(r) per iteration. Suppose.̂  the image length is N^. A pixel 

iiiflueivc(;s all the oilier pixels in iterations: this is also expected 

to be the iteration iiuiiiber for convergence (wc shall prove it theoretically). 

Si net) each iteration is O(r^iV) corrjplex, the tot,al complexity of the solver 

is O{r^N)XO(yV2/?•)=0(rN^). Tliis indicators the faster convergence can-

not coiinteracl. the slower iiuitrix irmltij)li('al;ioii, ami solving n la.rgen' ken id 

matrix is slower. • 

Tlowover, wo shall propose an 0(iV) time algorilliiii t:(_) coiripvito^( l. 12) 

particularly tor the matting Lai)laciari matrix. 0(A,) time indicates the coiri-

plexity is iudeperKleiit. of t he kernel size r. Then the lotril spoecl of tlie solver 

becomes 0(iV)xO(iV?/‘/、）二0(八厂^.厂）.We can solve the linear system f.a«t'(、i-

by using a larger /•• 

An 0(1) time algorithm for matting Laplacian multiplication 

The focus is on q :二 Ap (Step I, Algorithm 2). Notice that the matrix A is 

L f AU in our problem. So tlie computation of q := Ap is in two steps: (i) 

q := Lp; and (ii) q ：二 q + Ap. The key is step (i). 

Given any Nx 1 vector p, we show that Lp can be calculated by Algoiitli-
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111 3. Ill the algoriUirn, a-l and bl are intonriediatc variables iti oac:li window 

Wk. 

Algor i thm 3 0{N) time algorithm for coiripuliiig q :— Lp 

1. 

. cova,.(/, P) 

+ M 

(••1.13) 

2. 

《 I ：二 Pk _ • ^If^k (4.14) 

3. 

H P , -

/ 

( 》 
\ kev\ 

\ 

广kV丨•H〉〉l、 

keu>, / 

(4/15) 

T h e o r e m 4 .1 .1 . TJic q computed by Algorithm •>' equals to Lp , ivlivre L is 

the rnatliiu] Laplacian matrix defined m (//.'J). 

Proof. Equation (.1.1:3) indicates a; is a weighted combination of /), in the 

window Wk'- a J, = X^iGi"" W'tiP” where the weights WJ.- dcperul (m I. WriUeii 

ill a iiiatrbL form, this is a. linear traiLsforin: a* — W"p, vvliojc W'' is a 

t> 

coefficient matrix. If w() put (4.13) into (4.11) and dimiiiat(、《，wo (:aii 

obtain another linear transform: b" = VV''p. Similarly, q is also p's linear 

、 
transform: q = W"p. Consequently, to prove q equals to Lp, we only need 

to i)rove dqi/d'Pj = hU. j ) . 

The calculalioii of dqi jdpj from (4.:13)-(4. J5) is st,raiglitforwar(l but. locli-

nical. Please see Appendix B.I for the dcUiils. • 
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We can show the time complexity of Algorithm 3 is 0(N). In fact,，all tlie 

operations in (4.13) and (4.14) are mean, variance, or covariarice of sliding 

windows. They can be written as a' series of box filters. A box 11 Iter can he 

voi,y ofticienl ly coiupiited in 0(7V) time l)y integral ima,ges [22] or cuimjlativn 

sums, regardless of the filtor radius r (see Appendix B:2 for clet.ails). So tlio 

o})eratioii q Lp can be coiiiput.cd in 0{N) time instead of 0{r'^N). 

We notice that (4.13) and (4.14) ar(’ analogous to (17) if \v(、analogize p 

1,o t. This is not surprising. The vector p in t,lu> C'G algorirhiii is a modi find 

residual (('alleel conjugate vector) (if t.lic sohition x in the ciiiTeut iteration, 

and X is i for which we solve in scjfl mattLiig. Consequently, given the sohitioii 

t of the current iteration, if we coinputc. a^ and hi,. a,s in (1.7), then a l and 

bl actually fonns the c:oiijugate vec;t.ors of â- and bf,-. 

Convergence Speed 

In this section, we theoretically analyze the convergence speed with respect 

to the kernel size. In the CG algorithm, the iimiibcr of iteral icjiis needed for 

c;oiivergerice is [77]: 

’、 -/-iiier ~ ^\/^ln(2/e)： (4.16) 

where the error c is ii preset convergence criterion, and k is the condition 

nmiihcT.nl' th(、iriat rix A . T I JO coiulitioTi nunibor is dcHiicd as ( he ratio of th(； 

largest eigenvalue to the smallest eigenvalue: 

_ '̂ niHX /.I 

S>iiiin 

where represents the eigenvalue of the matrix A. Because in oui problem 

A = L 4- AU, we have the relation: 

‘ = 6 A. • (•1.18) 

I 
• 

So we liave to liiul tlie eigenvalues《】'of the matting Laplaciaii matrix L. 

The matrix L is dependent on the image I (see (4.9)), so it. is difficult to 

obtain a general form of for arbitrary iiriages. Instead, we only consider 

the approximately constant j-cgions of I . Usually iiiaiiy regions sat isli(;s this 
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condition. According l.o (4.9), lor- cx)iLsta.iit I the clcivioMts of L a.if given by： 

In lliis equation L,y docs not dq)(、ii(l on 7\s values. The ci gen values of, this 

matrix are appixmiriately given by (soo Appendix 1:5.3 for the fletails): 

aiul 2 

丄 〜 冗 】 | . " ’ | 2 . ('1.21) •̂ iiiin ~ 

Then Ihe conditioned iiiimber n is: 

G N 

n
 斤 +“)(二)=()(含) (.1.22) 

<inin Siriin 丨川丨 ‘ 

Here ^ ^ ^ is because A is set; as a small value in soft mat t.iiig. 
Siiiii îiilii 

Having ohtiiined K, tlie riuniher of iterations (4.16) is: 

(1.2:3) 

This is consistent with our intuitive explaiiaiiori. 

Because the (;oiiiplexit.y of cadi iteration is 0[N), so the tutal complexity 

of the linear solver is ( ) (>""” . ThuH we havo proven that using a larger 

kernel is actually tVusl-er. We can also see tliat without, the fa,st Algorithm ：) 
* 3 -

the total complexity 0{rN^). This is l;lie complexity of the convonlioiial 

CG method. 、 

Color Plane Model 

Our linear solver for the matting La])lacifin matrix is non-appToxnnaU： Cor 

the cost function with a jixcA kmiel raxlius r. But it is wort.li riieiituoniiig 
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that; if we chaiigc y, we also change the cost function that is to l)e optiiiiized. 

In general, the solution obtained by /.】is not identical to the one obtained 

by r'l if r] • r'2. Next wo investigate whether t)ie haze removal qiiality is 

iullnciiced by a large? kerne;!. 

Tlie ba.sic riiotivatioii of the matting Laplaciaii matrix is t,h(> local linear 

model (.1.丄)： 

t, ali -f- Vi e w. (1.1) 

I'lie quality of tht; soft mat ting algorithni depends on the validity of lliis 

model. Previously (see ( l.'i)), we a.ssuirie thai J is nearly constfiiit in the 

window w to ol)l;a.iri 1,1 lis model. Next w() show that this fLSSumplion can 

])e jillfiviatw】 t.() a color plane a ĵsuiript ion for color iinages. l l i is is a inore 

general assumption. 

Ill the cast' of a color iiria,gc 1, t he model is ext ended as: 

。二 a-I,. ! /,’ \Ji E -w. (124) 

where a is u 3x1 f'onstant vector, and is a 3xJ vector of the color i-ii 

pixel /. Til Levin at at.'s work [42], it is show that this local linear iiiodol is 

valid under the color line, assumption: the forogTound/hackgroiiiul colors in 

a local window are in a line in tlie RGB color sptux). Tliis a,ssuiiipl.ion ha.s 

been oiiipirically verified in [42. 53 . 

But we show that wc can further generalize the color lino as.suMi{)tioii to 

a color plane assiiiiiptioii: the colors of J hi a local window ai e in a plane in 

tlie RGB color space (see Fig. 4.2). Denote t.lio plane noriiial by a vector ii. 

The color plane model is: 

n • J , - C\ Vi € w. ('1.25) 

where C is a constant hi the window w. R.ccall tlie liaze i in aging e(iual,ion 

(2 .1) : 

I, 二 JITI -I A(1 — TI). (12F|) 

We project l,his equation on ii ；ind obtain: ri . I, = CI、+ ri • A(1 - or 

cquivaleiitly: 

U 二 广 , “ . . 1 + 广 人 A , Vv： € ".’• (4.27) 
C - n • A C — n • A 

This leads i.is to the local linear model (4.24). 

75 



4.1. A LARGE-KERNEL-BASED LINEAR SOLVER 

Figmc 4.2: Col^r piano riiodol. 

The color plane model is more general than the color line model. Colors in 

a, color line arc cortainly in a. color plane, hut jiot vice versa. The color plane 

assiiiiiption is ea.sier to be satisfied, HO WC can larger windows witliout 

breaking the assimiptioii. In Fig. 4.2 wo show an example. In the RGB spaca 

we plot the colors in a (Hx6'l window. Wo also plot the principlo coiiipoiioiit.s 

of these points. These colors can roughly be riiodelod by a plane. 

If the color piano assumption is satisfied in large windows, (he Ujcai linear 

model ('1.2'1) is valid. In this case the quality of the soft matting step should 

be acccptablo. Fig. 4.3 shows examples of hazo removal results using difiVu-

ent kernel sizes. We can see the i-ecovercd traiiHinissioii maps I arc slightly 

different;: t contains more details and textures when the kernel is larger'. But 

the recovered .scene radiance images J are aliriost visually ideiiMcal. This is 

becausc the color plane model is valid for appioi.iriat.ely larger windows, hi 

cxioe^riineiits, we find thai r = 8 ~ 16 (for 600x400 images) iiil.rdduccs very 

little visible ai'tifacts in most cases. This indicat es t hat we can Hchiove .-ibout 

X10 speed-up (coinpaiod with r 二 1) without yacrificing quality. 

4.1.4 Experiments 

We verify tlie speed of our algorithm by oxpeiiriients. We test, many images 

and lirid similar conclusions, and here w(、lake the iiiuige in Fig. '1.3 as an 

These (letnils anrl textures can 1)0 safnly sinoothod i)y the l)ilateral filler [Mi]. 



4.1. A LARGE-KERNEL-BASED LINEAR SOLVER 

example. In Fig. 4.4 we siiow the convergence spried of the CC; algorithm 

with rcspect to kernel radius'、. We cari see that the Mlgoritliin coiivorgcs 

much faster when the kernel gets larger. Tho riiiiii)>er of iterations required 

to achieve err — 10一u) aie shown in Fig. 4.5. As we (!xpect, the iniiiiber 

of" iterations is about. O(^). As the niririmg time of ari iteration is constant 

regardless of r, the total running time is also shown in Fig. I "). Tht、rmiriiiig 

time for tliis 600 x •100 image is about 10s for r —丄,2s tor r — 8，and 0.5s for 

r = 32. 

The exi)eiiiiieiit,a.l results iii Fig. 4.1 arc dillicult U) obt ain if wo \i.s«； coii-

vciitioiial inethods: the CC algorilhn】 witlioiit. our fast Lp algorithm would 

take over 3()()H to solve this linear system when r = 8, and '1000s vvlieii r — 32. 

This is one reâ soii why previous methods [42, 8-i, (:aii only use r — I. 

4.1.5 Conclusion and Discussion 

We have proposed a fast algorithm to solve the matting La.]>la(;iaii iiuit.rix. 

Our algoritkiTi is taster when the kernel is larger and t he iiiairix is less sĵ arst;. 

which is against coiiveritioiial theories. 

Our algorithm is non-approximate with a given kernel size r. It provides 

us a. chance to observe the results of larger kernels, which arc almost iiiiavail-

al)le ill previous methods. The result, of a. large kernel {e.//., r > 1) is (liffcrcnt. 

with the oiHi ol' a small kernel {e.g., r 二 1), bul is not. lUH-oHsarily degrafled. 

Ill our alpha riuvltiiig papei, [31], \vc Lave fouiul Miat an appiopriatdy largo 

kernel actiiaJly improves the quality. 

Although our algorithm is parl.icularly clcsigned for the matting Laplaci;i,ii 

matrix, a similar idea is cxpeclxM：] to work in ‘some other iiiat.ri('C.s u.sod in 

C'Oiriputer visiori/grapiiics probleiriis. The focus is l.o 】.educe the niiiiuiig tiiru； 

in tlie matrix iiiultiplicatioir step (Lp) and to acliievp. speed-up by {'aster 

convergence. 

The matrix-vector multiplication (Lp) is 2D image {iltciing". So (.mr 0{N) 

time coniputa.tioii of I4) is actually a i'aiit. fillering Higorilhm. IrLspiicd hy diis 

concept, we propose h novel filt(?r callod (juided filUtr [32]. It is not only Ikst 

but also has very good quality, as we shall discuss below. 

nVe sot A = 0.0001 jtwIin the linear systeiti. A fat:tor | is to counteract the increayful 

iniiuber of smoothness terms in tlie cost. funct.k>ii (‘1.-1). "The other factor |u’| ensures the 

average inteiisitry of thf3 solution is almost; unchanged, jusl as in luaiiy luultigTid in(itliO(is 
[7j. . ‘ 



^1.2. GUIDED IMAGE FILTERING 

.本保V: . •：的於̂：实：；厂盛 

鎮 麵 禁 . 謂 
r.： '.' \ *.. .V rCJi 
• , ‘ 二 ' V , ’ 4 ‘•’-、, 
議 . 攀 _ _ 

r-1 r:32 

Figure 4.3: Ha'/tJ removal results vs. keriK'l size. Top: input, iinagc ami 

r(x.()v(、r(;d scerin radiance. Bottom: I(:(:OV(U.(M1 trmisinission aflei- soft： mal l.ing. 

4.2 Guided Image Filtering 

We go back to the mot ivation of the soft mat ting: wo expect to coiuhiiu; l,h<_， 

pixel-wise constraints with spatial continuity roricc.ms. I inspecting Fig. ；17. 

wr find thai, the nifinr^fl transmiysioii t lias intensity like I、but has consistoiit 

eclges with I. It appears thai the map t uiiderg()c.s a filtc-ring procas-s HIKI 

becomes t’ and Uie process appears to be "aware" of tlie edges in the iiruxge 

I * 
The solution t.o t.lu； soft matting (4.10) can he writ leu a»s: 

t 二 A(L + A I ： ^1.28) 
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Figure 4.5: Herat ion iiuinbers aiul ruiiiiiiifi time vs. kernel jsizo. The iteration 

m i i n b e r s (X j i r o spo i i d l o Uio e r ro r lo•一⑴ i n F i g . 4 , J . 

This is actually a tran.slatwn-mvrimd liltoriiig prm-css: 
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f
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y
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(4.29) 

lliat. is not. explicit ly 

is a weighted average 

image I. The iiiiage I 

(nisuriiiK l.lic 

whwe till' filtering kernel W is the inatiix A(L + AU)~ 

computed. This equation indicates tlial ilie output; /、 

of i-j, wlior« Uie weight Wij is solely determined by the 

"guides'' the iiltering prĉ c.ess by adjusting the weip;hLs (koriicl) 

edges of i are consistent: with 1. 

Ill this scctiuii, wc introduce a novel (xlgo-aware liltcr, called ijuidcd jiltcr, 

(.0 replace tlio soft jjialtiiig sLejj. The weights of Uiu liller arn (explicitly 

given, so we do not need to solve a linear system. We Further propose a fast. 

()(yV) time algoril.hiii which is i i i c lcpe iKlent of tlic kernel sizo r. This enal:)le,s 

ic;al-R,iriic perfonnancc of IIK; filter. Edge-awiirc filtoriii^ is an important and 

widely studied topic in coiiipiitor vision/graphics. We show that the guided 
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小 12. GUIDED IMACF： FILTERING 

fiU,(;r lias many a.dVfiTitiig(\s (m、r existing ‘.:(lg(wuva】.<、filtcTiiî  t,()(、jmi<iiu)s，iii 

terms of both speed and quality. Wc also (ieinonst.ratc various applications 

of llie guided filter iiichuliiig haze removal. 

4.2.1 Related Works: Edge-aware Filtering 

Filtering is one of the most; iiiiportaiil oporations in corri()iit (!r visiou/gnipliics. 

Sirnplo linear li anslation-iiivariaiil, (LTl) filters like (Taiussian fik<、r, Laplm、ia.ii 

filter, and Sol>ol fil{..<、】. a.r(、widely iisod in inuigo hli"T“ig/sha.riM、niii。 

cletecliori, feature extraction and clc. [」7]. Tlu> kernel of these fillers ••"(、 

(•.xpUcitly defiruMl. LTl filters can also be dosi^m'd irnplicii ly： solviii}^ n 

linear system Ax 二 b is rsqiiivalciit k) filtering Uu、nitip b by A x - A 】1), 

where the filtcriiig kernel A~' is not (.'xpliciUy coinjxiLcd. An cxaiiipii' of. 

iiri[)licil LTl filters is the Poissoii Equal.ioii iisocl in high dyuairiic range (.11-

D R ) coiri[)rossioii [20], iiiuige stitching [•'̂ Ci], image nuiil.iiiji； [7「小 niifl iiiiaia/、 

siiioothing [(). 

The kernels nf LTl (ilt.crs arc spatially invariant, and iiidcpcTuhMit of a.iiy 

itnagci conliuil. But, usually w(、liopr l.ho filtering pnxxjss lo ''stop" so a,s t.o 

pri^scrve edges. Tlui l)ilfitoral filter, originated from [J’ 71], named in [M)j， 

and generalizod in [57], is pcrliaps most widely listed w_lf̂ ;(._-;»\vaT(、fili.cr. 

lis output at each pixel is a woighlod average ()i. t.lie nearby in|)ut, |)ix<.、ls， 

whore UJ(、weights deixnid on 1.1 Ki iiiteiLsil-y/color s i i i i i l a r i t I t smooth 

the image wliile preserving edges. Due to this nice proix'ity, it lia,s hcHMi 

]],IIDR (、ompi.(、ssimi [.r、j, iiiulti-scHlc detail widolv used in noise reduction 

decoinposit.ion [19], image abslracUon [！ 

joint. l)ilatoriil filter in 

and ntc. It is 1 U) Ui(、 

tli(! wx'ijihts arc coinpnlcd from aiiot.luT iniai!,!' 

rather thiiri tlio filtering input. The joint bilaleral filter is arlv;iiit,ag(H)iis 

when Llie filtering hipiit is not velialjlo to provide î dgc iiilonnalion, (:f/” 

when it is v(、ry noisy or is an intcnncdiate map. Th(、joint hi later a 1 filt;<、r ha,、’ 

been applied in flci.sli/nc>-(Uusli iiiiuging [57], image iiiisfi.uipliiiji, ['IS), 

(Iccoiivolut.ioii [90], and et,c. 

^However, l,li(’ hilaterfd filtur" luus some liiiiitiitioiis. Jt lias 1 >(、(、" iiot/u pd 

15,厂)，17] that tins filter may havi; the tpudi.cnI reversal Tli(. i'(、a,si川 

is that when a pixel (often on an edge) \ms vory few similar pixels arouiwl it, 

tho vveighl.ccl avorage is niistfiblo. Another prohlorii of the I>1 lateral filter is 

the speed. The brutc-forco iiiiplcineutatioii is in 0(iY7,2) tin出,which is vory 

high when tho kernel radius r is large. Paris ci al. [55] proposti an approxiiiiale 

simply vvivx lo bilal.oial/joint bilateral cases ivs the "bilaleral liltcr" unless spec; 
(i«>.d. 
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vSoliil ion i l l a d i s c r c t i z e d sj)a€o-(X)l(jr ^rid. Tliis concej)! i n s p i r e s O(i'V) time 

a l g o i i U i i n s [58, 88] b a s e d o n h i s t o g r a m s . Ac l i ims ot a l . [1 ] p r i ) p o s o a 1,m、-

h a s e d a l g o r i t h m l o r c o l o r i n i ages . A l l o f t h e se m e t h o d s ro .qu ire ( l u a n t i z a l i o n 

( a p p r o x i m a t i o n ) t.o a-cliicve satisiax'l-ory s p o o d , h u t a t t h e e x p e n s e o f q u a l i t y 

f l o g r a d a t i o i i . 

E d g e - H w a r c f i l t e r i n g c a n a l s o b e i m p l i c i t , (：.()., t h r o u g h s o l v i n g a, VmiMii 

s y s t e m . T h e we igh tec l l e as t s q u a r e s (WT>S} f i l ter i n ！ 17] a d j u s t s t h e m a t r i x 

afliiiitics Mccorcling lo ("ho iinajjjc jî radionts. This I I IOUKK I is ablo lo profluco 

a lia.lo-frce clocoiiiposit/ioii of the input image. But solving a Iniear sysU'iii is 

rdat. ivdy slow (cornpared with explicit filtering), as \v() cliscusHcd in (IK; bust 

s e c t i o n . T h e i i i a l t i u g L a p l c i a n i n a t i i x [42] a n d t h e CJauss i an-vve igh l cd ma-

t r i x [28] a l s o exh i b i t , odgtv-aware p r o p e r t i e s , a l t h o u g h p rev im i . s l y t h ey \vm: uo l 

developed for this purpose. In [8j, a iioii-linoar fikcrii'ig process is propost.'d 

t l i n H igh L l - m ) n n ( ) i ) l i i i i i z a t i ( ) n . T h i s f i l t(”. is e( lg(vawar(\ b u t U i (、叩 l ‘ im i za-

t i o i i is a l s o l i m t v c o r L s u n i i n g . 

I l l s u m , a fas t ; i i u l Inf i l l quc i l i l y exp l i c i t (ilicn- is s t i l l (Uu i i a i i d cd i n i i im iy 

c!f ige-aware a i ) j ) l i c a t i o n s . 

4.2.2 Algorithm 

W(、. p r o p o s e t h e CDiic.ept, o f " g u i d e d i m a g e f i l t e r i n g " b e f o r e ii i l l oduc i i i i i , o u r 

f i l t e r . Guuh'.d nriage. Jiltcrinf) is a p r ocess t h a t cc)riibiii(\s 1 h e i i i f o r i i i a t i o i i o f 

t w o i i n a go s , l u i i i i c l y , c\ l i i l o r i i i g i n p u t i m a g e ( d e n o t e d a,s />) a n d a g i i i d r i m a g o 

(do i i o l . ed a.s J ) , a n d g(、nemU\s mi f ; f i l t e r i n g ou t p u t i m a g e (d(、nuU，d as (f). T h e 

filtering i n p u t p ( I c t o r i i i i u e s t h e c.olora, b i ' ightnes .s , a i u l t o n e s t h e f i l t e r i n g 

ou t pu t , r/, w h e r e a s t h e g u i d e i m a g e I { le tcnu i i ie . s t l i o e d g e s ([ 

G u i d e d i m a g e f i l t e r i n g i n vo l v e s t h e c o n c e p t o f e d g o - a w a i c ( i l t e r i i i g . Fo r 

example? , i n t h e cftse o f flash/iioftash d e i i o i s i i i g ( p r e v i o u s l y t h r o i i g l i 1.1 ic j u i i i l 

l ) i l a t e r a l filter [57])， Ih t ; o u t p u t (q) is e x p c c t c d t o h a v e t h e t o n e s o f t h e 

iic)-ll;.Lsli noisy i in ago (p), and be <i8 sharp and cloaii as the flasli image (/) 

(Fig. IG, 3r(l row). In tlie ease of single iiiuige to.xtiiro smoothing (Fig. U). 

2i i ( l r o w ) 01. f lcu io is ir ig , w e c a n t rea t i t a s a s p o d a l ra»s(、of g u i d e d i m a g e 

f i l t e r i n g w h e r e t h e l i l t c r i n g i n p u t (p) a n d t h e g u i d o ( / ) A,re idont. ic.al , IJCCHUSC^ 

t i i e c o l o r s a m i t h e (u lgc in for i n a t i o n a r e froir i t h e sa i r i e ii i iag(3 ( b u t coiii].)iii(?d 

unequally), 「「he giiided image filtmng also involves nuiny other problcMtis 

l.hat are not vie.wed as cdgoawart、filtering bi^fore, like hazo rfriioval, image 

m a t t i n g , a r u l s t c ro ( j v i s i o n [GO]. Foi, e x a m p l e , i n o u r I r a i i s n i iHs i o i i rd in(nm、ii l 

(previously tlirough soft matting), tlio rcfiiifid Iransmissioii map t has values 

clOvSe t o t h e es t i i na tcK l t , a n d luks C3(lges corisistori l , vvitl i t h e h u z y i m a g o I . In 

t h i s Cfise t h e l i l t c r i n g i n p u t p is i , a n d t h e filteririj：^ o u t p u t , q is t ( F i g . .1.(3, i s t 
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小 12. GUIDED I M A C F ： FILTERING 

row). 

.The concxipt of guided image lillcriiig allows Ufs to ti.(-，at i^dgoaware tiller-

ing and other problems in a. broader framework. In the following, we propose 

；i novel filt.er called (juidcd jliter wliich wa« originally dosigncd in our lia'/« 

removal Ktvuly but is later applied in in any prol̂ le.rris. 

We are intorested in a gonci al linear translat-ioji-variant tilteriiig proccss. 

which involves a. guide iriiMge I, an input image p, ami an output image 

(}. Both I and p are given accordiiig to the application, aiul they can he 

i(l(jutii:al. Th() liltcriii{^ output at a pixel i is t̂ Kpressed as a weighted avf̂ ragc：: 

where / and j arc pixd irulcxes. The filter kernel Wij is a {\iiicUoii of lh() 

guide image 1、which is iiidHpoiidorit ot" /;. This filter is linear wiUi respect t o 

p lor 'A [ixod I. 

In tlx: (:as(; of tlio hilatoval filter [801 and thv joint bilatcTal filtor [57], tho 

koniel I'V'bf is given by: 

A, n^ af 

where x is the pixel coordinate, and A', is a norirializing pjiiairieter to ensure 

that Yl j ~ 1. i)Mra.ineters a、and (Tj. adjust, the spatial similarity 

and tho range (intensity/color) similarity respecUvdy. Tliti images I and p 

arc kknU.kaJ in the Inlateral case [80], and aro difrerciit in the. joint, hilaieral 

cas(； [57]. 

Definition: Guided Filter 

Now wo are I'oady lo define the g-uidcd filter and its kiirnol. Tlie key aiiSuiDj> 

tiori of the guided filter is a local linear model between the guide I and the 

filtering output q. We iissiuiie that q is a liriciar traiisfoiin of I in a, window 

Wfc ceiitcreil at. the pixel k: 

<li = fikU + bf^、Vi G ⑴k、 (4.32) 
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vvlioro (/iffjjff) arc linear coofficioTits assumed io l)e constant in a'̂ -. W(i use 

a square window of a. radius r. This model is analogous to (1.1). We have 

scon this model can gcuerat(xl for the liazc imaging equation, but h(、r() \vv 

consider it as a goiioric cjuso. 

This local linear model ensuros that q lias fin wige only if I h;LS mi edge, 

because Vq — a V L Hut we also hope the output (! has similar c.olors or i.on(、s 

with the input, p, so vvt; ‘seek a. sohiiioii t o (-l.o'i) t hat, iniiiinii/es t he (lif!'or(Mu-(' 

between q aiKl p. Formally, we minimize the following cost. fmicUoii in 1,1 ic 

window Wfc： 

E、"tc, hk) - ( f e - + “4、 

二 ((八 一 "•山—hkf + cot] (,1.3,1) 

Here c is for regiilarization, but we shall show I hat. it. is au imporlaiil pat.am-

eter cont rolling tlic siiiool.li (logree. 

Though this cost function is similar with the oiiq^ in (1.1), tlmy are dif-

rqreiit. in two aspccts: (i) Eqii. ( 1.31) only concerns (me window Wf,：, while 

Eqri. (4.4) concerns (ill windows siunilt<ui(xnisly; fuid (ii) in (4.:U) inside the 

quadratic tenn iy UR、iiltcriiig input image p , while in Eqn. (1 I) inside 

tliis tenn is the cmipiLi image (the transmission t to be solved). These two 

dili'ineiiccs loads to t wo bonefilis: (i) the optimization li(n.(.、. is locally bastKl in-

stead of (jlobally, eiia.l)liriji; a very ffust algorithm; and (ii) the output ((/) is not 

coiitaiiiod ill tlie optiinizatiou process (note Uf. and /，人-arc the optimizal/Kjii 

targets), avoiding a. liugo linear system. 

The solution to (4.3 J) can l)e given hy linear rcgiossioii 

(1.35) 

{•136) 

Here, //女 and <j'l arc the mean and variance of f in wi；, pk is t he mean of p in 

Wic, and covyt(/, p) is tho covariaiice of / and j) iiisido the window /•.. Tliosc, 

two equations appear similar with (1.1:3) and (1,11). 

Next we apply the linear model t() all local windows in tlir (mtii.e image. 

Ideally，the filtering output is given by qi — (ifJi + ^̂k (1.32) when (以人。b̂ ) 

has been computed. But a pixel i is covered by many local windows Wk, so 

84 

fi'k/i'k 

2
L
n
 

b
 

= l ) k 



小 12. GUIDED I M A C F ： FILTERING 

the value, of 仏.given by (4.32) may change when it is computed in clifFcreiit 

windows. A simple strategy is to average all the possible values of 仏.So 

after coiriputing (a^, bk) for all the windows w/^. in the image, we compute the 

filter output by: 

'/i = 
•in 

- V {a,h + h ) (.‘丨.37) 
in ^~~‘ 

iEri'k 

ciili + k (‘1.38) 

where a,- = IZkewi ûc and k 二 � . T h i s equat.km is analogous to 

(4.15) (but without subtraction). 

Willi this iriodificatiou, the relation •(/ = aV i iio longer holds, 1 )ecausc' 

l]\L' liiK^av coefficients (a.̂ , hj) vary .spatially. But since (a^, /)») arc the output 

of an ;iv(、ragc filter, t.hoir gradients should l>o iiiudi smaller than I'.hat of 1 
near strong edges. In this sense we can still have Vry s aV/ , irioariiiig that 

strong (̂ dgas hi I caii still bf、irmiiitahiod in q. 

Algor i thm 4 0(iV) time algoritliin for giiidod liltor 

(Lk : = T~、 
(TZ + f 

bk ：= Pk - akfik ('L’3(3) 

kewi ken'i J 

Tlio whole algorithm of tlie giiidod filter is in Algoritlini 4. We point- out 

that.the relationship among / ， a n d q given by (4.35) to (4.37) are indeed 

in the form of “a filter" (4.30). In fact, ak in (4.35) can be rewritten as a 

w(nght;(̂ d sum of p: a^ 二 Y1 i �Vl^j、I、P.[ For the same reason, wo also liavo 

h ； J2j\〜％⑴Pj torn (-1.36) and lu 二 Z；,仍巧（"Op:/ fiom (4.37). It can 

proven (similar t;o the proof in Appendix B.l) that the kernel weights can'be 

^ ‘ ” ， 
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explicitly expressed by: 

‘ Wij{I)= y ( 1 - 卜 （ 八 ( 4 . 3 9 ) 
r ^ /T-丄 i 

Some further coinpii tat ions show that JZj 恥 = 1-. No extra cflort is 

needed to normalize the weights. 

As the guided filter is an oxplicit filter, wo may first (•tmipiU.e the kernel l)v 

(4.39) and then compute the output by the filtering prncess ( I..!>()), without 

solving any linear system. This leads to an O(A'r-) algorithm whert' r is 

the window radius. However, tlie guided tiller cau be diroclly coinputod 

from the Algorithm -1. All the operations here can be coiiipiitod in 0(iV) 

time regardless of tlie kernel size, just as in Algorithm 3. This fast filtering 

algorithm is noii-approximate. 

We can generalize the guided filter to color/iiiulticlumnel images. The 

generalization to a miiltichamicl iiiput image p is straightforward: wc can 

simply treat each channel separately. So we focus on the ca»se when tlie guide 

1 is a imiltichaiiiiel image. The local linear model (4.32) bocroiiies: 

= + (4.-10) 

where a^ is a 3x1 vector. Tlie computation of the resulting guided filter 

is sliowai in Algorithm 5, Here E/t is a 3x3 covariaiicc matrix of I in Uio 

window k、and cq\'k{l,p) is a 3x1 covariance vector. This algorithm is still 

0(iV) time. Tlie stale-ot-tho-art. method for iiuilt.ichaiinel l)ilatcral lillxniiig 

is 0{N log N) time [1). So the guided filter is expected to he f;ister than the 

bilateral filter in multichannel cases. We shall show this in the experiment. 

Using a multichannel image as a guide 1 Is riecressary in some applications, 

including haze removal and alpha, matting. For example, the hazy image I is 

a color image and the estimated transmission I is a gray-scale image, so \v(、 

have to ill tor a single-channel image imdcr the guitlancc of a thrco-cliaiiiiel 

image. We^camiot treat each channel separately. 
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Algor i t hm 5 0(iV) tirno algorithm for j^uiricd filter (color imago 1) 

at ：= (Sjt + tU)—'(、ovt.(I,p) 

bk ：- pk 一 at . fik 

1 ( \ 

V)\ .fceii.'i kEwi 

(i.35) 

U.37) 

4.2.3 Properties 

Edge-aware Filtering 

The guided tihxn' is originated from a local linear iriodol. \V(.! cx])laLii why it. 

is edge-aware. 

• Fig. 1.7 (top) shows an example of the guided filter wiUi various sets of 

parameters. We can see its eclgtvaware filtering behavior. The rcaisoiis are 

aus following. Consider the ca.se that I = p. It is clear that if f = 0, t hen the 

solution to (4.31) is af. == 1 and bk = 0. If t > (), we can consider two cases: 

Case 1: "Flat patch". If the image I is almost coiLstant in ".’人：，then (4.34) 

is solved by n.k — 0 and h^ 二 pk.. 

Case 2: "Edge / liigh variance”. If the image I changes greatly within 

Wk and we have: 

C O V A . ( / , P ) = VARA..(/, I) 二 t, (4.41) 

then a-k is about 1 and bk is about 0. 

When (aA-5 bk) are averaged to get (tti, bi) and then combined in (4.37) to 

get the output, we see that if a pixel is in the middle of a “tiat patch" area, 

its value becomes the average of the pixels nearby (a ^ 0, h ^ p^ q p)\ if it 

is ill the middle of an "edge/high variance" area, then its value is unchanged 

{a ^ b ^ 0, q ^ I — p). 

More specifically, the criterion of a “flat patch" or an "edge / high vari-

ance" one is given by the pai'aineter e. The.patches with variance (cr )̂ much 

smaller tliau t are smoothed, whereas those with variance nnidi larger than 

e are preserved. The cffect of c in the guided filter is similar with the range 

variance <7? in the bilateral filter (4.31). Both parameters detenmne "what is 



Bilateral Filter 

Or^.l aro.2 or"0.4 

Figure 4.7: Filtered images of a giay-scale input. In this example the gwid 

arice I is identical l,o the input; p. The input image has intensity in [0, 1 

The input image is from [80 

an edge or what is a high variance patch that should be preserved". Fig. 1.7 

(bottom) shows the bilateral filter results as a comparison. We see that the 

edge-aware filtering results are visually similar with coiTespoiiding parame-

ters. 

The edge-aware smootliing property can also be miderstood by iiivesti-
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We find the weigrit is large when the pixels are on the same side of an edge, 

and is small otherwise. The property is similar with t;he bilaUn'al filter 

Take an ideal step edge of a 1-D signal as an exainplo (Fig. 4“、)‘ The terms 

Ij — (Ik arid I j —“丄 have the same sign (+,/-) when I-, and I j are on the 

same side of an edge, and have opposite signs when the two pixels are on 

difiereiit sidf.vs. Suppose r r l 》 t ("edge / high variance"). In (i.39) the term 

1 + ( 八 一 补 ) L s about zero when the two pixels (z and j) arc on cliff(noiit. 

sides; this term increases to about 2 when the two pixels are on t-he s^iiie 

sicies^. This moans that the pixels across an edge are almost not averaged 

together. 

We can also understand the smootluiess controlling of the parameter < 

frorii the kernel (4.39). When a l e (“fiat, paldi") , the kernel becomes 

孙W) = T^ EA： 

:{i,j)ewk i: this is a low-pass filter that biases neither side oi 

a.u edge. So the edge-aware filtering ability is weakened when e increases. 

Fig. 4.9 shows two examples of the kernel shapes in real images. In the 

top row are the kernels near a step edge. Like the bilateral kernel, the guided 

filtor'n kernel a»ssip;iis negligible weights t.o lAie pix(、Ls on the opposite; side of 

the edge, lii the bottom row are the kernels in a patch with small scfile 

textiirey. Both filters average almost all (.he nearby pixels togethor, and 

V)ehav(> like low-pass filters. 

Gradient-preserving Property 

Though the guided filter is an edge-aware filter like the bilateral filter, it 

avoids the "gradient reversal" artifacts [15, 5，17). These artifacts of the 

bilateral filter nvAy appear when the filtering proooiss is for detail enhanco~ 

rneiit / extraction. 

Fig. 110 shows a 1-D illustration for detail enhancement. Given the input 

signal (black), its edge-aware siiiootlied version is used as a base layar (red). 

The difference between the input signal and the base layer is treated as the 

detail layer (blue). It, ia magnified to boost the details. The eiiiiariced signal 

^Tliis is because (/< — tih)Uj — fU.) ~ -cr^ wlieii the two jiixels are on difTerent sides, 

and ^ rrl when the two pixels are on the same side. See Fig. J .8 
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gating the filter kernel (‘1.39): 

= + E (1 + Hi - I M c W j 

片 + 



Guidance I Guided FHter^^lSSSl^'Jr^^ Bilateral Filter's Kernel 

Figure 4.9: Filter kernels. Top: a vStep edge (guided filter: r — 7, e. = 0.1''. 

bilateral filter: (Ts == 7’ rXr = 0.1). Bottom: a textured patch (guided filt er: 

r = 8, c = 0.22, bilateral filter: a^ 二 8，cjv = 0.2). The kernels arc centerod at 

the pixels denote by the red dots. 
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a 

• 

a 
言 

Figure 4.8: 1-D example of an ideal step edge. For a window that, exactly 

center on the edge, the variables jx and a are as indicated. 
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Input Signal 

A 

DcUiil I uvU. . •八〜—…、、 » ‘ 

.•！ 」 Z 

、丄1、V，tWrV. 

• •VU 广 �Vv、 

：,i ^ ^ reversed 

如、、< ‘gr—ts 
‘ . 

Bilateral Filter ' 

. . . 

Figure <1.10: l-D illustration for 

d 

, Guided、Filter 

detail enhancenieiit. 

(gTcen) is the conibiiiatioii of the boosted t;l^tail layer and'the l̂ ase layer. An 

corapreheiiiiive description can be found in [15 . 

For the bilateral iiltci (Fig. ‘1.10 left), the htisQ layer is not. coiiyisteiit 

with ii)put signal at the edge pixels (see the zoorri-iii). This Ls because whoii 

a pixdL. .has very few similar pixels nearby, and the Gau^siati weights (4.31) 

arc all very small and thus unstable. As a "result, the dutail layer lias great, 

'fluctuations, and the recofiibiiied signal has rever.'ied gTadieiits ti.s\showii in 

Fig. '1.10； . 、.... 
、On the other hand, tho guifl(!(l.filter (Fig. 4. tO right) b(化tei. ĵ roservcs the 

gradient： The gradient of the base layer is •(/ ^ aVI near the edge, and 

the gradient of the 'detail layer; is about (1 — a)V/. Only tlie luagiiitude of 

the edge .is scaled; the profile of the ^dlge Ls filrnpst unchang;ed. In fhe cf̂ sc 

of detail 'enhancement p), the guided filter lu^ver reverses the gradient, 

because d aiid 1 — a are always iion-negative (4.35)) whori I — p. 

Relation to the Matting Laplacian Matrix , 

Both the guided filter and the matting Laplacian matrix arc motivated by 

a local linear iiiodej, although their optimization processes are very difi'eren-

t. Next we show the mathematical relation between tlieiii. This discovery 

inspires new applications of the guided filter. • 

Coiripariiig tlic ^ idqd lilt-er's keriieJ (4,39)^with tlic .matting Lapladmi 

matrix (4.9), we find.following relation between them: 

W二 - w: (1,42) 
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Ignoring the scaling we find that tlio limiting L叫)lariaTi iimtrix L is 

actually a "higli-pa^s" version of the "l(Av-pa.ss" giiido'l filler. for 

any image p we have: 

• . Lpcx ( p - W p ) , ('l. l:i) 

in which the right hand side is 1,1 lo detail layer of p. 

El ad [丄 Ci] has noticed a similar rdatimi hetAvnrjii the bilateral filter mifl a 

Gnussiaii-weightod Ljiplacian matrix [<、[»，-ll, 28], and shown that filtpv is M 

ori(^itcrat.i(jii approximate solution to the linoar systern. Following I his way, 

we find this conclusion is also valid for the guided filter and the iiiattiii^; 

Laplaciaii inatrix. 

The trialrix i.oi.m of {4.12) is: 

= w (U — VV), 'M) 

where U is a unit, inatrix of the same size as L. In our soil malt ing. 11 … 

trarisrriission t is obtaineci hy solving the liii(、ai' sy stein in (-1 10): 

(L + AU)t = At. (i.Hl) 

Wc rcwrilx? this equation as 

(L A)t Aî ‘ 'i.'in) 

where A is a diagonal irialrix. Tlii.s (Mnuilioii siiggdsls wc can assiĵ îi a vai iaiil 

A,- to each pixel. ‘ 

Now we approximate the solution l)y one iterd.tiori of ilie Jacohi lineai 

solver [()3]. We decoiripose W into a (liagonal part. W j and an oli-diagonal 

part W(,: W = W j + Wo. According to (4.44) and (-').15), we have: * 

i/;|U - \w\\\h — |i/;|W„ + A)t 二 Ai (4.40) 

Notice that only W。is oft-diagonal in this eqiiHtion. Using t as tlir initial 
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Af. = I •⑴ 二 
w D ' l i 

TIK、cx[)('.(t.atioii valuf； of An in (4.厂)J.) is rvbout 2. This implies that, the data 

(enn is loosely coiistrairied. Using this equation, ( J.•19) is siiiipliiicxl as: 

t 义 Wt. (1.52) 

Only the guided filter is remained. 

Eqri.(4.52) incans the guided filter is a one-iteration approxiiiiatf solution 

to t;hc linear system. To ol)taiii an accurate rosult, we expire I. ihv hiitial 

guess t to be reasonably good. We find tliat this coiiditioii is .sat islied \n our 

haze removal problem and a mudified alpha maUirig problem, which \v(、shall 

discuss in the experiment section. 
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jiiess of/, we compute oiin Jacobi iteration (see [63 

^ i\w\V- 丨…Wd • 十 A) 丄AH ('1.'17) 

= r ' ( W — + 
A 

7—)t 
1W 

(4.48) 

- ( U - V)- V)t 

where V = W^— is a diagonal nuitrix. In (1.-19), all tlic matrices except W 

a.i,(.' diagonal. Sincc a diagonal matrix is actually a. f)oinl.-wise opei.atioii, t he 

only matrix iiniltiplicatioii we need to cmiiimt.c is Wt . The iriult iplicfitioii 

Wt is indc(Kl a giiidccl filter operation: 

(Wf), = Y^ .50) 

To fiirtlier simplify (4.49), we can let the matrix V 

'qiiivaleiitiv： 

W , A 二（)，or 
M ‘ 

5 
一 IM: 

+
 



i 

Figure 4.11: Coiiiparisori hcl;wcoM ()(_/V) guirlcd filter an(i ()(iV) bila.tcial 

filter, (a) Input HDR image (32-bit floating ininiber, displayed l)y linear 

scaling), (b) HDR-Co111presscc 1 image using tlio 0(/V) bilauTal filtor in [V'’j 

(64 V)ins). (c) HDR-Gjiiiprcssed imago iisiii^ tli(、幻ii(l(、d fill(M". Plaasv view 

this figure m the. dcctronic version. 

4.2.4 Experiments and Applications 

I D t.lic lollowing. we first, study tlio niiiuiiig t iiiic of (he guid(、(i (iilcr 'hv 

expcrimeiiLs. Tlien we show Viuious applicaiions of (.his filler, including the 

haze rcriioval pro 1)1 em. 

Running Time 

\Ve oxporinient the ruiiiiiiig l ime in a lapto)) wil.li a. 2.l)Hx iiitol C()i,r 2 Duo 

CPU. The time curri].)lcxity of the filter is 0{N) in the miiiil>er of the pixels 

yV, so wo only report the running time pci. mcgapbcd (Mp) image. For llio 

gray-scale giiiciod filter (Algoritliiri ‘1)’ the niiiriiiig l.iiiio is 80 inillisecoiuls 

(ms) per megapixel. As a comparison, Porikli's [5S] 0(;V) l ime a|)i)mxiiiia.le 

bilateral filter takes 4()rns/Mp (\isiiig 32-l)iii histograms), ；uid 8 ( ) IHS /M I ) ( O ' J -

bin). A 04-bin histogram means tliat the images are only quant.ized into 

64 differcnl valiirs. Oil llie coril rary, tho guided lill er is noii-approximatf 

and is .siiita})le for coiitiiiuoiis values (float/double). In Fig. 1.11. wo sliovv 

an example ()f HDR compression (wc shall explain tlio application later). 

Porikli's 0{N) bilateral fik(?r exhibits apparent quariti'/atioii artil-acts, while 

the guided filter does not. Yang et al.[88] iiriprove, Porikli's algoritlirn and 

rcdiice the quantization artifacts without greatly increasing the iiiirnber of 

bins, but at the price of more ruiiiiiiig time. This algorilhiii takc-s l.'2s/Mp 

(B-bin, cpde froiri the website of [88]). 

For multichannel eases (Algorithm 5), the guided filler takes 0.3s l.u pro-

94 

小 12. GUIDED I M A C F： FILTERING 



小 12. GUIDED I M A C F ： FILTERING 

|)ei. megapixel KGB iiriage. For {•ornparisoii, the Htal.e-(jf-llio-ai t method 

for mvilticlifumd bilaUniil filter [1] takes about lOOs to process a lOMp image 

as reported, i.e.、lOs/Mp on average. 

Tlu) algorithms for the guided filinr arcj mostly point-wise operations, so 

it can be readily adapted in GPU implementation. Though we have not yet 

made this attempt, a recent paper [(!()] reports that their CPU iinplerriontM-

tion for our guided filter ac}iicv(\s 5rris/Mp (rriultichaniK*! cases). 

Roth llu! CPU and GPU irni)lcrrunitations of the guided fill.(n- arc v(” y 

Ikst., (enabling rwil-tiiiir; i)erforiiiaii(:(! ill iriariy cases. Next, we s(、(？ the (quality 

rjjul l.lu! api)licat ion of tliis filter in various proi^loins. 

Haze Removal 

W(i use tlic guided filtcu' to roi)la(;('. tli(； soft matting step in ha/c rcunoval. 

To ()V)l,aiii a good result Uirough filtering, we i.ie(、d the initial cstiniat-ioii / to 

be accurate enough. Recall that t Ls computed by (3.14) based on tlie dark 

channel prior: ‘ , 

iix) — 1 — mil】 mill 
x'eQ(x) f： 

X' 
I) 

We notice 

(see Fig.4. 

processing 

iiULximiiiii 

that the rniiiiiimm 

12 (b)). Tins cflwl: 

27], To counteract 

filter. ForrriHlly, wc 

filter (iiiiiix'ej2(x)) dilatta the nearer objects 

is kiiowii as morphological filtering in im叫<:, 

this effoct, we may erase llie ina}) by an extra 

compute i by: 

X' 
V f̂x) = III in mill ~ - -

‘ x'GU(x) c A,. 
i(x) = 1 - max (^(x')-

x'en(x) 
.53) 

An example is in Fig.'4.12 (c). The estimated transmission luis M iiiore con-

sistent profile with the iiiput image. 

Now wo arc ready to applied thd gniclnd filter. Writum in a matrix form, 

tht： refilled Uansmissioii f is simple given by (4.52): 

Wt . (ir/2) 

The computation is givon in Algorithm 5, because tiie hazy image I is inul-
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(H) (c) (d) 

Figure 4.12: Dilation arifl erosion, (a) Iripiil. hazy image. Tlie red (.iii v(、 

approximately outlines the profile of tlic trees, (b) Estimated r.raii.sinission 

by (3.14). The troes appear 'Vlilatod". ((.) EHtiiriated tratisiiiission iiftoi-

erosion The profile is more coiiHistciil. (d) Guidcd-filtcicd result, of. 

⑷. 

哲、！. .々 ‘ 

身。％ f 3 . 4:、x 

_ _ _ 籍 

辦 書 ： 
m： 

soft matting (r二 1) 
soft matting (「8) guided filter (r̂ 8) 

Figure 4.13: Comparisons of soft matting (small/large kernel) and guided 

filter in haze removal. 
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tichaiiiiel. In all Uie following liazo removal (:)xperiiri(;iits, t he radius r of 

t he window lu in the gnicUxi filter is sot as miri (•“.'?>•/, to:)/r)(), where wid ami 

hr.i are tbc width and height, of the image. For exarni)k'. wv. set t 二 <8 for 

600 X40U imagrjs. The pa.ra,iriel,er (: is 0.0001. 

Pig. i. J 2 (rl) shows t,h() resiiJting transmission t obt airiwl by t he guided 

filter. In Fig •IJ-'i we compare the soft matting (small/large kernel) and tlie 

guidcfi filter. As w(，can see, the recovered scene radiance images (Fig. 1.1；> 

top) arc almost, visually iclont,ic-.al. On the rofiTiod ti-aiisrni.ssioTi maps, the soft 

matting (large k(u.iid) ami the guided filtor generates visually similar idsulls. 

This is tus we expect, bocautie the guided filter is an approxiiiiat-e .solution to 

the linear system. Mor(i cxainples of haze removal using the ftiiidod filter are 

ill Fig. J. 14. 

For l.his 600x400 iruago, the soft matting takes 10s using <i Hmall ker-

nel (/• = 1), and 2s using a huge kennel (/, 二 8). The guided filter t-akcs 

only O.OSOs, whidi is much faster with no obvious quality degradal.ioii. In 

general, om. algorithm takes about 0.35()s/Mp in haze removal, with ().3s 

for the giiidod filter, and 0.05s for the miii/nuix filters and other point-wLse 

tjperatpns. 

Tlji; efficiency of our algorithiii greatly facilitates lia/e reinoval in videos. 

We i»'()cc.s.s ejU'li frmiie individually (except that we smooth the at.riios])lieiic 

light in tho temporal domain to avoid sudden color changes). Fig. 1.15 shows 

some frames in two video sequences. The entire videos arc available in my 

w()bsite \ 

Detail Enhancement and H D R Compression 

We have dis(tusse(i the usage of an eclgoawarc^ filter for detail (Miliaiiceinent. 

Fig. 4.16 shows an example for real images. We cornparc between the giiicUxl 

filter and the bilateral filter. Though both (liters Ccin onhanco the details, 

the bilateral filter exhibit the gradient reversal artifacts (see the zooiii-iii 

patches). 

The method for high dynamic range (HDR) compression [15] is similar 

to detail enhaiicenieiit. But we need to scale both the ba.se layer and the 

detail layor aiid then recorribine them. Fig. 4.17 shows an example for HDR 

Compression. Again, we see gradient reversal artifacts in the result of the 

bilateral filler. 

^http; //personal. ie . cuhk. edu. hk/-hkin007/cvpr09/video. rar 

97 



：輸葡 

m 

Figure 4.14: More examples of liaze removal using Uie guided liltor 

Figure 4.15: Video examples of haze removal using the guided filte 
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Originil Guided Filter 

Figure 1.16: Detail enhancement, 

the guided filter, and = IG, rr. 

layer is boosted x5. 

Bilateral FiHtr 

The parameters ai e r = 16, 

= 0 . 1 for th« bilateral filter. 

= U . P for 

T>ic (ict.fiil 

Figure 4.17: HDR compression. The parameterH are r = 15, 

the guided filter, and (7g = IS/rr,. = 0.12 for the bilateral filtei,. 

=0.122 for 

Flash/no-flash denoising 

In [57] it is proposed to denoiso a no-Hash image (p) under the guidarico of 

its flash versiou (/). Fig. '1.18 shows a comparison between using tlie joint 

bilateral filtor [57] and our guided filter. Both filters can snpprass the noisf；, 

but the gradient reversal artifacts arc noticcable iii the joint bilateral case. 

Alpha Matt ing/Guided Feathering 

We apply tho guided filtor in a modified alpha matting problem, which 

we name guided feathering', given a binary mask of the foreground object, 

we refiuo the hairy/blurry boundaries and make it appear an alpha mat-

te (Fig. 4.19). The binary mask, obtained by any segmentation method 

f'.g. 62 is iised a.s the filtering input p. The guide I is the image of the 

object. 

A similar function called "Refine Edge" can be found in the commercial 
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Filter Input p Joint Bilateral Filter 

Figure 4.18: Flash/noflasli denoising. The p^araiiietors î re r — c 

for the guided filter, and ag = 8 ， = 0.2 for the joint bilateral filter. 

0.2'̂  

software Adobe Photoshop CS.l. We can also compute an acfMirate matte 

by solving the matting Lapladan matrix as in the "closed-form iiiatting'' 

method [42]. In Fig. 4.19 we compare our result with the Photoshop Refine 

Edge function and the closed-form method. Our result is visually comparable 

with the closed-form method and better than the Photoshop's. Both our 

method and Photoshop provide fast feedback (<Ls) for this G-niega-pLxel 

image, while the closed-form solution takes about two iiiinutes *to solve the 

linear system. 

Joint Upsampling 

The application called joint upsampliiig [38] is to upsample an image under 

. 1 1 , as the guidance of another image. Taking the application of colorization 

ail example. A gray-scale image is colorized through an optimization process. 

To reduce the running time, the chrominance channels are computed at a 

coarse resolution and upsampled under the guidance of the full resolution 
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Photoshop Closed-form 

Figure 4.19: Alpha Matting/Guided Feathering. A binary riia.sk p is liltoicd 

under the guidance of I. In the zoom-in patches, we compare with the Plio-

tf)shop Refine Edge function and the closed-form matting. For closed-foriri 

matting, we erode and dilate the mask to obtain a trimap. The parameters 

for the gui(M filter are r = 60, c = 10"^ 

gray-scale image. This iipsampliiig process is through the joint bilateral filter 

in [38], but we also test the guided filter. The results are visually comparable 

(Fig. 1.20)，but our guided filter is faster than the iioii-approxiniate joint 

bilateral filter. 

4.2.5 Conclusion 

In this section we propose a novel guided filter. Originated from a local linear 

model, this filter can be used to replace the soft matting step and lead to 

real-time performance. We also show the edge-aware and gra^iient-preserviiig 

properties of this filter. The guided filter is a faster and better technique than 

t.ho traditional bilateral filter in various applications‘ 

Edge-aware techniques have more applications in computer vision/graphics 

than what, we have introduced in this section. In many applications, we as-

sign each pixel an estimated value, which can be a cost, confidence, a vote, 

or any other data. Then we need to account for spatial continuity, which 

is achieved by edge-awaxe techniques. A great, many works achieve spatial 

continuity based on Markov Random Fields. But more and more works (like 

15, 16]) attempt to use a simple filter instead. After our publication [32], 
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Figure 4.20: Joint Upsariipling. The upsainpling methods iiichulos: iiearest-

neiglibor (NN), joint Nlateral filter (JBF) pS], and guided filler (GF). 

the guided filter ha.s further been applied in stereo vision [GO] and iinportaiico 

filtoriiig [13). We believe this filter is a potential techviiqiio in the fi】hir(、. 

g
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Chapter 5 

Dark Channel Prior and 

Human Vision 

Studies on computer vision and those on the human visual system (HVS) in 

psychology/physiology aie mutually beneficial. The discoveries about the 

HVS aiid the human brain may inspire effective algorillinis in computer 

vision; successful computer vision teduiiques suggest similar rules may be 

adopted in the HVS. In this diapter, we discuss the relation between the 

dark channel prior and the HVS. We find that the HVS possibly adopts a 

niechaiiisrri similar to the dark chamiel prior when perceiving haze. This 

discovery casts new insights into the area of liunian vision research. It also 

supports the validity of the dark channel prior as a computer vision algorith-

rn, because a good way for artificial intelligence is to mimic human brains. 

5.1 Introduction 

Most visual problems, no matter for computers or for the HVS, are inherently 

ambiguous. For exaijiple, the 2D projection of the 3D world cau be math-

ematically explained by an infinite number of 3D possibilities. A shadowed 

white card can reflect the same amount of light to a shadowless gray card. 

A hazy scene can be mathematically explained as being inherently faint arid 
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of low contrast, but. not covered by liaze. The Inirriaii Ix^iiigs are able t,o han-

dle these ambiguities with no difticiilty in most casL's. Since many problems 

still remain challenging in computer vision, researchers always raise such a 

question: how can the human brains solve the problems so successfully? 

The human visual system (HVS) could solve the ambiguities only through 

certain knowledge or assumptions known beforehand, i.e., prior a. This fact 

has long been realized by scientists as early a-s tlie 19tii century [25]. But 

it remain arguable how the HVS obtains the priors. Some researchers (e.g., 

Heririg [35], see also [82]) suggest the priors are built in tlio genes and ''•present 

at birth". This was proved experimentally in the case of stereo disparity 

59]; but in most other cases it is still unclear. Some other researchers [e.fi., 

Hdinlioltz [34], see also [82]) attribute the acquisition of priors to learning. 

The built-in-genes priors are shared by common people, while the learned 

priors can hv. more or less different among individuals. 

It. is also unclear whore thn visual iTiechanisni.s take offcct in th(、ITVS. 

The light reaching the retina in the eyes is converted into neuronal signals. 

The conversion is (leteriiiiiied by the pattern of tlie photoreceptor cells, their 

sensitivity (e.g., the R, G, and B receptors), and any other properties of 

the system. The signals are passed into the brain (e.g., the visual cortex 

37]) and undergo further processing. The visual irifH;ham.siiis (that introduce 

priors) can be built, in the signal delivery system or in the human brain as a, 

physiological or intellectual process. The former riiodianisin (signal delivery) 

is unconscious because it is a mechanical process (just like a circuit board), 

while the latter mechanism (in the brain) can be unconscious or conscious. 

Despite much debate on the mechanisms of the HVS, many studies {e.g., 

67, 24, 89, 44, 17]) share the hypothesis that the underlying priors are about 

the statistical properties of the natural world. The neurons, the physiolog-

ical structures, or the intellectual behavior of the HVS are adapted to the 

natural world in the evolutionary processes (built-in-genes) or developmen-

tal processes (learned). In the terminology of computer vision, (he HVS is 

"trained" by a huge data set which is "sampled" from the natural world in 

a long period. According to such statistics, the HVS is able to procliKle the 

improbable solutions to the visual problems and solve the ambiguity. This 

scenario is somewhat similar to how we develop the haze removal algorithm. 

We collect a data set of outdoor haze-free images, arid the dark cliaiinol prior 

is a statistical property of this set. Using tliis prior, we compute a most 

probable transmission value for each pixel and thus solve the ambiguity. In 

this sense, it is reasonable for us to ask: is it possible that the HVS uses a 

similar prior when perceiving haze? 

But it is nontrivial to investigate the underlying mechanisms of the HVS. 

The S3'Stem behaves like a black box: only the input image and the per-
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Figure 5.1: Checkershadow Illusion presented by [2], The squares marked A 

and B have exactly the same intensity in the image (r==g=l)=120)，but they 

appear veiy difTererit. 

ception are available. The attempt to "disassemble" the black box t hrough 

physiological experiments is one way to investigate it [37]. Another impor-

tant and practical way is tlirougb illusions’ which is often iised in psychology 

25]. . … 

An illusion is the distortion of the peimived image. The HVS is supposed 

25] to use some mechanisms to process the visual signal, so the perceived 

signal (after processing) can be different with the physical input signal that 

just reaciies the eyes. An illusions is presented when the perc.:(?ivecl sigual 

is severely distorted. In general the perceived illusion is systematic rather 

than random, and is shared by common people [73]. So illusions reflect the 

mediaiiisins of the HVS: they provide us opportunities to understand what 

is going on in the black box. 

In this chapter we shall demonstrate several illusions, which are carefully 

designed based on the dark channel prior. We find that the dark clianuel of 

the image impacts the HVS's perception of haze. We also find that the HVS 

may partially rely on the dark channel to reduce (but not remove) the haze. 

The illusion experiments suggest that the HVS may adopt a inechanibin like 

the dark channel prior. We liope that our experiments cast new insights into 

the area of HVS research. 

5.2 Related Works 

We briefly review some related works on human vision research. 
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As early a.s in the 19tli century, people have foiuid Uiat lightness, com 

tra.st, colors, object shapes, depth, and many other attributes arc not alwn.ys 

31, 35 A great many illusion 

2, 72. 7:i, l2r)l). 

perceived just as their physical properties 

experiinerits are proposed by scientists and artists {a.f/ 

Fig 5.1 is one of the most famous lightness illusions: t he squares marked A 

and B have exactly the same intensity in the image (i.=g二b=12()), but tlicy 

appear very different. This and many other experirnonts unequivocally sliow 

that the physical signal must be processed by the HVS l:)efc)re perceived. Var-

ious theories and models are proposed to explain when tlie illusions a])p(̂ ar 

and how the HVS processes the signal [a.g., [iT)]). 

The works partially related to haze are the ones about, transparency 

(transmission) perception. A series of studies [46, 68, (31, (il)] find that 

the HVS has the ability to perceive the transparency of the covering media, 

like veils, glass filters, and haze. Iii [46] the author assilines tho HVS is fol-

lowing the physical iinaging model of the seiiii-tiaiisi)arenl. inc^dia (like tlit̂  

haze imaging equation) and deduces the perceivcd transparency accordingly. 

But in [68，61] it is shown l)y experiirieiits that the perceived t) ar)spai«iicy 

has significant and systeiuatic differences with tlie physical value. In [09] new 

experiments show that the perceived transparency are asymmctric： Ijct weeii 

brightening and darkening cases. In [3] some striking illusions sliow that the 

intensity of the objects covered by haze can appear very differeiil witli dift'er-

eut context, even though it is actually uricliangod. This exporirnoiil siiggrisis 

the lightness perception is with an image segmentation procedure. 

These works also attempt to explain tho experimental results by modeling 

the HVS's mechanisms. In [68] it is supposed that Ui(、perceivcd t,rrinspaieric:y 

is determined by the relative contrast (Michelson contrast) of the lurrimance. 

But ill [61] the aulliors find neither the Mit;lielsoii coiitriist nor other .simple 

contrast metrics can explain the experiments. In [G9] the mode] is rnoflifif3d: 

A'liciieLson contrast is only applied in darkening transparency, but not in 

brighteiiiiig cases. Oiir following experiments show that, the dark dimiiiel 

can be another possible determinant of transparency percept ion. 

Many studies suppose that the human vision mechanisms (and tho priors 

used) are adapted to the statistics of the natural world. In [89] it is foiiuci 

that the perceived depth can be explained by the statistics of distances in Uie 

natural world. In [47] the authors find that the perception of surfac e quality 

is detennined by image statistical properties. In [44] it is shown that color 

contrast, constancy, and assimilation can be predirted by the natural speo 

tral statistics. In [69], the authors assume that, the perceived transparency 

ill darkening cases are due to the adaptation to shadows (matlieniatically 

equivalent to black veils), and in brightening cases are due to the adaptation 

to spotlights. Our following experiments suggest the brightening cases can 
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(b) (c) 

Figure 5.2: Image preparation, (a) A real image in n clear day. (b) The 

target region is manually segmented, (c) The target, region is lilled with a 

uniform color ((r, g, b) 二（152, 140, 130)). 

also be due to the adaptation to haze. 

5.3 Illusion Experiments 

Preparation 

The image used in our experiments is prepared as following. In Fig. 5.2 

(a) is a real image in a clear day. We manually segment the roof of the 

front building, as shown in Fig. 5.2 (b). We shall call this region the “target 

region". Then we fill this region with a uniform color ((r, g, b) = (152，140, 

130), we use 256-level in this chapter), as shown in Fig. 5,2 (c). We shall 

call Fig. 5/2 (c) the "source image" in the oxperinients. This operation is 

to completely remove the textures/noise in the target region, precluding the 

possibility that the following illusions can be due to these factors. 

We also observe the following illusions in other images. But since illusions 

are systematic rather than raiidorn, we believe this example is representative 

and convincing. 
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Figure 5.3: Illusion Experiment I-III. 
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Figure 5,4: Dark channels of Fig. 5.3, computed using a window radius 50 

(image size 800x1200). 
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5.3. ILLUSION EXFEiriMENTS 

Experiment 1 

Experinienl I is shown in F i g . 厂 ( a ) M.IKI (1J»). J'̂ ig. (;I) is llio sour<:(: 

image. Fig. (b) is o])taiiic(l from the soui,c(，image through t he following 

way: (5ach color channel of p,anh pixe] is iiicreascKl to 12<S if they a.r(» sirinlk-r 

than 128. Denote the source iniagc h‘y I and tlic maiiipulatxHl linage hy I. 

This operation means for any pixel x wc have: 

/c(x) =： iria.x(y,.(x), i28), (5.1) 

vvliere c E {r, y, b} is l.hc cliaiincl index. 

Notice that th(：; color of tlie target, region is (152, 140, 130), so it. is un-

changed by this operation. Thus, the target regions in tlip two ima^os in 

Fig. 5.3 (a) and (1-)) ar(、acliially idoritic-al. ITowcvor, t’h(,y appc^ai' v。ry (lifiVr-

erit: the target region in (b) looks much darker. This experiment iiidicMt.es 

that the perceived color of a region depends on its context, (surroundings). 

This fact has been verified in many other illusions (e.g.. [o, "in]). Bur. il, n,-

1 nail IS arguable that, what properties of the context influence t.lie i)CT(:q)t,ioii. 

In fact, the intensity of the dark c:hariiicl is incrcMSfHl to at. lf>a.st V2>i： 

rrlark, X mm iiiiri 
x'en c 

:(x') > 128, •2) 

becaiisc all /。are not smaller than 12S. So the operation in (，). I) c-lianges the 

dark channel of the images (sec Fig. 5.4 (a) and (b)). Wc may ref\.soiiably 

assmue it is the dark channel that infhunices the ])(;r( oivc(l culur. But in this 

oxperlinent, other factors like coiit'.rM»st and colors ure also fhaTiged 1 )y tin; 

operation. So we need other experirrKUits to test whether the dark diamiel 

is the most possible fa<!tor. 

Experiment I I 

III Exf)crimeiit II，we study t.he image in Fig.「•>. 

sized in tliis way: 

This imaji(•？ is sviitho 

rna.x(/c(x), 128) if 4(x) > 3G 

/,(x) if 4(x) < 36 
(5..3) 
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5.3. ILLUSION EXFEiriMENTS 

TliLs nieaiiH that we koep the darkest pixds (/(、(x) < 36} while in(Tea.siiig Uie 

other ones ais in Fig. 5.3 (b). 

Intoresi.iiigly, we find thai I he illusion is greatly woakcnicd: the l.arget re-

gion in Fig. 5.3 (c) appears less dark ms in Fig. 5.3 (l.>), although a substantial 

portion of tho pixels are identical in both imagf3s. We not() they have v(、ry 

difrererit dark diaiiiiols (sec Fij;.「t.‘'l (b) and (c)). This experiment is con-

sistent. with our forijf'ctiire that the dark dianncl infiiiericos the p(、r<:q)1:.i(.)ii. 

Til is expcriiiieiii also shows t.hat the illusion can he clctenilined merely hy a 

f(:nv pixels. 

Experiment I I I 

111 Experiment III, wt: further generate an image as Fig. 5.3 (d). We still 

keep the color of the target region unchanged ((r, g, b) = {152, 140, 130)). 

The nmiainiiig regions auR synthesized fro in the source image (F ig .厂 ( a ) } 

in this way: 

4(x) = 0.5 * Irix) + 128. (5.4) 

This operation also increases the intensity to at least,丄28. But it changes 

all the pixels' intensity (except the target region), whereas the operation in 

(5.1.) only diarigps those below 128. 

The illiision appears in this ca.sc again. The color of tho target rep,ioii 

in Fig. 5.3 ((1) appears very similar with Fig. 5.3 (b), hut much daikor than 

Fig. 5.3 (a). However, the contexts in Fig. 5.3 (b) and (d) are very (.Uirerciit 

ill colors and variance. Besiclas, Fig. 5.3 (d) has a physical iiieaiiing: the 

image (except the target region) is covered by a haze layer with t = 0.5 

and A(： — 256 as in equation (5.4). Oii the contrary, Fig. (b) lias no 

physical explanation in real world. One common property of Fig. 5.3 (b) and 

(d) LS that tliey have similar dark clianrieLs (see Fig. 5.4 (b) and (d)). Tliis 

<，xperiment further supports our conjoctiire that the dark cliamiel iiifiuoiiccri 

the perception. 

Notice that all the four target regions in Fig. 5.3 are completely identical, 

but their perceptions aie not. And the perceptions are consistent, with the 

coiTespondiiig dark channels (Fig. 5.4). 

Experiment IV 

If the HVS reaJly uses a prior like the dark channel prior, it is reasonable 

for us to assume that this prior is from the statistics of the haze phenomena 

in tlio natural world. The above illusions undoubtedly show tliat tho HVS 
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Figure 5.5: Illusion Experiment. IV. 
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pi.ocasses the visual signal. If the HVS is adaptocl to I;he liazo, it, in very 

possible that HVS attempts to "reduces" the haze in this process ‘ 

In Experiment IV, vv(j focus on the images in Fig. 5.3 (a) and (b). Wo 

assume the HVS proresHes tlie visual signal in Fig. 5.3 (h) nioro than Fig.广 

(a). So we want to add oxtia operation on Fig. 5.3 (a) to coimterac't t,hc; 

(iiscrepaiicy： we adjust color of the target region in Fig. 5.3 (a) to make it 

appear like Fig. 5.3 (b). 

We try to adjust iii two ways. If we invert tlio ha/c iiivfiging equation, we 

have: 

= (5.5) 

Th(、liHZO effect; can be rediicwl givcu any ^ < 1. So in the firsi. wa.y, w(> ;i(ijurit> 

the color of t.he target region in Fig. 5.3 (a) by: 

h - “ — 娜 + 255. (5.ej) 

Wc slide a bar to adjust, t (we assume a global t). We .stay in the value that, 

makes the t-ai.get regions in (a) and (b) are most similar. The result is in 

Fig. 5.5 (top). 

Aiiotlier way is to scale the intensity of the target region, making it 

sbcidovved: 、 

/'c = k* I,. (5.7) 

Similarly, we slide a bar to adjust k. However, an apparat visual difference 

exists no mat tor how we adjiLst k. We find that if we (iai.keii the target region 

in (a) by scaling, the chrominance still appears different. Fig. 5.5 (bottom) 

shows the case. 

Tliis experiinerit indicates that the illusion in Fig. 5.3 (a) and (1)) is i)rob~ 

ably because tlie HVS is using a haze reducing model instead of a shadowing 

model, although both models can darken the region. It is worth iiientioiiiiig 

that the image (b) is actually not a hazy image: it is a synthetic image tliat 

does not exist in tlie real world. But the HVS treats it as a hazy image and 

Lises a model of haze. So the dark channel is perhaps the main factor on 

wliicli the HVS bases to trigger the liaze reducing process, regardless of the 

image content. 

^The HVS may "reduce” instead of completely "remove" the haze, because a hazy 

image is still perceived as hazy, although ii may be pen^eived less ha'/y than it is. 
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Figure 5.6: Illusion Expcrirnerit V. 

Exper iment V 

In Experiinenl V, wc process the source image in this way: 

:x) = inax(/c(x), 0). (5.8) 

Unlike the previous operation, the threshold H is Tiori-uniforrn: it. is 80 on 

the loft, and gradually increases to 12S on the right. See Fig.O.G (left) for Uie 

image after manipulation. Notice that target region ((r, g, b) = (.152, 140, 

130)) is unchanged and remains uniform. However, it appears non-uiiil'orrn 

and darker on the right. 

This can also be explained by the assumption that the HVS relies on tlie 

dark channel (Fig.5.6 right) to perceive haze. The HVS reduces more liaze 

ofFoĉ t when tlie dark channel is brighter. This oxperinient also indicates that 

the operation of the HVS on the visual signal is locally based, just as our 

haze removal algorithm. 
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5.4 Proposed Model 

We propose tlie following model to explain the HVS\s mechanism for perceiv-

ing haze: given the ])hotomctric visual image (the physical signal reaching 

the eyes), the HVS computes the dark channel of the image. I^nsed on the 

values in the dark channel, the HVS adopts the inverse haze imaging model 

(5.5) to rw.liicc tlie Imzn offoct. 

Remarks: 

• This procedure in the HVS is mostly luicoiiscioiis arid pa^ssivc - the 

signal has been processed before any active thinking behavior happens 

in the brain.八dually, it is very difficult for oiio to avoid t hĉ sc; illasimis 

by his/her active thinking, even when he/she is told that, lh(3 target 

regions in Fig.5.3 (a) and (b) are identical. 

• The dark channel can undergo another process before the inverse haze 

i III aging model. This process plays a role like soft iriattiiig or guided 

filtering: for ypatial continuities. Moreover, the image cau be bcgiiicnt-

0(1 into sub-regions before or after the. dark cliaiiriel is computed. But 

thase assuriiptioiLS have not yet been supported by experiments. 

• The trarisiTiission value t used in the inverse haze imaging model (5.5) 

is deteriiiined by the dark channel. But the concrete mathematical 

form is still unclear, because we hold that quaritit ativel}' rneas\iriiig a 

perceived signal in our images is subject to many unstable factors and 

thus not reliable. But we are sure that the HVS does not completely 

remove the haze by setting ^ = 1 — /山“"̂  (3.15)： if the HVS does so, 

some pixels in the perceived image would be purely dark. Tberofore, 

the HVS only ivxlucts the haze but not removes it. 

• The HVS does not judge whether the imago is really formed by a phys-

ical liaze model (Fig.5.3 (d)) or physically invalid synthesis (Fig.5.3 (b) 

and (c)). Even though the synthesis images are unnatural ami perhaps 

never oxist in tlie real world, the HVS still adopts the iiiccliaiiism to 

the signal. 

It is worth rnontioDiiig that we can only claim that our model is consis-

tent with all the above experimental phenomena, but we cannot prove that 

the model is really adopted by the HVS, jiist as in most Inuiiaii vision stud-

ies. However, the illusions shown ui this chapter are imdoiibted. Any new 
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model or theory in future studies is supposed to V)c valid only vvlien ilicy ar(、 

compalible with t,hn illusions here. 

5.5 Discussion and Conclusion 

In this chapter, we demonstrate several illusion experiments whicli indicate 

the IIVS may adojit a iiiecliaiiism like the dark chaiincl prior to ix-iccivc 

liaze. 

Though tlie experiments strongly support our conjecture tliat tlic dark 

channel prior is related with the HVS, wc hold that the HVS must also 

combine other priors or knowledge in the process. For exaiuplo. the HVS 

may segrrient the image into semantic regions before adopting the prior. It 

may also use content-adaptivp window sizes iiisleaci of a fixed ()nt、when 

computing a dark diiinnel. The HVS reduces the haze effect in the perceived 

image rather than rt?move it. But to what: extent is the reduction? Besides, 

there has Vjeeu no evidence that the HVS is using n gaiided filter。i. similar 

mechanisms. Tlie entire "algorithm" luimiiig in the HVS remaius luikiunvii. 

The haze is a. kind of seiiii-traiispaient phenoinena. Soirie st iidics 1 

1)8, 6i, 69] tiiid lb at the HVS has the cibility to percci\'e tho traritipcirciury 

of a layer, but, the perceived transparency can be diifoent from Lho true 

value. Because these stucUejs show that tho \iridcrlyiiig inechaiiisiii is similar 

among common people, it. is reasonable for us to suppose that this ability is 

obtained in an evolutionary process arid coded by genes. In tlic evolut ionary 

period, there are mainly two natural seirii-trarisparent pheiionieiia'^: haze and 

shadow. While haze usually veils the scene by a wliite or gray color, a shadow 

is equivalent to covering an object by a purely black seirii-traiisi)arciit layer 

(i.e., ^ = 0 if we analogize the haze imaging equation): 

I(x) 二 J(x)/(x). (5.9) 

While a shadows preserves tho lurriinarice ratio''̂  (/(xi)/7(x2) = ,/(Xi )/J(X2) 

if t is uniform), the haze does not ( / (Xi)" (X2) — J(x i ) / J (x2) even wlieii 

1: is uniform). If tho visual rnechaiiisins are evolved from these two kiiid-

s of semi-transparent, phenomena, it is entirely possible that the HVS uses 

'̂ VVe assume the evolutioiiary period is much longer than the modern en\, so aititicinl 

semi-transparent objects are almost unavailable. 

'"^Luminance ratio is a kind oi' defiiHlions on "contrast" [25]. 
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different ways to perceive different kinds of serni-traiisparciit iriedia. It has 

been found that the perceived transparency follows difiVTcnt rules in tlie cas-

es of brightening/dai-keiiiiig semi-transparent layers [69]. Tliis can also he 

explained by the dark channel prior: the ability of the HVS to percoive a 

bright serrii-transparent layer is from the statistics of the haze phciioraeriori, 

whereas the ability to perceive a dark layer is from the statist ics of shadows. 

Although the dark cliamiel prior is effective in tlie case of haze, it is not 

visoful in t,h(，ca.sc of shadow.「rh(、MVS adopts a difFeroiit prior in tlic dark-

ening case, so the perceptions of brightening/darkening transparency follow 

different rules. 

Ill sam, much evidence suggests that the dark channel prior is iclaLetl 

to huriian vision. We expect OUT «tudy sterruiiecl from a cornputer vision 

algorithm will ca,st new insights into the human vision area. 
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Chapter 6 

Conclusion 

V 

111 this thesis, we have studied the haze removal problems and related issues. 

We summarize the main contributions of this thesis in the following. 

In Chapter 3 we propose the dark dianiiel prior and a single image ha/A: l e-

inoval algorithm. The dark channel prior comes from an intuitive obsei valioii 

on outdoor haze-free images. Unlike the heuristic assiiinptioris in previoiis 

methods, this prior is baijed on the image statistics, wliicli is the result of 

inherent physical properties (ilhiiiiiiiatiori, colors, and gcoiiuitry). This prior 

provides a robust est i mat ion for each pixel, and thus solves the aiiihigiuty of 

the problem. Despite of its simplicity, our haze lemoval algorithm l)as(、(l on 

this prior is very effective in various situations. Experiments sh<)w Umt, our 

method outperforrrLs most of the previous works. 

In Chapter I we study fast algorithms for haze removal. Tlie challenge is 

that we need to combine the pixel-wise constraints with spatial continuities, 

which is usually time-consuming. In the first part of this chapter, wc； develop 

an algoritlim which reduces the time complex of a linear solver from 0{rN^) 

to 0(j :JV” with a kernel radius r. This discovery is c'X)iitrary to conventional 

theories, but we prove it true both theoretically and experimentally. This 

algorithms allows us to increase the speed by choosing a larger In t he 

second part of this chapter, we treat the problem as a general edge-aware 

filtering process and propose a novel giiided filtor accordingly. This filter 

voids solving the linear system, and can IK: coriiputed in O(A^) time regardless 

of the kernel size. It enables a real-time performance of our liaze removal 

algorithm. This filtor also exhibits many riir.c; i)roporti(>s. Exi)criinorits show 

that it is advantageous in various applications including haze removal, in 

118 



terms of both quality and effic;ien(.y. 

Ill Chapter 5 wc study the relation between the dark channel prior and 

the human visual system (HVS). We demonstrate several strildng illusion 

experiiiierits to show that the HVS probably adopts a similar iiie{；hariism likff 

the dark channel prior to perceive, haze. This study casts new insights into 

the area of human vision research in psycho logy / ptiisi o logy. It also further 

supports the validity of the dark channel prior a.s a computer vision algorithm. 

becaiLse we are possibly sirinilating a human visual mechanism. 

In the future, we plan to study the probleiri mider more general haze imag-

ing situations, spatially variant atmospheric: light, or chariiiel-depciideiit 

transmission. The problem becomes more ill-posed and new priors are need-

ed. We are also interested in applying the fast guided filter in more computer 

vision problems. On the h inn an vision study, w(、expect to build a model to 

quantitatively explain the haze perception. 

• End of chapter. 
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Appendix A 

Physical Model 

The hazG imaging model is: 

I(x) = J(x)/(x)-|-A(1 -/ (x) ) . (2.1) 

In this appendix, we provide the physical derivation of this pqmi.t.ioii. The 

derivation is mainly following the method in ['ID . 

A . l Scattering 

VVe begin with tlic micro picture of t,lio plieriomeiiori. The pailick's in (.li<; 

atmosphere scatter light. "Scattering" means that a parUclp alworks a por-

tion of the incident, light and radiates the absorbed light as a light .sourcf； 

(Fig. A.l) . — 

Consider a small volume in atmosphere (see Fig. A.2). Accoiflirig to 

45, 19), tho total light flux 巾 sr.attorcd by a snuill vo]\iiiu' is proportional l.o 

the inddcnt, Ilux E: 

4>(A) - ^S{X)E{X)AV. ( A . l ) 

Here, E is (he intensity of the incident light, <I> is the total scattered light 

flux, AV is the volume, (3 is the total acaiicrim) coefficient ['ly], and A is the 

wavelength of the light;, indicating the variables arc wavelerigtli-dopondeiit. 
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A.2. DIRECT ATTENUATION 

incident light 

E 
paiticic iHiscattcred portion 

scattered light 

Figiu'e A.l: A particle scat.toriiig light. 

V y 
/ ' scattered flux <!> 

/ 
,了、〈‘ 

incident light K _ | i • unsc^tcred Hght 

small volume 
camcra 

Figure A.2: Scattering model in a small volume of atiaoHplicro. 

Tlie total scattering coefficient is (Icteriiiiiied by tlie particle material, 

size, shape, and concentration. 

Scattering is the basic reason for both direct attenuation and airUghi. 

A.2 Direct Attenuation 

The first oft.ect of scattering is that it attcriuat.es the iiicidciit light. C()iisi(i<?r 

a beam have a unit crosfi-sectionaJ m'ea one pixel) as in Fig. A.3. Denote 

as z the direction of tlie observer to a scene point. According to (A.l), the 

incident flux passing through an iiifinitesimally small sheet, of thickness dz is 

changed by dE: 

dE{z, A) = ~l3{z,X)E{z,X)dz, (A.2) 

where the v(jluine AV becomes l-dz, and indicates tlie light is weakened. 

Integrating this equatiou between 2 = 0 and z ~ d we obtain: 

(A.3) 
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A.3. AIBJJGHT 

E(O.X) 

rcflcclcd 
tighl 

A 

\J 
/=0 

7T\ 

E(7.+d7. X) 1 H(d. K) 

\ / camcra 
\U 

dz Z-il 

Figure A.3; Light liaveliiig in tho al.rriosphoro is atloiiuatcd. 

where A) is IIK; light rdiertwi l)y the scene point. E(d, A) is actually th* 

direction attenuation. We shall represent this portion of light, in colors. 

A.3 Airlight 

The second effcct of scatloring is that ii, hlcnids t he reflected liglil with addi-

tive airlight. 

A particle radiates the light it absorhK, l)eha.viiig a.s a light sourct： .sus-

pending in the air. All these particles generate the atmosphmc light: the 

liglit scatteied a great iiiany tim(3S by a huge niiiiibor of ])art.i(:lcs. Statis-

ticall}', the atmospheric light is spatially homogenous' and isotropic. If wo 

place a small disk of a unit aroa in the atriiasi}htn"(i, tho flux passing tlirouj^h 

this disk is constant regardless of its position and direction. We denote t he 

intensity of this flux per unit area by £{\). 

Consider an infinitesimally thin cylinder volume with a unit cros.s-sectidiial 

area in the atmosphere (Fig. A. l). This volume is lit by tlie atmospheric; liglil. 

from all directions. Tlie total incident; flux cont.ribuUxl by the at.mospJiei ic 

light to this volume is: 

斯 A) = 2t’(:\), (A.-J) 

where the number 2 is becaiisc the volume has two sides. According to (.A. i), 
A 

the total scattered fliix is t/(I>(A) = P{X)2e(X)(iz. But bccaiiso (he cyliiidnr 

has two sides, the flux dR latUated from the side facing the obscrvc r̂ is: 

dR{z,\) = 0{zA)£Wdz. (A.5) 

This radiated light also lias to pass through the haze between the vohiirie 

[ill the sense of a large scale like a scene 
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A.3. AIRLIGHT 

atmospheric light E 

\ 
\ 

scattered flux 

-• camera 
dz 

Figure A.4: A unit volume scatters atiiiosplieric light corrniig from all diroc 

Lions. 

A —m 

V/ — J ^ 

dR(7, V) 
A 

北U. X) 

\J 
z-0 dz z-d 

Figure A.5: Tlie radiated light by a volume has to pass through the ha.ze 

before reat-liiiig the observer. 

and the observer, and is attenuated (see Fig. A.5). Following (lie attemiatioii 

equation (A.3), the light (IL after attenuation that reaches the observer is: 

dL{z,X) = 儿 ‘ 昨 拟 . d R ( z . \ ) . (A.6) 

Integrating all tho infiiiitesiTiial light sources between z=() and z二d, wc ohta.iri 

the total light L: 

L[dA) = - ( r / c ? 圳 — 冲 ( A . 7 ) 

This is the light that readies the observer due to the atrnosplicric light.. 

L{d, A) is actually the airlight. 
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A.4. COLOIUMETRY 

A.4 Colorimetry 

Wc have obtained the direction attoriuatioii in {A. 3) and the air light in (A 

So the total light reaching t}ie observer is: 

E(d、A) + A) = E(0, . 厂 山 f 5(A)(1 - ./:•>(:’朴':）. (A.8) 

Next we represent the two terms in colors. In coloriinetiy, Ihe color seen 

l)y lmma.li eyes or captured by a camera is a. weighted integral over tho light, 

spectrum [10]. Denote the weighting function as sdX) where c rq)re.stnit.s an 

RGB channel. The color of the direct attenuation in (A.:：}) is: 

(A.9) 

and the coloi. of the air light in (八.7) is 

Sc{X)L{d,X)dX = / AV.(A)C(A)(1 - (T./""昨’拟— (A.10) 

To further simplify these equations, wc have to make the following a,s-

suiiiption: the scatUiring coefficient fi is independent of the wavclcjujih.^ 

This assumption is true when the particles in the atmosphere liave a 

proper size-. Fortunately, this is satisfied in haze, fog aud uiist [45]. IIruler 

tliis assumption, we can write the right hand sides of (A.9) and (A.iO) rus: 

(A . l l ) 

m 

and 

V 
Sr.{\)€{\)d\) • {1 - (：-^'mdzy 

'•̂ râ liiis in Mio oidor botwceii 10~-/iin and lO、/."! [-15) 

(A.12) 
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A.4. COLORIMETUY 

By the definition of J and A in the haze imago equation (2.1) vvt; have: 

A- 二 

.s-,.(A)7?(0, A)fiA (A.13) 

SrXX)£{X)dX.. (A. 14) 

where we use Jc to dcnoto the value of J in channel c (likewise We 

further define the transmission t as: 

^ (A.15) 

Therefore, (A. 11.) is the direct attenuation term M, and (A.12) is the airhght. 

U;rm A(1 - t). The color of the total light (A.8) is Ji f A(1 - t). This 

explains the haze imaging equation (2.1). 
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Appendix B 

Mathematical Derivations 

B . l Theorem 4.1.1: proof 

Proof. To piove q equals to Lp, we need to prove dqi/Opj — L{i,j). 

Putting (4.14) into (4.15) and eliriiinating /;*, we obtain: 

(hi c \ ^ 神 k , dal 

Here, we have: 

Opk 1 v-- Op, 

{B.l) 

^Pk 丄 V"^ uVn 丄义 丄 j f 

o = — / ^ ~ = — " j e w u = 1 

(^Pj M ， ^ dPi M M 

(B.2) 

where ĵ̂ wk is 1 if j G Wk、and is 0 otherwise. According to (4.13) we also 
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Putting (B.2) and (13.3) into (B.l), wo obtain: 

This equals to L{i , j ) in (4.9). • 

B.2 0(iV) algorithms for mean, variance, and 

covariance in sliding windows 
% 

Suppose the window w is square and has the size (2r + l )x(2r +1). A box 

filter performed on any imago I is defined as the sum on cach window (sliding 

windows): 

B\x,y) = [ I{x\y') (B.5) 

x+r y+r ’ 

= E E 狀 " ' )， “ ( B . 6 ) 
x'=a:~r —r 

{L - fik)(Ii - /I,)) (B.4) 

where w(xy y) is the window centered at (x, y). A'bnit.e-force algorithm takes 

0{Nr^) time to compute the sums in all windows. But we can reduce it to 

0(N) time by Integral Image technique [22] or by cumulative sums. 
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B.2. DEllIVATION 2 
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B.2. DEllIVATION 2 

Here wc adopt cumulative sums. Notice that the hox filtc.r in ^sc.parahlt, 

meaning that, we can compute a 1-D box filter along x-axis ami tluni along 

y-axis. A 1-D box filter along x-axis is deliiied as: 

B乂3:) 二 (B.7) 

The 1-D cumulative sum. is defined a.s 

C'(.T) 二 ^ / ( : / / ) . (B.8) 

Obviously, the cumulative sums at all pixels j： G [()，iVj of a 1-D sigiiHl can 
be computed in 0(Â a：) time through a single scan. So the 1-D box fUt(、r (,:an 

be computod by: 

B\x) = + /•) - - r - 1) (B.O) 

ill as few as one operation, regardless of the kernel radius r. The 1-1) l)ox 

filter along y-a.xis can be computed similarly. So the 2-D box filter can be 

computed in 0(N) time for any r. . 

The mean, variance, and f;ovariaiice in sliding windows 

as a series of box filters. For simplicity, we denote y) 

the index of the pixel {x, y). The mean in sliding windows 

(;an bo expressed 

by Bj[ where k is 

is: 

1

1
 

f

 ̂

 

1
 
^
 

(B.IO) 

where U is an image whose pixels are all 1. The variance in sliding windows 
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B,3. DEBWATION 3 

IS： 

(Ti 
'叫丨 

1 p 

丨"'A：丨 
Yli't - n ( B . n ) 

(B.12) 

and the covariance in sliding windows is: 

1 .̂ 1 ^ _ 

cov“/,p) = — [ ( A - 4)(A： - Vk) = 1 讽-4PJT(B.13) '⑴k 

Bi'' — hPk. (B.1,1) 

Thus, the inean, variance, and covariaiice in sliding wiiidows can all be com-

puted in 0(N) time, regardless of the kernel radius r. 

B.3 Approximate eigenvalues of L 

We only consider the approximately constant regions of 

(4.9). the elements of L in these region are given by: 

According to 

Lij = (知 
w 

{B.15) 

To compute the eigenvalues of L, we are interested in the product Lp 

where p is an eigenvector. We cari show that (B.15) leads to: 

L p = |?i;|p 

= I H P 

w 

\w 

B B p 

ByBxByBxP. 

(B.16) 

(B .17) 
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B.2. DEllIVATION 2 

Hero B dciiotc^a the matrix form of a 2D box filter. A 2-D })ox filter can 

be separated into two 1-D box filters Bx and By along the x-axis and the 

Y-axis respectively. To find the eigenvalues of L, we only need to find the 

eigenvalues of Bx and By. 、 

We apply the discrote-time Fourier Transform (DTFT) [「) Ij to approxi-

iiiatcly compute the eigenvalues of B、. The solution is: 

siri((2r + 1)1^) 

“ I 二 s i n ( “ ， f o r 人、.="，」、; ( _ 

with the eigeiifiiiictioris sin(^a：). Here A^ is the width of the image. The 

eigenvalues k̂̂  of By is similar. From (B.K)) the eigenvalues of L are given 

hy: 

its rnaxiimirn is: 

^max = I H (B.2()) 

arid its minimurn (using Taylor expansion) is: 

^L ^ (B.21) 

冗2 i , 

where we assume N : ^ Ny ^ N~i 
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